fold-const.c (distribute_bit_expr): Remove.
[gcc.git] / gcc / fold-const.c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
27
28 /* The entry points in this file are fold, size_int_wide and size_binop.
29
30 fold takes a tree as argument and returns a simplified tree.
31
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
35
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
38
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
42
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "predict.h"
48 #include "tree.h"
49 #include "gimple.h"
50 #include "rtl.h"
51 #include "flags.h"
52 #include "alias.h"
53 #include "fold-const.h"
54 #include "stor-layout.h"
55 #include "calls.h"
56 #include "tree-iterator.h"
57 #include "realmpfr.h"
58 #include "insn-config.h"
59 #include "expmed.h"
60 #include "dojump.h"
61 #include "explow.h"
62 #include "emit-rtl.h"
63 #include "varasm.h"
64 #include "stmt.h"
65 #include "expr.h"
66 #include "tm_p.h"
67 #include "target.h"
68 #include "diagnostic-core.h"
69 #include "intl.h"
70 #include "langhooks.h"
71 #include "md5.h"
72 #include "internal-fn.h"
73 #include "tree-eh.h"
74 #include "gimplify.h"
75 #include "tree-dfa.h"
76 #include "builtins.h"
77 #include "cgraph.h"
78 #include "generic-match.h"
79 #include "optabs.h"
80
81 #ifndef LOAD_EXTEND_OP
82 #define LOAD_EXTEND_OP(M) UNKNOWN
83 #endif
84
85 /* Nonzero if we are folding constants inside an initializer; zero
86 otherwise. */
87 int folding_initializer = 0;
88
89 /* The following constants represent a bit based encoding of GCC's
90 comparison operators. This encoding simplifies transformations
91 on relational comparison operators, such as AND and OR. */
92 enum comparison_code {
93 COMPCODE_FALSE = 0,
94 COMPCODE_LT = 1,
95 COMPCODE_EQ = 2,
96 COMPCODE_LE = 3,
97 COMPCODE_GT = 4,
98 COMPCODE_LTGT = 5,
99 COMPCODE_GE = 6,
100 COMPCODE_ORD = 7,
101 COMPCODE_UNORD = 8,
102 COMPCODE_UNLT = 9,
103 COMPCODE_UNEQ = 10,
104 COMPCODE_UNLE = 11,
105 COMPCODE_UNGT = 12,
106 COMPCODE_NE = 13,
107 COMPCODE_UNGE = 14,
108 COMPCODE_TRUE = 15
109 };
110
111 static bool negate_mathfn_p (enum built_in_function);
112 static bool negate_expr_p (tree);
113 static tree negate_expr (tree);
114 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
115 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
116 static enum comparison_code comparison_to_compcode (enum tree_code);
117 static enum tree_code compcode_to_comparison (enum comparison_code);
118 static int operand_equal_for_comparison_p (tree, tree, tree);
119 static int twoval_comparison_p (tree, tree *, tree *, int *);
120 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
121 static tree make_bit_field_ref (location_t, tree, tree,
122 HOST_WIDE_INT, HOST_WIDE_INT, int);
123 static tree optimize_bit_field_compare (location_t, enum tree_code,
124 tree, tree, tree);
125 static tree decode_field_reference (location_t, tree, HOST_WIDE_INT *,
126 HOST_WIDE_INT *,
127 machine_mode *, int *, int *,
128 tree *, tree *);
129 static int simple_operand_p (const_tree);
130 static bool simple_operand_p_2 (tree);
131 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
132 static tree range_predecessor (tree);
133 static tree range_successor (tree);
134 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
135 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
136 static tree unextend (tree, int, int, tree);
137 static tree optimize_minmax_comparison (location_t, enum tree_code,
138 tree, tree, tree);
139 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
140 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
141 static tree fold_binary_op_with_conditional_arg (location_t,
142 enum tree_code, tree,
143 tree, tree,
144 tree, tree, int);
145 static tree fold_div_compare (location_t, enum tree_code, tree, tree, tree);
146 static bool reorder_operands_p (const_tree, const_tree);
147 static tree fold_negate_const (tree, tree);
148 static tree fold_not_const (const_tree, tree);
149 static tree fold_relational_const (enum tree_code, tree, tree, tree);
150 static tree fold_convert_const (enum tree_code, tree, tree);
151 static tree fold_view_convert_expr (tree, tree);
152 static bool vec_cst_ctor_to_array (tree, tree *);
153
154
155 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
156 Otherwise, return LOC. */
157
158 static location_t
159 expr_location_or (tree t, location_t loc)
160 {
161 location_t tloc = EXPR_LOCATION (t);
162 return tloc == UNKNOWN_LOCATION ? loc : tloc;
163 }
164
165 /* Similar to protected_set_expr_location, but never modify x in place,
166 if location can and needs to be set, unshare it. */
167
168 static inline tree
169 protected_set_expr_location_unshare (tree x, location_t loc)
170 {
171 if (CAN_HAVE_LOCATION_P (x)
172 && EXPR_LOCATION (x) != loc
173 && !(TREE_CODE (x) == SAVE_EXPR
174 || TREE_CODE (x) == TARGET_EXPR
175 || TREE_CODE (x) == BIND_EXPR))
176 {
177 x = copy_node (x);
178 SET_EXPR_LOCATION (x, loc);
179 }
180 return x;
181 }
182 \f
183 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
184 division and returns the quotient. Otherwise returns
185 NULL_TREE. */
186
187 tree
188 div_if_zero_remainder (const_tree arg1, const_tree arg2)
189 {
190 widest_int quo;
191
192 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
193 SIGNED, &quo))
194 return wide_int_to_tree (TREE_TYPE (arg1), quo);
195
196 return NULL_TREE;
197 }
198 \f
199 /* This is nonzero if we should defer warnings about undefined
200 overflow. This facility exists because these warnings are a
201 special case. The code to estimate loop iterations does not want
202 to issue any warnings, since it works with expressions which do not
203 occur in user code. Various bits of cleanup code call fold(), but
204 only use the result if it has certain characteristics (e.g., is a
205 constant); that code only wants to issue a warning if the result is
206 used. */
207
208 static int fold_deferring_overflow_warnings;
209
210 /* If a warning about undefined overflow is deferred, this is the
211 warning. Note that this may cause us to turn two warnings into
212 one, but that is fine since it is sufficient to only give one
213 warning per expression. */
214
215 static const char* fold_deferred_overflow_warning;
216
217 /* If a warning about undefined overflow is deferred, this is the
218 level at which the warning should be emitted. */
219
220 static enum warn_strict_overflow_code fold_deferred_overflow_code;
221
222 /* Start deferring overflow warnings. We could use a stack here to
223 permit nested calls, but at present it is not necessary. */
224
225 void
226 fold_defer_overflow_warnings (void)
227 {
228 ++fold_deferring_overflow_warnings;
229 }
230
231 /* Stop deferring overflow warnings. If there is a pending warning,
232 and ISSUE is true, then issue the warning if appropriate. STMT is
233 the statement with which the warning should be associated (used for
234 location information); STMT may be NULL. CODE is the level of the
235 warning--a warn_strict_overflow_code value. This function will use
236 the smaller of CODE and the deferred code when deciding whether to
237 issue the warning. CODE may be zero to mean to always use the
238 deferred code. */
239
240 void
241 fold_undefer_overflow_warnings (bool issue, const_gimple stmt, int code)
242 {
243 const char *warnmsg;
244 location_t locus;
245
246 gcc_assert (fold_deferring_overflow_warnings > 0);
247 --fold_deferring_overflow_warnings;
248 if (fold_deferring_overflow_warnings > 0)
249 {
250 if (fold_deferred_overflow_warning != NULL
251 && code != 0
252 && code < (int) fold_deferred_overflow_code)
253 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
254 return;
255 }
256
257 warnmsg = fold_deferred_overflow_warning;
258 fold_deferred_overflow_warning = NULL;
259
260 if (!issue || warnmsg == NULL)
261 return;
262
263 if (gimple_no_warning_p (stmt))
264 return;
265
266 /* Use the smallest code level when deciding to issue the
267 warning. */
268 if (code == 0 || code > (int) fold_deferred_overflow_code)
269 code = fold_deferred_overflow_code;
270
271 if (!issue_strict_overflow_warning (code))
272 return;
273
274 if (stmt == NULL)
275 locus = input_location;
276 else
277 locus = gimple_location (stmt);
278 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
279 }
280
281 /* Stop deferring overflow warnings, ignoring any deferred
282 warnings. */
283
284 void
285 fold_undefer_and_ignore_overflow_warnings (void)
286 {
287 fold_undefer_overflow_warnings (false, NULL, 0);
288 }
289
290 /* Whether we are deferring overflow warnings. */
291
292 bool
293 fold_deferring_overflow_warnings_p (void)
294 {
295 return fold_deferring_overflow_warnings > 0;
296 }
297
298 /* This is called when we fold something based on the fact that signed
299 overflow is undefined. */
300
301 static void
302 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
303 {
304 if (fold_deferring_overflow_warnings > 0)
305 {
306 if (fold_deferred_overflow_warning == NULL
307 || wc < fold_deferred_overflow_code)
308 {
309 fold_deferred_overflow_warning = gmsgid;
310 fold_deferred_overflow_code = wc;
311 }
312 }
313 else if (issue_strict_overflow_warning (wc))
314 warning (OPT_Wstrict_overflow, gmsgid);
315 }
316 \f
317 /* Return true if the built-in mathematical function specified by CODE
318 is odd, i.e. -f(x) == f(-x). */
319
320 static bool
321 negate_mathfn_p (enum built_in_function code)
322 {
323 switch (code)
324 {
325 CASE_FLT_FN (BUILT_IN_ASIN):
326 CASE_FLT_FN (BUILT_IN_ASINH):
327 CASE_FLT_FN (BUILT_IN_ATAN):
328 CASE_FLT_FN (BUILT_IN_ATANH):
329 CASE_FLT_FN (BUILT_IN_CASIN):
330 CASE_FLT_FN (BUILT_IN_CASINH):
331 CASE_FLT_FN (BUILT_IN_CATAN):
332 CASE_FLT_FN (BUILT_IN_CATANH):
333 CASE_FLT_FN (BUILT_IN_CBRT):
334 CASE_FLT_FN (BUILT_IN_CPROJ):
335 CASE_FLT_FN (BUILT_IN_CSIN):
336 CASE_FLT_FN (BUILT_IN_CSINH):
337 CASE_FLT_FN (BUILT_IN_CTAN):
338 CASE_FLT_FN (BUILT_IN_CTANH):
339 CASE_FLT_FN (BUILT_IN_ERF):
340 CASE_FLT_FN (BUILT_IN_LLROUND):
341 CASE_FLT_FN (BUILT_IN_LROUND):
342 CASE_FLT_FN (BUILT_IN_ROUND):
343 CASE_FLT_FN (BUILT_IN_SIN):
344 CASE_FLT_FN (BUILT_IN_SINH):
345 CASE_FLT_FN (BUILT_IN_TAN):
346 CASE_FLT_FN (BUILT_IN_TANH):
347 CASE_FLT_FN (BUILT_IN_TRUNC):
348 return true;
349
350 CASE_FLT_FN (BUILT_IN_LLRINT):
351 CASE_FLT_FN (BUILT_IN_LRINT):
352 CASE_FLT_FN (BUILT_IN_NEARBYINT):
353 CASE_FLT_FN (BUILT_IN_RINT):
354 return !flag_rounding_math;
355
356 default:
357 break;
358 }
359 return false;
360 }
361
362 /* Check whether we may negate an integer constant T without causing
363 overflow. */
364
365 bool
366 may_negate_without_overflow_p (const_tree t)
367 {
368 tree type;
369
370 gcc_assert (TREE_CODE (t) == INTEGER_CST);
371
372 type = TREE_TYPE (t);
373 if (TYPE_UNSIGNED (type))
374 return false;
375
376 return !wi::only_sign_bit_p (t);
377 }
378
379 /* Determine whether an expression T can be cheaply negated using
380 the function negate_expr without introducing undefined overflow. */
381
382 static bool
383 negate_expr_p (tree t)
384 {
385 tree type;
386
387 if (t == 0)
388 return false;
389
390 type = TREE_TYPE (t);
391
392 STRIP_SIGN_NOPS (t);
393 switch (TREE_CODE (t))
394 {
395 case INTEGER_CST:
396 if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
397 return true;
398
399 /* Check that -CST will not overflow type. */
400 return may_negate_without_overflow_p (t);
401 case BIT_NOT_EXPR:
402 return (INTEGRAL_TYPE_P (type)
403 && TYPE_OVERFLOW_WRAPS (type));
404
405 case FIXED_CST:
406 return true;
407
408 case NEGATE_EXPR:
409 return !TYPE_OVERFLOW_SANITIZED (type);
410
411 case REAL_CST:
412 /* We want to canonicalize to positive real constants. Pretend
413 that only negative ones can be easily negated. */
414 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
415
416 case COMPLEX_CST:
417 return negate_expr_p (TREE_REALPART (t))
418 && negate_expr_p (TREE_IMAGPART (t));
419
420 case VECTOR_CST:
421 {
422 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
423 return true;
424
425 int count = TYPE_VECTOR_SUBPARTS (type), i;
426
427 for (i = 0; i < count; i++)
428 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
429 return false;
430
431 return true;
432 }
433
434 case COMPLEX_EXPR:
435 return negate_expr_p (TREE_OPERAND (t, 0))
436 && negate_expr_p (TREE_OPERAND (t, 1));
437
438 case CONJ_EXPR:
439 return negate_expr_p (TREE_OPERAND (t, 0));
440
441 case PLUS_EXPR:
442 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
443 || HONOR_SIGNED_ZEROS (element_mode (type)))
444 return false;
445 /* -(A + B) -> (-B) - A. */
446 if (negate_expr_p (TREE_OPERAND (t, 1))
447 && reorder_operands_p (TREE_OPERAND (t, 0),
448 TREE_OPERAND (t, 1)))
449 return true;
450 /* -(A + B) -> (-A) - B. */
451 return negate_expr_p (TREE_OPERAND (t, 0));
452
453 case MINUS_EXPR:
454 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
455 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
456 && !HONOR_SIGNED_ZEROS (element_mode (type))
457 && reorder_operands_p (TREE_OPERAND (t, 0),
458 TREE_OPERAND (t, 1));
459
460 case MULT_EXPR:
461 if (TYPE_UNSIGNED (TREE_TYPE (t)))
462 break;
463
464 /* Fall through. */
465
466 case RDIV_EXPR:
467 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
468 return negate_expr_p (TREE_OPERAND (t, 1))
469 || negate_expr_p (TREE_OPERAND (t, 0));
470 break;
471
472 case TRUNC_DIV_EXPR:
473 case ROUND_DIV_EXPR:
474 case EXACT_DIV_EXPR:
475 /* In general we can't negate A / B, because if A is INT_MIN and
476 B is 1, we may turn this into INT_MIN / -1 which is undefined
477 and actually traps on some architectures. But if overflow is
478 undefined, we can negate, because - (INT_MIN / 1) is an
479 overflow. */
480 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
481 {
482 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
483 break;
484 /* If overflow is undefined then we have to be careful because
485 we ask whether it's ok to associate the negate with the
486 division which is not ok for example for
487 -((a - b) / c) where (-(a - b)) / c may invoke undefined
488 overflow because of negating INT_MIN. So do not use
489 negate_expr_p here but open-code the two important cases. */
490 if (TREE_CODE (TREE_OPERAND (t, 0)) == NEGATE_EXPR
491 || (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
492 && may_negate_without_overflow_p (TREE_OPERAND (t, 0))))
493 return true;
494 }
495 else if (negate_expr_p (TREE_OPERAND (t, 0)))
496 return true;
497 return negate_expr_p (TREE_OPERAND (t, 1));
498
499 case NOP_EXPR:
500 /* Negate -((double)float) as (double)(-float). */
501 if (TREE_CODE (type) == REAL_TYPE)
502 {
503 tree tem = strip_float_extensions (t);
504 if (tem != t)
505 return negate_expr_p (tem);
506 }
507 break;
508
509 case CALL_EXPR:
510 /* Negate -f(x) as f(-x). */
511 if (negate_mathfn_p (builtin_mathfn_code (t)))
512 return negate_expr_p (CALL_EXPR_ARG (t, 0));
513 break;
514
515 case RSHIFT_EXPR:
516 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
517 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
518 {
519 tree op1 = TREE_OPERAND (t, 1);
520 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
521 return true;
522 }
523 break;
524
525 default:
526 break;
527 }
528 return false;
529 }
530
531 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
532 simplification is possible.
533 If negate_expr_p would return true for T, NULL_TREE will never be
534 returned. */
535
536 static tree
537 fold_negate_expr (location_t loc, tree t)
538 {
539 tree type = TREE_TYPE (t);
540 tree tem;
541
542 switch (TREE_CODE (t))
543 {
544 /* Convert - (~A) to A + 1. */
545 case BIT_NOT_EXPR:
546 if (INTEGRAL_TYPE_P (type))
547 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
548 build_one_cst (type));
549 break;
550
551 case INTEGER_CST:
552 tem = fold_negate_const (t, type);
553 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
554 || (ANY_INTEGRAL_TYPE_P (type)
555 && !TYPE_OVERFLOW_TRAPS (type)
556 && TYPE_OVERFLOW_WRAPS (type))
557 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
558 return tem;
559 break;
560
561 case REAL_CST:
562 tem = fold_negate_const (t, type);
563 return tem;
564
565 case FIXED_CST:
566 tem = fold_negate_const (t, type);
567 return tem;
568
569 case COMPLEX_CST:
570 {
571 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
572 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
573 if (rpart && ipart)
574 return build_complex (type, rpart, ipart);
575 }
576 break;
577
578 case VECTOR_CST:
579 {
580 int count = TYPE_VECTOR_SUBPARTS (type), i;
581 tree *elts = XALLOCAVEC (tree, count);
582
583 for (i = 0; i < count; i++)
584 {
585 elts[i] = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
586 if (elts[i] == NULL_TREE)
587 return NULL_TREE;
588 }
589
590 return build_vector (type, elts);
591 }
592
593 case COMPLEX_EXPR:
594 if (negate_expr_p (t))
595 return fold_build2_loc (loc, COMPLEX_EXPR, type,
596 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
597 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
598 break;
599
600 case CONJ_EXPR:
601 if (negate_expr_p (t))
602 return fold_build1_loc (loc, CONJ_EXPR, type,
603 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
604 break;
605
606 case NEGATE_EXPR:
607 if (!TYPE_OVERFLOW_SANITIZED (type))
608 return TREE_OPERAND (t, 0);
609 break;
610
611 case PLUS_EXPR:
612 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
613 && !HONOR_SIGNED_ZEROS (element_mode (type)))
614 {
615 /* -(A + B) -> (-B) - A. */
616 if (negate_expr_p (TREE_OPERAND (t, 1))
617 && reorder_operands_p (TREE_OPERAND (t, 0),
618 TREE_OPERAND (t, 1)))
619 {
620 tem = negate_expr (TREE_OPERAND (t, 1));
621 return fold_build2_loc (loc, MINUS_EXPR, type,
622 tem, TREE_OPERAND (t, 0));
623 }
624
625 /* -(A + B) -> (-A) - B. */
626 if (negate_expr_p (TREE_OPERAND (t, 0)))
627 {
628 tem = negate_expr (TREE_OPERAND (t, 0));
629 return fold_build2_loc (loc, MINUS_EXPR, type,
630 tem, TREE_OPERAND (t, 1));
631 }
632 }
633 break;
634
635 case MINUS_EXPR:
636 /* - (A - B) -> B - A */
637 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
638 && !HONOR_SIGNED_ZEROS (element_mode (type))
639 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
640 return fold_build2_loc (loc, MINUS_EXPR, type,
641 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
642 break;
643
644 case MULT_EXPR:
645 if (TYPE_UNSIGNED (type))
646 break;
647
648 /* Fall through. */
649
650 case RDIV_EXPR:
651 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
652 {
653 tem = TREE_OPERAND (t, 1);
654 if (negate_expr_p (tem))
655 return fold_build2_loc (loc, TREE_CODE (t), type,
656 TREE_OPERAND (t, 0), negate_expr (tem));
657 tem = TREE_OPERAND (t, 0);
658 if (negate_expr_p (tem))
659 return fold_build2_loc (loc, TREE_CODE (t), type,
660 negate_expr (tem), TREE_OPERAND (t, 1));
661 }
662 break;
663
664 case TRUNC_DIV_EXPR:
665 case ROUND_DIV_EXPR:
666 case EXACT_DIV_EXPR:
667 /* In general we can't negate A / B, because if A is INT_MIN and
668 B is 1, we may turn this into INT_MIN / -1 which is undefined
669 and actually traps on some architectures. But if overflow is
670 undefined, we can negate, because - (INT_MIN / 1) is an
671 overflow. */
672 if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
673 {
674 const char * const warnmsg = G_("assuming signed overflow does not "
675 "occur when negating a division");
676 tem = TREE_OPERAND (t, 1);
677 if (negate_expr_p (tem))
678 {
679 if (INTEGRAL_TYPE_P (type)
680 && (TREE_CODE (tem) != INTEGER_CST
681 || integer_onep (tem)))
682 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
683 return fold_build2_loc (loc, TREE_CODE (t), type,
684 TREE_OPERAND (t, 0), negate_expr (tem));
685 }
686 /* If overflow is undefined then we have to be careful because
687 we ask whether it's ok to associate the negate with the
688 division which is not ok for example for
689 -((a - b) / c) where (-(a - b)) / c may invoke undefined
690 overflow because of negating INT_MIN. So do not use
691 negate_expr_p here but open-code the two important cases. */
692 tem = TREE_OPERAND (t, 0);
693 if ((INTEGRAL_TYPE_P (type)
694 && (TREE_CODE (tem) == NEGATE_EXPR
695 || (TREE_CODE (tem) == INTEGER_CST
696 && may_negate_without_overflow_p (tem))))
697 || !INTEGRAL_TYPE_P (type))
698 return fold_build2_loc (loc, TREE_CODE (t), type,
699 negate_expr (tem), TREE_OPERAND (t, 1));
700 }
701 break;
702
703 case NOP_EXPR:
704 /* Convert -((double)float) into (double)(-float). */
705 if (TREE_CODE (type) == REAL_TYPE)
706 {
707 tem = strip_float_extensions (t);
708 if (tem != t && negate_expr_p (tem))
709 return fold_convert_loc (loc, type, negate_expr (tem));
710 }
711 break;
712
713 case CALL_EXPR:
714 /* Negate -f(x) as f(-x). */
715 if (negate_mathfn_p (builtin_mathfn_code (t))
716 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
717 {
718 tree fndecl, arg;
719
720 fndecl = get_callee_fndecl (t);
721 arg = negate_expr (CALL_EXPR_ARG (t, 0));
722 return build_call_expr_loc (loc, fndecl, 1, arg);
723 }
724 break;
725
726 case RSHIFT_EXPR:
727 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
728 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
729 {
730 tree op1 = TREE_OPERAND (t, 1);
731 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
732 {
733 tree ntype = TYPE_UNSIGNED (type)
734 ? signed_type_for (type)
735 : unsigned_type_for (type);
736 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
737 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
738 return fold_convert_loc (loc, type, temp);
739 }
740 }
741 break;
742
743 default:
744 break;
745 }
746
747 return NULL_TREE;
748 }
749
750 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
751 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
752 return NULL_TREE. */
753
754 static tree
755 negate_expr (tree t)
756 {
757 tree type, tem;
758 location_t loc;
759
760 if (t == NULL_TREE)
761 return NULL_TREE;
762
763 loc = EXPR_LOCATION (t);
764 type = TREE_TYPE (t);
765 STRIP_SIGN_NOPS (t);
766
767 tem = fold_negate_expr (loc, t);
768 if (!tem)
769 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
770 return fold_convert_loc (loc, type, tem);
771 }
772 \f
773 /* Split a tree IN into a constant, literal and variable parts that could be
774 combined with CODE to make IN. "constant" means an expression with
775 TREE_CONSTANT but that isn't an actual constant. CODE must be a
776 commutative arithmetic operation. Store the constant part into *CONP,
777 the literal in *LITP and return the variable part. If a part isn't
778 present, set it to null. If the tree does not decompose in this way,
779 return the entire tree as the variable part and the other parts as null.
780
781 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
782 case, we negate an operand that was subtracted. Except if it is a
783 literal for which we use *MINUS_LITP instead.
784
785 If NEGATE_P is true, we are negating all of IN, again except a literal
786 for which we use *MINUS_LITP instead.
787
788 If IN is itself a literal or constant, return it as appropriate.
789
790 Note that we do not guarantee that any of the three values will be the
791 same type as IN, but they will have the same signedness and mode. */
792
793 static tree
794 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
795 tree *minus_litp, int negate_p)
796 {
797 tree var = 0;
798
799 *conp = 0;
800 *litp = 0;
801 *minus_litp = 0;
802
803 /* Strip any conversions that don't change the machine mode or signedness. */
804 STRIP_SIGN_NOPS (in);
805
806 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
807 || TREE_CODE (in) == FIXED_CST)
808 *litp = in;
809 else if (TREE_CODE (in) == code
810 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
811 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
812 /* We can associate addition and subtraction together (even
813 though the C standard doesn't say so) for integers because
814 the value is not affected. For reals, the value might be
815 affected, so we can't. */
816 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
817 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
818 {
819 tree op0 = TREE_OPERAND (in, 0);
820 tree op1 = TREE_OPERAND (in, 1);
821 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
822 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
823
824 /* First see if either of the operands is a literal, then a constant. */
825 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
826 || TREE_CODE (op0) == FIXED_CST)
827 *litp = op0, op0 = 0;
828 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
829 || TREE_CODE (op1) == FIXED_CST)
830 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
831
832 if (op0 != 0 && TREE_CONSTANT (op0))
833 *conp = op0, op0 = 0;
834 else if (op1 != 0 && TREE_CONSTANT (op1))
835 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
836
837 /* If we haven't dealt with either operand, this is not a case we can
838 decompose. Otherwise, VAR is either of the ones remaining, if any. */
839 if (op0 != 0 && op1 != 0)
840 var = in;
841 else if (op0 != 0)
842 var = op0;
843 else
844 var = op1, neg_var_p = neg1_p;
845
846 /* Now do any needed negations. */
847 if (neg_litp_p)
848 *minus_litp = *litp, *litp = 0;
849 if (neg_conp_p)
850 *conp = negate_expr (*conp);
851 if (neg_var_p)
852 var = negate_expr (var);
853 }
854 else if (TREE_CODE (in) == BIT_NOT_EXPR
855 && code == PLUS_EXPR)
856 {
857 /* -X - 1 is folded to ~X, undo that here. */
858 *minus_litp = build_one_cst (TREE_TYPE (in));
859 var = negate_expr (TREE_OPERAND (in, 0));
860 }
861 else if (TREE_CONSTANT (in))
862 *conp = in;
863 else
864 var = in;
865
866 if (negate_p)
867 {
868 if (*litp)
869 *minus_litp = *litp, *litp = 0;
870 else if (*minus_litp)
871 *litp = *minus_litp, *minus_litp = 0;
872 *conp = negate_expr (*conp);
873 var = negate_expr (var);
874 }
875
876 return var;
877 }
878
879 /* Re-associate trees split by the above function. T1 and T2 are
880 either expressions to associate or null. Return the new
881 expression, if any. LOC is the location of the new expression. If
882 we build an operation, do it in TYPE and with CODE. */
883
884 static tree
885 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
886 {
887 if (t1 == 0)
888 return t2;
889 else if (t2 == 0)
890 return t1;
891
892 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
893 try to fold this since we will have infinite recursion. But do
894 deal with any NEGATE_EXPRs. */
895 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
896 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
897 {
898 if (code == PLUS_EXPR)
899 {
900 if (TREE_CODE (t1) == NEGATE_EXPR)
901 return build2_loc (loc, MINUS_EXPR, type,
902 fold_convert_loc (loc, type, t2),
903 fold_convert_loc (loc, type,
904 TREE_OPERAND (t1, 0)));
905 else if (TREE_CODE (t2) == NEGATE_EXPR)
906 return build2_loc (loc, MINUS_EXPR, type,
907 fold_convert_loc (loc, type, t1),
908 fold_convert_loc (loc, type,
909 TREE_OPERAND (t2, 0)));
910 else if (integer_zerop (t2))
911 return fold_convert_loc (loc, type, t1);
912 }
913 else if (code == MINUS_EXPR)
914 {
915 if (integer_zerop (t2))
916 return fold_convert_loc (loc, type, t1);
917 }
918
919 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
920 fold_convert_loc (loc, type, t2));
921 }
922
923 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
924 fold_convert_loc (loc, type, t2));
925 }
926 \f
927 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
928 for use in int_const_binop, size_binop and size_diffop. */
929
930 static bool
931 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
932 {
933 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
934 return false;
935 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
936 return false;
937
938 switch (code)
939 {
940 case LSHIFT_EXPR:
941 case RSHIFT_EXPR:
942 case LROTATE_EXPR:
943 case RROTATE_EXPR:
944 return true;
945
946 default:
947 break;
948 }
949
950 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
951 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
952 && TYPE_MODE (type1) == TYPE_MODE (type2);
953 }
954
955
956 /* Combine two integer constants ARG1 and ARG2 under operation CODE
957 to produce a new constant. Return NULL_TREE if we don't know how
958 to evaluate CODE at compile-time. */
959
960 static tree
961 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree parg2,
962 int overflowable)
963 {
964 wide_int res;
965 tree t;
966 tree type = TREE_TYPE (arg1);
967 signop sign = TYPE_SIGN (type);
968 bool overflow = false;
969
970 wide_int arg2 = wide_int::from (parg2, TYPE_PRECISION (type),
971 TYPE_SIGN (TREE_TYPE (parg2)));
972
973 switch (code)
974 {
975 case BIT_IOR_EXPR:
976 res = wi::bit_or (arg1, arg2);
977 break;
978
979 case BIT_XOR_EXPR:
980 res = wi::bit_xor (arg1, arg2);
981 break;
982
983 case BIT_AND_EXPR:
984 res = wi::bit_and (arg1, arg2);
985 break;
986
987 case RSHIFT_EXPR:
988 case LSHIFT_EXPR:
989 if (wi::neg_p (arg2))
990 {
991 arg2 = -arg2;
992 if (code == RSHIFT_EXPR)
993 code = LSHIFT_EXPR;
994 else
995 code = RSHIFT_EXPR;
996 }
997
998 if (code == RSHIFT_EXPR)
999 /* It's unclear from the C standard whether shifts can overflow.
1000 The following code ignores overflow; perhaps a C standard
1001 interpretation ruling is needed. */
1002 res = wi::rshift (arg1, arg2, sign);
1003 else
1004 res = wi::lshift (arg1, arg2);
1005 break;
1006
1007 case RROTATE_EXPR:
1008 case LROTATE_EXPR:
1009 if (wi::neg_p (arg2))
1010 {
1011 arg2 = -arg2;
1012 if (code == RROTATE_EXPR)
1013 code = LROTATE_EXPR;
1014 else
1015 code = RROTATE_EXPR;
1016 }
1017
1018 if (code == RROTATE_EXPR)
1019 res = wi::rrotate (arg1, arg2);
1020 else
1021 res = wi::lrotate (arg1, arg2);
1022 break;
1023
1024 case PLUS_EXPR:
1025 res = wi::add (arg1, arg2, sign, &overflow);
1026 break;
1027
1028 case MINUS_EXPR:
1029 res = wi::sub (arg1, arg2, sign, &overflow);
1030 break;
1031
1032 case MULT_EXPR:
1033 res = wi::mul (arg1, arg2, sign, &overflow);
1034 break;
1035
1036 case MULT_HIGHPART_EXPR:
1037 res = wi::mul_high (arg1, arg2, sign);
1038 break;
1039
1040 case TRUNC_DIV_EXPR:
1041 case EXACT_DIV_EXPR:
1042 if (arg2 == 0)
1043 return NULL_TREE;
1044 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1045 break;
1046
1047 case FLOOR_DIV_EXPR:
1048 if (arg2 == 0)
1049 return NULL_TREE;
1050 res = wi::div_floor (arg1, arg2, sign, &overflow);
1051 break;
1052
1053 case CEIL_DIV_EXPR:
1054 if (arg2 == 0)
1055 return NULL_TREE;
1056 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1057 break;
1058
1059 case ROUND_DIV_EXPR:
1060 if (arg2 == 0)
1061 return NULL_TREE;
1062 res = wi::div_round (arg1, arg2, sign, &overflow);
1063 break;
1064
1065 case TRUNC_MOD_EXPR:
1066 if (arg2 == 0)
1067 return NULL_TREE;
1068 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1069 break;
1070
1071 case FLOOR_MOD_EXPR:
1072 if (arg2 == 0)
1073 return NULL_TREE;
1074 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1075 break;
1076
1077 case CEIL_MOD_EXPR:
1078 if (arg2 == 0)
1079 return NULL_TREE;
1080 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1081 break;
1082
1083 case ROUND_MOD_EXPR:
1084 if (arg2 == 0)
1085 return NULL_TREE;
1086 res = wi::mod_round (arg1, arg2, sign, &overflow);
1087 break;
1088
1089 case MIN_EXPR:
1090 res = wi::min (arg1, arg2, sign);
1091 break;
1092
1093 case MAX_EXPR:
1094 res = wi::max (arg1, arg2, sign);
1095 break;
1096
1097 default:
1098 return NULL_TREE;
1099 }
1100
1101 t = force_fit_type (type, res, overflowable,
1102 (((sign == SIGNED || overflowable == -1)
1103 && overflow)
1104 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (parg2)));
1105
1106 return t;
1107 }
1108
1109 tree
1110 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1111 {
1112 return int_const_binop_1 (code, arg1, arg2, 1);
1113 }
1114
1115 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1116 constant. We assume ARG1 and ARG2 have the same data type, or at least
1117 are the same kind of constant and the same machine mode. Return zero if
1118 combining the constants is not allowed in the current operating mode. */
1119
1120 static tree
1121 const_binop (enum tree_code code, tree arg1, tree arg2)
1122 {
1123 /* Sanity check for the recursive cases. */
1124 if (!arg1 || !arg2)
1125 return NULL_TREE;
1126
1127 STRIP_NOPS (arg1);
1128 STRIP_NOPS (arg2);
1129
1130 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1131 {
1132 if (code == POINTER_PLUS_EXPR)
1133 return int_const_binop (PLUS_EXPR,
1134 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1135
1136 return int_const_binop (code, arg1, arg2);
1137 }
1138
1139 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1140 {
1141 machine_mode mode;
1142 REAL_VALUE_TYPE d1;
1143 REAL_VALUE_TYPE d2;
1144 REAL_VALUE_TYPE value;
1145 REAL_VALUE_TYPE result;
1146 bool inexact;
1147 tree t, type;
1148
1149 /* The following codes are handled by real_arithmetic. */
1150 switch (code)
1151 {
1152 case PLUS_EXPR:
1153 case MINUS_EXPR:
1154 case MULT_EXPR:
1155 case RDIV_EXPR:
1156 case MIN_EXPR:
1157 case MAX_EXPR:
1158 break;
1159
1160 default:
1161 return NULL_TREE;
1162 }
1163
1164 d1 = TREE_REAL_CST (arg1);
1165 d2 = TREE_REAL_CST (arg2);
1166
1167 type = TREE_TYPE (arg1);
1168 mode = TYPE_MODE (type);
1169
1170 /* Don't perform operation if we honor signaling NaNs and
1171 either operand is a NaN. */
1172 if (HONOR_SNANS (mode)
1173 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1174 return NULL_TREE;
1175
1176 /* Don't perform operation if it would raise a division
1177 by zero exception. */
1178 if (code == RDIV_EXPR
1179 && REAL_VALUES_EQUAL (d2, dconst0)
1180 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1181 return NULL_TREE;
1182
1183 /* If either operand is a NaN, just return it. Otherwise, set up
1184 for floating-point trap; we return an overflow. */
1185 if (REAL_VALUE_ISNAN (d1))
1186 return arg1;
1187 else if (REAL_VALUE_ISNAN (d2))
1188 return arg2;
1189
1190 inexact = real_arithmetic (&value, code, &d1, &d2);
1191 real_convert (&result, mode, &value);
1192
1193 /* Don't constant fold this floating point operation if
1194 the result has overflowed and flag_trapping_math. */
1195 if (flag_trapping_math
1196 && MODE_HAS_INFINITIES (mode)
1197 && REAL_VALUE_ISINF (result)
1198 && !REAL_VALUE_ISINF (d1)
1199 && !REAL_VALUE_ISINF (d2))
1200 return NULL_TREE;
1201
1202 /* Don't constant fold this floating point operation if the
1203 result may dependent upon the run-time rounding mode and
1204 flag_rounding_math is set, or if GCC's software emulation
1205 is unable to accurately represent the result. */
1206 if ((flag_rounding_math
1207 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1208 && (inexact || !real_identical (&result, &value)))
1209 return NULL_TREE;
1210
1211 t = build_real (type, result);
1212
1213 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1214 return t;
1215 }
1216
1217 if (TREE_CODE (arg1) == FIXED_CST)
1218 {
1219 FIXED_VALUE_TYPE f1;
1220 FIXED_VALUE_TYPE f2;
1221 FIXED_VALUE_TYPE result;
1222 tree t, type;
1223 int sat_p;
1224 bool overflow_p;
1225
1226 /* The following codes are handled by fixed_arithmetic. */
1227 switch (code)
1228 {
1229 case PLUS_EXPR:
1230 case MINUS_EXPR:
1231 case MULT_EXPR:
1232 case TRUNC_DIV_EXPR:
1233 if (TREE_CODE (arg2) != FIXED_CST)
1234 return NULL_TREE;
1235 f2 = TREE_FIXED_CST (arg2);
1236 break;
1237
1238 case LSHIFT_EXPR:
1239 case RSHIFT_EXPR:
1240 {
1241 if (TREE_CODE (arg2) != INTEGER_CST)
1242 return NULL_TREE;
1243 wide_int w2 = arg2;
1244 f2.data.high = w2.elt (1);
1245 f2.data.low = w2.elt (0);
1246 f2.mode = SImode;
1247 }
1248 break;
1249
1250 default:
1251 return NULL_TREE;
1252 }
1253
1254 f1 = TREE_FIXED_CST (arg1);
1255 type = TREE_TYPE (arg1);
1256 sat_p = TYPE_SATURATING (type);
1257 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1258 t = build_fixed (type, result);
1259 /* Propagate overflow flags. */
1260 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1261 TREE_OVERFLOW (t) = 1;
1262 return t;
1263 }
1264
1265 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1266 {
1267 tree type = TREE_TYPE (arg1);
1268 tree r1 = TREE_REALPART (arg1);
1269 tree i1 = TREE_IMAGPART (arg1);
1270 tree r2 = TREE_REALPART (arg2);
1271 tree i2 = TREE_IMAGPART (arg2);
1272 tree real, imag;
1273
1274 switch (code)
1275 {
1276 case PLUS_EXPR:
1277 case MINUS_EXPR:
1278 real = const_binop (code, r1, r2);
1279 imag = const_binop (code, i1, i2);
1280 break;
1281
1282 case MULT_EXPR:
1283 if (COMPLEX_FLOAT_TYPE_P (type))
1284 return do_mpc_arg2 (arg1, arg2, type,
1285 /* do_nonfinite= */ folding_initializer,
1286 mpc_mul);
1287
1288 real = const_binop (MINUS_EXPR,
1289 const_binop (MULT_EXPR, r1, r2),
1290 const_binop (MULT_EXPR, i1, i2));
1291 imag = const_binop (PLUS_EXPR,
1292 const_binop (MULT_EXPR, r1, i2),
1293 const_binop (MULT_EXPR, i1, r2));
1294 break;
1295
1296 case RDIV_EXPR:
1297 if (COMPLEX_FLOAT_TYPE_P (type))
1298 return do_mpc_arg2 (arg1, arg2, type,
1299 /* do_nonfinite= */ folding_initializer,
1300 mpc_div);
1301 /* Fallthru ... */
1302 case TRUNC_DIV_EXPR:
1303 case CEIL_DIV_EXPR:
1304 case FLOOR_DIV_EXPR:
1305 case ROUND_DIV_EXPR:
1306 if (flag_complex_method == 0)
1307 {
1308 /* Keep this algorithm in sync with
1309 tree-complex.c:expand_complex_div_straight().
1310
1311 Expand complex division to scalars, straightforward algorithm.
1312 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1313 t = br*br + bi*bi
1314 */
1315 tree magsquared
1316 = const_binop (PLUS_EXPR,
1317 const_binop (MULT_EXPR, r2, r2),
1318 const_binop (MULT_EXPR, i2, i2));
1319 tree t1
1320 = const_binop (PLUS_EXPR,
1321 const_binop (MULT_EXPR, r1, r2),
1322 const_binop (MULT_EXPR, i1, i2));
1323 tree t2
1324 = const_binop (MINUS_EXPR,
1325 const_binop (MULT_EXPR, i1, r2),
1326 const_binop (MULT_EXPR, r1, i2));
1327
1328 real = const_binop (code, t1, magsquared);
1329 imag = const_binop (code, t2, magsquared);
1330 }
1331 else
1332 {
1333 /* Keep this algorithm in sync with
1334 tree-complex.c:expand_complex_div_wide().
1335
1336 Expand complex division to scalars, modified algorithm to minimize
1337 overflow with wide input ranges. */
1338 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1339 fold_abs_const (r2, TREE_TYPE (type)),
1340 fold_abs_const (i2, TREE_TYPE (type)));
1341
1342 if (integer_nonzerop (compare))
1343 {
1344 /* In the TRUE branch, we compute
1345 ratio = br/bi;
1346 div = (br * ratio) + bi;
1347 tr = (ar * ratio) + ai;
1348 ti = (ai * ratio) - ar;
1349 tr = tr / div;
1350 ti = ti / div; */
1351 tree ratio = const_binop (code, r2, i2);
1352 tree div = const_binop (PLUS_EXPR, i2,
1353 const_binop (MULT_EXPR, r2, ratio));
1354 real = const_binop (MULT_EXPR, r1, ratio);
1355 real = const_binop (PLUS_EXPR, real, i1);
1356 real = const_binop (code, real, div);
1357
1358 imag = const_binop (MULT_EXPR, i1, ratio);
1359 imag = const_binop (MINUS_EXPR, imag, r1);
1360 imag = const_binop (code, imag, div);
1361 }
1362 else
1363 {
1364 /* In the FALSE branch, we compute
1365 ratio = d/c;
1366 divisor = (d * ratio) + c;
1367 tr = (b * ratio) + a;
1368 ti = b - (a * ratio);
1369 tr = tr / div;
1370 ti = ti / div; */
1371 tree ratio = const_binop (code, i2, r2);
1372 tree div = const_binop (PLUS_EXPR, r2,
1373 const_binop (MULT_EXPR, i2, ratio));
1374
1375 real = const_binop (MULT_EXPR, i1, ratio);
1376 real = const_binop (PLUS_EXPR, real, r1);
1377 real = const_binop (code, real, div);
1378
1379 imag = const_binop (MULT_EXPR, r1, ratio);
1380 imag = const_binop (MINUS_EXPR, i1, imag);
1381 imag = const_binop (code, imag, div);
1382 }
1383 }
1384 break;
1385
1386 default:
1387 return NULL_TREE;
1388 }
1389
1390 if (real && imag)
1391 return build_complex (type, real, imag);
1392 }
1393
1394 if (TREE_CODE (arg1) == VECTOR_CST
1395 && TREE_CODE (arg2) == VECTOR_CST)
1396 {
1397 tree type = TREE_TYPE (arg1);
1398 int count = TYPE_VECTOR_SUBPARTS (type), i;
1399 tree *elts = XALLOCAVEC (tree, count);
1400
1401 for (i = 0; i < count; i++)
1402 {
1403 tree elem1 = VECTOR_CST_ELT (arg1, i);
1404 tree elem2 = VECTOR_CST_ELT (arg2, i);
1405
1406 elts[i] = const_binop (code, elem1, elem2);
1407
1408 /* It is possible that const_binop cannot handle the given
1409 code and return NULL_TREE */
1410 if (elts[i] == NULL_TREE)
1411 return NULL_TREE;
1412 }
1413
1414 return build_vector (type, elts);
1415 }
1416
1417 /* Shifts allow a scalar offset for a vector. */
1418 if (TREE_CODE (arg1) == VECTOR_CST
1419 && TREE_CODE (arg2) == INTEGER_CST)
1420 {
1421 tree type = TREE_TYPE (arg1);
1422 int count = TYPE_VECTOR_SUBPARTS (type), i;
1423 tree *elts = XALLOCAVEC (tree, count);
1424
1425 for (i = 0; i < count; i++)
1426 {
1427 tree elem1 = VECTOR_CST_ELT (arg1, i);
1428
1429 elts[i] = const_binop (code, elem1, arg2);
1430
1431 /* It is possible that const_binop cannot handle the given
1432 code and return NULL_TREE. */
1433 if (elts[i] == NULL_TREE)
1434 return NULL_TREE;
1435 }
1436
1437 return build_vector (type, elts);
1438 }
1439 return NULL_TREE;
1440 }
1441
1442 /* Overload that adds a TYPE parameter to be able to dispatch
1443 to fold_relational_const. */
1444
1445 tree
1446 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1447 {
1448 if (TREE_CODE_CLASS (code) == tcc_comparison)
1449 return fold_relational_const (code, type, arg1, arg2);
1450
1451 /* ??? Until we make the const_binop worker take the type of the
1452 result as argument put those cases that need it here. */
1453 switch (code)
1454 {
1455 case COMPLEX_EXPR:
1456 if ((TREE_CODE (arg1) == REAL_CST
1457 && TREE_CODE (arg2) == REAL_CST)
1458 || (TREE_CODE (arg1) == INTEGER_CST
1459 && TREE_CODE (arg2) == INTEGER_CST))
1460 return build_complex (type, arg1, arg2);
1461 return NULL_TREE;
1462
1463 case VEC_PACK_TRUNC_EXPR:
1464 case VEC_PACK_FIX_TRUNC_EXPR:
1465 {
1466 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1467 tree *elts;
1468
1469 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts / 2
1470 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts / 2);
1471 if (TREE_CODE (arg1) != VECTOR_CST
1472 || TREE_CODE (arg2) != VECTOR_CST)
1473 return NULL_TREE;
1474
1475 elts = XALLOCAVEC (tree, nelts);
1476 if (!vec_cst_ctor_to_array (arg1, elts)
1477 || !vec_cst_ctor_to_array (arg2, elts + nelts / 2))
1478 return NULL_TREE;
1479
1480 for (i = 0; i < nelts; i++)
1481 {
1482 elts[i] = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1483 ? NOP_EXPR : FIX_TRUNC_EXPR,
1484 TREE_TYPE (type), elts[i]);
1485 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1486 return NULL_TREE;
1487 }
1488
1489 return build_vector (type, elts);
1490 }
1491
1492 case VEC_WIDEN_MULT_LO_EXPR:
1493 case VEC_WIDEN_MULT_HI_EXPR:
1494 case VEC_WIDEN_MULT_EVEN_EXPR:
1495 case VEC_WIDEN_MULT_ODD_EXPR:
1496 {
1497 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type);
1498 unsigned int out, ofs, scale;
1499 tree *elts;
1500
1501 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts * 2
1502 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts * 2);
1503 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1504 return NULL_TREE;
1505
1506 elts = XALLOCAVEC (tree, nelts * 4);
1507 if (!vec_cst_ctor_to_array (arg1, elts)
1508 || !vec_cst_ctor_to_array (arg2, elts + nelts * 2))
1509 return NULL_TREE;
1510
1511 if (code == VEC_WIDEN_MULT_LO_EXPR)
1512 scale = 0, ofs = BYTES_BIG_ENDIAN ? nelts : 0;
1513 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1514 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : nelts;
1515 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1516 scale = 1, ofs = 0;
1517 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1518 scale = 1, ofs = 1;
1519
1520 for (out = 0; out < nelts; out++)
1521 {
1522 unsigned int in1 = (out << scale) + ofs;
1523 unsigned int in2 = in1 + nelts * 2;
1524 tree t1, t2;
1525
1526 t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in1]);
1527 t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in2]);
1528
1529 if (t1 == NULL_TREE || t2 == NULL_TREE)
1530 return NULL_TREE;
1531 elts[out] = const_binop (MULT_EXPR, t1, t2);
1532 if (elts[out] == NULL_TREE || !CONSTANT_CLASS_P (elts[out]))
1533 return NULL_TREE;
1534 }
1535
1536 return build_vector (type, elts);
1537 }
1538
1539 default:;
1540 }
1541
1542 if (TREE_CODE_CLASS (code) != tcc_binary)
1543 return NULL_TREE;
1544
1545 /* Make sure type and arg0 have the same saturating flag. */
1546 gcc_checking_assert (TYPE_SATURATING (type)
1547 == TYPE_SATURATING (TREE_TYPE (arg1)));
1548
1549 return const_binop (code, arg1, arg2);
1550 }
1551
1552 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1553 Return zero if computing the constants is not possible. */
1554
1555 tree
1556 const_unop (enum tree_code code, tree type, tree arg0)
1557 {
1558 switch (code)
1559 {
1560 CASE_CONVERT:
1561 case FLOAT_EXPR:
1562 case FIX_TRUNC_EXPR:
1563 case FIXED_CONVERT_EXPR:
1564 return fold_convert_const (code, type, arg0);
1565
1566 case ADDR_SPACE_CONVERT_EXPR:
1567 if (integer_zerop (arg0))
1568 return fold_convert_const (code, type, arg0);
1569 break;
1570
1571 case VIEW_CONVERT_EXPR:
1572 return fold_view_convert_expr (type, arg0);
1573
1574 case NEGATE_EXPR:
1575 {
1576 /* Can't call fold_negate_const directly here as that doesn't
1577 handle all cases and we might not be able to negate some
1578 constants. */
1579 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1580 if (tem && CONSTANT_CLASS_P (tem))
1581 return tem;
1582 break;
1583 }
1584
1585 case ABS_EXPR:
1586 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1587 return fold_abs_const (arg0, type);
1588 break;
1589
1590 case CONJ_EXPR:
1591 if (TREE_CODE (arg0) == COMPLEX_CST)
1592 {
1593 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1594 TREE_TYPE (type));
1595 return build_complex (type, TREE_REALPART (arg0), ipart);
1596 }
1597 break;
1598
1599 case BIT_NOT_EXPR:
1600 if (TREE_CODE (arg0) == INTEGER_CST)
1601 return fold_not_const (arg0, type);
1602 /* Perform BIT_NOT_EXPR on each element individually. */
1603 else if (TREE_CODE (arg0) == VECTOR_CST)
1604 {
1605 tree *elements;
1606 tree elem;
1607 unsigned count = VECTOR_CST_NELTS (arg0), i;
1608
1609 elements = XALLOCAVEC (tree, count);
1610 for (i = 0; i < count; i++)
1611 {
1612 elem = VECTOR_CST_ELT (arg0, i);
1613 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1614 if (elem == NULL_TREE)
1615 break;
1616 elements[i] = elem;
1617 }
1618 if (i == count)
1619 return build_vector (type, elements);
1620 }
1621 break;
1622
1623 case TRUTH_NOT_EXPR:
1624 if (TREE_CODE (arg0) == INTEGER_CST)
1625 return constant_boolean_node (integer_zerop (arg0), type);
1626 break;
1627
1628 case REALPART_EXPR:
1629 if (TREE_CODE (arg0) == COMPLEX_CST)
1630 return fold_convert (type, TREE_REALPART (arg0));
1631 break;
1632
1633 case IMAGPART_EXPR:
1634 if (TREE_CODE (arg0) == COMPLEX_CST)
1635 return fold_convert (type, TREE_IMAGPART (arg0));
1636 break;
1637
1638 case VEC_UNPACK_LO_EXPR:
1639 case VEC_UNPACK_HI_EXPR:
1640 case VEC_UNPACK_FLOAT_LO_EXPR:
1641 case VEC_UNPACK_FLOAT_HI_EXPR:
1642 {
1643 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1644 tree *elts;
1645 enum tree_code subcode;
1646
1647 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts * 2);
1648 if (TREE_CODE (arg0) != VECTOR_CST)
1649 return NULL_TREE;
1650
1651 elts = XALLOCAVEC (tree, nelts * 2);
1652 if (!vec_cst_ctor_to_array (arg0, elts))
1653 return NULL_TREE;
1654
1655 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1656 || code == VEC_UNPACK_FLOAT_LO_EXPR))
1657 elts += nelts;
1658
1659 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1660 subcode = NOP_EXPR;
1661 else
1662 subcode = FLOAT_EXPR;
1663
1664 for (i = 0; i < nelts; i++)
1665 {
1666 elts[i] = fold_convert_const (subcode, TREE_TYPE (type), elts[i]);
1667 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1668 return NULL_TREE;
1669 }
1670
1671 return build_vector (type, elts);
1672 }
1673
1674 case REDUC_MIN_EXPR:
1675 case REDUC_MAX_EXPR:
1676 case REDUC_PLUS_EXPR:
1677 {
1678 unsigned int nelts, i;
1679 tree *elts;
1680 enum tree_code subcode;
1681
1682 if (TREE_CODE (arg0) != VECTOR_CST)
1683 return NULL_TREE;
1684 nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
1685
1686 elts = XALLOCAVEC (tree, nelts);
1687 if (!vec_cst_ctor_to_array (arg0, elts))
1688 return NULL_TREE;
1689
1690 switch (code)
1691 {
1692 case REDUC_MIN_EXPR: subcode = MIN_EXPR; break;
1693 case REDUC_MAX_EXPR: subcode = MAX_EXPR; break;
1694 case REDUC_PLUS_EXPR: subcode = PLUS_EXPR; break;
1695 default: gcc_unreachable ();
1696 }
1697
1698 for (i = 1; i < nelts; i++)
1699 {
1700 elts[0] = const_binop (subcode, elts[0], elts[i]);
1701 if (elts[0] == NULL_TREE || !CONSTANT_CLASS_P (elts[0]))
1702 return NULL_TREE;
1703 }
1704
1705 return elts[0];
1706 }
1707
1708 default:
1709 break;
1710 }
1711
1712 return NULL_TREE;
1713 }
1714
1715 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1716 indicates which particular sizetype to create. */
1717
1718 tree
1719 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1720 {
1721 return build_int_cst (sizetype_tab[(int) kind], number);
1722 }
1723 \f
1724 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1725 is a tree code. The type of the result is taken from the operands.
1726 Both must be equivalent integer types, ala int_binop_types_match_p.
1727 If the operands are constant, so is the result. */
1728
1729 tree
1730 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1731 {
1732 tree type = TREE_TYPE (arg0);
1733
1734 if (arg0 == error_mark_node || arg1 == error_mark_node)
1735 return error_mark_node;
1736
1737 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1738 TREE_TYPE (arg1)));
1739
1740 /* Handle the special case of two integer constants faster. */
1741 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1742 {
1743 /* And some specific cases even faster than that. */
1744 if (code == PLUS_EXPR)
1745 {
1746 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1747 return arg1;
1748 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1749 return arg0;
1750 }
1751 else if (code == MINUS_EXPR)
1752 {
1753 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1754 return arg0;
1755 }
1756 else if (code == MULT_EXPR)
1757 {
1758 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1759 return arg1;
1760 }
1761
1762 /* Handle general case of two integer constants. For sizetype
1763 constant calculations we always want to know about overflow,
1764 even in the unsigned case. */
1765 return int_const_binop_1 (code, arg0, arg1, -1);
1766 }
1767
1768 return fold_build2_loc (loc, code, type, arg0, arg1);
1769 }
1770
1771 /* Given two values, either both of sizetype or both of bitsizetype,
1772 compute the difference between the two values. Return the value
1773 in signed type corresponding to the type of the operands. */
1774
1775 tree
1776 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1777 {
1778 tree type = TREE_TYPE (arg0);
1779 tree ctype;
1780
1781 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1782 TREE_TYPE (arg1)));
1783
1784 /* If the type is already signed, just do the simple thing. */
1785 if (!TYPE_UNSIGNED (type))
1786 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1787
1788 if (type == sizetype)
1789 ctype = ssizetype;
1790 else if (type == bitsizetype)
1791 ctype = sbitsizetype;
1792 else
1793 ctype = signed_type_for (type);
1794
1795 /* If either operand is not a constant, do the conversions to the signed
1796 type and subtract. The hardware will do the right thing with any
1797 overflow in the subtraction. */
1798 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1799 return size_binop_loc (loc, MINUS_EXPR,
1800 fold_convert_loc (loc, ctype, arg0),
1801 fold_convert_loc (loc, ctype, arg1));
1802
1803 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1804 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1805 overflow) and negate (which can't either). Special-case a result
1806 of zero while we're here. */
1807 if (tree_int_cst_equal (arg0, arg1))
1808 return build_int_cst (ctype, 0);
1809 else if (tree_int_cst_lt (arg1, arg0))
1810 return fold_convert_loc (loc, ctype,
1811 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1812 else
1813 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1814 fold_convert_loc (loc, ctype,
1815 size_binop_loc (loc,
1816 MINUS_EXPR,
1817 arg1, arg0)));
1818 }
1819 \f
1820 /* A subroutine of fold_convert_const handling conversions of an
1821 INTEGER_CST to another integer type. */
1822
1823 static tree
1824 fold_convert_const_int_from_int (tree type, const_tree arg1)
1825 {
1826 /* Given an integer constant, make new constant with new type,
1827 appropriately sign-extended or truncated. Use widest_int
1828 so that any extension is done according ARG1's type. */
1829 return force_fit_type (type, wi::to_widest (arg1),
1830 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1831 TREE_OVERFLOW (arg1));
1832 }
1833
1834 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1835 to an integer type. */
1836
1837 static tree
1838 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1839 {
1840 bool overflow = false;
1841 tree t;
1842
1843 /* The following code implements the floating point to integer
1844 conversion rules required by the Java Language Specification,
1845 that IEEE NaNs are mapped to zero and values that overflow
1846 the target precision saturate, i.e. values greater than
1847 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1848 are mapped to INT_MIN. These semantics are allowed by the
1849 C and C++ standards that simply state that the behavior of
1850 FP-to-integer conversion is unspecified upon overflow. */
1851
1852 wide_int val;
1853 REAL_VALUE_TYPE r;
1854 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1855
1856 switch (code)
1857 {
1858 case FIX_TRUNC_EXPR:
1859 real_trunc (&r, VOIDmode, &x);
1860 break;
1861
1862 default:
1863 gcc_unreachable ();
1864 }
1865
1866 /* If R is NaN, return zero and show we have an overflow. */
1867 if (REAL_VALUE_ISNAN (r))
1868 {
1869 overflow = true;
1870 val = wi::zero (TYPE_PRECISION (type));
1871 }
1872
1873 /* See if R is less than the lower bound or greater than the
1874 upper bound. */
1875
1876 if (! overflow)
1877 {
1878 tree lt = TYPE_MIN_VALUE (type);
1879 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1880 if (REAL_VALUES_LESS (r, l))
1881 {
1882 overflow = true;
1883 val = lt;
1884 }
1885 }
1886
1887 if (! overflow)
1888 {
1889 tree ut = TYPE_MAX_VALUE (type);
1890 if (ut)
1891 {
1892 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1893 if (REAL_VALUES_LESS (u, r))
1894 {
1895 overflow = true;
1896 val = ut;
1897 }
1898 }
1899 }
1900
1901 if (! overflow)
1902 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1903
1904 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1905 return t;
1906 }
1907
1908 /* A subroutine of fold_convert_const handling conversions of a
1909 FIXED_CST to an integer type. */
1910
1911 static tree
1912 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1913 {
1914 tree t;
1915 double_int temp, temp_trunc;
1916 unsigned int mode;
1917
1918 /* Right shift FIXED_CST to temp by fbit. */
1919 temp = TREE_FIXED_CST (arg1).data;
1920 mode = TREE_FIXED_CST (arg1).mode;
1921 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1922 {
1923 temp = temp.rshift (GET_MODE_FBIT (mode),
1924 HOST_BITS_PER_DOUBLE_INT,
1925 SIGNED_FIXED_POINT_MODE_P (mode));
1926
1927 /* Left shift temp to temp_trunc by fbit. */
1928 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1929 HOST_BITS_PER_DOUBLE_INT,
1930 SIGNED_FIXED_POINT_MODE_P (mode));
1931 }
1932 else
1933 {
1934 temp = double_int_zero;
1935 temp_trunc = double_int_zero;
1936 }
1937
1938 /* If FIXED_CST is negative, we need to round the value toward 0.
1939 By checking if the fractional bits are not zero to add 1 to temp. */
1940 if (SIGNED_FIXED_POINT_MODE_P (mode)
1941 && temp_trunc.is_negative ()
1942 && TREE_FIXED_CST (arg1).data != temp_trunc)
1943 temp += double_int_one;
1944
1945 /* Given a fixed-point constant, make new constant with new type,
1946 appropriately sign-extended or truncated. */
1947 t = force_fit_type (type, temp, -1,
1948 (temp.is_negative ()
1949 && (TYPE_UNSIGNED (type)
1950 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1951 | TREE_OVERFLOW (arg1));
1952
1953 return t;
1954 }
1955
1956 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1957 to another floating point type. */
1958
1959 static tree
1960 fold_convert_const_real_from_real (tree type, const_tree arg1)
1961 {
1962 REAL_VALUE_TYPE value;
1963 tree t;
1964
1965 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1966 t = build_real (type, value);
1967
1968 /* If converting an infinity or NAN to a representation that doesn't
1969 have one, set the overflow bit so that we can produce some kind of
1970 error message at the appropriate point if necessary. It's not the
1971 most user-friendly message, but it's better than nothing. */
1972 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
1973 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
1974 TREE_OVERFLOW (t) = 1;
1975 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
1976 && !MODE_HAS_NANS (TYPE_MODE (type)))
1977 TREE_OVERFLOW (t) = 1;
1978 /* Regular overflow, conversion produced an infinity in a mode that
1979 can't represent them. */
1980 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
1981 && REAL_VALUE_ISINF (value)
1982 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
1983 TREE_OVERFLOW (t) = 1;
1984 else
1985 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1986 return t;
1987 }
1988
1989 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
1990 to a floating point type. */
1991
1992 static tree
1993 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
1994 {
1995 REAL_VALUE_TYPE value;
1996 tree t;
1997
1998 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
1999 t = build_real (type, value);
2000
2001 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2002 return t;
2003 }
2004
2005 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2006 to another fixed-point type. */
2007
2008 static tree
2009 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2010 {
2011 FIXED_VALUE_TYPE value;
2012 tree t;
2013 bool overflow_p;
2014
2015 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2016 TYPE_SATURATING (type));
2017 t = build_fixed (type, value);
2018
2019 /* Propagate overflow flags. */
2020 if (overflow_p | TREE_OVERFLOW (arg1))
2021 TREE_OVERFLOW (t) = 1;
2022 return t;
2023 }
2024
2025 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2026 to a fixed-point type. */
2027
2028 static tree
2029 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2030 {
2031 FIXED_VALUE_TYPE value;
2032 tree t;
2033 bool overflow_p;
2034 double_int di;
2035
2036 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2037
2038 di.low = TREE_INT_CST_ELT (arg1, 0);
2039 if (TREE_INT_CST_NUNITS (arg1) == 1)
2040 di.high = (HOST_WIDE_INT) di.low < 0 ? (HOST_WIDE_INT) -1 : 0;
2041 else
2042 di.high = TREE_INT_CST_ELT (arg1, 1);
2043
2044 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type), di,
2045 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2046 TYPE_SATURATING (type));
2047 t = build_fixed (type, value);
2048
2049 /* Propagate overflow flags. */
2050 if (overflow_p | TREE_OVERFLOW (arg1))
2051 TREE_OVERFLOW (t) = 1;
2052 return t;
2053 }
2054
2055 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2056 to a fixed-point type. */
2057
2058 static tree
2059 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2060 {
2061 FIXED_VALUE_TYPE value;
2062 tree t;
2063 bool overflow_p;
2064
2065 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2066 &TREE_REAL_CST (arg1),
2067 TYPE_SATURATING (type));
2068 t = build_fixed (type, value);
2069
2070 /* Propagate overflow flags. */
2071 if (overflow_p | TREE_OVERFLOW (arg1))
2072 TREE_OVERFLOW (t) = 1;
2073 return t;
2074 }
2075
2076 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2077 type TYPE. If no simplification can be done return NULL_TREE. */
2078
2079 static tree
2080 fold_convert_const (enum tree_code code, tree type, tree arg1)
2081 {
2082 if (TREE_TYPE (arg1) == type)
2083 return arg1;
2084
2085 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2086 || TREE_CODE (type) == OFFSET_TYPE)
2087 {
2088 if (TREE_CODE (arg1) == INTEGER_CST)
2089 return fold_convert_const_int_from_int (type, arg1);
2090 else if (TREE_CODE (arg1) == REAL_CST)
2091 return fold_convert_const_int_from_real (code, type, arg1);
2092 else if (TREE_CODE (arg1) == FIXED_CST)
2093 return fold_convert_const_int_from_fixed (type, arg1);
2094 }
2095 else if (TREE_CODE (type) == REAL_TYPE)
2096 {
2097 if (TREE_CODE (arg1) == INTEGER_CST)
2098 return build_real_from_int_cst (type, arg1);
2099 else if (TREE_CODE (arg1) == REAL_CST)
2100 return fold_convert_const_real_from_real (type, arg1);
2101 else if (TREE_CODE (arg1) == FIXED_CST)
2102 return fold_convert_const_real_from_fixed (type, arg1);
2103 }
2104 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2105 {
2106 if (TREE_CODE (arg1) == FIXED_CST)
2107 return fold_convert_const_fixed_from_fixed (type, arg1);
2108 else if (TREE_CODE (arg1) == INTEGER_CST)
2109 return fold_convert_const_fixed_from_int (type, arg1);
2110 else if (TREE_CODE (arg1) == REAL_CST)
2111 return fold_convert_const_fixed_from_real (type, arg1);
2112 }
2113 return NULL_TREE;
2114 }
2115
2116 /* Construct a vector of zero elements of vector type TYPE. */
2117
2118 static tree
2119 build_zero_vector (tree type)
2120 {
2121 tree t;
2122
2123 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2124 return build_vector_from_val (type, t);
2125 }
2126
2127 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2128
2129 bool
2130 fold_convertible_p (const_tree type, const_tree arg)
2131 {
2132 tree orig = TREE_TYPE (arg);
2133
2134 if (type == orig)
2135 return true;
2136
2137 if (TREE_CODE (arg) == ERROR_MARK
2138 || TREE_CODE (type) == ERROR_MARK
2139 || TREE_CODE (orig) == ERROR_MARK)
2140 return false;
2141
2142 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2143 return true;
2144
2145 switch (TREE_CODE (type))
2146 {
2147 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2148 case POINTER_TYPE: case REFERENCE_TYPE:
2149 case OFFSET_TYPE:
2150 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2151 || TREE_CODE (orig) == OFFSET_TYPE)
2152 return true;
2153 return (TREE_CODE (orig) == VECTOR_TYPE
2154 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2155
2156 case REAL_TYPE:
2157 case FIXED_POINT_TYPE:
2158 case COMPLEX_TYPE:
2159 case VECTOR_TYPE:
2160 case VOID_TYPE:
2161 return TREE_CODE (type) == TREE_CODE (orig);
2162
2163 default:
2164 return false;
2165 }
2166 }
2167
2168 /* Convert expression ARG to type TYPE. Used by the middle-end for
2169 simple conversions in preference to calling the front-end's convert. */
2170
2171 tree
2172 fold_convert_loc (location_t loc, tree type, tree arg)
2173 {
2174 tree orig = TREE_TYPE (arg);
2175 tree tem;
2176
2177 if (type == orig)
2178 return arg;
2179
2180 if (TREE_CODE (arg) == ERROR_MARK
2181 || TREE_CODE (type) == ERROR_MARK
2182 || TREE_CODE (orig) == ERROR_MARK)
2183 return error_mark_node;
2184
2185 switch (TREE_CODE (type))
2186 {
2187 case POINTER_TYPE:
2188 case REFERENCE_TYPE:
2189 /* Handle conversions between pointers to different address spaces. */
2190 if (POINTER_TYPE_P (orig)
2191 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2192 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2193 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2194 /* fall through */
2195
2196 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2197 case OFFSET_TYPE:
2198 if (TREE_CODE (arg) == INTEGER_CST)
2199 {
2200 tem = fold_convert_const (NOP_EXPR, type, arg);
2201 if (tem != NULL_TREE)
2202 return tem;
2203 }
2204 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2205 || TREE_CODE (orig) == OFFSET_TYPE)
2206 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2207 if (TREE_CODE (orig) == COMPLEX_TYPE)
2208 return fold_convert_loc (loc, type,
2209 fold_build1_loc (loc, REALPART_EXPR,
2210 TREE_TYPE (orig), arg));
2211 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2212 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2213 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2214
2215 case REAL_TYPE:
2216 if (TREE_CODE (arg) == INTEGER_CST)
2217 {
2218 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2219 if (tem != NULL_TREE)
2220 return tem;
2221 }
2222 else if (TREE_CODE (arg) == REAL_CST)
2223 {
2224 tem = fold_convert_const (NOP_EXPR, type, arg);
2225 if (tem != NULL_TREE)
2226 return tem;
2227 }
2228 else if (TREE_CODE (arg) == FIXED_CST)
2229 {
2230 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2231 if (tem != NULL_TREE)
2232 return tem;
2233 }
2234
2235 switch (TREE_CODE (orig))
2236 {
2237 case INTEGER_TYPE:
2238 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2239 case POINTER_TYPE: case REFERENCE_TYPE:
2240 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2241
2242 case REAL_TYPE:
2243 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2244
2245 case FIXED_POINT_TYPE:
2246 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2247
2248 case COMPLEX_TYPE:
2249 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2250 return fold_convert_loc (loc, type, tem);
2251
2252 default:
2253 gcc_unreachable ();
2254 }
2255
2256 case FIXED_POINT_TYPE:
2257 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2258 || TREE_CODE (arg) == REAL_CST)
2259 {
2260 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2261 if (tem != NULL_TREE)
2262 goto fold_convert_exit;
2263 }
2264
2265 switch (TREE_CODE (orig))
2266 {
2267 case FIXED_POINT_TYPE:
2268 case INTEGER_TYPE:
2269 case ENUMERAL_TYPE:
2270 case BOOLEAN_TYPE:
2271 case REAL_TYPE:
2272 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2273
2274 case COMPLEX_TYPE:
2275 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2276 return fold_convert_loc (loc, type, tem);
2277
2278 default:
2279 gcc_unreachable ();
2280 }
2281
2282 case COMPLEX_TYPE:
2283 switch (TREE_CODE (orig))
2284 {
2285 case INTEGER_TYPE:
2286 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2287 case POINTER_TYPE: case REFERENCE_TYPE:
2288 case REAL_TYPE:
2289 case FIXED_POINT_TYPE:
2290 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2291 fold_convert_loc (loc, TREE_TYPE (type), arg),
2292 fold_convert_loc (loc, TREE_TYPE (type),
2293 integer_zero_node));
2294 case COMPLEX_TYPE:
2295 {
2296 tree rpart, ipart;
2297
2298 if (TREE_CODE (arg) == COMPLEX_EXPR)
2299 {
2300 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2301 TREE_OPERAND (arg, 0));
2302 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2303 TREE_OPERAND (arg, 1));
2304 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2305 }
2306
2307 arg = save_expr (arg);
2308 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2309 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2310 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2311 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2312 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2313 }
2314
2315 default:
2316 gcc_unreachable ();
2317 }
2318
2319 case VECTOR_TYPE:
2320 if (integer_zerop (arg))
2321 return build_zero_vector (type);
2322 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2323 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2324 || TREE_CODE (orig) == VECTOR_TYPE);
2325 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2326
2327 case VOID_TYPE:
2328 tem = fold_ignored_result (arg);
2329 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2330
2331 default:
2332 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2333 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2334 gcc_unreachable ();
2335 }
2336 fold_convert_exit:
2337 protected_set_expr_location_unshare (tem, loc);
2338 return tem;
2339 }
2340 \f
2341 /* Return false if expr can be assumed not to be an lvalue, true
2342 otherwise. */
2343
2344 static bool
2345 maybe_lvalue_p (const_tree x)
2346 {
2347 /* We only need to wrap lvalue tree codes. */
2348 switch (TREE_CODE (x))
2349 {
2350 case VAR_DECL:
2351 case PARM_DECL:
2352 case RESULT_DECL:
2353 case LABEL_DECL:
2354 case FUNCTION_DECL:
2355 case SSA_NAME:
2356
2357 case COMPONENT_REF:
2358 case MEM_REF:
2359 case INDIRECT_REF:
2360 case ARRAY_REF:
2361 case ARRAY_RANGE_REF:
2362 case BIT_FIELD_REF:
2363 case OBJ_TYPE_REF:
2364
2365 case REALPART_EXPR:
2366 case IMAGPART_EXPR:
2367 case PREINCREMENT_EXPR:
2368 case PREDECREMENT_EXPR:
2369 case SAVE_EXPR:
2370 case TRY_CATCH_EXPR:
2371 case WITH_CLEANUP_EXPR:
2372 case COMPOUND_EXPR:
2373 case MODIFY_EXPR:
2374 case TARGET_EXPR:
2375 case COND_EXPR:
2376 case BIND_EXPR:
2377 break;
2378
2379 default:
2380 /* Assume the worst for front-end tree codes. */
2381 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2382 break;
2383 return false;
2384 }
2385
2386 return true;
2387 }
2388
2389 /* Return an expr equal to X but certainly not valid as an lvalue. */
2390
2391 tree
2392 non_lvalue_loc (location_t loc, tree x)
2393 {
2394 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2395 us. */
2396 if (in_gimple_form)
2397 return x;
2398
2399 if (! maybe_lvalue_p (x))
2400 return x;
2401 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2402 }
2403
2404 /* When pedantic, return an expr equal to X but certainly not valid as a
2405 pedantic lvalue. Otherwise, return X. */
2406
2407 static tree
2408 pedantic_non_lvalue_loc (location_t loc, tree x)
2409 {
2410 return protected_set_expr_location_unshare (x, loc);
2411 }
2412 \f
2413 /* Given a tree comparison code, return the code that is the logical inverse.
2414 It is generally not safe to do this for floating-point comparisons, except
2415 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2416 ERROR_MARK in this case. */
2417
2418 enum tree_code
2419 invert_tree_comparison (enum tree_code code, bool honor_nans)
2420 {
2421 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2422 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2423 return ERROR_MARK;
2424
2425 switch (code)
2426 {
2427 case EQ_EXPR:
2428 return NE_EXPR;
2429 case NE_EXPR:
2430 return EQ_EXPR;
2431 case GT_EXPR:
2432 return honor_nans ? UNLE_EXPR : LE_EXPR;
2433 case GE_EXPR:
2434 return honor_nans ? UNLT_EXPR : LT_EXPR;
2435 case LT_EXPR:
2436 return honor_nans ? UNGE_EXPR : GE_EXPR;
2437 case LE_EXPR:
2438 return honor_nans ? UNGT_EXPR : GT_EXPR;
2439 case LTGT_EXPR:
2440 return UNEQ_EXPR;
2441 case UNEQ_EXPR:
2442 return LTGT_EXPR;
2443 case UNGT_EXPR:
2444 return LE_EXPR;
2445 case UNGE_EXPR:
2446 return LT_EXPR;
2447 case UNLT_EXPR:
2448 return GE_EXPR;
2449 case UNLE_EXPR:
2450 return GT_EXPR;
2451 case ORDERED_EXPR:
2452 return UNORDERED_EXPR;
2453 case UNORDERED_EXPR:
2454 return ORDERED_EXPR;
2455 default:
2456 gcc_unreachable ();
2457 }
2458 }
2459
2460 /* Similar, but return the comparison that results if the operands are
2461 swapped. This is safe for floating-point. */
2462
2463 enum tree_code
2464 swap_tree_comparison (enum tree_code code)
2465 {
2466 switch (code)
2467 {
2468 case EQ_EXPR:
2469 case NE_EXPR:
2470 case ORDERED_EXPR:
2471 case UNORDERED_EXPR:
2472 case LTGT_EXPR:
2473 case UNEQ_EXPR:
2474 return code;
2475 case GT_EXPR:
2476 return LT_EXPR;
2477 case GE_EXPR:
2478 return LE_EXPR;
2479 case LT_EXPR:
2480 return GT_EXPR;
2481 case LE_EXPR:
2482 return GE_EXPR;
2483 case UNGT_EXPR:
2484 return UNLT_EXPR;
2485 case UNGE_EXPR:
2486 return UNLE_EXPR;
2487 case UNLT_EXPR:
2488 return UNGT_EXPR;
2489 case UNLE_EXPR:
2490 return UNGE_EXPR;
2491 default:
2492 gcc_unreachable ();
2493 }
2494 }
2495
2496
2497 /* Convert a comparison tree code from an enum tree_code representation
2498 into a compcode bit-based encoding. This function is the inverse of
2499 compcode_to_comparison. */
2500
2501 static enum comparison_code
2502 comparison_to_compcode (enum tree_code code)
2503 {
2504 switch (code)
2505 {
2506 case LT_EXPR:
2507 return COMPCODE_LT;
2508 case EQ_EXPR:
2509 return COMPCODE_EQ;
2510 case LE_EXPR:
2511 return COMPCODE_LE;
2512 case GT_EXPR:
2513 return COMPCODE_GT;
2514 case NE_EXPR:
2515 return COMPCODE_NE;
2516 case GE_EXPR:
2517 return COMPCODE_GE;
2518 case ORDERED_EXPR:
2519 return COMPCODE_ORD;
2520 case UNORDERED_EXPR:
2521 return COMPCODE_UNORD;
2522 case UNLT_EXPR:
2523 return COMPCODE_UNLT;
2524 case UNEQ_EXPR:
2525 return COMPCODE_UNEQ;
2526 case UNLE_EXPR:
2527 return COMPCODE_UNLE;
2528 case UNGT_EXPR:
2529 return COMPCODE_UNGT;
2530 case LTGT_EXPR:
2531 return COMPCODE_LTGT;
2532 case UNGE_EXPR:
2533 return COMPCODE_UNGE;
2534 default:
2535 gcc_unreachable ();
2536 }
2537 }
2538
2539 /* Convert a compcode bit-based encoding of a comparison operator back
2540 to GCC's enum tree_code representation. This function is the
2541 inverse of comparison_to_compcode. */
2542
2543 static enum tree_code
2544 compcode_to_comparison (enum comparison_code code)
2545 {
2546 switch (code)
2547 {
2548 case COMPCODE_LT:
2549 return LT_EXPR;
2550 case COMPCODE_EQ:
2551 return EQ_EXPR;
2552 case COMPCODE_LE:
2553 return LE_EXPR;
2554 case COMPCODE_GT:
2555 return GT_EXPR;
2556 case COMPCODE_NE:
2557 return NE_EXPR;
2558 case COMPCODE_GE:
2559 return GE_EXPR;
2560 case COMPCODE_ORD:
2561 return ORDERED_EXPR;
2562 case COMPCODE_UNORD:
2563 return UNORDERED_EXPR;
2564 case COMPCODE_UNLT:
2565 return UNLT_EXPR;
2566 case COMPCODE_UNEQ:
2567 return UNEQ_EXPR;
2568 case COMPCODE_UNLE:
2569 return UNLE_EXPR;
2570 case COMPCODE_UNGT:
2571 return UNGT_EXPR;
2572 case COMPCODE_LTGT:
2573 return LTGT_EXPR;
2574 case COMPCODE_UNGE:
2575 return UNGE_EXPR;
2576 default:
2577 gcc_unreachable ();
2578 }
2579 }
2580
2581 /* Return a tree for the comparison which is the combination of
2582 doing the AND or OR (depending on CODE) of the two operations LCODE
2583 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2584 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2585 if this makes the transformation invalid. */
2586
2587 tree
2588 combine_comparisons (location_t loc,
2589 enum tree_code code, enum tree_code lcode,
2590 enum tree_code rcode, tree truth_type,
2591 tree ll_arg, tree lr_arg)
2592 {
2593 bool honor_nans = HONOR_NANS (ll_arg);
2594 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2595 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2596 int compcode;
2597
2598 switch (code)
2599 {
2600 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2601 compcode = lcompcode & rcompcode;
2602 break;
2603
2604 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2605 compcode = lcompcode | rcompcode;
2606 break;
2607
2608 default:
2609 return NULL_TREE;
2610 }
2611
2612 if (!honor_nans)
2613 {
2614 /* Eliminate unordered comparisons, as well as LTGT and ORD
2615 which are not used unless the mode has NaNs. */
2616 compcode &= ~COMPCODE_UNORD;
2617 if (compcode == COMPCODE_LTGT)
2618 compcode = COMPCODE_NE;
2619 else if (compcode == COMPCODE_ORD)
2620 compcode = COMPCODE_TRUE;
2621 }
2622 else if (flag_trapping_math)
2623 {
2624 /* Check that the original operation and the optimized ones will trap
2625 under the same condition. */
2626 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2627 && (lcompcode != COMPCODE_EQ)
2628 && (lcompcode != COMPCODE_ORD);
2629 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2630 && (rcompcode != COMPCODE_EQ)
2631 && (rcompcode != COMPCODE_ORD);
2632 bool trap = (compcode & COMPCODE_UNORD) == 0
2633 && (compcode != COMPCODE_EQ)
2634 && (compcode != COMPCODE_ORD);
2635
2636 /* In a short-circuited boolean expression the LHS might be
2637 such that the RHS, if evaluated, will never trap. For
2638 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2639 if neither x nor y is NaN. (This is a mixed blessing: for
2640 example, the expression above will never trap, hence
2641 optimizing it to x < y would be invalid). */
2642 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2643 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2644 rtrap = false;
2645
2646 /* If the comparison was short-circuited, and only the RHS
2647 trapped, we may now generate a spurious trap. */
2648 if (rtrap && !ltrap
2649 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2650 return NULL_TREE;
2651
2652 /* If we changed the conditions that cause a trap, we lose. */
2653 if ((ltrap || rtrap) != trap)
2654 return NULL_TREE;
2655 }
2656
2657 if (compcode == COMPCODE_TRUE)
2658 return constant_boolean_node (true, truth_type);
2659 else if (compcode == COMPCODE_FALSE)
2660 return constant_boolean_node (false, truth_type);
2661 else
2662 {
2663 enum tree_code tcode;
2664
2665 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2666 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2667 }
2668 }
2669 \f
2670 /* Return nonzero if two operands (typically of the same tree node)
2671 are necessarily equal. If either argument has side-effects this
2672 function returns zero. FLAGS modifies behavior as follows:
2673
2674 If OEP_ONLY_CONST is set, only return nonzero for constants.
2675 This function tests whether the operands are indistinguishable;
2676 it does not test whether they are equal using C's == operation.
2677 The distinction is important for IEEE floating point, because
2678 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2679 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2680
2681 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2682 even though it may hold multiple values during a function.
2683 This is because a GCC tree node guarantees that nothing else is
2684 executed between the evaluation of its "operands" (which may often
2685 be evaluated in arbitrary order). Hence if the operands themselves
2686 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2687 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2688 unset means assuming isochronic (or instantaneous) tree equivalence.
2689 Unless comparing arbitrary expression trees, such as from different
2690 statements, this flag can usually be left unset.
2691
2692 If OEP_PURE_SAME is set, then pure functions with identical arguments
2693 are considered the same. It is used when the caller has other ways
2694 to ensure that global memory is unchanged in between. */
2695
2696 int
2697 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2698 {
2699 /* If either is ERROR_MARK, they aren't equal. */
2700 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2701 || TREE_TYPE (arg0) == error_mark_node
2702 || TREE_TYPE (arg1) == error_mark_node)
2703 return 0;
2704
2705 /* Similar, if either does not have a type (like a released SSA name),
2706 they aren't equal. */
2707 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2708 return 0;
2709
2710 /* Check equality of integer constants before bailing out due to
2711 precision differences. */
2712 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2713 return tree_int_cst_equal (arg0, arg1);
2714
2715 /* If both types don't have the same signedness, then we can't consider
2716 them equal. We must check this before the STRIP_NOPS calls
2717 because they may change the signedness of the arguments. As pointers
2718 strictly don't have a signedness, require either two pointers or
2719 two non-pointers as well. */
2720 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2721 || POINTER_TYPE_P (TREE_TYPE (arg0)) != POINTER_TYPE_P (TREE_TYPE (arg1)))
2722 return 0;
2723
2724 /* We cannot consider pointers to different address space equal. */
2725 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && POINTER_TYPE_P (TREE_TYPE (arg1))
2726 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2727 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2728 return 0;
2729
2730 /* If both types don't have the same precision, then it is not safe
2731 to strip NOPs. */
2732 if (element_precision (TREE_TYPE (arg0))
2733 != element_precision (TREE_TYPE (arg1)))
2734 return 0;
2735
2736 STRIP_NOPS (arg0);
2737 STRIP_NOPS (arg1);
2738
2739 /* In case both args are comparisons but with different comparison
2740 code, try to swap the comparison operands of one arg to produce
2741 a match and compare that variant. */
2742 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2743 && COMPARISON_CLASS_P (arg0)
2744 && COMPARISON_CLASS_P (arg1))
2745 {
2746 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2747
2748 if (TREE_CODE (arg0) == swap_code)
2749 return operand_equal_p (TREE_OPERAND (arg0, 0),
2750 TREE_OPERAND (arg1, 1), flags)
2751 && operand_equal_p (TREE_OPERAND (arg0, 1),
2752 TREE_OPERAND (arg1, 0), flags);
2753 }
2754
2755 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2756 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2757 && !(CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1)))
2758 return 0;
2759
2760 /* This is needed for conversions and for COMPONENT_REF.
2761 Might as well play it safe and always test this. */
2762 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2763 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2764 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2765 return 0;
2766
2767 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2768 We don't care about side effects in that case because the SAVE_EXPR
2769 takes care of that for us. In all other cases, two expressions are
2770 equal if they have no side effects. If we have two identical
2771 expressions with side effects that should be treated the same due
2772 to the only side effects being identical SAVE_EXPR's, that will
2773 be detected in the recursive calls below.
2774 If we are taking an invariant address of two identical objects
2775 they are necessarily equal as well. */
2776 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2777 && (TREE_CODE (arg0) == SAVE_EXPR
2778 || (flags & OEP_CONSTANT_ADDRESS_OF)
2779 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2780 return 1;
2781
2782 /* Next handle constant cases, those for which we can return 1 even
2783 if ONLY_CONST is set. */
2784 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2785 switch (TREE_CODE (arg0))
2786 {
2787 case INTEGER_CST:
2788 return tree_int_cst_equal (arg0, arg1);
2789
2790 case FIXED_CST:
2791 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2792 TREE_FIXED_CST (arg1));
2793
2794 case REAL_CST:
2795 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2796 TREE_REAL_CST (arg1)))
2797 return 1;
2798
2799
2800 if (!HONOR_SIGNED_ZEROS (arg0))
2801 {
2802 /* If we do not distinguish between signed and unsigned zero,
2803 consider them equal. */
2804 if (real_zerop (arg0) && real_zerop (arg1))
2805 return 1;
2806 }
2807 return 0;
2808
2809 case VECTOR_CST:
2810 {
2811 unsigned i;
2812
2813 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2814 return 0;
2815
2816 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2817 {
2818 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2819 VECTOR_CST_ELT (arg1, i), flags))
2820 return 0;
2821 }
2822 return 1;
2823 }
2824
2825 case COMPLEX_CST:
2826 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2827 flags)
2828 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2829 flags));
2830
2831 case STRING_CST:
2832 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2833 && ! memcmp (TREE_STRING_POINTER (arg0),
2834 TREE_STRING_POINTER (arg1),
2835 TREE_STRING_LENGTH (arg0)));
2836
2837 case ADDR_EXPR:
2838 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2839 TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1)
2840 ? OEP_CONSTANT_ADDRESS_OF | OEP_ADDRESS_OF : 0);
2841 default:
2842 break;
2843 }
2844
2845 if (flags & OEP_ONLY_CONST)
2846 return 0;
2847
2848 /* Define macros to test an operand from arg0 and arg1 for equality and a
2849 variant that allows null and views null as being different from any
2850 non-null value. In the latter case, if either is null, the both
2851 must be; otherwise, do the normal comparison. */
2852 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2853 TREE_OPERAND (arg1, N), flags)
2854
2855 #define OP_SAME_WITH_NULL(N) \
2856 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2857 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2858
2859 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2860 {
2861 case tcc_unary:
2862 /* Two conversions are equal only if signedness and modes match. */
2863 switch (TREE_CODE (arg0))
2864 {
2865 CASE_CONVERT:
2866 case FIX_TRUNC_EXPR:
2867 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2868 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2869 return 0;
2870 break;
2871 default:
2872 break;
2873 }
2874
2875 return OP_SAME (0);
2876
2877
2878 case tcc_comparison:
2879 case tcc_binary:
2880 if (OP_SAME (0) && OP_SAME (1))
2881 return 1;
2882
2883 /* For commutative ops, allow the other order. */
2884 return (commutative_tree_code (TREE_CODE (arg0))
2885 && operand_equal_p (TREE_OPERAND (arg0, 0),
2886 TREE_OPERAND (arg1, 1), flags)
2887 && operand_equal_p (TREE_OPERAND (arg0, 1),
2888 TREE_OPERAND (arg1, 0), flags));
2889
2890 case tcc_reference:
2891 /* If either of the pointer (or reference) expressions we are
2892 dereferencing contain a side effect, these cannot be equal,
2893 but their addresses can be. */
2894 if ((flags & OEP_CONSTANT_ADDRESS_OF) == 0
2895 && (TREE_SIDE_EFFECTS (arg0)
2896 || TREE_SIDE_EFFECTS (arg1)))
2897 return 0;
2898
2899 switch (TREE_CODE (arg0))
2900 {
2901 case INDIRECT_REF:
2902 if (!(flags & OEP_ADDRESS_OF)
2903 && (TYPE_ALIGN (TREE_TYPE (arg0))
2904 != TYPE_ALIGN (TREE_TYPE (arg1))))
2905 return 0;
2906 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2907 return OP_SAME (0);
2908
2909 case REALPART_EXPR:
2910 case IMAGPART_EXPR:
2911 return OP_SAME (0);
2912
2913 case TARGET_MEM_REF:
2914 case MEM_REF:
2915 /* Require equal access sizes, and similar pointer types.
2916 We can have incomplete types for array references of
2917 variable-sized arrays from the Fortran frontend
2918 though. Also verify the types are compatible. */
2919 if (!((TYPE_SIZE (TREE_TYPE (arg0)) == TYPE_SIZE (TREE_TYPE (arg1))
2920 || (TYPE_SIZE (TREE_TYPE (arg0))
2921 && TYPE_SIZE (TREE_TYPE (arg1))
2922 && operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
2923 TYPE_SIZE (TREE_TYPE (arg1)), flags)))
2924 && types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1))
2925 && ((flags & OEP_ADDRESS_OF)
2926 || (alias_ptr_types_compatible_p
2927 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
2928 TREE_TYPE (TREE_OPERAND (arg1, 1)))
2929 && (MR_DEPENDENCE_CLIQUE (arg0)
2930 == MR_DEPENDENCE_CLIQUE (arg1))
2931 && (MR_DEPENDENCE_BASE (arg0)
2932 == MR_DEPENDENCE_BASE (arg1))
2933 && (TYPE_ALIGN (TREE_TYPE (arg0))
2934 == TYPE_ALIGN (TREE_TYPE (arg1)))))))
2935 return 0;
2936 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2937 return (OP_SAME (0) && OP_SAME (1)
2938 /* TARGET_MEM_REF require equal extra operands. */
2939 && (TREE_CODE (arg0) != TARGET_MEM_REF
2940 || (OP_SAME_WITH_NULL (2)
2941 && OP_SAME_WITH_NULL (3)
2942 && OP_SAME_WITH_NULL (4))));
2943
2944 case ARRAY_REF:
2945 case ARRAY_RANGE_REF:
2946 /* Operands 2 and 3 may be null.
2947 Compare the array index by value if it is constant first as we
2948 may have different types but same value here. */
2949 if (!OP_SAME (0))
2950 return 0;
2951 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2952 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
2953 TREE_OPERAND (arg1, 1))
2954 || OP_SAME (1))
2955 && OP_SAME_WITH_NULL (2)
2956 && OP_SAME_WITH_NULL (3));
2957
2958 case COMPONENT_REF:
2959 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
2960 may be NULL when we're called to compare MEM_EXPRs. */
2961 if (!OP_SAME_WITH_NULL (0)
2962 || !OP_SAME (1))
2963 return 0;
2964 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2965 return OP_SAME_WITH_NULL (2);
2966
2967 case BIT_FIELD_REF:
2968 if (!OP_SAME (0))
2969 return 0;
2970 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2971 return OP_SAME (1) && OP_SAME (2);
2972
2973 default:
2974 return 0;
2975 }
2976
2977 case tcc_expression:
2978 switch (TREE_CODE (arg0))
2979 {
2980 case ADDR_EXPR:
2981 return operand_equal_p (TREE_OPERAND (arg0, 0),
2982 TREE_OPERAND (arg1, 0),
2983 flags | OEP_ADDRESS_OF);
2984
2985 case TRUTH_NOT_EXPR:
2986 return OP_SAME (0);
2987
2988 case TRUTH_ANDIF_EXPR:
2989 case TRUTH_ORIF_EXPR:
2990 return OP_SAME (0) && OP_SAME (1);
2991
2992 case FMA_EXPR:
2993 case WIDEN_MULT_PLUS_EXPR:
2994 case WIDEN_MULT_MINUS_EXPR:
2995 if (!OP_SAME (2))
2996 return 0;
2997 /* The multiplcation operands are commutative. */
2998 /* FALLTHRU */
2999
3000 case TRUTH_AND_EXPR:
3001 case TRUTH_OR_EXPR:
3002 case TRUTH_XOR_EXPR:
3003 if (OP_SAME (0) && OP_SAME (1))
3004 return 1;
3005
3006 /* Otherwise take into account this is a commutative operation. */
3007 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3008 TREE_OPERAND (arg1, 1), flags)
3009 && operand_equal_p (TREE_OPERAND (arg0, 1),
3010 TREE_OPERAND (arg1, 0), flags));
3011
3012 case COND_EXPR:
3013 case VEC_COND_EXPR:
3014 case DOT_PROD_EXPR:
3015 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3016
3017 default:
3018 return 0;
3019 }
3020
3021 case tcc_vl_exp:
3022 switch (TREE_CODE (arg0))
3023 {
3024 case CALL_EXPR:
3025 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3026 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3027 /* If not both CALL_EXPRs are either internal or normal function
3028 functions, then they are not equal. */
3029 return 0;
3030 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3031 {
3032 /* If the CALL_EXPRs call different internal functions, then they
3033 are not equal. */
3034 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3035 return 0;
3036 }
3037 else
3038 {
3039 /* If the CALL_EXPRs call different functions, then they are not
3040 equal. */
3041 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3042 flags))
3043 return 0;
3044 }
3045
3046 {
3047 unsigned int cef = call_expr_flags (arg0);
3048 if (flags & OEP_PURE_SAME)
3049 cef &= ECF_CONST | ECF_PURE;
3050 else
3051 cef &= ECF_CONST;
3052 if (!cef)
3053 return 0;
3054 }
3055
3056 /* Now see if all the arguments are the same. */
3057 {
3058 const_call_expr_arg_iterator iter0, iter1;
3059 const_tree a0, a1;
3060 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3061 a1 = first_const_call_expr_arg (arg1, &iter1);
3062 a0 && a1;
3063 a0 = next_const_call_expr_arg (&iter0),
3064 a1 = next_const_call_expr_arg (&iter1))
3065 if (! operand_equal_p (a0, a1, flags))
3066 return 0;
3067
3068 /* If we get here and both argument lists are exhausted
3069 then the CALL_EXPRs are equal. */
3070 return ! (a0 || a1);
3071 }
3072 default:
3073 return 0;
3074 }
3075
3076 case tcc_declaration:
3077 /* Consider __builtin_sqrt equal to sqrt. */
3078 return (TREE_CODE (arg0) == FUNCTION_DECL
3079 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3080 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3081 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3082
3083 default:
3084 return 0;
3085 }
3086
3087 #undef OP_SAME
3088 #undef OP_SAME_WITH_NULL
3089 }
3090 \f
3091 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3092 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3093
3094 When in doubt, return 0. */
3095
3096 static int
3097 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3098 {
3099 int unsignedp1, unsignedpo;
3100 tree primarg0, primarg1, primother;
3101 unsigned int correct_width;
3102
3103 if (operand_equal_p (arg0, arg1, 0))
3104 return 1;
3105
3106 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3107 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3108 return 0;
3109
3110 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3111 and see if the inner values are the same. This removes any
3112 signedness comparison, which doesn't matter here. */
3113 primarg0 = arg0, primarg1 = arg1;
3114 STRIP_NOPS (primarg0);
3115 STRIP_NOPS (primarg1);
3116 if (operand_equal_p (primarg0, primarg1, 0))
3117 return 1;
3118
3119 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3120 actual comparison operand, ARG0.
3121
3122 First throw away any conversions to wider types
3123 already present in the operands. */
3124
3125 primarg1 = get_narrower (arg1, &unsignedp1);
3126 primother = get_narrower (other, &unsignedpo);
3127
3128 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3129 if (unsignedp1 == unsignedpo
3130 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3131 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3132 {
3133 tree type = TREE_TYPE (arg0);
3134
3135 /* Make sure shorter operand is extended the right way
3136 to match the longer operand. */
3137 primarg1 = fold_convert (signed_or_unsigned_type_for
3138 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3139
3140 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3141 return 1;
3142 }
3143
3144 return 0;
3145 }
3146 \f
3147 /* See if ARG is an expression that is either a comparison or is performing
3148 arithmetic on comparisons. The comparisons must only be comparing
3149 two different values, which will be stored in *CVAL1 and *CVAL2; if
3150 they are nonzero it means that some operands have already been found.
3151 No variables may be used anywhere else in the expression except in the
3152 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3153 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3154
3155 If this is true, return 1. Otherwise, return zero. */
3156
3157 static int
3158 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3159 {
3160 enum tree_code code = TREE_CODE (arg);
3161 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3162
3163 /* We can handle some of the tcc_expression cases here. */
3164 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3165 tclass = tcc_unary;
3166 else if (tclass == tcc_expression
3167 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3168 || code == COMPOUND_EXPR))
3169 tclass = tcc_binary;
3170
3171 else if (tclass == tcc_expression && code == SAVE_EXPR
3172 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3173 {
3174 /* If we've already found a CVAL1 or CVAL2, this expression is
3175 two complex to handle. */
3176 if (*cval1 || *cval2)
3177 return 0;
3178
3179 tclass = tcc_unary;
3180 *save_p = 1;
3181 }
3182
3183 switch (tclass)
3184 {
3185 case tcc_unary:
3186 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3187
3188 case tcc_binary:
3189 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3190 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3191 cval1, cval2, save_p));
3192
3193 case tcc_constant:
3194 return 1;
3195
3196 case tcc_expression:
3197 if (code == COND_EXPR)
3198 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3199 cval1, cval2, save_p)
3200 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3201 cval1, cval2, save_p)
3202 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3203 cval1, cval2, save_p));
3204 return 0;
3205
3206 case tcc_comparison:
3207 /* First see if we can handle the first operand, then the second. For
3208 the second operand, we know *CVAL1 can't be zero. It must be that
3209 one side of the comparison is each of the values; test for the
3210 case where this isn't true by failing if the two operands
3211 are the same. */
3212
3213 if (operand_equal_p (TREE_OPERAND (arg, 0),
3214 TREE_OPERAND (arg, 1), 0))
3215 return 0;
3216
3217 if (*cval1 == 0)
3218 *cval1 = TREE_OPERAND (arg, 0);
3219 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3220 ;
3221 else if (*cval2 == 0)
3222 *cval2 = TREE_OPERAND (arg, 0);
3223 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3224 ;
3225 else
3226 return 0;
3227
3228 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3229 ;
3230 else if (*cval2 == 0)
3231 *cval2 = TREE_OPERAND (arg, 1);
3232 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3233 ;
3234 else
3235 return 0;
3236
3237 return 1;
3238
3239 default:
3240 return 0;
3241 }
3242 }
3243 \f
3244 /* ARG is a tree that is known to contain just arithmetic operations and
3245 comparisons. Evaluate the operations in the tree substituting NEW0 for
3246 any occurrence of OLD0 as an operand of a comparison and likewise for
3247 NEW1 and OLD1. */
3248
3249 static tree
3250 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3251 tree old1, tree new1)
3252 {
3253 tree type = TREE_TYPE (arg);
3254 enum tree_code code = TREE_CODE (arg);
3255 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3256
3257 /* We can handle some of the tcc_expression cases here. */
3258 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3259 tclass = tcc_unary;
3260 else if (tclass == tcc_expression
3261 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3262 tclass = tcc_binary;
3263
3264 switch (tclass)
3265 {
3266 case tcc_unary:
3267 return fold_build1_loc (loc, code, type,
3268 eval_subst (loc, TREE_OPERAND (arg, 0),
3269 old0, new0, old1, new1));
3270
3271 case tcc_binary:
3272 return fold_build2_loc (loc, code, type,
3273 eval_subst (loc, TREE_OPERAND (arg, 0),
3274 old0, new0, old1, new1),
3275 eval_subst (loc, TREE_OPERAND (arg, 1),
3276 old0, new0, old1, new1));
3277
3278 case tcc_expression:
3279 switch (code)
3280 {
3281 case SAVE_EXPR:
3282 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3283 old1, new1);
3284
3285 case COMPOUND_EXPR:
3286 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3287 old1, new1);
3288
3289 case COND_EXPR:
3290 return fold_build3_loc (loc, code, type,
3291 eval_subst (loc, TREE_OPERAND (arg, 0),
3292 old0, new0, old1, new1),
3293 eval_subst (loc, TREE_OPERAND (arg, 1),
3294 old0, new0, old1, new1),
3295 eval_subst (loc, TREE_OPERAND (arg, 2),
3296 old0, new0, old1, new1));
3297 default:
3298 break;
3299 }
3300 /* Fall through - ??? */
3301
3302 case tcc_comparison:
3303 {
3304 tree arg0 = TREE_OPERAND (arg, 0);
3305 tree arg1 = TREE_OPERAND (arg, 1);
3306
3307 /* We need to check both for exact equality and tree equality. The
3308 former will be true if the operand has a side-effect. In that
3309 case, we know the operand occurred exactly once. */
3310
3311 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3312 arg0 = new0;
3313 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3314 arg0 = new1;
3315
3316 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3317 arg1 = new0;
3318 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3319 arg1 = new1;
3320
3321 return fold_build2_loc (loc, code, type, arg0, arg1);
3322 }
3323
3324 default:
3325 return arg;
3326 }
3327 }
3328 \f
3329 /* Return a tree for the case when the result of an expression is RESULT
3330 converted to TYPE and OMITTED was previously an operand of the expression
3331 but is now not needed (e.g., we folded OMITTED * 0).
3332
3333 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3334 the conversion of RESULT to TYPE. */
3335
3336 tree
3337 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3338 {
3339 tree t = fold_convert_loc (loc, type, result);
3340
3341 /* If the resulting operand is an empty statement, just return the omitted
3342 statement casted to void. */
3343 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3344 return build1_loc (loc, NOP_EXPR, void_type_node,
3345 fold_ignored_result (omitted));
3346
3347 if (TREE_SIDE_EFFECTS (omitted))
3348 return build2_loc (loc, COMPOUND_EXPR, type,
3349 fold_ignored_result (omitted), t);
3350
3351 return non_lvalue_loc (loc, t);
3352 }
3353
3354 /* Return a tree for the case when the result of an expression is RESULT
3355 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3356 of the expression but are now not needed.
3357
3358 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3359 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3360 evaluated before OMITTED2. Otherwise, if neither has side effects,
3361 just do the conversion of RESULT to TYPE. */
3362
3363 tree
3364 omit_two_operands_loc (location_t loc, tree type, tree result,
3365 tree omitted1, tree omitted2)
3366 {
3367 tree t = fold_convert_loc (loc, type, result);
3368
3369 if (TREE_SIDE_EFFECTS (omitted2))
3370 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3371 if (TREE_SIDE_EFFECTS (omitted1))
3372 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3373
3374 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3375 }
3376
3377 \f
3378 /* Return a simplified tree node for the truth-negation of ARG. This
3379 never alters ARG itself. We assume that ARG is an operation that
3380 returns a truth value (0 or 1).
3381
3382 FIXME: one would think we would fold the result, but it causes
3383 problems with the dominator optimizer. */
3384
3385 static tree
3386 fold_truth_not_expr (location_t loc, tree arg)
3387 {
3388 tree type = TREE_TYPE (arg);
3389 enum tree_code code = TREE_CODE (arg);
3390 location_t loc1, loc2;
3391
3392 /* If this is a comparison, we can simply invert it, except for
3393 floating-point non-equality comparisons, in which case we just
3394 enclose a TRUTH_NOT_EXPR around what we have. */
3395
3396 if (TREE_CODE_CLASS (code) == tcc_comparison)
3397 {
3398 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3399 if (FLOAT_TYPE_P (op_type)
3400 && flag_trapping_math
3401 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3402 && code != NE_EXPR && code != EQ_EXPR)
3403 return NULL_TREE;
3404
3405 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3406 if (code == ERROR_MARK)
3407 return NULL_TREE;
3408
3409 return build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3410 TREE_OPERAND (arg, 1));
3411 }
3412
3413 switch (code)
3414 {
3415 case INTEGER_CST:
3416 return constant_boolean_node (integer_zerop (arg), type);
3417
3418 case TRUTH_AND_EXPR:
3419 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3420 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3421 return build2_loc (loc, TRUTH_OR_EXPR, type,
3422 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3423 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3424
3425 case TRUTH_OR_EXPR:
3426 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3427 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3428 return build2_loc (loc, TRUTH_AND_EXPR, type,
3429 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3430 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3431
3432 case TRUTH_XOR_EXPR:
3433 /* Here we can invert either operand. We invert the first operand
3434 unless the second operand is a TRUTH_NOT_EXPR in which case our
3435 result is the XOR of the first operand with the inside of the
3436 negation of the second operand. */
3437
3438 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3439 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3440 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3441 else
3442 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3443 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3444 TREE_OPERAND (arg, 1));
3445
3446 case TRUTH_ANDIF_EXPR:
3447 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3448 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3449 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3450 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3451 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3452
3453 case TRUTH_ORIF_EXPR:
3454 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3455 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3456 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3457 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3458 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3459
3460 case TRUTH_NOT_EXPR:
3461 return TREE_OPERAND (arg, 0);
3462
3463 case COND_EXPR:
3464 {
3465 tree arg1 = TREE_OPERAND (arg, 1);
3466 tree arg2 = TREE_OPERAND (arg, 2);
3467
3468 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3469 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3470
3471 /* A COND_EXPR may have a throw as one operand, which
3472 then has void type. Just leave void operands
3473 as they are. */
3474 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3475 VOID_TYPE_P (TREE_TYPE (arg1))
3476 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3477 VOID_TYPE_P (TREE_TYPE (arg2))
3478 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3479 }
3480
3481 case COMPOUND_EXPR:
3482 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3483 return build2_loc (loc, COMPOUND_EXPR, type,
3484 TREE_OPERAND (arg, 0),
3485 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3486
3487 case NON_LVALUE_EXPR:
3488 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3489 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3490
3491 CASE_CONVERT:
3492 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3493 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3494
3495 /* ... fall through ... */
3496
3497 case FLOAT_EXPR:
3498 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3499 return build1_loc (loc, TREE_CODE (arg), type,
3500 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3501
3502 case BIT_AND_EXPR:
3503 if (!integer_onep (TREE_OPERAND (arg, 1)))
3504 return NULL_TREE;
3505 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3506
3507 case SAVE_EXPR:
3508 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3509
3510 case CLEANUP_POINT_EXPR:
3511 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3512 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3513 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3514
3515 default:
3516 return NULL_TREE;
3517 }
3518 }
3519
3520 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3521 assume that ARG is an operation that returns a truth value (0 or 1
3522 for scalars, 0 or -1 for vectors). Return the folded expression if
3523 folding is successful. Otherwise, return NULL_TREE. */
3524
3525 static tree
3526 fold_invert_truthvalue (location_t loc, tree arg)
3527 {
3528 tree type = TREE_TYPE (arg);
3529 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3530 ? BIT_NOT_EXPR
3531 : TRUTH_NOT_EXPR,
3532 type, arg);
3533 }
3534
3535 /* Return a simplified tree node for the truth-negation of ARG. This
3536 never alters ARG itself. We assume that ARG is an operation that
3537 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3538
3539 tree
3540 invert_truthvalue_loc (location_t loc, tree arg)
3541 {
3542 if (TREE_CODE (arg) == ERROR_MARK)
3543 return arg;
3544
3545 tree type = TREE_TYPE (arg);
3546 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3547 ? BIT_NOT_EXPR
3548 : TRUTH_NOT_EXPR,
3549 type, arg);
3550 }
3551
3552 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3553 with code CODE. This optimization is unsafe. */
3554 static tree
3555 distribute_real_division (location_t loc, enum tree_code code, tree type,
3556 tree arg0, tree arg1)
3557 {
3558 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3559 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3560
3561 /* (A / C) +- (B / C) -> (A +- B) / C. */
3562 if (mul0 == mul1
3563 && operand_equal_p (TREE_OPERAND (arg0, 1),
3564 TREE_OPERAND (arg1, 1), 0))
3565 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3566 fold_build2_loc (loc, code, type,
3567 TREE_OPERAND (arg0, 0),
3568 TREE_OPERAND (arg1, 0)),
3569 TREE_OPERAND (arg0, 1));
3570
3571 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3572 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3573 TREE_OPERAND (arg1, 0), 0)
3574 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3575 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3576 {
3577 REAL_VALUE_TYPE r0, r1;
3578 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3579 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3580 if (!mul0)
3581 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3582 if (!mul1)
3583 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3584 real_arithmetic (&r0, code, &r0, &r1);
3585 return fold_build2_loc (loc, MULT_EXPR, type,
3586 TREE_OPERAND (arg0, 0),
3587 build_real (type, r0));
3588 }
3589
3590 return NULL_TREE;
3591 }
3592 \f
3593 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3594 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3595
3596 static tree
3597 make_bit_field_ref (location_t loc, tree inner, tree type,
3598 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos, int unsignedp)
3599 {
3600 tree result, bftype;
3601
3602 if (bitpos == 0)
3603 {
3604 tree size = TYPE_SIZE (TREE_TYPE (inner));
3605 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3606 || POINTER_TYPE_P (TREE_TYPE (inner)))
3607 && tree_fits_shwi_p (size)
3608 && tree_to_shwi (size) == bitsize)
3609 return fold_convert_loc (loc, type, inner);
3610 }
3611
3612 bftype = type;
3613 if (TYPE_PRECISION (bftype) != bitsize
3614 || TYPE_UNSIGNED (bftype) == !unsignedp)
3615 bftype = build_nonstandard_integer_type (bitsize, 0);
3616
3617 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3618 size_int (bitsize), bitsize_int (bitpos));
3619
3620 if (bftype != type)
3621 result = fold_convert_loc (loc, type, result);
3622
3623 return result;
3624 }
3625
3626 /* Optimize a bit-field compare.
3627
3628 There are two cases: First is a compare against a constant and the
3629 second is a comparison of two items where the fields are at the same
3630 bit position relative to the start of a chunk (byte, halfword, word)
3631 large enough to contain it. In these cases we can avoid the shift
3632 implicit in bitfield extractions.
3633
3634 For constants, we emit a compare of the shifted constant with the
3635 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3636 compared. For two fields at the same position, we do the ANDs with the
3637 similar mask and compare the result of the ANDs.
3638
3639 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3640 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3641 are the left and right operands of the comparison, respectively.
3642
3643 If the optimization described above can be done, we return the resulting
3644 tree. Otherwise we return zero. */
3645
3646 static tree
3647 optimize_bit_field_compare (location_t loc, enum tree_code code,
3648 tree compare_type, tree lhs, tree rhs)
3649 {
3650 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3651 tree type = TREE_TYPE (lhs);
3652 tree unsigned_type;
3653 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3654 machine_mode lmode, rmode, nmode;
3655 int lunsignedp, runsignedp;
3656 int lvolatilep = 0, rvolatilep = 0;
3657 tree linner, rinner = NULL_TREE;
3658 tree mask;
3659 tree offset;
3660
3661 /* Get all the information about the extractions being done. If the bit size
3662 if the same as the size of the underlying object, we aren't doing an
3663 extraction at all and so can do nothing. We also don't want to
3664 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3665 then will no longer be able to replace it. */
3666 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3667 &lunsignedp, &lvolatilep, false);
3668 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3669 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3670 return 0;
3671
3672 if (!const_p)
3673 {
3674 /* If this is not a constant, we can only do something if bit positions,
3675 sizes, and signedness are the same. */
3676 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3677 &runsignedp, &rvolatilep, false);
3678
3679 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3680 || lunsignedp != runsignedp || offset != 0
3681 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3682 return 0;
3683 }
3684
3685 /* See if we can find a mode to refer to this field. We should be able to,
3686 but fail if we can't. */
3687 nmode = get_best_mode (lbitsize, lbitpos, 0, 0,
3688 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3689 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3690 TYPE_ALIGN (TREE_TYPE (rinner))),
3691 word_mode, false);
3692 if (nmode == VOIDmode)
3693 return 0;
3694
3695 /* Set signed and unsigned types of the precision of this mode for the
3696 shifts below. */
3697 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3698
3699 /* Compute the bit position and size for the new reference and our offset
3700 within it. If the new reference is the same size as the original, we
3701 won't optimize anything, so return zero. */
3702 nbitsize = GET_MODE_BITSIZE (nmode);
3703 nbitpos = lbitpos & ~ (nbitsize - 1);
3704 lbitpos -= nbitpos;
3705 if (nbitsize == lbitsize)
3706 return 0;
3707
3708 if (BYTES_BIG_ENDIAN)
3709 lbitpos = nbitsize - lbitsize - lbitpos;
3710
3711 /* Make the mask to be used against the extracted field. */
3712 mask = build_int_cst_type (unsigned_type, -1);
3713 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
3714 mask = const_binop (RSHIFT_EXPR, mask,
3715 size_int (nbitsize - lbitsize - lbitpos));
3716
3717 if (! const_p)
3718 /* If not comparing with constant, just rework the comparison
3719 and return. */
3720 return fold_build2_loc (loc, code, compare_type,
3721 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3722 make_bit_field_ref (loc, linner,
3723 unsigned_type,
3724 nbitsize, nbitpos,
3725 1),
3726 mask),
3727 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3728 make_bit_field_ref (loc, rinner,
3729 unsigned_type,
3730 nbitsize, nbitpos,
3731 1),
3732 mask));
3733
3734 /* Otherwise, we are handling the constant case. See if the constant is too
3735 big for the field. Warn and return a tree of for 0 (false) if so. We do
3736 this not only for its own sake, but to avoid having to test for this
3737 error case below. If we didn't, we might generate wrong code.
3738
3739 For unsigned fields, the constant shifted right by the field length should
3740 be all zero. For signed fields, the high-order bits should agree with
3741 the sign bit. */
3742
3743 if (lunsignedp)
3744 {
3745 if (wi::lrshift (rhs, lbitsize) != 0)
3746 {
3747 warning (0, "comparison is always %d due to width of bit-field",
3748 code == NE_EXPR);
3749 return constant_boolean_node (code == NE_EXPR, compare_type);
3750 }
3751 }
3752 else
3753 {
3754 wide_int tem = wi::arshift (rhs, lbitsize - 1);
3755 if (tem != 0 && tem != -1)
3756 {
3757 warning (0, "comparison is always %d due to width of bit-field",
3758 code == NE_EXPR);
3759 return constant_boolean_node (code == NE_EXPR, compare_type);
3760 }
3761 }
3762
3763 /* Single-bit compares should always be against zero. */
3764 if (lbitsize == 1 && ! integer_zerop (rhs))
3765 {
3766 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3767 rhs = build_int_cst (type, 0);
3768 }
3769
3770 /* Make a new bitfield reference, shift the constant over the
3771 appropriate number of bits and mask it with the computed mask
3772 (in case this was a signed field). If we changed it, make a new one. */
3773 lhs = make_bit_field_ref (loc, linner, unsigned_type, nbitsize, nbitpos, 1);
3774
3775 rhs = const_binop (BIT_AND_EXPR,
3776 const_binop (LSHIFT_EXPR,
3777 fold_convert_loc (loc, unsigned_type, rhs),
3778 size_int (lbitpos)),
3779 mask);
3780
3781 lhs = build2_loc (loc, code, compare_type,
3782 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
3783 return lhs;
3784 }
3785 \f
3786 /* Subroutine for fold_truth_andor_1: decode a field reference.
3787
3788 If EXP is a comparison reference, we return the innermost reference.
3789
3790 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3791 set to the starting bit number.
3792
3793 If the innermost field can be completely contained in a mode-sized
3794 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3795
3796 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3797 otherwise it is not changed.
3798
3799 *PUNSIGNEDP is set to the signedness of the field.
3800
3801 *PMASK is set to the mask used. This is either contained in a
3802 BIT_AND_EXPR or derived from the width of the field.
3803
3804 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3805
3806 Return 0 if this is not a component reference or is one that we can't
3807 do anything with. */
3808
3809 static tree
3810 decode_field_reference (location_t loc, tree exp, HOST_WIDE_INT *pbitsize,
3811 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
3812 int *punsignedp, int *pvolatilep,
3813 tree *pmask, tree *pand_mask)
3814 {
3815 tree outer_type = 0;
3816 tree and_mask = 0;
3817 tree mask, inner, offset;
3818 tree unsigned_type;
3819 unsigned int precision;
3820
3821 /* All the optimizations using this function assume integer fields.
3822 There are problems with FP fields since the type_for_size call
3823 below can fail for, e.g., XFmode. */
3824 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3825 return 0;
3826
3827 /* We are interested in the bare arrangement of bits, so strip everything
3828 that doesn't affect the machine mode. However, record the type of the
3829 outermost expression if it may matter below. */
3830 if (CONVERT_EXPR_P (exp)
3831 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3832 outer_type = TREE_TYPE (exp);
3833 STRIP_NOPS (exp);
3834
3835 if (TREE_CODE (exp) == BIT_AND_EXPR)
3836 {
3837 and_mask = TREE_OPERAND (exp, 1);
3838 exp = TREE_OPERAND (exp, 0);
3839 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3840 if (TREE_CODE (and_mask) != INTEGER_CST)
3841 return 0;
3842 }
3843
3844 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3845 punsignedp, pvolatilep, false);
3846 if ((inner == exp && and_mask == 0)
3847 || *pbitsize < 0 || offset != 0
3848 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3849 return 0;
3850
3851 /* If the number of bits in the reference is the same as the bitsize of
3852 the outer type, then the outer type gives the signedness. Otherwise
3853 (in case of a small bitfield) the signedness is unchanged. */
3854 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3855 *punsignedp = TYPE_UNSIGNED (outer_type);
3856
3857 /* Compute the mask to access the bitfield. */
3858 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3859 precision = TYPE_PRECISION (unsigned_type);
3860
3861 mask = build_int_cst_type (unsigned_type, -1);
3862
3863 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3864 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3865
3866 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3867 if (and_mask != 0)
3868 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3869 fold_convert_loc (loc, unsigned_type, and_mask), mask);
3870
3871 *pmask = mask;
3872 *pand_mask = and_mask;
3873 return inner;
3874 }
3875
3876 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3877 bit positions and MASK is SIGNED. */
3878
3879 static int
3880 all_ones_mask_p (const_tree mask, unsigned int size)
3881 {
3882 tree type = TREE_TYPE (mask);
3883 unsigned int precision = TYPE_PRECISION (type);
3884
3885 /* If this function returns true when the type of the mask is
3886 UNSIGNED, then there will be errors. In particular see
3887 gcc.c-torture/execute/990326-1.c. There does not appear to be
3888 any documentation paper trail as to why this is so. But the pre
3889 wide-int worked with that restriction and it has been preserved
3890 here. */
3891 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
3892 return false;
3893
3894 return wi::mask (size, false, precision) == mask;
3895 }
3896
3897 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3898 represents the sign bit of EXP's type. If EXP represents a sign
3899 or zero extension, also test VAL against the unextended type.
3900 The return value is the (sub)expression whose sign bit is VAL,
3901 or NULL_TREE otherwise. */
3902
3903 tree
3904 sign_bit_p (tree exp, const_tree val)
3905 {
3906 int width;
3907 tree t;
3908
3909 /* Tree EXP must have an integral type. */
3910 t = TREE_TYPE (exp);
3911 if (! INTEGRAL_TYPE_P (t))
3912 return NULL_TREE;
3913
3914 /* Tree VAL must be an integer constant. */
3915 if (TREE_CODE (val) != INTEGER_CST
3916 || TREE_OVERFLOW (val))
3917 return NULL_TREE;
3918
3919 width = TYPE_PRECISION (t);
3920 if (wi::only_sign_bit_p (val, width))
3921 return exp;
3922
3923 /* Handle extension from a narrower type. */
3924 if (TREE_CODE (exp) == NOP_EXPR
3925 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
3926 return sign_bit_p (TREE_OPERAND (exp, 0), val);
3927
3928 return NULL_TREE;
3929 }
3930
3931 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
3932 to be evaluated unconditionally. */
3933
3934 static int
3935 simple_operand_p (const_tree exp)
3936 {
3937 /* Strip any conversions that don't change the machine mode. */
3938 STRIP_NOPS (exp);
3939
3940 return (CONSTANT_CLASS_P (exp)
3941 || TREE_CODE (exp) == SSA_NAME
3942 || (DECL_P (exp)
3943 && ! TREE_ADDRESSABLE (exp)
3944 && ! TREE_THIS_VOLATILE (exp)
3945 && ! DECL_NONLOCAL (exp)
3946 /* Don't regard global variables as simple. They may be
3947 allocated in ways unknown to the compiler (shared memory,
3948 #pragma weak, etc). */
3949 && ! TREE_PUBLIC (exp)
3950 && ! DECL_EXTERNAL (exp)
3951 /* Weakrefs are not safe to be read, since they can be NULL.
3952 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
3953 have DECL_WEAK flag set. */
3954 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
3955 /* Loading a static variable is unduly expensive, but global
3956 registers aren't expensive. */
3957 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3958 }
3959
3960 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
3961 to be evaluated unconditionally.
3962 I addition to simple_operand_p, we assume that comparisons, conversions,
3963 and logic-not operations are simple, if their operands are simple, too. */
3964
3965 static bool
3966 simple_operand_p_2 (tree exp)
3967 {
3968 enum tree_code code;
3969
3970 if (TREE_SIDE_EFFECTS (exp)
3971 || tree_could_trap_p (exp))
3972 return false;
3973
3974 while (CONVERT_EXPR_P (exp))
3975 exp = TREE_OPERAND (exp, 0);
3976
3977 code = TREE_CODE (exp);
3978
3979 if (TREE_CODE_CLASS (code) == tcc_comparison)
3980 return (simple_operand_p (TREE_OPERAND (exp, 0))
3981 && simple_operand_p (TREE_OPERAND (exp, 1)));
3982
3983 if (code == TRUTH_NOT_EXPR)
3984 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
3985
3986 return simple_operand_p (exp);
3987 }
3988
3989 \f
3990 /* The following functions are subroutines to fold_range_test and allow it to
3991 try to change a logical combination of comparisons into a range test.
3992
3993 For example, both
3994 X == 2 || X == 3 || X == 4 || X == 5
3995 and
3996 X >= 2 && X <= 5
3997 are converted to
3998 (unsigned) (X - 2) <= 3
3999
4000 We describe each set of comparisons as being either inside or outside
4001 a range, using a variable named like IN_P, and then describe the
4002 range with a lower and upper bound. If one of the bounds is omitted,
4003 it represents either the highest or lowest value of the type.
4004
4005 In the comments below, we represent a range by two numbers in brackets
4006 preceded by a "+" to designate being inside that range, or a "-" to
4007 designate being outside that range, so the condition can be inverted by
4008 flipping the prefix. An omitted bound is represented by a "-". For
4009 example, "- [-, 10]" means being outside the range starting at the lowest
4010 possible value and ending at 10, in other words, being greater than 10.
4011 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4012 always false.
4013
4014 We set up things so that the missing bounds are handled in a consistent
4015 manner so neither a missing bound nor "true" and "false" need to be
4016 handled using a special case. */
4017
4018 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4019 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4020 and UPPER1_P are nonzero if the respective argument is an upper bound
4021 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4022 must be specified for a comparison. ARG1 will be converted to ARG0's
4023 type if both are specified. */
4024
4025 static tree
4026 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4027 tree arg1, int upper1_p)
4028 {
4029 tree tem;
4030 int result;
4031 int sgn0, sgn1;
4032
4033 /* If neither arg represents infinity, do the normal operation.
4034 Else, if not a comparison, return infinity. Else handle the special
4035 comparison rules. Note that most of the cases below won't occur, but
4036 are handled for consistency. */
4037
4038 if (arg0 != 0 && arg1 != 0)
4039 {
4040 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4041 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4042 STRIP_NOPS (tem);
4043 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4044 }
4045
4046 if (TREE_CODE_CLASS (code) != tcc_comparison)
4047 return 0;
4048
4049 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4050 for neither. In real maths, we cannot assume open ended ranges are
4051 the same. But, this is computer arithmetic, where numbers are finite.
4052 We can therefore make the transformation of any unbounded range with
4053 the value Z, Z being greater than any representable number. This permits
4054 us to treat unbounded ranges as equal. */
4055 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4056 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4057 switch (code)
4058 {
4059 case EQ_EXPR:
4060 result = sgn0 == sgn1;
4061 break;
4062 case NE_EXPR:
4063 result = sgn0 != sgn1;
4064 break;
4065 case LT_EXPR:
4066 result = sgn0 < sgn1;
4067 break;
4068 case LE_EXPR:
4069 result = sgn0 <= sgn1;
4070 break;
4071 case GT_EXPR:
4072 result = sgn0 > sgn1;
4073 break;
4074 case GE_EXPR:
4075 result = sgn0 >= sgn1;
4076 break;
4077 default:
4078 gcc_unreachable ();
4079 }
4080
4081 return constant_boolean_node (result, type);
4082 }
4083 \f
4084 /* Helper routine for make_range. Perform one step for it, return
4085 new expression if the loop should continue or NULL_TREE if it should
4086 stop. */
4087
4088 tree
4089 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4090 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4091 bool *strict_overflow_p)
4092 {
4093 tree arg0_type = TREE_TYPE (arg0);
4094 tree n_low, n_high, low = *p_low, high = *p_high;
4095 int in_p = *p_in_p, n_in_p;
4096
4097 switch (code)
4098 {
4099 case TRUTH_NOT_EXPR:
4100 /* We can only do something if the range is testing for zero. */
4101 if (low == NULL_TREE || high == NULL_TREE
4102 || ! integer_zerop (low) || ! integer_zerop (high))
4103 return NULL_TREE;
4104 *p_in_p = ! in_p;
4105 return arg0;
4106
4107 case EQ_EXPR: case NE_EXPR:
4108 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4109 /* We can only do something if the range is testing for zero
4110 and if the second operand is an integer constant. Note that
4111 saying something is "in" the range we make is done by
4112 complementing IN_P since it will set in the initial case of
4113 being not equal to zero; "out" is leaving it alone. */
4114 if (low == NULL_TREE || high == NULL_TREE
4115 || ! integer_zerop (low) || ! integer_zerop (high)
4116 || TREE_CODE (arg1) != INTEGER_CST)
4117 return NULL_TREE;
4118
4119 switch (code)
4120 {
4121 case NE_EXPR: /* - [c, c] */
4122 low = high = arg1;
4123 break;
4124 case EQ_EXPR: /* + [c, c] */
4125 in_p = ! in_p, low = high = arg1;
4126 break;
4127 case GT_EXPR: /* - [-, c] */
4128 low = 0, high = arg1;
4129 break;
4130 case GE_EXPR: /* + [c, -] */
4131 in_p = ! in_p, low = arg1, high = 0;
4132 break;
4133 case LT_EXPR: /* - [c, -] */
4134 low = arg1, high = 0;
4135 break;
4136 case LE_EXPR: /* + [-, c] */
4137 in_p = ! in_p, low = 0, high = arg1;
4138 break;
4139 default:
4140 gcc_unreachable ();
4141 }
4142
4143 /* If this is an unsigned comparison, we also know that EXP is
4144 greater than or equal to zero. We base the range tests we make
4145 on that fact, so we record it here so we can parse existing
4146 range tests. We test arg0_type since often the return type
4147 of, e.g. EQ_EXPR, is boolean. */
4148 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4149 {
4150 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4151 in_p, low, high, 1,
4152 build_int_cst (arg0_type, 0),
4153 NULL_TREE))
4154 return NULL_TREE;
4155
4156 in_p = n_in_p, low = n_low, high = n_high;
4157
4158 /* If the high bound is missing, but we have a nonzero low
4159 bound, reverse the range so it goes from zero to the low bound
4160 minus 1. */
4161 if (high == 0 && low && ! integer_zerop (low))
4162 {
4163 in_p = ! in_p;
4164 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4165 build_int_cst (TREE_TYPE (low), 1), 0);
4166 low = build_int_cst (arg0_type, 0);
4167 }
4168 }
4169
4170 *p_low = low;
4171 *p_high = high;
4172 *p_in_p = in_p;
4173 return arg0;
4174
4175 case NEGATE_EXPR:
4176 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4177 low and high are non-NULL, then normalize will DTRT. */
4178 if (!TYPE_UNSIGNED (arg0_type)
4179 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4180 {
4181 if (low == NULL_TREE)
4182 low = TYPE_MIN_VALUE (arg0_type);
4183 if (high == NULL_TREE)
4184 high = TYPE_MAX_VALUE (arg0_type);
4185 }
4186
4187 /* (-x) IN [a,b] -> x in [-b, -a] */
4188 n_low = range_binop (MINUS_EXPR, exp_type,
4189 build_int_cst (exp_type, 0),
4190 0, high, 1);
4191 n_high = range_binop (MINUS_EXPR, exp_type,
4192 build_int_cst (exp_type, 0),
4193 0, low, 0);
4194 if (n_high != 0 && TREE_OVERFLOW (n_high))
4195 return NULL_TREE;
4196 goto normalize;
4197
4198 case BIT_NOT_EXPR:
4199 /* ~ X -> -X - 1 */
4200 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4201 build_int_cst (exp_type, 1));
4202
4203 case PLUS_EXPR:
4204 case MINUS_EXPR:
4205 if (TREE_CODE (arg1) != INTEGER_CST)
4206 return NULL_TREE;
4207
4208 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4209 move a constant to the other side. */
4210 if (!TYPE_UNSIGNED (arg0_type)
4211 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4212 return NULL_TREE;
4213
4214 /* If EXP is signed, any overflow in the computation is undefined,
4215 so we don't worry about it so long as our computations on
4216 the bounds don't overflow. For unsigned, overflow is defined
4217 and this is exactly the right thing. */
4218 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4219 arg0_type, low, 0, arg1, 0);
4220 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4221 arg0_type, high, 1, arg1, 0);
4222 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4223 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4224 return NULL_TREE;
4225
4226 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4227 *strict_overflow_p = true;
4228
4229 normalize:
4230 /* Check for an unsigned range which has wrapped around the maximum
4231 value thus making n_high < n_low, and normalize it. */
4232 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4233 {
4234 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4235 build_int_cst (TREE_TYPE (n_high), 1), 0);
4236 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4237 build_int_cst (TREE_TYPE (n_low), 1), 0);
4238
4239 /* If the range is of the form +/- [ x+1, x ], we won't
4240 be able to normalize it. But then, it represents the
4241 whole range or the empty set, so make it
4242 +/- [ -, - ]. */
4243 if (tree_int_cst_equal (n_low, low)
4244 && tree_int_cst_equal (n_high, high))
4245 low = high = 0;
4246 else
4247 in_p = ! in_p;
4248 }
4249 else
4250 low = n_low, high = n_high;
4251
4252 *p_low = low;
4253 *p_high = high;
4254 *p_in_p = in_p;
4255 return arg0;
4256
4257 CASE_CONVERT:
4258 case NON_LVALUE_EXPR:
4259 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4260 return NULL_TREE;
4261
4262 if (! INTEGRAL_TYPE_P (arg0_type)
4263 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4264 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4265 return NULL_TREE;
4266
4267 n_low = low, n_high = high;
4268
4269 if (n_low != 0)
4270 n_low = fold_convert_loc (loc, arg0_type, n_low);
4271
4272 if (n_high != 0)
4273 n_high = fold_convert_loc (loc, arg0_type, n_high);
4274
4275 /* If we're converting arg0 from an unsigned type, to exp,
4276 a signed type, we will be doing the comparison as unsigned.
4277 The tests above have already verified that LOW and HIGH
4278 are both positive.
4279
4280 So we have to ensure that we will handle large unsigned
4281 values the same way that the current signed bounds treat
4282 negative values. */
4283
4284 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4285 {
4286 tree high_positive;
4287 tree equiv_type;
4288 /* For fixed-point modes, we need to pass the saturating flag
4289 as the 2nd parameter. */
4290 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4291 equiv_type
4292 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4293 TYPE_SATURATING (arg0_type));
4294 else
4295 equiv_type
4296 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4297
4298 /* A range without an upper bound is, naturally, unbounded.
4299 Since convert would have cropped a very large value, use
4300 the max value for the destination type. */
4301 high_positive
4302 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4303 : TYPE_MAX_VALUE (arg0_type);
4304
4305 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4306 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4307 fold_convert_loc (loc, arg0_type,
4308 high_positive),
4309 build_int_cst (arg0_type, 1));
4310
4311 /* If the low bound is specified, "and" the range with the
4312 range for which the original unsigned value will be
4313 positive. */
4314 if (low != 0)
4315 {
4316 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4317 1, fold_convert_loc (loc, arg0_type,
4318 integer_zero_node),
4319 high_positive))
4320 return NULL_TREE;
4321
4322 in_p = (n_in_p == in_p);
4323 }
4324 else
4325 {
4326 /* Otherwise, "or" the range with the range of the input
4327 that will be interpreted as negative. */
4328 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4329 1, fold_convert_loc (loc, arg0_type,
4330 integer_zero_node),
4331 high_positive))
4332 return NULL_TREE;
4333
4334 in_p = (in_p != n_in_p);
4335 }
4336 }
4337
4338 *p_low = n_low;
4339 *p_high = n_high;
4340 *p_in_p = in_p;
4341 return arg0;
4342
4343 default:
4344 return NULL_TREE;
4345 }
4346 }
4347
4348 /* Given EXP, a logical expression, set the range it is testing into
4349 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4350 actually being tested. *PLOW and *PHIGH will be made of the same
4351 type as the returned expression. If EXP is not a comparison, we
4352 will most likely not be returning a useful value and range. Set
4353 *STRICT_OVERFLOW_P to true if the return value is only valid
4354 because signed overflow is undefined; otherwise, do not change
4355 *STRICT_OVERFLOW_P. */
4356
4357 tree
4358 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4359 bool *strict_overflow_p)
4360 {
4361 enum tree_code code;
4362 tree arg0, arg1 = NULL_TREE;
4363 tree exp_type, nexp;
4364 int in_p;
4365 tree low, high;
4366 location_t loc = EXPR_LOCATION (exp);
4367
4368 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4369 and see if we can refine the range. Some of the cases below may not
4370 happen, but it doesn't seem worth worrying about this. We "continue"
4371 the outer loop when we've changed something; otherwise we "break"
4372 the switch, which will "break" the while. */
4373
4374 in_p = 0;
4375 low = high = build_int_cst (TREE_TYPE (exp), 0);
4376
4377 while (1)
4378 {
4379 code = TREE_CODE (exp);
4380 exp_type = TREE_TYPE (exp);
4381 arg0 = NULL_TREE;
4382
4383 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4384 {
4385 if (TREE_OPERAND_LENGTH (exp) > 0)
4386 arg0 = TREE_OPERAND (exp, 0);
4387 if (TREE_CODE_CLASS (code) == tcc_binary
4388 || TREE_CODE_CLASS (code) == tcc_comparison
4389 || (TREE_CODE_CLASS (code) == tcc_expression
4390 && TREE_OPERAND_LENGTH (exp) > 1))
4391 arg1 = TREE_OPERAND (exp, 1);
4392 }
4393 if (arg0 == NULL_TREE)
4394 break;
4395
4396 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4397 &high, &in_p, strict_overflow_p);
4398 if (nexp == NULL_TREE)
4399 break;
4400 exp = nexp;
4401 }
4402
4403 /* If EXP is a constant, we can evaluate whether this is true or false. */
4404 if (TREE_CODE (exp) == INTEGER_CST)
4405 {
4406 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4407 exp, 0, low, 0))
4408 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4409 exp, 1, high, 1)));
4410 low = high = 0;
4411 exp = 0;
4412 }
4413
4414 *pin_p = in_p, *plow = low, *phigh = high;
4415 return exp;
4416 }
4417 \f
4418 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4419 type, TYPE, return an expression to test if EXP is in (or out of, depending
4420 on IN_P) the range. Return 0 if the test couldn't be created. */
4421
4422 tree
4423 build_range_check (location_t loc, tree type, tree exp, int in_p,
4424 tree low, tree high)
4425 {
4426 tree etype = TREE_TYPE (exp), value;
4427
4428 /* Disable this optimization for function pointer expressions
4429 on targets that require function pointer canonicalization. */
4430 if (targetm.have_canonicalize_funcptr_for_compare ()
4431 && TREE_CODE (etype) == POINTER_TYPE
4432 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4433 return NULL_TREE;
4434
4435 if (! in_p)
4436 {
4437 value = build_range_check (loc, type, exp, 1, low, high);
4438 if (value != 0)
4439 return invert_truthvalue_loc (loc, value);
4440
4441 return 0;
4442 }
4443
4444 if (low == 0 && high == 0)
4445 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4446
4447 if (low == 0)
4448 return fold_build2_loc (loc, LE_EXPR, type, exp,
4449 fold_convert_loc (loc, etype, high));
4450
4451 if (high == 0)
4452 return fold_build2_loc (loc, GE_EXPR, type, exp,
4453 fold_convert_loc (loc, etype, low));
4454
4455 if (operand_equal_p (low, high, 0))
4456 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4457 fold_convert_loc (loc, etype, low));
4458
4459 if (integer_zerop (low))
4460 {
4461 if (! TYPE_UNSIGNED (etype))
4462 {
4463 etype = unsigned_type_for (etype);
4464 high = fold_convert_loc (loc, etype, high);
4465 exp = fold_convert_loc (loc, etype, exp);
4466 }
4467 return build_range_check (loc, type, exp, 1, 0, high);
4468 }
4469
4470 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4471 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4472 {
4473 int prec = TYPE_PRECISION (etype);
4474
4475 if (wi::mask (prec - 1, false, prec) == high)
4476 {
4477 if (TYPE_UNSIGNED (etype))
4478 {
4479 tree signed_etype = signed_type_for (etype);
4480 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4481 etype
4482 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4483 else
4484 etype = signed_etype;
4485 exp = fold_convert_loc (loc, etype, exp);
4486 }
4487 return fold_build2_loc (loc, GT_EXPR, type, exp,
4488 build_int_cst (etype, 0));
4489 }
4490 }
4491
4492 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4493 This requires wrap-around arithmetics for the type of the expression.
4494 First make sure that arithmetics in this type is valid, then make sure
4495 that it wraps around. */
4496 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4497 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4498 TYPE_UNSIGNED (etype));
4499
4500 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4501 {
4502 tree utype, minv, maxv;
4503
4504 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4505 for the type in question, as we rely on this here. */
4506 utype = unsigned_type_for (etype);
4507 maxv = fold_convert_loc (loc, utype, TYPE_MAX_VALUE (etype));
4508 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4509 build_int_cst (TREE_TYPE (maxv), 1), 1);
4510 minv = fold_convert_loc (loc, utype, TYPE_MIN_VALUE (etype));
4511
4512 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4513 minv, 1, maxv, 1)))
4514 etype = utype;
4515 else
4516 return 0;
4517 }
4518
4519 high = fold_convert_loc (loc, etype, high);
4520 low = fold_convert_loc (loc, etype, low);
4521 exp = fold_convert_loc (loc, etype, exp);
4522
4523 value = const_binop (MINUS_EXPR, high, low);
4524
4525
4526 if (POINTER_TYPE_P (etype))
4527 {
4528 if (value != 0 && !TREE_OVERFLOW (value))
4529 {
4530 low = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (low), low);
4531 return build_range_check (loc, type,
4532 fold_build_pointer_plus_loc (loc, exp, low),
4533 1, build_int_cst (etype, 0), value);
4534 }
4535 return 0;
4536 }
4537
4538 if (value != 0 && !TREE_OVERFLOW (value))
4539 return build_range_check (loc, type,
4540 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4541 1, build_int_cst (etype, 0), value);
4542
4543 return 0;
4544 }
4545 \f
4546 /* Return the predecessor of VAL in its type, handling the infinite case. */
4547
4548 static tree
4549 range_predecessor (tree val)
4550 {
4551 tree type = TREE_TYPE (val);
4552
4553 if (INTEGRAL_TYPE_P (type)
4554 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4555 return 0;
4556 else
4557 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4558 build_int_cst (TREE_TYPE (val), 1), 0);
4559 }
4560
4561 /* Return the successor of VAL in its type, handling the infinite case. */
4562
4563 static tree
4564 range_successor (tree val)
4565 {
4566 tree type = TREE_TYPE (val);
4567
4568 if (INTEGRAL_TYPE_P (type)
4569 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4570 return 0;
4571 else
4572 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4573 build_int_cst (TREE_TYPE (val), 1), 0);
4574 }
4575
4576 /* Given two ranges, see if we can merge them into one. Return 1 if we
4577 can, 0 if we can't. Set the output range into the specified parameters. */
4578
4579 bool
4580 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4581 tree high0, int in1_p, tree low1, tree high1)
4582 {
4583 int no_overlap;
4584 int subset;
4585 int temp;
4586 tree tem;
4587 int in_p;
4588 tree low, high;
4589 int lowequal = ((low0 == 0 && low1 == 0)
4590 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4591 low0, 0, low1, 0)));
4592 int highequal = ((high0 == 0 && high1 == 0)
4593 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4594 high0, 1, high1, 1)));
4595
4596 /* Make range 0 be the range that starts first, or ends last if they
4597 start at the same value. Swap them if it isn't. */
4598 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4599 low0, 0, low1, 0))
4600 || (lowequal
4601 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4602 high1, 1, high0, 1))))
4603 {
4604 temp = in0_p, in0_p = in1_p, in1_p = temp;
4605 tem = low0, low0 = low1, low1 = tem;
4606 tem = high0, high0 = high1, high1 = tem;
4607 }
4608
4609 /* Now flag two cases, whether the ranges are disjoint or whether the
4610 second range is totally subsumed in the first. Note that the tests
4611 below are simplified by the ones above. */
4612 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4613 high0, 1, low1, 0));
4614 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4615 high1, 1, high0, 1));
4616
4617 /* We now have four cases, depending on whether we are including or
4618 excluding the two ranges. */
4619 if (in0_p && in1_p)
4620 {
4621 /* If they don't overlap, the result is false. If the second range
4622 is a subset it is the result. Otherwise, the range is from the start
4623 of the second to the end of the first. */
4624 if (no_overlap)
4625 in_p = 0, low = high = 0;
4626 else if (subset)
4627 in_p = 1, low = low1, high = high1;
4628 else
4629 in_p = 1, low = low1, high = high0;
4630 }
4631
4632 else if (in0_p && ! in1_p)
4633 {
4634 /* If they don't overlap, the result is the first range. If they are
4635 equal, the result is false. If the second range is a subset of the
4636 first, and the ranges begin at the same place, we go from just after
4637 the end of the second range to the end of the first. If the second
4638 range is not a subset of the first, or if it is a subset and both
4639 ranges end at the same place, the range starts at the start of the
4640 first range and ends just before the second range.
4641 Otherwise, we can't describe this as a single range. */
4642 if (no_overlap)
4643 in_p = 1, low = low0, high = high0;
4644 else if (lowequal && highequal)
4645 in_p = 0, low = high = 0;
4646 else if (subset && lowequal)
4647 {
4648 low = range_successor (high1);
4649 high = high0;
4650 in_p = 1;
4651 if (low == 0)
4652 {
4653 /* We are in the weird situation where high0 > high1 but
4654 high1 has no successor. Punt. */
4655 return 0;
4656 }
4657 }
4658 else if (! subset || highequal)
4659 {
4660 low = low0;
4661 high = range_predecessor (low1);
4662 in_p = 1;
4663 if (high == 0)
4664 {
4665 /* low0 < low1 but low1 has no predecessor. Punt. */
4666 return 0;
4667 }
4668 }
4669 else
4670 return 0;
4671 }
4672
4673 else if (! in0_p && in1_p)
4674 {
4675 /* If they don't overlap, the result is the second range. If the second
4676 is a subset of the first, the result is false. Otherwise,
4677 the range starts just after the first range and ends at the
4678 end of the second. */
4679 if (no_overlap)
4680 in_p = 1, low = low1, high = high1;
4681 else if (subset || highequal)
4682 in_p = 0, low = high = 0;
4683 else
4684 {
4685 low = range_successor (high0);
4686 high = high1;
4687 in_p = 1;
4688 if (low == 0)
4689 {
4690 /* high1 > high0 but high0 has no successor. Punt. */
4691 return 0;
4692 }
4693 }
4694 }
4695
4696 else
4697 {
4698 /* The case where we are excluding both ranges. Here the complex case
4699 is if they don't overlap. In that case, the only time we have a
4700 range is if they are adjacent. If the second is a subset of the
4701 first, the result is the first. Otherwise, the range to exclude
4702 starts at the beginning of the first range and ends at the end of the
4703 second. */
4704 if (no_overlap)
4705 {
4706 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4707 range_successor (high0),
4708 1, low1, 0)))
4709 in_p = 0, low = low0, high = high1;
4710 else
4711 {
4712 /* Canonicalize - [min, x] into - [-, x]. */
4713 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4714 switch (TREE_CODE (TREE_TYPE (low0)))
4715 {
4716 case ENUMERAL_TYPE:
4717 if (TYPE_PRECISION (TREE_TYPE (low0))
4718 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4719 break;
4720 /* FALLTHROUGH */
4721 case INTEGER_TYPE:
4722 if (tree_int_cst_equal (low0,
4723 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4724 low0 = 0;
4725 break;
4726 case POINTER_TYPE:
4727 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4728 && integer_zerop (low0))
4729 low0 = 0;
4730 break;
4731 default:
4732 break;
4733 }
4734
4735 /* Canonicalize - [x, max] into - [x, -]. */
4736 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4737 switch (TREE_CODE (TREE_TYPE (high1)))
4738 {
4739 case ENUMERAL_TYPE:
4740 if (TYPE_PRECISION (TREE_TYPE (high1))
4741 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4742 break;
4743 /* FALLTHROUGH */
4744 case INTEGER_TYPE:
4745 if (tree_int_cst_equal (high1,
4746 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4747 high1 = 0;
4748 break;
4749 case POINTER_TYPE:
4750 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4751 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4752 high1, 1,
4753 build_int_cst (TREE_TYPE (high1), 1),
4754 1)))
4755 high1 = 0;
4756 break;
4757 default:
4758 break;
4759 }
4760
4761 /* The ranges might be also adjacent between the maximum and
4762 minimum values of the given type. For
4763 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4764 return + [x + 1, y - 1]. */
4765 if (low0 == 0 && high1 == 0)
4766 {
4767 low = range_successor (high0);
4768 high = range_predecessor (low1);
4769 if (low == 0 || high == 0)
4770 return 0;
4771
4772 in_p = 1;
4773 }
4774 else
4775 return 0;
4776 }
4777 }
4778 else if (subset)
4779 in_p = 0, low = low0, high = high0;
4780 else
4781 in_p = 0, low = low0, high = high1;
4782 }
4783
4784 *pin_p = in_p, *plow = low, *phigh = high;
4785 return 1;
4786 }
4787 \f
4788
4789 /* Subroutine of fold, looking inside expressions of the form
4790 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4791 of the COND_EXPR. This function is being used also to optimize
4792 A op B ? C : A, by reversing the comparison first.
4793
4794 Return a folded expression whose code is not a COND_EXPR
4795 anymore, or NULL_TREE if no folding opportunity is found. */
4796
4797 static tree
4798 fold_cond_expr_with_comparison (location_t loc, tree type,
4799 tree arg0, tree arg1, tree arg2)
4800 {
4801 enum tree_code comp_code = TREE_CODE (arg0);
4802 tree arg00 = TREE_OPERAND (arg0, 0);
4803 tree arg01 = TREE_OPERAND (arg0, 1);
4804 tree arg1_type = TREE_TYPE (arg1);
4805 tree tem;
4806
4807 STRIP_NOPS (arg1);
4808 STRIP_NOPS (arg2);
4809
4810 /* If we have A op 0 ? A : -A, consider applying the following
4811 transformations:
4812
4813 A == 0? A : -A same as -A
4814 A != 0? A : -A same as A
4815 A >= 0? A : -A same as abs (A)
4816 A > 0? A : -A same as abs (A)
4817 A <= 0? A : -A same as -abs (A)
4818 A < 0? A : -A same as -abs (A)
4819
4820 None of these transformations work for modes with signed
4821 zeros. If A is +/-0, the first two transformations will
4822 change the sign of the result (from +0 to -0, or vice
4823 versa). The last four will fix the sign of the result,
4824 even though the original expressions could be positive or
4825 negative, depending on the sign of A.
4826
4827 Note that all these transformations are correct if A is
4828 NaN, since the two alternatives (A and -A) are also NaNs. */
4829 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4830 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
4831 ? real_zerop (arg01)
4832 : integer_zerop (arg01))
4833 && ((TREE_CODE (arg2) == NEGATE_EXPR
4834 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4835 /* In the case that A is of the form X-Y, '-A' (arg2) may
4836 have already been folded to Y-X, check for that. */
4837 || (TREE_CODE (arg1) == MINUS_EXPR
4838 && TREE_CODE (arg2) == MINUS_EXPR
4839 && operand_equal_p (TREE_OPERAND (arg1, 0),
4840 TREE_OPERAND (arg2, 1), 0)
4841 && operand_equal_p (TREE_OPERAND (arg1, 1),
4842 TREE_OPERAND (arg2, 0), 0))))
4843 switch (comp_code)
4844 {
4845 case EQ_EXPR:
4846 case UNEQ_EXPR:
4847 tem = fold_convert_loc (loc, arg1_type, arg1);
4848 return pedantic_non_lvalue_loc (loc,
4849 fold_convert_loc (loc, type,
4850 negate_expr (tem)));
4851 case NE_EXPR:
4852 case LTGT_EXPR:
4853 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4854 case UNGE_EXPR:
4855 case UNGT_EXPR:
4856 if (flag_trapping_math)
4857 break;
4858 /* Fall through. */
4859 case GE_EXPR:
4860 case GT_EXPR:
4861 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4862 arg1 = fold_convert_loc (loc, signed_type_for
4863 (TREE_TYPE (arg1)), arg1);
4864 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4865 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4866 case UNLE_EXPR:
4867 case UNLT_EXPR:
4868 if (flag_trapping_math)
4869 break;
4870 case LE_EXPR:
4871 case LT_EXPR:
4872 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4873 arg1 = fold_convert_loc (loc, signed_type_for
4874 (TREE_TYPE (arg1)), arg1);
4875 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4876 return negate_expr (fold_convert_loc (loc, type, tem));
4877 default:
4878 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4879 break;
4880 }
4881
4882 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4883 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4884 both transformations are correct when A is NaN: A != 0
4885 is then true, and A == 0 is false. */
4886
4887 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4888 && integer_zerop (arg01) && integer_zerop (arg2))
4889 {
4890 if (comp_code == NE_EXPR)
4891 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4892 else if (comp_code == EQ_EXPR)
4893 return build_zero_cst (type);
4894 }
4895
4896 /* Try some transformations of A op B ? A : B.
4897
4898 A == B? A : B same as B
4899 A != B? A : B same as A
4900 A >= B? A : B same as max (A, B)
4901 A > B? A : B same as max (B, A)
4902 A <= B? A : B same as min (A, B)
4903 A < B? A : B same as min (B, A)
4904
4905 As above, these transformations don't work in the presence
4906 of signed zeros. For example, if A and B are zeros of
4907 opposite sign, the first two transformations will change
4908 the sign of the result. In the last four, the original
4909 expressions give different results for (A=+0, B=-0) and
4910 (A=-0, B=+0), but the transformed expressions do not.
4911
4912 The first two transformations are correct if either A or B
4913 is a NaN. In the first transformation, the condition will
4914 be false, and B will indeed be chosen. In the case of the
4915 second transformation, the condition A != B will be true,
4916 and A will be chosen.
4917
4918 The conversions to max() and min() are not correct if B is
4919 a number and A is not. The conditions in the original
4920 expressions will be false, so all four give B. The min()
4921 and max() versions would give a NaN instead. */
4922 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4923 && operand_equal_for_comparison_p (arg01, arg2, arg00)
4924 /* Avoid these transformations if the COND_EXPR may be used
4925 as an lvalue in the C++ front-end. PR c++/19199. */
4926 && (in_gimple_form
4927 || VECTOR_TYPE_P (type)
4928 || (! lang_GNU_CXX ()
4929 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
4930 || ! maybe_lvalue_p (arg1)
4931 || ! maybe_lvalue_p (arg2)))
4932 {
4933 tree comp_op0 = arg00;
4934 tree comp_op1 = arg01;
4935 tree comp_type = TREE_TYPE (comp_op0);
4936
4937 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4938 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
4939 {
4940 comp_type = type;
4941 comp_op0 = arg1;
4942 comp_op1 = arg2;
4943 }
4944
4945 switch (comp_code)
4946 {
4947 case EQ_EXPR:
4948 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg2));
4949 case NE_EXPR:
4950 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4951 case LE_EXPR:
4952 case LT_EXPR:
4953 case UNLE_EXPR:
4954 case UNLT_EXPR:
4955 /* In C++ a ?: expression can be an lvalue, so put the
4956 operand which will be used if they are equal first
4957 so that we can convert this back to the
4958 corresponding COND_EXPR. */
4959 if (!HONOR_NANS (arg1))
4960 {
4961 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4962 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4963 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
4964 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
4965 : fold_build2_loc (loc, MIN_EXPR, comp_type,
4966 comp_op1, comp_op0);
4967 return pedantic_non_lvalue_loc (loc,
4968 fold_convert_loc (loc, type, tem));
4969 }
4970 break;
4971 case GE_EXPR:
4972 case GT_EXPR:
4973 case UNGE_EXPR:
4974 case UNGT_EXPR:
4975 if (!HONOR_NANS (arg1))
4976 {
4977 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4978 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4979 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
4980 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
4981 : fold_build2_loc (loc, MAX_EXPR, comp_type,
4982 comp_op1, comp_op0);
4983 return pedantic_non_lvalue_loc (loc,
4984 fold_convert_loc (loc, type, tem));
4985 }
4986 break;
4987 case UNEQ_EXPR:
4988 if (!HONOR_NANS (arg1))
4989 return pedantic_non_lvalue_loc (loc,
4990 fold_convert_loc (loc, type, arg2));
4991 break;
4992 case LTGT_EXPR:
4993 if (!HONOR_NANS (arg1))
4994 return pedantic_non_lvalue_loc (loc,
4995 fold_convert_loc (loc, type, arg1));
4996 break;
4997 default:
4998 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4999 break;
5000 }
5001 }
5002
5003 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5004 we might still be able to simplify this. For example,
5005 if C1 is one less or one more than C2, this might have started
5006 out as a MIN or MAX and been transformed by this function.
5007 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5008
5009 if (INTEGRAL_TYPE_P (type)
5010 && TREE_CODE (arg01) == INTEGER_CST
5011 && TREE_CODE (arg2) == INTEGER_CST)
5012 switch (comp_code)
5013 {
5014 case EQ_EXPR:
5015 if (TREE_CODE (arg1) == INTEGER_CST)
5016 break;
5017 /* We can replace A with C1 in this case. */
5018 arg1 = fold_convert_loc (loc, type, arg01);
5019 return fold_build3_loc (loc, COND_EXPR, type, arg0, arg1, arg2);
5020
5021 case LT_EXPR:
5022 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
5023 MIN_EXPR, to preserve the signedness of the comparison. */
5024 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5025 OEP_ONLY_CONST)
5026 && operand_equal_p (arg01,
5027 const_binop (PLUS_EXPR, arg2,
5028 build_int_cst (type, 1)),
5029 OEP_ONLY_CONST))
5030 {
5031 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5032 fold_convert_loc (loc, TREE_TYPE (arg00),
5033 arg2));
5034 return pedantic_non_lvalue_loc (loc,
5035 fold_convert_loc (loc, type, tem));
5036 }
5037 break;
5038
5039 case LE_EXPR:
5040 /* If C1 is C2 - 1, this is min(A, C2), with the same care
5041 as above. */
5042 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5043 OEP_ONLY_CONST)
5044 && operand_equal_p (arg01,
5045 const_binop (MINUS_EXPR, arg2,
5046 build_int_cst (type, 1)),
5047 OEP_ONLY_CONST))
5048 {
5049 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5050 fold_convert_loc (loc, TREE_TYPE (arg00),
5051 arg2));
5052 return pedantic_non_lvalue_loc (loc,
5053 fold_convert_loc (loc, type, tem));
5054 }
5055 break;
5056
5057 case GT_EXPR:
5058 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
5059 MAX_EXPR, to preserve the signedness of the comparison. */
5060 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5061 OEP_ONLY_CONST)
5062 && operand_equal_p (arg01,
5063 const_binop (MINUS_EXPR, arg2,
5064 build_int_cst (type, 1)),
5065 OEP_ONLY_CONST))
5066 {
5067 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5068 fold_convert_loc (loc, TREE_TYPE (arg00),
5069 arg2));
5070 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5071 }
5072 break;
5073
5074 case GE_EXPR:
5075 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
5076 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5077 OEP_ONLY_CONST)
5078 && operand_equal_p (arg01,
5079 const_binop (PLUS_EXPR, arg2,
5080 build_int_cst (type, 1)),
5081 OEP_ONLY_CONST))
5082 {
5083 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5084 fold_convert_loc (loc, TREE_TYPE (arg00),
5085 arg2));
5086 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5087 }
5088 break;
5089 case NE_EXPR:
5090 break;
5091 default:
5092 gcc_unreachable ();
5093 }
5094
5095 return NULL_TREE;
5096 }
5097
5098
5099 \f
5100 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5101 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5102 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5103 false) >= 2)
5104 #endif
5105
5106 /* EXP is some logical combination of boolean tests. See if we can
5107 merge it into some range test. Return the new tree if so. */
5108
5109 static tree
5110 fold_range_test (location_t loc, enum tree_code code, tree type,
5111 tree op0, tree op1)
5112 {
5113 int or_op = (code == TRUTH_ORIF_EXPR
5114 || code == TRUTH_OR_EXPR);
5115 int in0_p, in1_p, in_p;
5116 tree low0, low1, low, high0, high1, high;
5117 bool strict_overflow_p = false;
5118 tree tem, lhs, rhs;
5119 const char * const warnmsg = G_("assuming signed overflow does not occur "
5120 "when simplifying range test");
5121
5122 if (!INTEGRAL_TYPE_P (type))
5123 return 0;
5124
5125 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5126 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5127
5128 /* If this is an OR operation, invert both sides; we will invert
5129 again at the end. */
5130 if (or_op)
5131 in0_p = ! in0_p, in1_p = ! in1_p;
5132
5133 /* If both expressions are the same, if we can merge the ranges, and we
5134 can build the range test, return it or it inverted. If one of the
5135 ranges is always true or always false, consider it to be the same
5136 expression as the other. */
5137 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5138 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5139 in1_p, low1, high1)
5140 && 0 != (tem = (build_range_check (loc, type,
5141 lhs != 0 ? lhs
5142 : rhs != 0 ? rhs : integer_zero_node,
5143 in_p, low, high))))
5144 {
5145 if (strict_overflow_p)
5146 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5147 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5148 }
5149
5150 /* On machines where the branch cost is expensive, if this is a
5151 short-circuited branch and the underlying object on both sides
5152 is the same, make a non-short-circuit operation. */
5153 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5154 && lhs != 0 && rhs != 0
5155 && (code == TRUTH_ANDIF_EXPR
5156 || code == TRUTH_ORIF_EXPR)
5157 && operand_equal_p (lhs, rhs, 0))
5158 {
5159 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5160 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5161 which cases we can't do this. */
5162 if (simple_operand_p (lhs))
5163 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5164 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5165 type, op0, op1);
5166
5167 else if (!lang_hooks.decls.global_bindings_p ()
5168 && !CONTAINS_PLACEHOLDER_P (lhs))
5169 {
5170 tree common = save_expr (lhs);
5171
5172 if (0 != (lhs = build_range_check (loc, type, common,
5173 or_op ? ! in0_p : in0_p,
5174 low0, high0))
5175 && (0 != (rhs = build_range_check (loc, type, common,
5176 or_op ? ! in1_p : in1_p,
5177 low1, high1))))
5178 {
5179 if (strict_overflow_p)
5180 fold_overflow_warning (warnmsg,
5181 WARN_STRICT_OVERFLOW_COMPARISON);
5182 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5183 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5184 type, lhs, rhs);
5185 }
5186 }
5187 }
5188
5189 return 0;
5190 }
5191 \f
5192 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5193 bit value. Arrange things so the extra bits will be set to zero if and
5194 only if C is signed-extended to its full width. If MASK is nonzero,
5195 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5196
5197 static tree
5198 unextend (tree c, int p, int unsignedp, tree mask)
5199 {
5200 tree type = TREE_TYPE (c);
5201 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5202 tree temp;
5203
5204 if (p == modesize || unsignedp)
5205 return c;
5206
5207 /* We work by getting just the sign bit into the low-order bit, then
5208 into the high-order bit, then sign-extend. We then XOR that value
5209 with C. */
5210 temp = build_int_cst (TREE_TYPE (c), wi::extract_uhwi (c, p - 1, 1));
5211
5212 /* We must use a signed type in order to get an arithmetic right shift.
5213 However, we must also avoid introducing accidental overflows, so that
5214 a subsequent call to integer_zerop will work. Hence we must
5215 do the type conversion here. At this point, the constant is either
5216 zero or one, and the conversion to a signed type can never overflow.
5217 We could get an overflow if this conversion is done anywhere else. */
5218 if (TYPE_UNSIGNED (type))
5219 temp = fold_convert (signed_type_for (type), temp);
5220
5221 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5222 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5223 if (mask != 0)
5224 temp = const_binop (BIT_AND_EXPR, temp,
5225 fold_convert (TREE_TYPE (c), mask));
5226 /* If necessary, convert the type back to match the type of C. */
5227 if (TYPE_UNSIGNED (type))
5228 temp = fold_convert (type, temp);
5229
5230 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5231 }
5232 \f
5233 /* For an expression that has the form
5234 (A && B) || ~B
5235 or
5236 (A || B) && ~B,
5237 we can drop one of the inner expressions and simplify to
5238 A || ~B
5239 or
5240 A && ~B
5241 LOC is the location of the resulting expression. OP is the inner
5242 logical operation; the left-hand side in the examples above, while CMPOP
5243 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5244 removing a condition that guards another, as in
5245 (A != NULL && A->...) || A == NULL
5246 which we must not transform. If RHS_ONLY is true, only eliminate the
5247 right-most operand of the inner logical operation. */
5248
5249 static tree
5250 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5251 bool rhs_only)
5252 {
5253 tree type = TREE_TYPE (cmpop);
5254 enum tree_code code = TREE_CODE (cmpop);
5255 enum tree_code truthop_code = TREE_CODE (op);
5256 tree lhs = TREE_OPERAND (op, 0);
5257 tree rhs = TREE_OPERAND (op, 1);
5258 tree orig_lhs = lhs, orig_rhs = rhs;
5259 enum tree_code rhs_code = TREE_CODE (rhs);
5260 enum tree_code lhs_code = TREE_CODE (lhs);
5261 enum tree_code inv_code;
5262
5263 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5264 return NULL_TREE;
5265
5266 if (TREE_CODE_CLASS (code) != tcc_comparison)
5267 return NULL_TREE;
5268
5269 if (rhs_code == truthop_code)
5270 {
5271 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5272 if (newrhs != NULL_TREE)
5273 {
5274 rhs = newrhs;
5275 rhs_code = TREE_CODE (rhs);
5276 }
5277 }
5278 if (lhs_code == truthop_code && !rhs_only)
5279 {
5280 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5281 if (newlhs != NULL_TREE)
5282 {
5283 lhs = newlhs;
5284 lhs_code = TREE_CODE (lhs);
5285 }
5286 }
5287
5288 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5289 if (inv_code == rhs_code
5290 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5291 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5292 return lhs;
5293 if (!rhs_only && inv_code == lhs_code
5294 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5295 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5296 return rhs;
5297 if (rhs != orig_rhs || lhs != orig_lhs)
5298 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5299 lhs, rhs);
5300 return NULL_TREE;
5301 }
5302
5303 /* Find ways of folding logical expressions of LHS and RHS:
5304 Try to merge two comparisons to the same innermost item.
5305 Look for range tests like "ch >= '0' && ch <= '9'".
5306 Look for combinations of simple terms on machines with expensive branches
5307 and evaluate the RHS unconditionally.
5308
5309 For example, if we have p->a == 2 && p->b == 4 and we can make an
5310 object large enough to span both A and B, we can do this with a comparison
5311 against the object ANDed with the a mask.
5312
5313 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5314 operations to do this with one comparison.
5315
5316 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5317 function and the one above.
5318
5319 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5320 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5321
5322 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5323 two operands.
5324
5325 We return the simplified tree or 0 if no optimization is possible. */
5326
5327 static tree
5328 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5329 tree lhs, tree rhs)
5330 {
5331 /* If this is the "or" of two comparisons, we can do something if
5332 the comparisons are NE_EXPR. If this is the "and", we can do something
5333 if the comparisons are EQ_EXPR. I.e.,
5334 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5335
5336 WANTED_CODE is this operation code. For single bit fields, we can
5337 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5338 comparison for one-bit fields. */
5339
5340 enum tree_code wanted_code;
5341 enum tree_code lcode, rcode;
5342 tree ll_arg, lr_arg, rl_arg, rr_arg;
5343 tree ll_inner, lr_inner, rl_inner, rr_inner;
5344 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5345 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5346 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5347 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5348 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5349 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5350 machine_mode lnmode, rnmode;
5351 tree ll_mask, lr_mask, rl_mask, rr_mask;
5352 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5353 tree l_const, r_const;
5354 tree lntype, rntype, result;
5355 HOST_WIDE_INT first_bit, end_bit;
5356 int volatilep;
5357
5358 /* Start by getting the comparison codes. Fail if anything is volatile.
5359 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5360 it were surrounded with a NE_EXPR. */
5361
5362 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5363 return 0;
5364
5365 lcode = TREE_CODE (lhs);
5366 rcode = TREE_CODE (rhs);
5367
5368 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5369 {
5370 lhs = build2 (NE_EXPR, truth_type, lhs,
5371 build_int_cst (TREE_TYPE (lhs), 0));
5372 lcode = NE_EXPR;
5373 }
5374
5375 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5376 {
5377 rhs = build2 (NE_EXPR, truth_type, rhs,
5378 build_int_cst (TREE_TYPE (rhs), 0));
5379 rcode = NE_EXPR;
5380 }
5381
5382 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5383 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5384 return 0;
5385
5386 ll_arg = TREE_OPERAND (lhs, 0);
5387 lr_arg = TREE_OPERAND (lhs, 1);
5388 rl_arg = TREE_OPERAND (rhs, 0);
5389 rr_arg = TREE_OPERAND (rhs, 1);
5390
5391 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5392 if (simple_operand_p (ll_arg)
5393 && simple_operand_p (lr_arg))
5394 {
5395 if (operand_equal_p (ll_arg, rl_arg, 0)
5396 && operand_equal_p (lr_arg, rr_arg, 0))
5397 {
5398 result = combine_comparisons (loc, code, lcode, rcode,
5399 truth_type, ll_arg, lr_arg);
5400 if (result)
5401 return result;
5402 }
5403 else if (operand_equal_p (ll_arg, rr_arg, 0)
5404 && operand_equal_p (lr_arg, rl_arg, 0))
5405 {
5406 result = combine_comparisons (loc, code, lcode,
5407 swap_tree_comparison (rcode),
5408 truth_type, ll_arg, lr_arg);
5409 if (result)
5410 return result;
5411 }
5412 }
5413
5414 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5415 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5416
5417 /* If the RHS can be evaluated unconditionally and its operands are
5418 simple, it wins to evaluate the RHS unconditionally on machines
5419 with expensive branches. In this case, this isn't a comparison
5420 that can be merged. */
5421
5422 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5423 false) >= 2
5424 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5425 && simple_operand_p (rl_arg)
5426 && simple_operand_p (rr_arg))
5427 {
5428 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5429 if (code == TRUTH_OR_EXPR
5430 && lcode == NE_EXPR && integer_zerop (lr_arg)
5431 && rcode == NE_EXPR && integer_zerop (rr_arg)
5432 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5433 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5434 return build2_loc (loc, NE_EXPR, truth_type,
5435 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5436 ll_arg, rl_arg),
5437 build_int_cst (TREE_TYPE (ll_arg), 0));
5438
5439 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5440 if (code == TRUTH_AND_EXPR
5441 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5442 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5443 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5444 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5445 return build2_loc (loc, EQ_EXPR, truth_type,
5446 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5447 ll_arg, rl_arg),
5448 build_int_cst (TREE_TYPE (ll_arg), 0));
5449 }
5450
5451 /* See if the comparisons can be merged. Then get all the parameters for
5452 each side. */
5453
5454 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5455 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5456 return 0;
5457
5458 volatilep = 0;
5459 ll_inner = decode_field_reference (loc, ll_arg,
5460 &ll_bitsize, &ll_bitpos, &ll_mode,
5461 &ll_unsignedp, &volatilep, &ll_mask,
5462 &ll_and_mask);
5463 lr_inner = decode_field_reference (loc, lr_arg,
5464 &lr_bitsize, &lr_bitpos, &lr_mode,
5465 &lr_unsignedp, &volatilep, &lr_mask,
5466 &lr_and_mask);
5467 rl_inner = decode_field_reference (loc, rl_arg,
5468 &rl_bitsize, &rl_bitpos, &rl_mode,
5469 &rl_unsignedp, &volatilep, &rl_mask,
5470 &rl_and_mask);
5471 rr_inner = decode_field_reference (loc, rr_arg,
5472 &rr_bitsize, &rr_bitpos, &rr_mode,
5473 &rr_unsignedp, &volatilep, &rr_mask,
5474 &rr_and_mask);
5475
5476 /* It must be true that the inner operation on the lhs of each
5477 comparison must be the same if we are to be able to do anything.
5478 Then see if we have constants. If not, the same must be true for
5479 the rhs's. */
5480 if (volatilep || ll_inner == 0 || rl_inner == 0
5481 || ! operand_equal_p (ll_inner, rl_inner, 0))
5482 return 0;
5483
5484 if (TREE_CODE (lr_arg) == INTEGER_CST
5485 && TREE_CODE (rr_arg) == INTEGER_CST)
5486 l_const = lr_arg, r_const = rr_arg;
5487 else if (lr_inner == 0 || rr_inner == 0
5488 || ! operand_equal_p (lr_inner, rr_inner, 0))
5489 return 0;
5490 else
5491 l_const = r_const = 0;
5492
5493 /* If either comparison code is not correct for our logical operation,
5494 fail. However, we can convert a one-bit comparison against zero into
5495 the opposite comparison against that bit being set in the field. */
5496
5497 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5498 if (lcode != wanted_code)
5499 {
5500 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5501 {
5502 /* Make the left operand unsigned, since we are only interested
5503 in the value of one bit. Otherwise we are doing the wrong
5504 thing below. */
5505 ll_unsignedp = 1;
5506 l_const = ll_mask;
5507 }
5508 else
5509 return 0;
5510 }
5511
5512 /* This is analogous to the code for l_const above. */
5513 if (rcode != wanted_code)
5514 {
5515 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5516 {
5517 rl_unsignedp = 1;
5518 r_const = rl_mask;
5519 }
5520 else
5521 return 0;
5522 }
5523
5524 /* See if we can find a mode that contains both fields being compared on
5525 the left. If we can't, fail. Otherwise, update all constants and masks
5526 to be relative to a field of that size. */
5527 first_bit = MIN (ll_bitpos, rl_bitpos);
5528 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5529 lnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5530 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5531 volatilep);
5532 if (lnmode == VOIDmode)
5533 return 0;
5534
5535 lnbitsize = GET_MODE_BITSIZE (lnmode);
5536 lnbitpos = first_bit & ~ (lnbitsize - 1);
5537 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5538 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5539
5540 if (BYTES_BIG_ENDIAN)
5541 {
5542 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5543 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5544 }
5545
5546 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5547 size_int (xll_bitpos));
5548 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5549 size_int (xrl_bitpos));
5550
5551 if (l_const)
5552 {
5553 l_const = fold_convert_loc (loc, lntype, l_const);
5554 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5555 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5556 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5557 fold_build1_loc (loc, BIT_NOT_EXPR,
5558 lntype, ll_mask))))
5559 {
5560 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5561
5562 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5563 }
5564 }
5565 if (r_const)
5566 {
5567 r_const = fold_convert_loc (loc, lntype, r_const);
5568 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5569 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5570 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5571 fold_build1_loc (loc, BIT_NOT_EXPR,
5572 lntype, rl_mask))))
5573 {
5574 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5575
5576 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5577 }
5578 }
5579
5580 /* If the right sides are not constant, do the same for it. Also,
5581 disallow this optimization if a size or signedness mismatch occurs
5582 between the left and right sides. */
5583 if (l_const == 0)
5584 {
5585 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5586 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5587 /* Make sure the two fields on the right
5588 correspond to the left without being swapped. */
5589 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5590 return 0;
5591
5592 first_bit = MIN (lr_bitpos, rr_bitpos);
5593 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5594 rnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5595 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5596 volatilep);
5597 if (rnmode == VOIDmode)
5598 return 0;
5599
5600 rnbitsize = GET_MODE_BITSIZE (rnmode);
5601 rnbitpos = first_bit & ~ (rnbitsize - 1);
5602 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5603 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5604
5605 if (BYTES_BIG_ENDIAN)
5606 {
5607 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5608 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5609 }
5610
5611 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5612 rntype, lr_mask),
5613 size_int (xlr_bitpos));
5614 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5615 rntype, rr_mask),
5616 size_int (xrr_bitpos));
5617
5618 /* Make a mask that corresponds to both fields being compared.
5619 Do this for both items being compared. If the operands are the
5620 same size and the bits being compared are in the same position
5621 then we can do this by masking both and comparing the masked
5622 results. */
5623 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5624 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5625 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5626 {
5627 lhs = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5628 ll_unsignedp || rl_unsignedp);
5629 if (! all_ones_mask_p (ll_mask, lnbitsize))
5630 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5631
5632 rhs = make_bit_field_ref (loc, lr_inner, rntype, rnbitsize, rnbitpos,
5633 lr_unsignedp || rr_unsignedp);
5634 if (! all_ones_mask_p (lr_mask, rnbitsize))
5635 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5636
5637 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5638 }
5639
5640 /* There is still another way we can do something: If both pairs of
5641 fields being compared are adjacent, we may be able to make a wider
5642 field containing them both.
5643
5644 Note that we still must mask the lhs/rhs expressions. Furthermore,
5645 the mask must be shifted to account for the shift done by
5646 make_bit_field_ref. */
5647 if ((ll_bitsize + ll_bitpos == rl_bitpos
5648 && lr_bitsize + lr_bitpos == rr_bitpos)
5649 || (ll_bitpos == rl_bitpos + rl_bitsize
5650 && lr_bitpos == rr_bitpos + rr_bitsize))
5651 {
5652 tree type;
5653
5654 lhs = make_bit_field_ref (loc, ll_inner, lntype,
5655 ll_bitsize + rl_bitsize,
5656 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5657 rhs = make_bit_field_ref (loc, lr_inner, rntype,
5658 lr_bitsize + rr_bitsize,
5659 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5660
5661 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5662 size_int (MIN (xll_bitpos, xrl_bitpos)));
5663 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5664 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5665
5666 /* Convert to the smaller type before masking out unwanted bits. */
5667 type = lntype;
5668 if (lntype != rntype)
5669 {
5670 if (lnbitsize > rnbitsize)
5671 {
5672 lhs = fold_convert_loc (loc, rntype, lhs);
5673 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5674 type = rntype;
5675 }
5676 else if (lnbitsize < rnbitsize)
5677 {
5678 rhs = fold_convert_loc (loc, lntype, rhs);
5679 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5680 type = lntype;
5681 }
5682 }
5683
5684 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5685 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5686
5687 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5688 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5689
5690 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5691 }
5692
5693 return 0;
5694 }
5695
5696 /* Handle the case of comparisons with constants. If there is something in
5697 common between the masks, those bits of the constants must be the same.
5698 If not, the condition is always false. Test for this to avoid generating
5699 incorrect code below. */
5700 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5701 if (! integer_zerop (result)
5702 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5703 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5704 {
5705 if (wanted_code == NE_EXPR)
5706 {
5707 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5708 return constant_boolean_node (true, truth_type);
5709 }
5710 else
5711 {
5712 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5713 return constant_boolean_node (false, truth_type);
5714 }
5715 }
5716
5717 /* Construct the expression we will return. First get the component
5718 reference we will make. Unless the mask is all ones the width of
5719 that field, perform the mask operation. Then compare with the
5720 merged constant. */
5721 result = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5722 ll_unsignedp || rl_unsignedp);
5723
5724 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5725 if (! all_ones_mask_p (ll_mask, lnbitsize))
5726 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5727
5728 return build2_loc (loc, wanted_code, truth_type, result,
5729 const_binop (BIT_IOR_EXPR, l_const, r_const));
5730 }
5731 \f
5732 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5733 constant. */
5734
5735 static tree
5736 optimize_minmax_comparison (location_t loc, enum tree_code code, tree type,
5737 tree op0, tree op1)
5738 {
5739 tree arg0 = op0;
5740 enum tree_code op_code;
5741 tree comp_const;
5742 tree minmax_const;
5743 int consts_equal, consts_lt;
5744 tree inner;
5745
5746 STRIP_SIGN_NOPS (arg0);
5747
5748 op_code = TREE_CODE (arg0);
5749 minmax_const = TREE_OPERAND (arg0, 1);
5750 comp_const = fold_convert_loc (loc, TREE_TYPE (arg0), op1);
5751 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5752 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5753 inner = TREE_OPERAND (arg0, 0);
5754
5755 /* If something does not permit us to optimize, return the original tree. */
5756 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5757 || TREE_CODE (comp_const) != INTEGER_CST
5758 || TREE_OVERFLOW (comp_const)
5759 || TREE_CODE (minmax_const) != INTEGER_CST
5760 || TREE_OVERFLOW (minmax_const))
5761 return NULL_TREE;
5762
5763 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5764 and GT_EXPR, doing the rest with recursive calls using logical
5765 simplifications. */
5766 switch (code)
5767 {
5768 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5769 {
5770 tree tem
5771 = optimize_minmax_comparison (loc,
5772 invert_tree_comparison (code, false),
5773 type, op0, op1);
5774 if (tem)
5775 return invert_truthvalue_loc (loc, tem);
5776 return NULL_TREE;
5777 }
5778
5779 case GE_EXPR:
5780 return
5781 fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
5782 optimize_minmax_comparison
5783 (loc, EQ_EXPR, type, arg0, comp_const),
5784 optimize_minmax_comparison
5785 (loc, GT_EXPR, type, arg0, comp_const));
5786
5787 case EQ_EXPR:
5788 if (op_code == MAX_EXPR && consts_equal)
5789 /* MAX (X, 0) == 0 -> X <= 0 */
5790 return fold_build2_loc (loc, LE_EXPR, type, inner, comp_const);
5791
5792 else if (op_code == MAX_EXPR && consts_lt)
5793 /* MAX (X, 0) == 5 -> X == 5 */
5794 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5795
5796 else if (op_code == MAX_EXPR)
5797 /* MAX (X, 0) == -1 -> false */
5798 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5799
5800 else if (consts_equal)
5801 /* MIN (X, 0) == 0 -> X >= 0 */
5802 return fold_build2_loc (loc, GE_EXPR, type, inner, comp_const);
5803
5804 else if (consts_lt)
5805 /* MIN (X, 0) == 5 -> false */
5806 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5807
5808 else
5809 /* MIN (X, 0) == -1 -> X == -1 */
5810 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5811
5812 case GT_EXPR:
5813 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5814 /* MAX (X, 0) > 0 -> X > 0
5815 MAX (X, 0) > 5 -> X > 5 */
5816 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5817
5818 else if (op_code == MAX_EXPR)
5819 /* MAX (X, 0) > -1 -> true */
5820 return omit_one_operand_loc (loc, type, integer_one_node, inner);
5821
5822 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5823 /* MIN (X, 0) > 0 -> false
5824 MIN (X, 0) > 5 -> false */
5825 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5826
5827 else
5828 /* MIN (X, 0) > -1 -> X > -1 */
5829 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5830
5831 default:
5832 return NULL_TREE;
5833 }
5834 }
5835 \f
5836 /* T is an integer expression that is being multiplied, divided, or taken a
5837 modulus (CODE says which and what kind of divide or modulus) by a
5838 constant C. See if we can eliminate that operation by folding it with
5839 other operations already in T. WIDE_TYPE, if non-null, is a type that
5840 should be used for the computation if wider than our type.
5841
5842 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5843 (X * 2) + (Y * 4). We must, however, be assured that either the original
5844 expression would not overflow or that overflow is undefined for the type
5845 in the language in question.
5846
5847 If we return a non-null expression, it is an equivalent form of the
5848 original computation, but need not be in the original type.
5849
5850 We set *STRICT_OVERFLOW_P to true if the return values depends on
5851 signed overflow being undefined. Otherwise we do not change
5852 *STRICT_OVERFLOW_P. */
5853
5854 static tree
5855 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5856 bool *strict_overflow_p)
5857 {
5858 /* To avoid exponential search depth, refuse to allow recursion past
5859 three levels. Beyond that (1) it's highly unlikely that we'll find
5860 something interesting and (2) we've probably processed it before
5861 when we built the inner expression. */
5862
5863 static int depth;
5864 tree ret;
5865
5866 if (depth > 3)
5867 return NULL;
5868
5869 depth++;
5870 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
5871 depth--;
5872
5873 return ret;
5874 }
5875
5876 static tree
5877 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
5878 bool *strict_overflow_p)
5879 {
5880 tree type = TREE_TYPE (t);
5881 enum tree_code tcode = TREE_CODE (t);
5882 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5883 > GET_MODE_SIZE (TYPE_MODE (type)))
5884 ? wide_type : type);
5885 tree t1, t2;
5886 int same_p = tcode == code;
5887 tree op0 = NULL_TREE, op1 = NULL_TREE;
5888 bool sub_strict_overflow_p;
5889
5890 /* Don't deal with constants of zero here; they confuse the code below. */
5891 if (integer_zerop (c))
5892 return NULL_TREE;
5893
5894 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5895 op0 = TREE_OPERAND (t, 0);
5896
5897 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5898 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5899
5900 /* Note that we need not handle conditional operations here since fold
5901 already handles those cases. So just do arithmetic here. */
5902 switch (tcode)
5903 {
5904 case INTEGER_CST:
5905 /* For a constant, we can always simplify if we are a multiply
5906 or (for divide and modulus) if it is a multiple of our constant. */
5907 if (code == MULT_EXPR
5908 || wi::multiple_of_p (t, c, TYPE_SIGN (type)))
5909 return const_binop (code, fold_convert (ctype, t),
5910 fold_convert (ctype, c));
5911 break;
5912
5913 CASE_CONVERT: case NON_LVALUE_EXPR:
5914 /* If op0 is an expression ... */
5915 if ((COMPARISON_CLASS_P (op0)
5916 || UNARY_CLASS_P (op0)
5917 || BINARY_CLASS_P (op0)
5918 || VL_EXP_CLASS_P (op0)
5919 || EXPRESSION_CLASS_P (op0))
5920 /* ... and has wrapping overflow, and its type is smaller
5921 than ctype, then we cannot pass through as widening. */
5922 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
5923 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
5924 && (TYPE_PRECISION (ctype)
5925 > TYPE_PRECISION (TREE_TYPE (op0))))
5926 /* ... or this is a truncation (t is narrower than op0),
5927 then we cannot pass through this narrowing. */
5928 || (TYPE_PRECISION (type)
5929 < TYPE_PRECISION (TREE_TYPE (op0)))
5930 /* ... or signedness changes for division or modulus,
5931 then we cannot pass through this conversion. */
5932 || (code != MULT_EXPR
5933 && (TYPE_UNSIGNED (ctype)
5934 != TYPE_UNSIGNED (TREE_TYPE (op0))))
5935 /* ... or has undefined overflow while the converted to
5936 type has not, we cannot do the operation in the inner type
5937 as that would introduce undefined overflow. */
5938 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
5939 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
5940 && !TYPE_OVERFLOW_UNDEFINED (type))))
5941 break;
5942
5943 /* Pass the constant down and see if we can make a simplification. If
5944 we can, replace this expression with the inner simplification for
5945 possible later conversion to our or some other type. */
5946 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5947 && TREE_CODE (t2) == INTEGER_CST
5948 && !TREE_OVERFLOW (t2)
5949 && (0 != (t1 = extract_muldiv (op0, t2, code,
5950 code == MULT_EXPR
5951 ? ctype : NULL_TREE,
5952 strict_overflow_p))))
5953 return t1;
5954 break;
5955
5956 case ABS_EXPR:
5957 /* If widening the type changes it from signed to unsigned, then we
5958 must avoid building ABS_EXPR itself as unsigned. */
5959 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
5960 {
5961 tree cstype = (*signed_type_for) (ctype);
5962 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
5963 != 0)
5964 {
5965 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
5966 return fold_convert (ctype, t1);
5967 }
5968 break;
5969 }
5970 /* If the constant is negative, we cannot simplify this. */
5971 if (tree_int_cst_sgn (c) == -1)
5972 break;
5973 /* FALLTHROUGH */
5974 case NEGATE_EXPR:
5975 /* For division and modulus, type can't be unsigned, as e.g.
5976 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
5977 For signed types, even with wrapping overflow, this is fine. */
5978 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
5979 break;
5980 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
5981 != 0)
5982 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
5983 break;
5984
5985 case MIN_EXPR: case MAX_EXPR:
5986 /* If widening the type changes the signedness, then we can't perform
5987 this optimization as that changes the result. */
5988 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
5989 break;
5990
5991 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5992 sub_strict_overflow_p = false;
5993 if ((t1 = extract_muldiv (op0, c, code, wide_type,
5994 &sub_strict_overflow_p)) != 0
5995 && (t2 = extract_muldiv (op1, c, code, wide_type,
5996 &sub_strict_overflow_p)) != 0)
5997 {
5998 if (tree_int_cst_sgn (c) < 0)
5999 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6000 if (sub_strict_overflow_p)
6001 *strict_overflow_p = true;
6002 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6003 fold_convert (ctype, t2));
6004 }
6005 break;
6006
6007 case LSHIFT_EXPR: case RSHIFT_EXPR:
6008 /* If the second operand is constant, this is a multiplication
6009 or floor division, by a power of two, so we can treat it that
6010 way unless the multiplier or divisor overflows. Signed
6011 left-shift overflow is implementation-defined rather than
6012 undefined in C90, so do not convert signed left shift into
6013 multiplication. */
6014 if (TREE_CODE (op1) == INTEGER_CST
6015 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6016 /* const_binop may not detect overflow correctly,
6017 so check for it explicitly here. */
6018 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
6019 && 0 != (t1 = fold_convert (ctype,
6020 const_binop (LSHIFT_EXPR,
6021 size_one_node,
6022 op1)))
6023 && !TREE_OVERFLOW (t1))
6024 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6025 ? MULT_EXPR : FLOOR_DIV_EXPR,
6026 ctype,
6027 fold_convert (ctype, op0),
6028 t1),
6029 c, code, wide_type, strict_overflow_p);
6030 break;
6031
6032 case PLUS_EXPR: case MINUS_EXPR:
6033 /* See if we can eliminate the operation on both sides. If we can, we
6034 can return a new PLUS or MINUS. If we can't, the only remaining
6035 cases where we can do anything are if the second operand is a
6036 constant. */
6037 sub_strict_overflow_p = false;
6038 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6039 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6040 if (t1 != 0 && t2 != 0
6041 && (code == MULT_EXPR
6042 /* If not multiplication, we can only do this if both operands
6043 are divisible by c. */
6044 || (multiple_of_p (ctype, op0, c)
6045 && multiple_of_p (ctype, op1, c))))
6046 {
6047 if (sub_strict_overflow_p)
6048 *strict_overflow_p = true;
6049 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6050 fold_convert (ctype, t2));
6051 }
6052
6053 /* If this was a subtraction, negate OP1 and set it to be an addition.
6054 This simplifies the logic below. */
6055 if (tcode == MINUS_EXPR)
6056 {
6057 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6058 /* If OP1 was not easily negatable, the constant may be OP0. */
6059 if (TREE_CODE (op0) == INTEGER_CST)
6060 {
6061 std::swap (op0, op1);
6062 std::swap (t1, t2);
6063 }
6064 }
6065
6066 if (TREE_CODE (op1) != INTEGER_CST)
6067 break;
6068
6069 /* If either OP1 or C are negative, this optimization is not safe for
6070 some of the division and remainder types while for others we need
6071 to change the code. */
6072 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6073 {
6074 if (code == CEIL_DIV_EXPR)
6075 code = FLOOR_DIV_EXPR;
6076 else if (code == FLOOR_DIV_EXPR)
6077 code = CEIL_DIV_EXPR;
6078 else if (code != MULT_EXPR
6079 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6080 break;
6081 }
6082
6083 /* If it's a multiply or a division/modulus operation of a multiple
6084 of our constant, do the operation and verify it doesn't overflow. */
6085 if (code == MULT_EXPR
6086 || wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6087 {
6088 op1 = const_binop (code, fold_convert (ctype, op1),
6089 fold_convert (ctype, c));
6090 /* We allow the constant to overflow with wrapping semantics. */
6091 if (op1 == 0
6092 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6093 break;
6094 }
6095 else
6096 break;
6097
6098 /* If we have an unsigned type, we cannot widen the operation since it
6099 will change the result if the original computation overflowed. */
6100 if (TYPE_UNSIGNED (ctype) && ctype != type)
6101 break;
6102
6103 /* If we were able to eliminate our operation from the first side,
6104 apply our operation to the second side and reform the PLUS. */
6105 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
6106 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
6107
6108 /* The last case is if we are a multiply. In that case, we can
6109 apply the distributive law to commute the multiply and addition
6110 if the multiplication of the constants doesn't overflow
6111 and overflow is defined. With undefined overflow
6112 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6113 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6114 return fold_build2 (tcode, ctype,
6115 fold_build2 (code, ctype,
6116 fold_convert (ctype, op0),
6117 fold_convert (ctype, c)),
6118 op1);
6119
6120 break;
6121
6122 case MULT_EXPR:
6123 /* We have a special case here if we are doing something like
6124 (C * 8) % 4 since we know that's zero. */
6125 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6126 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6127 /* If the multiplication can overflow we cannot optimize this. */
6128 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6129 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6130 && wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6131 {
6132 *strict_overflow_p = true;
6133 return omit_one_operand (type, integer_zero_node, op0);
6134 }
6135
6136 /* ... fall through ... */
6137
6138 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6139 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6140 /* If we can extract our operation from the LHS, do so and return a
6141 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6142 do something only if the second operand is a constant. */
6143 if (same_p
6144 && (t1 = extract_muldiv (op0, c, code, wide_type,
6145 strict_overflow_p)) != 0)
6146 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6147 fold_convert (ctype, op1));
6148 else if (tcode == MULT_EXPR && code == MULT_EXPR
6149 && (t1 = extract_muldiv (op1, c, code, wide_type,
6150 strict_overflow_p)) != 0)
6151 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6152 fold_convert (ctype, t1));
6153 else if (TREE_CODE (op1) != INTEGER_CST)
6154 return 0;
6155
6156 /* If these are the same operation types, we can associate them
6157 assuming no overflow. */
6158 if (tcode == code)
6159 {
6160 bool overflow_p = false;
6161 bool overflow_mul_p;
6162 signop sign = TYPE_SIGN (ctype);
6163 wide_int mul = wi::mul (op1, c, sign, &overflow_mul_p);
6164 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6165 if (overflow_mul_p
6166 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6167 overflow_p = true;
6168 if (!overflow_p)
6169 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6170 wide_int_to_tree (ctype, mul));
6171 }
6172
6173 /* If these operations "cancel" each other, we have the main
6174 optimizations of this pass, which occur when either constant is a
6175 multiple of the other, in which case we replace this with either an
6176 operation or CODE or TCODE.
6177
6178 If we have an unsigned type, we cannot do this since it will change
6179 the result if the original computation overflowed. */
6180 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6181 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6182 || (tcode == MULT_EXPR
6183 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6184 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6185 && code != MULT_EXPR)))
6186 {
6187 if (wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6188 {
6189 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6190 *strict_overflow_p = true;
6191 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6192 fold_convert (ctype,
6193 const_binop (TRUNC_DIV_EXPR,
6194 op1, c)));
6195 }
6196 else if (wi::multiple_of_p (c, op1, TYPE_SIGN (type)))
6197 {
6198 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6199 *strict_overflow_p = true;
6200 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6201 fold_convert (ctype,
6202 const_binop (TRUNC_DIV_EXPR,
6203 c, op1)));
6204 }
6205 }
6206 break;
6207
6208 default:
6209 break;
6210 }
6211
6212 return 0;
6213 }
6214 \f
6215 /* Return a node which has the indicated constant VALUE (either 0 or
6216 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6217 and is of the indicated TYPE. */
6218
6219 tree
6220 constant_boolean_node (bool value, tree type)
6221 {
6222 if (type == integer_type_node)
6223 return value ? integer_one_node : integer_zero_node;
6224 else if (type == boolean_type_node)
6225 return value ? boolean_true_node : boolean_false_node;
6226 else if (TREE_CODE (type) == VECTOR_TYPE)
6227 return build_vector_from_val (type,
6228 build_int_cst (TREE_TYPE (type),
6229 value ? -1 : 0));
6230 else
6231 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6232 }
6233
6234
6235 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6236 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6237 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6238 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6239 COND is the first argument to CODE; otherwise (as in the example
6240 given here), it is the second argument. TYPE is the type of the
6241 original expression. Return NULL_TREE if no simplification is
6242 possible. */
6243
6244 static tree
6245 fold_binary_op_with_conditional_arg (location_t loc,
6246 enum tree_code code,
6247 tree type, tree op0, tree op1,
6248 tree cond, tree arg, int cond_first_p)
6249 {
6250 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6251 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6252 tree test, true_value, false_value;
6253 tree lhs = NULL_TREE;
6254 tree rhs = NULL_TREE;
6255 enum tree_code cond_code = COND_EXPR;
6256
6257 if (TREE_CODE (cond) == COND_EXPR
6258 || TREE_CODE (cond) == VEC_COND_EXPR)
6259 {
6260 test = TREE_OPERAND (cond, 0);
6261 true_value = TREE_OPERAND (cond, 1);
6262 false_value = TREE_OPERAND (cond, 2);
6263 /* If this operand throws an expression, then it does not make
6264 sense to try to perform a logical or arithmetic operation
6265 involving it. */
6266 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6267 lhs = true_value;
6268 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6269 rhs = false_value;
6270 }
6271 else
6272 {
6273 tree testtype = TREE_TYPE (cond);
6274 test = cond;
6275 true_value = constant_boolean_node (true, testtype);
6276 false_value = constant_boolean_node (false, testtype);
6277 }
6278
6279 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6280 cond_code = VEC_COND_EXPR;
6281
6282 /* This transformation is only worthwhile if we don't have to wrap ARG
6283 in a SAVE_EXPR and the operation can be simplified without recursing
6284 on at least one of the branches once its pushed inside the COND_EXPR. */
6285 if (!TREE_CONSTANT (arg)
6286 && (TREE_SIDE_EFFECTS (arg)
6287 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6288 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6289 return NULL_TREE;
6290
6291 arg = fold_convert_loc (loc, arg_type, arg);
6292 if (lhs == 0)
6293 {
6294 true_value = fold_convert_loc (loc, cond_type, true_value);
6295 if (cond_first_p)
6296 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6297 else
6298 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6299 }
6300 if (rhs == 0)
6301 {
6302 false_value = fold_convert_loc (loc, cond_type, false_value);
6303 if (cond_first_p)
6304 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6305 else
6306 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6307 }
6308
6309 /* Check that we have simplified at least one of the branches. */
6310 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6311 return NULL_TREE;
6312
6313 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6314 }
6315
6316 \f
6317 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6318
6319 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6320 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6321 ADDEND is the same as X.
6322
6323 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6324 and finite. The problematic cases are when X is zero, and its mode
6325 has signed zeros. In the case of rounding towards -infinity,
6326 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6327 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6328
6329 bool
6330 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6331 {
6332 if (!real_zerop (addend))
6333 return false;
6334
6335 /* Don't allow the fold with -fsignaling-nans. */
6336 if (HONOR_SNANS (element_mode (type)))
6337 return false;
6338
6339 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6340 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6341 return true;
6342
6343 /* In a vector or complex, we would need to check the sign of all zeros. */
6344 if (TREE_CODE (addend) != REAL_CST)
6345 return false;
6346
6347 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6348 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6349 negate = !negate;
6350
6351 /* The mode has signed zeros, and we have to honor their sign.
6352 In this situation, there is only one case we can return true for.
6353 X - 0 is the same as X unless rounding towards -infinity is
6354 supported. */
6355 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6356 }
6357
6358 /* Subroutine of fold() that optimizes comparisons of a division by
6359 a nonzero integer constant against an integer constant, i.e.
6360 X/C1 op C2.
6361
6362 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6363 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6364 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6365
6366 The function returns the constant folded tree if a simplification
6367 can be made, and NULL_TREE otherwise. */
6368
6369 static tree
6370 fold_div_compare (location_t loc,
6371 enum tree_code code, tree type, tree arg0, tree arg1)
6372 {
6373 tree prod, tmp, hi, lo;
6374 tree arg00 = TREE_OPERAND (arg0, 0);
6375 tree arg01 = TREE_OPERAND (arg0, 1);
6376 signop sign = TYPE_SIGN (TREE_TYPE (arg0));
6377 bool neg_overflow = false;
6378 bool overflow;
6379
6380 /* We have to do this the hard way to detect unsigned overflow.
6381 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6382 wide_int val = wi::mul (arg01, arg1, sign, &overflow);
6383 prod = force_fit_type (TREE_TYPE (arg00), val, -1, overflow);
6384 neg_overflow = false;
6385
6386 if (sign == UNSIGNED)
6387 {
6388 tmp = int_const_binop (MINUS_EXPR, arg01,
6389 build_int_cst (TREE_TYPE (arg01), 1));
6390 lo = prod;
6391
6392 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6393 val = wi::add (prod, tmp, sign, &overflow);
6394 hi = force_fit_type (TREE_TYPE (arg00), val,
6395 -1, overflow | TREE_OVERFLOW (prod));
6396 }
6397 else if (tree_int_cst_sgn (arg01) >= 0)
6398 {
6399 tmp = int_const_binop (MINUS_EXPR, arg01,
6400 build_int_cst (TREE_TYPE (arg01), 1));
6401 switch (tree_int_cst_sgn (arg1))
6402 {
6403 case -1:
6404 neg_overflow = true;
6405 lo = int_const_binop (MINUS_EXPR, prod, tmp);
6406 hi = prod;
6407 break;
6408
6409 case 0:
6410 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6411 hi = tmp;
6412 break;
6413
6414 case 1:
6415 hi = int_const_binop (PLUS_EXPR, prod, tmp);
6416 lo = prod;
6417 break;
6418
6419 default:
6420 gcc_unreachable ();
6421 }
6422 }
6423 else
6424 {
6425 /* A negative divisor reverses the relational operators. */
6426 code = swap_tree_comparison (code);
6427
6428 tmp = int_const_binop (PLUS_EXPR, arg01,
6429 build_int_cst (TREE_TYPE (arg01), 1));
6430 switch (tree_int_cst_sgn (arg1))
6431 {
6432 case -1:
6433 hi = int_const_binop (MINUS_EXPR, prod, tmp);
6434 lo = prod;
6435 break;
6436
6437 case 0:
6438 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6439 lo = tmp;
6440 break;
6441
6442 case 1:
6443 neg_overflow = true;
6444 lo = int_const_binop (PLUS_EXPR, prod, tmp);
6445 hi = prod;
6446 break;
6447
6448 default:
6449 gcc_unreachable ();
6450 }
6451 }
6452
6453 switch (code)
6454 {
6455 case EQ_EXPR:
6456 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6457 return omit_one_operand_loc (loc, type, integer_zero_node, arg00);
6458 if (TREE_OVERFLOW (hi))
6459 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6460 if (TREE_OVERFLOW (lo))
6461 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6462 return build_range_check (loc, type, arg00, 1, lo, hi);
6463
6464 case NE_EXPR:
6465 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6466 return omit_one_operand_loc (loc, type, integer_one_node, arg00);
6467 if (TREE_OVERFLOW (hi))
6468 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6469 if (TREE_OVERFLOW (lo))
6470 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6471 return build_range_check (loc, type, arg00, 0, lo, hi);
6472
6473 case LT_EXPR:
6474 if (TREE_OVERFLOW (lo))
6475 {
6476 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6477 return omit_one_operand_loc (loc, type, tmp, arg00);
6478 }
6479 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6480
6481 case LE_EXPR:
6482 if (TREE_OVERFLOW (hi))
6483 {
6484 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6485 return omit_one_operand_loc (loc, type, tmp, arg00);
6486 }
6487 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6488
6489 case GT_EXPR:
6490 if (TREE_OVERFLOW (hi))
6491 {
6492 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6493 return omit_one_operand_loc (loc, type, tmp, arg00);
6494 }
6495 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6496
6497 case GE_EXPR:
6498 if (TREE_OVERFLOW (lo))
6499 {
6500 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6501 return omit_one_operand_loc (loc, type, tmp, arg00);
6502 }
6503 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6504
6505 default:
6506 break;
6507 }
6508
6509 return NULL_TREE;
6510 }
6511
6512
6513 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6514 equality/inequality test, then return a simplified form of the test
6515 using a sign testing. Otherwise return NULL. TYPE is the desired
6516 result type. */
6517
6518 static tree
6519 fold_single_bit_test_into_sign_test (location_t loc,
6520 enum tree_code code, tree arg0, tree arg1,
6521 tree result_type)
6522 {
6523 /* If this is testing a single bit, we can optimize the test. */
6524 if ((code == NE_EXPR || code == EQ_EXPR)
6525 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6526 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6527 {
6528 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6529 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6530 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6531
6532 if (arg00 != NULL_TREE
6533 /* This is only a win if casting to a signed type is cheap,
6534 i.e. when arg00's type is not a partial mode. */
6535 && TYPE_PRECISION (TREE_TYPE (arg00))
6536 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00))))
6537 {
6538 tree stype = signed_type_for (TREE_TYPE (arg00));
6539 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6540 result_type,
6541 fold_convert_loc (loc, stype, arg00),
6542 build_int_cst (stype, 0));
6543 }
6544 }
6545
6546 return NULL_TREE;
6547 }
6548
6549 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6550 equality/inequality test, then return a simplified form of
6551 the test using shifts and logical operations. Otherwise return
6552 NULL. TYPE is the desired result type. */
6553
6554 tree
6555 fold_single_bit_test (location_t loc, enum tree_code code,
6556 tree arg0, tree arg1, tree result_type)
6557 {
6558 /* If this is testing a single bit, we can optimize the test. */
6559 if ((code == NE_EXPR || code == EQ_EXPR)
6560 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6561 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6562 {
6563 tree inner = TREE_OPERAND (arg0, 0);
6564 tree type = TREE_TYPE (arg0);
6565 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6566 machine_mode operand_mode = TYPE_MODE (type);
6567 int ops_unsigned;
6568 tree signed_type, unsigned_type, intermediate_type;
6569 tree tem, one;
6570
6571 /* First, see if we can fold the single bit test into a sign-bit
6572 test. */
6573 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6574 result_type);
6575 if (tem)
6576 return tem;
6577
6578 /* Otherwise we have (A & C) != 0 where C is a single bit,
6579 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6580 Similarly for (A & C) == 0. */
6581
6582 /* If INNER is a right shift of a constant and it plus BITNUM does
6583 not overflow, adjust BITNUM and INNER. */
6584 if (TREE_CODE (inner) == RSHIFT_EXPR
6585 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6586 && bitnum < TYPE_PRECISION (type)
6587 && wi::ltu_p (TREE_OPERAND (inner, 1),
6588 TYPE_PRECISION (type) - bitnum))
6589 {
6590 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6591 inner = TREE_OPERAND (inner, 0);
6592 }
6593
6594 /* If we are going to be able to omit the AND below, we must do our
6595 operations as unsigned. If we must use the AND, we have a choice.
6596 Normally unsigned is faster, but for some machines signed is. */
6597 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6598 && !flag_syntax_only) ? 0 : 1;
6599
6600 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6601 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6602 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6603 inner = fold_convert_loc (loc, intermediate_type, inner);
6604
6605 if (bitnum != 0)
6606 inner = build2 (RSHIFT_EXPR, intermediate_type,
6607 inner, size_int (bitnum));
6608
6609 one = build_int_cst (intermediate_type, 1);
6610
6611 if (code == EQ_EXPR)
6612 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6613
6614 /* Put the AND last so it can combine with more things. */
6615 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6616
6617 /* Make sure to return the proper type. */
6618 inner = fold_convert_loc (loc, result_type, inner);
6619
6620 return inner;
6621 }
6622 return NULL_TREE;
6623 }
6624
6625 /* Check whether we are allowed to reorder operands arg0 and arg1,
6626 such that the evaluation of arg1 occurs before arg0. */
6627
6628 static bool
6629 reorder_operands_p (const_tree arg0, const_tree arg1)
6630 {
6631 if (! flag_evaluation_order)
6632 return true;
6633 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6634 return true;
6635 return ! TREE_SIDE_EFFECTS (arg0)
6636 && ! TREE_SIDE_EFFECTS (arg1);
6637 }
6638
6639 /* Test whether it is preferable two swap two operands, ARG0 and
6640 ARG1, for example because ARG0 is an integer constant and ARG1
6641 isn't. If REORDER is true, only recommend swapping if we can
6642 evaluate the operands in reverse order. */
6643
6644 bool
6645 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
6646 {
6647 if (CONSTANT_CLASS_P (arg1))
6648 return 0;
6649 if (CONSTANT_CLASS_P (arg0))
6650 return 1;
6651
6652 STRIP_NOPS (arg0);
6653 STRIP_NOPS (arg1);
6654
6655 if (TREE_CONSTANT (arg1))
6656 return 0;
6657 if (TREE_CONSTANT (arg0))
6658 return 1;
6659
6660 if (reorder && flag_evaluation_order
6661 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6662 return 0;
6663
6664 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6665 for commutative and comparison operators. Ensuring a canonical
6666 form allows the optimizers to find additional redundancies without
6667 having to explicitly check for both orderings. */
6668 if (TREE_CODE (arg0) == SSA_NAME
6669 && TREE_CODE (arg1) == SSA_NAME
6670 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6671 return 1;
6672
6673 /* Put SSA_NAMEs last. */
6674 if (TREE_CODE (arg1) == SSA_NAME)
6675 return 0;
6676 if (TREE_CODE (arg0) == SSA_NAME)
6677 return 1;
6678
6679 /* Put variables last. */
6680 if (DECL_P (arg1))
6681 return 0;
6682 if (DECL_P (arg0))
6683 return 1;
6684
6685 return 0;
6686 }
6687
6688 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
6689 ARG0 is extended to a wider type. */
6690
6691 static tree
6692 fold_widened_comparison (location_t loc, enum tree_code code,
6693 tree type, tree arg0, tree arg1)
6694 {
6695 tree arg0_unw = get_unwidened (arg0, NULL_TREE);
6696 tree arg1_unw;
6697 tree shorter_type, outer_type;
6698 tree min, max;
6699 bool above, below;
6700
6701 if (arg0_unw == arg0)
6702 return NULL_TREE;
6703 shorter_type = TREE_TYPE (arg0_unw);
6704
6705 /* Disable this optimization if we're casting a function pointer
6706 type on targets that require function pointer canonicalization. */
6707 if (targetm.have_canonicalize_funcptr_for_compare ()
6708 && TREE_CODE (shorter_type) == POINTER_TYPE
6709 && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
6710 return NULL_TREE;
6711
6712 if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
6713 return NULL_TREE;
6714
6715 arg1_unw = get_unwidened (arg1, NULL_TREE);
6716
6717 /* If possible, express the comparison in the shorter mode. */
6718 if ((code == EQ_EXPR || code == NE_EXPR
6719 || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
6720 && (TREE_TYPE (arg1_unw) == shorter_type
6721 || ((TYPE_PRECISION (shorter_type)
6722 >= TYPE_PRECISION (TREE_TYPE (arg1_unw)))
6723 && (TYPE_UNSIGNED (shorter_type)
6724 == TYPE_UNSIGNED (TREE_TYPE (arg1_unw))))
6725 || (TREE_CODE (arg1_unw) == INTEGER_CST
6726 && (TREE_CODE (shorter_type) == INTEGER_TYPE
6727 || TREE_CODE (shorter_type) == BOOLEAN_TYPE)
6728 && int_fits_type_p (arg1_unw, shorter_type))))
6729 return fold_build2_loc (loc, code, type, arg0_unw,
6730 fold_convert_loc (loc, shorter_type, arg1_unw));
6731
6732 if (TREE_CODE (arg1_unw) != INTEGER_CST
6733 || TREE_CODE (shorter_type) != INTEGER_TYPE
6734 || int_fits_type_p (arg1_unw, shorter_type))
6735 return NULL_TREE;
6736
6737 /* If we are comparing with the integer that does not fit into the range
6738 of the shorter type, the result is known. */
6739 outer_type = TREE_TYPE (arg1_unw);
6740 min = lower_bound_in_type (outer_type, shorter_type);
6741 max = upper_bound_in_type (outer_type, shorter_type);
6742
6743 above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6744 max, arg1_unw));
6745 below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6746 arg1_unw, min));
6747
6748 switch (code)
6749 {
6750 case EQ_EXPR:
6751 if (above || below)
6752 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6753 break;
6754
6755 case NE_EXPR:
6756 if (above || below)
6757 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6758 break;
6759
6760 case LT_EXPR:
6761 case LE_EXPR:
6762 if (above)
6763 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6764 else if (below)
6765 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6766
6767 case GT_EXPR:
6768 case GE_EXPR:
6769 if (above)
6770 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6771 else if (below)
6772 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6773
6774 default:
6775 break;
6776 }
6777
6778 return NULL_TREE;
6779 }
6780
6781 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
6782 ARG0 just the signedness is changed. */
6783
6784 static tree
6785 fold_sign_changed_comparison (location_t loc, enum tree_code code, tree type,
6786 tree arg0, tree arg1)
6787 {
6788 tree arg0_inner;
6789 tree inner_type, outer_type;
6790
6791 if (!CONVERT_EXPR_P (arg0))
6792 return NULL_TREE;
6793
6794 outer_type = TREE_TYPE (arg0);
6795 arg0_inner = TREE_OPERAND (arg0, 0);
6796 inner_type = TREE_TYPE (arg0_inner);
6797
6798 /* Disable this optimization if we're casting a function pointer
6799 type on targets that require function pointer canonicalization. */
6800 if (targetm.have_canonicalize_funcptr_for_compare ()
6801 && TREE_CODE (inner_type) == POINTER_TYPE
6802 && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
6803 return NULL_TREE;
6804
6805 if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
6806 return NULL_TREE;
6807
6808 if (TREE_CODE (arg1) != INTEGER_CST
6809 && !(CONVERT_EXPR_P (arg1)
6810 && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
6811 return NULL_TREE;
6812
6813 if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
6814 && code != NE_EXPR
6815 && code != EQ_EXPR)
6816 return NULL_TREE;
6817
6818 if (POINTER_TYPE_P (inner_type) != POINTER_TYPE_P (outer_type))
6819 return NULL_TREE;
6820
6821 if (TREE_CODE (arg1) == INTEGER_CST)
6822 arg1 = force_fit_type (inner_type, wi::to_widest (arg1), 0,
6823 TREE_OVERFLOW (arg1));
6824 else
6825 arg1 = fold_convert_loc (loc, inner_type, arg1);
6826
6827 return fold_build2_loc (loc, code, type, arg0_inner, arg1);
6828 }
6829
6830
6831 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6832 means A >= Y && A != MAX, but in this case we know that
6833 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6834
6835 static tree
6836 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6837 {
6838 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6839
6840 if (TREE_CODE (bound) == LT_EXPR)
6841 a = TREE_OPERAND (bound, 0);
6842 else if (TREE_CODE (bound) == GT_EXPR)
6843 a = TREE_OPERAND (bound, 1);
6844 else
6845 return NULL_TREE;
6846
6847 typea = TREE_TYPE (a);
6848 if (!INTEGRAL_TYPE_P (typea)
6849 && !POINTER_TYPE_P (typea))
6850 return NULL_TREE;
6851
6852 if (TREE_CODE (ineq) == LT_EXPR)
6853 {
6854 a1 = TREE_OPERAND (ineq, 1);
6855 y = TREE_OPERAND (ineq, 0);
6856 }
6857 else if (TREE_CODE (ineq) == GT_EXPR)
6858 {
6859 a1 = TREE_OPERAND (ineq, 0);
6860 y = TREE_OPERAND (ineq, 1);
6861 }
6862 else
6863 return NULL_TREE;
6864
6865 if (TREE_TYPE (a1) != typea)
6866 return NULL_TREE;
6867
6868 if (POINTER_TYPE_P (typea))
6869 {
6870 /* Convert the pointer types into integer before taking the difference. */
6871 tree ta = fold_convert_loc (loc, ssizetype, a);
6872 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
6873 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
6874 }
6875 else
6876 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
6877
6878 if (!diff || !integer_onep (diff))
6879 return NULL_TREE;
6880
6881 return fold_build2_loc (loc, GE_EXPR, type, a, y);
6882 }
6883
6884 /* Fold a sum or difference of at least one multiplication.
6885 Returns the folded tree or NULL if no simplification could be made. */
6886
6887 static tree
6888 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
6889 tree arg0, tree arg1)
6890 {
6891 tree arg00, arg01, arg10, arg11;
6892 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6893
6894 /* (A * C) +- (B * C) -> (A+-B) * C.
6895 (A * C) +- A -> A * (C+-1).
6896 We are most concerned about the case where C is a constant,
6897 but other combinations show up during loop reduction. Since
6898 it is not difficult, try all four possibilities. */
6899
6900 if (TREE_CODE (arg0) == MULT_EXPR)
6901 {
6902 arg00 = TREE_OPERAND (arg0, 0);
6903 arg01 = TREE_OPERAND (arg0, 1);
6904 }
6905 else if (TREE_CODE (arg0) == INTEGER_CST)
6906 {
6907 arg00 = build_one_cst (type);
6908 arg01 = arg0;
6909 }
6910 else
6911 {
6912 /* We cannot generate constant 1 for fract. */
6913 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6914 return NULL_TREE;
6915 arg00 = arg0;
6916 arg01 = build_one_cst (type);
6917 }
6918 if (TREE_CODE (arg1) == MULT_EXPR)
6919 {
6920 arg10 = TREE_OPERAND (arg1, 0);
6921 arg11 = TREE_OPERAND (arg1, 1);
6922 }
6923 else if (TREE_CODE (arg1) == INTEGER_CST)
6924 {
6925 arg10 = build_one_cst (type);
6926 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6927 the purpose of this canonicalization. */
6928 if (wi::neg_p (arg1, TYPE_SIGN (TREE_TYPE (arg1)))
6929 && negate_expr_p (arg1)
6930 && code == PLUS_EXPR)
6931 {
6932 arg11 = negate_expr (arg1);
6933 code = MINUS_EXPR;
6934 }
6935 else
6936 arg11 = arg1;
6937 }
6938 else
6939 {
6940 /* We cannot generate constant 1 for fract. */
6941 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6942 return NULL_TREE;
6943 arg10 = arg1;
6944 arg11 = build_one_cst (type);
6945 }
6946 same = NULL_TREE;
6947
6948 if (operand_equal_p (arg01, arg11, 0))
6949 same = arg01, alt0 = arg00, alt1 = arg10;
6950 else if (operand_equal_p (arg00, arg10, 0))
6951 same = arg00, alt0 = arg01, alt1 = arg11;
6952 else if (operand_equal_p (arg00, arg11, 0))
6953 same = arg00, alt0 = arg01, alt1 = arg10;
6954 else if (operand_equal_p (arg01, arg10, 0))
6955 same = arg01, alt0 = arg00, alt1 = arg11;
6956
6957 /* No identical multiplicands; see if we can find a common
6958 power-of-two factor in non-power-of-two multiplies. This
6959 can help in multi-dimensional array access. */
6960 else if (tree_fits_shwi_p (arg01)
6961 && tree_fits_shwi_p (arg11))
6962 {
6963 HOST_WIDE_INT int01, int11, tmp;
6964 bool swap = false;
6965 tree maybe_same;
6966 int01 = tree_to_shwi (arg01);
6967 int11 = tree_to_shwi (arg11);
6968
6969 /* Move min of absolute values to int11. */
6970 if (absu_hwi (int01) < absu_hwi (int11))
6971 {
6972 tmp = int01, int01 = int11, int11 = tmp;
6973 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6974 maybe_same = arg01;
6975 swap = true;
6976 }
6977 else
6978 maybe_same = arg11;
6979
6980 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
6981 /* The remainder should not be a constant, otherwise we
6982 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
6983 increased the number of multiplications necessary. */
6984 && TREE_CODE (arg10) != INTEGER_CST)
6985 {
6986 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
6987 build_int_cst (TREE_TYPE (arg00),
6988 int01 / int11));
6989 alt1 = arg10;
6990 same = maybe_same;
6991 if (swap)
6992 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
6993 }
6994 }
6995
6996 if (same)
6997 return fold_build2_loc (loc, MULT_EXPR, type,
6998 fold_build2_loc (loc, code, type,
6999 fold_convert_loc (loc, type, alt0),
7000 fold_convert_loc (loc, type, alt1)),
7001 fold_convert_loc (loc, type, same));
7002
7003 return NULL_TREE;
7004 }
7005
7006 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7007 specified by EXPR into the buffer PTR of length LEN bytes.
7008 Return the number of bytes placed in the buffer, or zero
7009 upon failure. */
7010
7011 static int
7012 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
7013 {
7014 tree type = TREE_TYPE (expr);
7015 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7016 int byte, offset, word, words;
7017 unsigned char value;
7018
7019 if ((off == -1 && total_bytes > len)
7020 || off >= total_bytes)
7021 return 0;
7022 if (off == -1)
7023 off = 0;
7024 words = total_bytes / UNITS_PER_WORD;
7025
7026 for (byte = 0; byte < total_bytes; byte++)
7027 {
7028 int bitpos = byte * BITS_PER_UNIT;
7029 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7030 number of bytes. */
7031 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
7032
7033 if (total_bytes > UNITS_PER_WORD)
7034 {
7035 word = byte / UNITS_PER_WORD;
7036 if (WORDS_BIG_ENDIAN)
7037 word = (words - 1) - word;
7038 offset = word * UNITS_PER_WORD;
7039 if (BYTES_BIG_ENDIAN)
7040 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7041 else
7042 offset += byte % UNITS_PER_WORD;
7043 }
7044 else
7045 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7046 if (offset >= off
7047 && offset - off < len)
7048 ptr[offset - off] = value;
7049 }
7050 return MIN (len, total_bytes - off);
7051 }
7052
7053
7054 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7055 specified by EXPR into the buffer PTR of length LEN bytes.
7056 Return the number of bytes placed in the buffer, or zero
7057 upon failure. */
7058
7059 static int
7060 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7061 {
7062 tree type = TREE_TYPE (expr);
7063 machine_mode mode = TYPE_MODE (type);
7064 int total_bytes = GET_MODE_SIZE (mode);
7065 FIXED_VALUE_TYPE value;
7066 tree i_value, i_type;
7067
7068 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7069 return 0;
7070
7071 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7072
7073 if (NULL_TREE == i_type
7074 || TYPE_PRECISION (i_type) != total_bytes)
7075 return 0;
7076
7077 value = TREE_FIXED_CST (expr);
7078 i_value = double_int_to_tree (i_type, value.data);
7079
7080 return native_encode_int (i_value, ptr, len, off);
7081 }
7082
7083
7084 /* Subroutine of native_encode_expr. Encode the REAL_CST
7085 specified by EXPR into the buffer PTR of length LEN bytes.
7086 Return the number of bytes placed in the buffer, or zero
7087 upon failure. */
7088
7089 static int
7090 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7091 {
7092 tree type = TREE_TYPE (expr);
7093 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7094 int byte, offset, word, words, bitpos;
7095 unsigned char value;
7096
7097 /* There are always 32 bits in each long, no matter the size of
7098 the hosts long. We handle floating point representations with
7099 up to 192 bits. */
7100 long tmp[6];
7101
7102 if ((off == -1 && total_bytes > len)
7103 || off >= total_bytes)
7104 return 0;
7105 if (off == -1)
7106 off = 0;
7107 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7108
7109 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7110
7111 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7112 bitpos += BITS_PER_UNIT)
7113 {
7114 byte = (bitpos / BITS_PER_UNIT) & 3;
7115 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7116
7117 if (UNITS_PER_WORD < 4)
7118 {
7119 word = byte / UNITS_PER_WORD;
7120 if (WORDS_BIG_ENDIAN)
7121 word = (words - 1) - word;
7122 offset = word * UNITS_PER_WORD;
7123 if (BYTES_BIG_ENDIAN)
7124 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7125 else
7126 offset += byte % UNITS_PER_WORD;
7127 }
7128 else
7129 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7130 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7131 if (offset >= off
7132 && offset - off < len)
7133 ptr[offset - off] = value;
7134 }
7135 return MIN (len, total_bytes - off);
7136 }
7137
7138 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7139 specified by EXPR into the buffer PTR of length LEN bytes.
7140 Return the number of bytes placed in the buffer, or zero
7141 upon failure. */
7142
7143 static int
7144 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7145 {
7146 int rsize, isize;
7147 tree part;
7148
7149 part = TREE_REALPART (expr);
7150 rsize = native_encode_expr (part, ptr, len, off);
7151 if (off == -1
7152 && rsize == 0)
7153 return 0;
7154 part = TREE_IMAGPART (expr);
7155 if (off != -1)
7156 off = MAX (0, off - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part))));
7157 isize = native_encode_expr (part, ptr+rsize, len-rsize, off);
7158 if (off == -1
7159 && isize != rsize)
7160 return 0;
7161 return rsize + isize;
7162 }
7163
7164
7165 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7166 specified by EXPR into the buffer PTR of length LEN bytes.
7167 Return the number of bytes placed in the buffer, or zero
7168 upon failure. */
7169
7170 static int
7171 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7172 {
7173 unsigned i, count;
7174 int size, offset;
7175 tree itype, elem;
7176
7177 offset = 0;
7178 count = VECTOR_CST_NELTS (expr);
7179 itype = TREE_TYPE (TREE_TYPE (expr));
7180 size = GET_MODE_SIZE (TYPE_MODE (itype));
7181 for (i = 0; i < count; i++)
7182 {
7183 if (off >= size)
7184 {
7185 off -= size;
7186 continue;
7187 }
7188 elem = VECTOR_CST_ELT (expr, i);
7189 int res = native_encode_expr (elem, ptr+offset, len-offset, off);
7190 if ((off == -1 && res != size)
7191 || res == 0)
7192 return 0;
7193 offset += res;
7194 if (offset >= len)
7195 return offset;
7196 if (off != -1)
7197 off = 0;
7198 }
7199 return offset;
7200 }
7201
7202
7203 /* Subroutine of native_encode_expr. Encode the STRING_CST
7204 specified by EXPR into the buffer PTR of length LEN bytes.
7205 Return the number of bytes placed in the buffer, or zero
7206 upon failure. */
7207
7208 static int
7209 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7210 {
7211 tree type = TREE_TYPE (expr);
7212 HOST_WIDE_INT total_bytes;
7213
7214 if (TREE_CODE (type) != ARRAY_TYPE
7215 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7216 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7217 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7218 return 0;
7219 total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (type));
7220 if ((off == -1 && total_bytes > len)
7221 || off >= total_bytes)
7222 return 0;
7223 if (off == -1)
7224 off = 0;
7225 if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7226 {
7227 int written = 0;
7228 if (off < TREE_STRING_LENGTH (expr))
7229 {
7230 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7231 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7232 }
7233 memset (ptr + written, 0,
7234 MIN (total_bytes - written, len - written));
7235 }
7236 else
7237 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7238 return MIN (total_bytes - off, len);
7239 }
7240
7241
7242 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7243 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7244 buffer PTR of length LEN bytes. If OFF is not -1 then start
7245 the encoding at byte offset OFF and encode at most LEN bytes.
7246 Return the number of bytes placed in the buffer, or zero upon failure. */
7247
7248 int
7249 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7250 {
7251 switch (TREE_CODE (expr))
7252 {
7253 case INTEGER_CST:
7254 return native_encode_int (expr, ptr, len, off);
7255
7256 case REAL_CST:
7257 return native_encode_real (expr, ptr, len, off);
7258
7259 case FIXED_CST:
7260 return native_encode_fixed (expr, ptr, len, off);
7261
7262 case COMPLEX_CST:
7263 return native_encode_complex (expr, ptr, len, off);
7264
7265 case VECTOR_CST:
7266 return native_encode_vector (expr, ptr, len, off);
7267
7268 case STRING_CST:
7269 return native_encode_string (expr, ptr, len, off);
7270
7271 default:
7272 return 0;
7273 }
7274 }
7275
7276
7277 /* Subroutine of native_interpret_expr. Interpret the contents of
7278 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7279 If the buffer cannot be interpreted, return NULL_TREE. */
7280
7281 static tree
7282 native_interpret_int (tree type, const unsigned char *ptr, int len)
7283 {
7284 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7285
7286 if (total_bytes > len
7287 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7288 return NULL_TREE;
7289
7290 wide_int result = wi::from_buffer (ptr, total_bytes);
7291
7292 return wide_int_to_tree (type, result);
7293 }
7294
7295
7296 /* Subroutine of native_interpret_expr. Interpret the contents of
7297 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7298 If the buffer cannot be interpreted, return NULL_TREE. */
7299
7300 static tree
7301 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7302 {
7303 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7304 double_int result;
7305 FIXED_VALUE_TYPE fixed_value;
7306
7307 if (total_bytes > len
7308 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7309 return NULL_TREE;
7310
7311 result = double_int::from_buffer (ptr, total_bytes);
7312 fixed_value = fixed_from_double_int (result, TYPE_MODE (type));
7313
7314 return build_fixed (type, fixed_value);
7315 }
7316
7317
7318 /* Subroutine of native_interpret_expr. Interpret the contents of
7319 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7320 If the buffer cannot be interpreted, return NULL_TREE. */
7321
7322 static tree
7323 native_interpret_real (tree type, const unsigned char *ptr, int len)
7324 {
7325 machine_mode mode = TYPE_MODE (type);
7326 int total_bytes = GET_MODE_SIZE (mode);
7327 int byte, offset, word, words, bitpos;
7328 unsigned char value;
7329 /* There are always 32 bits in each long, no matter the size of
7330 the hosts long. We handle floating point representations with
7331 up to 192 bits. */
7332 REAL_VALUE_TYPE r;
7333 long tmp[6];
7334
7335 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7336 if (total_bytes > len || total_bytes > 24)
7337 return NULL_TREE;
7338 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7339
7340 memset (tmp, 0, sizeof (tmp));
7341 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7342 bitpos += BITS_PER_UNIT)
7343 {
7344 byte = (bitpos / BITS_PER_UNIT) & 3;
7345 if (UNITS_PER_WORD < 4)
7346 {
7347 word = byte / UNITS_PER_WORD;
7348 if (WORDS_BIG_ENDIAN)
7349 word = (words - 1) - word;
7350 offset = word * UNITS_PER_WORD;
7351 if (BYTES_BIG_ENDIAN)
7352 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7353 else
7354 offset += byte % UNITS_PER_WORD;
7355 }
7356 else
7357 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7358 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7359
7360 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7361 }
7362
7363 real_from_target (&r, tmp, mode);
7364 return build_real (type, r);
7365 }
7366
7367
7368 /* Subroutine of native_interpret_expr. Interpret the contents of
7369 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7370 If the buffer cannot be interpreted, return NULL_TREE. */
7371
7372 static tree
7373 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7374 {
7375 tree etype, rpart, ipart;
7376 int size;
7377
7378 etype = TREE_TYPE (type);
7379 size = GET_MODE_SIZE (TYPE_MODE (etype));
7380 if (size * 2 > len)
7381 return NULL_TREE;
7382 rpart = native_interpret_expr (etype, ptr, size);
7383 if (!rpart)
7384 return NULL_TREE;
7385 ipart = native_interpret_expr (etype, ptr+size, size);
7386 if (!ipart)
7387 return NULL_TREE;
7388 return build_complex (type, rpart, ipart);
7389 }
7390
7391
7392 /* Subroutine of native_interpret_expr. Interpret the contents of
7393 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7394 If the buffer cannot be interpreted, return NULL_TREE. */
7395
7396 static tree
7397 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7398 {
7399 tree etype, elem;
7400 int i, size, count;
7401 tree *elements;
7402
7403 etype = TREE_TYPE (type);
7404 size = GET_MODE_SIZE (TYPE_MODE (etype));
7405 count = TYPE_VECTOR_SUBPARTS (type);
7406 if (size * count > len)
7407 return NULL_TREE;
7408
7409 elements = XALLOCAVEC (tree, count);
7410 for (i = count - 1; i >= 0; i--)
7411 {
7412 elem = native_interpret_expr (etype, ptr+(i*size), size);
7413 if (!elem)
7414 return NULL_TREE;
7415 elements[i] = elem;
7416 }
7417 return build_vector (type, elements);
7418 }
7419
7420
7421 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7422 the buffer PTR of length LEN as a constant of type TYPE. For
7423 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7424 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7425 return NULL_TREE. */
7426
7427 tree
7428 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7429 {
7430 switch (TREE_CODE (type))
7431 {
7432 case INTEGER_TYPE:
7433 case ENUMERAL_TYPE:
7434 case BOOLEAN_TYPE:
7435 case POINTER_TYPE:
7436 case REFERENCE_TYPE:
7437 return native_interpret_int (type, ptr, len);
7438
7439 case REAL_TYPE:
7440 return native_interpret_real (type, ptr, len);
7441
7442 case FIXED_POINT_TYPE:
7443 return native_interpret_fixed (type, ptr, len);
7444
7445 case COMPLEX_TYPE:
7446 return native_interpret_complex (type, ptr, len);
7447
7448 case VECTOR_TYPE:
7449 return native_interpret_vector (type, ptr, len);
7450
7451 default:
7452 return NULL_TREE;
7453 }
7454 }
7455
7456 /* Returns true if we can interpret the contents of a native encoding
7457 as TYPE. */
7458
7459 static bool
7460 can_native_interpret_type_p (tree type)
7461 {
7462 switch (TREE_CODE (type))
7463 {
7464 case INTEGER_TYPE:
7465 case ENUMERAL_TYPE:
7466 case BOOLEAN_TYPE:
7467 case POINTER_TYPE:
7468 case REFERENCE_TYPE:
7469 case FIXED_POINT_TYPE:
7470 case REAL_TYPE:
7471 case COMPLEX_TYPE:
7472 case VECTOR_TYPE:
7473 return true;
7474 default:
7475 return false;
7476 }
7477 }
7478
7479 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7480 TYPE at compile-time. If we're unable to perform the conversion
7481 return NULL_TREE. */
7482
7483 static tree
7484 fold_view_convert_expr (tree type, tree expr)
7485 {
7486 /* We support up to 512-bit values (for V8DFmode). */
7487 unsigned char buffer[64];
7488 int len;
7489
7490 /* Check that the host and target are sane. */
7491 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7492 return NULL_TREE;
7493
7494 len = native_encode_expr (expr, buffer, sizeof (buffer));
7495 if (len == 0)
7496 return NULL_TREE;
7497
7498 return native_interpret_expr (type, buffer, len);
7499 }
7500
7501 /* Build an expression for the address of T. Folds away INDIRECT_REF
7502 to avoid confusing the gimplify process. */
7503
7504 tree
7505 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7506 {
7507 /* The size of the object is not relevant when talking about its address. */
7508 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7509 t = TREE_OPERAND (t, 0);
7510
7511 if (TREE_CODE (t) == INDIRECT_REF)
7512 {
7513 t = TREE_OPERAND (t, 0);
7514
7515 if (TREE_TYPE (t) != ptrtype)
7516 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7517 }
7518 else if (TREE_CODE (t) == MEM_REF
7519 && integer_zerop (TREE_OPERAND (t, 1)))
7520 return TREE_OPERAND (t, 0);
7521 else if (TREE_CODE (t) == MEM_REF
7522 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7523 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7524 TREE_OPERAND (t, 0),
7525 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7526 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7527 {
7528 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7529
7530 if (TREE_TYPE (t) != ptrtype)
7531 t = fold_convert_loc (loc, ptrtype, t);
7532 }
7533 else
7534 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7535
7536 return t;
7537 }
7538
7539 /* Build an expression for the address of T. */
7540
7541 tree
7542 build_fold_addr_expr_loc (location_t loc, tree t)
7543 {
7544 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7545
7546 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7547 }
7548
7549 /* Fold a unary expression of code CODE and type TYPE with operand
7550 OP0. Return the folded expression if folding is successful.
7551 Otherwise, return NULL_TREE. */
7552
7553 tree
7554 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7555 {
7556 tree tem;
7557 tree arg0;
7558 enum tree_code_class kind = TREE_CODE_CLASS (code);
7559
7560 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7561 && TREE_CODE_LENGTH (code) == 1);
7562
7563 arg0 = op0;
7564 if (arg0)
7565 {
7566 if (CONVERT_EXPR_CODE_P (code)
7567 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7568 {
7569 /* Don't use STRIP_NOPS, because signedness of argument type
7570 matters. */
7571 STRIP_SIGN_NOPS (arg0);
7572 }
7573 else
7574 {
7575 /* Strip any conversions that don't change the mode. This
7576 is safe for every expression, except for a comparison
7577 expression because its signedness is derived from its
7578 operands.
7579
7580 Note that this is done as an internal manipulation within
7581 the constant folder, in order to find the simplest
7582 representation of the arguments so that their form can be
7583 studied. In any cases, the appropriate type conversions
7584 should be put back in the tree that will get out of the
7585 constant folder. */
7586 STRIP_NOPS (arg0);
7587 }
7588
7589 if (CONSTANT_CLASS_P (arg0))
7590 {
7591 tree tem = const_unop (code, type, arg0);
7592 if (tem)
7593 {
7594 if (TREE_TYPE (tem) != type)
7595 tem = fold_convert_loc (loc, type, tem);
7596 return tem;
7597 }
7598 }
7599 }
7600
7601 tem = generic_simplify (loc, code, type, op0);
7602 if (tem)
7603 return tem;
7604
7605 if (TREE_CODE_CLASS (code) == tcc_unary)
7606 {
7607 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7608 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7609 fold_build1_loc (loc, code, type,
7610 fold_convert_loc (loc, TREE_TYPE (op0),
7611 TREE_OPERAND (arg0, 1))));
7612 else if (TREE_CODE (arg0) == COND_EXPR)
7613 {
7614 tree arg01 = TREE_OPERAND (arg0, 1);
7615 tree arg02 = TREE_OPERAND (arg0, 2);
7616 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7617 arg01 = fold_build1_loc (loc, code, type,
7618 fold_convert_loc (loc,
7619 TREE_TYPE (op0), arg01));
7620 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7621 arg02 = fold_build1_loc (loc, code, type,
7622 fold_convert_loc (loc,
7623 TREE_TYPE (op0), arg02));
7624 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7625 arg01, arg02);
7626
7627 /* If this was a conversion, and all we did was to move into
7628 inside the COND_EXPR, bring it back out. But leave it if
7629 it is a conversion from integer to integer and the
7630 result precision is no wider than a word since such a
7631 conversion is cheap and may be optimized away by combine,
7632 while it couldn't if it were outside the COND_EXPR. Then return
7633 so we don't get into an infinite recursion loop taking the
7634 conversion out and then back in. */
7635
7636 if ((CONVERT_EXPR_CODE_P (code)
7637 || code == NON_LVALUE_EXPR)
7638 && TREE_CODE (tem) == COND_EXPR
7639 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7640 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7641 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7642 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7643 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7644 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7645 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7646 && (INTEGRAL_TYPE_P
7647 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7648 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7649 || flag_syntax_only))
7650 tem = build1_loc (loc, code, type,
7651 build3 (COND_EXPR,
7652 TREE_TYPE (TREE_OPERAND
7653 (TREE_OPERAND (tem, 1), 0)),
7654 TREE_OPERAND (tem, 0),
7655 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7656 TREE_OPERAND (TREE_OPERAND (tem, 2),
7657 0)));
7658 return tem;
7659 }
7660 }
7661
7662 switch (code)
7663 {
7664 case NON_LVALUE_EXPR:
7665 if (!maybe_lvalue_p (op0))
7666 return fold_convert_loc (loc, type, op0);
7667 return NULL_TREE;
7668
7669 CASE_CONVERT:
7670 case FLOAT_EXPR:
7671 case FIX_TRUNC_EXPR:
7672 if (COMPARISON_CLASS_P (op0))
7673 {
7674 /* If we have (type) (a CMP b) and type is an integral type, return
7675 new expression involving the new type. Canonicalize
7676 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7677 non-integral type.
7678 Do not fold the result as that would not simplify further, also
7679 folding again results in recursions. */
7680 if (TREE_CODE (type) == BOOLEAN_TYPE)
7681 return build2_loc (loc, TREE_CODE (op0), type,
7682 TREE_OPERAND (op0, 0),
7683 TREE_OPERAND (op0, 1));
7684 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7685 && TREE_CODE (type) != VECTOR_TYPE)
7686 return build3_loc (loc, COND_EXPR, type, op0,
7687 constant_boolean_node (true, type),
7688 constant_boolean_node (false, type));
7689 }
7690
7691 /* Handle (T *)&A.B.C for A being of type T and B and C
7692 living at offset zero. This occurs frequently in
7693 C++ upcasting and then accessing the base. */
7694 if (TREE_CODE (op0) == ADDR_EXPR
7695 && POINTER_TYPE_P (type)
7696 && handled_component_p (TREE_OPERAND (op0, 0)))
7697 {
7698 HOST_WIDE_INT bitsize, bitpos;
7699 tree offset;
7700 machine_mode mode;
7701 int unsignedp, volatilep;
7702 tree base = TREE_OPERAND (op0, 0);
7703 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
7704 &mode, &unsignedp, &volatilep, false);
7705 /* If the reference was to a (constant) zero offset, we can use
7706 the address of the base if it has the same base type
7707 as the result type and the pointer type is unqualified. */
7708 if (! offset && bitpos == 0
7709 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7710 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7711 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7712 return fold_convert_loc (loc, type,
7713 build_fold_addr_expr_loc (loc, base));
7714 }
7715
7716 if (TREE_CODE (op0) == MODIFY_EXPR
7717 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7718 /* Detect assigning a bitfield. */
7719 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7720 && DECL_BIT_FIELD
7721 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7722 {
7723 /* Don't leave an assignment inside a conversion
7724 unless assigning a bitfield. */
7725 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7726 /* First do the assignment, then return converted constant. */
7727 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7728 TREE_NO_WARNING (tem) = 1;
7729 TREE_USED (tem) = 1;
7730 return tem;
7731 }
7732
7733 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7734 constants (if x has signed type, the sign bit cannot be set
7735 in c). This folds extension into the BIT_AND_EXPR.
7736 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7737 very likely don't have maximal range for their precision and this
7738 transformation effectively doesn't preserve non-maximal ranges. */
7739 if (TREE_CODE (type) == INTEGER_TYPE
7740 && TREE_CODE (op0) == BIT_AND_EXPR
7741 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7742 {
7743 tree and_expr = op0;
7744 tree and0 = TREE_OPERAND (and_expr, 0);
7745 tree and1 = TREE_OPERAND (and_expr, 1);
7746 int change = 0;
7747
7748 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7749 || (TYPE_PRECISION (type)
7750 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7751 change = 1;
7752 else if (TYPE_PRECISION (TREE_TYPE (and1))
7753 <= HOST_BITS_PER_WIDE_INT
7754 && tree_fits_uhwi_p (and1))
7755 {
7756 unsigned HOST_WIDE_INT cst;
7757
7758 cst = tree_to_uhwi (and1);
7759 cst &= HOST_WIDE_INT_M1U
7760 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7761 change = (cst == 0);
7762 if (change
7763 && !flag_syntax_only
7764 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
7765 == ZERO_EXTEND))
7766 {
7767 tree uns = unsigned_type_for (TREE_TYPE (and0));
7768 and0 = fold_convert_loc (loc, uns, and0);
7769 and1 = fold_convert_loc (loc, uns, and1);
7770 }
7771 }
7772 if (change)
7773 {
7774 tem = force_fit_type (type, wi::to_widest (and1), 0,
7775 TREE_OVERFLOW (and1));
7776 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7777 fold_convert_loc (loc, type, and0), tem);
7778 }
7779 }
7780
7781 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
7782 when one of the new casts will fold away. Conservatively we assume
7783 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
7784 if (POINTER_TYPE_P (type)
7785 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7786 && (!TYPE_RESTRICT (type) || TYPE_RESTRICT (TREE_TYPE (arg0)))
7787 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7788 || TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
7789 || TREE_CODE (TREE_OPERAND (arg0, 1)) == NOP_EXPR))
7790 {
7791 tree arg00 = TREE_OPERAND (arg0, 0);
7792 tree arg01 = TREE_OPERAND (arg0, 1);
7793
7794 return fold_build_pointer_plus_loc
7795 (loc, fold_convert_loc (loc, type, arg00), arg01);
7796 }
7797
7798 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7799 of the same precision, and X is an integer type not narrower than
7800 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7801 if (INTEGRAL_TYPE_P (type)
7802 && TREE_CODE (op0) == BIT_NOT_EXPR
7803 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7804 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7805 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7806 {
7807 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7808 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7809 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7810 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7811 fold_convert_loc (loc, type, tem));
7812 }
7813
7814 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7815 type of X and Y (integer types only). */
7816 if (INTEGRAL_TYPE_P (type)
7817 && TREE_CODE (op0) == MULT_EXPR
7818 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7819 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
7820 {
7821 /* Be careful not to introduce new overflows. */
7822 tree mult_type;
7823 if (TYPE_OVERFLOW_WRAPS (type))
7824 mult_type = type;
7825 else
7826 mult_type = unsigned_type_for (type);
7827
7828 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
7829 {
7830 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
7831 fold_convert_loc (loc, mult_type,
7832 TREE_OPERAND (op0, 0)),
7833 fold_convert_loc (loc, mult_type,
7834 TREE_OPERAND (op0, 1)));
7835 return fold_convert_loc (loc, type, tem);
7836 }
7837 }
7838
7839 return NULL_TREE;
7840
7841 case VIEW_CONVERT_EXPR:
7842 if (TREE_CODE (op0) == MEM_REF)
7843 return fold_build2_loc (loc, MEM_REF, type,
7844 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
7845
7846 return NULL_TREE;
7847
7848 case NEGATE_EXPR:
7849 tem = fold_negate_expr (loc, arg0);
7850 if (tem)
7851 return fold_convert_loc (loc, type, tem);
7852 return NULL_TREE;
7853
7854 case ABS_EXPR:
7855 /* Convert fabs((double)float) into (double)fabsf(float). */
7856 if (TREE_CODE (arg0) == NOP_EXPR
7857 && TREE_CODE (type) == REAL_TYPE)
7858 {
7859 tree targ0 = strip_float_extensions (arg0);
7860 if (targ0 != arg0)
7861 return fold_convert_loc (loc, type,
7862 fold_build1_loc (loc, ABS_EXPR,
7863 TREE_TYPE (targ0),
7864 targ0));
7865 }
7866
7867 /* Strip sign ops from argument. */
7868 if (TREE_CODE (type) == REAL_TYPE)
7869 {
7870 tem = fold_strip_sign_ops (arg0);
7871 if (tem)
7872 return fold_build1_loc (loc, ABS_EXPR, type,
7873 fold_convert_loc (loc, type, tem));
7874 }
7875 return NULL_TREE;
7876
7877 case CONJ_EXPR:
7878 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7879 return fold_convert_loc (loc, type, arg0);
7880 if (TREE_CODE (arg0) == COMPLEX_EXPR)
7881 {
7882 tree itype = TREE_TYPE (type);
7883 tree rpart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 0));
7884 tree ipart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 1));
7885 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart,
7886 negate_expr (ipart));
7887 }
7888 if (TREE_CODE (arg0) == CONJ_EXPR)
7889 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
7890 return NULL_TREE;
7891
7892 case BIT_NOT_EXPR:
7893 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7894 if (TREE_CODE (arg0) == BIT_XOR_EXPR
7895 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7896 fold_convert_loc (loc, type,
7897 TREE_OPERAND (arg0, 0)))))
7898 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
7899 fold_convert_loc (loc, type,
7900 TREE_OPERAND (arg0, 1)));
7901 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7902 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7903 fold_convert_loc (loc, type,
7904 TREE_OPERAND (arg0, 1)))))
7905 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
7906 fold_convert_loc (loc, type,
7907 TREE_OPERAND (arg0, 0)), tem);
7908
7909 return NULL_TREE;
7910
7911 case TRUTH_NOT_EXPR:
7912 /* Note that the operand of this must be an int
7913 and its values must be 0 or 1.
7914 ("true" is a fixed value perhaps depending on the language,
7915 but we don't handle values other than 1 correctly yet.) */
7916 tem = fold_truth_not_expr (loc, arg0);
7917 if (!tem)
7918 return NULL_TREE;
7919 return fold_convert_loc (loc, type, tem);
7920
7921 case REALPART_EXPR:
7922 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7923 return fold_convert_loc (loc, type, arg0);
7924 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7925 {
7926 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7927 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
7928 fold_build1_loc (loc, REALPART_EXPR, itype,
7929 TREE_OPERAND (arg0, 0)),
7930 fold_build1_loc (loc, REALPART_EXPR, itype,
7931 TREE_OPERAND (arg0, 1)));
7932 return fold_convert_loc (loc, type, tem);
7933 }
7934 if (TREE_CODE (arg0) == CONJ_EXPR)
7935 {
7936 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7937 tem = fold_build1_loc (loc, REALPART_EXPR, itype,
7938 TREE_OPERAND (arg0, 0));
7939 return fold_convert_loc (loc, type, tem);
7940 }
7941 if (TREE_CODE (arg0) == CALL_EXPR)
7942 {
7943 tree fn = get_callee_fndecl (arg0);
7944 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
7945 switch (DECL_FUNCTION_CODE (fn))
7946 {
7947 CASE_FLT_FN (BUILT_IN_CEXPI):
7948 fn = mathfn_built_in (type, BUILT_IN_COS);
7949 if (fn)
7950 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
7951 break;
7952
7953 default:
7954 break;
7955 }
7956 }
7957 return NULL_TREE;
7958
7959 case IMAGPART_EXPR:
7960 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7961 return build_zero_cst (type);
7962 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7963 {
7964 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7965 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
7966 fold_build1_loc (loc, IMAGPART_EXPR, itype,
7967 TREE_OPERAND (arg0, 0)),
7968 fold_build1_loc (loc, IMAGPART_EXPR, itype,
7969 TREE_OPERAND (arg0, 1)));
7970 return fold_convert_loc (loc, type, tem);
7971 }
7972 if (TREE_CODE (arg0) == CONJ_EXPR)
7973 {
7974 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7975 tem = fold_build1_loc (loc, IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
7976 return fold_convert_loc (loc, type, negate_expr (tem));
7977 }
7978 if (TREE_CODE (arg0) == CALL_EXPR)
7979 {
7980 tree fn = get_callee_fndecl (arg0);
7981 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
7982 switch (DECL_FUNCTION_CODE (fn))
7983 {
7984 CASE_FLT_FN (BUILT_IN_CEXPI):
7985 fn = mathfn_built_in (type, BUILT_IN_SIN);
7986 if (fn)
7987 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
7988 break;
7989
7990 default:
7991 break;
7992 }
7993 }
7994 return NULL_TREE;
7995
7996 case INDIRECT_REF:
7997 /* Fold *&X to X if X is an lvalue. */
7998 if (TREE_CODE (op0) == ADDR_EXPR)
7999 {
8000 tree op00 = TREE_OPERAND (op0, 0);
8001 if ((TREE_CODE (op00) == VAR_DECL
8002 || TREE_CODE (op00) == PARM_DECL
8003 || TREE_CODE (op00) == RESULT_DECL)
8004 && !TREE_READONLY (op00))
8005 return op00;
8006 }
8007 return NULL_TREE;
8008
8009 default:
8010 return NULL_TREE;
8011 } /* switch (code) */
8012 }
8013
8014
8015 /* If the operation was a conversion do _not_ mark a resulting constant
8016 with TREE_OVERFLOW if the original constant was not. These conversions
8017 have implementation defined behavior and retaining the TREE_OVERFLOW
8018 flag here would confuse later passes such as VRP. */
8019 tree
8020 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
8021 tree type, tree op0)
8022 {
8023 tree res = fold_unary_loc (loc, code, type, op0);
8024 if (res
8025 && TREE_CODE (res) == INTEGER_CST
8026 && TREE_CODE (op0) == INTEGER_CST
8027 && CONVERT_EXPR_CODE_P (code))
8028 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
8029
8030 return res;
8031 }
8032
8033 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8034 operands OP0 and OP1. LOC is the location of the resulting expression.
8035 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8036 Return the folded expression if folding is successful. Otherwise,
8037 return NULL_TREE. */
8038 static tree
8039 fold_truth_andor (location_t loc, enum tree_code code, tree type,
8040 tree arg0, tree arg1, tree op0, tree op1)
8041 {
8042 tree tem;
8043
8044 /* We only do these simplifications if we are optimizing. */
8045 if (!optimize)
8046 return NULL_TREE;
8047
8048 /* Check for things like (A || B) && (A || C). We can convert this
8049 to A || (B && C). Note that either operator can be any of the four
8050 truth and/or operations and the transformation will still be
8051 valid. Also note that we only care about order for the
8052 ANDIF and ORIF operators. If B contains side effects, this
8053 might change the truth-value of A. */
8054 if (TREE_CODE (arg0) == TREE_CODE (arg1)
8055 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
8056 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
8057 || TREE_CODE (arg0) == TRUTH_AND_EXPR
8058 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
8059 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
8060 {
8061 tree a00 = TREE_OPERAND (arg0, 0);
8062 tree a01 = TREE_OPERAND (arg0, 1);
8063 tree a10 = TREE_OPERAND (arg1, 0);
8064 tree a11 = TREE_OPERAND (arg1, 1);
8065 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
8066 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
8067 && (code == TRUTH_AND_EXPR
8068 || code == TRUTH_OR_EXPR));
8069
8070 if (operand_equal_p (a00, a10, 0))
8071 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8072 fold_build2_loc (loc, code, type, a01, a11));
8073 else if (commutative && operand_equal_p (a00, a11, 0))
8074 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8075 fold_build2_loc (loc, code, type, a01, a10));
8076 else if (commutative && operand_equal_p (a01, a10, 0))
8077 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
8078 fold_build2_loc (loc, code, type, a00, a11));
8079
8080 /* This case if tricky because we must either have commutative
8081 operators or else A10 must not have side-effects. */
8082
8083 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8084 && operand_equal_p (a01, a11, 0))
8085 return fold_build2_loc (loc, TREE_CODE (arg0), type,
8086 fold_build2_loc (loc, code, type, a00, a10),
8087 a01);
8088 }
8089
8090 /* See if we can build a range comparison. */
8091 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
8092 return tem;
8093
8094 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
8095 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
8096 {
8097 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
8098 if (tem)
8099 return fold_build2_loc (loc, code, type, tem, arg1);
8100 }
8101
8102 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
8103 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
8104 {
8105 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
8106 if (tem)
8107 return fold_build2_loc (loc, code, type, arg0, tem);
8108 }
8109
8110 /* Check for the possibility of merging component references. If our
8111 lhs is another similar operation, try to merge its rhs with our
8112 rhs. Then try to merge our lhs and rhs. */
8113 if (TREE_CODE (arg0) == code
8114 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
8115 TREE_OPERAND (arg0, 1), arg1)))
8116 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8117
8118 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
8119 return tem;
8120
8121 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8122 && (code == TRUTH_AND_EXPR
8123 || code == TRUTH_ANDIF_EXPR
8124 || code == TRUTH_OR_EXPR
8125 || code == TRUTH_ORIF_EXPR))
8126 {
8127 enum tree_code ncode, icode;
8128
8129 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8130 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8131 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8132
8133 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8134 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8135 We don't want to pack more than two leafs to a non-IF AND/OR
8136 expression.
8137 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8138 equal to IF-CODE, then we don't want to add right-hand operand.
8139 If the inner right-hand side of left-hand operand has
8140 side-effects, or isn't simple, then we can't add to it,
8141 as otherwise we might destroy if-sequence. */
8142 if (TREE_CODE (arg0) == icode
8143 && simple_operand_p_2 (arg1)
8144 /* Needed for sequence points to handle trappings, and
8145 side-effects. */
8146 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8147 {
8148 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8149 arg1);
8150 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8151 tem);
8152 }
8153 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8154 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8155 else if (TREE_CODE (arg1) == icode
8156 && simple_operand_p_2 (arg0)
8157 /* Needed for sequence points to handle trappings, and
8158 side-effects. */
8159 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8160 {
8161 tem = fold_build2_loc (loc, ncode, type,
8162 arg0, TREE_OPERAND (arg1, 0));
8163 return fold_build2_loc (loc, icode, type, tem,
8164 TREE_OPERAND (arg1, 1));
8165 }
8166 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8167 into (A OR B).
8168 For sequence point consistancy, we need to check for trapping,
8169 and side-effects. */
8170 else if (code == icode && simple_operand_p_2 (arg0)
8171 && simple_operand_p_2 (arg1))
8172 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8173 }
8174
8175 return NULL_TREE;
8176 }
8177
8178 /* Fold a binary expression of code CODE and type TYPE with operands
8179 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8180 Return the folded expression if folding is successful. Otherwise,
8181 return NULL_TREE. */
8182
8183 static tree
8184 fold_minmax (location_t loc, enum tree_code code, tree type, tree op0, tree op1)
8185 {
8186 enum tree_code compl_code;
8187
8188 if (code == MIN_EXPR)
8189 compl_code = MAX_EXPR;
8190 else if (code == MAX_EXPR)
8191 compl_code = MIN_EXPR;
8192 else
8193 gcc_unreachable ();
8194
8195 /* MIN (MAX (a, b), b) == b. */
8196 if (TREE_CODE (op0) == compl_code
8197 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
8198 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 0));
8199
8200 /* MIN (MAX (b, a), b) == b. */
8201 if (TREE_CODE (op0) == compl_code
8202 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
8203 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
8204 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 1));
8205
8206 /* MIN (a, MAX (a, b)) == a. */
8207 if (TREE_CODE (op1) == compl_code
8208 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
8209 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
8210 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 1));
8211
8212 /* MIN (a, MAX (b, a)) == a. */
8213 if (TREE_CODE (op1) == compl_code
8214 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
8215 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
8216 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 0));
8217
8218 return NULL_TREE;
8219 }
8220
8221 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8222 by changing CODE to reduce the magnitude of constants involved in
8223 ARG0 of the comparison.
8224 Returns a canonicalized comparison tree if a simplification was
8225 possible, otherwise returns NULL_TREE.
8226 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8227 valid if signed overflow is undefined. */
8228
8229 static tree
8230 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8231 tree arg0, tree arg1,
8232 bool *strict_overflow_p)
8233 {
8234 enum tree_code code0 = TREE_CODE (arg0);
8235 tree t, cst0 = NULL_TREE;
8236 int sgn0;
8237 bool swap = false;
8238
8239 /* Match A +- CST code arg1 and CST code arg1. We can change the
8240 first form only if overflow is undefined. */
8241 if (!(((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8242 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8243 /* In principle pointers also have undefined overflow behavior,
8244 but that causes problems elsewhere. */
8245 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8246 && (code0 == MINUS_EXPR
8247 || code0 == PLUS_EXPR)
8248 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8249 || code0 == INTEGER_CST))
8250 return NULL_TREE;
8251
8252 /* Identify the constant in arg0 and its sign. */
8253 if (code0 == INTEGER_CST)
8254 cst0 = arg0;
8255 else
8256 cst0 = TREE_OPERAND (arg0, 1);
8257 sgn0 = tree_int_cst_sgn (cst0);
8258
8259 /* Overflowed constants and zero will cause problems. */
8260 if (integer_zerop (cst0)
8261 || TREE_OVERFLOW (cst0))
8262 return NULL_TREE;
8263
8264 /* See if we can reduce the magnitude of the constant in
8265 arg0 by changing the comparison code. */
8266 if (code0 == INTEGER_CST)
8267 {
8268 /* CST <= arg1 -> CST-1 < arg1. */
8269 if (code == LE_EXPR && sgn0 == 1)
8270 code = LT_EXPR;
8271 /* -CST < arg1 -> -CST-1 <= arg1. */
8272 else if (code == LT_EXPR && sgn0 == -1)
8273 code = LE_EXPR;
8274 /* CST > arg1 -> CST-1 >= arg1. */
8275 else if (code == GT_EXPR && sgn0 == 1)
8276 code = GE_EXPR;
8277 /* -CST >= arg1 -> -CST-1 > arg1. */
8278 else if (code == GE_EXPR && sgn0 == -1)
8279 code = GT_EXPR;
8280 else
8281 return NULL_TREE;
8282 /* arg1 code' CST' might be more canonical. */
8283 swap = true;
8284 }
8285 else
8286 {
8287 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8288 if (code == LT_EXPR
8289 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8290 code = LE_EXPR;
8291 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8292 else if (code == GT_EXPR
8293 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8294 code = GE_EXPR;
8295 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8296 else if (code == LE_EXPR
8297 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8298 code = LT_EXPR;
8299 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8300 else if (code == GE_EXPR
8301 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8302 code = GT_EXPR;
8303 else
8304 return NULL_TREE;
8305 *strict_overflow_p = true;
8306 }
8307
8308 /* Now build the constant reduced in magnitude. But not if that
8309 would produce one outside of its types range. */
8310 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8311 && ((sgn0 == 1
8312 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8313 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8314 || (sgn0 == -1
8315 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8316 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8317 /* We cannot swap the comparison here as that would cause us to
8318 endlessly recurse. */
8319 return NULL_TREE;
8320
8321 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8322 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8323 if (code0 != INTEGER_CST)
8324 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8325 t = fold_convert (TREE_TYPE (arg1), t);
8326
8327 /* If swapping might yield to a more canonical form, do so. */
8328 if (swap)
8329 return fold_build2_loc (loc, swap_tree_comparison (code), type, arg1, t);
8330 else
8331 return fold_build2_loc (loc, code, type, t, arg1);
8332 }
8333
8334 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8335 overflow further. Try to decrease the magnitude of constants involved
8336 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8337 and put sole constants at the second argument position.
8338 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8339
8340 static tree
8341 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8342 tree arg0, tree arg1)
8343 {
8344 tree t;
8345 bool strict_overflow_p;
8346 const char * const warnmsg = G_("assuming signed overflow does not occur "
8347 "when reducing constant in comparison");
8348
8349 /* Try canonicalization by simplifying arg0. */
8350 strict_overflow_p = false;
8351 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8352 &strict_overflow_p);
8353 if (t)
8354 {
8355 if (strict_overflow_p)
8356 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8357 return t;
8358 }
8359
8360 /* Try canonicalization by simplifying arg1 using the swapped
8361 comparison. */
8362 code = swap_tree_comparison (code);
8363 strict_overflow_p = false;
8364 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8365 &strict_overflow_p);
8366 if (t && strict_overflow_p)
8367 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8368 return t;
8369 }
8370
8371 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8372 space. This is used to avoid issuing overflow warnings for
8373 expressions like &p->x which can not wrap. */
8374
8375 static bool
8376 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8377 {
8378 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8379 return true;
8380
8381 if (bitpos < 0)
8382 return true;
8383
8384 wide_int wi_offset;
8385 int precision = TYPE_PRECISION (TREE_TYPE (base));
8386 if (offset == NULL_TREE)
8387 wi_offset = wi::zero (precision);
8388 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8389 return true;
8390 else
8391 wi_offset = offset;
8392
8393 bool overflow;
8394 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8395 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8396 if (overflow)
8397 return true;
8398
8399 if (!wi::fits_uhwi_p (total))
8400 return true;
8401
8402 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8403 if (size <= 0)
8404 return true;
8405
8406 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8407 array. */
8408 if (TREE_CODE (base) == ADDR_EXPR)
8409 {
8410 HOST_WIDE_INT base_size;
8411
8412 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8413 if (base_size > 0 && size < base_size)
8414 size = base_size;
8415 }
8416
8417 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8418 }
8419
8420 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
8421 kind INTEGER_CST. This makes sure to properly sign-extend the
8422 constant. */
8423
8424 static HOST_WIDE_INT
8425 size_low_cst (const_tree t)
8426 {
8427 HOST_WIDE_INT w = TREE_INT_CST_ELT (t, 0);
8428 int prec = TYPE_PRECISION (TREE_TYPE (t));
8429 if (prec < HOST_BITS_PER_WIDE_INT)
8430 return sext_hwi (w, prec);
8431 return w;
8432 }
8433
8434 /* Subroutine of fold_binary. This routine performs all of the
8435 transformations that are common to the equality/inequality
8436 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8437 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8438 fold_binary should call fold_binary. Fold a comparison with
8439 tree code CODE and type TYPE with operands OP0 and OP1. Return
8440 the folded comparison or NULL_TREE. */
8441
8442 static tree
8443 fold_comparison (location_t loc, enum tree_code code, tree type,
8444 tree op0, tree op1)
8445 {
8446 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8447 tree arg0, arg1, tem;
8448
8449 arg0 = op0;
8450 arg1 = op1;
8451
8452 STRIP_SIGN_NOPS (arg0);
8453 STRIP_SIGN_NOPS (arg1);
8454
8455 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
8456 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8457 && (equality_code
8458 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8459 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
8460 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8461 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8462 && TREE_CODE (arg1) == INTEGER_CST
8463 && !TREE_OVERFLOW (arg1))
8464 {
8465 const enum tree_code
8466 reverse_op = TREE_CODE (arg0) == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR;
8467 tree const1 = TREE_OPERAND (arg0, 1);
8468 tree const2 = fold_convert_loc (loc, TREE_TYPE (const1), arg1);
8469 tree variable = TREE_OPERAND (arg0, 0);
8470 tree new_const = int_const_binop (reverse_op, const2, const1);
8471
8472 /* If the constant operation overflowed this can be
8473 simplified as a comparison against INT_MAX/INT_MIN. */
8474 if (TREE_OVERFLOW (new_const)
8475 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
8476 {
8477 int const1_sgn = tree_int_cst_sgn (const1);
8478 enum tree_code code2 = code;
8479
8480 /* Get the sign of the constant on the lhs if the
8481 operation were VARIABLE + CONST1. */
8482 if (TREE_CODE (arg0) == MINUS_EXPR)
8483 const1_sgn = -const1_sgn;
8484
8485 /* The sign of the constant determines if we overflowed
8486 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8487 Canonicalize to the INT_MIN overflow by swapping the comparison
8488 if necessary. */
8489 if (const1_sgn == -1)
8490 code2 = swap_tree_comparison (code);
8491
8492 /* We now can look at the canonicalized case
8493 VARIABLE + 1 CODE2 INT_MIN
8494 and decide on the result. */
8495 switch (code2)
8496 {
8497 case EQ_EXPR:
8498 case LT_EXPR:
8499 case LE_EXPR:
8500 return
8501 omit_one_operand_loc (loc, type, boolean_false_node, variable);
8502
8503 case NE_EXPR:
8504 case GE_EXPR:
8505 case GT_EXPR:
8506 return
8507 omit_one_operand_loc (loc, type, boolean_true_node, variable);
8508
8509 default:
8510 gcc_unreachable ();
8511 }
8512 }
8513 else
8514 {
8515 if (!equality_code)
8516 fold_overflow_warning ("assuming signed overflow does not occur "
8517 "when changing X +- C1 cmp C2 to "
8518 "X cmp C2 -+ C1",
8519 WARN_STRICT_OVERFLOW_COMPARISON);
8520 return fold_build2_loc (loc, code, type, variable, new_const);
8521 }
8522 }
8523
8524 /* For comparisons of pointers we can decompose it to a compile time
8525 comparison of the base objects and the offsets into the object.
8526 This requires at least one operand being an ADDR_EXPR or a
8527 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8528 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8529 && (TREE_CODE (arg0) == ADDR_EXPR
8530 || TREE_CODE (arg1) == ADDR_EXPR
8531 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8532 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8533 {
8534 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8535 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8536 machine_mode mode;
8537 int volatilep, unsignedp;
8538 bool indirect_base0 = false, indirect_base1 = false;
8539
8540 /* Get base and offset for the access. Strip ADDR_EXPR for
8541 get_inner_reference, but put it back by stripping INDIRECT_REF
8542 off the base object if possible. indirect_baseN will be true
8543 if baseN is not an address but refers to the object itself. */
8544 base0 = arg0;
8545 if (TREE_CODE (arg0) == ADDR_EXPR)
8546 {
8547 base0 = get_inner_reference (TREE_OPERAND (arg0, 0),
8548 &bitsize, &bitpos0, &offset0, &mode,
8549 &unsignedp, &volatilep, false);
8550 if (TREE_CODE (base0) == INDIRECT_REF)
8551 base0 = TREE_OPERAND (base0, 0);
8552 else
8553 indirect_base0 = true;
8554 }
8555 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8556 {
8557 base0 = TREE_OPERAND (arg0, 0);
8558 STRIP_SIGN_NOPS (base0);
8559 if (TREE_CODE (base0) == ADDR_EXPR)
8560 {
8561 base0 = TREE_OPERAND (base0, 0);
8562 indirect_base0 = true;
8563 }
8564 offset0 = TREE_OPERAND (arg0, 1);
8565 if (tree_fits_shwi_p (offset0))
8566 {
8567 HOST_WIDE_INT off = size_low_cst (offset0);
8568 if ((HOST_WIDE_INT) (((unsigned HOST_WIDE_INT) off)
8569 * BITS_PER_UNIT)
8570 / BITS_PER_UNIT == (HOST_WIDE_INT) off)
8571 {
8572 bitpos0 = off * BITS_PER_UNIT;
8573 offset0 = NULL_TREE;
8574 }
8575 }
8576 }
8577
8578 base1 = arg1;
8579 if (TREE_CODE (arg1) == ADDR_EXPR)
8580 {
8581 base1 = get_inner_reference (TREE_OPERAND (arg1, 0),
8582 &bitsize, &bitpos1, &offset1, &mode,
8583 &unsignedp, &volatilep, false);
8584 if (TREE_CODE (base1) == INDIRECT_REF)
8585 base1 = TREE_OPERAND (base1, 0);
8586 else
8587 indirect_base1 = true;
8588 }
8589 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8590 {
8591 base1 = TREE_OPERAND (arg1, 0);
8592 STRIP_SIGN_NOPS (base1);
8593 if (TREE_CODE (base1) == ADDR_EXPR)
8594 {
8595 base1 = TREE_OPERAND (base1, 0);
8596 indirect_base1 = true;
8597 }
8598 offset1 = TREE_OPERAND (arg1, 1);
8599 if (tree_fits_shwi_p (offset1))
8600 {
8601 HOST_WIDE_INT off = size_low_cst (offset1);
8602 if ((HOST_WIDE_INT) (((unsigned HOST_WIDE_INT) off)
8603 * BITS_PER_UNIT)
8604 / BITS_PER_UNIT == (HOST_WIDE_INT) off)
8605 {
8606 bitpos1 = off * BITS_PER_UNIT;
8607 offset1 = NULL_TREE;
8608 }
8609 }
8610 }
8611
8612 /* A local variable can never be pointed to by
8613 the default SSA name of an incoming parameter. */
8614 if ((TREE_CODE (arg0) == ADDR_EXPR
8615 && indirect_base0
8616 && TREE_CODE (base0) == VAR_DECL
8617 && auto_var_in_fn_p (base0, current_function_decl)
8618 && !indirect_base1
8619 && TREE_CODE (base1) == SSA_NAME
8620 && SSA_NAME_IS_DEFAULT_DEF (base1)
8621 && TREE_CODE (SSA_NAME_VAR (base1)) == PARM_DECL)
8622 || (TREE_CODE (arg1) == ADDR_EXPR
8623 && indirect_base1
8624 && TREE_CODE (base1) == VAR_DECL
8625 && auto_var_in_fn_p (base1, current_function_decl)
8626 && !indirect_base0
8627 && TREE_CODE (base0) == SSA_NAME
8628 && SSA_NAME_IS_DEFAULT_DEF (base0)
8629 && TREE_CODE (SSA_NAME_VAR (base0)) == PARM_DECL))
8630 {
8631 if (code == NE_EXPR)
8632 return constant_boolean_node (1, type);
8633 else if (code == EQ_EXPR)
8634 return constant_boolean_node (0, type);
8635 }
8636 /* If we have equivalent bases we might be able to simplify. */
8637 else if (indirect_base0 == indirect_base1
8638 && operand_equal_p (base0, base1, 0))
8639 {
8640 /* We can fold this expression to a constant if the non-constant
8641 offset parts are equal. */
8642 if ((offset0 == offset1
8643 || (offset0 && offset1
8644 && operand_equal_p (offset0, offset1, 0)))
8645 && (code == EQ_EXPR
8646 || code == NE_EXPR
8647 || (indirect_base0 && DECL_P (base0))
8648 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8649
8650 {
8651 if (!equality_code
8652 && bitpos0 != bitpos1
8653 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8654 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8655 fold_overflow_warning (("assuming pointer wraparound does not "
8656 "occur when comparing P +- C1 with "
8657 "P +- C2"),
8658 WARN_STRICT_OVERFLOW_CONDITIONAL);
8659
8660 switch (code)
8661 {
8662 case EQ_EXPR:
8663 return constant_boolean_node (bitpos0 == bitpos1, type);
8664 case NE_EXPR:
8665 return constant_boolean_node (bitpos0 != bitpos1, type);
8666 case LT_EXPR:
8667 return constant_boolean_node (bitpos0 < bitpos1, type);
8668 case LE_EXPR:
8669 return constant_boolean_node (bitpos0 <= bitpos1, type);
8670 case GE_EXPR:
8671 return constant_boolean_node (bitpos0 >= bitpos1, type);
8672 case GT_EXPR:
8673 return constant_boolean_node (bitpos0 > bitpos1, type);
8674 default:;
8675 }
8676 }
8677 /* We can simplify the comparison to a comparison of the variable
8678 offset parts if the constant offset parts are equal.
8679 Be careful to use signed sizetype here because otherwise we
8680 mess with array offsets in the wrong way. This is possible
8681 because pointer arithmetic is restricted to retain within an
8682 object and overflow on pointer differences is undefined as of
8683 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8684 else if (bitpos0 == bitpos1
8685 && (equality_code
8686 || (indirect_base0 && DECL_P (base0))
8687 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8688 {
8689 /* By converting to signed sizetype we cover middle-end pointer
8690 arithmetic which operates on unsigned pointer types of size
8691 type size and ARRAY_REF offsets which are properly sign or
8692 zero extended from their type in case it is narrower than
8693 sizetype. */
8694 if (offset0 == NULL_TREE)
8695 offset0 = build_int_cst (ssizetype, 0);
8696 else
8697 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8698 if (offset1 == NULL_TREE)
8699 offset1 = build_int_cst (ssizetype, 0);
8700 else
8701 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8702
8703 if (!equality_code
8704 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8705 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8706 fold_overflow_warning (("assuming pointer wraparound does not "
8707 "occur when comparing P +- C1 with "
8708 "P +- C2"),
8709 WARN_STRICT_OVERFLOW_COMPARISON);
8710
8711 return fold_build2_loc (loc, code, type, offset0, offset1);
8712 }
8713 }
8714 /* For non-equal bases we can simplify if they are addresses
8715 declarations with different addresses. */
8716 else if (indirect_base0 && indirect_base1
8717 /* We know that !operand_equal_p (base0, base1, 0)
8718 because the if condition was false. But make
8719 sure two decls are not the same. */
8720 && base0 != base1
8721 && TREE_CODE (arg0) == ADDR_EXPR
8722 && TREE_CODE (arg1) == ADDR_EXPR
8723 && DECL_P (base0)
8724 && DECL_P (base1)
8725 /* Watch for aliases. */
8726 && (!decl_in_symtab_p (base0)
8727 || !decl_in_symtab_p (base1)
8728 || !symtab_node::get_create (base0)->equal_address_to
8729 (symtab_node::get_create (base1))))
8730 {
8731 if (code == EQ_EXPR)
8732 return omit_two_operands_loc (loc, type, boolean_false_node,
8733 arg0, arg1);
8734 else if (code == NE_EXPR)
8735 return omit_two_operands_loc (loc, type, boolean_true_node,
8736 arg0, arg1);
8737 }
8738 /* For equal offsets we can simplify to a comparison of the
8739 base addresses. */
8740 else if (bitpos0 == bitpos1
8741 && (indirect_base0
8742 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8743 && (indirect_base1
8744 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8745 && ((offset0 == offset1)
8746 || (offset0 && offset1
8747 && operand_equal_p (offset0, offset1, 0))))
8748 {
8749 if (indirect_base0)
8750 base0 = build_fold_addr_expr_loc (loc, base0);
8751 if (indirect_base1)
8752 base1 = build_fold_addr_expr_loc (loc, base1);
8753 return fold_build2_loc (loc, code, type, base0, base1);
8754 }
8755 }
8756
8757 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8758 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8759 the resulting offset is smaller in absolute value than the
8760 original one and has the same sign. */
8761 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8762 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8763 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8764 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8765 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8766 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8767 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8768 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8769 {
8770 tree const1 = TREE_OPERAND (arg0, 1);
8771 tree const2 = TREE_OPERAND (arg1, 1);
8772 tree variable1 = TREE_OPERAND (arg0, 0);
8773 tree variable2 = TREE_OPERAND (arg1, 0);
8774 tree cst;
8775 const char * const warnmsg = G_("assuming signed overflow does not "
8776 "occur when combining constants around "
8777 "a comparison");
8778
8779 /* Put the constant on the side where it doesn't overflow and is
8780 of lower absolute value and of same sign than before. */
8781 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8782 ? MINUS_EXPR : PLUS_EXPR,
8783 const2, const1);
8784 if (!TREE_OVERFLOW (cst)
8785 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8786 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8787 {
8788 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8789 return fold_build2_loc (loc, code, type,
8790 variable1,
8791 fold_build2_loc (loc, TREE_CODE (arg1),
8792 TREE_TYPE (arg1),
8793 variable2, cst));
8794 }
8795
8796 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8797 ? MINUS_EXPR : PLUS_EXPR,
8798 const1, const2);
8799 if (!TREE_OVERFLOW (cst)
8800 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8801 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8802 {
8803 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8804 return fold_build2_loc (loc, code, type,
8805 fold_build2_loc (loc, TREE_CODE (arg0),
8806 TREE_TYPE (arg0),
8807 variable1, cst),
8808 variable2);
8809 }
8810 }
8811
8812 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8813 if (tem)
8814 return tem;
8815
8816 if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
8817 && CONVERT_EXPR_P (arg0))
8818 {
8819 /* If we are widening one operand of an integer comparison,
8820 see if the other operand is similarly being widened. Perhaps we
8821 can do the comparison in the narrower type. */
8822 tem = fold_widened_comparison (loc, code, type, arg0, arg1);
8823 if (tem)
8824 return tem;
8825
8826 /* Or if we are changing signedness. */
8827 tem = fold_sign_changed_comparison (loc, code, type, arg0, arg1);
8828 if (tem)
8829 return tem;
8830 }
8831
8832 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
8833 constant, we can simplify it. */
8834 if (TREE_CODE (arg1) == INTEGER_CST
8835 && (TREE_CODE (arg0) == MIN_EXPR
8836 || TREE_CODE (arg0) == MAX_EXPR)
8837 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8838 {
8839 tem = optimize_minmax_comparison (loc, code, type, op0, op1);
8840 if (tem)
8841 return tem;
8842 }
8843
8844 /* If we are comparing an expression that just has comparisons
8845 of two integer values, arithmetic expressions of those comparisons,
8846 and constants, we can simplify it. There are only three cases
8847 to check: the two values can either be equal, the first can be
8848 greater, or the second can be greater. Fold the expression for
8849 those three values. Since each value must be 0 or 1, we have
8850 eight possibilities, each of which corresponds to the constant 0
8851 or 1 or one of the six possible comparisons.
8852
8853 This handles common cases like (a > b) == 0 but also handles
8854 expressions like ((x > y) - (y > x)) > 0, which supposedly
8855 occur in macroized code. */
8856
8857 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8858 {
8859 tree cval1 = 0, cval2 = 0;
8860 int save_p = 0;
8861
8862 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8863 /* Don't handle degenerate cases here; they should already
8864 have been handled anyway. */
8865 && cval1 != 0 && cval2 != 0
8866 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8867 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8868 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8869 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8870 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8871 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8872 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8873 {
8874 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8875 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8876
8877 /* We can't just pass T to eval_subst in case cval1 or cval2
8878 was the same as ARG1. */
8879
8880 tree high_result
8881 = fold_build2_loc (loc, code, type,
8882 eval_subst (loc, arg0, cval1, maxval,
8883 cval2, minval),
8884 arg1);
8885 tree equal_result
8886 = fold_build2_loc (loc, code, type,
8887 eval_subst (loc, arg0, cval1, maxval,
8888 cval2, maxval),
8889 arg1);
8890 tree low_result
8891 = fold_build2_loc (loc, code, type,
8892 eval_subst (loc, arg0, cval1, minval,
8893 cval2, maxval),
8894 arg1);
8895
8896 /* All three of these results should be 0 or 1. Confirm they are.
8897 Then use those values to select the proper code to use. */
8898
8899 if (TREE_CODE (high_result) == INTEGER_CST
8900 && TREE_CODE (equal_result) == INTEGER_CST
8901 && TREE_CODE (low_result) == INTEGER_CST)
8902 {
8903 /* Make a 3-bit mask with the high-order bit being the
8904 value for `>', the next for '=', and the low for '<'. */
8905 switch ((integer_onep (high_result) * 4)
8906 + (integer_onep (equal_result) * 2)
8907 + integer_onep (low_result))
8908 {
8909 case 0:
8910 /* Always false. */
8911 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8912 case 1:
8913 code = LT_EXPR;
8914 break;
8915 case 2:
8916 code = EQ_EXPR;
8917 break;
8918 case 3:
8919 code = LE_EXPR;
8920 break;
8921 case 4:
8922 code = GT_EXPR;
8923 break;
8924 case 5:
8925 code = NE_EXPR;
8926 break;
8927 case 6:
8928 code = GE_EXPR;
8929 break;
8930 case 7:
8931 /* Always true. */
8932 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8933 }
8934
8935 if (save_p)
8936 {
8937 tem = save_expr (build2 (code, type, cval1, cval2));
8938 SET_EXPR_LOCATION (tem, loc);
8939 return tem;
8940 }
8941 return fold_build2_loc (loc, code, type, cval1, cval2);
8942 }
8943 }
8944 }
8945
8946 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8947 into a single range test. */
8948 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
8949 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
8950 && TREE_CODE (arg1) == INTEGER_CST
8951 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8952 && !integer_zerop (TREE_OPERAND (arg0, 1))
8953 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8954 && !TREE_OVERFLOW (arg1))
8955 {
8956 tem = fold_div_compare (loc, code, type, arg0, arg1);
8957 if (tem != NULL_TREE)
8958 return tem;
8959 }
8960
8961 return NULL_TREE;
8962 }
8963
8964
8965 /* Subroutine of fold_binary. Optimize complex multiplications of the
8966 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8967 argument EXPR represents the expression "z" of type TYPE. */
8968
8969 static tree
8970 fold_mult_zconjz (location_t loc, tree type, tree expr)
8971 {
8972 tree itype = TREE_TYPE (type);
8973 tree rpart, ipart, tem;
8974
8975 if (TREE_CODE (expr) == COMPLEX_EXPR)
8976 {
8977 rpart = TREE_OPERAND (expr, 0);
8978 ipart = TREE_OPERAND (expr, 1);
8979 }
8980 else if (TREE_CODE (expr) == COMPLEX_CST)
8981 {
8982 rpart = TREE_REALPART (expr);
8983 ipart = TREE_IMAGPART (expr);
8984 }
8985 else
8986 {
8987 expr = save_expr (expr);
8988 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8989 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8990 }
8991
8992 rpart = save_expr (rpart);
8993 ipart = save_expr (ipart);
8994 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8995 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8996 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8997 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8998 build_zero_cst (itype));
8999 }
9000
9001
9002 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
9003 CONSTRUCTOR ARG into array ELTS and return true if successful. */
9004
9005 static bool
9006 vec_cst_ctor_to_array (tree arg, tree *elts)
9007 {
9008 unsigned int nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)), i;
9009
9010 if (TREE_CODE (arg) == VECTOR_CST)
9011 {
9012 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
9013 elts[i] = VECTOR_CST_ELT (arg, i);
9014 }
9015 else if (TREE_CODE (arg) == CONSTRUCTOR)
9016 {
9017 constructor_elt *elt;
9018
9019 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
9020 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
9021 return false;
9022 else
9023 elts[i] = elt->value;
9024 }
9025 else
9026 return false;
9027 for (; i < nelts; i++)
9028 elts[i]
9029 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
9030 return true;
9031 }
9032
9033 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
9034 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
9035 NULL_TREE otherwise. */
9036
9037 static tree
9038 fold_vec_perm (tree type, tree arg0, tree arg1, const unsigned char *sel)
9039 {
9040 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
9041 tree *elts;
9042 bool need_ctor = false;
9043
9044 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
9045 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
9046 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
9047 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
9048 return NULL_TREE;
9049
9050 elts = XALLOCAVEC (tree, nelts * 3);
9051 if (!vec_cst_ctor_to_array (arg0, elts)
9052 || !vec_cst_ctor_to_array (arg1, elts + nelts))
9053 return NULL_TREE;
9054
9055 for (i = 0; i < nelts; i++)
9056 {
9057 if (!CONSTANT_CLASS_P (elts[sel[i]]))
9058 need_ctor = true;
9059 elts[i + 2 * nelts] = unshare_expr (elts[sel[i]]);
9060 }
9061
9062 if (need_ctor)
9063 {
9064 vec<constructor_elt, va_gc> *v;
9065 vec_alloc (v, nelts);
9066 for (i = 0; i < nelts; i++)
9067 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[2 * nelts + i]);
9068 return build_constructor (type, v);
9069 }
9070 else
9071 return build_vector (type, &elts[2 * nelts]);
9072 }
9073
9074 /* Try to fold a pointer difference of type TYPE two address expressions of
9075 array references AREF0 and AREF1 using location LOC. Return a
9076 simplified expression for the difference or NULL_TREE. */
9077
9078 static tree
9079 fold_addr_of_array_ref_difference (location_t loc, tree type,
9080 tree aref0, tree aref1)
9081 {
9082 tree base0 = TREE_OPERAND (aref0, 0);
9083 tree base1 = TREE_OPERAND (aref1, 0);
9084 tree base_offset = build_int_cst (type, 0);
9085
9086 /* If the bases are array references as well, recurse. If the bases
9087 are pointer indirections compute the difference of the pointers.
9088 If the bases are equal, we are set. */
9089 if ((TREE_CODE (base0) == ARRAY_REF
9090 && TREE_CODE (base1) == ARRAY_REF
9091 && (base_offset
9092 = fold_addr_of_array_ref_difference (loc, type, base0, base1)))
9093 || (INDIRECT_REF_P (base0)
9094 && INDIRECT_REF_P (base1)
9095 && (base_offset = fold_binary_loc (loc, MINUS_EXPR, type,
9096 TREE_OPERAND (base0, 0),
9097 TREE_OPERAND (base1, 0))))
9098 || operand_equal_p (base0, base1, 0))
9099 {
9100 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
9101 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
9102 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
9103 tree diff = build2 (MINUS_EXPR, type, op0, op1);
9104 return fold_build2_loc (loc, PLUS_EXPR, type,
9105 base_offset,
9106 fold_build2_loc (loc, MULT_EXPR, type,
9107 diff, esz));
9108 }
9109 return NULL_TREE;
9110 }
9111
9112 /* If the real or vector real constant CST of type TYPE has an exact
9113 inverse, return it, else return NULL. */
9114
9115 tree
9116 exact_inverse (tree type, tree cst)
9117 {
9118 REAL_VALUE_TYPE r;
9119 tree unit_type, *elts;
9120 machine_mode mode;
9121 unsigned vec_nelts, i;
9122
9123 switch (TREE_CODE (cst))
9124 {
9125 case REAL_CST:
9126 r = TREE_REAL_CST (cst);
9127
9128 if (exact_real_inverse (TYPE_MODE (type), &r))
9129 return build_real (type, r);
9130
9131 return NULL_TREE;
9132
9133 case VECTOR_CST:
9134 vec_nelts = VECTOR_CST_NELTS (cst);
9135 elts = XALLOCAVEC (tree, vec_nelts);
9136 unit_type = TREE_TYPE (type);
9137 mode = TYPE_MODE (unit_type);
9138
9139 for (i = 0; i < vec_nelts; i++)
9140 {
9141 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
9142 if (!exact_real_inverse (mode, &r))
9143 return NULL_TREE;
9144 elts[i] = build_real (unit_type, r);
9145 }
9146
9147 return build_vector (type, elts);
9148
9149 default:
9150 return NULL_TREE;
9151 }
9152 }
9153
9154 /* Mask out the tz least significant bits of X of type TYPE where
9155 tz is the number of trailing zeroes in Y. */
9156 static wide_int
9157 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
9158 {
9159 int tz = wi::ctz (y);
9160 if (tz > 0)
9161 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
9162 return x;
9163 }
9164
9165 /* Return true when T is an address and is known to be nonzero.
9166 For floating point we further ensure that T is not denormal.
9167 Similar logic is present in nonzero_address in rtlanal.h.
9168
9169 If the return value is based on the assumption that signed overflow
9170 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9171 change *STRICT_OVERFLOW_P. */
9172
9173 static bool
9174 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
9175 {
9176 tree type = TREE_TYPE (t);
9177 enum tree_code code;
9178
9179 /* Doing something useful for floating point would need more work. */
9180 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
9181 return false;
9182
9183 code = TREE_CODE (t);
9184 switch (TREE_CODE_CLASS (code))
9185 {
9186 case tcc_unary:
9187 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9188 strict_overflow_p);
9189 case tcc_binary:
9190 case tcc_comparison:
9191 return tree_binary_nonzero_warnv_p (code, type,
9192 TREE_OPERAND (t, 0),
9193 TREE_OPERAND (t, 1),
9194 strict_overflow_p);
9195 case tcc_constant:
9196 case tcc_declaration:
9197 case tcc_reference:
9198 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9199
9200 default:
9201 break;
9202 }
9203
9204 switch (code)
9205 {
9206 case TRUTH_NOT_EXPR:
9207 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9208 strict_overflow_p);
9209
9210 case TRUTH_AND_EXPR:
9211 case TRUTH_OR_EXPR:
9212 case TRUTH_XOR_EXPR:
9213 return tree_binary_nonzero_warnv_p (code, type,
9214 TREE_OPERAND (t, 0),
9215 TREE_OPERAND (t, 1),
9216 strict_overflow_p);
9217
9218 case COND_EXPR:
9219 case CONSTRUCTOR:
9220 case OBJ_TYPE_REF:
9221 case ASSERT_EXPR:
9222 case ADDR_EXPR:
9223 case WITH_SIZE_EXPR:
9224 case SSA_NAME:
9225 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9226
9227 case COMPOUND_EXPR:
9228 case MODIFY_EXPR:
9229 case BIND_EXPR:
9230 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
9231 strict_overflow_p);
9232
9233 case SAVE_EXPR:
9234 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
9235 strict_overflow_p);
9236
9237 case CALL_EXPR:
9238 {
9239 tree fndecl = get_callee_fndecl (t);
9240 if (!fndecl) return false;
9241 if (flag_delete_null_pointer_checks && !flag_check_new
9242 && DECL_IS_OPERATOR_NEW (fndecl)
9243 && !TREE_NOTHROW (fndecl))
9244 return true;
9245 if (flag_delete_null_pointer_checks
9246 && lookup_attribute ("returns_nonnull",
9247 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
9248 return true;
9249 return alloca_call_p (t);
9250 }
9251
9252 default:
9253 break;
9254 }
9255 return false;
9256 }
9257
9258 /* Return true when T is an address and is known to be nonzero.
9259 Handle warnings about undefined signed overflow. */
9260
9261 static bool
9262 tree_expr_nonzero_p (tree t)
9263 {
9264 bool ret, strict_overflow_p;
9265
9266 strict_overflow_p = false;
9267 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9268 if (strict_overflow_p)
9269 fold_overflow_warning (("assuming signed overflow does not occur when "
9270 "determining that expression is always "
9271 "non-zero"),
9272 WARN_STRICT_OVERFLOW_MISC);
9273 return ret;
9274 }
9275
9276 /* Fold a binary expression of code CODE and type TYPE with operands
9277 OP0 and OP1. LOC is the location of the resulting expression.
9278 Return the folded expression if folding is successful. Otherwise,
9279 return NULL_TREE. */
9280
9281 tree
9282 fold_binary_loc (location_t loc,
9283 enum tree_code code, tree type, tree op0, tree op1)
9284 {
9285 enum tree_code_class kind = TREE_CODE_CLASS (code);
9286 tree arg0, arg1, tem;
9287 tree t1 = NULL_TREE;
9288 bool strict_overflow_p;
9289 unsigned int prec;
9290
9291 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9292 && TREE_CODE_LENGTH (code) == 2
9293 && op0 != NULL_TREE
9294 && op1 != NULL_TREE);
9295
9296 arg0 = op0;
9297 arg1 = op1;
9298
9299 /* Strip any conversions that don't change the mode. This is
9300 safe for every expression, except for a comparison expression
9301 because its signedness is derived from its operands. So, in
9302 the latter case, only strip conversions that don't change the
9303 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9304 preserved.
9305
9306 Note that this is done as an internal manipulation within the
9307 constant folder, in order to find the simplest representation
9308 of the arguments so that their form can be studied. In any
9309 cases, the appropriate type conversions should be put back in
9310 the tree that will get out of the constant folder. */
9311
9312 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9313 {
9314 STRIP_SIGN_NOPS (arg0);
9315 STRIP_SIGN_NOPS (arg1);
9316 }
9317 else
9318 {
9319 STRIP_NOPS (arg0);
9320 STRIP_NOPS (arg1);
9321 }
9322
9323 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9324 constant but we can't do arithmetic on them. */
9325 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9326 {
9327 tem = const_binop (code, type, arg0, arg1);
9328 if (tem != NULL_TREE)
9329 {
9330 if (TREE_TYPE (tem) != type)
9331 tem = fold_convert_loc (loc, type, tem);
9332 return tem;
9333 }
9334 }
9335
9336 /* If this is a commutative operation, and ARG0 is a constant, move it
9337 to ARG1 to reduce the number of tests below. */
9338 if (commutative_tree_code (code)
9339 && tree_swap_operands_p (arg0, arg1, true))
9340 return fold_build2_loc (loc, code, type, op1, op0);
9341
9342 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9343 to ARG1 to reduce the number of tests below. */
9344 if (kind == tcc_comparison
9345 && tree_swap_operands_p (arg0, arg1, true))
9346 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9347
9348 tem = generic_simplify (loc, code, type, op0, op1);
9349 if (tem)
9350 return tem;
9351
9352 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9353
9354 First check for cases where an arithmetic operation is applied to a
9355 compound, conditional, or comparison operation. Push the arithmetic
9356 operation inside the compound or conditional to see if any folding
9357 can then be done. Convert comparison to conditional for this purpose.
9358 The also optimizes non-constant cases that used to be done in
9359 expand_expr.
9360
9361 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9362 one of the operands is a comparison and the other is a comparison, a
9363 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9364 code below would make the expression more complex. Change it to a
9365 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9366 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9367
9368 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9369 || code == EQ_EXPR || code == NE_EXPR)
9370 && TREE_CODE (type) != VECTOR_TYPE
9371 && ((truth_value_p (TREE_CODE (arg0))
9372 && (truth_value_p (TREE_CODE (arg1))
9373 || (TREE_CODE (arg1) == BIT_AND_EXPR
9374 && integer_onep (TREE_OPERAND (arg1, 1)))))
9375 || (truth_value_p (TREE_CODE (arg1))
9376 && (truth_value_p (TREE_CODE (arg0))
9377 || (TREE_CODE (arg0) == BIT_AND_EXPR
9378 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9379 {
9380 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9381 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9382 : TRUTH_XOR_EXPR,
9383 boolean_type_node,
9384 fold_convert_loc (loc, boolean_type_node, arg0),
9385 fold_convert_loc (loc, boolean_type_node, arg1));
9386
9387 if (code == EQ_EXPR)
9388 tem = invert_truthvalue_loc (loc, tem);
9389
9390 return fold_convert_loc (loc, type, tem);
9391 }
9392
9393 if (TREE_CODE_CLASS (code) == tcc_binary
9394 || TREE_CODE_CLASS (code) == tcc_comparison)
9395 {
9396 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9397 {
9398 tem = fold_build2_loc (loc, code, type,
9399 fold_convert_loc (loc, TREE_TYPE (op0),
9400 TREE_OPERAND (arg0, 1)), op1);
9401 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9402 tem);
9403 }
9404 if (TREE_CODE (arg1) == COMPOUND_EXPR
9405 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9406 {
9407 tem = fold_build2_loc (loc, code, type, op0,
9408 fold_convert_loc (loc, TREE_TYPE (op1),
9409 TREE_OPERAND (arg1, 1)));
9410 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9411 tem);
9412 }
9413
9414 if (TREE_CODE (arg0) == COND_EXPR
9415 || TREE_CODE (arg0) == VEC_COND_EXPR
9416 || COMPARISON_CLASS_P (arg0))
9417 {
9418 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9419 arg0, arg1,
9420 /*cond_first_p=*/1);
9421 if (tem != NULL_TREE)
9422 return tem;
9423 }
9424
9425 if (TREE_CODE (arg1) == COND_EXPR
9426 || TREE_CODE (arg1) == VEC_COND_EXPR
9427 || COMPARISON_CLASS_P (arg1))
9428 {
9429 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9430 arg1, arg0,
9431 /*cond_first_p=*/0);
9432 if (tem != NULL_TREE)
9433 return tem;
9434 }
9435 }
9436
9437 switch (code)
9438 {
9439 case MEM_REF:
9440 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9441 if (TREE_CODE (arg0) == ADDR_EXPR
9442 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9443 {
9444 tree iref = TREE_OPERAND (arg0, 0);
9445 return fold_build2 (MEM_REF, type,
9446 TREE_OPERAND (iref, 0),
9447 int_const_binop (PLUS_EXPR, arg1,
9448 TREE_OPERAND (iref, 1)));
9449 }
9450
9451 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9452 if (TREE_CODE (arg0) == ADDR_EXPR
9453 && handled_component_p (TREE_OPERAND (arg0, 0)))
9454 {
9455 tree base;
9456 HOST_WIDE_INT coffset;
9457 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9458 &coffset);
9459 if (!base)
9460 return NULL_TREE;
9461 return fold_build2 (MEM_REF, type,
9462 build_fold_addr_expr (base),
9463 int_const_binop (PLUS_EXPR, arg1,
9464 size_int (coffset)));
9465 }
9466
9467 return NULL_TREE;
9468
9469 case POINTER_PLUS_EXPR:
9470 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9471 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9472 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9473 return fold_convert_loc (loc, type,
9474 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9475 fold_convert_loc (loc, sizetype,
9476 arg1),
9477 fold_convert_loc (loc, sizetype,
9478 arg0)));
9479
9480 return NULL_TREE;
9481
9482 case PLUS_EXPR:
9483 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9484 {
9485 /* X + (X / CST) * -CST is X % CST. */
9486 if (TREE_CODE (arg1) == MULT_EXPR
9487 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9488 && operand_equal_p (arg0,
9489 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9490 {
9491 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9492 tree cst1 = TREE_OPERAND (arg1, 1);
9493 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9494 cst1, cst0);
9495 if (sum && integer_zerop (sum))
9496 return fold_convert_loc (loc, type,
9497 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9498 TREE_TYPE (arg0), arg0,
9499 cst0));
9500 }
9501 }
9502
9503 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9504 one. Make sure the type is not saturating and has the signedness of
9505 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9506 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9507 if ((TREE_CODE (arg0) == MULT_EXPR
9508 || TREE_CODE (arg1) == MULT_EXPR)
9509 && !TYPE_SATURATING (type)
9510 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9511 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9512 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9513 {
9514 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9515 if (tem)
9516 return tem;
9517 }
9518
9519 if (! FLOAT_TYPE_P (type))
9520 {
9521 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9522 (plus (plus (mult) (mult)) (foo)) so that we can
9523 take advantage of the factoring cases below. */
9524 if (ANY_INTEGRAL_TYPE_P (type)
9525 && TYPE_OVERFLOW_WRAPS (type)
9526 && (((TREE_CODE (arg0) == PLUS_EXPR
9527 || TREE_CODE (arg0) == MINUS_EXPR)
9528 && TREE_CODE (arg1) == MULT_EXPR)
9529 || ((TREE_CODE (arg1) == PLUS_EXPR
9530 || TREE_CODE (arg1) == MINUS_EXPR)
9531 && TREE_CODE (arg0) == MULT_EXPR)))
9532 {
9533 tree parg0, parg1, parg, marg;
9534 enum tree_code pcode;
9535
9536 if (TREE_CODE (arg1) == MULT_EXPR)
9537 parg = arg0, marg = arg1;
9538 else
9539 parg = arg1, marg = arg0;
9540 pcode = TREE_CODE (parg);
9541 parg0 = TREE_OPERAND (parg, 0);
9542 parg1 = TREE_OPERAND (parg, 1);
9543 STRIP_NOPS (parg0);
9544 STRIP_NOPS (parg1);
9545
9546 if (TREE_CODE (parg0) == MULT_EXPR
9547 && TREE_CODE (parg1) != MULT_EXPR)
9548 return fold_build2_loc (loc, pcode, type,
9549 fold_build2_loc (loc, PLUS_EXPR, type,
9550 fold_convert_loc (loc, type,
9551 parg0),
9552 fold_convert_loc (loc, type,
9553 marg)),
9554 fold_convert_loc (loc, type, parg1));
9555 if (TREE_CODE (parg0) != MULT_EXPR
9556 && TREE_CODE (parg1) == MULT_EXPR)
9557 return
9558 fold_build2_loc (loc, PLUS_EXPR, type,
9559 fold_convert_loc (loc, type, parg0),
9560 fold_build2_loc (loc, pcode, type,
9561 fold_convert_loc (loc, type, marg),
9562 fold_convert_loc (loc, type,
9563 parg1)));
9564 }
9565 }
9566 else
9567 {
9568 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9569 to __complex__ ( x, y ). This is not the same for SNaNs or
9570 if signed zeros are involved. */
9571 if (!HONOR_SNANS (element_mode (arg0))
9572 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9573 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9574 {
9575 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9576 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9577 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9578 bool arg0rz = false, arg0iz = false;
9579 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9580 || (arg0i && (arg0iz = real_zerop (arg0i))))
9581 {
9582 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9583 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9584 if (arg0rz && arg1i && real_zerop (arg1i))
9585 {
9586 tree rp = arg1r ? arg1r
9587 : build1 (REALPART_EXPR, rtype, arg1);
9588 tree ip = arg0i ? arg0i
9589 : build1 (IMAGPART_EXPR, rtype, arg0);
9590 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9591 }
9592 else if (arg0iz && arg1r && real_zerop (arg1r))
9593 {
9594 tree rp = arg0r ? arg0r
9595 : build1 (REALPART_EXPR, rtype, arg0);
9596 tree ip = arg1i ? arg1i
9597 : build1 (IMAGPART_EXPR, rtype, arg1);
9598 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9599 }
9600 }
9601 }
9602
9603 if (flag_unsafe_math_optimizations
9604 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9605 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9606 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9607 return tem;
9608
9609 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9610 We associate floats only if the user has specified
9611 -fassociative-math. */
9612 if (flag_associative_math
9613 && TREE_CODE (arg1) == PLUS_EXPR
9614 && TREE_CODE (arg0) != MULT_EXPR)
9615 {
9616 tree tree10 = TREE_OPERAND (arg1, 0);
9617 tree tree11 = TREE_OPERAND (arg1, 1);
9618 if (TREE_CODE (tree11) == MULT_EXPR
9619 && TREE_CODE (tree10) == MULT_EXPR)
9620 {
9621 tree tree0;
9622 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9623 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9624 }
9625 }
9626 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9627 We associate floats only if the user has specified
9628 -fassociative-math. */
9629 if (flag_associative_math
9630 && TREE_CODE (arg0) == PLUS_EXPR
9631 && TREE_CODE (arg1) != MULT_EXPR)
9632 {
9633 tree tree00 = TREE_OPERAND (arg0, 0);
9634 tree tree01 = TREE_OPERAND (arg0, 1);
9635 if (TREE_CODE (tree01) == MULT_EXPR
9636 && TREE_CODE (tree00) == MULT_EXPR)
9637 {
9638 tree tree0;
9639 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9640 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9641 }
9642 }
9643 }
9644
9645 bit_rotate:
9646 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9647 is a rotate of A by C1 bits. */
9648 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9649 is a rotate of A by B bits. */
9650 {
9651 enum tree_code code0, code1;
9652 tree rtype;
9653 code0 = TREE_CODE (arg0);
9654 code1 = TREE_CODE (arg1);
9655 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9656 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9657 && operand_equal_p (TREE_OPERAND (arg0, 0),
9658 TREE_OPERAND (arg1, 0), 0)
9659 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9660 TYPE_UNSIGNED (rtype))
9661 /* Only create rotates in complete modes. Other cases are not
9662 expanded properly. */
9663 && (element_precision (rtype)
9664 == element_precision (TYPE_MODE (rtype))))
9665 {
9666 tree tree01, tree11;
9667 enum tree_code code01, code11;
9668
9669 tree01 = TREE_OPERAND (arg0, 1);
9670 tree11 = TREE_OPERAND (arg1, 1);
9671 STRIP_NOPS (tree01);
9672 STRIP_NOPS (tree11);
9673 code01 = TREE_CODE (tree01);
9674 code11 = TREE_CODE (tree11);
9675 if (code01 == INTEGER_CST
9676 && code11 == INTEGER_CST
9677 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9678 == element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9679 {
9680 tem = build2_loc (loc, LROTATE_EXPR,
9681 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9682 TREE_OPERAND (arg0, 0),
9683 code0 == LSHIFT_EXPR
9684 ? TREE_OPERAND (arg0, 1)
9685 : TREE_OPERAND (arg1, 1));
9686 return fold_convert_loc (loc, type, tem);
9687 }
9688 else if (code11 == MINUS_EXPR)
9689 {
9690 tree tree110, tree111;
9691 tree110 = TREE_OPERAND (tree11, 0);
9692 tree111 = TREE_OPERAND (tree11, 1);
9693 STRIP_NOPS (tree110);
9694 STRIP_NOPS (tree111);
9695 if (TREE_CODE (tree110) == INTEGER_CST
9696 && 0 == compare_tree_int (tree110,
9697 element_precision
9698 (TREE_TYPE (TREE_OPERAND
9699 (arg0, 0))))
9700 && operand_equal_p (tree01, tree111, 0))
9701 return
9702 fold_convert_loc (loc, type,
9703 build2 ((code0 == LSHIFT_EXPR
9704 ? LROTATE_EXPR
9705 : RROTATE_EXPR),
9706 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9707 TREE_OPERAND (arg0, 0),
9708 TREE_OPERAND (arg0, 1)));
9709 }
9710 else if (code01 == MINUS_EXPR)
9711 {
9712 tree tree010, tree011;
9713 tree010 = TREE_OPERAND (tree01, 0);
9714 tree011 = TREE_OPERAND (tree01, 1);
9715 STRIP_NOPS (tree010);
9716 STRIP_NOPS (tree011);
9717 if (TREE_CODE (tree010) == INTEGER_CST
9718 && 0 == compare_tree_int (tree010,
9719 element_precision
9720 (TREE_TYPE (TREE_OPERAND
9721 (arg0, 0))))
9722 && operand_equal_p (tree11, tree011, 0))
9723 return fold_convert_loc
9724 (loc, type,
9725 build2 ((code0 != LSHIFT_EXPR
9726 ? LROTATE_EXPR
9727 : RROTATE_EXPR),
9728 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9729 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1)));
9730 }
9731 }
9732 }
9733
9734 associate:
9735 /* In most languages, can't associate operations on floats through
9736 parentheses. Rather than remember where the parentheses were, we
9737 don't associate floats at all, unless the user has specified
9738 -fassociative-math.
9739 And, we need to make sure type is not saturating. */
9740
9741 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9742 && !TYPE_SATURATING (type))
9743 {
9744 tree var0, con0, lit0, minus_lit0;
9745 tree var1, con1, lit1, minus_lit1;
9746 tree atype = type;
9747 bool ok = true;
9748
9749 /* Split both trees into variables, constants, and literals. Then
9750 associate each group together, the constants with literals,
9751 then the result with variables. This increases the chances of
9752 literals being recombined later and of generating relocatable
9753 expressions for the sum of a constant and literal. */
9754 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
9755 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
9756 code == MINUS_EXPR);
9757
9758 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9759 if (code == MINUS_EXPR)
9760 code = PLUS_EXPR;
9761
9762 /* With undefined overflow prefer doing association in a type
9763 which wraps on overflow, if that is one of the operand types. */
9764 if ((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9765 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9766 {
9767 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9768 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9769 atype = TREE_TYPE (arg0);
9770 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9771 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9772 atype = TREE_TYPE (arg1);
9773 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9774 }
9775
9776 /* With undefined overflow we can only associate constants with one
9777 variable, and constants whose association doesn't overflow. */
9778 if ((POINTER_TYPE_P (atype) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9779 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
9780 {
9781 if (var0 && var1)
9782 {
9783 tree tmp0 = var0;
9784 tree tmp1 = var1;
9785
9786 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9787 tmp0 = TREE_OPERAND (tmp0, 0);
9788 if (CONVERT_EXPR_P (tmp0)
9789 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9790 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9791 <= TYPE_PRECISION (atype)))
9792 tmp0 = TREE_OPERAND (tmp0, 0);
9793 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9794 tmp1 = TREE_OPERAND (tmp1, 0);
9795 if (CONVERT_EXPR_P (tmp1)
9796 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9797 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9798 <= TYPE_PRECISION (atype)))
9799 tmp1 = TREE_OPERAND (tmp1, 0);
9800 /* The only case we can still associate with two variables
9801 is if they are the same, modulo negation and bit-pattern
9802 preserving conversions. */
9803 if (!operand_equal_p (tmp0, tmp1, 0))
9804 ok = false;
9805 }
9806 }
9807
9808 /* Only do something if we found more than two objects. Otherwise,
9809 nothing has changed and we risk infinite recursion. */
9810 if (ok
9811 && (2 < ((var0 != 0) + (var1 != 0)
9812 + (con0 != 0) + (con1 != 0)
9813 + (lit0 != 0) + (lit1 != 0)
9814 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9815 {
9816 bool any_overflows = false;
9817 if (lit0) any_overflows |= TREE_OVERFLOW (lit0);
9818 if (lit1) any_overflows |= TREE_OVERFLOW (lit1);
9819 if (minus_lit0) any_overflows |= TREE_OVERFLOW (minus_lit0);
9820 if (minus_lit1) any_overflows |= TREE_OVERFLOW (minus_lit1);
9821 var0 = associate_trees (loc, var0, var1, code, atype);
9822 con0 = associate_trees (loc, con0, con1, code, atype);
9823 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9824 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9825 code, atype);
9826
9827 /* Preserve the MINUS_EXPR if the negative part of the literal is
9828 greater than the positive part. Otherwise, the multiplicative
9829 folding code (i.e extract_muldiv) may be fooled in case
9830 unsigned constants are subtracted, like in the following
9831 example: ((X*2 + 4) - 8U)/2. */
9832 if (minus_lit0 && lit0)
9833 {
9834 if (TREE_CODE (lit0) == INTEGER_CST
9835 && TREE_CODE (minus_lit0) == INTEGER_CST
9836 && tree_int_cst_lt (lit0, minus_lit0))
9837 {
9838 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9839 MINUS_EXPR, atype);
9840 lit0 = 0;
9841 }
9842 else
9843 {
9844 lit0 = associate_trees (loc, lit0, minus_lit0,
9845 MINUS_EXPR, atype);
9846 minus_lit0 = 0;
9847 }
9848 }
9849
9850 /* Don't introduce overflows through reassociation. */
9851 if (!any_overflows
9852 && ((lit0 && TREE_OVERFLOW_P (lit0))
9853 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0))))
9854 return NULL_TREE;
9855
9856 if (minus_lit0)
9857 {
9858 if (con0 == 0)
9859 return
9860 fold_convert_loc (loc, type,
9861 associate_trees (loc, var0, minus_lit0,
9862 MINUS_EXPR, atype));
9863 else
9864 {
9865 con0 = associate_trees (loc, con0, minus_lit0,
9866 MINUS_EXPR, atype);
9867 return
9868 fold_convert_loc (loc, type,
9869 associate_trees (loc, var0, con0,
9870 PLUS_EXPR, atype));
9871 }
9872 }
9873
9874 con0 = associate_trees (loc, con0, lit0, code, atype);
9875 return
9876 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9877 code, atype));
9878 }
9879 }
9880
9881 return NULL_TREE;
9882
9883 case MINUS_EXPR:
9884 /* Pointer simplifications for subtraction, simple reassociations. */
9885 if (POINTER_TYPE_P (TREE_TYPE (arg1)) && POINTER_TYPE_P (TREE_TYPE (arg0)))
9886 {
9887 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
9888 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR
9889 && TREE_CODE (arg1) == POINTER_PLUS_EXPR)
9890 {
9891 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9892 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
9893 tree arg10 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
9894 tree arg11 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
9895 return fold_build2_loc (loc, PLUS_EXPR, type,
9896 fold_build2_loc (loc, MINUS_EXPR, type,
9897 arg00, arg10),
9898 fold_build2_loc (loc, MINUS_EXPR, type,
9899 arg01, arg11));
9900 }
9901 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
9902 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
9903 {
9904 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9905 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
9906 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type, arg00,
9907 fold_convert_loc (loc, type, arg1));
9908 if (tmp)
9909 return fold_build2_loc (loc, PLUS_EXPR, type, tmp, arg01);
9910 }
9911 /* PTR0 - (PTR1 p+ A) -> (PTR0 - PTR1) - A, assuming PTR0 - PTR1
9912 simplifies. */
9913 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
9914 {
9915 tree arg10 = fold_convert_loc (loc, type,
9916 TREE_OPERAND (arg1, 0));
9917 tree arg11 = fold_convert_loc (loc, type,
9918 TREE_OPERAND (arg1, 1));
9919 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type,
9920 fold_convert_loc (loc, type, arg0),
9921 arg10);
9922 if (tmp)
9923 return fold_build2_loc (loc, MINUS_EXPR, type, tmp, arg11);
9924 }
9925 }
9926 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9927 if (TREE_CODE (arg0) == NEGATE_EXPR
9928 && negate_expr_p (arg1)
9929 && reorder_operands_p (arg0, arg1))
9930 return fold_build2_loc (loc, MINUS_EXPR, type,
9931 fold_convert_loc (loc, type,
9932 negate_expr (arg1)),
9933 fold_convert_loc (loc, type,
9934 TREE_OPERAND (arg0, 0)));
9935
9936 if (! FLOAT_TYPE_P (type))
9937 {
9938 /* Fold A - (A & B) into ~B & A. */
9939 if (!TREE_SIDE_EFFECTS (arg0)
9940 && TREE_CODE (arg1) == BIT_AND_EXPR)
9941 {
9942 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
9943 {
9944 tree arg10 = fold_convert_loc (loc, type,
9945 TREE_OPERAND (arg1, 0));
9946 return fold_build2_loc (loc, BIT_AND_EXPR, type,
9947 fold_build1_loc (loc, BIT_NOT_EXPR,
9948 type, arg10),
9949 fold_convert_loc (loc, type, arg0));
9950 }
9951 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9952 {
9953 tree arg11 = fold_convert_loc (loc,
9954 type, TREE_OPERAND (arg1, 1));
9955 return fold_build2_loc (loc, BIT_AND_EXPR, type,
9956 fold_build1_loc (loc, BIT_NOT_EXPR,
9957 type, arg11),
9958 fold_convert_loc (loc, type, arg0));
9959 }
9960 }
9961
9962 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
9963 any power of 2 minus 1. */
9964 if (TREE_CODE (arg0) == BIT_AND_EXPR
9965 && TREE_CODE (arg1) == BIT_AND_EXPR
9966 && operand_equal_p (TREE_OPERAND (arg0, 0),
9967 TREE_OPERAND (arg1, 0), 0))
9968 {
9969 tree mask0 = TREE_OPERAND (arg0, 1);
9970 tree mask1 = TREE_OPERAND (arg1, 1);
9971 tree tem = fold_build1_loc (loc, BIT_NOT_EXPR, type, mask0);
9972
9973 if (operand_equal_p (tem, mask1, 0))
9974 {
9975 tem = fold_build2_loc (loc, BIT_XOR_EXPR, type,
9976 TREE_OPERAND (arg0, 0), mask1);
9977 return fold_build2_loc (loc, MINUS_EXPR, type, tem, mask1);
9978 }
9979 }
9980 }
9981
9982 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9983 __complex__ ( x, -y ). This is not the same for SNaNs or if
9984 signed zeros are involved. */
9985 if (!HONOR_SNANS (element_mode (arg0))
9986 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9987 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9988 {
9989 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9990 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9991 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9992 bool arg0rz = false, arg0iz = false;
9993 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9994 || (arg0i && (arg0iz = real_zerop (arg0i))))
9995 {
9996 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9997 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9998 if (arg0rz && arg1i && real_zerop (arg1i))
9999 {
10000 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10001 arg1r ? arg1r
10002 : build1 (REALPART_EXPR, rtype, arg1));
10003 tree ip = arg0i ? arg0i
10004 : build1 (IMAGPART_EXPR, rtype, arg0);
10005 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10006 }
10007 else if (arg0iz && arg1r && real_zerop (arg1r))
10008 {
10009 tree rp = arg0r ? arg0r
10010 : build1 (REALPART_EXPR, rtype, arg0);
10011 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10012 arg1i ? arg1i
10013 : build1 (IMAGPART_EXPR, rtype, arg1));
10014 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10015 }
10016 }
10017 }
10018
10019 /* A - B -> A + (-B) if B is easily negatable. */
10020 if (negate_expr_p (arg1)
10021 && !TYPE_OVERFLOW_SANITIZED (type)
10022 && ((FLOAT_TYPE_P (type)
10023 /* Avoid this transformation if B is a positive REAL_CST. */
10024 && (TREE_CODE (arg1) != REAL_CST
10025 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
10026 || INTEGRAL_TYPE_P (type)))
10027 return fold_build2_loc (loc, PLUS_EXPR, type,
10028 fold_convert_loc (loc, type, arg0),
10029 fold_convert_loc (loc, type,
10030 negate_expr (arg1)));
10031
10032 /* Fold &a[i] - &a[j] to i-j. */
10033 if (TREE_CODE (arg0) == ADDR_EXPR
10034 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
10035 && TREE_CODE (arg1) == ADDR_EXPR
10036 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
10037 {
10038 tree tem = fold_addr_of_array_ref_difference (loc, type,
10039 TREE_OPERAND (arg0, 0),
10040 TREE_OPERAND (arg1, 0));
10041 if (tem)
10042 return tem;
10043 }
10044
10045 if (FLOAT_TYPE_P (type)
10046 && flag_unsafe_math_optimizations
10047 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
10048 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
10049 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
10050 return tem;
10051
10052 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
10053 one. Make sure the type is not saturating and has the signedness of
10054 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10055 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10056 if ((TREE_CODE (arg0) == MULT_EXPR
10057 || TREE_CODE (arg1) == MULT_EXPR)
10058 && !TYPE_SATURATING (type)
10059 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
10060 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
10061 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10062 {
10063 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
10064 if (tem)
10065 return tem;
10066 }
10067
10068 goto associate;
10069
10070 case MULT_EXPR:
10071 /* (-A) * (-B) -> A * B */
10072 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10073 return fold_build2_loc (loc, MULT_EXPR, type,
10074 fold_convert_loc (loc, type,
10075 TREE_OPERAND (arg0, 0)),
10076 fold_convert_loc (loc, type,
10077 negate_expr (arg1)));
10078 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10079 return fold_build2_loc (loc, MULT_EXPR, type,
10080 fold_convert_loc (loc, type,
10081 negate_expr (arg0)),
10082 fold_convert_loc (loc, type,
10083 TREE_OPERAND (arg1, 0)));
10084
10085 if (! FLOAT_TYPE_P (type))
10086 {
10087 /* Transform x * -C into -x * C if x is easily negatable. */
10088 if (TREE_CODE (arg1) == INTEGER_CST
10089 && tree_int_cst_sgn (arg1) == -1
10090 && negate_expr_p (arg0)
10091 && (tem = negate_expr (arg1)) != arg1
10092 && !TREE_OVERFLOW (tem))
10093 return fold_build2_loc (loc, MULT_EXPR, type,
10094 fold_convert_loc (loc, type,
10095 negate_expr (arg0)),
10096 tem);
10097
10098 /* (a * (1 << b)) is (a << b) */
10099 if (TREE_CODE (arg1) == LSHIFT_EXPR
10100 && integer_onep (TREE_OPERAND (arg1, 0)))
10101 return fold_build2_loc (loc, LSHIFT_EXPR, type, op0,
10102 TREE_OPERAND (arg1, 1));
10103 if (TREE_CODE (arg0) == LSHIFT_EXPR
10104 && integer_onep (TREE_OPERAND (arg0, 0)))
10105 return fold_build2_loc (loc, LSHIFT_EXPR, type, op1,
10106 TREE_OPERAND (arg0, 1));
10107
10108 /* (A + A) * C -> A * 2 * C */
10109 if (TREE_CODE (arg0) == PLUS_EXPR
10110 && TREE_CODE (arg1) == INTEGER_CST
10111 && operand_equal_p (TREE_OPERAND (arg0, 0),
10112 TREE_OPERAND (arg0, 1), 0))
10113 return fold_build2_loc (loc, MULT_EXPR, type,
10114 omit_one_operand_loc (loc, type,
10115 TREE_OPERAND (arg0, 0),
10116 TREE_OPERAND (arg0, 1)),
10117 fold_build2_loc (loc, MULT_EXPR, type,
10118 build_int_cst (type, 2) , arg1));
10119
10120 /* ((T) (X /[ex] C)) * C cancels out if the conversion is
10121 sign-changing only. */
10122 if (TREE_CODE (arg1) == INTEGER_CST
10123 && TREE_CODE (arg0) == EXACT_DIV_EXPR
10124 && operand_equal_p (arg1, TREE_OPERAND (arg0, 1), 0))
10125 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10126
10127 strict_overflow_p = false;
10128 if (TREE_CODE (arg1) == INTEGER_CST
10129 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10130 &strict_overflow_p)))
10131 {
10132 if (strict_overflow_p)
10133 fold_overflow_warning (("assuming signed overflow does not "
10134 "occur when simplifying "
10135 "multiplication"),
10136 WARN_STRICT_OVERFLOW_MISC);
10137 return fold_convert_loc (loc, type, tem);
10138 }
10139
10140 /* Optimize z * conj(z) for integer complex numbers. */
10141 if (TREE_CODE (arg0) == CONJ_EXPR
10142 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10143 return fold_mult_zconjz (loc, type, arg1);
10144 if (TREE_CODE (arg1) == CONJ_EXPR
10145 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10146 return fold_mult_zconjz (loc, type, arg0);
10147 }
10148 else
10149 {
10150 /* Convert (C1/X)*C2 into (C1*C2)/X. This transformation may change
10151 the result for floating point types due to rounding so it is applied
10152 only if -fassociative-math was specify. */
10153 if (flag_associative_math
10154 && TREE_CODE (arg0) == RDIV_EXPR
10155 && TREE_CODE (arg1) == REAL_CST
10156 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
10157 {
10158 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
10159 arg1);
10160 if (tem)
10161 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
10162 TREE_OPERAND (arg0, 1));
10163 }
10164
10165 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
10166 if (operand_equal_p (arg0, arg1, 0))
10167 {
10168 tree tem = fold_strip_sign_ops (arg0);
10169 if (tem != NULL_TREE)
10170 {
10171 tem = fold_convert_loc (loc, type, tem);
10172 return fold_build2_loc (loc, MULT_EXPR, type, tem, tem);
10173 }
10174 }
10175
10176 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10177 This is not the same for NaNs or if signed zeros are
10178 involved. */
10179 if (!HONOR_NANS (arg0)
10180 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10181 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10182 && TREE_CODE (arg1) == COMPLEX_CST
10183 && real_zerop (TREE_REALPART (arg1)))
10184 {
10185 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10186 if (real_onep (TREE_IMAGPART (arg1)))
10187 return
10188 fold_build2_loc (loc, COMPLEX_EXPR, type,
10189 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
10190 rtype, arg0)),
10191 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
10192 else if (real_minus_onep (TREE_IMAGPART (arg1)))
10193 return
10194 fold_build2_loc (loc, COMPLEX_EXPR, type,
10195 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
10196 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
10197 rtype, arg0)));
10198 }
10199
10200 /* Optimize z * conj(z) for floating point complex numbers.
10201 Guarded by flag_unsafe_math_optimizations as non-finite
10202 imaginary components don't produce scalar results. */
10203 if (flag_unsafe_math_optimizations
10204 && TREE_CODE (arg0) == CONJ_EXPR
10205 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10206 return fold_mult_zconjz (loc, type, arg1);
10207 if (flag_unsafe_math_optimizations
10208 && TREE_CODE (arg1) == CONJ_EXPR
10209 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10210 return fold_mult_zconjz (loc, type, arg0);
10211
10212 if (flag_unsafe_math_optimizations)
10213 {
10214 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
10215 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
10216
10217 /* Optimizations of root(...)*root(...). */
10218 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
10219 {
10220 tree rootfn, arg;
10221 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10222 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10223
10224 /* Optimize sqrt(x)*sqrt(x) as x. */
10225 if (BUILTIN_SQRT_P (fcode0)
10226 && operand_equal_p (arg00, arg10, 0)
10227 && ! HONOR_SNANS (element_mode (type)))
10228 return arg00;
10229
10230 /* Optimize root(x)*root(y) as root(x*y). */
10231 rootfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10232 arg = fold_build2_loc (loc, MULT_EXPR, type, arg00, arg10);
10233 return build_call_expr_loc (loc, rootfn, 1, arg);
10234 }
10235
10236 /* Optimize expN(x)*expN(y) as expN(x+y). */
10237 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
10238 {
10239 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10240 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
10241 CALL_EXPR_ARG (arg0, 0),
10242 CALL_EXPR_ARG (arg1, 0));
10243 return build_call_expr_loc (loc, expfn, 1, arg);
10244 }
10245
10246 /* Optimizations of pow(...)*pow(...). */
10247 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
10248 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
10249 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
10250 {
10251 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10252 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10253 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10254 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10255
10256 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
10257 if (operand_equal_p (arg01, arg11, 0))
10258 {
10259 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10260 tree arg = fold_build2_loc (loc, MULT_EXPR, type,
10261 arg00, arg10);
10262 return build_call_expr_loc (loc, powfn, 2, arg, arg01);
10263 }
10264
10265 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
10266 if (operand_equal_p (arg00, arg10, 0))
10267 {
10268 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10269 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
10270 arg01, arg11);
10271 return build_call_expr_loc (loc, powfn, 2, arg00, arg);
10272 }
10273 }
10274
10275 /* Optimize tan(x)*cos(x) as sin(x). */
10276 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
10277 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
10278 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
10279 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
10280 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
10281 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
10282 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10283 CALL_EXPR_ARG (arg1, 0), 0))
10284 {
10285 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
10286
10287 if (sinfn != NULL_TREE)
10288 return build_call_expr_loc (loc, sinfn, 1,
10289 CALL_EXPR_ARG (arg0, 0));
10290 }
10291
10292 /* Optimize x*pow(x,c) as pow(x,c+1). */
10293 if (fcode1 == BUILT_IN_POW
10294 || fcode1 == BUILT_IN_POWF
10295 || fcode1 == BUILT_IN_POWL)
10296 {
10297 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10298 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10299 if (TREE_CODE (arg11) == REAL_CST
10300 && !TREE_OVERFLOW (arg11)
10301 && operand_equal_p (arg0, arg10, 0))
10302 {
10303 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10304 REAL_VALUE_TYPE c;
10305 tree arg;
10306
10307 c = TREE_REAL_CST (arg11);
10308 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10309 arg = build_real (type, c);
10310 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
10311 }
10312 }
10313
10314 /* Optimize pow(x,c)*x as pow(x,c+1). */
10315 if (fcode0 == BUILT_IN_POW
10316 || fcode0 == BUILT_IN_POWF
10317 || fcode0 == BUILT_IN_POWL)
10318 {
10319 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10320 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10321 if (TREE_CODE (arg01) == REAL_CST
10322 && !TREE_OVERFLOW (arg01)
10323 && operand_equal_p (arg1, arg00, 0))
10324 {
10325 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10326 REAL_VALUE_TYPE c;
10327 tree arg;
10328
10329 c = TREE_REAL_CST (arg01);
10330 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10331 arg = build_real (type, c);
10332 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
10333 }
10334 }
10335
10336 /* Canonicalize x*x as pow(x,2.0), which is expanded as x*x. */
10337 if (!in_gimple_form
10338 && optimize
10339 && operand_equal_p (arg0, arg1, 0))
10340 {
10341 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
10342
10343 if (powfn)
10344 {
10345 tree arg = build_real (type, dconst2);
10346 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
10347 }
10348 }
10349 }
10350 }
10351 goto associate;
10352
10353 case BIT_IOR_EXPR:
10354 /* Canonicalize (X & C1) | C2. */
10355 if (TREE_CODE (arg0) == BIT_AND_EXPR
10356 && TREE_CODE (arg1) == INTEGER_CST
10357 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10358 {
10359 int width = TYPE_PRECISION (type), w;
10360 wide_int c1 = TREE_OPERAND (arg0, 1);
10361 wide_int c2 = arg1;
10362
10363 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10364 if ((c1 & c2) == c1)
10365 return omit_one_operand_loc (loc, type, arg1,
10366 TREE_OPERAND (arg0, 0));
10367
10368 wide_int msk = wi::mask (width, false,
10369 TYPE_PRECISION (TREE_TYPE (arg1)));
10370
10371 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10372 if (msk.and_not (c1 | c2) == 0)
10373 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
10374 TREE_OPERAND (arg0, 0), arg1);
10375
10376 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10377 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10378 mode which allows further optimizations. */
10379 c1 &= msk;
10380 c2 &= msk;
10381 wide_int c3 = c1.and_not (c2);
10382 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
10383 {
10384 wide_int mask = wi::mask (w, false,
10385 TYPE_PRECISION (type));
10386 if (((c1 | c2) & mask) == mask && c1.and_not (mask) == 0)
10387 {
10388 c3 = mask;
10389 break;
10390 }
10391 }
10392
10393 if (c3 != c1)
10394 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
10395 fold_build2_loc (loc, BIT_AND_EXPR, type,
10396 TREE_OPERAND (arg0, 0),
10397 wide_int_to_tree (type,
10398 c3)),
10399 arg1);
10400 }
10401
10402 /* (X & ~Y) | (~X & Y) is X ^ Y */
10403 if (TREE_CODE (arg0) == BIT_AND_EXPR
10404 && TREE_CODE (arg1) == BIT_AND_EXPR)
10405 {
10406 tree a0, a1, l0, l1, n0, n1;
10407
10408 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10409 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10410
10411 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10412 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10413
10414 n0 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l0);
10415 n1 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l1);
10416
10417 if ((operand_equal_p (n0, a0, 0)
10418 && operand_equal_p (n1, a1, 0))
10419 || (operand_equal_p (n0, a1, 0)
10420 && operand_equal_p (n1, a0, 0)))
10421 return fold_build2_loc (loc, BIT_XOR_EXPR, type, l0, n1);
10422 }
10423
10424 /* See if this can be simplified into a rotate first. If that
10425 is unsuccessful continue in the association code. */
10426 goto bit_rotate;
10427
10428 case BIT_XOR_EXPR:
10429 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10430 if (TREE_CODE (arg0) == BIT_AND_EXPR
10431 && INTEGRAL_TYPE_P (type)
10432 && integer_onep (TREE_OPERAND (arg0, 1))
10433 && integer_onep (arg1))
10434 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
10435 build_zero_cst (TREE_TYPE (arg0)));
10436
10437 /* See if this can be simplified into a rotate first. If that
10438 is unsuccessful continue in the association code. */
10439 goto bit_rotate;
10440
10441 case BIT_AND_EXPR:
10442 /* ~X & X, (X == 0) & X, and !X & X are always zero. */
10443 if ((TREE_CODE (arg0) == BIT_NOT_EXPR
10444 || TREE_CODE (arg0) == TRUTH_NOT_EXPR
10445 || (TREE_CODE (arg0) == EQ_EXPR
10446 && integer_zerop (TREE_OPERAND (arg0, 1))))
10447 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10448 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10449
10450 /* X & ~X , X & (X == 0), and X & !X are always zero. */
10451 if ((TREE_CODE (arg1) == BIT_NOT_EXPR
10452 || TREE_CODE (arg1) == TRUTH_NOT_EXPR
10453 || (TREE_CODE (arg1) == EQ_EXPR
10454 && integer_zerop (TREE_OPERAND (arg1, 1))))
10455 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10456 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10457
10458 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10459 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10460 && INTEGRAL_TYPE_P (type)
10461 && integer_onep (TREE_OPERAND (arg0, 1))
10462 && integer_onep (arg1))
10463 {
10464 tree tem2;
10465 tem = TREE_OPERAND (arg0, 0);
10466 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10467 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10468 tem, tem2);
10469 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10470 build_zero_cst (TREE_TYPE (tem)));
10471 }
10472 /* Fold ~X & 1 as (X & 1) == 0. */
10473 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10474 && INTEGRAL_TYPE_P (type)
10475 && integer_onep (arg1))
10476 {
10477 tree tem2;
10478 tem = TREE_OPERAND (arg0, 0);
10479 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10480 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10481 tem, tem2);
10482 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10483 build_zero_cst (TREE_TYPE (tem)));
10484 }
10485 /* Fold !X & 1 as X == 0. */
10486 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10487 && integer_onep (arg1))
10488 {
10489 tem = TREE_OPERAND (arg0, 0);
10490 return fold_build2_loc (loc, EQ_EXPR, type, tem,
10491 build_zero_cst (TREE_TYPE (tem)));
10492 }
10493
10494 /* Fold (X ^ Y) & Y as ~X & Y. */
10495 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10496 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10497 {
10498 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10499 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10500 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10501 fold_convert_loc (loc, type, arg1));
10502 }
10503 /* Fold (X ^ Y) & X as ~Y & X. */
10504 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10505 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10506 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10507 {
10508 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10509 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10510 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10511 fold_convert_loc (loc, type, arg1));
10512 }
10513 /* Fold X & (X ^ Y) as X & ~Y. */
10514 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10515 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10516 {
10517 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10518 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10519 fold_convert_loc (loc, type, arg0),
10520 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
10521 }
10522 /* Fold X & (Y ^ X) as ~Y & X. */
10523 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10524 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10525 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10526 {
10527 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10528 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10529 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10530 fold_convert_loc (loc, type, arg0));
10531 }
10532
10533 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10534 multiple of 1 << CST. */
10535 if (TREE_CODE (arg1) == INTEGER_CST)
10536 {
10537 wide_int cst1 = arg1;
10538 wide_int ncst1 = -cst1;
10539 if ((cst1 & ncst1) == ncst1
10540 && multiple_of_p (type, arg0,
10541 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
10542 return fold_convert_loc (loc, type, arg0);
10543 }
10544
10545 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10546 bits from CST2. */
10547 if (TREE_CODE (arg1) == INTEGER_CST
10548 && TREE_CODE (arg0) == MULT_EXPR
10549 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10550 {
10551 wide_int warg1 = arg1;
10552 wide_int masked = mask_with_tz (type, warg1, TREE_OPERAND (arg0, 1));
10553
10554 if (masked == 0)
10555 return omit_two_operands_loc (loc, type, build_zero_cst (type),
10556 arg0, arg1);
10557 else if (masked != warg1)
10558 {
10559 /* Avoid the transform if arg1 is a mask of some
10560 mode which allows further optimizations. */
10561 int pop = wi::popcount (warg1);
10562 if (!(pop >= BITS_PER_UNIT
10563 && exact_log2 (pop) != -1
10564 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
10565 return fold_build2_loc (loc, code, type, op0,
10566 wide_int_to_tree (type, masked));
10567 }
10568 }
10569
10570 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10571 ((A & N) + B) & M -> (A + B) & M
10572 Similarly if (N & M) == 0,
10573 ((A | N) + B) & M -> (A + B) & M
10574 and for - instead of + (or unary - instead of +)
10575 and/or ^ instead of |.
10576 If B is constant and (B & M) == 0, fold into A & M. */
10577 if (TREE_CODE (arg1) == INTEGER_CST)
10578 {
10579 wide_int cst1 = arg1;
10580 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
10581 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10582 && (TREE_CODE (arg0) == PLUS_EXPR
10583 || TREE_CODE (arg0) == MINUS_EXPR
10584 || TREE_CODE (arg0) == NEGATE_EXPR)
10585 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
10586 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
10587 {
10588 tree pmop[2];
10589 int which = 0;
10590 wide_int cst0;
10591
10592 /* Now we know that arg0 is (C + D) or (C - D) or
10593 -C and arg1 (M) is == (1LL << cst) - 1.
10594 Store C into PMOP[0] and D into PMOP[1]. */
10595 pmop[0] = TREE_OPERAND (arg0, 0);
10596 pmop[1] = NULL;
10597 if (TREE_CODE (arg0) != NEGATE_EXPR)
10598 {
10599 pmop[1] = TREE_OPERAND (arg0, 1);
10600 which = 1;
10601 }
10602
10603 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
10604 which = -1;
10605
10606 for (; which >= 0; which--)
10607 switch (TREE_CODE (pmop[which]))
10608 {
10609 case BIT_AND_EXPR:
10610 case BIT_IOR_EXPR:
10611 case BIT_XOR_EXPR:
10612 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
10613 != INTEGER_CST)
10614 break;
10615 cst0 = TREE_OPERAND (pmop[which], 1);
10616 cst0 &= cst1;
10617 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
10618 {
10619 if (cst0 != cst1)
10620 break;
10621 }
10622 else if (cst0 != 0)
10623 break;
10624 /* If C or D is of the form (A & N) where
10625 (N & M) == M, or of the form (A | N) or
10626 (A ^ N) where (N & M) == 0, replace it with A. */
10627 pmop[which] = TREE_OPERAND (pmop[which], 0);
10628 break;
10629 case INTEGER_CST:
10630 /* If C or D is a N where (N & M) == 0, it can be
10631 omitted (assumed 0). */
10632 if ((TREE_CODE (arg0) == PLUS_EXPR
10633 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
10634 && (cst1 & pmop[which]) == 0)
10635 pmop[which] = NULL;
10636 break;
10637 default:
10638 break;
10639 }
10640
10641 /* Only build anything new if we optimized one or both arguments
10642 above. */
10643 if (pmop[0] != TREE_OPERAND (arg0, 0)
10644 || (TREE_CODE (arg0) != NEGATE_EXPR
10645 && pmop[1] != TREE_OPERAND (arg0, 1)))
10646 {
10647 tree utype = TREE_TYPE (arg0);
10648 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10649 {
10650 /* Perform the operations in a type that has defined
10651 overflow behavior. */
10652 utype = unsigned_type_for (TREE_TYPE (arg0));
10653 if (pmop[0] != NULL)
10654 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
10655 if (pmop[1] != NULL)
10656 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
10657 }
10658
10659 if (TREE_CODE (arg0) == NEGATE_EXPR)
10660 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
10661 else if (TREE_CODE (arg0) == PLUS_EXPR)
10662 {
10663 if (pmop[0] != NULL && pmop[1] != NULL)
10664 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
10665 pmop[0], pmop[1]);
10666 else if (pmop[0] != NULL)
10667 tem = pmop[0];
10668 else if (pmop[1] != NULL)
10669 tem = pmop[1];
10670 else
10671 return build_int_cst (type, 0);
10672 }
10673 else if (pmop[0] == NULL)
10674 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
10675 else
10676 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
10677 pmop[0], pmop[1]);
10678 /* TEM is now the new binary +, - or unary - replacement. */
10679 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
10680 fold_convert_loc (loc, utype, arg1));
10681 return fold_convert_loc (loc, type, tem);
10682 }
10683 }
10684 }
10685
10686 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10687 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10688 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10689 {
10690 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10691
10692 wide_int mask = wide_int::from (arg1, prec, UNSIGNED);
10693 if (mask == -1)
10694 return
10695 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10696 }
10697
10698 goto associate;
10699
10700 case RDIV_EXPR:
10701 /* Don't touch a floating-point divide by zero unless the mode
10702 of the constant can represent infinity. */
10703 if (TREE_CODE (arg1) == REAL_CST
10704 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10705 && real_zerop (arg1))
10706 return NULL_TREE;
10707
10708 /* (-A) / (-B) -> A / B */
10709 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10710 return fold_build2_loc (loc, RDIV_EXPR, type,
10711 TREE_OPERAND (arg0, 0),
10712 negate_expr (arg1));
10713 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10714 return fold_build2_loc (loc, RDIV_EXPR, type,
10715 negate_expr (arg0),
10716 TREE_OPERAND (arg1, 0));
10717
10718 /* Convert A/B/C to A/(B*C). */
10719 if (flag_reciprocal_math
10720 && TREE_CODE (arg0) == RDIV_EXPR)
10721 return fold_build2_loc (loc, RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
10722 fold_build2_loc (loc, MULT_EXPR, type,
10723 TREE_OPERAND (arg0, 1), arg1));
10724
10725 /* Convert A/(B/C) to (A/B)*C. */
10726 if (flag_reciprocal_math
10727 && TREE_CODE (arg1) == RDIV_EXPR)
10728 return fold_build2_loc (loc, MULT_EXPR, type,
10729 fold_build2_loc (loc, RDIV_EXPR, type, arg0,
10730 TREE_OPERAND (arg1, 0)),
10731 TREE_OPERAND (arg1, 1));
10732
10733 /* Convert C1/(X*C2) into (C1/C2)/X. */
10734 if (flag_reciprocal_math
10735 && TREE_CODE (arg1) == MULT_EXPR
10736 && TREE_CODE (arg0) == REAL_CST
10737 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
10738 {
10739 tree tem = const_binop (RDIV_EXPR, arg0,
10740 TREE_OPERAND (arg1, 1));
10741 if (tem)
10742 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
10743 TREE_OPERAND (arg1, 0));
10744 }
10745
10746 if (flag_unsafe_math_optimizations)
10747 {
10748 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
10749 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
10750
10751 /* Optimize sin(x)/cos(x) as tan(x). */
10752 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
10753 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
10754 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
10755 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10756 CALL_EXPR_ARG (arg1, 0), 0))
10757 {
10758 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
10759
10760 if (tanfn != NULL_TREE)
10761 return build_call_expr_loc (loc, tanfn, 1, CALL_EXPR_ARG (arg0, 0));
10762 }
10763
10764 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
10765 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
10766 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
10767 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
10768 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10769 CALL_EXPR_ARG (arg1, 0), 0))
10770 {
10771 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
10772
10773 if (tanfn != NULL_TREE)
10774 {
10775 tree tmp = build_call_expr_loc (loc, tanfn, 1,
10776 CALL_EXPR_ARG (arg0, 0));
10777 return fold_build2_loc (loc, RDIV_EXPR, type,
10778 build_real (type, dconst1), tmp);
10779 }
10780 }
10781
10782 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
10783 NaNs or Infinities. */
10784 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
10785 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
10786 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
10787 {
10788 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10789 tree arg01 = CALL_EXPR_ARG (arg1, 0);
10790
10791 if (! HONOR_NANS (arg00)
10792 && ! HONOR_INFINITIES (element_mode (arg00))
10793 && operand_equal_p (arg00, arg01, 0))
10794 {
10795 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
10796
10797 if (cosfn != NULL_TREE)
10798 return build_call_expr_loc (loc, cosfn, 1, arg00);
10799 }
10800 }
10801
10802 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
10803 NaNs or Infinities. */
10804 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
10805 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
10806 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
10807 {
10808 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10809 tree arg01 = CALL_EXPR_ARG (arg1, 0);
10810
10811 if (! HONOR_NANS (arg00)
10812 && ! HONOR_INFINITIES (element_mode (arg00))
10813 && operand_equal_p (arg00, arg01, 0))
10814 {
10815 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
10816
10817 if (cosfn != NULL_TREE)
10818 {
10819 tree tmp = build_call_expr_loc (loc, cosfn, 1, arg00);
10820 return fold_build2_loc (loc, RDIV_EXPR, type,
10821 build_real (type, dconst1),
10822 tmp);
10823 }
10824 }
10825 }
10826
10827 /* Optimize pow(x,c)/x as pow(x,c-1). */
10828 if (fcode0 == BUILT_IN_POW
10829 || fcode0 == BUILT_IN_POWF
10830 || fcode0 == BUILT_IN_POWL)
10831 {
10832 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10833 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10834 if (TREE_CODE (arg01) == REAL_CST
10835 && !TREE_OVERFLOW (arg01)
10836 && operand_equal_p (arg1, arg00, 0))
10837 {
10838 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10839 REAL_VALUE_TYPE c;
10840 tree arg;
10841
10842 c = TREE_REAL_CST (arg01);
10843 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
10844 arg = build_real (type, c);
10845 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
10846 }
10847 }
10848
10849 /* Optimize a/root(b/c) into a*root(c/b). */
10850 if (BUILTIN_ROOT_P (fcode1))
10851 {
10852 tree rootarg = CALL_EXPR_ARG (arg1, 0);
10853
10854 if (TREE_CODE (rootarg) == RDIV_EXPR)
10855 {
10856 tree rootfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10857 tree b = TREE_OPERAND (rootarg, 0);
10858 tree c = TREE_OPERAND (rootarg, 1);
10859
10860 tree tmp = fold_build2_loc (loc, RDIV_EXPR, type, c, b);
10861
10862 tmp = build_call_expr_loc (loc, rootfn, 1, tmp);
10863 return fold_build2_loc (loc, MULT_EXPR, type, arg0, tmp);
10864 }
10865 }
10866
10867 /* Optimize x/expN(y) into x*expN(-y). */
10868 if (BUILTIN_EXPONENT_P (fcode1))
10869 {
10870 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10871 tree arg = negate_expr (CALL_EXPR_ARG (arg1, 0));
10872 arg1 = build_call_expr_loc (loc,
10873 expfn, 1,
10874 fold_convert_loc (loc, type, arg));
10875 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
10876 }
10877
10878 /* Optimize x/pow(y,z) into x*pow(y,-z). */
10879 if (fcode1 == BUILT_IN_POW
10880 || fcode1 == BUILT_IN_POWF
10881 || fcode1 == BUILT_IN_POWL)
10882 {
10883 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10884 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10885 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10886 tree neg11 = fold_convert_loc (loc, type,
10887 negate_expr (arg11));
10888 arg1 = build_call_expr_loc (loc, powfn, 2, arg10, neg11);
10889 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
10890 }
10891 }
10892 return NULL_TREE;
10893
10894 case TRUNC_DIV_EXPR:
10895 /* Optimize (X & (-A)) / A where A is a power of 2,
10896 to X >> log2(A) */
10897 if (TREE_CODE (arg0) == BIT_AND_EXPR
10898 && !TYPE_UNSIGNED (type) && TREE_CODE (arg1) == INTEGER_CST
10899 && integer_pow2p (arg1) && tree_int_cst_sgn (arg1) > 0)
10900 {
10901 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (arg1),
10902 arg1, TREE_OPERAND (arg0, 1));
10903 if (sum && integer_zerop (sum)) {
10904 tree pow2 = build_int_cst (integer_type_node,
10905 wi::exact_log2 (arg1));
10906 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10907 TREE_OPERAND (arg0, 0), pow2);
10908 }
10909 }
10910
10911 /* Fall through */
10912
10913 case FLOOR_DIV_EXPR:
10914 /* Simplify A / (B << N) where A and B are positive and B is
10915 a power of 2, to A >> (N + log2(B)). */
10916 strict_overflow_p = false;
10917 if (TREE_CODE (arg1) == LSHIFT_EXPR
10918 && (TYPE_UNSIGNED (type)
10919 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10920 {
10921 tree sval = TREE_OPERAND (arg1, 0);
10922 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10923 {
10924 tree sh_cnt = TREE_OPERAND (arg1, 1);
10925 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10926 wi::exact_log2 (sval));
10927
10928 if (strict_overflow_p)
10929 fold_overflow_warning (("assuming signed overflow does not "
10930 "occur when simplifying A / (B << N)"),
10931 WARN_STRICT_OVERFLOW_MISC);
10932
10933 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10934 sh_cnt, pow2);
10935 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10936 fold_convert_loc (loc, type, arg0), sh_cnt);
10937 }
10938 }
10939
10940 /* Fall through */
10941
10942 case ROUND_DIV_EXPR:
10943 case CEIL_DIV_EXPR:
10944 case EXACT_DIV_EXPR:
10945 if (integer_zerop (arg1))
10946 return NULL_TREE;
10947
10948 /* Convert -A / -B to A / B when the type is signed and overflow is
10949 undefined. */
10950 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10951 && TREE_CODE (arg0) == NEGATE_EXPR
10952 && negate_expr_p (arg1))
10953 {
10954 if (INTEGRAL_TYPE_P (type))
10955 fold_overflow_warning (("assuming signed overflow does not occur "
10956 "when distributing negation across "
10957 "division"),
10958 WARN_STRICT_OVERFLOW_MISC);
10959 return fold_build2_loc (loc, code, type,
10960 fold_convert_loc (loc, type,
10961 TREE_OPERAND (arg0, 0)),
10962 fold_convert_loc (loc, type,
10963 negate_expr (arg1)));
10964 }
10965 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10966 && TREE_CODE (arg1) == NEGATE_EXPR
10967 && negate_expr_p (arg0))
10968 {
10969 if (INTEGRAL_TYPE_P (type))
10970 fold_overflow_warning (("assuming signed overflow does not occur "
10971 "when distributing negation across "
10972 "division"),
10973 WARN_STRICT_OVERFLOW_MISC);
10974 return fold_build2_loc (loc, code, type,
10975 fold_convert_loc (loc, type,
10976 negate_expr (arg0)),
10977 fold_convert_loc (loc, type,
10978 TREE_OPERAND (arg1, 0)));
10979 }
10980
10981 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10982 operation, EXACT_DIV_EXPR.
10983
10984 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10985 At one time others generated faster code, it's not clear if they do
10986 after the last round to changes to the DIV code in expmed.c. */
10987 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10988 && multiple_of_p (type, arg0, arg1))
10989 return fold_build2_loc (loc, EXACT_DIV_EXPR, type, arg0, arg1);
10990
10991 strict_overflow_p = false;
10992 if (TREE_CODE (arg1) == INTEGER_CST
10993 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10994 &strict_overflow_p)))
10995 {
10996 if (strict_overflow_p)
10997 fold_overflow_warning (("assuming signed overflow does not occur "
10998 "when simplifying division"),
10999 WARN_STRICT_OVERFLOW_MISC);
11000 return fold_convert_loc (loc, type, tem);
11001 }
11002
11003 return NULL_TREE;
11004
11005 case CEIL_MOD_EXPR:
11006 case FLOOR_MOD_EXPR:
11007 case ROUND_MOD_EXPR:
11008 case TRUNC_MOD_EXPR:
11009 strict_overflow_p = false;
11010 if (TREE_CODE (arg1) == INTEGER_CST
11011 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11012 &strict_overflow_p)))
11013 {
11014 if (strict_overflow_p)
11015 fold_overflow_warning (("assuming signed overflow does not occur "
11016 "when simplifying modulus"),
11017 WARN_STRICT_OVERFLOW_MISC);
11018 return fold_convert_loc (loc, type, tem);
11019 }
11020
11021 return NULL_TREE;
11022
11023 case LROTATE_EXPR:
11024 case RROTATE_EXPR:
11025 case RSHIFT_EXPR:
11026 case LSHIFT_EXPR:
11027 /* Since negative shift count is not well-defined,
11028 don't try to compute it in the compiler. */
11029 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
11030 return NULL_TREE;
11031
11032 prec = element_precision (type);
11033
11034 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
11035 into x & ((unsigned)-1 >> c) for unsigned types. */
11036 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
11037 || (TYPE_UNSIGNED (type)
11038 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
11039 && tree_fits_uhwi_p (arg1)
11040 && tree_to_uhwi (arg1) < prec
11041 && tree_fits_uhwi_p (TREE_OPERAND (arg0, 1))
11042 && tree_to_uhwi (TREE_OPERAND (arg0, 1)) < prec)
11043 {
11044 HOST_WIDE_INT low0 = tree_to_uhwi (TREE_OPERAND (arg0, 1));
11045 HOST_WIDE_INT low1 = tree_to_uhwi (arg1);
11046 tree lshift;
11047 tree arg00;
11048
11049 if (low0 == low1)
11050 {
11051 arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11052
11053 lshift = build_minus_one_cst (type);
11054 lshift = const_binop (code, lshift, arg1);
11055
11056 return fold_build2_loc (loc, BIT_AND_EXPR, type, arg00, lshift);
11057 }
11058 }
11059
11060 /* If we have a rotate of a bit operation with the rotate count and
11061 the second operand of the bit operation both constant,
11062 permute the two operations. */
11063 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11064 && (TREE_CODE (arg0) == BIT_AND_EXPR
11065 || TREE_CODE (arg0) == BIT_IOR_EXPR
11066 || TREE_CODE (arg0) == BIT_XOR_EXPR)
11067 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11068 return fold_build2_loc (loc, TREE_CODE (arg0), type,
11069 fold_build2_loc (loc, code, type,
11070 TREE_OPERAND (arg0, 0), arg1),
11071 fold_build2_loc (loc, code, type,
11072 TREE_OPERAND (arg0, 1), arg1));
11073
11074 /* Two consecutive rotates adding up to the some integer
11075 multiple of the precision of the type can be ignored. */
11076 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11077 && TREE_CODE (arg0) == RROTATE_EXPR
11078 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11079 && wi::umod_trunc (wi::add (arg1, TREE_OPERAND (arg0, 1)),
11080 prec) == 0)
11081 return TREE_OPERAND (arg0, 0);
11082
11083 return NULL_TREE;
11084
11085 case MIN_EXPR:
11086 tem = fold_minmax (loc, MIN_EXPR, type, arg0, arg1);
11087 if (tem)
11088 return tem;
11089 goto associate;
11090
11091 case MAX_EXPR:
11092 tem = fold_minmax (loc, MAX_EXPR, type, arg0, arg1);
11093 if (tem)
11094 return tem;
11095 goto associate;
11096
11097 case TRUTH_ANDIF_EXPR:
11098 /* Note that the operands of this must be ints
11099 and their values must be 0 or 1.
11100 ("true" is a fixed value perhaps depending on the language.) */
11101 /* If first arg is constant zero, return it. */
11102 if (integer_zerop (arg0))
11103 return fold_convert_loc (loc, type, arg0);
11104 case TRUTH_AND_EXPR:
11105 /* If either arg is constant true, drop it. */
11106 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11107 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
11108 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
11109 /* Preserve sequence points. */
11110 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
11111 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11112 /* If second arg is constant zero, result is zero, but first arg
11113 must be evaluated. */
11114 if (integer_zerop (arg1))
11115 return omit_one_operand_loc (loc, type, arg1, arg0);
11116 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
11117 case will be handled here. */
11118 if (integer_zerop (arg0))
11119 return omit_one_operand_loc (loc, type, arg0, arg1);
11120
11121 /* !X && X is always false. */
11122 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11123 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11124 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
11125 /* X && !X is always false. */
11126 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11127 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11128 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11129
11130 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
11131 means A >= Y && A != MAX, but in this case we know that
11132 A < X <= MAX. */
11133
11134 if (!TREE_SIDE_EFFECTS (arg0)
11135 && !TREE_SIDE_EFFECTS (arg1))
11136 {
11137 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
11138 if (tem && !operand_equal_p (tem, arg0, 0))
11139 return fold_build2_loc (loc, code, type, tem, arg1);
11140
11141 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
11142 if (tem && !operand_equal_p (tem, arg1, 0))
11143 return fold_build2_loc (loc, code, type, arg0, tem);
11144 }
11145
11146 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
11147 != NULL_TREE)
11148 return tem;
11149
11150 return NULL_TREE;
11151
11152 case TRUTH_ORIF_EXPR:
11153 /* Note that the operands of this must be ints
11154 and their values must be 0 or true.
11155 ("true" is a fixed value perhaps depending on the language.) */
11156 /* If first arg is constant true, return it. */
11157 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11158 return fold_convert_loc (loc, type, arg0);
11159 case TRUTH_OR_EXPR:
11160 /* If either arg is constant zero, drop it. */
11161 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
11162 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
11163 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
11164 /* Preserve sequence points. */
11165 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
11166 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11167 /* If second arg is constant true, result is true, but we must
11168 evaluate first arg. */
11169 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
11170 return omit_one_operand_loc (loc, type, arg1, arg0);
11171 /* Likewise for first arg, but note this only occurs here for
11172 TRUTH_OR_EXPR. */
11173 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11174 return omit_one_operand_loc (loc, type, arg0, arg1);
11175
11176 /* !X || X is always true. */
11177 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11178 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11179 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
11180 /* X || !X is always true. */
11181 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11182 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11183 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
11184
11185 /* (X && !Y) || (!X && Y) is X ^ Y */
11186 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
11187 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
11188 {
11189 tree a0, a1, l0, l1, n0, n1;
11190
11191 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
11192 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
11193
11194 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11195 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11196
11197 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
11198 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
11199
11200 if ((operand_equal_p (n0, a0, 0)
11201 && operand_equal_p (n1, a1, 0))
11202 || (operand_equal_p (n0, a1, 0)
11203 && operand_equal_p (n1, a0, 0)))
11204 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
11205 }
11206
11207 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
11208 != NULL_TREE)
11209 return tem;
11210
11211 return NULL_TREE;
11212
11213 case TRUTH_XOR_EXPR:
11214 /* If the second arg is constant zero, drop it. */
11215 if (integer_zerop (arg1))
11216 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11217 /* If the second arg is constant true, this is a logical inversion. */
11218 if (integer_onep (arg1))
11219 {
11220 tem = invert_truthvalue_loc (loc, arg0);
11221 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
11222 }
11223 /* Identical arguments cancel to zero. */
11224 if (operand_equal_p (arg0, arg1, 0))
11225 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11226
11227 /* !X ^ X is always true. */
11228 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11229 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11230 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
11231
11232 /* X ^ !X is always true. */
11233 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11234 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11235 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
11236
11237 return NULL_TREE;
11238
11239 case EQ_EXPR:
11240 case NE_EXPR:
11241 STRIP_NOPS (arg0);
11242 STRIP_NOPS (arg1);
11243
11244 tem = fold_comparison (loc, code, type, op0, op1);
11245 if (tem != NULL_TREE)
11246 return tem;
11247
11248 /* bool_var != 0 becomes bool_var. */
11249 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
11250 && code == NE_EXPR)
11251 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11252
11253 /* bool_var == 1 becomes bool_var. */
11254 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
11255 && code == EQ_EXPR)
11256 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11257
11258 /* bool_var != 1 becomes !bool_var. */
11259 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
11260 && code == NE_EXPR)
11261 return fold_convert_loc (loc, type,
11262 fold_build1_loc (loc, TRUTH_NOT_EXPR,
11263 TREE_TYPE (arg0), arg0));
11264
11265 /* bool_var == 0 becomes !bool_var. */
11266 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
11267 && code == EQ_EXPR)
11268 return fold_convert_loc (loc, type,
11269 fold_build1_loc (loc, TRUTH_NOT_EXPR,
11270 TREE_TYPE (arg0), arg0));
11271
11272 /* !exp != 0 becomes !exp */
11273 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
11274 && code == NE_EXPR)
11275 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11276
11277 /* If this is an equality comparison of the address of two non-weak,
11278 unaliased symbols neither of which are extern (since we do not
11279 have access to attributes for externs), then we know the result. */
11280 if (TREE_CODE (arg0) == ADDR_EXPR
11281 && DECL_P (TREE_OPERAND (arg0, 0))
11282 && TREE_CODE (arg1) == ADDR_EXPR
11283 && DECL_P (TREE_OPERAND (arg1, 0)))
11284 {
11285 int equal;
11286
11287 if (decl_in_symtab_p (TREE_OPERAND (arg0, 0))
11288 && decl_in_symtab_p (TREE_OPERAND (arg1, 0)))
11289 equal = symtab_node::get_create (TREE_OPERAND (arg0, 0))
11290 ->equal_address_to (symtab_node::get_create
11291 (TREE_OPERAND (arg1, 0)));
11292 else
11293 equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
11294 if (equal != 2)
11295 return constant_boolean_node (equal
11296 ? code == EQ_EXPR : code != EQ_EXPR,
11297 type);
11298 }
11299
11300 /* Similarly for a BIT_XOR_EXPR; X ^ C1 == C2 is X == (C1 ^ C2). */
11301 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11302 && TREE_CODE (arg1) == INTEGER_CST
11303 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11304 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
11305 fold_build2_loc (loc, BIT_XOR_EXPR, TREE_TYPE (arg0),
11306 fold_convert_loc (loc,
11307 TREE_TYPE (arg0),
11308 arg1),
11309 TREE_OPERAND (arg0, 1)));
11310
11311 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
11312 if ((TREE_CODE (arg0) == PLUS_EXPR
11313 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
11314 || TREE_CODE (arg0) == MINUS_EXPR)
11315 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
11316 0)),
11317 arg1, 0)
11318 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
11319 || POINTER_TYPE_P (TREE_TYPE (arg0))))
11320 {
11321 tree val = TREE_OPERAND (arg0, 1);
11322 return omit_two_operands_loc (loc, type,
11323 fold_build2_loc (loc, code, type,
11324 val,
11325 build_int_cst (TREE_TYPE (val),
11326 0)),
11327 TREE_OPERAND (arg0, 0), arg1);
11328 }
11329
11330 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
11331 if (TREE_CODE (arg0) == MINUS_EXPR
11332 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
11333 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
11334 1)),
11335 arg1, 0)
11336 && wi::extract_uhwi (TREE_OPERAND (arg0, 0), 0, 1) == 1)
11337 {
11338 return omit_two_operands_loc (loc, type,
11339 code == NE_EXPR
11340 ? boolean_true_node : boolean_false_node,
11341 TREE_OPERAND (arg0, 1), arg1);
11342 }
11343
11344 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
11345 if (TREE_CODE (arg0) == ABS_EXPR
11346 && (integer_zerop (arg1) || real_zerop (arg1)))
11347 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), arg1);
11348
11349 /* If this is an EQ or NE comparison with zero and ARG0 is
11350 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
11351 two operations, but the latter can be done in one less insn
11352 on machines that have only two-operand insns or on which a
11353 constant cannot be the first operand. */
11354 if (TREE_CODE (arg0) == BIT_AND_EXPR
11355 && integer_zerop (arg1))
11356 {
11357 tree arg00 = TREE_OPERAND (arg0, 0);
11358 tree arg01 = TREE_OPERAND (arg0, 1);
11359 if (TREE_CODE (arg00) == LSHIFT_EXPR
11360 && integer_onep (TREE_OPERAND (arg00, 0)))
11361 {
11362 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
11363 arg01, TREE_OPERAND (arg00, 1));
11364 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
11365 build_int_cst (TREE_TYPE (arg0), 1));
11366 return fold_build2_loc (loc, code, type,
11367 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
11368 arg1);
11369 }
11370 else if (TREE_CODE (arg01) == LSHIFT_EXPR
11371 && integer_onep (TREE_OPERAND (arg01, 0)))
11372 {
11373 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
11374 arg00, TREE_OPERAND (arg01, 1));
11375 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
11376 build_int_cst (TREE_TYPE (arg0), 1));
11377 return fold_build2_loc (loc, code, type,
11378 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
11379 arg1);
11380 }
11381 }
11382
11383 /* If this is an NE or EQ comparison of zero against the result of a
11384 signed MOD operation whose second operand is a power of 2, make
11385 the MOD operation unsigned since it is simpler and equivalent. */
11386 if (integer_zerop (arg1)
11387 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
11388 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
11389 || TREE_CODE (arg0) == CEIL_MOD_EXPR
11390 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
11391 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
11392 && integer_pow2p (TREE_OPERAND (arg0, 1)))
11393 {
11394 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
11395 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
11396 fold_convert_loc (loc, newtype,
11397 TREE_OPERAND (arg0, 0)),
11398 fold_convert_loc (loc, newtype,
11399 TREE_OPERAND (arg0, 1)));
11400
11401 return fold_build2_loc (loc, code, type, newmod,
11402 fold_convert_loc (loc, newtype, arg1));
11403 }
11404
11405 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
11406 C1 is a valid shift constant, and C2 is a power of two, i.e.
11407 a single bit. */
11408 if (TREE_CODE (arg0) == BIT_AND_EXPR
11409 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
11410 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
11411 == INTEGER_CST
11412 && integer_pow2p (TREE_OPERAND (arg0, 1))
11413 && integer_zerop (arg1))
11414 {
11415 tree itype = TREE_TYPE (arg0);
11416 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
11417 prec = TYPE_PRECISION (itype);
11418
11419 /* Check for a valid shift count. */
11420 if (wi::ltu_p (arg001, prec))
11421 {
11422 tree arg01 = TREE_OPERAND (arg0, 1);
11423 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
11424 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
11425 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
11426 can be rewritten as (X & (C2 << C1)) != 0. */
11427 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
11428 {
11429 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
11430 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
11431 return fold_build2_loc (loc, code, type, tem,
11432 fold_convert_loc (loc, itype, arg1));
11433 }
11434 /* Otherwise, for signed (arithmetic) shifts,
11435 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
11436 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
11437 else if (!TYPE_UNSIGNED (itype))
11438 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
11439 arg000, build_int_cst (itype, 0));
11440 /* Otherwise, of unsigned (logical) shifts,
11441 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
11442 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
11443 else
11444 return omit_one_operand_loc (loc, type,
11445 code == EQ_EXPR ? integer_one_node
11446 : integer_zero_node,
11447 arg000);
11448 }
11449 }
11450
11451 /* If we have (A & C) == C where C is a power of 2, convert this into
11452 (A & C) != 0. Similarly for NE_EXPR. */
11453 if (TREE_CODE (arg0) == BIT_AND_EXPR
11454 && integer_pow2p (TREE_OPERAND (arg0, 1))
11455 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11456 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11457 arg0, fold_convert_loc (loc, TREE_TYPE (arg0),
11458 integer_zero_node));
11459
11460 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
11461 bit, then fold the expression into A < 0 or A >= 0. */
11462 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1, type);
11463 if (tem)
11464 return tem;
11465
11466 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
11467 Similarly for NE_EXPR. */
11468 if (TREE_CODE (arg0) == BIT_AND_EXPR
11469 && TREE_CODE (arg1) == INTEGER_CST
11470 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11471 {
11472 tree notc = fold_build1_loc (loc, BIT_NOT_EXPR,
11473 TREE_TYPE (TREE_OPERAND (arg0, 1)),
11474 TREE_OPERAND (arg0, 1));
11475 tree dandnotc
11476 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
11477 fold_convert_loc (loc, TREE_TYPE (arg0), arg1),
11478 notc);
11479 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
11480 if (integer_nonzerop (dandnotc))
11481 return omit_one_operand_loc (loc, type, rslt, arg0);
11482 }
11483
11484 /* If this is a comparison of a field, we may be able to simplify it. */
11485 if ((TREE_CODE (arg0) == COMPONENT_REF
11486 || TREE_CODE (arg0) == BIT_FIELD_REF)
11487 /* Handle the constant case even without -O
11488 to make sure the warnings are given. */
11489 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
11490 {
11491 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
11492 if (t1)
11493 return t1;
11494 }
11495
11496 /* Optimize comparisons of strlen vs zero to a compare of the
11497 first character of the string vs zero. To wit,
11498 strlen(ptr) == 0 => *ptr == 0
11499 strlen(ptr) != 0 => *ptr != 0
11500 Other cases should reduce to one of these two (or a constant)
11501 due to the return value of strlen being unsigned. */
11502 if (TREE_CODE (arg0) == CALL_EXPR
11503 && integer_zerop (arg1))
11504 {
11505 tree fndecl = get_callee_fndecl (arg0);
11506
11507 if (fndecl
11508 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
11509 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
11510 && call_expr_nargs (arg0) == 1
11511 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
11512 {
11513 tree iref = build_fold_indirect_ref_loc (loc,
11514 CALL_EXPR_ARG (arg0, 0));
11515 return fold_build2_loc (loc, code, type, iref,
11516 build_int_cst (TREE_TYPE (iref), 0));
11517 }
11518 }
11519
11520 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
11521 of X. Similarly fold (X >> C) == 0 into X >= 0. */
11522 if (TREE_CODE (arg0) == RSHIFT_EXPR
11523 && integer_zerop (arg1)
11524 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11525 {
11526 tree arg00 = TREE_OPERAND (arg0, 0);
11527 tree arg01 = TREE_OPERAND (arg0, 1);
11528 tree itype = TREE_TYPE (arg00);
11529 if (wi::eq_p (arg01, element_precision (itype) - 1))
11530 {
11531 if (TYPE_UNSIGNED (itype))
11532 {
11533 itype = signed_type_for (itype);
11534 arg00 = fold_convert_loc (loc, itype, arg00);
11535 }
11536 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
11537 type, arg00, build_zero_cst (itype));
11538 }
11539 }
11540
11541 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
11542 (X & C) == 0 when C is a single bit. */
11543 if (TREE_CODE (arg0) == BIT_AND_EXPR
11544 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
11545 && integer_zerop (arg1)
11546 && integer_pow2p (TREE_OPERAND (arg0, 1)))
11547 {
11548 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
11549 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
11550 TREE_OPERAND (arg0, 1));
11551 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
11552 type, tem,
11553 fold_convert_loc (loc, TREE_TYPE (arg0),
11554 arg1));
11555 }
11556
11557 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
11558 constant C is a power of two, i.e. a single bit. */
11559 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11560 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11561 && integer_zerop (arg1)
11562 && integer_pow2p (TREE_OPERAND (arg0, 1))
11563 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11564 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
11565 {
11566 tree arg00 = TREE_OPERAND (arg0, 0);
11567 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11568 arg00, build_int_cst (TREE_TYPE (arg00), 0));
11569 }
11570
11571 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
11572 when is C is a power of two, i.e. a single bit. */
11573 if (TREE_CODE (arg0) == BIT_AND_EXPR
11574 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
11575 && integer_zerop (arg1)
11576 && integer_pow2p (TREE_OPERAND (arg0, 1))
11577 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11578 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
11579 {
11580 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
11581 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
11582 arg000, TREE_OPERAND (arg0, 1));
11583 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11584 tem, build_int_cst (TREE_TYPE (tem), 0));
11585 }
11586
11587 if (integer_zerop (arg1)
11588 && tree_expr_nonzero_p (arg0))
11589 {
11590 tree res = constant_boolean_node (code==NE_EXPR, type);
11591 return omit_one_operand_loc (loc, type, res, arg0);
11592 }
11593
11594 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
11595 if (TREE_CODE (arg0) == BIT_AND_EXPR
11596 && TREE_CODE (arg1) == BIT_AND_EXPR)
11597 {
11598 tree arg00 = TREE_OPERAND (arg0, 0);
11599 tree arg01 = TREE_OPERAND (arg0, 1);
11600 tree arg10 = TREE_OPERAND (arg1, 0);
11601 tree arg11 = TREE_OPERAND (arg1, 1);
11602 tree itype = TREE_TYPE (arg0);
11603
11604 if (operand_equal_p (arg01, arg11, 0))
11605 return fold_build2_loc (loc, code, type,
11606 fold_build2_loc (loc, BIT_AND_EXPR, itype,
11607 fold_build2_loc (loc,
11608 BIT_XOR_EXPR, itype,
11609 arg00, arg10),
11610 arg01),
11611 build_zero_cst (itype));
11612
11613 if (operand_equal_p (arg01, arg10, 0))
11614 return fold_build2_loc (loc, code, type,
11615 fold_build2_loc (loc, BIT_AND_EXPR, itype,
11616 fold_build2_loc (loc,
11617 BIT_XOR_EXPR, itype,
11618 arg00, arg11),
11619 arg01),
11620 build_zero_cst (itype));
11621
11622 if (operand_equal_p (arg00, arg11, 0))
11623 return fold_build2_loc (loc, code, type,
11624 fold_build2_loc (loc, BIT_AND_EXPR, itype,
11625 fold_build2_loc (loc,
11626 BIT_XOR_EXPR, itype,
11627 arg01, arg10),
11628 arg00),
11629 build_zero_cst (itype));
11630
11631 if (operand_equal_p (arg00, arg10, 0))
11632 return fold_build2_loc (loc, code, type,
11633 fold_build2_loc (loc, BIT_AND_EXPR, itype,
11634 fold_build2_loc (loc,
11635 BIT_XOR_EXPR, itype,
11636 arg01, arg11),
11637 arg00),
11638 build_zero_cst (itype));
11639 }
11640
11641 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11642 && TREE_CODE (arg1) == BIT_XOR_EXPR)
11643 {
11644 tree arg00 = TREE_OPERAND (arg0, 0);
11645 tree arg01 = TREE_OPERAND (arg0, 1);
11646 tree arg10 = TREE_OPERAND (arg1, 0);
11647 tree arg11 = TREE_OPERAND (arg1, 1);
11648 tree itype = TREE_TYPE (arg0);
11649
11650 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
11651 operand_equal_p guarantees no side-effects so we don't need
11652 to use omit_one_operand on Z. */
11653 if (operand_equal_p (arg01, arg11, 0))
11654 return fold_build2_loc (loc, code, type, arg00,
11655 fold_convert_loc (loc, TREE_TYPE (arg00),
11656 arg10));
11657 if (operand_equal_p (arg01, arg10, 0))
11658 return fold_build2_loc (loc, code, type, arg00,
11659 fold_convert_loc (loc, TREE_TYPE (arg00),
11660 arg11));
11661 if (operand_equal_p (arg00, arg11, 0))
11662 return fold_build2_loc (loc, code, type, arg01,
11663 fold_convert_loc (loc, TREE_TYPE (arg01),
11664 arg10));
11665 if (operand_equal_p (arg00, arg10, 0))
11666 return fold_build2_loc (loc, code, type, arg01,
11667 fold_convert_loc (loc, TREE_TYPE (arg01),
11668 arg11));
11669
11670 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
11671 if (TREE_CODE (arg01) == INTEGER_CST
11672 && TREE_CODE (arg11) == INTEGER_CST)
11673 {
11674 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
11675 fold_convert_loc (loc, itype, arg11));
11676 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
11677 return fold_build2_loc (loc, code, type, tem,
11678 fold_convert_loc (loc, itype, arg10));
11679 }
11680 }
11681
11682 /* Attempt to simplify equality/inequality comparisons of complex
11683 values. Only lower the comparison if the result is known or
11684 can be simplified to a single scalar comparison. */
11685 if ((TREE_CODE (arg0) == COMPLEX_EXPR
11686 || TREE_CODE (arg0) == COMPLEX_CST)
11687 && (TREE_CODE (arg1) == COMPLEX_EXPR
11688 || TREE_CODE (arg1) == COMPLEX_CST))
11689 {
11690 tree real0, imag0, real1, imag1;
11691 tree rcond, icond;
11692
11693 if (TREE_CODE (arg0) == COMPLEX_EXPR)
11694 {
11695 real0 = TREE_OPERAND (arg0, 0);
11696 imag0 = TREE_OPERAND (arg0, 1);
11697 }
11698 else
11699 {
11700 real0 = TREE_REALPART (arg0);
11701 imag0 = TREE_IMAGPART (arg0);
11702 }
11703
11704 if (TREE_CODE (arg1) == COMPLEX_EXPR)
11705 {
11706 real1 = TREE_OPERAND (arg1, 0);
11707 imag1 = TREE_OPERAND (arg1, 1);
11708 }
11709 else
11710 {
11711 real1 = TREE_REALPART (arg1);
11712 imag1 = TREE_IMAGPART (arg1);
11713 }
11714
11715 rcond = fold_binary_loc (loc, code, type, real0, real1);
11716 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
11717 {
11718 if (integer_zerop (rcond))
11719 {
11720 if (code == EQ_EXPR)
11721 return omit_two_operands_loc (loc, type, boolean_false_node,
11722 imag0, imag1);
11723 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
11724 }
11725 else
11726 {
11727 if (code == NE_EXPR)
11728 return omit_two_operands_loc (loc, type, boolean_true_node,
11729 imag0, imag1);
11730 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
11731 }
11732 }
11733
11734 icond = fold_binary_loc (loc, code, type, imag0, imag1);
11735 if (icond && TREE_CODE (icond) == INTEGER_CST)
11736 {
11737 if (integer_zerop (icond))
11738 {
11739 if (code == EQ_EXPR)
11740 return omit_two_operands_loc (loc, type, boolean_false_node,
11741 real0, real1);
11742 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
11743 }
11744 else
11745 {
11746 if (code == NE_EXPR)
11747 return omit_two_operands_loc (loc, type, boolean_true_node,
11748 real0, real1);
11749 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
11750 }
11751 }
11752 }
11753
11754 return NULL_TREE;
11755
11756 case LT_EXPR:
11757 case GT_EXPR:
11758 case LE_EXPR:
11759 case GE_EXPR:
11760 tem = fold_comparison (loc, code, type, op0, op1);
11761 if (tem != NULL_TREE)
11762 return tem;
11763
11764 /* Transform comparisons of the form X +- C CMP X. */
11765 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
11766 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11767 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
11768 && !HONOR_SNANS (arg0))
11769 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11770 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
11771 {
11772 tree arg01 = TREE_OPERAND (arg0, 1);
11773 enum tree_code code0 = TREE_CODE (arg0);
11774 int is_positive;
11775
11776 if (TREE_CODE (arg01) == REAL_CST)
11777 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
11778 else
11779 is_positive = tree_int_cst_sgn (arg01);
11780
11781 /* (X - c) > X becomes false. */
11782 if (code == GT_EXPR
11783 && ((code0 == MINUS_EXPR && is_positive >= 0)
11784 || (code0 == PLUS_EXPR && is_positive <= 0)))
11785 {
11786 if (TREE_CODE (arg01) == INTEGER_CST
11787 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11788 fold_overflow_warning (("assuming signed overflow does not "
11789 "occur when assuming that (X - c) > X "
11790 "is always false"),
11791 WARN_STRICT_OVERFLOW_ALL);
11792 return constant_boolean_node (0, type);
11793 }
11794
11795 /* Likewise (X + c) < X becomes false. */
11796 if (code == LT_EXPR
11797 && ((code0 == PLUS_EXPR && is_positive >= 0)
11798 || (code0 == MINUS_EXPR && is_positive <= 0)))
11799 {
11800 if (TREE_CODE (arg01) == INTEGER_CST
11801 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11802 fold_overflow_warning (("assuming signed overflow does not "
11803 "occur when assuming that "
11804 "(X + c) < X is always false"),
11805 WARN_STRICT_OVERFLOW_ALL);
11806 return constant_boolean_node (0, type);
11807 }
11808
11809 /* Convert (X - c) <= X to true. */
11810 if (!HONOR_NANS (arg1)
11811 && code == LE_EXPR
11812 && ((code0 == MINUS_EXPR && is_positive >= 0)
11813 || (code0 == PLUS_EXPR && is_positive <= 0)))
11814 {
11815 if (TREE_CODE (arg01) == INTEGER_CST
11816 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11817 fold_overflow_warning (("assuming signed overflow does not "
11818 "occur when assuming that "
11819 "(X - c) <= X is always true"),
11820 WARN_STRICT_OVERFLOW_ALL);
11821 return constant_boolean_node (1, type);
11822 }
11823
11824 /* Convert (X + c) >= X to true. */
11825 if (!HONOR_NANS (arg1)
11826 && code == GE_EXPR
11827 && ((code0 == PLUS_EXPR && is_positive >= 0)
11828 || (code0 == MINUS_EXPR && is_positive <= 0)))
11829 {
11830 if (TREE_CODE (arg01) == INTEGER_CST
11831 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11832 fold_overflow_warning (("assuming signed overflow does not "
11833 "occur when assuming that "
11834 "(X + c) >= X is always true"),
11835 WARN_STRICT_OVERFLOW_ALL);
11836 return constant_boolean_node (1, type);
11837 }
11838
11839 if (TREE_CODE (arg01) == INTEGER_CST)
11840 {
11841 /* Convert X + c > X and X - c < X to true for integers. */
11842 if (code == GT_EXPR
11843 && ((code0 == PLUS_EXPR && is_positive > 0)
11844 || (code0 == MINUS_EXPR && is_positive < 0)))
11845 {
11846 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11847 fold_overflow_warning (("assuming signed overflow does "
11848 "not occur when assuming that "
11849 "(X + c) > X is always true"),
11850 WARN_STRICT_OVERFLOW_ALL);
11851 return constant_boolean_node (1, type);
11852 }
11853
11854 if (code == LT_EXPR
11855 && ((code0 == MINUS_EXPR && is_positive > 0)
11856 || (code0 == PLUS_EXPR && is_positive < 0)))
11857 {
11858 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11859 fold_overflow_warning (("assuming signed overflow does "
11860 "not occur when assuming that "
11861 "(X - c) < X is always true"),
11862 WARN_STRICT_OVERFLOW_ALL);
11863 return constant_boolean_node (1, type);
11864 }
11865
11866 /* Convert X + c <= X and X - c >= X to false for integers. */
11867 if (code == LE_EXPR
11868 && ((code0 == PLUS_EXPR && is_positive > 0)
11869 || (code0 == MINUS_EXPR && is_positive < 0)))
11870 {
11871 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11872 fold_overflow_warning (("assuming signed overflow does "
11873 "not occur when assuming that "
11874 "(X + c) <= X is always false"),
11875 WARN_STRICT_OVERFLOW_ALL);
11876 return constant_boolean_node (0, type);
11877 }
11878
11879 if (code == GE_EXPR
11880 && ((code0 == MINUS_EXPR && is_positive > 0)
11881 || (code0 == PLUS_EXPR && is_positive < 0)))
11882 {
11883 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11884 fold_overflow_warning (("assuming signed overflow does "
11885 "not occur when assuming that "
11886 "(X - c) >= X is always false"),
11887 WARN_STRICT_OVERFLOW_ALL);
11888 return constant_boolean_node (0, type);
11889 }
11890 }
11891 }
11892
11893 /* Comparisons with the highest or lowest possible integer of
11894 the specified precision will have known values. */
11895 {
11896 tree arg1_type = TREE_TYPE (arg1);
11897 unsigned int prec = TYPE_PRECISION (arg1_type);
11898
11899 if (TREE_CODE (arg1) == INTEGER_CST
11900 && (INTEGRAL_TYPE_P (arg1_type) || POINTER_TYPE_P (arg1_type)))
11901 {
11902 wide_int max = wi::max_value (arg1_type);
11903 wide_int signed_max = wi::max_value (prec, SIGNED);
11904 wide_int min = wi::min_value (arg1_type);
11905
11906 if (wi::eq_p (arg1, max))
11907 switch (code)
11908 {
11909 case GT_EXPR:
11910 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11911
11912 case GE_EXPR:
11913 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
11914
11915 case LE_EXPR:
11916 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
11917
11918 case LT_EXPR:
11919 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
11920
11921 /* The GE_EXPR and LT_EXPR cases above are not normally
11922 reached because of previous transformations. */
11923
11924 default:
11925 break;
11926 }
11927 else if (wi::eq_p (arg1, max - 1))
11928 switch (code)
11929 {
11930 case GT_EXPR:
11931 arg1 = const_binop (PLUS_EXPR, arg1,
11932 build_int_cst (TREE_TYPE (arg1), 1));
11933 return fold_build2_loc (loc, EQ_EXPR, type,
11934 fold_convert_loc (loc,
11935 TREE_TYPE (arg1), arg0),
11936 arg1);
11937 case LE_EXPR:
11938 arg1 = const_binop (PLUS_EXPR, arg1,
11939 build_int_cst (TREE_TYPE (arg1), 1));
11940 return fold_build2_loc (loc, NE_EXPR, type,
11941 fold_convert_loc (loc, TREE_TYPE (arg1),
11942 arg0),
11943 arg1);
11944 default:
11945 break;
11946 }
11947 else if (wi::eq_p (arg1, min))
11948 switch (code)
11949 {
11950 case LT_EXPR:
11951 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11952
11953 case LE_EXPR:
11954 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
11955
11956 case GE_EXPR:
11957 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
11958
11959 case GT_EXPR:
11960 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
11961
11962 default:
11963 break;
11964 }
11965 else if (wi::eq_p (arg1, min + 1))
11966 switch (code)
11967 {
11968 case GE_EXPR:
11969 arg1 = const_binop (MINUS_EXPR, arg1,
11970 build_int_cst (TREE_TYPE (arg1), 1));
11971 return fold_build2_loc (loc, NE_EXPR, type,
11972 fold_convert_loc (loc,
11973 TREE_TYPE (arg1), arg0),
11974 arg1);
11975 case LT_EXPR:
11976 arg1 = const_binop (MINUS_EXPR, arg1,
11977 build_int_cst (TREE_TYPE (arg1), 1));
11978 return fold_build2_loc (loc, EQ_EXPR, type,
11979 fold_convert_loc (loc, TREE_TYPE (arg1),
11980 arg0),
11981 arg1);
11982 default:
11983 break;
11984 }
11985
11986 else if (wi::eq_p (arg1, signed_max)
11987 && TYPE_UNSIGNED (arg1_type)
11988 /* We will flip the signedness of the comparison operator
11989 associated with the mode of arg1, so the sign bit is
11990 specified by this mode. Check that arg1 is the signed
11991 max associated with this sign bit. */
11992 && prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
11993 /* signed_type does not work on pointer types. */
11994 && INTEGRAL_TYPE_P (arg1_type))
11995 {
11996 /* The following case also applies to X < signed_max+1
11997 and X >= signed_max+1 because previous transformations. */
11998 if (code == LE_EXPR || code == GT_EXPR)
11999 {
12000 tree st = signed_type_for (arg1_type);
12001 return fold_build2_loc (loc,
12002 code == LE_EXPR ? GE_EXPR : LT_EXPR,
12003 type, fold_convert_loc (loc, st, arg0),
12004 build_int_cst (st, 0));
12005 }
12006 }
12007 }
12008 }
12009
12010 /* If we are comparing an ABS_EXPR with a constant, we can
12011 convert all the cases into explicit comparisons, but they may
12012 well not be faster than doing the ABS and one comparison.
12013 But ABS (X) <= C is a range comparison, which becomes a subtraction
12014 and a comparison, and is probably faster. */
12015 if (code == LE_EXPR
12016 && TREE_CODE (arg1) == INTEGER_CST
12017 && TREE_CODE (arg0) == ABS_EXPR
12018 && ! TREE_SIDE_EFFECTS (arg0)
12019 && (0 != (tem = negate_expr (arg1)))
12020 && TREE_CODE (tem) == INTEGER_CST
12021 && !TREE_OVERFLOW (tem))
12022 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
12023 build2 (GE_EXPR, type,
12024 TREE_OPERAND (arg0, 0), tem),
12025 build2 (LE_EXPR, type,
12026 TREE_OPERAND (arg0, 0), arg1));
12027
12028 /* Convert ABS_EXPR<x> >= 0 to true. */
12029 strict_overflow_p = false;
12030 if (code == GE_EXPR
12031 && (integer_zerop (arg1)
12032 || (! HONOR_NANS (arg0)
12033 && real_zerop (arg1)))
12034 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
12035 {
12036 if (strict_overflow_p)
12037 fold_overflow_warning (("assuming signed overflow does not occur "
12038 "when simplifying comparison of "
12039 "absolute value and zero"),
12040 WARN_STRICT_OVERFLOW_CONDITIONAL);
12041 return omit_one_operand_loc (loc, type,
12042 constant_boolean_node (true, type),
12043 arg0);
12044 }
12045
12046 /* Convert ABS_EXPR<x> < 0 to false. */
12047 strict_overflow_p = false;
12048 if (code == LT_EXPR
12049 && (integer_zerop (arg1) || real_zerop (arg1))
12050 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
12051 {
12052 if (strict_overflow_p)
12053 fold_overflow_warning (("assuming signed overflow does not occur "
12054 "when simplifying comparison of "
12055 "absolute value and zero"),
12056 WARN_STRICT_OVERFLOW_CONDITIONAL);
12057 return omit_one_operand_loc (loc, type,
12058 constant_boolean_node (false, type),
12059 arg0);
12060 }
12061
12062 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
12063 and similarly for >= into !=. */
12064 if ((code == LT_EXPR || code == GE_EXPR)
12065 && TYPE_UNSIGNED (TREE_TYPE (arg0))
12066 && TREE_CODE (arg1) == LSHIFT_EXPR
12067 && integer_onep (TREE_OPERAND (arg1, 0)))
12068 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
12069 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
12070 TREE_OPERAND (arg1, 1)),
12071 build_zero_cst (TREE_TYPE (arg0)));
12072
12073 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
12074 otherwise Y might be >= # of bits in X's type and thus e.g.
12075 (unsigned char) (1 << Y) for Y 15 might be 0.
12076 If the cast is widening, then 1 << Y should have unsigned type,
12077 otherwise if Y is number of bits in the signed shift type minus 1,
12078 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
12079 31 might be 0xffffffff80000000. */
12080 if ((code == LT_EXPR || code == GE_EXPR)
12081 && TYPE_UNSIGNED (TREE_TYPE (arg0))
12082 && CONVERT_EXPR_P (arg1)
12083 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
12084 && (element_precision (TREE_TYPE (arg1))
12085 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
12086 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
12087 || (element_precision (TREE_TYPE (arg1))
12088 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
12089 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
12090 {
12091 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
12092 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
12093 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
12094 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
12095 build_zero_cst (TREE_TYPE (arg0)));
12096 }
12097
12098 return NULL_TREE;
12099
12100 case UNORDERED_EXPR:
12101 case ORDERED_EXPR:
12102 case UNLT_EXPR:
12103 case UNLE_EXPR:
12104 case UNGT_EXPR:
12105 case UNGE_EXPR:
12106 case UNEQ_EXPR:
12107 case LTGT_EXPR:
12108 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
12109 {
12110 t1 = fold_relational_const (code, type, arg0, arg1);
12111 if (t1 != NULL_TREE)
12112 return t1;
12113 }
12114
12115 /* If the first operand is NaN, the result is constant. */
12116 if (TREE_CODE (arg0) == REAL_CST
12117 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
12118 && (code != LTGT_EXPR || ! flag_trapping_math))
12119 {
12120 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
12121 ? integer_zero_node
12122 : integer_one_node;
12123 return omit_one_operand_loc (loc, type, t1, arg1);
12124 }
12125
12126 /* If the second operand is NaN, the result is constant. */
12127 if (TREE_CODE (arg1) == REAL_CST
12128 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
12129 && (code != LTGT_EXPR || ! flag_trapping_math))
12130 {
12131 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
12132 ? integer_zero_node
12133 : integer_one_node;
12134 return omit_one_operand_loc (loc, type, t1, arg0);
12135 }
12136
12137 /* Simplify unordered comparison of something with itself. */
12138 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
12139 && operand_equal_p (arg0, arg1, 0))
12140 return constant_boolean_node (1, type);
12141
12142 if (code == LTGT_EXPR
12143 && !flag_trapping_math
12144 && operand_equal_p (arg0, arg1, 0))
12145 return constant_boolean_node (0, type);
12146
12147 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
12148 {
12149 tree targ0 = strip_float_extensions (arg0);
12150 tree targ1 = strip_float_extensions (arg1);
12151 tree newtype = TREE_TYPE (targ0);
12152
12153 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
12154 newtype = TREE_TYPE (targ1);
12155
12156 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
12157 return fold_build2_loc (loc, code, type,
12158 fold_convert_loc (loc, newtype, targ0),
12159 fold_convert_loc (loc, newtype, targ1));
12160 }
12161
12162 return NULL_TREE;
12163
12164 case COMPOUND_EXPR:
12165 /* When pedantic, a compound expression can be neither an lvalue
12166 nor an integer constant expression. */
12167 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
12168 return NULL_TREE;
12169 /* Don't let (0, 0) be null pointer constant. */
12170 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
12171 : fold_convert_loc (loc, type, arg1);
12172 return pedantic_non_lvalue_loc (loc, tem);
12173
12174 case ASSERT_EXPR:
12175 /* An ASSERT_EXPR should never be passed to fold_binary. */
12176 gcc_unreachable ();
12177
12178 default:
12179 return NULL_TREE;
12180 } /* switch (code) */
12181 }
12182
12183 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
12184 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
12185 of GOTO_EXPR. */
12186
12187 static tree
12188 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
12189 {
12190 switch (TREE_CODE (*tp))
12191 {
12192 case LABEL_EXPR:
12193 return *tp;
12194
12195 case GOTO_EXPR:
12196 *walk_subtrees = 0;
12197
12198 /* ... fall through ... */
12199
12200 default:
12201 return NULL_TREE;
12202 }
12203 }
12204
12205 /* Return whether the sub-tree ST contains a label which is accessible from
12206 outside the sub-tree. */
12207
12208 static bool
12209 contains_label_p (tree st)
12210 {
12211 return
12212 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
12213 }
12214
12215 /* Fold a ternary expression of code CODE and type TYPE with operands
12216 OP0, OP1, and OP2. Return the folded expression if folding is
12217 successful. Otherwise, return NULL_TREE. */
12218
12219 tree
12220 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
12221 tree op0, tree op1, tree op2)
12222 {
12223 tree tem;
12224 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
12225 enum tree_code_class kind = TREE_CODE_CLASS (code);
12226
12227 gcc_assert (IS_EXPR_CODE_CLASS (kind)
12228 && TREE_CODE_LENGTH (code) == 3);
12229
12230 /* If this is a commutative operation, and OP0 is a constant, move it
12231 to OP1 to reduce the number of tests below. */
12232 if (commutative_ternary_tree_code (code)
12233 && tree_swap_operands_p (op0, op1, true))
12234 return fold_build3_loc (loc, code, type, op1, op0, op2);
12235
12236 tem = generic_simplify (loc, code, type, op0, op1, op2);
12237 if (tem)
12238 return tem;
12239
12240 /* Strip any conversions that don't change the mode. This is safe
12241 for every expression, except for a comparison expression because
12242 its signedness is derived from its operands. So, in the latter
12243 case, only strip conversions that don't change the signedness.
12244
12245 Note that this is done as an internal manipulation within the
12246 constant folder, in order to find the simplest representation of
12247 the arguments so that their form can be studied. In any cases,
12248 the appropriate type conversions should be put back in the tree
12249 that will get out of the constant folder. */
12250 if (op0)
12251 {
12252 arg0 = op0;
12253 STRIP_NOPS (arg0);
12254 }
12255
12256 if (op1)
12257 {
12258 arg1 = op1;
12259 STRIP_NOPS (arg1);
12260 }
12261
12262 if (op2)
12263 {
12264 arg2 = op2;
12265 STRIP_NOPS (arg2);
12266 }
12267
12268 switch (code)
12269 {
12270 case COMPONENT_REF:
12271 if (TREE_CODE (arg0) == CONSTRUCTOR
12272 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
12273 {
12274 unsigned HOST_WIDE_INT idx;
12275 tree field, value;
12276 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
12277 if (field == arg1)
12278 return value;
12279 }
12280 return NULL_TREE;
12281
12282 case COND_EXPR:
12283 case VEC_COND_EXPR:
12284 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
12285 so all simple results must be passed through pedantic_non_lvalue. */
12286 if (TREE_CODE (arg0) == INTEGER_CST)
12287 {
12288 tree unused_op = integer_zerop (arg0) ? op1 : op2;
12289 tem = integer_zerop (arg0) ? op2 : op1;
12290 /* Only optimize constant conditions when the selected branch
12291 has the same type as the COND_EXPR. This avoids optimizing
12292 away "c ? x : throw", where the throw has a void type.
12293 Avoid throwing away that operand which contains label. */
12294 if ((!TREE_SIDE_EFFECTS (unused_op)
12295 || !contains_label_p (unused_op))
12296 && (! VOID_TYPE_P (TREE_TYPE (tem))
12297 || VOID_TYPE_P (type)))
12298 return pedantic_non_lvalue_loc (loc, tem);
12299 return NULL_TREE;
12300 }
12301 else if (TREE_CODE (arg0) == VECTOR_CST)
12302 {
12303 if ((TREE_CODE (arg1) == VECTOR_CST
12304 || TREE_CODE (arg1) == CONSTRUCTOR)
12305 && (TREE_CODE (arg2) == VECTOR_CST
12306 || TREE_CODE (arg2) == CONSTRUCTOR))
12307 {
12308 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
12309 unsigned char *sel = XALLOCAVEC (unsigned char, nelts);
12310 gcc_assert (nelts == VECTOR_CST_NELTS (arg0));
12311 for (i = 0; i < nelts; i++)
12312 {
12313 tree val = VECTOR_CST_ELT (arg0, i);
12314 if (integer_all_onesp (val))
12315 sel[i] = i;
12316 else if (integer_zerop (val))
12317 sel[i] = nelts + i;
12318 else /* Currently unreachable. */
12319 return NULL_TREE;
12320 }
12321 tree t = fold_vec_perm (type, arg1, arg2, sel);
12322 if (t != NULL_TREE)
12323 return t;
12324 }
12325 }
12326
12327 /* If we have A op B ? A : C, we may be able to convert this to a
12328 simpler expression, depending on the operation and the values
12329 of B and C. Signed zeros prevent all of these transformations,
12330 for reasons given above each one.
12331
12332 Also try swapping the arguments and inverting the conditional. */
12333 if (COMPARISON_CLASS_P (arg0)
12334 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
12335 arg1, TREE_OPERAND (arg0, 1))
12336 && !HONOR_SIGNED_ZEROS (element_mode (arg1)))
12337 {
12338 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
12339 if (tem)
12340 return tem;
12341 }
12342
12343 if (COMPARISON_CLASS_P (arg0)
12344 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
12345 op2,
12346 TREE_OPERAND (arg0, 1))
12347 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
12348 {
12349 location_t loc0 = expr_location_or (arg0, loc);
12350 tem = fold_invert_truthvalue (loc0, arg0);
12351 if (tem && COMPARISON_CLASS_P (tem))
12352 {
12353 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
12354 if (tem)
12355 return tem;
12356 }
12357 }
12358
12359 /* If the second operand is simpler than the third, swap them
12360 since that produces better jump optimization results. */
12361 if (truth_value_p (TREE_CODE (arg0))
12362 && tree_swap_operands_p (op1, op2, false))
12363 {
12364 location_t loc0 = expr_location_or (arg0, loc);
12365 /* See if this can be inverted. If it can't, possibly because
12366 it was a floating-point inequality comparison, don't do
12367 anything. */
12368 tem = fold_invert_truthvalue (loc0, arg0);
12369 if (tem)
12370 return fold_build3_loc (loc, code, type, tem, op2, op1);
12371 }
12372
12373 /* Convert A ? 1 : 0 to simply A. */
12374 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
12375 : (integer_onep (op1)
12376 && !VECTOR_TYPE_P (type)))
12377 && integer_zerop (op2)
12378 /* If we try to convert OP0 to our type, the
12379 call to fold will try to move the conversion inside
12380 a COND, which will recurse. In that case, the COND_EXPR
12381 is probably the best choice, so leave it alone. */
12382 && type == TREE_TYPE (arg0))
12383 return pedantic_non_lvalue_loc (loc, arg0);
12384
12385 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
12386 over COND_EXPR in cases such as floating point comparisons. */
12387 if (integer_zerop (op1)
12388 && (code == VEC_COND_EXPR ? integer_all_onesp (op2)
12389 : (integer_onep (op2)
12390 && !VECTOR_TYPE_P (type)))
12391 && truth_value_p (TREE_CODE (arg0)))
12392 return pedantic_non_lvalue_loc (loc,
12393 fold_convert_loc (loc, type,
12394 invert_truthvalue_loc (loc,
12395 arg0)));
12396
12397 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
12398 if (TREE_CODE (arg0) == LT_EXPR
12399 && integer_zerop (TREE_OPERAND (arg0, 1))
12400 && integer_zerop (op2)
12401 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
12402 {
12403 /* sign_bit_p looks through both zero and sign extensions,
12404 but for this optimization only sign extensions are
12405 usable. */
12406 tree tem2 = TREE_OPERAND (arg0, 0);
12407 while (tem != tem2)
12408 {
12409 if (TREE_CODE (tem2) != NOP_EXPR
12410 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
12411 {
12412 tem = NULL_TREE;
12413 break;
12414 }
12415 tem2 = TREE_OPERAND (tem2, 0);
12416 }
12417 /* sign_bit_p only checks ARG1 bits within A's precision.
12418 If <sign bit of A> has wider type than A, bits outside
12419 of A's precision in <sign bit of A> need to be checked.
12420 If they are all 0, this optimization needs to be done
12421 in unsigned A's type, if they are all 1 in signed A's type,
12422 otherwise this can't be done. */
12423 if (tem
12424 && TYPE_PRECISION (TREE_TYPE (tem))
12425 < TYPE_PRECISION (TREE_TYPE (arg1))
12426 && TYPE_PRECISION (TREE_TYPE (tem))
12427 < TYPE_PRECISION (type))
12428 {
12429 int inner_width, outer_width;
12430 tree tem_type;
12431
12432 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
12433 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
12434 if (outer_width > TYPE_PRECISION (type))
12435 outer_width = TYPE_PRECISION (type);
12436
12437 wide_int mask = wi::shifted_mask
12438 (inner_width, outer_width - inner_width, false,
12439 TYPE_PRECISION (TREE_TYPE (arg1)));
12440
12441 wide_int common = mask & arg1;
12442 if (common == mask)
12443 {
12444 tem_type = signed_type_for (TREE_TYPE (tem));
12445 tem = fold_convert_loc (loc, tem_type, tem);
12446 }
12447 else if (common == 0)
12448 {
12449 tem_type = unsigned_type_for (TREE_TYPE (tem));
12450 tem = fold_convert_loc (loc, tem_type, tem);
12451 }
12452 else
12453 tem = NULL;
12454 }
12455
12456 if (tem)
12457 return
12458 fold_convert_loc (loc, type,
12459 fold_build2_loc (loc, BIT_AND_EXPR,
12460 TREE_TYPE (tem), tem,
12461 fold_convert_loc (loc,
12462 TREE_TYPE (tem),
12463 arg1)));
12464 }
12465
12466 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
12467 already handled above. */
12468 if (TREE_CODE (arg0) == BIT_AND_EXPR
12469 && integer_onep (TREE_OPERAND (arg0, 1))
12470 && integer_zerop (op2)
12471 && integer_pow2p (arg1))
12472 {
12473 tree tem = TREE_OPERAND (arg0, 0);
12474 STRIP_NOPS (tem);
12475 if (TREE_CODE (tem) == RSHIFT_EXPR
12476 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
12477 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
12478 tree_to_uhwi (TREE_OPERAND (tem, 1)))
12479 return fold_build2_loc (loc, BIT_AND_EXPR, type,
12480 TREE_OPERAND (tem, 0), arg1);
12481 }
12482
12483 /* A & N ? N : 0 is simply A & N if N is a power of two. This
12484 is probably obsolete because the first operand should be a
12485 truth value (that's why we have the two cases above), but let's
12486 leave it in until we can confirm this for all front-ends. */
12487 if (integer_zerop (op2)
12488 && TREE_CODE (arg0) == NE_EXPR
12489 && integer_zerop (TREE_OPERAND (arg0, 1))
12490 && integer_pow2p (arg1)
12491 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12492 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12493 arg1, OEP_ONLY_CONST))
12494 return pedantic_non_lvalue_loc (loc,
12495 fold_convert_loc (loc, type,
12496 TREE_OPERAND (arg0, 0)));
12497
12498 /* Disable the transformations below for vectors, since
12499 fold_binary_op_with_conditional_arg may undo them immediately,
12500 yielding an infinite loop. */
12501 if (code == VEC_COND_EXPR)
12502 return NULL_TREE;
12503
12504 /* Convert A ? B : 0 into A && B if A and B are truth values. */
12505 if (integer_zerop (op2)
12506 && truth_value_p (TREE_CODE (arg0))
12507 && truth_value_p (TREE_CODE (arg1))
12508 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12509 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
12510 : TRUTH_ANDIF_EXPR,
12511 type, fold_convert_loc (loc, type, arg0), arg1);
12512
12513 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
12514 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
12515 && truth_value_p (TREE_CODE (arg0))
12516 && truth_value_p (TREE_CODE (arg1))
12517 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12518 {
12519 location_t loc0 = expr_location_or (arg0, loc);
12520 /* Only perform transformation if ARG0 is easily inverted. */
12521 tem = fold_invert_truthvalue (loc0, arg0);
12522 if (tem)
12523 return fold_build2_loc (loc, code == VEC_COND_EXPR
12524 ? BIT_IOR_EXPR
12525 : TRUTH_ORIF_EXPR,
12526 type, fold_convert_loc (loc, type, tem),
12527 arg1);
12528 }
12529
12530 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
12531 if (integer_zerop (arg1)
12532 && truth_value_p (TREE_CODE (arg0))
12533 && truth_value_p (TREE_CODE (op2))
12534 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12535 {
12536 location_t loc0 = expr_location_or (arg0, loc);
12537 /* Only perform transformation if ARG0 is easily inverted. */
12538 tem = fold_invert_truthvalue (loc0, arg0);
12539 if (tem)
12540 return fold_build2_loc (loc, code == VEC_COND_EXPR
12541 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
12542 type, fold_convert_loc (loc, type, tem),
12543 op2);
12544 }
12545
12546 /* Convert A ? 1 : B into A || B if A and B are truth values. */
12547 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
12548 && truth_value_p (TREE_CODE (arg0))
12549 && truth_value_p (TREE_CODE (op2))
12550 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12551 return fold_build2_loc (loc, code == VEC_COND_EXPR
12552 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
12553 type, fold_convert_loc (loc, type, arg0), op2);
12554
12555 return NULL_TREE;
12556
12557 case CALL_EXPR:
12558 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
12559 of fold_ternary on them. */
12560 gcc_unreachable ();
12561
12562 case BIT_FIELD_REF:
12563 if ((TREE_CODE (arg0) == VECTOR_CST
12564 || (TREE_CODE (arg0) == CONSTRUCTOR
12565 && TREE_CODE (TREE_TYPE (arg0)) == VECTOR_TYPE))
12566 && (type == TREE_TYPE (TREE_TYPE (arg0))
12567 || (TREE_CODE (type) == VECTOR_TYPE
12568 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
12569 {
12570 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
12571 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
12572 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
12573 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
12574
12575 if (n != 0
12576 && (idx % width) == 0
12577 && (n % width) == 0
12578 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
12579 {
12580 idx = idx / width;
12581 n = n / width;
12582
12583 if (TREE_CODE (arg0) == VECTOR_CST)
12584 {
12585 if (n == 1)
12586 return VECTOR_CST_ELT (arg0, idx);
12587
12588 tree *vals = XALLOCAVEC (tree, n);
12589 for (unsigned i = 0; i < n; ++i)
12590 vals[i] = VECTOR_CST_ELT (arg0, idx + i);
12591 return build_vector (type, vals);
12592 }
12593
12594 /* Constructor elements can be subvectors. */
12595 unsigned HOST_WIDE_INT k = 1;
12596 if (CONSTRUCTOR_NELTS (arg0) != 0)
12597 {
12598 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (arg0, 0)->value);
12599 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
12600 k = TYPE_VECTOR_SUBPARTS (cons_elem);
12601 }
12602
12603 /* We keep an exact subset of the constructor elements. */
12604 if ((idx % k) == 0 && (n % k) == 0)
12605 {
12606 if (CONSTRUCTOR_NELTS (arg0) == 0)
12607 return build_constructor (type, NULL);
12608 idx /= k;
12609 n /= k;
12610 if (n == 1)
12611 {
12612 if (idx < CONSTRUCTOR_NELTS (arg0))
12613 return CONSTRUCTOR_ELT (arg0, idx)->value;
12614 return build_zero_cst (type);
12615 }
12616
12617 vec<constructor_elt, va_gc> *vals;
12618 vec_alloc (vals, n);
12619 for (unsigned i = 0;
12620 i < n && idx + i < CONSTRUCTOR_NELTS (arg0);
12621 ++i)
12622 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
12623 CONSTRUCTOR_ELT
12624 (arg0, idx + i)->value);
12625 return build_constructor (type, vals);
12626 }
12627 /* The bitfield references a single constructor element. */
12628 else if (idx + n <= (idx / k + 1) * k)
12629 {
12630 if (CONSTRUCTOR_NELTS (arg0) <= idx / k)
12631 return build_zero_cst (type);
12632 else if (n == k)
12633 return CONSTRUCTOR_ELT (arg0, idx / k)->value;
12634 else
12635 return fold_build3_loc (loc, code, type,
12636 CONSTRUCTOR_ELT (arg0, idx / k)->value, op1,
12637 build_int_cst (TREE_TYPE (op2), (idx % k) * width));
12638 }
12639 }
12640 }
12641
12642 /* A bit-field-ref that referenced the full argument can be stripped. */
12643 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
12644 && TYPE_PRECISION (TREE_TYPE (arg0)) == tree_to_uhwi (arg1)
12645 && integer_zerop (op2))
12646 return fold_convert_loc (loc, type, arg0);
12647
12648 /* On constants we can use native encode/interpret to constant
12649 fold (nearly) all BIT_FIELD_REFs. */
12650 if (CONSTANT_CLASS_P (arg0)
12651 && can_native_interpret_type_p (type)
12652 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (arg0)))
12653 /* This limitation should not be necessary, we just need to
12654 round this up to mode size. */
12655 && tree_to_uhwi (op1) % BITS_PER_UNIT == 0
12656 /* Need bit-shifting of the buffer to relax the following. */
12657 && tree_to_uhwi (op2) % BITS_PER_UNIT == 0)
12658 {
12659 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
12660 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
12661 unsigned HOST_WIDE_INT clen;
12662 clen = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (arg0)));
12663 /* ??? We cannot tell native_encode_expr to start at
12664 some random byte only. So limit us to a reasonable amount
12665 of work. */
12666 if (clen <= 4096)
12667 {
12668 unsigned char *b = XALLOCAVEC (unsigned char, clen);
12669 unsigned HOST_WIDE_INT len = native_encode_expr (arg0, b, clen);
12670 if (len > 0
12671 && len * BITS_PER_UNIT >= bitpos + bitsize)
12672 {
12673 tree v = native_interpret_expr (type,
12674 b + bitpos / BITS_PER_UNIT,
12675 bitsize / BITS_PER_UNIT);
12676 if (v)
12677 return v;
12678 }
12679 }
12680 }
12681
12682 return NULL_TREE;
12683
12684 case FMA_EXPR:
12685 /* For integers we can decompose the FMA if possible. */
12686 if (TREE_CODE (arg0) == INTEGER_CST
12687 && TREE_CODE (arg1) == INTEGER_CST)
12688 return fold_build2_loc (loc, PLUS_EXPR, type,
12689 const_binop (MULT_EXPR, arg0, arg1), arg2);
12690 if (integer_zerop (arg2))
12691 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
12692
12693 return fold_fma (loc, type, arg0, arg1, arg2);
12694
12695 case VEC_PERM_EXPR:
12696 if (TREE_CODE (arg2) == VECTOR_CST)
12697 {
12698 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i, mask, mask2;
12699 unsigned char *sel = XALLOCAVEC (unsigned char, 2 * nelts);
12700 unsigned char *sel2 = sel + nelts;
12701 bool need_mask_canon = false;
12702 bool need_mask_canon2 = false;
12703 bool all_in_vec0 = true;
12704 bool all_in_vec1 = true;
12705 bool maybe_identity = true;
12706 bool single_arg = (op0 == op1);
12707 bool changed = false;
12708
12709 mask2 = 2 * nelts - 1;
12710 mask = single_arg ? (nelts - 1) : mask2;
12711 gcc_assert (nelts == VECTOR_CST_NELTS (arg2));
12712 for (i = 0; i < nelts; i++)
12713 {
12714 tree val = VECTOR_CST_ELT (arg2, i);
12715 if (TREE_CODE (val) != INTEGER_CST)
12716 return NULL_TREE;
12717
12718 /* Make sure that the perm value is in an acceptable
12719 range. */
12720 wide_int t = val;
12721 need_mask_canon |= wi::gtu_p (t, mask);
12722 need_mask_canon2 |= wi::gtu_p (t, mask2);
12723 sel[i] = t.to_uhwi () & mask;
12724 sel2[i] = t.to_uhwi () & mask2;
12725
12726 if (sel[i] < nelts)
12727 all_in_vec1 = false;
12728 else
12729 all_in_vec0 = false;
12730
12731 if ((sel[i] & (nelts-1)) != i)
12732 maybe_identity = false;
12733 }
12734
12735 if (maybe_identity)
12736 {
12737 if (all_in_vec0)
12738 return op0;
12739 if (all_in_vec1)
12740 return op1;
12741 }
12742
12743 if (all_in_vec0)
12744 op1 = op0;
12745 else if (all_in_vec1)
12746 {
12747 op0 = op1;
12748 for (i = 0; i < nelts; i++)
12749 sel[i] -= nelts;
12750 need_mask_canon = true;
12751 }
12752
12753 if ((TREE_CODE (op0) == VECTOR_CST
12754 || TREE_CODE (op0) == CONSTRUCTOR)
12755 && (TREE_CODE (op1) == VECTOR_CST
12756 || TREE_CODE (op1) == CONSTRUCTOR))
12757 {
12758 tree t = fold_vec_perm (type, op0, op1, sel);
12759 if (t != NULL_TREE)
12760 return t;
12761 }
12762
12763 if (op0 == op1 && !single_arg)
12764 changed = true;
12765
12766 /* Some targets are deficient and fail to expand a single
12767 argument permutation while still allowing an equivalent
12768 2-argument version. */
12769 if (need_mask_canon && arg2 == op2
12770 && !can_vec_perm_p (TYPE_MODE (type), false, sel)
12771 && can_vec_perm_p (TYPE_MODE (type), false, sel2))
12772 {
12773 need_mask_canon = need_mask_canon2;
12774 sel = sel2;
12775 }
12776
12777 if (need_mask_canon && arg2 == op2)
12778 {
12779 tree *tsel = XALLOCAVEC (tree, nelts);
12780 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
12781 for (i = 0; i < nelts; i++)
12782 tsel[i] = build_int_cst (eltype, sel[i]);
12783 op2 = build_vector (TREE_TYPE (arg2), tsel);
12784 changed = true;
12785 }
12786
12787 if (changed)
12788 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
12789 }
12790 return NULL_TREE;
12791
12792 default:
12793 return NULL_TREE;
12794 } /* switch (code) */
12795 }
12796
12797 /* Perform constant folding and related simplification of EXPR.
12798 The related simplifications include x*1 => x, x*0 => 0, etc.,
12799 and application of the associative law.
12800 NOP_EXPR conversions may be removed freely (as long as we
12801 are careful not to change the type of the overall expression).
12802 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
12803 but we can constant-fold them if they have constant operands. */
12804
12805 #ifdef ENABLE_FOLD_CHECKING
12806 # define fold(x) fold_1 (x)
12807 static tree fold_1 (tree);
12808 static
12809 #endif
12810 tree
12811 fold (tree expr)
12812 {
12813 const tree t = expr;
12814 enum tree_code code = TREE_CODE (t);
12815 enum tree_code_class kind = TREE_CODE_CLASS (code);
12816 tree tem;
12817 location_t loc = EXPR_LOCATION (expr);
12818
12819 /* Return right away if a constant. */
12820 if (kind == tcc_constant)
12821 return t;
12822
12823 /* CALL_EXPR-like objects with variable numbers of operands are
12824 treated specially. */
12825 if (kind == tcc_vl_exp)
12826 {
12827 if (code == CALL_EXPR)
12828 {
12829 tem = fold_call_expr (loc, expr, false);
12830 return tem ? tem : expr;
12831 }
12832 return expr;
12833 }
12834
12835 if (IS_EXPR_CODE_CLASS (kind))
12836 {
12837 tree type = TREE_TYPE (t);
12838 tree op0, op1, op2;
12839
12840 switch (TREE_CODE_LENGTH (code))
12841 {
12842 case 1:
12843 op0 = TREE_OPERAND (t, 0);
12844 tem = fold_unary_loc (loc, code, type, op0);
12845 return tem ? tem : expr;
12846 case 2:
12847 op0 = TREE_OPERAND (t, 0);
12848 op1 = TREE_OPERAND (t, 1);
12849 tem = fold_binary_loc (loc, code, type, op0, op1);
12850 return tem ? tem : expr;
12851 case 3:
12852 op0 = TREE_OPERAND (t, 0);
12853 op1 = TREE_OPERAND (t, 1);
12854 op2 = TREE_OPERAND (t, 2);
12855 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12856 return tem ? tem : expr;
12857 default:
12858 break;
12859 }
12860 }
12861
12862 switch (code)
12863 {
12864 case ARRAY_REF:
12865 {
12866 tree op0 = TREE_OPERAND (t, 0);
12867 tree op1 = TREE_OPERAND (t, 1);
12868
12869 if (TREE_CODE (op1) == INTEGER_CST
12870 && TREE_CODE (op0) == CONSTRUCTOR
12871 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
12872 {
12873 vec<constructor_elt, va_gc> *elts = CONSTRUCTOR_ELTS (op0);
12874 unsigned HOST_WIDE_INT end = vec_safe_length (elts);
12875 unsigned HOST_WIDE_INT begin = 0;
12876
12877 /* Find a matching index by means of a binary search. */
12878 while (begin != end)
12879 {
12880 unsigned HOST_WIDE_INT middle = (begin + end) / 2;
12881 tree index = (*elts)[middle].index;
12882
12883 if (TREE_CODE (index) == INTEGER_CST
12884 && tree_int_cst_lt (index, op1))
12885 begin = middle + 1;
12886 else if (TREE_CODE (index) == INTEGER_CST
12887 && tree_int_cst_lt (op1, index))
12888 end = middle;
12889 else if (TREE_CODE (index) == RANGE_EXPR
12890 && tree_int_cst_lt (TREE_OPERAND (index, 1), op1))
12891 begin = middle + 1;
12892 else if (TREE_CODE (index) == RANGE_EXPR
12893 && tree_int_cst_lt (op1, TREE_OPERAND (index, 0)))
12894 end = middle;
12895 else
12896 return (*elts)[middle].value;
12897 }
12898 }
12899
12900 return t;
12901 }
12902
12903 /* Return a VECTOR_CST if possible. */
12904 case CONSTRUCTOR:
12905 {
12906 tree type = TREE_TYPE (t);
12907 if (TREE_CODE (type) != VECTOR_TYPE)
12908 return t;
12909
12910 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
12911 unsigned HOST_WIDE_INT idx, pos = 0;
12912 tree value;
12913
12914 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), idx, value)
12915 {
12916 if (!CONSTANT_CLASS_P (value))
12917 return t;
12918 if (TREE_CODE (value) == VECTOR_CST)
12919 {
12920 for (unsigned i = 0; i < VECTOR_CST_NELTS (value); ++i)
12921 vec[pos++] = VECTOR_CST_ELT (value, i);
12922 }
12923 else
12924 vec[pos++] = value;
12925 }
12926 for (; pos < TYPE_VECTOR_SUBPARTS (type); ++pos)
12927 vec[pos] = build_zero_cst (TREE_TYPE (type));
12928
12929 return build_vector (type, vec);
12930 }
12931
12932 case CONST_DECL:
12933 return fold (DECL_INITIAL (t));
12934
12935 default:
12936 return t;
12937 } /* switch (code) */
12938 }
12939
12940 #ifdef ENABLE_FOLD_CHECKING
12941 #undef fold
12942
12943 static void fold_checksum_tree (const_tree, struct md5_ctx *,
12944 hash_table<nofree_ptr_hash<const tree_node> > *);
12945 static void fold_check_failed (const_tree, const_tree);
12946 void print_fold_checksum (const_tree);
12947
12948 /* When --enable-checking=fold, compute a digest of expr before
12949 and after actual fold call to see if fold did not accidentally
12950 change original expr. */
12951
12952 tree
12953 fold (tree expr)
12954 {
12955 tree ret;
12956 struct md5_ctx ctx;
12957 unsigned char checksum_before[16], checksum_after[16];
12958 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12959
12960 md5_init_ctx (&ctx);
12961 fold_checksum_tree (expr, &ctx, &ht);
12962 md5_finish_ctx (&ctx, checksum_before);
12963 ht.empty ();
12964
12965 ret = fold_1 (expr);
12966
12967 md5_init_ctx (&ctx);
12968 fold_checksum_tree (expr, &ctx, &ht);
12969 md5_finish_ctx (&ctx, checksum_after);
12970
12971 if (memcmp (checksum_before, checksum_after, 16))
12972 fold_check_failed (expr, ret);
12973
12974 return ret;
12975 }
12976
12977 void
12978 print_fold_checksum (const_tree expr)
12979 {
12980 struct md5_ctx ctx;
12981 unsigned char checksum[16], cnt;
12982 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12983
12984 md5_init_ctx (&ctx);
12985 fold_checksum_tree (expr, &ctx, &ht);
12986 md5_finish_ctx (&ctx, checksum);
12987 for (cnt = 0; cnt < 16; ++cnt)
12988 fprintf (stderr, "%02x", checksum[cnt]);
12989 putc ('\n', stderr);
12990 }
12991
12992 static void
12993 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
12994 {
12995 internal_error ("fold check: original tree changed by fold");
12996 }
12997
12998 static void
12999 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
13000 hash_table<nofree_ptr_hash <const tree_node> > *ht)
13001 {
13002 const tree_node **slot;
13003 enum tree_code code;
13004 union tree_node buf;
13005 int i, len;
13006
13007 recursive_label:
13008 if (expr == NULL)
13009 return;
13010 slot = ht->find_slot (expr, INSERT);
13011 if (*slot != NULL)
13012 return;
13013 *slot = expr;
13014 code = TREE_CODE (expr);
13015 if (TREE_CODE_CLASS (code) == tcc_declaration
13016 && HAS_DECL_ASSEMBLER_NAME_P (expr))
13017 {
13018 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
13019 memcpy ((char *) &buf, expr, tree_size (expr));
13020 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
13021 buf.decl_with_vis.symtab_node = NULL;
13022 expr = (tree) &buf;
13023 }
13024 else if (TREE_CODE_CLASS (code) == tcc_type
13025 && (TYPE_POINTER_TO (expr)
13026 || TYPE_REFERENCE_TO (expr)
13027 || TYPE_CACHED_VALUES_P (expr)
13028 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
13029 || TYPE_NEXT_VARIANT (expr)))
13030 {
13031 /* Allow these fields to be modified. */
13032 tree tmp;
13033 memcpy ((char *) &buf, expr, tree_size (expr));
13034 expr = tmp = (tree) &buf;
13035 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
13036 TYPE_POINTER_TO (tmp) = NULL;
13037 TYPE_REFERENCE_TO (tmp) = NULL;
13038 TYPE_NEXT_VARIANT (tmp) = NULL;
13039 if (TYPE_CACHED_VALUES_P (tmp))
13040 {
13041 TYPE_CACHED_VALUES_P (tmp) = 0;
13042 TYPE_CACHED_VALUES (tmp) = NULL;
13043 }
13044 }
13045 md5_process_bytes (expr, tree_size (expr), ctx);
13046 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
13047 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
13048 if (TREE_CODE_CLASS (code) != tcc_type
13049 && TREE_CODE_CLASS (code) != tcc_declaration
13050 && code != TREE_LIST
13051 && code != SSA_NAME
13052 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
13053 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
13054 switch (TREE_CODE_CLASS (code))
13055 {
13056 case tcc_constant:
13057 switch (code)
13058 {
13059 case STRING_CST:
13060 md5_process_bytes (TREE_STRING_POINTER (expr),
13061 TREE_STRING_LENGTH (expr), ctx);
13062 break;
13063 case COMPLEX_CST:
13064 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
13065 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
13066 break;
13067 case VECTOR_CST:
13068 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
13069 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
13070 break;
13071 default:
13072 break;
13073 }
13074 break;
13075 case tcc_exceptional:
13076 switch (code)
13077 {
13078 case TREE_LIST:
13079 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
13080 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
13081 expr = TREE_CHAIN (expr);
13082 goto recursive_label;
13083 break;
13084 case TREE_VEC:
13085 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
13086 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
13087 break;
13088 default:
13089 break;
13090 }
13091 break;
13092 case tcc_expression:
13093 case tcc_reference:
13094 case tcc_comparison:
13095 case tcc_unary:
13096 case tcc_binary:
13097 case tcc_statement:
13098 case tcc_vl_exp:
13099 len = TREE_OPERAND_LENGTH (expr);
13100 for (i = 0; i < len; ++i)
13101 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
13102 break;
13103 case tcc_declaration:
13104 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
13105 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
13106 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
13107 {
13108 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
13109 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
13110 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
13111 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
13112 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
13113 }
13114
13115 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
13116 {
13117 if (TREE_CODE (expr) == FUNCTION_DECL)
13118 {
13119 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
13120 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
13121 }
13122 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
13123 }
13124 break;
13125 case tcc_type:
13126 if (TREE_CODE (expr) == ENUMERAL_TYPE)
13127 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
13128 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
13129 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
13130 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
13131 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
13132 if (INTEGRAL_TYPE_P (expr)
13133 || SCALAR_FLOAT_TYPE_P (expr))
13134 {
13135 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
13136 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
13137 }
13138 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
13139 if (TREE_CODE (expr) == RECORD_TYPE
13140 || TREE_CODE (expr) == UNION_TYPE
13141 || TREE_CODE (expr) == QUAL_UNION_TYPE)
13142 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
13143 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
13144 break;
13145 default:
13146 break;
13147 }
13148 }
13149
13150 /* Helper function for outputting the checksum of a tree T. When
13151 debugging with gdb, you can "define mynext" to be "next" followed
13152 by "call debug_fold_checksum (op0)", then just trace down till the
13153 outputs differ. */
13154
13155 DEBUG_FUNCTION void
13156 debug_fold_checksum (const_tree t)
13157 {
13158 int i;
13159 unsigned char checksum[16];
13160 struct md5_ctx ctx;
13161 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13162
13163 md5_init_ctx (&ctx);
13164 fold_checksum_tree (t, &ctx, &ht);
13165 md5_finish_ctx (&ctx, checksum);
13166 ht.empty ();
13167
13168 for (i = 0; i < 16; i++)
13169 fprintf (stderr, "%d ", checksum[i]);
13170
13171 fprintf (stderr, "\n");
13172 }
13173
13174 #endif
13175
13176 /* Fold a unary tree expression with code CODE of type TYPE with an
13177 operand OP0. LOC is the location of the resulting expression.
13178 Return a folded expression if successful. Otherwise, return a tree
13179 expression with code CODE of type TYPE with an operand OP0. */
13180
13181 tree
13182 fold_build1_stat_loc (location_t loc,
13183 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
13184 {
13185 tree tem;
13186 #ifdef ENABLE_FOLD_CHECKING
13187 unsigned char checksum_before[16], checksum_after[16];
13188 struct md5_ctx ctx;
13189 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13190
13191 md5_init_ctx (&ctx);
13192 fold_checksum_tree (op0, &ctx, &ht);
13193 md5_finish_ctx (&ctx, checksum_before);
13194 ht.empty ();
13195 #endif
13196
13197 tem = fold_unary_loc (loc, code, type, op0);
13198 if (!tem)
13199 tem = build1_stat_loc (loc, code, type, op0 PASS_MEM_STAT);
13200
13201 #ifdef ENABLE_FOLD_CHECKING
13202 md5_init_ctx (&ctx);
13203 fold_checksum_tree (op0, &ctx, &ht);
13204 md5_finish_ctx (&ctx, checksum_after);
13205
13206 if (memcmp (checksum_before, checksum_after, 16))
13207 fold_check_failed (op0, tem);
13208 #endif
13209 return tem;
13210 }
13211
13212 /* Fold a binary tree expression with code CODE of type TYPE with
13213 operands OP0 and OP1. LOC is the location of the resulting
13214 expression. Return a folded expression if successful. Otherwise,
13215 return a tree expression with code CODE of type TYPE with operands
13216 OP0 and OP1. */
13217
13218 tree
13219 fold_build2_stat_loc (location_t loc,
13220 enum tree_code code, tree type, tree op0, tree op1
13221 MEM_STAT_DECL)
13222 {
13223 tree tem;
13224 #ifdef ENABLE_FOLD_CHECKING
13225 unsigned char checksum_before_op0[16],
13226 checksum_before_op1[16],
13227 checksum_after_op0[16],
13228 checksum_after_op1[16];
13229 struct md5_ctx ctx;
13230 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13231
13232 md5_init_ctx (&ctx);
13233 fold_checksum_tree (op0, &ctx, &ht);
13234 md5_finish_ctx (&ctx, checksum_before_op0);
13235 ht.empty ();
13236
13237 md5_init_ctx (&ctx);
13238 fold_checksum_tree (op1, &ctx, &ht);
13239 md5_finish_ctx (&ctx, checksum_before_op1);
13240 ht.empty ();
13241 #endif
13242
13243 tem = fold_binary_loc (loc, code, type, op0, op1);
13244 if (!tem)
13245 tem = build2_stat_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
13246
13247 #ifdef ENABLE_FOLD_CHECKING
13248 md5_init_ctx (&ctx);
13249 fold_checksum_tree (op0, &ctx, &ht);
13250 md5_finish_ctx (&ctx, checksum_after_op0);
13251 ht.empty ();
13252
13253 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
13254 fold_check_failed (op0, tem);
13255
13256 md5_init_ctx (&ctx);
13257 fold_checksum_tree (op1, &ctx, &ht);
13258 md5_finish_ctx (&ctx, checksum_after_op1);
13259
13260 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
13261 fold_check_failed (op1, tem);
13262 #endif
13263 return tem;
13264 }
13265
13266 /* Fold a ternary tree expression with code CODE of type TYPE with
13267 operands OP0, OP1, and OP2. Return a folded expression if
13268 successful. Otherwise, return a tree expression with code CODE of
13269 type TYPE with operands OP0, OP1, and OP2. */
13270
13271 tree
13272 fold_build3_stat_loc (location_t loc, enum tree_code code, tree type,
13273 tree op0, tree op1, tree op2 MEM_STAT_DECL)
13274 {
13275 tree tem;
13276 #ifdef ENABLE_FOLD_CHECKING
13277 unsigned char checksum_before_op0[16],
13278 checksum_before_op1[16],
13279 checksum_before_op2[16],
13280 checksum_after_op0[16],
13281 checksum_after_op1[16],
13282 checksum_after_op2[16];
13283 struct md5_ctx ctx;
13284 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13285
13286 md5_init_ctx (&ctx);
13287 fold_checksum_tree (op0, &ctx, &ht);
13288 md5_finish_ctx (&ctx, checksum_before_op0);
13289 ht.empty ();
13290
13291 md5_init_ctx (&ctx);
13292 fold_checksum_tree (op1, &ctx, &ht);
13293 md5_finish_ctx (&ctx, checksum_before_op1);
13294 ht.empty ();
13295
13296 md5_init_ctx (&ctx);
13297 fold_checksum_tree (op2, &ctx, &ht);
13298 md5_finish_ctx (&ctx, checksum_before_op2);
13299 ht.empty ();
13300 #endif
13301
13302 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
13303 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
13304 if (!tem)
13305 tem = build3_stat_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
13306
13307 #ifdef ENABLE_FOLD_CHECKING
13308 md5_init_ctx (&ctx);
13309 fold_checksum_tree (op0, &ctx, &ht);
13310 md5_finish_ctx (&ctx, checksum_after_op0);
13311 ht.empty ();
13312
13313 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
13314 fold_check_failed (op0, tem);
13315
13316 md5_init_ctx (&ctx);
13317 fold_checksum_tree (op1, &ctx, &ht);
13318 md5_finish_ctx (&ctx, checksum_after_op1);
13319 ht.empty ();
13320
13321 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
13322 fold_check_failed (op1, tem);
13323
13324 md5_init_ctx (&ctx);
13325 fold_checksum_tree (op2, &ctx, &ht);
13326 md5_finish_ctx (&ctx, checksum_after_op2);
13327
13328 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
13329 fold_check_failed (op2, tem);
13330 #endif
13331 return tem;
13332 }
13333
13334 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
13335 arguments in ARGARRAY, and a null static chain.
13336 Return a folded expression if successful. Otherwise, return a CALL_EXPR
13337 of type TYPE from the given operands as constructed by build_call_array. */
13338
13339 tree
13340 fold_build_call_array_loc (location_t loc, tree type, tree fn,
13341 int nargs, tree *argarray)
13342 {
13343 tree tem;
13344 #ifdef ENABLE_FOLD_CHECKING
13345 unsigned char checksum_before_fn[16],
13346 checksum_before_arglist[16],
13347 checksum_after_fn[16],
13348 checksum_after_arglist[16];
13349 struct md5_ctx ctx;
13350 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13351 int i;
13352
13353 md5_init_ctx (&ctx);
13354 fold_checksum_tree (fn, &ctx, &ht);
13355 md5_finish_ctx (&ctx, checksum_before_fn);
13356 ht.empty ();
13357
13358 md5_init_ctx (&ctx);
13359 for (i = 0; i < nargs; i++)
13360 fold_checksum_tree (argarray[i], &ctx, &ht);
13361 md5_finish_ctx (&ctx, checksum_before_arglist);
13362 ht.empty ();
13363 #endif
13364
13365 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
13366 if (!tem)
13367 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
13368
13369 #ifdef ENABLE_FOLD_CHECKING
13370 md5_init_ctx (&ctx);
13371 fold_checksum_tree (fn, &ctx, &ht);
13372 md5_finish_ctx (&ctx, checksum_after_fn);
13373 ht.empty ();
13374
13375 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
13376 fold_check_failed (fn, tem);
13377
13378 md5_init_ctx (&ctx);
13379 for (i = 0; i < nargs; i++)
13380 fold_checksum_tree (argarray[i], &ctx, &ht);
13381 md5_finish_ctx (&ctx, checksum_after_arglist);
13382
13383 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
13384 fold_check_failed (NULL_TREE, tem);
13385 #endif
13386 return tem;
13387 }
13388
13389 /* Perform constant folding and related simplification of initializer
13390 expression EXPR. These behave identically to "fold_buildN" but ignore
13391 potential run-time traps and exceptions that fold must preserve. */
13392
13393 #define START_FOLD_INIT \
13394 int saved_signaling_nans = flag_signaling_nans;\
13395 int saved_trapping_math = flag_trapping_math;\
13396 int saved_rounding_math = flag_rounding_math;\
13397 int saved_trapv = flag_trapv;\
13398 int saved_folding_initializer = folding_initializer;\
13399 flag_signaling_nans = 0;\
13400 flag_trapping_math = 0;\
13401 flag_rounding_math = 0;\
13402 flag_trapv = 0;\
13403 folding_initializer = 1;
13404
13405 #define END_FOLD_INIT \
13406 flag_signaling_nans = saved_signaling_nans;\
13407 flag_trapping_math = saved_trapping_math;\
13408 flag_rounding_math = saved_rounding_math;\
13409 flag_trapv = saved_trapv;\
13410 folding_initializer = saved_folding_initializer;
13411
13412 tree
13413 fold_build1_initializer_loc (location_t loc, enum tree_code code,
13414 tree type, tree op)
13415 {
13416 tree result;
13417 START_FOLD_INIT;
13418
13419 result = fold_build1_loc (loc, code, type, op);
13420
13421 END_FOLD_INIT;
13422 return result;
13423 }
13424
13425 tree
13426 fold_build2_initializer_loc (location_t loc, enum tree_code code,
13427 tree type, tree op0, tree op1)
13428 {
13429 tree result;
13430 START_FOLD_INIT;
13431
13432 result = fold_build2_loc (loc, code, type, op0, op1);
13433
13434 END_FOLD_INIT;
13435 return result;
13436 }
13437
13438 tree
13439 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
13440 int nargs, tree *argarray)
13441 {
13442 tree result;
13443 START_FOLD_INIT;
13444
13445 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
13446
13447 END_FOLD_INIT;
13448 return result;
13449 }
13450
13451 #undef START_FOLD_INIT
13452 #undef END_FOLD_INIT
13453
13454 /* Determine if first argument is a multiple of second argument. Return 0 if
13455 it is not, or we cannot easily determined it to be.
13456
13457 An example of the sort of thing we care about (at this point; this routine
13458 could surely be made more general, and expanded to do what the *_DIV_EXPR's
13459 fold cases do now) is discovering that
13460
13461 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13462
13463 is a multiple of
13464
13465 SAVE_EXPR (J * 8)
13466
13467 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
13468
13469 This code also handles discovering that
13470
13471 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13472
13473 is a multiple of 8 so we don't have to worry about dealing with a
13474 possible remainder.
13475
13476 Note that we *look* inside a SAVE_EXPR only to determine how it was
13477 calculated; it is not safe for fold to do much of anything else with the
13478 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
13479 at run time. For example, the latter example above *cannot* be implemented
13480 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
13481 evaluation time of the original SAVE_EXPR is not necessarily the same at
13482 the time the new expression is evaluated. The only optimization of this
13483 sort that would be valid is changing
13484
13485 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
13486
13487 divided by 8 to
13488
13489 SAVE_EXPR (I) * SAVE_EXPR (J)
13490
13491 (where the same SAVE_EXPR (J) is used in the original and the
13492 transformed version). */
13493
13494 int
13495 multiple_of_p (tree type, const_tree top, const_tree bottom)
13496 {
13497 if (operand_equal_p (top, bottom, 0))
13498 return 1;
13499
13500 if (TREE_CODE (type) != INTEGER_TYPE)
13501 return 0;
13502
13503 switch (TREE_CODE (top))
13504 {
13505 case BIT_AND_EXPR:
13506 /* Bitwise and provides a power of two multiple. If the mask is
13507 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
13508 if (!integer_pow2p (bottom))
13509 return 0;
13510 /* FALLTHRU */
13511
13512 case MULT_EXPR:
13513 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
13514 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
13515
13516 case PLUS_EXPR:
13517 case MINUS_EXPR:
13518 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
13519 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
13520
13521 case LSHIFT_EXPR:
13522 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
13523 {
13524 tree op1, t1;
13525
13526 op1 = TREE_OPERAND (top, 1);
13527 /* const_binop may not detect overflow correctly,
13528 so check for it explicitly here. */
13529 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
13530 && 0 != (t1 = fold_convert (type,
13531 const_binop (LSHIFT_EXPR,
13532 size_one_node,
13533 op1)))
13534 && !TREE_OVERFLOW (t1))
13535 return multiple_of_p (type, t1, bottom);
13536 }
13537 return 0;
13538
13539 case NOP_EXPR:
13540 /* Can't handle conversions from non-integral or wider integral type. */
13541 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
13542 || (TYPE_PRECISION (type)
13543 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
13544 return 0;
13545
13546 /* .. fall through ... */
13547
13548 case SAVE_EXPR:
13549 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
13550
13551 case COND_EXPR:
13552 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
13553 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
13554
13555 case INTEGER_CST:
13556 if (TREE_CODE (bottom) != INTEGER_CST
13557 || integer_zerop (bottom)
13558 || (TYPE_UNSIGNED (type)
13559 && (tree_int_cst_sgn (top) < 0
13560 || tree_int_cst_sgn (bottom) < 0)))
13561 return 0;
13562 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
13563 SIGNED);
13564
13565 default:
13566 return 0;
13567 }
13568 }
13569
13570 /* Return true if CODE or TYPE is known to be non-negative. */
13571
13572 static bool
13573 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
13574 {
13575 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
13576 && truth_value_p (code))
13577 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
13578 have a signed:1 type (where the value is -1 and 0). */
13579 return true;
13580 return false;
13581 }
13582
13583 /* Return true if (CODE OP0) is known to be non-negative. If the return
13584 value is based on the assumption that signed overflow is undefined,
13585 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13586 *STRICT_OVERFLOW_P. */
13587
13588 bool
13589 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
13590 bool *strict_overflow_p)
13591 {
13592 if (TYPE_UNSIGNED (type))
13593 return true;
13594
13595 switch (code)
13596 {
13597 case ABS_EXPR:
13598 /* We can't return 1 if flag_wrapv is set because
13599 ABS_EXPR<INT_MIN> = INT_MIN. */
13600 if (!ANY_INTEGRAL_TYPE_P (type))
13601 return true;
13602 if (TYPE_OVERFLOW_UNDEFINED (type))
13603 {
13604 *strict_overflow_p = true;
13605 return true;
13606 }
13607 break;
13608
13609 case NON_LVALUE_EXPR:
13610 case FLOAT_EXPR:
13611 case FIX_TRUNC_EXPR:
13612 return tree_expr_nonnegative_warnv_p (op0,
13613 strict_overflow_p);
13614
13615 CASE_CONVERT:
13616 {
13617 tree inner_type = TREE_TYPE (op0);
13618 tree outer_type = type;
13619
13620 if (TREE_CODE (outer_type) == REAL_TYPE)
13621 {
13622 if (TREE_CODE (inner_type) == REAL_TYPE)
13623 return tree_expr_nonnegative_warnv_p (op0,
13624 strict_overflow_p);
13625 if (INTEGRAL_TYPE_P (inner_type))
13626 {
13627 if (TYPE_UNSIGNED (inner_type))
13628 return true;
13629 return tree_expr_nonnegative_warnv_p (op0,
13630 strict_overflow_p);
13631 }
13632 }
13633 else if (INTEGRAL_TYPE_P (outer_type))
13634 {
13635 if (TREE_CODE (inner_type) == REAL_TYPE)
13636 return tree_expr_nonnegative_warnv_p (op0,
13637 strict_overflow_p);
13638 if (INTEGRAL_TYPE_P (inner_type))
13639 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
13640 && TYPE_UNSIGNED (inner_type);
13641 }
13642 }
13643 break;
13644
13645 default:
13646 return tree_simple_nonnegative_warnv_p (code, type);
13647 }
13648
13649 /* We don't know sign of `t', so be conservative and return false. */
13650 return false;
13651 }
13652
13653 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
13654 value is based on the assumption that signed overflow is undefined,
13655 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13656 *STRICT_OVERFLOW_P. */
13657
13658 bool
13659 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
13660 tree op1, bool *strict_overflow_p)
13661 {
13662 if (TYPE_UNSIGNED (type))
13663 return true;
13664
13665 switch (code)
13666 {
13667 case POINTER_PLUS_EXPR:
13668 case PLUS_EXPR:
13669 if (FLOAT_TYPE_P (type))
13670 return (tree_expr_nonnegative_warnv_p (op0,
13671 strict_overflow_p)
13672 && tree_expr_nonnegative_warnv_p (op1,
13673 strict_overflow_p));
13674
13675 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
13676 both unsigned and at least 2 bits shorter than the result. */
13677 if (TREE_CODE (type) == INTEGER_TYPE
13678 && TREE_CODE (op0) == NOP_EXPR
13679 && TREE_CODE (op1) == NOP_EXPR)
13680 {
13681 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
13682 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
13683 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
13684 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
13685 {
13686 unsigned int prec = MAX (TYPE_PRECISION (inner1),
13687 TYPE_PRECISION (inner2)) + 1;
13688 return prec < TYPE_PRECISION (type);
13689 }
13690 }
13691 break;
13692
13693 case MULT_EXPR:
13694 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
13695 {
13696 /* x * x is always non-negative for floating point x
13697 or without overflow. */
13698 if (operand_equal_p (op0, op1, 0)
13699 || (tree_expr_nonnegative_warnv_p (op0, strict_overflow_p)
13700 && tree_expr_nonnegative_warnv_p (op1, strict_overflow_p)))
13701 {
13702 if (ANY_INTEGRAL_TYPE_P (type)
13703 && TYPE_OVERFLOW_UNDEFINED (type))
13704 *strict_overflow_p = true;
13705 return true;
13706 }
13707 }
13708
13709 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
13710 both unsigned and their total bits is shorter than the result. */
13711 if (TREE_CODE (type) == INTEGER_TYPE
13712 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
13713 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
13714 {
13715 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
13716 ? TREE_TYPE (TREE_OPERAND (op0, 0))
13717 : TREE_TYPE (op0);
13718 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
13719 ? TREE_TYPE (TREE_OPERAND (op1, 0))
13720 : TREE_TYPE (op1);
13721
13722 bool unsigned0 = TYPE_UNSIGNED (inner0);
13723 bool unsigned1 = TYPE_UNSIGNED (inner1);
13724
13725 if (TREE_CODE (op0) == INTEGER_CST)
13726 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
13727
13728 if (TREE_CODE (op1) == INTEGER_CST)
13729 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
13730
13731 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
13732 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
13733 {
13734 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
13735 ? tree_int_cst_min_precision (op0, UNSIGNED)
13736 : TYPE_PRECISION (inner0);
13737
13738 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
13739 ? tree_int_cst_min_precision (op1, UNSIGNED)
13740 : TYPE_PRECISION (inner1);
13741
13742 return precision0 + precision1 < TYPE_PRECISION (type);
13743 }
13744 }
13745 return false;
13746
13747 case BIT_AND_EXPR:
13748 case MAX_EXPR:
13749 return (tree_expr_nonnegative_warnv_p (op0,
13750 strict_overflow_p)
13751 || tree_expr_nonnegative_warnv_p (op1,
13752 strict_overflow_p));
13753
13754 case BIT_IOR_EXPR:
13755 case BIT_XOR_EXPR:
13756 case MIN_EXPR:
13757 case RDIV_EXPR:
13758 case TRUNC_DIV_EXPR:
13759 case CEIL_DIV_EXPR:
13760 case FLOOR_DIV_EXPR:
13761 case ROUND_DIV_EXPR:
13762 return (tree_expr_nonnegative_warnv_p (op0,
13763 strict_overflow_p)
13764 && tree_expr_nonnegative_warnv_p (op1,
13765 strict_overflow_p));
13766
13767 case TRUNC_MOD_EXPR:
13768 case CEIL_MOD_EXPR:
13769 case FLOOR_MOD_EXPR:
13770 case ROUND_MOD_EXPR:
13771 return tree_expr_nonnegative_warnv_p (op0,
13772 strict_overflow_p);
13773 default:
13774 return tree_simple_nonnegative_warnv_p (code, type);
13775 }
13776
13777 /* We don't know sign of `t', so be conservative and return false. */
13778 return false;
13779 }
13780
13781 /* Return true if T is known to be non-negative. If the return
13782 value is based on the assumption that signed overflow is undefined,
13783 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13784 *STRICT_OVERFLOW_P. */
13785
13786 bool
13787 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
13788 {
13789 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13790 return true;
13791
13792 switch (TREE_CODE (t))
13793 {
13794 case INTEGER_CST:
13795 return tree_int_cst_sgn (t) >= 0;
13796
13797 case REAL_CST:
13798 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
13799
13800 case FIXED_CST:
13801 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
13802
13803 case COND_EXPR:
13804 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13805 strict_overflow_p)
13806 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
13807 strict_overflow_p));
13808 default:
13809 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
13810 TREE_TYPE (t));
13811 }
13812 /* We don't know sign of `t', so be conservative and return false. */
13813 return false;
13814 }
13815
13816 /* Return true if T is known to be non-negative. If the return
13817 value is based on the assumption that signed overflow is undefined,
13818 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13819 *STRICT_OVERFLOW_P. */
13820
13821 bool
13822 tree_call_nonnegative_warnv_p (tree type, tree fndecl,
13823 tree arg0, tree arg1, bool *strict_overflow_p)
13824 {
13825 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
13826 switch (DECL_FUNCTION_CODE (fndecl))
13827 {
13828 CASE_FLT_FN (BUILT_IN_ACOS):
13829 CASE_FLT_FN (BUILT_IN_ACOSH):
13830 CASE_FLT_FN (BUILT_IN_CABS):
13831 CASE_FLT_FN (BUILT_IN_COSH):
13832 CASE_FLT_FN (BUILT_IN_ERFC):
13833 CASE_FLT_FN (BUILT_IN_EXP):
13834 CASE_FLT_FN (BUILT_IN_EXP10):
13835 CASE_FLT_FN (BUILT_IN_EXP2):
13836 CASE_FLT_FN (BUILT_IN_FABS):
13837 CASE_FLT_FN (BUILT_IN_FDIM):
13838 CASE_FLT_FN (BUILT_IN_HYPOT):
13839 CASE_FLT_FN (BUILT_IN_POW10):
13840 CASE_INT_FN (BUILT_IN_FFS):
13841 CASE_INT_FN (BUILT_IN_PARITY):
13842 CASE_INT_FN (BUILT_IN_POPCOUNT):
13843 CASE_INT_FN (BUILT_IN_CLZ):
13844 CASE_INT_FN (BUILT_IN_CLRSB):
13845 case BUILT_IN_BSWAP32:
13846 case BUILT_IN_BSWAP64:
13847 /* Always true. */
13848 return true;
13849
13850 CASE_FLT_FN (BUILT_IN_SQRT):
13851 /* sqrt(-0.0) is -0.0. */
13852 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
13853 return true;
13854 return tree_expr_nonnegative_warnv_p (arg0,
13855 strict_overflow_p);
13856
13857 CASE_FLT_FN (BUILT_IN_ASINH):
13858 CASE_FLT_FN (BUILT_IN_ATAN):
13859 CASE_FLT_FN (BUILT_IN_ATANH):
13860 CASE_FLT_FN (BUILT_IN_CBRT):
13861 CASE_FLT_FN (BUILT_IN_CEIL):
13862 CASE_FLT_FN (BUILT_IN_ERF):
13863 CASE_FLT_FN (BUILT_IN_EXPM1):
13864 CASE_FLT_FN (BUILT_IN_FLOOR):
13865 CASE_FLT_FN (BUILT_IN_FMOD):
13866 CASE_FLT_FN (BUILT_IN_FREXP):
13867 CASE_FLT_FN (BUILT_IN_ICEIL):
13868 CASE_FLT_FN (BUILT_IN_IFLOOR):
13869 CASE_FLT_FN (BUILT_IN_IRINT):
13870 CASE_FLT_FN (BUILT_IN_IROUND):
13871 CASE_FLT_FN (BUILT_IN_LCEIL):
13872 CASE_FLT_FN (BUILT_IN_LDEXP):
13873 CASE_FLT_FN (BUILT_IN_LFLOOR):
13874 CASE_FLT_FN (BUILT_IN_LLCEIL):
13875 CASE_FLT_FN (BUILT_IN_LLFLOOR):
13876 CASE_FLT_FN (BUILT_IN_LLRINT):
13877 CASE_FLT_FN (BUILT_IN_LLROUND):
13878 CASE_FLT_FN (BUILT_IN_LRINT):
13879 CASE_FLT_FN (BUILT_IN_LROUND):
13880 CASE_FLT_FN (BUILT_IN_MODF):
13881 CASE_FLT_FN (BUILT_IN_NEARBYINT):
13882 CASE_FLT_FN (BUILT_IN_RINT):
13883 CASE_FLT_FN (BUILT_IN_ROUND):
13884 CASE_FLT_FN (BUILT_IN_SCALB):
13885 CASE_FLT_FN (BUILT_IN_SCALBLN):
13886 CASE_FLT_FN (BUILT_IN_SCALBN):
13887 CASE_FLT_FN (BUILT_IN_SIGNBIT):
13888 CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
13889 CASE_FLT_FN (BUILT_IN_SINH):
13890 CASE_FLT_FN (BUILT_IN_TANH):
13891 CASE_FLT_FN (BUILT_IN_TRUNC):
13892 /* True if the 1st argument is nonnegative. */
13893 return tree_expr_nonnegative_warnv_p (arg0,
13894 strict_overflow_p);
13895
13896 CASE_FLT_FN (BUILT_IN_FMAX):
13897 /* True if the 1st OR 2nd arguments are nonnegative. */
13898 return (tree_expr_nonnegative_warnv_p (arg0,
13899 strict_overflow_p)
13900 || (tree_expr_nonnegative_warnv_p (arg1,
13901 strict_overflow_p)));
13902
13903 CASE_FLT_FN (BUILT_IN_FMIN):
13904 /* True if the 1st AND 2nd arguments are nonnegative. */
13905 return (tree_expr_nonnegative_warnv_p (arg0,
13906 strict_overflow_p)
13907 && (tree_expr_nonnegative_warnv_p (arg1,
13908 strict_overflow_p)));
13909
13910 CASE_FLT_FN (BUILT_IN_COPYSIGN):
13911 /* True if the 2nd argument is nonnegative. */
13912 return tree_expr_nonnegative_warnv_p (arg1,
13913 strict_overflow_p);
13914
13915 CASE_FLT_FN (BUILT_IN_POWI):
13916 /* True if the 1st argument is nonnegative or the second
13917 argument is an even integer. */
13918 if (TREE_CODE (arg1) == INTEGER_CST
13919 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
13920 return true;
13921 return tree_expr_nonnegative_warnv_p (arg0,
13922 strict_overflow_p);
13923
13924 CASE_FLT_FN (BUILT_IN_POW):
13925 /* True if the 1st argument is nonnegative or the second
13926 argument is an even integer valued real. */
13927 if (TREE_CODE (arg1) == REAL_CST)
13928 {
13929 REAL_VALUE_TYPE c;
13930 HOST_WIDE_INT n;
13931
13932 c = TREE_REAL_CST (arg1);
13933 n = real_to_integer (&c);
13934 if ((n & 1) == 0)
13935 {
13936 REAL_VALUE_TYPE cint;
13937 real_from_integer (&cint, VOIDmode, n, SIGNED);
13938 if (real_identical (&c, &cint))
13939 return true;
13940 }
13941 }
13942 return tree_expr_nonnegative_warnv_p (arg0,
13943 strict_overflow_p);
13944
13945 default:
13946 break;
13947 }
13948 return tree_simple_nonnegative_warnv_p (CALL_EXPR,
13949 type);
13950 }
13951
13952 /* Return true if T is known to be non-negative. If the return
13953 value is based on the assumption that signed overflow is undefined,
13954 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13955 *STRICT_OVERFLOW_P. */
13956
13957 static bool
13958 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
13959 {
13960 enum tree_code code = TREE_CODE (t);
13961 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13962 return true;
13963
13964 switch (code)
13965 {
13966 case TARGET_EXPR:
13967 {
13968 tree temp = TARGET_EXPR_SLOT (t);
13969 t = TARGET_EXPR_INITIAL (t);
13970
13971 /* If the initializer is non-void, then it's a normal expression
13972 that will be assigned to the slot. */
13973 if (!VOID_TYPE_P (t))
13974 return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
13975
13976 /* Otherwise, the initializer sets the slot in some way. One common
13977 way is an assignment statement at the end of the initializer. */
13978 while (1)
13979 {
13980 if (TREE_CODE (t) == BIND_EXPR)
13981 t = expr_last (BIND_EXPR_BODY (t));
13982 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13983 || TREE_CODE (t) == TRY_CATCH_EXPR)
13984 t = expr_last (TREE_OPERAND (t, 0));
13985 else if (TREE_CODE (t) == STATEMENT_LIST)
13986 t = expr_last (t);
13987 else
13988 break;
13989 }
13990 if (TREE_CODE (t) == MODIFY_EXPR
13991 && TREE_OPERAND (t, 0) == temp)
13992 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13993 strict_overflow_p);
13994
13995 return false;
13996 }
13997
13998 case CALL_EXPR:
13999 {
14000 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
14001 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
14002
14003 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
14004 get_callee_fndecl (t),
14005 arg0,
14006 arg1,
14007 strict_overflow_p);
14008 }
14009 case COMPOUND_EXPR:
14010 case MODIFY_EXPR:
14011 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14012 strict_overflow_p);
14013 case BIND_EXPR:
14014 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
14015 strict_overflow_p);
14016 case SAVE_EXPR:
14017 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
14018 strict_overflow_p);
14019
14020 default:
14021 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
14022 TREE_TYPE (t));
14023 }
14024
14025 /* We don't know sign of `t', so be conservative and return false. */
14026 return false;
14027 }
14028
14029 /* Return true if T is known to be non-negative. If the return
14030 value is based on the assumption that signed overflow is undefined,
14031 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14032 *STRICT_OVERFLOW_P. */
14033
14034 bool
14035 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14036 {
14037 enum tree_code code;
14038 if (t == error_mark_node)
14039 return false;
14040
14041 code = TREE_CODE (t);
14042 switch (TREE_CODE_CLASS (code))
14043 {
14044 case tcc_binary:
14045 case tcc_comparison:
14046 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
14047 TREE_TYPE (t),
14048 TREE_OPERAND (t, 0),
14049 TREE_OPERAND (t, 1),
14050 strict_overflow_p);
14051
14052 case tcc_unary:
14053 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
14054 TREE_TYPE (t),
14055 TREE_OPERAND (t, 0),
14056 strict_overflow_p);
14057
14058 case tcc_constant:
14059 case tcc_declaration:
14060 case tcc_reference:
14061 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
14062
14063 default:
14064 break;
14065 }
14066
14067 switch (code)
14068 {
14069 case TRUTH_AND_EXPR:
14070 case TRUTH_OR_EXPR:
14071 case TRUTH_XOR_EXPR:
14072 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
14073 TREE_TYPE (t),
14074 TREE_OPERAND (t, 0),
14075 TREE_OPERAND (t, 1),
14076 strict_overflow_p);
14077 case TRUTH_NOT_EXPR:
14078 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
14079 TREE_TYPE (t),
14080 TREE_OPERAND (t, 0),
14081 strict_overflow_p);
14082
14083 case COND_EXPR:
14084 case CONSTRUCTOR:
14085 case OBJ_TYPE_REF:
14086 case ASSERT_EXPR:
14087 case ADDR_EXPR:
14088 case WITH_SIZE_EXPR:
14089 case SSA_NAME:
14090 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
14091
14092 default:
14093 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p);
14094 }
14095 }
14096
14097 /* Return true if `t' is known to be non-negative. Handle warnings
14098 about undefined signed overflow. */
14099
14100 bool
14101 tree_expr_nonnegative_p (tree t)
14102 {
14103 bool ret, strict_overflow_p;
14104
14105 strict_overflow_p = false;
14106 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
14107 if (strict_overflow_p)
14108 fold_overflow_warning (("assuming signed overflow does not occur when "
14109 "determining that expression is always "
14110 "non-negative"),
14111 WARN_STRICT_OVERFLOW_MISC);
14112 return ret;
14113 }
14114
14115
14116 /* Return true when (CODE OP0) is an address and is known to be nonzero.
14117 For floating point we further ensure that T is not denormal.
14118 Similar logic is present in nonzero_address in rtlanal.h.
14119
14120 If the return value is based on the assumption that signed overflow
14121 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14122 change *STRICT_OVERFLOW_P. */
14123
14124 bool
14125 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
14126 bool *strict_overflow_p)
14127 {
14128 switch (code)
14129 {
14130 case ABS_EXPR:
14131 return tree_expr_nonzero_warnv_p (op0,
14132 strict_overflow_p);
14133
14134 case NOP_EXPR:
14135 {
14136 tree inner_type = TREE_TYPE (op0);
14137 tree outer_type = type;
14138
14139 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
14140 && tree_expr_nonzero_warnv_p (op0,
14141 strict_overflow_p));
14142 }
14143 break;
14144
14145 case NON_LVALUE_EXPR:
14146 return tree_expr_nonzero_warnv_p (op0,
14147 strict_overflow_p);
14148
14149 default:
14150 break;
14151 }
14152
14153 return false;
14154 }
14155
14156 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
14157 For floating point we further ensure that T is not denormal.
14158 Similar logic is present in nonzero_address in rtlanal.h.
14159
14160 If the return value is based on the assumption that signed overflow
14161 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14162 change *STRICT_OVERFLOW_P. */
14163
14164 bool
14165 tree_binary_nonzero_warnv_p (enum tree_code code,
14166 tree type,
14167 tree op0,
14168 tree op1, bool *strict_overflow_p)
14169 {
14170 bool sub_strict_overflow_p;
14171 switch (code)
14172 {
14173 case POINTER_PLUS_EXPR:
14174 case PLUS_EXPR:
14175 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
14176 {
14177 /* With the presence of negative values it is hard
14178 to say something. */
14179 sub_strict_overflow_p = false;
14180 if (!tree_expr_nonnegative_warnv_p (op0,
14181 &sub_strict_overflow_p)
14182 || !tree_expr_nonnegative_warnv_p (op1,
14183 &sub_strict_overflow_p))
14184 return false;
14185 /* One of operands must be positive and the other non-negative. */
14186 /* We don't set *STRICT_OVERFLOW_P here: even if this value
14187 overflows, on a twos-complement machine the sum of two
14188 nonnegative numbers can never be zero. */
14189 return (tree_expr_nonzero_warnv_p (op0,
14190 strict_overflow_p)
14191 || tree_expr_nonzero_warnv_p (op1,
14192 strict_overflow_p));
14193 }
14194 break;
14195
14196 case MULT_EXPR:
14197 if (TYPE_OVERFLOW_UNDEFINED (type))
14198 {
14199 if (tree_expr_nonzero_warnv_p (op0,
14200 strict_overflow_p)
14201 && tree_expr_nonzero_warnv_p (op1,
14202 strict_overflow_p))
14203 {
14204 *strict_overflow_p = true;
14205 return true;
14206 }
14207 }
14208 break;
14209
14210 case MIN_EXPR:
14211 sub_strict_overflow_p = false;
14212 if (tree_expr_nonzero_warnv_p (op0,
14213 &sub_strict_overflow_p)
14214 && tree_expr_nonzero_warnv_p (op1,
14215 &sub_strict_overflow_p))
14216 {
14217 if (sub_strict_overflow_p)
14218 *strict_overflow_p = true;
14219 }
14220 break;
14221
14222 case MAX_EXPR:
14223 sub_strict_overflow_p = false;
14224 if (tree_expr_nonzero_warnv_p (op0,
14225 &sub_strict_overflow_p))
14226 {
14227 if (sub_strict_overflow_p)
14228 *strict_overflow_p = true;
14229
14230 /* When both operands are nonzero, then MAX must be too. */
14231 if (tree_expr_nonzero_warnv_p (op1,
14232 strict_overflow_p))
14233 return true;
14234
14235 /* MAX where operand 0 is positive is positive. */
14236 return tree_expr_nonnegative_warnv_p (op0,
14237 strict_overflow_p);
14238 }
14239 /* MAX where operand 1 is positive is positive. */
14240 else if (tree_expr_nonzero_warnv_p (op1,
14241 &sub_strict_overflow_p)
14242 && tree_expr_nonnegative_warnv_p (op1,
14243 &sub_strict_overflow_p))
14244 {
14245 if (sub_strict_overflow_p)
14246 *strict_overflow_p = true;
14247 return true;
14248 }
14249 break;
14250
14251 case BIT_IOR_EXPR:
14252 return (tree_expr_nonzero_warnv_p (op1,
14253 strict_overflow_p)
14254 || tree_expr_nonzero_warnv_p (op0,
14255 strict_overflow_p));
14256
14257 default:
14258 break;
14259 }
14260
14261 return false;
14262 }
14263
14264 /* Return true when T is an address and is known to be nonzero.
14265 For floating point we further ensure that T is not denormal.
14266 Similar logic is present in nonzero_address in rtlanal.h.
14267
14268 If the return value is based on the assumption that signed overflow
14269 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14270 change *STRICT_OVERFLOW_P. */
14271
14272 bool
14273 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
14274 {
14275 bool sub_strict_overflow_p;
14276 switch (TREE_CODE (t))
14277 {
14278 case INTEGER_CST:
14279 return !integer_zerop (t);
14280
14281 case ADDR_EXPR:
14282 {
14283 tree base = TREE_OPERAND (t, 0);
14284
14285 if (!DECL_P (base))
14286 base = get_base_address (base);
14287
14288 if (!base)
14289 return false;
14290
14291 /* For objects in symbol table check if we know they are non-zero.
14292 Don't do anything for variables and functions before symtab is built;
14293 it is quite possible that they will be declared weak later. */
14294 if (DECL_P (base) && decl_in_symtab_p (base))
14295 {
14296 struct symtab_node *symbol;
14297
14298 symbol = symtab_node::get_create (base);
14299 if (symbol)
14300 return symbol->nonzero_address ();
14301 else
14302 return false;
14303 }
14304
14305 /* Function local objects are never NULL. */
14306 if (DECL_P (base)
14307 && (DECL_CONTEXT (base)
14308 && TREE_CODE (DECL_CONTEXT (base)) == FUNCTION_DECL
14309 && auto_var_in_fn_p (base, DECL_CONTEXT (base))))
14310 return true;
14311
14312 /* Constants are never weak. */
14313 if (CONSTANT_CLASS_P (base))
14314 return true;
14315
14316 return false;
14317 }
14318
14319 case COND_EXPR:
14320 sub_strict_overflow_p = false;
14321 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14322 &sub_strict_overflow_p)
14323 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
14324 &sub_strict_overflow_p))
14325 {
14326 if (sub_strict_overflow_p)
14327 *strict_overflow_p = true;
14328 return true;
14329 }
14330 break;
14331
14332 default:
14333 break;
14334 }
14335 return false;
14336 }
14337
14338 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
14339 attempt to fold the expression to a constant without modifying TYPE,
14340 OP0 or OP1.
14341
14342 If the expression could be simplified to a constant, then return
14343 the constant. If the expression would not be simplified to a
14344 constant, then return NULL_TREE. */
14345
14346 tree
14347 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
14348 {
14349 tree tem = fold_binary (code, type, op0, op1);
14350 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
14351 }
14352
14353 /* Given the components of a unary expression CODE, TYPE and OP0,
14354 attempt to fold the expression to a constant without modifying
14355 TYPE or OP0.
14356
14357 If the expression could be simplified to a constant, then return
14358 the constant. If the expression would not be simplified to a
14359 constant, then return NULL_TREE. */
14360
14361 tree
14362 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
14363 {
14364 tree tem = fold_unary (code, type, op0);
14365 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
14366 }
14367
14368 /* If EXP represents referencing an element in a constant string
14369 (either via pointer arithmetic or array indexing), return the
14370 tree representing the value accessed, otherwise return NULL. */
14371
14372 tree
14373 fold_read_from_constant_string (tree exp)
14374 {
14375 if ((TREE_CODE (exp) == INDIRECT_REF
14376 || TREE_CODE (exp) == ARRAY_REF)
14377 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
14378 {
14379 tree exp1 = TREE_OPERAND (exp, 0);
14380 tree index;
14381 tree string;
14382 location_t loc = EXPR_LOCATION (exp);
14383
14384 if (TREE_CODE (exp) == INDIRECT_REF)
14385 string = string_constant (exp1, &index);
14386 else
14387 {
14388 tree low_bound = array_ref_low_bound (exp);
14389 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
14390
14391 /* Optimize the special-case of a zero lower bound.
14392
14393 We convert the low_bound to sizetype to avoid some problems
14394 with constant folding. (E.g. suppose the lower bound is 1,
14395 and its mode is QI. Without the conversion,l (ARRAY
14396 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
14397 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
14398 if (! integer_zerop (low_bound))
14399 index = size_diffop_loc (loc, index,
14400 fold_convert_loc (loc, sizetype, low_bound));
14401
14402 string = exp1;
14403 }
14404
14405 if (string
14406 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
14407 && TREE_CODE (string) == STRING_CST
14408 && TREE_CODE (index) == INTEGER_CST
14409 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
14410 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
14411 == MODE_INT)
14412 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
14413 return build_int_cst_type (TREE_TYPE (exp),
14414 (TREE_STRING_POINTER (string)
14415 [TREE_INT_CST_LOW (index)]));
14416 }
14417 return NULL;
14418 }
14419
14420 /* Return the tree for neg (ARG0) when ARG0 is known to be either
14421 an integer constant, real, or fixed-point constant.
14422
14423 TYPE is the type of the result. */
14424
14425 static tree
14426 fold_negate_const (tree arg0, tree type)
14427 {
14428 tree t = NULL_TREE;
14429
14430 switch (TREE_CODE (arg0))
14431 {
14432 case INTEGER_CST:
14433 {
14434 bool overflow;
14435 wide_int val = wi::neg (arg0, &overflow);
14436 t = force_fit_type (type, val, 1,
14437 (overflow | TREE_OVERFLOW (arg0))
14438 && !TYPE_UNSIGNED (type));
14439 break;
14440 }
14441
14442 case REAL_CST:
14443 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
14444 break;
14445
14446 case FIXED_CST:
14447 {
14448 FIXED_VALUE_TYPE f;
14449 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
14450 &(TREE_FIXED_CST (arg0)), NULL,
14451 TYPE_SATURATING (type));
14452 t = build_fixed (type, f);
14453 /* Propagate overflow flags. */
14454 if (overflow_p | TREE_OVERFLOW (arg0))
14455 TREE_OVERFLOW (t) = 1;
14456 break;
14457 }
14458
14459 default:
14460 gcc_unreachable ();
14461 }
14462
14463 return t;
14464 }
14465
14466 /* Return the tree for abs (ARG0) when ARG0 is known to be either
14467 an integer constant or real constant.
14468
14469 TYPE is the type of the result. */
14470
14471 tree
14472 fold_abs_const (tree arg0, tree type)
14473 {
14474 tree t = NULL_TREE;
14475
14476 switch (TREE_CODE (arg0))
14477 {
14478 case INTEGER_CST:
14479 {
14480 /* If the value is unsigned or non-negative, then the absolute value
14481 is the same as the ordinary value. */
14482 if (!wi::neg_p (arg0, TYPE_SIGN (type)))
14483 t = arg0;
14484
14485 /* If the value is negative, then the absolute value is
14486 its negation. */
14487 else
14488 {
14489 bool overflow;
14490 wide_int val = wi::neg (arg0, &overflow);
14491 t = force_fit_type (type, val, -1,
14492 overflow | TREE_OVERFLOW (arg0));
14493 }
14494 }
14495 break;
14496
14497 case REAL_CST:
14498 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
14499 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
14500 else
14501 t = arg0;
14502 break;
14503
14504 default:
14505 gcc_unreachable ();
14506 }
14507
14508 return t;
14509 }
14510
14511 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
14512 constant. TYPE is the type of the result. */
14513
14514 static tree
14515 fold_not_const (const_tree arg0, tree type)
14516 {
14517 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
14518
14519 return force_fit_type (type, wi::bit_not (arg0), 0, TREE_OVERFLOW (arg0));
14520 }
14521
14522 /* Given CODE, a relational operator, the target type, TYPE and two
14523 constant operands OP0 and OP1, return the result of the
14524 relational operation. If the result is not a compile time
14525 constant, then return NULL_TREE. */
14526
14527 static tree
14528 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
14529 {
14530 int result, invert;
14531
14532 /* From here on, the only cases we handle are when the result is
14533 known to be a constant. */
14534
14535 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
14536 {
14537 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
14538 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
14539
14540 /* Handle the cases where either operand is a NaN. */
14541 if (real_isnan (c0) || real_isnan (c1))
14542 {
14543 switch (code)
14544 {
14545 case EQ_EXPR:
14546 case ORDERED_EXPR:
14547 result = 0;
14548 break;
14549
14550 case NE_EXPR:
14551 case UNORDERED_EXPR:
14552 case UNLT_EXPR:
14553 case UNLE_EXPR:
14554 case UNGT_EXPR:
14555 case UNGE_EXPR:
14556 case UNEQ_EXPR:
14557 result = 1;
14558 break;
14559
14560 case LT_EXPR:
14561 case LE_EXPR:
14562 case GT_EXPR:
14563 case GE_EXPR:
14564 case LTGT_EXPR:
14565 if (flag_trapping_math)
14566 return NULL_TREE;
14567 result = 0;
14568 break;
14569
14570 default:
14571 gcc_unreachable ();
14572 }
14573
14574 return constant_boolean_node (result, type);
14575 }
14576
14577 return constant_boolean_node (real_compare (code, c0, c1), type);
14578 }
14579
14580 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
14581 {
14582 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
14583 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
14584 return constant_boolean_node (fixed_compare (code, c0, c1), type);
14585 }
14586
14587 /* Handle equality/inequality of complex constants. */
14588 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
14589 {
14590 tree rcond = fold_relational_const (code, type,
14591 TREE_REALPART (op0),
14592 TREE_REALPART (op1));
14593 tree icond = fold_relational_const (code, type,
14594 TREE_IMAGPART (op0),
14595 TREE_IMAGPART (op1));
14596 if (code == EQ_EXPR)
14597 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
14598 else if (code == NE_EXPR)
14599 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
14600 else
14601 return NULL_TREE;
14602 }
14603
14604 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
14605 {
14606 unsigned count = VECTOR_CST_NELTS (op0);
14607 tree *elts = XALLOCAVEC (tree, count);
14608 gcc_assert (VECTOR_CST_NELTS (op1) == count
14609 && TYPE_VECTOR_SUBPARTS (type) == count);
14610
14611 for (unsigned i = 0; i < count; i++)
14612 {
14613 tree elem_type = TREE_TYPE (type);
14614 tree elem0 = VECTOR_CST_ELT (op0, i);
14615 tree elem1 = VECTOR_CST_ELT (op1, i);
14616
14617 tree tem = fold_relational_const (code, elem_type,
14618 elem0, elem1);
14619
14620 if (tem == NULL_TREE)
14621 return NULL_TREE;
14622
14623 elts[i] = build_int_cst (elem_type, integer_zerop (tem) ? 0 : -1);
14624 }
14625
14626 return build_vector (type, elts);
14627 }
14628
14629 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14630
14631 To compute GT, swap the arguments and do LT.
14632 To compute GE, do LT and invert the result.
14633 To compute LE, swap the arguments, do LT and invert the result.
14634 To compute NE, do EQ and invert the result.
14635
14636 Therefore, the code below must handle only EQ and LT. */
14637
14638 if (code == LE_EXPR || code == GT_EXPR)
14639 {
14640 std::swap (op0, op1);
14641 code = swap_tree_comparison (code);
14642 }
14643
14644 /* Note that it is safe to invert for real values here because we
14645 have already handled the one case that it matters. */
14646
14647 invert = 0;
14648 if (code == NE_EXPR || code == GE_EXPR)
14649 {
14650 invert = 1;
14651 code = invert_tree_comparison (code, false);
14652 }
14653
14654 /* Compute a result for LT or EQ if args permit;
14655 Otherwise return T. */
14656 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
14657 {
14658 if (code == EQ_EXPR)
14659 result = tree_int_cst_equal (op0, op1);
14660 else
14661 result = tree_int_cst_lt (op0, op1);
14662 }
14663 else
14664 return NULL_TREE;
14665
14666 if (invert)
14667 result ^= 1;
14668 return constant_boolean_node (result, type);
14669 }
14670
14671 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14672 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14673 itself. */
14674
14675 tree
14676 fold_build_cleanup_point_expr (tree type, tree expr)
14677 {
14678 /* If the expression does not have side effects then we don't have to wrap
14679 it with a cleanup point expression. */
14680 if (!TREE_SIDE_EFFECTS (expr))
14681 return expr;
14682
14683 /* If the expression is a return, check to see if the expression inside the
14684 return has no side effects or the right hand side of the modify expression
14685 inside the return. If either don't have side effects set we don't need to
14686 wrap the expression in a cleanup point expression. Note we don't check the
14687 left hand side of the modify because it should always be a return decl. */
14688 if (TREE_CODE (expr) == RETURN_EXPR)
14689 {
14690 tree op = TREE_OPERAND (expr, 0);
14691 if (!op || !TREE_SIDE_EFFECTS (op))
14692 return expr;
14693 op = TREE_OPERAND (op, 1);
14694 if (!TREE_SIDE_EFFECTS (op))
14695 return expr;
14696 }
14697
14698 return build1 (CLEANUP_POINT_EXPR, type, expr);
14699 }
14700
14701 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14702 of an indirection through OP0, or NULL_TREE if no simplification is
14703 possible. */
14704
14705 tree
14706 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
14707 {
14708 tree sub = op0;
14709 tree subtype;
14710
14711 STRIP_NOPS (sub);
14712 subtype = TREE_TYPE (sub);
14713 if (!POINTER_TYPE_P (subtype))
14714 return NULL_TREE;
14715
14716 if (TREE_CODE (sub) == ADDR_EXPR)
14717 {
14718 tree op = TREE_OPERAND (sub, 0);
14719 tree optype = TREE_TYPE (op);
14720 /* *&CONST_DECL -> to the value of the const decl. */
14721 if (TREE_CODE (op) == CONST_DECL)
14722 return DECL_INITIAL (op);
14723 /* *&p => p; make sure to handle *&"str"[cst] here. */
14724 if (type == optype)
14725 {
14726 tree fop = fold_read_from_constant_string (op);
14727 if (fop)
14728 return fop;
14729 else
14730 return op;
14731 }
14732 /* *(foo *)&fooarray => fooarray[0] */
14733 else if (TREE_CODE (optype) == ARRAY_TYPE
14734 && type == TREE_TYPE (optype)
14735 && (!in_gimple_form
14736 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14737 {
14738 tree type_domain = TYPE_DOMAIN (optype);
14739 tree min_val = size_zero_node;
14740 if (type_domain && TYPE_MIN_VALUE (type_domain))
14741 min_val = TYPE_MIN_VALUE (type_domain);
14742 if (in_gimple_form
14743 && TREE_CODE (min_val) != INTEGER_CST)
14744 return NULL_TREE;
14745 return build4_loc (loc, ARRAY_REF, type, op, min_val,
14746 NULL_TREE, NULL_TREE);
14747 }
14748 /* *(foo *)&complexfoo => __real__ complexfoo */
14749 else if (TREE_CODE (optype) == COMPLEX_TYPE
14750 && type == TREE_TYPE (optype))
14751 return fold_build1_loc (loc, REALPART_EXPR, type, op);
14752 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14753 else if (TREE_CODE (optype) == VECTOR_TYPE
14754 && type == TREE_TYPE (optype))
14755 {
14756 tree part_width = TYPE_SIZE (type);
14757 tree index = bitsize_int (0);
14758 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
14759 }
14760 }
14761
14762 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14763 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
14764 {
14765 tree op00 = TREE_OPERAND (sub, 0);
14766 tree op01 = TREE_OPERAND (sub, 1);
14767
14768 STRIP_NOPS (op00);
14769 if (TREE_CODE (op00) == ADDR_EXPR)
14770 {
14771 tree op00type;
14772 op00 = TREE_OPERAND (op00, 0);
14773 op00type = TREE_TYPE (op00);
14774
14775 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14776 if (TREE_CODE (op00type) == VECTOR_TYPE
14777 && type == TREE_TYPE (op00type))
14778 {
14779 HOST_WIDE_INT offset = tree_to_shwi (op01);
14780 tree part_width = TYPE_SIZE (type);
14781 unsigned HOST_WIDE_INT part_widthi = tree_to_shwi (part_width)/BITS_PER_UNIT;
14782 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
14783 tree index = bitsize_int (indexi);
14784
14785 if (offset / part_widthi < TYPE_VECTOR_SUBPARTS (op00type))
14786 return fold_build3_loc (loc,
14787 BIT_FIELD_REF, type, op00,
14788 part_width, index);
14789
14790 }
14791 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14792 else if (TREE_CODE (op00type) == COMPLEX_TYPE
14793 && type == TREE_TYPE (op00type))
14794 {
14795 tree size = TYPE_SIZE_UNIT (type);
14796 if (tree_int_cst_equal (size, op01))
14797 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14798 }
14799 /* ((foo *)&fooarray)[1] => fooarray[1] */
14800 else if (TREE_CODE (op00type) == ARRAY_TYPE
14801 && type == TREE_TYPE (op00type))
14802 {
14803 tree type_domain = TYPE_DOMAIN (op00type);
14804 tree min_val = size_zero_node;
14805 if (type_domain && TYPE_MIN_VALUE (type_domain))
14806 min_val = TYPE_MIN_VALUE (type_domain);
14807 op01 = size_binop_loc (loc, EXACT_DIV_EXPR, op01,
14808 TYPE_SIZE_UNIT (type));
14809 op01 = size_binop_loc (loc, PLUS_EXPR, op01, min_val);
14810 return build4_loc (loc, ARRAY_REF, type, op00, op01,
14811 NULL_TREE, NULL_TREE);
14812 }
14813 }
14814 }
14815
14816 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14817 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14818 && type == TREE_TYPE (TREE_TYPE (subtype))
14819 && (!in_gimple_form
14820 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14821 {
14822 tree type_domain;
14823 tree min_val = size_zero_node;
14824 sub = build_fold_indirect_ref_loc (loc, sub);
14825 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14826 if (type_domain && TYPE_MIN_VALUE (type_domain))
14827 min_val = TYPE_MIN_VALUE (type_domain);
14828 if (in_gimple_form
14829 && TREE_CODE (min_val) != INTEGER_CST)
14830 return NULL_TREE;
14831 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
14832 NULL_TREE);
14833 }
14834
14835 return NULL_TREE;
14836 }
14837
14838 /* Builds an expression for an indirection through T, simplifying some
14839 cases. */
14840
14841 tree
14842 build_fold_indirect_ref_loc (location_t loc, tree t)
14843 {
14844 tree type = TREE_TYPE (TREE_TYPE (t));
14845 tree sub = fold_indirect_ref_1 (loc, type, t);
14846
14847 if (sub)
14848 return sub;
14849
14850 return build1_loc (loc, INDIRECT_REF, type, t);
14851 }
14852
14853 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14854
14855 tree
14856 fold_indirect_ref_loc (location_t loc, tree t)
14857 {
14858 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14859
14860 if (sub)
14861 return sub;
14862 else
14863 return t;
14864 }
14865
14866 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14867 whose result is ignored. The type of the returned tree need not be
14868 the same as the original expression. */
14869
14870 tree
14871 fold_ignored_result (tree t)
14872 {
14873 if (!TREE_SIDE_EFFECTS (t))
14874 return integer_zero_node;
14875
14876 for (;;)
14877 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14878 {
14879 case tcc_unary:
14880 t = TREE_OPERAND (t, 0);
14881 break;
14882
14883 case tcc_binary:
14884 case tcc_comparison:
14885 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14886 t = TREE_OPERAND (t, 0);
14887 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14888 t = TREE_OPERAND (t, 1);
14889 else
14890 return t;
14891 break;
14892
14893 case tcc_expression:
14894 switch (TREE_CODE (t))
14895 {
14896 case COMPOUND_EXPR:
14897 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14898 return t;
14899 t = TREE_OPERAND (t, 0);
14900 break;
14901
14902 case COND_EXPR:
14903 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14904 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14905 return t;
14906 t = TREE_OPERAND (t, 0);
14907 break;
14908
14909 default:
14910 return t;
14911 }
14912 break;
14913
14914 default:
14915 return t;
14916 }
14917 }
14918
14919 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14920
14921 tree
14922 round_up_loc (location_t loc, tree value, unsigned int divisor)
14923 {
14924 tree div = NULL_TREE;
14925
14926 if (divisor == 1)
14927 return value;
14928
14929 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14930 have to do anything. Only do this when we are not given a const,
14931 because in that case, this check is more expensive than just
14932 doing it. */
14933 if (TREE_CODE (value) != INTEGER_CST)
14934 {
14935 div = build_int_cst (TREE_TYPE (value), divisor);
14936
14937 if (multiple_of_p (TREE_TYPE (value), value, div))
14938 return value;
14939 }
14940
14941 /* If divisor is a power of two, simplify this to bit manipulation. */
14942 if (divisor == (divisor & -divisor))
14943 {
14944 if (TREE_CODE (value) == INTEGER_CST)
14945 {
14946 wide_int val = value;
14947 bool overflow_p;
14948
14949 if ((val & (divisor - 1)) == 0)
14950 return value;
14951
14952 overflow_p = TREE_OVERFLOW (value);
14953 val += divisor - 1;
14954 val &= - (int) divisor;
14955 if (val == 0)
14956 overflow_p = true;
14957
14958 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14959 }
14960 else
14961 {
14962 tree t;
14963
14964 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14965 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14966 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14967 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14968 }
14969 }
14970 else
14971 {
14972 if (!div)
14973 div = build_int_cst (TREE_TYPE (value), divisor);
14974 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14975 value = size_binop_loc (loc, MULT_EXPR, value, div);
14976 }
14977
14978 return value;
14979 }
14980
14981 /* Likewise, but round down. */
14982
14983 tree
14984 round_down_loc (location_t loc, tree value, int divisor)
14985 {
14986 tree div = NULL_TREE;
14987
14988 gcc_assert (divisor > 0);
14989 if (divisor == 1)
14990 return value;
14991
14992 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14993 have to do anything. Only do this when we are not given a const,
14994 because in that case, this check is more expensive than just
14995 doing it. */
14996 if (TREE_CODE (value) != INTEGER_CST)
14997 {
14998 div = build_int_cst (TREE_TYPE (value), divisor);
14999
15000 if (multiple_of_p (TREE_TYPE (value), value, div))
15001 return value;
15002 }
15003
15004 /* If divisor is a power of two, simplify this to bit manipulation. */
15005 if (divisor == (divisor & -divisor))
15006 {
15007 tree t;
15008
15009 t = build_int_cst (TREE_TYPE (value), -divisor);
15010 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
15011 }
15012 else
15013 {
15014 if (!div)
15015 div = build_int_cst (TREE_TYPE (value), divisor);
15016 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
15017 value = size_binop_loc (loc, MULT_EXPR, value, div);
15018 }
15019
15020 return value;
15021 }
15022
15023 /* Returns the pointer to the base of the object addressed by EXP and
15024 extracts the information about the offset of the access, storing it
15025 to PBITPOS and POFFSET. */
15026
15027 static tree
15028 split_address_to_core_and_offset (tree exp,
15029 HOST_WIDE_INT *pbitpos, tree *poffset)
15030 {
15031 tree core;
15032 machine_mode mode;
15033 int unsignedp, volatilep;
15034 HOST_WIDE_INT bitsize;
15035 location_t loc = EXPR_LOCATION (exp);
15036
15037 if (TREE_CODE (exp) == ADDR_EXPR)
15038 {
15039 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
15040 poffset, &mode, &unsignedp, &volatilep,
15041 false);
15042 core = build_fold_addr_expr_loc (loc, core);
15043 }
15044 else
15045 {
15046 core = exp;
15047 *pbitpos = 0;
15048 *poffset = NULL_TREE;
15049 }
15050
15051 return core;
15052 }
15053
15054 /* Returns true if addresses of E1 and E2 differ by a constant, false
15055 otherwise. If they do, E1 - E2 is stored in *DIFF. */
15056
15057 bool
15058 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
15059 {
15060 tree core1, core2;
15061 HOST_WIDE_INT bitpos1, bitpos2;
15062 tree toffset1, toffset2, tdiff, type;
15063
15064 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
15065 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
15066
15067 if (bitpos1 % BITS_PER_UNIT != 0
15068 || bitpos2 % BITS_PER_UNIT != 0
15069 || !operand_equal_p (core1, core2, 0))
15070 return false;
15071
15072 if (toffset1 && toffset2)
15073 {
15074 type = TREE_TYPE (toffset1);
15075 if (type != TREE_TYPE (toffset2))
15076 toffset2 = fold_convert (type, toffset2);
15077
15078 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
15079 if (!cst_and_fits_in_hwi (tdiff))
15080 return false;
15081
15082 *diff = int_cst_value (tdiff);
15083 }
15084 else if (toffset1 || toffset2)
15085 {
15086 /* If only one of the offsets is non-constant, the difference cannot
15087 be a constant. */
15088 return false;
15089 }
15090 else
15091 *diff = 0;
15092
15093 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
15094 return true;
15095 }
15096
15097 /* Simplify the floating point expression EXP when the sign of the
15098 result is not significant. Return NULL_TREE if no simplification
15099 is possible. */
15100
15101 tree
15102 fold_strip_sign_ops (tree exp)
15103 {
15104 tree arg0, arg1;
15105 location_t loc = EXPR_LOCATION (exp);
15106
15107 switch (TREE_CODE (exp))
15108 {
15109 case ABS_EXPR:
15110 case NEGATE_EXPR:
15111 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
15112 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
15113
15114 case MULT_EXPR:
15115 case RDIV_EXPR:
15116 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (exp)))
15117 return NULL_TREE;
15118 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
15119 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15120 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
15121 return fold_build2_loc (loc, TREE_CODE (exp), TREE_TYPE (exp),
15122 arg0 ? arg0 : TREE_OPERAND (exp, 0),
15123 arg1 ? arg1 : TREE_OPERAND (exp, 1));
15124 break;
15125
15126 case COMPOUND_EXPR:
15127 arg0 = TREE_OPERAND (exp, 0);
15128 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15129 if (arg1)
15130 return fold_build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (exp), arg0, arg1);
15131 break;
15132
15133 case COND_EXPR:
15134 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15135 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 2));
15136 if (arg0 || arg1)
15137 return fold_build3_loc (loc,
15138 COND_EXPR, TREE_TYPE (exp), TREE_OPERAND (exp, 0),
15139 arg0 ? arg0 : TREE_OPERAND (exp, 1),
15140 arg1 ? arg1 : TREE_OPERAND (exp, 2));
15141 break;
15142
15143 case CALL_EXPR:
15144 {
15145 const enum built_in_function fcode = builtin_mathfn_code (exp);
15146 switch (fcode)
15147 {
15148 CASE_FLT_FN (BUILT_IN_COPYSIGN):
15149 /* Strip copysign function call, return the 1st argument. */
15150 arg0 = CALL_EXPR_ARG (exp, 0);
15151 arg1 = CALL_EXPR_ARG (exp, 1);
15152 return omit_one_operand_loc (loc, TREE_TYPE (exp), arg0, arg1);
15153
15154 default:
15155 /* Strip sign ops from the argument of "odd" math functions. */
15156 if (negate_mathfn_p (fcode))
15157 {
15158 arg0 = fold_strip_sign_ops (CALL_EXPR_ARG (exp, 0));
15159 if (arg0)
15160 return build_call_expr_loc (loc, get_callee_fndecl (exp), 1, arg0);
15161 }
15162 break;
15163 }
15164 }
15165 break;
15166
15167 default:
15168 break;
15169 }
15170 return NULL_TREE;
15171 }
15172
15173 /* Return OFF converted to a pointer offset type suitable as offset for
15174 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
15175 tree
15176 convert_to_ptrofftype_loc (location_t loc, tree off)
15177 {
15178 return fold_convert_loc (loc, sizetype, off);
15179 }
15180
15181 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
15182 tree
15183 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
15184 {
15185 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
15186 ptr, convert_to_ptrofftype_loc (loc, off));
15187 }
15188
15189 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
15190 tree
15191 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
15192 {
15193 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
15194 ptr, size_int (off));
15195 }