1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 88, 92-97, 1998 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 /*@@ This file should be rewritten to use an arbitrary precision
22 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
23 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
24 @@ The routines that translate from the ap rep should
25 @@ warn if precision et. al. is lost.
26 @@ This would also make life easier when this technology is used
27 @@ for cross-compilers. */
30 /* The entry points in this file are fold, size_int_wide, size_binop
33 fold takes a tree as argument and returns a simplified tree.
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
42 force_fit_type takes a constant and prior overflow indicator, and
43 forces the value to fit the type. It returns an overflow indicator. */
51 /* Handle floating overflow for `const_binop'. */
52 static jmp_buf float_error
;
54 static void encode
PROTO((HOST_WIDE_INT
*,
55 HOST_WIDE_INT
, HOST_WIDE_INT
));
56 static void decode
PROTO((HOST_WIDE_INT
*,
57 HOST_WIDE_INT
*, HOST_WIDE_INT
*));
58 int div_and_round_double
PROTO((enum tree_code
, int, HOST_WIDE_INT
,
59 HOST_WIDE_INT
, HOST_WIDE_INT
,
60 HOST_WIDE_INT
, HOST_WIDE_INT
*,
61 HOST_WIDE_INT
*, HOST_WIDE_INT
*,
63 static int split_tree
PROTO((tree
, enum tree_code
, tree
*,
65 static tree int_const_binop
PROTO((enum tree_code
, tree
, tree
, int, int));
66 static tree const_binop
PROTO((enum tree_code
, tree
, tree
, int));
67 static tree fold_convert
PROTO((tree
, tree
));
68 static enum tree_code invert_tree_comparison
PROTO((enum tree_code
));
69 static enum tree_code swap_tree_comparison
PROTO((enum tree_code
));
70 static int truth_value_p
PROTO((enum tree_code
));
71 static int operand_equal_for_comparison_p
PROTO((tree
, tree
, tree
));
72 static int twoval_comparison_p
PROTO((tree
, tree
*, tree
*, int *));
73 static tree eval_subst
PROTO((tree
, tree
, tree
, tree
, tree
));
74 static tree omit_one_operand
PROTO((tree
, tree
, tree
));
75 static tree pedantic_omit_one_operand
PROTO((tree
, tree
, tree
));
76 static tree distribute_bit_expr
PROTO((enum tree_code
, tree
, tree
, tree
));
77 static tree make_bit_field_ref
PROTO((tree
, tree
, int, int, int));
78 static tree optimize_bit_field_compare
PROTO((enum tree_code
, tree
,
80 static tree decode_field_reference
PROTO((tree
, int *, int *,
81 enum machine_mode
*, int *,
82 int *, tree
*, tree
*));
83 static int all_ones_mask_p
PROTO((tree
, int));
84 static int simple_operand_p
PROTO((tree
));
85 static tree range_binop
PROTO((enum tree_code
, tree
, tree
, int,
87 static tree make_range
PROTO((tree
, int *, tree
*, tree
*));
88 static tree build_range_check
PROTO((tree
, tree
, int, tree
, tree
));
89 static int merge_ranges
PROTO((int *, tree
*, tree
*, int, tree
, tree
,
91 static tree fold_range_test
PROTO((tree
));
92 static tree unextend
PROTO((tree
, int, int, tree
));
93 static tree fold_truthop
PROTO((enum tree_code
, tree
, tree
, tree
));
94 static tree strip_compound_expr
PROTO((tree
, tree
));
95 static int multiple_of_p
PROTO((tree
, tree
, tree
));
101 /* Suppose A1 + B1 = SUM1, using 2's complement arithmetic ignoring overflow.
102 Suppose A, B and SUM have the same respective signs as A1, B1, and SUM1.
103 Then this yields nonzero if overflow occurred during the addition.
104 Overflow occurs if A and B have the same sign, but A and SUM differ in sign.
105 Use `^' to test whether signs differ, and `< 0' to isolate the sign. */
106 #define overflow_sum_sign(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
108 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
109 We do that by representing the two-word integer in 4 words, with only
110 HOST_BITS_PER_WIDE_INT/2 bits stored in each word, as a positive number. */
113 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT/2)) - 1))
114 #define HIGHPART(x) \
115 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT/2)
116 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT/2)
118 /* Unpack a two-word integer into 4 words.
119 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
120 WORDS points to the array of HOST_WIDE_INTs. */
123 encode (words
, low
, hi
)
124 HOST_WIDE_INT
*words
;
125 HOST_WIDE_INT low
, hi
;
127 words
[0] = LOWPART (low
);
128 words
[1] = HIGHPART (low
);
129 words
[2] = LOWPART (hi
);
130 words
[3] = HIGHPART (hi
);
133 /* Pack an array of 4 words into a two-word integer.
134 WORDS points to the array of words.
135 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
138 decode (words
, low
, hi
)
139 HOST_WIDE_INT
*words
;
140 HOST_WIDE_INT
*low
, *hi
;
142 *low
= words
[0] | words
[1] * BASE
;
143 *hi
= words
[2] | words
[3] * BASE
;
146 /* Make the integer constant T valid for its type
147 by setting to 0 or 1 all the bits in the constant
148 that don't belong in the type.
149 Yield 1 if a signed overflow occurs, 0 otherwise.
150 If OVERFLOW is nonzero, a signed overflow has already occurred
151 in calculating T, so propagate it.
153 Make the real constant T valid for its type by calling CHECK_FLOAT_VALUE,
157 force_fit_type (t
, overflow
)
161 HOST_WIDE_INT low
, high
;
164 if (TREE_CODE (t
) == REAL_CST
)
166 #ifdef CHECK_FLOAT_VALUE
167 CHECK_FLOAT_VALUE (TYPE_MODE (TREE_TYPE (t
)), TREE_REAL_CST (t
),
173 else if (TREE_CODE (t
) != INTEGER_CST
)
176 low
= TREE_INT_CST_LOW (t
);
177 high
= TREE_INT_CST_HIGH (t
);
179 if (TREE_CODE (TREE_TYPE (t
)) == POINTER_TYPE
)
182 prec
= TYPE_PRECISION (TREE_TYPE (t
));
184 /* First clear all bits that are beyond the type's precision. */
186 if (prec
== 2 * HOST_BITS_PER_WIDE_INT
)
188 else if (prec
> HOST_BITS_PER_WIDE_INT
)
190 TREE_INT_CST_HIGH (t
)
191 &= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
195 TREE_INT_CST_HIGH (t
) = 0;
196 if (prec
< HOST_BITS_PER_WIDE_INT
)
197 TREE_INT_CST_LOW (t
) &= ~((HOST_WIDE_INT
) (-1) << prec
);
200 /* Unsigned types do not suffer sign extension or overflow. */
201 if (TREE_UNSIGNED (TREE_TYPE (t
)))
204 /* If the value's sign bit is set, extend the sign. */
205 if (prec
!= 2 * HOST_BITS_PER_WIDE_INT
206 && (prec
> HOST_BITS_PER_WIDE_INT
207 ? (TREE_INT_CST_HIGH (t
)
208 & ((HOST_WIDE_INT
) 1 << (prec
- HOST_BITS_PER_WIDE_INT
- 1)))
209 : TREE_INT_CST_LOW (t
) & ((HOST_WIDE_INT
) 1 << (prec
- 1))))
211 /* Value is negative:
212 set to 1 all the bits that are outside this type's precision. */
213 if (prec
> HOST_BITS_PER_WIDE_INT
)
215 TREE_INT_CST_HIGH (t
)
216 |= ((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
220 TREE_INT_CST_HIGH (t
) = -1;
221 if (prec
< HOST_BITS_PER_WIDE_INT
)
222 TREE_INT_CST_LOW (t
) |= ((HOST_WIDE_INT
) (-1) << prec
);
226 /* Yield nonzero if signed overflow occurred. */
228 ((overflow
| (low
^ TREE_INT_CST_LOW (t
)) | (high
^ TREE_INT_CST_HIGH (t
)))
232 /* Add two doubleword integers with doubleword result.
233 Each argument is given as two `HOST_WIDE_INT' pieces.
234 One argument is L1 and H1; the other, L2 and H2.
235 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
238 add_double (l1
, h1
, l2
, h2
, lv
, hv
)
239 HOST_WIDE_INT l1
, h1
, l2
, h2
;
240 HOST_WIDE_INT
*lv
, *hv
;
245 h
= h1
+ h2
+ ((unsigned HOST_WIDE_INT
) l
< l1
);
249 return overflow_sum_sign (h1
, h2
, h
);
252 /* Negate a doubleword integer with doubleword result.
253 Return nonzero if the operation overflows, assuming it's signed.
254 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
255 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
258 neg_double (l1
, h1
, lv
, hv
)
259 HOST_WIDE_INT l1
, h1
;
260 HOST_WIDE_INT
*lv
, *hv
;
266 return (*hv
& h1
) < 0;
276 /* Multiply two doubleword integers with doubleword result.
277 Return nonzero if the operation overflows, assuming it's signed.
278 Each argument is given as two `HOST_WIDE_INT' pieces.
279 One argument is L1 and H1; the other, L2 and H2.
280 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
283 mul_double (l1
, h1
, l2
, h2
, lv
, hv
)
284 HOST_WIDE_INT l1
, h1
, l2
, h2
;
285 HOST_WIDE_INT
*lv
, *hv
;
287 HOST_WIDE_INT arg1
[4];
288 HOST_WIDE_INT arg2
[4];
289 HOST_WIDE_INT prod
[4 * 2];
290 register unsigned HOST_WIDE_INT carry
;
291 register int i
, j
, k
;
292 HOST_WIDE_INT toplow
, tophigh
, neglow
, neghigh
;
294 encode (arg1
, l1
, h1
);
295 encode (arg2
, l2
, h2
);
297 bzero ((char *) prod
, sizeof prod
);
299 for (i
= 0; i
< 4; i
++)
302 for (j
= 0; j
< 4; j
++)
305 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
306 carry
+= arg1
[i
] * arg2
[j
];
307 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
309 prod
[k
] = LOWPART (carry
);
310 carry
= HIGHPART (carry
);
315 decode (prod
, lv
, hv
); /* This ignores prod[4] through prod[4*2-1] */
317 /* Check for overflow by calculating the top half of the answer in full;
318 it should agree with the low half's sign bit. */
319 decode (prod
+4, &toplow
, &tophigh
);
322 neg_double (l2
, h2
, &neglow
, &neghigh
);
323 add_double (neglow
, neghigh
, toplow
, tophigh
, &toplow
, &tophigh
);
327 neg_double (l1
, h1
, &neglow
, &neghigh
);
328 add_double (neglow
, neghigh
, toplow
, tophigh
, &toplow
, &tophigh
);
330 return (*hv
< 0 ? ~(toplow
& tophigh
) : toplow
| tophigh
) != 0;
333 /* Shift the doubleword integer in L1, H1 left by COUNT places
334 keeping only PREC bits of result.
335 Shift right if COUNT is negative.
336 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
337 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
340 lshift_double (l1
, h1
, count
, prec
, lv
, hv
, arith
)
341 HOST_WIDE_INT l1
, h1
, count
;
343 HOST_WIDE_INT
*lv
, *hv
;
348 rshift_double (l1
, h1
, - count
, prec
, lv
, hv
, arith
);
352 #ifdef SHIFT_COUNT_TRUNCATED
353 if (SHIFT_COUNT_TRUNCATED
)
357 if (count
>= HOST_BITS_PER_WIDE_INT
)
359 *hv
= (unsigned HOST_WIDE_INT
) l1
<< (count
- HOST_BITS_PER_WIDE_INT
);
364 *hv
= (((unsigned HOST_WIDE_INT
) h1
<< count
)
365 | ((unsigned HOST_WIDE_INT
) l1
>> (HOST_BITS_PER_WIDE_INT
- count
- 1) >> 1));
366 *lv
= (unsigned HOST_WIDE_INT
) l1
<< count
;
370 /* Shift the doubleword integer in L1, H1 right by COUNT places
371 keeping only PREC bits of result. COUNT must be positive.
372 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
373 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
376 rshift_double (l1
, h1
, count
, prec
, lv
, hv
, arith
)
377 HOST_WIDE_INT l1
, h1
, count
;
379 HOST_WIDE_INT
*lv
, *hv
;
382 unsigned HOST_WIDE_INT signmask
;
384 ? -((unsigned HOST_WIDE_INT
) h1
>> (HOST_BITS_PER_WIDE_INT
- 1))
387 #ifdef SHIFT_COUNT_TRUNCATED
388 if (SHIFT_COUNT_TRUNCATED
)
392 if (count
>= HOST_BITS_PER_WIDE_INT
)
395 *lv
= ((signmask
<< (2 * HOST_BITS_PER_WIDE_INT
- count
- 1) << 1)
396 | ((unsigned HOST_WIDE_INT
) h1
>> (count
- HOST_BITS_PER_WIDE_INT
)));
400 *lv
= (((unsigned HOST_WIDE_INT
) l1
>> count
)
401 | ((unsigned HOST_WIDE_INT
) h1
<< (HOST_BITS_PER_WIDE_INT
- count
- 1) << 1));
402 *hv
= ((signmask
<< (HOST_BITS_PER_WIDE_INT
- count
))
403 | ((unsigned HOST_WIDE_INT
) h1
>> count
));
407 /* Rotate the doubleword integer in L1, H1 left by COUNT places
408 keeping only PREC bits of result.
409 Rotate right if COUNT is negative.
410 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
413 lrotate_double (l1
, h1
, count
, prec
, lv
, hv
)
414 HOST_WIDE_INT l1
, h1
, count
;
416 HOST_WIDE_INT
*lv
, *hv
;
418 HOST_WIDE_INT s1l
, s1h
, s2l
, s2h
;
424 lshift_double (l1
, h1
, count
, prec
, &s1l
, &s1h
, 0);
425 rshift_double (l1
, h1
, prec
- count
, prec
, &s2l
, &s2h
, 0);
430 /* Rotate the doubleword integer in L1, H1 left by COUNT places
431 keeping only PREC bits of result. COUNT must be positive.
432 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
435 rrotate_double (l1
, h1
, count
, prec
, lv
, hv
)
436 HOST_WIDE_INT l1
, h1
, count
;
438 HOST_WIDE_INT
*lv
, *hv
;
440 HOST_WIDE_INT s1l
, s1h
, s2l
, s2h
;
446 rshift_double (l1
, h1
, count
, prec
, &s1l
, &s1h
, 0);
447 lshift_double (l1
, h1
, prec
- count
, prec
, &s2l
, &s2h
, 0);
452 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
453 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
454 CODE is a tree code for a kind of division, one of
455 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
457 It controls how the quotient is rounded to a integer.
458 Return nonzero if the operation overflows.
459 UNS nonzero says do unsigned division. */
462 div_and_round_double (code
, uns
,
463 lnum_orig
, hnum_orig
, lden_orig
, hden_orig
,
464 lquo
, hquo
, lrem
, hrem
)
467 HOST_WIDE_INT lnum_orig
, hnum_orig
; /* num == numerator == dividend */
468 HOST_WIDE_INT lden_orig
, hden_orig
; /* den == denominator == divisor */
469 HOST_WIDE_INT
*lquo
, *hquo
, *lrem
, *hrem
;
472 HOST_WIDE_INT num
[4 + 1]; /* extra element for scaling. */
473 HOST_WIDE_INT den
[4], quo
[4];
475 unsigned HOST_WIDE_INT work
;
476 register unsigned HOST_WIDE_INT carry
= 0;
477 HOST_WIDE_INT lnum
= lnum_orig
;
478 HOST_WIDE_INT hnum
= hnum_orig
;
479 HOST_WIDE_INT lden
= lden_orig
;
480 HOST_WIDE_INT hden
= hden_orig
;
483 if ((hden
== 0) && (lden
== 0))
484 overflow
= 1, lden
= 1;
486 /* calculate quotient sign and convert operands to unsigned. */
492 /* (minimum integer) / (-1) is the only overflow case. */
493 if (neg_double (lnum
, hnum
, &lnum
, &hnum
) && (lden
& hden
) == -1)
499 neg_double (lden
, hden
, &lden
, &hden
);
503 if (hnum
== 0 && hden
== 0)
504 { /* single precision */
506 /* This unsigned division rounds toward zero. */
507 *lquo
= lnum
/ (unsigned HOST_WIDE_INT
) lden
;
512 { /* trivial case: dividend < divisor */
513 /* hden != 0 already checked. */
520 bzero ((char *) quo
, sizeof quo
);
522 bzero ((char *) num
, sizeof num
); /* to zero 9th element */
523 bzero ((char *) den
, sizeof den
);
525 encode (num
, lnum
, hnum
);
526 encode (den
, lden
, hden
);
528 /* Special code for when the divisor < BASE. */
529 if (hden
== 0 && lden
< BASE
)
531 /* hnum != 0 already checked. */
532 for (i
= 4 - 1; i
>= 0; i
--)
534 work
= num
[i
] + carry
* BASE
;
535 quo
[i
] = work
/ (unsigned HOST_WIDE_INT
) lden
;
536 carry
= work
% (unsigned HOST_WIDE_INT
) lden
;
541 /* Full double precision division,
542 with thanks to Don Knuth's "Seminumerical Algorithms". */
543 int num_hi_sig
, den_hi_sig
;
544 unsigned HOST_WIDE_INT quo_est
, scale
;
546 /* Find the highest non-zero divisor digit. */
547 for (i
= 4 - 1; ; i
--)
553 /* Insure that the first digit of the divisor is at least BASE/2.
554 This is required by the quotient digit estimation algorithm. */
556 scale
= BASE
/ (den
[den_hi_sig
] + 1);
557 if (scale
> 1) { /* scale divisor and dividend */
559 for (i
= 0; i
<= 4 - 1; i
++) {
560 work
= (num
[i
] * scale
) + carry
;
561 num
[i
] = LOWPART (work
);
562 carry
= HIGHPART (work
);
565 for (i
= 0; i
<= 4 - 1; i
++) {
566 work
= (den
[i
] * scale
) + carry
;
567 den
[i
] = LOWPART (work
);
568 carry
= HIGHPART (work
);
569 if (den
[i
] != 0) den_hi_sig
= i
;
576 for (i
= num_hi_sig
- den_hi_sig
- 1; i
>= 0; i
--) {
577 /* guess the next quotient digit, quo_est, by dividing the first
578 two remaining dividend digits by the high order quotient digit.
579 quo_est is never low and is at most 2 high. */
580 unsigned HOST_WIDE_INT tmp
;
582 num_hi_sig
= i
+ den_hi_sig
+ 1;
583 work
= num
[num_hi_sig
] * BASE
+ num
[num_hi_sig
- 1];
584 if (num
[num_hi_sig
] != den
[den_hi_sig
])
585 quo_est
= work
/ den
[den_hi_sig
];
589 /* refine quo_est so it's usually correct, and at most one high. */
590 tmp
= work
- quo_est
* den
[den_hi_sig
];
592 && den
[den_hi_sig
- 1] * quo_est
> (tmp
* BASE
+ num
[num_hi_sig
- 2]))
595 /* Try QUO_EST as the quotient digit, by multiplying the
596 divisor by QUO_EST and subtracting from the remaining dividend.
597 Keep in mind that QUO_EST is the I - 1st digit. */
600 for (j
= 0; j
<= den_hi_sig
; j
++)
602 work
= quo_est
* den
[j
] + carry
;
603 carry
= HIGHPART (work
);
604 work
= num
[i
+ j
] - LOWPART (work
);
605 num
[i
+ j
] = LOWPART (work
);
606 carry
+= HIGHPART (work
) != 0;
609 /* if quo_est was high by one, then num[i] went negative and
610 we need to correct things. */
612 if (num
[num_hi_sig
] < carry
)
615 carry
= 0; /* add divisor back in */
616 for (j
= 0; j
<= den_hi_sig
; j
++)
618 work
= num
[i
+ j
] + den
[j
] + carry
;
619 carry
= HIGHPART (work
);
620 num
[i
+ j
] = LOWPART (work
);
622 num
[num_hi_sig
] += carry
;
625 /* store the quotient digit. */
630 decode (quo
, lquo
, hquo
);
633 /* if result is negative, make it so. */
635 neg_double (*lquo
, *hquo
, lquo
, hquo
);
637 /* compute trial remainder: rem = num - (quo * den) */
638 mul_double (*lquo
, *hquo
, lden_orig
, hden_orig
, lrem
, hrem
);
639 neg_double (*lrem
, *hrem
, lrem
, hrem
);
640 add_double (lnum_orig
, hnum_orig
, *lrem
, *hrem
, lrem
, hrem
);
645 case TRUNC_MOD_EXPR
: /* round toward zero */
646 case EXACT_DIV_EXPR
: /* for this one, it shouldn't matter */
650 case FLOOR_MOD_EXPR
: /* round toward negative infinity */
651 if (quo_neg
&& (*lrem
!= 0 || *hrem
!= 0)) /* ratio < 0 && rem != 0 */
654 add_double (*lquo
, *hquo
, (HOST_WIDE_INT
) -1, (HOST_WIDE_INT
) -1,
657 else return overflow
;
661 case CEIL_MOD_EXPR
: /* round toward positive infinity */
662 if (!quo_neg
&& (*lrem
!= 0 || *hrem
!= 0)) /* ratio > 0 && rem != 0 */
664 add_double (*lquo
, *hquo
, (HOST_WIDE_INT
) 1, (HOST_WIDE_INT
) 0,
667 else return overflow
;
671 case ROUND_MOD_EXPR
: /* round to closest integer */
673 HOST_WIDE_INT labs_rem
= *lrem
, habs_rem
= *hrem
;
674 HOST_WIDE_INT labs_den
= lden
, habs_den
= hden
, ltwice
, htwice
;
676 /* get absolute values */
677 if (*hrem
< 0) neg_double (*lrem
, *hrem
, &labs_rem
, &habs_rem
);
678 if (hden
< 0) neg_double (lden
, hden
, &labs_den
, &habs_den
);
680 /* if (2 * abs (lrem) >= abs (lden)) */
681 mul_double ((HOST_WIDE_INT
) 2, (HOST_WIDE_INT
) 0,
682 labs_rem
, habs_rem
, <wice
, &htwice
);
683 if (((unsigned HOST_WIDE_INT
) habs_den
684 < (unsigned HOST_WIDE_INT
) htwice
)
685 || (((unsigned HOST_WIDE_INT
) habs_den
686 == (unsigned HOST_WIDE_INT
) htwice
)
687 && ((HOST_WIDE_INT
unsigned) labs_den
688 < (unsigned HOST_WIDE_INT
) ltwice
)))
692 add_double (*lquo
, *hquo
,
693 (HOST_WIDE_INT
) -1, (HOST_WIDE_INT
) -1, lquo
, hquo
);
696 add_double (*lquo
, *hquo
, (HOST_WIDE_INT
) 1, (HOST_WIDE_INT
) 0,
699 else return overflow
;
707 /* compute true remainder: rem = num - (quo * den) */
708 mul_double (*lquo
, *hquo
, lden_orig
, hden_orig
, lrem
, hrem
);
709 neg_double (*lrem
, *hrem
, lrem
, hrem
);
710 add_double (lnum_orig
, hnum_orig
, *lrem
, *hrem
, lrem
, hrem
);
714 #ifndef REAL_ARITHMETIC
715 /* Effectively truncate a real value to represent the nearest possible value
716 in a narrower mode. The result is actually represented in the same data
717 type as the argument, but its value is usually different.
719 A trap may occur during the FP operations and it is the responsibility
720 of the calling function to have a handler established. */
723 real_value_truncate (mode
, arg
)
724 enum machine_mode mode
;
727 return REAL_VALUE_TRUNCATE (mode
, arg
);
730 #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
732 /* Check for infinity in an IEEE double precision number. */
738 /* The IEEE 64-bit double format. */
743 unsigned exponent
: 11;
744 unsigned mantissa1
: 20;
749 unsigned mantissa1
: 20;
750 unsigned exponent
: 11;
756 if (u
.big_endian
.sign
== 1)
759 return (u
.big_endian
.exponent
== 2047
760 && u
.big_endian
.mantissa1
== 0
761 && u
.big_endian
.mantissa2
== 0);
766 return (u
.little_endian
.exponent
== 2047
767 && u
.little_endian
.mantissa1
== 0
768 && u
.little_endian
.mantissa2
== 0);
772 /* Check whether an IEEE double precision number is a NaN. */
778 /* The IEEE 64-bit double format. */
783 unsigned exponent
: 11;
784 unsigned mantissa1
: 20;
789 unsigned mantissa1
: 20;
790 unsigned exponent
: 11;
796 if (u
.big_endian
.sign
== 1)
799 return (u
.big_endian
.exponent
== 2047
800 && (u
.big_endian
.mantissa1
!= 0
801 || u
.big_endian
.mantissa2
!= 0));
806 return (u
.little_endian
.exponent
== 2047
807 && (u
.little_endian
.mantissa1
!= 0
808 || u
.little_endian
.mantissa2
!= 0));
812 /* Check for a negative IEEE double precision number. */
818 /* The IEEE 64-bit double format. */
823 unsigned exponent
: 11;
824 unsigned mantissa1
: 20;
829 unsigned mantissa1
: 20;
830 unsigned exponent
: 11;
836 if (u
.big_endian
.sign
== 1)
839 return u
.big_endian
.sign
;
844 return u
.little_endian
.sign
;
847 #else /* Target not IEEE */
849 /* Let's assume other float formats don't have infinity.
850 (This can be overridden by redefining REAL_VALUE_ISINF.) */
858 /* Let's assume other float formats don't have NaNs.
859 (This can be overridden by redefining REAL_VALUE_ISNAN.) */
867 /* Let's assume other float formats don't have minus zero.
868 (This can be overridden by redefining REAL_VALUE_NEGATIVE.) */
875 #endif /* Target not IEEE */
877 /* Try to change R into its exact multiplicative inverse in machine mode
878 MODE. Return nonzero function value if successful. */
881 exact_real_inverse (mode
, r
)
882 enum machine_mode mode
;
892 /* Usually disable if bounds checks are not reliable. */
893 if ((HOST_FLOAT_FORMAT
!= TARGET_FLOAT_FORMAT
) && !flag_pretend_float
)
896 /* Set array index to the less significant bits in the unions, depending
897 on the endian-ness of the host doubles.
898 Disable if insufficient information on the data structure. */
899 #if HOST_FLOAT_FORMAT == UNKNOWN_FLOAT_FORMAT
902 #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT
905 #if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT
908 #define K (2 * HOST_FLOAT_WORDS_BIG_ENDIAN)
913 if (setjmp (float_error
))
915 /* Don't do the optimization if there was an arithmetic error. */
917 set_float_handler (NULL_PTR
);
920 set_float_handler (float_error
);
922 /* Domain check the argument. */
928 if (REAL_VALUE_ISINF (x
.d
) || REAL_VALUE_ISNAN (x
.d
))
932 /* Compute the reciprocal and check for numerical exactness.
933 It is unnecessary to check all the significand bits to determine
934 whether X is a power of 2. If X is not, then it is impossible for
935 the bottom half significand of both X and 1/X to be all zero bits.
936 Hence we ignore the data structure of the top half and examine only
937 the low order bits of the two significands. */
939 if (x
.i
[K
] != 0 || x
.i
[K
+ 1] != 0 || t
.i
[K
] != 0 || t
.i
[K
+ 1] != 0)
942 /* Truncate to the required mode and range-check the result. */
943 y
.d
= REAL_VALUE_TRUNCATE (mode
, t
.d
);
944 #ifdef CHECK_FLOAT_VALUE
946 if (CHECK_FLOAT_VALUE (mode
, y
.d
, i
))
950 /* Fail if truncation changed the value. */
951 if (y
.d
!= t
.d
|| y
.d
== 0.0)
955 if (REAL_VALUE_ISINF (y
.d
) || REAL_VALUE_ISNAN (y
.d
))
959 /* Output the reciprocal and return success flag. */
960 set_float_handler (NULL_PTR
);
964 #endif /* no REAL_ARITHMETIC */
966 /* Split a tree IN into a constant and a variable part
967 that could be combined with CODE to make IN.
968 CODE must be a commutative arithmetic operation.
969 Store the constant part into *CONP and the variable in &VARP.
970 Return 1 if this was done; zero means the tree IN did not decompose
973 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR.
974 Therefore, we must tell the caller whether the variable part
975 was subtracted. We do this by storing 1 or -1 into *VARSIGNP.
976 The value stored is the coefficient for the variable term.
977 The constant term we return should always be added;
978 we negate it if necessary. */
981 split_tree (in
, code
, varp
, conp
, varsignp
)
987 register tree outtype
= TREE_TYPE (in
);
991 /* Strip any conversions that don't change the machine mode. */
992 while ((TREE_CODE (in
) == NOP_EXPR
993 || TREE_CODE (in
) == CONVERT_EXPR
)
994 && (TYPE_MODE (TREE_TYPE (in
))
995 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (in
, 0)))))
996 in
= TREE_OPERAND (in
, 0);
998 if (TREE_CODE (in
) == code
999 || (! FLOAT_TYPE_P (TREE_TYPE (in
))
1000 /* We can associate addition and subtraction together
1001 (even though the C standard doesn't say so)
1002 for integers because the value is not affected.
1003 For reals, the value might be affected, so we can't. */
1004 && ((code
== PLUS_EXPR
&& TREE_CODE (in
) == MINUS_EXPR
)
1005 || (code
== MINUS_EXPR
&& TREE_CODE (in
) == PLUS_EXPR
))))
1007 enum tree_code code
= TREE_CODE (TREE_OPERAND (in
, 0));
1008 if (code
== INTEGER_CST
)
1010 *conp
= TREE_OPERAND (in
, 0);
1011 *varp
= TREE_OPERAND (in
, 1);
1012 if (TYPE_MODE (TREE_TYPE (*varp
)) != TYPE_MODE (outtype
)
1013 && TREE_TYPE (*varp
) != outtype
)
1014 *varp
= convert (outtype
, *varp
);
1015 *varsignp
= (TREE_CODE (in
) == MINUS_EXPR
) ? -1 : 1;
1018 if (TREE_CONSTANT (TREE_OPERAND (in
, 1)))
1020 *conp
= TREE_OPERAND (in
, 1);
1021 *varp
= TREE_OPERAND (in
, 0);
1023 if (TYPE_MODE (TREE_TYPE (*varp
)) != TYPE_MODE (outtype
)
1024 && TREE_TYPE (*varp
) != outtype
)
1025 *varp
= convert (outtype
, *varp
);
1026 if (TREE_CODE (in
) == MINUS_EXPR
)
1028 /* If operation is subtraction and constant is second,
1029 must negate it to get an additive constant.
1030 And this cannot be done unless it is a manifest constant.
1031 It could also be the address of a static variable.
1032 We cannot negate that, so give up. */
1033 if (TREE_CODE (*conp
) == INTEGER_CST
)
1034 /* Subtracting from integer_zero_node loses for long long. */
1035 *conp
= fold (build1 (NEGATE_EXPR
, TREE_TYPE (*conp
), *conp
));
1041 if (TREE_CONSTANT (TREE_OPERAND (in
, 0)))
1043 *conp
= TREE_OPERAND (in
, 0);
1044 *varp
= TREE_OPERAND (in
, 1);
1045 if (TYPE_MODE (TREE_TYPE (*varp
)) != TYPE_MODE (outtype
)
1046 && TREE_TYPE (*varp
) != outtype
)
1047 *varp
= convert (outtype
, *varp
);
1048 *varsignp
= (TREE_CODE (in
) == MINUS_EXPR
) ? -1 : 1;
1055 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1056 to produce a new constant.
1058 If NOTRUNC is nonzero, do not truncate the result to fit the data type.
1059 If FORSIZE is nonzero, compute overflow for unsigned types. */
1062 int_const_binop (code
, arg1
, arg2
, notrunc
, forsize
)
1063 enum tree_code code
;
1064 register tree arg1
, arg2
;
1065 int notrunc
, forsize
;
1067 HOST_WIDE_INT int1l
, int1h
, int2l
, int2h
;
1068 HOST_WIDE_INT low
, hi
;
1069 HOST_WIDE_INT garbagel
, garbageh
;
1071 int uns
= TREE_UNSIGNED (TREE_TYPE (arg1
));
1073 int no_overflow
= 0;
1075 int1l
= TREE_INT_CST_LOW (arg1
);
1076 int1h
= TREE_INT_CST_HIGH (arg1
);
1077 int2l
= TREE_INT_CST_LOW (arg2
);
1078 int2h
= TREE_INT_CST_HIGH (arg2
);
1083 low
= int1l
| int2l
, hi
= int1h
| int2h
;
1087 low
= int1l
^ int2l
, hi
= int1h
^ int2h
;
1091 low
= int1l
& int2l
, hi
= int1h
& int2h
;
1094 case BIT_ANDTC_EXPR
:
1095 low
= int1l
& ~int2l
, hi
= int1h
& ~int2h
;
1101 /* It's unclear from the C standard whether shifts can overflow.
1102 The following code ignores overflow; perhaps a C standard
1103 interpretation ruling is needed. */
1104 lshift_double (int1l
, int1h
, int2l
,
1105 TYPE_PRECISION (TREE_TYPE (arg1
)),
1114 lrotate_double (int1l
, int1h
, int2l
,
1115 TYPE_PRECISION (TREE_TYPE (arg1
)),
1120 overflow
= add_double (int1l
, int1h
, int2l
, int2h
, &low
, &hi
);
1124 neg_double (int2l
, int2h
, &low
, &hi
);
1125 add_double (int1l
, int1h
, low
, hi
, &low
, &hi
);
1126 overflow
= overflow_sum_sign (hi
, int2h
, int1h
);
1130 overflow
= mul_double (int1l
, int1h
, int2l
, int2h
, &low
, &hi
);
1133 case TRUNC_DIV_EXPR
:
1134 case FLOOR_DIV_EXPR
: case CEIL_DIV_EXPR
:
1135 case EXACT_DIV_EXPR
:
1136 /* This is a shortcut for a common special case. */
1137 if (int2h
== 0 && int2l
> 0
1138 && ! TREE_CONSTANT_OVERFLOW (arg1
)
1139 && ! TREE_CONSTANT_OVERFLOW (arg2
)
1140 && int1h
== 0 && int1l
>= 0)
1142 if (code
== CEIL_DIV_EXPR
)
1144 low
= int1l
/ int2l
, hi
= 0;
1148 /* ... fall through ... */
1150 case ROUND_DIV_EXPR
:
1151 if (int2h
== 0 && int2l
== 1)
1153 low
= int1l
, hi
= int1h
;
1156 if (int1l
== int2l
&& int1h
== int2h
1157 && ! (int1l
== 0 && int1h
== 0))
1162 overflow
= div_and_round_double (code
, uns
,
1163 int1l
, int1h
, int2l
, int2h
,
1164 &low
, &hi
, &garbagel
, &garbageh
);
1167 case TRUNC_MOD_EXPR
:
1168 case FLOOR_MOD_EXPR
: case CEIL_MOD_EXPR
:
1169 /* This is a shortcut for a common special case. */
1170 if (int2h
== 0 && int2l
> 0
1171 && ! TREE_CONSTANT_OVERFLOW (arg1
)
1172 && ! TREE_CONSTANT_OVERFLOW (arg2
)
1173 && int1h
== 0 && int1l
>= 0)
1175 if (code
== CEIL_MOD_EXPR
)
1177 low
= int1l
% int2l
, hi
= 0;
1181 /* ... fall through ... */
1183 case ROUND_MOD_EXPR
:
1184 overflow
= div_and_round_double (code
, uns
,
1185 int1l
, int1h
, int2l
, int2h
,
1186 &garbagel
, &garbageh
, &low
, &hi
);
1193 low
= (((unsigned HOST_WIDE_INT
) int1h
1194 < (unsigned HOST_WIDE_INT
) int2h
)
1195 || (((unsigned HOST_WIDE_INT
) int1h
1196 == (unsigned HOST_WIDE_INT
) int2h
)
1197 && ((unsigned HOST_WIDE_INT
) int1l
1198 < (unsigned HOST_WIDE_INT
) int2l
)));
1202 low
= ((int1h
< int2h
)
1203 || ((int1h
== int2h
)
1204 && ((unsigned HOST_WIDE_INT
) int1l
1205 < (unsigned HOST_WIDE_INT
) int2l
)));
1207 if (low
== (code
== MIN_EXPR
))
1208 low
= int1l
, hi
= int1h
;
1210 low
= int2l
, hi
= int2h
;
1217 if (TREE_TYPE (arg1
) == sizetype
&& hi
== 0
1219 && (TYPE_MAX_VALUE (sizetype
) == NULL
1220 || low
<= TREE_INT_CST_LOW (TYPE_MAX_VALUE (sizetype
)))
1222 && ! TREE_OVERFLOW (arg1
) && ! TREE_OVERFLOW (arg2
))
1226 t
= build_int_2 (low
, hi
);
1227 TREE_TYPE (t
) = TREE_TYPE (arg1
);
1231 = ((notrunc
? (!uns
|| forsize
) && overflow
1232 : force_fit_type (t
, (!uns
|| forsize
) && overflow
) && ! no_overflow
)
1233 | TREE_OVERFLOW (arg1
)
1234 | TREE_OVERFLOW (arg2
));
1235 /* If we're doing a size calculation, unsigned arithmetic does overflow.
1236 So check if force_fit_type truncated the value. */
1238 && ! TREE_OVERFLOW (t
)
1239 && (TREE_INT_CST_HIGH (t
) != hi
1240 || TREE_INT_CST_LOW (t
) != low
))
1241 TREE_OVERFLOW (t
) = 1;
1242 TREE_CONSTANT_OVERFLOW (t
) = (TREE_OVERFLOW (t
)
1243 | TREE_CONSTANT_OVERFLOW (arg1
)
1244 | TREE_CONSTANT_OVERFLOW (arg2
));
1248 /* Combine two constants ARG1 and ARG2 under operation CODE
1249 to produce a new constant.
1250 We assume ARG1 and ARG2 have the same data type,
1251 or at least are the same kind of constant and the same machine mode.
1253 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1256 const_binop (code
, arg1
, arg2
, notrunc
)
1257 enum tree_code code
;
1258 register tree arg1
, arg2
;
1261 STRIP_NOPS (arg1
); STRIP_NOPS (arg2
);
1263 if (TREE_CODE (arg1
) == INTEGER_CST
)
1264 return int_const_binop (code
, arg1
, arg2
, notrunc
, 0);
1266 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1267 if (TREE_CODE (arg1
) == REAL_CST
)
1272 REAL_VALUE_TYPE value
;
1275 d1
= TREE_REAL_CST (arg1
);
1276 d2
= TREE_REAL_CST (arg2
);
1278 /* If either operand is a NaN, just return it. Otherwise, set up
1279 for floating-point trap; we return an overflow. */
1280 if (REAL_VALUE_ISNAN (d1
))
1282 else if (REAL_VALUE_ISNAN (d2
))
1284 else if (setjmp (float_error
))
1286 t
= copy_node (arg1
);
1291 set_float_handler (float_error
);
1293 #ifdef REAL_ARITHMETIC
1294 REAL_ARITHMETIC (value
, code
, d1
, d2
);
1311 #ifndef REAL_INFINITY
1320 value
= MIN (d1
, d2
);
1324 value
= MAX (d1
, d2
);
1330 #endif /* no REAL_ARITHMETIC */
1331 t
= build_real (TREE_TYPE (arg1
),
1332 real_value_truncate (TYPE_MODE (TREE_TYPE (arg1
)), value
));
1334 set_float_handler (NULL_PTR
);
1337 = (force_fit_type (t
, overflow
)
1338 | TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
));
1339 TREE_CONSTANT_OVERFLOW (t
)
1341 | TREE_CONSTANT_OVERFLOW (arg1
)
1342 | TREE_CONSTANT_OVERFLOW (arg2
);
1345 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1346 if (TREE_CODE (arg1
) == COMPLEX_CST
)
1348 register tree type
= TREE_TYPE (arg1
);
1349 register tree r1
= TREE_REALPART (arg1
);
1350 register tree i1
= TREE_IMAGPART (arg1
);
1351 register tree r2
= TREE_REALPART (arg2
);
1352 register tree i2
= TREE_IMAGPART (arg2
);
1358 t
= build_complex (type
,
1359 const_binop (PLUS_EXPR
, r1
, r2
, notrunc
),
1360 const_binop (PLUS_EXPR
, i1
, i2
, notrunc
));
1364 t
= build_complex (type
,
1365 const_binop (MINUS_EXPR
, r1
, r2
, notrunc
),
1366 const_binop (MINUS_EXPR
, i1
, i2
, notrunc
));
1370 t
= build_complex (type
,
1371 const_binop (MINUS_EXPR
,
1372 const_binop (MULT_EXPR
,
1374 const_binop (MULT_EXPR
,
1377 const_binop (PLUS_EXPR
,
1378 const_binop (MULT_EXPR
,
1380 const_binop (MULT_EXPR
,
1387 register tree magsquared
1388 = const_binop (PLUS_EXPR
,
1389 const_binop (MULT_EXPR
, r2
, r2
, notrunc
),
1390 const_binop (MULT_EXPR
, i2
, i2
, notrunc
),
1393 t
= build_complex (type
,
1395 (INTEGRAL_TYPE_P (TREE_TYPE (r1
))
1396 ? TRUNC_DIV_EXPR
: RDIV_EXPR
,
1397 const_binop (PLUS_EXPR
,
1398 const_binop (MULT_EXPR
, r1
, r2
,
1400 const_binop (MULT_EXPR
, i1
, i2
,
1403 magsquared
, notrunc
),
1405 (INTEGRAL_TYPE_P (TREE_TYPE (r1
))
1406 ? TRUNC_DIV_EXPR
: RDIV_EXPR
,
1407 const_binop (MINUS_EXPR
,
1408 const_binop (MULT_EXPR
, i1
, r2
,
1410 const_binop (MULT_EXPR
, r1
, i2
,
1413 magsquared
, notrunc
));
1425 /* Return an INTEGER_CST with value V . The type is determined by bit_p:
1426 if it is zero, the type is taken from sizetype; if it is one, the type
1427 is taken from bitsizetype. */
1430 size_int_wide (number
, high
, bit_p
)
1431 unsigned HOST_WIDE_INT number
, high
;
1435 /* Type-size nodes already made for small sizes. */
1436 static tree size_table
[2*HOST_BITS_PER_WIDE_INT
+ 1][2];
1438 if (number
< 2*HOST_BITS_PER_WIDE_INT
+ 1 && ! high
1439 && size_table
[number
][bit_p
] != 0)
1440 return size_table
[number
][bit_p
];
1441 if (number
< 2*HOST_BITS_PER_WIDE_INT
+ 1 && ! high
)
1443 push_obstacks_nochange ();
1444 /* Make this a permanent node. */
1445 end_temporary_allocation ();
1446 t
= build_int_2 (number
, 0);
1447 TREE_TYPE (t
) = sizetype_tab
[bit_p
];
1448 size_table
[number
][bit_p
] = t
;
1453 t
= build_int_2 (number
, high
);
1454 TREE_TYPE (t
) = sizetype_tab
[bit_p
];
1455 TREE_OVERFLOW (t
) = TREE_CONSTANT_OVERFLOW (t
) = force_fit_type (t
, 0);
1460 /* Combine operands OP1 and OP2 with arithmetic operation CODE.
1461 CODE is a tree code. Data type is taken from `sizetype',
1462 If the operands are constant, so is the result. */
1465 size_binop (code
, arg0
, arg1
)
1466 enum tree_code code
;
1469 /* Handle the special case of two integer constants faster. */
1470 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
1472 /* And some specific cases even faster than that. */
1473 if (code
== PLUS_EXPR
&& integer_zerop (arg0
))
1475 else if ((code
== MINUS_EXPR
|| code
== PLUS_EXPR
)
1476 && integer_zerop (arg1
))
1478 else if (code
== MULT_EXPR
&& integer_onep (arg0
))
1481 /* Handle general case of two integer constants. */
1482 return int_const_binop (code
, arg0
, arg1
, 0, 1);
1485 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
1486 return error_mark_node
;
1488 return fold (build (code
, sizetype
, arg0
, arg1
));
1491 /* Given T, a tree representing type conversion of ARG1, a constant,
1492 return a constant tree representing the result of conversion. */
1495 fold_convert (t
, arg1
)
1499 register tree type
= TREE_TYPE (t
);
1502 if (TREE_CODE (type
) == POINTER_TYPE
|| INTEGRAL_TYPE_P (type
))
1504 if (TREE_CODE (arg1
) == INTEGER_CST
)
1506 /* If we would build a constant wider than GCC supports,
1507 leave the conversion unfolded. */
1508 if (TYPE_PRECISION (type
) > 2 * HOST_BITS_PER_WIDE_INT
)
1511 /* Given an integer constant, make new constant with new type,
1512 appropriately sign-extended or truncated. */
1513 t
= build_int_2 (TREE_INT_CST_LOW (arg1
),
1514 TREE_INT_CST_HIGH (arg1
));
1515 TREE_TYPE (t
) = type
;
1516 /* Indicate an overflow if (1) ARG1 already overflowed,
1517 or (2) force_fit_type indicates an overflow.
1518 Tell force_fit_type that an overflow has already occurred
1519 if ARG1 is a too-large unsigned value and T is signed.
1520 But don't indicate an overflow if converting a pointer. */
1522 = (TREE_OVERFLOW (arg1
)
1523 || (force_fit_type (t
,
1524 (TREE_INT_CST_HIGH (arg1
) < 0
1525 && (TREE_UNSIGNED (type
)
1526 < TREE_UNSIGNED (TREE_TYPE (arg1
)))))
1527 && TREE_CODE (TREE_TYPE (arg1
)) != POINTER_TYPE
));
1528 TREE_CONSTANT_OVERFLOW (t
)
1529 = TREE_OVERFLOW (t
) | TREE_CONSTANT_OVERFLOW (arg1
);
1531 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1532 else if (TREE_CODE (arg1
) == REAL_CST
)
1534 /* Don't initialize these, use assignments.
1535 Initialized local aggregates don't work on old compilers. */
1539 tree type1
= TREE_TYPE (arg1
);
1542 x
= TREE_REAL_CST (arg1
);
1543 l
= real_value_from_int_cst (type1
, TYPE_MIN_VALUE (type
));
1545 no_upper_bound
= (TYPE_MAX_VALUE (type
) == NULL
);
1546 if (!no_upper_bound
)
1547 u
= real_value_from_int_cst (type1
, TYPE_MAX_VALUE (type
));
1549 /* See if X will be in range after truncation towards 0.
1550 To compensate for truncation, move the bounds away from 0,
1551 but reject if X exactly equals the adjusted bounds. */
1552 #ifdef REAL_ARITHMETIC
1553 REAL_ARITHMETIC (l
, MINUS_EXPR
, l
, dconst1
);
1554 if (!no_upper_bound
)
1555 REAL_ARITHMETIC (u
, PLUS_EXPR
, u
, dconst1
);
1558 if (!no_upper_bound
)
1561 /* If X is a NaN, use zero instead and show we have an overflow.
1562 Otherwise, range check. */
1563 if (REAL_VALUE_ISNAN (x
))
1564 overflow
= 1, x
= dconst0
;
1565 else if (! (REAL_VALUES_LESS (l
, x
)
1567 && REAL_VALUES_LESS (x
, u
)))
1570 #ifndef REAL_ARITHMETIC
1572 HOST_WIDE_INT low
, high
;
1573 HOST_WIDE_INT half_word
1574 = (HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2);
1579 high
= (HOST_WIDE_INT
) (x
/ half_word
/ half_word
);
1580 x
-= (REAL_VALUE_TYPE
) high
* half_word
* half_word
;
1581 if (x
>= (REAL_VALUE_TYPE
) half_word
* half_word
/ 2)
1583 low
= x
- (REAL_VALUE_TYPE
) half_word
* half_word
/ 2;
1584 low
|= (HOST_WIDE_INT
) -1 << (HOST_BITS_PER_WIDE_INT
- 1);
1587 low
= (HOST_WIDE_INT
) x
;
1588 if (TREE_REAL_CST (arg1
) < 0)
1589 neg_double (low
, high
, &low
, &high
);
1590 t
= build_int_2 (low
, high
);
1594 HOST_WIDE_INT low
, high
;
1595 REAL_VALUE_TO_INT (&low
, &high
, x
);
1596 t
= build_int_2 (low
, high
);
1599 TREE_TYPE (t
) = type
;
1601 = TREE_OVERFLOW (arg1
) | force_fit_type (t
, overflow
);
1602 TREE_CONSTANT_OVERFLOW (t
)
1603 = TREE_OVERFLOW (t
) | TREE_CONSTANT_OVERFLOW (arg1
);
1605 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1606 TREE_TYPE (t
) = type
;
1608 else if (TREE_CODE (type
) == REAL_TYPE
)
1610 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1611 if (TREE_CODE (arg1
) == INTEGER_CST
)
1612 return build_real_from_int_cst (type
, arg1
);
1613 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1614 if (TREE_CODE (arg1
) == REAL_CST
)
1616 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1
)))
1619 TREE_TYPE (arg1
) = type
;
1622 else if (setjmp (float_error
))
1625 t
= copy_node (arg1
);
1628 set_float_handler (float_error
);
1630 t
= build_real (type
, real_value_truncate (TYPE_MODE (type
),
1631 TREE_REAL_CST (arg1
)));
1632 set_float_handler (NULL_PTR
);
1636 = TREE_OVERFLOW (arg1
) | force_fit_type (t
, overflow
);
1637 TREE_CONSTANT_OVERFLOW (t
)
1638 = TREE_OVERFLOW (t
) | TREE_CONSTANT_OVERFLOW (arg1
);
1642 TREE_CONSTANT (t
) = 1;
1646 /* Return an expr equal to X but certainly not valid as an lvalue.
1647 Also make sure it is not valid as an null pointer constant. */
1655 /* These things are certainly not lvalues. */
1656 if (TREE_CODE (x
) == NON_LVALUE_EXPR
1657 || TREE_CODE (x
) == INTEGER_CST
1658 || TREE_CODE (x
) == REAL_CST
1659 || TREE_CODE (x
) == STRING_CST
1660 || TREE_CODE (x
) == ADDR_EXPR
)
1662 if (TREE_CODE (x
) == INTEGER_CST
&& integer_zerop (x
))
1664 /* Use NOP_EXPR instead of NON_LVALUE_EXPR
1665 so convert_for_assignment won't strip it.
1666 This is so this 0 won't be treated as a null pointer constant. */
1667 result
= build1 (NOP_EXPR
, TREE_TYPE (x
), x
);
1668 TREE_CONSTANT (result
) = TREE_CONSTANT (x
);
1674 result
= build1 (NON_LVALUE_EXPR
, TREE_TYPE (x
), x
);
1675 TREE_CONSTANT (result
) = TREE_CONSTANT (x
);
1679 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
1680 Zero means allow extended lvalues. */
1682 int pedantic_lvalues
;
1684 /* When pedantic, return an expr equal to X but certainly not valid as a
1685 pedantic lvalue. Otherwise, return X. */
1688 pedantic_non_lvalue (x
)
1691 if (pedantic_lvalues
)
1692 return non_lvalue (x
);
1697 /* Given a tree comparison code, return the code that is the logical inverse
1698 of the given code. It is not safe to do this for floating-point
1699 comparisons, except for NE_EXPR and EQ_EXPR. */
1701 static enum tree_code
1702 invert_tree_comparison (code
)
1703 enum tree_code code
;
1724 /* Similar, but return the comparison that results if the operands are
1725 swapped. This is safe for floating-point. */
1727 static enum tree_code
1728 swap_tree_comparison (code
)
1729 enum tree_code code
;
1749 /* Return nonzero if CODE is a tree code that represents a truth value. */
1752 truth_value_p (code
)
1753 enum tree_code code
;
1755 return (TREE_CODE_CLASS (code
) == '<'
1756 || code
== TRUTH_AND_EXPR
|| code
== TRUTH_ANDIF_EXPR
1757 || code
== TRUTH_OR_EXPR
|| code
== TRUTH_ORIF_EXPR
1758 || code
== TRUTH_XOR_EXPR
|| code
== TRUTH_NOT_EXPR
);
1761 /* Return nonzero if two operands are necessarily equal.
1762 If ONLY_CONST is non-zero, only return non-zero for constants.
1763 This function tests whether the operands are indistinguishable;
1764 it does not test whether they are equal using C's == operation.
1765 The distinction is important for IEEE floating point, because
1766 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
1767 (2) two NaNs may be indistinguishable, but NaN!=NaN. */
1770 operand_equal_p (arg0
, arg1
, only_const
)
1774 /* If both types don't have the same signedness, then we can't consider
1775 them equal. We must check this before the STRIP_NOPS calls
1776 because they may change the signedness of the arguments. */
1777 if (TREE_UNSIGNED (TREE_TYPE (arg0
)) != TREE_UNSIGNED (TREE_TYPE (arg1
)))
1783 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
1784 /* This is needed for conversions and for COMPONENT_REF.
1785 Might as well play it safe and always test this. */
1786 || TYPE_MODE (TREE_TYPE (arg0
)) != TYPE_MODE (TREE_TYPE (arg1
)))
1789 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
1790 We don't care about side effects in that case because the SAVE_EXPR
1791 takes care of that for us. In all other cases, two expressions are
1792 equal if they have no side effects. If we have two identical
1793 expressions with side effects that should be treated the same due
1794 to the only side effects being identical SAVE_EXPR's, that will
1795 be detected in the recursive calls below. */
1796 if (arg0
== arg1
&& ! only_const
1797 && (TREE_CODE (arg0
) == SAVE_EXPR
1798 || (! TREE_SIDE_EFFECTS (arg0
) && ! TREE_SIDE_EFFECTS (arg1
))))
1801 /* Next handle constant cases, those for which we can return 1 even
1802 if ONLY_CONST is set. */
1803 if (TREE_CONSTANT (arg0
) && TREE_CONSTANT (arg1
))
1804 switch (TREE_CODE (arg0
))
1807 return (! TREE_CONSTANT_OVERFLOW (arg0
)
1808 && ! TREE_CONSTANT_OVERFLOW (arg1
)
1809 && TREE_INT_CST_LOW (arg0
) == TREE_INT_CST_LOW (arg1
)
1810 && TREE_INT_CST_HIGH (arg0
) == TREE_INT_CST_HIGH (arg1
));
1813 return (! TREE_CONSTANT_OVERFLOW (arg0
)
1814 && ! TREE_CONSTANT_OVERFLOW (arg1
)
1815 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0
),
1816 TREE_REAL_CST (arg1
)));
1819 return (operand_equal_p (TREE_REALPART (arg0
), TREE_REALPART (arg1
),
1821 && operand_equal_p (TREE_IMAGPART (arg0
), TREE_IMAGPART (arg1
),
1825 return (TREE_STRING_LENGTH (arg0
) == TREE_STRING_LENGTH (arg1
)
1826 && ! strncmp (TREE_STRING_POINTER (arg0
),
1827 TREE_STRING_POINTER (arg1
),
1828 TREE_STRING_LENGTH (arg0
)));
1831 return operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0),
1840 switch (TREE_CODE_CLASS (TREE_CODE (arg0
)))
1843 /* Two conversions are equal only if signedness and modes match. */
1844 if ((TREE_CODE (arg0
) == NOP_EXPR
|| TREE_CODE (arg0
) == CONVERT_EXPR
)
1845 && (TREE_UNSIGNED (TREE_TYPE (arg0
))
1846 != TREE_UNSIGNED (TREE_TYPE (arg1
))))
1849 return operand_equal_p (TREE_OPERAND (arg0
, 0),
1850 TREE_OPERAND (arg1
, 0), 0);
1854 if (operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0), 0)
1855 && operand_equal_p (TREE_OPERAND (arg0
, 1), TREE_OPERAND (arg1
, 1),
1859 /* For commutative ops, allow the other order. */
1860 return ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MULT_EXPR
1861 || TREE_CODE (arg0
) == MIN_EXPR
|| TREE_CODE (arg0
) == MAX_EXPR
1862 || TREE_CODE (arg0
) == BIT_IOR_EXPR
1863 || TREE_CODE (arg0
) == BIT_XOR_EXPR
1864 || TREE_CODE (arg0
) == BIT_AND_EXPR
1865 || TREE_CODE (arg0
) == NE_EXPR
|| TREE_CODE (arg0
) == EQ_EXPR
)
1866 && operand_equal_p (TREE_OPERAND (arg0
, 0),
1867 TREE_OPERAND (arg1
, 1), 0)
1868 && operand_equal_p (TREE_OPERAND (arg0
, 1),
1869 TREE_OPERAND (arg1
, 0), 0));
1872 switch (TREE_CODE (arg0
))
1875 return operand_equal_p (TREE_OPERAND (arg0
, 0),
1876 TREE_OPERAND (arg1
, 0), 0);
1880 return (operand_equal_p (TREE_OPERAND (arg0
, 0),
1881 TREE_OPERAND (arg1
, 0), 0)
1882 && operand_equal_p (TREE_OPERAND (arg0
, 1),
1883 TREE_OPERAND (arg1
, 1), 0));
1886 return (operand_equal_p (TREE_OPERAND (arg0
, 0),
1887 TREE_OPERAND (arg1
, 0), 0)
1888 && operand_equal_p (TREE_OPERAND (arg0
, 1),
1889 TREE_OPERAND (arg1
, 1), 0)
1890 && operand_equal_p (TREE_OPERAND (arg0
, 2),
1891 TREE_OPERAND (arg1
, 2), 0));
1901 /* Similar to operand_equal_p, but see if ARG0 might have been made by
1902 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
1904 When in doubt, return 0. */
1907 operand_equal_for_comparison_p (arg0
, arg1
, other
)
1911 int unsignedp1
, unsignedpo
;
1912 tree primarg0
, primarg1
, primother
;
1913 unsigned correct_width
;
1915 if (operand_equal_p (arg0
, arg1
, 0))
1918 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
1919 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1
)))
1922 /* Discard any conversions that don't change the modes of ARG0 and ARG1
1923 and see if the inner values are the same. This removes any
1924 signedness comparison, which doesn't matter here. */
1925 primarg0
= arg0
, primarg1
= arg1
;
1926 STRIP_NOPS (primarg0
); STRIP_NOPS (primarg1
);
1927 if (operand_equal_p (primarg0
, primarg1
, 0))
1930 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
1931 actual comparison operand, ARG0.
1933 First throw away any conversions to wider types
1934 already present in the operands. */
1936 primarg1
= get_narrower (arg1
, &unsignedp1
);
1937 primother
= get_narrower (other
, &unsignedpo
);
1939 correct_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
1940 if (unsignedp1
== unsignedpo
1941 && TYPE_PRECISION (TREE_TYPE (primarg1
)) < correct_width
1942 && TYPE_PRECISION (TREE_TYPE (primother
)) < correct_width
)
1944 tree type
= TREE_TYPE (arg0
);
1946 /* Make sure shorter operand is extended the right way
1947 to match the longer operand. */
1948 primarg1
= convert (signed_or_unsigned_type (unsignedp1
,
1949 TREE_TYPE (primarg1
)),
1952 if (operand_equal_p (arg0
, convert (type
, primarg1
), 0))
1959 /* See if ARG is an expression that is either a comparison or is performing
1960 arithmetic on comparisons. The comparisons must only be comparing
1961 two different values, which will be stored in *CVAL1 and *CVAL2; if
1962 they are non-zero it means that some operands have already been found.
1963 No variables may be used anywhere else in the expression except in the
1964 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
1965 the expression and save_expr needs to be called with CVAL1 and CVAL2.
1967 If this is true, return 1. Otherwise, return zero. */
1970 twoval_comparison_p (arg
, cval1
, cval2
, save_p
)
1972 tree
*cval1
, *cval2
;
1975 enum tree_code code
= TREE_CODE (arg
);
1976 char class = TREE_CODE_CLASS (code
);
1978 /* We can handle some of the 'e' cases here. */
1979 if (class == 'e' && code
== TRUTH_NOT_EXPR
)
1981 else if (class == 'e'
1982 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
1983 || code
== COMPOUND_EXPR
))
1986 /* ??? Disable this since the SAVE_EXPR might already be in use outside
1987 the expression. There may be no way to make this work, but it needs
1988 to be looked at again for 2.6. */
1990 else if (class == 'e' && code
== SAVE_EXPR
&& SAVE_EXPR_RTL (arg
) == 0)
1992 /* If we've already found a CVAL1 or CVAL2, this expression is
1993 two complex to handle. */
1994 if (*cval1
|| *cval2
)
2005 return twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
);
2008 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
)
2009 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
2010 cval1
, cval2
, save_p
));
2016 if (code
== COND_EXPR
)
2017 return (twoval_comparison_p (TREE_OPERAND (arg
, 0),
2018 cval1
, cval2
, save_p
)
2019 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
2020 cval1
, cval2
, save_p
)
2021 && twoval_comparison_p (TREE_OPERAND (arg
, 2),
2022 cval1
, cval2
, save_p
));
2026 /* First see if we can handle the first operand, then the second. For
2027 the second operand, we know *CVAL1 can't be zero. It must be that
2028 one side of the comparison is each of the values; test for the
2029 case where this isn't true by failing if the two operands
2032 if (operand_equal_p (TREE_OPERAND (arg
, 0),
2033 TREE_OPERAND (arg
, 1), 0))
2037 *cval1
= TREE_OPERAND (arg
, 0);
2038 else if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 0), 0))
2040 else if (*cval2
== 0)
2041 *cval2
= TREE_OPERAND (arg
, 0);
2042 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 0), 0))
2047 if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 1), 0))
2049 else if (*cval2
== 0)
2050 *cval2
= TREE_OPERAND (arg
, 1);
2051 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 1), 0))
2063 /* ARG is a tree that is known to contain just arithmetic operations and
2064 comparisons. Evaluate the operations in the tree substituting NEW0 for
2065 any occurrence of OLD0 as an operand of a comparison and likewise for
2069 eval_subst (arg
, old0
, new0
, old1
, new1
)
2071 tree old0
, new0
, old1
, new1
;
2073 tree type
= TREE_TYPE (arg
);
2074 enum tree_code code
= TREE_CODE (arg
);
2075 char class = TREE_CODE_CLASS (code
);
2077 /* We can handle some of the 'e' cases here. */
2078 if (class == 'e' && code
== TRUTH_NOT_EXPR
)
2080 else if (class == 'e'
2081 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
2087 return fold (build1 (code
, type
,
2088 eval_subst (TREE_OPERAND (arg
, 0),
2089 old0
, new0
, old1
, new1
)));
2092 return fold (build (code
, type
,
2093 eval_subst (TREE_OPERAND (arg
, 0),
2094 old0
, new0
, old1
, new1
),
2095 eval_subst (TREE_OPERAND (arg
, 1),
2096 old0
, new0
, old1
, new1
)));
2102 return eval_subst (TREE_OPERAND (arg
, 0), old0
, new0
, old1
, new1
);
2105 return eval_subst (TREE_OPERAND (arg
, 1), old0
, new0
, old1
, new1
);
2108 return fold (build (code
, type
,
2109 eval_subst (TREE_OPERAND (arg
, 0),
2110 old0
, new0
, old1
, new1
),
2111 eval_subst (TREE_OPERAND (arg
, 1),
2112 old0
, new0
, old1
, new1
),
2113 eval_subst (TREE_OPERAND (arg
, 2),
2114 old0
, new0
, old1
, new1
)));
2118 /* fall through (???) */
2122 tree arg0
= TREE_OPERAND (arg
, 0);
2123 tree arg1
= TREE_OPERAND (arg
, 1);
2125 /* We need to check both for exact equality and tree equality. The
2126 former will be true if the operand has a side-effect. In that
2127 case, we know the operand occurred exactly once. */
2129 if (arg0
== old0
|| operand_equal_p (arg0
, old0
, 0))
2131 else if (arg0
== old1
|| operand_equal_p (arg0
, old1
, 0))
2134 if (arg1
== old0
|| operand_equal_p (arg1
, old0
, 0))
2136 else if (arg1
== old1
|| operand_equal_p (arg1
, old1
, 0))
2139 return fold (build (code
, type
, arg0
, arg1
));
2147 /* Return a tree for the case when the result of an expression is RESULT
2148 converted to TYPE and OMITTED was previously an operand of the expression
2149 but is now not needed (e.g., we folded OMITTED * 0).
2151 If OMITTED has side effects, we must evaluate it. Otherwise, just do
2152 the conversion of RESULT to TYPE. */
2155 omit_one_operand (type
, result
, omitted
)
2156 tree type
, result
, omitted
;
2158 tree t
= convert (type
, result
);
2160 if (TREE_SIDE_EFFECTS (omitted
))
2161 return build (COMPOUND_EXPR
, type
, omitted
, t
);
2163 return non_lvalue (t
);
2166 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
2169 pedantic_omit_one_operand (type
, result
, omitted
)
2170 tree type
, result
, omitted
;
2172 tree t
= convert (type
, result
);
2174 if (TREE_SIDE_EFFECTS (omitted
))
2175 return build (COMPOUND_EXPR
, type
, omitted
, t
);
2177 return pedantic_non_lvalue (t
);
2182 /* Return a simplified tree node for the truth-negation of ARG. This
2183 never alters ARG itself. We assume that ARG is an operation that
2184 returns a truth value (0 or 1). */
2187 invert_truthvalue (arg
)
2190 tree type
= TREE_TYPE (arg
);
2191 enum tree_code code
= TREE_CODE (arg
);
2193 if (code
== ERROR_MARK
)
2196 /* If this is a comparison, we can simply invert it, except for
2197 floating-point non-equality comparisons, in which case we just
2198 enclose a TRUTH_NOT_EXPR around what we have. */
2200 if (TREE_CODE_CLASS (code
) == '<')
2202 if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg
, 0)))
2203 && code
!= NE_EXPR
&& code
!= EQ_EXPR
)
2204 return build1 (TRUTH_NOT_EXPR
, type
, arg
);
2206 return build (invert_tree_comparison (code
), type
,
2207 TREE_OPERAND (arg
, 0), TREE_OPERAND (arg
, 1));
2213 return convert (type
, build_int_2 (TREE_INT_CST_LOW (arg
) == 0
2214 && TREE_INT_CST_HIGH (arg
) == 0, 0));
2216 case TRUTH_AND_EXPR
:
2217 return build (TRUTH_OR_EXPR
, type
,
2218 invert_truthvalue (TREE_OPERAND (arg
, 0)),
2219 invert_truthvalue (TREE_OPERAND (arg
, 1)));
2222 return build (TRUTH_AND_EXPR
, type
,
2223 invert_truthvalue (TREE_OPERAND (arg
, 0)),
2224 invert_truthvalue (TREE_OPERAND (arg
, 1)));
2226 case TRUTH_XOR_EXPR
:
2227 /* Here we can invert either operand. We invert the first operand
2228 unless the second operand is a TRUTH_NOT_EXPR in which case our
2229 result is the XOR of the first operand with the inside of the
2230 negation of the second operand. */
2232 if (TREE_CODE (TREE_OPERAND (arg
, 1)) == TRUTH_NOT_EXPR
)
2233 return build (TRUTH_XOR_EXPR
, type
, TREE_OPERAND (arg
, 0),
2234 TREE_OPERAND (TREE_OPERAND (arg
, 1), 0));
2236 return build (TRUTH_XOR_EXPR
, type
,
2237 invert_truthvalue (TREE_OPERAND (arg
, 0)),
2238 TREE_OPERAND (arg
, 1));
2240 case TRUTH_ANDIF_EXPR
:
2241 return build (TRUTH_ORIF_EXPR
, type
,
2242 invert_truthvalue (TREE_OPERAND (arg
, 0)),
2243 invert_truthvalue (TREE_OPERAND (arg
, 1)));
2245 case TRUTH_ORIF_EXPR
:
2246 return build (TRUTH_ANDIF_EXPR
, type
,
2247 invert_truthvalue (TREE_OPERAND (arg
, 0)),
2248 invert_truthvalue (TREE_OPERAND (arg
, 1)));
2250 case TRUTH_NOT_EXPR
:
2251 return TREE_OPERAND (arg
, 0);
2254 return build (COND_EXPR
, type
, TREE_OPERAND (arg
, 0),
2255 invert_truthvalue (TREE_OPERAND (arg
, 1)),
2256 invert_truthvalue (TREE_OPERAND (arg
, 2)));
2259 return build (COMPOUND_EXPR
, type
, TREE_OPERAND (arg
, 0),
2260 invert_truthvalue (TREE_OPERAND (arg
, 1)));
2262 case NON_LVALUE_EXPR
:
2263 return invert_truthvalue (TREE_OPERAND (arg
, 0));
2268 return build1 (TREE_CODE (arg
), type
,
2269 invert_truthvalue (TREE_OPERAND (arg
, 0)));
2272 if (!integer_onep (TREE_OPERAND (arg
, 1)))
2274 return build (EQ_EXPR
, type
, arg
, convert (type
, integer_zero_node
));
2277 return build1 (TRUTH_NOT_EXPR
, type
, arg
);
2279 case CLEANUP_POINT_EXPR
:
2280 return build1 (CLEANUP_POINT_EXPR
, type
,
2281 invert_truthvalue (TREE_OPERAND (arg
, 0)));
2286 if (TREE_CODE (TREE_TYPE (arg
)) != BOOLEAN_TYPE
)
2288 return build1 (TRUTH_NOT_EXPR
, type
, arg
);
2291 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
2292 operands are another bit-wise operation with a common input. If so,
2293 distribute the bit operations to save an operation and possibly two if
2294 constants are involved. For example, convert
2295 (A | B) & (A | C) into A | (B & C)
2296 Further simplification will occur if B and C are constants.
2298 If this optimization cannot be done, 0 will be returned. */
2301 distribute_bit_expr (code
, type
, arg0
, arg1
)
2302 enum tree_code code
;
2309 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
2310 || TREE_CODE (arg0
) == code
2311 || (TREE_CODE (arg0
) != BIT_AND_EXPR
2312 && TREE_CODE (arg0
) != BIT_IOR_EXPR
))
2315 if (operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0), 0))
2317 common
= TREE_OPERAND (arg0
, 0);
2318 left
= TREE_OPERAND (arg0
, 1);
2319 right
= TREE_OPERAND (arg1
, 1);
2321 else if (operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 1), 0))
2323 common
= TREE_OPERAND (arg0
, 0);
2324 left
= TREE_OPERAND (arg0
, 1);
2325 right
= TREE_OPERAND (arg1
, 0);
2327 else if (operand_equal_p (TREE_OPERAND (arg0
, 1), TREE_OPERAND (arg1
, 0), 0))
2329 common
= TREE_OPERAND (arg0
, 1);
2330 left
= TREE_OPERAND (arg0
, 0);
2331 right
= TREE_OPERAND (arg1
, 1);
2333 else if (operand_equal_p (TREE_OPERAND (arg0
, 1), TREE_OPERAND (arg1
, 1), 0))
2335 common
= TREE_OPERAND (arg0
, 1);
2336 left
= TREE_OPERAND (arg0
, 0);
2337 right
= TREE_OPERAND (arg1
, 0);
2342 return fold (build (TREE_CODE (arg0
), type
, common
,
2343 fold (build (code
, type
, left
, right
))));
2346 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
2347 starting at BITPOS. The field is unsigned if UNSIGNEDP is non-zero. */
2350 make_bit_field_ref (inner
, type
, bitsize
, bitpos
, unsignedp
)
2353 int bitsize
, bitpos
;
2356 tree result
= build (BIT_FIELD_REF
, type
, inner
,
2357 size_int (bitsize
), bitsize_int (bitpos
, 0L));
2359 TREE_UNSIGNED (result
) = unsignedp
;
2364 /* Optimize a bit-field compare.
2366 There are two cases: First is a compare against a constant and the
2367 second is a comparison of two items where the fields are at the same
2368 bit position relative to the start of a chunk (byte, halfword, word)
2369 large enough to contain it. In these cases we can avoid the shift
2370 implicit in bitfield extractions.
2372 For constants, we emit a compare of the shifted constant with the
2373 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
2374 compared. For two fields at the same position, we do the ANDs with the
2375 similar mask and compare the result of the ANDs.
2377 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
2378 COMPARE_TYPE is the type of the comparison, and LHS and RHS
2379 are the left and right operands of the comparison, respectively.
2381 If the optimization described above can be done, we return the resulting
2382 tree. Otherwise we return zero. */
2385 optimize_bit_field_compare (code
, compare_type
, lhs
, rhs
)
2386 enum tree_code code
;
2390 int lbitpos
, lbitsize
, rbitpos
, rbitsize
;
2391 int lnbitpos
, lnbitsize
, rnbitpos
= 0, rnbitsize
= 0;
2392 tree type
= TREE_TYPE (lhs
);
2393 tree signed_type
, unsigned_type
;
2394 int const_p
= TREE_CODE (rhs
) == INTEGER_CST
;
2395 enum machine_mode lmode
, rmode
, lnmode
, rnmode
= VOIDmode
;
2396 int lunsignedp
, runsignedp
;
2397 int lvolatilep
= 0, rvolatilep
= 0;
2399 tree linner
, rinner
= NULL_TREE
;
2403 /* Get all the information about the extractions being done. If the bit size
2404 if the same as the size of the underlying object, we aren't doing an
2405 extraction at all and so can do nothing. */
2406 linner
= get_inner_reference (lhs
, &lbitsize
, &lbitpos
, &offset
, &lmode
,
2407 &lunsignedp
, &lvolatilep
, &alignment
);
2408 if (linner
== lhs
|| lbitsize
== GET_MODE_BITSIZE (lmode
) || lbitsize
< 0
2414 /* If this is not a constant, we can only do something if bit positions,
2415 sizes, and signedness are the same. */
2416 rinner
= get_inner_reference (rhs
, &rbitsize
, &rbitpos
, &offset
, &rmode
,
2417 &runsignedp
, &rvolatilep
, &alignment
);
2419 if (rinner
== rhs
|| lbitpos
!= rbitpos
|| lbitsize
!= rbitsize
2420 || lunsignedp
!= runsignedp
|| offset
!= 0)
2424 /* See if we can find a mode to refer to this field. We should be able to,
2425 but fail if we can't. */
2426 lnmode
= get_best_mode (lbitsize
, lbitpos
,
2427 TYPE_ALIGN (TREE_TYPE (linner
)), word_mode
,
2429 if (lnmode
== VOIDmode
)
2432 /* Set signed and unsigned types of the precision of this mode for the
2434 signed_type
= type_for_mode (lnmode
, 0);
2435 unsigned_type
= type_for_mode (lnmode
, 1);
2439 rnmode
= get_best_mode (rbitsize
, rbitpos
,
2440 TYPE_ALIGN (TREE_TYPE (rinner
)), word_mode
,
2442 if (rnmode
== VOIDmode
)
2446 /* Compute the bit position and size for the new reference and our offset
2447 within it. If the new reference is the same size as the original, we
2448 won't optimize anything, so return zero. */
2449 lnbitsize
= GET_MODE_BITSIZE (lnmode
);
2450 lnbitpos
= lbitpos
& ~ (lnbitsize
- 1);
2451 lbitpos
-= lnbitpos
;
2452 if (lnbitsize
== lbitsize
)
2457 rnbitsize
= GET_MODE_BITSIZE (rnmode
);
2458 rnbitpos
= rbitpos
& ~ (rnbitsize
- 1);
2459 rbitpos
-= rnbitpos
;
2460 if (rnbitsize
== rbitsize
)
2464 if (BYTES_BIG_ENDIAN
)
2465 lbitpos
= lnbitsize
- lbitsize
- lbitpos
;
2467 /* Make the mask to be used against the extracted field. */
2468 mask
= build_int_2 (~0, ~0);
2469 TREE_TYPE (mask
) = unsigned_type
;
2470 force_fit_type (mask
, 0);
2471 mask
= convert (unsigned_type
, mask
);
2472 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (lnbitsize
- lbitsize
), 0);
2473 mask
= const_binop (RSHIFT_EXPR
, mask
,
2474 size_int (lnbitsize
- lbitsize
- lbitpos
), 0);
2477 /* If not comparing with constant, just rework the comparison
2479 return build (code
, compare_type
,
2480 build (BIT_AND_EXPR
, unsigned_type
,
2481 make_bit_field_ref (linner
, unsigned_type
,
2482 lnbitsize
, lnbitpos
, 1),
2484 build (BIT_AND_EXPR
, unsigned_type
,
2485 make_bit_field_ref (rinner
, unsigned_type
,
2486 rnbitsize
, rnbitpos
, 1),
2489 /* Otherwise, we are handling the constant case. See if the constant is too
2490 big for the field. Warn and return a tree of for 0 (false) if so. We do
2491 this not only for its own sake, but to avoid having to test for this
2492 error case below. If we didn't, we might generate wrong code.
2494 For unsigned fields, the constant shifted right by the field length should
2495 be all zero. For signed fields, the high-order bits should agree with
2500 if (! integer_zerop (const_binop (RSHIFT_EXPR
,
2501 convert (unsigned_type
, rhs
),
2502 size_int (lbitsize
), 0)))
2504 warning ("comparison is always %s due to width of bitfield",
2505 code
== NE_EXPR
? "one" : "zero");
2506 return convert (compare_type
,
2508 ? integer_one_node
: integer_zero_node
));
2513 tree tem
= const_binop (RSHIFT_EXPR
, convert (signed_type
, rhs
),
2514 size_int (lbitsize
- 1), 0);
2515 if (! integer_zerop (tem
) && ! integer_all_onesp (tem
))
2517 warning ("comparison is always %s due to width of bitfield",
2518 code
== NE_EXPR
? "one" : "zero");
2519 return convert (compare_type
,
2521 ? integer_one_node
: integer_zero_node
));
2525 /* Single-bit compares should always be against zero. */
2526 if (lbitsize
== 1 && ! integer_zerop (rhs
))
2528 code
= code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
;
2529 rhs
= convert (type
, integer_zero_node
);
2532 /* Make a new bitfield reference, shift the constant over the
2533 appropriate number of bits and mask it with the computed mask
2534 (in case this was a signed field). If we changed it, make a new one. */
2535 lhs
= make_bit_field_ref (linner
, unsigned_type
, lnbitsize
, lnbitpos
, 1);
2538 TREE_SIDE_EFFECTS (lhs
) = 1;
2539 TREE_THIS_VOLATILE (lhs
) = 1;
2542 rhs
= fold (const_binop (BIT_AND_EXPR
,
2543 const_binop (LSHIFT_EXPR
,
2544 convert (unsigned_type
, rhs
),
2545 size_int (lbitpos
), 0),
2548 return build (code
, compare_type
,
2549 build (BIT_AND_EXPR
, unsigned_type
, lhs
, mask
),
2553 /* Subroutine for fold_truthop: decode a field reference.
2555 If EXP is a comparison reference, we return the innermost reference.
2557 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
2558 set to the starting bit number.
2560 If the innermost field can be completely contained in a mode-sized
2561 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
2563 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
2564 otherwise it is not changed.
2566 *PUNSIGNEDP is set to the signedness of the field.
2568 *PMASK is set to the mask used. This is either contained in a
2569 BIT_AND_EXPR or derived from the width of the field.
2571 *PAND_MASK is set the the mask found in a BIT_AND_EXPR, if any.
2573 Return 0 if this is not a component reference or is one that we can't
2574 do anything with. */
2577 decode_field_reference (exp
, pbitsize
, pbitpos
, pmode
, punsignedp
,
2578 pvolatilep
, pmask
, pand_mask
)
2580 int *pbitsize
, *pbitpos
;
2581 enum machine_mode
*pmode
;
2582 int *punsignedp
, *pvolatilep
;
2587 tree mask
, inner
, offset
;
2592 /* All the optimizations using this function assume integer fields.
2593 There are problems with FP fields since the type_for_size call
2594 below can fail for, e.g., XFmode. */
2595 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp
)))
2600 if (TREE_CODE (exp
) == BIT_AND_EXPR
)
2602 and_mask
= TREE_OPERAND (exp
, 1);
2603 exp
= TREE_OPERAND (exp
, 0);
2604 STRIP_NOPS (exp
); STRIP_NOPS (and_mask
);
2605 if (TREE_CODE (and_mask
) != INTEGER_CST
)
2610 inner
= get_inner_reference (exp
, pbitsize
, pbitpos
, &offset
, pmode
,
2611 punsignedp
, pvolatilep
, &alignment
);
2612 if ((inner
== exp
&& and_mask
== 0)
2613 || *pbitsize
< 0 || offset
!= 0)
2616 /* Compute the mask to access the bitfield. */
2617 unsigned_type
= type_for_size (*pbitsize
, 1);
2618 precision
= TYPE_PRECISION (unsigned_type
);
2620 mask
= build_int_2 (~0, ~0);
2621 TREE_TYPE (mask
) = unsigned_type
;
2622 force_fit_type (mask
, 0);
2623 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
), 0);
2624 mask
= const_binop (RSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
), 0);
2626 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
2628 mask
= fold (build (BIT_AND_EXPR
, unsigned_type
,
2629 convert (unsigned_type
, and_mask
), mask
));
2632 *pand_mask
= and_mask
;
2636 /* Return non-zero if MASK represents a mask of SIZE ones in the low-order
2640 all_ones_mask_p (mask
, size
)
2644 tree type
= TREE_TYPE (mask
);
2645 int precision
= TYPE_PRECISION (type
);
2648 tmask
= build_int_2 (~0, ~0);
2649 TREE_TYPE (tmask
) = signed_type (type
);
2650 force_fit_type (tmask
, 0);
2652 tree_int_cst_equal (mask
,
2653 const_binop (RSHIFT_EXPR
,
2654 const_binop (LSHIFT_EXPR
, tmask
,
2655 size_int (precision
- size
),
2657 size_int (precision
- size
), 0));
2660 /* Subroutine for fold_truthop: determine if an operand is simple enough
2661 to be evaluated unconditionally. */
2664 simple_operand_p (exp
)
2667 /* Strip any conversions that don't change the machine mode. */
2668 while ((TREE_CODE (exp
) == NOP_EXPR
2669 || TREE_CODE (exp
) == CONVERT_EXPR
)
2670 && (TYPE_MODE (TREE_TYPE (exp
))
2671 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
2672 exp
= TREE_OPERAND (exp
, 0);
2674 return (TREE_CODE_CLASS (TREE_CODE (exp
)) == 'c'
2675 || (TREE_CODE_CLASS (TREE_CODE (exp
)) == 'd'
2676 && ! TREE_ADDRESSABLE (exp
)
2677 && ! TREE_THIS_VOLATILE (exp
)
2678 && ! DECL_NONLOCAL (exp
)
2679 /* Don't regard global variables as simple. They may be
2680 allocated in ways unknown to the compiler (shared memory,
2681 #pragma weak, etc). */
2682 && ! TREE_PUBLIC (exp
)
2683 && ! DECL_EXTERNAL (exp
)
2684 /* Loading a static variable is unduly expensive, but global
2685 registers aren't expensive. */
2686 && (! TREE_STATIC (exp
) || DECL_REGISTER (exp
))));
2689 /* The following functions are subroutines to fold_range_test and allow it to
2690 try to change a logical combination of comparisons into a range test.
2693 X == 2 && X == 3 && X == 4 && X == 5
2697 (unsigned) (X - 2) <= 3
2699 We describe each set of comparisons as being either inside or outside
2700 a range, using a variable named like IN_P, and then describe the
2701 range with a lower and upper bound. If one of the bounds is omitted,
2702 it represents either the highest or lowest value of the type.
2704 In the comments below, we represent a range by two numbers in brackets
2705 preceded by a "+" to designate being inside that range, or a "-" to
2706 designate being outside that range, so the condition can be inverted by
2707 flipping the prefix. An omitted bound is represented by a "-". For
2708 example, "- [-, 10]" means being outside the range starting at the lowest
2709 possible value and ending at 10, in other words, being greater than 10.
2710 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
2713 We set up things so that the missing bounds are handled in a consistent
2714 manner so neither a missing bound nor "true" and "false" need to be
2715 handled using a special case. */
2717 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
2718 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
2719 and UPPER1_P are nonzero if the respective argument is an upper bound
2720 and zero for a lower. TYPE, if nonzero, is the type of the result; it
2721 must be specified for a comparison. ARG1 will be converted to ARG0's
2722 type if both are specified. */
2725 range_binop (code
, type
, arg0
, upper0_p
, arg1
, upper1_p
)
2726 enum tree_code code
;
2729 int upper0_p
, upper1_p
;
2735 /* If neither arg represents infinity, do the normal operation.
2736 Else, if not a comparison, return infinity. Else handle the special
2737 comparison rules. Note that most of the cases below won't occur, but
2738 are handled for consistency. */
2740 if (arg0
!= 0 && arg1
!= 0)
2742 tem
= fold (build (code
, type
!= 0 ? type
: TREE_TYPE (arg0
),
2743 arg0
, convert (TREE_TYPE (arg0
), arg1
)));
2745 return TREE_CODE (tem
) == INTEGER_CST
? tem
: 0;
2748 if (TREE_CODE_CLASS (code
) != '<')
2751 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
2752 for neither. Then compute our result treating them as never equal
2753 and comparing bounds to non-bounds as above. */
2754 sgn0
= arg0
!= 0 ? 0 : (upper0_p
? 1 : -1);
2755 sgn1
= arg1
!= 0 ? 0 : (upper1_p
? 1 : -1);
2758 case EQ_EXPR
: case NE_EXPR
:
2759 result
= (code
== NE_EXPR
);
2761 case LT_EXPR
: case LE_EXPR
:
2762 result
= sgn0
< sgn1
;
2764 case GT_EXPR
: case GE_EXPR
:
2765 result
= sgn0
> sgn1
;
2771 return convert (type
, result
? integer_one_node
: integer_zero_node
);
2774 /* Given EXP, a logical expression, set the range it is testing into
2775 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
2776 actually being tested. *PLOW and *PHIGH will have be made the same type
2777 as the returned expression. If EXP is not a comparison, we will most
2778 likely not be returning a useful value and range. */
2781 make_range (exp
, pin_p
, plow
, phigh
)
2786 enum tree_code code
;
2787 tree arg0
, arg1
, type
= NULL_TREE
;
2789 tree low
, high
, n_low
, n_high
;
2791 /* Start with simply saying "EXP != 0" and then look at the code of EXP
2792 and see if we can refine the range. Some of the cases below may not
2793 happen, but it doesn't seem worth worrying about this. We "continue"
2794 the outer loop when we've changed something; otherwise we "break"
2795 the switch, which will "break" the while. */
2797 in_p
= 0, low
= high
= convert (TREE_TYPE (exp
), integer_zero_node
);
2801 code
= TREE_CODE (exp
);
2802 arg0
= TREE_OPERAND (exp
, 0), arg1
= TREE_OPERAND (exp
, 1);
2803 if (TREE_CODE_CLASS (code
) == '<' || TREE_CODE_CLASS (code
) == '1'
2804 || TREE_CODE_CLASS (code
) == '2')
2805 type
= TREE_TYPE (arg0
);
2809 case TRUTH_NOT_EXPR
:
2810 in_p
= ! in_p
, exp
= arg0
;
2813 case EQ_EXPR
: case NE_EXPR
:
2814 case LT_EXPR
: case LE_EXPR
: case GE_EXPR
: case GT_EXPR
:
2815 /* We can only do something if the range is testing for zero
2816 and if the second operand is an integer constant. Note that
2817 saying something is "in" the range we make is done by
2818 complementing IN_P since it will set in the initial case of
2819 being not equal to zero; "out" is leaving it alone. */
2820 if (low
== 0 || high
== 0
2821 || ! integer_zerop (low
) || ! integer_zerop (high
)
2822 || TREE_CODE (arg1
) != INTEGER_CST
)
2827 case NE_EXPR
: /* - [c, c] */
2830 case EQ_EXPR
: /* + [c, c] */
2831 in_p
= ! in_p
, low
= high
= arg1
;
2833 case GT_EXPR
: /* - [-, c] */
2834 low
= 0, high
= arg1
;
2836 case GE_EXPR
: /* + [c, -] */
2837 in_p
= ! in_p
, low
= arg1
, high
= 0;
2839 case LT_EXPR
: /* - [c, -] */
2840 low
= arg1
, high
= 0;
2842 case LE_EXPR
: /* + [-, c] */
2843 in_p
= ! in_p
, low
= 0, high
= arg1
;
2851 /* If this is an unsigned comparison, we also know that EXP is
2852 greater than or equal to zero. We base the range tests we make
2853 on that fact, so we record it here so we can parse existing
2855 if (TREE_UNSIGNED (type
) && (low
== 0 || high
== 0))
2857 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, in_p
, low
, high
,
2858 1, convert (type
, integer_zero_node
),
2862 in_p
= n_in_p
, low
= n_low
, high
= n_high
;
2864 /* If the high bound is missing, reverse the range so it
2865 goes from zero to the low bound minus 1. */
2869 high
= range_binop (MINUS_EXPR
, NULL_TREE
, low
, 0,
2870 integer_one_node
, 0);
2871 low
= convert (type
, integer_zero_node
);
2877 /* (-x) IN [a,b] -> x in [-b, -a] */
2878 n_low
= range_binop (MINUS_EXPR
, type
,
2879 convert (type
, integer_zero_node
), 0, high
, 1);
2880 n_high
= range_binop (MINUS_EXPR
, type
,
2881 convert (type
, integer_zero_node
), 0, low
, 0);
2882 low
= n_low
, high
= n_high
;
2888 exp
= build (MINUS_EXPR
, type
, build1 (NEGATE_EXPR
, type
, arg0
),
2889 convert (type
, integer_one_node
));
2892 case PLUS_EXPR
: case MINUS_EXPR
:
2893 if (TREE_CODE (arg1
) != INTEGER_CST
)
2896 /* If EXP is signed, any overflow in the computation is undefined,
2897 so we don't worry about it so long as our computations on
2898 the bounds don't overflow. For unsigned, overflow is defined
2899 and this is exactly the right thing. */
2900 n_low
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
2901 type
, low
, 0, arg1
, 0);
2902 n_high
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
2903 type
, high
, 1, arg1
, 0);
2904 if ((n_low
!= 0 && TREE_OVERFLOW (n_low
))
2905 || (n_high
!= 0 && TREE_OVERFLOW (n_high
)))
2908 /* Check for an unsigned range which has wrapped around the maximum
2909 value thus making n_high < n_low, and normalize it. */
2910 if (n_low
&& n_high
&& tree_int_cst_lt (n_high
, n_low
))
2912 low
= range_binop (PLUS_EXPR
, type
, n_high
, 0,
2913 integer_one_node
, 0);
2914 high
= range_binop (MINUS_EXPR
, type
, n_low
, 0,
2915 integer_one_node
, 0);
2919 low
= n_low
, high
= n_high
;
2924 case NOP_EXPR
: case NON_LVALUE_EXPR
: case CONVERT_EXPR
:
2925 if (! INTEGRAL_TYPE_P (type
)
2926 || (low
!= 0 && ! int_fits_type_p (low
, type
))
2927 || (high
!= 0 && ! int_fits_type_p (high
, type
)))
2930 n_low
= low
, n_high
= high
;
2933 n_low
= convert (type
, n_low
);
2936 n_high
= convert (type
, n_high
);
2938 /* If we're converting from an unsigned to a signed type,
2939 we will be doing the comparison as unsigned. The tests above
2940 have already verified that LOW and HIGH are both positive.
2942 So we have to make sure that the original unsigned value will
2943 be interpreted as positive. */
2944 if (TREE_UNSIGNED (type
) && ! TREE_UNSIGNED (TREE_TYPE (exp
)))
2946 tree equiv_type
= type_for_mode (TYPE_MODE (type
), 1);
2949 /* A range without an upper bound is, naturally, unbounded.
2950 Since convert would have cropped a very large value, use
2951 the max value for the destination type. */
2953 high_positive
= TYPE_MAX_VALUE (equiv_type
);
2956 high_positive
= TYPE_MAX_VALUE (type
);
2960 high_positive
= fold (build (RSHIFT_EXPR
, type
,
2961 convert (type
, high_positive
),
2962 convert (type
, integer_one_node
)));
2964 /* If the low bound is specified, "and" the range with the
2965 range for which the original unsigned value will be
2969 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
2971 1, convert (type
, integer_zero_node
),
2975 in_p
= (n_in_p
== in_p
);
2979 /* Otherwise, "or" the range with the range of the input
2980 that will be interpreted as negative. */
2981 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
2983 1, convert (type
, integer_zero_node
),
2987 in_p
= (in_p
!= n_in_p
);
2992 low
= n_low
, high
= n_high
;
3002 /* If EXP is a constant, we can evaluate whether this is true or false. */
3003 if (TREE_CODE (exp
) == INTEGER_CST
)
3005 in_p
= in_p
== (integer_onep (range_binop (GE_EXPR
, integer_type_node
,
3007 && integer_onep (range_binop (LE_EXPR
, integer_type_node
,
3013 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
3017 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
3018 type, TYPE, return an expression to test if EXP is in (or out of, depending
3019 on IN_P) the range. */
3022 build_range_check (type
, exp
, in_p
, low
, high
)
3028 tree etype
= TREE_TYPE (exp
);
3032 && (0 != (value
= build_range_check (type
, exp
, 1, low
, high
))))
3033 return invert_truthvalue (value
);
3035 else if (low
== 0 && high
== 0)
3036 return convert (type
, integer_one_node
);
3039 return fold (build (LE_EXPR
, type
, exp
, high
));
3042 return fold (build (GE_EXPR
, type
, exp
, low
));
3044 else if (operand_equal_p (low
, high
, 0))
3045 return fold (build (EQ_EXPR
, type
, exp
, low
));
3047 else if (TREE_UNSIGNED (etype
) && integer_zerop (low
))
3048 return build_range_check (type
, exp
, 1, 0, high
);
3050 else if (integer_zerop (low
))
3052 utype
= unsigned_type (etype
);
3053 return build_range_check (type
, convert (utype
, exp
), 1, 0,
3054 convert (utype
, high
));
3057 else if (0 != (value
= const_binop (MINUS_EXPR
, high
, low
, 0))
3058 && ! TREE_OVERFLOW (value
))
3059 return build_range_check (type
,
3060 fold (build (MINUS_EXPR
, etype
, exp
, low
)),
3061 1, convert (etype
, integer_zero_node
), value
);
3066 /* Given two ranges, see if we can merge them into one. Return 1 if we
3067 can, 0 if we can't. Set the output range into the specified parameters. */
3070 merge_ranges (pin_p
, plow
, phigh
, in0_p
, low0
, high0
, in1_p
, low1
, high1
)
3074 tree low0
, high0
, low1
, high1
;
3082 int lowequal
= ((low0
== 0 && low1
== 0)
3083 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
3084 low0
, 0, low1
, 0)));
3085 int highequal
= ((high0
== 0 && high1
== 0)
3086 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
3087 high0
, 1, high1
, 1)));
3089 /* Make range 0 be the range that starts first, or ends last if they
3090 start at the same value. Swap them if it isn't. */
3091 if (integer_onep (range_binop (GT_EXPR
, integer_type_node
,
3094 && integer_onep (range_binop (GT_EXPR
, integer_type_node
,
3095 high1
, 1, high0
, 1))))
3097 temp
= in0_p
, in0_p
= in1_p
, in1_p
= temp
;
3098 tem
= low0
, low0
= low1
, low1
= tem
;
3099 tem
= high0
, high0
= high1
, high1
= tem
;
3102 /* Now flag two cases, whether the ranges are disjoint or whether the
3103 second range is totally subsumed in the first. Note that the tests
3104 below are simplified by the ones above. */
3105 no_overlap
= integer_onep (range_binop (LT_EXPR
, integer_type_node
,
3106 high0
, 1, low1
, 0));
3107 subset
= integer_onep (range_binop (LE_EXPR
, integer_type_node
,
3108 high1
, 1, high0
, 1));
3110 /* We now have four cases, depending on whether we are including or
3111 excluding the two ranges. */
3114 /* If they don't overlap, the result is false. If the second range
3115 is a subset it is the result. Otherwise, the range is from the start
3116 of the second to the end of the first. */
3118 in_p
= 0, low
= high
= 0;
3120 in_p
= 1, low
= low1
, high
= high1
;
3122 in_p
= 1, low
= low1
, high
= high0
;
3125 else if (in0_p
&& ! in1_p
)
3127 /* If they don't overlap, the result is the first range. If they are
3128 equal, the result is false. If the second range is a subset of the
3129 first, and the ranges begin at the same place, we go from just after
3130 the end of the first range to the end of the second. If the second
3131 range is not a subset of the first, or if it is a subset and both
3132 ranges end at the same place, the range starts at the start of the
3133 first range and ends just before the second range.
3134 Otherwise, we can't describe this as a single range. */
3136 in_p
= 1, low
= low0
, high
= high0
;
3137 else if (lowequal
&& highequal
)
3138 in_p
= 0, low
= high
= 0;
3139 else if (subset
&& lowequal
)
3141 in_p
= 1, high
= high0
;
3142 low
= range_binop (PLUS_EXPR
, NULL_TREE
, high1
, 0,
3143 integer_one_node
, 0);
3145 else if (! subset
|| highequal
)
3147 in_p
= 1, low
= low0
;
3148 high
= range_binop (MINUS_EXPR
, NULL_TREE
, low1
, 0,
3149 integer_one_node
, 0);
3155 else if (! in0_p
&& in1_p
)
3157 /* If they don't overlap, the result is the second range. If the second
3158 is a subset of the first, the result is false. Otherwise,
3159 the range starts just after the first range and ends at the
3160 end of the second. */
3162 in_p
= 1, low
= low1
, high
= high1
;
3164 in_p
= 0, low
= high
= 0;
3167 in_p
= 1, high
= high1
;
3168 low
= range_binop (PLUS_EXPR
, NULL_TREE
, high0
, 1,
3169 integer_one_node
, 0);
3175 /* The case where we are excluding both ranges. Here the complex case
3176 is if they don't overlap. In that case, the only time we have a
3177 range is if they are adjacent. If the second is a subset of the
3178 first, the result is the first. Otherwise, the range to exclude
3179 starts at the beginning of the first range and ends at the end of the
3183 if (integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
3184 range_binop (PLUS_EXPR
, NULL_TREE
,
3186 integer_one_node
, 1),
3188 in_p
= 0, low
= low0
, high
= high1
;
3193 in_p
= 0, low
= low0
, high
= high0
;
3195 in_p
= 0, low
= low0
, high
= high1
;
3198 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
3202 /* EXP is some logical combination of boolean tests. See if we can
3203 merge it into some range test. Return the new tree if so. */
3206 fold_range_test (exp
)
3209 int or_op
= (TREE_CODE (exp
) == TRUTH_ORIF_EXPR
3210 || TREE_CODE (exp
) == TRUTH_OR_EXPR
);
3211 int in0_p
, in1_p
, in_p
;
3212 tree low0
, low1
, low
, high0
, high1
, high
;
3213 tree lhs
= make_range (TREE_OPERAND (exp
, 0), &in0_p
, &low0
, &high0
);
3214 tree rhs
= make_range (TREE_OPERAND (exp
, 1), &in1_p
, &low1
, &high1
);
3217 /* If this is an OR operation, invert both sides; we will invert
3218 again at the end. */
3220 in0_p
= ! in0_p
, in1_p
= ! in1_p
;
3222 /* If both expressions are the same, if we can merge the ranges, and we
3223 can build the range test, return it or it inverted. If one of the
3224 ranges is always true or always false, consider it to be the same
3225 expression as the other. */
3226 if ((lhs
== 0 || rhs
== 0 || operand_equal_p (lhs
, rhs
, 0))
3227 && merge_ranges (&in_p
, &low
, &high
, in0_p
, low0
, high0
,
3229 && 0 != (tem
= (build_range_check (TREE_TYPE (exp
),
3231 : rhs
!= 0 ? rhs
: integer_zero_node
,
3233 return or_op
? invert_truthvalue (tem
) : tem
;
3235 /* On machines where the branch cost is expensive, if this is a
3236 short-circuited branch and the underlying object on both sides
3237 is the same, make a non-short-circuit operation. */
3238 else if (BRANCH_COST
>= 2
3239 && (TREE_CODE (exp
) == TRUTH_ANDIF_EXPR
3240 || TREE_CODE (exp
) == TRUTH_ORIF_EXPR
)
3241 && operand_equal_p (lhs
, rhs
, 0))
3243 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
3244 unless we are at top level, in which case we can't do this. */
3245 if (simple_operand_p (lhs
))
3246 return build (TREE_CODE (exp
) == TRUTH_ANDIF_EXPR
3247 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
3248 TREE_TYPE (exp
), TREE_OPERAND (exp
, 0),
3249 TREE_OPERAND (exp
, 1));
3251 else if (current_function_decl
!= 0)
3253 tree common
= save_expr (lhs
);
3255 if (0 != (lhs
= build_range_check (TREE_TYPE (exp
), common
,
3256 or_op
? ! in0_p
: in0_p
,
3258 && (0 != (rhs
= build_range_check (TREE_TYPE (exp
), common
,
3259 or_op
? ! in1_p
: in1_p
,
3261 return build (TREE_CODE (exp
) == TRUTH_ANDIF_EXPR
3262 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
3263 TREE_TYPE (exp
), lhs
, rhs
);
3271 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
3272 bit value. Arrange things so the extra bits will be set to zero if and
3273 only if C is signed-extended to its full width. If MASK is nonzero,
3274 it is an INTEGER_CST that should be AND'ed with the extra bits. */
3277 unextend (c
, p
, unsignedp
, mask
)
3283 tree type
= TREE_TYPE (c
);
3284 int modesize
= GET_MODE_BITSIZE (TYPE_MODE (type
));
3287 if (p
== modesize
|| unsignedp
)
3290 /* We work by getting just the sign bit into the low-order bit, then
3291 into the high-order bit, then sign-extend. We then XOR that value
3293 temp
= const_binop (RSHIFT_EXPR
, c
, size_int (p
- 1), 0);
3294 temp
= const_binop (BIT_AND_EXPR
, temp
, size_int (1), 0);
3296 /* We must use a signed type in order to get an arithmetic right shift.
3297 However, we must also avoid introducing accidental overflows, so that
3298 a subsequent call to integer_zerop will work. Hence we must
3299 do the type conversion here. At this point, the constant is either
3300 zero or one, and the conversion to a signed type can never overflow.
3301 We could get an overflow if this conversion is done anywhere else. */
3302 if (TREE_UNSIGNED (type
))
3303 temp
= convert (signed_type (type
), temp
);
3305 temp
= const_binop (LSHIFT_EXPR
, temp
, size_int (modesize
- 1), 0);
3306 temp
= const_binop (RSHIFT_EXPR
, temp
, size_int (modesize
- p
- 1), 0);
3308 temp
= const_binop (BIT_AND_EXPR
, temp
, convert (TREE_TYPE (c
), mask
), 0);
3309 /* If necessary, convert the type back to match the type of C. */
3310 if (TREE_UNSIGNED (type
))
3311 temp
= convert (type
, temp
);
3313 return convert (type
, const_binop (BIT_XOR_EXPR
, c
, temp
, 0));
3316 /* Find ways of folding logical expressions of LHS and RHS:
3317 Try to merge two comparisons to the same innermost item.
3318 Look for range tests like "ch >= '0' && ch <= '9'".
3319 Look for combinations of simple terms on machines with expensive branches
3320 and evaluate the RHS unconditionally.
3322 For example, if we have p->a == 2 && p->b == 4 and we can make an
3323 object large enough to span both A and B, we can do this with a comparison
3324 against the object ANDed with the a mask.
3326 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
3327 operations to do this with one comparison.
3329 We check for both normal comparisons and the BIT_AND_EXPRs made this by
3330 function and the one above.
3332 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
3333 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
3335 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
3338 We return the simplified tree or 0 if no optimization is possible. */
3341 fold_truthop (code
, truth_type
, lhs
, rhs
)
3342 enum tree_code code
;
3343 tree truth_type
, lhs
, rhs
;
3345 /* If this is the "or" of two comparisons, we can do something if we
3346 the comparisons are NE_EXPR. If this is the "and", we can do something
3347 if the comparisons are EQ_EXPR. I.e.,
3348 (a->b == 2 && a->c == 4) can become (a->new == NEW).
3350 WANTED_CODE is this operation code. For single bit fields, we can
3351 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
3352 comparison for one-bit fields. */
3354 enum tree_code wanted_code
;
3355 enum tree_code lcode
, rcode
;
3356 tree ll_arg
, lr_arg
, rl_arg
, rr_arg
;
3357 tree ll_inner
, lr_inner
, rl_inner
, rr_inner
;
3358 int ll_bitsize
, ll_bitpos
, lr_bitsize
, lr_bitpos
;
3359 int rl_bitsize
, rl_bitpos
, rr_bitsize
, rr_bitpos
;
3360 int xll_bitpos
, xlr_bitpos
, xrl_bitpos
, xrr_bitpos
;
3361 int lnbitsize
, lnbitpos
, rnbitsize
, rnbitpos
;
3362 int ll_unsignedp
, lr_unsignedp
, rl_unsignedp
, rr_unsignedp
;
3363 enum machine_mode ll_mode
, lr_mode
, rl_mode
, rr_mode
;
3364 enum machine_mode lnmode
, rnmode
;
3365 tree ll_mask
, lr_mask
, rl_mask
, rr_mask
;
3366 tree ll_and_mask
, lr_and_mask
, rl_and_mask
, rr_and_mask
;
3367 tree l_const
, r_const
;
3369 int first_bit
, end_bit
;
3372 /* Start by getting the comparison codes. Fail if anything is volatile.
3373 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
3374 it were surrounded with a NE_EXPR. */
3376 if (TREE_SIDE_EFFECTS (lhs
) || TREE_SIDE_EFFECTS (rhs
))
3379 lcode
= TREE_CODE (lhs
);
3380 rcode
= TREE_CODE (rhs
);
3382 if (lcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (lhs
, 1)))
3383 lcode
= NE_EXPR
, lhs
= build (NE_EXPR
, truth_type
, lhs
, integer_zero_node
);
3385 if (rcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (rhs
, 1)))
3386 rcode
= NE_EXPR
, rhs
= build (NE_EXPR
, truth_type
, rhs
, integer_zero_node
);
3388 if (TREE_CODE_CLASS (lcode
) != '<' || TREE_CODE_CLASS (rcode
) != '<')
3391 code
= ((code
== TRUTH_AND_EXPR
|| code
== TRUTH_ANDIF_EXPR
)
3392 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
);
3394 ll_arg
= TREE_OPERAND (lhs
, 0);
3395 lr_arg
= TREE_OPERAND (lhs
, 1);
3396 rl_arg
= TREE_OPERAND (rhs
, 0);
3397 rr_arg
= TREE_OPERAND (rhs
, 1);
3399 /* If the RHS can be evaluated unconditionally and its operands are
3400 simple, it wins to evaluate the RHS unconditionally on machines
3401 with expensive branches. In this case, this isn't a comparison
3402 that can be merged. */
3404 /* @@ I'm not sure it wins on the m88110 to do this if the comparisons
3405 are with zero (tmw). */
3407 if (BRANCH_COST
>= 2
3408 && INTEGRAL_TYPE_P (TREE_TYPE (rhs
))
3409 && simple_operand_p (rl_arg
)
3410 && simple_operand_p (rr_arg
))
3411 return build (code
, truth_type
, lhs
, rhs
);
3413 /* See if the comparisons can be merged. Then get all the parameters for
3416 if ((lcode
!= EQ_EXPR
&& lcode
!= NE_EXPR
)
3417 || (rcode
!= EQ_EXPR
&& rcode
!= NE_EXPR
))
3421 ll_inner
= decode_field_reference (ll_arg
,
3422 &ll_bitsize
, &ll_bitpos
, &ll_mode
,
3423 &ll_unsignedp
, &volatilep
, &ll_mask
,
3425 lr_inner
= decode_field_reference (lr_arg
,
3426 &lr_bitsize
, &lr_bitpos
, &lr_mode
,
3427 &lr_unsignedp
, &volatilep
, &lr_mask
,
3429 rl_inner
= decode_field_reference (rl_arg
,
3430 &rl_bitsize
, &rl_bitpos
, &rl_mode
,
3431 &rl_unsignedp
, &volatilep
, &rl_mask
,
3433 rr_inner
= decode_field_reference (rr_arg
,
3434 &rr_bitsize
, &rr_bitpos
, &rr_mode
,
3435 &rr_unsignedp
, &volatilep
, &rr_mask
,
3438 /* It must be true that the inner operation on the lhs of each
3439 comparison must be the same if we are to be able to do anything.
3440 Then see if we have constants. If not, the same must be true for
3442 if (volatilep
|| ll_inner
== 0 || rl_inner
== 0
3443 || ! operand_equal_p (ll_inner
, rl_inner
, 0))
3446 if (TREE_CODE (lr_arg
) == INTEGER_CST
3447 && TREE_CODE (rr_arg
) == INTEGER_CST
)
3448 l_const
= lr_arg
, r_const
= rr_arg
;
3449 else if (lr_inner
== 0 || rr_inner
== 0
3450 || ! operand_equal_p (lr_inner
, rr_inner
, 0))
3453 l_const
= r_const
= 0;
3455 /* If either comparison code is not correct for our logical operation,
3456 fail. However, we can convert a one-bit comparison against zero into
3457 the opposite comparison against that bit being set in the field. */
3459 wanted_code
= (code
== TRUTH_AND_EXPR
? EQ_EXPR
: NE_EXPR
);
3460 if (lcode
!= wanted_code
)
3462 if (l_const
&& integer_zerop (l_const
) && integer_pow2p (ll_mask
))
3464 if (ll_unsignedp
|| tree_log2 (ll_mask
) + 1 < ll_bitsize
)
3467 /* Since ll_arg is a single bit bit mask, we can sign extend
3468 it appropriately with a NEGATE_EXPR.
3469 l_const is made a signed value here, but since for l_const != NULL
3470 lr_unsignedp is not used, we don't need to clear the latter. */
3471 l_const
= fold (build1 (NEGATE_EXPR
, TREE_TYPE (ll_arg
),
3472 convert (TREE_TYPE (ll_arg
), ll_mask
)));
3478 if (rcode
!= wanted_code
)
3480 if (r_const
&& integer_zerop (r_const
) && integer_pow2p (rl_mask
))
3482 if (rl_unsignedp
|| tree_log2 (rl_mask
) + 1 < rl_bitsize
)
3485 /* This is analogous to the code for l_const above. */
3486 r_const
= fold (build1 (NEGATE_EXPR
, TREE_TYPE (rl_arg
),
3487 convert (TREE_TYPE (rl_arg
), rl_mask
)));
3493 /* See if we can find a mode that contains both fields being compared on
3494 the left. If we can't, fail. Otherwise, update all constants and masks
3495 to be relative to a field of that size. */
3496 first_bit
= MIN (ll_bitpos
, rl_bitpos
);
3497 end_bit
= MAX (ll_bitpos
+ ll_bitsize
, rl_bitpos
+ rl_bitsize
);
3498 lnmode
= get_best_mode (end_bit
- first_bit
, first_bit
,
3499 TYPE_ALIGN (TREE_TYPE (ll_inner
)), word_mode
,
3501 if (lnmode
== VOIDmode
)
3504 lnbitsize
= GET_MODE_BITSIZE (lnmode
);
3505 lnbitpos
= first_bit
& ~ (lnbitsize
- 1);
3506 type
= type_for_size (lnbitsize
, 1);
3507 xll_bitpos
= ll_bitpos
- lnbitpos
, xrl_bitpos
= rl_bitpos
- lnbitpos
;
3509 if (BYTES_BIG_ENDIAN
)
3511 xll_bitpos
= lnbitsize
- xll_bitpos
- ll_bitsize
;
3512 xrl_bitpos
= lnbitsize
- xrl_bitpos
- rl_bitsize
;
3515 ll_mask
= const_binop (LSHIFT_EXPR
, convert (type
, ll_mask
),
3516 size_int (xll_bitpos
), 0);
3517 rl_mask
= const_binop (LSHIFT_EXPR
, convert (type
, rl_mask
),
3518 size_int (xrl_bitpos
), 0);
3522 l_const
= convert (type
, l_const
);
3523 l_const
= unextend (l_const
, ll_bitsize
, ll_unsignedp
, ll_and_mask
);
3524 l_const
= const_binop (LSHIFT_EXPR
, l_const
, size_int (xll_bitpos
), 0);
3525 if (! integer_zerop (const_binop (BIT_AND_EXPR
, l_const
,
3526 fold (build1 (BIT_NOT_EXPR
,
3530 warning ("comparison is always %s",
3531 wanted_code
== NE_EXPR
? "one" : "zero");
3533 return convert (truth_type
,
3534 wanted_code
== NE_EXPR
3535 ? integer_one_node
: integer_zero_node
);
3540 r_const
= convert (type
, r_const
);
3541 r_const
= unextend (r_const
, rl_bitsize
, rl_unsignedp
, rl_and_mask
);
3542 r_const
= const_binop (LSHIFT_EXPR
, r_const
, size_int (xrl_bitpos
), 0);
3543 if (! integer_zerop (const_binop (BIT_AND_EXPR
, r_const
,
3544 fold (build1 (BIT_NOT_EXPR
,
3548 warning ("comparison is always %s",
3549 wanted_code
== NE_EXPR
? "one" : "zero");
3551 return convert (truth_type
,
3552 wanted_code
== NE_EXPR
3553 ? integer_one_node
: integer_zero_node
);
3557 /* If the right sides are not constant, do the same for it. Also,
3558 disallow this optimization if a size or signedness mismatch occurs
3559 between the left and right sides. */
3562 if (ll_bitsize
!= lr_bitsize
|| rl_bitsize
!= rr_bitsize
3563 || ll_unsignedp
!= lr_unsignedp
|| rl_unsignedp
!= rr_unsignedp
3564 /* Make sure the two fields on the right
3565 correspond to the left without being swapped. */
3566 || ll_bitpos
- rl_bitpos
!= lr_bitpos
- rr_bitpos
)
3569 first_bit
= MIN (lr_bitpos
, rr_bitpos
);
3570 end_bit
= MAX (lr_bitpos
+ lr_bitsize
, rr_bitpos
+ rr_bitsize
);
3571 rnmode
= get_best_mode (end_bit
- first_bit
, first_bit
,
3572 TYPE_ALIGN (TREE_TYPE (lr_inner
)), word_mode
,
3574 if (rnmode
== VOIDmode
)
3577 rnbitsize
= GET_MODE_BITSIZE (rnmode
);
3578 rnbitpos
= first_bit
& ~ (rnbitsize
- 1);
3579 xlr_bitpos
= lr_bitpos
- rnbitpos
, xrr_bitpos
= rr_bitpos
- rnbitpos
;
3581 if (BYTES_BIG_ENDIAN
)
3583 xlr_bitpos
= rnbitsize
- xlr_bitpos
- lr_bitsize
;
3584 xrr_bitpos
= rnbitsize
- xrr_bitpos
- rr_bitsize
;
3587 lr_mask
= const_binop (LSHIFT_EXPR
, convert (type
, lr_mask
),
3588 size_int (xlr_bitpos
), 0);
3589 rr_mask
= const_binop (LSHIFT_EXPR
, convert (type
, rr_mask
),
3590 size_int (xrr_bitpos
), 0);
3592 /* Make a mask that corresponds to both fields being compared.
3593 Do this for both items being compared. If the masks agree,
3594 we can do this by masking both and comparing the masked
3596 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
, 0);
3597 lr_mask
= const_binop (BIT_IOR_EXPR
, lr_mask
, rr_mask
, 0);
3598 if (operand_equal_p (ll_mask
, lr_mask
, 0) && lnbitsize
== rnbitsize
)
3600 lhs
= make_bit_field_ref (ll_inner
, type
, lnbitsize
, lnbitpos
,
3601 ll_unsignedp
|| rl_unsignedp
);
3602 rhs
= make_bit_field_ref (lr_inner
, type
, rnbitsize
, rnbitpos
,
3603 lr_unsignedp
|| rr_unsignedp
);
3604 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
3606 lhs
= build (BIT_AND_EXPR
, type
, lhs
, ll_mask
);
3607 rhs
= build (BIT_AND_EXPR
, type
, rhs
, ll_mask
);
3609 return build (wanted_code
, truth_type
, lhs
, rhs
);
3612 /* There is still another way we can do something: If both pairs of
3613 fields being compared are adjacent, we may be able to make a wider
3614 field containing them both. */
3615 if ((ll_bitsize
+ ll_bitpos
== rl_bitpos
3616 && lr_bitsize
+ lr_bitpos
== rr_bitpos
)
3617 || (ll_bitpos
== rl_bitpos
+ rl_bitsize
3618 && lr_bitpos
== rr_bitpos
+ rr_bitsize
))
3619 return build (wanted_code
, truth_type
,
3620 make_bit_field_ref (ll_inner
, type
,
3621 ll_bitsize
+ rl_bitsize
,
3622 MIN (ll_bitpos
, rl_bitpos
),
3624 make_bit_field_ref (lr_inner
, type
,
3625 lr_bitsize
+ rr_bitsize
,
3626 MIN (lr_bitpos
, rr_bitpos
),
3632 /* Handle the case of comparisons with constants. If there is something in
3633 common between the masks, those bits of the constants must be the same.
3634 If not, the condition is always false. Test for this to avoid generating
3635 incorrect code below. */
3636 result
= const_binop (BIT_AND_EXPR
, ll_mask
, rl_mask
, 0);
3637 if (! integer_zerop (result
)
3638 && simple_cst_equal (const_binop (BIT_AND_EXPR
, result
, l_const
, 0),
3639 const_binop (BIT_AND_EXPR
, result
, r_const
, 0)) != 1)
3641 if (wanted_code
== NE_EXPR
)
3643 warning ("`or' of unmatched not-equal tests is always 1");
3644 return convert (truth_type
, integer_one_node
);
3648 warning ("`and' of mutually exclusive equal-tests is always zero");
3649 return convert (truth_type
, integer_zero_node
);
3653 /* Construct the expression we will return. First get the component
3654 reference we will make. Unless the mask is all ones the width of
3655 that field, perform the mask operation. Then compare with the
3657 result
= make_bit_field_ref (ll_inner
, type
, lnbitsize
, lnbitpos
,
3658 ll_unsignedp
|| rl_unsignedp
);
3660 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
, 0);
3661 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
3662 result
= build (BIT_AND_EXPR
, type
, result
, ll_mask
);
3664 return build (wanted_code
, truth_type
, result
,
3665 const_binop (BIT_IOR_EXPR
, l_const
, r_const
, 0));
3668 /* If T contains a COMPOUND_EXPR which was inserted merely to evaluate
3669 S, a SAVE_EXPR, return the expression actually being evaluated. Note
3670 that we may sometimes modify the tree. */
3673 strip_compound_expr (t
, s
)
3677 enum tree_code code
= TREE_CODE (t
);
3679 /* See if this is the COMPOUND_EXPR we want to eliminate. */
3680 if (code
== COMPOUND_EXPR
&& TREE_CODE (TREE_OPERAND (t
, 0)) == CONVERT_EXPR
3681 && TREE_OPERAND (TREE_OPERAND (t
, 0), 0) == s
)
3682 return TREE_OPERAND (t
, 1);
3684 /* See if this is a COND_EXPR or a simple arithmetic operator. We
3685 don't bother handling any other types. */
3686 else if (code
== COND_EXPR
)
3688 TREE_OPERAND (t
, 0) = strip_compound_expr (TREE_OPERAND (t
, 0), s
);
3689 TREE_OPERAND (t
, 1) = strip_compound_expr (TREE_OPERAND (t
, 1), s
);
3690 TREE_OPERAND (t
, 2) = strip_compound_expr (TREE_OPERAND (t
, 2), s
);
3692 else if (TREE_CODE_CLASS (code
) == '1')
3693 TREE_OPERAND (t
, 0) = strip_compound_expr (TREE_OPERAND (t
, 0), s
);
3694 else if (TREE_CODE_CLASS (code
) == '<'
3695 || TREE_CODE_CLASS (code
) == '2')
3697 TREE_OPERAND (t
, 0) = strip_compound_expr (TREE_OPERAND (t
, 0), s
);
3698 TREE_OPERAND (t
, 1) = strip_compound_expr (TREE_OPERAND (t
, 1), s
);
3704 /* Perform constant folding and related simplification of EXPR.
3705 The related simplifications include x*1 => x, x*0 => 0, etc.,
3706 and application of the associative law.
3707 NOP_EXPR conversions may be removed freely (as long as we
3708 are careful not to change the C type of the overall expression)
3709 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
3710 but we can constant-fold them if they have constant operands. */
3716 register tree t
= expr
;
3717 tree t1
= NULL_TREE
;
3719 tree type
= TREE_TYPE (expr
);
3720 register tree arg0
= NULL_TREE
, arg1
= NULL_TREE
;
3721 register enum tree_code code
= TREE_CODE (t
);
3725 /* WINS will be nonzero when the switch is done
3726 if all operands are constant. */
3730 /* Don't try to process an RTL_EXPR since its operands aren't trees.
3731 Likewise for a SAVE_EXPR that's already been evaluated. */
3732 if (code
== RTL_EXPR
|| (code
== SAVE_EXPR
&& SAVE_EXPR_RTL (t
)) != 0)
3735 /* Return right away if already constant. */
3736 if (TREE_CONSTANT (t
))
3738 if (code
== CONST_DECL
)
3739 return DECL_INITIAL (t
);
3743 kind
= TREE_CODE_CLASS (code
);
3744 if (code
== NOP_EXPR
|| code
== FLOAT_EXPR
|| code
== CONVERT_EXPR
)
3748 /* Special case for conversion ops that can have fixed point args. */
3749 arg0
= TREE_OPERAND (t
, 0);
3751 /* Don't use STRIP_NOPS, because signedness of argument type matters. */
3753 STRIP_TYPE_NOPS (arg0
);
3755 if (arg0
!= 0 && TREE_CODE (arg0
) == COMPLEX_CST
)
3756 subop
= TREE_REALPART (arg0
);
3760 if (subop
!= 0 && TREE_CODE (subop
) != INTEGER_CST
3761 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3762 && TREE_CODE (subop
) != REAL_CST
3763 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
3765 /* Note that TREE_CONSTANT isn't enough:
3766 static var addresses are constant but we can't
3767 do arithmetic on them. */
3770 else if (kind
== 'e' || kind
== '<'
3771 || kind
== '1' || kind
== '2' || kind
== 'r')
3773 register int len
= tree_code_length
[(int) code
];
3775 for (i
= 0; i
< len
; i
++)
3777 tree op
= TREE_OPERAND (t
, i
);
3781 continue; /* Valid for CALL_EXPR, at least. */
3783 if (kind
== '<' || code
== RSHIFT_EXPR
)
3785 /* Signedness matters here. Perhaps we can refine this
3787 STRIP_TYPE_NOPS (op
);
3791 /* Strip any conversions that don't change the mode. */
3795 if (TREE_CODE (op
) == COMPLEX_CST
)
3796 subop
= TREE_REALPART (op
);
3800 if (TREE_CODE (subop
) != INTEGER_CST
3801 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3802 && TREE_CODE (subop
) != REAL_CST
3803 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
3805 /* Note that TREE_CONSTANT isn't enough:
3806 static var addresses are constant but we can't
3807 do arithmetic on them. */
3817 /* If this is a commutative operation, and ARG0 is a constant, move it
3818 to ARG1 to reduce the number of tests below. */
3819 if ((code
== PLUS_EXPR
|| code
== MULT_EXPR
|| code
== MIN_EXPR
3820 || code
== MAX_EXPR
|| code
== BIT_IOR_EXPR
|| code
== BIT_XOR_EXPR
3821 || code
== BIT_AND_EXPR
)
3822 && (TREE_CODE (arg0
) == INTEGER_CST
|| TREE_CODE (arg0
) == REAL_CST
))
3824 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
3826 tem
= TREE_OPERAND (t
, 0); TREE_OPERAND (t
, 0) = TREE_OPERAND (t
, 1);
3827 TREE_OPERAND (t
, 1) = tem
;
3830 /* Now WINS is set as described above,
3831 ARG0 is the first operand of EXPR,
3832 and ARG1 is the second operand (if it has more than one operand).
3834 First check for cases where an arithmetic operation is applied to a
3835 compound, conditional, or comparison operation. Push the arithmetic
3836 operation inside the compound or conditional to see if any folding
3837 can then be done. Convert comparison to conditional for this purpose.
3838 The also optimizes non-constant cases that used to be done in
3841 Before we do that, see if this is a BIT_AND_EXPR or a BIT_OR_EXPR,
3842 one of the operands is a comparison and the other is a comparison, a
3843 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
3844 code below would make the expression more complex. Change it to a
3845 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
3846 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
3848 if ((code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
3849 || code
== EQ_EXPR
|| code
== NE_EXPR
)
3850 && ((truth_value_p (TREE_CODE (arg0
))
3851 && (truth_value_p (TREE_CODE (arg1
))
3852 || (TREE_CODE (arg1
) == BIT_AND_EXPR
3853 && integer_onep (TREE_OPERAND (arg1
, 1)))))
3854 || (truth_value_p (TREE_CODE (arg1
))
3855 && (truth_value_p (TREE_CODE (arg0
))
3856 || (TREE_CODE (arg0
) == BIT_AND_EXPR
3857 && integer_onep (TREE_OPERAND (arg0
, 1)))))))
3859 t
= fold (build (code
== BIT_AND_EXPR
? TRUTH_AND_EXPR
3860 : code
== BIT_IOR_EXPR
? TRUTH_OR_EXPR
3864 if (code
== EQ_EXPR
)
3865 t
= invert_truthvalue (t
);
3870 if (TREE_CODE_CLASS (code
) == '1')
3872 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
3873 return build (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
3874 fold (build1 (code
, type
, TREE_OPERAND (arg0
, 1))));
3875 else if (TREE_CODE (arg0
) == COND_EXPR
)
3877 t
= fold (build (COND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
3878 fold (build1 (code
, type
, TREE_OPERAND (arg0
, 1))),
3879 fold (build1 (code
, type
, TREE_OPERAND (arg0
, 2)))));
3881 /* If this was a conversion, and all we did was to move into
3882 inside the COND_EXPR, bring it back out. But leave it if
3883 it is a conversion from integer to integer and the
3884 result precision is no wider than a word since such a
3885 conversion is cheap and may be optimized away by combine,
3886 while it couldn't if it were outside the COND_EXPR. Then return
3887 so we don't get into an infinite recursion loop taking the
3888 conversion out and then back in. */
3890 if ((code
== NOP_EXPR
|| code
== CONVERT_EXPR
3891 || code
== NON_LVALUE_EXPR
)
3892 && TREE_CODE (t
) == COND_EXPR
3893 && TREE_CODE (TREE_OPERAND (t
, 1)) == code
3894 && TREE_CODE (TREE_OPERAND (t
, 2)) == code
3895 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t
, 1), 0))
3896 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t
, 2), 0)))
3897 && ! (INTEGRAL_TYPE_P (TREE_TYPE (t
))
3898 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t
, 1), 0)))
3899 && TYPE_PRECISION (TREE_TYPE (t
)) <= BITS_PER_WORD
))
3900 t
= build1 (code
, type
,
3902 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t
, 1), 0)),
3903 TREE_OPERAND (t
, 0),
3904 TREE_OPERAND (TREE_OPERAND (t
, 1), 0),
3905 TREE_OPERAND (TREE_OPERAND (t
, 2), 0)));
3908 else if (TREE_CODE_CLASS (TREE_CODE (arg0
)) == '<')
3909 return fold (build (COND_EXPR
, type
, arg0
,
3910 fold (build1 (code
, type
, integer_one_node
)),
3911 fold (build1 (code
, type
, integer_zero_node
))));
3913 else if (TREE_CODE_CLASS (code
) == '2'
3914 || TREE_CODE_CLASS (code
) == '<')
3916 if (TREE_CODE (arg1
) == COMPOUND_EXPR
)
3917 return build (COMPOUND_EXPR
, type
, TREE_OPERAND (arg1
, 0),
3918 fold (build (code
, type
,
3919 arg0
, TREE_OPERAND (arg1
, 1))));
3920 else if ((TREE_CODE (arg1
) == COND_EXPR
3921 || (TREE_CODE_CLASS (TREE_CODE (arg1
)) == '<'
3922 && TREE_CODE_CLASS (code
) != '<'))
3923 && (! TREE_SIDE_EFFECTS (arg0
) || current_function_decl
!= 0))
3925 tree test
, true_value
, false_value
;
3927 if (TREE_CODE (arg1
) == COND_EXPR
)
3929 test
= TREE_OPERAND (arg1
, 0);
3930 true_value
= TREE_OPERAND (arg1
, 1);
3931 false_value
= TREE_OPERAND (arg1
, 2);
3935 tree testtype
= TREE_TYPE (arg1
);
3937 true_value
= convert (testtype
, integer_one_node
);
3938 false_value
= convert (testtype
, integer_zero_node
);
3941 /* If ARG0 is complex we want to make sure we only evaluate
3942 it once. Though this is only required if it is volatile, it
3943 might be more efficient even if it is not. However, if we
3944 succeed in folding one part to a constant, we do not need
3945 to make this SAVE_EXPR. Since we do this optimization
3946 primarily to see if we do end up with constant and this
3947 SAVE_EXPR interferes with later optimizations, suppressing
3948 it when we can is important. */
3950 if (TREE_CODE (arg0
) != SAVE_EXPR
3951 && ((TREE_CODE (arg0
) != VAR_DECL
3952 && TREE_CODE (arg0
) != PARM_DECL
)
3953 || TREE_SIDE_EFFECTS (arg0
)))
3955 tree lhs
= fold (build (code
, type
, arg0
, true_value
));
3956 tree rhs
= fold (build (code
, type
, arg0
, false_value
));
3958 if (TREE_CONSTANT (lhs
) || TREE_CONSTANT (rhs
))
3959 return fold (build (COND_EXPR
, type
, test
, lhs
, rhs
));
3961 if (current_function_decl
!= 0)
3962 arg0
= save_expr (arg0
);
3965 test
= fold (build (COND_EXPR
, type
, test
,
3966 fold (build (code
, type
, arg0
, true_value
)),
3967 fold (build (code
, type
, arg0
, false_value
))));
3968 if (TREE_CODE (arg0
) == SAVE_EXPR
)
3969 return build (COMPOUND_EXPR
, type
,
3970 convert (void_type_node
, arg0
),
3971 strip_compound_expr (test
, arg0
));
3973 return convert (type
, test
);
3976 else if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
3977 return build (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
3978 fold (build (code
, type
, TREE_OPERAND (arg0
, 1), arg1
)));
3979 else if ((TREE_CODE (arg0
) == COND_EXPR
3980 || (TREE_CODE_CLASS (TREE_CODE (arg0
)) == '<'
3981 && TREE_CODE_CLASS (code
) != '<'))
3982 && (! TREE_SIDE_EFFECTS (arg1
) || current_function_decl
!= 0))
3984 tree test
, true_value
, false_value
;
3986 if (TREE_CODE (arg0
) == COND_EXPR
)
3988 test
= TREE_OPERAND (arg0
, 0);
3989 true_value
= TREE_OPERAND (arg0
, 1);
3990 false_value
= TREE_OPERAND (arg0
, 2);
3994 tree testtype
= TREE_TYPE (arg0
);
3996 true_value
= convert (testtype
, integer_one_node
);
3997 false_value
= convert (testtype
, integer_zero_node
);
4000 if (TREE_CODE (arg1
) != SAVE_EXPR
4001 && ((TREE_CODE (arg1
) != VAR_DECL
4002 && TREE_CODE (arg1
) != PARM_DECL
)
4003 || TREE_SIDE_EFFECTS (arg1
)))
4005 tree lhs
= fold (build (code
, type
, true_value
, arg1
));
4006 tree rhs
= fold (build (code
, type
, false_value
, arg1
));
4008 if (TREE_CONSTANT (lhs
) || TREE_CONSTANT (rhs
)
4009 || TREE_CONSTANT (arg1
))
4010 return fold (build (COND_EXPR
, type
, test
, lhs
, rhs
));
4012 if (current_function_decl
!= 0)
4013 arg1
= save_expr (arg1
);
4016 test
= fold (build (COND_EXPR
, type
, test
,
4017 fold (build (code
, type
, true_value
, arg1
)),
4018 fold (build (code
, type
, false_value
, arg1
))));
4019 if (TREE_CODE (arg1
) == SAVE_EXPR
)
4020 return build (COMPOUND_EXPR
, type
,
4021 convert (void_type_node
, arg1
),
4022 strip_compound_expr (test
, arg1
));
4024 return convert (type
, test
);
4027 else if (TREE_CODE_CLASS (code
) == '<'
4028 && TREE_CODE (arg0
) == COMPOUND_EXPR
)
4029 return build (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
4030 fold (build (code
, type
, TREE_OPERAND (arg0
, 1), arg1
)));
4031 else if (TREE_CODE_CLASS (code
) == '<'
4032 && TREE_CODE (arg1
) == COMPOUND_EXPR
)
4033 return build (COMPOUND_EXPR
, type
, TREE_OPERAND (arg1
, 0),
4034 fold (build (code
, type
, arg0
, TREE_OPERAND (arg1
, 1))));
4046 return fold (DECL_INITIAL (t
));
4051 case FIX_TRUNC_EXPR
:
4052 /* Other kinds of FIX are not handled properly by fold_convert. */
4054 if (TREE_TYPE (TREE_OPERAND (t
, 0)) == TREE_TYPE (t
))
4055 return TREE_OPERAND (t
, 0);
4057 /* Handle cases of two conversions in a row. */
4058 if (TREE_CODE (TREE_OPERAND (t
, 0)) == NOP_EXPR
4059 || TREE_CODE (TREE_OPERAND (t
, 0)) == CONVERT_EXPR
)
4061 tree inside_type
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t
, 0), 0));
4062 tree inter_type
= TREE_TYPE (TREE_OPERAND (t
, 0));
4063 tree final_type
= TREE_TYPE (t
);
4064 int inside_int
= INTEGRAL_TYPE_P (inside_type
);
4065 int inside_ptr
= POINTER_TYPE_P (inside_type
);
4066 int inside_float
= FLOAT_TYPE_P (inside_type
);
4067 int inside_prec
= TYPE_PRECISION (inside_type
);
4068 int inside_unsignedp
= TREE_UNSIGNED (inside_type
);
4069 int inter_int
= INTEGRAL_TYPE_P (inter_type
);
4070 int inter_ptr
= POINTER_TYPE_P (inter_type
);
4071 int inter_float
= FLOAT_TYPE_P (inter_type
);
4072 int inter_prec
= TYPE_PRECISION (inter_type
);
4073 int inter_unsignedp
= TREE_UNSIGNED (inter_type
);
4074 int final_int
= INTEGRAL_TYPE_P (final_type
);
4075 int final_ptr
= POINTER_TYPE_P (final_type
);
4076 int final_float
= FLOAT_TYPE_P (final_type
);
4077 int final_prec
= TYPE_PRECISION (final_type
);
4078 int final_unsignedp
= TREE_UNSIGNED (final_type
);
4080 /* In addition to the cases of two conversions in a row
4081 handled below, if we are converting something to its own
4082 type via an object of identical or wider precision, neither
4083 conversion is needed. */
4084 if (inside_type
== final_type
4085 && ((inter_int
&& final_int
) || (inter_float
&& final_float
))
4086 && inter_prec
>= final_prec
)
4087 return TREE_OPERAND (TREE_OPERAND (t
, 0), 0);
4089 /* Likewise, if the intermediate and final types are either both
4090 float or both integer, we don't need the middle conversion if
4091 it is wider than the final type and doesn't change the signedness
4092 (for integers). Avoid this if the final type is a pointer
4093 since then we sometimes need the inner conversion. Likewise if
4094 the outer has a precision not equal to the size of its mode. */
4095 if ((((inter_int
|| inter_ptr
) && (inside_int
|| inside_ptr
))
4096 || (inter_float
&& inside_float
))
4097 && inter_prec
>= inside_prec
4098 && (inter_float
|| inter_unsignedp
== inside_unsignedp
)
4099 && ! (final_prec
!= GET_MODE_BITSIZE (TYPE_MODE (final_type
))
4100 && TYPE_MODE (final_type
) == TYPE_MODE (inter_type
))
4102 return convert (final_type
, TREE_OPERAND (TREE_OPERAND (t
, 0), 0));
4104 /* If we have a sign-extension of a zero-extended value, we can
4105 replace that by a single zero-extension. */
4106 if (inside_int
&& inter_int
&& final_int
4107 && inside_prec
< inter_prec
&& inter_prec
< final_prec
4108 && inside_unsignedp
&& !inter_unsignedp
)
4109 return convert (final_type
, TREE_OPERAND (TREE_OPERAND (t
, 0), 0));
4111 /* Two conversions in a row are not needed unless:
4112 - some conversion is floating-point (overstrict for now), or
4113 - the intermediate type is narrower than both initial and
4115 - the intermediate type and innermost type differ in signedness,
4116 and the outermost type is wider than the intermediate, or
4117 - the initial type is a pointer type and the precisions of the
4118 intermediate and final types differ, or
4119 - the final type is a pointer type and the precisions of the
4120 initial and intermediate types differ. */
4121 if (! inside_float
&& ! inter_float
&& ! final_float
4122 && (inter_prec
> inside_prec
|| inter_prec
> final_prec
)
4123 && ! (inside_int
&& inter_int
4124 && inter_unsignedp
!= inside_unsignedp
4125 && inter_prec
< final_prec
)
4126 && ((inter_unsignedp
&& inter_prec
> inside_prec
)
4127 == (final_unsignedp
&& final_prec
> inter_prec
))
4128 && ! (inside_ptr
&& inter_prec
!= final_prec
)
4129 && ! (final_ptr
&& inside_prec
!= inter_prec
)
4130 && ! (final_prec
!= GET_MODE_BITSIZE (TYPE_MODE (final_type
))
4131 && TYPE_MODE (final_type
) == TYPE_MODE (inter_type
))
4133 return convert (final_type
, TREE_OPERAND (TREE_OPERAND (t
, 0), 0));
4136 if (TREE_CODE (TREE_OPERAND (t
, 0)) == MODIFY_EXPR
4137 && TREE_CONSTANT (TREE_OPERAND (TREE_OPERAND (t
, 0), 1))
4138 /* Detect assigning a bitfield. */
4139 && !(TREE_CODE (TREE_OPERAND (TREE_OPERAND (t
, 0), 0)) == COMPONENT_REF
4140 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t
, 0), 0), 1))))
4142 /* Don't leave an assignment inside a conversion
4143 unless assigning a bitfield. */
4144 tree prev
= TREE_OPERAND (t
, 0);
4145 TREE_OPERAND (t
, 0) = TREE_OPERAND (prev
, 1);
4146 /* First do the assignment, then return converted constant. */
4147 t
= build (COMPOUND_EXPR
, TREE_TYPE (t
), prev
, fold (t
));
4153 TREE_CONSTANT (t
) = TREE_CONSTANT (arg0
);
4156 return fold_convert (t
, arg0
);
4158 #if 0 /* This loses on &"foo"[0]. */
4163 /* Fold an expression like: "foo"[2] */
4164 if (TREE_CODE (arg0
) == STRING_CST
4165 && TREE_CODE (arg1
) == INTEGER_CST
4166 && !TREE_INT_CST_HIGH (arg1
)
4167 && (i
= TREE_INT_CST_LOW (arg1
)) < TREE_STRING_LENGTH (arg0
))
4169 t
= build_int_2 (TREE_STRING_POINTER (arg0
)[i
], 0);
4170 TREE_TYPE (t
) = TREE_TYPE (TREE_TYPE (arg0
));
4171 force_fit_type (t
, 0);
4178 if (TREE_CODE (arg0
) == CONSTRUCTOR
)
4180 tree m
= purpose_member (arg1
, CONSTRUCTOR_ELTS (arg0
));
4187 TREE_CONSTANT (t
) = wins
;
4193 if (TREE_CODE (arg0
) == INTEGER_CST
)
4195 HOST_WIDE_INT low
, high
;
4196 int overflow
= neg_double (TREE_INT_CST_LOW (arg0
),
4197 TREE_INT_CST_HIGH (arg0
),
4199 t
= build_int_2 (low
, high
);
4200 TREE_TYPE (t
) = type
;
4202 = (TREE_OVERFLOW (arg0
)
4203 | force_fit_type (t
, overflow
&& !TREE_UNSIGNED (type
)));
4204 TREE_CONSTANT_OVERFLOW (t
)
4205 = TREE_OVERFLOW (t
) | TREE_CONSTANT_OVERFLOW (arg0
);
4207 else if (TREE_CODE (arg0
) == REAL_CST
)
4208 t
= build_real (type
, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0
)));
4210 else if (TREE_CODE (arg0
) == NEGATE_EXPR
)
4211 return TREE_OPERAND (arg0
, 0);
4213 /* Convert - (a - b) to (b - a) for non-floating-point. */
4214 else if (TREE_CODE (arg0
) == MINUS_EXPR
&& ! FLOAT_TYPE_P (type
))
4215 return build (MINUS_EXPR
, type
, TREE_OPERAND (arg0
, 1),
4216 TREE_OPERAND (arg0
, 0));
4223 if (TREE_CODE (arg0
) == INTEGER_CST
)
4225 if (! TREE_UNSIGNED (type
)
4226 && TREE_INT_CST_HIGH (arg0
) < 0)
4228 HOST_WIDE_INT low
, high
;
4229 int overflow
= neg_double (TREE_INT_CST_LOW (arg0
),
4230 TREE_INT_CST_HIGH (arg0
),
4232 t
= build_int_2 (low
, high
);
4233 TREE_TYPE (t
) = type
;
4235 = (TREE_OVERFLOW (arg0
)
4236 | force_fit_type (t
, overflow
));
4237 TREE_CONSTANT_OVERFLOW (t
)
4238 = TREE_OVERFLOW (t
) | TREE_CONSTANT_OVERFLOW (arg0
);
4241 else if (TREE_CODE (arg0
) == REAL_CST
)
4243 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0
)))
4244 t
= build_real (type
,
4245 REAL_VALUE_NEGATE (TREE_REAL_CST (arg0
)));
4248 else if (TREE_CODE (arg0
) == ABS_EXPR
|| TREE_CODE (arg0
) == NEGATE_EXPR
)
4249 return build1 (ABS_EXPR
, type
, TREE_OPERAND (arg0
, 0));
4253 if (TREE_CODE (TREE_TYPE (arg0
)) != COMPLEX_TYPE
)
4255 else if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
4256 return build (COMPLEX_EXPR
, TREE_TYPE (arg0
),
4257 TREE_OPERAND (arg0
, 0),
4258 fold (build1 (NEGATE_EXPR
,
4259 TREE_TYPE (TREE_TYPE (arg0
)),
4260 TREE_OPERAND (arg0
, 1))));
4261 else if (TREE_CODE (arg0
) == COMPLEX_CST
)
4262 return build_complex (type
, TREE_OPERAND (arg0
, 0),
4263 fold (build1 (NEGATE_EXPR
,
4264 TREE_TYPE (TREE_TYPE (arg0
)),
4265 TREE_OPERAND (arg0
, 1))));
4266 else if (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
4267 return fold (build (TREE_CODE (arg0
), type
,
4268 fold (build1 (CONJ_EXPR
, type
,
4269 TREE_OPERAND (arg0
, 0))),
4270 fold (build1 (CONJ_EXPR
,
4271 type
, TREE_OPERAND (arg0
, 1)))));
4272 else if (TREE_CODE (arg0
) == CONJ_EXPR
)
4273 return TREE_OPERAND (arg0
, 0);
4279 t
= build_int_2 (~ TREE_INT_CST_LOW (arg0
),
4280 ~ TREE_INT_CST_HIGH (arg0
));
4281 TREE_TYPE (t
) = type
;
4282 force_fit_type (t
, 0);
4283 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg0
);
4284 TREE_CONSTANT_OVERFLOW (t
) = TREE_CONSTANT_OVERFLOW (arg0
);
4286 else if (TREE_CODE (arg0
) == BIT_NOT_EXPR
)
4287 return TREE_OPERAND (arg0
, 0);
4291 /* A + (-B) -> A - B */
4292 if (TREE_CODE (arg1
) == NEGATE_EXPR
)
4293 return fold (build (MINUS_EXPR
, type
, arg0
, TREE_OPERAND (arg1
, 0)));
4294 else if (! FLOAT_TYPE_P (type
))
4296 if (integer_zerop (arg1
))
4297 return non_lvalue (convert (type
, arg0
));
4299 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
4300 with a constant, and the two constants have no bits in common,
4301 we should treat this as a BIT_IOR_EXPR since this may produce more
4303 if (TREE_CODE (arg0
) == BIT_AND_EXPR
4304 && TREE_CODE (arg1
) == BIT_AND_EXPR
4305 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
4306 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
4307 && integer_zerop (const_binop (BIT_AND_EXPR
,
4308 TREE_OPERAND (arg0
, 1),
4309 TREE_OPERAND (arg1
, 1), 0)))
4311 code
= BIT_IOR_EXPR
;
4315 /* (A * C) + (B * C) -> (A+B) * C. Since we are most concerned
4316 about the case where C is a constant, just try one of the
4317 four possibilities. */
4319 if (TREE_CODE (arg0
) == MULT_EXPR
&& TREE_CODE (arg1
) == MULT_EXPR
4320 && operand_equal_p (TREE_OPERAND (arg0
, 1),
4321 TREE_OPERAND (arg1
, 1), 0))
4322 return fold (build (MULT_EXPR
, type
,
4323 fold (build (PLUS_EXPR
, type
,
4324 TREE_OPERAND (arg0
, 0),
4325 TREE_OPERAND (arg1
, 0))),
4326 TREE_OPERAND (arg0
, 1)));
4328 /* In IEEE floating point, x+0 may not equal x. */
4329 else if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
4331 && real_zerop (arg1
))
4332 return non_lvalue (convert (type
, arg0
));
4334 /* In most languages, can't associate operations on floats
4335 through parentheses. Rather than remember where the parentheses
4336 were, we don't associate floats at all. It shouldn't matter much.
4337 However, associating multiplications is only very slightly
4338 inaccurate, so do that if -ffast-math is specified. */
4339 if (FLOAT_TYPE_P (type
)
4340 && ! (flag_fast_math
&& code
== MULT_EXPR
))
4343 /* The varsign == -1 cases happen only for addition and subtraction.
4344 It says that the arg that was split was really CON minus VAR.
4345 The rest of the code applies to all associative operations. */
4351 if (split_tree (arg0
, code
, &var
, &con
, &varsign
))
4355 /* EXPR is (CON-VAR) +- ARG1. */
4356 /* If it is + and VAR==ARG1, return just CONST. */
4357 if (code
== PLUS_EXPR
&& operand_equal_p (var
, arg1
, 0))
4358 return convert (TREE_TYPE (t
), con
);
4360 /* If ARG0 is a constant, don't change things around;
4361 instead keep all the constant computations together. */
4363 if (TREE_CONSTANT (arg0
))
4366 /* Otherwise return (CON +- ARG1) - VAR. */
4367 t
= build (MINUS_EXPR
, type
,
4368 fold (build (code
, type
, con
, arg1
)), var
);
4372 /* EXPR is (VAR+CON) +- ARG1. */
4373 /* If it is - and VAR==ARG1, return just CONST. */
4374 if (code
== MINUS_EXPR
&& operand_equal_p (var
, arg1
, 0))
4375 return convert (TREE_TYPE (t
), con
);
4377 /* If ARG0 is a constant, don't change things around;
4378 instead keep all the constant computations together. */
4380 if (TREE_CONSTANT (arg0
))
4383 /* Otherwise return VAR +- (ARG1 +- CON). */
4384 tem
= fold (build (code
, type
, arg1
, con
));
4385 t
= build (code
, type
, var
, tem
);
4387 if (integer_zerop (tem
)
4388 && (code
== PLUS_EXPR
|| code
== MINUS_EXPR
))
4389 return convert (type
, var
);
4390 /* If we have x +/- (c - d) [c an explicit integer]
4391 change it to x -/+ (d - c) since if d is relocatable
4392 then the latter can be a single immediate insn
4393 and the former cannot. */
4394 if (TREE_CODE (tem
) == MINUS_EXPR
4395 && TREE_CODE (TREE_OPERAND (tem
, 0)) == INTEGER_CST
)
4397 tree tem1
= TREE_OPERAND (tem
, 1);
4398 TREE_OPERAND (tem
, 1) = TREE_OPERAND (tem
, 0);
4399 TREE_OPERAND (tem
, 0) = tem1
;
4401 (code
== PLUS_EXPR
? MINUS_EXPR
: PLUS_EXPR
));
4407 if (split_tree (arg1
, code
, &var
, &con
, &varsign
))
4409 if (TREE_CONSTANT (arg1
))
4414 (code
== PLUS_EXPR
? MINUS_EXPR
: PLUS_EXPR
));
4416 /* EXPR is ARG0 +- (CON +- VAR). */
4417 if (TREE_CODE (t
) == MINUS_EXPR
4418 && operand_equal_p (var
, arg0
, 0))
4420 /* If VAR and ARG0 cancel, return just CON or -CON. */
4421 if (code
== PLUS_EXPR
)
4422 return convert (TREE_TYPE (t
), con
);
4423 return fold (build1 (NEGATE_EXPR
, TREE_TYPE (t
),
4424 convert (TREE_TYPE (t
), con
)));
4427 t
= build (TREE_CODE (t
), type
,
4428 fold (build (code
, TREE_TYPE (t
), arg0
, con
)), var
);
4430 if (integer_zerop (TREE_OPERAND (t
, 0))
4431 && TREE_CODE (t
) == PLUS_EXPR
)
4432 return convert (TREE_TYPE (t
), var
);
4437 #if defined (REAL_IS_NOT_DOUBLE) && ! defined (REAL_ARITHMETIC)
4438 if (TREE_CODE (arg1
) == REAL_CST
)
4440 #endif /* REAL_IS_NOT_DOUBLE, and no REAL_ARITHMETIC */
4442 t1
= const_binop (code
, arg0
, arg1
, 0);
4443 if (t1
!= NULL_TREE
)
4445 /* The return value should always have
4446 the same type as the original expression. */
4447 if (TREE_TYPE (t1
) != TREE_TYPE (t
))
4448 t1
= convert (TREE_TYPE (t
), t1
);
4455 if (! FLOAT_TYPE_P (type
))
4457 if (! wins
&& integer_zerop (arg0
))
4458 return build1 (NEGATE_EXPR
, type
, arg1
);
4459 if (integer_zerop (arg1
))
4460 return non_lvalue (convert (type
, arg0
));
4462 /* (A * C) - (B * C) -> (A-B) * C. Since we are most concerned
4463 about the case where C is a constant, just try one of the
4464 four possibilities. */
4466 if (TREE_CODE (arg0
) == MULT_EXPR
&& TREE_CODE (arg1
) == MULT_EXPR
4467 && operand_equal_p (TREE_OPERAND (arg0
, 1),
4468 TREE_OPERAND (arg1
, 1), 0))
4469 return fold (build (MULT_EXPR
, type
,
4470 fold (build (MINUS_EXPR
, type
,
4471 TREE_OPERAND (arg0
, 0),
4472 TREE_OPERAND (arg1
, 0))),
4473 TREE_OPERAND (arg0
, 1)));
4475 /* Convert A - (-B) to A + B. */
4476 else if (TREE_CODE (arg1
) == NEGATE_EXPR
)
4477 return fold (build (PLUS_EXPR
, type
, arg0
, TREE_OPERAND (arg1
, 0)));
4479 else if (TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
4482 /* Except with IEEE floating point, 0-x equals -x. */
4483 if (! wins
&& real_zerop (arg0
))
4484 return build1 (NEGATE_EXPR
, type
, arg1
);
4485 /* Except with IEEE floating point, x-0 equals x. */
4486 if (real_zerop (arg1
))
4487 return non_lvalue (convert (type
, arg0
));
4490 /* Fold &x - &x. This can happen from &x.foo - &x.
4491 This is unsafe for certain floats even in non-IEEE formats.
4492 In IEEE, it is unsafe because it does wrong for NaNs.
4493 Also note that operand_equal_p is always false if an operand
4496 if ((! FLOAT_TYPE_P (type
) || flag_fast_math
)
4497 && operand_equal_p (arg0
, arg1
, 0))
4498 return convert (type
, integer_zero_node
);
4503 if (! FLOAT_TYPE_P (type
))
4505 if (integer_zerop (arg1
))
4506 return omit_one_operand (type
, arg1
, arg0
);
4507 if (integer_onep (arg1
))
4508 return non_lvalue (convert (type
, arg0
));
4510 /* ((A / C) * C) is A if the division is an
4511 EXACT_DIV_EXPR. Since C is normally a constant,
4512 just check for one of the four possibilities. */
4514 if (TREE_CODE (arg0
) == EXACT_DIV_EXPR
4515 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
4516 return TREE_OPERAND (arg0
, 0);
4518 /* (a * (1 << b)) is (a << b) */
4519 if (TREE_CODE (arg1
) == LSHIFT_EXPR
4520 && integer_onep (TREE_OPERAND (arg1
, 0)))
4521 return fold (build (LSHIFT_EXPR
, type
, arg0
,
4522 TREE_OPERAND (arg1
, 1)));
4523 if (TREE_CODE (arg0
) == LSHIFT_EXPR
4524 && integer_onep (TREE_OPERAND (arg0
, 0)))
4525 return fold (build (LSHIFT_EXPR
, type
, arg1
,
4526 TREE_OPERAND (arg0
, 1)));
4530 /* x*0 is 0, except for IEEE floating point. */
4531 if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
4533 && real_zerop (arg1
))
4534 return omit_one_operand (type
, arg1
, arg0
);
4535 /* In IEEE floating point, x*1 is not equivalent to x for snans.
4536 However, ANSI says we can drop signals,
4537 so we can do this anyway. */
4538 if (real_onep (arg1
))
4539 return non_lvalue (convert (type
, arg0
));
4541 if (! wins
&& real_twop (arg1
) && current_function_decl
!= 0)
4543 tree arg
= save_expr (arg0
);
4544 return build (PLUS_EXPR
, type
, arg
, arg
);
4552 register enum tree_code code0
, code1
;
4554 if (integer_all_onesp (arg1
))
4555 return omit_one_operand (type
, arg1
, arg0
);
4556 if (integer_zerop (arg1
))
4557 return non_lvalue (convert (type
, arg0
));
4558 t1
= distribute_bit_expr (code
, type
, arg0
, arg1
);
4559 if (t1
!= NULL_TREE
)
4562 /* (A << C1) | (A >> C2) if A is unsigned and C1+C2 is the size of A
4563 is a rotate of A by C1 bits. */
4564 /* (A << B) | (A >> (Z - B)) if A is unsigned and Z is the size of A
4565 is a rotate of A by B bits. */
4567 code0
= TREE_CODE (arg0
);
4568 code1
= TREE_CODE (arg1
);
4569 if (((code0
== RSHIFT_EXPR
&& code1
== LSHIFT_EXPR
)
4570 || (code1
== RSHIFT_EXPR
&& code0
== LSHIFT_EXPR
))
4571 && operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
,0), 0)
4572 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
4574 register tree tree01
, tree11
;
4575 register enum tree_code code01
, code11
;
4577 tree01
= TREE_OPERAND (arg0
, 1);
4578 tree11
= TREE_OPERAND (arg1
, 1);
4579 code01
= TREE_CODE (tree01
);
4580 code11
= TREE_CODE (tree11
);
4581 if (code01
== INTEGER_CST
4582 && code11
== INTEGER_CST
4583 && TREE_INT_CST_HIGH (tree01
) == 0
4584 && TREE_INT_CST_HIGH (tree11
) == 0
4585 && ((TREE_INT_CST_LOW (tree01
) + TREE_INT_CST_LOW (tree11
))
4586 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0
, 0)))))
4587 return build (LROTATE_EXPR
, type
, TREE_OPERAND (arg0
, 0),
4588 code0
== LSHIFT_EXPR
? tree01
: tree11
);
4589 else if (code11
== MINUS_EXPR
4590 && TREE_CODE (TREE_OPERAND (tree11
, 0)) == INTEGER_CST
4591 && TREE_INT_CST_HIGH (TREE_OPERAND (tree11
, 0)) == 0
4592 && TREE_INT_CST_LOW (TREE_OPERAND (tree11
, 0))
4593 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0
, 0)))
4594 && operand_equal_p (tree01
, TREE_OPERAND (tree11
, 1), 0))
4595 return build (code0
== LSHIFT_EXPR
? LROTATE_EXPR
: RROTATE_EXPR
,
4596 type
, TREE_OPERAND (arg0
, 0), tree01
);
4597 else if (code01
== MINUS_EXPR
4598 && TREE_CODE (TREE_OPERAND (tree01
, 0)) == INTEGER_CST
4599 && TREE_INT_CST_HIGH (TREE_OPERAND (tree01
, 0)) == 0
4600 && TREE_INT_CST_LOW (TREE_OPERAND (tree01
, 0))
4601 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0
, 0)))
4602 && operand_equal_p (tree11
, TREE_OPERAND (tree01
, 1), 0))
4603 return build (code0
!= LSHIFT_EXPR
? LROTATE_EXPR
: RROTATE_EXPR
,
4604 type
, TREE_OPERAND (arg0
, 0), tree11
);
4611 if (integer_zerop (arg1
))
4612 return non_lvalue (convert (type
, arg0
));
4613 if (integer_all_onesp (arg1
))
4614 return fold (build1 (BIT_NOT_EXPR
, type
, arg0
));
4619 if (integer_all_onesp (arg1
))
4620 return non_lvalue (convert (type
, arg0
));
4621 if (integer_zerop (arg1
))
4622 return omit_one_operand (type
, arg1
, arg0
);
4623 t1
= distribute_bit_expr (code
, type
, arg0
, arg1
);
4624 if (t1
!= NULL_TREE
)
4626 /* Simplify ((int)c & 0x377) into (int)c, if c is unsigned char. */
4627 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == NOP_EXPR
4628 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1
, 0))))
4630 int prec
= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1
, 0)));
4631 if (prec
< BITS_PER_WORD
&& prec
< HOST_BITS_PER_WIDE_INT
4632 && (~TREE_INT_CST_LOW (arg0
)
4633 & (((HOST_WIDE_INT
) 1 << prec
) - 1)) == 0)
4634 return build1 (NOP_EXPR
, type
, TREE_OPERAND (arg1
, 0));
4636 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) == NOP_EXPR
4637 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
4639 int prec
= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0
, 0)));
4640 if (prec
< BITS_PER_WORD
&& prec
< HOST_BITS_PER_WIDE_INT
4641 && (~TREE_INT_CST_LOW (arg1
)
4642 & (((HOST_WIDE_INT
) 1 << prec
) - 1)) == 0)
4643 return build1 (NOP_EXPR
, type
, TREE_OPERAND (arg0
, 0));
4647 case BIT_ANDTC_EXPR
:
4648 if (integer_all_onesp (arg0
))
4649 return non_lvalue (convert (type
, arg1
));
4650 if (integer_zerop (arg0
))
4651 return omit_one_operand (type
, arg0
, arg1
);
4652 if (TREE_CODE (arg1
) == INTEGER_CST
)
4654 arg1
= fold (build1 (BIT_NOT_EXPR
, type
, arg1
));
4655 code
= BIT_AND_EXPR
;
4661 /* In most cases, do nothing with a divide by zero. */
4662 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4663 #ifndef REAL_INFINITY
4664 if (TREE_CODE (arg1
) == REAL_CST
&& real_zerop (arg1
))
4667 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
4669 /* In IEEE floating point, x/1 is not equivalent to x for snans.
4670 However, ANSI says we can drop signals, so we can do this anyway. */
4671 if (real_onep (arg1
))
4672 return non_lvalue (convert (type
, arg0
));
4674 /* If ARG1 is a constant, we can convert this to a multiply by the
4675 reciprocal. This does not have the same rounding properties,
4676 so only do this if -ffast-math. We can actually always safely
4677 do it if ARG1 is a power of two, but it's hard to tell if it is
4678 or not in a portable manner. */
4679 if (TREE_CODE (arg1
) == REAL_CST
)
4682 && 0 != (tem
= const_binop (code
, build_real (type
, dconst1
),
4684 return fold (build (MULT_EXPR
, type
, arg0
, tem
));
4685 /* Find the reciprocal if optimizing and the result is exact. */
4689 r
= TREE_REAL_CST (arg1
);
4690 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0
)), &r
))
4692 tem
= build_real (type
, r
);
4693 return fold (build (MULT_EXPR
, type
, arg0
, tem
));
4699 case TRUNC_DIV_EXPR
:
4700 case ROUND_DIV_EXPR
:
4701 case FLOOR_DIV_EXPR
:
4703 case EXACT_DIV_EXPR
:
4704 if (integer_onep (arg1
))
4705 return non_lvalue (convert (type
, arg0
));
4706 if (integer_zerop (arg1
))
4709 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
4710 operation, EXACT_DIV_EXPR.
4712 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
4713 At one time others generated faster code, it's not clear if they do
4714 after the last round to changes to the DIV code in expmed.c. */
4715 if ((code
== CEIL_DIV_EXPR
|| code
== FLOOR_DIV_EXPR
)
4716 && multiple_of_p (type
, arg0
, arg1
))
4717 return fold (build (EXACT_DIV_EXPR
, type
, arg0
, arg1
));
4719 /* If we have ((a / C1) / C2) where both division are the same type, try
4720 to simplify. First see if C1 * C2 overflows or not. */
4721 if (TREE_CODE (arg0
) == code
&& TREE_CODE (arg1
) == INTEGER_CST
4722 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
4726 new_divisor
= const_binop (MULT_EXPR
, TREE_OPERAND (arg0
, 1), arg1
, 0);
4727 tem
= const_binop (FLOOR_DIV_EXPR
, new_divisor
, arg1
, 0);
4729 if (TREE_INT_CST_LOW (TREE_OPERAND (arg0
, 1)) == TREE_INT_CST_LOW (tem
)
4730 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0
, 1)) == TREE_INT_CST_HIGH (tem
))
4732 /* If no overflow, divide by C1*C2. */
4733 return fold (build (code
, type
, TREE_OPERAND (arg0
, 0), new_divisor
));
4737 /* Look for ((a * C1) / C3) or (((a * C1) + C2) / C3),
4738 where C1 % C3 == 0 or C3 % C1 == 0. We can simplify these
4739 expressions, which often appear in the offsets or sizes of
4740 objects with a varying size. Only deal with positive divisors
4741 and multiplicands. If C2 is negative, we must have C2 % C3 == 0.
4743 Look for NOPs and SAVE_EXPRs inside. */
4745 if (TREE_CODE (arg1
) == INTEGER_CST
4746 && tree_int_cst_sgn (arg1
) >= 0)
4748 int have_save_expr
= 0;
4749 tree c2
= integer_zero_node
;
4752 if (TREE_CODE (xarg0
) == SAVE_EXPR
&& SAVE_EXPR_RTL (xarg0
) == 0)
4753 have_save_expr
= 1, xarg0
= TREE_OPERAND (xarg0
, 0);
4757 /* Look inside the dividend and simplify using EXACT_DIV_EXPR
4759 if (TREE_CODE (xarg0
) == MULT_EXPR
4760 && multiple_of_p (type
, TREE_OPERAND (xarg0
, 0), arg1
))
4764 t
= fold (build (MULT_EXPR
, type
,
4765 fold (build (EXACT_DIV_EXPR
, type
,
4766 TREE_OPERAND (xarg0
, 0), arg1
)),
4767 TREE_OPERAND (xarg0
, 1)));
4774 if (TREE_CODE (xarg0
) == MULT_EXPR
4775 && multiple_of_p (type
, TREE_OPERAND (xarg0
, 1), arg1
))
4779 t
= fold (build (MULT_EXPR
, type
,
4780 fold (build (EXACT_DIV_EXPR
, type
,
4781 TREE_OPERAND (xarg0
, 1), arg1
)),
4782 TREE_OPERAND (xarg0
, 0)));
4788 if (TREE_CODE (xarg0
) == PLUS_EXPR
4789 && TREE_CODE (TREE_OPERAND (xarg0
, 1)) == INTEGER_CST
)
4790 c2
= TREE_OPERAND (xarg0
, 1), xarg0
= TREE_OPERAND (xarg0
, 0);
4791 else if (TREE_CODE (xarg0
) == MINUS_EXPR
4792 && TREE_CODE (TREE_OPERAND (xarg0
, 1)) == INTEGER_CST
4793 /* If we are doing this computation unsigned, the negate
4795 && ! TREE_UNSIGNED (type
))
4797 c2
= fold (build1 (NEGATE_EXPR
, type
, TREE_OPERAND (xarg0
, 1)));
4798 xarg0
= TREE_OPERAND (xarg0
, 0);
4801 if (TREE_CODE (xarg0
) == SAVE_EXPR
&& SAVE_EXPR_RTL (xarg0
) == 0)
4802 have_save_expr
= 1, xarg0
= TREE_OPERAND (xarg0
, 0);
4806 if (TREE_CODE (xarg0
) == MULT_EXPR
4807 && TREE_CODE (TREE_OPERAND (xarg0
, 1)) == INTEGER_CST
4808 && tree_int_cst_sgn (TREE_OPERAND (xarg0
, 1)) >= 0
4809 && (integer_zerop (const_binop (TRUNC_MOD_EXPR
,
4810 TREE_OPERAND (xarg0
, 1), arg1
, 1))
4811 || integer_zerop (const_binop (TRUNC_MOD_EXPR
, arg1
,
4812 TREE_OPERAND (xarg0
, 1), 1)))
4813 && (tree_int_cst_sgn (c2
) >= 0
4814 || integer_zerop (const_binop (TRUNC_MOD_EXPR
, c2
,
4817 tree outer_div
= integer_one_node
;
4818 tree c1
= TREE_OPERAND (xarg0
, 1);
4821 /* If C3 > C1, set them equal and do a divide by
4822 C3/C1 at the end of the operation. */
4823 if (tree_int_cst_lt (c1
, c3
))
4824 outer_div
= const_binop (code
, c3
, c1
, 0), c3
= c1
;
4826 /* The result is A * (C1/C3) + (C2/C3). */
4827 t
= fold (build (PLUS_EXPR
, type
,
4828 fold (build (MULT_EXPR
, type
,
4829 TREE_OPERAND (xarg0
, 0),
4830 const_binop (code
, c1
, c3
, 1))),
4831 const_binop (code
, c2
, c3
, 1)));
4833 if (! integer_onep (outer_div
))
4834 t
= fold (build (code
, type
, t
, convert (type
, outer_div
)));
4846 case FLOOR_MOD_EXPR
:
4847 case ROUND_MOD_EXPR
:
4848 case TRUNC_MOD_EXPR
:
4849 if (integer_onep (arg1
))
4850 return omit_one_operand (type
, integer_zero_node
, arg0
);
4851 if (integer_zerop (arg1
))
4854 /* Look for ((a * C1) % C3) or (((a * C1) + C2) % C3),
4855 where C1 % C3 == 0. Handle similarly to the division case,
4856 but don't bother with SAVE_EXPRs. */
4858 if (TREE_CODE (arg1
) == INTEGER_CST
4859 && ! integer_zerop (arg1
))
4861 tree c2
= integer_zero_node
;
4864 if (TREE_CODE (xarg0
) == PLUS_EXPR
4865 && TREE_CODE (TREE_OPERAND (xarg0
, 1)) == INTEGER_CST
)
4866 c2
= TREE_OPERAND (xarg0
, 1), xarg0
= TREE_OPERAND (xarg0
, 0);
4867 else if (TREE_CODE (xarg0
) == MINUS_EXPR
4868 && TREE_CODE (TREE_OPERAND (xarg0
, 1)) == INTEGER_CST
4869 && ! TREE_UNSIGNED (type
))
4871 c2
= fold (build1 (NEGATE_EXPR
, type
, TREE_OPERAND (xarg0
, 1)));
4872 xarg0
= TREE_OPERAND (xarg0
, 0);
4877 if (TREE_CODE (xarg0
) == MULT_EXPR
4878 && TREE_CODE (TREE_OPERAND (xarg0
, 1)) == INTEGER_CST
4879 && integer_zerop (const_binop (TRUNC_MOD_EXPR
,
4880 TREE_OPERAND (xarg0
, 1),
4882 && tree_int_cst_sgn (c2
) >= 0)
4883 /* The result is (C2%C3). */
4884 return omit_one_operand (type
, const_binop (code
, c2
, arg1
, 1),
4885 TREE_OPERAND (xarg0
, 0));
4894 if (integer_zerop (arg1
))
4895 return non_lvalue (convert (type
, arg0
));
4896 /* Since negative shift count is not well-defined,
4897 don't try to compute it in the compiler. */
4898 if (TREE_CODE (arg1
) == INTEGER_CST
&& tree_int_cst_sgn (arg1
) < 0)
4900 /* Rewrite an LROTATE_EXPR by a constant into an
4901 RROTATE_EXPR by a new constant. */
4902 if (code
== LROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
)
4904 TREE_SET_CODE (t
, RROTATE_EXPR
);
4905 code
= RROTATE_EXPR
;
4906 TREE_OPERAND (t
, 1) = arg1
4909 convert (TREE_TYPE (arg1
),
4910 build_int_2 (GET_MODE_BITSIZE (TYPE_MODE (type
)), 0)),
4912 if (tree_int_cst_sgn (arg1
) < 0)
4916 /* If we have a rotate of a bit operation with the rotate count and
4917 the second operand of the bit operation both constant,
4918 permute the two operations. */
4919 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
4920 && (TREE_CODE (arg0
) == BIT_AND_EXPR
4921 || TREE_CODE (arg0
) == BIT_ANDTC_EXPR
4922 || TREE_CODE (arg0
) == BIT_IOR_EXPR
4923 || TREE_CODE (arg0
) == BIT_XOR_EXPR
)
4924 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
4925 return fold (build (TREE_CODE (arg0
), type
,
4926 fold (build (code
, type
,
4927 TREE_OPERAND (arg0
, 0), arg1
)),
4928 fold (build (code
, type
,
4929 TREE_OPERAND (arg0
, 1), arg1
))));
4931 /* Two consecutive rotates adding up to the width of the mode can
4933 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
4934 && TREE_CODE (arg0
) == RROTATE_EXPR
4935 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
4936 && TREE_INT_CST_HIGH (arg1
) == 0
4937 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0
, 1)) == 0
4938 && ((TREE_INT_CST_LOW (arg1
)
4939 + TREE_INT_CST_LOW (TREE_OPERAND (arg0
, 1)))
4940 == GET_MODE_BITSIZE (TYPE_MODE (type
))))
4941 return TREE_OPERAND (arg0
, 0);
4946 if (operand_equal_p (arg0
, arg1
, 0))
4948 if (INTEGRAL_TYPE_P (type
)
4949 && operand_equal_p (arg1
, TYPE_MIN_VALUE (type
), 1))
4950 return omit_one_operand (type
, arg1
, arg0
);
4954 if (operand_equal_p (arg0
, arg1
, 0))
4956 if (INTEGRAL_TYPE_P (type
)
4957 && TYPE_MAX_VALUE (type
)
4958 && operand_equal_p (arg1
, TYPE_MAX_VALUE (type
), 1))
4959 return omit_one_operand (type
, arg1
, arg0
);
4962 case TRUTH_NOT_EXPR
:
4963 /* Note that the operand of this must be an int
4964 and its values must be 0 or 1.
4965 ("true" is a fixed value perhaps depending on the language,
4966 but we don't handle values other than 1 correctly yet.) */
4967 tem
= invert_truthvalue (arg0
);
4968 /* Avoid infinite recursion. */
4969 if (TREE_CODE (tem
) == TRUTH_NOT_EXPR
)
4971 return convert (type
, tem
);
4973 case TRUTH_ANDIF_EXPR
:
4974 /* Note that the operands of this must be ints
4975 and their values must be 0 or 1.
4976 ("true" is a fixed value perhaps depending on the language.) */
4977 /* If first arg is constant zero, return it. */
4978 if (integer_zerop (arg0
))
4980 case TRUTH_AND_EXPR
:
4981 /* If either arg is constant true, drop it. */
4982 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
4983 return non_lvalue (arg1
);
4984 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
))
4985 return non_lvalue (arg0
);
4986 /* If second arg is constant zero, result is zero, but first arg
4987 must be evaluated. */
4988 if (integer_zerop (arg1
))
4989 return omit_one_operand (type
, arg1
, arg0
);
4990 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
4991 case will be handled here. */
4992 if (integer_zerop (arg0
))
4993 return omit_one_operand (type
, arg0
, arg1
);
4996 /* We only do these simplifications if we are optimizing. */
5000 /* Check for things like (A || B) && (A || C). We can convert this
5001 to A || (B && C). Note that either operator can be any of the four
5002 truth and/or operations and the transformation will still be
5003 valid. Also note that we only care about order for the
5004 ANDIF and ORIF operators. If B contains side effects, this
5005 might change the truth-value of A. */
5006 if (TREE_CODE (arg0
) == TREE_CODE (arg1
)
5007 && (TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
5008 || TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
5009 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
5010 || TREE_CODE (arg0
) == TRUTH_OR_EXPR
)
5011 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0
, 1)))
5013 tree a00
= TREE_OPERAND (arg0
, 0);
5014 tree a01
= TREE_OPERAND (arg0
, 1);
5015 tree a10
= TREE_OPERAND (arg1
, 0);
5016 tree a11
= TREE_OPERAND (arg1
, 1);
5017 int commutative
= ((TREE_CODE (arg0
) == TRUTH_OR_EXPR
5018 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
)
5019 && (code
== TRUTH_AND_EXPR
5020 || code
== TRUTH_OR_EXPR
));
5022 if (operand_equal_p (a00
, a10
, 0))
5023 return fold (build (TREE_CODE (arg0
), type
, a00
,
5024 fold (build (code
, type
, a01
, a11
))));
5025 else if (commutative
&& operand_equal_p (a00
, a11
, 0))
5026 return fold (build (TREE_CODE (arg0
), type
, a00
,
5027 fold (build (code
, type
, a01
, a10
))));
5028 else if (commutative
&& operand_equal_p (a01
, a10
, 0))
5029 return fold (build (TREE_CODE (arg0
), type
, a01
,
5030 fold (build (code
, type
, a00
, a11
))));
5032 /* This case if tricky because we must either have commutative
5033 operators or else A10 must not have side-effects. */
5035 else if ((commutative
|| ! TREE_SIDE_EFFECTS (a10
))
5036 && operand_equal_p (a01
, a11
, 0))
5037 return fold (build (TREE_CODE (arg0
), type
,
5038 fold (build (code
, type
, a00
, a10
)),
5042 /* See if we can build a range comparison. */
5043 if (0 != (tem
= fold_range_test (t
)))
5046 /* Check for the possibility of merging component references. If our
5047 lhs is another similar operation, try to merge its rhs with our
5048 rhs. Then try to merge our lhs and rhs. */
5049 if (TREE_CODE (arg0
) == code
5050 && 0 != (tem
= fold_truthop (code
, type
,
5051 TREE_OPERAND (arg0
, 1), arg1
)))
5052 return fold (build (code
, type
, TREE_OPERAND (arg0
, 0), tem
));
5054 if ((tem
= fold_truthop (code
, type
, arg0
, arg1
)) != 0)
5059 case TRUTH_ORIF_EXPR
:
5060 /* Note that the operands of this must be ints
5061 and their values must be 0 or true.
5062 ("true" is a fixed value perhaps depending on the language.) */
5063 /* If first arg is constant true, return it. */
5064 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
5067 /* If either arg is constant zero, drop it. */
5068 if (TREE_CODE (arg0
) == INTEGER_CST
&& integer_zerop (arg0
))
5069 return non_lvalue (arg1
);
5070 if (TREE_CODE (arg1
) == INTEGER_CST
&& integer_zerop (arg1
))
5071 return non_lvalue (arg0
);
5072 /* If second arg is constant true, result is true, but we must
5073 evaluate first arg. */
5074 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
))
5075 return omit_one_operand (type
, arg1
, arg0
);
5076 /* Likewise for first arg, but note this only occurs here for
5078 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
5079 return omit_one_operand (type
, arg0
, arg1
);
5082 case TRUTH_XOR_EXPR
:
5083 /* If either arg is constant zero, drop it. */
5084 if (integer_zerop (arg0
))
5085 return non_lvalue (arg1
);
5086 if (integer_zerop (arg1
))
5087 return non_lvalue (arg0
);
5088 /* If either arg is constant true, this is a logical inversion. */
5089 if (integer_onep (arg0
))
5090 return non_lvalue (invert_truthvalue (arg1
));
5091 if (integer_onep (arg1
))
5092 return non_lvalue (invert_truthvalue (arg0
));
5101 /* If one arg is a constant integer, put it last. */
5102 if (TREE_CODE (arg0
) == INTEGER_CST
5103 && TREE_CODE (arg1
) != INTEGER_CST
)
5105 TREE_OPERAND (t
, 0) = arg1
;
5106 TREE_OPERAND (t
, 1) = arg0
;
5107 arg0
= TREE_OPERAND (t
, 0);
5108 arg1
= TREE_OPERAND (t
, 1);
5109 code
= swap_tree_comparison (code
);
5110 TREE_SET_CODE (t
, code
);
5113 /* Convert foo++ == CONST into ++foo == CONST + INCR.
5114 First, see if one arg is constant; find the constant arg
5115 and the other one. */
5117 tree constop
= 0, varop
= NULL_TREE
;
5118 int constopnum
= -1;
5120 if (TREE_CONSTANT (arg1
))
5121 constopnum
= 1, constop
= arg1
, varop
= arg0
;
5122 if (TREE_CONSTANT (arg0
))
5123 constopnum
= 0, constop
= arg0
, varop
= arg1
;
5125 if (constop
&& TREE_CODE (varop
) == POSTINCREMENT_EXPR
)
5127 /* This optimization is invalid for ordered comparisons
5128 if CONST+INCR overflows or if foo+incr might overflow.
5129 This optimization is invalid for floating point due to rounding.
5130 For pointer types we assume overflow doesn't happen. */
5131 if (TREE_CODE (TREE_TYPE (varop
)) == POINTER_TYPE
5132 || (! FLOAT_TYPE_P (TREE_TYPE (varop
))
5133 && (code
== EQ_EXPR
|| code
== NE_EXPR
)))
5136 = fold (build (PLUS_EXPR
, TREE_TYPE (varop
),
5137 constop
, TREE_OPERAND (varop
, 1)));
5138 TREE_SET_CODE (varop
, PREINCREMENT_EXPR
);
5140 /* If VAROP is a reference to a bitfield, we must mask
5141 the constant by the width of the field. */
5142 if (TREE_CODE (TREE_OPERAND (varop
, 0)) == COMPONENT_REF
5143 && DECL_BIT_FIELD(TREE_OPERAND
5144 (TREE_OPERAND (varop
, 0), 1)))
5147 = TREE_INT_CST_LOW (DECL_SIZE
5149 (TREE_OPERAND (varop
, 0), 1)));
5151 newconst
= fold (build (BIT_AND_EXPR
,
5152 TREE_TYPE (varop
), newconst
,
5153 convert (TREE_TYPE (varop
),
5154 build_int_2 (size
, 0))));
5158 t
= build (code
, type
, TREE_OPERAND (t
, 0),
5159 TREE_OPERAND (t
, 1));
5160 TREE_OPERAND (t
, constopnum
) = newconst
;
5164 else if (constop
&& TREE_CODE (varop
) == POSTDECREMENT_EXPR
)
5166 if (TREE_CODE (TREE_TYPE (varop
)) == POINTER_TYPE
5167 || (! FLOAT_TYPE_P (TREE_TYPE (varop
))
5168 && (code
== EQ_EXPR
|| code
== NE_EXPR
)))
5171 = fold (build (MINUS_EXPR
, TREE_TYPE (varop
),
5172 constop
, TREE_OPERAND (varop
, 1)));
5173 TREE_SET_CODE (varop
, PREDECREMENT_EXPR
);
5175 if (TREE_CODE (TREE_OPERAND (varop
, 0)) == COMPONENT_REF
5176 && DECL_BIT_FIELD(TREE_OPERAND
5177 (TREE_OPERAND (varop
, 0), 1)))
5180 = TREE_INT_CST_LOW (DECL_SIZE
5182 (TREE_OPERAND (varop
, 0), 1)));
5184 newconst
= fold (build (BIT_AND_EXPR
,
5185 TREE_TYPE (varop
), newconst
,
5186 convert (TREE_TYPE (varop
),
5187 build_int_2 (size
, 0))));
5191 t
= build (code
, type
, TREE_OPERAND (t
, 0),
5192 TREE_OPERAND (t
, 1));
5193 TREE_OPERAND (t
, constopnum
) = newconst
;
5199 /* Change X >= CST to X > (CST - 1) if CST is positive. */
5200 if (TREE_CODE (arg1
) == INTEGER_CST
5201 && TREE_CODE (arg0
) != INTEGER_CST
5202 && tree_int_cst_sgn (arg1
) > 0)
5204 switch (TREE_CODE (t
))
5208 arg1
= const_binop (MINUS_EXPR
, arg1
, integer_one_node
, 0);
5209 t
= build (code
, type
, TREE_OPERAND (t
, 0), arg1
);
5214 arg1
= const_binop (MINUS_EXPR
, arg1
, integer_one_node
, 0);
5215 t
= build (code
, type
, TREE_OPERAND (t
, 0), arg1
);
5223 /* If this is an EQ or NE comparison with zero and ARG0 is
5224 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
5225 two operations, but the latter can be done in one less insn
5226 on machines that have only two-operand insns or on which a
5227 constant cannot be the first operand. */
5228 if (integer_zerop (arg1
) && (code
== EQ_EXPR
|| code
== NE_EXPR
)
5229 && TREE_CODE (arg0
) == BIT_AND_EXPR
)
5231 if (TREE_CODE (TREE_OPERAND (arg0
, 0)) == LSHIFT_EXPR
5232 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0)))
5234 fold (build (code
, type
,
5235 build (BIT_AND_EXPR
, TREE_TYPE (arg0
),
5237 TREE_TYPE (TREE_OPERAND (arg0
, 0)),
5238 TREE_OPERAND (arg0
, 1),
5239 TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1)),
5240 convert (TREE_TYPE (arg0
),
5243 else if (TREE_CODE (TREE_OPERAND (arg0
, 1)) == LSHIFT_EXPR
5244 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0
, 1), 0)))
5246 fold (build (code
, type
,
5247 build (BIT_AND_EXPR
, TREE_TYPE (arg0
),
5249 TREE_TYPE (TREE_OPERAND (arg0
, 1)),
5250 TREE_OPERAND (arg0
, 0),
5251 TREE_OPERAND (TREE_OPERAND (arg0
, 1), 1)),
5252 convert (TREE_TYPE (arg0
),
5257 /* If this is an NE or EQ comparison of zero against the result of a
5258 signed MOD operation whose second operand is a power of 2, make
5259 the MOD operation unsigned since it is simpler and equivalent. */
5260 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
5261 && integer_zerop (arg1
)
5262 && ! TREE_UNSIGNED (TREE_TYPE (arg0
))
5263 && (TREE_CODE (arg0
) == TRUNC_MOD_EXPR
5264 || TREE_CODE (arg0
) == CEIL_MOD_EXPR
5265 || TREE_CODE (arg0
) == FLOOR_MOD_EXPR
5266 || TREE_CODE (arg0
) == ROUND_MOD_EXPR
)
5267 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
5269 tree newtype
= unsigned_type (TREE_TYPE (arg0
));
5270 tree newmod
= build (TREE_CODE (arg0
), newtype
,
5271 convert (newtype
, TREE_OPERAND (arg0
, 0)),
5272 convert (newtype
, TREE_OPERAND (arg0
, 1)));
5274 return build (code
, type
, newmod
, convert (newtype
, arg1
));
5277 /* If this is an NE comparison of zero with an AND of one, remove the
5278 comparison since the AND will give the correct value. */
5279 if (code
== NE_EXPR
&& integer_zerop (arg1
)
5280 && TREE_CODE (arg0
) == BIT_AND_EXPR
5281 && integer_onep (TREE_OPERAND (arg0
, 1)))
5282 return convert (type
, arg0
);
5284 /* If we have (A & C) == C where C is a power of 2, convert this into
5285 (A & C) != 0. Similarly for NE_EXPR. */
5286 if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
5287 && TREE_CODE (arg0
) == BIT_AND_EXPR
5288 && integer_pow2p (TREE_OPERAND (arg0
, 1))
5289 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
5290 return build (code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
5291 arg0
, integer_zero_node
);
5293 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
5294 and similarly for >= into !=. */
5295 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
5296 && TREE_UNSIGNED (TREE_TYPE (arg0
))
5297 && TREE_CODE (arg1
) == LSHIFT_EXPR
5298 && integer_onep (TREE_OPERAND (arg1
, 0)))
5299 return build (code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
5300 build (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
5301 TREE_OPERAND (arg1
, 1)),
5302 convert (TREE_TYPE (arg0
), integer_zero_node
));
5304 else if ((code
== LT_EXPR
|| code
== GE_EXPR
)
5305 && TREE_UNSIGNED (TREE_TYPE (arg0
))
5306 && (TREE_CODE (arg1
) == NOP_EXPR
5307 || TREE_CODE (arg1
) == CONVERT_EXPR
)
5308 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == LSHIFT_EXPR
5309 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0)))
5311 build (code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
5312 convert (TREE_TYPE (arg0
),
5313 build (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
5314 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1))),
5315 convert (TREE_TYPE (arg0
), integer_zero_node
));
5317 /* Simplify comparison of something with itself. (For IEEE
5318 floating-point, we can only do some of these simplifications.) */
5319 if (operand_equal_p (arg0
, arg1
, 0))
5326 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0
)))
5328 if (type
== integer_type_node
)
5329 return integer_one_node
;
5331 t
= build_int_2 (1, 0);
5332 TREE_TYPE (t
) = type
;
5336 TREE_SET_CODE (t
, code
);
5340 /* For NE, we can only do this simplification if integer. */
5341 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0
)))
5343 /* ... fall through ... */
5346 if (type
== integer_type_node
)
5347 return integer_zero_node
;
5349 t
= build_int_2 (0, 0);
5350 TREE_TYPE (t
) = type
;
5357 /* An unsigned comparison against 0 can be simplified. */
5358 if (integer_zerop (arg1
)
5359 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
5360 || TREE_CODE (TREE_TYPE (arg1
)) == POINTER_TYPE
)
5361 && TREE_UNSIGNED (TREE_TYPE (arg1
)))
5363 switch (TREE_CODE (t
))
5367 TREE_SET_CODE (t
, NE_EXPR
);
5371 TREE_SET_CODE (t
, EQ_EXPR
);
5374 return omit_one_operand (type
,
5375 convert (type
, integer_one_node
),
5378 return omit_one_operand (type
,
5379 convert (type
, integer_zero_node
),
5386 /* An unsigned <= 0x7fffffff can be simplified. */
5388 int width
= TYPE_PRECISION (TREE_TYPE (arg1
));
5389 if (TREE_CODE (arg1
) == INTEGER_CST
5390 && ! TREE_CONSTANT_OVERFLOW (arg1
)
5391 && width
<= HOST_BITS_PER_WIDE_INT
5392 && TREE_INT_CST_LOW (arg1
) == ((HOST_WIDE_INT
) 1 << (width
- 1)) - 1
5393 && TREE_INT_CST_HIGH (arg1
) == 0
5394 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
5395 || TREE_CODE (TREE_TYPE (arg1
)) == POINTER_TYPE
)
5396 && TREE_UNSIGNED (TREE_TYPE (arg1
)))
5398 switch (TREE_CODE (t
))
5401 return fold (build (GE_EXPR
, type
,
5402 convert (signed_type (TREE_TYPE (arg0
)),
5404 convert (signed_type (TREE_TYPE (arg1
)),
5405 integer_zero_node
)));
5407 return fold (build (LT_EXPR
, type
,
5408 convert (signed_type (TREE_TYPE (arg0
)),
5410 convert (signed_type (TREE_TYPE (arg1
)),
5411 integer_zero_node
)));
5418 /* If we are comparing an expression that just has comparisons
5419 of two integer values, arithmetic expressions of those comparisons,
5420 and constants, we can simplify it. There are only three cases
5421 to check: the two values can either be equal, the first can be
5422 greater, or the second can be greater. Fold the expression for
5423 those three values. Since each value must be 0 or 1, we have
5424 eight possibilities, each of which corresponds to the constant 0
5425 or 1 or one of the six possible comparisons.
5427 This handles common cases like (a > b) == 0 but also handles
5428 expressions like ((x > y) - (y > x)) > 0, which supposedly
5429 occur in macroized code. */
5431 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) != INTEGER_CST
)
5433 tree cval1
= 0, cval2
= 0;
5436 if (twoval_comparison_p (arg0
, &cval1
, &cval2
, &save_p
)
5437 /* Don't handle degenerate cases here; they should already
5438 have been handled anyway. */
5439 && cval1
!= 0 && cval2
!= 0
5440 && ! (TREE_CONSTANT (cval1
) && TREE_CONSTANT (cval2
))
5441 && TREE_TYPE (cval1
) == TREE_TYPE (cval2
)
5442 && INTEGRAL_TYPE_P (TREE_TYPE (cval1
))
5443 && TYPE_MAX_VALUE (TREE_TYPE (cval1
))
5444 && TYPE_MAX_VALUE (TREE_TYPE (cval2
))
5445 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1
)),
5446 TYPE_MAX_VALUE (TREE_TYPE (cval2
)), 0))
5448 tree maxval
= TYPE_MAX_VALUE (TREE_TYPE (cval1
));
5449 tree minval
= TYPE_MIN_VALUE (TREE_TYPE (cval1
));
5451 /* We can't just pass T to eval_subst in case cval1 or cval2
5452 was the same as ARG1. */
5455 = fold (build (code
, type
,
5456 eval_subst (arg0
, cval1
, maxval
, cval2
, minval
),
5459 = fold (build (code
, type
,
5460 eval_subst (arg0
, cval1
, maxval
, cval2
, maxval
),
5463 = fold (build (code
, type
,
5464 eval_subst (arg0
, cval1
, minval
, cval2
, maxval
),
5467 /* All three of these results should be 0 or 1. Confirm they
5468 are. Then use those values to select the proper code
5471 if ((integer_zerop (high_result
)
5472 || integer_onep (high_result
))
5473 && (integer_zerop (equal_result
)
5474 || integer_onep (equal_result
))
5475 && (integer_zerop (low_result
)
5476 || integer_onep (low_result
)))
5478 /* Make a 3-bit mask with the high-order bit being the
5479 value for `>', the next for '=', and the low for '<'. */
5480 switch ((integer_onep (high_result
) * 4)
5481 + (integer_onep (equal_result
) * 2)
5482 + integer_onep (low_result
))
5486 return omit_one_operand (type
, integer_zero_node
, arg0
);
5507 return omit_one_operand (type
, integer_one_node
, arg0
);
5510 t
= build (code
, type
, cval1
, cval2
);
5512 return save_expr (t
);
5519 /* If this is a comparison of a field, we may be able to simplify it. */
5520 if ((TREE_CODE (arg0
) == COMPONENT_REF
5521 || TREE_CODE (arg0
) == BIT_FIELD_REF
)
5522 && (code
== EQ_EXPR
|| code
== NE_EXPR
)
5523 /* Handle the constant case even without -O
5524 to make sure the warnings are given. */
5525 && (optimize
|| TREE_CODE (arg1
) == INTEGER_CST
))
5527 t1
= optimize_bit_field_compare (code
, type
, arg0
, arg1
);
5531 /* If this is a comparison of complex values and either or both
5532 sizes are a COMPLEX_EXPR, it is best to split up the comparisons
5533 and join them with a TRUTH_ANDIF_EXPR or TRUTH_ORIF_EXPR. This
5534 may prevent needless evaluations. */
5535 if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
5536 && TREE_CODE (TREE_TYPE (arg0
)) == COMPLEX_TYPE
5537 && (TREE_CODE (arg0
) == COMPLEX_EXPR
5538 || TREE_CODE (arg1
) == COMPLEX_EXPR
))
5540 tree subtype
= TREE_TYPE (TREE_TYPE (arg0
));
5541 tree real0
= fold (build1 (REALPART_EXPR
, subtype
, arg0
));
5542 tree imag0
= fold (build1 (IMAGPART_EXPR
, subtype
, arg0
));
5543 tree real1
= fold (build1 (REALPART_EXPR
, subtype
, arg1
));
5544 tree imag1
= fold (build1 (IMAGPART_EXPR
, subtype
, arg1
));
5546 return fold (build ((code
== EQ_EXPR
? TRUTH_ANDIF_EXPR
5549 fold (build (code
, type
, real0
, real1
)),
5550 fold (build (code
, type
, imag0
, imag1
))));
5553 /* From here on, the only cases we handle are when the result is
5554 known to be a constant.
5556 To compute GT, swap the arguments and do LT.
5557 To compute GE, do LT and invert the result.
5558 To compute LE, swap the arguments, do LT and invert the result.
5559 To compute NE, do EQ and invert the result.
5561 Therefore, the code below must handle only EQ and LT. */
5563 if (code
== LE_EXPR
|| code
== GT_EXPR
)
5565 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
5566 code
= swap_tree_comparison (code
);
5569 /* Note that it is safe to invert for real values here because we
5570 will check below in the one case that it matters. */
5573 if (code
== NE_EXPR
|| code
== GE_EXPR
)
5576 code
= invert_tree_comparison (code
);
5579 /* Compute a result for LT or EQ if args permit;
5580 otherwise return T. */
5581 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
5583 if (code
== EQ_EXPR
)
5584 t1
= build_int_2 ((TREE_INT_CST_LOW (arg0
)
5585 == TREE_INT_CST_LOW (arg1
))
5586 && (TREE_INT_CST_HIGH (arg0
)
5587 == TREE_INT_CST_HIGH (arg1
)),
5590 t1
= build_int_2 ((TREE_UNSIGNED (TREE_TYPE (arg0
))
5591 ? INT_CST_LT_UNSIGNED (arg0
, arg1
)
5592 : INT_CST_LT (arg0
, arg1
)),
5596 #if 0 /* This is no longer useful, but breaks some real code. */
5597 /* Assume a nonexplicit constant cannot equal an explicit one,
5598 since such code would be undefined anyway.
5599 Exception: on sysvr4, using #pragma weak,
5600 a label can come out as 0. */
5601 else if (TREE_CODE (arg1
) == INTEGER_CST
5602 && !integer_zerop (arg1
)
5603 && TREE_CONSTANT (arg0
)
5604 && TREE_CODE (arg0
) == ADDR_EXPR
5606 t1
= build_int_2 (0, 0);
5608 /* Two real constants can be compared explicitly. */
5609 else if (TREE_CODE (arg0
) == REAL_CST
&& TREE_CODE (arg1
) == REAL_CST
)
5611 /* If either operand is a NaN, the result is false with two
5612 exceptions: First, an NE_EXPR is true on NaNs, but that case
5613 is already handled correctly since we will be inverting the
5614 result for NE_EXPR. Second, if we had inverted a LE_EXPR
5615 or a GE_EXPR into a LT_EXPR, we must return true so that it
5616 will be inverted into false. */
5618 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg0
))
5619 || REAL_VALUE_ISNAN (TREE_REAL_CST (arg1
)))
5620 t1
= build_int_2 (invert
&& code
== LT_EXPR
, 0);
5622 else if (code
== EQ_EXPR
)
5623 t1
= build_int_2 (REAL_VALUES_EQUAL (TREE_REAL_CST (arg0
),
5624 TREE_REAL_CST (arg1
)),
5627 t1
= build_int_2 (REAL_VALUES_LESS (TREE_REAL_CST (arg0
),
5628 TREE_REAL_CST (arg1
)),
5632 if (t1
== NULL_TREE
)
5636 TREE_INT_CST_LOW (t1
) ^= 1;
5638 TREE_TYPE (t1
) = type
;
5639 if (TREE_CODE (type
) == BOOLEAN_TYPE
)
5640 return truthvalue_conversion (t1
);
5644 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
5645 so all simple results must be passed through pedantic_non_lvalue. */
5646 if (TREE_CODE (arg0
) == INTEGER_CST
)
5647 return pedantic_non_lvalue
5648 (TREE_OPERAND (t
, (integer_zerop (arg0
) ? 2 : 1)));
5649 else if (operand_equal_p (arg1
, TREE_OPERAND (expr
, 2), 0))
5650 return pedantic_omit_one_operand (type
, arg1
, arg0
);
5652 /* If the second operand is zero, invert the comparison and swap
5653 the second and third operands. Likewise if the second operand
5654 is constant and the third is not or if the third operand is
5655 equivalent to the first operand of the comparison. */
5657 if (integer_zerop (arg1
)
5658 || (TREE_CONSTANT (arg1
) && ! TREE_CONSTANT (TREE_OPERAND (t
, 2)))
5659 || (TREE_CODE_CLASS (TREE_CODE (arg0
)) == '<'
5660 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0),
5661 TREE_OPERAND (t
, 2),
5662 TREE_OPERAND (arg0
, 1))))
5664 /* See if this can be inverted. If it can't, possibly because
5665 it was a floating-point inequality comparison, don't do
5667 tem
= invert_truthvalue (arg0
);
5669 if (TREE_CODE (tem
) != TRUTH_NOT_EXPR
)
5671 t
= build (code
, type
, tem
,
5672 TREE_OPERAND (t
, 2), TREE_OPERAND (t
, 1));
5674 arg1
= TREE_OPERAND (t
, 2);
5679 /* If we have A op B ? A : C, we may be able to convert this to a
5680 simpler expression, depending on the operation and the values
5681 of B and C. IEEE floating point prevents this though,
5682 because A or B might be -0.0 or a NaN. */
5684 if (TREE_CODE_CLASS (TREE_CODE (arg0
)) == '<'
5685 && (TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
5686 || ! FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0
, 0)))
5688 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0),
5689 arg1
, TREE_OPERAND (arg0
, 1)))
5691 tree arg2
= TREE_OPERAND (t
, 2);
5692 enum tree_code comp_code
= TREE_CODE (arg0
);
5696 /* If we have A op 0 ? A : -A, this is A, -A, abs (A), or abs (-A),
5697 depending on the comparison operation. */
5698 if ((FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0
, 1)))
5699 ? real_zerop (TREE_OPERAND (arg0
, 1))
5700 : integer_zerop (TREE_OPERAND (arg0
, 1)))
5701 && TREE_CODE (arg2
) == NEGATE_EXPR
5702 && operand_equal_p (TREE_OPERAND (arg2
, 0), arg1
, 0))
5706 return pedantic_non_lvalue
5707 (fold (build1 (NEGATE_EXPR
, type
, arg1
)));
5709 return pedantic_non_lvalue (convert (type
, arg1
));
5712 return pedantic_non_lvalue
5713 (convert (type
, fold (build1 (ABS_EXPR
,
5714 TREE_TYPE (arg1
), arg1
))));
5717 return pedantic_non_lvalue
5718 (fold (build1 (NEGATE_EXPR
, type
,
5720 fold (build1 (ABS_EXPR
,
5727 /* If this is A != 0 ? A : 0, this is simply A. For ==, it is
5730 if (integer_zerop (TREE_OPERAND (arg0
, 1)) && integer_zerop (arg2
))
5732 if (comp_code
== NE_EXPR
)
5733 return pedantic_non_lvalue (convert (type
, arg1
));
5734 else if (comp_code
== EQ_EXPR
)
5735 return pedantic_non_lvalue (convert (type
, integer_zero_node
));
5738 /* If this is A op B ? A : B, this is either A, B, min (A, B),
5739 or max (A, B), depending on the operation. */
5741 if (operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 1),
5742 arg2
, TREE_OPERAND (arg0
, 0)))
5744 tree comp_op0
= TREE_OPERAND (arg0
, 0);
5745 tree comp_op1
= TREE_OPERAND (arg0
, 1);
5746 tree comp_type
= TREE_TYPE (comp_op0
);
5751 return pedantic_non_lvalue (convert (type
, arg2
));
5753 return pedantic_non_lvalue (convert (type
, arg1
));
5756 /* In C++ a ?: expression can be an lvalue, so put the
5757 operand which will be used if they are equal first
5758 so that we can convert this back to the
5759 corresponding COND_EXPR. */
5760 return pedantic_non_lvalue
5761 (convert (type
, (fold (build (MIN_EXPR
, comp_type
,
5762 (comp_code
== LE_EXPR
5763 ? comp_op0
: comp_op1
),
5764 (comp_code
== LE_EXPR
5765 ? comp_op1
: comp_op0
))))));
5769 return pedantic_non_lvalue
5770 (convert (type
, fold (build (MAX_EXPR
, comp_type
,
5771 (comp_code
== GE_EXPR
5772 ? comp_op0
: comp_op1
),
5773 (comp_code
== GE_EXPR
5774 ? comp_op1
: comp_op0
)))));
5781 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5782 we might still be able to simplify this. For example,
5783 if C1 is one less or one more than C2, this might have started
5784 out as a MIN or MAX and been transformed by this function.
5785 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5787 if (INTEGRAL_TYPE_P (type
)
5788 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
5789 && TREE_CODE (arg2
) == INTEGER_CST
)
5793 /* We can replace A with C1 in this case. */
5794 arg1
= convert (type
, TREE_OPERAND (arg0
, 1));
5795 t
= build (code
, type
, TREE_OPERAND (t
, 0), arg1
,
5796 TREE_OPERAND (t
, 2));
5800 /* If C1 is C2 + 1, this is min(A, C2). */
5801 if (! operand_equal_p (arg2
, TYPE_MAX_VALUE (type
), 1)
5802 && operand_equal_p (TREE_OPERAND (arg0
, 1),
5803 const_binop (PLUS_EXPR
, arg2
,
5804 integer_one_node
, 0), 1))
5805 return pedantic_non_lvalue
5806 (fold (build (MIN_EXPR
, type
, arg1
, arg2
)));
5810 /* If C1 is C2 - 1, this is min(A, C2). */
5811 if (! operand_equal_p (arg2
, TYPE_MIN_VALUE (type
), 1)
5812 && operand_equal_p (TREE_OPERAND (arg0
, 1),
5813 const_binop (MINUS_EXPR
, arg2
,
5814 integer_one_node
, 0), 1))
5815 return pedantic_non_lvalue
5816 (fold (build (MIN_EXPR
, type
, arg1
, arg2
)));
5820 /* If C1 is C2 - 1, this is max(A, C2). */
5821 if (! operand_equal_p (arg2
, TYPE_MIN_VALUE (type
), 1)
5822 && operand_equal_p (TREE_OPERAND (arg0
, 1),
5823 const_binop (MINUS_EXPR
, arg2
,
5824 integer_one_node
, 0), 1))
5825 return pedantic_non_lvalue
5826 (fold (build (MAX_EXPR
, type
, arg1
, arg2
)));
5830 /* If C1 is C2 + 1, this is max(A, C2). */
5831 if (! operand_equal_p (arg2
, TYPE_MAX_VALUE (type
), 1)
5832 && operand_equal_p (TREE_OPERAND (arg0
, 1),
5833 const_binop (PLUS_EXPR
, arg2
,
5834 integer_one_node
, 0), 1))
5835 return pedantic_non_lvalue
5836 (fold (build (MAX_EXPR
, type
, arg1
, arg2
)));
5845 /* If the second operand is simpler than the third, swap them
5846 since that produces better jump optimization results. */
5847 if ((TREE_CONSTANT (arg1
) || TREE_CODE_CLASS (TREE_CODE (arg1
)) == 'd'
5848 || TREE_CODE (arg1
) == SAVE_EXPR
)
5849 && ! (TREE_CONSTANT (TREE_OPERAND (t
, 2))
5850 || TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (t
, 2))) == 'd'
5851 || TREE_CODE (TREE_OPERAND (t
, 2)) == SAVE_EXPR
))
5853 /* See if this can be inverted. If it can't, possibly because
5854 it was a floating-point inequality comparison, don't do
5856 tem
= invert_truthvalue (arg0
);
5858 if (TREE_CODE (tem
) != TRUTH_NOT_EXPR
)
5860 t
= build (code
, type
, tem
,
5861 TREE_OPERAND (t
, 2), TREE_OPERAND (t
, 1));
5863 arg1
= TREE_OPERAND (t
, 2);
5868 /* Convert A ? 1 : 0 to simply A. */
5869 if (integer_onep (TREE_OPERAND (t
, 1))
5870 && integer_zerop (TREE_OPERAND (t
, 2))
5871 /* If we try to convert TREE_OPERAND (t, 0) to our type, the
5872 call to fold will try to move the conversion inside
5873 a COND, which will recurse. In that case, the COND_EXPR
5874 is probably the best choice, so leave it alone. */
5875 && type
== TREE_TYPE (arg0
))
5876 return pedantic_non_lvalue (arg0
);
5878 /* Look for expressions of the form A & 2 ? 2 : 0. The result of this
5879 operation is simply A & 2. */
5881 if (integer_zerop (TREE_OPERAND (t
, 2))
5882 && TREE_CODE (arg0
) == NE_EXPR
5883 && integer_zerop (TREE_OPERAND (arg0
, 1))
5884 && integer_pow2p (arg1
)
5885 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
5886 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
5888 return pedantic_non_lvalue (convert (type
, TREE_OPERAND (arg0
, 0)));
5893 /* When pedantic, a compound expression can be neither an lvalue
5894 nor an integer constant expression. */
5895 if (TREE_SIDE_EFFECTS (arg0
) || pedantic
)
5897 /* Don't let (0, 0) be null pointer constant. */
5898 if (integer_zerop (arg1
))
5899 return non_lvalue (arg1
);
5904 return build_complex (type
, arg0
, arg1
);
5908 if (TREE_CODE (TREE_TYPE (arg0
)) != COMPLEX_TYPE
)
5910 else if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
5911 return omit_one_operand (type
, TREE_OPERAND (arg0
, 0),
5912 TREE_OPERAND (arg0
, 1));
5913 else if (TREE_CODE (arg0
) == COMPLEX_CST
)
5914 return TREE_REALPART (arg0
);
5915 else if (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
5916 return fold (build (TREE_CODE (arg0
), type
,
5917 fold (build1 (REALPART_EXPR
, type
,
5918 TREE_OPERAND (arg0
, 0))),
5919 fold (build1 (REALPART_EXPR
,
5920 type
, TREE_OPERAND (arg0
, 1)))));
5924 if (TREE_CODE (TREE_TYPE (arg0
)) != COMPLEX_TYPE
)
5925 return convert (type
, integer_zero_node
);
5926 else if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
5927 return omit_one_operand (type
, TREE_OPERAND (arg0
, 1),
5928 TREE_OPERAND (arg0
, 0));
5929 else if (TREE_CODE (arg0
) == COMPLEX_CST
)
5930 return TREE_IMAGPART (arg0
);
5931 else if (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
5932 return fold (build (TREE_CODE (arg0
), type
,
5933 fold (build1 (IMAGPART_EXPR
, type
,
5934 TREE_OPERAND (arg0
, 0))),
5935 fold (build1 (IMAGPART_EXPR
, type
,
5936 TREE_OPERAND (arg0
, 1)))));
5939 /* Pull arithmetic ops out of the CLEANUP_POINT_EXPR where
5941 case CLEANUP_POINT_EXPR
:
5942 if (! has_cleanups (arg0
))
5943 return TREE_OPERAND (t
, 0);
5946 enum tree_code code0
= TREE_CODE (arg0
);
5947 int kind0
= TREE_CODE_CLASS (code0
);
5948 tree arg00
= TREE_OPERAND (arg0
, 0);
5951 if (kind0
== '1' || code0
== TRUTH_NOT_EXPR
)
5952 return fold (build1 (code0
, type
,
5953 fold (build1 (CLEANUP_POINT_EXPR
,
5954 TREE_TYPE (arg00
), arg00
))));
5956 if (kind0
== '<' || kind0
== '2'
5957 || code0
== TRUTH_ANDIF_EXPR
|| code0
== TRUTH_ORIF_EXPR
5958 || code0
== TRUTH_AND_EXPR
|| code0
== TRUTH_OR_EXPR
5959 || code0
== TRUTH_XOR_EXPR
)
5961 arg01
= TREE_OPERAND (arg0
, 1);
5963 if (TREE_CONSTANT (arg00
)
5964 || ((code0
== TRUTH_ANDIF_EXPR
|| code0
== TRUTH_ORIF_EXPR
)
5965 && ! has_cleanups (arg00
)))
5966 return fold (build (code0
, type
, arg00
,
5967 fold (build1 (CLEANUP_POINT_EXPR
,
5968 TREE_TYPE (arg01
), arg01
))));
5970 if (TREE_CONSTANT (arg01
))
5971 return fold (build (code0
, type
,
5972 fold (build1 (CLEANUP_POINT_EXPR
,
5973 TREE_TYPE (arg00
), arg00
)),
5982 } /* switch (code) */
5985 /* Determine if first argument is a multiple of second argument.
5986 Return 0 if it is not, or is not easily determined to so be.
5988 An example of the sort of thing we care about (at this point --
5989 this routine could surely be made more general, and expanded
5990 to do what the *_DIV_EXPR's fold() cases do now) is discovering
5993 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
5999 when we know that the two `SAVE_EXPR (J * 8)' nodes are the
6000 same node (which means they will have the same value at run
6001 time, even though we don't know when they'll be assigned).
6003 This code also handles discovering that
6005 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
6011 (of course) so we don't have to worry about dealing with a
6014 Note that we _look_ inside a SAVE_EXPR only to determine
6015 how it was calculated; it is not safe for fold() to do much
6016 of anything else with the internals of a SAVE_EXPR, since
6017 fold() cannot know when it will be evaluated at run time.
6018 For example, the latter example above _cannot_ be implemented
6023 or any variant thereof, since the value of J at evaluation time
6024 of the original SAVE_EXPR is not necessarily the same at the time
6025 the new expression is evaluated. The only optimization of this
6026 sort that would be valid is changing
6028 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
6034 SAVE_EXPR (I) * SAVE_EXPR (J)
6036 (where the same SAVE_EXPR (J) is used in the original and the
6037 transformed version). */
6040 multiple_of_p (type
, top
, bottom
)
6045 if (operand_equal_p (top
, bottom
, 0))
6048 if (TREE_CODE (type
) != INTEGER_TYPE
)
6051 switch (TREE_CODE (top
))
6054 return (multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
)
6055 || multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
));
6059 return (multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
)
6060 && multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
));
6063 /* Punt if conversion from non-integral or wider integral type. */
6064 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top
, 0))) != INTEGER_TYPE
)
6065 || (TYPE_PRECISION (type
)
6066 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top
, 0)))))
6070 return multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
);
6073 if ((TREE_CODE (bottom
) != INTEGER_CST
)
6074 || (tree_int_cst_sgn (top
) < 0)
6075 || (tree_int_cst_sgn (bottom
) < 0))
6077 return integer_zerop (const_binop (TRUNC_MOD_EXPR
,