re PR preprocessor/36674 (#include location is offset by one row in errors from prepr...
[gcc.git] / gcc / fold-const.c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
29
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type_double.
32
33 fold takes a tree as argument and returns a simplified tree.
34
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
38
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
41
42 force_fit_type_double takes a constant, an overflowable flag and a
43 prior overflow indicator. It forces the value to fit the type and
44 sets TREE_OVERFLOW.
45
46 Note: Since the folders get called on non-gimple code as well as
47 gimple code, we need to handle GIMPLE tuples as well as their
48 corresponding tree equivalents. */
49
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "tm.h"
54 #include "flags.h"
55 #include "tree.h"
56 #include "real.h"
57 #include "fixed-value.h"
58 #include "rtl.h"
59 #include "expr.h"
60 #include "tm_p.h"
61 #include "target.h"
62 #include "toplev.h"
63 #include "intl.h"
64 #include "ggc.h"
65 #include "hashtab.h"
66 #include "langhooks.h"
67 #include "md5.h"
68 #include "gimple.h"
69
70 /* Nonzero if we are folding constants inside an initializer; zero
71 otherwise. */
72 int folding_initializer = 0;
73
74 /* The following constants represent a bit based encoding of GCC's
75 comparison operators. This encoding simplifies transformations
76 on relational comparison operators, such as AND and OR. */
77 enum comparison_code {
78 COMPCODE_FALSE = 0,
79 COMPCODE_LT = 1,
80 COMPCODE_EQ = 2,
81 COMPCODE_LE = 3,
82 COMPCODE_GT = 4,
83 COMPCODE_LTGT = 5,
84 COMPCODE_GE = 6,
85 COMPCODE_ORD = 7,
86 COMPCODE_UNORD = 8,
87 COMPCODE_UNLT = 9,
88 COMPCODE_UNEQ = 10,
89 COMPCODE_UNLE = 11,
90 COMPCODE_UNGT = 12,
91 COMPCODE_NE = 13,
92 COMPCODE_UNGE = 14,
93 COMPCODE_TRUE = 15
94 };
95
96 static void encode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT, HOST_WIDE_INT);
97 static void decode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
98 static bool negate_mathfn_p (enum built_in_function);
99 static bool negate_expr_p (tree);
100 static tree negate_expr (tree);
101 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
102 static tree associate_trees (tree, tree, enum tree_code, tree);
103 static tree const_binop (enum tree_code, tree, tree, int);
104 static enum comparison_code comparison_to_compcode (enum tree_code);
105 static enum tree_code compcode_to_comparison (enum comparison_code);
106 static int operand_equal_for_comparison_p (tree, tree, tree);
107 static int twoval_comparison_p (tree, tree *, tree *, int *);
108 static tree eval_subst (tree, tree, tree, tree, tree);
109 static tree pedantic_omit_one_operand (tree, tree, tree);
110 static tree distribute_bit_expr (enum tree_code, tree, tree, tree);
111 static tree make_bit_field_ref (tree, tree, HOST_WIDE_INT, HOST_WIDE_INT, int);
112 static tree optimize_bit_field_compare (enum tree_code, tree, tree, tree);
113 static tree decode_field_reference (tree, HOST_WIDE_INT *, HOST_WIDE_INT *,
114 enum machine_mode *, int *, int *,
115 tree *, tree *);
116 static int all_ones_mask_p (const_tree, int);
117 static tree sign_bit_p (tree, const_tree);
118 static int simple_operand_p (const_tree);
119 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
120 static tree range_predecessor (tree);
121 static tree range_successor (tree);
122 static tree make_range (tree, int *, tree *, tree *, bool *);
123 static tree build_range_check (tree, tree, int, tree, tree);
124 static int merge_ranges (int *, tree *, tree *, int, tree, tree, int, tree,
125 tree);
126 static tree fold_range_test (enum tree_code, tree, tree, tree);
127 static tree fold_cond_expr_with_comparison (tree, tree, tree, tree);
128 static tree unextend (tree, int, int, tree);
129 static tree fold_truthop (enum tree_code, tree, tree, tree);
130 static tree optimize_minmax_comparison (enum tree_code, tree, tree, tree);
131 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
132 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
133 static tree fold_binary_op_with_conditional_arg (enum tree_code, tree,
134 tree, tree,
135 tree, tree, int);
136 static tree fold_mathfn_compare (enum built_in_function, enum tree_code,
137 tree, tree, tree);
138 static tree fold_inf_compare (enum tree_code, tree, tree, tree);
139 static tree fold_div_compare (enum tree_code, tree, tree, tree);
140 static bool reorder_operands_p (const_tree, const_tree);
141 static tree fold_negate_const (tree, tree);
142 static tree fold_not_const (tree, tree);
143 static tree fold_relational_const (enum tree_code, tree, tree, tree);
144 static tree fold_convert_const (enum tree_code, tree, tree);
145
146
147 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
148 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
149 and SUM1. Then this yields nonzero if overflow occurred during the
150 addition.
151
152 Overflow occurs if A and B have the same sign, but A and SUM differ in
153 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
154 sign. */
155 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
156 \f
157 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
158 We do that by representing the two-word integer in 4 words, with only
159 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
160 number. The value of the word is LOWPART + HIGHPART * BASE. */
161
162 #define LOWPART(x) \
163 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
164 #define HIGHPART(x) \
165 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
166 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
167
168 /* Unpack a two-word integer into 4 words.
169 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
170 WORDS points to the array of HOST_WIDE_INTs. */
171
172 static void
173 encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
174 {
175 words[0] = LOWPART (low);
176 words[1] = HIGHPART (low);
177 words[2] = LOWPART (hi);
178 words[3] = HIGHPART (hi);
179 }
180
181 /* Pack an array of 4 words into a two-word integer.
182 WORDS points to the array of words.
183 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
184
185 static void
186 decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
187 HOST_WIDE_INT *hi)
188 {
189 *low = words[0] + words[1] * BASE;
190 *hi = words[2] + words[3] * BASE;
191 }
192 \f
193 /* Force the double-word integer L1, H1 to be within the range of the
194 integer type TYPE. Stores the properly truncated and sign-extended
195 double-word integer in *LV, *HV. Returns true if the operation
196 overflows, that is, argument and result are different. */
197
198 int
199 fit_double_type (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
200 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, const_tree type)
201 {
202 unsigned HOST_WIDE_INT low0 = l1;
203 HOST_WIDE_INT high0 = h1;
204 unsigned int prec;
205 int sign_extended_type;
206
207 if (POINTER_TYPE_P (type)
208 || TREE_CODE (type) == OFFSET_TYPE)
209 prec = POINTER_SIZE;
210 else
211 prec = TYPE_PRECISION (type);
212
213 /* Size types *are* sign extended. */
214 sign_extended_type = (!TYPE_UNSIGNED (type)
215 || (TREE_CODE (type) == INTEGER_TYPE
216 && TYPE_IS_SIZETYPE (type)));
217
218 /* First clear all bits that are beyond the type's precision. */
219 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
220 ;
221 else if (prec > HOST_BITS_PER_WIDE_INT)
222 h1 &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
223 else
224 {
225 h1 = 0;
226 if (prec < HOST_BITS_PER_WIDE_INT)
227 l1 &= ~((HOST_WIDE_INT) (-1) << prec);
228 }
229
230 /* Then do sign extension if necessary. */
231 if (!sign_extended_type)
232 /* No sign extension */;
233 else if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
234 /* Correct width already. */;
235 else if (prec > HOST_BITS_PER_WIDE_INT)
236 {
237 /* Sign extend top half? */
238 if (h1 & ((unsigned HOST_WIDE_INT)1
239 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
240 h1 |= (HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT);
241 }
242 else if (prec == HOST_BITS_PER_WIDE_INT)
243 {
244 if ((HOST_WIDE_INT)l1 < 0)
245 h1 = -1;
246 }
247 else
248 {
249 /* Sign extend bottom half? */
250 if (l1 & ((unsigned HOST_WIDE_INT)1 << (prec - 1)))
251 {
252 h1 = -1;
253 l1 |= (HOST_WIDE_INT)(-1) << prec;
254 }
255 }
256
257 *lv = l1;
258 *hv = h1;
259
260 /* If the value didn't fit, signal overflow. */
261 return l1 != low0 || h1 != high0;
262 }
263
264 /* We force the double-int HIGH:LOW to the range of the type TYPE by
265 sign or zero extending it.
266 OVERFLOWABLE indicates if we are interested
267 in overflow of the value, when >0 we are only interested in signed
268 overflow, for <0 we are interested in any overflow. OVERFLOWED
269 indicates whether overflow has already occurred. CONST_OVERFLOWED
270 indicates whether constant overflow has already occurred. We force
271 T's value to be within range of T's type (by setting to 0 or 1 all
272 the bits outside the type's range). We set TREE_OVERFLOWED if,
273 OVERFLOWED is nonzero,
274 or OVERFLOWABLE is >0 and signed overflow occurs
275 or OVERFLOWABLE is <0 and any overflow occurs
276 We return a new tree node for the extended double-int. The node
277 is shared if no overflow flags are set. */
278
279 tree
280 force_fit_type_double (tree type, unsigned HOST_WIDE_INT low,
281 HOST_WIDE_INT high, int overflowable,
282 bool overflowed)
283 {
284 int sign_extended_type;
285 bool overflow;
286
287 /* Size types *are* sign extended. */
288 sign_extended_type = (!TYPE_UNSIGNED (type)
289 || (TREE_CODE (type) == INTEGER_TYPE
290 && TYPE_IS_SIZETYPE (type)));
291
292 overflow = fit_double_type (low, high, &low, &high, type);
293
294 /* If we need to set overflow flags, return a new unshared node. */
295 if (overflowed || overflow)
296 {
297 if (overflowed
298 || overflowable < 0
299 || (overflowable > 0 && sign_extended_type))
300 {
301 tree t = make_node (INTEGER_CST);
302 TREE_INT_CST_LOW (t) = low;
303 TREE_INT_CST_HIGH (t) = high;
304 TREE_TYPE (t) = type;
305 TREE_OVERFLOW (t) = 1;
306 return t;
307 }
308 }
309
310 /* Else build a shared node. */
311 return build_int_cst_wide (type, low, high);
312 }
313 \f
314 /* Add two doubleword integers with doubleword result.
315 Return nonzero if the operation overflows according to UNSIGNED_P.
316 Each argument is given as two `HOST_WIDE_INT' pieces.
317 One argument is L1 and H1; the other, L2 and H2.
318 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
319
320 int
321 add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
322 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
323 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
324 bool unsigned_p)
325 {
326 unsigned HOST_WIDE_INT l;
327 HOST_WIDE_INT h;
328
329 l = l1 + l2;
330 h = h1 + h2 + (l < l1);
331
332 *lv = l;
333 *hv = h;
334
335 if (unsigned_p)
336 return (unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1;
337 else
338 return OVERFLOW_SUM_SIGN (h1, h2, h);
339 }
340
341 /* Negate a doubleword integer with doubleword result.
342 Return nonzero if the operation overflows, assuming it's signed.
343 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
344 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
345
346 int
347 neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
348 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
349 {
350 if (l1 == 0)
351 {
352 *lv = 0;
353 *hv = - h1;
354 return (*hv & h1) < 0;
355 }
356 else
357 {
358 *lv = -l1;
359 *hv = ~h1;
360 return 0;
361 }
362 }
363 \f
364 /* Multiply two doubleword integers with doubleword result.
365 Return nonzero if the operation overflows according to UNSIGNED_P.
366 Each argument is given as two `HOST_WIDE_INT' pieces.
367 One argument is L1 and H1; the other, L2 and H2.
368 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
369
370 int
371 mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
372 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
373 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
374 bool unsigned_p)
375 {
376 HOST_WIDE_INT arg1[4];
377 HOST_WIDE_INT arg2[4];
378 HOST_WIDE_INT prod[4 * 2];
379 unsigned HOST_WIDE_INT carry;
380 int i, j, k;
381 unsigned HOST_WIDE_INT toplow, neglow;
382 HOST_WIDE_INT tophigh, neghigh;
383
384 encode (arg1, l1, h1);
385 encode (arg2, l2, h2);
386
387 memset (prod, 0, sizeof prod);
388
389 for (i = 0; i < 4; i++)
390 {
391 carry = 0;
392 for (j = 0; j < 4; j++)
393 {
394 k = i + j;
395 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
396 carry += arg1[i] * arg2[j];
397 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
398 carry += prod[k];
399 prod[k] = LOWPART (carry);
400 carry = HIGHPART (carry);
401 }
402 prod[i + 4] = carry;
403 }
404
405 decode (prod, lv, hv);
406 decode (prod + 4, &toplow, &tophigh);
407
408 /* Unsigned overflow is immediate. */
409 if (unsigned_p)
410 return (toplow | tophigh) != 0;
411
412 /* Check for signed overflow by calculating the signed representation of the
413 top half of the result; it should agree with the low half's sign bit. */
414 if (h1 < 0)
415 {
416 neg_double (l2, h2, &neglow, &neghigh);
417 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
418 }
419 if (h2 < 0)
420 {
421 neg_double (l1, h1, &neglow, &neghigh);
422 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
423 }
424 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
425 }
426 \f
427 /* Shift the doubleword integer in L1, H1 left by COUNT places
428 keeping only PREC bits of result.
429 Shift right if COUNT is negative.
430 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
431 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
432
433 void
434 lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
435 HOST_WIDE_INT count, unsigned int prec,
436 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, int arith)
437 {
438 unsigned HOST_WIDE_INT signmask;
439
440 if (count < 0)
441 {
442 rshift_double (l1, h1, -count, prec, lv, hv, arith);
443 return;
444 }
445
446 if (SHIFT_COUNT_TRUNCATED)
447 count %= prec;
448
449 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
450 {
451 /* Shifting by the host word size is undefined according to the
452 ANSI standard, so we must handle this as a special case. */
453 *hv = 0;
454 *lv = 0;
455 }
456 else if (count >= HOST_BITS_PER_WIDE_INT)
457 {
458 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
459 *lv = 0;
460 }
461 else
462 {
463 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
464 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
465 *lv = l1 << count;
466 }
467
468 /* Sign extend all bits that are beyond the precision. */
469
470 signmask = -((prec > HOST_BITS_PER_WIDE_INT
471 ? ((unsigned HOST_WIDE_INT) *hv
472 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
473 : (*lv >> (prec - 1))) & 1);
474
475 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
476 ;
477 else if (prec >= HOST_BITS_PER_WIDE_INT)
478 {
479 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
480 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
481 }
482 else
483 {
484 *hv = signmask;
485 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
486 *lv |= signmask << prec;
487 }
488 }
489
490 /* Shift the doubleword integer in L1, H1 right by COUNT places
491 keeping only PREC bits of result. COUNT must be positive.
492 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
493 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
494
495 void
496 rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
497 HOST_WIDE_INT count, unsigned int prec,
498 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
499 int arith)
500 {
501 unsigned HOST_WIDE_INT signmask;
502
503 signmask = (arith
504 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
505 : 0);
506
507 if (SHIFT_COUNT_TRUNCATED)
508 count %= prec;
509
510 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
511 {
512 /* Shifting by the host word size is undefined according to the
513 ANSI standard, so we must handle this as a special case. */
514 *hv = 0;
515 *lv = 0;
516 }
517 else if (count >= HOST_BITS_PER_WIDE_INT)
518 {
519 *hv = 0;
520 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
521 }
522 else
523 {
524 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
525 *lv = ((l1 >> count)
526 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
527 }
528
529 /* Zero / sign extend all bits that are beyond the precision. */
530
531 if (count >= (HOST_WIDE_INT)prec)
532 {
533 *hv = signmask;
534 *lv = signmask;
535 }
536 else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
537 ;
538 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
539 {
540 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
541 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
542 }
543 else
544 {
545 *hv = signmask;
546 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
547 *lv |= signmask << (prec - count);
548 }
549 }
550 \f
551 /* Rotate the doubleword integer in L1, H1 left by COUNT places
552 keeping only PREC bits of result.
553 Rotate right if COUNT is negative.
554 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
555
556 void
557 lrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
558 HOST_WIDE_INT count, unsigned int prec,
559 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
560 {
561 unsigned HOST_WIDE_INT s1l, s2l;
562 HOST_WIDE_INT s1h, s2h;
563
564 count %= prec;
565 if (count < 0)
566 count += prec;
567
568 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
569 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
570 *lv = s1l | s2l;
571 *hv = s1h | s2h;
572 }
573
574 /* Rotate the doubleword integer in L1, H1 left by COUNT places
575 keeping only PREC bits of result. COUNT must be positive.
576 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
577
578 void
579 rrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
580 HOST_WIDE_INT count, unsigned int prec,
581 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
582 {
583 unsigned HOST_WIDE_INT s1l, s2l;
584 HOST_WIDE_INT s1h, s2h;
585
586 count %= prec;
587 if (count < 0)
588 count += prec;
589
590 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
591 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
592 *lv = s1l | s2l;
593 *hv = s1h | s2h;
594 }
595 \f
596 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
597 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
598 CODE is a tree code for a kind of division, one of
599 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
600 or EXACT_DIV_EXPR
601 It controls how the quotient is rounded to an integer.
602 Return nonzero if the operation overflows.
603 UNS nonzero says do unsigned division. */
604
605 int
606 div_and_round_double (enum tree_code code, int uns,
607 unsigned HOST_WIDE_INT lnum_orig, /* num == numerator == dividend */
608 HOST_WIDE_INT hnum_orig,
609 unsigned HOST_WIDE_INT lden_orig, /* den == denominator == divisor */
610 HOST_WIDE_INT hden_orig,
611 unsigned HOST_WIDE_INT *lquo,
612 HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
613 HOST_WIDE_INT *hrem)
614 {
615 int quo_neg = 0;
616 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
617 HOST_WIDE_INT den[4], quo[4];
618 int i, j;
619 unsigned HOST_WIDE_INT work;
620 unsigned HOST_WIDE_INT carry = 0;
621 unsigned HOST_WIDE_INT lnum = lnum_orig;
622 HOST_WIDE_INT hnum = hnum_orig;
623 unsigned HOST_WIDE_INT lden = lden_orig;
624 HOST_WIDE_INT hden = hden_orig;
625 int overflow = 0;
626
627 if (hden == 0 && lden == 0)
628 overflow = 1, lden = 1;
629
630 /* Calculate quotient sign and convert operands to unsigned. */
631 if (!uns)
632 {
633 if (hnum < 0)
634 {
635 quo_neg = ~ quo_neg;
636 /* (minimum integer) / (-1) is the only overflow case. */
637 if (neg_double (lnum, hnum, &lnum, &hnum)
638 && ((HOST_WIDE_INT) lden & hden) == -1)
639 overflow = 1;
640 }
641 if (hden < 0)
642 {
643 quo_neg = ~ quo_neg;
644 neg_double (lden, hden, &lden, &hden);
645 }
646 }
647
648 if (hnum == 0 && hden == 0)
649 { /* single precision */
650 *hquo = *hrem = 0;
651 /* This unsigned division rounds toward zero. */
652 *lquo = lnum / lden;
653 goto finish_up;
654 }
655
656 if (hnum == 0)
657 { /* trivial case: dividend < divisor */
658 /* hden != 0 already checked. */
659 *hquo = *lquo = 0;
660 *hrem = hnum;
661 *lrem = lnum;
662 goto finish_up;
663 }
664
665 memset (quo, 0, sizeof quo);
666
667 memset (num, 0, sizeof num); /* to zero 9th element */
668 memset (den, 0, sizeof den);
669
670 encode (num, lnum, hnum);
671 encode (den, lden, hden);
672
673 /* Special code for when the divisor < BASE. */
674 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
675 {
676 /* hnum != 0 already checked. */
677 for (i = 4 - 1; i >= 0; i--)
678 {
679 work = num[i] + carry * BASE;
680 quo[i] = work / lden;
681 carry = work % lden;
682 }
683 }
684 else
685 {
686 /* Full double precision division,
687 with thanks to Don Knuth's "Seminumerical Algorithms". */
688 int num_hi_sig, den_hi_sig;
689 unsigned HOST_WIDE_INT quo_est, scale;
690
691 /* Find the highest nonzero divisor digit. */
692 for (i = 4 - 1;; i--)
693 if (den[i] != 0)
694 {
695 den_hi_sig = i;
696 break;
697 }
698
699 /* Insure that the first digit of the divisor is at least BASE/2.
700 This is required by the quotient digit estimation algorithm. */
701
702 scale = BASE / (den[den_hi_sig] + 1);
703 if (scale > 1)
704 { /* scale divisor and dividend */
705 carry = 0;
706 for (i = 0; i <= 4 - 1; i++)
707 {
708 work = (num[i] * scale) + carry;
709 num[i] = LOWPART (work);
710 carry = HIGHPART (work);
711 }
712
713 num[4] = carry;
714 carry = 0;
715 for (i = 0; i <= 4 - 1; i++)
716 {
717 work = (den[i] * scale) + carry;
718 den[i] = LOWPART (work);
719 carry = HIGHPART (work);
720 if (den[i] != 0) den_hi_sig = i;
721 }
722 }
723
724 num_hi_sig = 4;
725
726 /* Main loop */
727 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
728 {
729 /* Guess the next quotient digit, quo_est, by dividing the first
730 two remaining dividend digits by the high order quotient digit.
731 quo_est is never low and is at most 2 high. */
732 unsigned HOST_WIDE_INT tmp;
733
734 num_hi_sig = i + den_hi_sig + 1;
735 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
736 if (num[num_hi_sig] != den[den_hi_sig])
737 quo_est = work / den[den_hi_sig];
738 else
739 quo_est = BASE - 1;
740
741 /* Refine quo_est so it's usually correct, and at most one high. */
742 tmp = work - quo_est * den[den_hi_sig];
743 if (tmp < BASE
744 && (den[den_hi_sig - 1] * quo_est
745 > (tmp * BASE + num[num_hi_sig - 2])))
746 quo_est--;
747
748 /* Try QUO_EST as the quotient digit, by multiplying the
749 divisor by QUO_EST and subtracting from the remaining dividend.
750 Keep in mind that QUO_EST is the I - 1st digit. */
751
752 carry = 0;
753 for (j = 0; j <= den_hi_sig; j++)
754 {
755 work = quo_est * den[j] + carry;
756 carry = HIGHPART (work);
757 work = num[i + j] - LOWPART (work);
758 num[i + j] = LOWPART (work);
759 carry += HIGHPART (work) != 0;
760 }
761
762 /* If quo_est was high by one, then num[i] went negative and
763 we need to correct things. */
764 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
765 {
766 quo_est--;
767 carry = 0; /* add divisor back in */
768 for (j = 0; j <= den_hi_sig; j++)
769 {
770 work = num[i + j] + den[j] + carry;
771 carry = HIGHPART (work);
772 num[i + j] = LOWPART (work);
773 }
774
775 num [num_hi_sig] += carry;
776 }
777
778 /* Store the quotient digit. */
779 quo[i] = quo_est;
780 }
781 }
782
783 decode (quo, lquo, hquo);
784
785 finish_up:
786 /* If result is negative, make it so. */
787 if (quo_neg)
788 neg_double (*lquo, *hquo, lquo, hquo);
789
790 /* Compute trial remainder: rem = num - (quo * den) */
791 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
792 neg_double (*lrem, *hrem, lrem, hrem);
793 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
794
795 switch (code)
796 {
797 case TRUNC_DIV_EXPR:
798 case TRUNC_MOD_EXPR: /* round toward zero */
799 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
800 return overflow;
801
802 case FLOOR_DIV_EXPR:
803 case FLOOR_MOD_EXPR: /* round toward negative infinity */
804 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
805 {
806 /* quo = quo - 1; */
807 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
808 lquo, hquo);
809 }
810 else
811 return overflow;
812 break;
813
814 case CEIL_DIV_EXPR:
815 case CEIL_MOD_EXPR: /* round toward positive infinity */
816 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
817 {
818 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
819 lquo, hquo);
820 }
821 else
822 return overflow;
823 break;
824
825 case ROUND_DIV_EXPR:
826 case ROUND_MOD_EXPR: /* round to closest integer */
827 {
828 unsigned HOST_WIDE_INT labs_rem = *lrem;
829 HOST_WIDE_INT habs_rem = *hrem;
830 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
831 HOST_WIDE_INT habs_den = hden, htwice;
832
833 /* Get absolute values. */
834 if (*hrem < 0)
835 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
836 if (hden < 0)
837 neg_double (lden, hden, &labs_den, &habs_den);
838
839 /* If (2 * abs (lrem) >= abs (lden)), adjust the quotient. */
840 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
841 labs_rem, habs_rem, &ltwice, &htwice);
842
843 if (((unsigned HOST_WIDE_INT) habs_den
844 < (unsigned HOST_WIDE_INT) htwice)
845 || (((unsigned HOST_WIDE_INT) habs_den
846 == (unsigned HOST_WIDE_INT) htwice)
847 && (labs_den <= ltwice)))
848 {
849 if (*hquo < 0)
850 /* quo = quo - 1; */
851 add_double (*lquo, *hquo,
852 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
853 else
854 /* quo = quo + 1; */
855 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
856 lquo, hquo);
857 }
858 else
859 return overflow;
860 }
861 break;
862
863 default:
864 gcc_unreachable ();
865 }
866
867 /* Compute true remainder: rem = num - (quo * den) */
868 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
869 neg_double (*lrem, *hrem, lrem, hrem);
870 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
871 return overflow;
872 }
873
874 /* If ARG2 divides ARG1 with zero remainder, carries out the division
875 of type CODE and returns the quotient.
876 Otherwise returns NULL_TREE. */
877
878 tree
879 div_if_zero_remainder (enum tree_code code, const_tree arg1, const_tree arg2)
880 {
881 unsigned HOST_WIDE_INT int1l, int2l;
882 HOST_WIDE_INT int1h, int2h;
883 unsigned HOST_WIDE_INT quol, reml;
884 HOST_WIDE_INT quoh, remh;
885 tree type = TREE_TYPE (arg1);
886 int uns = TYPE_UNSIGNED (type);
887
888 int1l = TREE_INT_CST_LOW (arg1);
889 int1h = TREE_INT_CST_HIGH (arg1);
890 /* &obj[0] + -128 really should be compiled as &obj[-8] rather than
891 &obj[some_exotic_number]. */
892 if (POINTER_TYPE_P (type))
893 {
894 uns = false;
895 type = signed_type_for (type);
896 fit_double_type (int1l, int1h, &int1l, &int1h,
897 type);
898 }
899 else
900 fit_double_type (int1l, int1h, &int1l, &int1h, type);
901 int2l = TREE_INT_CST_LOW (arg2);
902 int2h = TREE_INT_CST_HIGH (arg2);
903
904 div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
905 &quol, &quoh, &reml, &remh);
906 if (remh != 0 || reml != 0)
907 return NULL_TREE;
908
909 return build_int_cst_wide (type, quol, quoh);
910 }
911 \f
912 /* This is nonzero if we should defer warnings about undefined
913 overflow. This facility exists because these warnings are a
914 special case. The code to estimate loop iterations does not want
915 to issue any warnings, since it works with expressions which do not
916 occur in user code. Various bits of cleanup code call fold(), but
917 only use the result if it has certain characteristics (e.g., is a
918 constant); that code only wants to issue a warning if the result is
919 used. */
920
921 static int fold_deferring_overflow_warnings;
922
923 /* If a warning about undefined overflow is deferred, this is the
924 warning. Note that this may cause us to turn two warnings into
925 one, but that is fine since it is sufficient to only give one
926 warning per expression. */
927
928 static const char* fold_deferred_overflow_warning;
929
930 /* If a warning about undefined overflow is deferred, this is the
931 level at which the warning should be emitted. */
932
933 static enum warn_strict_overflow_code fold_deferred_overflow_code;
934
935 /* Start deferring overflow warnings. We could use a stack here to
936 permit nested calls, but at present it is not necessary. */
937
938 void
939 fold_defer_overflow_warnings (void)
940 {
941 ++fold_deferring_overflow_warnings;
942 }
943
944 /* Stop deferring overflow warnings. If there is a pending warning,
945 and ISSUE is true, then issue the warning if appropriate. STMT is
946 the statement with which the warning should be associated (used for
947 location information); STMT may be NULL. CODE is the level of the
948 warning--a warn_strict_overflow_code value. This function will use
949 the smaller of CODE and the deferred code when deciding whether to
950 issue the warning. CODE may be zero to mean to always use the
951 deferred code. */
952
953 void
954 fold_undefer_overflow_warnings (bool issue, const_gimple stmt, int code)
955 {
956 const char *warnmsg;
957 location_t locus;
958
959 gcc_assert (fold_deferring_overflow_warnings > 0);
960 --fold_deferring_overflow_warnings;
961 if (fold_deferring_overflow_warnings > 0)
962 {
963 if (fold_deferred_overflow_warning != NULL
964 && code != 0
965 && code < (int) fold_deferred_overflow_code)
966 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
967 return;
968 }
969
970 warnmsg = fold_deferred_overflow_warning;
971 fold_deferred_overflow_warning = NULL;
972
973 if (!issue || warnmsg == NULL)
974 return;
975
976 if (gimple_no_warning_p (stmt))
977 return;
978
979 /* Use the smallest code level when deciding to issue the
980 warning. */
981 if (code == 0 || code > (int) fold_deferred_overflow_code)
982 code = fold_deferred_overflow_code;
983
984 if (!issue_strict_overflow_warning (code))
985 return;
986
987 if (stmt == NULL)
988 locus = input_location;
989 else
990 locus = gimple_location (stmt);
991 warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
992 }
993
994 /* Stop deferring overflow warnings, ignoring any deferred
995 warnings. */
996
997 void
998 fold_undefer_and_ignore_overflow_warnings (void)
999 {
1000 fold_undefer_overflow_warnings (false, NULL, 0);
1001 }
1002
1003 /* Whether we are deferring overflow warnings. */
1004
1005 bool
1006 fold_deferring_overflow_warnings_p (void)
1007 {
1008 return fold_deferring_overflow_warnings > 0;
1009 }
1010
1011 /* This is called when we fold something based on the fact that signed
1012 overflow is undefined. */
1013
1014 static void
1015 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
1016 {
1017 if (fold_deferring_overflow_warnings > 0)
1018 {
1019 if (fold_deferred_overflow_warning == NULL
1020 || wc < fold_deferred_overflow_code)
1021 {
1022 fold_deferred_overflow_warning = gmsgid;
1023 fold_deferred_overflow_code = wc;
1024 }
1025 }
1026 else if (issue_strict_overflow_warning (wc))
1027 warning (OPT_Wstrict_overflow, gmsgid);
1028 }
1029 \f
1030 /* Return true if the built-in mathematical function specified by CODE
1031 is odd, i.e. -f(x) == f(-x). */
1032
1033 static bool
1034 negate_mathfn_p (enum built_in_function code)
1035 {
1036 switch (code)
1037 {
1038 CASE_FLT_FN (BUILT_IN_ASIN):
1039 CASE_FLT_FN (BUILT_IN_ASINH):
1040 CASE_FLT_FN (BUILT_IN_ATAN):
1041 CASE_FLT_FN (BUILT_IN_ATANH):
1042 CASE_FLT_FN (BUILT_IN_CASIN):
1043 CASE_FLT_FN (BUILT_IN_CASINH):
1044 CASE_FLT_FN (BUILT_IN_CATAN):
1045 CASE_FLT_FN (BUILT_IN_CATANH):
1046 CASE_FLT_FN (BUILT_IN_CBRT):
1047 CASE_FLT_FN (BUILT_IN_CPROJ):
1048 CASE_FLT_FN (BUILT_IN_CSIN):
1049 CASE_FLT_FN (BUILT_IN_CSINH):
1050 CASE_FLT_FN (BUILT_IN_CTAN):
1051 CASE_FLT_FN (BUILT_IN_CTANH):
1052 CASE_FLT_FN (BUILT_IN_ERF):
1053 CASE_FLT_FN (BUILT_IN_LLROUND):
1054 CASE_FLT_FN (BUILT_IN_LROUND):
1055 CASE_FLT_FN (BUILT_IN_ROUND):
1056 CASE_FLT_FN (BUILT_IN_SIN):
1057 CASE_FLT_FN (BUILT_IN_SINH):
1058 CASE_FLT_FN (BUILT_IN_TAN):
1059 CASE_FLT_FN (BUILT_IN_TANH):
1060 CASE_FLT_FN (BUILT_IN_TRUNC):
1061 return true;
1062
1063 CASE_FLT_FN (BUILT_IN_LLRINT):
1064 CASE_FLT_FN (BUILT_IN_LRINT):
1065 CASE_FLT_FN (BUILT_IN_NEARBYINT):
1066 CASE_FLT_FN (BUILT_IN_RINT):
1067 return !flag_rounding_math;
1068
1069 default:
1070 break;
1071 }
1072 return false;
1073 }
1074
1075 /* Check whether we may negate an integer constant T without causing
1076 overflow. */
1077
1078 bool
1079 may_negate_without_overflow_p (const_tree t)
1080 {
1081 unsigned HOST_WIDE_INT val;
1082 unsigned int prec;
1083 tree type;
1084
1085 gcc_assert (TREE_CODE (t) == INTEGER_CST);
1086
1087 type = TREE_TYPE (t);
1088 if (TYPE_UNSIGNED (type))
1089 return false;
1090
1091 prec = TYPE_PRECISION (type);
1092 if (prec > HOST_BITS_PER_WIDE_INT)
1093 {
1094 if (TREE_INT_CST_LOW (t) != 0)
1095 return true;
1096 prec -= HOST_BITS_PER_WIDE_INT;
1097 val = TREE_INT_CST_HIGH (t);
1098 }
1099 else
1100 val = TREE_INT_CST_LOW (t);
1101 if (prec < HOST_BITS_PER_WIDE_INT)
1102 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1103 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
1104 }
1105
1106 /* Determine whether an expression T can be cheaply negated using
1107 the function negate_expr without introducing undefined overflow. */
1108
1109 static bool
1110 negate_expr_p (tree t)
1111 {
1112 tree type;
1113
1114 if (t == 0)
1115 return false;
1116
1117 type = TREE_TYPE (t);
1118
1119 STRIP_SIGN_NOPS (t);
1120 switch (TREE_CODE (t))
1121 {
1122 case INTEGER_CST:
1123 if (TYPE_OVERFLOW_WRAPS (type))
1124 return true;
1125
1126 /* Check that -CST will not overflow type. */
1127 return may_negate_without_overflow_p (t);
1128 case BIT_NOT_EXPR:
1129 return (INTEGRAL_TYPE_P (type)
1130 && TYPE_OVERFLOW_WRAPS (type));
1131
1132 case FIXED_CST:
1133 case REAL_CST:
1134 case NEGATE_EXPR:
1135 return true;
1136
1137 case COMPLEX_CST:
1138 return negate_expr_p (TREE_REALPART (t))
1139 && negate_expr_p (TREE_IMAGPART (t));
1140
1141 case COMPLEX_EXPR:
1142 return negate_expr_p (TREE_OPERAND (t, 0))
1143 && negate_expr_p (TREE_OPERAND (t, 1));
1144
1145 case CONJ_EXPR:
1146 return negate_expr_p (TREE_OPERAND (t, 0));
1147
1148 case PLUS_EXPR:
1149 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1150 || HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
1151 return false;
1152 /* -(A + B) -> (-B) - A. */
1153 if (negate_expr_p (TREE_OPERAND (t, 1))
1154 && reorder_operands_p (TREE_OPERAND (t, 0),
1155 TREE_OPERAND (t, 1)))
1156 return true;
1157 /* -(A + B) -> (-A) - B. */
1158 return negate_expr_p (TREE_OPERAND (t, 0));
1159
1160 case MINUS_EXPR:
1161 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
1162 return !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1163 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
1164 && reorder_operands_p (TREE_OPERAND (t, 0),
1165 TREE_OPERAND (t, 1));
1166
1167 case MULT_EXPR:
1168 if (TYPE_UNSIGNED (TREE_TYPE (t)))
1169 break;
1170
1171 /* Fall through. */
1172
1173 case RDIV_EXPR:
1174 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
1175 return negate_expr_p (TREE_OPERAND (t, 1))
1176 || negate_expr_p (TREE_OPERAND (t, 0));
1177 break;
1178
1179 case TRUNC_DIV_EXPR:
1180 case ROUND_DIV_EXPR:
1181 case FLOOR_DIV_EXPR:
1182 case CEIL_DIV_EXPR:
1183 case EXACT_DIV_EXPR:
1184 /* In general we can't negate A / B, because if A is INT_MIN and
1185 B is 1, we may turn this into INT_MIN / -1 which is undefined
1186 and actually traps on some architectures. But if overflow is
1187 undefined, we can negate, because - (INT_MIN / 1) is an
1188 overflow. */
1189 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
1190 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
1191 break;
1192 return negate_expr_p (TREE_OPERAND (t, 1))
1193 || negate_expr_p (TREE_OPERAND (t, 0));
1194
1195 case NOP_EXPR:
1196 /* Negate -((double)float) as (double)(-float). */
1197 if (TREE_CODE (type) == REAL_TYPE)
1198 {
1199 tree tem = strip_float_extensions (t);
1200 if (tem != t)
1201 return negate_expr_p (tem);
1202 }
1203 break;
1204
1205 case CALL_EXPR:
1206 /* Negate -f(x) as f(-x). */
1207 if (negate_mathfn_p (builtin_mathfn_code (t)))
1208 return negate_expr_p (CALL_EXPR_ARG (t, 0));
1209 break;
1210
1211 case RSHIFT_EXPR:
1212 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1213 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1214 {
1215 tree op1 = TREE_OPERAND (t, 1);
1216 if (TREE_INT_CST_HIGH (op1) == 0
1217 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1218 == TREE_INT_CST_LOW (op1))
1219 return true;
1220 }
1221 break;
1222
1223 default:
1224 break;
1225 }
1226 return false;
1227 }
1228
1229 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
1230 simplification is possible.
1231 If negate_expr_p would return true for T, NULL_TREE will never be
1232 returned. */
1233
1234 static tree
1235 fold_negate_expr (tree t)
1236 {
1237 tree type = TREE_TYPE (t);
1238 tree tem;
1239
1240 switch (TREE_CODE (t))
1241 {
1242 /* Convert - (~A) to A + 1. */
1243 case BIT_NOT_EXPR:
1244 if (INTEGRAL_TYPE_P (type))
1245 return fold_build2 (PLUS_EXPR, type, TREE_OPERAND (t, 0),
1246 build_int_cst (type, 1));
1247 break;
1248
1249 case INTEGER_CST:
1250 tem = fold_negate_const (t, type);
1251 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
1252 || !TYPE_OVERFLOW_TRAPS (type))
1253 return tem;
1254 break;
1255
1256 case REAL_CST:
1257 tem = fold_negate_const (t, type);
1258 /* Two's complement FP formats, such as c4x, may overflow. */
1259 if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1260 return tem;
1261 break;
1262
1263 case FIXED_CST:
1264 tem = fold_negate_const (t, type);
1265 return tem;
1266
1267 case COMPLEX_CST:
1268 {
1269 tree rpart = negate_expr (TREE_REALPART (t));
1270 tree ipart = negate_expr (TREE_IMAGPART (t));
1271
1272 if ((TREE_CODE (rpart) == REAL_CST
1273 && TREE_CODE (ipart) == REAL_CST)
1274 || (TREE_CODE (rpart) == INTEGER_CST
1275 && TREE_CODE (ipart) == INTEGER_CST))
1276 return build_complex (type, rpart, ipart);
1277 }
1278 break;
1279
1280 case COMPLEX_EXPR:
1281 if (negate_expr_p (t))
1282 return fold_build2 (COMPLEX_EXPR, type,
1283 fold_negate_expr (TREE_OPERAND (t, 0)),
1284 fold_negate_expr (TREE_OPERAND (t, 1)));
1285 break;
1286
1287 case CONJ_EXPR:
1288 if (negate_expr_p (t))
1289 return fold_build1 (CONJ_EXPR, type,
1290 fold_negate_expr (TREE_OPERAND (t, 0)));
1291 break;
1292
1293 case NEGATE_EXPR:
1294 return TREE_OPERAND (t, 0);
1295
1296 case PLUS_EXPR:
1297 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1298 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
1299 {
1300 /* -(A + B) -> (-B) - A. */
1301 if (negate_expr_p (TREE_OPERAND (t, 1))
1302 && reorder_operands_p (TREE_OPERAND (t, 0),
1303 TREE_OPERAND (t, 1)))
1304 {
1305 tem = negate_expr (TREE_OPERAND (t, 1));
1306 return fold_build2 (MINUS_EXPR, type,
1307 tem, TREE_OPERAND (t, 0));
1308 }
1309
1310 /* -(A + B) -> (-A) - B. */
1311 if (negate_expr_p (TREE_OPERAND (t, 0)))
1312 {
1313 tem = negate_expr (TREE_OPERAND (t, 0));
1314 return fold_build2 (MINUS_EXPR, type,
1315 tem, TREE_OPERAND (t, 1));
1316 }
1317 }
1318 break;
1319
1320 case MINUS_EXPR:
1321 /* - (A - B) -> B - A */
1322 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1323 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
1324 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
1325 return fold_build2 (MINUS_EXPR, type,
1326 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
1327 break;
1328
1329 case MULT_EXPR:
1330 if (TYPE_UNSIGNED (type))
1331 break;
1332
1333 /* Fall through. */
1334
1335 case RDIV_EXPR:
1336 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type)))
1337 {
1338 tem = TREE_OPERAND (t, 1);
1339 if (negate_expr_p (tem))
1340 return fold_build2 (TREE_CODE (t), type,
1341 TREE_OPERAND (t, 0), negate_expr (tem));
1342 tem = TREE_OPERAND (t, 0);
1343 if (negate_expr_p (tem))
1344 return fold_build2 (TREE_CODE (t), type,
1345 negate_expr (tem), TREE_OPERAND (t, 1));
1346 }
1347 break;
1348
1349 case TRUNC_DIV_EXPR:
1350 case ROUND_DIV_EXPR:
1351 case FLOOR_DIV_EXPR:
1352 case CEIL_DIV_EXPR:
1353 case EXACT_DIV_EXPR:
1354 /* In general we can't negate A / B, because if A is INT_MIN and
1355 B is 1, we may turn this into INT_MIN / -1 which is undefined
1356 and actually traps on some architectures. But if overflow is
1357 undefined, we can negate, because - (INT_MIN / 1) is an
1358 overflow. */
1359 if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
1360 {
1361 const char * const warnmsg = G_("assuming signed overflow does not "
1362 "occur when negating a division");
1363 tem = TREE_OPERAND (t, 1);
1364 if (negate_expr_p (tem))
1365 {
1366 if (INTEGRAL_TYPE_P (type)
1367 && (TREE_CODE (tem) != INTEGER_CST
1368 || integer_onep (tem)))
1369 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
1370 return fold_build2 (TREE_CODE (t), type,
1371 TREE_OPERAND (t, 0), negate_expr (tem));
1372 }
1373 tem = TREE_OPERAND (t, 0);
1374 if (negate_expr_p (tem))
1375 {
1376 if (INTEGRAL_TYPE_P (type)
1377 && (TREE_CODE (tem) != INTEGER_CST
1378 || tree_int_cst_equal (tem, TYPE_MIN_VALUE (type))))
1379 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
1380 return fold_build2 (TREE_CODE (t), type,
1381 negate_expr (tem), TREE_OPERAND (t, 1));
1382 }
1383 }
1384 break;
1385
1386 case NOP_EXPR:
1387 /* Convert -((double)float) into (double)(-float). */
1388 if (TREE_CODE (type) == REAL_TYPE)
1389 {
1390 tem = strip_float_extensions (t);
1391 if (tem != t && negate_expr_p (tem))
1392 return fold_convert (type, negate_expr (tem));
1393 }
1394 break;
1395
1396 case CALL_EXPR:
1397 /* Negate -f(x) as f(-x). */
1398 if (negate_mathfn_p (builtin_mathfn_code (t))
1399 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
1400 {
1401 tree fndecl, arg;
1402
1403 fndecl = get_callee_fndecl (t);
1404 arg = negate_expr (CALL_EXPR_ARG (t, 0));
1405 return build_call_expr (fndecl, 1, arg);
1406 }
1407 break;
1408
1409 case RSHIFT_EXPR:
1410 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1411 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1412 {
1413 tree op1 = TREE_OPERAND (t, 1);
1414 if (TREE_INT_CST_HIGH (op1) == 0
1415 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1416 == TREE_INT_CST_LOW (op1))
1417 {
1418 tree ntype = TYPE_UNSIGNED (type)
1419 ? signed_type_for (type)
1420 : unsigned_type_for (type);
1421 tree temp = fold_convert (ntype, TREE_OPERAND (t, 0));
1422 temp = fold_build2 (RSHIFT_EXPR, ntype, temp, op1);
1423 return fold_convert (type, temp);
1424 }
1425 }
1426 break;
1427
1428 default:
1429 break;
1430 }
1431
1432 return NULL_TREE;
1433 }
1434
1435 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
1436 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
1437 return NULL_TREE. */
1438
1439 static tree
1440 negate_expr (tree t)
1441 {
1442 tree type, tem;
1443
1444 if (t == NULL_TREE)
1445 return NULL_TREE;
1446
1447 type = TREE_TYPE (t);
1448 STRIP_SIGN_NOPS (t);
1449
1450 tem = fold_negate_expr (t);
1451 if (!tem)
1452 tem = build1 (NEGATE_EXPR, TREE_TYPE (t), t);
1453 return fold_convert (type, tem);
1454 }
1455 \f
1456 /* Split a tree IN into a constant, literal and variable parts that could be
1457 combined with CODE to make IN. "constant" means an expression with
1458 TREE_CONSTANT but that isn't an actual constant. CODE must be a
1459 commutative arithmetic operation. Store the constant part into *CONP,
1460 the literal in *LITP and return the variable part. If a part isn't
1461 present, set it to null. If the tree does not decompose in this way,
1462 return the entire tree as the variable part and the other parts as null.
1463
1464 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
1465 case, we negate an operand that was subtracted. Except if it is a
1466 literal for which we use *MINUS_LITP instead.
1467
1468 If NEGATE_P is true, we are negating all of IN, again except a literal
1469 for which we use *MINUS_LITP instead.
1470
1471 If IN is itself a literal or constant, return it as appropriate.
1472
1473 Note that we do not guarantee that any of the three values will be the
1474 same type as IN, but they will have the same signedness and mode. */
1475
1476 static tree
1477 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
1478 tree *minus_litp, int negate_p)
1479 {
1480 tree var = 0;
1481
1482 *conp = 0;
1483 *litp = 0;
1484 *minus_litp = 0;
1485
1486 /* Strip any conversions that don't change the machine mode or signedness. */
1487 STRIP_SIGN_NOPS (in);
1488
1489 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
1490 || TREE_CODE (in) == FIXED_CST)
1491 *litp = in;
1492 else if (TREE_CODE (in) == code
1493 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
1494 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
1495 /* We can associate addition and subtraction together (even
1496 though the C standard doesn't say so) for integers because
1497 the value is not affected. For reals, the value might be
1498 affected, so we can't. */
1499 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
1500 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
1501 {
1502 tree op0 = TREE_OPERAND (in, 0);
1503 tree op1 = TREE_OPERAND (in, 1);
1504 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
1505 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
1506
1507 /* First see if either of the operands is a literal, then a constant. */
1508 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
1509 || TREE_CODE (op0) == FIXED_CST)
1510 *litp = op0, op0 = 0;
1511 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
1512 || TREE_CODE (op1) == FIXED_CST)
1513 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
1514
1515 if (op0 != 0 && TREE_CONSTANT (op0))
1516 *conp = op0, op0 = 0;
1517 else if (op1 != 0 && TREE_CONSTANT (op1))
1518 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
1519
1520 /* If we haven't dealt with either operand, this is not a case we can
1521 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1522 if (op0 != 0 && op1 != 0)
1523 var = in;
1524 else if (op0 != 0)
1525 var = op0;
1526 else
1527 var = op1, neg_var_p = neg1_p;
1528
1529 /* Now do any needed negations. */
1530 if (neg_litp_p)
1531 *minus_litp = *litp, *litp = 0;
1532 if (neg_conp_p)
1533 *conp = negate_expr (*conp);
1534 if (neg_var_p)
1535 var = negate_expr (var);
1536 }
1537 else if (TREE_CONSTANT (in))
1538 *conp = in;
1539 else
1540 var = in;
1541
1542 if (negate_p)
1543 {
1544 if (*litp)
1545 *minus_litp = *litp, *litp = 0;
1546 else if (*minus_litp)
1547 *litp = *minus_litp, *minus_litp = 0;
1548 *conp = negate_expr (*conp);
1549 var = negate_expr (var);
1550 }
1551
1552 return var;
1553 }
1554
1555 /* Re-associate trees split by the above function. T1 and T2 are either
1556 expressions to associate or null. Return the new expression, if any. If
1557 we build an operation, do it in TYPE and with CODE. */
1558
1559 static tree
1560 associate_trees (tree t1, tree t2, enum tree_code code, tree type)
1561 {
1562 if (t1 == 0)
1563 return t2;
1564 else if (t2 == 0)
1565 return t1;
1566
1567 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1568 try to fold this since we will have infinite recursion. But do
1569 deal with any NEGATE_EXPRs. */
1570 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
1571 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
1572 {
1573 if (code == PLUS_EXPR)
1574 {
1575 if (TREE_CODE (t1) == NEGATE_EXPR)
1576 return build2 (MINUS_EXPR, type, fold_convert (type, t2),
1577 fold_convert (type, TREE_OPERAND (t1, 0)));
1578 else if (TREE_CODE (t2) == NEGATE_EXPR)
1579 return build2 (MINUS_EXPR, type, fold_convert (type, t1),
1580 fold_convert (type, TREE_OPERAND (t2, 0)));
1581 else if (integer_zerop (t2))
1582 return fold_convert (type, t1);
1583 }
1584 else if (code == MINUS_EXPR)
1585 {
1586 if (integer_zerop (t2))
1587 return fold_convert (type, t1);
1588 }
1589
1590 return build2 (code, type, fold_convert (type, t1),
1591 fold_convert (type, t2));
1592 }
1593
1594 return fold_build2 (code, type, fold_convert (type, t1),
1595 fold_convert (type, t2));
1596 }
1597 \f
1598 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
1599 for use in int_const_binop, size_binop and size_diffop. */
1600
1601 static bool
1602 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
1603 {
1604 if (TREE_CODE (type1) != INTEGER_TYPE && !POINTER_TYPE_P (type1))
1605 return false;
1606 if (TREE_CODE (type2) != INTEGER_TYPE && !POINTER_TYPE_P (type2))
1607 return false;
1608
1609 switch (code)
1610 {
1611 case LSHIFT_EXPR:
1612 case RSHIFT_EXPR:
1613 case LROTATE_EXPR:
1614 case RROTATE_EXPR:
1615 return true;
1616
1617 default:
1618 break;
1619 }
1620
1621 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
1622 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
1623 && TYPE_MODE (type1) == TYPE_MODE (type2);
1624 }
1625
1626
1627 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1628 to produce a new constant. Return NULL_TREE if we don't know how
1629 to evaluate CODE at compile-time.
1630
1631 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1632
1633 tree
1634 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2, int notrunc)
1635 {
1636 unsigned HOST_WIDE_INT int1l, int2l;
1637 HOST_WIDE_INT int1h, int2h;
1638 unsigned HOST_WIDE_INT low;
1639 HOST_WIDE_INT hi;
1640 unsigned HOST_WIDE_INT garbagel;
1641 HOST_WIDE_INT garbageh;
1642 tree t;
1643 tree type = TREE_TYPE (arg1);
1644 int uns = TYPE_UNSIGNED (type);
1645 int is_sizetype
1646 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
1647 int overflow = 0;
1648
1649 int1l = TREE_INT_CST_LOW (arg1);
1650 int1h = TREE_INT_CST_HIGH (arg1);
1651 int2l = TREE_INT_CST_LOW (arg2);
1652 int2h = TREE_INT_CST_HIGH (arg2);
1653
1654 switch (code)
1655 {
1656 case BIT_IOR_EXPR:
1657 low = int1l | int2l, hi = int1h | int2h;
1658 break;
1659
1660 case BIT_XOR_EXPR:
1661 low = int1l ^ int2l, hi = int1h ^ int2h;
1662 break;
1663
1664 case BIT_AND_EXPR:
1665 low = int1l & int2l, hi = int1h & int2h;
1666 break;
1667
1668 case RSHIFT_EXPR:
1669 int2l = -int2l;
1670 case LSHIFT_EXPR:
1671 /* It's unclear from the C standard whether shifts can overflow.
1672 The following code ignores overflow; perhaps a C standard
1673 interpretation ruling is needed. */
1674 lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1675 &low, &hi, !uns);
1676 break;
1677
1678 case RROTATE_EXPR:
1679 int2l = - int2l;
1680 case LROTATE_EXPR:
1681 lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1682 &low, &hi);
1683 break;
1684
1685 case PLUS_EXPR:
1686 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1687 break;
1688
1689 case MINUS_EXPR:
1690 neg_double (int2l, int2h, &low, &hi);
1691 add_double (int1l, int1h, low, hi, &low, &hi);
1692 overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
1693 break;
1694
1695 case MULT_EXPR:
1696 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1697 break;
1698
1699 case TRUNC_DIV_EXPR:
1700 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1701 case EXACT_DIV_EXPR:
1702 /* This is a shortcut for a common special case. */
1703 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1704 && !TREE_OVERFLOW (arg1)
1705 && !TREE_OVERFLOW (arg2)
1706 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1707 {
1708 if (code == CEIL_DIV_EXPR)
1709 int1l += int2l - 1;
1710
1711 low = int1l / int2l, hi = 0;
1712 break;
1713 }
1714
1715 /* ... fall through ... */
1716
1717 case ROUND_DIV_EXPR:
1718 if (int2h == 0 && int2l == 0)
1719 return NULL_TREE;
1720 if (int2h == 0 && int2l == 1)
1721 {
1722 low = int1l, hi = int1h;
1723 break;
1724 }
1725 if (int1l == int2l && int1h == int2h
1726 && ! (int1l == 0 && int1h == 0))
1727 {
1728 low = 1, hi = 0;
1729 break;
1730 }
1731 overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
1732 &low, &hi, &garbagel, &garbageh);
1733 break;
1734
1735 case TRUNC_MOD_EXPR:
1736 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1737 /* This is a shortcut for a common special case. */
1738 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1739 && !TREE_OVERFLOW (arg1)
1740 && !TREE_OVERFLOW (arg2)
1741 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1742 {
1743 if (code == CEIL_MOD_EXPR)
1744 int1l += int2l - 1;
1745 low = int1l % int2l, hi = 0;
1746 break;
1747 }
1748
1749 /* ... fall through ... */
1750
1751 case ROUND_MOD_EXPR:
1752 if (int2h == 0 && int2l == 0)
1753 return NULL_TREE;
1754 overflow = div_and_round_double (code, uns,
1755 int1l, int1h, int2l, int2h,
1756 &garbagel, &garbageh, &low, &hi);
1757 break;
1758
1759 case MIN_EXPR:
1760 case MAX_EXPR:
1761 if (uns)
1762 low = (((unsigned HOST_WIDE_INT) int1h
1763 < (unsigned HOST_WIDE_INT) int2h)
1764 || (((unsigned HOST_WIDE_INT) int1h
1765 == (unsigned HOST_WIDE_INT) int2h)
1766 && int1l < int2l));
1767 else
1768 low = (int1h < int2h
1769 || (int1h == int2h && int1l < int2l));
1770
1771 if (low == (code == MIN_EXPR))
1772 low = int1l, hi = int1h;
1773 else
1774 low = int2l, hi = int2h;
1775 break;
1776
1777 default:
1778 return NULL_TREE;
1779 }
1780
1781 if (notrunc)
1782 {
1783 t = build_int_cst_wide (TREE_TYPE (arg1), low, hi);
1784
1785 /* Propagate overflow flags ourselves. */
1786 if (((!uns || is_sizetype) && overflow)
1787 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1788 {
1789 t = copy_node (t);
1790 TREE_OVERFLOW (t) = 1;
1791 }
1792 }
1793 else
1794 t = force_fit_type_double (TREE_TYPE (arg1), low, hi, 1,
1795 ((!uns || is_sizetype) && overflow)
1796 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1797
1798 return t;
1799 }
1800
1801 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1802 constant. We assume ARG1 and ARG2 have the same data type, or at least
1803 are the same kind of constant and the same machine mode. Return zero if
1804 combining the constants is not allowed in the current operating mode.
1805
1806 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1807
1808 static tree
1809 const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1810 {
1811 /* Sanity check for the recursive cases. */
1812 if (!arg1 || !arg2)
1813 return NULL_TREE;
1814
1815 STRIP_NOPS (arg1);
1816 STRIP_NOPS (arg2);
1817
1818 if (TREE_CODE (arg1) == INTEGER_CST)
1819 return int_const_binop (code, arg1, arg2, notrunc);
1820
1821 if (TREE_CODE (arg1) == REAL_CST)
1822 {
1823 enum machine_mode mode;
1824 REAL_VALUE_TYPE d1;
1825 REAL_VALUE_TYPE d2;
1826 REAL_VALUE_TYPE value;
1827 REAL_VALUE_TYPE result;
1828 bool inexact;
1829 tree t, type;
1830
1831 /* The following codes are handled by real_arithmetic. */
1832 switch (code)
1833 {
1834 case PLUS_EXPR:
1835 case MINUS_EXPR:
1836 case MULT_EXPR:
1837 case RDIV_EXPR:
1838 case MIN_EXPR:
1839 case MAX_EXPR:
1840 break;
1841
1842 default:
1843 return NULL_TREE;
1844 }
1845
1846 d1 = TREE_REAL_CST (arg1);
1847 d2 = TREE_REAL_CST (arg2);
1848
1849 type = TREE_TYPE (arg1);
1850 mode = TYPE_MODE (type);
1851
1852 /* Don't perform operation if we honor signaling NaNs and
1853 either operand is a NaN. */
1854 if (HONOR_SNANS (mode)
1855 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1856 return NULL_TREE;
1857
1858 /* Don't perform operation if it would raise a division
1859 by zero exception. */
1860 if (code == RDIV_EXPR
1861 && REAL_VALUES_EQUAL (d2, dconst0)
1862 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1863 return NULL_TREE;
1864
1865 /* If either operand is a NaN, just return it. Otherwise, set up
1866 for floating-point trap; we return an overflow. */
1867 if (REAL_VALUE_ISNAN (d1))
1868 return arg1;
1869 else if (REAL_VALUE_ISNAN (d2))
1870 return arg2;
1871
1872 inexact = real_arithmetic (&value, code, &d1, &d2);
1873 real_convert (&result, mode, &value);
1874
1875 /* Don't constant fold this floating point operation if
1876 the result has overflowed and flag_trapping_math. */
1877 if (flag_trapping_math
1878 && MODE_HAS_INFINITIES (mode)
1879 && REAL_VALUE_ISINF (result)
1880 && !REAL_VALUE_ISINF (d1)
1881 && !REAL_VALUE_ISINF (d2))
1882 return NULL_TREE;
1883
1884 /* Don't constant fold this floating point operation if the
1885 result may dependent upon the run-time rounding mode and
1886 flag_rounding_math is set, or if GCC's software emulation
1887 is unable to accurately represent the result. */
1888 if ((flag_rounding_math
1889 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1890 && (inexact || !real_identical (&result, &value)))
1891 return NULL_TREE;
1892
1893 t = build_real (type, result);
1894
1895 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1896 return t;
1897 }
1898
1899 if (TREE_CODE (arg1) == FIXED_CST)
1900 {
1901 FIXED_VALUE_TYPE f1;
1902 FIXED_VALUE_TYPE f2;
1903 FIXED_VALUE_TYPE result;
1904 tree t, type;
1905 int sat_p;
1906 bool overflow_p;
1907
1908 /* The following codes are handled by fixed_arithmetic. */
1909 switch (code)
1910 {
1911 case PLUS_EXPR:
1912 case MINUS_EXPR:
1913 case MULT_EXPR:
1914 case TRUNC_DIV_EXPR:
1915 f2 = TREE_FIXED_CST (arg2);
1916 break;
1917
1918 case LSHIFT_EXPR:
1919 case RSHIFT_EXPR:
1920 f2.data.high = TREE_INT_CST_HIGH (arg2);
1921 f2.data.low = TREE_INT_CST_LOW (arg2);
1922 f2.mode = SImode;
1923 break;
1924
1925 default:
1926 return NULL_TREE;
1927 }
1928
1929 f1 = TREE_FIXED_CST (arg1);
1930 type = TREE_TYPE (arg1);
1931 sat_p = TYPE_SATURATING (type);
1932 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1933 t = build_fixed (type, result);
1934 /* Propagate overflow flags. */
1935 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1936 TREE_OVERFLOW (t) = 1;
1937 return t;
1938 }
1939
1940 if (TREE_CODE (arg1) == COMPLEX_CST)
1941 {
1942 tree type = TREE_TYPE (arg1);
1943 tree r1 = TREE_REALPART (arg1);
1944 tree i1 = TREE_IMAGPART (arg1);
1945 tree r2 = TREE_REALPART (arg2);
1946 tree i2 = TREE_IMAGPART (arg2);
1947 tree real, imag;
1948
1949 switch (code)
1950 {
1951 case PLUS_EXPR:
1952 case MINUS_EXPR:
1953 real = const_binop (code, r1, r2, notrunc);
1954 imag = const_binop (code, i1, i2, notrunc);
1955 break;
1956
1957 case MULT_EXPR:
1958 real = const_binop (MINUS_EXPR,
1959 const_binop (MULT_EXPR, r1, r2, notrunc),
1960 const_binop (MULT_EXPR, i1, i2, notrunc),
1961 notrunc);
1962 imag = const_binop (PLUS_EXPR,
1963 const_binop (MULT_EXPR, r1, i2, notrunc),
1964 const_binop (MULT_EXPR, i1, r2, notrunc),
1965 notrunc);
1966 break;
1967
1968 case RDIV_EXPR:
1969 {
1970 tree magsquared
1971 = const_binop (PLUS_EXPR,
1972 const_binop (MULT_EXPR, r2, r2, notrunc),
1973 const_binop (MULT_EXPR, i2, i2, notrunc),
1974 notrunc);
1975 tree t1
1976 = const_binop (PLUS_EXPR,
1977 const_binop (MULT_EXPR, r1, r2, notrunc),
1978 const_binop (MULT_EXPR, i1, i2, notrunc),
1979 notrunc);
1980 tree t2
1981 = const_binop (MINUS_EXPR,
1982 const_binop (MULT_EXPR, i1, r2, notrunc),
1983 const_binop (MULT_EXPR, r1, i2, notrunc),
1984 notrunc);
1985
1986 if (INTEGRAL_TYPE_P (TREE_TYPE (r1)))
1987 code = TRUNC_DIV_EXPR;
1988
1989 real = const_binop (code, t1, magsquared, notrunc);
1990 imag = const_binop (code, t2, magsquared, notrunc);
1991 }
1992 break;
1993
1994 default:
1995 return NULL_TREE;
1996 }
1997
1998 if (real && imag)
1999 return build_complex (type, real, imag);
2000 }
2001
2002 if (TREE_CODE (arg1) == VECTOR_CST)
2003 {
2004 tree type = TREE_TYPE(arg1);
2005 int count = TYPE_VECTOR_SUBPARTS (type), i;
2006 tree elements1, elements2, list = NULL_TREE;
2007
2008 if(TREE_CODE(arg2) != VECTOR_CST)
2009 return NULL_TREE;
2010
2011 elements1 = TREE_VECTOR_CST_ELTS (arg1);
2012 elements2 = TREE_VECTOR_CST_ELTS (arg2);
2013
2014 for (i = 0; i < count; i++)
2015 {
2016 tree elem1, elem2, elem;
2017
2018 /* The trailing elements can be empty and should be treated as 0 */
2019 if(!elements1)
2020 elem1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2021 else
2022 {
2023 elem1 = TREE_VALUE(elements1);
2024 elements1 = TREE_CHAIN (elements1);
2025 }
2026
2027 if(!elements2)
2028 elem2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2029 else
2030 {
2031 elem2 = TREE_VALUE(elements2);
2032 elements2 = TREE_CHAIN (elements2);
2033 }
2034
2035 elem = const_binop (code, elem1, elem2, notrunc);
2036
2037 /* It is possible that const_binop cannot handle the given
2038 code and return NULL_TREE */
2039 if(elem == NULL_TREE)
2040 return NULL_TREE;
2041
2042 list = tree_cons (NULL_TREE, elem, list);
2043 }
2044 return build_vector(type, nreverse(list));
2045 }
2046 return NULL_TREE;
2047 }
2048
2049 /* Create a size type INT_CST node with NUMBER sign extended. KIND
2050 indicates which particular sizetype to create. */
2051
2052 tree
2053 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
2054 {
2055 return build_int_cst (sizetype_tab[(int) kind], number);
2056 }
2057 \f
2058 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
2059 is a tree code. The type of the result is taken from the operands.
2060 Both must be equivalent integer types, ala int_binop_types_match_p.
2061 If the operands are constant, so is the result. */
2062
2063 tree
2064 size_binop (enum tree_code code, tree arg0, tree arg1)
2065 {
2066 tree type = TREE_TYPE (arg0);
2067
2068 if (arg0 == error_mark_node || arg1 == error_mark_node)
2069 return error_mark_node;
2070
2071 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
2072 TREE_TYPE (arg1)));
2073
2074 /* Handle the special case of two integer constants faster. */
2075 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2076 {
2077 /* And some specific cases even faster than that. */
2078 if (code == PLUS_EXPR)
2079 {
2080 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
2081 return arg1;
2082 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
2083 return arg0;
2084 }
2085 else if (code == MINUS_EXPR)
2086 {
2087 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
2088 return arg0;
2089 }
2090 else if (code == MULT_EXPR)
2091 {
2092 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
2093 return arg1;
2094 }
2095
2096 /* Handle general case of two integer constants. */
2097 return int_const_binop (code, arg0, arg1, 0);
2098 }
2099
2100 return fold_build2 (code, type, arg0, arg1);
2101 }
2102
2103 /* Given two values, either both of sizetype or both of bitsizetype,
2104 compute the difference between the two values. Return the value
2105 in signed type corresponding to the type of the operands. */
2106
2107 tree
2108 size_diffop (tree arg0, tree arg1)
2109 {
2110 tree type = TREE_TYPE (arg0);
2111 tree ctype;
2112
2113 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
2114 TREE_TYPE (arg1)));
2115
2116 /* If the type is already signed, just do the simple thing. */
2117 if (!TYPE_UNSIGNED (type))
2118 return size_binop (MINUS_EXPR, arg0, arg1);
2119
2120 if (type == sizetype)
2121 ctype = ssizetype;
2122 else if (type == bitsizetype)
2123 ctype = sbitsizetype;
2124 else
2125 ctype = signed_type_for (type);
2126
2127 /* If either operand is not a constant, do the conversions to the signed
2128 type and subtract. The hardware will do the right thing with any
2129 overflow in the subtraction. */
2130 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
2131 return size_binop (MINUS_EXPR, fold_convert (ctype, arg0),
2132 fold_convert (ctype, arg1));
2133
2134 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
2135 Otherwise, subtract the other way, convert to CTYPE (we know that can't
2136 overflow) and negate (which can't either). Special-case a result
2137 of zero while we're here. */
2138 if (tree_int_cst_equal (arg0, arg1))
2139 return build_int_cst (ctype, 0);
2140 else if (tree_int_cst_lt (arg1, arg0))
2141 return fold_convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
2142 else
2143 return size_binop (MINUS_EXPR, build_int_cst (ctype, 0),
2144 fold_convert (ctype, size_binop (MINUS_EXPR,
2145 arg1, arg0)));
2146 }
2147 \f
2148 /* A subroutine of fold_convert_const handling conversions of an
2149 INTEGER_CST to another integer type. */
2150
2151 static tree
2152 fold_convert_const_int_from_int (tree type, const_tree arg1)
2153 {
2154 tree t;
2155
2156 /* Given an integer constant, make new constant with new type,
2157 appropriately sign-extended or truncated. */
2158 t = force_fit_type_double (type, TREE_INT_CST_LOW (arg1),
2159 TREE_INT_CST_HIGH (arg1),
2160 /* Don't set the overflow when
2161 converting from a pointer, */
2162 !POINTER_TYPE_P (TREE_TYPE (arg1))
2163 /* or to a sizetype with same signedness
2164 and the precision is unchanged.
2165 ??? sizetype is always sign-extended,
2166 but its signedness depends on the
2167 frontend. Thus we see spurious overflows
2168 here if we do not check this. */
2169 && !((TYPE_PRECISION (TREE_TYPE (arg1))
2170 == TYPE_PRECISION (type))
2171 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
2172 == TYPE_UNSIGNED (type))
2173 && ((TREE_CODE (TREE_TYPE (arg1)) == INTEGER_TYPE
2174 && TYPE_IS_SIZETYPE (TREE_TYPE (arg1)))
2175 || (TREE_CODE (type) == INTEGER_TYPE
2176 && TYPE_IS_SIZETYPE (type)))),
2177 (TREE_INT_CST_HIGH (arg1) < 0
2178 && (TYPE_UNSIGNED (type)
2179 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
2180 | TREE_OVERFLOW (arg1));
2181
2182 return t;
2183 }
2184
2185 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2186 to an integer type. */
2187
2188 static tree
2189 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
2190 {
2191 int overflow = 0;
2192 tree t;
2193
2194 /* The following code implements the floating point to integer
2195 conversion rules required by the Java Language Specification,
2196 that IEEE NaNs are mapped to zero and values that overflow
2197 the target precision saturate, i.e. values greater than
2198 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
2199 are mapped to INT_MIN. These semantics are allowed by the
2200 C and C++ standards that simply state that the behavior of
2201 FP-to-integer conversion is unspecified upon overflow. */
2202
2203 HOST_WIDE_INT high, low;
2204 REAL_VALUE_TYPE r;
2205 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
2206
2207 switch (code)
2208 {
2209 case FIX_TRUNC_EXPR:
2210 real_trunc (&r, VOIDmode, &x);
2211 break;
2212
2213 default:
2214 gcc_unreachable ();
2215 }
2216
2217 /* If R is NaN, return zero and show we have an overflow. */
2218 if (REAL_VALUE_ISNAN (r))
2219 {
2220 overflow = 1;
2221 high = 0;
2222 low = 0;
2223 }
2224
2225 /* See if R is less than the lower bound or greater than the
2226 upper bound. */
2227
2228 if (! overflow)
2229 {
2230 tree lt = TYPE_MIN_VALUE (type);
2231 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
2232 if (REAL_VALUES_LESS (r, l))
2233 {
2234 overflow = 1;
2235 high = TREE_INT_CST_HIGH (lt);
2236 low = TREE_INT_CST_LOW (lt);
2237 }
2238 }
2239
2240 if (! overflow)
2241 {
2242 tree ut = TYPE_MAX_VALUE (type);
2243 if (ut)
2244 {
2245 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
2246 if (REAL_VALUES_LESS (u, r))
2247 {
2248 overflow = 1;
2249 high = TREE_INT_CST_HIGH (ut);
2250 low = TREE_INT_CST_LOW (ut);
2251 }
2252 }
2253 }
2254
2255 if (! overflow)
2256 REAL_VALUE_TO_INT (&low, &high, r);
2257
2258 t = force_fit_type_double (type, low, high, -1,
2259 overflow | TREE_OVERFLOW (arg1));
2260 return t;
2261 }
2262
2263 /* A subroutine of fold_convert_const handling conversions of a
2264 FIXED_CST to an integer type. */
2265
2266 static tree
2267 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
2268 {
2269 tree t;
2270 double_int temp, temp_trunc;
2271 unsigned int mode;
2272
2273 /* Right shift FIXED_CST to temp by fbit. */
2274 temp = TREE_FIXED_CST (arg1).data;
2275 mode = TREE_FIXED_CST (arg1).mode;
2276 if (GET_MODE_FBIT (mode) < 2 * HOST_BITS_PER_WIDE_INT)
2277 {
2278 lshift_double (temp.low, temp.high,
2279 - GET_MODE_FBIT (mode), 2 * HOST_BITS_PER_WIDE_INT,
2280 &temp.low, &temp.high, SIGNED_FIXED_POINT_MODE_P (mode));
2281
2282 /* Left shift temp to temp_trunc by fbit. */
2283 lshift_double (temp.low, temp.high,
2284 GET_MODE_FBIT (mode), 2 * HOST_BITS_PER_WIDE_INT,
2285 &temp_trunc.low, &temp_trunc.high,
2286 SIGNED_FIXED_POINT_MODE_P (mode));
2287 }
2288 else
2289 {
2290 temp.low = 0;
2291 temp.high = 0;
2292 temp_trunc.low = 0;
2293 temp_trunc.high = 0;
2294 }
2295
2296 /* If FIXED_CST is negative, we need to round the value toward 0.
2297 By checking if the fractional bits are not zero to add 1 to temp. */
2298 if (SIGNED_FIXED_POINT_MODE_P (mode) && temp_trunc.high < 0
2299 && !double_int_equal_p (TREE_FIXED_CST (arg1).data, temp_trunc))
2300 {
2301 double_int one;
2302 one.low = 1;
2303 one.high = 0;
2304 temp = double_int_add (temp, one);
2305 }
2306
2307 /* Given a fixed-point constant, make new constant with new type,
2308 appropriately sign-extended or truncated. */
2309 t = force_fit_type_double (type, temp.low, temp.high, -1,
2310 (temp.high < 0
2311 && (TYPE_UNSIGNED (type)
2312 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
2313 | TREE_OVERFLOW (arg1));
2314
2315 return t;
2316 }
2317
2318 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2319 to another floating point type. */
2320
2321 static tree
2322 fold_convert_const_real_from_real (tree type, const_tree arg1)
2323 {
2324 REAL_VALUE_TYPE value;
2325 tree t;
2326
2327 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
2328 t = build_real (type, value);
2329
2330 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2331 return t;
2332 }
2333
2334 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2335 to a floating point type. */
2336
2337 static tree
2338 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2339 {
2340 REAL_VALUE_TYPE value;
2341 tree t;
2342
2343 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
2344 t = build_real (type, value);
2345
2346 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2347 return t;
2348 }
2349
2350 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2351 to another fixed-point type. */
2352
2353 static tree
2354 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2355 {
2356 FIXED_VALUE_TYPE value;
2357 tree t;
2358 bool overflow_p;
2359
2360 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2361 TYPE_SATURATING (type));
2362 t = build_fixed (type, value);
2363
2364 /* Propagate overflow flags. */
2365 if (overflow_p | TREE_OVERFLOW (arg1))
2366 TREE_OVERFLOW (t) = 1;
2367 return t;
2368 }
2369
2370 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2371 to a fixed-point type. */
2372
2373 static tree
2374 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2375 {
2376 FIXED_VALUE_TYPE value;
2377 tree t;
2378 bool overflow_p;
2379
2380 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type),
2381 TREE_INT_CST (arg1),
2382 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2383 TYPE_SATURATING (type));
2384 t = build_fixed (type, value);
2385
2386 /* Propagate overflow flags. */
2387 if (overflow_p | TREE_OVERFLOW (arg1))
2388 TREE_OVERFLOW (t) = 1;
2389 return t;
2390 }
2391
2392 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2393 to a fixed-point type. */
2394
2395 static tree
2396 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2397 {
2398 FIXED_VALUE_TYPE value;
2399 tree t;
2400 bool overflow_p;
2401
2402 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2403 &TREE_REAL_CST (arg1),
2404 TYPE_SATURATING (type));
2405 t = build_fixed (type, value);
2406
2407 /* Propagate overflow flags. */
2408 if (overflow_p | TREE_OVERFLOW (arg1))
2409 TREE_OVERFLOW (t) = 1;
2410 return t;
2411 }
2412
2413 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2414 type TYPE. If no simplification can be done return NULL_TREE. */
2415
2416 static tree
2417 fold_convert_const (enum tree_code code, tree type, tree arg1)
2418 {
2419 if (TREE_TYPE (arg1) == type)
2420 return arg1;
2421
2422 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2423 || TREE_CODE (type) == OFFSET_TYPE)
2424 {
2425 if (TREE_CODE (arg1) == INTEGER_CST)
2426 return fold_convert_const_int_from_int (type, arg1);
2427 else if (TREE_CODE (arg1) == REAL_CST)
2428 return fold_convert_const_int_from_real (code, type, arg1);
2429 else if (TREE_CODE (arg1) == FIXED_CST)
2430 return fold_convert_const_int_from_fixed (type, arg1);
2431 }
2432 else if (TREE_CODE (type) == REAL_TYPE)
2433 {
2434 if (TREE_CODE (arg1) == INTEGER_CST)
2435 return build_real_from_int_cst (type, arg1);
2436 else if (TREE_CODE (arg1) == REAL_CST)
2437 return fold_convert_const_real_from_real (type, arg1);
2438 else if (TREE_CODE (arg1) == FIXED_CST)
2439 return fold_convert_const_real_from_fixed (type, arg1);
2440 }
2441 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2442 {
2443 if (TREE_CODE (arg1) == FIXED_CST)
2444 return fold_convert_const_fixed_from_fixed (type, arg1);
2445 else if (TREE_CODE (arg1) == INTEGER_CST)
2446 return fold_convert_const_fixed_from_int (type, arg1);
2447 else if (TREE_CODE (arg1) == REAL_CST)
2448 return fold_convert_const_fixed_from_real (type, arg1);
2449 }
2450 return NULL_TREE;
2451 }
2452
2453 /* Construct a vector of zero elements of vector type TYPE. */
2454
2455 static tree
2456 build_zero_vector (tree type)
2457 {
2458 tree elem, list;
2459 int i, units;
2460
2461 elem = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2462 units = TYPE_VECTOR_SUBPARTS (type);
2463
2464 list = NULL_TREE;
2465 for (i = 0; i < units; i++)
2466 list = tree_cons (NULL_TREE, elem, list);
2467 return build_vector (type, list);
2468 }
2469
2470 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2471
2472 bool
2473 fold_convertible_p (const_tree type, const_tree arg)
2474 {
2475 tree orig = TREE_TYPE (arg);
2476
2477 if (type == orig)
2478 return true;
2479
2480 if (TREE_CODE (arg) == ERROR_MARK
2481 || TREE_CODE (type) == ERROR_MARK
2482 || TREE_CODE (orig) == ERROR_MARK)
2483 return false;
2484
2485 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2486 return true;
2487
2488 switch (TREE_CODE (type))
2489 {
2490 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2491 case POINTER_TYPE: case REFERENCE_TYPE:
2492 case OFFSET_TYPE:
2493 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2494 || TREE_CODE (orig) == OFFSET_TYPE)
2495 return true;
2496 return (TREE_CODE (orig) == VECTOR_TYPE
2497 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2498
2499 case REAL_TYPE:
2500 case FIXED_POINT_TYPE:
2501 case COMPLEX_TYPE:
2502 case VECTOR_TYPE:
2503 case VOID_TYPE:
2504 return TREE_CODE (type) == TREE_CODE (orig);
2505
2506 default:
2507 return false;
2508 }
2509 }
2510
2511 /* Convert expression ARG to type TYPE. Used by the middle-end for
2512 simple conversions in preference to calling the front-end's convert. */
2513
2514 tree
2515 fold_convert (tree type, tree arg)
2516 {
2517 tree orig = TREE_TYPE (arg);
2518 tree tem;
2519
2520 if (type == orig)
2521 return arg;
2522
2523 if (TREE_CODE (arg) == ERROR_MARK
2524 || TREE_CODE (type) == ERROR_MARK
2525 || TREE_CODE (orig) == ERROR_MARK)
2526 return error_mark_node;
2527
2528 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2529 return fold_build1 (NOP_EXPR, type, arg);
2530
2531 switch (TREE_CODE (type))
2532 {
2533 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2534 case POINTER_TYPE: case REFERENCE_TYPE:
2535 case OFFSET_TYPE:
2536 if (TREE_CODE (arg) == INTEGER_CST)
2537 {
2538 tem = fold_convert_const (NOP_EXPR, type, arg);
2539 if (tem != NULL_TREE)
2540 return tem;
2541 }
2542 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2543 || TREE_CODE (orig) == OFFSET_TYPE)
2544 return fold_build1 (NOP_EXPR, type, arg);
2545 if (TREE_CODE (orig) == COMPLEX_TYPE)
2546 {
2547 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2548 return fold_convert (type, tem);
2549 }
2550 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2551 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2552 return fold_build1 (NOP_EXPR, type, arg);
2553
2554 case REAL_TYPE:
2555 if (TREE_CODE (arg) == INTEGER_CST)
2556 {
2557 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2558 if (tem != NULL_TREE)
2559 return tem;
2560 }
2561 else if (TREE_CODE (arg) == REAL_CST)
2562 {
2563 tem = fold_convert_const (NOP_EXPR, type, arg);
2564 if (tem != NULL_TREE)
2565 return tem;
2566 }
2567 else if (TREE_CODE (arg) == FIXED_CST)
2568 {
2569 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2570 if (tem != NULL_TREE)
2571 return tem;
2572 }
2573
2574 switch (TREE_CODE (orig))
2575 {
2576 case INTEGER_TYPE:
2577 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2578 case POINTER_TYPE: case REFERENCE_TYPE:
2579 return fold_build1 (FLOAT_EXPR, type, arg);
2580
2581 case REAL_TYPE:
2582 return fold_build1 (NOP_EXPR, type, arg);
2583
2584 case FIXED_POINT_TYPE:
2585 return fold_build1 (FIXED_CONVERT_EXPR, type, arg);
2586
2587 case COMPLEX_TYPE:
2588 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2589 return fold_convert (type, tem);
2590
2591 default:
2592 gcc_unreachable ();
2593 }
2594
2595 case FIXED_POINT_TYPE:
2596 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2597 || TREE_CODE (arg) == REAL_CST)
2598 {
2599 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2600 if (tem != NULL_TREE)
2601 return tem;
2602 }
2603
2604 switch (TREE_CODE (orig))
2605 {
2606 case FIXED_POINT_TYPE:
2607 case INTEGER_TYPE:
2608 case ENUMERAL_TYPE:
2609 case BOOLEAN_TYPE:
2610 case REAL_TYPE:
2611 return fold_build1 (FIXED_CONVERT_EXPR, type, arg);
2612
2613 case COMPLEX_TYPE:
2614 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2615 return fold_convert (type, tem);
2616
2617 default:
2618 gcc_unreachable ();
2619 }
2620
2621 case COMPLEX_TYPE:
2622 switch (TREE_CODE (orig))
2623 {
2624 case INTEGER_TYPE:
2625 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2626 case POINTER_TYPE: case REFERENCE_TYPE:
2627 case REAL_TYPE:
2628 case FIXED_POINT_TYPE:
2629 return build2 (COMPLEX_EXPR, type,
2630 fold_convert (TREE_TYPE (type), arg),
2631 fold_convert (TREE_TYPE (type), integer_zero_node));
2632 case COMPLEX_TYPE:
2633 {
2634 tree rpart, ipart;
2635
2636 if (TREE_CODE (arg) == COMPLEX_EXPR)
2637 {
2638 rpart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 0));
2639 ipart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 1));
2640 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
2641 }
2642
2643 arg = save_expr (arg);
2644 rpart = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2645 ipart = fold_build1 (IMAGPART_EXPR, TREE_TYPE (orig), arg);
2646 rpart = fold_convert (TREE_TYPE (type), rpart);
2647 ipart = fold_convert (TREE_TYPE (type), ipart);
2648 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
2649 }
2650
2651 default:
2652 gcc_unreachable ();
2653 }
2654
2655 case VECTOR_TYPE:
2656 if (integer_zerop (arg))
2657 return build_zero_vector (type);
2658 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2659 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2660 || TREE_CODE (orig) == VECTOR_TYPE);
2661 return fold_build1 (VIEW_CONVERT_EXPR, type, arg);
2662
2663 case VOID_TYPE:
2664 tem = fold_ignored_result (arg);
2665 if (TREE_CODE (tem) == MODIFY_EXPR)
2666 return tem;
2667 return fold_build1 (NOP_EXPR, type, tem);
2668
2669 default:
2670 gcc_unreachable ();
2671 }
2672 }
2673 \f
2674 /* Return false if expr can be assumed not to be an lvalue, true
2675 otherwise. */
2676
2677 static bool
2678 maybe_lvalue_p (const_tree x)
2679 {
2680 /* We only need to wrap lvalue tree codes. */
2681 switch (TREE_CODE (x))
2682 {
2683 case VAR_DECL:
2684 case PARM_DECL:
2685 case RESULT_DECL:
2686 case LABEL_DECL:
2687 case FUNCTION_DECL:
2688 case SSA_NAME:
2689
2690 case COMPONENT_REF:
2691 case INDIRECT_REF:
2692 case ALIGN_INDIRECT_REF:
2693 case MISALIGNED_INDIRECT_REF:
2694 case ARRAY_REF:
2695 case ARRAY_RANGE_REF:
2696 case BIT_FIELD_REF:
2697 case OBJ_TYPE_REF:
2698
2699 case REALPART_EXPR:
2700 case IMAGPART_EXPR:
2701 case PREINCREMENT_EXPR:
2702 case PREDECREMENT_EXPR:
2703 case SAVE_EXPR:
2704 case TRY_CATCH_EXPR:
2705 case WITH_CLEANUP_EXPR:
2706 case COMPOUND_EXPR:
2707 case MODIFY_EXPR:
2708 case TARGET_EXPR:
2709 case COND_EXPR:
2710 case BIND_EXPR:
2711 case MIN_EXPR:
2712 case MAX_EXPR:
2713 break;
2714
2715 default:
2716 /* Assume the worst for front-end tree codes. */
2717 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2718 break;
2719 return false;
2720 }
2721
2722 return true;
2723 }
2724
2725 /* Return an expr equal to X but certainly not valid as an lvalue. */
2726
2727 tree
2728 non_lvalue (tree x)
2729 {
2730 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2731 us. */
2732 if (in_gimple_form)
2733 return x;
2734
2735 if (! maybe_lvalue_p (x))
2736 return x;
2737 return build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
2738 }
2739
2740 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2741 Zero means allow extended lvalues. */
2742
2743 int pedantic_lvalues;
2744
2745 /* When pedantic, return an expr equal to X but certainly not valid as a
2746 pedantic lvalue. Otherwise, return X. */
2747
2748 static tree
2749 pedantic_non_lvalue (tree x)
2750 {
2751 if (pedantic_lvalues)
2752 return non_lvalue (x);
2753 else
2754 return x;
2755 }
2756 \f
2757 /* Given a tree comparison code, return the code that is the logical inverse
2758 of the given code. It is not safe to do this for floating-point
2759 comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
2760 as well: if reversing the comparison is unsafe, return ERROR_MARK. */
2761
2762 enum tree_code
2763 invert_tree_comparison (enum tree_code code, bool honor_nans)
2764 {
2765 if (honor_nans && flag_trapping_math)
2766 return ERROR_MARK;
2767
2768 switch (code)
2769 {
2770 case EQ_EXPR:
2771 return NE_EXPR;
2772 case NE_EXPR:
2773 return EQ_EXPR;
2774 case GT_EXPR:
2775 return honor_nans ? UNLE_EXPR : LE_EXPR;
2776 case GE_EXPR:
2777 return honor_nans ? UNLT_EXPR : LT_EXPR;
2778 case LT_EXPR:
2779 return honor_nans ? UNGE_EXPR : GE_EXPR;
2780 case LE_EXPR:
2781 return honor_nans ? UNGT_EXPR : GT_EXPR;
2782 case LTGT_EXPR:
2783 return UNEQ_EXPR;
2784 case UNEQ_EXPR:
2785 return LTGT_EXPR;
2786 case UNGT_EXPR:
2787 return LE_EXPR;
2788 case UNGE_EXPR:
2789 return LT_EXPR;
2790 case UNLT_EXPR:
2791 return GE_EXPR;
2792 case UNLE_EXPR:
2793 return GT_EXPR;
2794 case ORDERED_EXPR:
2795 return UNORDERED_EXPR;
2796 case UNORDERED_EXPR:
2797 return ORDERED_EXPR;
2798 default:
2799 gcc_unreachable ();
2800 }
2801 }
2802
2803 /* Similar, but return the comparison that results if the operands are
2804 swapped. This is safe for floating-point. */
2805
2806 enum tree_code
2807 swap_tree_comparison (enum tree_code code)
2808 {
2809 switch (code)
2810 {
2811 case EQ_EXPR:
2812 case NE_EXPR:
2813 case ORDERED_EXPR:
2814 case UNORDERED_EXPR:
2815 case LTGT_EXPR:
2816 case UNEQ_EXPR:
2817 return code;
2818 case GT_EXPR:
2819 return LT_EXPR;
2820 case GE_EXPR:
2821 return LE_EXPR;
2822 case LT_EXPR:
2823 return GT_EXPR;
2824 case LE_EXPR:
2825 return GE_EXPR;
2826 case UNGT_EXPR:
2827 return UNLT_EXPR;
2828 case UNGE_EXPR:
2829 return UNLE_EXPR;
2830 case UNLT_EXPR:
2831 return UNGT_EXPR;
2832 case UNLE_EXPR:
2833 return UNGE_EXPR;
2834 default:
2835 gcc_unreachable ();
2836 }
2837 }
2838
2839
2840 /* Convert a comparison tree code from an enum tree_code representation
2841 into a compcode bit-based encoding. This function is the inverse of
2842 compcode_to_comparison. */
2843
2844 static enum comparison_code
2845 comparison_to_compcode (enum tree_code code)
2846 {
2847 switch (code)
2848 {
2849 case LT_EXPR:
2850 return COMPCODE_LT;
2851 case EQ_EXPR:
2852 return COMPCODE_EQ;
2853 case LE_EXPR:
2854 return COMPCODE_LE;
2855 case GT_EXPR:
2856 return COMPCODE_GT;
2857 case NE_EXPR:
2858 return COMPCODE_NE;
2859 case GE_EXPR:
2860 return COMPCODE_GE;
2861 case ORDERED_EXPR:
2862 return COMPCODE_ORD;
2863 case UNORDERED_EXPR:
2864 return COMPCODE_UNORD;
2865 case UNLT_EXPR:
2866 return COMPCODE_UNLT;
2867 case UNEQ_EXPR:
2868 return COMPCODE_UNEQ;
2869 case UNLE_EXPR:
2870 return COMPCODE_UNLE;
2871 case UNGT_EXPR:
2872 return COMPCODE_UNGT;
2873 case LTGT_EXPR:
2874 return COMPCODE_LTGT;
2875 case UNGE_EXPR:
2876 return COMPCODE_UNGE;
2877 default:
2878 gcc_unreachable ();
2879 }
2880 }
2881
2882 /* Convert a compcode bit-based encoding of a comparison operator back
2883 to GCC's enum tree_code representation. This function is the
2884 inverse of comparison_to_compcode. */
2885
2886 static enum tree_code
2887 compcode_to_comparison (enum comparison_code code)
2888 {
2889 switch (code)
2890 {
2891 case COMPCODE_LT:
2892 return LT_EXPR;
2893 case COMPCODE_EQ:
2894 return EQ_EXPR;
2895 case COMPCODE_LE:
2896 return LE_EXPR;
2897 case COMPCODE_GT:
2898 return GT_EXPR;
2899 case COMPCODE_NE:
2900 return NE_EXPR;
2901 case COMPCODE_GE:
2902 return GE_EXPR;
2903 case COMPCODE_ORD:
2904 return ORDERED_EXPR;
2905 case COMPCODE_UNORD:
2906 return UNORDERED_EXPR;
2907 case COMPCODE_UNLT:
2908 return UNLT_EXPR;
2909 case COMPCODE_UNEQ:
2910 return UNEQ_EXPR;
2911 case COMPCODE_UNLE:
2912 return UNLE_EXPR;
2913 case COMPCODE_UNGT:
2914 return UNGT_EXPR;
2915 case COMPCODE_LTGT:
2916 return LTGT_EXPR;
2917 case COMPCODE_UNGE:
2918 return UNGE_EXPR;
2919 default:
2920 gcc_unreachable ();
2921 }
2922 }
2923
2924 /* Return a tree for the comparison which is the combination of
2925 doing the AND or OR (depending on CODE) of the two operations LCODE
2926 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2927 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2928 if this makes the transformation invalid. */
2929
2930 tree
2931 combine_comparisons (enum tree_code code, enum tree_code lcode,
2932 enum tree_code rcode, tree truth_type,
2933 tree ll_arg, tree lr_arg)
2934 {
2935 bool honor_nans = HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg)));
2936 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2937 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2938 int compcode;
2939
2940 switch (code)
2941 {
2942 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2943 compcode = lcompcode & rcompcode;
2944 break;
2945
2946 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2947 compcode = lcompcode | rcompcode;
2948 break;
2949
2950 default:
2951 return NULL_TREE;
2952 }
2953
2954 if (!honor_nans)
2955 {
2956 /* Eliminate unordered comparisons, as well as LTGT and ORD
2957 which are not used unless the mode has NaNs. */
2958 compcode &= ~COMPCODE_UNORD;
2959 if (compcode == COMPCODE_LTGT)
2960 compcode = COMPCODE_NE;
2961 else if (compcode == COMPCODE_ORD)
2962 compcode = COMPCODE_TRUE;
2963 }
2964 else if (flag_trapping_math)
2965 {
2966 /* Check that the original operation and the optimized ones will trap
2967 under the same condition. */
2968 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2969 && (lcompcode != COMPCODE_EQ)
2970 && (lcompcode != COMPCODE_ORD);
2971 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2972 && (rcompcode != COMPCODE_EQ)
2973 && (rcompcode != COMPCODE_ORD);
2974 bool trap = (compcode & COMPCODE_UNORD) == 0
2975 && (compcode != COMPCODE_EQ)
2976 && (compcode != COMPCODE_ORD);
2977
2978 /* In a short-circuited boolean expression the LHS might be
2979 such that the RHS, if evaluated, will never trap. For
2980 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2981 if neither x nor y is NaN. (This is a mixed blessing: for
2982 example, the expression above will never trap, hence
2983 optimizing it to x < y would be invalid). */
2984 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2985 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2986 rtrap = false;
2987
2988 /* If the comparison was short-circuited, and only the RHS
2989 trapped, we may now generate a spurious trap. */
2990 if (rtrap && !ltrap
2991 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2992 return NULL_TREE;
2993
2994 /* If we changed the conditions that cause a trap, we lose. */
2995 if ((ltrap || rtrap) != trap)
2996 return NULL_TREE;
2997 }
2998
2999 if (compcode == COMPCODE_TRUE)
3000 return constant_boolean_node (true, truth_type);
3001 else if (compcode == COMPCODE_FALSE)
3002 return constant_boolean_node (false, truth_type);
3003 else
3004 {
3005 enum tree_code tcode;
3006
3007 tcode = compcode_to_comparison ((enum comparison_code) compcode);
3008 return fold_build2 (tcode, truth_type, ll_arg, lr_arg);
3009 }
3010 }
3011 \f
3012 /* Return nonzero if two operands (typically of the same tree node)
3013 are necessarily equal. If either argument has side-effects this
3014 function returns zero. FLAGS modifies behavior as follows:
3015
3016 If OEP_ONLY_CONST is set, only return nonzero for constants.
3017 This function tests whether the operands are indistinguishable;
3018 it does not test whether they are equal using C's == operation.
3019 The distinction is important for IEEE floating point, because
3020 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
3021 (2) two NaNs may be indistinguishable, but NaN!=NaN.
3022
3023 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
3024 even though it may hold multiple values during a function.
3025 This is because a GCC tree node guarantees that nothing else is
3026 executed between the evaluation of its "operands" (which may often
3027 be evaluated in arbitrary order). Hence if the operands themselves
3028 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
3029 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
3030 unset means assuming isochronic (or instantaneous) tree equivalence.
3031 Unless comparing arbitrary expression trees, such as from different
3032 statements, this flag can usually be left unset.
3033
3034 If OEP_PURE_SAME is set, then pure functions with identical arguments
3035 are considered the same. It is used when the caller has other ways
3036 to ensure that global memory is unchanged in between. */
3037
3038 int
3039 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
3040 {
3041 /* If either is ERROR_MARK, they aren't equal. */
3042 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK)
3043 return 0;
3044
3045 /* Check equality of integer constants before bailing out due to
3046 precision differences. */
3047 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
3048 return tree_int_cst_equal (arg0, arg1);
3049
3050 /* If both types don't have the same signedness, then we can't consider
3051 them equal. We must check this before the STRIP_NOPS calls
3052 because they may change the signedness of the arguments. As pointers
3053 strictly don't have a signedness, require either two pointers or
3054 two non-pointers as well. */
3055 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
3056 || POINTER_TYPE_P (TREE_TYPE (arg0)) != POINTER_TYPE_P (TREE_TYPE (arg1)))
3057 return 0;
3058
3059 /* If both types don't have the same precision, then it is not safe
3060 to strip NOPs. */
3061 if (TYPE_PRECISION (TREE_TYPE (arg0)) != TYPE_PRECISION (TREE_TYPE (arg1)))
3062 return 0;
3063
3064 STRIP_NOPS (arg0);
3065 STRIP_NOPS (arg1);
3066
3067 /* In case both args are comparisons but with different comparison
3068 code, try to swap the comparison operands of one arg to produce
3069 a match and compare that variant. */
3070 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3071 && COMPARISON_CLASS_P (arg0)
3072 && COMPARISON_CLASS_P (arg1))
3073 {
3074 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
3075
3076 if (TREE_CODE (arg0) == swap_code)
3077 return operand_equal_p (TREE_OPERAND (arg0, 0),
3078 TREE_OPERAND (arg1, 1), flags)
3079 && operand_equal_p (TREE_OPERAND (arg0, 1),
3080 TREE_OPERAND (arg1, 0), flags);
3081 }
3082
3083 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3084 /* This is needed for conversions and for COMPONENT_REF.
3085 Might as well play it safe and always test this. */
3086 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
3087 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
3088 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
3089 return 0;
3090
3091 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3092 We don't care about side effects in that case because the SAVE_EXPR
3093 takes care of that for us. In all other cases, two expressions are
3094 equal if they have no side effects. If we have two identical
3095 expressions with side effects that should be treated the same due
3096 to the only side effects being identical SAVE_EXPR's, that will
3097 be detected in the recursive calls below. */
3098 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
3099 && (TREE_CODE (arg0) == SAVE_EXPR
3100 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
3101 return 1;
3102
3103 /* Next handle constant cases, those for which we can return 1 even
3104 if ONLY_CONST is set. */
3105 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
3106 switch (TREE_CODE (arg0))
3107 {
3108 case INTEGER_CST:
3109 return tree_int_cst_equal (arg0, arg1);
3110
3111 case FIXED_CST:
3112 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
3113 TREE_FIXED_CST (arg1));
3114
3115 case REAL_CST:
3116 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
3117 TREE_REAL_CST (arg1)))
3118 return 1;
3119
3120
3121 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0))))
3122 {
3123 /* If we do not distinguish between signed and unsigned zero,
3124 consider them equal. */
3125 if (real_zerop (arg0) && real_zerop (arg1))
3126 return 1;
3127 }
3128 return 0;
3129
3130 case VECTOR_CST:
3131 {
3132 tree v1, v2;
3133
3134 v1 = TREE_VECTOR_CST_ELTS (arg0);
3135 v2 = TREE_VECTOR_CST_ELTS (arg1);
3136 while (v1 && v2)
3137 {
3138 if (!operand_equal_p (TREE_VALUE (v1), TREE_VALUE (v2),
3139 flags))
3140 return 0;
3141 v1 = TREE_CHAIN (v1);
3142 v2 = TREE_CHAIN (v2);
3143 }
3144
3145 return v1 == v2;
3146 }
3147
3148 case COMPLEX_CST:
3149 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
3150 flags)
3151 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
3152 flags));
3153
3154 case STRING_CST:
3155 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
3156 && ! memcmp (TREE_STRING_POINTER (arg0),
3157 TREE_STRING_POINTER (arg1),
3158 TREE_STRING_LENGTH (arg0)));
3159
3160 case ADDR_EXPR:
3161 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
3162 0);
3163 default:
3164 break;
3165 }
3166
3167 if (flags & OEP_ONLY_CONST)
3168 return 0;
3169
3170 /* Define macros to test an operand from arg0 and arg1 for equality and a
3171 variant that allows null and views null as being different from any
3172 non-null value. In the latter case, if either is null, the both
3173 must be; otherwise, do the normal comparison. */
3174 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3175 TREE_OPERAND (arg1, N), flags)
3176
3177 #define OP_SAME_WITH_NULL(N) \
3178 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3179 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3180
3181 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
3182 {
3183 case tcc_unary:
3184 /* Two conversions are equal only if signedness and modes match. */
3185 switch (TREE_CODE (arg0))
3186 {
3187 CASE_CONVERT:
3188 case FIX_TRUNC_EXPR:
3189 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
3190 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
3191 return 0;
3192 break;
3193 default:
3194 break;
3195 }
3196
3197 return OP_SAME (0);
3198
3199
3200 case tcc_comparison:
3201 case tcc_binary:
3202 if (OP_SAME (0) && OP_SAME (1))
3203 return 1;
3204
3205 /* For commutative ops, allow the other order. */
3206 return (commutative_tree_code (TREE_CODE (arg0))
3207 && operand_equal_p (TREE_OPERAND (arg0, 0),
3208 TREE_OPERAND (arg1, 1), flags)
3209 && operand_equal_p (TREE_OPERAND (arg0, 1),
3210 TREE_OPERAND (arg1, 0), flags));
3211
3212 case tcc_reference:
3213 /* If either of the pointer (or reference) expressions we are
3214 dereferencing contain a side effect, these cannot be equal. */
3215 if (TREE_SIDE_EFFECTS (arg0)
3216 || TREE_SIDE_EFFECTS (arg1))
3217 return 0;
3218
3219 switch (TREE_CODE (arg0))
3220 {
3221 case INDIRECT_REF:
3222 case ALIGN_INDIRECT_REF:
3223 case MISALIGNED_INDIRECT_REF:
3224 case REALPART_EXPR:
3225 case IMAGPART_EXPR:
3226 return OP_SAME (0);
3227
3228 case ARRAY_REF:
3229 case ARRAY_RANGE_REF:
3230 /* Operands 2 and 3 may be null.
3231 Compare the array index by value if it is constant first as we
3232 may have different types but same value here. */
3233 return (OP_SAME (0)
3234 && (tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3235 TREE_OPERAND (arg1, 1))
3236 || OP_SAME (1))
3237 && OP_SAME_WITH_NULL (2)
3238 && OP_SAME_WITH_NULL (3));
3239
3240 case COMPONENT_REF:
3241 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3242 may be NULL when we're called to compare MEM_EXPRs. */
3243 return OP_SAME_WITH_NULL (0)
3244 && OP_SAME (1)
3245 && OP_SAME_WITH_NULL (2);
3246
3247 case BIT_FIELD_REF:
3248 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3249
3250 default:
3251 return 0;
3252 }
3253
3254 case tcc_expression:
3255 switch (TREE_CODE (arg0))
3256 {
3257 case ADDR_EXPR:
3258 case TRUTH_NOT_EXPR:
3259 return OP_SAME (0);
3260
3261 case TRUTH_ANDIF_EXPR:
3262 case TRUTH_ORIF_EXPR:
3263 return OP_SAME (0) && OP_SAME (1);
3264
3265 case TRUTH_AND_EXPR:
3266 case TRUTH_OR_EXPR:
3267 case TRUTH_XOR_EXPR:
3268 if (OP_SAME (0) && OP_SAME (1))
3269 return 1;
3270
3271 /* Otherwise take into account this is a commutative operation. */
3272 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3273 TREE_OPERAND (arg1, 1), flags)
3274 && operand_equal_p (TREE_OPERAND (arg0, 1),
3275 TREE_OPERAND (arg1, 0), flags));
3276
3277 case COND_EXPR:
3278 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3279
3280 default:
3281 return 0;
3282 }
3283
3284 case tcc_vl_exp:
3285 switch (TREE_CODE (arg0))
3286 {
3287 case CALL_EXPR:
3288 /* If the CALL_EXPRs call different functions, then they
3289 clearly can not be equal. */
3290 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3291 flags))
3292 return 0;
3293
3294 {
3295 unsigned int cef = call_expr_flags (arg0);
3296 if (flags & OEP_PURE_SAME)
3297 cef &= ECF_CONST | ECF_PURE;
3298 else
3299 cef &= ECF_CONST;
3300 if (!cef)
3301 return 0;
3302 }
3303
3304 /* Now see if all the arguments are the same. */
3305 {
3306 const_call_expr_arg_iterator iter0, iter1;
3307 const_tree a0, a1;
3308 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3309 a1 = first_const_call_expr_arg (arg1, &iter1);
3310 a0 && a1;
3311 a0 = next_const_call_expr_arg (&iter0),
3312 a1 = next_const_call_expr_arg (&iter1))
3313 if (! operand_equal_p (a0, a1, flags))
3314 return 0;
3315
3316 /* If we get here and both argument lists are exhausted
3317 then the CALL_EXPRs are equal. */
3318 return ! (a0 || a1);
3319 }
3320 default:
3321 return 0;
3322 }
3323
3324 case tcc_declaration:
3325 /* Consider __builtin_sqrt equal to sqrt. */
3326 return (TREE_CODE (arg0) == FUNCTION_DECL
3327 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3328 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3329 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3330
3331 default:
3332 return 0;
3333 }
3334
3335 #undef OP_SAME
3336 #undef OP_SAME_WITH_NULL
3337 }
3338 \f
3339 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3340 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3341
3342 When in doubt, return 0. */
3343
3344 static int
3345 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3346 {
3347 int unsignedp1, unsignedpo;
3348 tree primarg0, primarg1, primother;
3349 unsigned int correct_width;
3350
3351 if (operand_equal_p (arg0, arg1, 0))
3352 return 1;
3353
3354 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3355 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3356 return 0;
3357
3358 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3359 and see if the inner values are the same. This removes any
3360 signedness comparison, which doesn't matter here. */
3361 primarg0 = arg0, primarg1 = arg1;
3362 STRIP_NOPS (primarg0);
3363 STRIP_NOPS (primarg1);
3364 if (operand_equal_p (primarg0, primarg1, 0))
3365 return 1;
3366
3367 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3368 actual comparison operand, ARG0.
3369
3370 First throw away any conversions to wider types
3371 already present in the operands. */
3372
3373 primarg1 = get_narrower (arg1, &unsignedp1);
3374 primother = get_narrower (other, &unsignedpo);
3375
3376 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3377 if (unsignedp1 == unsignedpo
3378 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3379 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3380 {
3381 tree type = TREE_TYPE (arg0);
3382
3383 /* Make sure shorter operand is extended the right way
3384 to match the longer operand. */
3385 primarg1 = fold_convert (signed_or_unsigned_type_for
3386 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3387
3388 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3389 return 1;
3390 }
3391
3392 return 0;
3393 }
3394 \f
3395 /* See if ARG is an expression that is either a comparison or is performing
3396 arithmetic on comparisons. The comparisons must only be comparing
3397 two different values, which will be stored in *CVAL1 and *CVAL2; if
3398 they are nonzero it means that some operands have already been found.
3399 No variables may be used anywhere else in the expression except in the
3400 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3401 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3402
3403 If this is true, return 1. Otherwise, return zero. */
3404
3405 static int
3406 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3407 {
3408 enum tree_code code = TREE_CODE (arg);
3409 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3410
3411 /* We can handle some of the tcc_expression cases here. */
3412 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3413 tclass = tcc_unary;
3414 else if (tclass == tcc_expression
3415 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3416 || code == COMPOUND_EXPR))
3417 tclass = tcc_binary;
3418
3419 else if (tclass == tcc_expression && code == SAVE_EXPR
3420 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3421 {
3422 /* If we've already found a CVAL1 or CVAL2, this expression is
3423 two complex to handle. */
3424 if (*cval1 || *cval2)
3425 return 0;
3426
3427 tclass = tcc_unary;
3428 *save_p = 1;
3429 }
3430
3431 switch (tclass)
3432 {
3433 case tcc_unary:
3434 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3435
3436 case tcc_binary:
3437 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3438 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3439 cval1, cval2, save_p));
3440
3441 case tcc_constant:
3442 return 1;
3443
3444 case tcc_expression:
3445 if (code == COND_EXPR)
3446 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3447 cval1, cval2, save_p)
3448 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3449 cval1, cval2, save_p)
3450 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3451 cval1, cval2, save_p));
3452 return 0;
3453
3454 case tcc_comparison:
3455 /* First see if we can handle the first operand, then the second. For
3456 the second operand, we know *CVAL1 can't be zero. It must be that
3457 one side of the comparison is each of the values; test for the
3458 case where this isn't true by failing if the two operands
3459 are the same. */
3460
3461 if (operand_equal_p (TREE_OPERAND (arg, 0),
3462 TREE_OPERAND (arg, 1), 0))
3463 return 0;
3464
3465 if (*cval1 == 0)
3466 *cval1 = TREE_OPERAND (arg, 0);
3467 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3468 ;
3469 else if (*cval2 == 0)
3470 *cval2 = TREE_OPERAND (arg, 0);
3471 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3472 ;
3473 else
3474 return 0;
3475
3476 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3477 ;
3478 else if (*cval2 == 0)
3479 *cval2 = TREE_OPERAND (arg, 1);
3480 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3481 ;
3482 else
3483 return 0;
3484
3485 return 1;
3486
3487 default:
3488 return 0;
3489 }
3490 }
3491 \f
3492 /* ARG is a tree that is known to contain just arithmetic operations and
3493 comparisons. Evaluate the operations in the tree substituting NEW0 for
3494 any occurrence of OLD0 as an operand of a comparison and likewise for
3495 NEW1 and OLD1. */
3496
3497 static tree
3498 eval_subst (tree arg, tree old0, tree new0, tree old1, tree new1)
3499 {
3500 tree type = TREE_TYPE (arg);
3501 enum tree_code code = TREE_CODE (arg);
3502 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3503
3504 /* We can handle some of the tcc_expression cases here. */
3505 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3506 tclass = tcc_unary;
3507 else if (tclass == tcc_expression
3508 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3509 tclass = tcc_binary;
3510
3511 switch (tclass)
3512 {
3513 case tcc_unary:
3514 return fold_build1 (code, type,
3515 eval_subst (TREE_OPERAND (arg, 0),
3516 old0, new0, old1, new1));
3517
3518 case tcc_binary:
3519 return fold_build2 (code, type,
3520 eval_subst (TREE_OPERAND (arg, 0),
3521 old0, new0, old1, new1),
3522 eval_subst (TREE_OPERAND (arg, 1),
3523 old0, new0, old1, new1));
3524
3525 case tcc_expression:
3526 switch (code)
3527 {
3528 case SAVE_EXPR:
3529 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
3530
3531 case COMPOUND_EXPR:
3532 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
3533
3534 case COND_EXPR:
3535 return fold_build3 (code, type,
3536 eval_subst (TREE_OPERAND (arg, 0),
3537 old0, new0, old1, new1),
3538 eval_subst (TREE_OPERAND (arg, 1),
3539 old0, new0, old1, new1),
3540 eval_subst (TREE_OPERAND (arg, 2),
3541 old0, new0, old1, new1));
3542 default:
3543 break;
3544 }
3545 /* Fall through - ??? */
3546
3547 case tcc_comparison:
3548 {
3549 tree arg0 = TREE_OPERAND (arg, 0);
3550 tree arg1 = TREE_OPERAND (arg, 1);
3551
3552 /* We need to check both for exact equality and tree equality. The
3553 former will be true if the operand has a side-effect. In that
3554 case, we know the operand occurred exactly once. */
3555
3556 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3557 arg0 = new0;
3558 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3559 arg0 = new1;
3560
3561 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3562 arg1 = new0;
3563 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3564 arg1 = new1;
3565
3566 return fold_build2 (code, type, arg0, arg1);
3567 }
3568
3569 default:
3570 return arg;
3571 }
3572 }
3573 \f
3574 /* Return a tree for the case when the result of an expression is RESULT
3575 converted to TYPE and OMITTED was previously an operand of the expression
3576 but is now not needed (e.g., we folded OMITTED * 0).
3577
3578 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3579 the conversion of RESULT to TYPE. */
3580
3581 tree
3582 omit_one_operand (tree type, tree result, tree omitted)
3583 {
3584 tree t = fold_convert (type, result);
3585
3586 /* If the resulting operand is an empty statement, just return the omitted
3587 statement casted to void. */
3588 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3589 return build1 (NOP_EXPR, void_type_node, fold_ignored_result (omitted));
3590
3591 if (TREE_SIDE_EFFECTS (omitted))
3592 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
3593
3594 return non_lvalue (t);
3595 }
3596
3597 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
3598
3599 static tree
3600 pedantic_omit_one_operand (tree type, tree result, tree omitted)
3601 {
3602 tree t = fold_convert (type, result);
3603
3604 /* If the resulting operand is an empty statement, just return the omitted
3605 statement casted to void. */
3606 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3607 return build1 (NOP_EXPR, void_type_node, fold_ignored_result (omitted));
3608
3609 if (TREE_SIDE_EFFECTS (omitted))
3610 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
3611
3612 return pedantic_non_lvalue (t);
3613 }
3614
3615 /* Return a tree for the case when the result of an expression is RESULT
3616 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3617 of the expression but are now not needed.
3618
3619 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3620 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3621 evaluated before OMITTED2. Otherwise, if neither has side effects,
3622 just do the conversion of RESULT to TYPE. */
3623
3624 tree
3625 omit_two_operands (tree type, tree result, tree omitted1, tree omitted2)
3626 {
3627 tree t = fold_convert (type, result);
3628
3629 if (TREE_SIDE_EFFECTS (omitted2))
3630 t = build2 (COMPOUND_EXPR, type, omitted2, t);
3631 if (TREE_SIDE_EFFECTS (omitted1))
3632 t = build2 (COMPOUND_EXPR, type, omitted1, t);
3633
3634 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue (t) : t;
3635 }
3636
3637 \f
3638 /* Return a simplified tree node for the truth-negation of ARG. This
3639 never alters ARG itself. We assume that ARG is an operation that
3640 returns a truth value (0 or 1).
3641
3642 FIXME: one would think we would fold the result, but it causes
3643 problems with the dominator optimizer. */
3644
3645 tree
3646 fold_truth_not_expr (tree arg)
3647 {
3648 tree t, type = TREE_TYPE (arg);
3649 enum tree_code code = TREE_CODE (arg);
3650
3651 /* If this is a comparison, we can simply invert it, except for
3652 floating-point non-equality comparisons, in which case we just
3653 enclose a TRUTH_NOT_EXPR around what we have. */
3654
3655 if (TREE_CODE_CLASS (code) == tcc_comparison)
3656 {
3657 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3658 if (FLOAT_TYPE_P (op_type)
3659 && flag_trapping_math
3660 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3661 && code != NE_EXPR && code != EQ_EXPR)
3662 return NULL_TREE;
3663
3664 code = invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (op_type)));
3665 if (code == ERROR_MARK)
3666 return NULL_TREE;
3667
3668 t = build2 (code, type, TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
3669 if (EXPR_HAS_LOCATION (arg))
3670 SET_EXPR_LOCATION (t, EXPR_LOCATION (arg));
3671 return t;
3672 }
3673
3674 switch (code)
3675 {
3676 case INTEGER_CST:
3677 return constant_boolean_node (integer_zerop (arg), type);
3678
3679 case TRUTH_AND_EXPR:
3680 t = build2 (TRUTH_OR_EXPR, type,
3681 invert_truthvalue (TREE_OPERAND (arg, 0)),
3682 invert_truthvalue (TREE_OPERAND (arg, 1)));
3683 break;
3684
3685 case TRUTH_OR_EXPR:
3686 t = build2 (TRUTH_AND_EXPR, type,
3687 invert_truthvalue (TREE_OPERAND (arg, 0)),
3688 invert_truthvalue (TREE_OPERAND (arg, 1)));
3689 break;
3690
3691 case TRUTH_XOR_EXPR:
3692 /* Here we can invert either operand. We invert the first operand
3693 unless the second operand is a TRUTH_NOT_EXPR in which case our
3694 result is the XOR of the first operand with the inside of the
3695 negation of the second operand. */
3696
3697 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3698 t = build2 (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3699 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3700 else
3701 t = build2 (TRUTH_XOR_EXPR, type,
3702 invert_truthvalue (TREE_OPERAND (arg, 0)),
3703 TREE_OPERAND (arg, 1));
3704 break;
3705
3706 case TRUTH_ANDIF_EXPR:
3707 t = build2 (TRUTH_ORIF_EXPR, type,
3708 invert_truthvalue (TREE_OPERAND (arg, 0)),
3709 invert_truthvalue (TREE_OPERAND (arg, 1)));
3710 break;
3711
3712 case TRUTH_ORIF_EXPR:
3713 t = build2 (TRUTH_ANDIF_EXPR, type,
3714 invert_truthvalue (TREE_OPERAND (arg, 0)),
3715 invert_truthvalue (TREE_OPERAND (arg, 1)));
3716 break;
3717
3718 case TRUTH_NOT_EXPR:
3719 return TREE_OPERAND (arg, 0);
3720
3721 case COND_EXPR:
3722 {
3723 tree arg1 = TREE_OPERAND (arg, 1);
3724 tree arg2 = TREE_OPERAND (arg, 2);
3725 /* A COND_EXPR may have a throw as one operand, which
3726 then has void type. Just leave void operands
3727 as they are. */
3728 t = build3 (COND_EXPR, type, TREE_OPERAND (arg, 0),
3729 VOID_TYPE_P (TREE_TYPE (arg1))
3730 ? arg1 : invert_truthvalue (arg1),
3731 VOID_TYPE_P (TREE_TYPE (arg2))
3732 ? arg2 : invert_truthvalue (arg2));
3733 break;
3734 }
3735
3736 case COMPOUND_EXPR:
3737 t = build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
3738 invert_truthvalue (TREE_OPERAND (arg, 1)));
3739 break;
3740
3741 case NON_LVALUE_EXPR:
3742 return invert_truthvalue (TREE_OPERAND (arg, 0));
3743
3744 case NOP_EXPR:
3745 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3746 {
3747 t = build1 (TRUTH_NOT_EXPR, type, arg);
3748 break;
3749 }
3750
3751 /* ... fall through ... */
3752
3753 case CONVERT_EXPR:
3754 case FLOAT_EXPR:
3755 t = build1 (TREE_CODE (arg), type,
3756 invert_truthvalue (TREE_OPERAND (arg, 0)));
3757 break;
3758
3759 case BIT_AND_EXPR:
3760 if (!integer_onep (TREE_OPERAND (arg, 1)))
3761 return NULL_TREE;
3762 t = build2 (EQ_EXPR, type, arg, build_int_cst (type, 0));
3763 break;
3764
3765 case SAVE_EXPR:
3766 t = build1 (TRUTH_NOT_EXPR, type, arg);
3767 break;
3768
3769 case CLEANUP_POINT_EXPR:
3770 t = build1 (CLEANUP_POINT_EXPR, type,
3771 invert_truthvalue (TREE_OPERAND (arg, 0)));
3772 break;
3773
3774 default:
3775 t = NULL_TREE;
3776 break;
3777 }
3778
3779 if (t && EXPR_HAS_LOCATION (arg))
3780 SET_EXPR_LOCATION (t, EXPR_LOCATION (arg));
3781
3782 return t;
3783 }
3784
3785 /* Return a simplified tree node for the truth-negation of ARG. This
3786 never alters ARG itself. We assume that ARG is an operation that
3787 returns a truth value (0 or 1).
3788
3789 FIXME: one would think we would fold the result, but it causes
3790 problems with the dominator optimizer. */
3791
3792 tree
3793 invert_truthvalue (tree arg)
3794 {
3795 tree tem;
3796
3797 if (TREE_CODE (arg) == ERROR_MARK)
3798 return arg;
3799
3800 tem = fold_truth_not_expr (arg);
3801 if (!tem)
3802 tem = build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg), arg);
3803
3804 return tem;
3805 }
3806
3807 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3808 operands are another bit-wise operation with a common input. If so,
3809 distribute the bit operations to save an operation and possibly two if
3810 constants are involved. For example, convert
3811 (A | B) & (A | C) into A | (B & C)
3812 Further simplification will occur if B and C are constants.
3813
3814 If this optimization cannot be done, 0 will be returned. */
3815
3816 static tree
3817 distribute_bit_expr (enum tree_code code, tree type, tree arg0, tree arg1)
3818 {
3819 tree common;
3820 tree left, right;
3821
3822 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3823 || TREE_CODE (arg0) == code
3824 || (TREE_CODE (arg0) != BIT_AND_EXPR
3825 && TREE_CODE (arg0) != BIT_IOR_EXPR))
3826 return 0;
3827
3828 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
3829 {
3830 common = TREE_OPERAND (arg0, 0);
3831 left = TREE_OPERAND (arg0, 1);
3832 right = TREE_OPERAND (arg1, 1);
3833 }
3834 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
3835 {
3836 common = TREE_OPERAND (arg0, 0);
3837 left = TREE_OPERAND (arg0, 1);
3838 right = TREE_OPERAND (arg1, 0);
3839 }
3840 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
3841 {
3842 common = TREE_OPERAND (arg0, 1);
3843 left = TREE_OPERAND (arg0, 0);
3844 right = TREE_OPERAND (arg1, 1);
3845 }
3846 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
3847 {
3848 common = TREE_OPERAND (arg0, 1);
3849 left = TREE_OPERAND (arg0, 0);
3850 right = TREE_OPERAND (arg1, 0);
3851 }
3852 else
3853 return 0;
3854
3855 common = fold_convert (type, common);
3856 left = fold_convert (type, left);
3857 right = fold_convert (type, right);
3858 return fold_build2 (TREE_CODE (arg0), type, common,
3859 fold_build2 (code, type, left, right));
3860 }
3861
3862 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3863 with code CODE. This optimization is unsafe. */
3864 static tree
3865 distribute_real_division (enum tree_code code, tree type, tree arg0, tree arg1)
3866 {
3867 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3868 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3869
3870 /* (A / C) +- (B / C) -> (A +- B) / C. */
3871 if (mul0 == mul1
3872 && operand_equal_p (TREE_OPERAND (arg0, 1),
3873 TREE_OPERAND (arg1, 1), 0))
3874 return fold_build2 (mul0 ? MULT_EXPR : RDIV_EXPR, type,
3875 fold_build2 (code, type,
3876 TREE_OPERAND (arg0, 0),
3877 TREE_OPERAND (arg1, 0)),
3878 TREE_OPERAND (arg0, 1));
3879
3880 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3881 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3882 TREE_OPERAND (arg1, 0), 0)
3883 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3884 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3885 {
3886 REAL_VALUE_TYPE r0, r1;
3887 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3888 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3889 if (!mul0)
3890 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3891 if (!mul1)
3892 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3893 real_arithmetic (&r0, code, &r0, &r1);
3894 return fold_build2 (MULT_EXPR, type,
3895 TREE_OPERAND (arg0, 0),
3896 build_real (type, r0));
3897 }
3898
3899 return NULL_TREE;
3900 }
3901 \f
3902 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3903 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3904
3905 static tree
3906 make_bit_field_ref (tree inner, tree type, HOST_WIDE_INT bitsize,
3907 HOST_WIDE_INT bitpos, int unsignedp)
3908 {
3909 tree result, bftype;
3910
3911 if (bitpos == 0)
3912 {
3913 tree size = TYPE_SIZE (TREE_TYPE (inner));
3914 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3915 || POINTER_TYPE_P (TREE_TYPE (inner)))
3916 && host_integerp (size, 0)
3917 && tree_low_cst (size, 0) == bitsize)
3918 return fold_convert (type, inner);
3919 }
3920
3921 bftype = type;
3922 if (TYPE_PRECISION (bftype) != bitsize
3923 || TYPE_UNSIGNED (bftype) == !unsignedp)
3924 bftype = build_nonstandard_integer_type (bitsize, 0);
3925
3926 result = build3 (BIT_FIELD_REF, bftype, inner,
3927 size_int (bitsize), bitsize_int (bitpos));
3928
3929 if (bftype != type)
3930 result = fold_convert (type, result);
3931
3932 return result;
3933 }
3934
3935 /* Optimize a bit-field compare.
3936
3937 There are two cases: First is a compare against a constant and the
3938 second is a comparison of two items where the fields are at the same
3939 bit position relative to the start of a chunk (byte, halfword, word)
3940 large enough to contain it. In these cases we can avoid the shift
3941 implicit in bitfield extractions.
3942
3943 For constants, we emit a compare of the shifted constant with the
3944 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3945 compared. For two fields at the same position, we do the ANDs with the
3946 similar mask and compare the result of the ANDs.
3947
3948 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3949 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3950 are the left and right operands of the comparison, respectively.
3951
3952 If the optimization described above can be done, we return the resulting
3953 tree. Otherwise we return zero. */
3954
3955 static tree
3956 optimize_bit_field_compare (enum tree_code code, tree compare_type,
3957 tree lhs, tree rhs)
3958 {
3959 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3960 tree type = TREE_TYPE (lhs);
3961 tree signed_type, unsigned_type;
3962 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3963 enum machine_mode lmode, rmode, nmode;
3964 int lunsignedp, runsignedp;
3965 int lvolatilep = 0, rvolatilep = 0;
3966 tree linner, rinner = NULL_TREE;
3967 tree mask;
3968 tree offset;
3969
3970 /* Get all the information about the extractions being done. If the bit size
3971 if the same as the size of the underlying object, we aren't doing an
3972 extraction at all and so can do nothing. We also don't want to
3973 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3974 then will no longer be able to replace it. */
3975 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3976 &lunsignedp, &lvolatilep, false);
3977 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3978 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
3979 return 0;
3980
3981 if (!const_p)
3982 {
3983 /* If this is not a constant, we can only do something if bit positions,
3984 sizes, and signedness are the same. */
3985 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3986 &runsignedp, &rvolatilep, false);
3987
3988 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3989 || lunsignedp != runsignedp || offset != 0
3990 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
3991 return 0;
3992 }
3993
3994 /* See if we can find a mode to refer to this field. We should be able to,
3995 but fail if we can't. */
3996 nmode = get_best_mode (lbitsize, lbitpos,
3997 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3998 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3999 TYPE_ALIGN (TREE_TYPE (rinner))),
4000 word_mode, lvolatilep || rvolatilep);
4001 if (nmode == VOIDmode)
4002 return 0;
4003
4004 /* Set signed and unsigned types of the precision of this mode for the
4005 shifts below. */
4006 signed_type = lang_hooks.types.type_for_mode (nmode, 0);
4007 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
4008
4009 /* Compute the bit position and size for the new reference and our offset
4010 within it. If the new reference is the same size as the original, we
4011 won't optimize anything, so return zero. */
4012 nbitsize = GET_MODE_BITSIZE (nmode);
4013 nbitpos = lbitpos & ~ (nbitsize - 1);
4014 lbitpos -= nbitpos;
4015 if (nbitsize == lbitsize)
4016 return 0;
4017
4018 if (BYTES_BIG_ENDIAN)
4019 lbitpos = nbitsize - lbitsize - lbitpos;
4020
4021 /* Make the mask to be used against the extracted field. */
4022 mask = build_int_cst_type (unsigned_type, -1);
4023 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
4024 mask = const_binop (RSHIFT_EXPR, mask,
4025 size_int (nbitsize - lbitsize - lbitpos), 0);
4026
4027 if (! const_p)
4028 /* If not comparing with constant, just rework the comparison
4029 and return. */
4030 return fold_build2 (code, compare_type,
4031 fold_build2 (BIT_AND_EXPR, unsigned_type,
4032 make_bit_field_ref (linner,
4033 unsigned_type,
4034 nbitsize, nbitpos,
4035 1),
4036 mask),
4037 fold_build2 (BIT_AND_EXPR, unsigned_type,
4038 make_bit_field_ref (rinner,
4039 unsigned_type,
4040 nbitsize, nbitpos,
4041 1),
4042 mask));
4043
4044 /* Otherwise, we are handling the constant case. See if the constant is too
4045 big for the field. Warn and return a tree of for 0 (false) if so. We do
4046 this not only for its own sake, but to avoid having to test for this
4047 error case below. If we didn't, we might generate wrong code.
4048
4049 For unsigned fields, the constant shifted right by the field length should
4050 be all zero. For signed fields, the high-order bits should agree with
4051 the sign bit. */
4052
4053 if (lunsignedp)
4054 {
4055 if (! integer_zerop (const_binop (RSHIFT_EXPR,
4056 fold_convert (unsigned_type, rhs),
4057 size_int (lbitsize), 0)))
4058 {
4059 warning (0, "comparison is always %d due to width of bit-field",
4060 code == NE_EXPR);
4061 return constant_boolean_node (code == NE_EXPR, compare_type);
4062 }
4063 }
4064 else
4065 {
4066 tree tem = const_binop (RSHIFT_EXPR, fold_convert (signed_type, rhs),
4067 size_int (lbitsize - 1), 0);
4068 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
4069 {
4070 warning (0, "comparison is always %d due to width of bit-field",
4071 code == NE_EXPR);
4072 return constant_boolean_node (code == NE_EXPR, compare_type);
4073 }
4074 }
4075
4076 /* Single-bit compares should always be against zero. */
4077 if (lbitsize == 1 && ! integer_zerop (rhs))
4078 {
4079 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
4080 rhs = build_int_cst (type, 0);
4081 }
4082
4083 /* Make a new bitfield reference, shift the constant over the
4084 appropriate number of bits and mask it with the computed mask
4085 (in case this was a signed field). If we changed it, make a new one. */
4086 lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
4087 if (lvolatilep)
4088 {
4089 TREE_SIDE_EFFECTS (lhs) = 1;
4090 TREE_THIS_VOLATILE (lhs) = 1;
4091 }
4092
4093 rhs = const_binop (BIT_AND_EXPR,
4094 const_binop (LSHIFT_EXPR,
4095 fold_convert (unsigned_type, rhs),
4096 size_int (lbitpos), 0),
4097 mask, 0);
4098
4099 return build2 (code, compare_type,
4100 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask),
4101 rhs);
4102 }
4103 \f
4104 /* Subroutine for fold_truthop: decode a field reference.
4105
4106 If EXP is a comparison reference, we return the innermost reference.
4107
4108 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4109 set to the starting bit number.
4110
4111 If the innermost field can be completely contained in a mode-sized
4112 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4113
4114 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4115 otherwise it is not changed.
4116
4117 *PUNSIGNEDP is set to the signedness of the field.
4118
4119 *PMASK is set to the mask used. This is either contained in a
4120 BIT_AND_EXPR or derived from the width of the field.
4121
4122 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4123
4124 Return 0 if this is not a component reference or is one that we can't
4125 do anything with. */
4126
4127 static tree
4128 decode_field_reference (tree exp, HOST_WIDE_INT *pbitsize,
4129 HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
4130 int *punsignedp, int *pvolatilep,
4131 tree *pmask, tree *pand_mask)
4132 {
4133 tree outer_type = 0;
4134 tree and_mask = 0;
4135 tree mask, inner, offset;
4136 tree unsigned_type;
4137 unsigned int precision;
4138
4139 /* All the optimizations using this function assume integer fields.
4140 There are problems with FP fields since the type_for_size call
4141 below can fail for, e.g., XFmode. */
4142 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4143 return 0;
4144
4145 /* We are interested in the bare arrangement of bits, so strip everything
4146 that doesn't affect the machine mode. However, record the type of the
4147 outermost expression if it may matter below. */
4148 if (CONVERT_EXPR_P (exp)
4149 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4150 outer_type = TREE_TYPE (exp);
4151 STRIP_NOPS (exp);
4152
4153 if (TREE_CODE (exp) == BIT_AND_EXPR)
4154 {
4155 and_mask = TREE_OPERAND (exp, 1);
4156 exp = TREE_OPERAND (exp, 0);
4157 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4158 if (TREE_CODE (and_mask) != INTEGER_CST)
4159 return 0;
4160 }
4161
4162 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
4163 punsignedp, pvolatilep, false);
4164 if ((inner == exp && and_mask == 0)
4165 || *pbitsize < 0 || offset != 0
4166 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
4167 return 0;
4168
4169 /* If the number of bits in the reference is the same as the bitsize of
4170 the outer type, then the outer type gives the signedness. Otherwise
4171 (in case of a small bitfield) the signedness is unchanged. */
4172 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4173 *punsignedp = TYPE_UNSIGNED (outer_type);
4174
4175 /* Compute the mask to access the bitfield. */
4176 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4177 precision = TYPE_PRECISION (unsigned_type);
4178
4179 mask = build_int_cst_type (unsigned_type, -1);
4180
4181 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
4182 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
4183
4184 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4185 if (and_mask != 0)
4186 mask = fold_build2 (BIT_AND_EXPR, unsigned_type,
4187 fold_convert (unsigned_type, and_mask), mask);
4188
4189 *pmask = mask;
4190 *pand_mask = and_mask;
4191 return inner;
4192 }
4193
4194 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4195 bit positions. */
4196
4197 static int
4198 all_ones_mask_p (const_tree mask, int size)
4199 {
4200 tree type = TREE_TYPE (mask);
4201 unsigned int precision = TYPE_PRECISION (type);
4202 tree tmask;
4203
4204 tmask = build_int_cst_type (signed_type_for (type), -1);
4205
4206 return
4207 tree_int_cst_equal (mask,
4208 const_binop (RSHIFT_EXPR,
4209 const_binop (LSHIFT_EXPR, tmask,
4210 size_int (precision - size),
4211 0),
4212 size_int (precision - size), 0));
4213 }
4214
4215 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4216 represents the sign bit of EXP's type. If EXP represents a sign
4217 or zero extension, also test VAL against the unextended type.
4218 The return value is the (sub)expression whose sign bit is VAL,
4219 or NULL_TREE otherwise. */
4220
4221 static tree
4222 sign_bit_p (tree exp, const_tree val)
4223 {
4224 unsigned HOST_WIDE_INT mask_lo, lo;
4225 HOST_WIDE_INT mask_hi, hi;
4226 int width;
4227 tree t;
4228
4229 /* Tree EXP must have an integral type. */
4230 t = TREE_TYPE (exp);
4231 if (! INTEGRAL_TYPE_P (t))
4232 return NULL_TREE;
4233
4234 /* Tree VAL must be an integer constant. */
4235 if (TREE_CODE (val) != INTEGER_CST
4236 || TREE_OVERFLOW (val))
4237 return NULL_TREE;
4238
4239 width = TYPE_PRECISION (t);
4240 if (width > HOST_BITS_PER_WIDE_INT)
4241 {
4242 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
4243 lo = 0;
4244
4245 mask_hi = ((unsigned HOST_WIDE_INT) -1
4246 >> (2 * HOST_BITS_PER_WIDE_INT - width));
4247 mask_lo = -1;
4248 }
4249 else
4250 {
4251 hi = 0;
4252 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
4253
4254 mask_hi = 0;
4255 mask_lo = ((unsigned HOST_WIDE_INT) -1
4256 >> (HOST_BITS_PER_WIDE_INT - width));
4257 }
4258
4259 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
4260 treat VAL as if it were unsigned. */
4261 if ((TREE_INT_CST_HIGH (val) & mask_hi) == hi
4262 && (TREE_INT_CST_LOW (val) & mask_lo) == lo)
4263 return exp;
4264
4265 /* Handle extension from a narrower type. */
4266 if (TREE_CODE (exp) == NOP_EXPR
4267 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4268 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4269
4270 return NULL_TREE;
4271 }
4272
4273 /* Subroutine for fold_truthop: determine if an operand is simple enough
4274 to be evaluated unconditionally. */
4275
4276 static int
4277 simple_operand_p (const_tree exp)
4278 {
4279 /* Strip any conversions that don't change the machine mode. */
4280 STRIP_NOPS (exp);
4281
4282 return (CONSTANT_CLASS_P (exp)
4283 || TREE_CODE (exp) == SSA_NAME
4284 || (DECL_P (exp)
4285 && ! TREE_ADDRESSABLE (exp)
4286 && ! TREE_THIS_VOLATILE (exp)
4287 && ! DECL_NONLOCAL (exp)
4288 /* Don't regard global variables as simple. They may be
4289 allocated in ways unknown to the compiler (shared memory,
4290 #pragma weak, etc). */
4291 && ! TREE_PUBLIC (exp)
4292 && ! DECL_EXTERNAL (exp)
4293 /* Loading a static variable is unduly expensive, but global
4294 registers aren't expensive. */
4295 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4296 }
4297 \f
4298 /* The following functions are subroutines to fold_range_test and allow it to
4299 try to change a logical combination of comparisons into a range test.
4300
4301 For example, both
4302 X == 2 || X == 3 || X == 4 || X == 5
4303 and
4304 X >= 2 && X <= 5
4305 are converted to
4306 (unsigned) (X - 2) <= 3
4307
4308 We describe each set of comparisons as being either inside or outside
4309 a range, using a variable named like IN_P, and then describe the
4310 range with a lower and upper bound. If one of the bounds is omitted,
4311 it represents either the highest or lowest value of the type.
4312
4313 In the comments below, we represent a range by two numbers in brackets
4314 preceded by a "+" to designate being inside that range, or a "-" to
4315 designate being outside that range, so the condition can be inverted by
4316 flipping the prefix. An omitted bound is represented by a "-". For
4317 example, "- [-, 10]" means being outside the range starting at the lowest
4318 possible value and ending at 10, in other words, being greater than 10.
4319 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4320 always false.
4321
4322 We set up things so that the missing bounds are handled in a consistent
4323 manner so neither a missing bound nor "true" and "false" need to be
4324 handled using a special case. */
4325
4326 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4327 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4328 and UPPER1_P are nonzero if the respective argument is an upper bound
4329 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4330 must be specified for a comparison. ARG1 will be converted to ARG0's
4331 type if both are specified. */
4332
4333 static tree
4334 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4335 tree arg1, int upper1_p)
4336 {
4337 tree tem;
4338 int result;
4339 int sgn0, sgn1;
4340
4341 /* If neither arg represents infinity, do the normal operation.
4342 Else, if not a comparison, return infinity. Else handle the special
4343 comparison rules. Note that most of the cases below won't occur, but
4344 are handled for consistency. */
4345
4346 if (arg0 != 0 && arg1 != 0)
4347 {
4348 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4349 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4350 STRIP_NOPS (tem);
4351 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4352 }
4353
4354 if (TREE_CODE_CLASS (code) != tcc_comparison)
4355 return 0;
4356
4357 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4358 for neither. In real maths, we cannot assume open ended ranges are
4359 the same. But, this is computer arithmetic, where numbers are finite.
4360 We can therefore make the transformation of any unbounded range with
4361 the value Z, Z being greater than any representable number. This permits
4362 us to treat unbounded ranges as equal. */
4363 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4364 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4365 switch (code)
4366 {
4367 case EQ_EXPR:
4368 result = sgn0 == sgn1;
4369 break;
4370 case NE_EXPR:
4371 result = sgn0 != sgn1;
4372 break;
4373 case LT_EXPR:
4374 result = sgn0 < sgn1;
4375 break;
4376 case LE_EXPR:
4377 result = sgn0 <= sgn1;
4378 break;
4379 case GT_EXPR:
4380 result = sgn0 > sgn1;
4381 break;
4382 case GE_EXPR:
4383 result = sgn0 >= sgn1;
4384 break;
4385 default:
4386 gcc_unreachable ();
4387 }
4388
4389 return constant_boolean_node (result, type);
4390 }
4391 \f
4392 /* Given EXP, a logical expression, set the range it is testing into
4393 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4394 actually being tested. *PLOW and *PHIGH will be made of the same
4395 type as the returned expression. If EXP is not a comparison, we
4396 will most likely not be returning a useful value and range. Set
4397 *STRICT_OVERFLOW_P to true if the return value is only valid
4398 because signed overflow is undefined; otherwise, do not change
4399 *STRICT_OVERFLOW_P. */
4400
4401 static tree
4402 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4403 bool *strict_overflow_p)
4404 {
4405 enum tree_code code;
4406 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
4407 tree exp_type = NULL_TREE, arg0_type = NULL_TREE;
4408 int in_p, n_in_p;
4409 tree low, high, n_low, n_high;
4410
4411 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4412 and see if we can refine the range. Some of the cases below may not
4413 happen, but it doesn't seem worth worrying about this. We "continue"
4414 the outer loop when we've changed something; otherwise we "break"
4415 the switch, which will "break" the while. */
4416
4417 in_p = 0;
4418 low = high = build_int_cst (TREE_TYPE (exp), 0);
4419
4420 while (1)
4421 {
4422 code = TREE_CODE (exp);
4423 exp_type = TREE_TYPE (exp);
4424
4425 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4426 {
4427 if (TREE_OPERAND_LENGTH (exp) > 0)
4428 arg0 = TREE_OPERAND (exp, 0);
4429 if (TREE_CODE_CLASS (code) == tcc_comparison
4430 || TREE_CODE_CLASS (code) == tcc_unary
4431 || TREE_CODE_CLASS (code) == tcc_binary)
4432 arg0_type = TREE_TYPE (arg0);
4433 if (TREE_CODE_CLASS (code) == tcc_binary
4434 || TREE_CODE_CLASS (code) == tcc_comparison
4435 || (TREE_CODE_CLASS (code) == tcc_expression
4436 && TREE_OPERAND_LENGTH (exp) > 1))
4437 arg1 = TREE_OPERAND (exp, 1);
4438 }
4439
4440 switch (code)
4441 {
4442 case TRUTH_NOT_EXPR:
4443 in_p = ! in_p, exp = arg0;
4444 continue;
4445
4446 case EQ_EXPR: case NE_EXPR:
4447 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4448 /* We can only do something if the range is testing for zero
4449 and if the second operand is an integer constant. Note that
4450 saying something is "in" the range we make is done by
4451 complementing IN_P since it will set in the initial case of
4452 being not equal to zero; "out" is leaving it alone. */
4453 if (low == 0 || high == 0
4454 || ! integer_zerop (low) || ! integer_zerop (high)
4455 || TREE_CODE (arg1) != INTEGER_CST)
4456 break;
4457
4458 switch (code)
4459 {
4460 case NE_EXPR: /* - [c, c] */
4461 low = high = arg1;
4462 break;
4463 case EQ_EXPR: /* + [c, c] */
4464 in_p = ! in_p, low = high = arg1;
4465 break;
4466 case GT_EXPR: /* - [-, c] */
4467 low = 0, high = arg1;
4468 break;
4469 case GE_EXPR: /* + [c, -] */
4470 in_p = ! in_p, low = arg1, high = 0;
4471 break;
4472 case LT_EXPR: /* - [c, -] */
4473 low = arg1, high = 0;
4474 break;
4475 case LE_EXPR: /* + [-, c] */
4476 in_p = ! in_p, low = 0, high = arg1;
4477 break;
4478 default:
4479 gcc_unreachable ();
4480 }
4481
4482 /* If this is an unsigned comparison, we also know that EXP is
4483 greater than or equal to zero. We base the range tests we make
4484 on that fact, so we record it here so we can parse existing
4485 range tests. We test arg0_type since often the return type
4486 of, e.g. EQ_EXPR, is boolean. */
4487 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4488 {
4489 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4490 in_p, low, high, 1,
4491 build_int_cst (arg0_type, 0),
4492 NULL_TREE))
4493 break;
4494
4495 in_p = n_in_p, low = n_low, high = n_high;
4496
4497 /* If the high bound is missing, but we have a nonzero low
4498 bound, reverse the range so it goes from zero to the low bound
4499 minus 1. */
4500 if (high == 0 && low && ! integer_zerop (low))
4501 {
4502 in_p = ! in_p;
4503 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4504 integer_one_node, 0);
4505 low = build_int_cst (arg0_type, 0);
4506 }
4507 }
4508
4509 exp = arg0;
4510 continue;
4511
4512 case NEGATE_EXPR:
4513 /* (-x) IN [a,b] -> x in [-b, -a] */
4514 n_low = range_binop (MINUS_EXPR, exp_type,
4515 build_int_cst (exp_type, 0),
4516 0, high, 1);
4517 n_high = range_binop (MINUS_EXPR, exp_type,
4518 build_int_cst (exp_type, 0),
4519 0, low, 0);
4520 low = n_low, high = n_high;
4521 exp = arg0;
4522 continue;
4523
4524 case BIT_NOT_EXPR:
4525 /* ~ X -> -X - 1 */
4526 exp = build2 (MINUS_EXPR, exp_type, negate_expr (arg0),
4527 build_int_cst (exp_type, 1));
4528 continue;
4529
4530 case PLUS_EXPR: case MINUS_EXPR:
4531 if (TREE_CODE (arg1) != INTEGER_CST)
4532 break;
4533
4534 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4535 move a constant to the other side. */
4536 if (!TYPE_UNSIGNED (arg0_type)
4537 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4538 break;
4539
4540 /* If EXP is signed, any overflow in the computation is undefined,
4541 so we don't worry about it so long as our computations on
4542 the bounds don't overflow. For unsigned, overflow is defined
4543 and this is exactly the right thing. */
4544 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4545 arg0_type, low, 0, arg1, 0);
4546 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4547 arg0_type, high, 1, arg1, 0);
4548 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4549 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4550 break;
4551
4552 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4553 *strict_overflow_p = true;
4554
4555 /* Check for an unsigned range which has wrapped around the maximum
4556 value thus making n_high < n_low, and normalize it. */
4557 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4558 {
4559 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4560 integer_one_node, 0);
4561 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4562 integer_one_node, 0);
4563
4564 /* If the range is of the form +/- [ x+1, x ], we won't
4565 be able to normalize it. But then, it represents the
4566 whole range or the empty set, so make it
4567 +/- [ -, - ]. */
4568 if (tree_int_cst_equal (n_low, low)
4569 && tree_int_cst_equal (n_high, high))
4570 low = high = 0;
4571 else
4572 in_p = ! in_p;
4573 }
4574 else
4575 low = n_low, high = n_high;
4576
4577 exp = arg0;
4578 continue;
4579
4580 CASE_CONVERT: case NON_LVALUE_EXPR:
4581 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4582 break;
4583
4584 if (! INTEGRAL_TYPE_P (arg0_type)
4585 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4586 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4587 break;
4588
4589 n_low = low, n_high = high;
4590
4591 if (n_low != 0)
4592 n_low = fold_convert (arg0_type, n_low);
4593
4594 if (n_high != 0)
4595 n_high = fold_convert (arg0_type, n_high);
4596
4597
4598 /* If we're converting arg0 from an unsigned type, to exp,
4599 a signed type, we will be doing the comparison as unsigned.
4600 The tests above have already verified that LOW and HIGH
4601 are both positive.
4602
4603 So we have to ensure that we will handle large unsigned
4604 values the same way that the current signed bounds treat
4605 negative values. */
4606
4607 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4608 {
4609 tree high_positive;
4610 tree equiv_type;
4611 /* For fixed-point modes, we need to pass the saturating flag
4612 as the 2nd parameter. */
4613 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4614 equiv_type = lang_hooks.types.type_for_mode
4615 (TYPE_MODE (arg0_type),
4616 TYPE_SATURATING (arg0_type));
4617 else
4618 equiv_type = lang_hooks.types.type_for_mode
4619 (TYPE_MODE (arg0_type), 1);
4620
4621 /* A range without an upper bound is, naturally, unbounded.
4622 Since convert would have cropped a very large value, use
4623 the max value for the destination type. */
4624 high_positive
4625 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4626 : TYPE_MAX_VALUE (arg0_type);
4627
4628 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4629 high_positive = fold_build2 (RSHIFT_EXPR, arg0_type,
4630 fold_convert (arg0_type,
4631 high_positive),
4632 build_int_cst (arg0_type, 1));
4633
4634 /* If the low bound is specified, "and" the range with the
4635 range for which the original unsigned value will be
4636 positive. */
4637 if (low != 0)
4638 {
4639 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4640 1, n_low, n_high, 1,
4641 fold_convert (arg0_type,
4642 integer_zero_node),
4643 high_positive))
4644 break;
4645
4646 in_p = (n_in_p == in_p);
4647 }
4648 else
4649 {
4650 /* Otherwise, "or" the range with the range of the input
4651 that will be interpreted as negative. */
4652 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4653 0, n_low, n_high, 1,
4654 fold_convert (arg0_type,
4655 integer_zero_node),
4656 high_positive))
4657 break;
4658
4659 in_p = (in_p != n_in_p);
4660 }
4661 }
4662
4663 exp = arg0;
4664 low = n_low, high = n_high;
4665 continue;
4666
4667 default:
4668 break;
4669 }
4670
4671 break;
4672 }
4673
4674 /* If EXP is a constant, we can evaluate whether this is true or false. */
4675 if (TREE_CODE (exp) == INTEGER_CST)
4676 {
4677 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4678 exp, 0, low, 0))
4679 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4680 exp, 1, high, 1)));
4681 low = high = 0;
4682 exp = 0;
4683 }
4684
4685 *pin_p = in_p, *plow = low, *phigh = high;
4686 return exp;
4687 }
4688 \f
4689 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4690 type, TYPE, return an expression to test if EXP is in (or out of, depending
4691 on IN_P) the range. Return 0 if the test couldn't be created. */
4692
4693 static tree
4694 build_range_check (tree type, tree exp, int in_p, tree low, tree high)
4695 {
4696 tree etype = TREE_TYPE (exp), value;
4697 enum tree_code code;
4698
4699 #ifdef HAVE_canonicalize_funcptr_for_compare
4700 /* Disable this optimization for function pointer expressions
4701 on targets that require function pointer canonicalization. */
4702 if (HAVE_canonicalize_funcptr_for_compare
4703 && TREE_CODE (etype) == POINTER_TYPE
4704 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4705 return NULL_TREE;
4706 #endif
4707
4708 if (! in_p)
4709 {
4710 value = build_range_check (type, exp, 1, low, high);
4711 if (value != 0)
4712 return invert_truthvalue (value);
4713
4714 return 0;
4715 }
4716
4717 if (low == 0 && high == 0)
4718 return build_int_cst (type, 1);
4719
4720 if (low == 0)
4721 return fold_build2 (LE_EXPR, type, exp,
4722 fold_convert (etype, high));
4723
4724 if (high == 0)
4725 return fold_build2 (GE_EXPR, type, exp,
4726 fold_convert (etype, low));
4727
4728 if (operand_equal_p (low, high, 0))
4729 return fold_build2 (EQ_EXPR, type, exp,
4730 fold_convert (etype, low));
4731
4732 if (integer_zerop (low))
4733 {
4734 if (! TYPE_UNSIGNED (etype))
4735 {
4736 etype = unsigned_type_for (etype);
4737 high = fold_convert (etype, high);
4738 exp = fold_convert (etype, exp);
4739 }
4740 return build_range_check (type, exp, 1, 0, high);
4741 }
4742
4743 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4744 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4745 {
4746 unsigned HOST_WIDE_INT lo;
4747 HOST_WIDE_INT hi;
4748 int prec;
4749
4750 prec = TYPE_PRECISION (etype);
4751 if (prec <= HOST_BITS_PER_WIDE_INT)
4752 {
4753 hi = 0;
4754 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
4755 }
4756 else
4757 {
4758 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
4759 lo = (unsigned HOST_WIDE_INT) -1;
4760 }
4761
4762 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
4763 {
4764 if (TYPE_UNSIGNED (etype))
4765 {
4766 tree signed_etype = signed_type_for (etype);
4767 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4768 etype
4769 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4770 else
4771 etype = signed_etype;
4772 exp = fold_convert (etype, exp);
4773 }
4774 return fold_build2 (GT_EXPR, type, exp,
4775 build_int_cst (etype, 0));
4776 }
4777 }
4778
4779 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4780 This requires wrap-around arithmetics for the type of the expression. */
4781 code = TREE_CODE (etype);
4782 switch (code)
4783 {
4784 case INTEGER_TYPE:
4785 case ENUMERAL_TYPE:
4786 case BOOLEAN_TYPE:
4787 /* There is no requirement that LOW be within the range of ETYPE
4788 if the latter is a subtype. It must, however, be within the base
4789 type of ETYPE. So be sure we do the subtraction in that type. */
4790 if (code == INTEGER_TYPE && TREE_TYPE (etype))
4791 {
4792 etype = TREE_TYPE (etype);
4793 /* But not in an enumeral or boolean type though. */
4794 code = TREE_CODE (etype);
4795 }
4796
4797 if (code != INTEGER_TYPE)
4798 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4799 TYPE_UNSIGNED (etype));
4800 break;
4801
4802 default:
4803 break;
4804 }
4805
4806 /* If we don't have wrap-around arithmetics upfront, try to force it. */
4807 if (TREE_CODE (etype) == INTEGER_TYPE
4808 && !TYPE_OVERFLOW_WRAPS (etype))
4809 {
4810 tree utype, minv, maxv;
4811
4812 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4813 for the type in question, as we rely on this here. */
4814 utype = unsigned_type_for (etype);
4815 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
4816 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4817 integer_one_node, 1);
4818 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
4819
4820 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4821 minv, 1, maxv, 1)))
4822 etype = utype;
4823 else
4824 return 0;
4825 }
4826
4827 high = fold_convert (etype, high);
4828 low = fold_convert (etype, low);
4829 exp = fold_convert (etype, exp);
4830
4831 value = const_binop (MINUS_EXPR, high, low, 0);
4832
4833
4834 if (POINTER_TYPE_P (etype))
4835 {
4836 if (value != 0 && !TREE_OVERFLOW (value))
4837 {
4838 low = fold_convert (sizetype, low);
4839 low = fold_build1 (NEGATE_EXPR, sizetype, low);
4840 return build_range_check (type,
4841 fold_build2 (POINTER_PLUS_EXPR, etype, exp, low),
4842 1, build_int_cst (etype, 0), value);
4843 }
4844 return 0;
4845 }
4846
4847 if (value != 0 && !TREE_OVERFLOW (value))
4848 return build_range_check (type,
4849 fold_build2 (MINUS_EXPR, etype, exp, low),
4850 1, build_int_cst (etype, 0), value);
4851
4852 return 0;
4853 }
4854 \f
4855 /* Return the predecessor of VAL in its type, handling the infinite case. */
4856
4857 static tree
4858 range_predecessor (tree val)
4859 {
4860 tree type = TREE_TYPE (val);
4861
4862 if (INTEGRAL_TYPE_P (type)
4863 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4864 return 0;
4865 else
4866 return range_binop (MINUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4867 }
4868
4869 /* Return the successor of VAL in its type, handling the infinite case. */
4870
4871 static tree
4872 range_successor (tree val)
4873 {
4874 tree type = TREE_TYPE (val);
4875
4876 if (INTEGRAL_TYPE_P (type)
4877 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4878 return 0;
4879 else
4880 return range_binop (PLUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4881 }
4882
4883 /* Given two ranges, see if we can merge them into one. Return 1 if we
4884 can, 0 if we can't. Set the output range into the specified parameters. */
4885
4886 static int
4887 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4888 tree high0, int in1_p, tree low1, tree high1)
4889 {
4890 int no_overlap;
4891 int subset;
4892 int temp;
4893 tree tem;
4894 int in_p;
4895 tree low, high;
4896 int lowequal = ((low0 == 0 && low1 == 0)
4897 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4898 low0, 0, low1, 0)));
4899 int highequal = ((high0 == 0 && high1 == 0)
4900 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4901 high0, 1, high1, 1)));
4902
4903 /* Make range 0 be the range that starts first, or ends last if they
4904 start at the same value. Swap them if it isn't. */
4905 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4906 low0, 0, low1, 0))
4907 || (lowequal
4908 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4909 high1, 1, high0, 1))))
4910 {
4911 temp = in0_p, in0_p = in1_p, in1_p = temp;
4912 tem = low0, low0 = low1, low1 = tem;
4913 tem = high0, high0 = high1, high1 = tem;
4914 }
4915
4916 /* Now flag two cases, whether the ranges are disjoint or whether the
4917 second range is totally subsumed in the first. Note that the tests
4918 below are simplified by the ones above. */
4919 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4920 high0, 1, low1, 0));
4921 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4922 high1, 1, high0, 1));
4923
4924 /* We now have four cases, depending on whether we are including or
4925 excluding the two ranges. */
4926 if (in0_p && in1_p)
4927 {
4928 /* If they don't overlap, the result is false. If the second range
4929 is a subset it is the result. Otherwise, the range is from the start
4930 of the second to the end of the first. */
4931 if (no_overlap)
4932 in_p = 0, low = high = 0;
4933 else if (subset)
4934 in_p = 1, low = low1, high = high1;
4935 else
4936 in_p = 1, low = low1, high = high0;
4937 }
4938
4939 else if (in0_p && ! in1_p)
4940 {
4941 /* If they don't overlap, the result is the first range. If they are
4942 equal, the result is false. If the second range is a subset of the
4943 first, and the ranges begin at the same place, we go from just after
4944 the end of the second range to the end of the first. If the second
4945 range is not a subset of the first, or if it is a subset and both
4946 ranges end at the same place, the range starts at the start of the
4947 first range and ends just before the second range.
4948 Otherwise, we can't describe this as a single range. */
4949 if (no_overlap)
4950 in_p = 1, low = low0, high = high0;
4951 else if (lowequal && highequal)
4952 in_p = 0, low = high = 0;
4953 else if (subset && lowequal)
4954 {
4955 low = range_successor (high1);
4956 high = high0;
4957 in_p = 1;
4958 if (low == 0)
4959 {
4960 /* We are in the weird situation where high0 > high1 but
4961 high1 has no successor. Punt. */
4962 return 0;
4963 }
4964 }
4965 else if (! subset || highequal)
4966 {
4967 low = low0;
4968 high = range_predecessor (low1);
4969 in_p = 1;
4970 if (high == 0)
4971 {
4972 /* low0 < low1 but low1 has no predecessor. Punt. */
4973 return 0;
4974 }
4975 }
4976 else
4977 return 0;
4978 }
4979
4980 else if (! in0_p && in1_p)
4981 {
4982 /* If they don't overlap, the result is the second range. If the second
4983 is a subset of the first, the result is false. Otherwise,
4984 the range starts just after the first range and ends at the
4985 end of the second. */
4986 if (no_overlap)
4987 in_p = 1, low = low1, high = high1;
4988 else if (subset || highequal)
4989 in_p = 0, low = high = 0;
4990 else
4991 {
4992 low = range_successor (high0);
4993 high = high1;
4994 in_p = 1;
4995 if (low == 0)
4996 {
4997 /* high1 > high0 but high0 has no successor. Punt. */
4998 return 0;
4999 }
5000 }
5001 }
5002
5003 else
5004 {
5005 /* The case where we are excluding both ranges. Here the complex case
5006 is if they don't overlap. In that case, the only time we have a
5007 range is if they are adjacent. If the second is a subset of the
5008 first, the result is the first. Otherwise, the range to exclude
5009 starts at the beginning of the first range and ends at the end of the
5010 second. */
5011 if (no_overlap)
5012 {
5013 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
5014 range_successor (high0),
5015 1, low1, 0)))
5016 in_p = 0, low = low0, high = high1;
5017 else
5018 {
5019 /* Canonicalize - [min, x] into - [-, x]. */
5020 if (low0 && TREE_CODE (low0) == INTEGER_CST)
5021 switch (TREE_CODE (TREE_TYPE (low0)))
5022 {
5023 case ENUMERAL_TYPE:
5024 if (TYPE_PRECISION (TREE_TYPE (low0))
5025 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
5026 break;
5027 /* FALLTHROUGH */
5028 case INTEGER_TYPE:
5029 if (tree_int_cst_equal (low0,
5030 TYPE_MIN_VALUE (TREE_TYPE (low0))))
5031 low0 = 0;
5032 break;
5033 case POINTER_TYPE:
5034 if (TYPE_UNSIGNED (TREE_TYPE (low0))
5035 && integer_zerop (low0))
5036 low0 = 0;
5037 break;
5038 default:
5039 break;
5040 }
5041
5042 /* Canonicalize - [x, max] into - [x, -]. */
5043 if (high1 && TREE_CODE (high1) == INTEGER_CST)
5044 switch (TREE_CODE (TREE_TYPE (high1)))
5045 {
5046 case ENUMERAL_TYPE:
5047 if (TYPE_PRECISION (TREE_TYPE (high1))
5048 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
5049 break;
5050 /* FALLTHROUGH */
5051 case INTEGER_TYPE:
5052 if (tree_int_cst_equal (high1,
5053 TYPE_MAX_VALUE (TREE_TYPE (high1))))
5054 high1 = 0;
5055 break;
5056 case POINTER_TYPE:
5057 if (TYPE_UNSIGNED (TREE_TYPE (high1))
5058 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
5059 high1, 1,
5060 integer_one_node, 1)))
5061 high1 = 0;
5062 break;
5063 default:
5064 break;
5065 }
5066
5067 /* The ranges might be also adjacent between the maximum and
5068 minimum values of the given type. For
5069 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5070 return + [x + 1, y - 1]. */
5071 if (low0 == 0 && high1 == 0)
5072 {
5073 low = range_successor (high0);
5074 high = range_predecessor (low1);
5075 if (low == 0 || high == 0)
5076 return 0;
5077
5078 in_p = 1;
5079 }
5080 else
5081 return 0;
5082 }
5083 }
5084 else if (subset)
5085 in_p = 0, low = low0, high = high0;
5086 else
5087 in_p = 0, low = low0, high = high1;
5088 }
5089
5090 *pin_p = in_p, *plow = low, *phigh = high;
5091 return 1;
5092 }
5093 \f
5094
5095 /* Subroutine of fold, looking inside expressions of the form
5096 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5097 of the COND_EXPR. This function is being used also to optimize
5098 A op B ? C : A, by reversing the comparison first.
5099
5100 Return a folded expression whose code is not a COND_EXPR
5101 anymore, or NULL_TREE if no folding opportunity is found. */
5102
5103 static tree
5104 fold_cond_expr_with_comparison (tree type, tree arg0, tree arg1, tree arg2)
5105 {
5106 enum tree_code comp_code = TREE_CODE (arg0);
5107 tree arg00 = TREE_OPERAND (arg0, 0);
5108 tree arg01 = TREE_OPERAND (arg0, 1);
5109 tree arg1_type = TREE_TYPE (arg1);
5110 tree tem;
5111
5112 STRIP_NOPS (arg1);
5113 STRIP_NOPS (arg2);
5114
5115 /* If we have A op 0 ? A : -A, consider applying the following
5116 transformations:
5117
5118 A == 0? A : -A same as -A
5119 A != 0? A : -A same as A
5120 A >= 0? A : -A same as abs (A)
5121 A > 0? A : -A same as abs (A)
5122 A <= 0? A : -A same as -abs (A)
5123 A < 0? A : -A same as -abs (A)
5124
5125 None of these transformations work for modes with signed
5126 zeros. If A is +/-0, the first two transformations will
5127 change the sign of the result (from +0 to -0, or vice
5128 versa). The last four will fix the sign of the result,
5129 even though the original expressions could be positive or
5130 negative, depending on the sign of A.
5131
5132 Note that all these transformations are correct if A is
5133 NaN, since the two alternatives (A and -A) are also NaNs. */
5134 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
5135 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5136 ? real_zerop (arg01)
5137 : integer_zerop (arg01))
5138 && ((TREE_CODE (arg2) == NEGATE_EXPR
5139 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5140 /* In the case that A is of the form X-Y, '-A' (arg2) may
5141 have already been folded to Y-X, check for that. */
5142 || (TREE_CODE (arg1) == MINUS_EXPR
5143 && TREE_CODE (arg2) == MINUS_EXPR
5144 && operand_equal_p (TREE_OPERAND (arg1, 0),
5145 TREE_OPERAND (arg2, 1), 0)
5146 && operand_equal_p (TREE_OPERAND (arg1, 1),
5147 TREE_OPERAND (arg2, 0), 0))))
5148 switch (comp_code)
5149 {
5150 case EQ_EXPR:
5151 case UNEQ_EXPR:
5152 tem = fold_convert (arg1_type, arg1);
5153 return pedantic_non_lvalue (fold_convert (type, negate_expr (tem)));
5154 case NE_EXPR:
5155 case LTGT_EXPR:
5156 return pedantic_non_lvalue (fold_convert (type, arg1));
5157 case UNGE_EXPR:
5158 case UNGT_EXPR:
5159 if (flag_trapping_math)
5160 break;
5161 /* Fall through. */
5162 case GE_EXPR:
5163 case GT_EXPR:
5164 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5165 arg1 = fold_convert (signed_type_for
5166 (TREE_TYPE (arg1)), arg1);
5167 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
5168 return pedantic_non_lvalue (fold_convert (type, tem));
5169 case UNLE_EXPR:
5170 case UNLT_EXPR:
5171 if (flag_trapping_math)
5172 break;
5173 case LE_EXPR:
5174 case LT_EXPR:
5175 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5176 arg1 = fold_convert (signed_type_for
5177 (TREE_TYPE (arg1)), arg1);
5178 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
5179 return negate_expr (fold_convert (type, tem));
5180 default:
5181 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5182 break;
5183 }
5184
5185 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5186 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5187 both transformations are correct when A is NaN: A != 0
5188 is then true, and A == 0 is false. */
5189
5190 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
5191 && integer_zerop (arg01) && integer_zerop (arg2))
5192 {
5193 if (comp_code == NE_EXPR)
5194 return pedantic_non_lvalue (fold_convert (type, arg1));
5195 else if (comp_code == EQ_EXPR)
5196 return build_int_cst (type, 0);
5197 }
5198
5199 /* Try some transformations of A op B ? A : B.
5200
5201 A == B? A : B same as B
5202 A != B? A : B same as A
5203 A >= B? A : B same as max (A, B)
5204 A > B? A : B same as max (B, A)
5205 A <= B? A : B same as min (A, B)
5206 A < B? A : B same as min (B, A)
5207
5208 As above, these transformations don't work in the presence
5209 of signed zeros. For example, if A and B are zeros of
5210 opposite sign, the first two transformations will change
5211 the sign of the result. In the last four, the original
5212 expressions give different results for (A=+0, B=-0) and
5213 (A=-0, B=+0), but the transformed expressions do not.
5214
5215 The first two transformations are correct if either A or B
5216 is a NaN. In the first transformation, the condition will
5217 be false, and B will indeed be chosen. In the case of the
5218 second transformation, the condition A != B will be true,
5219 and A will be chosen.
5220
5221 The conversions to max() and min() are not correct if B is
5222 a number and A is not. The conditions in the original
5223 expressions will be false, so all four give B. The min()
5224 and max() versions would give a NaN instead. */
5225 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
5226 && operand_equal_for_comparison_p (arg01, arg2, arg00)
5227 /* Avoid these transformations if the COND_EXPR may be used
5228 as an lvalue in the C++ front-end. PR c++/19199. */
5229 && (in_gimple_form
5230 || (strcmp (lang_hooks.name, "GNU C++") != 0
5231 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5232 || ! maybe_lvalue_p (arg1)
5233 || ! maybe_lvalue_p (arg2)))
5234 {
5235 tree comp_op0 = arg00;
5236 tree comp_op1 = arg01;
5237 tree comp_type = TREE_TYPE (comp_op0);
5238
5239 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
5240 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
5241 {
5242 comp_type = type;
5243 comp_op0 = arg1;
5244 comp_op1 = arg2;
5245 }
5246
5247 switch (comp_code)
5248 {
5249 case EQ_EXPR:
5250 return pedantic_non_lvalue (fold_convert (type, arg2));
5251 case NE_EXPR:
5252 return pedantic_non_lvalue (fold_convert (type, arg1));
5253 case LE_EXPR:
5254 case LT_EXPR:
5255 case UNLE_EXPR:
5256 case UNLT_EXPR:
5257 /* In C++ a ?: expression can be an lvalue, so put the
5258 operand which will be used if they are equal first
5259 so that we can convert this back to the
5260 corresponding COND_EXPR. */
5261 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
5262 {
5263 comp_op0 = fold_convert (comp_type, comp_op0);
5264 comp_op1 = fold_convert (comp_type, comp_op1);
5265 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5266 ? fold_build2 (MIN_EXPR, comp_type, comp_op0, comp_op1)
5267 : fold_build2 (MIN_EXPR, comp_type, comp_op1, comp_op0);
5268 return pedantic_non_lvalue (fold_convert (type, tem));
5269 }
5270 break;
5271 case GE_EXPR:
5272 case GT_EXPR:
5273 case UNGE_EXPR:
5274 case UNGT_EXPR:
5275 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
5276 {
5277 comp_op0 = fold_convert (comp_type, comp_op0);
5278 comp_op1 = fold_convert (comp_type, comp_op1);
5279 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5280 ? fold_build2 (MAX_EXPR, comp_type, comp_op0, comp_op1)
5281 : fold_build2 (MAX_EXPR, comp_type, comp_op1, comp_op0);
5282 return pedantic_non_lvalue (fold_convert (type, tem));
5283 }
5284 break;
5285 case UNEQ_EXPR:
5286 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
5287 return pedantic_non_lvalue (fold_convert (type, arg2));
5288 break;
5289 case LTGT_EXPR:
5290 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
5291 return pedantic_non_lvalue (fold_convert (type, arg1));
5292 break;
5293 default:
5294 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5295 break;
5296 }
5297 }
5298
5299 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5300 we might still be able to simplify this. For example,
5301 if C1 is one less or one more than C2, this might have started
5302 out as a MIN or MAX and been transformed by this function.
5303 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5304
5305 if (INTEGRAL_TYPE_P (type)
5306 && TREE_CODE (arg01) == INTEGER_CST
5307 && TREE_CODE (arg2) == INTEGER_CST)
5308 switch (comp_code)
5309 {
5310 case EQ_EXPR:
5311 /* We can replace A with C1 in this case. */
5312 arg1 = fold_convert (type, arg01);
5313 return fold_build3 (COND_EXPR, type, arg0, arg1, arg2);
5314
5315 case LT_EXPR:
5316 /* If C1 is C2 + 1, this is min(A, C2). */
5317 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5318 OEP_ONLY_CONST)
5319 && operand_equal_p (arg01,
5320 const_binop (PLUS_EXPR, arg2,
5321 build_int_cst (type, 1), 0),
5322 OEP_ONLY_CONST))
5323 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
5324 type,
5325 fold_convert (type, arg1),
5326 arg2));
5327 break;
5328
5329 case LE_EXPR:
5330 /* If C1 is C2 - 1, this is min(A, C2). */
5331 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5332 OEP_ONLY_CONST)
5333 && operand_equal_p (arg01,
5334 const_binop (MINUS_EXPR, arg2,
5335 build_int_cst (type, 1), 0),
5336 OEP_ONLY_CONST))
5337 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
5338 type,
5339 fold_convert (type, arg1),
5340 arg2));
5341 break;
5342
5343 case GT_EXPR:
5344 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
5345 MAX_EXPR, to preserve the signedness of the comparison. */
5346 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5347 OEP_ONLY_CONST)
5348 && operand_equal_p (arg01,
5349 const_binop (MINUS_EXPR, arg2,
5350 build_int_cst (type, 1), 0),
5351 OEP_ONLY_CONST))
5352 return pedantic_non_lvalue (fold_convert (type,
5353 fold_build2 (MAX_EXPR, TREE_TYPE (arg00),
5354 arg00,
5355 fold_convert (TREE_TYPE (arg00),
5356 arg2))));
5357 break;
5358
5359 case GE_EXPR:
5360 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
5361 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5362 OEP_ONLY_CONST)
5363 && operand_equal_p (arg01,
5364 const_binop (PLUS_EXPR, arg2,
5365 build_int_cst (type, 1), 0),
5366 OEP_ONLY_CONST))
5367 return pedantic_non_lvalue (fold_convert (type,
5368 fold_build2 (MAX_EXPR, TREE_TYPE (arg00),
5369 arg00,
5370 fold_convert (TREE_TYPE (arg00),
5371 arg2))));
5372 break;
5373 case NE_EXPR:
5374 break;
5375 default:
5376 gcc_unreachable ();
5377 }
5378
5379 return NULL_TREE;
5380 }
5381
5382
5383 \f
5384 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5385 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5386 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5387 false) >= 2)
5388 #endif
5389
5390 /* EXP is some logical combination of boolean tests. See if we can
5391 merge it into some range test. Return the new tree if so. */
5392
5393 static tree
5394 fold_range_test (enum tree_code code, tree type, tree op0, tree op1)
5395 {
5396 int or_op = (code == TRUTH_ORIF_EXPR
5397 || code == TRUTH_OR_EXPR);
5398 int in0_p, in1_p, in_p;
5399 tree low0, low1, low, high0, high1, high;
5400 bool strict_overflow_p = false;
5401 tree lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5402 tree rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5403 tree tem;
5404 const char * const warnmsg = G_("assuming signed overflow does not occur "
5405 "when simplifying range test");
5406
5407 /* If this is an OR operation, invert both sides; we will invert
5408 again at the end. */
5409 if (or_op)
5410 in0_p = ! in0_p, in1_p = ! in1_p;
5411
5412 /* If both expressions are the same, if we can merge the ranges, and we
5413 can build the range test, return it or it inverted. If one of the
5414 ranges is always true or always false, consider it to be the same
5415 expression as the other. */
5416 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5417 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5418 in1_p, low1, high1)
5419 && 0 != (tem = (build_range_check (type,
5420 lhs != 0 ? lhs
5421 : rhs != 0 ? rhs : integer_zero_node,
5422 in_p, low, high))))
5423 {
5424 if (strict_overflow_p)
5425 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5426 return or_op ? invert_truthvalue (tem) : tem;
5427 }
5428
5429 /* On machines where the branch cost is expensive, if this is a
5430 short-circuited branch and the underlying object on both sides
5431 is the same, make a non-short-circuit operation. */
5432 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5433 && lhs != 0 && rhs != 0
5434 && (code == TRUTH_ANDIF_EXPR
5435 || code == TRUTH_ORIF_EXPR)
5436 && operand_equal_p (lhs, rhs, 0))
5437 {
5438 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5439 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5440 which cases we can't do this. */
5441 if (simple_operand_p (lhs))
5442 return build2 (code == TRUTH_ANDIF_EXPR
5443 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5444 type, op0, op1);
5445
5446 else if (lang_hooks.decls.global_bindings_p () == 0
5447 && ! CONTAINS_PLACEHOLDER_P (lhs))
5448 {
5449 tree common = save_expr (lhs);
5450
5451 if (0 != (lhs = build_range_check (type, common,
5452 or_op ? ! in0_p : in0_p,
5453 low0, high0))
5454 && (0 != (rhs = build_range_check (type, common,
5455 or_op ? ! in1_p : in1_p,
5456 low1, high1))))
5457 {
5458 if (strict_overflow_p)
5459 fold_overflow_warning (warnmsg,
5460 WARN_STRICT_OVERFLOW_COMPARISON);
5461 return build2 (code == TRUTH_ANDIF_EXPR
5462 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5463 type, lhs, rhs);
5464 }
5465 }
5466 }
5467
5468 return 0;
5469 }
5470 \f
5471 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
5472 bit value. Arrange things so the extra bits will be set to zero if and
5473 only if C is signed-extended to its full width. If MASK is nonzero,
5474 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5475
5476 static tree
5477 unextend (tree c, int p, int unsignedp, tree mask)
5478 {
5479 tree type = TREE_TYPE (c);
5480 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5481 tree temp;
5482
5483 if (p == modesize || unsignedp)
5484 return c;
5485
5486 /* We work by getting just the sign bit into the low-order bit, then
5487 into the high-order bit, then sign-extend. We then XOR that value
5488 with C. */
5489 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
5490 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
5491
5492 /* We must use a signed type in order to get an arithmetic right shift.
5493 However, we must also avoid introducing accidental overflows, so that
5494 a subsequent call to integer_zerop will work. Hence we must
5495 do the type conversion here. At this point, the constant is either
5496 zero or one, and the conversion to a signed type can never overflow.
5497 We could get an overflow if this conversion is done anywhere else. */
5498 if (TYPE_UNSIGNED (type))
5499 temp = fold_convert (signed_type_for (type), temp);
5500
5501 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
5502 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
5503 if (mask != 0)
5504 temp = const_binop (BIT_AND_EXPR, temp,
5505 fold_convert (TREE_TYPE (c), mask), 0);
5506 /* If necessary, convert the type back to match the type of C. */
5507 if (TYPE_UNSIGNED (type))
5508 temp = fold_convert (type, temp);
5509
5510 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
5511 }
5512 \f
5513 /* Find ways of folding logical expressions of LHS and RHS:
5514 Try to merge two comparisons to the same innermost item.
5515 Look for range tests like "ch >= '0' && ch <= '9'".
5516 Look for combinations of simple terms on machines with expensive branches
5517 and evaluate the RHS unconditionally.
5518
5519 For example, if we have p->a == 2 && p->b == 4 and we can make an
5520 object large enough to span both A and B, we can do this with a comparison
5521 against the object ANDed with the a mask.
5522
5523 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5524 operations to do this with one comparison.
5525
5526 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5527 function and the one above.
5528
5529 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5530 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5531
5532 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5533 two operands.
5534
5535 We return the simplified tree or 0 if no optimization is possible. */
5536
5537 static tree
5538 fold_truthop (enum tree_code code, tree truth_type, tree lhs, tree rhs)
5539 {
5540 /* If this is the "or" of two comparisons, we can do something if
5541 the comparisons are NE_EXPR. If this is the "and", we can do something
5542 if the comparisons are EQ_EXPR. I.e.,
5543 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5544
5545 WANTED_CODE is this operation code. For single bit fields, we can
5546 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5547 comparison for one-bit fields. */
5548
5549 enum tree_code wanted_code;
5550 enum tree_code lcode, rcode;
5551 tree ll_arg, lr_arg, rl_arg, rr_arg;
5552 tree ll_inner, lr_inner, rl_inner, rr_inner;
5553 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5554 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5555 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5556 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5557 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5558 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5559 enum machine_mode lnmode, rnmode;
5560 tree ll_mask, lr_mask, rl_mask, rr_mask;
5561 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5562 tree l_const, r_const;
5563 tree lntype, rntype, result;
5564 HOST_WIDE_INT first_bit, end_bit;
5565 int volatilep;
5566 tree orig_lhs = lhs, orig_rhs = rhs;
5567 enum tree_code orig_code = code;
5568
5569 /* Start by getting the comparison codes. Fail if anything is volatile.
5570 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5571 it were surrounded with a NE_EXPR. */
5572
5573 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5574 return 0;
5575
5576 lcode = TREE_CODE (lhs);
5577 rcode = TREE_CODE (rhs);
5578
5579 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5580 {
5581 lhs = build2 (NE_EXPR, truth_type, lhs,
5582 build_int_cst (TREE_TYPE (lhs), 0));
5583 lcode = NE_EXPR;
5584 }
5585
5586 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5587 {
5588 rhs = build2 (NE_EXPR, truth_type, rhs,
5589 build_int_cst (TREE_TYPE (rhs), 0));
5590 rcode = NE_EXPR;
5591 }
5592
5593 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5594 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5595 return 0;
5596
5597 ll_arg = TREE_OPERAND (lhs, 0);
5598 lr_arg = TREE_OPERAND (lhs, 1);
5599 rl_arg = TREE_OPERAND (rhs, 0);
5600 rr_arg = TREE_OPERAND (rhs, 1);
5601
5602 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5603 if (simple_operand_p (ll_arg)
5604 && simple_operand_p (lr_arg))
5605 {
5606 tree result;
5607 if (operand_equal_p (ll_arg, rl_arg, 0)
5608 && operand_equal_p (lr_arg, rr_arg, 0))
5609 {
5610 result = combine_comparisons (code, lcode, rcode,
5611 truth_type, ll_arg, lr_arg);
5612 if (result)
5613 return result;
5614 }
5615 else if (operand_equal_p (ll_arg, rr_arg, 0)
5616 && operand_equal_p (lr_arg, rl_arg, 0))
5617 {
5618 result = combine_comparisons (code, lcode,
5619 swap_tree_comparison (rcode),
5620 truth_type, ll_arg, lr_arg);
5621 if (result)
5622 return result;
5623 }
5624 }
5625
5626 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5627 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5628
5629 /* If the RHS can be evaluated unconditionally and its operands are
5630 simple, it wins to evaluate the RHS unconditionally on machines
5631 with expensive branches. In this case, this isn't a comparison
5632 that can be merged. Avoid doing this if the RHS is a floating-point
5633 comparison since those can trap. */
5634
5635 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5636 false) >= 2
5637 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5638 && simple_operand_p (rl_arg)
5639 && simple_operand_p (rr_arg))
5640 {
5641 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5642 if (code == TRUTH_OR_EXPR
5643 && lcode == NE_EXPR && integer_zerop (lr_arg)
5644 && rcode == NE_EXPR && integer_zerop (rr_arg)
5645 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5646 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5647 return build2 (NE_EXPR, truth_type,
5648 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5649 ll_arg, rl_arg),
5650 build_int_cst (TREE_TYPE (ll_arg), 0));
5651
5652 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5653 if (code == TRUTH_AND_EXPR
5654 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5655 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5656 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5657 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5658 return build2 (EQ_EXPR, truth_type,
5659 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5660 ll_arg, rl_arg),
5661 build_int_cst (TREE_TYPE (ll_arg), 0));
5662
5663 if (LOGICAL_OP_NON_SHORT_CIRCUIT)
5664 {
5665 if (code != orig_code || lhs != orig_lhs || rhs != orig_rhs)
5666 return build2 (code, truth_type, lhs, rhs);
5667 return NULL_TREE;
5668 }
5669 }
5670
5671 /* See if the comparisons can be merged. Then get all the parameters for
5672 each side. */
5673
5674 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5675 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5676 return 0;
5677
5678 volatilep = 0;
5679 ll_inner = decode_field_reference (ll_arg,
5680 &ll_bitsize, &ll_bitpos, &ll_mode,
5681 &ll_unsignedp, &volatilep, &ll_mask,
5682 &ll_and_mask);
5683 lr_inner = decode_field_reference (lr_arg,
5684 &lr_bitsize, &lr_bitpos, &lr_mode,
5685 &lr_unsignedp, &volatilep, &lr_mask,
5686 &lr_and_mask);
5687 rl_inner = decode_field_reference (rl_arg,
5688 &rl_bitsize, &rl_bitpos, &rl_mode,
5689 &rl_unsignedp, &volatilep, &rl_mask,
5690 &rl_and_mask);
5691 rr_inner = decode_field_reference (rr_arg,
5692 &rr_bitsize, &rr_bitpos, &rr_mode,
5693 &rr_unsignedp, &volatilep, &rr_mask,
5694 &rr_and_mask);
5695
5696 /* It must be true that the inner operation on the lhs of each
5697 comparison must be the same if we are to be able to do anything.
5698 Then see if we have constants. If not, the same must be true for
5699 the rhs's. */
5700 if (volatilep || ll_inner == 0 || rl_inner == 0
5701 || ! operand_equal_p (ll_inner, rl_inner, 0))
5702 return 0;
5703
5704 if (TREE_CODE (lr_arg) == INTEGER_CST
5705 && TREE_CODE (rr_arg) == INTEGER_CST)
5706 l_const = lr_arg, r_const = rr_arg;
5707 else if (lr_inner == 0 || rr_inner == 0
5708 || ! operand_equal_p (lr_inner, rr_inner, 0))
5709 return 0;
5710 else
5711 l_const = r_const = 0;
5712
5713 /* If either comparison code is not correct for our logical operation,
5714 fail. However, we can convert a one-bit comparison against zero into
5715 the opposite comparison against that bit being set in the field. */
5716
5717 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5718 if (lcode != wanted_code)
5719 {
5720 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5721 {
5722 /* Make the left operand unsigned, since we are only interested
5723 in the value of one bit. Otherwise we are doing the wrong
5724 thing below. */
5725 ll_unsignedp = 1;
5726 l_const = ll_mask;
5727 }
5728 else
5729 return 0;
5730 }
5731
5732 /* This is analogous to the code for l_const above. */
5733 if (rcode != wanted_code)
5734 {
5735 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5736 {
5737 rl_unsignedp = 1;
5738 r_const = rl_mask;
5739 }
5740 else
5741 return 0;
5742 }
5743
5744 /* See if we can find a mode that contains both fields being compared on
5745 the left. If we can't, fail. Otherwise, update all constants and masks
5746 to be relative to a field of that size. */
5747 first_bit = MIN (ll_bitpos, rl_bitpos);
5748 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5749 lnmode = get_best_mode (end_bit - first_bit, first_bit,
5750 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5751 volatilep);
5752 if (lnmode == VOIDmode)
5753 return 0;
5754
5755 lnbitsize = GET_MODE_BITSIZE (lnmode);
5756 lnbitpos = first_bit & ~ (lnbitsize - 1);
5757 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5758 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5759
5760 if (BYTES_BIG_ENDIAN)
5761 {
5762 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5763 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5764 }
5765
5766 ll_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, ll_mask),
5767 size_int (xll_bitpos), 0);
5768 rl_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, rl_mask),
5769 size_int (xrl_bitpos), 0);
5770
5771 if (l_const)
5772 {
5773 l_const = fold_convert (lntype, l_const);
5774 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5775 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
5776 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5777 fold_build1 (BIT_NOT_EXPR,
5778 lntype, ll_mask),
5779 0)))
5780 {
5781 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5782
5783 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5784 }
5785 }
5786 if (r_const)
5787 {
5788 r_const = fold_convert (lntype, r_const);
5789 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5790 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
5791 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5792 fold_build1 (BIT_NOT_EXPR,
5793 lntype, rl_mask),
5794 0)))
5795 {
5796 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5797
5798 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5799 }
5800 }
5801
5802 /* If the right sides are not constant, do the same for it. Also,
5803 disallow this optimization if a size or signedness mismatch occurs
5804 between the left and right sides. */
5805 if (l_const == 0)
5806 {
5807 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5808 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5809 /* Make sure the two fields on the right
5810 correspond to the left without being swapped. */
5811 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5812 return 0;
5813
5814 first_bit = MIN (lr_bitpos, rr_bitpos);
5815 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5816 rnmode = get_best_mode (end_bit - first_bit, first_bit,
5817 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5818 volatilep);
5819 if (rnmode == VOIDmode)
5820 return 0;
5821
5822 rnbitsize = GET_MODE_BITSIZE (rnmode);
5823 rnbitpos = first_bit & ~ (rnbitsize - 1);
5824 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5825 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5826
5827 if (BYTES_BIG_ENDIAN)
5828 {
5829 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5830 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5831 }
5832
5833 lr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, lr_mask),
5834 size_int (xlr_bitpos), 0);
5835 rr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, rr_mask),
5836 size_int (xrr_bitpos), 0);
5837
5838 /* Make a mask that corresponds to both fields being compared.
5839 Do this for both items being compared. If the operands are the
5840 same size and the bits being compared are in the same position
5841 then we can do this by masking both and comparing the masked
5842 results. */
5843 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
5844 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
5845 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5846 {
5847 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
5848 ll_unsignedp || rl_unsignedp);
5849 if (! all_ones_mask_p (ll_mask, lnbitsize))
5850 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5851
5852 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
5853 lr_unsignedp || rr_unsignedp);
5854 if (! all_ones_mask_p (lr_mask, rnbitsize))
5855 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5856
5857 return build2 (wanted_code, truth_type, lhs, rhs);
5858 }
5859
5860 /* There is still another way we can do something: If both pairs of
5861 fields being compared are adjacent, we may be able to make a wider
5862 field containing them both.
5863
5864 Note that we still must mask the lhs/rhs expressions. Furthermore,
5865 the mask must be shifted to account for the shift done by
5866 make_bit_field_ref. */
5867 if ((ll_bitsize + ll_bitpos == rl_bitpos
5868 && lr_bitsize + lr_bitpos == rr_bitpos)
5869 || (ll_bitpos == rl_bitpos + rl_bitsize
5870 && lr_bitpos == rr_bitpos + rr_bitsize))
5871 {
5872 tree type;
5873
5874 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
5875 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5876 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
5877 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5878
5879 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5880 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
5881 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5882 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
5883
5884 /* Convert to the smaller type before masking out unwanted bits. */
5885 type = lntype;
5886 if (lntype != rntype)
5887 {
5888 if (lnbitsize > rnbitsize)
5889 {
5890 lhs = fold_convert (rntype, lhs);
5891 ll_mask = fold_convert (rntype, ll_mask);
5892 type = rntype;
5893 }
5894 else if (lnbitsize < rnbitsize)
5895 {
5896 rhs = fold_convert (lntype, rhs);
5897 lr_mask = fold_convert (lntype, lr_mask);
5898 type = lntype;
5899 }
5900 }
5901
5902 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5903 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5904
5905 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5906 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5907
5908 return build2 (wanted_code, truth_type, lhs, rhs);
5909 }
5910
5911 return 0;
5912 }
5913
5914 /* Handle the case of comparisons with constants. If there is something in
5915 common between the masks, those bits of the constants must be the same.
5916 If not, the condition is always false. Test for this to avoid generating
5917 incorrect code below. */
5918 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
5919 if (! integer_zerop (result)
5920 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
5921 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
5922 {
5923 if (wanted_code == NE_EXPR)
5924 {
5925 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5926 return constant_boolean_node (true, truth_type);
5927 }
5928 else
5929 {
5930 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5931 return constant_boolean_node (false, truth_type);
5932 }
5933 }
5934
5935 /* Construct the expression we will return. First get the component
5936 reference we will make. Unless the mask is all ones the width of
5937 that field, perform the mask operation. Then compare with the
5938 merged constant. */
5939 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
5940 ll_unsignedp || rl_unsignedp);
5941
5942 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
5943 if (! all_ones_mask_p (ll_mask, lnbitsize))
5944 result = build2 (BIT_AND_EXPR, lntype, result, ll_mask);
5945
5946 return build2 (wanted_code, truth_type, result,
5947 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
5948 }
5949 \f
5950 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5951 constant. */
5952
5953 static tree
5954 optimize_minmax_comparison (enum tree_code code, tree type, tree op0, tree op1)
5955 {
5956 tree arg0 = op0;
5957 enum tree_code op_code;
5958 tree comp_const;
5959 tree minmax_const;
5960 int consts_equal, consts_lt;
5961 tree inner;
5962
5963 STRIP_SIGN_NOPS (arg0);
5964
5965 op_code = TREE_CODE (arg0);
5966 minmax_const = TREE_OPERAND (arg0, 1);
5967 comp_const = fold_convert (TREE_TYPE (arg0), op1);
5968 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5969 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5970 inner = TREE_OPERAND (arg0, 0);
5971
5972 /* If something does not permit us to optimize, return the original tree. */
5973 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5974 || TREE_CODE (comp_const) != INTEGER_CST
5975 || TREE_OVERFLOW (comp_const)
5976 || TREE_CODE (minmax_const) != INTEGER_CST
5977 || TREE_OVERFLOW (minmax_const))
5978 return NULL_TREE;
5979
5980 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5981 and GT_EXPR, doing the rest with recursive calls using logical
5982 simplifications. */
5983 switch (code)
5984 {
5985 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5986 {
5987 tree tem = optimize_minmax_comparison (invert_tree_comparison (code, false),
5988 type, op0, op1);
5989 if (tem)
5990 return invert_truthvalue (tem);
5991 return NULL_TREE;
5992 }
5993
5994 case GE_EXPR:
5995 return
5996 fold_build2 (TRUTH_ORIF_EXPR, type,
5997 optimize_minmax_comparison
5998 (EQ_EXPR, type, arg0, comp_const),
5999 optimize_minmax_comparison
6000 (GT_EXPR, type, arg0, comp_const));
6001
6002 case EQ_EXPR:
6003 if (op_code == MAX_EXPR && consts_equal)
6004 /* MAX (X, 0) == 0 -> X <= 0 */
6005 return fold_build2 (LE_EXPR, type, inner, comp_const);
6006
6007 else if (op_code == MAX_EXPR && consts_lt)
6008 /* MAX (X, 0) == 5 -> X == 5 */
6009 return fold_build2 (EQ_EXPR, type, inner, comp_const);
6010
6011 else if (op_code == MAX_EXPR)
6012 /* MAX (X, 0) == -1 -> false */
6013 return omit_one_operand (type, integer_zero_node, inner);
6014
6015 else if (consts_equal)
6016 /* MIN (X, 0) == 0 -> X >= 0 */
6017 return fold_build2 (GE_EXPR, type, inner, comp_const);
6018
6019 else if (consts_lt)
6020 /* MIN (X, 0) == 5 -> false */
6021 return omit_one_operand (type, integer_zero_node, inner);
6022
6023 else
6024 /* MIN (X, 0) == -1 -> X == -1 */
6025 return fold_build2 (EQ_EXPR, type, inner, comp_const);
6026
6027 case GT_EXPR:
6028 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
6029 /* MAX (X, 0) > 0 -> X > 0
6030 MAX (X, 0) > 5 -> X > 5 */
6031 return fold_build2 (GT_EXPR, type, inner, comp_const);
6032
6033 else if (op_code == MAX_EXPR)
6034 /* MAX (X, 0) > -1 -> true */
6035 return omit_one_operand (type, integer_one_node, inner);
6036
6037 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
6038 /* MIN (X, 0) > 0 -> false
6039 MIN (X, 0) > 5 -> false */
6040 return omit_one_operand (type, integer_zero_node, inner);
6041
6042 else
6043 /* MIN (X, 0) > -1 -> X > -1 */
6044 return fold_build2 (GT_EXPR, type, inner, comp_const);
6045
6046 default:
6047 return NULL_TREE;
6048 }
6049 }
6050 \f
6051 /* T is an integer expression that is being multiplied, divided, or taken a
6052 modulus (CODE says which and what kind of divide or modulus) by a
6053 constant C. See if we can eliminate that operation by folding it with
6054 other operations already in T. WIDE_TYPE, if non-null, is a type that
6055 should be used for the computation if wider than our type.
6056
6057 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
6058 (X * 2) + (Y * 4). We must, however, be assured that either the original
6059 expression would not overflow or that overflow is undefined for the type
6060 in the language in question.
6061
6062 If we return a non-null expression, it is an equivalent form of the
6063 original computation, but need not be in the original type.
6064
6065 We set *STRICT_OVERFLOW_P to true if the return values depends on
6066 signed overflow being undefined. Otherwise we do not change
6067 *STRICT_OVERFLOW_P. */
6068
6069 static tree
6070 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
6071 bool *strict_overflow_p)
6072 {
6073 /* To avoid exponential search depth, refuse to allow recursion past
6074 three levels. Beyond that (1) it's highly unlikely that we'll find
6075 something interesting and (2) we've probably processed it before
6076 when we built the inner expression. */
6077
6078 static int depth;
6079 tree ret;
6080
6081 if (depth > 3)
6082 return NULL;
6083
6084 depth++;
6085 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
6086 depth--;
6087
6088 return ret;
6089 }
6090
6091 static tree
6092 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6093 bool *strict_overflow_p)
6094 {
6095 tree type = TREE_TYPE (t);
6096 enum tree_code tcode = TREE_CODE (t);
6097 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
6098 > GET_MODE_SIZE (TYPE_MODE (type)))
6099 ? wide_type : type);
6100 tree t1, t2;
6101 int same_p = tcode == code;
6102 tree op0 = NULL_TREE, op1 = NULL_TREE;
6103 bool sub_strict_overflow_p;
6104
6105 /* Don't deal with constants of zero here; they confuse the code below. */
6106 if (integer_zerop (c))
6107 return NULL_TREE;
6108
6109 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6110 op0 = TREE_OPERAND (t, 0);
6111
6112 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6113 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6114
6115 /* Note that we need not handle conditional operations here since fold
6116 already handles those cases. So just do arithmetic here. */
6117 switch (tcode)
6118 {
6119 case INTEGER_CST:
6120 /* For a constant, we can always simplify if we are a multiply
6121 or (for divide and modulus) if it is a multiple of our constant. */
6122 if (code == MULT_EXPR
6123 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
6124 return const_binop (code, fold_convert (ctype, t),
6125 fold_convert (ctype, c), 0);
6126 break;
6127
6128 CASE_CONVERT: case NON_LVALUE_EXPR:
6129 /* If op0 is an expression ... */
6130 if ((COMPARISON_CLASS_P (op0)
6131 || UNARY_CLASS_P (op0)
6132 || BINARY_CLASS_P (op0)
6133 || VL_EXP_CLASS_P (op0)
6134 || EXPRESSION_CLASS_P (op0))
6135 /* ... and has wrapping overflow, and its type is smaller
6136 than ctype, then we cannot pass through as widening. */
6137 && ((TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0))
6138 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
6139 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
6140 && (TYPE_PRECISION (ctype)
6141 > TYPE_PRECISION (TREE_TYPE (op0))))
6142 /* ... or this is a truncation (t is narrower than op0),
6143 then we cannot pass through this narrowing. */
6144 || (TYPE_PRECISION (type)
6145 < TYPE_PRECISION (TREE_TYPE (op0)))
6146 /* ... or signedness changes for division or modulus,
6147 then we cannot pass through this conversion. */
6148 || (code != MULT_EXPR
6149 && (TYPE_UNSIGNED (ctype)
6150 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6151 /* ... or has undefined overflow while the converted to
6152 type has not, we cannot do the operation in the inner type
6153 as that would introduce undefined overflow. */
6154 || (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))
6155 && !TYPE_OVERFLOW_UNDEFINED (type))))
6156 break;
6157
6158 /* Pass the constant down and see if we can make a simplification. If
6159 we can, replace this expression with the inner simplification for
6160 possible later conversion to our or some other type. */
6161 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6162 && TREE_CODE (t2) == INTEGER_CST
6163 && !TREE_OVERFLOW (t2)
6164 && (0 != (t1 = extract_muldiv (op0, t2, code,
6165 code == MULT_EXPR
6166 ? ctype : NULL_TREE,
6167 strict_overflow_p))))
6168 return t1;
6169 break;
6170
6171 case ABS_EXPR:
6172 /* If widening the type changes it from signed to unsigned, then we
6173 must avoid building ABS_EXPR itself as unsigned. */
6174 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6175 {
6176 tree cstype = (*signed_type_for) (ctype);
6177 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6178 != 0)
6179 {
6180 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6181 return fold_convert (ctype, t1);
6182 }
6183 break;
6184 }
6185 /* If the constant is negative, we cannot simplify this. */
6186 if (tree_int_cst_sgn (c) == -1)
6187 break;
6188 /* FALLTHROUGH */
6189 case NEGATE_EXPR:
6190 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6191 != 0)
6192 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6193 break;
6194
6195 case MIN_EXPR: case MAX_EXPR:
6196 /* If widening the type changes the signedness, then we can't perform
6197 this optimization as that changes the result. */
6198 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6199 break;
6200
6201 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6202 sub_strict_overflow_p = false;
6203 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6204 &sub_strict_overflow_p)) != 0
6205 && (t2 = extract_muldiv (op1, c, code, wide_type,
6206 &sub_strict_overflow_p)) != 0)
6207 {
6208 if (tree_int_cst_sgn (c) < 0)
6209 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6210 if (sub_strict_overflow_p)
6211 *strict_overflow_p = true;
6212 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6213 fold_convert (ctype, t2));
6214 }
6215 break;
6216
6217 case LSHIFT_EXPR: case RSHIFT_EXPR:
6218 /* If the second operand is constant, this is a multiplication
6219 or floor division, by a power of two, so we can treat it that
6220 way unless the multiplier or divisor overflows. Signed
6221 left-shift overflow is implementation-defined rather than
6222 undefined in C90, so do not convert signed left shift into
6223 multiplication. */
6224 if (TREE_CODE (op1) == INTEGER_CST
6225 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6226 /* const_binop may not detect overflow correctly,
6227 so check for it explicitly here. */
6228 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
6229 && TREE_INT_CST_HIGH (op1) == 0
6230 && 0 != (t1 = fold_convert (ctype,
6231 const_binop (LSHIFT_EXPR,
6232 size_one_node,
6233 op1, 0)))
6234 && !TREE_OVERFLOW (t1))
6235 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6236 ? MULT_EXPR : FLOOR_DIV_EXPR,
6237 ctype, fold_convert (ctype, op0), t1),
6238 c, code, wide_type, strict_overflow_p);
6239 break;
6240
6241 case PLUS_EXPR: case MINUS_EXPR:
6242 /* See if we can eliminate the operation on both sides. If we can, we
6243 can return a new PLUS or MINUS. If we can't, the only remaining
6244 cases where we can do anything are if the second operand is a
6245 constant. */
6246 sub_strict_overflow_p = false;
6247 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6248 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6249 if (t1 != 0 && t2 != 0
6250 && (code == MULT_EXPR
6251 /* If not multiplication, we can only do this if both operands
6252 are divisible by c. */
6253 || (multiple_of_p (ctype, op0, c)
6254 && multiple_of_p (ctype, op1, c))))
6255 {
6256 if (sub_strict_overflow_p)
6257 *strict_overflow_p = true;
6258 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6259 fold_convert (ctype, t2));
6260 }
6261
6262 /* If this was a subtraction, negate OP1 and set it to be an addition.
6263 This simplifies the logic below. */
6264 if (tcode == MINUS_EXPR)
6265 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6266
6267 if (TREE_CODE (op1) != INTEGER_CST)
6268 break;
6269
6270 /* If either OP1 or C are negative, this optimization is not safe for
6271 some of the division and remainder types while for others we need
6272 to change the code. */
6273 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6274 {
6275 if (code == CEIL_DIV_EXPR)
6276 code = FLOOR_DIV_EXPR;
6277 else if (code == FLOOR_DIV_EXPR)
6278 code = CEIL_DIV_EXPR;
6279 else if (code != MULT_EXPR
6280 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6281 break;
6282 }
6283
6284 /* If it's a multiply or a division/modulus operation of a multiple
6285 of our constant, do the operation and verify it doesn't overflow. */
6286 if (code == MULT_EXPR
6287 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
6288 {
6289 op1 = const_binop (code, fold_convert (ctype, op1),
6290 fold_convert (ctype, c), 0);
6291 /* We allow the constant to overflow with wrapping semantics. */
6292 if (op1 == 0
6293 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6294 break;
6295 }
6296 else
6297 break;
6298
6299 /* If we have an unsigned type is not a sizetype, we cannot widen
6300 the operation since it will change the result if the original
6301 computation overflowed. */
6302 if (TYPE_UNSIGNED (ctype)
6303 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
6304 && ctype != type)
6305 break;
6306
6307 /* If we were able to eliminate our operation from the first side,
6308 apply our operation to the second side and reform the PLUS. */
6309 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
6310 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
6311
6312 /* The last case is if we are a multiply. In that case, we can
6313 apply the distributive law to commute the multiply and addition
6314 if the multiplication of the constants doesn't overflow. */
6315 if (code == MULT_EXPR)
6316 return fold_build2 (tcode, ctype,
6317 fold_build2 (code, ctype,
6318 fold_convert (ctype, op0),
6319 fold_convert (ctype, c)),
6320 op1);
6321
6322 break;
6323
6324 case MULT_EXPR:
6325 /* We have a special case here if we are doing something like
6326 (C * 8) % 4 since we know that's zero. */
6327 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6328 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6329 /* If the multiplication can overflow we cannot optimize this.
6330 ??? Until we can properly mark individual operations as
6331 not overflowing we need to treat sizetype special here as
6332 stor-layout relies on this opimization to make
6333 DECL_FIELD_BIT_OFFSET always a constant. */
6334 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6335 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6336 && TYPE_IS_SIZETYPE (TREE_TYPE (t))))
6337 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6338 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
6339 {
6340 *strict_overflow_p = true;
6341 return omit_one_operand (type, integer_zero_node, op0);
6342 }
6343
6344 /* ... fall through ... */
6345
6346 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6347 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6348 /* If we can extract our operation from the LHS, do so and return a
6349 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6350 do something only if the second operand is a constant. */
6351 if (same_p
6352 && (t1 = extract_muldiv (op0, c, code, wide_type,
6353 strict_overflow_p)) != 0)
6354 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6355 fold_convert (ctype, op1));
6356 else if (tcode == MULT_EXPR && code == MULT_EXPR
6357 && (t1 = extract_muldiv (op1, c, code, wide_type,
6358 strict_overflow_p)) != 0)
6359 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6360 fold_convert (ctype, t1));
6361 else if (TREE_CODE (op1) != INTEGER_CST)
6362 return 0;
6363
6364 /* If these are the same operation types, we can associate them
6365 assuming no overflow. */
6366 if (tcode == code
6367 && 0 != (t1 = int_const_binop (MULT_EXPR, fold_convert (ctype, op1),
6368 fold_convert (ctype, c), 1))
6369 && 0 != (t1 = force_fit_type_double (ctype, TREE_INT_CST_LOW (t1),
6370 TREE_INT_CST_HIGH (t1),
6371 (TYPE_UNSIGNED (ctype)
6372 && tcode != MULT_EXPR) ? -1 : 1,
6373 TREE_OVERFLOW (t1)))
6374 && !TREE_OVERFLOW (t1))
6375 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), t1);
6376
6377 /* If these operations "cancel" each other, we have the main
6378 optimizations of this pass, which occur when either constant is a
6379 multiple of the other, in which case we replace this with either an
6380 operation or CODE or TCODE.
6381
6382 If we have an unsigned type that is not a sizetype, we cannot do
6383 this since it will change the result if the original computation
6384 overflowed. */
6385 if ((TYPE_OVERFLOW_UNDEFINED (ctype)
6386 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
6387 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6388 || (tcode == MULT_EXPR
6389 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6390 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6391 && code != MULT_EXPR)))
6392 {
6393 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
6394 {
6395 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6396 *strict_overflow_p = true;
6397 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6398 fold_convert (ctype,
6399 const_binop (TRUNC_DIV_EXPR,
6400 op1, c, 0)));
6401 }
6402 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
6403 {
6404 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6405 *strict_overflow_p = true;
6406 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6407 fold_convert (ctype,
6408 const_binop (TRUNC_DIV_EXPR,
6409 c, op1, 0)));
6410 }
6411 }
6412 break;
6413
6414 default:
6415 break;
6416 }
6417
6418 return 0;
6419 }
6420 \f
6421 /* Return a node which has the indicated constant VALUE (either 0 or
6422 1), and is of the indicated TYPE. */
6423
6424 tree
6425 constant_boolean_node (int value, tree type)
6426 {
6427 if (type == integer_type_node)
6428 return value ? integer_one_node : integer_zero_node;
6429 else if (type == boolean_type_node)
6430 return value ? boolean_true_node : boolean_false_node;
6431 else
6432 return build_int_cst (type, value);
6433 }
6434
6435
6436 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6437 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6438 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6439 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6440 COND is the first argument to CODE; otherwise (as in the example
6441 given here), it is the second argument. TYPE is the type of the
6442 original expression. Return NULL_TREE if no simplification is
6443 possible. */
6444
6445 static tree
6446 fold_binary_op_with_conditional_arg (enum tree_code code,
6447 tree type, tree op0, tree op1,
6448 tree cond, tree arg, int cond_first_p)
6449 {
6450 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6451 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6452 tree test, true_value, false_value;
6453 tree lhs = NULL_TREE;
6454 tree rhs = NULL_TREE;
6455
6456 /* This transformation is only worthwhile if we don't have to wrap
6457 arg in a SAVE_EXPR, and the operation can be simplified on at least
6458 one of the branches once its pushed inside the COND_EXPR. */
6459 if (!TREE_CONSTANT (arg))
6460 return NULL_TREE;
6461
6462 if (TREE_CODE (cond) == COND_EXPR)
6463 {
6464 test = TREE_OPERAND (cond, 0);
6465 true_value = TREE_OPERAND (cond, 1);
6466 false_value = TREE_OPERAND (cond, 2);
6467 /* If this operand throws an expression, then it does not make
6468 sense to try to perform a logical or arithmetic operation
6469 involving it. */
6470 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6471 lhs = true_value;
6472 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6473 rhs = false_value;
6474 }
6475 else
6476 {
6477 tree testtype = TREE_TYPE (cond);
6478 test = cond;
6479 true_value = constant_boolean_node (true, testtype);
6480 false_value = constant_boolean_node (false, testtype);
6481 }
6482
6483 arg = fold_convert (arg_type, arg);
6484 if (lhs == 0)
6485 {
6486 true_value = fold_convert (cond_type, true_value);
6487 if (cond_first_p)
6488 lhs = fold_build2 (code, type, true_value, arg);
6489 else
6490 lhs = fold_build2 (code, type, arg, true_value);
6491 }
6492 if (rhs == 0)
6493 {
6494 false_value = fold_convert (cond_type, false_value);
6495 if (cond_first_p)
6496 rhs = fold_build2 (code, type, false_value, arg);
6497 else
6498 rhs = fold_build2 (code, type, arg, false_value);
6499 }
6500
6501 test = fold_build3 (COND_EXPR, type, test, lhs, rhs);
6502 return fold_convert (type, test);
6503 }
6504
6505 \f
6506 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6507
6508 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6509 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6510 ADDEND is the same as X.
6511
6512 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6513 and finite. The problematic cases are when X is zero, and its mode
6514 has signed zeros. In the case of rounding towards -infinity,
6515 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6516 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6517
6518 bool
6519 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6520 {
6521 if (!real_zerop (addend))
6522 return false;
6523
6524 /* Don't allow the fold with -fsignaling-nans. */
6525 if (HONOR_SNANS (TYPE_MODE (type)))
6526 return false;
6527
6528 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6529 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
6530 return true;
6531
6532 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6533 if (TREE_CODE (addend) == REAL_CST
6534 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6535 negate = !negate;
6536
6537 /* The mode has signed zeros, and we have to honor their sign.
6538 In this situation, there is only one case we can return true for.
6539 X - 0 is the same as X unless rounding towards -infinity is
6540 supported. */
6541 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
6542 }
6543
6544 /* Subroutine of fold() that checks comparisons of built-in math
6545 functions against real constants.
6546
6547 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
6548 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
6549 is the type of the result and ARG0 and ARG1 are the operands of the
6550 comparison. ARG1 must be a TREE_REAL_CST.
6551
6552 The function returns the constant folded tree if a simplification
6553 can be made, and NULL_TREE otherwise. */
6554
6555 static tree
6556 fold_mathfn_compare (enum built_in_function fcode, enum tree_code code,
6557 tree type, tree arg0, tree arg1)
6558 {
6559 REAL_VALUE_TYPE c;
6560
6561 if (BUILTIN_SQRT_P (fcode))
6562 {
6563 tree arg = CALL_EXPR_ARG (arg0, 0);
6564 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
6565
6566 c = TREE_REAL_CST (arg1);
6567 if (REAL_VALUE_NEGATIVE (c))
6568 {
6569 /* sqrt(x) < y is always false, if y is negative. */
6570 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
6571 return omit_one_operand (type, integer_zero_node, arg);
6572
6573 /* sqrt(x) > y is always true, if y is negative and we
6574 don't care about NaNs, i.e. negative values of x. */
6575 if (code == NE_EXPR || !HONOR_NANS (mode))
6576 return omit_one_operand (type, integer_one_node, arg);
6577
6578 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
6579 return fold_build2 (GE_EXPR, type, arg,
6580 build_real (TREE_TYPE (arg), dconst0));
6581 }
6582 else if (code == GT_EXPR || code == GE_EXPR)
6583 {
6584 REAL_VALUE_TYPE c2;
6585
6586 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6587 real_convert (&c2, mode, &c2);
6588
6589 if (REAL_VALUE_ISINF (c2))
6590 {
6591 /* sqrt(x) > y is x == +Inf, when y is very large. */
6592 if (HONOR_INFINITIES (mode))
6593 return fold_build2 (EQ_EXPR, type, arg,
6594 build_real (TREE_TYPE (arg), c2));
6595
6596 /* sqrt(x) > y is always false, when y is very large
6597 and we don't care about infinities. */
6598 return omit_one_operand (type, integer_zero_node, arg);
6599 }
6600
6601 /* sqrt(x) > c is the same as x > c*c. */
6602 return fold_build2 (code, type, arg,
6603 build_real (TREE_TYPE (arg), c2));
6604 }
6605 else if (code == LT_EXPR || code == LE_EXPR)
6606 {
6607 REAL_VALUE_TYPE c2;
6608
6609 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6610 real_convert (&c2, mode, &c2);
6611
6612 if (REAL_VALUE_ISINF (c2))
6613 {
6614 /* sqrt(x) < y is always true, when y is a very large
6615 value and we don't care about NaNs or Infinities. */
6616 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
6617 return omit_one_operand (type, integer_one_node, arg);
6618
6619 /* sqrt(x) < y is x != +Inf when y is very large and we
6620 don't care about NaNs. */
6621 if (! HONOR_NANS (mode))
6622 return fold_build2 (NE_EXPR, type, arg,
6623 build_real (TREE_TYPE (arg), c2));
6624
6625 /* sqrt(x) < y is x >= 0 when y is very large and we
6626 don't care about Infinities. */
6627 if (! HONOR_INFINITIES (mode))
6628 return fold_build2 (GE_EXPR, type, arg,
6629 build_real (TREE_TYPE (arg), dconst0));
6630
6631 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
6632 if (lang_hooks.decls.global_bindings_p () != 0
6633 || CONTAINS_PLACEHOLDER_P (arg))
6634 return NULL_TREE;
6635
6636 arg = save_expr (arg);
6637 return fold_build2 (TRUTH_ANDIF_EXPR, type,
6638 fold_build2 (GE_EXPR, type, arg,
6639 build_real (TREE_TYPE (arg),
6640 dconst0)),
6641 fold_build2 (NE_EXPR, type, arg,
6642 build_real (TREE_TYPE (arg),
6643 c2)));
6644 }
6645
6646 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
6647 if (! HONOR_NANS (mode))
6648 return fold_build2 (code, type, arg,
6649 build_real (TREE_TYPE (arg), c2));
6650
6651 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
6652 if (lang_hooks.decls.global_bindings_p () == 0
6653 && ! CONTAINS_PLACEHOLDER_P (arg))
6654 {
6655 arg = save_expr (arg);
6656 return fold_build2 (TRUTH_ANDIF_EXPR, type,
6657 fold_build2 (GE_EXPR, type, arg,
6658 build_real (TREE_TYPE (arg),
6659 dconst0)),
6660 fold_build2 (code, type, arg,
6661 build_real (TREE_TYPE (arg),
6662 c2)));
6663 }
6664 }
6665 }
6666
6667 return NULL_TREE;
6668 }
6669
6670 /* Subroutine of fold() that optimizes comparisons against Infinities,
6671 either +Inf or -Inf.
6672
6673 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6674 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6675 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6676
6677 The function returns the constant folded tree if a simplification
6678 can be made, and NULL_TREE otherwise. */
6679
6680 static tree
6681 fold_inf_compare (enum tree_code code, tree type, tree arg0, tree arg1)
6682 {
6683 enum machine_mode mode;
6684 REAL_VALUE_TYPE max;
6685 tree temp;
6686 bool neg;
6687
6688 mode = TYPE_MODE (TREE_TYPE (arg0));
6689
6690 /* For negative infinity swap the sense of the comparison. */
6691 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
6692 if (neg)
6693 code = swap_tree_comparison (code);
6694
6695 switch (code)
6696 {
6697 case GT_EXPR:
6698 /* x > +Inf is always false, if with ignore sNANs. */
6699 if (HONOR_SNANS (mode))
6700 return NULL_TREE;
6701 return omit_one_operand (type, integer_zero_node, arg0);
6702
6703 case LE_EXPR:
6704 /* x <= +Inf is always true, if we don't case about NaNs. */
6705 if (! HONOR_NANS (mode))
6706 return omit_one_operand (type, integer_one_node, arg0);
6707
6708 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
6709 if (lang_hooks.decls.global_bindings_p () == 0
6710 && ! CONTAINS_PLACEHOLDER_P (arg0))
6711 {
6712 arg0 = save_expr (arg0);
6713 return fold_build2 (EQ_EXPR, type, arg0, arg0);
6714 }
6715 break;
6716
6717 case EQ_EXPR:
6718 case GE_EXPR:
6719 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
6720 real_maxval (&max, neg, mode);
6721 return fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
6722 arg0, build_real (TREE_TYPE (arg0), max));
6723
6724 case LT_EXPR:
6725 /* x < +Inf is always equal to x <= DBL_MAX. */
6726 real_maxval (&max, neg, mode);
6727 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
6728 arg0, build_real (TREE_TYPE (arg0), max));
6729
6730 case NE_EXPR:
6731 /* x != +Inf is always equal to !(x > DBL_MAX). */
6732 real_maxval (&max, neg, mode);
6733 if (! HONOR_NANS (mode))
6734 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
6735 arg0, build_real (TREE_TYPE (arg0), max));
6736
6737 temp = fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
6738 arg0, build_real (TREE_TYPE (arg0), max));
6739 return fold_build1 (TRUTH_NOT_EXPR, type, temp);
6740
6741 default:
6742 break;
6743 }
6744
6745 return NULL_TREE;
6746 }
6747
6748 /* Subroutine of fold() that optimizes comparisons of a division by
6749 a nonzero integer constant against an integer constant, i.e.
6750 X/C1 op C2.
6751
6752 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6753 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6754 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6755
6756 The function returns the constant folded tree if a simplification
6757 can be made, and NULL_TREE otherwise. */
6758
6759 static tree
6760 fold_div_compare (enum tree_code code, tree type, tree arg0, tree arg1)
6761 {
6762 tree prod, tmp, hi, lo;
6763 tree arg00 = TREE_OPERAND (arg0, 0);
6764 tree arg01 = TREE_OPERAND (arg0, 1);
6765 unsigned HOST_WIDE_INT lpart;
6766 HOST_WIDE_INT hpart;
6767 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
6768 bool neg_overflow;
6769 int overflow;
6770
6771 /* We have to do this the hard way to detect unsigned overflow.
6772 prod = int_const_binop (MULT_EXPR, arg01, arg1, 0); */
6773 overflow = mul_double_with_sign (TREE_INT_CST_LOW (arg01),
6774 TREE_INT_CST_HIGH (arg01),
6775 TREE_INT_CST_LOW (arg1),
6776 TREE_INT_CST_HIGH (arg1),
6777 &lpart, &hpart, unsigned_p);
6778 prod = force_fit_type_double (TREE_TYPE (arg00), lpart, hpart,
6779 -1, overflow);
6780 neg_overflow = false;
6781
6782 if (unsigned_p)
6783 {
6784 tmp = int_const_binop (MINUS_EXPR, arg01,
6785 build_int_cst (TREE_TYPE (arg01), 1), 0);
6786 lo = prod;
6787
6788 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp, 0). */
6789 overflow = add_double_with_sign (TREE_INT_CST_LOW (prod),
6790 TREE_INT_CST_HIGH (prod),
6791 TREE_INT_CST_LOW (tmp),
6792 TREE_INT_CST_HIGH (tmp),
6793 &lpart, &hpart, unsigned_p);
6794 hi = force_fit_type_double (TREE_TYPE (arg00), lpart, hpart,
6795 -1, overflow | TREE_OVERFLOW (prod));
6796 }
6797 else if (tree_int_cst_sgn (arg01) >= 0)
6798 {
6799 tmp = int_const_binop (MINUS_EXPR, arg01,
6800 build_int_cst (TREE_TYPE (arg01), 1), 0);
6801 switch (tree_int_cst_sgn (arg1))
6802 {
6803 case -1:
6804 neg_overflow = true;
6805 lo = int_const_binop (MINUS_EXPR, prod, tmp, 0);
6806 hi = prod;
6807 break;
6808
6809 case 0:
6810 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6811 hi = tmp;
6812 break;
6813
6814 case 1:
6815 hi = int_const_binop (PLUS_EXPR, prod, tmp, 0);
6816 lo = prod;
6817 break;
6818
6819 default:
6820 gcc_unreachable ();
6821 }
6822 }
6823 else
6824 {
6825 /* A negative divisor reverses the relational operators. */
6826 code = swap_tree_comparison (code);
6827
6828 tmp = int_const_binop (PLUS_EXPR, arg01,
6829 build_int_cst (TREE_TYPE (arg01), 1), 0);
6830 switch (tree_int_cst_sgn (arg1))
6831 {
6832 case -1:
6833 hi = int_const_binop (MINUS_EXPR, prod, tmp, 0);
6834 lo = prod;
6835 break;
6836
6837 case 0:
6838 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6839 lo = tmp;
6840 break;
6841
6842 case 1:
6843 neg_overflow = true;
6844 lo = int_const_binop (PLUS_EXPR, prod, tmp, 0);
6845 hi = prod;
6846 break;
6847
6848 default:
6849 gcc_unreachable ();
6850 }
6851 }
6852
6853 switch (code)
6854 {
6855 case EQ_EXPR:
6856 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6857 return omit_one_operand (type, integer_zero_node, arg00);
6858 if (TREE_OVERFLOW (hi))
6859 return fold_build2 (GE_EXPR, type, arg00, lo);
6860 if (TREE_OVERFLOW (lo))
6861 return fold_build2 (LE_EXPR, type, arg00, hi);
6862 return build_range_check (type, arg00, 1, lo, hi);
6863
6864 case NE_EXPR:
6865 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6866 return omit_one_operand (type, integer_one_node, arg00);
6867 if (TREE_OVERFLOW (hi))
6868 return fold_build2 (LT_EXPR, type, arg00, lo);
6869 if (TREE_OVERFLOW (lo))
6870 return fold_build2 (GT_EXPR, type, arg00, hi);
6871 return build_range_check (type, arg00, 0, lo, hi);
6872
6873 case LT_EXPR:
6874 if (TREE_OVERFLOW (lo))
6875 {
6876 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6877 return omit_one_operand (type, tmp, arg00);
6878 }
6879 return fold_build2 (LT_EXPR, type, arg00, lo);
6880
6881 case LE_EXPR:
6882 if (TREE_OVERFLOW (hi))
6883 {
6884 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6885 return omit_one_operand (type, tmp, arg00);
6886 }
6887 return fold_build2 (LE_EXPR, type, arg00, hi);
6888
6889 case GT_EXPR:
6890 if (TREE_OVERFLOW (hi))
6891 {
6892 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6893 return omit_one_operand (type, tmp, arg00);
6894 }
6895 return fold_build2 (GT_EXPR, type, arg00, hi);
6896
6897 case GE_EXPR:
6898 if (TREE_OVERFLOW (lo))
6899 {
6900 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6901 return omit_one_operand (type, tmp, arg00);
6902 }
6903 return fold_build2 (GE_EXPR, type, arg00, lo);
6904
6905 default:
6906 break;
6907 }
6908
6909 return NULL_TREE;
6910 }
6911
6912
6913 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6914 equality/inequality test, then return a simplified form of the test
6915 using a sign testing. Otherwise return NULL. TYPE is the desired
6916 result type. */
6917
6918 static tree
6919 fold_single_bit_test_into_sign_test (enum tree_code code, tree arg0, tree arg1,
6920 tree result_type)
6921 {
6922 /* If this is testing a single bit, we can optimize the test. */
6923 if ((code == NE_EXPR || code == EQ_EXPR)
6924 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6925 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6926 {
6927 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6928 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6929 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6930
6931 if (arg00 != NULL_TREE
6932 /* This is only a win if casting to a signed type is cheap,
6933 i.e. when arg00's type is not a partial mode. */
6934 && TYPE_PRECISION (TREE_TYPE (arg00))
6935 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00))))
6936 {
6937 tree stype = signed_type_for (TREE_TYPE (arg00));
6938 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6939 result_type, fold_convert (stype, arg00),
6940 build_int_cst (stype, 0));
6941 }
6942 }
6943
6944 return NULL_TREE;
6945 }
6946
6947 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6948 equality/inequality test, then return a simplified form of
6949 the test using shifts and logical operations. Otherwise return
6950 NULL. TYPE is the desired result type. */
6951
6952 tree
6953 fold_single_bit_test (enum tree_code code, tree arg0, tree arg1,
6954 tree result_type)
6955 {
6956 /* If this is testing a single bit, we can optimize the test. */
6957 if ((code == NE_EXPR || code == EQ_EXPR)
6958 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6959 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6960 {
6961 tree inner = TREE_OPERAND (arg0, 0);
6962 tree type = TREE_TYPE (arg0);
6963 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6964 enum machine_mode operand_mode = TYPE_MODE (type);
6965 int ops_unsigned;
6966 tree signed_type, unsigned_type, intermediate_type;
6967 tree tem, one;
6968
6969 /* First, see if we can fold the single bit test into a sign-bit
6970 test. */
6971 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1,
6972 result_type);
6973 if (tem)
6974 return tem;
6975
6976 /* Otherwise we have (A & C) != 0 where C is a single bit,
6977 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6978 Similarly for (A & C) == 0. */
6979
6980 /* If INNER is a right shift of a constant and it plus BITNUM does
6981 not overflow, adjust BITNUM and INNER. */
6982 if (TREE_CODE (inner) == RSHIFT_EXPR
6983 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6984 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
6985 && bitnum < TYPE_PRECISION (type)
6986 && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
6987 bitnum - TYPE_PRECISION (type)))
6988 {
6989 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
6990 inner = TREE_OPERAND (inner, 0);
6991 }
6992
6993 /* If we are going to be able to omit the AND below, we must do our
6994 operations as unsigned. If we must use the AND, we have a choice.
6995 Normally unsigned is faster, but for some machines signed is. */
6996 #ifdef LOAD_EXTEND_OP
6997 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6998 && !flag_syntax_only) ? 0 : 1;
6999 #else
7000 ops_unsigned = 1;
7001 #endif
7002
7003 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
7004 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
7005 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
7006 inner = fold_convert (intermediate_type, inner);
7007
7008 if (bitnum != 0)
7009 inner = build2 (RSHIFT_EXPR, intermediate_type,
7010 inner, size_int (bitnum));
7011
7012 one = build_int_cst (intermediate_type, 1);
7013
7014 if (code == EQ_EXPR)
7015 inner = fold_build2 (BIT_XOR_EXPR, intermediate_type, inner, one);
7016
7017 /* Put the AND last so it can combine with more things. */
7018 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
7019
7020 /* Make sure to return the proper type. */
7021 inner = fold_convert (result_type, inner);
7022
7023 return inner;
7024 }
7025 return NULL_TREE;
7026 }
7027
7028 /* Check whether we are allowed to reorder operands arg0 and arg1,
7029 such that the evaluation of arg1 occurs before arg0. */
7030
7031 static bool
7032 reorder_operands_p (const_tree arg0, const_tree arg1)
7033 {
7034 if (! flag_evaluation_order)
7035 return true;
7036 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
7037 return true;
7038 return ! TREE_SIDE_EFFECTS (arg0)
7039 && ! TREE_SIDE_EFFECTS (arg1);
7040 }
7041
7042 /* Test whether it is preferable two swap two operands, ARG0 and
7043 ARG1, for example because ARG0 is an integer constant and ARG1
7044 isn't. If REORDER is true, only recommend swapping if we can
7045 evaluate the operands in reverse order. */
7046
7047 bool
7048 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
7049 {
7050 STRIP_SIGN_NOPS (arg0);
7051 STRIP_SIGN_NOPS (arg1);
7052
7053 if (TREE_CODE (arg1) == INTEGER_CST)
7054 return 0;
7055 if (TREE_CODE (arg0) == INTEGER_CST)
7056 return 1;
7057
7058 if (TREE_CODE (arg1) == REAL_CST)
7059 return 0;
7060 if (TREE_CODE (arg0) == REAL_CST)
7061 return 1;
7062
7063 if (TREE_CODE (arg1) == FIXED_CST)
7064 return 0;
7065 if (TREE_CODE (arg0) == FIXED_CST)
7066 return 1;
7067
7068 if (TREE_CODE (arg1) == COMPLEX_CST)
7069 return 0;
7070 if (TREE_CODE (arg0) == COMPLEX_CST)
7071 return 1;
7072
7073 if (TREE_CONSTANT (arg1))
7074 return 0;
7075 if (TREE_CONSTANT (arg0))
7076 return 1;
7077
7078 if (optimize_function_for_size_p (cfun))
7079 return 0;
7080
7081 if (reorder && flag_evaluation_order
7082 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
7083 return 0;
7084
7085 /* It is preferable to swap two SSA_NAME to ensure a canonical form
7086 for commutative and comparison operators. Ensuring a canonical
7087 form allows the optimizers to find additional redundancies without
7088 having to explicitly check for both orderings. */
7089 if (TREE_CODE (arg0) == SSA_NAME
7090 && TREE_CODE (arg1) == SSA_NAME
7091 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
7092 return 1;
7093
7094 /* Put SSA_NAMEs last. */
7095 if (TREE_CODE (arg1) == SSA_NAME)
7096 return 0;
7097 if (TREE_CODE (arg0) == SSA_NAME)
7098 return 1;
7099
7100 /* Put variables last. */
7101 if (DECL_P (arg1))
7102 return 0;
7103 if (DECL_P (arg0))
7104 return 1;
7105
7106 return 0;
7107 }
7108
7109 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
7110 ARG0 is extended to a wider type. */
7111
7112 static tree
7113 fold_widened_comparison (enum tree_code code, tree type, tree arg0, tree arg1)
7114 {
7115 tree arg0_unw = get_unwidened (arg0, NULL_TREE);
7116 tree arg1_unw;
7117 tree shorter_type, outer_type;
7118 tree min, max;
7119 bool above, below;
7120
7121 if (arg0_unw == arg0)
7122 return NULL_TREE;
7123 shorter_type = TREE_TYPE (arg0_unw);
7124
7125 #ifdef HAVE_canonicalize_funcptr_for_compare
7126 /* Disable this optimization if we're casting a function pointer
7127 type on targets that require function pointer canonicalization. */
7128 if (HAVE_canonicalize_funcptr_for_compare
7129 && TREE_CODE (shorter_type) == POINTER_TYPE
7130 && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
7131 return NULL_TREE;
7132 #endif
7133
7134 if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
7135 return NULL_TREE;
7136
7137 arg1_unw = get_unwidened (arg1, NULL_TREE);
7138
7139 /* If possible, express the comparison in the shorter mode. */
7140 if ((code == EQ_EXPR || code == NE_EXPR
7141 || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
7142 && (TREE_TYPE (arg1_unw) == shorter_type
7143 || ((TYPE_PRECISION (shorter_type)
7144 >= TYPE_PRECISION (TREE_TYPE (arg1_unw)))
7145 && (TYPE_UNSIGNED (shorter_type)
7146 == TYPE_UNSIGNED (TREE_TYPE (arg1_unw))))
7147 || (TREE_CODE (arg1_unw) == INTEGER_CST
7148 && (TREE_CODE (shorter_type) == INTEGER_TYPE
7149 || TREE_CODE (shorter_type) == BOOLEAN_TYPE)
7150 && int_fits_type_p (arg1_unw, shorter_type))))
7151 return fold_build2 (code, type, arg0_unw,
7152 fold_convert (shorter_type, arg1_unw));
7153
7154 if (TREE_CODE (arg1_unw) != INTEGER_CST
7155 || TREE_CODE (shorter_type) != INTEGER_TYPE
7156 || !int_fits_type_p (arg1_unw, shorter_type))
7157 return NULL_TREE;
7158
7159 /* If we are comparing with the integer that does not fit into the range
7160 of the shorter type, the result is known. */
7161 outer_type = TREE_TYPE (arg1_unw);
7162 min = lower_bound_in_type (outer_type, shorter_type);
7163 max = upper_bound_in_type (outer_type, shorter_type);
7164
7165 above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
7166 max, arg1_unw));
7167 below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
7168 arg1_unw, min));
7169
7170 switch (code)
7171 {
7172 case EQ_EXPR:
7173 if (above || below)
7174 return omit_one_operand (type, integer_zero_node, arg0);
7175 break;
7176
7177 case NE_EXPR:
7178 if (above || below)
7179 return omit_one_operand (type, integer_one_node, arg0);
7180 break;
7181
7182 case LT_EXPR:
7183 case LE_EXPR:
7184 if (above)
7185 return omit_one_operand (type, integer_one_node, arg0);
7186 else if (below)
7187 return omit_one_operand (type, integer_zero_node, arg0);
7188
7189 case GT_EXPR:
7190 case GE_EXPR:
7191 if (above)
7192 return omit_one_operand (type, integer_zero_node, arg0);
7193 else if (below)
7194 return omit_one_operand (type, integer_one_node, arg0);
7195
7196 default:
7197 break;
7198 }
7199
7200 return NULL_TREE;
7201 }
7202
7203 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
7204 ARG0 just the signedness is changed. */
7205
7206 static tree
7207 fold_sign_changed_comparison (enum tree_code code, tree type,
7208 tree arg0, tree arg1)
7209 {
7210 tree arg0_inner;
7211 tree inner_type, outer_type;
7212
7213 if (!CONVERT_EXPR_P (arg0))
7214 return NULL_TREE;
7215
7216 outer_type = TREE_TYPE (arg0);
7217 arg0_inner = TREE_OPERAND (arg0, 0);
7218 inner_type = TREE_TYPE (arg0_inner);
7219
7220 #ifdef HAVE_canonicalize_funcptr_for_compare
7221 /* Disable this optimization if we're casting a function pointer
7222 type on targets that require function pointer canonicalization. */
7223 if (HAVE_canonicalize_funcptr_for_compare
7224 && TREE_CODE (inner_type) == POINTER_TYPE
7225 && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
7226 return NULL_TREE;
7227 #endif
7228
7229 if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
7230 return NULL_TREE;
7231
7232 /* If the conversion is from an integral subtype to its basetype
7233 leave it alone. */
7234 if (TREE_TYPE (inner_type) == outer_type)
7235 return NULL_TREE;
7236
7237 if (TREE_CODE (arg1) != INTEGER_CST
7238 && !(CONVERT_EXPR_P (arg1)
7239 && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
7240 return NULL_TREE;
7241
7242 if ((TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
7243 || POINTER_TYPE_P (inner_type) != POINTER_TYPE_P (outer_type))
7244 && code != NE_EXPR
7245 && code != EQ_EXPR)
7246 return NULL_TREE;
7247
7248 if (TREE_CODE (arg1) == INTEGER_CST)
7249 arg1 = force_fit_type_double (inner_type, TREE_INT_CST_LOW (arg1),
7250 TREE_INT_CST_HIGH (arg1), 0,
7251 TREE_OVERFLOW (arg1));
7252 else
7253 arg1 = fold_convert (inner_type, arg1);
7254
7255 return fold_build2 (code, type, arg0_inner, arg1);
7256 }
7257
7258 /* Tries to replace &a[idx] p+ s * delta with &a[idx + delta], if s is
7259 step of the array. Reconstructs s and delta in the case of s * delta
7260 being an integer constant (and thus already folded).
7261 ADDR is the address. MULT is the multiplicative expression.
7262 If the function succeeds, the new address expression is returned. Otherwise
7263 NULL_TREE is returned. */
7264
7265 static tree
7266 try_move_mult_to_index (tree addr, tree op1)
7267 {
7268 tree s, delta, step;
7269 tree ref = TREE_OPERAND (addr, 0), pref;
7270 tree ret, pos;
7271 tree itype;
7272 bool mdim = false;
7273
7274 /* Strip the nops that might be added when converting op1 to sizetype. */
7275 STRIP_NOPS (op1);
7276
7277 /* Canonicalize op1 into a possibly non-constant delta
7278 and an INTEGER_CST s. */
7279 if (TREE_CODE (op1) == MULT_EXPR)
7280 {
7281 tree arg0 = TREE_OPERAND (op1, 0), arg1 = TREE_OPERAND (op1, 1);
7282
7283 STRIP_NOPS (arg0);
7284 STRIP_NOPS (arg1);
7285
7286 if (TREE_CODE (arg0) == INTEGER_CST)
7287 {
7288 s = arg0;
7289 delta = arg1;
7290 }
7291 else if (TREE_CODE (arg1) == INTEGER_CST)
7292 {
7293 s = arg1;
7294 delta = arg0;
7295 }
7296 else
7297 return NULL_TREE;
7298 }
7299 else if (TREE_CODE (op1) == INTEGER_CST)
7300 {
7301 delta = op1;
7302 s = NULL_TREE;
7303 }
7304 else
7305 {
7306 /* Simulate we are delta * 1. */
7307 delta = op1;
7308 s = integer_one_node;
7309 }
7310
7311 for (;; ref = TREE_OPERAND (ref, 0))
7312 {
7313 if (TREE_CODE (ref) == ARRAY_REF)
7314 {
7315 /* Remember if this was a multi-dimensional array. */
7316 if (TREE_CODE (TREE_OPERAND (ref, 0)) == ARRAY_REF)
7317 mdim = true;
7318
7319 itype = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
7320 if (! itype)
7321 continue;
7322
7323 step = array_ref_element_size (ref);
7324 if (TREE_CODE (step) != INTEGER_CST)
7325 continue;
7326
7327 if (s)
7328 {
7329 if (! tree_int_cst_equal (step, s))
7330 continue;
7331 }
7332 else
7333 {
7334 /* Try if delta is a multiple of step. */
7335 tree tmp = div_if_zero_remainder (EXACT_DIV_EXPR, op1, step);
7336 if (! tmp)
7337 continue;
7338 delta = tmp;
7339 }
7340
7341 /* Only fold here if we can verify we do not overflow one
7342 dimension of a multi-dimensional array. */
7343 if (mdim)
7344 {
7345 tree tmp;
7346
7347 if (TREE_CODE (TREE_OPERAND (ref, 1)) != INTEGER_CST
7348 || !INTEGRAL_TYPE_P (itype)
7349 || !TYPE_MAX_VALUE (itype)
7350 || TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST)
7351 continue;
7352
7353 tmp = fold_binary (PLUS_EXPR, itype,
7354 fold_convert (itype,
7355 TREE_OPERAND (ref, 1)),
7356 fold_convert (itype, delta));
7357 if (!tmp
7358 || TREE_CODE (tmp) != INTEGER_CST
7359 || tree_int_cst_lt (TYPE_MAX_VALUE (itype), tmp))
7360 continue;
7361 }
7362
7363 break;
7364 }
7365 else
7366 mdim = false;
7367
7368 if (!handled_component_p (ref))
7369 return NULL_TREE;
7370 }
7371
7372 /* We found the suitable array reference. So copy everything up to it,
7373 and replace the index. */
7374
7375 pref = TREE_OPERAND (addr, 0);
7376 ret = copy_node (pref);
7377 pos = ret;
7378
7379 while (pref != ref)
7380 {
7381 pref = TREE_OPERAND (pref, 0);
7382 TREE_OPERAND (pos, 0) = copy_node (pref);
7383 pos = TREE_OPERAND (pos, 0);
7384 }
7385
7386 TREE_OPERAND (pos, 1) = fold_build2 (PLUS_EXPR, itype,
7387 fold_convert (itype,
7388 TREE_OPERAND (pos, 1)),
7389 fold_convert (itype, delta));
7390
7391 return fold_build1 (ADDR_EXPR, TREE_TYPE (addr), ret);
7392 }
7393
7394
7395 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
7396 means A >= Y && A != MAX, but in this case we know that
7397 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
7398
7399 static tree
7400 fold_to_nonsharp_ineq_using_bound (tree ineq, tree bound)
7401 {
7402 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
7403
7404 if (TREE_CODE (bound) == LT_EXPR)
7405 a = TREE_OPERAND (bound, 0);
7406 else if (TREE_CODE (bound) == GT_EXPR)
7407 a = TREE_OPERAND (bound, 1);
7408 else
7409 return NULL_TREE;
7410
7411 typea = TREE_TYPE (a);
7412 if (!INTEGRAL_TYPE_P (typea)
7413 && !POINTER_TYPE_P (typea))
7414 return NULL_TREE;
7415
7416 if (TREE_CODE (ineq) == LT_EXPR)
7417 {
7418 a1 = TREE_OPERAND (ineq, 1);
7419 y = TREE_OPERAND (ineq, 0);
7420 }
7421 else if (TREE_CODE (ineq) == GT_EXPR)
7422 {
7423 a1 = TREE_OPERAND (ineq, 0);
7424 y = TREE_OPERAND (ineq, 1);
7425 }
7426 else
7427 return NULL_TREE;
7428
7429 if (TREE_TYPE (a1) != typea)
7430 return NULL_TREE;
7431
7432 if (POINTER_TYPE_P (typea))
7433 {
7434 /* Convert the pointer types into integer before taking the difference. */
7435 tree ta = fold_convert (ssizetype, a);
7436 tree ta1 = fold_convert (ssizetype, a1);
7437 diff = fold_binary (MINUS_EXPR, ssizetype, ta1, ta);
7438 }
7439 else
7440 diff = fold_binary (MINUS_EXPR, typea, a1, a);
7441
7442 if (!diff || !integer_onep (diff))
7443 return NULL_TREE;
7444
7445 return fold_build2 (GE_EXPR, type, a, y);
7446 }
7447
7448 /* Fold a sum or difference of at least one multiplication.
7449 Returns the folded tree or NULL if no simplification could be made. */
7450
7451 static tree
7452 fold_plusminus_mult_expr (enum tree_code code, tree type, tree arg0, tree arg1)
7453 {
7454 tree arg00, arg01, arg10, arg11;
7455 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
7456
7457 /* (A * C) +- (B * C) -> (A+-B) * C.
7458 (A * C) +- A -> A * (C+-1).
7459 We are most concerned about the case where C is a constant,
7460 but other combinations show up during loop reduction. Since
7461 it is not difficult, try all four possibilities. */
7462
7463 if (TREE_CODE (arg0) == MULT_EXPR)
7464 {
7465 arg00 = TREE_OPERAND (arg0, 0);
7466 arg01 = TREE_OPERAND (arg0, 1);
7467 }
7468 else if (TREE_CODE (arg0) == INTEGER_CST)
7469 {
7470 arg00 = build_one_cst (type);
7471 arg01 = arg0;
7472 }
7473 else
7474 {
7475 /* We cannot generate constant 1 for fract. */
7476 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7477 return NULL_TREE;
7478 arg00 = arg0;
7479 arg01 = build_one_cst (type);
7480 }
7481 if (TREE_CODE (arg1) == MULT_EXPR)
7482 {
7483 arg10 = TREE_OPERAND (arg1, 0);
7484 arg11 = TREE_OPERAND (arg1, 1);
7485 }
7486 else if (TREE_CODE (arg1) == INTEGER_CST)
7487 {
7488 arg10 = build_one_cst (type);
7489 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7490 the purpose of this canonicalization. */
7491 if (TREE_INT_CST_HIGH (arg1) == -1
7492 && negate_expr_p (arg1)
7493 && code == PLUS_EXPR)
7494 {
7495 arg11 = negate_expr (arg1);
7496 code = MINUS_EXPR;
7497 }
7498 else
7499 arg11 = arg1;
7500 }
7501 else
7502 {
7503 /* We cannot generate constant 1 for fract. */
7504 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7505 return NULL_TREE;
7506 arg10 = arg1;
7507 arg11 = build_one_cst (type);
7508 }
7509 same = NULL_TREE;
7510
7511 if (operand_equal_p (arg01, arg11, 0))
7512 same = arg01, alt0 = arg00, alt1 = arg10;
7513 else if (operand_equal_p (arg00, arg10, 0))
7514 same = arg00, alt0 = arg01, alt1 = arg11;
7515 else if (operand_equal_p (arg00, arg11, 0))
7516 same = arg00, alt0 = arg01, alt1 = arg10;
7517 else if (operand_equal_p (arg01, arg10, 0))
7518 same = arg01, alt0 = arg00, alt1 = arg11;
7519
7520 /* No identical multiplicands; see if we can find a common
7521 power-of-two factor in non-power-of-two multiplies. This
7522 can help in multi-dimensional array access. */
7523 else if (host_integerp (arg01, 0)
7524 && host_integerp (arg11, 0))
7525 {
7526 HOST_WIDE_INT int01, int11, tmp;
7527 bool swap = false;
7528 tree maybe_same;
7529 int01 = TREE_INT_CST_LOW (arg01);
7530 int11 = TREE_INT_CST_LOW (arg11);
7531
7532 /* Move min of absolute values to int11. */
7533 if ((int01 >= 0 ? int01 : -int01)
7534 < (int11 >= 0 ? int11 : -int11))
7535 {
7536 tmp = int01, int01 = int11, int11 = tmp;
7537 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7538 maybe_same = arg01;
7539 swap = true;
7540 }
7541 else
7542 maybe_same = arg11;
7543
7544 if (exact_log2 (abs (int11)) > 0 && int01 % int11 == 0
7545 /* The remainder should not be a constant, otherwise we
7546 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7547 increased the number of multiplications necessary. */
7548 && TREE_CODE (arg10) != INTEGER_CST)
7549 {
7550 alt0 = fold_build2 (MULT_EXPR, TREE_TYPE (arg00), arg00,
7551 build_int_cst (TREE_TYPE (arg00),
7552 int01 / int11));
7553 alt1 = arg10;
7554 same = maybe_same;
7555 if (swap)
7556 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7557 }
7558 }
7559
7560 if (same)
7561 return fold_build2 (MULT_EXPR, type,
7562 fold_build2 (code, type,
7563 fold_convert (type, alt0),
7564 fold_convert (type, alt1)),
7565 fold_convert (type, same));
7566
7567 return NULL_TREE;
7568 }
7569
7570 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7571 specified by EXPR into the buffer PTR of length LEN bytes.
7572 Return the number of bytes placed in the buffer, or zero
7573 upon failure. */
7574
7575 static int
7576 native_encode_int (const_tree expr, unsigned char *ptr, int len)
7577 {
7578 tree type = TREE_TYPE (expr);
7579 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7580 int byte, offset, word, words;
7581 unsigned char value;
7582
7583 if (total_bytes > len)
7584 return 0;
7585 words = total_bytes / UNITS_PER_WORD;
7586
7587 for (byte = 0; byte < total_bytes; byte++)
7588 {
7589 int bitpos = byte * BITS_PER_UNIT;
7590 if (bitpos < HOST_BITS_PER_WIDE_INT)
7591 value = (unsigned char) (TREE_INT_CST_LOW (expr) >> bitpos);
7592 else
7593 value = (unsigned char) (TREE_INT_CST_HIGH (expr)
7594 >> (bitpos - HOST_BITS_PER_WIDE_INT));
7595
7596 if (total_bytes > UNITS_PER_WORD)
7597 {
7598 word = byte / UNITS_PER_WORD;
7599 if (WORDS_BIG_ENDIAN)
7600 word = (words - 1) - word;
7601 offset = word * UNITS_PER_WORD;
7602 if (BYTES_BIG_ENDIAN)
7603 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7604 else
7605 offset += byte % UNITS_PER_WORD;
7606 }
7607 else
7608 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7609 ptr[offset] = value;
7610 }
7611 return total_bytes;
7612 }
7613
7614
7615 /* Subroutine of native_encode_expr. Encode the REAL_CST
7616 specified by EXPR into the buffer PTR of length LEN bytes.
7617 Return the number of bytes placed in the buffer, or zero
7618 upon failure. */
7619
7620 static int
7621 native_encode_real (const_tree expr, unsigned char *ptr, int len)
7622 {
7623 tree type = TREE_TYPE (expr);
7624 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7625 int byte, offset, word, words, bitpos;
7626 unsigned char value;
7627
7628 /* There are always 32 bits in each long, no matter the size of
7629 the hosts long. We handle floating point representations with
7630 up to 192 bits. */
7631 long tmp[6];
7632
7633 if (total_bytes > len)
7634 return 0;
7635 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7636
7637 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7638
7639 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7640 bitpos += BITS_PER_UNIT)
7641 {
7642 byte = (bitpos / BITS_PER_UNIT) & 3;
7643 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7644
7645 if (UNITS_PER_WORD < 4)
7646 {
7647 word = byte / UNITS_PER_WORD;
7648 if (WORDS_BIG_ENDIAN)
7649 word = (words - 1) - word;
7650 offset = word * UNITS_PER_WORD;
7651 if (BYTES_BIG_ENDIAN)
7652 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7653 else
7654 offset += byte % UNITS_PER_WORD;
7655 }
7656 else
7657 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7658 ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)] = value;
7659 }
7660 return total_bytes;
7661 }
7662
7663 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7664 specified by EXPR into the buffer PTR of length LEN bytes.
7665 Return the number of bytes placed in the buffer, or zero
7666 upon failure. */
7667
7668 static int
7669 native_encode_complex (const_tree expr, unsigned char *ptr, int len)
7670 {
7671 int rsize, isize;
7672 tree part;
7673
7674 part = TREE_REALPART (expr);
7675 rsize = native_encode_expr (part, ptr, len);
7676 if (rsize == 0)
7677 return 0;
7678 part = TREE_IMAGPART (expr);
7679 isize = native_encode_expr (part, ptr+rsize, len-rsize);
7680 if (isize != rsize)
7681 return 0;
7682 return rsize + isize;
7683 }
7684
7685
7686 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7687 specified by EXPR into the buffer PTR of length LEN bytes.
7688 Return the number of bytes placed in the buffer, or zero
7689 upon failure. */
7690
7691 static int
7692 native_encode_vector (const_tree expr, unsigned char *ptr, int len)
7693 {
7694 int i, size, offset, count;
7695 tree itype, elem, elements;
7696
7697 offset = 0;
7698 elements = TREE_VECTOR_CST_ELTS (expr);
7699 count = TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr));
7700 itype = TREE_TYPE (TREE_TYPE (expr));
7701 size = GET_MODE_SIZE (TYPE_MODE (itype));
7702 for (i = 0; i < count; i++)
7703 {
7704 if (elements)
7705 {
7706 elem = TREE_VALUE (elements);
7707 elements = TREE_CHAIN (elements);
7708 }
7709 else
7710 elem = NULL_TREE;
7711
7712 if (elem)
7713 {
7714 if (native_encode_expr (elem, ptr+offset, len-offset) != size)
7715 return 0;
7716 }
7717 else
7718 {
7719 if (offset + size > len)
7720 return 0;
7721 memset (ptr+offset, 0, size);
7722 }
7723 offset += size;
7724 }
7725 return offset;
7726 }
7727
7728
7729 /* Subroutine of native_encode_expr. Encode the STRING_CST
7730 specified by EXPR into the buffer PTR of length LEN bytes.
7731 Return the number of bytes placed in the buffer, or zero
7732 upon failure. */
7733
7734 static int
7735 native_encode_string (const_tree expr, unsigned char *ptr, int len)
7736 {
7737 tree type = TREE_TYPE (expr);
7738 HOST_WIDE_INT total_bytes;
7739
7740 if (TREE_CODE (type) != ARRAY_TYPE
7741 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7742 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7743 || !host_integerp (TYPE_SIZE_UNIT (type), 0))
7744 return 0;
7745 total_bytes = tree_low_cst (TYPE_SIZE_UNIT (type), 0);
7746 if (total_bytes > len)
7747 return 0;
7748 if (TREE_STRING_LENGTH (expr) < total_bytes)
7749 {
7750 memcpy (ptr, TREE_STRING_POINTER (expr), TREE_STRING_LENGTH (expr));
7751 memset (ptr + TREE_STRING_LENGTH (expr), 0,
7752 total_bytes - TREE_STRING_LENGTH (expr));
7753 }
7754 else
7755 memcpy (ptr, TREE_STRING_POINTER (expr), total_bytes);
7756 return total_bytes;
7757 }
7758
7759
7760 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7761 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7762 buffer PTR of length LEN bytes. Return the number of bytes
7763 placed in the buffer, or zero upon failure. */
7764
7765 int
7766 native_encode_expr (const_tree expr, unsigned char *ptr, int len)
7767 {
7768 switch (TREE_CODE (expr))
7769 {
7770 case INTEGER_CST:
7771 return native_encode_int (expr, ptr, len);
7772
7773 case REAL_CST:
7774 return native_encode_real (expr, ptr, len);
7775
7776 case COMPLEX_CST:
7777 return native_encode_complex (expr, ptr, len);
7778
7779 case VECTOR_CST:
7780 return native_encode_vector (expr, ptr, len);
7781
7782 case STRING_CST:
7783 return native_encode_string (expr, ptr, len);
7784
7785 default:
7786 return 0;
7787 }
7788 }
7789
7790
7791 /* Subroutine of native_interpret_expr. Interpret the contents of
7792 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7793 If the buffer cannot be interpreted, return NULL_TREE. */
7794
7795 static tree
7796 native_interpret_int (tree type, const unsigned char *ptr, int len)
7797 {
7798 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7799 int byte, offset, word, words;
7800 unsigned char value;
7801 unsigned int HOST_WIDE_INT lo = 0;
7802 HOST_WIDE_INT hi = 0;
7803
7804 if (total_bytes > len)
7805 return NULL_TREE;
7806 if (total_bytes * BITS_PER_UNIT > 2 * HOST_BITS_PER_WIDE_INT)
7807 return NULL_TREE;
7808 words = total_bytes / UNITS_PER_WORD;
7809
7810 for (byte = 0; byte < total_bytes; byte++)
7811 {
7812 int bitpos = byte * BITS_PER_UNIT;
7813 if (total_bytes > UNITS_PER_WORD)
7814 {
7815 word = byte / UNITS_PER_WORD;
7816 if (WORDS_BIG_ENDIAN)
7817 word = (words - 1) - word;
7818 offset = word * UNITS_PER_WORD;
7819 if (BYTES_BIG_ENDIAN)
7820 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7821 else
7822 offset += byte % UNITS_PER_WORD;
7823 }
7824 else
7825 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7826 value = ptr[offset];
7827
7828 if (bitpos < HOST_BITS_PER_WIDE_INT)
7829 lo |= (unsigned HOST_WIDE_INT) value << bitpos;
7830 else
7831 hi |= (unsigned HOST_WIDE_INT) value
7832 << (bitpos - HOST_BITS_PER_WIDE_INT);
7833 }
7834
7835 return build_int_cst_wide_type (type, lo, hi);
7836 }
7837
7838
7839 /* Subroutine of native_interpret_expr. Interpret the contents of
7840 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7841 If the buffer cannot be interpreted, return NULL_TREE. */
7842
7843 static tree
7844 native_interpret_real (tree type, const unsigned char *ptr, int len)
7845 {
7846 enum machine_mode mode = TYPE_MODE (type);
7847 int total_bytes = GET_MODE_SIZE (mode);
7848 int byte, offset, word, words, bitpos;
7849 unsigned char value;
7850 /* There are always 32 bits in each long, no matter the size of
7851 the hosts long. We handle floating point representations with
7852 up to 192 bits. */
7853 REAL_VALUE_TYPE r;
7854 long tmp[6];
7855
7856 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7857 if (total_bytes > len || total_bytes > 24)
7858 return NULL_TREE;
7859 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7860
7861 memset (tmp, 0, sizeof (tmp));
7862 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7863 bitpos += BITS_PER_UNIT)
7864 {
7865 byte = (bitpos / BITS_PER_UNIT) & 3;
7866 if (UNITS_PER_WORD < 4)
7867 {
7868 word = byte / UNITS_PER_WORD;
7869 if (WORDS_BIG_ENDIAN)
7870 word = (words - 1) - word;
7871 offset = word * UNITS_PER_WORD;
7872 if (BYTES_BIG_ENDIAN)
7873 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7874 else
7875 offset += byte % UNITS_PER_WORD;
7876 }
7877 else
7878 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7879 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7880
7881 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7882 }
7883
7884 real_from_target (&r, tmp, mode);
7885 return build_real (type, r);
7886 }
7887
7888
7889 /* Subroutine of native_interpret_expr. Interpret the contents of
7890 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7891 If the buffer cannot be interpreted, return NULL_TREE. */
7892
7893 static tree
7894 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7895 {
7896 tree etype, rpart, ipart;
7897 int size;
7898
7899 etype = TREE_TYPE (type);
7900 size = GET_MODE_SIZE (TYPE_MODE (etype));
7901 if (size * 2 > len)
7902 return NULL_TREE;
7903 rpart = native_interpret_expr (etype, ptr, size);
7904 if (!rpart)
7905 return NULL_TREE;
7906 ipart = native_interpret_expr (etype, ptr+size, size);
7907 if (!ipart)
7908 return NULL_TREE;
7909 return build_complex (type, rpart, ipart);
7910 }
7911
7912
7913 /* Subroutine of native_interpret_expr. Interpret the contents of
7914 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7915 If the buffer cannot be interpreted, return NULL_TREE. */
7916
7917 static tree
7918 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7919 {
7920 tree etype, elem, elements;
7921 int i, size, count;
7922
7923 etype = TREE_TYPE (type);
7924 size = GET_MODE_SIZE (TYPE_MODE (etype));
7925 count = TYPE_VECTOR_SUBPARTS (type);
7926 if (size * count > len)
7927 return NULL_TREE;
7928
7929 elements = NULL_TREE;
7930 for (i = count - 1; i >= 0; i--)
7931 {
7932 elem = native_interpret_expr (etype, ptr+(i*size), size);
7933 if (!elem)
7934 return NULL_TREE;
7935 elements = tree_cons (NULL_TREE, elem, elements);
7936 }
7937 return build_vector (type, elements);
7938 }
7939
7940
7941 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7942 the buffer PTR of length LEN as a constant of type TYPE. For
7943 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7944 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7945 return NULL_TREE. */
7946
7947 tree
7948 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7949 {
7950 switch (TREE_CODE (type))
7951 {
7952 case INTEGER_TYPE:
7953 case ENUMERAL_TYPE:
7954 case BOOLEAN_TYPE:
7955 return native_interpret_int (type, ptr, len);
7956
7957 case REAL_TYPE:
7958 return native_interpret_real (type, ptr, len);
7959
7960 case COMPLEX_TYPE:
7961 return native_interpret_complex (type, ptr, len);
7962
7963 case VECTOR_TYPE:
7964 return native_interpret_vector (type, ptr, len);
7965
7966 default:
7967 return NULL_TREE;
7968 }
7969 }
7970
7971
7972 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7973 TYPE at compile-time. If we're unable to perform the conversion
7974 return NULL_TREE. */
7975
7976 static tree
7977 fold_view_convert_expr (tree type, tree expr)
7978 {
7979 /* We support up to 512-bit values (for V8DFmode). */
7980 unsigned char buffer[64];
7981 int len;
7982
7983 /* Check that the host and target are sane. */
7984 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7985 return NULL_TREE;
7986
7987 len = native_encode_expr (expr, buffer, sizeof (buffer));
7988 if (len == 0)
7989 return NULL_TREE;
7990
7991 return native_interpret_expr (type, buffer, len);
7992 }
7993
7994 /* Build an expression for the address of T. Folds away INDIRECT_REF
7995 to avoid confusing the gimplify process. */
7996
7997 tree
7998 build_fold_addr_expr_with_type (tree t, tree ptrtype)
7999 {
8000 /* The size of the object is not relevant when talking about its address. */
8001 if (TREE_CODE (t) == WITH_SIZE_EXPR)
8002 t = TREE_OPERAND (t, 0);
8003
8004 /* Note: doesn't apply to ALIGN_INDIRECT_REF */
8005 if (TREE_CODE (t) == INDIRECT_REF
8006 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
8007 {
8008 t = TREE_OPERAND (t, 0);
8009
8010 if (TREE_TYPE (t) != ptrtype)
8011 t = build1 (NOP_EXPR, ptrtype, t);
8012 }
8013 else
8014 t = build1 (ADDR_EXPR, ptrtype, t);
8015
8016 return t;
8017 }
8018
8019 /* Build an expression for the address of T. */
8020
8021 tree
8022 build_fold_addr_expr (tree t)
8023 {
8024 tree ptrtype = build_pointer_type (TREE_TYPE (t));
8025
8026 return build_fold_addr_expr_with_type (t, ptrtype);
8027 }
8028
8029 /* Fold a unary expression of code CODE and type TYPE with operand
8030 OP0. Return the folded expression if folding is successful.
8031 Otherwise, return NULL_TREE. */
8032
8033 tree
8034 fold_unary (enum tree_code code, tree type, tree op0)
8035 {
8036 tree tem;
8037 tree arg0;
8038 enum tree_code_class kind = TREE_CODE_CLASS (code);
8039
8040 gcc_assert (IS_EXPR_CODE_CLASS (kind)
8041 && TREE_CODE_LENGTH (code) == 1);
8042
8043 arg0 = op0;
8044 if (arg0)
8045 {
8046 if (CONVERT_EXPR_CODE_P (code)
8047 || code == FLOAT_EXPR || code == ABS_EXPR)
8048 {
8049 /* Don't use STRIP_NOPS, because signedness of argument type
8050 matters. */
8051 STRIP_SIGN_NOPS (arg0);
8052 }
8053 else
8054 {
8055 /* Strip any conversions that don't change the mode. This
8056 is safe for every expression, except for a comparison
8057 expression because its signedness is derived from its
8058 operands.
8059
8060 Note that this is done as an internal manipulation within
8061 the constant folder, in order to find the simplest
8062 representation of the arguments so that their form can be
8063 studied. In any cases, the appropriate type conversions
8064 should be put back in the tree that will get out of the
8065 constant folder. */
8066 STRIP_NOPS (arg0);
8067 }
8068 }
8069
8070 if (TREE_CODE_CLASS (code) == tcc_unary)
8071 {
8072 if (TREE_CODE (arg0) == COMPOUND_EXPR)
8073 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
8074 fold_build1 (code, type,
8075 fold_convert (TREE_TYPE (op0),
8076 TREE_OPERAND (arg0, 1))));
8077 else if (TREE_CODE (arg0) == COND_EXPR)
8078 {
8079 tree arg01 = TREE_OPERAND (arg0, 1);
8080 tree arg02 = TREE_OPERAND (arg0, 2);
8081 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
8082 arg01 = fold_build1 (code, type,
8083 fold_convert (TREE_TYPE (op0), arg01));
8084 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
8085 arg02 = fold_build1 (code, type,
8086 fold_convert (TREE_TYPE (op0), arg02));
8087 tem = fold_build3 (COND_EXPR, type, TREE_OPERAND (arg0, 0),
8088 arg01, arg02);
8089
8090 /* If this was a conversion, and all we did was to move into
8091 inside the COND_EXPR, bring it back out. But leave it if
8092 it is a conversion from integer to integer and the
8093 result precision is no wider than a word since such a
8094 conversion is cheap and may be optimized away by combine,
8095 while it couldn't if it were outside the COND_EXPR. Then return
8096 so we don't get into an infinite recursion loop taking the
8097 conversion out and then back in. */
8098
8099 if ((CONVERT_EXPR_CODE_P (code)
8100 || code == NON_LVALUE_EXPR)
8101 && TREE_CODE (tem) == COND_EXPR
8102 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
8103 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
8104 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
8105 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
8106 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
8107 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
8108 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8109 && (INTEGRAL_TYPE_P
8110 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
8111 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
8112 || flag_syntax_only))
8113 tem = build1 (code, type,
8114 build3 (COND_EXPR,
8115 TREE_TYPE (TREE_OPERAND
8116 (TREE_OPERAND (tem, 1), 0)),
8117 TREE_OPERAND (tem, 0),
8118 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
8119 TREE_OPERAND (TREE_OPERAND (tem, 2), 0)));
8120 return tem;
8121 }
8122 else if (COMPARISON_CLASS_P (arg0))
8123 {
8124 if (TREE_CODE (type) == BOOLEAN_TYPE)
8125 {
8126 arg0 = copy_node (arg0);
8127 TREE_TYPE (arg0) = type;
8128 return arg0;
8129 }
8130 else if (TREE_CODE (type) != INTEGER_TYPE)
8131 return fold_build3 (COND_EXPR, type, arg0,
8132 fold_build1 (code, type,
8133 integer_one_node),
8134 fold_build1 (code, type,
8135 integer_zero_node));
8136 }
8137 }
8138
8139 switch (code)
8140 {
8141 case PAREN_EXPR:
8142 /* Re-association barriers around constants and other re-association
8143 barriers can be removed. */
8144 if (CONSTANT_CLASS_P (op0)
8145 || TREE_CODE (op0) == PAREN_EXPR)
8146 return fold_convert (type, op0);
8147 return NULL_TREE;
8148
8149 CASE_CONVERT:
8150 case FLOAT_EXPR:
8151 case FIX_TRUNC_EXPR:
8152 if (TREE_TYPE (op0) == type)
8153 return op0;
8154
8155 /* If we have (type) (a CMP b) and type is an integral type, return
8156 new expression involving the new type. */
8157 if (COMPARISON_CLASS_P (op0) && INTEGRAL_TYPE_P (type))
8158 return fold_build2 (TREE_CODE (op0), type, TREE_OPERAND (op0, 0),
8159 TREE_OPERAND (op0, 1));
8160
8161 /* Handle cases of two conversions in a row. */
8162 if (CONVERT_EXPR_P (op0))
8163 {
8164 tree inside_type = TREE_TYPE (TREE_OPERAND (op0, 0));
8165 tree inter_type = TREE_TYPE (op0);
8166 int inside_int = INTEGRAL_TYPE_P (inside_type);
8167 int inside_ptr = POINTER_TYPE_P (inside_type);
8168 int inside_float = FLOAT_TYPE_P (inside_type);
8169 int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
8170 unsigned int inside_prec = TYPE_PRECISION (inside_type);
8171 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
8172 int inter_int = INTEGRAL_TYPE_P (inter_type);
8173 int inter_ptr = POINTER_TYPE_P (inter_type);
8174 int inter_float = FLOAT_TYPE_P (inter_type);
8175 int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
8176 unsigned int inter_prec = TYPE_PRECISION (inter_type);
8177 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
8178 int final_int = INTEGRAL_TYPE_P (type);
8179 int final_ptr = POINTER_TYPE_P (type);
8180 int final_float = FLOAT_TYPE_P (type);
8181 int final_vec = TREE_CODE (type) == VECTOR_TYPE;
8182 unsigned int final_prec = TYPE_PRECISION (type);
8183 int final_unsignedp = TYPE_UNSIGNED (type);
8184
8185 /* In addition to the cases of two conversions in a row
8186 handled below, if we are converting something to its own
8187 type via an object of identical or wider precision, neither
8188 conversion is needed. */
8189 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (type)
8190 && (((inter_int || inter_ptr) && final_int)
8191 || (inter_float && final_float))
8192 && inter_prec >= final_prec)
8193 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
8194
8195 /* Likewise, if the intermediate and initial types are either both
8196 float or both integer, we don't need the middle conversion if the
8197 former is wider than the latter and doesn't change the signedness
8198 (for integers). Avoid this if the final type is a pointer since
8199 then we sometimes need the middle conversion. Likewise if the
8200 final type has a precision not equal to the size of its mode. */
8201 if (((inter_int && inside_int)
8202 || (inter_float && inside_float)
8203 || (inter_vec && inside_vec))
8204 && inter_prec >= inside_prec
8205 && (inter_float || inter_vec
8206 || inter_unsignedp == inside_unsignedp)
8207 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
8208 && TYPE_MODE (type) == TYPE_MODE (inter_type))
8209 && ! final_ptr
8210 && (! final_vec || inter_prec == inside_prec))
8211 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
8212
8213 /* If we have a sign-extension of a zero-extended value, we can
8214 replace that by a single zero-extension. */
8215 if (inside_int && inter_int && final_int
8216 && inside_prec < inter_prec && inter_prec < final_prec
8217 && inside_unsignedp && !inter_unsignedp)
8218 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
8219
8220 /* Two conversions in a row are not needed unless:
8221 - some conversion is floating-point (overstrict for now), or
8222 - some conversion is a vector (overstrict for now), or
8223 - the intermediate type is narrower than both initial and
8224 final, or
8225 - the intermediate type and innermost type differ in signedness,
8226 and the outermost type is wider than the intermediate, or
8227 - the initial type is a pointer type and the precisions of the
8228 intermediate and final types differ, or
8229 - the final type is a pointer type and the precisions of the
8230 initial and intermediate types differ. */
8231 if (! inside_float && ! inter_float && ! final_float
8232 && ! inside_vec && ! inter_vec && ! final_vec
8233 && (inter_prec >= inside_prec || inter_prec >= final_prec)
8234 && ! (inside_int && inter_int
8235 && inter_unsignedp != inside_unsignedp
8236 && inter_prec < final_prec)
8237 && ((inter_unsignedp && inter_prec > inside_prec)
8238 == (final_unsignedp && final_prec > inter_prec))
8239 && ! (inside_ptr && inter_prec != final_prec)
8240 && ! (final_ptr && inside_prec != inter_prec)
8241 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
8242 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
8243 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
8244 }
8245
8246 /* Handle (T *)&A.B.C for A being of type T and B and C
8247 living at offset zero. This occurs frequently in
8248 C++ upcasting and then accessing the base. */
8249 if (TREE_CODE (op0) == ADDR_EXPR
8250 && POINTER_TYPE_P (type)
8251 && handled_component_p (TREE_OPERAND (op0, 0)))
8252 {
8253 HOST_WIDE_INT bitsize, bitpos;
8254 tree offset;
8255 enum machine_mode mode;
8256 int unsignedp, volatilep;
8257 tree base = TREE_OPERAND (op0, 0);
8258 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
8259 &mode, &unsignedp, &volatilep, false);
8260 /* If the reference was to a (constant) zero offset, we can use
8261 the address of the base if it has the same base type
8262 as the result type. */
8263 if (! offset && bitpos == 0
8264 && TYPE_MAIN_VARIANT (TREE_TYPE (type))
8265 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
8266 return fold_convert (type, build_fold_addr_expr (base));
8267 }
8268
8269 if (TREE_CODE (op0) == MODIFY_EXPR
8270 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
8271 /* Detect assigning a bitfield. */
8272 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
8273 && DECL_BIT_FIELD
8274 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
8275 {
8276 /* Don't leave an assignment inside a conversion
8277 unless assigning a bitfield. */
8278 tem = fold_build1 (code, type, TREE_OPERAND (op0, 1));
8279 /* First do the assignment, then return converted constant. */
8280 tem = build2 (COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
8281 TREE_NO_WARNING (tem) = 1;
8282 TREE_USED (tem) = 1;
8283 return tem;
8284 }
8285
8286 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
8287 constants (if x has signed type, the sign bit cannot be set
8288 in c). This folds extension into the BIT_AND_EXPR.
8289 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
8290 very likely don't have maximal range for their precision and this
8291 transformation effectively doesn't preserve non-maximal ranges. */
8292 if (TREE_CODE (type) == INTEGER_TYPE
8293 && TREE_CODE (op0) == BIT_AND_EXPR
8294 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST
8295 /* Not if the conversion is to the sub-type. */
8296 && TREE_TYPE (type) != TREE_TYPE (op0))
8297 {
8298 tree and = op0;
8299 tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
8300 int change = 0;
8301
8302 if (TYPE_UNSIGNED (TREE_TYPE (and))
8303 || (TYPE_PRECISION (type)
8304 <= TYPE_PRECISION (TREE_TYPE (and))))
8305 change = 1;
8306 else if (TYPE_PRECISION (TREE_TYPE (and1))
8307 <= HOST_BITS_PER_WIDE_INT
8308 && host_integerp (and1, 1))
8309 {
8310 unsigned HOST_WIDE_INT cst;
8311
8312 cst = tree_low_cst (and1, 1);
8313 cst &= (HOST_WIDE_INT) -1
8314 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
8315 change = (cst == 0);
8316 #ifdef LOAD_EXTEND_OP
8317 if (change
8318 && !flag_syntax_only
8319 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
8320 == ZERO_EXTEND))
8321 {
8322 tree uns = unsigned_type_for (TREE_TYPE (and0));
8323 and0 = fold_convert (uns, and0);
8324 and1 = fold_convert (uns, and1);
8325 }
8326 #endif
8327 }
8328 if (change)
8329 {
8330 tem = force_fit_type_double (type, TREE_INT_CST_LOW (and1),
8331 TREE_INT_CST_HIGH (and1), 0,
8332 TREE_OVERFLOW (and1));
8333 return fold_build2 (BIT_AND_EXPR, type,
8334 fold_convert (type, and0), tem);
8335 }
8336 }
8337
8338 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
8339 when one of the new casts will fold away. Conservatively we assume
8340 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
8341 if (POINTER_TYPE_P (type)
8342 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
8343 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8344 || TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
8345 || TREE_CODE (TREE_OPERAND (arg0, 1)) == NOP_EXPR))
8346 {
8347 tree arg00 = TREE_OPERAND (arg0, 0);
8348 tree arg01 = TREE_OPERAND (arg0, 1);
8349
8350 return fold_build2 (TREE_CODE (arg0), type, fold_convert (type, arg00),
8351 fold_convert (sizetype, arg01));
8352 }
8353
8354 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8355 of the same precision, and X is an integer type not narrower than
8356 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8357 if (INTEGRAL_TYPE_P (type)
8358 && TREE_CODE (op0) == BIT_NOT_EXPR
8359 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8360 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
8361 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
8362 {
8363 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
8364 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8365 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
8366 return fold_build1 (BIT_NOT_EXPR, type, fold_convert (type, tem));
8367 }
8368
8369 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
8370 type of X and Y (integer types only). */
8371 if (INTEGRAL_TYPE_P (type)
8372 && TREE_CODE (op0) == MULT_EXPR
8373 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8374 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
8375 {
8376 /* Be careful not to introduce new overflows. */
8377 tree mult_type;
8378 if (TYPE_OVERFLOW_WRAPS (type))
8379 mult_type = type;
8380 else
8381 mult_type = unsigned_type_for (type);
8382
8383 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
8384 {
8385 tem = fold_build2 (MULT_EXPR, mult_type,
8386 fold_convert (mult_type,
8387 TREE_OPERAND (op0, 0)),
8388 fold_convert (mult_type,
8389 TREE_OPERAND (op0, 1)));
8390 return fold_convert (type, tem);
8391 }
8392 }
8393
8394 tem = fold_convert_const (code, type, op0);
8395 return tem ? tem : NULL_TREE;
8396
8397 case FIXED_CONVERT_EXPR:
8398 tem = fold_convert_const (code, type, arg0);
8399 return tem ? tem : NULL_TREE;
8400
8401 case VIEW_CONVERT_EXPR:
8402 if (TREE_TYPE (op0) == type)
8403 return op0;
8404 if (TREE_CODE (op0) == VIEW_CONVERT_EXPR)
8405 return fold_build1 (VIEW_CONVERT_EXPR, type, TREE_OPERAND (op0, 0));
8406
8407 /* For integral conversions with the same precision or pointer
8408 conversions use a NOP_EXPR instead. */
8409 if ((INTEGRAL_TYPE_P (type)
8410 || POINTER_TYPE_P (type))
8411 && (INTEGRAL_TYPE_P (TREE_TYPE (op0))
8412 || POINTER_TYPE_P (TREE_TYPE (op0)))
8413 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0))
8414 /* Do not muck with VIEW_CONVERT_EXPRs that convert from
8415 a sub-type to its base type as generated by the Ada FE. */
8416 && !(INTEGRAL_TYPE_P (TREE_TYPE (op0))
8417 && TREE_TYPE (TREE_TYPE (op0))))
8418 return fold_convert (type, op0);
8419
8420 /* Strip inner integral conversions that do not change the precision. */
8421 if (CONVERT_EXPR_P (op0)
8422 && (INTEGRAL_TYPE_P (TREE_TYPE (op0))
8423 || POINTER_TYPE_P (TREE_TYPE (op0)))
8424 && (INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (op0, 0)))
8425 || POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (op0, 0))))
8426 && (TYPE_PRECISION (TREE_TYPE (op0))
8427 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
8428 return fold_build1 (VIEW_CONVERT_EXPR, type, TREE_OPERAND (op0, 0));
8429
8430 return fold_view_convert_expr (type, op0);
8431
8432 case NEGATE_EXPR:
8433 tem = fold_negate_expr (arg0);
8434 if (tem)
8435 return fold_convert (type, tem);
8436 return NULL_TREE;
8437
8438 case ABS_EXPR:
8439 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
8440 return fold_abs_const (arg0, type);
8441 else if (TREE_CODE (arg0) == NEGATE_EXPR)
8442 return fold_build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
8443 /* Convert fabs((double)float) into (double)fabsf(float). */
8444 else if (TREE_CODE (arg0) == NOP_EXPR
8445 && TREE_CODE (type) == REAL_TYPE)
8446 {
8447 tree targ0 = strip_float_extensions (arg0);
8448 if (targ0 != arg0)
8449 return fold_convert (type, fold_build1 (ABS_EXPR,
8450 TREE_TYPE (targ0),
8451 targ0));
8452 }
8453 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
8454 else if (TREE_CODE (arg0) == ABS_EXPR)
8455 return arg0;
8456 else if (tree_expr_nonnegative_p (arg0))
8457 return arg0;
8458
8459 /* Strip sign ops from argument. */
8460 if (TREE_CODE (type) == REAL_TYPE)
8461 {
8462 tem = fold_strip_sign_ops (arg0);
8463 if (tem)
8464 return fold_build1 (ABS_EXPR, type, fold_convert (type, tem));
8465 }
8466 return NULL_TREE;
8467
8468 case CONJ_EXPR:
8469 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8470 return fold_convert (type, arg0);
8471 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8472 {
8473 tree itype = TREE_TYPE (type);
8474 tree rpart = fold_convert (itype, TREE_OPERAND (arg0, 0));
8475 tree ipart = fold_convert (itype, TREE_OPERAND (arg0, 1));
8476 return fold_build2 (COMPLEX_EXPR, type, rpart, negate_expr (ipart));
8477 }
8478 if (TREE_CODE (arg0) == COMPLEX_CST)
8479 {
8480 tree itype = TREE_TYPE (type);
8481 tree rpart = fold_convert (itype, TREE_REALPART (arg0));
8482 tree ipart = fold_convert (itype, TREE_IMAGPART (arg0));
8483 return build_complex (type, rpart, negate_expr (ipart));
8484 }
8485 if (TREE_CODE (arg0) == CONJ_EXPR)
8486 return fold_convert (type, TREE_OPERAND (arg0, 0));
8487 return NULL_TREE;
8488
8489 case BIT_NOT_EXPR:
8490 if (TREE_CODE (arg0) == INTEGER_CST)
8491 return fold_not_const (arg0, type);
8492 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
8493 return fold_convert (type, TREE_OPERAND (arg0, 0));
8494 /* Convert ~ (-A) to A - 1. */
8495 else if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == NEGATE_EXPR)
8496 return fold_build2 (MINUS_EXPR, type,
8497 fold_convert (type, TREE_OPERAND (arg0, 0)),
8498 build_int_cst (type, 1));
8499 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
8500 else if (INTEGRAL_TYPE_P (type)
8501 && ((TREE_CODE (arg0) == MINUS_EXPR
8502 && integer_onep (TREE_OPERAND (arg0, 1)))
8503 || (TREE_CODE (arg0) == PLUS_EXPR
8504 && integer_all_onesp (TREE_OPERAND (arg0, 1)))))
8505 return fold_build1 (NEGATE_EXPR, type,
8506 fold_convert (type, TREE_OPERAND (arg0, 0)));
8507 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8508 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8509 && (tem = fold_unary (BIT_NOT_EXPR, type,
8510 fold_convert (type,
8511 TREE_OPERAND (arg0, 0)))))
8512 return fold_build2 (BIT_XOR_EXPR, type, tem,
8513 fold_convert (type, TREE_OPERAND (arg0, 1)));
8514 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8515 && (tem = fold_unary (BIT_NOT_EXPR, type,
8516 fold_convert (type,
8517 TREE_OPERAND (arg0, 1)))))
8518 return fold_build2 (BIT_XOR_EXPR, type,
8519 fold_convert (type, TREE_OPERAND (arg0, 0)), tem);
8520 /* Perform BIT_NOT_EXPR on each element individually. */
8521 else if (TREE_CODE (arg0) == VECTOR_CST)
8522 {
8523 tree elements = TREE_VECTOR_CST_ELTS (arg0), elem, list = NULL_TREE;
8524 int count = TYPE_VECTOR_SUBPARTS (type), i;
8525
8526 for (i = 0; i < count; i++)
8527 {
8528 if (elements)
8529 {
8530 elem = TREE_VALUE (elements);
8531 elem = fold_unary (BIT_NOT_EXPR, TREE_TYPE (type), elem);
8532 if (elem == NULL_TREE)
8533 break;
8534 elements = TREE_CHAIN (elements);
8535 }
8536 else
8537 elem = build_int_cst (TREE_TYPE (type), -1);
8538 list = tree_cons (NULL_TREE, elem, list);
8539 }
8540 if (i == count)
8541 return build_vector (type, nreverse (list));
8542 }
8543
8544 return NULL_TREE;
8545
8546 case TRUTH_NOT_EXPR:
8547 /* The argument to invert_truthvalue must have Boolean type. */
8548 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
8549 arg0 = fold_convert (boolean_type_node, arg0);
8550
8551 /* Note that the operand of this must be an int
8552 and its values must be 0 or 1.
8553 ("true" is a fixed value perhaps depending on the language,
8554 but we don't handle values other than 1 correctly yet.) */
8555 tem = fold_truth_not_expr (arg0);
8556 if (!tem)
8557 return NULL_TREE;
8558 return fold_convert (type, tem);
8559
8560 case REALPART_EXPR:
8561 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8562 return fold_convert (type, arg0);
8563 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8564 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
8565 TREE_OPERAND (arg0, 1));
8566 if (TREE_CODE (arg0) == COMPLEX_CST)
8567 return fold_convert (type, TREE_REALPART (arg0));
8568 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8569 {
8570 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8571 tem = fold_build2 (TREE_CODE (arg0), itype,
8572 fold_build1 (REALPART_EXPR, itype,
8573 TREE_OPERAND (arg0, 0)),
8574 fold_build1 (REALPART_EXPR, itype,
8575 TREE_OPERAND (arg0, 1)));
8576 return fold_convert (type, tem);
8577 }
8578 if (TREE_CODE (arg0) == CONJ_EXPR)
8579 {
8580 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8581 tem = fold_build1 (REALPART_EXPR, itype, TREE_OPERAND (arg0, 0));
8582 return fold_convert (type, tem);
8583 }
8584 if (TREE_CODE (arg0) == CALL_EXPR)
8585 {
8586 tree fn = get_callee_fndecl (arg0);
8587 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8588 switch (DECL_FUNCTION_CODE (fn))
8589 {
8590 CASE_FLT_FN (BUILT_IN_CEXPI):
8591 fn = mathfn_built_in (type, BUILT_IN_COS);
8592 if (fn)
8593 return build_call_expr (fn, 1, CALL_EXPR_ARG (arg0, 0));
8594 break;
8595
8596 default:
8597 break;
8598 }
8599 }
8600 return NULL_TREE;
8601
8602 case IMAGPART_EXPR:
8603 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8604 return fold_convert (type, integer_zero_node);
8605 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8606 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
8607 TREE_OPERAND (arg0, 0));
8608 if (TREE_CODE (arg0) == COMPLEX_CST)
8609 return fold_convert (type, TREE_IMAGPART (arg0));
8610 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8611 {
8612 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8613 tem = fold_build2 (TREE_CODE (arg0), itype,
8614 fold_build1 (IMAGPART_EXPR, itype,
8615 TREE_OPERAND (arg0, 0)),
8616 fold_build1 (IMAGPART_EXPR, itype,
8617 TREE_OPERAND (arg0, 1)));
8618 return fold_convert (type, tem);
8619 }
8620 if (TREE_CODE (arg0) == CONJ_EXPR)
8621 {
8622 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8623 tem = fold_build1 (IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
8624 return fold_convert (type, negate_expr (tem));
8625 }
8626 if (TREE_CODE (arg0) == CALL_EXPR)
8627 {
8628 tree fn = get_callee_fndecl (arg0);
8629 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8630 switch (DECL_FUNCTION_CODE (fn))
8631 {
8632 CASE_FLT_FN (BUILT_IN_CEXPI):
8633 fn = mathfn_built_in (type, BUILT_IN_SIN);
8634 if (fn)
8635 return build_call_expr (fn, 1, CALL_EXPR_ARG (arg0, 0));
8636 break;
8637
8638 default:
8639 break;
8640 }
8641 }
8642 return NULL_TREE;
8643
8644 default:
8645 return NULL_TREE;
8646 } /* switch (code) */
8647 }
8648
8649
8650 /* If the operation was a conversion do _not_ mark a resulting constant
8651 with TREE_OVERFLOW if the original constant was not. These conversions
8652 have implementation defined behavior and retaining the TREE_OVERFLOW
8653 flag here would confuse later passes such as VRP. */
8654 tree
8655 fold_unary_ignore_overflow (enum tree_code code, tree type, tree op0)
8656 {
8657 tree res = fold_unary (code, type, op0);
8658 if (res
8659 && TREE_CODE (res) == INTEGER_CST
8660 && TREE_CODE (op0) == INTEGER_CST
8661 && CONVERT_EXPR_CODE_P (code))
8662 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
8663
8664 return res;
8665 }
8666
8667 /* Fold a binary expression of code CODE and type TYPE with operands
8668 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8669 Return the folded expression if folding is successful. Otherwise,
8670 return NULL_TREE. */
8671
8672 static tree
8673 fold_minmax (enum tree_code code, tree type, tree op0, tree op1)
8674 {
8675 enum tree_code compl_code;
8676
8677 if (code == MIN_EXPR)
8678 compl_code = MAX_EXPR;
8679 else if (code == MAX_EXPR)
8680 compl_code = MIN_EXPR;
8681 else
8682 gcc_unreachable ();
8683
8684 /* MIN (MAX (a, b), b) == b. */
8685 if (TREE_CODE (op0) == compl_code
8686 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
8687 return omit_one_operand (type, op1, TREE_OPERAND (op0, 0));
8688
8689 /* MIN (MAX (b, a), b) == b. */
8690 if (TREE_CODE (op0) == compl_code
8691 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
8692 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
8693 return omit_one_operand (type, op1, TREE_OPERAND (op0, 1));
8694
8695 /* MIN (a, MAX (a, b)) == a. */
8696 if (TREE_CODE (op1) == compl_code
8697 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
8698 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
8699 return omit_one_operand (type, op0, TREE_OPERAND (op1, 1));
8700
8701 /* MIN (a, MAX (b, a)) == a. */
8702 if (TREE_CODE (op1) == compl_code
8703 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
8704 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
8705 return omit_one_operand (type, op0, TREE_OPERAND (op1, 0));
8706
8707 return NULL_TREE;
8708 }
8709
8710 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8711 by changing CODE to reduce the magnitude of constants involved in
8712 ARG0 of the comparison.
8713 Returns a canonicalized comparison tree if a simplification was
8714 possible, otherwise returns NULL_TREE.
8715 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8716 valid if signed overflow is undefined. */
8717
8718 static tree
8719 maybe_canonicalize_comparison_1 (enum tree_code code, tree type,
8720 tree arg0, tree arg1,
8721 bool *strict_overflow_p)
8722 {
8723 enum tree_code code0 = TREE_CODE (arg0);
8724 tree t, cst0 = NULL_TREE;
8725 int sgn0;
8726 bool swap = false;
8727
8728 /* Match A +- CST code arg1 and CST code arg1. We can change the
8729 first form only if overflow is undefined. */
8730 if (!((TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8731 /* In principle pointers also have undefined overflow behavior,
8732 but that causes problems elsewhere. */
8733 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8734 && (code0 == MINUS_EXPR
8735 || code0 == PLUS_EXPR)
8736 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8737 || code0 == INTEGER_CST))
8738 return NULL_TREE;
8739
8740 /* Identify the constant in arg0 and its sign. */
8741 if (code0 == INTEGER_CST)
8742 cst0 = arg0;
8743 else
8744 cst0 = TREE_OPERAND (arg0, 1);
8745 sgn0 = tree_int_cst_sgn (cst0);
8746
8747 /* Overflowed constants and zero will cause problems. */
8748 if (integer_zerop (cst0)
8749 || TREE_OVERFLOW (cst0))
8750 return NULL_TREE;
8751
8752 /* See if we can reduce the magnitude of the constant in
8753 arg0 by changing the comparison code. */
8754 if (code0 == INTEGER_CST)
8755 {
8756 /* CST <= arg1 -> CST-1 < arg1. */
8757 if (code == LE_EXPR && sgn0 == 1)
8758 code = LT_EXPR;
8759 /* -CST < arg1 -> -CST-1 <= arg1. */
8760 else if (code == LT_EXPR && sgn0 == -1)
8761 code = LE_EXPR;
8762 /* CST > arg1 -> CST-1 >= arg1. */
8763 else if (code == GT_EXPR && sgn0 == 1)
8764 code = GE_EXPR;
8765 /* -CST >= arg1 -> -CST-1 > arg1. */
8766 else if (code == GE_EXPR && sgn0 == -1)
8767 code = GT_EXPR;
8768 else
8769 return NULL_TREE;
8770 /* arg1 code' CST' might be more canonical. */
8771 swap = true;
8772 }
8773 else
8774 {
8775 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8776 if (code == LT_EXPR
8777 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8778 code = LE_EXPR;
8779 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8780 else if (code == GT_EXPR
8781 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8782 code = GE_EXPR;
8783 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8784 else if (code == LE_EXPR
8785 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8786 code = LT_EXPR;
8787 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8788 else if (code == GE_EXPR
8789 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8790 code = GT_EXPR;
8791 else
8792 return NULL_TREE;
8793 *strict_overflow_p = true;
8794 }
8795
8796 /* Now build the constant reduced in magnitude. But not if that
8797 would produce one outside of its types range. */
8798 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8799 && ((sgn0 == 1
8800 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8801 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8802 || (sgn0 == -1
8803 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8804 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8805 /* We cannot swap the comparison here as that would cause us to
8806 endlessly recurse. */
8807 return NULL_TREE;
8808
8809 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8810 cst0, build_int_cst (TREE_TYPE (cst0), 1), 0);
8811 if (code0 != INTEGER_CST)
8812 t = fold_build2 (code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8813
8814 /* If swapping might yield to a more canonical form, do so. */
8815 if (swap)
8816 return fold_build2 (swap_tree_comparison (code), type, arg1, t);
8817 else
8818 return fold_build2 (code, type, t, arg1);
8819 }
8820
8821 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8822 overflow further. Try to decrease the magnitude of constants involved
8823 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8824 and put sole constants at the second argument position.
8825 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8826
8827 static tree
8828 maybe_canonicalize_comparison (enum tree_code code, tree type,
8829 tree arg0, tree arg1)
8830 {
8831 tree t;
8832 bool strict_overflow_p;
8833 const char * const warnmsg = G_("assuming signed overflow does not occur "
8834 "when reducing constant in comparison");
8835
8836 /* Try canonicalization by simplifying arg0. */
8837 strict_overflow_p = false;
8838 t = maybe_canonicalize_comparison_1 (code, type, arg0, arg1,
8839 &strict_overflow_p);
8840 if (t)
8841 {
8842 if (strict_overflow_p)
8843 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8844 return t;
8845 }
8846
8847 /* Try canonicalization by simplifying arg1 using the swapped
8848 comparison. */
8849 code = swap_tree_comparison (code);
8850 strict_overflow_p = false;
8851 t = maybe_canonicalize_comparison_1 (code, type, arg1, arg0,
8852 &strict_overflow_p);
8853 if (t && strict_overflow_p)
8854 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8855 return t;
8856 }
8857
8858 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8859 space. This is used to avoid issuing overflow warnings for
8860 expressions like &p->x which can not wrap. */
8861
8862 static bool
8863 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8864 {
8865 unsigned HOST_WIDE_INT offset_low, total_low;
8866 HOST_WIDE_INT size, offset_high, total_high;
8867
8868 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8869 return true;
8870
8871 if (bitpos < 0)
8872 return true;
8873
8874 if (offset == NULL_TREE)
8875 {
8876 offset_low = 0;
8877 offset_high = 0;
8878 }
8879 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8880 return true;
8881 else
8882 {
8883 offset_low = TREE_INT_CST_LOW (offset);
8884 offset_high = TREE_INT_CST_HIGH (offset);
8885 }
8886
8887 if (add_double_with_sign (offset_low, offset_high,
8888 bitpos / BITS_PER_UNIT, 0,
8889 &total_low, &total_high,
8890 true))
8891 return true;
8892
8893 if (total_high != 0)
8894 return true;
8895
8896 size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8897 if (size <= 0)
8898 return true;
8899
8900 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8901 array. */
8902 if (TREE_CODE (base) == ADDR_EXPR)
8903 {
8904 HOST_WIDE_INT base_size;
8905
8906 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8907 if (base_size > 0 && size < base_size)
8908 size = base_size;
8909 }
8910
8911 return total_low > (unsigned HOST_WIDE_INT) size;
8912 }
8913
8914 /* Subroutine of fold_binary. This routine performs all of the
8915 transformations that are common to the equality/inequality
8916 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8917 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8918 fold_binary should call fold_binary. Fold a comparison with
8919 tree code CODE and type TYPE with operands OP0 and OP1. Return
8920 the folded comparison or NULL_TREE. */
8921
8922 static tree
8923 fold_comparison (enum tree_code code, tree type, tree op0, tree op1)
8924 {
8925 tree arg0, arg1, tem;
8926
8927 arg0 = op0;
8928 arg1 = op1;
8929
8930 STRIP_SIGN_NOPS (arg0);
8931 STRIP_SIGN_NOPS (arg1);
8932
8933 tem = fold_relational_const (code, type, arg0, arg1);
8934 if (tem != NULL_TREE)
8935 return tem;
8936
8937 /* If one arg is a real or integer constant, put it last. */
8938 if (tree_swap_operands_p (arg0, arg1, true))
8939 return fold_build2 (swap_tree_comparison (code), type, op1, op0);
8940
8941 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 +- C1. */
8942 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8943 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8944 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8945 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
8946 && (TREE_CODE (arg1) == INTEGER_CST
8947 && !TREE_OVERFLOW (arg1)))
8948 {
8949 tree const1 = TREE_OPERAND (arg0, 1);
8950 tree const2 = arg1;
8951 tree variable = TREE_OPERAND (arg0, 0);
8952 tree lhs;
8953 int lhs_add;
8954 lhs_add = TREE_CODE (arg0) != PLUS_EXPR;
8955
8956 lhs = fold_build2 (lhs_add ? PLUS_EXPR : MINUS_EXPR,
8957 TREE_TYPE (arg1), const2, const1);
8958
8959 /* If the constant operation overflowed this can be
8960 simplified as a comparison against INT_MAX/INT_MIN. */
8961 if (TREE_CODE (lhs) == INTEGER_CST
8962 && TREE_OVERFLOW (lhs))
8963 {
8964 int const1_sgn = tree_int_cst_sgn (const1);
8965 enum tree_code code2 = code;
8966
8967 /* Get the sign of the constant on the lhs if the
8968 operation were VARIABLE + CONST1. */
8969 if (TREE_CODE (arg0) == MINUS_EXPR)
8970 const1_sgn = -const1_sgn;
8971
8972 /* The sign of the constant determines if we overflowed
8973 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8974 Canonicalize to the INT_MIN overflow by swapping the comparison
8975 if necessary. */
8976 if (const1_sgn == -1)
8977 code2 = swap_tree_comparison (code);
8978
8979 /* We now can look at the canonicalized case
8980 VARIABLE + 1 CODE2 INT_MIN
8981 and decide on the result. */
8982 if (code2 == LT_EXPR
8983 || code2 == LE_EXPR
8984 || code2 == EQ_EXPR)
8985 return omit_one_operand (type, boolean_false_node, variable);
8986 else if (code2 == NE_EXPR
8987 || code2 == GE_EXPR
8988 || code2 == GT_EXPR)
8989 return omit_one_operand (type, boolean_true_node, variable);
8990 }
8991
8992 if (TREE_CODE (lhs) == TREE_CODE (arg1)
8993 && (TREE_CODE (lhs) != INTEGER_CST
8994 || !TREE_OVERFLOW (lhs)))
8995 {
8996 fold_overflow_warning (("assuming signed overflow does not occur "
8997 "when changing X +- C1 cmp C2 to "
8998 "X cmp C1 +- C2"),
8999 WARN_STRICT_OVERFLOW_COMPARISON);
9000 return fold_build2 (code, type, variable, lhs);
9001 }
9002 }
9003
9004 /* For comparisons of pointers we can decompose it to a compile time
9005 comparison of the base objects and the offsets into the object.
9006 This requires at least one operand being an ADDR_EXPR or a
9007 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
9008 if (POINTER_TYPE_P (TREE_TYPE (arg0))
9009 && (TREE_CODE (arg0) == ADDR_EXPR
9010 || TREE_CODE (arg1) == ADDR_EXPR
9011 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
9012 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
9013 {
9014 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
9015 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
9016 enum machine_mode mode;
9017 int volatilep, unsignedp;
9018 bool indirect_base0 = false, indirect_base1 = false;
9019
9020 /* Get base and offset for the access. Strip ADDR_EXPR for
9021 get_inner_reference, but put it back by stripping INDIRECT_REF
9022 off the base object if possible. indirect_baseN will be true
9023 if baseN is not an address but refers to the object itself. */
9024 base0 = arg0;
9025 if (TREE_CODE (arg0) == ADDR_EXPR)
9026 {
9027 base0 = get_inner_reference (TREE_OPERAND (arg0, 0),
9028 &bitsize, &bitpos0, &offset0, &mode,
9029 &unsignedp, &volatilep, false);
9030 if (TREE_CODE (base0) == INDIRECT_REF)
9031 base0 = TREE_OPERAND (base0, 0);
9032 else
9033 indirect_base0 = true;
9034 }
9035 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
9036 {
9037 base0 = TREE_OPERAND (arg0, 0);
9038 offset0 = TREE_OPERAND (arg0, 1);
9039 }
9040
9041 base1 = arg1;
9042 if (TREE_CODE (arg1) == ADDR_EXPR)
9043 {
9044 base1 = get_inner_reference (TREE_OPERAND (arg1, 0),
9045 &bitsize, &bitpos1, &offset1, &mode,
9046 &unsignedp, &volatilep, false);
9047 if (TREE_CODE (base1) == INDIRECT_REF)
9048 base1 = TREE_OPERAND (base1, 0);
9049 else
9050 indirect_base1 = true;
9051 }
9052 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
9053 {
9054 base1 = TREE_OPERAND (arg1, 0);
9055 offset1 = TREE_OPERAND (arg1, 1);
9056 }
9057
9058 /* If we have equivalent bases we might be able to simplify. */
9059 if (indirect_base0 == indirect_base1
9060 && operand_equal_p (base0, base1, 0))
9061 {
9062 /* We can fold this expression to a constant if the non-constant
9063 offset parts are equal. */
9064 if ((offset0 == offset1
9065 || (offset0 && offset1
9066 && operand_equal_p (offset0, offset1, 0)))
9067 && (code == EQ_EXPR
9068 || code == NE_EXPR
9069 || POINTER_TYPE_OVERFLOW_UNDEFINED))
9070
9071 {
9072 if (code != EQ_EXPR
9073 && code != NE_EXPR
9074 && bitpos0 != bitpos1
9075 && (pointer_may_wrap_p (base0, offset0, bitpos0)
9076 || pointer_may_wrap_p (base1, offset1, bitpos1)))
9077 fold_overflow_warning (("assuming pointer wraparound does not "
9078 "occur when comparing P +- C1 with "
9079 "P +- C2"),
9080 WARN_STRICT_OVERFLOW_CONDITIONAL);
9081
9082 switch (code)
9083 {
9084 case EQ_EXPR:
9085 return constant_boolean_node (bitpos0 == bitpos1, type);
9086 case NE_EXPR:
9087 return constant_boolean_node (bitpos0 != bitpos1, type);
9088 case LT_EXPR:
9089 return constant_boolean_node (bitpos0 < bitpos1, type);
9090 case LE_EXPR:
9091 return constant_boolean_node (bitpos0 <= bitpos1, type);
9092 case GE_EXPR:
9093 return constant_boolean_node (bitpos0 >= bitpos1, type);
9094 case GT_EXPR:
9095 return constant_boolean_node (bitpos0 > bitpos1, type);
9096 default:;
9097 }
9098 }
9099 /* We can simplify the comparison to a comparison of the variable
9100 offset parts if the constant offset parts are equal.
9101 Be careful to use signed size type here because otherwise we
9102 mess with array offsets in the wrong way. This is possible
9103 because pointer arithmetic is restricted to retain within an
9104 object and overflow on pointer differences is undefined as of
9105 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
9106 else if (bitpos0 == bitpos1
9107 && ((code == EQ_EXPR || code == NE_EXPR)
9108 || POINTER_TYPE_OVERFLOW_UNDEFINED))
9109 {
9110 tree signed_size_type_node;
9111 signed_size_type_node = signed_type_for (size_type_node);
9112
9113 /* By converting to signed size type we cover middle-end pointer
9114 arithmetic which operates on unsigned pointer types of size
9115 type size and ARRAY_REF offsets which are properly sign or
9116 zero extended from their type in case it is narrower than
9117 size type. */
9118 if (offset0 == NULL_TREE)
9119 offset0 = build_int_cst (signed_size_type_node, 0);
9120 else
9121 offset0 = fold_convert (signed_size_type_node, offset0);
9122 if (offset1 == NULL_TREE)
9123 offset1 = build_int_cst (signed_size_type_node, 0);
9124 else
9125 offset1 = fold_convert (signed_size_type_node, offset1);
9126
9127 if (code != EQ_EXPR
9128 && code != NE_EXPR
9129 && (pointer_may_wrap_p (base0, offset0, bitpos0)
9130 || pointer_may_wrap_p (base1, offset1, bitpos1)))
9131 fold_overflow_warning (("assuming pointer wraparound does not "
9132 "occur when comparing P +- C1 with "
9133 "P +- C2"),
9134 WARN_STRICT_OVERFLOW_COMPARISON);
9135
9136 return fold_build2 (code, type, offset0, offset1);
9137 }
9138 }
9139 /* For non-equal bases we can simplify if they are addresses
9140 of local binding decls or constants. */
9141 else if (indirect_base0 && indirect_base1
9142 /* We know that !operand_equal_p (base0, base1, 0)
9143 because the if condition was false. But make
9144 sure two decls are not the same. */
9145 && base0 != base1
9146 && TREE_CODE (arg0) == ADDR_EXPR
9147 && TREE_CODE (arg1) == ADDR_EXPR
9148 && (((TREE_CODE (base0) == VAR_DECL
9149 || TREE_CODE (base0) == PARM_DECL)
9150 && (targetm.binds_local_p (base0)
9151 || CONSTANT_CLASS_P (base1)))
9152 || CONSTANT_CLASS_P (base0))
9153 && (((TREE_CODE (base1) == VAR_DECL
9154 || TREE_CODE (base1) == PARM_DECL)
9155 && (targetm.binds_local_p (base1)
9156 || CONSTANT_CLASS_P (base0)))
9157 || CONSTANT_CLASS_P (base1)))
9158 {
9159 if (code == EQ_EXPR)
9160 return omit_two_operands (type, boolean_false_node, arg0, arg1);
9161 else if (code == NE_EXPR)
9162 return omit_two_operands (type, boolean_true_node, arg0, arg1);
9163 }
9164 /* For equal offsets we can simplify to a comparison of the
9165 base addresses. */
9166 else if (bitpos0 == bitpos1
9167 && (indirect_base0
9168 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
9169 && (indirect_base1
9170 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
9171 && ((offset0 == offset1)
9172 || (offset0 && offset1
9173 && operand_equal_p (offset0, offset1, 0))))
9174 {
9175 if (indirect_base0)
9176 base0 = build_fold_addr_expr (base0);
9177 if (indirect_base1)
9178 base1 = build_fold_addr_expr (base1);
9179 return fold_build2 (code, type, base0, base1);
9180 }
9181 }
9182
9183 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
9184 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
9185 the resulting offset is smaller in absolute value than the
9186 original one. */
9187 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
9188 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
9189 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9190 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
9191 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
9192 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
9193 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
9194 {
9195 tree const1 = TREE_OPERAND (arg0, 1);
9196 tree const2 = TREE_OPERAND (arg1, 1);
9197 tree variable1 = TREE_OPERAND (arg0, 0);
9198 tree variable2 = TREE_OPERAND (arg1, 0);
9199 tree cst;
9200 const char * const warnmsg = G_("assuming signed overflow does not "
9201 "occur when combining constants around "
9202 "a comparison");
9203
9204 /* Put the constant on the side where it doesn't overflow and is
9205 of lower absolute value than before. */
9206 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
9207 ? MINUS_EXPR : PLUS_EXPR,
9208 const2, const1, 0);
9209 if (!TREE_OVERFLOW (cst)
9210 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2))
9211 {
9212 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
9213 return fold_build2 (code, type,
9214 variable1,
9215 fold_build2 (TREE_CODE (arg1), TREE_TYPE (arg1),
9216 variable2, cst));
9217 }
9218
9219 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
9220 ? MINUS_EXPR : PLUS_EXPR,
9221 const1, const2, 0);
9222 if (!TREE_OVERFLOW (cst)
9223 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1))
9224 {
9225 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
9226 return fold_build2 (code, type,
9227 fold_build2 (TREE_CODE (arg0), TREE_TYPE (arg0),
9228 variable1, cst),
9229 variable2);
9230 }
9231 }
9232
9233 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
9234 signed arithmetic case. That form is created by the compiler
9235 often enough for folding it to be of value. One example is in
9236 computing loop trip counts after Operator Strength Reduction. */
9237 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
9238 && TREE_CODE (arg0) == MULT_EXPR
9239 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9240 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
9241 && integer_zerop (arg1))
9242 {
9243 tree const1 = TREE_OPERAND (arg0, 1);
9244 tree const2 = arg1; /* zero */
9245 tree variable1 = TREE_OPERAND (arg0, 0);
9246 enum tree_code cmp_code = code;
9247
9248 gcc_assert (!integer_zerop (const1));
9249
9250 fold_overflow_warning (("assuming signed overflow does not occur when "
9251 "eliminating multiplication in comparison "
9252 "with zero"),
9253 WARN_STRICT_OVERFLOW_COMPARISON);
9254
9255 /* If const1 is negative we swap the sense of the comparison. */
9256 if (tree_int_cst_sgn (const1) < 0)
9257 cmp_code = swap_tree_comparison (cmp_code);
9258
9259 return fold_build2 (cmp_code, type, variable1, const2);
9260 }
9261
9262 tem = maybe_canonicalize_comparison (code, type, op0, op1);
9263 if (tem)
9264 return tem;
9265
9266 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
9267 {
9268 tree targ0 = strip_float_extensions (arg0);
9269 tree targ1 = strip_float_extensions (arg1);
9270 tree newtype = TREE_TYPE (targ0);
9271
9272 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
9273 newtype = TREE_TYPE (targ1);
9274
9275 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
9276 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
9277 return fold_build2 (code, type, fold_convert (newtype, targ0),
9278 fold_convert (newtype, targ1));
9279
9280 /* (-a) CMP (-b) -> b CMP a */
9281 if (TREE_CODE (arg0) == NEGATE_EXPR
9282 && TREE_CODE (arg1) == NEGATE_EXPR)
9283 return fold_build2 (code, type, TREE_OPERAND (arg1, 0),
9284 TREE_OPERAND (arg0, 0));
9285
9286 if (TREE_CODE (arg1) == REAL_CST)
9287 {
9288 REAL_VALUE_TYPE cst;
9289 cst = TREE_REAL_CST (arg1);
9290
9291 /* (-a) CMP CST -> a swap(CMP) (-CST) */
9292 if (TREE_CODE (arg0) == NEGATE_EXPR)
9293 return fold_build2 (swap_tree_comparison (code), type,
9294 TREE_OPERAND (arg0, 0),
9295 build_real (TREE_TYPE (arg1),
9296 REAL_VALUE_NEGATE (cst)));
9297
9298 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
9299 /* a CMP (-0) -> a CMP 0 */
9300 if (REAL_VALUE_MINUS_ZERO (cst))
9301 return fold_build2 (code, type, arg0,
9302 build_real (TREE_TYPE (arg1), dconst0));
9303
9304 /* x != NaN is always true, other ops are always false. */
9305 if (REAL_VALUE_ISNAN (cst)
9306 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
9307 {
9308 tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
9309 return omit_one_operand (type, tem, arg0);
9310 }
9311
9312 /* Fold comparisons against infinity. */
9313 if (REAL_VALUE_ISINF (cst)
9314 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1))))
9315 {
9316 tem = fold_inf_compare (code, type, arg0, arg1);
9317 if (tem != NULL_TREE)
9318 return tem;
9319 }
9320 }
9321
9322 /* If this is a comparison of a real constant with a PLUS_EXPR
9323 or a MINUS_EXPR of a real constant, we can convert it into a
9324 comparison with a revised real constant as long as no overflow
9325 occurs when unsafe_math_optimizations are enabled. */
9326 if (flag_unsafe_math_optimizations
9327 && TREE_CODE (arg1) == REAL_CST
9328 && (TREE_CODE (arg0) == PLUS_EXPR
9329 || TREE_CODE (arg0) == MINUS_EXPR)
9330 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
9331 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
9332 ? MINUS_EXPR : PLUS_EXPR,
9333 arg1, TREE_OPERAND (arg0, 1), 0))
9334 && !TREE_OVERFLOW (tem))
9335 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
9336
9337 /* Likewise, we can simplify a comparison of a real constant with
9338 a MINUS_EXPR whose first operand is also a real constant, i.e.
9339 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
9340 floating-point types only if -fassociative-math is set. */
9341 if (flag_associative_math
9342 && TREE_CODE (arg1) == REAL_CST
9343 && TREE_CODE (arg0) == MINUS_EXPR
9344 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
9345 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
9346 arg1, 0))
9347 && !TREE_OVERFLOW (tem))
9348 return fold_build2 (swap_tree_comparison (code), type,
9349 TREE_OPERAND (arg0, 1), tem);
9350
9351 /* Fold comparisons against built-in math functions. */
9352 if (TREE_CODE (arg1) == REAL_CST
9353 && flag_unsafe_math_optimizations
9354 && ! flag_errno_math)
9355 {
9356 enum built_in_function fcode = builtin_mathfn_code (arg0);
9357
9358 if (fcode != END_BUILTINS)
9359 {
9360 tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
9361 if (tem != NULL_TREE)
9362 return tem;
9363 }
9364 }
9365 }
9366
9367 if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
9368 && CONVERT_EXPR_P (arg0))
9369 {
9370 /* If we are widening one operand of an integer comparison,
9371 see if the other operand is similarly being widened. Perhaps we
9372 can do the comparison in the narrower type. */
9373 tem = fold_widened_comparison (code, type, arg0, arg1);
9374 if (tem)
9375 return tem;
9376
9377 /* Or if we are changing signedness. */
9378 tem = fold_sign_changed_comparison (code, type, arg0, arg1);
9379 if (tem)
9380 return tem;
9381 }
9382
9383 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
9384 constant, we can simplify it. */
9385 if (TREE_CODE (arg1) == INTEGER_CST
9386 && (TREE_CODE (arg0) == MIN_EXPR
9387 || TREE_CODE (arg0) == MAX_EXPR)
9388 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9389 {
9390 tem = optimize_minmax_comparison (code, type, op0, op1);
9391 if (tem)
9392 return tem;
9393 }
9394
9395 /* Simplify comparison of something with itself. (For IEEE
9396 floating-point, we can only do some of these simplifications.) */
9397 if (operand_equal_p (arg0, arg1, 0))
9398 {
9399 switch (code)
9400 {
9401 case EQ_EXPR:
9402 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9403 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9404 return constant_boolean_node (1, type);
9405 break;
9406
9407 case GE_EXPR:
9408 case LE_EXPR:
9409 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9410 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9411 return constant_boolean_node (1, type);
9412 return fold_build2 (EQ_EXPR, type, arg0, arg1);
9413
9414 case NE_EXPR:
9415 /* For NE, we can only do this simplification if integer
9416 or we don't honor IEEE floating point NaNs. */
9417 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
9418 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9419 break;
9420 /* ... fall through ... */
9421 case GT_EXPR:
9422 case LT_EXPR:
9423 return constant_boolean_node (0, type);
9424 default:
9425 gcc_unreachable ();
9426 }
9427 }
9428
9429 /* If we are comparing an expression that just has comparisons
9430 of two integer values, arithmetic expressions of those comparisons,
9431 and constants, we can simplify it. There are only three cases
9432 to check: the two values can either be equal, the first can be
9433 greater, or the second can be greater. Fold the expression for
9434 those three values. Since each value must be 0 or 1, we have
9435 eight possibilities, each of which corresponds to the constant 0
9436 or 1 or one of the six possible comparisons.
9437
9438 This handles common cases like (a > b) == 0 but also handles
9439 expressions like ((x > y) - (y > x)) > 0, which supposedly
9440 occur in macroized code. */
9441
9442 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
9443 {
9444 tree cval1 = 0, cval2 = 0;
9445 int save_p = 0;
9446
9447 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
9448 /* Don't handle degenerate cases here; they should already
9449 have been handled anyway. */
9450 && cval1 != 0 && cval2 != 0
9451 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
9452 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
9453 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
9454 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
9455 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
9456 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
9457 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
9458 {
9459 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
9460 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
9461
9462 /* We can't just pass T to eval_subst in case cval1 or cval2
9463 was the same as ARG1. */
9464
9465 tree high_result
9466 = fold_build2 (code, type,
9467 eval_subst (arg0, cval1, maxval,
9468 cval2, minval),
9469 arg1);
9470 tree equal_result
9471 = fold_build2 (code, type,
9472 eval_subst (arg0, cval1, maxval,
9473 cval2, maxval),
9474 arg1);
9475 tree low_result
9476 = fold_build2 (code, type,
9477 eval_subst (arg0, cval1, minval,
9478 cval2, maxval),
9479 arg1);
9480
9481 /* All three of these results should be 0 or 1. Confirm they are.
9482 Then use those values to select the proper code to use. */
9483
9484 if (TREE_CODE (high_result) == INTEGER_CST
9485 && TREE_CODE (equal_result) == INTEGER_CST
9486 && TREE_CODE (low_result) == INTEGER_CST)
9487 {
9488 /* Make a 3-bit mask with the high-order bit being the
9489 value for `>', the next for '=', and the low for '<'. */
9490 switch ((integer_onep (high_result) * 4)
9491 + (integer_onep (equal_result) * 2)
9492 + integer_onep (low_result))
9493 {
9494 case 0:
9495 /* Always false. */
9496 return omit_one_operand (type, integer_zero_node, arg0);
9497 case 1:
9498 code = LT_EXPR;
9499 break;
9500 case 2:
9501 code = EQ_EXPR;
9502 break;
9503 case 3:
9504 code = LE_EXPR;
9505 break;
9506 case 4:
9507 code = GT_EXPR;
9508 break;
9509 case 5:
9510 code = NE_EXPR;
9511 break;
9512 case 6:
9513 code = GE_EXPR;
9514 break;
9515 case 7:
9516 /* Always true. */
9517 return omit_one_operand (type, integer_one_node, arg0);
9518 }
9519
9520 if (save_p)
9521 return save_expr (build2 (code, type, cval1, cval2));
9522 return fold_build2 (code, type, cval1, cval2);
9523 }
9524 }
9525 }
9526
9527 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
9528 into a single range test. */
9529 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
9530 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
9531 && TREE_CODE (arg1) == INTEGER_CST
9532 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9533 && !integer_zerop (TREE_OPERAND (arg0, 1))
9534 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
9535 && !TREE_OVERFLOW (arg1))
9536 {
9537 tem = fold_div_compare (code, type, arg0, arg1);
9538 if (tem != NULL_TREE)
9539 return tem;
9540 }
9541
9542 /* Fold ~X op ~Y as Y op X. */
9543 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9544 && TREE_CODE (arg1) == BIT_NOT_EXPR)
9545 {
9546 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9547 return fold_build2 (code, type,
9548 fold_convert (cmp_type, TREE_OPERAND (arg1, 0)),
9549 TREE_OPERAND (arg0, 0));
9550 }
9551
9552 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
9553 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9554 && TREE_CODE (arg1) == INTEGER_CST)
9555 {
9556 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9557 return fold_build2 (swap_tree_comparison (code), type,
9558 TREE_OPERAND (arg0, 0),
9559 fold_build1 (BIT_NOT_EXPR, cmp_type,
9560 fold_convert (cmp_type, arg1)));
9561 }
9562
9563 return NULL_TREE;
9564 }
9565
9566
9567 /* Subroutine of fold_binary. Optimize complex multiplications of the
9568 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
9569 argument EXPR represents the expression "z" of type TYPE. */
9570
9571 static tree
9572 fold_mult_zconjz (tree type, tree expr)
9573 {
9574 tree itype = TREE_TYPE (type);
9575 tree rpart, ipart, tem;
9576
9577 if (TREE_CODE (expr) == COMPLEX_EXPR)
9578 {
9579 rpart = TREE_OPERAND (expr, 0);
9580 ipart = TREE_OPERAND (expr, 1);
9581 }
9582 else if (TREE_CODE (expr) == COMPLEX_CST)
9583 {
9584 rpart = TREE_REALPART (expr);
9585 ipart = TREE_IMAGPART (expr);
9586 }
9587 else
9588 {
9589 expr = save_expr (expr);
9590 rpart = fold_build1 (REALPART_EXPR, itype, expr);
9591 ipart = fold_build1 (IMAGPART_EXPR, itype, expr);
9592 }
9593
9594 rpart = save_expr (rpart);
9595 ipart = save_expr (ipart);
9596 tem = fold_build2 (PLUS_EXPR, itype,
9597 fold_build2 (MULT_EXPR, itype, rpart, rpart),
9598 fold_build2 (MULT_EXPR, itype, ipart, ipart));
9599 return fold_build2 (COMPLEX_EXPR, type, tem,
9600 fold_convert (itype, integer_zero_node));
9601 }
9602
9603
9604 /* Subroutine of fold_binary. If P is the value of EXPR, computes
9605 power-of-two M and (arbitrary) N such that M divides (P-N). This condition
9606 guarantees that P and N have the same least significant log2(M) bits.
9607 N is not otherwise constrained. In particular, N is not normalized to
9608 0 <= N < M as is common. In general, the precise value of P is unknown.
9609 M is chosen as large as possible such that constant N can be determined.
9610
9611 Returns M and sets *RESIDUE to N.
9612
9613 If ALLOW_FUNC_ALIGN is true, do take functions' DECL_ALIGN_UNIT into
9614 account. This is not always possible due to PR 35705.
9615 */
9616
9617 static unsigned HOST_WIDE_INT
9618 get_pointer_modulus_and_residue (tree expr, unsigned HOST_WIDE_INT *residue,
9619 bool allow_func_align)
9620 {
9621 enum tree_code code;
9622
9623 *residue = 0;
9624
9625 code = TREE_CODE (expr);
9626 if (code == ADDR_EXPR)
9627 {
9628 expr = TREE_OPERAND (expr, 0);
9629 if (handled_component_p (expr))
9630 {
9631 HOST_WIDE_INT bitsize, bitpos;
9632 tree offset;
9633 enum machine_mode mode;
9634 int unsignedp, volatilep;
9635
9636 expr = get_inner_reference (expr, &bitsize, &bitpos, &offset,
9637 &mode, &unsignedp, &volatilep, false);
9638 *residue = bitpos / BITS_PER_UNIT;
9639 if (offset)
9640 {
9641 if (TREE_CODE (offset) == INTEGER_CST)
9642 *residue += TREE_INT_CST_LOW (offset);
9643 else
9644 /* We don't handle more complicated offset expressions. */
9645 return 1;
9646 }
9647 }
9648
9649 if (DECL_P (expr)
9650 && (allow_func_align || TREE_CODE (expr) != FUNCTION_DECL))
9651 return DECL_ALIGN_UNIT (expr);
9652 }
9653 else if (code == POINTER_PLUS_EXPR)
9654 {
9655 tree op0, op1;
9656 unsigned HOST_WIDE_INT modulus;
9657 enum tree_code inner_code;
9658
9659 op0 = TREE_OPERAND (expr, 0);
9660 STRIP_NOPS (op0);
9661 modulus = get_pointer_modulus_and_residue (op0, residue,
9662 allow_func_align);
9663
9664 op1 = TREE_OPERAND (expr, 1);
9665 STRIP_NOPS (op1);
9666 inner_code = TREE_CODE (op1);
9667 if (inner_code == INTEGER_CST)
9668 {
9669 *residue += TREE_INT_CST_LOW (op1);
9670 return modulus;
9671 }
9672 else if (inner_code == MULT_EXPR)
9673 {
9674 op1 = TREE_OPERAND (op1, 1);
9675 if (TREE_CODE (op1) == INTEGER_CST)
9676 {
9677 unsigned HOST_WIDE_INT align;
9678
9679 /* Compute the greatest power-of-2 divisor of op1. */
9680 align = TREE_INT_CST_LOW (op1);
9681 align &= -align;
9682
9683 /* If align is non-zero and less than *modulus, replace
9684 *modulus with align., If align is 0, then either op1 is 0
9685 or the greatest power-of-2 divisor of op1 doesn't fit in an
9686 unsigned HOST_WIDE_INT. In either case, no additional
9687 constraint is imposed. */
9688 if (align)
9689 modulus = MIN (modulus, align);
9690
9691 return modulus;
9692 }
9693 }
9694 }
9695
9696 /* If we get here, we were unable to determine anything useful about the
9697 expression. */
9698 return 1;
9699 }
9700
9701
9702 /* Fold a binary expression of code CODE and type TYPE with operands
9703 OP0 and OP1. Return the folded expression if folding is
9704 successful. Otherwise, return NULL_TREE. */
9705
9706 tree
9707 fold_binary (enum tree_code code, tree type, tree op0, tree op1)
9708 {
9709 enum tree_code_class kind = TREE_CODE_CLASS (code);
9710 tree arg0, arg1, tem;
9711 tree t1 = NULL_TREE;
9712 bool strict_overflow_p;
9713
9714 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9715 && TREE_CODE_LENGTH (code) == 2
9716 && op0 != NULL_TREE
9717 && op1 != NULL_TREE);
9718
9719 arg0 = op0;
9720 arg1 = op1;
9721
9722 /* Strip any conversions that don't change the mode. This is
9723 safe for every expression, except for a comparison expression
9724 because its signedness is derived from its operands. So, in
9725 the latter case, only strip conversions that don't change the
9726 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9727 preserved.
9728
9729 Note that this is done as an internal manipulation within the
9730 constant folder, in order to find the simplest representation
9731 of the arguments so that their form can be studied. In any
9732 cases, the appropriate type conversions should be put back in
9733 the tree that will get out of the constant folder. */
9734
9735 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9736 {
9737 STRIP_SIGN_NOPS (arg0);
9738 STRIP_SIGN_NOPS (arg1);
9739 }
9740 else
9741 {
9742 STRIP_NOPS (arg0);
9743 STRIP_NOPS (arg1);
9744 }
9745
9746 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9747 constant but we can't do arithmetic on them. */
9748 if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
9749 || (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
9750 || (TREE_CODE (arg0) == FIXED_CST && TREE_CODE (arg1) == FIXED_CST)
9751 || (TREE_CODE (arg0) == FIXED_CST && TREE_CODE (arg1) == INTEGER_CST)
9752 || (TREE_CODE (arg0) == COMPLEX_CST && TREE_CODE (arg1) == COMPLEX_CST)
9753 || (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST))
9754 {
9755 if (kind == tcc_binary)
9756 {
9757 /* Make sure type and arg0 have the same saturating flag. */
9758 gcc_assert (TYPE_SATURATING (type)
9759 == TYPE_SATURATING (TREE_TYPE (arg0)));
9760 tem = const_binop (code, arg0, arg1, 0);
9761 }
9762 else if (kind == tcc_comparison)
9763 tem = fold_relational_const (code, type, arg0, arg1);
9764 else
9765 tem = NULL_TREE;
9766
9767 if (tem != NULL_TREE)
9768 {
9769 if (TREE_TYPE (tem) != type)
9770 tem = fold_convert (type, tem);
9771 return tem;
9772 }
9773 }
9774
9775 /* If this is a commutative operation, and ARG0 is a constant, move it
9776 to ARG1 to reduce the number of tests below. */
9777 if (commutative_tree_code (code)
9778 && tree_swap_operands_p (arg0, arg1, true))
9779 return fold_build2 (code, type, op1, op0);
9780
9781 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9782
9783 First check for cases where an arithmetic operation is applied to a
9784 compound, conditional, or comparison operation. Push the arithmetic
9785 operation inside the compound or conditional to see if any folding
9786 can then be done. Convert comparison to conditional for this purpose.
9787 The also optimizes non-constant cases that used to be done in
9788 expand_expr.
9789
9790 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9791 one of the operands is a comparison and the other is a comparison, a
9792 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9793 code below would make the expression more complex. Change it to a
9794 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9795 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9796
9797 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9798 || code == EQ_EXPR || code == NE_EXPR)
9799 && ((truth_value_p (TREE_CODE (arg0))
9800 && (truth_value_p (TREE_CODE (arg1))
9801 || (TREE_CODE (arg1) == BIT_AND_EXPR
9802 && integer_onep (TREE_OPERAND (arg1, 1)))))
9803 || (truth_value_p (TREE_CODE (arg1))
9804 && (truth_value_p (TREE_CODE (arg0))
9805 || (TREE_CODE (arg0) == BIT_AND_EXPR
9806 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9807 {
9808 tem = fold_build2 (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9809 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9810 : TRUTH_XOR_EXPR,
9811 boolean_type_node,
9812 fold_convert (boolean_type_node, arg0),
9813 fold_convert (boolean_type_node, arg1));
9814
9815 if (code == EQ_EXPR)
9816 tem = invert_truthvalue (tem);
9817
9818 return fold_convert (type, tem);
9819 }
9820
9821 if (TREE_CODE_CLASS (code) == tcc_binary
9822 || TREE_CODE_CLASS (code) == tcc_comparison)
9823 {
9824 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9825 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9826 fold_build2 (code, type,
9827 fold_convert (TREE_TYPE (op0),
9828 TREE_OPERAND (arg0, 1)),
9829 op1));
9830 if (TREE_CODE (arg1) == COMPOUND_EXPR
9831 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9832 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9833 fold_build2 (code, type, op0,
9834 fold_convert (TREE_TYPE (op1),
9835 TREE_OPERAND (arg1, 1))));
9836
9837 if (TREE_CODE (arg0) == COND_EXPR || COMPARISON_CLASS_P (arg0))
9838 {
9839 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
9840 arg0, arg1,
9841 /*cond_first_p=*/1);
9842 if (tem != NULL_TREE)
9843 return tem;
9844 }
9845
9846 if (TREE_CODE (arg1) == COND_EXPR || COMPARISON_CLASS_P (arg1))
9847 {
9848 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
9849 arg1, arg0,
9850 /*cond_first_p=*/0);
9851 if (tem != NULL_TREE)
9852 return tem;
9853 }
9854 }
9855
9856 switch (code)
9857 {
9858 case POINTER_PLUS_EXPR:
9859 /* 0 +p index -> (type)index */
9860 if (integer_zerop (arg0))
9861 return non_lvalue (fold_convert (type, arg1));
9862
9863 /* PTR +p 0 -> PTR */
9864 if (integer_zerop (arg1))
9865 return non_lvalue (fold_convert (type, arg0));
9866
9867 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9868 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9869 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9870 return fold_convert (type, fold_build2 (PLUS_EXPR, sizetype,
9871 fold_convert (sizetype, arg1),
9872 fold_convert (sizetype, arg0)));
9873
9874 /* index +p PTR -> PTR +p index */
9875 if (POINTER_TYPE_P (TREE_TYPE (arg1))
9876 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9877 return fold_build2 (POINTER_PLUS_EXPR, type,
9878 fold_convert (type, arg1),
9879 fold_convert (sizetype, arg0));
9880
9881 /* (PTR +p B) +p A -> PTR +p (B + A) */
9882 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
9883 {
9884 tree inner;
9885 tree arg01 = fold_convert (sizetype, TREE_OPERAND (arg0, 1));
9886 tree arg00 = TREE_OPERAND (arg0, 0);
9887 inner = fold_build2 (PLUS_EXPR, sizetype,
9888 arg01, fold_convert (sizetype, arg1));
9889 return fold_convert (type,
9890 fold_build2 (POINTER_PLUS_EXPR,
9891 TREE_TYPE (arg00), arg00, inner));
9892 }
9893
9894 /* PTR_CST +p CST -> CST1 */
9895 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
9896 return fold_build2 (PLUS_EXPR, type, arg0, fold_convert (type, arg1));
9897
9898 /* Try replacing &a[i1] +p c * i2 with &a[i1 + i2], if c is step
9899 of the array. Loop optimizer sometimes produce this type of
9900 expressions. */
9901 if (TREE_CODE (arg0) == ADDR_EXPR)
9902 {
9903 tem = try_move_mult_to_index (arg0, fold_convert (sizetype, arg1));
9904 if (tem)
9905 return fold_convert (type, tem);
9906 }
9907
9908 return NULL_TREE;
9909
9910 case PLUS_EXPR:
9911 /* A + (-B) -> A - B */
9912 if (TREE_CODE (arg1) == NEGATE_EXPR)
9913 return fold_build2 (MINUS_EXPR, type,
9914 fold_convert (type, arg0),
9915 fold_convert (type, TREE_OPERAND (arg1, 0)));
9916 /* (-A) + B -> B - A */
9917 if (TREE_CODE (arg0) == NEGATE_EXPR
9918 && reorder_operands_p (TREE_OPERAND (arg0, 0), arg1))
9919 return fold_build2 (MINUS_EXPR, type,
9920 fold_convert (type, arg1),
9921 fold_convert (type, TREE_OPERAND (arg0, 0)));
9922
9923 if (INTEGRAL_TYPE_P (type))
9924 {
9925 /* Convert ~A + 1 to -A. */
9926 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9927 && integer_onep (arg1))
9928 return fold_build1 (NEGATE_EXPR, type,
9929 fold_convert (type, TREE_OPERAND (arg0, 0)));
9930
9931 /* ~X + X is -1. */
9932 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9933 && !TYPE_OVERFLOW_TRAPS (type))
9934 {
9935 tree tem = TREE_OPERAND (arg0, 0);
9936
9937 STRIP_NOPS (tem);
9938 if (operand_equal_p (tem, arg1, 0))
9939 {
9940 t1 = build_int_cst_type (type, -1);
9941 return omit_one_operand (type, t1, arg1);
9942 }
9943 }
9944
9945 /* X + ~X is -1. */
9946 if (TREE_CODE (arg1) == BIT_NOT_EXPR
9947 && !TYPE_OVERFLOW_TRAPS (type))
9948 {
9949 tree tem = TREE_OPERAND (arg1, 0);
9950
9951 STRIP_NOPS (tem);
9952 if (operand_equal_p (arg0, tem, 0))
9953 {
9954 t1 = build_int_cst_type (type, -1);
9955 return omit_one_operand (type, t1, arg0);
9956 }
9957 }
9958
9959 /* X + (X / CST) * -CST is X % CST. */
9960 if (TREE_CODE (arg1) == MULT_EXPR
9961 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9962 && operand_equal_p (arg0,
9963 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9964 {
9965 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9966 tree cst1 = TREE_OPERAND (arg1, 1);
9967 tree sum = fold_binary (PLUS_EXPR, TREE_TYPE (cst1), cst1, cst0);
9968 if (sum && integer_zerop (sum))
9969 return fold_convert (type,
9970 fold_build2 (TRUNC_MOD_EXPR,
9971 TREE_TYPE (arg0), arg0, cst0));
9972 }
9973 }
9974
9975 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the
9976 same or one. Make sure type is not saturating.
9977 fold_plusminus_mult_expr will re-associate. */
9978 if ((TREE_CODE (arg0) == MULT_EXPR
9979 || TREE_CODE (arg1) == MULT_EXPR)
9980 && !TYPE_SATURATING (type)
9981 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9982 {
9983 tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
9984 if (tem)
9985 return tem;
9986 }
9987
9988 if (! FLOAT_TYPE_P (type))
9989 {
9990 if (integer_zerop (arg1))
9991 return non_lvalue (fold_convert (type, arg0));
9992
9993 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
9994 with a constant, and the two constants have no bits in common,
9995 we should treat this as a BIT_IOR_EXPR since this may produce more
9996 simplifications. */
9997 if (TREE_CODE (arg0) == BIT_AND_EXPR
9998 && TREE_CODE (arg1) == BIT_AND_EXPR
9999 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10000 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
10001 && integer_zerop (const_binop (BIT_AND_EXPR,
10002 TREE_OPERAND (arg0, 1),
10003 TREE_OPERAND (arg1, 1), 0)))
10004 {
10005 code = BIT_IOR_EXPR;
10006 goto bit_ior;
10007 }
10008
10009 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
10010 (plus (plus (mult) (mult)) (foo)) so that we can
10011 take advantage of the factoring cases below. */
10012 if (((TREE_CODE (arg0) == PLUS_EXPR
10013 || TREE_CODE (arg0) == MINUS_EXPR)
10014 && TREE_CODE (arg1) == MULT_EXPR)
10015 || ((TREE_CODE (arg1) == PLUS_EXPR
10016 || TREE_CODE (arg1) == MINUS_EXPR)
10017 && TREE_CODE (arg0) == MULT_EXPR))
10018 {
10019 tree parg0, parg1, parg, marg;
10020 enum tree_code pcode;
10021
10022 if (TREE_CODE (arg1) == MULT_EXPR)
10023 parg = arg0, marg = arg1;
10024 else
10025 parg = arg1, marg = arg0;
10026 pcode = TREE_CODE (parg);
10027 parg0 = TREE_OPERAND (parg, 0);
10028 parg1 = TREE_OPERAND (parg, 1);
10029 STRIP_NOPS (parg0);
10030 STRIP_NOPS (parg1);
10031
10032 if (TREE_CODE (parg0) == MULT_EXPR
10033 && TREE_CODE (parg1) != MULT_EXPR)
10034 return fold_build2 (pcode, type,
10035 fold_build2 (PLUS_EXPR, type,
10036 fold_convert (type, parg0),
10037 fold_convert (type, marg)),
10038 fold_convert (type, parg1));
10039 if (TREE_CODE (parg0) != MULT_EXPR
10040 && TREE_CODE (parg1) == MULT_EXPR)
10041 return fold_build2 (PLUS_EXPR, type,
10042 fold_convert (type, parg0),
10043 fold_build2 (pcode, type,
10044 fold_convert (type, marg),
10045 fold_convert (type,
10046 parg1)));
10047 }
10048 }
10049 else
10050 {
10051 /* See if ARG1 is zero and X + ARG1 reduces to X. */
10052 if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
10053 return non_lvalue (fold_convert (type, arg0));
10054
10055 /* Likewise if the operands are reversed. */
10056 if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
10057 return non_lvalue (fold_convert (type, arg1));
10058
10059 /* Convert X + -C into X - C. */
10060 if (TREE_CODE (arg1) == REAL_CST
10061 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
10062 {
10063 tem = fold_negate_const (arg1, type);
10064 if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
10065 return fold_build2 (MINUS_EXPR, type,
10066 fold_convert (type, arg0),
10067 fold_convert (type, tem));
10068 }
10069
10070 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
10071 to __complex__ ( x, y ). This is not the same for SNaNs or
10072 if signed zeros are involved. */
10073 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10074 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10075 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10076 {
10077 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10078 tree arg0r = fold_unary (REALPART_EXPR, rtype, arg0);
10079 tree arg0i = fold_unary (IMAGPART_EXPR, rtype, arg0);
10080 bool arg0rz = false, arg0iz = false;
10081 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10082 || (arg0i && (arg0iz = real_zerop (arg0i))))
10083 {
10084 tree arg1r = fold_unary (REALPART_EXPR, rtype, arg1);
10085 tree arg1i = fold_unary (IMAGPART_EXPR, rtype, arg1);
10086 if (arg0rz && arg1i && real_zerop (arg1i))
10087 {
10088 tree rp = arg1r ? arg1r
10089 : build1 (REALPART_EXPR, rtype, arg1);
10090 tree ip = arg0i ? arg0i
10091 : build1 (IMAGPART_EXPR, rtype, arg0);
10092 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
10093 }
10094 else if (arg0iz && arg1r && real_zerop (arg1r))
10095 {
10096 tree rp = arg0r ? arg0r
10097 : build1 (REALPART_EXPR, rtype, arg0);
10098 tree ip = arg1i ? arg1i
10099 : build1 (IMAGPART_EXPR, rtype, arg1);
10100 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
10101 }
10102 }
10103 }
10104
10105 if (flag_unsafe_math_optimizations
10106 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
10107 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
10108 && (tem = distribute_real_division (code, type, arg0, arg1)))
10109 return tem;
10110
10111 /* Convert x+x into x*2.0. */
10112 if (operand_equal_p (arg0, arg1, 0)
10113 && SCALAR_FLOAT_TYPE_P (type))
10114 return fold_build2 (MULT_EXPR, type, arg0,
10115 build_real (type, dconst2));
10116
10117 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
10118 We associate floats only if the user has specified
10119 -fassociative-math. */
10120 if (flag_associative_math
10121 && TREE_CODE (arg1) == PLUS_EXPR
10122 && TREE_CODE (arg0) != MULT_EXPR)
10123 {
10124 tree tree10 = TREE_OPERAND (arg1, 0);
10125 tree tree11 = TREE_OPERAND (arg1, 1);
10126 if (TREE_CODE (tree11) == MULT_EXPR
10127 && TREE_CODE (tree10) == MULT_EXPR)
10128 {
10129 tree tree0;
10130 tree0 = fold_build2 (PLUS_EXPR, type, arg0, tree10);
10131 return fold_build2 (PLUS_EXPR, type, tree0, tree11);
10132 }
10133 }
10134 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
10135 We associate floats only if the user has specified
10136 -fassociative-math. */
10137 if (flag_associative_math
10138 && TREE_CODE (arg0) == PLUS_EXPR
10139 && TREE_CODE (arg1) != MULT_EXPR)
10140 {
10141 tree tree00 = TREE_OPERAND (arg0, 0);
10142 tree tree01 = TREE_OPERAND (arg0, 1);
10143 if (TREE_CODE (tree01) == MULT_EXPR
10144 && TREE_CODE (tree00) == MULT_EXPR)
10145 {
10146 tree tree0;
10147 tree0 = fold_build2 (PLUS_EXPR, type, tree01, arg1);
10148 return fold_build2 (PLUS_EXPR, type, tree00, tree0);
10149 }
10150 }
10151 }
10152
10153 bit_rotate:
10154 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
10155 is a rotate of A by C1 bits. */
10156 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
10157 is a rotate of A by B bits. */
10158 {
10159 enum tree_code code0, code1;
10160 tree rtype;
10161 code0 = TREE_CODE (arg0);
10162 code1 = TREE_CODE (arg1);
10163 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
10164 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
10165 && operand_equal_p (TREE_OPERAND (arg0, 0),
10166 TREE_OPERAND (arg1, 0), 0)
10167 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
10168 TYPE_UNSIGNED (rtype))
10169 /* Only create rotates in complete modes. Other cases are not
10170 expanded properly. */
10171 && TYPE_PRECISION (rtype) == GET_MODE_PRECISION (TYPE_MODE (rtype)))
10172 {
10173 tree tree01, tree11;
10174 enum tree_code code01, code11;
10175
10176 tree01 = TREE_OPERAND (arg0, 1);
10177 tree11 = TREE_OPERAND (arg1, 1);
10178 STRIP_NOPS (tree01);
10179 STRIP_NOPS (tree11);
10180 code01 = TREE_CODE (tree01);
10181 code11 = TREE_CODE (tree11);
10182 if (code01 == INTEGER_CST
10183 && code11 == INTEGER_CST
10184 && TREE_INT_CST_HIGH (tree01) == 0
10185 && TREE_INT_CST_HIGH (tree11) == 0
10186 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
10187 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
10188 return build2 (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
10189 code0 == LSHIFT_EXPR ? tree01 : tree11);
10190 else if (code11 == MINUS_EXPR)
10191 {
10192 tree tree110, tree111;
10193 tree110 = TREE_OPERAND (tree11, 0);
10194 tree111 = TREE_OPERAND (tree11, 1);
10195 STRIP_NOPS (tree110);
10196 STRIP_NOPS (tree111);
10197 if (TREE_CODE (tree110) == INTEGER_CST
10198 && 0 == compare_tree_int (tree110,
10199 TYPE_PRECISION
10200 (TREE_TYPE (TREE_OPERAND
10201 (arg0, 0))))
10202 && operand_equal_p (tree01, tree111, 0))
10203 return build2 ((code0 == LSHIFT_EXPR
10204 ? LROTATE_EXPR
10205 : RROTATE_EXPR),
10206 type, TREE_OPERAND (arg0, 0), tree01);
10207 }
10208 else if (code01 == MINUS_EXPR)
10209 {
10210 tree tree010, tree011;
10211 tree010 = TREE_OPERAND (tree01, 0);
10212 tree011 = TREE_OPERAND (tree01, 1);
10213 STRIP_NOPS (tree010);
10214 STRIP_NOPS (tree011);
10215 if (TREE_CODE (tree010) == INTEGER_CST
10216 && 0 == compare_tree_int (tree010,
10217 TYPE_PRECISION
10218 (TREE_TYPE (TREE_OPERAND
10219 (arg0, 0))))
10220 && operand_equal_p (tree11, tree011, 0))
10221 return build2 ((code0 != LSHIFT_EXPR
10222 ? LROTATE_EXPR
10223 : RROTATE_EXPR),
10224 type, TREE_OPERAND (arg0, 0), tree11);
10225 }
10226 }
10227 }
10228
10229 associate:
10230 /* In most languages, can't associate operations on floats through
10231 parentheses. Rather than remember where the parentheses were, we
10232 don't associate floats at all, unless the user has specified
10233 -fassociative-math.
10234 And, we need to make sure type is not saturating. */
10235
10236 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
10237 && !TYPE_SATURATING (type))
10238 {
10239 tree var0, con0, lit0, minus_lit0;
10240 tree var1, con1, lit1, minus_lit1;
10241 bool ok = true;
10242
10243 /* Split both trees into variables, constants, and literals. Then
10244 associate each group together, the constants with literals,
10245 then the result with variables. This increases the chances of
10246 literals being recombined later and of generating relocatable
10247 expressions for the sum of a constant and literal. */
10248 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
10249 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
10250 code == MINUS_EXPR);
10251
10252 /* With undefined overflow we can only associate constants
10253 with one variable. */
10254 if (((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
10255 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
10256 && var0 && var1)
10257 {
10258 tree tmp0 = var0;
10259 tree tmp1 = var1;
10260
10261 if (TREE_CODE (tmp0) == NEGATE_EXPR)
10262 tmp0 = TREE_OPERAND (tmp0, 0);
10263 if (TREE_CODE (tmp1) == NEGATE_EXPR)
10264 tmp1 = TREE_OPERAND (tmp1, 0);
10265 /* The only case we can still associate with two variables
10266 is if they are the same, modulo negation. */
10267 if (!operand_equal_p (tmp0, tmp1, 0))
10268 ok = false;
10269 }
10270
10271 /* Only do something if we found more than two objects. Otherwise,
10272 nothing has changed and we risk infinite recursion. */
10273 if (ok
10274 && (2 < ((var0 != 0) + (var1 != 0)
10275 + (con0 != 0) + (con1 != 0)
10276 + (lit0 != 0) + (lit1 != 0)
10277 + (minus_lit0 != 0) + (minus_lit1 != 0))))
10278 {
10279 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
10280 if (code == MINUS_EXPR)
10281 code = PLUS_EXPR;
10282
10283 var0 = associate_trees (var0, var1, code, type);
10284 con0 = associate_trees (con0, con1, code, type);
10285 lit0 = associate_trees (lit0, lit1, code, type);
10286 minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
10287
10288 /* Preserve the MINUS_EXPR if the negative part of the literal is
10289 greater than the positive part. Otherwise, the multiplicative
10290 folding code (i.e extract_muldiv) may be fooled in case
10291 unsigned constants are subtracted, like in the following
10292 example: ((X*2 + 4) - 8U)/2. */
10293 if (minus_lit0 && lit0)
10294 {
10295 if (TREE_CODE (lit0) == INTEGER_CST
10296 && TREE_CODE (minus_lit0) == INTEGER_CST
10297 && tree_int_cst_lt (lit0, minus_lit0))
10298 {
10299 minus_lit0 = associate_trees (minus_lit0, lit0,
10300 MINUS_EXPR, type);
10301 lit0 = 0;
10302 }
10303 else
10304 {
10305 lit0 = associate_trees (lit0, minus_lit0,
10306 MINUS_EXPR, type);
10307 minus_lit0 = 0;
10308 }
10309 }
10310 if (minus_lit0)
10311 {
10312 if (con0 == 0)
10313 return fold_convert (type,
10314 associate_trees (var0, minus_lit0,
10315 MINUS_EXPR, type));
10316 else
10317 {
10318 con0 = associate_trees (con0, minus_lit0,
10319 MINUS_EXPR, type);
10320 return fold_convert (type,
10321 associate_trees (var0, con0,
10322 PLUS_EXPR, type));
10323 }
10324 }
10325
10326 con0 = associate_trees (con0, lit0, code, type);
10327 return fold_convert (type, associate_trees (var0, con0,
10328 code, type));
10329 }
10330 }
10331
10332 return NULL_TREE;
10333
10334 case MINUS_EXPR:
10335 /* Pointer simplifications for subtraction, simple reassociations. */
10336 if (POINTER_TYPE_P (TREE_TYPE (arg1)) && POINTER_TYPE_P (TREE_TYPE (arg0)))
10337 {
10338 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
10339 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR
10340 && TREE_CODE (arg1) == POINTER_PLUS_EXPR)
10341 {
10342 tree arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
10343 tree arg01 = fold_convert (type, TREE_OPERAND (arg0, 1));
10344 tree arg10 = fold_convert (type, TREE_OPERAND (arg1, 0));
10345 tree arg11 = fold_convert (type, TREE_OPERAND (arg1, 1));
10346 return fold_build2 (PLUS_EXPR, type,
10347 fold_build2 (MINUS_EXPR, type, arg00, arg10),
10348 fold_build2 (MINUS_EXPR, type, arg01, arg11));
10349 }
10350 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
10351 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
10352 {
10353 tree arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
10354 tree arg01 = fold_convert (type, TREE_OPERAND (arg0, 1));
10355 tree tmp = fold_binary (MINUS_EXPR, type, arg00, fold_convert (type, arg1));
10356 if (tmp)
10357 return fold_build2 (PLUS_EXPR, type, tmp, arg01);
10358 }
10359 }
10360 /* A - (-B) -> A + B */
10361 if (TREE_CODE (arg1) == NEGATE_EXPR)
10362 return fold_build2 (PLUS_EXPR, type, op0,
10363 fold_convert (type, TREE_OPERAND (arg1, 0)));
10364 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
10365 if (TREE_CODE (arg0) == NEGATE_EXPR
10366 && (FLOAT_TYPE_P (type)
10367 || INTEGRAL_TYPE_P (type))
10368 && negate_expr_p (arg1)
10369 && reorder_operands_p (arg0, arg1))
10370 return fold_build2 (MINUS_EXPR, type,
10371 fold_convert (type, negate_expr (arg1)),
10372 fold_convert (type, TREE_OPERAND (arg0, 0)));
10373 /* Convert -A - 1 to ~A. */
10374 if (INTEGRAL_TYPE_P (type)
10375 && TREE_CODE (arg0) == NEGATE_EXPR
10376 && integer_onep (arg1)
10377 && !TYPE_OVERFLOW_TRAPS (type))
10378 return fold_build1 (BIT_NOT_EXPR, type,
10379 fold_convert (type, TREE_OPERAND (arg0, 0)));
10380
10381 /* Convert -1 - A to ~A. */
10382 if (INTEGRAL_TYPE_P (type)
10383 && integer_all_onesp (arg0))
10384 return fold_build1 (BIT_NOT_EXPR, type, op1);
10385
10386
10387 /* X - (X / CST) * CST is X % CST. */
10388 if (INTEGRAL_TYPE_P (type)
10389 && TREE_CODE (arg1) == MULT_EXPR
10390 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
10391 && operand_equal_p (arg0,
10392 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0)
10393 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg1, 0), 1),
10394 TREE_OPERAND (arg1, 1), 0))
10395 return fold_convert (type,
10396 fold_build2 (TRUNC_MOD_EXPR, TREE_TYPE (arg0),
10397 arg0, TREE_OPERAND (arg1, 1)));
10398
10399 if (! FLOAT_TYPE_P (type))
10400 {
10401 if (integer_zerop (arg0))
10402 return negate_expr (fold_convert (type, arg1));
10403 if (integer_zerop (arg1))
10404 return non_lvalue (fold_convert (type, arg0));
10405
10406 /* Fold A - (A & B) into ~B & A. */
10407 if (!TREE_SIDE_EFFECTS (arg0)
10408 && TREE_CODE (arg1) == BIT_AND_EXPR)
10409 {
10410 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
10411 {
10412 tree arg10 = fold_convert (type, TREE_OPERAND (arg1, 0));
10413 return fold_build2 (BIT_AND_EXPR, type,
10414 fold_build1 (BIT_NOT_EXPR, type, arg10),
10415 fold_convert (type, arg0));
10416 }
10417 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10418 {
10419 tree arg11 = fold_convert (type, TREE_OPERAND (arg1, 1));
10420 return fold_build2 (BIT_AND_EXPR, type,
10421 fold_build1 (BIT_NOT_EXPR, type, arg11),
10422 fold_convert (type, arg0));
10423 }
10424 }
10425
10426 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
10427 any power of 2 minus 1. */
10428 if (TREE_CODE (arg0) == BIT_AND_EXPR
10429 && TREE_CODE (arg1) == BIT_AND_EXPR
10430 && operand_equal_p (TREE_OPERAND (arg0, 0),
10431 TREE_OPERAND (arg1, 0), 0))
10432 {
10433 tree mask0 = TREE_OPERAND (arg0, 1);
10434 tree mask1 = TREE_OPERAND (arg1, 1);
10435 tree tem = fold_build1 (BIT_NOT_EXPR, type, mask0);
10436
10437 if (operand_equal_p (tem, mask1, 0))
10438 {
10439 tem = fold_build2 (BIT_XOR_EXPR, type,
10440 TREE_OPERAND (arg0, 0), mask1);
10441 return fold_build2 (MINUS_EXPR, type, tem, mask1);
10442 }
10443 }
10444 }
10445
10446 /* See if ARG1 is zero and X - ARG1 reduces to X. */
10447 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
10448 return non_lvalue (fold_convert (type, arg0));
10449
10450 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
10451 ARG0 is zero and X + ARG0 reduces to X, since that would mean
10452 (-ARG1 + ARG0) reduces to -ARG1. */
10453 else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
10454 return negate_expr (fold_convert (type, arg1));
10455
10456 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10457 __complex__ ( x, -y ). This is not the same for SNaNs or if
10458 signed zeros are involved. */
10459 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10460 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10461 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10462 {
10463 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10464 tree arg0r = fold_unary (REALPART_EXPR, rtype, arg0);
10465 tree arg0i = fold_unary (IMAGPART_EXPR, rtype, arg0);
10466 bool arg0rz = false, arg0iz = false;
10467 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10468 || (arg0i && (arg0iz = real_zerop (arg0i))))
10469 {
10470 tree arg1r = fold_unary (REALPART_EXPR, rtype, arg1);
10471 tree arg1i = fold_unary (IMAGPART_EXPR, rtype, arg1);
10472 if (arg0rz && arg1i && real_zerop (arg1i))
10473 {
10474 tree rp = fold_build1 (NEGATE_EXPR, rtype,
10475 arg1r ? arg1r
10476 : build1 (REALPART_EXPR, rtype, arg1));
10477 tree ip = arg0i ? arg0i
10478 : build1 (IMAGPART_EXPR, rtype, arg0);
10479 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
10480 }
10481 else if (arg0iz && arg1r && real_zerop (arg1r))
10482 {
10483 tree rp = arg0r ? arg0r
10484 : build1 (REALPART_EXPR, rtype, arg0);
10485 tree ip = fold_build1 (NEGATE_EXPR, rtype,
10486 arg1i ? arg1i
10487 : build1 (IMAGPART_EXPR, rtype, arg1));
10488 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
10489 }
10490 }
10491 }
10492
10493 /* Fold &x - &x. This can happen from &x.foo - &x.
10494 This is unsafe for certain floats even in non-IEEE formats.
10495 In IEEE, it is unsafe because it does wrong for NaNs.
10496 Also note that operand_equal_p is always false if an operand
10497 is volatile. */
10498
10499 if ((!FLOAT_TYPE_P (type) || !HONOR_NANS (TYPE_MODE (type)))
10500 && operand_equal_p (arg0, arg1, 0))
10501 return fold_convert (type, integer_zero_node);
10502
10503 /* A - B -> A + (-B) if B is easily negatable. */
10504 if (negate_expr_p (arg1)
10505 && ((FLOAT_TYPE_P (type)
10506 /* Avoid this transformation if B is a positive REAL_CST. */
10507 && (TREE_CODE (arg1) != REAL_CST
10508 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
10509 || INTEGRAL_TYPE_P (type)))
10510 return fold_build2 (PLUS_EXPR, type,
10511 fold_convert (type, arg0),
10512 fold_convert (type, negate_expr (arg1)));
10513
10514 /* Try folding difference of addresses. */
10515 {
10516 HOST_WIDE_INT diff;
10517
10518 if ((TREE_CODE (arg0) == ADDR_EXPR
10519 || TREE_CODE (arg1) == ADDR_EXPR)
10520 && ptr_difference_const (arg0, arg1, &diff))
10521 return build_int_cst_type (type, diff);
10522 }
10523
10524 /* Fold &a[i] - &a[j] to i-j. */
10525 if (TREE_CODE (arg0) == ADDR_EXPR
10526 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
10527 && TREE_CODE (arg1) == ADDR_EXPR
10528 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
10529 {
10530 tree aref0 = TREE_OPERAND (arg0, 0);
10531 tree aref1 = TREE_OPERAND (arg1, 0);
10532 if (operand_equal_p (TREE_OPERAND (aref0, 0),
10533 TREE_OPERAND (aref1, 0), 0))
10534 {
10535 tree op0 = fold_convert (type, TREE_OPERAND (aref0, 1));
10536 tree op1 = fold_convert (type, TREE_OPERAND (aref1, 1));
10537 tree esz = array_ref_element_size (aref0);
10538 tree diff = build2 (MINUS_EXPR, type, op0, op1);
10539 return fold_build2 (MULT_EXPR, type, diff,
10540 fold_convert (type, esz));
10541
10542 }
10543 }
10544
10545 if (FLOAT_TYPE_P (type)
10546 && flag_unsafe_math_optimizations
10547 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
10548 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
10549 && (tem = distribute_real_division (code, type, arg0, arg1)))
10550 return tem;
10551
10552 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the
10553 same or one. Make sure type is not saturating.
10554 fold_plusminus_mult_expr will re-associate. */
10555 if ((TREE_CODE (arg0) == MULT_EXPR
10556 || TREE_CODE (arg1) == MULT_EXPR)
10557 && !TYPE_SATURATING (type)
10558 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10559 {
10560 tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
10561 if (tem)
10562 return tem;
10563 }
10564
10565 goto associate;
10566
10567 case MULT_EXPR:
10568 /* (-A) * (-B) -> A * B */
10569 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10570 return fold_build2 (MULT_EXPR, type,
10571 fold_convert (type, TREE_OPERAND (arg0, 0)),
10572 fold_convert (type, negate_expr (arg1)));
10573 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10574 return fold_build2 (MULT_EXPR, type,
10575 fold_convert (type, negate_expr (arg0)),
10576 fold_convert (type, TREE_OPERAND (arg1, 0)));
10577
10578 if (! FLOAT_TYPE_P (type))
10579 {
10580 if (integer_zerop (arg1))
10581 return omit_one_operand (type, arg1, arg0);
10582 if (integer_onep (arg1))
10583 return non_lvalue (fold_convert (type, arg0));
10584 /* Transform x * -1 into -x. Make sure to do the negation
10585 on the original operand with conversions not stripped
10586 because we can only strip non-sign-changing conversions. */
10587 if (integer_all_onesp (arg1))
10588 return fold_convert (type, negate_expr (op0));
10589 /* Transform x * -C into -x * C if x is easily negatable. */
10590 if (TREE_CODE (arg1) == INTEGER_CST
10591 && tree_int_cst_sgn (arg1) == -1
10592 && negate_expr_p (arg0)
10593 && (tem = negate_expr (arg1)) != arg1
10594 && !TREE_OVERFLOW (tem))
10595 return fold_build2 (MULT_EXPR, type,
10596 fold_convert (type, negate_expr (arg0)), tem);
10597
10598 /* (a * (1 << b)) is (a << b) */
10599 if (TREE_CODE (arg1) == LSHIFT_EXPR
10600 && integer_onep (TREE_OPERAND (arg1, 0)))
10601 return fold_build2 (LSHIFT_EXPR, type, op0,
10602 TREE_OPERAND (arg1, 1));
10603 if (TREE_CODE (arg0) == LSHIFT_EXPR
10604 && integer_onep (TREE_OPERAND (arg0, 0)))
10605 return fold_build2 (LSHIFT_EXPR, type, op1,
10606 TREE_OPERAND (arg0, 1));
10607
10608 /* (A + A) * C -> A * 2 * C */
10609 if (TREE_CODE (arg0) == PLUS_EXPR
10610 && TREE_CODE (arg1) == INTEGER_CST
10611 && operand_equal_p (TREE_OPERAND (arg0, 0),
10612 TREE_OPERAND (arg0, 1), 0))
10613 return fold_build2 (MULT_EXPR, type,
10614 omit_one_operand (type, TREE_OPERAND (arg0, 0),
10615 TREE_OPERAND (arg0, 1)),
10616 fold_build2 (MULT_EXPR, type,
10617 build_int_cst (type, 2) , arg1));
10618
10619 strict_overflow_p = false;
10620 if (TREE_CODE (arg1) == INTEGER_CST
10621 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10622 &strict_overflow_p)))
10623 {
10624 if (strict_overflow_p)
10625 fold_overflow_warning (("assuming signed overflow does not "
10626 "occur when simplifying "
10627 "multiplication"),
10628 WARN_STRICT_OVERFLOW_MISC);
10629 return fold_convert (type, tem);
10630 }
10631
10632 /* Optimize z * conj(z) for integer complex numbers. */
10633 if (TREE_CODE (arg0) == CONJ_EXPR
10634 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10635 return fold_mult_zconjz (type, arg1);
10636 if (TREE_CODE (arg1) == CONJ_EXPR
10637 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10638 return fold_mult_zconjz (type, arg0);
10639 }
10640 else
10641 {
10642 /* Maybe fold x * 0 to 0. The expressions aren't the same
10643 when x is NaN, since x * 0 is also NaN. Nor are they the
10644 same in modes with signed zeros, since multiplying a
10645 negative value by 0 gives -0, not +0. */
10646 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
10647 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10648 && real_zerop (arg1))
10649 return omit_one_operand (type, arg1, arg0);
10650 /* In IEEE floating point, x*1 is not equivalent to x for snans.
10651 Likewise for complex arithmetic with signed zeros. */
10652 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10653 && (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10654 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10655 && real_onep (arg1))
10656 return non_lvalue (fold_convert (type, arg0));
10657
10658 /* Transform x * -1.0 into -x. */
10659 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10660 && (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10661 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10662 && real_minus_onep (arg1))
10663 return fold_convert (type, negate_expr (arg0));
10664
10665 /* Convert (C1/X)*C2 into (C1*C2)/X. This transformation may change
10666 the result for floating point types due to rounding so it is applied
10667 only if -fassociative-math was specify. */
10668 if (flag_associative_math
10669 && TREE_CODE (arg0) == RDIV_EXPR
10670 && TREE_CODE (arg1) == REAL_CST
10671 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
10672 {
10673 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
10674 arg1, 0);
10675 if (tem)
10676 return fold_build2 (RDIV_EXPR, type, tem,
10677 TREE_OPERAND (arg0, 1));
10678 }
10679
10680 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
10681 if (operand_equal_p (arg0, arg1, 0))
10682 {
10683 tree tem = fold_strip_sign_ops (arg0);
10684 if (tem != NULL_TREE)
10685 {
10686 tem = fold_convert (type, tem);
10687 return fold_build2 (MULT_EXPR, type, tem, tem);
10688 }
10689 }
10690
10691 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10692 This is not the same for NaNs or if signed zeros are
10693 involved. */
10694 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
10695 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10696 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10697 && TREE_CODE (arg1) == COMPLEX_CST
10698 && real_zerop (TREE_REALPART (arg1)))
10699 {
10700 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10701 if (real_onep (TREE_IMAGPART (arg1)))
10702 return fold_build2 (COMPLEX_EXPR, type,
10703 negate_expr (fold_build1 (IMAGPART_EXPR,
10704 rtype, arg0)),
10705 fold_build1 (REALPART_EXPR, rtype, arg0));
10706 else if (real_minus_onep (TREE_IMAGPART (arg1)))
10707 return fold_build2 (COMPLEX_EXPR, type,
10708 fold_build1 (IMAGPART_EXPR, rtype, arg0),
10709 negate_expr (fold_build1 (REALPART_EXPR,
10710 rtype, arg0)));
10711 }
10712
10713 /* Optimize z * conj(z) for floating point complex numbers.
10714 Guarded by flag_unsafe_math_optimizations as non-finite
10715 imaginary components don't produce scalar results. */
10716 if (flag_unsafe_math_optimizations
10717 && TREE_CODE (arg0) == CONJ_EXPR
10718 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10719 return fold_mult_zconjz (type, arg1);
10720 if (flag_unsafe_math_optimizations
10721 && TREE_CODE (arg1) == CONJ_EXPR
10722 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10723 return fold_mult_zconjz (type, arg0);
10724
10725 if (flag_unsafe_math_optimizations)
10726 {
10727 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
10728 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
10729
10730 /* Optimizations of root(...)*root(...). */
10731 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
10732 {
10733 tree rootfn, arg;
10734 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10735 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10736
10737 /* Optimize sqrt(x)*sqrt(x) as x. */
10738 if (BUILTIN_SQRT_P (fcode0)
10739 && operand_equal_p (arg00, arg10, 0)
10740 && ! HONOR_SNANS (TYPE_MODE (type)))
10741 return arg00;
10742
10743 /* Optimize root(x)*root(y) as root(x*y). */
10744 rootfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10745 arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
10746 return build_call_expr (rootfn, 1, arg);
10747 }
10748
10749 /* Optimize expN(x)*expN(y) as expN(x+y). */
10750 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
10751 {
10752 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10753 tree arg = fold_build2 (PLUS_EXPR, type,
10754 CALL_EXPR_ARG (arg0, 0),
10755 CALL_EXPR_ARG (arg1, 0));
10756 return build_call_expr (expfn, 1, arg);
10757 }
10758
10759 /* Optimizations of pow(...)*pow(...). */
10760 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
10761 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
10762 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
10763 {
10764 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10765 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10766 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10767 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10768
10769 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
10770 if (operand_equal_p (arg01, arg11, 0))
10771 {
10772 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10773 tree arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
10774 return build_call_expr (powfn, 2, arg, arg01);
10775 }
10776
10777 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
10778 if (operand_equal_p (arg00, arg10, 0))
10779 {
10780 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10781 tree arg = fold_build2 (PLUS_EXPR, type, arg01, arg11);
10782 return build_call_expr (powfn, 2, arg00, arg);
10783 }
10784 }
10785
10786 /* Optimize tan(x)*cos(x) as sin(x). */
10787 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
10788 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
10789 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
10790 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
10791 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
10792 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
10793 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10794 CALL_EXPR_ARG (arg1, 0), 0))
10795 {
10796 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
10797
10798 if (sinfn != NULL_TREE)
10799 return build_call_expr (sinfn, 1, CALL_EXPR_ARG (arg0, 0));
10800 }
10801
10802 /* Optimize x*pow(x,c) as pow(x,c+1). */
10803 if (fcode1 == BUILT_IN_POW
10804 || fcode1 == BUILT_IN_POWF
10805 || fcode1 == BUILT_IN_POWL)
10806 {
10807 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10808 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10809 if (TREE_CODE (arg11) == REAL_CST
10810 && !TREE_OVERFLOW (arg11)
10811 && operand_equal_p (arg0, arg10, 0))
10812 {
10813 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10814 REAL_VALUE_TYPE c;
10815 tree arg;
10816
10817 c = TREE_REAL_CST (arg11);
10818 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10819 arg = build_real (type, c);
10820 return build_call_expr (powfn, 2, arg0, arg);
10821 }
10822 }
10823
10824 /* Optimize pow(x,c)*x as pow(x,c+1). */
10825 if (fcode0 == BUILT_IN_POW
10826 || fcode0 == BUILT_IN_POWF
10827 || fcode0 == BUILT_IN_POWL)
10828 {
10829 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10830 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10831 if (TREE_CODE (arg01) == REAL_CST
10832 && !TREE_OVERFLOW (arg01)
10833 && operand_equal_p (arg1, arg00, 0))
10834 {
10835 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10836 REAL_VALUE_TYPE c;
10837 tree arg;
10838
10839 c = TREE_REAL_CST (arg01);
10840 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10841 arg = build_real (type, c);
10842 return build_call_expr (powfn, 2, arg1, arg);
10843 }
10844 }
10845
10846 /* Optimize x*x as pow(x,2.0), which is expanded as x*x. */
10847 if (optimize_function_for_speed_p (cfun)
10848 && operand_equal_p (arg0, arg1, 0))
10849 {
10850 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
10851
10852 if (powfn)
10853 {
10854 tree arg = build_real (type, dconst2);
10855 return build_call_expr (powfn, 2, arg0, arg);
10856 }
10857 }
10858 }
10859 }
10860 goto associate;
10861
10862 case BIT_IOR_EXPR:
10863 bit_ior:
10864 if (integer_all_onesp (arg1))
10865 return omit_one_operand (type, arg1, arg0);
10866 if (integer_zerop (arg1))
10867 return non_lvalue (fold_convert (type, arg0));
10868 if (operand_equal_p (arg0, arg1, 0))
10869 return non_lvalue (fold_convert (type, arg0));
10870
10871 /* ~X | X is -1. */
10872 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10873 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10874 {
10875 t1 = fold_convert (type, integer_zero_node);
10876 t1 = fold_unary (BIT_NOT_EXPR, type, t1);
10877 return omit_one_operand (type, t1, arg1);
10878 }
10879
10880 /* X | ~X is -1. */
10881 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10882 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10883 {
10884 t1 = fold_convert (type, integer_zero_node);
10885 t1 = fold_unary (BIT_NOT_EXPR, type, t1);
10886 return omit_one_operand (type, t1, arg0);
10887 }
10888
10889 /* Canonicalize (X & C1) | C2. */
10890 if (TREE_CODE (arg0) == BIT_AND_EXPR
10891 && TREE_CODE (arg1) == INTEGER_CST
10892 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10893 {
10894 unsigned HOST_WIDE_INT hi1, lo1, hi2, lo2, hi3, lo3, mlo, mhi;
10895 int width = TYPE_PRECISION (type), w;
10896 hi1 = TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1));
10897 lo1 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
10898 hi2 = TREE_INT_CST_HIGH (arg1);
10899 lo2 = TREE_INT_CST_LOW (arg1);
10900
10901 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10902 if ((hi1 & hi2) == hi1 && (lo1 & lo2) == lo1)
10903 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
10904
10905 if (width > HOST_BITS_PER_WIDE_INT)
10906 {
10907 mhi = (unsigned HOST_WIDE_INT) -1
10908 >> (2 * HOST_BITS_PER_WIDE_INT - width);
10909 mlo = -1;
10910 }
10911 else
10912 {
10913 mhi = 0;
10914 mlo = (unsigned HOST_WIDE_INT) -1
10915 >> (HOST_BITS_PER_WIDE_INT - width);
10916 }
10917
10918 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10919 if ((~(hi1 | hi2) & mhi) == 0 && (~(lo1 | lo2) & mlo) == 0)
10920 return fold_build2 (BIT_IOR_EXPR, type,
10921 TREE_OPERAND (arg0, 0), arg1);
10922
10923 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10924 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10925 mode which allows further optimizations. */
10926 hi1 &= mhi;
10927 lo1 &= mlo;
10928 hi2 &= mhi;
10929 lo2 &= mlo;
10930 hi3 = hi1 & ~hi2;
10931 lo3 = lo1 & ~lo2;
10932 for (w = BITS_PER_UNIT;
10933 w <= width && w <= HOST_BITS_PER_WIDE_INT;
10934 w <<= 1)
10935 {
10936 unsigned HOST_WIDE_INT mask
10937 = (unsigned HOST_WIDE_INT) -1 >> (HOST_BITS_PER_WIDE_INT - w);
10938 if (((lo1 | lo2) & mask) == mask
10939 && (lo1 & ~mask) == 0 && hi1 == 0)
10940 {
10941 hi3 = 0;
10942 lo3 = mask;
10943 break;
10944 }
10945 }
10946 if (hi3 != hi1 || lo3 != lo1)
10947 return fold_build2 (BIT_IOR_EXPR, type,
10948 fold_build2 (BIT_AND_EXPR, type,
10949 TREE_OPERAND (arg0, 0),
10950 build_int_cst_wide (type,
10951 lo3, hi3)),
10952 arg1);
10953 }
10954
10955 /* (X & Y) | Y is (X, Y). */
10956 if (TREE_CODE (arg0) == BIT_AND_EXPR
10957 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10958 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
10959 /* (X & Y) | X is (Y, X). */
10960 if (TREE_CODE (arg0) == BIT_AND_EXPR
10961 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10962 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10963 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
10964 /* X | (X & Y) is (Y, X). */
10965 if (TREE_CODE (arg1) == BIT_AND_EXPR
10966 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
10967 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
10968 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
10969 /* X | (Y & X) is (Y, X). */
10970 if (TREE_CODE (arg1) == BIT_AND_EXPR
10971 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10972 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10973 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
10974
10975 t1 = distribute_bit_expr (code, type, arg0, arg1);
10976 if (t1 != NULL_TREE)
10977 return t1;
10978
10979 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
10980
10981 This results in more efficient code for machines without a NAND
10982 instruction. Combine will canonicalize to the first form
10983 which will allow use of NAND instructions provided by the
10984 backend if they exist. */
10985 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10986 && TREE_CODE (arg1) == BIT_NOT_EXPR)
10987 {
10988 return fold_build1 (BIT_NOT_EXPR, type,
10989 build2 (BIT_AND_EXPR, type,
10990 fold_convert (type,
10991 TREE_OPERAND (arg0, 0)),
10992 fold_convert (type,
10993 TREE_OPERAND (arg1, 0))));
10994 }
10995
10996 /* See if this can be simplified into a rotate first. If that
10997 is unsuccessful continue in the association code. */
10998 goto bit_rotate;
10999
11000 case BIT_XOR_EXPR:
11001 if (integer_zerop (arg1))
11002 return non_lvalue (fold_convert (type, arg0));
11003 if (integer_all_onesp (arg1))
11004 return fold_build1 (BIT_NOT_EXPR, type, op0);
11005 if (operand_equal_p (arg0, arg1, 0))
11006 return omit_one_operand (type, integer_zero_node, arg0);
11007
11008 /* ~X ^ X is -1. */
11009 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11010 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11011 {
11012 t1 = fold_convert (type, integer_zero_node);
11013 t1 = fold_unary (BIT_NOT_EXPR, type, t1);
11014 return omit_one_operand (type, t1, arg1);
11015 }
11016
11017 /* X ^ ~X is -1. */
11018 if (TREE_CODE (arg1) == BIT_NOT_EXPR
11019 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11020 {
11021 t1 = fold_convert (type, integer_zero_node);
11022 t1 = fold_unary (BIT_NOT_EXPR, type, t1);
11023 return omit_one_operand (type, t1, arg0);
11024 }
11025
11026 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
11027 with a constant, and the two constants have no bits in common,
11028 we should treat this as a BIT_IOR_EXPR since this may produce more
11029 simplifications. */
11030 if (TREE_CODE (arg0) == BIT_AND_EXPR
11031 && TREE_CODE (arg1) == BIT_AND_EXPR
11032 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11033 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
11034 && integer_zerop (const_binop (BIT_AND_EXPR,
11035 TREE_OPERAND (arg0, 1),
11036 TREE_OPERAND (arg1, 1), 0)))
11037 {
11038 code = BIT_IOR_EXPR;
11039 goto bit_ior;
11040 }
11041
11042 /* (X | Y) ^ X -> Y & ~ X*/
11043 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11044 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11045 {
11046 tree t2 = TREE_OPERAND (arg0, 1);
11047 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
11048 arg1);
11049 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
11050 fold_convert (type, t1));
11051 return t1;
11052 }
11053
11054 /* (Y | X) ^ X -> Y & ~ X*/
11055 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11056 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11057 {
11058 tree t2 = TREE_OPERAND (arg0, 0);
11059 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
11060 arg1);
11061 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
11062 fold_convert (type, t1));
11063 return t1;
11064 }
11065
11066 /* X ^ (X | Y) -> Y & ~ X*/
11067 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11068 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
11069 {
11070 tree t2 = TREE_OPERAND (arg1, 1);
11071 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
11072 arg0);
11073 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
11074 fold_convert (type, t1));
11075 return t1;
11076 }
11077
11078 /* X ^ (Y | X) -> Y & ~ X*/
11079 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11080 && operand_equal_p (TREE_OPERAND (arg1, 1), arg0, 0))
11081 {
11082 tree t2 = TREE_OPERAND (arg1, 0);
11083 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
11084 arg0);
11085 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
11086 fold_convert (type, t1));
11087 return t1;
11088 }
11089
11090 /* Convert ~X ^ ~Y to X ^ Y. */
11091 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11092 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11093 return fold_build2 (code, type,
11094 fold_convert (type, TREE_OPERAND (arg0, 0)),
11095 fold_convert (type, TREE_OPERAND (arg1, 0)));
11096
11097 /* Convert ~X ^ C to X ^ ~C. */
11098 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11099 && TREE_CODE (arg1) == INTEGER_CST)
11100 return fold_build2 (code, type,
11101 fold_convert (type, TREE_OPERAND (arg0, 0)),
11102 fold_build1 (BIT_NOT_EXPR, type, arg1));
11103
11104 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
11105 if (TREE_CODE (arg0) == BIT_AND_EXPR
11106 && integer_onep (TREE_OPERAND (arg0, 1))
11107 && integer_onep (arg1))
11108 return fold_build2 (EQ_EXPR, type, arg0,
11109 build_int_cst (TREE_TYPE (arg0), 0));
11110
11111 /* Fold (X & Y) ^ Y as ~X & Y. */
11112 if (TREE_CODE (arg0) == BIT_AND_EXPR
11113 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11114 {
11115 tem = fold_convert (type, TREE_OPERAND (arg0, 0));
11116 return fold_build2 (BIT_AND_EXPR, type,
11117 fold_build1 (BIT_NOT_EXPR, type, tem),
11118 fold_convert (type, arg1));
11119 }
11120 /* Fold (X & Y) ^ X as ~Y & X. */
11121 if (TREE_CODE (arg0) == BIT_AND_EXPR
11122 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11123 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11124 {
11125 tem = fold_convert (type, TREE_OPERAND (arg0, 1));
11126 return fold_build2 (BIT_AND_EXPR, type,
11127 fold_build1 (BIT_NOT_EXPR, type, tem),
11128 fold_convert (type, arg1));
11129 }
11130 /* Fold X ^ (X & Y) as X & ~Y. */
11131 if (TREE_CODE (arg1) == BIT_AND_EXPR
11132 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11133 {
11134 tem = fold_convert (type, TREE_OPERAND (arg1, 1));
11135 return fold_build2 (BIT_AND_EXPR, type,
11136 fold_convert (type, arg0),
11137 fold_build1 (BIT_NOT_EXPR, type, tem));
11138 }
11139 /* Fold X ^ (Y & X) as ~Y & X. */
11140 if (TREE_CODE (arg1) == BIT_AND_EXPR
11141 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
11142 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
11143 {
11144 tem = fold_convert (type, TREE_OPERAND (arg1, 0));
11145 return fold_build2 (BIT_AND_EXPR, type,
11146 fold_build1 (BIT_NOT_EXPR, type, tem),
11147 fold_convert (type, arg0));
11148 }
11149
11150 /* See if this can be simplified into a rotate first. If that
11151 is unsuccessful continue in the association code. */
11152 goto bit_rotate;
11153
11154 case BIT_AND_EXPR:
11155 if (integer_all_onesp (arg1))
11156 return non_lvalue (fold_convert (type, arg0));
11157 if (integer_zerop (arg1))
11158 return omit_one_operand (type, arg1, arg0);
11159 if (operand_equal_p (arg0, arg1, 0))
11160 return non_lvalue (fold_convert (type, arg0));
11161
11162 /* ~X & X is always zero. */
11163 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11164 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11165 return omit_one_operand (type, integer_zero_node, arg1);
11166
11167 /* X & ~X is always zero. */
11168 if (TREE_CODE (arg1) == BIT_NOT_EXPR
11169 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11170 return omit_one_operand (type, integer_zero_node, arg0);
11171
11172 /* Canonicalize (X | C1) & C2 as (X & C2) | (C1 & C2). */
11173 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11174 && TREE_CODE (arg1) == INTEGER_CST
11175 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11176 {
11177 tree tmp1 = fold_convert (type, arg1);
11178 tree tmp2 = fold_convert (type, TREE_OPERAND (arg0, 0));
11179 tree tmp3 = fold_convert (type, TREE_OPERAND (arg0, 1));
11180 tmp2 = fold_build2 (BIT_AND_EXPR, type, tmp2, tmp1);
11181 tmp3 = fold_build2 (BIT_AND_EXPR, type, tmp3, tmp1);
11182 return fold_convert (type,
11183 fold_build2 (BIT_IOR_EXPR, type, tmp2, tmp3));
11184 }
11185
11186 /* (X | Y) & Y is (X, Y). */
11187 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11188 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11189 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
11190 /* (X | Y) & X is (Y, X). */
11191 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11192 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11193 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11194 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
11195 /* X & (X | Y) is (Y, X). */
11196 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11197 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
11198 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
11199 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
11200 /* X & (Y | X) is (Y, X). */
11201 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11202 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
11203 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
11204 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
11205
11206 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
11207 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11208 && integer_onep (TREE_OPERAND (arg0, 1))
11209 && integer_onep (arg1))
11210 {
11211 tem = TREE_OPERAND (arg0, 0);
11212 return fold_build2 (EQ_EXPR, type,
11213 fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
11214 build_int_cst (TREE_TYPE (tem), 1)),
11215 build_int_cst (TREE_TYPE (tem), 0));
11216 }
11217 /* Fold ~X & 1 as (X & 1) == 0. */
11218 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11219 && integer_onep (arg1))
11220 {
11221 tem = TREE_OPERAND (arg0, 0);
11222 return fold_build2 (EQ_EXPR, type,
11223 fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
11224 build_int_cst (TREE_TYPE (tem), 1)),
11225 build_int_cst (TREE_TYPE (tem), 0));
11226 }
11227
11228 /* Fold (X ^ Y) & Y as ~X & Y. */
11229 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11230 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11231 {
11232 tem = fold_convert (type, TREE_OPERAND (arg0, 0));
11233 return fold_build2 (BIT_AND_EXPR, type,
11234 fold_build1 (BIT_NOT_EXPR, type, tem),
11235 fold_convert (type, arg1));
11236 }
11237 /* Fold (X ^ Y) & X as ~Y & X. */
11238 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11239 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11240 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11241 {
11242 tem = fold_convert (type, TREE_OPERAND (arg0, 1));
11243 return fold_build2 (BIT_AND_EXPR, type,
11244 fold_build1 (BIT_NOT_EXPR, type, tem),
11245 fold_convert (type, arg1));
11246 }
11247 /* Fold X & (X ^ Y) as X & ~Y. */
11248 if (TREE_CODE (arg1) == BIT_XOR_EXPR
11249 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11250 {
11251 tem = fold_convert (type, TREE_OPERAND (arg1, 1));
11252 return fold_build2 (BIT_AND_EXPR, type,
11253 fold_convert (type, arg0),
11254 fold_build1 (BIT_NOT_EXPR, type, tem));
11255 }
11256 /* Fold X & (Y ^ X) as ~Y & X. */
11257 if (TREE_CODE (arg1) == BIT_XOR_EXPR
11258 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
11259 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
11260 {
11261 tem = fold_convert (type, TREE_OPERAND (arg1, 0));
11262 return fold_build2 (BIT_AND_EXPR, type,
11263 fold_build1 (BIT_NOT_EXPR, type, tem),
11264 fold_convert (type, arg0));
11265 }
11266
11267 t1 = distribute_bit_expr (code, type, arg0, arg1);
11268 if (t1 != NULL_TREE)
11269 return t1;
11270 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
11271 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
11272 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
11273 {
11274 unsigned int prec
11275 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
11276
11277 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
11278 && (~TREE_INT_CST_LOW (arg1)
11279 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
11280 return fold_convert (type, TREE_OPERAND (arg0, 0));
11281 }
11282
11283 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
11284
11285 This results in more efficient code for machines without a NOR
11286 instruction. Combine will canonicalize to the first form
11287 which will allow use of NOR instructions provided by the
11288 backend if they exist. */
11289 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11290 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11291 {
11292 return fold_build1 (BIT_NOT_EXPR, type,
11293 build2 (BIT_IOR_EXPR, type,
11294 fold_convert (type,
11295 TREE_OPERAND (arg0, 0)),
11296 fold_convert (type,
11297 TREE_OPERAND (arg1, 0))));
11298 }
11299
11300 /* If arg0 is derived from the address of an object or function, we may
11301 be able to fold this expression using the object or function's
11302 alignment. */
11303 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && host_integerp (arg1, 1))
11304 {
11305 unsigned HOST_WIDE_INT modulus, residue;
11306 unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (arg1);
11307
11308 modulus = get_pointer_modulus_and_residue (arg0, &residue,
11309 integer_onep (arg1));
11310
11311 /* This works because modulus is a power of 2. If this weren't the
11312 case, we'd have to replace it by its greatest power-of-2
11313 divisor: modulus & -modulus. */
11314 if (low < modulus)
11315 return build_int_cst (type, residue & low);
11316 }
11317
11318 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
11319 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
11320 if the new mask might be further optimized. */
11321 if ((TREE_CODE (arg0) == LSHIFT_EXPR
11322 || TREE_CODE (arg0) == RSHIFT_EXPR)
11323 && host_integerp (TREE_OPERAND (arg0, 1), 1)
11324 && host_integerp (arg1, TYPE_UNSIGNED (TREE_TYPE (arg1)))
11325 && tree_low_cst (TREE_OPERAND (arg0, 1), 1)
11326 < TYPE_PRECISION (TREE_TYPE (arg0))
11327 && TYPE_PRECISION (TREE_TYPE (arg0)) <= HOST_BITS_PER_WIDE_INT
11328 && tree_low_cst (TREE_OPERAND (arg0, 1), 1) > 0)
11329 {
11330 unsigned int shiftc = tree_low_cst (TREE_OPERAND (arg0, 1), 1);
11331 unsigned HOST_WIDE_INT mask
11332 = tree_low_cst (arg1, TYPE_UNSIGNED (TREE_TYPE (arg1)));
11333 unsigned HOST_WIDE_INT newmask, zerobits = 0;
11334 tree shift_type = TREE_TYPE (arg0);
11335
11336 if (TREE_CODE (arg0) == LSHIFT_EXPR)
11337 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
11338 else if (TREE_CODE (arg0) == RSHIFT_EXPR
11339 && TYPE_PRECISION (TREE_TYPE (arg0))
11340 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg0))))
11341 {
11342 unsigned int prec = TYPE_PRECISION (TREE_TYPE (arg0));
11343 tree arg00 = TREE_OPERAND (arg0, 0);
11344 /* See if more bits can be proven as zero because of
11345 zero extension. */
11346 if (TREE_CODE (arg00) == NOP_EXPR
11347 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg00, 0))))
11348 {
11349 tree inner_type = TREE_TYPE (TREE_OPERAND (arg00, 0));
11350 if (TYPE_PRECISION (inner_type)
11351 == GET_MODE_BITSIZE (TYPE_MODE (inner_type))
11352 && TYPE_PRECISION (inner_type) < prec)
11353 {
11354 prec = TYPE_PRECISION (inner_type);
11355 /* See if we can shorten the right shift. */
11356 if (shiftc < prec)
11357 shift_type = inner_type;
11358 }
11359 }
11360 zerobits = ~(unsigned HOST_WIDE_INT) 0;
11361 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
11362 zerobits <<= prec - shiftc;
11363 /* For arithmetic shift if sign bit could be set, zerobits
11364 can contain actually sign bits, so no transformation is
11365 possible, unless MASK masks them all away. In that
11366 case the shift needs to be converted into logical shift. */
11367 if (!TYPE_UNSIGNED (TREE_TYPE (arg0))
11368 && prec == TYPE_PRECISION (TREE_TYPE (arg0)))
11369 {
11370 if ((mask & zerobits) == 0)
11371 shift_type = unsigned_type_for (TREE_TYPE (arg0));
11372 else
11373 zerobits = 0;
11374 }
11375 }
11376
11377 /* ((X << 16) & 0xff00) is (X, 0). */
11378 if ((mask & zerobits) == mask)
11379 return omit_one_operand (type, build_int_cst (type, 0), arg0);
11380
11381 newmask = mask | zerobits;
11382 if (newmask != mask && (newmask & (newmask + 1)) == 0)
11383 {
11384 unsigned int prec;
11385
11386 /* Only do the transformation if NEWMASK is some integer
11387 mode's mask. */
11388 for (prec = BITS_PER_UNIT;
11389 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
11390 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
11391 break;
11392 if (prec < HOST_BITS_PER_WIDE_INT
11393 || newmask == ~(unsigned HOST_WIDE_INT) 0)
11394 {
11395 if (shift_type != TREE_TYPE (arg0))
11396 {
11397 tem = fold_build2 (TREE_CODE (arg0), shift_type,
11398 fold_convert (shift_type,
11399 TREE_OPERAND (arg0, 0)),
11400 TREE_OPERAND (arg0, 1));
11401 tem = fold_convert (type, tem);
11402 }
11403 else
11404 tem = op0;
11405 return fold_build2 (BIT_AND_EXPR, type, tem,
11406 build_int_cst_type (TREE_TYPE (op1),
11407 newmask));
11408 }
11409 }
11410 }
11411
11412 goto associate;
11413
11414 case RDIV_EXPR:
11415 /* Don't touch a floating-point divide by zero unless the mode
11416 of the constant can represent infinity. */
11417 if (TREE_CODE (arg1) == REAL_CST
11418 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
11419 && real_zerop (arg1))
11420 return NULL_TREE;
11421
11422 /* Optimize A / A to 1.0 if we don't care about
11423 NaNs or Infinities. Skip the transformation
11424 for non-real operands. */
11425 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg0))
11426 && ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
11427 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg0)))
11428 && operand_equal_p (arg0, arg1, 0))
11429 {
11430 tree r = build_real (TREE_TYPE (arg0), dconst1);
11431
11432 return omit_two_operands (type, r, arg0, arg1);
11433 }
11434
11435 /* The complex version of the above A / A optimization. */
11436 if (COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
11437 && operand_equal_p (arg0, arg1, 0))
11438 {
11439 tree elem_type = TREE_TYPE (TREE_TYPE (arg0));
11440 if (! HONOR_NANS (TYPE_MODE (elem_type))
11441 && ! HONOR_INFINITIES (TYPE_MODE (elem_type)))
11442 {
11443 tree r = build_real (elem_type, dconst1);
11444 /* omit_two_operands will call fold_convert for us. */
11445 return omit_two_operands (type, r, arg0, arg1);
11446 }
11447 }
11448
11449 /* (-A) / (-B) -> A / B */
11450 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
11451 return fold_build2 (RDIV_EXPR, type,
11452 TREE_OPERAND (arg0, 0),
11453 negate_expr (arg1));
11454 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
11455 return fold_build2 (RDIV_EXPR, type,
11456 negate_expr (arg0),
11457 TREE_OPERAND (arg1, 0));
11458
11459 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
11460 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
11461 && real_onep (arg1))
11462 return non_lvalue (fold_convert (type, arg0));
11463
11464 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
11465 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
11466 && real_minus_onep (arg1))
11467 return non_lvalue (fold_convert (type, negate_expr (arg0)));
11468
11469 /* If ARG1 is a constant, we can convert this to a multiply by the
11470 reciprocal. This does not have the same rounding properties,
11471 so only do this if -freciprocal-math. We can actually
11472 always safely do it if ARG1 is a power of two, but it's hard to
11473 tell if it is or not in a portable manner. */
11474 if (TREE_CODE (arg1) == REAL_CST)
11475 {
11476 if (flag_reciprocal_math
11477 && 0 != (tem = const_binop (code, build_real (type, dconst1),
11478 arg1, 0)))
11479 return fold_build2 (MULT_EXPR, type, arg0, tem);
11480 /* Find the reciprocal if optimizing and the result is exact. */
11481 if (optimize)
11482 {
11483 REAL_VALUE_TYPE r;
11484 r = TREE_REAL_CST (arg1);
11485 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
11486 {
11487 tem = build_real (type, r);
11488 return fold_build2 (MULT_EXPR, type,
11489 fold_convert (type, arg0), tem);
11490 }
11491 }
11492 }
11493 /* Convert A/B/C to A/(B*C). */
11494 if (flag_reciprocal_math
11495 && TREE_CODE (arg0) == RDIV_EXPR)
11496 return fold_build2 (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
11497 fold_build2 (MULT_EXPR, type,
11498 TREE_OPERAND (arg0, 1), arg1));
11499
11500 /* Convert A/(B/C) to (A/B)*C. */
11501 if (flag_reciprocal_math
11502 && TREE_CODE (arg1) == RDIV_EXPR)
11503 return fold_build2 (MULT_EXPR, type,
11504 fold_build2 (RDIV_EXPR, type, arg0,
11505 TREE_OPERAND (arg1, 0)),
11506 TREE_OPERAND (arg1, 1));
11507
11508 /* Convert C1/(X*C2) into (C1/C2)/X. */
11509 if (flag_reciprocal_math
11510 && TREE_CODE (arg1) == MULT_EXPR
11511 && TREE_CODE (arg0) == REAL_CST
11512 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
11513 {
11514 tree tem = const_binop (RDIV_EXPR, arg0,
11515 TREE_OPERAND (arg1, 1), 0);
11516 if (tem)
11517 return fold_build2 (RDIV_EXPR, type, tem,
11518 TREE_OPERAND (arg1, 0));
11519 }
11520
11521 if (flag_unsafe_math_optimizations)
11522 {
11523 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
11524 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
11525
11526 /* Optimize sin(x)/cos(x) as tan(x). */
11527 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
11528 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
11529 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
11530 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11531 CALL_EXPR_ARG (arg1, 0), 0))
11532 {
11533 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11534
11535 if (tanfn != NULL_TREE)
11536 return build_call_expr (tanfn, 1, CALL_EXPR_ARG (arg0, 0));
11537 }
11538
11539 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
11540 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
11541 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
11542 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
11543 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11544 CALL_EXPR_ARG (arg1, 0), 0))
11545 {
11546 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11547
11548 if (tanfn != NULL_TREE)
11549 {
11550 tree tmp = build_call_expr (tanfn, 1, CALL_EXPR_ARG (arg0, 0));
11551 return fold_build2 (RDIV_EXPR, type,
11552 build_real (type, dconst1), tmp);
11553 }
11554 }
11555
11556 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
11557 NaNs or Infinities. */
11558 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
11559 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
11560 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
11561 {
11562 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11563 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11564
11565 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
11566 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
11567 && operand_equal_p (arg00, arg01, 0))
11568 {
11569 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11570
11571 if (cosfn != NULL_TREE)
11572 return build_call_expr (cosfn, 1, arg00);
11573 }
11574 }
11575
11576 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
11577 NaNs or Infinities. */
11578 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
11579 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
11580 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
11581 {
11582 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11583 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11584
11585 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
11586 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
11587 && operand_equal_p (arg00, arg01, 0))
11588 {
11589 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11590
11591 if (cosfn != NULL_TREE)
11592 {
11593 tree tmp = build_call_expr (cosfn, 1, arg00);
11594 return fold_build2 (RDIV_EXPR, type,
11595 build_real (type, dconst1),
11596 tmp);
11597 }
11598 }
11599 }
11600
11601 /* Optimize pow(x,c)/x as pow(x,c-1). */
11602 if (fcode0 == BUILT_IN_POW
11603 || fcode0 == BUILT_IN_POWF
11604 || fcode0 == BUILT_IN_POWL)
11605 {
11606 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11607 tree arg01 = CALL_EXPR_ARG (arg0, 1);
11608 if (TREE_CODE (arg01) == REAL_CST
11609 && !TREE_OVERFLOW (arg01)
11610 && operand_equal_p (arg1, arg00, 0))
11611 {
11612 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
11613 REAL_VALUE_TYPE c;
11614 tree arg;
11615
11616 c = TREE_REAL_CST (arg01);
11617 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
11618 arg = build_real (type, c);
11619 return build_call_expr (powfn, 2, arg1, arg);
11620 }
11621 }
11622
11623 /* Optimize a/root(b/c) into a*root(c/b). */
11624 if (BUILTIN_ROOT_P (fcode1))
11625 {
11626 tree rootarg = CALL_EXPR_ARG (arg1, 0);
11627
11628 if (TREE_CODE (rootarg) == RDIV_EXPR)
11629 {
11630 tree rootfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11631 tree b = TREE_OPERAND (rootarg, 0);
11632 tree c = TREE_OPERAND (rootarg, 1);
11633
11634 tree tmp = fold_build2 (RDIV_EXPR, type, c, b);
11635
11636 tmp = build_call_expr (rootfn, 1, tmp);
11637 return fold_build2 (MULT_EXPR, type, arg0, tmp);
11638 }
11639 }
11640
11641 /* Optimize x/expN(y) into x*expN(-y). */
11642 if (BUILTIN_EXPONENT_P (fcode1))
11643 {
11644 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11645 tree arg = negate_expr (CALL_EXPR_ARG (arg1, 0));
11646 arg1 = build_call_expr (expfn, 1, fold_convert (type, arg));
11647 return fold_build2 (MULT_EXPR, type, arg0, arg1);
11648 }
11649
11650 /* Optimize x/pow(y,z) into x*pow(y,-z). */
11651 if (fcode1 == BUILT_IN_POW
11652 || fcode1 == BUILT_IN_POWF
11653 || fcode1 == BUILT_IN_POWL)
11654 {
11655 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11656 tree arg10 = CALL_EXPR_ARG (arg1, 0);
11657 tree arg11 = CALL_EXPR_ARG (arg1, 1);
11658 tree neg11 = fold_convert (type, negate_expr (arg11));
11659 arg1 = build_call_expr (powfn, 2, arg10, neg11);
11660 return fold_build2 (MULT_EXPR, type, arg0, arg1);
11661 }
11662 }
11663 return NULL_TREE;
11664
11665 case TRUNC_DIV_EXPR:
11666 case FLOOR_DIV_EXPR:
11667 /* Simplify A / (B << N) where A and B are positive and B is
11668 a power of 2, to A >> (N + log2(B)). */
11669 strict_overflow_p = false;
11670 if (TREE_CODE (arg1) == LSHIFT_EXPR
11671 && (TYPE_UNSIGNED (type)
11672 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
11673 {
11674 tree sval = TREE_OPERAND (arg1, 0);
11675 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
11676 {
11677 tree sh_cnt = TREE_OPERAND (arg1, 1);
11678 unsigned long pow2 = exact_log2 (TREE_INT_CST_LOW (sval));
11679
11680 if (strict_overflow_p)
11681 fold_overflow_warning (("assuming signed overflow does not "
11682 "occur when simplifying A / (B << N)"),
11683 WARN_STRICT_OVERFLOW_MISC);
11684
11685 sh_cnt = fold_build2 (PLUS_EXPR, TREE_TYPE (sh_cnt),
11686 sh_cnt, build_int_cst (NULL_TREE, pow2));
11687 return fold_build2 (RSHIFT_EXPR, type,
11688 fold_convert (type, arg0), sh_cnt);
11689 }
11690 }
11691
11692 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
11693 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
11694 if (INTEGRAL_TYPE_P (type)
11695 && TYPE_UNSIGNED (type)
11696 && code == FLOOR_DIV_EXPR)
11697 return fold_build2 (TRUNC_DIV_EXPR, type, op0, op1);
11698
11699 /* Fall thru */
11700
11701 case ROUND_DIV_EXPR:
11702 case CEIL_DIV_EXPR:
11703 case EXACT_DIV_EXPR:
11704 if (integer_onep (arg1))
11705 return non_lvalue (fold_convert (type, arg0));
11706 if (integer_zerop (arg1))
11707 return NULL_TREE;
11708 /* X / -1 is -X. */
11709 if (!TYPE_UNSIGNED (type)
11710 && TREE_CODE (arg1) == INTEGER_CST
11711 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
11712 && TREE_INT_CST_HIGH (arg1) == -1)
11713 return fold_convert (type, negate_expr (arg0));
11714
11715 /* Convert -A / -B to A / B when the type is signed and overflow is
11716 undefined. */
11717 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11718 && TREE_CODE (arg0) == NEGATE_EXPR
11719 && negate_expr_p (arg1))
11720 {
11721 if (INTEGRAL_TYPE_P (type))
11722 fold_overflow_warning (("assuming signed overflow does not occur "
11723 "when distributing negation across "
11724 "division"),
11725 WARN_STRICT_OVERFLOW_MISC);
11726 return fold_build2 (code, type,
11727 fold_convert (type, TREE_OPERAND (arg0, 0)),
11728 fold_convert (type, negate_expr (arg1)));
11729 }
11730 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11731 && TREE_CODE (arg1) == NEGATE_EXPR
11732 && negate_expr_p (arg0))
11733 {
11734 if (INTEGRAL_TYPE_P (type))
11735 fold_overflow_warning (("assuming signed overflow does not occur "
11736 "when distributing negation across "
11737 "division"),
11738 WARN_STRICT_OVERFLOW_MISC);
11739 return fold_build2 (code, type,
11740 fold_convert (type, negate_expr (arg0)),
11741 fold_convert (type, TREE_OPERAND (arg1, 0)));
11742 }
11743
11744 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
11745 operation, EXACT_DIV_EXPR.
11746
11747 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
11748 At one time others generated faster code, it's not clear if they do
11749 after the last round to changes to the DIV code in expmed.c. */
11750 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
11751 && multiple_of_p (type, arg0, arg1))
11752 return fold_build2 (EXACT_DIV_EXPR, type, arg0, arg1);
11753
11754 strict_overflow_p = false;
11755 if (TREE_CODE (arg1) == INTEGER_CST
11756 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11757 &strict_overflow_p)))
11758 {
11759 if (strict_overflow_p)
11760 fold_overflow_warning (("assuming signed overflow does not occur "
11761 "when simplifying division"),
11762 WARN_STRICT_OVERFLOW_MISC);
11763 return fold_convert (type, tem);
11764 }
11765
11766 return NULL_TREE;
11767
11768 case CEIL_MOD_EXPR:
11769 case FLOOR_MOD_EXPR:
11770 case ROUND_MOD_EXPR:
11771 case TRUNC_MOD_EXPR:
11772 /* X % 1 is always zero, but be sure to preserve any side
11773 effects in X. */
11774 if (integer_onep (arg1))
11775 return omit_one_operand (type, integer_zero_node, arg0);
11776
11777 /* X % 0, return X % 0 unchanged so that we can get the
11778 proper warnings and errors. */
11779 if (integer_zerop (arg1))
11780 return NULL_TREE;
11781
11782 /* 0 % X is always zero, but be sure to preserve any side
11783 effects in X. Place this after checking for X == 0. */
11784 if (integer_zerop (arg0))
11785 return omit_one_operand (type, integer_zero_node, arg1);
11786
11787 /* X % -1 is zero. */
11788 if (!TYPE_UNSIGNED (type)
11789 && TREE_CODE (arg1) == INTEGER_CST
11790 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
11791 && TREE_INT_CST_HIGH (arg1) == -1)
11792 return omit_one_operand (type, integer_zero_node, arg0);
11793
11794 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
11795 i.e. "X % C" into "X & (C - 1)", if X and C are positive. */
11796 strict_overflow_p = false;
11797 if ((code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR)
11798 && (TYPE_UNSIGNED (type)
11799 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
11800 {
11801 tree c = arg1;
11802 /* Also optimize A % (C << N) where C is a power of 2,
11803 to A & ((C << N) - 1). */
11804 if (TREE_CODE (arg1) == LSHIFT_EXPR)
11805 c = TREE_OPERAND (arg1, 0);
11806
11807 if (integer_pow2p (c) && tree_int_cst_sgn (c) > 0)
11808 {
11809 tree mask = fold_build2 (MINUS_EXPR, TREE_TYPE (arg1), arg1,
11810 build_int_cst (TREE_TYPE (arg1), 1));
11811 if (strict_overflow_p)
11812 fold_overflow_warning (("assuming signed overflow does not "
11813 "occur when simplifying "
11814 "X % (power of two)"),
11815 WARN_STRICT_OVERFLOW_MISC);
11816 return fold_build2 (BIT_AND_EXPR, type,
11817 fold_convert (type, arg0),
11818 fold_convert (type, mask));
11819 }
11820 }
11821
11822 /* X % -C is the same as X % C. */
11823 if (code == TRUNC_MOD_EXPR
11824 && !TYPE_UNSIGNED (type)
11825 && TREE_CODE (arg1) == INTEGER_CST
11826 && !TREE_OVERFLOW (arg1)
11827 && TREE_INT_CST_HIGH (arg1) < 0
11828 && !TYPE_OVERFLOW_TRAPS (type)
11829 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
11830 && !sign_bit_p (arg1, arg1))
11831 return fold_build2 (code, type, fold_convert (type, arg0),
11832 fold_convert (type, negate_expr (arg1)));
11833
11834 /* X % -Y is the same as X % Y. */
11835 if (code == TRUNC_MOD_EXPR
11836 && !TYPE_UNSIGNED (type)
11837 && TREE_CODE (arg1) == NEGATE_EXPR
11838 && !TYPE_OVERFLOW_TRAPS (type))
11839 return fold_build2 (code, type, fold_convert (type, arg0),
11840 fold_convert (type, TREE_OPERAND (arg1, 0)));
11841
11842 if (TREE_CODE (arg1) == INTEGER_CST
11843 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11844 &strict_overflow_p)))
11845 {
11846 if (strict_overflow_p)
11847 fold_overflow_warning (("assuming signed overflow does not occur "
11848 "when simplifying modulus"),
11849 WARN_STRICT_OVERFLOW_MISC);
11850 return fold_convert (type, tem);
11851 }
11852
11853 return NULL_TREE;
11854
11855 case LROTATE_EXPR:
11856 case RROTATE_EXPR:
11857 if (integer_all_onesp (arg0))
11858 return omit_one_operand (type, arg0, arg1);
11859 goto shift;
11860
11861 case RSHIFT_EXPR:
11862 /* Optimize -1 >> x for arithmetic right shifts. */
11863 if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type)
11864 && tree_expr_nonnegative_p (arg1))
11865 return omit_one_operand (type, arg0, arg1);
11866 /* ... fall through ... */
11867
11868 case LSHIFT_EXPR:
11869 shift:
11870 if (integer_zerop (arg1))
11871 return non_lvalue (fold_convert (type, arg0));
11872 if (integer_zerop (arg0))
11873 return omit_one_operand (type, arg0, arg1);
11874
11875 /* Since negative shift count is not well-defined,
11876 don't try to compute it in the compiler. */
11877 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
11878 return NULL_TREE;
11879
11880 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
11881 if (TREE_CODE (op0) == code && host_integerp (arg1, false)
11882 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
11883 && host_integerp (TREE_OPERAND (arg0, 1), false)
11884 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
11885 {
11886 HOST_WIDE_INT low = (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1))
11887 + TREE_INT_CST_LOW (arg1));
11888
11889 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
11890 being well defined. */
11891 if (low >= TYPE_PRECISION (type))
11892 {
11893 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
11894 low = low % TYPE_PRECISION (type);
11895 else if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
11896 return omit_one_operand (type, build_int_cst (type, 0),
11897 TREE_OPERAND (arg0, 0));
11898 else
11899 low = TYPE_PRECISION (type) - 1;
11900 }
11901
11902 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
11903 build_int_cst (type, low));
11904 }
11905
11906 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
11907 into x & ((unsigned)-1 >> c) for unsigned types. */
11908 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
11909 || (TYPE_UNSIGNED (type)
11910 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
11911 && host_integerp (arg1, false)
11912 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
11913 && host_integerp (TREE_OPERAND (arg0, 1), false)
11914 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
11915 {
11916 HOST_WIDE_INT low0 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
11917 HOST_WIDE_INT low1 = TREE_INT_CST_LOW (arg1);
11918 tree lshift;
11919 tree arg00;
11920
11921 if (low0 == low1)
11922 {
11923 arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
11924
11925 lshift = build_int_cst (type, -1);
11926 lshift = int_const_binop (code, lshift, arg1, 0);
11927
11928 return fold_build2 (BIT_AND_EXPR, type, arg00, lshift);
11929 }
11930 }
11931
11932 /* Rewrite an LROTATE_EXPR by a constant into an
11933 RROTATE_EXPR by a new constant. */
11934 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
11935 {
11936 tree tem = build_int_cst (TREE_TYPE (arg1),
11937 TYPE_PRECISION (type));
11938 tem = const_binop (MINUS_EXPR, tem, arg1, 0);
11939 return fold_build2 (RROTATE_EXPR, type, op0, tem);
11940 }
11941
11942 /* If we have a rotate of a bit operation with the rotate count and
11943 the second operand of the bit operation both constant,
11944 permute the two operations. */
11945 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11946 && (TREE_CODE (arg0) == BIT_AND_EXPR
11947 || TREE_CODE (arg0) == BIT_IOR_EXPR
11948 || TREE_CODE (arg0) == BIT_XOR_EXPR)
11949 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11950 return fold_build2 (TREE_CODE (arg0), type,
11951 fold_build2 (code, type,
11952 TREE_OPERAND (arg0, 0), arg1),
11953 fold_build2 (code, type,
11954 TREE_OPERAND (arg0, 1), arg1));
11955
11956 /* Two consecutive rotates adding up to the precision of the
11957 type can be ignored. */
11958 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11959 && TREE_CODE (arg0) == RROTATE_EXPR
11960 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11961 && TREE_INT_CST_HIGH (arg1) == 0
11962 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
11963 && ((TREE_INT_CST_LOW (arg1)
11964 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
11965 == (unsigned int) TYPE_PRECISION (type)))
11966 return TREE_OPERAND (arg0, 0);
11967
11968 /* Fold (X & C2) << C1 into (X << C1) & (C2 << C1)
11969 (X & C2) >> C1 into (X >> C1) & (C2 >> C1)
11970 if the latter can be further optimized. */
11971 if ((code == LSHIFT_EXPR || code == RSHIFT_EXPR)
11972 && TREE_CODE (arg0) == BIT_AND_EXPR
11973 && TREE_CODE (arg1) == INTEGER_CST
11974 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11975 {
11976 tree mask = fold_build2 (code, type,
11977 fold_convert (type, TREE_OPERAND (arg0, 1)),
11978 arg1);
11979 tree shift = fold_build2 (code, type,
11980 fold_convert (type, TREE_OPERAND (arg0, 0)),
11981 arg1);
11982 tem = fold_binary (BIT_AND_EXPR, type, shift, mask);
11983 if (tem)
11984 return tem;
11985 }
11986
11987 return NULL_TREE;
11988
11989 case MIN_EXPR:
11990 if (operand_equal_p (arg0, arg1, 0))
11991 return omit_one_operand (type, arg0, arg1);
11992 if (INTEGRAL_TYPE_P (type)
11993 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
11994 return omit_one_operand (type, arg1, arg0);
11995 tem = fold_minmax (MIN_EXPR, type, arg0, arg1);
11996 if (tem)
11997 return tem;
11998 goto associate;
11999
12000 case MAX_EXPR:
12001 if (operand_equal_p (arg0, arg1, 0))
12002 return omit_one_operand (type, arg0, arg1);
12003 if (INTEGRAL_TYPE_P (type)
12004 && TYPE_MAX_VALUE (type)
12005 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
12006 return omit_one_operand (type, arg1, arg0);
12007 tem = fold_minmax (MAX_EXPR, type, arg0, arg1);
12008 if (tem)
12009 return tem;
12010 goto associate;
12011
12012 case TRUTH_ANDIF_EXPR:
12013 /* Note that the operands of this must be ints
12014 and their values must be 0 or 1.
12015 ("true" is a fixed value perhaps depending on the language.) */
12016 /* If first arg is constant zero, return it. */
12017 if (integer_zerop (arg0))
12018 return fold_convert (type, arg0);
12019 case TRUTH_AND_EXPR:
12020 /* If either arg is constant true, drop it. */
12021 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12022 return non_lvalue (fold_convert (type, arg1));
12023 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
12024 /* Preserve sequence points. */
12025 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
12026 return non_lvalue (fold_convert (type, arg0));
12027 /* If second arg is constant zero, result is zero, but first arg
12028 must be evaluated. */
12029 if (integer_zerop (arg1))
12030 return omit_one_operand (type, arg1, arg0);
12031 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
12032 case will be handled here. */
12033 if (integer_zerop (arg0))
12034 return omit_one_operand (type, arg0, arg1);
12035
12036 /* !X && X is always false. */
12037 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12038 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12039 return omit_one_operand (type, integer_zero_node, arg1);
12040 /* X && !X is always false. */
12041 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12042 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12043 return omit_one_operand (type, integer_zero_node, arg0);
12044
12045 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
12046 means A >= Y && A != MAX, but in this case we know that
12047 A < X <= MAX. */
12048
12049 if (!TREE_SIDE_EFFECTS (arg0)
12050 && !TREE_SIDE_EFFECTS (arg1))
12051 {
12052 tem = fold_to_nonsharp_ineq_using_bound (arg0, arg1);
12053 if (tem && !operand_equal_p (tem, arg0, 0))
12054 return fold_build2 (code, type, tem, arg1);
12055
12056 tem = fold_to_nonsharp_ineq_using_bound (arg1, arg0);
12057 if (tem && !operand_equal_p (tem, arg1, 0))
12058 return fold_build2 (code, type, arg0, tem);
12059 }
12060
12061 truth_andor:
12062 /* We only do these simplifications if we are optimizing. */
12063 if (!optimize)
12064 return NULL_TREE;
12065
12066 /* Check for things like (A || B) && (A || C). We can convert this
12067 to A || (B && C). Note that either operator can be any of the four
12068 truth and/or operations and the transformation will still be
12069 valid. Also note that we only care about order for the
12070 ANDIF and ORIF operators. If B contains side effects, this
12071 might change the truth-value of A. */
12072 if (TREE_CODE (arg0) == TREE_CODE (arg1)
12073 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
12074 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
12075 || TREE_CODE (arg0) == TRUTH_AND_EXPR
12076 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
12077 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
12078 {
12079 tree a00 = TREE_OPERAND (arg0, 0);
12080 tree a01 = TREE_OPERAND (arg0, 1);
12081 tree a10 = TREE_OPERAND (arg1, 0);
12082 tree a11 = TREE_OPERAND (arg1, 1);
12083 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
12084 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
12085 && (code == TRUTH_AND_EXPR
12086 || code == TRUTH_OR_EXPR));
12087
12088 if (operand_equal_p (a00, a10, 0))
12089 return fold_build2 (TREE_CODE (arg0), type, a00,
12090 fold_build2 (code, type, a01, a11));
12091 else if (commutative && operand_equal_p (a00, a11, 0))
12092 return fold_build2 (TREE_CODE (arg0), type, a00,
12093 fold_build2 (code, type, a01, a10));
12094 else if (commutative && operand_equal_p (a01, a10, 0))
12095 return fold_build2 (TREE_CODE (arg0), type, a01,
12096 fold_build2 (code, type, a00, a11));
12097
12098 /* This case if tricky because we must either have commutative
12099 operators or else A10 must not have side-effects. */
12100
12101 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
12102 && operand_equal_p (a01, a11, 0))
12103 return fold_build2 (TREE_CODE (arg0), type,
12104 fold_build2 (code, type, a00, a10),
12105 a01);
12106 }
12107
12108 /* See if we can build a range comparison. */
12109 if (0 != (tem = fold_range_test (code, type, op0, op1)))
12110 return tem;
12111
12112 /* Check for the possibility of merging component references. If our
12113 lhs is another similar operation, try to merge its rhs with our
12114 rhs. Then try to merge our lhs and rhs. */
12115 if (TREE_CODE (arg0) == code
12116 && 0 != (tem = fold_truthop (code, type,
12117 TREE_OPERAND (arg0, 1), arg1)))
12118 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
12119
12120 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
12121 return tem;
12122
12123 return NULL_TREE;
12124
12125 case TRUTH_ORIF_EXPR:
12126 /* Note that the operands of this must be ints
12127 and their values must be 0 or true.
12128 ("true" is a fixed value perhaps depending on the language.) */
12129 /* If first arg is constant true, return it. */
12130 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12131 return fold_convert (type, arg0);
12132 case TRUTH_OR_EXPR:
12133 /* If either arg is constant zero, drop it. */
12134 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
12135 return non_lvalue (fold_convert (type, arg1));
12136 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
12137 /* Preserve sequence points. */
12138 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
12139 return non_lvalue (fold_convert (type, arg0));
12140 /* If second arg is constant true, result is true, but we must
12141 evaluate first arg. */
12142 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
12143 return omit_one_operand (type, arg1, arg0);
12144 /* Likewise for first arg, but note this only occurs here for
12145 TRUTH_OR_EXPR. */
12146 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12147 return omit_one_operand (type, arg0, arg1);
12148
12149 /* !X || X is always true. */
12150 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12151 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12152 return omit_one_operand (type, integer_one_node, arg1);
12153 /* X || !X is always true. */
12154 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12155 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12156 return omit_one_operand (type, integer_one_node, arg0);
12157
12158 goto truth_andor;
12159
12160 case TRUTH_XOR_EXPR:
12161 /* If the second arg is constant zero, drop it. */
12162 if (integer_zerop (arg1))
12163 return non_lvalue (fold_convert (type, arg0));
12164 /* If the second arg is constant true, this is a logical inversion. */
12165 if (integer_onep (arg1))
12166 {
12167 /* Only call invert_truthvalue if operand is a truth value. */
12168 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
12169 tem = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg0), arg0);
12170 else
12171 tem = invert_truthvalue (arg0);
12172 return non_lvalue (fold_convert (type, tem));
12173 }
12174 /* Identical arguments cancel to zero. */
12175 if (operand_equal_p (arg0, arg1, 0))
12176 return omit_one_operand (type, integer_zero_node, arg0);
12177
12178 /* !X ^ X is always true. */
12179 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12180 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12181 return omit_one_operand (type, integer_one_node, arg1);
12182
12183 /* X ^ !X is always true. */
12184 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12185 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12186 return omit_one_operand (type, integer_one_node, arg0);
12187
12188 return NULL_TREE;
12189
12190 case EQ_EXPR:
12191 case NE_EXPR:
12192 tem = fold_comparison (code, type, op0, op1);
12193 if (tem != NULL_TREE)
12194 return tem;
12195
12196 /* bool_var != 0 becomes bool_var. */
12197 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12198 && code == NE_EXPR)
12199 return non_lvalue (fold_convert (type, arg0));
12200
12201 /* bool_var == 1 becomes bool_var. */
12202 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12203 && code == EQ_EXPR)
12204 return non_lvalue (fold_convert (type, arg0));
12205
12206 /* bool_var != 1 becomes !bool_var. */
12207 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12208 && code == NE_EXPR)
12209 return fold_build1 (TRUTH_NOT_EXPR, type, fold_convert (type, arg0));
12210
12211 /* bool_var == 0 becomes !bool_var. */
12212 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12213 && code == EQ_EXPR)
12214 return fold_build1 (TRUTH_NOT_EXPR, type, fold_convert (type, arg0));
12215
12216 /* If this is an equality comparison of the address of two non-weak,
12217 unaliased symbols neither of which are extern (since we do not
12218 have access to attributes for externs), then we know the result. */
12219 if (TREE_CODE (arg0) == ADDR_EXPR
12220 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
12221 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
12222 && ! lookup_attribute ("alias",
12223 DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
12224 && ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
12225 && TREE_CODE (arg1) == ADDR_EXPR
12226 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg1, 0))
12227 && ! DECL_WEAK (TREE_OPERAND (arg1, 0))
12228 && ! lookup_attribute ("alias",
12229 DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
12230 && ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
12231 {
12232 /* We know that we're looking at the address of two
12233 non-weak, unaliased, static _DECL nodes.
12234
12235 It is both wasteful and incorrect to call operand_equal_p
12236 to compare the two ADDR_EXPR nodes. It is wasteful in that
12237 all we need to do is test pointer equality for the arguments
12238 to the two ADDR_EXPR nodes. It is incorrect to use
12239 operand_equal_p as that function is NOT equivalent to a
12240 C equality test. It can in fact return false for two
12241 objects which would test as equal using the C equality
12242 operator. */
12243 bool equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
12244 return constant_boolean_node (equal
12245 ? code == EQ_EXPR : code != EQ_EXPR,
12246 type);
12247 }
12248
12249 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
12250 a MINUS_EXPR of a constant, we can convert it into a comparison with
12251 a revised constant as long as no overflow occurs. */
12252 if (TREE_CODE (arg1) == INTEGER_CST
12253 && (TREE_CODE (arg0) == PLUS_EXPR
12254 || TREE_CODE (arg0) == MINUS_EXPR)
12255 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12256 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
12257 ? MINUS_EXPR : PLUS_EXPR,
12258 fold_convert (TREE_TYPE (arg0), arg1),
12259 TREE_OPERAND (arg0, 1), 0))
12260 && !TREE_OVERFLOW (tem))
12261 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
12262
12263 /* Similarly for a NEGATE_EXPR. */
12264 if (TREE_CODE (arg0) == NEGATE_EXPR
12265 && TREE_CODE (arg1) == INTEGER_CST
12266 && 0 != (tem = negate_expr (arg1))
12267 && TREE_CODE (tem) == INTEGER_CST
12268 && !TREE_OVERFLOW (tem))
12269 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
12270
12271 /* Similarly for a BIT_XOR_EXPR; X ^ C1 == C2 is X == (C1 ^ C2). */
12272 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12273 && TREE_CODE (arg1) == INTEGER_CST
12274 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12275 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
12276 fold_build2 (BIT_XOR_EXPR, TREE_TYPE (arg0),
12277 fold_convert (TREE_TYPE (arg0), arg1),
12278 TREE_OPERAND (arg0, 1)));
12279
12280 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
12281 if ((TREE_CODE (arg0) == PLUS_EXPR
12282 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
12283 || TREE_CODE (arg0) == MINUS_EXPR)
12284 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12285 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
12286 || POINTER_TYPE_P (TREE_TYPE (arg0))))
12287 {
12288 tree val = TREE_OPERAND (arg0, 1);
12289 return omit_two_operands (type,
12290 fold_build2 (code, type,
12291 val,
12292 build_int_cst (TREE_TYPE (val),
12293 0)),
12294 TREE_OPERAND (arg0, 0), arg1);
12295 }
12296
12297 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
12298 if (TREE_CODE (arg0) == MINUS_EXPR
12299 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
12300 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0)
12301 && (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 0)) & 1) == 1)
12302 {
12303 return omit_two_operands (type,
12304 code == NE_EXPR
12305 ? boolean_true_node : boolean_false_node,
12306 TREE_OPERAND (arg0, 1), arg1);
12307 }
12308
12309 /* If we have X - Y == 0, we can convert that to X == Y and similarly
12310 for !=. Don't do this for ordered comparisons due to overflow. */
12311 if (TREE_CODE (arg0) == MINUS_EXPR
12312 && integer_zerop (arg1))
12313 return fold_build2 (code, type,
12314 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
12315
12316 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
12317 if (TREE_CODE (arg0) == ABS_EXPR
12318 && (integer_zerop (arg1) || real_zerop (arg1)))
12319 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), arg1);
12320
12321 /* If this is an EQ or NE comparison with zero and ARG0 is
12322 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
12323 two operations, but the latter can be done in one less insn
12324 on machines that have only two-operand insns or on which a
12325 constant cannot be the first operand. */
12326 if (TREE_CODE (arg0) == BIT_AND_EXPR
12327 && integer_zerop (arg1))
12328 {
12329 tree arg00 = TREE_OPERAND (arg0, 0);
12330 tree arg01 = TREE_OPERAND (arg0, 1);
12331 if (TREE_CODE (arg00) == LSHIFT_EXPR
12332 && integer_onep (TREE_OPERAND (arg00, 0)))
12333 {
12334 tree tem = fold_build2 (RSHIFT_EXPR, TREE_TYPE (arg00),
12335 arg01, TREE_OPERAND (arg00, 1));
12336 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12337 build_int_cst (TREE_TYPE (arg0), 1));
12338 return fold_build2 (code, type,
12339 fold_convert (TREE_TYPE (arg1), tem), arg1);
12340 }
12341 else if (TREE_CODE (arg01) == LSHIFT_EXPR
12342 && integer_onep (TREE_OPERAND (arg01, 0)))
12343 {
12344 tree tem = fold_build2 (RSHIFT_EXPR, TREE_TYPE (arg01),
12345 arg00, TREE_OPERAND (arg01, 1));
12346 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12347 build_int_cst (TREE_TYPE (arg0), 1));
12348 return fold_build2 (code, type,
12349 fold_convert (TREE_TYPE (arg1), tem), arg1);
12350 }
12351 }
12352
12353 /* If this is an NE or EQ comparison of zero against the result of a
12354 signed MOD operation whose second operand is a power of 2, make
12355 the MOD operation unsigned since it is simpler and equivalent. */
12356 if (integer_zerop (arg1)
12357 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
12358 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
12359 || TREE_CODE (arg0) == CEIL_MOD_EXPR
12360 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
12361 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
12362 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12363 {
12364 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
12365 tree newmod = fold_build2 (TREE_CODE (arg0), newtype,
12366 fold_convert (newtype,
12367 TREE_OPERAND (arg0, 0)),
12368 fold_convert (newtype,
12369 TREE_OPERAND (arg0, 1)));
12370
12371 return fold_build2 (code, type, newmod,
12372 fold_convert (newtype, arg1));
12373 }
12374
12375 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
12376 C1 is a valid shift constant, and C2 is a power of two, i.e.
12377 a single bit. */
12378 if (TREE_CODE (arg0) == BIT_AND_EXPR
12379 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
12380 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
12381 == INTEGER_CST
12382 && integer_pow2p (TREE_OPERAND (arg0, 1))
12383 && integer_zerop (arg1))
12384 {
12385 tree itype = TREE_TYPE (arg0);
12386 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (itype);
12387 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
12388
12389 /* Check for a valid shift count. */
12390 if (TREE_INT_CST_HIGH (arg001) == 0
12391 && TREE_INT_CST_LOW (arg001) < prec)
12392 {
12393 tree arg01 = TREE_OPERAND (arg0, 1);
12394 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12395 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
12396 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
12397 can be rewritten as (X & (C2 << C1)) != 0. */
12398 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
12399 {
12400 tem = fold_build2 (LSHIFT_EXPR, itype, arg01, arg001);
12401 tem = fold_build2 (BIT_AND_EXPR, itype, arg000, tem);
12402 return fold_build2 (code, type, tem, arg1);
12403 }
12404 /* Otherwise, for signed (arithmetic) shifts,
12405 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
12406 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
12407 else if (!TYPE_UNSIGNED (itype))
12408 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
12409 arg000, build_int_cst (itype, 0));
12410 /* Otherwise, of unsigned (logical) shifts,
12411 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
12412 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
12413 else
12414 return omit_one_operand (type,
12415 code == EQ_EXPR ? integer_one_node
12416 : integer_zero_node,
12417 arg000);
12418 }
12419 }
12420
12421 /* If this is an NE comparison of zero with an AND of one, remove the
12422 comparison since the AND will give the correct value. */
12423 if (code == NE_EXPR
12424 && integer_zerop (arg1)
12425 && TREE_CODE (arg0) == BIT_AND_EXPR
12426 && integer_onep (TREE_OPERAND (arg0, 1)))
12427 return fold_convert (type, arg0);
12428
12429 /* If we have (A & C) == C where C is a power of 2, convert this into
12430 (A & C) != 0. Similarly for NE_EXPR. */
12431 if (TREE_CODE (arg0) == BIT_AND_EXPR
12432 && integer_pow2p (TREE_OPERAND (arg0, 1))
12433 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
12434 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12435 arg0, fold_convert (TREE_TYPE (arg0),
12436 integer_zero_node));
12437
12438 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
12439 bit, then fold the expression into A < 0 or A >= 0. */
12440 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1, type);
12441 if (tem)
12442 return tem;
12443
12444 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
12445 Similarly for NE_EXPR. */
12446 if (TREE_CODE (arg0) == BIT_AND_EXPR
12447 && TREE_CODE (arg1) == INTEGER_CST
12448 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12449 {
12450 tree notc = fold_build1 (BIT_NOT_EXPR,
12451 TREE_TYPE (TREE_OPERAND (arg0, 1)),
12452 TREE_OPERAND (arg0, 1));
12453 tree dandnotc = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
12454 arg1, notc);
12455 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
12456 if (integer_nonzerop (dandnotc))
12457 return omit_one_operand (type, rslt, arg0);
12458 }
12459
12460 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
12461 Similarly for NE_EXPR. */
12462 if (TREE_CODE (arg0) == BIT_IOR_EXPR
12463 && TREE_CODE (arg1) == INTEGER_CST
12464 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12465 {
12466 tree notd = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1), arg1);
12467 tree candnotd = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
12468 TREE_OPERAND (arg0, 1), notd);
12469 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
12470 if (integer_nonzerop (candnotd))
12471 return omit_one_operand (type, rslt, arg0);
12472 }
12473
12474 /* If this is a comparison of a field, we may be able to simplify it. */
12475 if ((TREE_CODE (arg0) == COMPONENT_REF
12476 || TREE_CODE (arg0) == BIT_FIELD_REF)
12477 /* Handle the constant case even without -O
12478 to make sure the warnings are given. */
12479 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
12480 {
12481 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
12482 if (t1)
12483 return t1;
12484 }
12485
12486 /* Optimize comparisons of strlen vs zero to a compare of the
12487 first character of the string vs zero. To wit,
12488 strlen(ptr) == 0 => *ptr == 0
12489 strlen(ptr) != 0 => *ptr != 0
12490 Other cases should reduce to one of these two (or a constant)
12491 due to the return value of strlen being unsigned. */
12492 if (TREE_CODE (arg0) == CALL_EXPR
12493 && integer_zerop (arg1))
12494 {
12495 tree fndecl = get_callee_fndecl (arg0);
12496
12497 if (fndecl
12498 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
12499 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
12500 && call_expr_nargs (arg0) == 1
12501 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
12502 {
12503 tree iref = build_fold_indirect_ref (CALL_EXPR_ARG (arg0, 0));
12504 return fold_build2 (code, type, iref,
12505 build_int_cst (TREE_TYPE (iref), 0));
12506 }
12507 }
12508
12509 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
12510 of X. Similarly fold (X >> C) == 0 into X >= 0. */
12511 if (TREE_CODE (arg0) == RSHIFT_EXPR
12512 && integer_zerop (arg1)
12513 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12514 {
12515 tree arg00 = TREE_OPERAND (arg0, 0);
12516 tree arg01 = TREE_OPERAND (arg0, 1);
12517 tree itype = TREE_TYPE (arg00);
12518 if (TREE_INT_CST_HIGH (arg01) == 0
12519 && TREE_INT_CST_LOW (arg01)
12520 == (unsigned HOST_WIDE_INT) (TYPE_PRECISION (itype) - 1))
12521 {
12522 if (TYPE_UNSIGNED (itype))
12523 {
12524 itype = signed_type_for (itype);
12525 arg00 = fold_convert (itype, arg00);
12526 }
12527 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
12528 type, arg00, build_int_cst (itype, 0));
12529 }
12530 }
12531
12532 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
12533 if (integer_zerop (arg1)
12534 && TREE_CODE (arg0) == BIT_XOR_EXPR)
12535 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
12536 TREE_OPERAND (arg0, 1));
12537
12538 /* (X ^ Y) == Y becomes X == 0. We know that Y has no side-effects. */
12539 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12540 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
12541 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
12542 build_int_cst (TREE_TYPE (arg1), 0));
12543 /* Likewise (X ^ Y) == X becomes Y == 0. X has no side-effects. */
12544 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12545 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12546 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
12547 return fold_build2 (code, type, TREE_OPERAND (arg0, 1),
12548 build_int_cst (TREE_TYPE (arg1), 0));
12549
12550 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
12551 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12552 && TREE_CODE (arg1) == INTEGER_CST
12553 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12554 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
12555 fold_build2 (BIT_XOR_EXPR, TREE_TYPE (arg1),
12556 TREE_OPERAND (arg0, 1), arg1));
12557
12558 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
12559 (X & C) == 0 when C is a single bit. */
12560 if (TREE_CODE (arg0) == BIT_AND_EXPR
12561 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
12562 && integer_zerop (arg1)
12563 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12564 {
12565 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
12566 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
12567 TREE_OPERAND (arg0, 1));
12568 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
12569 type, tem, arg1);
12570 }
12571
12572 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
12573 constant C is a power of two, i.e. a single bit. */
12574 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12575 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12576 && integer_zerop (arg1)
12577 && integer_pow2p (TREE_OPERAND (arg0, 1))
12578 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12579 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12580 {
12581 tree arg00 = TREE_OPERAND (arg0, 0);
12582 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12583 arg00, build_int_cst (TREE_TYPE (arg00), 0));
12584 }
12585
12586 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
12587 when is C is a power of two, i.e. a single bit. */
12588 if (TREE_CODE (arg0) == BIT_AND_EXPR
12589 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
12590 && integer_zerop (arg1)
12591 && integer_pow2p (TREE_OPERAND (arg0, 1))
12592 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12593 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12594 {
12595 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12596 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg000),
12597 arg000, TREE_OPERAND (arg0, 1));
12598 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12599 tem, build_int_cst (TREE_TYPE (tem), 0));
12600 }
12601
12602 if (integer_zerop (arg1)
12603 && tree_expr_nonzero_p (arg0))
12604 {
12605 tree res = constant_boolean_node (code==NE_EXPR, type);
12606 return omit_one_operand (type, res, arg0);
12607 }
12608
12609 /* Fold -X op -Y as X op Y, where op is eq/ne. */
12610 if (TREE_CODE (arg0) == NEGATE_EXPR
12611 && TREE_CODE (arg1) == NEGATE_EXPR)
12612 return fold_build2 (code, type,
12613 TREE_OPERAND (arg0, 0),
12614 TREE_OPERAND (arg1, 0));
12615
12616 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
12617 if (TREE_CODE (arg0) == BIT_AND_EXPR
12618 && TREE_CODE (arg1) == BIT_AND_EXPR)
12619 {
12620 tree arg00 = TREE_OPERAND (arg0, 0);
12621 tree arg01 = TREE_OPERAND (arg0, 1);
12622 tree arg10 = TREE_OPERAND (arg1, 0);
12623 tree arg11 = TREE_OPERAND (arg1, 1);
12624 tree itype = TREE_TYPE (arg0);
12625
12626 if (operand_equal_p (arg01, arg11, 0))
12627 return fold_build2 (code, type,
12628 fold_build2 (BIT_AND_EXPR, itype,
12629 fold_build2 (BIT_XOR_EXPR, itype,
12630 arg00, arg10),
12631 arg01),
12632 build_int_cst (itype, 0));
12633
12634 if (operand_equal_p (arg01, arg10, 0))
12635 return fold_build2 (code, type,
12636 fold_build2 (BIT_AND_EXPR, itype,
12637 fold_build2 (BIT_XOR_EXPR, itype,
12638 arg00, arg11),
12639 arg01),
12640 build_int_cst (itype, 0));
12641
12642 if (operand_equal_p (arg00, arg11, 0))
12643 return fold_build2 (code, type,
12644 fold_build2 (BIT_AND_EXPR, itype,
12645 fold_build2 (BIT_XOR_EXPR, itype,
12646 arg01, arg10),
12647 arg00),
12648 build_int_cst (itype, 0));
12649
12650 if (operand_equal_p (arg00, arg10, 0))
12651 return fold_build2 (code, type,
12652 fold_build2 (BIT_AND_EXPR, itype,
12653 fold_build2 (BIT_XOR_EXPR, itype,
12654 arg01, arg11),
12655 arg00),
12656 build_int_cst (itype, 0));
12657 }
12658
12659 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12660 && TREE_CODE (arg1) == BIT_XOR_EXPR)
12661 {
12662 tree arg00 = TREE_OPERAND (arg0, 0);
12663 tree arg01 = TREE_OPERAND (arg0, 1);
12664 tree arg10 = TREE_OPERAND (arg1, 0);
12665 tree arg11 = TREE_OPERAND (arg1, 1);
12666 tree itype = TREE_TYPE (arg0);
12667
12668 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
12669 operand_equal_p guarantees no side-effects so we don't need
12670 to use omit_one_operand on Z. */
12671 if (operand_equal_p (arg01, arg11, 0))
12672 return fold_build2 (code, type, arg00, arg10);
12673 if (operand_equal_p (arg01, arg10, 0))
12674 return fold_build2 (code, type, arg00, arg11);
12675 if (operand_equal_p (arg00, arg11, 0))
12676 return fold_build2 (code, type, arg01, arg10);
12677 if (operand_equal_p (arg00, arg10, 0))
12678 return fold_build2 (code, type, arg01, arg11);
12679
12680 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
12681 if (TREE_CODE (arg01) == INTEGER_CST
12682 && TREE_CODE (arg11) == INTEGER_CST)
12683 return fold_build2 (code, type,
12684 fold_build2 (BIT_XOR_EXPR, itype, arg00,
12685 fold_build2 (BIT_XOR_EXPR, itype,
12686 arg01, arg11)),
12687 arg10);
12688 }
12689
12690 /* Attempt to simplify equality/inequality comparisons of complex
12691 values. Only lower the comparison if the result is known or
12692 can be simplified to a single scalar comparison. */
12693 if ((TREE_CODE (arg0) == COMPLEX_EXPR
12694 || TREE_CODE (arg0) == COMPLEX_CST)
12695 && (TREE_CODE (arg1) == COMPLEX_EXPR
12696 || TREE_CODE (arg1) == COMPLEX_CST))
12697 {
12698 tree real0, imag0, real1, imag1;
12699 tree rcond, icond;
12700
12701 if (TREE_CODE (arg0) == COMPLEX_EXPR)
12702 {
12703 real0 = TREE_OPERAND (arg0, 0);
12704 imag0 = TREE_OPERAND (arg0, 1);
12705 }
12706 else
12707 {
12708 real0 = TREE_REALPART (arg0);
12709 imag0 = TREE_IMAGPART (arg0);
12710 }
12711
12712 if (TREE_CODE (arg1) == COMPLEX_EXPR)
12713 {
12714 real1 = TREE_OPERAND (arg1, 0);
12715 imag1 = TREE_OPERAND (arg1, 1);
12716 }
12717 else
12718 {
12719 real1 = TREE_REALPART (arg1);
12720 imag1 = TREE_IMAGPART (arg1);
12721 }
12722
12723 rcond = fold_binary (code, type, real0, real1);
12724 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
12725 {
12726 if (integer_zerop (rcond))
12727 {
12728 if (code == EQ_EXPR)
12729 return omit_two_operands (type, boolean_false_node,
12730 imag0, imag1);
12731 return fold_build2 (NE_EXPR, type, imag0, imag1);
12732 }
12733 else
12734 {
12735 if (code == NE_EXPR)
12736 return omit_two_operands (type, boolean_true_node,
12737 imag0, imag1);
12738 return fold_build2 (EQ_EXPR, type, imag0, imag1);
12739 }
12740 }
12741
12742 icond = fold_binary (code, type, imag0, imag1);
12743 if (icond && TREE_CODE (icond) == INTEGER_CST)
12744 {
12745 if (integer_zerop (icond))
12746 {
12747 if (code == EQ_EXPR)
12748 return omit_two_operands (type, boolean_false_node,
12749 real0, real1);
12750 return fold_build2 (NE_EXPR, type, real0, real1);
12751 }
12752 else
12753 {
12754 if (code == NE_EXPR)
12755 return omit_two_operands (type, boolean_true_node,
12756 real0, real1);
12757 return fold_build2 (EQ_EXPR, type, real0, real1);
12758 }
12759 }
12760 }
12761
12762 return NULL_TREE;
12763
12764 case LT_EXPR:
12765 case GT_EXPR:
12766 case LE_EXPR:
12767 case GE_EXPR:
12768 tem = fold_comparison (code, type, op0, op1);
12769 if (tem != NULL_TREE)
12770 return tem;
12771
12772 /* Transform comparisons of the form X +- C CMP X. */
12773 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
12774 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12775 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
12776 && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))))
12777 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12778 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
12779 {
12780 tree arg01 = TREE_OPERAND (arg0, 1);
12781 enum tree_code code0 = TREE_CODE (arg0);
12782 int is_positive;
12783
12784 if (TREE_CODE (arg01) == REAL_CST)
12785 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
12786 else
12787 is_positive = tree_int_cst_sgn (arg01);
12788
12789 /* (X - c) > X becomes false. */
12790 if (code == GT_EXPR
12791 && ((code0 == MINUS_EXPR && is_positive >= 0)
12792 || (code0 == PLUS_EXPR && is_positive <= 0)))
12793 {
12794 if (TREE_CODE (arg01) == INTEGER_CST
12795 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12796 fold_overflow_warning (("assuming signed overflow does not "
12797 "occur when assuming that (X - c) > X "
12798 "is always false"),
12799 WARN_STRICT_OVERFLOW_ALL);
12800 return constant_boolean_node (0, type);
12801 }
12802
12803 /* Likewise (X + c) < X becomes false. */
12804 if (code == LT_EXPR
12805 && ((code0 == PLUS_EXPR && is_positive >= 0)
12806 || (code0 == MINUS_EXPR && is_positive <= 0)))
12807 {
12808 if (TREE_CODE (arg01) == INTEGER_CST
12809 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12810 fold_overflow_warning (("assuming signed overflow does not "
12811 "occur when assuming that "
12812 "(X + c) < X is always false"),
12813 WARN_STRICT_OVERFLOW_ALL);
12814 return constant_boolean_node (0, type);
12815 }
12816
12817 /* Convert (X - c) <= X to true. */
12818 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
12819 && code == LE_EXPR
12820 && ((code0 == MINUS_EXPR && is_positive >= 0)
12821 || (code0 == PLUS_EXPR && is_positive <= 0)))
12822 {
12823 if (TREE_CODE (arg01) == INTEGER_CST
12824 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12825 fold_overflow_warning (("assuming signed overflow does not "
12826 "occur when assuming that "
12827 "(X - c) <= X is always true"),
12828 WARN_STRICT_OVERFLOW_ALL);
12829 return constant_boolean_node (1, type);
12830 }
12831
12832 /* Convert (X + c) >= X to true. */
12833 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
12834 && code == GE_EXPR
12835 && ((code0 == PLUS_EXPR && is_positive >= 0)
12836 || (code0 == MINUS_EXPR && is_positive <= 0)))
12837 {
12838 if (TREE_CODE (arg01) == INTEGER_CST
12839 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12840 fold_overflow_warning (("assuming signed overflow does not "
12841 "occur when assuming that "
12842 "(X + c) >= X is always true"),
12843 WARN_STRICT_OVERFLOW_ALL);
12844 return constant_boolean_node (1, type);
12845 }
12846
12847 if (TREE_CODE (arg01) == INTEGER_CST)
12848 {
12849 /* Convert X + c > X and X - c < X to true for integers. */
12850 if (code == GT_EXPR
12851 && ((code0 == PLUS_EXPR && is_positive > 0)
12852 || (code0 == MINUS_EXPR && is_positive < 0)))
12853 {
12854 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12855 fold_overflow_warning (("assuming signed overflow does "
12856 "not occur when assuming that "
12857 "(X + c) > X is always true"),
12858 WARN_STRICT_OVERFLOW_ALL);
12859 return constant_boolean_node (1, type);
12860 }
12861
12862 if (code == LT_EXPR
12863 && ((code0 == MINUS_EXPR && is_positive > 0)
12864 || (code0 == PLUS_EXPR && is_positive < 0)))
12865 {
12866 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12867 fold_overflow_warning (("assuming signed overflow does "
12868 "not occur when assuming that "
12869 "(X - c) < X is always true"),
12870 WARN_STRICT_OVERFLOW_ALL);
12871 return constant_boolean_node (1, type);
12872 }
12873
12874 /* Convert X + c <= X and X - c >= X to false for integers. */
12875 if (code == LE_EXPR
12876 && ((code0 == PLUS_EXPR && is_positive > 0)
12877 || (code0 == MINUS_EXPR && is_positive < 0)))
12878 {
12879 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12880 fold_overflow_warning (("assuming signed overflow does "
12881 "not occur when assuming that "
12882 "(X + c) <= X is always false"),
12883 WARN_STRICT_OVERFLOW_ALL);
12884 return constant_boolean_node (0, type);
12885 }
12886
12887 if (code == GE_EXPR
12888 && ((code0 == MINUS_EXPR && is_positive > 0)
12889 || (code0 == PLUS_EXPR && is_positive < 0)))
12890 {
12891 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12892 fold_overflow_warning (("assuming signed overflow does "
12893 "not occur when assuming that "
12894 "(X - c) >= X is always false"),
12895 WARN_STRICT_OVERFLOW_ALL);
12896 return constant_boolean_node (0, type);
12897 }
12898 }
12899 }
12900
12901 /* Comparisons with the highest or lowest possible integer of
12902 the specified precision will have known values. */
12903 {
12904 tree arg1_type = TREE_TYPE (arg1);
12905 unsigned int width = TYPE_PRECISION (arg1_type);
12906
12907 if (TREE_CODE (arg1) == INTEGER_CST
12908 && width <= 2 * HOST_BITS_PER_WIDE_INT
12909 && (INTEGRAL_TYPE_P (arg1_type) || POINTER_TYPE_P (arg1_type)))
12910 {
12911 HOST_WIDE_INT signed_max_hi;
12912 unsigned HOST_WIDE_INT signed_max_lo;
12913 unsigned HOST_WIDE_INT max_hi, max_lo, min_hi, min_lo;
12914
12915 if (width <= HOST_BITS_PER_WIDE_INT)
12916 {
12917 signed_max_lo = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
12918 - 1;
12919 signed_max_hi = 0;
12920 max_hi = 0;
12921
12922 if (TYPE_UNSIGNED (arg1_type))
12923 {
12924 max_lo = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
12925 min_lo = 0;
12926 min_hi = 0;
12927 }
12928 else
12929 {
12930 max_lo = signed_max_lo;
12931 min_lo = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
12932 min_hi = -1;
12933 }
12934 }
12935 else
12936 {
12937 width -= HOST_BITS_PER_WIDE_INT;
12938 signed_max_lo = -1;
12939 signed_max_hi = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
12940 - 1;
12941 max_lo = -1;
12942 min_lo = 0;
12943
12944 if (TYPE_UNSIGNED (arg1_type))
12945 {
12946 max_hi = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
12947 min_hi = 0;
12948 }
12949 else
12950 {
12951 max_hi = signed_max_hi;
12952 min_hi = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
12953 }
12954 }
12955
12956 if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1) == max_hi
12957 && TREE_INT_CST_LOW (arg1) == max_lo)
12958 switch (code)
12959 {
12960 case GT_EXPR:
12961 return omit_one_operand (type, integer_zero_node, arg0);
12962
12963 case GE_EXPR:
12964 return fold_build2 (EQ_EXPR, type, op0, op1);
12965
12966 case LE_EXPR:
12967 return omit_one_operand (type, integer_one_node, arg0);
12968
12969 case LT_EXPR:
12970 return fold_build2 (NE_EXPR, type, op0, op1);
12971
12972 /* The GE_EXPR and LT_EXPR cases above are not normally
12973 reached because of previous transformations. */
12974
12975 default:
12976 break;
12977 }
12978 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
12979 == max_hi
12980 && TREE_INT_CST_LOW (arg1) == max_lo - 1)
12981 switch (code)
12982 {
12983 case GT_EXPR:
12984 arg1 = const_binop (PLUS_EXPR, arg1,
12985 build_int_cst (TREE_TYPE (arg1), 1), 0);
12986 return fold_build2 (EQ_EXPR, type,
12987 fold_convert (TREE_TYPE (arg1), arg0),
12988 arg1);
12989 case LE_EXPR:
12990 arg1 = const_binop (PLUS_EXPR, arg1,
12991 build_int_cst (TREE_TYPE (arg1), 1), 0);
12992 return fold_build2 (NE_EXPR, type,
12993 fold_convert (TREE_TYPE (arg1), arg0),
12994 arg1);
12995 default:
12996 break;
12997 }
12998 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
12999 == min_hi
13000 && TREE_INT_CST_LOW (arg1) == min_lo)
13001 switch (code)
13002 {
13003 case LT_EXPR:
13004 return omit_one_operand (type, integer_zero_node, arg0);
13005
13006 case LE_EXPR:
13007 return fold_build2 (EQ_EXPR, type, op0, op1);
13008
13009 case GE_EXPR:
13010 return omit_one_operand (type, integer_one_node, arg0);
13011
13012 case GT_EXPR:
13013 return fold_build2 (NE_EXPR, type, op0, op1);
13014
13015 default:
13016 break;
13017 }
13018 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
13019 == min_hi
13020 && TREE_INT_CST_LOW (arg1) == min_lo + 1)
13021 switch (code)
13022 {
13023 case GE_EXPR:
13024 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
13025 return fold_build2 (NE_EXPR, type,
13026 fold_convert (TREE_TYPE (arg1), arg0),
13027 arg1);
13028 case LT_EXPR:
13029 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
13030 return fold_build2 (EQ_EXPR, type,
13031 fold_convert (TREE_TYPE (arg1), arg0),
13032 arg1);
13033 default:
13034 break;
13035 }
13036
13037 else if (TREE_INT_CST_HIGH (arg1) == signed_max_hi
13038 && TREE_INT_CST_LOW (arg1) == signed_max_lo
13039 && TYPE_UNSIGNED (arg1_type)
13040 /* We will flip the signedness of the comparison operator
13041 associated with the mode of arg1, so the sign bit is
13042 specified by this mode. Check that arg1 is the signed
13043 max associated with this sign bit. */
13044 && width == GET_MODE_BITSIZE (TYPE_MODE (arg1_type))
13045 /* signed_type does not work on pointer types. */
13046 && INTEGRAL_TYPE_P (arg1_type))
13047 {
13048 /* The following case also applies to X < signed_max+1
13049 and X >= signed_max+1 because previous transformations. */
13050 if (code == LE_EXPR || code == GT_EXPR)
13051 {
13052 tree st;
13053 st = signed_type_for (TREE_TYPE (arg1));
13054 return fold_build2 (code == LE_EXPR ? GE_EXPR : LT_EXPR,
13055 type, fold_convert (st, arg0),
13056 build_int_cst (st, 0));
13057 }
13058 }
13059 }
13060 }
13061
13062 /* If we are comparing an ABS_EXPR with a constant, we can
13063 convert all the cases into explicit comparisons, but they may
13064 well not be faster than doing the ABS and one comparison.
13065 But ABS (X) <= C is a range comparison, which becomes a subtraction
13066 and a comparison, and is probably faster. */
13067 if (code == LE_EXPR
13068 && TREE_CODE (arg1) == INTEGER_CST
13069 && TREE_CODE (arg0) == ABS_EXPR
13070 && ! TREE_SIDE_EFFECTS (arg0)
13071 && (0 != (tem = negate_expr (arg1)))
13072 && TREE_CODE (tem) == INTEGER_CST
13073 && !TREE_OVERFLOW (tem))
13074 return fold_build2 (TRUTH_ANDIF_EXPR, type,
13075 build2 (GE_EXPR, type,
13076 TREE_OPERAND (arg0, 0), tem),
13077 build2 (LE_EXPR, type,
13078 TREE_OPERAND (arg0, 0), arg1));
13079
13080 /* Convert ABS_EXPR<x> >= 0 to true. */
13081 strict_overflow_p = false;
13082 if (code == GE_EXPR
13083 && (integer_zerop (arg1)
13084 || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
13085 && real_zerop (arg1)))
13086 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
13087 {
13088 if (strict_overflow_p)
13089 fold_overflow_warning (("assuming signed overflow does not occur "
13090 "when simplifying comparison of "
13091 "absolute value and zero"),
13092 WARN_STRICT_OVERFLOW_CONDITIONAL);
13093 return omit_one_operand (type, integer_one_node, arg0);
13094 }
13095
13096 /* Convert ABS_EXPR<x> < 0 to false. */
13097 strict_overflow_p = false;
13098 if (code == LT_EXPR
13099 && (integer_zerop (arg1) || real_zerop (arg1))
13100 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
13101 {
13102 if (strict_overflow_p)
13103 fold_overflow_warning (("assuming signed overflow does not occur "
13104 "when simplifying comparison of "
13105 "absolute value and zero"),
13106 WARN_STRICT_OVERFLOW_CONDITIONAL);
13107 return omit_one_operand (type, integer_zero_node, arg0);
13108 }
13109
13110 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
13111 and similarly for >= into !=. */
13112 if ((code == LT_EXPR || code == GE_EXPR)
13113 && TYPE_UNSIGNED (TREE_TYPE (arg0))
13114 && TREE_CODE (arg1) == LSHIFT_EXPR
13115 && integer_onep (TREE_OPERAND (arg1, 0)))
13116 return build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
13117 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
13118 TREE_OPERAND (arg1, 1)),
13119 build_int_cst (TREE_TYPE (arg0), 0));
13120
13121 if ((code == LT_EXPR || code == GE_EXPR)
13122 && TYPE_UNSIGNED (TREE_TYPE (arg0))
13123 && CONVERT_EXPR_P (arg1)
13124 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
13125 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
13126 return
13127 build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
13128 fold_convert (TREE_TYPE (arg0),
13129 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
13130 TREE_OPERAND (TREE_OPERAND (arg1, 0),
13131 1))),
13132 build_int_cst (TREE_TYPE (arg0), 0));
13133
13134 return NULL_TREE;
13135
13136 case UNORDERED_EXPR:
13137 case ORDERED_EXPR:
13138 case UNLT_EXPR:
13139 case UNLE_EXPR:
13140 case UNGT_EXPR:
13141 case UNGE_EXPR:
13142 case UNEQ_EXPR:
13143 case LTGT_EXPR:
13144 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
13145 {
13146 t1 = fold_relational_const (code, type, arg0, arg1);
13147 if (t1 != NULL_TREE)
13148 return t1;
13149 }
13150
13151 /* If the first operand is NaN, the result is constant. */
13152 if (TREE_CODE (arg0) == REAL_CST
13153 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
13154 && (code != LTGT_EXPR || ! flag_trapping_math))
13155 {
13156 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
13157 ? integer_zero_node
13158 : integer_one_node;
13159 return omit_one_operand (type, t1, arg1);
13160 }
13161
13162 /* If the second operand is NaN, the result is constant. */
13163 if (TREE_CODE (arg1) == REAL_CST
13164 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
13165 && (code != LTGT_EXPR || ! flag_trapping_math))
13166 {
13167 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
13168 ? integer_zero_node
13169 : integer_one_node;
13170 return omit_one_operand (type, t1, arg0);
13171 }
13172
13173 /* Simplify unordered comparison of something with itself. */
13174 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
13175 && operand_equal_p (arg0, arg1, 0))
13176 return constant_boolean_node (1, type);
13177
13178 if (code == LTGT_EXPR
13179 && !flag_trapping_math
13180 && operand_equal_p (arg0, arg1, 0))
13181 return constant_boolean_node (0, type);
13182
13183 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
13184 {
13185 tree targ0 = strip_float_extensions (arg0);
13186 tree targ1 = strip_float_extensions (arg1);
13187 tree newtype = TREE_TYPE (targ0);
13188
13189 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
13190 newtype = TREE_TYPE (targ1);
13191
13192 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
13193 return fold_build2 (code, type, fold_convert (newtype, targ0),
13194 fold_convert (newtype, targ1));
13195 }
13196
13197 return NULL_TREE;
13198
13199 case COMPOUND_EXPR:
13200 /* When pedantic, a compound expression can be neither an lvalue
13201 nor an integer constant expression. */
13202 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
13203 return NULL_TREE;
13204 /* Don't let (0, 0) be null pointer constant. */
13205 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
13206 : fold_convert (type, arg1);
13207 return pedantic_non_lvalue (tem);
13208
13209 case COMPLEX_EXPR:
13210 if ((TREE_CODE (arg0) == REAL_CST
13211 && TREE_CODE (arg1) == REAL_CST)
13212 || (TREE_CODE (arg0) == INTEGER_CST
13213 && TREE_CODE (arg1) == INTEGER_CST))
13214 return build_complex (type, arg0, arg1);
13215 return NULL_TREE;
13216
13217 case ASSERT_EXPR:
13218 /* An ASSERT_EXPR should never be passed to fold_binary. */
13219 gcc_unreachable ();
13220
13221 default:
13222 return NULL_TREE;
13223 } /* switch (code) */
13224 }
13225
13226 /* Callback for walk_tree, looking for LABEL_EXPR.
13227 Returns tree TP if it is LABEL_EXPR. Otherwise it returns NULL_TREE.
13228 Do not check the sub-tree of GOTO_EXPR. */
13229
13230 static tree
13231 contains_label_1 (tree *tp,
13232 int *walk_subtrees,
13233 void *data ATTRIBUTE_UNUSED)
13234 {
13235 switch (TREE_CODE (*tp))
13236 {
13237 case LABEL_EXPR:
13238 return *tp;
13239 case GOTO_EXPR:
13240 *walk_subtrees = 0;
13241 /* no break */
13242 default:
13243 return NULL_TREE;
13244 }
13245 }
13246
13247 /* Checks whether the sub-tree ST contains a label LABEL_EXPR which is
13248 accessible from outside the sub-tree. Returns NULL_TREE if no
13249 addressable label is found. */
13250
13251 static bool
13252 contains_label_p (tree st)
13253 {
13254 return (walk_tree (&st, contains_label_1 , NULL, NULL) != NULL_TREE);
13255 }
13256
13257 /* Fold a ternary expression of code CODE and type TYPE with operands
13258 OP0, OP1, and OP2. Return the folded expression if folding is
13259 successful. Otherwise, return NULL_TREE. */
13260
13261 tree
13262 fold_ternary (enum tree_code code, tree type, tree op0, tree op1, tree op2)
13263 {
13264 tree tem;
13265 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
13266 enum tree_code_class kind = TREE_CODE_CLASS (code);
13267
13268 gcc_assert (IS_EXPR_CODE_CLASS (kind)
13269 && TREE_CODE_LENGTH (code) == 3);
13270
13271 /* Strip any conversions that don't change the mode. This is safe
13272 for every expression, except for a comparison expression because
13273 its signedness is derived from its operands. So, in the latter
13274 case, only strip conversions that don't change the signedness.
13275
13276 Note that this is done as an internal manipulation within the
13277 constant folder, in order to find the simplest representation of
13278 the arguments so that their form can be studied. In any cases,
13279 the appropriate type conversions should be put back in the tree
13280 that will get out of the constant folder. */
13281 if (op0)
13282 {
13283 arg0 = op0;
13284 STRIP_NOPS (arg0);
13285 }
13286
13287 if (op1)
13288 {
13289 arg1 = op1;
13290 STRIP_NOPS (arg1);
13291 }
13292
13293 switch (code)
13294 {
13295 case COMPONENT_REF:
13296 if (TREE_CODE (arg0) == CONSTRUCTOR
13297 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
13298 {
13299 unsigned HOST_WIDE_INT idx;
13300 tree field, value;
13301 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
13302 if (field == arg1)
13303 return value;
13304 }
13305 return NULL_TREE;
13306
13307 case COND_EXPR:
13308 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
13309 so all simple results must be passed through pedantic_non_lvalue. */
13310 if (TREE_CODE (arg0) == INTEGER_CST)
13311 {
13312 tree unused_op = integer_zerop (arg0) ? op1 : op2;
13313 tem = integer_zerop (arg0) ? op2 : op1;
13314 /* Only optimize constant conditions when the selected branch
13315 has the same type as the COND_EXPR. This avoids optimizing
13316 away "c ? x : throw", where the throw has a void type.
13317 Avoid throwing away that operand which contains label. */
13318 if ((!TREE_SIDE_EFFECTS (unused_op)
13319 || !contains_label_p (unused_op))
13320 && (! VOID_TYPE_P (TREE_TYPE (tem))
13321 || VOID_TYPE_P (type)))
13322 return pedantic_non_lvalue (tem);
13323 return NULL_TREE;
13324 }
13325 if (operand_equal_p (arg1, op2, 0))
13326 return pedantic_omit_one_operand (type, arg1, arg0);
13327
13328 /* If we have A op B ? A : C, we may be able to convert this to a
13329 simpler expression, depending on the operation and the values
13330 of B and C. Signed zeros prevent all of these transformations,
13331 for reasons given above each one.
13332
13333 Also try swapping the arguments and inverting the conditional. */
13334 if (COMPARISON_CLASS_P (arg0)
13335 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
13336 arg1, TREE_OPERAND (arg0, 1))
13337 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
13338 {
13339 tem = fold_cond_expr_with_comparison (type, arg0, op1, op2);
13340 if (tem)
13341 return tem;
13342 }
13343
13344 if (COMPARISON_CLASS_P (arg0)
13345 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
13346 op2,
13347 TREE_OPERAND (arg0, 1))
13348 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2))))
13349 {
13350 tem = fold_truth_not_expr (arg0);
13351 if (tem && COMPARISON_CLASS_P (tem))
13352 {
13353 tem = fold_cond_expr_with_comparison (type, tem, op2, op1);
13354 if (tem)
13355 return tem;
13356 }
13357 }
13358
13359 /* If the second operand is simpler than the third, swap them
13360 since that produces better jump optimization results. */
13361 if (truth_value_p (TREE_CODE (arg0))
13362 && tree_swap_operands_p (op1, op2, false))
13363 {
13364 /* See if this can be inverted. If it can't, possibly because
13365 it was a floating-point inequality comparison, don't do
13366 anything. */
13367 tem = fold_truth_not_expr (arg0);
13368 if (tem)
13369 return fold_build3 (code, type, tem, op2, op1);
13370 }
13371
13372 /* Convert A ? 1 : 0 to simply A. */
13373 if (integer_onep (op1)
13374 && integer_zerop (op2)
13375 /* If we try to convert OP0 to our type, the
13376 call to fold will try to move the conversion inside
13377 a COND, which will recurse. In that case, the COND_EXPR
13378 is probably the best choice, so leave it alone. */
13379 && type == TREE_TYPE (arg0))
13380 return pedantic_non_lvalue (arg0);
13381
13382 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
13383 over COND_EXPR in cases such as floating point comparisons. */
13384 if (integer_zerop (op1)
13385 && integer_onep (op2)
13386 && truth_value_p (TREE_CODE (arg0)))
13387 return pedantic_non_lvalue (fold_convert (type,
13388 invert_truthvalue (arg0)));
13389
13390 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
13391 if (TREE_CODE (arg0) == LT_EXPR
13392 && integer_zerop (TREE_OPERAND (arg0, 1))
13393 && integer_zerop (op2)
13394 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
13395 {
13396 /* sign_bit_p only checks ARG1 bits within A's precision.
13397 If <sign bit of A> has wider type than A, bits outside
13398 of A's precision in <sign bit of A> need to be checked.
13399 If they are all 0, this optimization needs to be done
13400 in unsigned A's type, if they are all 1 in signed A's type,
13401 otherwise this can't be done. */
13402 if (TYPE_PRECISION (TREE_TYPE (tem))
13403 < TYPE_PRECISION (TREE_TYPE (arg1))
13404 && TYPE_PRECISION (TREE_TYPE (tem))
13405 < TYPE_PRECISION (type))
13406 {
13407 unsigned HOST_WIDE_INT mask_lo;
13408 HOST_WIDE_INT mask_hi;
13409 int inner_width, outer_width;
13410 tree tem_type;
13411
13412 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
13413 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
13414 if (outer_width > TYPE_PRECISION (type))
13415 outer_width = TYPE_PRECISION (type);
13416
13417 if (outer_width > HOST_BITS_PER_WIDE_INT)
13418 {
13419 mask_hi = ((unsigned HOST_WIDE_INT) -1
13420 >> (2 * HOST_BITS_PER_WIDE_INT - outer_width));
13421 mask_lo = -1;
13422 }
13423 else
13424 {
13425 mask_hi = 0;
13426 mask_lo = ((unsigned HOST_WIDE_INT) -1
13427 >> (HOST_BITS_PER_WIDE_INT - outer_width));
13428 }
13429 if (inner_width > HOST_BITS_PER_WIDE_INT)
13430 {
13431 mask_hi &= ~((unsigned HOST_WIDE_INT) -1
13432 >> (HOST_BITS_PER_WIDE_INT - inner_width));
13433 mask_lo = 0;
13434 }
13435 else
13436 mask_lo &= ~((unsigned HOST_WIDE_INT) -1
13437 >> (HOST_BITS_PER_WIDE_INT - inner_width));
13438
13439 if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == mask_hi
13440 && (TREE_INT_CST_LOW (arg1) & mask_lo) == mask_lo)
13441 {
13442 tem_type = signed_type_for (TREE_TYPE (tem));
13443 tem = fold_convert (tem_type, tem);
13444 }
13445 else if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == 0
13446 && (TREE_INT_CST_LOW (arg1) & mask_lo) == 0)
13447 {
13448 tem_type = unsigned_type_for (TREE_TYPE (tem));
13449 tem = fold_convert (tem_type, tem);
13450 }
13451 else
13452 tem = NULL;
13453 }
13454
13455 if (tem)
13456 return fold_convert (type,
13457 fold_build2 (BIT_AND_EXPR,
13458 TREE_TYPE (tem), tem,
13459 fold_convert (TREE_TYPE (tem),
13460 arg1)));
13461 }
13462
13463 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
13464 already handled above. */
13465 if (TREE_CODE (arg0) == BIT_AND_EXPR
13466 && integer_onep (TREE_OPERAND (arg0, 1))
13467 && integer_zerop (op2)
13468 && integer_pow2p (arg1))
13469 {
13470 tree tem = TREE_OPERAND (arg0, 0);
13471 STRIP_NOPS (tem);
13472 if (TREE_CODE (tem) == RSHIFT_EXPR
13473 && TREE_CODE (TREE_OPERAND (tem, 1)) == INTEGER_CST
13474 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
13475 TREE_INT_CST_LOW (TREE_OPERAND (tem, 1)))
13476 return fold_build2 (BIT_AND_EXPR, type,
13477 TREE_OPERAND (tem, 0), arg1);
13478 }
13479
13480 /* A & N ? N : 0 is simply A & N if N is a power of two. This
13481 is probably obsolete because the first operand should be a
13482 truth value (that's why we have the two cases above), but let's
13483 leave it in until we can confirm this for all front-ends. */
13484 if (integer_zerop (op2)
13485 && TREE_CODE (arg0) == NE_EXPR
13486 && integer_zerop (TREE_OPERAND (arg0, 1))
13487 && integer_pow2p (arg1)
13488 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
13489 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
13490 arg1, OEP_ONLY_CONST))
13491 return pedantic_non_lvalue (fold_convert (type,
13492 TREE_OPERAND (arg0, 0)));
13493
13494 /* Convert A ? B : 0 into A && B if A and B are truth values. */
13495 if (integer_zerop (op2)
13496 && truth_value_p (TREE_CODE (arg0))
13497 && truth_value_p (TREE_CODE (arg1)))
13498 return fold_build2 (TRUTH_ANDIF_EXPR, type,
13499 fold_convert (type, arg0),
13500 arg1);
13501
13502 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
13503 if (integer_onep (op2)
13504 && truth_value_p (TREE_CODE (arg0))
13505 && truth_value_p (TREE_CODE (arg1)))
13506 {
13507 /* Only perform transformation if ARG0 is easily inverted. */
13508 tem = fold_truth_not_expr (arg0);
13509 if (tem)
13510 return fold_build2 (TRUTH_ORIF_EXPR, type,
13511 fold_convert (type, tem),
13512 arg1);
13513 }
13514
13515 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
13516 if (integer_zerop (arg1)
13517 && truth_value_p (TREE_CODE (arg0))
13518 && truth_value_p (TREE_CODE (op2)))
13519 {
13520 /* Only perform transformation if ARG0 is easily inverted. */
13521 tem = fold_truth_not_expr (arg0);
13522 if (tem)
13523 return fold_build2 (TRUTH_ANDIF_EXPR, type,
13524 fold_convert (type, tem),
13525 op2);
13526 }
13527
13528 /* Convert A ? 1 : B into A || B if A and B are truth values. */
13529 if (integer_onep (arg1)
13530 && truth_value_p (TREE_CODE (arg0))
13531 && truth_value_p (TREE_CODE (op2)))
13532 return fold_build2 (TRUTH_ORIF_EXPR, type,
13533 fold_convert (type, arg0),
13534 op2);
13535
13536 return NULL_TREE;
13537
13538 case CALL_EXPR:
13539 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
13540 of fold_ternary on them. */
13541 gcc_unreachable ();
13542
13543 case BIT_FIELD_REF:
13544 if ((TREE_CODE (arg0) == VECTOR_CST
13545 || (TREE_CODE (arg0) == CONSTRUCTOR && TREE_CONSTANT (arg0)))
13546 && type == TREE_TYPE (TREE_TYPE (arg0)))
13547 {
13548 unsigned HOST_WIDE_INT width = tree_low_cst (arg1, 1);
13549 unsigned HOST_WIDE_INT idx = tree_low_cst (op2, 1);
13550
13551 if (width != 0
13552 && simple_cst_equal (arg1, TYPE_SIZE (type)) == 1
13553 && (idx % width) == 0
13554 && (idx = idx / width)
13555 < TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
13556 {
13557 tree elements = NULL_TREE;
13558
13559 if (TREE_CODE (arg0) == VECTOR_CST)
13560 elements = TREE_VECTOR_CST_ELTS (arg0);
13561 else
13562 {
13563 unsigned HOST_WIDE_INT idx;
13564 tree value;
13565
13566 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (arg0), idx, value)
13567 elements = tree_cons (NULL_TREE, value, elements);
13568 }
13569 while (idx-- > 0 && elements)
13570 elements = TREE_CHAIN (elements);
13571 if (elements)
13572 return TREE_VALUE (elements);
13573 else
13574 return fold_convert (type, integer_zero_node);
13575 }
13576 }
13577
13578 /* A bit-field-ref that referenced the full argument can be stripped. */
13579 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
13580 && TYPE_PRECISION (TREE_TYPE (arg0)) == tree_low_cst (arg1, 1)
13581 && integer_zerop (op2))
13582 return fold_convert (type, arg0);
13583
13584 return NULL_TREE;
13585
13586 default:
13587 return NULL_TREE;
13588 } /* switch (code) */
13589 }
13590
13591 /* Perform constant folding and related simplification of EXPR.
13592 The related simplifications include x*1 => x, x*0 => 0, etc.,
13593 and application of the associative law.
13594 NOP_EXPR conversions may be removed freely (as long as we
13595 are careful not to change the type of the overall expression).
13596 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
13597 but we can constant-fold them if they have constant operands. */
13598
13599 #ifdef ENABLE_FOLD_CHECKING
13600 # define fold(x) fold_1 (x)
13601 static tree fold_1 (tree);
13602 static
13603 #endif
13604 tree
13605 fold (tree expr)
13606 {
13607 const tree t = expr;
13608 enum tree_code code = TREE_CODE (t);
13609 enum tree_code_class kind = TREE_CODE_CLASS (code);
13610 tree tem;
13611
13612 /* Return right away if a constant. */
13613 if (kind == tcc_constant)
13614 return t;
13615
13616 /* CALL_EXPR-like objects with variable numbers of operands are
13617 treated specially. */
13618 if (kind == tcc_vl_exp)
13619 {
13620 if (code == CALL_EXPR)
13621 {
13622 tem = fold_call_expr (expr, false);
13623 return tem ? tem : expr;
13624 }
13625 return expr;
13626 }
13627
13628 if (IS_EXPR_CODE_CLASS (kind))
13629 {
13630 tree type = TREE_TYPE (t);
13631 tree op0, op1, op2;
13632
13633 switch (TREE_CODE_LENGTH (code))
13634 {
13635 case 1:
13636 op0 = TREE_OPERAND (t, 0);
13637 tem = fold_unary (code, type, op0);
13638 return tem ? tem : expr;
13639 case 2:
13640 op0 = TREE_OPERAND (t, 0);
13641 op1 = TREE_OPERAND (t, 1);
13642 tem = fold_binary (code, type, op0, op1);
13643 return tem ? tem : expr;
13644 case 3:
13645 op0 = TREE_OPERAND (t, 0);
13646 op1 = TREE_OPERAND (t, 1);
13647 op2 = TREE_OPERAND (t, 2);
13648 tem = fold_ternary (code, type, op0, op1, op2);
13649 return tem ? tem : expr;
13650 default:
13651 break;
13652 }
13653 }
13654
13655 switch (code)
13656 {
13657 case ARRAY_REF:
13658 {
13659 tree op0 = TREE_OPERAND (t, 0);
13660 tree op1 = TREE_OPERAND (t, 1);
13661
13662 if (TREE_CODE (op1) == INTEGER_CST
13663 && TREE_CODE (op0) == CONSTRUCTOR
13664 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
13665 {
13666 VEC(constructor_elt,gc) *elts = CONSTRUCTOR_ELTS (op0);
13667 unsigned HOST_WIDE_INT end = VEC_length (constructor_elt, elts);
13668 unsigned HOST_WIDE_INT begin = 0;
13669
13670 /* Find a matching index by means of a binary search. */
13671 while (begin != end)
13672 {
13673 unsigned HOST_WIDE_INT middle = (begin + end) / 2;
13674 tree index = VEC_index (constructor_elt, elts, middle)->index;
13675
13676 if (TREE_CODE (index) == INTEGER_CST
13677 && tree_int_cst_lt (index, op1))
13678 begin = middle + 1;
13679 else if (TREE_CODE (index) == INTEGER_CST
13680 && tree_int_cst_lt (op1, index))
13681 end = middle;
13682 else if (TREE_CODE (index) == RANGE_EXPR
13683 && tree_int_cst_lt (TREE_OPERAND (index, 1), op1))
13684 begin = middle + 1;
13685 else if (TREE_CODE (index) == RANGE_EXPR
13686 && tree_int_cst_lt (op1, TREE_OPERAND (index, 0)))
13687 end = middle;
13688 else
13689 return VEC_index (constructor_elt, elts, middle)->value;
13690 }
13691 }
13692
13693 return t;
13694 }
13695
13696 case CONST_DECL:
13697 return fold (DECL_INITIAL (t));
13698
13699 default:
13700 return t;
13701 } /* switch (code) */
13702 }
13703
13704 #ifdef ENABLE_FOLD_CHECKING
13705 #undef fold
13706
13707 static void fold_checksum_tree (const_tree, struct md5_ctx *, htab_t);
13708 static void fold_check_failed (const_tree, const_tree);
13709 void print_fold_checksum (const_tree);
13710
13711 /* When --enable-checking=fold, compute a digest of expr before
13712 and after actual fold call to see if fold did not accidentally
13713 change original expr. */
13714
13715 tree
13716 fold (tree expr)
13717 {
13718 tree ret;
13719 struct md5_ctx ctx;
13720 unsigned char checksum_before[16], checksum_after[16];
13721 htab_t ht;
13722
13723 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13724 md5_init_ctx (&ctx);
13725 fold_checksum_tree (expr, &ctx, ht);
13726 md5_finish_ctx (&ctx, checksum_before);
13727 htab_empty (ht);
13728
13729 ret = fold_1 (expr);
13730
13731 md5_init_ctx (&ctx);
13732 fold_checksum_tree (expr, &ctx, ht);
13733 md5_finish_ctx (&ctx, checksum_after);
13734 htab_delete (ht);
13735
13736 if (memcmp (checksum_before, checksum_after, 16))
13737 fold_check_failed (expr, ret);
13738
13739 return ret;
13740 }
13741
13742 void
13743 print_fold_checksum (const_tree expr)
13744 {
13745 struct md5_ctx ctx;
13746 unsigned char checksum[16], cnt;
13747 htab_t ht;
13748
13749 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13750 md5_init_ctx (&ctx);
13751 fold_checksum_tree (expr, &ctx, ht);
13752 md5_finish_ctx (&ctx, checksum);
13753 htab_delete (ht);
13754 for (cnt = 0; cnt < 16; ++cnt)
13755 fprintf (stderr, "%02x", checksum[cnt]);
13756 putc ('\n', stderr);
13757 }
13758
13759 static void
13760 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
13761 {
13762 internal_error ("fold check: original tree changed by fold");
13763 }
13764
13765 static void
13766 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx, htab_t ht)
13767 {
13768 const void **slot;
13769 enum tree_code code;
13770 union tree_node buf;
13771 int i, len;
13772
13773 recursive_label:
13774
13775 gcc_assert ((sizeof (struct tree_exp) + 5 * sizeof (tree)
13776 <= sizeof (struct tree_function_decl))
13777 && sizeof (struct tree_type) <= sizeof (struct tree_function_decl));
13778 if (expr == NULL)
13779 return;
13780 slot = (const void **) htab_find_slot (ht, expr, INSERT);
13781 if (*slot != NULL)
13782 return;
13783 *slot = expr;
13784 code = TREE_CODE (expr);
13785 if (TREE_CODE_CLASS (code) == tcc_declaration
13786 && DECL_ASSEMBLER_NAME_SET_P (expr))
13787 {
13788 /* Allow DECL_ASSEMBLER_NAME to be modified. */
13789 memcpy ((char *) &buf, expr, tree_size (expr));
13790 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
13791 expr = (tree) &buf;
13792 }
13793 else if (TREE_CODE_CLASS (code) == tcc_type
13794 && (TYPE_POINTER_TO (expr)
13795 || TYPE_REFERENCE_TO (expr)
13796 || TYPE_CACHED_VALUES_P (expr)
13797 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
13798 || TYPE_NEXT_VARIANT (expr)))
13799 {
13800 /* Allow these fields to be modified. */
13801 tree tmp;
13802 memcpy ((char *) &buf, expr, tree_size (expr));
13803 expr = tmp = (tree) &buf;
13804 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
13805 TYPE_POINTER_TO (tmp) = NULL;
13806 TYPE_REFERENCE_TO (tmp) = NULL;
13807 TYPE_NEXT_VARIANT (tmp) = NULL;
13808 if (TYPE_CACHED_VALUES_P (tmp))
13809 {
13810 TYPE_CACHED_VALUES_P (tmp) = 0;
13811 TYPE_CACHED_VALUES (tmp) = NULL;
13812 }
13813 }
13814 md5_process_bytes (expr, tree_size (expr), ctx);
13815 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
13816 if (TREE_CODE_CLASS (code) != tcc_type
13817 && TREE_CODE_CLASS (code) != tcc_declaration
13818 && code != TREE_LIST
13819 && code != SSA_NAME)
13820 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
13821 switch (TREE_CODE_CLASS (code))
13822 {
13823 case tcc_constant:
13824 switch (code)
13825 {
13826 case STRING_CST:
13827 md5_process_bytes (TREE_STRING_POINTER (expr),
13828 TREE_STRING_LENGTH (expr), ctx);
13829 break;
13830 case COMPLEX_CST:
13831 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
13832 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
13833 break;
13834 case VECTOR_CST:
13835 fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr), ctx, ht);
13836 break;
13837 default:
13838 break;
13839 }
13840 break;
13841 case tcc_exceptional:
13842 switch (code)
13843 {
13844 case TREE_LIST:
13845 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
13846 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
13847 expr = TREE_CHAIN (expr);
13848 goto recursive_label;
13849 break;
13850 case TREE_VEC:
13851 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
13852 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
13853 break;
13854 default:
13855 break;
13856 }
13857 break;
13858 case tcc_expression:
13859 case tcc_reference:
13860 case tcc_comparison:
13861 case tcc_unary:
13862 case tcc_binary:
13863 case tcc_statement:
13864 case tcc_vl_exp:
13865 len = TREE_OPERAND_LENGTH (expr);
13866 for (i = 0; i < len; ++i)
13867 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
13868 break;
13869 case tcc_declaration:
13870 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
13871 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
13872 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
13873 {
13874 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
13875 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
13876 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
13877 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
13878 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
13879 }
13880 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_WITH_VIS))
13881 fold_checksum_tree (DECL_SECTION_NAME (expr), ctx, ht);
13882
13883 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
13884 {
13885 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
13886 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
13887 fold_checksum_tree (DECL_ARGUMENT_FLD (expr), ctx, ht);
13888 }
13889 break;
13890 case tcc_type:
13891 if (TREE_CODE (expr) == ENUMERAL_TYPE)
13892 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
13893 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
13894 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
13895 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
13896 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
13897 if (INTEGRAL_TYPE_P (expr)
13898 || SCALAR_FLOAT_TYPE_P (expr))
13899 {
13900 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
13901 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
13902 }
13903 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
13904 if (TREE_CODE (expr) == RECORD_TYPE
13905 || TREE_CODE (expr) == UNION_TYPE
13906 || TREE_CODE (expr) == QUAL_UNION_TYPE)
13907 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
13908 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
13909 break;
13910 default:
13911 break;
13912 }
13913 }
13914
13915 /* Helper function for outputting the checksum of a tree T. When
13916 debugging with gdb, you can "define mynext" to be "next" followed
13917 by "call debug_fold_checksum (op0)", then just trace down till the
13918 outputs differ. */
13919
13920 void
13921 debug_fold_checksum (const_tree t)
13922 {
13923 int i;
13924 unsigned char checksum[16];
13925 struct md5_ctx ctx;
13926 htab_t ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13927
13928 md5_init_ctx (&ctx);
13929 fold_checksum_tree (t, &ctx, ht);
13930 md5_finish_ctx (&ctx, checksum);
13931 htab_empty (ht);
13932
13933 for (i = 0; i < 16; i++)
13934 fprintf (stderr, "%d ", checksum[i]);
13935
13936 fprintf (stderr, "\n");
13937 }
13938
13939 #endif
13940
13941 /* Fold a unary tree expression with code CODE of type TYPE with an
13942 operand OP0. Return a folded expression if successful. Otherwise,
13943 return a tree expression with code CODE of type TYPE with an
13944 operand OP0. */
13945
13946 tree
13947 fold_build1_stat (enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
13948 {
13949 tree tem;
13950 #ifdef ENABLE_FOLD_CHECKING
13951 unsigned char checksum_before[16], checksum_after[16];
13952 struct md5_ctx ctx;
13953 htab_t ht;
13954
13955 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13956 md5_init_ctx (&ctx);
13957 fold_checksum_tree (op0, &ctx, ht);
13958 md5_finish_ctx (&ctx, checksum_before);
13959 htab_empty (ht);
13960 #endif
13961
13962 tem = fold_unary (code, type, op0);
13963 if (!tem)
13964 tem = build1_stat (code, type, op0 PASS_MEM_STAT);
13965
13966 #ifdef ENABLE_FOLD_CHECKING
13967 md5_init_ctx (&ctx);
13968 fold_checksum_tree (op0, &ctx, ht);
13969 md5_finish_ctx (&ctx, checksum_after);
13970 htab_delete (ht);
13971
13972 if (memcmp (checksum_before, checksum_after, 16))
13973 fold_check_failed (op0, tem);
13974 #endif
13975 return tem;
13976 }
13977
13978 /* Fold a binary tree expression with code CODE of type TYPE with
13979 operands OP0 and OP1. Return a folded expression if successful.
13980 Otherwise, return a tree expression with code CODE of type TYPE
13981 with operands OP0 and OP1. */
13982
13983 tree
13984 fold_build2_stat (enum tree_code code, tree type, tree op0, tree op1
13985 MEM_STAT_DECL)
13986 {
13987 tree tem;
13988 #ifdef ENABLE_FOLD_CHECKING
13989 unsigned char checksum_before_op0[16],
13990 checksum_before_op1[16],
13991 checksum_after_op0[16],
13992 checksum_after_op1[16];
13993 struct md5_ctx ctx;
13994 htab_t ht;
13995
13996 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13997 md5_init_ctx (&ctx);
13998 fold_checksum_tree (op0, &ctx, ht);
13999 md5_finish_ctx (&ctx, checksum_before_op0);
14000 htab_empty (ht);
14001
14002 md5_init_ctx (&ctx);
14003 fold_checksum_tree (op1, &ctx, ht);
14004 md5_finish_ctx (&ctx, checksum_before_op1);
14005 htab_empty (ht);
14006 #endif
14007
14008 tem = fold_binary (code, type, op0, op1);
14009 if (!tem)
14010 tem = build2_stat (code, type, op0, op1 PASS_MEM_STAT);
14011
14012 #ifdef ENABLE_FOLD_CHECKING
14013 md5_init_ctx (&ctx);
14014 fold_checksum_tree (op0, &ctx, ht);
14015 md5_finish_ctx (&ctx, checksum_after_op0);
14016 htab_empty (ht);
14017
14018 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
14019 fold_check_failed (op0, tem);
14020
14021 md5_init_ctx (&ctx);
14022 fold_checksum_tree (op1, &ctx, ht);
14023 md5_finish_ctx (&ctx, checksum_after_op1);
14024 htab_delete (ht);
14025
14026 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
14027 fold_check_failed (op1, tem);
14028 #endif
14029 return tem;
14030 }
14031
14032 /* Fold a ternary tree expression with code CODE of type TYPE with
14033 operands OP0, OP1, and OP2. Return a folded expression if
14034 successful. Otherwise, return a tree expression with code CODE of
14035 type TYPE with operands OP0, OP1, and OP2. */
14036
14037 tree
14038 fold_build3_stat (enum tree_code code, tree type, tree op0, tree op1, tree op2
14039 MEM_STAT_DECL)
14040 {
14041 tree tem;
14042 #ifdef ENABLE_FOLD_CHECKING
14043 unsigned char checksum_before_op0[16],
14044 checksum_before_op1[16],
14045 checksum_before_op2[16],
14046 checksum_after_op0[16],
14047 checksum_after_op1[16],
14048 checksum_after_op2[16];
14049 struct md5_ctx ctx;
14050 htab_t ht;
14051
14052 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
14053 md5_init_ctx (&ctx);
14054 fold_checksum_tree (op0, &ctx, ht);
14055 md5_finish_ctx (&ctx, checksum_before_op0);
14056 htab_empty (ht);
14057
14058 md5_init_ctx (&ctx);
14059 fold_checksum_tree (op1, &ctx, ht);
14060 md5_finish_ctx (&ctx, checksum_before_op1);
14061 htab_empty (ht);
14062
14063 md5_init_ctx (&ctx);
14064 fold_checksum_tree (op2, &ctx, ht);
14065 md5_finish_ctx (&ctx, checksum_before_op2);
14066 htab_empty (ht);
14067 #endif
14068
14069 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
14070 tem = fold_ternary (code, type, op0, op1, op2);
14071 if (!tem)
14072 tem = build3_stat (code, type, op0, op1, op2 PASS_MEM_STAT);
14073
14074 #ifdef ENABLE_FOLD_CHECKING
14075 md5_init_ctx (&ctx);
14076 fold_checksum_tree (op0, &ctx, ht);
14077 md5_finish_ctx (&ctx, checksum_after_op0);
14078 htab_empty (ht);
14079
14080 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
14081 fold_check_failed (op0, tem);
14082
14083 md5_init_ctx (&ctx);
14084 fold_checksum_tree (op1, &ctx, ht);
14085 md5_finish_ctx (&ctx, checksum_after_op1);
14086 htab_empty (ht);
14087
14088 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
14089 fold_check_failed (op1, tem);
14090
14091 md5_init_ctx (&ctx);
14092 fold_checksum_tree (op2, &ctx, ht);
14093 md5_finish_ctx (&ctx, checksum_after_op2);
14094 htab_delete (ht);
14095
14096 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
14097 fold_check_failed (op2, tem);
14098 #endif
14099 return tem;
14100 }
14101
14102 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
14103 arguments in ARGARRAY, and a null static chain.
14104 Return a folded expression if successful. Otherwise, return a CALL_EXPR
14105 of type TYPE from the given operands as constructed by build_call_array. */
14106
14107 tree
14108 fold_build_call_array (tree type, tree fn, int nargs, tree *argarray)
14109 {
14110 tree tem;
14111 #ifdef ENABLE_FOLD_CHECKING
14112 unsigned char checksum_before_fn[16],
14113 checksum_before_arglist[16],
14114 checksum_after_fn[16],
14115 checksum_after_arglist[16];
14116 struct md5_ctx ctx;
14117 htab_t ht;
14118 int i;
14119
14120 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
14121 md5_init_ctx (&ctx);
14122 fold_checksum_tree (fn, &ctx, ht);
14123 md5_finish_ctx (&ctx, checksum_before_fn);
14124 htab_empty (ht);
14125
14126 md5_init_ctx (&ctx);
14127 for (i = 0; i < nargs; i++)
14128 fold_checksum_tree (argarray[i], &ctx, ht);
14129 md5_finish_ctx (&ctx, checksum_before_arglist);
14130 htab_empty (ht);
14131 #endif
14132
14133 tem = fold_builtin_call_array (type, fn, nargs, argarray);
14134
14135 #ifdef ENABLE_FOLD_CHECKING
14136 md5_init_ctx (&ctx);
14137 fold_checksum_tree (fn, &ctx, ht);
14138 md5_finish_ctx (&ctx, checksum_after_fn);
14139 htab_empty (ht);
14140
14141 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
14142 fold_check_failed (fn, tem);
14143
14144 md5_init_ctx (&ctx);
14145 for (i = 0; i < nargs; i++)
14146 fold_checksum_tree (argarray[i], &ctx, ht);
14147 md5_finish_ctx (&ctx, checksum_after_arglist);
14148 htab_delete (ht);
14149
14150 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
14151 fold_check_failed (NULL_TREE, tem);
14152 #endif
14153 return tem;
14154 }
14155
14156 /* Perform constant folding and related simplification of initializer
14157 expression EXPR. These behave identically to "fold_buildN" but ignore
14158 potential run-time traps and exceptions that fold must preserve. */
14159
14160 #define START_FOLD_INIT \
14161 int saved_signaling_nans = flag_signaling_nans;\
14162 int saved_trapping_math = flag_trapping_math;\
14163 int saved_rounding_math = flag_rounding_math;\
14164 int saved_trapv = flag_trapv;\
14165 int saved_folding_initializer = folding_initializer;\
14166 flag_signaling_nans = 0;\
14167 flag_trapping_math = 0;\
14168 flag_rounding_math = 0;\
14169 flag_trapv = 0;\
14170 folding_initializer = 1;
14171
14172 #define END_FOLD_INIT \
14173 flag_signaling_nans = saved_signaling_nans;\
14174 flag_trapping_math = saved_trapping_math;\
14175 flag_rounding_math = saved_rounding_math;\
14176 flag_trapv = saved_trapv;\
14177 folding_initializer = saved_folding_initializer;
14178
14179 tree
14180 fold_build1_initializer (enum tree_code code, tree type, tree op)
14181 {
14182 tree result;
14183 START_FOLD_INIT;
14184
14185 result = fold_build1 (code, type, op);
14186
14187 END_FOLD_INIT;
14188 return result;
14189 }
14190
14191 tree
14192 fold_build2_initializer (enum tree_code code, tree type, tree op0, tree op1)
14193 {
14194 tree result;
14195 START_FOLD_INIT;
14196
14197 result = fold_build2 (code, type, op0, op1);
14198
14199 END_FOLD_INIT;
14200 return result;
14201 }
14202
14203 tree
14204 fold_build3_initializer (enum tree_code code, tree type, tree op0, tree op1,
14205 tree op2)
14206 {
14207 tree result;
14208 START_FOLD_INIT;
14209
14210 result = fold_build3 (code, type, op0, op1, op2);
14211
14212 END_FOLD_INIT;
14213 return result;
14214 }
14215
14216 tree
14217 fold_build_call_array_initializer (tree type, tree fn,
14218 int nargs, tree *argarray)
14219 {
14220 tree result;
14221 START_FOLD_INIT;
14222
14223 result = fold_build_call_array (type, fn, nargs, argarray);
14224
14225 END_FOLD_INIT;
14226 return result;
14227 }
14228
14229 #undef START_FOLD_INIT
14230 #undef END_FOLD_INIT
14231
14232 /* Determine if first argument is a multiple of second argument. Return 0 if
14233 it is not, or we cannot easily determined it to be.
14234
14235 An example of the sort of thing we care about (at this point; this routine
14236 could surely be made more general, and expanded to do what the *_DIV_EXPR's
14237 fold cases do now) is discovering that
14238
14239 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14240
14241 is a multiple of
14242
14243 SAVE_EXPR (J * 8)
14244
14245 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
14246
14247 This code also handles discovering that
14248
14249 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14250
14251 is a multiple of 8 so we don't have to worry about dealing with a
14252 possible remainder.
14253
14254 Note that we *look* inside a SAVE_EXPR only to determine how it was
14255 calculated; it is not safe for fold to do much of anything else with the
14256 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
14257 at run time. For example, the latter example above *cannot* be implemented
14258 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
14259 evaluation time of the original SAVE_EXPR is not necessarily the same at
14260 the time the new expression is evaluated. The only optimization of this
14261 sort that would be valid is changing
14262
14263 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
14264
14265 divided by 8 to
14266
14267 SAVE_EXPR (I) * SAVE_EXPR (J)
14268
14269 (where the same SAVE_EXPR (J) is used in the original and the
14270 transformed version). */
14271
14272 int
14273 multiple_of_p (tree type, const_tree top, const_tree bottom)
14274 {
14275 if (operand_equal_p (top, bottom, 0))
14276 return 1;
14277
14278 if (TREE_CODE (type) != INTEGER_TYPE)
14279 return 0;
14280
14281 switch (TREE_CODE (top))
14282 {
14283 case BIT_AND_EXPR:
14284 /* Bitwise and provides a power of two multiple. If the mask is
14285 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
14286 if (!integer_pow2p (bottom))
14287 return 0;
14288 /* FALLTHRU */
14289
14290 case MULT_EXPR:
14291 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
14292 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
14293
14294 case PLUS_EXPR:
14295 case MINUS_EXPR:
14296 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
14297 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
14298
14299 case LSHIFT_EXPR:
14300 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
14301 {
14302 tree op1, t1;
14303
14304 op1 = TREE_OPERAND (top, 1);
14305 /* const_binop may not detect overflow correctly,
14306 so check for it explicitly here. */
14307 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
14308 > TREE_INT_CST_LOW (op1)
14309 && TREE_INT_CST_HIGH (op1) == 0
14310 && 0 != (t1 = fold_convert (type,
14311 const_binop (LSHIFT_EXPR,
14312 size_one_node,
14313 op1, 0)))
14314 && !TREE_OVERFLOW (t1))
14315 return multiple_of_p (type, t1, bottom);
14316 }
14317 return 0;
14318
14319 case NOP_EXPR:
14320 /* Can't handle conversions from non-integral or wider integral type. */
14321 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
14322 || (TYPE_PRECISION (type)
14323 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
14324 return 0;
14325
14326 /* .. fall through ... */
14327
14328 case SAVE_EXPR:
14329 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
14330
14331 case INTEGER_CST:
14332 if (TREE_CODE (bottom) != INTEGER_CST
14333 || integer_zerop (bottom)
14334 || (TYPE_UNSIGNED (type)
14335 && (tree_int_cst_sgn (top) < 0
14336 || tree_int_cst_sgn (bottom) < 0)))
14337 return 0;
14338 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR,
14339 top, bottom, 0));
14340
14341 default:
14342 return 0;
14343 }
14344 }
14345
14346 /* Return true if CODE or TYPE is known to be non-negative. */
14347
14348 static bool
14349 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
14350 {
14351 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
14352 && truth_value_p (code))
14353 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
14354 have a signed:1 type (where the value is -1 and 0). */
14355 return true;
14356 return false;
14357 }
14358
14359 /* Return true if (CODE OP0) is known to be non-negative. If the return
14360 value is based on the assumption that signed overflow is undefined,
14361 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14362 *STRICT_OVERFLOW_P. */
14363
14364 bool
14365 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14366 bool *strict_overflow_p)
14367 {
14368 if (TYPE_UNSIGNED (type))
14369 return true;
14370
14371 switch (code)
14372 {
14373 case ABS_EXPR:
14374 /* We can't return 1 if flag_wrapv is set because
14375 ABS_EXPR<INT_MIN> = INT_MIN. */
14376 if (!INTEGRAL_TYPE_P (type))
14377 return true;
14378 if (TYPE_OVERFLOW_UNDEFINED (type))
14379 {
14380 *strict_overflow_p = true;
14381 return true;
14382 }
14383 break;
14384
14385 case NON_LVALUE_EXPR:
14386 case FLOAT_EXPR:
14387 case FIX_TRUNC_EXPR:
14388 return tree_expr_nonnegative_warnv_p (op0,
14389 strict_overflow_p);
14390
14391 case NOP_EXPR:
14392 {
14393 tree inner_type = TREE_TYPE (op0);
14394 tree outer_type = type;
14395
14396 if (TREE_CODE (outer_type) == REAL_TYPE)
14397 {
14398 if (TREE_CODE (inner_type) == REAL_TYPE)
14399 return tree_expr_nonnegative_warnv_p (op0,
14400 strict_overflow_p);
14401 if (TREE_CODE (inner_type) == INTEGER_TYPE)
14402 {
14403 if (TYPE_UNSIGNED (inner_type))
14404 return true;
14405 return tree_expr_nonnegative_warnv_p (op0,
14406 strict_overflow_p);
14407 }
14408 }
14409 else if (TREE_CODE (outer_type) == INTEGER_TYPE)
14410 {
14411 if (TREE_CODE (inner_type) == REAL_TYPE)
14412 return tree_expr_nonnegative_warnv_p (op0,
14413 strict_overflow_p);
14414 if (TREE_CODE (inner_type) == INTEGER_TYPE)
14415 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
14416 && TYPE_UNSIGNED (inner_type);
14417 }
14418 }
14419 break;
14420
14421 default:
14422 return tree_simple_nonnegative_warnv_p (code, type);
14423 }
14424
14425 /* We don't know sign of `t', so be conservative and return false. */
14426 return false;
14427 }
14428
14429 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
14430 value is based on the assumption that signed overflow is undefined,
14431 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14432 *STRICT_OVERFLOW_P. */
14433
14434 bool
14435 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14436 tree op1, bool *strict_overflow_p)
14437 {
14438 if (TYPE_UNSIGNED (type))
14439 return true;
14440
14441 switch (code)
14442 {
14443 case POINTER_PLUS_EXPR:
14444 case PLUS_EXPR:
14445 if (FLOAT_TYPE_P (type))
14446 return (tree_expr_nonnegative_warnv_p (op0,
14447 strict_overflow_p)
14448 && tree_expr_nonnegative_warnv_p (op1,
14449 strict_overflow_p));
14450
14451 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
14452 both unsigned and at least 2 bits shorter than the result. */
14453 if (TREE_CODE (type) == INTEGER_TYPE
14454 && TREE_CODE (op0) == NOP_EXPR
14455 && TREE_CODE (op1) == NOP_EXPR)
14456 {
14457 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
14458 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
14459 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
14460 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
14461 {
14462 unsigned int prec = MAX (TYPE_PRECISION (inner1),
14463 TYPE_PRECISION (inner2)) + 1;
14464 return prec < TYPE_PRECISION (type);
14465 }
14466 }
14467 break;
14468
14469 case MULT_EXPR:
14470 if (FLOAT_TYPE_P (type))
14471 {
14472 /* x * x for floating point x is always non-negative. */
14473 if (operand_equal_p (op0, op1, 0))
14474 return true;
14475 return (tree_expr_nonnegative_warnv_p (op0,
14476 strict_overflow_p)
14477 && tree_expr_nonnegative_warnv_p (op1,
14478 strict_overflow_p));
14479 }
14480
14481 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
14482 both unsigned and their total bits is shorter than the result. */
14483 if (TREE_CODE (type) == INTEGER_TYPE
14484 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
14485 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
14486 {
14487 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
14488 ? TREE_TYPE (TREE_OPERAND (op0, 0))
14489 : TREE_TYPE (op0);
14490 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
14491 ? TREE_TYPE (TREE_OPERAND (op1, 0))
14492 : TREE_TYPE (op1);
14493
14494 bool unsigned0 = TYPE_UNSIGNED (inner0);
14495 bool unsigned1 = TYPE_UNSIGNED (inner1);
14496
14497 if (TREE_CODE (op0) == INTEGER_CST)
14498 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
14499
14500 if (TREE_CODE (op1) == INTEGER_CST)
14501 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
14502
14503 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
14504 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
14505 {
14506 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
14507 ? tree_int_cst_min_precision (op0, /*unsignedp=*/true)
14508 : TYPE_PRECISION (inner0);
14509
14510 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
14511 ? tree_int_cst_min_precision (op1, /*unsignedp=*/true)
14512 : TYPE_PRECISION (inner1);
14513
14514 return precision0 + precision1 < TYPE_PRECISION (type);
14515 }
14516 }
14517 return false;
14518
14519 case BIT_AND_EXPR:
14520 case MAX_EXPR:
14521 return (tree_expr_nonnegative_warnv_p (op0,
14522 strict_overflow_p)
14523 || tree_expr_nonnegative_warnv_p (op1,
14524 strict_overflow_p));
14525
14526 case BIT_IOR_EXPR:
14527 case BIT_XOR_EXPR:
14528 case MIN_EXPR:
14529 case RDIV_EXPR:
14530 case TRUNC_DIV_EXPR:
14531 case CEIL_DIV_EXPR:
14532 case FLOOR_DIV_EXPR:
14533 case ROUND_DIV_EXPR:
14534 return (tree_expr_nonnegative_warnv_p (op0,
14535 strict_overflow_p)
14536 && tree_expr_nonnegative_warnv_p (op1,
14537 strict_overflow_p));
14538
14539 case TRUNC_MOD_EXPR:
14540 case CEIL_MOD_EXPR:
14541 case FLOOR_MOD_EXPR:
14542 case ROUND_MOD_EXPR:
14543 return tree_expr_nonnegative_warnv_p (op0,
14544 strict_overflow_p);
14545 default:
14546 return tree_simple_nonnegative_warnv_p (code, type);
14547 }
14548
14549 /* We don't know sign of `t', so be conservative and return false. */
14550 return false;
14551 }
14552
14553 /* Return true if T is known to be non-negative. If the return
14554 value is based on the assumption that signed overflow is undefined,
14555 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14556 *STRICT_OVERFLOW_P. */
14557
14558 bool
14559 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14560 {
14561 if (TYPE_UNSIGNED (TREE_TYPE (t)))
14562 return true;
14563
14564 switch (TREE_CODE (t))
14565 {
14566 case INTEGER_CST:
14567 return tree_int_cst_sgn (t) >= 0;
14568
14569 case REAL_CST:
14570 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
14571
14572 case FIXED_CST:
14573 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
14574
14575 case COND_EXPR:
14576 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14577 strict_overflow_p)
14578 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
14579 strict_overflow_p));
14580 default:
14581 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
14582 TREE_TYPE (t));
14583 }
14584 /* We don't know sign of `t', so be conservative and return false. */
14585 return false;
14586 }
14587
14588 /* Return true if T is known to be non-negative. If the return
14589 value is based on the assumption that signed overflow is undefined,
14590 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14591 *STRICT_OVERFLOW_P. */
14592
14593 bool
14594 tree_call_nonnegative_warnv_p (tree type, tree fndecl,
14595 tree arg0, tree arg1, bool *strict_overflow_p)
14596 {
14597 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
14598 switch (DECL_FUNCTION_CODE (fndecl))
14599 {
14600 CASE_FLT_FN (BUILT_IN_ACOS):
14601 CASE_FLT_FN (BUILT_IN_ACOSH):
14602 CASE_FLT_FN (BUILT_IN_CABS):
14603 CASE_FLT_FN (BUILT_IN_COSH):
14604 CASE_FLT_FN (BUILT_IN_ERFC):
14605 CASE_FLT_FN (BUILT_IN_EXP):
14606 CASE_FLT_FN (BUILT_IN_EXP10):
14607 CASE_FLT_FN (BUILT_IN_EXP2):
14608 CASE_FLT_FN (BUILT_IN_FABS):
14609 CASE_FLT_FN (BUILT_IN_FDIM):
14610 CASE_FLT_FN (BUILT_IN_HYPOT):
14611 CASE_FLT_FN (BUILT_IN_POW10):
14612 CASE_INT_FN (BUILT_IN_FFS):
14613 CASE_INT_FN (BUILT_IN_PARITY):
14614 CASE_INT_FN (BUILT_IN_POPCOUNT):
14615 case BUILT_IN_BSWAP32:
14616 case BUILT_IN_BSWAP64:
14617 /* Always true. */
14618 return true;
14619
14620 CASE_FLT_FN (BUILT_IN_SQRT):
14621 /* sqrt(-0.0) is -0.0. */
14622 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
14623 return true;
14624 return tree_expr_nonnegative_warnv_p (arg0,
14625 strict_overflow_p);
14626
14627 CASE_FLT_FN (BUILT_IN_ASINH):
14628 CASE_FLT_FN (BUILT_IN_ATAN):
14629 CASE_FLT_FN (BUILT_IN_ATANH):
14630 CASE_FLT_FN (BUILT_IN_CBRT):
14631 CASE_FLT_FN (BUILT_IN_CEIL):
14632 CASE_FLT_FN (BUILT_IN_ERF):
14633 CASE_FLT_FN (BUILT_IN_EXPM1):
14634 CASE_FLT_FN (BUILT_IN_FLOOR):
14635 CASE_FLT_FN (BUILT_IN_FMOD):
14636 CASE_FLT_FN (BUILT_IN_FREXP):
14637 CASE_FLT_FN (BUILT_IN_LCEIL):
14638 CASE_FLT_FN (BUILT_IN_LDEXP):
14639 CASE_FLT_FN (BUILT_IN_LFLOOR):
14640 CASE_FLT_FN (BUILT_IN_LLCEIL):
14641 CASE_FLT_FN (BUILT_IN_LLFLOOR):
14642 CASE_FLT_FN (BUILT_IN_LLRINT):
14643 CASE_FLT_FN (BUILT_IN_LLROUND):
14644 CASE_FLT_FN (BUILT_IN_LRINT):
14645 CASE_FLT_FN (BUILT_IN_LROUND):
14646 CASE_FLT_FN (BUILT_IN_MODF):
14647 CASE_FLT_FN (BUILT_IN_NEARBYINT):
14648 CASE_FLT_FN (BUILT_IN_RINT):
14649 CASE_FLT_FN (BUILT_IN_ROUND):
14650 CASE_FLT_FN (BUILT_IN_SCALB):
14651 CASE_FLT_FN (BUILT_IN_SCALBLN):
14652 CASE_FLT_FN (BUILT_IN_SCALBN):
14653 CASE_FLT_FN (BUILT_IN_SIGNBIT):
14654 CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
14655 CASE_FLT_FN (BUILT_IN_SINH):
14656 CASE_FLT_FN (BUILT_IN_TANH):
14657 CASE_FLT_FN (BUILT_IN_TRUNC):
14658 /* True if the 1st argument is nonnegative. */
14659 return tree_expr_nonnegative_warnv_p (arg0,
14660 strict_overflow_p);
14661
14662 CASE_FLT_FN (BUILT_IN_FMAX):
14663 /* True if the 1st OR 2nd arguments are nonnegative. */
14664 return (tree_expr_nonnegative_warnv_p (arg0,
14665 strict_overflow_p)
14666 || (tree_expr_nonnegative_warnv_p (arg1,
14667 strict_overflow_p)));
14668
14669 CASE_FLT_FN (BUILT_IN_FMIN):
14670 /* True if the 1st AND 2nd arguments are nonnegative. */
14671 return (tree_expr_nonnegative_warnv_p (arg0,
14672 strict_overflow_p)
14673 && (tree_expr_nonnegative_warnv_p (arg1,
14674 strict_overflow_p)));
14675
14676 CASE_FLT_FN (BUILT_IN_COPYSIGN):
14677 /* True if the 2nd argument is nonnegative. */
14678 return tree_expr_nonnegative_warnv_p (arg1,
14679 strict_overflow_p);
14680
14681 CASE_FLT_FN (BUILT_IN_POWI):
14682 /* True if the 1st argument is nonnegative or the second
14683 argument is an even integer. */
14684 if (TREE_CODE (arg1) == INTEGER_CST
14685 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
14686 return true;
14687 return tree_expr_nonnegative_warnv_p (arg0,
14688 strict_overflow_p);
14689
14690 CASE_FLT_FN (BUILT_IN_POW):
14691 /* True if the 1st argument is nonnegative or the second
14692 argument is an even integer valued real. */
14693 if (TREE_CODE (arg1) == REAL_CST)
14694 {
14695 REAL_VALUE_TYPE c;
14696 HOST_WIDE_INT n;
14697
14698 c = TREE_REAL_CST (arg1);
14699 n = real_to_integer (&c);
14700 if ((n & 1) == 0)
14701 {
14702 REAL_VALUE_TYPE cint;
14703 real_from_integer (&cint, VOIDmode, n,
14704 n < 0 ? -1 : 0, 0);
14705 if (real_identical (&c, &cint))
14706 return true;
14707 }
14708 }
14709 return tree_expr_nonnegative_warnv_p (arg0,
14710 strict_overflow_p);
14711
14712 default:
14713 break;
14714 }
14715 return tree_simple_nonnegative_warnv_p (CALL_EXPR,
14716 type);
14717 }
14718
14719 /* Return true if T is known to be non-negative. If the return
14720 value is based on the assumption that signed overflow is undefined,
14721 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14722 *STRICT_OVERFLOW_P. */
14723
14724 bool
14725 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14726 {
14727 enum tree_code code = TREE_CODE (t);
14728 if (TYPE_UNSIGNED (TREE_TYPE (t)))
14729 return true;
14730
14731 switch (code)
14732 {
14733 case TARGET_EXPR:
14734 {
14735 tree temp = TARGET_EXPR_SLOT (t);
14736 t = TARGET_EXPR_INITIAL (t);
14737
14738 /* If the initializer is non-void, then it's a normal expression
14739 that will be assigned to the slot. */
14740 if (!VOID_TYPE_P (t))
14741 return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
14742
14743 /* Otherwise, the initializer sets the slot in some way. One common
14744 way is an assignment statement at the end of the initializer. */
14745 while (1)
14746 {
14747 if (TREE_CODE (t) == BIND_EXPR)
14748 t = expr_last (BIND_EXPR_BODY (t));
14749 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
14750 || TREE_CODE (t) == TRY_CATCH_EXPR)
14751 t = expr_last (TREE_OPERAND (t, 0));
14752 else if (TREE_CODE (t) == STATEMENT_LIST)
14753 t = expr_last (t);
14754 else
14755 break;
14756 }
14757 if (TREE_CODE (t) == MODIFY_EXPR
14758 && TREE_OPERAND (t, 0) == temp)
14759 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14760 strict_overflow_p);
14761
14762 return false;
14763 }
14764
14765 case CALL_EXPR:
14766 {
14767 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
14768 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
14769
14770 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
14771 get_callee_fndecl (t),
14772 arg0,
14773 arg1,
14774 strict_overflow_p);
14775 }
14776 case COMPOUND_EXPR:
14777 case MODIFY_EXPR:
14778 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14779 strict_overflow_p);
14780 case BIND_EXPR:
14781 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
14782 strict_overflow_p);
14783 case SAVE_EXPR:
14784 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
14785 strict_overflow_p);
14786
14787 default:
14788 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
14789 TREE_TYPE (t));
14790 }
14791
14792 /* We don't know sign of `t', so be conservative and return false. */
14793 return false;
14794 }
14795
14796 /* Return true if T is known to be non-negative. If the return
14797 value is based on the assumption that signed overflow is undefined,
14798 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14799 *STRICT_OVERFLOW_P. */
14800
14801 bool
14802 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14803 {
14804 enum tree_code code;
14805 if (t == error_mark_node)
14806 return false;
14807
14808 code = TREE_CODE (t);
14809 switch (TREE_CODE_CLASS (code))
14810 {
14811 case tcc_binary:
14812 case tcc_comparison:
14813 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
14814 TREE_TYPE (t),
14815 TREE_OPERAND (t, 0),
14816 TREE_OPERAND (t, 1),
14817 strict_overflow_p);
14818
14819 case tcc_unary:
14820 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
14821 TREE_TYPE (t),
14822 TREE_OPERAND (t, 0),
14823 strict_overflow_p);
14824
14825 case tcc_constant:
14826 case tcc_declaration:
14827 case tcc_reference:
14828 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
14829
14830 default:
14831 break;
14832 }
14833
14834 switch (code)
14835 {
14836 case TRUTH_AND_EXPR:
14837 case TRUTH_OR_EXPR:
14838 case TRUTH_XOR_EXPR:
14839 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
14840 TREE_TYPE (t),
14841 TREE_OPERAND (t, 0),
14842 TREE_OPERAND (t, 1),
14843 strict_overflow_p);
14844 case TRUTH_NOT_EXPR:
14845 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
14846 TREE_TYPE (t),
14847 TREE_OPERAND (t, 0),
14848 strict_overflow_p);
14849
14850 case COND_EXPR:
14851 case CONSTRUCTOR:
14852 case OBJ_TYPE_REF:
14853 case ASSERT_EXPR:
14854 case ADDR_EXPR:
14855 case WITH_SIZE_EXPR:
14856 case EXC_PTR_EXPR:
14857 case SSA_NAME:
14858 case FILTER_EXPR:
14859 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
14860
14861 default:
14862 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p);
14863 }
14864 }
14865
14866 /* Return true if `t' is known to be non-negative. Handle warnings
14867 about undefined signed overflow. */
14868
14869 bool
14870 tree_expr_nonnegative_p (tree t)
14871 {
14872 bool ret, strict_overflow_p;
14873
14874 strict_overflow_p = false;
14875 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
14876 if (strict_overflow_p)
14877 fold_overflow_warning (("assuming signed overflow does not occur when "
14878 "determining that expression is always "
14879 "non-negative"),
14880 WARN_STRICT_OVERFLOW_MISC);
14881 return ret;
14882 }
14883
14884
14885 /* Return true when (CODE OP0) is an address and is known to be nonzero.
14886 For floating point we further ensure that T is not denormal.
14887 Similar logic is present in nonzero_address in rtlanal.h.
14888
14889 If the return value is based on the assumption that signed overflow
14890 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14891 change *STRICT_OVERFLOW_P. */
14892
14893 bool
14894 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
14895 bool *strict_overflow_p)
14896 {
14897 switch (code)
14898 {
14899 case ABS_EXPR:
14900 return tree_expr_nonzero_warnv_p (op0,
14901 strict_overflow_p);
14902
14903 case NOP_EXPR:
14904 {
14905 tree inner_type = TREE_TYPE (op0);
14906 tree outer_type = type;
14907
14908 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
14909 && tree_expr_nonzero_warnv_p (op0,
14910 strict_overflow_p));
14911 }
14912 break;
14913
14914 case NON_LVALUE_EXPR:
14915 return tree_expr_nonzero_warnv_p (op0,
14916 strict_overflow_p);
14917
14918 default:
14919 break;
14920 }
14921
14922 return false;
14923 }
14924
14925 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
14926 For floating point we further ensure that T is not denormal.
14927 Similar logic is present in nonzero_address in rtlanal.h.
14928
14929 If the return value is based on the assumption that signed overflow
14930 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14931 change *STRICT_OVERFLOW_P. */
14932
14933 bool
14934 tree_binary_nonzero_warnv_p (enum tree_code code,
14935 tree type,
14936 tree op0,
14937 tree op1, bool *strict_overflow_p)
14938 {
14939 bool sub_strict_overflow_p;
14940 switch (code)
14941 {
14942 case POINTER_PLUS_EXPR:
14943 case PLUS_EXPR:
14944 if (TYPE_OVERFLOW_UNDEFINED (type))
14945 {
14946 /* With the presence of negative values it is hard
14947 to say something. */
14948 sub_strict_overflow_p = false;
14949 if (!tree_expr_nonnegative_warnv_p (op0,
14950 &sub_strict_overflow_p)
14951 || !tree_expr_nonnegative_warnv_p (op1,
14952 &sub_strict_overflow_p))
14953 return false;
14954 /* One of operands must be positive and the other non-negative. */
14955 /* We don't set *STRICT_OVERFLOW_P here: even if this value
14956 overflows, on a twos-complement machine the sum of two
14957 nonnegative numbers can never be zero. */
14958 return (tree_expr_nonzero_warnv_p (op0,
14959 strict_overflow_p)
14960 || tree_expr_nonzero_warnv_p (op1,
14961 strict_overflow_p));
14962 }
14963 break;
14964
14965 case MULT_EXPR:
14966 if (TYPE_OVERFLOW_UNDEFINED (type))
14967 {
14968 if (tree_expr_nonzero_warnv_p (op0,
14969 strict_overflow_p)
14970 && tree_expr_nonzero_warnv_p (op1,
14971 strict_overflow_p))
14972 {
14973 *strict_overflow_p = true;
14974 return true;
14975 }
14976 }
14977 break;
14978
14979 case MIN_EXPR:
14980 sub_strict_overflow_p = false;
14981 if (tree_expr_nonzero_warnv_p (op0,
14982 &sub_strict_overflow_p)
14983 && tree_expr_nonzero_warnv_p (op1,
14984 &sub_strict_overflow_p))
14985 {
14986 if (sub_strict_overflow_p)
14987 *strict_overflow_p = true;
14988 }
14989 break;
14990
14991 case MAX_EXPR:
14992 sub_strict_overflow_p = false;
14993 if (tree_expr_nonzero_warnv_p (op0,
14994 &sub_strict_overflow_p))
14995 {
14996 if (sub_strict_overflow_p)
14997 *strict_overflow_p = true;
14998
14999 /* When both operands are nonzero, then MAX must be too. */
15000 if (tree_expr_nonzero_warnv_p (op1,
15001 strict_overflow_p))
15002 return true;
15003
15004 /* MAX where operand 0 is positive is positive. */
15005 return tree_expr_nonnegative_warnv_p (op0,
15006 strict_overflow_p);
15007 }
15008 /* MAX where operand 1 is positive is positive. */
15009 else if (tree_expr_nonzero_warnv_p (op1,
15010 &sub_strict_overflow_p)
15011 && tree_expr_nonnegative_warnv_p (op1,
15012 &sub_strict_overflow_p))
15013 {
15014 if (sub_strict_overflow_p)
15015 *strict_overflow_p = true;
15016 return true;
15017 }
15018 break;
15019
15020 case BIT_IOR_EXPR:
15021 return (tree_expr_nonzero_warnv_p (op1,
15022 strict_overflow_p)
15023 || tree_expr_nonzero_warnv_p (op0,
15024 strict_overflow_p));
15025
15026 default:
15027 break;
15028 }
15029
15030 return false;
15031 }
15032
15033 /* Return true when T is an address and is known to be nonzero.
15034 For floating point we further ensure that T is not denormal.
15035 Similar logic is present in nonzero_address in rtlanal.h.
15036
15037 If the return value is based on the assumption that signed overflow
15038 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15039 change *STRICT_OVERFLOW_P. */
15040
15041 bool
15042 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
15043 {
15044 bool sub_strict_overflow_p;
15045 switch (TREE_CODE (t))
15046 {
15047 case INTEGER_CST:
15048 return !integer_zerop (t);
15049
15050 case ADDR_EXPR:
15051 {
15052 tree base = get_base_address (TREE_OPERAND (t, 0));
15053
15054 if (!base)
15055 return false;
15056
15057 /* Weak declarations may link to NULL. Other things may also be NULL
15058 so protect with -fdelete-null-pointer-checks; but not variables
15059 allocated on the stack. */
15060 if (DECL_P (base)
15061 && (flag_delete_null_pointer_checks
15062 || (TREE_CODE (base) == VAR_DECL && !TREE_STATIC (base))))
15063 return !VAR_OR_FUNCTION_DECL_P (base) || !DECL_WEAK (base);
15064
15065 /* Constants are never weak. */
15066 if (CONSTANT_CLASS_P (base))
15067 return true;
15068
15069 return false;
15070 }
15071
15072 case COND_EXPR:
15073 sub_strict_overflow_p = false;
15074 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
15075 &sub_strict_overflow_p)
15076 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
15077 &sub_strict_overflow_p))
15078 {
15079 if (sub_strict_overflow_p)
15080 *strict_overflow_p = true;
15081 return true;
15082 }
15083 break;
15084
15085 default:
15086 break;
15087 }
15088 return false;
15089 }
15090
15091 /* Return true when T is an address and is known to be nonzero.
15092 For floating point we further ensure that T is not denormal.
15093 Similar logic is present in nonzero_address in rtlanal.h.
15094
15095 If the return value is based on the assumption that signed overflow
15096 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15097 change *STRICT_OVERFLOW_P. */
15098
15099 bool
15100 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
15101 {
15102 tree type = TREE_TYPE (t);
15103 enum tree_code code;
15104
15105 /* Doing something useful for floating point would need more work. */
15106 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
15107 return false;
15108
15109 code = TREE_CODE (t);
15110 switch (TREE_CODE_CLASS (code))
15111 {
15112 case tcc_unary:
15113 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
15114 strict_overflow_p);
15115 case tcc_binary:
15116 case tcc_comparison:
15117 return tree_binary_nonzero_warnv_p (code, type,
15118 TREE_OPERAND (t, 0),
15119 TREE_OPERAND (t, 1),
15120 strict_overflow_p);
15121 case tcc_constant:
15122 case tcc_declaration:
15123 case tcc_reference:
15124 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
15125
15126 default:
15127 break;
15128 }
15129
15130 switch (code)
15131 {
15132 case TRUTH_NOT_EXPR:
15133 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
15134 strict_overflow_p);
15135
15136 case TRUTH_AND_EXPR:
15137 case TRUTH_OR_EXPR:
15138 case TRUTH_XOR_EXPR:
15139 return tree_binary_nonzero_warnv_p (code, type,
15140 TREE_OPERAND (t, 0),
15141 TREE_OPERAND (t, 1),
15142 strict_overflow_p);
15143
15144 case COND_EXPR:
15145 case CONSTRUCTOR:
15146 case OBJ_TYPE_REF:
15147 case ASSERT_EXPR:
15148 case ADDR_EXPR:
15149 case WITH_SIZE_EXPR:
15150 case EXC_PTR_EXPR:
15151 case SSA_NAME:
15152 case FILTER_EXPR:
15153 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
15154
15155 case COMPOUND_EXPR:
15156 case MODIFY_EXPR:
15157 case BIND_EXPR:
15158 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
15159 strict_overflow_p);
15160
15161 case SAVE_EXPR:
15162 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
15163 strict_overflow_p);
15164
15165 case CALL_EXPR:
15166 return alloca_call_p (t);
15167
15168 default:
15169 break;
15170 }
15171 return false;
15172 }
15173
15174 /* Return true when T is an address and is known to be nonzero.
15175 Handle warnings about undefined signed overflow. */
15176
15177 bool
15178 tree_expr_nonzero_p (tree t)
15179 {
15180 bool ret, strict_overflow_p;
15181
15182 strict_overflow_p = false;
15183 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
15184 if (strict_overflow_p)
15185 fold_overflow_warning (("assuming signed overflow does not occur when "
15186 "determining that expression is always "
15187 "non-zero"),
15188 WARN_STRICT_OVERFLOW_MISC);
15189 return ret;
15190 }
15191
15192 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
15193 attempt to fold the expression to a constant without modifying TYPE,
15194 OP0 or OP1.
15195
15196 If the expression could be simplified to a constant, then return
15197 the constant. If the expression would not be simplified to a
15198 constant, then return NULL_TREE. */
15199
15200 tree
15201 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
15202 {
15203 tree tem = fold_binary (code, type, op0, op1);
15204 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15205 }
15206
15207 /* Given the components of a unary expression CODE, TYPE and OP0,
15208 attempt to fold the expression to a constant without modifying
15209 TYPE or OP0.
15210
15211 If the expression could be simplified to a constant, then return
15212 the constant. If the expression would not be simplified to a
15213 constant, then return NULL_TREE. */
15214
15215 tree
15216 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
15217 {
15218 tree tem = fold_unary (code, type, op0);
15219 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15220 }
15221
15222 /* If EXP represents referencing an element in a constant string
15223 (either via pointer arithmetic or array indexing), return the
15224 tree representing the value accessed, otherwise return NULL. */
15225
15226 tree
15227 fold_read_from_constant_string (tree exp)
15228 {
15229 if ((TREE_CODE (exp) == INDIRECT_REF
15230 || TREE_CODE (exp) == ARRAY_REF)
15231 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
15232 {
15233 tree exp1 = TREE_OPERAND (exp, 0);
15234 tree index;
15235 tree string;
15236
15237 if (TREE_CODE (exp) == INDIRECT_REF)
15238 string = string_constant (exp1, &index);
15239 else
15240 {
15241 tree low_bound = array_ref_low_bound (exp);
15242 index = fold_convert (sizetype, TREE_OPERAND (exp, 1));
15243
15244 /* Optimize the special-case of a zero lower bound.
15245
15246 We convert the low_bound to sizetype to avoid some problems
15247 with constant folding. (E.g. suppose the lower bound is 1,
15248 and its mode is QI. Without the conversion,l (ARRAY
15249 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
15250 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
15251 if (! integer_zerop (low_bound))
15252 index = size_diffop (index, fold_convert (sizetype, low_bound));
15253
15254 string = exp1;
15255 }
15256
15257 if (string
15258 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
15259 && TREE_CODE (string) == STRING_CST
15260 && TREE_CODE (index) == INTEGER_CST
15261 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
15262 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
15263 == MODE_INT)
15264 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
15265 return build_int_cst_type (TREE_TYPE (exp),
15266 (TREE_STRING_POINTER (string)
15267 [TREE_INT_CST_LOW (index)]));
15268 }
15269 return NULL;
15270 }
15271
15272 /* Return the tree for neg (ARG0) when ARG0 is known to be either
15273 an integer constant, real, or fixed-point constant.
15274
15275 TYPE is the type of the result. */
15276
15277 static tree
15278 fold_negate_const (tree arg0, tree type)
15279 {
15280 tree t = NULL_TREE;
15281
15282 switch (TREE_CODE (arg0))
15283 {
15284 case INTEGER_CST:
15285 {
15286 unsigned HOST_WIDE_INT low;
15287 HOST_WIDE_INT high;
15288 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
15289 TREE_INT_CST_HIGH (arg0),
15290 &low, &high);
15291 t = force_fit_type_double (type, low, high, 1,
15292 (overflow | TREE_OVERFLOW (arg0))
15293 && !TYPE_UNSIGNED (type));
15294 break;
15295 }
15296
15297 case REAL_CST:
15298 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
15299 break;
15300
15301 case FIXED_CST:
15302 {
15303 FIXED_VALUE_TYPE f;
15304 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
15305 &(TREE_FIXED_CST (arg0)), NULL,
15306 TYPE_SATURATING (type));
15307 t = build_fixed (type, f);
15308 /* Propagate overflow flags. */
15309 if (overflow_p | TREE_OVERFLOW (arg0))
15310 TREE_OVERFLOW (t) = 1;
15311 break;
15312 }
15313
15314 default:
15315 gcc_unreachable ();
15316 }
15317
15318 return t;
15319 }
15320
15321 /* Return the tree for abs (ARG0) when ARG0 is known to be either
15322 an integer constant or real constant.
15323
15324 TYPE is the type of the result. */
15325
15326 tree
15327 fold_abs_const (tree arg0, tree type)
15328 {
15329 tree t = NULL_TREE;
15330
15331 switch (TREE_CODE (arg0))
15332 {
15333 case INTEGER_CST:
15334 /* If the value is unsigned, then the absolute value is
15335 the same as the ordinary value. */
15336 if (TYPE_UNSIGNED (type))
15337 t = arg0;
15338 /* Similarly, if the value is non-negative. */
15339 else if (INT_CST_LT (integer_minus_one_node, arg0))
15340 t = arg0;
15341 /* If the value is negative, then the absolute value is
15342 its negation. */
15343 else
15344 {
15345 unsigned HOST_WIDE_INT low;
15346 HOST_WIDE_INT high;
15347 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
15348 TREE_INT_CST_HIGH (arg0),
15349 &low, &high);
15350 t = force_fit_type_double (type, low, high, -1,
15351 overflow | TREE_OVERFLOW (arg0));
15352 }
15353 break;
15354
15355 case REAL_CST:
15356 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
15357 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
15358 else
15359 t = arg0;
15360 break;
15361
15362 default:
15363 gcc_unreachable ();
15364 }
15365
15366 return t;
15367 }
15368
15369 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
15370 constant. TYPE is the type of the result. */
15371
15372 static tree
15373 fold_not_const (tree arg0, tree type)
15374 {
15375 tree t = NULL_TREE;
15376
15377 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
15378
15379 t = force_fit_type_double (type, ~TREE_INT_CST_LOW (arg0),
15380 ~TREE_INT_CST_HIGH (arg0), 0,
15381 TREE_OVERFLOW (arg0));
15382
15383 return t;
15384 }
15385
15386 /* Given CODE, a relational operator, the target type, TYPE and two
15387 constant operands OP0 and OP1, return the result of the
15388 relational operation. If the result is not a compile time
15389 constant, then return NULL_TREE. */
15390
15391 static tree
15392 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
15393 {
15394 int result, invert;
15395
15396 /* From here on, the only cases we handle are when the result is
15397 known to be a constant. */
15398
15399 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
15400 {
15401 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
15402 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
15403
15404 /* Handle the cases where either operand is a NaN. */
15405 if (real_isnan (c0) || real_isnan (c1))
15406 {
15407 switch (code)
15408 {
15409 case EQ_EXPR:
15410 case ORDERED_EXPR:
15411 result = 0;
15412 break;
15413
15414 case NE_EXPR:
15415 case UNORDERED_EXPR:
15416 case UNLT_EXPR:
15417 case UNLE_EXPR:
15418 case UNGT_EXPR:
15419 case UNGE_EXPR:
15420 case UNEQ_EXPR:
15421 result = 1;
15422 break;
15423
15424 case LT_EXPR:
15425 case LE_EXPR:
15426 case GT_EXPR:
15427 case GE_EXPR:
15428 case LTGT_EXPR:
15429 if (flag_trapping_math)
15430 return NULL_TREE;
15431 result = 0;
15432 break;
15433
15434 default:
15435 gcc_unreachable ();
15436 }
15437
15438 return constant_boolean_node (result, type);
15439 }
15440
15441 return constant_boolean_node (real_compare (code, c0, c1), type);
15442 }
15443
15444 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
15445 {
15446 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
15447 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
15448 return constant_boolean_node (fixed_compare (code, c0, c1), type);
15449 }
15450
15451 /* Handle equality/inequality of complex constants. */
15452 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
15453 {
15454 tree rcond = fold_relational_const (code, type,
15455 TREE_REALPART (op0),
15456 TREE_REALPART (op1));
15457 tree icond = fold_relational_const (code, type,
15458 TREE_IMAGPART (op0),
15459 TREE_IMAGPART (op1));
15460 if (code == EQ_EXPR)
15461 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
15462 else if (code == NE_EXPR)
15463 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
15464 else
15465 return NULL_TREE;
15466 }
15467
15468 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
15469
15470 To compute GT, swap the arguments and do LT.
15471 To compute GE, do LT and invert the result.
15472 To compute LE, swap the arguments, do LT and invert the result.
15473 To compute NE, do EQ and invert the result.
15474
15475 Therefore, the code below must handle only EQ and LT. */
15476
15477 if (code == LE_EXPR || code == GT_EXPR)
15478 {
15479 tree tem = op0;
15480 op0 = op1;
15481 op1 = tem;
15482 code = swap_tree_comparison (code);
15483 }
15484
15485 /* Note that it is safe to invert for real values here because we
15486 have already handled the one case that it matters. */
15487
15488 invert = 0;
15489 if (code == NE_EXPR || code == GE_EXPR)
15490 {
15491 invert = 1;
15492 code = invert_tree_comparison (code, false);
15493 }
15494
15495 /* Compute a result for LT or EQ if args permit;
15496 Otherwise return T. */
15497 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
15498 {
15499 if (code == EQ_EXPR)
15500 result = tree_int_cst_equal (op0, op1);
15501 else if (TYPE_UNSIGNED (TREE_TYPE (op0)))
15502 result = INT_CST_LT_UNSIGNED (op0, op1);
15503 else
15504 result = INT_CST_LT (op0, op1);
15505 }
15506 else
15507 return NULL_TREE;
15508
15509 if (invert)
15510 result ^= 1;
15511 return constant_boolean_node (result, type);
15512 }
15513
15514 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
15515 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
15516 itself. */
15517
15518 tree
15519 fold_build_cleanup_point_expr (tree type, tree expr)
15520 {
15521 /* If the expression does not have side effects then we don't have to wrap
15522 it with a cleanup point expression. */
15523 if (!TREE_SIDE_EFFECTS (expr))
15524 return expr;
15525
15526 /* If the expression is a return, check to see if the expression inside the
15527 return has no side effects or the right hand side of the modify expression
15528 inside the return. If either don't have side effects set we don't need to
15529 wrap the expression in a cleanup point expression. Note we don't check the
15530 left hand side of the modify because it should always be a return decl. */
15531 if (TREE_CODE (expr) == RETURN_EXPR)
15532 {
15533 tree op = TREE_OPERAND (expr, 0);
15534 if (!op || !TREE_SIDE_EFFECTS (op))
15535 return expr;
15536 op = TREE_OPERAND (op, 1);
15537 if (!TREE_SIDE_EFFECTS (op))
15538 return expr;
15539 }
15540
15541 return build1 (CLEANUP_POINT_EXPR, type, expr);
15542 }
15543
15544 /* Given a pointer value OP0 and a type TYPE, return a simplified version
15545 of an indirection through OP0, or NULL_TREE if no simplification is
15546 possible. */
15547
15548 tree
15549 fold_indirect_ref_1 (tree type, tree op0)
15550 {
15551 tree sub = op0;
15552 tree subtype;
15553
15554 STRIP_NOPS (sub);
15555 subtype = TREE_TYPE (sub);
15556 if (!POINTER_TYPE_P (subtype))
15557 return NULL_TREE;
15558
15559 if (TREE_CODE (sub) == ADDR_EXPR)
15560 {
15561 tree op = TREE_OPERAND (sub, 0);
15562 tree optype = TREE_TYPE (op);
15563 /* *&CONST_DECL -> to the value of the const decl. */
15564 if (TREE_CODE (op) == CONST_DECL)
15565 return DECL_INITIAL (op);
15566 /* *&p => p; make sure to handle *&"str"[cst] here. */
15567 if (type == optype)
15568 {
15569 tree fop = fold_read_from_constant_string (op);
15570 if (fop)
15571 return fop;
15572 else
15573 return op;
15574 }
15575 /* *(foo *)&fooarray => fooarray[0] */
15576 else if (TREE_CODE (optype) == ARRAY_TYPE
15577 && type == TREE_TYPE (optype))
15578 {
15579 tree type_domain = TYPE_DOMAIN (optype);
15580 tree min_val = size_zero_node;
15581 if (type_domain && TYPE_MIN_VALUE (type_domain))
15582 min_val = TYPE_MIN_VALUE (type_domain);
15583 return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
15584 }
15585 /* *(foo *)&complexfoo => __real__ complexfoo */
15586 else if (TREE_CODE (optype) == COMPLEX_TYPE
15587 && type == TREE_TYPE (optype))
15588 return fold_build1 (REALPART_EXPR, type, op);
15589 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
15590 else if (TREE_CODE (optype) == VECTOR_TYPE
15591 && type == TREE_TYPE (optype))
15592 {
15593 tree part_width = TYPE_SIZE (type);
15594 tree index = bitsize_int (0);
15595 return fold_build3 (BIT_FIELD_REF, type, op, part_width, index);
15596 }
15597 }
15598
15599 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
15600 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
15601 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
15602 {
15603 tree op00 = TREE_OPERAND (sub, 0);
15604 tree op01 = TREE_OPERAND (sub, 1);
15605 tree op00type;
15606
15607 STRIP_NOPS (op00);
15608 op00type = TREE_TYPE (op00);
15609 if (TREE_CODE (op00) == ADDR_EXPR
15610 && TREE_CODE (TREE_TYPE (op00type)) == VECTOR_TYPE
15611 && type == TREE_TYPE (TREE_TYPE (op00type)))
15612 {
15613 HOST_WIDE_INT offset = tree_low_cst (op01, 0);
15614 tree part_width = TYPE_SIZE (type);
15615 unsigned HOST_WIDE_INT part_widthi = tree_low_cst (part_width, 0)/BITS_PER_UNIT;
15616 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
15617 tree index = bitsize_int (indexi);
15618
15619 if (offset/part_widthi <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (op00type)))
15620 return fold_build3 (BIT_FIELD_REF, type, TREE_OPERAND (op00, 0),
15621 part_width, index);
15622
15623 }
15624 }
15625
15626
15627 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
15628 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
15629 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
15630 {
15631 tree op00 = TREE_OPERAND (sub, 0);
15632 tree op01 = TREE_OPERAND (sub, 1);
15633 tree op00type;
15634
15635 STRIP_NOPS (op00);
15636 op00type = TREE_TYPE (op00);
15637 if (TREE_CODE (op00) == ADDR_EXPR
15638 && TREE_CODE (TREE_TYPE (op00type)) == COMPLEX_TYPE
15639 && type == TREE_TYPE (TREE_TYPE (op00type)))
15640 {
15641 tree size = TYPE_SIZE_UNIT (type);
15642 if (tree_int_cst_equal (size, op01))
15643 return fold_build1 (IMAGPART_EXPR, type, TREE_OPERAND (op00, 0));
15644 }
15645 }
15646
15647 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
15648 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
15649 && type == TREE_TYPE (TREE_TYPE (subtype)))
15650 {
15651 tree type_domain;
15652 tree min_val = size_zero_node;
15653 sub = build_fold_indirect_ref (sub);
15654 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
15655 if (type_domain && TYPE_MIN_VALUE (type_domain))
15656 min_val = TYPE_MIN_VALUE (type_domain);
15657 return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
15658 }
15659
15660 return NULL_TREE;
15661 }
15662
15663 /* Builds an expression for an indirection through T, simplifying some
15664 cases. */
15665
15666 tree
15667 build_fold_indirect_ref (tree t)
15668 {
15669 tree type = TREE_TYPE (TREE_TYPE (t));
15670 tree sub = fold_indirect_ref_1 (type, t);
15671
15672 if (sub)
15673 return sub;
15674 else
15675 return build1 (INDIRECT_REF, type, t);
15676 }
15677
15678 /* Given an INDIRECT_REF T, return either T or a simplified version. */
15679
15680 tree
15681 fold_indirect_ref (tree t)
15682 {
15683 tree sub = fold_indirect_ref_1 (TREE_TYPE (t), TREE_OPERAND (t, 0));
15684
15685 if (sub)
15686 return sub;
15687 else
15688 return t;
15689 }
15690
15691 /* Strip non-trapping, non-side-effecting tree nodes from an expression
15692 whose result is ignored. The type of the returned tree need not be
15693 the same as the original expression. */
15694
15695 tree
15696 fold_ignored_result (tree t)
15697 {
15698 if (!TREE_SIDE_EFFECTS (t))
15699 return integer_zero_node;
15700
15701 for (;;)
15702 switch (TREE_CODE_CLASS (TREE_CODE (t)))
15703 {
15704 case tcc_unary:
15705 t = TREE_OPERAND (t, 0);
15706 break;
15707
15708 case tcc_binary:
15709 case tcc_comparison:
15710 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
15711 t = TREE_OPERAND (t, 0);
15712 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
15713 t = TREE_OPERAND (t, 1);
15714 else
15715 return t;
15716 break;
15717
15718 case tcc_expression:
15719 switch (TREE_CODE (t))
15720 {
15721 case COMPOUND_EXPR:
15722 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
15723 return t;
15724 t = TREE_OPERAND (t, 0);
15725 break;
15726
15727 case COND_EXPR:
15728 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
15729 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
15730 return t;
15731 t = TREE_OPERAND (t, 0);
15732 break;
15733
15734 default:
15735 return t;
15736 }
15737 break;
15738
15739 default:
15740 return t;
15741 }
15742 }
15743
15744 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
15745 This can only be applied to objects of a sizetype. */
15746
15747 tree
15748 round_up (tree value, int divisor)
15749 {
15750 tree div = NULL_TREE;
15751
15752 gcc_assert (divisor > 0);
15753 if (divisor == 1)
15754 return value;
15755
15756 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
15757 have to do anything. Only do this when we are not given a const,
15758 because in that case, this check is more expensive than just
15759 doing it. */
15760 if (TREE_CODE (value) != INTEGER_CST)
15761 {
15762 div = build_int_cst (TREE_TYPE (value), divisor);
15763
15764 if (multiple_of_p (TREE_TYPE (value), value, div))
15765 return value;
15766 }
15767
15768 /* If divisor is a power of two, simplify this to bit manipulation. */
15769 if (divisor == (divisor & -divisor))
15770 {
15771 if (TREE_CODE (value) == INTEGER_CST)
15772 {
15773 unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (value);
15774 unsigned HOST_WIDE_INT high;
15775 bool overflow_p;
15776
15777 if ((low & (divisor - 1)) == 0)
15778 return value;
15779
15780 overflow_p = TREE_OVERFLOW (value);
15781 high = TREE_INT_CST_HIGH (value);
15782 low &= ~(divisor - 1);
15783 low += divisor;
15784 if (low == 0)
15785 {
15786 high++;
15787 if (high == 0)
15788 overflow_p = true;
15789 }
15790
15791 return force_fit_type_double (TREE_TYPE (value), low, high,
15792 -1, overflow_p);
15793 }
15794 else
15795 {
15796 tree t;
15797
15798 t = build_int_cst (TREE_TYPE (value), divisor - 1);
15799 value = size_binop (PLUS_EXPR, value, t);
15800 t = build_int_cst (TREE_TYPE (value), -divisor);
15801 value = size_binop (BIT_AND_EXPR, value, t);
15802 }
15803 }
15804 else
15805 {
15806 if (!div)
15807 div = build_int_cst (TREE_TYPE (value), divisor);
15808 value = size_binop (CEIL_DIV_EXPR, value, div);
15809 value = size_binop (MULT_EXPR, value, div);
15810 }
15811
15812 return value;
15813 }
15814
15815 /* Likewise, but round down. */
15816
15817 tree
15818 round_down (tree value, int divisor)
15819 {
15820 tree div = NULL_TREE;
15821
15822 gcc_assert (divisor > 0);
15823 if (divisor == 1)
15824 return value;
15825
15826 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
15827 have to do anything. Only do this when we are not given a const,
15828 because in that case, this check is more expensive than just
15829 doing it. */
15830 if (TREE_CODE (value) != INTEGER_CST)
15831 {
15832 div = build_int_cst (TREE_TYPE (value), divisor);
15833
15834 if (multiple_of_p (TREE_TYPE (value), value, div))
15835 return value;
15836 }
15837
15838 /* If divisor is a power of two, simplify this to bit manipulation. */
15839 if (divisor == (divisor & -divisor))
15840 {
15841 tree t;
15842
15843 t = build_int_cst (TREE_TYPE (value), -divisor);
15844 value = size_binop (BIT_AND_EXPR, value, t);
15845 }
15846 else
15847 {
15848 if (!div)
15849 div = build_int_cst (TREE_TYPE (value), divisor);
15850 value = size_binop (FLOOR_DIV_EXPR, value, div);
15851 value = size_binop (MULT_EXPR, value, div);
15852 }
15853
15854 return value;
15855 }
15856
15857 /* Returns the pointer to the base of the object addressed by EXP and
15858 extracts the information about the offset of the access, storing it
15859 to PBITPOS and POFFSET. */
15860
15861 static tree
15862 split_address_to_core_and_offset (tree exp,
15863 HOST_WIDE_INT *pbitpos, tree *poffset)
15864 {
15865 tree core;
15866 enum machine_mode mode;
15867 int unsignedp, volatilep;
15868 HOST_WIDE_INT bitsize;
15869
15870 if (TREE_CODE (exp) == ADDR_EXPR)
15871 {
15872 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
15873 poffset, &mode, &unsignedp, &volatilep,
15874 false);
15875 core = build_fold_addr_expr (core);
15876 }
15877 else
15878 {
15879 core = exp;
15880 *pbitpos = 0;
15881 *poffset = NULL_TREE;
15882 }
15883
15884 return core;
15885 }
15886
15887 /* Returns true if addresses of E1 and E2 differ by a constant, false
15888 otherwise. If they do, E1 - E2 is stored in *DIFF. */
15889
15890 bool
15891 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
15892 {
15893 tree core1, core2;
15894 HOST_WIDE_INT bitpos1, bitpos2;
15895 tree toffset1, toffset2, tdiff, type;
15896
15897 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
15898 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
15899
15900 if (bitpos1 % BITS_PER_UNIT != 0
15901 || bitpos2 % BITS_PER_UNIT != 0
15902 || !operand_equal_p (core1, core2, 0))
15903 return false;
15904
15905 if (toffset1 && toffset2)
15906 {
15907 type = TREE_TYPE (toffset1);
15908 if (type != TREE_TYPE (toffset2))
15909 toffset2 = fold_convert (type, toffset2);
15910
15911 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
15912 if (!cst_and_fits_in_hwi (tdiff))
15913 return false;
15914
15915 *diff = int_cst_value (tdiff);
15916 }
15917 else if (toffset1 || toffset2)
15918 {
15919 /* If only one of the offsets is non-constant, the difference cannot
15920 be a constant. */
15921 return false;
15922 }
15923 else
15924 *diff = 0;
15925
15926 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
15927 return true;
15928 }
15929
15930 /* Simplify the floating point expression EXP when the sign of the
15931 result is not significant. Return NULL_TREE if no simplification
15932 is possible. */
15933
15934 tree
15935 fold_strip_sign_ops (tree exp)
15936 {
15937 tree arg0, arg1;
15938
15939 switch (TREE_CODE (exp))
15940 {
15941 case ABS_EXPR:
15942 case NEGATE_EXPR:
15943 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
15944 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
15945
15946 case MULT_EXPR:
15947 case RDIV_EXPR:
15948 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp))))
15949 return NULL_TREE;
15950 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
15951 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15952 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
15953 return fold_build2 (TREE_CODE (exp), TREE_TYPE (exp),
15954 arg0 ? arg0 : TREE_OPERAND (exp, 0),
15955 arg1 ? arg1 : TREE_OPERAND (exp, 1));
15956 break;
15957
15958 case COMPOUND_EXPR:
15959 arg0 = TREE_OPERAND (exp, 0);
15960 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15961 if (arg1)
15962 return fold_build2 (COMPOUND_EXPR, TREE_TYPE (exp), arg0, arg1);
15963 break;
15964
15965 case COND_EXPR:
15966 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15967 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 2));
15968 if (arg0 || arg1)
15969 return fold_build3 (COND_EXPR, TREE_TYPE (exp), TREE_OPERAND (exp, 0),
15970 arg0 ? arg0 : TREE_OPERAND (exp, 1),
15971 arg1 ? arg1 : TREE_OPERAND (exp, 2));
15972 break;
15973
15974 case CALL_EXPR:
15975 {
15976 const enum built_in_function fcode = builtin_mathfn_code (exp);
15977 switch (fcode)
15978 {
15979 CASE_FLT_FN (BUILT_IN_COPYSIGN):
15980 /* Strip copysign function call, return the 1st argument. */
15981 arg0 = CALL_EXPR_ARG (exp, 0);
15982 arg1 = CALL_EXPR_ARG (exp, 1);
15983 return omit_one_operand (TREE_TYPE (exp), arg0, arg1);
15984
15985 default:
15986 /* Strip sign ops from the argument of "odd" math functions. */
15987 if (negate_mathfn_p (fcode))
15988 {
15989 arg0 = fold_strip_sign_ops (CALL_EXPR_ARG (exp, 0));
15990 if (arg0)
15991 return build_call_expr (get_callee_fndecl (exp), 1, arg0);
15992 }
15993 break;
15994 }
15995 }
15996 break;
15997
15998 default:
15999 break;
16000 }
16001 return NULL_TREE;
16002 }