flags.h (flag_wrapv): New flag controlling overflow semantics.
[gcc.git] / gcc / fold-const.c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
29
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type.
32
33 fold takes a tree as argument and returns a simplified tree.
34
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
38
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
41
42 force_fit_type takes a constant and prior overflow indicator, and
43 forces the value to fit the type. It returns an overflow indicator. */
44
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
49 #include "flags.h"
50 #include "tree.h"
51 #include "real.h"
52 #include "rtl.h"
53 #include "expr.h"
54 #include "tm_p.h"
55 #include "toplev.h"
56 #include "ggc.h"
57 #include "hashtab.h"
58 #include "langhooks.h"
59
60 static void encode PARAMS ((HOST_WIDE_INT *,
61 unsigned HOST_WIDE_INT,
62 HOST_WIDE_INT));
63 static void decode PARAMS ((HOST_WIDE_INT *,
64 unsigned HOST_WIDE_INT *,
65 HOST_WIDE_INT *));
66 static bool negate_expr_p PARAMS ((tree));
67 static tree negate_expr PARAMS ((tree));
68 static tree split_tree PARAMS ((tree, enum tree_code, tree *, tree *,
69 tree *, int));
70 static tree associate_trees PARAMS ((tree, tree, enum tree_code, tree));
71 static tree int_const_binop PARAMS ((enum tree_code, tree, tree, int));
72 static tree const_binop PARAMS ((enum tree_code, tree, tree, int));
73 static hashval_t size_htab_hash PARAMS ((const void *));
74 static int size_htab_eq PARAMS ((const void *, const void *));
75 static tree fold_convert PARAMS ((tree, tree));
76 static enum tree_code invert_tree_comparison PARAMS ((enum tree_code));
77 static enum tree_code swap_tree_comparison PARAMS ((enum tree_code));
78 static int comparison_to_compcode PARAMS ((enum tree_code));
79 static enum tree_code compcode_to_comparison PARAMS ((int));
80 static int truth_value_p PARAMS ((enum tree_code));
81 static int operand_equal_for_comparison_p PARAMS ((tree, tree, tree));
82 static int twoval_comparison_p PARAMS ((tree, tree *, tree *, int *));
83 static tree eval_subst PARAMS ((tree, tree, tree, tree, tree));
84 static tree pedantic_omit_one_operand PARAMS ((tree, tree, tree));
85 static tree distribute_bit_expr PARAMS ((enum tree_code, tree, tree, tree));
86 static tree make_bit_field_ref PARAMS ((tree, tree, int, int, int));
87 static tree optimize_bit_field_compare PARAMS ((enum tree_code, tree,
88 tree, tree));
89 static tree decode_field_reference PARAMS ((tree, HOST_WIDE_INT *,
90 HOST_WIDE_INT *,
91 enum machine_mode *, int *,
92 int *, tree *, tree *));
93 static int all_ones_mask_p PARAMS ((tree, int));
94 static tree sign_bit_p PARAMS ((tree, tree));
95 static int simple_operand_p PARAMS ((tree));
96 static tree range_binop PARAMS ((enum tree_code, tree, tree, int,
97 tree, int));
98 static tree make_range PARAMS ((tree, int *, tree *, tree *));
99 static tree build_range_check PARAMS ((tree, tree, int, tree, tree));
100 static int merge_ranges PARAMS ((int *, tree *, tree *, int, tree, tree,
101 int, tree, tree));
102 static tree fold_range_test PARAMS ((tree));
103 static tree unextend PARAMS ((tree, int, int, tree));
104 static tree fold_truthop PARAMS ((enum tree_code, tree, tree, tree));
105 static tree optimize_minmax_comparison PARAMS ((tree));
106 static tree extract_muldiv PARAMS ((tree, tree, enum tree_code, tree));
107 static tree extract_muldiv_1 PARAMS ((tree, tree, enum tree_code, tree));
108 static tree strip_compound_expr PARAMS ((tree, tree));
109 static int multiple_of_p PARAMS ((tree, tree, tree));
110 static tree constant_boolean_node PARAMS ((int, tree));
111 static int count_cond PARAMS ((tree, int));
112 static tree fold_binary_op_with_conditional_arg
113 PARAMS ((enum tree_code, tree, tree, tree, int));
114 static bool fold_real_zero_addition_p PARAMS ((tree, tree, int));
115 static tree fold_mathfn_compare PARAMS ((enum built_in_function,
116 enum tree_code, tree, tree, tree));
117 static tree fold_inf_compare PARAMS ((enum tree_code, tree, tree, tree));
118
119 /* The following constants represent a bit based encoding of GCC's
120 comparison operators. This encoding simplifies transformations
121 on relational comparison operators, such as AND and OR. */
122 #define COMPCODE_FALSE 0
123 #define COMPCODE_LT 1
124 #define COMPCODE_EQ 2
125 #define COMPCODE_LE 3
126 #define COMPCODE_GT 4
127 #define COMPCODE_NE 5
128 #define COMPCODE_GE 6
129 #define COMPCODE_TRUE 7
130
131 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
132 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
133 and SUM1. Then this yields nonzero if overflow occurred during the
134 addition.
135
136 Overflow occurs if A and B have the same sign, but A and SUM differ in
137 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
138 sign. */
139 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
140 \f
141 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
142 We do that by representing the two-word integer in 4 words, with only
143 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
144 number. The value of the word is LOWPART + HIGHPART * BASE. */
145
146 #define LOWPART(x) \
147 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
148 #define HIGHPART(x) \
149 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
150 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
151
152 /* Unpack a two-word integer into 4 words.
153 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
154 WORDS points to the array of HOST_WIDE_INTs. */
155
156 static void
157 encode (words, low, hi)
158 HOST_WIDE_INT *words;
159 unsigned HOST_WIDE_INT low;
160 HOST_WIDE_INT hi;
161 {
162 words[0] = LOWPART (low);
163 words[1] = HIGHPART (low);
164 words[2] = LOWPART (hi);
165 words[3] = HIGHPART (hi);
166 }
167
168 /* Pack an array of 4 words into a two-word integer.
169 WORDS points to the array of words.
170 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
171
172 static void
173 decode (words, low, hi)
174 HOST_WIDE_INT *words;
175 unsigned HOST_WIDE_INT *low;
176 HOST_WIDE_INT *hi;
177 {
178 *low = words[0] + words[1] * BASE;
179 *hi = words[2] + words[3] * BASE;
180 }
181 \f
182 /* Make the integer constant T valid for its type by setting to 0 or 1 all
183 the bits in the constant that don't belong in the type.
184
185 Return 1 if a signed overflow occurs, 0 otherwise. If OVERFLOW is
186 nonzero, a signed overflow has already occurred in calculating T, so
187 propagate it. */
188
189 int
190 force_fit_type (t, overflow)
191 tree t;
192 int overflow;
193 {
194 unsigned HOST_WIDE_INT low;
195 HOST_WIDE_INT high;
196 unsigned int prec;
197
198 if (TREE_CODE (t) == REAL_CST)
199 {
200 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
201 Consider doing it via real_convert now. */
202 return overflow;
203 }
204
205 else if (TREE_CODE (t) != INTEGER_CST)
206 return overflow;
207
208 low = TREE_INT_CST_LOW (t);
209 high = TREE_INT_CST_HIGH (t);
210
211 if (POINTER_TYPE_P (TREE_TYPE (t)))
212 prec = POINTER_SIZE;
213 else
214 prec = TYPE_PRECISION (TREE_TYPE (t));
215
216 /* First clear all bits that are beyond the type's precision. */
217
218 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
219 ;
220 else if (prec > HOST_BITS_PER_WIDE_INT)
221 TREE_INT_CST_HIGH (t)
222 &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
223 else
224 {
225 TREE_INT_CST_HIGH (t) = 0;
226 if (prec < HOST_BITS_PER_WIDE_INT)
227 TREE_INT_CST_LOW (t) &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
228 }
229
230 /* Unsigned types do not suffer sign extension or overflow unless they
231 are a sizetype. */
232 if (TREE_UNSIGNED (TREE_TYPE (t))
233 && ! (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
234 && TYPE_IS_SIZETYPE (TREE_TYPE (t))))
235 return overflow;
236
237 /* If the value's sign bit is set, extend the sign. */
238 if (prec != 2 * HOST_BITS_PER_WIDE_INT
239 && (prec > HOST_BITS_PER_WIDE_INT
240 ? 0 != (TREE_INT_CST_HIGH (t)
241 & ((HOST_WIDE_INT) 1
242 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
243 : 0 != (TREE_INT_CST_LOW (t)
244 & ((unsigned HOST_WIDE_INT) 1 << (prec - 1)))))
245 {
246 /* Value is negative:
247 set to 1 all the bits that are outside this type's precision. */
248 if (prec > HOST_BITS_PER_WIDE_INT)
249 TREE_INT_CST_HIGH (t)
250 |= ((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
251 else
252 {
253 TREE_INT_CST_HIGH (t) = -1;
254 if (prec < HOST_BITS_PER_WIDE_INT)
255 TREE_INT_CST_LOW (t) |= ((unsigned HOST_WIDE_INT) (-1) << prec);
256 }
257 }
258
259 /* Return nonzero if signed overflow occurred. */
260 return
261 ((overflow | (low ^ TREE_INT_CST_LOW (t)) | (high ^ TREE_INT_CST_HIGH (t)))
262 != 0);
263 }
264 \f
265 /* Add two doubleword integers with doubleword result.
266 Each argument is given as two `HOST_WIDE_INT' pieces.
267 One argument is L1 and H1; the other, L2 and H2.
268 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
269
270 int
271 add_double (l1, h1, l2, h2, lv, hv)
272 unsigned HOST_WIDE_INT l1, l2;
273 HOST_WIDE_INT h1, h2;
274 unsigned HOST_WIDE_INT *lv;
275 HOST_WIDE_INT *hv;
276 {
277 unsigned HOST_WIDE_INT l;
278 HOST_WIDE_INT h;
279
280 l = l1 + l2;
281 h = h1 + h2 + (l < l1);
282
283 *lv = l;
284 *hv = h;
285 return OVERFLOW_SUM_SIGN (h1, h2, h);
286 }
287
288 /* Negate a doubleword integer with doubleword result.
289 Return nonzero if the operation overflows, assuming it's signed.
290 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
291 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
292
293 int
294 neg_double (l1, h1, lv, hv)
295 unsigned HOST_WIDE_INT l1;
296 HOST_WIDE_INT h1;
297 unsigned HOST_WIDE_INT *lv;
298 HOST_WIDE_INT *hv;
299 {
300 if (l1 == 0)
301 {
302 *lv = 0;
303 *hv = - h1;
304 return (*hv & h1) < 0;
305 }
306 else
307 {
308 *lv = -l1;
309 *hv = ~h1;
310 return 0;
311 }
312 }
313 \f
314 /* Multiply two doubleword integers with doubleword result.
315 Return nonzero if the operation overflows, assuming it's signed.
316 Each argument is given as two `HOST_WIDE_INT' pieces.
317 One argument is L1 and H1; the other, L2 and H2.
318 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
319
320 int
321 mul_double (l1, h1, l2, h2, lv, hv)
322 unsigned HOST_WIDE_INT l1, l2;
323 HOST_WIDE_INT h1, h2;
324 unsigned HOST_WIDE_INT *lv;
325 HOST_WIDE_INT *hv;
326 {
327 HOST_WIDE_INT arg1[4];
328 HOST_WIDE_INT arg2[4];
329 HOST_WIDE_INT prod[4 * 2];
330 unsigned HOST_WIDE_INT carry;
331 int i, j, k;
332 unsigned HOST_WIDE_INT toplow, neglow;
333 HOST_WIDE_INT tophigh, neghigh;
334
335 encode (arg1, l1, h1);
336 encode (arg2, l2, h2);
337
338 memset ((char *) prod, 0, sizeof prod);
339
340 for (i = 0; i < 4; i++)
341 {
342 carry = 0;
343 for (j = 0; j < 4; j++)
344 {
345 k = i + j;
346 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
347 carry += arg1[i] * arg2[j];
348 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
349 carry += prod[k];
350 prod[k] = LOWPART (carry);
351 carry = HIGHPART (carry);
352 }
353 prod[i + 4] = carry;
354 }
355
356 decode (prod, lv, hv); /* This ignores prod[4] through prod[4*2-1] */
357
358 /* Check for overflow by calculating the top half of the answer in full;
359 it should agree with the low half's sign bit. */
360 decode (prod + 4, &toplow, &tophigh);
361 if (h1 < 0)
362 {
363 neg_double (l2, h2, &neglow, &neghigh);
364 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
365 }
366 if (h2 < 0)
367 {
368 neg_double (l1, h1, &neglow, &neghigh);
369 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
370 }
371 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
372 }
373 \f
374 /* Shift the doubleword integer in L1, H1 left by COUNT places
375 keeping only PREC bits of result.
376 Shift right if COUNT is negative.
377 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
378 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
379
380 void
381 lshift_double (l1, h1, count, prec, lv, hv, arith)
382 unsigned HOST_WIDE_INT l1;
383 HOST_WIDE_INT h1, count;
384 unsigned int prec;
385 unsigned HOST_WIDE_INT *lv;
386 HOST_WIDE_INT *hv;
387 int arith;
388 {
389 unsigned HOST_WIDE_INT signmask;
390
391 if (count < 0)
392 {
393 rshift_double (l1, h1, -count, prec, lv, hv, arith);
394 return;
395 }
396
397 #ifdef SHIFT_COUNT_TRUNCATED
398 if (SHIFT_COUNT_TRUNCATED)
399 count %= prec;
400 #endif
401
402 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
403 {
404 /* Shifting by the host word size is undefined according to the
405 ANSI standard, so we must handle this as a special case. */
406 *hv = 0;
407 *lv = 0;
408 }
409 else if (count >= HOST_BITS_PER_WIDE_INT)
410 {
411 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
412 *lv = 0;
413 }
414 else
415 {
416 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
417 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
418 *lv = l1 << count;
419 }
420
421 /* Sign extend all bits that are beyond the precision. */
422
423 signmask = -((prec > HOST_BITS_PER_WIDE_INT
424 ? ((unsigned HOST_WIDE_INT) *hv
425 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
426 : (*lv >> (prec - 1))) & 1);
427
428 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
429 ;
430 else if (prec >= HOST_BITS_PER_WIDE_INT)
431 {
432 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
433 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
434 }
435 else
436 {
437 *hv = signmask;
438 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
439 *lv |= signmask << prec;
440 }
441 }
442
443 /* Shift the doubleword integer in L1, H1 right by COUNT places
444 keeping only PREC bits of result. COUNT must be positive.
445 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
446 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
447
448 void
449 rshift_double (l1, h1, count, prec, lv, hv, arith)
450 unsigned HOST_WIDE_INT l1;
451 HOST_WIDE_INT h1, count;
452 unsigned int prec;
453 unsigned HOST_WIDE_INT *lv;
454 HOST_WIDE_INT *hv;
455 int arith;
456 {
457 unsigned HOST_WIDE_INT signmask;
458
459 signmask = (arith
460 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
461 : 0);
462
463 #ifdef SHIFT_COUNT_TRUNCATED
464 if (SHIFT_COUNT_TRUNCATED)
465 count %= prec;
466 #endif
467
468 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
469 {
470 /* Shifting by the host word size is undefined according to the
471 ANSI standard, so we must handle this as a special case. */
472 *hv = 0;
473 *lv = 0;
474 }
475 else if (count >= HOST_BITS_PER_WIDE_INT)
476 {
477 *hv = 0;
478 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
479 }
480 else
481 {
482 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
483 *lv = ((l1 >> count)
484 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
485 }
486
487 /* Zero / sign extend all bits that are beyond the precision. */
488
489 if (count >= (HOST_WIDE_INT)prec)
490 {
491 *hv = signmask;
492 *lv = signmask;
493 }
494 else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
495 ;
496 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
497 {
498 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
499 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
500 }
501 else
502 {
503 *hv = signmask;
504 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
505 *lv |= signmask << (prec - count);
506 }
507 }
508 \f
509 /* Rotate the doubleword integer in L1, H1 left by COUNT places
510 keeping only PREC bits of result.
511 Rotate right if COUNT is negative.
512 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
513
514 void
515 lrotate_double (l1, h1, count, prec, lv, hv)
516 unsigned HOST_WIDE_INT l1;
517 HOST_WIDE_INT h1, count;
518 unsigned int prec;
519 unsigned HOST_WIDE_INT *lv;
520 HOST_WIDE_INT *hv;
521 {
522 unsigned HOST_WIDE_INT s1l, s2l;
523 HOST_WIDE_INT s1h, s2h;
524
525 count %= prec;
526 if (count < 0)
527 count += prec;
528
529 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
530 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
531 *lv = s1l | s2l;
532 *hv = s1h | s2h;
533 }
534
535 /* Rotate the doubleword integer in L1, H1 left by COUNT places
536 keeping only PREC bits of result. COUNT must be positive.
537 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
538
539 void
540 rrotate_double (l1, h1, count, prec, lv, hv)
541 unsigned HOST_WIDE_INT l1;
542 HOST_WIDE_INT h1, count;
543 unsigned int prec;
544 unsigned HOST_WIDE_INT *lv;
545 HOST_WIDE_INT *hv;
546 {
547 unsigned HOST_WIDE_INT s1l, s2l;
548 HOST_WIDE_INT s1h, s2h;
549
550 count %= prec;
551 if (count < 0)
552 count += prec;
553
554 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
555 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
556 *lv = s1l | s2l;
557 *hv = s1h | s2h;
558 }
559 \f
560 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
561 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
562 CODE is a tree code for a kind of division, one of
563 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
564 or EXACT_DIV_EXPR
565 It controls how the quotient is rounded to an integer.
566 Return nonzero if the operation overflows.
567 UNS nonzero says do unsigned division. */
568
569 int
570 div_and_round_double (code, uns,
571 lnum_orig, hnum_orig, lden_orig, hden_orig,
572 lquo, hquo, lrem, hrem)
573 enum tree_code code;
574 int uns;
575 unsigned HOST_WIDE_INT lnum_orig; /* num == numerator == dividend */
576 HOST_WIDE_INT hnum_orig;
577 unsigned HOST_WIDE_INT lden_orig; /* den == denominator == divisor */
578 HOST_WIDE_INT hden_orig;
579 unsigned HOST_WIDE_INT *lquo, *lrem;
580 HOST_WIDE_INT *hquo, *hrem;
581 {
582 int quo_neg = 0;
583 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
584 HOST_WIDE_INT den[4], quo[4];
585 int i, j;
586 unsigned HOST_WIDE_INT work;
587 unsigned HOST_WIDE_INT carry = 0;
588 unsigned HOST_WIDE_INT lnum = lnum_orig;
589 HOST_WIDE_INT hnum = hnum_orig;
590 unsigned HOST_WIDE_INT lden = lden_orig;
591 HOST_WIDE_INT hden = hden_orig;
592 int overflow = 0;
593
594 if (hden == 0 && lden == 0)
595 overflow = 1, lden = 1;
596
597 /* calculate quotient sign and convert operands to unsigned. */
598 if (!uns)
599 {
600 if (hnum < 0)
601 {
602 quo_neg = ~ quo_neg;
603 /* (minimum integer) / (-1) is the only overflow case. */
604 if (neg_double (lnum, hnum, &lnum, &hnum)
605 && ((HOST_WIDE_INT) lden & hden) == -1)
606 overflow = 1;
607 }
608 if (hden < 0)
609 {
610 quo_neg = ~ quo_neg;
611 neg_double (lden, hden, &lden, &hden);
612 }
613 }
614
615 if (hnum == 0 && hden == 0)
616 { /* single precision */
617 *hquo = *hrem = 0;
618 /* This unsigned division rounds toward zero. */
619 *lquo = lnum / lden;
620 goto finish_up;
621 }
622
623 if (hnum == 0)
624 { /* trivial case: dividend < divisor */
625 /* hden != 0 already checked. */
626 *hquo = *lquo = 0;
627 *hrem = hnum;
628 *lrem = lnum;
629 goto finish_up;
630 }
631
632 memset ((char *) quo, 0, sizeof quo);
633
634 memset ((char *) num, 0, sizeof num); /* to zero 9th element */
635 memset ((char *) den, 0, sizeof den);
636
637 encode (num, lnum, hnum);
638 encode (den, lden, hden);
639
640 /* Special code for when the divisor < BASE. */
641 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
642 {
643 /* hnum != 0 already checked. */
644 for (i = 4 - 1; i >= 0; i--)
645 {
646 work = num[i] + carry * BASE;
647 quo[i] = work / lden;
648 carry = work % lden;
649 }
650 }
651 else
652 {
653 /* Full double precision division,
654 with thanks to Don Knuth's "Seminumerical Algorithms". */
655 int num_hi_sig, den_hi_sig;
656 unsigned HOST_WIDE_INT quo_est, scale;
657
658 /* Find the highest nonzero divisor digit. */
659 for (i = 4 - 1;; i--)
660 if (den[i] != 0)
661 {
662 den_hi_sig = i;
663 break;
664 }
665
666 /* Insure that the first digit of the divisor is at least BASE/2.
667 This is required by the quotient digit estimation algorithm. */
668
669 scale = BASE / (den[den_hi_sig] + 1);
670 if (scale > 1)
671 { /* scale divisor and dividend */
672 carry = 0;
673 for (i = 0; i <= 4 - 1; i++)
674 {
675 work = (num[i] * scale) + carry;
676 num[i] = LOWPART (work);
677 carry = HIGHPART (work);
678 }
679
680 num[4] = carry;
681 carry = 0;
682 for (i = 0; i <= 4 - 1; i++)
683 {
684 work = (den[i] * scale) + carry;
685 den[i] = LOWPART (work);
686 carry = HIGHPART (work);
687 if (den[i] != 0) den_hi_sig = i;
688 }
689 }
690
691 num_hi_sig = 4;
692
693 /* Main loop */
694 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
695 {
696 /* Guess the next quotient digit, quo_est, by dividing the first
697 two remaining dividend digits by the high order quotient digit.
698 quo_est is never low and is at most 2 high. */
699 unsigned HOST_WIDE_INT tmp;
700
701 num_hi_sig = i + den_hi_sig + 1;
702 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
703 if (num[num_hi_sig] != den[den_hi_sig])
704 quo_est = work / den[den_hi_sig];
705 else
706 quo_est = BASE - 1;
707
708 /* Refine quo_est so it's usually correct, and at most one high. */
709 tmp = work - quo_est * den[den_hi_sig];
710 if (tmp < BASE
711 && (den[den_hi_sig - 1] * quo_est
712 > (tmp * BASE + num[num_hi_sig - 2])))
713 quo_est--;
714
715 /* Try QUO_EST as the quotient digit, by multiplying the
716 divisor by QUO_EST and subtracting from the remaining dividend.
717 Keep in mind that QUO_EST is the I - 1st digit. */
718
719 carry = 0;
720 for (j = 0; j <= den_hi_sig; j++)
721 {
722 work = quo_est * den[j] + carry;
723 carry = HIGHPART (work);
724 work = num[i + j] - LOWPART (work);
725 num[i + j] = LOWPART (work);
726 carry += HIGHPART (work) != 0;
727 }
728
729 /* If quo_est was high by one, then num[i] went negative and
730 we need to correct things. */
731 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
732 {
733 quo_est--;
734 carry = 0; /* add divisor back in */
735 for (j = 0; j <= den_hi_sig; j++)
736 {
737 work = num[i + j] + den[j] + carry;
738 carry = HIGHPART (work);
739 num[i + j] = LOWPART (work);
740 }
741
742 num [num_hi_sig] += carry;
743 }
744
745 /* Store the quotient digit. */
746 quo[i] = quo_est;
747 }
748 }
749
750 decode (quo, lquo, hquo);
751
752 finish_up:
753 /* if result is negative, make it so. */
754 if (quo_neg)
755 neg_double (*lquo, *hquo, lquo, hquo);
756
757 /* compute trial remainder: rem = num - (quo * den) */
758 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
759 neg_double (*lrem, *hrem, lrem, hrem);
760 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
761
762 switch (code)
763 {
764 case TRUNC_DIV_EXPR:
765 case TRUNC_MOD_EXPR: /* round toward zero */
766 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
767 return overflow;
768
769 case FLOOR_DIV_EXPR:
770 case FLOOR_MOD_EXPR: /* round toward negative infinity */
771 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
772 {
773 /* quo = quo - 1; */
774 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
775 lquo, hquo);
776 }
777 else
778 return overflow;
779 break;
780
781 case CEIL_DIV_EXPR:
782 case CEIL_MOD_EXPR: /* round toward positive infinity */
783 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
784 {
785 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
786 lquo, hquo);
787 }
788 else
789 return overflow;
790 break;
791
792 case ROUND_DIV_EXPR:
793 case ROUND_MOD_EXPR: /* round to closest integer */
794 {
795 unsigned HOST_WIDE_INT labs_rem = *lrem;
796 HOST_WIDE_INT habs_rem = *hrem;
797 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
798 HOST_WIDE_INT habs_den = hden, htwice;
799
800 /* Get absolute values */
801 if (*hrem < 0)
802 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
803 if (hden < 0)
804 neg_double (lden, hden, &labs_den, &habs_den);
805
806 /* If (2 * abs (lrem) >= abs (lden)) */
807 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
808 labs_rem, habs_rem, &ltwice, &htwice);
809
810 if (((unsigned HOST_WIDE_INT) habs_den
811 < (unsigned HOST_WIDE_INT) htwice)
812 || (((unsigned HOST_WIDE_INT) habs_den
813 == (unsigned HOST_WIDE_INT) htwice)
814 && (labs_den < ltwice)))
815 {
816 if (*hquo < 0)
817 /* quo = quo - 1; */
818 add_double (*lquo, *hquo,
819 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
820 else
821 /* quo = quo + 1; */
822 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
823 lquo, hquo);
824 }
825 else
826 return overflow;
827 }
828 break;
829
830 default:
831 abort ();
832 }
833
834 /* compute true remainder: rem = num - (quo * den) */
835 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
836 neg_double (*lrem, *hrem, lrem, hrem);
837 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
838 return overflow;
839 }
840 \f
841 /* Determine whether an expression T can be cheaply negated using
842 the function negate_expr. */
843
844 static bool
845 negate_expr_p (t)
846 tree t;
847 {
848 unsigned HOST_WIDE_INT val;
849 unsigned int prec;
850 tree type;
851
852 if (t == 0)
853 return false;
854
855 type = TREE_TYPE (t);
856
857 STRIP_SIGN_NOPS (t);
858 switch (TREE_CODE (t))
859 {
860 case INTEGER_CST:
861 if (TREE_UNSIGNED (type))
862 return false;
863
864 /* Check that -CST will not overflow type. */
865 prec = TYPE_PRECISION (type);
866 if (prec > HOST_BITS_PER_WIDE_INT)
867 {
868 if (TREE_INT_CST_LOW (t) != 0)
869 return true;
870 prec -= HOST_BITS_PER_WIDE_INT;
871 val = TREE_INT_CST_HIGH (t);
872 }
873 else
874 val = TREE_INT_CST_LOW (t);
875 if (prec < HOST_BITS_PER_WIDE_INT)
876 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
877 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
878
879 case REAL_CST:
880 case NEGATE_EXPR:
881 case MINUS_EXPR:
882 return true;
883
884 default:
885 break;
886 }
887 return false;
888 }
889
890 /* Given T, an expression, return the negation of T. Allow for T to be
891 null, in which case return null. */
892
893 static tree
894 negate_expr (t)
895 tree t;
896 {
897 tree type;
898 tree tem;
899
900 if (t == 0)
901 return 0;
902
903 type = TREE_TYPE (t);
904 STRIP_SIGN_NOPS (t);
905
906 switch (TREE_CODE (t))
907 {
908 case INTEGER_CST:
909 case REAL_CST:
910 if (! TREE_UNSIGNED (type)
911 && 0 != (tem = fold (build1 (NEGATE_EXPR, type, t)))
912 && ! TREE_OVERFLOW (tem))
913 return tem;
914 break;
915
916 case NEGATE_EXPR:
917 return convert (type, TREE_OPERAND (t, 0));
918
919 case MINUS_EXPR:
920 /* - (A - B) -> B - A */
921 if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
922 return convert (type,
923 fold (build (MINUS_EXPR, TREE_TYPE (t),
924 TREE_OPERAND (t, 1),
925 TREE_OPERAND (t, 0))));
926 break;
927
928 default:
929 break;
930 }
931
932 return convert (type, fold (build1 (NEGATE_EXPR, TREE_TYPE (t), t)));
933 }
934 \f
935 /* Split a tree IN into a constant, literal and variable parts that could be
936 combined with CODE to make IN. "constant" means an expression with
937 TREE_CONSTANT but that isn't an actual constant. CODE must be a
938 commutative arithmetic operation. Store the constant part into *CONP,
939 the literal in *LITP and return the variable part. If a part isn't
940 present, set it to null. If the tree does not decompose in this way,
941 return the entire tree as the variable part and the other parts as null.
942
943 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
944 case, we negate an operand that was subtracted. Except if it is a
945 literal for which we use *MINUS_LITP instead.
946
947 If NEGATE_P is true, we are negating all of IN, again except a literal
948 for which we use *MINUS_LITP instead.
949
950 If IN is itself a literal or constant, return it as appropriate.
951
952 Note that we do not guarantee that any of the three values will be the
953 same type as IN, but they will have the same signedness and mode. */
954
955 static tree
956 split_tree (in, code, conp, litp, minus_litp, negate_p)
957 tree in;
958 enum tree_code code;
959 tree *conp, *litp, *minus_litp;
960 int negate_p;
961 {
962 tree var = 0;
963
964 *conp = 0;
965 *litp = 0;
966 *minus_litp = 0;
967
968 /* Strip any conversions that don't change the machine mode or signedness. */
969 STRIP_SIGN_NOPS (in);
970
971 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST)
972 *litp = in;
973 else if (TREE_CODE (in) == code
974 || (! FLOAT_TYPE_P (TREE_TYPE (in))
975 /* We can associate addition and subtraction together (even
976 though the C standard doesn't say so) for integers because
977 the value is not affected. For reals, the value might be
978 affected, so we can't. */
979 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
980 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
981 {
982 tree op0 = TREE_OPERAND (in, 0);
983 tree op1 = TREE_OPERAND (in, 1);
984 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
985 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
986
987 /* First see if either of the operands is a literal, then a constant. */
988 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
989 *litp = op0, op0 = 0;
990 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST)
991 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
992
993 if (op0 != 0 && TREE_CONSTANT (op0))
994 *conp = op0, op0 = 0;
995 else if (op1 != 0 && TREE_CONSTANT (op1))
996 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
997
998 /* If we haven't dealt with either operand, this is not a case we can
999 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1000 if (op0 != 0 && op1 != 0)
1001 var = in;
1002 else if (op0 != 0)
1003 var = op0;
1004 else
1005 var = op1, neg_var_p = neg1_p;
1006
1007 /* Now do any needed negations. */
1008 if (neg_litp_p)
1009 *minus_litp = *litp, *litp = 0;
1010 if (neg_conp_p)
1011 *conp = negate_expr (*conp);
1012 if (neg_var_p)
1013 var = negate_expr (var);
1014 }
1015 else if (TREE_CONSTANT (in))
1016 *conp = in;
1017 else
1018 var = in;
1019
1020 if (negate_p)
1021 {
1022 if (*litp)
1023 *minus_litp = *litp, *litp = 0;
1024 else if (*minus_litp)
1025 *litp = *minus_litp, *minus_litp = 0;
1026 *conp = negate_expr (*conp);
1027 var = negate_expr (var);
1028 }
1029
1030 return var;
1031 }
1032
1033 /* Re-associate trees split by the above function. T1 and T2 are either
1034 expressions to associate or null. Return the new expression, if any. If
1035 we build an operation, do it in TYPE and with CODE. */
1036
1037 static tree
1038 associate_trees (t1, t2, code, type)
1039 tree t1, t2;
1040 enum tree_code code;
1041 tree type;
1042 {
1043 if (t1 == 0)
1044 return t2;
1045 else if (t2 == 0)
1046 return t1;
1047
1048 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1049 try to fold this since we will have infinite recursion. But do
1050 deal with any NEGATE_EXPRs. */
1051 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
1052 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
1053 {
1054 if (code == PLUS_EXPR)
1055 {
1056 if (TREE_CODE (t1) == NEGATE_EXPR)
1057 return build (MINUS_EXPR, type, convert (type, t2),
1058 convert (type, TREE_OPERAND (t1, 0)));
1059 else if (TREE_CODE (t2) == NEGATE_EXPR)
1060 return build (MINUS_EXPR, type, convert (type, t1),
1061 convert (type, TREE_OPERAND (t2, 0)));
1062 }
1063 return build (code, type, convert (type, t1), convert (type, t2));
1064 }
1065
1066 return fold (build (code, type, convert (type, t1), convert (type, t2)));
1067 }
1068 \f
1069 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1070 to produce a new constant.
1071
1072 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1073
1074 static tree
1075 int_const_binop (code, arg1, arg2, notrunc)
1076 enum tree_code code;
1077 tree arg1, arg2;
1078 int notrunc;
1079 {
1080 unsigned HOST_WIDE_INT int1l, int2l;
1081 HOST_WIDE_INT int1h, int2h;
1082 unsigned HOST_WIDE_INT low;
1083 HOST_WIDE_INT hi;
1084 unsigned HOST_WIDE_INT garbagel;
1085 HOST_WIDE_INT garbageh;
1086 tree t;
1087 tree type = TREE_TYPE (arg1);
1088 int uns = TREE_UNSIGNED (type);
1089 int is_sizetype
1090 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
1091 int overflow = 0;
1092 int no_overflow = 0;
1093
1094 int1l = TREE_INT_CST_LOW (arg1);
1095 int1h = TREE_INT_CST_HIGH (arg1);
1096 int2l = TREE_INT_CST_LOW (arg2);
1097 int2h = TREE_INT_CST_HIGH (arg2);
1098
1099 switch (code)
1100 {
1101 case BIT_IOR_EXPR:
1102 low = int1l | int2l, hi = int1h | int2h;
1103 break;
1104
1105 case BIT_XOR_EXPR:
1106 low = int1l ^ int2l, hi = int1h ^ int2h;
1107 break;
1108
1109 case BIT_AND_EXPR:
1110 low = int1l & int2l, hi = int1h & int2h;
1111 break;
1112
1113 case BIT_ANDTC_EXPR:
1114 low = int1l & ~int2l, hi = int1h & ~int2h;
1115 break;
1116
1117 case RSHIFT_EXPR:
1118 int2l = -int2l;
1119 case LSHIFT_EXPR:
1120 /* It's unclear from the C standard whether shifts can overflow.
1121 The following code ignores overflow; perhaps a C standard
1122 interpretation ruling is needed. */
1123 lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1124 &low, &hi, !uns);
1125 no_overflow = 1;
1126 break;
1127
1128 case RROTATE_EXPR:
1129 int2l = - int2l;
1130 case LROTATE_EXPR:
1131 lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1132 &low, &hi);
1133 break;
1134
1135 case PLUS_EXPR:
1136 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1137 break;
1138
1139 case MINUS_EXPR:
1140 neg_double (int2l, int2h, &low, &hi);
1141 add_double (int1l, int1h, low, hi, &low, &hi);
1142 overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
1143 break;
1144
1145 case MULT_EXPR:
1146 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1147 break;
1148
1149 case TRUNC_DIV_EXPR:
1150 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1151 case EXACT_DIV_EXPR:
1152 /* This is a shortcut for a common special case. */
1153 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1154 && ! TREE_CONSTANT_OVERFLOW (arg1)
1155 && ! TREE_CONSTANT_OVERFLOW (arg2)
1156 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1157 {
1158 if (code == CEIL_DIV_EXPR)
1159 int1l += int2l - 1;
1160
1161 low = int1l / int2l, hi = 0;
1162 break;
1163 }
1164
1165 /* ... fall through ... */
1166
1167 case ROUND_DIV_EXPR:
1168 if (int2h == 0 && int2l == 1)
1169 {
1170 low = int1l, hi = int1h;
1171 break;
1172 }
1173 if (int1l == int2l && int1h == int2h
1174 && ! (int1l == 0 && int1h == 0))
1175 {
1176 low = 1, hi = 0;
1177 break;
1178 }
1179 overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
1180 &low, &hi, &garbagel, &garbageh);
1181 break;
1182
1183 case TRUNC_MOD_EXPR:
1184 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1185 /* This is a shortcut for a common special case. */
1186 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1187 && ! TREE_CONSTANT_OVERFLOW (arg1)
1188 && ! TREE_CONSTANT_OVERFLOW (arg2)
1189 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1190 {
1191 if (code == CEIL_MOD_EXPR)
1192 int1l += int2l - 1;
1193 low = int1l % int2l, hi = 0;
1194 break;
1195 }
1196
1197 /* ... fall through ... */
1198
1199 case ROUND_MOD_EXPR:
1200 overflow = div_and_round_double (code, uns,
1201 int1l, int1h, int2l, int2h,
1202 &garbagel, &garbageh, &low, &hi);
1203 break;
1204
1205 case MIN_EXPR:
1206 case MAX_EXPR:
1207 if (uns)
1208 low = (((unsigned HOST_WIDE_INT) int1h
1209 < (unsigned HOST_WIDE_INT) int2h)
1210 || (((unsigned HOST_WIDE_INT) int1h
1211 == (unsigned HOST_WIDE_INT) int2h)
1212 && int1l < int2l));
1213 else
1214 low = (int1h < int2h
1215 || (int1h == int2h && int1l < int2l));
1216
1217 if (low == (code == MIN_EXPR))
1218 low = int1l, hi = int1h;
1219 else
1220 low = int2l, hi = int2h;
1221 break;
1222
1223 default:
1224 abort ();
1225 }
1226
1227 /* If this is for a sizetype, can be represented as one (signed)
1228 HOST_WIDE_INT word, and doesn't overflow, use size_int since it caches
1229 constants. */
1230 if (is_sizetype
1231 && ((hi == 0 && (HOST_WIDE_INT) low >= 0)
1232 || (hi == -1 && (HOST_WIDE_INT) low < 0))
1233 && overflow == 0 && ! TREE_OVERFLOW (arg1) && ! TREE_OVERFLOW (arg2))
1234 return size_int_type_wide (low, type);
1235 else
1236 {
1237 t = build_int_2 (low, hi);
1238 TREE_TYPE (t) = TREE_TYPE (arg1);
1239 }
1240
1241 TREE_OVERFLOW (t)
1242 = ((notrunc
1243 ? (!uns || is_sizetype) && overflow
1244 : (force_fit_type (t, (!uns || is_sizetype) && overflow)
1245 && ! no_overflow))
1246 | TREE_OVERFLOW (arg1)
1247 | TREE_OVERFLOW (arg2));
1248
1249 /* If we're doing a size calculation, unsigned arithmetic does overflow.
1250 So check if force_fit_type truncated the value. */
1251 if (is_sizetype
1252 && ! TREE_OVERFLOW (t)
1253 && (TREE_INT_CST_HIGH (t) != hi
1254 || TREE_INT_CST_LOW (t) != low))
1255 TREE_OVERFLOW (t) = 1;
1256
1257 TREE_CONSTANT_OVERFLOW (t) = (TREE_OVERFLOW (t)
1258 | TREE_CONSTANT_OVERFLOW (arg1)
1259 | TREE_CONSTANT_OVERFLOW (arg2));
1260 return t;
1261 }
1262
1263 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1264 constant. We assume ARG1 and ARG2 have the same data type, or at least
1265 are the same kind of constant and the same machine mode.
1266
1267 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1268
1269 static tree
1270 const_binop (code, arg1, arg2, notrunc)
1271 enum tree_code code;
1272 tree arg1, arg2;
1273 int notrunc;
1274 {
1275 STRIP_NOPS (arg1);
1276 STRIP_NOPS (arg2);
1277
1278 if (TREE_CODE (arg1) == INTEGER_CST)
1279 return int_const_binop (code, arg1, arg2, notrunc);
1280
1281 if (TREE_CODE (arg1) == REAL_CST)
1282 {
1283 REAL_VALUE_TYPE d1;
1284 REAL_VALUE_TYPE d2;
1285 REAL_VALUE_TYPE value;
1286 tree t;
1287
1288 d1 = TREE_REAL_CST (arg1);
1289 d2 = TREE_REAL_CST (arg2);
1290
1291 /* If either operand is a NaN, just return it. Otherwise, set up
1292 for floating-point trap; we return an overflow. */
1293 if (REAL_VALUE_ISNAN (d1))
1294 return arg1;
1295 else if (REAL_VALUE_ISNAN (d2))
1296 return arg2;
1297
1298 REAL_ARITHMETIC (value, code, d1, d2);
1299
1300 t = build_real (TREE_TYPE (arg1),
1301 real_value_truncate (TYPE_MODE (TREE_TYPE (arg1)),
1302 value));
1303
1304 TREE_OVERFLOW (t)
1305 = (force_fit_type (t, 0)
1306 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1307 TREE_CONSTANT_OVERFLOW (t)
1308 = TREE_OVERFLOW (t)
1309 | TREE_CONSTANT_OVERFLOW (arg1)
1310 | TREE_CONSTANT_OVERFLOW (arg2);
1311 return t;
1312 }
1313 if (TREE_CODE (arg1) == COMPLEX_CST)
1314 {
1315 tree type = TREE_TYPE (arg1);
1316 tree r1 = TREE_REALPART (arg1);
1317 tree i1 = TREE_IMAGPART (arg1);
1318 tree r2 = TREE_REALPART (arg2);
1319 tree i2 = TREE_IMAGPART (arg2);
1320 tree t;
1321
1322 switch (code)
1323 {
1324 case PLUS_EXPR:
1325 t = build_complex (type,
1326 const_binop (PLUS_EXPR, r1, r2, notrunc),
1327 const_binop (PLUS_EXPR, i1, i2, notrunc));
1328 break;
1329
1330 case MINUS_EXPR:
1331 t = build_complex (type,
1332 const_binop (MINUS_EXPR, r1, r2, notrunc),
1333 const_binop (MINUS_EXPR, i1, i2, notrunc));
1334 break;
1335
1336 case MULT_EXPR:
1337 t = build_complex (type,
1338 const_binop (MINUS_EXPR,
1339 const_binop (MULT_EXPR,
1340 r1, r2, notrunc),
1341 const_binop (MULT_EXPR,
1342 i1, i2, notrunc),
1343 notrunc),
1344 const_binop (PLUS_EXPR,
1345 const_binop (MULT_EXPR,
1346 r1, i2, notrunc),
1347 const_binop (MULT_EXPR,
1348 i1, r2, notrunc),
1349 notrunc));
1350 break;
1351
1352 case RDIV_EXPR:
1353 {
1354 tree magsquared
1355 = const_binop (PLUS_EXPR,
1356 const_binop (MULT_EXPR, r2, r2, notrunc),
1357 const_binop (MULT_EXPR, i2, i2, notrunc),
1358 notrunc);
1359
1360 t = build_complex (type,
1361 const_binop
1362 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1363 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1364 const_binop (PLUS_EXPR,
1365 const_binop (MULT_EXPR, r1, r2,
1366 notrunc),
1367 const_binop (MULT_EXPR, i1, i2,
1368 notrunc),
1369 notrunc),
1370 magsquared, notrunc),
1371 const_binop
1372 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1373 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1374 const_binop (MINUS_EXPR,
1375 const_binop (MULT_EXPR, i1, r2,
1376 notrunc),
1377 const_binop (MULT_EXPR, r1, i2,
1378 notrunc),
1379 notrunc),
1380 magsquared, notrunc));
1381 }
1382 break;
1383
1384 default:
1385 abort ();
1386 }
1387 return t;
1388 }
1389 return 0;
1390 }
1391
1392 /* These are the hash table functions for the hash table of INTEGER_CST
1393 nodes of a sizetype. */
1394
1395 /* Return the hash code code X, an INTEGER_CST. */
1396
1397 static hashval_t
1398 size_htab_hash (x)
1399 const void *x;
1400 {
1401 tree t = (tree) x;
1402
1403 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1404 ^ htab_hash_pointer (TREE_TYPE (t))
1405 ^ (TREE_OVERFLOW (t) << 20));
1406 }
1407
1408 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1409 is the same as that given by *Y, which is the same. */
1410
1411 static int
1412 size_htab_eq (x, y)
1413 const void *x;
1414 const void *y;
1415 {
1416 tree xt = (tree) x;
1417 tree yt = (tree) y;
1418
1419 return (TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1420 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt)
1421 && TREE_TYPE (xt) == TREE_TYPE (yt)
1422 && TREE_OVERFLOW (xt) == TREE_OVERFLOW (yt));
1423 }
1424 \f
1425 /* Return an INTEGER_CST with value whose low-order HOST_BITS_PER_WIDE_INT
1426 bits are given by NUMBER and of the sizetype represented by KIND. */
1427
1428 tree
1429 size_int_wide (number, kind)
1430 HOST_WIDE_INT number;
1431 enum size_type_kind kind;
1432 {
1433 return size_int_type_wide (number, sizetype_tab[(int) kind]);
1434 }
1435
1436 /* Likewise, but the desired type is specified explicitly. */
1437
1438 static GTY (()) tree new_const;
1439 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
1440 htab_t size_htab;
1441
1442 tree
1443 size_int_type_wide (number, type)
1444 HOST_WIDE_INT number;
1445 tree type;
1446 {
1447 PTR *slot;
1448
1449 if (size_htab == 0)
1450 {
1451 size_htab = htab_create_ggc (1024, size_htab_hash, size_htab_eq, NULL);
1452 new_const = make_node (INTEGER_CST);
1453 }
1454
1455 /* Adjust NEW_CONST to be the constant we want. If it's already in the
1456 hash table, we return the value from the hash table. Otherwise, we
1457 place that in the hash table and make a new node for the next time. */
1458 TREE_INT_CST_LOW (new_const) = number;
1459 TREE_INT_CST_HIGH (new_const) = number < 0 ? -1 : 0;
1460 TREE_TYPE (new_const) = type;
1461 TREE_OVERFLOW (new_const) = TREE_CONSTANT_OVERFLOW (new_const)
1462 = force_fit_type (new_const, 0);
1463
1464 slot = htab_find_slot (size_htab, new_const, INSERT);
1465 if (*slot == 0)
1466 {
1467 tree t = new_const;
1468
1469 *slot = (PTR) new_const;
1470 new_const = make_node (INTEGER_CST);
1471 return t;
1472 }
1473 else
1474 return (tree) *slot;
1475 }
1476
1477 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1478 is a tree code. The type of the result is taken from the operands.
1479 Both must be the same type integer type and it must be a size type.
1480 If the operands are constant, so is the result. */
1481
1482 tree
1483 size_binop (code, arg0, arg1)
1484 enum tree_code code;
1485 tree arg0, arg1;
1486 {
1487 tree type = TREE_TYPE (arg0);
1488
1489 if (TREE_CODE (type) != INTEGER_TYPE || ! TYPE_IS_SIZETYPE (type)
1490 || type != TREE_TYPE (arg1))
1491 abort ();
1492
1493 /* Handle the special case of two integer constants faster. */
1494 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1495 {
1496 /* And some specific cases even faster than that. */
1497 if (code == PLUS_EXPR && integer_zerop (arg0))
1498 return arg1;
1499 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
1500 && integer_zerop (arg1))
1501 return arg0;
1502 else if (code == MULT_EXPR && integer_onep (arg0))
1503 return arg1;
1504
1505 /* Handle general case of two integer constants. */
1506 return int_const_binop (code, arg0, arg1, 0);
1507 }
1508
1509 if (arg0 == error_mark_node || arg1 == error_mark_node)
1510 return error_mark_node;
1511
1512 return fold (build (code, type, arg0, arg1));
1513 }
1514
1515 /* Given two values, either both of sizetype or both of bitsizetype,
1516 compute the difference between the two values. Return the value
1517 in signed type corresponding to the type of the operands. */
1518
1519 tree
1520 size_diffop (arg0, arg1)
1521 tree arg0, arg1;
1522 {
1523 tree type = TREE_TYPE (arg0);
1524 tree ctype;
1525
1526 if (TREE_CODE (type) != INTEGER_TYPE || ! TYPE_IS_SIZETYPE (type)
1527 || type != TREE_TYPE (arg1))
1528 abort ();
1529
1530 /* If the type is already signed, just do the simple thing. */
1531 if (! TREE_UNSIGNED (type))
1532 return size_binop (MINUS_EXPR, arg0, arg1);
1533
1534 ctype = (type == bitsizetype || type == ubitsizetype
1535 ? sbitsizetype : ssizetype);
1536
1537 /* If either operand is not a constant, do the conversions to the signed
1538 type and subtract. The hardware will do the right thing with any
1539 overflow in the subtraction. */
1540 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1541 return size_binop (MINUS_EXPR, convert (ctype, arg0),
1542 convert (ctype, arg1));
1543
1544 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1545 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1546 overflow) and negate (which can't either). Special-case a result
1547 of zero while we're here. */
1548 if (tree_int_cst_equal (arg0, arg1))
1549 return convert (ctype, integer_zero_node);
1550 else if (tree_int_cst_lt (arg1, arg0))
1551 return convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
1552 else
1553 return size_binop (MINUS_EXPR, convert (ctype, integer_zero_node),
1554 convert (ctype, size_binop (MINUS_EXPR, arg1, arg0)));
1555 }
1556 \f
1557
1558 /* Given T, a tree representing type conversion of ARG1, a constant,
1559 return a constant tree representing the result of conversion. */
1560
1561 static tree
1562 fold_convert (t, arg1)
1563 tree t;
1564 tree arg1;
1565 {
1566 tree type = TREE_TYPE (t);
1567 int overflow = 0;
1568
1569 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
1570 {
1571 if (TREE_CODE (arg1) == INTEGER_CST)
1572 {
1573 /* If we would build a constant wider than GCC supports,
1574 leave the conversion unfolded. */
1575 if (TYPE_PRECISION (type) > 2 * HOST_BITS_PER_WIDE_INT)
1576 return t;
1577
1578 /* If we are trying to make a sizetype for a small integer, use
1579 size_int to pick up cached types to reduce duplicate nodes. */
1580 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1581 && !TREE_CONSTANT_OVERFLOW (arg1)
1582 && compare_tree_int (arg1, 10000) < 0)
1583 return size_int_type_wide (TREE_INT_CST_LOW (arg1), type);
1584
1585 /* Given an integer constant, make new constant with new type,
1586 appropriately sign-extended or truncated. */
1587 t = build_int_2 (TREE_INT_CST_LOW (arg1),
1588 TREE_INT_CST_HIGH (arg1));
1589 TREE_TYPE (t) = type;
1590 /* Indicate an overflow if (1) ARG1 already overflowed,
1591 or (2) force_fit_type indicates an overflow.
1592 Tell force_fit_type that an overflow has already occurred
1593 if ARG1 is a too-large unsigned value and T is signed.
1594 But don't indicate an overflow if converting a pointer. */
1595 TREE_OVERFLOW (t)
1596 = ((force_fit_type (t,
1597 (TREE_INT_CST_HIGH (arg1) < 0
1598 && (TREE_UNSIGNED (type)
1599 < TREE_UNSIGNED (TREE_TYPE (arg1)))))
1600 && ! POINTER_TYPE_P (TREE_TYPE (arg1)))
1601 || TREE_OVERFLOW (arg1));
1602 TREE_CONSTANT_OVERFLOW (t)
1603 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1604 }
1605 else if (TREE_CODE (arg1) == REAL_CST)
1606 {
1607 /* Don't initialize these, use assignments.
1608 Initialized local aggregates don't work on old compilers. */
1609 REAL_VALUE_TYPE x;
1610 REAL_VALUE_TYPE l;
1611 REAL_VALUE_TYPE u;
1612 tree type1 = TREE_TYPE (arg1);
1613 int no_upper_bound;
1614
1615 x = TREE_REAL_CST (arg1);
1616 l = real_value_from_int_cst (type1, TYPE_MIN_VALUE (type));
1617
1618 no_upper_bound = (TYPE_MAX_VALUE (type) == NULL);
1619 if (!no_upper_bound)
1620 u = real_value_from_int_cst (type1, TYPE_MAX_VALUE (type));
1621
1622 /* See if X will be in range after truncation towards 0.
1623 To compensate for truncation, move the bounds away from 0,
1624 but reject if X exactly equals the adjusted bounds. */
1625 REAL_ARITHMETIC (l, MINUS_EXPR, l, dconst1);
1626 if (!no_upper_bound)
1627 REAL_ARITHMETIC (u, PLUS_EXPR, u, dconst1);
1628 /* If X is a NaN, use zero instead and show we have an overflow.
1629 Otherwise, range check. */
1630 if (REAL_VALUE_ISNAN (x))
1631 overflow = 1, x = dconst0;
1632 else if (! (REAL_VALUES_LESS (l, x)
1633 && !no_upper_bound
1634 && REAL_VALUES_LESS (x, u)))
1635 overflow = 1;
1636
1637 {
1638 HOST_WIDE_INT low, high;
1639 REAL_VALUE_TO_INT (&low, &high, x);
1640 t = build_int_2 (low, high);
1641 }
1642 TREE_TYPE (t) = type;
1643 TREE_OVERFLOW (t)
1644 = TREE_OVERFLOW (arg1) | force_fit_type (t, overflow);
1645 TREE_CONSTANT_OVERFLOW (t)
1646 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1647 }
1648 TREE_TYPE (t) = type;
1649 }
1650 else if (TREE_CODE (type) == REAL_TYPE)
1651 {
1652 if (TREE_CODE (arg1) == INTEGER_CST)
1653 return build_real_from_int_cst (type, arg1);
1654 if (TREE_CODE (arg1) == REAL_CST)
1655 {
1656 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
1657 {
1658 /* We make a copy of ARG1 so that we don't modify an
1659 existing constant tree. */
1660 t = copy_node (arg1);
1661 TREE_TYPE (t) = type;
1662 return t;
1663 }
1664
1665 t = build_real (type,
1666 real_value_truncate (TYPE_MODE (type),
1667 TREE_REAL_CST (arg1)));
1668
1669 TREE_OVERFLOW (t)
1670 = TREE_OVERFLOW (arg1) | force_fit_type (t, 0);
1671 TREE_CONSTANT_OVERFLOW (t)
1672 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1673 return t;
1674 }
1675 }
1676 TREE_CONSTANT (t) = 1;
1677 return t;
1678 }
1679 \f
1680 /* Return an expr equal to X but certainly not valid as an lvalue. */
1681
1682 tree
1683 non_lvalue (x)
1684 tree x;
1685 {
1686 tree result;
1687
1688 /* These things are certainly not lvalues. */
1689 if (TREE_CODE (x) == NON_LVALUE_EXPR
1690 || TREE_CODE (x) == INTEGER_CST
1691 || TREE_CODE (x) == REAL_CST
1692 || TREE_CODE (x) == STRING_CST
1693 || TREE_CODE (x) == ADDR_EXPR)
1694 return x;
1695
1696 result = build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
1697 TREE_CONSTANT (result) = TREE_CONSTANT (x);
1698 return result;
1699 }
1700
1701 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
1702 Zero means allow extended lvalues. */
1703
1704 int pedantic_lvalues;
1705
1706 /* When pedantic, return an expr equal to X but certainly not valid as a
1707 pedantic lvalue. Otherwise, return X. */
1708
1709 tree
1710 pedantic_non_lvalue (x)
1711 tree x;
1712 {
1713 if (pedantic_lvalues)
1714 return non_lvalue (x);
1715 else
1716 return x;
1717 }
1718 \f
1719 /* Given a tree comparison code, return the code that is the logical inverse
1720 of the given code. It is not safe to do this for floating-point
1721 comparisons, except for NE_EXPR and EQ_EXPR. */
1722
1723 static enum tree_code
1724 invert_tree_comparison (code)
1725 enum tree_code code;
1726 {
1727 switch (code)
1728 {
1729 case EQ_EXPR:
1730 return NE_EXPR;
1731 case NE_EXPR:
1732 return EQ_EXPR;
1733 case GT_EXPR:
1734 return LE_EXPR;
1735 case GE_EXPR:
1736 return LT_EXPR;
1737 case LT_EXPR:
1738 return GE_EXPR;
1739 case LE_EXPR:
1740 return GT_EXPR;
1741 default:
1742 abort ();
1743 }
1744 }
1745
1746 /* Similar, but return the comparison that results if the operands are
1747 swapped. This is safe for floating-point. */
1748
1749 static enum tree_code
1750 swap_tree_comparison (code)
1751 enum tree_code code;
1752 {
1753 switch (code)
1754 {
1755 case EQ_EXPR:
1756 case NE_EXPR:
1757 return code;
1758 case GT_EXPR:
1759 return LT_EXPR;
1760 case GE_EXPR:
1761 return LE_EXPR;
1762 case LT_EXPR:
1763 return GT_EXPR;
1764 case LE_EXPR:
1765 return GE_EXPR;
1766 default:
1767 abort ();
1768 }
1769 }
1770
1771
1772 /* Convert a comparison tree code from an enum tree_code representation
1773 into a compcode bit-based encoding. This function is the inverse of
1774 compcode_to_comparison. */
1775
1776 static int
1777 comparison_to_compcode (code)
1778 enum tree_code code;
1779 {
1780 switch (code)
1781 {
1782 case LT_EXPR:
1783 return COMPCODE_LT;
1784 case EQ_EXPR:
1785 return COMPCODE_EQ;
1786 case LE_EXPR:
1787 return COMPCODE_LE;
1788 case GT_EXPR:
1789 return COMPCODE_GT;
1790 case NE_EXPR:
1791 return COMPCODE_NE;
1792 case GE_EXPR:
1793 return COMPCODE_GE;
1794 default:
1795 abort ();
1796 }
1797 }
1798
1799 /* Convert a compcode bit-based encoding of a comparison operator back
1800 to GCC's enum tree_code representation. This function is the
1801 inverse of comparison_to_compcode. */
1802
1803 static enum tree_code
1804 compcode_to_comparison (code)
1805 int code;
1806 {
1807 switch (code)
1808 {
1809 case COMPCODE_LT:
1810 return LT_EXPR;
1811 case COMPCODE_EQ:
1812 return EQ_EXPR;
1813 case COMPCODE_LE:
1814 return LE_EXPR;
1815 case COMPCODE_GT:
1816 return GT_EXPR;
1817 case COMPCODE_NE:
1818 return NE_EXPR;
1819 case COMPCODE_GE:
1820 return GE_EXPR;
1821 default:
1822 abort ();
1823 }
1824 }
1825
1826 /* Return nonzero if CODE is a tree code that represents a truth value. */
1827
1828 static int
1829 truth_value_p (code)
1830 enum tree_code code;
1831 {
1832 return (TREE_CODE_CLASS (code) == '<'
1833 || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
1834 || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
1835 || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
1836 }
1837 \f
1838 /* Return nonzero if two operands are necessarily equal.
1839 If ONLY_CONST is nonzero, only return nonzero for constants.
1840 This function tests whether the operands are indistinguishable;
1841 it does not test whether they are equal using C's == operation.
1842 The distinction is important for IEEE floating point, because
1843 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
1844 (2) two NaNs may be indistinguishable, but NaN!=NaN. */
1845
1846 int
1847 operand_equal_p (arg0, arg1, only_const)
1848 tree arg0, arg1;
1849 int only_const;
1850 {
1851 /* If both types don't have the same signedness, then we can't consider
1852 them equal. We must check this before the STRIP_NOPS calls
1853 because they may change the signedness of the arguments. */
1854 if (TREE_UNSIGNED (TREE_TYPE (arg0)) != TREE_UNSIGNED (TREE_TYPE (arg1)))
1855 return 0;
1856
1857 STRIP_NOPS (arg0);
1858 STRIP_NOPS (arg1);
1859
1860 if (TREE_CODE (arg0) != TREE_CODE (arg1)
1861 /* This is needed for conversions and for COMPONENT_REF.
1862 Might as well play it safe and always test this. */
1863 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
1864 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
1865 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
1866 return 0;
1867
1868 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
1869 We don't care about side effects in that case because the SAVE_EXPR
1870 takes care of that for us. In all other cases, two expressions are
1871 equal if they have no side effects. If we have two identical
1872 expressions with side effects that should be treated the same due
1873 to the only side effects being identical SAVE_EXPR's, that will
1874 be detected in the recursive calls below. */
1875 if (arg0 == arg1 && ! only_const
1876 && (TREE_CODE (arg0) == SAVE_EXPR
1877 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
1878 return 1;
1879
1880 /* Next handle constant cases, those for which we can return 1 even
1881 if ONLY_CONST is set. */
1882 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
1883 switch (TREE_CODE (arg0))
1884 {
1885 case INTEGER_CST:
1886 return (! TREE_CONSTANT_OVERFLOW (arg0)
1887 && ! TREE_CONSTANT_OVERFLOW (arg1)
1888 && tree_int_cst_equal (arg0, arg1));
1889
1890 case REAL_CST:
1891 return (! TREE_CONSTANT_OVERFLOW (arg0)
1892 && ! TREE_CONSTANT_OVERFLOW (arg1)
1893 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
1894 TREE_REAL_CST (arg1)));
1895
1896 case VECTOR_CST:
1897 {
1898 tree v1, v2;
1899
1900 if (TREE_CONSTANT_OVERFLOW (arg0)
1901 || TREE_CONSTANT_OVERFLOW (arg1))
1902 return 0;
1903
1904 v1 = TREE_VECTOR_CST_ELTS (arg0);
1905 v2 = TREE_VECTOR_CST_ELTS (arg1);
1906 while (v1 && v2)
1907 {
1908 if (!operand_equal_p (v1, v2, only_const))
1909 return 0;
1910 v1 = TREE_CHAIN (v1);
1911 v2 = TREE_CHAIN (v2);
1912 }
1913
1914 return 1;
1915 }
1916
1917 case COMPLEX_CST:
1918 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
1919 only_const)
1920 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
1921 only_const));
1922
1923 case STRING_CST:
1924 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
1925 && ! memcmp (TREE_STRING_POINTER (arg0),
1926 TREE_STRING_POINTER (arg1),
1927 TREE_STRING_LENGTH (arg0)));
1928
1929 case ADDR_EXPR:
1930 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
1931 0);
1932 default:
1933 break;
1934 }
1935
1936 if (only_const)
1937 return 0;
1938
1939 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
1940 {
1941 case '1':
1942 /* Two conversions are equal only if signedness and modes match. */
1943 if ((TREE_CODE (arg0) == NOP_EXPR || TREE_CODE (arg0) == CONVERT_EXPR)
1944 && (TREE_UNSIGNED (TREE_TYPE (arg0))
1945 != TREE_UNSIGNED (TREE_TYPE (arg1))))
1946 return 0;
1947
1948 return operand_equal_p (TREE_OPERAND (arg0, 0),
1949 TREE_OPERAND (arg1, 0), 0);
1950
1951 case '<':
1952 case '2':
1953 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0)
1954 && operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1),
1955 0))
1956 return 1;
1957
1958 /* For commutative ops, allow the other order. */
1959 return ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MULT_EXPR
1960 || TREE_CODE (arg0) == MIN_EXPR || TREE_CODE (arg0) == MAX_EXPR
1961 || TREE_CODE (arg0) == BIT_IOR_EXPR
1962 || TREE_CODE (arg0) == BIT_XOR_EXPR
1963 || TREE_CODE (arg0) == BIT_AND_EXPR
1964 || TREE_CODE (arg0) == NE_EXPR || TREE_CODE (arg0) == EQ_EXPR)
1965 && operand_equal_p (TREE_OPERAND (arg0, 0),
1966 TREE_OPERAND (arg1, 1), 0)
1967 && operand_equal_p (TREE_OPERAND (arg0, 1),
1968 TREE_OPERAND (arg1, 0), 0));
1969
1970 case 'r':
1971 /* If either of the pointer (or reference) expressions we are dereferencing
1972 contain a side effect, these cannot be equal. */
1973 if (TREE_SIDE_EFFECTS (arg0)
1974 || TREE_SIDE_EFFECTS (arg1))
1975 return 0;
1976
1977 switch (TREE_CODE (arg0))
1978 {
1979 case INDIRECT_REF:
1980 return operand_equal_p (TREE_OPERAND (arg0, 0),
1981 TREE_OPERAND (arg1, 0), 0);
1982
1983 case COMPONENT_REF:
1984 case ARRAY_REF:
1985 case ARRAY_RANGE_REF:
1986 return (operand_equal_p (TREE_OPERAND (arg0, 0),
1987 TREE_OPERAND (arg1, 0), 0)
1988 && operand_equal_p (TREE_OPERAND (arg0, 1),
1989 TREE_OPERAND (arg1, 1), 0));
1990
1991 case BIT_FIELD_REF:
1992 return (operand_equal_p (TREE_OPERAND (arg0, 0),
1993 TREE_OPERAND (arg1, 0), 0)
1994 && operand_equal_p (TREE_OPERAND (arg0, 1),
1995 TREE_OPERAND (arg1, 1), 0)
1996 && operand_equal_p (TREE_OPERAND (arg0, 2),
1997 TREE_OPERAND (arg1, 2), 0));
1998 default:
1999 return 0;
2000 }
2001
2002 case 'e':
2003 if (TREE_CODE (arg0) == RTL_EXPR)
2004 return rtx_equal_p (RTL_EXPR_RTL (arg0), RTL_EXPR_RTL (arg1));
2005 return 0;
2006
2007 default:
2008 return 0;
2009 }
2010 }
2011 \f
2012 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2013 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2014
2015 When in doubt, return 0. */
2016
2017 static int
2018 operand_equal_for_comparison_p (arg0, arg1, other)
2019 tree arg0, arg1;
2020 tree other;
2021 {
2022 int unsignedp1, unsignedpo;
2023 tree primarg0, primarg1, primother;
2024 unsigned int correct_width;
2025
2026 if (operand_equal_p (arg0, arg1, 0))
2027 return 1;
2028
2029 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
2030 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
2031 return 0;
2032
2033 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2034 and see if the inner values are the same. This removes any
2035 signedness comparison, which doesn't matter here. */
2036 primarg0 = arg0, primarg1 = arg1;
2037 STRIP_NOPS (primarg0);
2038 STRIP_NOPS (primarg1);
2039 if (operand_equal_p (primarg0, primarg1, 0))
2040 return 1;
2041
2042 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2043 actual comparison operand, ARG0.
2044
2045 First throw away any conversions to wider types
2046 already present in the operands. */
2047
2048 primarg1 = get_narrower (arg1, &unsignedp1);
2049 primother = get_narrower (other, &unsignedpo);
2050
2051 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
2052 if (unsignedp1 == unsignedpo
2053 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
2054 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2055 {
2056 tree type = TREE_TYPE (arg0);
2057
2058 /* Make sure shorter operand is extended the right way
2059 to match the longer operand. */
2060 primarg1 = convert ((*lang_hooks.types.signed_or_unsigned_type)
2061 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
2062
2063 if (operand_equal_p (arg0, convert (type, primarg1), 0))
2064 return 1;
2065 }
2066
2067 return 0;
2068 }
2069 \f
2070 /* See if ARG is an expression that is either a comparison or is performing
2071 arithmetic on comparisons. The comparisons must only be comparing
2072 two different values, which will be stored in *CVAL1 and *CVAL2; if
2073 they are nonzero it means that some operands have already been found.
2074 No variables may be used anywhere else in the expression except in the
2075 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2076 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2077
2078 If this is true, return 1. Otherwise, return zero. */
2079
2080 static int
2081 twoval_comparison_p (arg, cval1, cval2, save_p)
2082 tree arg;
2083 tree *cval1, *cval2;
2084 int *save_p;
2085 {
2086 enum tree_code code = TREE_CODE (arg);
2087 char class = TREE_CODE_CLASS (code);
2088
2089 /* We can handle some of the 'e' cases here. */
2090 if (class == 'e' && code == TRUTH_NOT_EXPR)
2091 class = '1';
2092 else if (class == 'e'
2093 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2094 || code == COMPOUND_EXPR))
2095 class = '2';
2096
2097 else if (class == 'e' && code == SAVE_EXPR && SAVE_EXPR_RTL (arg) == 0
2098 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
2099 {
2100 /* If we've already found a CVAL1 or CVAL2, this expression is
2101 two complex to handle. */
2102 if (*cval1 || *cval2)
2103 return 0;
2104
2105 class = '1';
2106 *save_p = 1;
2107 }
2108
2109 switch (class)
2110 {
2111 case '1':
2112 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2113
2114 case '2':
2115 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2116 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2117 cval1, cval2, save_p));
2118
2119 case 'c':
2120 return 1;
2121
2122 case 'e':
2123 if (code == COND_EXPR)
2124 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2125 cval1, cval2, save_p)
2126 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2127 cval1, cval2, save_p)
2128 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2129 cval1, cval2, save_p));
2130 return 0;
2131
2132 case '<':
2133 /* First see if we can handle the first operand, then the second. For
2134 the second operand, we know *CVAL1 can't be zero. It must be that
2135 one side of the comparison is each of the values; test for the
2136 case where this isn't true by failing if the two operands
2137 are the same. */
2138
2139 if (operand_equal_p (TREE_OPERAND (arg, 0),
2140 TREE_OPERAND (arg, 1), 0))
2141 return 0;
2142
2143 if (*cval1 == 0)
2144 *cval1 = TREE_OPERAND (arg, 0);
2145 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2146 ;
2147 else if (*cval2 == 0)
2148 *cval2 = TREE_OPERAND (arg, 0);
2149 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2150 ;
2151 else
2152 return 0;
2153
2154 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2155 ;
2156 else if (*cval2 == 0)
2157 *cval2 = TREE_OPERAND (arg, 1);
2158 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2159 ;
2160 else
2161 return 0;
2162
2163 return 1;
2164
2165 default:
2166 return 0;
2167 }
2168 }
2169 \f
2170 /* ARG is a tree that is known to contain just arithmetic operations and
2171 comparisons. Evaluate the operations in the tree substituting NEW0 for
2172 any occurrence of OLD0 as an operand of a comparison and likewise for
2173 NEW1 and OLD1. */
2174
2175 static tree
2176 eval_subst (arg, old0, new0, old1, new1)
2177 tree arg;
2178 tree old0, new0, old1, new1;
2179 {
2180 tree type = TREE_TYPE (arg);
2181 enum tree_code code = TREE_CODE (arg);
2182 char class = TREE_CODE_CLASS (code);
2183
2184 /* We can handle some of the 'e' cases here. */
2185 if (class == 'e' && code == TRUTH_NOT_EXPR)
2186 class = '1';
2187 else if (class == 'e'
2188 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2189 class = '2';
2190
2191 switch (class)
2192 {
2193 case '1':
2194 return fold (build1 (code, type,
2195 eval_subst (TREE_OPERAND (arg, 0),
2196 old0, new0, old1, new1)));
2197
2198 case '2':
2199 return fold (build (code, type,
2200 eval_subst (TREE_OPERAND (arg, 0),
2201 old0, new0, old1, new1),
2202 eval_subst (TREE_OPERAND (arg, 1),
2203 old0, new0, old1, new1)));
2204
2205 case 'e':
2206 switch (code)
2207 {
2208 case SAVE_EXPR:
2209 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
2210
2211 case COMPOUND_EXPR:
2212 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
2213
2214 case COND_EXPR:
2215 return fold (build (code, type,
2216 eval_subst (TREE_OPERAND (arg, 0),
2217 old0, new0, old1, new1),
2218 eval_subst (TREE_OPERAND (arg, 1),
2219 old0, new0, old1, new1),
2220 eval_subst (TREE_OPERAND (arg, 2),
2221 old0, new0, old1, new1)));
2222 default:
2223 break;
2224 }
2225 /* fall through - ??? */
2226
2227 case '<':
2228 {
2229 tree arg0 = TREE_OPERAND (arg, 0);
2230 tree arg1 = TREE_OPERAND (arg, 1);
2231
2232 /* We need to check both for exact equality and tree equality. The
2233 former will be true if the operand has a side-effect. In that
2234 case, we know the operand occurred exactly once. */
2235
2236 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
2237 arg0 = new0;
2238 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
2239 arg0 = new1;
2240
2241 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
2242 arg1 = new0;
2243 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
2244 arg1 = new1;
2245
2246 return fold (build (code, type, arg0, arg1));
2247 }
2248
2249 default:
2250 return arg;
2251 }
2252 }
2253 \f
2254 /* Return a tree for the case when the result of an expression is RESULT
2255 converted to TYPE and OMITTED was previously an operand of the expression
2256 but is now not needed (e.g., we folded OMITTED * 0).
2257
2258 If OMITTED has side effects, we must evaluate it. Otherwise, just do
2259 the conversion of RESULT to TYPE. */
2260
2261 tree
2262 omit_one_operand (type, result, omitted)
2263 tree type, result, omitted;
2264 {
2265 tree t = convert (type, result);
2266
2267 if (TREE_SIDE_EFFECTS (omitted))
2268 return build (COMPOUND_EXPR, type, omitted, t);
2269
2270 return non_lvalue (t);
2271 }
2272
2273 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
2274
2275 static tree
2276 pedantic_omit_one_operand (type, result, omitted)
2277 tree type, result, omitted;
2278 {
2279 tree t = convert (type, result);
2280
2281 if (TREE_SIDE_EFFECTS (omitted))
2282 return build (COMPOUND_EXPR, type, omitted, t);
2283
2284 return pedantic_non_lvalue (t);
2285 }
2286 \f
2287 /* Return a simplified tree node for the truth-negation of ARG. This
2288 never alters ARG itself. We assume that ARG is an operation that
2289 returns a truth value (0 or 1). */
2290
2291 tree
2292 invert_truthvalue (arg)
2293 tree arg;
2294 {
2295 tree type = TREE_TYPE (arg);
2296 enum tree_code code = TREE_CODE (arg);
2297
2298 if (code == ERROR_MARK)
2299 return arg;
2300
2301 /* If this is a comparison, we can simply invert it, except for
2302 floating-point non-equality comparisons, in which case we just
2303 enclose a TRUTH_NOT_EXPR around what we have. */
2304
2305 if (TREE_CODE_CLASS (code) == '<')
2306 {
2307 if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
2308 && !flag_unsafe_math_optimizations
2309 && code != NE_EXPR
2310 && code != EQ_EXPR)
2311 return build1 (TRUTH_NOT_EXPR, type, arg);
2312 else
2313 return build (invert_tree_comparison (code), type,
2314 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
2315 }
2316
2317 switch (code)
2318 {
2319 case INTEGER_CST:
2320 return convert (type, build_int_2 (integer_zerop (arg), 0));
2321
2322 case TRUTH_AND_EXPR:
2323 return build (TRUTH_OR_EXPR, type,
2324 invert_truthvalue (TREE_OPERAND (arg, 0)),
2325 invert_truthvalue (TREE_OPERAND (arg, 1)));
2326
2327 case TRUTH_OR_EXPR:
2328 return build (TRUTH_AND_EXPR, type,
2329 invert_truthvalue (TREE_OPERAND (arg, 0)),
2330 invert_truthvalue (TREE_OPERAND (arg, 1)));
2331
2332 case TRUTH_XOR_EXPR:
2333 /* Here we can invert either operand. We invert the first operand
2334 unless the second operand is a TRUTH_NOT_EXPR in which case our
2335 result is the XOR of the first operand with the inside of the
2336 negation of the second operand. */
2337
2338 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
2339 return build (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
2340 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
2341 else
2342 return build (TRUTH_XOR_EXPR, type,
2343 invert_truthvalue (TREE_OPERAND (arg, 0)),
2344 TREE_OPERAND (arg, 1));
2345
2346 case TRUTH_ANDIF_EXPR:
2347 return build (TRUTH_ORIF_EXPR, type,
2348 invert_truthvalue (TREE_OPERAND (arg, 0)),
2349 invert_truthvalue (TREE_OPERAND (arg, 1)));
2350
2351 case TRUTH_ORIF_EXPR:
2352 return build (TRUTH_ANDIF_EXPR, type,
2353 invert_truthvalue (TREE_OPERAND (arg, 0)),
2354 invert_truthvalue (TREE_OPERAND (arg, 1)));
2355
2356 case TRUTH_NOT_EXPR:
2357 return TREE_OPERAND (arg, 0);
2358
2359 case COND_EXPR:
2360 return build (COND_EXPR, type, TREE_OPERAND (arg, 0),
2361 invert_truthvalue (TREE_OPERAND (arg, 1)),
2362 invert_truthvalue (TREE_OPERAND (arg, 2)));
2363
2364 case COMPOUND_EXPR:
2365 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
2366 invert_truthvalue (TREE_OPERAND (arg, 1)));
2367
2368 case WITH_RECORD_EXPR:
2369 return build (WITH_RECORD_EXPR, type,
2370 invert_truthvalue (TREE_OPERAND (arg, 0)),
2371 TREE_OPERAND (arg, 1));
2372
2373 case NON_LVALUE_EXPR:
2374 return invert_truthvalue (TREE_OPERAND (arg, 0));
2375
2376 case NOP_EXPR:
2377 case CONVERT_EXPR:
2378 case FLOAT_EXPR:
2379 return build1 (TREE_CODE (arg), type,
2380 invert_truthvalue (TREE_OPERAND (arg, 0)));
2381
2382 case BIT_AND_EXPR:
2383 if (!integer_onep (TREE_OPERAND (arg, 1)))
2384 break;
2385 return build (EQ_EXPR, type, arg, convert (type, integer_zero_node));
2386
2387 case SAVE_EXPR:
2388 return build1 (TRUTH_NOT_EXPR, type, arg);
2389
2390 case CLEANUP_POINT_EXPR:
2391 return build1 (CLEANUP_POINT_EXPR, type,
2392 invert_truthvalue (TREE_OPERAND (arg, 0)));
2393
2394 default:
2395 break;
2396 }
2397 if (TREE_CODE (TREE_TYPE (arg)) != BOOLEAN_TYPE)
2398 abort ();
2399 return build1 (TRUTH_NOT_EXPR, type, arg);
2400 }
2401
2402 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
2403 operands are another bit-wise operation with a common input. If so,
2404 distribute the bit operations to save an operation and possibly two if
2405 constants are involved. For example, convert
2406 (A | B) & (A | C) into A | (B & C)
2407 Further simplification will occur if B and C are constants.
2408
2409 If this optimization cannot be done, 0 will be returned. */
2410
2411 static tree
2412 distribute_bit_expr (code, type, arg0, arg1)
2413 enum tree_code code;
2414 tree type;
2415 tree arg0, arg1;
2416 {
2417 tree common;
2418 tree left, right;
2419
2420 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2421 || TREE_CODE (arg0) == code
2422 || (TREE_CODE (arg0) != BIT_AND_EXPR
2423 && TREE_CODE (arg0) != BIT_IOR_EXPR))
2424 return 0;
2425
2426 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
2427 {
2428 common = TREE_OPERAND (arg0, 0);
2429 left = TREE_OPERAND (arg0, 1);
2430 right = TREE_OPERAND (arg1, 1);
2431 }
2432 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
2433 {
2434 common = TREE_OPERAND (arg0, 0);
2435 left = TREE_OPERAND (arg0, 1);
2436 right = TREE_OPERAND (arg1, 0);
2437 }
2438 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
2439 {
2440 common = TREE_OPERAND (arg0, 1);
2441 left = TREE_OPERAND (arg0, 0);
2442 right = TREE_OPERAND (arg1, 1);
2443 }
2444 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
2445 {
2446 common = TREE_OPERAND (arg0, 1);
2447 left = TREE_OPERAND (arg0, 0);
2448 right = TREE_OPERAND (arg1, 0);
2449 }
2450 else
2451 return 0;
2452
2453 return fold (build (TREE_CODE (arg0), type, common,
2454 fold (build (code, type, left, right))));
2455 }
2456 \f
2457 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
2458 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
2459
2460 static tree
2461 make_bit_field_ref (inner, type, bitsize, bitpos, unsignedp)
2462 tree inner;
2463 tree type;
2464 int bitsize, bitpos;
2465 int unsignedp;
2466 {
2467 tree result = build (BIT_FIELD_REF, type, inner,
2468 size_int (bitsize), bitsize_int (bitpos));
2469
2470 TREE_UNSIGNED (result) = unsignedp;
2471
2472 return result;
2473 }
2474
2475 /* Optimize a bit-field compare.
2476
2477 There are two cases: First is a compare against a constant and the
2478 second is a comparison of two items where the fields are at the same
2479 bit position relative to the start of a chunk (byte, halfword, word)
2480 large enough to contain it. In these cases we can avoid the shift
2481 implicit in bitfield extractions.
2482
2483 For constants, we emit a compare of the shifted constant with the
2484 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
2485 compared. For two fields at the same position, we do the ANDs with the
2486 similar mask and compare the result of the ANDs.
2487
2488 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
2489 COMPARE_TYPE is the type of the comparison, and LHS and RHS
2490 are the left and right operands of the comparison, respectively.
2491
2492 If the optimization described above can be done, we return the resulting
2493 tree. Otherwise we return zero. */
2494
2495 static tree
2496 optimize_bit_field_compare (code, compare_type, lhs, rhs)
2497 enum tree_code code;
2498 tree compare_type;
2499 tree lhs, rhs;
2500 {
2501 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
2502 tree type = TREE_TYPE (lhs);
2503 tree signed_type, unsigned_type;
2504 int const_p = TREE_CODE (rhs) == INTEGER_CST;
2505 enum machine_mode lmode, rmode, nmode;
2506 int lunsignedp, runsignedp;
2507 int lvolatilep = 0, rvolatilep = 0;
2508 tree linner, rinner = NULL_TREE;
2509 tree mask;
2510 tree offset;
2511
2512 /* Get all the information about the extractions being done. If the bit size
2513 if the same as the size of the underlying object, we aren't doing an
2514 extraction at all and so can do nothing. We also don't want to
2515 do anything if the inner expression is a PLACEHOLDER_EXPR since we
2516 then will no longer be able to replace it. */
2517 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
2518 &lunsignedp, &lvolatilep);
2519 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
2520 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
2521 return 0;
2522
2523 if (!const_p)
2524 {
2525 /* If this is not a constant, we can only do something if bit positions,
2526 sizes, and signedness are the same. */
2527 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
2528 &runsignedp, &rvolatilep);
2529
2530 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
2531 || lunsignedp != runsignedp || offset != 0
2532 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
2533 return 0;
2534 }
2535
2536 /* See if we can find a mode to refer to this field. We should be able to,
2537 but fail if we can't. */
2538 nmode = get_best_mode (lbitsize, lbitpos,
2539 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
2540 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
2541 TYPE_ALIGN (TREE_TYPE (rinner))),
2542 word_mode, lvolatilep || rvolatilep);
2543 if (nmode == VOIDmode)
2544 return 0;
2545
2546 /* Set signed and unsigned types of the precision of this mode for the
2547 shifts below. */
2548 signed_type = (*lang_hooks.types.type_for_mode) (nmode, 0);
2549 unsigned_type = (*lang_hooks.types.type_for_mode) (nmode, 1);
2550
2551 /* Compute the bit position and size for the new reference and our offset
2552 within it. If the new reference is the same size as the original, we
2553 won't optimize anything, so return zero. */
2554 nbitsize = GET_MODE_BITSIZE (nmode);
2555 nbitpos = lbitpos & ~ (nbitsize - 1);
2556 lbitpos -= nbitpos;
2557 if (nbitsize == lbitsize)
2558 return 0;
2559
2560 if (BYTES_BIG_ENDIAN)
2561 lbitpos = nbitsize - lbitsize - lbitpos;
2562
2563 /* Make the mask to be used against the extracted field. */
2564 mask = build_int_2 (~0, ~0);
2565 TREE_TYPE (mask) = unsigned_type;
2566 force_fit_type (mask, 0);
2567 mask = convert (unsigned_type, mask);
2568 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
2569 mask = const_binop (RSHIFT_EXPR, mask,
2570 size_int (nbitsize - lbitsize - lbitpos), 0);
2571
2572 if (! const_p)
2573 /* If not comparing with constant, just rework the comparison
2574 and return. */
2575 return build (code, compare_type,
2576 build (BIT_AND_EXPR, unsigned_type,
2577 make_bit_field_ref (linner, unsigned_type,
2578 nbitsize, nbitpos, 1),
2579 mask),
2580 build (BIT_AND_EXPR, unsigned_type,
2581 make_bit_field_ref (rinner, unsigned_type,
2582 nbitsize, nbitpos, 1),
2583 mask));
2584
2585 /* Otherwise, we are handling the constant case. See if the constant is too
2586 big for the field. Warn and return a tree of for 0 (false) if so. We do
2587 this not only for its own sake, but to avoid having to test for this
2588 error case below. If we didn't, we might generate wrong code.
2589
2590 For unsigned fields, the constant shifted right by the field length should
2591 be all zero. For signed fields, the high-order bits should agree with
2592 the sign bit. */
2593
2594 if (lunsignedp)
2595 {
2596 if (! integer_zerop (const_binop (RSHIFT_EXPR,
2597 convert (unsigned_type, rhs),
2598 size_int (lbitsize), 0)))
2599 {
2600 warning ("comparison is always %d due to width of bit-field",
2601 code == NE_EXPR);
2602 return convert (compare_type,
2603 (code == NE_EXPR
2604 ? integer_one_node : integer_zero_node));
2605 }
2606 }
2607 else
2608 {
2609 tree tem = const_binop (RSHIFT_EXPR, convert (signed_type, rhs),
2610 size_int (lbitsize - 1), 0);
2611 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
2612 {
2613 warning ("comparison is always %d due to width of bit-field",
2614 code == NE_EXPR);
2615 return convert (compare_type,
2616 (code == NE_EXPR
2617 ? integer_one_node : integer_zero_node));
2618 }
2619 }
2620
2621 /* Single-bit compares should always be against zero. */
2622 if (lbitsize == 1 && ! integer_zerop (rhs))
2623 {
2624 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
2625 rhs = convert (type, integer_zero_node);
2626 }
2627
2628 /* Make a new bitfield reference, shift the constant over the
2629 appropriate number of bits and mask it with the computed mask
2630 (in case this was a signed field). If we changed it, make a new one. */
2631 lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
2632 if (lvolatilep)
2633 {
2634 TREE_SIDE_EFFECTS (lhs) = 1;
2635 TREE_THIS_VOLATILE (lhs) = 1;
2636 }
2637
2638 rhs = fold (const_binop (BIT_AND_EXPR,
2639 const_binop (LSHIFT_EXPR,
2640 convert (unsigned_type, rhs),
2641 size_int (lbitpos), 0),
2642 mask, 0));
2643
2644 return build (code, compare_type,
2645 build (BIT_AND_EXPR, unsigned_type, lhs, mask),
2646 rhs);
2647 }
2648 \f
2649 /* Subroutine for fold_truthop: decode a field reference.
2650
2651 If EXP is a comparison reference, we return the innermost reference.
2652
2653 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
2654 set to the starting bit number.
2655
2656 If the innermost field can be completely contained in a mode-sized
2657 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
2658
2659 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
2660 otherwise it is not changed.
2661
2662 *PUNSIGNEDP is set to the signedness of the field.
2663
2664 *PMASK is set to the mask used. This is either contained in a
2665 BIT_AND_EXPR or derived from the width of the field.
2666
2667 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
2668
2669 Return 0 if this is not a component reference or is one that we can't
2670 do anything with. */
2671
2672 static tree
2673 decode_field_reference (exp, pbitsize, pbitpos, pmode, punsignedp,
2674 pvolatilep, pmask, pand_mask)
2675 tree exp;
2676 HOST_WIDE_INT *pbitsize, *pbitpos;
2677 enum machine_mode *pmode;
2678 int *punsignedp, *pvolatilep;
2679 tree *pmask;
2680 tree *pand_mask;
2681 {
2682 tree and_mask = 0;
2683 tree mask, inner, offset;
2684 tree unsigned_type;
2685 unsigned int precision;
2686
2687 /* All the optimizations using this function assume integer fields.
2688 There are problems with FP fields since the type_for_size call
2689 below can fail for, e.g., XFmode. */
2690 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
2691 return 0;
2692
2693 STRIP_NOPS (exp);
2694
2695 if (TREE_CODE (exp) == BIT_AND_EXPR)
2696 {
2697 and_mask = TREE_OPERAND (exp, 1);
2698 exp = TREE_OPERAND (exp, 0);
2699 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
2700 if (TREE_CODE (and_mask) != INTEGER_CST)
2701 return 0;
2702 }
2703
2704 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
2705 punsignedp, pvolatilep);
2706 if ((inner == exp && and_mask == 0)
2707 || *pbitsize < 0 || offset != 0
2708 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
2709 return 0;
2710
2711 /* Compute the mask to access the bitfield. */
2712 unsigned_type = (*lang_hooks.types.type_for_size) (*pbitsize, 1);
2713 precision = TYPE_PRECISION (unsigned_type);
2714
2715 mask = build_int_2 (~0, ~0);
2716 TREE_TYPE (mask) = unsigned_type;
2717 force_fit_type (mask, 0);
2718 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
2719 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
2720
2721 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
2722 if (and_mask != 0)
2723 mask = fold (build (BIT_AND_EXPR, unsigned_type,
2724 convert (unsigned_type, and_mask), mask));
2725
2726 *pmask = mask;
2727 *pand_mask = and_mask;
2728 return inner;
2729 }
2730
2731 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
2732 bit positions. */
2733
2734 static int
2735 all_ones_mask_p (mask, size)
2736 tree mask;
2737 int size;
2738 {
2739 tree type = TREE_TYPE (mask);
2740 unsigned int precision = TYPE_PRECISION (type);
2741 tree tmask;
2742
2743 tmask = build_int_2 (~0, ~0);
2744 TREE_TYPE (tmask) = (*lang_hooks.types.signed_type) (type);
2745 force_fit_type (tmask, 0);
2746 return
2747 tree_int_cst_equal (mask,
2748 const_binop (RSHIFT_EXPR,
2749 const_binop (LSHIFT_EXPR, tmask,
2750 size_int (precision - size),
2751 0),
2752 size_int (precision - size), 0));
2753 }
2754
2755 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
2756 represents the sign bit of EXP's type. If EXP represents a sign
2757 or zero extension, also test VAL against the unextended type.
2758 The return value is the (sub)expression whose sign bit is VAL,
2759 or NULL_TREE otherwise. */
2760
2761 static tree
2762 sign_bit_p (exp, val)
2763 tree exp;
2764 tree val;
2765 {
2766 unsigned HOST_WIDE_INT lo;
2767 HOST_WIDE_INT hi;
2768 int width;
2769 tree t;
2770
2771 /* Tree EXP must have an integral type. */
2772 t = TREE_TYPE (exp);
2773 if (! INTEGRAL_TYPE_P (t))
2774 return NULL_TREE;
2775
2776 /* Tree VAL must be an integer constant. */
2777 if (TREE_CODE (val) != INTEGER_CST
2778 || TREE_CONSTANT_OVERFLOW (val))
2779 return NULL_TREE;
2780
2781 width = TYPE_PRECISION (t);
2782 if (width > HOST_BITS_PER_WIDE_INT)
2783 {
2784 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
2785 lo = 0;
2786 }
2787 else
2788 {
2789 hi = 0;
2790 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
2791 }
2792
2793 if (TREE_INT_CST_HIGH (val) == hi && TREE_INT_CST_LOW (val) == lo)
2794 return exp;
2795
2796 /* Handle extension from a narrower type. */
2797 if (TREE_CODE (exp) == NOP_EXPR
2798 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
2799 return sign_bit_p (TREE_OPERAND (exp, 0), val);
2800
2801 return NULL_TREE;
2802 }
2803
2804 /* Subroutine for fold_truthop: determine if an operand is simple enough
2805 to be evaluated unconditionally. */
2806
2807 static int
2808 simple_operand_p (exp)
2809 tree exp;
2810 {
2811 /* Strip any conversions that don't change the machine mode. */
2812 while ((TREE_CODE (exp) == NOP_EXPR
2813 || TREE_CODE (exp) == CONVERT_EXPR)
2814 && (TYPE_MODE (TREE_TYPE (exp))
2815 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
2816 exp = TREE_OPERAND (exp, 0);
2817
2818 return (TREE_CODE_CLASS (TREE_CODE (exp)) == 'c'
2819 || (DECL_P (exp)
2820 && ! TREE_ADDRESSABLE (exp)
2821 && ! TREE_THIS_VOLATILE (exp)
2822 && ! DECL_NONLOCAL (exp)
2823 /* Don't regard global variables as simple. They may be
2824 allocated in ways unknown to the compiler (shared memory,
2825 #pragma weak, etc). */
2826 && ! TREE_PUBLIC (exp)
2827 && ! DECL_EXTERNAL (exp)
2828 /* Loading a static variable is unduly expensive, but global
2829 registers aren't expensive. */
2830 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
2831 }
2832 \f
2833 /* The following functions are subroutines to fold_range_test and allow it to
2834 try to change a logical combination of comparisons into a range test.
2835
2836 For example, both
2837 X == 2 || X == 3 || X == 4 || X == 5
2838 and
2839 X >= 2 && X <= 5
2840 are converted to
2841 (unsigned) (X - 2) <= 3
2842
2843 We describe each set of comparisons as being either inside or outside
2844 a range, using a variable named like IN_P, and then describe the
2845 range with a lower and upper bound. If one of the bounds is omitted,
2846 it represents either the highest or lowest value of the type.
2847
2848 In the comments below, we represent a range by two numbers in brackets
2849 preceded by a "+" to designate being inside that range, or a "-" to
2850 designate being outside that range, so the condition can be inverted by
2851 flipping the prefix. An omitted bound is represented by a "-". For
2852 example, "- [-, 10]" means being outside the range starting at the lowest
2853 possible value and ending at 10, in other words, being greater than 10.
2854 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
2855 always false.
2856
2857 We set up things so that the missing bounds are handled in a consistent
2858 manner so neither a missing bound nor "true" and "false" need to be
2859 handled using a special case. */
2860
2861 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
2862 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
2863 and UPPER1_P are nonzero if the respective argument is an upper bound
2864 and zero for a lower. TYPE, if nonzero, is the type of the result; it
2865 must be specified for a comparison. ARG1 will be converted to ARG0's
2866 type if both are specified. */
2867
2868 static tree
2869 range_binop (code, type, arg0, upper0_p, arg1, upper1_p)
2870 enum tree_code code;
2871 tree type;
2872 tree arg0, arg1;
2873 int upper0_p, upper1_p;
2874 {
2875 tree tem;
2876 int result;
2877 int sgn0, sgn1;
2878
2879 /* If neither arg represents infinity, do the normal operation.
2880 Else, if not a comparison, return infinity. Else handle the special
2881 comparison rules. Note that most of the cases below won't occur, but
2882 are handled for consistency. */
2883
2884 if (arg0 != 0 && arg1 != 0)
2885 {
2886 tem = fold (build (code, type != 0 ? type : TREE_TYPE (arg0),
2887 arg0, convert (TREE_TYPE (arg0), arg1)));
2888 STRIP_NOPS (tem);
2889 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
2890 }
2891
2892 if (TREE_CODE_CLASS (code) != '<')
2893 return 0;
2894
2895 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
2896 for neither. In real maths, we cannot assume open ended ranges are
2897 the same. But, this is computer arithmetic, where numbers are finite.
2898 We can therefore make the transformation of any unbounded range with
2899 the value Z, Z being greater than any representable number. This permits
2900 us to treat unbounded ranges as equal. */
2901 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
2902 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
2903 switch (code)
2904 {
2905 case EQ_EXPR:
2906 result = sgn0 == sgn1;
2907 break;
2908 case NE_EXPR:
2909 result = sgn0 != sgn1;
2910 break;
2911 case LT_EXPR:
2912 result = sgn0 < sgn1;
2913 break;
2914 case LE_EXPR:
2915 result = sgn0 <= sgn1;
2916 break;
2917 case GT_EXPR:
2918 result = sgn0 > sgn1;
2919 break;
2920 case GE_EXPR:
2921 result = sgn0 >= sgn1;
2922 break;
2923 default:
2924 abort ();
2925 }
2926
2927 return convert (type, result ? integer_one_node : integer_zero_node);
2928 }
2929 \f
2930 /* Given EXP, a logical expression, set the range it is testing into
2931 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
2932 actually being tested. *PLOW and *PHIGH will be made of the same type
2933 as the returned expression. If EXP is not a comparison, we will most
2934 likely not be returning a useful value and range. */
2935
2936 static tree
2937 make_range (exp, pin_p, plow, phigh)
2938 tree exp;
2939 int *pin_p;
2940 tree *plow, *phigh;
2941 {
2942 enum tree_code code;
2943 tree arg0 = NULL_TREE, arg1 = NULL_TREE, type = NULL_TREE;
2944 tree orig_type = NULL_TREE;
2945 int in_p, n_in_p;
2946 tree low, high, n_low, n_high;
2947
2948 /* Start with simply saying "EXP != 0" and then look at the code of EXP
2949 and see if we can refine the range. Some of the cases below may not
2950 happen, but it doesn't seem worth worrying about this. We "continue"
2951 the outer loop when we've changed something; otherwise we "break"
2952 the switch, which will "break" the while. */
2953
2954 in_p = 0, low = high = convert (TREE_TYPE (exp), integer_zero_node);
2955
2956 while (1)
2957 {
2958 code = TREE_CODE (exp);
2959
2960 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
2961 {
2962 arg0 = TREE_OPERAND (exp, 0);
2963 if (TREE_CODE_CLASS (code) == '<'
2964 || TREE_CODE_CLASS (code) == '1'
2965 || TREE_CODE_CLASS (code) == '2')
2966 type = TREE_TYPE (arg0);
2967 if (TREE_CODE_CLASS (code) == '2'
2968 || TREE_CODE_CLASS (code) == '<'
2969 || (TREE_CODE_CLASS (code) == 'e'
2970 && TREE_CODE_LENGTH (code) > 1))
2971 arg1 = TREE_OPERAND (exp, 1);
2972 }
2973
2974 /* Set ORIG_TYPE as soon as TYPE is non-null so that we do not
2975 lose a cast by accident. */
2976 if (type != NULL_TREE && orig_type == NULL_TREE)
2977 orig_type = type;
2978
2979 switch (code)
2980 {
2981 case TRUTH_NOT_EXPR:
2982 in_p = ! in_p, exp = arg0;
2983 continue;
2984
2985 case EQ_EXPR: case NE_EXPR:
2986 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
2987 /* We can only do something if the range is testing for zero
2988 and if the second operand is an integer constant. Note that
2989 saying something is "in" the range we make is done by
2990 complementing IN_P since it will set in the initial case of
2991 being not equal to zero; "out" is leaving it alone. */
2992 if (low == 0 || high == 0
2993 || ! integer_zerop (low) || ! integer_zerop (high)
2994 || TREE_CODE (arg1) != INTEGER_CST)
2995 break;
2996
2997 switch (code)
2998 {
2999 case NE_EXPR: /* - [c, c] */
3000 low = high = arg1;
3001 break;
3002 case EQ_EXPR: /* + [c, c] */
3003 in_p = ! in_p, low = high = arg1;
3004 break;
3005 case GT_EXPR: /* - [-, c] */
3006 low = 0, high = arg1;
3007 break;
3008 case GE_EXPR: /* + [c, -] */
3009 in_p = ! in_p, low = arg1, high = 0;
3010 break;
3011 case LT_EXPR: /* - [c, -] */
3012 low = arg1, high = 0;
3013 break;
3014 case LE_EXPR: /* + [-, c] */
3015 in_p = ! in_p, low = 0, high = arg1;
3016 break;
3017 default:
3018 abort ();
3019 }
3020
3021 exp = arg0;
3022
3023 /* If this is an unsigned comparison, we also know that EXP is
3024 greater than or equal to zero. We base the range tests we make
3025 on that fact, so we record it here so we can parse existing
3026 range tests. */
3027 if (TREE_UNSIGNED (type) && (low == 0 || high == 0))
3028 {
3029 if (! merge_ranges (&n_in_p, &n_low, &n_high, in_p, low, high,
3030 1, convert (type, integer_zero_node),
3031 NULL_TREE))
3032 break;
3033
3034 in_p = n_in_p, low = n_low, high = n_high;
3035
3036 /* If the high bound is missing, but we
3037 have a low bound, reverse the range so
3038 it goes from zero to the low bound minus 1. */
3039 if (high == 0 && low)
3040 {
3041 in_p = ! in_p;
3042 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
3043 integer_one_node, 0);
3044 low = convert (type, integer_zero_node);
3045 }
3046 }
3047 continue;
3048
3049 case NEGATE_EXPR:
3050 /* (-x) IN [a,b] -> x in [-b, -a] */
3051 n_low = range_binop (MINUS_EXPR, type,
3052 convert (type, integer_zero_node), 0, high, 1);
3053 n_high = range_binop (MINUS_EXPR, type,
3054 convert (type, integer_zero_node), 0, low, 0);
3055 low = n_low, high = n_high;
3056 exp = arg0;
3057 continue;
3058
3059 case BIT_NOT_EXPR:
3060 /* ~ X -> -X - 1 */
3061 exp = build (MINUS_EXPR, type, negate_expr (arg0),
3062 convert (type, integer_one_node));
3063 continue;
3064
3065 case PLUS_EXPR: case MINUS_EXPR:
3066 if (TREE_CODE (arg1) != INTEGER_CST)
3067 break;
3068
3069 /* If EXP is signed, any overflow in the computation is undefined,
3070 so we don't worry about it so long as our computations on
3071 the bounds don't overflow. For unsigned, overflow is defined
3072 and this is exactly the right thing. */
3073 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3074 type, low, 0, arg1, 0);
3075 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3076 type, high, 1, arg1, 0);
3077 if ((n_low != 0 && TREE_OVERFLOW (n_low))
3078 || (n_high != 0 && TREE_OVERFLOW (n_high)))
3079 break;
3080
3081 /* Check for an unsigned range which has wrapped around the maximum
3082 value thus making n_high < n_low, and normalize it. */
3083 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
3084 {
3085 low = range_binop (PLUS_EXPR, type, n_high, 0,
3086 integer_one_node, 0);
3087 high = range_binop (MINUS_EXPR, type, n_low, 0,
3088 integer_one_node, 0);
3089
3090 /* If the range is of the form +/- [ x+1, x ], we won't
3091 be able to normalize it. But then, it represents the
3092 whole range or the empty set, so make it
3093 +/- [ -, - ]. */
3094 if (tree_int_cst_equal (n_low, low)
3095 && tree_int_cst_equal (n_high, high))
3096 low = high = 0;
3097 else
3098 in_p = ! in_p;
3099 }
3100 else
3101 low = n_low, high = n_high;
3102
3103 exp = arg0;
3104 continue;
3105
3106 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
3107 if (TYPE_PRECISION (type) > TYPE_PRECISION (orig_type))
3108 break;
3109
3110 if (! INTEGRAL_TYPE_P (type)
3111 || (low != 0 && ! int_fits_type_p (low, type))
3112 || (high != 0 && ! int_fits_type_p (high, type)))
3113 break;
3114
3115 n_low = low, n_high = high;
3116
3117 if (n_low != 0)
3118 n_low = convert (type, n_low);
3119
3120 if (n_high != 0)
3121 n_high = convert (type, n_high);
3122
3123 /* If we're converting from an unsigned to a signed type,
3124 we will be doing the comparison as unsigned. The tests above
3125 have already verified that LOW and HIGH are both positive.
3126
3127 So we have to make sure that the original unsigned value will
3128 be interpreted as positive. */
3129 if (TREE_UNSIGNED (type) && ! TREE_UNSIGNED (TREE_TYPE (exp)))
3130 {
3131 tree equiv_type = (*lang_hooks.types.type_for_mode)
3132 (TYPE_MODE (type), 1);
3133 tree high_positive;
3134
3135 /* A range without an upper bound is, naturally, unbounded.
3136 Since convert would have cropped a very large value, use
3137 the max value for the destination type. */
3138 high_positive
3139 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
3140 : TYPE_MAX_VALUE (type);
3141
3142 if (TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (exp)))
3143 high_positive = fold (build (RSHIFT_EXPR, type,
3144 convert (type, high_positive),
3145 convert (type, integer_one_node)));
3146
3147 /* If the low bound is specified, "and" the range with the
3148 range for which the original unsigned value will be
3149 positive. */
3150 if (low != 0)
3151 {
3152 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3153 1, n_low, n_high,
3154 1, convert (type, integer_zero_node),
3155 high_positive))
3156 break;
3157
3158 in_p = (n_in_p == in_p);
3159 }
3160 else
3161 {
3162 /* Otherwise, "or" the range with the range of the input
3163 that will be interpreted as negative. */
3164 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3165 0, n_low, n_high,
3166 1, convert (type, integer_zero_node),
3167 high_positive))
3168 break;
3169
3170 in_p = (in_p != n_in_p);
3171 }
3172 }
3173
3174 exp = arg0;
3175 low = n_low, high = n_high;
3176 continue;
3177
3178 default:
3179 break;
3180 }
3181
3182 break;
3183 }
3184
3185 /* If EXP is a constant, we can evaluate whether this is true or false. */
3186 if (TREE_CODE (exp) == INTEGER_CST)
3187 {
3188 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
3189 exp, 0, low, 0))
3190 && integer_onep (range_binop (LE_EXPR, integer_type_node,
3191 exp, 1, high, 1)));
3192 low = high = 0;
3193 exp = 0;
3194 }
3195
3196 *pin_p = in_p, *plow = low, *phigh = high;
3197 return exp;
3198 }
3199 \f
3200 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
3201 type, TYPE, return an expression to test if EXP is in (or out of, depending
3202 on IN_P) the range. */
3203
3204 static tree
3205 build_range_check (type, exp, in_p, low, high)
3206 tree type;
3207 tree exp;
3208 int in_p;
3209 tree low, high;
3210 {
3211 tree etype = TREE_TYPE (exp);
3212 tree value;
3213
3214 if (! in_p
3215 && (0 != (value = build_range_check (type, exp, 1, low, high))))
3216 return invert_truthvalue (value);
3217
3218 if (low == 0 && high == 0)
3219 return convert (type, integer_one_node);
3220
3221 if (low == 0)
3222 return fold (build (LE_EXPR, type, exp, high));
3223
3224 if (high == 0)
3225 return fold (build (GE_EXPR, type, exp, low));
3226
3227 if (operand_equal_p (low, high, 0))
3228 return fold (build (EQ_EXPR, type, exp, low));
3229
3230 if (integer_zerop (low))
3231 {
3232 if (! TREE_UNSIGNED (etype))
3233 {
3234 etype = (*lang_hooks.types.unsigned_type) (etype);
3235 high = convert (etype, high);
3236 exp = convert (etype, exp);
3237 }
3238 return build_range_check (type, exp, 1, 0, high);
3239 }
3240
3241 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
3242 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
3243 {
3244 unsigned HOST_WIDE_INT lo;
3245 HOST_WIDE_INT hi;
3246 int prec;
3247
3248 prec = TYPE_PRECISION (etype);
3249 if (prec <= HOST_BITS_PER_WIDE_INT)
3250 {
3251 hi = 0;
3252 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
3253 }
3254 else
3255 {
3256 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
3257 lo = (unsigned HOST_WIDE_INT) -1;
3258 }
3259
3260 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
3261 {
3262 if (TREE_UNSIGNED (etype))
3263 {
3264 etype = (*lang_hooks.types.signed_type) (etype);
3265 exp = convert (etype, exp);
3266 }
3267 return fold (build (GT_EXPR, type, exp,
3268 convert (etype, integer_zero_node)));
3269 }
3270 }
3271
3272 if (0 != (value = const_binop (MINUS_EXPR, high, low, 0))
3273 && ! TREE_OVERFLOW (value))
3274 return build_range_check (type,
3275 fold (build (MINUS_EXPR, etype, exp, low)),
3276 1, convert (etype, integer_zero_node), value);
3277
3278 return 0;
3279 }
3280 \f
3281 /* Given two ranges, see if we can merge them into one. Return 1 if we
3282 can, 0 if we can't. Set the output range into the specified parameters. */
3283
3284 static int
3285 merge_ranges (pin_p, plow, phigh, in0_p, low0, high0, in1_p, low1, high1)
3286 int *pin_p;
3287 tree *plow, *phigh;
3288 int in0_p, in1_p;
3289 tree low0, high0, low1, high1;
3290 {
3291 int no_overlap;
3292 int subset;
3293 int temp;
3294 tree tem;
3295 int in_p;
3296 tree low, high;
3297 int lowequal = ((low0 == 0 && low1 == 0)
3298 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3299 low0, 0, low1, 0)));
3300 int highequal = ((high0 == 0 && high1 == 0)
3301 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3302 high0, 1, high1, 1)));
3303
3304 /* Make range 0 be the range that starts first, or ends last if they
3305 start at the same value. Swap them if it isn't. */
3306 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
3307 low0, 0, low1, 0))
3308 || (lowequal
3309 && integer_onep (range_binop (GT_EXPR, integer_type_node,
3310 high1, 1, high0, 1))))
3311 {
3312 temp = in0_p, in0_p = in1_p, in1_p = temp;
3313 tem = low0, low0 = low1, low1 = tem;
3314 tem = high0, high0 = high1, high1 = tem;
3315 }
3316
3317 /* Now flag two cases, whether the ranges are disjoint or whether the
3318 second range is totally subsumed in the first. Note that the tests
3319 below are simplified by the ones above. */
3320 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
3321 high0, 1, low1, 0));
3322 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
3323 high1, 1, high0, 1));
3324
3325 /* We now have four cases, depending on whether we are including or
3326 excluding the two ranges. */
3327 if (in0_p && in1_p)
3328 {
3329 /* If they don't overlap, the result is false. If the second range
3330 is a subset it is the result. Otherwise, the range is from the start
3331 of the second to the end of the first. */
3332 if (no_overlap)
3333 in_p = 0, low = high = 0;
3334 else if (subset)
3335 in_p = 1, low = low1, high = high1;
3336 else
3337 in_p = 1, low = low1, high = high0;
3338 }
3339
3340 else if (in0_p && ! in1_p)
3341 {
3342 /* If they don't overlap, the result is the first range. If they are
3343 equal, the result is false. If the second range is a subset of the
3344 first, and the ranges begin at the same place, we go from just after
3345 the end of the first range to the end of the second. If the second
3346 range is not a subset of the first, or if it is a subset and both
3347 ranges end at the same place, the range starts at the start of the
3348 first range and ends just before the second range.
3349 Otherwise, we can't describe this as a single range. */
3350 if (no_overlap)
3351 in_p = 1, low = low0, high = high0;
3352 else if (lowequal && highequal)
3353 in_p = 0, low = high = 0;
3354 else if (subset && lowequal)
3355 {
3356 in_p = 1, high = high0;
3357 low = range_binop (PLUS_EXPR, NULL_TREE, high1, 0,
3358 integer_one_node, 0);
3359 }
3360 else if (! subset || highequal)
3361 {
3362 in_p = 1, low = low0;
3363 high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
3364 integer_one_node, 0);
3365 }
3366 else
3367 return 0;
3368 }
3369
3370 else if (! in0_p && in1_p)
3371 {
3372 /* If they don't overlap, the result is the second range. If the second
3373 is a subset of the first, the result is false. Otherwise,
3374 the range starts just after the first range and ends at the
3375 end of the second. */
3376 if (no_overlap)
3377 in_p = 1, low = low1, high = high1;
3378 else if (subset || highequal)
3379 in_p = 0, low = high = 0;
3380 else
3381 {
3382 in_p = 1, high = high1;
3383 low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
3384 integer_one_node, 0);
3385 }
3386 }
3387
3388 else
3389 {
3390 /* The case where we are excluding both ranges. Here the complex case
3391 is if they don't overlap. In that case, the only time we have a
3392 range is if they are adjacent. If the second is a subset of the
3393 first, the result is the first. Otherwise, the range to exclude
3394 starts at the beginning of the first range and ends at the end of the
3395 second. */
3396 if (no_overlap)
3397 {
3398 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
3399 range_binop (PLUS_EXPR, NULL_TREE,
3400 high0, 1,
3401 integer_one_node, 1),
3402 1, low1, 0)))
3403 in_p = 0, low = low0, high = high1;
3404 else
3405 return 0;
3406 }
3407 else if (subset)
3408 in_p = 0, low = low0, high = high0;
3409 else
3410 in_p = 0, low = low0, high = high1;
3411 }
3412
3413 *pin_p = in_p, *plow = low, *phigh = high;
3414 return 1;
3415 }
3416 \f
3417 #ifndef RANGE_TEST_NON_SHORT_CIRCUIT
3418 #define RANGE_TEST_NON_SHORT_CIRCUIT (BRANCH_COST >= 2)
3419 #endif
3420
3421 /* EXP is some logical combination of boolean tests. See if we can
3422 merge it into some range test. Return the new tree if so. */
3423
3424 static tree
3425 fold_range_test (exp)
3426 tree exp;
3427 {
3428 int or_op = (TREE_CODE (exp) == TRUTH_ORIF_EXPR
3429 || TREE_CODE (exp) == TRUTH_OR_EXPR);
3430 int in0_p, in1_p, in_p;
3431 tree low0, low1, low, high0, high1, high;
3432 tree lhs = make_range (TREE_OPERAND (exp, 0), &in0_p, &low0, &high0);
3433 tree rhs = make_range (TREE_OPERAND (exp, 1), &in1_p, &low1, &high1);
3434 tree tem;
3435
3436 /* If this is an OR operation, invert both sides; we will invert
3437 again at the end. */
3438 if (or_op)
3439 in0_p = ! in0_p, in1_p = ! in1_p;
3440
3441 /* If both expressions are the same, if we can merge the ranges, and we
3442 can build the range test, return it or it inverted. If one of the
3443 ranges is always true or always false, consider it to be the same
3444 expression as the other. */
3445 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
3446 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
3447 in1_p, low1, high1)
3448 && 0 != (tem = (build_range_check (TREE_TYPE (exp),
3449 lhs != 0 ? lhs
3450 : rhs != 0 ? rhs : integer_zero_node,
3451 in_p, low, high))))
3452 return or_op ? invert_truthvalue (tem) : tem;
3453
3454 /* On machines where the branch cost is expensive, if this is a
3455 short-circuited branch and the underlying object on both sides
3456 is the same, make a non-short-circuit operation. */
3457 else if (RANGE_TEST_NON_SHORT_CIRCUIT
3458 && lhs != 0 && rhs != 0
3459 && (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3460 || TREE_CODE (exp) == TRUTH_ORIF_EXPR)
3461 && operand_equal_p (lhs, rhs, 0))
3462 {
3463 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
3464 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
3465 which cases we can't do this. */
3466 if (simple_operand_p (lhs))
3467 return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3468 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
3469 TREE_TYPE (exp), TREE_OPERAND (exp, 0),
3470 TREE_OPERAND (exp, 1));
3471
3472 else if ((*lang_hooks.decls.global_bindings_p) () == 0
3473 && ! CONTAINS_PLACEHOLDER_P (lhs))
3474 {
3475 tree common = save_expr (lhs);
3476
3477 if (0 != (lhs = build_range_check (TREE_TYPE (exp), common,
3478 or_op ? ! in0_p : in0_p,
3479 low0, high0))
3480 && (0 != (rhs = build_range_check (TREE_TYPE (exp), common,
3481 or_op ? ! in1_p : in1_p,
3482 low1, high1))))
3483 return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3484 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
3485 TREE_TYPE (exp), lhs, rhs);
3486 }
3487 }
3488
3489 return 0;
3490 }
3491 \f
3492 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
3493 bit value. Arrange things so the extra bits will be set to zero if and
3494 only if C is signed-extended to its full width. If MASK is nonzero,
3495 it is an INTEGER_CST that should be AND'ed with the extra bits. */
3496
3497 static tree
3498 unextend (c, p, unsignedp, mask)
3499 tree c;
3500 int p;
3501 int unsignedp;
3502 tree mask;
3503 {
3504 tree type = TREE_TYPE (c);
3505 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
3506 tree temp;
3507
3508 if (p == modesize || unsignedp)
3509 return c;
3510
3511 /* We work by getting just the sign bit into the low-order bit, then
3512 into the high-order bit, then sign-extend. We then XOR that value
3513 with C. */
3514 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
3515 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
3516
3517 /* We must use a signed type in order to get an arithmetic right shift.
3518 However, we must also avoid introducing accidental overflows, so that
3519 a subsequent call to integer_zerop will work. Hence we must
3520 do the type conversion here. At this point, the constant is either
3521 zero or one, and the conversion to a signed type can never overflow.
3522 We could get an overflow if this conversion is done anywhere else. */
3523 if (TREE_UNSIGNED (type))
3524 temp = convert ((*lang_hooks.types.signed_type) (type), temp);
3525
3526 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
3527 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
3528 if (mask != 0)
3529 temp = const_binop (BIT_AND_EXPR, temp, convert (TREE_TYPE (c), mask), 0);
3530 /* If necessary, convert the type back to match the type of C. */
3531 if (TREE_UNSIGNED (type))
3532 temp = convert (type, temp);
3533
3534 return convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
3535 }
3536 \f
3537 /* Find ways of folding logical expressions of LHS and RHS:
3538 Try to merge two comparisons to the same innermost item.
3539 Look for range tests like "ch >= '0' && ch <= '9'".
3540 Look for combinations of simple terms on machines with expensive branches
3541 and evaluate the RHS unconditionally.
3542
3543 For example, if we have p->a == 2 && p->b == 4 and we can make an
3544 object large enough to span both A and B, we can do this with a comparison
3545 against the object ANDed with the a mask.
3546
3547 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
3548 operations to do this with one comparison.
3549
3550 We check for both normal comparisons and the BIT_AND_EXPRs made this by
3551 function and the one above.
3552
3553 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
3554 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
3555
3556 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
3557 two operands.
3558
3559 We return the simplified tree or 0 if no optimization is possible. */
3560
3561 static tree
3562 fold_truthop (code, truth_type, lhs, rhs)
3563 enum tree_code code;
3564 tree truth_type, lhs, rhs;
3565 {
3566 /* If this is the "or" of two comparisons, we can do something if
3567 the comparisons are NE_EXPR. If this is the "and", we can do something
3568 if the comparisons are EQ_EXPR. I.e.,
3569 (a->b == 2 && a->c == 4) can become (a->new == NEW).
3570
3571 WANTED_CODE is this operation code. For single bit fields, we can
3572 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
3573 comparison for one-bit fields. */
3574
3575 enum tree_code wanted_code;
3576 enum tree_code lcode, rcode;
3577 tree ll_arg, lr_arg, rl_arg, rr_arg;
3578 tree ll_inner, lr_inner, rl_inner, rr_inner;
3579 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
3580 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
3581 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
3582 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
3583 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
3584 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
3585 enum machine_mode lnmode, rnmode;
3586 tree ll_mask, lr_mask, rl_mask, rr_mask;
3587 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
3588 tree l_const, r_const;
3589 tree lntype, rntype, result;
3590 int first_bit, end_bit;
3591 int volatilep;
3592
3593 /* Start by getting the comparison codes. Fail if anything is volatile.
3594 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
3595 it were surrounded with a NE_EXPR. */
3596
3597 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
3598 return 0;
3599
3600 lcode = TREE_CODE (lhs);
3601 rcode = TREE_CODE (rhs);
3602
3603 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
3604 lcode = NE_EXPR, lhs = build (NE_EXPR, truth_type, lhs, integer_zero_node);
3605
3606 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
3607 rcode = NE_EXPR, rhs = build (NE_EXPR, truth_type, rhs, integer_zero_node);
3608
3609 if (TREE_CODE_CLASS (lcode) != '<' || TREE_CODE_CLASS (rcode) != '<')
3610 return 0;
3611
3612 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
3613 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
3614
3615 ll_arg = TREE_OPERAND (lhs, 0);
3616 lr_arg = TREE_OPERAND (lhs, 1);
3617 rl_arg = TREE_OPERAND (rhs, 0);
3618 rr_arg = TREE_OPERAND (rhs, 1);
3619
3620 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
3621 if (simple_operand_p (ll_arg)
3622 && simple_operand_p (lr_arg)
3623 && !FLOAT_TYPE_P (TREE_TYPE (ll_arg)))
3624 {
3625 int compcode;
3626
3627 if (operand_equal_p (ll_arg, rl_arg, 0)
3628 && operand_equal_p (lr_arg, rr_arg, 0))
3629 {
3630 int lcompcode, rcompcode;
3631
3632 lcompcode = comparison_to_compcode (lcode);
3633 rcompcode = comparison_to_compcode (rcode);
3634 compcode = (code == TRUTH_AND_EXPR)
3635 ? lcompcode & rcompcode
3636 : lcompcode | rcompcode;
3637 }
3638 else if (operand_equal_p (ll_arg, rr_arg, 0)
3639 && operand_equal_p (lr_arg, rl_arg, 0))
3640 {
3641 int lcompcode, rcompcode;
3642
3643 rcode = swap_tree_comparison (rcode);
3644 lcompcode = comparison_to_compcode (lcode);
3645 rcompcode = comparison_to_compcode (rcode);
3646 compcode = (code == TRUTH_AND_EXPR)
3647 ? lcompcode & rcompcode
3648 : lcompcode | rcompcode;
3649 }
3650 else
3651 compcode = -1;
3652
3653 if (compcode == COMPCODE_TRUE)
3654 return convert (truth_type, integer_one_node);
3655 else if (compcode == COMPCODE_FALSE)
3656 return convert (truth_type, integer_zero_node);
3657 else if (compcode != -1)
3658 return build (compcode_to_comparison (compcode),
3659 truth_type, ll_arg, lr_arg);
3660 }
3661
3662 /* If the RHS can be evaluated unconditionally and its operands are
3663 simple, it wins to evaluate the RHS unconditionally on machines
3664 with expensive branches. In this case, this isn't a comparison
3665 that can be merged. Avoid doing this if the RHS is a floating-point
3666 comparison since those can trap. */
3667
3668 if (BRANCH_COST >= 2
3669 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
3670 && simple_operand_p (rl_arg)
3671 && simple_operand_p (rr_arg))
3672 {
3673 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
3674 if (code == TRUTH_OR_EXPR
3675 && lcode == NE_EXPR && integer_zerop (lr_arg)
3676 && rcode == NE_EXPR && integer_zerop (rr_arg)
3677 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
3678 return build (NE_EXPR, truth_type,
3679 build (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
3680 ll_arg, rl_arg),
3681 integer_zero_node);
3682
3683 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
3684 if (code == TRUTH_AND_EXPR
3685 && lcode == EQ_EXPR && integer_zerop (lr_arg)
3686 && rcode == EQ_EXPR && integer_zerop (rr_arg)
3687 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
3688 return build (EQ_EXPR, truth_type,
3689 build (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
3690 ll_arg, rl_arg),
3691 integer_zero_node);
3692
3693 return build (code, truth_type, lhs, rhs);
3694 }
3695
3696 /* See if the comparisons can be merged. Then get all the parameters for
3697 each side. */
3698
3699 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
3700 || (rcode != EQ_EXPR && rcode != NE_EXPR))
3701 return 0;
3702
3703 volatilep = 0;
3704 ll_inner = decode_field_reference (ll_arg,
3705 &ll_bitsize, &ll_bitpos, &ll_mode,
3706 &ll_unsignedp, &volatilep, &ll_mask,
3707 &ll_and_mask);
3708 lr_inner = decode_field_reference (lr_arg,
3709 &lr_bitsize, &lr_bitpos, &lr_mode,
3710 &lr_unsignedp, &volatilep, &lr_mask,
3711 &lr_and_mask);
3712 rl_inner = decode_field_reference (rl_arg,
3713 &rl_bitsize, &rl_bitpos, &rl_mode,
3714 &rl_unsignedp, &volatilep, &rl_mask,
3715 &rl_and_mask);
3716 rr_inner = decode_field_reference (rr_arg,
3717 &rr_bitsize, &rr_bitpos, &rr_mode,
3718 &rr_unsignedp, &volatilep, &rr_mask,
3719 &rr_and_mask);
3720
3721 /* It must be true that the inner operation on the lhs of each
3722 comparison must be the same if we are to be able to do anything.
3723 Then see if we have constants. If not, the same must be true for
3724 the rhs's. */
3725 if (volatilep || ll_inner == 0 || rl_inner == 0
3726 || ! operand_equal_p (ll_inner, rl_inner, 0))
3727 return 0;
3728
3729 if (TREE_CODE (lr_arg) == INTEGER_CST
3730 && TREE_CODE (rr_arg) == INTEGER_CST)
3731 l_const = lr_arg, r_const = rr_arg;
3732 else if (lr_inner == 0 || rr_inner == 0
3733 || ! operand_equal_p (lr_inner, rr_inner, 0))
3734 return 0;
3735 else
3736 l_const = r_const = 0;
3737
3738 /* If either comparison code is not correct for our logical operation,
3739 fail. However, we can convert a one-bit comparison against zero into
3740 the opposite comparison against that bit being set in the field. */
3741
3742 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
3743 if (lcode != wanted_code)
3744 {
3745 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
3746 {
3747 /* Make the left operand unsigned, since we are only interested
3748 in the value of one bit. Otherwise we are doing the wrong
3749 thing below. */
3750 ll_unsignedp = 1;
3751 l_const = ll_mask;
3752 }
3753 else
3754 return 0;
3755 }
3756
3757 /* This is analogous to the code for l_const above. */
3758 if (rcode != wanted_code)
3759 {
3760 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
3761 {
3762 rl_unsignedp = 1;
3763 r_const = rl_mask;
3764 }
3765 else
3766 return 0;
3767 }
3768
3769 /* After this point all optimizations will generate bit-field
3770 references, which we might not want. */
3771 if (! (*lang_hooks.can_use_bit_fields_p) ())
3772 return 0;
3773
3774 /* See if we can find a mode that contains both fields being compared on
3775 the left. If we can't, fail. Otherwise, update all constants and masks
3776 to be relative to a field of that size. */
3777 first_bit = MIN (ll_bitpos, rl_bitpos);
3778 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
3779 lnmode = get_best_mode (end_bit - first_bit, first_bit,
3780 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
3781 volatilep);
3782 if (lnmode == VOIDmode)
3783 return 0;
3784
3785 lnbitsize = GET_MODE_BITSIZE (lnmode);
3786 lnbitpos = first_bit & ~ (lnbitsize - 1);
3787 lntype = (*lang_hooks.types.type_for_size) (lnbitsize, 1);
3788 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
3789
3790 if (BYTES_BIG_ENDIAN)
3791 {
3792 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
3793 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
3794 }
3795
3796 ll_mask = const_binop (LSHIFT_EXPR, convert (lntype, ll_mask),
3797 size_int (xll_bitpos), 0);
3798 rl_mask = const_binop (LSHIFT_EXPR, convert (lntype, rl_mask),
3799 size_int (xrl_bitpos), 0);
3800
3801 if (l_const)
3802 {
3803 l_const = convert (lntype, l_const);
3804 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
3805 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
3806 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
3807 fold (build1 (BIT_NOT_EXPR,
3808 lntype, ll_mask)),
3809 0)))
3810 {
3811 warning ("comparison is always %d", wanted_code == NE_EXPR);
3812
3813 return convert (truth_type,
3814 wanted_code == NE_EXPR
3815 ? integer_one_node : integer_zero_node);
3816 }
3817 }
3818 if (r_const)
3819 {
3820 r_const = convert (lntype, r_const);
3821 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
3822 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
3823 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
3824 fold (build1 (BIT_NOT_EXPR,
3825 lntype, rl_mask)),
3826 0)))
3827 {
3828 warning ("comparison is always %d", wanted_code == NE_EXPR);
3829
3830 return convert (truth_type,
3831 wanted_code == NE_EXPR
3832 ? integer_one_node : integer_zero_node);
3833 }
3834 }
3835
3836 /* If the right sides are not constant, do the same for it. Also,
3837 disallow this optimization if a size or signedness mismatch occurs
3838 between the left and right sides. */
3839 if (l_const == 0)
3840 {
3841 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
3842 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
3843 /* Make sure the two fields on the right
3844 correspond to the left without being swapped. */
3845 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
3846 return 0;
3847
3848 first_bit = MIN (lr_bitpos, rr_bitpos);
3849 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
3850 rnmode = get_best_mode (end_bit - first_bit, first_bit,
3851 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
3852 volatilep);
3853 if (rnmode == VOIDmode)
3854 return 0;
3855
3856 rnbitsize = GET_MODE_BITSIZE (rnmode);
3857 rnbitpos = first_bit & ~ (rnbitsize - 1);
3858 rntype = (*lang_hooks.types.type_for_size) (rnbitsize, 1);
3859 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
3860
3861 if (BYTES_BIG_ENDIAN)
3862 {
3863 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
3864 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
3865 }
3866
3867 lr_mask = const_binop (LSHIFT_EXPR, convert (rntype, lr_mask),
3868 size_int (xlr_bitpos), 0);
3869 rr_mask = const_binop (LSHIFT_EXPR, convert (rntype, rr_mask),
3870 size_int (xrr_bitpos), 0);
3871
3872 /* Make a mask that corresponds to both fields being compared.
3873 Do this for both items being compared. If the operands are the
3874 same size and the bits being compared are in the same position
3875 then we can do this by masking both and comparing the masked
3876 results. */
3877 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
3878 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
3879 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
3880 {
3881 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
3882 ll_unsignedp || rl_unsignedp);
3883 if (! all_ones_mask_p (ll_mask, lnbitsize))
3884 lhs = build (BIT_AND_EXPR, lntype, lhs, ll_mask);
3885
3886 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
3887 lr_unsignedp || rr_unsignedp);
3888 if (! all_ones_mask_p (lr_mask, rnbitsize))
3889 rhs = build (BIT_AND_EXPR, rntype, rhs, lr_mask);
3890
3891 return build (wanted_code, truth_type, lhs, rhs);
3892 }
3893
3894 /* There is still another way we can do something: If both pairs of
3895 fields being compared are adjacent, we may be able to make a wider
3896 field containing them both.
3897
3898 Note that we still must mask the lhs/rhs expressions. Furthermore,
3899 the mask must be shifted to account for the shift done by
3900 make_bit_field_ref. */
3901 if ((ll_bitsize + ll_bitpos == rl_bitpos
3902 && lr_bitsize + lr_bitpos == rr_bitpos)
3903 || (ll_bitpos == rl_bitpos + rl_bitsize
3904 && lr_bitpos == rr_bitpos + rr_bitsize))
3905 {
3906 tree type;
3907
3908 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
3909 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
3910 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
3911 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
3912
3913 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
3914 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
3915 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
3916 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
3917
3918 /* Convert to the smaller type before masking out unwanted bits. */
3919 type = lntype;
3920 if (lntype != rntype)
3921 {
3922 if (lnbitsize > rnbitsize)
3923 {
3924 lhs = convert (rntype, lhs);
3925 ll_mask = convert (rntype, ll_mask);
3926 type = rntype;
3927 }
3928 else if (lnbitsize < rnbitsize)
3929 {
3930 rhs = convert (lntype, rhs);
3931 lr_mask = convert (lntype, lr_mask);
3932 type = lntype;
3933 }
3934 }
3935
3936 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
3937 lhs = build (BIT_AND_EXPR, type, lhs, ll_mask);
3938
3939 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
3940 rhs = build (BIT_AND_EXPR, type, rhs, lr_mask);
3941
3942 return build (wanted_code, truth_type, lhs, rhs);
3943 }
3944
3945 return 0;
3946 }
3947
3948 /* Handle the case of comparisons with constants. If there is something in
3949 common between the masks, those bits of the constants must be the same.
3950 If not, the condition is always false. Test for this to avoid generating
3951 incorrect code below. */
3952 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
3953 if (! integer_zerop (result)
3954 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
3955 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
3956 {
3957 if (wanted_code == NE_EXPR)
3958 {
3959 warning ("`or' of unmatched not-equal tests is always 1");
3960 return convert (truth_type, integer_one_node);
3961 }
3962 else
3963 {
3964 warning ("`and' of mutually exclusive equal-tests is always 0");
3965 return convert (truth_type, integer_zero_node);
3966 }
3967 }
3968
3969 /* Construct the expression we will return. First get the component
3970 reference we will make. Unless the mask is all ones the width of
3971 that field, perform the mask operation. Then compare with the
3972 merged constant. */
3973 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
3974 ll_unsignedp || rl_unsignedp);
3975
3976 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
3977 if (! all_ones_mask_p (ll_mask, lnbitsize))
3978 result = build (BIT_AND_EXPR, lntype, result, ll_mask);
3979
3980 return build (wanted_code, truth_type, result,
3981 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
3982 }
3983 \f
3984 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
3985 constant. */
3986
3987 static tree
3988 optimize_minmax_comparison (t)
3989 tree t;
3990 {
3991 tree type = TREE_TYPE (t);
3992 tree arg0 = TREE_OPERAND (t, 0);
3993 enum tree_code op_code;
3994 tree comp_const = TREE_OPERAND (t, 1);
3995 tree minmax_const;
3996 int consts_equal, consts_lt;
3997 tree inner;
3998
3999 STRIP_SIGN_NOPS (arg0);
4000
4001 op_code = TREE_CODE (arg0);
4002 minmax_const = TREE_OPERAND (arg0, 1);
4003 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
4004 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
4005 inner = TREE_OPERAND (arg0, 0);
4006
4007 /* If something does not permit us to optimize, return the original tree. */
4008 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
4009 || TREE_CODE (comp_const) != INTEGER_CST
4010 || TREE_CONSTANT_OVERFLOW (comp_const)
4011 || TREE_CODE (minmax_const) != INTEGER_CST
4012 || TREE_CONSTANT_OVERFLOW (minmax_const))
4013 return t;
4014
4015 /* Now handle all the various comparison codes. We only handle EQ_EXPR
4016 and GT_EXPR, doing the rest with recursive calls using logical
4017 simplifications. */
4018 switch (TREE_CODE (t))
4019 {
4020 case NE_EXPR: case LT_EXPR: case LE_EXPR:
4021 return
4022 invert_truthvalue (optimize_minmax_comparison (invert_truthvalue (t)));
4023
4024 case GE_EXPR:
4025 return
4026 fold (build (TRUTH_ORIF_EXPR, type,
4027 optimize_minmax_comparison
4028 (build (EQ_EXPR, type, arg0, comp_const)),
4029 optimize_minmax_comparison
4030 (build (GT_EXPR, type, arg0, comp_const))));
4031
4032 case EQ_EXPR:
4033 if (op_code == MAX_EXPR && consts_equal)
4034 /* MAX (X, 0) == 0 -> X <= 0 */
4035 return fold (build (LE_EXPR, type, inner, comp_const));
4036
4037 else if (op_code == MAX_EXPR && consts_lt)
4038 /* MAX (X, 0) == 5 -> X == 5 */
4039 return fold (build (EQ_EXPR, type, inner, comp_const));
4040
4041 else if (op_code == MAX_EXPR)
4042 /* MAX (X, 0) == -1 -> false */
4043 return omit_one_operand (type, integer_zero_node, inner);
4044
4045 else if (consts_equal)
4046 /* MIN (X, 0) == 0 -> X >= 0 */
4047 return fold (build (GE_EXPR, type, inner, comp_const));
4048
4049 else if (consts_lt)
4050 /* MIN (X, 0) == 5 -> false */
4051 return omit_one_operand (type, integer_zero_node, inner);
4052
4053 else
4054 /* MIN (X, 0) == -1 -> X == -1 */
4055 return fold (build (EQ_EXPR, type, inner, comp_const));
4056
4057 case GT_EXPR:
4058 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
4059 /* MAX (X, 0) > 0 -> X > 0
4060 MAX (X, 0) > 5 -> X > 5 */
4061 return fold (build (GT_EXPR, type, inner, comp_const));
4062
4063 else if (op_code == MAX_EXPR)
4064 /* MAX (X, 0) > -1 -> true */
4065 return omit_one_operand (type, integer_one_node, inner);
4066
4067 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
4068 /* MIN (X, 0) > 0 -> false
4069 MIN (X, 0) > 5 -> false */
4070 return omit_one_operand (type, integer_zero_node, inner);
4071
4072 else
4073 /* MIN (X, 0) > -1 -> X > -1 */
4074 return fold (build (GT_EXPR, type, inner, comp_const));
4075
4076 default:
4077 return t;
4078 }
4079 }
4080 \f
4081 /* T is an integer expression that is being multiplied, divided, or taken a
4082 modulus (CODE says which and what kind of divide or modulus) by a
4083 constant C. See if we can eliminate that operation by folding it with
4084 other operations already in T. WIDE_TYPE, if non-null, is a type that
4085 should be used for the computation if wider than our type.
4086
4087 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
4088 (X * 2) + (Y * 4). We must, however, be assured that either the original
4089 expression would not overflow or that overflow is undefined for the type
4090 in the language in question.
4091
4092 We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
4093 the machine has a multiply-accumulate insn or that this is part of an
4094 addressing calculation.
4095
4096 If we return a non-null expression, it is an equivalent form of the
4097 original computation, but need not be in the original type. */
4098
4099 static tree
4100 extract_muldiv (t, c, code, wide_type)
4101 tree t;
4102 tree c;
4103 enum tree_code code;
4104 tree wide_type;
4105 {
4106 /* To avoid exponential search depth, refuse to allow recursion past
4107 three levels. Beyond that (1) it's highly unlikely that we'll find
4108 something interesting and (2) we've probably processed it before
4109 when we built the inner expression. */
4110
4111 static int depth;
4112 tree ret;
4113
4114 if (depth > 3)
4115 return NULL;
4116
4117 depth++;
4118 ret = extract_muldiv_1 (t, c, code, wide_type);
4119 depth--;
4120
4121 return ret;
4122 }
4123
4124 static tree
4125 extract_muldiv_1 (t, c, code, wide_type)
4126 tree t;
4127 tree c;
4128 enum tree_code code;
4129 tree wide_type;
4130 {
4131 tree type = TREE_TYPE (t);
4132 enum tree_code tcode = TREE_CODE (t);
4133 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
4134 > GET_MODE_SIZE (TYPE_MODE (type)))
4135 ? wide_type : type);
4136 tree t1, t2;
4137 int same_p = tcode == code;
4138 tree op0 = NULL_TREE, op1 = NULL_TREE;
4139
4140 /* Don't deal with constants of zero here; they confuse the code below. */
4141 if (integer_zerop (c))
4142 return NULL_TREE;
4143
4144 if (TREE_CODE_CLASS (tcode) == '1')
4145 op0 = TREE_OPERAND (t, 0);
4146
4147 if (TREE_CODE_CLASS (tcode) == '2')
4148 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
4149
4150 /* Note that we need not handle conditional operations here since fold
4151 already handles those cases. So just do arithmetic here. */
4152 switch (tcode)
4153 {
4154 case INTEGER_CST:
4155 /* For a constant, we can always simplify if we are a multiply
4156 or (for divide and modulus) if it is a multiple of our constant. */
4157 if (code == MULT_EXPR
4158 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
4159 return const_binop (code, convert (ctype, t), convert (ctype, c), 0);
4160 break;
4161
4162 case CONVERT_EXPR: case NON_LVALUE_EXPR: case NOP_EXPR:
4163 /* If op0 is an expression ... */
4164 if ((TREE_CODE_CLASS (TREE_CODE (op0)) == '<'
4165 || TREE_CODE_CLASS (TREE_CODE (op0)) == '1'
4166 || TREE_CODE_CLASS (TREE_CODE (op0)) == '2'
4167 || TREE_CODE_CLASS (TREE_CODE (op0)) == 'e')
4168 /* ... and is unsigned, and its type is smaller than ctype,
4169 then we cannot pass through as widening. */
4170 && ((TREE_UNSIGNED (TREE_TYPE (op0))
4171 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
4172 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
4173 && (GET_MODE_SIZE (TYPE_MODE (ctype))
4174 > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
4175 /* ... or its type is larger than ctype,
4176 then we cannot pass through this truncation. */
4177 || (GET_MODE_SIZE (TYPE_MODE (ctype))
4178 < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))))
4179 /* ... or signedness changes for division or modulus,
4180 then we cannot pass through this conversion. */
4181 || (code != MULT_EXPR
4182 && (TREE_UNSIGNED (ctype)
4183 != TREE_UNSIGNED (TREE_TYPE (op0))))))
4184 break;
4185
4186 /* Pass the constant down and see if we can make a simplification. If
4187 we can, replace this expression with the inner simplification for
4188 possible later conversion to our or some other type. */
4189 if ((t2 = convert (TREE_TYPE (op0), c)) != 0
4190 && TREE_CODE (t2) == INTEGER_CST
4191 && ! TREE_CONSTANT_OVERFLOW (t2)
4192 && (0 != (t1 = extract_muldiv (op0, t2, code,
4193 code == MULT_EXPR
4194 ? ctype : NULL_TREE))))
4195 return t1;
4196 break;
4197
4198 case NEGATE_EXPR: case ABS_EXPR:
4199 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
4200 return fold (build1 (tcode, ctype, convert (ctype, t1)));
4201 break;
4202
4203 case MIN_EXPR: case MAX_EXPR:
4204 /* If widening the type changes the signedness, then we can't perform
4205 this optimization as that changes the result. */
4206 if (TREE_UNSIGNED (ctype) != TREE_UNSIGNED (type))
4207 break;
4208
4209 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
4210 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0
4211 && (t2 = extract_muldiv (op1, c, code, wide_type)) != 0)
4212 {
4213 if (tree_int_cst_sgn (c) < 0)
4214 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
4215
4216 return fold (build (tcode, ctype, convert (ctype, t1),
4217 convert (ctype, t2)));
4218 }
4219 break;
4220
4221 case WITH_RECORD_EXPR:
4222 if ((t1 = extract_muldiv (TREE_OPERAND (t, 0), c, code, wide_type)) != 0)
4223 return build (WITH_RECORD_EXPR, TREE_TYPE (t1), t1,
4224 TREE_OPERAND (t, 1));
4225 break;
4226
4227 case SAVE_EXPR:
4228 /* If this has not been evaluated and the operand has no side effects,
4229 we can see if we can do something inside it and make a new one.
4230 Note that this test is overly conservative since we can do this
4231 if the only reason it had side effects is that it was another
4232 similar SAVE_EXPR, but that isn't worth bothering with. */
4233 if (SAVE_EXPR_RTL (t) == 0 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0))
4234 && 0 != (t1 = extract_muldiv (TREE_OPERAND (t, 0), c, code,
4235 wide_type)))
4236 {
4237 t1 = save_expr (t1);
4238 if (SAVE_EXPR_PERSISTENT_P (t) && TREE_CODE (t1) == SAVE_EXPR)
4239 SAVE_EXPR_PERSISTENT_P (t1) = 1;
4240 if (is_pending_size (t))
4241 put_pending_size (t1);
4242 return t1;
4243 }
4244 break;
4245
4246 case LSHIFT_EXPR: case RSHIFT_EXPR:
4247 /* If the second operand is constant, this is a multiplication
4248 or floor division, by a power of two, so we can treat it that
4249 way unless the multiplier or divisor overflows. */
4250 if (TREE_CODE (op1) == INTEGER_CST
4251 /* const_binop may not detect overflow correctly,
4252 so check for it explicitly here. */
4253 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
4254 && TREE_INT_CST_HIGH (op1) == 0
4255 && 0 != (t1 = convert (ctype,
4256 const_binop (LSHIFT_EXPR, size_one_node,
4257 op1, 0)))
4258 && ! TREE_OVERFLOW (t1))
4259 return extract_muldiv (build (tcode == LSHIFT_EXPR
4260 ? MULT_EXPR : FLOOR_DIV_EXPR,
4261 ctype, convert (ctype, op0), t1),
4262 c, code, wide_type);
4263 break;
4264
4265 case PLUS_EXPR: case MINUS_EXPR:
4266 /* See if we can eliminate the operation on both sides. If we can, we
4267 can return a new PLUS or MINUS. If we can't, the only remaining
4268 cases where we can do anything are if the second operand is a
4269 constant. */
4270 t1 = extract_muldiv (op0, c, code, wide_type);
4271 t2 = extract_muldiv (op1, c, code, wide_type);
4272 if (t1 != 0 && t2 != 0
4273 && (code == MULT_EXPR
4274 /* If not multiplication, we can only do this if both operands
4275 are divisible by c. */
4276 || (multiple_of_p (ctype, op0, c)
4277 && multiple_of_p (ctype, op1, c))))
4278 return fold (build (tcode, ctype, convert (ctype, t1),
4279 convert (ctype, t2)));
4280
4281 /* If this was a subtraction, negate OP1 and set it to be an addition.
4282 This simplifies the logic below. */
4283 if (tcode == MINUS_EXPR)
4284 tcode = PLUS_EXPR, op1 = negate_expr (op1);
4285
4286 if (TREE_CODE (op1) != INTEGER_CST)
4287 break;
4288
4289 /* If either OP1 or C are negative, this optimization is not safe for
4290 some of the division and remainder types while for others we need
4291 to change the code. */
4292 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
4293 {
4294 if (code == CEIL_DIV_EXPR)
4295 code = FLOOR_DIV_EXPR;
4296 else if (code == FLOOR_DIV_EXPR)
4297 code = CEIL_DIV_EXPR;
4298 else if (code != MULT_EXPR
4299 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
4300 break;
4301 }
4302
4303 /* If it's a multiply or a division/modulus operation of a multiple
4304 of our constant, do the operation and verify it doesn't overflow. */
4305 if (code == MULT_EXPR
4306 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4307 {
4308 op1 = const_binop (code, convert (ctype, op1), convert (ctype, c), 0);
4309 if (op1 == 0 || TREE_OVERFLOW (op1))
4310 break;
4311 }
4312 else
4313 break;
4314
4315 /* If we have an unsigned type is not a sizetype, we cannot widen
4316 the operation since it will change the result if the original
4317 computation overflowed. */
4318 if (TREE_UNSIGNED (ctype)
4319 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
4320 && ctype != type)
4321 break;
4322
4323 /* If we were able to eliminate our operation from the first side,
4324 apply our operation to the second side and reform the PLUS. */
4325 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
4326 return fold (build (tcode, ctype, convert (ctype, t1), op1));
4327
4328 /* The last case is if we are a multiply. In that case, we can
4329 apply the distributive law to commute the multiply and addition
4330 if the multiplication of the constants doesn't overflow. */
4331 if (code == MULT_EXPR)
4332 return fold (build (tcode, ctype, fold (build (code, ctype,
4333 convert (ctype, op0),
4334 convert (ctype, c))),
4335 op1));
4336
4337 break;
4338
4339 case MULT_EXPR:
4340 /* We have a special case here if we are doing something like
4341 (C * 8) % 4 since we know that's zero. */
4342 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
4343 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
4344 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
4345 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4346 return omit_one_operand (type, integer_zero_node, op0);
4347
4348 /* ... fall through ... */
4349
4350 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
4351 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
4352 /* If we can extract our operation from the LHS, do so and return a
4353 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
4354 do something only if the second operand is a constant. */
4355 if (same_p
4356 && (t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
4357 return fold (build (tcode, ctype, convert (ctype, t1),
4358 convert (ctype, op1)));
4359 else if (tcode == MULT_EXPR && code == MULT_EXPR
4360 && (t1 = extract_muldiv (op1, c, code, wide_type)) != 0)
4361 return fold (build (tcode, ctype, convert (ctype, op0),
4362 convert (ctype, t1)));
4363 else if (TREE_CODE (op1) != INTEGER_CST)
4364 return 0;
4365
4366 /* If these are the same operation types, we can associate them
4367 assuming no overflow. */
4368 if (tcode == code
4369 && 0 != (t1 = const_binop (MULT_EXPR, convert (ctype, op1),
4370 convert (ctype, c), 0))
4371 && ! TREE_OVERFLOW (t1))
4372 return fold (build (tcode, ctype, convert (ctype, op0), t1));
4373
4374 /* If these operations "cancel" each other, we have the main
4375 optimizations of this pass, which occur when either constant is a
4376 multiple of the other, in which case we replace this with either an
4377 operation or CODE or TCODE.
4378
4379 If we have an unsigned type that is not a sizetype, we cannot do
4380 this since it will change the result if the original computation
4381 overflowed. */
4382 if ((! TREE_UNSIGNED (ctype)
4383 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
4384 && ! flag_wrapv
4385 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
4386 || (tcode == MULT_EXPR
4387 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
4388 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
4389 {
4390 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4391 return fold (build (tcode, ctype, convert (ctype, op0),
4392 convert (ctype,
4393 const_binop (TRUNC_DIV_EXPR,
4394 op1, c, 0))));
4395 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
4396 return fold (build (code, ctype, convert (ctype, op0),
4397 convert (ctype,
4398 const_binop (TRUNC_DIV_EXPR,
4399 c, op1, 0))));
4400 }
4401 break;
4402
4403 default:
4404 break;
4405 }
4406
4407 return 0;
4408 }
4409 \f
4410 /* If T contains a COMPOUND_EXPR which was inserted merely to evaluate
4411 S, a SAVE_EXPR, return the expression actually being evaluated. Note
4412 that we may sometimes modify the tree. */
4413
4414 static tree
4415 strip_compound_expr (t, s)
4416 tree t;
4417 tree s;
4418 {
4419 enum tree_code code = TREE_CODE (t);
4420
4421 /* See if this is the COMPOUND_EXPR we want to eliminate. */
4422 if (code == COMPOUND_EXPR && TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR
4423 && TREE_OPERAND (TREE_OPERAND (t, 0), 0) == s)
4424 return TREE_OPERAND (t, 1);
4425
4426 /* See if this is a COND_EXPR or a simple arithmetic operator. We
4427 don't bother handling any other types. */
4428 else if (code == COND_EXPR)
4429 {
4430 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4431 TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
4432 TREE_OPERAND (t, 2) = strip_compound_expr (TREE_OPERAND (t, 2), s);
4433 }
4434 else if (TREE_CODE_CLASS (code) == '1')
4435 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4436 else if (TREE_CODE_CLASS (code) == '<'
4437 || TREE_CODE_CLASS (code) == '2')
4438 {
4439 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4440 TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
4441 }
4442
4443 return t;
4444 }
4445 \f
4446 /* Return a node which has the indicated constant VALUE (either 0 or
4447 1), and is of the indicated TYPE. */
4448
4449 static tree
4450 constant_boolean_node (value, type)
4451 int value;
4452 tree type;
4453 {
4454 if (type == integer_type_node)
4455 return value ? integer_one_node : integer_zero_node;
4456 else if (TREE_CODE (type) == BOOLEAN_TYPE)
4457 return (*lang_hooks.truthvalue_conversion) (value ? integer_one_node :
4458 integer_zero_node);
4459 else
4460 {
4461 tree t = build_int_2 (value, 0);
4462
4463 TREE_TYPE (t) = type;
4464 return t;
4465 }
4466 }
4467
4468 /* Utility function for the following routine, to see how complex a nesting of
4469 COND_EXPRs can be. EXPR is the expression and LIMIT is a count beyond which
4470 we don't care (to avoid spending too much time on complex expressions.). */
4471
4472 static int
4473 count_cond (expr, lim)
4474 tree expr;
4475 int lim;
4476 {
4477 int ctrue, cfalse;
4478
4479 if (TREE_CODE (expr) != COND_EXPR)
4480 return 0;
4481 else if (lim <= 0)
4482 return 0;
4483
4484 ctrue = count_cond (TREE_OPERAND (expr, 1), lim - 1);
4485 cfalse = count_cond (TREE_OPERAND (expr, 2), lim - 1 - ctrue);
4486 return MIN (lim, 1 + ctrue + cfalse);
4487 }
4488
4489 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
4490 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
4491 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
4492 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
4493 COND is the first argument to CODE; otherwise (as in the example
4494 given here), it is the second argument. TYPE is the type of the
4495 original expression. */
4496
4497 static tree
4498 fold_binary_op_with_conditional_arg (code, type, cond, arg, cond_first_p)
4499 enum tree_code code;
4500 tree type;
4501 tree cond;
4502 tree arg;
4503 int cond_first_p;
4504 {
4505 tree test, true_value, false_value;
4506 tree lhs = NULL_TREE;
4507 tree rhs = NULL_TREE;
4508 /* In the end, we'll produce a COND_EXPR. Both arms of the
4509 conditional expression will be binary operations. The left-hand
4510 side of the expression to be executed if the condition is true
4511 will be pointed to by TRUE_LHS. Similarly, the right-hand side
4512 of the expression to be executed if the condition is true will be
4513 pointed to by TRUE_RHS. FALSE_LHS and FALSE_RHS are analogous --
4514 but apply to the expression to be executed if the conditional is
4515 false. */
4516 tree *true_lhs;
4517 tree *true_rhs;
4518 tree *false_lhs;
4519 tree *false_rhs;
4520 /* These are the codes to use for the left-hand side and right-hand
4521 side of the COND_EXPR. Normally, they are the same as CODE. */
4522 enum tree_code lhs_code = code;
4523 enum tree_code rhs_code = code;
4524 /* And these are the types of the expressions. */
4525 tree lhs_type = type;
4526 tree rhs_type = type;
4527 int save = 0;
4528
4529 if (cond_first_p)
4530 {
4531 true_rhs = false_rhs = &arg;
4532 true_lhs = &true_value;
4533 false_lhs = &false_value;
4534 }
4535 else
4536 {
4537 true_lhs = false_lhs = &arg;
4538 true_rhs = &true_value;
4539 false_rhs = &false_value;
4540 }
4541
4542 if (TREE_CODE (cond) == COND_EXPR)
4543 {
4544 test = TREE_OPERAND (cond, 0);
4545 true_value = TREE_OPERAND (cond, 1);
4546 false_value = TREE_OPERAND (cond, 2);
4547 /* If this operand throws an expression, then it does not make
4548 sense to try to perform a logical or arithmetic operation
4549 involving it. Instead of building `a + throw 3' for example,
4550 we simply build `a, throw 3'. */
4551 if (VOID_TYPE_P (TREE_TYPE (true_value)))
4552 {
4553 if (! cond_first_p)
4554 {
4555 lhs_code = COMPOUND_EXPR;
4556 lhs_type = void_type_node;
4557 }
4558 else
4559 lhs = true_value;
4560 }
4561 if (VOID_TYPE_P (TREE_TYPE (false_value)))
4562 {
4563 if (! cond_first_p)
4564 {
4565 rhs_code = COMPOUND_EXPR;
4566 rhs_type = void_type_node;
4567 }
4568 else
4569 rhs = false_value;
4570 }
4571 }
4572 else
4573 {
4574 tree testtype = TREE_TYPE (cond);
4575 test = cond;
4576 true_value = convert (testtype, integer_one_node);
4577 false_value = convert (testtype, integer_zero_node);
4578 }
4579
4580 /* If ARG is complex we want to make sure we only evaluate it once. Though
4581 this is only required if it is volatile, it might be more efficient even
4582 if it is not. However, if we succeed in folding one part to a constant,
4583 we do not need to make this SAVE_EXPR. Since we do this optimization
4584 primarily to see if we do end up with constant and this SAVE_EXPR
4585 interferes with later optimizations, suppressing it when we can is
4586 important.
4587
4588 If we are not in a function, we can't make a SAVE_EXPR, so don't try to
4589 do so. Don't try to see if the result is a constant if an arm is a
4590 COND_EXPR since we get exponential behavior in that case. */
4591
4592 if (saved_expr_p (arg))
4593 save = 1;
4594 else if (lhs == 0 && rhs == 0
4595 && !TREE_CONSTANT (arg)
4596 && (*lang_hooks.decls.global_bindings_p) () == 0
4597 && ((TREE_CODE (arg) != VAR_DECL && TREE_CODE (arg) != PARM_DECL)
4598 || TREE_SIDE_EFFECTS (arg)))
4599 {
4600 if (TREE_CODE (true_value) != COND_EXPR)
4601 lhs = fold (build (lhs_code, lhs_type, *true_lhs, *true_rhs));
4602
4603 if (TREE_CODE (false_value) != COND_EXPR)
4604 rhs = fold (build (rhs_code, rhs_type, *false_lhs, *false_rhs));
4605
4606 if ((lhs == 0 || ! TREE_CONSTANT (lhs))
4607 && (rhs == 0 || !TREE_CONSTANT (rhs)))
4608 {
4609 arg = save_expr (arg);
4610 lhs = rhs = 0;
4611 save = 1;
4612 }
4613 }
4614
4615 if (lhs == 0)
4616 lhs = fold (build (lhs_code, lhs_type, *true_lhs, *true_rhs));
4617 if (rhs == 0)
4618 rhs = fold (build (rhs_code, rhs_type, *false_lhs, *false_rhs));
4619
4620 test = fold (build (COND_EXPR, type, test, lhs, rhs));
4621
4622 if (save)
4623 return build (COMPOUND_EXPR, type,
4624 convert (void_type_node, arg),
4625 strip_compound_expr (test, arg));
4626 else
4627 return convert (type, test);
4628 }
4629
4630 \f
4631 /* Subroutine of fold() that checks for the addition of +/- 0.0.
4632
4633 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
4634 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
4635 ADDEND is the same as X.
4636
4637 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
4638 and finite. The problematic cases are when X is zero, and its mode
4639 has signed zeros. In the case of rounding towards -infinity,
4640 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
4641 modes, X + 0 is not the same as X because -0 + 0 is 0. */
4642
4643 static bool
4644 fold_real_zero_addition_p (type, addend, negate)
4645 tree type, addend;
4646 int negate;
4647 {
4648 if (!real_zerop (addend))
4649 return false;
4650
4651 /* Don't allow the fold with -fsignaling-nans. */
4652 if (HONOR_SNANS (TYPE_MODE (type)))
4653 return false;
4654
4655 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
4656 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
4657 return true;
4658
4659 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
4660 if (TREE_CODE (addend) == REAL_CST
4661 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
4662 negate = !negate;
4663
4664 /* The mode has signed zeros, and we have to honor their sign.
4665 In this situation, there is only one case we can return true for.
4666 X - 0 is the same as X unless rounding towards -infinity is
4667 supported. */
4668 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
4669 }
4670
4671 /* Subroutine of fold() that checks comparisons of built-in math
4672 functions against real constants.
4673
4674 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
4675 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
4676 is the type of the result and ARG0 and ARG1 are the operands of the
4677 comparison. ARG1 must be a TREE_REAL_CST.
4678
4679 The function returns the constant folded tree if a simplification
4680 can be made, and NULL_TREE otherwise. */
4681
4682 static tree
4683 fold_mathfn_compare (fcode, code, type, arg0, arg1)
4684 enum built_in_function fcode;
4685 enum tree_code code;
4686 tree type, arg0, arg1;
4687 {
4688 REAL_VALUE_TYPE c;
4689
4690 if (fcode == BUILT_IN_SQRT
4691 || fcode == BUILT_IN_SQRTF
4692 || fcode == BUILT_IN_SQRTL)
4693 {
4694 tree arg = TREE_VALUE (TREE_OPERAND (arg0, 1));
4695 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
4696
4697 c = TREE_REAL_CST (arg1);
4698 if (REAL_VALUE_NEGATIVE (c))
4699 {
4700 /* sqrt(x) < y is always false, if y is negative. */
4701 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
4702 return omit_one_operand (type,
4703 convert (type, integer_zero_node),
4704 arg);
4705
4706 /* sqrt(x) > y is always true, if y is negative and we
4707 don't care about NaNs, i.e. negative values of x. */
4708 if (code == NE_EXPR || !HONOR_NANS (mode))
4709 return omit_one_operand (type,
4710 convert (type, integer_one_node),
4711 arg);
4712
4713 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
4714 return fold (build (GE_EXPR, type, arg,
4715 build_real (TREE_TYPE (arg), dconst0)));
4716 }
4717 else if (code == GT_EXPR || code == GE_EXPR)
4718 {
4719 REAL_VALUE_TYPE c2;
4720
4721 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
4722 real_convert (&c2, mode, &c2);
4723
4724 if (REAL_VALUE_ISINF (c2))
4725 {
4726 /* sqrt(x) > y is x == +Inf, when y is very large. */
4727 if (HONOR_INFINITIES (mode))
4728 return fold (build (EQ_EXPR, type, arg,
4729 build_real (TREE_TYPE (arg), c2)));
4730
4731 /* sqrt(x) > y is always false, when y is very large
4732 and we don't care about infinities. */
4733 return omit_one_operand (type,
4734 convert (type, integer_zero_node),
4735 arg);
4736 }
4737
4738 /* sqrt(x) > c is the same as x > c*c. */
4739 return fold (build (code, type, arg,
4740 build_real (TREE_TYPE (arg), c2)));
4741 }
4742 else if (code == LT_EXPR || code == LE_EXPR)
4743 {
4744 REAL_VALUE_TYPE c2;
4745
4746 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
4747 real_convert (&c2, mode, &c2);
4748
4749 if (REAL_VALUE_ISINF (c2))
4750 {
4751 /* sqrt(x) < y is always true, when y is a very large
4752 value and we don't care about NaNs or Infinities. */
4753 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
4754 return omit_one_operand (type,
4755 convert (type, integer_one_node),
4756 arg);
4757
4758 /* sqrt(x) < y is x != +Inf when y is very large and we
4759 don't care about NaNs. */
4760 if (! HONOR_NANS (mode))
4761 return fold (build (NE_EXPR, type, arg,
4762 build_real (TREE_TYPE (arg), c2)));
4763
4764 /* sqrt(x) < y is x >= 0 when y is very large and we
4765 don't care about Infinities. */
4766 if (! HONOR_INFINITIES (mode))
4767 return fold (build (GE_EXPR, type, arg,
4768 build_real (TREE_TYPE (arg), dconst0)));
4769
4770 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
4771 if ((*lang_hooks.decls.global_bindings_p) () != 0
4772 || CONTAINS_PLACEHOLDER_P (arg))
4773 return NULL_TREE;
4774
4775 arg = save_expr (arg);
4776 return fold (build (TRUTH_ANDIF_EXPR, type,
4777 fold (build (GE_EXPR, type, arg,
4778 build_real (TREE_TYPE (arg),
4779 dconst0))),
4780 fold (build (NE_EXPR, type, arg,
4781 build_real (TREE_TYPE (arg),
4782 c2)))));
4783 }
4784
4785 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
4786 if (! HONOR_NANS (mode))
4787 return fold (build (code, type, arg,
4788 build_real (TREE_TYPE (arg), c2)));
4789
4790 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
4791 if ((*lang_hooks.decls.global_bindings_p) () == 0
4792 && ! CONTAINS_PLACEHOLDER_P (arg))
4793 {
4794 arg = save_expr (arg);
4795 return fold (build (TRUTH_ANDIF_EXPR, type,
4796 fold (build (GE_EXPR, type, arg,
4797 build_real (TREE_TYPE (arg),
4798 dconst0))),
4799 fold (build (code, type, arg,
4800 build_real (TREE_TYPE (arg),
4801 c2)))));
4802 }
4803 }
4804 }
4805
4806 return NULL_TREE;
4807 }
4808
4809 /* Subroutine of fold() that optimizes comparisons against Infinities,
4810 either +Inf or -Inf.
4811
4812 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
4813 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
4814 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
4815
4816 The function returns the constant folded tree if a simplification
4817 can be made, and NULL_TREE otherwise. */
4818
4819 static tree
4820 fold_inf_compare (code, type, arg0, arg1)
4821 enum tree_code code;
4822 tree type, arg0, arg1;
4823 {
4824 enum machine_mode mode;
4825 REAL_VALUE_TYPE max;
4826 tree temp;
4827 bool neg;
4828
4829 mode = TYPE_MODE (TREE_TYPE (arg0));
4830
4831 /* For negative infinity swap the sense of the comparison. */
4832 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
4833 if (neg)
4834 code = swap_tree_comparison (code);
4835
4836 switch (code)
4837 {
4838 case GT_EXPR:
4839 /* x > +Inf is always false, if with ignore sNANs. */
4840 if (HONOR_SNANS (mode))
4841 return NULL_TREE;
4842 return omit_one_operand (type,
4843 convert (type, integer_zero_node),
4844 arg0);
4845
4846 case LE_EXPR:
4847 /* x <= +Inf is always true, if we don't case about NaNs. */
4848 if (! HONOR_NANS (mode))
4849 return omit_one_operand (type,
4850 convert (type, integer_one_node),
4851 arg0);
4852
4853 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
4854 if ((*lang_hooks.decls.global_bindings_p) () == 0
4855 && ! CONTAINS_PLACEHOLDER_P (arg0))
4856 {
4857 arg0 = save_expr (arg0);
4858 return fold (build (EQ_EXPR, type, arg0, arg0));
4859 }
4860 break;
4861
4862 case EQ_EXPR:
4863 case GE_EXPR:
4864 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
4865 real_maxval (&max, neg, mode);
4866 return fold (build (neg ? LT_EXPR : GT_EXPR, type,
4867 arg0, build_real (TREE_TYPE (arg0), max)));
4868
4869 case LT_EXPR:
4870 /* x < +Inf is always equal to x <= DBL_MAX. */
4871 real_maxval (&max, neg, mode);
4872 return fold (build (neg ? GE_EXPR : LE_EXPR, type,
4873 arg0, build_real (TREE_TYPE (arg0), max)));
4874
4875 case NE_EXPR:
4876 /* x != +Inf is always equal to !(x > DBL_MAX). */
4877 real_maxval (&max, neg, mode);
4878 if (! HONOR_NANS (mode))
4879 return fold (build (neg ? GE_EXPR : LE_EXPR, type,
4880 arg0, build_real (TREE_TYPE (arg0), max)));
4881 temp = fold (build (neg ? LT_EXPR : GT_EXPR, type,
4882 arg0, build_real (TREE_TYPE (arg0), max)));
4883 return fold (build1 (TRUTH_NOT_EXPR, type, temp));
4884
4885 default:
4886 break;
4887 }
4888
4889 return NULL_TREE;
4890 }
4891
4892 /* Perform constant folding and related simplification of EXPR.
4893 The related simplifications include x*1 => x, x*0 => 0, etc.,
4894 and application of the associative law.
4895 NOP_EXPR conversions may be removed freely (as long as we
4896 are careful not to change the C type of the overall expression)
4897 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
4898 but we can constant-fold them if they have constant operands. */
4899
4900 tree
4901 fold (expr)
4902 tree expr;
4903 {
4904 tree t = expr;
4905 tree t1 = NULL_TREE;
4906 tree tem;
4907 tree type = TREE_TYPE (expr);
4908 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
4909 enum tree_code code = TREE_CODE (t);
4910 int kind = TREE_CODE_CLASS (code);
4911 int invert;
4912 /* WINS will be nonzero when the switch is done
4913 if all operands are constant. */
4914 int wins = 1;
4915
4916 /* Don't try to process an RTL_EXPR since its operands aren't trees.
4917 Likewise for a SAVE_EXPR that's already been evaluated. */
4918 if (code == RTL_EXPR || (code == SAVE_EXPR && SAVE_EXPR_RTL (t) != 0))
4919 return t;
4920
4921 /* Return right away if a constant. */
4922 if (kind == 'c')
4923 return t;
4924
4925 #ifdef MAX_INTEGER_COMPUTATION_MODE
4926 check_max_integer_computation_mode (expr);
4927 #endif
4928
4929 if (code == NOP_EXPR || code == FLOAT_EXPR || code == CONVERT_EXPR)
4930 {
4931 tree subop;
4932
4933 /* Special case for conversion ops that can have fixed point args. */
4934 arg0 = TREE_OPERAND (t, 0);
4935
4936 /* Don't use STRIP_NOPS, because signedness of argument type matters. */
4937 if (arg0 != 0)
4938 STRIP_SIGN_NOPS (arg0);
4939
4940 if (arg0 != 0 && TREE_CODE (arg0) == COMPLEX_CST)
4941 subop = TREE_REALPART (arg0);
4942 else
4943 subop = arg0;
4944
4945 if (subop != 0 && TREE_CODE (subop) != INTEGER_CST
4946 && TREE_CODE (subop) != REAL_CST
4947 )
4948 /* Note that TREE_CONSTANT isn't enough:
4949 static var addresses are constant but we can't
4950 do arithmetic on them. */
4951 wins = 0;
4952 }
4953 else if (IS_EXPR_CODE_CLASS (kind) || kind == 'r')
4954 {
4955 int len = first_rtl_op (code);
4956 int i;
4957 for (i = 0; i < len; i++)
4958 {
4959 tree op = TREE_OPERAND (t, i);
4960 tree subop;
4961
4962 if (op == 0)
4963 continue; /* Valid for CALL_EXPR, at least. */
4964
4965 if (kind == '<' || code == RSHIFT_EXPR)
4966 {
4967 /* Signedness matters here. Perhaps we can refine this
4968 later. */
4969 STRIP_SIGN_NOPS (op);
4970 }
4971 else
4972 /* Strip any conversions that don't change the mode. */
4973 STRIP_NOPS (op);
4974
4975 if (TREE_CODE (op) == COMPLEX_CST)
4976 subop = TREE_REALPART (op);
4977 else
4978 subop = op;
4979
4980 if (TREE_CODE (subop) != INTEGER_CST
4981 && TREE_CODE (subop) != REAL_CST)
4982 /* Note that TREE_CONSTANT isn't enough:
4983 static var addresses are constant but we can't
4984 do arithmetic on them. */
4985 wins = 0;
4986
4987 if (i == 0)
4988 arg0 = op;
4989 else if (i == 1)
4990 arg1 = op;
4991 }
4992 }
4993
4994 /* If this is a commutative operation, and ARG0 is a constant, move it
4995 to ARG1 to reduce the number of tests below. */
4996 if ((code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
4997 || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
4998 || code == BIT_AND_EXPR)
4999 && (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST))
5000 {
5001 tem = arg0; arg0 = arg1; arg1 = tem;
5002
5003 tem = TREE_OPERAND (t, 0); TREE_OPERAND (t, 0) = TREE_OPERAND (t, 1);
5004 TREE_OPERAND (t, 1) = tem;
5005 }
5006
5007 /* Now WINS is set as described above,
5008 ARG0 is the first operand of EXPR,
5009 and ARG1 is the second operand (if it has more than one operand).
5010
5011 First check for cases where an arithmetic operation is applied to a
5012 compound, conditional, or comparison operation. Push the arithmetic
5013 operation inside the compound or conditional to see if any folding
5014 can then be done. Convert comparison to conditional for this purpose.
5015 The also optimizes non-constant cases that used to be done in
5016 expand_expr.
5017
5018 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
5019 one of the operands is a comparison and the other is a comparison, a
5020 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
5021 code below would make the expression more complex. Change it to a
5022 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
5023 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
5024
5025 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
5026 || code == EQ_EXPR || code == NE_EXPR)
5027 && ((truth_value_p (TREE_CODE (arg0))
5028 && (truth_value_p (TREE_CODE (arg1))
5029 || (TREE_CODE (arg1) == BIT_AND_EXPR
5030 && integer_onep (TREE_OPERAND (arg1, 1)))))
5031 || (truth_value_p (TREE_CODE (arg1))
5032 && (truth_value_p (TREE_CODE (arg0))
5033 || (TREE_CODE (arg0) == BIT_AND_EXPR
5034 && integer_onep (TREE_OPERAND (arg0, 1)))))))
5035 {
5036 t = fold (build (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
5037 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
5038 : TRUTH_XOR_EXPR,
5039 type, arg0, arg1));
5040
5041 if (code == EQ_EXPR)
5042 t = invert_truthvalue (t);
5043
5044 return t;
5045 }
5046
5047 if (TREE_CODE_CLASS (code) == '1')
5048 {
5049 if (TREE_CODE (arg0) == COMPOUND_EXPR)
5050 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
5051 fold (build1 (code, type, TREE_OPERAND (arg0, 1))));
5052 else if (TREE_CODE (arg0) == COND_EXPR)
5053 {
5054 tree arg01 = TREE_OPERAND (arg0, 1);
5055 tree arg02 = TREE_OPERAND (arg0, 2);
5056 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
5057 arg01 = fold (build1 (code, type, arg01));
5058 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
5059 arg02 = fold (build1 (code, type, arg02));
5060 t = fold (build (COND_EXPR, type, TREE_OPERAND (arg0, 0),
5061 arg01, arg02));
5062
5063 /* If this was a conversion, and all we did was to move into
5064 inside the COND_EXPR, bring it back out. But leave it if
5065 it is a conversion from integer to integer and the
5066 result precision is no wider than a word since such a
5067 conversion is cheap and may be optimized away by combine,
5068 while it couldn't if it were outside the COND_EXPR. Then return
5069 so we don't get into an infinite recursion loop taking the
5070 conversion out and then back in. */
5071
5072 if ((code == NOP_EXPR || code == CONVERT_EXPR
5073 || code == NON_LVALUE_EXPR)
5074 && TREE_CODE (t) == COND_EXPR
5075 && TREE_CODE (TREE_OPERAND (t, 1)) == code
5076 && TREE_CODE (TREE_OPERAND (t, 2)) == code
5077 && ! VOID_TYPE_P (TREE_OPERAND (t, 1))
5078 && ! VOID_TYPE_P (TREE_OPERAND (t, 2))
5079 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))
5080 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 2), 0)))
5081 && ! (INTEGRAL_TYPE_P (TREE_TYPE (t))
5082 && (INTEGRAL_TYPE_P
5083 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))))
5084 && TYPE_PRECISION (TREE_TYPE (t)) <= BITS_PER_WORD))
5085 t = build1 (code, type,
5086 build (COND_EXPR,
5087 TREE_TYPE (TREE_OPERAND
5088 (TREE_OPERAND (t, 1), 0)),
5089 TREE_OPERAND (t, 0),
5090 TREE_OPERAND (TREE_OPERAND (t, 1), 0),
5091 TREE_OPERAND (TREE_OPERAND (t, 2), 0)));
5092 return t;
5093 }
5094 else if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<')
5095 return fold (build (COND_EXPR, type, arg0,
5096 fold (build1 (code, type, integer_one_node)),
5097 fold (build1 (code, type, integer_zero_node))));
5098 }
5099 else if (TREE_CODE_CLASS (code) == '<'
5100 && TREE_CODE (arg0) == COMPOUND_EXPR)
5101 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
5102 fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
5103 else if (TREE_CODE_CLASS (code) == '<'
5104 && TREE_CODE (arg1) == COMPOUND_EXPR)
5105 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
5106 fold (build (code, type, arg0, TREE_OPERAND (arg1, 1))));
5107 else if (TREE_CODE_CLASS (code) == '2'
5108 || TREE_CODE_CLASS (code) == '<')
5109 {
5110 if (TREE_CODE (arg1) == COMPOUND_EXPR
5111 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg1, 0))
5112 && ! TREE_SIDE_EFFECTS (arg0))
5113 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
5114 fold (build (code, type,
5115 arg0, TREE_OPERAND (arg1, 1))));
5116 else if ((TREE_CODE (arg1) == COND_EXPR
5117 || (TREE_CODE_CLASS (TREE_CODE (arg1)) == '<'
5118 && TREE_CODE_CLASS (code) != '<'))
5119 && (TREE_CODE (arg0) != COND_EXPR
5120 || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
5121 && (! TREE_SIDE_EFFECTS (arg0)
5122 || ((*lang_hooks.decls.global_bindings_p) () == 0
5123 && ! CONTAINS_PLACEHOLDER_P (arg0))))
5124 return
5125 fold_binary_op_with_conditional_arg (code, type, arg1, arg0,
5126 /*cond_first_p=*/0);
5127 else if (TREE_CODE (arg0) == COMPOUND_EXPR)
5128 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
5129 fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
5130 else if ((TREE_CODE (arg0) == COND_EXPR
5131 || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
5132 && TREE_CODE_CLASS (code) != '<'))
5133 && (TREE_CODE (arg1) != COND_EXPR
5134 || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
5135 && (! TREE_SIDE_EFFECTS (arg1)
5136 || ((*lang_hooks.decls.global_bindings_p) () == 0
5137 && ! CONTAINS_PLACEHOLDER_P (arg1))))
5138 return
5139 fold_binary_op_with_conditional_arg (code, type, arg0, arg1,
5140 /*cond_first_p=*/1);
5141 }
5142
5143 switch (code)
5144 {
5145 case INTEGER_CST:
5146 case REAL_CST:
5147 case VECTOR_CST:
5148 case STRING_CST:
5149 case COMPLEX_CST:
5150 case CONSTRUCTOR:
5151 return t;
5152
5153 case CONST_DECL:
5154 return fold (DECL_INITIAL (t));
5155
5156 case NOP_EXPR:
5157 case FLOAT_EXPR:
5158 case CONVERT_EXPR:
5159 case FIX_TRUNC_EXPR:
5160 /* Other kinds of FIX are not handled properly by fold_convert. */
5161
5162 if (TREE_TYPE (TREE_OPERAND (t, 0)) == TREE_TYPE (t))
5163 return TREE_OPERAND (t, 0);
5164
5165 /* Handle cases of two conversions in a row. */
5166 if (TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
5167 || TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR)
5168 {
5169 tree inside_type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5170 tree inter_type = TREE_TYPE (TREE_OPERAND (t, 0));
5171 tree final_type = TREE_TYPE (t);
5172 int inside_int = INTEGRAL_TYPE_P (inside_type);
5173 int inside_ptr = POINTER_TYPE_P (inside_type);
5174 int inside_float = FLOAT_TYPE_P (inside_type);
5175 unsigned int inside_prec = TYPE_PRECISION (inside_type);
5176 int inside_unsignedp = TREE_UNSIGNED (inside_type);
5177 int inter_int = INTEGRAL_TYPE_P (inter_type);
5178 int inter_ptr = POINTER_TYPE_P (inter_type);
5179 int inter_float = FLOAT_TYPE_P (inter_type);
5180 unsigned int inter_prec = TYPE_PRECISION (inter_type);
5181 int inter_unsignedp = TREE_UNSIGNED (inter_type);
5182 int final_int = INTEGRAL_TYPE_P (final_type);
5183 int final_ptr = POINTER_TYPE_P (final_type);
5184 int final_float = FLOAT_TYPE_P (final_type);
5185 unsigned int final_prec = TYPE_PRECISION (final_type);
5186 int final_unsignedp = TREE_UNSIGNED (final_type);
5187
5188 /* In addition to the cases of two conversions in a row
5189 handled below, if we are converting something to its own
5190 type via an object of identical or wider precision, neither
5191 conversion is needed. */
5192 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (final_type)
5193 && ((inter_int && final_int) || (inter_float && final_float))
5194 && inter_prec >= final_prec)
5195 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5196
5197 /* Likewise, if the intermediate and final types are either both
5198 float or both integer, we don't need the middle conversion if
5199 it is wider than the final type and doesn't change the signedness
5200 (for integers). Avoid this if the final type is a pointer
5201 since then we sometimes need the inner conversion. Likewise if
5202 the outer has a precision not equal to the size of its mode. */
5203 if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
5204 || (inter_float && inside_float))
5205 && inter_prec >= inside_prec
5206 && (inter_float || inter_unsignedp == inside_unsignedp)
5207 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
5208 && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
5209 && ! final_ptr)
5210 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5211
5212 /* If we have a sign-extension of a zero-extended value, we can
5213 replace that by a single zero-extension. */
5214 if (inside_int && inter_int && final_int
5215 && inside_prec < inter_prec && inter_prec < final_prec
5216 && inside_unsignedp && !inter_unsignedp)
5217 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5218
5219 /* Two conversions in a row are not needed unless:
5220 - some conversion is floating-point (overstrict for now), or
5221 - the intermediate type is narrower than both initial and
5222 final, or
5223 - the intermediate type and innermost type differ in signedness,
5224 and the outermost type is wider than the intermediate, or
5225 - the initial type is a pointer type and the precisions of the
5226 intermediate and final types differ, or
5227 - the final type is a pointer type and the precisions of the
5228 initial and intermediate types differ. */
5229 if (! inside_float && ! inter_float && ! final_float
5230 && (inter_prec > inside_prec || inter_prec > final_prec)
5231 && ! (inside_int && inter_int
5232 && inter_unsignedp != inside_unsignedp
5233 && inter_prec < final_prec)
5234 && ((inter_unsignedp && inter_prec > inside_prec)
5235 == (final_unsignedp && final_prec > inter_prec))
5236 && ! (inside_ptr && inter_prec != final_prec)
5237 && ! (final_ptr && inside_prec != inter_prec)
5238 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
5239 && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
5240 && ! final_ptr)
5241 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5242 }
5243
5244 if (TREE_CODE (TREE_OPERAND (t, 0)) == MODIFY_EXPR
5245 && TREE_CONSTANT (TREE_OPERAND (TREE_OPERAND (t, 0), 1))
5246 /* Detect assigning a bitfield. */
5247 && !(TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 0)) == COMPONENT_REF
5248 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 0), 0), 1))))
5249 {
5250 /* Don't leave an assignment inside a conversion
5251 unless assigning a bitfield. */
5252 tree prev = TREE_OPERAND (t, 0);
5253 TREE_OPERAND (t, 0) = TREE_OPERAND (prev, 1);
5254 /* First do the assignment, then return converted constant. */
5255 t = build (COMPOUND_EXPR, TREE_TYPE (t), prev, fold (t));
5256 TREE_USED (t) = 1;
5257 return t;
5258 }
5259
5260 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
5261 constants (if x has signed type, the sign bit cannot be set
5262 in c). This folds extension into the BIT_AND_EXPR. */
5263 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
5264 && TREE_CODE (TREE_TYPE (t)) != BOOLEAN_TYPE
5265 && TREE_CODE (TREE_OPERAND (t, 0)) == BIT_AND_EXPR
5266 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 1)) == INTEGER_CST)
5267 {
5268 tree and = TREE_OPERAND (t, 0);
5269 tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
5270 int change = 0;
5271
5272 if (TREE_UNSIGNED (TREE_TYPE (and))
5273 || (TYPE_PRECISION (TREE_TYPE (t))
5274 <= TYPE_PRECISION (TREE_TYPE (and))))
5275 change = 1;
5276 else if (TYPE_PRECISION (TREE_TYPE (and1))
5277 <= HOST_BITS_PER_WIDE_INT
5278 && host_integerp (and1, 1))
5279 {
5280 unsigned HOST_WIDE_INT cst;
5281
5282 cst = tree_low_cst (and1, 1);
5283 cst &= (HOST_WIDE_INT) -1
5284 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
5285 change = (cst == 0);
5286 #ifdef LOAD_EXTEND_OP
5287 if (change
5288 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
5289 == ZERO_EXTEND))
5290 {
5291 tree uns = (*lang_hooks.types.unsigned_type) (TREE_TYPE (and0));
5292 and0 = convert (uns, and0);
5293 and1 = convert (uns, and1);
5294 }
5295 #endif
5296 }
5297 if (change)
5298 return fold (build (BIT_AND_EXPR, TREE_TYPE (t),
5299 convert (TREE_TYPE (t), and0),
5300 convert (TREE_TYPE (t), and1)));
5301 }
5302
5303 if (!wins)
5304 {
5305 TREE_CONSTANT (t) = TREE_CONSTANT (arg0);
5306 return t;
5307 }
5308 return fold_convert (t, arg0);
5309
5310 case VIEW_CONVERT_EXPR:
5311 if (TREE_CODE (TREE_OPERAND (t, 0)) == VIEW_CONVERT_EXPR)
5312 return build1 (VIEW_CONVERT_EXPR, type,
5313 TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5314 return t;
5315
5316 case COMPONENT_REF:
5317 if (TREE_CODE (arg0) == CONSTRUCTOR
5318 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
5319 {
5320 tree m = purpose_member (arg1, CONSTRUCTOR_ELTS (arg0));
5321 if (m)
5322 t = TREE_VALUE (m);
5323 }
5324 return t;
5325
5326 case RANGE_EXPR:
5327 TREE_CONSTANT (t) = wins;
5328 return t;
5329
5330 case NEGATE_EXPR:
5331 if (wins)
5332 {
5333 if (TREE_CODE (arg0) == INTEGER_CST)
5334 {
5335 unsigned HOST_WIDE_INT low;
5336 HOST_WIDE_INT high;
5337 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
5338 TREE_INT_CST_HIGH (arg0),
5339 &low, &high);
5340 t = build_int_2 (low, high);
5341 TREE_TYPE (t) = type;
5342 TREE_OVERFLOW (t)
5343 = (TREE_OVERFLOW (arg0)
5344 | force_fit_type (t, overflow && !TREE_UNSIGNED (type)));
5345 TREE_CONSTANT_OVERFLOW (t)
5346 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
5347 }
5348 else if (TREE_CODE (arg0) == REAL_CST)
5349 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
5350 }
5351 else if (TREE_CODE (arg0) == NEGATE_EXPR)
5352 return TREE_OPERAND (arg0, 0);
5353 /* Convert -((double)float) into (double)(-float). */
5354 else if (TREE_CODE (arg0) == NOP_EXPR
5355 && TREE_CODE (type) == REAL_TYPE)
5356 {
5357 tree targ0 = strip_float_extensions (arg0);
5358 if (targ0 != arg0)
5359 return convert (type, build1 (NEGATE_EXPR, TREE_TYPE (targ0), targ0));
5360
5361 }
5362
5363 /* Convert - (a - b) to (b - a) for non-floating-point. */
5364 else if (TREE_CODE (arg0) == MINUS_EXPR
5365 && (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
5366 return build (MINUS_EXPR, type, TREE_OPERAND (arg0, 1),
5367 TREE_OPERAND (arg0, 0));
5368
5369 return t;
5370
5371 case ABS_EXPR:
5372 if (wins)
5373 {
5374 if (TREE_CODE (arg0) == INTEGER_CST)
5375 {
5376 /* If the value is unsigned, then the absolute value is
5377 the same as the ordinary value. */
5378 if (TREE_UNSIGNED (type))
5379 return arg0;
5380 /* Similarly, if the value is non-negative. */
5381 else if (INT_CST_LT (integer_minus_one_node, arg0))
5382 return arg0;
5383 /* If the value is negative, then the absolute value is
5384 its negation. */
5385 else
5386 {
5387 unsigned HOST_WIDE_INT low;
5388 HOST_WIDE_INT high;
5389 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
5390 TREE_INT_CST_HIGH (arg0),
5391 &low, &high);
5392 t = build_int_2 (low, high);
5393 TREE_TYPE (t) = type;
5394 TREE_OVERFLOW (t)
5395 = (TREE_OVERFLOW (arg0)
5396 | force_fit_type (t, overflow));
5397 TREE_CONSTANT_OVERFLOW (t)
5398 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
5399 }
5400 }
5401 else if (TREE_CODE (arg0) == REAL_CST)
5402 {
5403 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
5404 t = build_real (type,
5405 REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
5406 }
5407 }
5408 else if (TREE_CODE (arg0) == ABS_EXPR || TREE_CODE (arg0) == NEGATE_EXPR)
5409 return build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
5410 /* Convert fabs((double)float) into (double)fabsf(float). */
5411 else if (TREE_CODE (arg0) == NOP_EXPR
5412 && TREE_CODE (type) == REAL_TYPE)
5413 {
5414 tree targ0 = strip_float_extensions (arg0);
5415 if (targ0 != arg0)
5416 return convert (type, build1 (ABS_EXPR, TREE_TYPE (targ0), targ0));
5417
5418 }
5419 else
5420 {
5421 /* fabs(sqrt(x)) = sqrt(x) and fabs(exp(x)) = exp(x). */
5422 enum built_in_function fcode = builtin_mathfn_code (arg0);
5423 if (fcode == BUILT_IN_SQRT
5424 || fcode == BUILT_IN_SQRTF
5425 || fcode == BUILT_IN_SQRTL
5426 || fcode == BUILT_IN_EXP
5427 || fcode == BUILT_IN_EXPF
5428 || fcode == BUILT_IN_EXPL)
5429 t = arg0;
5430 }
5431 return t;
5432
5433 case CONJ_EXPR:
5434 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
5435 return convert (type, arg0);
5436 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
5437 return build (COMPLEX_EXPR, type,
5438 TREE_OPERAND (arg0, 0),
5439 negate_expr (TREE_OPERAND (arg0, 1)));
5440 else if (TREE_CODE (arg0) == COMPLEX_CST)
5441 return build_complex (type, TREE_REALPART (arg0),
5442 negate_expr (TREE_IMAGPART (arg0)));
5443 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
5444 return fold (build (TREE_CODE (arg0), type,
5445 fold (build1 (CONJ_EXPR, type,
5446 TREE_OPERAND (arg0, 0))),
5447 fold (build1 (CONJ_EXPR,
5448 type, TREE_OPERAND (arg0, 1)))));
5449 else if (TREE_CODE (arg0) == CONJ_EXPR)
5450 return TREE_OPERAND (arg0, 0);
5451 return t;
5452
5453 case BIT_NOT_EXPR:
5454 if (wins)
5455 {
5456 t = build_int_2 (~ TREE_INT_CST_LOW (arg0),
5457 ~ TREE_INT_CST_HIGH (arg0));
5458 TREE_TYPE (t) = type;
5459 force_fit_type (t, 0);
5460 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg0);
5461 TREE_CONSTANT_OVERFLOW (t) = TREE_CONSTANT_OVERFLOW (arg0);
5462 }
5463 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
5464 return TREE_OPERAND (arg0, 0);
5465 return t;
5466
5467 case PLUS_EXPR:
5468 /* A + (-B) -> A - B */
5469 if (TREE_CODE (arg1) == NEGATE_EXPR)
5470 return fold (build (MINUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
5471 /* (-A) + B -> B - A */
5472 if (TREE_CODE (arg0) == NEGATE_EXPR)
5473 return fold (build (MINUS_EXPR, type, arg1, TREE_OPERAND (arg0, 0)));
5474 else if (! FLOAT_TYPE_P (type))
5475 {
5476 if (integer_zerop (arg1))
5477 return non_lvalue (convert (type, arg0));
5478
5479 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
5480 with a constant, and the two constants have no bits in common,
5481 we should treat this as a BIT_IOR_EXPR since this may produce more
5482 simplifications. */
5483 if (TREE_CODE (arg0) == BIT_AND_EXPR
5484 && TREE_CODE (arg1) == BIT_AND_EXPR
5485 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
5486 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
5487 && integer_zerop (const_binop (BIT_AND_EXPR,
5488 TREE_OPERAND (arg0, 1),
5489 TREE_OPERAND (arg1, 1), 0)))
5490 {
5491 code = BIT_IOR_EXPR;
5492 goto bit_ior;
5493 }
5494
5495 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
5496 (plus (plus (mult) (mult)) (foo)) so that we can
5497 take advantage of the factoring cases below. */
5498 if ((TREE_CODE (arg0) == PLUS_EXPR
5499 && TREE_CODE (arg1) == MULT_EXPR)
5500 || (TREE_CODE (arg1) == PLUS_EXPR
5501 && TREE_CODE (arg0) == MULT_EXPR))
5502 {
5503 tree parg0, parg1, parg, marg;
5504
5505 if (TREE_CODE (arg0) == PLUS_EXPR)
5506 parg = arg0, marg = arg1;
5507 else
5508 parg = arg1, marg = arg0;
5509 parg0 = TREE_OPERAND (parg, 0);
5510 parg1 = TREE_OPERAND (parg, 1);
5511 STRIP_NOPS (parg0);
5512 STRIP_NOPS (parg1);
5513
5514 if (TREE_CODE (parg0) == MULT_EXPR
5515 && TREE_CODE (parg1) != MULT_EXPR)
5516 return fold (build (PLUS_EXPR, type,
5517 fold (build (PLUS_EXPR, type,
5518 convert (type, parg0),
5519 convert (type, marg))),
5520 convert (type, parg1)));
5521 if (TREE_CODE (parg0) != MULT_EXPR
5522 && TREE_CODE (parg1) == MULT_EXPR)
5523 return fold (build (PLUS_EXPR, type,
5524 fold (build (PLUS_EXPR, type,
5525 convert (type, parg1),
5526 convert (type, marg))),
5527 convert (type, parg0)));
5528 }
5529
5530 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR)
5531 {
5532 tree arg00, arg01, arg10, arg11;
5533 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
5534
5535 /* (A * C) + (B * C) -> (A+B) * C.
5536 We are most concerned about the case where C is a constant,
5537 but other combinations show up during loop reduction. Since
5538 it is not difficult, try all four possibilities. */
5539
5540 arg00 = TREE_OPERAND (arg0, 0);
5541 arg01 = TREE_OPERAND (arg0, 1);
5542 arg10 = TREE_OPERAND (arg1, 0);
5543 arg11 = TREE_OPERAND (arg1, 1);
5544 same = NULL_TREE;
5545
5546 if (operand_equal_p (arg01, arg11, 0))
5547 same = arg01, alt0 = arg00, alt1 = arg10;
5548 else if (operand_equal_p (arg00, arg10, 0))
5549 same = arg00, alt0 = arg01, alt1 = arg11;
5550 else if (operand_equal_p (arg00, arg11, 0))
5551 same = arg00, alt0 = arg01, alt1 = arg10;
5552 else if (operand_equal_p (arg01, arg10, 0))
5553 same = arg01, alt0 = arg00, alt1 = arg11;
5554
5555 /* No identical multiplicands; see if we can find a common
5556 power-of-two factor in non-power-of-two multiplies. This
5557 can help in multi-dimensional array access. */
5558 else if (TREE_CODE (arg01) == INTEGER_CST
5559 && TREE_CODE (arg11) == INTEGER_CST
5560 && TREE_INT_CST_HIGH (arg01) == 0
5561 && TREE_INT_CST_HIGH (arg11) == 0)
5562 {
5563 HOST_WIDE_INT int01, int11, tmp;
5564 int01 = TREE_INT_CST_LOW (arg01);
5565 int11 = TREE_INT_CST_LOW (arg11);
5566
5567 /* Move min of absolute values to int11. */
5568 if ((int01 >= 0 ? int01 : -int01)
5569 < (int11 >= 0 ? int11 : -int11))
5570 {
5571 tmp = int01, int01 = int11, int11 = tmp;
5572 alt0 = arg00, arg00 = arg10, arg10 = alt0;
5573 alt0 = arg01, arg01 = arg11, arg11 = alt0;
5574 }
5575
5576 if (exact_log2 (int11) > 0 && int01 % int11 == 0)
5577 {
5578 alt0 = fold (build (MULT_EXPR, type, arg00,
5579 build_int_2 (int01 / int11, 0)));
5580 alt1 = arg10;
5581 same = arg11;
5582 }
5583 }
5584
5585 if (same)
5586 return fold (build (MULT_EXPR, type,
5587 fold (build (PLUS_EXPR, type, alt0, alt1)),
5588 same));
5589 }
5590 }
5591
5592 /* See if ARG1 is zero and X + ARG1 reduces to X. */
5593 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
5594 return non_lvalue (convert (type, arg0));
5595
5596 /* Likewise if the operands are reversed. */
5597 else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
5598 return non_lvalue (convert (type, arg1));
5599
5600 bit_rotate:
5601 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
5602 is a rotate of A by C1 bits. */
5603 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
5604 is a rotate of A by B bits. */
5605 {
5606 enum tree_code code0, code1;
5607 code0 = TREE_CODE (arg0);
5608 code1 = TREE_CODE (arg1);
5609 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
5610 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
5611 && operand_equal_p (TREE_OPERAND (arg0, 0),
5612 TREE_OPERAND (arg1, 0), 0)
5613 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5614 {
5615 tree tree01, tree11;
5616 enum tree_code code01, code11;
5617
5618 tree01 = TREE_OPERAND (arg0, 1);
5619 tree11 = TREE_OPERAND (arg1, 1);
5620 STRIP_NOPS (tree01);
5621 STRIP_NOPS (tree11);
5622 code01 = TREE_CODE (tree01);
5623 code11 = TREE_CODE (tree11);
5624 if (code01 == INTEGER_CST
5625 && code11 == INTEGER_CST
5626 && TREE_INT_CST_HIGH (tree01) == 0
5627 && TREE_INT_CST_HIGH (tree11) == 0
5628 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
5629 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
5630 return build (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
5631 code0 == LSHIFT_EXPR ? tree01 : tree11);
5632 else if (code11 == MINUS_EXPR)
5633 {
5634 tree tree110, tree111;
5635 tree110 = TREE_OPERAND (tree11, 0);
5636 tree111 = TREE_OPERAND (tree11, 1);
5637 STRIP_NOPS (tree110);
5638 STRIP_NOPS (tree111);
5639 if (TREE_CODE (tree110) == INTEGER_CST
5640 && 0 == compare_tree_int (tree110,
5641 TYPE_PRECISION
5642 (TREE_TYPE (TREE_OPERAND
5643 (arg0, 0))))
5644 && operand_equal_p (tree01, tree111, 0))
5645 return build ((code0 == LSHIFT_EXPR
5646 ? LROTATE_EXPR
5647 : RROTATE_EXPR),
5648 type, TREE_OPERAND (arg0, 0), tree01);
5649 }
5650 else if (code01 == MINUS_EXPR)
5651 {
5652 tree tree010, tree011;
5653 tree010 = TREE_OPERAND (tree01, 0);
5654 tree011 = TREE_OPERAND (tree01, 1);
5655 STRIP_NOPS (tree010);
5656 STRIP_NOPS (tree011);
5657 if (TREE_CODE (tree010) == INTEGER_CST
5658 && 0 == compare_tree_int (tree010,
5659 TYPE_PRECISION
5660 (TREE_TYPE (TREE_OPERAND
5661 (arg0, 0))))
5662 && operand_equal_p (tree11, tree011, 0))
5663 return build ((code0 != LSHIFT_EXPR
5664 ? LROTATE_EXPR
5665 : RROTATE_EXPR),
5666 type, TREE_OPERAND (arg0, 0), tree11);
5667 }
5668 }
5669 }
5670
5671 associate:
5672 /* In most languages, can't associate operations on floats through
5673 parentheses. Rather than remember where the parentheses were, we
5674 don't associate floats at all. It shouldn't matter much. However,
5675 associating multiplications is only very slightly inaccurate, so do
5676 that if -funsafe-math-optimizations is specified. */
5677
5678 if (! wins
5679 && (! FLOAT_TYPE_P (type)
5680 || (flag_unsafe_math_optimizations && code == MULT_EXPR)))
5681 {
5682 tree var0, con0, lit0, minus_lit0;
5683 tree var1, con1, lit1, minus_lit1;
5684
5685 /* Split both trees into variables, constants, and literals. Then
5686 associate each group together, the constants with literals,
5687 then the result with variables. This increases the chances of
5688 literals being recombined later and of generating relocatable
5689 expressions for the sum of a constant and literal. */
5690 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
5691 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
5692 code == MINUS_EXPR);
5693
5694 /* Only do something if we found more than two objects. Otherwise,
5695 nothing has changed and we risk infinite recursion. */
5696 if (2 < ((var0 != 0) + (var1 != 0)
5697 + (con0 != 0) + (con1 != 0)
5698 + (lit0 != 0) + (lit1 != 0)
5699 + (minus_lit0 != 0) + (minus_lit1 != 0)))
5700 {
5701 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
5702 if (code == MINUS_EXPR)
5703 code = PLUS_EXPR;
5704
5705 var0 = associate_trees (var0, var1, code, type);
5706 con0 = associate_trees (con0, con1, code, type);
5707 lit0 = associate_trees (lit0, lit1, code, type);
5708 minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
5709
5710 /* Preserve the MINUS_EXPR if the negative part of the literal is
5711 greater than the positive part. Otherwise, the multiplicative
5712 folding code (i.e extract_muldiv) may be fooled in case
5713 unsigned constants are substracted, like in the following
5714 example: ((X*2 + 4) - 8U)/2. */
5715 if (minus_lit0 && lit0)
5716 {
5717 if (tree_int_cst_lt (lit0, minus_lit0))
5718 {
5719 minus_lit0 = associate_trees (minus_lit0, lit0,
5720 MINUS_EXPR, type);
5721 lit0 = 0;
5722 }
5723 else
5724 {
5725 lit0 = associate_trees (lit0, minus_lit0,
5726 MINUS_EXPR, type);
5727 minus_lit0 = 0;
5728 }
5729 }
5730 if (minus_lit0)
5731 {
5732 if (con0 == 0)
5733 return convert (type, associate_trees (var0, minus_lit0,
5734 MINUS_EXPR, type));
5735 else
5736 {
5737 con0 = associate_trees (con0, minus_lit0,
5738 MINUS_EXPR, type);
5739 return convert (type, associate_trees (var0, con0,
5740 PLUS_EXPR, type));
5741 }
5742 }
5743
5744 con0 = associate_trees (con0, lit0, code, type);
5745 return convert (type, associate_trees (var0, con0, code, type));
5746 }
5747 }
5748
5749 binary:
5750 if (wins)
5751 t1 = const_binop (code, arg0, arg1, 0);
5752 if (t1 != NULL_TREE)
5753 {
5754 /* The return value should always have
5755 the same type as the original expression. */
5756 if (TREE_TYPE (t1) != TREE_TYPE (t))
5757 t1 = convert (TREE_TYPE (t), t1);
5758
5759 return t1;
5760 }
5761 return t;
5762
5763 case MINUS_EXPR:
5764 /* A - (-B) -> A + B */
5765 if (TREE_CODE (arg1) == NEGATE_EXPR)
5766 return fold (build (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
5767 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
5768 if (TREE_CODE (arg0) == NEGATE_EXPR
5769 && (FLOAT_TYPE_P (type)
5770 || (INTEGRAL_TYPE_P (type) && flag_wrapv && !flag_trapv))
5771 && negate_expr_p (arg1)
5772 && (! TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
5773 && (! TREE_SIDE_EFFECTS (arg1) || TREE_CONSTANT (arg0)))
5774 return fold (build (MINUS_EXPR, type, negate_expr (arg1),
5775 TREE_OPERAND (arg0, 0)));
5776
5777 if (! FLOAT_TYPE_P (type))
5778 {
5779 if (! wins && integer_zerop (arg0))
5780 return negate_expr (convert (type, arg1));
5781 if (integer_zerop (arg1))
5782 return non_lvalue (convert (type, arg0));
5783
5784 /* (A * C) - (B * C) -> (A-B) * C. Since we are most concerned
5785 about the case where C is a constant, just try one of the
5786 four possibilities. */
5787
5788 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR
5789 && operand_equal_p (TREE_OPERAND (arg0, 1),
5790 TREE_OPERAND (arg1, 1), 0))
5791 return fold (build (MULT_EXPR, type,
5792 fold (build (MINUS_EXPR, type,
5793 TREE_OPERAND (arg0, 0),
5794 TREE_OPERAND (arg1, 0))),
5795 TREE_OPERAND (arg0, 1)));
5796
5797 /* Fold A - (A & B) into ~B & A. */
5798 if (!TREE_SIDE_EFFECTS (arg0)
5799 && TREE_CODE (arg1) == BIT_AND_EXPR)
5800 {
5801 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
5802 return fold (build (BIT_AND_EXPR, type,
5803 fold (build1 (BIT_NOT_EXPR, type,
5804 TREE_OPERAND (arg1, 0))),
5805 arg0));
5806 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
5807 return fold (build (BIT_AND_EXPR, type,
5808 fold (build1 (BIT_NOT_EXPR, type,
5809 TREE_OPERAND (arg1, 1))),
5810 arg0));
5811 }
5812 }
5813
5814 /* See if ARG1 is zero and X - ARG1 reduces to X. */
5815 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
5816 return non_lvalue (convert (type, arg0));
5817
5818 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
5819 ARG0 is zero and X + ARG0 reduces to X, since that would mean
5820 (-ARG1 + ARG0) reduces to -ARG1. */
5821 else if (!wins && fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
5822 return negate_expr (convert (type, arg1));
5823
5824 /* Fold &x - &x. This can happen from &x.foo - &x.
5825 This is unsafe for certain floats even in non-IEEE formats.
5826 In IEEE, it is unsafe because it does wrong for NaNs.
5827 Also note that operand_equal_p is always false if an operand
5828 is volatile. */
5829
5830 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
5831 && operand_equal_p (arg0, arg1, 0))
5832 return convert (type, integer_zero_node);
5833
5834 goto associate;
5835
5836 case MULT_EXPR:
5837 /* (-A) * (-B) -> A * B */
5838 if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == NEGATE_EXPR)
5839 return fold (build (MULT_EXPR, type, TREE_OPERAND (arg0, 0),
5840 TREE_OPERAND (arg1, 0)));
5841
5842 if (! FLOAT_TYPE_P (type))
5843 {
5844 if (integer_zerop (arg1))
5845 return omit_one_operand (type, arg1, arg0);
5846 if (integer_onep (arg1))
5847 return non_lvalue (convert (type, arg0));
5848
5849 /* (a * (1 << b)) is (a << b) */
5850 if (TREE_CODE (arg1) == LSHIFT_EXPR
5851 && integer_onep (TREE_OPERAND (arg1, 0)))
5852 return fold (build (LSHIFT_EXPR, type, arg0,
5853 TREE_OPERAND (arg1, 1)));
5854 if (TREE_CODE (arg0) == LSHIFT_EXPR
5855 && integer_onep (TREE_OPERAND (arg0, 0)))
5856 return fold (build (LSHIFT_EXPR, type, arg1,
5857 TREE_OPERAND (arg0, 1)));
5858
5859 if (TREE_CODE (arg1) == INTEGER_CST
5860 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0),
5861 convert (type, arg1),
5862 code, NULL_TREE)))
5863 return convert (type, tem);
5864
5865 }
5866 else
5867 {
5868 /* Maybe fold x * 0 to 0. The expressions aren't the same
5869 when x is NaN, since x * 0 is also NaN. Nor are they the
5870 same in modes with signed zeros, since multiplying a
5871 negative value by 0 gives -0, not +0. */
5872 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
5873 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
5874 && real_zerop (arg1))
5875 return omit_one_operand (type, arg1, arg0);
5876 /* In IEEE floating point, x*1 is not equivalent to x for snans. */
5877 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
5878 && real_onep (arg1))
5879 return non_lvalue (convert (type, arg0));
5880
5881 /* Transform x * -1.0 into -x. */
5882 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
5883 && real_minus_onep (arg1))
5884 return fold (build1 (NEGATE_EXPR, type, arg0));
5885
5886 /* x*2 is x+x */
5887 if (! wins && real_twop (arg1)
5888 && (*lang_hooks.decls.global_bindings_p) () == 0
5889 && ! CONTAINS_PLACEHOLDER_P (arg0))
5890 {
5891 tree arg = save_expr (arg0);
5892 return fold (build (PLUS_EXPR, type, arg, arg));
5893 }
5894
5895 if (flag_unsafe_math_optimizations)
5896 {
5897 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
5898 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
5899
5900 /* Optimizations of sqrt(...)*sqrt(...). */
5901 if ((fcode0 == BUILT_IN_SQRT && fcode1 == BUILT_IN_SQRT)
5902 || (fcode0 == BUILT_IN_SQRTF && fcode1 == BUILT_IN_SQRTF)
5903 || (fcode0 == BUILT_IN_SQRTL && fcode1 == BUILT_IN_SQRTL))
5904 {
5905 tree sqrtfn, arg, arglist;
5906 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
5907 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
5908
5909 /* Optimize sqrt(x)*sqrt(x) as x. */
5910 if (operand_equal_p (arg00, arg10, 0)
5911 && ! HONOR_SNANS (TYPE_MODE (type)))
5912 return arg00;
5913
5914 /* Optimize sqrt(x)*sqrt(y) as sqrt(x*y). */
5915 sqrtfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
5916 arg = fold (build (MULT_EXPR, type, arg00, arg10));
5917 arglist = build_tree_list (NULL_TREE, arg);
5918 return build_function_call_expr (sqrtfn, arglist);
5919 }
5920
5921 /* Optimize exp(x)*exp(y) as exp(x+y). */
5922 if ((fcode0 == BUILT_IN_EXP && fcode1 == BUILT_IN_EXP)
5923 || (fcode0 == BUILT_IN_EXPF && fcode1 == BUILT_IN_EXPF)
5924 || (fcode0 == BUILT_IN_EXPL && fcode1 == BUILT_IN_EXPL))
5925 {
5926 tree expfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
5927 tree arg = build (PLUS_EXPR, type,
5928 TREE_VALUE (TREE_OPERAND (arg0, 1)),
5929 TREE_VALUE (TREE_OPERAND (arg1, 1)));
5930 tree arglist = build_tree_list (NULL_TREE, fold (arg));
5931 return build_function_call_expr (expfn, arglist);
5932 }
5933
5934 /* Optimizations of pow(...)*pow(...). */
5935 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
5936 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
5937 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
5938 {
5939 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
5940 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
5941 1)));
5942 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
5943 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
5944 1)));
5945
5946 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
5947 if (operand_equal_p (arg01, arg11, 0))
5948 {
5949 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
5950 tree arg = build (MULT_EXPR, type, arg00, arg10);
5951 tree arglist = tree_cons (NULL_TREE, fold (arg),
5952 build_tree_list (NULL_TREE,
5953 arg01));
5954 return build_function_call_expr (powfn, arglist);
5955 }
5956
5957 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
5958 if (operand_equal_p (arg00, arg10, 0))
5959 {
5960 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
5961 tree arg = fold (build (PLUS_EXPR, type, arg01, arg11));
5962 tree arglist = tree_cons (NULL_TREE, arg00,
5963 build_tree_list (NULL_TREE,
5964 arg));
5965 return build_function_call_expr (powfn, arglist);
5966 }
5967 }
5968 }
5969 }
5970 goto associate;
5971
5972 case BIT_IOR_EXPR:
5973 bit_ior:
5974 if (integer_all_onesp (arg1))
5975 return omit_one_operand (type, arg1, arg0);
5976 if (integer_zerop (arg1))
5977 return non_lvalue (convert (type, arg0));
5978 t1 = distribute_bit_expr (code, type, arg0, arg1);
5979 if (t1 != NULL_TREE)
5980 return t1;
5981
5982 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
5983
5984 This results in more efficient code for machines without a NAND
5985 instruction. Combine will canonicalize to the first form
5986 which will allow use of NAND instructions provided by the
5987 backend if they exist. */
5988 if (TREE_CODE (arg0) == BIT_NOT_EXPR
5989 && TREE_CODE (arg1) == BIT_NOT_EXPR)
5990 {
5991 return fold (build1 (BIT_NOT_EXPR, type,
5992 build (BIT_AND_EXPR, type,
5993 TREE_OPERAND (arg0, 0),
5994 TREE_OPERAND (arg1, 0))));
5995 }
5996
5997 /* See if this can be simplified into a rotate first. If that
5998 is unsuccessful continue in the association code. */
5999 goto bit_rotate;
6000
6001 case BIT_XOR_EXPR:
6002 if (integer_zerop (arg1))
6003 return non_lvalue (convert (type, arg0));
6004 if (integer_all_onesp (arg1))
6005 return fold (build1 (BIT_NOT_EXPR, type, arg0));
6006
6007 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
6008 with a constant, and the two constants have no bits in common,
6009 we should treat this as a BIT_IOR_EXPR since this may produce more
6010 simplifications. */
6011 if (TREE_CODE (arg0) == BIT_AND_EXPR
6012 && TREE_CODE (arg1) == BIT_AND_EXPR
6013 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6014 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
6015 && integer_zerop (const_binop (BIT_AND_EXPR,
6016 TREE_OPERAND (arg0, 1),
6017 TREE_OPERAND (arg1, 1), 0)))
6018 {
6019 code = BIT_IOR_EXPR;
6020 goto bit_ior;
6021 }
6022
6023 /* See if this can be simplified into a rotate first. If that
6024 is unsuccessful continue in the association code. */
6025 goto bit_rotate;
6026
6027 case BIT_AND_EXPR:
6028 bit_and:
6029 if (integer_all_onesp (arg1))
6030 return non_lvalue (convert (type, arg0));
6031 if (integer_zerop (arg1))
6032 return omit_one_operand (type, arg1, arg0);
6033 t1 = distribute_bit_expr (code, type, arg0, arg1);
6034 if (t1 != NULL_TREE)
6035 return t1;
6036 /* Simplify ((int)c & 0x377) into (int)c, if c is unsigned char. */
6037 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
6038 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
6039 {
6040 unsigned int prec
6041 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
6042
6043 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
6044 && (~TREE_INT_CST_LOW (arg1)
6045 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
6046 return build1 (NOP_EXPR, type, TREE_OPERAND (arg0, 0));
6047 }
6048
6049 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
6050
6051 This results in more efficient code for machines without a NOR
6052 instruction. Combine will canonicalize to the first form
6053 which will allow use of NOR instructions provided by the
6054 backend if they exist. */
6055 if (TREE_CODE (arg0) == BIT_NOT_EXPR
6056 && TREE_CODE (arg1) == BIT_NOT_EXPR)
6057 {
6058 return fold (build1 (BIT_NOT_EXPR, type,
6059 build (BIT_IOR_EXPR, type,
6060 TREE_OPERAND (arg0, 0),
6061 TREE_OPERAND (arg1, 0))));
6062 }
6063
6064 goto associate;
6065
6066 case BIT_ANDTC_EXPR:
6067 if (integer_all_onesp (arg0))
6068 return non_lvalue (convert (type, arg1));
6069 if (integer_zerop (arg0))
6070 return omit_one_operand (type, arg0, arg1);
6071 if (TREE_CODE (arg1) == INTEGER_CST)
6072 {
6073 arg1 = fold (build1 (BIT_NOT_EXPR, type, arg1));
6074 code = BIT_AND_EXPR;
6075 goto bit_and;
6076 }
6077 goto binary;
6078
6079 case RDIV_EXPR:
6080 /* Don't touch a floating-point divide by zero unless the mode
6081 of the constant can represent infinity. */
6082 if (TREE_CODE (arg1) == REAL_CST
6083 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
6084 && real_zerop (arg1))
6085 return t;
6086
6087 /* (-A) / (-B) -> A / B */
6088 if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == NEGATE_EXPR)
6089 return fold (build (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
6090 TREE_OPERAND (arg1, 0)));
6091
6092 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
6093 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
6094 && real_onep (arg1))
6095 return non_lvalue (convert (type, arg0));
6096
6097 /* If ARG1 is a constant, we can convert this to a multiply by the
6098 reciprocal. This does not have the same rounding properties,
6099 so only do this if -funsafe-math-optimizations. We can actually
6100 always safely do it if ARG1 is a power of two, but it's hard to
6101 tell if it is or not in a portable manner. */
6102 if (TREE_CODE (arg1) == REAL_CST)
6103 {
6104 if (flag_unsafe_math_optimizations
6105 && 0 != (tem = const_binop (code, build_real (type, dconst1),
6106 arg1, 0)))
6107 return fold (build (MULT_EXPR, type, arg0, tem));
6108 /* Find the reciprocal if optimizing and the result is exact. */
6109 else if (optimize)
6110 {
6111 REAL_VALUE_TYPE r;
6112 r = TREE_REAL_CST (arg1);
6113 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
6114 {
6115 tem = build_real (type, r);
6116 return fold (build (MULT_EXPR, type, arg0, tem));
6117 }
6118 }
6119 }
6120 /* Convert A/B/C to A/(B*C). */
6121 if (flag_unsafe_math_optimizations
6122 && TREE_CODE (arg0) == RDIV_EXPR)
6123 {
6124 return fold (build (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
6125 build (MULT_EXPR, type, TREE_OPERAND (arg0, 1),
6126 arg1)));
6127 }
6128 /* Convert A/(B/C) to (A/B)*C. */
6129 if (flag_unsafe_math_optimizations
6130 && TREE_CODE (arg1) == RDIV_EXPR)
6131 {
6132 return fold (build (MULT_EXPR, type,
6133 build (RDIV_EXPR, type, arg0,
6134 TREE_OPERAND (arg1, 0)),
6135 TREE_OPERAND (arg1, 1)));
6136 }
6137
6138 if (flag_unsafe_math_optimizations)
6139 {
6140 enum built_in_function fcode = builtin_mathfn_code (arg1);
6141 /* Optimize x/exp(y) into x*exp(-y). */
6142 if (fcode == BUILT_IN_EXP
6143 || fcode == BUILT_IN_EXPF
6144 || fcode == BUILT_IN_EXPL)
6145 {
6146 tree expfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
6147 tree arg = build1 (NEGATE_EXPR, type,
6148 TREE_VALUE (TREE_OPERAND (arg1, 1)));
6149 tree arglist = build_tree_list (NULL_TREE, fold (arg));
6150 arg1 = build_function_call_expr (expfn, arglist);
6151 return fold (build (MULT_EXPR, type, arg0, arg1));
6152 }
6153
6154 /* Optimize x/pow(y,z) into x*pow(y,-z). */
6155 if (fcode == BUILT_IN_POW
6156 || fcode == BUILT_IN_POWF
6157 || fcode == BUILT_IN_POWL)
6158 {
6159 tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
6160 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
6161 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1, 1)));
6162 tree neg11 = fold (build1 (NEGATE_EXPR, type, arg11));
6163 tree arglist = tree_cons(NULL_TREE, arg10,
6164 build_tree_list (NULL_TREE, neg11));
6165 arg1 = build_function_call_expr (powfn, arglist);
6166 return fold (build (MULT_EXPR, type, arg0, arg1));
6167 }
6168 }
6169 goto binary;
6170
6171 case TRUNC_DIV_EXPR:
6172 case ROUND_DIV_EXPR:
6173 case FLOOR_DIV_EXPR:
6174 case CEIL_DIV_EXPR:
6175 case EXACT_DIV_EXPR:
6176 if (integer_onep (arg1))
6177 return non_lvalue (convert (type, arg0));
6178 if (integer_zerop (arg1))
6179 return t;
6180
6181 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
6182 operation, EXACT_DIV_EXPR.
6183
6184 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
6185 At one time others generated faster code, it's not clear if they do
6186 after the last round to changes to the DIV code in expmed.c. */
6187 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
6188 && multiple_of_p (type, arg0, arg1))
6189 return fold (build (EXACT_DIV_EXPR, type, arg0, arg1));
6190
6191 if (TREE_CODE (arg1) == INTEGER_CST
6192 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
6193 code, NULL_TREE)))
6194 return convert (type, tem);
6195
6196 goto binary;
6197
6198 case CEIL_MOD_EXPR:
6199 case FLOOR_MOD_EXPR:
6200 case ROUND_MOD_EXPR:
6201 case TRUNC_MOD_EXPR:
6202 if (integer_onep (arg1))
6203 return omit_one_operand (type, integer_zero_node, arg0);
6204 if (integer_zerop (arg1))
6205 return t;
6206
6207 if (TREE_CODE (arg1) == INTEGER_CST
6208 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
6209 code, NULL_TREE)))
6210 return convert (type, tem);
6211
6212 goto binary;
6213
6214 case LROTATE_EXPR:
6215 case RROTATE_EXPR:
6216 if (integer_all_onesp (arg0))
6217 return omit_one_operand (type, arg0, arg1);
6218 goto shift;
6219
6220 case RSHIFT_EXPR:
6221 /* Optimize -1 >> x for arithmetic right shifts. */
6222 if (integer_all_onesp (arg0) && ! TREE_UNSIGNED (type))
6223 return omit_one_operand (type, arg0, arg1);
6224 /* ... fall through ... */
6225
6226 case LSHIFT_EXPR:
6227 shift:
6228 if (integer_zerop (arg1))
6229 return non_lvalue (convert (type, arg0));
6230 if (integer_zerop (arg0))
6231 return omit_one_operand (type, arg0, arg1);
6232
6233 /* Since negative shift count is not well-defined,
6234 don't try to compute it in the compiler. */
6235 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
6236 return t;
6237 /* Rewrite an LROTATE_EXPR by a constant into an
6238 RROTATE_EXPR by a new constant. */
6239 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
6240 {
6241 TREE_SET_CODE (t, RROTATE_EXPR);
6242 code = RROTATE_EXPR;
6243 TREE_OPERAND (t, 1) = arg1
6244 = const_binop
6245 (MINUS_EXPR,
6246 convert (TREE_TYPE (arg1),
6247 build_int_2 (GET_MODE_BITSIZE (TYPE_MODE (type)), 0)),
6248 arg1, 0);
6249 if (tree_int_cst_sgn (arg1) < 0)
6250 return t;
6251 }
6252
6253 /* If we have a rotate of a bit operation with the rotate count and
6254 the second operand of the bit operation both constant,
6255 permute the two operations. */
6256 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
6257 && (TREE_CODE (arg0) == BIT_AND_EXPR
6258 || TREE_CODE (arg0) == BIT_ANDTC_EXPR
6259 || TREE_CODE (arg0) == BIT_IOR_EXPR
6260 || TREE_CODE (arg0) == BIT_XOR_EXPR)
6261 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
6262 return fold (build (TREE_CODE (arg0), type,
6263 fold (build (code, type,
6264 TREE_OPERAND (arg0, 0), arg1)),
6265 fold (build (code, type,
6266 TREE_OPERAND (arg0, 1), arg1))));
6267
6268 /* Two consecutive rotates adding up to the width of the mode can
6269 be ignored. */
6270 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
6271 && TREE_CODE (arg0) == RROTATE_EXPR
6272 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6273 && TREE_INT_CST_HIGH (arg1) == 0
6274 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
6275 && ((TREE_INT_CST_LOW (arg1)
6276 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
6277 == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
6278 return TREE_OPERAND (arg0, 0);
6279
6280 goto binary;
6281
6282 case MIN_EXPR:
6283 if (operand_equal_p (arg0, arg1, 0))
6284 return omit_one_operand (type, arg0, arg1);
6285 if (INTEGRAL_TYPE_P (type)
6286 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), 1))
6287 return omit_one_operand (type, arg1, arg0);
6288 goto associate;
6289
6290 case MAX_EXPR:
6291 if (operand_equal_p (arg0, arg1, 0))
6292 return omit_one_operand (type, arg0, arg1);
6293 if (INTEGRAL_TYPE_P (type)
6294 && TYPE_MAX_VALUE (type)
6295 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), 1))
6296 return omit_one_operand (type, arg1, arg0);
6297 goto associate;
6298
6299 case TRUTH_NOT_EXPR:
6300 /* Note that the operand of this must be an int
6301 and its values must be 0 or 1.
6302 ("true" is a fixed value perhaps depending on the language,
6303 but we don't handle values other than 1 correctly yet.) */
6304 tem = invert_truthvalue (arg0);
6305 /* Avoid infinite recursion. */
6306 if (TREE_CODE (tem) == TRUTH_NOT_EXPR)
6307 return t;
6308 return convert (type, tem);
6309
6310 case TRUTH_ANDIF_EXPR:
6311 /* Note that the operands of this must be ints
6312 and their values must be 0 or 1.
6313 ("true" is a fixed value perhaps depending on the language.) */
6314 /* If first arg is constant zero, return it. */
6315 if (integer_zerop (arg0))
6316 return convert (type, arg0);
6317 case TRUTH_AND_EXPR:
6318 /* If either arg is constant true, drop it. */
6319 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
6320 return non_lvalue (convert (type, arg1));
6321 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
6322 /* Preserve sequence points. */
6323 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
6324 return non_lvalue (convert (type, arg0));
6325 /* If second arg is constant zero, result is zero, but first arg
6326 must be evaluated. */
6327 if (integer_zerop (arg1))
6328 return omit_one_operand (type, arg1, arg0);
6329 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
6330 case will be handled here. */
6331 if (integer_zerop (arg0))
6332 return omit_one_operand (type, arg0, arg1);
6333
6334 truth_andor:
6335 /* We only do these simplifications if we are optimizing. */
6336 if (!optimize)
6337 return t;
6338
6339 /* Check for things like (A || B) && (A || C). We can convert this
6340 to A || (B && C). Note that either operator can be any of the four
6341 truth and/or operations and the transformation will still be
6342 valid. Also note that we only care about order for the
6343 ANDIF and ORIF operators. If B contains side effects, this
6344 might change the truth-value of A. */
6345 if (TREE_CODE (arg0) == TREE_CODE (arg1)
6346 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
6347 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
6348 || TREE_CODE (arg0) == TRUTH_AND_EXPR
6349 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
6350 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
6351 {
6352 tree a00 = TREE_OPERAND (arg0, 0);
6353 tree a01 = TREE_OPERAND (arg0, 1);
6354 tree a10 = TREE_OPERAND (arg1, 0);
6355 tree a11 = TREE_OPERAND (arg1, 1);
6356 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
6357 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
6358 && (code == TRUTH_AND_EXPR
6359 || code == TRUTH_OR_EXPR));
6360
6361 if (operand_equal_p (a00, a10, 0))
6362 return fold (build (TREE_CODE (arg0), type, a00,
6363 fold (build (code, type, a01, a11))));
6364 else if (commutative && operand_equal_p (a00, a11, 0))
6365 return fold (build (TREE_CODE (arg0), type, a00,
6366 fold (build (code, type, a01, a10))));
6367 else if (commutative && operand_equal_p (a01, a10, 0))
6368 return fold (build (TREE_CODE (arg0), type, a01,
6369 fold (build (code, type, a00, a11))));
6370
6371 /* This case if tricky because we must either have commutative
6372 operators or else A10 must not have side-effects. */
6373
6374 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
6375 && operand_equal_p (a01, a11, 0))
6376 return fold (build (TREE_CODE (arg0), type,
6377 fold (build (code, type, a00, a10)),
6378 a01));
6379 }
6380
6381 /* See if we can build a range comparison. */
6382 if (0 != (tem = fold_range_test (t)))
6383 return tem;
6384
6385 /* Check for the possibility of merging component references. If our
6386 lhs is another similar operation, try to merge its rhs with our
6387 rhs. Then try to merge our lhs and rhs. */
6388 if (TREE_CODE (arg0) == code
6389 && 0 != (tem = fold_truthop (code, type,
6390 TREE_OPERAND (arg0, 1), arg1)))
6391 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6392
6393 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
6394 return tem;
6395
6396 return t;
6397
6398 case TRUTH_ORIF_EXPR:
6399 /* Note that the operands of this must be ints
6400 and their values must be 0 or true.
6401 ("true" is a fixed value perhaps depending on the language.) */
6402 /* If first arg is constant true, return it. */
6403 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
6404 return convert (type, arg0);
6405 case TRUTH_OR_EXPR:
6406 /* If either arg is constant zero, drop it. */
6407 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
6408 return non_lvalue (convert (type, arg1));
6409 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
6410 /* Preserve sequence points. */
6411 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
6412 return non_lvalue (convert (type, arg0));
6413 /* If second arg is constant true, result is true, but we must
6414 evaluate first arg. */
6415 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
6416 return omit_one_operand (type, arg1, arg0);
6417 /* Likewise for first arg, but note this only occurs here for
6418 TRUTH_OR_EXPR. */
6419 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
6420 return omit_one_operand (type, arg0, arg1);
6421 goto truth_andor;
6422
6423 case TRUTH_XOR_EXPR:
6424 /* If either arg is constant zero, drop it. */
6425 if (integer_zerop (arg0))
6426 return non_lvalue (convert (type, arg1));
6427 if (integer_zerop (arg1))
6428 return non_lvalue (convert (type, arg0));
6429 /* If either arg is constant true, this is a logical inversion. */
6430 if (integer_onep (arg0))
6431 return non_lvalue (convert (type, invert_truthvalue (arg1)));
6432 if (integer_onep (arg1))
6433 return non_lvalue (convert (type, invert_truthvalue (arg0)));
6434 return t;
6435
6436 case EQ_EXPR:
6437 case NE_EXPR:
6438 case LT_EXPR:
6439 case GT_EXPR:
6440 case LE_EXPR:
6441 case GE_EXPR:
6442 /* If one arg is a real or integer constant, put it last. */
6443 if ((TREE_CODE (arg0) == INTEGER_CST
6444 && TREE_CODE (arg1) != INTEGER_CST)
6445 || (TREE_CODE (arg0) == REAL_CST
6446 && TREE_CODE (arg0) != REAL_CST))
6447 {
6448 TREE_OPERAND (t, 0) = arg1;
6449 TREE_OPERAND (t, 1) = arg0;
6450 arg0 = TREE_OPERAND (t, 0);
6451 arg1 = TREE_OPERAND (t, 1);
6452 code = swap_tree_comparison (code);
6453 TREE_SET_CODE (t, code);
6454 }
6455
6456 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
6457 {
6458 tree targ0 = strip_float_extensions (arg0);
6459 tree targ1 = strip_float_extensions (arg1);
6460 tree newtype = TREE_TYPE (targ0);
6461
6462 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
6463 newtype = TREE_TYPE (targ1);
6464
6465 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
6466 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
6467 return fold (build (code, type, convert (newtype, targ0),
6468 convert (newtype, targ1)));
6469
6470 /* (-a) CMP (-b) -> b CMP a */
6471 if (TREE_CODE (arg0) == NEGATE_EXPR
6472 && TREE_CODE (arg1) == NEGATE_EXPR)
6473 return fold (build (code, type, TREE_OPERAND (arg1, 0),
6474 TREE_OPERAND (arg0, 0)));
6475
6476 if (TREE_CODE (arg1) == REAL_CST)
6477 {
6478 REAL_VALUE_TYPE cst;
6479 cst = TREE_REAL_CST (arg1);
6480
6481 /* (-a) CMP CST -> a swap(CMP) (-CST) */
6482 if (TREE_CODE (arg0) == NEGATE_EXPR)
6483 return
6484 fold (build (swap_tree_comparison (code), type,
6485 TREE_OPERAND (arg0, 0),
6486 build_real (TREE_TYPE (arg1),
6487 REAL_VALUE_NEGATE (cst))));
6488
6489 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
6490 /* a CMP (-0) -> a CMP 0 */
6491 if (REAL_VALUE_MINUS_ZERO (cst))
6492 return fold (build (code, type, arg0,
6493 build_real (TREE_TYPE (arg1), dconst0)));
6494
6495 /* x != NaN is always true, other ops are always false. */
6496 if (REAL_VALUE_ISNAN (cst)
6497 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
6498 {
6499 t = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
6500 return omit_one_operand (type, convert (type, t), arg0);
6501 }
6502
6503 /* Fold comparisons against infinity. */
6504 if (REAL_VALUE_ISINF (cst))
6505 {
6506 tem = fold_inf_compare (code, type, arg0, arg1);
6507 if (tem != NULL_TREE)
6508 return tem;
6509 }
6510 }
6511
6512 /* If this is a comparison of a real constant with a PLUS_EXPR
6513 or a MINUS_EXPR of a real constant, we can convert it into a
6514 comparison with a revised real constant as long as no overflow
6515 occurs when unsafe_math_optimizations are enabled. */
6516 if (flag_unsafe_math_optimizations
6517 && TREE_CODE (arg1) == REAL_CST
6518 && (TREE_CODE (arg0) == PLUS_EXPR
6519 || TREE_CODE (arg0) == MINUS_EXPR)
6520 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
6521 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
6522 ? MINUS_EXPR : PLUS_EXPR,
6523 arg1, TREE_OPERAND (arg0, 1), 0))
6524 && ! TREE_CONSTANT_OVERFLOW (tem))
6525 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6526
6527 /* Likewise, we can simplify a comparison of a real constant with
6528 a MINUS_EXPR whose first operand is also a real constant, i.e.
6529 (c1 - x) < c2 becomes x > c1-c2. */
6530 if (flag_unsafe_math_optimizations
6531 && TREE_CODE (arg1) == REAL_CST
6532 && TREE_CODE (arg0) == MINUS_EXPR
6533 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
6534 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
6535 arg1, 0))
6536 && ! TREE_CONSTANT_OVERFLOW (tem))
6537 return fold (build (swap_tree_comparison (code), type,
6538 TREE_OPERAND (arg0, 1), tem));
6539
6540 /* Fold comparisons against built-in math functions. */
6541 if (TREE_CODE (arg1) == REAL_CST
6542 && flag_unsafe_math_optimizations
6543 && ! flag_errno_math)
6544 {
6545 enum built_in_function fcode = builtin_mathfn_code (arg0);
6546
6547 if (fcode != END_BUILTINS)
6548 {
6549 tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
6550 if (tem != NULL_TREE)
6551 return tem;
6552 }
6553 }
6554 }
6555
6556 /* Convert foo++ == CONST into ++foo == CONST + INCR.
6557 First, see if one arg is constant; find the constant arg
6558 and the other one. */
6559 {
6560 tree constop = 0, varop = NULL_TREE;
6561 int constopnum = -1;
6562
6563 if (TREE_CONSTANT (arg1))
6564 constopnum = 1, constop = arg1, varop = arg0;
6565 if (TREE_CONSTANT (arg0))
6566 constopnum = 0, constop = arg0, varop = arg1;
6567
6568 if (constop && TREE_CODE (varop) == POSTINCREMENT_EXPR)
6569 {
6570 /* This optimization is invalid for ordered comparisons
6571 if CONST+INCR overflows or if foo+incr might overflow.
6572 This optimization is invalid for floating point due to rounding.
6573 For pointer types we assume overflow doesn't happen. */
6574 if (POINTER_TYPE_P (TREE_TYPE (varop))
6575 || (! FLOAT_TYPE_P (TREE_TYPE (varop))
6576 && (code == EQ_EXPR || code == NE_EXPR)))
6577 {
6578 tree newconst
6579 = fold (build (PLUS_EXPR, TREE_TYPE (varop),
6580 constop, TREE_OPERAND (varop, 1)));
6581
6582 /* Do not overwrite the current varop to be a preincrement,
6583 create a new node so that we won't confuse our caller who
6584 might create trees and throw them away, reusing the
6585 arguments that they passed to build. This shows up in
6586 the THEN or ELSE parts of ?: being postincrements. */
6587 varop = build (PREINCREMENT_EXPR, TREE_TYPE (varop),
6588 TREE_OPERAND (varop, 0),
6589 TREE_OPERAND (varop, 1));
6590
6591 /* If VAROP is a reference to a bitfield, we must mask
6592 the constant by the width of the field. */
6593 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
6594 && DECL_BIT_FIELD(TREE_OPERAND
6595 (TREE_OPERAND (varop, 0), 1)))
6596 {
6597 int size
6598 = TREE_INT_CST_LOW (DECL_SIZE
6599 (TREE_OPERAND
6600 (TREE_OPERAND (varop, 0), 1)));
6601 tree mask, unsigned_type;
6602 unsigned int precision;
6603 tree folded_compare;
6604
6605 /* First check whether the comparison would come out
6606 always the same. If we don't do that we would
6607 change the meaning with the masking. */
6608 if (constopnum == 0)
6609 folded_compare = fold (build (code, type, constop,
6610 TREE_OPERAND (varop, 0)));
6611 else
6612 folded_compare = fold (build (code, type,
6613 TREE_OPERAND (varop, 0),
6614 constop));
6615 if (integer_zerop (folded_compare)
6616 || integer_onep (folded_compare))
6617 return omit_one_operand (type, folded_compare, varop);
6618
6619 unsigned_type = (*lang_hooks.types.type_for_size)(size, 1);
6620 precision = TYPE_PRECISION (unsigned_type);
6621 mask = build_int_2 (~0, ~0);
6622 TREE_TYPE (mask) = unsigned_type;
6623 force_fit_type (mask, 0);
6624 mask = const_binop (RSHIFT_EXPR, mask,
6625 size_int (precision - size), 0);
6626 newconst = fold (build (BIT_AND_EXPR,
6627 TREE_TYPE (varop), newconst,
6628 convert (TREE_TYPE (varop),
6629 mask)));
6630 }
6631
6632 t = build (code, type,
6633 (constopnum == 0) ? newconst : varop,
6634 (constopnum == 1) ? newconst : varop);
6635 return t;
6636 }
6637 }
6638 else if (constop && TREE_CODE (varop) == POSTDECREMENT_EXPR)
6639 {
6640 if (POINTER_TYPE_P (TREE_TYPE (varop))
6641 || (! FLOAT_TYPE_P (TREE_TYPE (varop))
6642 && (code == EQ_EXPR || code == NE_EXPR)))
6643 {
6644 tree newconst
6645 = fold (build (MINUS_EXPR, TREE_TYPE (varop),
6646 constop, TREE_OPERAND (varop, 1)));
6647
6648 /* Do not overwrite the current varop to be a predecrement,
6649 create a new node so that we won't confuse our caller who
6650 might create trees and throw them away, reusing the
6651 arguments that they passed to build. This shows up in
6652 the THEN or ELSE parts of ?: being postdecrements. */
6653 varop = build (PREDECREMENT_EXPR, TREE_TYPE (varop),
6654 TREE_OPERAND (varop, 0),
6655 TREE_OPERAND (varop, 1));
6656
6657 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
6658 && DECL_BIT_FIELD(TREE_OPERAND
6659 (TREE_OPERAND (varop, 0), 1)))
6660 {
6661 int size
6662 = TREE_INT_CST_LOW (DECL_SIZE
6663 (TREE_OPERAND
6664 (TREE_OPERAND (varop, 0), 1)));
6665 tree mask, unsigned_type;
6666 unsigned int precision;
6667 tree folded_compare;
6668
6669 if (constopnum == 0)
6670 folded_compare = fold (build (code, type, constop,
6671 TREE_OPERAND (varop, 0)));
6672 else
6673 folded_compare = fold (build (code, type,
6674 TREE_OPERAND (varop, 0),
6675 constop));
6676 if (integer_zerop (folded_compare)
6677 || integer_onep (folded_compare))
6678 return omit_one_operand (type, folded_compare, varop);
6679
6680 unsigned_type = (*lang_hooks.types.type_for_size)(size, 1);
6681 precision = TYPE_PRECISION (unsigned_type);
6682 mask = build_int_2 (~0, ~0);
6683 TREE_TYPE (mask) = TREE_TYPE (varop);
6684 force_fit_type (mask, 0);
6685 mask = const_binop (RSHIFT_EXPR, mask,
6686 size_int (precision - size), 0);
6687 newconst = fold (build (BIT_AND_EXPR,
6688 TREE_TYPE (varop), newconst,
6689 convert (TREE_TYPE (varop),
6690 mask)));
6691 }
6692
6693 t = build (code, type,
6694 (constopnum == 0) ? newconst : varop,
6695 (constopnum == 1) ? newconst : varop);
6696 return t;
6697 }
6698 }
6699 }
6700
6701 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
6702 This transformation affects the cases which are handled in later
6703 optimizations involving comparisons with non-negative constants. */
6704 if (TREE_CODE (arg1) == INTEGER_CST
6705 && TREE_CODE (arg0) != INTEGER_CST
6706 && tree_int_cst_sgn (arg1) > 0)
6707 {
6708 switch (code)
6709 {
6710 case GE_EXPR:
6711 code = GT_EXPR;
6712 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6713 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6714 break;
6715
6716 case LT_EXPR:
6717 code = LE_EXPR;
6718 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6719 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6720 break;
6721
6722 default:
6723 break;
6724 }
6725 }
6726
6727 /* Comparisons with the highest or lowest possible integer of
6728 the specified size will have known values. */
6729 {
6730 int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1)));
6731
6732 if (TREE_CODE (arg1) == INTEGER_CST
6733 && ! TREE_CONSTANT_OVERFLOW (arg1)
6734 && width <= HOST_BITS_PER_WIDE_INT
6735 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
6736 || POINTER_TYPE_P (TREE_TYPE (arg1))))
6737 {
6738 unsigned HOST_WIDE_INT signed_max;
6739 unsigned HOST_WIDE_INT max, min;
6740
6741 signed_max = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
6742
6743 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
6744 {
6745 max = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
6746 min = 0;
6747 }
6748 else
6749 {
6750 max = signed_max;
6751 min = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
6752 }
6753
6754 if (TREE_INT_CST_HIGH (arg1) == 0
6755 && TREE_INT_CST_LOW (arg1) == max)
6756 switch (code)
6757 {
6758 case GT_EXPR:
6759 return omit_one_operand (type,
6760 convert (type, integer_zero_node),
6761 arg0);
6762 case GE_EXPR:
6763 code = EQ_EXPR;
6764 TREE_SET_CODE (t, EQ_EXPR);
6765 break;
6766 case LE_EXPR:
6767 return omit_one_operand (type,
6768 convert (type, integer_one_node),
6769 arg0);
6770 case LT_EXPR:
6771 code = NE_EXPR;
6772 TREE_SET_CODE (t, NE_EXPR);
6773 break;
6774
6775 /* The GE_EXPR and LT_EXPR cases above are not normally
6776 reached because of previous transformations. */
6777
6778 default:
6779 break;
6780 }
6781 else if (TREE_INT_CST_HIGH (arg1) == 0
6782 && TREE_INT_CST_LOW (arg1) == max - 1)
6783 switch (code)
6784 {
6785 case GT_EXPR:
6786 code = EQ_EXPR;
6787 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
6788 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6789 break;
6790 case LE_EXPR:
6791 code = NE_EXPR;
6792 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
6793 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6794 break;
6795 default:
6796 break;
6797 }
6798 else if (TREE_INT_CST_HIGH (arg1) == (min ? -1 : 0)
6799 && TREE_INT_CST_LOW (arg1) == min)
6800 switch (code)
6801 {
6802 case LT_EXPR:
6803 return omit_one_operand (type,
6804 convert (type, integer_zero_node),
6805 arg0);
6806 case LE_EXPR:
6807 code = EQ_EXPR;
6808 TREE_SET_CODE (t, EQ_EXPR);
6809 break;
6810
6811 case GE_EXPR:
6812 return omit_one_operand (type,
6813 convert (type, integer_one_node),
6814 arg0);
6815 case GT_EXPR:
6816 code = NE_EXPR;
6817 TREE_SET_CODE (t, NE_EXPR);
6818 break;
6819
6820 default:
6821 break;
6822 }
6823 else if (TREE_INT_CST_HIGH (arg1) == (min ? -1 : 0)
6824 && TREE_INT_CST_LOW (arg1) == min + 1)
6825 switch (code)
6826 {
6827 case GE_EXPR:
6828 code = NE_EXPR;
6829 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6830 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6831 break;
6832 case LT_EXPR:
6833 code = EQ_EXPR;
6834 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6835 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6836 break;
6837 default:
6838 break;
6839 }
6840
6841 else if (TREE_INT_CST_HIGH (arg1) == 0
6842 && TREE_INT_CST_LOW (arg1) == signed_max
6843 && TREE_UNSIGNED (TREE_TYPE (arg1))
6844 /* signed_type does not work on pointer types. */
6845 && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
6846 {
6847 /* The following case also applies to X < signed_max+1
6848 and X >= signed_max+1 because previous transformations. */
6849 if (code == LE_EXPR || code == GT_EXPR)
6850 {
6851 tree st0, st1;
6852 st0 = (*lang_hooks.types.signed_type) (TREE_TYPE (arg0));
6853 st1 = (*lang_hooks.types.signed_type) (TREE_TYPE (arg1));
6854 return fold
6855 (build (code == LE_EXPR ? GE_EXPR: LT_EXPR,
6856 type, convert (st0, arg0),
6857 convert (st1, integer_zero_node)));
6858 }
6859 }
6860 }
6861 }
6862
6863 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
6864 a MINUS_EXPR of a constant, we can convert it into a comparison with
6865 a revised constant as long as no overflow occurs. */
6866 if ((code == EQ_EXPR || code == NE_EXPR)
6867 && TREE_CODE (arg1) == INTEGER_CST
6868 && (TREE_CODE (arg0) == PLUS_EXPR
6869 || TREE_CODE (arg0) == MINUS_EXPR)
6870 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6871 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
6872 ? MINUS_EXPR : PLUS_EXPR,
6873 arg1, TREE_OPERAND (arg0, 1), 0))
6874 && ! TREE_CONSTANT_OVERFLOW (tem))
6875 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6876
6877 /* Similarly for a NEGATE_EXPR. */
6878 else if ((code == EQ_EXPR || code == NE_EXPR)
6879 && TREE_CODE (arg0) == NEGATE_EXPR
6880 && TREE_CODE (arg1) == INTEGER_CST
6881 && 0 != (tem = negate_expr (arg1))
6882 && TREE_CODE (tem) == INTEGER_CST
6883 && ! TREE_CONSTANT_OVERFLOW (tem))
6884 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6885
6886 /* If we have X - Y == 0, we can convert that to X == Y and similarly
6887 for !=. Don't do this for ordered comparisons due to overflow. */
6888 else if ((code == NE_EXPR || code == EQ_EXPR)
6889 && integer_zerop (arg1) && TREE_CODE (arg0) == MINUS_EXPR)
6890 return fold (build (code, type,
6891 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1)));
6892
6893 /* If we are widening one operand of an integer comparison,
6894 see if the other operand is similarly being widened. Perhaps we
6895 can do the comparison in the narrower type. */
6896 else if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
6897 && TREE_CODE (arg0) == NOP_EXPR
6898 && (tem = get_unwidened (arg0, NULL_TREE)) != arg0
6899 && (t1 = get_unwidened (arg1, TREE_TYPE (tem))) != 0
6900 && (TREE_TYPE (t1) == TREE_TYPE (tem)
6901 || (TREE_CODE (t1) == INTEGER_CST
6902 && int_fits_type_p (t1, TREE_TYPE (tem)))))
6903 return fold (build (code, type, tem, convert (TREE_TYPE (tem), t1)));
6904
6905 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
6906 constant, we can simplify it. */
6907 else if (TREE_CODE (arg1) == INTEGER_CST
6908 && (TREE_CODE (arg0) == MIN_EXPR
6909 || TREE_CODE (arg0) == MAX_EXPR)
6910 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
6911 return optimize_minmax_comparison (t);
6912
6913 /* If we are comparing an ABS_EXPR with a constant, we can
6914 convert all the cases into explicit comparisons, but they may
6915 well not be faster than doing the ABS and one comparison.
6916 But ABS (X) <= C is a range comparison, which becomes a subtraction
6917 and a comparison, and is probably faster. */
6918 else if (code == LE_EXPR && TREE_CODE (arg1) == INTEGER_CST
6919 && TREE_CODE (arg0) == ABS_EXPR
6920 && ! TREE_SIDE_EFFECTS (arg0)
6921 && (0 != (tem = negate_expr (arg1)))
6922 && TREE_CODE (tem) == INTEGER_CST
6923 && ! TREE_CONSTANT_OVERFLOW (tem))
6924 return fold (build (TRUTH_ANDIF_EXPR, type,
6925 build (GE_EXPR, type, TREE_OPERAND (arg0, 0), tem),
6926 build (LE_EXPR, type,
6927 TREE_OPERAND (arg0, 0), arg1)));
6928
6929 /* If this is an EQ or NE comparison with zero and ARG0 is
6930 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
6931 two operations, but the latter can be done in one less insn
6932 on machines that have only two-operand insns or on which a
6933 constant cannot be the first operand. */
6934 if (integer_zerop (arg1) && (code == EQ_EXPR || code == NE_EXPR)
6935 && TREE_CODE (arg0) == BIT_AND_EXPR)
6936 {
6937 if (TREE_CODE (TREE_OPERAND (arg0, 0)) == LSHIFT_EXPR
6938 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 0), 0)))
6939 return
6940 fold (build (code, type,
6941 build (BIT_AND_EXPR, TREE_TYPE (arg0),
6942 build (RSHIFT_EXPR,
6943 TREE_TYPE (TREE_OPERAND (arg0, 0)),
6944 TREE_OPERAND (arg0, 1),
6945 TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)),
6946 convert (TREE_TYPE (arg0),
6947 integer_one_node)),
6948 arg1));
6949 else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
6950 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
6951 return
6952 fold (build (code, type,
6953 build (BIT_AND_EXPR, TREE_TYPE (arg0),
6954 build (RSHIFT_EXPR,
6955 TREE_TYPE (TREE_OPERAND (arg0, 1)),
6956 TREE_OPERAND (arg0, 0),
6957 TREE_OPERAND (TREE_OPERAND (arg0, 1), 1)),
6958 convert (TREE_TYPE (arg0),
6959 integer_one_node)),
6960 arg1));
6961 }
6962
6963 /* If this is an NE or EQ comparison of zero against the result of a
6964 signed MOD operation whose second operand is a power of 2, make
6965 the MOD operation unsigned since it is simpler and equivalent. */
6966 if ((code == NE_EXPR || code == EQ_EXPR)
6967 && integer_zerop (arg1)
6968 && ! TREE_UNSIGNED (TREE_TYPE (arg0))
6969 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
6970 || TREE_CODE (arg0) == CEIL_MOD_EXPR
6971 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
6972 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
6973 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6974 {
6975 tree newtype = (*lang_hooks.types.unsigned_type) (TREE_TYPE (arg0));
6976 tree newmod = build (TREE_CODE (arg0), newtype,
6977 convert (newtype, TREE_OPERAND (arg0, 0)),
6978 convert (newtype, TREE_OPERAND (arg0, 1)));
6979
6980 return build (code, type, newmod, convert (newtype, arg1));
6981 }
6982
6983 /* If this is an NE comparison of zero with an AND of one, remove the
6984 comparison since the AND will give the correct value. */
6985 if (code == NE_EXPR && integer_zerop (arg1)
6986 && TREE_CODE (arg0) == BIT_AND_EXPR
6987 && integer_onep (TREE_OPERAND (arg0, 1)))
6988 return convert (type, arg0);
6989
6990 /* If we have (A & C) == C where C is a power of 2, convert this into
6991 (A & C) != 0. Similarly for NE_EXPR. */
6992 if ((code == EQ_EXPR || code == NE_EXPR)
6993 && TREE_CODE (arg0) == BIT_AND_EXPR
6994 && integer_pow2p (TREE_OPERAND (arg0, 1))
6995 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
6996 return fold (build (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
6997 arg0, integer_zero_node));
6998
6999 /* If we have (A & C) != 0 where C is the sign bit of A, convert
7000 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
7001 if ((code == EQ_EXPR || code == NE_EXPR)
7002 && TREE_CODE (arg0) == BIT_AND_EXPR
7003 && integer_zerop (arg1))
7004 {
7005 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0),
7006 TREE_OPERAND (arg0, 1));
7007 if (arg00 != NULL_TREE)
7008 {
7009 tree stype = (*lang_hooks.types.signed_type) (TREE_TYPE (arg00));
7010 return fold (build (code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
7011 convert (stype, arg00),
7012 convert (stype, integer_zero_node)));
7013 }
7014 }
7015
7016 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
7017 and similarly for >= into !=. */
7018 if ((code == LT_EXPR || code == GE_EXPR)
7019 && TREE_UNSIGNED (TREE_TYPE (arg0))
7020 && TREE_CODE (arg1) == LSHIFT_EXPR
7021 && integer_onep (TREE_OPERAND (arg1, 0)))
7022 return build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
7023 build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
7024 TREE_OPERAND (arg1, 1)),
7025 convert (TREE_TYPE (arg0), integer_zero_node));
7026
7027 else if ((code == LT_EXPR || code == GE_EXPR)
7028 && TREE_UNSIGNED (TREE_TYPE (arg0))
7029 && (TREE_CODE (arg1) == NOP_EXPR
7030 || TREE_CODE (arg1) == CONVERT_EXPR)
7031 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
7032 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
7033 return
7034 build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
7035 convert (TREE_TYPE (arg0),
7036 build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
7037 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1))),
7038 convert (TREE_TYPE (arg0), integer_zero_node));
7039
7040 /* Simplify comparison of something with itself. (For IEEE
7041 floating-point, we can only do some of these simplifications.) */
7042 if (operand_equal_p (arg0, arg1, 0))
7043 {
7044 switch (code)
7045 {
7046 case EQ_EXPR:
7047 case GE_EXPR:
7048 case LE_EXPR:
7049 if (! FLOAT_TYPE_P (TREE_TYPE (arg0)))
7050 return constant_boolean_node (1, type);
7051 code = EQ_EXPR;
7052 TREE_SET_CODE (t, code);
7053 break;
7054
7055 case NE_EXPR:
7056 /* For NE, we can only do this simplification if integer. */
7057 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
7058 break;
7059 /* ... fall through ... */
7060 case GT_EXPR:
7061 case LT_EXPR:
7062 return constant_boolean_node (0, type);
7063 default:
7064 abort ();
7065 }
7066 }
7067
7068 /* If we are comparing an expression that just has comparisons
7069 of two integer values, arithmetic expressions of those comparisons,
7070 and constants, we can simplify it. There are only three cases
7071 to check: the two values can either be equal, the first can be
7072 greater, or the second can be greater. Fold the expression for
7073 those three values. Since each value must be 0 or 1, we have
7074 eight possibilities, each of which corresponds to the constant 0
7075 or 1 or one of the six possible comparisons.
7076
7077 This handles common cases like (a > b) == 0 but also handles
7078 expressions like ((x > y) - (y > x)) > 0, which supposedly
7079 occur in macroized code. */
7080
7081 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
7082 {
7083 tree cval1 = 0, cval2 = 0;
7084 int save_p = 0;
7085
7086 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
7087 /* Don't handle degenerate cases here; they should already
7088 have been handled anyway. */
7089 && cval1 != 0 && cval2 != 0
7090 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
7091 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
7092 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
7093 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
7094 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
7095 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
7096 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
7097 {
7098 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
7099 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
7100
7101 /* We can't just pass T to eval_subst in case cval1 or cval2
7102 was the same as ARG1. */
7103
7104 tree high_result
7105 = fold (build (code, type,
7106 eval_subst (arg0, cval1, maxval, cval2, minval),
7107 arg1));
7108 tree equal_result
7109 = fold (build (code, type,
7110 eval_subst (arg0, cval1, maxval, cval2, maxval),
7111 arg1));
7112 tree low_result
7113 = fold (build (code, type,
7114 eval_subst (arg0, cval1, minval, cval2, maxval),
7115 arg1));
7116
7117 /* All three of these results should be 0 or 1. Confirm they
7118 are. Then use those values to select the proper code
7119 to use. */
7120
7121 if ((integer_zerop (high_result)
7122 || integer_onep (high_result))
7123 && (integer_zerop (equal_result)
7124 || integer_onep (equal_result))
7125 && (integer_zerop (low_result)
7126 || integer_onep (low_result)))
7127 {
7128 /* Make a 3-bit mask with the high-order bit being the
7129 value for `>', the next for '=', and the low for '<'. */
7130 switch ((integer_onep (high_result) * 4)
7131 + (integer_onep (equal_result) * 2)
7132 + integer_onep (low_result))
7133 {
7134 case 0:
7135 /* Always false. */
7136 return omit_one_operand (type, integer_zero_node, arg0);
7137 case 1:
7138 code = LT_EXPR;
7139 break;
7140 case 2:
7141 code = EQ_EXPR;
7142 break;
7143 case 3:
7144 code = LE_EXPR;
7145 break;
7146 case 4:
7147 code = GT_EXPR;
7148 break;
7149 case 5:
7150 code = NE_EXPR;
7151 break;
7152 case 6:
7153 code = GE_EXPR;
7154 break;
7155 case 7:
7156 /* Always true. */
7157 return omit_one_operand (type, integer_one_node, arg0);
7158 }
7159
7160 t = build (code, type, cval1, cval2);
7161 if (save_p)
7162 return save_expr (t);
7163 else
7164 return fold (t);
7165 }
7166 }
7167 }
7168
7169 /* If this is a comparison of a field, we may be able to simplify it. */
7170 if (((TREE_CODE (arg0) == COMPONENT_REF
7171 && (*lang_hooks.can_use_bit_fields_p) ())
7172 || TREE_CODE (arg0) == BIT_FIELD_REF)
7173 && (code == EQ_EXPR || code == NE_EXPR)
7174 /* Handle the constant case even without -O
7175 to make sure the warnings are given. */
7176 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
7177 {
7178 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
7179 return t1 ? t1 : t;
7180 }
7181
7182 /* If this is a comparison of complex values and either or both sides
7183 are a COMPLEX_EXPR or COMPLEX_CST, it is best to split up the
7184 comparisons and join them with a TRUTH_ANDIF_EXPR or TRUTH_ORIF_EXPR.
7185 This may prevent needless evaluations. */
7186 if ((code == EQ_EXPR || code == NE_EXPR)
7187 && TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
7188 && (TREE_CODE (arg0) == COMPLEX_EXPR
7189 || TREE_CODE (arg1) == COMPLEX_EXPR
7190 || TREE_CODE (arg0) == COMPLEX_CST
7191 || TREE_CODE (arg1) == COMPLEX_CST))
7192 {
7193 tree subtype = TREE_TYPE (TREE_TYPE (arg0));
7194 tree real0, imag0, real1, imag1;
7195
7196 arg0 = save_expr (arg0);
7197 arg1 = save_expr (arg1);
7198 real0 = fold (build1 (REALPART_EXPR, subtype, arg0));
7199 imag0 = fold (build1 (IMAGPART_EXPR, subtype, arg0));
7200 real1 = fold (build1 (REALPART_EXPR, subtype, arg1));
7201 imag1 = fold (build1 (IMAGPART_EXPR, subtype, arg1));
7202
7203 return fold (build ((code == EQ_EXPR ? TRUTH_ANDIF_EXPR
7204 : TRUTH_ORIF_EXPR),
7205 type,
7206 fold (build (code, type, real0, real1)),
7207 fold (build (code, type, imag0, imag1))));
7208 }
7209
7210 /* Optimize comparisons of strlen vs zero to a compare of the
7211 first character of the string vs zero. To wit,
7212 strlen(ptr) == 0 => *ptr == 0
7213 strlen(ptr) != 0 => *ptr != 0
7214 Other cases should reduce to one of these two (or a constant)
7215 due to the return value of strlen being unsigned. */
7216 if ((code == EQ_EXPR || code == NE_EXPR)
7217 && integer_zerop (arg1)
7218 && TREE_CODE (arg0) == CALL_EXPR
7219 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR)
7220 {
7221 tree fndecl = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7222 tree arglist;
7223
7224 if (TREE_CODE (fndecl) == FUNCTION_DECL
7225 && DECL_BUILT_IN (fndecl)
7226 && DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD
7227 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
7228 && (arglist = TREE_OPERAND (arg0, 1))
7229 && TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) == POINTER_TYPE
7230 && ! TREE_CHAIN (arglist))
7231 return fold (build (code, type,
7232 build1 (INDIRECT_REF, char_type_node,
7233 TREE_VALUE(arglist)),
7234 integer_zero_node));
7235 }
7236
7237 /* From here on, the only cases we handle are when the result is
7238 known to be a constant.
7239
7240 To compute GT, swap the arguments and do LT.
7241 To compute GE, do LT and invert the result.
7242 To compute LE, swap the arguments, do LT and invert the result.
7243 To compute NE, do EQ and invert the result.
7244
7245 Therefore, the code below must handle only EQ and LT. */
7246
7247 if (code == LE_EXPR || code == GT_EXPR)
7248 {
7249 tem = arg0, arg0 = arg1, arg1 = tem;
7250 code = swap_tree_comparison (code);
7251 }
7252
7253 /* Note that it is safe to invert for real values here because we
7254 will check below in the one case that it matters. */
7255
7256 t1 = NULL_TREE;
7257 invert = 0;
7258 if (code == NE_EXPR || code == GE_EXPR)
7259 {
7260 invert = 1;
7261 code = invert_tree_comparison (code);
7262 }
7263
7264 /* Compute a result for LT or EQ if args permit;
7265 otherwise return T. */
7266 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
7267 {
7268 if (code == EQ_EXPR)
7269 t1 = build_int_2 (tree_int_cst_equal (arg0, arg1), 0);
7270 else
7271 t1 = build_int_2 ((TREE_UNSIGNED (TREE_TYPE (arg0))
7272 ? INT_CST_LT_UNSIGNED (arg0, arg1)
7273 : INT_CST_LT (arg0, arg1)),
7274 0);
7275 }
7276
7277 #if 0 /* This is no longer useful, but breaks some real code. */
7278 /* Assume a nonexplicit constant cannot equal an explicit one,
7279 since such code would be undefined anyway.
7280 Exception: on sysvr4, using #pragma weak,
7281 a label can come out as 0. */
7282 else if (TREE_CODE (arg1) == INTEGER_CST
7283 && !integer_zerop (arg1)
7284 && TREE_CONSTANT (arg0)
7285 && TREE_CODE (arg0) == ADDR_EXPR
7286 && code == EQ_EXPR)
7287 t1 = build_int_2 (0, 0);
7288 #endif
7289 /* Two real constants can be compared explicitly. */
7290 else if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
7291 {
7292 /* If either operand is a NaN, the result is false with two
7293 exceptions: First, an NE_EXPR is true on NaNs, but that case
7294 is already handled correctly since we will be inverting the
7295 result for NE_EXPR. Second, if we had inverted a LE_EXPR
7296 or a GE_EXPR into a LT_EXPR, we must return true so that it
7297 will be inverted into false. */
7298
7299 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
7300 || REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
7301 t1 = build_int_2 (invert && code == LT_EXPR, 0);
7302
7303 else if (code == EQ_EXPR)
7304 t1 = build_int_2 (REAL_VALUES_EQUAL (TREE_REAL_CST (arg0),
7305 TREE_REAL_CST (arg1)),
7306 0);
7307 else
7308 t1 = build_int_2 (REAL_VALUES_LESS (TREE_REAL_CST (arg0),
7309 TREE_REAL_CST (arg1)),
7310 0);
7311 }
7312
7313 if (t1 == NULL_TREE)
7314 return t;
7315
7316 if (invert)
7317 TREE_INT_CST_LOW (t1) ^= 1;
7318
7319 TREE_TYPE (t1) = type;
7320 if (TREE_CODE (type) == BOOLEAN_TYPE)
7321 return (*lang_hooks.truthvalue_conversion) (t1);
7322 return t1;
7323
7324 case COND_EXPR:
7325 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
7326 so all simple results must be passed through pedantic_non_lvalue. */
7327 if (TREE_CODE (arg0) == INTEGER_CST)
7328 return pedantic_non_lvalue
7329 (TREE_OPERAND (t, (integer_zerop (arg0) ? 2 : 1)));
7330 else if (operand_equal_p (arg1, TREE_OPERAND (expr, 2), 0))
7331 return pedantic_omit_one_operand (type, arg1, arg0);
7332
7333 /* If the second operand is zero, invert the comparison and swap
7334 the second and third operands. Likewise if the second operand
7335 is constant and the third is not or if the third operand is
7336 equivalent to the first operand of the comparison. */
7337
7338 if (integer_zerop (arg1)
7339 || (TREE_CONSTANT (arg1) && ! TREE_CONSTANT (TREE_OPERAND (t, 2)))
7340 || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
7341 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
7342 TREE_OPERAND (t, 2),
7343 TREE_OPERAND (arg0, 1))))
7344 {
7345 /* See if this can be inverted. If it can't, possibly because
7346 it was a floating-point inequality comparison, don't do
7347 anything. */
7348 tem = invert_truthvalue (arg0);
7349
7350 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
7351 {
7352 t = build (code, type, tem,
7353 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
7354 arg0 = tem;
7355 /* arg1 should be the first argument of the new T. */
7356 arg1 = TREE_OPERAND (t, 1);
7357 STRIP_NOPS (arg1);
7358 }
7359 }
7360
7361 /* If we have A op B ? A : C, we may be able to convert this to a
7362 simpler expression, depending on the operation and the values
7363 of B and C. Signed zeros prevent all of these transformations,
7364 for reasons given above each one. */
7365
7366 if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
7367 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
7368 arg1, TREE_OPERAND (arg0, 1))
7369 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
7370 {
7371 tree arg2 = TREE_OPERAND (t, 2);
7372 enum tree_code comp_code = TREE_CODE (arg0);
7373
7374 STRIP_NOPS (arg2);
7375
7376 /* If we have A op 0 ? A : -A, consider applying the following
7377 transformations:
7378
7379 A == 0? A : -A same as -A
7380 A != 0? A : -A same as A
7381 A >= 0? A : -A same as abs (A)
7382 A > 0? A : -A same as abs (A)
7383 A <= 0? A : -A same as -abs (A)
7384 A < 0? A : -A same as -abs (A)
7385
7386 None of these transformations work for modes with signed
7387 zeros. If A is +/-0, the first two transformations will
7388 change the sign of the result (from +0 to -0, or vice
7389 versa). The last four will fix the sign of the result,
7390 even though the original expressions could be positive or
7391 negative, depending on the sign of A.
7392
7393 Note that all these transformations are correct if A is
7394 NaN, since the two alternatives (A and -A) are also NaNs. */
7395 if ((FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 1)))
7396 ? real_zerop (TREE_OPERAND (arg0, 1))
7397 : integer_zerop (TREE_OPERAND (arg0, 1)))
7398 && TREE_CODE (arg2) == NEGATE_EXPR
7399 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
7400 switch (comp_code)
7401 {
7402 case EQ_EXPR:
7403 return
7404 pedantic_non_lvalue
7405 (convert (type,
7406 negate_expr
7407 (convert (TREE_TYPE (TREE_OPERAND (t, 1)),
7408 arg1))));
7409 case NE_EXPR:
7410 return pedantic_non_lvalue (convert (type, arg1));
7411 case GE_EXPR:
7412 case GT_EXPR:
7413 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
7414 arg1 = convert ((*lang_hooks.types.signed_type)
7415 (TREE_TYPE (arg1)), arg1);
7416 return pedantic_non_lvalue
7417 (convert (type, fold (build1 (ABS_EXPR,
7418 TREE_TYPE (arg1), arg1))));
7419 case LE_EXPR:
7420 case LT_EXPR:
7421 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
7422 arg1 = convert ((lang_hooks.types.signed_type)
7423 (TREE_TYPE (arg1)), arg1);
7424 return pedantic_non_lvalue
7425 (negate_expr (convert (type,
7426 fold (build1 (ABS_EXPR,
7427 TREE_TYPE (arg1),
7428 arg1)))));
7429 default:
7430 abort ();
7431 }
7432
7433 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
7434 A == 0 ? A : 0 is always 0 unless A is -0. Note that
7435 both transformations are correct when A is NaN: A != 0
7436 is then true, and A == 0 is false. */
7437
7438 if (integer_zerop (TREE_OPERAND (arg0, 1)) && integer_zerop (arg2))
7439 {
7440 if (comp_code == NE_EXPR)
7441 return pedantic_non_lvalue (convert (type, arg1));
7442 else if (comp_code == EQ_EXPR)
7443 return pedantic_non_lvalue (convert (type, integer_zero_node));
7444 }
7445
7446 /* Try some transformations of A op B ? A : B.
7447
7448 A == B? A : B same as B
7449 A != B? A : B same as A
7450 A >= B? A : B same as max (A, B)
7451 A > B? A : B same as max (B, A)
7452 A <= B? A : B same as min (A, B)
7453 A < B? A : B same as min (B, A)
7454
7455 As above, these transformations don't work in the presence
7456 of signed zeros. For example, if A and B are zeros of
7457 opposite sign, the first two transformations will change
7458 the sign of the result. In the last four, the original
7459 expressions give different results for (A=+0, B=-0) and
7460 (A=-0, B=+0), but the transformed expressions do not.
7461
7462 The first two transformations are correct if either A or B
7463 is a NaN. In the first transformation, the condition will
7464 be false, and B will indeed be chosen. In the case of the
7465 second transformation, the condition A != B will be true,
7466 and A will be chosen.
7467
7468 The conversions to max() and min() are not correct if B is
7469 a number and A is not. The conditions in the original
7470 expressions will be false, so all four give B. The min()
7471 and max() versions would give a NaN instead. */
7472 if (operand_equal_for_comparison_p (TREE_OPERAND (arg0, 1),
7473 arg2, TREE_OPERAND (arg0, 0)))
7474 {
7475 tree comp_op0 = TREE_OPERAND (arg0, 0);
7476 tree comp_op1 = TREE_OPERAND (arg0, 1);
7477 tree comp_type = TREE_TYPE (comp_op0);
7478
7479 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
7480 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
7481 {
7482 comp_type = type;
7483 comp_op0 = arg1;
7484 comp_op1 = arg2;
7485 }
7486
7487 switch (comp_code)
7488 {
7489 case EQ_EXPR:
7490 return pedantic_non_lvalue (convert (type, arg2));
7491 case NE_EXPR:
7492 return pedantic_non_lvalue (convert (type, arg1));
7493 case LE_EXPR:
7494 case LT_EXPR:
7495 /* In C++ a ?: expression can be an lvalue, so put the
7496 operand which will be used if they are equal first
7497 so that we can convert this back to the
7498 corresponding COND_EXPR. */
7499 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
7500 return pedantic_non_lvalue
7501 (convert (type, fold (build (MIN_EXPR, comp_type,
7502 (comp_code == LE_EXPR
7503 ? comp_op0 : comp_op1),
7504 (comp_code == LE_EXPR
7505 ? comp_op1 : comp_op0)))));
7506 break;
7507 case GE_EXPR:
7508 case GT_EXPR:
7509 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
7510 return pedantic_non_lvalue
7511 (convert (type, fold (build (MAX_EXPR, comp_type,
7512 (comp_code == GE_EXPR
7513 ? comp_op0 : comp_op1),
7514 (comp_code == GE_EXPR
7515 ? comp_op1 : comp_op0)))));
7516 break;
7517 default:
7518 abort ();
7519 }
7520 }
7521
7522 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
7523 we might still be able to simplify this. For example,
7524 if C1 is one less or one more than C2, this might have started
7525 out as a MIN or MAX and been transformed by this function.
7526 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
7527
7528 if (INTEGRAL_TYPE_P (type)
7529 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7530 && TREE_CODE (arg2) == INTEGER_CST)
7531 switch (comp_code)
7532 {
7533 case EQ_EXPR:
7534 /* We can replace A with C1 in this case. */
7535 arg1 = convert (type, TREE_OPERAND (arg0, 1));
7536 t = build (code, type, TREE_OPERAND (t, 0), arg1,
7537 TREE_OPERAND (t, 2));
7538 break;
7539
7540 case LT_EXPR:
7541 /* If C1 is C2 + 1, this is min(A, C2). */
7542 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
7543 && operand_equal_p (TREE_OPERAND (arg0, 1),
7544 const_binop (PLUS_EXPR, arg2,
7545 integer_one_node, 0), 1))
7546 return pedantic_non_lvalue
7547 (fold (build (MIN_EXPR, type, arg1, arg2)));
7548 break;
7549
7550 case LE_EXPR:
7551 /* If C1 is C2 - 1, this is min(A, C2). */
7552 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
7553 && operand_equal_p (TREE_OPERAND (arg0, 1),
7554 const_binop (MINUS_EXPR, arg2,
7555 integer_one_node, 0), 1))
7556 return pedantic_non_lvalue
7557 (fold (build (MIN_EXPR, type, arg1, arg2)));
7558 break;
7559
7560 case GT_EXPR:
7561 /* If C1 is C2 - 1, this is max(A, C2). */
7562 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
7563 && operand_equal_p (TREE_OPERAND (arg0, 1),
7564 const_binop (MINUS_EXPR, arg2,
7565 integer_one_node, 0), 1))
7566 return pedantic_non_lvalue
7567 (fold (build (MAX_EXPR, type, arg1, arg2)));
7568 break;
7569
7570 case GE_EXPR:
7571 /* If C1 is C2 + 1, this is max(A, C2). */
7572 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
7573 && operand_equal_p (TREE_OPERAND (arg0, 1),
7574 const_binop (PLUS_EXPR, arg2,
7575 integer_one_node, 0), 1))
7576 return pedantic_non_lvalue
7577 (fold (build (MAX_EXPR, type, arg1, arg2)));
7578 break;
7579 case NE_EXPR:
7580 break;
7581 default:
7582 abort ();
7583 }
7584 }
7585
7586 /* If the second operand is simpler than the third, swap them
7587 since that produces better jump optimization results. */
7588 if ((TREE_CONSTANT (arg1) || DECL_P (arg1)
7589 || TREE_CODE (arg1) == SAVE_EXPR)
7590 && ! (TREE_CONSTANT (TREE_OPERAND (t, 2))
7591 || DECL_P (TREE_OPERAND (t, 2))
7592 || TREE_CODE (TREE_OPERAND (t, 2)) == SAVE_EXPR))
7593 {
7594 /* See if this can be inverted. If it can't, possibly because
7595 it was a floating-point inequality comparison, don't do
7596 anything. */
7597 tem = invert_truthvalue (arg0);
7598
7599 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
7600 {
7601 t = build (code, type, tem,
7602 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
7603 arg0 = tem;
7604 /* arg1 should be the first argument of the new T. */
7605 arg1 = TREE_OPERAND (t, 1);
7606 STRIP_NOPS (arg1);
7607 }
7608 }
7609
7610 /* Convert A ? 1 : 0 to simply A. */
7611 if (integer_onep (TREE_OPERAND (t, 1))
7612 && integer_zerop (TREE_OPERAND (t, 2))
7613 /* If we try to convert TREE_OPERAND (t, 0) to our type, the
7614 call to fold will try to move the conversion inside
7615 a COND, which will recurse. In that case, the COND_EXPR
7616 is probably the best choice, so leave it alone. */
7617 && type == TREE_TYPE (arg0))
7618 return pedantic_non_lvalue (arg0);
7619
7620 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
7621 over COND_EXPR in cases such as floating point comparisons. */
7622 if (integer_zerop (TREE_OPERAND (t, 1))
7623 && integer_onep (TREE_OPERAND (t, 2))
7624 && truth_value_p (TREE_CODE (arg0)))
7625 return pedantic_non_lvalue (convert (type,
7626 invert_truthvalue (arg0)));
7627
7628 /* Look for expressions of the form A & 2 ? 2 : 0. The result of this
7629 operation is simply A & 2. */
7630
7631 if (integer_zerop (TREE_OPERAND (t, 2))
7632 && TREE_CODE (arg0) == NE_EXPR
7633 && integer_zerop (TREE_OPERAND (arg0, 1))
7634 && integer_pow2p (arg1)
7635 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
7636 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
7637 arg1, 1))
7638 return pedantic_non_lvalue (convert (type, TREE_OPERAND (arg0, 0)));
7639
7640 /* Convert A ? B : 0 into A && B if A and B are truth values. */
7641 if (integer_zerop (TREE_OPERAND (t, 2))
7642 && truth_value_p (TREE_CODE (arg0))
7643 && truth_value_p (TREE_CODE (arg1)))
7644 return pedantic_non_lvalue (fold (build (TRUTH_ANDIF_EXPR, type,
7645 arg0, arg1)));
7646
7647 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
7648 if (integer_onep (TREE_OPERAND (t, 2))
7649 && truth_value_p (TREE_CODE (arg0))
7650 && truth_value_p (TREE_CODE (arg1)))
7651 {
7652 /* Only perform transformation if ARG0 is easily inverted. */
7653 tem = invert_truthvalue (arg0);
7654 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
7655 return pedantic_non_lvalue (fold (build (TRUTH_ORIF_EXPR, type,
7656 tem, arg1)));
7657 }
7658
7659 return t;
7660
7661 case COMPOUND_EXPR:
7662 /* When pedantic, a compound expression can be neither an lvalue
7663 nor an integer constant expression. */
7664 if (TREE_SIDE_EFFECTS (arg0) || pedantic)
7665 return t;
7666 /* Don't let (0, 0) be null pointer constant. */
7667 if (integer_zerop (arg1))
7668 return build1 (NOP_EXPR, type, arg1);
7669 return convert (type, arg1);
7670
7671 case COMPLEX_EXPR:
7672 if (wins)
7673 return build_complex (type, arg0, arg1);
7674 return t;
7675
7676 case REALPART_EXPR:
7677 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7678 return t;
7679 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
7680 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
7681 TREE_OPERAND (arg0, 1));
7682 else if (TREE_CODE (arg0) == COMPLEX_CST)
7683 return TREE_REALPART (arg0);
7684 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7685 return fold (build (TREE_CODE (arg0), type,
7686 fold (build1 (REALPART_EXPR, type,
7687 TREE_OPERAND (arg0, 0))),
7688 fold (build1 (REALPART_EXPR,
7689 type, TREE_OPERAND (arg0, 1)))));
7690 return t;
7691
7692 case IMAGPART_EXPR:
7693 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7694 return convert (type, integer_zero_node);
7695 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
7696 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
7697 TREE_OPERAND (arg0, 0));
7698 else if (TREE_CODE (arg0) == COMPLEX_CST)
7699 return TREE_IMAGPART (arg0);
7700 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7701 return fold (build (TREE_CODE (arg0), type,
7702 fold (build1 (IMAGPART_EXPR, type,
7703 TREE_OPERAND (arg0, 0))),
7704 fold (build1 (IMAGPART_EXPR, type,
7705 TREE_OPERAND (arg0, 1)))));
7706 return t;
7707
7708 /* Pull arithmetic ops out of the CLEANUP_POINT_EXPR where
7709 appropriate. */
7710 case CLEANUP_POINT_EXPR:
7711 if (! has_cleanups (arg0))
7712 return TREE_OPERAND (t, 0);
7713
7714 {
7715 enum tree_code code0 = TREE_CODE (arg0);
7716 int kind0 = TREE_CODE_CLASS (code0);
7717 tree arg00 = TREE_OPERAND (arg0, 0);
7718 tree arg01;
7719
7720 if (kind0 == '1' || code0 == TRUTH_NOT_EXPR)
7721 return fold (build1 (code0, type,
7722 fold (build1 (CLEANUP_POINT_EXPR,
7723 TREE_TYPE (arg00), arg00))));
7724
7725 if (kind0 == '<' || kind0 == '2'
7726 || code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR
7727 || code0 == TRUTH_AND_EXPR || code0 == TRUTH_OR_EXPR
7728 || code0 == TRUTH_XOR_EXPR)
7729 {
7730 arg01 = TREE_OPERAND (arg0, 1);
7731
7732 if (TREE_CONSTANT (arg00)
7733 || ((code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR)
7734 && ! has_cleanups (arg00)))
7735 return fold (build (code0, type, arg00,
7736 fold (build1 (CLEANUP_POINT_EXPR,
7737 TREE_TYPE (arg01), arg01))));
7738
7739 if (TREE_CONSTANT (arg01))
7740 return fold (build (code0, type,
7741 fold (build1 (CLEANUP_POINT_EXPR,
7742 TREE_TYPE (arg00), arg00)),
7743 arg01));
7744 }
7745
7746 return t;
7747 }
7748
7749 case CALL_EXPR:
7750 /* Check for a built-in function. */
7751 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
7752 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (expr, 0), 0))
7753 == FUNCTION_DECL)
7754 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
7755 {
7756 tree tmp = fold_builtin (expr);
7757 if (tmp)
7758 return tmp;
7759 }
7760 return t;
7761
7762 default:
7763 return t;
7764 } /* switch (code) */
7765 }
7766
7767 /* Determine if first argument is a multiple of second argument. Return 0 if
7768 it is not, or we cannot easily determined it to be.
7769
7770 An example of the sort of thing we care about (at this point; this routine
7771 could surely be made more general, and expanded to do what the *_DIV_EXPR's
7772 fold cases do now) is discovering that
7773
7774 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
7775
7776 is a multiple of
7777
7778 SAVE_EXPR (J * 8)
7779
7780 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
7781
7782 This code also handles discovering that
7783
7784 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
7785
7786 is a multiple of 8 so we don't have to worry about dealing with a
7787 possible remainder.
7788
7789 Note that we *look* inside a SAVE_EXPR only to determine how it was
7790 calculated; it is not safe for fold to do much of anything else with the
7791 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
7792 at run time. For example, the latter example above *cannot* be implemented
7793 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
7794 evaluation time of the original SAVE_EXPR is not necessarily the same at
7795 the time the new expression is evaluated. The only optimization of this
7796 sort that would be valid is changing
7797
7798 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
7799
7800 divided by 8 to
7801
7802 SAVE_EXPR (I) * SAVE_EXPR (J)
7803
7804 (where the same SAVE_EXPR (J) is used in the original and the
7805 transformed version). */
7806
7807 static int
7808 multiple_of_p (type, top, bottom)
7809 tree type;
7810 tree top;
7811 tree bottom;
7812 {
7813 if (operand_equal_p (top, bottom, 0))
7814 return 1;
7815
7816 if (TREE_CODE (type) != INTEGER_TYPE)
7817 return 0;
7818
7819 switch (TREE_CODE (top))
7820 {
7821 case MULT_EXPR:
7822 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
7823 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
7824
7825 case PLUS_EXPR:
7826 case MINUS_EXPR:
7827 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
7828 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
7829
7830 case LSHIFT_EXPR:
7831 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
7832 {
7833 tree op1, t1;
7834
7835 op1 = TREE_OPERAND (top, 1);
7836 /* const_binop may not detect overflow correctly,
7837 so check for it explicitly here. */
7838 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
7839 > TREE_INT_CST_LOW (op1)
7840 && TREE_INT_CST_HIGH (op1) == 0
7841 && 0 != (t1 = convert (type,
7842 const_binop (LSHIFT_EXPR, size_one_node,
7843 op1, 0)))
7844 && ! TREE_OVERFLOW (t1))
7845 return multiple_of_p (type, t1, bottom);
7846 }
7847 return 0;
7848
7849 case NOP_EXPR:
7850 /* Can't handle conversions from non-integral or wider integral type. */
7851 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
7852 || (TYPE_PRECISION (type)
7853 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
7854 return 0;
7855
7856 /* .. fall through ... */
7857
7858 case SAVE_EXPR:
7859 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
7860
7861 case INTEGER_CST:
7862 if (TREE_CODE (bottom) != INTEGER_CST
7863 || (TREE_UNSIGNED (type)
7864 && (tree_int_cst_sgn (top) < 0
7865 || tree_int_cst_sgn (bottom) < 0)))
7866 return 0;
7867 return integer_zerop (const_binop (TRUNC_MOD_EXPR,
7868 top, bottom, 0));
7869
7870 default:
7871 return 0;
7872 }
7873 }
7874
7875 /* Return true if `t' is known to be non-negative. */
7876
7877 int
7878 tree_expr_nonnegative_p (t)
7879 tree t;
7880 {
7881 switch (TREE_CODE (t))
7882 {
7883 case ABS_EXPR:
7884 case FFS_EXPR:
7885 case POPCOUNT_EXPR:
7886 case PARITY_EXPR:
7887 return 1;
7888
7889 case CLZ_EXPR:
7890 case CTZ_EXPR:
7891 /* These are undefined at zero. This is true even if
7892 C[LT]Z_DEFINED_VALUE_AT_ZERO is set, since what we're
7893 computing here is a user-visible property. */
7894 return 0;
7895
7896 case INTEGER_CST:
7897 return tree_int_cst_sgn (t) >= 0;
7898 case TRUNC_DIV_EXPR:
7899 case CEIL_DIV_EXPR:
7900 case FLOOR_DIV_EXPR:
7901 case ROUND_DIV_EXPR:
7902 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
7903 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7904 case TRUNC_MOD_EXPR:
7905 case CEIL_MOD_EXPR:
7906 case FLOOR_MOD_EXPR:
7907 case ROUND_MOD_EXPR:
7908 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
7909 case COND_EXPR:
7910 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1))
7911 && tree_expr_nonnegative_p (TREE_OPERAND (t, 2));
7912 case COMPOUND_EXPR:
7913 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7914 case MIN_EXPR:
7915 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
7916 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7917 case MAX_EXPR:
7918 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
7919 || tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7920 case MODIFY_EXPR:
7921 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7922 case BIND_EXPR:
7923 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7924 case SAVE_EXPR:
7925 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
7926 case NON_LVALUE_EXPR:
7927 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
7928 case RTL_EXPR:
7929 return rtl_expr_nonnegative_p (RTL_EXPR_RTL (t));
7930
7931 default:
7932 if (truth_value_p (TREE_CODE (t)))
7933 /* Truth values evaluate to 0 or 1, which is nonnegative. */
7934 return 1;
7935 else
7936 /* We don't know sign of `t', so be conservative and return false. */
7937 return 0;
7938 }
7939 }
7940
7941 /* Return true if `r' is known to be non-negative.
7942 Only handles constants at the moment. */
7943
7944 int
7945 rtl_expr_nonnegative_p (r)
7946 rtx r;
7947 {
7948 switch (GET_CODE (r))
7949 {
7950 case CONST_INT:
7951 return INTVAL (r) >= 0;
7952
7953 case CONST_DOUBLE:
7954 if (GET_MODE (r) == VOIDmode)
7955 return CONST_DOUBLE_HIGH (r) >= 0;
7956 return 0;
7957
7958 case CONST_VECTOR:
7959 {
7960 int units, i;
7961 rtx elt;
7962
7963 units = CONST_VECTOR_NUNITS (r);
7964
7965 for (i = 0; i < units; ++i)
7966 {
7967 elt = CONST_VECTOR_ELT (r, i);
7968 if (!rtl_expr_nonnegative_p (elt))
7969 return 0;
7970 }
7971
7972 return 1;
7973 }
7974
7975 case SYMBOL_REF:
7976 case LABEL_REF:
7977 /* These are always nonnegative. */
7978 return 1;
7979
7980 default:
7981 return 0;
7982 }
7983 }
7984
7985 #include "gt-fold-const.h"