fold-const.c (maybe_canonicalize_comparison_1): Move A code CST canonicalization ...
[gcc.git] / gcc / fold-const.c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
27
28 /* The entry points in this file are fold, size_int_wide and size_binop.
29
30 fold takes a tree as argument and returns a simplified tree.
31
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
35
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
38
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
42
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "predict.h"
48 #include "tree.h"
49 #include "gimple.h"
50 #include "rtl.h"
51 #include "flags.h"
52 #include "alias.h"
53 #include "fold-const.h"
54 #include "stor-layout.h"
55 #include "calls.h"
56 #include "tree-iterator.h"
57 #include "realmpfr.h"
58 #include "insn-config.h"
59 #include "expmed.h"
60 #include "dojump.h"
61 #include "explow.h"
62 #include "emit-rtl.h"
63 #include "varasm.h"
64 #include "stmt.h"
65 #include "expr.h"
66 #include "tm_p.h"
67 #include "target.h"
68 #include "diagnostic-core.h"
69 #include "intl.h"
70 #include "langhooks.h"
71 #include "md5.h"
72 #include "internal-fn.h"
73 #include "tree-eh.h"
74 #include "gimplify.h"
75 #include "tree-dfa.h"
76 #include "builtins.h"
77 #include "cgraph.h"
78 #include "generic-match.h"
79 #include "optabs.h"
80
81 #ifndef LOAD_EXTEND_OP
82 #define LOAD_EXTEND_OP(M) UNKNOWN
83 #endif
84
85 /* Nonzero if we are folding constants inside an initializer; zero
86 otherwise. */
87 int folding_initializer = 0;
88
89 /* The following constants represent a bit based encoding of GCC's
90 comparison operators. This encoding simplifies transformations
91 on relational comparison operators, such as AND and OR. */
92 enum comparison_code {
93 COMPCODE_FALSE = 0,
94 COMPCODE_LT = 1,
95 COMPCODE_EQ = 2,
96 COMPCODE_LE = 3,
97 COMPCODE_GT = 4,
98 COMPCODE_LTGT = 5,
99 COMPCODE_GE = 6,
100 COMPCODE_ORD = 7,
101 COMPCODE_UNORD = 8,
102 COMPCODE_UNLT = 9,
103 COMPCODE_UNEQ = 10,
104 COMPCODE_UNLE = 11,
105 COMPCODE_UNGT = 12,
106 COMPCODE_NE = 13,
107 COMPCODE_UNGE = 14,
108 COMPCODE_TRUE = 15
109 };
110
111 static bool negate_mathfn_p (enum built_in_function);
112 static bool negate_expr_p (tree);
113 static tree negate_expr (tree);
114 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
115 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
116 static enum comparison_code comparison_to_compcode (enum tree_code);
117 static enum tree_code compcode_to_comparison (enum comparison_code);
118 static int operand_equal_for_comparison_p (tree, tree, tree);
119 static int twoval_comparison_p (tree, tree *, tree *, int *);
120 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
121 static tree make_bit_field_ref (location_t, tree, tree,
122 HOST_WIDE_INT, HOST_WIDE_INT, int);
123 static tree optimize_bit_field_compare (location_t, enum tree_code,
124 tree, tree, tree);
125 static tree decode_field_reference (location_t, tree, HOST_WIDE_INT *,
126 HOST_WIDE_INT *,
127 machine_mode *, int *, int *,
128 tree *, tree *);
129 static int simple_operand_p (const_tree);
130 static bool simple_operand_p_2 (tree);
131 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
132 static tree range_predecessor (tree);
133 static tree range_successor (tree);
134 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
135 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
136 static tree unextend (tree, int, int, tree);
137 static tree optimize_minmax_comparison (location_t, enum tree_code,
138 tree, tree, tree);
139 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
140 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
141 static tree fold_binary_op_with_conditional_arg (location_t,
142 enum tree_code, tree,
143 tree, tree,
144 tree, tree, int);
145 static tree fold_div_compare (location_t, enum tree_code, tree, tree, tree);
146 static bool reorder_operands_p (const_tree, const_tree);
147 static tree fold_negate_const (tree, tree);
148 static tree fold_not_const (const_tree, tree);
149 static tree fold_relational_const (enum tree_code, tree, tree, tree);
150 static tree fold_convert_const (enum tree_code, tree, tree);
151 static tree fold_view_convert_expr (tree, tree);
152 static bool vec_cst_ctor_to_array (tree, tree *);
153
154
155 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
156 Otherwise, return LOC. */
157
158 static location_t
159 expr_location_or (tree t, location_t loc)
160 {
161 location_t tloc = EXPR_LOCATION (t);
162 return tloc == UNKNOWN_LOCATION ? loc : tloc;
163 }
164
165 /* Similar to protected_set_expr_location, but never modify x in place,
166 if location can and needs to be set, unshare it. */
167
168 static inline tree
169 protected_set_expr_location_unshare (tree x, location_t loc)
170 {
171 if (CAN_HAVE_LOCATION_P (x)
172 && EXPR_LOCATION (x) != loc
173 && !(TREE_CODE (x) == SAVE_EXPR
174 || TREE_CODE (x) == TARGET_EXPR
175 || TREE_CODE (x) == BIND_EXPR))
176 {
177 x = copy_node (x);
178 SET_EXPR_LOCATION (x, loc);
179 }
180 return x;
181 }
182 \f
183 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
184 division and returns the quotient. Otherwise returns
185 NULL_TREE. */
186
187 tree
188 div_if_zero_remainder (const_tree arg1, const_tree arg2)
189 {
190 widest_int quo;
191
192 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
193 SIGNED, &quo))
194 return wide_int_to_tree (TREE_TYPE (arg1), quo);
195
196 return NULL_TREE;
197 }
198 \f
199 /* This is nonzero if we should defer warnings about undefined
200 overflow. This facility exists because these warnings are a
201 special case. The code to estimate loop iterations does not want
202 to issue any warnings, since it works with expressions which do not
203 occur in user code. Various bits of cleanup code call fold(), but
204 only use the result if it has certain characteristics (e.g., is a
205 constant); that code only wants to issue a warning if the result is
206 used. */
207
208 static int fold_deferring_overflow_warnings;
209
210 /* If a warning about undefined overflow is deferred, this is the
211 warning. Note that this may cause us to turn two warnings into
212 one, but that is fine since it is sufficient to only give one
213 warning per expression. */
214
215 static const char* fold_deferred_overflow_warning;
216
217 /* If a warning about undefined overflow is deferred, this is the
218 level at which the warning should be emitted. */
219
220 static enum warn_strict_overflow_code fold_deferred_overflow_code;
221
222 /* Start deferring overflow warnings. We could use a stack here to
223 permit nested calls, but at present it is not necessary. */
224
225 void
226 fold_defer_overflow_warnings (void)
227 {
228 ++fold_deferring_overflow_warnings;
229 }
230
231 /* Stop deferring overflow warnings. If there is a pending warning,
232 and ISSUE is true, then issue the warning if appropriate. STMT is
233 the statement with which the warning should be associated (used for
234 location information); STMT may be NULL. CODE is the level of the
235 warning--a warn_strict_overflow_code value. This function will use
236 the smaller of CODE and the deferred code when deciding whether to
237 issue the warning. CODE may be zero to mean to always use the
238 deferred code. */
239
240 void
241 fold_undefer_overflow_warnings (bool issue, const_gimple stmt, int code)
242 {
243 const char *warnmsg;
244 location_t locus;
245
246 gcc_assert (fold_deferring_overflow_warnings > 0);
247 --fold_deferring_overflow_warnings;
248 if (fold_deferring_overflow_warnings > 0)
249 {
250 if (fold_deferred_overflow_warning != NULL
251 && code != 0
252 && code < (int) fold_deferred_overflow_code)
253 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
254 return;
255 }
256
257 warnmsg = fold_deferred_overflow_warning;
258 fold_deferred_overflow_warning = NULL;
259
260 if (!issue || warnmsg == NULL)
261 return;
262
263 if (gimple_no_warning_p (stmt))
264 return;
265
266 /* Use the smallest code level when deciding to issue the
267 warning. */
268 if (code == 0 || code > (int) fold_deferred_overflow_code)
269 code = fold_deferred_overflow_code;
270
271 if (!issue_strict_overflow_warning (code))
272 return;
273
274 if (stmt == NULL)
275 locus = input_location;
276 else
277 locus = gimple_location (stmt);
278 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
279 }
280
281 /* Stop deferring overflow warnings, ignoring any deferred
282 warnings. */
283
284 void
285 fold_undefer_and_ignore_overflow_warnings (void)
286 {
287 fold_undefer_overflow_warnings (false, NULL, 0);
288 }
289
290 /* Whether we are deferring overflow warnings. */
291
292 bool
293 fold_deferring_overflow_warnings_p (void)
294 {
295 return fold_deferring_overflow_warnings > 0;
296 }
297
298 /* This is called when we fold something based on the fact that signed
299 overflow is undefined. */
300
301 static void
302 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
303 {
304 if (fold_deferring_overflow_warnings > 0)
305 {
306 if (fold_deferred_overflow_warning == NULL
307 || wc < fold_deferred_overflow_code)
308 {
309 fold_deferred_overflow_warning = gmsgid;
310 fold_deferred_overflow_code = wc;
311 }
312 }
313 else if (issue_strict_overflow_warning (wc))
314 warning (OPT_Wstrict_overflow, gmsgid);
315 }
316 \f
317 /* Return true if the built-in mathematical function specified by CODE
318 is odd, i.e. -f(x) == f(-x). */
319
320 static bool
321 negate_mathfn_p (enum built_in_function code)
322 {
323 switch (code)
324 {
325 CASE_FLT_FN (BUILT_IN_ASIN):
326 CASE_FLT_FN (BUILT_IN_ASINH):
327 CASE_FLT_FN (BUILT_IN_ATAN):
328 CASE_FLT_FN (BUILT_IN_ATANH):
329 CASE_FLT_FN (BUILT_IN_CASIN):
330 CASE_FLT_FN (BUILT_IN_CASINH):
331 CASE_FLT_FN (BUILT_IN_CATAN):
332 CASE_FLT_FN (BUILT_IN_CATANH):
333 CASE_FLT_FN (BUILT_IN_CBRT):
334 CASE_FLT_FN (BUILT_IN_CPROJ):
335 CASE_FLT_FN (BUILT_IN_CSIN):
336 CASE_FLT_FN (BUILT_IN_CSINH):
337 CASE_FLT_FN (BUILT_IN_CTAN):
338 CASE_FLT_FN (BUILT_IN_CTANH):
339 CASE_FLT_FN (BUILT_IN_ERF):
340 CASE_FLT_FN (BUILT_IN_LLROUND):
341 CASE_FLT_FN (BUILT_IN_LROUND):
342 CASE_FLT_FN (BUILT_IN_ROUND):
343 CASE_FLT_FN (BUILT_IN_SIN):
344 CASE_FLT_FN (BUILT_IN_SINH):
345 CASE_FLT_FN (BUILT_IN_TAN):
346 CASE_FLT_FN (BUILT_IN_TANH):
347 CASE_FLT_FN (BUILT_IN_TRUNC):
348 return true;
349
350 CASE_FLT_FN (BUILT_IN_LLRINT):
351 CASE_FLT_FN (BUILT_IN_LRINT):
352 CASE_FLT_FN (BUILT_IN_NEARBYINT):
353 CASE_FLT_FN (BUILT_IN_RINT):
354 return !flag_rounding_math;
355
356 default:
357 break;
358 }
359 return false;
360 }
361
362 /* Check whether we may negate an integer constant T without causing
363 overflow. */
364
365 bool
366 may_negate_without_overflow_p (const_tree t)
367 {
368 tree type;
369
370 gcc_assert (TREE_CODE (t) == INTEGER_CST);
371
372 type = TREE_TYPE (t);
373 if (TYPE_UNSIGNED (type))
374 return false;
375
376 return !wi::only_sign_bit_p (t);
377 }
378
379 /* Determine whether an expression T can be cheaply negated using
380 the function negate_expr without introducing undefined overflow. */
381
382 static bool
383 negate_expr_p (tree t)
384 {
385 tree type;
386
387 if (t == 0)
388 return false;
389
390 type = TREE_TYPE (t);
391
392 STRIP_SIGN_NOPS (t);
393 switch (TREE_CODE (t))
394 {
395 case INTEGER_CST:
396 if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
397 return true;
398
399 /* Check that -CST will not overflow type. */
400 return may_negate_without_overflow_p (t);
401 case BIT_NOT_EXPR:
402 return (INTEGRAL_TYPE_P (type)
403 && TYPE_OVERFLOW_WRAPS (type));
404
405 case FIXED_CST:
406 return true;
407
408 case NEGATE_EXPR:
409 return !TYPE_OVERFLOW_SANITIZED (type);
410
411 case REAL_CST:
412 /* We want to canonicalize to positive real constants. Pretend
413 that only negative ones can be easily negated. */
414 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
415
416 case COMPLEX_CST:
417 return negate_expr_p (TREE_REALPART (t))
418 && negate_expr_p (TREE_IMAGPART (t));
419
420 case VECTOR_CST:
421 {
422 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
423 return true;
424
425 int count = TYPE_VECTOR_SUBPARTS (type), i;
426
427 for (i = 0; i < count; i++)
428 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
429 return false;
430
431 return true;
432 }
433
434 case COMPLEX_EXPR:
435 return negate_expr_p (TREE_OPERAND (t, 0))
436 && negate_expr_p (TREE_OPERAND (t, 1));
437
438 case CONJ_EXPR:
439 return negate_expr_p (TREE_OPERAND (t, 0));
440
441 case PLUS_EXPR:
442 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
443 || HONOR_SIGNED_ZEROS (element_mode (type)))
444 return false;
445 /* -(A + B) -> (-B) - A. */
446 if (negate_expr_p (TREE_OPERAND (t, 1))
447 && reorder_operands_p (TREE_OPERAND (t, 0),
448 TREE_OPERAND (t, 1)))
449 return true;
450 /* -(A + B) -> (-A) - B. */
451 return negate_expr_p (TREE_OPERAND (t, 0));
452
453 case MINUS_EXPR:
454 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
455 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
456 && !HONOR_SIGNED_ZEROS (element_mode (type))
457 && reorder_operands_p (TREE_OPERAND (t, 0),
458 TREE_OPERAND (t, 1));
459
460 case MULT_EXPR:
461 if (TYPE_UNSIGNED (TREE_TYPE (t)))
462 break;
463
464 /* Fall through. */
465
466 case RDIV_EXPR:
467 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
468 return negate_expr_p (TREE_OPERAND (t, 1))
469 || negate_expr_p (TREE_OPERAND (t, 0));
470 break;
471
472 case TRUNC_DIV_EXPR:
473 case ROUND_DIV_EXPR:
474 case EXACT_DIV_EXPR:
475 /* In general we can't negate A / B, because if A is INT_MIN and
476 B is 1, we may turn this into INT_MIN / -1 which is undefined
477 and actually traps on some architectures. But if overflow is
478 undefined, we can negate, because - (INT_MIN / 1) is an
479 overflow. */
480 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
481 {
482 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
483 break;
484 /* If overflow is undefined then we have to be careful because
485 we ask whether it's ok to associate the negate with the
486 division which is not ok for example for
487 -((a - b) / c) where (-(a - b)) / c may invoke undefined
488 overflow because of negating INT_MIN. So do not use
489 negate_expr_p here but open-code the two important cases. */
490 if (TREE_CODE (TREE_OPERAND (t, 0)) == NEGATE_EXPR
491 || (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
492 && may_negate_without_overflow_p (TREE_OPERAND (t, 0))))
493 return true;
494 }
495 else if (negate_expr_p (TREE_OPERAND (t, 0)))
496 return true;
497 return negate_expr_p (TREE_OPERAND (t, 1));
498
499 case NOP_EXPR:
500 /* Negate -((double)float) as (double)(-float). */
501 if (TREE_CODE (type) == REAL_TYPE)
502 {
503 tree tem = strip_float_extensions (t);
504 if (tem != t)
505 return negate_expr_p (tem);
506 }
507 break;
508
509 case CALL_EXPR:
510 /* Negate -f(x) as f(-x). */
511 if (negate_mathfn_p (builtin_mathfn_code (t)))
512 return negate_expr_p (CALL_EXPR_ARG (t, 0));
513 break;
514
515 case RSHIFT_EXPR:
516 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
517 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
518 {
519 tree op1 = TREE_OPERAND (t, 1);
520 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
521 return true;
522 }
523 break;
524
525 default:
526 break;
527 }
528 return false;
529 }
530
531 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
532 simplification is possible.
533 If negate_expr_p would return true for T, NULL_TREE will never be
534 returned. */
535
536 static tree
537 fold_negate_expr (location_t loc, tree t)
538 {
539 tree type = TREE_TYPE (t);
540 tree tem;
541
542 switch (TREE_CODE (t))
543 {
544 /* Convert - (~A) to A + 1. */
545 case BIT_NOT_EXPR:
546 if (INTEGRAL_TYPE_P (type))
547 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
548 build_one_cst (type));
549 break;
550
551 case INTEGER_CST:
552 tem = fold_negate_const (t, type);
553 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
554 || (ANY_INTEGRAL_TYPE_P (type)
555 && !TYPE_OVERFLOW_TRAPS (type)
556 && TYPE_OVERFLOW_WRAPS (type))
557 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
558 return tem;
559 break;
560
561 case REAL_CST:
562 tem = fold_negate_const (t, type);
563 return tem;
564
565 case FIXED_CST:
566 tem = fold_negate_const (t, type);
567 return tem;
568
569 case COMPLEX_CST:
570 {
571 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
572 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
573 if (rpart && ipart)
574 return build_complex (type, rpart, ipart);
575 }
576 break;
577
578 case VECTOR_CST:
579 {
580 int count = TYPE_VECTOR_SUBPARTS (type), i;
581 tree *elts = XALLOCAVEC (tree, count);
582
583 for (i = 0; i < count; i++)
584 {
585 elts[i] = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
586 if (elts[i] == NULL_TREE)
587 return NULL_TREE;
588 }
589
590 return build_vector (type, elts);
591 }
592
593 case COMPLEX_EXPR:
594 if (negate_expr_p (t))
595 return fold_build2_loc (loc, COMPLEX_EXPR, type,
596 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
597 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
598 break;
599
600 case CONJ_EXPR:
601 if (negate_expr_p (t))
602 return fold_build1_loc (loc, CONJ_EXPR, type,
603 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
604 break;
605
606 case NEGATE_EXPR:
607 if (!TYPE_OVERFLOW_SANITIZED (type))
608 return TREE_OPERAND (t, 0);
609 break;
610
611 case PLUS_EXPR:
612 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
613 && !HONOR_SIGNED_ZEROS (element_mode (type)))
614 {
615 /* -(A + B) -> (-B) - A. */
616 if (negate_expr_p (TREE_OPERAND (t, 1))
617 && reorder_operands_p (TREE_OPERAND (t, 0),
618 TREE_OPERAND (t, 1)))
619 {
620 tem = negate_expr (TREE_OPERAND (t, 1));
621 return fold_build2_loc (loc, MINUS_EXPR, type,
622 tem, TREE_OPERAND (t, 0));
623 }
624
625 /* -(A + B) -> (-A) - B. */
626 if (negate_expr_p (TREE_OPERAND (t, 0)))
627 {
628 tem = negate_expr (TREE_OPERAND (t, 0));
629 return fold_build2_loc (loc, MINUS_EXPR, type,
630 tem, TREE_OPERAND (t, 1));
631 }
632 }
633 break;
634
635 case MINUS_EXPR:
636 /* - (A - B) -> B - A */
637 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
638 && !HONOR_SIGNED_ZEROS (element_mode (type))
639 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
640 return fold_build2_loc (loc, MINUS_EXPR, type,
641 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
642 break;
643
644 case MULT_EXPR:
645 if (TYPE_UNSIGNED (type))
646 break;
647
648 /* Fall through. */
649
650 case RDIV_EXPR:
651 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
652 {
653 tem = TREE_OPERAND (t, 1);
654 if (negate_expr_p (tem))
655 return fold_build2_loc (loc, TREE_CODE (t), type,
656 TREE_OPERAND (t, 0), negate_expr (tem));
657 tem = TREE_OPERAND (t, 0);
658 if (negate_expr_p (tem))
659 return fold_build2_loc (loc, TREE_CODE (t), type,
660 negate_expr (tem), TREE_OPERAND (t, 1));
661 }
662 break;
663
664 case TRUNC_DIV_EXPR:
665 case ROUND_DIV_EXPR:
666 case EXACT_DIV_EXPR:
667 /* In general we can't negate A / B, because if A is INT_MIN and
668 B is 1, we may turn this into INT_MIN / -1 which is undefined
669 and actually traps on some architectures. But if overflow is
670 undefined, we can negate, because - (INT_MIN / 1) is an
671 overflow. */
672 if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
673 {
674 const char * const warnmsg = G_("assuming signed overflow does not "
675 "occur when negating a division");
676 tem = TREE_OPERAND (t, 1);
677 if (negate_expr_p (tem))
678 {
679 if (INTEGRAL_TYPE_P (type)
680 && (TREE_CODE (tem) != INTEGER_CST
681 || integer_onep (tem)))
682 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
683 return fold_build2_loc (loc, TREE_CODE (t), type,
684 TREE_OPERAND (t, 0), negate_expr (tem));
685 }
686 /* If overflow is undefined then we have to be careful because
687 we ask whether it's ok to associate the negate with the
688 division which is not ok for example for
689 -((a - b) / c) where (-(a - b)) / c may invoke undefined
690 overflow because of negating INT_MIN. So do not use
691 negate_expr_p here but open-code the two important cases. */
692 tem = TREE_OPERAND (t, 0);
693 if ((INTEGRAL_TYPE_P (type)
694 && (TREE_CODE (tem) == NEGATE_EXPR
695 || (TREE_CODE (tem) == INTEGER_CST
696 && may_negate_without_overflow_p (tem))))
697 || !INTEGRAL_TYPE_P (type))
698 return fold_build2_loc (loc, TREE_CODE (t), type,
699 negate_expr (tem), TREE_OPERAND (t, 1));
700 }
701 break;
702
703 case NOP_EXPR:
704 /* Convert -((double)float) into (double)(-float). */
705 if (TREE_CODE (type) == REAL_TYPE)
706 {
707 tem = strip_float_extensions (t);
708 if (tem != t && negate_expr_p (tem))
709 return fold_convert_loc (loc, type, negate_expr (tem));
710 }
711 break;
712
713 case CALL_EXPR:
714 /* Negate -f(x) as f(-x). */
715 if (negate_mathfn_p (builtin_mathfn_code (t))
716 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
717 {
718 tree fndecl, arg;
719
720 fndecl = get_callee_fndecl (t);
721 arg = negate_expr (CALL_EXPR_ARG (t, 0));
722 return build_call_expr_loc (loc, fndecl, 1, arg);
723 }
724 break;
725
726 case RSHIFT_EXPR:
727 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
728 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
729 {
730 tree op1 = TREE_OPERAND (t, 1);
731 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
732 {
733 tree ntype = TYPE_UNSIGNED (type)
734 ? signed_type_for (type)
735 : unsigned_type_for (type);
736 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
737 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
738 return fold_convert_loc (loc, type, temp);
739 }
740 }
741 break;
742
743 default:
744 break;
745 }
746
747 return NULL_TREE;
748 }
749
750 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
751 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
752 return NULL_TREE. */
753
754 static tree
755 negate_expr (tree t)
756 {
757 tree type, tem;
758 location_t loc;
759
760 if (t == NULL_TREE)
761 return NULL_TREE;
762
763 loc = EXPR_LOCATION (t);
764 type = TREE_TYPE (t);
765 STRIP_SIGN_NOPS (t);
766
767 tem = fold_negate_expr (loc, t);
768 if (!tem)
769 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
770 return fold_convert_loc (loc, type, tem);
771 }
772 \f
773 /* Split a tree IN into a constant, literal and variable parts that could be
774 combined with CODE to make IN. "constant" means an expression with
775 TREE_CONSTANT but that isn't an actual constant. CODE must be a
776 commutative arithmetic operation. Store the constant part into *CONP,
777 the literal in *LITP and return the variable part. If a part isn't
778 present, set it to null. If the tree does not decompose in this way,
779 return the entire tree as the variable part and the other parts as null.
780
781 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
782 case, we negate an operand that was subtracted. Except if it is a
783 literal for which we use *MINUS_LITP instead.
784
785 If NEGATE_P is true, we are negating all of IN, again except a literal
786 for which we use *MINUS_LITP instead.
787
788 If IN is itself a literal or constant, return it as appropriate.
789
790 Note that we do not guarantee that any of the three values will be the
791 same type as IN, but they will have the same signedness and mode. */
792
793 static tree
794 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
795 tree *minus_litp, int negate_p)
796 {
797 tree var = 0;
798
799 *conp = 0;
800 *litp = 0;
801 *minus_litp = 0;
802
803 /* Strip any conversions that don't change the machine mode or signedness. */
804 STRIP_SIGN_NOPS (in);
805
806 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
807 || TREE_CODE (in) == FIXED_CST)
808 *litp = in;
809 else if (TREE_CODE (in) == code
810 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
811 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
812 /* We can associate addition and subtraction together (even
813 though the C standard doesn't say so) for integers because
814 the value is not affected. For reals, the value might be
815 affected, so we can't. */
816 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
817 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
818 {
819 tree op0 = TREE_OPERAND (in, 0);
820 tree op1 = TREE_OPERAND (in, 1);
821 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
822 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
823
824 /* First see if either of the operands is a literal, then a constant. */
825 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
826 || TREE_CODE (op0) == FIXED_CST)
827 *litp = op0, op0 = 0;
828 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
829 || TREE_CODE (op1) == FIXED_CST)
830 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
831
832 if (op0 != 0 && TREE_CONSTANT (op0))
833 *conp = op0, op0 = 0;
834 else if (op1 != 0 && TREE_CONSTANT (op1))
835 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
836
837 /* If we haven't dealt with either operand, this is not a case we can
838 decompose. Otherwise, VAR is either of the ones remaining, if any. */
839 if (op0 != 0 && op1 != 0)
840 var = in;
841 else if (op0 != 0)
842 var = op0;
843 else
844 var = op1, neg_var_p = neg1_p;
845
846 /* Now do any needed negations. */
847 if (neg_litp_p)
848 *minus_litp = *litp, *litp = 0;
849 if (neg_conp_p)
850 *conp = negate_expr (*conp);
851 if (neg_var_p)
852 var = negate_expr (var);
853 }
854 else if (TREE_CODE (in) == BIT_NOT_EXPR
855 && code == PLUS_EXPR)
856 {
857 /* -X - 1 is folded to ~X, undo that here. */
858 *minus_litp = build_one_cst (TREE_TYPE (in));
859 var = negate_expr (TREE_OPERAND (in, 0));
860 }
861 else if (TREE_CONSTANT (in))
862 *conp = in;
863 else
864 var = in;
865
866 if (negate_p)
867 {
868 if (*litp)
869 *minus_litp = *litp, *litp = 0;
870 else if (*minus_litp)
871 *litp = *minus_litp, *minus_litp = 0;
872 *conp = negate_expr (*conp);
873 var = negate_expr (var);
874 }
875
876 return var;
877 }
878
879 /* Re-associate trees split by the above function. T1 and T2 are
880 either expressions to associate or null. Return the new
881 expression, if any. LOC is the location of the new expression. If
882 we build an operation, do it in TYPE and with CODE. */
883
884 static tree
885 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
886 {
887 if (t1 == 0)
888 return t2;
889 else if (t2 == 0)
890 return t1;
891
892 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
893 try to fold this since we will have infinite recursion. But do
894 deal with any NEGATE_EXPRs. */
895 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
896 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
897 {
898 if (code == PLUS_EXPR)
899 {
900 if (TREE_CODE (t1) == NEGATE_EXPR)
901 return build2_loc (loc, MINUS_EXPR, type,
902 fold_convert_loc (loc, type, t2),
903 fold_convert_loc (loc, type,
904 TREE_OPERAND (t1, 0)));
905 else if (TREE_CODE (t2) == NEGATE_EXPR)
906 return build2_loc (loc, MINUS_EXPR, type,
907 fold_convert_loc (loc, type, t1),
908 fold_convert_loc (loc, type,
909 TREE_OPERAND (t2, 0)));
910 else if (integer_zerop (t2))
911 return fold_convert_loc (loc, type, t1);
912 }
913 else if (code == MINUS_EXPR)
914 {
915 if (integer_zerop (t2))
916 return fold_convert_loc (loc, type, t1);
917 }
918
919 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
920 fold_convert_loc (loc, type, t2));
921 }
922
923 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
924 fold_convert_loc (loc, type, t2));
925 }
926 \f
927 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
928 for use in int_const_binop, size_binop and size_diffop. */
929
930 static bool
931 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
932 {
933 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
934 return false;
935 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
936 return false;
937
938 switch (code)
939 {
940 case LSHIFT_EXPR:
941 case RSHIFT_EXPR:
942 case LROTATE_EXPR:
943 case RROTATE_EXPR:
944 return true;
945
946 default:
947 break;
948 }
949
950 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
951 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
952 && TYPE_MODE (type1) == TYPE_MODE (type2);
953 }
954
955
956 /* Combine two integer constants ARG1 and ARG2 under operation CODE
957 to produce a new constant. Return NULL_TREE if we don't know how
958 to evaluate CODE at compile-time. */
959
960 static tree
961 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree parg2,
962 int overflowable)
963 {
964 wide_int res;
965 tree t;
966 tree type = TREE_TYPE (arg1);
967 signop sign = TYPE_SIGN (type);
968 bool overflow = false;
969
970 wide_int arg2 = wide_int::from (parg2, TYPE_PRECISION (type),
971 TYPE_SIGN (TREE_TYPE (parg2)));
972
973 switch (code)
974 {
975 case BIT_IOR_EXPR:
976 res = wi::bit_or (arg1, arg2);
977 break;
978
979 case BIT_XOR_EXPR:
980 res = wi::bit_xor (arg1, arg2);
981 break;
982
983 case BIT_AND_EXPR:
984 res = wi::bit_and (arg1, arg2);
985 break;
986
987 case RSHIFT_EXPR:
988 case LSHIFT_EXPR:
989 if (wi::neg_p (arg2))
990 {
991 arg2 = -arg2;
992 if (code == RSHIFT_EXPR)
993 code = LSHIFT_EXPR;
994 else
995 code = RSHIFT_EXPR;
996 }
997
998 if (code == RSHIFT_EXPR)
999 /* It's unclear from the C standard whether shifts can overflow.
1000 The following code ignores overflow; perhaps a C standard
1001 interpretation ruling is needed. */
1002 res = wi::rshift (arg1, arg2, sign);
1003 else
1004 res = wi::lshift (arg1, arg2);
1005 break;
1006
1007 case RROTATE_EXPR:
1008 case LROTATE_EXPR:
1009 if (wi::neg_p (arg2))
1010 {
1011 arg2 = -arg2;
1012 if (code == RROTATE_EXPR)
1013 code = LROTATE_EXPR;
1014 else
1015 code = RROTATE_EXPR;
1016 }
1017
1018 if (code == RROTATE_EXPR)
1019 res = wi::rrotate (arg1, arg2);
1020 else
1021 res = wi::lrotate (arg1, arg2);
1022 break;
1023
1024 case PLUS_EXPR:
1025 res = wi::add (arg1, arg2, sign, &overflow);
1026 break;
1027
1028 case MINUS_EXPR:
1029 res = wi::sub (arg1, arg2, sign, &overflow);
1030 break;
1031
1032 case MULT_EXPR:
1033 res = wi::mul (arg1, arg2, sign, &overflow);
1034 break;
1035
1036 case MULT_HIGHPART_EXPR:
1037 res = wi::mul_high (arg1, arg2, sign);
1038 break;
1039
1040 case TRUNC_DIV_EXPR:
1041 case EXACT_DIV_EXPR:
1042 if (arg2 == 0)
1043 return NULL_TREE;
1044 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1045 break;
1046
1047 case FLOOR_DIV_EXPR:
1048 if (arg2 == 0)
1049 return NULL_TREE;
1050 res = wi::div_floor (arg1, arg2, sign, &overflow);
1051 break;
1052
1053 case CEIL_DIV_EXPR:
1054 if (arg2 == 0)
1055 return NULL_TREE;
1056 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1057 break;
1058
1059 case ROUND_DIV_EXPR:
1060 if (arg2 == 0)
1061 return NULL_TREE;
1062 res = wi::div_round (arg1, arg2, sign, &overflow);
1063 break;
1064
1065 case TRUNC_MOD_EXPR:
1066 if (arg2 == 0)
1067 return NULL_TREE;
1068 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1069 break;
1070
1071 case FLOOR_MOD_EXPR:
1072 if (arg2 == 0)
1073 return NULL_TREE;
1074 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1075 break;
1076
1077 case CEIL_MOD_EXPR:
1078 if (arg2 == 0)
1079 return NULL_TREE;
1080 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1081 break;
1082
1083 case ROUND_MOD_EXPR:
1084 if (arg2 == 0)
1085 return NULL_TREE;
1086 res = wi::mod_round (arg1, arg2, sign, &overflow);
1087 break;
1088
1089 case MIN_EXPR:
1090 res = wi::min (arg1, arg2, sign);
1091 break;
1092
1093 case MAX_EXPR:
1094 res = wi::max (arg1, arg2, sign);
1095 break;
1096
1097 default:
1098 return NULL_TREE;
1099 }
1100
1101 t = force_fit_type (type, res, overflowable,
1102 (((sign == SIGNED || overflowable == -1)
1103 && overflow)
1104 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (parg2)));
1105
1106 return t;
1107 }
1108
1109 tree
1110 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1111 {
1112 return int_const_binop_1 (code, arg1, arg2, 1);
1113 }
1114
1115 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1116 constant. We assume ARG1 and ARG2 have the same data type, or at least
1117 are the same kind of constant and the same machine mode. Return zero if
1118 combining the constants is not allowed in the current operating mode. */
1119
1120 static tree
1121 const_binop (enum tree_code code, tree arg1, tree arg2)
1122 {
1123 /* Sanity check for the recursive cases. */
1124 if (!arg1 || !arg2)
1125 return NULL_TREE;
1126
1127 STRIP_NOPS (arg1);
1128 STRIP_NOPS (arg2);
1129
1130 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1131 {
1132 if (code == POINTER_PLUS_EXPR)
1133 return int_const_binop (PLUS_EXPR,
1134 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1135
1136 return int_const_binop (code, arg1, arg2);
1137 }
1138
1139 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1140 {
1141 machine_mode mode;
1142 REAL_VALUE_TYPE d1;
1143 REAL_VALUE_TYPE d2;
1144 REAL_VALUE_TYPE value;
1145 REAL_VALUE_TYPE result;
1146 bool inexact;
1147 tree t, type;
1148
1149 /* The following codes are handled by real_arithmetic. */
1150 switch (code)
1151 {
1152 case PLUS_EXPR:
1153 case MINUS_EXPR:
1154 case MULT_EXPR:
1155 case RDIV_EXPR:
1156 case MIN_EXPR:
1157 case MAX_EXPR:
1158 break;
1159
1160 default:
1161 return NULL_TREE;
1162 }
1163
1164 d1 = TREE_REAL_CST (arg1);
1165 d2 = TREE_REAL_CST (arg2);
1166
1167 type = TREE_TYPE (arg1);
1168 mode = TYPE_MODE (type);
1169
1170 /* Don't perform operation if we honor signaling NaNs and
1171 either operand is a NaN. */
1172 if (HONOR_SNANS (mode)
1173 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1174 return NULL_TREE;
1175
1176 /* Don't perform operation if it would raise a division
1177 by zero exception. */
1178 if (code == RDIV_EXPR
1179 && REAL_VALUES_EQUAL (d2, dconst0)
1180 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1181 return NULL_TREE;
1182
1183 /* If either operand is a NaN, just return it. Otherwise, set up
1184 for floating-point trap; we return an overflow. */
1185 if (REAL_VALUE_ISNAN (d1))
1186 return arg1;
1187 else if (REAL_VALUE_ISNAN (d2))
1188 return arg2;
1189
1190 inexact = real_arithmetic (&value, code, &d1, &d2);
1191 real_convert (&result, mode, &value);
1192
1193 /* Don't constant fold this floating point operation if
1194 the result has overflowed and flag_trapping_math. */
1195 if (flag_trapping_math
1196 && MODE_HAS_INFINITIES (mode)
1197 && REAL_VALUE_ISINF (result)
1198 && !REAL_VALUE_ISINF (d1)
1199 && !REAL_VALUE_ISINF (d2))
1200 return NULL_TREE;
1201
1202 /* Don't constant fold this floating point operation if the
1203 result may dependent upon the run-time rounding mode and
1204 flag_rounding_math is set, or if GCC's software emulation
1205 is unable to accurately represent the result. */
1206 if ((flag_rounding_math
1207 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1208 && (inexact || !real_identical (&result, &value)))
1209 return NULL_TREE;
1210
1211 t = build_real (type, result);
1212
1213 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1214 return t;
1215 }
1216
1217 if (TREE_CODE (arg1) == FIXED_CST)
1218 {
1219 FIXED_VALUE_TYPE f1;
1220 FIXED_VALUE_TYPE f2;
1221 FIXED_VALUE_TYPE result;
1222 tree t, type;
1223 int sat_p;
1224 bool overflow_p;
1225
1226 /* The following codes are handled by fixed_arithmetic. */
1227 switch (code)
1228 {
1229 case PLUS_EXPR:
1230 case MINUS_EXPR:
1231 case MULT_EXPR:
1232 case TRUNC_DIV_EXPR:
1233 if (TREE_CODE (arg2) != FIXED_CST)
1234 return NULL_TREE;
1235 f2 = TREE_FIXED_CST (arg2);
1236 break;
1237
1238 case LSHIFT_EXPR:
1239 case RSHIFT_EXPR:
1240 {
1241 if (TREE_CODE (arg2) != INTEGER_CST)
1242 return NULL_TREE;
1243 wide_int w2 = arg2;
1244 f2.data.high = w2.elt (1);
1245 f2.data.low = w2.elt (0);
1246 f2.mode = SImode;
1247 }
1248 break;
1249
1250 default:
1251 return NULL_TREE;
1252 }
1253
1254 f1 = TREE_FIXED_CST (arg1);
1255 type = TREE_TYPE (arg1);
1256 sat_p = TYPE_SATURATING (type);
1257 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1258 t = build_fixed (type, result);
1259 /* Propagate overflow flags. */
1260 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1261 TREE_OVERFLOW (t) = 1;
1262 return t;
1263 }
1264
1265 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1266 {
1267 tree type = TREE_TYPE (arg1);
1268 tree r1 = TREE_REALPART (arg1);
1269 tree i1 = TREE_IMAGPART (arg1);
1270 tree r2 = TREE_REALPART (arg2);
1271 tree i2 = TREE_IMAGPART (arg2);
1272 tree real, imag;
1273
1274 switch (code)
1275 {
1276 case PLUS_EXPR:
1277 case MINUS_EXPR:
1278 real = const_binop (code, r1, r2);
1279 imag = const_binop (code, i1, i2);
1280 break;
1281
1282 case MULT_EXPR:
1283 if (COMPLEX_FLOAT_TYPE_P (type))
1284 return do_mpc_arg2 (arg1, arg2, type,
1285 /* do_nonfinite= */ folding_initializer,
1286 mpc_mul);
1287
1288 real = const_binop (MINUS_EXPR,
1289 const_binop (MULT_EXPR, r1, r2),
1290 const_binop (MULT_EXPR, i1, i2));
1291 imag = const_binop (PLUS_EXPR,
1292 const_binop (MULT_EXPR, r1, i2),
1293 const_binop (MULT_EXPR, i1, r2));
1294 break;
1295
1296 case RDIV_EXPR:
1297 if (COMPLEX_FLOAT_TYPE_P (type))
1298 return do_mpc_arg2 (arg1, arg2, type,
1299 /* do_nonfinite= */ folding_initializer,
1300 mpc_div);
1301 /* Fallthru ... */
1302 case TRUNC_DIV_EXPR:
1303 case CEIL_DIV_EXPR:
1304 case FLOOR_DIV_EXPR:
1305 case ROUND_DIV_EXPR:
1306 if (flag_complex_method == 0)
1307 {
1308 /* Keep this algorithm in sync with
1309 tree-complex.c:expand_complex_div_straight().
1310
1311 Expand complex division to scalars, straightforward algorithm.
1312 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1313 t = br*br + bi*bi
1314 */
1315 tree magsquared
1316 = const_binop (PLUS_EXPR,
1317 const_binop (MULT_EXPR, r2, r2),
1318 const_binop (MULT_EXPR, i2, i2));
1319 tree t1
1320 = const_binop (PLUS_EXPR,
1321 const_binop (MULT_EXPR, r1, r2),
1322 const_binop (MULT_EXPR, i1, i2));
1323 tree t2
1324 = const_binop (MINUS_EXPR,
1325 const_binop (MULT_EXPR, i1, r2),
1326 const_binop (MULT_EXPR, r1, i2));
1327
1328 real = const_binop (code, t1, magsquared);
1329 imag = const_binop (code, t2, magsquared);
1330 }
1331 else
1332 {
1333 /* Keep this algorithm in sync with
1334 tree-complex.c:expand_complex_div_wide().
1335
1336 Expand complex division to scalars, modified algorithm to minimize
1337 overflow with wide input ranges. */
1338 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1339 fold_abs_const (r2, TREE_TYPE (type)),
1340 fold_abs_const (i2, TREE_TYPE (type)));
1341
1342 if (integer_nonzerop (compare))
1343 {
1344 /* In the TRUE branch, we compute
1345 ratio = br/bi;
1346 div = (br * ratio) + bi;
1347 tr = (ar * ratio) + ai;
1348 ti = (ai * ratio) - ar;
1349 tr = tr / div;
1350 ti = ti / div; */
1351 tree ratio = const_binop (code, r2, i2);
1352 tree div = const_binop (PLUS_EXPR, i2,
1353 const_binop (MULT_EXPR, r2, ratio));
1354 real = const_binop (MULT_EXPR, r1, ratio);
1355 real = const_binop (PLUS_EXPR, real, i1);
1356 real = const_binop (code, real, div);
1357
1358 imag = const_binop (MULT_EXPR, i1, ratio);
1359 imag = const_binop (MINUS_EXPR, imag, r1);
1360 imag = const_binop (code, imag, div);
1361 }
1362 else
1363 {
1364 /* In the FALSE branch, we compute
1365 ratio = d/c;
1366 divisor = (d * ratio) + c;
1367 tr = (b * ratio) + a;
1368 ti = b - (a * ratio);
1369 tr = tr / div;
1370 ti = ti / div; */
1371 tree ratio = const_binop (code, i2, r2);
1372 tree div = const_binop (PLUS_EXPR, r2,
1373 const_binop (MULT_EXPR, i2, ratio));
1374
1375 real = const_binop (MULT_EXPR, i1, ratio);
1376 real = const_binop (PLUS_EXPR, real, r1);
1377 real = const_binop (code, real, div);
1378
1379 imag = const_binop (MULT_EXPR, r1, ratio);
1380 imag = const_binop (MINUS_EXPR, i1, imag);
1381 imag = const_binop (code, imag, div);
1382 }
1383 }
1384 break;
1385
1386 default:
1387 return NULL_TREE;
1388 }
1389
1390 if (real && imag)
1391 return build_complex (type, real, imag);
1392 }
1393
1394 if (TREE_CODE (arg1) == VECTOR_CST
1395 && TREE_CODE (arg2) == VECTOR_CST)
1396 {
1397 tree type = TREE_TYPE (arg1);
1398 int count = TYPE_VECTOR_SUBPARTS (type), i;
1399 tree *elts = XALLOCAVEC (tree, count);
1400
1401 for (i = 0; i < count; i++)
1402 {
1403 tree elem1 = VECTOR_CST_ELT (arg1, i);
1404 tree elem2 = VECTOR_CST_ELT (arg2, i);
1405
1406 elts[i] = const_binop (code, elem1, elem2);
1407
1408 /* It is possible that const_binop cannot handle the given
1409 code and return NULL_TREE */
1410 if (elts[i] == NULL_TREE)
1411 return NULL_TREE;
1412 }
1413
1414 return build_vector (type, elts);
1415 }
1416
1417 /* Shifts allow a scalar offset for a vector. */
1418 if (TREE_CODE (arg1) == VECTOR_CST
1419 && TREE_CODE (arg2) == INTEGER_CST)
1420 {
1421 tree type = TREE_TYPE (arg1);
1422 int count = TYPE_VECTOR_SUBPARTS (type), i;
1423 tree *elts = XALLOCAVEC (tree, count);
1424
1425 for (i = 0; i < count; i++)
1426 {
1427 tree elem1 = VECTOR_CST_ELT (arg1, i);
1428
1429 elts[i] = const_binop (code, elem1, arg2);
1430
1431 /* It is possible that const_binop cannot handle the given
1432 code and return NULL_TREE. */
1433 if (elts[i] == NULL_TREE)
1434 return NULL_TREE;
1435 }
1436
1437 return build_vector (type, elts);
1438 }
1439 return NULL_TREE;
1440 }
1441
1442 /* Overload that adds a TYPE parameter to be able to dispatch
1443 to fold_relational_const. */
1444
1445 tree
1446 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1447 {
1448 if (TREE_CODE_CLASS (code) == tcc_comparison)
1449 return fold_relational_const (code, type, arg1, arg2);
1450
1451 /* ??? Until we make the const_binop worker take the type of the
1452 result as argument put those cases that need it here. */
1453 switch (code)
1454 {
1455 case COMPLEX_EXPR:
1456 if ((TREE_CODE (arg1) == REAL_CST
1457 && TREE_CODE (arg2) == REAL_CST)
1458 || (TREE_CODE (arg1) == INTEGER_CST
1459 && TREE_CODE (arg2) == INTEGER_CST))
1460 return build_complex (type, arg1, arg2);
1461 return NULL_TREE;
1462
1463 case VEC_PACK_TRUNC_EXPR:
1464 case VEC_PACK_FIX_TRUNC_EXPR:
1465 {
1466 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1467 tree *elts;
1468
1469 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts / 2
1470 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts / 2);
1471 if (TREE_CODE (arg1) != VECTOR_CST
1472 || TREE_CODE (arg2) != VECTOR_CST)
1473 return NULL_TREE;
1474
1475 elts = XALLOCAVEC (tree, nelts);
1476 if (!vec_cst_ctor_to_array (arg1, elts)
1477 || !vec_cst_ctor_to_array (arg2, elts + nelts / 2))
1478 return NULL_TREE;
1479
1480 for (i = 0; i < nelts; i++)
1481 {
1482 elts[i] = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1483 ? NOP_EXPR : FIX_TRUNC_EXPR,
1484 TREE_TYPE (type), elts[i]);
1485 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1486 return NULL_TREE;
1487 }
1488
1489 return build_vector (type, elts);
1490 }
1491
1492 case VEC_WIDEN_MULT_LO_EXPR:
1493 case VEC_WIDEN_MULT_HI_EXPR:
1494 case VEC_WIDEN_MULT_EVEN_EXPR:
1495 case VEC_WIDEN_MULT_ODD_EXPR:
1496 {
1497 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type);
1498 unsigned int out, ofs, scale;
1499 tree *elts;
1500
1501 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts * 2
1502 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts * 2);
1503 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1504 return NULL_TREE;
1505
1506 elts = XALLOCAVEC (tree, nelts * 4);
1507 if (!vec_cst_ctor_to_array (arg1, elts)
1508 || !vec_cst_ctor_to_array (arg2, elts + nelts * 2))
1509 return NULL_TREE;
1510
1511 if (code == VEC_WIDEN_MULT_LO_EXPR)
1512 scale = 0, ofs = BYTES_BIG_ENDIAN ? nelts : 0;
1513 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1514 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : nelts;
1515 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1516 scale = 1, ofs = 0;
1517 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1518 scale = 1, ofs = 1;
1519
1520 for (out = 0; out < nelts; out++)
1521 {
1522 unsigned int in1 = (out << scale) + ofs;
1523 unsigned int in2 = in1 + nelts * 2;
1524 tree t1, t2;
1525
1526 t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in1]);
1527 t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in2]);
1528
1529 if (t1 == NULL_TREE || t2 == NULL_TREE)
1530 return NULL_TREE;
1531 elts[out] = const_binop (MULT_EXPR, t1, t2);
1532 if (elts[out] == NULL_TREE || !CONSTANT_CLASS_P (elts[out]))
1533 return NULL_TREE;
1534 }
1535
1536 return build_vector (type, elts);
1537 }
1538
1539 default:;
1540 }
1541
1542 if (TREE_CODE_CLASS (code) != tcc_binary)
1543 return NULL_TREE;
1544
1545 /* Make sure type and arg0 have the same saturating flag. */
1546 gcc_checking_assert (TYPE_SATURATING (type)
1547 == TYPE_SATURATING (TREE_TYPE (arg1)));
1548
1549 return const_binop (code, arg1, arg2);
1550 }
1551
1552 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1553 Return zero if computing the constants is not possible. */
1554
1555 tree
1556 const_unop (enum tree_code code, tree type, tree arg0)
1557 {
1558 switch (code)
1559 {
1560 CASE_CONVERT:
1561 case FLOAT_EXPR:
1562 case FIX_TRUNC_EXPR:
1563 case FIXED_CONVERT_EXPR:
1564 return fold_convert_const (code, type, arg0);
1565
1566 case ADDR_SPACE_CONVERT_EXPR:
1567 if (integer_zerop (arg0))
1568 return fold_convert_const (code, type, arg0);
1569 break;
1570
1571 case VIEW_CONVERT_EXPR:
1572 return fold_view_convert_expr (type, arg0);
1573
1574 case NEGATE_EXPR:
1575 {
1576 /* Can't call fold_negate_const directly here as that doesn't
1577 handle all cases and we might not be able to negate some
1578 constants. */
1579 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1580 if (tem && CONSTANT_CLASS_P (tem))
1581 return tem;
1582 break;
1583 }
1584
1585 case ABS_EXPR:
1586 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1587 return fold_abs_const (arg0, type);
1588 break;
1589
1590 case CONJ_EXPR:
1591 if (TREE_CODE (arg0) == COMPLEX_CST)
1592 {
1593 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1594 TREE_TYPE (type));
1595 return build_complex (type, TREE_REALPART (arg0), ipart);
1596 }
1597 break;
1598
1599 case BIT_NOT_EXPR:
1600 if (TREE_CODE (arg0) == INTEGER_CST)
1601 return fold_not_const (arg0, type);
1602 /* Perform BIT_NOT_EXPR on each element individually. */
1603 else if (TREE_CODE (arg0) == VECTOR_CST)
1604 {
1605 tree *elements;
1606 tree elem;
1607 unsigned count = VECTOR_CST_NELTS (arg0), i;
1608
1609 elements = XALLOCAVEC (tree, count);
1610 for (i = 0; i < count; i++)
1611 {
1612 elem = VECTOR_CST_ELT (arg0, i);
1613 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1614 if (elem == NULL_TREE)
1615 break;
1616 elements[i] = elem;
1617 }
1618 if (i == count)
1619 return build_vector (type, elements);
1620 }
1621 break;
1622
1623 case TRUTH_NOT_EXPR:
1624 if (TREE_CODE (arg0) == INTEGER_CST)
1625 return constant_boolean_node (integer_zerop (arg0), type);
1626 break;
1627
1628 case REALPART_EXPR:
1629 if (TREE_CODE (arg0) == COMPLEX_CST)
1630 return fold_convert (type, TREE_REALPART (arg0));
1631 break;
1632
1633 case IMAGPART_EXPR:
1634 if (TREE_CODE (arg0) == COMPLEX_CST)
1635 return fold_convert (type, TREE_IMAGPART (arg0));
1636 break;
1637
1638 case VEC_UNPACK_LO_EXPR:
1639 case VEC_UNPACK_HI_EXPR:
1640 case VEC_UNPACK_FLOAT_LO_EXPR:
1641 case VEC_UNPACK_FLOAT_HI_EXPR:
1642 {
1643 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1644 tree *elts;
1645 enum tree_code subcode;
1646
1647 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts * 2);
1648 if (TREE_CODE (arg0) != VECTOR_CST)
1649 return NULL_TREE;
1650
1651 elts = XALLOCAVEC (tree, nelts * 2);
1652 if (!vec_cst_ctor_to_array (arg0, elts))
1653 return NULL_TREE;
1654
1655 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1656 || code == VEC_UNPACK_FLOAT_LO_EXPR))
1657 elts += nelts;
1658
1659 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1660 subcode = NOP_EXPR;
1661 else
1662 subcode = FLOAT_EXPR;
1663
1664 for (i = 0; i < nelts; i++)
1665 {
1666 elts[i] = fold_convert_const (subcode, TREE_TYPE (type), elts[i]);
1667 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1668 return NULL_TREE;
1669 }
1670
1671 return build_vector (type, elts);
1672 }
1673
1674 case REDUC_MIN_EXPR:
1675 case REDUC_MAX_EXPR:
1676 case REDUC_PLUS_EXPR:
1677 {
1678 unsigned int nelts, i;
1679 tree *elts;
1680 enum tree_code subcode;
1681
1682 if (TREE_CODE (arg0) != VECTOR_CST)
1683 return NULL_TREE;
1684 nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
1685
1686 elts = XALLOCAVEC (tree, nelts);
1687 if (!vec_cst_ctor_to_array (arg0, elts))
1688 return NULL_TREE;
1689
1690 switch (code)
1691 {
1692 case REDUC_MIN_EXPR: subcode = MIN_EXPR; break;
1693 case REDUC_MAX_EXPR: subcode = MAX_EXPR; break;
1694 case REDUC_PLUS_EXPR: subcode = PLUS_EXPR; break;
1695 default: gcc_unreachable ();
1696 }
1697
1698 for (i = 1; i < nelts; i++)
1699 {
1700 elts[0] = const_binop (subcode, elts[0], elts[i]);
1701 if (elts[0] == NULL_TREE || !CONSTANT_CLASS_P (elts[0]))
1702 return NULL_TREE;
1703 }
1704
1705 return elts[0];
1706 }
1707
1708 default:
1709 break;
1710 }
1711
1712 return NULL_TREE;
1713 }
1714
1715 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1716 indicates which particular sizetype to create. */
1717
1718 tree
1719 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1720 {
1721 return build_int_cst (sizetype_tab[(int) kind], number);
1722 }
1723 \f
1724 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1725 is a tree code. The type of the result is taken from the operands.
1726 Both must be equivalent integer types, ala int_binop_types_match_p.
1727 If the operands are constant, so is the result. */
1728
1729 tree
1730 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1731 {
1732 tree type = TREE_TYPE (arg0);
1733
1734 if (arg0 == error_mark_node || arg1 == error_mark_node)
1735 return error_mark_node;
1736
1737 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1738 TREE_TYPE (arg1)));
1739
1740 /* Handle the special case of two integer constants faster. */
1741 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1742 {
1743 /* And some specific cases even faster than that. */
1744 if (code == PLUS_EXPR)
1745 {
1746 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1747 return arg1;
1748 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1749 return arg0;
1750 }
1751 else if (code == MINUS_EXPR)
1752 {
1753 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1754 return arg0;
1755 }
1756 else if (code == MULT_EXPR)
1757 {
1758 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1759 return arg1;
1760 }
1761
1762 /* Handle general case of two integer constants. For sizetype
1763 constant calculations we always want to know about overflow,
1764 even in the unsigned case. */
1765 return int_const_binop_1 (code, arg0, arg1, -1);
1766 }
1767
1768 return fold_build2_loc (loc, code, type, arg0, arg1);
1769 }
1770
1771 /* Given two values, either both of sizetype or both of bitsizetype,
1772 compute the difference between the two values. Return the value
1773 in signed type corresponding to the type of the operands. */
1774
1775 tree
1776 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1777 {
1778 tree type = TREE_TYPE (arg0);
1779 tree ctype;
1780
1781 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1782 TREE_TYPE (arg1)));
1783
1784 /* If the type is already signed, just do the simple thing. */
1785 if (!TYPE_UNSIGNED (type))
1786 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1787
1788 if (type == sizetype)
1789 ctype = ssizetype;
1790 else if (type == bitsizetype)
1791 ctype = sbitsizetype;
1792 else
1793 ctype = signed_type_for (type);
1794
1795 /* If either operand is not a constant, do the conversions to the signed
1796 type and subtract. The hardware will do the right thing with any
1797 overflow in the subtraction. */
1798 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1799 return size_binop_loc (loc, MINUS_EXPR,
1800 fold_convert_loc (loc, ctype, arg0),
1801 fold_convert_loc (loc, ctype, arg1));
1802
1803 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1804 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1805 overflow) and negate (which can't either). Special-case a result
1806 of zero while we're here. */
1807 if (tree_int_cst_equal (arg0, arg1))
1808 return build_int_cst (ctype, 0);
1809 else if (tree_int_cst_lt (arg1, arg0))
1810 return fold_convert_loc (loc, ctype,
1811 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1812 else
1813 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1814 fold_convert_loc (loc, ctype,
1815 size_binop_loc (loc,
1816 MINUS_EXPR,
1817 arg1, arg0)));
1818 }
1819 \f
1820 /* A subroutine of fold_convert_const handling conversions of an
1821 INTEGER_CST to another integer type. */
1822
1823 static tree
1824 fold_convert_const_int_from_int (tree type, const_tree arg1)
1825 {
1826 /* Given an integer constant, make new constant with new type,
1827 appropriately sign-extended or truncated. Use widest_int
1828 so that any extension is done according ARG1's type. */
1829 return force_fit_type (type, wi::to_widest (arg1),
1830 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1831 TREE_OVERFLOW (arg1));
1832 }
1833
1834 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1835 to an integer type. */
1836
1837 static tree
1838 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1839 {
1840 bool overflow = false;
1841 tree t;
1842
1843 /* The following code implements the floating point to integer
1844 conversion rules required by the Java Language Specification,
1845 that IEEE NaNs are mapped to zero and values that overflow
1846 the target precision saturate, i.e. values greater than
1847 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1848 are mapped to INT_MIN. These semantics are allowed by the
1849 C and C++ standards that simply state that the behavior of
1850 FP-to-integer conversion is unspecified upon overflow. */
1851
1852 wide_int val;
1853 REAL_VALUE_TYPE r;
1854 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1855
1856 switch (code)
1857 {
1858 case FIX_TRUNC_EXPR:
1859 real_trunc (&r, VOIDmode, &x);
1860 break;
1861
1862 default:
1863 gcc_unreachable ();
1864 }
1865
1866 /* If R is NaN, return zero and show we have an overflow. */
1867 if (REAL_VALUE_ISNAN (r))
1868 {
1869 overflow = true;
1870 val = wi::zero (TYPE_PRECISION (type));
1871 }
1872
1873 /* See if R is less than the lower bound or greater than the
1874 upper bound. */
1875
1876 if (! overflow)
1877 {
1878 tree lt = TYPE_MIN_VALUE (type);
1879 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1880 if (REAL_VALUES_LESS (r, l))
1881 {
1882 overflow = true;
1883 val = lt;
1884 }
1885 }
1886
1887 if (! overflow)
1888 {
1889 tree ut = TYPE_MAX_VALUE (type);
1890 if (ut)
1891 {
1892 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1893 if (REAL_VALUES_LESS (u, r))
1894 {
1895 overflow = true;
1896 val = ut;
1897 }
1898 }
1899 }
1900
1901 if (! overflow)
1902 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1903
1904 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1905 return t;
1906 }
1907
1908 /* A subroutine of fold_convert_const handling conversions of a
1909 FIXED_CST to an integer type. */
1910
1911 static tree
1912 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1913 {
1914 tree t;
1915 double_int temp, temp_trunc;
1916 unsigned int mode;
1917
1918 /* Right shift FIXED_CST to temp by fbit. */
1919 temp = TREE_FIXED_CST (arg1).data;
1920 mode = TREE_FIXED_CST (arg1).mode;
1921 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1922 {
1923 temp = temp.rshift (GET_MODE_FBIT (mode),
1924 HOST_BITS_PER_DOUBLE_INT,
1925 SIGNED_FIXED_POINT_MODE_P (mode));
1926
1927 /* Left shift temp to temp_trunc by fbit. */
1928 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1929 HOST_BITS_PER_DOUBLE_INT,
1930 SIGNED_FIXED_POINT_MODE_P (mode));
1931 }
1932 else
1933 {
1934 temp = double_int_zero;
1935 temp_trunc = double_int_zero;
1936 }
1937
1938 /* If FIXED_CST is negative, we need to round the value toward 0.
1939 By checking if the fractional bits are not zero to add 1 to temp. */
1940 if (SIGNED_FIXED_POINT_MODE_P (mode)
1941 && temp_trunc.is_negative ()
1942 && TREE_FIXED_CST (arg1).data != temp_trunc)
1943 temp += double_int_one;
1944
1945 /* Given a fixed-point constant, make new constant with new type,
1946 appropriately sign-extended or truncated. */
1947 t = force_fit_type (type, temp, -1,
1948 (temp.is_negative ()
1949 && (TYPE_UNSIGNED (type)
1950 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1951 | TREE_OVERFLOW (arg1));
1952
1953 return t;
1954 }
1955
1956 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1957 to another floating point type. */
1958
1959 static tree
1960 fold_convert_const_real_from_real (tree type, const_tree arg1)
1961 {
1962 REAL_VALUE_TYPE value;
1963 tree t;
1964
1965 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1966 t = build_real (type, value);
1967
1968 /* If converting an infinity or NAN to a representation that doesn't
1969 have one, set the overflow bit so that we can produce some kind of
1970 error message at the appropriate point if necessary. It's not the
1971 most user-friendly message, but it's better than nothing. */
1972 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
1973 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
1974 TREE_OVERFLOW (t) = 1;
1975 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
1976 && !MODE_HAS_NANS (TYPE_MODE (type)))
1977 TREE_OVERFLOW (t) = 1;
1978 /* Regular overflow, conversion produced an infinity in a mode that
1979 can't represent them. */
1980 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
1981 && REAL_VALUE_ISINF (value)
1982 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
1983 TREE_OVERFLOW (t) = 1;
1984 else
1985 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1986 return t;
1987 }
1988
1989 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
1990 to a floating point type. */
1991
1992 static tree
1993 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
1994 {
1995 REAL_VALUE_TYPE value;
1996 tree t;
1997
1998 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
1999 t = build_real (type, value);
2000
2001 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2002 return t;
2003 }
2004
2005 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2006 to another fixed-point type. */
2007
2008 static tree
2009 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2010 {
2011 FIXED_VALUE_TYPE value;
2012 tree t;
2013 bool overflow_p;
2014
2015 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2016 TYPE_SATURATING (type));
2017 t = build_fixed (type, value);
2018
2019 /* Propagate overflow flags. */
2020 if (overflow_p | TREE_OVERFLOW (arg1))
2021 TREE_OVERFLOW (t) = 1;
2022 return t;
2023 }
2024
2025 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2026 to a fixed-point type. */
2027
2028 static tree
2029 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2030 {
2031 FIXED_VALUE_TYPE value;
2032 tree t;
2033 bool overflow_p;
2034 double_int di;
2035
2036 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2037
2038 di.low = TREE_INT_CST_ELT (arg1, 0);
2039 if (TREE_INT_CST_NUNITS (arg1) == 1)
2040 di.high = (HOST_WIDE_INT) di.low < 0 ? (HOST_WIDE_INT) -1 : 0;
2041 else
2042 di.high = TREE_INT_CST_ELT (arg1, 1);
2043
2044 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type), di,
2045 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2046 TYPE_SATURATING (type));
2047 t = build_fixed (type, value);
2048
2049 /* Propagate overflow flags. */
2050 if (overflow_p | TREE_OVERFLOW (arg1))
2051 TREE_OVERFLOW (t) = 1;
2052 return t;
2053 }
2054
2055 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2056 to a fixed-point type. */
2057
2058 static tree
2059 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2060 {
2061 FIXED_VALUE_TYPE value;
2062 tree t;
2063 bool overflow_p;
2064
2065 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2066 &TREE_REAL_CST (arg1),
2067 TYPE_SATURATING (type));
2068 t = build_fixed (type, value);
2069
2070 /* Propagate overflow flags. */
2071 if (overflow_p | TREE_OVERFLOW (arg1))
2072 TREE_OVERFLOW (t) = 1;
2073 return t;
2074 }
2075
2076 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2077 type TYPE. If no simplification can be done return NULL_TREE. */
2078
2079 static tree
2080 fold_convert_const (enum tree_code code, tree type, tree arg1)
2081 {
2082 if (TREE_TYPE (arg1) == type)
2083 return arg1;
2084
2085 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2086 || TREE_CODE (type) == OFFSET_TYPE)
2087 {
2088 if (TREE_CODE (arg1) == INTEGER_CST)
2089 return fold_convert_const_int_from_int (type, arg1);
2090 else if (TREE_CODE (arg1) == REAL_CST)
2091 return fold_convert_const_int_from_real (code, type, arg1);
2092 else if (TREE_CODE (arg1) == FIXED_CST)
2093 return fold_convert_const_int_from_fixed (type, arg1);
2094 }
2095 else if (TREE_CODE (type) == REAL_TYPE)
2096 {
2097 if (TREE_CODE (arg1) == INTEGER_CST)
2098 return build_real_from_int_cst (type, arg1);
2099 else if (TREE_CODE (arg1) == REAL_CST)
2100 return fold_convert_const_real_from_real (type, arg1);
2101 else if (TREE_CODE (arg1) == FIXED_CST)
2102 return fold_convert_const_real_from_fixed (type, arg1);
2103 }
2104 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2105 {
2106 if (TREE_CODE (arg1) == FIXED_CST)
2107 return fold_convert_const_fixed_from_fixed (type, arg1);
2108 else if (TREE_CODE (arg1) == INTEGER_CST)
2109 return fold_convert_const_fixed_from_int (type, arg1);
2110 else if (TREE_CODE (arg1) == REAL_CST)
2111 return fold_convert_const_fixed_from_real (type, arg1);
2112 }
2113 return NULL_TREE;
2114 }
2115
2116 /* Construct a vector of zero elements of vector type TYPE. */
2117
2118 static tree
2119 build_zero_vector (tree type)
2120 {
2121 tree t;
2122
2123 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2124 return build_vector_from_val (type, t);
2125 }
2126
2127 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2128
2129 bool
2130 fold_convertible_p (const_tree type, const_tree arg)
2131 {
2132 tree orig = TREE_TYPE (arg);
2133
2134 if (type == orig)
2135 return true;
2136
2137 if (TREE_CODE (arg) == ERROR_MARK
2138 || TREE_CODE (type) == ERROR_MARK
2139 || TREE_CODE (orig) == ERROR_MARK)
2140 return false;
2141
2142 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2143 return true;
2144
2145 switch (TREE_CODE (type))
2146 {
2147 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2148 case POINTER_TYPE: case REFERENCE_TYPE:
2149 case OFFSET_TYPE:
2150 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2151 || TREE_CODE (orig) == OFFSET_TYPE)
2152 return true;
2153 return (TREE_CODE (orig) == VECTOR_TYPE
2154 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2155
2156 case REAL_TYPE:
2157 case FIXED_POINT_TYPE:
2158 case COMPLEX_TYPE:
2159 case VECTOR_TYPE:
2160 case VOID_TYPE:
2161 return TREE_CODE (type) == TREE_CODE (orig);
2162
2163 default:
2164 return false;
2165 }
2166 }
2167
2168 /* Convert expression ARG to type TYPE. Used by the middle-end for
2169 simple conversions in preference to calling the front-end's convert. */
2170
2171 tree
2172 fold_convert_loc (location_t loc, tree type, tree arg)
2173 {
2174 tree orig = TREE_TYPE (arg);
2175 tree tem;
2176
2177 if (type == orig)
2178 return arg;
2179
2180 if (TREE_CODE (arg) == ERROR_MARK
2181 || TREE_CODE (type) == ERROR_MARK
2182 || TREE_CODE (orig) == ERROR_MARK)
2183 return error_mark_node;
2184
2185 switch (TREE_CODE (type))
2186 {
2187 case POINTER_TYPE:
2188 case REFERENCE_TYPE:
2189 /* Handle conversions between pointers to different address spaces. */
2190 if (POINTER_TYPE_P (orig)
2191 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2192 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2193 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2194 /* fall through */
2195
2196 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2197 case OFFSET_TYPE:
2198 if (TREE_CODE (arg) == INTEGER_CST)
2199 {
2200 tem = fold_convert_const (NOP_EXPR, type, arg);
2201 if (tem != NULL_TREE)
2202 return tem;
2203 }
2204 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2205 || TREE_CODE (orig) == OFFSET_TYPE)
2206 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2207 if (TREE_CODE (orig) == COMPLEX_TYPE)
2208 return fold_convert_loc (loc, type,
2209 fold_build1_loc (loc, REALPART_EXPR,
2210 TREE_TYPE (orig), arg));
2211 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2212 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2213 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2214
2215 case REAL_TYPE:
2216 if (TREE_CODE (arg) == INTEGER_CST)
2217 {
2218 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2219 if (tem != NULL_TREE)
2220 return tem;
2221 }
2222 else if (TREE_CODE (arg) == REAL_CST)
2223 {
2224 tem = fold_convert_const (NOP_EXPR, type, arg);
2225 if (tem != NULL_TREE)
2226 return tem;
2227 }
2228 else if (TREE_CODE (arg) == FIXED_CST)
2229 {
2230 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2231 if (tem != NULL_TREE)
2232 return tem;
2233 }
2234
2235 switch (TREE_CODE (orig))
2236 {
2237 case INTEGER_TYPE:
2238 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2239 case POINTER_TYPE: case REFERENCE_TYPE:
2240 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2241
2242 case REAL_TYPE:
2243 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2244
2245 case FIXED_POINT_TYPE:
2246 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2247
2248 case COMPLEX_TYPE:
2249 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2250 return fold_convert_loc (loc, type, tem);
2251
2252 default:
2253 gcc_unreachable ();
2254 }
2255
2256 case FIXED_POINT_TYPE:
2257 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2258 || TREE_CODE (arg) == REAL_CST)
2259 {
2260 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2261 if (tem != NULL_TREE)
2262 goto fold_convert_exit;
2263 }
2264
2265 switch (TREE_CODE (orig))
2266 {
2267 case FIXED_POINT_TYPE:
2268 case INTEGER_TYPE:
2269 case ENUMERAL_TYPE:
2270 case BOOLEAN_TYPE:
2271 case REAL_TYPE:
2272 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2273
2274 case COMPLEX_TYPE:
2275 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2276 return fold_convert_loc (loc, type, tem);
2277
2278 default:
2279 gcc_unreachable ();
2280 }
2281
2282 case COMPLEX_TYPE:
2283 switch (TREE_CODE (orig))
2284 {
2285 case INTEGER_TYPE:
2286 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2287 case POINTER_TYPE: case REFERENCE_TYPE:
2288 case REAL_TYPE:
2289 case FIXED_POINT_TYPE:
2290 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2291 fold_convert_loc (loc, TREE_TYPE (type), arg),
2292 fold_convert_loc (loc, TREE_TYPE (type),
2293 integer_zero_node));
2294 case COMPLEX_TYPE:
2295 {
2296 tree rpart, ipart;
2297
2298 if (TREE_CODE (arg) == COMPLEX_EXPR)
2299 {
2300 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2301 TREE_OPERAND (arg, 0));
2302 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2303 TREE_OPERAND (arg, 1));
2304 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2305 }
2306
2307 arg = save_expr (arg);
2308 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2309 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2310 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2311 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2312 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2313 }
2314
2315 default:
2316 gcc_unreachable ();
2317 }
2318
2319 case VECTOR_TYPE:
2320 if (integer_zerop (arg))
2321 return build_zero_vector (type);
2322 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2323 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2324 || TREE_CODE (orig) == VECTOR_TYPE);
2325 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2326
2327 case VOID_TYPE:
2328 tem = fold_ignored_result (arg);
2329 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2330
2331 default:
2332 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2333 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2334 gcc_unreachable ();
2335 }
2336 fold_convert_exit:
2337 protected_set_expr_location_unshare (tem, loc);
2338 return tem;
2339 }
2340 \f
2341 /* Return false if expr can be assumed not to be an lvalue, true
2342 otherwise. */
2343
2344 static bool
2345 maybe_lvalue_p (const_tree x)
2346 {
2347 /* We only need to wrap lvalue tree codes. */
2348 switch (TREE_CODE (x))
2349 {
2350 case VAR_DECL:
2351 case PARM_DECL:
2352 case RESULT_DECL:
2353 case LABEL_DECL:
2354 case FUNCTION_DECL:
2355 case SSA_NAME:
2356
2357 case COMPONENT_REF:
2358 case MEM_REF:
2359 case INDIRECT_REF:
2360 case ARRAY_REF:
2361 case ARRAY_RANGE_REF:
2362 case BIT_FIELD_REF:
2363 case OBJ_TYPE_REF:
2364
2365 case REALPART_EXPR:
2366 case IMAGPART_EXPR:
2367 case PREINCREMENT_EXPR:
2368 case PREDECREMENT_EXPR:
2369 case SAVE_EXPR:
2370 case TRY_CATCH_EXPR:
2371 case WITH_CLEANUP_EXPR:
2372 case COMPOUND_EXPR:
2373 case MODIFY_EXPR:
2374 case TARGET_EXPR:
2375 case COND_EXPR:
2376 case BIND_EXPR:
2377 break;
2378
2379 default:
2380 /* Assume the worst for front-end tree codes. */
2381 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2382 break;
2383 return false;
2384 }
2385
2386 return true;
2387 }
2388
2389 /* Return an expr equal to X but certainly not valid as an lvalue. */
2390
2391 tree
2392 non_lvalue_loc (location_t loc, tree x)
2393 {
2394 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2395 us. */
2396 if (in_gimple_form)
2397 return x;
2398
2399 if (! maybe_lvalue_p (x))
2400 return x;
2401 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2402 }
2403
2404 /* When pedantic, return an expr equal to X but certainly not valid as a
2405 pedantic lvalue. Otherwise, return X. */
2406
2407 static tree
2408 pedantic_non_lvalue_loc (location_t loc, tree x)
2409 {
2410 return protected_set_expr_location_unshare (x, loc);
2411 }
2412 \f
2413 /* Given a tree comparison code, return the code that is the logical inverse.
2414 It is generally not safe to do this for floating-point comparisons, except
2415 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2416 ERROR_MARK in this case. */
2417
2418 enum tree_code
2419 invert_tree_comparison (enum tree_code code, bool honor_nans)
2420 {
2421 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2422 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2423 return ERROR_MARK;
2424
2425 switch (code)
2426 {
2427 case EQ_EXPR:
2428 return NE_EXPR;
2429 case NE_EXPR:
2430 return EQ_EXPR;
2431 case GT_EXPR:
2432 return honor_nans ? UNLE_EXPR : LE_EXPR;
2433 case GE_EXPR:
2434 return honor_nans ? UNLT_EXPR : LT_EXPR;
2435 case LT_EXPR:
2436 return honor_nans ? UNGE_EXPR : GE_EXPR;
2437 case LE_EXPR:
2438 return honor_nans ? UNGT_EXPR : GT_EXPR;
2439 case LTGT_EXPR:
2440 return UNEQ_EXPR;
2441 case UNEQ_EXPR:
2442 return LTGT_EXPR;
2443 case UNGT_EXPR:
2444 return LE_EXPR;
2445 case UNGE_EXPR:
2446 return LT_EXPR;
2447 case UNLT_EXPR:
2448 return GE_EXPR;
2449 case UNLE_EXPR:
2450 return GT_EXPR;
2451 case ORDERED_EXPR:
2452 return UNORDERED_EXPR;
2453 case UNORDERED_EXPR:
2454 return ORDERED_EXPR;
2455 default:
2456 gcc_unreachable ();
2457 }
2458 }
2459
2460 /* Similar, but return the comparison that results if the operands are
2461 swapped. This is safe for floating-point. */
2462
2463 enum tree_code
2464 swap_tree_comparison (enum tree_code code)
2465 {
2466 switch (code)
2467 {
2468 case EQ_EXPR:
2469 case NE_EXPR:
2470 case ORDERED_EXPR:
2471 case UNORDERED_EXPR:
2472 case LTGT_EXPR:
2473 case UNEQ_EXPR:
2474 return code;
2475 case GT_EXPR:
2476 return LT_EXPR;
2477 case GE_EXPR:
2478 return LE_EXPR;
2479 case LT_EXPR:
2480 return GT_EXPR;
2481 case LE_EXPR:
2482 return GE_EXPR;
2483 case UNGT_EXPR:
2484 return UNLT_EXPR;
2485 case UNGE_EXPR:
2486 return UNLE_EXPR;
2487 case UNLT_EXPR:
2488 return UNGT_EXPR;
2489 case UNLE_EXPR:
2490 return UNGE_EXPR;
2491 default:
2492 gcc_unreachable ();
2493 }
2494 }
2495
2496
2497 /* Convert a comparison tree code from an enum tree_code representation
2498 into a compcode bit-based encoding. This function is the inverse of
2499 compcode_to_comparison. */
2500
2501 static enum comparison_code
2502 comparison_to_compcode (enum tree_code code)
2503 {
2504 switch (code)
2505 {
2506 case LT_EXPR:
2507 return COMPCODE_LT;
2508 case EQ_EXPR:
2509 return COMPCODE_EQ;
2510 case LE_EXPR:
2511 return COMPCODE_LE;
2512 case GT_EXPR:
2513 return COMPCODE_GT;
2514 case NE_EXPR:
2515 return COMPCODE_NE;
2516 case GE_EXPR:
2517 return COMPCODE_GE;
2518 case ORDERED_EXPR:
2519 return COMPCODE_ORD;
2520 case UNORDERED_EXPR:
2521 return COMPCODE_UNORD;
2522 case UNLT_EXPR:
2523 return COMPCODE_UNLT;
2524 case UNEQ_EXPR:
2525 return COMPCODE_UNEQ;
2526 case UNLE_EXPR:
2527 return COMPCODE_UNLE;
2528 case UNGT_EXPR:
2529 return COMPCODE_UNGT;
2530 case LTGT_EXPR:
2531 return COMPCODE_LTGT;
2532 case UNGE_EXPR:
2533 return COMPCODE_UNGE;
2534 default:
2535 gcc_unreachable ();
2536 }
2537 }
2538
2539 /* Convert a compcode bit-based encoding of a comparison operator back
2540 to GCC's enum tree_code representation. This function is the
2541 inverse of comparison_to_compcode. */
2542
2543 static enum tree_code
2544 compcode_to_comparison (enum comparison_code code)
2545 {
2546 switch (code)
2547 {
2548 case COMPCODE_LT:
2549 return LT_EXPR;
2550 case COMPCODE_EQ:
2551 return EQ_EXPR;
2552 case COMPCODE_LE:
2553 return LE_EXPR;
2554 case COMPCODE_GT:
2555 return GT_EXPR;
2556 case COMPCODE_NE:
2557 return NE_EXPR;
2558 case COMPCODE_GE:
2559 return GE_EXPR;
2560 case COMPCODE_ORD:
2561 return ORDERED_EXPR;
2562 case COMPCODE_UNORD:
2563 return UNORDERED_EXPR;
2564 case COMPCODE_UNLT:
2565 return UNLT_EXPR;
2566 case COMPCODE_UNEQ:
2567 return UNEQ_EXPR;
2568 case COMPCODE_UNLE:
2569 return UNLE_EXPR;
2570 case COMPCODE_UNGT:
2571 return UNGT_EXPR;
2572 case COMPCODE_LTGT:
2573 return LTGT_EXPR;
2574 case COMPCODE_UNGE:
2575 return UNGE_EXPR;
2576 default:
2577 gcc_unreachable ();
2578 }
2579 }
2580
2581 /* Return a tree for the comparison which is the combination of
2582 doing the AND or OR (depending on CODE) of the two operations LCODE
2583 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2584 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2585 if this makes the transformation invalid. */
2586
2587 tree
2588 combine_comparisons (location_t loc,
2589 enum tree_code code, enum tree_code lcode,
2590 enum tree_code rcode, tree truth_type,
2591 tree ll_arg, tree lr_arg)
2592 {
2593 bool honor_nans = HONOR_NANS (ll_arg);
2594 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2595 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2596 int compcode;
2597
2598 switch (code)
2599 {
2600 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2601 compcode = lcompcode & rcompcode;
2602 break;
2603
2604 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2605 compcode = lcompcode | rcompcode;
2606 break;
2607
2608 default:
2609 return NULL_TREE;
2610 }
2611
2612 if (!honor_nans)
2613 {
2614 /* Eliminate unordered comparisons, as well as LTGT and ORD
2615 which are not used unless the mode has NaNs. */
2616 compcode &= ~COMPCODE_UNORD;
2617 if (compcode == COMPCODE_LTGT)
2618 compcode = COMPCODE_NE;
2619 else if (compcode == COMPCODE_ORD)
2620 compcode = COMPCODE_TRUE;
2621 }
2622 else if (flag_trapping_math)
2623 {
2624 /* Check that the original operation and the optimized ones will trap
2625 under the same condition. */
2626 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2627 && (lcompcode != COMPCODE_EQ)
2628 && (lcompcode != COMPCODE_ORD);
2629 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2630 && (rcompcode != COMPCODE_EQ)
2631 && (rcompcode != COMPCODE_ORD);
2632 bool trap = (compcode & COMPCODE_UNORD) == 0
2633 && (compcode != COMPCODE_EQ)
2634 && (compcode != COMPCODE_ORD);
2635
2636 /* In a short-circuited boolean expression the LHS might be
2637 such that the RHS, if evaluated, will never trap. For
2638 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2639 if neither x nor y is NaN. (This is a mixed blessing: for
2640 example, the expression above will never trap, hence
2641 optimizing it to x < y would be invalid). */
2642 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2643 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2644 rtrap = false;
2645
2646 /* If the comparison was short-circuited, and only the RHS
2647 trapped, we may now generate a spurious trap. */
2648 if (rtrap && !ltrap
2649 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2650 return NULL_TREE;
2651
2652 /* If we changed the conditions that cause a trap, we lose. */
2653 if ((ltrap || rtrap) != trap)
2654 return NULL_TREE;
2655 }
2656
2657 if (compcode == COMPCODE_TRUE)
2658 return constant_boolean_node (true, truth_type);
2659 else if (compcode == COMPCODE_FALSE)
2660 return constant_boolean_node (false, truth_type);
2661 else
2662 {
2663 enum tree_code tcode;
2664
2665 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2666 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2667 }
2668 }
2669 \f
2670 /* Return nonzero if two operands (typically of the same tree node)
2671 are necessarily equal. If either argument has side-effects this
2672 function returns zero. FLAGS modifies behavior as follows:
2673
2674 If OEP_ONLY_CONST is set, only return nonzero for constants.
2675 This function tests whether the operands are indistinguishable;
2676 it does not test whether they are equal using C's == operation.
2677 The distinction is important for IEEE floating point, because
2678 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2679 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2680
2681 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2682 even though it may hold multiple values during a function.
2683 This is because a GCC tree node guarantees that nothing else is
2684 executed between the evaluation of its "operands" (which may often
2685 be evaluated in arbitrary order). Hence if the operands themselves
2686 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2687 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2688 unset means assuming isochronic (or instantaneous) tree equivalence.
2689 Unless comparing arbitrary expression trees, such as from different
2690 statements, this flag can usually be left unset.
2691
2692 If OEP_PURE_SAME is set, then pure functions with identical arguments
2693 are considered the same. It is used when the caller has other ways
2694 to ensure that global memory is unchanged in between. */
2695
2696 int
2697 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2698 {
2699 /* If either is ERROR_MARK, they aren't equal. */
2700 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2701 || TREE_TYPE (arg0) == error_mark_node
2702 || TREE_TYPE (arg1) == error_mark_node)
2703 return 0;
2704
2705 /* Similar, if either does not have a type (like a released SSA name),
2706 they aren't equal. */
2707 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2708 return 0;
2709
2710 /* Check equality of integer constants before bailing out due to
2711 precision differences. */
2712 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2713 return tree_int_cst_equal (arg0, arg1);
2714
2715 /* If both types don't have the same signedness, then we can't consider
2716 them equal. We must check this before the STRIP_NOPS calls
2717 because they may change the signedness of the arguments. As pointers
2718 strictly don't have a signedness, require either two pointers or
2719 two non-pointers as well. */
2720 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2721 || POINTER_TYPE_P (TREE_TYPE (arg0)) != POINTER_TYPE_P (TREE_TYPE (arg1)))
2722 return 0;
2723
2724 /* We cannot consider pointers to different address space equal. */
2725 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && POINTER_TYPE_P (TREE_TYPE (arg1))
2726 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2727 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2728 return 0;
2729
2730 /* If both types don't have the same precision, then it is not safe
2731 to strip NOPs. */
2732 if (element_precision (TREE_TYPE (arg0))
2733 != element_precision (TREE_TYPE (arg1)))
2734 return 0;
2735
2736 STRIP_NOPS (arg0);
2737 STRIP_NOPS (arg1);
2738
2739 /* In case both args are comparisons but with different comparison
2740 code, try to swap the comparison operands of one arg to produce
2741 a match and compare that variant. */
2742 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2743 && COMPARISON_CLASS_P (arg0)
2744 && COMPARISON_CLASS_P (arg1))
2745 {
2746 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2747
2748 if (TREE_CODE (arg0) == swap_code)
2749 return operand_equal_p (TREE_OPERAND (arg0, 0),
2750 TREE_OPERAND (arg1, 1), flags)
2751 && operand_equal_p (TREE_OPERAND (arg0, 1),
2752 TREE_OPERAND (arg1, 0), flags);
2753 }
2754
2755 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2756 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2757 && !(CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1)))
2758 return 0;
2759
2760 /* This is needed for conversions and for COMPONENT_REF.
2761 Might as well play it safe and always test this. */
2762 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2763 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2764 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2765 return 0;
2766
2767 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2768 We don't care about side effects in that case because the SAVE_EXPR
2769 takes care of that for us. In all other cases, two expressions are
2770 equal if they have no side effects. If we have two identical
2771 expressions with side effects that should be treated the same due
2772 to the only side effects being identical SAVE_EXPR's, that will
2773 be detected in the recursive calls below.
2774 If we are taking an invariant address of two identical objects
2775 they are necessarily equal as well. */
2776 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2777 && (TREE_CODE (arg0) == SAVE_EXPR
2778 || (flags & OEP_CONSTANT_ADDRESS_OF)
2779 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2780 return 1;
2781
2782 /* Next handle constant cases, those for which we can return 1 even
2783 if ONLY_CONST is set. */
2784 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2785 switch (TREE_CODE (arg0))
2786 {
2787 case INTEGER_CST:
2788 return tree_int_cst_equal (arg0, arg1);
2789
2790 case FIXED_CST:
2791 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2792 TREE_FIXED_CST (arg1));
2793
2794 case REAL_CST:
2795 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2796 TREE_REAL_CST (arg1)))
2797 return 1;
2798
2799
2800 if (!HONOR_SIGNED_ZEROS (arg0))
2801 {
2802 /* If we do not distinguish between signed and unsigned zero,
2803 consider them equal. */
2804 if (real_zerop (arg0) && real_zerop (arg1))
2805 return 1;
2806 }
2807 return 0;
2808
2809 case VECTOR_CST:
2810 {
2811 unsigned i;
2812
2813 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2814 return 0;
2815
2816 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2817 {
2818 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2819 VECTOR_CST_ELT (arg1, i), flags))
2820 return 0;
2821 }
2822 return 1;
2823 }
2824
2825 case COMPLEX_CST:
2826 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2827 flags)
2828 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2829 flags));
2830
2831 case STRING_CST:
2832 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2833 && ! memcmp (TREE_STRING_POINTER (arg0),
2834 TREE_STRING_POINTER (arg1),
2835 TREE_STRING_LENGTH (arg0)));
2836
2837 case ADDR_EXPR:
2838 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2839 TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1)
2840 ? OEP_CONSTANT_ADDRESS_OF | OEP_ADDRESS_OF : 0);
2841 default:
2842 break;
2843 }
2844
2845 if (flags & OEP_ONLY_CONST)
2846 return 0;
2847
2848 /* Define macros to test an operand from arg0 and arg1 for equality and a
2849 variant that allows null and views null as being different from any
2850 non-null value. In the latter case, if either is null, the both
2851 must be; otherwise, do the normal comparison. */
2852 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2853 TREE_OPERAND (arg1, N), flags)
2854
2855 #define OP_SAME_WITH_NULL(N) \
2856 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2857 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2858
2859 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2860 {
2861 case tcc_unary:
2862 /* Two conversions are equal only if signedness and modes match. */
2863 switch (TREE_CODE (arg0))
2864 {
2865 CASE_CONVERT:
2866 case FIX_TRUNC_EXPR:
2867 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2868 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2869 return 0;
2870 break;
2871 default:
2872 break;
2873 }
2874
2875 return OP_SAME (0);
2876
2877
2878 case tcc_comparison:
2879 case tcc_binary:
2880 if (OP_SAME (0) && OP_SAME (1))
2881 return 1;
2882
2883 /* For commutative ops, allow the other order. */
2884 return (commutative_tree_code (TREE_CODE (arg0))
2885 && operand_equal_p (TREE_OPERAND (arg0, 0),
2886 TREE_OPERAND (arg1, 1), flags)
2887 && operand_equal_p (TREE_OPERAND (arg0, 1),
2888 TREE_OPERAND (arg1, 0), flags));
2889
2890 case tcc_reference:
2891 /* If either of the pointer (or reference) expressions we are
2892 dereferencing contain a side effect, these cannot be equal,
2893 but their addresses can be. */
2894 if ((flags & OEP_CONSTANT_ADDRESS_OF) == 0
2895 && (TREE_SIDE_EFFECTS (arg0)
2896 || TREE_SIDE_EFFECTS (arg1)))
2897 return 0;
2898
2899 switch (TREE_CODE (arg0))
2900 {
2901 case INDIRECT_REF:
2902 if (!(flags & OEP_ADDRESS_OF)
2903 && (TYPE_ALIGN (TREE_TYPE (arg0))
2904 != TYPE_ALIGN (TREE_TYPE (arg1))))
2905 return 0;
2906 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2907 return OP_SAME (0);
2908
2909 case REALPART_EXPR:
2910 case IMAGPART_EXPR:
2911 return OP_SAME (0);
2912
2913 case TARGET_MEM_REF:
2914 case MEM_REF:
2915 /* Require equal access sizes, and similar pointer types.
2916 We can have incomplete types for array references of
2917 variable-sized arrays from the Fortran frontend
2918 though. Also verify the types are compatible. */
2919 if (!((TYPE_SIZE (TREE_TYPE (arg0)) == TYPE_SIZE (TREE_TYPE (arg1))
2920 || (TYPE_SIZE (TREE_TYPE (arg0))
2921 && TYPE_SIZE (TREE_TYPE (arg1))
2922 && operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
2923 TYPE_SIZE (TREE_TYPE (arg1)), flags)))
2924 && types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1))
2925 && ((flags & OEP_ADDRESS_OF)
2926 || (alias_ptr_types_compatible_p
2927 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
2928 TREE_TYPE (TREE_OPERAND (arg1, 1)))
2929 && (MR_DEPENDENCE_CLIQUE (arg0)
2930 == MR_DEPENDENCE_CLIQUE (arg1))
2931 && (MR_DEPENDENCE_BASE (arg0)
2932 == MR_DEPENDENCE_BASE (arg1))
2933 && (TYPE_ALIGN (TREE_TYPE (arg0))
2934 == TYPE_ALIGN (TREE_TYPE (arg1)))))))
2935 return 0;
2936 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2937 return (OP_SAME (0) && OP_SAME (1)
2938 /* TARGET_MEM_REF require equal extra operands. */
2939 && (TREE_CODE (arg0) != TARGET_MEM_REF
2940 || (OP_SAME_WITH_NULL (2)
2941 && OP_SAME_WITH_NULL (3)
2942 && OP_SAME_WITH_NULL (4))));
2943
2944 case ARRAY_REF:
2945 case ARRAY_RANGE_REF:
2946 /* Operands 2 and 3 may be null.
2947 Compare the array index by value if it is constant first as we
2948 may have different types but same value here. */
2949 if (!OP_SAME (0))
2950 return 0;
2951 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2952 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
2953 TREE_OPERAND (arg1, 1))
2954 || OP_SAME (1))
2955 && OP_SAME_WITH_NULL (2)
2956 && OP_SAME_WITH_NULL (3));
2957
2958 case COMPONENT_REF:
2959 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
2960 may be NULL when we're called to compare MEM_EXPRs. */
2961 if (!OP_SAME_WITH_NULL (0)
2962 || !OP_SAME (1))
2963 return 0;
2964 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2965 return OP_SAME_WITH_NULL (2);
2966
2967 case BIT_FIELD_REF:
2968 if (!OP_SAME (0))
2969 return 0;
2970 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2971 return OP_SAME (1) && OP_SAME (2);
2972
2973 default:
2974 return 0;
2975 }
2976
2977 case tcc_expression:
2978 switch (TREE_CODE (arg0))
2979 {
2980 case ADDR_EXPR:
2981 return operand_equal_p (TREE_OPERAND (arg0, 0),
2982 TREE_OPERAND (arg1, 0),
2983 flags | OEP_ADDRESS_OF);
2984
2985 case TRUTH_NOT_EXPR:
2986 return OP_SAME (0);
2987
2988 case TRUTH_ANDIF_EXPR:
2989 case TRUTH_ORIF_EXPR:
2990 return OP_SAME (0) && OP_SAME (1);
2991
2992 case FMA_EXPR:
2993 case WIDEN_MULT_PLUS_EXPR:
2994 case WIDEN_MULT_MINUS_EXPR:
2995 if (!OP_SAME (2))
2996 return 0;
2997 /* The multiplcation operands are commutative. */
2998 /* FALLTHRU */
2999
3000 case TRUTH_AND_EXPR:
3001 case TRUTH_OR_EXPR:
3002 case TRUTH_XOR_EXPR:
3003 if (OP_SAME (0) && OP_SAME (1))
3004 return 1;
3005
3006 /* Otherwise take into account this is a commutative operation. */
3007 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3008 TREE_OPERAND (arg1, 1), flags)
3009 && operand_equal_p (TREE_OPERAND (arg0, 1),
3010 TREE_OPERAND (arg1, 0), flags));
3011
3012 case COND_EXPR:
3013 case VEC_COND_EXPR:
3014 case DOT_PROD_EXPR:
3015 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3016
3017 default:
3018 return 0;
3019 }
3020
3021 case tcc_vl_exp:
3022 switch (TREE_CODE (arg0))
3023 {
3024 case CALL_EXPR:
3025 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3026 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3027 /* If not both CALL_EXPRs are either internal or normal function
3028 functions, then they are not equal. */
3029 return 0;
3030 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3031 {
3032 /* If the CALL_EXPRs call different internal functions, then they
3033 are not equal. */
3034 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3035 return 0;
3036 }
3037 else
3038 {
3039 /* If the CALL_EXPRs call different functions, then they are not
3040 equal. */
3041 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3042 flags))
3043 return 0;
3044 }
3045
3046 {
3047 unsigned int cef = call_expr_flags (arg0);
3048 if (flags & OEP_PURE_SAME)
3049 cef &= ECF_CONST | ECF_PURE;
3050 else
3051 cef &= ECF_CONST;
3052 if (!cef)
3053 return 0;
3054 }
3055
3056 /* Now see if all the arguments are the same. */
3057 {
3058 const_call_expr_arg_iterator iter0, iter1;
3059 const_tree a0, a1;
3060 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3061 a1 = first_const_call_expr_arg (arg1, &iter1);
3062 a0 && a1;
3063 a0 = next_const_call_expr_arg (&iter0),
3064 a1 = next_const_call_expr_arg (&iter1))
3065 if (! operand_equal_p (a0, a1, flags))
3066 return 0;
3067
3068 /* If we get here and both argument lists are exhausted
3069 then the CALL_EXPRs are equal. */
3070 return ! (a0 || a1);
3071 }
3072 default:
3073 return 0;
3074 }
3075
3076 case tcc_declaration:
3077 /* Consider __builtin_sqrt equal to sqrt. */
3078 return (TREE_CODE (arg0) == FUNCTION_DECL
3079 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3080 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3081 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3082
3083 default:
3084 return 0;
3085 }
3086
3087 #undef OP_SAME
3088 #undef OP_SAME_WITH_NULL
3089 }
3090 \f
3091 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3092 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3093
3094 When in doubt, return 0. */
3095
3096 static int
3097 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3098 {
3099 int unsignedp1, unsignedpo;
3100 tree primarg0, primarg1, primother;
3101 unsigned int correct_width;
3102
3103 if (operand_equal_p (arg0, arg1, 0))
3104 return 1;
3105
3106 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3107 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3108 return 0;
3109
3110 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3111 and see if the inner values are the same. This removes any
3112 signedness comparison, which doesn't matter here. */
3113 primarg0 = arg0, primarg1 = arg1;
3114 STRIP_NOPS (primarg0);
3115 STRIP_NOPS (primarg1);
3116 if (operand_equal_p (primarg0, primarg1, 0))
3117 return 1;
3118
3119 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3120 actual comparison operand, ARG0.
3121
3122 First throw away any conversions to wider types
3123 already present in the operands. */
3124
3125 primarg1 = get_narrower (arg1, &unsignedp1);
3126 primother = get_narrower (other, &unsignedpo);
3127
3128 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3129 if (unsignedp1 == unsignedpo
3130 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3131 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3132 {
3133 tree type = TREE_TYPE (arg0);
3134
3135 /* Make sure shorter operand is extended the right way
3136 to match the longer operand. */
3137 primarg1 = fold_convert (signed_or_unsigned_type_for
3138 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3139
3140 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3141 return 1;
3142 }
3143
3144 return 0;
3145 }
3146 \f
3147 /* See if ARG is an expression that is either a comparison or is performing
3148 arithmetic on comparisons. The comparisons must only be comparing
3149 two different values, which will be stored in *CVAL1 and *CVAL2; if
3150 they are nonzero it means that some operands have already been found.
3151 No variables may be used anywhere else in the expression except in the
3152 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3153 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3154
3155 If this is true, return 1. Otherwise, return zero. */
3156
3157 static int
3158 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3159 {
3160 enum tree_code code = TREE_CODE (arg);
3161 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3162
3163 /* We can handle some of the tcc_expression cases here. */
3164 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3165 tclass = tcc_unary;
3166 else if (tclass == tcc_expression
3167 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3168 || code == COMPOUND_EXPR))
3169 tclass = tcc_binary;
3170
3171 else if (tclass == tcc_expression && code == SAVE_EXPR
3172 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3173 {
3174 /* If we've already found a CVAL1 or CVAL2, this expression is
3175 two complex to handle. */
3176 if (*cval1 || *cval2)
3177 return 0;
3178
3179 tclass = tcc_unary;
3180 *save_p = 1;
3181 }
3182
3183 switch (tclass)
3184 {
3185 case tcc_unary:
3186 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3187
3188 case tcc_binary:
3189 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3190 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3191 cval1, cval2, save_p));
3192
3193 case tcc_constant:
3194 return 1;
3195
3196 case tcc_expression:
3197 if (code == COND_EXPR)
3198 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3199 cval1, cval2, save_p)
3200 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3201 cval1, cval2, save_p)
3202 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3203 cval1, cval2, save_p));
3204 return 0;
3205
3206 case tcc_comparison:
3207 /* First see if we can handle the first operand, then the second. For
3208 the second operand, we know *CVAL1 can't be zero. It must be that
3209 one side of the comparison is each of the values; test for the
3210 case where this isn't true by failing if the two operands
3211 are the same. */
3212
3213 if (operand_equal_p (TREE_OPERAND (arg, 0),
3214 TREE_OPERAND (arg, 1), 0))
3215 return 0;
3216
3217 if (*cval1 == 0)
3218 *cval1 = TREE_OPERAND (arg, 0);
3219 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3220 ;
3221 else if (*cval2 == 0)
3222 *cval2 = TREE_OPERAND (arg, 0);
3223 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3224 ;
3225 else
3226 return 0;
3227
3228 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3229 ;
3230 else if (*cval2 == 0)
3231 *cval2 = TREE_OPERAND (arg, 1);
3232 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3233 ;
3234 else
3235 return 0;
3236
3237 return 1;
3238
3239 default:
3240 return 0;
3241 }
3242 }
3243 \f
3244 /* ARG is a tree that is known to contain just arithmetic operations and
3245 comparisons. Evaluate the operations in the tree substituting NEW0 for
3246 any occurrence of OLD0 as an operand of a comparison and likewise for
3247 NEW1 and OLD1. */
3248
3249 static tree
3250 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3251 tree old1, tree new1)
3252 {
3253 tree type = TREE_TYPE (arg);
3254 enum tree_code code = TREE_CODE (arg);
3255 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3256
3257 /* We can handle some of the tcc_expression cases here. */
3258 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3259 tclass = tcc_unary;
3260 else if (tclass == tcc_expression
3261 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3262 tclass = tcc_binary;
3263
3264 switch (tclass)
3265 {
3266 case tcc_unary:
3267 return fold_build1_loc (loc, code, type,
3268 eval_subst (loc, TREE_OPERAND (arg, 0),
3269 old0, new0, old1, new1));
3270
3271 case tcc_binary:
3272 return fold_build2_loc (loc, code, type,
3273 eval_subst (loc, TREE_OPERAND (arg, 0),
3274 old0, new0, old1, new1),
3275 eval_subst (loc, TREE_OPERAND (arg, 1),
3276 old0, new0, old1, new1));
3277
3278 case tcc_expression:
3279 switch (code)
3280 {
3281 case SAVE_EXPR:
3282 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3283 old1, new1);
3284
3285 case COMPOUND_EXPR:
3286 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3287 old1, new1);
3288
3289 case COND_EXPR:
3290 return fold_build3_loc (loc, code, type,
3291 eval_subst (loc, TREE_OPERAND (arg, 0),
3292 old0, new0, old1, new1),
3293 eval_subst (loc, TREE_OPERAND (arg, 1),
3294 old0, new0, old1, new1),
3295 eval_subst (loc, TREE_OPERAND (arg, 2),
3296 old0, new0, old1, new1));
3297 default:
3298 break;
3299 }
3300 /* Fall through - ??? */
3301
3302 case tcc_comparison:
3303 {
3304 tree arg0 = TREE_OPERAND (arg, 0);
3305 tree arg1 = TREE_OPERAND (arg, 1);
3306
3307 /* We need to check both for exact equality and tree equality. The
3308 former will be true if the operand has a side-effect. In that
3309 case, we know the operand occurred exactly once. */
3310
3311 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3312 arg0 = new0;
3313 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3314 arg0 = new1;
3315
3316 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3317 arg1 = new0;
3318 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3319 arg1 = new1;
3320
3321 return fold_build2_loc (loc, code, type, arg0, arg1);
3322 }
3323
3324 default:
3325 return arg;
3326 }
3327 }
3328 \f
3329 /* Return a tree for the case when the result of an expression is RESULT
3330 converted to TYPE and OMITTED was previously an operand of the expression
3331 but is now not needed (e.g., we folded OMITTED * 0).
3332
3333 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3334 the conversion of RESULT to TYPE. */
3335
3336 tree
3337 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3338 {
3339 tree t = fold_convert_loc (loc, type, result);
3340
3341 /* If the resulting operand is an empty statement, just return the omitted
3342 statement casted to void. */
3343 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3344 return build1_loc (loc, NOP_EXPR, void_type_node,
3345 fold_ignored_result (omitted));
3346
3347 if (TREE_SIDE_EFFECTS (omitted))
3348 return build2_loc (loc, COMPOUND_EXPR, type,
3349 fold_ignored_result (omitted), t);
3350
3351 return non_lvalue_loc (loc, t);
3352 }
3353
3354 /* Return a tree for the case when the result of an expression is RESULT
3355 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3356 of the expression but are now not needed.
3357
3358 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3359 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3360 evaluated before OMITTED2. Otherwise, if neither has side effects,
3361 just do the conversion of RESULT to TYPE. */
3362
3363 tree
3364 omit_two_operands_loc (location_t loc, tree type, tree result,
3365 tree omitted1, tree omitted2)
3366 {
3367 tree t = fold_convert_loc (loc, type, result);
3368
3369 if (TREE_SIDE_EFFECTS (omitted2))
3370 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3371 if (TREE_SIDE_EFFECTS (omitted1))
3372 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3373
3374 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3375 }
3376
3377 \f
3378 /* Return a simplified tree node for the truth-negation of ARG. This
3379 never alters ARG itself. We assume that ARG is an operation that
3380 returns a truth value (0 or 1).
3381
3382 FIXME: one would think we would fold the result, but it causes
3383 problems with the dominator optimizer. */
3384
3385 static tree
3386 fold_truth_not_expr (location_t loc, tree arg)
3387 {
3388 tree type = TREE_TYPE (arg);
3389 enum tree_code code = TREE_CODE (arg);
3390 location_t loc1, loc2;
3391
3392 /* If this is a comparison, we can simply invert it, except for
3393 floating-point non-equality comparisons, in which case we just
3394 enclose a TRUTH_NOT_EXPR around what we have. */
3395
3396 if (TREE_CODE_CLASS (code) == tcc_comparison)
3397 {
3398 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3399 if (FLOAT_TYPE_P (op_type)
3400 && flag_trapping_math
3401 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3402 && code != NE_EXPR && code != EQ_EXPR)
3403 return NULL_TREE;
3404
3405 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3406 if (code == ERROR_MARK)
3407 return NULL_TREE;
3408
3409 return build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3410 TREE_OPERAND (arg, 1));
3411 }
3412
3413 switch (code)
3414 {
3415 case INTEGER_CST:
3416 return constant_boolean_node (integer_zerop (arg), type);
3417
3418 case TRUTH_AND_EXPR:
3419 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3420 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3421 return build2_loc (loc, TRUTH_OR_EXPR, type,
3422 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3423 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3424
3425 case TRUTH_OR_EXPR:
3426 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3427 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3428 return build2_loc (loc, TRUTH_AND_EXPR, type,
3429 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3430 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3431
3432 case TRUTH_XOR_EXPR:
3433 /* Here we can invert either operand. We invert the first operand
3434 unless the second operand is a TRUTH_NOT_EXPR in which case our
3435 result is the XOR of the first operand with the inside of the
3436 negation of the second operand. */
3437
3438 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3439 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3440 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3441 else
3442 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3443 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3444 TREE_OPERAND (arg, 1));
3445
3446 case TRUTH_ANDIF_EXPR:
3447 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3448 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3449 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3450 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3451 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3452
3453 case TRUTH_ORIF_EXPR:
3454 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3455 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3456 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3457 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3458 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3459
3460 case TRUTH_NOT_EXPR:
3461 return TREE_OPERAND (arg, 0);
3462
3463 case COND_EXPR:
3464 {
3465 tree arg1 = TREE_OPERAND (arg, 1);
3466 tree arg2 = TREE_OPERAND (arg, 2);
3467
3468 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3469 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3470
3471 /* A COND_EXPR may have a throw as one operand, which
3472 then has void type. Just leave void operands
3473 as they are. */
3474 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3475 VOID_TYPE_P (TREE_TYPE (arg1))
3476 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3477 VOID_TYPE_P (TREE_TYPE (arg2))
3478 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3479 }
3480
3481 case COMPOUND_EXPR:
3482 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3483 return build2_loc (loc, COMPOUND_EXPR, type,
3484 TREE_OPERAND (arg, 0),
3485 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3486
3487 case NON_LVALUE_EXPR:
3488 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3489 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3490
3491 CASE_CONVERT:
3492 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3493 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3494
3495 /* ... fall through ... */
3496
3497 case FLOAT_EXPR:
3498 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3499 return build1_loc (loc, TREE_CODE (arg), type,
3500 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3501
3502 case BIT_AND_EXPR:
3503 if (!integer_onep (TREE_OPERAND (arg, 1)))
3504 return NULL_TREE;
3505 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3506
3507 case SAVE_EXPR:
3508 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3509
3510 case CLEANUP_POINT_EXPR:
3511 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3512 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3513 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3514
3515 default:
3516 return NULL_TREE;
3517 }
3518 }
3519
3520 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3521 assume that ARG is an operation that returns a truth value (0 or 1
3522 for scalars, 0 or -1 for vectors). Return the folded expression if
3523 folding is successful. Otherwise, return NULL_TREE. */
3524
3525 static tree
3526 fold_invert_truthvalue (location_t loc, tree arg)
3527 {
3528 tree type = TREE_TYPE (arg);
3529 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3530 ? BIT_NOT_EXPR
3531 : TRUTH_NOT_EXPR,
3532 type, arg);
3533 }
3534
3535 /* Return a simplified tree node for the truth-negation of ARG. This
3536 never alters ARG itself. We assume that ARG is an operation that
3537 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3538
3539 tree
3540 invert_truthvalue_loc (location_t loc, tree arg)
3541 {
3542 if (TREE_CODE (arg) == ERROR_MARK)
3543 return arg;
3544
3545 tree type = TREE_TYPE (arg);
3546 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3547 ? BIT_NOT_EXPR
3548 : TRUTH_NOT_EXPR,
3549 type, arg);
3550 }
3551
3552 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3553 with code CODE. This optimization is unsafe. */
3554 static tree
3555 distribute_real_division (location_t loc, enum tree_code code, tree type,
3556 tree arg0, tree arg1)
3557 {
3558 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3559 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3560
3561 /* (A / C) +- (B / C) -> (A +- B) / C. */
3562 if (mul0 == mul1
3563 && operand_equal_p (TREE_OPERAND (arg0, 1),
3564 TREE_OPERAND (arg1, 1), 0))
3565 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3566 fold_build2_loc (loc, code, type,
3567 TREE_OPERAND (arg0, 0),
3568 TREE_OPERAND (arg1, 0)),
3569 TREE_OPERAND (arg0, 1));
3570
3571 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3572 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3573 TREE_OPERAND (arg1, 0), 0)
3574 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3575 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3576 {
3577 REAL_VALUE_TYPE r0, r1;
3578 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3579 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3580 if (!mul0)
3581 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3582 if (!mul1)
3583 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3584 real_arithmetic (&r0, code, &r0, &r1);
3585 return fold_build2_loc (loc, MULT_EXPR, type,
3586 TREE_OPERAND (arg0, 0),
3587 build_real (type, r0));
3588 }
3589
3590 return NULL_TREE;
3591 }
3592 \f
3593 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3594 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3595
3596 static tree
3597 make_bit_field_ref (location_t loc, tree inner, tree type,
3598 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos, int unsignedp)
3599 {
3600 tree result, bftype;
3601
3602 if (bitpos == 0)
3603 {
3604 tree size = TYPE_SIZE (TREE_TYPE (inner));
3605 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3606 || POINTER_TYPE_P (TREE_TYPE (inner)))
3607 && tree_fits_shwi_p (size)
3608 && tree_to_shwi (size) == bitsize)
3609 return fold_convert_loc (loc, type, inner);
3610 }
3611
3612 bftype = type;
3613 if (TYPE_PRECISION (bftype) != bitsize
3614 || TYPE_UNSIGNED (bftype) == !unsignedp)
3615 bftype = build_nonstandard_integer_type (bitsize, 0);
3616
3617 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3618 size_int (bitsize), bitsize_int (bitpos));
3619
3620 if (bftype != type)
3621 result = fold_convert_loc (loc, type, result);
3622
3623 return result;
3624 }
3625
3626 /* Optimize a bit-field compare.
3627
3628 There are two cases: First is a compare against a constant and the
3629 second is a comparison of two items where the fields are at the same
3630 bit position relative to the start of a chunk (byte, halfword, word)
3631 large enough to contain it. In these cases we can avoid the shift
3632 implicit in bitfield extractions.
3633
3634 For constants, we emit a compare of the shifted constant with the
3635 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3636 compared. For two fields at the same position, we do the ANDs with the
3637 similar mask and compare the result of the ANDs.
3638
3639 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3640 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3641 are the left and right operands of the comparison, respectively.
3642
3643 If the optimization described above can be done, we return the resulting
3644 tree. Otherwise we return zero. */
3645
3646 static tree
3647 optimize_bit_field_compare (location_t loc, enum tree_code code,
3648 tree compare_type, tree lhs, tree rhs)
3649 {
3650 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3651 tree type = TREE_TYPE (lhs);
3652 tree unsigned_type;
3653 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3654 machine_mode lmode, rmode, nmode;
3655 int lunsignedp, runsignedp;
3656 int lvolatilep = 0, rvolatilep = 0;
3657 tree linner, rinner = NULL_TREE;
3658 tree mask;
3659 tree offset;
3660
3661 /* Get all the information about the extractions being done. If the bit size
3662 if the same as the size of the underlying object, we aren't doing an
3663 extraction at all and so can do nothing. We also don't want to
3664 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3665 then will no longer be able to replace it. */
3666 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3667 &lunsignedp, &lvolatilep, false);
3668 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3669 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3670 return 0;
3671
3672 if (!const_p)
3673 {
3674 /* If this is not a constant, we can only do something if bit positions,
3675 sizes, and signedness are the same. */
3676 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3677 &runsignedp, &rvolatilep, false);
3678
3679 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3680 || lunsignedp != runsignedp || offset != 0
3681 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3682 return 0;
3683 }
3684
3685 /* See if we can find a mode to refer to this field. We should be able to,
3686 but fail if we can't. */
3687 nmode = get_best_mode (lbitsize, lbitpos, 0, 0,
3688 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3689 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3690 TYPE_ALIGN (TREE_TYPE (rinner))),
3691 word_mode, false);
3692 if (nmode == VOIDmode)
3693 return 0;
3694
3695 /* Set signed and unsigned types of the precision of this mode for the
3696 shifts below. */
3697 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3698
3699 /* Compute the bit position and size for the new reference and our offset
3700 within it. If the new reference is the same size as the original, we
3701 won't optimize anything, so return zero. */
3702 nbitsize = GET_MODE_BITSIZE (nmode);
3703 nbitpos = lbitpos & ~ (nbitsize - 1);
3704 lbitpos -= nbitpos;
3705 if (nbitsize == lbitsize)
3706 return 0;
3707
3708 if (BYTES_BIG_ENDIAN)
3709 lbitpos = nbitsize - lbitsize - lbitpos;
3710
3711 /* Make the mask to be used against the extracted field. */
3712 mask = build_int_cst_type (unsigned_type, -1);
3713 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
3714 mask = const_binop (RSHIFT_EXPR, mask,
3715 size_int (nbitsize - lbitsize - lbitpos));
3716
3717 if (! const_p)
3718 /* If not comparing with constant, just rework the comparison
3719 and return. */
3720 return fold_build2_loc (loc, code, compare_type,
3721 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3722 make_bit_field_ref (loc, linner,
3723 unsigned_type,
3724 nbitsize, nbitpos,
3725 1),
3726 mask),
3727 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3728 make_bit_field_ref (loc, rinner,
3729 unsigned_type,
3730 nbitsize, nbitpos,
3731 1),
3732 mask));
3733
3734 /* Otherwise, we are handling the constant case. See if the constant is too
3735 big for the field. Warn and return a tree of for 0 (false) if so. We do
3736 this not only for its own sake, but to avoid having to test for this
3737 error case below. If we didn't, we might generate wrong code.
3738
3739 For unsigned fields, the constant shifted right by the field length should
3740 be all zero. For signed fields, the high-order bits should agree with
3741 the sign bit. */
3742
3743 if (lunsignedp)
3744 {
3745 if (wi::lrshift (rhs, lbitsize) != 0)
3746 {
3747 warning (0, "comparison is always %d due to width of bit-field",
3748 code == NE_EXPR);
3749 return constant_boolean_node (code == NE_EXPR, compare_type);
3750 }
3751 }
3752 else
3753 {
3754 wide_int tem = wi::arshift (rhs, lbitsize - 1);
3755 if (tem != 0 && tem != -1)
3756 {
3757 warning (0, "comparison is always %d due to width of bit-field",
3758 code == NE_EXPR);
3759 return constant_boolean_node (code == NE_EXPR, compare_type);
3760 }
3761 }
3762
3763 /* Single-bit compares should always be against zero. */
3764 if (lbitsize == 1 && ! integer_zerop (rhs))
3765 {
3766 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3767 rhs = build_int_cst (type, 0);
3768 }
3769
3770 /* Make a new bitfield reference, shift the constant over the
3771 appropriate number of bits and mask it with the computed mask
3772 (in case this was a signed field). If we changed it, make a new one. */
3773 lhs = make_bit_field_ref (loc, linner, unsigned_type, nbitsize, nbitpos, 1);
3774
3775 rhs = const_binop (BIT_AND_EXPR,
3776 const_binop (LSHIFT_EXPR,
3777 fold_convert_loc (loc, unsigned_type, rhs),
3778 size_int (lbitpos)),
3779 mask);
3780
3781 lhs = build2_loc (loc, code, compare_type,
3782 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
3783 return lhs;
3784 }
3785 \f
3786 /* Subroutine for fold_truth_andor_1: decode a field reference.
3787
3788 If EXP is a comparison reference, we return the innermost reference.
3789
3790 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3791 set to the starting bit number.
3792
3793 If the innermost field can be completely contained in a mode-sized
3794 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3795
3796 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3797 otherwise it is not changed.
3798
3799 *PUNSIGNEDP is set to the signedness of the field.
3800
3801 *PMASK is set to the mask used. This is either contained in a
3802 BIT_AND_EXPR or derived from the width of the field.
3803
3804 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3805
3806 Return 0 if this is not a component reference or is one that we can't
3807 do anything with. */
3808
3809 static tree
3810 decode_field_reference (location_t loc, tree exp, HOST_WIDE_INT *pbitsize,
3811 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
3812 int *punsignedp, int *pvolatilep,
3813 tree *pmask, tree *pand_mask)
3814 {
3815 tree outer_type = 0;
3816 tree and_mask = 0;
3817 tree mask, inner, offset;
3818 tree unsigned_type;
3819 unsigned int precision;
3820
3821 /* All the optimizations using this function assume integer fields.
3822 There are problems with FP fields since the type_for_size call
3823 below can fail for, e.g., XFmode. */
3824 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3825 return 0;
3826
3827 /* We are interested in the bare arrangement of bits, so strip everything
3828 that doesn't affect the machine mode. However, record the type of the
3829 outermost expression if it may matter below. */
3830 if (CONVERT_EXPR_P (exp)
3831 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3832 outer_type = TREE_TYPE (exp);
3833 STRIP_NOPS (exp);
3834
3835 if (TREE_CODE (exp) == BIT_AND_EXPR)
3836 {
3837 and_mask = TREE_OPERAND (exp, 1);
3838 exp = TREE_OPERAND (exp, 0);
3839 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3840 if (TREE_CODE (and_mask) != INTEGER_CST)
3841 return 0;
3842 }
3843
3844 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3845 punsignedp, pvolatilep, false);
3846 if ((inner == exp && and_mask == 0)
3847 || *pbitsize < 0 || offset != 0
3848 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3849 return 0;
3850
3851 /* If the number of bits in the reference is the same as the bitsize of
3852 the outer type, then the outer type gives the signedness. Otherwise
3853 (in case of a small bitfield) the signedness is unchanged. */
3854 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3855 *punsignedp = TYPE_UNSIGNED (outer_type);
3856
3857 /* Compute the mask to access the bitfield. */
3858 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3859 precision = TYPE_PRECISION (unsigned_type);
3860
3861 mask = build_int_cst_type (unsigned_type, -1);
3862
3863 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3864 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3865
3866 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3867 if (and_mask != 0)
3868 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3869 fold_convert_loc (loc, unsigned_type, and_mask), mask);
3870
3871 *pmask = mask;
3872 *pand_mask = and_mask;
3873 return inner;
3874 }
3875
3876 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3877 bit positions and MASK is SIGNED. */
3878
3879 static int
3880 all_ones_mask_p (const_tree mask, unsigned int size)
3881 {
3882 tree type = TREE_TYPE (mask);
3883 unsigned int precision = TYPE_PRECISION (type);
3884
3885 /* If this function returns true when the type of the mask is
3886 UNSIGNED, then there will be errors. In particular see
3887 gcc.c-torture/execute/990326-1.c. There does not appear to be
3888 any documentation paper trail as to why this is so. But the pre
3889 wide-int worked with that restriction and it has been preserved
3890 here. */
3891 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
3892 return false;
3893
3894 return wi::mask (size, false, precision) == mask;
3895 }
3896
3897 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3898 represents the sign bit of EXP's type. If EXP represents a sign
3899 or zero extension, also test VAL against the unextended type.
3900 The return value is the (sub)expression whose sign bit is VAL,
3901 or NULL_TREE otherwise. */
3902
3903 tree
3904 sign_bit_p (tree exp, const_tree val)
3905 {
3906 int width;
3907 tree t;
3908
3909 /* Tree EXP must have an integral type. */
3910 t = TREE_TYPE (exp);
3911 if (! INTEGRAL_TYPE_P (t))
3912 return NULL_TREE;
3913
3914 /* Tree VAL must be an integer constant. */
3915 if (TREE_CODE (val) != INTEGER_CST
3916 || TREE_OVERFLOW (val))
3917 return NULL_TREE;
3918
3919 width = TYPE_PRECISION (t);
3920 if (wi::only_sign_bit_p (val, width))
3921 return exp;
3922
3923 /* Handle extension from a narrower type. */
3924 if (TREE_CODE (exp) == NOP_EXPR
3925 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
3926 return sign_bit_p (TREE_OPERAND (exp, 0), val);
3927
3928 return NULL_TREE;
3929 }
3930
3931 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
3932 to be evaluated unconditionally. */
3933
3934 static int
3935 simple_operand_p (const_tree exp)
3936 {
3937 /* Strip any conversions that don't change the machine mode. */
3938 STRIP_NOPS (exp);
3939
3940 return (CONSTANT_CLASS_P (exp)
3941 || TREE_CODE (exp) == SSA_NAME
3942 || (DECL_P (exp)
3943 && ! TREE_ADDRESSABLE (exp)
3944 && ! TREE_THIS_VOLATILE (exp)
3945 && ! DECL_NONLOCAL (exp)
3946 /* Don't regard global variables as simple. They may be
3947 allocated in ways unknown to the compiler (shared memory,
3948 #pragma weak, etc). */
3949 && ! TREE_PUBLIC (exp)
3950 && ! DECL_EXTERNAL (exp)
3951 /* Weakrefs are not safe to be read, since they can be NULL.
3952 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
3953 have DECL_WEAK flag set. */
3954 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
3955 /* Loading a static variable is unduly expensive, but global
3956 registers aren't expensive. */
3957 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3958 }
3959
3960 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
3961 to be evaluated unconditionally.
3962 I addition to simple_operand_p, we assume that comparisons, conversions,
3963 and logic-not operations are simple, if their operands are simple, too. */
3964
3965 static bool
3966 simple_operand_p_2 (tree exp)
3967 {
3968 enum tree_code code;
3969
3970 if (TREE_SIDE_EFFECTS (exp)
3971 || tree_could_trap_p (exp))
3972 return false;
3973
3974 while (CONVERT_EXPR_P (exp))
3975 exp = TREE_OPERAND (exp, 0);
3976
3977 code = TREE_CODE (exp);
3978
3979 if (TREE_CODE_CLASS (code) == tcc_comparison)
3980 return (simple_operand_p (TREE_OPERAND (exp, 0))
3981 && simple_operand_p (TREE_OPERAND (exp, 1)));
3982
3983 if (code == TRUTH_NOT_EXPR)
3984 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
3985
3986 return simple_operand_p (exp);
3987 }
3988
3989 \f
3990 /* The following functions are subroutines to fold_range_test and allow it to
3991 try to change a logical combination of comparisons into a range test.
3992
3993 For example, both
3994 X == 2 || X == 3 || X == 4 || X == 5
3995 and
3996 X >= 2 && X <= 5
3997 are converted to
3998 (unsigned) (X - 2) <= 3
3999
4000 We describe each set of comparisons as being either inside or outside
4001 a range, using a variable named like IN_P, and then describe the
4002 range with a lower and upper bound. If one of the bounds is omitted,
4003 it represents either the highest or lowest value of the type.
4004
4005 In the comments below, we represent a range by two numbers in brackets
4006 preceded by a "+" to designate being inside that range, or a "-" to
4007 designate being outside that range, so the condition can be inverted by
4008 flipping the prefix. An omitted bound is represented by a "-". For
4009 example, "- [-, 10]" means being outside the range starting at the lowest
4010 possible value and ending at 10, in other words, being greater than 10.
4011 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4012 always false.
4013
4014 We set up things so that the missing bounds are handled in a consistent
4015 manner so neither a missing bound nor "true" and "false" need to be
4016 handled using a special case. */
4017
4018 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4019 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4020 and UPPER1_P are nonzero if the respective argument is an upper bound
4021 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4022 must be specified for a comparison. ARG1 will be converted to ARG0's
4023 type if both are specified. */
4024
4025 static tree
4026 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4027 tree arg1, int upper1_p)
4028 {
4029 tree tem;
4030 int result;
4031 int sgn0, sgn1;
4032
4033 /* If neither arg represents infinity, do the normal operation.
4034 Else, if not a comparison, return infinity. Else handle the special
4035 comparison rules. Note that most of the cases below won't occur, but
4036 are handled for consistency. */
4037
4038 if (arg0 != 0 && arg1 != 0)
4039 {
4040 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4041 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4042 STRIP_NOPS (tem);
4043 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4044 }
4045
4046 if (TREE_CODE_CLASS (code) != tcc_comparison)
4047 return 0;
4048
4049 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4050 for neither. In real maths, we cannot assume open ended ranges are
4051 the same. But, this is computer arithmetic, where numbers are finite.
4052 We can therefore make the transformation of any unbounded range with
4053 the value Z, Z being greater than any representable number. This permits
4054 us to treat unbounded ranges as equal. */
4055 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4056 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4057 switch (code)
4058 {
4059 case EQ_EXPR:
4060 result = sgn0 == sgn1;
4061 break;
4062 case NE_EXPR:
4063 result = sgn0 != sgn1;
4064 break;
4065 case LT_EXPR:
4066 result = sgn0 < sgn1;
4067 break;
4068 case LE_EXPR:
4069 result = sgn0 <= sgn1;
4070 break;
4071 case GT_EXPR:
4072 result = sgn0 > sgn1;
4073 break;
4074 case GE_EXPR:
4075 result = sgn0 >= sgn1;
4076 break;
4077 default:
4078 gcc_unreachable ();
4079 }
4080
4081 return constant_boolean_node (result, type);
4082 }
4083 \f
4084 /* Helper routine for make_range. Perform one step for it, return
4085 new expression if the loop should continue or NULL_TREE if it should
4086 stop. */
4087
4088 tree
4089 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4090 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4091 bool *strict_overflow_p)
4092 {
4093 tree arg0_type = TREE_TYPE (arg0);
4094 tree n_low, n_high, low = *p_low, high = *p_high;
4095 int in_p = *p_in_p, n_in_p;
4096
4097 switch (code)
4098 {
4099 case TRUTH_NOT_EXPR:
4100 /* We can only do something if the range is testing for zero. */
4101 if (low == NULL_TREE || high == NULL_TREE
4102 || ! integer_zerop (low) || ! integer_zerop (high))
4103 return NULL_TREE;
4104 *p_in_p = ! in_p;
4105 return arg0;
4106
4107 case EQ_EXPR: case NE_EXPR:
4108 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4109 /* We can only do something if the range is testing for zero
4110 and if the second operand is an integer constant. Note that
4111 saying something is "in" the range we make is done by
4112 complementing IN_P since it will set in the initial case of
4113 being not equal to zero; "out" is leaving it alone. */
4114 if (low == NULL_TREE || high == NULL_TREE
4115 || ! integer_zerop (low) || ! integer_zerop (high)
4116 || TREE_CODE (arg1) != INTEGER_CST)
4117 return NULL_TREE;
4118
4119 switch (code)
4120 {
4121 case NE_EXPR: /* - [c, c] */
4122 low = high = arg1;
4123 break;
4124 case EQ_EXPR: /* + [c, c] */
4125 in_p = ! in_p, low = high = arg1;
4126 break;
4127 case GT_EXPR: /* - [-, c] */
4128 low = 0, high = arg1;
4129 break;
4130 case GE_EXPR: /* + [c, -] */
4131 in_p = ! in_p, low = arg1, high = 0;
4132 break;
4133 case LT_EXPR: /* - [c, -] */
4134 low = arg1, high = 0;
4135 break;
4136 case LE_EXPR: /* + [-, c] */
4137 in_p = ! in_p, low = 0, high = arg1;
4138 break;
4139 default:
4140 gcc_unreachable ();
4141 }
4142
4143 /* If this is an unsigned comparison, we also know that EXP is
4144 greater than or equal to zero. We base the range tests we make
4145 on that fact, so we record it here so we can parse existing
4146 range tests. We test arg0_type since often the return type
4147 of, e.g. EQ_EXPR, is boolean. */
4148 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4149 {
4150 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4151 in_p, low, high, 1,
4152 build_int_cst (arg0_type, 0),
4153 NULL_TREE))
4154 return NULL_TREE;
4155
4156 in_p = n_in_p, low = n_low, high = n_high;
4157
4158 /* If the high bound is missing, but we have a nonzero low
4159 bound, reverse the range so it goes from zero to the low bound
4160 minus 1. */
4161 if (high == 0 && low && ! integer_zerop (low))
4162 {
4163 in_p = ! in_p;
4164 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4165 build_int_cst (TREE_TYPE (low), 1), 0);
4166 low = build_int_cst (arg0_type, 0);
4167 }
4168 }
4169
4170 *p_low = low;
4171 *p_high = high;
4172 *p_in_p = in_p;
4173 return arg0;
4174
4175 case NEGATE_EXPR:
4176 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4177 low and high are non-NULL, then normalize will DTRT. */
4178 if (!TYPE_UNSIGNED (arg0_type)
4179 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4180 {
4181 if (low == NULL_TREE)
4182 low = TYPE_MIN_VALUE (arg0_type);
4183 if (high == NULL_TREE)
4184 high = TYPE_MAX_VALUE (arg0_type);
4185 }
4186
4187 /* (-x) IN [a,b] -> x in [-b, -a] */
4188 n_low = range_binop (MINUS_EXPR, exp_type,
4189 build_int_cst (exp_type, 0),
4190 0, high, 1);
4191 n_high = range_binop (MINUS_EXPR, exp_type,
4192 build_int_cst (exp_type, 0),
4193 0, low, 0);
4194 if (n_high != 0 && TREE_OVERFLOW (n_high))
4195 return NULL_TREE;
4196 goto normalize;
4197
4198 case BIT_NOT_EXPR:
4199 /* ~ X -> -X - 1 */
4200 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4201 build_int_cst (exp_type, 1));
4202
4203 case PLUS_EXPR:
4204 case MINUS_EXPR:
4205 if (TREE_CODE (arg1) != INTEGER_CST)
4206 return NULL_TREE;
4207
4208 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4209 move a constant to the other side. */
4210 if (!TYPE_UNSIGNED (arg0_type)
4211 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4212 return NULL_TREE;
4213
4214 /* If EXP is signed, any overflow in the computation is undefined,
4215 so we don't worry about it so long as our computations on
4216 the bounds don't overflow. For unsigned, overflow is defined
4217 and this is exactly the right thing. */
4218 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4219 arg0_type, low, 0, arg1, 0);
4220 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4221 arg0_type, high, 1, arg1, 0);
4222 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4223 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4224 return NULL_TREE;
4225
4226 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4227 *strict_overflow_p = true;
4228
4229 normalize:
4230 /* Check for an unsigned range which has wrapped around the maximum
4231 value thus making n_high < n_low, and normalize it. */
4232 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4233 {
4234 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4235 build_int_cst (TREE_TYPE (n_high), 1), 0);
4236 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4237 build_int_cst (TREE_TYPE (n_low), 1), 0);
4238
4239 /* If the range is of the form +/- [ x+1, x ], we won't
4240 be able to normalize it. But then, it represents the
4241 whole range or the empty set, so make it
4242 +/- [ -, - ]. */
4243 if (tree_int_cst_equal (n_low, low)
4244 && tree_int_cst_equal (n_high, high))
4245 low = high = 0;
4246 else
4247 in_p = ! in_p;
4248 }
4249 else
4250 low = n_low, high = n_high;
4251
4252 *p_low = low;
4253 *p_high = high;
4254 *p_in_p = in_p;
4255 return arg0;
4256
4257 CASE_CONVERT:
4258 case NON_LVALUE_EXPR:
4259 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4260 return NULL_TREE;
4261
4262 if (! INTEGRAL_TYPE_P (arg0_type)
4263 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4264 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4265 return NULL_TREE;
4266
4267 n_low = low, n_high = high;
4268
4269 if (n_low != 0)
4270 n_low = fold_convert_loc (loc, arg0_type, n_low);
4271
4272 if (n_high != 0)
4273 n_high = fold_convert_loc (loc, arg0_type, n_high);
4274
4275 /* If we're converting arg0 from an unsigned type, to exp,
4276 a signed type, we will be doing the comparison as unsigned.
4277 The tests above have already verified that LOW and HIGH
4278 are both positive.
4279
4280 So we have to ensure that we will handle large unsigned
4281 values the same way that the current signed bounds treat
4282 negative values. */
4283
4284 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4285 {
4286 tree high_positive;
4287 tree equiv_type;
4288 /* For fixed-point modes, we need to pass the saturating flag
4289 as the 2nd parameter. */
4290 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4291 equiv_type
4292 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4293 TYPE_SATURATING (arg0_type));
4294 else
4295 equiv_type
4296 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4297
4298 /* A range without an upper bound is, naturally, unbounded.
4299 Since convert would have cropped a very large value, use
4300 the max value for the destination type. */
4301 high_positive
4302 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4303 : TYPE_MAX_VALUE (arg0_type);
4304
4305 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4306 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4307 fold_convert_loc (loc, arg0_type,
4308 high_positive),
4309 build_int_cst (arg0_type, 1));
4310
4311 /* If the low bound is specified, "and" the range with the
4312 range for which the original unsigned value will be
4313 positive. */
4314 if (low != 0)
4315 {
4316 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4317 1, fold_convert_loc (loc, arg0_type,
4318 integer_zero_node),
4319 high_positive))
4320 return NULL_TREE;
4321
4322 in_p = (n_in_p == in_p);
4323 }
4324 else
4325 {
4326 /* Otherwise, "or" the range with the range of the input
4327 that will be interpreted as negative. */
4328 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4329 1, fold_convert_loc (loc, arg0_type,
4330 integer_zero_node),
4331 high_positive))
4332 return NULL_TREE;
4333
4334 in_p = (in_p != n_in_p);
4335 }
4336 }
4337
4338 *p_low = n_low;
4339 *p_high = n_high;
4340 *p_in_p = in_p;
4341 return arg0;
4342
4343 default:
4344 return NULL_TREE;
4345 }
4346 }
4347
4348 /* Given EXP, a logical expression, set the range it is testing into
4349 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4350 actually being tested. *PLOW and *PHIGH will be made of the same
4351 type as the returned expression. If EXP is not a comparison, we
4352 will most likely not be returning a useful value and range. Set
4353 *STRICT_OVERFLOW_P to true if the return value is only valid
4354 because signed overflow is undefined; otherwise, do not change
4355 *STRICT_OVERFLOW_P. */
4356
4357 tree
4358 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4359 bool *strict_overflow_p)
4360 {
4361 enum tree_code code;
4362 tree arg0, arg1 = NULL_TREE;
4363 tree exp_type, nexp;
4364 int in_p;
4365 tree low, high;
4366 location_t loc = EXPR_LOCATION (exp);
4367
4368 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4369 and see if we can refine the range. Some of the cases below may not
4370 happen, but it doesn't seem worth worrying about this. We "continue"
4371 the outer loop when we've changed something; otherwise we "break"
4372 the switch, which will "break" the while. */
4373
4374 in_p = 0;
4375 low = high = build_int_cst (TREE_TYPE (exp), 0);
4376
4377 while (1)
4378 {
4379 code = TREE_CODE (exp);
4380 exp_type = TREE_TYPE (exp);
4381 arg0 = NULL_TREE;
4382
4383 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4384 {
4385 if (TREE_OPERAND_LENGTH (exp) > 0)
4386 arg0 = TREE_OPERAND (exp, 0);
4387 if (TREE_CODE_CLASS (code) == tcc_binary
4388 || TREE_CODE_CLASS (code) == tcc_comparison
4389 || (TREE_CODE_CLASS (code) == tcc_expression
4390 && TREE_OPERAND_LENGTH (exp) > 1))
4391 arg1 = TREE_OPERAND (exp, 1);
4392 }
4393 if (arg0 == NULL_TREE)
4394 break;
4395
4396 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4397 &high, &in_p, strict_overflow_p);
4398 if (nexp == NULL_TREE)
4399 break;
4400 exp = nexp;
4401 }
4402
4403 /* If EXP is a constant, we can evaluate whether this is true or false. */
4404 if (TREE_CODE (exp) == INTEGER_CST)
4405 {
4406 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4407 exp, 0, low, 0))
4408 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4409 exp, 1, high, 1)));
4410 low = high = 0;
4411 exp = 0;
4412 }
4413
4414 *pin_p = in_p, *plow = low, *phigh = high;
4415 return exp;
4416 }
4417 \f
4418 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4419 type, TYPE, return an expression to test if EXP is in (or out of, depending
4420 on IN_P) the range. Return 0 if the test couldn't be created. */
4421
4422 tree
4423 build_range_check (location_t loc, tree type, tree exp, int in_p,
4424 tree low, tree high)
4425 {
4426 tree etype = TREE_TYPE (exp), value;
4427
4428 /* Disable this optimization for function pointer expressions
4429 on targets that require function pointer canonicalization. */
4430 if (targetm.have_canonicalize_funcptr_for_compare ()
4431 && TREE_CODE (etype) == POINTER_TYPE
4432 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4433 return NULL_TREE;
4434
4435 if (! in_p)
4436 {
4437 value = build_range_check (loc, type, exp, 1, low, high);
4438 if (value != 0)
4439 return invert_truthvalue_loc (loc, value);
4440
4441 return 0;
4442 }
4443
4444 if (low == 0 && high == 0)
4445 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4446
4447 if (low == 0)
4448 return fold_build2_loc (loc, LE_EXPR, type, exp,
4449 fold_convert_loc (loc, etype, high));
4450
4451 if (high == 0)
4452 return fold_build2_loc (loc, GE_EXPR, type, exp,
4453 fold_convert_loc (loc, etype, low));
4454
4455 if (operand_equal_p (low, high, 0))
4456 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4457 fold_convert_loc (loc, etype, low));
4458
4459 if (integer_zerop (low))
4460 {
4461 if (! TYPE_UNSIGNED (etype))
4462 {
4463 etype = unsigned_type_for (etype);
4464 high = fold_convert_loc (loc, etype, high);
4465 exp = fold_convert_loc (loc, etype, exp);
4466 }
4467 return build_range_check (loc, type, exp, 1, 0, high);
4468 }
4469
4470 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4471 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4472 {
4473 int prec = TYPE_PRECISION (etype);
4474
4475 if (wi::mask (prec - 1, false, prec) == high)
4476 {
4477 if (TYPE_UNSIGNED (etype))
4478 {
4479 tree signed_etype = signed_type_for (etype);
4480 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4481 etype
4482 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4483 else
4484 etype = signed_etype;
4485 exp = fold_convert_loc (loc, etype, exp);
4486 }
4487 return fold_build2_loc (loc, GT_EXPR, type, exp,
4488 build_int_cst (etype, 0));
4489 }
4490 }
4491
4492 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4493 This requires wrap-around arithmetics for the type of the expression.
4494 First make sure that arithmetics in this type is valid, then make sure
4495 that it wraps around. */
4496 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4497 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4498 TYPE_UNSIGNED (etype));
4499
4500 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4501 {
4502 tree utype, minv, maxv;
4503
4504 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4505 for the type in question, as we rely on this here. */
4506 utype = unsigned_type_for (etype);
4507 maxv = fold_convert_loc (loc, utype, TYPE_MAX_VALUE (etype));
4508 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4509 build_int_cst (TREE_TYPE (maxv), 1), 1);
4510 minv = fold_convert_loc (loc, utype, TYPE_MIN_VALUE (etype));
4511
4512 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4513 minv, 1, maxv, 1)))
4514 etype = utype;
4515 else
4516 return 0;
4517 }
4518
4519 high = fold_convert_loc (loc, etype, high);
4520 low = fold_convert_loc (loc, etype, low);
4521 exp = fold_convert_loc (loc, etype, exp);
4522
4523 value = const_binop (MINUS_EXPR, high, low);
4524
4525
4526 if (POINTER_TYPE_P (etype))
4527 {
4528 if (value != 0 && !TREE_OVERFLOW (value))
4529 {
4530 low = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (low), low);
4531 return build_range_check (loc, type,
4532 fold_build_pointer_plus_loc (loc, exp, low),
4533 1, build_int_cst (etype, 0), value);
4534 }
4535 return 0;
4536 }
4537
4538 if (value != 0 && !TREE_OVERFLOW (value))
4539 return build_range_check (loc, type,
4540 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4541 1, build_int_cst (etype, 0), value);
4542
4543 return 0;
4544 }
4545 \f
4546 /* Return the predecessor of VAL in its type, handling the infinite case. */
4547
4548 static tree
4549 range_predecessor (tree val)
4550 {
4551 tree type = TREE_TYPE (val);
4552
4553 if (INTEGRAL_TYPE_P (type)
4554 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4555 return 0;
4556 else
4557 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4558 build_int_cst (TREE_TYPE (val), 1), 0);
4559 }
4560
4561 /* Return the successor of VAL in its type, handling the infinite case. */
4562
4563 static tree
4564 range_successor (tree val)
4565 {
4566 tree type = TREE_TYPE (val);
4567
4568 if (INTEGRAL_TYPE_P (type)
4569 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4570 return 0;
4571 else
4572 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4573 build_int_cst (TREE_TYPE (val), 1), 0);
4574 }
4575
4576 /* Given two ranges, see if we can merge them into one. Return 1 if we
4577 can, 0 if we can't. Set the output range into the specified parameters. */
4578
4579 bool
4580 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4581 tree high0, int in1_p, tree low1, tree high1)
4582 {
4583 int no_overlap;
4584 int subset;
4585 int temp;
4586 tree tem;
4587 int in_p;
4588 tree low, high;
4589 int lowequal = ((low0 == 0 && low1 == 0)
4590 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4591 low0, 0, low1, 0)));
4592 int highequal = ((high0 == 0 && high1 == 0)
4593 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4594 high0, 1, high1, 1)));
4595
4596 /* Make range 0 be the range that starts first, or ends last if they
4597 start at the same value. Swap them if it isn't. */
4598 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4599 low0, 0, low1, 0))
4600 || (lowequal
4601 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4602 high1, 1, high0, 1))))
4603 {
4604 temp = in0_p, in0_p = in1_p, in1_p = temp;
4605 tem = low0, low0 = low1, low1 = tem;
4606 tem = high0, high0 = high1, high1 = tem;
4607 }
4608
4609 /* Now flag two cases, whether the ranges are disjoint or whether the
4610 second range is totally subsumed in the first. Note that the tests
4611 below are simplified by the ones above. */
4612 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4613 high0, 1, low1, 0));
4614 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4615 high1, 1, high0, 1));
4616
4617 /* We now have four cases, depending on whether we are including or
4618 excluding the two ranges. */
4619 if (in0_p && in1_p)
4620 {
4621 /* If they don't overlap, the result is false. If the second range
4622 is a subset it is the result. Otherwise, the range is from the start
4623 of the second to the end of the first. */
4624 if (no_overlap)
4625 in_p = 0, low = high = 0;
4626 else if (subset)
4627 in_p = 1, low = low1, high = high1;
4628 else
4629 in_p = 1, low = low1, high = high0;
4630 }
4631
4632 else if (in0_p && ! in1_p)
4633 {
4634 /* If they don't overlap, the result is the first range. If they are
4635 equal, the result is false. If the second range is a subset of the
4636 first, and the ranges begin at the same place, we go from just after
4637 the end of the second range to the end of the first. If the second
4638 range is not a subset of the first, or if it is a subset and both
4639 ranges end at the same place, the range starts at the start of the
4640 first range and ends just before the second range.
4641 Otherwise, we can't describe this as a single range. */
4642 if (no_overlap)
4643 in_p = 1, low = low0, high = high0;
4644 else if (lowequal && highequal)
4645 in_p = 0, low = high = 0;
4646 else if (subset && lowequal)
4647 {
4648 low = range_successor (high1);
4649 high = high0;
4650 in_p = 1;
4651 if (low == 0)
4652 {
4653 /* We are in the weird situation where high0 > high1 but
4654 high1 has no successor. Punt. */
4655 return 0;
4656 }
4657 }
4658 else if (! subset || highequal)
4659 {
4660 low = low0;
4661 high = range_predecessor (low1);
4662 in_p = 1;
4663 if (high == 0)
4664 {
4665 /* low0 < low1 but low1 has no predecessor. Punt. */
4666 return 0;
4667 }
4668 }
4669 else
4670 return 0;
4671 }
4672
4673 else if (! in0_p && in1_p)
4674 {
4675 /* If they don't overlap, the result is the second range. If the second
4676 is a subset of the first, the result is false. Otherwise,
4677 the range starts just after the first range and ends at the
4678 end of the second. */
4679 if (no_overlap)
4680 in_p = 1, low = low1, high = high1;
4681 else if (subset || highequal)
4682 in_p = 0, low = high = 0;
4683 else
4684 {
4685 low = range_successor (high0);
4686 high = high1;
4687 in_p = 1;
4688 if (low == 0)
4689 {
4690 /* high1 > high0 but high0 has no successor. Punt. */
4691 return 0;
4692 }
4693 }
4694 }
4695
4696 else
4697 {
4698 /* The case where we are excluding both ranges. Here the complex case
4699 is if they don't overlap. In that case, the only time we have a
4700 range is if they are adjacent. If the second is a subset of the
4701 first, the result is the first. Otherwise, the range to exclude
4702 starts at the beginning of the first range and ends at the end of the
4703 second. */
4704 if (no_overlap)
4705 {
4706 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4707 range_successor (high0),
4708 1, low1, 0)))
4709 in_p = 0, low = low0, high = high1;
4710 else
4711 {
4712 /* Canonicalize - [min, x] into - [-, x]. */
4713 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4714 switch (TREE_CODE (TREE_TYPE (low0)))
4715 {
4716 case ENUMERAL_TYPE:
4717 if (TYPE_PRECISION (TREE_TYPE (low0))
4718 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4719 break;
4720 /* FALLTHROUGH */
4721 case INTEGER_TYPE:
4722 if (tree_int_cst_equal (low0,
4723 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4724 low0 = 0;
4725 break;
4726 case POINTER_TYPE:
4727 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4728 && integer_zerop (low0))
4729 low0 = 0;
4730 break;
4731 default:
4732 break;
4733 }
4734
4735 /* Canonicalize - [x, max] into - [x, -]. */
4736 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4737 switch (TREE_CODE (TREE_TYPE (high1)))
4738 {
4739 case ENUMERAL_TYPE:
4740 if (TYPE_PRECISION (TREE_TYPE (high1))
4741 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4742 break;
4743 /* FALLTHROUGH */
4744 case INTEGER_TYPE:
4745 if (tree_int_cst_equal (high1,
4746 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4747 high1 = 0;
4748 break;
4749 case POINTER_TYPE:
4750 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4751 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4752 high1, 1,
4753 build_int_cst (TREE_TYPE (high1), 1),
4754 1)))
4755 high1 = 0;
4756 break;
4757 default:
4758 break;
4759 }
4760
4761 /* The ranges might be also adjacent between the maximum and
4762 minimum values of the given type. For
4763 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4764 return + [x + 1, y - 1]. */
4765 if (low0 == 0 && high1 == 0)
4766 {
4767 low = range_successor (high0);
4768 high = range_predecessor (low1);
4769 if (low == 0 || high == 0)
4770 return 0;
4771
4772 in_p = 1;
4773 }
4774 else
4775 return 0;
4776 }
4777 }
4778 else if (subset)
4779 in_p = 0, low = low0, high = high0;
4780 else
4781 in_p = 0, low = low0, high = high1;
4782 }
4783
4784 *pin_p = in_p, *plow = low, *phigh = high;
4785 return 1;
4786 }
4787 \f
4788
4789 /* Subroutine of fold, looking inside expressions of the form
4790 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4791 of the COND_EXPR. This function is being used also to optimize
4792 A op B ? C : A, by reversing the comparison first.
4793
4794 Return a folded expression whose code is not a COND_EXPR
4795 anymore, or NULL_TREE if no folding opportunity is found. */
4796
4797 static tree
4798 fold_cond_expr_with_comparison (location_t loc, tree type,
4799 tree arg0, tree arg1, tree arg2)
4800 {
4801 enum tree_code comp_code = TREE_CODE (arg0);
4802 tree arg00 = TREE_OPERAND (arg0, 0);
4803 tree arg01 = TREE_OPERAND (arg0, 1);
4804 tree arg1_type = TREE_TYPE (arg1);
4805 tree tem;
4806
4807 STRIP_NOPS (arg1);
4808 STRIP_NOPS (arg2);
4809
4810 /* If we have A op 0 ? A : -A, consider applying the following
4811 transformations:
4812
4813 A == 0? A : -A same as -A
4814 A != 0? A : -A same as A
4815 A >= 0? A : -A same as abs (A)
4816 A > 0? A : -A same as abs (A)
4817 A <= 0? A : -A same as -abs (A)
4818 A < 0? A : -A same as -abs (A)
4819
4820 None of these transformations work for modes with signed
4821 zeros. If A is +/-0, the first two transformations will
4822 change the sign of the result (from +0 to -0, or vice
4823 versa). The last four will fix the sign of the result,
4824 even though the original expressions could be positive or
4825 negative, depending on the sign of A.
4826
4827 Note that all these transformations are correct if A is
4828 NaN, since the two alternatives (A and -A) are also NaNs. */
4829 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4830 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
4831 ? real_zerop (arg01)
4832 : integer_zerop (arg01))
4833 && ((TREE_CODE (arg2) == NEGATE_EXPR
4834 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4835 /* In the case that A is of the form X-Y, '-A' (arg2) may
4836 have already been folded to Y-X, check for that. */
4837 || (TREE_CODE (arg1) == MINUS_EXPR
4838 && TREE_CODE (arg2) == MINUS_EXPR
4839 && operand_equal_p (TREE_OPERAND (arg1, 0),
4840 TREE_OPERAND (arg2, 1), 0)
4841 && operand_equal_p (TREE_OPERAND (arg1, 1),
4842 TREE_OPERAND (arg2, 0), 0))))
4843 switch (comp_code)
4844 {
4845 case EQ_EXPR:
4846 case UNEQ_EXPR:
4847 tem = fold_convert_loc (loc, arg1_type, arg1);
4848 return pedantic_non_lvalue_loc (loc,
4849 fold_convert_loc (loc, type,
4850 negate_expr (tem)));
4851 case NE_EXPR:
4852 case LTGT_EXPR:
4853 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4854 case UNGE_EXPR:
4855 case UNGT_EXPR:
4856 if (flag_trapping_math)
4857 break;
4858 /* Fall through. */
4859 case GE_EXPR:
4860 case GT_EXPR:
4861 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4862 arg1 = fold_convert_loc (loc, signed_type_for
4863 (TREE_TYPE (arg1)), arg1);
4864 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4865 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4866 case UNLE_EXPR:
4867 case UNLT_EXPR:
4868 if (flag_trapping_math)
4869 break;
4870 case LE_EXPR:
4871 case LT_EXPR:
4872 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4873 arg1 = fold_convert_loc (loc, signed_type_for
4874 (TREE_TYPE (arg1)), arg1);
4875 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4876 return negate_expr (fold_convert_loc (loc, type, tem));
4877 default:
4878 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4879 break;
4880 }
4881
4882 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4883 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4884 both transformations are correct when A is NaN: A != 0
4885 is then true, and A == 0 is false. */
4886
4887 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4888 && integer_zerop (arg01) && integer_zerop (arg2))
4889 {
4890 if (comp_code == NE_EXPR)
4891 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4892 else if (comp_code == EQ_EXPR)
4893 return build_zero_cst (type);
4894 }
4895
4896 /* Try some transformations of A op B ? A : B.
4897
4898 A == B? A : B same as B
4899 A != B? A : B same as A
4900 A >= B? A : B same as max (A, B)
4901 A > B? A : B same as max (B, A)
4902 A <= B? A : B same as min (A, B)
4903 A < B? A : B same as min (B, A)
4904
4905 As above, these transformations don't work in the presence
4906 of signed zeros. For example, if A and B are zeros of
4907 opposite sign, the first two transformations will change
4908 the sign of the result. In the last four, the original
4909 expressions give different results for (A=+0, B=-0) and
4910 (A=-0, B=+0), but the transformed expressions do not.
4911
4912 The first two transformations are correct if either A or B
4913 is a NaN. In the first transformation, the condition will
4914 be false, and B will indeed be chosen. In the case of the
4915 second transformation, the condition A != B will be true,
4916 and A will be chosen.
4917
4918 The conversions to max() and min() are not correct if B is
4919 a number and A is not. The conditions in the original
4920 expressions will be false, so all four give B. The min()
4921 and max() versions would give a NaN instead. */
4922 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4923 && operand_equal_for_comparison_p (arg01, arg2, arg00)
4924 /* Avoid these transformations if the COND_EXPR may be used
4925 as an lvalue in the C++ front-end. PR c++/19199. */
4926 && (in_gimple_form
4927 || VECTOR_TYPE_P (type)
4928 || (! lang_GNU_CXX ()
4929 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
4930 || ! maybe_lvalue_p (arg1)
4931 || ! maybe_lvalue_p (arg2)))
4932 {
4933 tree comp_op0 = arg00;
4934 tree comp_op1 = arg01;
4935 tree comp_type = TREE_TYPE (comp_op0);
4936
4937 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4938 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
4939 {
4940 comp_type = type;
4941 comp_op0 = arg1;
4942 comp_op1 = arg2;
4943 }
4944
4945 switch (comp_code)
4946 {
4947 case EQ_EXPR:
4948 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg2));
4949 case NE_EXPR:
4950 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4951 case LE_EXPR:
4952 case LT_EXPR:
4953 case UNLE_EXPR:
4954 case UNLT_EXPR:
4955 /* In C++ a ?: expression can be an lvalue, so put the
4956 operand which will be used if they are equal first
4957 so that we can convert this back to the
4958 corresponding COND_EXPR. */
4959 if (!HONOR_NANS (arg1))
4960 {
4961 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4962 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4963 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
4964 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
4965 : fold_build2_loc (loc, MIN_EXPR, comp_type,
4966 comp_op1, comp_op0);
4967 return pedantic_non_lvalue_loc (loc,
4968 fold_convert_loc (loc, type, tem));
4969 }
4970 break;
4971 case GE_EXPR:
4972 case GT_EXPR:
4973 case UNGE_EXPR:
4974 case UNGT_EXPR:
4975 if (!HONOR_NANS (arg1))
4976 {
4977 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4978 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4979 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
4980 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
4981 : fold_build2_loc (loc, MAX_EXPR, comp_type,
4982 comp_op1, comp_op0);
4983 return pedantic_non_lvalue_loc (loc,
4984 fold_convert_loc (loc, type, tem));
4985 }
4986 break;
4987 case UNEQ_EXPR:
4988 if (!HONOR_NANS (arg1))
4989 return pedantic_non_lvalue_loc (loc,
4990 fold_convert_loc (loc, type, arg2));
4991 break;
4992 case LTGT_EXPR:
4993 if (!HONOR_NANS (arg1))
4994 return pedantic_non_lvalue_loc (loc,
4995 fold_convert_loc (loc, type, arg1));
4996 break;
4997 default:
4998 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4999 break;
5000 }
5001 }
5002
5003 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5004 we might still be able to simplify this. For example,
5005 if C1 is one less or one more than C2, this might have started
5006 out as a MIN or MAX and been transformed by this function.
5007 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5008
5009 if (INTEGRAL_TYPE_P (type)
5010 && TREE_CODE (arg01) == INTEGER_CST
5011 && TREE_CODE (arg2) == INTEGER_CST)
5012 switch (comp_code)
5013 {
5014 case EQ_EXPR:
5015 if (TREE_CODE (arg1) == INTEGER_CST)
5016 break;
5017 /* We can replace A with C1 in this case. */
5018 arg1 = fold_convert_loc (loc, type, arg01);
5019 return fold_build3_loc (loc, COND_EXPR, type, arg0, arg1, arg2);
5020
5021 case LT_EXPR:
5022 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
5023 MIN_EXPR, to preserve the signedness of the comparison. */
5024 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5025 OEP_ONLY_CONST)
5026 && operand_equal_p (arg01,
5027 const_binop (PLUS_EXPR, arg2,
5028 build_int_cst (type, 1)),
5029 OEP_ONLY_CONST))
5030 {
5031 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5032 fold_convert_loc (loc, TREE_TYPE (arg00),
5033 arg2));
5034 return pedantic_non_lvalue_loc (loc,
5035 fold_convert_loc (loc, type, tem));
5036 }
5037 break;
5038
5039 case LE_EXPR:
5040 /* If C1 is C2 - 1, this is min(A, C2), with the same care
5041 as above. */
5042 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5043 OEP_ONLY_CONST)
5044 && operand_equal_p (arg01,
5045 const_binop (MINUS_EXPR, arg2,
5046 build_int_cst (type, 1)),
5047 OEP_ONLY_CONST))
5048 {
5049 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5050 fold_convert_loc (loc, TREE_TYPE (arg00),
5051 arg2));
5052 return pedantic_non_lvalue_loc (loc,
5053 fold_convert_loc (loc, type, tem));
5054 }
5055 break;
5056
5057 case GT_EXPR:
5058 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
5059 MAX_EXPR, to preserve the signedness of the comparison. */
5060 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5061 OEP_ONLY_CONST)
5062 && operand_equal_p (arg01,
5063 const_binop (MINUS_EXPR, arg2,
5064 build_int_cst (type, 1)),
5065 OEP_ONLY_CONST))
5066 {
5067 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5068 fold_convert_loc (loc, TREE_TYPE (arg00),
5069 arg2));
5070 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5071 }
5072 break;
5073
5074 case GE_EXPR:
5075 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
5076 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5077 OEP_ONLY_CONST)
5078 && operand_equal_p (arg01,
5079 const_binop (PLUS_EXPR, arg2,
5080 build_int_cst (type, 1)),
5081 OEP_ONLY_CONST))
5082 {
5083 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5084 fold_convert_loc (loc, TREE_TYPE (arg00),
5085 arg2));
5086 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5087 }
5088 break;
5089 case NE_EXPR:
5090 break;
5091 default:
5092 gcc_unreachable ();
5093 }
5094
5095 return NULL_TREE;
5096 }
5097
5098
5099 \f
5100 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5101 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5102 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5103 false) >= 2)
5104 #endif
5105
5106 /* EXP is some logical combination of boolean tests. See if we can
5107 merge it into some range test. Return the new tree if so. */
5108
5109 static tree
5110 fold_range_test (location_t loc, enum tree_code code, tree type,
5111 tree op0, tree op1)
5112 {
5113 int or_op = (code == TRUTH_ORIF_EXPR
5114 || code == TRUTH_OR_EXPR);
5115 int in0_p, in1_p, in_p;
5116 tree low0, low1, low, high0, high1, high;
5117 bool strict_overflow_p = false;
5118 tree tem, lhs, rhs;
5119 const char * const warnmsg = G_("assuming signed overflow does not occur "
5120 "when simplifying range test");
5121
5122 if (!INTEGRAL_TYPE_P (type))
5123 return 0;
5124
5125 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5126 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5127
5128 /* If this is an OR operation, invert both sides; we will invert
5129 again at the end. */
5130 if (or_op)
5131 in0_p = ! in0_p, in1_p = ! in1_p;
5132
5133 /* If both expressions are the same, if we can merge the ranges, and we
5134 can build the range test, return it or it inverted. If one of the
5135 ranges is always true or always false, consider it to be the same
5136 expression as the other. */
5137 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5138 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5139 in1_p, low1, high1)
5140 && 0 != (tem = (build_range_check (loc, type,
5141 lhs != 0 ? lhs
5142 : rhs != 0 ? rhs : integer_zero_node,
5143 in_p, low, high))))
5144 {
5145 if (strict_overflow_p)
5146 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5147 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5148 }
5149
5150 /* On machines where the branch cost is expensive, if this is a
5151 short-circuited branch and the underlying object on both sides
5152 is the same, make a non-short-circuit operation. */
5153 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5154 && lhs != 0 && rhs != 0
5155 && (code == TRUTH_ANDIF_EXPR
5156 || code == TRUTH_ORIF_EXPR)
5157 && operand_equal_p (lhs, rhs, 0))
5158 {
5159 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5160 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5161 which cases we can't do this. */
5162 if (simple_operand_p (lhs))
5163 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5164 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5165 type, op0, op1);
5166
5167 else if (!lang_hooks.decls.global_bindings_p ()
5168 && !CONTAINS_PLACEHOLDER_P (lhs))
5169 {
5170 tree common = save_expr (lhs);
5171
5172 if (0 != (lhs = build_range_check (loc, type, common,
5173 or_op ? ! in0_p : in0_p,
5174 low0, high0))
5175 && (0 != (rhs = build_range_check (loc, type, common,
5176 or_op ? ! in1_p : in1_p,
5177 low1, high1))))
5178 {
5179 if (strict_overflow_p)
5180 fold_overflow_warning (warnmsg,
5181 WARN_STRICT_OVERFLOW_COMPARISON);
5182 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5183 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5184 type, lhs, rhs);
5185 }
5186 }
5187 }
5188
5189 return 0;
5190 }
5191 \f
5192 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5193 bit value. Arrange things so the extra bits will be set to zero if and
5194 only if C is signed-extended to its full width. If MASK is nonzero,
5195 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5196
5197 static tree
5198 unextend (tree c, int p, int unsignedp, tree mask)
5199 {
5200 tree type = TREE_TYPE (c);
5201 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5202 tree temp;
5203
5204 if (p == modesize || unsignedp)
5205 return c;
5206
5207 /* We work by getting just the sign bit into the low-order bit, then
5208 into the high-order bit, then sign-extend. We then XOR that value
5209 with C. */
5210 temp = build_int_cst (TREE_TYPE (c), wi::extract_uhwi (c, p - 1, 1));
5211
5212 /* We must use a signed type in order to get an arithmetic right shift.
5213 However, we must also avoid introducing accidental overflows, so that
5214 a subsequent call to integer_zerop will work. Hence we must
5215 do the type conversion here. At this point, the constant is either
5216 zero or one, and the conversion to a signed type can never overflow.
5217 We could get an overflow if this conversion is done anywhere else. */
5218 if (TYPE_UNSIGNED (type))
5219 temp = fold_convert (signed_type_for (type), temp);
5220
5221 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5222 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5223 if (mask != 0)
5224 temp = const_binop (BIT_AND_EXPR, temp,
5225 fold_convert (TREE_TYPE (c), mask));
5226 /* If necessary, convert the type back to match the type of C. */
5227 if (TYPE_UNSIGNED (type))
5228 temp = fold_convert (type, temp);
5229
5230 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5231 }
5232 \f
5233 /* For an expression that has the form
5234 (A && B) || ~B
5235 or
5236 (A || B) && ~B,
5237 we can drop one of the inner expressions and simplify to
5238 A || ~B
5239 or
5240 A && ~B
5241 LOC is the location of the resulting expression. OP is the inner
5242 logical operation; the left-hand side in the examples above, while CMPOP
5243 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5244 removing a condition that guards another, as in
5245 (A != NULL && A->...) || A == NULL
5246 which we must not transform. If RHS_ONLY is true, only eliminate the
5247 right-most operand of the inner logical operation. */
5248
5249 static tree
5250 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5251 bool rhs_only)
5252 {
5253 tree type = TREE_TYPE (cmpop);
5254 enum tree_code code = TREE_CODE (cmpop);
5255 enum tree_code truthop_code = TREE_CODE (op);
5256 tree lhs = TREE_OPERAND (op, 0);
5257 tree rhs = TREE_OPERAND (op, 1);
5258 tree orig_lhs = lhs, orig_rhs = rhs;
5259 enum tree_code rhs_code = TREE_CODE (rhs);
5260 enum tree_code lhs_code = TREE_CODE (lhs);
5261 enum tree_code inv_code;
5262
5263 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5264 return NULL_TREE;
5265
5266 if (TREE_CODE_CLASS (code) != tcc_comparison)
5267 return NULL_TREE;
5268
5269 if (rhs_code == truthop_code)
5270 {
5271 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5272 if (newrhs != NULL_TREE)
5273 {
5274 rhs = newrhs;
5275 rhs_code = TREE_CODE (rhs);
5276 }
5277 }
5278 if (lhs_code == truthop_code && !rhs_only)
5279 {
5280 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5281 if (newlhs != NULL_TREE)
5282 {
5283 lhs = newlhs;
5284 lhs_code = TREE_CODE (lhs);
5285 }
5286 }
5287
5288 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5289 if (inv_code == rhs_code
5290 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5291 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5292 return lhs;
5293 if (!rhs_only && inv_code == lhs_code
5294 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5295 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5296 return rhs;
5297 if (rhs != orig_rhs || lhs != orig_lhs)
5298 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5299 lhs, rhs);
5300 return NULL_TREE;
5301 }
5302
5303 /* Find ways of folding logical expressions of LHS and RHS:
5304 Try to merge two comparisons to the same innermost item.
5305 Look for range tests like "ch >= '0' && ch <= '9'".
5306 Look for combinations of simple terms on machines with expensive branches
5307 and evaluate the RHS unconditionally.
5308
5309 For example, if we have p->a == 2 && p->b == 4 and we can make an
5310 object large enough to span both A and B, we can do this with a comparison
5311 against the object ANDed with the a mask.
5312
5313 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5314 operations to do this with one comparison.
5315
5316 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5317 function and the one above.
5318
5319 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5320 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5321
5322 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5323 two operands.
5324
5325 We return the simplified tree or 0 if no optimization is possible. */
5326
5327 static tree
5328 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5329 tree lhs, tree rhs)
5330 {
5331 /* If this is the "or" of two comparisons, we can do something if
5332 the comparisons are NE_EXPR. If this is the "and", we can do something
5333 if the comparisons are EQ_EXPR. I.e.,
5334 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5335
5336 WANTED_CODE is this operation code. For single bit fields, we can
5337 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5338 comparison for one-bit fields. */
5339
5340 enum tree_code wanted_code;
5341 enum tree_code lcode, rcode;
5342 tree ll_arg, lr_arg, rl_arg, rr_arg;
5343 tree ll_inner, lr_inner, rl_inner, rr_inner;
5344 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5345 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5346 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5347 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5348 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5349 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5350 machine_mode lnmode, rnmode;
5351 tree ll_mask, lr_mask, rl_mask, rr_mask;
5352 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5353 tree l_const, r_const;
5354 tree lntype, rntype, result;
5355 HOST_WIDE_INT first_bit, end_bit;
5356 int volatilep;
5357
5358 /* Start by getting the comparison codes. Fail if anything is volatile.
5359 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5360 it were surrounded with a NE_EXPR. */
5361
5362 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5363 return 0;
5364
5365 lcode = TREE_CODE (lhs);
5366 rcode = TREE_CODE (rhs);
5367
5368 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5369 {
5370 lhs = build2 (NE_EXPR, truth_type, lhs,
5371 build_int_cst (TREE_TYPE (lhs), 0));
5372 lcode = NE_EXPR;
5373 }
5374
5375 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5376 {
5377 rhs = build2 (NE_EXPR, truth_type, rhs,
5378 build_int_cst (TREE_TYPE (rhs), 0));
5379 rcode = NE_EXPR;
5380 }
5381
5382 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5383 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5384 return 0;
5385
5386 ll_arg = TREE_OPERAND (lhs, 0);
5387 lr_arg = TREE_OPERAND (lhs, 1);
5388 rl_arg = TREE_OPERAND (rhs, 0);
5389 rr_arg = TREE_OPERAND (rhs, 1);
5390
5391 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5392 if (simple_operand_p (ll_arg)
5393 && simple_operand_p (lr_arg))
5394 {
5395 if (operand_equal_p (ll_arg, rl_arg, 0)
5396 && operand_equal_p (lr_arg, rr_arg, 0))
5397 {
5398 result = combine_comparisons (loc, code, lcode, rcode,
5399 truth_type, ll_arg, lr_arg);
5400 if (result)
5401 return result;
5402 }
5403 else if (operand_equal_p (ll_arg, rr_arg, 0)
5404 && operand_equal_p (lr_arg, rl_arg, 0))
5405 {
5406 result = combine_comparisons (loc, code, lcode,
5407 swap_tree_comparison (rcode),
5408 truth_type, ll_arg, lr_arg);
5409 if (result)
5410 return result;
5411 }
5412 }
5413
5414 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5415 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5416
5417 /* If the RHS can be evaluated unconditionally and its operands are
5418 simple, it wins to evaluate the RHS unconditionally on machines
5419 with expensive branches. In this case, this isn't a comparison
5420 that can be merged. */
5421
5422 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5423 false) >= 2
5424 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5425 && simple_operand_p (rl_arg)
5426 && simple_operand_p (rr_arg))
5427 {
5428 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5429 if (code == TRUTH_OR_EXPR
5430 && lcode == NE_EXPR && integer_zerop (lr_arg)
5431 && rcode == NE_EXPR && integer_zerop (rr_arg)
5432 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5433 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5434 return build2_loc (loc, NE_EXPR, truth_type,
5435 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5436 ll_arg, rl_arg),
5437 build_int_cst (TREE_TYPE (ll_arg), 0));
5438
5439 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5440 if (code == TRUTH_AND_EXPR
5441 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5442 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5443 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5444 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5445 return build2_loc (loc, EQ_EXPR, truth_type,
5446 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5447 ll_arg, rl_arg),
5448 build_int_cst (TREE_TYPE (ll_arg), 0));
5449 }
5450
5451 /* See if the comparisons can be merged. Then get all the parameters for
5452 each side. */
5453
5454 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5455 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5456 return 0;
5457
5458 volatilep = 0;
5459 ll_inner = decode_field_reference (loc, ll_arg,
5460 &ll_bitsize, &ll_bitpos, &ll_mode,
5461 &ll_unsignedp, &volatilep, &ll_mask,
5462 &ll_and_mask);
5463 lr_inner = decode_field_reference (loc, lr_arg,
5464 &lr_bitsize, &lr_bitpos, &lr_mode,
5465 &lr_unsignedp, &volatilep, &lr_mask,
5466 &lr_and_mask);
5467 rl_inner = decode_field_reference (loc, rl_arg,
5468 &rl_bitsize, &rl_bitpos, &rl_mode,
5469 &rl_unsignedp, &volatilep, &rl_mask,
5470 &rl_and_mask);
5471 rr_inner = decode_field_reference (loc, rr_arg,
5472 &rr_bitsize, &rr_bitpos, &rr_mode,
5473 &rr_unsignedp, &volatilep, &rr_mask,
5474 &rr_and_mask);
5475
5476 /* It must be true that the inner operation on the lhs of each
5477 comparison must be the same if we are to be able to do anything.
5478 Then see if we have constants. If not, the same must be true for
5479 the rhs's. */
5480 if (volatilep || ll_inner == 0 || rl_inner == 0
5481 || ! operand_equal_p (ll_inner, rl_inner, 0))
5482 return 0;
5483
5484 if (TREE_CODE (lr_arg) == INTEGER_CST
5485 && TREE_CODE (rr_arg) == INTEGER_CST)
5486 l_const = lr_arg, r_const = rr_arg;
5487 else if (lr_inner == 0 || rr_inner == 0
5488 || ! operand_equal_p (lr_inner, rr_inner, 0))
5489 return 0;
5490 else
5491 l_const = r_const = 0;
5492
5493 /* If either comparison code is not correct for our logical operation,
5494 fail. However, we can convert a one-bit comparison against zero into
5495 the opposite comparison against that bit being set in the field. */
5496
5497 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5498 if (lcode != wanted_code)
5499 {
5500 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5501 {
5502 /* Make the left operand unsigned, since we are only interested
5503 in the value of one bit. Otherwise we are doing the wrong
5504 thing below. */
5505 ll_unsignedp = 1;
5506 l_const = ll_mask;
5507 }
5508 else
5509 return 0;
5510 }
5511
5512 /* This is analogous to the code for l_const above. */
5513 if (rcode != wanted_code)
5514 {
5515 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5516 {
5517 rl_unsignedp = 1;
5518 r_const = rl_mask;
5519 }
5520 else
5521 return 0;
5522 }
5523
5524 /* See if we can find a mode that contains both fields being compared on
5525 the left. If we can't, fail. Otherwise, update all constants and masks
5526 to be relative to a field of that size. */
5527 first_bit = MIN (ll_bitpos, rl_bitpos);
5528 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5529 lnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5530 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5531 volatilep);
5532 if (lnmode == VOIDmode)
5533 return 0;
5534
5535 lnbitsize = GET_MODE_BITSIZE (lnmode);
5536 lnbitpos = first_bit & ~ (lnbitsize - 1);
5537 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5538 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5539
5540 if (BYTES_BIG_ENDIAN)
5541 {
5542 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5543 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5544 }
5545
5546 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5547 size_int (xll_bitpos));
5548 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5549 size_int (xrl_bitpos));
5550
5551 if (l_const)
5552 {
5553 l_const = fold_convert_loc (loc, lntype, l_const);
5554 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5555 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5556 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5557 fold_build1_loc (loc, BIT_NOT_EXPR,
5558 lntype, ll_mask))))
5559 {
5560 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5561
5562 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5563 }
5564 }
5565 if (r_const)
5566 {
5567 r_const = fold_convert_loc (loc, lntype, r_const);
5568 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5569 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5570 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5571 fold_build1_loc (loc, BIT_NOT_EXPR,
5572 lntype, rl_mask))))
5573 {
5574 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5575
5576 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5577 }
5578 }
5579
5580 /* If the right sides are not constant, do the same for it. Also,
5581 disallow this optimization if a size or signedness mismatch occurs
5582 between the left and right sides. */
5583 if (l_const == 0)
5584 {
5585 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5586 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5587 /* Make sure the two fields on the right
5588 correspond to the left without being swapped. */
5589 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5590 return 0;
5591
5592 first_bit = MIN (lr_bitpos, rr_bitpos);
5593 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5594 rnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5595 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5596 volatilep);
5597 if (rnmode == VOIDmode)
5598 return 0;
5599
5600 rnbitsize = GET_MODE_BITSIZE (rnmode);
5601 rnbitpos = first_bit & ~ (rnbitsize - 1);
5602 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5603 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5604
5605 if (BYTES_BIG_ENDIAN)
5606 {
5607 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5608 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5609 }
5610
5611 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5612 rntype, lr_mask),
5613 size_int (xlr_bitpos));
5614 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5615 rntype, rr_mask),
5616 size_int (xrr_bitpos));
5617
5618 /* Make a mask that corresponds to both fields being compared.
5619 Do this for both items being compared. If the operands are the
5620 same size and the bits being compared are in the same position
5621 then we can do this by masking both and comparing the masked
5622 results. */
5623 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5624 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5625 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5626 {
5627 lhs = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5628 ll_unsignedp || rl_unsignedp);
5629 if (! all_ones_mask_p (ll_mask, lnbitsize))
5630 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5631
5632 rhs = make_bit_field_ref (loc, lr_inner, rntype, rnbitsize, rnbitpos,
5633 lr_unsignedp || rr_unsignedp);
5634 if (! all_ones_mask_p (lr_mask, rnbitsize))
5635 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5636
5637 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5638 }
5639
5640 /* There is still another way we can do something: If both pairs of
5641 fields being compared are adjacent, we may be able to make a wider
5642 field containing them both.
5643
5644 Note that we still must mask the lhs/rhs expressions. Furthermore,
5645 the mask must be shifted to account for the shift done by
5646 make_bit_field_ref. */
5647 if ((ll_bitsize + ll_bitpos == rl_bitpos
5648 && lr_bitsize + lr_bitpos == rr_bitpos)
5649 || (ll_bitpos == rl_bitpos + rl_bitsize
5650 && lr_bitpos == rr_bitpos + rr_bitsize))
5651 {
5652 tree type;
5653
5654 lhs = make_bit_field_ref (loc, ll_inner, lntype,
5655 ll_bitsize + rl_bitsize,
5656 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5657 rhs = make_bit_field_ref (loc, lr_inner, rntype,
5658 lr_bitsize + rr_bitsize,
5659 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5660
5661 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5662 size_int (MIN (xll_bitpos, xrl_bitpos)));
5663 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5664 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5665
5666 /* Convert to the smaller type before masking out unwanted bits. */
5667 type = lntype;
5668 if (lntype != rntype)
5669 {
5670 if (lnbitsize > rnbitsize)
5671 {
5672 lhs = fold_convert_loc (loc, rntype, lhs);
5673 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5674 type = rntype;
5675 }
5676 else if (lnbitsize < rnbitsize)
5677 {
5678 rhs = fold_convert_loc (loc, lntype, rhs);
5679 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5680 type = lntype;
5681 }
5682 }
5683
5684 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5685 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5686
5687 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5688 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5689
5690 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5691 }
5692
5693 return 0;
5694 }
5695
5696 /* Handle the case of comparisons with constants. If there is something in
5697 common between the masks, those bits of the constants must be the same.
5698 If not, the condition is always false. Test for this to avoid generating
5699 incorrect code below. */
5700 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5701 if (! integer_zerop (result)
5702 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5703 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5704 {
5705 if (wanted_code == NE_EXPR)
5706 {
5707 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5708 return constant_boolean_node (true, truth_type);
5709 }
5710 else
5711 {
5712 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5713 return constant_boolean_node (false, truth_type);
5714 }
5715 }
5716
5717 /* Construct the expression we will return. First get the component
5718 reference we will make. Unless the mask is all ones the width of
5719 that field, perform the mask operation. Then compare with the
5720 merged constant. */
5721 result = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5722 ll_unsignedp || rl_unsignedp);
5723
5724 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5725 if (! all_ones_mask_p (ll_mask, lnbitsize))
5726 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5727
5728 return build2_loc (loc, wanted_code, truth_type, result,
5729 const_binop (BIT_IOR_EXPR, l_const, r_const));
5730 }
5731 \f
5732 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5733 constant. */
5734
5735 static tree
5736 optimize_minmax_comparison (location_t loc, enum tree_code code, tree type,
5737 tree op0, tree op1)
5738 {
5739 tree arg0 = op0;
5740 enum tree_code op_code;
5741 tree comp_const;
5742 tree minmax_const;
5743 int consts_equal, consts_lt;
5744 tree inner;
5745
5746 STRIP_SIGN_NOPS (arg0);
5747
5748 op_code = TREE_CODE (arg0);
5749 minmax_const = TREE_OPERAND (arg0, 1);
5750 comp_const = fold_convert_loc (loc, TREE_TYPE (arg0), op1);
5751 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5752 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5753 inner = TREE_OPERAND (arg0, 0);
5754
5755 /* If something does not permit us to optimize, return the original tree. */
5756 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5757 || TREE_CODE (comp_const) != INTEGER_CST
5758 || TREE_OVERFLOW (comp_const)
5759 || TREE_CODE (minmax_const) != INTEGER_CST
5760 || TREE_OVERFLOW (minmax_const))
5761 return NULL_TREE;
5762
5763 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5764 and GT_EXPR, doing the rest with recursive calls using logical
5765 simplifications. */
5766 switch (code)
5767 {
5768 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5769 {
5770 tree tem
5771 = optimize_minmax_comparison (loc,
5772 invert_tree_comparison (code, false),
5773 type, op0, op1);
5774 if (tem)
5775 return invert_truthvalue_loc (loc, tem);
5776 return NULL_TREE;
5777 }
5778
5779 case GE_EXPR:
5780 return
5781 fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
5782 optimize_minmax_comparison
5783 (loc, EQ_EXPR, type, arg0, comp_const),
5784 optimize_minmax_comparison
5785 (loc, GT_EXPR, type, arg0, comp_const));
5786
5787 case EQ_EXPR:
5788 if (op_code == MAX_EXPR && consts_equal)
5789 /* MAX (X, 0) == 0 -> X <= 0 */
5790 return fold_build2_loc (loc, LE_EXPR, type, inner, comp_const);
5791
5792 else if (op_code == MAX_EXPR && consts_lt)
5793 /* MAX (X, 0) == 5 -> X == 5 */
5794 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5795
5796 else if (op_code == MAX_EXPR)
5797 /* MAX (X, 0) == -1 -> false */
5798 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5799
5800 else if (consts_equal)
5801 /* MIN (X, 0) == 0 -> X >= 0 */
5802 return fold_build2_loc (loc, GE_EXPR, type, inner, comp_const);
5803
5804 else if (consts_lt)
5805 /* MIN (X, 0) == 5 -> false */
5806 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5807
5808 else
5809 /* MIN (X, 0) == -1 -> X == -1 */
5810 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5811
5812 case GT_EXPR:
5813 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5814 /* MAX (X, 0) > 0 -> X > 0
5815 MAX (X, 0) > 5 -> X > 5 */
5816 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5817
5818 else if (op_code == MAX_EXPR)
5819 /* MAX (X, 0) > -1 -> true */
5820 return omit_one_operand_loc (loc, type, integer_one_node, inner);
5821
5822 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5823 /* MIN (X, 0) > 0 -> false
5824 MIN (X, 0) > 5 -> false */
5825 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5826
5827 else
5828 /* MIN (X, 0) > -1 -> X > -1 */
5829 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5830
5831 default:
5832 return NULL_TREE;
5833 }
5834 }
5835 \f
5836 /* T is an integer expression that is being multiplied, divided, or taken a
5837 modulus (CODE says which and what kind of divide or modulus) by a
5838 constant C. See if we can eliminate that operation by folding it with
5839 other operations already in T. WIDE_TYPE, if non-null, is a type that
5840 should be used for the computation if wider than our type.
5841
5842 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5843 (X * 2) + (Y * 4). We must, however, be assured that either the original
5844 expression would not overflow or that overflow is undefined for the type
5845 in the language in question.
5846
5847 If we return a non-null expression, it is an equivalent form of the
5848 original computation, but need not be in the original type.
5849
5850 We set *STRICT_OVERFLOW_P to true if the return values depends on
5851 signed overflow being undefined. Otherwise we do not change
5852 *STRICT_OVERFLOW_P. */
5853
5854 static tree
5855 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5856 bool *strict_overflow_p)
5857 {
5858 /* To avoid exponential search depth, refuse to allow recursion past
5859 three levels. Beyond that (1) it's highly unlikely that we'll find
5860 something interesting and (2) we've probably processed it before
5861 when we built the inner expression. */
5862
5863 static int depth;
5864 tree ret;
5865
5866 if (depth > 3)
5867 return NULL;
5868
5869 depth++;
5870 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
5871 depth--;
5872
5873 return ret;
5874 }
5875
5876 static tree
5877 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
5878 bool *strict_overflow_p)
5879 {
5880 tree type = TREE_TYPE (t);
5881 enum tree_code tcode = TREE_CODE (t);
5882 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5883 > GET_MODE_SIZE (TYPE_MODE (type)))
5884 ? wide_type : type);
5885 tree t1, t2;
5886 int same_p = tcode == code;
5887 tree op0 = NULL_TREE, op1 = NULL_TREE;
5888 bool sub_strict_overflow_p;
5889
5890 /* Don't deal with constants of zero here; they confuse the code below. */
5891 if (integer_zerop (c))
5892 return NULL_TREE;
5893
5894 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5895 op0 = TREE_OPERAND (t, 0);
5896
5897 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5898 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5899
5900 /* Note that we need not handle conditional operations here since fold
5901 already handles those cases. So just do arithmetic here. */
5902 switch (tcode)
5903 {
5904 case INTEGER_CST:
5905 /* For a constant, we can always simplify if we are a multiply
5906 or (for divide and modulus) if it is a multiple of our constant. */
5907 if (code == MULT_EXPR
5908 || wi::multiple_of_p (t, c, TYPE_SIGN (type)))
5909 return const_binop (code, fold_convert (ctype, t),
5910 fold_convert (ctype, c));
5911 break;
5912
5913 CASE_CONVERT: case NON_LVALUE_EXPR:
5914 /* If op0 is an expression ... */
5915 if ((COMPARISON_CLASS_P (op0)
5916 || UNARY_CLASS_P (op0)
5917 || BINARY_CLASS_P (op0)
5918 || VL_EXP_CLASS_P (op0)
5919 || EXPRESSION_CLASS_P (op0))
5920 /* ... and has wrapping overflow, and its type is smaller
5921 than ctype, then we cannot pass through as widening. */
5922 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
5923 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
5924 && (TYPE_PRECISION (ctype)
5925 > TYPE_PRECISION (TREE_TYPE (op0))))
5926 /* ... or this is a truncation (t is narrower than op0),
5927 then we cannot pass through this narrowing. */
5928 || (TYPE_PRECISION (type)
5929 < TYPE_PRECISION (TREE_TYPE (op0)))
5930 /* ... or signedness changes for division or modulus,
5931 then we cannot pass through this conversion. */
5932 || (code != MULT_EXPR
5933 && (TYPE_UNSIGNED (ctype)
5934 != TYPE_UNSIGNED (TREE_TYPE (op0))))
5935 /* ... or has undefined overflow while the converted to
5936 type has not, we cannot do the operation in the inner type
5937 as that would introduce undefined overflow. */
5938 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
5939 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
5940 && !TYPE_OVERFLOW_UNDEFINED (type))))
5941 break;
5942
5943 /* Pass the constant down and see if we can make a simplification. If
5944 we can, replace this expression with the inner simplification for
5945 possible later conversion to our or some other type. */
5946 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5947 && TREE_CODE (t2) == INTEGER_CST
5948 && !TREE_OVERFLOW (t2)
5949 && (0 != (t1 = extract_muldiv (op0, t2, code,
5950 code == MULT_EXPR
5951 ? ctype : NULL_TREE,
5952 strict_overflow_p))))
5953 return t1;
5954 break;
5955
5956 case ABS_EXPR:
5957 /* If widening the type changes it from signed to unsigned, then we
5958 must avoid building ABS_EXPR itself as unsigned. */
5959 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
5960 {
5961 tree cstype = (*signed_type_for) (ctype);
5962 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
5963 != 0)
5964 {
5965 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
5966 return fold_convert (ctype, t1);
5967 }
5968 break;
5969 }
5970 /* If the constant is negative, we cannot simplify this. */
5971 if (tree_int_cst_sgn (c) == -1)
5972 break;
5973 /* FALLTHROUGH */
5974 case NEGATE_EXPR:
5975 /* For division and modulus, type can't be unsigned, as e.g.
5976 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
5977 For signed types, even with wrapping overflow, this is fine. */
5978 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
5979 break;
5980 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
5981 != 0)
5982 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
5983 break;
5984
5985 case MIN_EXPR: case MAX_EXPR:
5986 /* If widening the type changes the signedness, then we can't perform
5987 this optimization as that changes the result. */
5988 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
5989 break;
5990
5991 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5992 sub_strict_overflow_p = false;
5993 if ((t1 = extract_muldiv (op0, c, code, wide_type,
5994 &sub_strict_overflow_p)) != 0
5995 && (t2 = extract_muldiv (op1, c, code, wide_type,
5996 &sub_strict_overflow_p)) != 0)
5997 {
5998 if (tree_int_cst_sgn (c) < 0)
5999 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6000 if (sub_strict_overflow_p)
6001 *strict_overflow_p = true;
6002 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6003 fold_convert (ctype, t2));
6004 }
6005 break;
6006
6007 case LSHIFT_EXPR: case RSHIFT_EXPR:
6008 /* If the second operand is constant, this is a multiplication
6009 or floor division, by a power of two, so we can treat it that
6010 way unless the multiplier or divisor overflows. Signed
6011 left-shift overflow is implementation-defined rather than
6012 undefined in C90, so do not convert signed left shift into
6013 multiplication. */
6014 if (TREE_CODE (op1) == INTEGER_CST
6015 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6016 /* const_binop may not detect overflow correctly,
6017 so check for it explicitly here. */
6018 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
6019 && 0 != (t1 = fold_convert (ctype,
6020 const_binop (LSHIFT_EXPR,
6021 size_one_node,
6022 op1)))
6023 && !TREE_OVERFLOW (t1))
6024 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6025 ? MULT_EXPR : FLOOR_DIV_EXPR,
6026 ctype,
6027 fold_convert (ctype, op0),
6028 t1),
6029 c, code, wide_type, strict_overflow_p);
6030 break;
6031
6032 case PLUS_EXPR: case MINUS_EXPR:
6033 /* See if we can eliminate the operation on both sides. If we can, we
6034 can return a new PLUS or MINUS. If we can't, the only remaining
6035 cases where we can do anything are if the second operand is a
6036 constant. */
6037 sub_strict_overflow_p = false;
6038 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6039 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6040 if (t1 != 0 && t2 != 0
6041 && (code == MULT_EXPR
6042 /* If not multiplication, we can only do this if both operands
6043 are divisible by c. */
6044 || (multiple_of_p (ctype, op0, c)
6045 && multiple_of_p (ctype, op1, c))))
6046 {
6047 if (sub_strict_overflow_p)
6048 *strict_overflow_p = true;
6049 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6050 fold_convert (ctype, t2));
6051 }
6052
6053 /* If this was a subtraction, negate OP1 and set it to be an addition.
6054 This simplifies the logic below. */
6055 if (tcode == MINUS_EXPR)
6056 {
6057 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6058 /* If OP1 was not easily negatable, the constant may be OP0. */
6059 if (TREE_CODE (op0) == INTEGER_CST)
6060 {
6061 std::swap (op0, op1);
6062 std::swap (t1, t2);
6063 }
6064 }
6065
6066 if (TREE_CODE (op1) != INTEGER_CST)
6067 break;
6068
6069 /* If either OP1 or C are negative, this optimization is not safe for
6070 some of the division and remainder types while for others we need
6071 to change the code. */
6072 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6073 {
6074 if (code == CEIL_DIV_EXPR)
6075 code = FLOOR_DIV_EXPR;
6076 else if (code == FLOOR_DIV_EXPR)
6077 code = CEIL_DIV_EXPR;
6078 else if (code != MULT_EXPR
6079 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6080 break;
6081 }
6082
6083 /* If it's a multiply or a division/modulus operation of a multiple
6084 of our constant, do the operation and verify it doesn't overflow. */
6085 if (code == MULT_EXPR
6086 || wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6087 {
6088 op1 = const_binop (code, fold_convert (ctype, op1),
6089 fold_convert (ctype, c));
6090 /* We allow the constant to overflow with wrapping semantics. */
6091 if (op1 == 0
6092 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6093 break;
6094 }
6095 else
6096 break;
6097
6098 /* If we have an unsigned type, we cannot widen the operation since it
6099 will change the result if the original computation overflowed. */
6100 if (TYPE_UNSIGNED (ctype) && ctype != type)
6101 break;
6102
6103 /* If we were able to eliminate our operation from the first side,
6104 apply our operation to the second side and reform the PLUS. */
6105 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
6106 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
6107
6108 /* The last case is if we are a multiply. In that case, we can
6109 apply the distributive law to commute the multiply and addition
6110 if the multiplication of the constants doesn't overflow
6111 and overflow is defined. With undefined overflow
6112 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6113 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6114 return fold_build2 (tcode, ctype,
6115 fold_build2 (code, ctype,
6116 fold_convert (ctype, op0),
6117 fold_convert (ctype, c)),
6118 op1);
6119
6120 break;
6121
6122 case MULT_EXPR:
6123 /* We have a special case here if we are doing something like
6124 (C * 8) % 4 since we know that's zero. */
6125 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6126 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6127 /* If the multiplication can overflow we cannot optimize this. */
6128 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6129 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6130 && wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6131 {
6132 *strict_overflow_p = true;
6133 return omit_one_operand (type, integer_zero_node, op0);
6134 }
6135
6136 /* ... fall through ... */
6137
6138 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6139 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6140 /* If we can extract our operation from the LHS, do so and return a
6141 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6142 do something only if the second operand is a constant. */
6143 if (same_p
6144 && (t1 = extract_muldiv (op0, c, code, wide_type,
6145 strict_overflow_p)) != 0)
6146 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6147 fold_convert (ctype, op1));
6148 else if (tcode == MULT_EXPR && code == MULT_EXPR
6149 && (t1 = extract_muldiv (op1, c, code, wide_type,
6150 strict_overflow_p)) != 0)
6151 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6152 fold_convert (ctype, t1));
6153 else if (TREE_CODE (op1) != INTEGER_CST)
6154 return 0;
6155
6156 /* If these are the same operation types, we can associate them
6157 assuming no overflow. */
6158 if (tcode == code)
6159 {
6160 bool overflow_p = false;
6161 bool overflow_mul_p;
6162 signop sign = TYPE_SIGN (ctype);
6163 wide_int mul = wi::mul (op1, c, sign, &overflow_mul_p);
6164 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6165 if (overflow_mul_p
6166 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6167 overflow_p = true;
6168 if (!overflow_p)
6169 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6170 wide_int_to_tree (ctype, mul));
6171 }
6172
6173 /* If these operations "cancel" each other, we have the main
6174 optimizations of this pass, which occur when either constant is a
6175 multiple of the other, in which case we replace this with either an
6176 operation or CODE or TCODE.
6177
6178 If we have an unsigned type, we cannot do this since it will change
6179 the result if the original computation overflowed. */
6180 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6181 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6182 || (tcode == MULT_EXPR
6183 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6184 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6185 && code != MULT_EXPR)))
6186 {
6187 if (wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6188 {
6189 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6190 *strict_overflow_p = true;
6191 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6192 fold_convert (ctype,
6193 const_binop (TRUNC_DIV_EXPR,
6194 op1, c)));
6195 }
6196 else if (wi::multiple_of_p (c, op1, TYPE_SIGN (type)))
6197 {
6198 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6199 *strict_overflow_p = true;
6200 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6201 fold_convert (ctype,
6202 const_binop (TRUNC_DIV_EXPR,
6203 c, op1)));
6204 }
6205 }
6206 break;
6207
6208 default:
6209 break;
6210 }
6211
6212 return 0;
6213 }
6214 \f
6215 /* Return a node which has the indicated constant VALUE (either 0 or
6216 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6217 and is of the indicated TYPE. */
6218
6219 tree
6220 constant_boolean_node (bool value, tree type)
6221 {
6222 if (type == integer_type_node)
6223 return value ? integer_one_node : integer_zero_node;
6224 else if (type == boolean_type_node)
6225 return value ? boolean_true_node : boolean_false_node;
6226 else if (TREE_CODE (type) == VECTOR_TYPE)
6227 return build_vector_from_val (type,
6228 build_int_cst (TREE_TYPE (type),
6229 value ? -1 : 0));
6230 else
6231 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6232 }
6233
6234
6235 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6236 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6237 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6238 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6239 COND is the first argument to CODE; otherwise (as in the example
6240 given here), it is the second argument. TYPE is the type of the
6241 original expression. Return NULL_TREE if no simplification is
6242 possible. */
6243
6244 static tree
6245 fold_binary_op_with_conditional_arg (location_t loc,
6246 enum tree_code code,
6247 tree type, tree op0, tree op1,
6248 tree cond, tree arg, int cond_first_p)
6249 {
6250 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6251 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6252 tree test, true_value, false_value;
6253 tree lhs = NULL_TREE;
6254 tree rhs = NULL_TREE;
6255 enum tree_code cond_code = COND_EXPR;
6256
6257 if (TREE_CODE (cond) == COND_EXPR
6258 || TREE_CODE (cond) == VEC_COND_EXPR)
6259 {
6260 test = TREE_OPERAND (cond, 0);
6261 true_value = TREE_OPERAND (cond, 1);
6262 false_value = TREE_OPERAND (cond, 2);
6263 /* If this operand throws an expression, then it does not make
6264 sense to try to perform a logical or arithmetic operation
6265 involving it. */
6266 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6267 lhs = true_value;
6268 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6269 rhs = false_value;
6270 }
6271 else
6272 {
6273 tree testtype = TREE_TYPE (cond);
6274 test = cond;
6275 true_value = constant_boolean_node (true, testtype);
6276 false_value = constant_boolean_node (false, testtype);
6277 }
6278
6279 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6280 cond_code = VEC_COND_EXPR;
6281
6282 /* This transformation is only worthwhile if we don't have to wrap ARG
6283 in a SAVE_EXPR and the operation can be simplified without recursing
6284 on at least one of the branches once its pushed inside the COND_EXPR. */
6285 if (!TREE_CONSTANT (arg)
6286 && (TREE_SIDE_EFFECTS (arg)
6287 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6288 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6289 return NULL_TREE;
6290
6291 arg = fold_convert_loc (loc, arg_type, arg);
6292 if (lhs == 0)
6293 {
6294 true_value = fold_convert_loc (loc, cond_type, true_value);
6295 if (cond_first_p)
6296 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6297 else
6298 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6299 }
6300 if (rhs == 0)
6301 {
6302 false_value = fold_convert_loc (loc, cond_type, false_value);
6303 if (cond_first_p)
6304 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6305 else
6306 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6307 }
6308
6309 /* Check that we have simplified at least one of the branches. */
6310 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6311 return NULL_TREE;
6312
6313 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6314 }
6315
6316 \f
6317 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6318
6319 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6320 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6321 ADDEND is the same as X.
6322
6323 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6324 and finite. The problematic cases are when X is zero, and its mode
6325 has signed zeros. In the case of rounding towards -infinity,
6326 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6327 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6328
6329 bool
6330 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6331 {
6332 if (!real_zerop (addend))
6333 return false;
6334
6335 /* Don't allow the fold with -fsignaling-nans. */
6336 if (HONOR_SNANS (element_mode (type)))
6337 return false;
6338
6339 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6340 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6341 return true;
6342
6343 /* In a vector or complex, we would need to check the sign of all zeros. */
6344 if (TREE_CODE (addend) != REAL_CST)
6345 return false;
6346
6347 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6348 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6349 negate = !negate;
6350
6351 /* The mode has signed zeros, and we have to honor their sign.
6352 In this situation, there is only one case we can return true for.
6353 X - 0 is the same as X unless rounding towards -infinity is
6354 supported. */
6355 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6356 }
6357
6358 /* Subroutine of fold() that optimizes comparisons of a division by
6359 a nonzero integer constant against an integer constant, i.e.
6360 X/C1 op C2.
6361
6362 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6363 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6364 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6365
6366 The function returns the constant folded tree if a simplification
6367 can be made, and NULL_TREE otherwise. */
6368
6369 static tree
6370 fold_div_compare (location_t loc,
6371 enum tree_code code, tree type, tree arg0, tree arg1)
6372 {
6373 tree prod, tmp, hi, lo;
6374 tree arg00 = TREE_OPERAND (arg0, 0);
6375 tree arg01 = TREE_OPERAND (arg0, 1);
6376 signop sign = TYPE_SIGN (TREE_TYPE (arg0));
6377 bool neg_overflow = false;
6378 bool overflow;
6379
6380 /* We have to do this the hard way to detect unsigned overflow.
6381 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6382 wide_int val = wi::mul (arg01, arg1, sign, &overflow);
6383 prod = force_fit_type (TREE_TYPE (arg00), val, -1, overflow);
6384 neg_overflow = false;
6385
6386 if (sign == UNSIGNED)
6387 {
6388 tmp = int_const_binop (MINUS_EXPR, arg01,
6389 build_int_cst (TREE_TYPE (arg01), 1));
6390 lo = prod;
6391
6392 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6393 val = wi::add (prod, tmp, sign, &overflow);
6394 hi = force_fit_type (TREE_TYPE (arg00), val,
6395 -1, overflow | TREE_OVERFLOW (prod));
6396 }
6397 else if (tree_int_cst_sgn (arg01) >= 0)
6398 {
6399 tmp = int_const_binop (MINUS_EXPR, arg01,
6400 build_int_cst (TREE_TYPE (arg01), 1));
6401 switch (tree_int_cst_sgn (arg1))
6402 {
6403 case -1:
6404 neg_overflow = true;
6405 lo = int_const_binop (MINUS_EXPR, prod, tmp);
6406 hi = prod;
6407 break;
6408
6409 case 0:
6410 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6411 hi = tmp;
6412 break;
6413
6414 case 1:
6415 hi = int_const_binop (PLUS_EXPR, prod, tmp);
6416 lo = prod;
6417 break;
6418
6419 default:
6420 gcc_unreachable ();
6421 }
6422 }
6423 else
6424 {
6425 /* A negative divisor reverses the relational operators. */
6426 code = swap_tree_comparison (code);
6427
6428 tmp = int_const_binop (PLUS_EXPR, arg01,
6429 build_int_cst (TREE_TYPE (arg01), 1));
6430 switch (tree_int_cst_sgn (arg1))
6431 {
6432 case -1:
6433 hi = int_const_binop (MINUS_EXPR, prod, tmp);
6434 lo = prod;
6435 break;
6436
6437 case 0:
6438 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6439 lo = tmp;
6440 break;
6441
6442 case 1:
6443 neg_overflow = true;
6444 lo = int_const_binop (PLUS_EXPR, prod, tmp);
6445 hi = prod;
6446 break;
6447
6448 default:
6449 gcc_unreachable ();
6450 }
6451 }
6452
6453 switch (code)
6454 {
6455 case EQ_EXPR:
6456 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6457 return omit_one_operand_loc (loc, type, integer_zero_node, arg00);
6458 if (TREE_OVERFLOW (hi))
6459 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6460 if (TREE_OVERFLOW (lo))
6461 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6462 return build_range_check (loc, type, arg00, 1, lo, hi);
6463
6464 case NE_EXPR:
6465 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6466 return omit_one_operand_loc (loc, type, integer_one_node, arg00);
6467 if (TREE_OVERFLOW (hi))
6468 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6469 if (TREE_OVERFLOW (lo))
6470 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6471 return build_range_check (loc, type, arg00, 0, lo, hi);
6472
6473 case LT_EXPR:
6474 if (TREE_OVERFLOW (lo))
6475 {
6476 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6477 return omit_one_operand_loc (loc, type, tmp, arg00);
6478 }
6479 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6480
6481 case LE_EXPR:
6482 if (TREE_OVERFLOW (hi))
6483 {
6484 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6485 return omit_one_operand_loc (loc, type, tmp, arg00);
6486 }
6487 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6488
6489 case GT_EXPR:
6490 if (TREE_OVERFLOW (hi))
6491 {
6492 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6493 return omit_one_operand_loc (loc, type, tmp, arg00);
6494 }
6495 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6496
6497 case GE_EXPR:
6498 if (TREE_OVERFLOW (lo))
6499 {
6500 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6501 return omit_one_operand_loc (loc, type, tmp, arg00);
6502 }
6503 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6504
6505 default:
6506 break;
6507 }
6508
6509 return NULL_TREE;
6510 }
6511
6512
6513 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6514 equality/inequality test, then return a simplified form of the test
6515 using a sign testing. Otherwise return NULL. TYPE is the desired
6516 result type. */
6517
6518 static tree
6519 fold_single_bit_test_into_sign_test (location_t loc,
6520 enum tree_code code, tree arg0, tree arg1,
6521 tree result_type)
6522 {
6523 /* If this is testing a single bit, we can optimize the test. */
6524 if ((code == NE_EXPR || code == EQ_EXPR)
6525 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6526 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6527 {
6528 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6529 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6530 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6531
6532 if (arg00 != NULL_TREE
6533 /* This is only a win if casting to a signed type is cheap,
6534 i.e. when arg00's type is not a partial mode. */
6535 && TYPE_PRECISION (TREE_TYPE (arg00))
6536 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00))))
6537 {
6538 tree stype = signed_type_for (TREE_TYPE (arg00));
6539 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6540 result_type,
6541 fold_convert_loc (loc, stype, arg00),
6542 build_int_cst (stype, 0));
6543 }
6544 }
6545
6546 return NULL_TREE;
6547 }
6548
6549 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6550 equality/inequality test, then return a simplified form of
6551 the test using shifts and logical operations. Otherwise return
6552 NULL. TYPE is the desired result type. */
6553
6554 tree
6555 fold_single_bit_test (location_t loc, enum tree_code code,
6556 tree arg0, tree arg1, tree result_type)
6557 {
6558 /* If this is testing a single bit, we can optimize the test. */
6559 if ((code == NE_EXPR || code == EQ_EXPR)
6560 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6561 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6562 {
6563 tree inner = TREE_OPERAND (arg0, 0);
6564 tree type = TREE_TYPE (arg0);
6565 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6566 machine_mode operand_mode = TYPE_MODE (type);
6567 int ops_unsigned;
6568 tree signed_type, unsigned_type, intermediate_type;
6569 tree tem, one;
6570
6571 /* First, see if we can fold the single bit test into a sign-bit
6572 test. */
6573 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6574 result_type);
6575 if (tem)
6576 return tem;
6577
6578 /* Otherwise we have (A & C) != 0 where C is a single bit,
6579 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6580 Similarly for (A & C) == 0. */
6581
6582 /* If INNER is a right shift of a constant and it plus BITNUM does
6583 not overflow, adjust BITNUM and INNER. */
6584 if (TREE_CODE (inner) == RSHIFT_EXPR
6585 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6586 && bitnum < TYPE_PRECISION (type)
6587 && wi::ltu_p (TREE_OPERAND (inner, 1),
6588 TYPE_PRECISION (type) - bitnum))
6589 {
6590 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6591 inner = TREE_OPERAND (inner, 0);
6592 }
6593
6594 /* If we are going to be able to omit the AND below, we must do our
6595 operations as unsigned. If we must use the AND, we have a choice.
6596 Normally unsigned is faster, but for some machines signed is. */
6597 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6598 && !flag_syntax_only) ? 0 : 1;
6599
6600 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6601 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6602 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6603 inner = fold_convert_loc (loc, intermediate_type, inner);
6604
6605 if (bitnum != 0)
6606 inner = build2 (RSHIFT_EXPR, intermediate_type,
6607 inner, size_int (bitnum));
6608
6609 one = build_int_cst (intermediate_type, 1);
6610
6611 if (code == EQ_EXPR)
6612 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6613
6614 /* Put the AND last so it can combine with more things. */
6615 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6616
6617 /* Make sure to return the proper type. */
6618 inner = fold_convert_loc (loc, result_type, inner);
6619
6620 return inner;
6621 }
6622 return NULL_TREE;
6623 }
6624
6625 /* Check whether we are allowed to reorder operands arg0 and arg1,
6626 such that the evaluation of arg1 occurs before arg0. */
6627
6628 static bool
6629 reorder_operands_p (const_tree arg0, const_tree arg1)
6630 {
6631 if (! flag_evaluation_order)
6632 return true;
6633 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6634 return true;
6635 return ! TREE_SIDE_EFFECTS (arg0)
6636 && ! TREE_SIDE_EFFECTS (arg1);
6637 }
6638
6639 /* Test whether it is preferable two swap two operands, ARG0 and
6640 ARG1, for example because ARG0 is an integer constant and ARG1
6641 isn't. If REORDER is true, only recommend swapping if we can
6642 evaluate the operands in reverse order. */
6643
6644 bool
6645 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
6646 {
6647 if (CONSTANT_CLASS_P (arg1))
6648 return 0;
6649 if (CONSTANT_CLASS_P (arg0))
6650 return 1;
6651
6652 STRIP_NOPS (arg0);
6653 STRIP_NOPS (arg1);
6654
6655 if (TREE_CONSTANT (arg1))
6656 return 0;
6657 if (TREE_CONSTANT (arg0))
6658 return 1;
6659
6660 if (reorder && flag_evaluation_order
6661 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6662 return 0;
6663
6664 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6665 for commutative and comparison operators. Ensuring a canonical
6666 form allows the optimizers to find additional redundancies without
6667 having to explicitly check for both orderings. */
6668 if (TREE_CODE (arg0) == SSA_NAME
6669 && TREE_CODE (arg1) == SSA_NAME
6670 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6671 return 1;
6672
6673 /* Put SSA_NAMEs last. */
6674 if (TREE_CODE (arg1) == SSA_NAME)
6675 return 0;
6676 if (TREE_CODE (arg0) == SSA_NAME)
6677 return 1;
6678
6679 /* Put variables last. */
6680 if (DECL_P (arg1))
6681 return 0;
6682 if (DECL_P (arg0))
6683 return 1;
6684
6685 return 0;
6686 }
6687
6688
6689 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6690 means A >= Y && A != MAX, but in this case we know that
6691 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6692
6693 static tree
6694 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6695 {
6696 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6697
6698 if (TREE_CODE (bound) == LT_EXPR)
6699 a = TREE_OPERAND (bound, 0);
6700 else if (TREE_CODE (bound) == GT_EXPR)
6701 a = TREE_OPERAND (bound, 1);
6702 else
6703 return NULL_TREE;
6704
6705 typea = TREE_TYPE (a);
6706 if (!INTEGRAL_TYPE_P (typea)
6707 && !POINTER_TYPE_P (typea))
6708 return NULL_TREE;
6709
6710 if (TREE_CODE (ineq) == LT_EXPR)
6711 {
6712 a1 = TREE_OPERAND (ineq, 1);
6713 y = TREE_OPERAND (ineq, 0);
6714 }
6715 else if (TREE_CODE (ineq) == GT_EXPR)
6716 {
6717 a1 = TREE_OPERAND (ineq, 0);
6718 y = TREE_OPERAND (ineq, 1);
6719 }
6720 else
6721 return NULL_TREE;
6722
6723 if (TREE_TYPE (a1) != typea)
6724 return NULL_TREE;
6725
6726 if (POINTER_TYPE_P (typea))
6727 {
6728 /* Convert the pointer types into integer before taking the difference. */
6729 tree ta = fold_convert_loc (loc, ssizetype, a);
6730 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
6731 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
6732 }
6733 else
6734 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
6735
6736 if (!diff || !integer_onep (diff))
6737 return NULL_TREE;
6738
6739 return fold_build2_loc (loc, GE_EXPR, type, a, y);
6740 }
6741
6742 /* Fold a sum or difference of at least one multiplication.
6743 Returns the folded tree or NULL if no simplification could be made. */
6744
6745 static tree
6746 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
6747 tree arg0, tree arg1)
6748 {
6749 tree arg00, arg01, arg10, arg11;
6750 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6751
6752 /* (A * C) +- (B * C) -> (A+-B) * C.
6753 (A * C) +- A -> A * (C+-1).
6754 We are most concerned about the case where C is a constant,
6755 but other combinations show up during loop reduction. Since
6756 it is not difficult, try all four possibilities. */
6757
6758 if (TREE_CODE (arg0) == MULT_EXPR)
6759 {
6760 arg00 = TREE_OPERAND (arg0, 0);
6761 arg01 = TREE_OPERAND (arg0, 1);
6762 }
6763 else if (TREE_CODE (arg0) == INTEGER_CST)
6764 {
6765 arg00 = build_one_cst (type);
6766 arg01 = arg0;
6767 }
6768 else
6769 {
6770 /* We cannot generate constant 1 for fract. */
6771 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6772 return NULL_TREE;
6773 arg00 = arg0;
6774 arg01 = build_one_cst (type);
6775 }
6776 if (TREE_CODE (arg1) == MULT_EXPR)
6777 {
6778 arg10 = TREE_OPERAND (arg1, 0);
6779 arg11 = TREE_OPERAND (arg1, 1);
6780 }
6781 else if (TREE_CODE (arg1) == INTEGER_CST)
6782 {
6783 arg10 = build_one_cst (type);
6784 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6785 the purpose of this canonicalization. */
6786 if (wi::neg_p (arg1, TYPE_SIGN (TREE_TYPE (arg1)))
6787 && negate_expr_p (arg1)
6788 && code == PLUS_EXPR)
6789 {
6790 arg11 = negate_expr (arg1);
6791 code = MINUS_EXPR;
6792 }
6793 else
6794 arg11 = arg1;
6795 }
6796 else
6797 {
6798 /* We cannot generate constant 1 for fract. */
6799 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6800 return NULL_TREE;
6801 arg10 = arg1;
6802 arg11 = build_one_cst (type);
6803 }
6804 same = NULL_TREE;
6805
6806 if (operand_equal_p (arg01, arg11, 0))
6807 same = arg01, alt0 = arg00, alt1 = arg10;
6808 else if (operand_equal_p (arg00, arg10, 0))
6809 same = arg00, alt0 = arg01, alt1 = arg11;
6810 else if (operand_equal_p (arg00, arg11, 0))
6811 same = arg00, alt0 = arg01, alt1 = arg10;
6812 else if (operand_equal_p (arg01, arg10, 0))
6813 same = arg01, alt0 = arg00, alt1 = arg11;
6814
6815 /* No identical multiplicands; see if we can find a common
6816 power-of-two factor in non-power-of-two multiplies. This
6817 can help in multi-dimensional array access. */
6818 else if (tree_fits_shwi_p (arg01)
6819 && tree_fits_shwi_p (arg11))
6820 {
6821 HOST_WIDE_INT int01, int11, tmp;
6822 bool swap = false;
6823 tree maybe_same;
6824 int01 = tree_to_shwi (arg01);
6825 int11 = tree_to_shwi (arg11);
6826
6827 /* Move min of absolute values to int11. */
6828 if (absu_hwi (int01) < absu_hwi (int11))
6829 {
6830 tmp = int01, int01 = int11, int11 = tmp;
6831 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6832 maybe_same = arg01;
6833 swap = true;
6834 }
6835 else
6836 maybe_same = arg11;
6837
6838 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
6839 /* The remainder should not be a constant, otherwise we
6840 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
6841 increased the number of multiplications necessary. */
6842 && TREE_CODE (arg10) != INTEGER_CST)
6843 {
6844 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
6845 build_int_cst (TREE_TYPE (arg00),
6846 int01 / int11));
6847 alt1 = arg10;
6848 same = maybe_same;
6849 if (swap)
6850 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
6851 }
6852 }
6853
6854 if (same)
6855 return fold_build2_loc (loc, MULT_EXPR, type,
6856 fold_build2_loc (loc, code, type,
6857 fold_convert_loc (loc, type, alt0),
6858 fold_convert_loc (loc, type, alt1)),
6859 fold_convert_loc (loc, type, same));
6860
6861 return NULL_TREE;
6862 }
6863
6864 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
6865 specified by EXPR into the buffer PTR of length LEN bytes.
6866 Return the number of bytes placed in the buffer, or zero
6867 upon failure. */
6868
6869 static int
6870 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
6871 {
6872 tree type = TREE_TYPE (expr);
6873 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
6874 int byte, offset, word, words;
6875 unsigned char value;
6876
6877 if ((off == -1 && total_bytes > len)
6878 || off >= total_bytes)
6879 return 0;
6880 if (off == -1)
6881 off = 0;
6882 words = total_bytes / UNITS_PER_WORD;
6883
6884 for (byte = 0; byte < total_bytes; byte++)
6885 {
6886 int bitpos = byte * BITS_PER_UNIT;
6887 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
6888 number of bytes. */
6889 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
6890
6891 if (total_bytes > UNITS_PER_WORD)
6892 {
6893 word = byte / UNITS_PER_WORD;
6894 if (WORDS_BIG_ENDIAN)
6895 word = (words - 1) - word;
6896 offset = word * UNITS_PER_WORD;
6897 if (BYTES_BIG_ENDIAN)
6898 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
6899 else
6900 offset += byte % UNITS_PER_WORD;
6901 }
6902 else
6903 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
6904 if (offset >= off
6905 && offset - off < len)
6906 ptr[offset - off] = value;
6907 }
6908 return MIN (len, total_bytes - off);
6909 }
6910
6911
6912 /* Subroutine of native_encode_expr. Encode the FIXED_CST
6913 specified by EXPR into the buffer PTR of length LEN bytes.
6914 Return the number of bytes placed in the buffer, or zero
6915 upon failure. */
6916
6917 static int
6918 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
6919 {
6920 tree type = TREE_TYPE (expr);
6921 machine_mode mode = TYPE_MODE (type);
6922 int total_bytes = GET_MODE_SIZE (mode);
6923 FIXED_VALUE_TYPE value;
6924 tree i_value, i_type;
6925
6926 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
6927 return 0;
6928
6929 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
6930
6931 if (NULL_TREE == i_type
6932 || TYPE_PRECISION (i_type) != total_bytes)
6933 return 0;
6934
6935 value = TREE_FIXED_CST (expr);
6936 i_value = double_int_to_tree (i_type, value.data);
6937
6938 return native_encode_int (i_value, ptr, len, off);
6939 }
6940
6941
6942 /* Subroutine of native_encode_expr. Encode the REAL_CST
6943 specified by EXPR into the buffer PTR of length LEN bytes.
6944 Return the number of bytes placed in the buffer, or zero
6945 upon failure. */
6946
6947 static int
6948 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
6949 {
6950 tree type = TREE_TYPE (expr);
6951 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
6952 int byte, offset, word, words, bitpos;
6953 unsigned char value;
6954
6955 /* There are always 32 bits in each long, no matter the size of
6956 the hosts long. We handle floating point representations with
6957 up to 192 bits. */
6958 long tmp[6];
6959
6960 if ((off == -1 && total_bytes > len)
6961 || off >= total_bytes)
6962 return 0;
6963 if (off == -1)
6964 off = 0;
6965 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
6966
6967 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
6968
6969 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
6970 bitpos += BITS_PER_UNIT)
6971 {
6972 byte = (bitpos / BITS_PER_UNIT) & 3;
6973 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
6974
6975 if (UNITS_PER_WORD < 4)
6976 {
6977 word = byte / UNITS_PER_WORD;
6978 if (WORDS_BIG_ENDIAN)
6979 word = (words - 1) - word;
6980 offset = word * UNITS_PER_WORD;
6981 if (BYTES_BIG_ENDIAN)
6982 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
6983 else
6984 offset += byte % UNITS_PER_WORD;
6985 }
6986 else
6987 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
6988 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
6989 if (offset >= off
6990 && offset - off < len)
6991 ptr[offset - off] = value;
6992 }
6993 return MIN (len, total_bytes - off);
6994 }
6995
6996 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
6997 specified by EXPR into the buffer PTR of length LEN bytes.
6998 Return the number of bytes placed in the buffer, or zero
6999 upon failure. */
7000
7001 static int
7002 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7003 {
7004 int rsize, isize;
7005 tree part;
7006
7007 part = TREE_REALPART (expr);
7008 rsize = native_encode_expr (part, ptr, len, off);
7009 if (off == -1
7010 && rsize == 0)
7011 return 0;
7012 part = TREE_IMAGPART (expr);
7013 if (off != -1)
7014 off = MAX (0, off - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part))));
7015 isize = native_encode_expr (part, ptr+rsize, len-rsize, off);
7016 if (off == -1
7017 && isize != rsize)
7018 return 0;
7019 return rsize + isize;
7020 }
7021
7022
7023 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7024 specified by EXPR into the buffer PTR of length LEN bytes.
7025 Return the number of bytes placed in the buffer, or zero
7026 upon failure. */
7027
7028 static int
7029 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7030 {
7031 unsigned i, count;
7032 int size, offset;
7033 tree itype, elem;
7034
7035 offset = 0;
7036 count = VECTOR_CST_NELTS (expr);
7037 itype = TREE_TYPE (TREE_TYPE (expr));
7038 size = GET_MODE_SIZE (TYPE_MODE (itype));
7039 for (i = 0; i < count; i++)
7040 {
7041 if (off >= size)
7042 {
7043 off -= size;
7044 continue;
7045 }
7046 elem = VECTOR_CST_ELT (expr, i);
7047 int res = native_encode_expr (elem, ptr+offset, len-offset, off);
7048 if ((off == -1 && res != size)
7049 || res == 0)
7050 return 0;
7051 offset += res;
7052 if (offset >= len)
7053 return offset;
7054 if (off != -1)
7055 off = 0;
7056 }
7057 return offset;
7058 }
7059
7060
7061 /* Subroutine of native_encode_expr. Encode the STRING_CST
7062 specified by EXPR into the buffer PTR of length LEN bytes.
7063 Return the number of bytes placed in the buffer, or zero
7064 upon failure. */
7065
7066 static int
7067 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7068 {
7069 tree type = TREE_TYPE (expr);
7070 HOST_WIDE_INT total_bytes;
7071
7072 if (TREE_CODE (type) != ARRAY_TYPE
7073 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7074 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7075 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7076 return 0;
7077 total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (type));
7078 if ((off == -1 && total_bytes > len)
7079 || off >= total_bytes)
7080 return 0;
7081 if (off == -1)
7082 off = 0;
7083 if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7084 {
7085 int written = 0;
7086 if (off < TREE_STRING_LENGTH (expr))
7087 {
7088 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7089 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7090 }
7091 memset (ptr + written, 0,
7092 MIN (total_bytes - written, len - written));
7093 }
7094 else
7095 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7096 return MIN (total_bytes - off, len);
7097 }
7098
7099
7100 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7101 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7102 buffer PTR of length LEN bytes. If OFF is not -1 then start
7103 the encoding at byte offset OFF and encode at most LEN bytes.
7104 Return the number of bytes placed in the buffer, or zero upon failure. */
7105
7106 int
7107 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7108 {
7109 switch (TREE_CODE (expr))
7110 {
7111 case INTEGER_CST:
7112 return native_encode_int (expr, ptr, len, off);
7113
7114 case REAL_CST:
7115 return native_encode_real (expr, ptr, len, off);
7116
7117 case FIXED_CST:
7118 return native_encode_fixed (expr, ptr, len, off);
7119
7120 case COMPLEX_CST:
7121 return native_encode_complex (expr, ptr, len, off);
7122
7123 case VECTOR_CST:
7124 return native_encode_vector (expr, ptr, len, off);
7125
7126 case STRING_CST:
7127 return native_encode_string (expr, ptr, len, off);
7128
7129 default:
7130 return 0;
7131 }
7132 }
7133
7134
7135 /* Subroutine of native_interpret_expr. Interpret the contents of
7136 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7137 If the buffer cannot be interpreted, return NULL_TREE. */
7138
7139 static tree
7140 native_interpret_int (tree type, const unsigned char *ptr, int len)
7141 {
7142 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7143
7144 if (total_bytes > len
7145 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7146 return NULL_TREE;
7147
7148 wide_int result = wi::from_buffer (ptr, total_bytes);
7149
7150 return wide_int_to_tree (type, result);
7151 }
7152
7153
7154 /* Subroutine of native_interpret_expr. Interpret the contents of
7155 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7156 If the buffer cannot be interpreted, return NULL_TREE. */
7157
7158 static tree
7159 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7160 {
7161 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7162 double_int result;
7163 FIXED_VALUE_TYPE fixed_value;
7164
7165 if (total_bytes > len
7166 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7167 return NULL_TREE;
7168
7169 result = double_int::from_buffer (ptr, total_bytes);
7170 fixed_value = fixed_from_double_int (result, TYPE_MODE (type));
7171
7172 return build_fixed (type, fixed_value);
7173 }
7174
7175
7176 /* Subroutine of native_interpret_expr. Interpret the contents of
7177 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7178 If the buffer cannot be interpreted, return NULL_TREE. */
7179
7180 static tree
7181 native_interpret_real (tree type, const unsigned char *ptr, int len)
7182 {
7183 machine_mode mode = TYPE_MODE (type);
7184 int total_bytes = GET_MODE_SIZE (mode);
7185 int byte, offset, word, words, bitpos;
7186 unsigned char value;
7187 /* There are always 32 bits in each long, no matter the size of
7188 the hosts long. We handle floating point representations with
7189 up to 192 bits. */
7190 REAL_VALUE_TYPE r;
7191 long tmp[6];
7192
7193 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7194 if (total_bytes > len || total_bytes > 24)
7195 return NULL_TREE;
7196 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7197
7198 memset (tmp, 0, sizeof (tmp));
7199 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7200 bitpos += BITS_PER_UNIT)
7201 {
7202 byte = (bitpos / BITS_PER_UNIT) & 3;
7203 if (UNITS_PER_WORD < 4)
7204 {
7205 word = byte / UNITS_PER_WORD;
7206 if (WORDS_BIG_ENDIAN)
7207 word = (words - 1) - word;
7208 offset = word * UNITS_PER_WORD;
7209 if (BYTES_BIG_ENDIAN)
7210 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7211 else
7212 offset += byte % UNITS_PER_WORD;
7213 }
7214 else
7215 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7216 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7217
7218 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7219 }
7220
7221 real_from_target (&r, tmp, mode);
7222 return build_real (type, r);
7223 }
7224
7225
7226 /* Subroutine of native_interpret_expr. Interpret the contents of
7227 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7228 If the buffer cannot be interpreted, return NULL_TREE. */
7229
7230 static tree
7231 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7232 {
7233 tree etype, rpart, ipart;
7234 int size;
7235
7236 etype = TREE_TYPE (type);
7237 size = GET_MODE_SIZE (TYPE_MODE (etype));
7238 if (size * 2 > len)
7239 return NULL_TREE;
7240 rpart = native_interpret_expr (etype, ptr, size);
7241 if (!rpart)
7242 return NULL_TREE;
7243 ipart = native_interpret_expr (etype, ptr+size, size);
7244 if (!ipart)
7245 return NULL_TREE;
7246 return build_complex (type, rpart, ipart);
7247 }
7248
7249
7250 /* Subroutine of native_interpret_expr. Interpret the contents of
7251 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7252 If the buffer cannot be interpreted, return NULL_TREE. */
7253
7254 static tree
7255 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7256 {
7257 tree etype, elem;
7258 int i, size, count;
7259 tree *elements;
7260
7261 etype = TREE_TYPE (type);
7262 size = GET_MODE_SIZE (TYPE_MODE (etype));
7263 count = TYPE_VECTOR_SUBPARTS (type);
7264 if (size * count > len)
7265 return NULL_TREE;
7266
7267 elements = XALLOCAVEC (tree, count);
7268 for (i = count - 1; i >= 0; i--)
7269 {
7270 elem = native_interpret_expr (etype, ptr+(i*size), size);
7271 if (!elem)
7272 return NULL_TREE;
7273 elements[i] = elem;
7274 }
7275 return build_vector (type, elements);
7276 }
7277
7278
7279 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7280 the buffer PTR of length LEN as a constant of type TYPE. For
7281 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7282 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7283 return NULL_TREE. */
7284
7285 tree
7286 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7287 {
7288 switch (TREE_CODE (type))
7289 {
7290 case INTEGER_TYPE:
7291 case ENUMERAL_TYPE:
7292 case BOOLEAN_TYPE:
7293 case POINTER_TYPE:
7294 case REFERENCE_TYPE:
7295 return native_interpret_int (type, ptr, len);
7296
7297 case REAL_TYPE:
7298 return native_interpret_real (type, ptr, len);
7299
7300 case FIXED_POINT_TYPE:
7301 return native_interpret_fixed (type, ptr, len);
7302
7303 case COMPLEX_TYPE:
7304 return native_interpret_complex (type, ptr, len);
7305
7306 case VECTOR_TYPE:
7307 return native_interpret_vector (type, ptr, len);
7308
7309 default:
7310 return NULL_TREE;
7311 }
7312 }
7313
7314 /* Returns true if we can interpret the contents of a native encoding
7315 as TYPE. */
7316
7317 static bool
7318 can_native_interpret_type_p (tree type)
7319 {
7320 switch (TREE_CODE (type))
7321 {
7322 case INTEGER_TYPE:
7323 case ENUMERAL_TYPE:
7324 case BOOLEAN_TYPE:
7325 case POINTER_TYPE:
7326 case REFERENCE_TYPE:
7327 case FIXED_POINT_TYPE:
7328 case REAL_TYPE:
7329 case COMPLEX_TYPE:
7330 case VECTOR_TYPE:
7331 return true;
7332 default:
7333 return false;
7334 }
7335 }
7336
7337 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7338 TYPE at compile-time. If we're unable to perform the conversion
7339 return NULL_TREE. */
7340
7341 static tree
7342 fold_view_convert_expr (tree type, tree expr)
7343 {
7344 /* We support up to 512-bit values (for V8DFmode). */
7345 unsigned char buffer[64];
7346 int len;
7347
7348 /* Check that the host and target are sane. */
7349 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7350 return NULL_TREE;
7351
7352 len = native_encode_expr (expr, buffer, sizeof (buffer));
7353 if (len == 0)
7354 return NULL_TREE;
7355
7356 return native_interpret_expr (type, buffer, len);
7357 }
7358
7359 /* Build an expression for the address of T. Folds away INDIRECT_REF
7360 to avoid confusing the gimplify process. */
7361
7362 tree
7363 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7364 {
7365 /* The size of the object is not relevant when talking about its address. */
7366 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7367 t = TREE_OPERAND (t, 0);
7368
7369 if (TREE_CODE (t) == INDIRECT_REF)
7370 {
7371 t = TREE_OPERAND (t, 0);
7372
7373 if (TREE_TYPE (t) != ptrtype)
7374 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7375 }
7376 else if (TREE_CODE (t) == MEM_REF
7377 && integer_zerop (TREE_OPERAND (t, 1)))
7378 return TREE_OPERAND (t, 0);
7379 else if (TREE_CODE (t) == MEM_REF
7380 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7381 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7382 TREE_OPERAND (t, 0),
7383 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7384 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7385 {
7386 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7387
7388 if (TREE_TYPE (t) != ptrtype)
7389 t = fold_convert_loc (loc, ptrtype, t);
7390 }
7391 else
7392 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7393
7394 return t;
7395 }
7396
7397 /* Build an expression for the address of T. */
7398
7399 tree
7400 build_fold_addr_expr_loc (location_t loc, tree t)
7401 {
7402 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7403
7404 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7405 }
7406
7407 /* Fold a unary expression of code CODE and type TYPE with operand
7408 OP0. Return the folded expression if folding is successful.
7409 Otherwise, return NULL_TREE. */
7410
7411 tree
7412 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7413 {
7414 tree tem;
7415 tree arg0;
7416 enum tree_code_class kind = TREE_CODE_CLASS (code);
7417
7418 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7419 && TREE_CODE_LENGTH (code) == 1);
7420
7421 arg0 = op0;
7422 if (arg0)
7423 {
7424 if (CONVERT_EXPR_CODE_P (code)
7425 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7426 {
7427 /* Don't use STRIP_NOPS, because signedness of argument type
7428 matters. */
7429 STRIP_SIGN_NOPS (arg0);
7430 }
7431 else
7432 {
7433 /* Strip any conversions that don't change the mode. This
7434 is safe for every expression, except for a comparison
7435 expression because its signedness is derived from its
7436 operands.
7437
7438 Note that this is done as an internal manipulation within
7439 the constant folder, in order to find the simplest
7440 representation of the arguments so that their form can be
7441 studied. In any cases, the appropriate type conversions
7442 should be put back in the tree that will get out of the
7443 constant folder. */
7444 STRIP_NOPS (arg0);
7445 }
7446
7447 if (CONSTANT_CLASS_P (arg0))
7448 {
7449 tree tem = const_unop (code, type, arg0);
7450 if (tem)
7451 {
7452 if (TREE_TYPE (tem) != type)
7453 tem = fold_convert_loc (loc, type, tem);
7454 return tem;
7455 }
7456 }
7457 }
7458
7459 tem = generic_simplify (loc, code, type, op0);
7460 if (tem)
7461 return tem;
7462
7463 if (TREE_CODE_CLASS (code) == tcc_unary)
7464 {
7465 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7466 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7467 fold_build1_loc (loc, code, type,
7468 fold_convert_loc (loc, TREE_TYPE (op0),
7469 TREE_OPERAND (arg0, 1))));
7470 else if (TREE_CODE (arg0) == COND_EXPR)
7471 {
7472 tree arg01 = TREE_OPERAND (arg0, 1);
7473 tree arg02 = TREE_OPERAND (arg0, 2);
7474 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7475 arg01 = fold_build1_loc (loc, code, type,
7476 fold_convert_loc (loc,
7477 TREE_TYPE (op0), arg01));
7478 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7479 arg02 = fold_build1_loc (loc, code, type,
7480 fold_convert_loc (loc,
7481 TREE_TYPE (op0), arg02));
7482 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7483 arg01, arg02);
7484
7485 /* If this was a conversion, and all we did was to move into
7486 inside the COND_EXPR, bring it back out. But leave it if
7487 it is a conversion from integer to integer and the
7488 result precision is no wider than a word since such a
7489 conversion is cheap and may be optimized away by combine,
7490 while it couldn't if it were outside the COND_EXPR. Then return
7491 so we don't get into an infinite recursion loop taking the
7492 conversion out and then back in. */
7493
7494 if ((CONVERT_EXPR_CODE_P (code)
7495 || code == NON_LVALUE_EXPR)
7496 && TREE_CODE (tem) == COND_EXPR
7497 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7498 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7499 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7500 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7501 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7502 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7503 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7504 && (INTEGRAL_TYPE_P
7505 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7506 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7507 || flag_syntax_only))
7508 tem = build1_loc (loc, code, type,
7509 build3 (COND_EXPR,
7510 TREE_TYPE (TREE_OPERAND
7511 (TREE_OPERAND (tem, 1), 0)),
7512 TREE_OPERAND (tem, 0),
7513 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7514 TREE_OPERAND (TREE_OPERAND (tem, 2),
7515 0)));
7516 return tem;
7517 }
7518 }
7519
7520 switch (code)
7521 {
7522 case NON_LVALUE_EXPR:
7523 if (!maybe_lvalue_p (op0))
7524 return fold_convert_loc (loc, type, op0);
7525 return NULL_TREE;
7526
7527 CASE_CONVERT:
7528 case FLOAT_EXPR:
7529 case FIX_TRUNC_EXPR:
7530 if (COMPARISON_CLASS_P (op0))
7531 {
7532 /* If we have (type) (a CMP b) and type is an integral type, return
7533 new expression involving the new type. Canonicalize
7534 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7535 non-integral type.
7536 Do not fold the result as that would not simplify further, also
7537 folding again results in recursions. */
7538 if (TREE_CODE (type) == BOOLEAN_TYPE)
7539 return build2_loc (loc, TREE_CODE (op0), type,
7540 TREE_OPERAND (op0, 0),
7541 TREE_OPERAND (op0, 1));
7542 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7543 && TREE_CODE (type) != VECTOR_TYPE)
7544 return build3_loc (loc, COND_EXPR, type, op0,
7545 constant_boolean_node (true, type),
7546 constant_boolean_node (false, type));
7547 }
7548
7549 /* Handle (T *)&A.B.C for A being of type T and B and C
7550 living at offset zero. This occurs frequently in
7551 C++ upcasting and then accessing the base. */
7552 if (TREE_CODE (op0) == ADDR_EXPR
7553 && POINTER_TYPE_P (type)
7554 && handled_component_p (TREE_OPERAND (op0, 0)))
7555 {
7556 HOST_WIDE_INT bitsize, bitpos;
7557 tree offset;
7558 machine_mode mode;
7559 int unsignedp, volatilep;
7560 tree base = TREE_OPERAND (op0, 0);
7561 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
7562 &mode, &unsignedp, &volatilep, false);
7563 /* If the reference was to a (constant) zero offset, we can use
7564 the address of the base if it has the same base type
7565 as the result type and the pointer type is unqualified. */
7566 if (! offset && bitpos == 0
7567 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7568 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7569 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7570 return fold_convert_loc (loc, type,
7571 build_fold_addr_expr_loc (loc, base));
7572 }
7573
7574 if (TREE_CODE (op0) == MODIFY_EXPR
7575 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7576 /* Detect assigning a bitfield. */
7577 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7578 && DECL_BIT_FIELD
7579 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7580 {
7581 /* Don't leave an assignment inside a conversion
7582 unless assigning a bitfield. */
7583 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7584 /* First do the assignment, then return converted constant. */
7585 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7586 TREE_NO_WARNING (tem) = 1;
7587 TREE_USED (tem) = 1;
7588 return tem;
7589 }
7590
7591 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7592 constants (if x has signed type, the sign bit cannot be set
7593 in c). This folds extension into the BIT_AND_EXPR.
7594 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7595 very likely don't have maximal range for their precision and this
7596 transformation effectively doesn't preserve non-maximal ranges. */
7597 if (TREE_CODE (type) == INTEGER_TYPE
7598 && TREE_CODE (op0) == BIT_AND_EXPR
7599 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7600 {
7601 tree and_expr = op0;
7602 tree and0 = TREE_OPERAND (and_expr, 0);
7603 tree and1 = TREE_OPERAND (and_expr, 1);
7604 int change = 0;
7605
7606 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7607 || (TYPE_PRECISION (type)
7608 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7609 change = 1;
7610 else if (TYPE_PRECISION (TREE_TYPE (and1))
7611 <= HOST_BITS_PER_WIDE_INT
7612 && tree_fits_uhwi_p (and1))
7613 {
7614 unsigned HOST_WIDE_INT cst;
7615
7616 cst = tree_to_uhwi (and1);
7617 cst &= HOST_WIDE_INT_M1U
7618 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7619 change = (cst == 0);
7620 if (change
7621 && !flag_syntax_only
7622 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
7623 == ZERO_EXTEND))
7624 {
7625 tree uns = unsigned_type_for (TREE_TYPE (and0));
7626 and0 = fold_convert_loc (loc, uns, and0);
7627 and1 = fold_convert_loc (loc, uns, and1);
7628 }
7629 }
7630 if (change)
7631 {
7632 tem = force_fit_type (type, wi::to_widest (and1), 0,
7633 TREE_OVERFLOW (and1));
7634 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7635 fold_convert_loc (loc, type, and0), tem);
7636 }
7637 }
7638
7639 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
7640 when one of the new casts will fold away. Conservatively we assume
7641 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
7642 if (POINTER_TYPE_P (type)
7643 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7644 && (!TYPE_RESTRICT (type) || TYPE_RESTRICT (TREE_TYPE (arg0)))
7645 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7646 || TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
7647 || TREE_CODE (TREE_OPERAND (arg0, 1)) == NOP_EXPR))
7648 {
7649 tree arg00 = TREE_OPERAND (arg0, 0);
7650 tree arg01 = TREE_OPERAND (arg0, 1);
7651
7652 return fold_build_pointer_plus_loc
7653 (loc, fold_convert_loc (loc, type, arg00), arg01);
7654 }
7655
7656 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7657 of the same precision, and X is an integer type not narrower than
7658 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7659 if (INTEGRAL_TYPE_P (type)
7660 && TREE_CODE (op0) == BIT_NOT_EXPR
7661 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7662 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7663 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7664 {
7665 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7666 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7667 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7668 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7669 fold_convert_loc (loc, type, tem));
7670 }
7671
7672 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7673 type of X and Y (integer types only). */
7674 if (INTEGRAL_TYPE_P (type)
7675 && TREE_CODE (op0) == MULT_EXPR
7676 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7677 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
7678 {
7679 /* Be careful not to introduce new overflows. */
7680 tree mult_type;
7681 if (TYPE_OVERFLOW_WRAPS (type))
7682 mult_type = type;
7683 else
7684 mult_type = unsigned_type_for (type);
7685
7686 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
7687 {
7688 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
7689 fold_convert_loc (loc, mult_type,
7690 TREE_OPERAND (op0, 0)),
7691 fold_convert_loc (loc, mult_type,
7692 TREE_OPERAND (op0, 1)));
7693 return fold_convert_loc (loc, type, tem);
7694 }
7695 }
7696
7697 return NULL_TREE;
7698
7699 case VIEW_CONVERT_EXPR:
7700 if (TREE_CODE (op0) == MEM_REF)
7701 return fold_build2_loc (loc, MEM_REF, type,
7702 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
7703
7704 return NULL_TREE;
7705
7706 case NEGATE_EXPR:
7707 tem = fold_negate_expr (loc, arg0);
7708 if (tem)
7709 return fold_convert_loc (loc, type, tem);
7710 return NULL_TREE;
7711
7712 case ABS_EXPR:
7713 /* Convert fabs((double)float) into (double)fabsf(float). */
7714 if (TREE_CODE (arg0) == NOP_EXPR
7715 && TREE_CODE (type) == REAL_TYPE)
7716 {
7717 tree targ0 = strip_float_extensions (arg0);
7718 if (targ0 != arg0)
7719 return fold_convert_loc (loc, type,
7720 fold_build1_loc (loc, ABS_EXPR,
7721 TREE_TYPE (targ0),
7722 targ0));
7723 }
7724
7725 /* Strip sign ops from argument. */
7726 if (TREE_CODE (type) == REAL_TYPE)
7727 {
7728 tem = fold_strip_sign_ops (arg0);
7729 if (tem)
7730 return fold_build1_loc (loc, ABS_EXPR, type,
7731 fold_convert_loc (loc, type, tem));
7732 }
7733 return NULL_TREE;
7734
7735 case CONJ_EXPR:
7736 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7737 return fold_convert_loc (loc, type, arg0);
7738 if (TREE_CODE (arg0) == COMPLEX_EXPR)
7739 {
7740 tree itype = TREE_TYPE (type);
7741 tree rpart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 0));
7742 tree ipart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 1));
7743 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart,
7744 negate_expr (ipart));
7745 }
7746 if (TREE_CODE (arg0) == CONJ_EXPR)
7747 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
7748 return NULL_TREE;
7749
7750 case BIT_NOT_EXPR:
7751 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7752 if (TREE_CODE (arg0) == BIT_XOR_EXPR
7753 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7754 fold_convert_loc (loc, type,
7755 TREE_OPERAND (arg0, 0)))))
7756 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
7757 fold_convert_loc (loc, type,
7758 TREE_OPERAND (arg0, 1)));
7759 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7760 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7761 fold_convert_loc (loc, type,
7762 TREE_OPERAND (arg0, 1)))))
7763 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
7764 fold_convert_loc (loc, type,
7765 TREE_OPERAND (arg0, 0)), tem);
7766
7767 return NULL_TREE;
7768
7769 case TRUTH_NOT_EXPR:
7770 /* Note that the operand of this must be an int
7771 and its values must be 0 or 1.
7772 ("true" is a fixed value perhaps depending on the language,
7773 but we don't handle values other than 1 correctly yet.) */
7774 tem = fold_truth_not_expr (loc, arg0);
7775 if (!tem)
7776 return NULL_TREE;
7777 return fold_convert_loc (loc, type, tem);
7778
7779 case REALPART_EXPR:
7780 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7781 return fold_convert_loc (loc, type, arg0);
7782 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7783 {
7784 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7785 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
7786 fold_build1_loc (loc, REALPART_EXPR, itype,
7787 TREE_OPERAND (arg0, 0)),
7788 fold_build1_loc (loc, REALPART_EXPR, itype,
7789 TREE_OPERAND (arg0, 1)));
7790 return fold_convert_loc (loc, type, tem);
7791 }
7792 if (TREE_CODE (arg0) == CONJ_EXPR)
7793 {
7794 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7795 tem = fold_build1_loc (loc, REALPART_EXPR, itype,
7796 TREE_OPERAND (arg0, 0));
7797 return fold_convert_loc (loc, type, tem);
7798 }
7799 if (TREE_CODE (arg0) == CALL_EXPR)
7800 {
7801 tree fn = get_callee_fndecl (arg0);
7802 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
7803 switch (DECL_FUNCTION_CODE (fn))
7804 {
7805 CASE_FLT_FN (BUILT_IN_CEXPI):
7806 fn = mathfn_built_in (type, BUILT_IN_COS);
7807 if (fn)
7808 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
7809 break;
7810
7811 default:
7812 break;
7813 }
7814 }
7815 return NULL_TREE;
7816
7817 case IMAGPART_EXPR:
7818 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7819 return build_zero_cst (type);
7820 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7821 {
7822 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7823 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
7824 fold_build1_loc (loc, IMAGPART_EXPR, itype,
7825 TREE_OPERAND (arg0, 0)),
7826 fold_build1_loc (loc, IMAGPART_EXPR, itype,
7827 TREE_OPERAND (arg0, 1)));
7828 return fold_convert_loc (loc, type, tem);
7829 }
7830 if (TREE_CODE (arg0) == CONJ_EXPR)
7831 {
7832 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7833 tem = fold_build1_loc (loc, IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
7834 return fold_convert_loc (loc, type, negate_expr (tem));
7835 }
7836 if (TREE_CODE (arg0) == CALL_EXPR)
7837 {
7838 tree fn = get_callee_fndecl (arg0);
7839 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
7840 switch (DECL_FUNCTION_CODE (fn))
7841 {
7842 CASE_FLT_FN (BUILT_IN_CEXPI):
7843 fn = mathfn_built_in (type, BUILT_IN_SIN);
7844 if (fn)
7845 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
7846 break;
7847
7848 default:
7849 break;
7850 }
7851 }
7852 return NULL_TREE;
7853
7854 case INDIRECT_REF:
7855 /* Fold *&X to X if X is an lvalue. */
7856 if (TREE_CODE (op0) == ADDR_EXPR)
7857 {
7858 tree op00 = TREE_OPERAND (op0, 0);
7859 if ((TREE_CODE (op00) == VAR_DECL
7860 || TREE_CODE (op00) == PARM_DECL
7861 || TREE_CODE (op00) == RESULT_DECL)
7862 && !TREE_READONLY (op00))
7863 return op00;
7864 }
7865 return NULL_TREE;
7866
7867 default:
7868 return NULL_TREE;
7869 } /* switch (code) */
7870 }
7871
7872
7873 /* If the operation was a conversion do _not_ mark a resulting constant
7874 with TREE_OVERFLOW if the original constant was not. These conversions
7875 have implementation defined behavior and retaining the TREE_OVERFLOW
7876 flag here would confuse later passes such as VRP. */
7877 tree
7878 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
7879 tree type, tree op0)
7880 {
7881 tree res = fold_unary_loc (loc, code, type, op0);
7882 if (res
7883 && TREE_CODE (res) == INTEGER_CST
7884 && TREE_CODE (op0) == INTEGER_CST
7885 && CONVERT_EXPR_CODE_P (code))
7886 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
7887
7888 return res;
7889 }
7890
7891 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
7892 operands OP0 and OP1. LOC is the location of the resulting expression.
7893 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
7894 Return the folded expression if folding is successful. Otherwise,
7895 return NULL_TREE. */
7896 static tree
7897 fold_truth_andor (location_t loc, enum tree_code code, tree type,
7898 tree arg0, tree arg1, tree op0, tree op1)
7899 {
7900 tree tem;
7901
7902 /* We only do these simplifications if we are optimizing. */
7903 if (!optimize)
7904 return NULL_TREE;
7905
7906 /* Check for things like (A || B) && (A || C). We can convert this
7907 to A || (B && C). Note that either operator can be any of the four
7908 truth and/or operations and the transformation will still be
7909 valid. Also note that we only care about order for the
7910 ANDIF and ORIF operators. If B contains side effects, this
7911 might change the truth-value of A. */
7912 if (TREE_CODE (arg0) == TREE_CODE (arg1)
7913 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
7914 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
7915 || TREE_CODE (arg0) == TRUTH_AND_EXPR
7916 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
7917 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
7918 {
7919 tree a00 = TREE_OPERAND (arg0, 0);
7920 tree a01 = TREE_OPERAND (arg0, 1);
7921 tree a10 = TREE_OPERAND (arg1, 0);
7922 tree a11 = TREE_OPERAND (arg1, 1);
7923 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
7924 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
7925 && (code == TRUTH_AND_EXPR
7926 || code == TRUTH_OR_EXPR));
7927
7928 if (operand_equal_p (a00, a10, 0))
7929 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7930 fold_build2_loc (loc, code, type, a01, a11));
7931 else if (commutative && operand_equal_p (a00, a11, 0))
7932 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7933 fold_build2_loc (loc, code, type, a01, a10));
7934 else if (commutative && operand_equal_p (a01, a10, 0))
7935 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
7936 fold_build2_loc (loc, code, type, a00, a11));
7937
7938 /* This case if tricky because we must either have commutative
7939 operators or else A10 must not have side-effects. */
7940
7941 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
7942 && operand_equal_p (a01, a11, 0))
7943 return fold_build2_loc (loc, TREE_CODE (arg0), type,
7944 fold_build2_loc (loc, code, type, a00, a10),
7945 a01);
7946 }
7947
7948 /* See if we can build a range comparison. */
7949 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
7950 return tem;
7951
7952 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
7953 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
7954 {
7955 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
7956 if (tem)
7957 return fold_build2_loc (loc, code, type, tem, arg1);
7958 }
7959
7960 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
7961 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
7962 {
7963 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
7964 if (tem)
7965 return fold_build2_loc (loc, code, type, arg0, tem);
7966 }
7967
7968 /* Check for the possibility of merging component references. If our
7969 lhs is another similar operation, try to merge its rhs with our
7970 rhs. Then try to merge our lhs and rhs. */
7971 if (TREE_CODE (arg0) == code
7972 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
7973 TREE_OPERAND (arg0, 1), arg1)))
7974 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
7975
7976 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
7977 return tem;
7978
7979 if (LOGICAL_OP_NON_SHORT_CIRCUIT
7980 && (code == TRUTH_AND_EXPR
7981 || code == TRUTH_ANDIF_EXPR
7982 || code == TRUTH_OR_EXPR
7983 || code == TRUTH_ORIF_EXPR))
7984 {
7985 enum tree_code ncode, icode;
7986
7987 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
7988 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
7989 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
7990
7991 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
7992 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
7993 We don't want to pack more than two leafs to a non-IF AND/OR
7994 expression.
7995 If tree-code of left-hand operand isn't an AND/OR-IF code and not
7996 equal to IF-CODE, then we don't want to add right-hand operand.
7997 If the inner right-hand side of left-hand operand has
7998 side-effects, or isn't simple, then we can't add to it,
7999 as otherwise we might destroy if-sequence. */
8000 if (TREE_CODE (arg0) == icode
8001 && simple_operand_p_2 (arg1)
8002 /* Needed for sequence points to handle trappings, and
8003 side-effects. */
8004 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8005 {
8006 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8007 arg1);
8008 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8009 tem);
8010 }
8011 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8012 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8013 else if (TREE_CODE (arg1) == icode
8014 && simple_operand_p_2 (arg0)
8015 /* Needed for sequence points to handle trappings, and
8016 side-effects. */
8017 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8018 {
8019 tem = fold_build2_loc (loc, ncode, type,
8020 arg0, TREE_OPERAND (arg1, 0));
8021 return fold_build2_loc (loc, icode, type, tem,
8022 TREE_OPERAND (arg1, 1));
8023 }
8024 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8025 into (A OR B).
8026 For sequence point consistancy, we need to check for trapping,
8027 and side-effects. */
8028 else if (code == icode && simple_operand_p_2 (arg0)
8029 && simple_operand_p_2 (arg1))
8030 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8031 }
8032
8033 return NULL_TREE;
8034 }
8035
8036 /* Fold a binary expression of code CODE and type TYPE with operands
8037 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8038 Return the folded expression if folding is successful. Otherwise,
8039 return NULL_TREE. */
8040
8041 static tree
8042 fold_minmax (location_t loc, enum tree_code code, tree type, tree op0, tree op1)
8043 {
8044 enum tree_code compl_code;
8045
8046 if (code == MIN_EXPR)
8047 compl_code = MAX_EXPR;
8048 else if (code == MAX_EXPR)
8049 compl_code = MIN_EXPR;
8050 else
8051 gcc_unreachable ();
8052
8053 /* MIN (MAX (a, b), b) == b. */
8054 if (TREE_CODE (op0) == compl_code
8055 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
8056 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 0));
8057
8058 /* MIN (MAX (b, a), b) == b. */
8059 if (TREE_CODE (op0) == compl_code
8060 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
8061 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
8062 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 1));
8063
8064 /* MIN (a, MAX (a, b)) == a. */
8065 if (TREE_CODE (op1) == compl_code
8066 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
8067 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
8068 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 1));
8069
8070 /* MIN (a, MAX (b, a)) == a. */
8071 if (TREE_CODE (op1) == compl_code
8072 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
8073 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
8074 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 0));
8075
8076 return NULL_TREE;
8077 }
8078
8079 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8080 by changing CODE to reduce the magnitude of constants involved in
8081 ARG0 of the comparison.
8082 Returns a canonicalized comparison tree if a simplification was
8083 possible, otherwise returns NULL_TREE.
8084 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8085 valid if signed overflow is undefined. */
8086
8087 static tree
8088 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8089 tree arg0, tree arg1,
8090 bool *strict_overflow_p)
8091 {
8092 enum tree_code code0 = TREE_CODE (arg0);
8093 tree t, cst0 = NULL_TREE;
8094 int sgn0;
8095
8096 /* Match A +- CST code arg1. We can change this only if overflow
8097 is undefined. */
8098 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8099 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8100 /* In principle pointers also have undefined overflow behavior,
8101 but that causes problems elsewhere. */
8102 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8103 && (code0 == MINUS_EXPR
8104 || code0 == PLUS_EXPR)
8105 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
8106 return NULL_TREE;
8107
8108 /* Identify the constant in arg0 and its sign. */
8109 cst0 = TREE_OPERAND (arg0, 1);
8110 sgn0 = tree_int_cst_sgn (cst0);
8111
8112 /* Overflowed constants and zero will cause problems. */
8113 if (integer_zerop (cst0)
8114 || TREE_OVERFLOW (cst0))
8115 return NULL_TREE;
8116
8117 /* See if we can reduce the magnitude of the constant in
8118 arg0 by changing the comparison code. */
8119 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8120 if (code == LT_EXPR
8121 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8122 code = LE_EXPR;
8123 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8124 else if (code == GT_EXPR
8125 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8126 code = GE_EXPR;
8127 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8128 else if (code == LE_EXPR
8129 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8130 code = LT_EXPR;
8131 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8132 else if (code == GE_EXPR
8133 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8134 code = GT_EXPR;
8135 else
8136 return NULL_TREE;
8137 *strict_overflow_p = true;
8138
8139 /* Now build the constant reduced in magnitude. But not if that
8140 would produce one outside of its types range. */
8141 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8142 && ((sgn0 == 1
8143 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8144 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8145 || (sgn0 == -1
8146 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8147 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8148 return NULL_TREE;
8149
8150 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8151 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8152 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8153 t = fold_convert (TREE_TYPE (arg1), t);
8154
8155 return fold_build2_loc (loc, code, type, t, arg1);
8156 }
8157
8158 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8159 overflow further. Try to decrease the magnitude of constants involved
8160 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8161 and put sole constants at the second argument position.
8162 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8163
8164 static tree
8165 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8166 tree arg0, tree arg1)
8167 {
8168 tree t;
8169 bool strict_overflow_p;
8170 const char * const warnmsg = G_("assuming signed overflow does not occur "
8171 "when reducing constant in comparison");
8172
8173 /* Try canonicalization by simplifying arg0. */
8174 strict_overflow_p = false;
8175 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8176 &strict_overflow_p);
8177 if (t)
8178 {
8179 if (strict_overflow_p)
8180 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8181 return t;
8182 }
8183
8184 /* Try canonicalization by simplifying arg1 using the swapped
8185 comparison. */
8186 code = swap_tree_comparison (code);
8187 strict_overflow_p = false;
8188 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8189 &strict_overflow_p);
8190 if (t && strict_overflow_p)
8191 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8192 return t;
8193 }
8194
8195 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8196 space. This is used to avoid issuing overflow warnings for
8197 expressions like &p->x which can not wrap. */
8198
8199 static bool
8200 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8201 {
8202 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8203 return true;
8204
8205 if (bitpos < 0)
8206 return true;
8207
8208 wide_int wi_offset;
8209 int precision = TYPE_PRECISION (TREE_TYPE (base));
8210 if (offset == NULL_TREE)
8211 wi_offset = wi::zero (precision);
8212 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8213 return true;
8214 else
8215 wi_offset = offset;
8216
8217 bool overflow;
8218 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8219 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8220 if (overflow)
8221 return true;
8222
8223 if (!wi::fits_uhwi_p (total))
8224 return true;
8225
8226 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8227 if (size <= 0)
8228 return true;
8229
8230 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8231 array. */
8232 if (TREE_CODE (base) == ADDR_EXPR)
8233 {
8234 HOST_WIDE_INT base_size;
8235
8236 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8237 if (base_size > 0 && size < base_size)
8238 size = base_size;
8239 }
8240
8241 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8242 }
8243
8244 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
8245 kind INTEGER_CST. This makes sure to properly sign-extend the
8246 constant. */
8247
8248 static HOST_WIDE_INT
8249 size_low_cst (const_tree t)
8250 {
8251 HOST_WIDE_INT w = TREE_INT_CST_ELT (t, 0);
8252 int prec = TYPE_PRECISION (TREE_TYPE (t));
8253 if (prec < HOST_BITS_PER_WIDE_INT)
8254 return sext_hwi (w, prec);
8255 return w;
8256 }
8257
8258 /* Subroutine of fold_binary. This routine performs all of the
8259 transformations that are common to the equality/inequality
8260 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8261 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8262 fold_binary should call fold_binary. Fold a comparison with
8263 tree code CODE and type TYPE with operands OP0 and OP1. Return
8264 the folded comparison or NULL_TREE. */
8265
8266 static tree
8267 fold_comparison (location_t loc, enum tree_code code, tree type,
8268 tree op0, tree op1)
8269 {
8270 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8271 tree arg0, arg1, tem;
8272
8273 arg0 = op0;
8274 arg1 = op1;
8275
8276 STRIP_SIGN_NOPS (arg0);
8277 STRIP_SIGN_NOPS (arg1);
8278
8279 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
8280 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8281 && (equality_code
8282 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8283 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
8284 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8285 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8286 && TREE_CODE (arg1) == INTEGER_CST
8287 && !TREE_OVERFLOW (arg1))
8288 {
8289 const enum tree_code
8290 reverse_op = TREE_CODE (arg0) == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR;
8291 tree const1 = TREE_OPERAND (arg0, 1);
8292 tree const2 = fold_convert_loc (loc, TREE_TYPE (const1), arg1);
8293 tree variable = TREE_OPERAND (arg0, 0);
8294 tree new_const = int_const_binop (reverse_op, const2, const1);
8295
8296 /* If the constant operation overflowed this can be
8297 simplified as a comparison against INT_MAX/INT_MIN. */
8298 if (TREE_OVERFLOW (new_const)
8299 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
8300 {
8301 int const1_sgn = tree_int_cst_sgn (const1);
8302 enum tree_code code2 = code;
8303
8304 /* Get the sign of the constant on the lhs if the
8305 operation were VARIABLE + CONST1. */
8306 if (TREE_CODE (arg0) == MINUS_EXPR)
8307 const1_sgn = -const1_sgn;
8308
8309 /* The sign of the constant determines if we overflowed
8310 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8311 Canonicalize to the INT_MIN overflow by swapping the comparison
8312 if necessary. */
8313 if (const1_sgn == -1)
8314 code2 = swap_tree_comparison (code);
8315
8316 /* We now can look at the canonicalized case
8317 VARIABLE + 1 CODE2 INT_MIN
8318 and decide on the result. */
8319 switch (code2)
8320 {
8321 case EQ_EXPR:
8322 case LT_EXPR:
8323 case LE_EXPR:
8324 return
8325 omit_one_operand_loc (loc, type, boolean_false_node, variable);
8326
8327 case NE_EXPR:
8328 case GE_EXPR:
8329 case GT_EXPR:
8330 return
8331 omit_one_operand_loc (loc, type, boolean_true_node, variable);
8332
8333 default:
8334 gcc_unreachable ();
8335 }
8336 }
8337 else
8338 {
8339 if (!equality_code)
8340 fold_overflow_warning ("assuming signed overflow does not occur "
8341 "when changing X +- C1 cmp C2 to "
8342 "X cmp C2 -+ C1",
8343 WARN_STRICT_OVERFLOW_COMPARISON);
8344 return fold_build2_loc (loc, code, type, variable, new_const);
8345 }
8346 }
8347
8348 /* For comparisons of pointers we can decompose it to a compile time
8349 comparison of the base objects and the offsets into the object.
8350 This requires at least one operand being an ADDR_EXPR or a
8351 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8352 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8353 && (TREE_CODE (arg0) == ADDR_EXPR
8354 || TREE_CODE (arg1) == ADDR_EXPR
8355 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8356 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8357 {
8358 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8359 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8360 machine_mode mode;
8361 int volatilep, unsignedp;
8362 bool indirect_base0 = false, indirect_base1 = false;
8363
8364 /* Get base and offset for the access. Strip ADDR_EXPR for
8365 get_inner_reference, but put it back by stripping INDIRECT_REF
8366 off the base object if possible. indirect_baseN will be true
8367 if baseN is not an address but refers to the object itself. */
8368 base0 = arg0;
8369 if (TREE_CODE (arg0) == ADDR_EXPR)
8370 {
8371 base0 = get_inner_reference (TREE_OPERAND (arg0, 0),
8372 &bitsize, &bitpos0, &offset0, &mode,
8373 &unsignedp, &volatilep, false);
8374 if (TREE_CODE (base0) == INDIRECT_REF)
8375 base0 = TREE_OPERAND (base0, 0);
8376 else
8377 indirect_base0 = true;
8378 }
8379 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8380 {
8381 base0 = TREE_OPERAND (arg0, 0);
8382 STRIP_SIGN_NOPS (base0);
8383 if (TREE_CODE (base0) == ADDR_EXPR)
8384 {
8385 base0 = TREE_OPERAND (base0, 0);
8386 indirect_base0 = true;
8387 }
8388 offset0 = TREE_OPERAND (arg0, 1);
8389 if (tree_fits_shwi_p (offset0))
8390 {
8391 HOST_WIDE_INT off = size_low_cst (offset0);
8392 if ((HOST_WIDE_INT) (((unsigned HOST_WIDE_INT) off)
8393 * BITS_PER_UNIT)
8394 / BITS_PER_UNIT == (HOST_WIDE_INT) off)
8395 {
8396 bitpos0 = off * BITS_PER_UNIT;
8397 offset0 = NULL_TREE;
8398 }
8399 }
8400 }
8401
8402 base1 = arg1;
8403 if (TREE_CODE (arg1) == ADDR_EXPR)
8404 {
8405 base1 = get_inner_reference (TREE_OPERAND (arg1, 0),
8406 &bitsize, &bitpos1, &offset1, &mode,
8407 &unsignedp, &volatilep, false);
8408 if (TREE_CODE (base1) == INDIRECT_REF)
8409 base1 = TREE_OPERAND (base1, 0);
8410 else
8411 indirect_base1 = true;
8412 }
8413 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8414 {
8415 base1 = TREE_OPERAND (arg1, 0);
8416 STRIP_SIGN_NOPS (base1);
8417 if (TREE_CODE (base1) == ADDR_EXPR)
8418 {
8419 base1 = TREE_OPERAND (base1, 0);
8420 indirect_base1 = true;
8421 }
8422 offset1 = TREE_OPERAND (arg1, 1);
8423 if (tree_fits_shwi_p (offset1))
8424 {
8425 HOST_WIDE_INT off = size_low_cst (offset1);
8426 if ((HOST_WIDE_INT) (((unsigned HOST_WIDE_INT) off)
8427 * BITS_PER_UNIT)
8428 / BITS_PER_UNIT == (HOST_WIDE_INT) off)
8429 {
8430 bitpos1 = off * BITS_PER_UNIT;
8431 offset1 = NULL_TREE;
8432 }
8433 }
8434 }
8435
8436 /* If we have equivalent bases we might be able to simplify. */
8437 if (indirect_base0 == indirect_base1
8438 && operand_equal_p (base0, base1, 0))
8439 {
8440 /* We can fold this expression to a constant if the non-constant
8441 offset parts are equal. */
8442 if ((offset0 == offset1
8443 || (offset0 && offset1
8444 && operand_equal_p (offset0, offset1, 0)))
8445 && (code == EQ_EXPR
8446 || code == NE_EXPR
8447 || (indirect_base0 && DECL_P (base0))
8448 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8449
8450 {
8451 if (!equality_code
8452 && bitpos0 != bitpos1
8453 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8454 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8455 fold_overflow_warning (("assuming pointer wraparound does not "
8456 "occur when comparing P +- C1 with "
8457 "P +- C2"),
8458 WARN_STRICT_OVERFLOW_CONDITIONAL);
8459
8460 switch (code)
8461 {
8462 case EQ_EXPR:
8463 return constant_boolean_node (bitpos0 == bitpos1, type);
8464 case NE_EXPR:
8465 return constant_boolean_node (bitpos0 != bitpos1, type);
8466 case LT_EXPR:
8467 return constant_boolean_node (bitpos0 < bitpos1, type);
8468 case LE_EXPR:
8469 return constant_boolean_node (bitpos0 <= bitpos1, type);
8470 case GE_EXPR:
8471 return constant_boolean_node (bitpos0 >= bitpos1, type);
8472 case GT_EXPR:
8473 return constant_boolean_node (bitpos0 > bitpos1, type);
8474 default:;
8475 }
8476 }
8477 /* We can simplify the comparison to a comparison of the variable
8478 offset parts if the constant offset parts are equal.
8479 Be careful to use signed sizetype here because otherwise we
8480 mess with array offsets in the wrong way. This is possible
8481 because pointer arithmetic is restricted to retain within an
8482 object and overflow on pointer differences is undefined as of
8483 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8484 else if (bitpos0 == bitpos1
8485 && (equality_code
8486 || (indirect_base0 && DECL_P (base0))
8487 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8488 {
8489 /* By converting to signed sizetype we cover middle-end pointer
8490 arithmetic which operates on unsigned pointer types of size
8491 type size and ARRAY_REF offsets which are properly sign or
8492 zero extended from their type in case it is narrower than
8493 sizetype. */
8494 if (offset0 == NULL_TREE)
8495 offset0 = build_int_cst (ssizetype, 0);
8496 else
8497 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8498 if (offset1 == NULL_TREE)
8499 offset1 = build_int_cst (ssizetype, 0);
8500 else
8501 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8502
8503 if (!equality_code
8504 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8505 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8506 fold_overflow_warning (("assuming pointer wraparound does not "
8507 "occur when comparing P +- C1 with "
8508 "P +- C2"),
8509 WARN_STRICT_OVERFLOW_COMPARISON);
8510
8511 return fold_build2_loc (loc, code, type, offset0, offset1);
8512 }
8513 }
8514 /* For non-equal bases we can simplify if they are addresses
8515 declarations with different addresses. */
8516 else if (indirect_base0 && indirect_base1
8517 /* We know that !operand_equal_p (base0, base1, 0)
8518 because the if condition was false. But make
8519 sure two decls are not the same. */
8520 && base0 != base1
8521 && TREE_CODE (arg0) == ADDR_EXPR
8522 && TREE_CODE (arg1) == ADDR_EXPR
8523 && DECL_P (base0)
8524 && DECL_P (base1)
8525 /* Watch for aliases. */
8526 && (!decl_in_symtab_p (base0)
8527 || !decl_in_symtab_p (base1)
8528 || !symtab_node::get_create (base0)->equal_address_to
8529 (symtab_node::get_create (base1))))
8530 {
8531 if (code == EQ_EXPR)
8532 return omit_two_operands_loc (loc, type, boolean_false_node,
8533 arg0, arg1);
8534 else if (code == NE_EXPR)
8535 return omit_two_operands_loc (loc, type, boolean_true_node,
8536 arg0, arg1);
8537 }
8538 /* For equal offsets we can simplify to a comparison of the
8539 base addresses. */
8540 else if (bitpos0 == bitpos1
8541 && (indirect_base0
8542 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8543 && (indirect_base1
8544 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8545 && ((offset0 == offset1)
8546 || (offset0 && offset1
8547 && operand_equal_p (offset0, offset1, 0))))
8548 {
8549 if (indirect_base0)
8550 base0 = build_fold_addr_expr_loc (loc, base0);
8551 if (indirect_base1)
8552 base1 = build_fold_addr_expr_loc (loc, base1);
8553 return fold_build2_loc (loc, code, type, base0, base1);
8554 }
8555 }
8556
8557 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8558 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8559 the resulting offset is smaller in absolute value than the
8560 original one and has the same sign. */
8561 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8562 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8563 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8564 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8565 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8566 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8567 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8568 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8569 {
8570 tree const1 = TREE_OPERAND (arg0, 1);
8571 tree const2 = TREE_OPERAND (arg1, 1);
8572 tree variable1 = TREE_OPERAND (arg0, 0);
8573 tree variable2 = TREE_OPERAND (arg1, 0);
8574 tree cst;
8575 const char * const warnmsg = G_("assuming signed overflow does not "
8576 "occur when combining constants around "
8577 "a comparison");
8578
8579 /* Put the constant on the side where it doesn't overflow and is
8580 of lower absolute value and of same sign than before. */
8581 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8582 ? MINUS_EXPR : PLUS_EXPR,
8583 const2, const1);
8584 if (!TREE_OVERFLOW (cst)
8585 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8586 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8587 {
8588 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8589 return fold_build2_loc (loc, code, type,
8590 variable1,
8591 fold_build2_loc (loc, TREE_CODE (arg1),
8592 TREE_TYPE (arg1),
8593 variable2, cst));
8594 }
8595
8596 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8597 ? MINUS_EXPR : PLUS_EXPR,
8598 const1, const2);
8599 if (!TREE_OVERFLOW (cst)
8600 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8601 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8602 {
8603 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8604 return fold_build2_loc (loc, code, type,
8605 fold_build2_loc (loc, TREE_CODE (arg0),
8606 TREE_TYPE (arg0),
8607 variable1, cst),
8608 variable2);
8609 }
8610 }
8611
8612 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8613 if (tem)
8614 return tem;
8615
8616 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
8617 constant, we can simplify it. */
8618 if (TREE_CODE (arg1) == INTEGER_CST
8619 && (TREE_CODE (arg0) == MIN_EXPR
8620 || TREE_CODE (arg0) == MAX_EXPR)
8621 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8622 {
8623 tem = optimize_minmax_comparison (loc, code, type, op0, op1);
8624 if (tem)
8625 return tem;
8626 }
8627
8628 /* If we are comparing an expression that just has comparisons
8629 of two integer values, arithmetic expressions of those comparisons,
8630 and constants, we can simplify it. There are only three cases
8631 to check: the two values can either be equal, the first can be
8632 greater, or the second can be greater. Fold the expression for
8633 those three values. Since each value must be 0 or 1, we have
8634 eight possibilities, each of which corresponds to the constant 0
8635 or 1 or one of the six possible comparisons.
8636
8637 This handles common cases like (a > b) == 0 but also handles
8638 expressions like ((x > y) - (y > x)) > 0, which supposedly
8639 occur in macroized code. */
8640
8641 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8642 {
8643 tree cval1 = 0, cval2 = 0;
8644 int save_p = 0;
8645
8646 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8647 /* Don't handle degenerate cases here; they should already
8648 have been handled anyway. */
8649 && cval1 != 0 && cval2 != 0
8650 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8651 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8652 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8653 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8654 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8655 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8656 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8657 {
8658 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8659 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8660
8661 /* We can't just pass T to eval_subst in case cval1 or cval2
8662 was the same as ARG1. */
8663
8664 tree high_result
8665 = fold_build2_loc (loc, code, type,
8666 eval_subst (loc, arg0, cval1, maxval,
8667 cval2, minval),
8668 arg1);
8669 tree equal_result
8670 = fold_build2_loc (loc, code, type,
8671 eval_subst (loc, arg0, cval1, maxval,
8672 cval2, maxval),
8673 arg1);
8674 tree low_result
8675 = fold_build2_loc (loc, code, type,
8676 eval_subst (loc, arg0, cval1, minval,
8677 cval2, maxval),
8678 arg1);
8679
8680 /* All three of these results should be 0 or 1. Confirm they are.
8681 Then use those values to select the proper code to use. */
8682
8683 if (TREE_CODE (high_result) == INTEGER_CST
8684 && TREE_CODE (equal_result) == INTEGER_CST
8685 && TREE_CODE (low_result) == INTEGER_CST)
8686 {
8687 /* Make a 3-bit mask with the high-order bit being the
8688 value for `>', the next for '=', and the low for '<'. */
8689 switch ((integer_onep (high_result) * 4)
8690 + (integer_onep (equal_result) * 2)
8691 + integer_onep (low_result))
8692 {
8693 case 0:
8694 /* Always false. */
8695 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8696 case 1:
8697 code = LT_EXPR;
8698 break;
8699 case 2:
8700 code = EQ_EXPR;
8701 break;
8702 case 3:
8703 code = LE_EXPR;
8704 break;
8705 case 4:
8706 code = GT_EXPR;
8707 break;
8708 case 5:
8709 code = NE_EXPR;
8710 break;
8711 case 6:
8712 code = GE_EXPR;
8713 break;
8714 case 7:
8715 /* Always true. */
8716 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8717 }
8718
8719 if (save_p)
8720 {
8721 tem = save_expr (build2 (code, type, cval1, cval2));
8722 SET_EXPR_LOCATION (tem, loc);
8723 return tem;
8724 }
8725 return fold_build2_loc (loc, code, type, cval1, cval2);
8726 }
8727 }
8728 }
8729
8730 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8731 into a single range test. */
8732 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
8733 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
8734 && TREE_CODE (arg1) == INTEGER_CST
8735 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8736 && !integer_zerop (TREE_OPERAND (arg0, 1))
8737 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8738 && !TREE_OVERFLOW (arg1))
8739 {
8740 tem = fold_div_compare (loc, code, type, arg0, arg1);
8741 if (tem != NULL_TREE)
8742 return tem;
8743 }
8744
8745 return NULL_TREE;
8746 }
8747
8748
8749 /* Subroutine of fold_binary. Optimize complex multiplications of the
8750 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8751 argument EXPR represents the expression "z" of type TYPE. */
8752
8753 static tree
8754 fold_mult_zconjz (location_t loc, tree type, tree expr)
8755 {
8756 tree itype = TREE_TYPE (type);
8757 tree rpart, ipart, tem;
8758
8759 if (TREE_CODE (expr) == COMPLEX_EXPR)
8760 {
8761 rpart = TREE_OPERAND (expr, 0);
8762 ipart = TREE_OPERAND (expr, 1);
8763 }
8764 else if (TREE_CODE (expr) == COMPLEX_CST)
8765 {
8766 rpart = TREE_REALPART (expr);
8767 ipart = TREE_IMAGPART (expr);
8768 }
8769 else
8770 {
8771 expr = save_expr (expr);
8772 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8773 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8774 }
8775
8776 rpart = save_expr (rpart);
8777 ipart = save_expr (ipart);
8778 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8779 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8780 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8781 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8782 build_zero_cst (itype));
8783 }
8784
8785
8786 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8787 CONSTRUCTOR ARG into array ELTS and return true if successful. */
8788
8789 static bool
8790 vec_cst_ctor_to_array (tree arg, tree *elts)
8791 {
8792 unsigned int nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)), i;
8793
8794 if (TREE_CODE (arg) == VECTOR_CST)
8795 {
8796 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
8797 elts[i] = VECTOR_CST_ELT (arg, i);
8798 }
8799 else if (TREE_CODE (arg) == CONSTRUCTOR)
8800 {
8801 constructor_elt *elt;
8802
8803 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
8804 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
8805 return false;
8806 else
8807 elts[i] = elt->value;
8808 }
8809 else
8810 return false;
8811 for (; i < nelts; i++)
8812 elts[i]
8813 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
8814 return true;
8815 }
8816
8817 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8818 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8819 NULL_TREE otherwise. */
8820
8821 static tree
8822 fold_vec_perm (tree type, tree arg0, tree arg1, const unsigned char *sel)
8823 {
8824 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
8825 tree *elts;
8826 bool need_ctor = false;
8827
8828 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
8829 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
8830 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
8831 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
8832 return NULL_TREE;
8833
8834 elts = XALLOCAVEC (tree, nelts * 3);
8835 if (!vec_cst_ctor_to_array (arg0, elts)
8836 || !vec_cst_ctor_to_array (arg1, elts + nelts))
8837 return NULL_TREE;
8838
8839 for (i = 0; i < nelts; i++)
8840 {
8841 if (!CONSTANT_CLASS_P (elts[sel[i]]))
8842 need_ctor = true;
8843 elts[i + 2 * nelts] = unshare_expr (elts[sel[i]]);
8844 }
8845
8846 if (need_ctor)
8847 {
8848 vec<constructor_elt, va_gc> *v;
8849 vec_alloc (v, nelts);
8850 for (i = 0; i < nelts; i++)
8851 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[2 * nelts + i]);
8852 return build_constructor (type, v);
8853 }
8854 else
8855 return build_vector (type, &elts[2 * nelts]);
8856 }
8857
8858 /* Try to fold a pointer difference of type TYPE two address expressions of
8859 array references AREF0 and AREF1 using location LOC. Return a
8860 simplified expression for the difference or NULL_TREE. */
8861
8862 static tree
8863 fold_addr_of_array_ref_difference (location_t loc, tree type,
8864 tree aref0, tree aref1)
8865 {
8866 tree base0 = TREE_OPERAND (aref0, 0);
8867 tree base1 = TREE_OPERAND (aref1, 0);
8868 tree base_offset = build_int_cst (type, 0);
8869
8870 /* If the bases are array references as well, recurse. If the bases
8871 are pointer indirections compute the difference of the pointers.
8872 If the bases are equal, we are set. */
8873 if ((TREE_CODE (base0) == ARRAY_REF
8874 && TREE_CODE (base1) == ARRAY_REF
8875 && (base_offset
8876 = fold_addr_of_array_ref_difference (loc, type, base0, base1)))
8877 || (INDIRECT_REF_P (base0)
8878 && INDIRECT_REF_P (base1)
8879 && (base_offset = fold_binary_loc (loc, MINUS_EXPR, type,
8880 TREE_OPERAND (base0, 0),
8881 TREE_OPERAND (base1, 0))))
8882 || operand_equal_p (base0, base1, 0))
8883 {
8884 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
8885 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
8886 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
8887 tree diff = build2 (MINUS_EXPR, type, op0, op1);
8888 return fold_build2_loc (loc, PLUS_EXPR, type,
8889 base_offset,
8890 fold_build2_loc (loc, MULT_EXPR, type,
8891 diff, esz));
8892 }
8893 return NULL_TREE;
8894 }
8895
8896 /* If the real or vector real constant CST of type TYPE has an exact
8897 inverse, return it, else return NULL. */
8898
8899 tree
8900 exact_inverse (tree type, tree cst)
8901 {
8902 REAL_VALUE_TYPE r;
8903 tree unit_type, *elts;
8904 machine_mode mode;
8905 unsigned vec_nelts, i;
8906
8907 switch (TREE_CODE (cst))
8908 {
8909 case REAL_CST:
8910 r = TREE_REAL_CST (cst);
8911
8912 if (exact_real_inverse (TYPE_MODE (type), &r))
8913 return build_real (type, r);
8914
8915 return NULL_TREE;
8916
8917 case VECTOR_CST:
8918 vec_nelts = VECTOR_CST_NELTS (cst);
8919 elts = XALLOCAVEC (tree, vec_nelts);
8920 unit_type = TREE_TYPE (type);
8921 mode = TYPE_MODE (unit_type);
8922
8923 for (i = 0; i < vec_nelts; i++)
8924 {
8925 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
8926 if (!exact_real_inverse (mode, &r))
8927 return NULL_TREE;
8928 elts[i] = build_real (unit_type, r);
8929 }
8930
8931 return build_vector (type, elts);
8932
8933 default:
8934 return NULL_TREE;
8935 }
8936 }
8937
8938 /* Mask out the tz least significant bits of X of type TYPE where
8939 tz is the number of trailing zeroes in Y. */
8940 static wide_int
8941 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
8942 {
8943 int tz = wi::ctz (y);
8944 if (tz > 0)
8945 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
8946 return x;
8947 }
8948
8949 /* Return true when T is an address and is known to be nonzero.
8950 For floating point we further ensure that T is not denormal.
8951 Similar logic is present in nonzero_address in rtlanal.h.
8952
8953 If the return value is based on the assumption that signed overflow
8954 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
8955 change *STRICT_OVERFLOW_P. */
8956
8957 static bool
8958 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
8959 {
8960 tree type = TREE_TYPE (t);
8961 enum tree_code code;
8962
8963 /* Doing something useful for floating point would need more work. */
8964 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
8965 return false;
8966
8967 code = TREE_CODE (t);
8968 switch (TREE_CODE_CLASS (code))
8969 {
8970 case tcc_unary:
8971 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8972 strict_overflow_p);
8973 case tcc_binary:
8974 case tcc_comparison:
8975 return tree_binary_nonzero_warnv_p (code, type,
8976 TREE_OPERAND (t, 0),
8977 TREE_OPERAND (t, 1),
8978 strict_overflow_p);
8979 case tcc_constant:
8980 case tcc_declaration:
8981 case tcc_reference:
8982 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8983
8984 default:
8985 break;
8986 }
8987
8988 switch (code)
8989 {
8990 case TRUTH_NOT_EXPR:
8991 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8992 strict_overflow_p);
8993
8994 case TRUTH_AND_EXPR:
8995 case TRUTH_OR_EXPR:
8996 case TRUTH_XOR_EXPR:
8997 return tree_binary_nonzero_warnv_p (code, type,
8998 TREE_OPERAND (t, 0),
8999 TREE_OPERAND (t, 1),
9000 strict_overflow_p);
9001
9002 case COND_EXPR:
9003 case CONSTRUCTOR:
9004 case OBJ_TYPE_REF:
9005 case ASSERT_EXPR:
9006 case ADDR_EXPR:
9007 case WITH_SIZE_EXPR:
9008 case SSA_NAME:
9009 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9010
9011 case COMPOUND_EXPR:
9012 case MODIFY_EXPR:
9013 case BIND_EXPR:
9014 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
9015 strict_overflow_p);
9016
9017 case SAVE_EXPR:
9018 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
9019 strict_overflow_p);
9020
9021 case CALL_EXPR:
9022 {
9023 tree fndecl = get_callee_fndecl (t);
9024 if (!fndecl) return false;
9025 if (flag_delete_null_pointer_checks && !flag_check_new
9026 && DECL_IS_OPERATOR_NEW (fndecl)
9027 && !TREE_NOTHROW (fndecl))
9028 return true;
9029 if (flag_delete_null_pointer_checks
9030 && lookup_attribute ("returns_nonnull",
9031 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
9032 return true;
9033 return alloca_call_p (t);
9034 }
9035
9036 default:
9037 break;
9038 }
9039 return false;
9040 }
9041
9042 /* Return true when T is an address and is known to be nonzero.
9043 Handle warnings about undefined signed overflow. */
9044
9045 static bool
9046 tree_expr_nonzero_p (tree t)
9047 {
9048 bool ret, strict_overflow_p;
9049
9050 strict_overflow_p = false;
9051 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9052 if (strict_overflow_p)
9053 fold_overflow_warning (("assuming signed overflow does not occur when "
9054 "determining that expression is always "
9055 "non-zero"),
9056 WARN_STRICT_OVERFLOW_MISC);
9057 return ret;
9058 }
9059
9060 /* Fold a binary expression of code CODE and type TYPE with operands
9061 OP0 and OP1. LOC is the location of the resulting expression.
9062 Return the folded expression if folding is successful. Otherwise,
9063 return NULL_TREE. */
9064
9065 tree
9066 fold_binary_loc (location_t loc,
9067 enum tree_code code, tree type, tree op0, tree op1)
9068 {
9069 enum tree_code_class kind = TREE_CODE_CLASS (code);
9070 tree arg0, arg1, tem;
9071 tree t1 = NULL_TREE;
9072 bool strict_overflow_p;
9073 unsigned int prec;
9074
9075 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9076 && TREE_CODE_LENGTH (code) == 2
9077 && op0 != NULL_TREE
9078 && op1 != NULL_TREE);
9079
9080 arg0 = op0;
9081 arg1 = op1;
9082
9083 /* Strip any conversions that don't change the mode. This is
9084 safe for every expression, except for a comparison expression
9085 because its signedness is derived from its operands. So, in
9086 the latter case, only strip conversions that don't change the
9087 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9088 preserved.
9089
9090 Note that this is done as an internal manipulation within the
9091 constant folder, in order to find the simplest representation
9092 of the arguments so that their form can be studied. In any
9093 cases, the appropriate type conversions should be put back in
9094 the tree that will get out of the constant folder. */
9095
9096 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9097 {
9098 STRIP_SIGN_NOPS (arg0);
9099 STRIP_SIGN_NOPS (arg1);
9100 }
9101 else
9102 {
9103 STRIP_NOPS (arg0);
9104 STRIP_NOPS (arg1);
9105 }
9106
9107 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9108 constant but we can't do arithmetic on them. */
9109 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9110 {
9111 tem = const_binop (code, type, arg0, arg1);
9112 if (tem != NULL_TREE)
9113 {
9114 if (TREE_TYPE (tem) != type)
9115 tem = fold_convert_loc (loc, type, tem);
9116 return tem;
9117 }
9118 }
9119
9120 /* If this is a commutative operation, and ARG0 is a constant, move it
9121 to ARG1 to reduce the number of tests below. */
9122 if (commutative_tree_code (code)
9123 && tree_swap_operands_p (arg0, arg1, true))
9124 return fold_build2_loc (loc, code, type, op1, op0);
9125
9126 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9127 to ARG1 to reduce the number of tests below. */
9128 if (kind == tcc_comparison
9129 && tree_swap_operands_p (arg0, arg1, true))
9130 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9131
9132 tem = generic_simplify (loc, code, type, op0, op1);
9133 if (tem)
9134 return tem;
9135
9136 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9137
9138 First check for cases where an arithmetic operation is applied to a
9139 compound, conditional, or comparison operation. Push the arithmetic
9140 operation inside the compound or conditional to see if any folding
9141 can then be done. Convert comparison to conditional for this purpose.
9142 The also optimizes non-constant cases that used to be done in
9143 expand_expr.
9144
9145 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9146 one of the operands is a comparison and the other is a comparison, a
9147 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9148 code below would make the expression more complex. Change it to a
9149 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9150 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9151
9152 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9153 || code == EQ_EXPR || code == NE_EXPR)
9154 && TREE_CODE (type) != VECTOR_TYPE
9155 && ((truth_value_p (TREE_CODE (arg0))
9156 && (truth_value_p (TREE_CODE (arg1))
9157 || (TREE_CODE (arg1) == BIT_AND_EXPR
9158 && integer_onep (TREE_OPERAND (arg1, 1)))))
9159 || (truth_value_p (TREE_CODE (arg1))
9160 && (truth_value_p (TREE_CODE (arg0))
9161 || (TREE_CODE (arg0) == BIT_AND_EXPR
9162 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9163 {
9164 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9165 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9166 : TRUTH_XOR_EXPR,
9167 boolean_type_node,
9168 fold_convert_loc (loc, boolean_type_node, arg0),
9169 fold_convert_loc (loc, boolean_type_node, arg1));
9170
9171 if (code == EQ_EXPR)
9172 tem = invert_truthvalue_loc (loc, tem);
9173
9174 return fold_convert_loc (loc, type, tem);
9175 }
9176
9177 if (TREE_CODE_CLASS (code) == tcc_binary
9178 || TREE_CODE_CLASS (code) == tcc_comparison)
9179 {
9180 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9181 {
9182 tem = fold_build2_loc (loc, code, type,
9183 fold_convert_loc (loc, TREE_TYPE (op0),
9184 TREE_OPERAND (arg0, 1)), op1);
9185 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9186 tem);
9187 }
9188 if (TREE_CODE (arg1) == COMPOUND_EXPR
9189 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9190 {
9191 tem = fold_build2_loc (loc, code, type, op0,
9192 fold_convert_loc (loc, TREE_TYPE (op1),
9193 TREE_OPERAND (arg1, 1)));
9194 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9195 tem);
9196 }
9197
9198 if (TREE_CODE (arg0) == COND_EXPR
9199 || TREE_CODE (arg0) == VEC_COND_EXPR
9200 || COMPARISON_CLASS_P (arg0))
9201 {
9202 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9203 arg0, arg1,
9204 /*cond_first_p=*/1);
9205 if (tem != NULL_TREE)
9206 return tem;
9207 }
9208
9209 if (TREE_CODE (arg1) == COND_EXPR
9210 || TREE_CODE (arg1) == VEC_COND_EXPR
9211 || COMPARISON_CLASS_P (arg1))
9212 {
9213 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9214 arg1, arg0,
9215 /*cond_first_p=*/0);
9216 if (tem != NULL_TREE)
9217 return tem;
9218 }
9219 }
9220
9221 switch (code)
9222 {
9223 case MEM_REF:
9224 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9225 if (TREE_CODE (arg0) == ADDR_EXPR
9226 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9227 {
9228 tree iref = TREE_OPERAND (arg0, 0);
9229 return fold_build2 (MEM_REF, type,
9230 TREE_OPERAND (iref, 0),
9231 int_const_binop (PLUS_EXPR, arg1,
9232 TREE_OPERAND (iref, 1)));
9233 }
9234
9235 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9236 if (TREE_CODE (arg0) == ADDR_EXPR
9237 && handled_component_p (TREE_OPERAND (arg0, 0)))
9238 {
9239 tree base;
9240 HOST_WIDE_INT coffset;
9241 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9242 &coffset);
9243 if (!base)
9244 return NULL_TREE;
9245 return fold_build2 (MEM_REF, type,
9246 build_fold_addr_expr (base),
9247 int_const_binop (PLUS_EXPR, arg1,
9248 size_int (coffset)));
9249 }
9250
9251 return NULL_TREE;
9252
9253 case POINTER_PLUS_EXPR:
9254 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9255 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9256 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9257 return fold_convert_loc (loc, type,
9258 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9259 fold_convert_loc (loc, sizetype,
9260 arg1),
9261 fold_convert_loc (loc, sizetype,
9262 arg0)));
9263
9264 return NULL_TREE;
9265
9266 case PLUS_EXPR:
9267 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9268 {
9269 /* X + (X / CST) * -CST is X % CST. */
9270 if (TREE_CODE (arg1) == MULT_EXPR
9271 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9272 && operand_equal_p (arg0,
9273 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9274 {
9275 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9276 tree cst1 = TREE_OPERAND (arg1, 1);
9277 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9278 cst1, cst0);
9279 if (sum && integer_zerop (sum))
9280 return fold_convert_loc (loc, type,
9281 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9282 TREE_TYPE (arg0), arg0,
9283 cst0));
9284 }
9285 }
9286
9287 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9288 one. Make sure the type is not saturating and has the signedness of
9289 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9290 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9291 if ((TREE_CODE (arg0) == MULT_EXPR
9292 || TREE_CODE (arg1) == MULT_EXPR)
9293 && !TYPE_SATURATING (type)
9294 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9295 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9296 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9297 {
9298 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9299 if (tem)
9300 return tem;
9301 }
9302
9303 if (! FLOAT_TYPE_P (type))
9304 {
9305 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9306 (plus (plus (mult) (mult)) (foo)) so that we can
9307 take advantage of the factoring cases below. */
9308 if (ANY_INTEGRAL_TYPE_P (type)
9309 && TYPE_OVERFLOW_WRAPS (type)
9310 && (((TREE_CODE (arg0) == PLUS_EXPR
9311 || TREE_CODE (arg0) == MINUS_EXPR)
9312 && TREE_CODE (arg1) == MULT_EXPR)
9313 || ((TREE_CODE (arg1) == PLUS_EXPR
9314 || TREE_CODE (arg1) == MINUS_EXPR)
9315 && TREE_CODE (arg0) == MULT_EXPR)))
9316 {
9317 tree parg0, parg1, parg, marg;
9318 enum tree_code pcode;
9319
9320 if (TREE_CODE (arg1) == MULT_EXPR)
9321 parg = arg0, marg = arg1;
9322 else
9323 parg = arg1, marg = arg0;
9324 pcode = TREE_CODE (parg);
9325 parg0 = TREE_OPERAND (parg, 0);
9326 parg1 = TREE_OPERAND (parg, 1);
9327 STRIP_NOPS (parg0);
9328 STRIP_NOPS (parg1);
9329
9330 if (TREE_CODE (parg0) == MULT_EXPR
9331 && TREE_CODE (parg1) != MULT_EXPR)
9332 return fold_build2_loc (loc, pcode, type,
9333 fold_build2_loc (loc, PLUS_EXPR, type,
9334 fold_convert_loc (loc, type,
9335 parg0),
9336 fold_convert_loc (loc, type,
9337 marg)),
9338 fold_convert_loc (loc, type, parg1));
9339 if (TREE_CODE (parg0) != MULT_EXPR
9340 && TREE_CODE (parg1) == MULT_EXPR)
9341 return
9342 fold_build2_loc (loc, PLUS_EXPR, type,
9343 fold_convert_loc (loc, type, parg0),
9344 fold_build2_loc (loc, pcode, type,
9345 fold_convert_loc (loc, type, marg),
9346 fold_convert_loc (loc, type,
9347 parg1)));
9348 }
9349 }
9350 else
9351 {
9352 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9353 to __complex__ ( x, y ). This is not the same for SNaNs or
9354 if signed zeros are involved. */
9355 if (!HONOR_SNANS (element_mode (arg0))
9356 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9357 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9358 {
9359 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9360 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9361 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9362 bool arg0rz = false, arg0iz = false;
9363 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9364 || (arg0i && (arg0iz = real_zerop (arg0i))))
9365 {
9366 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9367 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9368 if (arg0rz && arg1i && real_zerop (arg1i))
9369 {
9370 tree rp = arg1r ? arg1r
9371 : build1 (REALPART_EXPR, rtype, arg1);
9372 tree ip = arg0i ? arg0i
9373 : build1 (IMAGPART_EXPR, rtype, arg0);
9374 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9375 }
9376 else if (arg0iz && arg1r && real_zerop (arg1r))
9377 {
9378 tree rp = arg0r ? arg0r
9379 : build1 (REALPART_EXPR, rtype, arg0);
9380 tree ip = arg1i ? arg1i
9381 : build1 (IMAGPART_EXPR, rtype, arg1);
9382 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9383 }
9384 }
9385 }
9386
9387 if (flag_unsafe_math_optimizations
9388 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9389 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9390 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9391 return tem;
9392
9393 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9394 We associate floats only if the user has specified
9395 -fassociative-math. */
9396 if (flag_associative_math
9397 && TREE_CODE (arg1) == PLUS_EXPR
9398 && TREE_CODE (arg0) != MULT_EXPR)
9399 {
9400 tree tree10 = TREE_OPERAND (arg1, 0);
9401 tree tree11 = TREE_OPERAND (arg1, 1);
9402 if (TREE_CODE (tree11) == MULT_EXPR
9403 && TREE_CODE (tree10) == MULT_EXPR)
9404 {
9405 tree tree0;
9406 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9407 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9408 }
9409 }
9410 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9411 We associate floats only if the user has specified
9412 -fassociative-math. */
9413 if (flag_associative_math
9414 && TREE_CODE (arg0) == PLUS_EXPR
9415 && TREE_CODE (arg1) != MULT_EXPR)
9416 {
9417 tree tree00 = TREE_OPERAND (arg0, 0);
9418 tree tree01 = TREE_OPERAND (arg0, 1);
9419 if (TREE_CODE (tree01) == MULT_EXPR
9420 && TREE_CODE (tree00) == MULT_EXPR)
9421 {
9422 tree tree0;
9423 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9424 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9425 }
9426 }
9427 }
9428
9429 bit_rotate:
9430 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9431 is a rotate of A by C1 bits. */
9432 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9433 is a rotate of A by B bits. */
9434 {
9435 enum tree_code code0, code1;
9436 tree rtype;
9437 code0 = TREE_CODE (arg0);
9438 code1 = TREE_CODE (arg1);
9439 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9440 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9441 && operand_equal_p (TREE_OPERAND (arg0, 0),
9442 TREE_OPERAND (arg1, 0), 0)
9443 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9444 TYPE_UNSIGNED (rtype))
9445 /* Only create rotates in complete modes. Other cases are not
9446 expanded properly. */
9447 && (element_precision (rtype)
9448 == element_precision (TYPE_MODE (rtype))))
9449 {
9450 tree tree01, tree11;
9451 enum tree_code code01, code11;
9452
9453 tree01 = TREE_OPERAND (arg0, 1);
9454 tree11 = TREE_OPERAND (arg1, 1);
9455 STRIP_NOPS (tree01);
9456 STRIP_NOPS (tree11);
9457 code01 = TREE_CODE (tree01);
9458 code11 = TREE_CODE (tree11);
9459 if (code01 == INTEGER_CST
9460 && code11 == INTEGER_CST
9461 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9462 == element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9463 {
9464 tem = build2_loc (loc, LROTATE_EXPR,
9465 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9466 TREE_OPERAND (arg0, 0),
9467 code0 == LSHIFT_EXPR
9468 ? TREE_OPERAND (arg0, 1)
9469 : TREE_OPERAND (arg1, 1));
9470 return fold_convert_loc (loc, type, tem);
9471 }
9472 else if (code11 == MINUS_EXPR)
9473 {
9474 tree tree110, tree111;
9475 tree110 = TREE_OPERAND (tree11, 0);
9476 tree111 = TREE_OPERAND (tree11, 1);
9477 STRIP_NOPS (tree110);
9478 STRIP_NOPS (tree111);
9479 if (TREE_CODE (tree110) == INTEGER_CST
9480 && 0 == compare_tree_int (tree110,
9481 element_precision
9482 (TREE_TYPE (TREE_OPERAND
9483 (arg0, 0))))
9484 && operand_equal_p (tree01, tree111, 0))
9485 return
9486 fold_convert_loc (loc, type,
9487 build2 ((code0 == LSHIFT_EXPR
9488 ? LROTATE_EXPR
9489 : RROTATE_EXPR),
9490 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9491 TREE_OPERAND (arg0, 0),
9492 TREE_OPERAND (arg0, 1)));
9493 }
9494 else if (code01 == MINUS_EXPR)
9495 {
9496 tree tree010, tree011;
9497 tree010 = TREE_OPERAND (tree01, 0);
9498 tree011 = TREE_OPERAND (tree01, 1);
9499 STRIP_NOPS (tree010);
9500 STRIP_NOPS (tree011);
9501 if (TREE_CODE (tree010) == INTEGER_CST
9502 && 0 == compare_tree_int (tree010,
9503 element_precision
9504 (TREE_TYPE (TREE_OPERAND
9505 (arg0, 0))))
9506 && operand_equal_p (tree11, tree011, 0))
9507 return fold_convert_loc
9508 (loc, type,
9509 build2 ((code0 != LSHIFT_EXPR
9510 ? LROTATE_EXPR
9511 : RROTATE_EXPR),
9512 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9513 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1)));
9514 }
9515 }
9516 }
9517
9518 associate:
9519 /* In most languages, can't associate operations on floats through
9520 parentheses. Rather than remember where the parentheses were, we
9521 don't associate floats at all, unless the user has specified
9522 -fassociative-math.
9523 And, we need to make sure type is not saturating. */
9524
9525 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9526 && !TYPE_SATURATING (type))
9527 {
9528 tree var0, con0, lit0, minus_lit0;
9529 tree var1, con1, lit1, minus_lit1;
9530 tree atype = type;
9531 bool ok = true;
9532
9533 /* Split both trees into variables, constants, and literals. Then
9534 associate each group together, the constants with literals,
9535 then the result with variables. This increases the chances of
9536 literals being recombined later and of generating relocatable
9537 expressions for the sum of a constant and literal. */
9538 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
9539 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
9540 code == MINUS_EXPR);
9541
9542 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9543 if (code == MINUS_EXPR)
9544 code = PLUS_EXPR;
9545
9546 /* With undefined overflow prefer doing association in a type
9547 which wraps on overflow, if that is one of the operand types. */
9548 if ((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9549 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9550 {
9551 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9552 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9553 atype = TREE_TYPE (arg0);
9554 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9555 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9556 atype = TREE_TYPE (arg1);
9557 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9558 }
9559
9560 /* With undefined overflow we can only associate constants with one
9561 variable, and constants whose association doesn't overflow. */
9562 if ((POINTER_TYPE_P (atype) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9563 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
9564 {
9565 if (var0 && var1)
9566 {
9567 tree tmp0 = var0;
9568 tree tmp1 = var1;
9569
9570 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9571 tmp0 = TREE_OPERAND (tmp0, 0);
9572 if (CONVERT_EXPR_P (tmp0)
9573 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9574 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9575 <= TYPE_PRECISION (atype)))
9576 tmp0 = TREE_OPERAND (tmp0, 0);
9577 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9578 tmp1 = TREE_OPERAND (tmp1, 0);
9579 if (CONVERT_EXPR_P (tmp1)
9580 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9581 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9582 <= TYPE_PRECISION (atype)))
9583 tmp1 = TREE_OPERAND (tmp1, 0);
9584 /* The only case we can still associate with two variables
9585 is if they are the same, modulo negation and bit-pattern
9586 preserving conversions. */
9587 if (!operand_equal_p (tmp0, tmp1, 0))
9588 ok = false;
9589 }
9590 }
9591
9592 /* Only do something if we found more than two objects. Otherwise,
9593 nothing has changed and we risk infinite recursion. */
9594 if (ok
9595 && (2 < ((var0 != 0) + (var1 != 0)
9596 + (con0 != 0) + (con1 != 0)
9597 + (lit0 != 0) + (lit1 != 0)
9598 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9599 {
9600 bool any_overflows = false;
9601 if (lit0) any_overflows |= TREE_OVERFLOW (lit0);
9602 if (lit1) any_overflows |= TREE_OVERFLOW (lit1);
9603 if (minus_lit0) any_overflows |= TREE_OVERFLOW (minus_lit0);
9604 if (minus_lit1) any_overflows |= TREE_OVERFLOW (minus_lit1);
9605 var0 = associate_trees (loc, var0, var1, code, atype);
9606 con0 = associate_trees (loc, con0, con1, code, atype);
9607 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9608 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9609 code, atype);
9610
9611 /* Preserve the MINUS_EXPR if the negative part of the literal is
9612 greater than the positive part. Otherwise, the multiplicative
9613 folding code (i.e extract_muldiv) may be fooled in case
9614 unsigned constants are subtracted, like in the following
9615 example: ((X*2 + 4) - 8U)/2. */
9616 if (minus_lit0 && lit0)
9617 {
9618 if (TREE_CODE (lit0) == INTEGER_CST
9619 && TREE_CODE (minus_lit0) == INTEGER_CST
9620 && tree_int_cst_lt (lit0, minus_lit0))
9621 {
9622 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9623 MINUS_EXPR, atype);
9624 lit0 = 0;
9625 }
9626 else
9627 {
9628 lit0 = associate_trees (loc, lit0, minus_lit0,
9629 MINUS_EXPR, atype);
9630 minus_lit0 = 0;
9631 }
9632 }
9633
9634 /* Don't introduce overflows through reassociation. */
9635 if (!any_overflows
9636 && ((lit0 && TREE_OVERFLOW_P (lit0))
9637 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0))))
9638 return NULL_TREE;
9639
9640 if (minus_lit0)
9641 {
9642 if (con0 == 0)
9643 return
9644 fold_convert_loc (loc, type,
9645 associate_trees (loc, var0, minus_lit0,
9646 MINUS_EXPR, atype));
9647 else
9648 {
9649 con0 = associate_trees (loc, con0, minus_lit0,
9650 MINUS_EXPR, atype);
9651 return
9652 fold_convert_loc (loc, type,
9653 associate_trees (loc, var0, con0,
9654 PLUS_EXPR, atype));
9655 }
9656 }
9657
9658 con0 = associate_trees (loc, con0, lit0, code, atype);
9659 return
9660 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9661 code, atype));
9662 }
9663 }
9664
9665 return NULL_TREE;
9666
9667 case MINUS_EXPR:
9668 /* Pointer simplifications for subtraction, simple reassociations. */
9669 if (POINTER_TYPE_P (TREE_TYPE (arg1)) && POINTER_TYPE_P (TREE_TYPE (arg0)))
9670 {
9671 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
9672 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR
9673 && TREE_CODE (arg1) == POINTER_PLUS_EXPR)
9674 {
9675 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9676 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
9677 tree arg10 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
9678 tree arg11 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
9679 return fold_build2_loc (loc, PLUS_EXPR, type,
9680 fold_build2_loc (loc, MINUS_EXPR, type,
9681 arg00, arg10),
9682 fold_build2_loc (loc, MINUS_EXPR, type,
9683 arg01, arg11));
9684 }
9685 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
9686 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
9687 {
9688 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9689 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
9690 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type, arg00,
9691 fold_convert_loc (loc, type, arg1));
9692 if (tmp)
9693 return fold_build2_loc (loc, PLUS_EXPR, type, tmp, arg01);
9694 }
9695 /* PTR0 - (PTR1 p+ A) -> (PTR0 - PTR1) - A, assuming PTR0 - PTR1
9696 simplifies. */
9697 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
9698 {
9699 tree arg10 = fold_convert_loc (loc, type,
9700 TREE_OPERAND (arg1, 0));
9701 tree arg11 = fold_convert_loc (loc, type,
9702 TREE_OPERAND (arg1, 1));
9703 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type,
9704 fold_convert_loc (loc, type, arg0),
9705 arg10);
9706 if (tmp)
9707 return fold_build2_loc (loc, MINUS_EXPR, type, tmp, arg11);
9708 }
9709 }
9710 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9711 if (TREE_CODE (arg0) == NEGATE_EXPR
9712 && negate_expr_p (arg1)
9713 && reorder_operands_p (arg0, arg1))
9714 return fold_build2_loc (loc, MINUS_EXPR, type,
9715 fold_convert_loc (loc, type,
9716 negate_expr (arg1)),
9717 fold_convert_loc (loc, type,
9718 TREE_OPERAND (arg0, 0)));
9719
9720 if (! FLOAT_TYPE_P (type))
9721 {
9722 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
9723 any power of 2 minus 1. */
9724 if (TREE_CODE (arg0) == BIT_AND_EXPR
9725 && TREE_CODE (arg1) == BIT_AND_EXPR
9726 && operand_equal_p (TREE_OPERAND (arg0, 0),
9727 TREE_OPERAND (arg1, 0), 0))
9728 {
9729 tree mask0 = TREE_OPERAND (arg0, 1);
9730 tree mask1 = TREE_OPERAND (arg1, 1);
9731 tree tem = fold_build1_loc (loc, BIT_NOT_EXPR, type, mask0);
9732
9733 if (operand_equal_p (tem, mask1, 0))
9734 {
9735 tem = fold_build2_loc (loc, BIT_XOR_EXPR, type,
9736 TREE_OPERAND (arg0, 0), mask1);
9737 return fold_build2_loc (loc, MINUS_EXPR, type, tem, mask1);
9738 }
9739 }
9740 }
9741
9742 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9743 __complex__ ( x, -y ). This is not the same for SNaNs or if
9744 signed zeros are involved. */
9745 if (!HONOR_SNANS (element_mode (arg0))
9746 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9747 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9748 {
9749 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9750 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9751 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9752 bool arg0rz = false, arg0iz = false;
9753 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9754 || (arg0i && (arg0iz = real_zerop (arg0i))))
9755 {
9756 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9757 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9758 if (arg0rz && arg1i && real_zerop (arg1i))
9759 {
9760 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9761 arg1r ? arg1r
9762 : build1 (REALPART_EXPR, rtype, arg1));
9763 tree ip = arg0i ? arg0i
9764 : build1 (IMAGPART_EXPR, rtype, arg0);
9765 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9766 }
9767 else if (arg0iz && arg1r && real_zerop (arg1r))
9768 {
9769 tree rp = arg0r ? arg0r
9770 : build1 (REALPART_EXPR, rtype, arg0);
9771 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9772 arg1i ? arg1i
9773 : build1 (IMAGPART_EXPR, rtype, arg1));
9774 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9775 }
9776 }
9777 }
9778
9779 /* A - B -> A + (-B) if B is easily negatable. */
9780 if (negate_expr_p (arg1)
9781 && !TYPE_OVERFLOW_SANITIZED (type)
9782 && ((FLOAT_TYPE_P (type)
9783 /* Avoid this transformation if B is a positive REAL_CST. */
9784 && (TREE_CODE (arg1) != REAL_CST
9785 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
9786 || INTEGRAL_TYPE_P (type)))
9787 return fold_build2_loc (loc, PLUS_EXPR, type,
9788 fold_convert_loc (loc, type, arg0),
9789 fold_convert_loc (loc, type,
9790 negate_expr (arg1)));
9791
9792 /* Fold &a[i] - &a[j] to i-j. */
9793 if (TREE_CODE (arg0) == ADDR_EXPR
9794 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9795 && TREE_CODE (arg1) == ADDR_EXPR
9796 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9797 {
9798 tree tem = fold_addr_of_array_ref_difference (loc, type,
9799 TREE_OPERAND (arg0, 0),
9800 TREE_OPERAND (arg1, 0));
9801 if (tem)
9802 return tem;
9803 }
9804
9805 if (FLOAT_TYPE_P (type)
9806 && flag_unsafe_math_optimizations
9807 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9808 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9809 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9810 return tem;
9811
9812 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9813 one. Make sure the type is not saturating and has the signedness of
9814 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9815 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9816 if ((TREE_CODE (arg0) == MULT_EXPR
9817 || TREE_CODE (arg1) == MULT_EXPR)
9818 && !TYPE_SATURATING (type)
9819 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9820 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9821 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9822 {
9823 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9824 if (tem)
9825 return tem;
9826 }
9827
9828 goto associate;
9829
9830 case MULT_EXPR:
9831 /* (-A) * (-B) -> A * B */
9832 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
9833 return fold_build2_loc (loc, MULT_EXPR, type,
9834 fold_convert_loc (loc, type,
9835 TREE_OPERAND (arg0, 0)),
9836 fold_convert_loc (loc, type,
9837 negate_expr (arg1)));
9838 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
9839 return fold_build2_loc (loc, MULT_EXPR, type,
9840 fold_convert_loc (loc, type,
9841 negate_expr (arg0)),
9842 fold_convert_loc (loc, type,
9843 TREE_OPERAND (arg1, 0)));
9844
9845 if (! FLOAT_TYPE_P (type))
9846 {
9847 /* Transform x * -C into -x * C if x is easily negatable. */
9848 if (TREE_CODE (arg1) == INTEGER_CST
9849 && tree_int_cst_sgn (arg1) == -1
9850 && negate_expr_p (arg0)
9851 && (tem = negate_expr (arg1)) != arg1
9852 && !TREE_OVERFLOW (tem))
9853 return fold_build2_loc (loc, MULT_EXPR, type,
9854 fold_convert_loc (loc, type,
9855 negate_expr (arg0)),
9856 tem);
9857
9858 /* (a * (1 << b)) is (a << b) */
9859 if (TREE_CODE (arg1) == LSHIFT_EXPR
9860 && integer_onep (TREE_OPERAND (arg1, 0)))
9861 return fold_build2_loc (loc, LSHIFT_EXPR, type, op0,
9862 TREE_OPERAND (arg1, 1));
9863 if (TREE_CODE (arg0) == LSHIFT_EXPR
9864 && integer_onep (TREE_OPERAND (arg0, 0)))
9865 return fold_build2_loc (loc, LSHIFT_EXPR, type, op1,
9866 TREE_OPERAND (arg0, 1));
9867
9868 /* (A + A) * C -> A * 2 * C */
9869 if (TREE_CODE (arg0) == PLUS_EXPR
9870 && TREE_CODE (arg1) == INTEGER_CST
9871 && operand_equal_p (TREE_OPERAND (arg0, 0),
9872 TREE_OPERAND (arg0, 1), 0))
9873 return fold_build2_loc (loc, MULT_EXPR, type,
9874 omit_one_operand_loc (loc, type,
9875 TREE_OPERAND (arg0, 0),
9876 TREE_OPERAND (arg0, 1)),
9877 fold_build2_loc (loc, MULT_EXPR, type,
9878 build_int_cst (type, 2) , arg1));
9879
9880 /* ((T) (X /[ex] C)) * C cancels out if the conversion is
9881 sign-changing only. */
9882 if (TREE_CODE (arg1) == INTEGER_CST
9883 && TREE_CODE (arg0) == EXACT_DIV_EXPR
9884 && operand_equal_p (arg1, TREE_OPERAND (arg0, 1), 0))
9885 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9886
9887 strict_overflow_p = false;
9888 if (TREE_CODE (arg1) == INTEGER_CST
9889 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
9890 &strict_overflow_p)))
9891 {
9892 if (strict_overflow_p)
9893 fold_overflow_warning (("assuming signed overflow does not "
9894 "occur when simplifying "
9895 "multiplication"),
9896 WARN_STRICT_OVERFLOW_MISC);
9897 return fold_convert_loc (loc, type, tem);
9898 }
9899
9900 /* Optimize z * conj(z) for integer complex numbers. */
9901 if (TREE_CODE (arg0) == CONJ_EXPR
9902 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9903 return fold_mult_zconjz (loc, type, arg1);
9904 if (TREE_CODE (arg1) == CONJ_EXPR
9905 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9906 return fold_mult_zconjz (loc, type, arg0);
9907 }
9908 else
9909 {
9910 /* Convert (C1/X)*C2 into (C1*C2)/X. This transformation may change
9911 the result for floating point types due to rounding so it is applied
9912 only if -fassociative-math was specify. */
9913 if (flag_associative_math
9914 && TREE_CODE (arg0) == RDIV_EXPR
9915 && TREE_CODE (arg1) == REAL_CST
9916 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
9917 {
9918 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
9919 arg1);
9920 if (tem)
9921 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
9922 TREE_OPERAND (arg0, 1));
9923 }
9924
9925 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
9926 if (operand_equal_p (arg0, arg1, 0))
9927 {
9928 tree tem = fold_strip_sign_ops (arg0);
9929 if (tem != NULL_TREE)
9930 {
9931 tem = fold_convert_loc (loc, type, tem);
9932 return fold_build2_loc (loc, MULT_EXPR, type, tem, tem);
9933 }
9934 }
9935
9936 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9937 This is not the same for NaNs or if signed zeros are
9938 involved. */
9939 if (!HONOR_NANS (arg0)
9940 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9941 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
9942 && TREE_CODE (arg1) == COMPLEX_CST
9943 && real_zerop (TREE_REALPART (arg1)))
9944 {
9945 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9946 if (real_onep (TREE_IMAGPART (arg1)))
9947 return
9948 fold_build2_loc (loc, COMPLEX_EXPR, type,
9949 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
9950 rtype, arg0)),
9951 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
9952 else if (real_minus_onep (TREE_IMAGPART (arg1)))
9953 return
9954 fold_build2_loc (loc, COMPLEX_EXPR, type,
9955 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
9956 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
9957 rtype, arg0)));
9958 }
9959
9960 /* Optimize z * conj(z) for floating point complex numbers.
9961 Guarded by flag_unsafe_math_optimizations as non-finite
9962 imaginary components don't produce scalar results. */
9963 if (flag_unsafe_math_optimizations
9964 && TREE_CODE (arg0) == CONJ_EXPR
9965 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9966 return fold_mult_zconjz (loc, type, arg1);
9967 if (flag_unsafe_math_optimizations
9968 && TREE_CODE (arg1) == CONJ_EXPR
9969 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9970 return fold_mult_zconjz (loc, type, arg0);
9971
9972 if (flag_unsafe_math_optimizations)
9973 {
9974 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
9975 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
9976
9977 /* Optimizations of root(...)*root(...). */
9978 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
9979 {
9980 tree rootfn, arg;
9981 tree arg00 = CALL_EXPR_ARG (arg0, 0);
9982 tree arg10 = CALL_EXPR_ARG (arg1, 0);
9983
9984 /* Optimize sqrt(x)*sqrt(x) as x. */
9985 if (BUILTIN_SQRT_P (fcode0)
9986 && operand_equal_p (arg00, arg10, 0)
9987 && ! HONOR_SNANS (element_mode (type)))
9988 return arg00;
9989
9990 /* Optimize root(x)*root(y) as root(x*y). */
9991 rootfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
9992 arg = fold_build2_loc (loc, MULT_EXPR, type, arg00, arg10);
9993 return build_call_expr_loc (loc, rootfn, 1, arg);
9994 }
9995
9996 /* Optimize expN(x)*expN(y) as expN(x+y). */
9997 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
9998 {
9999 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10000 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
10001 CALL_EXPR_ARG (arg0, 0),
10002 CALL_EXPR_ARG (arg1, 0));
10003 return build_call_expr_loc (loc, expfn, 1, arg);
10004 }
10005
10006 /* Optimizations of pow(...)*pow(...). */
10007 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
10008 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
10009 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
10010 {
10011 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10012 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10013 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10014 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10015
10016 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
10017 if (operand_equal_p (arg01, arg11, 0))
10018 {
10019 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10020 tree arg = fold_build2_loc (loc, MULT_EXPR, type,
10021 arg00, arg10);
10022 return build_call_expr_loc (loc, powfn, 2, arg, arg01);
10023 }
10024
10025 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
10026 if (operand_equal_p (arg00, arg10, 0))
10027 {
10028 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10029 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
10030 arg01, arg11);
10031 return build_call_expr_loc (loc, powfn, 2, arg00, arg);
10032 }
10033 }
10034
10035 /* Optimize tan(x)*cos(x) as sin(x). */
10036 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
10037 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
10038 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
10039 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
10040 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
10041 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
10042 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10043 CALL_EXPR_ARG (arg1, 0), 0))
10044 {
10045 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
10046
10047 if (sinfn != NULL_TREE)
10048 return build_call_expr_loc (loc, sinfn, 1,
10049 CALL_EXPR_ARG (arg0, 0));
10050 }
10051
10052 /* Optimize x*pow(x,c) as pow(x,c+1). */
10053 if (fcode1 == BUILT_IN_POW
10054 || fcode1 == BUILT_IN_POWF
10055 || fcode1 == BUILT_IN_POWL)
10056 {
10057 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10058 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10059 if (TREE_CODE (arg11) == REAL_CST
10060 && !TREE_OVERFLOW (arg11)
10061 && operand_equal_p (arg0, arg10, 0))
10062 {
10063 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10064 REAL_VALUE_TYPE c;
10065 tree arg;
10066
10067 c = TREE_REAL_CST (arg11);
10068 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10069 arg = build_real (type, c);
10070 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
10071 }
10072 }
10073
10074 /* Optimize pow(x,c)*x as pow(x,c+1). */
10075 if (fcode0 == BUILT_IN_POW
10076 || fcode0 == BUILT_IN_POWF
10077 || fcode0 == BUILT_IN_POWL)
10078 {
10079 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10080 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10081 if (TREE_CODE (arg01) == REAL_CST
10082 && !TREE_OVERFLOW (arg01)
10083 && operand_equal_p (arg1, arg00, 0))
10084 {
10085 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10086 REAL_VALUE_TYPE c;
10087 tree arg;
10088
10089 c = TREE_REAL_CST (arg01);
10090 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10091 arg = build_real (type, c);
10092 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
10093 }
10094 }
10095
10096 /* Canonicalize x*x as pow(x,2.0), which is expanded as x*x. */
10097 if (!in_gimple_form
10098 && optimize
10099 && operand_equal_p (arg0, arg1, 0))
10100 {
10101 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
10102
10103 if (powfn)
10104 {
10105 tree arg = build_real (type, dconst2);
10106 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
10107 }
10108 }
10109 }
10110 }
10111 goto associate;
10112
10113 case BIT_IOR_EXPR:
10114 /* Canonicalize (X & C1) | C2. */
10115 if (TREE_CODE (arg0) == BIT_AND_EXPR
10116 && TREE_CODE (arg1) == INTEGER_CST
10117 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10118 {
10119 int width = TYPE_PRECISION (type), w;
10120 wide_int c1 = TREE_OPERAND (arg0, 1);
10121 wide_int c2 = arg1;
10122
10123 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10124 if ((c1 & c2) == c1)
10125 return omit_one_operand_loc (loc, type, arg1,
10126 TREE_OPERAND (arg0, 0));
10127
10128 wide_int msk = wi::mask (width, false,
10129 TYPE_PRECISION (TREE_TYPE (arg1)));
10130
10131 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10132 if (msk.and_not (c1 | c2) == 0)
10133 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
10134 TREE_OPERAND (arg0, 0), arg1);
10135
10136 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10137 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10138 mode which allows further optimizations. */
10139 c1 &= msk;
10140 c2 &= msk;
10141 wide_int c3 = c1.and_not (c2);
10142 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
10143 {
10144 wide_int mask = wi::mask (w, false,
10145 TYPE_PRECISION (type));
10146 if (((c1 | c2) & mask) == mask && c1.and_not (mask) == 0)
10147 {
10148 c3 = mask;
10149 break;
10150 }
10151 }
10152
10153 if (c3 != c1)
10154 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
10155 fold_build2_loc (loc, BIT_AND_EXPR, type,
10156 TREE_OPERAND (arg0, 0),
10157 wide_int_to_tree (type,
10158 c3)),
10159 arg1);
10160 }
10161
10162 /* (X & ~Y) | (~X & Y) is X ^ Y */
10163 if (TREE_CODE (arg0) == BIT_AND_EXPR
10164 && TREE_CODE (arg1) == BIT_AND_EXPR)
10165 {
10166 tree a0, a1, l0, l1, n0, n1;
10167
10168 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10169 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10170
10171 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10172 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10173
10174 n0 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l0);
10175 n1 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l1);
10176
10177 if ((operand_equal_p (n0, a0, 0)
10178 && operand_equal_p (n1, a1, 0))
10179 || (operand_equal_p (n0, a1, 0)
10180 && operand_equal_p (n1, a0, 0)))
10181 return fold_build2_loc (loc, BIT_XOR_EXPR, type, l0, n1);
10182 }
10183
10184 /* See if this can be simplified into a rotate first. If that
10185 is unsuccessful continue in the association code. */
10186 goto bit_rotate;
10187
10188 case BIT_XOR_EXPR:
10189 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10190 if (TREE_CODE (arg0) == BIT_AND_EXPR
10191 && INTEGRAL_TYPE_P (type)
10192 && integer_onep (TREE_OPERAND (arg0, 1))
10193 && integer_onep (arg1))
10194 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
10195 build_zero_cst (TREE_TYPE (arg0)));
10196
10197 /* See if this can be simplified into a rotate first. If that
10198 is unsuccessful continue in the association code. */
10199 goto bit_rotate;
10200
10201 case BIT_AND_EXPR:
10202 /* ~X & X, (X == 0) & X, and !X & X are always zero. */
10203 if ((TREE_CODE (arg0) == BIT_NOT_EXPR
10204 || TREE_CODE (arg0) == TRUTH_NOT_EXPR
10205 || (TREE_CODE (arg0) == EQ_EXPR
10206 && integer_zerop (TREE_OPERAND (arg0, 1))))
10207 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10208 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10209
10210 /* X & ~X , X & (X == 0), and X & !X are always zero. */
10211 if ((TREE_CODE (arg1) == BIT_NOT_EXPR
10212 || TREE_CODE (arg1) == TRUTH_NOT_EXPR
10213 || (TREE_CODE (arg1) == EQ_EXPR
10214 && integer_zerop (TREE_OPERAND (arg1, 1))))
10215 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10216 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10217
10218 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10219 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10220 && INTEGRAL_TYPE_P (type)
10221 && integer_onep (TREE_OPERAND (arg0, 1))
10222 && integer_onep (arg1))
10223 {
10224 tree tem2;
10225 tem = TREE_OPERAND (arg0, 0);
10226 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10227 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10228 tem, tem2);
10229 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10230 build_zero_cst (TREE_TYPE (tem)));
10231 }
10232 /* Fold ~X & 1 as (X & 1) == 0. */
10233 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10234 && INTEGRAL_TYPE_P (type)
10235 && integer_onep (arg1))
10236 {
10237 tree tem2;
10238 tem = TREE_OPERAND (arg0, 0);
10239 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10240 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10241 tem, tem2);
10242 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10243 build_zero_cst (TREE_TYPE (tem)));
10244 }
10245 /* Fold !X & 1 as X == 0. */
10246 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10247 && integer_onep (arg1))
10248 {
10249 tem = TREE_OPERAND (arg0, 0);
10250 return fold_build2_loc (loc, EQ_EXPR, type, tem,
10251 build_zero_cst (TREE_TYPE (tem)));
10252 }
10253
10254 /* Fold (X ^ Y) & Y as ~X & Y. */
10255 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10256 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10257 {
10258 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10259 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10260 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10261 fold_convert_loc (loc, type, arg1));
10262 }
10263 /* Fold (X ^ Y) & X as ~Y & X. */
10264 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10265 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10266 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10267 {
10268 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10269 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10270 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10271 fold_convert_loc (loc, type, arg1));
10272 }
10273 /* Fold X & (X ^ Y) as X & ~Y. */
10274 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10275 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10276 {
10277 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10278 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10279 fold_convert_loc (loc, type, arg0),
10280 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
10281 }
10282 /* Fold X & (Y ^ X) as ~Y & X. */
10283 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10284 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10285 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10286 {
10287 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10288 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10289 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10290 fold_convert_loc (loc, type, arg0));
10291 }
10292
10293 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10294 multiple of 1 << CST. */
10295 if (TREE_CODE (arg1) == INTEGER_CST)
10296 {
10297 wide_int cst1 = arg1;
10298 wide_int ncst1 = -cst1;
10299 if ((cst1 & ncst1) == ncst1
10300 && multiple_of_p (type, arg0,
10301 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
10302 return fold_convert_loc (loc, type, arg0);
10303 }
10304
10305 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10306 bits from CST2. */
10307 if (TREE_CODE (arg1) == INTEGER_CST
10308 && TREE_CODE (arg0) == MULT_EXPR
10309 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10310 {
10311 wide_int warg1 = arg1;
10312 wide_int masked = mask_with_tz (type, warg1, TREE_OPERAND (arg0, 1));
10313
10314 if (masked == 0)
10315 return omit_two_operands_loc (loc, type, build_zero_cst (type),
10316 arg0, arg1);
10317 else if (masked != warg1)
10318 {
10319 /* Avoid the transform if arg1 is a mask of some
10320 mode which allows further optimizations. */
10321 int pop = wi::popcount (warg1);
10322 if (!(pop >= BITS_PER_UNIT
10323 && exact_log2 (pop) != -1
10324 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
10325 return fold_build2_loc (loc, code, type, op0,
10326 wide_int_to_tree (type, masked));
10327 }
10328 }
10329
10330 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10331 ((A & N) + B) & M -> (A + B) & M
10332 Similarly if (N & M) == 0,
10333 ((A | N) + B) & M -> (A + B) & M
10334 and for - instead of + (or unary - instead of +)
10335 and/or ^ instead of |.
10336 If B is constant and (B & M) == 0, fold into A & M. */
10337 if (TREE_CODE (arg1) == INTEGER_CST)
10338 {
10339 wide_int cst1 = arg1;
10340 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
10341 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10342 && (TREE_CODE (arg0) == PLUS_EXPR
10343 || TREE_CODE (arg0) == MINUS_EXPR
10344 || TREE_CODE (arg0) == NEGATE_EXPR)
10345 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
10346 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
10347 {
10348 tree pmop[2];
10349 int which = 0;
10350 wide_int cst0;
10351
10352 /* Now we know that arg0 is (C + D) or (C - D) or
10353 -C and arg1 (M) is == (1LL << cst) - 1.
10354 Store C into PMOP[0] and D into PMOP[1]. */
10355 pmop[0] = TREE_OPERAND (arg0, 0);
10356 pmop[1] = NULL;
10357 if (TREE_CODE (arg0) != NEGATE_EXPR)
10358 {
10359 pmop[1] = TREE_OPERAND (arg0, 1);
10360 which = 1;
10361 }
10362
10363 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
10364 which = -1;
10365
10366 for (; which >= 0; which--)
10367 switch (TREE_CODE (pmop[which]))
10368 {
10369 case BIT_AND_EXPR:
10370 case BIT_IOR_EXPR:
10371 case BIT_XOR_EXPR:
10372 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
10373 != INTEGER_CST)
10374 break;
10375 cst0 = TREE_OPERAND (pmop[which], 1);
10376 cst0 &= cst1;
10377 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
10378 {
10379 if (cst0 != cst1)
10380 break;
10381 }
10382 else if (cst0 != 0)
10383 break;
10384 /* If C or D is of the form (A & N) where
10385 (N & M) == M, or of the form (A | N) or
10386 (A ^ N) where (N & M) == 0, replace it with A. */
10387 pmop[which] = TREE_OPERAND (pmop[which], 0);
10388 break;
10389 case INTEGER_CST:
10390 /* If C or D is a N where (N & M) == 0, it can be
10391 omitted (assumed 0). */
10392 if ((TREE_CODE (arg0) == PLUS_EXPR
10393 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
10394 && (cst1 & pmop[which]) == 0)
10395 pmop[which] = NULL;
10396 break;
10397 default:
10398 break;
10399 }
10400
10401 /* Only build anything new if we optimized one or both arguments
10402 above. */
10403 if (pmop[0] != TREE_OPERAND (arg0, 0)
10404 || (TREE_CODE (arg0) != NEGATE_EXPR
10405 && pmop[1] != TREE_OPERAND (arg0, 1)))
10406 {
10407 tree utype = TREE_TYPE (arg0);
10408 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10409 {
10410 /* Perform the operations in a type that has defined
10411 overflow behavior. */
10412 utype = unsigned_type_for (TREE_TYPE (arg0));
10413 if (pmop[0] != NULL)
10414 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
10415 if (pmop[1] != NULL)
10416 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
10417 }
10418
10419 if (TREE_CODE (arg0) == NEGATE_EXPR)
10420 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
10421 else if (TREE_CODE (arg0) == PLUS_EXPR)
10422 {
10423 if (pmop[0] != NULL && pmop[1] != NULL)
10424 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
10425 pmop[0], pmop[1]);
10426 else if (pmop[0] != NULL)
10427 tem = pmop[0];
10428 else if (pmop[1] != NULL)
10429 tem = pmop[1];
10430 else
10431 return build_int_cst (type, 0);
10432 }
10433 else if (pmop[0] == NULL)
10434 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
10435 else
10436 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
10437 pmop[0], pmop[1]);
10438 /* TEM is now the new binary +, - or unary - replacement. */
10439 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
10440 fold_convert_loc (loc, utype, arg1));
10441 return fold_convert_loc (loc, type, tem);
10442 }
10443 }
10444 }
10445
10446 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10447 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10448 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10449 {
10450 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10451
10452 wide_int mask = wide_int::from (arg1, prec, UNSIGNED);
10453 if (mask == -1)
10454 return
10455 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10456 }
10457
10458 goto associate;
10459
10460 case RDIV_EXPR:
10461 /* Don't touch a floating-point divide by zero unless the mode
10462 of the constant can represent infinity. */
10463 if (TREE_CODE (arg1) == REAL_CST
10464 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10465 && real_zerop (arg1))
10466 return NULL_TREE;
10467
10468 /* (-A) / (-B) -> A / B */
10469 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10470 return fold_build2_loc (loc, RDIV_EXPR, type,
10471 TREE_OPERAND (arg0, 0),
10472 negate_expr (arg1));
10473 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10474 return fold_build2_loc (loc, RDIV_EXPR, type,
10475 negate_expr (arg0),
10476 TREE_OPERAND (arg1, 0));
10477
10478 /* Convert A/B/C to A/(B*C). */
10479 if (flag_reciprocal_math
10480 && TREE_CODE (arg0) == RDIV_EXPR)
10481 return fold_build2_loc (loc, RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
10482 fold_build2_loc (loc, MULT_EXPR, type,
10483 TREE_OPERAND (arg0, 1), arg1));
10484
10485 /* Convert A/(B/C) to (A/B)*C. */
10486 if (flag_reciprocal_math
10487 && TREE_CODE (arg1) == RDIV_EXPR)
10488 return fold_build2_loc (loc, MULT_EXPR, type,
10489 fold_build2_loc (loc, RDIV_EXPR, type, arg0,
10490 TREE_OPERAND (arg1, 0)),
10491 TREE_OPERAND (arg1, 1));
10492
10493 /* Convert C1/(X*C2) into (C1/C2)/X. */
10494 if (flag_reciprocal_math
10495 && TREE_CODE (arg1) == MULT_EXPR
10496 && TREE_CODE (arg0) == REAL_CST
10497 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
10498 {
10499 tree tem = const_binop (RDIV_EXPR, arg0,
10500 TREE_OPERAND (arg1, 1));
10501 if (tem)
10502 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
10503 TREE_OPERAND (arg1, 0));
10504 }
10505
10506 if (flag_unsafe_math_optimizations)
10507 {
10508 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
10509 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
10510
10511 /* Optimize sin(x)/cos(x) as tan(x). */
10512 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
10513 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
10514 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
10515 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10516 CALL_EXPR_ARG (arg1, 0), 0))
10517 {
10518 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
10519
10520 if (tanfn != NULL_TREE)
10521 return build_call_expr_loc (loc, tanfn, 1, CALL_EXPR_ARG (arg0, 0));
10522 }
10523
10524 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
10525 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
10526 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
10527 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
10528 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10529 CALL_EXPR_ARG (arg1, 0), 0))
10530 {
10531 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
10532
10533 if (tanfn != NULL_TREE)
10534 {
10535 tree tmp = build_call_expr_loc (loc, tanfn, 1,
10536 CALL_EXPR_ARG (arg0, 0));
10537 return fold_build2_loc (loc, RDIV_EXPR, type,
10538 build_real (type, dconst1), tmp);
10539 }
10540 }
10541
10542 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
10543 NaNs or Infinities. */
10544 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
10545 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
10546 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
10547 {
10548 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10549 tree arg01 = CALL_EXPR_ARG (arg1, 0);
10550
10551 if (! HONOR_NANS (arg00)
10552 && ! HONOR_INFINITIES (element_mode (arg00))
10553 && operand_equal_p (arg00, arg01, 0))
10554 {
10555 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
10556
10557 if (cosfn != NULL_TREE)
10558 return build_call_expr_loc (loc, cosfn, 1, arg00);
10559 }
10560 }
10561
10562 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
10563 NaNs or Infinities. */
10564 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
10565 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
10566 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
10567 {
10568 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10569 tree arg01 = CALL_EXPR_ARG (arg1, 0);
10570
10571 if (! HONOR_NANS (arg00)
10572 && ! HONOR_INFINITIES (element_mode (arg00))
10573 && operand_equal_p (arg00, arg01, 0))
10574 {
10575 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
10576
10577 if (cosfn != NULL_TREE)
10578 {
10579 tree tmp = build_call_expr_loc (loc, cosfn, 1, arg00);
10580 return fold_build2_loc (loc, RDIV_EXPR, type,
10581 build_real (type, dconst1),
10582 tmp);
10583 }
10584 }
10585 }
10586
10587 /* Optimize pow(x,c)/x as pow(x,c-1). */
10588 if (fcode0 == BUILT_IN_POW
10589 || fcode0 == BUILT_IN_POWF
10590 || fcode0 == BUILT_IN_POWL)
10591 {
10592 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10593 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10594 if (TREE_CODE (arg01) == REAL_CST
10595 && !TREE_OVERFLOW (arg01)
10596 && operand_equal_p (arg1, arg00, 0))
10597 {
10598 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10599 REAL_VALUE_TYPE c;
10600 tree arg;
10601
10602 c = TREE_REAL_CST (arg01);
10603 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
10604 arg = build_real (type, c);
10605 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
10606 }
10607 }
10608
10609 /* Optimize a/root(b/c) into a*root(c/b). */
10610 if (BUILTIN_ROOT_P (fcode1))
10611 {
10612 tree rootarg = CALL_EXPR_ARG (arg1, 0);
10613
10614 if (TREE_CODE (rootarg) == RDIV_EXPR)
10615 {
10616 tree rootfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10617 tree b = TREE_OPERAND (rootarg, 0);
10618 tree c = TREE_OPERAND (rootarg, 1);
10619
10620 tree tmp = fold_build2_loc (loc, RDIV_EXPR, type, c, b);
10621
10622 tmp = build_call_expr_loc (loc, rootfn, 1, tmp);
10623 return fold_build2_loc (loc, MULT_EXPR, type, arg0, tmp);
10624 }
10625 }
10626
10627 /* Optimize x/expN(y) into x*expN(-y). */
10628 if (BUILTIN_EXPONENT_P (fcode1))
10629 {
10630 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10631 tree arg = negate_expr (CALL_EXPR_ARG (arg1, 0));
10632 arg1 = build_call_expr_loc (loc,
10633 expfn, 1,
10634 fold_convert_loc (loc, type, arg));
10635 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
10636 }
10637
10638 /* Optimize x/pow(y,z) into x*pow(y,-z). */
10639 if (fcode1 == BUILT_IN_POW
10640 || fcode1 == BUILT_IN_POWF
10641 || fcode1 == BUILT_IN_POWL)
10642 {
10643 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10644 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10645 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10646 tree neg11 = fold_convert_loc (loc, type,
10647 negate_expr (arg11));
10648 arg1 = build_call_expr_loc (loc, powfn, 2, arg10, neg11);
10649 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
10650 }
10651 }
10652 return NULL_TREE;
10653
10654 case TRUNC_DIV_EXPR:
10655 /* Optimize (X & (-A)) / A where A is a power of 2,
10656 to X >> log2(A) */
10657 if (TREE_CODE (arg0) == BIT_AND_EXPR
10658 && !TYPE_UNSIGNED (type) && TREE_CODE (arg1) == INTEGER_CST
10659 && integer_pow2p (arg1) && tree_int_cst_sgn (arg1) > 0)
10660 {
10661 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (arg1),
10662 arg1, TREE_OPERAND (arg0, 1));
10663 if (sum && integer_zerop (sum)) {
10664 tree pow2 = build_int_cst (integer_type_node,
10665 wi::exact_log2 (arg1));
10666 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10667 TREE_OPERAND (arg0, 0), pow2);
10668 }
10669 }
10670
10671 /* Fall through */
10672
10673 case FLOOR_DIV_EXPR:
10674 /* Simplify A / (B << N) where A and B are positive and B is
10675 a power of 2, to A >> (N + log2(B)). */
10676 strict_overflow_p = false;
10677 if (TREE_CODE (arg1) == LSHIFT_EXPR
10678 && (TYPE_UNSIGNED (type)
10679 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10680 {
10681 tree sval = TREE_OPERAND (arg1, 0);
10682 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10683 {
10684 tree sh_cnt = TREE_OPERAND (arg1, 1);
10685 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10686 wi::exact_log2 (sval));
10687
10688 if (strict_overflow_p)
10689 fold_overflow_warning (("assuming signed overflow does not "
10690 "occur when simplifying A / (B << N)"),
10691 WARN_STRICT_OVERFLOW_MISC);
10692
10693 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10694 sh_cnt, pow2);
10695 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10696 fold_convert_loc (loc, type, arg0), sh_cnt);
10697 }
10698 }
10699
10700 /* Fall through */
10701
10702 case ROUND_DIV_EXPR:
10703 case CEIL_DIV_EXPR:
10704 case EXACT_DIV_EXPR:
10705 if (integer_zerop (arg1))
10706 return NULL_TREE;
10707
10708 /* Convert -A / -B to A / B when the type is signed and overflow is
10709 undefined. */
10710 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10711 && TREE_CODE (arg0) == NEGATE_EXPR
10712 && negate_expr_p (arg1))
10713 {
10714 if (INTEGRAL_TYPE_P (type))
10715 fold_overflow_warning (("assuming signed overflow does not occur "
10716 "when distributing negation across "
10717 "division"),
10718 WARN_STRICT_OVERFLOW_MISC);
10719 return fold_build2_loc (loc, code, type,
10720 fold_convert_loc (loc, type,
10721 TREE_OPERAND (arg0, 0)),
10722 fold_convert_loc (loc, type,
10723 negate_expr (arg1)));
10724 }
10725 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10726 && TREE_CODE (arg1) == NEGATE_EXPR
10727 && negate_expr_p (arg0))
10728 {
10729 if (INTEGRAL_TYPE_P (type))
10730 fold_overflow_warning (("assuming signed overflow does not occur "
10731 "when distributing negation across "
10732 "division"),
10733 WARN_STRICT_OVERFLOW_MISC);
10734 return fold_build2_loc (loc, code, type,
10735 fold_convert_loc (loc, type,
10736 negate_expr (arg0)),
10737 fold_convert_loc (loc, type,
10738 TREE_OPERAND (arg1, 0)));
10739 }
10740
10741 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10742 operation, EXACT_DIV_EXPR.
10743
10744 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10745 At one time others generated faster code, it's not clear if they do
10746 after the last round to changes to the DIV code in expmed.c. */
10747 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10748 && multiple_of_p (type, arg0, arg1))
10749 return fold_build2_loc (loc, EXACT_DIV_EXPR, type, arg0, arg1);
10750
10751 strict_overflow_p = false;
10752 if (TREE_CODE (arg1) == INTEGER_CST
10753 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10754 &strict_overflow_p)))
10755 {
10756 if (strict_overflow_p)
10757 fold_overflow_warning (("assuming signed overflow does not occur "
10758 "when simplifying division"),
10759 WARN_STRICT_OVERFLOW_MISC);
10760 return fold_convert_loc (loc, type, tem);
10761 }
10762
10763 return NULL_TREE;
10764
10765 case CEIL_MOD_EXPR:
10766 case FLOOR_MOD_EXPR:
10767 case ROUND_MOD_EXPR:
10768 case TRUNC_MOD_EXPR:
10769 strict_overflow_p = false;
10770 if (TREE_CODE (arg1) == INTEGER_CST
10771 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10772 &strict_overflow_p)))
10773 {
10774 if (strict_overflow_p)
10775 fold_overflow_warning (("assuming signed overflow does not occur "
10776 "when simplifying modulus"),
10777 WARN_STRICT_OVERFLOW_MISC);
10778 return fold_convert_loc (loc, type, tem);
10779 }
10780
10781 return NULL_TREE;
10782
10783 case LROTATE_EXPR:
10784 case RROTATE_EXPR:
10785 case RSHIFT_EXPR:
10786 case LSHIFT_EXPR:
10787 /* Since negative shift count is not well-defined,
10788 don't try to compute it in the compiler. */
10789 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10790 return NULL_TREE;
10791
10792 prec = element_precision (type);
10793
10794 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
10795 into x & ((unsigned)-1 >> c) for unsigned types. */
10796 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
10797 || (TYPE_UNSIGNED (type)
10798 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
10799 && tree_fits_uhwi_p (arg1)
10800 && tree_to_uhwi (arg1) < prec
10801 && tree_fits_uhwi_p (TREE_OPERAND (arg0, 1))
10802 && tree_to_uhwi (TREE_OPERAND (arg0, 1)) < prec)
10803 {
10804 HOST_WIDE_INT low0 = tree_to_uhwi (TREE_OPERAND (arg0, 1));
10805 HOST_WIDE_INT low1 = tree_to_uhwi (arg1);
10806 tree lshift;
10807 tree arg00;
10808
10809 if (low0 == low1)
10810 {
10811 arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10812
10813 lshift = build_minus_one_cst (type);
10814 lshift = const_binop (code, lshift, arg1);
10815
10816 return fold_build2_loc (loc, BIT_AND_EXPR, type, arg00, lshift);
10817 }
10818 }
10819
10820 /* If we have a rotate of a bit operation with the rotate count and
10821 the second operand of the bit operation both constant,
10822 permute the two operations. */
10823 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10824 && (TREE_CODE (arg0) == BIT_AND_EXPR
10825 || TREE_CODE (arg0) == BIT_IOR_EXPR
10826 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10827 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10828 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10829 fold_build2_loc (loc, code, type,
10830 TREE_OPERAND (arg0, 0), arg1),
10831 fold_build2_loc (loc, code, type,
10832 TREE_OPERAND (arg0, 1), arg1));
10833
10834 /* Two consecutive rotates adding up to the some integer
10835 multiple of the precision of the type can be ignored. */
10836 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10837 && TREE_CODE (arg0) == RROTATE_EXPR
10838 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10839 && wi::umod_trunc (wi::add (arg1, TREE_OPERAND (arg0, 1)),
10840 prec) == 0)
10841 return TREE_OPERAND (arg0, 0);
10842
10843 return NULL_TREE;
10844
10845 case MIN_EXPR:
10846 tem = fold_minmax (loc, MIN_EXPR, type, arg0, arg1);
10847 if (tem)
10848 return tem;
10849 goto associate;
10850
10851 case MAX_EXPR:
10852 tem = fold_minmax (loc, MAX_EXPR, type, arg0, arg1);
10853 if (tem)
10854 return tem;
10855 goto associate;
10856
10857 case TRUTH_ANDIF_EXPR:
10858 /* Note that the operands of this must be ints
10859 and their values must be 0 or 1.
10860 ("true" is a fixed value perhaps depending on the language.) */
10861 /* If first arg is constant zero, return it. */
10862 if (integer_zerop (arg0))
10863 return fold_convert_loc (loc, type, arg0);
10864 case TRUTH_AND_EXPR:
10865 /* If either arg is constant true, drop it. */
10866 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10867 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10868 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10869 /* Preserve sequence points. */
10870 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10871 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10872 /* If second arg is constant zero, result is zero, but first arg
10873 must be evaluated. */
10874 if (integer_zerop (arg1))
10875 return omit_one_operand_loc (loc, type, arg1, arg0);
10876 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10877 case will be handled here. */
10878 if (integer_zerop (arg0))
10879 return omit_one_operand_loc (loc, type, arg0, arg1);
10880
10881 /* !X && X is always false. */
10882 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10883 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10884 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10885 /* X && !X is always false. */
10886 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10887 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10888 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10889
10890 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10891 means A >= Y && A != MAX, but in this case we know that
10892 A < X <= MAX. */
10893
10894 if (!TREE_SIDE_EFFECTS (arg0)
10895 && !TREE_SIDE_EFFECTS (arg1))
10896 {
10897 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
10898 if (tem && !operand_equal_p (tem, arg0, 0))
10899 return fold_build2_loc (loc, code, type, tem, arg1);
10900
10901 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
10902 if (tem && !operand_equal_p (tem, arg1, 0))
10903 return fold_build2_loc (loc, code, type, arg0, tem);
10904 }
10905
10906 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10907 != NULL_TREE)
10908 return tem;
10909
10910 return NULL_TREE;
10911
10912 case TRUTH_ORIF_EXPR:
10913 /* Note that the operands of this must be ints
10914 and their values must be 0 or true.
10915 ("true" is a fixed value perhaps depending on the language.) */
10916 /* If first arg is constant true, return it. */
10917 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10918 return fold_convert_loc (loc, type, arg0);
10919 case TRUTH_OR_EXPR:
10920 /* If either arg is constant zero, drop it. */
10921 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10922 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10923 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10924 /* Preserve sequence points. */
10925 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10926 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10927 /* If second arg is constant true, result is true, but we must
10928 evaluate first arg. */
10929 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10930 return omit_one_operand_loc (loc, type, arg1, arg0);
10931 /* Likewise for first arg, but note this only occurs here for
10932 TRUTH_OR_EXPR. */
10933 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10934 return omit_one_operand_loc (loc, type, arg0, arg1);
10935
10936 /* !X || X is always true. */
10937 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10938 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10939 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10940 /* X || !X is always true. */
10941 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10942 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10943 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10944
10945 /* (X && !Y) || (!X && Y) is X ^ Y */
10946 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
10947 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
10948 {
10949 tree a0, a1, l0, l1, n0, n1;
10950
10951 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10952 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10953
10954 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10955 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10956
10957 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
10958 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
10959
10960 if ((operand_equal_p (n0, a0, 0)
10961 && operand_equal_p (n1, a1, 0))
10962 || (operand_equal_p (n0, a1, 0)
10963 && operand_equal_p (n1, a0, 0)))
10964 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
10965 }
10966
10967 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10968 != NULL_TREE)
10969 return tem;
10970
10971 return NULL_TREE;
10972
10973 case TRUTH_XOR_EXPR:
10974 /* If the second arg is constant zero, drop it. */
10975 if (integer_zerop (arg1))
10976 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10977 /* If the second arg is constant true, this is a logical inversion. */
10978 if (integer_onep (arg1))
10979 {
10980 tem = invert_truthvalue_loc (loc, arg0);
10981 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
10982 }
10983 /* Identical arguments cancel to zero. */
10984 if (operand_equal_p (arg0, arg1, 0))
10985 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10986
10987 /* !X ^ X is always true. */
10988 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10989 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10990 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10991
10992 /* X ^ !X is always true. */
10993 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10994 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10995 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10996
10997 return NULL_TREE;
10998
10999 case EQ_EXPR:
11000 case NE_EXPR:
11001 STRIP_NOPS (arg0);
11002 STRIP_NOPS (arg1);
11003
11004 tem = fold_comparison (loc, code, type, op0, op1);
11005 if (tem != NULL_TREE)
11006 return tem;
11007
11008 /* bool_var != 1 becomes !bool_var. */
11009 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
11010 && code == NE_EXPR)
11011 return fold_convert_loc (loc, type,
11012 fold_build1_loc (loc, TRUTH_NOT_EXPR,
11013 TREE_TYPE (arg0), arg0));
11014
11015 /* bool_var == 0 becomes !bool_var. */
11016 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
11017 && code == EQ_EXPR)
11018 return fold_convert_loc (loc, type,
11019 fold_build1_loc (loc, TRUTH_NOT_EXPR,
11020 TREE_TYPE (arg0), arg0));
11021
11022 /* !exp != 0 becomes !exp */
11023 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
11024 && code == NE_EXPR)
11025 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11026
11027 /* Similarly for a BIT_XOR_EXPR; X ^ C1 == C2 is X == (C1 ^ C2). */
11028 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11029 && TREE_CODE (arg1) == INTEGER_CST
11030 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11031 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
11032 fold_build2_loc (loc, BIT_XOR_EXPR, TREE_TYPE (arg0),
11033 fold_convert_loc (loc,
11034 TREE_TYPE (arg0),
11035 arg1),
11036 TREE_OPERAND (arg0, 1)));
11037
11038 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
11039 if ((TREE_CODE (arg0) == PLUS_EXPR
11040 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
11041 || TREE_CODE (arg0) == MINUS_EXPR)
11042 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
11043 0)),
11044 arg1, 0)
11045 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
11046 || POINTER_TYPE_P (TREE_TYPE (arg0))))
11047 {
11048 tree val = TREE_OPERAND (arg0, 1);
11049 return omit_two_operands_loc (loc, type,
11050 fold_build2_loc (loc, code, type,
11051 val,
11052 build_int_cst (TREE_TYPE (val),
11053 0)),
11054 TREE_OPERAND (arg0, 0), arg1);
11055 }
11056
11057 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
11058 if (TREE_CODE (arg0) == MINUS_EXPR
11059 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
11060 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
11061 1)),
11062 arg1, 0)
11063 && wi::extract_uhwi (TREE_OPERAND (arg0, 0), 0, 1) == 1)
11064 {
11065 return omit_two_operands_loc (loc, type,
11066 code == NE_EXPR
11067 ? boolean_true_node : boolean_false_node,
11068 TREE_OPERAND (arg0, 1), arg1);
11069 }
11070
11071 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
11072 if (TREE_CODE (arg0) == ABS_EXPR
11073 && (integer_zerop (arg1) || real_zerop (arg1)))
11074 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), arg1);
11075
11076 /* If this is an EQ or NE comparison with zero and ARG0 is
11077 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
11078 two operations, but the latter can be done in one less insn
11079 on machines that have only two-operand insns or on which a
11080 constant cannot be the first operand. */
11081 if (TREE_CODE (arg0) == BIT_AND_EXPR
11082 && integer_zerop (arg1))
11083 {
11084 tree arg00 = TREE_OPERAND (arg0, 0);
11085 tree arg01 = TREE_OPERAND (arg0, 1);
11086 if (TREE_CODE (arg00) == LSHIFT_EXPR
11087 && integer_onep (TREE_OPERAND (arg00, 0)))
11088 {
11089 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
11090 arg01, TREE_OPERAND (arg00, 1));
11091 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
11092 build_int_cst (TREE_TYPE (arg0), 1));
11093 return fold_build2_loc (loc, code, type,
11094 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
11095 arg1);
11096 }
11097 else if (TREE_CODE (arg01) == LSHIFT_EXPR
11098 && integer_onep (TREE_OPERAND (arg01, 0)))
11099 {
11100 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
11101 arg00, TREE_OPERAND (arg01, 1));
11102 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
11103 build_int_cst (TREE_TYPE (arg0), 1));
11104 return fold_build2_loc (loc, code, type,
11105 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
11106 arg1);
11107 }
11108 }
11109
11110 /* If this is an NE or EQ comparison of zero against the result of a
11111 signed MOD operation whose second operand is a power of 2, make
11112 the MOD operation unsigned since it is simpler and equivalent. */
11113 if (integer_zerop (arg1)
11114 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
11115 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
11116 || TREE_CODE (arg0) == CEIL_MOD_EXPR
11117 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
11118 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
11119 && integer_pow2p (TREE_OPERAND (arg0, 1)))
11120 {
11121 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
11122 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
11123 fold_convert_loc (loc, newtype,
11124 TREE_OPERAND (arg0, 0)),
11125 fold_convert_loc (loc, newtype,
11126 TREE_OPERAND (arg0, 1)));
11127
11128 return fold_build2_loc (loc, code, type, newmod,
11129 fold_convert_loc (loc, newtype, arg1));
11130 }
11131
11132 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
11133 C1 is a valid shift constant, and C2 is a power of two, i.e.
11134 a single bit. */
11135 if (TREE_CODE (arg0) == BIT_AND_EXPR
11136 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
11137 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
11138 == INTEGER_CST
11139 && integer_pow2p (TREE_OPERAND (arg0, 1))
11140 && integer_zerop (arg1))
11141 {
11142 tree itype = TREE_TYPE (arg0);
11143 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
11144 prec = TYPE_PRECISION (itype);
11145
11146 /* Check for a valid shift count. */
11147 if (wi::ltu_p (arg001, prec))
11148 {
11149 tree arg01 = TREE_OPERAND (arg0, 1);
11150 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
11151 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
11152 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
11153 can be rewritten as (X & (C2 << C1)) != 0. */
11154 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
11155 {
11156 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
11157 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
11158 return fold_build2_loc (loc, code, type, tem,
11159 fold_convert_loc (loc, itype, arg1));
11160 }
11161 /* Otherwise, for signed (arithmetic) shifts,
11162 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
11163 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
11164 else if (!TYPE_UNSIGNED (itype))
11165 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
11166 arg000, build_int_cst (itype, 0));
11167 /* Otherwise, of unsigned (logical) shifts,
11168 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
11169 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
11170 else
11171 return omit_one_operand_loc (loc, type,
11172 code == EQ_EXPR ? integer_one_node
11173 : integer_zero_node,
11174 arg000);
11175 }
11176 }
11177
11178 /* If we have (A & C) == C where C is a power of 2, convert this into
11179 (A & C) != 0. Similarly for NE_EXPR. */
11180 if (TREE_CODE (arg0) == BIT_AND_EXPR
11181 && integer_pow2p (TREE_OPERAND (arg0, 1))
11182 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11183 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11184 arg0, fold_convert_loc (loc, TREE_TYPE (arg0),
11185 integer_zero_node));
11186
11187 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
11188 bit, then fold the expression into A < 0 or A >= 0. */
11189 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1, type);
11190 if (tem)
11191 return tem;
11192
11193 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
11194 Similarly for NE_EXPR. */
11195 if (TREE_CODE (arg0) == BIT_AND_EXPR
11196 && TREE_CODE (arg1) == INTEGER_CST
11197 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11198 {
11199 tree notc = fold_build1_loc (loc, BIT_NOT_EXPR,
11200 TREE_TYPE (TREE_OPERAND (arg0, 1)),
11201 TREE_OPERAND (arg0, 1));
11202 tree dandnotc
11203 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
11204 fold_convert_loc (loc, TREE_TYPE (arg0), arg1),
11205 notc);
11206 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
11207 if (integer_nonzerop (dandnotc))
11208 return omit_one_operand_loc (loc, type, rslt, arg0);
11209 }
11210
11211 /* If this is a comparison of a field, we may be able to simplify it. */
11212 if ((TREE_CODE (arg0) == COMPONENT_REF
11213 || TREE_CODE (arg0) == BIT_FIELD_REF)
11214 /* Handle the constant case even without -O
11215 to make sure the warnings are given. */
11216 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
11217 {
11218 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
11219 if (t1)
11220 return t1;
11221 }
11222
11223 /* Optimize comparisons of strlen vs zero to a compare of the
11224 first character of the string vs zero. To wit,
11225 strlen(ptr) == 0 => *ptr == 0
11226 strlen(ptr) != 0 => *ptr != 0
11227 Other cases should reduce to one of these two (or a constant)
11228 due to the return value of strlen being unsigned. */
11229 if (TREE_CODE (arg0) == CALL_EXPR
11230 && integer_zerop (arg1))
11231 {
11232 tree fndecl = get_callee_fndecl (arg0);
11233
11234 if (fndecl
11235 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
11236 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
11237 && call_expr_nargs (arg0) == 1
11238 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
11239 {
11240 tree iref = build_fold_indirect_ref_loc (loc,
11241 CALL_EXPR_ARG (arg0, 0));
11242 return fold_build2_loc (loc, code, type, iref,
11243 build_int_cst (TREE_TYPE (iref), 0));
11244 }
11245 }
11246
11247 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
11248 of X. Similarly fold (X >> C) == 0 into X >= 0. */
11249 if (TREE_CODE (arg0) == RSHIFT_EXPR
11250 && integer_zerop (arg1)
11251 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11252 {
11253 tree arg00 = TREE_OPERAND (arg0, 0);
11254 tree arg01 = TREE_OPERAND (arg0, 1);
11255 tree itype = TREE_TYPE (arg00);
11256 if (wi::eq_p (arg01, element_precision (itype) - 1))
11257 {
11258 if (TYPE_UNSIGNED (itype))
11259 {
11260 itype = signed_type_for (itype);
11261 arg00 = fold_convert_loc (loc, itype, arg00);
11262 }
11263 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
11264 type, arg00, build_zero_cst (itype));
11265 }
11266 }
11267
11268 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
11269 (X & C) == 0 when C is a single bit. */
11270 if (TREE_CODE (arg0) == BIT_AND_EXPR
11271 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
11272 && integer_zerop (arg1)
11273 && integer_pow2p (TREE_OPERAND (arg0, 1)))
11274 {
11275 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
11276 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
11277 TREE_OPERAND (arg0, 1));
11278 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
11279 type, tem,
11280 fold_convert_loc (loc, TREE_TYPE (arg0),
11281 arg1));
11282 }
11283
11284 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
11285 constant C is a power of two, i.e. a single bit. */
11286 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11287 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11288 && integer_zerop (arg1)
11289 && integer_pow2p (TREE_OPERAND (arg0, 1))
11290 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11291 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
11292 {
11293 tree arg00 = TREE_OPERAND (arg0, 0);
11294 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11295 arg00, build_int_cst (TREE_TYPE (arg00), 0));
11296 }
11297
11298 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
11299 when is C is a power of two, i.e. a single bit. */
11300 if (TREE_CODE (arg0) == BIT_AND_EXPR
11301 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
11302 && integer_zerop (arg1)
11303 && integer_pow2p (TREE_OPERAND (arg0, 1))
11304 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11305 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
11306 {
11307 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
11308 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
11309 arg000, TREE_OPERAND (arg0, 1));
11310 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11311 tem, build_int_cst (TREE_TYPE (tem), 0));
11312 }
11313
11314 if (integer_zerop (arg1)
11315 && tree_expr_nonzero_p (arg0))
11316 {
11317 tree res = constant_boolean_node (code==NE_EXPR, type);
11318 return omit_one_operand_loc (loc, type, res, arg0);
11319 }
11320
11321 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
11322 if (TREE_CODE (arg0) == BIT_AND_EXPR
11323 && TREE_CODE (arg1) == BIT_AND_EXPR)
11324 {
11325 tree arg00 = TREE_OPERAND (arg0, 0);
11326 tree arg01 = TREE_OPERAND (arg0, 1);
11327 tree arg10 = TREE_OPERAND (arg1, 0);
11328 tree arg11 = TREE_OPERAND (arg1, 1);
11329 tree itype = TREE_TYPE (arg0);
11330
11331 if (operand_equal_p (arg01, arg11, 0))
11332 return fold_build2_loc (loc, code, type,
11333 fold_build2_loc (loc, BIT_AND_EXPR, itype,
11334 fold_build2_loc (loc,
11335 BIT_XOR_EXPR, itype,
11336 arg00, arg10),
11337 arg01),
11338 build_zero_cst (itype));
11339
11340 if (operand_equal_p (arg01, arg10, 0))
11341 return fold_build2_loc (loc, code, type,
11342 fold_build2_loc (loc, BIT_AND_EXPR, itype,
11343 fold_build2_loc (loc,
11344 BIT_XOR_EXPR, itype,
11345 arg00, arg11),
11346 arg01),
11347 build_zero_cst (itype));
11348
11349 if (operand_equal_p (arg00, arg11, 0))
11350 return fold_build2_loc (loc, code, type,
11351 fold_build2_loc (loc, BIT_AND_EXPR, itype,
11352 fold_build2_loc (loc,
11353 BIT_XOR_EXPR, itype,
11354 arg01, arg10),
11355 arg00),
11356 build_zero_cst (itype));
11357
11358 if (operand_equal_p (arg00, arg10, 0))
11359 return fold_build2_loc (loc, code, type,
11360 fold_build2_loc (loc, BIT_AND_EXPR, itype,
11361 fold_build2_loc (loc,
11362 BIT_XOR_EXPR, itype,
11363 arg01, arg11),
11364 arg00),
11365 build_zero_cst (itype));
11366 }
11367
11368 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11369 && TREE_CODE (arg1) == BIT_XOR_EXPR)
11370 {
11371 tree arg00 = TREE_OPERAND (arg0, 0);
11372 tree arg01 = TREE_OPERAND (arg0, 1);
11373 tree arg10 = TREE_OPERAND (arg1, 0);
11374 tree arg11 = TREE_OPERAND (arg1, 1);
11375 tree itype = TREE_TYPE (arg0);
11376
11377 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
11378 operand_equal_p guarantees no side-effects so we don't need
11379 to use omit_one_operand on Z. */
11380 if (operand_equal_p (arg01, arg11, 0))
11381 return fold_build2_loc (loc, code, type, arg00,
11382 fold_convert_loc (loc, TREE_TYPE (arg00),
11383 arg10));
11384 if (operand_equal_p (arg01, arg10, 0))
11385 return fold_build2_loc (loc, code, type, arg00,
11386 fold_convert_loc (loc, TREE_TYPE (arg00),
11387 arg11));
11388 if (operand_equal_p (arg00, arg11, 0))
11389 return fold_build2_loc (loc, code, type, arg01,
11390 fold_convert_loc (loc, TREE_TYPE (arg01),
11391 arg10));
11392 if (operand_equal_p (arg00, arg10, 0))
11393 return fold_build2_loc (loc, code, type, arg01,
11394 fold_convert_loc (loc, TREE_TYPE (arg01),
11395 arg11));
11396
11397 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
11398 if (TREE_CODE (arg01) == INTEGER_CST
11399 && TREE_CODE (arg11) == INTEGER_CST)
11400 {
11401 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
11402 fold_convert_loc (loc, itype, arg11));
11403 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
11404 return fold_build2_loc (loc, code, type, tem,
11405 fold_convert_loc (loc, itype, arg10));
11406 }
11407 }
11408
11409 /* Attempt to simplify equality/inequality comparisons of complex
11410 values. Only lower the comparison if the result is known or
11411 can be simplified to a single scalar comparison. */
11412 if ((TREE_CODE (arg0) == COMPLEX_EXPR
11413 || TREE_CODE (arg0) == COMPLEX_CST)
11414 && (TREE_CODE (arg1) == COMPLEX_EXPR
11415 || TREE_CODE (arg1) == COMPLEX_CST))
11416 {
11417 tree real0, imag0, real1, imag1;
11418 tree rcond, icond;
11419
11420 if (TREE_CODE (arg0) == COMPLEX_EXPR)
11421 {
11422 real0 = TREE_OPERAND (arg0, 0);
11423 imag0 = TREE_OPERAND (arg0, 1);
11424 }
11425 else
11426 {
11427 real0 = TREE_REALPART (arg0);
11428 imag0 = TREE_IMAGPART (arg0);
11429 }
11430
11431 if (TREE_CODE (arg1) == COMPLEX_EXPR)
11432 {
11433 real1 = TREE_OPERAND (arg1, 0);
11434 imag1 = TREE_OPERAND (arg1, 1);
11435 }
11436 else
11437 {
11438 real1 = TREE_REALPART (arg1);
11439 imag1 = TREE_IMAGPART (arg1);
11440 }
11441
11442 rcond = fold_binary_loc (loc, code, type, real0, real1);
11443 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
11444 {
11445 if (integer_zerop (rcond))
11446 {
11447 if (code == EQ_EXPR)
11448 return omit_two_operands_loc (loc, type, boolean_false_node,
11449 imag0, imag1);
11450 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
11451 }
11452 else
11453 {
11454 if (code == NE_EXPR)
11455 return omit_two_operands_loc (loc, type, boolean_true_node,
11456 imag0, imag1);
11457 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
11458 }
11459 }
11460
11461 icond = fold_binary_loc (loc, code, type, imag0, imag1);
11462 if (icond && TREE_CODE (icond) == INTEGER_CST)
11463 {
11464 if (integer_zerop (icond))
11465 {
11466 if (code == EQ_EXPR)
11467 return omit_two_operands_loc (loc, type, boolean_false_node,
11468 real0, real1);
11469 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
11470 }
11471 else
11472 {
11473 if (code == NE_EXPR)
11474 return omit_two_operands_loc (loc, type, boolean_true_node,
11475 real0, real1);
11476 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
11477 }
11478 }
11479 }
11480
11481 return NULL_TREE;
11482
11483 case LT_EXPR:
11484 case GT_EXPR:
11485 case LE_EXPR:
11486 case GE_EXPR:
11487 tem = fold_comparison (loc, code, type, op0, op1);
11488 if (tem != NULL_TREE)
11489 return tem;
11490
11491 /* Transform comparisons of the form X +- C CMP X. */
11492 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
11493 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11494 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
11495 && !HONOR_SNANS (arg0))
11496 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11497 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
11498 {
11499 tree arg01 = TREE_OPERAND (arg0, 1);
11500 enum tree_code code0 = TREE_CODE (arg0);
11501 int is_positive;
11502
11503 if (TREE_CODE (arg01) == REAL_CST)
11504 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
11505 else
11506 is_positive = tree_int_cst_sgn (arg01);
11507
11508 /* (X - c) > X becomes false. */
11509 if (code == GT_EXPR
11510 && ((code0 == MINUS_EXPR && is_positive >= 0)
11511 || (code0 == PLUS_EXPR && is_positive <= 0)))
11512 {
11513 if (TREE_CODE (arg01) == INTEGER_CST
11514 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11515 fold_overflow_warning (("assuming signed overflow does not "
11516 "occur when assuming that (X - c) > X "
11517 "is always false"),
11518 WARN_STRICT_OVERFLOW_ALL);
11519 return constant_boolean_node (0, type);
11520 }
11521
11522 /* Likewise (X + c) < X becomes false. */
11523 if (code == LT_EXPR
11524 && ((code0 == PLUS_EXPR && is_positive >= 0)
11525 || (code0 == MINUS_EXPR && is_positive <= 0)))
11526 {
11527 if (TREE_CODE (arg01) == INTEGER_CST
11528 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11529 fold_overflow_warning (("assuming signed overflow does not "
11530 "occur when assuming that "
11531 "(X + c) < X is always false"),
11532 WARN_STRICT_OVERFLOW_ALL);
11533 return constant_boolean_node (0, type);
11534 }
11535
11536 /* Convert (X - c) <= X to true. */
11537 if (!HONOR_NANS (arg1)
11538 && code == LE_EXPR
11539 && ((code0 == MINUS_EXPR && is_positive >= 0)
11540 || (code0 == PLUS_EXPR && is_positive <= 0)))
11541 {
11542 if (TREE_CODE (arg01) == INTEGER_CST
11543 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11544 fold_overflow_warning (("assuming signed overflow does not "
11545 "occur when assuming that "
11546 "(X - c) <= X is always true"),
11547 WARN_STRICT_OVERFLOW_ALL);
11548 return constant_boolean_node (1, type);
11549 }
11550
11551 /* Convert (X + c) >= X to true. */
11552 if (!HONOR_NANS (arg1)
11553 && code == GE_EXPR
11554 && ((code0 == PLUS_EXPR && is_positive >= 0)
11555 || (code0 == MINUS_EXPR && is_positive <= 0)))
11556 {
11557 if (TREE_CODE (arg01) == INTEGER_CST
11558 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11559 fold_overflow_warning (("assuming signed overflow does not "
11560 "occur when assuming that "
11561 "(X + c) >= X is always true"),
11562 WARN_STRICT_OVERFLOW_ALL);
11563 return constant_boolean_node (1, type);
11564 }
11565
11566 if (TREE_CODE (arg01) == INTEGER_CST)
11567 {
11568 /* Convert X + c > X and X - c < X to true for integers. */
11569 if (code == GT_EXPR
11570 && ((code0 == PLUS_EXPR && is_positive > 0)
11571 || (code0 == MINUS_EXPR && is_positive < 0)))
11572 {
11573 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11574 fold_overflow_warning (("assuming signed overflow does "
11575 "not occur when assuming that "
11576 "(X + c) > X is always true"),
11577 WARN_STRICT_OVERFLOW_ALL);
11578 return constant_boolean_node (1, type);
11579 }
11580
11581 if (code == LT_EXPR
11582 && ((code0 == MINUS_EXPR && is_positive > 0)
11583 || (code0 == PLUS_EXPR && is_positive < 0)))
11584 {
11585 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11586 fold_overflow_warning (("assuming signed overflow does "
11587 "not occur when assuming that "
11588 "(X - c) < X is always true"),
11589 WARN_STRICT_OVERFLOW_ALL);
11590 return constant_boolean_node (1, type);
11591 }
11592
11593 /* Convert X + c <= X and X - c >= X to false for integers. */
11594 if (code == LE_EXPR
11595 && ((code0 == PLUS_EXPR && is_positive > 0)
11596 || (code0 == MINUS_EXPR && is_positive < 0)))
11597 {
11598 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11599 fold_overflow_warning (("assuming signed overflow does "
11600 "not occur when assuming that "
11601 "(X + c) <= X is always false"),
11602 WARN_STRICT_OVERFLOW_ALL);
11603 return constant_boolean_node (0, type);
11604 }
11605
11606 if (code == GE_EXPR
11607 && ((code0 == MINUS_EXPR && is_positive > 0)
11608 || (code0 == PLUS_EXPR && is_positive < 0)))
11609 {
11610 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11611 fold_overflow_warning (("assuming signed overflow does "
11612 "not occur when assuming that "
11613 "(X - c) >= X is always false"),
11614 WARN_STRICT_OVERFLOW_ALL);
11615 return constant_boolean_node (0, type);
11616 }
11617 }
11618 }
11619
11620 /* Comparisons with the highest or lowest possible integer of
11621 the specified precision will have known values. */
11622 {
11623 tree arg1_type = TREE_TYPE (arg1);
11624 unsigned int prec = TYPE_PRECISION (arg1_type);
11625
11626 if (TREE_CODE (arg1) == INTEGER_CST
11627 && (INTEGRAL_TYPE_P (arg1_type) || POINTER_TYPE_P (arg1_type)))
11628 {
11629 wide_int max = wi::max_value (arg1_type);
11630 wide_int signed_max = wi::max_value (prec, SIGNED);
11631 wide_int min = wi::min_value (arg1_type);
11632
11633 if (wi::eq_p (arg1, max))
11634 switch (code)
11635 {
11636 case GT_EXPR:
11637 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11638
11639 case GE_EXPR:
11640 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
11641
11642 case LE_EXPR:
11643 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
11644
11645 case LT_EXPR:
11646 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
11647
11648 /* The GE_EXPR and LT_EXPR cases above are not normally
11649 reached because of previous transformations. */
11650
11651 default:
11652 break;
11653 }
11654 else if (wi::eq_p (arg1, max - 1))
11655 switch (code)
11656 {
11657 case GT_EXPR:
11658 arg1 = const_binop (PLUS_EXPR, arg1,
11659 build_int_cst (TREE_TYPE (arg1), 1));
11660 return fold_build2_loc (loc, EQ_EXPR, type,
11661 fold_convert_loc (loc,
11662 TREE_TYPE (arg1), arg0),
11663 arg1);
11664 case LE_EXPR:
11665 arg1 = const_binop (PLUS_EXPR, arg1,
11666 build_int_cst (TREE_TYPE (arg1), 1));
11667 return fold_build2_loc (loc, NE_EXPR, type,
11668 fold_convert_loc (loc, TREE_TYPE (arg1),
11669 arg0),
11670 arg1);
11671 default:
11672 break;
11673 }
11674 else if (wi::eq_p (arg1, min))
11675 switch (code)
11676 {
11677 case LT_EXPR:
11678 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11679
11680 case LE_EXPR:
11681 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
11682
11683 case GE_EXPR:
11684 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
11685
11686 case GT_EXPR:
11687 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
11688
11689 default:
11690 break;
11691 }
11692 else if (wi::eq_p (arg1, min + 1))
11693 switch (code)
11694 {
11695 case GE_EXPR:
11696 arg1 = const_binop (MINUS_EXPR, arg1,
11697 build_int_cst (TREE_TYPE (arg1), 1));
11698 return fold_build2_loc (loc, NE_EXPR, type,
11699 fold_convert_loc (loc,
11700 TREE_TYPE (arg1), arg0),
11701 arg1);
11702 case LT_EXPR:
11703 arg1 = const_binop (MINUS_EXPR, arg1,
11704 build_int_cst (TREE_TYPE (arg1), 1));
11705 return fold_build2_loc (loc, EQ_EXPR, type,
11706 fold_convert_loc (loc, TREE_TYPE (arg1),
11707 arg0),
11708 arg1);
11709 default:
11710 break;
11711 }
11712
11713 else if (wi::eq_p (arg1, signed_max)
11714 && TYPE_UNSIGNED (arg1_type)
11715 /* We will flip the signedness of the comparison operator
11716 associated with the mode of arg1, so the sign bit is
11717 specified by this mode. Check that arg1 is the signed
11718 max associated with this sign bit. */
11719 && prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
11720 /* signed_type does not work on pointer types. */
11721 && INTEGRAL_TYPE_P (arg1_type))
11722 {
11723 /* The following case also applies to X < signed_max+1
11724 and X >= signed_max+1 because previous transformations. */
11725 if (code == LE_EXPR || code == GT_EXPR)
11726 {
11727 tree st = signed_type_for (arg1_type);
11728 return fold_build2_loc (loc,
11729 code == LE_EXPR ? GE_EXPR : LT_EXPR,
11730 type, fold_convert_loc (loc, st, arg0),
11731 build_int_cst (st, 0));
11732 }
11733 }
11734 }
11735 }
11736
11737 /* If we are comparing an ABS_EXPR with a constant, we can
11738 convert all the cases into explicit comparisons, but they may
11739 well not be faster than doing the ABS and one comparison.
11740 But ABS (X) <= C is a range comparison, which becomes a subtraction
11741 and a comparison, and is probably faster. */
11742 if (code == LE_EXPR
11743 && TREE_CODE (arg1) == INTEGER_CST
11744 && TREE_CODE (arg0) == ABS_EXPR
11745 && ! TREE_SIDE_EFFECTS (arg0)
11746 && (0 != (tem = negate_expr (arg1)))
11747 && TREE_CODE (tem) == INTEGER_CST
11748 && !TREE_OVERFLOW (tem))
11749 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
11750 build2 (GE_EXPR, type,
11751 TREE_OPERAND (arg0, 0), tem),
11752 build2 (LE_EXPR, type,
11753 TREE_OPERAND (arg0, 0), arg1));
11754
11755 /* Convert ABS_EXPR<x> >= 0 to true. */
11756 strict_overflow_p = false;
11757 if (code == GE_EXPR
11758 && (integer_zerop (arg1)
11759 || (! HONOR_NANS (arg0)
11760 && real_zerop (arg1)))
11761 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11762 {
11763 if (strict_overflow_p)
11764 fold_overflow_warning (("assuming signed overflow does not occur "
11765 "when simplifying comparison of "
11766 "absolute value and zero"),
11767 WARN_STRICT_OVERFLOW_CONDITIONAL);
11768 return omit_one_operand_loc (loc, type,
11769 constant_boolean_node (true, type),
11770 arg0);
11771 }
11772
11773 /* Convert ABS_EXPR<x> < 0 to false. */
11774 strict_overflow_p = false;
11775 if (code == LT_EXPR
11776 && (integer_zerop (arg1) || real_zerop (arg1))
11777 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11778 {
11779 if (strict_overflow_p)
11780 fold_overflow_warning (("assuming signed overflow does not occur "
11781 "when simplifying comparison of "
11782 "absolute value and zero"),
11783 WARN_STRICT_OVERFLOW_CONDITIONAL);
11784 return omit_one_operand_loc (loc, type,
11785 constant_boolean_node (false, type),
11786 arg0);
11787 }
11788
11789 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11790 and similarly for >= into !=. */
11791 if ((code == LT_EXPR || code == GE_EXPR)
11792 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11793 && TREE_CODE (arg1) == LSHIFT_EXPR
11794 && integer_onep (TREE_OPERAND (arg1, 0)))
11795 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11796 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11797 TREE_OPERAND (arg1, 1)),
11798 build_zero_cst (TREE_TYPE (arg0)));
11799
11800 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11801 otherwise Y might be >= # of bits in X's type and thus e.g.
11802 (unsigned char) (1 << Y) for Y 15 might be 0.
11803 If the cast is widening, then 1 << Y should have unsigned type,
11804 otherwise if Y is number of bits in the signed shift type minus 1,
11805 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11806 31 might be 0xffffffff80000000. */
11807 if ((code == LT_EXPR || code == GE_EXPR)
11808 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11809 && CONVERT_EXPR_P (arg1)
11810 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11811 && (element_precision (TREE_TYPE (arg1))
11812 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11813 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11814 || (element_precision (TREE_TYPE (arg1))
11815 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11816 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11817 {
11818 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11819 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11820 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11821 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11822 build_zero_cst (TREE_TYPE (arg0)));
11823 }
11824
11825 return NULL_TREE;
11826
11827 case UNORDERED_EXPR:
11828 case ORDERED_EXPR:
11829 case UNLT_EXPR:
11830 case UNLE_EXPR:
11831 case UNGT_EXPR:
11832 case UNGE_EXPR:
11833 case UNEQ_EXPR:
11834 case LTGT_EXPR:
11835 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
11836 {
11837 t1 = fold_relational_const (code, type, arg0, arg1);
11838 if (t1 != NULL_TREE)
11839 return t1;
11840 }
11841
11842 /* If the first operand is NaN, the result is constant. */
11843 if (TREE_CODE (arg0) == REAL_CST
11844 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
11845 && (code != LTGT_EXPR || ! flag_trapping_math))
11846 {
11847 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
11848 ? integer_zero_node
11849 : integer_one_node;
11850 return omit_one_operand_loc (loc, type, t1, arg1);
11851 }
11852
11853 /* If the second operand is NaN, the result is constant. */
11854 if (TREE_CODE (arg1) == REAL_CST
11855 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
11856 && (code != LTGT_EXPR || ! flag_trapping_math))
11857 {
11858 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
11859 ? integer_zero_node
11860 : integer_one_node;
11861 return omit_one_operand_loc (loc, type, t1, arg0);
11862 }
11863
11864 /* Simplify unordered comparison of something with itself. */
11865 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
11866 && operand_equal_p (arg0, arg1, 0))
11867 return constant_boolean_node (1, type);
11868
11869 if (code == LTGT_EXPR
11870 && !flag_trapping_math
11871 && operand_equal_p (arg0, arg1, 0))
11872 return constant_boolean_node (0, type);
11873
11874 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11875 {
11876 tree targ0 = strip_float_extensions (arg0);
11877 tree targ1 = strip_float_extensions (arg1);
11878 tree newtype = TREE_TYPE (targ0);
11879
11880 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11881 newtype = TREE_TYPE (targ1);
11882
11883 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11884 return fold_build2_loc (loc, code, type,
11885 fold_convert_loc (loc, newtype, targ0),
11886 fold_convert_loc (loc, newtype, targ1));
11887 }
11888
11889 return NULL_TREE;
11890
11891 case COMPOUND_EXPR:
11892 /* When pedantic, a compound expression can be neither an lvalue
11893 nor an integer constant expression. */
11894 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11895 return NULL_TREE;
11896 /* Don't let (0, 0) be null pointer constant. */
11897 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11898 : fold_convert_loc (loc, type, arg1);
11899 return pedantic_non_lvalue_loc (loc, tem);
11900
11901 case ASSERT_EXPR:
11902 /* An ASSERT_EXPR should never be passed to fold_binary. */
11903 gcc_unreachable ();
11904
11905 default:
11906 return NULL_TREE;
11907 } /* switch (code) */
11908 }
11909
11910 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11911 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
11912 of GOTO_EXPR. */
11913
11914 static tree
11915 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
11916 {
11917 switch (TREE_CODE (*tp))
11918 {
11919 case LABEL_EXPR:
11920 return *tp;
11921
11922 case GOTO_EXPR:
11923 *walk_subtrees = 0;
11924
11925 /* ... fall through ... */
11926
11927 default:
11928 return NULL_TREE;
11929 }
11930 }
11931
11932 /* Return whether the sub-tree ST contains a label which is accessible from
11933 outside the sub-tree. */
11934
11935 static bool
11936 contains_label_p (tree st)
11937 {
11938 return
11939 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
11940 }
11941
11942 /* Fold a ternary expression of code CODE and type TYPE with operands
11943 OP0, OP1, and OP2. Return the folded expression if folding is
11944 successful. Otherwise, return NULL_TREE. */
11945
11946 tree
11947 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
11948 tree op0, tree op1, tree op2)
11949 {
11950 tree tem;
11951 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
11952 enum tree_code_class kind = TREE_CODE_CLASS (code);
11953
11954 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11955 && TREE_CODE_LENGTH (code) == 3);
11956
11957 /* If this is a commutative operation, and OP0 is a constant, move it
11958 to OP1 to reduce the number of tests below. */
11959 if (commutative_ternary_tree_code (code)
11960 && tree_swap_operands_p (op0, op1, true))
11961 return fold_build3_loc (loc, code, type, op1, op0, op2);
11962
11963 tem = generic_simplify (loc, code, type, op0, op1, op2);
11964 if (tem)
11965 return tem;
11966
11967 /* Strip any conversions that don't change the mode. This is safe
11968 for every expression, except for a comparison expression because
11969 its signedness is derived from its operands. So, in the latter
11970 case, only strip conversions that don't change the signedness.
11971
11972 Note that this is done as an internal manipulation within the
11973 constant folder, in order to find the simplest representation of
11974 the arguments so that their form can be studied. In any cases,
11975 the appropriate type conversions should be put back in the tree
11976 that will get out of the constant folder. */
11977 if (op0)
11978 {
11979 arg0 = op0;
11980 STRIP_NOPS (arg0);
11981 }
11982
11983 if (op1)
11984 {
11985 arg1 = op1;
11986 STRIP_NOPS (arg1);
11987 }
11988
11989 if (op2)
11990 {
11991 arg2 = op2;
11992 STRIP_NOPS (arg2);
11993 }
11994
11995 switch (code)
11996 {
11997 case COMPONENT_REF:
11998 if (TREE_CODE (arg0) == CONSTRUCTOR
11999 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
12000 {
12001 unsigned HOST_WIDE_INT idx;
12002 tree field, value;
12003 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
12004 if (field == arg1)
12005 return value;
12006 }
12007 return NULL_TREE;
12008
12009 case COND_EXPR:
12010 case VEC_COND_EXPR:
12011 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
12012 so all simple results must be passed through pedantic_non_lvalue. */
12013 if (TREE_CODE (arg0) == INTEGER_CST)
12014 {
12015 tree unused_op = integer_zerop (arg0) ? op1 : op2;
12016 tem = integer_zerop (arg0) ? op2 : op1;
12017 /* Only optimize constant conditions when the selected branch
12018 has the same type as the COND_EXPR. This avoids optimizing
12019 away "c ? x : throw", where the throw has a void type.
12020 Avoid throwing away that operand which contains label. */
12021 if ((!TREE_SIDE_EFFECTS (unused_op)
12022 || !contains_label_p (unused_op))
12023 && (! VOID_TYPE_P (TREE_TYPE (tem))
12024 || VOID_TYPE_P (type)))
12025 return pedantic_non_lvalue_loc (loc, tem);
12026 return NULL_TREE;
12027 }
12028 else if (TREE_CODE (arg0) == VECTOR_CST)
12029 {
12030 if ((TREE_CODE (arg1) == VECTOR_CST
12031 || TREE_CODE (arg1) == CONSTRUCTOR)
12032 && (TREE_CODE (arg2) == VECTOR_CST
12033 || TREE_CODE (arg2) == CONSTRUCTOR))
12034 {
12035 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
12036 unsigned char *sel = XALLOCAVEC (unsigned char, nelts);
12037 gcc_assert (nelts == VECTOR_CST_NELTS (arg0));
12038 for (i = 0; i < nelts; i++)
12039 {
12040 tree val = VECTOR_CST_ELT (arg0, i);
12041 if (integer_all_onesp (val))
12042 sel[i] = i;
12043 else if (integer_zerop (val))
12044 sel[i] = nelts + i;
12045 else /* Currently unreachable. */
12046 return NULL_TREE;
12047 }
12048 tree t = fold_vec_perm (type, arg1, arg2, sel);
12049 if (t != NULL_TREE)
12050 return t;
12051 }
12052 }
12053
12054 /* If we have A op B ? A : C, we may be able to convert this to a
12055 simpler expression, depending on the operation and the values
12056 of B and C. Signed zeros prevent all of these transformations,
12057 for reasons given above each one.
12058
12059 Also try swapping the arguments and inverting the conditional. */
12060 if (COMPARISON_CLASS_P (arg0)
12061 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
12062 arg1, TREE_OPERAND (arg0, 1))
12063 && !HONOR_SIGNED_ZEROS (element_mode (arg1)))
12064 {
12065 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
12066 if (tem)
12067 return tem;
12068 }
12069
12070 if (COMPARISON_CLASS_P (arg0)
12071 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
12072 op2,
12073 TREE_OPERAND (arg0, 1))
12074 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
12075 {
12076 location_t loc0 = expr_location_or (arg0, loc);
12077 tem = fold_invert_truthvalue (loc0, arg0);
12078 if (tem && COMPARISON_CLASS_P (tem))
12079 {
12080 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
12081 if (tem)
12082 return tem;
12083 }
12084 }
12085
12086 /* If the second operand is simpler than the third, swap them
12087 since that produces better jump optimization results. */
12088 if (truth_value_p (TREE_CODE (arg0))
12089 && tree_swap_operands_p (op1, op2, false))
12090 {
12091 location_t loc0 = expr_location_or (arg0, loc);
12092 /* See if this can be inverted. If it can't, possibly because
12093 it was a floating-point inequality comparison, don't do
12094 anything. */
12095 tem = fold_invert_truthvalue (loc0, arg0);
12096 if (tem)
12097 return fold_build3_loc (loc, code, type, tem, op2, op1);
12098 }
12099
12100 /* Convert A ? 1 : 0 to simply A. */
12101 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
12102 : (integer_onep (op1)
12103 && !VECTOR_TYPE_P (type)))
12104 && integer_zerop (op2)
12105 /* If we try to convert OP0 to our type, the
12106 call to fold will try to move the conversion inside
12107 a COND, which will recurse. In that case, the COND_EXPR
12108 is probably the best choice, so leave it alone. */
12109 && type == TREE_TYPE (arg0))
12110 return pedantic_non_lvalue_loc (loc, arg0);
12111
12112 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
12113 over COND_EXPR in cases such as floating point comparisons. */
12114 if (integer_zerop (op1)
12115 && (code == VEC_COND_EXPR ? integer_all_onesp (op2)
12116 : (integer_onep (op2)
12117 && !VECTOR_TYPE_P (type)))
12118 && truth_value_p (TREE_CODE (arg0)))
12119 return pedantic_non_lvalue_loc (loc,
12120 fold_convert_loc (loc, type,
12121 invert_truthvalue_loc (loc,
12122 arg0)));
12123
12124 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
12125 if (TREE_CODE (arg0) == LT_EXPR
12126 && integer_zerop (TREE_OPERAND (arg0, 1))
12127 && integer_zerop (op2)
12128 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
12129 {
12130 /* sign_bit_p looks through both zero and sign extensions,
12131 but for this optimization only sign extensions are
12132 usable. */
12133 tree tem2 = TREE_OPERAND (arg0, 0);
12134 while (tem != tem2)
12135 {
12136 if (TREE_CODE (tem2) != NOP_EXPR
12137 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
12138 {
12139 tem = NULL_TREE;
12140 break;
12141 }
12142 tem2 = TREE_OPERAND (tem2, 0);
12143 }
12144 /* sign_bit_p only checks ARG1 bits within A's precision.
12145 If <sign bit of A> has wider type than A, bits outside
12146 of A's precision in <sign bit of A> need to be checked.
12147 If they are all 0, this optimization needs to be done
12148 in unsigned A's type, if they are all 1 in signed A's type,
12149 otherwise this can't be done. */
12150 if (tem
12151 && TYPE_PRECISION (TREE_TYPE (tem))
12152 < TYPE_PRECISION (TREE_TYPE (arg1))
12153 && TYPE_PRECISION (TREE_TYPE (tem))
12154 < TYPE_PRECISION (type))
12155 {
12156 int inner_width, outer_width;
12157 tree tem_type;
12158
12159 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
12160 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
12161 if (outer_width > TYPE_PRECISION (type))
12162 outer_width = TYPE_PRECISION (type);
12163
12164 wide_int mask = wi::shifted_mask
12165 (inner_width, outer_width - inner_width, false,
12166 TYPE_PRECISION (TREE_TYPE (arg1)));
12167
12168 wide_int common = mask & arg1;
12169 if (common == mask)
12170 {
12171 tem_type = signed_type_for (TREE_TYPE (tem));
12172 tem = fold_convert_loc (loc, tem_type, tem);
12173 }
12174 else if (common == 0)
12175 {
12176 tem_type = unsigned_type_for (TREE_TYPE (tem));
12177 tem = fold_convert_loc (loc, tem_type, tem);
12178 }
12179 else
12180 tem = NULL;
12181 }
12182
12183 if (tem)
12184 return
12185 fold_convert_loc (loc, type,
12186 fold_build2_loc (loc, BIT_AND_EXPR,
12187 TREE_TYPE (tem), tem,
12188 fold_convert_loc (loc,
12189 TREE_TYPE (tem),
12190 arg1)));
12191 }
12192
12193 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
12194 already handled above. */
12195 if (TREE_CODE (arg0) == BIT_AND_EXPR
12196 && integer_onep (TREE_OPERAND (arg0, 1))
12197 && integer_zerop (op2)
12198 && integer_pow2p (arg1))
12199 {
12200 tree tem = TREE_OPERAND (arg0, 0);
12201 STRIP_NOPS (tem);
12202 if (TREE_CODE (tem) == RSHIFT_EXPR
12203 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
12204 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
12205 tree_to_uhwi (TREE_OPERAND (tem, 1)))
12206 return fold_build2_loc (loc, BIT_AND_EXPR, type,
12207 TREE_OPERAND (tem, 0), arg1);
12208 }
12209
12210 /* A & N ? N : 0 is simply A & N if N is a power of two. This
12211 is probably obsolete because the first operand should be a
12212 truth value (that's why we have the two cases above), but let's
12213 leave it in until we can confirm this for all front-ends. */
12214 if (integer_zerop (op2)
12215 && TREE_CODE (arg0) == NE_EXPR
12216 && integer_zerop (TREE_OPERAND (arg0, 1))
12217 && integer_pow2p (arg1)
12218 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12219 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12220 arg1, OEP_ONLY_CONST))
12221 return pedantic_non_lvalue_loc (loc,
12222 fold_convert_loc (loc, type,
12223 TREE_OPERAND (arg0, 0)));
12224
12225 /* Disable the transformations below for vectors, since
12226 fold_binary_op_with_conditional_arg may undo them immediately,
12227 yielding an infinite loop. */
12228 if (code == VEC_COND_EXPR)
12229 return NULL_TREE;
12230
12231 /* Convert A ? B : 0 into A && B if A and B are truth values. */
12232 if (integer_zerop (op2)
12233 && truth_value_p (TREE_CODE (arg0))
12234 && truth_value_p (TREE_CODE (arg1))
12235 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12236 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
12237 : TRUTH_ANDIF_EXPR,
12238 type, fold_convert_loc (loc, type, arg0), arg1);
12239
12240 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
12241 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
12242 && truth_value_p (TREE_CODE (arg0))
12243 && truth_value_p (TREE_CODE (arg1))
12244 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12245 {
12246 location_t loc0 = expr_location_or (arg0, loc);
12247 /* Only perform transformation if ARG0 is easily inverted. */
12248 tem = fold_invert_truthvalue (loc0, arg0);
12249 if (tem)
12250 return fold_build2_loc (loc, code == VEC_COND_EXPR
12251 ? BIT_IOR_EXPR
12252 : TRUTH_ORIF_EXPR,
12253 type, fold_convert_loc (loc, type, tem),
12254 arg1);
12255 }
12256
12257 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
12258 if (integer_zerop (arg1)
12259 && truth_value_p (TREE_CODE (arg0))
12260 && truth_value_p (TREE_CODE (op2))
12261 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12262 {
12263 location_t loc0 = expr_location_or (arg0, loc);
12264 /* Only perform transformation if ARG0 is easily inverted. */
12265 tem = fold_invert_truthvalue (loc0, arg0);
12266 if (tem)
12267 return fold_build2_loc (loc, code == VEC_COND_EXPR
12268 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
12269 type, fold_convert_loc (loc, type, tem),
12270 op2);
12271 }
12272
12273 /* Convert A ? 1 : B into A || B if A and B are truth values. */
12274 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
12275 && truth_value_p (TREE_CODE (arg0))
12276 && truth_value_p (TREE_CODE (op2))
12277 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12278 return fold_build2_loc (loc, code == VEC_COND_EXPR
12279 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
12280 type, fold_convert_loc (loc, type, arg0), op2);
12281
12282 return NULL_TREE;
12283
12284 case CALL_EXPR:
12285 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
12286 of fold_ternary on them. */
12287 gcc_unreachable ();
12288
12289 case BIT_FIELD_REF:
12290 if ((TREE_CODE (arg0) == VECTOR_CST
12291 || (TREE_CODE (arg0) == CONSTRUCTOR
12292 && TREE_CODE (TREE_TYPE (arg0)) == VECTOR_TYPE))
12293 && (type == TREE_TYPE (TREE_TYPE (arg0))
12294 || (TREE_CODE (type) == VECTOR_TYPE
12295 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
12296 {
12297 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
12298 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
12299 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
12300 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
12301
12302 if (n != 0
12303 && (idx % width) == 0
12304 && (n % width) == 0
12305 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
12306 {
12307 idx = idx / width;
12308 n = n / width;
12309
12310 if (TREE_CODE (arg0) == VECTOR_CST)
12311 {
12312 if (n == 1)
12313 return VECTOR_CST_ELT (arg0, idx);
12314
12315 tree *vals = XALLOCAVEC (tree, n);
12316 for (unsigned i = 0; i < n; ++i)
12317 vals[i] = VECTOR_CST_ELT (arg0, idx + i);
12318 return build_vector (type, vals);
12319 }
12320
12321 /* Constructor elements can be subvectors. */
12322 unsigned HOST_WIDE_INT k = 1;
12323 if (CONSTRUCTOR_NELTS (arg0) != 0)
12324 {
12325 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (arg0, 0)->value);
12326 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
12327 k = TYPE_VECTOR_SUBPARTS (cons_elem);
12328 }
12329
12330 /* We keep an exact subset of the constructor elements. */
12331 if ((idx % k) == 0 && (n % k) == 0)
12332 {
12333 if (CONSTRUCTOR_NELTS (arg0) == 0)
12334 return build_constructor (type, NULL);
12335 idx /= k;
12336 n /= k;
12337 if (n == 1)
12338 {
12339 if (idx < CONSTRUCTOR_NELTS (arg0))
12340 return CONSTRUCTOR_ELT (arg0, idx)->value;
12341 return build_zero_cst (type);
12342 }
12343
12344 vec<constructor_elt, va_gc> *vals;
12345 vec_alloc (vals, n);
12346 for (unsigned i = 0;
12347 i < n && idx + i < CONSTRUCTOR_NELTS (arg0);
12348 ++i)
12349 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
12350 CONSTRUCTOR_ELT
12351 (arg0, idx + i)->value);
12352 return build_constructor (type, vals);
12353 }
12354 /* The bitfield references a single constructor element. */
12355 else if (idx + n <= (idx / k + 1) * k)
12356 {
12357 if (CONSTRUCTOR_NELTS (arg0) <= idx / k)
12358 return build_zero_cst (type);
12359 else if (n == k)
12360 return CONSTRUCTOR_ELT (arg0, idx / k)->value;
12361 else
12362 return fold_build3_loc (loc, code, type,
12363 CONSTRUCTOR_ELT (arg0, idx / k)->value, op1,
12364 build_int_cst (TREE_TYPE (op2), (idx % k) * width));
12365 }
12366 }
12367 }
12368
12369 /* A bit-field-ref that referenced the full argument can be stripped. */
12370 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
12371 && TYPE_PRECISION (TREE_TYPE (arg0)) == tree_to_uhwi (arg1)
12372 && integer_zerop (op2))
12373 return fold_convert_loc (loc, type, arg0);
12374
12375 /* On constants we can use native encode/interpret to constant
12376 fold (nearly) all BIT_FIELD_REFs. */
12377 if (CONSTANT_CLASS_P (arg0)
12378 && can_native_interpret_type_p (type)
12379 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (arg0)))
12380 /* This limitation should not be necessary, we just need to
12381 round this up to mode size. */
12382 && tree_to_uhwi (op1) % BITS_PER_UNIT == 0
12383 /* Need bit-shifting of the buffer to relax the following. */
12384 && tree_to_uhwi (op2) % BITS_PER_UNIT == 0)
12385 {
12386 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
12387 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
12388 unsigned HOST_WIDE_INT clen;
12389 clen = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (arg0)));
12390 /* ??? We cannot tell native_encode_expr to start at
12391 some random byte only. So limit us to a reasonable amount
12392 of work. */
12393 if (clen <= 4096)
12394 {
12395 unsigned char *b = XALLOCAVEC (unsigned char, clen);
12396 unsigned HOST_WIDE_INT len = native_encode_expr (arg0, b, clen);
12397 if (len > 0
12398 && len * BITS_PER_UNIT >= bitpos + bitsize)
12399 {
12400 tree v = native_interpret_expr (type,
12401 b + bitpos / BITS_PER_UNIT,
12402 bitsize / BITS_PER_UNIT);
12403 if (v)
12404 return v;
12405 }
12406 }
12407 }
12408
12409 return NULL_TREE;
12410
12411 case FMA_EXPR:
12412 /* For integers we can decompose the FMA if possible. */
12413 if (TREE_CODE (arg0) == INTEGER_CST
12414 && TREE_CODE (arg1) == INTEGER_CST)
12415 return fold_build2_loc (loc, PLUS_EXPR, type,
12416 const_binop (MULT_EXPR, arg0, arg1), arg2);
12417 if (integer_zerop (arg2))
12418 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
12419
12420 return fold_fma (loc, type, arg0, arg1, arg2);
12421
12422 case VEC_PERM_EXPR:
12423 if (TREE_CODE (arg2) == VECTOR_CST)
12424 {
12425 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i, mask, mask2;
12426 unsigned char *sel = XALLOCAVEC (unsigned char, 2 * nelts);
12427 unsigned char *sel2 = sel + nelts;
12428 bool need_mask_canon = false;
12429 bool need_mask_canon2 = false;
12430 bool all_in_vec0 = true;
12431 bool all_in_vec1 = true;
12432 bool maybe_identity = true;
12433 bool single_arg = (op0 == op1);
12434 bool changed = false;
12435
12436 mask2 = 2 * nelts - 1;
12437 mask = single_arg ? (nelts - 1) : mask2;
12438 gcc_assert (nelts == VECTOR_CST_NELTS (arg2));
12439 for (i = 0; i < nelts; i++)
12440 {
12441 tree val = VECTOR_CST_ELT (arg2, i);
12442 if (TREE_CODE (val) != INTEGER_CST)
12443 return NULL_TREE;
12444
12445 /* Make sure that the perm value is in an acceptable
12446 range. */
12447 wide_int t = val;
12448 need_mask_canon |= wi::gtu_p (t, mask);
12449 need_mask_canon2 |= wi::gtu_p (t, mask2);
12450 sel[i] = t.to_uhwi () & mask;
12451 sel2[i] = t.to_uhwi () & mask2;
12452
12453 if (sel[i] < nelts)
12454 all_in_vec1 = false;
12455 else
12456 all_in_vec0 = false;
12457
12458 if ((sel[i] & (nelts-1)) != i)
12459 maybe_identity = false;
12460 }
12461
12462 if (maybe_identity)
12463 {
12464 if (all_in_vec0)
12465 return op0;
12466 if (all_in_vec1)
12467 return op1;
12468 }
12469
12470 if (all_in_vec0)
12471 op1 = op0;
12472 else if (all_in_vec1)
12473 {
12474 op0 = op1;
12475 for (i = 0; i < nelts; i++)
12476 sel[i] -= nelts;
12477 need_mask_canon = true;
12478 }
12479
12480 if ((TREE_CODE (op0) == VECTOR_CST
12481 || TREE_CODE (op0) == CONSTRUCTOR)
12482 && (TREE_CODE (op1) == VECTOR_CST
12483 || TREE_CODE (op1) == CONSTRUCTOR))
12484 {
12485 tree t = fold_vec_perm (type, op0, op1, sel);
12486 if (t != NULL_TREE)
12487 return t;
12488 }
12489
12490 if (op0 == op1 && !single_arg)
12491 changed = true;
12492
12493 /* Some targets are deficient and fail to expand a single
12494 argument permutation while still allowing an equivalent
12495 2-argument version. */
12496 if (need_mask_canon && arg2 == op2
12497 && !can_vec_perm_p (TYPE_MODE (type), false, sel)
12498 && can_vec_perm_p (TYPE_MODE (type), false, sel2))
12499 {
12500 need_mask_canon = need_mask_canon2;
12501 sel = sel2;
12502 }
12503
12504 if (need_mask_canon && arg2 == op2)
12505 {
12506 tree *tsel = XALLOCAVEC (tree, nelts);
12507 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
12508 for (i = 0; i < nelts; i++)
12509 tsel[i] = build_int_cst (eltype, sel[i]);
12510 op2 = build_vector (TREE_TYPE (arg2), tsel);
12511 changed = true;
12512 }
12513
12514 if (changed)
12515 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
12516 }
12517 return NULL_TREE;
12518
12519 default:
12520 return NULL_TREE;
12521 } /* switch (code) */
12522 }
12523
12524 /* Perform constant folding and related simplification of EXPR.
12525 The related simplifications include x*1 => x, x*0 => 0, etc.,
12526 and application of the associative law.
12527 NOP_EXPR conversions may be removed freely (as long as we
12528 are careful not to change the type of the overall expression).
12529 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
12530 but we can constant-fold them if they have constant operands. */
12531
12532 #ifdef ENABLE_FOLD_CHECKING
12533 # define fold(x) fold_1 (x)
12534 static tree fold_1 (tree);
12535 static
12536 #endif
12537 tree
12538 fold (tree expr)
12539 {
12540 const tree t = expr;
12541 enum tree_code code = TREE_CODE (t);
12542 enum tree_code_class kind = TREE_CODE_CLASS (code);
12543 tree tem;
12544 location_t loc = EXPR_LOCATION (expr);
12545
12546 /* Return right away if a constant. */
12547 if (kind == tcc_constant)
12548 return t;
12549
12550 /* CALL_EXPR-like objects with variable numbers of operands are
12551 treated specially. */
12552 if (kind == tcc_vl_exp)
12553 {
12554 if (code == CALL_EXPR)
12555 {
12556 tem = fold_call_expr (loc, expr, false);
12557 return tem ? tem : expr;
12558 }
12559 return expr;
12560 }
12561
12562 if (IS_EXPR_CODE_CLASS (kind))
12563 {
12564 tree type = TREE_TYPE (t);
12565 tree op0, op1, op2;
12566
12567 switch (TREE_CODE_LENGTH (code))
12568 {
12569 case 1:
12570 op0 = TREE_OPERAND (t, 0);
12571 tem = fold_unary_loc (loc, code, type, op0);
12572 return tem ? tem : expr;
12573 case 2:
12574 op0 = TREE_OPERAND (t, 0);
12575 op1 = TREE_OPERAND (t, 1);
12576 tem = fold_binary_loc (loc, code, type, op0, op1);
12577 return tem ? tem : expr;
12578 case 3:
12579 op0 = TREE_OPERAND (t, 0);
12580 op1 = TREE_OPERAND (t, 1);
12581 op2 = TREE_OPERAND (t, 2);
12582 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12583 return tem ? tem : expr;
12584 default:
12585 break;
12586 }
12587 }
12588
12589 switch (code)
12590 {
12591 case ARRAY_REF:
12592 {
12593 tree op0 = TREE_OPERAND (t, 0);
12594 tree op1 = TREE_OPERAND (t, 1);
12595
12596 if (TREE_CODE (op1) == INTEGER_CST
12597 && TREE_CODE (op0) == CONSTRUCTOR
12598 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
12599 {
12600 vec<constructor_elt, va_gc> *elts = CONSTRUCTOR_ELTS (op0);
12601 unsigned HOST_WIDE_INT end = vec_safe_length (elts);
12602 unsigned HOST_WIDE_INT begin = 0;
12603
12604 /* Find a matching index by means of a binary search. */
12605 while (begin != end)
12606 {
12607 unsigned HOST_WIDE_INT middle = (begin + end) / 2;
12608 tree index = (*elts)[middle].index;
12609
12610 if (TREE_CODE (index) == INTEGER_CST
12611 && tree_int_cst_lt (index, op1))
12612 begin = middle + 1;
12613 else if (TREE_CODE (index) == INTEGER_CST
12614 && tree_int_cst_lt (op1, index))
12615 end = middle;
12616 else if (TREE_CODE (index) == RANGE_EXPR
12617 && tree_int_cst_lt (TREE_OPERAND (index, 1), op1))
12618 begin = middle + 1;
12619 else if (TREE_CODE (index) == RANGE_EXPR
12620 && tree_int_cst_lt (op1, TREE_OPERAND (index, 0)))
12621 end = middle;
12622 else
12623 return (*elts)[middle].value;
12624 }
12625 }
12626
12627 return t;
12628 }
12629
12630 /* Return a VECTOR_CST if possible. */
12631 case CONSTRUCTOR:
12632 {
12633 tree type = TREE_TYPE (t);
12634 if (TREE_CODE (type) != VECTOR_TYPE)
12635 return t;
12636
12637 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
12638 unsigned HOST_WIDE_INT idx, pos = 0;
12639 tree value;
12640
12641 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), idx, value)
12642 {
12643 if (!CONSTANT_CLASS_P (value))
12644 return t;
12645 if (TREE_CODE (value) == VECTOR_CST)
12646 {
12647 for (unsigned i = 0; i < VECTOR_CST_NELTS (value); ++i)
12648 vec[pos++] = VECTOR_CST_ELT (value, i);
12649 }
12650 else
12651 vec[pos++] = value;
12652 }
12653 for (; pos < TYPE_VECTOR_SUBPARTS (type); ++pos)
12654 vec[pos] = build_zero_cst (TREE_TYPE (type));
12655
12656 return build_vector (type, vec);
12657 }
12658
12659 case CONST_DECL:
12660 return fold (DECL_INITIAL (t));
12661
12662 default:
12663 return t;
12664 } /* switch (code) */
12665 }
12666
12667 #ifdef ENABLE_FOLD_CHECKING
12668 #undef fold
12669
12670 static void fold_checksum_tree (const_tree, struct md5_ctx *,
12671 hash_table<nofree_ptr_hash<const tree_node> > *);
12672 static void fold_check_failed (const_tree, const_tree);
12673 void print_fold_checksum (const_tree);
12674
12675 /* When --enable-checking=fold, compute a digest of expr before
12676 and after actual fold call to see if fold did not accidentally
12677 change original expr. */
12678
12679 tree
12680 fold (tree expr)
12681 {
12682 tree ret;
12683 struct md5_ctx ctx;
12684 unsigned char checksum_before[16], checksum_after[16];
12685 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12686
12687 md5_init_ctx (&ctx);
12688 fold_checksum_tree (expr, &ctx, &ht);
12689 md5_finish_ctx (&ctx, checksum_before);
12690 ht.empty ();
12691
12692 ret = fold_1 (expr);
12693
12694 md5_init_ctx (&ctx);
12695 fold_checksum_tree (expr, &ctx, &ht);
12696 md5_finish_ctx (&ctx, checksum_after);
12697
12698 if (memcmp (checksum_before, checksum_after, 16))
12699 fold_check_failed (expr, ret);
12700
12701 return ret;
12702 }
12703
12704 void
12705 print_fold_checksum (const_tree expr)
12706 {
12707 struct md5_ctx ctx;
12708 unsigned char checksum[16], cnt;
12709 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12710
12711 md5_init_ctx (&ctx);
12712 fold_checksum_tree (expr, &ctx, &ht);
12713 md5_finish_ctx (&ctx, checksum);
12714 for (cnt = 0; cnt < 16; ++cnt)
12715 fprintf (stderr, "%02x", checksum[cnt]);
12716 putc ('\n', stderr);
12717 }
12718
12719 static void
12720 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
12721 {
12722 internal_error ("fold check: original tree changed by fold");
12723 }
12724
12725 static void
12726 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
12727 hash_table<nofree_ptr_hash <const tree_node> > *ht)
12728 {
12729 const tree_node **slot;
12730 enum tree_code code;
12731 union tree_node buf;
12732 int i, len;
12733
12734 recursive_label:
12735 if (expr == NULL)
12736 return;
12737 slot = ht->find_slot (expr, INSERT);
12738 if (*slot != NULL)
12739 return;
12740 *slot = expr;
12741 code = TREE_CODE (expr);
12742 if (TREE_CODE_CLASS (code) == tcc_declaration
12743 && HAS_DECL_ASSEMBLER_NAME_P (expr))
12744 {
12745 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12746 memcpy ((char *) &buf, expr, tree_size (expr));
12747 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
12748 buf.decl_with_vis.symtab_node = NULL;
12749 expr = (tree) &buf;
12750 }
12751 else if (TREE_CODE_CLASS (code) == tcc_type
12752 && (TYPE_POINTER_TO (expr)
12753 || TYPE_REFERENCE_TO (expr)
12754 || TYPE_CACHED_VALUES_P (expr)
12755 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
12756 || TYPE_NEXT_VARIANT (expr)))
12757 {
12758 /* Allow these fields to be modified. */
12759 tree tmp;
12760 memcpy ((char *) &buf, expr, tree_size (expr));
12761 expr = tmp = (tree) &buf;
12762 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
12763 TYPE_POINTER_TO (tmp) = NULL;
12764 TYPE_REFERENCE_TO (tmp) = NULL;
12765 TYPE_NEXT_VARIANT (tmp) = NULL;
12766 if (TYPE_CACHED_VALUES_P (tmp))
12767 {
12768 TYPE_CACHED_VALUES_P (tmp) = 0;
12769 TYPE_CACHED_VALUES (tmp) = NULL;
12770 }
12771 }
12772 md5_process_bytes (expr, tree_size (expr), ctx);
12773 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
12774 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
12775 if (TREE_CODE_CLASS (code) != tcc_type
12776 && TREE_CODE_CLASS (code) != tcc_declaration
12777 && code != TREE_LIST
12778 && code != SSA_NAME
12779 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
12780 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
12781 switch (TREE_CODE_CLASS (code))
12782 {
12783 case tcc_constant:
12784 switch (code)
12785 {
12786 case STRING_CST:
12787 md5_process_bytes (TREE_STRING_POINTER (expr),
12788 TREE_STRING_LENGTH (expr), ctx);
12789 break;
12790 case COMPLEX_CST:
12791 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12792 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12793 break;
12794 case VECTOR_CST:
12795 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
12796 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
12797 break;
12798 default:
12799 break;
12800 }
12801 break;
12802 case tcc_exceptional:
12803 switch (code)
12804 {
12805 case TREE_LIST:
12806 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12807 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12808 expr = TREE_CHAIN (expr);
12809 goto recursive_label;
12810 break;
12811 case TREE_VEC:
12812 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12813 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12814 break;
12815 default:
12816 break;
12817 }
12818 break;
12819 case tcc_expression:
12820 case tcc_reference:
12821 case tcc_comparison:
12822 case tcc_unary:
12823 case tcc_binary:
12824 case tcc_statement:
12825 case tcc_vl_exp:
12826 len = TREE_OPERAND_LENGTH (expr);
12827 for (i = 0; i < len; ++i)
12828 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12829 break;
12830 case tcc_declaration:
12831 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12832 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12833 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12834 {
12835 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12836 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12837 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12838 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12839 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12840 }
12841
12842 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12843 {
12844 if (TREE_CODE (expr) == FUNCTION_DECL)
12845 {
12846 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12847 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12848 }
12849 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12850 }
12851 break;
12852 case tcc_type:
12853 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12854 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12855 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12856 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12857 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12858 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12859 if (INTEGRAL_TYPE_P (expr)
12860 || SCALAR_FLOAT_TYPE_P (expr))
12861 {
12862 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12863 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12864 }
12865 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12866 if (TREE_CODE (expr) == RECORD_TYPE
12867 || TREE_CODE (expr) == UNION_TYPE
12868 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12869 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12870 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12871 break;
12872 default:
12873 break;
12874 }
12875 }
12876
12877 /* Helper function for outputting the checksum of a tree T. When
12878 debugging with gdb, you can "define mynext" to be "next" followed
12879 by "call debug_fold_checksum (op0)", then just trace down till the
12880 outputs differ. */
12881
12882 DEBUG_FUNCTION void
12883 debug_fold_checksum (const_tree t)
12884 {
12885 int i;
12886 unsigned char checksum[16];
12887 struct md5_ctx ctx;
12888 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12889
12890 md5_init_ctx (&ctx);
12891 fold_checksum_tree (t, &ctx, &ht);
12892 md5_finish_ctx (&ctx, checksum);
12893 ht.empty ();
12894
12895 for (i = 0; i < 16; i++)
12896 fprintf (stderr, "%d ", checksum[i]);
12897
12898 fprintf (stderr, "\n");
12899 }
12900
12901 #endif
12902
12903 /* Fold a unary tree expression with code CODE of type TYPE with an
12904 operand OP0. LOC is the location of the resulting expression.
12905 Return a folded expression if successful. Otherwise, return a tree
12906 expression with code CODE of type TYPE with an operand OP0. */
12907
12908 tree
12909 fold_build1_stat_loc (location_t loc,
12910 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12911 {
12912 tree tem;
12913 #ifdef ENABLE_FOLD_CHECKING
12914 unsigned char checksum_before[16], checksum_after[16];
12915 struct md5_ctx ctx;
12916 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12917
12918 md5_init_ctx (&ctx);
12919 fold_checksum_tree (op0, &ctx, &ht);
12920 md5_finish_ctx (&ctx, checksum_before);
12921 ht.empty ();
12922 #endif
12923
12924 tem = fold_unary_loc (loc, code, type, op0);
12925 if (!tem)
12926 tem = build1_stat_loc (loc, code, type, op0 PASS_MEM_STAT);
12927
12928 #ifdef ENABLE_FOLD_CHECKING
12929 md5_init_ctx (&ctx);
12930 fold_checksum_tree (op0, &ctx, &ht);
12931 md5_finish_ctx (&ctx, checksum_after);
12932
12933 if (memcmp (checksum_before, checksum_after, 16))
12934 fold_check_failed (op0, tem);
12935 #endif
12936 return tem;
12937 }
12938
12939 /* Fold a binary tree expression with code CODE of type TYPE with
12940 operands OP0 and OP1. LOC is the location of the resulting
12941 expression. Return a folded expression if successful. Otherwise,
12942 return a tree expression with code CODE of type TYPE with operands
12943 OP0 and OP1. */
12944
12945 tree
12946 fold_build2_stat_loc (location_t loc,
12947 enum tree_code code, tree type, tree op0, tree op1
12948 MEM_STAT_DECL)
12949 {
12950 tree tem;
12951 #ifdef ENABLE_FOLD_CHECKING
12952 unsigned char checksum_before_op0[16],
12953 checksum_before_op1[16],
12954 checksum_after_op0[16],
12955 checksum_after_op1[16];
12956 struct md5_ctx ctx;
12957 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12958
12959 md5_init_ctx (&ctx);
12960 fold_checksum_tree (op0, &ctx, &ht);
12961 md5_finish_ctx (&ctx, checksum_before_op0);
12962 ht.empty ();
12963
12964 md5_init_ctx (&ctx);
12965 fold_checksum_tree (op1, &ctx, &ht);
12966 md5_finish_ctx (&ctx, checksum_before_op1);
12967 ht.empty ();
12968 #endif
12969
12970 tem = fold_binary_loc (loc, code, type, op0, op1);
12971 if (!tem)
12972 tem = build2_stat_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
12973
12974 #ifdef ENABLE_FOLD_CHECKING
12975 md5_init_ctx (&ctx);
12976 fold_checksum_tree (op0, &ctx, &ht);
12977 md5_finish_ctx (&ctx, checksum_after_op0);
12978 ht.empty ();
12979
12980 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12981 fold_check_failed (op0, tem);
12982
12983 md5_init_ctx (&ctx);
12984 fold_checksum_tree (op1, &ctx, &ht);
12985 md5_finish_ctx (&ctx, checksum_after_op1);
12986
12987 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12988 fold_check_failed (op1, tem);
12989 #endif
12990 return tem;
12991 }
12992
12993 /* Fold a ternary tree expression with code CODE of type TYPE with
12994 operands OP0, OP1, and OP2. Return a folded expression if
12995 successful. Otherwise, return a tree expression with code CODE of
12996 type TYPE with operands OP0, OP1, and OP2. */
12997
12998 tree
12999 fold_build3_stat_loc (location_t loc, enum tree_code code, tree type,
13000 tree op0, tree op1, tree op2 MEM_STAT_DECL)
13001 {
13002 tree tem;
13003 #ifdef ENABLE_FOLD_CHECKING
13004 unsigned char checksum_before_op0[16],
13005 checksum_before_op1[16],
13006 checksum_before_op2[16],
13007 checksum_after_op0[16],
13008 checksum_after_op1[16],
13009 checksum_after_op2[16];
13010 struct md5_ctx ctx;
13011 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13012
13013 md5_init_ctx (&ctx);
13014 fold_checksum_tree (op0, &ctx, &ht);
13015 md5_finish_ctx (&ctx, checksum_before_op0);
13016 ht.empty ();
13017
13018 md5_init_ctx (&ctx);
13019 fold_checksum_tree (op1, &ctx, &ht);
13020 md5_finish_ctx (&ctx, checksum_before_op1);
13021 ht.empty ();
13022
13023 md5_init_ctx (&ctx);
13024 fold_checksum_tree (op2, &ctx, &ht);
13025 md5_finish_ctx (&ctx, checksum_before_op2);
13026 ht.empty ();
13027 #endif
13028
13029 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
13030 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
13031 if (!tem)
13032 tem = build3_stat_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
13033
13034 #ifdef ENABLE_FOLD_CHECKING
13035 md5_init_ctx (&ctx);
13036 fold_checksum_tree (op0, &ctx, &ht);
13037 md5_finish_ctx (&ctx, checksum_after_op0);
13038 ht.empty ();
13039
13040 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
13041 fold_check_failed (op0, tem);
13042
13043 md5_init_ctx (&ctx);
13044 fold_checksum_tree (op1, &ctx, &ht);
13045 md5_finish_ctx (&ctx, checksum_after_op1);
13046 ht.empty ();
13047
13048 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
13049 fold_check_failed (op1, tem);
13050
13051 md5_init_ctx (&ctx);
13052 fold_checksum_tree (op2, &ctx, &ht);
13053 md5_finish_ctx (&ctx, checksum_after_op2);
13054
13055 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
13056 fold_check_failed (op2, tem);
13057 #endif
13058 return tem;
13059 }
13060
13061 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
13062 arguments in ARGARRAY, and a null static chain.
13063 Return a folded expression if successful. Otherwise, return a CALL_EXPR
13064 of type TYPE from the given operands as constructed by build_call_array. */
13065
13066 tree
13067 fold_build_call_array_loc (location_t loc, tree type, tree fn,
13068 int nargs, tree *argarray)
13069 {
13070 tree tem;
13071 #ifdef ENABLE_FOLD_CHECKING
13072 unsigned char checksum_before_fn[16],
13073 checksum_before_arglist[16],
13074 checksum_after_fn[16],
13075 checksum_after_arglist[16];
13076 struct md5_ctx ctx;
13077 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13078 int i;
13079
13080 md5_init_ctx (&ctx);
13081 fold_checksum_tree (fn, &ctx, &ht);
13082 md5_finish_ctx (&ctx, checksum_before_fn);
13083 ht.empty ();
13084
13085 md5_init_ctx (&ctx);
13086 for (i = 0; i < nargs; i++)
13087 fold_checksum_tree (argarray[i], &ctx, &ht);
13088 md5_finish_ctx (&ctx, checksum_before_arglist);
13089 ht.empty ();
13090 #endif
13091
13092 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
13093 if (!tem)
13094 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
13095
13096 #ifdef ENABLE_FOLD_CHECKING
13097 md5_init_ctx (&ctx);
13098 fold_checksum_tree (fn, &ctx, &ht);
13099 md5_finish_ctx (&ctx, checksum_after_fn);
13100 ht.empty ();
13101
13102 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
13103 fold_check_failed (fn, tem);
13104
13105 md5_init_ctx (&ctx);
13106 for (i = 0; i < nargs; i++)
13107 fold_checksum_tree (argarray[i], &ctx, &ht);
13108 md5_finish_ctx (&ctx, checksum_after_arglist);
13109
13110 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
13111 fold_check_failed (NULL_TREE, tem);
13112 #endif
13113 return tem;
13114 }
13115
13116 /* Perform constant folding and related simplification of initializer
13117 expression EXPR. These behave identically to "fold_buildN" but ignore
13118 potential run-time traps and exceptions that fold must preserve. */
13119
13120 #define START_FOLD_INIT \
13121 int saved_signaling_nans = flag_signaling_nans;\
13122 int saved_trapping_math = flag_trapping_math;\
13123 int saved_rounding_math = flag_rounding_math;\
13124 int saved_trapv = flag_trapv;\
13125 int saved_folding_initializer = folding_initializer;\
13126 flag_signaling_nans = 0;\
13127 flag_trapping_math = 0;\
13128 flag_rounding_math = 0;\
13129 flag_trapv = 0;\
13130 folding_initializer = 1;
13131
13132 #define END_FOLD_INIT \
13133 flag_signaling_nans = saved_signaling_nans;\
13134 flag_trapping_math = saved_trapping_math;\
13135 flag_rounding_math = saved_rounding_math;\
13136 flag_trapv = saved_trapv;\
13137 folding_initializer = saved_folding_initializer;
13138
13139 tree
13140 fold_build1_initializer_loc (location_t loc, enum tree_code code,
13141 tree type, tree op)
13142 {
13143 tree result;
13144 START_FOLD_INIT;
13145
13146 result = fold_build1_loc (loc, code, type, op);
13147
13148 END_FOLD_INIT;
13149 return result;
13150 }
13151
13152 tree
13153 fold_build2_initializer_loc (location_t loc, enum tree_code code,
13154 tree type, tree op0, tree op1)
13155 {
13156 tree result;
13157 START_FOLD_INIT;
13158
13159 result = fold_build2_loc (loc, code, type, op0, op1);
13160
13161 END_FOLD_INIT;
13162 return result;
13163 }
13164
13165 tree
13166 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
13167 int nargs, tree *argarray)
13168 {
13169 tree result;
13170 START_FOLD_INIT;
13171
13172 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
13173
13174 END_FOLD_INIT;
13175 return result;
13176 }
13177
13178 #undef START_FOLD_INIT
13179 #undef END_FOLD_INIT
13180
13181 /* Determine if first argument is a multiple of second argument. Return 0 if
13182 it is not, or we cannot easily determined it to be.
13183
13184 An example of the sort of thing we care about (at this point; this routine
13185 could surely be made more general, and expanded to do what the *_DIV_EXPR's
13186 fold cases do now) is discovering that
13187
13188 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13189
13190 is a multiple of
13191
13192 SAVE_EXPR (J * 8)
13193
13194 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
13195
13196 This code also handles discovering that
13197
13198 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13199
13200 is a multiple of 8 so we don't have to worry about dealing with a
13201 possible remainder.
13202
13203 Note that we *look* inside a SAVE_EXPR only to determine how it was
13204 calculated; it is not safe for fold to do much of anything else with the
13205 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
13206 at run time. For example, the latter example above *cannot* be implemented
13207 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
13208 evaluation time of the original SAVE_EXPR is not necessarily the same at
13209 the time the new expression is evaluated. The only optimization of this
13210 sort that would be valid is changing
13211
13212 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
13213
13214 divided by 8 to
13215
13216 SAVE_EXPR (I) * SAVE_EXPR (J)
13217
13218 (where the same SAVE_EXPR (J) is used in the original and the
13219 transformed version). */
13220
13221 int
13222 multiple_of_p (tree type, const_tree top, const_tree bottom)
13223 {
13224 if (operand_equal_p (top, bottom, 0))
13225 return 1;
13226
13227 if (TREE_CODE (type) != INTEGER_TYPE)
13228 return 0;
13229
13230 switch (TREE_CODE (top))
13231 {
13232 case BIT_AND_EXPR:
13233 /* Bitwise and provides a power of two multiple. If the mask is
13234 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
13235 if (!integer_pow2p (bottom))
13236 return 0;
13237 /* FALLTHRU */
13238
13239 case MULT_EXPR:
13240 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
13241 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
13242
13243 case PLUS_EXPR:
13244 case MINUS_EXPR:
13245 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
13246 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
13247
13248 case LSHIFT_EXPR:
13249 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
13250 {
13251 tree op1, t1;
13252
13253 op1 = TREE_OPERAND (top, 1);
13254 /* const_binop may not detect overflow correctly,
13255 so check for it explicitly here. */
13256 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
13257 && 0 != (t1 = fold_convert (type,
13258 const_binop (LSHIFT_EXPR,
13259 size_one_node,
13260 op1)))
13261 && !TREE_OVERFLOW (t1))
13262 return multiple_of_p (type, t1, bottom);
13263 }
13264 return 0;
13265
13266 case NOP_EXPR:
13267 /* Can't handle conversions from non-integral or wider integral type. */
13268 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
13269 || (TYPE_PRECISION (type)
13270 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
13271 return 0;
13272
13273 /* .. fall through ... */
13274
13275 case SAVE_EXPR:
13276 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
13277
13278 case COND_EXPR:
13279 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
13280 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
13281
13282 case INTEGER_CST:
13283 if (TREE_CODE (bottom) != INTEGER_CST
13284 || integer_zerop (bottom)
13285 || (TYPE_UNSIGNED (type)
13286 && (tree_int_cst_sgn (top) < 0
13287 || tree_int_cst_sgn (bottom) < 0)))
13288 return 0;
13289 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
13290 SIGNED);
13291
13292 default:
13293 return 0;
13294 }
13295 }
13296
13297 /* Return true if CODE or TYPE is known to be non-negative. */
13298
13299 static bool
13300 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
13301 {
13302 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
13303 && truth_value_p (code))
13304 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
13305 have a signed:1 type (where the value is -1 and 0). */
13306 return true;
13307 return false;
13308 }
13309
13310 /* Return true if (CODE OP0) is known to be non-negative. If the return
13311 value is based on the assumption that signed overflow is undefined,
13312 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13313 *STRICT_OVERFLOW_P. */
13314
13315 bool
13316 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
13317 bool *strict_overflow_p)
13318 {
13319 if (TYPE_UNSIGNED (type))
13320 return true;
13321
13322 switch (code)
13323 {
13324 case ABS_EXPR:
13325 /* We can't return 1 if flag_wrapv is set because
13326 ABS_EXPR<INT_MIN> = INT_MIN. */
13327 if (!ANY_INTEGRAL_TYPE_P (type))
13328 return true;
13329 if (TYPE_OVERFLOW_UNDEFINED (type))
13330 {
13331 *strict_overflow_p = true;
13332 return true;
13333 }
13334 break;
13335
13336 case NON_LVALUE_EXPR:
13337 case FLOAT_EXPR:
13338 case FIX_TRUNC_EXPR:
13339 return tree_expr_nonnegative_warnv_p (op0,
13340 strict_overflow_p);
13341
13342 CASE_CONVERT:
13343 {
13344 tree inner_type = TREE_TYPE (op0);
13345 tree outer_type = type;
13346
13347 if (TREE_CODE (outer_type) == REAL_TYPE)
13348 {
13349 if (TREE_CODE (inner_type) == REAL_TYPE)
13350 return tree_expr_nonnegative_warnv_p (op0,
13351 strict_overflow_p);
13352 if (INTEGRAL_TYPE_P (inner_type))
13353 {
13354 if (TYPE_UNSIGNED (inner_type))
13355 return true;
13356 return tree_expr_nonnegative_warnv_p (op0,
13357 strict_overflow_p);
13358 }
13359 }
13360 else if (INTEGRAL_TYPE_P (outer_type))
13361 {
13362 if (TREE_CODE (inner_type) == REAL_TYPE)
13363 return tree_expr_nonnegative_warnv_p (op0,
13364 strict_overflow_p);
13365 if (INTEGRAL_TYPE_P (inner_type))
13366 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
13367 && TYPE_UNSIGNED (inner_type);
13368 }
13369 }
13370 break;
13371
13372 default:
13373 return tree_simple_nonnegative_warnv_p (code, type);
13374 }
13375
13376 /* We don't know sign of `t', so be conservative and return false. */
13377 return false;
13378 }
13379
13380 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
13381 value is based on the assumption that signed overflow is undefined,
13382 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13383 *STRICT_OVERFLOW_P. */
13384
13385 bool
13386 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
13387 tree op1, bool *strict_overflow_p)
13388 {
13389 if (TYPE_UNSIGNED (type))
13390 return true;
13391
13392 switch (code)
13393 {
13394 case POINTER_PLUS_EXPR:
13395 case PLUS_EXPR:
13396 if (FLOAT_TYPE_P (type))
13397 return (tree_expr_nonnegative_warnv_p (op0,
13398 strict_overflow_p)
13399 && tree_expr_nonnegative_warnv_p (op1,
13400 strict_overflow_p));
13401
13402 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
13403 both unsigned and at least 2 bits shorter than the result. */
13404 if (TREE_CODE (type) == INTEGER_TYPE
13405 && TREE_CODE (op0) == NOP_EXPR
13406 && TREE_CODE (op1) == NOP_EXPR)
13407 {
13408 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
13409 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
13410 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
13411 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
13412 {
13413 unsigned int prec = MAX (TYPE_PRECISION (inner1),
13414 TYPE_PRECISION (inner2)) + 1;
13415 return prec < TYPE_PRECISION (type);
13416 }
13417 }
13418 break;
13419
13420 case MULT_EXPR:
13421 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
13422 {
13423 /* x * x is always non-negative for floating point x
13424 or without overflow. */
13425 if (operand_equal_p (op0, op1, 0)
13426 || (tree_expr_nonnegative_warnv_p (op0, strict_overflow_p)
13427 && tree_expr_nonnegative_warnv_p (op1, strict_overflow_p)))
13428 {
13429 if (ANY_INTEGRAL_TYPE_P (type)
13430 && TYPE_OVERFLOW_UNDEFINED (type))
13431 *strict_overflow_p = true;
13432 return true;
13433 }
13434 }
13435
13436 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
13437 both unsigned and their total bits is shorter than the result. */
13438 if (TREE_CODE (type) == INTEGER_TYPE
13439 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
13440 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
13441 {
13442 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
13443 ? TREE_TYPE (TREE_OPERAND (op0, 0))
13444 : TREE_TYPE (op0);
13445 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
13446 ? TREE_TYPE (TREE_OPERAND (op1, 0))
13447 : TREE_TYPE (op1);
13448
13449 bool unsigned0 = TYPE_UNSIGNED (inner0);
13450 bool unsigned1 = TYPE_UNSIGNED (inner1);
13451
13452 if (TREE_CODE (op0) == INTEGER_CST)
13453 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
13454
13455 if (TREE_CODE (op1) == INTEGER_CST)
13456 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
13457
13458 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
13459 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
13460 {
13461 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
13462 ? tree_int_cst_min_precision (op0, UNSIGNED)
13463 : TYPE_PRECISION (inner0);
13464
13465 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
13466 ? tree_int_cst_min_precision (op1, UNSIGNED)
13467 : TYPE_PRECISION (inner1);
13468
13469 return precision0 + precision1 < TYPE_PRECISION (type);
13470 }
13471 }
13472 return false;
13473
13474 case BIT_AND_EXPR:
13475 case MAX_EXPR:
13476 return (tree_expr_nonnegative_warnv_p (op0,
13477 strict_overflow_p)
13478 || tree_expr_nonnegative_warnv_p (op1,
13479 strict_overflow_p));
13480
13481 case BIT_IOR_EXPR:
13482 case BIT_XOR_EXPR:
13483 case MIN_EXPR:
13484 case RDIV_EXPR:
13485 case TRUNC_DIV_EXPR:
13486 case CEIL_DIV_EXPR:
13487 case FLOOR_DIV_EXPR:
13488 case ROUND_DIV_EXPR:
13489 return (tree_expr_nonnegative_warnv_p (op0,
13490 strict_overflow_p)
13491 && tree_expr_nonnegative_warnv_p (op1,
13492 strict_overflow_p));
13493
13494 case TRUNC_MOD_EXPR:
13495 case CEIL_MOD_EXPR:
13496 case FLOOR_MOD_EXPR:
13497 case ROUND_MOD_EXPR:
13498 return tree_expr_nonnegative_warnv_p (op0,
13499 strict_overflow_p);
13500 default:
13501 return tree_simple_nonnegative_warnv_p (code, type);
13502 }
13503
13504 /* We don't know sign of `t', so be conservative and return false. */
13505 return false;
13506 }
13507
13508 /* Return true if T is known to be non-negative. If the return
13509 value is based on the assumption that signed overflow is undefined,
13510 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13511 *STRICT_OVERFLOW_P. */
13512
13513 bool
13514 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
13515 {
13516 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13517 return true;
13518
13519 switch (TREE_CODE (t))
13520 {
13521 case INTEGER_CST:
13522 return tree_int_cst_sgn (t) >= 0;
13523
13524 case REAL_CST:
13525 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
13526
13527 case FIXED_CST:
13528 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
13529
13530 case COND_EXPR:
13531 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13532 strict_overflow_p)
13533 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
13534 strict_overflow_p));
13535 default:
13536 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
13537 TREE_TYPE (t));
13538 }
13539 /* We don't know sign of `t', so be conservative and return false. */
13540 return false;
13541 }
13542
13543 /* Return true if T is known to be non-negative. If the return
13544 value is based on the assumption that signed overflow is undefined,
13545 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13546 *STRICT_OVERFLOW_P. */
13547
13548 bool
13549 tree_call_nonnegative_warnv_p (tree type, tree fndecl,
13550 tree arg0, tree arg1, bool *strict_overflow_p)
13551 {
13552 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
13553 switch (DECL_FUNCTION_CODE (fndecl))
13554 {
13555 CASE_FLT_FN (BUILT_IN_ACOS):
13556 CASE_FLT_FN (BUILT_IN_ACOSH):
13557 CASE_FLT_FN (BUILT_IN_CABS):
13558 CASE_FLT_FN (BUILT_IN_COSH):
13559 CASE_FLT_FN (BUILT_IN_ERFC):
13560 CASE_FLT_FN (BUILT_IN_EXP):
13561 CASE_FLT_FN (BUILT_IN_EXP10):
13562 CASE_FLT_FN (BUILT_IN_EXP2):
13563 CASE_FLT_FN (BUILT_IN_FABS):
13564 CASE_FLT_FN (BUILT_IN_FDIM):
13565 CASE_FLT_FN (BUILT_IN_HYPOT):
13566 CASE_FLT_FN (BUILT_IN_POW10):
13567 CASE_INT_FN (BUILT_IN_FFS):
13568 CASE_INT_FN (BUILT_IN_PARITY):
13569 CASE_INT_FN (BUILT_IN_POPCOUNT):
13570 CASE_INT_FN (BUILT_IN_CLZ):
13571 CASE_INT_FN (BUILT_IN_CLRSB):
13572 case BUILT_IN_BSWAP32:
13573 case BUILT_IN_BSWAP64:
13574 /* Always true. */
13575 return true;
13576
13577 CASE_FLT_FN (BUILT_IN_SQRT):
13578 /* sqrt(-0.0) is -0.0. */
13579 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
13580 return true;
13581 return tree_expr_nonnegative_warnv_p (arg0,
13582 strict_overflow_p);
13583
13584 CASE_FLT_FN (BUILT_IN_ASINH):
13585 CASE_FLT_FN (BUILT_IN_ATAN):
13586 CASE_FLT_FN (BUILT_IN_ATANH):
13587 CASE_FLT_FN (BUILT_IN_CBRT):
13588 CASE_FLT_FN (BUILT_IN_CEIL):
13589 CASE_FLT_FN (BUILT_IN_ERF):
13590 CASE_FLT_FN (BUILT_IN_EXPM1):
13591 CASE_FLT_FN (BUILT_IN_FLOOR):
13592 CASE_FLT_FN (BUILT_IN_FMOD):
13593 CASE_FLT_FN (BUILT_IN_FREXP):
13594 CASE_FLT_FN (BUILT_IN_ICEIL):
13595 CASE_FLT_FN (BUILT_IN_IFLOOR):
13596 CASE_FLT_FN (BUILT_IN_IRINT):
13597 CASE_FLT_FN (BUILT_IN_IROUND):
13598 CASE_FLT_FN (BUILT_IN_LCEIL):
13599 CASE_FLT_FN (BUILT_IN_LDEXP):
13600 CASE_FLT_FN (BUILT_IN_LFLOOR):
13601 CASE_FLT_FN (BUILT_IN_LLCEIL):
13602 CASE_FLT_FN (BUILT_IN_LLFLOOR):
13603 CASE_FLT_FN (BUILT_IN_LLRINT):
13604 CASE_FLT_FN (BUILT_IN_LLROUND):
13605 CASE_FLT_FN (BUILT_IN_LRINT):
13606 CASE_FLT_FN (BUILT_IN_LROUND):
13607 CASE_FLT_FN (BUILT_IN_MODF):
13608 CASE_FLT_FN (BUILT_IN_NEARBYINT):
13609 CASE_FLT_FN (BUILT_IN_RINT):
13610 CASE_FLT_FN (BUILT_IN_ROUND):
13611 CASE_FLT_FN (BUILT_IN_SCALB):
13612 CASE_FLT_FN (BUILT_IN_SCALBLN):
13613 CASE_FLT_FN (BUILT_IN_SCALBN):
13614 CASE_FLT_FN (BUILT_IN_SIGNBIT):
13615 CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
13616 CASE_FLT_FN (BUILT_IN_SINH):
13617 CASE_FLT_FN (BUILT_IN_TANH):
13618 CASE_FLT_FN (BUILT_IN_TRUNC):
13619 /* True if the 1st argument is nonnegative. */
13620 return tree_expr_nonnegative_warnv_p (arg0,
13621 strict_overflow_p);
13622
13623 CASE_FLT_FN (BUILT_IN_FMAX):
13624 /* True if the 1st OR 2nd arguments are nonnegative. */
13625 return (tree_expr_nonnegative_warnv_p (arg0,
13626 strict_overflow_p)
13627 || (tree_expr_nonnegative_warnv_p (arg1,
13628 strict_overflow_p)));
13629
13630 CASE_FLT_FN (BUILT_IN_FMIN):
13631 /* True if the 1st AND 2nd arguments are nonnegative. */
13632 return (tree_expr_nonnegative_warnv_p (arg0,
13633 strict_overflow_p)
13634 && (tree_expr_nonnegative_warnv_p (arg1,
13635 strict_overflow_p)));
13636
13637 CASE_FLT_FN (BUILT_IN_COPYSIGN):
13638 /* True if the 2nd argument is nonnegative. */
13639 return tree_expr_nonnegative_warnv_p (arg1,
13640 strict_overflow_p);
13641
13642 CASE_FLT_FN (BUILT_IN_POWI):
13643 /* True if the 1st argument is nonnegative or the second
13644 argument is an even integer. */
13645 if (TREE_CODE (arg1) == INTEGER_CST
13646 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
13647 return true;
13648 return tree_expr_nonnegative_warnv_p (arg0,
13649 strict_overflow_p);
13650
13651 CASE_FLT_FN (BUILT_IN_POW):
13652 /* True if the 1st argument is nonnegative or the second
13653 argument is an even integer valued real. */
13654 if (TREE_CODE (arg1) == REAL_CST)
13655 {
13656 REAL_VALUE_TYPE c;
13657 HOST_WIDE_INT n;
13658
13659 c = TREE_REAL_CST (arg1);
13660 n = real_to_integer (&c);
13661 if ((n & 1) == 0)
13662 {
13663 REAL_VALUE_TYPE cint;
13664 real_from_integer (&cint, VOIDmode, n, SIGNED);
13665 if (real_identical (&c, &cint))
13666 return true;
13667 }
13668 }
13669 return tree_expr_nonnegative_warnv_p (arg0,
13670 strict_overflow_p);
13671
13672 default:
13673 break;
13674 }
13675 return tree_simple_nonnegative_warnv_p (CALL_EXPR,
13676 type);
13677 }
13678
13679 /* Return true if T is known to be non-negative. If the return
13680 value is based on the assumption that signed overflow is undefined,
13681 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13682 *STRICT_OVERFLOW_P. */
13683
13684 static bool
13685 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
13686 {
13687 enum tree_code code = TREE_CODE (t);
13688 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13689 return true;
13690
13691 switch (code)
13692 {
13693 case TARGET_EXPR:
13694 {
13695 tree temp = TARGET_EXPR_SLOT (t);
13696 t = TARGET_EXPR_INITIAL (t);
13697
13698 /* If the initializer is non-void, then it's a normal expression
13699 that will be assigned to the slot. */
13700 if (!VOID_TYPE_P (t))
13701 return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
13702
13703 /* Otherwise, the initializer sets the slot in some way. One common
13704 way is an assignment statement at the end of the initializer. */
13705 while (1)
13706 {
13707 if (TREE_CODE (t) == BIND_EXPR)
13708 t = expr_last (BIND_EXPR_BODY (t));
13709 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13710 || TREE_CODE (t) == TRY_CATCH_EXPR)
13711 t = expr_last (TREE_OPERAND (t, 0));
13712 else if (TREE_CODE (t) == STATEMENT_LIST)
13713 t = expr_last (t);
13714 else
13715 break;
13716 }
13717 if (TREE_CODE (t) == MODIFY_EXPR
13718 && TREE_OPERAND (t, 0) == temp)
13719 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13720 strict_overflow_p);
13721
13722 return false;
13723 }
13724
13725 case CALL_EXPR:
13726 {
13727 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
13728 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
13729
13730 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
13731 get_callee_fndecl (t),
13732 arg0,
13733 arg1,
13734 strict_overflow_p);
13735 }
13736 case COMPOUND_EXPR:
13737 case MODIFY_EXPR:
13738 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13739 strict_overflow_p);
13740 case BIND_EXPR:
13741 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
13742 strict_overflow_p);
13743 case SAVE_EXPR:
13744 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13745 strict_overflow_p);
13746
13747 default:
13748 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
13749 TREE_TYPE (t));
13750 }
13751
13752 /* We don't know sign of `t', so be conservative and return false. */
13753 return false;
13754 }
13755
13756 /* Return true if T is known to be non-negative. If the return
13757 value is based on the assumption that signed overflow is undefined,
13758 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13759 *STRICT_OVERFLOW_P. */
13760
13761 bool
13762 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
13763 {
13764 enum tree_code code;
13765 if (t == error_mark_node)
13766 return false;
13767
13768 code = TREE_CODE (t);
13769 switch (TREE_CODE_CLASS (code))
13770 {
13771 case tcc_binary:
13772 case tcc_comparison:
13773 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13774 TREE_TYPE (t),
13775 TREE_OPERAND (t, 0),
13776 TREE_OPERAND (t, 1),
13777 strict_overflow_p);
13778
13779 case tcc_unary:
13780 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13781 TREE_TYPE (t),
13782 TREE_OPERAND (t, 0),
13783 strict_overflow_p);
13784
13785 case tcc_constant:
13786 case tcc_declaration:
13787 case tcc_reference:
13788 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
13789
13790 default:
13791 break;
13792 }
13793
13794 switch (code)
13795 {
13796 case TRUTH_AND_EXPR:
13797 case TRUTH_OR_EXPR:
13798 case TRUTH_XOR_EXPR:
13799 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13800 TREE_TYPE (t),
13801 TREE_OPERAND (t, 0),
13802 TREE_OPERAND (t, 1),
13803 strict_overflow_p);
13804 case TRUTH_NOT_EXPR:
13805 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13806 TREE_TYPE (t),
13807 TREE_OPERAND (t, 0),
13808 strict_overflow_p);
13809
13810 case COND_EXPR:
13811 case CONSTRUCTOR:
13812 case OBJ_TYPE_REF:
13813 case ASSERT_EXPR:
13814 case ADDR_EXPR:
13815 case WITH_SIZE_EXPR:
13816 case SSA_NAME:
13817 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
13818
13819 default:
13820 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p);
13821 }
13822 }
13823
13824 /* Return true if `t' is known to be non-negative. Handle warnings
13825 about undefined signed overflow. */
13826
13827 bool
13828 tree_expr_nonnegative_p (tree t)
13829 {
13830 bool ret, strict_overflow_p;
13831
13832 strict_overflow_p = false;
13833 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13834 if (strict_overflow_p)
13835 fold_overflow_warning (("assuming signed overflow does not occur when "
13836 "determining that expression is always "
13837 "non-negative"),
13838 WARN_STRICT_OVERFLOW_MISC);
13839 return ret;
13840 }
13841
13842
13843 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13844 For floating point we further ensure that T is not denormal.
13845 Similar logic is present in nonzero_address in rtlanal.h.
13846
13847 If the return value is based on the assumption that signed overflow
13848 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13849 change *STRICT_OVERFLOW_P. */
13850
13851 bool
13852 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13853 bool *strict_overflow_p)
13854 {
13855 switch (code)
13856 {
13857 case ABS_EXPR:
13858 return tree_expr_nonzero_warnv_p (op0,
13859 strict_overflow_p);
13860
13861 case NOP_EXPR:
13862 {
13863 tree inner_type = TREE_TYPE (op0);
13864 tree outer_type = type;
13865
13866 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13867 && tree_expr_nonzero_warnv_p (op0,
13868 strict_overflow_p));
13869 }
13870 break;
13871
13872 case NON_LVALUE_EXPR:
13873 return tree_expr_nonzero_warnv_p (op0,
13874 strict_overflow_p);
13875
13876 default:
13877 break;
13878 }
13879
13880 return false;
13881 }
13882
13883 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13884 For floating point we further ensure that T is not denormal.
13885 Similar logic is present in nonzero_address in rtlanal.h.
13886
13887 If the return value is based on the assumption that signed overflow
13888 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13889 change *STRICT_OVERFLOW_P. */
13890
13891 bool
13892 tree_binary_nonzero_warnv_p (enum tree_code code,
13893 tree type,
13894 tree op0,
13895 tree op1, bool *strict_overflow_p)
13896 {
13897 bool sub_strict_overflow_p;
13898 switch (code)
13899 {
13900 case POINTER_PLUS_EXPR:
13901 case PLUS_EXPR:
13902 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13903 {
13904 /* With the presence of negative values it is hard
13905 to say something. */
13906 sub_strict_overflow_p = false;
13907 if (!tree_expr_nonnegative_warnv_p (op0,
13908 &sub_strict_overflow_p)
13909 || !tree_expr_nonnegative_warnv_p (op1,
13910 &sub_strict_overflow_p))
13911 return false;
13912 /* One of operands must be positive and the other non-negative. */
13913 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13914 overflows, on a twos-complement machine the sum of two
13915 nonnegative numbers can never be zero. */
13916 return (tree_expr_nonzero_warnv_p (op0,
13917 strict_overflow_p)
13918 || tree_expr_nonzero_warnv_p (op1,
13919 strict_overflow_p));
13920 }
13921 break;
13922
13923 case MULT_EXPR:
13924 if (TYPE_OVERFLOW_UNDEFINED (type))
13925 {
13926 if (tree_expr_nonzero_warnv_p (op0,
13927 strict_overflow_p)
13928 && tree_expr_nonzero_warnv_p (op1,
13929 strict_overflow_p))
13930 {
13931 *strict_overflow_p = true;
13932 return true;
13933 }
13934 }
13935 break;
13936
13937 case MIN_EXPR:
13938 sub_strict_overflow_p = false;
13939 if (tree_expr_nonzero_warnv_p (op0,
13940 &sub_strict_overflow_p)
13941 && tree_expr_nonzero_warnv_p (op1,
13942 &sub_strict_overflow_p))
13943 {
13944 if (sub_strict_overflow_p)
13945 *strict_overflow_p = true;
13946 }
13947 break;
13948
13949 case MAX_EXPR:
13950 sub_strict_overflow_p = false;
13951 if (tree_expr_nonzero_warnv_p (op0,
13952 &sub_strict_overflow_p))
13953 {
13954 if (sub_strict_overflow_p)
13955 *strict_overflow_p = true;
13956
13957 /* When both operands are nonzero, then MAX must be too. */
13958 if (tree_expr_nonzero_warnv_p (op1,
13959 strict_overflow_p))
13960 return true;
13961
13962 /* MAX where operand 0 is positive is positive. */
13963 return tree_expr_nonnegative_warnv_p (op0,
13964 strict_overflow_p);
13965 }
13966 /* MAX where operand 1 is positive is positive. */
13967 else if (tree_expr_nonzero_warnv_p (op1,
13968 &sub_strict_overflow_p)
13969 && tree_expr_nonnegative_warnv_p (op1,
13970 &sub_strict_overflow_p))
13971 {
13972 if (sub_strict_overflow_p)
13973 *strict_overflow_p = true;
13974 return true;
13975 }
13976 break;
13977
13978 case BIT_IOR_EXPR:
13979 return (tree_expr_nonzero_warnv_p (op1,
13980 strict_overflow_p)
13981 || tree_expr_nonzero_warnv_p (op0,
13982 strict_overflow_p));
13983
13984 default:
13985 break;
13986 }
13987
13988 return false;
13989 }
13990
13991 /* Return true when T is an address and is known to be nonzero.
13992 For floating point we further ensure that T is not denormal.
13993 Similar logic is present in nonzero_address in rtlanal.h.
13994
13995 If the return value is based on the assumption that signed overflow
13996 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13997 change *STRICT_OVERFLOW_P. */
13998
13999 bool
14000 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
14001 {
14002 bool sub_strict_overflow_p;
14003 switch (TREE_CODE (t))
14004 {
14005 case INTEGER_CST:
14006 return !integer_zerop (t);
14007
14008 case ADDR_EXPR:
14009 {
14010 tree base = TREE_OPERAND (t, 0);
14011
14012 if (!DECL_P (base))
14013 base = get_base_address (base);
14014
14015 if (!base)
14016 return false;
14017
14018 /* For objects in symbol table check if we know they are non-zero.
14019 Don't do anything for variables and functions before symtab is built;
14020 it is quite possible that they will be declared weak later. */
14021 if (DECL_P (base) && decl_in_symtab_p (base))
14022 {
14023 struct symtab_node *symbol;
14024
14025 symbol = symtab_node::get_create (base);
14026 if (symbol)
14027 return symbol->nonzero_address ();
14028 else
14029 return false;
14030 }
14031
14032 /* Function local objects are never NULL. */
14033 if (DECL_P (base)
14034 && (DECL_CONTEXT (base)
14035 && TREE_CODE (DECL_CONTEXT (base)) == FUNCTION_DECL
14036 && auto_var_in_fn_p (base, DECL_CONTEXT (base))))
14037 return true;
14038
14039 /* Constants are never weak. */
14040 if (CONSTANT_CLASS_P (base))
14041 return true;
14042
14043 return false;
14044 }
14045
14046 case COND_EXPR:
14047 sub_strict_overflow_p = false;
14048 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14049 &sub_strict_overflow_p)
14050 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
14051 &sub_strict_overflow_p))
14052 {
14053 if (sub_strict_overflow_p)
14054 *strict_overflow_p = true;
14055 return true;
14056 }
14057 break;
14058
14059 default:
14060 break;
14061 }
14062 return false;
14063 }
14064
14065 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
14066 attempt to fold the expression to a constant without modifying TYPE,
14067 OP0 or OP1.
14068
14069 If the expression could be simplified to a constant, then return
14070 the constant. If the expression would not be simplified to a
14071 constant, then return NULL_TREE. */
14072
14073 tree
14074 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
14075 {
14076 tree tem = fold_binary (code, type, op0, op1);
14077 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
14078 }
14079
14080 /* Given the components of a unary expression CODE, TYPE and OP0,
14081 attempt to fold the expression to a constant without modifying
14082 TYPE or OP0.
14083
14084 If the expression could be simplified to a constant, then return
14085 the constant. If the expression would not be simplified to a
14086 constant, then return NULL_TREE. */
14087
14088 tree
14089 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
14090 {
14091 tree tem = fold_unary (code, type, op0);
14092 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
14093 }
14094
14095 /* If EXP represents referencing an element in a constant string
14096 (either via pointer arithmetic or array indexing), return the
14097 tree representing the value accessed, otherwise return NULL. */
14098
14099 tree
14100 fold_read_from_constant_string (tree exp)
14101 {
14102 if ((TREE_CODE (exp) == INDIRECT_REF
14103 || TREE_CODE (exp) == ARRAY_REF)
14104 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
14105 {
14106 tree exp1 = TREE_OPERAND (exp, 0);
14107 tree index;
14108 tree string;
14109 location_t loc = EXPR_LOCATION (exp);
14110
14111 if (TREE_CODE (exp) == INDIRECT_REF)
14112 string = string_constant (exp1, &index);
14113 else
14114 {
14115 tree low_bound = array_ref_low_bound (exp);
14116 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
14117
14118 /* Optimize the special-case of a zero lower bound.
14119
14120 We convert the low_bound to sizetype to avoid some problems
14121 with constant folding. (E.g. suppose the lower bound is 1,
14122 and its mode is QI. Without the conversion,l (ARRAY
14123 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
14124 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
14125 if (! integer_zerop (low_bound))
14126 index = size_diffop_loc (loc, index,
14127 fold_convert_loc (loc, sizetype, low_bound));
14128
14129 string = exp1;
14130 }
14131
14132 if (string
14133 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
14134 && TREE_CODE (string) == STRING_CST
14135 && TREE_CODE (index) == INTEGER_CST
14136 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
14137 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
14138 == MODE_INT)
14139 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
14140 return build_int_cst_type (TREE_TYPE (exp),
14141 (TREE_STRING_POINTER (string)
14142 [TREE_INT_CST_LOW (index)]));
14143 }
14144 return NULL;
14145 }
14146
14147 /* Return the tree for neg (ARG0) when ARG0 is known to be either
14148 an integer constant, real, or fixed-point constant.
14149
14150 TYPE is the type of the result. */
14151
14152 static tree
14153 fold_negate_const (tree arg0, tree type)
14154 {
14155 tree t = NULL_TREE;
14156
14157 switch (TREE_CODE (arg0))
14158 {
14159 case INTEGER_CST:
14160 {
14161 bool overflow;
14162 wide_int val = wi::neg (arg0, &overflow);
14163 t = force_fit_type (type, val, 1,
14164 (overflow | TREE_OVERFLOW (arg0))
14165 && !TYPE_UNSIGNED (type));
14166 break;
14167 }
14168
14169 case REAL_CST:
14170 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
14171 break;
14172
14173 case FIXED_CST:
14174 {
14175 FIXED_VALUE_TYPE f;
14176 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
14177 &(TREE_FIXED_CST (arg0)), NULL,
14178 TYPE_SATURATING (type));
14179 t = build_fixed (type, f);
14180 /* Propagate overflow flags. */
14181 if (overflow_p | TREE_OVERFLOW (arg0))
14182 TREE_OVERFLOW (t) = 1;
14183 break;
14184 }
14185
14186 default:
14187 gcc_unreachable ();
14188 }
14189
14190 return t;
14191 }
14192
14193 /* Return the tree for abs (ARG0) when ARG0 is known to be either
14194 an integer constant or real constant.
14195
14196 TYPE is the type of the result. */
14197
14198 tree
14199 fold_abs_const (tree arg0, tree type)
14200 {
14201 tree t = NULL_TREE;
14202
14203 switch (TREE_CODE (arg0))
14204 {
14205 case INTEGER_CST:
14206 {
14207 /* If the value is unsigned or non-negative, then the absolute value
14208 is the same as the ordinary value. */
14209 if (!wi::neg_p (arg0, TYPE_SIGN (type)))
14210 t = arg0;
14211
14212 /* If the value is negative, then the absolute value is
14213 its negation. */
14214 else
14215 {
14216 bool overflow;
14217 wide_int val = wi::neg (arg0, &overflow);
14218 t = force_fit_type (type, val, -1,
14219 overflow | TREE_OVERFLOW (arg0));
14220 }
14221 }
14222 break;
14223
14224 case REAL_CST:
14225 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
14226 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
14227 else
14228 t = arg0;
14229 break;
14230
14231 default:
14232 gcc_unreachable ();
14233 }
14234
14235 return t;
14236 }
14237
14238 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
14239 constant. TYPE is the type of the result. */
14240
14241 static tree
14242 fold_not_const (const_tree arg0, tree type)
14243 {
14244 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
14245
14246 return force_fit_type (type, wi::bit_not (arg0), 0, TREE_OVERFLOW (arg0));
14247 }
14248
14249 /* Given CODE, a relational operator, the target type, TYPE and two
14250 constant operands OP0 and OP1, return the result of the
14251 relational operation. If the result is not a compile time
14252 constant, then return NULL_TREE. */
14253
14254 static tree
14255 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
14256 {
14257 int result, invert;
14258
14259 /* From here on, the only cases we handle are when the result is
14260 known to be a constant. */
14261
14262 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
14263 {
14264 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
14265 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
14266
14267 /* Handle the cases where either operand is a NaN. */
14268 if (real_isnan (c0) || real_isnan (c1))
14269 {
14270 switch (code)
14271 {
14272 case EQ_EXPR:
14273 case ORDERED_EXPR:
14274 result = 0;
14275 break;
14276
14277 case NE_EXPR:
14278 case UNORDERED_EXPR:
14279 case UNLT_EXPR:
14280 case UNLE_EXPR:
14281 case UNGT_EXPR:
14282 case UNGE_EXPR:
14283 case UNEQ_EXPR:
14284 result = 1;
14285 break;
14286
14287 case LT_EXPR:
14288 case LE_EXPR:
14289 case GT_EXPR:
14290 case GE_EXPR:
14291 case LTGT_EXPR:
14292 if (flag_trapping_math)
14293 return NULL_TREE;
14294 result = 0;
14295 break;
14296
14297 default:
14298 gcc_unreachable ();
14299 }
14300
14301 return constant_boolean_node (result, type);
14302 }
14303
14304 return constant_boolean_node (real_compare (code, c0, c1), type);
14305 }
14306
14307 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
14308 {
14309 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
14310 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
14311 return constant_boolean_node (fixed_compare (code, c0, c1), type);
14312 }
14313
14314 /* Handle equality/inequality of complex constants. */
14315 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
14316 {
14317 tree rcond = fold_relational_const (code, type,
14318 TREE_REALPART (op0),
14319 TREE_REALPART (op1));
14320 tree icond = fold_relational_const (code, type,
14321 TREE_IMAGPART (op0),
14322 TREE_IMAGPART (op1));
14323 if (code == EQ_EXPR)
14324 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
14325 else if (code == NE_EXPR)
14326 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
14327 else
14328 return NULL_TREE;
14329 }
14330
14331 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
14332 {
14333 unsigned count = VECTOR_CST_NELTS (op0);
14334 tree *elts = XALLOCAVEC (tree, count);
14335 gcc_assert (VECTOR_CST_NELTS (op1) == count
14336 && TYPE_VECTOR_SUBPARTS (type) == count);
14337
14338 for (unsigned i = 0; i < count; i++)
14339 {
14340 tree elem_type = TREE_TYPE (type);
14341 tree elem0 = VECTOR_CST_ELT (op0, i);
14342 tree elem1 = VECTOR_CST_ELT (op1, i);
14343
14344 tree tem = fold_relational_const (code, elem_type,
14345 elem0, elem1);
14346
14347 if (tem == NULL_TREE)
14348 return NULL_TREE;
14349
14350 elts[i] = build_int_cst (elem_type, integer_zerop (tem) ? 0 : -1);
14351 }
14352
14353 return build_vector (type, elts);
14354 }
14355
14356 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14357
14358 To compute GT, swap the arguments and do LT.
14359 To compute GE, do LT and invert the result.
14360 To compute LE, swap the arguments, do LT and invert the result.
14361 To compute NE, do EQ and invert the result.
14362
14363 Therefore, the code below must handle only EQ and LT. */
14364
14365 if (code == LE_EXPR || code == GT_EXPR)
14366 {
14367 std::swap (op0, op1);
14368 code = swap_tree_comparison (code);
14369 }
14370
14371 /* Note that it is safe to invert for real values here because we
14372 have already handled the one case that it matters. */
14373
14374 invert = 0;
14375 if (code == NE_EXPR || code == GE_EXPR)
14376 {
14377 invert = 1;
14378 code = invert_tree_comparison (code, false);
14379 }
14380
14381 /* Compute a result for LT or EQ if args permit;
14382 Otherwise return T. */
14383 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
14384 {
14385 if (code == EQ_EXPR)
14386 result = tree_int_cst_equal (op0, op1);
14387 else
14388 result = tree_int_cst_lt (op0, op1);
14389 }
14390 else
14391 return NULL_TREE;
14392
14393 if (invert)
14394 result ^= 1;
14395 return constant_boolean_node (result, type);
14396 }
14397
14398 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14399 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14400 itself. */
14401
14402 tree
14403 fold_build_cleanup_point_expr (tree type, tree expr)
14404 {
14405 /* If the expression does not have side effects then we don't have to wrap
14406 it with a cleanup point expression. */
14407 if (!TREE_SIDE_EFFECTS (expr))
14408 return expr;
14409
14410 /* If the expression is a return, check to see if the expression inside the
14411 return has no side effects or the right hand side of the modify expression
14412 inside the return. If either don't have side effects set we don't need to
14413 wrap the expression in a cleanup point expression. Note we don't check the
14414 left hand side of the modify because it should always be a return decl. */
14415 if (TREE_CODE (expr) == RETURN_EXPR)
14416 {
14417 tree op = TREE_OPERAND (expr, 0);
14418 if (!op || !TREE_SIDE_EFFECTS (op))
14419 return expr;
14420 op = TREE_OPERAND (op, 1);
14421 if (!TREE_SIDE_EFFECTS (op))
14422 return expr;
14423 }
14424
14425 return build1 (CLEANUP_POINT_EXPR, type, expr);
14426 }
14427
14428 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14429 of an indirection through OP0, or NULL_TREE if no simplification is
14430 possible. */
14431
14432 tree
14433 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
14434 {
14435 tree sub = op0;
14436 tree subtype;
14437
14438 STRIP_NOPS (sub);
14439 subtype = TREE_TYPE (sub);
14440 if (!POINTER_TYPE_P (subtype))
14441 return NULL_TREE;
14442
14443 if (TREE_CODE (sub) == ADDR_EXPR)
14444 {
14445 tree op = TREE_OPERAND (sub, 0);
14446 tree optype = TREE_TYPE (op);
14447 /* *&CONST_DECL -> to the value of the const decl. */
14448 if (TREE_CODE (op) == CONST_DECL)
14449 return DECL_INITIAL (op);
14450 /* *&p => p; make sure to handle *&"str"[cst] here. */
14451 if (type == optype)
14452 {
14453 tree fop = fold_read_from_constant_string (op);
14454 if (fop)
14455 return fop;
14456 else
14457 return op;
14458 }
14459 /* *(foo *)&fooarray => fooarray[0] */
14460 else if (TREE_CODE (optype) == ARRAY_TYPE
14461 && type == TREE_TYPE (optype)
14462 && (!in_gimple_form
14463 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14464 {
14465 tree type_domain = TYPE_DOMAIN (optype);
14466 tree min_val = size_zero_node;
14467 if (type_domain && TYPE_MIN_VALUE (type_domain))
14468 min_val = TYPE_MIN_VALUE (type_domain);
14469 if (in_gimple_form
14470 && TREE_CODE (min_val) != INTEGER_CST)
14471 return NULL_TREE;
14472 return build4_loc (loc, ARRAY_REF, type, op, min_val,
14473 NULL_TREE, NULL_TREE);
14474 }
14475 /* *(foo *)&complexfoo => __real__ complexfoo */
14476 else if (TREE_CODE (optype) == COMPLEX_TYPE
14477 && type == TREE_TYPE (optype))
14478 return fold_build1_loc (loc, REALPART_EXPR, type, op);
14479 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14480 else if (TREE_CODE (optype) == VECTOR_TYPE
14481 && type == TREE_TYPE (optype))
14482 {
14483 tree part_width = TYPE_SIZE (type);
14484 tree index = bitsize_int (0);
14485 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
14486 }
14487 }
14488
14489 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14490 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
14491 {
14492 tree op00 = TREE_OPERAND (sub, 0);
14493 tree op01 = TREE_OPERAND (sub, 1);
14494
14495 STRIP_NOPS (op00);
14496 if (TREE_CODE (op00) == ADDR_EXPR)
14497 {
14498 tree op00type;
14499 op00 = TREE_OPERAND (op00, 0);
14500 op00type = TREE_TYPE (op00);
14501
14502 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14503 if (TREE_CODE (op00type) == VECTOR_TYPE
14504 && type == TREE_TYPE (op00type))
14505 {
14506 HOST_WIDE_INT offset = tree_to_shwi (op01);
14507 tree part_width = TYPE_SIZE (type);
14508 unsigned HOST_WIDE_INT part_widthi = tree_to_shwi (part_width)/BITS_PER_UNIT;
14509 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
14510 tree index = bitsize_int (indexi);
14511
14512 if (offset / part_widthi < TYPE_VECTOR_SUBPARTS (op00type))
14513 return fold_build3_loc (loc,
14514 BIT_FIELD_REF, type, op00,
14515 part_width, index);
14516
14517 }
14518 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14519 else if (TREE_CODE (op00type) == COMPLEX_TYPE
14520 && type == TREE_TYPE (op00type))
14521 {
14522 tree size = TYPE_SIZE_UNIT (type);
14523 if (tree_int_cst_equal (size, op01))
14524 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14525 }
14526 /* ((foo *)&fooarray)[1] => fooarray[1] */
14527 else if (TREE_CODE (op00type) == ARRAY_TYPE
14528 && type == TREE_TYPE (op00type))
14529 {
14530 tree type_domain = TYPE_DOMAIN (op00type);
14531 tree min_val = size_zero_node;
14532 if (type_domain && TYPE_MIN_VALUE (type_domain))
14533 min_val = TYPE_MIN_VALUE (type_domain);
14534 op01 = size_binop_loc (loc, EXACT_DIV_EXPR, op01,
14535 TYPE_SIZE_UNIT (type));
14536 op01 = size_binop_loc (loc, PLUS_EXPR, op01, min_val);
14537 return build4_loc (loc, ARRAY_REF, type, op00, op01,
14538 NULL_TREE, NULL_TREE);
14539 }
14540 }
14541 }
14542
14543 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14544 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14545 && type == TREE_TYPE (TREE_TYPE (subtype))
14546 && (!in_gimple_form
14547 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14548 {
14549 tree type_domain;
14550 tree min_val = size_zero_node;
14551 sub = build_fold_indirect_ref_loc (loc, sub);
14552 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14553 if (type_domain && TYPE_MIN_VALUE (type_domain))
14554 min_val = TYPE_MIN_VALUE (type_domain);
14555 if (in_gimple_form
14556 && TREE_CODE (min_val) != INTEGER_CST)
14557 return NULL_TREE;
14558 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
14559 NULL_TREE);
14560 }
14561
14562 return NULL_TREE;
14563 }
14564
14565 /* Builds an expression for an indirection through T, simplifying some
14566 cases. */
14567
14568 tree
14569 build_fold_indirect_ref_loc (location_t loc, tree t)
14570 {
14571 tree type = TREE_TYPE (TREE_TYPE (t));
14572 tree sub = fold_indirect_ref_1 (loc, type, t);
14573
14574 if (sub)
14575 return sub;
14576
14577 return build1_loc (loc, INDIRECT_REF, type, t);
14578 }
14579
14580 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14581
14582 tree
14583 fold_indirect_ref_loc (location_t loc, tree t)
14584 {
14585 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14586
14587 if (sub)
14588 return sub;
14589 else
14590 return t;
14591 }
14592
14593 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14594 whose result is ignored. The type of the returned tree need not be
14595 the same as the original expression. */
14596
14597 tree
14598 fold_ignored_result (tree t)
14599 {
14600 if (!TREE_SIDE_EFFECTS (t))
14601 return integer_zero_node;
14602
14603 for (;;)
14604 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14605 {
14606 case tcc_unary:
14607 t = TREE_OPERAND (t, 0);
14608 break;
14609
14610 case tcc_binary:
14611 case tcc_comparison:
14612 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14613 t = TREE_OPERAND (t, 0);
14614 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14615 t = TREE_OPERAND (t, 1);
14616 else
14617 return t;
14618 break;
14619
14620 case tcc_expression:
14621 switch (TREE_CODE (t))
14622 {
14623 case COMPOUND_EXPR:
14624 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14625 return t;
14626 t = TREE_OPERAND (t, 0);
14627 break;
14628
14629 case COND_EXPR:
14630 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14631 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14632 return t;
14633 t = TREE_OPERAND (t, 0);
14634 break;
14635
14636 default:
14637 return t;
14638 }
14639 break;
14640
14641 default:
14642 return t;
14643 }
14644 }
14645
14646 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14647
14648 tree
14649 round_up_loc (location_t loc, tree value, unsigned int divisor)
14650 {
14651 tree div = NULL_TREE;
14652
14653 if (divisor == 1)
14654 return value;
14655
14656 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14657 have to do anything. Only do this when we are not given a const,
14658 because in that case, this check is more expensive than just
14659 doing it. */
14660 if (TREE_CODE (value) != INTEGER_CST)
14661 {
14662 div = build_int_cst (TREE_TYPE (value), divisor);
14663
14664 if (multiple_of_p (TREE_TYPE (value), value, div))
14665 return value;
14666 }
14667
14668 /* If divisor is a power of two, simplify this to bit manipulation. */
14669 if (divisor == (divisor & -divisor))
14670 {
14671 if (TREE_CODE (value) == INTEGER_CST)
14672 {
14673 wide_int val = value;
14674 bool overflow_p;
14675
14676 if ((val & (divisor - 1)) == 0)
14677 return value;
14678
14679 overflow_p = TREE_OVERFLOW (value);
14680 val += divisor - 1;
14681 val &= - (int) divisor;
14682 if (val == 0)
14683 overflow_p = true;
14684
14685 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14686 }
14687 else
14688 {
14689 tree t;
14690
14691 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14692 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14693 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14694 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14695 }
14696 }
14697 else
14698 {
14699 if (!div)
14700 div = build_int_cst (TREE_TYPE (value), divisor);
14701 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14702 value = size_binop_loc (loc, MULT_EXPR, value, div);
14703 }
14704
14705 return value;
14706 }
14707
14708 /* Likewise, but round down. */
14709
14710 tree
14711 round_down_loc (location_t loc, tree value, int divisor)
14712 {
14713 tree div = NULL_TREE;
14714
14715 gcc_assert (divisor > 0);
14716 if (divisor == 1)
14717 return value;
14718
14719 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14720 have to do anything. Only do this when we are not given a const,
14721 because in that case, this check is more expensive than just
14722 doing it. */
14723 if (TREE_CODE (value) != INTEGER_CST)
14724 {
14725 div = build_int_cst (TREE_TYPE (value), divisor);
14726
14727 if (multiple_of_p (TREE_TYPE (value), value, div))
14728 return value;
14729 }
14730
14731 /* If divisor is a power of two, simplify this to bit manipulation. */
14732 if (divisor == (divisor & -divisor))
14733 {
14734 tree t;
14735
14736 t = build_int_cst (TREE_TYPE (value), -divisor);
14737 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14738 }
14739 else
14740 {
14741 if (!div)
14742 div = build_int_cst (TREE_TYPE (value), divisor);
14743 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
14744 value = size_binop_loc (loc, MULT_EXPR, value, div);
14745 }
14746
14747 return value;
14748 }
14749
14750 /* Returns the pointer to the base of the object addressed by EXP and
14751 extracts the information about the offset of the access, storing it
14752 to PBITPOS and POFFSET. */
14753
14754 static tree
14755 split_address_to_core_and_offset (tree exp,
14756 HOST_WIDE_INT *pbitpos, tree *poffset)
14757 {
14758 tree core;
14759 machine_mode mode;
14760 int unsignedp, volatilep;
14761 HOST_WIDE_INT bitsize;
14762 location_t loc = EXPR_LOCATION (exp);
14763
14764 if (TREE_CODE (exp) == ADDR_EXPR)
14765 {
14766 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14767 poffset, &mode, &unsignedp, &volatilep,
14768 false);
14769 core = build_fold_addr_expr_loc (loc, core);
14770 }
14771 else
14772 {
14773 core = exp;
14774 *pbitpos = 0;
14775 *poffset = NULL_TREE;
14776 }
14777
14778 return core;
14779 }
14780
14781 /* Returns true if addresses of E1 and E2 differ by a constant, false
14782 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14783
14784 bool
14785 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
14786 {
14787 tree core1, core2;
14788 HOST_WIDE_INT bitpos1, bitpos2;
14789 tree toffset1, toffset2, tdiff, type;
14790
14791 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14792 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14793
14794 if (bitpos1 % BITS_PER_UNIT != 0
14795 || bitpos2 % BITS_PER_UNIT != 0
14796 || !operand_equal_p (core1, core2, 0))
14797 return false;
14798
14799 if (toffset1 && toffset2)
14800 {
14801 type = TREE_TYPE (toffset1);
14802 if (type != TREE_TYPE (toffset2))
14803 toffset2 = fold_convert (type, toffset2);
14804
14805 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14806 if (!cst_and_fits_in_hwi (tdiff))
14807 return false;
14808
14809 *diff = int_cst_value (tdiff);
14810 }
14811 else if (toffset1 || toffset2)
14812 {
14813 /* If only one of the offsets is non-constant, the difference cannot
14814 be a constant. */
14815 return false;
14816 }
14817 else
14818 *diff = 0;
14819
14820 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
14821 return true;
14822 }
14823
14824 /* Simplify the floating point expression EXP when the sign of the
14825 result is not significant. Return NULL_TREE if no simplification
14826 is possible. */
14827
14828 tree
14829 fold_strip_sign_ops (tree exp)
14830 {
14831 tree arg0, arg1;
14832 location_t loc = EXPR_LOCATION (exp);
14833
14834 switch (TREE_CODE (exp))
14835 {
14836 case ABS_EXPR:
14837 case NEGATE_EXPR:
14838 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
14839 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
14840
14841 case MULT_EXPR:
14842 case RDIV_EXPR:
14843 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (exp)))
14844 return NULL_TREE;
14845 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
14846 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
14847 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
14848 return fold_build2_loc (loc, TREE_CODE (exp), TREE_TYPE (exp),
14849 arg0 ? arg0 : TREE_OPERAND (exp, 0),
14850 arg1 ? arg1 : TREE_OPERAND (exp, 1));
14851 break;
14852
14853 case COMPOUND_EXPR:
14854 arg0 = TREE_OPERAND (exp, 0);
14855 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
14856 if (arg1)
14857 return fold_build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (exp), arg0, arg1);
14858 break;
14859
14860 case COND_EXPR:
14861 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
14862 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 2));
14863 if (arg0 || arg1)
14864 return fold_build3_loc (loc,
14865 COND_EXPR, TREE_TYPE (exp), TREE_OPERAND (exp, 0),
14866 arg0 ? arg0 : TREE_OPERAND (exp, 1),
14867 arg1 ? arg1 : TREE_OPERAND (exp, 2));
14868 break;
14869
14870 case CALL_EXPR:
14871 {
14872 const enum built_in_function fcode = builtin_mathfn_code (exp);
14873 switch (fcode)
14874 {
14875 CASE_FLT_FN (BUILT_IN_COPYSIGN):
14876 /* Strip copysign function call, return the 1st argument. */
14877 arg0 = CALL_EXPR_ARG (exp, 0);
14878 arg1 = CALL_EXPR_ARG (exp, 1);
14879 return omit_one_operand_loc (loc, TREE_TYPE (exp), arg0, arg1);
14880
14881 default:
14882 /* Strip sign ops from the argument of "odd" math functions. */
14883 if (negate_mathfn_p (fcode))
14884 {
14885 arg0 = fold_strip_sign_ops (CALL_EXPR_ARG (exp, 0));
14886 if (arg0)
14887 return build_call_expr_loc (loc, get_callee_fndecl (exp), 1, arg0);
14888 }
14889 break;
14890 }
14891 }
14892 break;
14893
14894 default:
14895 break;
14896 }
14897 return NULL_TREE;
14898 }
14899
14900 /* Return OFF converted to a pointer offset type suitable as offset for
14901 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14902 tree
14903 convert_to_ptrofftype_loc (location_t loc, tree off)
14904 {
14905 return fold_convert_loc (loc, sizetype, off);
14906 }
14907
14908 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14909 tree
14910 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
14911 {
14912 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14913 ptr, convert_to_ptrofftype_loc (loc, off));
14914 }
14915
14916 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14917 tree
14918 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
14919 {
14920 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14921 ptr, size_int (off));
14922 }