fold-const.c (fold): Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is any power...
[gcc.git] / gcc / fold-const.c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
29
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type.
32
33 fold takes a tree as argument and returns a simplified tree.
34
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
38
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
41
42 force_fit_type takes a constant and prior overflow indicator, and
43 forces the value to fit the type. It returns an overflow indicator. */
44
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
49 #include "flags.h"
50 #include "tree.h"
51 #include "real.h"
52 #include "rtl.h"
53 #include "expr.h"
54 #include "tm_p.h"
55 #include "toplev.h"
56 #include "ggc.h"
57 #include "hashtab.h"
58 #include "langhooks.h"
59 #include "md5.h"
60
61 static void encode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT, HOST_WIDE_INT);
62 static void decode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
63 static bool negate_expr_p (tree);
64 static tree negate_expr (tree);
65 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
66 static tree associate_trees (tree, tree, enum tree_code, tree);
67 static tree int_const_binop (enum tree_code, tree, tree, int);
68 static tree const_binop (enum tree_code, tree, tree, int);
69 static hashval_t size_htab_hash (const void *);
70 static int size_htab_eq (const void *, const void *);
71 static tree fold_convert (tree, tree);
72 static enum tree_code invert_tree_comparison (enum tree_code);
73 static enum tree_code swap_tree_comparison (enum tree_code);
74 static int comparison_to_compcode (enum tree_code);
75 static enum tree_code compcode_to_comparison (int);
76 static int truth_value_p (enum tree_code);
77 static int operand_equal_for_comparison_p (tree, tree, tree);
78 static int twoval_comparison_p (tree, tree *, tree *, int *);
79 static tree eval_subst (tree, tree, tree, tree, tree);
80 static tree pedantic_omit_one_operand (tree, tree, tree);
81 static tree distribute_bit_expr (enum tree_code, tree, tree, tree);
82 static tree make_bit_field_ref (tree, tree, int, int, int);
83 static tree optimize_bit_field_compare (enum tree_code, tree, tree, tree);
84 static tree decode_field_reference (tree, HOST_WIDE_INT *, HOST_WIDE_INT *,
85 enum machine_mode *, int *, int *,
86 tree *, tree *);
87 static int all_ones_mask_p (tree, int);
88 static tree sign_bit_p (tree, tree);
89 static int simple_operand_p (tree);
90 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
91 static tree make_range (tree, int *, tree *, tree *);
92 static tree build_range_check (tree, tree, int, tree, tree);
93 static int merge_ranges (int *, tree *, tree *, int, tree, tree, int, tree,
94 tree);
95 static tree fold_range_test (tree);
96 static tree unextend (tree, int, int, tree);
97 static tree fold_truthop (enum tree_code, tree, tree, tree);
98 static tree optimize_minmax_comparison (tree);
99 static tree extract_muldiv (tree, tree, enum tree_code, tree);
100 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree);
101 static tree strip_compound_expr (tree, tree);
102 static int multiple_of_p (tree, tree, tree);
103 static tree constant_boolean_node (int, tree);
104 static int count_cond (tree, int);
105 static tree fold_binary_op_with_conditional_arg (enum tree_code, tree, tree,
106 tree, int);
107 static bool fold_real_zero_addition_p (tree, tree, int);
108 static tree fold_mathfn_compare (enum built_in_function, enum tree_code,
109 tree, tree, tree);
110 static tree fold_inf_compare (enum tree_code, tree, tree, tree);
111 static bool tree_swap_operands_p (tree, tree);
112
113 /* The following constants represent a bit based encoding of GCC's
114 comparison operators. This encoding simplifies transformations
115 on relational comparison operators, such as AND and OR. */
116 #define COMPCODE_FALSE 0
117 #define COMPCODE_LT 1
118 #define COMPCODE_EQ 2
119 #define COMPCODE_LE 3
120 #define COMPCODE_GT 4
121 #define COMPCODE_NE 5
122 #define COMPCODE_GE 6
123 #define COMPCODE_TRUE 7
124
125 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
126 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
127 and SUM1. Then this yields nonzero if overflow occurred during the
128 addition.
129
130 Overflow occurs if A and B have the same sign, but A and SUM differ in
131 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
132 sign. */
133 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
134 \f
135 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
136 We do that by representing the two-word integer in 4 words, with only
137 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
138 number. The value of the word is LOWPART + HIGHPART * BASE. */
139
140 #define LOWPART(x) \
141 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
142 #define HIGHPART(x) \
143 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
144 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
145
146 /* Unpack a two-word integer into 4 words.
147 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
148 WORDS points to the array of HOST_WIDE_INTs. */
149
150 static void
151 encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
152 {
153 words[0] = LOWPART (low);
154 words[1] = HIGHPART (low);
155 words[2] = LOWPART (hi);
156 words[3] = HIGHPART (hi);
157 }
158
159 /* Pack an array of 4 words into a two-word integer.
160 WORDS points to the array of words.
161 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
162
163 static void
164 decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
165 HOST_WIDE_INT *hi)
166 {
167 *low = words[0] + words[1] * BASE;
168 *hi = words[2] + words[3] * BASE;
169 }
170 \f
171 /* Make the integer constant T valid for its type by setting to 0 or 1 all
172 the bits in the constant that don't belong in the type.
173
174 Return 1 if a signed overflow occurs, 0 otherwise. If OVERFLOW is
175 nonzero, a signed overflow has already occurred in calculating T, so
176 propagate it. */
177
178 int
179 force_fit_type (tree t, int overflow)
180 {
181 unsigned HOST_WIDE_INT low;
182 HOST_WIDE_INT high;
183 unsigned int prec;
184
185 if (TREE_CODE (t) == REAL_CST)
186 {
187 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
188 Consider doing it via real_convert now. */
189 return overflow;
190 }
191
192 else if (TREE_CODE (t) != INTEGER_CST)
193 return overflow;
194
195 low = TREE_INT_CST_LOW (t);
196 high = TREE_INT_CST_HIGH (t);
197
198 if (POINTER_TYPE_P (TREE_TYPE (t))
199 || TREE_CODE (TREE_TYPE (t)) == OFFSET_TYPE)
200 prec = POINTER_SIZE;
201 else
202 prec = TYPE_PRECISION (TREE_TYPE (t));
203
204 /* First clear all bits that are beyond the type's precision. */
205
206 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
207 ;
208 else if (prec > HOST_BITS_PER_WIDE_INT)
209 TREE_INT_CST_HIGH (t)
210 &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
211 else
212 {
213 TREE_INT_CST_HIGH (t) = 0;
214 if (prec < HOST_BITS_PER_WIDE_INT)
215 TREE_INT_CST_LOW (t) &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
216 }
217
218 /* Unsigned types do not suffer sign extension or overflow unless they
219 are a sizetype. */
220 if (TREE_UNSIGNED (TREE_TYPE (t))
221 && ! (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
222 && TYPE_IS_SIZETYPE (TREE_TYPE (t))))
223 return overflow;
224
225 /* If the value's sign bit is set, extend the sign. */
226 if (prec != 2 * HOST_BITS_PER_WIDE_INT
227 && (prec > HOST_BITS_PER_WIDE_INT
228 ? 0 != (TREE_INT_CST_HIGH (t)
229 & ((HOST_WIDE_INT) 1
230 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
231 : 0 != (TREE_INT_CST_LOW (t)
232 & ((unsigned HOST_WIDE_INT) 1 << (prec - 1)))))
233 {
234 /* Value is negative:
235 set to 1 all the bits that are outside this type's precision. */
236 if (prec > HOST_BITS_PER_WIDE_INT)
237 TREE_INT_CST_HIGH (t)
238 |= ((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
239 else
240 {
241 TREE_INT_CST_HIGH (t) = -1;
242 if (prec < HOST_BITS_PER_WIDE_INT)
243 TREE_INT_CST_LOW (t) |= ((unsigned HOST_WIDE_INT) (-1) << prec);
244 }
245 }
246
247 /* Return nonzero if signed overflow occurred. */
248 return
249 ((overflow | (low ^ TREE_INT_CST_LOW (t)) | (high ^ TREE_INT_CST_HIGH (t)))
250 != 0);
251 }
252 \f
253 /* Add two doubleword integers with doubleword result.
254 Each argument is given as two `HOST_WIDE_INT' pieces.
255 One argument is L1 and H1; the other, L2 and H2.
256 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
257
258 int
259 add_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
260 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
261 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
262 {
263 unsigned HOST_WIDE_INT l;
264 HOST_WIDE_INT h;
265
266 l = l1 + l2;
267 h = h1 + h2 + (l < l1);
268
269 *lv = l;
270 *hv = h;
271 return OVERFLOW_SUM_SIGN (h1, h2, h);
272 }
273
274 /* Negate a doubleword integer with doubleword result.
275 Return nonzero if the operation overflows, assuming it's signed.
276 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
277 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
278
279 int
280 neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
281 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
282 {
283 if (l1 == 0)
284 {
285 *lv = 0;
286 *hv = - h1;
287 return (*hv & h1) < 0;
288 }
289 else
290 {
291 *lv = -l1;
292 *hv = ~h1;
293 return 0;
294 }
295 }
296 \f
297 /* Multiply two doubleword integers with doubleword result.
298 Return nonzero if the operation overflows, assuming it's signed.
299 Each argument is given as two `HOST_WIDE_INT' pieces.
300 One argument is L1 and H1; the other, L2 and H2.
301 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
302
303 int
304 mul_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
305 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
306 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
307 {
308 HOST_WIDE_INT arg1[4];
309 HOST_WIDE_INT arg2[4];
310 HOST_WIDE_INT prod[4 * 2];
311 unsigned HOST_WIDE_INT carry;
312 int i, j, k;
313 unsigned HOST_WIDE_INT toplow, neglow;
314 HOST_WIDE_INT tophigh, neghigh;
315
316 encode (arg1, l1, h1);
317 encode (arg2, l2, h2);
318
319 memset (prod, 0, sizeof prod);
320
321 for (i = 0; i < 4; i++)
322 {
323 carry = 0;
324 for (j = 0; j < 4; j++)
325 {
326 k = i + j;
327 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
328 carry += arg1[i] * arg2[j];
329 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
330 carry += prod[k];
331 prod[k] = LOWPART (carry);
332 carry = HIGHPART (carry);
333 }
334 prod[i + 4] = carry;
335 }
336
337 decode (prod, lv, hv); /* This ignores prod[4] through prod[4*2-1] */
338
339 /* Check for overflow by calculating the top half of the answer in full;
340 it should agree with the low half's sign bit. */
341 decode (prod + 4, &toplow, &tophigh);
342 if (h1 < 0)
343 {
344 neg_double (l2, h2, &neglow, &neghigh);
345 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
346 }
347 if (h2 < 0)
348 {
349 neg_double (l1, h1, &neglow, &neghigh);
350 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
351 }
352 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
353 }
354 \f
355 /* Shift the doubleword integer in L1, H1 left by COUNT places
356 keeping only PREC bits of result.
357 Shift right if COUNT is negative.
358 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
359 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
360
361 void
362 lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
363 HOST_WIDE_INT count, unsigned int prec,
364 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, int arith)
365 {
366 unsigned HOST_WIDE_INT signmask;
367
368 if (count < 0)
369 {
370 rshift_double (l1, h1, -count, prec, lv, hv, arith);
371 return;
372 }
373
374 #ifdef SHIFT_COUNT_TRUNCATED
375 if (SHIFT_COUNT_TRUNCATED)
376 count %= prec;
377 #endif
378
379 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
380 {
381 /* Shifting by the host word size is undefined according to the
382 ANSI standard, so we must handle this as a special case. */
383 *hv = 0;
384 *lv = 0;
385 }
386 else if (count >= HOST_BITS_PER_WIDE_INT)
387 {
388 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
389 *lv = 0;
390 }
391 else
392 {
393 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
394 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
395 *lv = l1 << count;
396 }
397
398 /* Sign extend all bits that are beyond the precision. */
399
400 signmask = -((prec > HOST_BITS_PER_WIDE_INT
401 ? ((unsigned HOST_WIDE_INT) *hv
402 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
403 : (*lv >> (prec - 1))) & 1);
404
405 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
406 ;
407 else if (prec >= HOST_BITS_PER_WIDE_INT)
408 {
409 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
410 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
411 }
412 else
413 {
414 *hv = signmask;
415 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
416 *lv |= signmask << prec;
417 }
418 }
419
420 /* Shift the doubleword integer in L1, H1 right by COUNT places
421 keeping only PREC bits of result. COUNT must be positive.
422 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
423 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
424
425 void
426 rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
427 HOST_WIDE_INT count, unsigned int prec,
428 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
429 int arith)
430 {
431 unsigned HOST_WIDE_INT signmask;
432
433 signmask = (arith
434 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
435 : 0);
436
437 #ifdef SHIFT_COUNT_TRUNCATED
438 if (SHIFT_COUNT_TRUNCATED)
439 count %= prec;
440 #endif
441
442 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
443 {
444 /* Shifting by the host word size is undefined according to the
445 ANSI standard, so we must handle this as a special case. */
446 *hv = 0;
447 *lv = 0;
448 }
449 else if (count >= HOST_BITS_PER_WIDE_INT)
450 {
451 *hv = 0;
452 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
453 }
454 else
455 {
456 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
457 *lv = ((l1 >> count)
458 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
459 }
460
461 /* Zero / sign extend all bits that are beyond the precision. */
462
463 if (count >= (HOST_WIDE_INT)prec)
464 {
465 *hv = signmask;
466 *lv = signmask;
467 }
468 else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
469 ;
470 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
471 {
472 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
473 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
474 }
475 else
476 {
477 *hv = signmask;
478 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
479 *lv |= signmask << (prec - count);
480 }
481 }
482 \f
483 /* Rotate the doubleword integer in L1, H1 left by COUNT places
484 keeping only PREC bits of result.
485 Rotate right if COUNT is negative.
486 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
487
488 void
489 lrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
490 HOST_WIDE_INT count, unsigned int prec,
491 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
492 {
493 unsigned HOST_WIDE_INT s1l, s2l;
494 HOST_WIDE_INT s1h, s2h;
495
496 count %= prec;
497 if (count < 0)
498 count += prec;
499
500 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
501 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
502 *lv = s1l | s2l;
503 *hv = s1h | s2h;
504 }
505
506 /* Rotate the doubleword integer in L1, H1 left by COUNT places
507 keeping only PREC bits of result. COUNT must be positive.
508 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
509
510 void
511 rrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
512 HOST_WIDE_INT count, unsigned int prec,
513 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
514 {
515 unsigned HOST_WIDE_INT s1l, s2l;
516 HOST_WIDE_INT s1h, s2h;
517
518 count %= prec;
519 if (count < 0)
520 count += prec;
521
522 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
523 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
524 *lv = s1l | s2l;
525 *hv = s1h | s2h;
526 }
527 \f
528 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
529 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
530 CODE is a tree code for a kind of division, one of
531 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
532 or EXACT_DIV_EXPR
533 It controls how the quotient is rounded to an integer.
534 Return nonzero if the operation overflows.
535 UNS nonzero says do unsigned division. */
536
537 int
538 div_and_round_double (enum tree_code code, int uns,
539 unsigned HOST_WIDE_INT lnum_orig, /* num == numerator == dividend */
540 HOST_WIDE_INT hnum_orig,
541 unsigned HOST_WIDE_INT lden_orig, /* den == denominator == divisor */
542 HOST_WIDE_INT hden_orig,
543 unsigned HOST_WIDE_INT *lquo,
544 HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
545 HOST_WIDE_INT *hrem)
546 {
547 int quo_neg = 0;
548 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
549 HOST_WIDE_INT den[4], quo[4];
550 int i, j;
551 unsigned HOST_WIDE_INT work;
552 unsigned HOST_WIDE_INT carry = 0;
553 unsigned HOST_WIDE_INT lnum = lnum_orig;
554 HOST_WIDE_INT hnum = hnum_orig;
555 unsigned HOST_WIDE_INT lden = lden_orig;
556 HOST_WIDE_INT hden = hden_orig;
557 int overflow = 0;
558
559 if (hden == 0 && lden == 0)
560 overflow = 1, lden = 1;
561
562 /* Calculate quotient sign and convert operands to unsigned. */
563 if (!uns)
564 {
565 if (hnum < 0)
566 {
567 quo_neg = ~ quo_neg;
568 /* (minimum integer) / (-1) is the only overflow case. */
569 if (neg_double (lnum, hnum, &lnum, &hnum)
570 && ((HOST_WIDE_INT) lden & hden) == -1)
571 overflow = 1;
572 }
573 if (hden < 0)
574 {
575 quo_neg = ~ quo_neg;
576 neg_double (lden, hden, &lden, &hden);
577 }
578 }
579
580 if (hnum == 0 && hden == 0)
581 { /* single precision */
582 *hquo = *hrem = 0;
583 /* This unsigned division rounds toward zero. */
584 *lquo = lnum / lden;
585 goto finish_up;
586 }
587
588 if (hnum == 0)
589 { /* trivial case: dividend < divisor */
590 /* hden != 0 already checked. */
591 *hquo = *lquo = 0;
592 *hrem = hnum;
593 *lrem = lnum;
594 goto finish_up;
595 }
596
597 memset (quo, 0, sizeof quo);
598
599 memset (num, 0, sizeof num); /* to zero 9th element */
600 memset (den, 0, sizeof den);
601
602 encode (num, lnum, hnum);
603 encode (den, lden, hden);
604
605 /* Special code for when the divisor < BASE. */
606 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
607 {
608 /* hnum != 0 already checked. */
609 for (i = 4 - 1; i >= 0; i--)
610 {
611 work = num[i] + carry * BASE;
612 quo[i] = work / lden;
613 carry = work % lden;
614 }
615 }
616 else
617 {
618 /* Full double precision division,
619 with thanks to Don Knuth's "Seminumerical Algorithms". */
620 int num_hi_sig, den_hi_sig;
621 unsigned HOST_WIDE_INT quo_est, scale;
622
623 /* Find the highest nonzero divisor digit. */
624 for (i = 4 - 1;; i--)
625 if (den[i] != 0)
626 {
627 den_hi_sig = i;
628 break;
629 }
630
631 /* Insure that the first digit of the divisor is at least BASE/2.
632 This is required by the quotient digit estimation algorithm. */
633
634 scale = BASE / (den[den_hi_sig] + 1);
635 if (scale > 1)
636 { /* scale divisor and dividend */
637 carry = 0;
638 for (i = 0; i <= 4 - 1; i++)
639 {
640 work = (num[i] * scale) + carry;
641 num[i] = LOWPART (work);
642 carry = HIGHPART (work);
643 }
644
645 num[4] = carry;
646 carry = 0;
647 for (i = 0; i <= 4 - 1; i++)
648 {
649 work = (den[i] * scale) + carry;
650 den[i] = LOWPART (work);
651 carry = HIGHPART (work);
652 if (den[i] != 0) den_hi_sig = i;
653 }
654 }
655
656 num_hi_sig = 4;
657
658 /* Main loop */
659 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
660 {
661 /* Guess the next quotient digit, quo_est, by dividing the first
662 two remaining dividend digits by the high order quotient digit.
663 quo_est is never low and is at most 2 high. */
664 unsigned HOST_WIDE_INT tmp;
665
666 num_hi_sig = i + den_hi_sig + 1;
667 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
668 if (num[num_hi_sig] != den[den_hi_sig])
669 quo_est = work / den[den_hi_sig];
670 else
671 quo_est = BASE - 1;
672
673 /* Refine quo_est so it's usually correct, and at most one high. */
674 tmp = work - quo_est * den[den_hi_sig];
675 if (tmp < BASE
676 && (den[den_hi_sig - 1] * quo_est
677 > (tmp * BASE + num[num_hi_sig - 2])))
678 quo_est--;
679
680 /* Try QUO_EST as the quotient digit, by multiplying the
681 divisor by QUO_EST and subtracting from the remaining dividend.
682 Keep in mind that QUO_EST is the I - 1st digit. */
683
684 carry = 0;
685 for (j = 0; j <= den_hi_sig; j++)
686 {
687 work = quo_est * den[j] + carry;
688 carry = HIGHPART (work);
689 work = num[i + j] - LOWPART (work);
690 num[i + j] = LOWPART (work);
691 carry += HIGHPART (work) != 0;
692 }
693
694 /* If quo_est was high by one, then num[i] went negative and
695 we need to correct things. */
696 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
697 {
698 quo_est--;
699 carry = 0; /* add divisor back in */
700 for (j = 0; j <= den_hi_sig; j++)
701 {
702 work = num[i + j] + den[j] + carry;
703 carry = HIGHPART (work);
704 num[i + j] = LOWPART (work);
705 }
706
707 num [num_hi_sig] += carry;
708 }
709
710 /* Store the quotient digit. */
711 quo[i] = quo_est;
712 }
713 }
714
715 decode (quo, lquo, hquo);
716
717 finish_up:
718 /* If result is negative, make it so. */
719 if (quo_neg)
720 neg_double (*lquo, *hquo, lquo, hquo);
721
722 /* compute trial remainder: rem = num - (quo * den) */
723 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
724 neg_double (*lrem, *hrem, lrem, hrem);
725 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
726
727 switch (code)
728 {
729 case TRUNC_DIV_EXPR:
730 case TRUNC_MOD_EXPR: /* round toward zero */
731 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
732 return overflow;
733
734 case FLOOR_DIV_EXPR:
735 case FLOOR_MOD_EXPR: /* round toward negative infinity */
736 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
737 {
738 /* quo = quo - 1; */
739 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
740 lquo, hquo);
741 }
742 else
743 return overflow;
744 break;
745
746 case CEIL_DIV_EXPR:
747 case CEIL_MOD_EXPR: /* round toward positive infinity */
748 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
749 {
750 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
751 lquo, hquo);
752 }
753 else
754 return overflow;
755 break;
756
757 case ROUND_DIV_EXPR:
758 case ROUND_MOD_EXPR: /* round to closest integer */
759 {
760 unsigned HOST_WIDE_INT labs_rem = *lrem;
761 HOST_WIDE_INT habs_rem = *hrem;
762 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
763 HOST_WIDE_INT habs_den = hden, htwice;
764
765 /* Get absolute values. */
766 if (*hrem < 0)
767 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
768 if (hden < 0)
769 neg_double (lden, hden, &labs_den, &habs_den);
770
771 /* If (2 * abs (lrem) >= abs (lden)) */
772 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
773 labs_rem, habs_rem, &ltwice, &htwice);
774
775 if (((unsigned HOST_WIDE_INT) habs_den
776 < (unsigned HOST_WIDE_INT) htwice)
777 || (((unsigned HOST_WIDE_INT) habs_den
778 == (unsigned HOST_WIDE_INT) htwice)
779 && (labs_den < ltwice)))
780 {
781 if (*hquo < 0)
782 /* quo = quo - 1; */
783 add_double (*lquo, *hquo,
784 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
785 else
786 /* quo = quo + 1; */
787 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
788 lquo, hquo);
789 }
790 else
791 return overflow;
792 }
793 break;
794
795 default:
796 abort ();
797 }
798
799 /* compute true remainder: rem = num - (quo * den) */
800 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
801 neg_double (*lrem, *hrem, lrem, hrem);
802 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
803 return overflow;
804 }
805 \f
806 /* Determine whether an expression T can be cheaply negated using
807 the function negate_expr. */
808
809 static bool
810 negate_expr_p (tree t)
811 {
812 unsigned HOST_WIDE_INT val;
813 unsigned int prec;
814 tree type;
815
816 if (t == 0)
817 return false;
818
819 type = TREE_TYPE (t);
820
821 STRIP_SIGN_NOPS (t);
822 switch (TREE_CODE (t))
823 {
824 case INTEGER_CST:
825 if (TREE_UNSIGNED (type))
826 return false;
827
828 /* Check that -CST will not overflow type. */
829 prec = TYPE_PRECISION (type);
830 if (prec > HOST_BITS_PER_WIDE_INT)
831 {
832 if (TREE_INT_CST_LOW (t) != 0)
833 return true;
834 prec -= HOST_BITS_PER_WIDE_INT;
835 val = TREE_INT_CST_HIGH (t);
836 }
837 else
838 val = TREE_INT_CST_LOW (t);
839 if (prec < HOST_BITS_PER_WIDE_INT)
840 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
841 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
842
843 case REAL_CST:
844 case NEGATE_EXPR:
845 return true;
846
847 case MINUS_EXPR:
848 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
849 return ! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations;
850
851 case MULT_EXPR:
852 if (TREE_UNSIGNED (TREE_TYPE (t)))
853 break;
854
855 /* Fall through. */
856
857 case RDIV_EXPR:
858 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
859 return negate_expr_p (TREE_OPERAND (t, 1))
860 || negate_expr_p (TREE_OPERAND (t, 0));
861 break;
862
863 default:
864 break;
865 }
866 return false;
867 }
868
869 /* Given T, an expression, return the negation of T. Allow for T to be
870 null, in which case return null. */
871
872 static tree
873 negate_expr (tree t)
874 {
875 tree type;
876 tree tem;
877
878 if (t == 0)
879 return 0;
880
881 type = TREE_TYPE (t);
882 STRIP_SIGN_NOPS (t);
883
884 switch (TREE_CODE (t))
885 {
886 case INTEGER_CST:
887 if (! TREE_UNSIGNED (type)
888 && 0 != (tem = fold (build1 (NEGATE_EXPR, type, t)))
889 && ! TREE_OVERFLOW (tem))
890 return tem;
891 break;
892
893 case REAL_CST:
894 tem = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (t)));
895 /* Two's complement FP formats, such as c4x, may overflow. */
896 if (! TREE_OVERFLOW (tem))
897 return convert (type, tem);
898 break;
899
900 case NEGATE_EXPR:
901 return convert (type, TREE_OPERAND (t, 0));
902
903 case MINUS_EXPR:
904 /* - (A - B) -> B - A */
905 if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
906 return convert (type,
907 fold (build (MINUS_EXPR, TREE_TYPE (t),
908 TREE_OPERAND (t, 1),
909 TREE_OPERAND (t, 0))));
910 break;
911
912 case MULT_EXPR:
913 if (TREE_UNSIGNED (TREE_TYPE (t)))
914 break;
915
916 /* Fall through. */
917
918 case RDIV_EXPR:
919 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
920 {
921 tem = TREE_OPERAND (t, 1);
922 if (negate_expr_p (tem))
923 return convert (type,
924 fold (build (TREE_CODE (t), TREE_TYPE (t),
925 TREE_OPERAND (t, 0),
926 negate_expr (tem))));
927 tem = TREE_OPERAND (t, 0);
928 if (negate_expr_p (tem))
929 return convert (type,
930 fold (build (TREE_CODE (t), TREE_TYPE (t),
931 negate_expr (tem),
932 TREE_OPERAND (t, 1))));
933 }
934 break;
935
936 default:
937 break;
938 }
939
940 return convert (type, fold (build1 (NEGATE_EXPR, TREE_TYPE (t), t)));
941 }
942 \f
943 /* Split a tree IN into a constant, literal and variable parts that could be
944 combined with CODE to make IN. "constant" means an expression with
945 TREE_CONSTANT but that isn't an actual constant. CODE must be a
946 commutative arithmetic operation. Store the constant part into *CONP,
947 the literal in *LITP and return the variable part. If a part isn't
948 present, set it to null. If the tree does not decompose in this way,
949 return the entire tree as the variable part and the other parts as null.
950
951 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
952 case, we negate an operand that was subtracted. Except if it is a
953 literal for which we use *MINUS_LITP instead.
954
955 If NEGATE_P is true, we are negating all of IN, again except a literal
956 for which we use *MINUS_LITP instead.
957
958 If IN is itself a literal or constant, return it as appropriate.
959
960 Note that we do not guarantee that any of the three values will be the
961 same type as IN, but they will have the same signedness and mode. */
962
963 static tree
964 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
965 tree *minus_litp, int negate_p)
966 {
967 tree var = 0;
968
969 *conp = 0;
970 *litp = 0;
971 *minus_litp = 0;
972
973 /* Strip any conversions that don't change the machine mode or signedness. */
974 STRIP_SIGN_NOPS (in);
975
976 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST)
977 *litp = in;
978 else if (TREE_CODE (in) == code
979 || (! FLOAT_TYPE_P (TREE_TYPE (in))
980 /* We can associate addition and subtraction together (even
981 though the C standard doesn't say so) for integers because
982 the value is not affected. For reals, the value might be
983 affected, so we can't. */
984 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
985 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
986 {
987 tree op0 = TREE_OPERAND (in, 0);
988 tree op1 = TREE_OPERAND (in, 1);
989 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
990 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
991
992 /* First see if either of the operands is a literal, then a constant. */
993 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
994 *litp = op0, op0 = 0;
995 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST)
996 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
997
998 if (op0 != 0 && TREE_CONSTANT (op0))
999 *conp = op0, op0 = 0;
1000 else if (op1 != 0 && TREE_CONSTANT (op1))
1001 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
1002
1003 /* If we haven't dealt with either operand, this is not a case we can
1004 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1005 if (op0 != 0 && op1 != 0)
1006 var = in;
1007 else if (op0 != 0)
1008 var = op0;
1009 else
1010 var = op1, neg_var_p = neg1_p;
1011
1012 /* Now do any needed negations. */
1013 if (neg_litp_p)
1014 *minus_litp = *litp, *litp = 0;
1015 if (neg_conp_p)
1016 *conp = negate_expr (*conp);
1017 if (neg_var_p)
1018 var = negate_expr (var);
1019 }
1020 else if (TREE_CONSTANT (in))
1021 *conp = in;
1022 else
1023 var = in;
1024
1025 if (negate_p)
1026 {
1027 if (*litp)
1028 *minus_litp = *litp, *litp = 0;
1029 else if (*minus_litp)
1030 *litp = *minus_litp, *minus_litp = 0;
1031 *conp = negate_expr (*conp);
1032 var = negate_expr (var);
1033 }
1034
1035 return var;
1036 }
1037
1038 /* Re-associate trees split by the above function. T1 and T2 are either
1039 expressions to associate or null. Return the new expression, if any. If
1040 we build an operation, do it in TYPE and with CODE. */
1041
1042 static tree
1043 associate_trees (tree t1, tree t2, enum tree_code code, tree type)
1044 {
1045 if (t1 == 0)
1046 return t2;
1047 else if (t2 == 0)
1048 return t1;
1049
1050 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1051 try to fold this since we will have infinite recursion. But do
1052 deal with any NEGATE_EXPRs. */
1053 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
1054 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
1055 {
1056 if (code == PLUS_EXPR)
1057 {
1058 if (TREE_CODE (t1) == NEGATE_EXPR)
1059 return build (MINUS_EXPR, type, convert (type, t2),
1060 convert (type, TREE_OPERAND (t1, 0)));
1061 else if (TREE_CODE (t2) == NEGATE_EXPR)
1062 return build (MINUS_EXPR, type, convert (type, t1),
1063 convert (type, TREE_OPERAND (t2, 0)));
1064 }
1065 return build (code, type, convert (type, t1), convert (type, t2));
1066 }
1067
1068 return fold (build (code, type, convert (type, t1), convert (type, t2)));
1069 }
1070 \f
1071 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1072 to produce a new constant.
1073
1074 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1075
1076 static tree
1077 int_const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1078 {
1079 unsigned HOST_WIDE_INT int1l, int2l;
1080 HOST_WIDE_INT int1h, int2h;
1081 unsigned HOST_WIDE_INT low;
1082 HOST_WIDE_INT hi;
1083 unsigned HOST_WIDE_INT garbagel;
1084 HOST_WIDE_INT garbageh;
1085 tree t;
1086 tree type = TREE_TYPE (arg1);
1087 int uns = TREE_UNSIGNED (type);
1088 int is_sizetype
1089 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
1090 int overflow = 0;
1091 int no_overflow = 0;
1092
1093 int1l = TREE_INT_CST_LOW (arg1);
1094 int1h = TREE_INT_CST_HIGH (arg1);
1095 int2l = TREE_INT_CST_LOW (arg2);
1096 int2h = TREE_INT_CST_HIGH (arg2);
1097
1098 switch (code)
1099 {
1100 case BIT_IOR_EXPR:
1101 low = int1l | int2l, hi = int1h | int2h;
1102 break;
1103
1104 case BIT_XOR_EXPR:
1105 low = int1l ^ int2l, hi = int1h ^ int2h;
1106 break;
1107
1108 case BIT_AND_EXPR:
1109 low = int1l & int2l, hi = int1h & int2h;
1110 break;
1111
1112 case RSHIFT_EXPR:
1113 int2l = -int2l;
1114 case LSHIFT_EXPR:
1115 /* It's unclear from the C standard whether shifts can overflow.
1116 The following code ignores overflow; perhaps a C standard
1117 interpretation ruling is needed. */
1118 lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1119 &low, &hi, !uns);
1120 no_overflow = 1;
1121 break;
1122
1123 case RROTATE_EXPR:
1124 int2l = - int2l;
1125 case LROTATE_EXPR:
1126 lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1127 &low, &hi);
1128 break;
1129
1130 case PLUS_EXPR:
1131 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1132 break;
1133
1134 case MINUS_EXPR:
1135 neg_double (int2l, int2h, &low, &hi);
1136 add_double (int1l, int1h, low, hi, &low, &hi);
1137 overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
1138 break;
1139
1140 case MULT_EXPR:
1141 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1142 break;
1143
1144 case TRUNC_DIV_EXPR:
1145 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1146 case EXACT_DIV_EXPR:
1147 /* This is a shortcut for a common special case. */
1148 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1149 && ! TREE_CONSTANT_OVERFLOW (arg1)
1150 && ! TREE_CONSTANT_OVERFLOW (arg2)
1151 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1152 {
1153 if (code == CEIL_DIV_EXPR)
1154 int1l += int2l - 1;
1155
1156 low = int1l / int2l, hi = 0;
1157 break;
1158 }
1159
1160 /* ... fall through ... */
1161
1162 case ROUND_DIV_EXPR:
1163 if (int2h == 0 && int2l == 1)
1164 {
1165 low = int1l, hi = int1h;
1166 break;
1167 }
1168 if (int1l == int2l && int1h == int2h
1169 && ! (int1l == 0 && int1h == 0))
1170 {
1171 low = 1, hi = 0;
1172 break;
1173 }
1174 overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
1175 &low, &hi, &garbagel, &garbageh);
1176 break;
1177
1178 case TRUNC_MOD_EXPR:
1179 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1180 /* This is a shortcut for a common special case. */
1181 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1182 && ! TREE_CONSTANT_OVERFLOW (arg1)
1183 && ! TREE_CONSTANT_OVERFLOW (arg2)
1184 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1185 {
1186 if (code == CEIL_MOD_EXPR)
1187 int1l += int2l - 1;
1188 low = int1l % int2l, hi = 0;
1189 break;
1190 }
1191
1192 /* ... fall through ... */
1193
1194 case ROUND_MOD_EXPR:
1195 overflow = div_and_round_double (code, uns,
1196 int1l, int1h, int2l, int2h,
1197 &garbagel, &garbageh, &low, &hi);
1198 break;
1199
1200 case MIN_EXPR:
1201 case MAX_EXPR:
1202 if (uns)
1203 low = (((unsigned HOST_WIDE_INT) int1h
1204 < (unsigned HOST_WIDE_INT) int2h)
1205 || (((unsigned HOST_WIDE_INT) int1h
1206 == (unsigned HOST_WIDE_INT) int2h)
1207 && int1l < int2l));
1208 else
1209 low = (int1h < int2h
1210 || (int1h == int2h && int1l < int2l));
1211
1212 if (low == (code == MIN_EXPR))
1213 low = int1l, hi = int1h;
1214 else
1215 low = int2l, hi = int2h;
1216 break;
1217
1218 default:
1219 abort ();
1220 }
1221
1222 /* If this is for a sizetype, can be represented as one (signed)
1223 HOST_WIDE_INT word, and doesn't overflow, use size_int since it caches
1224 constants. */
1225 if (is_sizetype
1226 && ((hi == 0 && (HOST_WIDE_INT) low >= 0)
1227 || (hi == -1 && (HOST_WIDE_INT) low < 0))
1228 && overflow == 0 && ! TREE_OVERFLOW (arg1) && ! TREE_OVERFLOW (arg2))
1229 return size_int_type_wide (low, type);
1230 else
1231 {
1232 t = build_int_2 (low, hi);
1233 TREE_TYPE (t) = TREE_TYPE (arg1);
1234 }
1235
1236 TREE_OVERFLOW (t)
1237 = ((notrunc
1238 ? (!uns || is_sizetype) && overflow
1239 : (force_fit_type (t, (!uns || is_sizetype) && overflow)
1240 && ! no_overflow))
1241 | TREE_OVERFLOW (arg1)
1242 | TREE_OVERFLOW (arg2));
1243
1244 /* If we're doing a size calculation, unsigned arithmetic does overflow.
1245 So check if force_fit_type truncated the value. */
1246 if (is_sizetype
1247 && ! TREE_OVERFLOW (t)
1248 && (TREE_INT_CST_HIGH (t) != hi
1249 || TREE_INT_CST_LOW (t) != low))
1250 TREE_OVERFLOW (t) = 1;
1251
1252 TREE_CONSTANT_OVERFLOW (t) = (TREE_OVERFLOW (t)
1253 | TREE_CONSTANT_OVERFLOW (arg1)
1254 | TREE_CONSTANT_OVERFLOW (arg2));
1255 return t;
1256 }
1257
1258 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1259 constant. We assume ARG1 and ARG2 have the same data type, or at least
1260 are the same kind of constant and the same machine mode.
1261
1262 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1263
1264 static tree
1265 const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1266 {
1267 STRIP_NOPS (arg1);
1268 STRIP_NOPS (arg2);
1269
1270 if (TREE_CODE (arg1) == INTEGER_CST)
1271 return int_const_binop (code, arg1, arg2, notrunc);
1272
1273 if (TREE_CODE (arg1) == REAL_CST)
1274 {
1275 enum machine_mode mode;
1276 REAL_VALUE_TYPE d1;
1277 REAL_VALUE_TYPE d2;
1278 REAL_VALUE_TYPE value;
1279 tree t, type;
1280
1281 d1 = TREE_REAL_CST (arg1);
1282 d2 = TREE_REAL_CST (arg2);
1283
1284 type = TREE_TYPE (arg1);
1285 mode = TYPE_MODE (type);
1286
1287 /* Don't perform operation if we honor signaling NaNs and
1288 either operand is a NaN. */
1289 if (HONOR_SNANS (mode)
1290 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1291 return NULL_TREE;
1292
1293 /* Don't perform operation if it would raise a division
1294 by zero exception. */
1295 if (code == RDIV_EXPR
1296 && REAL_VALUES_EQUAL (d2, dconst0)
1297 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1298 return NULL_TREE;
1299
1300 /* If either operand is a NaN, just return it. Otherwise, set up
1301 for floating-point trap; we return an overflow. */
1302 if (REAL_VALUE_ISNAN (d1))
1303 return arg1;
1304 else if (REAL_VALUE_ISNAN (d2))
1305 return arg2;
1306
1307 REAL_ARITHMETIC (value, code, d1, d2);
1308
1309 t = build_real (type, real_value_truncate (mode, value));
1310
1311 TREE_OVERFLOW (t)
1312 = (force_fit_type (t, 0)
1313 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1314 TREE_CONSTANT_OVERFLOW (t)
1315 = TREE_OVERFLOW (t)
1316 | TREE_CONSTANT_OVERFLOW (arg1)
1317 | TREE_CONSTANT_OVERFLOW (arg2);
1318 return t;
1319 }
1320 if (TREE_CODE (arg1) == COMPLEX_CST)
1321 {
1322 tree type = TREE_TYPE (arg1);
1323 tree r1 = TREE_REALPART (arg1);
1324 tree i1 = TREE_IMAGPART (arg1);
1325 tree r2 = TREE_REALPART (arg2);
1326 tree i2 = TREE_IMAGPART (arg2);
1327 tree t;
1328
1329 switch (code)
1330 {
1331 case PLUS_EXPR:
1332 t = build_complex (type,
1333 const_binop (PLUS_EXPR, r1, r2, notrunc),
1334 const_binop (PLUS_EXPR, i1, i2, notrunc));
1335 break;
1336
1337 case MINUS_EXPR:
1338 t = build_complex (type,
1339 const_binop (MINUS_EXPR, r1, r2, notrunc),
1340 const_binop (MINUS_EXPR, i1, i2, notrunc));
1341 break;
1342
1343 case MULT_EXPR:
1344 t = build_complex (type,
1345 const_binop (MINUS_EXPR,
1346 const_binop (MULT_EXPR,
1347 r1, r2, notrunc),
1348 const_binop (MULT_EXPR,
1349 i1, i2, notrunc),
1350 notrunc),
1351 const_binop (PLUS_EXPR,
1352 const_binop (MULT_EXPR,
1353 r1, i2, notrunc),
1354 const_binop (MULT_EXPR,
1355 i1, r2, notrunc),
1356 notrunc));
1357 break;
1358
1359 case RDIV_EXPR:
1360 {
1361 tree magsquared
1362 = const_binop (PLUS_EXPR,
1363 const_binop (MULT_EXPR, r2, r2, notrunc),
1364 const_binop (MULT_EXPR, i2, i2, notrunc),
1365 notrunc);
1366
1367 t = build_complex (type,
1368 const_binop
1369 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1370 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1371 const_binop (PLUS_EXPR,
1372 const_binop (MULT_EXPR, r1, r2,
1373 notrunc),
1374 const_binop (MULT_EXPR, i1, i2,
1375 notrunc),
1376 notrunc),
1377 magsquared, notrunc),
1378 const_binop
1379 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1380 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1381 const_binop (MINUS_EXPR,
1382 const_binop (MULT_EXPR, i1, r2,
1383 notrunc),
1384 const_binop (MULT_EXPR, r1, i2,
1385 notrunc),
1386 notrunc),
1387 magsquared, notrunc));
1388 }
1389 break;
1390
1391 default:
1392 abort ();
1393 }
1394 return t;
1395 }
1396 return 0;
1397 }
1398
1399 /* These are the hash table functions for the hash table of INTEGER_CST
1400 nodes of a sizetype. */
1401
1402 /* Return the hash code code X, an INTEGER_CST. */
1403
1404 static hashval_t
1405 size_htab_hash (const void *x)
1406 {
1407 tree t = (tree) x;
1408
1409 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1410 ^ htab_hash_pointer (TREE_TYPE (t))
1411 ^ (TREE_OVERFLOW (t) << 20));
1412 }
1413
1414 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1415 is the same as that given by *Y, which is the same. */
1416
1417 static int
1418 size_htab_eq (const void *x, const void *y)
1419 {
1420 tree xt = (tree) x;
1421 tree yt = (tree) y;
1422
1423 return (TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1424 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt)
1425 && TREE_TYPE (xt) == TREE_TYPE (yt)
1426 && TREE_OVERFLOW (xt) == TREE_OVERFLOW (yt));
1427 }
1428 \f
1429 /* Return an INTEGER_CST with value whose low-order HOST_BITS_PER_WIDE_INT
1430 bits are given by NUMBER and of the sizetype represented by KIND. */
1431
1432 tree
1433 size_int_wide (HOST_WIDE_INT number, enum size_type_kind kind)
1434 {
1435 return size_int_type_wide (number, sizetype_tab[(int) kind]);
1436 }
1437
1438 /* Likewise, but the desired type is specified explicitly. */
1439
1440 static GTY (()) tree new_const;
1441 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
1442 htab_t size_htab;
1443
1444 tree
1445 size_int_type_wide (HOST_WIDE_INT number, tree type)
1446 {
1447 void **slot;
1448
1449 if (size_htab == 0)
1450 {
1451 size_htab = htab_create_ggc (1024, size_htab_hash, size_htab_eq, NULL);
1452 new_const = make_node (INTEGER_CST);
1453 }
1454
1455 /* Adjust NEW_CONST to be the constant we want. If it's already in the
1456 hash table, we return the value from the hash table. Otherwise, we
1457 place that in the hash table and make a new node for the next time. */
1458 TREE_INT_CST_LOW (new_const) = number;
1459 TREE_INT_CST_HIGH (new_const) = number < 0 ? -1 : 0;
1460 TREE_TYPE (new_const) = type;
1461 TREE_OVERFLOW (new_const) = TREE_CONSTANT_OVERFLOW (new_const)
1462 = force_fit_type (new_const, 0);
1463
1464 slot = htab_find_slot (size_htab, new_const, INSERT);
1465 if (*slot == 0)
1466 {
1467 tree t = new_const;
1468
1469 *slot = new_const;
1470 new_const = make_node (INTEGER_CST);
1471 return t;
1472 }
1473 else
1474 return (tree) *slot;
1475 }
1476
1477 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1478 is a tree code. The type of the result is taken from the operands.
1479 Both must be the same type integer type and it must be a size type.
1480 If the operands are constant, so is the result. */
1481
1482 tree
1483 size_binop (enum tree_code code, tree arg0, tree arg1)
1484 {
1485 tree type = TREE_TYPE (arg0);
1486
1487 if (TREE_CODE (type) != INTEGER_TYPE || ! TYPE_IS_SIZETYPE (type)
1488 || type != TREE_TYPE (arg1))
1489 abort ();
1490
1491 /* Handle the special case of two integer constants faster. */
1492 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1493 {
1494 /* And some specific cases even faster than that. */
1495 if (code == PLUS_EXPR && integer_zerop (arg0))
1496 return arg1;
1497 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
1498 && integer_zerop (arg1))
1499 return arg0;
1500 else if (code == MULT_EXPR && integer_onep (arg0))
1501 return arg1;
1502
1503 /* Handle general case of two integer constants. */
1504 return int_const_binop (code, arg0, arg1, 0);
1505 }
1506
1507 if (arg0 == error_mark_node || arg1 == error_mark_node)
1508 return error_mark_node;
1509
1510 return fold (build (code, type, arg0, arg1));
1511 }
1512
1513 /* Given two values, either both of sizetype or both of bitsizetype,
1514 compute the difference between the two values. Return the value
1515 in signed type corresponding to the type of the operands. */
1516
1517 tree
1518 size_diffop (tree arg0, tree arg1)
1519 {
1520 tree type = TREE_TYPE (arg0);
1521 tree ctype;
1522
1523 if (TREE_CODE (type) != INTEGER_TYPE || ! TYPE_IS_SIZETYPE (type)
1524 || type != TREE_TYPE (arg1))
1525 abort ();
1526
1527 /* If the type is already signed, just do the simple thing. */
1528 if (! TREE_UNSIGNED (type))
1529 return size_binop (MINUS_EXPR, arg0, arg1);
1530
1531 ctype = (type == bitsizetype || type == ubitsizetype
1532 ? sbitsizetype : ssizetype);
1533
1534 /* If either operand is not a constant, do the conversions to the signed
1535 type and subtract. The hardware will do the right thing with any
1536 overflow in the subtraction. */
1537 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1538 return size_binop (MINUS_EXPR, convert (ctype, arg0),
1539 convert (ctype, arg1));
1540
1541 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1542 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1543 overflow) and negate (which can't either). Special-case a result
1544 of zero while we're here. */
1545 if (tree_int_cst_equal (arg0, arg1))
1546 return convert (ctype, integer_zero_node);
1547 else if (tree_int_cst_lt (arg1, arg0))
1548 return convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
1549 else
1550 return size_binop (MINUS_EXPR, convert (ctype, integer_zero_node),
1551 convert (ctype, size_binop (MINUS_EXPR, arg1, arg0)));
1552 }
1553 \f
1554
1555 /* Given T, a tree representing type conversion of ARG1, a constant,
1556 return a constant tree representing the result of conversion. */
1557
1558 static tree
1559 fold_convert (tree t, tree arg1)
1560 {
1561 tree type = TREE_TYPE (t);
1562 int overflow = 0;
1563
1564 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
1565 {
1566 if (TREE_CODE (arg1) == INTEGER_CST)
1567 {
1568 /* If we would build a constant wider than GCC supports,
1569 leave the conversion unfolded. */
1570 if (TYPE_PRECISION (type) > 2 * HOST_BITS_PER_WIDE_INT)
1571 return t;
1572
1573 /* If we are trying to make a sizetype for a small integer, use
1574 size_int to pick up cached types to reduce duplicate nodes. */
1575 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1576 && !TREE_CONSTANT_OVERFLOW (arg1)
1577 && compare_tree_int (arg1, 10000) < 0)
1578 return size_int_type_wide (TREE_INT_CST_LOW (arg1), type);
1579
1580 /* Given an integer constant, make new constant with new type,
1581 appropriately sign-extended or truncated. */
1582 t = build_int_2 (TREE_INT_CST_LOW (arg1),
1583 TREE_INT_CST_HIGH (arg1));
1584 TREE_TYPE (t) = type;
1585 /* Indicate an overflow if (1) ARG1 already overflowed,
1586 or (2) force_fit_type indicates an overflow.
1587 Tell force_fit_type that an overflow has already occurred
1588 if ARG1 is a too-large unsigned value and T is signed.
1589 But don't indicate an overflow if converting a pointer. */
1590 TREE_OVERFLOW (t)
1591 = ((force_fit_type (t,
1592 (TREE_INT_CST_HIGH (arg1) < 0
1593 && (TREE_UNSIGNED (type)
1594 < TREE_UNSIGNED (TREE_TYPE (arg1)))))
1595 && ! POINTER_TYPE_P (TREE_TYPE (arg1)))
1596 || TREE_OVERFLOW (arg1));
1597 TREE_CONSTANT_OVERFLOW (t)
1598 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1599 }
1600 else if (TREE_CODE (arg1) == REAL_CST)
1601 {
1602 /* Don't initialize these, use assignments.
1603 Initialized local aggregates don't work on old compilers. */
1604 REAL_VALUE_TYPE x;
1605 REAL_VALUE_TYPE l;
1606 REAL_VALUE_TYPE u;
1607 tree type1 = TREE_TYPE (arg1);
1608 int no_upper_bound;
1609
1610 x = TREE_REAL_CST (arg1);
1611 l = real_value_from_int_cst (type1, TYPE_MIN_VALUE (type));
1612
1613 no_upper_bound = (TYPE_MAX_VALUE (type) == NULL);
1614 if (!no_upper_bound)
1615 u = real_value_from_int_cst (type1, TYPE_MAX_VALUE (type));
1616
1617 /* See if X will be in range after truncation towards 0.
1618 To compensate for truncation, move the bounds away from 0,
1619 but reject if X exactly equals the adjusted bounds. */
1620 REAL_ARITHMETIC (l, MINUS_EXPR, l, dconst1);
1621 if (!no_upper_bound)
1622 REAL_ARITHMETIC (u, PLUS_EXPR, u, dconst1);
1623 /* If X is a NaN, use zero instead and show we have an overflow.
1624 Otherwise, range check. */
1625 if (REAL_VALUE_ISNAN (x))
1626 overflow = 1, x = dconst0;
1627 else if (! (REAL_VALUES_LESS (l, x)
1628 && !no_upper_bound
1629 && REAL_VALUES_LESS (x, u)))
1630 overflow = 1;
1631
1632 {
1633 HOST_WIDE_INT low, high;
1634 REAL_VALUE_TO_INT (&low, &high, x);
1635 t = build_int_2 (low, high);
1636 }
1637 TREE_TYPE (t) = type;
1638 TREE_OVERFLOW (t)
1639 = TREE_OVERFLOW (arg1) | force_fit_type (t, overflow);
1640 TREE_CONSTANT_OVERFLOW (t)
1641 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1642 }
1643 TREE_TYPE (t) = type;
1644 }
1645 else if (TREE_CODE (type) == REAL_TYPE)
1646 {
1647 if (TREE_CODE (arg1) == INTEGER_CST)
1648 return build_real_from_int_cst (type, arg1);
1649 if (TREE_CODE (arg1) == REAL_CST)
1650 {
1651 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
1652 {
1653 /* We make a copy of ARG1 so that we don't modify an
1654 existing constant tree. */
1655 t = copy_node (arg1);
1656 TREE_TYPE (t) = type;
1657 return t;
1658 }
1659
1660 t = build_real (type,
1661 real_value_truncate (TYPE_MODE (type),
1662 TREE_REAL_CST (arg1)));
1663
1664 TREE_OVERFLOW (t)
1665 = TREE_OVERFLOW (arg1) | force_fit_type (t, 0);
1666 TREE_CONSTANT_OVERFLOW (t)
1667 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1668 return t;
1669 }
1670 }
1671 TREE_CONSTANT (t) = 1;
1672 return t;
1673 }
1674 \f
1675 /* Return an expr equal to X but certainly not valid as an lvalue. */
1676
1677 tree
1678 non_lvalue (tree x)
1679 {
1680 tree result;
1681
1682 /* These things are certainly not lvalues. */
1683 if (TREE_CODE (x) == NON_LVALUE_EXPR
1684 || TREE_CODE (x) == INTEGER_CST
1685 || TREE_CODE (x) == REAL_CST
1686 || TREE_CODE (x) == STRING_CST
1687 || TREE_CODE (x) == ADDR_EXPR)
1688 return x;
1689
1690 result = build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
1691 TREE_CONSTANT (result) = TREE_CONSTANT (x);
1692 return result;
1693 }
1694
1695 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
1696 Zero means allow extended lvalues. */
1697
1698 int pedantic_lvalues;
1699
1700 /* When pedantic, return an expr equal to X but certainly not valid as a
1701 pedantic lvalue. Otherwise, return X. */
1702
1703 tree
1704 pedantic_non_lvalue (tree x)
1705 {
1706 if (pedantic_lvalues)
1707 return non_lvalue (x);
1708 else
1709 return x;
1710 }
1711 \f
1712 /* Given a tree comparison code, return the code that is the logical inverse
1713 of the given code. It is not safe to do this for floating-point
1714 comparisons, except for NE_EXPR and EQ_EXPR. */
1715
1716 static enum tree_code
1717 invert_tree_comparison (enum tree_code code)
1718 {
1719 switch (code)
1720 {
1721 case EQ_EXPR:
1722 return NE_EXPR;
1723 case NE_EXPR:
1724 return EQ_EXPR;
1725 case GT_EXPR:
1726 return LE_EXPR;
1727 case GE_EXPR:
1728 return LT_EXPR;
1729 case LT_EXPR:
1730 return GE_EXPR;
1731 case LE_EXPR:
1732 return GT_EXPR;
1733 default:
1734 abort ();
1735 }
1736 }
1737
1738 /* Similar, but return the comparison that results if the operands are
1739 swapped. This is safe for floating-point. */
1740
1741 static enum tree_code
1742 swap_tree_comparison (enum tree_code code)
1743 {
1744 switch (code)
1745 {
1746 case EQ_EXPR:
1747 case NE_EXPR:
1748 return code;
1749 case GT_EXPR:
1750 return LT_EXPR;
1751 case GE_EXPR:
1752 return LE_EXPR;
1753 case LT_EXPR:
1754 return GT_EXPR;
1755 case LE_EXPR:
1756 return GE_EXPR;
1757 default:
1758 abort ();
1759 }
1760 }
1761
1762
1763 /* Convert a comparison tree code from an enum tree_code representation
1764 into a compcode bit-based encoding. This function is the inverse of
1765 compcode_to_comparison. */
1766
1767 static int
1768 comparison_to_compcode (enum tree_code code)
1769 {
1770 switch (code)
1771 {
1772 case LT_EXPR:
1773 return COMPCODE_LT;
1774 case EQ_EXPR:
1775 return COMPCODE_EQ;
1776 case LE_EXPR:
1777 return COMPCODE_LE;
1778 case GT_EXPR:
1779 return COMPCODE_GT;
1780 case NE_EXPR:
1781 return COMPCODE_NE;
1782 case GE_EXPR:
1783 return COMPCODE_GE;
1784 default:
1785 abort ();
1786 }
1787 }
1788
1789 /* Convert a compcode bit-based encoding of a comparison operator back
1790 to GCC's enum tree_code representation. This function is the
1791 inverse of comparison_to_compcode. */
1792
1793 static enum tree_code
1794 compcode_to_comparison (int code)
1795 {
1796 switch (code)
1797 {
1798 case COMPCODE_LT:
1799 return LT_EXPR;
1800 case COMPCODE_EQ:
1801 return EQ_EXPR;
1802 case COMPCODE_LE:
1803 return LE_EXPR;
1804 case COMPCODE_GT:
1805 return GT_EXPR;
1806 case COMPCODE_NE:
1807 return NE_EXPR;
1808 case COMPCODE_GE:
1809 return GE_EXPR;
1810 default:
1811 abort ();
1812 }
1813 }
1814
1815 /* Return nonzero if CODE is a tree code that represents a truth value. */
1816
1817 static int
1818 truth_value_p (enum tree_code code)
1819 {
1820 return (TREE_CODE_CLASS (code) == '<'
1821 || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
1822 || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
1823 || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
1824 }
1825 \f
1826 /* Return nonzero if two operands (typically of the same tree node)
1827 are necessarily equal. If either argument has side-effects this
1828 function returns zero.
1829
1830 If ONLY_CONST is nonzero, only return nonzero for constants.
1831 This function tests whether the operands are indistinguishable;
1832 it does not test whether they are equal using C's == operation.
1833 The distinction is important for IEEE floating point, because
1834 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
1835 (2) two NaNs may be indistinguishable, but NaN!=NaN.
1836
1837 If ONLY_CONST is zero, a VAR_DECL is considered equal to itself
1838 even though it may hold multiple values during a function.
1839 This is because a GCC tree node guarantees that nothing else is
1840 executed between the evaluation of its "operands" (which may often
1841 be evaluated in arbitrary order). Hence if the operands themselves
1842 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
1843 same value in each operand/subexpression. Hence a zero value for
1844 ONLY_CONST assumes isochronic (or instantaneous) tree equivalence.
1845 If comparing arbitrary expression trees, such as from different
1846 statements, ONLY_CONST must usually be nonzero. */
1847
1848 int
1849 operand_equal_p (tree arg0, tree arg1, int only_const)
1850 {
1851 tree fndecl;
1852
1853 /* If both types don't have the same signedness, then we can't consider
1854 them equal. We must check this before the STRIP_NOPS calls
1855 because they may change the signedness of the arguments. */
1856 if (TREE_UNSIGNED (TREE_TYPE (arg0)) != TREE_UNSIGNED (TREE_TYPE (arg1)))
1857 return 0;
1858
1859 STRIP_NOPS (arg0);
1860 STRIP_NOPS (arg1);
1861
1862 if (TREE_CODE (arg0) != TREE_CODE (arg1)
1863 /* This is needed for conversions and for COMPONENT_REF.
1864 Might as well play it safe and always test this. */
1865 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
1866 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
1867 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
1868 return 0;
1869
1870 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
1871 We don't care about side effects in that case because the SAVE_EXPR
1872 takes care of that for us. In all other cases, two expressions are
1873 equal if they have no side effects. If we have two identical
1874 expressions with side effects that should be treated the same due
1875 to the only side effects being identical SAVE_EXPR's, that will
1876 be detected in the recursive calls below. */
1877 if (arg0 == arg1 && ! only_const
1878 && (TREE_CODE (arg0) == SAVE_EXPR
1879 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
1880 return 1;
1881
1882 /* Next handle constant cases, those for which we can return 1 even
1883 if ONLY_CONST is set. */
1884 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
1885 switch (TREE_CODE (arg0))
1886 {
1887 case INTEGER_CST:
1888 return (! TREE_CONSTANT_OVERFLOW (arg0)
1889 && ! TREE_CONSTANT_OVERFLOW (arg1)
1890 && tree_int_cst_equal (arg0, arg1));
1891
1892 case REAL_CST:
1893 return (! TREE_CONSTANT_OVERFLOW (arg0)
1894 && ! TREE_CONSTANT_OVERFLOW (arg1)
1895 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
1896 TREE_REAL_CST (arg1)));
1897
1898 case VECTOR_CST:
1899 {
1900 tree v1, v2;
1901
1902 if (TREE_CONSTANT_OVERFLOW (arg0)
1903 || TREE_CONSTANT_OVERFLOW (arg1))
1904 return 0;
1905
1906 v1 = TREE_VECTOR_CST_ELTS (arg0);
1907 v2 = TREE_VECTOR_CST_ELTS (arg1);
1908 while (v1 && v2)
1909 {
1910 if (!operand_equal_p (v1, v2, only_const))
1911 return 0;
1912 v1 = TREE_CHAIN (v1);
1913 v2 = TREE_CHAIN (v2);
1914 }
1915
1916 return 1;
1917 }
1918
1919 case COMPLEX_CST:
1920 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
1921 only_const)
1922 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
1923 only_const));
1924
1925 case STRING_CST:
1926 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
1927 && ! memcmp (TREE_STRING_POINTER (arg0),
1928 TREE_STRING_POINTER (arg1),
1929 TREE_STRING_LENGTH (arg0)));
1930
1931 case ADDR_EXPR:
1932 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
1933 0);
1934 default:
1935 break;
1936 }
1937
1938 if (only_const)
1939 return 0;
1940
1941 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
1942 {
1943 case '1':
1944 /* Two conversions are equal only if signedness and modes match. */
1945 if ((TREE_CODE (arg0) == NOP_EXPR || TREE_CODE (arg0) == CONVERT_EXPR)
1946 && (TREE_UNSIGNED (TREE_TYPE (arg0))
1947 != TREE_UNSIGNED (TREE_TYPE (arg1))))
1948 return 0;
1949
1950 return operand_equal_p (TREE_OPERAND (arg0, 0),
1951 TREE_OPERAND (arg1, 0), 0);
1952
1953 case '<':
1954 case '2':
1955 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0)
1956 && operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1),
1957 0))
1958 return 1;
1959
1960 /* For commutative ops, allow the other order. */
1961 return ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MULT_EXPR
1962 || TREE_CODE (arg0) == MIN_EXPR || TREE_CODE (arg0) == MAX_EXPR
1963 || TREE_CODE (arg0) == BIT_IOR_EXPR
1964 || TREE_CODE (arg0) == BIT_XOR_EXPR
1965 || TREE_CODE (arg0) == BIT_AND_EXPR
1966 || TREE_CODE (arg0) == NE_EXPR || TREE_CODE (arg0) == EQ_EXPR)
1967 && operand_equal_p (TREE_OPERAND (arg0, 0),
1968 TREE_OPERAND (arg1, 1), 0)
1969 && operand_equal_p (TREE_OPERAND (arg0, 1),
1970 TREE_OPERAND (arg1, 0), 0));
1971
1972 case 'r':
1973 /* If either of the pointer (or reference) expressions we are
1974 dereferencing contain a side effect, these cannot be equal. */
1975 if (TREE_SIDE_EFFECTS (arg0)
1976 || TREE_SIDE_EFFECTS (arg1))
1977 return 0;
1978
1979 switch (TREE_CODE (arg0))
1980 {
1981 case INDIRECT_REF:
1982 return operand_equal_p (TREE_OPERAND (arg0, 0),
1983 TREE_OPERAND (arg1, 0), 0);
1984
1985 case COMPONENT_REF:
1986 case ARRAY_REF:
1987 case ARRAY_RANGE_REF:
1988 return (operand_equal_p (TREE_OPERAND (arg0, 0),
1989 TREE_OPERAND (arg1, 0), 0)
1990 && operand_equal_p (TREE_OPERAND (arg0, 1),
1991 TREE_OPERAND (arg1, 1), 0));
1992
1993 case BIT_FIELD_REF:
1994 return (operand_equal_p (TREE_OPERAND (arg0, 0),
1995 TREE_OPERAND (arg1, 0), 0)
1996 && operand_equal_p (TREE_OPERAND (arg0, 1),
1997 TREE_OPERAND (arg1, 1), 0)
1998 && operand_equal_p (TREE_OPERAND (arg0, 2),
1999 TREE_OPERAND (arg1, 2), 0));
2000 default:
2001 return 0;
2002 }
2003
2004 case 'e':
2005 switch (TREE_CODE (arg0))
2006 {
2007 case ADDR_EXPR:
2008 case TRUTH_NOT_EXPR:
2009 return operand_equal_p (TREE_OPERAND (arg0, 0),
2010 TREE_OPERAND (arg1, 0), 0);
2011
2012 case RTL_EXPR:
2013 return rtx_equal_p (RTL_EXPR_RTL (arg0), RTL_EXPR_RTL (arg1));
2014
2015 case CALL_EXPR:
2016 /* If the CALL_EXPRs call different functions, then they
2017 clearly can not be equal. */
2018 if (! operand_equal_p (TREE_OPERAND (arg0, 0),
2019 TREE_OPERAND (arg1, 0), 0))
2020 return 0;
2021
2022 /* Only consider const functions equivalent. */
2023 fndecl = get_callee_fndecl (arg0);
2024 if (fndecl == NULL_TREE
2025 || ! (flags_from_decl_or_type (fndecl) & ECF_CONST))
2026 return 0;
2027
2028 /* Now see if all the arguments are the same. operand_equal_p
2029 does not handle TREE_LIST, so we walk the operands here
2030 feeding them to operand_equal_p. */
2031 arg0 = TREE_OPERAND (arg0, 1);
2032 arg1 = TREE_OPERAND (arg1, 1);
2033 while (arg0 && arg1)
2034 {
2035 if (! operand_equal_p (TREE_VALUE (arg0), TREE_VALUE (arg1), 0))
2036 return 0;
2037
2038 arg0 = TREE_CHAIN (arg0);
2039 arg1 = TREE_CHAIN (arg1);
2040 }
2041
2042 /* If we get here and both argument lists are exhausted
2043 then the CALL_EXPRs are equal. */
2044 return ! (arg0 || arg1);
2045
2046 default:
2047 return 0;
2048 }
2049
2050 case 'd':
2051 /* Consider __builtin_sqrt equal to sqrt. */
2052 return TREE_CODE (arg0) == FUNCTION_DECL
2053 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
2054 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
2055 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1);
2056
2057 default:
2058 return 0;
2059 }
2060 }
2061 \f
2062 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2063 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2064
2065 When in doubt, return 0. */
2066
2067 static int
2068 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
2069 {
2070 int unsignedp1, unsignedpo;
2071 tree primarg0, primarg1, primother;
2072 unsigned int correct_width;
2073
2074 if (operand_equal_p (arg0, arg1, 0))
2075 return 1;
2076
2077 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
2078 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
2079 return 0;
2080
2081 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2082 and see if the inner values are the same. This removes any
2083 signedness comparison, which doesn't matter here. */
2084 primarg0 = arg0, primarg1 = arg1;
2085 STRIP_NOPS (primarg0);
2086 STRIP_NOPS (primarg1);
2087 if (operand_equal_p (primarg0, primarg1, 0))
2088 return 1;
2089
2090 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2091 actual comparison operand, ARG0.
2092
2093 First throw away any conversions to wider types
2094 already present in the operands. */
2095
2096 primarg1 = get_narrower (arg1, &unsignedp1);
2097 primother = get_narrower (other, &unsignedpo);
2098
2099 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
2100 if (unsignedp1 == unsignedpo
2101 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
2102 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2103 {
2104 tree type = TREE_TYPE (arg0);
2105
2106 /* Make sure shorter operand is extended the right way
2107 to match the longer operand. */
2108 primarg1 = convert ((*lang_hooks.types.signed_or_unsigned_type)
2109 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
2110
2111 if (operand_equal_p (arg0, convert (type, primarg1), 0))
2112 return 1;
2113 }
2114
2115 return 0;
2116 }
2117 \f
2118 /* See if ARG is an expression that is either a comparison or is performing
2119 arithmetic on comparisons. The comparisons must only be comparing
2120 two different values, which will be stored in *CVAL1 and *CVAL2; if
2121 they are nonzero it means that some operands have already been found.
2122 No variables may be used anywhere else in the expression except in the
2123 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2124 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2125
2126 If this is true, return 1. Otherwise, return zero. */
2127
2128 static int
2129 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
2130 {
2131 enum tree_code code = TREE_CODE (arg);
2132 char class = TREE_CODE_CLASS (code);
2133
2134 /* We can handle some of the 'e' cases here. */
2135 if (class == 'e' && code == TRUTH_NOT_EXPR)
2136 class = '1';
2137 else if (class == 'e'
2138 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2139 || code == COMPOUND_EXPR))
2140 class = '2';
2141
2142 else if (class == 'e' && code == SAVE_EXPR && SAVE_EXPR_RTL (arg) == 0
2143 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
2144 {
2145 /* If we've already found a CVAL1 or CVAL2, this expression is
2146 two complex to handle. */
2147 if (*cval1 || *cval2)
2148 return 0;
2149
2150 class = '1';
2151 *save_p = 1;
2152 }
2153
2154 switch (class)
2155 {
2156 case '1':
2157 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2158
2159 case '2':
2160 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2161 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2162 cval1, cval2, save_p));
2163
2164 case 'c':
2165 return 1;
2166
2167 case 'e':
2168 if (code == COND_EXPR)
2169 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2170 cval1, cval2, save_p)
2171 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2172 cval1, cval2, save_p)
2173 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2174 cval1, cval2, save_p));
2175 return 0;
2176
2177 case '<':
2178 /* First see if we can handle the first operand, then the second. For
2179 the second operand, we know *CVAL1 can't be zero. It must be that
2180 one side of the comparison is each of the values; test for the
2181 case where this isn't true by failing if the two operands
2182 are the same. */
2183
2184 if (operand_equal_p (TREE_OPERAND (arg, 0),
2185 TREE_OPERAND (arg, 1), 0))
2186 return 0;
2187
2188 if (*cval1 == 0)
2189 *cval1 = TREE_OPERAND (arg, 0);
2190 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2191 ;
2192 else if (*cval2 == 0)
2193 *cval2 = TREE_OPERAND (arg, 0);
2194 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2195 ;
2196 else
2197 return 0;
2198
2199 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2200 ;
2201 else if (*cval2 == 0)
2202 *cval2 = TREE_OPERAND (arg, 1);
2203 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2204 ;
2205 else
2206 return 0;
2207
2208 return 1;
2209
2210 default:
2211 return 0;
2212 }
2213 }
2214 \f
2215 /* ARG is a tree that is known to contain just arithmetic operations and
2216 comparisons. Evaluate the operations in the tree substituting NEW0 for
2217 any occurrence of OLD0 as an operand of a comparison and likewise for
2218 NEW1 and OLD1. */
2219
2220 static tree
2221 eval_subst (tree arg, tree old0, tree new0, tree old1, tree new1)
2222 {
2223 tree type = TREE_TYPE (arg);
2224 enum tree_code code = TREE_CODE (arg);
2225 char class = TREE_CODE_CLASS (code);
2226
2227 /* We can handle some of the 'e' cases here. */
2228 if (class == 'e' && code == TRUTH_NOT_EXPR)
2229 class = '1';
2230 else if (class == 'e'
2231 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2232 class = '2';
2233
2234 switch (class)
2235 {
2236 case '1':
2237 return fold (build1 (code, type,
2238 eval_subst (TREE_OPERAND (arg, 0),
2239 old0, new0, old1, new1)));
2240
2241 case '2':
2242 return fold (build (code, type,
2243 eval_subst (TREE_OPERAND (arg, 0),
2244 old0, new0, old1, new1),
2245 eval_subst (TREE_OPERAND (arg, 1),
2246 old0, new0, old1, new1)));
2247
2248 case 'e':
2249 switch (code)
2250 {
2251 case SAVE_EXPR:
2252 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
2253
2254 case COMPOUND_EXPR:
2255 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
2256
2257 case COND_EXPR:
2258 return fold (build (code, type,
2259 eval_subst (TREE_OPERAND (arg, 0),
2260 old0, new0, old1, new1),
2261 eval_subst (TREE_OPERAND (arg, 1),
2262 old0, new0, old1, new1),
2263 eval_subst (TREE_OPERAND (arg, 2),
2264 old0, new0, old1, new1)));
2265 default:
2266 break;
2267 }
2268 /* Fall through - ??? */
2269
2270 case '<':
2271 {
2272 tree arg0 = TREE_OPERAND (arg, 0);
2273 tree arg1 = TREE_OPERAND (arg, 1);
2274
2275 /* We need to check both for exact equality and tree equality. The
2276 former will be true if the operand has a side-effect. In that
2277 case, we know the operand occurred exactly once. */
2278
2279 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
2280 arg0 = new0;
2281 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
2282 arg0 = new1;
2283
2284 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
2285 arg1 = new0;
2286 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
2287 arg1 = new1;
2288
2289 return fold (build (code, type, arg0, arg1));
2290 }
2291
2292 default:
2293 return arg;
2294 }
2295 }
2296 \f
2297 /* Return a tree for the case when the result of an expression is RESULT
2298 converted to TYPE and OMITTED was previously an operand of the expression
2299 but is now not needed (e.g., we folded OMITTED * 0).
2300
2301 If OMITTED has side effects, we must evaluate it. Otherwise, just do
2302 the conversion of RESULT to TYPE. */
2303
2304 tree
2305 omit_one_operand (tree type, tree result, tree omitted)
2306 {
2307 tree t = convert (type, result);
2308
2309 if (TREE_SIDE_EFFECTS (omitted))
2310 return build (COMPOUND_EXPR, type, omitted, t);
2311
2312 return non_lvalue (t);
2313 }
2314
2315 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
2316
2317 static tree
2318 pedantic_omit_one_operand (tree type, tree result, tree omitted)
2319 {
2320 tree t = convert (type, result);
2321
2322 if (TREE_SIDE_EFFECTS (omitted))
2323 return build (COMPOUND_EXPR, type, omitted, t);
2324
2325 return pedantic_non_lvalue (t);
2326 }
2327 \f
2328 /* Return a simplified tree node for the truth-negation of ARG. This
2329 never alters ARG itself. We assume that ARG is an operation that
2330 returns a truth value (0 or 1). */
2331
2332 tree
2333 invert_truthvalue (tree arg)
2334 {
2335 tree type = TREE_TYPE (arg);
2336 enum tree_code code = TREE_CODE (arg);
2337
2338 if (code == ERROR_MARK)
2339 return arg;
2340
2341 /* If this is a comparison, we can simply invert it, except for
2342 floating-point non-equality comparisons, in which case we just
2343 enclose a TRUTH_NOT_EXPR around what we have. */
2344
2345 if (TREE_CODE_CLASS (code) == '<')
2346 {
2347 if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
2348 && !flag_unsafe_math_optimizations
2349 && code != NE_EXPR
2350 && code != EQ_EXPR)
2351 return build1 (TRUTH_NOT_EXPR, type, arg);
2352 else
2353 return build (invert_tree_comparison (code), type,
2354 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
2355 }
2356
2357 switch (code)
2358 {
2359 case INTEGER_CST:
2360 return convert (type, build_int_2 (integer_zerop (arg), 0));
2361
2362 case TRUTH_AND_EXPR:
2363 return build (TRUTH_OR_EXPR, type,
2364 invert_truthvalue (TREE_OPERAND (arg, 0)),
2365 invert_truthvalue (TREE_OPERAND (arg, 1)));
2366
2367 case TRUTH_OR_EXPR:
2368 return build (TRUTH_AND_EXPR, type,
2369 invert_truthvalue (TREE_OPERAND (arg, 0)),
2370 invert_truthvalue (TREE_OPERAND (arg, 1)));
2371
2372 case TRUTH_XOR_EXPR:
2373 /* Here we can invert either operand. We invert the first operand
2374 unless the second operand is a TRUTH_NOT_EXPR in which case our
2375 result is the XOR of the first operand with the inside of the
2376 negation of the second operand. */
2377
2378 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
2379 return build (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
2380 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
2381 else
2382 return build (TRUTH_XOR_EXPR, type,
2383 invert_truthvalue (TREE_OPERAND (arg, 0)),
2384 TREE_OPERAND (arg, 1));
2385
2386 case TRUTH_ANDIF_EXPR:
2387 return build (TRUTH_ORIF_EXPR, type,
2388 invert_truthvalue (TREE_OPERAND (arg, 0)),
2389 invert_truthvalue (TREE_OPERAND (arg, 1)));
2390
2391 case TRUTH_ORIF_EXPR:
2392 return build (TRUTH_ANDIF_EXPR, type,
2393 invert_truthvalue (TREE_OPERAND (arg, 0)),
2394 invert_truthvalue (TREE_OPERAND (arg, 1)));
2395
2396 case TRUTH_NOT_EXPR:
2397 return TREE_OPERAND (arg, 0);
2398
2399 case COND_EXPR:
2400 return build (COND_EXPR, type, TREE_OPERAND (arg, 0),
2401 invert_truthvalue (TREE_OPERAND (arg, 1)),
2402 invert_truthvalue (TREE_OPERAND (arg, 2)));
2403
2404 case COMPOUND_EXPR:
2405 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
2406 invert_truthvalue (TREE_OPERAND (arg, 1)));
2407
2408 case WITH_RECORD_EXPR:
2409 return build (WITH_RECORD_EXPR, type,
2410 invert_truthvalue (TREE_OPERAND (arg, 0)),
2411 TREE_OPERAND (arg, 1));
2412
2413 case NON_LVALUE_EXPR:
2414 return invert_truthvalue (TREE_OPERAND (arg, 0));
2415
2416 case NOP_EXPR:
2417 case CONVERT_EXPR:
2418 case FLOAT_EXPR:
2419 return build1 (TREE_CODE (arg), type,
2420 invert_truthvalue (TREE_OPERAND (arg, 0)));
2421
2422 case BIT_AND_EXPR:
2423 if (!integer_onep (TREE_OPERAND (arg, 1)))
2424 break;
2425 return build (EQ_EXPR, type, arg, convert (type, integer_zero_node));
2426
2427 case SAVE_EXPR:
2428 return build1 (TRUTH_NOT_EXPR, type, arg);
2429
2430 case CLEANUP_POINT_EXPR:
2431 return build1 (CLEANUP_POINT_EXPR, type,
2432 invert_truthvalue (TREE_OPERAND (arg, 0)));
2433
2434 default:
2435 break;
2436 }
2437 if (TREE_CODE (TREE_TYPE (arg)) != BOOLEAN_TYPE)
2438 abort ();
2439 return build1 (TRUTH_NOT_EXPR, type, arg);
2440 }
2441
2442 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
2443 operands are another bit-wise operation with a common input. If so,
2444 distribute the bit operations to save an operation and possibly two if
2445 constants are involved. For example, convert
2446 (A | B) & (A | C) into A | (B & C)
2447 Further simplification will occur if B and C are constants.
2448
2449 If this optimization cannot be done, 0 will be returned. */
2450
2451 static tree
2452 distribute_bit_expr (enum tree_code code, tree type, tree arg0, tree arg1)
2453 {
2454 tree common;
2455 tree left, right;
2456
2457 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2458 || TREE_CODE (arg0) == code
2459 || (TREE_CODE (arg0) != BIT_AND_EXPR
2460 && TREE_CODE (arg0) != BIT_IOR_EXPR))
2461 return 0;
2462
2463 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
2464 {
2465 common = TREE_OPERAND (arg0, 0);
2466 left = TREE_OPERAND (arg0, 1);
2467 right = TREE_OPERAND (arg1, 1);
2468 }
2469 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
2470 {
2471 common = TREE_OPERAND (arg0, 0);
2472 left = TREE_OPERAND (arg0, 1);
2473 right = TREE_OPERAND (arg1, 0);
2474 }
2475 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
2476 {
2477 common = TREE_OPERAND (arg0, 1);
2478 left = TREE_OPERAND (arg0, 0);
2479 right = TREE_OPERAND (arg1, 1);
2480 }
2481 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
2482 {
2483 common = TREE_OPERAND (arg0, 1);
2484 left = TREE_OPERAND (arg0, 0);
2485 right = TREE_OPERAND (arg1, 0);
2486 }
2487 else
2488 return 0;
2489
2490 return fold (build (TREE_CODE (arg0), type, common,
2491 fold (build (code, type, left, right))));
2492 }
2493 \f
2494 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
2495 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
2496
2497 static tree
2498 make_bit_field_ref (tree inner, tree type, int bitsize, int bitpos,
2499 int unsignedp)
2500 {
2501 tree result = build (BIT_FIELD_REF, type, inner,
2502 size_int (bitsize), bitsize_int (bitpos));
2503
2504 TREE_UNSIGNED (result) = unsignedp;
2505
2506 return result;
2507 }
2508
2509 /* Optimize a bit-field compare.
2510
2511 There are two cases: First is a compare against a constant and the
2512 second is a comparison of two items where the fields are at the same
2513 bit position relative to the start of a chunk (byte, halfword, word)
2514 large enough to contain it. In these cases we can avoid the shift
2515 implicit in bitfield extractions.
2516
2517 For constants, we emit a compare of the shifted constant with the
2518 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
2519 compared. For two fields at the same position, we do the ANDs with the
2520 similar mask and compare the result of the ANDs.
2521
2522 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
2523 COMPARE_TYPE is the type of the comparison, and LHS and RHS
2524 are the left and right operands of the comparison, respectively.
2525
2526 If the optimization described above can be done, we return the resulting
2527 tree. Otherwise we return zero. */
2528
2529 static tree
2530 optimize_bit_field_compare (enum tree_code code, tree compare_type,
2531 tree lhs, tree rhs)
2532 {
2533 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
2534 tree type = TREE_TYPE (lhs);
2535 tree signed_type, unsigned_type;
2536 int const_p = TREE_CODE (rhs) == INTEGER_CST;
2537 enum machine_mode lmode, rmode, nmode;
2538 int lunsignedp, runsignedp;
2539 int lvolatilep = 0, rvolatilep = 0;
2540 tree linner, rinner = NULL_TREE;
2541 tree mask;
2542 tree offset;
2543
2544 /* Get all the information about the extractions being done. If the bit size
2545 if the same as the size of the underlying object, we aren't doing an
2546 extraction at all and so can do nothing. We also don't want to
2547 do anything if the inner expression is a PLACEHOLDER_EXPR since we
2548 then will no longer be able to replace it. */
2549 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
2550 &lunsignedp, &lvolatilep);
2551 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
2552 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
2553 return 0;
2554
2555 if (!const_p)
2556 {
2557 /* If this is not a constant, we can only do something if bit positions,
2558 sizes, and signedness are the same. */
2559 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
2560 &runsignedp, &rvolatilep);
2561
2562 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
2563 || lunsignedp != runsignedp || offset != 0
2564 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
2565 return 0;
2566 }
2567
2568 /* See if we can find a mode to refer to this field. We should be able to,
2569 but fail if we can't. */
2570 nmode = get_best_mode (lbitsize, lbitpos,
2571 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
2572 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
2573 TYPE_ALIGN (TREE_TYPE (rinner))),
2574 word_mode, lvolatilep || rvolatilep);
2575 if (nmode == VOIDmode)
2576 return 0;
2577
2578 /* Set signed and unsigned types of the precision of this mode for the
2579 shifts below. */
2580 signed_type = (*lang_hooks.types.type_for_mode) (nmode, 0);
2581 unsigned_type = (*lang_hooks.types.type_for_mode) (nmode, 1);
2582
2583 /* Compute the bit position and size for the new reference and our offset
2584 within it. If the new reference is the same size as the original, we
2585 won't optimize anything, so return zero. */
2586 nbitsize = GET_MODE_BITSIZE (nmode);
2587 nbitpos = lbitpos & ~ (nbitsize - 1);
2588 lbitpos -= nbitpos;
2589 if (nbitsize == lbitsize)
2590 return 0;
2591
2592 if (BYTES_BIG_ENDIAN)
2593 lbitpos = nbitsize - lbitsize - lbitpos;
2594
2595 /* Make the mask to be used against the extracted field. */
2596 mask = build_int_2 (~0, ~0);
2597 TREE_TYPE (mask) = unsigned_type;
2598 force_fit_type (mask, 0);
2599 mask = convert (unsigned_type, mask);
2600 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
2601 mask = const_binop (RSHIFT_EXPR, mask,
2602 size_int (nbitsize - lbitsize - lbitpos), 0);
2603
2604 if (! const_p)
2605 /* If not comparing with constant, just rework the comparison
2606 and return. */
2607 return build (code, compare_type,
2608 build (BIT_AND_EXPR, unsigned_type,
2609 make_bit_field_ref (linner, unsigned_type,
2610 nbitsize, nbitpos, 1),
2611 mask),
2612 build (BIT_AND_EXPR, unsigned_type,
2613 make_bit_field_ref (rinner, unsigned_type,
2614 nbitsize, nbitpos, 1),
2615 mask));
2616
2617 /* Otherwise, we are handling the constant case. See if the constant is too
2618 big for the field. Warn and return a tree of for 0 (false) if so. We do
2619 this not only for its own sake, but to avoid having to test for this
2620 error case below. If we didn't, we might generate wrong code.
2621
2622 For unsigned fields, the constant shifted right by the field length should
2623 be all zero. For signed fields, the high-order bits should agree with
2624 the sign bit. */
2625
2626 if (lunsignedp)
2627 {
2628 if (! integer_zerop (const_binop (RSHIFT_EXPR,
2629 convert (unsigned_type, rhs),
2630 size_int (lbitsize), 0)))
2631 {
2632 warning ("comparison is always %d due to width of bit-field",
2633 code == NE_EXPR);
2634 return convert (compare_type,
2635 (code == NE_EXPR
2636 ? integer_one_node : integer_zero_node));
2637 }
2638 }
2639 else
2640 {
2641 tree tem = const_binop (RSHIFT_EXPR, convert (signed_type, rhs),
2642 size_int (lbitsize - 1), 0);
2643 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
2644 {
2645 warning ("comparison is always %d due to width of bit-field",
2646 code == NE_EXPR);
2647 return convert (compare_type,
2648 (code == NE_EXPR
2649 ? integer_one_node : integer_zero_node));
2650 }
2651 }
2652
2653 /* Single-bit compares should always be against zero. */
2654 if (lbitsize == 1 && ! integer_zerop (rhs))
2655 {
2656 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
2657 rhs = convert (type, integer_zero_node);
2658 }
2659
2660 /* Make a new bitfield reference, shift the constant over the
2661 appropriate number of bits and mask it with the computed mask
2662 (in case this was a signed field). If we changed it, make a new one. */
2663 lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
2664 if (lvolatilep)
2665 {
2666 TREE_SIDE_EFFECTS (lhs) = 1;
2667 TREE_THIS_VOLATILE (lhs) = 1;
2668 }
2669
2670 rhs = fold (const_binop (BIT_AND_EXPR,
2671 const_binop (LSHIFT_EXPR,
2672 convert (unsigned_type, rhs),
2673 size_int (lbitpos), 0),
2674 mask, 0));
2675
2676 return build (code, compare_type,
2677 build (BIT_AND_EXPR, unsigned_type, lhs, mask),
2678 rhs);
2679 }
2680 \f
2681 /* Subroutine for fold_truthop: decode a field reference.
2682
2683 If EXP is a comparison reference, we return the innermost reference.
2684
2685 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
2686 set to the starting bit number.
2687
2688 If the innermost field can be completely contained in a mode-sized
2689 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
2690
2691 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
2692 otherwise it is not changed.
2693
2694 *PUNSIGNEDP is set to the signedness of the field.
2695
2696 *PMASK is set to the mask used. This is either contained in a
2697 BIT_AND_EXPR or derived from the width of the field.
2698
2699 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
2700
2701 Return 0 if this is not a component reference or is one that we can't
2702 do anything with. */
2703
2704 static tree
2705 decode_field_reference (tree exp, HOST_WIDE_INT *pbitsize,
2706 HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
2707 int *punsignedp, int *pvolatilep,
2708 tree *pmask, tree *pand_mask)
2709 {
2710 tree outer_type = 0;
2711 tree and_mask = 0;
2712 tree mask, inner, offset;
2713 tree unsigned_type;
2714 unsigned int precision;
2715
2716 /* All the optimizations using this function assume integer fields.
2717 There are problems with FP fields since the type_for_size call
2718 below can fail for, e.g., XFmode. */
2719 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
2720 return 0;
2721
2722 /* We are interested in the bare arrangement of bits, so strip everything
2723 that doesn't affect the machine mode. However, record the type of the
2724 outermost expression if it may matter below. */
2725 if (TREE_CODE (exp) == NOP_EXPR
2726 || TREE_CODE (exp) == CONVERT_EXPR
2727 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2728 outer_type = TREE_TYPE (exp);
2729 STRIP_NOPS (exp);
2730
2731 if (TREE_CODE (exp) == BIT_AND_EXPR)
2732 {
2733 and_mask = TREE_OPERAND (exp, 1);
2734 exp = TREE_OPERAND (exp, 0);
2735 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
2736 if (TREE_CODE (and_mask) != INTEGER_CST)
2737 return 0;
2738 }
2739
2740 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
2741 punsignedp, pvolatilep);
2742 if ((inner == exp && and_mask == 0)
2743 || *pbitsize < 0 || offset != 0
2744 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
2745 return 0;
2746
2747 /* If the number of bits in the reference is the same as the bitsize of
2748 the outer type, then the outer type gives the signedness. Otherwise
2749 (in case of a small bitfield) the signedness is unchanged. */
2750 if (outer_type && *pbitsize == tree_low_cst (TYPE_SIZE (outer_type), 1))
2751 *punsignedp = TREE_UNSIGNED (outer_type);
2752
2753 /* Compute the mask to access the bitfield. */
2754 unsigned_type = (*lang_hooks.types.type_for_size) (*pbitsize, 1);
2755 precision = TYPE_PRECISION (unsigned_type);
2756
2757 mask = build_int_2 (~0, ~0);
2758 TREE_TYPE (mask) = unsigned_type;
2759 force_fit_type (mask, 0);
2760 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
2761 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
2762
2763 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
2764 if (and_mask != 0)
2765 mask = fold (build (BIT_AND_EXPR, unsigned_type,
2766 convert (unsigned_type, and_mask), mask));
2767
2768 *pmask = mask;
2769 *pand_mask = and_mask;
2770 return inner;
2771 }
2772
2773 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
2774 bit positions. */
2775
2776 static int
2777 all_ones_mask_p (tree mask, int size)
2778 {
2779 tree type = TREE_TYPE (mask);
2780 unsigned int precision = TYPE_PRECISION (type);
2781 tree tmask;
2782
2783 tmask = build_int_2 (~0, ~0);
2784 TREE_TYPE (tmask) = (*lang_hooks.types.signed_type) (type);
2785 force_fit_type (tmask, 0);
2786 return
2787 tree_int_cst_equal (mask,
2788 const_binop (RSHIFT_EXPR,
2789 const_binop (LSHIFT_EXPR, tmask,
2790 size_int (precision - size),
2791 0),
2792 size_int (precision - size), 0));
2793 }
2794
2795 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
2796 represents the sign bit of EXP's type. If EXP represents a sign
2797 or zero extension, also test VAL against the unextended type.
2798 The return value is the (sub)expression whose sign bit is VAL,
2799 or NULL_TREE otherwise. */
2800
2801 static tree
2802 sign_bit_p (tree exp, tree val)
2803 {
2804 unsigned HOST_WIDE_INT mask_lo, lo;
2805 HOST_WIDE_INT mask_hi, hi;
2806 int width;
2807 tree t;
2808
2809 /* Tree EXP must have an integral type. */
2810 t = TREE_TYPE (exp);
2811 if (! INTEGRAL_TYPE_P (t))
2812 return NULL_TREE;
2813
2814 /* Tree VAL must be an integer constant. */
2815 if (TREE_CODE (val) != INTEGER_CST
2816 || TREE_CONSTANT_OVERFLOW (val))
2817 return NULL_TREE;
2818
2819 width = TYPE_PRECISION (t);
2820 if (width > HOST_BITS_PER_WIDE_INT)
2821 {
2822 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
2823 lo = 0;
2824
2825 mask_hi = ((unsigned HOST_WIDE_INT) -1
2826 >> (2 * HOST_BITS_PER_WIDE_INT - width));
2827 mask_lo = -1;
2828 }
2829 else
2830 {
2831 hi = 0;
2832 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
2833
2834 mask_hi = 0;
2835 mask_lo = ((unsigned HOST_WIDE_INT) -1
2836 >> (HOST_BITS_PER_WIDE_INT - width));
2837 }
2838
2839 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
2840 treat VAL as if it were unsigned. */
2841 if ((TREE_INT_CST_HIGH (val) & mask_hi) == hi
2842 && (TREE_INT_CST_LOW (val) & mask_lo) == lo)
2843 return exp;
2844
2845 /* Handle extension from a narrower type. */
2846 if (TREE_CODE (exp) == NOP_EXPR
2847 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
2848 return sign_bit_p (TREE_OPERAND (exp, 0), val);
2849
2850 return NULL_TREE;
2851 }
2852
2853 /* Subroutine for fold_truthop: determine if an operand is simple enough
2854 to be evaluated unconditionally. */
2855
2856 static int
2857 simple_operand_p (tree exp)
2858 {
2859 /* Strip any conversions that don't change the machine mode. */
2860 while ((TREE_CODE (exp) == NOP_EXPR
2861 || TREE_CODE (exp) == CONVERT_EXPR)
2862 && (TYPE_MODE (TREE_TYPE (exp))
2863 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
2864 exp = TREE_OPERAND (exp, 0);
2865
2866 return (TREE_CODE_CLASS (TREE_CODE (exp)) == 'c'
2867 || (DECL_P (exp)
2868 && ! TREE_ADDRESSABLE (exp)
2869 && ! TREE_THIS_VOLATILE (exp)
2870 && ! DECL_NONLOCAL (exp)
2871 /* Don't regard global variables as simple. They may be
2872 allocated in ways unknown to the compiler (shared memory,
2873 #pragma weak, etc). */
2874 && ! TREE_PUBLIC (exp)
2875 && ! DECL_EXTERNAL (exp)
2876 /* Loading a static variable is unduly expensive, but global
2877 registers aren't expensive. */
2878 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
2879 }
2880 \f
2881 /* The following functions are subroutines to fold_range_test and allow it to
2882 try to change a logical combination of comparisons into a range test.
2883
2884 For example, both
2885 X == 2 || X == 3 || X == 4 || X == 5
2886 and
2887 X >= 2 && X <= 5
2888 are converted to
2889 (unsigned) (X - 2) <= 3
2890
2891 We describe each set of comparisons as being either inside or outside
2892 a range, using a variable named like IN_P, and then describe the
2893 range with a lower and upper bound. If one of the bounds is omitted,
2894 it represents either the highest or lowest value of the type.
2895
2896 In the comments below, we represent a range by two numbers in brackets
2897 preceded by a "+" to designate being inside that range, or a "-" to
2898 designate being outside that range, so the condition can be inverted by
2899 flipping the prefix. An omitted bound is represented by a "-". For
2900 example, "- [-, 10]" means being outside the range starting at the lowest
2901 possible value and ending at 10, in other words, being greater than 10.
2902 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
2903 always false.
2904
2905 We set up things so that the missing bounds are handled in a consistent
2906 manner so neither a missing bound nor "true" and "false" need to be
2907 handled using a special case. */
2908
2909 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
2910 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
2911 and UPPER1_P are nonzero if the respective argument is an upper bound
2912 and zero for a lower. TYPE, if nonzero, is the type of the result; it
2913 must be specified for a comparison. ARG1 will be converted to ARG0's
2914 type if both are specified. */
2915
2916 static tree
2917 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
2918 tree arg1, int upper1_p)
2919 {
2920 tree tem;
2921 int result;
2922 int sgn0, sgn1;
2923
2924 /* If neither arg represents infinity, do the normal operation.
2925 Else, if not a comparison, return infinity. Else handle the special
2926 comparison rules. Note that most of the cases below won't occur, but
2927 are handled for consistency. */
2928
2929 if (arg0 != 0 && arg1 != 0)
2930 {
2931 tem = fold (build (code, type != 0 ? type : TREE_TYPE (arg0),
2932 arg0, convert (TREE_TYPE (arg0), arg1)));
2933 STRIP_NOPS (tem);
2934 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
2935 }
2936
2937 if (TREE_CODE_CLASS (code) != '<')
2938 return 0;
2939
2940 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
2941 for neither. In real maths, we cannot assume open ended ranges are
2942 the same. But, this is computer arithmetic, where numbers are finite.
2943 We can therefore make the transformation of any unbounded range with
2944 the value Z, Z being greater than any representable number. This permits
2945 us to treat unbounded ranges as equal. */
2946 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
2947 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
2948 switch (code)
2949 {
2950 case EQ_EXPR:
2951 result = sgn0 == sgn1;
2952 break;
2953 case NE_EXPR:
2954 result = sgn0 != sgn1;
2955 break;
2956 case LT_EXPR:
2957 result = sgn0 < sgn1;
2958 break;
2959 case LE_EXPR:
2960 result = sgn0 <= sgn1;
2961 break;
2962 case GT_EXPR:
2963 result = sgn0 > sgn1;
2964 break;
2965 case GE_EXPR:
2966 result = sgn0 >= sgn1;
2967 break;
2968 default:
2969 abort ();
2970 }
2971
2972 return convert (type, result ? integer_one_node : integer_zero_node);
2973 }
2974 \f
2975 /* Given EXP, a logical expression, set the range it is testing into
2976 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
2977 actually being tested. *PLOW and *PHIGH will be made of the same type
2978 as the returned expression. If EXP is not a comparison, we will most
2979 likely not be returning a useful value and range. */
2980
2981 static tree
2982 make_range (tree exp, int *pin_p, tree *plow, tree *phigh)
2983 {
2984 enum tree_code code;
2985 tree arg0 = NULL_TREE, arg1 = NULL_TREE, type = NULL_TREE;
2986 tree orig_type = NULL_TREE;
2987 int in_p, n_in_p;
2988 tree low, high, n_low, n_high;
2989
2990 /* Start with simply saying "EXP != 0" and then look at the code of EXP
2991 and see if we can refine the range. Some of the cases below may not
2992 happen, but it doesn't seem worth worrying about this. We "continue"
2993 the outer loop when we've changed something; otherwise we "break"
2994 the switch, which will "break" the while. */
2995
2996 in_p = 0, low = high = convert (TREE_TYPE (exp), integer_zero_node);
2997
2998 while (1)
2999 {
3000 code = TREE_CODE (exp);
3001
3002 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
3003 {
3004 if (first_rtl_op (code) > 0)
3005 arg0 = TREE_OPERAND (exp, 0);
3006 if (TREE_CODE_CLASS (code) == '<'
3007 || TREE_CODE_CLASS (code) == '1'
3008 || TREE_CODE_CLASS (code) == '2')
3009 type = TREE_TYPE (arg0);
3010 if (TREE_CODE_CLASS (code) == '2'
3011 || TREE_CODE_CLASS (code) == '<'
3012 || (TREE_CODE_CLASS (code) == 'e'
3013 && TREE_CODE_LENGTH (code) > 1))
3014 arg1 = TREE_OPERAND (exp, 1);
3015 }
3016
3017 /* Set ORIG_TYPE as soon as TYPE is non-null so that we do not
3018 lose a cast by accident. */
3019 if (type != NULL_TREE && orig_type == NULL_TREE)
3020 orig_type = type;
3021
3022 switch (code)
3023 {
3024 case TRUTH_NOT_EXPR:
3025 in_p = ! in_p, exp = arg0;
3026 continue;
3027
3028 case EQ_EXPR: case NE_EXPR:
3029 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
3030 /* We can only do something if the range is testing for zero
3031 and if the second operand is an integer constant. Note that
3032 saying something is "in" the range we make is done by
3033 complementing IN_P since it will set in the initial case of
3034 being not equal to zero; "out" is leaving it alone. */
3035 if (low == 0 || high == 0
3036 || ! integer_zerop (low) || ! integer_zerop (high)
3037 || TREE_CODE (arg1) != INTEGER_CST)
3038 break;
3039
3040 switch (code)
3041 {
3042 case NE_EXPR: /* - [c, c] */
3043 low = high = arg1;
3044 break;
3045 case EQ_EXPR: /* + [c, c] */
3046 in_p = ! in_p, low = high = arg1;
3047 break;
3048 case GT_EXPR: /* - [-, c] */
3049 low = 0, high = arg1;
3050 break;
3051 case GE_EXPR: /* + [c, -] */
3052 in_p = ! in_p, low = arg1, high = 0;
3053 break;
3054 case LT_EXPR: /* - [c, -] */
3055 low = arg1, high = 0;
3056 break;
3057 case LE_EXPR: /* + [-, c] */
3058 in_p = ! in_p, low = 0, high = arg1;
3059 break;
3060 default:
3061 abort ();
3062 }
3063
3064 exp = arg0;
3065
3066 /* If this is an unsigned comparison, we also know that EXP is
3067 greater than or equal to zero. We base the range tests we make
3068 on that fact, so we record it here so we can parse existing
3069 range tests. */
3070 if (TREE_UNSIGNED (type) && (low == 0 || high == 0))
3071 {
3072 if (! merge_ranges (&n_in_p, &n_low, &n_high, in_p, low, high,
3073 1, convert (type, integer_zero_node),
3074 NULL_TREE))
3075 break;
3076
3077 in_p = n_in_p, low = n_low, high = n_high;
3078
3079 /* If the high bound is missing, but we
3080 have a low bound, reverse the range so
3081 it goes from zero to the low bound minus 1. */
3082 if (high == 0 && low)
3083 {
3084 in_p = ! in_p;
3085 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
3086 integer_one_node, 0);
3087 low = convert (type, integer_zero_node);
3088 }
3089 }
3090 continue;
3091
3092 case NEGATE_EXPR:
3093 /* (-x) IN [a,b] -> x in [-b, -a] */
3094 n_low = range_binop (MINUS_EXPR, type,
3095 convert (type, integer_zero_node), 0, high, 1);
3096 n_high = range_binop (MINUS_EXPR, type,
3097 convert (type, integer_zero_node), 0, low, 0);
3098 low = n_low, high = n_high;
3099 exp = arg0;
3100 continue;
3101
3102 case BIT_NOT_EXPR:
3103 /* ~ X -> -X - 1 */
3104 exp = build (MINUS_EXPR, type, negate_expr (arg0),
3105 convert (type, integer_one_node));
3106 continue;
3107
3108 case PLUS_EXPR: case MINUS_EXPR:
3109 if (TREE_CODE (arg1) != INTEGER_CST)
3110 break;
3111
3112 /* If EXP is signed, any overflow in the computation is undefined,
3113 so we don't worry about it so long as our computations on
3114 the bounds don't overflow. For unsigned, overflow is defined
3115 and this is exactly the right thing. */
3116 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3117 type, low, 0, arg1, 0);
3118 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3119 type, high, 1, arg1, 0);
3120 if ((n_low != 0 && TREE_OVERFLOW (n_low))
3121 || (n_high != 0 && TREE_OVERFLOW (n_high)))
3122 break;
3123
3124 /* Check for an unsigned range which has wrapped around the maximum
3125 value thus making n_high < n_low, and normalize it. */
3126 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
3127 {
3128 low = range_binop (PLUS_EXPR, type, n_high, 0,
3129 integer_one_node, 0);
3130 high = range_binop (MINUS_EXPR, type, n_low, 0,
3131 integer_one_node, 0);
3132
3133 /* If the range is of the form +/- [ x+1, x ], we won't
3134 be able to normalize it. But then, it represents the
3135 whole range or the empty set, so make it
3136 +/- [ -, - ]. */
3137 if (tree_int_cst_equal (n_low, low)
3138 && tree_int_cst_equal (n_high, high))
3139 low = high = 0;
3140 else
3141 in_p = ! in_p;
3142 }
3143 else
3144 low = n_low, high = n_high;
3145
3146 exp = arg0;
3147 continue;
3148
3149 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
3150 if (TYPE_PRECISION (type) > TYPE_PRECISION (orig_type))
3151 break;
3152
3153 if (! INTEGRAL_TYPE_P (type)
3154 || (low != 0 && ! int_fits_type_p (low, type))
3155 || (high != 0 && ! int_fits_type_p (high, type)))
3156 break;
3157
3158 n_low = low, n_high = high;
3159
3160 if (n_low != 0)
3161 n_low = convert (type, n_low);
3162
3163 if (n_high != 0)
3164 n_high = convert (type, n_high);
3165
3166 /* If we're converting from an unsigned to a signed type,
3167 we will be doing the comparison as unsigned. The tests above
3168 have already verified that LOW and HIGH are both positive.
3169
3170 So we have to make sure that the original unsigned value will
3171 be interpreted as positive. */
3172 if (TREE_UNSIGNED (type) && ! TREE_UNSIGNED (TREE_TYPE (exp)))
3173 {
3174 tree equiv_type = (*lang_hooks.types.type_for_mode)
3175 (TYPE_MODE (type), 1);
3176 tree high_positive;
3177
3178 /* A range without an upper bound is, naturally, unbounded.
3179 Since convert would have cropped a very large value, use
3180 the max value for the destination type. */
3181 high_positive
3182 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
3183 : TYPE_MAX_VALUE (type);
3184
3185 if (TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (exp)))
3186 high_positive = fold (build (RSHIFT_EXPR, type,
3187 convert (type, high_positive),
3188 convert (type, integer_one_node)));
3189
3190 /* If the low bound is specified, "and" the range with the
3191 range for which the original unsigned value will be
3192 positive. */
3193 if (low != 0)
3194 {
3195 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3196 1, n_low, n_high,
3197 1, convert (type, integer_zero_node),
3198 high_positive))
3199 break;
3200
3201 in_p = (n_in_p == in_p);
3202 }
3203 else
3204 {
3205 /* Otherwise, "or" the range with the range of the input
3206 that will be interpreted as negative. */
3207 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3208 0, n_low, n_high,
3209 1, convert (type, integer_zero_node),
3210 high_positive))
3211 break;
3212
3213 in_p = (in_p != n_in_p);
3214 }
3215 }
3216
3217 exp = arg0;
3218 low = n_low, high = n_high;
3219 continue;
3220
3221 default:
3222 break;
3223 }
3224
3225 break;
3226 }
3227
3228 /* If EXP is a constant, we can evaluate whether this is true or false. */
3229 if (TREE_CODE (exp) == INTEGER_CST)
3230 {
3231 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
3232 exp, 0, low, 0))
3233 && integer_onep (range_binop (LE_EXPR, integer_type_node,
3234 exp, 1, high, 1)));
3235 low = high = 0;
3236 exp = 0;
3237 }
3238
3239 *pin_p = in_p, *plow = low, *phigh = high;
3240 return exp;
3241 }
3242 \f
3243 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
3244 type, TYPE, return an expression to test if EXP is in (or out of, depending
3245 on IN_P) the range. */
3246
3247 static tree
3248 build_range_check (tree type, tree exp, int in_p, tree low, tree high)
3249 {
3250 tree etype = TREE_TYPE (exp);
3251 tree value;
3252
3253 if (! in_p
3254 && (0 != (value = build_range_check (type, exp, 1, low, high))))
3255 return invert_truthvalue (value);
3256
3257 if (low == 0 && high == 0)
3258 return convert (type, integer_one_node);
3259
3260 if (low == 0)
3261 return fold (build (LE_EXPR, type, exp, high));
3262
3263 if (high == 0)
3264 return fold (build (GE_EXPR, type, exp, low));
3265
3266 if (operand_equal_p (low, high, 0))
3267 return fold (build (EQ_EXPR, type, exp, low));
3268
3269 if (integer_zerop (low))
3270 {
3271 if (! TREE_UNSIGNED (etype))
3272 {
3273 etype = (*lang_hooks.types.unsigned_type) (etype);
3274 high = convert (etype, high);
3275 exp = convert (etype, exp);
3276 }
3277 return build_range_check (type, exp, 1, 0, high);
3278 }
3279
3280 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
3281 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
3282 {
3283 unsigned HOST_WIDE_INT lo;
3284 HOST_WIDE_INT hi;
3285 int prec;
3286
3287 prec = TYPE_PRECISION (etype);
3288 if (prec <= HOST_BITS_PER_WIDE_INT)
3289 {
3290 hi = 0;
3291 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
3292 }
3293 else
3294 {
3295 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
3296 lo = (unsigned HOST_WIDE_INT) -1;
3297 }
3298
3299 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
3300 {
3301 if (TREE_UNSIGNED (etype))
3302 {
3303 etype = (*lang_hooks.types.signed_type) (etype);
3304 exp = convert (etype, exp);
3305 }
3306 return fold (build (GT_EXPR, type, exp,
3307 convert (etype, integer_zero_node)));
3308 }
3309 }
3310
3311 if (0 != (value = const_binop (MINUS_EXPR, high, low, 0))
3312 && ! TREE_OVERFLOW (value))
3313 return build_range_check (type,
3314 fold (build (MINUS_EXPR, etype, exp, low)),
3315 1, convert (etype, integer_zero_node), value);
3316
3317 return 0;
3318 }
3319 \f
3320 /* Given two ranges, see if we can merge them into one. Return 1 if we
3321 can, 0 if we can't. Set the output range into the specified parameters. */
3322
3323 static int
3324 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
3325 tree high0, int in1_p, tree low1, tree high1)
3326 {
3327 int no_overlap;
3328 int subset;
3329 int temp;
3330 tree tem;
3331 int in_p;
3332 tree low, high;
3333 int lowequal = ((low0 == 0 && low1 == 0)
3334 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3335 low0, 0, low1, 0)));
3336 int highequal = ((high0 == 0 && high1 == 0)
3337 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3338 high0, 1, high1, 1)));
3339
3340 /* Make range 0 be the range that starts first, or ends last if they
3341 start at the same value. Swap them if it isn't. */
3342 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
3343 low0, 0, low1, 0))
3344 || (lowequal
3345 && integer_onep (range_binop (GT_EXPR, integer_type_node,
3346 high1, 1, high0, 1))))
3347 {
3348 temp = in0_p, in0_p = in1_p, in1_p = temp;
3349 tem = low0, low0 = low1, low1 = tem;
3350 tem = high0, high0 = high1, high1 = tem;
3351 }
3352
3353 /* Now flag two cases, whether the ranges are disjoint or whether the
3354 second range is totally subsumed in the first. Note that the tests
3355 below are simplified by the ones above. */
3356 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
3357 high0, 1, low1, 0));
3358 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
3359 high1, 1, high0, 1));
3360
3361 /* We now have four cases, depending on whether we are including or
3362 excluding the two ranges. */
3363 if (in0_p && in1_p)
3364 {
3365 /* If they don't overlap, the result is false. If the second range
3366 is a subset it is the result. Otherwise, the range is from the start
3367 of the second to the end of the first. */
3368 if (no_overlap)
3369 in_p = 0, low = high = 0;
3370 else if (subset)
3371 in_p = 1, low = low1, high = high1;
3372 else
3373 in_p = 1, low = low1, high = high0;
3374 }
3375
3376 else if (in0_p && ! in1_p)
3377 {
3378 /* If they don't overlap, the result is the first range. If they are
3379 equal, the result is false. If the second range is a subset of the
3380 first, and the ranges begin at the same place, we go from just after
3381 the end of the first range to the end of the second. If the second
3382 range is not a subset of the first, or if it is a subset and both
3383 ranges end at the same place, the range starts at the start of the
3384 first range and ends just before the second range.
3385 Otherwise, we can't describe this as a single range. */
3386 if (no_overlap)
3387 in_p = 1, low = low0, high = high0;
3388 else if (lowequal && highequal)
3389 in_p = 0, low = high = 0;
3390 else if (subset && lowequal)
3391 {
3392 in_p = 1, high = high0;
3393 low = range_binop (PLUS_EXPR, NULL_TREE, high1, 0,
3394 integer_one_node, 0);
3395 }
3396 else if (! subset || highequal)
3397 {
3398 in_p = 1, low = low0;
3399 high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
3400 integer_one_node, 0);
3401 }
3402 else
3403 return 0;
3404 }
3405
3406 else if (! in0_p && in1_p)
3407 {
3408 /* If they don't overlap, the result is the second range. If the second
3409 is a subset of the first, the result is false. Otherwise,
3410 the range starts just after the first range and ends at the
3411 end of the second. */
3412 if (no_overlap)
3413 in_p = 1, low = low1, high = high1;
3414 else if (subset || highequal)
3415 in_p = 0, low = high = 0;
3416 else
3417 {
3418 in_p = 1, high = high1;
3419 low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
3420 integer_one_node, 0);
3421 }
3422 }
3423
3424 else
3425 {
3426 /* The case where we are excluding both ranges. Here the complex case
3427 is if they don't overlap. In that case, the only time we have a
3428 range is if they are adjacent. If the second is a subset of the
3429 first, the result is the first. Otherwise, the range to exclude
3430 starts at the beginning of the first range and ends at the end of the
3431 second. */
3432 if (no_overlap)
3433 {
3434 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
3435 range_binop (PLUS_EXPR, NULL_TREE,
3436 high0, 1,
3437 integer_one_node, 1),
3438 1, low1, 0)))
3439 in_p = 0, low = low0, high = high1;
3440 else
3441 return 0;
3442 }
3443 else if (subset)
3444 in_p = 0, low = low0, high = high0;
3445 else
3446 in_p = 0, low = low0, high = high1;
3447 }
3448
3449 *pin_p = in_p, *plow = low, *phigh = high;
3450 return 1;
3451 }
3452 \f
3453 #ifndef RANGE_TEST_NON_SHORT_CIRCUIT
3454 #define RANGE_TEST_NON_SHORT_CIRCUIT (BRANCH_COST >= 2)
3455 #endif
3456
3457 /* EXP is some logical combination of boolean tests. See if we can
3458 merge it into some range test. Return the new tree if so. */
3459
3460 static tree
3461 fold_range_test (tree exp)
3462 {
3463 int or_op = (TREE_CODE (exp) == TRUTH_ORIF_EXPR
3464 || TREE_CODE (exp) == TRUTH_OR_EXPR);
3465 int in0_p, in1_p, in_p;
3466 tree low0, low1, low, high0, high1, high;
3467 tree lhs = make_range (TREE_OPERAND (exp, 0), &in0_p, &low0, &high0);
3468 tree rhs = make_range (TREE_OPERAND (exp, 1), &in1_p, &low1, &high1);
3469 tree tem;
3470
3471 /* If this is an OR operation, invert both sides; we will invert
3472 again at the end. */
3473 if (or_op)
3474 in0_p = ! in0_p, in1_p = ! in1_p;
3475
3476 /* If both expressions are the same, if we can merge the ranges, and we
3477 can build the range test, return it or it inverted. If one of the
3478 ranges is always true or always false, consider it to be the same
3479 expression as the other. */
3480 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
3481 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
3482 in1_p, low1, high1)
3483 && 0 != (tem = (build_range_check (TREE_TYPE (exp),
3484 lhs != 0 ? lhs
3485 : rhs != 0 ? rhs : integer_zero_node,
3486 in_p, low, high))))
3487 return or_op ? invert_truthvalue (tem) : tem;
3488
3489 /* On machines where the branch cost is expensive, if this is a
3490 short-circuited branch and the underlying object on both sides
3491 is the same, make a non-short-circuit operation. */
3492 else if (RANGE_TEST_NON_SHORT_CIRCUIT
3493 && lhs != 0 && rhs != 0
3494 && (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3495 || TREE_CODE (exp) == TRUTH_ORIF_EXPR)
3496 && operand_equal_p (lhs, rhs, 0))
3497 {
3498 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
3499 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
3500 which cases we can't do this. */
3501 if (simple_operand_p (lhs))
3502 return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3503 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
3504 TREE_TYPE (exp), TREE_OPERAND (exp, 0),
3505 TREE_OPERAND (exp, 1));
3506
3507 else if ((*lang_hooks.decls.global_bindings_p) () == 0
3508 && ! CONTAINS_PLACEHOLDER_P (lhs))
3509 {
3510 tree common = save_expr (lhs);
3511
3512 if (0 != (lhs = build_range_check (TREE_TYPE (exp), common,
3513 or_op ? ! in0_p : in0_p,
3514 low0, high0))
3515 && (0 != (rhs = build_range_check (TREE_TYPE (exp), common,
3516 or_op ? ! in1_p : in1_p,
3517 low1, high1))))
3518 return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3519 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
3520 TREE_TYPE (exp), lhs, rhs);
3521 }
3522 }
3523
3524 return 0;
3525 }
3526 \f
3527 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
3528 bit value. Arrange things so the extra bits will be set to zero if and
3529 only if C is signed-extended to its full width. If MASK is nonzero,
3530 it is an INTEGER_CST that should be AND'ed with the extra bits. */
3531
3532 static tree
3533 unextend (tree c, int p, int unsignedp, tree mask)
3534 {
3535 tree type = TREE_TYPE (c);
3536 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
3537 tree temp;
3538
3539 if (p == modesize || unsignedp)
3540 return c;
3541
3542 /* We work by getting just the sign bit into the low-order bit, then
3543 into the high-order bit, then sign-extend. We then XOR that value
3544 with C. */
3545 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
3546 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
3547
3548 /* We must use a signed type in order to get an arithmetic right shift.
3549 However, we must also avoid introducing accidental overflows, so that
3550 a subsequent call to integer_zerop will work. Hence we must
3551 do the type conversion here. At this point, the constant is either
3552 zero or one, and the conversion to a signed type can never overflow.
3553 We could get an overflow if this conversion is done anywhere else. */
3554 if (TREE_UNSIGNED (type))
3555 temp = convert ((*lang_hooks.types.signed_type) (type), temp);
3556
3557 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
3558 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
3559 if (mask != 0)
3560 temp = const_binop (BIT_AND_EXPR, temp, convert (TREE_TYPE (c), mask), 0);
3561 /* If necessary, convert the type back to match the type of C. */
3562 if (TREE_UNSIGNED (type))
3563 temp = convert (type, temp);
3564
3565 return convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
3566 }
3567 \f
3568 /* Find ways of folding logical expressions of LHS and RHS:
3569 Try to merge two comparisons to the same innermost item.
3570 Look for range tests like "ch >= '0' && ch <= '9'".
3571 Look for combinations of simple terms on machines with expensive branches
3572 and evaluate the RHS unconditionally.
3573
3574 For example, if we have p->a == 2 && p->b == 4 and we can make an
3575 object large enough to span both A and B, we can do this with a comparison
3576 against the object ANDed with the a mask.
3577
3578 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
3579 operations to do this with one comparison.
3580
3581 We check for both normal comparisons and the BIT_AND_EXPRs made this by
3582 function and the one above.
3583
3584 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
3585 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
3586
3587 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
3588 two operands.
3589
3590 We return the simplified tree or 0 if no optimization is possible. */
3591
3592 static tree
3593 fold_truthop (enum tree_code code, tree truth_type, tree lhs, tree rhs)
3594 {
3595 /* If this is the "or" of two comparisons, we can do something if
3596 the comparisons are NE_EXPR. If this is the "and", we can do something
3597 if the comparisons are EQ_EXPR. I.e.,
3598 (a->b == 2 && a->c == 4) can become (a->new == NEW).
3599
3600 WANTED_CODE is this operation code. For single bit fields, we can
3601 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
3602 comparison for one-bit fields. */
3603
3604 enum tree_code wanted_code;
3605 enum tree_code lcode, rcode;
3606 tree ll_arg, lr_arg, rl_arg, rr_arg;
3607 tree ll_inner, lr_inner, rl_inner, rr_inner;
3608 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
3609 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
3610 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
3611 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
3612 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
3613 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
3614 enum machine_mode lnmode, rnmode;
3615 tree ll_mask, lr_mask, rl_mask, rr_mask;
3616 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
3617 tree l_const, r_const;
3618 tree lntype, rntype, result;
3619 int first_bit, end_bit;
3620 int volatilep;
3621
3622 /* Start by getting the comparison codes. Fail if anything is volatile.
3623 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
3624 it were surrounded with a NE_EXPR. */
3625
3626 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
3627 return 0;
3628
3629 lcode = TREE_CODE (lhs);
3630 rcode = TREE_CODE (rhs);
3631
3632 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
3633 lcode = NE_EXPR, lhs = build (NE_EXPR, truth_type, lhs, integer_zero_node);
3634
3635 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
3636 rcode = NE_EXPR, rhs = build (NE_EXPR, truth_type, rhs, integer_zero_node);
3637
3638 if (TREE_CODE_CLASS (lcode) != '<' || TREE_CODE_CLASS (rcode) != '<')
3639 return 0;
3640
3641 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
3642 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
3643
3644 ll_arg = TREE_OPERAND (lhs, 0);
3645 lr_arg = TREE_OPERAND (lhs, 1);
3646 rl_arg = TREE_OPERAND (rhs, 0);
3647 rr_arg = TREE_OPERAND (rhs, 1);
3648
3649 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
3650 if (simple_operand_p (ll_arg)
3651 && simple_operand_p (lr_arg)
3652 && !FLOAT_TYPE_P (TREE_TYPE (ll_arg)))
3653 {
3654 int compcode;
3655
3656 if (operand_equal_p (ll_arg, rl_arg, 0)
3657 && operand_equal_p (lr_arg, rr_arg, 0))
3658 {
3659 int lcompcode, rcompcode;
3660
3661 lcompcode = comparison_to_compcode (lcode);
3662 rcompcode = comparison_to_compcode (rcode);
3663 compcode = (code == TRUTH_AND_EXPR)
3664 ? lcompcode & rcompcode
3665 : lcompcode | rcompcode;
3666 }
3667 else if (operand_equal_p (ll_arg, rr_arg, 0)
3668 && operand_equal_p (lr_arg, rl_arg, 0))
3669 {
3670 int lcompcode, rcompcode;
3671
3672 rcode = swap_tree_comparison (rcode);
3673 lcompcode = comparison_to_compcode (lcode);
3674 rcompcode = comparison_to_compcode (rcode);
3675 compcode = (code == TRUTH_AND_EXPR)
3676 ? lcompcode & rcompcode
3677 : lcompcode | rcompcode;
3678 }
3679 else
3680 compcode = -1;
3681
3682 if (compcode == COMPCODE_TRUE)
3683 return convert (truth_type, integer_one_node);
3684 else if (compcode == COMPCODE_FALSE)
3685 return convert (truth_type, integer_zero_node);
3686 else if (compcode != -1)
3687 return build (compcode_to_comparison (compcode),
3688 truth_type, ll_arg, lr_arg);
3689 }
3690
3691 /* If the RHS can be evaluated unconditionally and its operands are
3692 simple, it wins to evaluate the RHS unconditionally on machines
3693 with expensive branches. In this case, this isn't a comparison
3694 that can be merged. Avoid doing this if the RHS is a floating-point
3695 comparison since those can trap. */
3696
3697 if (BRANCH_COST >= 2
3698 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
3699 && simple_operand_p (rl_arg)
3700 && simple_operand_p (rr_arg))
3701 {
3702 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
3703 if (code == TRUTH_OR_EXPR
3704 && lcode == NE_EXPR && integer_zerop (lr_arg)
3705 && rcode == NE_EXPR && integer_zerop (rr_arg)
3706 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
3707 return build (NE_EXPR, truth_type,
3708 build (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
3709 ll_arg, rl_arg),
3710 integer_zero_node);
3711
3712 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
3713 if (code == TRUTH_AND_EXPR
3714 && lcode == EQ_EXPR && integer_zerop (lr_arg)
3715 && rcode == EQ_EXPR && integer_zerop (rr_arg)
3716 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
3717 return build (EQ_EXPR, truth_type,
3718 build (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
3719 ll_arg, rl_arg),
3720 integer_zero_node);
3721
3722 return build (code, truth_type, lhs, rhs);
3723 }
3724
3725 /* See if the comparisons can be merged. Then get all the parameters for
3726 each side. */
3727
3728 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
3729 || (rcode != EQ_EXPR && rcode != NE_EXPR))
3730 return 0;
3731
3732 volatilep = 0;
3733 ll_inner = decode_field_reference (ll_arg,
3734 &ll_bitsize, &ll_bitpos, &ll_mode,
3735 &ll_unsignedp, &volatilep, &ll_mask,
3736 &ll_and_mask);
3737 lr_inner = decode_field_reference (lr_arg,
3738 &lr_bitsize, &lr_bitpos, &lr_mode,
3739 &lr_unsignedp, &volatilep, &lr_mask,
3740 &lr_and_mask);
3741 rl_inner = decode_field_reference (rl_arg,
3742 &rl_bitsize, &rl_bitpos, &rl_mode,
3743 &rl_unsignedp, &volatilep, &rl_mask,
3744 &rl_and_mask);
3745 rr_inner = decode_field_reference (rr_arg,
3746 &rr_bitsize, &rr_bitpos, &rr_mode,
3747 &rr_unsignedp, &volatilep, &rr_mask,
3748 &rr_and_mask);
3749
3750 /* It must be true that the inner operation on the lhs of each
3751 comparison must be the same if we are to be able to do anything.
3752 Then see if we have constants. If not, the same must be true for
3753 the rhs's. */
3754 if (volatilep || ll_inner == 0 || rl_inner == 0
3755 || ! operand_equal_p (ll_inner, rl_inner, 0))
3756 return 0;
3757
3758 if (TREE_CODE (lr_arg) == INTEGER_CST
3759 && TREE_CODE (rr_arg) == INTEGER_CST)
3760 l_const = lr_arg, r_const = rr_arg;
3761 else if (lr_inner == 0 || rr_inner == 0
3762 || ! operand_equal_p (lr_inner, rr_inner, 0))
3763 return 0;
3764 else
3765 l_const = r_const = 0;
3766
3767 /* If either comparison code is not correct for our logical operation,
3768 fail. However, we can convert a one-bit comparison against zero into
3769 the opposite comparison against that bit being set in the field. */
3770
3771 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
3772 if (lcode != wanted_code)
3773 {
3774 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
3775 {
3776 /* Make the left operand unsigned, since we are only interested
3777 in the value of one bit. Otherwise we are doing the wrong
3778 thing below. */
3779 ll_unsignedp = 1;
3780 l_const = ll_mask;
3781 }
3782 else
3783 return 0;
3784 }
3785
3786 /* This is analogous to the code for l_const above. */
3787 if (rcode != wanted_code)
3788 {
3789 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
3790 {
3791 rl_unsignedp = 1;
3792 r_const = rl_mask;
3793 }
3794 else
3795 return 0;
3796 }
3797
3798 /* After this point all optimizations will generate bit-field
3799 references, which we might not want. */
3800 if (! (*lang_hooks.can_use_bit_fields_p) ())
3801 return 0;
3802
3803 /* See if we can find a mode that contains both fields being compared on
3804 the left. If we can't, fail. Otherwise, update all constants and masks
3805 to be relative to a field of that size. */
3806 first_bit = MIN (ll_bitpos, rl_bitpos);
3807 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
3808 lnmode = get_best_mode (end_bit - first_bit, first_bit,
3809 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
3810 volatilep);
3811 if (lnmode == VOIDmode)
3812 return 0;
3813
3814 lnbitsize = GET_MODE_BITSIZE (lnmode);
3815 lnbitpos = first_bit & ~ (lnbitsize - 1);
3816 lntype = (*lang_hooks.types.type_for_size) (lnbitsize, 1);
3817 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
3818
3819 if (BYTES_BIG_ENDIAN)
3820 {
3821 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
3822 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
3823 }
3824
3825 ll_mask = const_binop (LSHIFT_EXPR, convert (lntype, ll_mask),
3826 size_int (xll_bitpos), 0);
3827 rl_mask = const_binop (LSHIFT_EXPR, convert (lntype, rl_mask),
3828 size_int (xrl_bitpos), 0);
3829
3830 if (l_const)
3831 {
3832 l_const = convert (lntype, l_const);
3833 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
3834 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
3835 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
3836 fold (build1 (BIT_NOT_EXPR,
3837 lntype, ll_mask)),
3838 0)))
3839 {
3840 warning ("comparison is always %d", wanted_code == NE_EXPR);
3841
3842 return convert (truth_type,
3843 wanted_code == NE_EXPR
3844 ? integer_one_node : integer_zero_node);
3845 }
3846 }
3847 if (r_const)
3848 {
3849 r_const = convert (lntype, r_const);
3850 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
3851 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
3852 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
3853 fold (build1 (BIT_NOT_EXPR,
3854 lntype, rl_mask)),
3855 0)))
3856 {
3857 warning ("comparison is always %d", wanted_code == NE_EXPR);
3858
3859 return convert (truth_type,
3860 wanted_code == NE_EXPR
3861 ? integer_one_node : integer_zero_node);
3862 }
3863 }
3864
3865 /* If the right sides are not constant, do the same for it. Also,
3866 disallow this optimization if a size or signedness mismatch occurs
3867 between the left and right sides. */
3868 if (l_const == 0)
3869 {
3870 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
3871 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
3872 /* Make sure the two fields on the right
3873 correspond to the left without being swapped. */
3874 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
3875 return 0;
3876
3877 first_bit = MIN (lr_bitpos, rr_bitpos);
3878 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
3879 rnmode = get_best_mode (end_bit - first_bit, first_bit,
3880 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
3881 volatilep);
3882 if (rnmode == VOIDmode)
3883 return 0;
3884
3885 rnbitsize = GET_MODE_BITSIZE (rnmode);
3886 rnbitpos = first_bit & ~ (rnbitsize - 1);
3887 rntype = (*lang_hooks.types.type_for_size) (rnbitsize, 1);
3888 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
3889
3890 if (BYTES_BIG_ENDIAN)
3891 {
3892 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
3893 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
3894 }
3895
3896 lr_mask = const_binop (LSHIFT_EXPR, convert (rntype, lr_mask),
3897 size_int (xlr_bitpos), 0);
3898 rr_mask = const_binop (LSHIFT_EXPR, convert (rntype, rr_mask),
3899 size_int (xrr_bitpos), 0);
3900
3901 /* Make a mask that corresponds to both fields being compared.
3902 Do this for both items being compared. If the operands are the
3903 same size and the bits being compared are in the same position
3904 then we can do this by masking both and comparing the masked
3905 results. */
3906 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
3907 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
3908 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
3909 {
3910 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
3911 ll_unsignedp || rl_unsignedp);
3912 if (! all_ones_mask_p (ll_mask, lnbitsize))
3913 lhs = build (BIT_AND_EXPR, lntype, lhs, ll_mask);
3914
3915 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
3916 lr_unsignedp || rr_unsignedp);
3917 if (! all_ones_mask_p (lr_mask, rnbitsize))
3918 rhs = build (BIT_AND_EXPR, rntype, rhs, lr_mask);
3919
3920 return build (wanted_code, truth_type, lhs, rhs);
3921 }
3922
3923 /* There is still another way we can do something: If both pairs of
3924 fields being compared are adjacent, we may be able to make a wider
3925 field containing them both.
3926
3927 Note that we still must mask the lhs/rhs expressions. Furthermore,
3928 the mask must be shifted to account for the shift done by
3929 make_bit_field_ref. */
3930 if ((ll_bitsize + ll_bitpos == rl_bitpos
3931 && lr_bitsize + lr_bitpos == rr_bitpos)
3932 || (ll_bitpos == rl_bitpos + rl_bitsize
3933 && lr_bitpos == rr_bitpos + rr_bitsize))
3934 {
3935 tree type;
3936
3937 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
3938 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
3939 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
3940 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
3941
3942 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
3943 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
3944 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
3945 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
3946
3947 /* Convert to the smaller type before masking out unwanted bits. */
3948 type = lntype;
3949 if (lntype != rntype)
3950 {
3951 if (lnbitsize > rnbitsize)
3952 {
3953 lhs = convert (rntype, lhs);
3954 ll_mask = convert (rntype, ll_mask);
3955 type = rntype;
3956 }
3957 else if (lnbitsize < rnbitsize)
3958 {
3959 rhs = convert (lntype, rhs);
3960 lr_mask = convert (lntype, lr_mask);
3961 type = lntype;
3962 }
3963 }
3964
3965 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
3966 lhs = build (BIT_AND_EXPR, type, lhs, ll_mask);
3967
3968 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
3969 rhs = build (BIT_AND_EXPR, type, rhs, lr_mask);
3970
3971 return build (wanted_code, truth_type, lhs, rhs);
3972 }
3973
3974 return 0;
3975 }
3976
3977 /* Handle the case of comparisons with constants. If there is something in
3978 common between the masks, those bits of the constants must be the same.
3979 If not, the condition is always false. Test for this to avoid generating
3980 incorrect code below. */
3981 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
3982 if (! integer_zerop (result)
3983 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
3984 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
3985 {
3986 if (wanted_code == NE_EXPR)
3987 {
3988 warning ("`or' of unmatched not-equal tests is always 1");
3989 return convert (truth_type, integer_one_node);
3990 }
3991 else
3992 {
3993 warning ("`and' of mutually exclusive equal-tests is always 0");
3994 return convert (truth_type, integer_zero_node);
3995 }
3996 }
3997
3998 /* Construct the expression we will return. First get the component
3999 reference we will make. Unless the mask is all ones the width of
4000 that field, perform the mask operation. Then compare with the
4001 merged constant. */
4002 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
4003 ll_unsignedp || rl_unsignedp);
4004
4005 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
4006 if (! all_ones_mask_p (ll_mask, lnbitsize))
4007 result = build (BIT_AND_EXPR, lntype, result, ll_mask);
4008
4009 return build (wanted_code, truth_type, result,
4010 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
4011 }
4012 \f
4013 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
4014 constant. */
4015
4016 static tree
4017 optimize_minmax_comparison (tree t)
4018 {
4019 tree type = TREE_TYPE (t);
4020 tree arg0 = TREE_OPERAND (t, 0);
4021 enum tree_code op_code;
4022 tree comp_const = TREE_OPERAND (t, 1);
4023 tree minmax_const;
4024 int consts_equal, consts_lt;
4025 tree inner;
4026
4027 STRIP_SIGN_NOPS (arg0);
4028
4029 op_code = TREE_CODE (arg0);
4030 minmax_const = TREE_OPERAND (arg0, 1);
4031 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
4032 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
4033 inner = TREE_OPERAND (arg0, 0);
4034
4035 /* If something does not permit us to optimize, return the original tree. */
4036 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
4037 || TREE_CODE (comp_const) != INTEGER_CST
4038 || TREE_CONSTANT_OVERFLOW (comp_const)
4039 || TREE_CODE (minmax_const) != INTEGER_CST
4040 || TREE_CONSTANT_OVERFLOW (minmax_const))
4041 return t;
4042
4043 /* Now handle all the various comparison codes. We only handle EQ_EXPR
4044 and GT_EXPR, doing the rest with recursive calls using logical
4045 simplifications. */
4046 switch (TREE_CODE (t))
4047 {
4048 case NE_EXPR: case LT_EXPR: case LE_EXPR:
4049 return
4050 invert_truthvalue (optimize_minmax_comparison (invert_truthvalue (t)));
4051
4052 case GE_EXPR:
4053 return
4054 fold (build (TRUTH_ORIF_EXPR, type,
4055 optimize_minmax_comparison
4056 (build (EQ_EXPR, type, arg0, comp_const)),
4057 optimize_minmax_comparison
4058 (build (GT_EXPR, type, arg0, comp_const))));
4059
4060 case EQ_EXPR:
4061 if (op_code == MAX_EXPR && consts_equal)
4062 /* MAX (X, 0) == 0 -> X <= 0 */
4063 return fold (build (LE_EXPR, type, inner, comp_const));
4064
4065 else if (op_code == MAX_EXPR && consts_lt)
4066 /* MAX (X, 0) == 5 -> X == 5 */
4067 return fold (build (EQ_EXPR, type, inner, comp_const));
4068
4069 else if (op_code == MAX_EXPR)
4070 /* MAX (X, 0) == -1 -> false */
4071 return omit_one_operand (type, integer_zero_node, inner);
4072
4073 else if (consts_equal)
4074 /* MIN (X, 0) == 0 -> X >= 0 */
4075 return fold (build (GE_EXPR, type, inner, comp_const));
4076
4077 else if (consts_lt)
4078 /* MIN (X, 0) == 5 -> false */
4079 return omit_one_operand (type, integer_zero_node, inner);
4080
4081 else
4082 /* MIN (X, 0) == -1 -> X == -1 */
4083 return fold (build (EQ_EXPR, type, inner, comp_const));
4084
4085 case GT_EXPR:
4086 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
4087 /* MAX (X, 0) > 0 -> X > 0
4088 MAX (X, 0) > 5 -> X > 5 */
4089 return fold (build (GT_EXPR, type, inner, comp_const));
4090
4091 else if (op_code == MAX_EXPR)
4092 /* MAX (X, 0) > -1 -> true */
4093 return omit_one_operand (type, integer_one_node, inner);
4094
4095 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
4096 /* MIN (X, 0) > 0 -> false
4097 MIN (X, 0) > 5 -> false */
4098 return omit_one_operand (type, integer_zero_node, inner);
4099
4100 else
4101 /* MIN (X, 0) > -1 -> X > -1 */
4102 return fold (build (GT_EXPR, type, inner, comp_const));
4103
4104 default:
4105 return t;
4106 }
4107 }
4108 \f
4109 /* T is an integer expression that is being multiplied, divided, or taken a
4110 modulus (CODE says which and what kind of divide or modulus) by a
4111 constant C. See if we can eliminate that operation by folding it with
4112 other operations already in T. WIDE_TYPE, if non-null, is a type that
4113 should be used for the computation if wider than our type.
4114
4115 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
4116 (X * 2) + (Y * 4). We must, however, be assured that either the original
4117 expression would not overflow or that overflow is undefined for the type
4118 in the language in question.
4119
4120 We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
4121 the machine has a multiply-accumulate insn or that this is part of an
4122 addressing calculation.
4123
4124 If we return a non-null expression, it is an equivalent form of the
4125 original computation, but need not be in the original type. */
4126
4127 static tree
4128 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type)
4129 {
4130 /* To avoid exponential search depth, refuse to allow recursion past
4131 three levels. Beyond that (1) it's highly unlikely that we'll find
4132 something interesting and (2) we've probably processed it before
4133 when we built the inner expression. */
4134
4135 static int depth;
4136 tree ret;
4137
4138 if (depth > 3)
4139 return NULL;
4140
4141 depth++;
4142 ret = extract_muldiv_1 (t, c, code, wide_type);
4143 depth--;
4144
4145 return ret;
4146 }
4147
4148 static tree
4149 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type)
4150 {
4151 tree type = TREE_TYPE (t);
4152 enum tree_code tcode = TREE_CODE (t);
4153 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
4154 > GET_MODE_SIZE (TYPE_MODE (type)))
4155 ? wide_type : type);
4156 tree t1, t2;
4157 int same_p = tcode == code;
4158 tree op0 = NULL_TREE, op1 = NULL_TREE;
4159
4160 /* Don't deal with constants of zero here; they confuse the code below. */
4161 if (integer_zerop (c))
4162 return NULL_TREE;
4163
4164 if (TREE_CODE_CLASS (tcode) == '1')
4165 op0 = TREE_OPERAND (t, 0);
4166
4167 if (TREE_CODE_CLASS (tcode) == '2')
4168 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
4169
4170 /* Note that we need not handle conditional operations here since fold
4171 already handles those cases. So just do arithmetic here. */
4172 switch (tcode)
4173 {
4174 case INTEGER_CST:
4175 /* For a constant, we can always simplify if we are a multiply
4176 or (for divide and modulus) if it is a multiple of our constant. */
4177 if (code == MULT_EXPR
4178 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
4179 return const_binop (code, convert (ctype, t), convert (ctype, c), 0);
4180 break;
4181
4182 case CONVERT_EXPR: case NON_LVALUE_EXPR: case NOP_EXPR:
4183 /* If op0 is an expression ... */
4184 if ((TREE_CODE_CLASS (TREE_CODE (op0)) == '<'
4185 || TREE_CODE_CLASS (TREE_CODE (op0)) == '1'
4186 || TREE_CODE_CLASS (TREE_CODE (op0)) == '2'
4187 || TREE_CODE_CLASS (TREE_CODE (op0)) == 'e')
4188 /* ... and is unsigned, and its type is smaller than ctype,
4189 then we cannot pass through as widening. */
4190 && ((TREE_UNSIGNED (TREE_TYPE (op0))
4191 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
4192 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
4193 && (GET_MODE_SIZE (TYPE_MODE (ctype))
4194 > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
4195 /* ... or its type is larger than ctype,
4196 then we cannot pass through this truncation. */
4197 || (GET_MODE_SIZE (TYPE_MODE (ctype))
4198 < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))))
4199 /* ... or signedness changes for division or modulus,
4200 then we cannot pass through this conversion. */
4201 || (code != MULT_EXPR
4202 && (TREE_UNSIGNED (ctype)
4203 != TREE_UNSIGNED (TREE_TYPE (op0))))))
4204 break;
4205
4206 /* Pass the constant down and see if we can make a simplification. If
4207 we can, replace this expression with the inner simplification for
4208 possible later conversion to our or some other type. */
4209 if ((t2 = convert (TREE_TYPE (op0), c)) != 0
4210 && TREE_CODE (t2) == INTEGER_CST
4211 && ! TREE_CONSTANT_OVERFLOW (t2)
4212 && (0 != (t1 = extract_muldiv (op0, t2, code,
4213 code == MULT_EXPR
4214 ? ctype : NULL_TREE))))
4215 return t1;
4216 break;
4217
4218 case NEGATE_EXPR: case ABS_EXPR:
4219 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
4220 return fold (build1 (tcode, ctype, convert (ctype, t1)));
4221 break;
4222
4223 case MIN_EXPR: case MAX_EXPR:
4224 /* If widening the type changes the signedness, then we can't perform
4225 this optimization as that changes the result. */
4226 if (TREE_UNSIGNED (ctype) != TREE_UNSIGNED (type))
4227 break;
4228
4229 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
4230 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0
4231 && (t2 = extract_muldiv (op1, c, code, wide_type)) != 0)
4232 {
4233 if (tree_int_cst_sgn (c) < 0)
4234 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
4235
4236 return fold (build (tcode, ctype, convert (ctype, t1),
4237 convert (ctype, t2)));
4238 }
4239 break;
4240
4241 case WITH_RECORD_EXPR:
4242 if ((t1 = extract_muldiv (TREE_OPERAND (t, 0), c, code, wide_type)) != 0)
4243 return build (WITH_RECORD_EXPR, TREE_TYPE (t1), t1,
4244 TREE_OPERAND (t, 1));
4245 break;
4246
4247 case LSHIFT_EXPR: case RSHIFT_EXPR:
4248 /* If the second operand is constant, this is a multiplication
4249 or floor division, by a power of two, so we can treat it that
4250 way unless the multiplier or divisor overflows. */
4251 if (TREE_CODE (op1) == INTEGER_CST
4252 /* const_binop may not detect overflow correctly,
4253 so check for it explicitly here. */
4254 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
4255 && TREE_INT_CST_HIGH (op1) == 0
4256 && 0 != (t1 = convert (ctype,
4257 const_binop (LSHIFT_EXPR, size_one_node,
4258 op1, 0)))
4259 && ! TREE_OVERFLOW (t1))
4260 return extract_muldiv (build (tcode == LSHIFT_EXPR
4261 ? MULT_EXPR : FLOOR_DIV_EXPR,
4262 ctype, convert (ctype, op0), t1),
4263 c, code, wide_type);
4264 break;
4265
4266 case PLUS_EXPR: case MINUS_EXPR:
4267 /* See if we can eliminate the operation on both sides. If we can, we
4268 can return a new PLUS or MINUS. If we can't, the only remaining
4269 cases where we can do anything are if the second operand is a
4270 constant. */
4271 t1 = extract_muldiv (op0, c, code, wide_type);
4272 t2 = extract_muldiv (op1, c, code, wide_type);
4273 if (t1 != 0 && t2 != 0
4274 && (code == MULT_EXPR
4275 /* If not multiplication, we can only do this if both operands
4276 are divisible by c. */
4277 || (multiple_of_p (ctype, op0, c)
4278 && multiple_of_p (ctype, op1, c))))
4279 return fold (build (tcode, ctype, convert (ctype, t1),
4280 convert (ctype, t2)));
4281
4282 /* If this was a subtraction, negate OP1 and set it to be an addition.
4283 This simplifies the logic below. */
4284 if (tcode == MINUS_EXPR)
4285 tcode = PLUS_EXPR, op1 = negate_expr (op1);
4286
4287 if (TREE_CODE (op1) != INTEGER_CST)
4288 break;
4289
4290 /* If either OP1 or C are negative, this optimization is not safe for
4291 some of the division and remainder types while for others we need
4292 to change the code. */
4293 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
4294 {
4295 if (code == CEIL_DIV_EXPR)
4296 code = FLOOR_DIV_EXPR;
4297 else if (code == FLOOR_DIV_EXPR)
4298 code = CEIL_DIV_EXPR;
4299 else if (code != MULT_EXPR
4300 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
4301 break;
4302 }
4303
4304 /* If it's a multiply or a division/modulus operation of a multiple
4305 of our constant, do the operation and verify it doesn't overflow. */
4306 if (code == MULT_EXPR
4307 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4308 {
4309 op1 = const_binop (code, convert (ctype, op1), convert (ctype, c), 0);
4310 if (op1 == 0 || TREE_OVERFLOW (op1))
4311 break;
4312 }
4313 else
4314 break;
4315
4316 /* If we have an unsigned type is not a sizetype, we cannot widen
4317 the operation since it will change the result if the original
4318 computation overflowed. */
4319 if (TREE_UNSIGNED (ctype)
4320 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
4321 && ctype != type)
4322 break;
4323
4324 /* If we were able to eliminate our operation from the first side,
4325 apply our operation to the second side and reform the PLUS. */
4326 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
4327 return fold (build (tcode, ctype, convert (ctype, t1), op1));
4328
4329 /* The last case is if we are a multiply. In that case, we can
4330 apply the distributive law to commute the multiply and addition
4331 if the multiplication of the constants doesn't overflow. */
4332 if (code == MULT_EXPR)
4333 return fold (build (tcode, ctype, fold (build (code, ctype,
4334 convert (ctype, op0),
4335 convert (ctype, c))),
4336 op1));
4337
4338 break;
4339
4340 case MULT_EXPR:
4341 /* We have a special case here if we are doing something like
4342 (C * 8) % 4 since we know that's zero. */
4343 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
4344 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
4345 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
4346 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4347 return omit_one_operand (type, integer_zero_node, op0);
4348
4349 /* ... fall through ... */
4350
4351 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
4352 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
4353 /* If we can extract our operation from the LHS, do so and return a
4354 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
4355 do something only if the second operand is a constant. */
4356 if (same_p
4357 && (t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
4358 return fold (build (tcode, ctype, convert (ctype, t1),
4359 convert (ctype, op1)));
4360 else if (tcode == MULT_EXPR && code == MULT_EXPR
4361 && (t1 = extract_muldiv (op1, c, code, wide_type)) != 0)
4362 return fold (build (tcode, ctype, convert (ctype, op0),
4363 convert (ctype, t1)));
4364 else if (TREE_CODE (op1) != INTEGER_CST)
4365 return 0;
4366
4367 /* If these are the same operation types, we can associate them
4368 assuming no overflow. */
4369 if (tcode == code
4370 && 0 != (t1 = const_binop (MULT_EXPR, convert (ctype, op1),
4371 convert (ctype, c), 0))
4372 && ! TREE_OVERFLOW (t1))
4373 return fold (build (tcode, ctype, convert (ctype, op0), t1));
4374
4375 /* If these operations "cancel" each other, we have the main
4376 optimizations of this pass, which occur when either constant is a
4377 multiple of the other, in which case we replace this with either an
4378 operation or CODE or TCODE.
4379
4380 If we have an unsigned type that is not a sizetype, we cannot do
4381 this since it will change the result if the original computation
4382 overflowed. */
4383 if ((! TREE_UNSIGNED (ctype)
4384 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
4385 && ! flag_wrapv
4386 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
4387 || (tcode == MULT_EXPR
4388 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
4389 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
4390 {
4391 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4392 return fold (build (tcode, ctype, convert (ctype, op0),
4393 convert (ctype,
4394 const_binop (TRUNC_DIV_EXPR,
4395 op1, c, 0))));
4396 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
4397 return fold (build (code, ctype, convert (ctype, op0),
4398 convert (ctype,
4399 const_binop (TRUNC_DIV_EXPR,
4400 c, op1, 0))));
4401 }
4402 break;
4403
4404 default:
4405 break;
4406 }
4407
4408 return 0;
4409 }
4410 \f
4411 /* If T contains a COMPOUND_EXPR which was inserted merely to evaluate
4412 S, a SAVE_EXPR, return the expression actually being evaluated. Note
4413 that we may sometimes modify the tree. */
4414
4415 static tree
4416 strip_compound_expr (tree t, tree s)
4417 {
4418 enum tree_code code = TREE_CODE (t);
4419
4420 /* See if this is the COMPOUND_EXPR we want to eliminate. */
4421 if (code == COMPOUND_EXPR && TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR
4422 && TREE_OPERAND (TREE_OPERAND (t, 0), 0) == s)
4423 return TREE_OPERAND (t, 1);
4424
4425 /* See if this is a COND_EXPR or a simple arithmetic operator. We
4426 don't bother handling any other types. */
4427 else if (code == COND_EXPR)
4428 {
4429 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4430 TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
4431 TREE_OPERAND (t, 2) = strip_compound_expr (TREE_OPERAND (t, 2), s);
4432 }
4433 else if (TREE_CODE_CLASS (code) == '1')
4434 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4435 else if (TREE_CODE_CLASS (code) == '<'
4436 || TREE_CODE_CLASS (code) == '2')
4437 {
4438 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4439 TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
4440 }
4441
4442 return t;
4443 }
4444 \f
4445 /* Return a node which has the indicated constant VALUE (either 0 or
4446 1), and is of the indicated TYPE. */
4447
4448 static tree
4449 constant_boolean_node (int value, tree type)
4450 {
4451 if (type == integer_type_node)
4452 return value ? integer_one_node : integer_zero_node;
4453 else if (TREE_CODE (type) == BOOLEAN_TYPE)
4454 return (*lang_hooks.truthvalue_conversion) (value ? integer_one_node :
4455 integer_zero_node);
4456 else
4457 {
4458 tree t = build_int_2 (value, 0);
4459
4460 TREE_TYPE (t) = type;
4461 return t;
4462 }
4463 }
4464
4465 /* Utility function for the following routine, to see how complex a nesting of
4466 COND_EXPRs can be. EXPR is the expression and LIMIT is a count beyond which
4467 we don't care (to avoid spending too much time on complex expressions.). */
4468
4469 static int
4470 count_cond (tree expr, int lim)
4471 {
4472 int ctrue, cfalse;
4473
4474 if (TREE_CODE (expr) != COND_EXPR)
4475 return 0;
4476 else if (lim <= 0)
4477 return 0;
4478
4479 ctrue = count_cond (TREE_OPERAND (expr, 1), lim - 1);
4480 cfalse = count_cond (TREE_OPERAND (expr, 2), lim - 1 - ctrue);
4481 return MIN (lim, 1 + ctrue + cfalse);
4482 }
4483
4484 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
4485 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
4486 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
4487 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
4488 COND is the first argument to CODE; otherwise (as in the example
4489 given here), it is the second argument. TYPE is the type of the
4490 original expression. */
4491
4492 static tree
4493 fold_binary_op_with_conditional_arg (enum tree_code code, tree type,
4494 tree cond, tree arg, int cond_first_p)
4495 {
4496 tree test, true_value, false_value;
4497 tree lhs = NULL_TREE;
4498 tree rhs = NULL_TREE;
4499 /* In the end, we'll produce a COND_EXPR. Both arms of the
4500 conditional expression will be binary operations. The left-hand
4501 side of the expression to be executed if the condition is true
4502 will be pointed to by TRUE_LHS. Similarly, the right-hand side
4503 of the expression to be executed if the condition is true will be
4504 pointed to by TRUE_RHS. FALSE_LHS and FALSE_RHS are analogous --
4505 but apply to the expression to be executed if the conditional is
4506 false. */
4507 tree *true_lhs;
4508 tree *true_rhs;
4509 tree *false_lhs;
4510 tree *false_rhs;
4511 /* These are the codes to use for the left-hand side and right-hand
4512 side of the COND_EXPR. Normally, they are the same as CODE. */
4513 enum tree_code lhs_code = code;
4514 enum tree_code rhs_code = code;
4515 /* And these are the types of the expressions. */
4516 tree lhs_type = type;
4517 tree rhs_type = type;
4518 int save = 0;
4519
4520 if (cond_first_p)
4521 {
4522 true_rhs = false_rhs = &arg;
4523 true_lhs = &true_value;
4524 false_lhs = &false_value;
4525 }
4526 else
4527 {
4528 true_lhs = false_lhs = &arg;
4529 true_rhs = &true_value;
4530 false_rhs = &false_value;
4531 }
4532
4533 if (TREE_CODE (cond) == COND_EXPR)
4534 {
4535 test = TREE_OPERAND (cond, 0);
4536 true_value = TREE_OPERAND (cond, 1);
4537 false_value = TREE_OPERAND (cond, 2);
4538 /* If this operand throws an expression, then it does not make
4539 sense to try to perform a logical or arithmetic operation
4540 involving it. Instead of building `a + throw 3' for example,
4541 we simply build `a, throw 3'. */
4542 if (VOID_TYPE_P (TREE_TYPE (true_value)))
4543 {
4544 if (! cond_first_p)
4545 {
4546 lhs_code = COMPOUND_EXPR;
4547 lhs_type = void_type_node;
4548 }
4549 else
4550 lhs = true_value;
4551 }
4552 if (VOID_TYPE_P (TREE_TYPE (false_value)))
4553 {
4554 if (! cond_first_p)
4555 {
4556 rhs_code = COMPOUND_EXPR;
4557 rhs_type = void_type_node;
4558 }
4559 else
4560 rhs = false_value;
4561 }
4562 }
4563 else
4564 {
4565 tree testtype = TREE_TYPE (cond);
4566 test = cond;
4567 true_value = convert (testtype, integer_one_node);
4568 false_value = convert (testtype, integer_zero_node);
4569 }
4570
4571 /* If ARG is complex we want to make sure we only evaluate it once. Though
4572 this is only required if it is volatile, it might be more efficient even
4573 if it is not. However, if we succeed in folding one part to a constant,
4574 we do not need to make this SAVE_EXPR. Since we do this optimization
4575 primarily to see if we do end up with constant and this SAVE_EXPR
4576 interferes with later optimizations, suppressing it when we can is
4577 important.
4578
4579 If we are not in a function, we can't make a SAVE_EXPR, so don't try to
4580 do so. Don't try to see if the result is a constant if an arm is a
4581 COND_EXPR since we get exponential behavior in that case. */
4582
4583 if (saved_expr_p (arg))
4584 save = 1;
4585 else if (lhs == 0 && rhs == 0
4586 && !TREE_CONSTANT (arg)
4587 && (*lang_hooks.decls.global_bindings_p) () == 0
4588 && ((TREE_CODE (arg) != VAR_DECL && TREE_CODE (arg) != PARM_DECL)
4589 || TREE_SIDE_EFFECTS (arg)))
4590 {
4591 if (TREE_CODE (true_value) != COND_EXPR)
4592 lhs = fold (build (lhs_code, lhs_type, *true_lhs, *true_rhs));
4593
4594 if (TREE_CODE (false_value) != COND_EXPR)
4595 rhs = fold (build (rhs_code, rhs_type, *false_lhs, *false_rhs));
4596
4597 if ((lhs == 0 || ! TREE_CONSTANT (lhs))
4598 && (rhs == 0 || !TREE_CONSTANT (rhs)))
4599 {
4600 arg = save_expr (arg);
4601 lhs = rhs = 0;
4602 save = 1;
4603 }
4604 }
4605
4606 if (lhs == 0)
4607 lhs = fold (build (lhs_code, lhs_type, *true_lhs, *true_rhs));
4608 if (rhs == 0)
4609 rhs = fold (build (rhs_code, rhs_type, *false_lhs, *false_rhs));
4610
4611 test = fold (build (COND_EXPR, type, test, lhs, rhs));
4612
4613 if (save)
4614 return build (COMPOUND_EXPR, type,
4615 convert (void_type_node, arg),
4616 strip_compound_expr (test, arg));
4617 else
4618 return convert (type, test);
4619 }
4620
4621 \f
4622 /* Subroutine of fold() that checks for the addition of +/- 0.0.
4623
4624 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
4625 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
4626 ADDEND is the same as X.
4627
4628 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
4629 and finite. The problematic cases are when X is zero, and its mode
4630 has signed zeros. In the case of rounding towards -infinity,
4631 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
4632 modes, X + 0 is not the same as X because -0 + 0 is 0. */
4633
4634 static bool
4635 fold_real_zero_addition_p (tree type, tree addend, int negate)
4636 {
4637 if (!real_zerop (addend))
4638 return false;
4639
4640 /* Don't allow the fold with -fsignaling-nans. */
4641 if (HONOR_SNANS (TYPE_MODE (type)))
4642 return false;
4643
4644 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
4645 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
4646 return true;
4647
4648 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
4649 if (TREE_CODE (addend) == REAL_CST
4650 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
4651 negate = !negate;
4652
4653 /* The mode has signed zeros, and we have to honor their sign.
4654 In this situation, there is only one case we can return true for.
4655 X - 0 is the same as X unless rounding towards -infinity is
4656 supported. */
4657 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
4658 }
4659
4660 /* Subroutine of fold() that checks comparisons of built-in math
4661 functions against real constants.
4662
4663 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
4664 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
4665 is the type of the result and ARG0 and ARG1 are the operands of the
4666 comparison. ARG1 must be a TREE_REAL_CST.
4667
4668 The function returns the constant folded tree if a simplification
4669 can be made, and NULL_TREE otherwise. */
4670
4671 static tree
4672 fold_mathfn_compare (enum built_in_function fcode, enum tree_code code,
4673 tree type, tree arg0, tree arg1)
4674 {
4675 REAL_VALUE_TYPE c;
4676
4677 if (fcode == BUILT_IN_SQRT
4678 || fcode == BUILT_IN_SQRTF
4679 || fcode == BUILT_IN_SQRTL)
4680 {
4681 tree arg = TREE_VALUE (TREE_OPERAND (arg0, 1));
4682 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
4683
4684 c = TREE_REAL_CST (arg1);
4685 if (REAL_VALUE_NEGATIVE (c))
4686 {
4687 /* sqrt(x) < y is always false, if y is negative. */
4688 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
4689 return omit_one_operand (type,
4690 convert (type, integer_zero_node),
4691 arg);
4692
4693 /* sqrt(x) > y is always true, if y is negative and we
4694 don't care about NaNs, i.e. negative values of x. */
4695 if (code == NE_EXPR || !HONOR_NANS (mode))
4696 return omit_one_operand (type,
4697 convert (type, integer_one_node),
4698 arg);
4699
4700 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
4701 return fold (build (GE_EXPR, type, arg,
4702 build_real (TREE_TYPE (arg), dconst0)));
4703 }
4704 else if (code == GT_EXPR || code == GE_EXPR)
4705 {
4706 REAL_VALUE_TYPE c2;
4707
4708 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
4709 real_convert (&c2, mode, &c2);
4710
4711 if (REAL_VALUE_ISINF (c2))
4712 {
4713 /* sqrt(x) > y is x == +Inf, when y is very large. */
4714 if (HONOR_INFINITIES (mode))
4715 return fold (build (EQ_EXPR, type, arg,
4716 build_real (TREE_TYPE (arg), c2)));
4717
4718 /* sqrt(x) > y is always false, when y is very large
4719 and we don't care about infinities. */
4720 return omit_one_operand (type,
4721 convert (type, integer_zero_node),
4722 arg);
4723 }
4724
4725 /* sqrt(x) > c is the same as x > c*c. */
4726 return fold (build (code, type, arg,
4727 build_real (TREE_TYPE (arg), c2)));
4728 }
4729 else if (code == LT_EXPR || code == LE_EXPR)
4730 {
4731 REAL_VALUE_TYPE c2;
4732
4733 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
4734 real_convert (&c2, mode, &c2);
4735
4736 if (REAL_VALUE_ISINF (c2))
4737 {
4738 /* sqrt(x) < y is always true, when y is a very large
4739 value and we don't care about NaNs or Infinities. */
4740 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
4741 return omit_one_operand (type,
4742 convert (type, integer_one_node),
4743 arg);
4744
4745 /* sqrt(x) < y is x != +Inf when y is very large and we
4746 don't care about NaNs. */
4747 if (! HONOR_NANS (mode))
4748 return fold (build (NE_EXPR, type, arg,
4749 build_real (TREE_TYPE (arg), c2)));
4750
4751 /* sqrt(x) < y is x >= 0 when y is very large and we
4752 don't care about Infinities. */
4753 if (! HONOR_INFINITIES (mode))
4754 return fold (build (GE_EXPR, type, arg,
4755 build_real (TREE_TYPE (arg), dconst0)));
4756
4757 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
4758 if ((*lang_hooks.decls.global_bindings_p) () != 0
4759 || CONTAINS_PLACEHOLDER_P (arg))
4760 return NULL_TREE;
4761
4762 arg = save_expr (arg);
4763 return fold (build (TRUTH_ANDIF_EXPR, type,
4764 fold (build (GE_EXPR, type, arg,
4765 build_real (TREE_TYPE (arg),
4766 dconst0))),
4767 fold (build (NE_EXPR, type, arg,
4768 build_real (TREE_TYPE (arg),
4769 c2)))));
4770 }
4771
4772 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
4773 if (! HONOR_NANS (mode))
4774 return fold (build (code, type, arg,
4775 build_real (TREE_TYPE (arg), c2)));
4776
4777 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
4778 if ((*lang_hooks.decls.global_bindings_p) () == 0
4779 && ! CONTAINS_PLACEHOLDER_P (arg))
4780 {
4781 arg = save_expr (arg);
4782 return fold (build (TRUTH_ANDIF_EXPR, type,
4783 fold (build (GE_EXPR, type, arg,
4784 build_real (TREE_TYPE (arg),
4785 dconst0))),
4786 fold (build (code, type, arg,
4787 build_real (TREE_TYPE (arg),
4788 c2)))));
4789 }
4790 }
4791 }
4792
4793 return NULL_TREE;
4794 }
4795
4796 /* Subroutine of fold() that optimizes comparisons against Infinities,
4797 either +Inf or -Inf.
4798
4799 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
4800 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
4801 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
4802
4803 The function returns the constant folded tree if a simplification
4804 can be made, and NULL_TREE otherwise. */
4805
4806 static tree
4807 fold_inf_compare (enum tree_code code, tree type, tree arg0, tree arg1)
4808 {
4809 enum machine_mode mode;
4810 REAL_VALUE_TYPE max;
4811 tree temp;
4812 bool neg;
4813
4814 mode = TYPE_MODE (TREE_TYPE (arg0));
4815
4816 /* For negative infinity swap the sense of the comparison. */
4817 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
4818 if (neg)
4819 code = swap_tree_comparison (code);
4820
4821 switch (code)
4822 {
4823 case GT_EXPR:
4824 /* x > +Inf is always false, if with ignore sNANs. */
4825 if (HONOR_SNANS (mode))
4826 return NULL_TREE;
4827 return omit_one_operand (type,
4828 convert (type, integer_zero_node),
4829 arg0);
4830
4831 case LE_EXPR:
4832 /* x <= +Inf is always true, if we don't case about NaNs. */
4833 if (! HONOR_NANS (mode))
4834 return omit_one_operand (type,
4835 convert (type, integer_one_node),
4836 arg0);
4837
4838 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
4839 if ((*lang_hooks.decls.global_bindings_p) () == 0
4840 && ! CONTAINS_PLACEHOLDER_P (arg0))
4841 {
4842 arg0 = save_expr (arg0);
4843 return fold (build (EQ_EXPR, type, arg0, arg0));
4844 }
4845 break;
4846
4847 case EQ_EXPR:
4848 case GE_EXPR:
4849 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
4850 real_maxval (&max, neg, mode);
4851 return fold (build (neg ? LT_EXPR : GT_EXPR, type,
4852 arg0, build_real (TREE_TYPE (arg0), max)));
4853
4854 case LT_EXPR:
4855 /* x < +Inf is always equal to x <= DBL_MAX. */
4856 real_maxval (&max, neg, mode);
4857 return fold (build (neg ? GE_EXPR : LE_EXPR, type,
4858 arg0, build_real (TREE_TYPE (arg0), max)));
4859
4860 case NE_EXPR:
4861 /* x != +Inf is always equal to !(x > DBL_MAX). */
4862 real_maxval (&max, neg, mode);
4863 if (! HONOR_NANS (mode))
4864 return fold (build (neg ? GE_EXPR : LE_EXPR, type,
4865 arg0, build_real (TREE_TYPE (arg0), max)));
4866 temp = fold (build (neg ? LT_EXPR : GT_EXPR, type,
4867 arg0, build_real (TREE_TYPE (arg0), max)));
4868 return fold (build1 (TRUTH_NOT_EXPR, type, temp));
4869
4870 default:
4871 break;
4872 }
4873
4874 return NULL_TREE;
4875 }
4876
4877 /* If CODE with arguments ARG0 and ARG1 represents a single bit
4878 equality/inequality test, then return a simplified form of
4879 the test using shifts and logical operations. Otherwise return
4880 NULL. TYPE is the desired result type. */
4881
4882 tree
4883 fold_single_bit_test (enum tree_code code, tree arg0, tree arg1,
4884 tree result_type)
4885 {
4886 /* If this is a TRUTH_NOT_EXPR, it may have a single bit test inside
4887 operand 0. */
4888 if (code == TRUTH_NOT_EXPR)
4889 {
4890 code = TREE_CODE (arg0);
4891 if (code != NE_EXPR && code != EQ_EXPR)
4892 return NULL_TREE;
4893
4894 /* Extract the arguments of the EQ/NE. */
4895 arg1 = TREE_OPERAND (arg0, 1);
4896 arg0 = TREE_OPERAND (arg0, 0);
4897
4898 /* This requires us to invert the code. */
4899 code = (code == EQ_EXPR ? NE_EXPR : EQ_EXPR);
4900 }
4901
4902 /* If this is testing a single bit, we can optimize the test. */
4903 if ((code == NE_EXPR || code == EQ_EXPR)
4904 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
4905 && integer_pow2p (TREE_OPERAND (arg0, 1)))
4906 {
4907 tree inner = TREE_OPERAND (arg0, 0);
4908 tree type = TREE_TYPE (arg0);
4909 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
4910 enum machine_mode operand_mode = TYPE_MODE (type);
4911 int ops_unsigned;
4912 tree signed_type, unsigned_type;
4913 tree arg00;
4914
4915 /* If we have (A & C) != 0 where C is the sign bit of A, convert
4916 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
4917 arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
4918 if (arg00 != NULL_TREE)
4919 {
4920 tree stype = (*lang_hooks.types.signed_type) (TREE_TYPE (arg00));
4921 return fold (build (code == EQ_EXPR ? GE_EXPR : LT_EXPR, result_type,
4922 convert (stype, arg00),
4923 convert (stype, integer_zero_node)));
4924 }
4925
4926 /* At this point, we know that arg0 is not testing the sign bit. */
4927 if (TYPE_PRECISION (type) - 1 == bitnum)
4928 abort ();
4929
4930 /* Otherwise we have (A & C) != 0 where C is a single bit,
4931 convert that into ((A >> C2) & 1). Where C2 = log2(C).
4932 Similarly for (A & C) == 0. */
4933
4934 /* If INNER is a right shift of a constant and it plus BITNUM does
4935 not overflow, adjust BITNUM and INNER. */
4936 if (TREE_CODE (inner) == RSHIFT_EXPR
4937 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
4938 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
4939 && bitnum < TYPE_PRECISION (type)
4940 && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
4941 bitnum - TYPE_PRECISION (type)))
4942 {
4943 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
4944 inner = TREE_OPERAND (inner, 0);
4945 }
4946
4947 /* If we are going to be able to omit the AND below, we must do our
4948 operations as unsigned. If we must use the AND, we have a choice.
4949 Normally unsigned is faster, but for some machines signed is. */
4950 #ifdef LOAD_EXTEND_OP
4951 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND ? 0 : 1);
4952 #else
4953 ops_unsigned = 1;
4954 #endif
4955
4956 signed_type = (*lang_hooks.types.type_for_mode) (operand_mode, 0);
4957 unsigned_type = (*lang_hooks.types.type_for_mode) (operand_mode, 1);
4958
4959 if (bitnum != 0)
4960 inner = build (RSHIFT_EXPR, ops_unsigned ? unsigned_type : signed_type,
4961 inner, size_int (bitnum));
4962
4963 if (code == EQ_EXPR)
4964 inner = build (BIT_XOR_EXPR, ops_unsigned ? unsigned_type : signed_type,
4965 inner, integer_one_node);
4966
4967 /* Put the AND last so it can combine with more things. */
4968 inner = build (BIT_AND_EXPR, ops_unsigned ? unsigned_type : signed_type,
4969 inner, integer_one_node);
4970
4971 /* Make sure to return the proper type. */
4972 if (TREE_TYPE (inner) != result_type)
4973 inner = convert (result_type, inner);
4974
4975 return inner;
4976 }
4977 return NULL_TREE;
4978 }
4979
4980 /* Test whether it is preferable two swap two operands, ARG0 and
4981 ARG1, for example because ARG0 is an integer constant and ARG1
4982 isn't. */
4983
4984 static bool
4985 tree_swap_operands_p (tree arg0, tree arg1)
4986 {
4987 STRIP_SIGN_NOPS (arg0);
4988 STRIP_SIGN_NOPS (arg1);
4989
4990 if (TREE_CODE (arg1) == INTEGER_CST)
4991 return 0;
4992 if (TREE_CODE (arg0) == INTEGER_CST)
4993 return 1;
4994
4995 if (TREE_CODE (arg1) == REAL_CST)
4996 return 0;
4997 if (TREE_CODE (arg0) == REAL_CST)
4998 return 1;
4999
5000 if (TREE_CODE (arg1) == COMPLEX_CST)
5001 return 0;
5002 if (TREE_CODE (arg0) == COMPLEX_CST)
5003 return 1;
5004
5005 if (TREE_CONSTANT (arg1))
5006 return 0;
5007 if (TREE_CONSTANT (arg0))
5008 return 1;
5009
5010 return 0;
5011 }
5012
5013 /* Perform constant folding and related simplification of EXPR.
5014 The related simplifications include x*1 => x, x*0 => 0, etc.,
5015 and application of the associative law.
5016 NOP_EXPR conversions may be removed freely (as long as we
5017 are careful not to change the C type of the overall expression)
5018 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
5019 but we can constant-fold them if they have constant operands. */
5020
5021 #ifdef ENABLE_FOLD_CHECKING
5022 # define fold(x) fold_1 (x)
5023 static tree fold_1 (tree);
5024 static
5025 #endif
5026 tree
5027 fold (tree expr)
5028 {
5029 tree t = expr, orig_t;
5030 tree t1 = NULL_TREE;
5031 tree tem;
5032 tree type = TREE_TYPE (expr);
5033 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
5034 enum tree_code code = TREE_CODE (t);
5035 int kind = TREE_CODE_CLASS (code);
5036 int invert;
5037 /* WINS will be nonzero when the switch is done
5038 if all operands are constant. */
5039 int wins = 1;
5040
5041 /* Don't try to process an RTL_EXPR since its operands aren't trees.
5042 Likewise for a SAVE_EXPR that's already been evaluated. */
5043 if (code == RTL_EXPR || (code == SAVE_EXPR && SAVE_EXPR_RTL (t) != 0))
5044 return t;
5045
5046 /* Return right away if a constant. */
5047 if (kind == 'c')
5048 return t;
5049
5050 #ifdef MAX_INTEGER_COMPUTATION_MODE
5051 check_max_integer_computation_mode (expr);
5052 #endif
5053 orig_t = t;
5054
5055 if (code == NOP_EXPR || code == FLOAT_EXPR || code == CONVERT_EXPR)
5056 {
5057 tree subop;
5058
5059 /* Special case for conversion ops that can have fixed point args. */
5060 arg0 = TREE_OPERAND (t, 0);
5061
5062 /* Don't use STRIP_NOPS, because signedness of argument type matters. */
5063 if (arg0 != 0)
5064 STRIP_SIGN_NOPS (arg0);
5065
5066 if (arg0 != 0 && TREE_CODE (arg0) == COMPLEX_CST)
5067 subop = TREE_REALPART (arg0);
5068 else
5069 subop = arg0;
5070
5071 if (subop != 0 && TREE_CODE (subop) != INTEGER_CST
5072 && TREE_CODE (subop) != REAL_CST)
5073 /* Note that TREE_CONSTANT isn't enough:
5074 static var addresses are constant but we can't
5075 do arithmetic on them. */
5076 wins = 0;
5077 }
5078 else if (IS_EXPR_CODE_CLASS (kind))
5079 {
5080 int len = first_rtl_op (code);
5081 int i;
5082 for (i = 0; i < len; i++)
5083 {
5084 tree op = TREE_OPERAND (t, i);
5085 tree subop;
5086
5087 if (op == 0)
5088 continue; /* Valid for CALL_EXPR, at least. */
5089
5090 if (kind == '<' || code == RSHIFT_EXPR)
5091 {
5092 /* Signedness matters here. Perhaps we can refine this
5093 later. */
5094 STRIP_SIGN_NOPS (op);
5095 }
5096 else
5097 /* Strip any conversions that don't change the mode. */
5098 STRIP_NOPS (op);
5099
5100 if (TREE_CODE (op) == COMPLEX_CST)
5101 subop = TREE_REALPART (op);
5102 else
5103 subop = op;
5104
5105 if (TREE_CODE (subop) != INTEGER_CST
5106 && TREE_CODE (subop) != REAL_CST)
5107 /* Note that TREE_CONSTANT isn't enough:
5108 static var addresses are constant but we can't
5109 do arithmetic on them. */
5110 wins = 0;
5111
5112 if (i == 0)
5113 arg0 = op;
5114 else if (i == 1)
5115 arg1 = op;
5116 }
5117 }
5118
5119 /* If this is a commutative operation, and ARG0 is a constant, move it
5120 to ARG1 to reduce the number of tests below. */
5121 if ((code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
5122 || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
5123 || code == BIT_AND_EXPR)
5124 && tree_swap_operands_p (arg0, arg1))
5125 return fold (build (code, type, arg1, arg0));
5126
5127 /* Now WINS is set as described above,
5128 ARG0 is the first operand of EXPR,
5129 and ARG1 is the second operand (if it has more than one operand).
5130
5131 First check for cases where an arithmetic operation is applied to a
5132 compound, conditional, or comparison operation. Push the arithmetic
5133 operation inside the compound or conditional to see if any folding
5134 can then be done. Convert comparison to conditional for this purpose.
5135 The also optimizes non-constant cases that used to be done in
5136 expand_expr.
5137
5138 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
5139 one of the operands is a comparison and the other is a comparison, a
5140 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
5141 code below would make the expression more complex. Change it to a
5142 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
5143 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
5144
5145 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
5146 || code == EQ_EXPR || code == NE_EXPR)
5147 && ((truth_value_p (TREE_CODE (arg0))
5148 && (truth_value_p (TREE_CODE (arg1))
5149 || (TREE_CODE (arg1) == BIT_AND_EXPR
5150 && integer_onep (TREE_OPERAND (arg1, 1)))))
5151 || (truth_value_p (TREE_CODE (arg1))
5152 && (truth_value_p (TREE_CODE (arg0))
5153 || (TREE_CODE (arg0) == BIT_AND_EXPR
5154 && integer_onep (TREE_OPERAND (arg0, 1)))))))
5155 {
5156 t = fold (build (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
5157 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
5158 : TRUTH_XOR_EXPR,
5159 type, arg0, arg1));
5160
5161 if (code == EQ_EXPR)
5162 t = invert_truthvalue (t);
5163
5164 return t;
5165 }
5166
5167 if (TREE_CODE_CLASS (code) == '1')
5168 {
5169 if (TREE_CODE (arg0) == COMPOUND_EXPR)
5170 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
5171 fold (build1 (code, type, TREE_OPERAND (arg0, 1))));
5172 else if (TREE_CODE (arg0) == COND_EXPR)
5173 {
5174 tree arg01 = TREE_OPERAND (arg0, 1);
5175 tree arg02 = TREE_OPERAND (arg0, 2);
5176 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
5177 arg01 = fold (build1 (code, type, arg01));
5178 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
5179 arg02 = fold (build1 (code, type, arg02));
5180 t = fold (build (COND_EXPR, type, TREE_OPERAND (arg0, 0),
5181 arg01, arg02));
5182
5183 /* If this was a conversion, and all we did was to move into
5184 inside the COND_EXPR, bring it back out. But leave it if
5185 it is a conversion from integer to integer and the
5186 result precision is no wider than a word since such a
5187 conversion is cheap and may be optimized away by combine,
5188 while it couldn't if it were outside the COND_EXPR. Then return
5189 so we don't get into an infinite recursion loop taking the
5190 conversion out and then back in. */
5191
5192 if ((code == NOP_EXPR || code == CONVERT_EXPR
5193 || code == NON_LVALUE_EXPR)
5194 && TREE_CODE (t) == COND_EXPR
5195 && TREE_CODE (TREE_OPERAND (t, 1)) == code
5196 && TREE_CODE (TREE_OPERAND (t, 2)) == code
5197 && ! VOID_TYPE_P (TREE_OPERAND (t, 1))
5198 && ! VOID_TYPE_P (TREE_OPERAND (t, 2))
5199 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))
5200 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 2), 0)))
5201 && ! (INTEGRAL_TYPE_P (TREE_TYPE (t))
5202 && (INTEGRAL_TYPE_P
5203 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))))
5204 && TYPE_PRECISION (TREE_TYPE (t)) <= BITS_PER_WORD))
5205 t = build1 (code, type,
5206 build (COND_EXPR,
5207 TREE_TYPE (TREE_OPERAND
5208 (TREE_OPERAND (t, 1), 0)),
5209 TREE_OPERAND (t, 0),
5210 TREE_OPERAND (TREE_OPERAND (t, 1), 0),
5211 TREE_OPERAND (TREE_OPERAND (t, 2), 0)));
5212 return t;
5213 }
5214 else if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<')
5215 return fold (build (COND_EXPR, type, arg0,
5216 fold (build1 (code, type, integer_one_node)),
5217 fold (build1 (code, type, integer_zero_node))));
5218 }
5219 else if (TREE_CODE_CLASS (code) == '<'
5220 && TREE_CODE (arg0) == COMPOUND_EXPR)
5221 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
5222 fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
5223 else if (TREE_CODE_CLASS (code) == '<'
5224 && TREE_CODE (arg1) == COMPOUND_EXPR)
5225 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
5226 fold (build (code, type, arg0, TREE_OPERAND (arg1, 1))));
5227 else if (TREE_CODE_CLASS (code) == '2'
5228 || TREE_CODE_CLASS (code) == '<')
5229 {
5230 if (TREE_CODE (arg1) == COMPOUND_EXPR
5231 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg1, 0))
5232 && ! TREE_SIDE_EFFECTS (arg0))
5233 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
5234 fold (build (code, type,
5235 arg0, TREE_OPERAND (arg1, 1))));
5236 else if ((TREE_CODE (arg1) == COND_EXPR
5237 || (TREE_CODE_CLASS (TREE_CODE (arg1)) == '<'
5238 && TREE_CODE_CLASS (code) != '<'))
5239 && (TREE_CODE (arg0) != COND_EXPR
5240 || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
5241 && (! TREE_SIDE_EFFECTS (arg0)
5242 || ((*lang_hooks.decls.global_bindings_p) () == 0
5243 && ! CONTAINS_PLACEHOLDER_P (arg0))))
5244 return
5245 fold_binary_op_with_conditional_arg (code, type, arg1, arg0,
5246 /*cond_first_p=*/0);
5247 else if (TREE_CODE (arg0) == COMPOUND_EXPR)
5248 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
5249 fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
5250 else if ((TREE_CODE (arg0) == COND_EXPR
5251 || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
5252 && TREE_CODE_CLASS (code) != '<'))
5253 && (TREE_CODE (arg1) != COND_EXPR
5254 || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
5255 && (! TREE_SIDE_EFFECTS (arg1)
5256 || ((*lang_hooks.decls.global_bindings_p) () == 0
5257 && ! CONTAINS_PLACEHOLDER_P (arg1))))
5258 return
5259 fold_binary_op_with_conditional_arg (code, type, arg0, arg1,
5260 /*cond_first_p=*/1);
5261 }
5262
5263 switch (code)
5264 {
5265 case INTEGER_CST:
5266 case REAL_CST:
5267 case VECTOR_CST:
5268 case STRING_CST:
5269 case COMPLEX_CST:
5270 case CONSTRUCTOR:
5271 return t;
5272
5273 case CONST_DECL:
5274 return fold (DECL_INITIAL (t));
5275
5276 case NOP_EXPR:
5277 case FLOAT_EXPR:
5278 case CONVERT_EXPR:
5279 case FIX_TRUNC_EXPR:
5280 /* Other kinds of FIX are not handled properly by fold_convert. */
5281
5282 if (TREE_TYPE (TREE_OPERAND (t, 0)) == TREE_TYPE (t))
5283 return TREE_OPERAND (t, 0);
5284
5285 /* Handle cases of two conversions in a row. */
5286 if (TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
5287 || TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR)
5288 {
5289 tree inside_type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5290 tree inter_type = TREE_TYPE (TREE_OPERAND (t, 0));
5291 tree final_type = TREE_TYPE (t);
5292 int inside_int = INTEGRAL_TYPE_P (inside_type);
5293 int inside_ptr = POINTER_TYPE_P (inside_type);
5294 int inside_float = FLOAT_TYPE_P (inside_type);
5295 unsigned int inside_prec = TYPE_PRECISION (inside_type);
5296 int inside_unsignedp = TREE_UNSIGNED (inside_type);
5297 int inter_int = INTEGRAL_TYPE_P (inter_type);
5298 int inter_ptr = POINTER_TYPE_P (inter_type);
5299 int inter_float = FLOAT_TYPE_P (inter_type);
5300 unsigned int inter_prec = TYPE_PRECISION (inter_type);
5301 int inter_unsignedp = TREE_UNSIGNED (inter_type);
5302 int final_int = INTEGRAL_TYPE_P (final_type);
5303 int final_ptr = POINTER_TYPE_P (final_type);
5304 int final_float = FLOAT_TYPE_P (final_type);
5305 unsigned int final_prec = TYPE_PRECISION (final_type);
5306 int final_unsignedp = TREE_UNSIGNED (final_type);
5307
5308 /* In addition to the cases of two conversions in a row
5309 handled below, if we are converting something to its own
5310 type via an object of identical or wider precision, neither
5311 conversion is needed. */
5312 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (final_type)
5313 && ((inter_int && final_int) || (inter_float && final_float))
5314 && inter_prec >= final_prec)
5315 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5316
5317 /* Likewise, if the intermediate and final types are either both
5318 float or both integer, we don't need the middle conversion if
5319 it is wider than the final type and doesn't change the signedness
5320 (for integers). Avoid this if the final type is a pointer
5321 since then we sometimes need the inner conversion. Likewise if
5322 the outer has a precision not equal to the size of its mode. */
5323 if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
5324 || (inter_float && inside_float))
5325 && inter_prec >= inside_prec
5326 && (inter_float || inter_unsignedp == inside_unsignedp)
5327 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
5328 && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
5329 && ! final_ptr)
5330 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5331
5332 /* If we have a sign-extension of a zero-extended value, we can
5333 replace that by a single zero-extension. */
5334 if (inside_int && inter_int && final_int
5335 && inside_prec < inter_prec && inter_prec < final_prec
5336 && inside_unsignedp && !inter_unsignedp)
5337 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5338
5339 /* Two conversions in a row are not needed unless:
5340 - some conversion is floating-point (overstrict for now), or
5341 - the intermediate type is narrower than both initial and
5342 final, or
5343 - the intermediate type and innermost type differ in signedness,
5344 and the outermost type is wider than the intermediate, or
5345 - the initial type is a pointer type and the precisions of the
5346 intermediate and final types differ, or
5347 - the final type is a pointer type and the precisions of the
5348 initial and intermediate types differ. */
5349 if (! inside_float && ! inter_float && ! final_float
5350 && (inter_prec > inside_prec || inter_prec > final_prec)
5351 && ! (inside_int && inter_int
5352 && inter_unsignedp != inside_unsignedp
5353 && inter_prec < final_prec)
5354 && ((inter_unsignedp && inter_prec > inside_prec)
5355 == (final_unsignedp && final_prec > inter_prec))
5356 && ! (inside_ptr && inter_prec != final_prec)
5357 && ! (final_ptr && inside_prec != inter_prec)
5358 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
5359 && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
5360 && ! final_ptr)
5361 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5362 }
5363
5364 if (TREE_CODE (TREE_OPERAND (t, 0)) == MODIFY_EXPR
5365 && TREE_CONSTANT (TREE_OPERAND (TREE_OPERAND (t, 0), 1))
5366 /* Detect assigning a bitfield. */
5367 && !(TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 0)) == COMPONENT_REF
5368 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 0), 0), 1))))
5369 {
5370 /* Don't leave an assignment inside a conversion
5371 unless assigning a bitfield. */
5372 tree prev = TREE_OPERAND (t, 0);
5373 if (t == orig_t)
5374 t = copy_node (t);
5375 TREE_OPERAND (t, 0) = TREE_OPERAND (prev, 1);
5376 /* First do the assignment, then return converted constant. */
5377 t = build (COMPOUND_EXPR, TREE_TYPE (t), prev, fold (t));
5378 TREE_USED (t) = 1;
5379 return t;
5380 }
5381
5382 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
5383 constants (if x has signed type, the sign bit cannot be set
5384 in c). This folds extension into the BIT_AND_EXPR. */
5385 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
5386 && TREE_CODE (TREE_TYPE (t)) != BOOLEAN_TYPE
5387 && TREE_CODE (TREE_OPERAND (t, 0)) == BIT_AND_EXPR
5388 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 1)) == INTEGER_CST)
5389 {
5390 tree and = TREE_OPERAND (t, 0);
5391 tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
5392 int change = 0;
5393
5394 if (TREE_UNSIGNED (TREE_TYPE (and))
5395 || (TYPE_PRECISION (TREE_TYPE (t))
5396 <= TYPE_PRECISION (TREE_TYPE (and))))
5397 change = 1;
5398 else if (TYPE_PRECISION (TREE_TYPE (and1))
5399 <= HOST_BITS_PER_WIDE_INT
5400 && host_integerp (and1, 1))
5401 {
5402 unsigned HOST_WIDE_INT cst;
5403
5404 cst = tree_low_cst (and1, 1);
5405 cst &= (HOST_WIDE_INT) -1
5406 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
5407 change = (cst == 0);
5408 #ifdef LOAD_EXTEND_OP
5409 if (change
5410 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
5411 == ZERO_EXTEND))
5412 {
5413 tree uns = (*lang_hooks.types.unsigned_type) (TREE_TYPE (and0));
5414 and0 = convert (uns, and0);
5415 and1 = convert (uns, and1);
5416 }
5417 #endif
5418 }
5419 if (change)
5420 return fold (build (BIT_AND_EXPR, TREE_TYPE (t),
5421 convert (TREE_TYPE (t), and0),
5422 convert (TREE_TYPE (t), and1)));
5423 }
5424
5425 if (!wins)
5426 {
5427 if (TREE_CONSTANT (t) != TREE_CONSTANT (arg0))
5428 {
5429 if (t == orig_t)
5430 t = copy_node (t);
5431 TREE_CONSTANT (t) = TREE_CONSTANT (arg0);
5432 }
5433 return t;
5434 }
5435 return fold_convert (t, arg0);
5436
5437 case VIEW_CONVERT_EXPR:
5438 if (TREE_CODE (TREE_OPERAND (t, 0)) == VIEW_CONVERT_EXPR)
5439 return build1 (VIEW_CONVERT_EXPR, type,
5440 TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5441 return t;
5442
5443 case COMPONENT_REF:
5444 if (TREE_CODE (arg0) == CONSTRUCTOR
5445 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
5446 {
5447 tree m = purpose_member (arg1, CONSTRUCTOR_ELTS (arg0));
5448 if (m)
5449 t = TREE_VALUE (m);
5450 }
5451 return t;
5452
5453 case RANGE_EXPR:
5454 if (TREE_CONSTANT (t) != wins)
5455 {
5456 if (t == orig_t)
5457 t = copy_node (t);
5458 TREE_CONSTANT (t) = wins;
5459 }
5460 return t;
5461
5462 case NEGATE_EXPR:
5463 if (wins)
5464 {
5465 if (TREE_CODE (arg0) == INTEGER_CST)
5466 {
5467 unsigned HOST_WIDE_INT low;
5468 HOST_WIDE_INT high;
5469 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
5470 TREE_INT_CST_HIGH (arg0),
5471 &low, &high);
5472 t = build_int_2 (low, high);
5473 TREE_TYPE (t) = type;
5474 TREE_OVERFLOW (t)
5475 = (TREE_OVERFLOW (arg0)
5476 | force_fit_type (t, overflow && !TREE_UNSIGNED (type)));
5477 TREE_CONSTANT_OVERFLOW (t)
5478 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
5479 }
5480 else if (TREE_CODE (arg0) == REAL_CST)
5481 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
5482 }
5483 else if (TREE_CODE (arg0) == NEGATE_EXPR)
5484 return TREE_OPERAND (arg0, 0);
5485 /* Convert -((double)float) into (double)(-float). */
5486 else if (TREE_CODE (arg0) == NOP_EXPR
5487 && TREE_CODE (type) == REAL_TYPE)
5488 {
5489 tree targ0 = strip_float_extensions (arg0);
5490 if (targ0 != arg0)
5491 return convert (type, build1 (NEGATE_EXPR, TREE_TYPE (targ0), targ0));
5492
5493 }
5494
5495 /* Convert - (a - b) to (b - a) for non-floating-point. */
5496 else if (TREE_CODE (arg0) == MINUS_EXPR
5497 && (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
5498 return build (MINUS_EXPR, type, TREE_OPERAND (arg0, 1),
5499 TREE_OPERAND (arg0, 0));
5500
5501 /* Convert -f(x) into f(-x) where f is sin, tan or atan. */
5502 switch (builtin_mathfn_code (arg0))
5503 {
5504 case BUILT_IN_SIN:
5505 case BUILT_IN_SINF:
5506 case BUILT_IN_SINL:
5507 case BUILT_IN_TAN:
5508 case BUILT_IN_TANF:
5509 case BUILT_IN_TANL:
5510 case BUILT_IN_ATAN:
5511 case BUILT_IN_ATANF:
5512 case BUILT_IN_ATANL:
5513 if (negate_expr_p (TREE_VALUE (TREE_OPERAND (arg0, 1))))
5514 {
5515 tree fndecl, arg, arglist;
5516
5517 fndecl = get_callee_fndecl (arg0);
5518 arg = TREE_VALUE (TREE_OPERAND (arg0, 1));
5519 arg = fold (build1 (NEGATE_EXPR, type, arg));
5520 arglist = build_tree_list (NULL_TREE, arg);
5521 return build_function_call_expr (fndecl, arglist);
5522 }
5523 break;
5524
5525 default:
5526 break;
5527 }
5528 return t;
5529
5530 case ABS_EXPR:
5531 if (wins)
5532 {
5533 if (TREE_CODE (arg0) == INTEGER_CST)
5534 {
5535 /* If the value is unsigned, then the absolute value is
5536 the same as the ordinary value. */
5537 if (TREE_UNSIGNED (type))
5538 return arg0;
5539 /* Similarly, if the value is non-negative. */
5540 else if (INT_CST_LT (integer_minus_one_node, arg0))
5541 return arg0;
5542 /* If the value is negative, then the absolute value is
5543 its negation. */
5544 else
5545 {
5546 unsigned HOST_WIDE_INT low;
5547 HOST_WIDE_INT high;
5548 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
5549 TREE_INT_CST_HIGH (arg0),
5550 &low, &high);
5551 t = build_int_2 (low, high);
5552 TREE_TYPE (t) = type;
5553 TREE_OVERFLOW (t)
5554 = (TREE_OVERFLOW (arg0)
5555 | force_fit_type (t, overflow));
5556 TREE_CONSTANT_OVERFLOW (t)
5557 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
5558 }
5559 }
5560 else if (TREE_CODE (arg0) == REAL_CST)
5561 {
5562 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
5563 t = build_real (type,
5564 REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
5565 }
5566 }
5567 else if (TREE_CODE (arg0) == NEGATE_EXPR)
5568 return fold (build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0)));
5569 /* Convert fabs((double)float) into (double)fabsf(float). */
5570 else if (TREE_CODE (arg0) == NOP_EXPR
5571 && TREE_CODE (type) == REAL_TYPE)
5572 {
5573 tree targ0 = strip_float_extensions (arg0);
5574 if (targ0 != arg0)
5575 return convert (type, fold (build1 (ABS_EXPR, TREE_TYPE (targ0),
5576 targ0)));
5577 }
5578 else if (tree_expr_nonnegative_p (arg0))
5579 return arg0;
5580 return t;
5581
5582 case CONJ_EXPR:
5583 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
5584 return convert (type, arg0);
5585 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
5586 return build (COMPLEX_EXPR, type,
5587 TREE_OPERAND (arg0, 0),
5588 negate_expr (TREE_OPERAND (arg0, 1)));
5589 else if (TREE_CODE (arg0) == COMPLEX_CST)
5590 return build_complex (type, TREE_REALPART (arg0),
5591 negate_expr (TREE_IMAGPART (arg0)));
5592 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
5593 return fold (build (TREE_CODE (arg0), type,
5594 fold (build1 (CONJ_EXPR, type,
5595 TREE_OPERAND (arg0, 0))),
5596 fold (build1 (CONJ_EXPR,
5597 type, TREE_OPERAND (arg0, 1)))));
5598 else if (TREE_CODE (arg0) == CONJ_EXPR)
5599 return TREE_OPERAND (arg0, 0);
5600 return t;
5601
5602 case BIT_NOT_EXPR:
5603 if (wins)
5604 {
5605 t = build_int_2 (~ TREE_INT_CST_LOW (arg0),
5606 ~ TREE_INT_CST_HIGH (arg0));
5607 TREE_TYPE (t) = type;
5608 force_fit_type (t, 0);
5609 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg0);
5610 TREE_CONSTANT_OVERFLOW (t) = TREE_CONSTANT_OVERFLOW (arg0);
5611 }
5612 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
5613 return TREE_OPERAND (arg0, 0);
5614 return t;
5615
5616 case PLUS_EXPR:
5617 /* A + (-B) -> A - B */
5618 if (TREE_CODE (arg1) == NEGATE_EXPR)
5619 return fold (build (MINUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
5620 /* (-A) + B -> B - A */
5621 if (TREE_CODE (arg0) == NEGATE_EXPR)
5622 return fold (build (MINUS_EXPR, type, arg1, TREE_OPERAND (arg0, 0)));
5623 else if (! FLOAT_TYPE_P (type))
5624 {
5625 if (integer_zerop (arg1))
5626 return non_lvalue (convert (type, arg0));
5627
5628 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
5629 with a constant, and the two constants have no bits in common,
5630 we should treat this as a BIT_IOR_EXPR since this may produce more
5631 simplifications. */
5632 if (TREE_CODE (arg0) == BIT_AND_EXPR
5633 && TREE_CODE (arg1) == BIT_AND_EXPR
5634 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
5635 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
5636 && integer_zerop (const_binop (BIT_AND_EXPR,
5637 TREE_OPERAND (arg0, 1),
5638 TREE_OPERAND (arg1, 1), 0)))
5639 {
5640 code = BIT_IOR_EXPR;
5641 goto bit_ior;
5642 }
5643
5644 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
5645 (plus (plus (mult) (mult)) (foo)) so that we can
5646 take advantage of the factoring cases below. */
5647 if ((TREE_CODE (arg0) == PLUS_EXPR
5648 && TREE_CODE (arg1) == MULT_EXPR)
5649 || (TREE_CODE (arg1) == PLUS_EXPR
5650 && TREE_CODE (arg0) == MULT_EXPR))
5651 {
5652 tree parg0, parg1, parg, marg;
5653
5654 if (TREE_CODE (arg0) == PLUS_EXPR)
5655 parg = arg0, marg = arg1;
5656 else
5657 parg = arg1, marg = arg0;
5658 parg0 = TREE_OPERAND (parg, 0);
5659 parg1 = TREE_OPERAND (parg, 1);
5660 STRIP_NOPS (parg0);
5661 STRIP_NOPS (parg1);
5662
5663 if (TREE_CODE (parg0) == MULT_EXPR
5664 && TREE_CODE (parg1) != MULT_EXPR)
5665 return fold (build (PLUS_EXPR, type,
5666 fold (build (PLUS_EXPR, type,
5667 convert (type, parg0),
5668 convert (type, marg))),
5669 convert (type, parg1)));
5670 if (TREE_CODE (parg0) != MULT_EXPR
5671 && TREE_CODE (parg1) == MULT_EXPR)
5672 return fold (build (PLUS_EXPR, type,
5673 fold (build (PLUS_EXPR, type,
5674 convert (type, parg1),
5675 convert (type, marg))),
5676 convert (type, parg0)));
5677 }
5678
5679 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR)
5680 {
5681 tree arg00, arg01, arg10, arg11;
5682 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
5683
5684 /* (A * C) + (B * C) -> (A+B) * C.
5685 We are most concerned about the case where C is a constant,
5686 but other combinations show up during loop reduction. Since
5687 it is not difficult, try all four possibilities. */
5688
5689 arg00 = TREE_OPERAND (arg0, 0);
5690 arg01 = TREE_OPERAND (arg0, 1);
5691 arg10 = TREE_OPERAND (arg1, 0);
5692 arg11 = TREE_OPERAND (arg1, 1);
5693 same = NULL_TREE;
5694
5695 if (operand_equal_p (arg01, arg11, 0))
5696 same = arg01, alt0 = arg00, alt1 = arg10;
5697 else if (operand_equal_p (arg00, arg10, 0))
5698 same = arg00, alt0 = arg01, alt1 = arg11;
5699 else if (operand_equal_p (arg00, arg11, 0))
5700 same = arg00, alt0 = arg01, alt1 = arg10;
5701 else if (operand_equal_p (arg01, arg10, 0))
5702 same = arg01, alt0 = arg00, alt1 = arg11;
5703
5704 /* No identical multiplicands; see if we can find a common
5705 power-of-two factor in non-power-of-two multiplies. This
5706 can help in multi-dimensional array access. */
5707 else if (TREE_CODE (arg01) == INTEGER_CST
5708 && TREE_CODE (arg11) == INTEGER_CST
5709 && TREE_INT_CST_HIGH (arg01) == 0
5710 && TREE_INT_CST_HIGH (arg11) == 0)
5711 {
5712 HOST_WIDE_INT int01, int11, tmp;
5713 int01 = TREE_INT_CST_LOW (arg01);
5714 int11 = TREE_INT_CST_LOW (arg11);
5715
5716 /* Move min of absolute values to int11. */
5717 if ((int01 >= 0 ? int01 : -int01)
5718 < (int11 >= 0 ? int11 : -int11))
5719 {
5720 tmp = int01, int01 = int11, int11 = tmp;
5721 alt0 = arg00, arg00 = arg10, arg10 = alt0;
5722 alt0 = arg01, arg01 = arg11, arg11 = alt0;
5723 }
5724
5725 if (exact_log2 (int11) > 0 && int01 % int11 == 0)
5726 {
5727 alt0 = fold (build (MULT_EXPR, type, arg00,
5728 build_int_2 (int01 / int11, 0)));
5729 alt1 = arg10;
5730 same = arg11;
5731 }
5732 }
5733
5734 if (same)
5735 return fold (build (MULT_EXPR, type,
5736 fold (build (PLUS_EXPR, type, alt0, alt1)),
5737 same));
5738 }
5739 }
5740 else
5741 {
5742 /* See if ARG1 is zero and X + ARG1 reduces to X. */
5743 if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
5744 return non_lvalue (convert (type, arg0));
5745
5746 /* Likewise if the operands are reversed. */
5747 if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
5748 return non_lvalue (convert (type, arg1));
5749
5750 /* Convert x+x into x*2.0. */
5751 if (operand_equal_p (arg0, arg1, 0)
5752 && SCALAR_FLOAT_TYPE_P (type))
5753 return fold (build (MULT_EXPR, type, arg0,
5754 build_real (type, dconst2)));
5755
5756 /* Convert x*c+x into x*(c+1). */
5757 if (flag_unsafe_math_optimizations
5758 && TREE_CODE (arg0) == MULT_EXPR
5759 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
5760 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg0, 1))
5761 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
5762 {
5763 REAL_VALUE_TYPE c;
5764
5765 c = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
5766 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
5767 return fold (build (MULT_EXPR, type, arg1,
5768 build_real (type, c)));
5769 }
5770
5771 /* Convert x+x*c into x*(c+1). */
5772 if (flag_unsafe_math_optimizations
5773 && TREE_CODE (arg1) == MULT_EXPR
5774 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST
5775 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg1, 1))
5776 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
5777 {
5778 REAL_VALUE_TYPE c;
5779
5780 c = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
5781 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
5782 return fold (build (MULT_EXPR, type, arg0,
5783 build_real (type, c)));
5784 }
5785
5786 /* Convert x*c1+x*c2 into x*(c1+c2). */
5787 if (flag_unsafe_math_optimizations
5788 && TREE_CODE (arg0) == MULT_EXPR
5789 && TREE_CODE (arg1) == MULT_EXPR
5790 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
5791 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg0, 1))
5792 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST
5793 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg1, 1))
5794 && operand_equal_p (TREE_OPERAND (arg0, 0),
5795 TREE_OPERAND (arg1, 0), 0))
5796 {
5797 REAL_VALUE_TYPE c1, c2;
5798
5799 c1 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
5800 c2 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
5801 real_arithmetic (&c1, PLUS_EXPR, &c1, &c2);
5802 return fold (build (MULT_EXPR, type,
5803 TREE_OPERAND (arg0, 0),
5804 build_real (type, c1)));
5805 }
5806 }
5807
5808 bit_rotate:
5809 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
5810 is a rotate of A by C1 bits. */
5811 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
5812 is a rotate of A by B bits. */
5813 {
5814 enum tree_code code0, code1;
5815 code0 = TREE_CODE (arg0);
5816 code1 = TREE_CODE (arg1);
5817 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
5818 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
5819 && operand_equal_p (TREE_OPERAND (arg0, 0),
5820 TREE_OPERAND (arg1, 0), 0)
5821 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5822 {
5823 tree tree01, tree11;
5824 enum tree_code code01, code11;
5825
5826 tree01 = TREE_OPERAND (arg0, 1);
5827 tree11 = TREE_OPERAND (arg1, 1);
5828 STRIP_NOPS (tree01);
5829 STRIP_NOPS (tree11);
5830 code01 = TREE_CODE (tree01);
5831 code11 = TREE_CODE (tree11);
5832 if (code01 == INTEGER_CST
5833 && code11 == INTEGER_CST
5834 && TREE_INT_CST_HIGH (tree01) == 0
5835 && TREE_INT_CST_HIGH (tree11) == 0
5836 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
5837 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
5838 return build (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
5839 code0 == LSHIFT_EXPR ? tree01 : tree11);
5840 else if (code11 == MINUS_EXPR)
5841 {
5842 tree tree110, tree111;
5843 tree110 = TREE_OPERAND (tree11, 0);
5844 tree111 = TREE_OPERAND (tree11, 1);
5845 STRIP_NOPS (tree110);
5846 STRIP_NOPS (tree111);
5847 if (TREE_CODE (tree110) == INTEGER_CST
5848 && 0 == compare_tree_int (tree110,
5849 TYPE_PRECISION
5850 (TREE_TYPE (TREE_OPERAND
5851 (arg0, 0))))
5852 && operand_equal_p (tree01, tree111, 0))
5853 return build ((code0 == LSHIFT_EXPR
5854 ? LROTATE_EXPR
5855 : RROTATE_EXPR),
5856 type, TREE_OPERAND (arg0, 0), tree01);
5857 }
5858 else if (code01 == MINUS_EXPR)
5859 {
5860 tree tree010, tree011;
5861 tree010 = TREE_OPERAND (tree01, 0);
5862 tree011 = TREE_OPERAND (tree01, 1);
5863 STRIP_NOPS (tree010);
5864 STRIP_NOPS (tree011);
5865 if (TREE_CODE (tree010) == INTEGER_CST
5866 && 0 == compare_tree_int (tree010,
5867 TYPE_PRECISION
5868 (TREE_TYPE (TREE_OPERAND
5869 (arg0, 0))))
5870 && operand_equal_p (tree11, tree011, 0))
5871 return build ((code0 != LSHIFT_EXPR
5872 ? LROTATE_EXPR
5873 : RROTATE_EXPR),
5874 type, TREE_OPERAND (arg0, 0), tree11);
5875 }
5876 }
5877 }
5878
5879 associate:
5880 /* In most languages, can't associate operations on floats through
5881 parentheses. Rather than remember where the parentheses were, we
5882 don't associate floats at all, unless the user has specified
5883 -funsafe-math-optimizations. */
5884
5885 if (! wins
5886 && (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
5887 {
5888 tree var0, con0, lit0, minus_lit0;
5889 tree var1, con1, lit1, minus_lit1;
5890
5891 /* Split both trees into variables, constants, and literals. Then
5892 associate each group together, the constants with literals,
5893 then the result with variables. This increases the chances of
5894 literals being recombined later and of generating relocatable
5895 expressions for the sum of a constant and literal. */
5896 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
5897 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
5898 code == MINUS_EXPR);
5899
5900 /* Only do something if we found more than two objects. Otherwise,
5901 nothing has changed and we risk infinite recursion. */
5902 if (2 < ((var0 != 0) + (var1 != 0)
5903 + (con0 != 0) + (con1 != 0)
5904 + (lit0 != 0) + (lit1 != 0)
5905 + (minus_lit0 != 0) + (minus_lit1 != 0)))
5906 {
5907 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
5908 if (code == MINUS_EXPR)
5909 code = PLUS_EXPR;
5910
5911 var0 = associate_trees (var0, var1, code, type);
5912 con0 = associate_trees (con0, con1, code, type);
5913 lit0 = associate_trees (lit0, lit1, code, type);
5914 minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
5915
5916 /* Preserve the MINUS_EXPR if the negative part of the literal is
5917 greater than the positive part. Otherwise, the multiplicative
5918 folding code (i.e extract_muldiv) may be fooled in case
5919 unsigned constants are subtracted, like in the following
5920 example: ((X*2 + 4) - 8U)/2. */
5921 if (minus_lit0 && lit0)
5922 {
5923 if (TREE_CODE (lit0) == INTEGER_CST
5924 && TREE_CODE (minus_lit0) == INTEGER_CST
5925 && tree_int_cst_lt (lit0, minus_lit0))
5926 {
5927 minus_lit0 = associate_trees (minus_lit0, lit0,
5928 MINUS_EXPR, type);
5929 lit0 = 0;
5930 }
5931 else
5932 {
5933 lit0 = associate_trees (lit0, minus_lit0,
5934 MINUS_EXPR, type);
5935 minus_lit0 = 0;
5936 }
5937 }
5938 if (minus_lit0)
5939 {
5940 if (con0 == 0)
5941 return convert (type, associate_trees (var0, minus_lit0,
5942 MINUS_EXPR, type));
5943 else
5944 {
5945 con0 = associate_trees (con0, minus_lit0,
5946 MINUS_EXPR, type);
5947 return convert (type, associate_trees (var0, con0,
5948 PLUS_EXPR, type));
5949 }
5950 }
5951
5952 con0 = associate_trees (con0, lit0, code, type);
5953 return convert (type, associate_trees (var0, con0, code, type));
5954 }
5955 }
5956
5957 binary:
5958 if (wins)
5959 t1 = const_binop (code, arg0, arg1, 0);
5960 if (t1 != NULL_TREE)
5961 {
5962 /* The return value should always have
5963 the same type as the original expression. */
5964 if (TREE_TYPE (t1) != TREE_TYPE (t))
5965 t1 = convert (TREE_TYPE (t), t1);
5966
5967 return t1;
5968 }
5969 return t;
5970
5971 case MINUS_EXPR:
5972 /* A - (-B) -> A + B */
5973 if (TREE_CODE (arg1) == NEGATE_EXPR)
5974 return fold (build (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
5975 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
5976 if (TREE_CODE (arg0) == NEGATE_EXPR
5977 && (FLOAT_TYPE_P (type)
5978 || (INTEGRAL_TYPE_P (type) && flag_wrapv && !flag_trapv))
5979 && negate_expr_p (arg1)
5980 && (! TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
5981 && (! TREE_SIDE_EFFECTS (arg1) || TREE_CONSTANT (arg0)))
5982 return fold (build (MINUS_EXPR, type, negate_expr (arg1),
5983 TREE_OPERAND (arg0, 0)));
5984
5985 if (! FLOAT_TYPE_P (type))
5986 {
5987 if (! wins && integer_zerop (arg0))
5988 return negate_expr (convert (type, arg1));
5989 if (integer_zerop (arg1))
5990 return non_lvalue (convert (type, arg0));
5991
5992 /* (A * C) - (B * C) -> (A-B) * C. Since we are most concerned
5993 about the case where C is a constant, just try one of the
5994 four possibilities. */
5995
5996 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR
5997 && operand_equal_p (TREE_OPERAND (arg0, 1),
5998 TREE_OPERAND (arg1, 1), 0))
5999 return fold (build (MULT_EXPR, type,
6000 fold (build (MINUS_EXPR, type,
6001 TREE_OPERAND (arg0, 0),
6002 TREE_OPERAND (arg1, 0))),
6003 TREE_OPERAND (arg0, 1)));
6004
6005 /* Fold A - (A & B) into ~B & A. */
6006 if (!TREE_SIDE_EFFECTS (arg0)
6007 && TREE_CODE (arg1) == BIT_AND_EXPR)
6008 {
6009 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
6010 return fold (build (BIT_AND_EXPR, type,
6011 fold (build1 (BIT_NOT_EXPR, type,
6012 TREE_OPERAND (arg1, 0))),
6013 arg0));
6014 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
6015 return fold (build (BIT_AND_EXPR, type,
6016 fold (build1 (BIT_NOT_EXPR, type,
6017 TREE_OPERAND (arg1, 1))),
6018 arg0));
6019 }
6020
6021 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, , where B is
6022 any power of 2 minus 1. */
6023 if (TREE_CODE (arg0) == BIT_AND_EXPR
6024 && TREE_CODE (arg1) == BIT_AND_EXPR
6025 && operand_equal_p (TREE_OPERAND (arg0, 0),
6026 TREE_OPERAND (arg1, 0), 0)
6027 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6028 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST)
6029 {
6030 tree mask0 = TREE_OPERAND (arg0, 1);
6031 tree mask1 = TREE_OPERAND (arg1, 1);
6032 tree tem = fold (build1 (BIT_NOT_EXPR, type, mask0));
6033
6034 if (operand_equal_p (tem, mask1, 0)
6035 && integer_pow2p (fold (build (PLUS_EXPR, type,
6036 mask1, integer_one_node))))
6037 {
6038 tem = fold (build (BIT_XOR_EXPR, type,
6039 TREE_OPERAND (arg0, 0), mask1));
6040 return fold (build (MINUS_EXPR, type, tem, mask1));
6041 }
6042 }
6043 }
6044
6045 /* See if ARG1 is zero and X - ARG1 reduces to X. */
6046 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
6047 return non_lvalue (convert (type, arg0));
6048
6049 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
6050 ARG0 is zero and X + ARG0 reduces to X, since that would mean
6051 (-ARG1 + ARG0) reduces to -ARG1. */
6052 else if (!wins && fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
6053 return negate_expr (convert (type, arg1));
6054
6055 /* Fold &x - &x. This can happen from &x.foo - &x.
6056 This is unsafe for certain floats even in non-IEEE formats.
6057 In IEEE, it is unsafe because it does wrong for NaNs.
6058 Also note that operand_equal_p is always false if an operand
6059 is volatile. */
6060
6061 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
6062 && operand_equal_p (arg0, arg1, 0))
6063 return convert (type, integer_zero_node);
6064
6065 goto associate;
6066
6067 case MULT_EXPR:
6068 /* (-A) * (-B) -> A * B */
6069 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
6070 return fold (build (MULT_EXPR, type,
6071 TREE_OPERAND (arg0, 0),
6072 negate_expr (arg1)));
6073 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
6074 return fold (build (MULT_EXPR, type,
6075 negate_expr (arg0),
6076 TREE_OPERAND (arg1, 0)));
6077
6078 if (! FLOAT_TYPE_P (type))
6079 {
6080 if (integer_zerop (arg1))
6081 return omit_one_operand (type, arg1, arg0);
6082 if (integer_onep (arg1))
6083 return non_lvalue (convert (type, arg0));
6084
6085 /* (a * (1 << b)) is (a << b) */
6086 if (TREE_CODE (arg1) == LSHIFT_EXPR
6087 && integer_onep (TREE_OPERAND (arg1, 0)))
6088 return fold (build (LSHIFT_EXPR, type, arg0,
6089 TREE_OPERAND (arg1, 1)));
6090 if (TREE_CODE (arg0) == LSHIFT_EXPR
6091 && integer_onep (TREE_OPERAND (arg0, 0)))
6092 return fold (build (LSHIFT_EXPR, type, arg1,
6093 TREE_OPERAND (arg0, 1)));
6094
6095 if (TREE_CODE (arg1) == INTEGER_CST
6096 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0),
6097 convert (type, arg1),
6098 code, NULL_TREE)))
6099 return convert (type, tem);
6100
6101 }
6102 else
6103 {
6104 /* Maybe fold x * 0 to 0. The expressions aren't the same
6105 when x is NaN, since x * 0 is also NaN. Nor are they the
6106 same in modes with signed zeros, since multiplying a
6107 negative value by 0 gives -0, not +0. */
6108 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
6109 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
6110 && real_zerop (arg1))
6111 return omit_one_operand (type, arg1, arg0);
6112 /* In IEEE floating point, x*1 is not equivalent to x for snans. */
6113 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
6114 && real_onep (arg1))
6115 return non_lvalue (convert (type, arg0));
6116
6117 /* Transform x * -1.0 into -x. */
6118 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
6119 && real_minus_onep (arg1))
6120 return fold (build1 (NEGATE_EXPR, type, arg0));
6121
6122 /* Convert (C1/X)*C2 into (C1*C2)/X. */
6123 if (flag_unsafe_math_optimizations
6124 && TREE_CODE (arg0) == RDIV_EXPR
6125 && TREE_CODE (arg1) == REAL_CST
6126 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
6127 {
6128 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
6129 arg1, 0);
6130 if (tem)
6131 return fold (build (RDIV_EXPR, type, tem,
6132 TREE_OPERAND (arg0, 1)));
6133 }
6134
6135 if (flag_unsafe_math_optimizations)
6136 {
6137 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
6138 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
6139
6140 /* Optimizations of sqrt(...)*sqrt(...). */
6141 if ((fcode0 == BUILT_IN_SQRT && fcode1 == BUILT_IN_SQRT)
6142 || (fcode0 == BUILT_IN_SQRTF && fcode1 == BUILT_IN_SQRTF)
6143 || (fcode0 == BUILT_IN_SQRTL && fcode1 == BUILT_IN_SQRTL))
6144 {
6145 tree sqrtfn, arg, arglist;
6146 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
6147 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
6148
6149 /* Optimize sqrt(x)*sqrt(x) as x. */
6150 if (operand_equal_p (arg00, arg10, 0)
6151 && ! HONOR_SNANS (TYPE_MODE (type)))
6152 return arg00;
6153
6154 /* Optimize sqrt(x)*sqrt(y) as sqrt(x*y). */
6155 sqrtfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
6156 arg = fold (build (MULT_EXPR, type, arg00, arg10));
6157 arglist = build_tree_list (NULL_TREE, arg);
6158 return build_function_call_expr (sqrtfn, arglist);
6159 }
6160
6161 /* Optimize expN(x)*expN(y) as expN(x+y). */
6162 if (fcode0 == fcode1
6163 && (fcode0 == BUILT_IN_EXP
6164 || fcode0 == BUILT_IN_EXPF
6165 || fcode0 == BUILT_IN_EXPL
6166 || fcode0 == BUILT_IN_EXP2
6167 || fcode0 == BUILT_IN_EXP2F
6168 || fcode0 == BUILT_IN_EXP2L
6169 || fcode0 == BUILT_IN_EXP10
6170 || fcode0 == BUILT_IN_EXP10F
6171 || fcode0 == BUILT_IN_EXP10L
6172 || fcode0 == BUILT_IN_POW10
6173 || fcode0 == BUILT_IN_POW10F
6174 || fcode0 == BUILT_IN_POW10L))
6175 {
6176 tree expfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
6177 tree arg = build (PLUS_EXPR, type,
6178 TREE_VALUE (TREE_OPERAND (arg0, 1)),
6179 TREE_VALUE (TREE_OPERAND (arg1, 1)));
6180 tree arglist = build_tree_list (NULL_TREE, fold (arg));
6181 return build_function_call_expr (expfn, arglist);
6182 }
6183
6184 /* Optimizations of pow(...)*pow(...). */
6185 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
6186 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
6187 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
6188 {
6189 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
6190 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
6191 1)));
6192 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
6193 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
6194 1)));
6195
6196 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
6197 if (operand_equal_p (arg01, arg11, 0))
6198 {
6199 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
6200 tree arg = build (MULT_EXPR, type, arg00, arg10);
6201 tree arglist = tree_cons (NULL_TREE, fold (arg),
6202 build_tree_list (NULL_TREE,
6203 arg01));
6204 return build_function_call_expr (powfn, arglist);
6205 }
6206
6207 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
6208 if (operand_equal_p (arg00, arg10, 0))
6209 {
6210 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
6211 tree arg = fold (build (PLUS_EXPR, type, arg01, arg11));
6212 tree arglist = tree_cons (NULL_TREE, arg00,
6213 build_tree_list (NULL_TREE,
6214 arg));
6215 return build_function_call_expr (powfn, arglist);
6216 }
6217 }
6218
6219 /* Optimize tan(x)*cos(x) as sin(x). */
6220 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
6221 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
6222 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
6223 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
6224 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
6225 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
6226 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
6227 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
6228 {
6229 tree sinfn;
6230
6231 switch (fcode0)
6232 {
6233 case BUILT_IN_TAN:
6234 case BUILT_IN_COS:
6235 sinfn = implicit_built_in_decls[BUILT_IN_SIN];
6236 break;
6237 case BUILT_IN_TANF:
6238 case BUILT_IN_COSF:
6239 sinfn = implicit_built_in_decls[BUILT_IN_SINF];
6240 break;
6241 case BUILT_IN_TANL:
6242 case BUILT_IN_COSL:
6243 sinfn = implicit_built_in_decls[BUILT_IN_SINL];
6244 break;
6245 default:
6246 sinfn = NULL_TREE;
6247 }
6248
6249 if (sinfn != NULL_TREE)
6250 return build_function_call_expr (sinfn,
6251 TREE_OPERAND (arg0, 1));
6252 }
6253
6254 /* Optimize x*pow(x,c) as pow(x,c+1). */
6255 if (fcode1 == BUILT_IN_POW
6256 || fcode1 == BUILT_IN_POWF
6257 || fcode1 == BUILT_IN_POWL)
6258 {
6259 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
6260 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
6261 1)));
6262 if (TREE_CODE (arg11) == REAL_CST
6263 && ! TREE_CONSTANT_OVERFLOW (arg11)
6264 && operand_equal_p (arg0, arg10, 0))
6265 {
6266 tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
6267 REAL_VALUE_TYPE c;
6268 tree arg, arglist;
6269
6270 c = TREE_REAL_CST (arg11);
6271 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
6272 arg = build_real (type, c);
6273 arglist = build_tree_list (NULL_TREE, arg);
6274 arglist = tree_cons (NULL_TREE, arg0, arglist);
6275 return build_function_call_expr (powfn, arglist);
6276 }
6277 }
6278
6279 /* Optimize pow(x,c)*x as pow(x,c+1). */
6280 if (fcode0 == BUILT_IN_POW
6281 || fcode0 == BUILT_IN_POWF
6282 || fcode0 == BUILT_IN_POWL)
6283 {
6284 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
6285 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
6286 1)));
6287 if (TREE_CODE (arg01) == REAL_CST
6288 && ! TREE_CONSTANT_OVERFLOW (arg01)
6289 && operand_equal_p (arg1, arg00, 0))
6290 {
6291 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
6292 REAL_VALUE_TYPE c;
6293 tree arg, arglist;
6294
6295 c = TREE_REAL_CST (arg01);
6296 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
6297 arg = build_real (type, c);
6298 arglist = build_tree_list (NULL_TREE, arg);
6299 arglist = tree_cons (NULL_TREE, arg1, arglist);
6300 return build_function_call_expr (powfn, arglist);
6301 }
6302 }
6303
6304 /* Optimize x*x as pow(x,2.0), which is expanded as x*x. */
6305 if (! optimize_size
6306 && operand_equal_p (arg0, arg1, 0))
6307 {
6308 tree powfn;
6309
6310 if (type == double_type_node)
6311 powfn = implicit_built_in_decls[BUILT_IN_POW];
6312 else if (type == float_type_node)
6313 powfn = implicit_built_in_decls[BUILT_IN_POWF];
6314 else if (type == long_double_type_node)
6315 powfn = implicit_built_in_decls[BUILT_IN_POWL];
6316 else
6317 powfn = NULL_TREE;
6318
6319 if (powfn)
6320 {
6321 tree arg = build_real (type, dconst2);
6322 tree arglist = build_tree_list (NULL_TREE, arg);
6323 arglist = tree_cons (NULL_TREE, arg0, arglist);
6324 return build_function_call_expr (powfn, arglist);
6325 }
6326 }
6327 }
6328 }
6329 goto associate;
6330
6331 case BIT_IOR_EXPR:
6332 bit_ior:
6333 if (integer_all_onesp (arg1))
6334 return omit_one_operand (type, arg1, arg0);
6335 if (integer_zerop (arg1))
6336 return non_lvalue (convert (type, arg0));
6337 t1 = distribute_bit_expr (code, type, arg0, arg1);
6338 if (t1 != NULL_TREE)
6339 return t1;
6340
6341 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
6342
6343 This results in more efficient code for machines without a NAND
6344 instruction. Combine will canonicalize to the first form
6345 which will allow use of NAND instructions provided by the
6346 backend if they exist. */
6347 if (TREE_CODE (arg0) == BIT_NOT_EXPR
6348 && TREE_CODE (arg1) == BIT_NOT_EXPR)
6349 {
6350 return fold (build1 (BIT_NOT_EXPR, type,
6351 build (BIT_AND_EXPR, type,
6352 TREE_OPERAND (arg0, 0),
6353 TREE_OPERAND (arg1, 0))));
6354 }
6355
6356 /* See if this can be simplified into a rotate first. If that
6357 is unsuccessful continue in the association code. */
6358 goto bit_rotate;
6359
6360 case BIT_XOR_EXPR:
6361 if (integer_zerop (arg1))
6362 return non_lvalue (convert (type, arg0));
6363 if (integer_all_onesp (arg1))
6364 return fold (build1 (BIT_NOT_EXPR, type, arg0));
6365
6366 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
6367 with a constant, and the two constants have no bits in common,
6368 we should treat this as a BIT_IOR_EXPR since this may produce more
6369 simplifications. */
6370 if (TREE_CODE (arg0) == BIT_AND_EXPR
6371 && TREE_CODE (arg1) == BIT_AND_EXPR
6372 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6373 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
6374 && integer_zerop (const_binop (BIT_AND_EXPR,
6375 TREE_OPERAND (arg0, 1),
6376 TREE_OPERAND (arg1, 1), 0)))
6377 {
6378 code = BIT_IOR_EXPR;
6379 goto bit_ior;
6380 }
6381
6382 /* See if this can be simplified into a rotate first. If that
6383 is unsuccessful continue in the association code. */
6384 goto bit_rotate;
6385
6386 case BIT_AND_EXPR:
6387 if (integer_all_onesp (arg1))
6388 return non_lvalue (convert (type, arg0));
6389 if (integer_zerop (arg1))
6390 return omit_one_operand (type, arg1, arg0);
6391 t1 = distribute_bit_expr (code, type, arg0, arg1);
6392 if (t1 != NULL_TREE)
6393 return t1;
6394 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
6395 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
6396 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
6397 {
6398 unsigned int prec
6399 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
6400
6401 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
6402 && (~TREE_INT_CST_LOW (arg1)
6403 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
6404 return build1 (NOP_EXPR, type, TREE_OPERAND (arg0, 0));
6405 }
6406
6407 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
6408
6409 This results in more efficient code for machines without a NOR
6410 instruction. Combine will canonicalize to the first form
6411 which will allow use of NOR instructions provided by the
6412 backend if they exist. */
6413 if (TREE_CODE (arg0) == BIT_NOT_EXPR
6414 && TREE_CODE (arg1) == BIT_NOT_EXPR)
6415 {
6416 return fold (build1 (BIT_NOT_EXPR, type,
6417 build (BIT_IOR_EXPR, type,
6418 TREE_OPERAND (arg0, 0),
6419 TREE_OPERAND (arg1, 0))));
6420 }
6421
6422 goto associate;
6423
6424 case RDIV_EXPR:
6425 /* Don't touch a floating-point divide by zero unless the mode
6426 of the constant can represent infinity. */
6427 if (TREE_CODE (arg1) == REAL_CST
6428 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
6429 && real_zerop (arg1))
6430 return t;
6431
6432 /* (-A) / (-B) -> A / B */
6433 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
6434 return fold (build (RDIV_EXPR, type,
6435 TREE_OPERAND (arg0, 0),
6436 negate_expr (arg1)));
6437 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
6438 return fold (build (RDIV_EXPR, type,
6439 negate_expr (arg0),
6440 TREE_OPERAND (arg1, 0)));
6441
6442 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
6443 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
6444 && real_onep (arg1))
6445 return non_lvalue (convert (type, arg0));
6446
6447 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
6448 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
6449 && real_minus_onep (arg1))
6450 return non_lvalue (convert (type, negate_expr (arg0)));
6451
6452 /* If ARG1 is a constant, we can convert this to a multiply by the
6453 reciprocal. This does not have the same rounding properties,
6454 so only do this if -funsafe-math-optimizations. We can actually
6455 always safely do it if ARG1 is a power of two, but it's hard to
6456 tell if it is or not in a portable manner. */
6457 if (TREE_CODE (arg1) == REAL_CST)
6458 {
6459 if (flag_unsafe_math_optimizations
6460 && 0 != (tem = const_binop (code, build_real (type, dconst1),
6461 arg1, 0)))
6462 return fold (build (MULT_EXPR, type, arg0, tem));
6463 /* Find the reciprocal if optimizing and the result is exact. */
6464 if (optimize)
6465 {
6466 REAL_VALUE_TYPE r;
6467 r = TREE_REAL_CST (arg1);
6468 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
6469 {
6470 tem = build_real (type, r);
6471 return fold (build (MULT_EXPR, type, arg0, tem));
6472 }
6473 }
6474 }
6475 /* Convert A/B/C to A/(B*C). */
6476 if (flag_unsafe_math_optimizations
6477 && TREE_CODE (arg0) == RDIV_EXPR)
6478 return fold (build (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
6479 fold (build (MULT_EXPR, type,
6480 TREE_OPERAND (arg0, 1), arg1))));
6481
6482 /* Convert A/(B/C) to (A/B)*C. */
6483 if (flag_unsafe_math_optimizations
6484 && TREE_CODE (arg1) == RDIV_EXPR)
6485 return fold (build (MULT_EXPR, type,
6486 fold (build (RDIV_EXPR, type, arg0,
6487 TREE_OPERAND (arg1, 0))),
6488 TREE_OPERAND (arg1, 1)));
6489
6490 /* Convert C1/(X*C2) into (C1/C2)/X. */
6491 if (flag_unsafe_math_optimizations
6492 && TREE_CODE (arg1) == MULT_EXPR
6493 && TREE_CODE (arg0) == REAL_CST
6494 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
6495 {
6496 tree tem = const_binop (RDIV_EXPR, arg0,
6497 TREE_OPERAND (arg1, 1), 0);
6498 if (tem)
6499 return fold (build (RDIV_EXPR, type, tem,
6500 TREE_OPERAND (arg1, 0)));
6501 }
6502
6503 if (flag_unsafe_math_optimizations)
6504 {
6505 enum built_in_function fcode = builtin_mathfn_code (arg1);
6506 /* Optimize x/expN(y) into x*expN(-y). */
6507 if (fcode == BUILT_IN_EXP
6508 || fcode == BUILT_IN_EXPF
6509 || fcode == BUILT_IN_EXPL
6510 || fcode == BUILT_IN_EXP2
6511 || fcode == BUILT_IN_EXP2F
6512 || fcode == BUILT_IN_EXP2L
6513 || fcode == BUILT_IN_EXP10
6514 || fcode == BUILT_IN_EXP10F
6515 || fcode == BUILT_IN_EXP10L
6516 || fcode == BUILT_IN_POW10
6517 || fcode == BUILT_IN_POW10F
6518 || fcode == BUILT_IN_POW10L)
6519 {
6520 tree expfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
6521 tree arg = build1 (NEGATE_EXPR, type,
6522 TREE_VALUE (TREE_OPERAND (arg1, 1)));
6523 tree arglist = build_tree_list (NULL_TREE, fold (arg));
6524 arg1 = build_function_call_expr (expfn, arglist);
6525 return fold (build (MULT_EXPR, type, arg0, arg1));
6526 }
6527
6528 /* Optimize x/pow(y,z) into x*pow(y,-z). */
6529 if (fcode == BUILT_IN_POW
6530 || fcode == BUILT_IN_POWF
6531 || fcode == BUILT_IN_POWL)
6532 {
6533 tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
6534 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
6535 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1, 1)));
6536 tree neg11 = fold (build1 (NEGATE_EXPR, type, arg11));
6537 tree arglist = tree_cons(NULL_TREE, arg10,
6538 build_tree_list (NULL_TREE, neg11));
6539 arg1 = build_function_call_expr (powfn, arglist);
6540 return fold (build (MULT_EXPR, type, arg0, arg1));
6541 }
6542 }
6543
6544 if (flag_unsafe_math_optimizations)
6545 {
6546 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
6547 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
6548
6549 /* Optimize sin(x)/cos(x) as tan(x). */
6550 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
6551 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
6552 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
6553 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
6554 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
6555 {
6556 tree tanfn;
6557
6558 if (fcode0 == BUILT_IN_SIN)
6559 tanfn = implicit_built_in_decls[BUILT_IN_TAN];
6560 else if (fcode0 == BUILT_IN_SINF)
6561 tanfn = implicit_built_in_decls[BUILT_IN_TANF];
6562 else if (fcode0 == BUILT_IN_SINL)
6563 tanfn = implicit_built_in_decls[BUILT_IN_TANL];
6564 else
6565 tanfn = NULL_TREE;
6566
6567 if (tanfn != NULL_TREE)
6568 return build_function_call_expr (tanfn,
6569 TREE_OPERAND (arg0, 1));
6570 }
6571
6572 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
6573 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
6574 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
6575 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
6576 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
6577 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
6578 {
6579 tree tanfn;
6580
6581 if (fcode0 == BUILT_IN_COS)
6582 tanfn = implicit_built_in_decls[BUILT_IN_TAN];
6583 else if (fcode0 == BUILT_IN_COSF)
6584 tanfn = implicit_built_in_decls[BUILT_IN_TANF];
6585 else if (fcode0 == BUILT_IN_COSL)
6586 tanfn = implicit_built_in_decls[BUILT_IN_TANL];
6587 else
6588 tanfn = NULL_TREE;
6589
6590 if (tanfn != NULL_TREE)
6591 {
6592 tree tmp = TREE_OPERAND (arg0, 1);
6593 tmp = build_function_call_expr (tanfn, tmp);
6594 return fold (build (RDIV_EXPR, type,
6595 build_real (type, dconst1),
6596 tmp));
6597 }
6598 }
6599
6600 /* Optimize pow(x,c)/x as pow(x,c-1). */
6601 if (fcode0 == BUILT_IN_POW
6602 || fcode0 == BUILT_IN_POWF
6603 || fcode0 == BUILT_IN_POWL)
6604 {
6605 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
6606 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0, 1)));
6607 if (TREE_CODE (arg01) == REAL_CST
6608 && ! TREE_CONSTANT_OVERFLOW (arg01)
6609 && operand_equal_p (arg1, arg00, 0))
6610 {
6611 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
6612 REAL_VALUE_TYPE c;
6613 tree arg, arglist;
6614
6615 c = TREE_REAL_CST (arg01);
6616 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
6617 arg = build_real (type, c);
6618 arglist = build_tree_list (NULL_TREE, arg);
6619 arglist = tree_cons (NULL_TREE, arg1, arglist);
6620 return build_function_call_expr (powfn, arglist);
6621 }
6622 }
6623 }
6624 goto binary;
6625
6626 case TRUNC_DIV_EXPR:
6627 case ROUND_DIV_EXPR:
6628 case FLOOR_DIV_EXPR:
6629 case CEIL_DIV_EXPR:
6630 case EXACT_DIV_EXPR:
6631 if (integer_onep (arg1))
6632 return non_lvalue (convert (type, arg0));
6633 if (integer_zerop (arg1))
6634 return t;
6635
6636 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
6637 operation, EXACT_DIV_EXPR.
6638
6639 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
6640 At one time others generated faster code, it's not clear if they do
6641 after the last round to changes to the DIV code in expmed.c. */
6642 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
6643 && multiple_of_p (type, arg0, arg1))
6644 return fold (build (EXACT_DIV_EXPR, type, arg0, arg1));
6645
6646 if (TREE_CODE (arg1) == INTEGER_CST
6647 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
6648 code, NULL_TREE)))
6649 return convert (type, tem);
6650
6651 goto binary;
6652
6653 case CEIL_MOD_EXPR:
6654 case FLOOR_MOD_EXPR:
6655 case ROUND_MOD_EXPR:
6656 case TRUNC_MOD_EXPR:
6657 if (integer_onep (arg1))
6658 return omit_one_operand (type, integer_zero_node, arg0);
6659 if (integer_zerop (arg1))
6660 return t;
6661
6662 if (TREE_CODE (arg1) == INTEGER_CST
6663 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
6664 code, NULL_TREE)))
6665 return convert (type, tem);
6666
6667 goto binary;
6668
6669 case LROTATE_EXPR:
6670 case RROTATE_EXPR:
6671 if (integer_all_onesp (arg0))
6672 return omit_one_operand (type, arg0, arg1);
6673 goto shift;
6674
6675 case RSHIFT_EXPR:
6676 /* Optimize -1 >> x for arithmetic right shifts. */
6677 if (integer_all_onesp (arg0) && ! TREE_UNSIGNED (type))
6678 return omit_one_operand (type, arg0, arg1);
6679 /* ... fall through ... */
6680
6681 case LSHIFT_EXPR:
6682 shift:
6683 if (integer_zerop (arg1))
6684 return non_lvalue (convert (type, arg0));
6685 if (integer_zerop (arg0))
6686 return omit_one_operand (type, arg0, arg1);
6687
6688 /* Since negative shift count is not well-defined,
6689 don't try to compute it in the compiler. */
6690 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
6691 return t;
6692 /* Rewrite an LROTATE_EXPR by a constant into an
6693 RROTATE_EXPR by a new constant. */
6694 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
6695 {
6696 tree tem = build_int_2 (GET_MODE_BITSIZE (TYPE_MODE (type)), 0);
6697 tem = convert (TREE_TYPE (arg1), tem);
6698 tem = const_binop (MINUS_EXPR, tem, arg1, 0);
6699 return fold (build (RROTATE_EXPR, type, arg0, tem));
6700 }
6701
6702 /* If we have a rotate of a bit operation with the rotate count and
6703 the second operand of the bit operation both constant,
6704 permute the two operations. */
6705 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
6706 && (TREE_CODE (arg0) == BIT_AND_EXPR
6707 || TREE_CODE (arg0) == BIT_IOR_EXPR
6708 || TREE_CODE (arg0) == BIT_XOR_EXPR)
6709 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
6710 return fold (build (TREE_CODE (arg0), type,
6711 fold (build (code, type,
6712 TREE_OPERAND (arg0, 0), arg1)),
6713 fold (build (code, type,
6714 TREE_OPERAND (arg0, 1), arg1))));
6715
6716 /* Two consecutive rotates adding up to the width of the mode can
6717 be ignored. */
6718 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
6719 && TREE_CODE (arg0) == RROTATE_EXPR
6720 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6721 && TREE_INT_CST_HIGH (arg1) == 0
6722 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
6723 && ((TREE_INT_CST_LOW (arg1)
6724 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
6725 == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
6726 return TREE_OPERAND (arg0, 0);
6727
6728 goto binary;
6729
6730 case MIN_EXPR:
6731 if (operand_equal_p (arg0, arg1, 0))
6732 return omit_one_operand (type, arg0, arg1);
6733 if (INTEGRAL_TYPE_P (type)
6734 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), 1))
6735 return omit_one_operand (type, arg1, arg0);
6736 goto associate;
6737
6738 case MAX_EXPR:
6739 if (operand_equal_p (arg0, arg1, 0))
6740 return omit_one_operand (type, arg0, arg1);
6741 if (INTEGRAL_TYPE_P (type)
6742 && TYPE_MAX_VALUE (type)
6743 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), 1))
6744 return omit_one_operand (type, arg1, arg0);
6745 goto associate;
6746
6747 case TRUTH_NOT_EXPR:
6748 /* Note that the operand of this must be an int
6749 and its values must be 0 or 1.
6750 ("true" is a fixed value perhaps depending on the language,
6751 but we don't handle values other than 1 correctly yet.) */
6752 tem = invert_truthvalue (arg0);
6753 /* Avoid infinite recursion. */
6754 if (TREE_CODE (tem) == TRUTH_NOT_EXPR)
6755 {
6756 tem = fold_single_bit_test (code, arg0, arg1, type);
6757 if (tem)
6758 return tem;
6759 return t;
6760 }
6761 return convert (type, tem);
6762
6763 case TRUTH_ANDIF_EXPR:
6764 /* Note that the operands of this must be ints
6765 and their values must be 0 or 1.
6766 ("true" is a fixed value perhaps depending on the language.) */
6767 /* If first arg is constant zero, return it. */
6768 if (integer_zerop (arg0))
6769 return convert (type, arg0);
6770 case TRUTH_AND_EXPR:
6771 /* If either arg is constant true, drop it. */
6772 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
6773 return non_lvalue (convert (type, arg1));
6774 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
6775 /* Preserve sequence points. */
6776 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
6777 return non_lvalue (convert (type, arg0));
6778 /* If second arg is constant zero, result is zero, but first arg
6779 must be evaluated. */
6780 if (integer_zerop (arg1))
6781 return omit_one_operand (type, arg1, arg0);
6782 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
6783 case will be handled here. */
6784 if (integer_zerop (arg0))
6785 return omit_one_operand (type, arg0, arg1);
6786
6787 truth_andor:
6788 /* We only do these simplifications if we are optimizing. */
6789 if (!optimize)
6790 return t;
6791
6792 /* Check for things like (A || B) && (A || C). We can convert this
6793 to A || (B && C). Note that either operator can be any of the four
6794 truth and/or operations and the transformation will still be
6795 valid. Also note that we only care about order for the
6796 ANDIF and ORIF operators. If B contains side effects, this
6797 might change the truth-value of A. */
6798 if (TREE_CODE (arg0) == TREE_CODE (arg1)
6799 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
6800 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
6801 || TREE_CODE (arg0) == TRUTH_AND_EXPR
6802 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
6803 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
6804 {
6805 tree a00 = TREE_OPERAND (arg0, 0);
6806 tree a01 = TREE_OPERAND (arg0, 1);
6807 tree a10 = TREE_OPERAND (arg1, 0);
6808 tree a11 = TREE_OPERAND (arg1, 1);
6809 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
6810 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
6811 && (code == TRUTH_AND_EXPR
6812 || code == TRUTH_OR_EXPR));
6813
6814 if (operand_equal_p (a00, a10, 0))
6815 return fold (build (TREE_CODE (arg0), type, a00,
6816 fold (build (code, type, a01, a11))));
6817 else if (commutative && operand_equal_p (a00, a11, 0))
6818 return fold (build (TREE_CODE (arg0), type, a00,
6819 fold (build (code, type, a01, a10))));
6820 else if (commutative && operand_equal_p (a01, a10, 0))
6821 return fold (build (TREE_CODE (arg0), type, a01,
6822 fold (build (code, type, a00, a11))));
6823
6824 /* This case if tricky because we must either have commutative
6825 operators or else A10 must not have side-effects. */
6826
6827 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
6828 && operand_equal_p (a01, a11, 0))
6829 return fold (build (TREE_CODE (arg0), type,
6830 fold (build (code, type, a00, a10)),
6831 a01));
6832 }
6833
6834 /* See if we can build a range comparison. */
6835 if (0 != (tem = fold_range_test (t)))
6836 return tem;
6837
6838 /* Check for the possibility of merging component references. If our
6839 lhs is another similar operation, try to merge its rhs with our
6840 rhs. Then try to merge our lhs and rhs. */
6841 if (TREE_CODE (arg0) == code
6842 && 0 != (tem = fold_truthop (code, type,
6843 TREE_OPERAND (arg0, 1), arg1)))
6844 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6845
6846 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
6847 return tem;
6848
6849 return t;
6850
6851 case TRUTH_ORIF_EXPR:
6852 /* Note that the operands of this must be ints
6853 and their values must be 0 or true.
6854 ("true" is a fixed value perhaps depending on the language.) */
6855 /* If first arg is constant true, return it. */
6856 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
6857 return convert (type, arg0);
6858 case TRUTH_OR_EXPR:
6859 /* If either arg is constant zero, drop it. */
6860 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
6861 return non_lvalue (convert (type, arg1));
6862 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
6863 /* Preserve sequence points. */
6864 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
6865 return non_lvalue (convert (type, arg0));
6866 /* If second arg is constant true, result is true, but we must
6867 evaluate first arg. */
6868 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
6869 return omit_one_operand (type, arg1, arg0);
6870 /* Likewise for first arg, but note this only occurs here for
6871 TRUTH_OR_EXPR. */
6872 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
6873 return omit_one_operand (type, arg0, arg1);
6874 goto truth_andor;
6875
6876 case TRUTH_XOR_EXPR:
6877 /* If either arg is constant zero, drop it. */
6878 if (integer_zerop (arg0))
6879 return non_lvalue (convert (type, arg1));
6880 if (integer_zerop (arg1))
6881 return non_lvalue (convert (type, arg0));
6882 /* If either arg is constant true, this is a logical inversion. */
6883 if (integer_onep (arg0))
6884 return non_lvalue (convert (type, invert_truthvalue (arg1)));
6885 if (integer_onep (arg1))
6886 return non_lvalue (convert (type, invert_truthvalue (arg0)));
6887 return t;
6888
6889 case EQ_EXPR:
6890 case NE_EXPR:
6891 case LT_EXPR:
6892 case GT_EXPR:
6893 case LE_EXPR:
6894 case GE_EXPR:
6895 /* If one arg is a real or integer constant, put it last. */
6896 if (tree_swap_operands_p (arg0, arg1))
6897 return fold (build (swap_tree_comparison (code), type, arg1, arg0));
6898
6899 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
6900 {
6901 tree targ0 = strip_float_extensions (arg0);
6902 tree targ1 = strip_float_extensions (arg1);
6903 tree newtype = TREE_TYPE (targ0);
6904
6905 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
6906 newtype = TREE_TYPE (targ1);
6907
6908 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
6909 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
6910 return fold (build (code, type, convert (newtype, targ0),
6911 convert (newtype, targ1)));
6912
6913 /* (-a) CMP (-b) -> b CMP a */
6914 if (TREE_CODE (arg0) == NEGATE_EXPR
6915 && TREE_CODE (arg1) == NEGATE_EXPR)
6916 return fold (build (code, type, TREE_OPERAND (arg1, 0),
6917 TREE_OPERAND (arg0, 0)));
6918
6919 if (TREE_CODE (arg1) == REAL_CST)
6920 {
6921 REAL_VALUE_TYPE cst;
6922 cst = TREE_REAL_CST (arg1);
6923
6924 /* (-a) CMP CST -> a swap(CMP) (-CST) */
6925 if (TREE_CODE (arg0) == NEGATE_EXPR)
6926 return
6927 fold (build (swap_tree_comparison (code), type,
6928 TREE_OPERAND (arg0, 0),
6929 build_real (TREE_TYPE (arg1),
6930 REAL_VALUE_NEGATE (cst))));
6931
6932 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
6933 /* a CMP (-0) -> a CMP 0 */
6934 if (REAL_VALUE_MINUS_ZERO (cst))
6935 return fold (build (code, type, arg0,
6936 build_real (TREE_TYPE (arg1), dconst0)));
6937
6938 /* x != NaN is always true, other ops are always false. */
6939 if (REAL_VALUE_ISNAN (cst)
6940 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
6941 {
6942 t = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
6943 return omit_one_operand (type, convert (type, t), arg0);
6944 }
6945
6946 /* Fold comparisons against infinity. */
6947 if (REAL_VALUE_ISINF (cst))
6948 {
6949 tem = fold_inf_compare (code, type, arg0, arg1);
6950 if (tem != NULL_TREE)
6951 return tem;
6952 }
6953 }
6954
6955 /* If this is a comparison of a real constant with a PLUS_EXPR
6956 or a MINUS_EXPR of a real constant, we can convert it into a
6957 comparison with a revised real constant as long as no overflow
6958 occurs when unsafe_math_optimizations are enabled. */
6959 if (flag_unsafe_math_optimizations
6960 && TREE_CODE (arg1) == REAL_CST
6961 && (TREE_CODE (arg0) == PLUS_EXPR
6962 || TREE_CODE (arg0) == MINUS_EXPR)
6963 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
6964 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
6965 ? MINUS_EXPR : PLUS_EXPR,
6966 arg1, TREE_OPERAND (arg0, 1), 0))
6967 && ! TREE_CONSTANT_OVERFLOW (tem))
6968 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6969
6970 /* Likewise, we can simplify a comparison of a real constant with
6971 a MINUS_EXPR whose first operand is also a real constant, i.e.
6972 (c1 - x) < c2 becomes x > c1-c2. */
6973 if (flag_unsafe_math_optimizations
6974 && TREE_CODE (arg1) == REAL_CST
6975 && TREE_CODE (arg0) == MINUS_EXPR
6976 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
6977 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
6978 arg1, 0))
6979 && ! TREE_CONSTANT_OVERFLOW (tem))
6980 return fold (build (swap_tree_comparison (code), type,
6981 TREE_OPERAND (arg0, 1), tem));
6982
6983 /* Fold comparisons against built-in math functions. */
6984 if (TREE_CODE (arg1) == REAL_CST
6985 && flag_unsafe_math_optimizations
6986 && ! flag_errno_math)
6987 {
6988 enum built_in_function fcode = builtin_mathfn_code (arg0);
6989
6990 if (fcode != END_BUILTINS)
6991 {
6992 tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
6993 if (tem != NULL_TREE)
6994 return tem;
6995 }
6996 }
6997 }
6998
6999 /* Convert foo++ == CONST into ++foo == CONST + INCR.
7000 First, see if one arg is constant; find the constant arg
7001 and the other one. */
7002 {
7003 tree constop = 0, varop = NULL_TREE;
7004 int constopnum = -1;
7005
7006 if (TREE_CONSTANT (arg1))
7007 constopnum = 1, constop = arg1, varop = arg0;
7008 if (TREE_CONSTANT (arg0))
7009 constopnum = 0, constop = arg0, varop = arg1;
7010
7011 if (constop && TREE_CODE (varop) == POSTINCREMENT_EXPR)
7012 {
7013 /* This optimization is invalid for ordered comparisons
7014 if CONST+INCR overflows or if foo+incr might overflow.
7015 This optimization is invalid for floating point due to rounding.
7016 For pointer types we assume overflow doesn't happen. */
7017 if (POINTER_TYPE_P (TREE_TYPE (varop))
7018 || (! FLOAT_TYPE_P (TREE_TYPE (varop))
7019 && (code == EQ_EXPR || code == NE_EXPR)))
7020 {
7021 tree newconst
7022 = fold (build (PLUS_EXPR, TREE_TYPE (varop),
7023 constop, TREE_OPERAND (varop, 1)));
7024
7025 /* Do not overwrite the current varop to be a preincrement,
7026 create a new node so that we won't confuse our caller who
7027 might create trees and throw them away, reusing the
7028 arguments that they passed to build. This shows up in
7029 the THEN or ELSE parts of ?: being postincrements. */
7030 varop = build (PREINCREMENT_EXPR, TREE_TYPE (varop),
7031 TREE_OPERAND (varop, 0),
7032 TREE_OPERAND (varop, 1));
7033
7034 /* If VAROP is a reference to a bitfield, we must mask
7035 the constant by the width of the field. */
7036 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
7037 && DECL_BIT_FIELD(TREE_OPERAND
7038 (TREE_OPERAND (varop, 0), 1)))
7039 {
7040 int size
7041 = TREE_INT_CST_LOW (DECL_SIZE
7042 (TREE_OPERAND
7043 (TREE_OPERAND (varop, 0), 1)));
7044 tree mask, unsigned_type;
7045 unsigned int precision;
7046 tree folded_compare;
7047
7048 /* First check whether the comparison would come out
7049 always the same. If we don't do that we would
7050 change the meaning with the masking. */
7051 if (constopnum == 0)
7052 folded_compare = fold (build (code, type, constop,
7053 TREE_OPERAND (varop, 0)));
7054 else
7055 folded_compare = fold (build (code, type,
7056 TREE_OPERAND (varop, 0),
7057 constop));
7058 if (integer_zerop (folded_compare)
7059 || integer_onep (folded_compare))
7060 return omit_one_operand (type, folded_compare, varop);
7061
7062 unsigned_type = (*lang_hooks.types.type_for_size)(size, 1);
7063 precision = TYPE_PRECISION (unsigned_type);
7064 mask = build_int_2 (~0, ~0);
7065 TREE_TYPE (mask) = unsigned_type;
7066 force_fit_type (mask, 0);
7067 mask = const_binop (RSHIFT_EXPR, mask,
7068 size_int (precision - size), 0);
7069 newconst = fold (build (BIT_AND_EXPR,
7070 TREE_TYPE (varop), newconst,
7071 convert (TREE_TYPE (varop),
7072 mask)));
7073 }
7074
7075 t = build (code, type,
7076 (constopnum == 0) ? newconst : varop,
7077 (constopnum == 1) ? newconst : varop);
7078 return t;
7079 }
7080 }
7081 else if (constop && TREE_CODE (varop) == POSTDECREMENT_EXPR)
7082 {
7083 if (POINTER_TYPE_P (TREE_TYPE (varop))
7084 || (! FLOAT_TYPE_P (TREE_TYPE (varop))
7085 && (code == EQ_EXPR || code == NE_EXPR)))
7086 {
7087 tree newconst
7088 = fold (build (MINUS_EXPR, TREE_TYPE (varop),
7089 constop, TREE_OPERAND (varop, 1)));
7090
7091 /* Do not overwrite the current varop to be a predecrement,
7092 create a new node so that we won't confuse our caller who
7093 might create trees and throw them away, reusing the
7094 arguments that they passed to build. This shows up in
7095 the THEN or ELSE parts of ?: being postdecrements. */
7096 varop = build (PREDECREMENT_EXPR, TREE_TYPE (varop),
7097 TREE_OPERAND (varop, 0),
7098 TREE_OPERAND (varop, 1));
7099
7100 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
7101 && DECL_BIT_FIELD(TREE_OPERAND
7102 (TREE_OPERAND (varop, 0), 1)))
7103 {
7104 int size
7105 = TREE_INT_CST_LOW (DECL_SIZE
7106 (TREE_OPERAND
7107 (TREE_OPERAND (varop, 0), 1)));
7108 tree mask, unsigned_type;
7109 unsigned int precision;
7110 tree folded_compare;
7111
7112 if (constopnum == 0)
7113 folded_compare = fold (build (code, type, constop,
7114 TREE_OPERAND (varop, 0)));
7115 else
7116 folded_compare = fold (build (code, type,
7117 TREE_OPERAND (varop, 0),
7118 constop));
7119 if (integer_zerop (folded_compare)
7120 || integer_onep (folded_compare))
7121 return omit_one_operand (type, folded_compare, varop);
7122
7123 unsigned_type = (*lang_hooks.types.type_for_size)(size, 1);
7124 precision = TYPE_PRECISION (unsigned_type);
7125 mask = build_int_2 (~0, ~0);
7126 TREE_TYPE (mask) = TREE_TYPE (varop);
7127 force_fit_type (mask, 0);
7128 mask = const_binop (RSHIFT_EXPR, mask,
7129 size_int (precision - size), 0);
7130 newconst = fold (build (BIT_AND_EXPR,
7131 TREE_TYPE (varop), newconst,
7132 convert (TREE_TYPE (varop),
7133 mask)));
7134 }
7135
7136 t = build (code, type,
7137 (constopnum == 0) ? newconst : varop,
7138 (constopnum == 1) ? newconst : varop);
7139 return t;
7140 }
7141 }
7142 }
7143
7144 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
7145 This transformation affects the cases which are handled in later
7146 optimizations involving comparisons with non-negative constants. */
7147 if (TREE_CODE (arg1) == INTEGER_CST
7148 && TREE_CODE (arg0) != INTEGER_CST
7149 && tree_int_cst_sgn (arg1) > 0)
7150 {
7151 switch (code)
7152 {
7153 case GE_EXPR:
7154 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
7155 return fold (build (GT_EXPR, type, arg0, arg1));
7156
7157 case LT_EXPR:
7158 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
7159 return fold (build (LE_EXPR, type, arg0, arg1));
7160
7161 default:
7162 break;
7163 }
7164 }
7165
7166 /* Comparisons with the highest or lowest possible integer of
7167 the specified size will have known values. */
7168 {
7169 int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1)));
7170
7171 if (TREE_CODE (arg1) == INTEGER_CST
7172 && ! TREE_CONSTANT_OVERFLOW (arg1)
7173 && width <= HOST_BITS_PER_WIDE_INT
7174 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
7175 || POINTER_TYPE_P (TREE_TYPE (arg1))))
7176 {
7177 unsigned HOST_WIDE_INT signed_max;
7178 unsigned HOST_WIDE_INT max, min;
7179
7180 signed_max = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
7181
7182 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
7183 {
7184 max = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
7185 min = 0;
7186 }
7187 else
7188 {
7189 max = signed_max;
7190 min = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
7191 }
7192
7193 if (TREE_INT_CST_HIGH (arg1) == 0
7194 && TREE_INT_CST_LOW (arg1) == max)
7195 switch (code)
7196 {
7197 case GT_EXPR:
7198 return omit_one_operand (type,
7199 convert (type, integer_zero_node),
7200 arg0);
7201 case GE_EXPR:
7202 return fold (build (EQ_EXPR, type, arg0, arg1));
7203
7204 case LE_EXPR:
7205 return omit_one_operand (type,
7206 convert (type, integer_one_node),
7207 arg0);
7208 case LT_EXPR:
7209 return fold (build (NE_EXPR, type, arg0, arg1));
7210
7211 /* The GE_EXPR and LT_EXPR cases above are not normally
7212 reached because of previous transformations. */
7213
7214 default:
7215 break;
7216 }
7217 else if (TREE_INT_CST_HIGH (arg1) == 0
7218 && TREE_INT_CST_LOW (arg1) == max - 1)
7219 switch (code)
7220 {
7221 case GT_EXPR:
7222 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
7223 return fold (build (EQ_EXPR, type, arg0, arg1));
7224 case LE_EXPR:
7225 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
7226 return fold (build (NE_EXPR, type, arg0, arg1));
7227 default:
7228 break;
7229 }
7230 else if (TREE_INT_CST_HIGH (arg1) == (min ? -1 : 0)
7231 && TREE_INT_CST_LOW (arg1) == min)
7232 switch (code)
7233 {
7234 case LT_EXPR:
7235 return omit_one_operand (type,
7236 convert (type, integer_zero_node),
7237 arg0);
7238 case LE_EXPR:
7239 return fold (build (EQ_EXPR, type, arg0, arg1));
7240
7241 case GE_EXPR:
7242 return omit_one_operand (type,
7243 convert (type, integer_one_node),
7244 arg0);
7245 case GT_EXPR:
7246 return fold (build (NE_EXPR, type, arg0, arg1));
7247
7248 default:
7249 break;
7250 }
7251 else if (TREE_INT_CST_HIGH (arg1) == (min ? -1 : 0)
7252 && TREE_INT_CST_LOW (arg1) == min + 1)
7253 switch (code)
7254 {
7255 case GE_EXPR:
7256 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
7257 return fold (build (NE_EXPR, type, arg0, arg1));
7258 case LT_EXPR:
7259 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
7260 return fold (build (EQ_EXPR, type, arg0, arg1));
7261 default:
7262 break;
7263 }
7264
7265 else if (TREE_INT_CST_HIGH (arg1) == 0
7266 && TREE_INT_CST_LOW (arg1) == signed_max
7267 && TREE_UNSIGNED (TREE_TYPE (arg1))
7268 /* signed_type does not work on pointer types. */
7269 && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
7270 {
7271 /* The following case also applies to X < signed_max+1
7272 and X >= signed_max+1 because previous transformations. */
7273 if (code == LE_EXPR || code == GT_EXPR)
7274 {
7275 tree st0, st1;
7276 st0 = (*lang_hooks.types.signed_type) (TREE_TYPE (arg0));
7277 st1 = (*lang_hooks.types.signed_type) (TREE_TYPE (arg1));
7278 return fold
7279 (build (code == LE_EXPR ? GE_EXPR: LT_EXPR,
7280 type, convert (st0, arg0),
7281 convert (st1, integer_zero_node)));
7282 }
7283 }
7284 }
7285 }
7286
7287 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
7288 a MINUS_EXPR of a constant, we can convert it into a comparison with
7289 a revised constant as long as no overflow occurs. */
7290 if ((code == EQ_EXPR || code == NE_EXPR)
7291 && TREE_CODE (arg1) == INTEGER_CST
7292 && (TREE_CODE (arg0) == PLUS_EXPR
7293 || TREE_CODE (arg0) == MINUS_EXPR)
7294 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7295 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
7296 ? MINUS_EXPR : PLUS_EXPR,
7297 arg1, TREE_OPERAND (arg0, 1), 0))
7298 && ! TREE_CONSTANT_OVERFLOW (tem))
7299 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
7300
7301 /* Similarly for a NEGATE_EXPR. */
7302 else if ((code == EQ_EXPR || code == NE_EXPR)
7303 && TREE_CODE (arg0) == NEGATE_EXPR
7304 && TREE_CODE (arg1) == INTEGER_CST
7305 && 0 != (tem = negate_expr (arg1))
7306 && TREE_CODE (tem) == INTEGER_CST
7307 && ! TREE_CONSTANT_OVERFLOW (tem))
7308 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
7309
7310 /* If we have X - Y == 0, we can convert that to X == Y and similarly
7311 for !=. Don't do this for ordered comparisons due to overflow. */
7312 else if ((code == NE_EXPR || code == EQ_EXPR)
7313 && integer_zerop (arg1) && TREE_CODE (arg0) == MINUS_EXPR)
7314 return fold (build (code, type,
7315 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1)));
7316
7317 /* If we are widening one operand of an integer comparison,
7318 see if the other operand is similarly being widened. Perhaps we
7319 can do the comparison in the narrower type. */
7320 else if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
7321 && TREE_CODE (arg0) == NOP_EXPR
7322 && (tem = get_unwidened (arg0, NULL_TREE)) != arg0
7323 && (t1 = get_unwidened (arg1, TREE_TYPE (tem))) != 0
7324 && (TREE_TYPE (t1) == TREE_TYPE (tem)
7325 || (TREE_CODE (t1) == INTEGER_CST
7326 && int_fits_type_p (t1, TREE_TYPE (tem)))))
7327 return fold (build (code, type, tem, convert (TREE_TYPE (tem), t1)));
7328
7329 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
7330 constant, we can simplify it. */
7331 else if (TREE_CODE (arg1) == INTEGER_CST
7332 && (TREE_CODE (arg0) == MIN_EXPR
7333 || TREE_CODE (arg0) == MAX_EXPR)
7334 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
7335 return optimize_minmax_comparison (t);
7336
7337 /* If we are comparing an ABS_EXPR with a constant, we can
7338 convert all the cases into explicit comparisons, but they may
7339 well not be faster than doing the ABS and one comparison.
7340 But ABS (X) <= C is a range comparison, which becomes a subtraction
7341 and a comparison, and is probably faster. */
7342 else if (code == LE_EXPR && TREE_CODE (arg1) == INTEGER_CST
7343 && TREE_CODE (arg0) == ABS_EXPR
7344 && ! TREE_SIDE_EFFECTS (arg0)
7345 && (0 != (tem = negate_expr (arg1)))
7346 && TREE_CODE (tem) == INTEGER_CST
7347 && ! TREE_CONSTANT_OVERFLOW (tem))
7348 return fold (build (TRUTH_ANDIF_EXPR, type,
7349 build (GE_EXPR, type, TREE_OPERAND (arg0, 0), tem),
7350 build (LE_EXPR, type,
7351 TREE_OPERAND (arg0, 0), arg1)));
7352
7353 /* If this is an EQ or NE comparison with zero and ARG0 is
7354 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
7355 two operations, but the latter can be done in one less insn
7356 on machines that have only two-operand insns or on which a
7357 constant cannot be the first operand. */
7358 if (integer_zerop (arg1) && (code == EQ_EXPR || code == NE_EXPR)
7359 && TREE_CODE (arg0) == BIT_AND_EXPR)
7360 {
7361 if (TREE_CODE (TREE_OPERAND (arg0, 0)) == LSHIFT_EXPR
7362 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 0), 0)))
7363 return
7364 fold (build (code, type,
7365 build (BIT_AND_EXPR, TREE_TYPE (arg0),
7366 build (RSHIFT_EXPR,
7367 TREE_TYPE (TREE_OPERAND (arg0, 0)),
7368 TREE_OPERAND (arg0, 1),
7369 TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)),
7370 convert (TREE_TYPE (arg0),
7371 integer_one_node)),
7372 arg1));
7373 else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
7374 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
7375 return
7376 fold (build (code, type,
7377 build (BIT_AND_EXPR, TREE_TYPE (arg0),
7378 build (RSHIFT_EXPR,
7379 TREE_TYPE (TREE_OPERAND (arg0, 1)),
7380 TREE_OPERAND (arg0, 0),
7381 TREE_OPERAND (TREE_OPERAND (arg0, 1), 1)),
7382 convert (TREE_TYPE (arg0),
7383 integer_one_node)),
7384 arg1));
7385 }
7386
7387 /* If this is an NE or EQ comparison of zero against the result of a
7388 signed MOD operation whose second operand is a power of 2, make
7389 the MOD operation unsigned since it is simpler and equivalent. */
7390 if ((code == NE_EXPR || code == EQ_EXPR)
7391 && integer_zerop (arg1)
7392 && ! TREE_UNSIGNED (TREE_TYPE (arg0))
7393 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
7394 || TREE_CODE (arg0) == CEIL_MOD_EXPR
7395 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
7396 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
7397 && integer_pow2p (TREE_OPERAND (arg0, 1)))
7398 {
7399 tree newtype = (*lang_hooks.types.unsigned_type) (TREE_TYPE (arg0));
7400 tree newmod = build (TREE_CODE (arg0), newtype,
7401 convert (newtype, TREE_OPERAND (arg0, 0)),
7402 convert (newtype, TREE_OPERAND (arg0, 1)));
7403
7404 return build (code, type, newmod, convert (newtype, arg1));
7405 }
7406
7407 /* If this is an NE comparison of zero with an AND of one, remove the
7408 comparison since the AND will give the correct value. */
7409 if (code == NE_EXPR && integer_zerop (arg1)
7410 && TREE_CODE (arg0) == BIT_AND_EXPR
7411 && integer_onep (TREE_OPERAND (arg0, 1)))
7412 return convert (type, arg0);
7413
7414 /* If we have (A & C) == C where C is a power of 2, convert this into
7415 (A & C) != 0. Similarly for NE_EXPR. */
7416 if ((code == EQ_EXPR || code == NE_EXPR)
7417 && TREE_CODE (arg0) == BIT_AND_EXPR
7418 && integer_pow2p (TREE_OPERAND (arg0, 1))
7419 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
7420 return fold (build (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
7421 arg0, integer_zero_node));
7422
7423 /* If we have (A & C) != 0 or (A & C) == 0 and C is a power of
7424 2, then fold the expression into shifts and logical operations. */
7425 tem = fold_single_bit_test (code, arg0, arg1, type);
7426 if (tem)
7427 return tem;
7428
7429 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
7430 Similarly for NE_EXPR. */
7431 if ((code == EQ_EXPR || code == NE_EXPR)
7432 && TREE_CODE (arg0) == BIT_AND_EXPR
7433 && TREE_CODE (arg1) == INTEGER_CST
7434 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
7435 {
7436 tree dandnotc
7437 = fold (build (BIT_AND_EXPR, TREE_TYPE (arg0),
7438 arg1, build1 (BIT_NOT_EXPR,
7439 TREE_TYPE (TREE_OPERAND (arg0, 1)),
7440 TREE_OPERAND (arg0, 1))));
7441 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
7442 if (integer_nonzerop (dandnotc))
7443 return omit_one_operand (type, rslt, arg0);
7444 }
7445
7446 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
7447 Similarly for NE_EXPR. */
7448 if ((code == EQ_EXPR || code == NE_EXPR)
7449 && TREE_CODE (arg0) == BIT_IOR_EXPR
7450 && TREE_CODE (arg1) == INTEGER_CST
7451 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
7452 {
7453 tree candnotd
7454 = fold (build (BIT_AND_EXPR, TREE_TYPE (arg0),
7455 TREE_OPERAND (arg0, 1),
7456 build1 (BIT_NOT_EXPR, TREE_TYPE (arg1), arg1)));
7457 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
7458 if (integer_nonzerop (candnotd))
7459 return omit_one_operand (type, rslt, arg0);
7460 }
7461
7462 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
7463 and similarly for >= into !=. */
7464 if ((code == LT_EXPR || code == GE_EXPR)
7465 && TREE_UNSIGNED (TREE_TYPE (arg0))
7466 && TREE_CODE (arg1) == LSHIFT_EXPR
7467 && integer_onep (TREE_OPERAND (arg1, 0)))
7468 return build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
7469 build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
7470 TREE_OPERAND (arg1, 1)),
7471 convert (TREE_TYPE (arg0), integer_zero_node));
7472
7473 else if ((code == LT_EXPR || code == GE_EXPR)
7474 && TREE_UNSIGNED (TREE_TYPE (arg0))
7475 && (TREE_CODE (arg1) == NOP_EXPR
7476 || TREE_CODE (arg1) == CONVERT_EXPR)
7477 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
7478 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
7479 return
7480 build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
7481 convert (TREE_TYPE (arg0),
7482 build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
7483 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1))),
7484 convert (TREE_TYPE (arg0), integer_zero_node));
7485
7486 /* Simplify comparison of something with itself. (For IEEE
7487 floating-point, we can only do some of these simplifications.) */
7488 if (operand_equal_p (arg0, arg1, 0))
7489 {
7490 switch (code)
7491 {
7492 case EQ_EXPR:
7493 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
7494 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
7495 return constant_boolean_node (1, type);
7496 break;
7497
7498 case GE_EXPR:
7499 case LE_EXPR:
7500 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
7501 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
7502 return constant_boolean_node (1, type);
7503 return fold (build (EQ_EXPR, type, arg0, arg1));
7504
7505 case NE_EXPR:
7506 /* For NE, we can only do this simplification if integer
7507 or we don't honor IEEE floating point NaNs. */
7508 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
7509 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
7510 break;
7511 /* ... fall through ... */
7512 case GT_EXPR:
7513 case LT_EXPR:
7514 return constant_boolean_node (0, type);
7515 default:
7516 abort ();
7517 }
7518 }
7519
7520 /* If we are comparing an expression that just has comparisons
7521 of two integer values, arithmetic expressions of those comparisons,
7522 and constants, we can simplify it. There are only three cases
7523 to check: the two values can either be equal, the first can be
7524 greater, or the second can be greater. Fold the expression for
7525 those three values. Since each value must be 0 or 1, we have
7526 eight possibilities, each of which corresponds to the constant 0
7527 or 1 or one of the six possible comparisons.
7528
7529 This handles common cases like (a > b) == 0 but also handles
7530 expressions like ((x > y) - (y > x)) > 0, which supposedly
7531 occur in macroized code. */
7532
7533 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
7534 {
7535 tree cval1 = 0, cval2 = 0;
7536 int save_p = 0;
7537
7538 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
7539 /* Don't handle degenerate cases here; they should already
7540 have been handled anyway. */
7541 && cval1 != 0 && cval2 != 0
7542 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
7543 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
7544 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
7545 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
7546 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
7547 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
7548 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
7549 {
7550 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
7551 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
7552
7553 /* We can't just pass T to eval_subst in case cval1 or cval2
7554 was the same as ARG1. */
7555
7556 tree high_result
7557 = fold (build (code, type,
7558 eval_subst (arg0, cval1, maxval, cval2, minval),
7559 arg1));
7560 tree equal_result
7561 = fold (build (code, type,
7562 eval_subst (arg0, cval1, maxval, cval2, maxval),
7563 arg1));
7564 tree low_result
7565 = fold (build (code, type,
7566 eval_subst (arg0, cval1, minval, cval2, maxval),
7567 arg1));
7568
7569 /* All three of these results should be 0 or 1. Confirm they
7570 are. Then use those values to select the proper code
7571 to use. */
7572
7573 if ((integer_zerop (high_result)
7574 || integer_onep (high_result))
7575 && (integer_zerop (equal_result)
7576 || integer_onep (equal_result))
7577 && (integer_zerop (low_result)
7578 || integer_onep (low_result)))
7579 {
7580 /* Make a 3-bit mask with the high-order bit being the
7581 value for `>', the next for '=', and the low for '<'. */
7582 switch ((integer_onep (high_result) * 4)
7583 + (integer_onep (equal_result) * 2)
7584 + integer_onep (low_result))
7585 {
7586 case 0:
7587 /* Always false. */
7588 return omit_one_operand (type, integer_zero_node, arg0);
7589 case 1:
7590 code = LT_EXPR;
7591 break;
7592 case 2:
7593 code = EQ_EXPR;
7594 break;
7595 case 3:
7596 code = LE_EXPR;
7597 break;
7598 case 4:
7599 code = GT_EXPR;
7600 break;
7601 case 5:
7602 code = NE_EXPR;
7603 break;
7604 case 6:
7605 code = GE_EXPR;
7606 break;
7607 case 7:
7608 /* Always true. */
7609 return omit_one_operand (type, integer_one_node, arg0);
7610 }
7611
7612 t = build (code, type, cval1, cval2);
7613 if (save_p)
7614 return save_expr (t);
7615 else
7616 return fold (t);
7617 }
7618 }
7619 }
7620
7621 /* If this is a comparison of a field, we may be able to simplify it. */
7622 if (((TREE_CODE (arg0) == COMPONENT_REF
7623 && (*lang_hooks.can_use_bit_fields_p) ())
7624 || TREE_CODE (arg0) == BIT_FIELD_REF)
7625 && (code == EQ_EXPR || code == NE_EXPR)
7626 /* Handle the constant case even without -O
7627 to make sure the warnings are given. */
7628 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
7629 {
7630 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
7631 return t1 ? t1 : t;
7632 }
7633
7634 /* If this is a comparison of complex values and either or both sides
7635 are a COMPLEX_EXPR or COMPLEX_CST, it is best to split up the
7636 comparisons and join them with a TRUTH_ANDIF_EXPR or TRUTH_ORIF_EXPR.
7637 This may prevent needless evaluations. */
7638 if ((code == EQ_EXPR || code == NE_EXPR)
7639 && TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
7640 && (TREE_CODE (arg0) == COMPLEX_EXPR
7641 || TREE_CODE (arg1) == COMPLEX_EXPR
7642 || TREE_CODE (arg0) == COMPLEX_CST
7643 || TREE_CODE (arg1) == COMPLEX_CST))
7644 {
7645 tree subtype = TREE_TYPE (TREE_TYPE (arg0));
7646 tree real0, imag0, real1, imag1;
7647
7648 arg0 = save_expr (arg0);
7649 arg1 = save_expr (arg1);
7650 real0 = fold (build1 (REALPART_EXPR, subtype, arg0));
7651 imag0 = fold (build1 (IMAGPART_EXPR, subtype, arg0));
7652 real1 = fold (build1 (REALPART_EXPR, subtype, arg1));
7653 imag1 = fold (build1 (IMAGPART_EXPR, subtype, arg1));
7654
7655 return fold (build ((code == EQ_EXPR ? TRUTH_ANDIF_EXPR
7656 : TRUTH_ORIF_EXPR),
7657 type,
7658 fold (build (code, type, real0, real1)),
7659 fold (build (code, type, imag0, imag1))));
7660 }
7661
7662 /* Optimize comparisons of strlen vs zero to a compare of the
7663 first character of the string vs zero. To wit,
7664 strlen(ptr) == 0 => *ptr == 0
7665 strlen(ptr) != 0 => *ptr != 0
7666 Other cases should reduce to one of these two (or a constant)
7667 due to the return value of strlen being unsigned. */
7668 if ((code == EQ_EXPR || code == NE_EXPR)
7669 && integer_zerop (arg1)
7670 && TREE_CODE (arg0) == CALL_EXPR)
7671 {
7672 tree fndecl = get_callee_fndecl (arg0);
7673 tree arglist;
7674
7675 if (fndecl
7676 && DECL_BUILT_IN (fndecl)
7677 && DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD
7678 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
7679 && (arglist = TREE_OPERAND (arg0, 1))
7680 && TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) == POINTER_TYPE
7681 && ! TREE_CHAIN (arglist))
7682 return fold (build (code, type,
7683 build1 (INDIRECT_REF, char_type_node,
7684 TREE_VALUE(arglist)),
7685 integer_zero_node));
7686 }
7687
7688 /* From here on, the only cases we handle are when the result is
7689 known to be a constant.
7690
7691 To compute GT, swap the arguments and do LT.
7692 To compute GE, do LT and invert the result.
7693 To compute LE, swap the arguments, do LT and invert the result.
7694 To compute NE, do EQ and invert the result.
7695
7696 Therefore, the code below must handle only EQ and LT. */
7697
7698 if (code == LE_EXPR || code == GT_EXPR)
7699 {
7700 tem = arg0, arg0 = arg1, arg1 = tem;
7701 code = swap_tree_comparison (code);
7702 }
7703
7704 /* Note that it is safe to invert for real values here because we
7705 will check below in the one case that it matters. */
7706
7707 t1 = NULL_TREE;
7708 invert = 0;
7709 if (code == NE_EXPR || code == GE_EXPR)
7710 {
7711 invert = 1;
7712 code = invert_tree_comparison (code);
7713 }
7714
7715 /* Compute a result for LT or EQ if args permit;
7716 otherwise return T. */
7717 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
7718 {
7719 if (code == EQ_EXPR)
7720 t1 = build_int_2 (tree_int_cst_equal (arg0, arg1), 0);
7721 else
7722 t1 = build_int_2 ((TREE_UNSIGNED (TREE_TYPE (arg0))
7723 ? INT_CST_LT_UNSIGNED (arg0, arg1)
7724 : INT_CST_LT (arg0, arg1)),
7725 0);
7726 }
7727
7728 #if 0 /* This is no longer useful, but breaks some real code. */
7729 /* Assume a nonexplicit constant cannot equal an explicit one,
7730 since such code would be undefined anyway.
7731 Exception: on sysvr4, using #pragma weak,
7732 a label can come out as 0. */
7733 else if (TREE_CODE (arg1) == INTEGER_CST
7734 && !integer_zerop (arg1)
7735 && TREE_CONSTANT (arg0)
7736 && TREE_CODE (arg0) == ADDR_EXPR
7737 && code == EQ_EXPR)
7738 t1 = build_int_2 (0, 0);
7739 #endif
7740 /* Two real constants can be compared explicitly. */
7741 else if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
7742 {
7743 /* If either operand is a NaN, the result is false with two
7744 exceptions: First, an NE_EXPR is true on NaNs, but that case
7745 is already handled correctly since we will be inverting the
7746 result for NE_EXPR. Second, if we had inverted a LE_EXPR
7747 or a GE_EXPR into a LT_EXPR, we must return true so that it
7748 will be inverted into false. */
7749
7750 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
7751 || REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
7752 t1 = build_int_2 (invert && code == LT_EXPR, 0);
7753
7754 else if (code == EQ_EXPR)
7755 t1 = build_int_2 (REAL_VALUES_EQUAL (TREE_REAL_CST (arg0),
7756 TREE_REAL_CST (arg1)),
7757 0);
7758 else
7759 t1 = build_int_2 (REAL_VALUES_LESS (TREE_REAL_CST (arg0),
7760 TREE_REAL_CST (arg1)),
7761 0);
7762 }
7763
7764 if (t1 == NULL_TREE)
7765 return t;
7766
7767 if (invert)
7768 TREE_INT_CST_LOW (t1) ^= 1;
7769
7770 TREE_TYPE (t1) = type;
7771 if (TREE_CODE (type) == BOOLEAN_TYPE)
7772 return (*lang_hooks.truthvalue_conversion) (t1);
7773 return t1;
7774
7775 case COND_EXPR:
7776 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
7777 so all simple results must be passed through pedantic_non_lvalue. */
7778 if (TREE_CODE (arg0) == INTEGER_CST)
7779 return pedantic_non_lvalue
7780 (TREE_OPERAND (t, (integer_zerop (arg0) ? 2 : 1)));
7781 else if (operand_equal_p (arg1, TREE_OPERAND (expr, 2), 0))
7782 return pedantic_omit_one_operand (type, arg1, arg0);
7783
7784 /* If we have A op B ? A : C, we may be able to convert this to a
7785 simpler expression, depending on the operation and the values
7786 of B and C. Signed zeros prevent all of these transformations,
7787 for reasons given above each one. */
7788
7789 if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
7790 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
7791 arg1, TREE_OPERAND (arg0, 1))
7792 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
7793 {
7794 tree arg2 = TREE_OPERAND (t, 2);
7795 enum tree_code comp_code = TREE_CODE (arg0);
7796
7797 STRIP_NOPS (arg2);
7798
7799 /* If we have A op 0 ? A : -A, consider applying the following
7800 transformations:
7801
7802 A == 0? A : -A same as -A
7803 A != 0? A : -A same as A
7804 A >= 0? A : -A same as abs (A)
7805 A > 0? A : -A same as abs (A)
7806 A <= 0? A : -A same as -abs (A)
7807 A < 0? A : -A same as -abs (A)
7808
7809 None of these transformations work for modes with signed
7810 zeros. If A is +/-0, the first two transformations will
7811 change the sign of the result (from +0 to -0, or vice
7812 versa). The last four will fix the sign of the result,
7813 even though the original expressions could be positive or
7814 negative, depending on the sign of A.
7815
7816 Note that all these transformations are correct if A is
7817 NaN, since the two alternatives (A and -A) are also NaNs. */
7818 if ((FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 1)))
7819 ? real_zerop (TREE_OPERAND (arg0, 1))
7820 : integer_zerop (TREE_OPERAND (arg0, 1)))
7821 && TREE_CODE (arg2) == NEGATE_EXPR
7822 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
7823 switch (comp_code)
7824 {
7825 case EQ_EXPR:
7826 return
7827 pedantic_non_lvalue
7828 (convert (type,
7829 negate_expr
7830 (convert (TREE_TYPE (TREE_OPERAND (t, 1)),
7831 arg1))));
7832 case NE_EXPR:
7833 return pedantic_non_lvalue (convert (type, arg1));
7834 case GE_EXPR:
7835 case GT_EXPR:
7836 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
7837 arg1 = convert ((*lang_hooks.types.signed_type)
7838 (TREE_TYPE (arg1)), arg1);
7839 return pedantic_non_lvalue
7840 (convert (type, fold (build1 (ABS_EXPR,
7841 TREE_TYPE (arg1), arg1))));
7842 case LE_EXPR:
7843 case LT_EXPR:
7844 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
7845 arg1 = convert ((lang_hooks.types.signed_type)
7846 (TREE_TYPE (arg1)), arg1);
7847 return pedantic_non_lvalue
7848 (negate_expr (convert (type,
7849 fold (build1 (ABS_EXPR,
7850 TREE_TYPE (arg1),
7851 arg1)))));
7852 default:
7853 abort ();
7854 }
7855
7856 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
7857 A == 0 ? A : 0 is always 0 unless A is -0. Note that
7858 both transformations are correct when A is NaN: A != 0
7859 is then true, and A == 0 is false. */
7860
7861 if (integer_zerop (TREE_OPERAND (arg0, 1)) && integer_zerop (arg2))
7862 {
7863 if (comp_code == NE_EXPR)
7864 return pedantic_non_lvalue (convert (type, arg1));
7865 else if (comp_code == EQ_EXPR)
7866 return pedantic_non_lvalue (convert (type, integer_zero_node));
7867 }
7868
7869 /* Try some transformations of A op B ? A : B.
7870
7871 A == B? A : B same as B
7872 A != B? A : B same as A
7873 A >= B? A : B same as max (A, B)
7874 A > B? A : B same as max (B, A)
7875 A <= B? A : B same as min (A, B)
7876 A < B? A : B same as min (B, A)
7877
7878 As above, these transformations don't work in the presence
7879 of signed zeros. For example, if A and B are zeros of
7880 opposite sign, the first two transformations will change
7881 the sign of the result. In the last four, the original
7882 expressions give different results for (A=+0, B=-0) and
7883 (A=-0, B=+0), but the transformed expressions do not.
7884
7885 The first two transformations are correct if either A or B
7886 is a NaN. In the first transformation, the condition will
7887 be false, and B will indeed be chosen. In the case of the
7888 second transformation, the condition A != B will be true,
7889 and A will be chosen.
7890
7891 The conversions to max() and min() are not correct if B is
7892 a number and A is not. The conditions in the original
7893 expressions will be false, so all four give B. The min()
7894 and max() versions would give a NaN instead. */
7895 if (operand_equal_for_comparison_p (TREE_OPERAND (arg0, 1),
7896 arg2, TREE_OPERAND (arg0, 0)))
7897 {
7898 tree comp_op0 = TREE_OPERAND (arg0, 0);
7899 tree comp_op1 = TREE_OPERAND (arg0, 1);
7900 tree comp_type = TREE_TYPE (comp_op0);
7901
7902 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
7903 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
7904 {
7905 comp_type = type;
7906 comp_op0 = arg1;
7907 comp_op1 = arg2;
7908 }
7909
7910 switch (comp_code)
7911 {
7912 case EQ_EXPR:
7913 return pedantic_non_lvalue (convert (type, arg2));
7914 case NE_EXPR:
7915 return pedantic_non_lvalue (convert (type, arg1));
7916 case LE_EXPR:
7917 case LT_EXPR:
7918 /* In C++ a ?: expression can be an lvalue, so put the
7919 operand which will be used if they are equal first
7920 so that we can convert this back to the
7921 corresponding COND_EXPR. */
7922 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
7923 return pedantic_non_lvalue
7924 (convert (type, fold (build (MIN_EXPR, comp_type,
7925 (comp_code == LE_EXPR
7926 ? comp_op0 : comp_op1),
7927 (comp_code == LE_EXPR
7928 ? comp_op1 : comp_op0)))));
7929 break;
7930 case GE_EXPR:
7931 case GT_EXPR:
7932 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
7933 return pedantic_non_lvalue
7934 (convert (type, fold (build (MAX_EXPR, comp_type,
7935 (comp_code == GE_EXPR
7936 ? comp_op0 : comp_op1),
7937 (comp_code == GE_EXPR
7938 ? comp_op1 : comp_op0)))));
7939 break;
7940 default:
7941 abort ();
7942 }
7943 }
7944
7945 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
7946 we might still be able to simplify this. For example,
7947 if C1 is one less or one more than C2, this might have started
7948 out as a MIN or MAX and been transformed by this function.
7949 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
7950
7951 if (INTEGRAL_TYPE_P (type)
7952 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7953 && TREE_CODE (arg2) == INTEGER_CST)
7954 switch (comp_code)
7955 {
7956 case EQ_EXPR:
7957 /* We can replace A with C1 in this case. */
7958 arg1 = convert (type, TREE_OPERAND (arg0, 1));
7959 return fold (build (code, type, TREE_OPERAND (t, 0), arg1,
7960 TREE_OPERAND (t, 2)));
7961
7962 case LT_EXPR:
7963 /* If C1 is C2 + 1, this is min(A, C2). */
7964 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
7965 && operand_equal_p (TREE_OPERAND (arg0, 1),
7966 const_binop (PLUS_EXPR, arg2,
7967 integer_one_node, 0), 1))
7968 return pedantic_non_lvalue
7969 (fold (build (MIN_EXPR, type, arg1, arg2)));
7970 break;
7971
7972 case LE_EXPR:
7973 /* If C1 is C2 - 1, this is min(A, C2). */
7974 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
7975 && operand_equal_p (TREE_OPERAND (arg0, 1),
7976 const_binop (MINUS_EXPR, arg2,
7977 integer_one_node, 0), 1))
7978 return pedantic_non_lvalue
7979 (fold (build (MIN_EXPR, type, arg1, arg2)));
7980 break;
7981
7982 case GT_EXPR:
7983 /* If C1 is C2 - 1, this is max(A, C2). */
7984 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
7985 && operand_equal_p (TREE_OPERAND (arg0, 1),
7986 const_binop (MINUS_EXPR, arg2,
7987 integer_one_node, 0), 1))
7988 return pedantic_non_lvalue
7989 (fold (build (MAX_EXPR, type, arg1, arg2)));
7990 break;
7991
7992 case GE_EXPR:
7993 /* If C1 is C2 + 1, this is max(A, C2). */
7994 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
7995 && operand_equal_p (TREE_OPERAND (arg0, 1),
7996 const_binop (PLUS_EXPR, arg2,
7997 integer_one_node, 0), 1))
7998 return pedantic_non_lvalue
7999 (fold (build (MAX_EXPR, type, arg1, arg2)));
8000 break;
8001 case NE_EXPR:
8002 break;
8003 default:
8004 abort ();
8005 }
8006 }
8007
8008 /* If the second operand is simpler than the third, swap them
8009 since that produces better jump optimization results. */
8010 if (tree_swap_operands_p (TREE_OPERAND (t, 1), TREE_OPERAND (t, 2)))
8011 {
8012 /* See if this can be inverted. If it can't, possibly because
8013 it was a floating-point inequality comparison, don't do
8014 anything. */
8015 tem = invert_truthvalue (arg0);
8016
8017 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
8018 return fold (build (code, type, tem,
8019 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1)));
8020 }
8021
8022 /* Convert A ? 1 : 0 to simply A. */
8023 if (integer_onep (TREE_OPERAND (t, 1))
8024 && integer_zerop (TREE_OPERAND (t, 2))
8025 /* If we try to convert TREE_OPERAND (t, 0) to our type, the
8026 call to fold will try to move the conversion inside
8027 a COND, which will recurse. In that case, the COND_EXPR
8028 is probably the best choice, so leave it alone. */
8029 && type == TREE_TYPE (arg0))
8030 return pedantic_non_lvalue (arg0);
8031
8032 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
8033 over COND_EXPR in cases such as floating point comparisons. */
8034 if (integer_zerop (TREE_OPERAND (t, 1))
8035 && integer_onep (TREE_OPERAND (t, 2))
8036 && truth_value_p (TREE_CODE (arg0)))
8037 return pedantic_non_lvalue (convert (type,
8038 invert_truthvalue (arg0)));
8039
8040 /* Look for expressions of the form A & 2 ? 2 : 0. The result of this
8041 operation is simply A & 2. */
8042
8043 if (integer_zerop (TREE_OPERAND (t, 2))
8044 && TREE_CODE (arg0) == NE_EXPR
8045 && integer_zerop (TREE_OPERAND (arg0, 1))
8046 && integer_pow2p (arg1)
8047 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
8048 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
8049 arg1, 1))
8050 return pedantic_non_lvalue (convert (type, TREE_OPERAND (arg0, 0)));
8051
8052 /* Convert A ? B : 0 into A && B if A and B are truth values. */
8053 if (integer_zerop (TREE_OPERAND (t, 2))
8054 && truth_value_p (TREE_CODE (arg0))
8055 && truth_value_p (TREE_CODE (arg1)))
8056 return pedantic_non_lvalue (fold (build (TRUTH_ANDIF_EXPR, type,
8057 arg0, arg1)));
8058
8059 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
8060 if (integer_onep (TREE_OPERAND (t, 2))
8061 && truth_value_p (TREE_CODE (arg0))
8062 && truth_value_p (TREE_CODE (arg1)))
8063 {
8064 /* Only perform transformation if ARG0 is easily inverted. */
8065 tem = invert_truthvalue (arg0);
8066 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
8067 return pedantic_non_lvalue (fold (build (TRUTH_ORIF_EXPR, type,
8068 tem, arg1)));
8069 }
8070
8071 return t;
8072
8073 case COMPOUND_EXPR:
8074 /* When pedantic, a compound expression can be neither an lvalue
8075 nor an integer constant expression. */
8076 if (TREE_SIDE_EFFECTS (arg0) || pedantic)
8077 return t;
8078 /* Don't let (0, 0) be null pointer constant. */
8079 if (integer_zerop (arg1))
8080 return build1 (NOP_EXPR, type, arg1);
8081 return convert (type, arg1);
8082
8083 case COMPLEX_EXPR:
8084 if (wins)
8085 return build_complex (type, arg0, arg1);
8086 return t;
8087
8088 case REALPART_EXPR:
8089 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8090 return t;
8091 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
8092 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
8093 TREE_OPERAND (arg0, 1));
8094 else if (TREE_CODE (arg0) == COMPLEX_CST)
8095 return TREE_REALPART (arg0);
8096 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8097 return fold (build (TREE_CODE (arg0), type,
8098 fold (build1 (REALPART_EXPR, type,
8099 TREE_OPERAND (arg0, 0))),
8100 fold (build1 (REALPART_EXPR,
8101 type, TREE_OPERAND (arg0, 1)))));
8102 return t;
8103
8104 case IMAGPART_EXPR:
8105 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8106 return convert (type, integer_zero_node);
8107 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
8108 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
8109 TREE_OPERAND (arg0, 0));
8110 else if (TREE_CODE (arg0) == COMPLEX_CST)
8111 return TREE_IMAGPART (arg0);
8112 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8113 return fold (build (TREE_CODE (arg0), type,
8114 fold (build1 (IMAGPART_EXPR, type,
8115 TREE_OPERAND (arg0, 0))),
8116 fold (build1 (IMAGPART_EXPR, type,
8117 TREE_OPERAND (arg0, 1)))));
8118 return t;
8119
8120 /* Pull arithmetic ops out of the CLEANUP_POINT_EXPR where
8121 appropriate. */
8122 case CLEANUP_POINT_EXPR:
8123 if (! has_cleanups (arg0))
8124 return TREE_OPERAND (t, 0);
8125
8126 {
8127 enum tree_code code0 = TREE_CODE (arg0);
8128 int kind0 = TREE_CODE_CLASS (code0);
8129 tree arg00 = TREE_OPERAND (arg0, 0);
8130 tree arg01;
8131
8132 if (kind0 == '1' || code0 == TRUTH_NOT_EXPR)
8133 return fold (build1 (code0, type,
8134 fold (build1 (CLEANUP_POINT_EXPR,
8135 TREE_TYPE (arg00), arg00))));
8136
8137 if (kind0 == '<' || kind0 == '2'
8138 || code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR
8139 || code0 == TRUTH_AND_EXPR || code0 == TRUTH_OR_EXPR
8140 || code0 == TRUTH_XOR_EXPR)
8141 {
8142 arg01 = TREE_OPERAND (arg0, 1);
8143
8144 if (TREE_CONSTANT (arg00)
8145 || ((code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR)
8146 && ! has_cleanups (arg00)))
8147 return fold (build (code0, type, arg00,
8148 fold (build1 (CLEANUP_POINT_EXPR,
8149 TREE_TYPE (arg01), arg01))));
8150
8151 if (TREE_CONSTANT (arg01))
8152 return fold (build (code0, type,
8153 fold (build1 (CLEANUP_POINT_EXPR,
8154 TREE_TYPE (arg00), arg00)),
8155 arg01));
8156 }
8157
8158 return t;
8159 }
8160
8161 case CALL_EXPR:
8162 /* Check for a built-in function. */
8163 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
8164 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (expr, 0), 0))
8165 == FUNCTION_DECL)
8166 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
8167 {
8168 tree tmp = fold_builtin (expr);
8169 if (tmp)
8170 return tmp;
8171 }
8172 return t;
8173
8174 default:
8175 return t;
8176 } /* switch (code) */
8177 }
8178
8179 #ifdef ENABLE_FOLD_CHECKING
8180 #undef fold
8181
8182 static void fold_checksum_tree (tree, struct md5_ctx *, htab_t);
8183 static void fold_check_failed (tree, tree);
8184 void print_fold_checksum (tree);
8185
8186 /* When --enable-checking=fold, compute a digest of expr before
8187 and after actual fold call to see if fold did not accidentally
8188 change original expr. */
8189
8190 tree
8191 fold (tree expr)
8192 {
8193 tree ret;
8194 struct md5_ctx ctx;
8195 unsigned char checksum_before[16], checksum_after[16];
8196 htab_t ht;
8197
8198 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
8199 md5_init_ctx (&ctx);
8200 fold_checksum_tree (expr, &ctx, ht);
8201 md5_finish_ctx (&ctx, checksum_before);
8202 htab_empty (ht);
8203
8204 ret = fold_1 (expr);
8205
8206 md5_init_ctx (&ctx);
8207 fold_checksum_tree (expr, &ctx, ht);
8208 md5_finish_ctx (&ctx, checksum_after);
8209 htab_delete (ht);
8210
8211 if (memcmp (checksum_before, checksum_after, 16))
8212 fold_check_failed (expr, ret);
8213
8214 return ret;
8215 }
8216
8217 void
8218 print_fold_checksum (tree expr)
8219 {
8220 struct md5_ctx ctx;
8221 unsigned char checksum[16], cnt;
8222 htab_t ht;
8223
8224 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
8225 md5_init_ctx (&ctx);
8226 fold_checksum_tree (expr, &ctx, ht);
8227 md5_finish_ctx (&ctx, checksum);
8228 htab_delete (ht);
8229 for (cnt = 0; cnt < 16; ++cnt)
8230 fprintf (stderr, "%02x", checksum[cnt]);
8231 putc ('\n', stderr);
8232 }
8233
8234 static void
8235 fold_check_failed (tree expr ATTRIBUTE_UNUSED, tree ret ATTRIBUTE_UNUSED)
8236 {
8237 internal_error ("fold check: original tree changed by fold");
8238 }
8239
8240 static void
8241 fold_checksum_tree (tree expr, struct md5_ctx *ctx, htab_t ht)
8242 {
8243 void **slot;
8244 enum tree_code code;
8245 char buf[sizeof (struct tree_decl)];
8246 int i, len;
8247
8248 if (sizeof (struct tree_exp) + 5 * sizeof (tree)
8249 > sizeof (struct tree_decl)
8250 || sizeof (struct tree_type) > sizeof (struct tree_decl))
8251 abort ();
8252 if (expr == NULL)
8253 return;
8254 slot = htab_find_slot (ht, expr, INSERT);
8255 if (*slot != NULL)
8256 return;
8257 *slot = expr;
8258 code = TREE_CODE (expr);
8259 if (code == SAVE_EXPR && SAVE_EXPR_NOPLACEHOLDER (expr))
8260 {
8261 /* Allow SAVE_EXPR_NOPLACEHOLDER flag to be modified. */
8262 memcpy (buf, expr, tree_size (expr));
8263 expr = (tree) buf;
8264 SAVE_EXPR_NOPLACEHOLDER (expr) = 0;
8265 }
8266 else if (TREE_CODE_CLASS (code) == 'd' && DECL_ASSEMBLER_NAME_SET_P (expr))
8267 {
8268 /* Allow DECL_ASSEMBLER_NAME to be modified. */
8269 memcpy (buf, expr, tree_size (expr));
8270 expr = (tree) buf;
8271 SET_DECL_ASSEMBLER_NAME (expr, NULL);
8272 }
8273 else if (TREE_CODE_CLASS (code) == 't'
8274 && (TYPE_POINTER_TO (expr) || TYPE_REFERENCE_TO (expr)))
8275 {
8276 /* Allow TYPE_POINTER_TO and TYPE_REFERENCE_TO to be modified. */
8277 memcpy (buf, expr, tree_size (expr));
8278 expr = (tree) buf;
8279 TYPE_POINTER_TO (expr) = NULL;
8280 TYPE_REFERENCE_TO (expr) = NULL;
8281 }
8282 md5_process_bytes (expr, tree_size (expr), ctx);
8283 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
8284 if (TREE_CODE_CLASS (code) != 't' && TREE_CODE_CLASS (code) != 'd')
8285 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
8286 len = TREE_CODE_LENGTH (code);
8287 switch (TREE_CODE_CLASS (code))
8288 {
8289 case 'c':
8290 switch (code)
8291 {
8292 case STRING_CST:
8293 md5_process_bytes (TREE_STRING_POINTER (expr),
8294 TREE_STRING_LENGTH (expr), ctx);
8295 break;
8296 case COMPLEX_CST:
8297 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
8298 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
8299 break;
8300 case VECTOR_CST:
8301 fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr), ctx, ht);
8302 break;
8303 default:
8304 break;
8305 }
8306 break;
8307 case 'x':
8308 switch (code)
8309 {
8310 case TREE_LIST:
8311 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
8312 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
8313 break;
8314 case TREE_VEC:
8315 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
8316 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
8317 break;
8318 default:
8319 break;
8320 }
8321 break;
8322 case 'e':
8323 switch (code)
8324 {
8325 case SAVE_EXPR: len = 2; break;
8326 case GOTO_SUBROUTINE_EXPR: len = 0; break;
8327 case RTL_EXPR: len = 0; break;
8328 case WITH_CLEANUP_EXPR: len = 2; break;
8329 default: break;
8330 }
8331 /* FALLTHROUGH */
8332 case 'r':
8333 case '<':
8334 case '1':
8335 case '2':
8336 case 's':
8337 for (i = 0; i < len; ++i)
8338 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
8339 break;
8340 case 'd':
8341 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
8342 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
8343 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
8344 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
8345 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
8346 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
8347 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
8348 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
8349 fold_checksum_tree (DECL_SECTION_NAME (expr), ctx, ht);
8350 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
8351 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
8352 break;
8353 case 't':
8354 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
8355 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
8356 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
8357 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
8358 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
8359 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
8360 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
8361 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
8362 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
8363 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
8364 break;
8365 default:
8366 break;
8367 }
8368 }
8369
8370 #endif
8371
8372 /* Perform constant folding and related simplification of initializer
8373 expression EXPR. This behaves identically to "fold" but ignores
8374 potential run-time traps and exceptions that fold must preserve. */
8375
8376 tree
8377 fold_initializer (tree expr)
8378 {
8379 int saved_signaling_nans = flag_signaling_nans;
8380 int saved_trapping_math = flag_trapping_math;
8381 int saved_trapv = flag_trapv;
8382 tree result;
8383
8384 flag_signaling_nans = 0;
8385 flag_trapping_math = 0;
8386 flag_trapv = 0;
8387
8388 result = fold (expr);
8389
8390 flag_signaling_nans = saved_signaling_nans;
8391 flag_trapping_math = saved_trapping_math;
8392 flag_trapv = saved_trapv;
8393
8394 return result;
8395 }
8396
8397 /* Determine if first argument is a multiple of second argument. Return 0 if
8398 it is not, or we cannot easily determined it to be.
8399
8400 An example of the sort of thing we care about (at this point; this routine
8401 could surely be made more general, and expanded to do what the *_DIV_EXPR's
8402 fold cases do now) is discovering that
8403
8404 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
8405
8406 is a multiple of
8407
8408 SAVE_EXPR (J * 8)
8409
8410 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
8411
8412 This code also handles discovering that
8413
8414 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
8415
8416 is a multiple of 8 so we don't have to worry about dealing with a
8417 possible remainder.
8418
8419 Note that we *look* inside a SAVE_EXPR only to determine how it was
8420 calculated; it is not safe for fold to do much of anything else with the
8421 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
8422 at run time. For example, the latter example above *cannot* be implemented
8423 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
8424 evaluation time of the original SAVE_EXPR is not necessarily the same at
8425 the time the new expression is evaluated. The only optimization of this
8426 sort that would be valid is changing
8427
8428 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
8429
8430 divided by 8 to
8431
8432 SAVE_EXPR (I) * SAVE_EXPR (J)
8433
8434 (where the same SAVE_EXPR (J) is used in the original and the
8435 transformed version). */
8436
8437 static int
8438 multiple_of_p (tree type, tree top, tree bottom)
8439 {
8440 if (operand_equal_p (top, bottom, 0))
8441 return 1;
8442
8443 if (TREE_CODE (type) != INTEGER_TYPE)
8444 return 0;
8445
8446 switch (TREE_CODE (top))
8447 {
8448 case MULT_EXPR:
8449 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
8450 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
8451
8452 case PLUS_EXPR:
8453 case MINUS_EXPR:
8454 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
8455 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
8456
8457 case LSHIFT_EXPR:
8458 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
8459 {
8460 tree op1, t1;
8461
8462 op1 = TREE_OPERAND (top, 1);
8463 /* const_binop may not detect overflow correctly,
8464 so check for it explicitly here. */
8465 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
8466 > TREE_INT_CST_LOW (op1)
8467 && TREE_INT_CST_HIGH (op1) == 0
8468 && 0 != (t1 = convert (type,
8469 const_binop (LSHIFT_EXPR, size_one_node,
8470 op1, 0)))
8471 && ! TREE_OVERFLOW (t1))
8472 return multiple_of_p (type, t1, bottom);
8473 }
8474 return 0;
8475
8476 case NOP_EXPR:
8477 /* Can't handle conversions from non-integral or wider integral type. */
8478 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
8479 || (TYPE_PRECISION (type)
8480 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
8481 return 0;
8482
8483 /* .. fall through ... */
8484
8485 case SAVE_EXPR:
8486 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
8487
8488 case INTEGER_CST:
8489 if (TREE_CODE (bottom) != INTEGER_CST
8490 || (TREE_UNSIGNED (type)
8491 && (tree_int_cst_sgn (top) < 0
8492 || tree_int_cst_sgn (bottom) < 0)))
8493 return 0;
8494 return integer_zerop (const_binop (TRUNC_MOD_EXPR,
8495 top, bottom, 0));
8496
8497 default:
8498 return 0;
8499 }
8500 }
8501
8502 /* Return true if `t' is known to be non-negative. */
8503
8504 int
8505 tree_expr_nonnegative_p (tree t)
8506 {
8507 switch (TREE_CODE (t))
8508 {
8509 case ABS_EXPR:
8510 return 1;
8511
8512 case INTEGER_CST:
8513 return tree_int_cst_sgn (t) >= 0;
8514
8515 case REAL_CST:
8516 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
8517
8518 case PLUS_EXPR:
8519 if (FLOAT_TYPE_P (TREE_TYPE (t)))
8520 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
8521 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
8522
8523 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
8524 both unsigned and at least 2 bits shorter than the result. */
8525 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
8526 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
8527 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
8528 {
8529 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
8530 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
8531 if (TREE_CODE (inner1) == INTEGER_TYPE && TREE_UNSIGNED (inner1)
8532 && TREE_CODE (inner2) == INTEGER_TYPE && TREE_UNSIGNED (inner2))
8533 {
8534 unsigned int prec = MAX (TYPE_PRECISION (inner1),
8535 TYPE_PRECISION (inner2)) + 1;
8536 return prec < TYPE_PRECISION (TREE_TYPE (t));
8537 }
8538 }
8539 break;
8540
8541 case MULT_EXPR:
8542 if (FLOAT_TYPE_P (TREE_TYPE (t)))
8543 {
8544 /* x * x for floating point x is always non-negative. */
8545 if (operand_equal_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1), 0))
8546 return 1;
8547 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
8548 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
8549 }
8550
8551 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
8552 both unsigned and their total bits is shorter than the result. */
8553 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
8554 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
8555 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
8556 {
8557 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
8558 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
8559 if (TREE_CODE (inner1) == INTEGER_TYPE && TREE_UNSIGNED (inner1)
8560 && TREE_CODE (inner2) == INTEGER_TYPE && TREE_UNSIGNED (inner2))
8561 return TYPE_PRECISION (inner1) + TYPE_PRECISION (inner2)
8562 < TYPE_PRECISION (TREE_TYPE (t));
8563 }
8564 return 0;
8565
8566 case TRUNC_DIV_EXPR:
8567 case CEIL_DIV_EXPR:
8568 case FLOOR_DIV_EXPR:
8569 case ROUND_DIV_EXPR:
8570 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
8571 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
8572
8573 case TRUNC_MOD_EXPR:
8574 case CEIL_MOD_EXPR:
8575 case FLOOR_MOD_EXPR:
8576 case ROUND_MOD_EXPR:
8577 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
8578
8579 case RDIV_EXPR:
8580 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
8581 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
8582
8583 case NOP_EXPR:
8584 {
8585 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
8586 tree outer_type = TREE_TYPE (t);
8587
8588 if (TREE_CODE (outer_type) == REAL_TYPE)
8589 {
8590 if (TREE_CODE (inner_type) == REAL_TYPE)
8591 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
8592 if (TREE_CODE (inner_type) == INTEGER_TYPE)
8593 {
8594 if (TREE_UNSIGNED (inner_type))
8595 return 1;
8596 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
8597 }
8598 }
8599 else if (TREE_CODE (outer_type) == INTEGER_TYPE)
8600 {
8601 if (TREE_CODE (inner_type) == REAL_TYPE)
8602 return tree_expr_nonnegative_p (TREE_OPERAND (t,0));
8603 if (TREE_CODE (inner_type) == INTEGER_TYPE)
8604 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
8605 && TREE_UNSIGNED (inner_type);
8606 }
8607 }
8608 break;
8609
8610 case COND_EXPR:
8611 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1))
8612 && tree_expr_nonnegative_p (TREE_OPERAND (t, 2));
8613 case COMPOUND_EXPR:
8614 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
8615 case MIN_EXPR:
8616 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
8617 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
8618 case MAX_EXPR:
8619 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
8620 || tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
8621 case MODIFY_EXPR:
8622 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
8623 case BIND_EXPR:
8624 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
8625 case SAVE_EXPR:
8626 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
8627 case NON_LVALUE_EXPR:
8628 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
8629 case FLOAT_EXPR:
8630 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
8631 case RTL_EXPR:
8632 return rtl_expr_nonnegative_p (RTL_EXPR_RTL (t));
8633
8634 case CALL_EXPR:
8635 {
8636 tree fndecl = get_callee_fndecl (t);
8637 tree arglist = TREE_OPERAND (t, 1);
8638 if (fndecl
8639 && DECL_BUILT_IN (fndecl)
8640 && DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD)
8641 switch (DECL_FUNCTION_CODE (fndecl))
8642 {
8643 case BUILT_IN_CABS:
8644 case BUILT_IN_CABSL:
8645 case BUILT_IN_CABSF:
8646 case BUILT_IN_EXP:
8647 case BUILT_IN_EXPF:
8648 case BUILT_IN_EXPL:
8649 case BUILT_IN_EXP2:
8650 case BUILT_IN_EXP2F:
8651 case BUILT_IN_EXP2L:
8652 case BUILT_IN_EXP10:
8653 case BUILT_IN_EXP10F:
8654 case BUILT_IN_EXP10L:
8655 case BUILT_IN_FABS:
8656 case BUILT_IN_FABSF:
8657 case BUILT_IN_FABSL:
8658 case BUILT_IN_FFS:
8659 case BUILT_IN_FFSL:
8660 case BUILT_IN_FFSLL:
8661 case BUILT_IN_PARITY:
8662 case BUILT_IN_PARITYL:
8663 case BUILT_IN_PARITYLL:
8664 case BUILT_IN_POPCOUNT:
8665 case BUILT_IN_POPCOUNTL:
8666 case BUILT_IN_POPCOUNTLL:
8667 case BUILT_IN_POW10:
8668 case BUILT_IN_POW10F:
8669 case BUILT_IN_POW10L:
8670 case BUILT_IN_SQRT:
8671 case BUILT_IN_SQRTF:
8672 case BUILT_IN_SQRTL:
8673 return 1;
8674
8675 case BUILT_IN_ATAN:
8676 case BUILT_IN_ATANF:
8677 case BUILT_IN_ATANL:
8678 case BUILT_IN_CEIL:
8679 case BUILT_IN_CEILF:
8680 case BUILT_IN_CEILL:
8681 case BUILT_IN_FLOOR:
8682 case BUILT_IN_FLOORF:
8683 case BUILT_IN_FLOORL:
8684 case BUILT_IN_NEARBYINT:
8685 case BUILT_IN_NEARBYINTF:
8686 case BUILT_IN_NEARBYINTL:
8687 case BUILT_IN_ROUND:
8688 case BUILT_IN_ROUNDF:
8689 case BUILT_IN_ROUNDL:
8690 case BUILT_IN_TRUNC:
8691 case BUILT_IN_TRUNCF:
8692 case BUILT_IN_TRUNCL:
8693 return tree_expr_nonnegative_p (TREE_VALUE (arglist));
8694
8695 case BUILT_IN_POW:
8696 case BUILT_IN_POWF:
8697 case BUILT_IN_POWL:
8698 return tree_expr_nonnegative_p (TREE_VALUE (arglist));
8699
8700 default:
8701 break;
8702 }
8703 }
8704
8705 /* ... fall through ... */
8706
8707 default:
8708 if (truth_value_p (TREE_CODE (t)))
8709 /* Truth values evaluate to 0 or 1, which is nonnegative. */
8710 return 1;
8711 }
8712
8713 /* We don't know sign of `t', so be conservative and return false. */
8714 return 0;
8715 }
8716
8717 /* Return true if `r' is known to be non-negative.
8718 Only handles constants at the moment. */
8719
8720 int
8721 rtl_expr_nonnegative_p (rtx r)
8722 {
8723 switch (GET_CODE (r))
8724 {
8725 case CONST_INT:
8726 return INTVAL (r) >= 0;
8727
8728 case CONST_DOUBLE:
8729 if (GET_MODE (r) == VOIDmode)
8730 return CONST_DOUBLE_HIGH (r) >= 0;
8731 return 0;
8732
8733 case CONST_VECTOR:
8734 {
8735 int units, i;
8736 rtx elt;
8737
8738 units = CONST_VECTOR_NUNITS (r);
8739
8740 for (i = 0; i < units; ++i)
8741 {
8742 elt = CONST_VECTOR_ELT (r, i);
8743 if (!rtl_expr_nonnegative_p (elt))
8744 return 0;
8745 }
8746
8747 return 1;
8748 }
8749
8750 case SYMBOL_REF:
8751 case LABEL_REF:
8752 /* These are always nonnegative. */
8753 return 1;
8754
8755 default:
8756 return 0;
8757 }
8758 }
8759
8760 #include "gt-fold-const.h"