fold-const.c (fold_convertible_p): Don't return true for conversion of VECTOR_TYPE...
[gcc.git] / gcc / fold-const.c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
27
28 /* The entry points in this file are fold, size_int_wide and size_binop.
29
30 fold takes a tree as argument and returns a simplified tree.
31
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
35
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
38
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
42
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "target.h"
48 #include "rtl.h"
49 #include "tree.h"
50 #include "gimple.h"
51 #include "predict.h"
52 #include "tm_p.h"
53 #include "tree-ssa-operands.h"
54 #include "optabs-query.h"
55 #include "cgraph.h"
56 #include "diagnostic-core.h"
57 #include "flags.h"
58 #include "alias.h"
59 #include "fold-const.h"
60 #include "fold-const-call.h"
61 #include "stor-layout.h"
62 #include "calls.h"
63 #include "tree-iterator.h"
64 #include "expr.h"
65 #include "intl.h"
66 #include "langhooks.h"
67 #include "tree-eh.h"
68 #include "gimplify.h"
69 #include "tree-dfa.h"
70 #include "builtins.h"
71 #include "generic-match.h"
72 #include "gimple-fold.h"
73 #include "params.h"
74 #include "tree-into-ssa.h"
75 #include "md5.h"
76 #include "case-cfn-macros.h"
77 #include "stringpool.h"
78 #include "tree-ssanames.h"
79
80 #ifndef LOAD_EXTEND_OP
81 #define LOAD_EXTEND_OP(M) UNKNOWN
82 #endif
83
84 /* Nonzero if we are folding constants inside an initializer; zero
85 otherwise. */
86 int folding_initializer = 0;
87
88 /* The following constants represent a bit based encoding of GCC's
89 comparison operators. This encoding simplifies transformations
90 on relational comparison operators, such as AND and OR. */
91 enum comparison_code {
92 COMPCODE_FALSE = 0,
93 COMPCODE_LT = 1,
94 COMPCODE_EQ = 2,
95 COMPCODE_LE = 3,
96 COMPCODE_GT = 4,
97 COMPCODE_LTGT = 5,
98 COMPCODE_GE = 6,
99 COMPCODE_ORD = 7,
100 COMPCODE_UNORD = 8,
101 COMPCODE_UNLT = 9,
102 COMPCODE_UNEQ = 10,
103 COMPCODE_UNLE = 11,
104 COMPCODE_UNGT = 12,
105 COMPCODE_NE = 13,
106 COMPCODE_UNGE = 14,
107 COMPCODE_TRUE = 15
108 };
109
110 static bool negate_expr_p (tree);
111 static tree negate_expr (tree);
112 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
113 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
114 static enum comparison_code comparison_to_compcode (enum tree_code);
115 static enum tree_code compcode_to_comparison (enum comparison_code);
116 static int operand_equal_for_comparison_p (tree, tree, tree);
117 static int twoval_comparison_p (tree, tree *, tree *, int *);
118 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
119 static tree make_bit_field_ref (location_t, tree, tree,
120 HOST_WIDE_INT, HOST_WIDE_INT, int, int);
121 static tree optimize_bit_field_compare (location_t, enum tree_code,
122 tree, tree, tree);
123 static tree decode_field_reference (location_t, tree, HOST_WIDE_INT *,
124 HOST_WIDE_INT *,
125 machine_mode *, int *, int *, int *,
126 tree *, tree *);
127 static int simple_operand_p (const_tree);
128 static bool simple_operand_p_2 (tree);
129 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
130 static tree range_predecessor (tree);
131 static tree range_successor (tree);
132 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
133 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
134 static tree unextend (tree, int, int, tree);
135 static tree optimize_minmax_comparison (location_t, enum tree_code,
136 tree, tree, tree);
137 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
138 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
139 static tree fold_binary_op_with_conditional_arg (location_t,
140 enum tree_code, tree,
141 tree, tree,
142 tree, tree, int);
143 static tree fold_div_compare (location_t, enum tree_code, tree, tree, tree);
144 static bool reorder_operands_p (const_tree, const_tree);
145 static tree fold_negate_const (tree, tree);
146 static tree fold_not_const (const_tree, tree);
147 static tree fold_relational_const (enum tree_code, tree, tree, tree);
148 static tree fold_convert_const (enum tree_code, tree, tree);
149 static tree fold_view_convert_expr (tree, tree);
150 static bool vec_cst_ctor_to_array (tree, tree *);
151
152
153 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
154 Otherwise, return LOC. */
155
156 static location_t
157 expr_location_or (tree t, location_t loc)
158 {
159 location_t tloc = EXPR_LOCATION (t);
160 return tloc == UNKNOWN_LOCATION ? loc : tloc;
161 }
162
163 /* Similar to protected_set_expr_location, but never modify x in place,
164 if location can and needs to be set, unshare it. */
165
166 static inline tree
167 protected_set_expr_location_unshare (tree x, location_t loc)
168 {
169 if (CAN_HAVE_LOCATION_P (x)
170 && EXPR_LOCATION (x) != loc
171 && !(TREE_CODE (x) == SAVE_EXPR
172 || TREE_CODE (x) == TARGET_EXPR
173 || TREE_CODE (x) == BIND_EXPR))
174 {
175 x = copy_node (x);
176 SET_EXPR_LOCATION (x, loc);
177 }
178 return x;
179 }
180 \f
181 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
182 division and returns the quotient. Otherwise returns
183 NULL_TREE. */
184
185 tree
186 div_if_zero_remainder (const_tree arg1, const_tree arg2)
187 {
188 widest_int quo;
189
190 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
191 SIGNED, &quo))
192 return wide_int_to_tree (TREE_TYPE (arg1), quo);
193
194 return NULL_TREE;
195 }
196 \f
197 /* This is nonzero if we should defer warnings about undefined
198 overflow. This facility exists because these warnings are a
199 special case. The code to estimate loop iterations does not want
200 to issue any warnings, since it works with expressions which do not
201 occur in user code. Various bits of cleanup code call fold(), but
202 only use the result if it has certain characteristics (e.g., is a
203 constant); that code only wants to issue a warning if the result is
204 used. */
205
206 static int fold_deferring_overflow_warnings;
207
208 /* If a warning about undefined overflow is deferred, this is the
209 warning. Note that this may cause us to turn two warnings into
210 one, but that is fine since it is sufficient to only give one
211 warning per expression. */
212
213 static const char* fold_deferred_overflow_warning;
214
215 /* If a warning about undefined overflow is deferred, this is the
216 level at which the warning should be emitted. */
217
218 static enum warn_strict_overflow_code fold_deferred_overflow_code;
219
220 /* Start deferring overflow warnings. We could use a stack here to
221 permit nested calls, but at present it is not necessary. */
222
223 void
224 fold_defer_overflow_warnings (void)
225 {
226 ++fold_deferring_overflow_warnings;
227 }
228
229 /* Stop deferring overflow warnings. If there is a pending warning,
230 and ISSUE is true, then issue the warning if appropriate. STMT is
231 the statement with which the warning should be associated (used for
232 location information); STMT may be NULL. CODE is the level of the
233 warning--a warn_strict_overflow_code value. This function will use
234 the smaller of CODE and the deferred code when deciding whether to
235 issue the warning. CODE may be zero to mean to always use the
236 deferred code. */
237
238 void
239 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code)
240 {
241 const char *warnmsg;
242 location_t locus;
243
244 gcc_assert (fold_deferring_overflow_warnings > 0);
245 --fold_deferring_overflow_warnings;
246 if (fold_deferring_overflow_warnings > 0)
247 {
248 if (fold_deferred_overflow_warning != NULL
249 && code != 0
250 && code < (int) fold_deferred_overflow_code)
251 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
252 return;
253 }
254
255 warnmsg = fold_deferred_overflow_warning;
256 fold_deferred_overflow_warning = NULL;
257
258 if (!issue || warnmsg == NULL)
259 return;
260
261 if (gimple_no_warning_p (stmt))
262 return;
263
264 /* Use the smallest code level when deciding to issue the
265 warning. */
266 if (code == 0 || code > (int) fold_deferred_overflow_code)
267 code = fold_deferred_overflow_code;
268
269 if (!issue_strict_overflow_warning (code))
270 return;
271
272 if (stmt == NULL)
273 locus = input_location;
274 else
275 locus = gimple_location (stmt);
276 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
277 }
278
279 /* Stop deferring overflow warnings, ignoring any deferred
280 warnings. */
281
282 void
283 fold_undefer_and_ignore_overflow_warnings (void)
284 {
285 fold_undefer_overflow_warnings (false, NULL, 0);
286 }
287
288 /* Whether we are deferring overflow warnings. */
289
290 bool
291 fold_deferring_overflow_warnings_p (void)
292 {
293 return fold_deferring_overflow_warnings > 0;
294 }
295
296 /* This is called when we fold something based on the fact that signed
297 overflow is undefined. */
298
299 static void
300 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
301 {
302 if (fold_deferring_overflow_warnings > 0)
303 {
304 if (fold_deferred_overflow_warning == NULL
305 || wc < fold_deferred_overflow_code)
306 {
307 fold_deferred_overflow_warning = gmsgid;
308 fold_deferred_overflow_code = wc;
309 }
310 }
311 else if (issue_strict_overflow_warning (wc))
312 warning (OPT_Wstrict_overflow, gmsgid);
313 }
314 \f
315 /* Return true if the built-in mathematical function specified by CODE
316 is odd, i.e. -f(x) == f(-x). */
317
318 bool
319 negate_mathfn_p (combined_fn fn)
320 {
321 switch (fn)
322 {
323 CASE_CFN_ASIN:
324 CASE_CFN_ASINH:
325 CASE_CFN_ATAN:
326 CASE_CFN_ATANH:
327 CASE_CFN_CASIN:
328 CASE_CFN_CASINH:
329 CASE_CFN_CATAN:
330 CASE_CFN_CATANH:
331 CASE_CFN_CBRT:
332 CASE_CFN_CPROJ:
333 CASE_CFN_CSIN:
334 CASE_CFN_CSINH:
335 CASE_CFN_CTAN:
336 CASE_CFN_CTANH:
337 CASE_CFN_ERF:
338 CASE_CFN_LLROUND:
339 CASE_CFN_LROUND:
340 CASE_CFN_ROUND:
341 CASE_CFN_SIN:
342 CASE_CFN_SINH:
343 CASE_CFN_TAN:
344 CASE_CFN_TANH:
345 CASE_CFN_TRUNC:
346 return true;
347
348 CASE_CFN_LLRINT:
349 CASE_CFN_LRINT:
350 CASE_CFN_NEARBYINT:
351 CASE_CFN_RINT:
352 return !flag_rounding_math;
353
354 default:
355 break;
356 }
357 return false;
358 }
359
360 /* Check whether we may negate an integer constant T without causing
361 overflow. */
362
363 bool
364 may_negate_without_overflow_p (const_tree t)
365 {
366 tree type;
367
368 gcc_assert (TREE_CODE (t) == INTEGER_CST);
369
370 type = TREE_TYPE (t);
371 if (TYPE_UNSIGNED (type))
372 return false;
373
374 return !wi::only_sign_bit_p (t);
375 }
376
377 /* Determine whether an expression T can be cheaply negated using
378 the function negate_expr without introducing undefined overflow. */
379
380 static bool
381 negate_expr_p (tree t)
382 {
383 tree type;
384
385 if (t == 0)
386 return false;
387
388 type = TREE_TYPE (t);
389
390 STRIP_SIGN_NOPS (t);
391 switch (TREE_CODE (t))
392 {
393 case INTEGER_CST:
394 if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
395 return true;
396
397 /* Check that -CST will not overflow type. */
398 return may_negate_without_overflow_p (t);
399 case BIT_NOT_EXPR:
400 return (INTEGRAL_TYPE_P (type)
401 && TYPE_OVERFLOW_WRAPS (type));
402
403 case FIXED_CST:
404 return true;
405
406 case NEGATE_EXPR:
407 return !TYPE_OVERFLOW_SANITIZED (type);
408
409 case REAL_CST:
410 /* We want to canonicalize to positive real constants. Pretend
411 that only negative ones can be easily negated. */
412 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
413
414 case COMPLEX_CST:
415 return negate_expr_p (TREE_REALPART (t))
416 && negate_expr_p (TREE_IMAGPART (t));
417
418 case VECTOR_CST:
419 {
420 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
421 return true;
422
423 int count = TYPE_VECTOR_SUBPARTS (type), i;
424
425 for (i = 0; i < count; i++)
426 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
427 return false;
428
429 return true;
430 }
431
432 case COMPLEX_EXPR:
433 return negate_expr_p (TREE_OPERAND (t, 0))
434 && negate_expr_p (TREE_OPERAND (t, 1));
435
436 case CONJ_EXPR:
437 return negate_expr_p (TREE_OPERAND (t, 0));
438
439 case PLUS_EXPR:
440 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
441 || HONOR_SIGNED_ZEROS (element_mode (type))
442 || (INTEGRAL_TYPE_P (type)
443 && ! TYPE_OVERFLOW_WRAPS (type)))
444 return false;
445 /* -(A + B) -> (-B) - A. */
446 if (negate_expr_p (TREE_OPERAND (t, 1))
447 && reorder_operands_p (TREE_OPERAND (t, 0),
448 TREE_OPERAND (t, 1)))
449 return true;
450 /* -(A + B) -> (-A) - B. */
451 return negate_expr_p (TREE_OPERAND (t, 0));
452
453 case MINUS_EXPR:
454 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
455 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
456 && !HONOR_SIGNED_ZEROS (element_mode (type))
457 && (! INTEGRAL_TYPE_P (type)
458 || TYPE_OVERFLOW_WRAPS (type))
459 && reorder_operands_p (TREE_OPERAND (t, 0),
460 TREE_OPERAND (t, 1));
461
462 case MULT_EXPR:
463 if (TYPE_UNSIGNED (type))
464 break;
465 /* INT_MIN/n * n doesn't overflow while negating one operand it does
466 if n is a power of two. */
467 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
468 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
469 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
470 && ! integer_pow2p (TREE_OPERAND (t, 0)))
471 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
472 && ! integer_pow2p (TREE_OPERAND (t, 1)))))
473 break;
474
475 /* Fall through. */
476
477 case RDIV_EXPR:
478 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
479 return negate_expr_p (TREE_OPERAND (t, 1))
480 || negate_expr_p (TREE_OPERAND (t, 0));
481 break;
482
483 case TRUNC_DIV_EXPR:
484 case ROUND_DIV_EXPR:
485 case EXACT_DIV_EXPR:
486 if (TYPE_UNSIGNED (type))
487 break;
488 if (negate_expr_p (TREE_OPERAND (t, 0)))
489 return true;
490 /* In general we can't negate B in A / B, because if A is INT_MIN and
491 B is 1, we may turn this into INT_MIN / -1 which is undefined
492 and actually traps on some architectures. */
493 if (! INTEGRAL_TYPE_P (TREE_TYPE (t))
494 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
495 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
496 && ! integer_onep (TREE_OPERAND (t, 1))))
497 return negate_expr_p (TREE_OPERAND (t, 1));
498 break;
499
500 case NOP_EXPR:
501 /* Negate -((double)float) as (double)(-float). */
502 if (TREE_CODE (type) == REAL_TYPE)
503 {
504 tree tem = strip_float_extensions (t);
505 if (tem != t)
506 return negate_expr_p (tem);
507 }
508 break;
509
510 case CALL_EXPR:
511 /* Negate -f(x) as f(-x). */
512 if (negate_mathfn_p (get_call_combined_fn (t)))
513 return negate_expr_p (CALL_EXPR_ARG (t, 0));
514 break;
515
516 case RSHIFT_EXPR:
517 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
518 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
519 {
520 tree op1 = TREE_OPERAND (t, 1);
521 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
522 return true;
523 }
524 break;
525
526 default:
527 break;
528 }
529 return false;
530 }
531
532 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
533 simplification is possible.
534 If negate_expr_p would return true for T, NULL_TREE will never be
535 returned. */
536
537 static tree
538 fold_negate_expr (location_t loc, tree t)
539 {
540 tree type = TREE_TYPE (t);
541 tree tem;
542
543 switch (TREE_CODE (t))
544 {
545 /* Convert - (~A) to A + 1. */
546 case BIT_NOT_EXPR:
547 if (INTEGRAL_TYPE_P (type))
548 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
549 build_one_cst (type));
550 break;
551
552 case INTEGER_CST:
553 tem = fold_negate_const (t, type);
554 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
555 || (ANY_INTEGRAL_TYPE_P (type)
556 && !TYPE_OVERFLOW_TRAPS (type)
557 && TYPE_OVERFLOW_WRAPS (type))
558 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
559 return tem;
560 break;
561
562 case REAL_CST:
563 tem = fold_negate_const (t, type);
564 return tem;
565
566 case FIXED_CST:
567 tem = fold_negate_const (t, type);
568 return tem;
569
570 case COMPLEX_CST:
571 {
572 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
573 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
574 if (rpart && ipart)
575 return build_complex (type, rpart, ipart);
576 }
577 break;
578
579 case VECTOR_CST:
580 {
581 int count = TYPE_VECTOR_SUBPARTS (type), i;
582 tree *elts = XALLOCAVEC (tree, count);
583
584 for (i = 0; i < count; i++)
585 {
586 elts[i] = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
587 if (elts[i] == NULL_TREE)
588 return NULL_TREE;
589 }
590
591 return build_vector (type, elts);
592 }
593
594 case COMPLEX_EXPR:
595 if (negate_expr_p (t))
596 return fold_build2_loc (loc, COMPLEX_EXPR, type,
597 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
598 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
599 break;
600
601 case CONJ_EXPR:
602 if (negate_expr_p (t))
603 return fold_build1_loc (loc, CONJ_EXPR, type,
604 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
605 break;
606
607 case NEGATE_EXPR:
608 if (!TYPE_OVERFLOW_SANITIZED (type))
609 return TREE_OPERAND (t, 0);
610 break;
611
612 case PLUS_EXPR:
613 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
614 && !HONOR_SIGNED_ZEROS (element_mode (type)))
615 {
616 /* -(A + B) -> (-B) - A. */
617 if (negate_expr_p (TREE_OPERAND (t, 1))
618 && reorder_operands_p (TREE_OPERAND (t, 0),
619 TREE_OPERAND (t, 1)))
620 {
621 tem = negate_expr (TREE_OPERAND (t, 1));
622 return fold_build2_loc (loc, MINUS_EXPR, type,
623 tem, TREE_OPERAND (t, 0));
624 }
625
626 /* -(A + B) -> (-A) - B. */
627 if (negate_expr_p (TREE_OPERAND (t, 0)))
628 {
629 tem = negate_expr (TREE_OPERAND (t, 0));
630 return fold_build2_loc (loc, MINUS_EXPR, type,
631 tem, TREE_OPERAND (t, 1));
632 }
633 }
634 break;
635
636 case MINUS_EXPR:
637 /* - (A - B) -> B - A */
638 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
639 && !HONOR_SIGNED_ZEROS (element_mode (type))
640 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
641 return fold_build2_loc (loc, MINUS_EXPR, type,
642 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
643 break;
644
645 case MULT_EXPR:
646 if (TYPE_UNSIGNED (type))
647 break;
648
649 /* Fall through. */
650
651 case RDIV_EXPR:
652 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
653 {
654 tem = TREE_OPERAND (t, 1);
655 if (negate_expr_p (tem))
656 return fold_build2_loc (loc, TREE_CODE (t), type,
657 TREE_OPERAND (t, 0), negate_expr (tem));
658 tem = TREE_OPERAND (t, 0);
659 if (negate_expr_p (tem))
660 return fold_build2_loc (loc, TREE_CODE (t), type,
661 negate_expr (tem), TREE_OPERAND (t, 1));
662 }
663 break;
664
665 case TRUNC_DIV_EXPR:
666 case ROUND_DIV_EXPR:
667 case EXACT_DIV_EXPR:
668 if (TYPE_UNSIGNED (type))
669 break;
670 if (negate_expr_p (TREE_OPERAND (t, 0)))
671 return fold_build2_loc (loc, TREE_CODE (t), type,
672 negate_expr (TREE_OPERAND (t, 0)),
673 TREE_OPERAND (t, 1));
674 /* In general we can't negate B in A / B, because if A is INT_MIN and
675 B is 1, we may turn this into INT_MIN / -1 which is undefined
676 and actually traps on some architectures. */
677 if ((! INTEGRAL_TYPE_P (TREE_TYPE (t))
678 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
679 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
680 && ! integer_onep (TREE_OPERAND (t, 1))))
681 && negate_expr_p (TREE_OPERAND (t, 1)))
682 return fold_build2_loc (loc, TREE_CODE (t), type,
683 TREE_OPERAND (t, 0),
684 negate_expr (TREE_OPERAND (t, 1)));
685 break;
686
687 case NOP_EXPR:
688 /* Convert -((double)float) into (double)(-float). */
689 if (TREE_CODE (type) == REAL_TYPE)
690 {
691 tem = strip_float_extensions (t);
692 if (tem != t && negate_expr_p (tem))
693 return fold_convert_loc (loc, type, negate_expr (tem));
694 }
695 break;
696
697 case CALL_EXPR:
698 /* Negate -f(x) as f(-x). */
699 if (negate_mathfn_p (get_call_combined_fn (t))
700 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
701 {
702 tree fndecl, arg;
703
704 fndecl = get_callee_fndecl (t);
705 arg = negate_expr (CALL_EXPR_ARG (t, 0));
706 return build_call_expr_loc (loc, fndecl, 1, arg);
707 }
708 break;
709
710 case RSHIFT_EXPR:
711 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
712 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
713 {
714 tree op1 = TREE_OPERAND (t, 1);
715 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
716 {
717 tree ntype = TYPE_UNSIGNED (type)
718 ? signed_type_for (type)
719 : unsigned_type_for (type);
720 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
721 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
722 return fold_convert_loc (loc, type, temp);
723 }
724 }
725 break;
726
727 default:
728 break;
729 }
730
731 return NULL_TREE;
732 }
733
734 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
735 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
736 return NULL_TREE. */
737
738 static tree
739 negate_expr (tree t)
740 {
741 tree type, tem;
742 location_t loc;
743
744 if (t == NULL_TREE)
745 return NULL_TREE;
746
747 loc = EXPR_LOCATION (t);
748 type = TREE_TYPE (t);
749 STRIP_SIGN_NOPS (t);
750
751 tem = fold_negate_expr (loc, t);
752 if (!tem)
753 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
754 return fold_convert_loc (loc, type, tem);
755 }
756 \f
757 /* Split a tree IN into a constant, literal and variable parts that could be
758 combined with CODE to make IN. "constant" means an expression with
759 TREE_CONSTANT but that isn't an actual constant. CODE must be a
760 commutative arithmetic operation. Store the constant part into *CONP,
761 the literal in *LITP and return the variable part. If a part isn't
762 present, set it to null. If the tree does not decompose in this way,
763 return the entire tree as the variable part and the other parts as null.
764
765 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
766 case, we negate an operand that was subtracted. Except if it is a
767 literal for which we use *MINUS_LITP instead.
768
769 If NEGATE_P is true, we are negating all of IN, again except a literal
770 for which we use *MINUS_LITP instead.
771
772 If IN is itself a literal or constant, return it as appropriate.
773
774 Note that we do not guarantee that any of the three values will be the
775 same type as IN, but they will have the same signedness and mode. */
776
777 static tree
778 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
779 tree *minus_litp, int negate_p)
780 {
781 tree var = 0;
782
783 *conp = 0;
784 *litp = 0;
785 *minus_litp = 0;
786
787 /* Strip any conversions that don't change the machine mode or signedness. */
788 STRIP_SIGN_NOPS (in);
789
790 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
791 || TREE_CODE (in) == FIXED_CST)
792 *litp = in;
793 else if (TREE_CODE (in) == code
794 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
795 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
796 /* We can associate addition and subtraction together (even
797 though the C standard doesn't say so) for integers because
798 the value is not affected. For reals, the value might be
799 affected, so we can't. */
800 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
801 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
802 {
803 tree op0 = TREE_OPERAND (in, 0);
804 tree op1 = TREE_OPERAND (in, 1);
805 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
806 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
807
808 /* First see if either of the operands is a literal, then a constant. */
809 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
810 || TREE_CODE (op0) == FIXED_CST)
811 *litp = op0, op0 = 0;
812 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
813 || TREE_CODE (op1) == FIXED_CST)
814 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
815
816 if (op0 != 0 && TREE_CONSTANT (op0))
817 *conp = op0, op0 = 0;
818 else if (op1 != 0 && TREE_CONSTANT (op1))
819 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
820
821 /* If we haven't dealt with either operand, this is not a case we can
822 decompose. Otherwise, VAR is either of the ones remaining, if any. */
823 if (op0 != 0 && op1 != 0)
824 var = in;
825 else if (op0 != 0)
826 var = op0;
827 else
828 var = op1, neg_var_p = neg1_p;
829
830 /* Now do any needed negations. */
831 if (neg_litp_p)
832 *minus_litp = *litp, *litp = 0;
833 if (neg_conp_p)
834 *conp = negate_expr (*conp);
835 if (neg_var_p)
836 var = negate_expr (var);
837 }
838 else if (TREE_CODE (in) == BIT_NOT_EXPR
839 && code == PLUS_EXPR)
840 {
841 /* -X - 1 is folded to ~X, undo that here. */
842 *minus_litp = build_one_cst (TREE_TYPE (in));
843 var = negate_expr (TREE_OPERAND (in, 0));
844 }
845 else if (TREE_CONSTANT (in))
846 *conp = in;
847 else
848 var = in;
849
850 if (negate_p)
851 {
852 if (*litp)
853 *minus_litp = *litp, *litp = 0;
854 else if (*minus_litp)
855 *litp = *minus_litp, *minus_litp = 0;
856 *conp = negate_expr (*conp);
857 var = negate_expr (var);
858 }
859
860 return var;
861 }
862
863 /* Re-associate trees split by the above function. T1 and T2 are
864 either expressions to associate or null. Return the new
865 expression, if any. LOC is the location of the new expression. If
866 we build an operation, do it in TYPE and with CODE. */
867
868 static tree
869 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
870 {
871 if (t1 == 0)
872 return t2;
873 else if (t2 == 0)
874 return t1;
875
876 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
877 try to fold this since we will have infinite recursion. But do
878 deal with any NEGATE_EXPRs. */
879 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
880 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
881 {
882 if (code == PLUS_EXPR)
883 {
884 if (TREE_CODE (t1) == NEGATE_EXPR)
885 return build2_loc (loc, MINUS_EXPR, type,
886 fold_convert_loc (loc, type, t2),
887 fold_convert_loc (loc, type,
888 TREE_OPERAND (t1, 0)));
889 else if (TREE_CODE (t2) == NEGATE_EXPR)
890 return build2_loc (loc, MINUS_EXPR, type,
891 fold_convert_loc (loc, type, t1),
892 fold_convert_loc (loc, type,
893 TREE_OPERAND (t2, 0)));
894 else if (integer_zerop (t2))
895 return fold_convert_loc (loc, type, t1);
896 }
897 else if (code == MINUS_EXPR)
898 {
899 if (integer_zerop (t2))
900 return fold_convert_loc (loc, type, t1);
901 }
902
903 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
904 fold_convert_loc (loc, type, t2));
905 }
906
907 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
908 fold_convert_loc (loc, type, t2));
909 }
910 \f
911 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
912 for use in int_const_binop, size_binop and size_diffop. */
913
914 static bool
915 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
916 {
917 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
918 return false;
919 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
920 return false;
921
922 switch (code)
923 {
924 case LSHIFT_EXPR:
925 case RSHIFT_EXPR:
926 case LROTATE_EXPR:
927 case RROTATE_EXPR:
928 return true;
929
930 default:
931 break;
932 }
933
934 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
935 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
936 && TYPE_MODE (type1) == TYPE_MODE (type2);
937 }
938
939
940 /* Combine two integer constants ARG1 and ARG2 under operation CODE
941 to produce a new constant. Return NULL_TREE if we don't know how
942 to evaluate CODE at compile-time. */
943
944 static tree
945 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree parg2,
946 int overflowable)
947 {
948 wide_int res;
949 tree t;
950 tree type = TREE_TYPE (arg1);
951 signop sign = TYPE_SIGN (type);
952 bool overflow = false;
953
954 wide_int arg2 = wide_int::from (parg2, TYPE_PRECISION (type),
955 TYPE_SIGN (TREE_TYPE (parg2)));
956
957 switch (code)
958 {
959 case BIT_IOR_EXPR:
960 res = wi::bit_or (arg1, arg2);
961 break;
962
963 case BIT_XOR_EXPR:
964 res = wi::bit_xor (arg1, arg2);
965 break;
966
967 case BIT_AND_EXPR:
968 res = wi::bit_and (arg1, arg2);
969 break;
970
971 case RSHIFT_EXPR:
972 case LSHIFT_EXPR:
973 if (wi::neg_p (arg2))
974 {
975 arg2 = -arg2;
976 if (code == RSHIFT_EXPR)
977 code = LSHIFT_EXPR;
978 else
979 code = RSHIFT_EXPR;
980 }
981
982 if (code == RSHIFT_EXPR)
983 /* It's unclear from the C standard whether shifts can overflow.
984 The following code ignores overflow; perhaps a C standard
985 interpretation ruling is needed. */
986 res = wi::rshift (arg1, arg2, sign);
987 else
988 res = wi::lshift (arg1, arg2);
989 break;
990
991 case RROTATE_EXPR:
992 case LROTATE_EXPR:
993 if (wi::neg_p (arg2))
994 {
995 arg2 = -arg2;
996 if (code == RROTATE_EXPR)
997 code = LROTATE_EXPR;
998 else
999 code = RROTATE_EXPR;
1000 }
1001
1002 if (code == RROTATE_EXPR)
1003 res = wi::rrotate (arg1, arg2);
1004 else
1005 res = wi::lrotate (arg1, arg2);
1006 break;
1007
1008 case PLUS_EXPR:
1009 res = wi::add (arg1, arg2, sign, &overflow);
1010 break;
1011
1012 case MINUS_EXPR:
1013 res = wi::sub (arg1, arg2, sign, &overflow);
1014 break;
1015
1016 case MULT_EXPR:
1017 res = wi::mul (arg1, arg2, sign, &overflow);
1018 break;
1019
1020 case MULT_HIGHPART_EXPR:
1021 res = wi::mul_high (arg1, arg2, sign);
1022 break;
1023
1024 case TRUNC_DIV_EXPR:
1025 case EXACT_DIV_EXPR:
1026 if (arg2 == 0)
1027 return NULL_TREE;
1028 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1029 break;
1030
1031 case FLOOR_DIV_EXPR:
1032 if (arg2 == 0)
1033 return NULL_TREE;
1034 res = wi::div_floor (arg1, arg2, sign, &overflow);
1035 break;
1036
1037 case CEIL_DIV_EXPR:
1038 if (arg2 == 0)
1039 return NULL_TREE;
1040 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1041 break;
1042
1043 case ROUND_DIV_EXPR:
1044 if (arg2 == 0)
1045 return NULL_TREE;
1046 res = wi::div_round (arg1, arg2, sign, &overflow);
1047 break;
1048
1049 case TRUNC_MOD_EXPR:
1050 if (arg2 == 0)
1051 return NULL_TREE;
1052 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1053 break;
1054
1055 case FLOOR_MOD_EXPR:
1056 if (arg2 == 0)
1057 return NULL_TREE;
1058 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1059 break;
1060
1061 case CEIL_MOD_EXPR:
1062 if (arg2 == 0)
1063 return NULL_TREE;
1064 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1065 break;
1066
1067 case ROUND_MOD_EXPR:
1068 if (arg2 == 0)
1069 return NULL_TREE;
1070 res = wi::mod_round (arg1, arg2, sign, &overflow);
1071 break;
1072
1073 case MIN_EXPR:
1074 res = wi::min (arg1, arg2, sign);
1075 break;
1076
1077 case MAX_EXPR:
1078 res = wi::max (arg1, arg2, sign);
1079 break;
1080
1081 default:
1082 return NULL_TREE;
1083 }
1084
1085 t = force_fit_type (type, res, overflowable,
1086 (((sign == SIGNED || overflowable == -1)
1087 && overflow)
1088 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (parg2)));
1089
1090 return t;
1091 }
1092
1093 tree
1094 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1095 {
1096 return int_const_binop_1 (code, arg1, arg2, 1);
1097 }
1098
1099 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1100 constant. We assume ARG1 and ARG2 have the same data type, or at least
1101 are the same kind of constant and the same machine mode. Return zero if
1102 combining the constants is not allowed in the current operating mode. */
1103
1104 static tree
1105 const_binop (enum tree_code code, tree arg1, tree arg2)
1106 {
1107 /* Sanity check for the recursive cases. */
1108 if (!arg1 || !arg2)
1109 return NULL_TREE;
1110
1111 STRIP_NOPS (arg1);
1112 STRIP_NOPS (arg2);
1113
1114 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1115 {
1116 if (code == POINTER_PLUS_EXPR)
1117 return int_const_binop (PLUS_EXPR,
1118 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1119
1120 return int_const_binop (code, arg1, arg2);
1121 }
1122
1123 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1124 {
1125 machine_mode mode;
1126 REAL_VALUE_TYPE d1;
1127 REAL_VALUE_TYPE d2;
1128 REAL_VALUE_TYPE value;
1129 REAL_VALUE_TYPE result;
1130 bool inexact;
1131 tree t, type;
1132
1133 /* The following codes are handled by real_arithmetic. */
1134 switch (code)
1135 {
1136 case PLUS_EXPR:
1137 case MINUS_EXPR:
1138 case MULT_EXPR:
1139 case RDIV_EXPR:
1140 case MIN_EXPR:
1141 case MAX_EXPR:
1142 break;
1143
1144 default:
1145 return NULL_TREE;
1146 }
1147
1148 d1 = TREE_REAL_CST (arg1);
1149 d2 = TREE_REAL_CST (arg2);
1150
1151 type = TREE_TYPE (arg1);
1152 mode = TYPE_MODE (type);
1153
1154 /* Don't perform operation if we honor signaling NaNs and
1155 either operand is a signaling NaN. */
1156 if (HONOR_SNANS (mode)
1157 && (REAL_VALUE_ISSIGNALING_NAN (d1)
1158 || REAL_VALUE_ISSIGNALING_NAN (d2)))
1159 return NULL_TREE;
1160
1161 /* Don't perform operation if it would raise a division
1162 by zero exception. */
1163 if (code == RDIV_EXPR
1164 && real_equal (&d2, &dconst0)
1165 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1166 return NULL_TREE;
1167
1168 /* If either operand is a NaN, just return it. Otherwise, set up
1169 for floating-point trap; we return an overflow. */
1170 if (REAL_VALUE_ISNAN (d1))
1171 {
1172 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1173 is off. */
1174 d1.signalling = 0;
1175 t = build_real (type, d1);
1176 return t;
1177 }
1178 else if (REAL_VALUE_ISNAN (d2))
1179 {
1180 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1181 is off. */
1182 d2.signalling = 0;
1183 t = build_real (type, d2);
1184 return t;
1185 }
1186
1187 inexact = real_arithmetic (&value, code, &d1, &d2);
1188 real_convert (&result, mode, &value);
1189
1190 /* Don't constant fold this floating point operation if
1191 the result has overflowed and flag_trapping_math. */
1192 if (flag_trapping_math
1193 && MODE_HAS_INFINITIES (mode)
1194 && REAL_VALUE_ISINF (result)
1195 && !REAL_VALUE_ISINF (d1)
1196 && !REAL_VALUE_ISINF (d2))
1197 return NULL_TREE;
1198
1199 /* Don't constant fold this floating point operation if the
1200 result may dependent upon the run-time rounding mode and
1201 flag_rounding_math is set, or if GCC's software emulation
1202 is unable to accurately represent the result. */
1203 if ((flag_rounding_math
1204 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1205 && (inexact || !real_identical (&result, &value)))
1206 return NULL_TREE;
1207
1208 t = build_real (type, result);
1209
1210 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1211 return t;
1212 }
1213
1214 if (TREE_CODE (arg1) == FIXED_CST)
1215 {
1216 FIXED_VALUE_TYPE f1;
1217 FIXED_VALUE_TYPE f2;
1218 FIXED_VALUE_TYPE result;
1219 tree t, type;
1220 int sat_p;
1221 bool overflow_p;
1222
1223 /* The following codes are handled by fixed_arithmetic. */
1224 switch (code)
1225 {
1226 case PLUS_EXPR:
1227 case MINUS_EXPR:
1228 case MULT_EXPR:
1229 case TRUNC_DIV_EXPR:
1230 if (TREE_CODE (arg2) != FIXED_CST)
1231 return NULL_TREE;
1232 f2 = TREE_FIXED_CST (arg2);
1233 break;
1234
1235 case LSHIFT_EXPR:
1236 case RSHIFT_EXPR:
1237 {
1238 if (TREE_CODE (arg2) != INTEGER_CST)
1239 return NULL_TREE;
1240 wide_int w2 = arg2;
1241 f2.data.high = w2.elt (1);
1242 f2.data.low = w2.elt (0);
1243 f2.mode = SImode;
1244 }
1245 break;
1246
1247 default:
1248 return NULL_TREE;
1249 }
1250
1251 f1 = TREE_FIXED_CST (arg1);
1252 type = TREE_TYPE (arg1);
1253 sat_p = TYPE_SATURATING (type);
1254 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1255 t = build_fixed (type, result);
1256 /* Propagate overflow flags. */
1257 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1258 TREE_OVERFLOW (t) = 1;
1259 return t;
1260 }
1261
1262 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1263 {
1264 tree type = TREE_TYPE (arg1);
1265 tree r1 = TREE_REALPART (arg1);
1266 tree i1 = TREE_IMAGPART (arg1);
1267 tree r2 = TREE_REALPART (arg2);
1268 tree i2 = TREE_IMAGPART (arg2);
1269 tree real, imag;
1270
1271 switch (code)
1272 {
1273 case PLUS_EXPR:
1274 case MINUS_EXPR:
1275 real = const_binop (code, r1, r2);
1276 imag = const_binop (code, i1, i2);
1277 break;
1278
1279 case MULT_EXPR:
1280 if (COMPLEX_FLOAT_TYPE_P (type))
1281 return do_mpc_arg2 (arg1, arg2, type,
1282 /* do_nonfinite= */ folding_initializer,
1283 mpc_mul);
1284
1285 real = const_binop (MINUS_EXPR,
1286 const_binop (MULT_EXPR, r1, r2),
1287 const_binop (MULT_EXPR, i1, i2));
1288 imag = const_binop (PLUS_EXPR,
1289 const_binop (MULT_EXPR, r1, i2),
1290 const_binop (MULT_EXPR, i1, r2));
1291 break;
1292
1293 case RDIV_EXPR:
1294 if (COMPLEX_FLOAT_TYPE_P (type))
1295 return do_mpc_arg2 (arg1, arg2, type,
1296 /* do_nonfinite= */ folding_initializer,
1297 mpc_div);
1298 /* Fallthru ... */
1299 case TRUNC_DIV_EXPR:
1300 case CEIL_DIV_EXPR:
1301 case FLOOR_DIV_EXPR:
1302 case ROUND_DIV_EXPR:
1303 if (flag_complex_method == 0)
1304 {
1305 /* Keep this algorithm in sync with
1306 tree-complex.c:expand_complex_div_straight().
1307
1308 Expand complex division to scalars, straightforward algorithm.
1309 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1310 t = br*br + bi*bi
1311 */
1312 tree magsquared
1313 = const_binop (PLUS_EXPR,
1314 const_binop (MULT_EXPR, r2, r2),
1315 const_binop (MULT_EXPR, i2, i2));
1316 tree t1
1317 = const_binop (PLUS_EXPR,
1318 const_binop (MULT_EXPR, r1, r2),
1319 const_binop (MULT_EXPR, i1, i2));
1320 tree t2
1321 = const_binop (MINUS_EXPR,
1322 const_binop (MULT_EXPR, i1, r2),
1323 const_binop (MULT_EXPR, r1, i2));
1324
1325 real = const_binop (code, t1, magsquared);
1326 imag = const_binop (code, t2, magsquared);
1327 }
1328 else
1329 {
1330 /* Keep this algorithm in sync with
1331 tree-complex.c:expand_complex_div_wide().
1332
1333 Expand complex division to scalars, modified algorithm to minimize
1334 overflow with wide input ranges. */
1335 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1336 fold_abs_const (r2, TREE_TYPE (type)),
1337 fold_abs_const (i2, TREE_TYPE (type)));
1338
1339 if (integer_nonzerop (compare))
1340 {
1341 /* In the TRUE branch, we compute
1342 ratio = br/bi;
1343 div = (br * ratio) + bi;
1344 tr = (ar * ratio) + ai;
1345 ti = (ai * ratio) - ar;
1346 tr = tr / div;
1347 ti = ti / div; */
1348 tree ratio = const_binop (code, r2, i2);
1349 tree div = const_binop (PLUS_EXPR, i2,
1350 const_binop (MULT_EXPR, r2, ratio));
1351 real = const_binop (MULT_EXPR, r1, ratio);
1352 real = const_binop (PLUS_EXPR, real, i1);
1353 real = const_binop (code, real, div);
1354
1355 imag = const_binop (MULT_EXPR, i1, ratio);
1356 imag = const_binop (MINUS_EXPR, imag, r1);
1357 imag = const_binop (code, imag, div);
1358 }
1359 else
1360 {
1361 /* In the FALSE branch, we compute
1362 ratio = d/c;
1363 divisor = (d * ratio) + c;
1364 tr = (b * ratio) + a;
1365 ti = b - (a * ratio);
1366 tr = tr / div;
1367 ti = ti / div; */
1368 tree ratio = const_binop (code, i2, r2);
1369 tree div = const_binop (PLUS_EXPR, r2,
1370 const_binop (MULT_EXPR, i2, ratio));
1371
1372 real = const_binop (MULT_EXPR, i1, ratio);
1373 real = const_binop (PLUS_EXPR, real, r1);
1374 real = const_binop (code, real, div);
1375
1376 imag = const_binop (MULT_EXPR, r1, ratio);
1377 imag = const_binop (MINUS_EXPR, i1, imag);
1378 imag = const_binop (code, imag, div);
1379 }
1380 }
1381 break;
1382
1383 default:
1384 return NULL_TREE;
1385 }
1386
1387 if (real && imag)
1388 return build_complex (type, real, imag);
1389 }
1390
1391 if (TREE_CODE (arg1) == VECTOR_CST
1392 && TREE_CODE (arg2) == VECTOR_CST)
1393 {
1394 tree type = TREE_TYPE (arg1);
1395 int count = TYPE_VECTOR_SUBPARTS (type), i;
1396 tree *elts = XALLOCAVEC (tree, count);
1397
1398 for (i = 0; i < count; i++)
1399 {
1400 tree elem1 = VECTOR_CST_ELT (arg1, i);
1401 tree elem2 = VECTOR_CST_ELT (arg2, i);
1402
1403 elts[i] = const_binop (code, elem1, elem2);
1404
1405 /* It is possible that const_binop cannot handle the given
1406 code and return NULL_TREE */
1407 if (elts[i] == NULL_TREE)
1408 return NULL_TREE;
1409 }
1410
1411 return build_vector (type, elts);
1412 }
1413
1414 /* Shifts allow a scalar offset for a vector. */
1415 if (TREE_CODE (arg1) == VECTOR_CST
1416 && TREE_CODE (arg2) == INTEGER_CST)
1417 {
1418 tree type = TREE_TYPE (arg1);
1419 int count = TYPE_VECTOR_SUBPARTS (type), i;
1420 tree *elts = XALLOCAVEC (tree, count);
1421
1422 for (i = 0; i < count; i++)
1423 {
1424 tree elem1 = VECTOR_CST_ELT (arg1, i);
1425
1426 elts[i] = const_binop (code, elem1, arg2);
1427
1428 /* It is possible that const_binop cannot handle the given
1429 code and return NULL_TREE. */
1430 if (elts[i] == NULL_TREE)
1431 return NULL_TREE;
1432 }
1433
1434 return build_vector (type, elts);
1435 }
1436 return NULL_TREE;
1437 }
1438
1439 /* Overload that adds a TYPE parameter to be able to dispatch
1440 to fold_relational_const. */
1441
1442 tree
1443 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1444 {
1445 if (TREE_CODE_CLASS (code) == tcc_comparison)
1446 return fold_relational_const (code, type, arg1, arg2);
1447
1448 /* ??? Until we make the const_binop worker take the type of the
1449 result as argument put those cases that need it here. */
1450 switch (code)
1451 {
1452 case COMPLEX_EXPR:
1453 if ((TREE_CODE (arg1) == REAL_CST
1454 && TREE_CODE (arg2) == REAL_CST)
1455 || (TREE_CODE (arg1) == INTEGER_CST
1456 && TREE_CODE (arg2) == INTEGER_CST))
1457 return build_complex (type, arg1, arg2);
1458 return NULL_TREE;
1459
1460 case VEC_PACK_TRUNC_EXPR:
1461 case VEC_PACK_FIX_TRUNC_EXPR:
1462 {
1463 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1464 tree *elts;
1465
1466 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts / 2
1467 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts / 2);
1468 if (TREE_CODE (arg1) != VECTOR_CST
1469 || TREE_CODE (arg2) != VECTOR_CST)
1470 return NULL_TREE;
1471
1472 elts = XALLOCAVEC (tree, nelts);
1473 if (!vec_cst_ctor_to_array (arg1, elts)
1474 || !vec_cst_ctor_to_array (arg2, elts + nelts / 2))
1475 return NULL_TREE;
1476
1477 for (i = 0; i < nelts; i++)
1478 {
1479 elts[i] = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1480 ? NOP_EXPR : FIX_TRUNC_EXPR,
1481 TREE_TYPE (type), elts[i]);
1482 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1483 return NULL_TREE;
1484 }
1485
1486 return build_vector (type, elts);
1487 }
1488
1489 case VEC_WIDEN_MULT_LO_EXPR:
1490 case VEC_WIDEN_MULT_HI_EXPR:
1491 case VEC_WIDEN_MULT_EVEN_EXPR:
1492 case VEC_WIDEN_MULT_ODD_EXPR:
1493 {
1494 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type);
1495 unsigned int out, ofs, scale;
1496 tree *elts;
1497
1498 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts * 2
1499 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts * 2);
1500 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1501 return NULL_TREE;
1502
1503 elts = XALLOCAVEC (tree, nelts * 4);
1504 if (!vec_cst_ctor_to_array (arg1, elts)
1505 || !vec_cst_ctor_to_array (arg2, elts + nelts * 2))
1506 return NULL_TREE;
1507
1508 if (code == VEC_WIDEN_MULT_LO_EXPR)
1509 scale = 0, ofs = BYTES_BIG_ENDIAN ? nelts : 0;
1510 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1511 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : nelts;
1512 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1513 scale = 1, ofs = 0;
1514 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1515 scale = 1, ofs = 1;
1516
1517 for (out = 0; out < nelts; out++)
1518 {
1519 unsigned int in1 = (out << scale) + ofs;
1520 unsigned int in2 = in1 + nelts * 2;
1521 tree t1, t2;
1522
1523 t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in1]);
1524 t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in2]);
1525
1526 if (t1 == NULL_TREE || t2 == NULL_TREE)
1527 return NULL_TREE;
1528 elts[out] = const_binop (MULT_EXPR, t1, t2);
1529 if (elts[out] == NULL_TREE || !CONSTANT_CLASS_P (elts[out]))
1530 return NULL_TREE;
1531 }
1532
1533 return build_vector (type, elts);
1534 }
1535
1536 default:;
1537 }
1538
1539 if (TREE_CODE_CLASS (code) != tcc_binary)
1540 return NULL_TREE;
1541
1542 /* Make sure type and arg0 have the same saturating flag. */
1543 gcc_checking_assert (TYPE_SATURATING (type)
1544 == TYPE_SATURATING (TREE_TYPE (arg1)));
1545
1546 return const_binop (code, arg1, arg2);
1547 }
1548
1549 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1550 Return zero if computing the constants is not possible. */
1551
1552 tree
1553 const_unop (enum tree_code code, tree type, tree arg0)
1554 {
1555 /* Don't perform the operation, other than NEGATE and ABS, if
1556 flag_signaling_nans is on and the operand is a signaling NaN. */
1557 if (TREE_CODE (arg0) == REAL_CST
1558 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
1559 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1560 && code != NEGATE_EXPR
1561 && code != ABS_EXPR)
1562 return NULL_TREE;
1563
1564 switch (code)
1565 {
1566 CASE_CONVERT:
1567 case FLOAT_EXPR:
1568 case FIX_TRUNC_EXPR:
1569 case FIXED_CONVERT_EXPR:
1570 return fold_convert_const (code, type, arg0);
1571
1572 case ADDR_SPACE_CONVERT_EXPR:
1573 /* If the source address is 0, and the source address space
1574 cannot have a valid object at 0, fold to dest type null. */
1575 if (integer_zerop (arg0)
1576 && !(targetm.addr_space.zero_address_valid
1577 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))))))
1578 return fold_convert_const (code, type, arg0);
1579 break;
1580
1581 case VIEW_CONVERT_EXPR:
1582 return fold_view_convert_expr (type, arg0);
1583
1584 case NEGATE_EXPR:
1585 {
1586 /* Can't call fold_negate_const directly here as that doesn't
1587 handle all cases and we might not be able to negate some
1588 constants. */
1589 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1590 if (tem && CONSTANT_CLASS_P (tem))
1591 return tem;
1592 break;
1593 }
1594
1595 case ABS_EXPR:
1596 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1597 return fold_abs_const (arg0, type);
1598 break;
1599
1600 case CONJ_EXPR:
1601 if (TREE_CODE (arg0) == COMPLEX_CST)
1602 {
1603 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1604 TREE_TYPE (type));
1605 return build_complex (type, TREE_REALPART (arg0), ipart);
1606 }
1607 break;
1608
1609 case BIT_NOT_EXPR:
1610 if (TREE_CODE (arg0) == INTEGER_CST)
1611 return fold_not_const (arg0, type);
1612 /* Perform BIT_NOT_EXPR on each element individually. */
1613 else if (TREE_CODE (arg0) == VECTOR_CST)
1614 {
1615 tree *elements;
1616 tree elem;
1617 unsigned count = VECTOR_CST_NELTS (arg0), i;
1618
1619 elements = XALLOCAVEC (tree, count);
1620 for (i = 0; i < count; i++)
1621 {
1622 elem = VECTOR_CST_ELT (arg0, i);
1623 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1624 if (elem == NULL_TREE)
1625 break;
1626 elements[i] = elem;
1627 }
1628 if (i == count)
1629 return build_vector (type, elements);
1630 }
1631 break;
1632
1633 case TRUTH_NOT_EXPR:
1634 if (TREE_CODE (arg0) == INTEGER_CST)
1635 return constant_boolean_node (integer_zerop (arg0), type);
1636 break;
1637
1638 case REALPART_EXPR:
1639 if (TREE_CODE (arg0) == COMPLEX_CST)
1640 return fold_convert (type, TREE_REALPART (arg0));
1641 break;
1642
1643 case IMAGPART_EXPR:
1644 if (TREE_CODE (arg0) == COMPLEX_CST)
1645 return fold_convert (type, TREE_IMAGPART (arg0));
1646 break;
1647
1648 case VEC_UNPACK_LO_EXPR:
1649 case VEC_UNPACK_HI_EXPR:
1650 case VEC_UNPACK_FLOAT_LO_EXPR:
1651 case VEC_UNPACK_FLOAT_HI_EXPR:
1652 {
1653 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1654 tree *elts;
1655 enum tree_code subcode;
1656
1657 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts * 2);
1658 if (TREE_CODE (arg0) != VECTOR_CST)
1659 return NULL_TREE;
1660
1661 elts = XALLOCAVEC (tree, nelts * 2);
1662 if (!vec_cst_ctor_to_array (arg0, elts))
1663 return NULL_TREE;
1664
1665 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1666 || code == VEC_UNPACK_FLOAT_LO_EXPR))
1667 elts += nelts;
1668
1669 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1670 subcode = NOP_EXPR;
1671 else
1672 subcode = FLOAT_EXPR;
1673
1674 for (i = 0; i < nelts; i++)
1675 {
1676 elts[i] = fold_convert_const (subcode, TREE_TYPE (type), elts[i]);
1677 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1678 return NULL_TREE;
1679 }
1680
1681 return build_vector (type, elts);
1682 }
1683
1684 case REDUC_MIN_EXPR:
1685 case REDUC_MAX_EXPR:
1686 case REDUC_PLUS_EXPR:
1687 {
1688 unsigned int nelts, i;
1689 tree *elts;
1690 enum tree_code subcode;
1691
1692 if (TREE_CODE (arg0) != VECTOR_CST)
1693 return NULL_TREE;
1694 nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
1695
1696 elts = XALLOCAVEC (tree, nelts);
1697 if (!vec_cst_ctor_to_array (arg0, elts))
1698 return NULL_TREE;
1699
1700 switch (code)
1701 {
1702 case REDUC_MIN_EXPR: subcode = MIN_EXPR; break;
1703 case REDUC_MAX_EXPR: subcode = MAX_EXPR; break;
1704 case REDUC_PLUS_EXPR: subcode = PLUS_EXPR; break;
1705 default: gcc_unreachable ();
1706 }
1707
1708 for (i = 1; i < nelts; i++)
1709 {
1710 elts[0] = const_binop (subcode, elts[0], elts[i]);
1711 if (elts[0] == NULL_TREE || !CONSTANT_CLASS_P (elts[0]))
1712 return NULL_TREE;
1713 }
1714
1715 return elts[0];
1716 }
1717
1718 default:
1719 break;
1720 }
1721
1722 return NULL_TREE;
1723 }
1724
1725 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1726 indicates which particular sizetype to create. */
1727
1728 tree
1729 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1730 {
1731 return build_int_cst (sizetype_tab[(int) kind], number);
1732 }
1733 \f
1734 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1735 is a tree code. The type of the result is taken from the operands.
1736 Both must be equivalent integer types, ala int_binop_types_match_p.
1737 If the operands are constant, so is the result. */
1738
1739 tree
1740 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1741 {
1742 tree type = TREE_TYPE (arg0);
1743
1744 if (arg0 == error_mark_node || arg1 == error_mark_node)
1745 return error_mark_node;
1746
1747 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1748 TREE_TYPE (arg1)));
1749
1750 /* Handle the special case of two integer constants faster. */
1751 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1752 {
1753 /* And some specific cases even faster than that. */
1754 if (code == PLUS_EXPR)
1755 {
1756 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1757 return arg1;
1758 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1759 return arg0;
1760 }
1761 else if (code == MINUS_EXPR)
1762 {
1763 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1764 return arg0;
1765 }
1766 else if (code == MULT_EXPR)
1767 {
1768 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1769 return arg1;
1770 }
1771
1772 /* Handle general case of two integer constants. For sizetype
1773 constant calculations we always want to know about overflow,
1774 even in the unsigned case. */
1775 return int_const_binop_1 (code, arg0, arg1, -1);
1776 }
1777
1778 return fold_build2_loc (loc, code, type, arg0, arg1);
1779 }
1780
1781 /* Given two values, either both of sizetype or both of bitsizetype,
1782 compute the difference between the two values. Return the value
1783 in signed type corresponding to the type of the operands. */
1784
1785 tree
1786 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1787 {
1788 tree type = TREE_TYPE (arg0);
1789 tree ctype;
1790
1791 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1792 TREE_TYPE (arg1)));
1793
1794 /* If the type is already signed, just do the simple thing. */
1795 if (!TYPE_UNSIGNED (type))
1796 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1797
1798 if (type == sizetype)
1799 ctype = ssizetype;
1800 else if (type == bitsizetype)
1801 ctype = sbitsizetype;
1802 else
1803 ctype = signed_type_for (type);
1804
1805 /* If either operand is not a constant, do the conversions to the signed
1806 type and subtract. The hardware will do the right thing with any
1807 overflow in the subtraction. */
1808 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1809 return size_binop_loc (loc, MINUS_EXPR,
1810 fold_convert_loc (loc, ctype, arg0),
1811 fold_convert_loc (loc, ctype, arg1));
1812
1813 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1814 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1815 overflow) and negate (which can't either). Special-case a result
1816 of zero while we're here. */
1817 if (tree_int_cst_equal (arg0, arg1))
1818 return build_int_cst (ctype, 0);
1819 else if (tree_int_cst_lt (arg1, arg0))
1820 return fold_convert_loc (loc, ctype,
1821 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1822 else
1823 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1824 fold_convert_loc (loc, ctype,
1825 size_binop_loc (loc,
1826 MINUS_EXPR,
1827 arg1, arg0)));
1828 }
1829 \f
1830 /* A subroutine of fold_convert_const handling conversions of an
1831 INTEGER_CST to another integer type. */
1832
1833 static tree
1834 fold_convert_const_int_from_int (tree type, const_tree arg1)
1835 {
1836 /* Given an integer constant, make new constant with new type,
1837 appropriately sign-extended or truncated. Use widest_int
1838 so that any extension is done according ARG1's type. */
1839 return force_fit_type (type, wi::to_widest (arg1),
1840 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1841 TREE_OVERFLOW (arg1));
1842 }
1843
1844 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1845 to an integer type. */
1846
1847 static tree
1848 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1849 {
1850 bool overflow = false;
1851 tree t;
1852
1853 /* The following code implements the floating point to integer
1854 conversion rules required by the Java Language Specification,
1855 that IEEE NaNs are mapped to zero and values that overflow
1856 the target precision saturate, i.e. values greater than
1857 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1858 are mapped to INT_MIN. These semantics are allowed by the
1859 C and C++ standards that simply state that the behavior of
1860 FP-to-integer conversion is unspecified upon overflow. */
1861
1862 wide_int val;
1863 REAL_VALUE_TYPE r;
1864 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1865
1866 switch (code)
1867 {
1868 case FIX_TRUNC_EXPR:
1869 real_trunc (&r, VOIDmode, &x);
1870 break;
1871
1872 default:
1873 gcc_unreachable ();
1874 }
1875
1876 /* If R is NaN, return zero and show we have an overflow. */
1877 if (REAL_VALUE_ISNAN (r))
1878 {
1879 overflow = true;
1880 val = wi::zero (TYPE_PRECISION (type));
1881 }
1882
1883 /* See if R is less than the lower bound or greater than the
1884 upper bound. */
1885
1886 if (! overflow)
1887 {
1888 tree lt = TYPE_MIN_VALUE (type);
1889 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1890 if (real_less (&r, &l))
1891 {
1892 overflow = true;
1893 val = lt;
1894 }
1895 }
1896
1897 if (! overflow)
1898 {
1899 tree ut = TYPE_MAX_VALUE (type);
1900 if (ut)
1901 {
1902 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1903 if (real_less (&u, &r))
1904 {
1905 overflow = true;
1906 val = ut;
1907 }
1908 }
1909 }
1910
1911 if (! overflow)
1912 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1913
1914 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1915 return t;
1916 }
1917
1918 /* A subroutine of fold_convert_const handling conversions of a
1919 FIXED_CST to an integer type. */
1920
1921 static tree
1922 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1923 {
1924 tree t;
1925 double_int temp, temp_trunc;
1926 unsigned int mode;
1927
1928 /* Right shift FIXED_CST to temp by fbit. */
1929 temp = TREE_FIXED_CST (arg1).data;
1930 mode = TREE_FIXED_CST (arg1).mode;
1931 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1932 {
1933 temp = temp.rshift (GET_MODE_FBIT (mode),
1934 HOST_BITS_PER_DOUBLE_INT,
1935 SIGNED_FIXED_POINT_MODE_P (mode));
1936
1937 /* Left shift temp to temp_trunc by fbit. */
1938 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1939 HOST_BITS_PER_DOUBLE_INT,
1940 SIGNED_FIXED_POINT_MODE_P (mode));
1941 }
1942 else
1943 {
1944 temp = double_int_zero;
1945 temp_trunc = double_int_zero;
1946 }
1947
1948 /* If FIXED_CST is negative, we need to round the value toward 0.
1949 By checking if the fractional bits are not zero to add 1 to temp. */
1950 if (SIGNED_FIXED_POINT_MODE_P (mode)
1951 && temp_trunc.is_negative ()
1952 && TREE_FIXED_CST (arg1).data != temp_trunc)
1953 temp += double_int_one;
1954
1955 /* Given a fixed-point constant, make new constant with new type,
1956 appropriately sign-extended or truncated. */
1957 t = force_fit_type (type, temp, -1,
1958 (temp.is_negative ()
1959 && (TYPE_UNSIGNED (type)
1960 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1961 | TREE_OVERFLOW (arg1));
1962
1963 return t;
1964 }
1965
1966 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1967 to another floating point type. */
1968
1969 static tree
1970 fold_convert_const_real_from_real (tree type, const_tree arg1)
1971 {
1972 REAL_VALUE_TYPE value;
1973 tree t;
1974
1975 /* Don't perform the operation if flag_signaling_nans is on
1976 and the operand is a signaling NaN. */
1977 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
1978 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))
1979 return NULL_TREE;
1980
1981 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1982 t = build_real (type, value);
1983
1984 /* If converting an infinity or NAN to a representation that doesn't
1985 have one, set the overflow bit so that we can produce some kind of
1986 error message at the appropriate point if necessary. It's not the
1987 most user-friendly message, but it's better than nothing. */
1988 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
1989 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
1990 TREE_OVERFLOW (t) = 1;
1991 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
1992 && !MODE_HAS_NANS (TYPE_MODE (type)))
1993 TREE_OVERFLOW (t) = 1;
1994 /* Regular overflow, conversion produced an infinity in a mode that
1995 can't represent them. */
1996 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
1997 && REAL_VALUE_ISINF (value)
1998 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
1999 TREE_OVERFLOW (t) = 1;
2000 else
2001 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2002 return t;
2003 }
2004
2005 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2006 to a floating point type. */
2007
2008 static tree
2009 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2010 {
2011 REAL_VALUE_TYPE value;
2012 tree t;
2013
2014 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
2015 t = build_real (type, value);
2016
2017 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2018 return t;
2019 }
2020
2021 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2022 to another fixed-point type. */
2023
2024 static tree
2025 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2026 {
2027 FIXED_VALUE_TYPE value;
2028 tree t;
2029 bool overflow_p;
2030
2031 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2032 TYPE_SATURATING (type));
2033 t = build_fixed (type, value);
2034
2035 /* Propagate overflow flags. */
2036 if (overflow_p | TREE_OVERFLOW (arg1))
2037 TREE_OVERFLOW (t) = 1;
2038 return t;
2039 }
2040
2041 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2042 to a fixed-point type. */
2043
2044 static tree
2045 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2046 {
2047 FIXED_VALUE_TYPE value;
2048 tree t;
2049 bool overflow_p;
2050 double_int di;
2051
2052 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2053
2054 di.low = TREE_INT_CST_ELT (arg1, 0);
2055 if (TREE_INT_CST_NUNITS (arg1) == 1)
2056 di.high = (HOST_WIDE_INT) di.low < 0 ? (HOST_WIDE_INT) -1 : 0;
2057 else
2058 di.high = TREE_INT_CST_ELT (arg1, 1);
2059
2060 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type), di,
2061 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2062 TYPE_SATURATING (type));
2063 t = build_fixed (type, value);
2064
2065 /* Propagate overflow flags. */
2066 if (overflow_p | TREE_OVERFLOW (arg1))
2067 TREE_OVERFLOW (t) = 1;
2068 return t;
2069 }
2070
2071 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2072 to a fixed-point type. */
2073
2074 static tree
2075 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2076 {
2077 FIXED_VALUE_TYPE value;
2078 tree t;
2079 bool overflow_p;
2080
2081 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2082 &TREE_REAL_CST (arg1),
2083 TYPE_SATURATING (type));
2084 t = build_fixed (type, value);
2085
2086 /* Propagate overflow flags. */
2087 if (overflow_p | TREE_OVERFLOW (arg1))
2088 TREE_OVERFLOW (t) = 1;
2089 return t;
2090 }
2091
2092 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2093 type TYPE. If no simplification can be done return NULL_TREE. */
2094
2095 static tree
2096 fold_convert_const (enum tree_code code, tree type, tree arg1)
2097 {
2098 if (TREE_TYPE (arg1) == type)
2099 return arg1;
2100
2101 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2102 || TREE_CODE (type) == OFFSET_TYPE)
2103 {
2104 if (TREE_CODE (arg1) == INTEGER_CST)
2105 return fold_convert_const_int_from_int (type, arg1);
2106 else if (TREE_CODE (arg1) == REAL_CST)
2107 return fold_convert_const_int_from_real (code, type, arg1);
2108 else if (TREE_CODE (arg1) == FIXED_CST)
2109 return fold_convert_const_int_from_fixed (type, arg1);
2110 }
2111 else if (TREE_CODE (type) == REAL_TYPE)
2112 {
2113 if (TREE_CODE (arg1) == INTEGER_CST)
2114 return build_real_from_int_cst (type, arg1);
2115 else if (TREE_CODE (arg1) == REAL_CST)
2116 return fold_convert_const_real_from_real (type, arg1);
2117 else if (TREE_CODE (arg1) == FIXED_CST)
2118 return fold_convert_const_real_from_fixed (type, arg1);
2119 }
2120 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2121 {
2122 if (TREE_CODE (arg1) == FIXED_CST)
2123 return fold_convert_const_fixed_from_fixed (type, arg1);
2124 else if (TREE_CODE (arg1) == INTEGER_CST)
2125 return fold_convert_const_fixed_from_int (type, arg1);
2126 else if (TREE_CODE (arg1) == REAL_CST)
2127 return fold_convert_const_fixed_from_real (type, arg1);
2128 }
2129 else if (TREE_CODE (type) == VECTOR_TYPE)
2130 {
2131 if (TREE_CODE (arg1) == VECTOR_CST
2132 && TYPE_VECTOR_SUBPARTS (type) == VECTOR_CST_NELTS (arg1))
2133 {
2134 int len = TYPE_VECTOR_SUBPARTS (type);
2135 tree elttype = TREE_TYPE (type);
2136 tree *v = XALLOCAVEC (tree, len);
2137 for (int i = 0; i < len; ++i)
2138 {
2139 tree elt = VECTOR_CST_ELT (arg1, i);
2140 tree cvt = fold_convert_const (code, elttype, elt);
2141 if (cvt == NULL_TREE)
2142 return NULL_TREE;
2143 v[i] = cvt;
2144 }
2145 return build_vector (type, v);
2146 }
2147 }
2148 return NULL_TREE;
2149 }
2150
2151 /* Construct a vector of zero elements of vector type TYPE. */
2152
2153 static tree
2154 build_zero_vector (tree type)
2155 {
2156 tree t;
2157
2158 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2159 return build_vector_from_val (type, t);
2160 }
2161
2162 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2163
2164 bool
2165 fold_convertible_p (const_tree type, const_tree arg)
2166 {
2167 tree orig = TREE_TYPE (arg);
2168
2169 if (type == orig)
2170 return true;
2171
2172 if (TREE_CODE (arg) == ERROR_MARK
2173 || TREE_CODE (type) == ERROR_MARK
2174 || TREE_CODE (orig) == ERROR_MARK)
2175 return false;
2176
2177 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2178 return true;
2179
2180 switch (TREE_CODE (type))
2181 {
2182 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2183 case POINTER_TYPE: case REFERENCE_TYPE:
2184 case OFFSET_TYPE:
2185 return (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2186 || TREE_CODE (orig) == OFFSET_TYPE);
2187
2188 case REAL_TYPE:
2189 case FIXED_POINT_TYPE:
2190 case COMPLEX_TYPE:
2191 case VECTOR_TYPE:
2192 case VOID_TYPE:
2193 return TREE_CODE (type) == TREE_CODE (orig);
2194
2195 default:
2196 return false;
2197 }
2198 }
2199
2200 /* Convert expression ARG to type TYPE. Used by the middle-end for
2201 simple conversions in preference to calling the front-end's convert. */
2202
2203 tree
2204 fold_convert_loc (location_t loc, tree type, tree arg)
2205 {
2206 tree orig = TREE_TYPE (arg);
2207 tree tem;
2208
2209 if (type == orig)
2210 return arg;
2211
2212 if (TREE_CODE (arg) == ERROR_MARK
2213 || TREE_CODE (type) == ERROR_MARK
2214 || TREE_CODE (orig) == ERROR_MARK)
2215 return error_mark_node;
2216
2217 switch (TREE_CODE (type))
2218 {
2219 case POINTER_TYPE:
2220 case REFERENCE_TYPE:
2221 /* Handle conversions between pointers to different address spaces. */
2222 if (POINTER_TYPE_P (orig)
2223 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2224 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2225 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2226 /* fall through */
2227
2228 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2229 case OFFSET_TYPE:
2230 if (TREE_CODE (arg) == INTEGER_CST)
2231 {
2232 tem = fold_convert_const (NOP_EXPR, type, arg);
2233 if (tem != NULL_TREE)
2234 return tem;
2235 }
2236 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2237 || TREE_CODE (orig) == OFFSET_TYPE)
2238 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2239 if (TREE_CODE (orig) == COMPLEX_TYPE)
2240 return fold_convert_loc (loc, type,
2241 fold_build1_loc (loc, REALPART_EXPR,
2242 TREE_TYPE (orig), arg));
2243 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2244 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2245 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2246
2247 case REAL_TYPE:
2248 if (TREE_CODE (arg) == INTEGER_CST)
2249 {
2250 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2251 if (tem != NULL_TREE)
2252 return tem;
2253 }
2254 else if (TREE_CODE (arg) == REAL_CST)
2255 {
2256 tem = fold_convert_const (NOP_EXPR, type, arg);
2257 if (tem != NULL_TREE)
2258 return tem;
2259 }
2260 else if (TREE_CODE (arg) == FIXED_CST)
2261 {
2262 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2263 if (tem != NULL_TREE)
2264 return tem;
2265 }
2266
2267 switch (TREE_CODE (orig))
2268 {
2269 case INTEGER_TYPE:
2270 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2271 case POINTER_TYPE: case REFERENCE_TYPE:
2272 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2273
2274 case REAL_TYPE:
2275 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2276
2277 case FIXED_POINT_TYPE:
2278 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2279
2280 case COMPLEX_TYPE:
2281 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2282 return fold_convert_loc (loc, type, tem);
2283
2284 default:
2285 gcc_unreachable ();
2286 }
2287
2288 case FIXED_POINT_TYPE:
2289 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2290 || TREE_CODE (arg) == REAL_CST)
2291 {
2292 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2293 if (tem != NULL_TREE)
2294 goto fold_convert_exit;
2295 }
2296
2297 switch (TREE_CODE (orig))
2298 {
2299 case FIXED_POINT_TYPE:
2300 case INTEGER_TYPE:
2301 case ENUMERAL_TYPE:
2302 case BOOLEAN_TYPE:
2303 case REAL_TYPE:
2304 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2305
2306 case COMPLEX_TYPE:
2307 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2308 return fold_convert_loc (loc, type, tem);
2309
2310 default:
2311 gcc_unreachable ();
2312 }
2313
2314 case COMPLEX_TYPE:
2315 switch (TREE_CODE (orig))
2316 {
2317 case INTEGER_TYPE:
2318 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2319 case POINTER_TYPE: case REFERENCE_TYPE:
2320 case REAL_TYPE:
2321 case FIXED_POINT_TYPE:
2322 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2323 fold_convert_loc (loc, TREE_TYPE (type), arg),
2324 fold_convert_loc (loc, TREE_TYPE (type),
2325 integer_zero_node));
2326 case COMPLEX_TYPE:
2327 {
2328 tree rpart, ipart;
2329
2330 if (TREE_CODE (arg) == COMPLEX_EXPR)
2331 {
2332 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2333 TREE_OPERAND (arg, 0));
2334 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2335 TREE_OPERAND (arg, 1));
2336 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2337 }
2338
2339 arg = save_expr (arg);
2340 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2341 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2342 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2343 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2344 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2345 }
2346
2347 default:
2348 gcc_unreachable ();
2349 }
2350
2351 case VECTOR_TYPE:
2352 if (integer_zerop (arg))
2353 return build_zero_vector (type);
2354 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2355 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2356 || TREE_CODE (orig) == VECTOR_TYPE);
2357 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2358
2359 case VOID_TYPE:
2360 tem = fold_ignored_result (arg);
2361 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2362
2363 default:
2364 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2365 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2366 gcc_unreachable ();
2367 }
2368 fold_convert_exit:
2369 protected_set_expr_location_unshare (tem, loc);
2370 return tem;
2371 }
2372 \f
2373 /* Return false if expr can be assumed not to be an lvalue, true
2374 otherwise. */
2375
2376 static bool
2377 maybe_lvalue_p (const_tree x)
2378 {
2379 /* We only need to wrap lvalue tree codes. */
2380 switch (TREE_CODE (x))
2381 {
2382 case VAR_DECL:
2383 case PARM_DECL:
2384 case RESULT_DECL:
2385 case LABEL_DECL:
2386 case FUNCTION_DECL:
2387 case SSA_NAME:
2388
2389 case COMPONENT_REF:
2390 case MEM_REF:
2391 case INDIRECT_REF:
2392 case ARRAY_REF:
2393 case ARRAY_RANGE_REF:
2394 case BIT_FIELD_REF:
2395 case OBJ_TYPE_REF:
2396
2397 case REALPART_EXPR:
2398 case IMAGPART_EXPR:
2399 case PREINCREMENT_EXPR:
2400 case PREDECREMENT_EXPR:
2401 case SAVE_EXPR:
2402 case TRY_CATCH_EXPR:
2403 case WITH_CLEANUP_EXPR:
2404 case COMPOUND_EXPR:
2405 case MODIFY_EXPR:
2406 case TARGET_EXPR:
2407 case COND_EXPR:
2408 case BIND_EXPR:
2409 break;
2410
2411 default:
2412 /* Assume the worst for front-end tree codes. */
2413 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2414 break;
2415 return false;
2416 }
2417
2418 return true;
2419 }
2420
2421 /* Return an expr equal to X but certainly not valid as an lvalue. */
2422
2423 tree
2424 non_lvalue_loc (location_t loc, tree x)
2425 {
2426 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2427 us. */
2428 if (in_gimple_form)
2429 return x;
2430
2431 if (! maybe_lvalue_p (x))
2432 return x;
2433 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2434 }
2435
2436 /* When pedantic, return an expr equal to X but certainly not valid as a
2437 pedantic lvalue. Otherwise, return X. */
2438
2439 static tree
2440 pedantic_non_lvalue_loc (location_t loc, tree x)
2441 {
2442 return protected_set_expr_location_unshare (x, loc);
2443 }
2444 \f
2445 /* Given a tree comparison code, return the code that is the logical inverse.
2446 It is generally not safe to do this for floating-point comparisons, except
2447 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2448 ERROR_MARK in this case. */
2449
2450 enum tree_code
2451 invert_tree_comparison (enum tree_code code, bool honor_nans)
2452 {
2453 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2454 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2455 return ERROR_MARK;
2456
2457 switch (code)
2458 {
2459 case EQ_EXPR:
2460 return NE_EXPR;
2461 case NE_EXPR:
2462 return EQ_EXPR;
2463 case GT_EXPR:
2464 return honor_nans ? UNLE_EXPR : LE_EXPR;
2465 case GE_EXPR:
2466 return honor_nans ? UNLT_EXPR : LT_EXPR;
2467 case LT_EXPR:
2468 return honor_nans ? UNGE_EXPR : GE_EXPR;
2469 case LE_EXPR:
2470 return honor_nans ? UNGT_EXPR : GT_EXPR;
2471 case LTGT_EXPR:
2472 return UNEQ_EXPR;
2473 case UNEQ_EXPR:
2474 return LTGT_EXPR;
2475 case UNGT_EXPR:
2476 return LE_EXPR;
2477 case UNGE_EXPR:
2478 return LT_EXPR;
2479 case UNLT_EXPR:
2480 return GE_EXPR;
2481 case UNLE_EXPR:
2482 return GT_EXPR;
2483 case ORDERED_EXPR:
2484 return UNORDERED_EXPR;
2485 case UNORDERED_EXPR:
2486 return ORDERED_EXPR;
2487 default:
2488 gcc_unreachable ();
2489 }
2490 }
2491
2492 /* Similar, but return the comparison that results if the operands are
2493 swapped. This is safe for floating-point. */
2494
2495 enum tree_code
2496 swap_tree_comparison (enum tree_code code)
2497 {
2498 switch (code)
2499 {
2500 case EQ_EXPR:
2501 case NE_EXPR:
2502 case ORDERED_EXPR:
2503 case UNORDERED_EXPR:
2504 case LTGT_EXPR:
2505 case UNEQ_EXPR:
2506 return code;
2507 case GT_EXPR:
2508 return LT_EXPR;
2509 case GE_EXPR:
2510 return LE_EXPR;
2511 case LT_EXPR:
2512 return GT_EXPR;
2513 case LE_EXPR:
2514 return GE_EXPR;
2515 case UNGT_EXPR:
2516 return UNLT_EXPR;
2517 case UNGE_EXPR:
2518 return UNLE_EXPR;
2519 case UNLT_EXPR:
2520 return UNGT_EXPR;
2521 case UNLE_EXPR:
2522 return UNGE_EXPR;
2523 default:
2524 gcc_unreachable ();
2525 }
2526 }
2527
2528
2529 /* Convert a comparison tree code from an enum tree_code representation
2530 into a compcode bit-based encoding. This function is the inverse of
2531 compcode_to_comparison. */
2532
2533 static enum comparison_code
2534 comparison_to_compcode (enum tree_code code)
2535 {
2536 switch (code)
2537 {
2538 case LT_EXPR:
2539 return COMPCODE_LT;
2540 case EQ_EXPR:
2541 return COMPCODE_EQ;
2542 case LE_EXPR:
2543 return COMPCODE_LE;
2544 case GT_EXPR:
2545 return COMPCODE_GT;
2546 case NE_EXPR:
2547 return COMPCODE_NE;
2548 case GE_EXPR:
2549 return COMPCODE_GE;
2550 case ORDERED_EXPR:
2551 return COMPCODE_ORD;
2552 case UNORDERED_EXPR:
2553 return COMPCODE_UNORD;
2554 case UNLT_EXPR:
2555 return COMPCODE_UNLT;
2556 case UNEQ_EXPR:
2557 return COMPCODE_UNEQ;
2558 case UNLE_EXPR:
2559 return COMPCODE_UNLE;
2560 case UNGT_EXPR:
2561 return COMPCODE_UNGT;
2562 case LTGT_EXPR:
2563 return COMPCODE_LTGT;
2564 case UNGE_EXPR:
2565 return COMPCODE_UNGE;
2566 default:
2567 gcc_unreachable ();
2568 }
2569 }
2570
2571 /* Convert a compcode bit-based encoding of a comparison operator back
2572 to GCC's enum tree_code representation. This function is the
2573 inverse of comparison_to_compcode. */
2574
2575 static enum tree_code
2576 compcode_to_comparison (enum comparison_code code)
2577 {
2578 switch (code)
2579 {
2580 case COMPCODE_LT:
2581 return LT_EXPR;
2582 case COMPCODE_EQ:
2583 return EQ_EXPR;
2584 case COMPCODE_LE:
2585 return LE_EXPR;
2586 case COMPCODE_GT:
2587 return GT_EXPR;
2588 case COMPCODE_NE:
2589 return NE_EXPR;
2590 case COMPCODE_GE:
2591 return GE_EXPR;
2592 case COMPCODE_ORD:
2593 return ORDERED_EXPR;
2594 case COMPCODE_UNORD:
2595 return UNORDERED_EXPR;
2596 case COMPCODE_UNLT:
2597 return UNLT_EXPR;
2598 case COMPCODE_UNEQ:
2599 return UNEQ_EXPR;
2600 case COMPCODE_UNLE:
2601 return UNLE_EXPR;
2602 case COMPCODE_UNGT:
2603 return UNGT_EXPR;
2604 case COMPCODE_LTGT:
2605 return LTGT_EXPR;
2606 case COMPCODE_UNGE:
2607 return UNGE_EXPR;
2608 default:
2609 gcc_unreachable ();
2610 }
2611 }
2612
2613 /* Return a tree for the comparison which is the combination of
2614 doing the AND or OR (depending on CODE) of the two operations LCODE
2615 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2616 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2617 if this makes the transformation invalid. */
2618
2619 tree
2620 combine_comparisons (location_t loc,
2621 enum tree_code code, enum tree_code lcode,
2622 enum tree_code rcode, tree truth_type,
2623 tree ll_arg, tree lr_arg)
2624 {
2625 bool honor_nans = HONOR_NANS (ll_arg);
2626 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2627 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2628 int compcode;
2629
2630 switch (code)
2631 {
2632 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2633 compcode = lcompcode & rcompcode;
2634 break;
2635
2636 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2637 compcode = lcompcode | rcompcode;
2638 break;
2639
2640 default:
2641 return NULL_TREE;
2642 }
2643
2644 if (!honor_nans)
2645 {
2646 /* Eliminate unordered comparisons, as well as LTGT and ORD
2647 which are not used unless the mode has NaNs. */
2648 compcode &= ~COMPCODE_UNORD;
2649 if (compcode == COMPCODE_LTGT)
2650 compcode = COMPCODE_NE;
2651 else if (compcode == COMPCODE_ORD)
2652 compcode = COMPCODE_TRUE;
2653 }
2654 else if (flag_trapping_math)
2655 {
2656 /* Check that the original operation and the optimized ones will trap
2657 under the same condition. */
2658 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2659 && (lcompcode != COMPCODE_EQ)
2660 && (lcompcode != COMPCODE_ORD);
2661 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2662 && (rcompcode != COMPCODE_EQ)
2663 && (rcompcode != COMPCODE_ORD);
2664 bool trap = (compcode & COMPCODE_UNORD) == 0
2665 && (compcode != COMPCODE_EQ)
2666 && (compcode != COMPCODE_ORD);
2667
2668 /* In a short-circuited boolean expression the LHS might be
2669 such that the RHS, if evaluated, will never trap. For
2670 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2671 if neither x nor y is NaN. (This is a mixed blessing: for
2672 example, the expression above will never trap, hence
2673 optimizing it to x < y would be invalid). */
2674 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2675 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2676 rtrap = false;
2677
2678 /* If the comparison was short-circuited, and only the RHS
2679 trapped, we may now generate a spurious trap. */
2680 if (rtrap && !ltrap
2681 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2682 return NULL_TREE;
2683
2684 /* If we changed the conditions that cause a trap, we lose. */
2685 if ((ltrap || rtrap) != trap)
2686 return NULL_TREE;
2687 }
2688
2689 if (compcode == COMPCODE_TRUE)
2690 return constant_boolean_node (true, truth_type);
2691 else if (compcode == COMPCODE_FALSE)
2692 return constant_boolean_node (false, truth_type);
2693 else
2694 {
2695 enum tree_code tcode;
2696
2697 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2698 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2699 }
2700 }
2701 \f
2702 /* Return nonzero if two operands (typically of the same tree node)
2703 are necessarily equal. FLAGS modifies behavior as follows:
2704
2705 If OEP_ONLY_CONST is set, only return nonzero for constants.
2706 This function tests whether the operands are indistinguishable;
2707 it does not test whether they are equal using C's == operation.
2708 The distinction is important for IEEE floating point, because
2709 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2710 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2711
2712 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2713 even though it may hold multiple values during a function.
2714 This is because a GCC tree node guarantees that nothing else is
2715 executed between the evaluation of its "operands" (which may often
2716 be evaluated in arbitrary order). Hence if the operands themselves
2717 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2718 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2719 unset means assuming isochronic (or instantaneous) tree equivalence.
2720 Unless comparing arbitrary expression trees, such as from different
2721 statements, this flag can usually be left unset.
2722
2723 If OEP_PURE_SAME is set, then pure functions with identical arguments
2724 are considered the same. It is used when the caller has other ways
2725 to ensure that global memory is unchanged in between.
2726
2727 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2728 not values of expressions.
2729
2730 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2731 any operand with side effect. This is unnecesarily conservative in the
2732 case we know that arg0 and arg1 are in disjoint code paths (such as in
2733 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2734 addresses with TREE_CONSTANT flag set so we know that &var == &var
2735 even if var is volatile. */
2736
2737 int
2738 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2739 {
2740 /* If either is ERROR_MARK, they aren't equal. */
2741 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2742 || TREE_TYPE (arg0) == error_mark_node
2743 || TREE_TYPE (arg1) == error_mark_node)
2744 return 0;
2745
2746 /* Similar, if either does not have a type (like a released SSA name),
2747 they aren't equal. */
2748 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2749 return 0;
2750
2751 /* We cannot consider pointers to different address space equal. */
2752 if (POINTER_TYPE_P (TREE_TYPE (arg0))
2753 && POINTER_TYPE_P (TREE_TYPE (arg1))
2754 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2755 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2756 return 0;
2757
2758 /* Check equality of integer constants before bailing out due to
2759 precision differences. */
2760 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2761 {
2762 /* Address of INTEGER_CST is not defined; check that we did not forget
2763 to drop the OEP_ADDRESS_OF flags. */
2764 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2765 return tree_int_cst_equal (arg0, arg1);
2766 }
2767
2768 if (!(flags & OEP_ADDRESS_OF))
2769 {
2770 /* If both types don't have the same signedness, then we can't consider
2771 them equal. We must check this before the STRIP_NOPS calls
2772 because they may change the signedness of the arguments. As pointers
2773 strictly don't have a signedness, require either two pointers or
2774 two non-pointers as well. */
2775 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2776 || POINTER_TYPE_P (TREE_TYPE (arg0))
2777 != POINTER_TYPE_P (TREE_TYPE (arg1)))
2778 return 0;
2779
2780 /* If both types don't have the same precision, then it is not safe
2781 to strip NOPs. */
2782 if (element_precision (TREE_TYPE (arg0))
2783 != element_precision (TREE_TYPE (arg1)))
2784 return 0;
2785
2786 STRIP_NOPS (arg0);
2787 STRIP_NOPS (arg1);
2788 }
2789 #if 0
2790 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
2791 sanity check once the issue is solved. */
2792 else
2793 /* Addresses of conversions and SSA_NAMEs (and many other things)
2794 are not defined. Check that we did not forget to drop the
2795 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
2796 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1)
2797 && TREE_CODE (arg0) != SSA_NAME);
2798 #endif
2799
2800 /* In case both args are comparisons but with different comparison
2801 code, try to swap the comparison operands of one arg to produce
2802 a match and compare that variant. */
2803 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2804 && COMPARISON_CLASS_P (arg0)
2805 && COMPARISON_CLASS_P (arg1))
2806 {
2807 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2808
2809 if (TREE_CODE (arg0) == swap_code)
2810 return operand_equal_p (TREE_OPERAND (arg0, 0),
2811 TREE_OPERAND (arg1, 1), flags)
2812 && operand_equal_p (TREE_OPERAND (arg0, 1),
2813 TREE_OPERAND (arg1, 0), flags);
2814 }
2815
2816 if (TREE_CODE (arg0) != TREE_CODE (arg1))
2817 {
2818 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2819 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1))
2820 ;
2821 else if (flags & OEP_ADDRESS_OF)
2822 {
2823 /* If we are interested in comparing addresses ignore
2824 MEM_REF wrappings of the base that can appear just for
2825 TBAA reasons. */
2826 if (TREE_CODE (arg0) == MEM_REF
2827 && DECL_P (arg1)
2828 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR
2829 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1
2830 && integer_zerop (TREE_OPERAND (arg0, 1)))
2831 return 1;
2832 else if (TREE_CODE (arg1) == MEM_REF
2833 && DECL_P (arg0)
2834 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR
2835 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0
2836 && integer_zerop (TREE_OPERAND (arg1, 1)))
2837 return 1;
2838 return 0;
2839 }
2840 else
2841 return 0;
2842 }
2843
2844 /* When not checking adddresses, this is needed for conversions and for
2845 COMPONENT_REF. Might as well play it safe and always test this. */
2846 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2847 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2848 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1))
2849 && !(flags & OEP_ADDRESS_OF)))
2850 return 0;
2851
2852 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2853 We don't care about side effects in that case because the SAVE_EXPR
2854 takes care of that for us. In all other cases, two expressions are
2855 equal if they have no side effects. If we have two identical
2856 expressions with side effects that should be treated the same due
2857 to the only side effects being identical SAVE_EXPR's, that will
2858 be detected in the recursive calls below.
2859 If we are taking an invariant address of two identical objects
2860 they are necessarily equal as well. */
2861 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2862 && (TREE_CODE (arg0) == SAVE_EXPR
2863 || (flags & OEP_MATCH_SIDE_EFFECTS)
2864 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2865 return 1;
2866
2867 /* Next handle constant cases, those for which we can return 1 even
2868 if ONLY_CONST is set. */
2869 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2870 switch (TREE_CODE (arg0))
2871 {
2872 case INTEGER_CST:
2873 return tree_int_cst_equal (arg0, arg1);
2874
2875 case FIXED_CST:
2876 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2877 TREE_FIXED_CST (arg1));
2878
2879 case REAL_CST:
2880 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1)))
2881 return 1;
2882
2883
2884 if (!HONOR_SIGNED_ZEROS (arg0))
2885 {
2886 /* If we do not distinguish between signed and unsigned zero,
2887 consider them equal. */
2888 if (real_zerop (arg0) && real_zerop (arg1))
2889 return 1;
2890 }
2891 return 0;
2892
2893 case VECTOR_CST:
2894 {
2895 unsigned i;
2896
2897 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2898 return 0;
2899
2900 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2901 {
2902 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2903 VECTOR_CST_ELT (arg1, i), flags))
2904 return 0;
2905 }
2906 return 1;
2907 }
2908
2909 case COMPLEX_CST:
2910 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2911 flags)
2912 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2913 flags));
2914
2915 case STRING_CST:
2916 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2917 && ! memcmp (TREE_STRING_POINTER (arg0),
2918 TREE_STRING_POINTER (arg1),
2919 TREE_STRING_LENGTH (arg0)));
2920
2921 case ADDR_EXPR:
2922 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2923 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2924 flags | OEP_ADDRESS_OF
2925 | OEP_MATCH_SIDE_EFFECTS);
2926 case CONSTRUCTOR:
2927 /* In GIMPLE empty constructors are allowed in initializers of
2928 aggregates. */
2929 return (!vec_safe_length (CONSTRUCTOR_ELTS (arg0))
2930 && !vec_safe_length (CONSTRUCTOR_ELTS (arg1)));
2931 default:
2932 break;
2933 }
2934
2935 if (flags & OEP_ONLY_CONST)
2936 return 0;
2937
2938 /* Define macros to test an operand from arg0 and arg1 for equality and a
2939 variant that allows null and views null as being different from any
2940 non-null value. In the latter case, if either is null, the both
2941 must be; otherwise, do the normal comparison. */
2942 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2943 TREE_OPERAND (arg1, N), flags)
2944
2945 #define OP_SAME_WITH_NULL(N) \
2946 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2947 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2948
2949 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2950 {
2951 case tcc_unary:
2952 /* Two conversions are equal only if signedness and modes match. */
2953 switch (TREE_CODE (arg0))
2954 {
2955 CASE_CONVERT:
2956 case FIX_TRUNC_EXPR:
2957 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2958 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2959 return 0;
2960 break;
2961 default:
2962 break;
2963 }
2964
2965 return OP_SAME (0);
2966
2967
2968 case tcc_comparison:
2969 case tcc_binary:
2970 if (OP_SAME (0) && OP_SAME (1))
2971 return 1;
2972
2973 /* For commutative ops, allow the other order. */
2974 return (commutative_tree_code (TREE_CODE (arg0))
2975 && operand_equal_p (TREE_OPERAND (arg0, 0),
2976 TREE_OPERAND (arg1, 1), flags)
2977 && operand_equal_p (TREE_OPERAND (arg0, 1),
2978 TREE_OPERAND (arg1, 0), flags));
2979
2980 case tcc_reference:
2981 /* If either of the pointer (or reference) expressions we are
2982 dereferencing contain a side effect, these cannot be equal,
2983 but their addresses can be. */
2984 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0
2985 && (TREE_SIDE_EFFECTS (arg0)
2986 || TREE_SIDE_EFFECTS (arg1)))
2987 return 0;
2988
2989 switch (TREE_CODE (arg0))
2990 {
2991 case INDIRECT_REF:
2992 if (!(flags & OEP_ADDRESS_OF)
2993 && (TYPE_ALIGN (TREE_TYPE (arg0))
2994 != TYPE_ALIGN (TREE_TYPE (arg1))))
2995 return 0;
2996 flags &= ~OEP_ADDRESS_OF;
2997 return OP_SAME (0);
2998
2999 case REALPART_EXPR:
3000 case IMAGPART_EXPR:
3001 case VIEW_CONVERT_EXPR:
3002 return OP_SAME (0);
3003
3004 case TARGET_MEM_REF:
3005 case MEM_REF:
3006 if (!(flags & OEP_ADDRESS_OF))
3007 {
3008 /* Require equal access sizes */
3009 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1))
3010 && (!TYPE_SIZE (TREE_TYPE (arg0))
3011 || !TYPE_SIZE (TREE_TYPE (arg1))
3012 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3013 TYPE_SIZE (TREE_TYPE (arg1)),
3014 flags)))
3015 return 0;
3016 /* Verify that accesses are TBAA compatible. */
3017 if (!alias_ptr_types_compatible_p
3018 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
3019 TREE_TYPE (TREE_OPERAND (arg1, 1)))
3020 || (MR_DEPENDENCE_CLIQUE (arg0)
3021 != MR_DEPENDENCE_CLIQUE (arg1))
3022 || (MR_DEPENDENCE_BASE (arg0)
3023 != MR_DEPENDENCE_BASE (arg1)))
3024 return 0;
3025 /* Verify that alignment is compatible. */
3026 if (TYPE_ALIGN (TREE_TYPE (arg0))
3027 != TYPE_ALIGN (TREE_TYPE (arg1)))
3028 return 0;
3029 }
3030 flags &= ~OEP_ADDRESS_OF;
3031 return (OP_SAME (0) && OP_SAME (1)
3032 /* TARGET_MEM_REF require equal extra operands. */
3033 && (TREE_CODE (arg0) != TARGET_MEM_REF
3034 || (OP_SAME_WITH_NULL (2)
3035 && OP_SAME_WITH_NULL (3)
3036 && OP_SAME_WITH_NULL (4))));
3037
3038 case ARRAY_REF:
3039 case ARRAY_RANGE_REF:
3040 /* Operands 2 and 3 may be null.
3041 Compare the array index by value if it is constant first as we
3042 may have different types but same value here. */
3043 if (!OP_SAME (0))
3044 return 0;
3045 flags &= ~OEP_ADDRESS_OF;
3046 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3047 TREE_OPERAND (arg1, 1))
3048 || OP_SAME (1))
3049 && OP_SAME_WITH_NULL (2)
3050 && OP_SAME_WITH_NULL (3));
3051
3052 case COMPONENT_REF:
3053 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3054 may be NULL when we're called to compare MEM_EXPRs. */
3055 if (!OP_SAME_WITH_NULL (0)
3056 || !OP_SAME (1))
3057 return 0;
3058 flags &= ~OEP_ADDRESS_OF;
3059 return OP_SAME_WITH_NULL (2);
3060
3061 case BIT_FIELD_REF:
3062 if (!OP_SAME (0))
3063 return 0;
3064 flags &= ~OEP_ADDRESS_OF;
3065 return OP_SAME (1) && OP_SAME (2);
3066
3067 default:
3068 return 0;
3069 }
3070
3071 case tcc_expression:
3072 switch (TREE_CODE (arg0))
3073 {
3074 case ADDR_EXPR:
3075 /* Be sure we pass right ADDRESS_OF flag. */
3076 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3077 return operand_equal_p (TREE_OPERAND (arg0, 0),
3078 TREE_OPERAND (arg1, 0),
3079 flags | OEP_ADDRESS_OF);
3080
3081 case TRUTH_NOT_EXPR:
3082 return OP_SAME (0);
3083
3084 case TRUTH_ANDIF_EXPR:
3085 case TRUTH_ORIF_EXPR:
3086 return OP_SAME (0) && OP_SAME (1);
3087
3088 case FMA_EXPR:
3089 case WIDEN_MULT_PLUS_EXPR:
3090 case WIDEN_MULT_MINUS_EXPR:
3091 if (!OP_SAME (2))
3092 return 0;
3093 /* The multiplcation operands are commutative. */
3094 /* FALLTHRU */
3095
3096 case TRUTH_AND_EXPR:
3097 case TRUTH_OR_EXPR:
3098 case TRUTH_XOR_EXPR:
3099 if (OP_SAME (0) && OP_SAME (1))
3100 return 1;
3101
3102 /* Otherwise take into account this is a commutative operation. */
3103 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3104 TREE_OPERAND (arg1, 1), flags)
3105 && operand_equal_p (TREE_OPERAND (arg0, 1),
3106 TREE_OPERAND (arg1, 0), flags));
3107
3108 case COND_EXPR:
3109 case VEC_COND_EXPR:
3110 case DOT_PROD_EXPR:
3111 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3112
3113 default:
3114 return 0;
3115 }
3116
3117 case tcc_vl_exp:
3118 switch (TREE_CODE (arg0))
3119 {
3120 case CALL_EXPR:
3121 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3122 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3123 /* If not both CALL_EXPRs are either internal or normal function
3124 functions, then they are not equal. */
3125 return 0;
3126 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3127 {
3128 /* If the CALL_EXPRs call different internal functions, then they
3129 are not equal. */
3130 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3131 return 0;
3132 }
3133 else
3134 {
3135 /* If the CALL_EXPRs call different functions, then they are not
3136 equal. */
3137 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3138 flags))
3139 return 0;
3140 }
3141
3142 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3143 {
3144 unsigned int cef = call_expr_flags (arg0);
3145 if (flags & OEP_PURE_SAME)
3146 cef &= ECF_CONST | ECF_PURE;
3147 else
3148 cef &= ECF_CONST;
3149 if (!cef)
3150 return 0;
3151 }
3152
3153 /* Now see if all the arguments are the same. */
3154 {
3155 const_call_expr_arg_iterator iter0, iter1;
3156 const_tree a0, a1;
3157 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3158 a1 = first_const_call_expr_arg (arg1, &iter1);
3159 a0 && a1;
3160 a0 = next_const_call_expr_arg (&iter0),
3161 a1 = next_const_call_expr_arg (&iter1))
3162 if (! operand_equal_p (a0, a1, flags))
3163 return 0;
3164
3165 /* If we get here and both argument lists are exhausted
3166 then the CALL_EXPRs are equal. */
3167 return ! (a0 || a1);
3168 }
3169 default:
3170 return 0;
3171 }
3172
3173 case tcc_declaration:
3174 /* Consider __builtin_sqrt equal to sqrt. */
3175 return (TREE_CODE (arg0) == FUNCTION_DECL
3176 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3177 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3178 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3179
3180 case tcc_exceptional:
3181 if (TREE_CODE (arg0) == CONSTRUCTOR)
3182 {
3183 /* In GIMPLE constructors are used only to build vectors from
3184 elements. Individual elements in the constructor must be
3185 indexed in increasing order and form an initial sequence.
3186
3187 We make no effort to compare constructors in generic.
3188 (see sem_variable::equals in ipa-icf which can do so for
3189 constants). */
3190 if (!VECTOR_TYPE_P (TREE_TYPE (arg0))
3191 || !VECTOR_TYPE_P (TREE_TYPE (arg1)))
3192 return 0;
3193
3194 /* Be sure that vectors constructed have the same representation.
3195 We only tested element precision and modes to match.
3196 Vectors may be BLKmode and thus also check that the number of
3197 parts match. */
3198 if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))
3199 != TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)))
3200 return 0;
3201
3202 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0);
3203 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1);
3204 unsigned int len = vec_safe_length (v0);
3205
3206 if (len != vec_safe_length (v1))
3207 return 0;
3208
3209 for (unsigned int i = 0; i < len; i++)
3210 {
3211 constructor_elt *c0 = &(*v0)[i];
3212 constructor_elt *c1 = &(*v1)[i];
3213
3214 if (!operand_equal_p (c0->value, c1->value, flags)
3215 /* In GIMPLE the indexes can be either NULL or matching i.
3216 Double check this so we won't get false
3217 positives for GENERIC. */
3218 || (c0->index
3219 && (TREE_CODE (c0->index) != INTEGER_CST
3220 || !compare_tree_int (c0->index, i)))
3221 || (c1->index
3222 && (TREE_CODE (c1->index) != INTEGER_CST
3223 || !compare_tree_int (c1->index, i))))
3224 return 0;
3225 }
3226 return 1;
3227 }
3228 return 0;
3229
3230 default:
3231 return 0;
3232 }
3233
3234 #undef OP_SAME
3235 #undef OP_SAME_WITH_NULL
3236 }
3237 \f
3238 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3239 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3240
3241 When in doubt, return 0. */
3242
3243 static int
3244 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3245 {
3246 int unsignedp1, unsignedpo;
3247 tree primarg0, primarg1, primother;
3248 unsigned int correct_width;
3249
3250 if (operand_equal_p (arg0, arg1, 0))
3251 return 1;
3252
3253 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3254 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3255 return 0;
3256
3257 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3258 and see if the inner values are the same. This removes any
3259 signedness comparison, which doesn't matter here. */
3260 primarg0 = arg0, primarg1 = arg1;
3261 STRIP_NOPS (primarg0);
3262 STRIP_NOPS (primarg1);
3263 if (operand_equal_p (primarg0, primarg1, 0))
3264 return 1;
3265
3266 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3267 actual comparison operand, ARG0.
3268
3269 First throw away any conversions to wider types
3270 already present in the operands. */
3271
3272 primarg1 = get_narrower (arg1, &unsignedp1);
3273 primother = get_narrower (other, &unsignedpo);
3274
3275 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3276 if (unsignedp1 == unsignedpo
3277 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3278 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3279 {
3280 tree type = TREE_TYPE (arg0);
3281
3282 /* Make sure shorter operand is extended the right way
3283 to match the longer operand. */
3284 primarg1 = fold_convert (signed_or_unsigned_type_for
3285 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3286
3287 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3288 return 1;
3289 }
3290
3291 return 0;
3292 }
3293 \f
3294 /* See if ARG is an expression that is either a comparison or is performing
3295 arithmetic on comparisons. The comparisons must only be comparing
3296 two different values, which will be stored in *CVAL1 and *CVAL2; if
3297 they are nonzero it means that some operands have already been found.
3298 No variables may be used anywhere else in the expression except in the
3299 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3300 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3301
3302 If this is true, return 1. Otherwise, return zero. */
3303
3304 static int
3305 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3306 {
3307 enum tree_code code = TREE_CODE (arg);
3308 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3309
3310 /* We can handle some of the tcc_expression cases here. */
3311 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3312 tclass = tcc_unary;
3313 else if (tclass == tcc_expression
3314 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3315 || code == COMPOUND_EXPR))
3316 tclass = tcc_binary;
3317
3318 else if (tclass == tcc_expression && code == SAVE_EXPR
3319 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3320 {
3321 /* If we've already found a CVAL1 or CVAL2, this expression is
3322 two complex to handle. */
3323 if (*cval1 || *cval2)
3324 return 0;
3325
3326 tclass = tcc_unary;
3327 *save_p = 1;
3328 }
3329
3330 switch (tclass)
3331 {
3332 case tcc_unary:
3333 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3334
3335 case tcc_binary:
3336 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3337 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3338 cval1, cval2, save_p));
3339
3340 case tcc_constant:
3341 return 1;
3342
3343 case tcc_expression:
3344 if (code == COND_EXPR)
3345 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3346 cval1, cval2, save_p)
3347 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3348 cval1, cval2, save_p)
3349 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3350 cval1, cval2, save_p));
3351 return 0;
3352
3353 case tcc_comparison:
3354 /* First see if we can handle the first operand, then the second. For
3355 the second operand, we know *CVAL1 can't be zero. It must be that
3356 one side of the comparison is each of the values; test for the
3357 case where this isn't true by failing if the two operands
3358 are the same. */
3359
3360 if (operand_equal_p (TREE_OPERAND (arg, 0),
3361 TREE_OPERAND (arg, 1), 0))
3362 return 0;
3363
3364 if (*cval1 == 0)
3365 *cval1 = TREE_OPERAND (arg, 0);
3366 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3367 ;
3368 else if (*cval2 == 0)
3369 *cval2 = TREE_OPERAND (arg, 0);
3370 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3371 ;
3372 else
3373 return 0;
3374
3375 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3376 ;
3377 else if (*cval2 == 0)
3378 *cval2 = TREE_OPERAND (arg, 1);
3379 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3380 ;
3381 else
3382 return 0;
3383
3384 return 1;
3385
3386 default:
3387 return 0;
3388 }
3389 }
3390 \f
3391 /* ARG is a tree that is known to contain just arithmetic operations and
3392 comparisons. Evaluate the operations in the tree substituting NEW0 for
3393 any occurrence of OLD0 as an operand of a comparison and likewise for
3394 NEW1 and OLD1. */
3395
3396 static tree
3397 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3398 tree old1, tree new1)
3399 {
3400 tree type = TREE_TYPE (arg);
3401 enum tree_code code = TREE_CODE (arg);
3402 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3403
3404 /* We can handle some of the tcc_expression cases here. */
3405 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3406 tclass = tcc_unary;
3407 else if (tclass == tcc_expression
3408 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3409 tclass = tcc_binary;
3410
3411 switch (tclass)
3412 {
3413 case tcc_unary:
3414 return fold_build1_loc (loc, code, type,
3415 eval_subst (loc, TREE_OPERAND (arg, 0),
3416 old0, new0, old1, new1));
3417
3418 case tcc_binary:
3419 return fold_build2_loc (loc, code, type,
3420 eval_subst (loc, TREE_OPERAND (arg, 0),
3421 old0, new0, old1, new1),
3422 eval_subst (loc, TREE_OPERAND (arg, 1),
3423 old0, new0, old1, new1));
3424
3425 case tcc_expression:
3426 switch (code)
3427 {
3428 case SAVE_EXPR:
3429 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3430 old1, new1);
3431
3432 case COMPOUND_EXPR:
3433 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3434 old1, new1);
3435
3436 case COND_EXPR:
3437 return fold_build3_loc (loc, code, type,
3438 eval_subst (loc, TREE_OPERAND (arg, 0),
3439 old0, new0, old1, new1),
3440 eval_subst (loc, TREE_OPERAND (arg, 1),
3441 old0, new0, old1, new1),
3442 eval_subst (loc, TREE_OPERAND (arg, 2),
3443 old0, new0, old1, new1));
3444 default:
3445 break;
3446 }
3447 /* Fall through - ??? */
3448
3449 case tcc_comparison:
3450 {
3451 tree arg0 = TREE_OPERAND (arg, 0);
3452 tree arg1 = TREE_OPERAND (arg, 1);
3453
3454 /* We need to check both for exact equality and tree equality. The
3455 former will be true if the operand has a side-effect. In that
3456 case, we know the operand occurred exactly once. */
3457
3458 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3459 arg0 = new0;
3460 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3461 arg0 = new1;
3462
3463 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3464 arg1 = new0;
3465 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3466 arg1 = new1;
3467
3468 return fold_build2_loc (loc, code, type, arg0, arg1);
3469 }
3470
3471 default:
3472 return arg;
3473 }
3474 }
3475 \f
3476 /* Return a tree for the case when the result of an expression is RESULT
3477 converted to TYPE and OMITTED was previously an operand of the expression
3478 but is now not needed (e.g., we folded OMITTED * 0).
3479
3480 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3481 the conversion of RESULT to TYPE. */
3482
3483 tree
3484 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3485 {
3486 tree t = fold_convert_loc (loc, type, result);
3487
3488 /* If the resulting operand is an empty statement, just return the omitted
3489 statement casted to void. */
3490 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3491 return build1_loc (loc, NOP_EXPR, void_type_node,
3492 fold_ignored_result (omitted));
3493
3494 if (TREE_SIDE_EFFECTS (omitted))
3495 return build2_loc (loc, COMPOUND_EXPR, type,
3496 fold_ignored_result (omitted), t);
3497
3498 return non_lvalue_loc (loc, t);
3499 }
3500
3501 /* Return a tree for the case when the result of an expression is RESULT
3502 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3503 of the expression but are now not needed.
3504
3505 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3506 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3507 evaluated before OMITTED2. Otherwise, if neither has side effects,
3508 just do the conversion of RESULT to TYPE. */
3509
3510 tree
3511 omit_two_operands_loc (location_t loc, tree type, tree result,
3512 tree omitted1, tree omitted2)
3513 {
3514 tree t = fold_convert_loc (loc, type, result);
3515
3516 if (TREE_SIDE_EFFECTS (omitted2))
3517 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3518 if (TREE_SIDE_EFFECTS (omitted1))
3519 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3520
3521 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3522 }
3523
3524 \f
3525 /* Return a simplified tree node for the truth-negation of ARG. This
3526 never alters ARG itself. We assume that ARG is an operation that
3527 returns a truth value (0 or 1).
3528
3529 FIXME: one would think we would fold the result, but it causes
3530 problems with the dominator optimizer. */
3531
3532 static tree
3533 fold_truth_not_expr (location_t loc, tree arg)
3534 {
3535 tree type = TREE_TYPE (arg);
3536 enum tree_code code = TREE_CODE (arg);
3537 location_t loc1, loc2;
3538
3539 /* If this is a comparison, we can simply invert it, except for
3540 floating-point non-equality comparisons, in which case we just
3541 enclose a TRUTH_NOT_EXPR around what we have. */
3542
3543 if (TREE_CODE_CLASS (code) == tcc_comparison)
3544 {
3545 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3546 if (FLOAT_TYPE_P (op_type)
3547 && flag_trapping_math
3548 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3549 && code != NE_EXPR && code != EQ_EXPR)
3550 return NULL_TREE;
3551
3552 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3553 if (code == ERROR_MARK)
3554 return NULL_TREE;
3555
3556 return build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3557 TREE_OPERAND (arg, 1));
3558 }
3559
3560 switch (code)
3561 {
3562 case INTEGER_CST:
3563 return constant_boolean_node (integer_zerop (arg), type);
3564
3565 case TRUTH_AND_EXPR:
3566 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3567 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3568 return build2_loc (loc, TRUTH_OR_EXPR, type,
3569 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3570 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3571
3572 case TRUTH_OR_EXPR:
3573 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3574 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3575 return build2_loc (loc, TRUTH_AND_EXPR, type,
3576 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3577 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3578
3579 case TRUTH_XOR_EXPR:
3580 /* Here we can invert either operand. We invert the first operand
3581 unless the second operand is a TRUTH_NOT_EXPR in which case our
3582 result is the XOR of the first operand with the inside of the
3583 negation of the second operand. */
3584
3585 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3586 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3587 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3588 else
3589 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3590 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3591 TREE_OPERAND (arg, 1));
3592
3593 case TRUTH_ANDIF_EXPR:
3594 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3595 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3596 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3597 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3598 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3599
3600 case TRUTH_ORIF_EXPR:
3601 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3602 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3603 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3604 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3605 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3606
3607 case TRUTH_NOT_EXPR:
3608 return TREE_OPERAND (arg, 0);
3609
3610 case COND_EXPR:
3611 {
3612 tree arg1 = TREE_OPERAND (arg, 1);
3613 tree arg2 = TREE_OPERAND (arg, 2);
3614
3615 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3616 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3617
3618 /* A COND_EXPR may have a throw as one operand, which
3619 then has void type. Just leave void operands
3620 as they are. */
3621 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3622 VOID_TYPE_P (TREE_TYPE (arg1))
3623 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3624 VOID_TYPE_P (TREE_TYPE (arg2))
3625 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3626 }
3627
3628 case COMPOUND_EXPR:
3629 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3630 return build2_loc (loc, COMPOUND_EXPR, type,
3631 TREE_OPERAND (arg, 0),
3632 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3633
3634 case NON_LVALUE_EXPR:
3635 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3636 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3637
3638 CASE_CONVERT:
3639 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3640 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3641
3642 /* ... fall through ... */
3643
3644 case FLOAT_EXPR:
3645 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3646 return build1_loc (loc, TREE_CODE (arg), type,
3647 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3648
3649 case BIT_AND_EXPR:
3650 if (!integer_onep (TREE_OPERAND (arg, 1)))
3651 return NULL_TREE;
3652 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3653
3654 case SAVE_EXPR:
3655 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3656
3657 case CLEANUP_POINT_EXPR:
3658 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3659 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3660 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3661
3662 default:
3663 return NULL_TREE;
3664 }
3665 }
3666
3667 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3668 assume that ARG is an operation that returns a truth value (0 or 1
3669 for scalars, 0 or -1 for vectors). Return the folded expression if
3670 folding is successful. Otherwise, return NULL_TREE. */
3671
3672 static tree
3673 fold_invert_truthvalue (location_t loc, tree arg)
3674 {
3675 tree type = TREE_TYPE (arg);
3676 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3677 ? BIT_NOT_EXPR
3678 : TRUTH_NOT_EXPR,
3679 type, arg);
3680 }
3681
3682 /* Return a simplified tree node for the truth-negation of ARG. This
3683 never alters ARG itself. We assume that ARG is an operation that
3684 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3685
3686 tree
3687 invert_truthvalue_loc (location_t loc, tree arg)
3688 {
3689 if (TREE_CODE (arg) == ERROR_MARK)
3690 return arg;
3691
3692 tree type = TREE_TYPE (arg);
3693 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3694 ? BIT_NOT_EXPR
3695 : TRUTH_NOT_EXPR,
3696 type, arg);
3697 }
3698
3699 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3700 with code CODE. This optimization is unsafe. */
3701 static tree
3702 distribute_real_division (location_t loc, enum tree_code code, tree type,
3703 tree arg0, tree arg1)
3704 {
3705 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3706 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3707
3708 /* (A / C) +- (B / C) -> (A +- B) / C. */
3709 if (mul0 == mul1
3710 && operand_equal_p (TREE_OPERAND (arg0, 1),
3711 TREE_OPERAND (arg1, 1), 0))
3712 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3713 fold_build2_loc (loc, code, type,
3714 TREE_OPERAND (arg0, 0),
3715 TREE_OPERAND (arg1, 0)),
3716 TREE_OPERAND (arg0, 1));
3717
3718 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3719 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3720 TREE_OPERAND (arg1, 0), 0)
3721 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3722 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3723 {
3724 REAL_VALUE_TYPE r0, r1;
3725 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3726 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3727 if (!mul0)
3728 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3729 if (!mul1)
3730 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3731 real_arithmetic (&r0, code, &r0, &r1);
3732 return fold_build2_loc (loc, MULT_EXPR, type,
3733 TREE_OPERAND (arg0, 0),
3734 build_real (type, r0));
3735 }
3736
3737 return NULL_TREE;
3738 }
3739 \f
3740 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3741 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3742 and uses reverse storage order if REVERSEP is nonzero. */
3743
3744 static tree
3745 make_bit_field_ref (location_t loc, tree inner, tree type,
3746 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
3747 int unsignedp, int reversep)
3748 {
3749 tree result, bftype;
3750
3751 if (bitpos == 0 && !reversep)
3752 {
3753 tree size = TYPE_SIZE (TREE_TYPE (inner));
3754 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3755 || POINTER_TYPE_P (TREE_TYPE (inner)))
3756 && tree_fits_shwi_p (size)
3757 && tree_to_shwi (size) == bitsize)
3758 return fold_convert_loc (loc, type, inner);
3759 }
3760
3761 bftype = type;
3762 if (TYPE_PRECISION (bftype) != bitsize
3763 || TYPE_UNSIGNED (bftype) == !unsignedp)
3764 bftype = build_nonstandard_integer_type (bitsize, 0);
3765
3766 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3767 size_int (bitsize), bitsize_int (bitpos));
3768 REF_REVERSE_STORAGE_ORDER (result) = reversep;
3769
3770 if (bftype != type)
3771 result = fold_convert_loc (loc, type, result);
3772
3773 return result;
3774 }
3775
3776 /* Optimize a bit-field compare.
3777
3778 There are two cases: First is a compare against a constant and the
3779 second is a comparison of two items where the fields are at the same
3780 bit position relative to the start of a chunk (byte, halfword, word)
3781 large enough to contain it. In these cases we can avoid the shift
3782 implicit in bitfield extractions.
3783
3784 For constants, we emit a compare of the shifted constant with the
3785 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3786 compared. For two fields at the same position, we do the ANDs with the
3787 similar mask and compare the result of the ANDs.
3788
3789 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3790 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3791 are the left and right operands of the comparison, respectively.
3792
3793 If the optimization described above can be done, we return the resulting
3794 tree. Otherwise we return zero. */
3795
3796 static tree
3797 optimize_bit_field_compare (location_t loc, enum tree_code code,
3798 tree compare_type, tree lhs, tree rhs)
3799 {
3800 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3801 tree type = TREE_TYPE (lhs);
3802 tree unsigned_type;
3803 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3804 machine_mode lmode, rmode, nmode;
3805 int lunsignedp, runsignedp;
3806 int lreversep, rreversep;
3807 int lvolatilep = 0, rvolatilep = 0;
3808 tree linner, rinner = NULL_TREE;
3809 tree mask;
3810 tree offset;
3811
3812 /* Get all the information about the extractions being done. If the bit size
3813 if the same as the size of the underlying object, we aren't doing an
3814 extraction at all and so can do nothing. We also don't want to
3815 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3816 then will no longer be able to replace it. */
3817 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3818 &lunsignedp, &lreversep, &lvolatilep, false);
3819 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3820 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3821 return 0;
3822
3823 if (const_p)
3824 rreversep = lreversep;
3825 else
3826 {
3827 /* If this is not a constant, we can only do something if bit positions,
3828 sizes, signedness and storage order are the same. */
3829 rinner
3830 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3831 &runsignedp, &rreversep, &rvolatilep, false);
3832
3833 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3834 || lunsignedp != runsignedp || lreversep != rreversep || offset != 0
3835 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3836 return 0;
3837 }
3838
3839 /* See if we can find a mode to refer to this field. We should be able to,
3840 but fail if we can't. */
3841 nmode = get_best_mode (lbitsize, lbitpos, 0, 0,
3842 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3843 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3844 TYPE_ALIGN (TREE_TYPE (rinner))),
3845 word_mode, false);
3846 if (nmode == VOIDmode)
3847 return 0;
3848
3849 /* Set signed and unsigned types of the precision of this mode for the
3850 shifts below. */
3851 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3852
3853 /* Compute the bit position and size for the new reference and our offset
3854 within it. If the new reference is the same size as the original, we
3855 won't optimize anything, so return zero. */
3856 nbitsize = GET_MODE_BITSIZE (nmode);
3857 nbitpos = lbitpos & ~ (nbitsize - 1);
3858 lbitpos -= nbitpos;
3859 if (nbitsize == lbitsize)
3860 return 0;
3861
3862 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3863 lbitpos = nbitsize - lbitsize - lbitpos;
3864
3865 /* Make the mask to be used against the extracted field. */
3866 mask = build_int_cst_type (unsigned_type, -1);
3867 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
3868 mask = const_binop (RSHIFT_EXPR, mask,
3869 size_int (nbitsize - lbitsize - lbitpos));
3870
3871 if (! const_p)
3872 /* If not comparing with constant, just rework the comparison
3873 and return. */
3874 return fold_build2_loc (loc, code, compare_type,
3875 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3876 make_bit_field_ref (loc, linner,
3877 unsigned_type,
3878 nbitsize, nbitpos,
3879 1, lreversep),
3880 mask),
3881 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3882 make_bit_field_ref (loc, rinner,
3883 unsigned_type,
3884 nbitsize, nbitpos,
3885 1, rreversep),
3886 mask));
3887
3888 /* Otherwise, we are handling the constant case. See if the constant is too
3889 big for the field. Warn and return a tree for 0 (false) if so. We do
3890 this not only for its own sake, but to avoid having to test for this
3891 error case below. If we didn't, we might generate wrong code.
3892
3893 For unsigned fields, the constant shifted right by the field length should
3894 be all zero. For signed fields, the high-order bits should agree with
3895 the sign bit. */
3896
3897 if (lunsignedp)
3898 {
3899 if (wi::lrshift (rhs, lbitsize) != 0)
3900 {
3901 warning (0, "comparison is always %d due to width of bit-field",
3902 code == NE_EXPR);
3903 return constant_boolean_node (code == NE_EXPR, compare_type);
3904 }
3905 }
3906 else
3907 {
3908 wide_int tem = wi::arshift (rhs, lbitsize - 1);
3909 if (tem != 0 && tem != -1)
3910 {
3911 warning (0, "comparison is always %d due to width of bit-field",
3912 code == NE_EXPR);
3913 return constant_boolean_node (code == NE_EXPR, compare_type);
3914 }
3915 }
3916
3917 /* Single-bit compares should always be against zero. */
3918 if (lbitsize == 1 && ! integer_zerop (rhs))
3919 {
3920 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3921 rhs = build_int_cst (type, 0);
3922 }
3923
3924 /* Make a new bitfield reference, shift the constant over the
3925 appropriate number of bits and mask it with the computed mask
3926 (in case this was a signed field). If we changed it, make a new one. */
3927 lhs = make_bit_field_ref (loc, linner, unsigned_type, nbitsize, nbitpos, 1,
3928 lreversep);
3929
3930 rhs = const_binop (BIT_AND_EXPR,
3931 const_binop (LSHIFT_EXPR,
3932 fold_convert_loc (loc, unsigned_type, rhs),
3933 size_int (lbitpos)),
3934 mask);
3935
3936 lhs = build2_loc (loc, code, compare_type,
3937 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
3938 return lhs;
3939 }
3940 \f
3941 /* Subroutine for fold_truth_andor_1: decode a field reference.
3942
3943 If EXP is a comparison reference, we return the innermost reference.
3944
3945 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3946 set to the starting bit number.
3947
3948 If the innermost field can be completely contained in a mode-sized
3949 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3950
3951 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3952 otherwise it is not changed.
3953
3954 *PUNSIGNEDP is set to the signedness of the field.
3955
3956 *PREVERSEP is set to the storage order of the field.
3957
3958 *PMASK is set to the mask used. This is either contained in a
3959 BIT_AND_EXPR or derived from the width of the field.
3960
3961 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3962
3963 Return 0 if this is not a component reference or is one that we can't
3964 do anything with. */
3965
3966 static tree
3967 decode_field_reference (location_t loc, tree exp, HOST_WIDE_INT *pbitsize,
3968 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
3969 int *punsignedp, int *preversep, int *pvolatilep,
3970 tree *pmask, tree *pand_mask)
3971 {
3972 tree outer_type = 0;
3973 tree and_mask = 0;
3974 tree mask, inner, offset;
3975 tree unsigned_type;
3976 unsigned int precision;
3977
3978 /* All the optimizations using this function assume integer fields.
3979 There are problems with FP fields since the type_for_size call
3980 below can fail for, e.g., XFmode. */
3981 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3982 return 0;
3983
3984 /* We are interested in the bare arrangement of bits, so strip everything
3985 that doesn't affect the machine mode. However, record the type of the
3986 outermost expression if it may matter below. */
3987 if (CONVERT_EXPR_P (exp)
3988 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3989 outer_type = TREE_TYPE (exp);
3990 STRIP_NOPS (exp);
3991
3992 if (TREE_CODE (exp) == BIT_AND_EXPR)
3993 {
3994 and_mask = TREE_OPERAND (exp, 1);
3995 exp = TREE_OPERAND (exp, 0);
3996 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3997 if (TREE_CODE (and_mask) != INTEGER_CST)
3998 return 0;
3999 }
4000
4001 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
4002 punsignedp, preversep, pvolatilep, false);
4003 if ((inner == exp && and_mask == 0)
4004 || *pbitsize < 0 || offset != 0
4005 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
4006 return 0;
4007
4008 /* If the number of bits in the reference is the same as the bitsize of
4009 the outer type, then the outer type gives the signedness. Otherwise
4010 (in case of a small bitfield) the signedness is unchanged. */
4011 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4012 *punsignedp = TYPE_UNSIGNED (outer_type);
4013
4014 /* Compute the mask to access the bitfield. */
4015 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4016 precision = TYPE_PRECISION (unsigned_type);
4017
4018 mask = build_int_cst_type (unsigned_type, -1);
4019
4020 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4021 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4022
4023 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4024 if (and_mask != 0)
4025 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4026 fold_convert_loc (loc, unsigned_type, and_mask), mask);
4027
4028 *pmask = mask;
4029 *pand_mask = and_mask;
4030 return inner;
4031 }
4032
4033 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4034 bit positions and MASK is SIGNED. */
4035
4036 static int
4037 all_ones_mask_p (const_tree mask, unsigned int size)
4038 {
4039 tree type = TREE_TYPE (mask);
4040 unsigned int precision = TYPE_PRECISION (type);
4041
4042 /* If this function returns true when the type of the mask is
4043 UNSIGNED, then there will be errors. In particular see
4044 gcc.c-torture/execute/990326-1.c. There does not appear to be
4045 any documentation paper trail as to why this is so. But the pre
4046 wide-int worked with that restriction and it has been preserved
4047 here. */
4048 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
4049 return false;
4050
4051 return wi::mask (size, false, precision) == mask;
4052 }
4053
4054 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4055 represents the sign bit of EXP's type. If EXP represents a sign
4056 or zero extension, also test VAL against the unextended type.
4057 The return value is the (sub)expression whose sign bit is VAL,
4058 or NULL_TREE otherwise. */
4059
4060 tree
4061 sign_bit_p (tree exp, const_tree val)
4062 {
4063 int width;
4064 tree t;
4065
4066 /* Tree EXP must have an integral type. */
4067 t = TREE_TYPE (exp);
4068 if (! INTEGRAL_TYPE_P (t))
4069 return NULL_TREE;
4070
4071 /* Tree VAL must be an integer constant. */
4072 if (TREE_CODE (val) != INTEGER_CST
4073 || TREE_OVERFLOW (val))
4074 return NULL_TREE;
4075
4076 width = TYPE_PRECISION (t);
4077 if (wi::only_sign_bit_p (val, width))
4078 return exp;
4079
4080 /* Handle extension from a narrower type. */
4081 if (TREE_CODE (exp) == NOP_EXPR
4082 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4083 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4084
4085 return NULL_TREE;
4086 }
4087
4088 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4089 to be evaluated unconditionally. */
4090
4091 static int
4092 simple_operand_p (const_tree exp)
4093 {
4094 /* Strip any conversions that don't change the machine mode. */
4095 STRIP_NOPS (exp);
4096
4097 return (CONSTANT_CLASS_P (exp)
4098 || TREE_CODE (exp) == SSA_NAME
4099 || (DECL_P (exp)
4100 && ! TREE_ADDRESSABLE (exp)
4101 && ! TREE_THIS_VOLATILE (exp)
4102 && ! DECL_NONLOCAL (exp)
4103 /* Don't regard global variables as simple. They may be
4104 allocated in ways unknown to the compiler (shared memory,
4105 #pragma weak, etc). */
4106 && ! TREE_PUBLIC (exp)
4107 && ! DECL_EXTERNAL (exp)
4108 /* Weakrefs are not safe to be read, since they can be NULL.
4109 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4110 have DECL_WEAK flag set. */
4111 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4112 /* Loading a static variable is unduly expensive, but global
4113 registers aren't expensive. */
4114 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4115 }
4116
4117 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4118 to be evaluated unconditionally.
4119 I addition to simple_operand_p, we assume that comparisons, conversions,
4120 and logic-not operations are simple, if their operands are simple, too. */
4121
4122 static bool
4123 simple_operand_p_2 (tree exp)
4124 {
4125 enum tree_code code;
4126
4127 if (TREE_SIDE_EFFECTS (exp)
4128 || tree_could_trap_p (exp))
4129 return false;
4130
4131 while (CONVERT_EXPR_P (exp))
4132 exp = TREE_OPERAND (exp, 0);
4133
4134 code = TREE_CODE (exp);
4135
4136 if (TREE_CODE_CLASS (code) == tcc_comparison)
4137 return (simple_operand_p (TREE_OPERAND (exp, 0))
4138 && simple_operand_p (TREE_OPERAND (exp, 1)));
4139
4140 if (code == TRUTH_NOT_EXPR)
4141 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4142
4143 return simple_operand_p (exp);
4144 }
4145
4146 \f
4147 /* The following functions are subroutines to fold_range_test and allow it to
4148 try to change a logical combination of comparisons into a range test.
4149
4150 For example, both
4151 X == 2 || X == 3 || X == 4 || X == 5
4152 and
4153 X >= 2 && X <= 5
4154 are converted to
4155 (unsigned) (X - 2) <= 3
4156
4157 We describe each set of comparisons as being either inside or outside
4158 a range, using a variable named like IN_P, and then describe the
4159 range with a lower and upper bound. If one of the bounds is omitted,
4160 it represents either the highest or lowest value of the type.
4161
4162 In the comments below, we represent a range by two numbers in brackets
4163 preceded by a "+" to designate being inside that range, or a "-" to
4164 designate being outside that range, so the condition can be inverted by
4165 flipping the prefix. An omitted bound is represented by a "-". For
4166 example, "- [-, 10]" means being outside the range starting at the lowest
4167 possible value and ending at 10, in other words, being greater than 10.
4168 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4169 always false.
4170
4171 We set up things so that the missing bounds are handled in a consistent
4172 manner so neither a missing bound nor "true" and "false" need to be
4173 handled using a special case. */
4174
4175 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4176 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4177 and UPPER1_P are nonzero if the respective argument is an upper bound
4178 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4179 must be specified for a comparison. ARG1 will be converted to ARG0's
4180 type if both are specified. */
4181
4182 static tree
4183 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4184 tree arg1, int upper1_p)
4185 {
4186 tree tem;
4187 int result;
4188 int sgn0, sgn1;
4189
4190 /* If neither arg represents infinity, do the normal operation.
4191 Else, if not a comparison, return infinity. Else handle the special
4192 comparison rules. Note that most of the cases below won't occur, but
4193 are handled for consistency. */
4194
4195 if (arg0 != 0 && arg1 != 0)
4196 {
4197 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4198 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4199 STRIP_NOPS (tem);
4200 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4201 }
4202
4203 if (TREE_CODE_CLASS (code) != tcc_comparison)
4204 return 0;
4205
4206 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4207 for neither. In real maths, we cannot assume open ended ranges are
4208 the same. But, this is computer arithmetic, where numbers are finite.
4209 We can therefore make the transformation of any unbounded range with
4210 the value Z, Z being greater than any representable number. This permits
4211 us to treat unbounded ranges as equal. */
4212 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4213 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4214 switch (code)
4215 {
4216 case EQ_EXPR:
4217 result = sgn0 == sgn1;
4218 break;
4219 case NE_EXPR:
4220 result = sgn0 != sgn1;
4221 break;
4222 case LT_EXPR:
4223 result = sgn0 < sgn1;
4224 break;
4225 case LE_EXPR:
4226 result = sgn0 <= sgn1;
4227 break;
4228 case GT_EXPR:
4229 result = sgn0 > sgn1;
4230 break;
4231 case GE_EXPR:
4232 result = sgn0 >= sgn1;
4233 break;
4234 default:
4235 gcc_unreachable ();
4236 }
4237
4238 return constant_boolean_node (result, type);
4239 }
4240 \f
4241 /* Helper routine for make_range. Perform one step for it, return
4242 new expression if the loop should continue or NULL_TREE if it should
4243 stop. */
4244
4245 tree
4246 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4247 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4248 bool *strict_overflow_p)
4249 {
4250 tree arg0_type = TREE_TYPE (arg0);
4251 tree n_low, n_high, low = *p_low, high = *p_high;
4252 int in_p = *p_in_p, n_in_p;
4253
4254 switch (code)
4255 {
4256 case TRUTH_NOT_EXPR:
4257 /* We can only do something if the range is testing for zero. */
4258 if (low == NULL_TREE || high == NULL_TREE
4259 || ! integer_zerop (low) || ! integer_zerop (high))
4260 return NULL_TREE;
4261 *p_in_p = ! in_p;
4262 return arg0;
4263
4264 case EQ_EXPR: case NE_EXPR:
4265 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4266 /* We can only do something if the range is testing for zero
4267 and if the second operand is an integer constant. Note that
4268 saying something is "in" the range we make is done by
4269 complementing IN_P since it will set in the initial case of
4270 being not equal to zero; "out" is leaving it alone. */
4271 if (low == NULL_TREE || high == NULL_TREE
4272 || ! integer_zerop (low) || ! integer_zerop (high)
4273 || TREE_CODE (arg1) != INTEGER_CST)
4274 return NULL_TREE;
4275
4276 switch (code)
4277 {
4278 case NE_EXPR: /* - [c, c] */
4279 low = high = arg1;
4280 break;
4281 case EQ_EXPR: /* + [c, c] */
4282 in_p = ! in_p, low = high = arg1;
4283 break;
4284 case GT_EXPR: /* - [-, c] */
4285 low = 0, high = arg1;
4286 break;
4287 case GE_EXPR: /* + [c, -] */
4288 in_p = ! in_p, low = arg1, high = 0;
4289 break;
4290 case LT_EXPR: /* - [c, -] */
4291 low = arg1, high = 0;
4292 break;
4293 case LE_EXPR: /* + [-, c] */
4294 in_p = ! in_p, low = 0, high = arg1;
4295 break;
4296 default:
4297 gcc_unreachable ();
4298 }
4299
4300 /* If this is an unsigned comparison, we also know that EXP is
4301 greater than or equal to zero. We base the range tests we make
4302 on that fact, so we record it here so we can parse existing
4303 range tests. We test arg0_type since often the return type
4304 of, e.g. EQ_EXPR, is boolean. */
4305 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4306 {
4307 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4308 in_p, low, high, 1,
4309 build_int_cst (arg0_type, 0),
4310 NULL_TREE))
4311 return NULL_TREE;
4312
4313 in_p = n_in_p, low = n_low, high = n_high;
4314
4315 /* If the high bound is missing, but we have a nonzero low
4316 bound, reverse the range so it goes from zero to the low bound
4317 minus 1. */
4318 if (high == 0 && low && ! integer_zerop (low))
4319 {
4320 in_p = ! in_p;
4321 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4322 build_int_cst (TREE_TYPE (low), 1), 0);
4323 low = build_int_cst (arg0_type, 0);
4324 }
4325 }
4326
4327 *p_low = low;
4328 *p_high = high;
4329 *p_in_p = in_p;
4330 return arg0;
4331
4332 case NEGATE_EXPR:
4333 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4334 low and high are non-NULL, then normalize will DTRT. */
4335 if (!TYPE_UNSIGNED (arg0_type)
4336 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4337 {
4338 if (low == NULL_TREE)
4339 low = TYPE_MIN_VALUE (arg0_type);
4340 if (high == NULL_TREE)
4341 high = TYPE_MAX_VALUE (arg0_type);
4342 }
4343
4344 /* (-x) IN [a,b] -> x in [-b, -a] */
4345 n_low = range_binop (MINUS_EXPR, exp_type,
4346 build_int_cst (exp_type, 0),
4347 0, high, 1);
4348 n_high = range_binop (MINUS_EXPR, exp_type,
4349 build_int_cst (exp_type, 0),
4350 0, low, 0);
4351 if (n_high != 0 && TREE_OVERFLOW (n_high))
4352 return NULL_TREE;
4353 goto normalize;
4354
4355 case BIT_NOT_EXPR:
4356 /* ~ X -> -X - 1 */
4357 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4358 build_int_cst (exp_type, 1));
4359
4360 case PLUS_EXPR:
4361 case MINUS_EXPR:
4362 if (TREE_CODE (arg1) != INTEGER_CST)
4363 return NULL_TREE;
4364
4365 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4366 move a constant to the other side. */
4367 if (!TYPE_UNSIGNED (arg0_type)
4368 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4369 return NULL_TREE;
4370
4371 /* If EXP is signed, any overflow in the computation is undefined,
4372 so we don't worry about it so long as our computations on
4373 the bounds don't overflow. For unsigned, overflow is defined
4374 and this is exactly the right thing. */
4375 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4376 arg0_type, low, 0, arg1, 0);
4377 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4378 arg0_type, high, 1, arg1, 0);
4379 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4380 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4381 return NULL_TREE;
4382
4383 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4384 *strict_overflow_p = true;
4385
4386 normalize:
4387 /* Check for an unsigned range which has wrapped around the maximum
4388 value thus making n_high < n_low, and normalize it. */
4389 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4390 {
4391 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4392 build_int_cst (TREE_TYPE (n_high), 1), 0);
4393 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4394 build_int_cst (TREE_TYPE (n_low), 1), 0);
4395
4396 /* If the range is of the form +/- [ x+1, x ], we won't
4397 be able to normalize it. But then, it represents the
4398 whole range or the empty set, so make it
4399 +/- [ -, - ]. */
4400 if (tree_int_cst_equal (n_low, low)
4401 && tree_int_cst_equal (n_high, high))
4402 low = high = 0;
4403 else
4404 in_p = ! in_p;
4405 }
4406 else
4407 low = n_low, high = n_high;
4408
4409 *p_low = low;
4410 *p_high = high;
4411 *p_in_p = in_p;
4412 return arg0;
4413
4414 CASE_CONVERT:
4415 case NON_LVALUE_EXPR:
4416 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4417 return NULL_TREE;
4418
4419 if (! INTEGRAL_TYPE_P (arg0_type)
4420 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4421 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4422 return NULL_TREE;
4423
4424 n_low = low, n_high = high;
4425
4426 if (n_low != 0)
4427 n_low = fold_convert_loc (loc, arg0_type, n_low);
4428
4429 if (n_high != 0)
4430 n_high = fold_convert_loc (loc, arg0_type, n_high);
4431
4432 /* If we're converting arg0 from an unsigned type, to exp,
4433 a signed type, we will be doing the comparison as unsigned.
4434 The tests above have already verified that LOW and HIGH
4435 are both positive.
4436
4437 So we have to ensure that we will handle large unsigned
4438 values the same way that the current signed bounds treat
4439 negative values. */
4440
4441 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4442 {
4443 tree high_positive;
4444 tree equiv_type;
4445 /* For fixed-point modes, we need to pass the saturating flag
4446 as the 2nd parameter. */
4447 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4448 equiv_type
4449 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4450 TYPE_SATURATING (arg0_type));
4451 else
4452 equiv_type
4453 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4454
4455 /* A range without an upper bound is, naturally, unbounded.
4456 Since convert would have cropped a very large value, use
4457 the max value for the destination type. */
4458 high_positive
4459 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4460 : TYPE_MAX_VALUE (arg0_type);
4461
4462 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4463 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4464 fold_convert_loc (loc, arg0_type,
4465 high_positive),
4466 build_int_cst (arg0_type, 1));
4467
4468 /* If the low bound is specified, "and" the range with the
4469 range for which the original unsigned value will be
4470 positive. */
4471 if (low != 0)
4472 {
4473 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4474 1, fold_convert_loc (loc, arg0_type,
4475 integer_zero_node),
4476 high_positive))
4477 return NULL_TREE;
4478
4479 in_p = (n_in_p == in_p);
4480 }
4481 else
4482 {
4483 /* Otherwise, "or" the range with the range of the input
4484 that will be interpreted as negative. */
4485 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4486 1, fold_convert_loc (loc, arg0_type,
4487 integer_zero_node),
4488 high_positive))
4489 return NULL_TREE;
4490
4491 in_p = (in_p != n_in_p);
4492 }
4493 }
4494
4495 *p_low = n_low;
4496 *p_high = n_high;
4497 *p_in_p = in_p;
4498 return arg0;
4499
4500 default:
4501 return NULL_TREE;
4502 }
4503 }
4504
4505 /* Given EXP, a logical expression, set the range it is testing into
4506 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4507 actually being tested. *PLOW and *PHIGH will be made of the same
4508 type as the returned expression. If EXP is not a comparison, we
4509 will most likely not be returning a useful value and range. Set
4510 *STRICT_OVERFLOW_P to true if the return value is only valid
4511 because signed overflow is undefined; otherwise, do not change
4512 *STRICT_OVERFLOW_P. */
4513
4514 tree
4515 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4516 bool *strict_overflow_p)
4517 {
4518 enum tree_code code;
4519 tree arg0, arg1 = NULL_TREE;
4520 tree exp_type, nexp;
4521 int in_p;
4522 tree low, high;
4523 location_t loc = EXPR_LOCATION (exp);
4524
4525 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4526 and see if we can refine the range. Some of the cases below may not
4527 happen, but it doesn't seem worth worrying about this. We "continue"
4528 the outer loop when we've changed something; otherwise we "break"
4529 the switch, which will "break" the while. */
4530
4531 in_p = 0;
4532 low = high = build_int_cst (TREE_TYPE (exp), 0);
4533
4534 while (1)
4535 {
4536 code = TREE_CODE (exp);
4537 exp_type = TREE_TYPE (exp);
4538 arg0 = NULL_TREE;
4539
4540 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4541 {
4542 if (TREE_OPERAND_LENGTH (exp) > 0)
4543 arg0 = TREE_OPERAND (exp, 0);
4544 if (TREE_CODE_CLASS (code) == tcc_binary
4545 || TREE_CODE_CLASS (code) == tcc_comparison
4546 || (TREE_CODE_CLASS (code) == tcc_expression
4547 && TREE_OPERAND_LENGTH (exp) > 1))
4548 arg1 = TREE_OPERAND (exp, 1);
4549 }
4550 if (arg0 == NULL_TREE)
4551 break;
4552
4553 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4554 &high, &in_p, strict_overflow_p);
4555 if (nexp == NULL_TREE)
4556 break;
4557 exp = nexp;
4558 }
4559
4560 /* If EXP is a constant, we can evaluate whether this is true or false. */
4561 if (TREE_CODE (exp) == INTEGER_CST)
4562 {
4563 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4564 exp, 0, low, 0))
4565 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4566 exp, 1, high, 1)));
4567 low = high = 0;
4568 exp = 0;
4569 }
4570
4571 *pin_p = in_p, *plow = low, *phigh = high;
4572 return exp;
4573 }
4574 \f
4575 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4576 type, TYPE, return an expression to test if EXP is in (or out of, depending
4577 on IN_P) the range. Return 0 if the test couldn't be created. */
4578
4579 tree
4580 build_range_check (location_t loc, tree type, tree exp, int in_p,
4581 tree low, tree high)
4582 {
4583 tree etype = TREE_TYPE (exp), value;
4584
4585 /* Disable this optimization for function pointer expressions
4586 on targets that require function pointer canonicalization. */
4587 if (targetm.have_canonicalize_funcptr_for_compare ()
4588 && TREE_CODE (etype) == POINTER_TYPE
4589 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4590 return NULL_TREE;
4591
4592 if (! in_p)
4593 {
4594 value = build_range_check (loc, type, exp, 1, low, high);
4595 if (value != 0)
4596 return invert_truthvalue_loc (loc, value);
4597
4598 return 0;
4599 }
4600
4601 if (low == 0 && high == 0)
4602 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4603
4604 if (low == 0)
4605 return fold_build2_loc (loc, LE_EXPR, type, exp,
4606 fold_convert_loc (loc, etype, high));
4607
4608 if (high == 0)
4609 return fold_build2_loc (loc, GE_EXPR, type, exp,
4610 fold_convert_loc (loc, etype, low));
4611
4612 if (operand_equal_p (low, high, 0))
4613 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4614 fold_convert_loc (loc, etype, low));
4615
4616 if (integer_zerop (low))
4617 {
4618 if (! TYPE_UNSIGNED (etype))
4619 {
4620 etype = unsigned_type_for (etype);
4621 high = fold_convert_loc (loc, etype, high);
4622 exp = fold_convert_loc (loc, etype, exp);
4623 }
4624 return build_range_check (loc, type, exp, 1, 0, high);
4625 }
4626
4627 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4628 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4629 {
4630 int prec = TYPE_PRECISION (etype);
4631
4632 if (wi::mask (prec - 1, false, prec) == high)
4633 {
4634 if (TYPE_UNSIGNED (etype))
4635 {
4636 tree signed_etype = signed_type_for (etype);
4637 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4638 etype
4639 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4640 else
4641 etype = signed_etype;
4642 exp = fold_convert_loc (loc, etype, exp);
4643 }
4644 return fold_build2_loc (loc, GT_EXPR, type, exp,
4645 build_int_cst (etype, 0));
4646 }
4647 }
4648
4649 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4650 This requires wrap-around arithmetics for the type of the expression.
4651 First make sure that arithmetics in this type is valid, then make sure
4652 that it wraps around. */
4653 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4654 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4655 TYPE_UNSIGNED (etype));
4656
4657 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4658 {
4659 tree utype, minv, maxv;
4660
4661 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4662 for the type in question, as we rely on this here. */
4663 utype = unsigned_type_for (etype);
4664 maxv = fold_convert_loc (loc, utype, TYPE_MAX_VALUE (etype));
4665 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4666 build_int_cst (TREE_TYPE (maxv), 1), 1);
4667 minv = fold_convert_loc (loc, utype, TYPE_MIN_VALUE (etype));
4668
4669 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4670 minv, 1, maxv, 1)))
4671 etype = utype;
4672 else
4673 return 0;
4674 }
4675
4676 high = fold_convert_loc (loc, etype, high);
4677 low = fold_convert_loc (loc, etype, low);
4678 exp = fold_convert_loc (loc, etype, exp);
4679
4680 value = const_binop (MINUS_EXPR, high, low);
4681
4682
4683 if (POINTER_TYPE_P (etype))
4684 {
4685 if (value != 0 && !TREE_OVERFLOW (value))
4686 {
4687 low = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (low), low);
4688 return build_range_check (loc, type,
4689 fold_build_pointer_plus_loc (loc, exp, low),
4690 1, build_int_cst (etype, 0), value);
4691 }
4692 return 0;
4693 }
4694
4695 if (value != 0 && !TREE_OVERFLOW (value))
4696 return build_range_check (loc, type,
4697 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4698 1, build_int_cst (etype, 0), value);
4699
4700 return 0;
4701 }
4702 \f
4703 /* Return the predecessor of VAL in its type, handling the infinite case. */
4704
4705 static tree
4706 range_predecessor (tree val)
4707 {
4708 tree type = TREE_TYPE (val);
4709
4710 if (INTEGRAL_TYPE_P (type)
4711 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4712 return 0;
4713 else
4714 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4715 build_int_cst (TREE_TYPE (val), 1), 0);
4716 }
4717
4718 /* Return the successor of VAL in its type, handling the infinite case. */
4719
4720 static tree
4721 range_successor (tree val)
4722 {
4723 tree type = TREE_TYPE (val);
4724
4725 if (INTEGRAL_TYPE_P (type)
4726 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4727 return 0;
4728 else
4729 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4730 build_int_cst (TREE_TYPE (val), 1), 0);
4731 }
4732
4733 /* Given two ranges, see if we can merge them into one. Return 1 if we
4734 can, 0 if we can't. Set the output range into the specified parameters. */
4735
4736 bool
4737 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4738 tree high0, int in1_p, tree low1, tree high1)
4739 {
4740 int no_overlap;
4741 int subset;
4742 int temp;
4743 tree tem;
4744 int in_p;
4745 tree low, high;
4746 int lowequal = ((low0 == 0 && low1 == 0)
4747 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4748 low0, 0, low1, 0)));
4749 int highequal = ((high0 == 0 && high1 == 0)
4750 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4751 high0, 1, high1, 1)));
4752
4753 /* Make range 0 be the range that starts first, or ends last if they
4754 start at the same value. Swap them if it isn't. */
4755 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4756 low0, 0, low1, 0))
4757 || (lowequal
4758 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4759 high1, 1, high0, 1))))
4760 {
4761 temp = in0_p, in0_p = in1_p, in1_p = temp;
4762 tem = low0, low0 = low1, low1 = tem;
4763 tem = high0, high0 = high1, high1 = tem;
4764 }
4765
4766 /* Now flag two cases, whether the ranges are disjoint or whether the
4767 second range is totally subsumed in the first. Note that the tests
4768 below are simplified by the ones above. */
4769 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4770 high0, 1, low1, 0));
4771 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4772 high1, 1, high0, 1));
4773
4774 /* We now have four cases, depending on whether we are including or
4775 excluding the two ranges. */
4776 if (in0_p && in1_p)
4777 {
4778 /* If they don't overlap, the result is false. If the second range
4779 is a subset it is the result. Otherwise, the range is from the start
4780 of the second to the end of the first. */
4781 if (no_overlap)
4782 in_p = 0, low = high = 0;
4783 else if (subset)
4784 in_p = 1, low = low1, high = high1;
4785 else
4786 in_p = 1, low = low1, high = high0;
4787 }
4788
4789 else if (in0_p && ! in1_p)
4790 {
4791 /* If they don't overlap, the result is the first range. If they are
4792 equal, the result is false. If the second range is a subset of the
4793 first, and the ranges begin at the same place, we go from just after
4794 the end of the second range to the end of the first. If the second
4795 range is not a subset of the first, or if it is a subset and both
4796 ranges end at the same place, the range starts at the start of the
4797 first range and ends just before the second range.
4798 Otherwise, we can't describe this as a single range. */
4799 if (no_overlap)
4800 in_p = 1, low = low0, high = high0;
4801 else if (lowequal && highequal)
4802 in_p = 0, low = high = 0;
4803 else if (subset && lowequal)
4804 {
4805 low = range_successor (high1);
4806 high = high0;
4807 in_p = 1;
4808 if (low == 0)
4809 {
4810 /* We are in the weird situation where high0 > high1 but
4811 high1 has no successor. Punt. */
4812 return 0;
4813 }
4814 }
4815 else if (! subset || highequal)
4816 {
4817 low = low0;
4818 high = range_predecessor (low1);
4819 in_p = 1;
4820 if (high == 0)
4821 {
4822 /* low0 < low1 but low1 has no predecessor. Punt. */
4823 return 0;
4824 }
4825 }
4826 else
4827 return 0;
4828 }
4829
4830 else if (! in0_p && in1_p)
4831 {
4832 /* If they don't overlap, the result is the second range. If the second
4833 is a subset of the first, the result is false. Otherwise,
4834 the range starts just after the first range and ends at the
4835 end of the second. */
4836 if (no_overlap)
4837 in_p = 1, low = low1, high = high1;
4838 else if (subset || highequal)
4839 in_p = 0, low = high = 0;
4840 else
4841 {
4842 low = range_successor (high0);
4843 high = high1;
4844 in_p = 1;
4845 if (low == 0)
4846 {
4847 /* high1 > high0 but high0 has no successor. Punt. */
4848 return 0;
4849 }
4850 }
4851 }
4852
4853 else
4854 {
4855 /* The case where we are excluding both ranges. Here the complex case
4856 is if they don't overlap. In that case, the only time we have a
4857 range is if they are adjacent. If the second is a subset of the
4858 first, the result is the first. Otherwise, the range to exclude
4859 starts at the beginning of the first range and ends at the end of the
4860 second. */
4861 if (no_overlap)
4862 {
4863 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4864 range_successor (high0),
4865 1, low1, 0)))
4866 in_p = 0, low = low0, high = high1;
4867 else
4868 {
4869 /* Canonicalize - [min, x] into - [-, x]. */
4870 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4871 switch (TREE_CODE (TREE_TYPE (low0)))
4872 {
4873 case ENUMERAL_TYPE:
4874 if (TYPE_PRECISION (TREE_TYPE (low0))
4875 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4876 break;
4877 /* FALLTHROUGH */
4878 case INTEGER_TYPE:
4879 if (tree_int_cst_equal (low0,
4880 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4881 low0 = 0;
4882 break;
4883 case POINTER_TYPE:
4884 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4885 && integer_zerop (low0))
4886 low0 = 0;
4887 break;
4888 default:
4889 break;
4890 }
4891
4892 /* Canonicalize - [x, max] into - [x, -]. */
4893 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4894 switch (TREE_CODE (TREE_TYPE (high1)))
4895 {
4896 case ENUMERAL_TYPE:
4897 if (TYPE_PRECISION (TREE_TYPE (high1))
4898 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4899 break;
4900 /* FALLTHROUGH */
4901 case INTEGER_TYPE:
4902 if (tree_int_cst_equal (high1,
4903 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4904 high1 = 0;
4905 break;
4906 case POINTER_TYPE:
4907 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4908 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4909 high1, 1,
4910 build_int_cst (TREE_TYPE (high1), 1),
4911 1)))
4912 high1 = 0;
4913 break;
4914 default:
4915 break;
4916 }
4917
4918 /* The ranges might be also adjacent between the maximum and
4919 minimum values of the given type. For
4920 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4921 return + [x + 1, y - 1]. */
4922 if (low0 == 0 && high1 == 0)
4923 {
4924 low = range_successor (high0);
4925 high = range_predecessor (low1);
4926 if (low == 0 || high == 0)
4927 return 0;
4928
4929 in_p = 1;
4930 }
4931 else
4932 return 0;
4933 }
4934 }
4935 else if (subset)
4936 in_p = 0, low = low0, high = high0;
4937 else
4938 in_p = 0, low = low0, high = high1;
4939 }
4940
4941 *pin_p = in_p, *plow = low, *phigh = high;
4942 return 1;
4943 }
4944 \f
4945
4946 /* Subroutine of fold, looking inside expressions of the form
4947 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4948 of the COND_EXPR. This function is being used also to optimize
4949 A op B ? C : A, by reversing the comparison first.
4950
4951 Return a folded expression whose code is not a COND_EXPR
4952 anymore, or NULL_TREE if no folding opportunity is found. */
4953
4954 static tree
4955 fold_cond_expr_with_comparison (location_t loc, tree type,
4956 tree arg0, tree arg1, tree arg2)
4957 {
4958 enum tree_code comp_code = TREE_CODE (arg0);
4959 tree arg00 = TREE_OPERAND (arg0, 0);
4960 tree arg01 = TREE_OPERAND (arg0, 1);
4961 tree arg1_type = TREE_TYPE (arg1);
4962 tree tem;
4963
4964 STRIP_NOPS (arg1);
4965 STRIP_NOPS (arg2);
4966
4967 /* If we have A op 0 ? A : -A, consider applying the following
4968 transformations:
4969
4970 A == 0? A : -A same as -A
4971 A != 0? A : -A same as A
4972 A >= 0? A : -A same as abs (A)
4973 A > 0? A : -A same as abs (A)
4974 A <= 0? A : -A same as -abs (A)
4975 A < 0? A : -A same as -abs (A)
4976
4977 None of these transformations work for modes with signed
4978 zeros. If A is +/-0, the first two transformations will
4979 change the sign of the result (from +0 to -0, or vice
4980 versa). The last four will fix the sign of the result,
4981 even though the original expressions could be positive or
4982 negative, depending on the sign of A.
4983
4984 Note that all these transformations are correct if A is
4985 NaN, since the two alternatives (A and -A) are also NaNs. */
4986 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4987 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
4988 ? real_zerop (arg01)
4989 : integer_zerop (arg01))
4990 && ((TREE_CODE (arg2) == NEGATE_EXPR
4991 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4992 /* In the case that A is of the form X-Y, '-A' (arg2) may
4993 have already been folded to Y-X, check for that. */
4994 || (TREE_CODE (arg1) == MINUS_EXPR
4995 && TREE_CODE (arg2) == MINUS_EXPR
4996 && operand_equal_p (TREE_OPERAND (arg1, 0),
4997 TREE_OPERAND (arg2, 1), 0)
4998 && operand_equal_p (TREE_OPERAND (arg1, 1),
4999 TREE_OPERAND (arg2, 0), 0))))
5000 switch (comp_code)
5001 {
5002 case EQ_EXPR:
5003 case UNEQ_EXPR:
5004 tem = fold_convert_loc (loc, arg1_type, arg1);
5005 return pedantic_non_lvalue_loc (loc,
5006 fold_convert_loc (loc, type,
5007 negate_expr (tem)));
5008 case NE_EXPR:
5009 case LTGT_EXPR:
5010 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
5011 case UNGE_EXPR:
5012 case UNGT_EXPR:
5013 if (flag_trapping_math)
5014 break;
5015 /* Fall through. */
5016 case GE_EXPR:
5017 case GT_EXPR:
5018 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5019 break;
5020 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5021 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5022 case UNLE_EXPR:
5023 case UNLT_EXPR:
5024 if (flag_trapping_math)
5025 break;
5026 case LE_EXPR:
5027 case LT_EXPR:
5028 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5029 break;
5030 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5031 return negate_expr (fold_convert_loc (loc, type, tem));
5032 default:
5033 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5034 break;
5035 }
5036
5037 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5038 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5039 both transformations are correct when A is NaN: A != 0
5040 is then true, and A == 0 is false. */
5041
5042 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5043 && integer_zerop (arg01) && integer_zerop (arg2))
5044 {
5045 if (comp_code == NE_EXPR)
5046 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
5047 else if (comp_code == EQ_EXPR)
5048 return build_zero_cst (type);
5049 }
5050
5051 /* Try some transformations of A op B ? A : B.
5052
5053 A == B? A : B same as B
5054 A != B? A : B same as A
5055 A >= B? A : B same as max (A, B)
5056 A > B? A : B same as max (B, A)
5057 A <= B? A : B same as min (A, B)
5058 A < B? A : B same as min (B, A)
5059
5060 As above, these transformations don't work in the presence
5061 of signed zeros. For example, if A and B are zeros of
5062 opposite sign, the first two transformations will change
5063 the sign of the result. In the last four, the original
5064 expressions give different results for (A=+0, B=-0) and
5065 (A=-0, B=+0), but the transformed expressions do not.
5066
5067 The first two transformations are correct if either A or B
5068 is a NaN. In the first transformation, the condition will
5069 be false, and B will indeed be chosen. In the case of the
5070 second transformation, the condition A != B will be true,
5071 and A will be chosen.
5072
5073 The conversions to max() and min() are not correct if B is
5074 a number and A is not. The conditions in the original
5075 expressions will be false, so all four give B. The min()
5076 and max() versions would give a NaN instead. */
5077 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5078 && operand_equal_for_comparison_p (arg01, arg2, arg00)
5079 /* Avoid these transformations if the COND_EXPR may be used
5080 as an lvalue in the C++ front-end. PR c++/19199. */
5081 && (in_gimple_form
5082 || VECTOR_TYPE_P (type)
5083 || (! lang_GNU_CXX ()
5084 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5085 || ! maybe_lvalue_p (arg1)
5086 || ! maybe_lvalue_p (arg2)))
5087 {
5088 tree comp_op0 = arg00;
5089 tree comp_op1 = arg01;
5090 tree comp_type = TREE_TYPE (comp_op0);
5091
5092 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
5093 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
5094 {
5095 comp_type = type;
5096 comp_op0 = arg1;
5097 comp_op1 = arg2;
5098 }
5099
5100 switch (comp_code)
5101 {
5102 case EQ_EXPR:
5103 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg2));
5104 case NE_EXPR:
5105 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
5106 case LE_EXPR:
5107 case LT_EXPR:
5108 case UNLE_EXPR:
5109 case UNLT_EXPR:
5110 /* In C++ a ?: expression can be an lvalue, so put the
5111 operand which will be used if they are equal first
5112 so that we can convert this back to the
5113 corresponding COND_EXPR. */
5114 if (!HONOR_NANS (arg1))
5115 {
5116 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5117 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5118 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5119 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5120 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5121 comp_op1, comp_op0);
5122 return pedantic_non_lvalue_loc (loc,
5123 fold_convert_loc (loc, type, tem));
5124 }
5125 break;
5126 case GE_EXPR:
5127 case GT_EXPR:
5128 case UNGE_EXPR:
5129 case UNGT_EXPR:
5130 if (!HONOR_NANS (arg1))
5131 {
5132 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5133 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5134 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5135 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
5136 : fold_build2_loc (loc, MAX_EXPR, comp_type,
5137 comp_op1, comp_op0);
5138 return pedantic_non_lvalue_loc (loc,
5139 fold_convert_loc (loc, type, tem));
5140 }
5141 break;
5142 case UNEQ_EXPR:
5143 if (!HONOR_NANS (arg1))
5144 return pedantic_non_lvalue_loc (loc,
5145 fold_convert_loc (loc, type, arg2));
5146 break;
5147 case LTGT_EXPR:
5148 if (!HONOR_NANS (arg1))
5149 return pedantic_non_lvalue_loc (loc,
5150 fold_convert_loc (loc, type, arg1));
5151 break;
5152 default:
5153 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5154 break;
5155 }
5156 }
5157
5158 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5159 we might still be able to simplify this. For example,
5160 if C1 is one less or one more than C2, this might have started
5161 out as a MIN or MAX and been transformed by this function.
5162 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5163
5164 if (INTEGRAL_TYPE_P (type)
5165 && TREE_CODE (arg01) == INTEGER_CST
5166 && TREE_CODE (arg2) == INTEGER_CST)
5167 switch (comp_code)
5168 {
5169 case EQ_EXPR:
5170 if (TREE_CODE (arg1) == INTEGER_CST)
5171 break;
5172 /* We can replace A with C1 in this case. */
5173 arg1 = fold_convert_loc (loc, type, arg01);
5174 return fold_build3_loc (loc, COND_EXPR, type, arg0, arg1, arg2);
5175
5176 case LT_EXPR:
5177 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
5178 MIN_EXPR, to preserve the signedness of the comparison. */
5179 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5180 OEP_ONLY_CONST)
5181 && operand_equal_p (arg01,
5182 const_binop (PLUS_EXPR, arg2,
5183 build_int_cst (type, 1)),
5184 OEP_ONLY_CONST))
5185 {
5186 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5187 fold_convert_loc (loc, TREE_TYPE (arg00),
5188 arg2));
5189 return pedantic_non_lvalue_loc (loc,
5190 fold_convert_loc (loc, type, tem));
5191 }
5192 break;
5193
5194 case LE_EXPR:
5195 /* If C1 is C2 - 1, this is min(A, C2), with the same care
5196 as above. */
5197 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5198 OEP_ONLY_CONST)
5199 && operand_equal_p (arg01,
5200 const_binop (MINUS_EXPR, arg2,
5201 build_int_cst (type, 1)),
5202 OEP_ONLY_CONST))
5203 {
5204 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5205 fold_convert_loc (loc, TREE_TYPE (arg00),
5206 arg2));
5207 return pedantic_non_lvalue_loc (loc,
5208 fold_convert_loc (loc, type, tem));
5209 }
5210 break;
5211
5212 case GT_EXPR:
5213 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
5214 MAX_EXPR, to preserve the signedness of the comparison. */
5215 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5216 OEP_ONLY_CONST)
5217 && operand_equal_p (arg01,
5218 const_binop (MINUS_EXPR, arg2,
5219 build_int_cst (type, 1)),
5220 OEP_ONLY_CONST))
5221 {
5222 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5223 fold_convert_loc (loc, TREE_TYPE (arg00),
5224 arg2));
5225 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5226 }
5227 break;
5228
5229 case GE_EXPR:
5230 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
5231 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5232 OEP_ONLY_CONST)
5233 && operand_equal_p (arg01,
5234 const_binop (PLUS_EXPR, arg2,
5235 build_int_cst (type, 1)),
5236 OEP_ONLY_CONST))
5237 {
5238 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5239 fold_convert_loc (loc, TREE_TYPE (arg00),
5240 arg2));
5241 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5242 }
5243 break;
5244 case NE_EXPR:
5245 break;
5246 default:
5247 gcc_unreachable ();
5248 }
5249
5250 return NULL_TREE;
5251 }
5252
5253
5254 \f
5255 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5256 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5257 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5258 false) >= 2)
5259 #endif
5260
5261 /* EXP is some logical combination of boolean tests. See if we can
5262 merge it into some range test. Return the new tree if so. */
5263
5264 static tree
5265 fold_range_test (location_t loc, enum tree_code code, tree type,
5266 tree op0, tree op1)
5267 {
5268 int or_op = (code == TRUTH_ORIF_EXPR
5269 || code == TRUTH_OR_EXPR);
5270 int in0_p, in1_p, in_p;
5271 tree low0, low1, low, high0, high1, high;
5272 bool strict_overflow_p = false;
5273 tree tem, lhs, rhs;
5274 const char * const warnmsg = G_("assuming signed overflow does not occur "
5275 "when simplifying range test");
5276
5277 if (!INTEGRAL_TYPE_P (type))
5278 return 0;
5279
5280 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5281 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5282
5283 /* If this is an OR operation, invert both sides; we will invert
5284 again at the end. */
5285 if (or_op)
5286 in0_p = ! in0_p, in1_p = ! in1_p;
5287
5288 /* If both expressions are the same, if we can merge the ranges, and we
5289 can build the range test, return it or it inverted. If one of the
5290 ranges is always true or always false, consider it to be the same
5291 expression as the other. */
5292 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5293 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5294 in1_p, low1, high1)
5295 && 0 != (tem = (build_range_check (loc, type,
5296 lhs != 0 ? lhs
5297 : rhs != 0 ? rhs : integer_zero_node,
5298 in_p, low, high))))
5299 {
5300 if (strict_overflow_p)
5301 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5302 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5303 }
5304
5305 /* On machines where the branch cost is expensive, if this is a
5306 short-circuited branch and the underlying object on both sides
5307 is the same, make a non-short-circuit operation. */
5308 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5309 && lhs != 0 && rhs != 0
5310 && (code == TRUTH_ANDIF_EXPR
5311 || code == TRUTH_ORIF_EXPR)
5312 && operand_equal_p (lhs, rhs, 0))
5313 {
5314 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5315 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5316 which cases we can't do this. */
5317 if (simple_operand_p (lhs))
5318 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5319 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5320 type, op0, op1);
5321
5322 else if (!lang_hooks.decls.global_bindings_p ()
5323 && !CONTAINS_PLACEHOLDER_P (lhs))
5324 {
5325 tree common = save_expr (lhs);
5326
5327 if (0 != (lhs = build_range_check (loc, type, common,
5328 or_op ? ! in0_p : in0_p,
5329 low0, high0))
5330 && (0 != (rhs = build_range_check (loc, type, common,
5331 or_op ? ! in1_p : in1_p,
5332 low1, high1))))
5333 {
5334 if (strict_overflow_p)
5335 fold_overflow_warning (warnmsg,
5336 WARN_STRICT_OVERFLOW_COMPARISON);
5337 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5338 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5339 type, lhs, rhs);
5340 }
5341 }
5342 }
5343
5344 return 0;
5345 }
5346 \f
5347 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5348 bit value. Arrange things so the extra bits will be set to zero if and
5349 only if C is signed-extended to its full width. If MASK is nonzero,
5350 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5351
5352 static tree
5353 unextend (tree c, int p, int unsignedp, tree mask)
5354 {
5355 tree type = TREE_TYPE (c);
5356 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5357 tree temp;
5358
5359 if (p == modesize || unsignedp)
5360 return c;
5361
5362 /* We work by getting just the sign bit into the low-order bit, then
5363 into the high-order bit, then sign-extend. We then XOR that value
5364 with C. */
5365 temp = build_int_cst (TREE_TYPE (c), wi::extract_uhwi (c, p - 1, 1));
5366
5367 /* We must use a signed type in order to get an arithmetic right shift.
5368 However, we must also avoid introducing accidental overflows, so that
5369 a subsequent call to integer_zerop will work. Hence we must
5370 do the type conversion here. At this point, the constant is either
5371 zero or one, and the conversion to a signed type can never overflow.
5372 We could get an overflow if this conversion is done anywhere else. */
5373 if (TYPE_UNSIGNED (type))
5374 temp = fold_convert (signed_type_for (type), temp);
5375
5376 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5377 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5378 if (mask != 0)
5379 temp = const_binop (BIT_AND_EXPR, temp,
5380 fold_convert (TREE_TYPE (c), mask));
5381 /* If necessary, convert the type back to match the type of C. */
5382 if (TYPE_UNSIGNED (type))
5383 temp = fold_convert (type, temp);
5384
5385 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5386 }
5387 \f
5388 /* For an expression that has the form
5389 (A && B) || ~B
5390 or
5391 (A || B) && ~B,
5392 we can drop one of the inner expressions and simplify to
5393 A || ~B
5394 or
5395 A && ~B
5396 LOC is the location of the resulting expression. OP is the inner
5397 logical operation; the left-hand side in the examples above, while CMPOP
5398 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5399 removing a condition that guards another, as in
5400 (A != NULL && A->...) || A == NULL
5401 which we must not transform. If RHS_ONLY is true, only eliminate the
5402 right-most operand of the inner logical operation. */
5403
5404 static tree
5405 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5406 bool rhs_only)
5407 {
5408 tree type = TREE_TYPE (cmpop);
5409 enum tree_code code = TREE_CODE (cmpop);
5410 enum tree_code truthop_code = TREE_CODE (op);
5411 tree lhs = TREE_OPERAND (op, 0);
5412 tree rhs = TREE_OPERAND (op, 1);
5413 tree orig_lhs = lhs, orig_rhs = rhs;
5414 enum tree_code rhs_code = TREE_CODE (rhs);
5415 enum tree_code lhs_code = TREE_CODE (lhs);
5416 enum tree_code inv_code;
5417
5418 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5419 return NULL_TREE;
5420
5421 if (TREE_CODE_CLASS (code) != tcc_comparison)
5422 return NULL_TREE;
5423
5424 if (rhs_code == truthop_code)
5425 {
5426 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5427 if (newrhs != NULL_TREE)
5428 {
5429 rhs = newrhs;
5430 rhs_code = TREE_CODE (rhs);
5431 }
5432 }
5433 if (lhs_code == truthop_code && !rhs_only)
5434 {
5435 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5436 if (newlhs != NULL_TREE)
5437 {
5438 lhs = newlhs;
5439 lhs_code = TREE_CODE (lhs);
5440 }
5441 }
5442
5443 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5444 if (inv_code == rhs_code
5445 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5446 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5447 return lhs;
5448 if (!rhs_only && inv_code == lhs_code
5449 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5450 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5451 return rhs;
5452 if (rhs != orig_rhs || lhs != orig_lhs)
5453 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5454 lhs, rhs);
5455 return NULL_TREE;
5456 }
5457
5458 /* Find ways of folding logical expressions of LHS and RHS:
5459 Try to merge two comparisons to the same innermost item.
5460 Look for range tests like "ch >= '0' && ch <= '9'".
5461 Look for combinations of simple terms on machines with expensive branches
5462 and evaluate the RHS unconditionally.
5463
5464 For example, if we have p->a == 2 && p->b == 4 and we can make an
5465 object large enough to span both A and B, we can do this with a comparison
5466 against the object ANDed with the a mask.
5467
5468 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5469 operations to do this with one comparison.
5470
5471 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5472 function and the one above.
5473
5474 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5475 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5476
5477 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5478 two operands.
5479
5480 We return the simplified tree or 0 if no optimization is possible. */
5481
5482 static tree
5483 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5484 tree lhs, tree rhs)
5485 {
5486 /* If this is the "or" of two comparisons, we can do something if
5487 the comparisons are NE_EXPR. If this is the "and", we can do something
5488 if the comparisons are EQ_EXPR. I.e.,
5489 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5490
5491 WANTED_CODE is this operation code. For single bit fields, we can
5492 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5493 comparison for one-bit fields. */
5494
5495 enum tree_code wanted_code;
5496 enum tree_code lcode, rcode;
5497 tree ll_arg, lr_arg, rl_arg, rr_arg;
5498 tree ll_inner, lr_inner, rl_inner, rr_inner;
5499 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5500 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5501 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5502 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5503 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5504 int ll_reversep, lr_reversep, rl_reversep, rr_reversep;
5505 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5506 machine_mode lnmode, rnmode;
5507 tree ll_mask, lr_mask, rl_mask, rr_mask;
5508 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5509 tree l_const, r_const;
5510 tree lntype, rntype, result;
5511 HOST_WIDE_INT first_bit, end_bit;
5512 int volatilep;
5513
5514 /* Start by getting the comparison codes. Fail if anything is volatile.
5515 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5516 it were surrounded with a NE_EXPR. */
5517
5518 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5519 return 0;
5520
5521 lcode = TREE_CODE (lhs);
5522 rcode = TREE_CODE (rhs);
5523
5524 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5525 {
5526 lhs = build2 (NE_EXPR, truth_type, lhs,
5527 build_int_cst (TREE_TYPE (lhs), 0));
5528 lcode = NE_EXPR;
5529 }
5530
5531 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5532 {
5533 rhs = build2 (NE_EXPR, truth_type, rhs,
5534 build_int_cst (TREE_TYPE (rhs), 0));
5535 rcode = NE_EXPR;
5536 }
5537
5538 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5539 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5540 return 0;
5541
5542 ll_arg = TREE_OPERAND (lhs, 0);
5543 lr_arg = TREE_OPERAND (lhs, 1);
5544 rl_arg = TREE_OPERAND (rhs, 0);
5545 rr_arg = TREE_OPERAND (rhs, 1);
5546
5547 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5548 if (simple_operand_p (ll_arg)
5549 && simple_operand_p (lr_arg))
5550 {
5551 if (operand_equal_p (ll_arg, rl_arg, 0)
5552 && operand_equal_p (lr_arg, rr_arg, 0))
5553 {
5554 result = combine_comparisons (loc, code, lcode, rcode,
5555 truth_type, ll_arg, lr_arg);
5556 if (result)
5557 return result;
5558 }
5559 else if (operand_equal_p (ll_arg, rr_arg, 0)
5560 && operand_equal_p (lr_arg, rl_arg, 0))
5561 {
5562 result = combine_comparisons (loc, code, lcode,
5563 swap_tree_comparison (rcode),
5564 truth_type, ll_arg, lr_arg);
5565 if (result)
5566 return result;
5567 }
5568 }
5569
5570 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5571 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5572
5573 /* If the RHS can be evaluated unconditionally and its operands are
5574 simple, it wins to evaluate the RHS unconditionally on machines
5575 with expensive branches. In this case, this isn't a comparison
5576 that can be merged. */
5577
5578 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5579 false) >= 2
5580 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5581 && simple_operand_p (rl_arg)
5582 && simple_operand_p (rr_arg))
5583 {
5584 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5585 if (code == TRUTH_OR_EXPR
5586 && lcode == NE_EXPR && integer_zerop (lr_arg)
5587 && rcode == NE_EXPR && integer_zerop (rr_arg)
5588 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5589 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5590 return build2_loc (loc, NE_EXPR, truth_type,
5591 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5592 ll_arg, rl_arg),
5593 build_int_cst (TREE_TYPE (ll_arg), 0));
5594
5595 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5596 if (code == TRUTH_AND_EXPR
5597 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5598 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5599 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5600 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5601 return build2_loc (loc, EQ_EXPR, truth_type,
5602 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5603 ll_arg, rl_arg),
5604 build_int_cst (TREE_TYPE (ll_arg), 0));
5605 }
5606
5607 /* See if the comparisons can be merged. Then get all the parameters for
5608 each side. */
5609
5610 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5611 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5612 return 0;
5613
5614 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0;
5615 volatilep = 0;
5616 ll_inner = decode_field_reference (loc, ll_arg,
5617 &ll_bitsize, &ll_bitpos, &ll_mode,
5618 &ll_unsignedp, &ll_reversep, &volatilep,
5619 &ll_mask, &ll_and_mask);
5620 lr_inner = decode_field_reference (loc, lr_arg,
5621 &lr_bitsize, &lr_bitpos, &lr_mode,
5622 &lr_unsignedp, &lr_reversep, &volatilep,
5623 &lr_mask, &lr_and_mask);
5624 rl_inner = decode_field_reference (loc, rl_arg,
5625 &rl_bitsize, &rl_bitpos, &rl_mode,
5626 &rl_unsignedp, &rl_reversep, &volatilep,
5627 &rl_mask, &rl_and_mask);
5628 rr_inner = decode_field_reference (loc, rr_arg,
5629 &rr_bitsize, &rr_bitpos, &rr_mode,
5630 &rr_unsignedp, &rr_reversep, &volatilep,
5631 &rr_mask, &rr_and_mask);
5632
5633 /* It must be true that the inner operation on the lhs of each
5634 comparison must be the same if we are to be able to do anything.
5635 Then see if we have constants. If not, the same must be true for
5636 the rhs's. */
5637 if (volatilep
5638 || ll_reversep != rl_reversep
5639 || ll_inner == 0 || rl_inner == 0
5640 || ! operand_equal_p (ll_inner, rl_inner, 0))
5641 return 0;
5642
5643 if (TREE_CODE (lr_arg) == INTEGER_CST
5644 && TREE_CODE (rr_arg) == INTEGER_CST)
5645 {
5646 l_const = lr_arg, r_const = rr_arg;
5647 lr_reversep = ll_reversep;
5648 }
5649 else if (lr_reversep != rr_reversep
5650 || lr_inner == 0 || rr_inner == 0
5651 || ! operand_equal_p (lr_inner, rr_inner, 0))
5652 return 0;
5653 else
5654 l_const = r_const = 0;
5655
5656 /* If either comparison code is not correct for our logical operation,
5657 fail. However, we can convert a one-bit comparison against zero into
5658 the opposite comparison against that bit being set in the field. */
5659
5660 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5661 if (lcode != wanted_code)
5662 {
5663 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5664 {
5665 /* Make the left operand unsigned, since we are only interested
5666 in the value of one bit. Otherwise we are doing the wrong
5667 thing below. */
5668 ll_unsignedp = 1;
5669 l_const = ll_mask;
5670 }
5671 else
5672 return 0;
5673 }
5674
5675 /* This is analogous to the code for l_const above. */
5676 if (rcode != wanted_code)
5677 {
5678 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5679 {
5680 rl_unsignedp = 1;
5681 r_const = rl_mask;
5682 }
5683 else
5684 return 0;
5685 }
5686
5687 /* See if we can find a mode that contains both fields being compared on
5688 the left. If we can't, fail. Otherwise, update all constants and masks
5689 to be relative to a field of that size. */
5690 first_bit = MIN (ll_bitpos, rl_bitpos);
5691 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5692 lnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5693 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5694 volatilep);
5695 if (lnmode == VOIDmode)
5696 return 0;
5697
5698 lnbitsize = GET_MODE_BITSIZE (lnmode);
5699 lnbitpos = first_bit & ~ (lnbitsize - 1);
5700 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5701 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5702
5703 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5704 {
5705 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5706 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5707 }
5708
5709 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5710 size_int (xll_bitpos));
5711 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5712 size_int (xrl_bitpos));
5713
5714 if (l_const)
5715 {
5716 l_const = fold_convert_loc (loc, lntype, l_const);
5717 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5718 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5719 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5720 fold_build1_loc (loc, BIT_NOT_EXPR,
5721 lntype, ll_mask))))
5722 {
5723 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5724
5725 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5726 }
5727 }
5728 if (r_const)
5729 {
5730 r_const = fold_convert_loc (loc, lntype, r_const);
5731 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5732 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5733 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5734 fold_build1_loc (loc, BIT_NOT_EXPR,
5735 lntype, rl_mask))))
5736 {
5737 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5738
5739 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5740 }
5741 }
5742
5743 /* If the right sides are not constant, do the same for it. Also,
5744 disallow this optimization if a size or signedness mismatch occurs
5745 between the left and right sides. */
5746 if (l_const == 0)
5747 {
5748 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5749 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5750 /* Make sure the two fields on the right
5751 correspond to the left without being swapped. */
5752 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5753 return 0;
5754
5755 first_bit = MIN (lr_bitpos, rr_bitpos);
5756 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5757 rnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5758 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5759 volatilep);
5760 if (rnmode == VOIDmode)
5761 return 0;
5762
5763 rnbitsize = GET_MODE_BITSIZE (rnmode);
5764 rnbitpos = first_bit & ~ (rnbitsize - 1);
5765 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5766 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5767
5768 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5769 {
5770 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5771 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5772 }
5773
5774 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5775 rntype, lr_mask),
5776 size_int (xlr_bitpos));
5777 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5778 rntype, rr_mask),
5779 size_int (xrr_bitpos));
5780
5781 /* Make a mask that corresponds to both fields being compared.
5782 Do this for both items being compared. If the operands are the
5783 same size and the bits being compared are in the same position
5784 then we can do this by masking both and comparing the masked
5785 results. */
5786 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5787 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5788 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5789 {
5790 lhs = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5791 ll_unsignedp || rl_unsignedp, ll_reversep);
5792 if (! all_ones_mask_p (ll_mask, lnbitsize))
5793 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5794
5795 rhs = make_bit_field_ref (loc, lr_inner, rntype, rnbitsize, rnbitpos,
5796 lr_unsignedp || rr_unsignedp, lr_reversep);
5797 if (! all_ones_mask_p (lr_mask, rnbitsize))
5798 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5799
5800 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5801 }
5802
5803 /* There is still another way we can do something: If both pairs of
5804 fields being compared are adjacent, we may be able to make a wider
5805 field containing them both.
5806
5807 Note that we still must mask the lhs/rhs expressions. Furthermore,
5808 the mask must be shifted to account for the shift done by
5809 make_bit_field_ref. */
5810 if ((ll_bitsize + ll_bitpos == rl_bitpos
5811 && lr_bitsize + lr_bitpos == rr_bitpos)
5812 || (ll_bitpos == rl_bitpos + rl_bitsize
5813 && lr_bitpos == rr_bitpos + rr_bitsize))
5814 {
5815 tree type;
5816
5817 lhs = make_bit_field_ref (loc, ll_inner, lntype,
5818 ll_bitsize + rl_bitsize,
5819 MIN (ll_bitpos, rl_bitpos),
5820 ll_unsignedp, ll_reversep);
5821 rhs = make_bit_field_ref (loc, lr_inner, rntype,
5822 lr_bitsize + rr_bitsize,
5823 MIN (lr_bitpos, rr_bitpos),
5824 lr_unsignedp, lr_reversep);
5825
5826 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5827 size_int (MIN (xll_bitpos, xrl_bitpos)));
5828 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5829 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5830
5831 /* Convert to the smaller type before masking out unwanted bits. */
5832 type = lntype;
5833 if (lntype != rntype)
5834 {
5835 if (lnbitsize > rnbitsize)
5836 {
5837 lhs = fold_convert_loc (loc, rntype, lhs);
5838 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5839 type = rntype;
5840 }
5841 else if (lnbitsize < rnbitsize)
5842 {
5843 rhs = fold_convert_loc (loc, lntype, rhs);
5844 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5845 type = lntype;
5846 }
5847 }
5848
5849 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5850 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5851
5852 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5853 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5854
5855 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5856 }
5857
5858 return 0;
5859 }
5860
5861 /* Handle the case of comparisons with constants. If there is something in
5862 common between the masks, those bits of the constants must be the same.
5863 If not, the condition is always false. Test for this to avoid generating
5864 incorrect code below. */
5865 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5866 if (! integer_zerop (result)
5867 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5868 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5869 {
5870 if (wanted_code == NE_EXPR)
5871 {
5872 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5873 return constant_boolean_node (true, truth_type);
5874 }
5875 else
5876 {
5877 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5878 return constant_boolean_node (false, truth_type);
5879 }
5880 }
5881
5882 /* Construct the expression we will return. First get the component
5883 reference we will make. Unless the mask is all ones the width of
5884 that field, perform the mask operation. Then compare with the
5885 merged constant. */
5886 result = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5887 ll_unsignedp || rl_unsignedp, ll_reversep);
5888
5889 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5890 if (! all_ones_mask_p (ll_mask, lnbitsize))
5891 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5892
5893 return build2_loc (loc, wanted_code, truth_type, result,
5894 const_binop (BIT_IOR_EXPR, l_const, r_const));
5895 }
5896 \f
5897 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5898 constant. */
5899
5900 static tree
5901 optimize_minmax_comparison (location_t loc, enum tree_code code, tree type,
5902 tree op0, tree op1)
5903 {
5904 tree arg0 = op0;
5905 enum tree_code op_code;
5906 tree comp_const;
5907 tree minmax_const;
5908 int consts_equal, consts_lt;
5909 tree inner;
5910
5911 STRIP_SIGN_NOPS (arg0);
5912
5913 op_code = TREE_CODE (arg0);
5914 minmax_const = TREE_OPERAND (arg0, 1);
5915 comp_const = fold_convert_loc (loc, TREE_TYPE (arg0), op1);
5916 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5917 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5918 inner = TREE_OPERAND (arg0, 0);
5919
5920 /* If something does not permit us to optimize, return the original tree. */
5921 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5922 || TREE_CODE (comp_const) != INTEGER_CST
5923 || TREE_OVERFLOW (comp_const)
5924 || TREE_CODE (minmax_const) != INTEGER_CST
5925 || TREE_OVERFLOW (minmax_const))
5926 return NULL_TREE;
5927
5928 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5929 and GT_EXPR, doing the rest with recursive calls using logical
5930 simplifications. */
5931 switch (code)
5932 {
5933 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5934 {
5935 tree tem
5936 = optimize_minmax_comparison (loc,
5937 invert_tree_comparison (code, false),
5938 type, op0, op1);
5939 if (tem)
5940 return invert_truthvalue_loc (loc, tem);
5941 return NULL_TREE;
5942 }
5943
5944 case GE_EXPR:
5945 return
5946 fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
5947 optimize_minmax_comparison
5948 (loc, EQ_EXPR, type, arg0, comp_const),
5949 optimize_minmax_comparison
5950 (loc, GT_EXPR, type, arg0, comp_const));
5951
5952 case EQ_EXPR:
5953 if (op_code == MAX_EXPR && consts_equal)
5954 /* MAX (X, 0) == 0 -> X <= 0 */
5955 return fold_build2_loc (loc, LE_EXPR, type, inner, comp_const);
5956
5957 else if (op_code == MAX_EXPR && consts_lt)
5958 /* MAX (X, 0) == 5 -> X == 5 */
5959 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5960
5961 else if (op_code == MAX_EXPR)
5962 /* MAX (X, 0) == -1 -> false */
5963 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5964
5965 else if (consts_equal)
5966 /* MIN (X, 0) == 0 -> X >= 0 */
5967 return fold_build2_loc (loc, GE_EXPR, type, inner, comp_const);
5968
5969 else if (consts_lt)
5970 /* MIN (X, 0) == 5 -> false */
5971 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5972
5973 else
5974 /* MIN (X, 0) == -1 -> X == -1 */
5975 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5976
5977 case GT_EXPR:
5978 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5979 /* MAX (X, 0) > 0 -> X > 0
5980 MAX (X, 0) > 5 -> X > 5 */
5981 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5982
5983 else if (op_code == MAX_EXPR)
5984 /* MAX (X, 0) > -1 -> true */
5985 return omit_one_operand_loc (loc, type, integer_one_node, inner);
5986
5987 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5988 /* MIN (X, 0) > 0 -> false
5989 MIN (X, 0) > 5 -> false */
5990 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5991
5992 else
5993 /* MIN (X, 0) > -1 -> X > -1 */
5994 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5995
5996 default:
5997 return NULL_TREE;
5998 }
5999 }
6000 \f
6001 /* T is an integer expression that is being multiplied, divided, or taken a
6002 modulus (CODE says which and what kind of divide or modulus) by a
6003 constant C. See if we can eliminate that operation by folding it with
6004 other operations already in T. WIDE_TYPE, if non-null, is a type that
6005 should be used for the computation if wider than our type.
6006
6007 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
6008 (X * 2) + (Y * 4). We must, however, be assured that either the original
6009 expression would not overflow or that overflow is undefined for the type
6010 in the language in question.
6011
6012 If we return a non-null expression, it is an equivalent form of the
6013 original computation, but need not be in the original type.
6014
6015 We set *STRICT_OVERFLOW_P to true if the return values depends on
6016 signed overflow being undefined. Otherwise we do not change
6017 *STRICT_OVERFLOW_P. */
6018
6019 static tree
6020 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
6021 bool *strict_overflow_p)
6022 {
6023 /* To avoid exponential search depth, refuse to allow recursion past
6024 three levels. Beyond that (1) it's highly unlikely that we'll find
6025 something interesting and (2) we've probably processed it before
6026 when we built the inner expression. */
6027
6028 static int depth;
6029 tree ret;
6030
6031 if (depth > 3)
6032 return NULL;
6033
6034 depth++;
6035 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
6036 depth--;
6037
6038 return ret;
6039 }
6040
6041 static tree
6042 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6043 bool *strict_overflow_p)
6044 {
6045 tree type = TREE_TYPE (t);
6046 enum tree_code tcode = TREE_CODE (t);
6047 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
6048 > GET_MODE_SIZE (TYPE_MODE (type)))
6049 ? wide_type : type);
6050 tree t1, t2;
6051 int same_p = tcode == code;
6052 tree op0 = NULL_TREE, op1 = NULL_TREE;
6053 bool sub_strict_overflow_p;
6054
6055 /* Don't deal with constants of zero here; they confuse the code below. */
6056 if (integer_zerop (c))
6057 return NULL_TREE;
6058
6059 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6060 op0 = TREE_OPERAND (t, 0);
6061
6062 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6063 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6064
6065 /* Note that we need not handle conditional operations here since fold
6066 already handles those cases. So just do arithmetic here. */
6067 switch (tcode)
6068 {
6069 case INTEGER_CST:
6070 /* For a constant, we can always simplify if we are a multiply
6071 or (for divide and modulus) if it is a multiple of our constant. */
6072 if (code == MULT_EXPR
6073 || wi::multiple_of_p (t, c, TYPE_SIGN (type)))
6074 {
6075 tree tem = const_binop (code, fold_convert (ctype, t),
6076 fold_convert (ctype, c));
6077 /* If the multiplication overflowed to INT_MIN then we lost sign
6078 information on it and a subsequent multiplication might
6079 spuriously overflow. See PR68142. */
6080 if (TREE_OVERFLOW (tem)
6081 && wi::eq_p (tem, wi::min_value (TYPE_PRECISION (ctype), SIGNED)))
6082 return NULL_TREE;
6083 return tem;
6084 }
6085 break;
6086
6087 CASE_CONVERT: case NON_LVALUE_EXPR:
6088 /* If op0 is an expression ... */
6089 if ((COMPARISON_CLASS_P (op0)
6090 || UNARY_CLASS_P (op0)
6091 || BINARY_CLASS_P (op0)
6092 || VL_EXP_CLASS_P (op0)
6093 || EXPRESSION_CLASS_P (op0))
6094 /* ... and has wrapping overflow, and its type is smaller
6095 than ctype, then we cannot pass through as widening. */
6096 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6097 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
6098 && (TYPE_PRECISION (ctype)
6099 > TYPE_PRECISION (TREE_TYPE (op0))))
6100 /* ... or this is a truncation (t is narrower than op0),
6101 then we cannot pass through this narrowing. */
6102 || (TYPE_PRECISION (type)
6103 < TYPE_PRECISION (TREE_TYPE (op0)))
6104 /* ... or signedness changes for division or modulus,
6105 then we cannot pass through this conversion. */
6106 || (code != MULT_EXPR
6107 && (TYPE_UNSIGNED (ctype)
6108 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6109 /* ... or has undefined overflow while the converted to
6110 type has not, we cannot do the operation in the inner type
6111 as that would introduce undefined overflow. */
6112 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6113 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
6114 && !TYPE_OVERFLOW_UNDEFINED (type))))
6115 break;
6116
6117 /* Pass the constant down and see if we can make a simplification. If
6118 we can, replace this expression with the inner simplification for
6119 possible later conversion to our or some other type. */
6120 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6121 && TREE_CODE (t2) == INTEGER_CST
6122 && !TREE_OVERFLOW (t2)
6123 && (0 != (t1 = extract_muldiv (op0, t2, code,
6124 code == MULT_EXPR
6125 ? ctype : NULL_TREE,
6126 strict_overflow_p))))
6127 return t1;
6128 break;
6129
6130 case ABS_EXPR:
6131 /* If widening the type changes it from signed to unsigned, then we
6132 must avoid building ABS_EXPR itself as unsigned. */
6133 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6134 {
6135 tree cstype = (*signed_type_for) (ctype);
6136 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6137 != 0)
6138 {
6139 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6140 return fold_convert (ctype, t1);
6141 }
6142 break;
6143 }
6144 /* If the constant is negative, we cannot simplify this. */
6145 if (tree_int_cst_sgn (c) == -1)
6146 break;
6147 /* FALLTHROUGH */
6148 case NEGATE_EXPR:
6149 /* For division and modulus, type can't be unsigned, as e.g.
6150 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6151 For signed types, even with wrapping overflow, this is fine. */
6152 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6153 break;
6154 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6155 != 0)
6156 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6157 break;
6158
6159 case MIN_EXPR: case MAX_EXPR:
6160 /* If widening the type changes the signedness, then we can't perform
6161 this optimization as that changes the result. */
6162 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6163 break;
6164
6165 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6166 sub_strict_overflow_p = false;
6167 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6168 &sub_strict_overflow_p)) != 0
6169 && (t2 = extract_muldiv (op1, c, code, wide_type,
6170 &sub_strict_overflow_p)) != 0)
6171 {
6172 if (tree_int_cst_sgn (c) < 0)
6173 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6174 if (sub_strict_overflow_p)
6175 *strict_overflow_p = true;
6176 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6177 fold_convert (ctype, t2));
6178 }
6179 break;
6180
6181 case LSHIFT_EXPR: case RSHIFT_EXPR:
6182 /* If the second operand is constant, this is a multiplication
6183 or floor division, by a power of two, so we can treat it that
6184 way unless the multiplier or divisor overflows. Signed
6185 left-shift overflow is implementation-defined rather than
6186 undefined in C90, so do not convert signed left shift into
6187 multiplication. */
6188 if (TREE_CODE (op1) == INTEGER_CST
6189 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6190 /* const_binop may not detect overflow correctly,
6191 so check for it explicitly here. */
6192 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
6193 && 0 != (t1 = fold_convert (ctype,
6194 const_binop (LSHIFT_EXPR,
6195 size_one_node,
6196 op1)))
6197 && !TREE_OVERFLOW (t1))
6198 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6199 ? MULT_EXPR : FLOOR_DIV_EXPR,
6200 ctype,
6201 fold_convert (ctype, op0),
6202 t1),
6203 c, code, wide_type, strict_overflow_p);
6204 break;
6205
6206 case PLUS_EXPR: case MINUS_EXPR:
6207 /* See if we can eliminate the operation on both sides. If we can, we
6208 can return a new PLUS or MINUS. If we can't, the only remaining
6209 cases where we can do anything are if the second operand is a
6210 constant. */
6211 sub_strict_overflow_p = false;
6212 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6213 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6214 if (t1 != 0 && t2 != 0
6215 && (code == MULT_EXPR
6216 /* If not multiplication, we can only do this if both operands
6217 are divisible by c. */
6218 || (multiple_of_p (ctype, op0, c)
6219 && multiple_of_p (ctype, op1, c))))
6220 {
6221 if (sub_strict_overflow_p)
6222 *strict_overflow_p = true;
6223 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6224 fold_convert (ctype, t2));
6225 }
6226
6227 /* If this was a subtraction, negate OP1 and set it to be an addition.
6228 This simplifies the logic below. */
6229 if (tcode == MINUS_EXPR)
6230 {
6231 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6232 /* If OP1 was not easily negatable, the constant may be OP0. */
6233 if (TREE_CODE (op0) == INTEGER_CST)
6234 {
6235 std::swap (op0, op1);
6236 std::swap (t1, t2);
6237 }
6238 }
6239
6240 if (TREE_CODE (op1) != INTEGER_CST)
6241 break;
6242
6243 /* If either OP1 or C are negative, this optimization is not safe for
6244 some of the division and remainder types while for others we need
6245 to change the code. */
6246 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6247 {
6248 if (code == CEIL_DIV_EXPR)
6249 code = FLOOR_DIV_EXPR;
6250 else if (code == FLOOR_DIV_EXPR)
6251 code = CEIL_DIV_EXPR;
6252 else if (code != MULT_EXPR
6253 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6254 break;
6255 }
6256
6257 /* If it's a multiply or a division/modulus operation of a multiple
6258 of our constant, do the operation and verify it doesn't overflow. */
6259 if (code == MULT_EXPR
6260 || wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6261 {
6262 op1 = const_binop (code, fold_convert (ctype, op1),
6263 fold_convert (ctype, c));
6264 /* We allow the constant to overflow with wrapping semantics. */
6265 if (op1 == 0
6266 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6267 break;
6268 }
6269 else
6270 break;
6271
6272 /* If we have an unsigned type, we cannot widen the operation since it
6273 will change the result if the original computation overflowed. */
6274 if (TYPE_UNSIGNED (ctype) && ctype != type)
6275 break;
6276
6277 /* If we were able to eliminate our operation from the first side,
6278 apply our operation to the second side and reform the PLUS. */
6279 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
6280 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
6281
6282 /* The last case is if we are a multiply. In that case, we can
6283 apply the distributive law to commute the multiply and addition
6284 if the multiplication of the constants doesn't overflow
6285 and overflow is defined. With undefined overflow
6286 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6287 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6288 return fold_build2 (tcode, ctype,
6289 fold_build2 (code, ctype,
6290 fold_convert (ctype, op0),
6291 fold_convert (ctype, c)),
6292 op1);
6293
6294 break;
6295
6296 case MULT_EXPR:
6297 /* We have a special case here if we are doing something like
6298 (C * 8) % 4 since we know that's zero. */
6299 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6300 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6301 /* If the multiplication can overflow we cannot optimize this. */
6302 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6303 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6304 && wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6305 {
6306 *strict_overflow_p = true;
6307 return omit_one_operand (type, integer_zero_node, op0);
6308 }
6309
6310 /* ... fall through ... */
6311
6312 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6313 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6314 /* If we can extract our operation from the LHS, do so and return a
6315 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6316 do something only if the second operand is a constant. */
6317 if (same_p
6318 && (t1 = extract_muldiv (op0, c, code, wide_type,
6319 strict_overflow_p)) != 0)
6320 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6321 fold_convert (ctype, op1));
6322 else if (tcode == MULT_EXPR && code == MULT_EXPR
6323 && (t1 = extract_muldiv (op1, c, code, wide_type,
6324 strict_overflow_p)) != 0)
6325 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6326 fold_convert (ctype, t1));
6327 else if (TREE_CODE (op1) != INTEGER_CST)
6328 return 0;
6329
6330 /* If these are the same operation types, we can associate them
6331 assuming no overflow. */
6332 if (tcode == code)
6333 {
6334 bool overflow_p = false;
6335 bool overflow_mul_p;
6336 signop sign = TYPE_SIGN (ctype);
6337 wide_int mul = wi::mul (op1, c, sign, &overflow_mul_p);
6338 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6339 if (overflow_mul_p
6340 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6341 overflow_p = true;
6342 if (!overflow_p)
6343 {
6344 mul = wide_int::from (mul, TYPE_PRECISION (ctype),
6345 TYPE_SIGN (TREE_TYPE (op1)));
6346 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6347 wide_int_to_tree (ctype, mul));
6348 }
6349 }
6350
6351 /* If these operations "cancel" each other, we have the main
6352 optimizations of this pass, which occur when either constant is a
6353 multiple of the other, in which case we replace this with either an
6354 operation or CODE or TCODE.
6355
6356 If we have an unsigned type, we cannot do this since it will change
6357 the result if the original computation overflowed. */
6358 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6359 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6360 || (tcode == MULT_EXPR
6361 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6362 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6363 && code != MULT_EXPR)))
6364 {
6365 if (wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6366 {
6367 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6368 *strict_overflow_p = true;
6369 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6370 fold_convert (ctype,
6371 const_binop (TRUNC_DIV_EXPR,
6372 op1, c)));
6373 }
6374 else if (wi::multiple_of_p (c, op1, TYPE_SIGN (type)))
6375 {
6376 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6377 *strict_overflow_p = true;
6378 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6379 fold_convert (ctype,
6380 const_binop (TRUNC_DIV_EXPR,
6381 c, op1)));
6382 }
6383 }
6384 break;
6385
6386 default:
6387 break;
6388 }
6389
6390 return 0;
6391 }
6392 \f
6393 /* Return a node which has the indicated constant VALUE (either 0 or
6394 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6395 and is of the indicated TYPE. */
6396
6397 tree
6398 constant_boolean_node (bool value, tree type)
6399 {
6400 if (type == integer_type_node)
6401 return value ? integer_one_node : integer_zero_node;
6402 else if (type == boolean_type_node)
6403 return value ? boolean_true_node : boolean_false_node;
6404 else if (TREE_CODE (type) == VECTOR_TYPE)
6405 return build_vector_from_val (type,
6406 build_int_cst (TREE_TYPE (type),
6407 value ? -1 : 0));
6408 else
6409 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6410 }
6411
6412
6413 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6414 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6415 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6416 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6417 COND is the first argument to CODE; otherwise (as in the example
6418 given here), it is the second argument. TYPE is the type of the
6419 original expression. Return NULL_TREE if no simplification is
6420 possible. */
6421
6422 static tree
6423 fold_binary_op_with_conditional_arg (location_t loc,
6424 enum tree_code code,
6425 tree type, tree op0, tree op1,
6426 tree cond, tree arg, int cond_first_p)
6427 {
6428 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6429 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6430 tree test, true_value, false_value;
6431 tree lhs = NULL_TREE;
6432 tree rhs = NULL_TREE;
6433 enum tree_code cond_code = COND_EXPR;
6434
6435 if (TREE_CODE (cond) == COND_EXPR
6436 || TREE_CODE (cond) == VEC_COND_EXPR)
6437 {
6438 test = TREE_OPERAND (cond, 0);
6439 true_value = TREE_OPERAND (cond, 1);
6440 false_value = TREE_OPERAND (cond, 2);
6441 /* If this operand throws an expression, then it does not make
6442 sense to try to perform a logical or arithmetic operation
6443 involving it. */
6444 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6445 lhs = true_value;
6446 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6447 rhs = false_value;
6448 }
6449 else
6450 {
6451 tree testtype = TREE_TYPE (cond);
6452 test = cond;
6453 true_value = constant_boolean_node (true, testtype);
6454 false_value = constant_boolean_node (false, testtype);
6455 }
6456
6457 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6458 cond_code = VEC_COND_EXPR;
6459
6460 /* This transformation is only worthwhile if we don't have to wrap ARG
6461 in a SAVE_EXPR and the operation can be simplified without recursing
6462 on at least one of the branches once its pushed inside the COND_EXPR. */
6463 if (!TREE_CONSTANT (arg)
6464 && (TREE_SIDE_EFFECTS (arg)
6465 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6466 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6467 return NULL_TREE;
6468
6469 arg = fold_convert_loc (loc, arg_type, arg);
6470 if (lhs == 0)
6471 {
6472 true_value = fold_convert_loc (loc, cond_type, true_value);
6473 if (cond_first_p)
6474 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6475 else
6476 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6477 }
6478 if (rhs == 0)
6479 {
6480 false_value = fold_convert_loc (loc, cond_type, false_value);
6481 if (cond_first_p)
6482 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6483 else
6484 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6485 }
6486
6487 /* Check that we have simplified at least one of the branches. */
6488 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6489 return NULL_TREE;
6490
6491 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6492 }
6493
6494 \f
6495 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6496
6497 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6498 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6499 ADDEND is the same as X.
6500
6501 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6502 and finite. The problematic cases are when X is zero, and its mode
6503 has signed zeros. In the case of rounding towards -infinity,
6504 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6505 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6506
6507 bool
6508 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6509 {
6510 if (!real_zerop (addend))
6511 return false;
6512
6513 /* Don't allow the fold with -fsignaling-nans. */
6514 if (HONOR_SNANS (element_mode (type)))
6515 return false;
6516
6517 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6518 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6519 return true;
6520
6521 /* In a vector or complex, we would need to check the sign of all zeros. */
6522 if (TREE_CODE (addend) != REAL_CST)
6523 return false;
6524
6525 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6526 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6527 negate = !negate;
6528
6529 /* The mode has signed zeros, and we have to honor their sign.
6530 In this situation, there is only one case we can return true for.
6531 X - 0 is the same as X unless rounding towards -infinity is
6532 supported. */
6533 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6534 }
6535
6536 /* Subroutine of fold() that optimizes comparisons of a division by
6537 a nonzero integer constant against an integer constant, i.e.
6538 X/C1 op C2.
6539
6540 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6541 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6542 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6543
6544 The function returns the constant folded tree if a simplification
6545 can be made, and NULL_TREE otherwise. */
6546
6547 static tree
6548 fold_div_compare (location_t loc,
6549 enum tree_code code, tree type, tree arg0, tree arg1)
6550 {
6551 tree prod, tmp, hi, lo;
6552 tree arg00 = TREE_OPERAND (arg0, 0);
6553 tree arg01 = TREE_OPERAND (arg0, 1);
6554 signop sign = TYPE_SIGN (TREE_TYPE (arg0));
6555 bool neg_overflow = false;
6556 bool overflow;
6557
6558 /* We have to do this the hard way to detect unsigned overflow.
6559 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6560 wide_int val = wi::mul (arg01, arg1, sign, &overflow);
6561 prod = force_fit_type (TREE_TYPE (arg00), val, -1, overflow);
6562 neg_overflow = false;
6563
6564 if (sign == UNSIGNED)
6565 {
6566 tmp = int_const_binop (MINUS_EXPR, arg01,
6567 build_int_cst (TREE_TYPE (arg01), 1));
6568 lo = prod;
6569
6570 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6571 val = wi::add (prod, tmp, sign, &overflow);
6572 hi = force_fit_type (TREE_TYPE (arg00), val,
6573 -1, overflow | TREE_OVERFLOW (prod));
6574 }
6575 else if (tree_int_cst_sgn (arg01) >= 0)
6576 {
6577 tmp = int_const_binop (MINUS_EXPR, arg01,
6578 build_int_cst (TREE_TYPE (arg01), 1));
6579 switch (tree_int_cst_sgn (arg1))
6580 {
6581 case -1:
6582 neg_overflow = true;
6583 lo = int_const_binop (MINUS_EXPR, prod, tmp);
6584 hi = prod;
6585 break;
6586
6587 case 0:
6588 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6589 hi = tmp;
6590 break;
6591
6592 case 1:
6593 hi = int_const_binop (PLUS_EXPR, prod, tmp);
6594 lo = prod;
6595 break;
6596
6597 default:
6598 gcc_unreachable ();
6599 }
6600 }
6601 else
6602 {
6603 /* A negative divisor reverses the relational operators. */
6604 code = swap_tree_comparison (code);
6605
6606 tmp = int_const_binop (PLUS_EXPR, arg01,
6607 build_int_cst (TREE_TYPE (arg01), 1));
6608 switch (tree_int_cst_sgn (arg1))
6609 {
6610 case -1:
6611 hi = int_const_binop (MINUS_EXPR, prod, tmp);
6612 lo = prod;
6613 break;
6614
6615 case 0:
6616 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6617 lo = tmp;
6618 break;
6619
6620 case 1:
6621 neg_overflow = true;
6622 lo = int_const_binop (PLUS_EXPR, prod, tmp);
6623 hi = prod;
6624 break;
6625
6626 default:
6627 gcc_unreachable ();
6628 }
6629 }
6630
6631 switch (code)
6632 {
6633 case EQ_EXPR:
6634 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6635 return omit_one_operand_loc (loc, type, integer_zero_node, arg00);
6636 if (TREE_OVERFLOW (hi))
6637 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6638 if (TREE_OVERFLOW (lo))
6639 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6640 return build_range_check (loc, type, arg00, 1, lo, hi);
6641
6642 case NE_EXPR:
6643 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6644 return omit_one_operand_loc (loc, type, integer_one_node, arg00);
6645 if (TREE_OVERFLOW (hi))
6646 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6647 if (TREE_OVERFLOW (lo))
6648 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6649 return build_range_check (loc, type, arg00, 0, lo, hi);
6650
6651 case LT_EXPR:
6652 if (TREE_OVERFLOW (lo))
6653 {
6654 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6655 return omit_one_operand_loc (loc, type, tmp, arg00);
6656 }
6657 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6658
6659 case LE_EXPR:
6660 if (TREE_OVERFLOW (hi))
6661 {
6662 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6663 return omit_one_operand_loc (loc, type, tmp, arg00);
6664 }
6665 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6666
6667 case GT_EXPR:
6668 if (TREE_OVERFLOW (hi))
6669 {
6670 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6671 return omit_one_operand_loc (loc, type, tmp, arg00);
6672 }
6673 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6674
6675 case GE_EXPR:
6676 if (TREE_OVERFLOW (lo))
6677 {
6678 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6679 return omit_one_operand_loc (loc, type, tmp, arg00);
6680 }
6681 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6682
6683 default:
6684 break;
6685 }
6686
6687 return NULL_TREE;
6688 }
6689
6690
6691 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6692 equality/inequality test, then return a simplified form of the test
6693 using a sign testing. Otherwise return NULL. TYPE is the desired
6694 result type. */
6695
6696 static tree
6697 fold_single_bit_test_into_sign_test (location_t loc,
6698 enum tree_code code, tree arg0, tree arg1,
6699 tree result_type)
6700 {
6701 /* If this is testing a single bit, we can optimize the test. */
6702 if ((code == NE_EXPR || code == EQ_EXPR)
6703 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6704 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6705 {
6706 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6707 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6708 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6709
6710 if (arg00 != NULL_TREE
6711 /* This is only a win if casting to a signed type is cheap,
6712 i.e. when arg00's type is not a partial mode. */
6713 && TYPE_PRECISION (TREE_TYPE (arg00))
6714 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00))))
6715 {
6716 tree stype = signed_type_for (TREE_TYPE (arg00));
6717 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6718 result_type,
6719 fold_convert_loc (loc, stype, arg00),
6720 build_int_cst (stype, 0));
6721 }
6722 }
6723
6724 return NULL_TREE;
6725 }
6726
6727 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6728 equality/inequality test, then return a simplified form of
6729 the test using shifts and logical operations. Otherwise return
6730 NULL. TYPE is the desired result type. */
6731
6732 tree
6733 fold_single_bit_test (location_t loc, enum tree_code code,
6734 tree arg0, tree arg1, tree result_type)
6735 {
6736 /* If this is testing a single bit, we can optimize the test. */
6737 if ((code == NE_EXPR || code == EQ_EXPR)
6738 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6739 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6740 {
6741 tree inner = TREE_OPERAND (arg0, 0);
6742 tree type = TREE_TYPE (arg0);
6743 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6744 machine_mode operand_mode = TYPE_MODE (type);
6745 int ops_unsigned;
6746 tree signed_type, unsigned_type, intermediate_type;
6747 tree tem, one;
6748
6749 /* First, see if we can fold the single bit test into a sign-bit
6750 test. */
6751 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6752 result_type);
6753 if (tem)
6754 return tem;
6755
6756 /* Otherwise we have (A & C) != 0 where C is a single bit,
6757 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6758 Similarly for (A & C) == 0. */
6759
6760 /* If INNER is a right shift of a constant and it plus BITNUM does
6761 not overflow, adjust BITNUM and INNER. */
6762 if (TREE_CODE (inner) == RSHIFT_EXPR
6763 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6764 && bitnum < TYPE_PRECISION (type)
6765 && wi::ltu_p (TREE_OPERAND (inner, 1),
6766 TYPE_PRECISION (type) - bitnum))
6767 {
6768 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6769 inner = TREE_OPERAND (inner, 0);
6770 }
6771
6772 /* If we are going to be able to omit the AND below, we must do our
6773 operations as unsigned. If we must use the AND, we have a choice.
6774 Normally unsigned is faster, but for some machines signed is. */
6775 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6776 && !flag_syntax_only) ? 0 : 1;
6777
6778 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6779 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6780 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6781 inner = fold_convert_loc (loc, intermediate_type, inner);
6782
6783 if (bitnum != 0)
6784 inner = build2 (RSHIFT_EXPR, intermediate_type,
6785 inner, size_int (bitnum));
6786
6787 one = build_int_cst (intermediate_type, 1);
6788
6789 if (code == EQ_EXPR)
6790 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6791
6792 /* Put the AND last so it can combine with more things. */
6793 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6794
6795 /* Make sure to return the proper type. */
6796 inner = fold_convert_loc (loc, result_type, inner);
6797
6798 return inner;
6799 }
6800 return NULL_TREE;
6801 }
6802
6803 /* Check whether we are allowed to reorder operands arg0 and arg1,
6804 such that the evaluation of arg1 occurs before arg0. */
6805
6806 static bool
6807 reorder_operands_p (const_tree arg0, const_tree arg1)
6808 {
6809 if (! flag_evaluation_order)
6810 return true;
6811 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6812 return true;
6813 return ! TREE_SIDE_EFFECTS (arg0)
6814 && ! TREE_SIDE_EFFECTS (arg1);
6815 }
6816
6817 /* Test whether it is preferable two swap two operands, ARG0 and
6818 ARG1, for example because ARG0 is an integer constant and ARG1
6819 isn't. If REORDER is true, only recommend swapping if we can
6820 evaluate the operands in reverse order. */
6821
6822 bool
6823 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
6824 {
6825 if (CONSTANT_CLASS_P (arg1))
6826 return 0;
6827 if (CONSTANT_CLASS_P (arg0))
6828 return 1;
6829
6830 STRIP_NOPS (arg0);
6831 STRIP_NOPS (arg1);
6832
6833 if (TREE_CONSTANT (arg1))
6834 return 0;
6835 if (TREE_CONSTANT (arg0))
6836 return 1;
6837
6838 if (reorder && flag_evaluation_order
6839 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6840 return 0;
6841
6842 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6843 for commutative and comparison operators. Ensuring a canonical
6844 form allows the optimizers to find additional redundancies without
6845 having to explicitly check for both orderings. */
6846 if (TREE_CODE (arg0) == SSA_NAME
6847 && TREE_CODE (arg1) == SSA_NAME
6848 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6849 return 1;
6850
6851 /* Put SSA_NAMEs last. */
6852 if (TREE_CODE (arg1) == SSA_NAME)
6853 return 0;
6854 if (TREE_CODE (arg0) == SSA_NAME)
6855 return 1;
6856
6857 /* Put variables last. */
6858 if (DECL_P (arg1))
6859 return 0;
6860 if (DECL_P (arg0))
6861 return 1;
6862
6863 return 0;
6864 }
6865
6866
6867 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6868 means A >= Y && A != MAX, but in this case we know that
6869 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6870
6871 static tree
6872 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6873 {
6874 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6875
6876 if (TREE_CODE (bound) == LT_EXPR)
6877 a = TREE_OPERAND (bound, 0);
6878 else if (TREE_CODE (bound) == GT_EXPR)
6879 a = TREE_OPERAND (bound, 1);
6880 else
6881 return NULL_TREE;
6882
6883 typea = TREE_TYPE (a);
6884 if (!INTEGRAL_TYPE_P (typea)
6885 && !POINTER_TYPE_P (typea))
6886 return NULL_TREE;
6887
6888 if (TREE_CODE (ineq) == LT_EXPR)
6889 {
6890 a1 = TREE_OPERAND (ineq, 1);
6891 y = TREE_OPERAND (ineq, 0);
6892 }
6893 else if (TREE_CODE (ineq) == GT_EXPR)
6894 {
6895 a1 = TREE_OPERAND (ineq, 0);
6896 y = TREE_OPERAND (ineq, 1);
6897 }
6898 else
6899 return NULL_TREE;
6900
6901 if (TREE_TYPE (a1) != typea)
6902 return NULL_TREE;
6903
6904 if (POINTER_TYPE_P (typea))
6905 {
6906 /* Convert the pointer types into integer before taking the difference. */
6907 tree ta = fold_convert_loc (loc, ssizetype, a);
6908 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
6909 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
6910 }
6911 else
6912 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
6913
6914 if (!diff || !integer_onep (diff))
6915 return NULL_TREE;
6916
6917 return fold_build2_loc (loc, GE_EXPR, type, a, y);
6918 }
6919
6920 /* Fold a sum or difference of at least one multiplication.
6921 Returns the folded tree or NULL if no simplification could be made. */
6922
6923 static tree
6924 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
6925 tree arg0, tree arg1)
6926 {
6927 tree arg00, arg01, arg10, arg11;
6928 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6929
6930 /* (A * C) +- (B * C) -> (A+-B) * C.
6931 (A * C) +- A -> A * (C+-1).
6932 We are most concerned about the case where C is a constant,
6933 but other combinations show up during loop reduction. Since
6934 it is not difficult, try all four possibilities. */
6935
6936 if (TREE_CODE (arg0) == MULT_EXPR)
6937 {
6938 arg00 = TREE_OPERAND (arg0, 0);
6939 arg01 = TREE_OPERAND (arg0, 1);
6940 }
6941 else if (TREE_CODE (arg0) == INTEGER_CST)
6942 {
6943 arg00 = build_one_cst (type);
6944 arg01 = arg0;
6945 }
6946 else
6947 {
6948 /* We cannot generate constant 1 for fract. */
6949 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6950 return NULL_TREE;
6951 arg00 = arg0;
6952 arg01 = build_one_cst (type);
6953 }
6954 if (TREE_CODE (arg1) == MULT_EXPR)
6955 {
6956 arg10 = TREE_OPERAND (arg1, 0);
6957 arg11 = TREE_OPERAND (arg1, 1);
6958 }
6959 else if (TREE_CODE (arg1) == INTEGER_CST)
6960 {
6961 arg10 = build_one_cst (type);
6962 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6963 the purpose of this canonicalization. */
6964 if (wi::neg_p (arg1, TYPE_SIGN (TREE_TYPE (arg1)))
6965 && negate_expr_p (arg1)
6966 && code == PLUS_EXPR)
6967 {
6968 arg11 = negate_expr (arg1);
6969 code = MINUS_EXPR;
6970 }
6971 else
6972 arg11 = arg1;
6973 }
6974 else
6975 {
6976 /* We cannot generate constant 1 for fract. */
6977 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6978 return NULL_TREE;
6979 arg10 = arg1;
6980 arg11 = build_one_cst (type);
6981 }
6982 same = NULL_TREE;
6983
6984 if (operand_equal_p (arg01, arg11, 0))
6985 same = arg01, alt0 = arg00, alt1 = arg10;
6986 else if (operand_equal_p (arg00, arg10, 0))
6987 same = arg00, alt0 = arg01, alt1 = arg11;
6988 else if (operand_equal_p (arg00, arg11, 0))
6989 same = arg00, alt0 = arg01, alt1 = arg10;
6990 else if (operand_equal_p (arg01, arg10, 0))
6991 same = arg01, alt0 = arg00, alt1 = arg11;
6992
6993 /* No identical multiplicands; see if we can find a common
6994 power-of-two factor in non-power-of-two multiplies. This
6995 can help in multi-dimensional array access. */
6996 else if (tree_fits_shwi_p (arg01)
6997 && tree_fits_shwi_p (arg11))
6998 {
6999 HOST_WIDE_INT int01, int11, tmp;
7000 bool swap = false;
7001 tree maybe_same;
7002 int01 = tree_to_shwi (arg01);
7003 int11 = tree_to_shwi (arg11);
7004
7005 /* Move min of absolute values to int11. */
7006 if (absu_hwi (int01) < absu_hwi (int11))
7007 {
7008 tmp = int01, int01 = int11, int11 = tmp;
7009 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7010 maybe_same = arg01;
7011 swap = true;
7012 }
7013 else
7014 maybe_same = arg11;
7015
7016 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
7017 /* The remainder should not be a constant, otherwise we
7018 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7019 increased the number of multiplications necessary. */
7020 && TREE_CODE (arg10) != INTEGER_CST)
7021 {
7022 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
7023 build_int_cst (TREE_TYPE (arg00),
7024 int01 / int11));
7025 alt1 = arg10;
7026 same = maybe_same;
7027 if (swap)
7028 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7029 }
7030 }
7031
7032 if (same)
7033 return fold_build2_loc (loc, MULT_EXPR, type,
7034 fold_build2_loc (loc, code, type,
7035 fold_convert_loc (loc, type, alt0),
7036 fold_convert_loc (loc, type, alt1)),
7037 fold_convert_loc (loc, type, same));
7038
7039 return NULL_TREE;
7040 }
7041
7042 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7043 specified by EXPR into the buffer PTR of length LEN bytes.
7044 Return the number of bytes placed in the buffer, or zero
7045 upon failure. */
7046
7047 static int
7048 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
7049 {
7050 tree type = TREE_TYPE (expr);
7051 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7052 int byte, offset, word, words;
7053 unsigned char value;
7054
7055 if ((off == -1 && total_bytes > len)
7056 || off >= total_bytes)
7057 return 0;
7058 if (off == -1)
7059 off = 0;
7060 words = total_bytes / UNITS_PER_WORD;
7061
7062 for (byte = 0; byte < total_bytes; byte++)
7063 {
7064 int bitpos = byte * BITS_PER_UNIT;
7065 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7066 number of bytes. */
7067 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
7068
7069 if (total_bytes > UNITS_PER_WORD)
7070 {
7071 word = byte / UNITS_PER_WORD;
7072 if (WORDS_BIG_ENDIAN)
7073 word = (words - 1) - word;
7074 offset = word * UNITS_PER_WORD;
7075 if (BYTES_BIG_ENDIAN)
7076 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7077 else
7078 offset += byte % UNITS_PER_WORD;
7079 }
7080 else
7081 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7082 if (offset >= off
7083 && offset - off < len)
7084 ptr[offset - off] = value;
7085 }
7086 return MIN (len, total_bytes - off);
7087 }
7088
7089
7090 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7091 specified by EXPR into the buffer PTR of length LEN bytes.
7092 Return the number of bytes placed in the buffer, or zero
7093 upon failure. */
7094
7095 static int
7096 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7097 {
7098 tree type = TREE_TYPE (expr);
7099 machine_mode mode = TYPE_MODE (type);
7100 int total_bytes = GET_MODE_SIZE (mode);
7101 FIXED_VALUE_TYPE value;
7102 tree i_value, i_type;
7103
7104 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7105 return 0;
7106
7107 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7108
7109 if (NULL_TREE == i_type
7110 || TYPE_PRECISION (i_type) != total_bytes)
7111 return 0;
7112
7113 value = TREE_FIXED_CST (expr);
7114 i_value = double_int_to_tree (i_type, value.data);
7115
7116 return native_encode_int (i_value, ptr, len, off);
7117 }
7118
7119
7120 /* Subroutine of native_encode_expr. Encode the REAL_CST
7121 specified by EXPR into the buffer PTR of length LEN bytes.
7122 Return the number of bytes placed in the buffer, or zero
7123 upon failure. */
7124
7125 static int
7126 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7127 {
7128 tree type = TREE_TYPE (expr);
7129 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7130 int byte, offset, word, words, bitpos;
7131 unsigned char value;
7132
7133 /* There are always 32 bits in each long, no matter the size of
7134 the hosts long. We handle floating point representations with
7135 up to 192 bits. */
7136 long tmp[6];
7137
7138 if ((off == -1 && total_bytes > len)
7139 || off >= total_bytes)
7140 return 0;
7141 if (off == -1)
7142 off = 0;
7143 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7144
7145 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7146
7147 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7148 bitpos += BITS_PER_UNIT)
7149 {
7150 byte = (bitpos / BITS_PER_UNIT) & 3;
7151 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7152
7153 if (UNITS_PER_WORD < 4)
7154 {
7155 word = byte / UNITS_PER_WORD;
7156 if (WORDS_BIG_ENDIAN)
7157 word = (words - 1) - word;
7158 offset = word * UNITS_PER_WORD;
7159 if (BYTES_BIG_ENDIAN)
7160 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7161 else
7162 offset += byte % UNITS_PER_WORD;
7163 }
7164 else
7165 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7166 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7167 if (offset >= off
7168 && offset - off < len)
7169 ptr[offset - off] = value;
7170 }
7171 return MIN (len, total_bytes - off);
7172 }
7173
7174 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7175 specified by EXPR into the buffer PTR of length LEN bytes.
7176 Return the number of bytes placed in the buffer, or zero
7177 upon failure. */
7178
7179 static int
7180 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7181 {
7182 int rsize, isize;
7183 tree part;
7184
7185 part = TREE_REALPART (expr);
7186 rsize = native_encode_expr (part, ptr, len, off);
7187 if (off == -1
7188 && rsize == 0)
7189 return 0;
7190 part = TREE_IMAGPART (expr);
7191 if (off != -1)
7192 off = MAX (0, off - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part))));
7193 isize = native_encode_expr (part, ptr+rsize, len-rsize, off);
7194 if (off == -1
7195 && isize != rsize)
7196 return 0;
7197 return rsize + isize;
7198 }
7199
7200
7201 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7202 specified by EXPR into the buffer PTR of length LEN bytes.
7203 Return the number of bytes placed in the buffer, or zero
7204 upon failure. */
7205
7206 static int
7207 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7208 {
7209 unsigned i, count;
7210 int size, offset;
7211 tree itype, elem;
7212
7213 offset = 0;
7214 count = VECTOR_CST_NELTS (expr);
7215 itype = TREE_TYPE (TREE_TYPE (expr));
7216 size = GET_MODE_SIZE (TYPE_MODE (itype));
7217 for (i = 0; i < count; i++)
7218 {
7219 if (off >= size)
7220 {
7221 off -= size;
7222 continue;
7223 }
7224 elem = VECTOR_CST_ELT (expr, i);
7225 int res = native_encode_expr (elem, ptr+offset, len-offset, off);
7226 if ((off == -1 && res != size)
7227 || res == 0)
7228 return 0;
7229 offset += res;
7230 if (offset >= len)
7231 return offset;
7232 if (off != -1)
7233 off = 0;
7234 }
7235 return offset;
7236 }
7237
7238
7239 /* Subroutine of native_encode_expr. Encode the STRING_CST
7240 specified by EXPR into the buffer PTR of length LEN bytes.
7241 Return the number of bytes placed in the buffer, or zero
7242 upon failure. */
7243
7244 static int
7245 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7246 {
7247 tree type = TREE_TYPE (expr);
7248 HOST_WIDE_INT total_bytes;
7249
7250 if (TREE_CODE (type) != ARRAY_TYPE
7251 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7252 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7253 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7254 return 0;
7255 total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (type));
7256 if ((off == -1 && total_bytes > len)
7257 || off >= total_bytes)
7258 return 0;
7259 if (off == -1)
7260 off = 0;
7261 if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7262 {
7263 int written = 0;
7264 if (off < TREE_STRING_LENGTH (expr))
7265 {
7266 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7267 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7268 }
7269 memset (ptr + written, 0,
7270 MIN (total_bytes - written, len - written));
7271 }
7272 else
7273 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7274 return MIN (total_bytes - off, len);
7275 }
7276
7277
7278 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7279 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7280 buffer PTR of length LEN bytes. If OFF is not -1 then start
7281 the encoding at byte offset OFF and encode at most LEN bytes.
7282 Return the number of bytes placed in the buffer, or zero upon failure. */
7283
7284 int
7285 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7286 {
7287 /* We don't support starting at negative offset and -1 is special. */
7288 if (off < -1)
7289 return 0;
7290
7291 switch (TREE_CODE (expr))
7292 {
7293 case INTEGER_CST:
7294 return native_encode_int (expr, ptr, len, off);
7295
7296 case REAL_CST:
7297 return native_encode_real (expr, ptr, len, off);
7298
7299 case FIXED_CST:
7300 return native_encode_fixed (expr, ptr, len, off);
7301
7302 case COMPLEX_CST:
7303 return native_encode_complex (expr, ptr, len, off);
7304
7305 case VECTOR_CST:
7306 return native_encode_vector (expr, ptr, len, off);
7307
7308 case STRING_CST:
7309 return native_encode_string (expr, ptr, len, off);
7310
7311 default:
7312 return 0;
7313 }
7314 }
7315
7316
7317 /* Subroutine of native_interpret_expr. Interpret the contents of
7318 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7319 If the buffer cannot be interpreted, return NULL_TREE. */
7320
7321 static tree
7322 native_interpret_int (tree type, const unsigned char *ptr, int len)
7323 {
7324 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7325
7326 if (total_bytes > len
7327 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7328 return NULL_TREE;
7329
7330 wide_int result = wi::from_buffer (ptr, total_bytes);
7331
7332 return wide_int_to_tree (type, result);
7333 }
7334
7335
7336 /* Subroutine of native_interpret_expr. Interpret the contents of
7337 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7338 If the buffer cannot be interpreted, return NULL_TREE. */
7339
7340 static tree
7341 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7342 {
7343 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7344 double_int result;
7345 FIXED_VALUE_TYPE fixed_value;
7346
7347 if (total_bytes > len
7348 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7349 return NULL_TREE;
7350
7351 result = double_int::from_buffer (ptr, total_bytes);
7352 fixed_value = fixed_from_double_int (result, TYPE_MODE (type));
7353
7354 return build_fixed (type, fixed_value);
7355 }
7356
7357
7358 /* Subroutine of native_interpret_expr. Interpret the contents of
7359 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7360 If the buffer cannot be interpreted, return NULL_TREE. */
7361
7362 static tree
7363 native_interpret_real (tree type, const unsigned char *ptr, int len)
7364 {
7365 machine_mode mode = TYPE_MODE (type);
7366 int total_bytes = GET_MODE_SIZE (mode);
7367 unsigned char value;
7368 /* There are always 32 bits in each long, no matter the size of
7369 the hosts long. We handle floating point representations with
7370 up to 192 bits. */
7371 REAL_VALUE_TYPE r;
7372 long tmp[6];
7373
7374 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7375 if (total_bytes > len || total_bytes > 24)
7376 return NULL_TREE;
7377 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7378
7379 memset (tmp, 0, sizeof (tmp));
7380 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7381 bitpos += BITS_PER_UNIT)
7382 {
7383 /* Both OFFSET and BYTE index within a long;
7384 bitpos indexes the whole float. */
7385 int offset, byte = (bitpos / BITS_PER_UNIT) & 3;
7386 if (UNITS_PER_WORD < 4)
7387 {
7388 int word = byte / UNITS_PER_WORD;
7389 if (WORDS_BIG_ENDIAN)
7390 word = (words - 1) - word;
7391 offset = word * UNITS_PER_WORD;
7392 if (BYTES_BIG_ENDIAN)
7393 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7394 else
7395 offset += byte % UNITS_PER_WORD;
7396 }
7397 else
7398 {
7399 offset = byte;
7400 if (BYTES_BIG_ENDIAN)
7401 {
7402 /* Reverse bytes within each long, or within the entire float
7403 if it's smaller than a long (for HFmode). */
7404 offset = MIN (3, total_bytes - 1) - offset;
7405 gcc_assert (offset >= 0);
7406 }
7407 }
7408 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7409
7410 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7411 }
7412
7413 real_from_target (&r, tmp, mode);
7414 return build_real (type, r);
7415 }
7416
7417
7418 /* Subroutine of native_interpret_expr. Interpret the contents of
7419 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7420 If the buffer cannot be interpreted, return NULL_TREE. */
7421
7422 static tree
7423 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7424 {
7425 tree etype, rpart, ipart;
7426 int size;
7427
7428 etype = TREE_TYPE (type);
7429 size = GET_MODE_SIZE (TYPE_MODE (etype));
7430 if (size * 2 > len)
7431 return NULL_TREE;
7432 rpart = native_interpret_expr (etype, ptr, size);
7433 if (!rpart)
7434 return NULL_TREE;
7435 ipart = native_interpret_expr (etype, ptr+size, size);
7436 if (!ipart)
7437 return NULL_TREE;
7438 return build_complex (type, rpart, ipart);
7439 }
7440
7441
7442 /* Subroutine of native_interpret_expr. Interpret the contents of
7443 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7444 If the buffer cannot be interpreted, return NULL_TREE. */
7445
7446 static tree
7447 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7448 {
7449 tree etype, elem;
7450 int i, size, count;
7451 tree *elements;
7452
7453 etype = TREE_TYPE (type);
7454 size = GET_MODE_SIZE (TYPE_MODE (etype));
7455 count = TYPE_VECTOR_SUBPARTS (type);
7456 if (size * count > len)
7457 return NULL_TREE;
7458
7459 elements = XALLOCAVEC (tree, count);
7460 for (i = count - 1; i >= 0; i--)
7461 {
7462 elem = native_interpret_expr (etype, ptr+(i*size), size);
7463 if (!elem)
7464 return NULL_TREE;
7465 elements[i] = elem;
7466 }
7467 return build_vector (type, elements);
7468 }
7469
7470
7471 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7472 the buffer PTR of length LEN as a constant of type TYPE. For
7473 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7474 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7475 return NULL_TREE. */
7476
7477 tree
7478 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7479 {
7480 switch (TREE_CODE (type))
7481 {
7482 case INTEGER_TYPE:
7483 case ENUMERAL_TYPE:
7484 case BOOLEAN_TYPE:
7485 case POINTER_TYPE:
7486 case REFERENCE_TYPE:
7487 return native_interpret_int (type, ptr, len);
7488
7489 case REAL_TYPE:
7490 return native_interpret_real (type, ptr, len);
7491
7492 case FIXED_POINT_TYPE:
7493 return native_interpret_fixed (type, ptr, len);
7494
7495 case COMPLEX_TYPE:
7496 return native_interpret_complex (type, ptr, len);
7497
7498 case VECTOR_TYPE:
7499 return native_interpret_vector (type, ptr, len);
7500
7501 default:
7502 return NULL_TREE;
7503 }
7504 }
7505
7506 /* Returns true if we can interpret the contents of a native encoding
7507 as TYPE. */
7508
7509 static bool
7510 can_native_interpret_type_p (tree type)
7511 {
7512 switch (TREE_CODE (type))
7513 {
7514 case INTEGER_TYPE:
7515 case ENUMERAL_TYPE:
7516 case BOOLEAN_TYPE:
7517 case POINTER_TYPE:
7518 case REFERENCE_TYPE:
7519 case FIXED_POINT_TYPE:
7520 case REAL_TYPE:
7521 case COMPLEX_TYPE:
7522 case VECTOR_TYPE:
7523 return true;
7524 default:
7525 return false;
7526 }
7527 }
7528
7529 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7530 TYPE at compile-time. If we're unable to perform the conversion
7531 return NULL_TREE. */
7532
7533 static tree
7534 fold_view_convert_expr (tree type, tree expr)
7535 {
7536 /* We support up to 512-bit values (for V8DFmode). */
7537 unsigned char buffer[64];
7538 int len;
7539
7540 /* Check that the host and target are sane. */
7541 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7542 return NULL_TREE;
7543
7544 len = native_encode_expr (expr, buffer, sizeof (buffer));
7545 if (len == 0)
7546 return NULL_TREE;
7547
7548 return native_interpret_expr (type, buffer, len);
7549 }
7550
7551 /* Build an expression for the address of T. Folds away INDIRECT_REF
7552 to avoid confusing the gimplify process. */
7553
7554 tree
7555 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7556 {
7557 /* The size of the object is not relevant when talking about its address. */
7558 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7559 t = TREE_OPERAND (t, 0);
7560
7561 if (TREE_CODE (t) == INDIRECT_REF)
7562 {
7563 t = TREE_OPERAND (t, 0);
7564
7565 if (TREE_TYPE (t) != ptrtype)
7566 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7567 }
7568 else if (TREE_CODE (t) == MEM_REF
7569 && integer_zerop (TREE_OPERAND (t, 1)))
7570 return TREE_OPERAND (t, 0);
7571 else if (TREE_CODE (t) == MEM_REF
7572 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7573 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7574 TREE_OPERAND (t, 0),
7575 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7576 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7577 {
7578 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7579
7580 if (TREE_TYPE (t) != ptrtype)
7581 t = fold_convert_loc (loc, ptrtype, t);
7582 }
7583 else
7584 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7585
7586 return t;
7587 }
7588
7589 /* Build an expression for the address of T. */
7590
7591 tree
7592 build_fold_addr_expr_loc (location_t loc, tree t)
7593 {
7594 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7595
7596 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7597 }
7598
7599 /* Fold a unary expression of code CODE and type TYPE with operand
7600 OP0. Return the folded expression if folding is successful.
7601 Otherwise, return NULL_TREE. */
7602
7603 tree
7604 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7605 {
7606 tree tem;
7607 tree arg0;
7608 enum tree_code_class kind = TREE_CODE_CLASS (code);
7609
7610 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7611 && TREE_CODE_LENGTH (code) == 1);
7612
7613 arg0 = op0;
7614 if (arg0)
7615 {
7616 if (CONVERT_EXPR_CODE_P (code)
7617 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7618 {
7619 /* Don't use STRIP_NOPS, because signedness of argument type
7620 matters. */
7621 STRIP_SIGN_NOPS (arg0);
7622 }
7623 else
7624 {
7625 /* Strip any conversions that don't change the mode. This
7626 is safe for every expression, except for a comparison
7627 expression because its signedness is derived from its
7628 operands.
7629
7630 Note that this is done as an internal manipulation within
7631 the constant folder, in order to find the simplest
7632 representation of the arguments so that their form can be
7633 studied. In any cases, the appropriate type conversions
7634 should be put back in the tree that will get out of the
7635 constant folder. */
7636 STRIP_NOPS (arg0);
7637 }
7638
7639 if (CONSTANT_CLASS_P (arg0))
7640 {
7641 tree tem = const_unop (code, type, arg0);
7642 if (tem)
7643 {
7644 if (TREE_TYPE (tem) != type)
7645 tem = fold_convert_loc (loc, type, tem);
7646 return tem;
7647 }
7648 }
7649 }
7650
7651 tem = generic_simplify (loc, code, type, op0);
7652 if (tem)
7653 return tem;
7654
7655 if (TREE_CODE_CLASS (code) == tcc_unary)
7656 {
7657 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7658 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7659 fold_build1_loc (loc, code, type,
7660 fold_convert_loc (loc, TREE_TYPE (op0),
7661 TREE_OPERAND (arg0, 1))));
7662 else if (TREE_CODE (arg0) == COND_EXPR)
7663 {
7664 tree arg01 = TREE_OPERAND (arg0, 1);
7665 tree arg02 = TREE_OPERAND (arg0, 2);
7666 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7667 arg01 = fold_build1_loc (loc, code, type,
7668 fold_convert_loc (loc,
7669 TREE_TYPE (op0), arg01));
7670 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7671 arg02 = fold_build1_loc (loc, code, type,
7672 fold_convert_loc (loc,
7673 TREE_TYPE (op0), arg02));
7674 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7675 arg01, arg02);
7676
7677 /* If this was a conversion, and all we did was to move into
7678 inside the COND_EXPR, bring it back out. But leave it if
7679 it is a conversion from integer to integer and the
7680 result precision is no wider than a word since such a
7681 conversion is cheap and may be optimized away by combine,
7682 while it couldn't if it were outside the COND_EXPR. Then return
7683 so we don't get into an infinite recursion loop taking the
7684 conversion out and then back in. */
7685
7686 if ((CONVERT_EXPR_CODE_P (code)
7687 || code == NON_LVALUE_EXPR)
7688 && TREE_CODE (tem) == COND_EXPR
7689 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7690 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7691 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7692 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7693 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7694 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7695 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7696 && (INTEGRAL_TYPE_P
7697 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7698 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7699 || flag_syntax_only))
7700 tem = build1_loc (loc, code, type,
7701 build3 (COND_EXPR,
7702 TREE_TYPE (TREE_OPERAND
7703 (TREE_OPERAND (tem, 1), 0)),
7704 TREE_OPERAND (tem, 0),
7705 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7706 TREE_OPERAND (TREE_OPERAND (tem, 2),
7707 0)));
7708 return tem;
7709 }
7710 }
7711
7712 switch (code)
7713 {
7714 case NON_LVALUE_EXPR:
7715 if (!maybe_lvalue_p (op0))
7716 return fold_convert_loc (loc, type, op0);
7717 return NULL_TREE;
7718
7719 CASE_CONVERT:
7720 case FLOAT_EXPR:
7721 case FIX_TRUNC_EXPR:
7722 if (COMPARISON_CLASS_P (op0))
7723 {
7724 /* If we have (type) (a CMP b) and type is an integral type, return
7725 new expression involving the new type. Canonicalize
7726 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7727 non-integral type.
7728 Do not fold the result as that would not simplify further, also
7729 folding again results in recursions. */
7730 if (TREE_CODE (type) == BOOLEAN_TYPE)
7731 return build2_loc (loc, TREE_CODE (op0), type,
7732 TREE_OPERAND (op0, 0),
7733 TREE_OPERAND (op0, 1));
7734 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7735 && TREE_CODE (type) != VECTOR_TYPE)
7736 return build3_loc (loc, COND_EXPR, type, op0,
7737 constant_boolean_node (true, type),
7738 constant_boolean_node (false, type));
7739 }
7740
7741 /* Handle (T *)&A.B.C for A being of type T and B and C
7742 living at offset zero. This occurs frequently in
7743 C++ upcasting and then accessing the base. */
7744 if (TREE_CODE (op0) == ADDR_EXPR
7745 && POINTER_TYPE_P (type)
7746 && handled_component_p (TREE_OPERAND (op0, 0)))
7747 {
7748 HOST_WIDE_INT bitsize, bitpos;
7749 tree offset;
7750 machine_mode mode;
7751 int unsignedp, reversep, volatilep;
7752 tree base
7753 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos,
7754 &offset, &mode, &unsignedp, &reversep,
7755 &volatilep, false);
7756 /* If the reference was to a (constant) zero offset, we can use
7757 the address of the base if it has the same base type
7758 as the result type and the pointer type is unqualified. */
7759 if (! offset && bitpos == 0
7760 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7761 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7762 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7763 return fold_convert_loc (loc, type,
7764 build_fold_addr_expr_loc (loc, base));
7765 }
7766
7767 if (TREE_CODE (op0) == MODIFY_EXPR
7768 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7769 /* Detect assigning a bitfield. */
7770 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7771 && DECL_BIT_FIELD
7772 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7773 {
7774 /* Don't leave an assignment inside a conversion
7775 unless assigning a bitfield. */
7776 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7777 /* First do the assignment, then return converted constant. */
7778 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7779 TREE_NO_WARNING (tem) = 1;
7780 TREE_USED (tem) = 1;
7781 return tem;
7782 }
7783
7784 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7785 constants (if x has signed type, the sign bit cannot be set
7786 in c). This folds extension into the BIT_AND_EXPR.
7787 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7788 very likely don't have maximal range for their precision and this
7789 transformation effectively doesn't preserve non-maximal ranges. */
7790 if (TREE_CODE (type) == INTEGER_TYPE
7791 && TREE_CODE (op0) == BIT_AND_EXPR
7792 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7793 {
7794 tree and_expr = op0;
7795 tree and0 = TREE_OPERAND (and_expr, 0);
7796 tree and1 = TREE_OPERAND (and_expr, 1);
7797 int change = 0;
7798
7799 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7800 || (TYPE_PRECISION (type)
7801 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7802 change = 1;
7803 else if (TYPE_PRECISION (TREE_TYPE (and1))
7804 <= HOST_BITS_PER_WIDE_INT
7805 && tree_fits_uhwi_p (and1))
7806 {
7807 unsigned HOST_WIDE_INT cst;
7808
7809 cst = tree_to_uhwi (and1);
7810 cst &= HOST_WIDE_INT_M1U
7811 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7812 change = (cst == 0);
7813 if (change
7814 && !flag_syntax_only
7815 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
7816 == ZERO_EXTEND))
7817 {
7818 tree uns = unsigned_type_for (TREE_TYPE (and0));
7819 and0 = fold_convert_loc (loc, uns, and0);
7820 and1 = fold_convert_loc (loc, uns, and1);
7821 }
7822 }
7823 if (change)
7824 {
7825 tem = force_fit_type (type, wi::to_widest (and1), 0,
7826 TREE_OVERFLOW (and1));
7827 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7828 fold_convert_loc (loc, type, and0), tem);
7829 }
7830 }
7831
7832 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7833 cast (T1)X will fold away. We assume that this happens when X itself
7834 is a cast. */
7835 if (POINTER_TYPE_P (type)
7836 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7837 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0)))
7838 {
7839 tree arg00 = TREE_OPERAND (arg0, 0);
7840 tree arg01 = TREE_OPERAND (arg0, 1);
7841
7842 return fold_build_pointer_plus_loc
7843 (loc, fold_convert_loc (loc, type, arg00), arg01);
7844 }
7845
7846 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7847 of the same precision, and X is an integer type not narrower than
7848 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7849 if (INTEGRAL_TYPE_P (type)
7850 && TREE_CODE (op0) == BIT_NOT_EXPR
7851 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7852 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7853 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7854 {
7855 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7856 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7857 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7858 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7859 fold_convert_loc (loc, type, tem));
7860 }
7861
7862 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7863 type of X and Y (integer types only). */
7864 if (INTEGRAL_TYPE_P (type)
7865 && TREE_CODE (op0) == MULT_EXPR
7866 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7867 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
7868 {
7869 /* Be careful not to introduce new overflows. */
7870 tree mult_type;
7871 if (TYPE_OVERFLOW_WRAPS (type))
7872 mult_type = type;
7873 else
7874 mult_type = unsigned_type_for (type);
7875
7876 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
7877 {
7878 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
7879 fold_convert_loc (loc, mult_type,
7880 TREE_OPERAND (op0, 0)),
7881 fold_convert_loc (loc, mult_type,
7882 TREE_OPERAND (op0, 1)));
7883 return fold_convert_loc (loc, type, tem);
7884 }
7885 }
7886
7887 return NULL_TREE;
7888
7889 case VIEW_CONVERT_EXPR:
7890 if (TREE_CODE (op0) == MEM_REF)
7891 {
7892 tem = fold_build2_loc (loc, MEM_REF, type,
7893 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
7894 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0);
7895 return tem;
7896 }
7897
7898 return NULL_TREE;
7899
7900 case NEGATE_EXPR:
7901 tem = fold_negate_expr (loc, arg0);
7902 if (tem)
7903 return fold_convert_loc (loc, type, tem);
7904 return NULL_TREE;
7905
7906 case ABS_EXPR:
7907 /* Convert fabs((double)float) into (double)fabsf(float). */
7908 if (TREE_CODE (arg0) == NOP_EXPR
7909 && TREE_CODE (type) == REAL_TYPE)
7910 {
7911 tree targ0 = strip_float_extensions (arg0);
7912 if (targ0 != arg0)
7913 return fold_convert_loc (loc, type,
7914 fold_build1_loc (loc, ABS_EXPR,
7915 TREE_TYPE (targ0),
7916 targ0));
7917 }
7918 return NULL_TREE;
7919
7920 case BIT_NOT_EXPR:
7921 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7922 if (TREE_CODE (arg0) == BIT_XOR_EXPR
7923 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7924 fold_convert_loc (loc, type,
7925 TREE_OPERAND (arg0, 0)))))
7926 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
7927 fold_convert_loc (loc, type,
7928 TREE_OPERAND (arg0, 1)));
7929 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7930 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7931 fold_convert_loc (loc, type,
7932 TREE_OPERAND (arg0, 1)))))
7933 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
7934 fold_convert_loc (loc, type,
7935 TREE_OPERAND (arg0, 0)), tem);
7936
7937 return NULL_TREE;
7938
7939 case TRUTH_NOT_EXPR:
7940 /* Note that the operand of this must be an int
7941 and its values must be 0 or 1.
7942 ("true" is a fixed value perhaps depending on the language,
7943 but we don't handle values other than 1 correctly yet.) */
7944 tem = fold_truth_not_expr (loc, arg0);
7945 if (!tem)
7946 return NULL_TREE;
7947 return fold_convert_loc (loc, type, tem);
7948
7949 case INDIRECT_REF:
7950 /* Fold *&X to X if X is an lvalue. */
7951 if (TREE_CODE (op0) == ADDR_EXPR)
7952 {
7953 tree op00 = TREE_OPERAND (op0, 0);
7954 if ((TREE_CODE (op00) == VAR_DECL
7955 || TREE_CODE (op00) == PARM_DECL
7956 || TREE_CODE (op00) == RESULT_DECL)
7957 && !TREE_READONLY (op00))
7958 return op00;
7959 }
7960 return NULL_TREE;
7961
7962 default:
7963 return NULL_TREE;
7964 } /* switch (code) */
7965 }
7966
7967
7968 /* If the operation was a conversion do _not_ mark a resulting constant
7969 with TREE_OVERFLOW if the original constant was not. These conversions
7970 have implementation defined behavior and retaining the TREE_OVERFLOW
7971 flag here would confuse later passes such as VRP. */
7972 tree
7973 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
7974 tree type, tree op0)
7975 {
7976 tree res = fold_unary_loc (loc, code, type, op0);
7977 if (res
7978 && TREE_CODE (res) == INTEGER_CST
7979 && TREE_CODE (op0) == INTEGER_CST
7980 && CONVERT_EXPR_CODE_P (code))
7981 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
7982
7983 return res;
7984 }
7985
7986 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
7987 operands OP0 and OP1. LOC is the location of the resulting expression.
7988 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
7989 Return the folded expression if folding is successful. Otherwise,
7990 return NULL_TREE. */
7991 static tree
7992 fold_truth_andor (location_t loc, enum tree_code code, tree type,
7993 tree arg0, tree arg1, tree op0, tree op1)
7994 {
7995 tree tem;
7996
7997 /* We only do these simplifications if we are optimizing. */
7998 if (!optimize)
7999 return NULL_TREE;
8000
8001 /* Check for things like (A || B) && (A || C). We can convert this
8002 to A || (B && C). Note that either operator can be any of the four
8003 truth and/or operations and the transformation will still be
8004 valid. Also note that we only care about order for the
8005 ANDIF and ORIF operators. If B contains side effects, this
8006 might change the truth-value of A. */
8007 if (TREE_CODE (arg0) == TREE_CODE (arg1)
8008 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
8009 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
8010 || TREE_CODE (arg0) == TRUTH_AND_EXPR
8011 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
8012 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
8013 {
8014 tree a00 = TREE_OPERAND (arg0, 0);
8015 tree a01 = TREE_OPERAND (arg0, 1);
8016 tree a10 = TREE_OPERAND (arg1, 0);
8017 tree a11 = TREE_OPERAND (arg1, 1);
8018 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
8019 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
8020 && (code == TRUTH_AND_EXPR
8021 || code == TRUTH_OR_EXPR));
8022
8023 if (operand_equal_p (a00, a10, 0))
8024 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8025 fold_build2_loc (loc, code, type, a01, a11));
8026 else if (commutative && operand_equal_p (a00, a11, 0))
8027 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8028 fold_build2_loc (loc, code, type, a01, a10));
8029 else if (commutative && operand_equal_p (a01, a10, 0))
8030 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
8031 fold_build2_loc (loc, code, type, a00, a11));
8032
8033 /* This case if tricky because we must either have commutative
8034 operators or else A10 must not have side-effects. */
8035
8036 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8037 && operand_equal_p (a01, a11, 0))
8038 return fold_build2_loc (loc, TREE_CODE (arg0), type,
8039 fold_build2_loc (loc, code, type, a00, a10),
8040 a01);
8041 }
8042
8043 /* See if we can build a range comparison. */
8044 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
8045 return tem;
8046
8047 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
8048 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
8049 {
8050 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
8051 if (tem)
8052 return fold_build2_loc (loc, code, type, tem, arg1);
8053 }
8054
8055 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
8056 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
8057 {
8058 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
8059 if (tem)
8060 return fold_build2_loc (loc, code, type, arg0, tem);
8061 }
8062
8063 /* Check for the possibility of merging component references. If our
8064 lhs is another similar operation, try to merge its rhs with our
8065 rhs. Then try to merge our lhs and rhs. */
8066 if (TREE_CODE (arg0) == code
8067 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
8068 TREE_OPERAND (arg0, 1), arg1)))
8069 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8070
8071 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
8072 return tem;
8073
8074 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8075 && (code == TRUTH_AND_EXPR
8076 || code == TRUTH_ANDIF_EXPR
8077 || code == TRUTH_OR_EXPR
8078 || code == TRUTH_ORIF_EXPR))
8079 {
8080 enum tree_code ncode, icode;
8081
8082 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8083 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8084 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8085
8086 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8087 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8088 We don't want to pack more than two leafs to a non-IF AND/OR
8089 expression.
8090 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8091 equal to IF-CODE, then we don't want to add right-hand operand.
8092 If the inner right-hand side of left-hand operand has
8093 side-effects, or isn't simple, then we can't add to it,
8094 as otherwise we might destroy if-sequence. */
8095 if (TREE_CODE (arg0) == icode
8096 && simple_operand_p_2 (arg1)
8097 /* Needed for sequence points to handle trappings, and
8098 side-effects. */
8099 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8100 {
8101 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8102 arg1);
8103 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8104 tem);
8105 }
8106 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8107 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8108 else if (TREE_CODE (arg1) == icode
8109 && simple_operand_p_2 (arg0)
8110 /* Needed for sequence points to handle trappings, and
8111 side-effects. */
8112 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8113 {
8114 tem = fold_build2_loc (loc, ncode, type,
8115 arg0, TREE_OPERAND (arg1, 0));
8116 return fold_build2_loc (loc, icode, type, tem,
8117 TREE_OPERAND (arg1, 1));
8118 }
8119 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8120 into (A OR B).
8121 For sequence point consistancy, we need to check for trapping,
8122 and side-effects. */
8123 else if (code == icode && simple_operand_p_2 (arg0)
8124 && simple_operand_p_2 (arg1))
8125 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8126 }
8127
8128 return NULL_TREE;
8129 }
8130
8131 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8132 by changing CODE to reduce the magnitude of constants involved in
8133 ARG0 of the comparison.
8134 Returns a canonicalized comparison tree if a simplification was
8135 possible, otherwise returns NULL_TREE.
8136 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8137 valid if signed overflow is undefined. */
8138
8139 static tree
8140 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8141 tree arg0, tree arg1,
8142 bool *strict_overflow_p)
8143 {
8144 enum tree_code code0 = TREE_CODE (arg0);
8145 tree t, cst0 = NULL_TREE;
8146 int sgn0;
8147
8148 /* Match A +- CST code arg1. We can change this only if overflow
8149 is undefined. */
8150 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8151 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8152 /* In principle pointers also have undefined overflow behavior,
8153 but that causes problems elsewhere. */
8154 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8155 && (code0 == MINUS_EXPR
8156 || code0 == PLUS_EXPR)
8157 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
8158 return NULL_TREE;
8159
8160 /* Identify the constant in arg0 and its sign. */
8161 cst0 = TREE_OPERAND (arg0, 1);
8162 sgn0 = tree_int_cst_sgn (cst0);
8163
8164 /* Overflowed constants and zero will cause problems. */
8165 if (integer_zerop (cst0)
8166 || TREE_OVERFLOW (cst0))
8167 return NULL_TREE;
8168
8169 /* See if we can reduce the magnitude of the constant in
8170 arg0 by changing the comparison code. */
8171 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8172 if (code == LT_EXPR
8173 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8174 code = LE_EXPR;
8175 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8176 else if (code == GT_EXPR
8177 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8178 code = GE_EXPR;
8179 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8180 else if (code == LE_EXPR
8181 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8182 code = LT_EXPR;
8183 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8184 else if (code == GE_EXPR
8185 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8186 code = GT_EXPR;
8187 else
8188 return NULL_TREE;
8189 *strict_overflow_p = true;
8190
8191 /* Now build the constant reduced in magnitude. But not if that
8192 would produce one outside of its types range. */
8193 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8194 && ((sgn0 == 1
8195 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8196 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8197 || (sgn0 == -1
8198 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8199 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8200 return NULL_TREE;
8201
8202 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8203 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8204 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8205 t = fold_convert (TREE_TYPE (arg1), t);
8206
8207 return fold_build2_loc (loc, code, type, t, arg1);
8208 }
8209
8210 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8211 overflow further. Try to decrease the magnitude of constants involved
8212 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8213 and put sole constants at the second argument position.
8214 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8215
8216 static tree
8217 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8218 tree arg0, tree arg1)
8219 {
8220 tree t;
8221 bool strict_overflow_p;
8222 const char * const warnmsg = G_("assuming signed overflow does not occur "
8223 "when reducing constant in comparison");
8224
8225 /* Try canonicalization by simplifying arg0. */
8226 strict_overflow_p = false;
8227 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8228 &strict_overflow_p);
8229 if (t)
8230 {
8231 if (strict_overflow_p)
8232 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8233 return t;
8234 }
8235
8236 /* Try canonicalization by simplifying arg1 using the swapped
8237 comparison. */
8238 code = swap_tree_comparison (code);
8239 strict_overflow_p = false;
8240 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8241 &strict_overflow_p);
8242 if (t && strict_overflow_p)
8243 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8244 return t;
8245 }
8246
8247 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8248 space. This is used to avoid issuing overflow warnings for
8249 expressions like &p->x which can not wrap. */
8250
8251 static bool
8252 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8253 {
8254 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8255 return true;
8256
8257 if (bitpos < 0)
8258 return true;
8259
8260 wide_int wi_offset;
8261 int precision = TYPE_PRECISION (TREE_TYPE (base));
8262 if (offset == NULL_TREE)
8263 wi_offset = wi::zero (precision);
8264 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8265 return true;
8266 else
8267 wi_offset = offset;
8268
8269 bool overflow;
8270 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8271 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8272 if (overflow)
8273 return true;
8274
8275 if (!wi::fits_uhwi_p (total))
8276 return true;
8277
8278 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8279 if (size <= 0)
8280 return true;
8281
8282 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8283 array. */
8284 if (TREE_CODE (base) == ADDR_EXPR)
8285 {
8286 HOST_WIDE_INT base_size;
8287
8288 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8289 if (base_size > 0 && size < base_size)
8290 size = base_size;
8291 }
8292
8293 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8294 }
8295
8296 /* Subroutine of fold_binary. This routine performs all of the
8297 transformations that are common to the equality/inequality
8298 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8299 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8300 fold_binary should call fold_binary. Fold a comparison with
8301 tree code CODE and type TYPE with operands OP0 and OP1. Return
8302 the folded comparison or NULL_TREE. */
8303
8304 static tree
8305 fold_comparison (location_t loc, enum tree_code code, tree type,
8306 tree op0, tree op1)
8307 {
8308 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8309 tree arg0, arg1, tem;
8310
8311 arg0 = op0;
8312 arg1 = op1;
8313
8314 STRIP_SIGN_NOPS (arg0);
8315 STRIP_SIGN_NOPS (arg1);
8316
8317 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
8318 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8319 && (equality_code
8320 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8321 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
8322 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8323 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8324 && TREE_CODE (arg1) == INTEGER_CST
8325 && !TREE_OVERFLOW (arg1))
8326 {
8327 const enum tree_code
8328 reverse_op = TREE_CODE (arg0) == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR;
8329 tree const1 = TREE_OPERAND (arg0, 1);
8330 tree const2 = fold_convert_loc (loc, TREE_TYPE (const1), arg1);
8331 tree variable = TREE_OPERAND (arg0, 0);
8332 tree new_const = int_const_binop (reverse_op, const2, const1);
8333
8334 /* If the constant operation overflowed this can be
8335 simplified as a comparison against INT_MAX/INT_MIN. */
8336 if (TREE_OVERFLOW (new_const)
8337 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
8338 {
8339 int const1_sgn = tree_int_cst_sgn (const1);
8340 enum tree_code code2 = code;
8341
8342 /* Get the sign of the constant on the lhs if the
8343 operation were VARIABLE + CONST1. */
8344 if (TREE_CODE (arg0) == MINUS_EXPR)
8345 const1_sgn = -const1_sgn;
8346
8347 /* The sign of the constant determines if we overflowed
8348 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8349 Canonicalize to the INT_MIN overflow by swapping the comparison
8350 if necessary. */
8351 if (const1_sgn == -1)
8352 code2 = swap_tree_comparison (code);
8353
8354 /* We now can look at the canonicalized case
8355 VARIABLE + 1 CODE2 INT_MIN
8356 and decide on the result. */
8357 switch (code2)
8358 {
8359 case EQ_EXPR:
8360 case LT_EXPR:
8361 case LE_EXPR:
8362 return
8363 omit_one_operand_loc (loc, type, boolean_false_node, variable);
8364
8365 case NE_EXPR:
8366 case GE_EXPR:
8367 case GT_EXPR:
8368 return
8369 omit_one_operand_loc (loc, type, boolean_true_node, variable);
8370
8371 default:
8372 gcc_unreachable ();
8373 }
8374 }
8375 else
8376 {
8377 if (!equality_code)
8378 fold_overflow_warning ("assuming signed overflow does not occur "
8379 "when changing X +- C1 cmp C2 to "
8380 "X cmp C2 -+ C1",
8381 WARN_STRICT_OVERFLOW_COMPARISON);
8382 return fold_build2_loc (loc, code, type, variable, new_const);
8383 }
8384 }
8385
8386 /* For comparisons of pointers we can decompose it to a compile time
8387 comparison of the base objects and the offsets into the object.
8388 This requires at least one operand being an ADDR_EXPR or a
8389 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8390 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8391 && (TREE_CODE (arg0) == ADDR_EXPR
8392 || TREE_CODE (arg1) == ADDR_EXPR
8393 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8394 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8395 {
8396 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8397 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8398 machine_mode mode;
8399 int volatilep, reversep, unsignedp;
8400 bool indirect_base0 = false, indirect_base1 = false;
8401
8402 /* Get base and offset for the access. Strip ADDR_EXPR for
8403 get_inner_reference, but put it back by stripping INDIRECT_REF
8404 off the base object if possible. indirect_baseN will be true
8405 if baseN is not an address but refers to the object itself. */
8406 base0 = arg0;
8407 if (TREE_CODE (arg0) == ADDR_EXPR)
8408 {
8409 base0
8410 = get_inner_reference (TREE_OPERAND (arg0, 0),
8411 &bitsize, &bitpos0, &offset0, &mode,
8412 &unsignedp, &reversep, &volatilep, false);
8413 if (TREE_CODE (base0) == INDIRECT_REF)
8414 base0 = TREE_OPERAND (base0, 0);
8415 else
8416 indirect_base0 = true;
8417 }
8418 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8419 {
8420 base0 = TREE_OPERAND (arg0, 0);
8421 STRIP_SIGN_NOPS (base0);
8422 if (TREE_CODE (base0) == ADDR_EXPR)
8423 {
8424 base0
8425 = get_inner_reference (TREE_OPERAND (base0, 0),
8426 &bitsize, &bitpos0, &offset0, &mode,
8427 &unsignedp, &reversep, &volatilep,
8428 false);
8429 if (TREE_CODE (base0) == INDIRECT_REF)
8430 base0 = TREE_OPERAND (base0, 0);
8431 else
8432 indirect_base0 = true;
8433 }
8434 if (offset0 == NULL_TREE || integer_zerop (offset0))
8435 offset0 = TREE_OPERAND (arg0, 1);
8436 else
8437 offset0 = size_binop (PLUS_EXPR, offset0,
8438 TREE_OPERAND (arg0, 1));
8439 if (TREE_CODE (offset0) == INTEGER_CST)
8440 {
8441 offset_int tem = wi::sext (wi::to_offset (offset0),
8442 TYPE_PRECISION (sizetype));
8443 tem = wi::lshift (tem, LOG2_BITS_PER_UNIT);
8444 tem += bitpos0;
8445 if (wi::fits_shwi_p (tem))
8446 {
8447 bitpos0 = tem.to_shwi ();
8448 offset0 = NULL_TREE;
8449 }
8450 }
8451 }
8452
8453 base1 = arg1;
8454 if (TREE_CODE (arg1) == ADDR_EXPR)
8455 {
8456 base1
8457 = get_inner_reference (TREE_OPERAND (arg1, 0),
8458 &bitsize, &bitpos1, &offset1, &mode,
8459 &unsignedp, &reversep, &volatilep, false);
8460 if (TREE_CODE (base1) == INDIRECT_REF)
8461 base1 = TREE_OPERAND (base1, 0);
8462 else
8463 indirect_base1 = true;
8464 }
8465 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8466 {
8467 base1 = TREE_OPERAND (arg1, 0);
8468 STRIP_SIGN_NOPS (base1);
8469 if (TREE_CODE (base1) == ADDR_EXPR)
8470 {
8471 base1
8472 = get_inner_reference (TREE_OPERAND (base1, 0),
8473 &bitsize, &bitpos1, &offset1, &mode,
8474 &unsignedp, &reversep, &volatilep,
8475 false);
8476 if (TREE_CODE (base1) == INDIRECT_REF)
8477 base1 = TREE_OPERAND (base1, 0);
8478 else
8479 indirect_base1 = true;
8480 }
8481 if (offset1 == NULL_TREE || integer_zerop (offset1))
8482 offset1 = TREE_OPERAND (arg1, 1);
8483 else
8484 offset1 = size_binop (PLUS_EXPR, offset1,
8485 TREE_OPERAND (arg1, 1));
8486 if (TREE_CODE (offset1) == INTEGER_CST)
8487 {
8488 offset_int tem = wi::sext (wi::to_offset (offset1),
8489 TYPE_PRECISION (sizetype));
8490 tem = wi::lshift (tem, LOG2_BITS_PER_UNIT);
8491 tem += bitpos1;
8492 if (wi::fits_shwi_p (tem))
8493 {
8494 bitpos1 = tem.to_shwi ();
8495 offset1 = NULL_TREE;
8496 }
8497 }
8498 }
8499
8500 /* If we have equivalent bases we might be able to simplify. */
8501 if (indirect_base0 == indirect_base1
8502 && operand_equal_p (base0, base1,
8503 indirect_base0 ? OEP_ADDRESS_OF : 0))
8504 {
8505 /* We can fold this expression to a constant if the non-constant
8506 offset parts are equal. */
8507 if ((offset0 == offset1
8508 || (offset0 && offset1
8509 && operand_equal_p (offset0, offset1, 0)))
8510 && (code == EQ_EXPR
8511 || code == NE_EXPR
8512 || (indirect_base0 && DECL_P (base0))
8513 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8514
8515 {
8516 if (!equality_code
8517 && bitpos0 != bitpos1
8518 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8519 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8520 fold_overflow_warning (("assuming pointer wraparound does not "
8521 "occur when comparing P +- C1 with "
8522 "P +- C2"),
8523 WARN_STRICT_OVERFLOW_CONDITIONAL);
8524
8525 switch (code)
8526 {
8527 case EQ_EXPR:
8528 return constant_boolean_node (bitpos0 == bitpos1, type);
8529 case NE_EXPR:
8530 return constant_boolean_node (bitpos0 != bitpos1, type);
8531 case LT_EXPR:
8532 return constant_boolean_node (bitpos0 < bitpos1, type);
8533 case LE_EXPR:
8534 return constant_boolean_node (bitpos0 <= bitpos1, type);
8535 case GE_EXPR:
8536 return constant_boolean_node (bitpos0 >= bitpos1, type);
8537 case GT_EXPR:
8538 return constant_boolean_node (bitpos0 > bitpos1, type);
8539 default:;
8540 }
8541 }
8542 /* We can simplify the comparison to a comparison of the variable
8543 offset parts if the constant offset parts are equal.
8544 Be careful to use signed sizetype here because otherwise we
8545 mess with array offsets in the wrong way. This is possible
8546 because pointer arithmetic is restricted to retain within an
8547 object and overflow on pointer differences is undefined as of
8548 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8549 else if (bitpos0 == bitpos1
8550 && (equality_code
8551 || (indirect_base0 && DECL_P (base0))
8552 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8553 {
8554 /* By converting to signed sizetype we cover middle-end pointer
8555 arithmetic which operates on unsigned pointer types of size
8556 type size and ARRAY_REF offsets which are properly sign or
8557 zero extended from their type in case it is narrower than
8558 sizetype. */
8559 if (offset0 == NULL_TREE)
8560 offset0 = build_int_cst (ssizetype, 0);
8561 else
8562 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8563 if (offset1 == NULL_TREE)
8564 offset1 = build_int_cst (ssizetype, 0);
8565 else
8566 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8567
8568 if (!equality_code
8569 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8570 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8571 fold_overflow_warning (("assuming pointer wraparound does not "
8572 "occur when comparing P +- C1 with "
8573 "P +- C2"),
8574 WARN_STRICT_OVERFLOW_COMPARISON);
8575
8576 return fold_build2_loc (loc, code, type, offset0, offset1);
8577 }
8578 }
8579 /* For equal offsets we can simplify to a comparison of the
8580 base addresses. */
8581 else if (bitpos0 == bitpos1
8582 && (indirect_base0
8583 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8584 && (indirect_base1
8585 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8586 && ((offset0 == offset1)
8587 || (offset0 && offset1
8588 && operand_equal_p (offset0, offset1, 0))))
8589 {
8590 if (indirect_base0)
8591 base0 = build_fold_addr_expr_loc (loc, base0);
8592 if (indirect_base1)
8593 base1 = build_fold_addr_expr_loc (loc, base1);
8594 return fold_build2_loc (loc, code, type, base0, base1);
8595 }
8596 }
8597
8598 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8599 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8600 the resulting offset is smaller in absolute value than the
8601 original one and has the same sign. */
8602 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8603 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8604 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8605 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8606 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8607 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8608 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8609 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8610 {
8611 tree const1 = TREE_OPERAND (arg0, 1);
8612 tree const2 = TREE_OPERAND (arg1, 1);
8613 tree variable1 = TREE_OPERAND (arg0, 0);
8614 tree variable2 = TREE_OPERAND (arg1, 0);
8615 tree cst;
8616 const char * const warnmsg = G_("assuming signed overflow does not "
8617 "occur when combining constants around "
8618 "a comparison");
8619
8620 /* Put the constant on the side where it doesn't overflow and is
8621 of lower absolute value and of same sign than before. */
8622 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8623 ? MINUS_EXPR : PLUS_EXPR,
8624 const2, const1);
8625 if (!TREE_OVERFLOW (cst)
8626 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8627 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8628 {
8629 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8630 return fold_build2_loc (loc, code, type,
8631 variable1,
8632 fold_build2_loc (loc, TREE_CODE (arg1),
8633 TREE_TYPE (arg1),
8634 variable2, cst));
8635 }
8636
8637 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8638 ? MINUS_EXPR : PLUS_EXPR,
8639 const1, const2);
8640 if (!TREE_OVERFLOW (cst)
8641 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8642 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8643 {
8644 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8645 return fold_build2_loc (loc, code, type,
8646 fold_build2_loc (loc, TREE_CODE (arg0),
8647 TREE_TYPE (arg0),
8648 variable1, cst),
8649 variable2);
8650 }
8651 }
8652
8653 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8654 if (tem)
8655 return tem;
8656
8657 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
8658 constant, we can simplify it. */
8659 if (TREE_CODE (arg1) == INTEGER_CST
8660 && (TREE_CODE (arg0) == MIN_EXPR
8661 || TREE_CODE (arg0) == MAX_EXPR)
8662 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8663 {
8664 tem = optimize_minmax_comparison (loc, code, type, op0, op1);
8665 if (tem)
8666 return tem;
8667 }
8668
8669 /* If we are comparing an expression that just has comparisons
8670 of two integer values, arithmetic expressions of those comparisons,
8671 and constants, we can simplify it. There are only three cases
8672 to check: the two values can either be equal, the first can be
8673 greater, or the second can be greater. Fold the expression for
8674 those three values. Since each value must be 0 or 1, we have
8675 eight possibilities, each of which corresponds to the constant 0
8676 or 1 or one of the six possible comparisons.
8677
8678 This handles common cases like (a > b) == 0 but also handles
8679 expressions like ((x > y) - (y > x)) > 0, which supposedly
8680 occur in macroized code. */
8681
8682 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8683 {
8684 tree cval1 = 0, cval2 = 0;
8685 int save_p = 0;
8686
8687 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8688 /* Don't handle degenerate cases here; they should already
8689 have been handled anyway. */
8690 && cval1 != 0 && cval2 != 0
8691 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8692 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8693 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8694 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8695 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8696 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8697 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8698 {
8699 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8700 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8701
8702 /* We can't just pass T to eval_subst in case cval1 or cval2
8703 was the same as ARG1. */
8704
8705 tree high_result
8706 = fold_build2_loc (loc, code, type,
8707 eval_subst (loc, arg0, cval1, maxval,
8708 cval2, minval),
8709 arg1);
8710 tree equal_result
8711 = fold_build2_loc (loc, code, type,
8712 eval_subst (loc, arg0, cval1, maxval,
8713 cval2, maxval),
8714 arg1);
8715 tree low_result
8716 = fold_build2_loc (loc, code, type,
8717 eval_subst (loc, arg0, cval1, minval,
8718 cval2, maxval),
8719 arg1);
8720
8721 /* All three of these results should be 0 or 1. Confirm they are.
8722 Then use those values to select the proper code to use. */
8723
8724 if (TREE_CODE (high_result) == INTEGER_CST
8725 && TREE_CODE (equal_result) == INTEGER_CST
8726 && TREE_CODE (low_result) == INTEGER_CST)
8727 {
8728 /* Make a 3-bit mask with the high-order bit being the
8729 value for `>', the next for '=', and the low for '<'. */
8730 switch ((integer_onep (high_result) * 4)
8731 + (integer_onep (equal_result) * 2)
8732 + integer_onep (low_result))
8733 {
8734 case 0:
8735 /* Always false. */
8736 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8737 case 1:
8738 code = LT_EXPR;
8739 break;
8740 case 2:
8741 code = EQ_EXPR;
8742 break;
8743 case 3:
8744 code = LE_EXPR;
8745 break;
8746 case 4:
8747 code = GT_EXPR;
8748 break;
8749 case 5:
8750 code = NE_EXPR;
8751 break;
8752 case 6:
8753 code = GE_EXPR;
8754 break;
8755 case 7:
8756 /* Always true. */
8757 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8758 }
8759
8760 if (save_p)
8761 {
8762 tem = save_expr (build2 (code, type, cval1, cval2));
8763 SET_EXPR_LOCATION (tem, loc);
8764 return tem;
8765 }
8766 return fold_build2_loc (loc, code, type, cval1, cval2);
8767 }
8768 }
8769 }
8770
8771 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8772 into a single range test. */
8773 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
8774 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
8775 && TREE_CODE (arg1) == INTEGER_CST
8776 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8777 && !integer_zerop (TREE_OPERAND (arg0, 1))
8778 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8779 && !TREE_OVERFLOW (arg1))
8780 {
8781 tem = fold_div_compare (loc, code, type, arg0, arg1);
8782 if (tem != NULL_TREE)
8783 return tem;
8784 }
8785
8786 return NULL_TREE;
8787 }
8788
8789
8790 /* Subroutine of fold_binary. Optimize complex multiplications of the
8791 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8792 argument EXPR represents the expression "z" of type TYPE. */
8793
8794 static tree
8795 fold_mult_zconjz (location_t loc, tree type, tree expr)
8796 {
8797 tree itype = TREE_TYPE (type);
8798 tree rpart, ipart, tem;
8799
8800 if (TREE_CODE (expr) == COMPLEX_EXPR)
8801 {
8802 rpart = TREE_OPERAND (expr, 0);
8803 ipart = TREE_OPERAND (expr, 1);
8804 }
8805 else if (TREE_CODE (expr) == COMPLEX_CST)
8806 {
8807 rpart = TREE_REALPART (expr);
8808 ipart = TREE_IMAGPART (expr);
8809 }
8810 else
8811 {
8812 expr = save_expr (expr);
8813 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8814 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8815 }
8816
8817 rpart = save_expr (rpart);
8818 ipart = save_expr (ipart);
8819 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8820 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8821 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8822 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8823 build_zero_cst (itype));
8824 }
8825
8826
8827 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8828 CONSTRUCTOR ARG into array ELTS and return true if successful. */
8829
8830 static bool
8831 vec_cst_ctor_to_array (tree arg, tree *elts)
8832 {
8833 unsigned int nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)), i;
8834
8835 if (TREE_CODE (arg) == VECTOR_CST)
8836 {
8837 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
8838 elts[i] = VECTOR_CST_ELT (arg, i);
8839 }
8840 else if (TREE_CODE (arg) == CONSTRUCTOR)
8841 {
8842 constructor_elt *elt;
8843
8844 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
8845 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
8846 return false;
8847 else
8848 elts[i] = elt->value;
8849 }
8850 else
8851 return false;
8852 for (; i < nelts; i++)
8853 elts[i]
8854 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
8855 return true;
8856 }
8857
8858 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8859 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8860 NULL_TREE otherwise. */
8861
8862 static tree
8863 fold_vec_perm (tree type, tree arg0, tree arg1, const unsigned char *sel)
8864 {
8865 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
8866 tree *elts;
8867 bool need_ctor = false;
8868
8869 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
8870 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
8871 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
8872 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
8873 return NULL_TREE;
8874
8875 elts = XALLOCAVEC (tree, nelts * 3);
8876 if (!vec_cst_ctor_to_array (arg0, elts)
8877 || !vec_cst_ctor_to_array (arg1, elts + nelts))
8878 return NULL_TREE;
8879
8880 for (i = 0; i < nelts; i++)
8881 {
8882 if (!CONSTANT_CLASS_P (elts[sel[i]]))
8883 need_ctor = true;
8884 elts[i + 2 * nelts] = unshare_expr (elts[sel[i]]);
8885 }
8886
8887 if (need_ctor)
8888 {
8889 vec<constructor_elt, va_gc> *v;
8890 vec_alloc (v, nelts);
8891 for (i = 0; i < nelts; i++)
8892 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[2 * nelts + i]);
8893 return build_constructor (type, v);
8894 }
8895 else
8896 return build_vector (type, &elts[2 * nelts]);
8897 }
8898
8899 /* Try to fold a pointer difference of type TYPE two address expressions of
8900 array references AREF0 and AREF1 using location LOC. Return a
8901 simplified expression for the difference or NULL_TREE. */
8902
8903 static tree
8904 fold_addr_of_array_ref_difference (location_t loc, tree type,
8905 tree aref0, tree aref1)
8906 {
8907 tree base0 = TREE_OPERAND (aref0, 0);
8908 tree base1 = TREE_OPERAND (aref1, 0);
8909 tree base_offset = build_int_cst (type, 0);
8910
8911 /* If the bases are array references as well, recurse. If the bases
8912 are pointer indirections compute the difference of the pointers.
8913 If the bases are equal, we are set. */
8914 if ((TREE_CODE (base0) == ARRAY_REF
8915 && TREE_CODE (base1) == ARRAY_REF
8916 && (base_offset
8917 = fold_addr_of_array_ref_difference (loc, type, base0, base1)))
8918 || (INDIRECT_REF_P (base0)
8919 && INDIRECT_REF_P (base1)
8920 && (base_offset
8921 = fold_binary_loc (loc, MINUS_EXPR, type,
8922 fold_convert (type, TREE_OPERAND (base0, 0)),
8923 fold_convert (type,
8924 TREE_OPERAND (base1, 0)))))
8925 || operand_equal_p (base0, base1, OEP_ADDRESS_OF))
8926 {
8927 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
8928 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
8929 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
8930 tree diff = build2 (MINUS_EXPR, type, op0, op1);
8931 return fold_build2_loc (loc, PLUS_EXPR, type,
8932 base_offset,
8933 fold_build2_loc (loc, MULT_EXPR, type,
8934 diff, esz));
8935 }
8936 return NULL_TREE;
8937 }
8938
8939 /* If the real or vector real constant CST of type TYPE has an exact
8940 inverse, return it, else return NULL. */
8941
8942 tree
8943 exact_inverse (tree type, tree cst)
8944 {
8945 REAL_VALUE_TYPE r;
8946 tree unit_type, *elts;
8947 machine_mode mode;
8948 unsigned vec_nelts, i;
8949
8950 switch (TREE_CODE (cst))
8951 {
8952 case REAL_CST:
8953 r = TREE_REAL_CST (cst);
8954
8955 if (exact_real_inverse (TYPE_MODE (type), &r))
8956 return build_real (type, r);
8957
8958 return NULL_TREE;
8959
8960 case VECTOR_CST:
8961 vec_nelts = VECTOR_CST_NELTS (cst);
8962 elts = XALLOCAVEC (tree, vec_nelts);
8963 unit_type = TREE_TYPE (type);
8964 mode = TYPE_MODE (unit_type);
8965
8966 for (i = 0; i < vec_nelts; i++)
8967 {
8968 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
8969 if (!exact_real_inverse (mode, &r))
8970 return NULL_TREE;
8971 elts[i] = build_real (unit_type, r);
8972 }
8973
8974 return build_vector (type, elts);
8975
8976 default:
8977 return NULL_TREE;
8978 }
8979 }
8980
8981 /* Mask out the tz least significant bits of X of type TYPE where
8982 tz is the number of trailing zeroes in Y. */
8983 static wide_int
8984 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
8985 {
8986 int tz = wi::ctz (y);
8987 if (tz > 0)
8988 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
8989 return x;
8990 }
8991
8992 /* Return true when T is an address and is known to be nonzero.
8993 For floating point we further ensure that T is not denormal.
8994 Similar logic is present in nonzero_address in rtlanal.h.
8995
8996 If the return value is based on the assumption that signed overflow
8997 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
8998 change *STRICT_OVERFLOW_P. */
8999
9000 static bool
9001 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
9002 {
9003 tree type = TREE_TYPE (t);
9004 enum tree_code code;
9005
9006 /* Doing something useful for floating point would need more work. */
9007 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
9008 return false;
9009
9010 code = TREE_CODE (t);
9011 switch (TREE_CODE_CLASS (code))
9012 {
9013 case tcc_unary:
9014 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9015 strict_overflow_p);
9016 case tcc_binary:
9017 case tcc_comparison:
9018 return tree_binary_nonzero_warnv_p (code, type,
9019 TREE_OPERAND (t, 0),
9020 TREE_OPERAND (t, 1),
9021 strict_overflow_p);
9022 case tcc_constant:
9023 case tcc_declaration:
9024 case tcc_reference:
9025 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9026
9027 default:
9028 break;
9029 }
9030
9031 switch (code)
9032 {
9033 case TRUTH_NOT_EXPR:
9034 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9035 strict_overflow_p);
9036
9037 case TRUTH_AND_EXPR:
9038 case TRUTH_OR_EXPR:
9039 case TRUTH_XOR_EXPR:
9040 return tree_binary_nonzero_warnv_p (code, type,
9041 TREE_OPERAND (t, 0),
9042 TREE_OPERAND (t, 1),
9043 strict_overflow_p);
9044
9045 case COND_EXPR:
9046 case CONSTRUCTOR:
9047 case OBJ_TYPE_REF:
9048 case ASSERT_EXPR:
9049 case ADDR_EXPR:
9050 case WITH_SIZE_EXPR:
9051 case SSA_NAME:
9052 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9053
9054 case COMPOUND_EXPR:
9055 case MODIFY_EXPR:
9056 case BIND_EXPR:
9057 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
9058 strict_overflow_p);
9059
9060 case SAVE_EXPR:
9061 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
9062 strict_overflow_p);
9063
9064 case CALL_EXPR:
9065 {
9066 tree fndecl = get_callee_fndecl (t);
9067 if (!fndecl) return false;
9068 if (flag_delete_null_pointer_checks && !flag_check_new
9069 && DECL_IS_OPERATOR_NEW (fndecl)
9070 && !TREE_NOTHROW (fndecl))
9071 return true;
9072 if (flag_delete_null_pointer_checks
9073 && lookup_attribute ("returns_nonnull",
9074 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
9075 return true;
9076 return alloca_call_p (t);
9077 }
9078
9079 default:
9080 break;
9081 }
9082 return false;
9083 }
9084
9085 /* Return true when T is an address and is known to be nonzero.
9086 Handle warnings about undefined signed overflow. */
9087
9088 static bool
9089 tree_expr_nonzero_p (tree t)
9090 {
9091 bool ret, strict_overflow_p;
9092
9093 strict_overflow_p = false;
9094 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9095 if (strict_overflow_p)
9096 fold_overflow_warning (("assuming signed overflow does not occur when "
9097 "determining that expression is always "
9098 "non-zero"),
9099 WARN_STRICT_OVERFLOW_MISC);
9100 return ret;
9101 }
9102
9103 /* Return true if T is known not to be equal to an integer W. */
9104
9105 bool
9106 expr_not_equal_to (tree t, const wide_int &w)
9107 {
9108 wide_int min, max, nz;
9109 value_range_type rtype;
9110 switch (TREE_CODE (t))
9111 {
9112 case INTEGER_CST:
9113 return wi::ne_p (t, w);
9114
9115 case SSA_NAME:
9116 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
9117 return false;
9118 rtype = get_range_info (t, &min, &max);
9119 if (rtype == VR_RANGE)
9120 {
9121 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t))))
9122 return true;
9123 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t))))
9124 return true;
9125 }
9126 else if (rtype == VR_ANTI_RANGE
9127 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t)))
9128 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t))))
9129 return true;
9130 /* If T has some known zero bits and W has any of those bits set,
9131 then T is known not to be equal to W. */
9132 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)),
9133 TYPE_PRECISION (TREE_TYPE (t))), 0))
9134 return true;
9135 return false;
9136
9137 default:
9138 return false;
9139 }
9140 }
9141
9142 /* Fold a binary expression of code CODE and type TYPE with operands
9143 OP0 and OP1. LOC is the location of the resulting expression.
9144 Return the folded expression if folding is successful. Otherwise,
9145 return NULL_TREE. */
9146
9147 tree
9148 fold_binary_loc (location_t loc,
9149 enum tree_code code, tree type, tree op0, tree op1)
9150 {
9151 enum tree_code_class kind = TREE_CODE_CLASS (code);
9152 tree arg0, arg1, tem;
9153 tree t1 = NULL_TREE;
9154 bool strict_overflow_p;
9155 unsigned int prec;
9156
9157 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9158 && TREE_CODE_LENGTH (code) == 2
9159 && op0 != NULL_TREE
9160 && op1 != NULL_TREE);
9161
9162 arg0 = op0;
9163 arg1 = op1;
9164
9165 /* Strip any conversions that don't change the mode. This is
9166 safe for every expression, except for a comparison expression
9167 because its signedness is derived from its operands. So, in
9168 the latter case, only strip conversions that don't change the
9169 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9170 preserved.
9171
9172 Note that this is done as an internal manipulation within the
9173 constant folder, in order to find the simplest representation
9174 of the arguments so that their form can be studied. In any
9175 cases, the appropriate type conversions should be put back in
9176 the tree that will get out of the constant folder. */
9177
9178 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9179 {
9180 STRIP_SIGN_NOPS (arg0);
9181 STRIP_SIGN_NOPS (arg1);
9182 }
9183 else
9184 {
9185 STRIP_NOPS (arg0);
9186 STRIP_NOPS (arg1);
9187 }
9188
9189 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9190 constant but we can't do arithmetic on them. */
9191 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9192 {
9193 tem = const_binop (code, type, arg0, arg1);
9194 if (tem != NULL_TREE)
9195 {
9196 if (TREE_TYPE (tem) != type)
9197 tem = fold_convert_loc (loc, type, tem);
9198 return tem;
9199 }
9200 }
9201
9202 /* If this is a commutative operation, and ARG0 is a constant, move it
9203 to ARG1 to reduce the number of tests below. */
9204 if (commutative_tree_code (code)
9205 && tree_swap_operands_p (arg0, arg1, true))
9206 return fold_build2_loc (loc, code, type, op1, op0);
9207
9208 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9209 to ARG1 to reduce the number of tests below. */
9210 if (kind == tcc_comparison
9211 && tree_swap_operands_p (arg0, arg1, true))
9212 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9213
9214 tem = generic_simplify (loc, code, type, op0, op1);
9215 if (tem)
9216 return tem;
9217
9218 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9219
9220 First check for cases where an arithmetic operation is applied to a
9221 compound, conditional, or comparison operation. Push the arithmetic
9222 operation inside the compound or conditional to see if any folding
9223 can then be done. Convert comparison to conditional for this purpose.
9224 The also optimizes non-constant cases that used to be done in
9225 expand_expr.
9226
9227 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9228 one of the operands is a comparison and the other is a comparison, a
9229 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9230 code below would make the expression more complex. Change it to a
9231 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9232 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9233
9234 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9235 || code == EQ_EXPR || code == NE_EXPR)
9236 && TREE_CODE (type) != VECTOR_TYPE
9237 && ((truth_value_p (TREE_CODE (arg0))
9238 && (truth_value_p (TREE_CODE (arg1))
9239 || (TREE_CODE (arg1) == BIT_AND_EXPR
9240 && integer_onep (TREE_OPERAND (arg1, 1)))))
9241 || (truth_value_p (TREE_CODE (arg1))
9242 && (truth_value_p (TREE_CODE (arg0))
9243 || (TREE_CODE (arg0) == BIT_AND_EXPR
9244 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9245 {
9246 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9247 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9248 : TRUTH_XOR_EXPR,
9249 boolean_type_node,
9250 fold_convert_loc (loc, boolean_type_node, arg0),
9251 fold_convert_loc (loc, boolean_type_node, arg1));
9252
9253 if (code == EQ_EXPR)
9254 tem = invert_truthvalue_loc (loc, tem);
9255
9256 return fold_convert_loc (loc, type, tem);
9257 }
9258
9259 if (TREE_CODE_CLASS (code) == tcc_binary
9260 || TREE_CODE_CLASS (code) == tcc_comparison)
9261 {
9262 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9263 {
9264 tem = fold_build2_loc (loc, code, type,
9265 fold_convert_loc (loc, TREE_TYPE (op0),
9266 TREE_OPERAND (arg0, 1)), op1);
9267 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9268 tem);
9269 }
9270 if (TREE_CODE (arg1) == COMPOUND_EXPR
9271 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9272 {
9273 tem = fold_build2_loc (loc, code, type, op0,
9274 fold_convert_loc (loc, TREE_TYPE (op1),
9275 TREE_OPERAND (arg1, 1)));
9276 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9277 tem);
9278 }
9279
9280 if (TREE_CODE (arg0) == COND_EXPR
9281 || TREE_CODE (arg0) == VEC_COND_EXPR
9282 || COMPARISON_CLASS_P (arg0))
9283 {
9284 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9285 arg0, arg1,
9286 /*cond_first_p=*/1);
9287 if (tem != NULL_TREE)
9288 return tem;
9289 }
9290
9291 if (TREE_CODE (arg1) == COND_EXPR
9292 || TREE_CODE (arg1) == VEC_COND_EXPR
9293 || COMPARISON_CLASS_P (arg1))
9294 {
9295 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9296 arg1, arg0,
9297 /*cond_first_p=*/0);
9298 if (tem != NULL_TREE)
9299 return tem;
9300 }
9301 }
9302
9303 switch (code)
9304 {
9305 case MEM_REF:
9306 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9307 if (TREE_CODE (arg0) == ADDR_EXPR
9308 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9309 {
9310 tree iref = TREE_OPERAND (arg0, 0);
9311 return fold_build2 (MEM_REF, type,
9312 TREE_OPERAND (iref, 0),
9313 int_const_binop (PLUS_EXPR, arg1,
9314 TREE_OPERAND (iref, 1)));
9315 }
9316
9317 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9318 if (TREE_CODE (arg0) == ADDR_EXPR
9319 && handled_component_p (TREE_OPERAND (arg0, 0)))
9320 {
9321 tree base;
9322 HOST_WIDE_INT coffset;
9323 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9324 &coffset);
9325 if (!base)
9326 return NULL_TREE;
9327 return fold_build2 (MEM_REF, type,
9328 build_fold_addr_expr (base),
9329 int_const_binop (PLUS_EXPR, arg1,
9330 size_int (coffset)));
9331 }
9332
9333 return NULL_TREE;
9334
9335 case POINTER_PLUS_EXPR:
9336 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9337 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9338 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9339 return fold_convert_loc (loc, type,
9340 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9341 fold_convert_loc (loc, sizetype,
9342 arg1),
9343 fold_convert_loc (loc, sizetype,
9344 arg0)));
9345
9346 return NULL_TREE;
9347
9348 case PLUS_EXPR:
9349 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9350 {
9351 /* X + (X / CST) * -CST is X % CST. */
9352 if (TREE_CODE (arg1) == MULT_EXPR
9353 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9354 && operand_equal_p (arg0,
9355 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9356 {
9357 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9358 tree cst1 = TREE_OPERAND (arg1, 1);
9359 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9360 cst1, cst0);
9361 if (sum && integer_zerop (sum))
9362 return fold_convert_loc (loc, type,
9363 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9364 TREE_TYPE (arg0), arg0,
9365 cst0));
9366 }
9367 }
9368
9369 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9370 one. Make sure the type is not saturating and has the signedness of
9371 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9372 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9373 if ((TREE_CODE (arg0) == MULT_EXPR
9374 || TREE_CODE (arg1) == MULT_EXPR)
9375 && !TYPE_SATURATING (type)
9376 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9377 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9378 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9379 {
9380 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9381 if (tem)
9382 return tem;
9383 }
9384
9385 if (! FLOAT_TYPE_P (type))
9386 {
9387 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9388 (plus (plus (mult) (mult)) (foo)) so that we can
9389 take advantage of the factoring cases below. */
9390 if (ANY_INTEGRAL_TYPE_P (type)
9391 && TYPE_OVERFLOW_WRAPS (type)
9392 && (((TREE_CODE (arg0) == PLUS_EXPR
9393 || TREE_CODE (arg0) == MINUS_EXPR)
9394 && TREE_CODE (arg1) == MULT_EXPR)
9395 || ((TREE_CODE (arg1) == PLUS_EXPR
9396 || TREE_CODE (arg1) == MINUS_EXPR)
9397 && TREE_CODE (arg0) == MULT_EXPR)))
9398 {
9399 tree parg0, parg1, parg, marg;
9400 enum tree_code pcode;
9401
9402 if (TREE_CODE (arg1) == MULT_EXPR)
9403 parg = arg0, marg = arg1;
9404 else
9405 parg = arg1, marg = arg0;
9406 pcode = TREE_CODE (parg);
9407 parg0 = TREE_OPERAND (parg, 0);
9408 parg1 = TREE_OPERAND (parg, 1);
9409 STRIP_NOPS (parg0);
9410 STRIP_NOPS (parg1);
9411
9412 if (TREE_CODE (parg0) == MULT_EXPR
9413 && TREE_CODE (parg1) != MULT_EXPR)
9414 return fold_build2_loc (loc, pcode, type,
9415 fold_build2_loc (loc, PLUS_EXPR, type,
9416 fold_convert_loc (loc, type,
9417 parg0),
9418 fold_convert_loc (loc, type,
9419 marg)),
9420 fold_convert_loc (loc, type, parg1));
9421 if (TREE_CODE (parg0) != MULT_EXPR
9422 && TREE_CODE (parg1) == MULT_EXPR)
9423 return
9424 fold_build2_loc (loc, PLUS_EXPR, type,
9425 fold_convert_loc (loc, type, parg0),
9426 fold_build2_loc (loc, pcode, type,
9427 fold_convert_loc (loc, type, marg),
9428 fold_convert_loc (loc, type,
9429 parg1)));
9430 }
9431 }
9432 else
9433 {
9434 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9435 to __complex__ ( x, y ). This is not the same for SNaNs or
9436 if signed zeros are involved. */
9437 if (!HONOR_SNANS (element_mode (arg0))
9438 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9439 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9440 {
9441 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9442 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9443 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9444 bool arg0rz = false, arg0iz = false;
9445 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9446 || (arg0i && (arg0iz = real_zerop (arg0i))))
9447 {
9448 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9449 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9450 if (arg0rz && arg1i && real_zerop (arg1i))
9451 {
9452 tree rp = arg1r ? arg1r
9453 : build1 (REALPART_EXPR, rtype, arg1);
9454 tree ip = arg0i ? arg0i
9455 : build1 (IMAGPART_EXPR, rtype, arg0);
9456 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9457 }
9458 else if (arg0iz && arg1r && real_zerop (arg1r))
9459 {
9460 tree rp = arg0r ? arg0r
9461 : build1 (REALPART_EXPR, rtype, arg0);
9462 tree ip = arg1i ? arg1i
9463 : build1 (IMAGPART_EXPR, rtype, arg1);
9464 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9465 }
9466 }
9467 }
9468
9469 if (flag_unsafe_math_optimizations
9470 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9471 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9472 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9473 return tem;
9474
9475 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9476 We associate floats only if the user has specified
9477 -fassociative-math. */
9478 if (flag_associative_math
9479 && TREE_CODE (arg1) == PLUS_EXPR
9480 && TREE_CODE (arg0) != MULT_EXPR)
9481 {
9482 tree tree10 = TREE_OPERAND (arg1, 0);
9483 tree tree11 = TREE_OPERAND (arg1, 1);
9484 if (TREE_CODE (tree11) == MULT_EXPR
9485 && TREE_CODE (tree10) == MULT_EXPR)
9486 {
9487 tree tree0;
9488 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9489 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9490 }
9491 }
9492 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9493 We associate floats only if the user has specified
9494 -fassociative-math. */
9495 if (flag_associative_math
9496 && TREE_CODE (arg0) == PLUS_EXPR
9497 && TREE_CODE (arg1) != MULT_EXPR)
9498 {
9499 tree tree00 = TREE_OPERAND (arg0, 0);
9500 tree tree01 = TREE_OPERAND (arg0, 1);
9501 if (TREE_CODE (tree01) == MULT_EXPR
9502 && TREE_CODE (tree00) == MULT_EXPR)
9503 {
9504 tree tree0;
9505 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9506 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9507 }
9508 }
9509 }
9510
9511 bit_rotate:
9512 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9513 is a rotate of A by C1 bits. */
9514 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9515 is a rotate of A by B bits. */
9516 {
9517 enum tree_code code0, code1;
9518 tree rtype;
9519 code0 = TREE_CODE (arg0);
9520 code1 = TREE_CODE (arg1);
9521 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9522 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9523 && operand_equal_p (TREE_OPERAND (arg0, 0),
9524 TREE_OPERAND (arg1, 0), 0)
9525 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9526 TYPE_UNSIGNED (rtype))
9527 /* Only create rotates in complete modes. Other cases are not
9528 expanded properly. */
9529 && (element_precision (rtype)
9530 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
9531 {
9532 tree tree01, tree11;
9533 enum tree_code code01, code11;
9534
9535 tree01 = TREE_OPERAND (arg0, 1);
9536 tree11 = TREE_OPERAND (arg1, 1);
9537 STRIP_NOPS (tree01);
9538 STRIP_NOPS (tree11);
9539 code01 = TREE_CODE (tree01);
9540 code11 = TREE_CODE (tree11);
9541 if (code01 == INTEGER_CST
9542 && code11 == INTEGER_CST
9543 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9544 == element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9545 {
9546 tem = build2_loc (loc, LROTATE_EXPR,
9547 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9548 TREE_OPERAND (arg0, 0),
9549 code0 == LSHIFT_EXPR
9550 ? TREE_OPERAND (arg0, 1)
9551 : TREE_OPERAND (arg1, 1));
9552 return fold_convert_loc (loc, type, tem);
9553 }
9554 else if (code11 == MINUS_EXPR)
9555 {
9556 tree tree110, tree111;
9557 tree110 = TREE_OPERAND (tree11, 0);
9558 tree111 = TREE_OPERAND (tree11, 1);
9559 STRIP_NOPS (tree110);
9560 STRIP_NOPS (tree111);
9561 if (TREE_CODE (tree110) == INTEGER_CST
9562 && 0 == compare_tree_int (tree110,
9563 element_precision
9564 (TREE_TYPE (TREE_OPERAND
9565 (arg0, 0))))
9566 && operand_equal_p (tree01, tree111, 0))
9567 return
9568 fold_convert_loc (loc, type,
9569 build2 ((code0 == LSHIFT_EXPR
9570 ? LROTATE_EXPR
9571 : RROTATE_EXPR),
9572 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9573 TREE_OPERAND (arg0, 0),
9574 TREE_OPERAND (arg0, 1)));
9575 }
9576 else if (code01 == MINUS_EXPR)
9577 {
9578 tree tree010, tree011;
9579 tree010 = TREE_OPERAND (tree01, 0);
9580 tree011 = TREE_OPERAND (tree01, 1);
9581 STRIP_NOPS (tree010);
9582 STRIP_NOPS (tree011);
9583 if (TREE_CODE (tree010) == INTEGER_CST
9584 && 0 == compare_tree_int (tree010,
9585 element_precision
9586 (TREE_TYPE (TREE_OPERAND
9587 (arg0, 0))))
9588 && operand_equal_p (tree11, tree011, 0))
9589 return fold_convert_loc
9590 (loc, type,
9591 build2 ((code0 != LSHIFT_EXPR
9592 ? LROTATE_EXPR
9593 : RROTATE_EXPR),
9594 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9595 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1)));
9596 }
9597 }
9598 }
9599
9600 associate:
9601 /* In most languages, can't associate operations on floats through
9602 parentheses. Rather than remember where the parentheses were, we
9603 don't associate floats at all, unless the user has specified
9604 -fassociative-math.
9605 And, we need to make sure type is not saturating. */
9606
9607 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9608 && !TYPE_SATURATING (type))
9609 {
9610 tree var0, con0, lit0, minus_lit0;
9611 tree var1, con1, lit1, minus_lit1;
9612 tree atype = type;
9613 bool ok = true;
9614
9615 /* Split both trees into variables, constants, and literals. Then
9616 associate each group together, the constants with literals,
9617 then the result with variables. This increases the chances of
9618 literals being recombined later and of generating relocatable
9619 expressions for the sum of a constant and literal. */
9620 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
9621 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
9622 code == MINUS_EXPR);
9623
9624 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9625 if (code == MINUS_EXPR)
9626 code = PLUS_EXPR;
9627
9628 /* With undefined overflow prefer doing association in a type
9629 which wraps on overflow, if that is one of the operand types. */
9630 if ((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9631 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9632 {
9633 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9634 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9635 atype = TREE_TYPE (arg0);
9636 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9637 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9638 atype = TREE_TYPE (arg1);
9639 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9640 }
9641
9642 /* With undefined overflow we can only associate constants with one
9643 variable, and constants whose association doesn't overflow. */
9644 if ((POINTER_TYPE_P (atype) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9645 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
9646 {
9647 if (var0 && var1)
9648 {
9649 tree tmp0 = var0;
9650 tree tmp1 = var1;
9651 bool one_neg = false;
9652
9653 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9654 {
9655 tmp0 = TREE_OPERAND (tmp0, 0);
9656 one_neg = !one_neg;
9657 }
9658 if (CONVERT_EXPR_P (tmp0)
9659 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9660 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9661 <= TYPE_PRECISION (atype)))
9662 tmp0 = TREE_OPERAND (tmp0, 0);
9663 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9664 {
9665 tmp1 = TREE_OPERAND (tmp1, 0);
9666 one_neg = !one_neg;
9667 }
9668 if (CONVERT_EXPR_P (tmp1)
9669 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9670 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9671 <= TYPE_PRECISION (atype)))
9672 tmp1 = TREE_OPERAND (tmp1, 0);
9673 /* The only case we can still associate with two variables
9674 is if they cancel out. */
9675 if (!one_neg
9676 || !operand_equal_p (tmp0, tmp1, 0))
9677 ok = false;
9678 }
9679 }
9680
9681 /* Only do something if we found more than two objects. Otherwise,
9682 nothing has changed and we risk infinite recursion. */
9683 if (ok
9684 && (2 < ((var0 != 0) + (var1 != 0)
9685 + (con0 != 0) + (con1 != 0)
9686 + (lit0 != 0) + (lit1 != 0)
9687 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9688 {
9689 bool any_overflows = false;
9690 if (lit0) any_overflows |= TREE_OVERFLOW (lit0);
9691 if (lit1) any_overflows |= TREE_OVERFLOW (lit1);
9692 if (minus_lit0) any_overflows |= TREE_OVERFLOW (minus_lit0);
9693 if (minus_lit1) any_overflows |= TREE_OVERFLOW (minus_lit1);
9694 var0 = associate_trees (loc, var0, var1, code, atype);
9695 con0 = associate_trees (loc, con0, con1, code, atype);
9696 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9697 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9698 code, atype);
9699
9700 /* Preserve the MINUS_EXPR if the negative part of the literal is
9701 greater than the positive part. Otherwise, the multiplicative
9702 folding code (i.e extract_muldiv) may be fooled in case
9703 unsigned constants are subtracted, like in the following
9704 example: ((X*2 + 4) - 8U)/2. */
9705 if (minus_lit0 && lit0)
9706 {
9707 if (TREE_CODE (lit0) == INTEGER_CST
9708 && TREE_CODE (minus_lit0) == INTEGER_CST
9709 && tree_int_cst_lt (lit0, minus_lit0))
9710 {
9711 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9712 MINUS_EXPR, atype);
9713 lit0 = 0;
9714 }
9715 else
9716 {
9717 lit0 = associate_trees (loc, lit0, minus_lit0,
9718 MINUS_EXPR, atype);
9719 minus_lit0 = 0;
9720 }
9721 }
9722
9723 /* Don't introduce overflows through reassociation. */
9724 if (!any_overflows
9725 && ((lit0 && TREE_OVERFLOW_P (lit0))
9726 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0))))
9727 return NULL_TREE;
9728
9729 if (minus_lit0)
9730 {
9731 if (con0 == 0)
9732 return
9733 fold_convert_loc (loc, type,
9734 associate_trees (loc, var0, minus_lit0,
9735 MINUS_EXPR, atype));
9736 else
9737 {
9738 con0 = associate_trees (loc, con0, minus_lit0,
9739 MINUS_EXPR, atype);
9740 return
9741 fold_convert_loc (loc, type,
9742 associate_trees (loc, var0, con0,
9743 PLUS_EXPR, atype));
9744 }
9745 }
9746
9747 con0 = associate_trees (loc, con0, lit0, code, atype);
9748 return
9749 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9750 code, atype));
9751 }
9752 }
9753
9754 return NULL_TREE;
9755
9756 case MINUS_EXPR:
9757 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9758 if (TREE_CODE (arg0) == NEGATE_EXPR
9759 && negate_expr_p (op1)
9760 && reorder_operands_p (arg0, arg1))
9761 return fold_build2_loc (loc, MINUS_EXPR, type,
9762 negate_expr (op1),
9763 fold_convert_loc (loc, type,
9764 TREE_OPERAND (arg0, 0)));
9765
9766 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9767 __complex__ ( x, -y ). This is not the same for SNaNs or if
9768 signed zeros are involved. */
9769 if (!HONOR_SNANS (element_mode (arg0))
9770 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9771 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9772 {
9773 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9774 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9775 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9776 bool arg0rz = false, arg0iz = false;
9777 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9778 || (arg0i && (arg0iz = real_zerop (arg0i))))
9779 {
9780 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9781 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9782 if (arg0rz && arg1i && real_zerop (arg1i))
9783 {
9784 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9785 arg1r ? arg1r
9786 : build1 (REALPART_EXPR, rtype, arg1));
9787 tree ip = arg0i ? arg0i
9788 : build1 (IMAGPART_EXPR, rtype, arg0);
9789 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9790 }
9791 else if (arg0iz && arg1r && real_zerop (arg1r))
9792 {
9793 tree rp = arg0r ? arg0r
9794 : build1 (REALPART_EXPR, rtype, arg0);
9795 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9796 arg1i ? arg1i
9797 : build1 (IMAGPART_EXPR, rtype, arg1));
9798 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9799 }
9800 }
9801 }
9802
9803 /* A - B -> A + (-B) if B is easily negatable. */
9804 if (negate_expr_p (op1)
9805 && ! TYPE_OVERFLOW_SANITIZED (type)
9806 && ((FLOAT_TYPE_P (type)
9807 /* Avoid this transformation if B is a positive REAL_CST. */
9808 && (TREE_CODE (op1) != REAL_CST
9809 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1))))
9810 || INTEGRAL_TYPE_P (type)))
9811 return fold_build2_loc (loc, PLUS_EXPR, type,
9812 fold_convert_loc (loc, type, arg0),
9813 negate_expr (op1));
9814
9815 /* Fold &a[i] - &a[j] to i-j. */
9816 if (TREE_CODE (arg0) == ADDR_EXPR
9817 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9818 && TREE_CODE (arg1) == ADDR_EXPR
9819 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9820 {
9821 tree tem = fold_addr_of_array_ref_difference (loc, type,
9822 TREE_OPERAND (arg0, 0),
9823 TREE_OPERAND (arg1, 0));
9824 if (tem)
9825 return tem;
9826 }
9827
9828 if (FLOAT_TYPE_P (type)
9829 && flag_unsafe_math_optimizations
9830 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9831 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9832 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9833 return tem;
9834
9835 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9836 one. Make sure the type is not saturating and has the signedness of
9837 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9838 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9839 if ((TREE_CODE (arg0) == MULT_EXPR
9840 || TREE_CODE (arg1) == MULT_EXPR)
9841 && !TYPE_SATURATING (type)
9842 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9843 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9844 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9845 {
9846 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9847 if (tem)
9848 return tem;
9849 }
9850
9851 goto associate;
9852
9853 case MULT_EXPR:
9854 if (! FLOAT_TYPE_P (type))
9855 {
9856 /* Transform x * -C into -x * C if x is easily negatable. */
9857 if (TREE_CODE (op1) == INTEGER_CST
9858 && tree_int_cst_sgn (op1) == -1
9859 && negate_expr_p (op0)
9860 && (tem = negate_expr (op1)) != op1
9861 && ! TREE_OVERFLOW (tem))
9862 return fold_build2_loc (loc, MULT_EXPR, type,
9863 fold_convert_loc (loc, type,
9864 negate_expr (op0)), tem);
9865
9866 /* (A + A) * C -> A * 2 * C */
9867 if (TREE_CODE (arg0) == PLUS_EXPR
9868 && TREE_CODE (arg1) == INTEGER_CST
9869 && operand_equal_p (TREE_OPERAND (arg0, 0),
9870 TREE_OPERAND (arg0, 1), 0))
9871 return fold_build2_loc (loc, MULT_EXPR, type,
9872 omit_one_operand_loc (loc, type,
9873 TREE_OPERAND (arg0, 0),
9874 TREE_OPERAND (arg0, 1)),
9875 fold_build2_loc (loc, MULT_EXPR, type,
9876 build_int_cst (type, 2) , arg1));
9877
9878 /* ((T) (X /[ex] C)) * C cancels out if the conversion is
9879 sign-changing only. */
9880 if (TREE_CODE (arg1) == INTEGER_CST
9881 && TREE_CODE (arg0) == EXACT_DIV_EXPR
9882 && operand_equal_p (arg1, TREE_OPERAND (arg0, 1), 0))
9883 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9884
9885 strict_overflow_p = false;
9886 if (TREE_CODE (arg1) == INTEGER_CST
9887 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
9888 &strict_overflow_p)))
9889 {
9890 if (strict_overflow_p)
9891 fold_overflow_warning (("assuming signed overflow does not "
9892 "occur when simplifying "
9893 "multiplication"),
9894 WARN_STRICT_OVERFLOW_MISC);
9895 return fold_convert_loc (loc, type, tem);
9896 }
9897
9898 /* Optimize z * conj(z) for integer complex numbers. */
9899 if (TREE_CODE (arg0) == CONJ_EXPR
9900 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9901 return fold_mult_zconjz (loc, type, arg1);
9902 if (TREE_CODE (arg1) == CONJ_EXPR
9903 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9904 return fold_mult_zconjz (loc, type, arg0);
9905 }
9906 else
9907 {
9908 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9909 This is not the same for NaNs or if signed zeros are
9910 involved. */
9911 if (!HONOR_NANS (arg0)
9912 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9913 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
9914 && TREE_CODE (arg1) == COMPLEX_CST
9915 && real_zerop (TREE_REALPART (arg1)))
9916 {
9917 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9918 if (real_onep (TREE_IMAGPART (arg1)))
9919 return
9920 fold_build2_loc (loc, COMPLEX_EXPR, type,
9921 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
9922 rtype, arg0)),
9923 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
9924 else if (real_minus_onep (TREE_IMAGPART (arg1)))
9925 return
9926 fold_build2_loc (loc, COMPLEX_EXPR, type,
9927 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
9928 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
9929 rtype, arg0)));
9930 }
9931
9932 /* Optimize z * conj(z) for floating point complex numbers.
9933 Guarded by flag_unsafe_math_optimizations as non-finite
9934 imaginary components don't produce scalar results. */
9935 if (flag_unsafe_math_optimizations
9936 && TREE_CODE (arg0) == CONJ_EXPR
9937 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9938 return fold_mult_zconjz (loc, type, arg1);
9939 if (flag_unsafe_math_optimizations
9940 && TREE_CODE (arg1) == CONJ_EXPR
9941 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9942 return fold_mult_zconjz (loc, type, arg0);
9943
9944 if (flag_unsafe_math_optimizations)
9945 {
9946
9947 /* Canonicalize x*x as pow(x,2.0), which is expanded as x*x. */
9948 if (!in_gimple_form
9949 && optimize
9950 && operand_equal_p (arg0, arg1, 0))
9951 {
9952 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
9953
9954 if (powfn)
9955 {
9956 tree arg = build_real (type, dconst2);
9957 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
9958 }
9959 }
9960 }
9961 }
9962 goto associate;
9963
9964 case BIT_IOR_EXPR:
9965 /* Canonicalize (X & C1) | C2. */
9966 if (TREE_CODE (arg0) == BIT_AND_EXPR
9967 && TREE_CODE (arg1) == INTEGER_CST
9968 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9969 {
9970 int width = TYPE_PRECISION (type), w;
9971 wide_int c1 = TREE_OPERAND (arg0, 1);
9972 wide_int c2 = arg1;
9973
9974 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
9975 if ((c1 & c2) == c1)
9976 return omit_one_operand_loc (loc, type, arg1,
9977 TREE_OPERAND (arg0, 0));
9978
9979 wide_int msk = wi::mask (width, false,
9980 TYPE_PRECISION (TREE_TYPE (arg1)));
9981
9982 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
9983 if (msk.and_not (c1 | c2) == 0)
9984 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
9985 TREE_OPERAND (arg0, 0), arg1);
9986
9987 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
9988 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
9989 mode which allows further optimizations. */
9990 c1 &= msk;
9991 c2 &= msk;
9992 wide_int c3 = c1.and_not (c2);
9993 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
9994 {
9995 wide_int mask = wi::mask (w, false,
9996 TYPE_PRECISION (type));
9997 if (((c1 | c2) & mask) == mask && c1.and_not (mask) == 0)
9998 {
9999 c3 = mask;
10000 break;
10001 }
10002 }
10003
10004 if (c3 != c1)
10005 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
10006 fold_build2_loc (loc, BIT_AND_EXPR, type,
10007 TREE_OPERAND (arg0, 0),
10008 wide_int_to_tree (type,
10009 c3)),
10010 arg1);
10011 }
10012
10013 /* See if this can be simplified into a rotate first. If that
10014 is unsuccessful continue in the association code. */
10015 goto bit_rotate;
10016
10017 case BIT_XOR_EXPR:
10018 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10019 if (TREE_CODE (arg0) == BIT_AND_EXPR
10020 && INTEGRAL_TYPE_P (type)
10021 && integer_onep (TREE_OPERAND (arg0, 1))
10022 && integer_onep (arg1))
10023 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
10024 build_zero_cst (TREE_TYPE (arg0)));
10025
10026 /* See if this can be simplified into a rotate first. If that
10027 is unsuccessful continue in the association code. */
10028 goto bit_rotate;
10029
10030 case BIT_AND_EXPR:
10031 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10032 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10033 && INTEGRAL_TYPE_P (type)
10034 && integer_onep (TREE_OPERAND (arg0, 1))
10035 && integer_onep (arg1))
10036 {
10037 tree tem2;
10038 tem = TREE_OPERAND (arg0, 0);
10039 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10040 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10041 tem, tem2);
10042 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10043 build_zero_cst (TREE_TYPE (tem)));
10044 }
10045 /* Fold ~X & 1 as (X & 1) == 0. */
10046 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10047 && INTEGRAL_TYPE_P (type)
10048 && integer_onep (arg1))
10049 {
10050 tree tem2;
10051 tem = TREE_OPERAND (arg0, 0);
10052 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10053 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10054 tem, tem2);
10055 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10056 build_zero_cst (TREE_TYPE (tem)));
10057 }
10058 /* Fold !X & 1 as X == 0. */
10059 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10060 && integer_onep (arg1))
10061 {
10062 tem = TREE_OPERAND (arg0, 0);
10063 return fold_build2_loc (loc, EQ_EXPR, type, tem,
10064 build_zero_cst (TREE_TYPE (tem)));
10065 }
10066
10067 /* Fold (X ^ Y) & Y as ~X & Y. */
10068 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10069 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10070 {
10071 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10072 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10073 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10074 fold_convert_loc (loc, type, arg1));
10075 }
10076 /* Fold (X ^ Y) & X as ~Y & X. */
10077 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10078 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10079 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10080 {
10081 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10082 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10083 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10084 fold_convert_loc (loc, type, arg1));
10085 }
10086 /* Fold X & (X ^ Y) as X & ~Y. */
10087 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10088 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10089 {
10090 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10091 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10092 fold_convert_loc (loc, type, arg0),
10093 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
10094 }
10095 /* Fold X & (Y ^ X) as ~Y & X. */
10096 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10097 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10098 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10099 {
10100 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10101 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10102 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10103 fold_convert_loc (loc, type, arg0));
10104 }
10105
10106 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10107 multiple of 1 << CST. */
10108 if (TREE_CODE (arg1) == INTEGER_CST)
10109 {
10110 wide_int cst1 = arg1;
10111 wide_int ncst1 = -cst1;
10112 if ((cst1 & ncst1) == ncst1
10113 && multiple_of_p (type, arg0,
10114 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
10115 return fold_convert_loc (loc, type, arg0);
10116 }
10117
10118 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10119 bits from CST2. */
10120 if (TREE_CODE (arg1) == INTEGER_CST
10121 && TREE_CODE (arg0) == MULT_EXPR
10122 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10123 {
10124 wide_int warg1 = arg1;
10125 wide_int masked = mask_with_tz (type, warg1, TREE_OPERAND (arg0, 1));
10126
10127 if (masked == 0)
10128 return omit_two_operands_loc (loc, type, build_zero_cst (type),
10129 arg0, arg1);
10130 else if (masked != warg1)
10131 {
10132 /* Avoid the transform if arg1 is a mask of some
10133 mode which allows further optimizations. */
10134 int pop = wi::popcount (warg1);
10135 if (!(pop >= BITS_PER_UNIT
10136 && exact_log2 (pop) != -1
10137 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
10138 return fold_build2_loc (loc, code, type, op0,
10139 wide_int_to_tree (type, masked));
10140 }
10141 }
10142
10143 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10144 ((A & N) + B) & M -> (A + B) & M
10145 Similarly if (N & M) == 0,
10146 ((A | N) + B) & M -> (A + B) & M
10147 and for - instead of + (or unary - instead of +)
10148 and/or ^ instead of |.
10149 If B is constant and (B & M) == 0, fold into A & M. */
10150 if (TREE_CODE (arg1) == INTEGER_CST)
10151 {
10152 wide_int cst1 = arg1;
10153 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
10154 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10155 && (TREE_CODE (arg0) == PLUS_EXPR
10156 || TREE_CODE (arg0) == MINUS_EXPR
10157 || TREE_CODE (arg0) == NEGATE_EXPR)
10158 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
10159 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
10160 {
10161 tree pmop[2];
10162 int which = 0;
10163 wide_int cst0;
10164
10165 /* Now we know that arg0 is (C + D) or (C - D) or
10166 -C and arg1 (M) is == (1LL << cst) - 1.
10167 Store C into PMOP[0] and D into PMOP[1]. */
10168 pmop[0] = TREE_OPERAND (arg0, 0);
10169 pmop[1] = NULL;
10170 if (TREE_CODE (arg0) != NEGATE_EXPR)
10171 {
10172 pmop[1] = TREE_OPERAND (arg0, 1);
10173 which = 1;
10174 }
10175
10176 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
10177 which = -1;
10178
10179 for (; which >= 0; which--)
10180 switch (TREE_CODE (pmop[which]))
10181 {
10182 case BIT_AND_EXPR:
10183 case BIT_IOR_EXPR:
10184 case BIT_XOR_EXPR:
10185 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
10186 != INTEGER_CST)
10187 break;
10188 cst0 = TREE_OPERAND (pmop[which], 1);
10189 cst0 &= cst1;
10190 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
10191 {
10192 if (cst0 != cst1)
10193 break;
10194 }
10195 else if (cst0 != 0)
10196 break;
10197 /* If C or D is of the form (A & N) where
10198 (N & M) == M, or of the form (A | N) or
10199 (A ^ N) where (N & M) == 0, replace it with A. */
10200 pmop[which] = TREE_OPERAND (pmop[which], 0);
10201 break;
10202 case INTEGER_CST:
10203 /* If C or D is a N where (N & M) == 0, it can be
10204 omitted (assumed 0). */
10205 if ((TREE_CODE (arg0) == PLUS_EXPR
10206 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
10207 && (cst1 & pmop[which]) == 0)
10208 pmop[which] = NULL;
10209 break;
10210 default:
10211 break;
10212 }
10213
10214 /* Only build anything new if we optimized one or both arguments
10215 above. */
10216 if (pmop[0] != TREE_OPERAND (arg0, 0)
10217 || (TREE_CODE (arg0) != NEGATE_EXPR
10218 && pmop[1] != TREE_OPERAND (arg0, 1)))
10219 {
10220 tree utype = TREE_TYPE (arg0);
10221 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10222 {
10223 /* Perform the operations in a type that has defined
10224 overflow behavior. */
10225 utype = unsigned_type_for (TREE_TYPE (arg0));
10226 if (pmop[0] != NULL)
10227 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
10228 if (pmop[1] != NULL)
10229 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
10230 }
10231
10232 if (TREE_CODE (arg0) == NEGATE_EXPR)
10233 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
10234 else if (TREE_CODE (arg0) == PLUS_EXPR)
10235 {
10236 if (pmop[0] != NULL && pmop[1] != NULL)
10237 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
10238 pmop[0], pmop[1]);
10239 else if (pmop[0] != NULL)
10240 tem = pmop[0];
10241 else if (pmop[1] != NULL)
10242 tem = pmop[1];
10243 else
10244 return build_int_cst (type, 0);
10245 }
10246 else if (pmop[0] == NULL)
10247 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
10248 else
10249 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
10250 pmop[0], pmop[1]);
10251 /* TEM is now the new binary +, - or unary - replacement. */
10252 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
10253 fold_convert_loc (loc, utype, arg1));
10254 return fold_convert_loc (loc, type, tem);
10255 }
10256 }
10257 }
10258
10259 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10260 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10261 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10262 {
10263 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10264
10265 wide_int mask = wide_int::from (arg1, prec, UNSIGNED);
10266 if (mask == -1)
10267 return
10268 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10269 }
10270
10271 goto associate;
10272
10273 case RDIV_EXPR:
10274 /* Don't touch a floating-point divide by zero unless the mode
10275 of the constant can represent infinity. */
10276 if (TREE_CODE (arg1) == REAL_CST
10277 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10278 && real_zerop (arg1))
10279 return NULL_TREE;
10280
10281 /* (-A) / (-B) -> A / B */
10282 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10283 return fold_build2_loc (loc, RDIV_EXPR, type,
10284 TREE_OPERAND (arg0, 0),
10285 negate_expr (arg1));
10286 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10287 return fold_build2_loc (loc, RDIV_EXPR, type,
10288 negate_expr (arg0),
10289 TREE_OPERAND (arg1, 0));
10290 return NULL_TREE;
10291
10292 case TRUNC_DIV_EXPR:
10293 /* Fall through */
10294
10295 case FLOOR_DIV_EXPR:
10296 /* Simplify A / (B << N) where A and B are positive and B is
10297 a power of 2, to A >> (N + log2(B)). */
10298 strict_overflow_p = false;
10299 if (TREE_CODE (arg1) == LSHIFT_EXPR
10300 && (TYPE_UNSIGNED (type)
10301 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10302 {
10303 tree sval = TREE_OPERAND (arg1, 0);
10304 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10305 {
10306 tree sh_cnt = TREE_OPERAND (arg1, 1);
10307 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10308 wi::exact_log2 (sval));
10309
10310 if (strict_overflow_p)
10311 fold_overflow_warning (("assuming signed overflow does not "
10312 "occur when simplifying A / (B << N)"),
10313 WARN_STRICT_OVERFLOW_MISC);
10314
10315 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10316 sh_cnt, pow2);
10317 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10318 fold_convert_loc (loc, type, arg0), sh_cnt);
10319 }
10320 }
10321
10322 /* Fall through */
10323
10324 case ROUND_DIV_EXPR:
10325 case CEIL_DIV_EXPR:
10326 case EXACT_DIV_EXPR:
10327 if (integer_zerop (arg1))
10328 return NULL_TREE;
10329
10330 /* Convert -A / -B to A / B when the type is signed and overflow is
10331 undefined. */
10332 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10333 && TREE_CODE (arg0) == NEGATE_EXPR
10334 && negate_expr_p (op1))
10335 {
10336 if (INTEGRAL_TYPE_P (type))
10337 fold_overflow_warning (("assuming signed overflow does not occur "
10338 "when distributing negation across "
10339 "division"),
10340 WARN_STRICT_OVERFLOW_MISC);
10341 return fold_build2_loc (loc, code, type,
10342 fold_convert_loc (loc, type,
10343 TREE_OPERAND (arg0, 0)),
10344 negate_expr (op1));
10345 }
10346 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10347 && TREE_CODE (arg1) == NEGATE_EXPR
10348 && negate_expr_p (op0))
10349 {
10350 if (INTEGRAL_TYPE_P (type))
10351 fold_overflow_warning (("assuming signed overflow does not occur "
10352 "when distributing negation across "
10353 "division"),
10354 WARN_STRICT_OVERFLOW_MISC);
10355 return fold_build2_loc (loc, code, type,
10356 negate_expr (op0),
10357 fold_convert_loc (loc, type,
10358 TREE_OPERAND (arg1, 0)));
10359 }
10360
10361 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10362 operation, EXACT_DIV_EXPR.
10363
10364 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10365 At one time others generated faster code, it's not clear if they do
10366 after the last round to changes to the DIV code in expmed.c. */
10367 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10368 && multiple_of_p (type, arg0, arg1))
10369 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
10370 fold_convert (type, arg0),
10371 fold_convert (type, arg1));
10372
10373 strict_overflow_p = false;
10374 if (TREE_CODE (arg1) == INTEGER_CST
10375 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10376 &strict_overflow_p)))
10377 {
10378 if (strict_overflow_p)
10379 fold_overflow_warning (("assuming signed overflow does not occur "
10380 "when simplifying division"),
10381 WARN_STRICT_OVERFLOW_MISC);
10382 return fold_convert_loc (loc, type, tem);
10383 }
10384
10385 return NULL_TREE;
10386
10387 case CEIL_MOD_EXPR:
10388 case FLOOR_MOD_EXPR:
10389 case ROUND_MOD_EXPR:
10390 case TRUNC_MOD_EXPR:
10391 strict_overflow_p = false;
10392 if (TREE_CODE (arg1) == INTEGER_CST
10393 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10394 &strict_overflow_p)))
10395 {
10396 if (strict_overflow_p)
10397 fold_overflow_warning (("assuming signed overflow does not occur "
10398 "when simplifying modulus"),
10399 WARN_STRICT_OVERFLOW_MISC);
10400 return fold_convert_loc (loc, type, tem);
10401 }
10402
10403 return NULL_TREE;
10404
10405 case LROTATE_EXPR:
10406 case RROTATE_EXPR:
10407 case RSHIFT_EXPR:
10408 case LSHIFT_EXPR:
10409 /* Since negative shift count is not well-defined,
10410 don't try to compute it in the compiler. */
10411 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10412 return NULL_TREE;
10413
10414 prec = element_precision (type);
10415
10416 /* If we have a rotate of a bit operation with the rotate count and
10417 the second operand of the bit operation both constant,
10418 permute the two operations. */
10419 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10420 && (TREE_CODE (arg0) == BIT_AND_EXPR
10421 || TREE_CODE (arg0) == BIT_IOR_EXPR
10422 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10423 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10424 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10425 fold_build2_loc (loc, code, type,
10426 TREE_OPERAND (arg0, 0), arg1),
10427 fold_build2_loc (loc, code, type,
10428 TREE_OPERAND (arg0, 1), arg1));
10429
10430 /* Two consecutive rotates adding up to the some integer
10431 multiple of the precision of the type can be ignored. */
10432 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10433 && TREE_CODE (arg0) == RROTATE_EXPR
10434 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10435 && wi::umod_trunc (wi::add (arg1, TREE_OPERAND (arg0, 1)),
10436 prec) == 0)
10437 return TREE_OPERAND (arg0, 0);
10438
10439 return NULL_TREE;
10440
10441 case MIN_EXPR:
10442 case MAX_EXPR:
10443 goto associate;
10444
10445 case TRUTH_ANDIF_EXPR:
10446 /* Note that the operands of this must be ints
10447 and their values must be 0 or 1.
10448 ("true" is a fixed value perhaps depending on the language.) */
10449 /* If first arg is constant zero, return it. */
10450 if (integer_zerop (arg0))
10451 return fold_convert_loc (loc, type, arg0);
10452 case TRUTH_AND_EXPR:
10453 /* If either arg is constant true, drop it. */
10454 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10455 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10456 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10457 /* Preserve sequence points. */
10458 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10459 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10460 /* If second arg is constant zero, result is zero, but first arg
10461 must be evaluated. */
10462 if (integer_zerop (arg1))
10463 return omit_one_operand_loc (loc, type, arg1, arg0);
10464 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10465 case will be handled here. */
10466 if (integer_zerop (arg0))
10467 return omit_one_operand_loc (loc, type, arg0, arg1);
10468
10469 /* !X && X is always false. */
10470 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10471 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10472 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10473 /* X && !X is always false. */
10474 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10475 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10476 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10477
10478 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10479 means A >= Y && A != MAX, but in this case we know that
10480 A < X <= MAX. */
10481
10482 if (!TREE_SIDE_EFFECTS (arg0)
10483 && !TREE_SIDE_EFFECTS (arg1))
10484 {
10485 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
10486 if (tem && !operand_equal_p (tem, arg0, 0))
10487 return fold_build2_loc (loc, code, type, tem, arg1);
10488
10489 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
10490 if (tem && !operand_equal_p (tem, arg1, 0))
10491 return fold_build2_loc (loc, code, type, arg0, tem);
10492 }
10493
10494 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10495 != NULL_TREE)
10496 return tem;
10497
10498 return NULL_TREE;
10499
10500 case TRUTH_ORIF_EXPR:
10501 /* Note that the operands of this must be ints
10502 and their values must be 0 or true.
10503 ("true" is a fixed value perhaps depending on the language.) */
10504 /* If first arg is constant true, return it. */
10505 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10506 return fold_convert_loc (loc, type, arg0);
10507 case TRUTH_OR_EXPR:
10508 /* If either arg is constant zero, drop it. */
10509 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10510 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10511 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10512 /* Preserve sequence points. */
10513 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10514 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10515 /* If second arg is constant true, result is true, but we must
10516 evaluate first arg. */
10517 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10518 return omit_one_operand_loc (loc, type, arg1, arg0);
10519 /* Likewise for first arg, but note this only occurs here for
10520 TRUTH_OR_EXPR. */
10521 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10522 return omit_one_operand_loc (loc, type, arg0, arg1);
10523
10524 /* !X || X is always true. */
10525 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10526 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10527 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10528 /* X || !X is always true. */
10529 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10530 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10531 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10532
10533 /* (X && !Y) || (!X && Y) is X ^ Y */
10534 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
10535 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
10536 {
10537 tree a0, a1, l0, l1, n0, n1;
10538
10539 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10540 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10541
10542 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10543 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10544
10545 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
10546 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
10547
10548 if ((operand_equal_p (n0, a0, 0)
10549 && operand_equal_p (n1, a1, 0))
10550 || (operand_equal_p (n0, a1, 0)
10551 && operand_equal_p (n1, a0, 0)))
10552 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
10553 }
10554
10555 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10556 != NULL_TREE)
10557 return tem;
10558
10559 return NULL_TREE;
10560
10561 case TRUTH_XOR_EXPR:
10562 /* If the second arg is constant zero, drop it. */
10563 if (integer_zerop (arg1))
10564 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10565 /* If the second arg is constant true, this is a logical inversion. */
10566 if (integer_onep (arg1))
10567 {
10568 tem = invert_truthvalue_loc (loc, arg0);
10569 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
10570 }
10571 /* Identical arguments cancel to zero. */
10572 if (operand_equal_p (arg0, arg1, 0))
10573 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10574
10575 /* !X ^ X is always true. */
10576 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10577 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10578 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10579
10580 /* X ^ !X is always true. */
10581 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10582 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10583 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10584
10585 return NULL_TREE;
10586
10587 case EQ_EXPR:
10588 case NE_EXPR:
10589 STRIP_NOPS (arg0);
10590 STRIP_NOPS (arg1);
10591
10592 tem = fold_comparison (loc, code, type, op0, op1);
10593 if (tem != NULL_TREE)
10594 return tem;
10595
10596 /* bool_var != 1 becomes !bool_var. */
10597 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10598 && code == NE_EXPR)
10599 return fold_convert_loc (loc, type,
10600 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10601 TREE_TYPE (arg0), arg0));
10602
10603 /* bool_var == 0 becomes !bool_var. */
10604 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10605 && code == EQ_EXPR)
10606 return fold_convert_loc (loc, type,
10607 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10608 TREE_TYPE (arg0), arg0));
10609
10610 /* !exp != 0 becomes !exp */
10611 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
10612 && code == NE_EXPR)
10613 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10614
10615 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
10616 if ((TREE_CODE (arg0) == PLUS_EXPR
10617 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
10618 || TREE_CODE (arg0) == MINUS_EXPR)
10619 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10620 0)),
10621 arg1, 0)
10622 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10623 || POINTER_TYPE_P (TREE_TYPE (arg0))))
10624 {
10625 tree val = TREE_OPERAND (arg0, 1);
10626 val = fold_build2_loc (loc, code, type, val,
10627 build_int_cst (TREE_TYPE (val), 0));
10628 return omit_two_operands_loc (loc, type, val,
10629 TREE_OPERAND (arg0, 0), arg1);
10630 }
10631
10632 /* Transform comparisons of the form X CMP X +- Y to Y CMP 0. */
10633 if ((TREE_CODE (arg1) == PLUS_EXPR
10634 || TREE_CODE (arg1) == POINTER_PLUS_EXPR
10635 || TREE_CODE (arg1) == MINUS_EXPR)
10636 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1,
10637 0)),
10638 arg0, 0)
10639 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10640 || POINTER_TYPE_P (TREE_TYPE (arg1))))
10641 {
10642 tree val = TREE_OPERAND (arg1, 1);
10643 val = fold_build2_loc (loc, code, type, val,
10644 build_int_cst (TREE_TYPE (val), 0));
10645 return omit_two_operands_loc (loc, type, val,
10646 TREE_OPERAND (arg1, 0), arg0);
10647 }
10648
10649 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
10650 if (TREE_CODE (arg0) == MINUS_EXPR
10651 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
10652 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10653 1)),
10654 arg1, 0)
10655 && wi::extract_uhwi (TREE_OPERAND (arg0, 0), 0, 1) == 1)
10656 return omit_two_operands_loc (loc, type,
10657 code == NE_EXPR
10658 ? boolean_true_node : boolean_false_node,
10659 TREE_OPERAND (arg0, 1), arg1);
10660
10661 /* Transform comparisons of the form X CMP C - X if C % 2 == 1. */
10662 if (TREE_CODE (arg1) == MINUS_EXPR
10663 && TREE_CODE (TREE_OPERAND (arg1, 0)) == INTEGER_CST
10664 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1,
10665 1)),
10666 arg0, 0)
10667 && wi::extract_uhwi (TREE_OPERAND (arg1, 0), 0, 1) == 1)
10668 return omit_two_operands_loc (loc, type,
10669 code == NE_EXPR
10670 ? boolean_true_node : boolean_false_node,
10671 TREE_OPERAND (arg1, 1), arg0);
10672
10673 /* If this is an EQ or NE comparison with zero and ARG0 is
10674 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10675 two operations, but the latter can be done in one less insn
10676 on machines that have only two-operand insns or on which a
10677 constant cannot be the first operand. */
10678 if (TREE_CODE (arg0) == BIT_AND_EXPR
10679 && integer_zerop (arg1))
10680 {
10681 tree arg00 = TREE_OPERAND (arg0, 0);
10682 tree arg01 = TREE_OPERAND (arg0, 1);
10683 if (TREE_CODE (arg00) == LSHIFT_EXPR
10684 && integer_onep (TREE_OPERAND (arg00, 0)))
10685 {
10686 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
10687 arg01, TREE_OPERAND (arg00, 1));
10688 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10689 build_int_cst (TREE_TYPE (arg0), 1));
10690 return fold_build2_loc (loc, code, type,
10691 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10692 arg1);
10693 }
10694 else if (TREE_CODE (arg01) == LSHIFT_EXPR
10695 && integer_onep (TREE_OPERAND (arg01, 0)))
10696 {
10697 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
10698 arg00, TREE_OPERAND (arg01, 1));
10699 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10700 build_int_cst (TREE_TYPE (arg0), 1));
10701 return fold_build2_loc (loc, code, type,
10702 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10703 arg1);
10704 }
10705 }
10706
10707 /* If this is an NE or EQ comparison of zero against the result of a
10708 signed MOD operation whose second operand is a power of 2, make
10709 the MOD operation unsigned since it is simpler and equivalent. */
10710 if (integer_zerop (arg1)
10711 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
10712 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
10713 || TREE_CODE (arg0) == CEIL_MOD_EXPR
10714 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
10715 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
10716 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10717 {
10718 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
10719 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
10720 fold_convert_loc (loc, newtype,
10721 TREE_OPERAND (arg0, 0)),
10722 fold_convert_loc (loc, newtype,
10723 TREE_OPERAND (arg0, 1)));
10724
10725 return fold_build2_loc (loc, code, type, newmod,
10726 fold_convert_loc (loc, newtype, arg1));
10727 }
10728
10729 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10730 C1 is a valid shift constant, and C2 is a power of two, i.e.
10731 a single bit. */
10732 if (TREE_CODE (arg0) == BIT_AND_EXPR
10733 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
10734 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
10735 == INTEGER_CST
10736 && integer_pow2p (TREE_OPERAND (arg0, 1))
10737 && integer_zerop (arg1))
10738 {
10739 tree itype = TREE_TYPE (arg0);
10740 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
10741 prec = TYPE_PRECISION (itype);
10742
10743 /* Check for a valid shift count. */
10744 if (wi::ltu_p (arg001, prec))
10745 {
10746 tree arg01 = TREE_OPERAND (arg0, 1);
10747 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10748 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
10749 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10750 can be rewritten as (X & (C2 << C1)) != 0. */
10751 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
10752 {
10753 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
10754 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
10755 return fold_build2_loc (loc, code, type, tem,
10756 fold_convert_loc (loc, itype, arg1));
10757 }
10758 /* Otherwise, for signed (arithmetic) shifts,
10759 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10760 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10761 else if (!TYPE_UNSIGNED (itype))
10762 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
10763 arg000, build_int_cst (itype, 0));
10764 /* Otherwise, of unsigned (logical) shifts,
10765 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10766 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10767 else
10768 return omit_one_operand_loc (loc, type,
10769 code == EQ_EXPR ? integer_one_node
10770 : integer_zero_node,
10771 arg000);
10772 }
10773 }
10774
10775 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
10776 Similarly for NE_EXPR. */
10777 if (TREE_CODE (arg0) == BIT_AND_EXPR
10778 && TREE_CODE (arg1) == INTEGER_CST
10779 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10780 {
10781 tree notc = fold_build1_loc (loc, BIT_NOT_EXPR,
10782 TREE_TYPE (TREE_OPERAND (arg0, 1)),
10783 TREE_OPERAND (arg0, 1));
10784 tree dandnotc
10785 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10786 fold_convert_loc (loc, TREE_TYPE (arg0), arg1),
10787 notc);
10788 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
10789 if (integer_nonzerop (dandnotc))
10790 return omit_one_operand_loc (loc, type, rslt, arg0);
10791 }
10792
10793 /* If this is a comparison of a field, we may be able to simplify it. */
10794 if ((TREE_CODE (arg0) == COMPONENT_REF
10795 || TREE_CODE (arg0) == BIT_FIELD_REF)
10796 /* Handle the constant case even without -O
10797 to make sure the warnings are given. */
10798 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
10799 {
10800 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
10801 if (t1)
10802 return t1;
10803 }
10804
10805 /* Optimize comparisons of strlen vs zero to a compare of the
10806 first character of the string vs zero. To wit,
10807 strlen(ptr) == 0 => *ptr == 0
10808 strlen(ptr) != 0 => *ptr != 0
10809 Other cases should reduce to one of these two (or a constant)
10810 due to the return value of strlen being unsigned. */
10811 if (TREE_CODE (arg0) == CALL_EXPR
10812 && integer_zerop (arg1))
10813 {
10814 tree fndecl = get_callee_fndecl (arg0);
10815
10816 if (fndecl
10817 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
10818 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
10819 && call_expr_nargs (arg0) == 1
10820 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
10821 {
10822 tree iref = build_fold_indirect_ref_loc (loc,
10823 CALL_EXPR_ARG (arg0, 0));
10824 return fold_build2_loc (loc, code, type, iref,
10825 build_int_cst (TREE_TYPE (iref), 0));
10826 }
10827 }
10828
10829 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10830 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10831 if (TREE_CODE (arg0) == RSHIFT_EXPR
10832 && integer_zerop (arg1)
10833 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10834 {
10835 tree arg00 = TREE_OPERAND (arg0, 0);
10836 tree arg01 = TREE_OPERAND (arg0, 1);
10837 tree itype = TREE_TYPE (arg00);
10838 if (wi::eq_p (arg01, element_precision (itype) - 1))
10839 {
10840 if (TYPE_UNSIGNED (itype))
10841 {
10842 itype = signed_type_for (itype);
10843 arg00 = fold_convert_loc (loc, itype, arg00);
10844 }
10845 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
10846 type, arg00, build_zero_cst (itype));
10847 }
10848 }
10849
10850 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10851 (X & C) == 0 when C is a single bit. */
10852 if (TREE_CODE (arg0) == BIT_AND_EXPR
10853 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
10854 && integer_zerop (arg1)
10855 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10856 {
10857 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10858 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
10859 TREE_OPERAND (arg0, 1));
10860 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
10861 type, tem,
10862 fold_convert_loc (loc, TREE_TYPE (arg0),
10863 arg1));
10864 }
10865
10866 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10867 constant C is a power of two, i.e. a single bit. */
10868 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10869 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10870 && integer_zerop (arg1)
10871 && integer_pow2p (TREE_OPERAND (arg0, 1))
10872 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10873 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10874 {
10875 tree arg00 = TREE_OPERAND (arg0, 0);
10876 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10877 arg00, build_int_cst (TREE_TYPE (arg00), 0));
10878 }
10879
10880 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10881 when is C is a power of two, i.e. a single bit. */
10882 if (TREE_CODE (arg0) == BIT_AND_EXPR
10883 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
10884 && integer_zerop (arg1)
10885 && integer_pow2p (TREE_OPERAND (arg0, 1))
10886 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10887 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10888 {
10889 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10890 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
10891 arg000, TREE_OPERAND (arg0, 1));
10892 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10893 tem, build_int_cst (TREE_TYPE (tem), 0));
10894 }
10895
10896 if (integer_zerop (arg1)
10897 && tree_expr_nonzero_p (arg0))
10898 {
10899 tree res = constant_boolean_node (code==NE_EXPR, type);
10900 return omit_one_operand_loc (loc, type, res, arg0);
10901 }
10902
10903 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10904 if (TREE_CODE (arg0) == BIT_AND_EXPR
10905 && TREE_CODE (arg1) == BIT_AND_EXPR)
10906 {
10907 tree arg00 = TREE_OPERAND (arg0, 0);
10908 tree arg01 = TREE_OPERAND (arg0, 1);
10909 tree arg10 = TREE_OPERAND (arg1, 0);
10910 tree arg11 = TREE_OPERAND (arg1, 1);
10911 tree itype = TREE_TYPE (arg0);
10912
10913 if (operand_equal_p (arg01, arg11, 0))
10914 return fold_build2_loc (loc, code, type,
10915 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10916 fold_build2_loc (loc,
10917 BIT_XOR_EXPR, itype,
10918 arg00, arg10),
10919 arg01),
10920 build_zero_cst (itype));
10921
10922 if (operand_equal_p (arg01, arg10, 0))
10923 return fold_build2_loc (loc, code, type,
10924 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10925 fold_build2_loc (loc,
10926 BIT_XOR_EXPR, itype,
10927 arg00, arg11),
10928 arg01),
10929 build_zero_cst (itype));
10930
10931 if (operand_equal_p (arg00, arg11, 0))
10932 return fold_build2_loc (loc, code, type,
10933 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10934 fold_build2_loc (loc,
10935 BIT_XOR_EXPR, itype,
10936 arg01, arg10),
10937 arg00),
10938 build_zero_cst (itype));
10939
10940 if (operand_equal_p (arg00, arg10, 0))
10941 return fold_build2_loc (loc, code, type,
10942 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10943 fold_build2_loc (loc,
10944 BIT_XOR_EXPR, itype,
10945 arg01, arg11),
10946 arg00),
10947 build_zero_cst (itype));
10948 }
10949
10950 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10951 && TREE_CODE (arg1) == BIT_XOR_EXPR)
10952 {
10953 tree arg00 = TREE_OPERAND (arg0, 0);
10954 tree arg01 = TREE_OPERAND (arg0, 1);
10955 tree arg10 = TREE_OPERAND (arg1, 0);
10956 tree arg11 = TREE_OPERAND (arg1, 1);
10957 tree itype = TREE_TYPE (arg0);
10958
10959 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10960 operand_equal_p guarantees no side-effects so we don't need
10961 to use omit_one_operand on Z. */
10962 if (operand_equal_p (arg01, arg11, 0))
10963 return fold_build2_loc (loc, code, type, arg00,
10964 fold_convert_loc (loc, TREE_TYPE (arg00),
10965 arg10));
10966 if (operand_equal_p (arg01, arg10, 0))
10967 return fold_build2_loc (loc, code, type, arg00,
10968 fold_convert_loc (loc, TREE_TYPE (arg00),
10969 arg11));
10970 if (operand_equal_p (arg00, arg11, 0))
10971 return fold_build2_loc (loc, code, type, arg01,
10972 fold_convert_loc (loc, TREE_TYPE (arg01),
10973 arg10));
10974 if (operand_equal_p (arg00, arg10, 0))
10975 return fold_build2_loc (loc, code, type, arg01,
10976 fold_convert_loc (loc, TREE_TYPE (arg01),
10977 arg11));
10978
10979 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10980 if (TREE_CODE (arg01) == INTEGER_CST
10981 && TREE_CODE (arg11) == INTEGER_CST)
10982 {
10983 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
10984 fold_convert_loc (loc, itype, arg11));
10985 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10986 return fold_build2_loc (loc, code, type, tem,
10987 fold_convert_loc (loc, itype, arg10));
10988 }
10989 }
10990
10991 /* Attempt to simplify equality/inequality comparisons of complex
10992 values. Only lower the comparison if the result is known or
10993 can be simplified to a single scalar comparison. */
10994 if ((TREE_CODE (arg0) == COMPLEX_EXPR
10995 || TREE_CODE (arg0) == COMPLEX_CST)
10996 && (TREE_CODE (arg1) == COMPLEX_EXPR
10997 || TREE_CODE (arg1) == COMPLEX_CST))
10998 {
10999 tree real0, imag0, real1, imag1;
11000 tree rcond, icond;
11001
11002 if (TREE_CODE (arg0) == COMPLEX_EXPR)
11003 {
11004 real0 = TREE_OPERAND (arg0, 0);
11005 imag0 = TREE_OPERAND (arg0, 1);
11006 }
11007 else
11008 {
11009 real0 = TREE_REALPART (arg0);
11010 imag0 = TREE_IMAGPART (arg0);
11011 }
11012
11013 if (TREE_CODE (arg1) == COMPLEX_EXPR)
11014 {
11015 real1 = TREE_OPERAND (arg1, 0);
11016 imag1 = TREE_OPERAND (arg1, 1);
11017 }
11018 else
11019 {
11020 real1 = TREE_REALPART (arg1);
11021 imag1 = TREE_IMAGPART (arg1);
11022 }
11023
11024 rcond = fold_binary_loc (loc, code, type, real0, real1);
11025 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
11026 {
11027 if (integer_zerop (rcond))
11028 {
11029 if (code == EQ_EXPR)
11030 return omit_two_operands_loc (loc, type, boolean_false_node,
11031 imag0, imag1);
11032 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
11033 }
11034 else
11035 {
11036 if (code == NE_EXPR)
11037 return omit_two_operands_loc (loc, type, boolean_true_node,
11038 imag0, imag1);
11039 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
11040 }
11041 }
11042
11043 icond = fold_binary_loc (loc, code, type, imag0, imag1);
11044 if (icond && TREE_CODE (icond) == INTEGER_CST)
11045 {
11046 if (integer_zerop (icond))
11047 {
11048 if (code == EQ_EXPR)
11049 return omit_two_operands_loc (loc, type, boolean_false_node,
11050 real0, real1);
11051 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
11052 }
11053 else
11054 {
11055 if (code == NE_EXPR)
11056 return omit_two_operands_loc (loc, type, boolean_true_node,
11057 real0, real1);
11058 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
11059 }
11060 }
11061 }
11062
11063 return NULL_TREE;
11064
11065 case LT_EXPR:
11066 case GT_EXPR:
11067 case LE_EXPR:
11068 case GE_EXPR:
11069 tem = fold_comparison (loc, code, type, op0, op1);
11070 if (tem != NULL_TREE)
11071 return tem;
11072
11073 /* Transform comparisons of the form X +- C CMP X. */
11074 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
11075 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11076 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
11077 && !HONOR_SNANS (arg0))
11078 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11079 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
11080 {
11081 tree arg01 = TREE_OPERAND (arg0, 1);
11082 enum tree_code code0 = TREE_CODE (arg0);
11083 int is_positive;
11084
11085 if (TREE_CODE (arg01) == REAL_CST)
11086 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
11087 else
11088 is_positive = tree_int_cst_sgn (arg01);
11089
11090 /* (X - c) > X becomes false. */
11091 if (code == GT_EXPR
11092 && ((code0 == MINUS_EXPR && is_positive >= 0)
11093 || (code0 == PLUS_EXPR && is_positive <= 0)))
11094 {
11095 if (TREE_CODE (arg01) == INTEGER_CST
11096 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11097 fold_overflow_warning (("assuming signed overflow does not "
11098 "occur when assuming that (X - c) > X "
11099 "is always false"),
11100 WARN_STRICT_OVERFLOW_ALL);
11101 return constant_boolean_node (0, type);
11102 }
11103
11104 /* Likewise (X + c) < X becomes false. */
11105 if (code == LT_EXPR
11106 && ((code0 == PLUS_EXPR && is_positive >= 0)
11107 || (code0 == MINUS_EXPR && is_positive <= 0)))
11108 {
11109 if (TREE_CODE (arg01) == INTEGER_CST
11110 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11111 fold_overflow_warning (("assuming signed overflow does not "
11112 "occur when assuming that "
11113 "(X + c) < X is always false"),
11114 WARN_STRICT_OVERFLOW_ALL);
11115 return constant_boolean_node (0, type);
11116 }
11117
11118 /* Convert (X - c) <= X to true. */
11119 if (!HONOR_NANS (arg1)
11120 && code == LE_EXPR
11121 && ((code0 == MINUS_EXPR && is_positive >= 0)
11122 || (code0 == PLUS_EXPR && is_positive <= 0)))
11123 {
11124 if (TREE_CODE (arg01) == INTEGER_CST
11125 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11126 fold_overflow_warning (("assuming signed overflow does not "
11127 "occur when assuming that "
11128 "(X - c) <= X is always true"),
11129 WARN_STRICT_OVERFLOW_ALL);
11130 return constant_boolean_node (1, type);
11131 }
11132
11133 /* Convert (X + c) >= X to true. */
11134 if (!HONOR_NANS (arg1)
11135 && code == GE_EXPR
11136 && ((code0 == PLUS_EXPR && is_positive >= 0)
11137 || (code0 == MINUS_EXPR && is_positive <= 0)))
11138 {
11139 if (TREE_CODE (arg01) == INTEGER_CST
11140 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11141 fold_overflow_warning (("assuming signed overflow does not "
11142 "occur when assuming that "
11143 "(X + c) >= X is always true"),
11144 WARN_STRICT_OVERFLOW_ALL);
11145 return constant_boolean_node (1, type);
11146 }
11147
11148 if (TREE_CODE (arg01) == INTEGER_CST)
11149 {
11150 /* Convert X + c > X and X - c < X to true for integers. */
11151 if (code == GT_EXPR
11152 && ((code0 == PLUS_EXPR && is_positive > 0)
11153 || (code0 == MINUS_EXPR && is_positive < 0)))
11154 {
11155 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11156 fold_overflow_warning (("assuming signed overflow does "
11157 "not occur when assuming that "
11158 "(X + c) > X is always true"),
11159 WARN_STRICT_OVERFLOW_ALL);
11160 return constant_boolean_node (1, type);
11161 }
11162
11163 if (code == LT_EXPR
11164 && ((code0 == MINUS_EXPR && is_positive > 0)
11165 || (code0 == PLUS_EXPR && is_positive < 0)))
11166 {
11167 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11168 fold_overflow_warning (("assuming signed overflow does "
11169 "not occur when assuming that "
11170 "(X - c) < X is always true"),
11171 WARN_STRICT_OVERFLOW_ALL);
11172 return constant_boolean_node (1, type);
11173 }
11174
11175 /* Convert X + c <= X and X - c >= X to false for integers. */
11176 if (code == LE_EXPR
11177 && ((code0 == PLUS_EXPR && is_positive > 0)
11178 || (code0 == MINUS_EXPR && is_positive < 0)))
11179 {
11180 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11181 fold_overflow_warning (("assuming signed overflow does "
11182 "not occur when assuming that "
11183 "(X + c) <= X is always false"),
11184 WARN_STRICT_OVERFLOW_ALL);
11185 return constant_boolean_node (0, type);
11186 }
11187
11188 if (code == GE_EXPR
11189 && ((code0 == MINUS_EXPR && is_positive > 0)
11190 || (code0 == PLUS_EXPR && is_positive < 0)))
11191 {
11192 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11193 fold_overflow_warning (("assuming signed overflow does "
11194 "not occur when assuming that "
11195 "(X - c) >= X is always false"),
11196 WARN_STRICT_OVERFLOW_ALL);
11197 return constant_boolean_node (0, type);
11198 }
11199 }
11200 }
11201
11202 /* If we are comparing an ABS_EXPR with a constant, we can
11203 convert all the cases into explicit comparisons, but they may
11204 well not be faster than doing the ABS and one comparison.
11205 But ABS (X) <= C is a range comparison, which becomes a subtraction
11206 and a comparison, and is probably faster. */
11207 if (code == LE_EXPR
11208 && TREE_CODE (arg1) == INTEGER_CST
11209 && TREE_CODE (arg0) == ABS_EXPR
11210 && ! TREE_SIDE_EFFECTS (arg0)
11211 && (0 != (tem = negate_expr (arg1)))
11212 && TREE_CODE (tem) == INTEGER_CST
11213 && !TREE_OVERFLOW (tem))
11214 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
11215 build2 (GE_EXPR, type,
11216 TREE_OPERAND (arg0, 0), tem),
11217 build2 (LE_EXPR, type,
11218 TREE_OPERAND (arg0, 0), arg1));
11219
11220 /* Convert ABS_EXPR<x> >= 0 to true. */
11221 strict_overflow_p = false;
11222 if (code == GE_EXPR
11223 && (integer_zerop (arg1)
11224 || (! HONOR_NANS (arg0)
11225 && real_zerop (arg1)))
11226 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11227 {
11228 if (strict_overflow_p)
11229 fold_overflow_warning (("assuming signed overflow does not occur "
11230 "when simplifying comparison of "
11231 "absolute value and zero"),
11232 WARN_STRICT_OVERFLOW_CONDITIONAL);
11233 return omit_one_operand_loc (loc, type,
11234 constant_boolean_node (true, type),
11235 arg0);
11236 }
11237
11238 /* Convert ABS_EXPR<x> < 0 to false. */
11239 strict_overflow_p = false;
11240 if (code == LT_EXPR
11241 && (integer_zerop (arg1) || real_zerop (arg1))
11242 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11243 {
11244 if (strict_overflow_p)
11245 fold_overflow_warning (("assuming signed overflow does not occur "
11246 "when simplifying comparison of "
11247 "absolute value and zero"),
11248 WARN_STRICT_OVERFLOW_CONDITIONAL);
11249 return omit_one_operand_loc (loc, type,
11250 constant_boolean_node (false, type),
11251 arg0);
11252 }
11253
11254 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11255 and similarly for >= into !=. */
11256 if ((code == LT_EXPR || code == GE_EXPR)
11257 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11258 && TREE_CODE (arg1) == LSHIFT_EXPR
11259 && integer_onep (TREE_OPERAND (arg1, 0)))
11260 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11261 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11262 TREE_OPERAND (arg1, 1)),
11263 build_zero_cst (TREE_TYPE (arg0)));
11264
11265 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11266 otherwise Y might be >= # of bits in X's type and thus e.g.
11267 (unsigned char) (1 << Y) for Y 15 might be 0.
11268 If the cast is widening, then 1 << Y should have unsigned type,
11269 otherwise if Y is number of bits in the signed shift type minus 1,
11270 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11271 31 might be 0xffffffff80000000. */
11272 if ((code == LT_EXPR || code == GE_EXPR)
11273 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11274 && CONVERT_EXPR_P (arg1)
11275 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11276 && (element_precision (TREE_TYPE (arg1))
11277 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11278 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11279 || (element_precision (TREE_TYPE (arg1))
11280 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11281 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11282 {
11283 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11284 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11285 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11286 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11287 build_zero_cst (TREE_TYPE (arg0)));
11288 }
11289
11290 return NULL_TREE;
11291
11292 case UNORDERED_EXPR:
11293 case ORDERED_EXPR:
11294 case UNLT_EXPR:
11295 case UNLE_EXPR:
11296 case UNGT_EXPR:
11297 case UNGE_EXPR:
11298 case UNEQ_EXPR:
11299 case LTGT_EXPR:
11300 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11301 {
11302 tree targ0 = strip_float_extensions (arg0);
11303 tree targ1 = strip_float_extensions (arg1);
11304 tree newtype = TREE_TYPE (targ0);
11305
11306 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11307 newtype = TREE_TYPE (targ1);
11308
11309 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11310 return fold_build2_loc (loc, code, type,
11311 fold_convert_loc (loc, newtype, targ0),
11312 fold_convert_loc (loc, newtype, targ1));
11313 }
11314
11315 return NULL_TREE;
11316
11317 case COMPOUND_EXPR:
11318 /* When pedantic, a compound expression can be neither an lvalue
11319 nor an integer constant expression. */
11320 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11321 return NULL_TREE;
11322 /* Don't let (0, 0) be null pointer constant. */
11323 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11324 : fold_convert_loc (loc, type, arg1);
11325 return pedantic_non_lvalue_loc (loc, tem);
11326
11327 case ASSERT_EXPR:
11328 /* An ASSERT_EXPR should never be passed to fold_binary. */
11329 gcc_unreachable ();
11330
11331 default:
11332 return NULL_TREE;
11333 } /* switch (code) */
11334 }
11335
11336 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11337 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
11338 of GOTO_EXPR. */
11339
11340 static tree
11341 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
11342 {
11343 switch (TREE_CODE (*tp))
11344 {
11345 case LABEL_EXPR:
11346 return *tp;
11347
11348 case GOTO_EXPR:
11349 *walk_subtrees = 0;
11350
11351 /* ... fall through ... */
11352
11353 default:
11354 return NULL_TREE;
11355 }
11356 }
11357
11358 /* Return whether the sub-tree ST contains a label which is accessible from
11359 outside the sub-tree. */
11360
11361 static bool
11362 contains_label_p (tree st)
11363 {
11364 return
11365 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
11366 }
11367
11368 /* Fold a ternary expression of code CODE and type TYPE with operands
11369 OP0, OP1, and OP2. Return the folded expression if folding is
11370 successful. Otherwise, return NULL_TREE. */
11371
11372 tree
11373 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
11374 tree op0, tree op1, tree op2)
11375 {
11376 tree tem;
11377 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
11378 enum tree_code_class kind = TREE_CODE_CLASS (code);
11379
11380 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11381 && TREE_CODE_LENGTH (code) == 3);
11382
11383 /* If this is a commutative operation, and OP0 is a constant, move it
11384 to OP1 to reduce the number of tests below. */
11385 if (commutative_ternary_tree_code (code)
11386 && tree_swap_operands_p (op0, op1, true))
11387 return fold_build3_loc (loc, code, type, op1, op0, op2);
11388
11389 tem = generic_simplify (loc, code, type, op0, op1, op2);
11390 if (tem)
11391 return tem;
11392
11393 /* Strip any conversions that don't change the mode. This is safe
11394 for every expression, except for a comparison expression because
11395 its signedness is derived from its operands. So, in the latter
11396 case, only strip conversions that don't change the signedness.
11397
11398 Note that this is done as an internal manipulation within the
11399 constant folder, in order to find the simplest representation of
11400 the arguments so that their form can be studied. In any cases,
11401 the appropriate type conversions should be put back in the tree
11402 that will get out of the constant folder. */
11403 if (op0)
11404 {
11405 arg0 = op0;
11406 STRIP_NOPS (arg0);
11407 }
11408
11409 if (op1)
11410 {
11411 arg1 = op1;
11412 STRIP_NOPS (arg1);
11413 }
11414
11415 if (op2)
11416 {
11417 arg2 = op2;
11418 STRIP_NOPS (arg2);
11419 }
11420
11421 switch (code)
11422 {
11423 case COMPONENT_REF:
11424 if (TREE_CODE (arg0) == CONSTRUCTOR
11425 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11426 {
11427 unsigned HOST_WIDE_INT idx;
11428 tree field, value;
11429 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11430 if (field == arg1)
11431 return value;
11432 }
11433 return NULL_TREE;
11434
11435 case COND_EXPR:
11436 case VEC_COND_EXPR:
11437 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11438 so all simple results must be passed through pedantic_non_lvalue. */
11439 if (TREE_CODE (arg0) == INTEGER_CST)
11440 {
11441 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11442 tem = integer_zerop (arg0) ? op2 : op1;
11443 /* Only optimize constant conditions when the selected branch
11444 has the same type as the COND_EXPR. This avoids optimizing
11445 away "c ? x : throw", where the throw has a void type.
11446 Avoid throwing away that operand which contains label. */
11447 if ((!TREE_SIDE_EFFECTS (unused_op)
11448 || !contains_label_p (unused_op))
11449 && (! VOID_TYPE_P (TREE_TYPE (tem))
11450 || VOID_TYPE_P (type)))
11451 return pedantic_non_lvalue_loc (loc, tem);
11452 return NULL_TREE;
11453 }
11454 else if (TREE_CODE (arg0) == VECTOR_CST)
11455 {
11456 if ((TREE_CODE (arg1) == VECTOR_CST
11457 || TREE_CODE (arg1) == CONSTRUCTOR)
11458 && (TREE_CODE (arg2) == VECTOR_CST
11459 || TREE_CODE (arg2) == CONSTRUCTOR))
11460 {
11461 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
11462 unsigned char *sel = XALLOCAVEC (unsigned char, nelts);
11463 gcc_assert (nelts == VECTOR_CST_NELTS (arg0));
11464 for (i = 0; i < nelts; i++)
11465 {
11466 tree val = VECTOR_CST_ELT (arg0, i);
11467 if (integer_all_onesp (val))
11468 sel[i] = i;
11469 else if (integer_zerop (val))
11470 sel[i] = nelts + i;
11471 else /* Currently unreachable. */
11472 return NULL_TREE;
11473 }
11474 tree t = fold_vec_perm (type, arg1, arg2, sel);
11475 if (t != NULL_TREE)
11476 return t;
11477 }
11478 }
11479
11480 /* If we have A op B ? A : C, we may be able to convert this to a
11481 simpler expression, depending on the operation and the values
11482 of B and C. Signed zeros prevent all of these transformations,
11483 for reasons given above each one.
11484
11485 Also try swapping the arguments and inverting the conditional. */
11486 if (COMPARISON_CLASS_P (arg0)
11487 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11488 arg1, TREE_OPERAND (arg0, 1))
11489 && !HONOR_SIGNED_ZEROS (element_mode (arg1)))
11490 {
11491 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
11492 if (tem)
11493 return tem;
11494 }
11495
11496 if (COMPARISON_CLASS_P (arg0)
11497 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11498 op2,
11499 TREE_OPERAND (arg0, 1))
11500 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
11501 {
11502 location_t loc0 = expr_location_or (arg0, loc);
11503 tem = fold_invert_truthvalue (loc0, arg0);
11504 if (tem && COMPARISON_CLASS_P (tem))
11505 {
11506 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
11507 if (tem)
11508 return tem;
11509 }
11510 }
11511
11512 /* If the second operand is simpler than the third, swap them
11513 since that produces better jump optimization results. */
11514 if (truth_value_p (TREE_CODE (arg0))
11515 && tree_swap_operands_p (op1, op2, false))
11516 {
11517 location_t loc0 = expr_location_or (arg0, loc);
11518 /* See if this can be inverted. If it can't, possibly because
11519 it was a floating-point inequality comparison, don't do
11520 anything. */
11521 tem = fold_invert_truthvalue (loc0, arg0);
11522 if (tem)
11523 return fold_build3_loc (loc, code, type, tem, op2, op1);
11524 }
11525
11526 /* Convert A ? 1 : 0 to simply A. */
11527 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
11528 : (integer_onep (op1)
11529 && !VECTOR_TYPE_P (type)))
11530 && integer_zerop (op2)
11531 /* If we try to convert OP0 to our type, the
11532 call to fold will try to move the conversion inside
11533 a COND, which will recurse. In that case, the COND_EXPR
11534 is probably the best choice, so leave it alone. */
11535 && type == TREE_TYPE (arg0))
11536 return pedantic_non_lvalue_loc (loc, arg0);
11537
11538 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11539 over COND_EXPR in cases such as floating point comparisons. */
11540 if (integer_zerop (op1)
11541 && (code == VEC_COND_EXPR ? integer_all_onesp (op2)
11542 : (integer_onep (op2)
11543 && !VECTOR_TYPE_P (type)))
11544 && truth_value_p (TREE_CODE (arg0)))
11545 return pedantic_non_lvalue_loc (loc,
11546 fold_convert_loc (loc, type,
11547 invert_truthvalue_loc (loc,
11548 arg0)));
11549
11550 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11551 if (TREE_CODE (arg0) == LT_EXPR
11552 && integer_zerop (TREE_OPERAND (arg0, 1))
11553 && integer_zerop (op2)
11554 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
11555 {
11556 /* sign_bit_p looks through both zero and sign extensions,
11557 but for this optimization only sign extensions are
11558 usable. */
11559 tree tem2 = TREE_OPERAND (arg0, 0);
11560 while (tem != tem2)
11561 {
11562 if (TREE_CODE (tem2) != NOP_EXPR
11563 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
11564 {
11565 tem = NULL_TREE;
11566 break;
11567 }
11568 tem2 = TREE_OPERAND (tem2, 0);
11569 }
11570 /* sign_bit_p only checks ARG1 bits within A's precision.
11571 If <sign bit of A> has wider type than A, bits outside
11572 of A's precision in <sign bit of A> need to be checked.
11573 If they are all 0, this optimization needs to be done
11574 in unsigned A's type, if they are all 1 in signed A's type,
11575 otherwise this can't be done. */
11576 if (tem
11577 && TYPE_PRECISION (TREE_TYPE (tem))
11578 < TYPE_PRECISION (TREE_TYPE (arg1))
11579 && TYPE_PRECISION (TREE_TYPE (tem))
11580 < TYPE_PRECISION (type))
11581 {
11582 int inner_width, outer_width;
11583 tree tem_type;
11584
11585 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
11586 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
11587 if (outer_width > TYPE_PRECISION (type))
11588 outer_width = TYPE_PRECISION (type);
11589
11590 wide_int mask = wi::shifted_mask
11591 (inner_width, outer_width - inner_width, false,
11592 TYPE_PRECISION (TREE_TYPE (arg1)));
11593
11594 wide_int common = mask & arg1;
11595 if (common == mask)
11596 {
11597 tem_type = signed_type_for (TREE_TYPE (tem));
11598 tem = fold_convert_loc (loc, tem_type, tem);
11599 }
11600 else if (common == 0)
11601 {
11602 tem_type = unsigned_type_for (TREE_TYPE (tem));
11603 tem = fold_convert_loc (loc, tem_type, tem);
11604 }
11605 else
11606 tem = NULL;
11607 }
11608
11609 if (tem)
11610 return
11611 fold_convert_loc (loc, type,
11612 fold_build2_loc (loc, BIT_AND_EXPR,
11613 TREE_TYPE (tem), tem,
11614 fold_convert_loc (loc,
11615 TREE_TYPE (tem),
11616 arg1)));
11617 }
11618
11619 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11620 already handled above. */
11621 if (TREE_CODE (arg0) == BIT_AND_EXPR
11622 && integer_onep (TREE_OPERAND (arg0, 1))
11623 && integer_zerop (op2)
11624 && integer_pow2p (arg1))
11625 {
11626 tree tem = TREE_OPERAND (arg0, 0);
11627 STRIP_NOPS (tem);
11628 if (TREE_CODE (tem) == RSHIFT_EXPR
11629 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
11630 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
11631 tree_to_uhwi (TREE_OPERAND (tem, 1)))
11632 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11633 TREE_OPERAND (tem, 0), arg1);
11634 }
11635
11636 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11637 is probably obsolete because the first operand should be a
11638 truth value (that's why we have the two cases above), but let's
11639 leave it in until we can confirm this for all front-ends. */
11640 if (integer_zerop (op2)
11641 && TREE_CODE (arg0) == NE_EXPR
11642 && integer_zerop (TREE_OPERAND (arg0, 1))
11643 && integer_pow2p (arg1)
11644 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11645 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11646 arg1, OEP_ONLY_CONST))
11647 return pedantic_non_lvalue_loc (loc,
11648 fold_convert_loc (loc, type,
11649 TREE_OPERAND (arg0, 0)));
11650
11651 /* Disable the transformations below for vectors, since
11652 fold_binary_op_with_conditional_arg may undo them immediately,
11653 yielding an infinite loop. */
11654 if (code == VEC_COND_EXPR)
11655 return NULL_TREE;
11656
11657 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11658 if (integer_zerop (op2)
11659 && truth_value_p (TREE_CODE (arg0))
11660 && truth_value_p (TREE_CODE (arg1))
11661 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11662 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
11663 : TRUTH_ANDIF_EXPR,
11664 type, fold_convert_loc (loc, type, arg0), arg1);
11665
11666 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11667 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
11668 && truth_value_p (TREE_CODE (arg0))
11669 && truth_value_p (TREE_CODE (arg1))
11670 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11671 {
11672 location_t loc0 = expr_location_or (arg0, loc);
11673 /* Only perform transformation if ARG0 is easily inverted. */
11674 tem = fold_invert_truthvalue (loc0, arg0);
11675 if (tem)
11676 return fold_build2_loc (loc, code == VEC_COND_EXPR
11677 ? BIT_IOR_EXPR
11678 : TRUTH_ORIF_EXPR,
11679 type, fold_convert_loc (loc, type, tem),
11680 arg1);
11681 }
11682
11683 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11684 if (integer_zerop (arg1)
11685 && truth_value_p (TREE_CODE (arg0))
11686 && truth_value_p (TREE_CODE (op2))
11687 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11688 {
11689 location_t loc0 = expr_location_or (arg0, loc);
11690 /* Only perform transformation if ARG0 is easily inverted. */
11691 tem = fold_invert_truthvalue (loc0, arg0);
11692 if (tem)
11693 return fold_build2_loc (loc, code == VEC_COND_EXPR
11694 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
11695 type, fold_convert_loc (loc, type, tem),
11696 op2);
11697 }
11698
11699 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11700 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
11701 && truth_value_p (TREE_CODE (arg0))
11702 && truth_value_p (TREE_CODE (op2))
11703 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11704 return fold_build2_loc (loc, code == VEC_COND_EXPR
11705 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
11706 type, fold_convert_loc (loc, type, arg0), op2);
11707
11708 return NULL_TREE;
11709
11710 case CALL_EXPR:
11711 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11712 of fold_ternary on them. */
11713 gcc_unreachable ();
11714
11715 case BIT_FIELD_REF:
11716 if ((TREE_CODE (arg0) == VECTOR_CST
11717 || (TREE_CODE (arg0) == CONSTRUCTOR
11718 && TREE_CODE (TREE_TYPE (arg0)) == VECTOR_TYPE))
11719 && (type == TREE_TYPE (TREE_TYPE (arg0))
11720 || (TREE_CODE (type) == VECTOR_TYPE
11721 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
11722 {
11723 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
11724 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
11725 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
11726 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
11727
11728 if (n != 0
11729 && (idx % width) == 0
11730 && (n % width) == 0
11731 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
11732 {
11733 idx = idx / width;
11734 n = n / width;
11735
11736 if (TREE_CODE (arg0) == VECTOR_CST)
11737 {
11738 if (n == 1)
11739 return VECTOR_CST_ELT (arg0, idx);
11740
11741 tree *vals = XALLOCAVEC (tree, n);
11742 for (unsigned i = 0; i < n; ++i)
11743 vals[i] = VECTOR_CST_ELT (arg0, idx + i);
11744 return build_vector (type, vals);
11745 }
11746
11747 /* Constructor elements can be subvectors. */
11748 unsigned HOST_WIDE_INT k = 1;
11749 if (CONSTRUCTOR_NELTS (arg0) != 0)
11750 {
11751 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (arg0, 0)->value);
11752 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
11753 k = TYPE_VECTOR_SUBPARTS (cons_elem);
11754 }
11755
11756 /* We keep an exact subset of the constructor elements. */
11757 if ((idx % k) == 0 && (n % k) == 0)
11758 {
11759 if (CONSTRUCTOR_NELTS (arg0) == 0)
11760 return build_constructor (type, NULL);
11761 idx /= k;
11762 n /= k;
11763 if (n == 1)
11764 {
11765 if (idx < CONSTRUCTOR_NELTS (arg0))
11766 return CONSTRUCTOR_ELT (arg0, idx)->value;
11767 return build_zero_cst (type);
11768 }
11769
11770 vec<constructor_elt, va_gc> *vals;
11771 vec_alloc (vals, n);
11772 for (unsigned i = 0;
11773 i < n && idx + i < CONSTRUCTOR_NELTS (arg0);
11774 ++i)
11775 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
11776 CONSTRUCTOR_ELT
11777 (arg0, idx + i)->value);
11778 return build_constructor (type, vals);
11779 }
11780 /* The bitfield references a single constructor element. */
11781 else if (idx + n <= (idx / k + 1) * k)
11782 {
11783 if (CONSTRUCTOR_NELTS (arg0) <= idx / k)
11784 return build_zero_cst (type);
11785 else if (n == k)
11786 return CONSTRUCTOR_ELT (arg0, idx / k)->value;
11787 else
11788 return fold_build3_loc (loc, code, type,
11789 CONSTRUCTOR_ELT (arg0, idx / k)->value, op1,
11790 build_int_cst (TREE_TYPE (op2), (idx % k) * width));
11791 }
11792 }
11793 }
11794
11795 /* A bit-field-ref that referenced the full argument can be stripped. */
11796 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
11797 && TYPE_PRECISION (TREE_TYPE (arg0)) == tree_to_uhwi (arg1)
11798 && integer_zerop (op2))
11799 return fold_convert_loc (loc, type, arg0);
11800
11801 /* On constants we can use native encode/interpret to constant
11802 fold (nearly) all BIT_FIELD_REFs. */
11803 if (CONSTANT_CLASS_P (arg0)
11804 && can_native_interpret_type_p (type)
11805 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (arg0)))
11806 /* This limitation should not be necessary, we just need to
11807 round this up to mode size. */
11808 && tree_to_uhwi (op1) % BITS_PER_UNIT == 0
11809 /* Need bit-shifting of the buffer to relax the following. */
11810 && tree_to_uhwi (op2) % BITS_PER_UNIT == 0)
11811 {
11812 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11813 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
11814 unsigned HOST_WIDE_INT clen;
11815 clen = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (arg0)));
11816 /* ??? We cannot tell native_encode_expr to start at
11817 some random byte only. So limit us to a reasonable amount
11818 of work. */
11819 if (clen <= 4096)
11820 {
11821 unsigned char *b = XALLOCAVEC (unsigned char, clen);
11822 unsigned HOST_WIDE_INT len = native_encode_expr (arg0, b, clen);
11823 if (len > 0
11824 && len * BITS_PER_UNIT >= bitpos + bitsize)
11825 {
11826 tree v = native_interpret_expr (type,
11827 b + bitpos / BITS_PER_UNIT,
11828 bitsize / BITS_PER_UNIT);
11829 if (v)
11830 return v;
11831 }
11832 }
11833 }
11834
11835 return NULL_TREE;
11836
11837 case FMA_EXPR:
11838 /* For integers we can decompose the FMA if possible. */
11839 if (TREE_CODE (arg0) == INTEGER_CST
11840 && TREE_CODE (arg1) == INTEGER_CST)
11841 return fold_build2_loc (loc, PLUS_EXPR, type,
11842 const_binop (MULT_EXPR, arg0, arg1), arg2);
11843 if (integer_zerop (arg2))
11844 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11845
11846 return fold_fma (loc, type, arg0, arg1, arg2);
11847
11848 case VEC_PERM_EXPR:
11849 if (TREE_CODE (arg2) == VECTOR_CST)
11850 {
11851 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i, mask, mask2;
11852 unsigned char *sel = XALLOCAVEC (unsigned char, 2 * nelts);
11853 unsigned char *sel2 = sel + nelts;
11854 bool need_mask_canon = false;
11855 bool need_mask_canon2 = false;
11856 bool all_in_vec0 = true;
11857 bool all_in_vec1 = true;
11858 bool maybe_identity = true;
11859 bool single_arg = (op0 == op1);
11860 bool changed = false;
11861
11862 mask2 = 2 * nelts - 1;
11863 mask = single_arg ? (nelts - 1) : mask2;
11864 gcc_assert (nelts == VECTOR_CST_NELTS (arg2));
11865 for (i = 0; i < nelts; i++)
11866 {
11867 tree val = VECTOR_CST_ELT (arg2, i);
11868 if (TREE_CODE (val) != INTEGER_CST)
11869 return NULL_TREE;
11870
11871 /* Make sure that the perm value is in an acceptable
11872 range. */
11873 wide_int t = val;
11874 need_mask_canon |= wi::gtu_p (t, mask);
11875 need_mask_canon2 |= wi::gtu_p (t, mask2);
11876 sel[i] = t.to_uhwi () & mask;
11877 sel2[i] = t.to_uhwi () & mask2;
11878
11879 if (sel[i] < nelts)
11880 all_in_vec1 = false;
11881 else
11882 all_in_vec0 = false;
11883
11884 if ((sel[i] & (nelts-1)) != i)
11885 maybe_identity = false;
11886 }
11887
11888 if (maybe_identity)
11889 {
11890 if (all_in_vec0)
11891 return op0;
11892 if (all_in_vec1)
11893 return op1;
11894 }
11895
11896 if (all_in_vec0)
11897 op1 = op0;
11898 else if (all_in_vec1)
11899 {
11900 op0 = op1;
11901 for (i = 0; i < nelts; i++)
11902 sel[i] -= nelts;
11903 need_mask_canon = true;
11904 }
11905
11906 if ((TREE_CODE (op0) == VECTOR_CST
11907 || TREE_CODE (op0) == CONSTRUCTOR)
11908 && (TREE_CODE (op1) == VECTOR_CST
11909 || TREE_CODE (op1) == CONSTRUCTOR))
11910 {
11911 tree t = fold_vec_perm (type, op0, op1, sel);
11912 if (t != NULL_TREE)
11913 return t;
11914 }
11915
11916 if (op0 == op1 && !single_arg)
11917 changed = true;
11918
11919 /* Some targets are deficient and fail to expand a single
11920 argument permutation while still allowing an equivalent
11921 2-argument version. */
11922 if (need_mask_canon && arg2 == op2
11923 && !can_vec_perm_p (TYPE_MODE (type), false, sel)
11924 && can_vec_perm_p (TYPE_MODE (type), false, sel2))
11925 {
11926 need_mask_canon = need_mask_canon2;
11927 sel = sel2;
11928 }
11929
11930 if (need_mask_canon && arg2 == op2)
11931 {
11932 tree *tsel = XALLOCAVEC (tree, nelts);
11933 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
11934 for (i = 0; i < nelts; i++)
11935 tsel[i] = build_int_cst (eltype, sel[i]);
11936 op2 = build_vector (TREE_TYPE (arg2), tsel);
11937 changed = true;
11938 }
11939
11940 if (changed)
11941 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
11942 }
11943 return NULL_TREE;
11944
11945 default:
11946 return NULL_TREE;
11947 } /* switch (code) */
11948 }
11949
11950 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11951 of an array (or vector). */
11952
11953 tree
11954 get_array_ctor_element_at_index (tree ctor, offset_int access_index)
11955 {
11956 tree index_type = NULL_TREE;
11957 offset_int low_bound = 0;
11958
11959 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
11960 {
11961 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
11962 if (domain_type && TYPE_MIN_VALUE (domain_type))
11963 {
11964 /* Static constructors for variably sized objects makes no sense. */
11965 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
11966 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
11967 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
11968 }
11969 }
11970
11971 if (index_type)
11972 access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
11973 TYPE_SIGN (index_type));
11974
11975 offset_int index = low_bound - 1;
11976 if (index_type)
11977 index = wi::ext (index, TYPE_PRECISION (index_type),
11978 TYPE_SIGN (index_type));
11979
11980 offset_int max_index;
11981 unsigned HOST_WIDE_INT cnt;
11982 tree cfield, cval;
11983
11984 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
11985 {
11986 /* Array constructor might explicitly set index, or specify a range,
11987 or leave index NULL meaning that it is next index after previous
11988 one. */
11989 if (cfield)
11990 {
11991 if (TREE_CODE (cfield) == INTEGER_CST)
11992 max_index = index = wi::to_offset (cfield);
11993 else
11994 {
11995 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
11996 index = wi::to_offset (TREE_OPERAND (cfield, 0));
11997 max_index = wi::to_offset (TREE_OPERAND (cfield, 1));
11998 }
11999 }
12000 else
12001 {
12002 index += 1;
12003 if (index_type)
12004 index = wi::ext (index, TYPE_PRECISION (index_type),
12005 TYPE_SIGN (index_type));
12006 max_index = index;
12007 }
12008
12009 /* Do we have match? */
12010 if (wi::cmpu (access_index, index) >= 0
12011 && wi::cmpu (access_index, max_index) <= 0)
12012 return cval;
12013 }
12014 return NULL_TREE;
12015 }
12016
12017 /* Perform constant folding and related simplification of EXPR.
12018 The related simplifications include x*1 => x, x*0 => 0, etc.,
12019 and application of the associative law.
12020 NOP_EXPR conversions may be removed freely (as long as we
12021 are careful not to change the type of the overall expression).
12022 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
12023 but we can constant-fold them if they have constant operands. */
12024
12025 #ifdef ENABLE_FOLD_CHECKING
12026 # define fold(x) fold_1 (x)
12027 static tree fold_1 (tree);
12028 static
12029 #endif
12030 tree
12031 fold (tree expr)
12032 {
12033 const tree t = expr;
12034 enum tree_code code = TREE_CODE (t);
12035 enum tree_code_class kind = TREE_CODE_CLASS (code);
12036 tree tem;
12037 location_t loc = EXPR_LOCATION (expr);
12038
12039 /* Return right away if a constant. */
12040 if (kind == tcc_constant)
12041 return t;
12042
12043 /* CALL_EXPR-like objects with variable numbers of operands are
12044 treated specially. */
12045 if (kind == tcc_vl_exp)
12046 {
12047 if (code == CALL_EXPR)
12048 {
12049 tem = fold_call_expr (loc, expr, false);
12050 return tem ? tem : expr;
12051 }
12052 return expr;
12053 }
12054
12055 if (IS_EXPR_CODE_CLASS (kind))
12056 {
12057 tree type = TREE_TYPE (t);
12058 tree op0, op1, op2;
12059
12060 switch (TREE_CODE_LENGTH (code))
12061 {
12062 case 1:
12063 op0 = TREE_OPERAND (t, 0);
12064 tem = fold_unary_loc (loc, code, type, op0);
12065 return tem ? tem : expr;
12066 case 2:
12067 op0 = TREE_OPERAND (t, 0);
12068 op1 = TREE_OPERAND (t, 1);
12069 tem = fold_binary_loc (loc, code, type, op0, op1);
12070 return tem ? tem : expr;
12071 case 3:
12072 op0 = TREE_OPERAND (t, 0);
12073 op1 = TREE_OPERAND (t, 1);
12074 op2 = TREE_OPERAND (t, 2);
12075 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12076 return tem ? tem : expr;
12077 default:
12078 break;
12079 }
12080 }
12081
12082 switch (code)
12083 {
12084 case ARRAY_REF:
12085 {
12086 tree op0 = TREE_OPERAND (t, 0);
12087 tree op1 = TREE_OPERAND (t, 1);
12088
12089 if (TREE_CODE (op1) == INTEGER_CST
12090 && TREE_CODE (op0) == CONSTRUCTOR
12091 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
12092 {
12093 tree val = get_array_ctor_element_at_index (op0,
12094 wi::to_offset (op1));
12095 if (val)
12096 return val;
12097 }
12098
12099 return t;
12100 }
12101
12102 /* Return a VECTOR_CST if possible. */
12103 case CONSTRUCTOR:
12104 {
12105 tree type = TREE_TYPE (t);
12106 if (TREE_CODE (type) != VECTOR_TYPE)
12107 return t;
12108
12109 unsigned i;
12110 tree val;
12111 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
12112 if (! CONSTANT_CLASS_P (val))
12113 return t;
12114
12115 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t));
12116 }
12117
12118 case CONST_DECL:
12119 return fold (DECL_INITIAL (t));
12120
12121 default:
12122 return t;
12123 } /* switch (code) */
12124 }
12125
12126 #ifdef ENABLE_FOLD_CHECKING
12127 #undef fold
12128
12129 static void fold_checksum_tree (const_tree, struct md5_ctx *,
12130 hash_table<nofree_ptr_hash<const tree_node> > *);
12131 static void fold_check_failed (const_tree, const_tree);
12132 void print_fold_checksum (const_tree);
12133
12134 /* When --enable-checking=fold, compute a digest of expr before
12135 and after actual fold call to see if fold did not accidentally
12136 change original expr. */
12137
12138 tree
12139 fold (tree expr)
12140 {
12141 tree ret;
12142 struct md5_ctx ctx;
12143 unsigned char checksum_before[16], checksum_after[16];
12144 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12145
12146 md5_init_ctx (&ctx);
12147 fold_checksum_tree (expr, &ctx, &ht);
12148 md5_finish_ctx (&ctx, checksum_before);
12149 ht.empty ();
12150
12151 ret = fold_1 (expr);
12152
12153 md5_init_ctx (&ctx);
12154 fold_checksum_tree (expr, &ctx, &ht);
12155 md5_finish_ctx (&ctx, checksum_after);
12156
12157 if (memcmp (checksum_before, checksum_after, 16))
12158 fold_check_failed (expr, ret);
12159
12160 return ret;
12161 }
12162
12163 void
12164 print_fold_checksum (const_tree expr)
12165 {
12166 struct md5_ctx ctx;
12167 unsigned char checksum[16], cnt;
12168 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12169
12170 md5_init_ctx (&ctx);
12171 fold_checksum_tree (expr, &ctx, &ht);
12172 md5_finish_ctx (&ctx, checksum);
12173 for (cnt = 0; cnt < 16; ++cnt)
12174 fprintf (stderr, "%02x", checksum[cnt]);
12175 putc ('\n', stderr);
12176 }
12177
12178 static void
12179 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
12180 {
12181 internal_error ("fold check: original tree changed by fold");
12182 }
12183
12184 static void
12185 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
12186 hash_table<nofree_ptr_hash <const tree_node> > *ht)
12187 {
12188 const tree_node **slot;
12189 enum tree_code code;
12190 union tree_node buf;
12191 int i, len;
12192
12193 recursive_label:
12194 if (expr == NULL)
12195 return;
12196 slot = ht->find_slot (expr, INSERT);
12197 if (*slot != NULL)
12198 return;
12199 *slot = expr;
12200 code = TREE_CODE (expr);
12201 if (TREE_CODE_CLASS (code) == tcc_declaration
12202 && HAS_DECL_ASSEMBLER_NAME_P (expr))
12203 {
12204 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12205 memcpy ((char *) &buf, expr, tree_size (expr));
12206 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
12207 buf.decl_with_vis.symtab_node = NULL;
12208 expr = (tree) &buf;
12209 }
12210 else if (TREE_CODE_CLASS (code) == tcc_type
12211 && (TYPE_POINTER_TO (expr)
12212 || TYPE_REFERENCE_TO (expr)
12213 || TYPE_CACHED_VALUES_P (expr)
12214 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
12215 || TYPE_NEXT_VARIANT (expr)))
12216 {
12217 /* Allow these fields to be modified. */
12218 tree tmp;
12219 memcpy ((char *) &buf, expr, tree_size (expr));
12220 expr = tmp = (tree) &buf;
12221 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
12222 TYPE_POINTER_TO (tmp) = NULL;
12223 TYPE_REFERENCE_TO (tmp) = NULL;
12224 TYPE_NEXT_VARIANT (tmp) = NULL;
12225 if (TYPE_CACHED_VALUES_P (tmp))
12226 {
12227 TYPE_CACHED_VALUES_P (tmp) = 0;
12228 TYPE_CACHED_VALUES (tmp) = NULL;
12229 }
12230 }
12231 md5_process_bytes (expr, tree_size (expr), ctx);
12232 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
12233 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
12234 if (TREE_CODE_CLASS (code) != tcc_type
12235 && TREE_CODE_CLASS (code) != tcc_declaration
12236 && code != TREE_LIST
12237 && code != SSA_NAME
12238 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
12239 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
12240 switch (TREE_CODE_CLASS (code))
12241 {
12242 case tcc_constant:
12243 switch (code)
12244 {
12245 case STRING_CST:
12246 md5_process_bytes (TREE_STRING_POINTER (expr),
12247 TREE_STRING_LENGTH (expr), ctx);
12248 break;
12249 case COMPLEX_CST:
12250 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12251 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12252 break;
12253 case VECTOR_CST:
12254 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
12255 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
12256 break;
12257 default:
12258 break;
12259 }
12260 break;
12261 case tcc_exceptional:
12262 switch (code)
12263 {
12264 case TREE_LIST:
12265 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12266 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12267 expr = TREE_CHAIN (expr);
12268 goto recursive_label;
12269 break;
12270 case TREE_VEC:
12271 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12272 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12273 break;
12274 default:
12275 break;
12276 }
12277 break;
12278 case tcc_expression:
12279 case tcc_reference:
12280 case tcc_comparison:
12281 case tcc_unary:
12282 case tcc_binary:
12283 case tcc_statement:
12284 case tcc_vl_exp:
12285 len = TREE_OPERAND_LENGTH (expr);
12286 for (i = 0; i < len; ++i)
12287 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12288 break;
12289 case tcc_declaration:
12290 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12291 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12292 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12293 {
12294 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12295 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12296 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12297 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12298 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12299 }
12300
12301 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12302 {
12303 if (TREE_CODE (expr) == FUNCTION_DECL)
12304 {
12305 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12306 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12307 }
12308 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12309 }
12310 break;
12311 case tcc_type:
12312 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12313 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12314 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12315 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12316 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12317 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12318 if (INTEGRAL_TYPE_P (expr)
12319 || SCALAR_FLOAT_TYPE_P (expr))
12320 {
12321 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12322 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12323 }
12324 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12325 if (TREE_CODE (expr) == RECORD_TYPE
12326 || TREE_CODE (expr) == UNION_TYPE
12327 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12328 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12329 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12330 break;
12331 default:
12332 break;
12333 }
12334 }
12335
12336 /* Helper function for outputting the checksum of a tree T. When
12337 debugging with gdb, you can "define mynext" to be "next" followed
12338 by "call debug_fold_checksum (op0)", then just trace down till the
12339 outputs differ. */
12340
12341 DEBUG_FUNCTION void
12342 debug_fold_checksum (const_tree t)
12343 {
12344 int i;
12345 unsigned char checksum[16];
12346 struct md5_ctx ctx;
12347 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12348
12349 md5_init_ctx (&ctx);
12350 fold_checksum_tree (t, &ctx, &ht);
12351 md5_finish_ctx (&ctx, checksum);
12352 ht.empty ();
12353
12354 for (i = 0; i < 16; i++)
12355 fprintf (stderr, "%d ", checksum[i]);
12356
12357 fprintf (stderr, "\n");
12358 }
12359
12360 #endif
12361
12362 /* Fold a unary tree expression with code CODE of type TYPE with an
12363 operand OP0. LOC is the location of the resulting expression.
12364 Return a folded expression if successful. Otherwise, return a tree
12365 expression with code CODE of type TYPE with an operand OP0. */
12366
12367 tree
12368 fold_build1_stat_loc (location_t loc,
12369 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12370 {
12371 tree tem;
12372 #ifdef ENABLE_FOLD_CHECKING
12373 unsigned char checksum_before[16], checksum_after[16];
12374 struct md5_ctx ctx;
12375 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12376
12377 md5_init_ctx (&ctx);
12378 fold_checksum_tree (op0, &ctx, &ht);
12379 md5_finish_ctx (&ctx, checksum_before);
12380 ht.empty ();
12381 #endif
12382
12383 tem = fold_unary_loc (loc, code, type, op0);
12384 if (!tem)
12385 tem = build1_stat_loc (loc, code, type, op0 PASS_MEM_STAT);
12386
12387 #ifdef ENABLE_FOLD_CHECKING
12388 md5_init_ctx (&ctx);
12389 fold_checksum_tree (op0, &ctx, &ht);
12390 md5_finish_ctx (&ctx, checksum_after);
12391
12392 if (memcmp (checksum_before, checksum_after, 16))
12393 fold_check_failed (op0, tem);
12394 #endif
12395 return tem;
12396 }
12397
12398 /* Fold a binary tree expression with code CODE of type TYPE with
12399 operands OP0 and OP1. LOC is the location of the resulting
12400 expression. Return a folded expression if successful. Otherwise,
12401 return a tree expression with code CODE of type TYPE with operands
12402 OP0 and OP1. */
12403
12404 tree
12405 fold_build2_stat_loc (location_t loc,
12406 enum tree_code code, tree type, tree op0, tree op1
12407 MEM_STAT_DECL)
12408 {
12409 tree tem;
12410 #ifdef ENABLE_FOLD_CHECKING
12411 unsigned char checksum_before_op0[16],
12412 checksum_before_op1[16],
12413 checksum_after_op0[16],
12414 checksum_after_op1[16];
12415 struct md5_ctx ctx;
12416 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12417
12418 md5_init_ctx (&ctx);
12419 fold_checksum_tree (op0, &ctx, &ht);
12420 md5_finish_ctx (&ctx, checksum_before_op0);
12421 ht.empty ();
12422
12423 md5_init_ctx (&ctx);
12424 fold_checksum_tree (op1, &ctx, &ht);
12425 md5_finish_ctx (&ctx, checksum_before_op1);
12426 ht.empty ();
12427 #endif
12428
12429 tem = fold_binary_loc (loc, code, type, op0, op1);
12430 if (!tem)
12431 tem = build2_stat_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
12432
12433 #ifdef ENABLE_FOLD_CHECKING
12434 md5_init_ctx (&ctx);
12435 fold_checksum_tree (op0, &ctx, &ht);
12436 md5_finish_ctx (&ctx, checksum_after_op0);
12437 ht.empty ();
12438
12439 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12440 fold_check_failed (op0, tem);
12441
12442 md5_init_ctx (&ctx);
12443 fold_checksum_tree (op1, &ctx, &ht);
12444 md5_finish_ctx (&ctx, checksum_after_op1);
12445
12446 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12447 fold_check_failed (op1, tem);
12448 #endif
12449 return tem;
12450 }
12451
12452 /* Fold a ternary tree expression with code CODE of type TYPE with
12453 operands OP0, OP1, and OP2. Return a folded expression if
12454 successful. Otherwise, return a tree expression with code CODE of
12455 type TYPE with operands OP0, OP1, and OP2. */
12456
12457 tree
12458 fold_build3_stat_loc (location_t loc, enum tree_code code, tree type,
12459 tree op0, tree op1, tree op2 MEM_STAT_DECL)
12460 {
12461 tree tem;
12462 #ifdef ENABLE_FOLD_CHECKING
12463 unsigned char checksum_before_op0[16],
12464 checksum_before_op1[16],
12465 checksum_before_op2[16],
12466 checksum_after_op0[16],
12467 checksum_after_op1[16],
12468 checksum_after_op2[16];
12469 struct md5_ctx ctx;
12470 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12471
12472 md5_init_ctx (&ctx);
12473 fold_checksum_tree (op0, &ctx, &ht);
12474 md5_finish_ctx (&ctx, checksum_before_op0);
12475 ht.empty ();
12476
12477 md5_init_ctx (&ctx);
12478 fold_checksum_tree (op1, &ctx, &ht);
12479 md5_finish_ctx (&ctx, checksum_before_op1);
12480 ht.empty ();
12481
12482 md5_init_ctx (&ctx);
12483 fold_checksum_tree (op2, &ctx, &ht);
12484 md5_finish_ctx (&ctx, checksum_before_op2);
12485 ht.empty ();
12486 #endif
12487
12488 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
12489 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12490 if (!tem)
12491 tem = build3_stat_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
12492
12493 #ifdef ENABLE_FOLD_CHECKING
12494 md5_init_ctx (&ctx);
12495 fold_checksum_tree (op0, &ctx, &ht);
12496 md5_finish_ctx (&ctx, checksum_after_op0);
12497 ht.empty ();
12498
12499 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12500 fold_check_failed (op0, tem);
12501
12502 md5_init_ctx (&ctx);
12503 fold_checksum_tree (op1, &ctx, &ht);
12504 md5_finish_ctx (&ctx, checksum_after_op1);
12505 ht.empty ();
12506
12507 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12508 fold_check_failed (op1, tem);
12509
12510 md5_init_ctx (&ctx);
12511 fold_checksum_tree (op2, &ctx, &ht);
12512 md5_finish_ctx (&ctx, checksum_after_op2);
12513
12514 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
12515 fold_check_failed (op2, tem);
12516 #endif
12517 return tem;
12518 }
12519
12520 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12521 arguments in ARGARRAY, and a null static chain.
12522 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12523 of type TYPE from the given operands as constructed by build_call_array. */
12524
12525 tree
12526 fold_build_call_array_loc (location_t loc, tree type, tree fn,
12527 int nargs, tree *argarray)
12528 {
12529 tree tem;
12530 #ifdef ENABLE_FOLD_CHECKING
12531 unsigned char checksum_before_fn[16],
12532 checksum_before_arglist[16],
12533 checksum_after_fn[16],
12534 checksum_after_arglist[16];
12535 struct md5_ctx ctx;
12536 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12537 int i;
12538
12539 md5_init_ctx (&ctx);
12540 fold_checksum_tree (fn, &ctx, &ht);
12541 md5_finish_ctx (&ctx, checksum_before_fn);
12542 ht.empty ();
12543
12544 md5_init_ctx (&ctx);
12545 for (i = 0; i < nargs; i++)
12546 fold_checksum_tree (argarray[i], &ctx, &ht);
12547 md5_finish_ctx (&ctx, checksum_before_arglist);
12548 ht.empty ();
12549 #endif
12550
12551 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
12552 if (!tem)
12553 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
12554
12555 #ifdef ENABLE_FOLD_CHECKING
12556 md5_init_ctx (&ctx);
12557 fold_checksum_tree (fn, &ctx, &ht);
12558 md5_finish_ctx (&ctx, checksum_after_fn);
12559 ht.empty ();
12560
12561 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
12562 fold_check_failed (fn, tem);
12563
12564 md5_init_ctx (&ctx);
12565 for (i = 0; i < nargs; i++)
12566 fold_checksum_tree (argarray[i], &ctx, &ht);
12567 md5_finish_ctx (&ctx, checksum_after_arglist);
12568
12569 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
12570 fold_check_failed (NULL_TREE, tem);
12571 #endif
12572 return tem;
12573 }
12574
12575 /* Perform constant folding and related simplification of initializer
12576 expression EXPR. These behave identically to "fold_buildN" but ignore
12577 potential run-time traps and exceptions that fold must preserve. */
12578
12579 #define START_FOLD_INIT \
12580 int saved_signaling_nans = flag_signaling_nans;\
12581 int saved_trapping_math = flag_trapping_math;\
12582 int saved_rounding_math = flag_rounding_math;\
12583 int saved_trapv = flag_trapv;\
12584 int saved_folding_initializer = folding_initializer;\
12585 flag_signaling_nans = 0;\
12586 flag_trapping_math = 0;\
12587 flag_rounding_math = 0;\
12588 flag_trapv = 0;\
12589 folding_initializer = 1;
12590
12591 #define END_FOLD_INIT \
12592 flag_signaling_nans = saved_signaling_nans;\
12593 flag_trapping_math = saved_trapping_math;\
12594 flag_rounding_math = saved_rounding_math;\
12595 flag_trapv = saved_trapv;\
12596 folding_initializer = saved_folding_initializer;
12597
12598 tree
12599 fold_build1_initializer_loc (location_t loc, enum tree_code code,
12600 tree type, tree op)
12601 {
12602 tree result;
12603 START_FOLD_INIT;
12604
12605 result = fold_build1_loc (loc, code, type, op);
12606
12607 END_FOLD_INIT;
12608 return result;
12609 }
12610
12611 tree
12612 fold_build2_initializer_loc (location_t loc, enum tree_code code,
12613 tree type, tree op0, tree op1)
12614 {
12615 tree result;
12616 START_FOLD_INIT;
12617
12618 result = fold_build2_loc (loc, code, type, op0, op1);
12619
12620 END_FOLD_INIT;
12621 return result;
12622 }
12623
12624 tree
12625 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
12626 int nargs, tree *argarray)
12627 {
12628 tree result;
12629 START_FOLD_INIT;
12630
12631 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
12632
12633 END_FOLD_INIT;
12634 return result;
12635 }
12636
12637 #undef START_FOLD_INIT
12638 #undef END_FOLD_INIT
12639
12640 /* Determine if first argument is a multiple of second argument. Return 0 if
12641 it is not, or we cannot easily determined it to be.
12642
12643 An example of the sort of thing we care about (at this point; this routine
12644 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12645 fold cases do now) is discovering that
12646
12647 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12648
12649 is a multiple of
12650
12651 SAVE_EXPR (J * 8)
12652
12653 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12654
12655 This code also handles discovering that
12656
12657 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12658
12659 is a multiple of 8 so we don't have to worry about dealing with a
12660 possible remainder.
12661
12662 Note that we *look* inside a SAVE_EXPR only to determine how it was
12663 calculated; it is not safe for fold to do much of anything else with the
12664 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12665 at run time. For example, the latter example above *cannot* be implemented
12666 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12667 evaluation time of the original SAVE_EXPR is not necessarily the same at
12668 the time the new expression is evaluated. The only optimization of this
12669 sort that would be valid is changing
12670
12671 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12672
12673 divided by 8 to
12674
12675 SAVE_EXPR (I) * SAVE_EXPR (J)
12676
12677 (where the same SAVE_EXPR (J) is used in the original and the
12678 transformed version). */
12679
12680 int
12681 multiple_of_p (tree type, const_tree top, const_tree bottom)
12682 {
12683 if (operand_equal_p (top, bottom, 0))
12684 return 1;
12685
12686 if (TREE_CODE (type) != INTEGER_TYPE)
12687 return 0;
12688
12689 switch (TREE_CODE (top))
12690 {
12691 case BIT_AND_EXPR:
12692 /* Bitwise and provides a power of two multiple. If the mask is
12693 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12694 if (!integer_pow2p (bottom))
12695 return 0;
12696 /* FALLTHRU */
12697
12698 case MULT_EXPR:
12699 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
12700 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
12701
12702 case PLUS_EXPR:
12703 case MINUS_EXPR:
12704 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
12705 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
12706
12707 case LSHIFT_EXPR:
12708 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
12709 {
12710 tree op1, t1;
12711
12712 op1 = TREE_OPERAND (top, 1);
12713 /* const_binop may not detect overflow correctly,
12714 so check for it explicitly here. */
12715 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
12716 && 0 != (t1 = fold_convert (type,
12717 const_binop (LSHIFT_EXPR,
12718 size_one_node,
12719 op1)))
12720 && !TREE_OVERFLOW (t1))
12721 return multiple_of_p (type, t1, bottom);
12722 }
12723 return 0;
12724
12725 case NOP_EXPR:
12726 /* Can't handle conversions from non-integral or wider integral type. */
12727 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
12728 || (TYPE_PRECISION (type)
12729 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
12730 return 0;
12731
12732 /* .. fall through ... */
12733
12734 case SAVE_EXPR:
12735 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
12736
12737 case COND_EXPR:
12738 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12739 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
12740
12741 case INTEGER_CST:
12742 if (TREE_CODE (bottom) != INTEGER_CST
12743 || integer_zerop (bottom)
12744 || (TYPE_UNSIGNED (type)
12745 && (tree_int_cst_sgn (top) < 0
12746 || tree_int_cst_sgn (bottom) < 0)))
12747 return 0;
12748 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
12749 SIGNED);
12750
12751 default:
12752 return 0;
12753 }
12754 }
12755
12756 #define tree_expr_nonnegative_warnv_p(X, Y) \
12757 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12758
12759 #define RECURSE(X) \
12760 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12761
12762 /* Return true if CODE or TYPE is known to be non-negative. */
12763
12764 static bool
12765 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
12766 {
12767 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
12768 && truth_value_p (code))
12769 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12770 have a signed:1 type (where the value is -1 and 0). */
12771 return true;
12772 return false;
12773 }
12774
12775 /* Return true if (CODE OP0) is known to be non-negative. If the return
12776 value is based on the assumption that signed overflow is undefined,
12777 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12778 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12779
12780 bool
12781 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12782 bool *strict_overflow_p, int depth)
12783 {
12784 if (TYPE_UNSIGNED (type))
12785 return true;
12786
12787 switch (code)
12788 {
12789 case ABS_EXPR:
12790 /* We can't return 1 if flag_wrapv is set because
12791 ABS_EXPR<INT_MIN> = INT_MIN. */
12792 if (!ANY_INTEGRAL_TYPE_P (type))
12793 return true;
12794 if (TYPE_OVERFLOW_UNDEFINED (type))
12795 {
12796 *strict_overflow_p = true;
12797 return true;
12798 }
12799 break;
12800
12801 case NON_LVALUE_EXPR:
12802 case FLOAT_EXPR:
12803 case FIX_TRUNC_EXPR:
12804 return RECURSE (op0);
12805
12806 CASE_CONVERT:
12807 {
12808 tree inner_type = TREE_TYPE (op0);
12809 tree outer_type = type;
12810
12811 if (TREE_CODE (outer_type) == REAL_TYPE)
12812 {
12813 if (TREE_CODE (inner_type) == REAL_TYPE)
12814 return RECURSE (op0);
12815 if (INTEGRAL_TYPE_P (inner_type))
12816 {
12817 if (TYPE_UNSIGNED (inner_type))
12818 return true;
12819 return RECURSE (op0);
12820 }
12821 }
12822 else if (INTEGRAL_TYPE_P (outer_type))
12823 {
12824 if (TREE_CODE (inner_type) == REAL_TYPE)
12825 return RECURSE (op0);
12826 if (INTEGRAL_TYPE_P (inner_type))
12827 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
12828 && TYPE_UNSIGNED (inner_type);
12829 }
12830 }
12831 break;
12832
12833 default:
12834 return tree_simple_nonnegative_warnv_p (code, type);
12835 }
12836
12837 /* We don't know sign of `t', so be conservative and return false. */
12838 return false;
12839 }
12840
12841 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12842 value is based on the assumption that signed overflow is undefined,
12843 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12844 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12845
12846 bool
12847 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12848 tree op1, bool *strict_overflow_p,
12849 int depth)
12850 {
12851 if (TYPE_UNSIGNED (type))
12852 return true;
12853
12854 switch (code)
12855 {
12856 case POINTER_PLUS_EXPR:
12857 case PLUS_EXPR:
12858 if (FLOAT_TYPE_P (type))
12859 return RECURSE (op0) && RECURSE (op1);
12860
12861 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12862 both unsigned and at least 2 bits shorter than the result. */
12863 if (TREE_CODE (type) == INTEGER_TYPE
12864 && TREE_CODE (op0) == NOP_EXPR
12865 && TREE_CODE (op1) == NOP_EXPR)
12866 {
12867 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
12868 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
12869 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12870 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12871 {
12872 unsigned int prec = MAX (TYPE_PRECISION (inner1),
12873 TYPE_PRECISION (inner2)) + 1;
12874 return prec < TYPE_PRECISION (type);
12875 }
12876 }
12877 break;
12878
12879 case MULT_EXPR:
12880 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12881 {
12882 /* x * x is always non-negative for floating point x
12883 or without overflow. */
12884 if (operand_equal_p (op0, op1, 0)
12885 || (RECURSE (op0) && RECURSE (op1)))
12886 {
12887 if (ANY_INTEGRAL_TYPE_P (type)
12888 && TYPE_OVERFLOW_UNDEFINED (type))
12889 *strict_overflow_p = true;
12890 return true;
12891 }
12892 }
12893
12894 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12895 both unsigned and their total bits is shorter than the result. */
12896 if (TREE_CODE (type) == INTEGER_TYPE
12897 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
12898 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
12899 {
12900 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
12901 ? TREE_TYPE (TREE_OPERAND (op0, 0))
12902 : TREE_TYPE (op0);
12903 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
12904 ? TREE_TYPE (TREE_OPERAND (op1, 0))
12905 : TREE_TYPE (op1);
12906
12907 bool unsigned0 = TYPE_UNSIGNED (inner0);
12908 bool unsigned1 = TYPE_UNSIGNED (inner1);
12909
12910 if (TREE_CODE (op0) == INTEGER_CST)
12911 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
12912
12913 if (TREE_CODE (op1) == INTEGER_CST)
12914 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
12915
12916 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
12917 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
12918 {
12919 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
12920 ? tree_int_cst_min_precision (op0, UNSIGNED)
12921 : TYPE_PRECISION (inner0);
12922
12923 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
12924 ? tree_int_cst_min_precision (op1, UNSIGNED)
12925 : TYPE_PRECISION (inner1);
12926
12927 return precision0 + precision1 < TYPE_PRECISION (type);
12928 }
12929 }
12930 return false;
12931
12932 case BIT_AND_EXPR:
12933 case MAX_EXPR:
12934 return RECURSE (op0) || RECURSE (op1);
12935
12936 case BIT_IOR_EXPR:
12937 case BIT_XOR_EXPR:
12938 case MIN_EXPR:
12939 case RDIV_EXPR:
12940 case TRUNC_DIV_EXPR:
12941 case CEIL_DIV_EXPR:
12942 case FLOOR_DIV_EXPR:
12943 case ROUND_DIV_EXPR:
12944 return RECURSE (op0) && RECURSE (op1);
12945
12946 case TRUNC_MOD_EXPR:
12947 return RECURSE (op0);
12948
12949 case FLOOR_MOD_EXPR:
12950 return RECURSE (op1);
12951
12952 case CEIL_MOD_EXPR:
12953 case ROUND_MOD_EXPR:
12954 default:
12955 return tree_simple_nonnegative_warnv_p (code, type);
12956 }
12957
12958 /* We don't know sign of `t', so be conservative and return false. */
12959 return false;
12960 }
12961
12962 /* Return true if T is known to be non-negative. If the return
12963 value is based on the assumption that signed overflow is undefined,
12964 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12965 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12966
12967 bool
12968 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
12969 {
12970 if (TYPE_UNSIGNED (TREE_TYPE (t)))
12971 return true;
12972
12973 switch (TREE_CODE (t))
12974 {
12975 case INTEGER_CST:
12976 return tree_int_cst_sgn (t) >= 0;
12977
12978 case REAL_CST:
12979 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
12980
12981 case FIXED_CST:
12982 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
12983
12984 case COND_EXPR:
12985 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
12986
12987 case SSA_NAME:
12988 /* Limit the depth of recursion to avoid quadratic behavior.
12989 This is expected to catch almost all occurrences in practice.
12990 If this code misses important cases that unbounded recursion
12991 would not, passes that need this information could be revised
12992 to provide it through dataflow propagation. */
12993 return (!name_registered_for_update_p (t)
12994 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
12995 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t),
12996 strict_overflow_p, depth));
12997
12998 default:
12999 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13000 }
13001 }
13002
13003 /* Return true if T is known to be non-negative. If the return
13004 value is based on the assumption that signed overflow is undefined,
13005 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13006 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13007
13008 bool
13009 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1,
13010 bool *strict_overflow_p, int depth)
13011 {
13012 switch (fn)
13013 {
13014 CASE_CFN_ACOS:
13015 CASE_CFN_ACOSH:
13016 CASE_CFN_CABS:
13017 CASE_CFN_COSH:
13018 CASE_CFN_ERFC:
13019 CASE_CFN_EXP:
13020 CASE_CFN_EXP10:
13021 CASE_CFN_EXP2:
13022 CASE_CFN_FABS:
13023 CASE_CFN_FDIM:
13024 CASE_CFN_HYPOT:
13025 CASE_CFN_POW10:
13026 CASE_CFN_FFS:
13027 CASE_CFN_PARITY:
13028 CASE_CFN_POPCOUNT:
13029 CASE_CFN_CLZ:
13030 CASE_CFN_CLRSB:
13031 case CFN_BUILT_IN_BSWAP32:
13032 case CFN_BUILT_IN_BSWAP64:
13033 /* Always true. */
13034 return true;
13035
13036 CASE_CFN_SQRT:
13037 /* sqrt(-0.0) is -0.0. */
13038 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
13039 return true;
13040 return RECURSE (arg0);
13041
13042 CASE_CFN_ASINH:
13043 CASE_CFN_ATAN:
13044 CASE_CFN_ATANH:
13045 CASE_CFN_CBRT:
13046 CASE_CFN_CEIL:
13047 CASE_CFN_ERF:
13048 CASE_CFN_EXPM1:
13049 CASE_CFN_FLOOR:
13050 CASE_CFN_FMOD:
13051 CASE_CFN_FREXP:
13052 CASE_CFN_ICEIL:
13053 CASE_CFN_IFLOOR:
13054 CASE_CFN_IRINT:
13055 CASE_CFN_IROUND:
13056 CASE_CFN_LCEIL:
13057 CASE_CFN_LDEXP:
13058 CASE_CFN_LFLOOR:
13059 CASE_CFN_LLCEIL:
13060 CASE_CFN_LLFLOOR:
13061 CASE_CFN_LLRINT:
13062 CASE_CFN_LLROUND:
13063 CASE_CFN_LRINT:
13064 CASE_CFN_LROUND:
13065 CASE_CFN_MODF:
13066 CASE_CFN_NEARBYINT:
13067 CASE_CFN_RINT:
13068 CASE_CFN_ROUND:
13069 CASE_CFN_SCALB:
13070 CASE_CFN_SCALBLN:
13071 CASE_CFN_SCALBN:
13072 CASE_CFN_SIGNBIT:
13073 CASE_CFN_SIGNIFICAND:
13074 CASE_CFN_SINH:
13075 CASE_CFN_TANH:
13076 CASE_CFN_TRUNC:
13077 /* True if the 1st argument is nonnegative. */
13078 return RECURSE (arg0);
13079
13080 CASE_CFN_FMAX:
13081 /* True if the 1st OR 2nd arguments are nonnegative. */
13082 return RECURSE (arg0) || RECURSE (arg1);
13083
13084 CASE_CFN_FMIN:
13085 /* True if the 1st AND 2nd arguments are nonnegative. */
13086 return RECURSE (arg0) && RECURSE (arg1);
13087
13088 CASE_CFN_COPYSIGN:
13089 /* True if the 2nd argument is nonnegative. */
13090 return RECURSE (arg1);
13091
13092 CASE_CFN_POWI:
13093 /* True if the 1st argument is nonnegative or the second
13094 argument is an even integer. */
13095 if (TREE_CODE (arg1) == INTEGER_CST
13096 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
13097 return true;
13098 return RECURSE (arg0);
13099
13100 CASE_CFN_POW:
13101 /* True if the 1st argument is nonnegative or the second
13102 argument is an even integer valued real. */
13103 if (TREE_CODE (arg1) == REAL_CST)
13104 {
13105 REAL_VALUE_TYPE c;
13106 HOST_WIDE_INT n;
13107
13108 c = TREE_REAL_CST (arg1);
13109 n = real_to_integer (&c);
13110 if ((n & 1) == 0)
13111 {
13112 REAL_VALUE_TYPE cint;
13113 real_from_integer (&cint, VOIDmode, n, SIGNED);
13114 if (real_identical (&c, &cint))
13115 return true;
13116 }
13117 }
13118 return RECURSE (arg0);
13119
13120 default:
13121 break;
13122 }
13123 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type);
13124 }
13125
13126 /* Return true if T is known to be non-negative. If the return
13127 value is based on the assumption that signed overflow is undefined,
13128 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13129 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13130
13131 static bool
13132 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13133 {
13134 enum tree_code code = TREE_CODE (t);
13135 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13136 return true;
13137
13138 switch (code)
13139 {
13140 case TARGET_EXPR:
13141 {
13142 tree temp = TARGET_EXPR_SLOT (t);
13143 t = TARGET_EXPR_INITIAL (t);
13144
13145 /* If the initializer is non-void, then it's a normal expression
13146 that will be assigned to the slot. */
13147 if (!VOID_TYPE_P (t))
13148 return RECURSE (t);
13149
13150 /* Otherwise, the initializer sets the slot in some way. One common
13151 way is an assignment statement at the end of the initializer. */
13152 while (1)
13153 {
13154 if (TREE_CODE (t) == BIND_EXPR)
13155 t = expr_last (BIND_EXPR_BODY (t));
13156 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13157 || TREE_CODE (t) == TRY_CATCH_EXPR)
13158 t = expr_last (TREE_OPERAND (t, 0));
13159 else if (TREE_CODE (t) == STATEMENT_LIST)
13160 t = expr_last (t);
13161 else
13162 break;
13163 }
13164 if (TREE_CODE (t) == MODIFY_EXPR
13165 && TREE_OPERAND (t, 0) == temp)
13166 return RECURSE (TREE_OPERAND (t, 1));
13167
13168 return false;
13169 }
13170
13171 case CALL_EXPR:
13172 {
13173 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
13174 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
13175
13176 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
13177 get_call_combined_fn (t),
13178 arg0,
13179 arg1,
13180 strict_overflow_p, depth);
13181 }
13182 case COMPOUND_EXPR:
13183 case MODIFY_EXPR:
13184 return RECURSE (TREE_OPERAND (t, 1));
13185
13186 case BIND_EXPR:
13187 return RECURSE (expr_last (TREE_OPERAND (t, 1)));
13188
13189 case SAVE_EXPR:
13190 return RECURSE (TREE_OPERAND (t, 0));
13191
13192 default:
13193 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13194 }
13195 }
13196
13197 #undef RECURSE
13198 #undef tree_expr_nonnegative_warnv_p
13199
13200 /* Return true if T is known to be non-negative. If the return
13201 value is based on the assumption that signed overflow is undefined,
13202 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13203 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13204
13205 bool
13206 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13207 {
13208 enum tree_code code;
13209 if (t == error_mark_node)
13210 return false;
13211
13212 code = TREE_CODE (t);
13213 switch (TREE_CODE_CLASS (code))
13214 {
13215 case tcc_binary:
13216 case tcc_comparison:
13217 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13218 TREE_TYPE (t),
13219 TREE_OPERAND (t, 0),
13220 TREE_OPERAND (t, 1),
13221 strict_overflow_p, depth);
13222
13223 case tcc_unary:
13224 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13225 TREE_TYPE (t),
13226 TREE_OPERAND (t, 0),
13227 strict_overflow_p, depth);
13228
13229 case tcc_constant:
13230 case tcc_declaration:
13231 case tcc_reference:
13232 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13233
13234 default:
13235 break;
13236 }
13237
13238 switch (code)
13239 {
13240 case TRUTH_AND_EXPR:
13241 case TRUTH_OR_EXPR:
13242 case TRUTH_XOR_EXPR:
13243 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13244 TREE_TYPE (t),
13245 TREE_OPERAND (t, 0),
13246 TREE_OPERAND (t, 1),
13247 strict_overflow_p, depth);
13248 case TRUTH_NOT_EXPR:
13249 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13250 TREE_TYPE (t),
13251 TREE_OPERAND (t, 0),
13252 strict_overflow_p, depth);
13253
13254 case COND_EXPR:
13255 case CONSTRUCTOR:
13256 case OBJ_TYPE_REF:
13257 case ASSERT_EXPR:
13258 case ADDR_EXPR:
13259 case WITH_SIZE_EXPR:
13260 case SSA_NAME:
13261 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13262
13263 default:
13264 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth);
13265 }
13266 }
13267
13268 /* Return true if `t' is known to be non-negative. Handle warnings
13269 about undefined signed overflow. */
13270
13271 bool
13272 tree_expr_nonnegative_p (tree t)
13273 {
13274 bool ret, strict_overflow_p;
13275
13276 strict_overflow_p = false;
13277 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13278 if (strict_overflow_p)
13279 fold_overflow_warning (("assuming signed overflow does not occur when "
13280 "determining that expression is always "
13281 "non-negative"),
13282 WARN_STRICT_OVERFLOW_MISC);
13283 return ret;
13284 }
13285
13286
13287 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13288 For floating point we further ensure that T is not denormal.
13289 Similar logic is present in nonzero_address in rtlanal.h.
13290
13291 If the return value is based on the assumption that signed overflow
13292 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13293 change *STRICT_OVERFLOW_P. */
13294
13295 bool
13296 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13297 bool *strict_overflow_p)
13298 {
13299 switch (code)
13300 {
13301 case ABS_EXPR:
13302 return tree_expr_nonzero_warnv_p (op0,
13303 strict_overflow_p);
13304
13305 case NOP_EXPR:
13306 {
13307 tree inner_type = TREE_TYPE (op0);
13308 tree outer_type = type;
13309
13310 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13311 && tree_expr_nonzero_warnv_p (op0,
13312 strict_overflow_p));
13313 }
13314 break;
13315
13316 case NON_LVALUE_EXPR:
13317 return tree_expr_nonzero_warnv_p (op0,
13318 strict_overflow_p);
13319
13320 default:
13321 break;
13322 }
13323
13324 return false;
13325 }
13326
13327 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13328 For floating point we further ensure that T is not denormal.
13329 Similar logic is present in nonzero_address in rtlanal.h.
13330
13331 If the return value is based on the assumption that signed overflow
13332 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13333 change *STRICT_OVERFLOW_P. */
13334
13335 bool
13336 tree_binary_nonzero_warnv_p (enum tree_code code,
13337 tree type,
13338 tree op0,
13339 tree op1, bool *strict_overflow_p)
13340 {
13341 bool sub_strict_overflow_p;
13342 switch (code)
13343 {
13344 case POINTER_PLUS_EXPR:
13345 case PLUS_EXPR:
13346 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13347 {
13348 /* With the presence of negative values it is hard
13349 to say something. */
13350 sub_strict_overflow_p = false;
13351 if (!tree_expr_nonnegative_warnv_p (op0,
13352 &sub_strict_overflow_p)
13353 || !tree_expr_nonnegative_warnv_p (op1,
13354 &sub_strict_overflow_p))
13355 return false;
13356 /* One of operands must be positive and the other non-negative. */
13357 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13358 overflows, on a twos-complement machine the sum of two
13359 nonnegative numbers can never be zero. */
13360 return (tree_expr_nonzero_warnv_p (op0,
13361 strict_overflow_p)
13362 || tree_expr_nonzero_warnv_p (op1,
13363 strict_overflow_p));
13364 }
13365 break;
13366
13367 case MULT_EXPR:
13368 if (TYPE_OVERFLOW_UNDEFINED (type))
13369 {
13370 if (tree_expr_nonzero_warnv_p (op0,
13371 strict_overflow_p)
13372 && tree_expr_nonzero_warnv_p (op1,
13373 strict_overflow_p))
13374 {
13375 *strict_overflow_p = true;
13376 return true;
13377 }
13378 }
13379 break;
13380
13381 case MIN_EXPR:
13382 sub_strict_overflow_p = false;
13383 if (tree_expr_nonzero_warnv_p (op0,
13384 &sub_strict_overflow_p)
13385 && tree_expr_nonzero_warnv_p (op1,
13386 &sub_strict_overflow_p))
13387 {
13388 if (sub_strict_overflow_p)
13389 *strict_overflow_p = true;
13390 }
13391 break;
13392
13393 case MAX_EXPR:
13394 sub_strict_overflow_p = false;
13395 if (tree_expr_nonzero_warnv_p (op0,
13396 &sub_strict_overflow_p))
13397 {
13398 if (sub_strict_overflow_p)
13399 *strict_overflow_p = true;
13400
13401 /* When both operands are nonzero, then MAX must be too. */
13402 if (tree_expr_nonzero_warnv_p (op1,
13403 strict_overflow_p))
13404 return true;
13405
13406 /* MAX where operand 0 is positive is positive. */
13407 return tree_expr_nonnegative_warnv_p (op0,
13408 strict_overflow_p);
13409 }
13410 /* MAX where operand 1 is positive is positive. */
13411 else if (tree_expr_nonzero_warnv_p (op1,
13412 &sub_strict_overflow_p)
13413 && tree_expr_nonnegative_warnv_p (op1,
13414 &sub_strict_overflow_p))
13415 {
13416 if (sub_strict_overflow_p)
13417 *strict_overflow_p = true;
13418 return true;
13419 }
13420 break;
13421
13422 case BIT_IOR_EXPR:
13423 return (tree_expr_nonzero_warnv_p (op1,
13424 strict_overflow_p)
13425 || tree_expr_nonzero_warnv_p (op0,
13426 strict_overflow_p));
13427
13428 default:
13429 break;
13430 }
13431
13432 return false;
13433 }
13434
13435 /* Return true when T is an address and is known to be nonzero.
13436 For floating point we further ensure that T is not denormal.
13437 Similar logic is present in nonzero_address in rtlanal.h.
13438
13439 If the return value is based on the assumption that signed overflow
13440 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13441 change *STRICT_OVERFLOW_P. */
13442
13443 bool
13444 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
13445 {
13446 bool sub_strict_overflow_p;
13447 switch (TREE_CODE (t))
13448 {
13449 case INTEGER_CST:
13450 return !integer_zerop (t);
13451
13452 case ADDR_EXPR:
13453 {
13454 tree base = TREE_OPERAND (t, 0);
13455
13456 if (!DECL_P (base))
13457 base = get_base_address (base);
13458
13459 if (!base)
13460 return false;
13461
13462 /* For objects in symbol table check if we know they are non-zero.
13463 Don't do anything for variables and functions before symtab is built;
13464 it is quite possible that they will be declared weak later. */
13465 if (DECL_P (base) && decl_in_symtab_p (base))
13466 {
13467 struct symtab_node *symbol;
13468
13469 symbol = symtab_node::get_create (base);
13470 if (symbol)
13471 return symbol->nonzero_address ();
13472 else
13473 return false;
13474 }
13475
13476 /* Function local objects are never NULL. */
13477 if (DECL_P (base)
13478 && (DECL_CONTEXT (base)
13479 && TREE_CODE (DECL_CONTEXT (base)) == FUNCTION_DECL
13480 && auto_var_in_fn_p (base, DECL_CONTEXT (base))))
13481 return true;
13482
13483 /* Constants are never weak. */
13484 if (CONSTANT_CLASS_P (base))
13485 return true;
13486
13487 return false;
13488 }
13489
13490 case COND_EXPR:
13491 sub_strict_overflow_p = false;
13492 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13493 &sub_strict_overflow_p)
13494 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
13495 &sub_strict_overflow_p))
13496 {
13497 if (sub_strict_overflow_p)
13498 *strict_overflow_p = true;
13499 return true;
13500 }
13501 break;
13502
13503 default:
13504 break;
13505 }
13506 return false;
13507 }
13508
13509 #define integer_valued_real_p(X) \
13510 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13511
13512 #define RECURSE(X) \
13513 ((integer_valued_real_p) (X, depth + 1))
13514
13515 /* Return true if the floating point result of (CODE OP0) has an
13516 integer value. We also allow +Inf, -Inf and NaN to be considered
13517 integer values. Return false for signaling NaN.
13518
13519 DEPTH is the current nesting depth of the query. */
13520
13521 bool
13522 integer_valued_real_unary_p (tree_code code, tree op0, int depth)
13523 {
13524 switch (code)
13525 {
13526 case FLOAT_EXPR:
13527 return true;
13528
13529 case ABS_EXPR:
13530 return RECURSE (op0);
13531
13532 CASE_CONVERT:
13533 {
13534 tree type = TREE_TYPE (op0);
13535 if (TREE_CODE (type) == INTEGER_TYPE)
13536 return true;
13537 if (TREE_CODE (type) == REAL_TYPE)
13538 return RECURSE (op0);
13539 break;
13540 }
13541
13542 default:
13543 break;
13544 }
13545 return false;
13546 }
13547
13548 /* Return true if the floating point result of (CODE OP0 OP1) has an
13549 integer value. We also allow +Inf, -Inf and NaN to be considered
13550 integer values. Return false for signaling NaN.
13551
13552 DEPTH is the current nesting depth of the query. */
13553
13554 bool
13555 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth)
13556 {
13557 switch (code)
13558 {
13559 case PLUS_EXPR:
13560 case MINUS_EXPR:
13561 case MULT_EXPR:
13562 case MIN_EXPR:
13563 case MAX_EXPR:
13564 return RECURSE (op0) && RECURSE (op1);
13565
13566 default:
13567 break;
13568 }
13569 return false;
13570 }
13571
13572 /* Return true if the floating point result of calling FNDECL with arguments
13573 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13574 considered integer values. Return false for signaling NaN. If FNDECL
13575 takes fewer than 2 arguments, the remaining ARGn are null.
13576
13577 DEPTH is the current nesting depth of the query. */
13578
13579 bool
13580 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth)
13581 {
13582 switch (fn)
13583 {
13584 CASE_CFN_CEIL:
13585 CASE_CFN_FLOOR:
13586 CASE_CFN_NEARBYINT:
13587 CASE_CFN_RINT:
13588 CASE_CFN_ROUND:
13589 CASE_CFN_TRUNC:
13590 return true;
13591
13592 CASE_CFN_FMIN:
13593 CASE_CFN_FMAX:
13594 return RECURSE (arg0) && RECURSE (arg1);
13595
13596 default:
13597 break;
13598 }
13599 return false;
13600 }
13601
13602 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13603 has an integer value. We also allow +Inf, -Inf and NaN to be
13604 considered integer values. Return false for signaling NaN.
13605
13606 DEPTH is the current nesting depth of the query. */
13607
13608 bool
13609 integer_valued_real_single_p (tree t, int depth)
13610 {
13611 switch (TREE_CODE (t))
13612 {
13613 case REAL_CST:
13614 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
13615
13616 case COND_EXPR:
13617 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
13618
13619 case SSA_NAME:
13620 /* Limit the depth of recursion to avoid quadratic behavior.
13621 This is expected to catch almost all occurrences in practice.
13622 If this code misses important cases that unbounded recursion
13623 would not, passes that need this information could be revised
13624 to provide it through dataflow propagation. */
13625 return (!name_registered_for_update_p (t)
13626 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
13627 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t),
13628 depth));
13629
13630 default:
13631 break;
13632 }
13633 return false;
13634 }
13635
13636 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13637 has an integer value. We also allow +Inf, -Inf and NaN to be
13638 considered integer values. Return false for signaling NaN.
13639
13640 DEPTH is the current nesting depth of the query. */
13641
13642 static bool
13643 integer_valued_real_invalid_p (tree t, int depth)
13644 {
13645 switch (TREE_CODE (t))
13646 {
13647 case COMPOUND_EXPR:
13648 case MODIFY_EXPR:
13649 case BIND_EXPR:
13650 return RECURSE (TREE_OPERAND (t, 1));
13651
13652 case SAVE_EXPR:
13653 return RECURSE (TREE_OPERAND (t, 0));
13654
13655 default:
13656 break;
13657 }
13658 return false;
13659 }
13660
13661 #undef RECURSE
13662 #undef integer_valued_real_p
13663
13664 /* Return true if the floating point expression T has an integer value.
13665 We also allow +Inf, -Inf and NaN to be considered integer values.
13666 Return false for signaling NaN.
13667
13668 DEPTH is the current nesting depth of the query. */
13669
13670 bool
13671 integer_valued_real_p (tree t, int depth)
13672 {
13673 if (t == error_mark_node)
13674 return false;
13675
13676 tree_code code = TREE_CODE (t);
13677 switch (TREE_CODE_CLASS (code))
13678 {
13679 case tcc_binary:
13680 case tcc_comparison:
13681 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0),
13682 TREE_OPERAND (t, 1), depth);
13683
13684 case tcc_unary:
13685 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth);
13686
13687 case tcc_constant:
13688 case tcc_declaration:
13689 case tcc_reference:
13690 return integer_valued_real_single_p (t, depth);
13691
13692 default:
13693 break;
13694 }
13695
13696 switch (code)
13697 {
13698 case COND_EXPR:
13699 case SSA_NAME:
13700 return integer_valued_real_single_p (t, depth);
13701
13702 case CALL_EXPR:
13703 {
13704 tree arg0 = (call_expr_nargs (t) > 0
13705 ? CALL_EXPR_ARG (t, 0)
13706 : NULL_TREE);
13707 tree arg1 = (call_expr_nargs (t) > 1
13708 ? CALL_EXPR_ARG (t, 1)
13709 : NULL_TREE);
13710 return integer_valued_real_call_p (get_call_combined_fn (t),
13711 arg0, arg1, depth);
13712 }
13713
13714 default:
13715 return integer_valued_real_invalid_p (t, depth);
13716 }
13717 }
13718
13719 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13720 attempt to fold the expression to a constant without modifying TYPE,
13721 OP0 or OP1.
13722
13723 If the expression could be simplified to a constant, then return
13724 the constant. If the expression would not be simplified to a
13725 constant, then return NULL_TREE. */
13726
13727 tree
13728 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
13729 {
13730 tree tem = fold_binary (code, type, op0, op1);
13731 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13732 }
13733
13734 /* Given the components of a unary expression CODE, TYPE and OP0,
13735 attempt to fold the expression to a constant without modifying
13736 TYPE or OP0.
13737
13738 If the expression could be simplified to a constant, then return
13739 the constant. If the expression would not be simplified to a
13740 constant, then return NULL_TREE. */
13741
13742 tree
13743 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
13744 {
13745 tree tem = fold_unary (code, type, op0);
13746 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13747 }
13748
13749 /* If EXP represents referencing an element in a constant string
13750 (either via pointer arithmetic or array indexing), return the
13751 tree representing the value accessed, otherwise return NULL. */
13752
13753 tree
13754 fold_read_from_constant_string (tree exp)
13755 {
13756 if ((TREE_CODE (exp) == INDIRECT_REF
13757 || TREE_CODE (exp) == ARRAY_REF)
13758 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
13759 {
13760 tree exp1 = TREE_OPERAND (exp, 0);
13761 tree index;
13762 tree string;
13763 location_t loc = EXPR_LOCATION (exp);
13764
13765 if (TREE_CODE (exp) == INDIRECT_REF)
13766 string = string_constant (exp1, &index);
13767 else
13768 {
13769 tree low_bound = array_ref_low_bound (exp);
13770 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
13771
13772 /* Optimize the special-case of a zero lower bound.
13773
13774 We convert the low_bound to sizetype to avoid some problems
13775 with constant folding. (E.g. suppose the lower bound is 1,
13776 and its mode is QI. Without the conversion,l (ARRAY
13777 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13778 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13779 if (! integer_zerop (low_bound))
13780 index = size_diffop_loc (loc, index,
13781 fold_convert_loc (loc, sizetype, low_bound));
13782
13783 string = exp1;
13784 }
13785
13786 if (string
13787 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
13788 && TREE_CODE (string) == STRING_CST
13789 && TREE_CODE (index) == INTEGER_CST
13790 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
13791 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
13792 == MODE_INT)
13793 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
13794 return build_int_cst_type (TREE_TYPE (exp),
13795 (TREE_STRING_POINTER (string)
13796 [TREE_INT_CST_LOW (index)]));
13797 }
13798 return NULL;
13799 }
13800
13801 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13802 an integer constant, real, or fixed-point constant.
13803
13804 TYPE is the type of the result. */
13805
13806 static tree
13807 fold_negate_const (tree arg0, tree type)
13808 {
13809 tree t = NULL_TREE;
13810
13811 switch (TREE_CODE (arg0))
13812 {
13813 case INTEGER_CST:
13814 {
13815 bool overflow;
13816 wide_int val = wi::neg (arg0, &overflow);
13817 t = force_fit_type (type, val, 1,
13818 (overflow | TREE_OVERFLOW (arg0))
13819 && !TYPE_UNSIGNED (type));
13820 break;
13821 }
13822
13823 case REAL_CST:
13824 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13825 break;
13826
13827 case FIXED_CST:
13828 {
13829 FIXED_VALUE_TYPE f;
13830 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
13831 &(TREE_FIXED_CST (arg0)), NULL,
13832 TYPE_SATURATING (type));
13833 t = build_fixed (type, f);
13834 /* Propagate overflow flags. */
13835 if (overflow_p | TREE_OVERFLOW (arg0))
13836 TREE_OVERFLOW (t) = 1;
13837 break;
13838 }
13839
13840 default:
13841 gcc_unreachable ();
13842 }
13843
13844 return t;
13845 }
13846
13847 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13848 an integer constant or real constant.
13849
13850 TYPE is the type of the result. */
13851
13852 tree
13853 fold_abs_const (tree arg0, tree type)
13854 {
13855 tree t = NULL_TREE;
13856
13857 switch (TREE_CODE (arg0))
13858 {
13859 case INTEGER_CST:
13860 {
13861 /* If the value is unsigned or non-negative, then the absolute value
13862 is the same as the ordinary value. */
13863 if (!wi::neg_p (arg0, TYPE_SIGN (type)))
13864 t = arg0;
13865
13866 /* If the value is negative, then the absolute value is
13867 its negation. */
13868 else
13869 {
13870 bool overflow;
13871 wide_int val = wi::neg (arg0, &overflow);
13872 t = force_fit_type (type, val, -1,
13873 overflow | TREE_OVERFLOW (arg0));
13874 }
13875 }
13876 break;
13877
13878 case REAL_CST:
13879 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
13880 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13881 else
13882 t = arg0;
13883 break;
13884
13885 default:
13886 gcc_unreachable ();
13887 }
13888
13889 return t;
13890 }
13891
13892 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13893 constant. TYPE is the type of the result. */
13894
13895 static tree
13896 fold_not_const (const_tree arg0, tree type)
13897 {
13898 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
13899
13900 return force_fit_type (type, wi::bit_not (arg0), 0, TREE_OVERFLOW (arg0));
13901 }
13902
13903 /* Given CODE, a relational operator, the target type, TYPE and two
13904 constant operands OP0 and OP1, return the result of the
13905 relational operation. If the result is not a compile time
13906 constant, then return NULL_TREE. */
13907
13908 static tree
13909 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
13910 {
13911 int result, invert;
13912
13913 /* From here on, the only cases we handle are when the result is
13914 known to be a constant. */
13915
13916 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
13917 {
13918 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
13919 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
13920
13921 /* Handle the cases where either operand is a NaN. */
13922 if (real_isnan (c0) || real_isnan (c1))
13923 {
13924 switch (code)
13925 {
13926 case EQ_EXPR:
13927 case ORDERED_EXPR:
13928 result = 0;
13929 break;
13930
13931 case NE_EXPR:
13932 case UNORDERED_EXPR:
13933 case UNLT_EXPR:
13934 case UNLE_EXPR:
13935 case UNGT_EXPR:
13936 case UNGE_EXPR:
13937 case UNEQ_EXPR:
13938 result = 1;
13939 break;
13940
13941 case LT_EXPR:
13942 case LE_EXPR:
13943 case GT_EXPR:
13944 case GE_EXPR:
13945 case LTGT_EXPR:
13946 if (flag_trapping_math)
13947 return NULL_TREE;
13948 result = 0;
13949 break;
13950
13951 default:
13952 gcc_unreachable ();
13953 }
13954
13955 return constant_boolean_node (result, type);
13956 }
13957
13958 return constant_boolean_node (real_compare (code, c0, c1), type);
13959 }
13960
13961 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
13962 {
13963 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
13964 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
13965 return constant_boolean_node (fixed_compare (code, c0, c1), type);
13966 }
13967
13968 /* Handle equality/inequality of complex constants. */
13969 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
13970 {
13971 tree rcond = fold_relational_const (code, type,
13972 TREE_REALPART (op0),
13973 TREE_REALPART (op1));
13974 tree icond = fold_relational_const (code, type,
13975 TREE_IMAGPART (op0),
13976 TREE_IMAGPART (op1));
13977 if (code == EQ_EXPR)
13978 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
13979 else if (code == NE_EXPR)
13980 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
13981 else
13982 return NULL_TREE;
13983 }
13984
13985 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
13986 {
13987 unsigned count = VECTOR_CST_NELTS (op0);
13988 tree *elts = XALLOCAVEC (tree, count);
13989 gcc_assert (VECTOR_CST_NELTS (op1) == count
13990 && TYPE_VECTOR_SUBPARTS (type) == count);
13991
13992 for (unsigned i = 0; i < count; i++)
13993 {
13994 tree elem_type = TREE_TYPE (type);
13995 tree elem0 = VECTOR_CST_ELT (op0, i);
13996 tree elem1 = VECTOR_CST_ELT (op1, i);
13997
13998 tree tem = fold_relational_const (code, elem_type,
13999 elem0, elem1);
14000
14001 if (tem == NULL_TREE)
14002 return NULL_TREE;
14003
14004 elts[i] = build_int_cst (elem_type, integer_zerop (tem) ? 0 : -1);
14005 }
14006
14007 return build_vector (type, elts);
14008 }
14009
14010 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14011
14012 To compute GT, swap the arguments and do LT.
14013 To compute GE, do LT and invert the result.
14014 To compute LE, swap the arguments, do LT and invert the result.
14015 To compute NE, do EQ and invert the result.
14016
14017 Therefore, the code below must handle only EQ and LT. */
14018
14019 if (code == LE_EXPR || code == GT_EXPR)
14020 {
14021 std::swap (op0, op1);
14022 code = swap_tree_comparison (code);
14023 }
14024
14025 /* Note that it is safe to invert for real values here because we
14026 have already handled the one case that it matters. */
14027
14028 invert = 0;
14029 if (code == NE_EXPR || code == GE_EXPR)
14030 {
14031 invert = 1;
14032 code = invert_tree_comparison (code, false);
14033 }
14034
14035 /* Compute a result for LT or EQ if args permit;
14036 Otherwise return T. */
14037 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
14038 {
14039 if (code == EQ_EXPR)
14040 result = tree_int_cst_equal (op0, op1);
14041 else
14042 result = tree_int_cst_lt (op0, op1);
14043 }
14044 else
14045 return NULL_TREE;
14046
14047 if (invert)
14048 result ^= 1;
14049 return constant_boolean_node (result, type);
14050 }
14051
14052 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14053 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14054 itself. */
14055
14056 tree
14057 fold_build_cleanup_point_expr (tree type, tree expr)
14058 {
14059 /* If the expression does not have side effects then we don't have to wrap
14060 it with a cleanup point expression. */
14061 if (!TREE_SIDE_EFFECTS (expr))
14062 return expr;
14063
14064 /* If the expression is a return, check to see if the expression inside the
14065 return has no side effects or the right hand side of the modify expression
14066 inside the return. If either don't have side effects set we don't need to
14067 wrap the expression in a cleanup point expression. Note we don't check the
14068 left hand side of the modify because it should always be a return decl. */
14069 if (TREE_CODE (expr) == RETURN_EXPR)
14070 {
14071 tree op = TREE_OPERAND (expr, 0);
14072 if (!op || !TREE_SIDE_EFFECTS (op))
14073 return expr;
14074 op = TREE_OPERAND (op, 1);
14075 if (!TREE_SIDE_EFFECTS (op))
14076 return expr;
14077 }
14078
14079 return build1 (CLEANUP_POINT_EXPR, type, expr);
14080 }
14081
14082 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14083 of an indirection through OP0, or NULL_TREE if no simplification is
14084 possible. */
14085
14086 tree
14087 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
14088 {
14089 tree sub = op0;
14090 tree subtype;
14091
14092 STRIP_NOPS (sub);
14093 subtype = TREE_TYPE (sub);
14094 if (!POINTER_TYPE_P (subtype))
14095 return NULL_TREE;
14096
14097 if (TREE_CODE (sub) == ADDR_EXPR)
14098 {
14099 tree op = TREE_OPERAND (sub, 0);
14100 tree optype = TREE_TYPE (op);
14101 /* *&CONST_DECL -> to the value of the const decl. */
14102 if (TREE_CODE (op) == CONST_DECL)
14103 return DECL_INITIAL (op);
14104 /* *&p => p; make sure to handle *&"str"[cst] here. */
14105 if (type == optype)
14106 {
14107 tree fop = fold_read_from_constant_string (op);
14108 if (fop)
14109 return fop;
14110 else
14111 return op;
14112 }
14113 /* *(foo *)&fooarray => fooarray[0] */
14114 else if (TREE_CODE (optype) == ARRAY_TYPE
14115 && type == TREE_TYPE (optype)
14116 && (!in_gimple_form
14117 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14118 {
14119 tree type_domain = TYPE_DOMAIN (optype);
14120 tree min_val = size_zero_node;
14121 if (type_domain && TYPE_MIN_VALUE (type_domain))
14122 min_val = TYPE_MIN_VALUE (type_domain);
14123 if (in_gimple_form
14124 && TREE_CODE (min_val) != INTEGER_CST)
14125 return NULL_TREE;
14126 return build4_loc (loc, ARRAY_REF, type, op, min_val,
14127 NULL_TREE, NULL_TREE);
14128 }
14129 /* *(foo *)&complexfoo => __real__ complexfoo */
14130 else if (TREE_CODE (optype) == COMPLEX_TYPE
14131 && type == TREE_TYPE (optype))
14132 return fold_build1_loc (loc, REALPART_EXPR, type, op);
14133 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14134 else if (TREE_CODE (optype) == VECTOR_TYPE
14135 && type == TREE_TYPE (optype))
14136 {
14137 tree part_width = TYPE_SIZE (type);
14138 tree index = bitsize_int (0);
14139 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
14140 }
14141 }
14142
14143 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14144 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
14145 {
14146 tree op00 = TREE_OPERAND (sub, 0);
14147 tree op01 = TREE_OPERAND (sub, 1);
14148
14149 STRIP_NOPS (op00);
14150 if (TREE_CODE (op00) == ADDR_EXPR)
14151 {
14152 tree op00type;
14153 op00 = TREE_OPERAND (op00, 0);
14154 op00type = TREE_TYPE (op00);
14155
14156 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14157 if (TREE_CODE (op00type) == VECTOR_TYPE
14158 && type == TREE_TYPE (op00type))
14159 {
14160 HOST_WIDE_INT offset = tree_to_shwi (op01);
14161 tree part_width = TYPE_SIZE (type);
14162 unsigned HOST_WIDE_INT part_widthi = tree_to_shwi (part_width)/BITS_PER_UNIT;
14163 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
14164 tree index = bitsize_int (indexi);
14165
14166 if (offset / part_widthi < TYPE_VECTOR_SUBPARTS (op00type))
14167 return fold_build3_loc (loc,
14168 BIT_FIELD_REF, type, op00,
14169 part_width, index);
14170
14171 }
14172 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14173 else if (TREE_CODE (op00type) == COMPLEX_TYPE
14174 && type == TREE_TYPE (op00type))
14175 {
14176 tree size = TYPE_SIZE_UNIT (type);
14177 if (tree_int_cst_equal (size, op01))
14178 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14179 }
14180 /* ((foo *)&fooarray)[1] => fooarray[1] */
14181 else if (TREE_CODE (op00type) == ARRAY_TYPE
14182 && type == TREE_TYPE (op00type))
14183 {
14184 tree type_domain = TYPE_DOMAIN (op00type);
14185 tree min_val = size_zero_node;
14186 if (type_domain && TYPE_MIN_VALUE (type_domain))
14187 min_val = TYPE_MIN_VALUE (type_domain);
14188 op01 = size_binop_loc (loc, EXACT_DIV_EXPR, op01,
14189 TYPE_SIZE_UNIT (type));
14190 op01 = size_binop_loc (loc, PLUS_EXPR, op01, min_val);
14191 return build4_loc (loc, ARRAY_REF, type, op00, op01,
14192 NULL_TREE, NULL_TREE);
14193 }
14194 }
14195 }
14196
14197 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14198 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14199 && type == TREE_TYPE (TREE_TYPE (subtype))
14200 && (!in_gimple_form
14201 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14202 {
14203 tree type_domain;
14204 tree min_val = size_zero_node;
14205 sub = build_fold_indirect_ref_loc (loc, sub);
14206 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14207 if (type_domain && TYPE_MIN_VALUE (type_domain))
14208 min_val = TYPE_MIN_VALUE (type_domain);
14209 if (in_gimple_form
14210 && TREE_CODE (min_val) != INTEGER_CST)
14211 return NULL_TREE;
14212 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
14213 NULL_TREE);
14214 }
14215
14216 return NULL_TREE;
14217 }
14218
14219 /* Builds an expression for an indirection through T, simplifying some
14220 cases. */
14221
14222 tree
14223 build_fold_indirect_ref_loc (location_t loc, tree t)
14224 {
14225 tree type = TREE_TYPE (TREE_TYPE (t));
14226 tree sub = fold_indirect_ref_1 (loc, type, t);
14227
14228 if (sub)
14229 return sub;
14230
14231 return build1_loc (loc, INDIRECT_REF, type, t);
14232 }
14233
14234 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14235
14236 tree
14237 fold_indirect_ref_loc (location_t loc, tree t)
14238 {
14239 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14240
14241 if (sub)
14242 return sub;
14243 else
14244 return t;
14245 }
14246
14247 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14248 whose result is ignored. The type of the returned tree need not be
14249 the same as the original expression. */
14250
14251 tree
14252 fold_ignored_result (tree t)
14253 {
14254 if (!TREE_SIDE_EFFECTS (t))
14255 return integer_zero_node;
14256
14257 for (;;)
14258 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14259 {
14260 case tcc_unary:
14261 t = TREE_OPERAND (t, 0);
14262 break;
14263
14264 case tcc_binary:
14265 case tcc_comparison:
14266 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14267 t = TREE_OPERAND (t, 0);
14268 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14269 t = TREE_OPERAND (t, 1);
14270 else
14271 return t;
14272 break;
14273
14274 case tcc_expression:
14275 switch (TREE_CODE (t))
14276 {
14277 case COMPOUND_EXPR:
14278 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14279 return t;
14280 t = TREE_OPERAND (t, 0);
14281 break;
14282
14283 case COND_EXPR:
14284 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14285 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14286 return t;
14287 t = TREE_OPERAND (t, 0);
14288 break;
14289
14290 default:
14291 return t;
14292 }
14293 break;
14294
14295 default:
14296 return t;
14297 }
14298 }
14299
14300 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14301
14302 tree
14303 round_up_loc (location_t loc, tree value, unsigned int divisor)
14304 {
14305 tree div = NULL_TREE;
14306
14307 if (divisor == 1)
14308 return value;
14309
14310 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14311 have to do anything. Only do this when we are not given a const,
14312 because in that case, this check is more expensive than just
14313 doing it. */
14314 if (TREE_CODE (value) != INTEGER_CST)
14315 {
14316 div = build_int_cst (TREE_TYPE (value), divisor);
14317
14318 if (multiple_of_p (TREE_TYPE (value), value, div))
14319 return value;
14320 }
14321
14322 /* If divisor is a power of two, simplify this to bit manipulation. */
14323 if (divisor == (divisor & -divisor))
14324 {
14325 if (TREE_CODE (value) == INTEGER_CST)
14326 {
14327 wide_int val = value;
14328 bool overflow_p;
14329
14330 if ((val & (divisor - 1)) == 0)
14331 return value;
14332
14333 overflow_p = TREE_OVERFLOW (value);
14334 val += divisor - 1;
14335 val &= - (int) divisor;
14336 if (val == 0)
14337 overflow_p = true;
14338
14339 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14340 }
14341 else
14342 {
14343 tree t;
14344
14345 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14346 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14347 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14348 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14349 }
14350 }
14351 else
14352 {
14353 if (!div)
14354 div = build_int_cst (TREE_TYPE (value), divisor);
14355 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14356 value = size_binop_loc (loc, MULT_EXPR, value, div);
14357 }
14358
14359 return value;
14360 }
14361
14362 /* Likewise, but round down. */
14363
14364 tree
14365 round_down_loc (location_t loc, tree value, int divisor)
14366 {
14367 tree div = NULL_TREE;
14368
14369 gcc_assert (divisor > 0);
14370 if (divisor == 1)
14371 return value;
14372
14373 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14374 have to do anything. Only do this when we are not given a const,
14375 because in that case, this check is more expensive than just
14376 doing it. */
14377 if (TREE_CODE (value) != INTEGER_CST)
14378 {
14379 div = build_int_cst (TREE_TYPE (value), divisor);
14380
14381 if (multiple_of_p (TREE_TYPE (value), value, div))
14382 return value;
14383 }
14384
14385 /* If divisor is a power of two, simplify this to bit manipulation. */
14386 if (divisor == (divisor & -divisor))
14387 {
14388 tree t;
14389
14390 t = build_int_cst (TREE_TYPE (value), -divisor);
14391 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14392 }
14393 else
14394 {
14395 if (!div)
14396 div = build_int_cst (TREE_TYPE (value), divisor);
14397 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
14398 value = size_binop_loc (loc, MULT_EXPR, value, div);
14399 }
14400
14401 return value;
14402 }
14403
14404 /* Returns the pointer to the base of the object addressed by EXP and
14405 extracts the information about the offset of the access, storing it
14406 to PBITPOS and POFFSET. */
14407
14408 static tree
14409 split_address_to_core_and_offset (tree exp,
14410 HOST_WIDE_INT *pbitpos, tree *poffset)
14411 {
14412 tree core;
14413 machine_mode mode;
14414 int unsignedp, reversep, volatilep;
14415 HOST_WIDE_INT bitsize;
14416 location_t loc = EXPR_LOCATION (exp);
14417
14418 if (TREE_CODE (exp) == ADDR_EXPR)
14419 {
14420 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14421 poffset, &mode, &unsignedp, &reversep,
14422 &volatilep, false);
14423 core = build_fold_addr_expr_loc (loc, core);
14424 }
14425 else
14426 {
14427 core = exp;
14428 *pbitpos = 0;
14429 *poffset = NULL_TREE;
14430 }
14431
14432 return core;
14433 }
14434
14435 /* Returns true if addresses of E1 and E2 differ by a constant, false
14436 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14437
14438 bool
14439 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
14440 {
14441 tree core1, core2;
14442 HOST_WIDE_INT bitpos1, bitpos2;
14443 tree toffset1, toffset2, tdiff, type;
14444
14445 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14446 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14447
14448 if (bitpos1 % BITS_PER_UNIT != 0
14449 || bitpos2 % BITS_PER_UNIT != 0
14450 || !operand_equal_p (core1, core2, 0))
14451 return false;
14452
14453 if (toffset1 && toffset2)
14454 {
14455 type = TREE_TYPE (toffset1);
14456 if (type != TREE_TYPE (toffset2))
14457 toffset2 = fold_convert (type, toffset2);
14458
14459 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14460 if (!cst_and_fits_in_hwi (tdiff))
14461 return false;
14462
14463 *diff = int_cst_value (tdiff);
14464 }
14465 else if (toffset1 || toffset2)
14466 {
14467 /* If only one of the offsets is non-constant, the difference cannot
14468 be a constant. */
14469 return false;
14470 }
14471 else
14472 *diff = 0;
14473
14474 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
14475 return true;
14476 }
14477
14478 /* Return OFF converted to a pointer offset type suitable as offset for
14479 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14480 tree
14481 convert_to_ptrofftype_loc (location_t loc, tree off)
14482 {
14483 return fold_convert_loc (loc, sizetype, off);
14484 }
14485
14486 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14487 tree
14488 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
14489 {
14490 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14491 ptr, convert_to_ptrofftype_loc (loc, off));
14492 }
14493
14494 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14495 tree
14496 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
14497 {
14498 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14499 ptr, size_int (off));
14500 }
14501
14502 /* Return a char pointer for a C string if it is a string constant
14503 or sum of string constant and integer constant. */
14504
14505 const char *
14506 c_getstr (tree src)
14507 {
14508 tree offset_node;
14509
14510 src = string_constant (src, &offset_node);
14511 if (src == 0)
14512 return 0;
14513
14514 if (offset_node == 0)
14515 return TREE_STRING_POINTER (src);
14516 else if (!tree_fits_uhwi_p (offset_node)
14517 || compare_tree_int (offset_node, TREE_STRING_LENGTH (src) - 1) > 0)
14518 return 0;
14519
14520 return TREE_STRING_POINTER (src) + tree_to_uhwi (offset_node);
14521 }