Revert hunks not part of last patch.
[gcc.git] / gcc / fold-const.c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
29
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type.
32
33 fold takes a tree as argument and returns a simplified tree.
34
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
38
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
41
42 force_fit_type takes a constant and prior overflow indicator, and
43 forces the value to fit the type. It returns an overflow indicator. */
44
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
49 #include "flags.h"
50 #include "tree.h"
51 #include "real.h"
52 #include "rtl.h"
53 #include "expr.h"
54 #include "tm_p.h"
55 #include "toplev.h"
56 #include "ggc.h"
57 #include "hashtab.h"
58 #include "langhooks.h"
59
60 static void encode PARAMS ((HOST_WIDE_INT *,
61 unsigned HOST_WIDE_INT,
62 HOST_WIDE_INT));
63 static void decode PARAMS ((HOST_WIDE_INT *,
64 unsigned HOST_WIDE_INT *,
65 HOST_WIDE_INT *));
66 static bool negate_expr_p PARAMS ((tree));
67 static tree negate_expr PARAMS ((tree));
68 static tree split_tree PARAMS ((tree, enum tree_code, tree *, tree *,
69 tree *, int));
70 static tree associate_trees PARAMS ((tree, tree, enum tree_code, tree));
71 static tree int_const_binop PARAMS ((enum tree_code, tree, tree, int));
72 static tree const_binop PARAMS ((enum tree_code, tree, tree, int));
73 static hashval_t size_htab_hash PARAMS ((const void *));
74 static int size_htab_eq PARAMS ((const void *, const void *));
75 static tree fold_convert PARAMS ((tree, tree));
76 static enum tree_code invert_tree_comparison PARAMS ((enum tree_code));
77 static enum tree_code swap_tree_comparison PARAMS ((enum tree_code));
78 static int comparison_to_compcode PARAMS ((enum tree_code));
79 static enum tree_code compcode_to_comparison PARAMS ((int));
80 static int truth_value_p PARAMS ((enum tree_code));
81 static int operand_equal_for_comparison_p PARAMS ((tree, tree, tree));
82 static int twoval_comparison_p PARAMS ((tree, tree *, tree *, int *));
83 static tree eval_subst PARAMS ((tree, tree, tree, tree, tree));
84 static tree pedantic_omit_one_operand PARAMS ((tree, tree, tree));
85 static tree distribute_bit_expr PARAMS ((enum tree_code, tree, tree, tree));
86 static tree make_bit_field_ref PARAMS ((tree, tree, int, int, int));
87 static tree optimize_bit_field_compare PARAMS ((enum tree_code, tree,
88 tree, tree));
89 static tree decode_field_reference PARAMS ((tree, HOST_WIDE_INT *,
90 HOST_WIDE_INT *,
91 enum machine_mode *, int *,
92 int *, tree *, tree *));
93 static int all_ones_mask_p PARAMS ((tree, int));
94 static tree sign_bit_p PARAMS ((tree, tree));
95 static int simple_operand_p PARAMS ((tree));
96 static tree range_binop PARAMS ((enum tree_code, tree, tree, int,
97 tree, int));
98 static tree make_range PARAMS ((tree, int *, tree *, tree *));
99 static tree build_range_check PARAMS ((tree, tree, int, tree, tree));
100 static int merge_ranges PARAMS ((int *, tree *, tree *, int, tree, tree,
101 int, tree, tree));
102 static tree fold_range_test PARAMS ((tree));
103 static tree unextend PARAMS ((tree, int, int, tree));
104 static tree fold_truthop PARAMS ((enum tree_code, tree, tree, tree));
105 static tree optimize_minmax_comparison PARAMS ((tree));
106 static tree extract_muldiv PARAMS ((tree, tree, enum tree_code, tree));
107 static tree extract_muldiv_1 PARAMS ((tree, tree, enum tree_code, tree));
108 static tree strip_compound_expr PARAMS ((tree, tree));
109 static int multiple_of_p PARAMS ((tree, tree, tree));
110 static tree constant_boolean_node PARAMS ((int, tree));
111 static int count_cond PARAMS ((tree, int));
112 static tree fold_binary_op_with_conditional_arg
113 PARAMS ((enum tree_code, tree, tree, tree, int));
114 static bool fold_real_zero_addition_p PARAMS ((tree, tree, int));
115 static tree fold_mathfn_compare PARAMS ((enum built_in_function,
116 enum tree_code, tree, tree, tree));
117 static tree fold_inf_compare PARAMS ((enum tree_code, tree, tree, tree));
118
119 /* The following constants represent a bit based encoding of GCC's
120 comparison operators. This encoding simplifies transformations
121 on relational comparison operators, such as AND and OR. */
122 #define COMPCODE_FALSE 0
123 #define COMPCODE_LT 1
124 #define COMPCODE_EQ 2
125 #define COMPCODE_LE 3
126 #define COMPCODE_GT 4
127 #define COMPCODE_NE 5
128 #define COMPCODE_GE 6
129 #define COMPCODE_TRUE 7
130
131 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
132 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
133 and SUM1. Then this yields nonzero if overflow occurred during the
134 addition.
135
136 Overflow occurs if A and B have the same sign, but A and SUM differ in
137 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
138 sign. */
139 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
140 \f
141 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
142 We do that by representing the two-word integer in 4 words, with only
143 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
144 number. The value of the word is LOWPART + HIGHPART * BASE. */
145
146 #define LOWPART(x) \
147 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
148 #define HIGHPART(x) \
149 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
150 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
151
152 /* Unpack a two-word integer into 4 words.
153 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
154 WORDS points to the array of HOST_WIDE_INTs. */
155
156 static void
157 encode (words, low, hi)
158 HOST_WIDE_INT *words;
159 unsigned HOST_WIDE_INT low;
160 HOST_WIDE_INT hi;
161 {
162 words[0] = LOWPART (low);
163 words[1] = HIGHPART (low);
164 words[2] = LOWPART (hi);
165 words[3] = HIGHPART (hi);
166 }
167
168 /* Pack an array of 4 words into a two-word integer.
169 WORDS points to the array of words.
170 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
171
172 static void
173 decode (words, low, hi)
174 HOST_WIDE_INT *words;
175 unsigned HOST_WIDE_INT *low;
176 HOST_WIDE_INT *hi;
177 {
178 *low = words[0] + words[1] * BASE;
179 *hi = words[2] + words[3] * BASE;
180 }
181 \f
182 /* Make the integer constant T valid for its type by setting to 0 or 1 all
183 the bits in the constant that don't belong in the type.
184
185 Return 1 if a signed overflow occurs, 0 otherwise. If OVERFLOW is
186 nonzero, a signed overflow has already occurred in calculating T, so
187 propagate it. */
188
189 int
190 force_fit_type (t, overflow)
191 tree t;
192 int overflow;
193 {
194 unsigned HOST_WIDE_INT low;
195 HOST_WIDE_INT high;
196 unsigned int prec;
197
198 if (TREE_CODE (t) == REAL_CST)
199 {
200 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
201 Consider doing it via real_convert now. */
202 return overflow;
203 }
204
205 else if (TREE_CODE (t) != INTEGER_CST)
206 return overflow;
207
208 low = TREE_INT_CST_LOW (t);
209 high = TREE_INT_CST_HIGH (t);
210
211 if (POINTER_TYPE_P (TREE_TYPE (t)))
212 prec = POINTER_SIZE;
213 else
214 prec = TYPE_PRECISION (TREE_TYPE (t));
215
216 /* First clear all bits that are beyond the type's precision. */
217
218 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
219 ;
220 else if (prec > HOST_BITS_PER_WIDE_INT)
221 TREE_INT_CST_HIGH (t)
222 &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
223 else
224 {
225 TREE_INT_CST_HIGH (t) = 0;
226 if (prec < HOST_BITS_PER_WIDE_INT)
227 TREE_INT_CST_LOW (t) &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
228 }
229
230 /* Unsigned types do not suffer sign extension or overflow unless they
231 are a sizetype. */
232 if (TREE_UNSIGNED (TREE_TYPE (t))
233 && ! (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
234 && TYPE_IS_SIZETYPE (TREE_TYPE (t))))
235 return overflow;
236
237 /* If the value's sign bit is set, extend the sign. */
238 if (prec != 2 * HOST_BITS_PER_WIDE_INT
239 && (prec > HOST_BITS_PER_WIDE_INT
240 ? 0 != (TREE_INT_CST_HIGH (t)
241 & ((HOST_WIDE_INT) 1
242 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
243 : 0 != (TREE_INT_CST_LOW (t)
244 & ((unsigned HOST_WIDE_INT) 1 << (prec - 1)))))
245 {
246 /* Value is negative:
247 set to 1 all the bits that are outside this type's precision. */
248 if (prec > HOST_BITS_PER_WIDE_INT)
249 TREE_INT_CST_HIGH (t)
250 |= ((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
251 else
252 {
253 TREE_INT_CST_HIGH (t) = -1;
254 if (prec < HOST_BITS_PER_WIDE_INT)
255 TREE_INT_CST_LOW (t) |= ((unsigned HOST_WIDE_INT) (-1) << prec);
256 }
257 }
258
259 /* Return nonzero if signed overflow occurred. */
260 return
261 ((overflow | (low ^ TREE_INT_CST_LOW (t)) | (high ^ TREE_INT_CST_HIGH (t)))
262 != 0);
263 }
264 \f
265 /* Add two doubleword integers with doubleword result.
266 Each argument is given as two `HOST_WIDE_INT' pieces.
267 One argument is L1 and H1; the other, L2 and H2.
268 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
269
270 int
271 add_double (l1, h1, l2, h2, lv, hv)
272 unsigned HOST_WIDE_INT l1, l2;
273 HOST_WIDE_INT h1, h2;
274 unsigned HOST_WIDE_INT *lv;
275 HOST_WIDE_INT *hv;
276 {
277 unsigned HOST_WIDE_INT l;
278 HOST_WIDE_INT h;
279
280 l = l1 + l2;
281 h = h1 + h2 + (l < l1);
282
283 *lv = l;
284 *hv = h;
285 return OVERFLOW_SUM_SIGN (h1, h2, h);
286 }
287
288 /* Negate a doubleword integer with doubleword result.
289 Return nonzero if the operation overflows, assuming it's signed.
290 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
291 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
292
293 int
294 neg_double (l1, h1, lv, hv)
295 unsigned HOST_WIDE_INT l1;
296 HOST_WIDE_INT h1;
297 unsigned HOST_WIDE_INT *lv;
298 HOST_WIDE_INT *hv;
299 {
300 if (l1 == 0)
301 {
302 *lv = 0;
303 *hv = - h1;
304 return (*hv & h1) < 0;
305 }
306 else
307 {
308 *lv = -l1;
309 *hv = ~h1;
310 return 0;
311 }
312 }
313 \f
314 /* Multiply two doubleword integers with doubleword result.
315 Return nonzero if the operation overflows, assuming it's signed.
316 Each argument is given as two `HOST_WIDE_INT' pieces.
317 One argument is L1 and H1; the other, L2 and H2.
318 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
319
320 int
321 mul_double (l1, h1, l2, h2, lv, hv)
322 unsigned HOST_WIDE_INT l1, l2;
323 HOST_WIDE_INT h1, h2;
324 unsigned HOST_WIDE_INT *lv;
325 HOST_WIDE_INT *hv;
326 {
327 HOST_WIDE_INT arg1[4];
328 HOST_WIDE_INT arg2[4];
329 HOST_WIDE_INT prod[4 * 2];
330 unsigned HOST_WIDE_INT carry;
331 int i, j, k;
332 unsigned HOST_WIDE_INT toplow, neglow;
333 HOST_WIDE_INT tophigh, neghigh;
334
335 encode (arg1, l1, h1);
336 encode (arg2, l2, h2);
337
338 memset ((char *) prod, 0, sizeof prod);
339
340 for (i = 0; i < 4; i++)
341 {
342 carry = 0;
343 for (j = 0; j < 4; j++)
344 {
345 k = i + j;
346 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
347 carry += arg1[i] * arg2[j];
348 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
349 carry += prod[k];
350 prod[k] = LOWPART (carry);
351 carry = HIGHPART (carry);
352 }
353 prod[i + 4] = carry;
354 }
355
356 decode (prod, lv, hv); /* This ignores prod[4] through prod[4*2-1] */
357
358 /* Check for overflow by calculating the top half of the answer in full;
359 it should agree with the low half's sign bit. */
360 decode (prod + 4, &toplow, &tophigh);
361 if (h1 < 0)
362 {
363 neg_double (l2, h2, &neglow, &neghigh);
364 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
365 }
366 if (h2 < 0)
367 {
368 neg_double (l1, h1, &neglow, &neghigh);
369 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
370 }
371 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
372 }
373 \f
374 /* Shift the doubleword integer in L1, H1 left by COUNT places
375 keeping only PREC bits of result.
376 Shift right if COUNT is negative.
377 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
378 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
379
380 void
381 lshift_double (l1, h1, count, prec, lv, hv, arith)
382 unsigned HOST_WIDE_INT l1;
383 HOST_WIDE_INT h1, count;
384 unsigned int prec;
385 unsigned HOST_WIDE_INT *lv;
386 HOST_WIDE_INT *hv;
387 int arith;
388 {
389 unsigned HOST_WIDE_INT signmask;
390
391 if (count < 0)
392 {
393 rshift_double (l1, h1, -count, prec, lv, hv, arith);
394 return;
395 }
396
397 #ifdef SHIFT_COUNT_TRUNCATED
398 if (SHIFT_COUNT_TRUNCATED)
399 count %= prec;
400 #endif
401
402 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
403 {
404 /* Shifting by the host word size is undefined according to the
405 ANSI standard, so we must handle this as a special case. */
406 *hv = 0;
407 *lv = 0;
408 }
409 else if (count >= HOST_BITS_PER_WIDE_INT)
410 {
411 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
412 *lv = 0;
413 }
414 else
415 {
416 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
417 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
418 *lv = l1 << count;
419 }
420
421 /* Sign extend all bits that are beyond the precision. */
422
423 signmask = -((prec > HOST_BITS_PER_WIDE_INT
424 ? ((unsigned HOST_WIDE_INT) *hv
425 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
426 : (*lv >> (prec - 1))) & 1);
427
428 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
429 ;
430 else if (prec >= HOST_BITS_PER_WIDE_INT)
431 {
432 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
433 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
434 }
435 else
436 {
437 *hv = signmask;
438 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
439 *lv |= signmask << prec;
440 }
441 }
442
443 /* Shift the doubleword integer in L1, H1 right by COUNT places
444 keeping only PREC bits of result. COUNT must be positive.
445 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
446 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
447
448 void
449 rshift_double (l1, h1, count, prec, lv, hv, arith)
450 unsigned HOST_WIDE_INT l1;
451 HOST_WIDE_INT h1, count;
452 unsigned int prec;
453 unsigned HOST_WIDE_INT *lv;
454 HOST_WIDE_INT *hv;
455 int arith;
456 {
457 unsigned HOST_WIDE_INT signmask;
458
459 signmask = (arith
460 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
461 : 0);
462
463 #ifdef SHIFT_COUNT_TRUNCATED
464 if (SHIFT_COUNT_TRUNCATED)
465 count %= prec;
466 #endif
467
468 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
469 {
470 /* Shifting by the host word size is undefined according to the
471 ANSI standard, so we must handle this as a special case. */
472 *hv = 0;
473 *lv = 0;
474 }
475 else if (count >= HOST_BITS_PER_WIDE_INT)
476 {
477 *hv = 0;
478 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
479 }
480 else
481 {
482 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
483 *lv = ((l1 >> count)
484 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
485 }
486
487 /* Zero / sign extend all bits that are beyond the precision. */
488
489 if (count >= (HOST_WIDE_INT)prec)
490 {
491 *hv = signmask;
492 *lv = signmask;
493 }
494 else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
495 ;
496 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
497 {
498 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
499 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
500 }
501 else
502 {
503 *hv = signmask;
504 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
505 *lv |= signmask << (prec - count);
506 }
507 }
508 \f
509 /* Rotate the doubleword integer in L1, H1 left by COUNT places
510 keeping only PREC bits of result.
511 Rotate right if COUNT is negative.
512 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
513
514 void
515 lrotate_double (l1, h1, count, prec, lv, hv)
516 unsigned HOST_WIDE_INT l1;
517 HOST_WIDE_INT h1, count;
518 unsigned int prec;
519 unsigned HOST_WIDE_INT *lv;
520 HOST_WIDE_INT *hv;
521 {
522 unsigned HOST_WIDE_INT s1l, s2l;
523 HOST_WIDE_INT s1h, s2h;
524
525 count %= prec;
526 if (count < 0)
527 count += prec;
528
529 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
530 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
531 *lv = s1l | s2l;
532 *hv = s1h | s2h;
533 }
534
535 /* Rotate the doubleword integer in L1, H1 left by COUNT places
536 keeping only PREC bits of result. COUNT must be positive.
537 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
538
539 void
540 rrotate_double (l1, h1, count, prec, lv, hv)
541 unsigned HOST_WIDE_INT l1;
542 HOST_WIDE_INT h1, count;
543 unsigned int prec;
544 unsigned HOST_WIDE_INT *lv;
545 HOST_WIDE_INT *hv;
546 {
547 unsigned HOST_WIDE_INT s1l, s2l;
548 HOST_WIDE_INT s1h, s2h;
549
550 count %= prec;
551 if (count < 0)
552 count += prec;
553
554 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
555 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
556 *lv = s1l | s2l;
557 *hv = s1h | s2h;
558 }
559 \f
560 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
561 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
562 CODE is a tree code for a kind of division, one of
563 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
564 or EXACT_DIV_EXPR
565 It controls how the quotient is rounded to an integer.
566 Return nonzero if the operation overflows.
567 UNS nonzero says do unsigned division. */
568
569 int
570 div_and_round_double (code, uns,
571 lnum_orig, hnum_orig, lden_orig, hden_orig,
572 lquo, hquo, lrem, hrem)
573 enum tree_code code;
574 int uns;
575 unsigned HOST_WIDE_INT lnum_orig; /* num == numerator == dividend */
576 HOST_WIDE_INT hnum_orig;
577 unsigned HOST_WIDE_INT lden_orig; /* den == denominator == divisor */
578 HOST_WIDE_INT hden_orig;
579 unsigned HOST_WIDE_INT *lquo, *lrem;
580 HOST_WIDE_INT *hquo, *hrem;
581 {
582 int quo_neg = 0;
583 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
584 HOST_WIDE_INT den[4], quo[4];
585 int i, j;
586 unsigned HOST_WIDE_INT work;
587 unsigned HOST_WIDE_INT carry = 0;
588 unsigned HOST_WIDE_INT lnum = lnum_orig;
589 HOST_WIDE_INT hnum = hnum_orig;
590 unsigned HOST_WIDE_INT lden = lden_orig;
591 HOST_WIDE_INT hden = hden_orig;
592 int overflow = 0;
593
594 if (hden == 0 && lden == 0)
595 overflow = 1, lden = 1;
596
597 /* calculate quotient sign and convert operands to unsigned. */
598 if (!uns)
599 {
600 if (hnum < 0)
601 {
602 quo_neg = ~ quo_neg;
603 /* (minimum integer) / (-1) is the only overflow case. */
604 if (neg_double (lnum, hnum, &lnum, &hnum)
605 && ((HOST_WIDE_INT) lden & hden) == -1)
606 overflow = 1;
607 }
608 if (hden < 0)
609 {
610 quo_neg = ~ quo_neg;
611 neg_double (lden, hden, &lden, &hden);
612 }
613 }
614
615 if (hnum == 0 && hden == 0)
616 { /* single precision */
617 *hquo = *hrem = 0;
618 /* This unsigned division rounds toward zero. */
619 *lquo = lnum / lden;
620 goto finish_up;
621 }
622
623 if (hnum == 0)
624 { /* trivial case: dividend < divisor */
625 /* hden != 0 already checked. */
626 *hquo = *lquo = 0;
627 *hrem = hnum;
628 *lrem = lnum;
629 goto finish_up;
630 }
631
632 memset ((char *) quo, 0, sizeof quo);
633
634 memset ((char *) num, 0, sizeof num); /* to zero 9th element */
635 memset ((char *) den, 0, sizeof den);
636
637 encode (num, lnum, hnum);
638 encode (den, lden, hden);
639
640 /* Special code for when the divisor < BASE. */
641 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
642 {
643 /* hnum != 0 already checked. */
644 for (i = 4 - 1; i >= 0; i--)
645 {
646 work = num[i] + carry * BASE;
647 quo[i] = work / lden;
648 carry = work % lden;
649 }
650 }
651 else
652 {
653 /* Full double precision division,
654 with thanks to Don Knuth's "Seminumerical Algorithms". */
655 int num_hi_sig, den_hi_sig;
656 unsigned HOST_WIDE_INT quo_est, scale;
657
658 /* Find the highest nonzero divisor digit. */
659 for (i = 4 - 1;; i--)
660 if (den[i] != 0)
661 {
662 den_hi_sig = i;
663 break;
664 }
665
666 /* Insure that the first digit of the divisor is at least BASE/2.
667 This is required by the quotient digit estimation algorithm. */
668
669 scale = BASE / (den[den_hi_sig] + 1);
670 if (scale > 1)
671 { /* scale divisor and dividend */
672 carry = 0;
673 for (i = 0; i <= 4 - 1; i++)
674 {
675 work = (num[i] * scale) + carry;
676 num[i] = LOWPART (work);
677 carry = HIGHPART (work);
678 }
679
680 num[4] = carry;
681 carry = 0;
682 for (i = 0; i <= 4 - 1; i++)
683 {
684 work = (den[i] * scale) + carry;
685 den[i] = LOWPART (work);
686 carry = HIGHPART (work);
687 if (den[i] != 0) den_hi_sig = i;
688 }
689 }
690
691 num_hi_sig = 4;
692
693 /* Main loop */
694 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
695 {
696 /* Guess the next quotient digit, quo_est, by dividing the first
697 two remaining dividend digits by the high order quotient digit.
698 quo_est is never low and is at most 2 high. */
699 unsigned HOST_WIDE_INT tmp;
700
701 num_hi_sig = i + den_hi_sig + 1;
702 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
703 if (num[num_hi_sig] != den[den_hi_sig])
704 quo_est = work / den[den_hi_sig];
705 else
706 quo_est = BASE - 1;
707
708 /* Refine quo_est so it's usually correct, and at most one high. */
709 tmp = work - quo_est * den[den_hi_sig];
710 if (tmp < BASE
711 && (den[den_hi_sig - 1] * quo_est
712 > (tmp * BASE + num[num_hi_sig - 2])))
713 quo_est--;
714
715 /* Try QUO_EST as the quotient digit, by multiplying the
716 divisor by QUO_EST and subtracting from the remaining dividend.
717 Keep in mind that QUO_EST is the I - 1st digit. */
718
719 carry = 0;
720 for (j = 0; j <= den_hi_sig; j++)
721 {
722 work = quo_est * den[j] + carry;
723 carry = HIGHPART (work);
724 work = num[i + j] - LOWPART (work);
725 num[i + j] = LOWPART (work);
726 carry += HIGHPART (work) != 0;
727 }
728
729 /* If quo_est was high by one, then num[i] went negative and
730 we need to correct things. */
731 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
732 {
733 quo_est--;
734 carry = 0; /* add divisor back in */
735 for (j = 0; j <= den_hi_sig; j++)
736 {
737 work = num[i + j] + den[j] + carry;
738 carry = HIGHPART (work);
739 num[i + j] = LOWPART (work);
740 }
741
742 num [num_hi_sig] += carry;
743 }
744
745 /* Store the quotient digit. */
746 quo[i] = quo_est;
747 }
748 }
749
750 decode (quo, lquo, hquo);
751
752 finish_up:
753 /* if result is negative, make it so. */
754 if (quo_neg)
755 neg_double (*lquo, *hquo, lquo, hquo);
756
757 /* compute trial remainder: rem = num - (quo * den) */
758 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
759 neg_double (*lrem, *hrem, lrem, hrem);
760 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
761
762 switch (code)
763 {
764 case TRUNC_DIV_EXPR:
765 case TRUNC_MOD_EXPR: /* round toward zero */
766 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
767 return overflow;
768
769 case FLOOR_DIV_EXPR:
770 case FLOOR_MOD_EXPR: /* round toward negative infinity */
771 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
772 {
773 /* quo = quo - 1; */
774 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
775 lquo, hquo);
776 }
777 else
778 return overflow;
779 break;
780
781 case CEIL_DIV_EXPR:
782 case CEIL_MOD_EXPR: /* round toward positive infinity */
783 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
784 {
785 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
786 lquo, hquo);
787 }
788 else
789 return overflow;
790 break;
791
792 case ROUND_DIV_EXPR:
793 case ROUND_MOD_EXPR: /* round to closest integer */
794 {
795 unsigned HOST_WIDE_INT labs_rem = *lrem;
796 HOST_WIDE_INT habs_rem = *hrem;
797 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
798 HOST_WIDE_INT habs_den = hden, htwice;
799
800 /* Get absolute values */
801 if (*hrem < 0)
802 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
803 if (hden < 0)
804 neg_double (lden, hden, &labs_den, &habs_den);
805
806 /* If (2 * abs (lrem) >= abs (lden)) */
807 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
808 labs_rem, habs_rem, &ltwice, &htwice);
809
810 if (((unsigned HOST_WIDE_INT) habs_den
811 < (unsigned HOST_WIDE_INT) htwice)
812 || (((unsigned HOST_WIDE_INT) habs_den
813 == (unsigned HOST_WIDE_INT) htwice)
814 && (labs_den < ltwice)))
815 {
816 if (*hquo < 0)
817 /* quo = quo - 1; */
818 add_double (*lquo, *hquo,
819 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
820 else
821 /* quo = quo + 1; */
822 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
823 lquo, hquo);
824 }
825 else
826 return overflow;
827 }
828 break;
829
830 default:
831 abort ();
832 }
833
834 /* compute true remainder: rem = num - (quo * den) */
835 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
836 neg_double (*lrem, *hrem, lrem, hrem);
837 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
838 return overflow;
839 }
840 \f
841 /* Determine whether an expression T can be cheaply negated using
842 the function negate_expr. */
843
844 static bool
845 negate_expr_p (t)
846 tree t;
847 {
848 unsigned HOST_WIDE_INT val;
849 unsigned int prec;
850 tree type;
851
852 if (t == 0)
853 return false;
854
855 type = TREE_TYPE (t);
856
857 STRIP_SIGN_NOPS (t);
858 switch (TREE_CODE (t))
859 {
860 case INTEGER_CST:
861 if (TREE_UNSIGNED (type))
862 return false;
863
864 /* Check that -CST will not overflow type. */
865 prec = TYPE_PRECISION (type);
866 if (prec > HOST_BITS_PER_WIDE_INT)
867 {
868 if (TREE_INT_CST_LOW (t) != 0)
869 return true;
870 prec -= HOST_BITS_PER_WIDE_INT;
871 val = TREE_INT_CST_HIGH (t);
872 }
873 else
874 val = TREE_INT_CST_LOW (t);
875 if (prec < HOST_BITS_PER_WIDE_INT)
876 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
877 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
878
879 case REAL_CST:
880 case NEGATE_EXPR:
881 case MINUS_EXPR:
882 return true;
883
884 default:
885 break;
886 }
887 return false;
888 }
889
890 /* Given T, an expression, return the negation of T. Allow for T to be
891 null, in which case return null. */
892
893 static tree
894 negate_expr (t)
895 tree t;
896 {
897 tree type;
898 tree tem;
899
900 if (t == 0)
901 return 0;
902
903 type = TREE_TYPE (t);
904 STRIP_SIGN_NOPS (t);
905
906 switch (TREE_CODE (t))
907 {
908 case INTEGER_CST:
909 case REAL_CST:
910 if (! TREE_UNSIGNED (type)
911 && 0 != (tem = fold (build1 (NEGATE_EXPR, type, t)))
912 && ! TREE_OVERFLOW (tem))
913 return tem;
914 break;
915
916 case NEGATE_EXPR:
917 return convert (type, TREE_OPERAND (t, 0));
918
919 case MINUS_EXPR:
920 /* - (A - B) -> B - A */
921 if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
922 return convert (type,
923 fold (build (MINUS_EXPR, TREE_TYPE (t),
924 TREE_OPERAND (t, 1),
925 TREE_OPERAND (t, 0))));
926 break;
927
928 default:
929 break;
930 }
931
932 return convert (type, fold (build1 (NEGATE_EXPR, TREE_TYPE (t), t)));
933 }
934 \f
935 /* Split a tree IN into a constant, literal and variable parts that could be
936 combined with CODE to make IN. "constant" means an expression with
937 TREE_CONSTANT but that isn't an actual constant. CODE must be a
938 commutative arithmetic operation. Store the constant part into *CONP,
939 the literal in *LITP and return the variable part. If a part isn't
940 present, set it to null. If the tree does not decompose in this way,
941 return the entire tree as the variable part and the other parts as null.
942
943 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
944 case, we negate an operand that was subtracted. Except if it is a
945 literal for which we use *MINUS_LITP instead.
946
947 If NEGATE_P is true, we are negating all of IN, again except a literal
948 for which we use *MINUS_LITP instead.
949
950 If IN is itself a literal or constant, return it as appropriate.
951
952 Note that we do not guarantee that any of the three values will be the
953 same type as IN, but they will have the same signedness and mode. */
954
955 static tree
956 split_tree (in, code, conp, litp, minus_litp, negate_p)
957 tree in;
958 enum tree_code code;
959 tree *conp, *litp, *minus_litp;
960 int negate_p;
961 {
962 tree var = 0;
963
964 *conp = 0;
965 *litp = 0;
966 *minus_litp = 0;
967
968 /* Strip any conversions that don't change the machine mode or signedness. */
969 STRIP_SIGN_NOPS (in);
970
971 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST)
972 *litp = in;
973 else if (TREE_CODE (in) == code
974 || (! FLOAT_TYPE_P (TREE_TYPE (in))
975 /* We can associate addition and subtraction together (even
976 though the C standard doesn't say so) for integers because
977 the value is not affected. For reals, the value might be
978 affected, so we can't. */
979 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
980 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
981 {
982 tree op0 = TREE_OPERAND (in, 0);
983 tree op1 = TREE_OPERAND (in, 1);
984 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
985 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
986
987 /* First see if either of the operands is a literal, then a constant. */
988 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
989 *litp = op0, op0 = 0;
990 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST)
991 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
992
993 if (op0 != 0 && TREE_CONSTANT (op0))
994 *conp = op0, op0 = 0;
995 else if (op1 != 0 && TREE_CONSTANT (op1))
996 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
997
998 /* If we haven't dealt with either operand, this is not a case we can
999 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1000 if (op0 != 0 && op1 != 0)
1001 var = in;
1002 else if (op0 != 0)
1003 var = op0;
1004 else
1005 var = op1, neg_var_p = neg1_p;
1006
1007 /* Now do any needed negations. */
1008 if (neg_litp_p)
1009 *minus_litp = *litp, *litp = 0;
1010 if (neg_conp_p)
1011 *conp = negate_expr (*conp);
1012 if (neg_var_p)
1013 var = negate_expr (var);
1014 }
1015 else if (TREE_CONSTANT (in))
1016 *conp = in;
1017 else
1018 var = in;
1019
1020 if (negate_p)
1021 {
1022 if (*litp)
1023 *minus_litp = *litp, *litp = 0;
1024 else if (*minus_litp)
1025 *litp = *minus_litp, *minus_litp = 0;
1026 *conp = negate_expr (*conp);
1027 var = negate_expr (var);
1028 }
1029
1030 return var;
1031 }
1032
1033 /* Re-associate trees split by the above function. T1 and T2 are either
1034 expressions to associate or null. Return the new expression, if any. If
1035 we build an operation, do it in TYPE and with CODE. */
1036
1037 static tree
1038 associate_trees (t1, t2, code, type)
1039 tree t1, t2;
1040 enum tree_code code;
1041 tree type;
1042 {
1043 if (t1 == 0)
1044 return t2;
1045 else if (t2 == 0)
1046 return t1;
1047
1048 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1049 try to fold this since we will have infinite recursion. But do
1050 deal with any NEGATE_EXPRs. */
1051 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
1052 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
1053 {
1054 if (code == PLUS_EXPR)
1055 {
1056 if (TREE_CODE (t1) == NEGATE_EXPR)
1057 return build (MINUS_EXPR, type, convert (type, t2),
1058 convert (type, TREE_OPERAND (t1, 0)));
1059 else if (TREE_CODE (t2) == NEGATE_EXPR)
1060 return build (MINUS_EXPR, type, convert (type, t1),
1061 convert (type, TREE_OPERAND (t2, 0)));
1062 }
1063 return build (code, type, convert (type, t1), convert (type, t2));
1064 }
1065
1066 return fold (build (code, type, convert (type, t1), convert (type, t2)));
1067 }
1068 \f
1069 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1070 to produce a new constant.
1071
1072 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1073
1074 static tree
1075 int_const_binop (code, arg1, arg2, notrunc)
1076 enum tree_code code;
1077 tree arg1, arg2;
1078 int notrunc;
1079 {
1080 unsigned HOST_WIDE_INT int1l, int2l;
1081 HOST_WIDE_INT int1h, int2h;
1082 unsigned HOST_WIDE_INT low;
1083 HOST_WIDE_INT hi;
1084 unsigned HOST_WIDE_INT garbagel;
1085 HOST_WIDE_INT garbageh;
1086 tree t;
1087 tree type = TREE_TYPE (arg1);
1088 int uns = TREE_UNSIGNED (type);
1089 int is_sizetype
1090 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
1091 int overflow = 0;
1092 int no_overflow = 0;
1093
1094 int1l = TREE_INT_CST_LOW (arg1);
1095 int1h = TREE_INT_CST_HIGH (arg1);
1096 int2l = TREE_INT_CST_LOW (arg2);
1097 int2h = TREE_INT_CST_HIGH (arg2);
1098
1099 switch (code)
1100 {
1101 case BIT_IOR_EXPR:
1102 low = int1l | int2l, hi = int1h | int2h;
1103 break;
1104
1105 case BIT_XOR_EXPR:
1106 low = int1l ^ int2l, hi = int1h ^ int2h;
1107 break;
1108
1109 case BIT_AND_EXPR:
1110 low = int1l & int2l, hi = int1h & int2h;
1111 break;
1112
1113 case BIT_ANDTC_EXPR:
1114 low = int1l & ~int2l, hi = int1h & ~int2h;
1115 break;
1116
1117 case RSHIFT_EXPR:
1118 int2l = -int2l;
1119 case LSHIFT_EXPR:
1120 /* It's unclear from the C standard whether shifts can overflow.
1121 The following code ignores overflow; perhaps a C standard
1122 interpretation ruling is needed. */
1123 lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1124 &low, &hi, !uns);
1125 no_overflow = 1;
1126 break;
1127
1128 case RROTATE_EXPR:
1129 int2l = - int2l;
1130 case LROTATE_EXPR:
1131 lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1132 &low, &hi);
1133 break;
1134
1135 case PLUS_EXPR:
1136 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1137 break;
1138
1139 case MINUS_EXPR:
1140 neg_double (int2l, int2h, &low, &hi);
1141 add_double (int1l, int1h, low, hi, &low, &hi);
1142 overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
1143 break;
1144
1145 case MULT_EXPR:
1146 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1147 break;
1148
1149 case TRUNC_DIV_EXPR:
1150 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1151 case EXACT_DIV_EXPR:
1152 /* This is a shortcut for a common special case. */
1153 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1154 && ! TREE_CONSTANT_OVERFLOW (arg1)
1155 && ! TREE_CONSTANT_OVERFLOW (arg2)
1156 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1157 {
1158 if (code == CEIL_DIV_EXPR)
1159 int1l += int2l - 1;
1160
1161 low = int1l / int2l, hi = 0;
1162 break;
1163 }
1164
1165 /* ... fall through ... */
1166
1167 case ROUND_DIV_EXPR:
1168 if (int2h == 0 && int2l == 1)
1169 {
1170 low = int1l, hi = int1h;
1171 break;
1172 }
1173 if (int1l == int2l && int1h == int2h
1174 && ! (int1l == 0 && int1h == 0))
1175 {
1176 low = 1, hi = 0;
1177 break;
1178 }
1179 overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
1180 &low, &hi, &garbagel, &garbageh);
1181 break;
1182
1183 case TRUNC_MOD_EXPR:
1184 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1185 /* This is a shortcut for a common special case. */
1186 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1187 && ! TREE_CONSTANT_OVERFLOW (arg1)
1188 && ! TREE_CONSTANT_OVERFLOW (arg2)
1189 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1190 {
1191 if (code == CEIL_MOD_EXPR)
1192 int1l += int2l - 1;
1193 low = int1l % int2l, hi = 0;
1194 break;
1195 }
1196
1197 /* ... fall through ... */
1198
1199 case ROUND_MOD_EXPR:
1200 overflow = div_and_round_double (code, uns,
1201 int1l, int1h, int2l, int2h,
1202 &garbagel, &garbageh, &low, &hi);
1203 break;
1204
1205 case MIN_EXPR:
1206 case MAX_EXPR:
1207 if (uns)
1208 low = (((unsigned HOST_WIDE_INT) int1h
1209 < (unsigned HOST_WIDE_INT) int2h)
1210 || (((unsigned HOST_WIDE_INT) int1h
1211 == (unsigned HOST_WIDE_INT) int2h)
1212 && int1l < int2l));
1213 else
1214 low = (int1h < int2h
1215 || (int1h == int2h && int1l < int2l));
1216
1217 if (low == (code == MIN_EXPR))
1218 low = int1l, hi = int1h;
1219 else
1220 low = int2l, hi = int2h;
1221 break;
1222
1223 default:
1224 abort ();
1225 }
1226
1227 /* If this is for a sizetype, can be represented as one (signed)
1228 HOST_WIDE_INT word, and doesn't overflow, use size_int since it caches
1229 constants. */
1230 if (is_sizetype
1231 && ((hi == 0 && (HOST_WIDE_INT) low >= 0)
1232 || (hi == -1 && (HOST_WIDE_INT) low < 0))
1233 && overflow == 0 && ! TREE_OVERFLOW (arg1) && ! TREE_OVERFLOW (arg2))
1234 return size_int_type_wide (low, type);
1235 else
1236 {
1237 t = build_int_2 (low, hi);
1238 TREE_TYPE (t) = TREE_TYPE (arg1);
1239 }
1240
1241 TREE_OVERFLOW (t)
1242 = ((notrunc
1243 ? (!uns || is_sizetype) && overflow
1244 : (force_fit_type (t, (!uns || is_sizetype) && overflow)
1245 && ! no_overflow))
1246 | TREE_OVERFLOW (arg1)
1247 | TREE_OVERFLOW (arg2));
1248
1249 /* If we're doing a size calculation, unsigned arithmetic does overflow.
1250 So check if force_fit_type truncated the value. */
1251 if (is_sizetype
1252 && ! TREE_OVERFLOW (t)
1253 && (TREE_INT_CST_HIGH (t) != hi
1254 || TREE_INT_CST_LOW (t) != low))
1255 TREE_OVERFLOW (t) = 1;
1256
1257 TREE_CONSTANT_OVERFLOW (t) = (TREE_OVERFLOW (t)
1258 | TREE_CONSTANT_OVERFLOW (arg1)
1259 | TREE_CONSTANT_OVERFLOW (arg2));
1260 return t;
1261 }
1262
1263 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1264 constant. We assume ARG1 and ARG2 have the same data type, or at least
1265 are the same kind of constant and the same machine mode.
1266
1267 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1268
1269 static tree
1270 const_binop (code, arg1, arg2, notrunc)
1271 enum tree_code code;
1272 tree arg1, arg2;
1273 int notrunc;
1274 {
1275 STRIP_NOPS (arg1);
1276 STRIP_NOPS (arg2);
1277
1278 if (TREE_CODE (arg1) == INTEGER_CST)
1279 return int_const_binop (code, arg1, arg2, notrunc);
1280
1281 if (TREE_CODE (arg1) == REAL_CST)
1282 {
1283 REAL_VALUE_TYPE d1;
1284 REAL_VALUE_TYPE d2;
1285 REAL_VALUE_TYPE value;
1286 tree t;
1287
1288 d1 = TREE_REAL_CST (arg1);
1289 d2 = TREE_REAL_CST (arg2);
1290
1291 /* If either operand is a NaN, just return it. Otherwise, set up
1292 for floating-point trap; we return an overflow. */
1293 if (REAL_VALUE_ISNAN (d1))
1294 return arg1;
1295 else if (REAL_VALUE_ISNAN (d2))
1296 return arg2;
1297
1298 REAL_ARITHMETIC (value, code, d1, d2);
1299
1300 t = build_real (TREE_TYPE (arg1),
1301 real_value_truncate (TYPE_MODE (TREE_TYPE (arg1)),
1302 value));
1303
1304 TREE_OVERFLOW (t)
1305 = (force_fit_type (t, 0)
1306 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1307 TREE_CONSTANT_OVERFLOW (t)
1308 = TREE_OVERFLOW (t)
1309 | TREE_CONSTANT_OVERFLOW (arg1)
1310 | TREE_CONSTANT_OVERFLOW (arg2);
1311 return t;
1312 }
1313 if (TREE_CODE (arg1) == COMPLEX_CST)
1314 {
1315 tree type = TREE_TYPE (arg1);
1316 tree r1 = TREE_REALPART (arg1);
1317 tree i1 = TREE_IMAGPART (arg1);
1318 tree r2 = TREE_REALPART (arg2);
1319 tree i2 = TREE_IMAGPART (arg2);
1320 tree t;
1321
1322 switch (code)
1323 {
1324 case PLUS_EXPR:
1325 t = build_complex (type,
1326 const_binop (PLUS_EXPR, r1, r2, notrunc),
1327 const_binop (PLUS_EXPR, i1, i2, notrunc));
1328 break;
1329
1330 case MINUS_EXPR:
1331 t = build_complex (type,
1332 const_binop (MINUS_EXPR, r1, r2, notrunc),
1333 const_binop (MINUS_EXPR, i1, i2, notrunc));
1334 break;
1335
1336 case MULT_EXPR:
1337 t = build_complex (type,
1338 const_binop (MINUS_EXPR,
1339 const_binop (MULT_EXPR,
1340 r1, r2, notrunc),
1341 const_binop (MULT_EXPR,
1342 i1, i2, notrunc),
1343 notrunc),
1344 const_binop (PLUS_EXPR,
1345 const_binop (MULT_EXPR,
1346 r1, i2, notrunc),
1347 const_binop (MULT_EXPR,
1348 i1, r2, notrunc),
1349 notrunc));
1350 break;
1351
1352 case RDIV_EXPR:
1353 {
1354 tree magsquared
1355 = const_binop (PLUS_EXPR,
1356 const_binop (MULT_EXPR, r2, r2, notrunc),
1357 const_binop (MULT_EXPR, i2, i2, notrunc),
1358 notrunc);
1359
1360 t = build_complex (type,
1361 const_binop
1362 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1363 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1364 const_binop (PLUS_EXPR,
1365 const_binop (MULT_EXPR, r1, r2,
1366 notrunc),
1367 const_binop (MULT_EXPR, i1, i2,
1368 notrunc),
1369 notrunc),
1370 magsquared, notrunc),
1371 const_binop
1372 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1373 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1374 const_binop (MINUS_EXPR,
1375 const_binop (MULT_EXPR, i1, r2,
1376 notrunc),
1377 const_binop (MULT_EXPR, r1, i2,
1378 notrunc),
1379 notrunc),
1380 magsquared, notrunc));
1381 }
1382 break;
1383
1384 default:
1385 abort ();
1386 }
1387 return t;
1388 }
1389 return 0;
1390 }
1391
1392 /* These are the hash table functions for the hash table of INTEGER_CST
1393 nodes of a sizetype. */
1394
1395 /* Return the hash code code X, an INTEGER_CST. */
1396
1397 static hashval_t
1398 size_htab_hash (x)
1399 const void *x;
1400 {
1401 tree t = (tree) x;
1402
1403 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1404 ^ htab_hash_pointer (TREE_TYPE (t))
1405 ^ (TREE_OVERFLOW (t) << 20));
1406 }
1407
1408 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1409 is the same as that given by *Y, which is the same. */
1410
1411 static int
1412 size_htab_eq (x, y)
1413 const void *x;
1414 const void *y;
1415 {
1416 tree xt = (tree) x;
1417 tree yt = (tree) y;
1418
1419 return (TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1420 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt)
1421 && TREE_TYPE (xt) == TREE_TYPE (yt)
1422 && TREE_OVERFLOW (xt) == TREE_OVERFLOW (yt));
1423 }
1424 \f
1425 /* Return an INTEGER_CST with value whose low-order HOST_BITS_PER_WIDE_INT
1426 bits are given by NUMBER and of the sizetype represented by KIND. */
1427
1428 tree
1429 size_int_wide (number, kind)
1430 HOST_WIDE_INT number;
1431 enum size_type_kind kind;
1432 {
1433 return size_int_type_wide (number, sizetype_tab[(int) kind]);
1434 }
1435
1436 /* Likewise, but the desired type is specified explicitly. */
1437
1438 static GTY (()) tree new_const;
1439 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
1440 htab_t size_htab;
1441
1442 tree
1443 size_int_type_wide (number, type)
1444 HOST_WIDE_INT number;
1445 tree type;
1446 {
1447 PTR *slot;
1448
1449 if (size_htab == 0)
1450 {
1451 size_htab = htab_create_ggc (1024, size_htab_hash, size_htab_eq, NULL);
1452 new_const = make_node (INTEGER_CST);
1453 }
1454
1455 /* Adjust NEW_CONST to be the constant we want. If it's already in the
1456 hash table, we return the value from the hash table. Otherwise, we
1457 place that in the hash table and make a new node for the next time. */
1458 TREE_INT_CST_LOW (new_const) = number;
1459 TREE_INT_CST_HIGH (new_const) = number < 0 ? -1 : 0;
1460 TREE_TYPE (new_const) = type;
1461 TREE_OVERFLOW (new_const) = TREE_CONSTANT_OVERFLOW (new_const)
1462 = force_fit_type (new_const, 0);
1463
1464 slot = htab_find_slot (size_htab, new_const, INSERT);
1465 if (*slot == 0)
1466 {
1467 tree t = new_const;
1468
1469 *slot = (PTR) new_const;
1470 new_const = make_node (INTEGER_CST);
1471 return t;
1472 }
1473 else
1474 return (tree) *slot;
1475 }
1476
1477 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1478 is a tree code. The type of the result is taken from the operands.
1479 Both must be the same type integer type and it must be a size type.
1480 If the operands are constant, so is the result. */
1481
1482 tree
1483 size_binop (code, arg0, arg1)
1484 enum tree_code code;
1485 tree arg0, arg1;
1486 {
1487 tree type = TREE_TYPE (arg0);
1488
1489 if (TREE_CODE (type) != INTEGER_TYPE || ! TYPE_IS_SIZETYPE (type)
1490 || type != TREE_TYPE (arg1))
1491 abort ();
1492
1493 /* Handle the special case of two integer constants faster. */
1494 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1495 {
1496 /* And some specific cases even faster than that. */
1497 if (code == PLUS_EXPR && integer_zerop (arg0))
1498 return arg1;
1499 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
1500 && integer_zerop (arg1))
1501 return arg0;
1502 else if (code == MULT_EXPR && integer_onep (arg0))
1503 return arg1;
1504
1505 /* Handle general case of two integer constants. */
1506 return int_const_binop (code, arg0, arg1, 0);
1507 }
1508
1509 if (arg0 == error_mark_node || arg1 == error_mark_node)
1510 return error_mark_node;
1511
1512 return fold (build (code, type, arg0, arg1));
1513 }
1514
1515 /* Given two values, either both of sizetype or both of bitsizetype,
1516 compute the difference between the two values. Return the value
1517 in signed type corresponding to the type of the operands. */
1518
1519 tree
1520 size_diffop (arg0, arg1)
1521 tree arg0, arg1;
1522 {
1523 tree type = TREE_TYPE (arg0);
1524 tree ctype;
1525
1526 if (TREE_CODE (type) != INTEGER_TYPE || ! TYPE_IS_SIZETYPE (type)
1527 || type != TREE_TYPE (arg1))
1528 abort ();
1529
1530 /* If the type is already signed, just do the simple thing. */
1531 if (! TREE_UNSIGNED (type))
1532 return size_binop (MINUS_EXPR, arg0, arg1);
1533
1534 ctype = (type == bitsizetype || type == ubitsizetype
1535 ? sbitsizetype : ssizetype);
1536
1537 /* If either operand is not a constant, do the conversions to the signed
1538 type and subtract. The hardware will do the right thing with any
1539 overflow in the subtraction. */
1540 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1541 return size_binop (MINUS_EXPR, convert (ctype, arg0),
1542 convert (ctype, arg1));
1543
1544 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1545 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1546 overflow) and negate (which can't either). Special-case a result
1547 of zero while we're here. */
1548 if (tree_int_cst_equal (arg0, arg1))
1549 return convert (ctype, integer_zero_node);
1550 else if (tree_int_cst_lt (arg1, arg0))
1551 return convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
1552 else
1553 return size_binop (MINUS_EXPR, convert (ctype, integer_zero_node),
1554 convert (ctype, size_binop (MINUS_EXPR, arg1, arg0)));
1555 }
1556 \f
1557
1558 /* Given T, a tree representing type conversion of ARG1, a constant,
1559 return a constant tree representing the result of conversion. */
1560
1561 static tree
1562 fold_convert (t, arg1)
1563 tree t;
1564 tree arg1;
1565 {
1566 tree type = TREE_TYPE (t);
1567 int overflow = 0;
1568
1569 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
1570 {
1571 if (TREE_CODE (arg1) == INTEGER_CST)
1572 {
1573 /* If we would build a constant wider than GCC supports,
1574 leave the conversion unfolded. */
1575 if (TYPE_PRECISION (type) > 2 * HOST_BITS_PER_WIDE_INT)
1576 return t;
1577
1578 /* If we are trying to make a sizetype for a small integer, use
1579 size_int to pick up cached types to reduce duplicate nodes. */
1580 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1581 && !TREE_CONSTANT_OVERFLOW (arg1)
1582 && compare_tree_int (arg1, 10000) < 0)
1583 return size_int_type_wide (TREE_INT_CST_LOW (arg1), type);
1584
1585 /* Given an integer constant, make new constant with new type,
1586 appropriately sign-extended or truncated. */
1587 t = build_int_2 (TREE_INT_CST_LOW (arg1),
1588 TREE_INT_CST_HIGH (arg1));
1589 TREE_TYPE (t) = type;
1590 /* Indicate an overflow if (1) ARG1 already overflowed,
1591 or (2) force_fit_type indicates an overflow.
1592 Tell force_fit_type that an overflow has already occurred
1593 if ARG1 is a too-large unsigned value and T is signed.
1594 But don't indicate an overflow if converting a pointer. */
1595 TREE_OVERFLOW (t)
1596 = ((force_fit_type (t,
1597 (TREE_INT_CST_HIGH (arg1) < 0
1598 && (TREE_UNSIGNED (type)
1599 < TREE_UNSIGNED (TREE_TYPE (arg1)))))
1600 && ! POINTER_TYPE_P (TREE_TYPE (arg1)))
1601 || TREE_OVERFLOW (arg1));
1602 TREE_CONSTANT_OVERFLOW (t)
1603 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1604 }
1605 else if (TREE_CODE (arg1) == REAL_CST)
1606 {
1607 /* Don't initialize these, use assignments.
1608 Initialized local aggregates don't work on old compilers. */
1609 REAL_VALUE_TYPE x;
1610 REAL_VALUE_TYPE l;
1611 REAL_VALUE_TYPE u;
1612 tree type1 = TREE_TYPE (arg1);
1613 int no_upper_bound;
1614
1615 x = TREE_REAL_CST (arg1);
1616 l = real_value_from_int_cst (type1, TYPE_MIN_VALUE (type));
1617
1618 no_upper_bound = (TYPE_MAX_VALUE (type) == NULL);
1619 if (!no_upper_bound)
1620 u = real_value_from_int_cst (type1, TYPE_MAX_VALUE (type));
1621
1622 /* See if X will be in range after truncation towards 0.
1623 To compensate for truncation, move the bounds away from 0,
1624 but reject if X exactly equals the adjusted bounds. */
1625 REAL_ARITHMETIC (l, MINUS_EXPR, l, dconst1);
1626 if (!no_upper_bound)
1627 REAL_ARITHMETIC (u, PLUS_EXPR, u, dconst1);
1628 /* If X is a NaN, use zero instead and show we have an overflow.
1629 Otherwise, range check. */
1630 if (REAL_VALUE_ISNAN (x))
1631 overflow = 1, x = dconst0;
1632 else if (! (REAL_VALUES_LESS (l, x)
1633 && !no_upper_bound
1634 && REAL_VALUES_LESS (x, u)))
1635 overflow = 1;
1636
1637 {
1638 HOST_WIDE_INT low, high;
1639 REAL_VALUE_TO_INT (&low, &high, x);
1640 t = build_int_2 (low, high);
1641 }
1642 TREE_TYPE (t) = type;
1643 TREE_OVERFLOW (t)
1644 = TREE_OVERFLOW (arg1) | force_fit_type (t, overflow);
1645 TREE_CONSTANT_OVERFLOW (t)
1646 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1647 }
1648 TREE_TYPE (t) = type;
1649 }
1650 else if (TREE_CODE (type) == REAL_TYPE)
1651 {
1652 if (TREE_CODE (arg1) == INTEGER_CST)
1653 return build_real_from_int_cst (type, arg1);
1654 if (TREE_CODE (arg1) == REAL_CST)
1655 {
1656 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
1657 {
1658 /* We make a copy of ARG1 so that we don't modify an
1659 existing constant tree. */
1660 t = copy_node (arg1);
1661 TREE_TYPE (t) = type;
1662 return t;
1663 }
1664
1665 t = build_real (type,
1666 real_value_truncate (TYPE_MODE (type),
1667 TREE_REAL_CST (arg1)));
1668
1669 TREE_OVERFLOW (t)
1670 = TREE_OVERFLOW (arg1) | force_fit_type (t, 0);
1671 TREE_CONSTANT_OVERFLOW (t)
1672 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1673 return t;
1674 }
1675 }
1676 TREE_CONSTANT (t) = 1;
1677 return t;
1678 }
1679 \f
1680 /* Return an expr equal to X but certainly not valid as an lvalue. */
1681
1682 tree
1683 non_lvalue (x)
1684 tree x;
1685 {
1686 tree result;
1687
1688 /* These things are certainly not lvalues. */
1689 if (TREE_CODE (x) == NON_LVALUE_EXPR
1690 || TREE_CODE (x) == INTEGER_CST
1691 || TREE_CODE (x) == REAL_CST
1692 || TREE_CODE (x) == STRING_CST
1693 || TREE_CODE (x) == ADDR_EXPR)
1694 return x;
1695
1696 result = build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
1697 TREE_CONSTANT (result) = TREE_CONSTANT (x);
1698 return result;
1699 }
1700
1701 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
1702 Zero means allow extended lvalues. */
1703
1704 int pedantic_lvalues;
1705
1706 /* When pedantic, return an expr equal to X but certainly not valid as a
1707 pedantic lvalue. Otherwise, return X. */
1708
1709 tree
1710 pedantic_non_lvalue (x)
1711 tree x;
1712 {
1713 if (pedantic_lvalues)
1714 return non_lvalue (x);
1715 else
1716 return x;
1717 }
1718 \f
1719 /* Given a tree comparison code, return the code that is the logical inverse
1720 of the given code. It is not safe to do this for floating-point
1721 comparisons, except for NE_EXPR and EQ_EXPR. */
1722
1723 static enum tree_code
1724 invert_tree_comparison (code)
1725 enum tree_code code;
1726 {
1727 switch (code)
1728 {
1729 case EQ_EXPR:
1730 return NE_EXPR;
1731 case NE_EXPR:
1732 return EQ_EXPR;
1733 case GT_EXPR:
1734 return LE_EXPR;
1735 case GE_EXPR:
1736 return LT_EXPR;
1737 case LT_EXPR:
1738 return GE_EXPR;
1739 case LE_EXPR:
1740 return GT_EXPR;
1741 default:
1742 abort ();
1743 }
1744 }
1745
1746 /* Similar, but return the comparison that results if the operands are
1747 swapped. This is safe for floating-point. */
1748
1749 static enum tree_code
1750 swap_tree_comparison (code)
1751 enum tree_code code;
1752 {
1753 switch (code)
1754 {
1755 case EQ_EXPR:
1756 case NE_EXPR:
1757 return code;
1758 case GT_EXPR:
1759 return LT_EXPR;
1760 case GE_EXPR:
1761 return LE_EXPR;
1762 case LT_EXPR:
1763 return GT_EXPR;
1764 case LE_EXPR:
1765 return GE_EXPR;
1766 default:
1767 abort ();
1768 }
1769 }
1770
1771
1772 /* Convert a comparison tree code from an enum tree_code representation
1773 into a compcode bit-based encoding. This function is the inverse of
1774 compcode_to_comparison. */
1775
1776 static int
1777 comparison_to_compcode (code)
1778 enum tree_code code;
1779 {
1780 switch (code)
1781 {
1782 case LT_EXPR:
1783 return COMPCODE_LT;
1784 case EQ_EXPR:
1785 return COMPCODE_EQ;
1786 case LE_EXPR:
1787 return COMPCODE_LE;
1788 case GT_EXPR:
1789 return COMPCODE_GT;
1790 case NE_EXPR:
1791 return COMPCODE_NE;
1792 case GE_EXPR:
1793 return COMPCODE_GE;
1794 default:
1795 abort ();
1796 }
1797 }
1798
1799 /* Convert a compcode bit-based encoding of a comparison operator back
1800 to GCC's enum tree_code representation. This function is the
1801 inverse of comparison_to_compcode. */
1802
1803 static enum tree_code
1804 compcode_to_comparison (code)
1805 int code;
1806 {
1807 switch (code)
1808 {
1809 case COMPCODE_LT:
1810 return LT_EXPR;
1811 case COMPCODE_EQ:
1812 return EQ_EXPR;
1813 case COMPCODE_LE:
1814 return LE_EXPR;
1815 case COMPCODE_GT:
1816 return GT_EXPR;
1817 case COMPCODE_NE:
1818 return NE_EXPR;
1819 case COMPCODE_GE:
1820 return GE_EXPR;
1821 default:
1822 abort ();
1823 }
1824 }
1825
1826 /* Return nonzero if CODE is a tree code that represents a truth value. */
1827
1828 static int
1829 truth_value_p (code)
1830 enum tree_code code;
1831 {
1832 return (TREE_CODE_CLASS (code) == '<'
1833 || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
1834 || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
1835 || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
1836 }
1837 \f
1838 /* Return nonzero if two operands are necessarily equal.
1839 If ONLY_CONST is nonzero, only return nonzero for constants.
1840 This function tests whether the operands are indistinguishable;
1841 it does not test whether they are equal using C's == operation.
1842 The distinction is important for IEEE floating point, because
1843 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
1844 (2) two NaNs may be indistinguishable, but NaN!=NaN. */
1845
1846 int
1847 operand_equal_p (arg0, arg1, only_const)
1848 tree arg0, arg1;
1849 int only_const;
1850 {
1851 /* If both types don't have the same signedness, then we can't consider
1852 them equal. We must check this before the STRIP_NOPS calls
1853 because they may change the signedness of the arguments. */
1854 if (TREE_UNSIGNED (TREE_TYPE (arg0)) != TREE_UNSIGNED (TREE_TYPE (arg1)))
1855 return 0;
1856
1857 STRIP_NOPS (arg0);
1858 STRIP_NOPS (arg1);
1859
1860 if (TREE_CODE (arg0) != TREE_CODE (arg1)
1861 /* This is needed for conversions and for COMPONENT_REF.
1862 Might as well play it safe and always test this. */
1863 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
1864 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
1865 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
1866 return 0;
1867
1868 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
1869 We don't care about side effects in that case because the SAVE_EXPR
1870 takes care of that for us. In all other cases, two expressions are
1871 equal if they have no side effects. If we have two identical
1872 expressions with side effects that should be treated the same due
1873 to the only side effects being identical SAVE_EXPR's, that will
1874 be detected in the recursive calls below. */
1875 if (arg0 == arg1 && ! only_const
1876 && (TREE_CODE (arg0) == SAVE_EXPR
1877 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
1878 return 1;
1879
1880 /* Next handle constant cases, those for which we can return 1 even
1881 if ONLY_CONST is set. */
1882 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
1883 switch (TREE_CODE (arg0))
1884 {
1885 case INTEGER_CST:
1886 return (! TREE_CONSTANT_OVERFLOW (arg0)
1887 && ! TREE_CONSTANT_OVERFLOW (arg1)
1888 && tree_int_cst_equal (arg0, arg1));
1889
1890 case REAL_CST:
1891 return (! TREE_CONSTANT_OVERFLOW (arg0)
1892 && ! TREE_CONSTANT_OVERFLOW (arg1)
1893 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
1894 TREE_REAL_CST (arg1)));
1895
1896 case VECTOR_CST:
1897 {
1898 tree v1, v2;
1899
1900 if (TREE_CONSTANT_OVERFLOW (arg0)
1901 || TREE_CONSTANT_OVERFLOW (arg1))
1902 return 0;
1903
1904 v1 = TREE_VECTOR_CST_ELTS (arg0);
1905 v2 = TREE_VECTOR_CST_ELTS (arg1);
1906 while (v1 && v2)
1907 {
1908 if (!operand_equal_p (v1, v2, only_const))
1909 return 0;
1910 v1 = TREE_CHAIN (v1);
1911 v2 = TREE_CHAIN (v2);
1912 }
1913
1914 return 1;
1915 }
1916
1917 case COMPLEX_CST:
1918 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
1919 only_const)
1920 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
1921 only_const));
1922
1923 case STRING_CST:
1924 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
1925 && ! memcmp (TREE_STRING_POINTER (arg0),
1926 TREE_STRING_POINTER (arg1),
1927 TREE_STRING_LENGTH (arg0)));
1928
1929 case ADDR_EXPR:
1930 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
1931 0);
1932 default:
1933 break;
1934 }
1935
1936 if (only_const)
1937 return 0;
1938
1939 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
1940 {
1941 case '1':
1942 /* Two conversions are equal only if signedness and modes match. */
1943 if ((TREE_CODE (arg0) == NOP_EXPR || TREE_CODE (arg0) == CONVERT_EXPR)
1944 && (TREE_UNSIGNED (TREE_TYPE (arg0))
1945 != TREE_UNSIGNED (TREE_TYPE (arg1))))
1946 return 0;
1947
1948 return operand_equal_p (TREE_OPERAND (arg0, 0),
1949 TREE_OPERAND (arg1, 0), 0);
1950
1951 case '<':
1952 case '2':
1953 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0)
1954 && operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1),
1955 0))
1956 return 1;
1957
1958 /* For commutative ops, allow the other order. */
1959 return ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MULT_EXPR
1960 || TREE_CODE (arg0) == MIN_EXPR || TREE_CODE (arg0) == MAX_EXPR
1961 || TREE_CODE (arg0) == BIT_IOR_EXPR
1962 || TREE_CODE (arg0) == BIT_XOR_EXPR
1963 || TREE_CODE (arg0) == BIT_AND_EXPR
1964 || TREE_CODE (arg0) == NE_EXPR || TREE_CODE (arg0) == EQ_EXPR)
1965 && operand_equal_p (TREE_OPERAND (arg0, 0),
1966 TREE_OPERAND (arg1, 1), 0)
1967 && operand_equal_p (TREE_OPERAND (arg0, 1),
1968 TREE_OPERAND (arg1, 0), 0));
1969
1970 case 'r':
1971 /* If either of the pointer (or reference) expressions we are dereferencing
1972 contain a side effect, these cannot be equal. */
1973 if (TREE_SIDE_EFFECTS (arg0)
1974 || TREE_SIDE_EFFECTS (arg1))
1975 return 0;
1976
1977 switch (TREE_CODE (arg0))
1978 {
1979 case INDIRECT_REF:
1980 return operand_equal_p (TREE_OPERAND (arg0, 0),
1981 TREE_OPERAND (arg1, 0), 0);
1982
1983 case COMPONENT_REF:
1984 case ARRAY_REF:
1985 case ARRAY_RANGE_REF:
1986 return (operand_equal_p (TREE_OPERAND (arg0, 0),
1987 TREE_OPERAND (arg1, 0), 0)
1988 && operand_equal_p (TREE_OPERAND (arg0, 1),
1989 TREE_OPERAND (arg1, 1), 0));
1990
1991 case BIT_FIELD_REF:
1992 return (operand_equal_p (TREE_OPERAND (arg0, 0),
1993 TREE_OPERAND (arg1, 0), 0)
1994 && operand_equal_p (TREE_OPERAND (arg0, 1),
1995 TREE_OPERAND (arg1, 1), 0)
1996 && operand_equal_p (TREE_OPERAND (arg0, 2),
1997 TREE_OPERAND (arg1, 2), 0));
1998 default:
1999 return 0;
2000 }
2001
2002 case 'e':
2003 if (TREE_CODE (arg0) == RTL_EXPR)
2004 return rtx_equal_p (RTL_EXPR_RTL (arg0), RTL_EXPR_RTL (arg1));
2005 return 0;
2006
2007 default:
2008 return 0;
2009 }
2010 }
2011 \f
2012 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2013 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2014
2015 When in doubt, return 0. */
2016
2017 static int
2018 operand_equal_for_comparison_p (arg0, arg1, other)
2019 tree arg0, arg1;
2020 tree other;
2021 {
2022 int unsignedp1, unsignedpo;
2023 tree primarg0, primarg1, primother;
2024 unsigned int correct_width;
2025
2026 if (operand_equal_p (arg0, arg1, 0))
2027 return 1;
2028
2029 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
2030 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
2031 return 0;
2032
2033 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2034 and see if the inner values are the same. This removes any
2035 signedness comparison, which doesn't matter here. */
2036 primarg0 = arg0, primarg1 = arg1;
2037 STRIP_NOPS (primarg0);
2038 STRIP_NOPS (primarg1);
2039 if (operand_equal_p (primarg0, primarg1, 0))
2040 return 1;
2041
2042 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2043 actual comparison operand, ARG0.
2044
2045 First throw away any conversions to wider types
2046 already present in the operands. */
2047
2048 primarg1 = get_narrower (arg1, &unsignedp1);
2049 primother = get_narrower (other, &unsignedpo);
2050
2051 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
2052 if (unsignedp1 == unsignedpo
2053 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
2054 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2055 {
2056 tree type = TREE_TYPE (arg0);
2057
2058 /* Make sure shorter operand is extended the right way
2059 to match the longer operand. */
2060 primarg1 = convert ((*lang_hooks.types.signed_or_unsigned_type)
2061 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
2062
2063 if (operand_equal_p (arg0, convert (type, primarg1), 0))
2064 return 1;
2065 }
2066
2067 return 0;
2068 }
2069 \f
2070 /* See if ARG is an expression that is either a comparison or is performing
2071 arithmetic on comparisons. The comparisons must only be comparing
2072 two different values, which will be stored in *CVAL1 and *CVAL2; if
2073 they are nonzero it means that some operands have already been found.
2074 No variables may be used anywhere else in the expression except in the
2075 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2076 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2077
2078 If this is true, return 1. Otherwise, return zero. */
2079
2080 static int
2081 twoval_comparison_p (arg, cval1, cval2, save_p)
2082 tree arg;
2083 tree *cval1, *cval2;
2084 int *save_p;
2085 {
2086 enum tree_code code = TREE_CODE (arg);
2087 char class = TREE_CODE_CLASS (code);
2088
2089 /* We can handle some of the 'e' cases here. */
2090 if (class == 'e' && code == TRUTH_NOT_EXPR)
2091 class = '1';
2092 else if (class == 'e'
2093 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2094 || code == COMPOUND_EXPR))
2095 class = '2';
2096
2097 else if (class == 'e' && code == SAVE_EXPR && SAVE_EXPR_RTL (arg) == 0
2098 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
2099 {
2100 /* If we've already found a CVAL1 or CVAL2, this expression is
2101 two complex to handle. */
2102 if (*cval1 || *cval2)
2103 return 0;
2104
2105 class = '1';
2106 *save_p = 1;
2107 }
2108
2109 switch (class)
2110 {
2111 case '1':
2112 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2113
2114 case '2':
2115 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2116 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2117 cval1, cval2, save_p));
2118
2119 case 'c':
2120 return 1;
2121
2122 case 'e':
2123 if (code == COND_EXPR)
2124 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2125 cval1, cval2, save_p)
2126 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2127 cval1, cval2, save_p)
2128 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2129 cval1, cval2, save_p));
2130 return 0;
2131
2132 case '<':
2133 /* First see if we can handle the first operand, then the second. For
2134 the second operand, we know *CVAL1 can't be zero. It must be that
2135 one side of the comparison is each of the values; test for the
2136 case where this isn't true by failing if the two operands
2137 are the same. */
2138
2139 if (operand_equal_p (TREE_OPERAND (arg, 0),
2140 TREE_OPERAND (arg, 1), 0))
2141 return 0;
2142
2143 if (*cval1 == 0)
2144 *cval1 = TREE_OPERAND (arg, 0);
2145 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2146 ;
2147 else if (*cval2 == 0)
2148 *cval2 = TREE_OPERAND (arg, 0);
2149 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2150 ;
2151 else
2152 return 0;
2153
2154 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2155 ;
2156 else if (*cval2 == 0)
2157 *cval2 = TREE_OPERAND (arg, 1);
2158 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2159 ;
2160 else
2161 return 0;
2162
2163 return 1;
2164
2165 default:
2166 return 0;
2167 }
2168 }
2169 \f
2170 /* ARG is a tree that is known to contain just arithmetic operations and
2171 comparisons. Evaluate the operations in the tree substituting NEW0 for
2172 any occurrence of OLD0 as an operand of a comparison and likewise for
2173 NEW1 and OLD1. */
2174
2175 static tree
2176 eval_subst (arg, old0, new0, old1, new1)
2177 tree arg;
2178 tree old0, new0, old1, new1;
2179 {
2180 tree type = TREE_TYPE (arg);
2181 enum tree_code code = TREE_CODE (arg);
2182 char class = TREE_CODE_CLASS (code);
2183
2184 /* We can handle some of the 'e' cases here. */
2185 if (class == 'e' && code == TRUTH_NOT_EXPR)
2186 class = '1';
2187 else if (class == 'e'
2188 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2189 class = '2';
2190
2191 switch (class)
2192 {
2193 case '1':
2194 return fold (build1 (code, type,
2195 eval_subst (TREE_OPERAND (arg, 0),
2196 old0, new0, old1, new1)));
2197
2198 case '2':
2199 return fold (build (code, type,
2200 eval_subst (TREE_OPERAND (arg, 0),
2201 old0, new0, old1, new1),
2202 eval_subst (TREE_OPERAND (arg, 1),
2203 old0, new0, old1, new1)));
2204
2205 case 'e':
2206 switch (code)
2207 {
2208 case SAVE_EXPR:
2209 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
2210
2211 case COMPOUND_EXPR:
2212 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
2213
2214 case COND_EXPR:
2215 return fold (build (code, type,
2216 eval_subst (TREE_OPERAND (arg, 0),
2217 old0, new0, old1, new1),
2218 eval_subst (TREE_OPERAND (arg, 1),
2219 old0, new0, old1, new1),
2220 eval_subst (TREE_OPERAND (arg, 2),
2221 old0, new0, old1, new1)));
2222 default:
2223 break;
2224 }
2225 /* fall through - ??? */
2226
2227 case '<':
2228 {
2229 tree arg0 = TREE_OPERAND (arg, 0);
2230 tree arg1 = TREE_OPERAND (arg, 1);
2231
2232 /* We need to check both for exact equality and tree equality. The
2233 former will be true if the operand has a side-effect. In that
2234 case, we know the operand occurred exactly once. */
2235
2236 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
2237 arg0 = new0;
2238 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
2239 arg0 = new1;
2240
2241 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
2242 arg1 = new0;
2243 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
2244 arg1 = new1;
2245
2246 return fold (build (code, type, arg0, arg1));
2247 }
2248
2249 default:
2250 return arg;
2251 }
2252 }
2253 \f
2254 /* Return a tree for the case when the result of an expression is RESULT
2255 converted to TYPE and OMITTED was previously an operand of the expression
2256 but is now not needed (e.g., we folded OMITTED * 0).
2257
2258 If OMITTED has side effects, we must evaluate it. Otherwise, just do
2259 the conversion of RESULT to TYPE. */
2260
2261 tree
2262 omit_one_operand (type, result, omitted)
2263 tree type, result, omitted;
2264 {
2265 tree t = convert (type, result);
2266
2267 if (TREE_SIDE_EFFECTS (omitted))
2268 return build (COMPOUND_EXPR, type, omitted, t);
2269
2270 return non_lvalue (t);
2271 }
2272
2273 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
2274
2275 static tree
2276 pedantic_omit_one_operand (type, result, omitted)
2277 tree type, result, omitted;
2278 {
2279 tree t = convert (type, result);
2280
2281 if (TREE_SIDE_EFFECTS (omitted))
2282 return build (COMPOUND_EXPR, type, omitted, t);
2283
2284 return pedantic_non_lvalue (t);
2285 }
2286 \f
2287 /* Return a simplified tree node for the truth-negation of ARG. This
2288 never alters ARG itself. We assume that ARG is an operation that
2289 returns a truth value (0 or 1). */
2290
2291 tree
2292 invert_truthvalue (arg)
2293 tree arg;
2294 {
2295 tree type = TREE_TYPE (arg);
2296 enum tree_code code = TREE_CODE (arg);
2297
2298 if (code == ERROR_MARK)
2299 return arg;
2300
2301 /* If this is a comparison, we can simply invert it, except for
2302 floating-point non-equality comparisons, in which case we just
2303 enclose a TRUTH_NOT_EXPR around what we have. */
2304
2305 if (TREE_CODE_CLASS (code) == '<')
2306 {
2307 if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
2308 && !flag_unsafe_math_optimizations
2309 && code != NE_EXPR
2310 && code != EQ_EXPR)
2311 return build1 (TRUTH_NOT_EXPR, type, arg);
2312 else
2313 return build (invert_tree_comparison (code), type,
2314 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
2315 }
2316
2317 switch (code)
2318 {
2319 case INTEGER_CST:
2320 return convert (type, build_int_2 (integer_zerop (arg), 0));
2321
2322 case TRUTH_AND_EXPR:
2323 return build (TRUTH_OR_EXPR, type,
2324 invert_truthvalue (TREE_OPERAND (arg, 0)),
2325 invert_truthvalue (TREE_OPERAND (arg, 1)));
2326
2327 case TRUTH_OR_EXPR:
2328 return build (TRUTH_AND_EXPR, type,
2329 invert_truthvalue (TREE_OPERAND (arg, 0)),
2330 invert_truthvalue (TREE_OPERAND (arg, 1)));
2331
2332 case TRUTH_XOR_EXPR:
2333 /* Here we can invert either operand. We invert the first operand
2334 unless the second operand is a TRUTH_NOT_EXPR in which case our
2335 result is the XOR of the first operand with the inside of the
2336 negation of the second operand. */
2337
2338 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
2339 return build (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
2340 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
2341 else
2342 return build (TRUTH_XOR_EXPR, type,
2343 invert_truthvalue (TREE_OPERAND (arg, 0)),
2344 TREE_OPERAND (arg, 1));
2345
2346 case TRUTH_ANDIF_EXPR:
2347 return build (TRUTH_ORIF_EXPR, type,
2348 invert_truthvalue (TREE_OPERAND (arg, 0)),
2349 invert_truthvalue (TREE_OPERAND (arg, 1)));
2350
2351 case TRUTH_ORIF_EXPR:
2352 return build (TRUTH_ANDIF_EXPR, type,
2353 invert_truthvalue (TREE_OPERAND (arg, 0)),
2354 invert_truthvalue (TREE_OPERAND (arg, 1)));
2355
2356 case TRUTH_NOT_EXPR:
2357 return TREE_OPERAND (arg, 0);
2358
2359 case COND_EXPR:
2360 return build (COND_EXPR, type, TREE_OPERAND (arg, 0),
2361 invert_truthvalue (TREE_OPERAND (arg, 1)),
2362 invert_truthvalue (TREE_OPERAND (arg, 2)));
2363
2364 case COMPOUND_EXPR:
2365 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
2366 invert_truthvalue (TREE_OPERAND (arg, 1)));
2367
2368 case WITH_RECORD_EXPR:
2369 return build (WITH_RECORD_EXPR, type,
2370 invert_truthvalue (TREE_OPERAND (arg, 0)),
2371 TREE_OPERAND (arg, 1));
2372
2373 case NON_LVALUE_EXPR:
2374 return invert_truthvalue (TREE_OPERAND (arg, 0));
2375
2376 case NOP_EXPR:
2377 case CONVERT_EXPR:
2378 case FLOAT_EXPR:
2379 return build1 (TREE_CODE (arg), type,
2380 invert_truthvalue (TREE_OPERAND (arg, 0)));
2381
2382 case BIT_AND_EXPR:
2383 if (!integer_onep (TREE_OPERAND (arg, 1)))
2384 break;
2385 return build (EQ_EXPR, type, arg, convert (type, integer_zero_node));
2386
2387 case SAVE_EXPR:
2388 return build1 (TRUTH_NOT_EXPR, type, arg);
2389
2390 case CLEANUP_POINT_EXPR:
2391 return build1 (CLEANUP_POINT_EXPR, type,
2392 invert_truthvalue (TREE_OPERAND (arg, 0)));
2393
2394 default:
2395 break;
2396 }
2397 if (TREE_CODE (TREE_TYPE (arg)) != BOOLEAN_TYPE)
2398 abort ();
2399 return build1 (TRUTH_NOT_EXPR, type, arg);
2400 }
2401
2402 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
2403 operands are another bit-wise operation with a common input. If so,
2404 distribute the bit operations to save an operation and possibly two if
2405 constants are involved. For example, convert
2406 (A | B) & (A | C) into A | (B & C)
2407 Further simplification will occur if B and C are constants.
2408
2409 If this optimization cannot be done, 0 will be returned. */
2410
2411 static tree
2412 distribute_bit_expr (code, type, arg0, arg1)
2413 enum tree_code code;
2414 tree type;
2415 tree arg0, arg1;
2416 {
2417 tree common;
2418 tree left, right;
2419
2420 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2421 || TREE_CODE (arg0) == code
2422 || (TREE_CODE (arg0) != BIT_AND_EXPR
2423 && TREE_CODE (arg0) != BIT_IOR_EXPR))
2424 return 0;
2425
2426 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
2427 {
2428 common = TREE_OPERAND (arg0, 0);
2429 left = TREE_OPERAND (arg0, 1);
2430 right = TREE_OPERAND (arg1, 1);
2431 }
2432 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
2433 {
2434 common = TREE_OPERAND (arg0, 0);
2435 left = TREE_OPERAND (arg0, 1);
2436 right = TREE_OPERAND (arg1, 0);
2437 }
2438 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
2439 {
2440 common = TREE_OPERAND (arg0, 1);
2441 left = TREE_OPERAND (arg0, 0);
2442 right = TREE_OPERAND (arg1, 1);
2443 }
2444 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
2445 {
2446 common = TREE_OPERAND (arg0, 1);
2447 left = TREE_OPERAND (arg0, 0);
2448 right = TREE_OPERAND (arg1, 0);
2449 }
2450 else
2451 return 0;
2452
2453 return fold (build (TREE_CODE (arg0), type, common,
2454 fold (build (code, type, left, right))));
2455 }
2456 \f
2457 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
2458 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
2459
2460 static tree
2461 make_bit_field_ref (inner, type, bitsize, bitpos, unsignedp)
2462 tree inner;
2463 tree type;
2464 int bitsize, bitpos;
2465 int unsignedp;
2466 {
2467 tree result = build (BIT_FIELD_REF, type, inner,
2468 size_int (bitsize), bitsize_int (bitpos));
2469
2470 TREE_UNSIGNED (result) = unsignedp;
2471
2472 return result;
2473 }
2474
2475 /* Optimize a bit-field compare.
2476
2477 There are two cases: First is a compare against a constant and the
2478 second is a comparison of two items where the fields are at the same
2479 bit position relative to the start of a chunk (byte, halfword, word)
2480 large enough to contain it. In these cases we can avoid the shift
2481 implicit in bitfield extractions.
2482
2483 For constants, we emit a compare of the shifted constant with the
2484 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
2485 compared. For two fields at the same position, we do the ANDs with the
2486 similar mask and compare the result of the ANDs.
2487
2488 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
2489 COMPARE_TYPE is the type of the comparison, and LHS and RHS
2490 are the left and right operands of the comparison, respectively.
2491
2492 If the optimization described above can be done, we return the resulting
2493 tree. Otherwise we return zero. */
2494
2495 static tree
2496 optimize_bit_field_compare (code, compare_type, lhs, rhs)
2497 enum tree_code code;
2498 tree compare_type;
2499 tree lhs, rhs;
2500 {
2501 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
2502 tree type = TREE_TYPE (lhs);
2503 tree signed_type, unsigned_type;
2504 int const_p = TREE_CODE (rhs) == INTEGER_CST;
2505 enum machine_mode lmode, rmode, nmode;
2506 int lunsignedp, runsignedp;
2507 int lvolatilep = 0, rvolatilep = 0;
2508 tree linner, rinner = NULL_TREE;
2509 tree mask;
2510 tree offset;
2511
2512 /* Get all the information about the extractions being done. If the bit size
2513 if the same as the size of the underlying object, we aren't doing an
2514 extraction at all and so can do nothing. We also don't want to
2515 do anything if the inner expression is a PLACEHOLDER_EXPR since we
2516 then will no longer be able to replace it. */
2517 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
2518 &lunsignedp, &lvolatilep);
2519 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
2520 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
2521 return 0;
2522
2523 if (!const_p)
2524 {
2525 /* If this is not a constant, we can only do something if bit positions,
2526 sizes, and signedness are the same. */
2527 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
2528 &runsignedp, &rvolatilep);
2529
2530 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
2531 || lunsignedp != runsignedp || offset != 0
2532 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
2533 return 0;
2534 }
2535
2536 /* See if we can find a mode to refer to this field. We should be able to,
2537 but fail if we can't. */
2538 nmode = get_best_mode (lbitsize, lbitpos,
2539 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
2540 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
2541 TYPE_ALIGN (TREE_TYPE (rinner))),
2542 word_mode, lvolatilep || rvolatilep);
2543 if (nmode == VOIDmode)
2544 return 0;
2545
2546 /* Set signed and unsigned types of the precision of this mode for the
2547 shifts below. */
2548 signed_type = (*lang_hooks.types.type_for_mode) (nmode, 0);
2549 unsigned_type = (*lang_hooks.types.type_for_mode) (nmode, 1);
2550
2551 /* Compute the bit position and size for the new reference and our offset
2552 within it. If the new reference is the same size as the original, we
2553 won't optimize anything, so return zero. */
2554 nbitsize = GET_MODE_BITSIZE (nmode);
2555 nbitpos = lbitpos & ~ (nbitsize - 1);
2556 lbitpos -= nbitpos;
2557 if (nbitsize == lbitsize)
2558 return 0;
2559
2560 if (BYTES_BIG_ENDIAN)
2561 lbitpos = nbitsize - lbitsize - lbitpos;
2562
2563 /* Make the mask to be used against the extracted field. */
2564 mask = build_int_2 (~0, ~0);
2565 TREE_TYPE (mask) = unsigned_type;
2566 force_fit_type (mask, 0);
2567 mask = convert (unsigned_type, mask);
2568 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
2569 mask = const_binop (RSHIFT_EXPR, mask,
2570 size_int (nbitsize - lbitsize - lbitpos), 0);
2571
2572 if (! const_p)
2573 /* If not comparing with constant, just rework the comparison
2574 and return. */
2575 return build (code, compare_type,
2576 build (BIT_AND_EXPR, unsigned_type,
2577 make_bit_field_ref (linner, unsigned_type,
2578 nbitsize, nbitpos, 1),
2579 mask),
2580 build (BIT_AND_EXPR, unsigned_type,
2581 make_bit_field_ref (rinner, unsigned_type,
2582 nbitsize, nbitpos, 1),
2583 mask));
2584
2585 /* Otherwise, we are handling the constant case. See if the constant is too
2586 big for the field. Warn and return a tree of for 0 (false) if so. We do
2587 this not only for its own sake, but to avoid having to test for this
2588 error case below. If we didn't, we might generate wrong code.
2589
2590 For unsigned fields, the constant shifted right by the field length should
2591 be all zero. For signed fields, the high-order bits should agree with
2592 the sign bit. */
2593
2594 if (lunsignedp)
2595 {
2596 if (! integer_zerop (const_binop (RSHIFT_EXPR,
2597 convert (unsigned_type, rhs),
2598 size_int (lbitsize), 0)))
2599 {
2600 warning ("comparison is always %d due to width of bit-field",
2601 code == NE_EXPR);
2602 return convert (compare_type,
2603 (code == NE_EXPR
2604 ? integer_one_node : integer_zero_node));
2605 }
2606 }
2607 else
2608 {
2609 tree tem = const_binop (RSHIFT_EXPR, convert (signed_type, rhs),
2610 size_int (lbitsize - 1), 0);
2611 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
2612 {
2613 warning ("comparison is always %d due to width of bit-field",
2614 code == NE_EXPR);
2615 return convert (compare_type,
2616 (code == NE_EXPR
2617 ? integer_one_node : integer_zero_node));
2618 }
2619 }
2620
2621 /* Single-bit compares should always be against zero. */
2622 if (lbitsize == 1 && ! integer_zerop (rhs))
2623 {
2624 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
2625 rhs = convert (type, integer_zero_node);
2626 }
2627
2628 /* Make a new bitfield reference, shift the constant over the
2629 appropriate number of bits and mask it with the computed mask
2630 (in case this was a signed field). If we changed it, make a new one. */
2631 lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
2632 if (lvolatilep)
2633 {
2634 TREE_SIDE_EFFECTS (lhs) = 1;
2635 TREE_THIS_VOLATILE (lhs) = 1;
2636 }
2637
2638 rhs = fold (const_binop (BIT_AND_EXPR,
2639 const_binop (LSHIFT_EXPR,
2640 convert (unsigned_type, rhs),
2641 size_int (lbitpos), 0),
2642 mask, 0));
2643
2644 return build (code, compare_type,
2645 build (BIT_AND_EXPR, unsigned_type, lhs, mask),
2646 rhs);
2647 }
2648 \f
2649 /* Subroutine for fold_truthop: decode a field reference.
2650
2651 If EXP is a comparison reference, we return the innermost reference.
2652
2653 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
2654 set to the starting bit number.
2655
2656 If the innermost field can be completely contained in a mode-sized
2657 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
2658
2659 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
2660 otherwise it is not changed.
2661
2662 *PUNSIGNEDP is set to the signedness of the field.
2663
2664 *PMASK is set to the mask used. This is either contained in a
2665 BIT_AND_EXPR or derived from the width of the field.
2666
2667 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
2668
2669 Return 0 if this is not a component reference or is one that we can't
2670 do anything with. */
2671
2672 static tree
2673 decode_field_reference (exp, pbitsize, pbitpos, pmode, punsignedp,
2674 pvolatilep, pmask, pand_mask)
2675 tree exp;
2676 HOST_WIDE_INT *pbitsize, *pbitpos;
2677 enum machine_mode *pmode;
2678 int *punsignedp, *pvolatilep;
2679 tree *pmask;
2680 tree *pand_mask;
2681 {
2682 tree and_mask = 0;
2683 tree mask, inner, offset;
2684 tree unsigned_type;
2685 unsigned int precision;
2686
2687 /* All the optimizations using this function assume integer fields.
2688 There are problems with FP fields since the type_for_size call
2689 below can fail for, e.g., XFmode. */
2690 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
2691 return 0;
2692
2693 STRIP_NOPS (exp);
2694
2695 if (TREE_CODE (exp) == BIT_AND_EXPR)
2696 {
2697 and_mask = TREE_OPERAND (exp, 1);
2698 exp = TREE_OPERAND (exp, 0);
2699 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
2700 if (TREE_CODE (and_mask) != INTEGER_CST)
2701 return 0;
2702 }
2703
2704 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
2705 punsignedp, pvolatilep);
2706 if ((inner == exp && and_mask == 0)
2707 || *pbitsize < 0 || offset != 0
2708 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
2709 return 0;
2710
2711 /* Compute the mask to access the bitfield. */
2712 unsigned_type = (*lang_hooks.types.type_for_size) (*pbitsize, 1);
2713 precision = TYPE_PRECISION (unsigned_type);
2714
2715 mask = build_int_2 (~0, ~0);
2716 TREE_TYPE (mask) = unsigned_type;
2717 force_fit_type (mask, 0);
2718 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
2719 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
2720
2721 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
2722 if (and_mask != 0)
2723 mask = fold (build (BIT_AND_EXPR, unsigned_type,
2724 convert (unsigned_type, and_mask), mask));
2725
2726 *pmask = mask;
2727 *pand_mask = and_mask;
2728 return inner;
2729 }
2730
2731 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
2732 bit positions. */
2733
2734 static int
2735 all_ones_mask_p (mask, size)
2736 tree mask;
2737 int size;
2738 {
2739 tree type = TREE_TYPE (mask);
2740 unsigned int precision = TYPE_PRECISION (type);
2741 tree tmask;
2742
2743 tmask = build_int_2 (~0, ~0);
2744 TREE_TYPE (tmask) = (*lang_hooks.types.signed_type) (type);
2745 force_fit_type (tmask, 0);
2746 return
2747 tree_int_cst_equal (mask,
2748 const_binop (RSHIFT_EXPR,
2749 const_binop (LSHIFT_EXPR, tmask,
2750 size_int (precision - size),
2751 0),
2752 size_int (precision - size), 0));
2753 }
2754
2755 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
2756 represents the sign bit of EXP's type. If EXP represents a sign
2757 or zero extension, also test VAL against the unextended type.
2758 The return value is the (sub)expression whose sign bit is VAL,
2759 or NULL_TREE otherwise. */
2760
2761 static tree
2762 sign_bit_p (exp, val)
2763 tree exp;
2764 tree val;
2765 {
2766 unsigned HOST_WIDE_INT lo;
2767 HOST_WIDE_INT hi;
2768 int width;
2769 tree t;
2770
2771 /* Tree EXP must have an integral type. */
2772 t = TREE_TYPE (exp);
2773 if (! INTEGRAL_TYPE_P (t))
2774 return NULL_TREE;
2775
2776 /* Tree VAL must be an integer constant. */
2777 if (TREE_CODE (val) != INTEGER_CST
2778 || TREE_CONSTANT_OVERFLOW (val))
2779 return NULL_TREE;
2780
2781 width = TYPE_PRECISION (t);
2782 if (width > HOST_BITS_PER_WIDE_INT)
2783 {
2784 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
2785 lo = 0;
2786 }
2787 else
2788 {
2789 hi = 0;
2790 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
2791 }
2792
2793 if (TREE_INT_CST_HIGH (val) == hi && TREE_INT_CST_LOW (val) == lo)
2794 return exp;
2795
2796 /* Handle extension from a narrower type. */
2797 if (TREE_CODE (exp) == NOP_EXPR
2798 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
2799 return sign_bit_p (TREE_OPERAND (exp, 0), val);
2800
2801 return NULL_TREE;
2802 }
2803
2804 /* Subroutine for fold_truthop: determine if an operand is simple enough
2805 to be evaluated unconditionally. */
2806
2807 static int
2808 simple_operand_p (exp)
2809 tree exp;
2810 {
2811 /* Strip any conversions that don't change the machine mode. */
2812 while ((TREE_CODE (exp) == NOP_EXPR
2813 || TREE_CODE (exp) == CONVERT_EXPR)
2814 && (TYPE_MODE (TREE_TYPE (exp))
2815 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
2816 exp = TREE_OPERAND (exp, 0);
2817
2818 return (TREE_CODE_CLASS (TREE_CODE (exp)) == 'c'
2819 || (DECL_P (exp)
2820 && ! TREE_ADDRESSABLE (exp)
2821 && ! TREE_THIS_VOLATILE (exp)
2822 && ! DECL_NONLOCAL (exp)
2823 /* Don't regard global variables as simple. They may be
2824 allocated in ways unknown to the compiler (shared memory,
2825 #pragma weak, etc). */
2826 && ! TREE_PUBLIC (exp)
2827 && ! DECL_EXTERNAL (exp)
2828 /* Loading a static variable is unduly expensive, but global
2829 registers aren't expensive. */
2830 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
2831 }
2832 \f
2833 /* The following functions are subroutines to fold_range_test and allow it to
2834 try to change a logical combination of comparisons into a range test.
2835
2836 For example, both
2837 X == 2 || X == 3 || X == 4 || X == 5
2838 and
2839 X >= 2 && X <= 5
2840 are converted to
2841 (unsigned) (X - 2) <= 3
2842
2843 We describe each set of comparisons as being either inside or outside
2844 a range, using a variable named like IN_P, and then describe the
2845 range with a lower and upper bound. If one of the bounds is omitted,
2846 it represents either the highest or lowest value of the type.
2847
2848 In the comments below, we represent a range by two numbers in brackets
2849 preceded by a "+" to designate being inside that range, or a "-" to
2850 designate being outside that range, so the condition can be inverted by
2851 flipping the prefix. An omitted bound is represented by a "-". For
2852 example, "- [-, 10]" means being outside the range starting at the lowest
2853 possible value and ending at 10, in other words, being greater than 10.
2854 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
2855 always false.
2856
2857 We set up things so that the missing bounds are handled in a consistent
2858 manner so neither a missing bound nor "true" and "false" need to be
2859 handled using a special case. */
2860
2861 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
2862 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
2863 and UPPER1_P are nonzero if the respective argument is an upper bound
2864 and zero for a lower. TYPE, if nonzero, is the type of the result; it
2865 must be specified for a comparison. ARG1 will be converted to ARG0's
2866 type if both are specified. */
2867
2868 static tree
2869 range_binop (code, type, arg0, upper0_p, arg1, upper1_p)
2870 enum tree_code code;
2871 tree type;
2872 tree arg0, arg1;
2873 int upper0_p, upper1_p;
2874 {
2875 tree tem;
2876 int result;
2877 int sgn0, sgn1;
2878
2879 /* If neither arg represents infinity, do the normal operation.
2880 Else, if not a comparison, return infinity. Else handle the special
2881 comparison rules. Note that most of the cases below won't occur, but
2882 are handled for consistency. */
2883
2884 if (arg0 != 0 && arg1 != 0)
2885 {
2886 tem = fold (build (code, type != 0 ? type : TREE_TYPE (arg0),
2887 arg0, convert (TREE_TYPE (arg0), arg1)));
2888 STRIP_NOPS (tem);
2889 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
2890 }
2891
2892 if (TREE_CODE_CLASS (code) != '<')
2893 return 0;
2894
2895 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
2896 for neither. In real maths, we cannot assume open ended ranges are
2897 the same. But, this is computer arithmetic, where numbers are finite.
2898 We can therefore make the transformation of any unbounded range with
2899 the value Z, Z being greater than any representable number. This permits
2900 us to treat unbounded ranges as equal. */
2901 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
2902 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
2903 switch (code)
2904 {
2905 case EQ_EXPR:
2906 result = sgn0 == sgn1;
2907 break;
2908 case NE_EXPR:
2909 result = sgn0 != sgn1;
2910 break;
2911 case LT_EXPR:
2912 result = sgn0 < sgn1;
2913 break;
2914 case LE_EXPR:
2915 result = sgn0 <= sgn1;
2916 break;
2917 case GT_EXPR:
2918 result = sgn0 > sgn1;
2919 break;
2920 case GE_EXPR:
2921 result = sgn0 >= sgn1;
2922 break;
2923 default:
2924 abort ();
2925 }
2926
2927 return convert (type, result ? integer_one_node : integer_zero_node);
2928 }
2929 \f
2930 /* Given EXP, a logical expression, set the range it is testing into
2931 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
2932 actually being tested. *PLOW and *PHIGH will be made of the same type
2933 as the returned expression. If EXP is not a comparison, we will most
2934 likely not be returning a useful value and range. */
2935
2936 static tree
2937 make_range (exp, pin_p, plow, phigh)
2938 tree exp;
2939 int *pin_p;
2940 tree *plow, *phigh;
2941 {
2942 enum tree_code code;
2943 tree arg0 = NULL_TREE, arg1 = NULL_TREE, type = NULL_TREE;
2944 tree orig_type = NULL_TREE;
2945 int in_p, n_in_p;
2946 tree low, high, n_low, n_high;
2947
2948 /* Start with simply saying "EXP != 0" and then look at the code of EXP
2949 and see if we can refine the range. Some of the cases below may not
2950 happen, but it doesn't seem worth worrying about this. We "continue"
2951 the outer loop when we've changed something; otherwise we "break"
2952 the switch, which will "break" the while. */
2953
2954 in_p = 0, low = high = convert (TREE_TYPE (exp), integer_zero_node);
2955
2956 while (1)
2957 {
2958 code = TREE_CODE (exp);
2959
2960 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
2961 {
2962 arg0 = TREE_OPERAND (exp, 0);
2963 if (TREE_CODE_CLASS (code) == '<'
2964 || TREE_CODE_CLASS (code) == '1'
2965 || TREE_CODE_CLASS (code) == '2')
2966 type = TREE_TYPE (arg0);
2967 if (TREE_CODE_CLASS (code) == '2'
2968 || TREE_CODE_CLASS (code) == '<'
2969 || (TREE_CODE_CLASS (code) == 'e'
2970 && TREE_CODE_LENGTH (code) > 1))
2971 arg1 = TREE_OPERAND (exp, 1);
2972 }
2973
2974 /* Set ORIG_TYPE as soon as TYPE is non-null so that we do not
2975 lose a cast by accident. */
2976 if (type != NULL_TREE && orig_type == NULL_TREE)
2977 orig_type = type;
2978
2979 switch (code)
2980 {
2981 case TRUTH_NOT_EXPR:
2982 in_p = ! in_p, exp = arg0;
2983 continue;
2984
2985 case EQ_EXPR: case NE_EXPR:
2986 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
2987 /* We can only do something if the range is testing for zero
2988 and if the second operand is an integer constant. Note that
2989 saying something is "in" the range we make is done by
2990 complementing IN_P since it will set in the initial case of
2991 being not equal to zero; "out" is leaving it alone. */
2992 if (low == 0 || high == 0
2993 || ! integer_zerop (low) || ! integer_zerop (high)
2994 || TREE_CODE (arg1) != INTEGER_CST)
2995 break;
2996
2997 switch (code)
2998 {
2999 case NE_EXPR: /* - [c, c] */
3000 low = high = arg1;
3001 break;
3002 case EQ_EXPR: /* + [c, c] */
3003 in_p = ! in_p, low = high = arg1;
3004 break;
3005 case GT_EXPR: /* - [-, c] */
3006 low = 0, high = arg1;
3007 break;
3008 case GE_EXPR: /* + [c, -] */
3009 in_p = ! in_p, low = arg1, high = 0;
3010 break;
3011 case LT_EXPR: /* - [c, -] */
3012 low = arg1, high = 0;
3013 break;
3014 case LE_EXPR: /* + [-, c] */
3015 in_p = ! in_p, low = 0, high = arg1;
3016 break;
3017 default:
3018 abort ();
3019 }
3020
3021 exp = arg0;
3022
3023 /* If this is an unsigned comparison, we also know that EXP is
3024 greater than or equal to zero. We base the range tests we make
3025 on that fact, so we record it here so we can parse existing
3026 range tests. */
3027 if (TREE_UNSIGNED (type) && (low == 0 || high == 0))
3028 {
3029 if (! merge_ranges (&n_in_p, &n_low, &n_high, in_p, low, high,
3030 1, convert (type, integer_zero_node),
3031 NULL_TREE))
3032 break;
3033
3034 in_p = n_in_p, low = n_low, high = n_high;
3035
3036 /* If the high bound is missing, but we
3037 have a low bound, reverse the range so
3038 it goes from zero to the low bound minus 1. */
3039 if (high == 0 && low)
3040 {
3041 in_p = ! in_p;
3042 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
3043 integer_one_node, 0);
3044 low = convert (type, integer_zero_node);
3045 }
3046 }
3047 continue;
3048
3049 case NEGATE_EXPR:
3050 /* (-x) IN [a,b] -> x in [-b, -a] */
3051 n_low = range_binop (MINUS_EXPR, type,
3052 convert (type, integer_zero_node), 0, high, 1);
3053 n_high = range_binop (MINUS_EXPR, type,
3054 convert (type, integer_zero_node), 0, low, 0);
3055 low = n_low, high = n_high;
3056 exp = arg0;
3057 continue;
3058
3059 case BIT_NOT_EXPR:
3060 /* ~ X -> -X - 1 */
3061 exp = build (MINUS_EXPR, type, negate_expr (arg0),
3062 convert (type, integer_one_node));
3063 continue;
3064
3065 case PLUS_EXPR: case MINUS_EXPR:
3066 if (TREE_CODE (arg1) != INTEGER_CST)
3067 break;
3068
3069 /* If EXP is signed, any overflow in the computation is undefined,
3070 so we don't worry about it so long as our computations on
3071 the bounds don't overflow. For unsigned, overflow is defined
3072 and this is exactly the right thing. */
3073 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3074 type, low, 0, arg1, 0);
3075 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3076 type, high, 1, arg1, 0);
3077 if ((n_low != 0 && TREE_OVERFLOW (n_low))
3078 || (n_high != 0 && TREE_OVERFLOW (n_high)))
3079 break;
3080
3081 /* Check for an unsigned range which has wrapped around the maximum
3082 value thus making n_high < n_low, and normalize it. */
3083 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
3084 {
3085 low = range_binop (PLUS_EXPR, type, n_high, 0,
3086 integer_one_node, 0);
3087 high = range_binop (MINUS_EXPR, type, n_low, 0,
3088 integer_one_node, 0);
3089
3090 /* If the range is of the form +/- [ x+1, x ], we won't
3091 be able to normalize it. But then, it represents the
3092 whole range or the empty set, so make it
3093 +/- [ -, - ]. */
3094 if (tree_int_cst_equal (n_low, low)
3095 && tree_int_cst_equal (n_high, high))
3096 low = high = 0;
3097 else
3098 in_p = ! in_p;
3099 }
3100 else
3101 low = n_low, high = n_high;
3102
3103 exp = arg0;
3104 continue;
3105
3106 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
3107 if (TYPE_PRECISION (type) > TYPE_PRECISION (orig_type))
3108 break;
3109
3110 if (! INTEGRAL_TYPE_P (type)
3111 || (low != 0 && ! int_fits_type_p (low, type))
3112 || (high != 0 && ! int_fits_type_p (high, type)))
3113 break;
3114
3115 n_low = low, n_high = high;
3116
3117 if (n_low != 0)
3118 n_low = convert (type, n_low);
3119
3120 if (n_high != 0)
3121 n_high = convert (type, n_high);
3122
3123 /* If we're converting from an unsigned to a signed type,
3124 we will be doing the comparison as unsigned. The tests above
3125 have already verified that LOW and HIGH are both positive.
3126
3127 So we have to make sure that the original unsigned value will
3128 be interpreted as positive. */
3129 if (TREE_UNSIGNED (type) && ! TREE_UNSIGNED (TREE_TYPE (exp)))
3130 {
3131 tree equiv_type = (*lang_hooks.types.type_for_mode)
3132 (TYPE_MODE (type), 1);
3133 tree high_positive;
3134
3135 /* A range without an upper bound is, naturally, unbounded.
3136 Since convert would have cropped a very large value, use
3137 the max value for the destination type. */
3138 high_positive
3139 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
3140 : TYPE_MAX_VALUE (type);
3141
3142 if (TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (exp)))
3143 high_positive = fold (build (RSHIFT_EXPR, type,
3144 convert (type, high_positive),
3145 convert (type, integer_one_node)));
3146
3147 /* If the low bound is specified, "and" the range with the
3148 range for which the original unsigned value will be
3149 positive. */
3150 if (low != 0)
3151 {
3152 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3153 1, n_low, n_high,
3154 1, convert (type, integer_zero_node),
3155 high_positive))
3156 break;
3157
3158 in_p = (n_in_p == in_p);
3159 }
3160 else
3161 {
3162 /* Otherwise, "or" the range with the range of the input
3163 that will be interpreted as negative. */
3164 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3165 0, n_low, n_high,
3166 1, convert (type, integer_zero_node),
3167 high_positive))
3168 break;
3169
3170 in_p = (in_p != n_in_p);
3171 }
3172 }
3173
3174 exp = arg0;
3175 low = n_low, high = n_high;
3176 continue;
3177
3178 default:
3179 break;
3180 }
3181
3182 break;
3183 }
3184
3185 /* If EXP is a constant, we can evaluate whether this is true or false. */
3186 if (TREE_CODE (exp) == INTEGER_CST)
3187 {
3188 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
3189 exp, 0, low, 0))
3190 && integer_onep (range_binop (LE_EXPR, integer_type_node,
3191 exp, 1, high, 1)));
3192 low = high = 0;
3193 exp = 0;
3194 }
3195
3196 *pin_p = in_p, *plow = low, *phigh = high;
3197 return exp;
3198 }
3199 \f
3200 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
3201 type, TYPE, return an expression to test if EXP is in (or out of, depending
3202 on IN_P) the range. */
3203
3204 static tree
3205 build_range_check (type, exp, in_p, low, high)
3206 tree type;
3207 tree exp;
3208 int in_p;
3209 tree low, high;
3210 {
3211 tree etype = TREE_TYPE (exp);
3212 tree value;
3213
3214 if (! in_p
3215 && (0 != (value = build_range_check (type, exp, 1, low, high))))
3216 return invert_truthvalue (value);
3217
3218 if (low == 0 && high == 0)
3219 return convert (type, integer_one_node);
3220
3221 if (low == 0)
3222 return fold (build (LE_EXPR, type, exp, high));
3223
3224 if (high == 0)
3225 return fold (build (GE_EXPR, type, exp, low));
3226
3227 if (operand_equal_p (low, high, 0))
3228 return fold (build (EQ_EXPR, type, exp, low));
3229
3230 if (integer_zerop (low))
3231 {
3232 if (! TREE_UNSIGNED (etype))
3233 {
3234 etype = (*lang_hooks.types.unsigned_type) (etype);
3235 high = convert (etype, high);
3236 exp = convert (etype, exp);
3237 }
3238 return build_range_check (type, exp, 1, 0, high);
3239 }
3240
3241 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
3242 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
3243 {
3244 unsigned HOST_WIDE_INT lo;
3245 HOST_WIDE_INT hi;
3246 int prec;
3247
3248 prec = TYPE_PRECISION (etype);
3249 if (prec <= HOST_BITS_PER_WIDE_INT)
3250 {
3251 hi = 0;
3252 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
3253 }
3254 else
3255 {
3256 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
3257 lo = (unsigned HOST_WIDE_INT) -1;
3258 }
3259
3260 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
3261 {
3262 if (TREE_UNSIGNED (etype))
3263 {
3264 etype = (*lang_hooks.types.signed_type) (etype);
3265 exp = convert (etype, exp);
3266 }
3267 return fold (build (GT_EXPR, type, exp,
3268 convert (etype, integer_zero_node)));
3269 }
3270 }
3271
3272 if (0 != (value = const_binop (MINUS_EXPR, high, low, 0))
3273 && ! TREE_OVERFLOW (value))
3274 return build_range_check (type,
3275 fold (build (MINUS_EXPR, etype, exp, low)),
3276 1, convert (etype, integer_zero_node), value);
3277
3278 return 0;
3279 }
3280 \f
3281 /* Given two ranges, see if we can merge them into one. Return 1 if we
3282 can, 0 if we can't. Set the output range into the specified parameters. */
3283
3284 static int
3285 merge_ranges (pin_p, plow, phigh, in0_p, low0, high0, in1_p, low1, high1)
3286 int *pin_p;
3287 tree *plow, *phigh;
3288 int in0_p, in1_p;
3289 tree low0, high0, low1, high1;
3290 {
3291 int no_overlap;
3292 int subset;
3293 int temp;
3294 tree tem;
3295 int in_p;
3296 tree low, high;
3297 int lowequal = ((low0 == 0 && low1 == 0)
3298 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3299 low0, 0, low1, 0)));
3300 int highequal = ((high0 == 0 && high1 == 0)
3301 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3302 high0, 1, high1, 1)));
3303
3304 /* Make range 0 be the range that starts first, or ends last if they
3305 start at the same value. Swap them if it isn't. */
3306 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
3307 low0, 0, low1, 0))
3308 || (lowequal
3309 && integer_onep (range_binop (GT_EXPR, integer_type_node,
3310 high1, 1, high0, 1))))
3311 {
3312 temp = in0_p, in0_p = in1_p, in1_p = temp;
3313 tem = low0, low0 = low1, low1 = tem;
3314 tem = high0, high0 = high1, high1 = tem;
3315 }
3316
3317 /* Now flag two cases, whether the ranges are disjoint or whether the
3318 second range is totally subsumed in the first. Note that the tests
3319 below are simplified by the ones above. */
3320 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
3321 high0, 1, low1, 0));
3322 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
3323 high1, 1, high0, 1));
3324
3325 /* We now have four cases, depending on whether we are including or
3326 excluding the two ranges. */
3327 if (in0_p && in1_p)
3328 {
3329 /* If they don't overlap, the result is false. If the second range
3330 is a subset it is the result. Otherwise, the range is from the start
3331 of the second to the end of the first. */
3332 if (no_overlap)
3333 in_p = 0, low = high = 0;
3334 else if (subset)
3335 in_p = 1, low = low1, high = high1;
3336 else
3337 in_p = 1, low = low1, high = high0;
3338 }
3339
3340 else if (in0_p && ! in1_p)
3341 {
3342 /* If they don't overlap, the result is the first range. If they are
3343 equal, the result is false. If the second range is a subset of the
3344 first, and the ranges begin at the same place, we go from just after
3345 the end of the first range to the end of the second. If the second
3346 range is not a subset of the first, or if it is a subset and both
3347 ranges end at the same place, the range starts at the start of the
3348 first range and ends just before the second range.
3349 Otherwise, we can't describe this as a single range. */
3350 if (no_overlap)
3351 in_p = 1, low = low0, high = high0;
3352 else if (lowequal && highequal)
3353 in_p = 0, low = high = 0;
3354 else if (subset && lowequal)
3355 {
3356 in_p = 1, high = high0;
3357 low = range_binop (PLUS_EXPR, NULL_TREE, high1, 0,
3358 integer_one_node, 0);
3359 }
3360 else if (! subset || highequal)
3361 {
3362 in_p = 1, low = low0;
3363 high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
3364 integer_one_node, 0);
3365 }
3366 else
3367 return 0;
3368 }
3369
3370 else if (! in0_p && in1_p)
3371 {
3372 /* If they don't overlap, the result is the second range. If the second
3373 is a subset of the first, the result is false. Otherwise,
3374 the range starts just after the first range and ends at the
3375 end of the second. */
3376 if (no_overlap)
3377 in_p = 1, low = low1, high = high1;
3378 else if (subset || highequal)
3379 in_p = 0, low = high = 0;
3380 else
3381 {
3382 in_p = 1, high = high1;
3383 low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
3384 integer_one_node, 0);
3385 }
3386 }
3387
3388 else
3389 {
3390 /* The case where we are excluding both ranges. Here the complex case
3391 is if they don't overlap. In that case, the only time we have a
3392 range is if they are adjacent. If the second is a subset of the
3393 first, the result is the first. Otherwise, the range to exclude
3394 starts at the beginning of the first range and ends at the end of the
3395 second. */
3396 if (no_overlap)
3397 {
3398 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
3399 range_binop (PLUS_EXPR, NULL_TREE,
3400 high0, 1,
3401 integer_one_node, 1),
3402 1, low1, 0)))
3403 in_p = 0, low = low0, high = high1;
3404 else
3405 return 0;
3406 }
3407 else if (subset)
3408 in_p = 0, low = low0, high = high0;
3409 else
3410 in_p = 0, low = low0, high = high1;
3411 }
3412
3413 *pin_p = in_p, *plow = low, *phigh = high;
3414 return 1;
3415 }
3416 \f
3417 /* EXP is some logical combination of boolean tests. See if we can
3418 merge it into some range test. Return the new tree if so. */
3419
3420 static tree
3421 fold_range_test (exp)
3422 tree exp;
3423 {
3424 int or_op = (TREE_CODE (exp) == TRUTH_ORIF_EXPR
3425 || TREE_CODE (exp) == TRUTH_OR_EXPR);
3426 int in0_p, in1_p, in_p;
3427 tree low0, low1, low, high0, high1, high;
3428 tree lhs = make_range (TREE_OPERAND (exp, 0), &in0_p, &low0, &high0);
3429 tree rhs = make_range (TREE_OPERAND (exp, 1), &in1_p, &low1, &high1);
3430 tree tem;
3431
3432 /* If this is an OR operation, invert both sides; we will invert
3433 again at the end. */
3434 if (or_op)
3435 in0_p = ! in0_p, in1_p = ! in1_p;
3436
3437 /* If both expressions are the same, if we can merge the ranges, and we
3438 can build the range test, return it or it inverted. If one of the
3439 ranges is always true or always false, consider it to be the same
3440 expression as the other. */
3441 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
3442 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
3443 in1_p, low1, high1)
3444 && 0 != (tem = (build_range_check (TREE_TYPE (exp),
3445 lhs != 0 ? lhs
3446 : rhs != 0 ? rhs : integer_zero_node,
3447 in_p, low, high))))
3448 return or_op ? invert_truthvalue (tem) : tem;
3449
3450 /* On machines where the branch cost is expensive, if this is a
3451 short-circuited branch and the underlying object on both sides
3452 is the same, make a non-short-circuit operation. */
3453 else if (BRANCH_COST >= 2
3454 && lhs != 0 && rhs != 0
3455 && (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3456 || TREE_CODE (exp) == TRUTH_ORIF_EXPR)
3457 && operand_equal_p (lhs, rhs, 0))
3458 {
3459 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
3460 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
3461 which cases we can't do this. */
3462 if (simple_operand_p (lhs))
3463 return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3464 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
3465 TREE_TYPE (exp), TREE_OPERAND (exp, 0),
3466 TREE_OPERAND (exp, 1));
3467
3468 else if ((*lang_hooks.decls.global_bindings_p) () == 0
3469 && ! contains_placeholder_p (lhs))
3470 {
3471 tree common = save_expr (lhs);
3472
3473 if (0 != (lhs = build_range_check (TREE_TYPE (exp), common,
3474 or_op ? ! in0_p : in0_p,
3475 low0, high0))
3476 && (0 != (rhs = build_range_check (TREE_TYPE (exp), common,
3477 or_op ? ! in1_p : in1_p,
3478 low1, high1))))
3479 return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3480 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
3481 TREE_TYPE (exp), lhs, rhs);
3482 }
3483 }
3484
3485 return 0;
3486 }
3487 \f
3488 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
3489 bit value. Arrange things so the extra bits will be set to zero if and
3490 only if C is signed-extended to its full width. If MASK is nonzero,
3491 it is an INTEGER_CST that should be AND'ed with the extra bits. */
3492
3493 static tree
3494 unextend (c, p, unsignedp, mask)
3495 tree c;
3496 int p;
3497 int unsignedp;
3498 tree mask;
3499 {
3500 tree type = TREE_TYPE (c);
3501 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
3502 tree temp;
3503
3504 if (p == modesize || unsignedp)
3505 return c;
3506
3507 /* We work by getting just the sign bit into the low-order bit, then
3508 into the high-order bit, then sign-extend. We then XOR that value
3509 with C. */
3510 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
3511 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
3512
3513 /* We must use a signed type in order to get an arithmetic right shift.
3514 However, we must also avoid introducing accidental overflows, so that
3515 a subsequent call to integer_zerop will work. Hence we must
3516 do the type conversion here. At this point, the constant is either
3517 zero or one, and the conversion to a signed type can never overflow.
3518 We could get an overflow if this conversion is done anywhere else. */
3519 if (TREE_UNSIGNED (type))
3520 temp = convert ((*lang_hooks.types.signed_type) (type), temp);
3521
3522 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
3523 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
3524 if (mask != 0)
3525 temp = const_binop (BIT_AND_EXPR, temp, convert (TREE_TYPE (c), mask), 0);
3526 /* If necessary, convert the type back to match the type of C. */
3527 if (TREE_UNSIGNED (type))
3528 temp = convert (type, temp);
3529
3530 return convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
3531 }
3532 \f
3533 /* Find ways of folding logical expressions of LHS and RHS:
3534 Try to merge two comparisons to the same innermost item.
3535 Look for range tests like "ch >= '0' && ch <= '9'".
3536 Look for combinations of simple terms on machines with expensive branches
3537 and evaluate the RHS unconditionally.
3538
3539 For example, if we have p->a == 2 && p->b == 4 and we can make an
3540 object large enough to span both A and B, we can do this with a comparison
3541 against the object ANDed with the a mask.
3542
3543 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
3544 operations to do this with one comparison.
3545
3546 We check for both normal comparisons and the BIT_AND_EXPRs made this by
3547 function and the one above.
3548
3549 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
3550 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
3551
3552 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
3553 two operands.
3554
3555 We return the simplified tree or 0 if no optimization is possible. */
3556
3557 static tree
3558 fold_truthop (code, truth_type, lhs, rhs)
3559 enum tree_code code;
3560 tree truth_type, lhs, rhs;
3561 {
3562 /* If this is the "or" of two comparisons, we can do something if
3563 the comparisons are NE_EXPR. If this is the "and", we can do something
3564 if the comparisons are EQ_EXPR. I.e.,
3565 (a->b == 2 && a->c == 4) can become (a->new == NEW).
3566
3567 WANTED_CODE is this operation code. For single bit fields, we can
3568 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
3569 comparison for one-bit fields. */
3570
3571 enum tree_code wanted_code;
3572 enum tree_code lcode, rcode;
3573 tree ll_arg, lr_arg, rl_arg, rr_arg;
3574 tree ll_inner, lr_inner, rl_inner, rr_inner;
3575 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
3576 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
3577 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
3578 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
3579 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
3580 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
3581 enum machine_mode lnmode, rnmode;
3582 tree ll_mask, lr_mask, rl_mask, rr_mask;
3583 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
3584 tree l_const, r_const;
3585 tree lntype, rntype, result;
3586 int first_bit, end_bit;
3587 int volatilep;
3588
3589 /* Start by getting the comparison codes. Fail if anything is volatile.
3590 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
3591 it were surrounded with a NE_EXPR. */
3592
3593 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
3594 return 0;
3595
3596 lcode = TREE_CODE (lhs);
3597 rcode = TREE_CODE (rhs);
3598
3599 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
3600 lcode = NE_EXPR, lhs = build (NE_EXPR, truth_type, lhs, integer_zero_node);
3601
3602 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
3603 rcode = NE_EXPR, rhs = build (NE_EXPR, truth_type, rhs, integer_zero_node);
3604
3605 if (TREE_CODE_CLASS (lcode) != '<' || TREE_CODE_CLASS (rcode) != '<')
3606 return 0;
3607
3608 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
3609 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
3610
3611 ll_arg = TREE_OPERAND (lhs, 0);
3612 lr_arg = TREE_OPERAND (lhs, 1);
3613 rl_arg = TREE_OPERAND (rhs, 0);
3614 rr_arg = TREE_OPERAND (rhs, 1);
3615
3616 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
3617 if (simple_operand_p (ll_arg)
3618 && simple_operand_p (lr_arg)
3619 && !FLOAT_TYPE_P (TREE_TYPE (ll_arg)))
3620 {
3621 int compcode;
3622
3623 if (operand_equal_p (ll_arg, rl_arg, 0)
3624 && operand_equal_p (lr_arg, rr_arg, 0))
3625 {
3626 int lcompcode, rcompcode;
3627
3628 lcompcode = comparison_to_compcode (lcode);
3629 rcompcode = comparison_to_compcode (rcode);
3630 compcode = (code == TRUTH_AND_EXPR)
3631 ? lcompcode & rcompcode
3632 : lcompcode | rcompcode;
3633 }
3634 else if (operand_equal_p (ll_arg, rr_arg, 0)
3635 && operand_equal_p (lr_arg, rl_arg, 0))
3636 {
3637 int lcompcode, rcompcode;
3638
3639 rcode = swap_tree_comparison (rcode);
3640 lcompcode = comparison_to_compcode (lcode);
3641 rcompcode = comparison_to_compcode (rcode);
3642 compcode = (code == TRUTH_AND_EXPR)
3643 ? lcompcode & rcompcode
3644 : lcompcode | rcompcode;
3645 }
3646 else
3647 compcode = -1;
3648
3649 if (compcode == COMPCODE_TRUE)
3650 return convert (truth_type, integer_one_node);
3651 else if (compcode == COMPCODE_FALSE)
3652 return convert (truth_type, integer_zero_node);
3653 else if (compcode != -1)
3654 return build (compcode_to_comparison (compcode),
3655 truth_type, ll_arg, lr_arg);
3656 }
3657
3658 /* If the RHS can be evaluated unconditionally and its operands are
3659 simple, it wins to evaluate the RHS unconditionally on machines
3660 with expensive branches. In this case, this isn't a comparison
3661 that can be merged. Avoid doing this if the RHS is a floating-point
3662 comparison since those can trap. */
3663
3664 if (BRANCH_COST >= 2
3665 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
3666 && simple_operand_p (rl_arg)
3667 && simple_operand_p (rr_arg))
3668 {
3669 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
3670 if (code == TRUTH_OR_EXPR
3671 && lcode == NE_EXPR && integer_zerop (lr_arg)
3672 && rcode == NE_EXPR && integer_zerop (rr_arg)
3673 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
3674 return build (NE_EXPR, truth_type,
3675 build (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
3676 ll_arg, rl_arg),
3677 integer_zero_node);
3678
3679 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
3680 if (code == TRUTH_AND_EXPR
3681 && lcode == EQ_EXPR && integer_zerop (lr_arg)
3682 && rcode == EQ_EXPR && integer_zerop (rr_arg)
3683 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
3684 return build (EQ_EXPR, truth_type,
3685 build (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
3686 ll_arg, rl_arg),
3687 integer_zero_node);
3688
3689 return build (code, truth_type, lhs, rhs);
3690 }
3691
3692 /* See if the comparisons can be merged. Then get all the parameters for
3693 each side. */
3694
3695 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
3696 || (rcode != EQ_EXPR && rcode != NE_EXPR))
3697 return 0;
3698
3699 volatilep = 0;
3700 ll_inner = decode_field_reference (ll_arg,
3701 &ll_bitsize, &ll_bitpos, &ll_mode,
3702 &ll_unsignedp, &volatilep, &ll_mask,
3703 &ll_and_mask);
3704 lr_inner = decode_field_reference (lr_arg,
3705 &lr_bitsize, &lr_bitpos, &lr_mode,
3706 &lr_unsignedp, &volatilep, &lr_mask,
3707 &lr_and_mask);
3708 rl_inner = decode_field_reference (rl_arg,
3709 &rl_bitsize, &rl_bitpos, &rl_mode,
3710 &rl_unsignedp, &volatilep, &rl_mask,
3711 &rl_and_mask);
3712 rr_inner = decode_field_reference (rr_arg,
3713 &rr_bitsize, &rr_bitpos, &rr_mode,
3714 &rr_unsignedp, &volatilep, &rr_mask,
3715 &rr_and_mask);
3716
3717 /* It must be true that the inner operation on the lhs of each
3718 comparison must be the same if we are to be able to do anything.
3719 Then see if we have constants. If not, the same must be true for
3720 the rhs's. */
3721 if (volatilep || ll_inner == 0 || rl_inner == 0
3722 || ! operand_equal_p (ll_inner, rl_inner, 0))
3723 return 0;
3724
3725 if (TREE_CODE (lr_arg) == INTEGER_CST
3726 && TREE_CODE (rr_arg) == INTEGER_CST)
3727 l_const = lr_arg, r_const = rr_arg;
3728 else if (lr_inner == 0 || rr_inner == 0
3729 || ! operand_equal_p (lr_inner, rr_inner, 0))
3730 return 0;
3731 else
3732 l_const = r_const = 0;
3733
3734 /* If either comparison code is not correct for our logical operation,
3735 fail. However, we can convert a one-bit comparison against zero into
3736 the opposite comparison against that bit being set in the field. */
3737
3738 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
3739 if (lcode != wanted_code)
3740 {
3741 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
3742 {
3743 /* Make the left operand unsigned, since we are only interested
3744 in the value of one bit. Otherwise we are doing the wrong
3745 thing below. */
3746 ll_unsignedp = 1;
3747 l_const = ll_mask;
3748 }
3749 else
3750 return 0;
3751 }
3752
3753 /* This is analogous to the code for l_const above. */
3754 if (rcode != wanted_code)
3755 {
3756 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
3757 {
3758 rl_unsignedp = 1;
3759 r_const = rl_mask;
3760 }
3761 else
3762 return 0;
3763 }
3764
3765 /* After this point all optimizations will generate bit-field
3766 references, which we might not want. */
3767 if (! (*lang_hooks.can_use_bit_fields_p) ())
3768 return 0;
3769
3770 /* See if we can find a mode that contains both fields being compared on
3771 the left. If we can't, fail. Otherwise, update all constants and masks
3772 to be relative to a field of that size. */
3773 first_bit = MIN (ll_bitpos, rl_bitpos);
3774 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
3775 lnmode = get_best_mode (end_bit - first_bit, first_bit,
3776 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
3777 volatilep);
3778 if (lnmode == VOIDmode)
3779 return 0;
3780
3781 lnbitsize = GET_MODE_BITSIZE (lnmode);
3782 lnbitpos = first_bit & ~ (lnbitsize - 1);
3783 lntype = (*lang_hooks.types.type_for_size) (lnbitsize, 1);
3784 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
3785
3786 if (BYTES_BIG_ENDIAN)
3787 {
3788 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
3789 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
3790 }
3791
3792 ll_mask = const_binop (LSHIFT_EXPR, convert (lntype, ll_mask),
3793 size_int (xll_bitpos), 0);
3794 rl_mask = const_binop (LSHIFT_EXPR, convert (lntype, rl_mask),
3795 size_int (xrl_bitpos), 0);
3796
3797 if (l_const)
3798 {
3799 l_const = convert (lntype, l_const);
3800 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
3801 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
3802 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
3803 fold (build1 (BIT_NOT_EXPR,
3804 lntype, ll_mask)),
3805 0)))
3806 {
3807 warning ("comparison is always %d", wanted_code == NE_EXPR);
3808
3809 return convert (truth_type,
3810 wanted_code == NE_EXPR
3811 ? integer_one_node : integer_zero_node);
3812 }
3813 }
3814 if (r_const)
3815 {
3816 r_const = convert (lntype, r_const);
3817 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
3818 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
3819 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
3820 fold (build1 (BIT_NOT_EXPR,
3821 lntype, rl_mask)),
3822 0)))
3823 {
3824 warning ("comparison is always %d", wanted_code == NE_EXPR);
3825
3826 return convert (truth_type,
3827 wanted_code == NE_EXPR
3828 ? integer_one_node : integer_zero_node);
3829 }
3830 }
3831
3832 /* If the right sides are not constant, do the same for it. Also,
3833 disallow this optimization if a size or signedness mismatch occurs
3834 between the left and right sides. */
3835 if (l_const == 0)
3836 {
3837 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
3838 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
3839 /* Make sure the two fields on the right
3840 correspond to the left without being swapped. */
3841 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
3842 return 0;
3843
3844 first_bit = MIN (lr_bitpos, rr_bitpos);
3845 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
3846 rnmode = get_best_mode (end_bit - first_bit, first_bit,
3847 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
3848 volatilep);
3849 if (rnmode == VOIDmode)
3850 return 0;
3851
3852 rnbitsize = GET_MODE_BITSIZE (rnmode);
3853 rnbitpos = first_bit & ~ (rnbitsize - 1);
3854 rntype = (*lang_hooks.types.type_for_size) (rnbitsize, 1);
3855 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
3856
3857 if (BYTES_BIG_ENDIAN)
3858 {
3859 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
3860 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
3861 }
3862
3863 lr_mask = const_binop (LSHIFT_EXPR, convert (rntype, lr_mask),
3864 size_int (xlr_bitpos), 0);
3865 rr_mask = const_binop (LSHIFT_EXPR, convert (rntype, rr_mask),
3866 size_int (xrr_bitpos), 0);
3867
3868 /* Make a mask that corresponds to both fields being compared.
3869 Do this for both items being compared. If the operands are the
3870 same size and the bits being compared are in the same position
3871 then we can do this by masking both and comparing the masked
3872 results. */
3873 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
3874 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
3875 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
3876 {
3877 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
3878 ll_unsignedp || rl_unsignedp);
3879 if (! all_ones_mask_p (ll_mask, lnbitsize))
3880 lhs = build (BIT_AND_EXPR, lntype, lhs, ll_mask);
3881
3882 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
3883 lr_unsignedp || rr_unsignedp);
3884 if (! all_ones_mask_p (lr_mask, rnbitsize))
3885 rhs = build (BIT_AND_EXPR, rntype, rhs, lr_mask);
3886
3887 return build (wanted_code, truth_type, lhs, rhs);
3888 }
3889
3890 /* There is still another way we can do something: If both pairs of
3891 fields being compared are adjacent, we may be able to make a wider
3892 field containing them both.
3893
3894 Note that we still must mask the lhs/rhs expressions. Furthermore,
3895 the mask must be shifted to account for the shift done by
3896 make_bit_field_ref. */
3897 if ((ll_bitsize + ll_bitpos == rl_bitpos
3898 && lr_bitsize + lr_bitpos == rr_bitpos)
3899 || (ll_bitpos == rl_bitpos + rl_bitsize
3900 && lr_bitpos == rr_bitpos + rr_bitsize))
3901 {
3902 tree type;
3903
3904 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
3905 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
3906 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
3907 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
3908
3909 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
3910 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
3911 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
3912 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
3913
3914 /* Convert to the smaller type before masking out unwanted bits. */
3915 type = lntype;
3916 if (lntype != rntype)
3917 {
3918 if (lnbitsize > rnbitsize)
3919 {
3920 lhs = convert (rntype, lhs);
3921 ll_mask = convert (rntype, ll_mask);
3922 type = rntype;
3923 }
3924 else if (lnbitsize < rnbitsize)
3925 {
3926 rhs = convert (lntype, rhs);
3927 lr_mask = convert (lntype, lr_mask);
3928 type = lntype;
3929 }
3930 }
3931
3932 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
3933 lhs = build (BIT_AND_EXPR, type, lhs, ll_mask);
3934
3935 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
3936 rhs = build (BIT_AND_EXPR, type, rhs, lr_mask);
3937
3938 return build (wanted_code, truth_type, lhs, rhs);
3939 }
3940
3941 return 0;
3942 }
3943
3944 /* Handle the case of comparisons with constants. If there is something in
3945 common between the masks, those bits of the constants must be the same.
3946 If not, the condition is always false. Test for this to avoid generating
3947 incorrect code below. */
3948 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
3949 if (! integer_zerop (result)
3950 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
3951 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
3952 {
3953 if (wanted_code == NE_EXPR)
3954 {
3955 warning ("`or' of unmatched not-equal tests is always 1");
3956 return convert (truth_type, integer_one_node);
3957 }
3958 else
3959 {
3960 warning ("`and' of mutually exclusive equal-tests is always 0");
3961 return convert (truth_type, integer_zero_node);
3962 }
3963 }
3964
3965 /* Construct the expression we will return. First get the component
3966 reference we will make. Unless the mask is all ones the width of
3967 that field, perform the mask operation. Then compare with the
3968 merged constant. */
3969 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
3970 ll_unsignedp || rl_unsignedp);
3971
3972 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
3973 if (! all_ones_mask_p (ll_mask, lnbitsize))
3974 result = build (BIT_AND_EXPR, lntype, result, ll_mask);
3975
3976 return build (wanted_code, truth_type, result,
3977 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
3978 }
3979 \f
3980 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
3981 constant. */
3982
3983 static tree
3984 optimize_minmax_comparison (t)
3985 tree t;
3986 {
3987 tree type = TREE_TYPE (t);
3988 tree arg0 = TREE_OPERAND (t, 0);
3989 enum tree_code op_code;
3990 tree comp_const = TREE_OPERAND (t, 1);
3991 tree minmax_const;
3992 int consts_equal, consts_lt;
3993 tree inner;
3994
3995 STRIP_SIGN_NOPS (arg0);
3996
3997 op_code = TREE_CODE (arg0);
3998 minmax_const = TREE_OPERAND (arg0, 1);
3999 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
4000 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
4001 inner = TREE_OPERAND (arg0, 0);
4002
4003 /* If something does not permit us to optimize, return the original tree. */
4004 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
4005 || TREE_CODE (comp_const) != INTEGER_CST
4006 || TREE_CONSTANT_OVERFLOW (comp_const)
4007 || TREE_CODE (minmax_const) != INTEGER_CST
4008 || TREE_CONSTANT_OVERFLOW (minmax_const))
4009 return t;
4010
4011 /* Now handle all the various comparison codes. We only handle EQ_EXPR
4012 and GT_EXPR, doing the rest with recursive calls using logical
4013 simplifications. */
4014 switch (TREE_CODE (t))
4015 {
4016 case NE_EXPR: case LT_EXPR: case LE_EXPR:
4017 return
4018 invert_truthvalue (optimize_minmax_comparison (invert_truthvalue (t)));
4019
4020 case GE_EXPR:
4021 return
4022 fold (build (TRUTH_ORIF_EXPR, type,
4023 optimize_minmax_comparison
4024 (build (EQ_EXPR, type, arg0, comp_const)),
4025 optimize_minmax_comparison
4026 (build (GT_EXPR, type, arg0, comp_const))));
4027
4028 case EQ_EXPR:
4029 if (op_code == MAX_EXPR && consts_equal)
4030 /* MAX (X, 0) == 0 -> X <= 0 */
4031 return fold (build (LE_EXPR, type, inner, comp_const));
4032
4033 else if (op_code == MAX_EXPR && consts_lt)
4034 /* MAX (X, 0) == 5 -> X == 5 */
4035 return fold (build (EQ_EXPR, type, inner, comp_const));
4036
4037 else if (op_code == MAX_EXPR)
4038 /* MAX (X, 0) == -1 -> false */
4039 return omit_one_operand (type, integer_zero_node, inner);
4040
4041 else if (consts_equal)
4042 /* MIN (X, 0) == 0 -> X >= 0 */
4043 return fold (build (GE_EXPR, type, inner, comp_const));
4044
4045 else if (consts_lt)
4046 /* MIN (X, 0) == 5 -> false */
4047 return omit_one_operand (type, integer_zero_node, inner);
4048
4049 else
4050 /* MIN (X, 0) == -1 -> X == -1 */
4051 return fold (build (EQ_EXPR, type, inner, comp_const));
4052
4053 case GT_EXPR:
4054 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
4055 /* MAX (X, 0) > 0 -> X > 0
4056 MAX (X, 0) > 5 -> X > 5 */
4057 return fold (build (GT_EXPR, type, inner, comp_const));
4058
4059 else if (op_code == MAX_EXPR)
4060 /* MAX (X, 0) > -1 -> true */
4061 return omit_one_operand (type, integer_one_node, inner);
4062
4063 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
4064 /* MIN (X, 0) > 0 -> false
4065 MIN (X, 0) > 5 -> false */
4066 return omit_one_operand (type, integer_zero_node, inner);
4067
4068 else
4069 /* MIN (X, 0) > -1 -> X > -1 */
4070 return fold (build (GT_EXPR, type, inner, comp_const));
4071
4072 default:
4073 return t;
4074 }
4075 }
4076 \f
4077 /* T is an integer expression that is being multiplied, divided, or taken a
4078 modulus (CODE says which and what kind of divide or modulus) by a
4079 constant C. See if we can eliminate that operation by folding it with
4080 other operations already in T. WIDE_TYPE, if non-null, is a type that
4081 should be used for the computation if wider than our type.
4082
4083 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
4084 (X * 2) + (Y * 4). We must, however, be assured that either the original
4085 expression would not overflow or that overflow is undefined for the type
4086 in the language in question.
4087
4088 We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
4089 the machine has a multiply-accumulate insn or that this is part of an
4090 addressing calculation.
4091
4092 If we return a non-null expression, it is an equivalent form of the
4093 original computation, but need not be in the original type. */
4094
4095 static tree
4096 extract_muldiv (t, c, code, wide_type)
4097 tree t;
4098 tree c;
4099 enum tree_code code;
4100 tree wide_type;
4101 {
4102 /* To avoid exponential search depth, refuse to allow recursion past
4103 three levels. Beyond that (1) it's highly unlikely that we'll find
4104 something interesting and (2) we've probably processed it before
4105 when we built the inner expression. */
4106
4107 static int depth;
4108 tree ret;
4109
4110 if (depth > 3)
4111 return NULL;
4112
4113 depth++;
4114 ret = extract_muldiv_1 (t, c, code, wide_type);
4115 depth--;
4116
4117 return ret;
4118 }
4119
4120 static tree
4121 extract_muldiv_1 (t, c, code, wide_type)
4122 tree t;
4123 tree c;
4124 enum tree_code code;
4125 tree wide_type;
4126 {
4127 tree type = TREE_TYPE (t);
4128 enum tree_code tcode = TREE_CODE (t);
4129 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
4130 > GET_MODE_SIZE (TYPE_MODE (type)))
4131 ? wide_type : type);
4132 tree t1, t2;
4133 int same_p = tcode == code;
4134 tree op0 = NULL_TREE, op1 = NULL_TREE;
4135
4136 /* Don't deal with constants of zero here; they confuse the code below. */
4137 if (integer_zerop (c))
4138 return NULL_TREE;
4139
4140 if (TREE_CODE_CLASS (tcode) == '1')
4141 op0 = TREE_OPERAND (t, 0);
4142
4143 if (TREE_CODE_CLASS (tcode) == '2')
4144 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
4145
4146 /* Note that we need not handle conditional operations here since fold
4147 already handles those cases. So just do arithmetic here. */
4148 switch (tcode)
4149 {
4150 case INTEGER_CST:
4151 /* For a constant, we can always simplify if we are a multiply
4152 or (for divide and modulus) if it is a multiple of our constant. */
4153 if (code == MULT_EXPR
4154 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
4155 return const_binop (code, convert (ctype, t), convert (ctype, c), 0);
4156 break;
4157
4158 case CONVERT_EXPR: case NON_LVALUE_EXPR: case NOP_EXPR:
4159 /* If op0 is an expression ... */
4160 if ((TREE_CODE_CLASS (TREE_CODE (op0)) == '<'
4161 || TREE_CODE_CLASS (TREE_CODE (op0)) == '1'
4162 || TREE_CODE_CLASS (TREE_CODE (op0)) == '2'
4163 || TREE_CODE_CLASS (TREE_CODE (op0)) == 'e')
4164 /* ... and is unsigned, and its type is smaller than ctype,
4165 then we cannot pass through as widening. */
4166 && ((TREE_UNSIGNED (TREE_TYPE (op0))
4167 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
4168 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
4169 && (GET_MODE_SIZE (TYPE_MODE (ctype))
4170 > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
4171 /* ... or its type is larger than ctype,
4172 then we cannot pass through this truncation. */
4173 || (GET_MODE_SIZE (TYPE_MODE (ctype))
4174 < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))))
4175 /* ... or signedness changes for division or modulus,
4176 then we cannot pass through this conversion. */
4177 || (code != MULT_EXPR
4178 && (TREE_UNSIGNED (ctype)
4179 != TREE_UNSIGNED (TREE_TYPE (op0))))))
4180 break;
4181
4182 /* Pass the constant down and see if we can make a simplification. If
4183 we can, replace this expression with the inner simplification for
4184 possible later conversion to our or some other type. */
4185 if (0 != (t1 = extract_muldiv (op0, convert (TREE_TYPE (op0), c), code,
4186 code == MULT_EXPR ? ctype : NULL_TREE)))
4187 return t1;
4188 break;
4189
4190 case NEGATE_EXPR: case ABS_EXPR:
4191 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
4192 return fold (build1 (tcode, ctype, convert (ctype, t1)));
4193 break;
4194
4195 case MIN_EXPR: case MAX_EXPR:
4196 /* If widening the type changes the signedness, then we can't perform
4197 this optimization as that changes the result. */
4198 if (TREE_UNSIGNED (ctype) != TREE_UNSIGNED (type))
4199 break;
4200
4201 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
4202 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0
4203 && (t2 = extract_muldiv (op1, c, code, wide_type)) != 0)
4204 {
4205 if (tree_int_cst_sgn (c) < 0)
4206 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
4207
4208 return fold (build (tcode, ctype, convert (ctype, t1),
4209 convert (ctype, t2)));
4210 }
4211 break;
4212
4213 case WITH_RECORD_EXPR:
4214 if ((t1 = extract_muldiv (TREE_OPERAND (t, 0), c, code, wide_type)) != 0)
4215 return build (WITH_RECORD_EXPR, TREE_TYPE (t1), t1,
4216 TREE_OPERAND (t, 1));
4217 break;
4218
4219 case SAVE_EXPR:
4220 /* If this has not been evaluated and the operand has no side effects,
4221 we can see if we can do something inside it and make a new one.
4222 Note that this test is overly conservative since we can do this
4223 if the only reason it had side effects is that it was another
4224 similar SAVE_EXPR, but that isn't worth bothering with. */
4225 if (SAVE_EXPR_RTL (t) == 0 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0))
4226 && 0 != (t1 = extract_muldiv (TREE_OPERAND (t, 0), c, code,
4227 wide_type)))
4228 {
4229 t1 = save_expr (t1);
4230 if (SAVE_EXPR_PERSISTENT_P (t) && TREE_CODE (t1) == SAVE_EXPR)
4231 SAVE_EXPR_PERSISTENT_P (t1) = 1;
4232 if (is_pending_size (t))
4233 put_pending_size (t1);
4234 return t1;
4235 }
4236 break;
4237
4238 case LSHIFT_EXPR: case RSHIFT_EXPR:
4239 /* If the second operand is constant, this is a multiplication
4240 or floor division, by a power of two, so we can treat it that
4241 way unless the multiplier or divisor overflows. */
4242 if (TREE_CODE (op1) == INTEGER_CST
4243 /* const_binop may not detect overflow correctly,
4244 so check for it explicitly here. */
4245 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
4246 && TREE_INT_CST_HIGH (op1) == 0
4247 && 0 != (t1 = convert (ctype,
4248 const_binop (LSHIFT_EXPR, size_one_node,
4249 op1, 0)))
4250 && ! TREE_OVERFLOW (t1))
4251 return extract_muldiv (build (tcode == LSHIFT_EXPR
4252 ? MULT_EXPR : FLOOR_DIV_EXPR,
4253 ctype, convert (ctype, op0), t1),
4254 c, code, wide_type);
4255 break;
4256
4257 case PLUS_EXPR: case MINUS_EXPR:
4258 /* See if we can eliminate the operation on both sides. If we can, we
4259 can return a new PLUS or MINUS. If we can't, the only remaining
4260 cases where we can do anything are if the second operand is a
4261 constant. */
4262 t1 = extract_muldiv (op0, c, code, wide_type);
4263 t2 = extract_muldiv (op1, c, code, wide_type);
4264 if (t1 != 0 && t2 != 0
4265 && (code == MULT_EXPR
4266 /* If not multiplication, we can only do this if both operands
4267 are divisible by c. */
4268 || (multiple_of_p (ctype, op0, c)
4269 && multiple_of_p (ctype, op1, c))))
4270 return fold (build (tcode, ctype, convert (ctype, t1),
4271 convert (ctype, t2)));
4272
4273 /* If this was a subtraction, negate OP1 and set it to be an addition.
4274 This simplifies the logic below. */
4275 if (tcode == MINUS_EXPR)
4276 tcode = PLUS_EXPR, op1 = negate_expr (op1);
4277
4278 if (TREE_CODE (op1) != INTEGER_CST)
4279 break;
4280
4281 /* If either OP1 or C are negative, this optimization is not safe for
4282 some of the division and remainder types while for others we need
4283 to change the code. */
4284 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
4285 {
4286 if (code == CEIL_DIV_EXPR)
4287 code = FLOOR_DIV_EXPR;
4288 else if (code == FLOOR_DIV_EXPR)
4289 code = CEIL_DIV_EXPR;
4290 else if (code != MULT_EXPR
4291 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
4292 break;
4293 }
4294
4295 /* If it's a multiply or a division/modulus operation of a multiple
4296 of our constant, do the operation and verify it doesn't overflow. */
4297 if (code == MULT_EXPR
4298 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4299 {
4300 op1 = const_binop (code, convert (ctype, op1), convert (ctype, c), 0);
4301 if (op1 == 0 || TREE_OVERFLOW (op1))
4302 break;
4303 }
4304 else
4305 break;
4306
4307 /* If we have an unsigned type is not a sizetype, we cannot widen
4308 the operation since it will change the result if the original
4309 computation overflowed. */
4310 if (TREE_UNSIGNED (ctype)
4311 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
4312 && ctype != type)
4313 break;
4314
4315 /* If we were able to eliminate our operation from the first side,
4316 apply our operation to the second side and reform the PLUS. */
4317 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
4318 return fold (build (tcode, ctype, convert (ctype, t1), op1));
4319
4320 /* The last case is if we are a multiply. In that case, we can
4321 apply the distributive law to commute the multiply and addition
4322 if the multiplication of the constants doesn't overflow. */
4323 if (code == MULT_EXPR)
4324 return fold (build (tcode, ctype, fold (build (code, ctype,
4325 convert (ctype, op0),
4326 convert (ctype, c))),
4327 op1));
4328
4329 break;
4330
4331 case MULT_EXPR:
4332 /* We have a special case here if we are doing something like
4333 (C * 8) % 4 since we know that's zero. */
4334 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
4335 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
4336 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
4337 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4338 return omit_one_operand (type, integer_zero_node, op0);
4339
4340 /* ... fall through ... */
4341
4342 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
4343 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
4344 /* If we can extract our operation from the LHS, do so and return a
4345 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
4346 do something only if the second operand is a constant. */
4347 if (same_p
4348 && (t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
4349 return fold (build (tcode, ctype, convert (ctype, t1),
4350 convert (ctype, op1)));
4351 else if (tcode == MULT_EXPR && code == MULT_EXPR
4352 && (t1 = extract_muldiv (op1, c, code, wide_type)) != 0)
4353 return fold (build (tcode, ctype, convert (ctype, op0),
4354 convert (ctype, t1)));
4355 else if (TREE_CODE (op1) != INTEGER_CST)
4356 return 0;
4357
4358 /* If these are the same operation types, we can associate them
4359 assuming no overflow. */
4360 if (tcode == code
4361 && 0 != (t1 = const_binop (MULT_EXPR, convert (ctype, op1),
4362 convert (ctype, c), 0))
4363 && ! TREE_OVERFLOW (t1))
4364 return fold (build (tcode, ctype, convert (ctype, op0), t1));
4365
4366 /* If these operations "cancel" each other, we have the main
4367 optimizations of this pass, which occur when either constant is a
4368 multiple of the other, in which case we replace this with either an
4369 operation or CODE or TCODE.
4370
4371 If we have an unsigned type that is not a sizetype, we cannot do
4372 this since it will change the result if the original computation
4373 overflowed. */
4374 if ((! TREE_UNSIGNED (ctype)
4375 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
4376 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
4377 || (tcode == MULT_EXPR
4378 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
4379 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
4380 {
4381 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4382 return fold (build (tcode, ctype, convert (ctype, op0),
4383 convert (ctype,
4384 const_binop (TRUNC_DIV_EXPR,
4385 op1, c, 0))));
4386 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
4387 return fold (build (code, ctype, convert (ctype, op0),
4388 convert (ctype,
4389 const_binop (TRUNC_DIV_EXPR,
4390 c, op1, 0))));
4391 }
4392 break;
4393
4394 default:
4395 break;
4396 }
4397
4398 return 0;
4399 }
4400 \f
4401 /* If T contains a COMPOUND_EXPR which was inserted merely to evaluate
4402 S, a SAVE_EXPR, return the expression actually being evaluated. Note
4403 that we may sometimes modify the tree. */
4404
4405 static tree
4406 strip_compound_expr (t, s)
4407 tree t;
4408 tree s;
4409 {
4410 enum tree_code code = TREE_CODE (t);
4411
4412 /* See if this is the COMPOUND_EXPR we want to eliminate. */
4413 if (code == COMPOUND_EXPR && TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR
4414 && TREE_OPERAND (TREE_OPERAND (t, 0), 0) == s)
4415 return TREE_OPERAND (t, 1);
4416
4417 /* See if this is a COND_EXPR or a simple arithmetic operator. We
4418 don't bother handling any other types. */
4419 else if (code == COND_EXPR)
4420 {
4421 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4422 TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
4423 TREE_OPERAND (t, 2) = strip_compound_expr (TREE_OPERAND (t, 2), s);
4424 }
4425 else if (TREE_CODE_CLASS (code) == '1')
4426 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4427 else if (TREE_CODE_CLASS (code) == '<'
4428 || TREE_CODE_CLASS (code) == '2')
4429 {
4430 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4431 TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
4432 }
4433
4434 return t;
4435 }
4436 \f
4437 /* Return a node which has the indicated constant VALUE (either 0 or
4438 1), and is of the indicated TYPE. */
4439
4440 static tree
4441 constant_boolean_node (value, type)
4442 int value;
4443 tree type;
4444 {
4445 if (type == integer_type_node)
4446 return value ? integer_one_node : integer_zero_node;
4447 else if (TREE_CODE (type) == BOOLEAN_TYPE)
4448 return (*lang_hooks.truthvalue_conversion) (value ? integer_one_node :
4449 integer_zero_node);
4450 else
4451 {
4452 tree t = build_int_2 (value, 0);
4453
4454 TREE_TYPE (t) = type;
4455 return t;
4456 }
4457 }
4458
4459 /* Utility function for the following routine, to see how complex a nesting of
4460 COND_EXPRs can be. EXPR is the expression and LIMIT is a count beyond which
4461 we don't care (to avoid spending too much time on complex expressions.). */
4462
4463 static int
4464 count_cond (expr, lim)
4465 tree expr;
4466 int lim;
4467 {
4468 int ctrue, cfalse;
4469
4470 if (TREE_CODE (expr) != COND_EXPR)
4471 return 0;
4472 else if (lim <= 0)
4473 return 0;
4474
4475 ctrue = count_cond (TREE_OPERAND (expr, 1), lim - 1);
4476 cfalse = count_cond (TREE_OPERAND (expr, 2), lim - 1 - ctrue);
4477 return MIN (lim, 1 + ctrue + cfalse);
4478 }
4479
4480 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
4481 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
4482 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
4483 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
4484 COND is the first argument to CODE; otherwise (as in the example
4485 given here), it is the second argument. TYPE is the type of the
4486 original expression. */
4487
4488 static tree
4489 fold_binary_op_with_conditional_arg (code, type, cond, arg, cond_first_p)
4490 enum tree_code code;
4491 tree type;
4492 tree cond;
4493 tree arg;
4494 int cond_first_p;
4495 {
4496 tree test, true_value, false_value;
4497 tree lhs = NULL_TREE;
4498 tree rhs = NULL_TREE;
4499 /* In the end, we'll produce a COND_EXPR. Both arms of the
4500 conditional expression will be binary operations. The left-hand
4501 side of the expression to be executed if the condition is true
4502 will be pointed to by TRUE_LHS. Similarly, the right-hand side
4503 of the expression to be executed if the condition is true will be
4504 pointed to by TRUE_RHS. FALSE_LHS and FALSE_RHS are analogous --
4505 but apply to the expression to be executed if the conditional is
4506 false. */
4507 tree *true_lhs;
4508 tree *true_rhs;
4509 tree *false_lhs;
4510 tree *false_rhs;
4511 /* These are the codes to use for the left-hand side and right-hand
4512 side of the COND_EXPR. Normally, they are the same as CODE. */
4513 enum tree_code lhs_code = code;
4514 enum tree_code rhs_code = code;
4515 /* And these are the types of the expressions. */
4516 tree lhs_type = type;
4517 tree rhs_type = type;
4518 int save = 0;
4519
4520 if (cond_first_p)
4521 {
4522 true_rhs = false_rhs = &arg;
4523 true_lhs = &true_value;
4524 false_lhs = &false_value;
4525 }
4526 else
4527 {
4528 true_lhs = false_lhs = &arg;
4529 true_rhs = &true_value;
4530 false_rhs = &false_value;
4531 }
4532
4533 if (TREE_CODE (cond) == COND_EXPR)
4534 {
4535 test = TREE_OPERAND (cond, 0);
4536 true_value = TREE_OPERAND (cond, 1);
4537 false_value = TREE_OPERAND (cond, 2);
4538 /* If this operand throws an expression, then it does not make
4539 sense to try to perform a logical or arithmetic operation
4540 involving it. Instead of building `a + throw 3' for example,
4541 we simply build `a, throw 3'. */
4542 if (VOID_TYPE_P (TREE_TYPE (true_value)))
4543 {
4544 if (! cond_first_p)
4545 {
4546 lhs_code = COMPOUND_EXPR;
4547 lhs_type = void_type_node;
4548 }
4549 else
4550 lhs = true_value;
4551 }
4552 if (VOID_TYPE_P (TREE_TYPE (false_value)))
4553 {
4554 if (! cond_first_p)
4555 {
4556 rhs_code = COMPOUND_EXPR;
4557 rhs_type = void_type_node;
4558 }
4559 else
4560 rhs = false_value;
4561 }
4562 }
4563 else
4564 {
4565 tree testtype = TREE_TYPE (cond);
4566 test = cond;
4567 true_value = convert (testtype, integer_one_node);
4568 false_value = convert (testtype, integer_zero_node);
4569 }
4570
4571 /* If ARG is complex we want to make sure we only evaluate it once. Though
4572 this is only required if it is volatile, it might be more efficient even
4573 if it is not. However, if we succeed in folding one part to a constant,
4574 we do not need to make this SAVE_EXPR. Since we do this optimization
4575 primarily to see if we do end up with constant and this SAVE_EXPR
4576 interferes with later optimizations, suppressing it when we can is
4577 important.
4578
4579 If we are not in a function, we can't make a SAVE_EXPR, so don't try to
4580 do so. Don't try to see if the result is a constant if an arm is a
4581 COND_EXPR since we get exponential behavior in that case. */
4582
4583 if (saved_expr_p (arg))
4584 save = 1;
4585 else if (lhs == 0 && rhs == 0
4586 && !TREE_CONSTANT (arg)
4587 && (*lang_hooks.decls.global_bindings_p) () == 0
4588 && ((TREE_CODE (arg) != VAR_DECL && TREE_CODE (arg) != PARM_DECL)
4589 || TREE_SIDE_EFFECTS (arg)))
4590 {
4591 if (TREE_CODE (true_value) != COND_EXPR)
4592 lhs = fold (build (lhs_code, lhs_type, *true_lhs, *true_rhs));
4593
4594 if (TREE_CODE (false_value) != COND_EXPR)
4595 rhs = fold (build (rhs_code, rhs_type, *false_lhs, *false_rhs));
4596
4597 if ((lhs == 0 || ! TREE_CONSTANT (lhs))
4598 && (rhs == 0 || !TREE_CONSTANT (rhs)))
4599 {
4600 arg = save_expr (arg);
4601 lhs = rhs = 0;
4602 save = 1;
4603 }
4604 }
4605
4606 if (lhs == 0)
4607 lhs = fold (build (lhs_code, lhs_type, *true_lhs, *true_rhs));
4608 if (rhs == 0)
4609 rhs = fold (build (rhs_code, rhs_type, *false_lhs, *false_rhs));
4610
4611 test = fold (build (COND_EXPR, type, test, lhs, rhs));
4612
4613 if (save)
4614 return build (COMPOUND_EXPR, type,
4615 convert (void_type_node, arg),
4616 strip_compound_expr (test, arg));
4617 else
4618 return convert (type, test);
4619 }
4620
4621 \f
4622 /* Subroutine of fold() that checks for the addition of +/- 0.0.
4623
4624 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
4625 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
4626 ADDEND is the same as X.
4627
4628 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
4629 and finite. The problematic cases are when X is zero, and its mode
4630 has signed zeros. In the case of rounding towards -infinity,
4631 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
4632 modes, X + 0 is not the same as X because -0 + 0 is 0. */
4633
4634 static bool
4635 fold_real_zero_addition_p (type, addend, negate)
4636 tree type, addend;
4637 int negate;
4638 {
4639 if (!real_zerop (addend))
4640 return false;
4641
4642 /* Don't allow the fold with -fsignaling-nans. */
4643 if (HONOR_SNANS (TYPE_MODE (type)))
4644 return false;
4645
4646 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
4647 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
4648 return true;
4649
4650 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
4651 if (TREE_CODE (addend) == REAL_CST
4652 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
4653 negate = !negate;
4654
4655 /* The mode has signed zeros, and we have to honor their sign.
4656 In this situation, there is only one case we can return true for.
4657 X - 0 is the same as X unless rounding towards -infinity is
4658 supported. */
4659 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
4660 }
4661
4662 /* Subroutine of fold() that checks comparisons of built-in math
4663 functions against real constants.
4664
4665 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
4666 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
4667 is the type of the result and ARG0 and ARG1 are the operands of the
4668 comparison. ARG1 must be a TREE_REAL_CST.
4669
4670 The function returns the constant folded tree if a simplification
4671 can be made, and NULL_TREE otherwise. */
4672
4673 static tree
4674 fold_mathfn_compare (fcode, code, type, arg0, arg1)
4675 enum built_in_function fcode;
4676 enum tree_code code;
4677 tree type, arg0, arg1;
4678 {
4679 REAL_VALUE_TYPE c;
4680
4681 if (fcode == BUILT_IN_SQRT
4682 || fcode == BUILT_IN_SQRTF
4683 || fcode == BUILT_IN_SQRTL)
4684 {
4685 tree arg = TREE_VALUE (TREE_OPERAND (arg0, 1));
4686 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
4687
4688 c = TREE_REAL_CST (arg1);
4689 if (REAL_VALUE_NEGATIVE (c))
4690 {
4691 /* sqrt(x) < y is always false, if y is negative. */
4692 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
4693 return omit_one_operand (type,
4694 convert (type, integer_zero_node),
4695 arg);
4696
4697 /* sqrt(x) > y is always true, if y is negative and we
4698 don't care about NaNs, i.e. negative values of x. */
4699 if (code == NE_EXPR || !HONOR_NANS (mode))
4700 return omit_one_operand (type,
4701 convert (type, integer_one_node),
4702 arg);
4703
4704 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
4705 return fold (build (GE_EXPR, type, arg,
4706 build_real (TREE_TYPE (arg), dconst0)));
4707 }
4708 else if (code == GT_EXPR || code == GE_EXPR)
4709 {
4710 REAL_VALUE_TYPE c2;
4711
4712 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
4713 real_convert (&c2, mode, &c2);
4714
4715 if (REAL_VALUE_ISINF (c2))
4716 {
4717 /* sqrt(x) > y is x == +Inf, when y is very large. */
4718 if (HONOR_INFINITIES (mode))
4719 return fold (build (EQ_EXPR, type, arg,
4720 build_real (TREE_TYPE (arg), c2)));
4721
4722 /* sqrt(x) > y is always false, when y is very large
4723 and we don't care about infinities. */
4724 return omit_one_operand (type,
4725 convert (type, integer_zero_node),
4726 arg);
4727 }
4728
4729 /* sqrt(x) > c is the same as x > c*c. */
4730 return fold (build (code, type, arg,
4731 build_real (TREE_TYPE (arg), c2)));
4732 }
4733 else if (code == LT_EXPR || code == LE_EXPR)
4734 {
4735 REAL_VALUE_TYPE c2;
4736
4737 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
4738 real_convert (&c2, mode, &c2);
4739
4740 if (REAL_VALUE_ISINF (c2))
4741 {
4742 /* sqrt(x) < y is always true, when y is a very large
4743 value and we don't care about NaNs or Infinities. */
4744 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
4745 return omit_one_operand (type,
4746 convert (type, integer_one_node),
4747 arg);
4748
4749 /* sqrt(x) < y is x != +Inf when y is very large and we
4750 don't care about NaNs. */
4751 if (! HONOR_NANS (mode))
4752 return fold (build (NE_EXPR, type, arg,
4753 build_real (TREE_TYPE (arg), c2)));
4754
4755 /* sqrt(x) < y is x >= 0 when y is very large and we
4756 don't care about Infinities. */
4757 if (! HONOR_INFINITIES (mode))
4758 return fold (build (GE_EXPR, type, arg,
4759 build_real (TREE_TYPE (arg), dconst0)));
4760
4761 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
4762 if ((*lang_hooks.decls.global_bindings_p) () != 0
4763 || contains_placeholder_p (arg))
4764 return NULL_TREE;
4765
4766 arg = save_expr (arg);
4767 return fold (build (TRUTH_ANDIF_EXPR, type,
4768 fold (build (GE_EXPR, type, arg,
4769 build_real (TREE_TYPE (arg),
4770 dconst0))),
4771 fold (build (NE_EXPR, type, arg,
4772 build_real (TREE_TYPE (arg),
4773 c2)))));
4774 }
4775
4776 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
4777 if (! HONOR_NANS (mode))
4778 return fold (build (code, type, arg,
4779 build_real (TREE_TYPE (arg), c2)));
4780
4781 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
4782 if ((*lang_hooks.decls.global_bindings_p) () == 0
4783 && ! contains_placeholder_p (arg))
4784 {
4785 arg = save_expr (arg);
4786 return fold (build (TRUTH_ANDIF_EXPR, type,
4787 fold (build (GE_EXPR, type, arg,
4788 build_real (TREE_TYPE (arg),
4789 dconst0))),
4790 fold (build (code, type, arg,
4791 build_real (TREE_TYPE (arg),
4792 c2)))));
4793 }
4794 }
4795 }
4796
4797 return NULL_TREE;
4798 }
4799
4800 /* Subroutine of fold() that optimizes comparisons against Infinities,
4801 either +Inf or -Inf.
4802
4803 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
4804 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
4805 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
4806
4807 The function returns the constant folded tree if a simplification
4808 can be made, and NULL_TREE otherwise. */
4809
4810 static tree
4811 fold_inf_compare (code, type, arg0, arg1)
4812 enum tree_code code;
4813 tree type, arg0, arg1;
4814 {
4815 /* For negative infinity swap the sense of the comparison. */
4816 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
4817 code = swap_tree_comparison (code);
4818
4819 switch (code)
4820 {
4821 case GT_EXPR:
4822 /* x > +Inf is always false, if with ignore sNANs. */
4823 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))))
4824 return NULL_TREE;
4825 return omit_one_operand (type,
4826 convert (type, integer_zero_node),
4827 arg0);
4828
4829 case LE_EXPR:
4830 /* x <= +Inf is always true, if we don't case about NaNs. */
4831 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
4832 return omit_one_operand (type,
4833 convert (type, integer_one_node),
4834 arg0);
4835
4836 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
4837 if ((*lang_hooks.decls.global_bindings_p) () == 0
4838 && ! contains_placeholder_p (arg0))
4839 {
4840 arg0 = save_expr (arg0);
4841 return fold (build (EQ_EXPR, type, arg0, arg0));
4842 }
4843 break;
4844
4845 case EQ_EXPR: /* ??? x == +Inf is x > DBL_MAX */
4846 case GE_EXPR: /* ??? x >= +Inf is x > DBL_MAX */
4847 case LT_EXPR: /* ??? x < +Inf is x <= DBL_MAX */
4848 case NE_EXPR: /* ??? x != +Inf is !(x > DBL_MAX) */
4849
4850 default:
4851 break;
4852 }
4853
4854 return NULL_TREE;
4855 }
4856
4857 /* Perform constant folding and related simplification of EXPR.
4858 The related simplifications include x*1 => x, x*0 => 0, etc.,
4859 and application of the associative law.
4860 NOP_EXPR conversions may be removed freely (as long as we
4861 are careful not to change the C type of the overall expression)
4862 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
4863 but we can constant-fold them if they have constant operands. */
4864
4865 tree
4866 fold (expr)
4867 tree expr;
4868 {
4869 tree t = expr;
4870 tree t1 = NULL_TREE;
4871 tree tem;
4872 tree type = TREE_TYPE (expr);
4873 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
4874 enum tree_code code = TREE_CODE (t);
4875 int kind = TREE_CODE_CLASS (code);
4876 int invert;
4877 /* WINS will be nonzero when the switch is done
4878 if all operands are constant. */
4879 int wins = 1;
4880
4881 /* Don't try to process an RTL_EXPR since its operands aren't trees.
4882 Likewise for a SAVE_EXPR that's already been evaluated. */
4883 if (code == RTL_EXPR || (code == SAVE_EXPR && SAVE_EXPR_RTL (t) != 0))
4884 return t;
4885
4886 /* Return right away if a constant. */
4887 if (kind == 'c')
4888 return t;
4889
4890 #ifdef MAX_INTEGER_COMPUTATION_MODE
4891 check_max_integer_computation_mode (expr);
4892 #endif
4893
4894 if (code == NOP_EXPR || code == FLOAT_EXPR || code == CONVERT_EXPR)
4895 {
4896 tree subop;
4897
4898 /* Special case for conversion ops that can have fixed point args. */
4899 arg0 = TREE_OPERAND (t, 0);
4900
4901 /* Don't use STRIP_NOPS, because signedness of argument type matters. */
4902 if (arg0 != 0)
4903 STRIP_SIGN_NOPS (arg0);
4904
4905 if (arg0 != 0 && TREE_CODE (arg0) == COMPLEX_CST)
4906 subop = TREE_REALPART (arg0);
4907 else
4908 subop = arg0;
4909
4910 if (subop != 0 && TREE_CODE (subop) != INTEGER_CST
4911 && TREE_CODE (subop) != REAL_CST
4912 )
4913 /* Note that TREE_CONSTANT isn't enough:
4914 static var addresses are constant but we can't
4915 do arithmetic on them. */
4916 wins = 0;
4917 }
4918 else if (IS_EXPR_CODE_CLASS (kind) || kind == 'r')
4919 {
4920 int len = first_rtl_op (code);
4921 int i;
4922 for (i = 0; i < len; i++)
4923 {
4924 tree op = TREE_OPERAND (t, i);
4925 tree subop;
4926
4927 if (op == 0)
4928 continue; /* Valid for CALL_EXPR, at least. */
4929
4930 if (kind == '<' || code == RSHIFT_EXPR)
4931 {
4932 /* Signedness matters here. Perhaps we can refine this
4933 later. */
4934 STRIP_SIGN_NOPS (op);
4935 }
4936 else
4937 /* Strip any conversions that don't change the mode. */
4938 STRIP_NOPS (op);
4939
4940 if (TREE_CODE (op) == COMPLEX_CST)
4941 subop = TREE_REALPART (op);
4942 else
4943 subop = op;
4944
4945 if (TREE_CODE (subop) != INTEGER_CST
4946 && TREE_CODE (subop) != REAL_CST)
4947 /* Note that TREE_CONSTANT isn't enough:
4948 static var addresses are constant but we can't
4949 do arithmetic on them. */
4950 wins = 0;
4951
4952 if (i == 0)
4953 arg0 = op;
4954 else if (i == 1)
4955 arg1 = op;
4956 }
4957 }
4958
4959 /* If this is a commutative operation, and ARG0 is a constant, move it
4960 to ARG1 to reduce the number of tests below. */
4961 if ((code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
4962 || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
4963 || code == BIT_AND_EXPR)
4964 && (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST))
4965 {
4966 tem = arg0; arg0 = arg1; arg1 = tem;
4967
4968 tem = TREE_OPERAND (t, 0); TREE_OPERAND (t, 0) = TREE_OPERAND (t, 1);
4969 TREE_OPERAND (t, 1) = tem;
4970 }
4971
4972 /* Now WINS is set as described above,
4973 ARG0 is the first operand of EXPR,
4974 and ARG1 is the second operand (if it has more than one operand).
4975
4976 First check for cases where an arithmetic operation is applied to a
4977 compound, conditional, or comparison operation. Push the arithmetic
4978 operation inside the compound or conditional to see if any folding
4979 can then be done. Convert comparison to conditional for this purpose.
4980 The also optimizes non-constant cases that used to be done in
4981 expand_expr.
4982
4983 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
4984 one of the operands is a comparison and the other is a comparison, a
4985 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
4986 code below would make the expression more complex. Change it to a
4987 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
4988 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
4989
4990 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
4991 || code == EQ_EXPR || code == NE_EXPR)
4992 && ((truth_value_p (TREE_CODE (arg0))
4993 && (truth_value_p (TREE_CODE (arg1))
4994 || (TREE_CODE (arg1) == BIT_AND_EXPR
4995 && integer_onep (TREE_OPERAND (arg1, 1)))))
4996 || (truth_value_p (TREE_CODE (arg1))
4997 && (truth_value_p (TREE_CODE (arg0))
4998 || (TREE_CODE (arg0) == BIT_AND_EXPR
4999 && integer_onep (TREE_OPERAND (arg0, 1)))))))
5000 {
5001 t = fold (build (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
5002 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
5003 : TRUTH_XOR_EXPR,
5004 type, arg0, arg1));
5005
5006 if (code == EQ_EXPR)
5007 t = invert_truthvalue (t);
5008
5009 return t;
5010 }
5011
5012 if (TREE_CODE_CLASS (code) == '1')
5013 {
5014 if (TREE_CODE (arg0) == COMPOUND_EXPR)
5015 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
5016 fold (build1 (code, type, TREE_OPERAND (arg0, 1))));
5017 else if (TREE_CODE (arg0) == COND_EXPR)
5018 {
5019 tree arg01 = TREE_OPERAND (arg0, 1);
5020 tree arg02 = TREE_OPERAND (arg0, 2);
5021 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
5022 arg01 = fold (build1 (code, type, arg01));
5023 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
5024 arg02 = fold (build1 (code, type, arg02));
5025 t = fold (build (COND_EXPR, type, TREE_OPERAND (arg0, 0),
5026 arg01, arg02));
5027
5028 /* If this was a conversion, and all we did was to move into
5029 inside the COND_EXPR, bring it back out. But leave it if
5030 it is a conversion from integer to integer and the
5031 result precision is no wider than a word since such a
5032 conversion is cheap and may be optimized away by combine,
5033 while it couldn't if it were outside the COND_EXPR. Then return
5034 so we don't get into an infinite recursion loop taking the
5035 conversion out and then back in. */
5036
5037 if ((code == NOP_EXPR || code == CONVERT_EXPR
5038 || code == NON_LVALUE_EXPR)
5039 && TREE_CODE (t) == COND_EXPR
5040 && TREE_CODE (TREE_OPERAND (t, 1)) == code
5041 && TREE_CODE (TREE_OPERAND (t, 2)) == code
5042 && ! VOID_TYPE_P (TREE_OPERAND (t, 1))
5043 && ! VOID_TYPE_P (TREE_OPERAND (t, 2))
5044 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))
5045 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 2), 0)))
5046 && ! (INTEGRAL_TYPE_P (TREE_TYPE (t))
5047 && (INTEGRAL_TYPE_P
5048 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))))
5049 && TYPE_PRECISION (TREE_TYPE (t)) <= BITS_PER_WORD))
5050 t = build1 (code, type,
5051 build (COND_EXPR,
5052 TREE_TYPE (TREE_OPERAND
5053 (TREE_OPERAND (t, 1), 0)),
5054 TREE_OPERAND (t, 0),
5055 TREE_OPERAND (TREE_OPERAND (t, 1), 0),
5056 TREE_OPERAND (TREE_OPERAND (t, 2), 0)));
5057 return t;
5058 }
5059 else if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<')
5060 return fold (build (COND_EXPR, type, arg0,
5061 fold (build1 (code, type, integer_one_node)),
5062 fold (build1 (code, type, integer_zero_node))));
5063 }
5064 else if (TREE_CODE_CLASS (code) == '<'
5065 && TREE_CODE (arg0) == COMPOUND_EXPR)
5066 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
5067 fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
5068 else if (TREE_CODE_CLASS (code) == '<'
5069 && TREE_CODE (arg1) == COMPOUND_EXPR)
5070 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
5071 fold (build (code, type, arg0, TREE_OPERAND (arg1, 1))));
5072 else if (TREE_CODE_CLASS (code) == '2'
5073 || TREE_CODE_CLASS (code) == '<')
5074 {
5075 if (TREE_CODE (arg1) == COMPOUND_EXPR
5076 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg1, 0))
5077 && ! TREE_SIDE_EFFECTS (arg0))
5078 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
5079 fold (build (code, type,
5080 arg0, TREE_OPERAND (arg1, 1))));
5081 else if ((TREE_CODE (arg1) == COND_EXPR
5082 || (TREE_CODE_CLASS (TREE_CODE (arg1)) == '<'
5083 && TREE_CODE_CLASS (code) != '<'))
5084 && (TREE_CODE (arg0) != COND_EXPR
5085 || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
5086 && (! TREE_SIDE_EFFECTS (arg0)
5087 || ((*lang_hooks.decls.global_bindings_p) () == 0
5088 && ! contains_placeholder_p (arg0))))
5089 return
5090 fold_binary_op_with_conditional_arg (code, type, arg1, arg0,
5091 /*cond_first_p=*/0);
5092 else if (TREE_CODE (arg0) == COMPOUND_EXPR)
5093 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
5094 fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
5095 else if ((TREE_CODE (arg0) == COND_EXPR
5096 || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
5097 && TREE_CODE_CLASS (code) != '<'))
5098 && (TREE_CODE (arg1) != COND_EXPR
5099 || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
5100 && (! TREE_SIDE_EFFECTS (arg1)
5101 || ((*lang_hooks.decls.global_bindings_p) () == 0
5102 && ! contains_placeholder_p (arg1))))
5103 return
5104 fold_binary_op_with_conditional_arg (code, type, arg0, arg1,
5105 /*cond_first_p=*/1);
5106 }
5107
5108 switch (code)
5109 {
5110 case INTEGER_CST:
5111 case REAL_CST:
5112 case VECTOR_CST:
5113 case STRING_CST:
5114 case COMPLEX_CST:
5115 case CONSTRUCTOR:
5116 return t;
5117
5118 case CONST_DECL:
5119 return fold (DECL_INITIAL (t));
5120
5121 case NOP_EXPR:
5122 case FLOAT_EXPR:
5123 case CONVERT_EXPR:
5124 case FIX_TRUNC_EXPR:
5125 /* Other kinds of FIX are not handled properly by fold_convert. */
5126
5127 if (TREE_TYPE (TREE_OPERAND (t, 0)) == TREE_TYPE (t))
5128 return TREE_OPERAND (t, 0);
5129
5130 /* Handle cases of two conversions in a row. */
5131 if (TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
5132 || TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR)
5133 {
5134 tree inside_type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5135 tree inter_type = TREE_TYPE (TREE_OPERAND (t, 0));
5136 tree final_type = TREE_TYPE (t);
5137 int inside_int = INTEGRAL_TYPE_P (inside_type);
5138 int inside_ptr = POINTER_TYPE_P (inside_type);
5139 int inside_float = FLOAT_TYPE_P (inside_type);
5140 unsigned int inside_prec = TYPE_PRECISION (inside_type);
5141 int inside_unsignedp = TREE_UNSIGNED (inside_type);
5142 int inter_int = INTEGRAL_TYPE_P (inter_type);
5143 int inter_ptr = POINTER_TYPE_P (inter_type);
5144 int inter_float = FLOAT_TYPE_P (inter_type);
5145 unsigned int inter_prec = TYPE_PRECISION (inter_type);
5146 int inter_unsignedp = TREE_UNSIGNED (inter_type);
5147 int final_int = INTEGRAL_TYPE_P (final_type);
5148 int final_ptr = POINTER_TYPE_P (final_type);
5149 int final_float = FLOAT_TYPE_P (final_type);
5150 unsigned int final_prec = TYPE_PRECISION (final_type);
5151 int final_unsignedp = TREE_UNSIGNED (final_type);
5152
5153 /* In addition to the cases of two conversions in a row
5154 handled below, if we are converting something to its own
5155 type via an object of identical or wider precision, neither
5156 conversion is needed. */
5157 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (final_type)
5158 && ((inter_int && final_int) || (inter_float && final_float))
5159 && inter_prec >= final_prec)
5160 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5161
5162 /* Likewise, if the intermediate and final types are either both
5163 float or both integer, we don't need the middle conversion if
5164 it is wider than the final type and doesn't change the signedness
5165 (for integers). Avoid this if the final type is a pointer
5166 since then we sometimes need the inner conversion. Likewise if
5167 the outer has a precision not equal to the size of its mode. */
5168 if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
5169 || (inter_float && inside_float))
5170 && inter_prec >= inside_prec
5171 && (inter_float || inter_unsignedp == inside_unsignedp)
5172 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
5173 && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
5174 && ! final_ptr)
5175 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5176
5177 /* If we have a sign-extension of a zero-extended value, we can
5178 replace that by a single zero-extension. */
5179 if (inside_int && inter_int && final_int
5180 && inside_prec < inter_prec && inter_prec < final_prec
5181 && inside_unsignedp && !inter_unsignedp)
5182 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5183
5184 /* Two conversions in a row are not needed unless:
5185 - some conversion is floating-point (overstrict for now), or
5186 - the intermediate type is narrower than both initial and
5187 final, or
5188 - the intermediate type and innermost type differ in signedness,
5189 and the outermost type is wider than the intermediate, or
5190 - the initial type is a pointer type and the precisions of the
5191 intermediate and final types differ, or
5192 - the final type is a pointer type and the precisions of the
5193 initial and intermediate types differ. */
5194 if (! inside_float && ! inter_float && ! final_float
5195 && (inter_prec > inside_prec || inter_prec > final_prec)
5196 && ! (inside_int && inter_int
5197 && inter_unsignedp != inside_unsignedp
5198 && inter_prec < final_prec)
5199 && ((inter_unsignedp && inter_prec > inside_prec)
5200 == (final_unsignedp && final_prec > inter_prec))
5201 && ! (inside_ptr && inter_prec != final_prec)
5202 && ! (final_ptr && inside_prec != inter_prec)
5203 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
5204 && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
5205 && ! final_ptr)
5206 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5207 }
5208
5209 if (TREE_CODE (TREE_OPERAND (t, 0)) == MODIFY_EXPR
5210 && TREE_CONSTANT (TREE_OPERAND (TREE_OPERAND (t, 0), 1))
5211 /* Detect assigning a bitfield. */
5212 && !(TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 0)) == COMPONENT_REF
5213 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 0), 0), 1))))
5214 {
5215 /* Don't leave an assignment inside a conversion
5216 unless assigning a bitfield. */
5217 tree prev = TREE_OPERAND (t, 0);
5218 TREE_OPERAND (t, 0) = TREE_OPERAND (prev, 1);
5219 /* First do the assignment, then return converted constant. */
5220 t = build (COMPOUND_EXPR, TREE_TYPE (t), prev, fold (t));
5221 TREE_USED (t) = 1;
5222 return t;
5223 }
5224
5225 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
5226 constants (if x has signed type, the sign bit cannot be set
5227 in c). This folds extension into the BIT_AND_EXPR. */
5228 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
5229 && TREE_CODE (TREE_TYPE (t)) != BOOLEAN_TYPE
5230 && TREE_CODE (TREE_OPERAND (t, 0)) == BIT_AND_EXPR
5231 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 1)) == INTEGER_CST)
5232 {
5233 tree and = TREE_OPERAND (t, 0);
5234 tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
5235 int change = 0;
5236
5237 if (TREE_UNSIGNED (TREE_TYPE (and))
5238 || (TYPE_PRECISION (TREE_TYPE (t))
5239 <= TYPE_PRECISION (TREE_TYPE (and))))
5240 change = 1;
5241 else if (TYPE_PRECISION (TREE_TYPE (and1))
5242 <= HOST_BITS_PER_WIDE_INT
5243 && host_integerp (and1, 1))
5244 {
5245 unsigned HOST_WIDE_INT cst;
5246
5247 cst = tree_low_cst (and1, 1);
5248 cst &= (HOST_WIDE_INT) -1
5249 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
5250 change = (cst == 0);
5251 #ifdef LOAD_EXTEND_OP
5252 if (change
5253 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
5254 == ZERO_EXTEND))
5255 {
5256 tree uns = (*lang_hooks.types.unsigned_type) (TREE_TYPE (and0));
5257 and0 = convert (uns, and0);
5258 and1 = convert (uns, and1);
5259 }
5260 #endif
5261 }
5262 if (change)
5263 return fold (build (BIT_AND_EXPR, TREE_TYPE (t),
5264 convert (TREE_TYPE (t), and0),
5265 convert (TREE_TYPE (t), and1)));
5266 }
5267
5268 if (!wins)
5269 {
5270 TREE_CONSTANT (t) = TREE_CONSTANT (arg0);
5271 return t;
5272 }
5273 return fold_convert (t, arg0);
5274
5275 case VIEW_CONVERT_EXPR:
5276 if (TREE_CODE (TREE_OPERAND (t, 0)) == VIEW_CONVERT_EXPR)
5277 return build1 (VIEW_CONVERT_EXPR, type,
5278 TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5279 return t;
5280
5281 case COMPONENT_REF:
5282 if (TREE_CODE (arg0) == CONSTRUCTOR)
5283 {
5284 tree m = purpose_member (arg1, CONSTRUCTOR_ELTS (arg0));
5285 if (m)
5286 t = TREE_VALUE (m);
5287 }
5288 return t;
5289
5290 case RANGE_EXPR:
5291 TREE_CONSTANT (t) = wins;
5292 return t;
5293
5294 case NEGATE_EXPR:
5295 if (wins)
5296 {
5297 if (TREE_CODE (arg0) == INTEGER_CST)
5298 {
5299 unsigned HOST_WIDE_INT low;
5300 HOST_WIDE_INT high;
5301 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
5302 TREE_INT_CST_HIGH (arg0),
5303 &low, &high);
5304 t = build_int_2 (low, high);
5305 TREE_TYPE (t) = type;
5306 TREE_OVERFLOW (t)
5307 = (TREE_OVERFLOW (arg0)
5308 | force_fit_type (t, overflow && !TREE_UNSIGNED (type)));
5309 TREE_CONSTANT_OVERFLOW (t)
5310 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
5311 }
5312 else if (TREE_CODE (arg0) == REAL_CST)
5313 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
5314 }
5315 else if (TREE_CODE (arg0) == NEGATE_EXPR)
5316 return TREE_OPERAND (arg0, 0);
5317 /* Convert -((double)float) into (double)(-float). */
5318 else if (TREE_CODE (arg0) == NOP_EXPR
5319 && TREE_CODE (type) == REAL_TYPE)
5320 {
5321 tree targ0 = strip_float_extensions (arg0);
5322 if (targ0 != arg0)
5323 return convert (type, build1 (NEGATE_EXPR, TREE_TYPE (targ0), targ0));
5324
5325 }
5326
5327 /* Convert - (a - b) to (b - a) for non-floating-point. */
5328 else if (TREE_CODE (arg0) == MINUS_EXPR
5329 && (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
5330 return build (MINUS_EXPR, type, TREE_OPERAND (arg0, 1),
5331 TREE_OPERAND (arg0, 0));
5332
5333 return t;
5334
5335 case ABS_EXPR:
5336 if (wins)
5337 {
5338 if (TREE_CODE (arg0) == INTEGER_CST)
5339 {
5340 /* If the value is unsigned, then the absolute value is
5341 the same as the ordinary value. */
5342 if (TREE_UNSIGNED (type))
5343 return arg0;
5344 /* Similarly, if the value is non-negative. */
5345 else if (INT_CST_LT (integer_minus_one_node, arg0))
5346 return arg0;
5347 /* If the value is negative, then the absolute value is
5348 its negation. */
5349 else
5350 {
5351 unsigned HOST_WIDE_INT low;
5352 HOST_WIDE_INT high;
5353 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
5354 TREE_INT_CST_HIGH (arg0),
5355 &low, &high);
5356 t = build_int_2 (low, high);
5357 TREE_TYPE (t) = type;
5358 TREE_OVERFLOW (t)
5359 = (TREE_OVERFLOW (arg0)
5360 | force_fit_type (t, overflow));
5361 TREE_CONSTANT_OVERFLOW (t)
5362 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
5363 }
5364 }
5365 else if (TREE_CODE (arg0) == REAL_CST)
5366 {
5367 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
5368 t = build_real (type,
5369 REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
5370 }
5371 }
5372 else if (TREE_CODE (arg0) == ABS_EXPR || TREE_CODE (arg0) == NEGATE_EXPR)
5373 return build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
5374 /* Convert fabs((double)float) into (double)fabsf(float). */
5375 else if (TREE_CODE (arg0) == NOP_EXPR
5376 && TREE_CODE (type) == REAL_TYPE)
5377 {
5378 tree targ0 = strip_float_extensions (arg0);
5379 if (targ0 != arg0)
5380 return convert (type, build1 (ABS_EXPR, TREE_TYPE (targ0), targ0));
5381
5382 }
5383 else
5384 {
5385 /* fabs(sqrt(x)) = sqrt(x) and fabs(exp(x)) = exp(x). */
5386 enum built_in_function fcode = builtin_mathfn_code (arg0);
5387 if (fcode == BUILT_IN_SQRT
5388 || fcode == BUILT_IN_SQRTF
5389 || fcode == BUILT_IN_SQRTL
5390 || fcode == BUILT_IN_EXP
5391 || fcode == BUILT_IN_EXPF
5392 || fcode == BUILT_IN_EXPL)
5393 t = arg0;
5394 }
5395 return t;
5396
5397 case CONJ_EXPR:
5398 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
5399 return convert (type, arg0);
5400 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
5401 return build (COMPLEX_EXPR, type,
5402 TREE_OPERAND (arg0, 0),
5403 negate_expr (TREE_OPERAND (arg0, 1)));
5404 else if (TREE_CODE (arg0) == COMPLEX_CST)
5405 return build_complex (type, TREE_REALPART (arg0),
5406 negate_expr (TREE_IMAGPART (arg0)));
5407 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
5408 return fold (build (TREE_CODE (arg0), type,
5409 fold (build1 (CONJ_EXPR, type,
5410 TREE_OPERAND (arg0, 0))),
5411 fold (build1 (CONJ_EXPR,
5412 type, TREE_OPERAND (arg0, 1)))));
5413 else if (TREE_CODE (arg0) == CONJ_EXPR)
5414 return TREE_OPERAND (arg0, 0);
5415 return t;
5416
5417 case BIT_NOT_EXPR:
5418 if (wins)
5419 {
5420 t = build_int_2 (~ TREE_INT_CST_LOW (arg0),
5421 ~ TREE_INT_CST_HIGH (arg0));
5422 TREE_TYPE (t) = type;
5423 force_fit_type (t, 0);
5424 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg0);
5425 TREE_CONSTANT_OVERFLOW (t) = TREE_CONSTANT_OVERFLOW (arg0);
5426 }
5427 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
5428 return TREE_OPERAND (arg0, 0);
5429 return t;
5430
5431 case PLUS_EXPR:
5432 /* A + (-B) -> A - B */
5433 if (TREE_CODE (arg1) == NEGATE_EXPR)
5434 return fold (build (MINUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
5435 /* (-A) + B -> B - A */
5436 if (TREE_CODE (arg0) == NEGATE_EXPR)
5437 return fold (build (MINUS_EXPR, type, arg1, TREE_OPERAND (arg0, 0)));
5438 else if (! FLOAT_TYPE_P (type))
5439 {
5440 if (integer_zerop (arg1))
5441 return non_lvalue (convert (type, arg0));
5442
5443 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
5444 with a constant, and the two constants have no bits in common,
5445 we should treat this as a BIT_IOR_EXPR since this may produce more
5446 simplifications. */
5447 if (TREE_CODE (arg0) == BIT_AND_EXPR
5448 && TREE_CODE (arg1) == BIT_AND_EXPR
5449 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
5450 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
5451 && integer_zerop (const_binop (BIT_AND_EXPR,
5452 TREE_OPERAND (arg0, 1),
5453 TREE_OPERAND (arg1, 1), 0)))
5454 {
5455 code = BIT_IOR_EXPR;
5456 goto bit_ior;
5457 }
5458
5459 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
5460 (plus (plus (mult) (mult)) (foo)) so that we can
5461 take advantage of the factoring cases below. */
5462 if ((TREE_CODE (arg0) == PLUS_EXPR
5463 && TREE_CODE (arg1) == MULT_EXPR)
5464 || (TREE_CODE (arg1) == PLUS_EXPR
5465 && TREE_CODE (arg0) == MULT_EXPR))
5466 {
5467 tree parg0, parg1, parg, marg;
5468
5469 if (TREE_CODE (arg0) == PLUS_EXPR)
5470 parg = arg0, marg = arg1;
5471 else
5472 parg = arg1, marg = arg0;
5473 parg0 = TREE_OPERAND (parg, 0);
5474 parg1 = TREE_OPERAND (parg, 1);
5475 STRIP_NOPS (parg0);
5476 STRIP_NOPS (parg1);
5477
5478 if (TREE_CODE (parg0) == MULT_EXPR
5479 && TREE_CODE (parg1) != MULT_EXPR)
5480 return fold (build (PLUS_EXPR, type,
5481 fold (build (PLUS_EXPR, type, parg0, marg)),
5482 parg1));
5483 if (TREE_CODE (parg0) != MULT_EXPR
5484 && TREE_CODE (parg1) == MULT_EXPR)
5485 return fold (build (PLUS_EXPR, type,
5486 fold (build (PLUS_EXPR, type, parg1, marg)),
5487 parg0));
5488 }
5489
5490 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR)
5491 {
5492 tree arg00, arg01, arg10, arg11;
5493 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
5494
5495 /* (A * C) + (B * C) -> (A+B) * C.
5496 We are most concerned about the case where C is a constant,
5497 but other combinations show up during loop reduction. Since
5498 it is not difficult, try all four possibilities. */
5499
5500 arg00 = TREE_OPERAND (arg0, 0);
5501 arg01 = TREE_OPERAND (arg0, 1);
5502 arg10 = TREE_OPERAND (arg1, 0);
5503 arg11 = TREE_OPERAND (arg1, 1);
5504 same = NULL_TREE;
5505
5506 if (operand_equal_p (arg01, arg11, 0))
5507 same = arg01, alt0 = arg00, alt1 = arg10;
5508 else if (operand_equal_p (arg00, arg10, 0))
5509 same = arg00, alt0 = arg01, alt1 = arg11;
5510 else if (operand_equal_p (arg00, arg11, 0))
5511 same = arg00, alt0 = arg01, alt1 = arg10;
5512 else if (operand_equal_p (arg01, arg10, 0))
5513 same = arg01, alt0 = arg00, alt1 = arg11;
5514
5515 /* No identical multiplicands; see if we can find a common
5516 power-of-two factor in non-power-of-two multiplies. This
5517 can help in multi-dimensional array access. */
5518 else if (TREE_CODE (arg01) == INTEGER_CST
5519 && TREE_CODE (arg11) == INTEGER_CST
5520 && TREE_INT_CST_HIGH (arg01) == 0
5521 && TREE_INT_CST_HIGH (arg11) == 0)
5522 {
5523 HOST_WIDE_INT int01, int11, tmp;
5524 int01 = TREE_INT_CST_LOW (arg01);
5525 int11 = TREE_INT_CST_LOW (arg11);
5526
5527 /* Move min of absolute values to int11. */
5528 if ((int01 >= 0 ? int01 : -int01)
5529 < (int11 >= 0 ? int11 : -int11))
5530 {
5531 tmp = int01, int01 = int11, int11 = tmp;
5532 alt0 = arg00, arg00 = arg10, arg10 = alt0;
5533 alt0 = arg01, arg01 = arg11, arg11 = alt0;
5534 }
5535
5536 if (exact_log2 (int11) > 0 && int01 % int11 == 0)
5537 {
5538 alt0 = fold (build (MULT_EXPR, type, arg00,
5539 build_int_2 (int01 / int11, 0)));
5540 alt1 = arg10;
5541 same = arg11;
5542 }
5543 }
5544
5545 if (same)
5546 return fold (build (MULT_EXPR, type,
5547 fold (build (PLUS_EXPR, type, alt0, alt1)),
5548 same));
5549 }
5550 }
5551
5552 /* See if ARG1 is zero and X + ARG1 reduces to X. */
5553 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
5554 return non_lvalue (convert (type, arg0));
5555
5556 /* Likewise if the operands are reversed. */
5557 else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
5558 return non_lvalue (convert (type, arg1));
5559
5560 bit_rotate:
5561 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
5562 is a rotate of A by C1 bits. */
5563 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
5564 is a rotate of A by B bits. */
5565 {
5566 enum tree_code code0, code1;
5567 code0 = TREE_CODE (arg0);
5568 code1 = TREE_CODE (arg1);
5569 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
5570 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
5571 && operand_equal_p (TREE_OPERAND (arg0, 0),
5572 TREE_OPERAND (arg1, 0), 0)
5573 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5574 {
5575 tree tree01, tree11;
5576 enum tree_code code01, code11;
5577
5578 tree01 = TREE_OPERAND (arg0, 1);
5579 tree11 = TREE_OPERAND (arg1, 1);
5580 STRIP_NOPS (tree01);
5581 STRIP_NOPS (tree11);
5582 code01 = TREE_CODE (tree01);
5583 code11 = TREE_CODE (tree11);
5584 if (code01 == INTEGER_CST
5585 && code11 == INTEGER_CST
5586 && TREE_INT_CST_HIGH (tree01) == 0
5587 && TREE_INT_CST_HIGH (tree11) == 0
5588 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
5589 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
5590 return build (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
5591 code0 == LSHIFT_EXPR ? tree01 : tree11);
5592 else if (code11 == MINUS_EXPR)
5593 {
5594 tree tree110, tree111;
5595 tree110 = TREE_OPERAND (tree11, 0);
5596 tree111 = TREE_OPERAND (tree11, 1);
5597 STRIP_NOPS (tree110);
5598 STRIP_NOPS (tree111);
5599 if (TREE_CODE (tree110) == INTEGER_CST
5600 && 0 == compare_tree_int (tree110,
5601 TYPE_PRECISION
5602 (TREE_TYPE (TREE_OPERAND
5603 (arg0, 0))))
5604 && operand_equal_p (tree01, tree111, 0))
5605 return build ((code0 == LSHIFT_EXPR
5606 ? LROTATE_EXPR
5607 : RROTATE_EXPR),
5608 type, TREE_OPERAND (arg0, 0), tree01);
5609 }
5610 else if (code01 == MINUS_EXPR)
5611 {
5612 tree tree010, tree011;
5613 tree010 = TREE_OPERAND (tree01, 0);
5614 tree011 = TREE_OPERAND (tree01, 1);
5615 STRIP_NOPS (tree010);
5616 STRIP_NOPS (tree011);
5617 if (TREE_CODE (tree010) == INTEGER_CST
5618 && 0 == compare_tree_int (tree010,
5619 TYPE_PRECISION
5620 (TREE_TYPE (TREE_OPERAND
5621 (arg0, 0))))
5622 && operand_equal_p (tree11, tree011, 0))
5623 return build ((code0 != LSHIFT_EXPR
5624 ? LROTATE_EXPR
5625 : RROTATE_EXPR),
5626 type, TREE_OPERAND (arg0, 0), tree11);
5627 }
5628 }
5629 }
5630
5631 associate:
5632 /* In most languages, can't associate operations on floats through
5633 parentheses. Rather than remember where the parentheses were, we
5634 don't associate floats at all. It shouldn't matter much. However,
5635 associating multiplications is only very slightly inaccurate, so do
5636 that if -funsafe-math-optimizations is specified. */
5637
5638 if (! wins
5639 && (! FLOAT_TYPE_P (type)
5640 || (flag_unsafe_math_optimizations && code == MULT_EXPR)))
5641 {
5642 tree var0, con0, lit0, minus_lit0;
5643 tree var1, con1, lit1, minus_lit1;
5644
5645 /* Split both trees into variables, constants, and literals. Then
5646 associate each group together, the constants with literals,
5647 then the result with variables. This increases the chances of
5648 literals being recombined later and of generating relocatable
5649 expressions for the sum of a constant and literal. */
5650 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
5651 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
5652 code == MINUS_EXPR);
5653
5654 /* Only do something if we found more than two objects. Otherwise,
5655 nothing has changed and we risk infinite recursion. */
5656 if (2 < ((var0 != 0) + (var1 != 0)
5657 + (con0 != 0) + (con1 != 0)
5658 + (lit0 != 0) + (lit1 != 0)
5659 + (minus_lit0 != 0) + (minus_lit1 != 0)))
5660 {
5661 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
5662 if (code == MINUS_EXPR)
5663 code = PLUS_EXPR;
5664
5665 var0 = associate_trees (var0, var1, code, type);
5666 con0 = associate_trees (con0, con1, code, type);
5667 lit0 = associate_trees (lit0, lit1, code, type);
5668 minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
5669
5670 /* Preserve the MINUS_EXPR if the negative part of the literal is
5671 greater than the positive part. Otherwise, the multiplicative
5672 folding code (i.e extract_muldiv) may be fooled in case
5673 unsigned constants are substracted, like in the following
5674 example: ((X*2 + 4) - 8U)/2. */
5675 if (minus_lit0 && lit0)
5676 {
5677 if (tree_int_cst_lt (lit0, minus_lit0))
5678 {
5679 minus_lit0 = associate_trees (minus_lit0, lit0,
5680 MINUS_EXPR, type);
5681 lit0 = 0;
5682 }
5683 else
5684 {
5685 lit0 = associate_trees (lit0, minus_lit0,
5686 MINUS_EXPR, type);
5687 minus_lit0 = 0;
5688 }
5689 }
5690 if (minus_lit0)
5691 {
5692 if (con0 == 0)
5693 return convert (type, associate_trees (var0, minus_lit0,
5694 MINUS_EXPR, type));
5695 else
5696 {
5697 con0 = associate_trees (con0, minus_lit0,
5698 MINUS_EXPR, type);
5699 return convert (type, associate_trees (var0, con0,
5700 PLUS_EXPR, type));
5701 }
5702 }
5703
5704 con0 = associate_trees (con0, lit0, code, type);
5705 return convert (type, associate_trees (var0, con0, code, type));
5706 }
5707 }
5708
5709 binary:
5710 if (wins)
5711 t1 = const_binop (code, arg0, arg1, 0);
5712 if (t1 != NULL_TREE)
5713 {
5714 /* The return value should always have
5715 the same type as the original expression. */
5716 if (TREE_TYPE (t1) != TREE_TYPE (t))
5717 t1 = convert (TREE_TYPE (t), t1);
5718
5719 return t1;
5720 }
5721 return t;
5722
5723 case MINUS_EXPR:
5724 /* A - (-B) -> A + B */
5725 if (TREE_CODE (arg1) == NEGATE_EXPR)
5726 return fold (build (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
5727 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
5728 if (TREE_CODE (arg0) == NEGATE_EXPR
5729 && FLOAT_TYPE_P (type)
5730 && negate_expr_p (arg1)
5731 && (! TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
5732 && (! TREE_SIDE_EFFECTS (arg1) || TREE_CONSTANT (arg0)))
5733 return fold (build (MINUS_EXPR, type, negate_expr (arg1),
5734 TREE_OPERAND (arg0, 0)));
5735
5736 if (! FLOAT_TYPE_P (type))
5737 {
5738 if (! wins && integer_zerop (arg0))
5739 return negate_expr (convert (type, arg1));
5740 if (integer_zerop (arg1))
5741 return non_lvalue (convert (type, arg0));
5742
5743 /* (A * C) - (B * C) -> (A-B) * C. Since we are most concerned
5744 about the case where C is a constant, just try one of the
5745 four possibilities. */
5746
5747 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR
5748 && operand_equal_p (TREE_OPERAND (arg0, 1),
5749 TREE_OPERAND (arg1, 1), 0))
5750 return fold (build (MULT_EXPR, type,
5751 fold (build (MINUS_EXPR, type,
5752 TREE_OPERAND (arg0, 0),
5753 TREE_OPERAND (arg1, 0))),
5754 TREE_OPERAND (arg0, 1)));
5755
5756 /* Fold A - (A & B) into ~B & A. */
5757 if (!TREE_SIDE_EFFECTS (arg0)
5758 && TREE_CODE (arg1) == BIT_AND_EXPR)
5759 {
5760 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
5761 return fold (build (BIT_AND_EXPR, type,
5762 fold (build1 (BIT_NOT_EXPR, type,
5763 TREE_OPERAND (arg1, 0))),
5764 arg0));
5765 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
5766 return fold (build (BIT_AND_EXPR, type,
5767 fold (build1 (BIT_NOT_EXPR, type,
5768 TREE_OPERAND (arg1, 1))),
5769 arg0));
5770 }
5771 }
5772
5773 /* See if ARG1 is zero and X - ARG1 reduces to X. */
5774 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
5775 return non_lvalue (convert (type, arg0));
5776
5777 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
5778 ARG0 is zero and X + ARG0 reduces to X, since that would mean
5779 (-ARG1 + ARG0) reduces to -ARG1. */
5780 else if (!wins && fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
5781 return negate_expr (convert (type, arg1));
5782
5783 /* Fold &x - &x. This can happen from &x.foo - &x.
5784 This is unsafe for certain floats even in non-IEEE formats.
5785 In IEEE, it is unsafe because it does wrong for NaNs.
5786 Also note that operand_equal_p is always false if an operand
5787 is volatile. */
5788
5789 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
5790 && operand_equal_p (arg0, arg1, 0))
5791 return convert (type, integer_zero_node);
5792
5793 goto associate;
5794
5795 case MULT_EXPR:
5796 /* (-A) * (-B) -> A * B */
5797 if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == NEGATE_EXPR)
5798 return fold (build (MULT_EXPR, type, TREE_OPERAND (arg0, 0),
5799 TREE_OPERAND (arg1, 0)));
5800
5801 if (! FLOAT_TYPE_P (type))
5802 {
5803 if (integer_zerop (arg1))
5804 return omit_one_operand (type, arg1, arg0);
5805 if (integer_onep (arg1))
5806 return non_lvalue (convert (type, arg0));
5807
5808 /* (a * (1 << b)) is (a << b) */
5809 if (TREE_CODE (arg1) == LSHIFT_EXPR
5810 && integer_onep (TREE_OPERAND (arg1, 0)))
5811 return fold (build (LSHIFT_EXPR, type, arg0,
5812 TREE_OPERAND (arg1, 1)));
5813 if (TREE_CODE (arg0) == LSHIFT_EXPR
5814 && integer_onep (TREE_OPERAND (arg0, 0)))
5815 return fold (build (LSHIFT_EXPR, type, arg1,
5816 TREE_OPERAND (arg0, 1)));
5817
5818 if (TREE_CODE (arg1) == INTEGER_CST
5819 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
5820 code, NULL_TREE)))
5821 return convert (type, tem);
5822
5823 }
5824 else
5825 {
5826 /* Maybe fold x * 0 to 0. The expressions aren't the same
5827 when x is NaN, since x * 0 is also NaN. Nor are they the
5828 same in modes with signed zeros, since multiplying a
5829 negative value by 0 gives -0, not +0. */
5830 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
5831 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
5832 && real_zerop (arg1))
5833 return omit_one_operand (type, arg1, arg0);
5834 /* In IEEE floating point, x*1 is not equivalent to x for snans. */
5835 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
5836 && real_onep (arg1))
5837 return non_lvalue (convert (type, arg0));
5838
5839 /* Transform x * -1.0 into -x. */
5840 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
5841 && real_minus_onep (arg1))
5842 return fold (build1 (NEGATE_EXPR, type, arg0));
5843
5844 /* x*2 is x+x */
5845 if (! wins && real_twop (arg1)
5846 && (*lang_hooks.decls.global_bindings_p) () == 0
5847 && ! contains_placeholder_p (arg0))
5848 {
5849 tree arg = save_expr (arg0);
5850 return fold (build (PLUS_EXPR, type, arg, arg));
5851 }
5852
5853 if (flag_unsafe_math_optimizations)
5854 {
5855 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
5856 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
5857
5858 /* Optimizations of sqrt(...)*sqrt(...). */
5859 if ((fcode0 == BUILT_IN_SQRT && fcode1 == BUILT_IN_SQRT)
5860 || (fcode0 == BUILT_IN_SQRTF && fcode1 == BUILT_IN_SQRTF)
5861 || (fcode0 == BUILT_IN_SQRTL && fcode1 == BUILT_IN_SQRTL))
5862 {
5863 tree sqrtfn, arg, arglist;
5864 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
5865 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
5866
5867 /* Optimize sqrt(x)*sqrt(x) as x. */
5868 if (operand_equal_p (arg00, arg10, 0)
5869 && ! HONOR_SNANS (TYPE_MODE (type)))
5870 return arg00;
5871
5872 /* Optimize sqrt(x)*sqrt(y) as sqrt(x*y). */
5873 sqrtfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
5874 arg = fold (build (MULT_EXPR, type, arg00, arg10));
5875 arglist = build_tree_list (NULL_TREE, arg);
5876 return build_function_call_expr (sqrtfn, arglist);
5877 }
5878
5879 /* Optimize exp(x)*exp(y) as exp(x+y). */
5880 if ((fcode0 == BUILT_IN_EXP && fcode1 == BUILT_IN_EXP)
5881 || (fcode0 == BUILT_IN_EXPF && fcode1 == BUILT_IN_EXPF)
5882 || (fcode0 == BUILT_IN_EXPL && fcode1 == BUILT_IN_EXPL))
5883 {
5884 tree expfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
5885 tree arg = build (PLUS_EXPR, type,
5886 TREE_VALUE (TREE_OPERAND (arg0, 1)),
5887 TREE_VALUE (TREE_OPERAND (arg1, 1)));
5888 tree arglist = build_tree_list (NULL_TREE, fold (arg));
5889 return build_function_call_expr (expfn, arglist);
5890 }
5891
5892 /* Optimizations of pow(...)*pow(...). */
5893 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
5894 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
5895 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
5896 {
5897 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
5898 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
5899 1)));
5900 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
5901 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
5902 1)));
5903
5904 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
5905 if (operand_equal_p (arg01, arg11, 0))
5906 {
5907 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
5908 tree arg = build (MULT_EXPR, type, arg00, arg10);
5909 tree arglist = tree_cons (NULL_TREE, fold (arg),
5910 build_tree_list (NULL_TREE,
5911 arg01));
5912 return build_function_call_expr (powfn, arglist);
5913 }
5914
5915 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
5916 if (operand_equal_p (arg00, arg10, 0))
5917 {
5918 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
5919 tree arg = fold (build (PLUS_EXPR, type, arg01, arg11));
5920 tree arglist = tree_cons (NULL_TREE, arg00,
5921 build_tree_list (NULL_TREE,
5922 arg));
5923 return build_function_call_expr (powfn, arglist);
5924 }
5925 }
5926 }
5927 }
5928 goto associate;
5929
5930 case BIT_IOR_EXPR:
5931 bit_ior:
5932 if (integer_all_onesp (arg1))
5933 return omit_one_operand (type, arg1, arg0);
5934 if (integer_zerop (arg1))
5935 return non_lvalue (convert (type, arg0));
5936 t1 = distribute_bit_expr (code, type, arg0, arg1);
5937 if (t1 != NULL_TREE)
5938 return t1;
5939
5940 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
5941
5942 This results in more efficient code for machines without a NAND
5943 instruction. Combine will canonicalize to the first form
5944 which will allow use of NAND instructions provided by the
5945 backend if they exist. */
5946 if (TREE_CODE (arg0) == BIT_NOT_EXPR
5947 && TREE_CODE (arg1) == BIT_NOT_EXPR)
5948 {
5949 return fold (build1 (BIT_NOT_EXPR, type,
5950 build (BIT_AND_EXPR, type,
5951 TREE_OPERAND (arg0, 0),
5952 TREE_OPERAND (arg1, 0))));
5953 }
5954
5955 /* See if this can be simplified into a rotate first. If that
5956 is unsuccessful continue in the association code. */
5957 goto bit_rotate;
5958
5959 case BIT_XOR_EXPR:
5960 if (integer_zerop (arg1))
5961 return non_lvalue (convert (type, arg0));
5962 if (integer_all_onesp (arg1))
5963 return fold (build1 (BIT_NOT_EXPR, type, arg0));
5964
5965 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
5966 with a constant, and the two constants have no bits in common,
5967 we should treat this as a BIT_IOR_EXPR since this may produce more
5968 simplifications. */
5969 if (TREE_CODE (arg0) == BIT_AND_EXPR
5970 && TREE_CODE (arg1) == BIT_AND_EXPR
5971 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
5972 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
5973 && integer_zerop (const_binop (BIT_AND_EXPR,
5974 TREE_OPERAND (arg0, 1),
5975 TREE_OPERAND (arg1, 1), 0)))
5976 {
5977 code = BIT_IOR_EXPR;
5978 goto bit_ior;
5979 }
5980
5981 /* See if this can be simplified into a rotate first. If that
5982 is unsuccessful continue in the association code. */
5983 goto bit_rotate;
5984
5985 case BIT_AND_EXPR:
5986 bit_and:
5987 if (integer_all_onesp (arg1))
5988 return non_lvalue (convert (type, arg0));
5989 if (integer_zerop (arg1))
5990 return omit_one_operand (type, arg1, arg0);
5991 t1 = distribute_bit_expr (code, type, arg0, arg1);
5992 if (t1 != NULL_TREE)
5993 return t1;
5994 /* Simplify ((int)c & 0x377) into (int)c, if c is unsigned char. */
5995 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
5996 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5997 {
5998 unsigned int prec
5999 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
6000
6001 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
6002 && (~TREE_INT_CST_LOW (arg1)
6003 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
6004 return build1 (NOP_EXPR, type, TREE_OPERAND (arg0, 0));
6005 }
6006
6007 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
6008
6009 This results in more efficient code for machines without a NOR
6010 instruction. Combine will canonicalize to the first form
6011 which will allow use of NOR instructions provided by the
6012 backend if they exist. */
6013 if (TREE_CODE (arg0) == BIT_NOT_EXPR
6014 && TREE_CODE (arg1) == BIT_NOT_EXPR)
6015 {
6016 return fold (build1 (BIT_NOT_EXPR, type,
6017 build (BIT_IOR_EXPR, type,
6018 TREE_OPERAND (arg0, 0),
6019 TREE_OPERAND (arg1, 0))));
6020 }
6021
6022 goto associate;
6023
6024 case BIT_ANDTC_EXPR:
6025 if (integer_all_onesp (arg0))
6026 return non_lvalue (convert (type, arg1));
6027 if (integer_zerop (arg0))
6028 return omit_one_operand (type, arg0, arg1);
6029 if (TREE_CODE (arg1) == INTEGER_CST)
6030 {
6031 arg1 = fold (build1 (BIT_NOT_EXPR, type, arg1));
6032 code = BIT_AND_EXPR;
6033 goto bit_and;
6034 }
6035 goto binary;
6036
6037 case RDIV_EXPR:
6038 /* Don't touch a floating-point divide by zero unless the mode
6039 of the constant can represent infinity. */
6040 if (TREE_CODE (arg1) == REAL_CST
6041 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
6042 && real_zerop (arg1))
6043 return t;
6044
6045 /* (-A) / (-B) -> A / B */
6046 if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == NEGATE_EXPR)
6047 return fold (build (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
6048 TREE_OPERAND (arg1, 0)));
6049
6050 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
6051 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
6052 && real_onep (arg1))
6053 return non_lvalue (convert (type, arg0));
6054
6055 /* If ARG1 is a constant, we can convert this to a multiply by the
6056 reciprocal. This does not have the same rounding properties,
6057 so only do this if -funsafe-math-optimizations. We can actually
6058 always safely do it if ARG1 is a power of two, but it's hard to
6059 tell if it is or not in a portable manner. */
6060 if (TREE_CODE (arg1) == REAL_CST)
6061 {
6062 if (flag_unsafe_math_optimizations
6063 && 0 != (tem = const_binop (code, build_real (type, dconst1),
6064 arg1, 0)))
6065 return fold (build (MULT_EXPR, type, arg0, tem));
6066 /* Find the reciprocal if optimizing and the result is exact. */
6067 else if (optimize)
6068 {
6069 REAL_VALUE_TYPE r;
6070 r = TREE_REAL_CST (arg1);
6071 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
6072 {
6073 tem = build_real (type, r);
6074 return fold (build (MULT_EXPR, type, arg0, tem));
6075 }
6076 }
6077 }
6078 /* Convert A/B/C to A/(B*C). */
6079 if (flag_unsafe_math_optimizations
6080 && TREE_CODE (arg0) == RDIV_EXPR)
6081 {
6082 return fold (build (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
6083 build (MULT_EXPR, type, TREE_OPERAND (arg0, 1),
6084 arg1)));
6085 }
6086 /* Convert A/(B/C) to (A/B)*C. */
6087 if (flag_unsafe_math_optimizations
6088 && TREE_CODE (arg1) == RDIV_EXPR)
6089 {
6090 return fold (build (MULT_EXPR, type,
6091 build (RDIV_EXPR, type, arg0,
6092 TREE_OPERAND (arg1, 0)),
6093 TREE_OPERAND (arg1, 1)));
6094 }
6095
6096 if (flag_unsafe_math_optimizations)
6097 {
6098 enum built_in_function fcode = builtin_mathfn_code (arg1);
6099 /* Optimize x/exp(y) into x*exp(-y). */
6100 if (fcode == BUILT_IN_EXP
6101 || fcode == BUILT_IN_EXPF
6102 || fcode == BUILT_IN_EXPL)
6103 {
6104 tree expfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
6105 tree arg = build1 (NEGATE_EXPR, type,
6106 TREE_VALUE (TREE_OPERAND (arg1, 1)));
6107 tree arglist = build_tree_list (NULL_TREE, fold (arg));
6108 arg1 = build_function_call_expr (expfn, arglist);
6109 return fold (build (MULT_EXPR, type, arg0, arg1));
6110 }
6111
6112 /* Optimize x/pow(y,z) into x*pow(y,-z). */
6113 if (fcode == BUILT_IN_POW
6114 || fcode == BUILT_IN_POWF
6115 || fcode == BUILT_IN_POWL)
6116 {
6117 tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
6118 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
6119 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1, 1)));
6120 tree neg11 = fold (build1 (NEGATE_EXPR, type, arg11));
6121 tree arglist = tree_cons(NULL_TREE, arg10,
6122 build_tree_list (NULL_TREE, neg11));
6123 arg1 = build_function_call_expr (powfn, arglist);
6124 return fold (build (MULT_EXPR, type, arg0, arg1));
6125 }
6126 }
6127 goto binary;
6128
6129 case TRUNC_DIV_EXPR:
6130 case ROUND_DIV_EXPR:
6131 case FLOOR_DIV_EXPR:
6132 case CEIL_DIV_EXPR:
6133 case EXACT_DIV_EXPR:
6134 if (integer_onep (arg1))
6135 return non_lvalue (convert (type, arg0));
6136 if (integer_zerop (arg1))
6137 return t;
6138
6139 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
6140 operation, EXACT_DIV_EXPR.
6141
6142 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
6143 At one time others generated faster code, it's not clear if they do
6144 after the last round to changes to the DIV code in expmed.c. */
6145 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
6146 && multiple_of_p (type, arg0, arg1))
6147 return fold (build (EXACT_DIV_EXPR, type, arg0, arg1));
6148
6149 if (TREE_CODE (arg1) == INTEGER_CST
6150 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
6151 code, NULL_TREE)))
6152 return convert (type, tem);
6153
6154 goto binary;
6155
6156 case CEIL_MOD_EXPR:
6157 case FLOOR_MOD_EXPR:
6158 case ROUND_MOD_EXPR:
6159 case TRUNC_MOD_EXPR:
6160 if (integer_onep (arg1))
6161 return omit_one_operand (type, integer_zero_node, arg0);
6162 if (integer_zerop (arg1))
6163 return t;
6164
6165 if (TREE_CODE (arg1) == INTEGER_CST
6166 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
6167 code, NULL_TREE)))
6168 return convert (type, tem);
6169
6170 goto binary;
6171
6172 case LROTATE_EXPR:
6173 case RROTATE_EXPR:
6174 if (integer_all_onesp (arg0))
6175 return omit_one_operand (type, arg0, arg1);
6176 goto shift;
6177
6178 case RSHIFT_EXPR:
6179 /* Optimize -1 >> x for arithmetic right shifts. */
6180 if (integer_all_onesp (arg0) && ! TREE_UNSIGNED (type))
6181 return omit_one_operand (type, arg0, arg1);
6182 /* ... fall through ... */
6183
6184 case LSHIFT_EXPR:
6185 shift:
6186 if (integer_zerop (arg1))
6187 return non_lvalue (convert (type, arg0));
6188 if (integer_zerop (arg0))
6189 return omit_one_operand (type, arg0, arg1);
6190
6191 /* Since negative shift count is not well-defined,
6192 don't try to compute it in the compiler. */
6193 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
6194 return t;
6195 /* Rewrite an LROTATE_EXPR by a constant into an
6196 RROTATE_EXPR by a new constant. */
6197 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
6198 {
6199 TREE_SET_CODE (t, RROTATE_EXPR);
6200 code = RROTATE_EXPR;
6201 TREE_OPERAND (t, 1) = arg1
6202 = const_binop
6203 (MINUS_EXPR,
6204 convert (TREE_TYPE (arg1),
6205 build_int_2 (GET_MODE_BITSIZE (TYPE_MODE (type)), 0)),
6206 arg1, 0);
6207 if (tree_int_cst_sgn (arg1) < 0)
6208 return t;
6209 }
6210
6211 /* If we have a rotate of a bit operation with the rotate count and
6212 the second operand of the bit operation both constant,
6213 permute the two operations. */
6214 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
6215 && (TREE_CODE (arg0) == BIT_AND_EXPR
6216 || TREE_CODE (arg0) == BIT_ANDTC_EXPR
6217 || TREE_CODE (arg0) == BIT_IOR_EXPR
6218 || TREE_CODE (arg0) == BIT_XOR_EXPR)
6219 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
6220 return fold (build (TREE_CODE (arg0), type,
6221 fold (build (code, type,
6222 TREE_OPERAND (arg0, 0), arg1)),
6223 fold (build (code, type,
6224 TREE_OPERAND (arg0, 1), arg1))));
6225
6226 /* Two consecutive rotates adding up to the width of the mode can
6227 be ignored. */
6228 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
6229 && TREE_CODE (arg0) == RROTATE_EXPR
6230 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6231 && TREE_INT_CST_HIGH (arg1) == 0
6232 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
6233 && ((TREE_INT_CST_LOW (arg1)
6234 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
6235 == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
6236 return TREE_OPERAND (arg0, 0);
6237
6238 goto binary;
6239
6240 case MIN_EXPR:
6241 if (operand_equal_p (arg0, arg1, 0))
6242 return omit_one_operand (type, arg0, arg1);
6243 if (INTEGRAL_TYPE_P (type)
6244 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), 1))
6245 return omit_one_operand (type, arg1, arg0);
6246 goto associate;
6247
6248 case MAX_EXPR:
6249 if (operand_equal_p (arg0, arg1, 0))
6250 return omit_one_operand (type, arg0, arg1);
6251 if (INTEGRAL_TYPE_P (type)
6252 && TYPE_MAX_VALUE (type)
6253 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), 1))
6254 return omit_one_operand (type, arg1, arg0);
6255 goto associate;
6256
6257 case TRUTH_NOT_EXPR:
6258 /* Note that the operand of this must be an int
6259 and its values must be 0 or 1.
6260 ("true" is a fixed value perhaps depending on the language,
6261 but we don't handle values other than 1 correctly yet.) */
6262 tem = invert_truthvalue (arg0);
6263 /* Avoid infinite recursion. */
6264 if (TREE_CODE (tem) == TRUTH_NOT_EXPR)
6265 return t;
6266 return convert (type, tem);
6267
6268 case TRUTH_ANDIF_EXPR:
6269 /* Note that the operands of this must be ints
6270 and their values must be 0 or 1.
6271 ("true" is a fixed value perhaps depending on the language.) */
6272 /* If first arg is constant zero, return it. */
6273 if (integer_zerop (arg0))
6274 return convert (type, arg0);
6275 case TRUTH_AND_EXPR:
6276 /* If either arg is constant true, drop it. */
6277 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
6278 return non_lvalue (convert (type, arg1));
6279 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
6280 /* Preserve sequence points. */
6281 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
6282 return non_lvalue (convert (type, arg0));
6283 /* If second arg is constant zero, result is zero, but first arg
6284 must be evaluated. */
6285 if (integer_zerop (arg1))
6286 return omit_one_operand (type, arg1, arg0);
6287 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
6288 case will be handled here. */
6289 if (integer_zerop (arg0))
6290 return omit_one_operand (type, arg0, arg1);
6291
6292 truth_andor:
6293 /* We only do these simplifications if we are optimizing. */
6294 if (!optimize)
6295 return t;
6296
6297 /* Check for things like (A || B) && (A || C). We can convert this
6298 to A || (B && C). Note that either operator can be any of the four
6299 truth and/or operations and the transformation will still be
6300 valid. Also note that we only care about order for the
6301 ANDIF and ORIF operators. If B contains side effects, this
6302 might change the truth-value of A. */
6303 if (TREE_CODE (arg0) == TREE_CODE (arg1)
6304 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
6305 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
6306 || TREE_CODE (arg0) == TRUTH_AND_EXPR
6307 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
6308 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
6309 {
6310 tree a00 = TREE_OPERAND (arg0, 0);
6311 tree a01 = TREE_OPERAND (arg0, 1);
6312 tree a10 = TREE_OPERAND (arg1, 0);
6313 tree a11 = TREE_OPERAND (arg1, 1);
6314 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
6315 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
6316 && (code == TRUTH_AND_EXPR
6317 || code == TRUTH_OR_EXPR));
6318
6319 if (operand_equal_p (a00, a10, 0))
6320 return fold (build (TREE_CODE (arg0), type, a00,
6321 fold (build (code, type, a01, a11))));
6322 else if (commutative && operand_equal_p (a00, a11, 0))
6323 return fold (build (TREE_CODE (arg0), type, a00,
6324 fold (build (code, type, a01, a10))));
6325 else if (commutative && operand_equal_p (a01, a10, 0))
6326 return fold (build (TREE_CODE (arg0), type, a01,
6327 fold (build (code, type, a00, a11))));
6328
6329 /* This case if tricky because we must either have commutative
6330 operators or else A10 must not have side-effects. */
6331
6332 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
6333 && operand_equal_p (a01, a11, 0))
6334 return fold (build (TREE_CODE (arg0), type,
6335 fold (build (code, type, a00, a10)),
6336 a01));
6337 }
6338
6339 /* See if we can build a range comparison. */
6340 if (0 != (tem = fold_range_test (t)))
6341 return tem;
6342
6343 /* Check for the possibility of merging component references. If our
6344 lhs is another similar operation, try to merge its rhs with our
6345 rhs. Then try to merge our lhs and rhs. */
6346 if (TREE_CODE (arg0) == code
6347 && 0 != (tem = fold_truthop (code, type,
6348 TREE_OPERAND (arg0, 1), arg1)))
6349 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6350
6351 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
6352 return tem;
6353
6354 return t;
6355
6356 case TRUTH_ORIF_EXPR:
6357 /* Note that the operands of this must be ints
6358 and their values must be 0 or true.
6359 ("true" is a fixed value perhaps depending on the language.) */
6360 /* If first arg is constant true, return it. */
6361 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
6362 return convert (type, arg0);
6363 case TRUTH_OR_EXPR:
6364 /* If either arg is constant zero, drop it. */
6365 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
6366 return non_lvalue (convert (type, arg1));
6367 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
6368 /* Preserve sequence points. */
6369 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
6370 return non_lvalue (convert (type, arg0));
6371 /* If second arg is constant true, result is true, but we must
6372 evaluate first arg. */
6373 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
6374 return omit_one_operand (type, arg1, arg0);
6375 /* Likewise for first arg, but note this only occurs here for
6376 TRUTH_OR_EXPR. */
6377 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
6378 return omit_one_operand (type, arg0, arg1);
6379 goto truth_andor;
6380
6381 case TRUTH_XOR_EXPR:
6382 /* If either arg is constant zero, drop it. */
6383 if (integer_zerop (arg0))
6384 return non_lvalue (convert (type, arg1));
6385 if (integer_zerop (arg1))
6386 return non_lvalue (convert (type, arg0));
6387 /* If either arg is constant true, this is a logical inversion. */
6388 if (integer_onep (arg0))
6389 return non_lvalue (convert (type, invert_truthvalue (arg1)));
6390 if (integer_onep (arg1))
6391 return non_lvalue (convert (type, invert_truthvalue (arg0)));
6392 return t;
6393
6394 case EQ_EXPR:
6395 case NE_EXPR:
6396 case LT_EXPR:
6397 case GT_EXPR:
6398 case LE_EXPR:
6399 case GE_EXPR:
6400 /* If one arg is a real or integer constant, put it last. */
6401 if ((TREE_CODE (arg0) == INTEGER_CST
6402 && TREE_CODE (arg1) != INTEGER_CST)
6403 || (TREE_CODE (arg0) == REAL_CST
6404 && TREE_CODE (arg0) != REAL_CST))
6405 {
6406 TREE_OPERAND (t, 0) = arg1;
6407 TREE_OPERAND (t, 1) = arg0;
6408 arg0 = TREE_OPERAND (t, 0);
6409 arg1 = TREE_OPERAND (t, 1);
6410 code = swap_tree_comparison (code);
6411 TREE_SET_CODE (t, code);
6412 }
6413
6414 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
6415 {
6416 tree targ0 = strip_float_extensions (arg0);
6417 tree targ1 = strip_float_extensions (arg1);
6418 tree newtype = TREE_TYPE (targ0);
6419
6420 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
6421 newtype = TREE_TYPE (targ1);
6422
6423 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
6424 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
6425 return fold (build (code, type, convert (newtype, targ0),
6426 convert (newtype, targ1)));
6427
6428 /* (-a) CMP (-b) -> b CMP a */
6429 if (TREE_CODE (arg0) == NEGATE_EXPR
6430 && TREE_CODE (arg1) == NEGATE_EXPR)
6431 return fold (build (code, type, TREE_OPERAND (arg1, 0),
6432 TREE_OPERAND (arg0, 0)));
6433
6434 if (TREE_CODE (arg1) == REAL_CST)
6435 {
6436 REAL_VALUE_TYPE cst;
6437 cst = TREE_REAL_CST (arg1);
6438
6439 /* (-a) CMP CST -> a swap(CMP) (-CST) */
6440 if (TREE_CODE (arg0) == NEGATE_EXPR)
6441 return
6442 fold (build (swap_tree_comparison (code), type,
6443 TREE_OPERAND (arg0, 0),
6444 build_real (TREE_TYPE (arg1),
6445 REAL_VALUE_NEGATE (cst))));
6446
6447 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
6448 /* a CMP (-0) -> a CMP 0 */
6449 if (REAL_VALUE_MINUS_ZERO (cst))
6450 return fold (build (code, type, arg0,
6451 build_real (TREE_TYPE (arg1), dconst0)));
6452
6453 /* x != NaN is always true, other ops are always false. */
6454 if (REAL_VALUE_ISNAN (cst)
6455 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
6456 {
6457 t = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
6458 return omit_one_operand (type, convert (type, t), arg0);
6459 }
6460
6461 /* Fold comparisons against infinity. */
6462 if (REAL_VALUE_ISINF (cst))
6463 {
6464 tem = fold_inf_compare (code, type, arg0, arg1);
6465 if (tem != NULL_TREE)
6466 return tem;
6467 }
6468 }
6469
6470 /* If this is a comparison of a real constant with a PLUS_EXPR
6471 or a MINUS_EXPR of a real constant, we can convert it into a
6472 comparison with a revised real constant as long as no overflow
6473 occurs when unsafe_math_optimizations are enabled. */
6474 if (flag_unsafe_math_optimizations
6475 && TREE_CODE (arg1) == REAL_CST
6476 && (TREE_CODE (arg0) == PLUS_EXPR
6477 || TREE_CODE (arg0) == MINUS_EXPR)
6478 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
6479 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
6480 ? MINUS_EXPR : PLUS_EXPR,
6481 arg1, TREE_OPERAND (arg0, 1), 0))
6482 && ! TREE_CONSTANT_OVERFLOW (tem))
6483 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6484
6485 /* Likewise, we can simplify a comparison of a real constant with
6486 a MINUS_EXPR whose first operand is also a real constant, i.e.
6487 (c1 - x) < c2 becomes x > c1-c2. */
6488 if (flag_unsafe_math_optimizations
6489 && TREE_CODE (arg1) == REAL_CST
6490 && TREE_CODE (arg0) == MINUS_EXPR
6491 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
6492 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
6493 arg1, 0))
6494 && ! TREE_CONSTANT_OVERFLOW (tem))
6495 return fold (build (swap_tree_comparison (code), type,
6496 TREE_OPERAND (arg0, 1), tem));
6497
6498 /* Fold comparisons against built-in math functions. */
6499 if (TREE_CODE (arg1) == REAL_CST
6500 && flag_unsafe_math_optimizations
6501 && ! flag_errno_math)
6502 {
6503 enum built_in_function fcode = builtin_mathfn_code (arg0);
6504
6505 if (fcode != END_BUILTINS)
6506 {
6507 tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
6508 if (tem != NULL_TREE)
6509 return tem;
6510 }
6511 }
6512 }
6513
6514 /* Convert foo++ == CONST into ++foo == CONST + INCR.
6515 First, see if one arg is constant; find the constant arg
6516 and the other one. */
6517 {
6518 tree constop = 0, varop = NULL_TREE;
6519 int constopnum = -1;
6520
6521 if (TREE_CONSTANT (arg1))
6522 constopnum = 1, constop = arg1, varop = arg0;
6523 if (TREE_CONSTANT (arg0))
6524 constopnum = 0, constop = arg0, varop = arg1;
6525
6526 if (constop && TREE_CODE (varop) == POSTINCREMENT_EXPR)
6527 {
6528 /* This optimization is invalid for ordered comparisons
6529 if CONST+INCR overflows or if foo+incr might overflow.
6530 This optimization is invalid for floating point due to rounding.
6531 For pointer types we assume overflow doesn't happen. */
6532 if (POINTER_TYPE_P (TREE_TYPE (varop))
6533 || (! FLOAT_TYPE_P (TREE_TYPE (varop))
6534 && (code == EQ_EXPR || code == NE_EXPR)))
6535 {
6536 tree newconst
6537 = fold (build (PLUS_EXPR, TREE_TYPE (varop),
6538 constop, TREE_OPERAND (varop, 1)));
6539
6540 /* Do not overwrite the current varop to be a preincrement,
6541 create a new node so that we won't confuse our caller who
6542 might create trees and throw them away, reusing the
6543 arguments that they passed to build. This shows up in
6544 the THEN or ELSE parts of ?: being postincrements. */
6545 varop = build (PREINCREMENT_EXPR, TREE_TYPE (varop),
6546 TREE_OPERAND (varop, 0),
6547 TREE_OPERAND (varop, 1));
6548
6549 /* If VAROP is a reference to a bitfield, we must mask
6550 the constant by the width of the field. */
6551 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
6552 && DECL_BIT_FIELD(TREE_OPERAND
6553 (TREE_OPERAND (varop, 0), 1)))
6554 {
6555 int size
6556 = TREE_INT_CST_LOW (DECL_SIZE
6557 (TREE_OPERAND
6558 (TREE_OPERAND (varop, 0), 1)));
6559 tree mask, unsigned_type;
6560 unsigned int precision;
6561 tree folded_compare;
6562
6563 /* First check whether the comparison would come out
6564 always the same. If we don't do that we would
6565 change the meaning with the masking. */
6566 if (constopnum == 0)
6567 folded_compare = fold (build (code, type, constop,
6568 TREE_OPERAND (varop, 0)));
6569 else
6570 folded_compare = fold (build (code, type,
6571 TREE_OPERAND (varop, 0),
6572 constop));
6573 if (integer_zerop (folded_compare)
6574 || integer_onep (folded_compare))
6575 return omit_one_operand (type, folded_compare, varop);
6576
6577 unsigned_type = (*lang_hooks.types.type_for_size)(size, 1);
6578 precision = TYPE_PRECISION (unsigned_type);
6579 mask = build_int_2 (~0, ~0);
6580 TREE_TYPE (mask) = unsigned_type;
6581 force_fit_type (mask, 0);
6582 mask = const_binop (RSHIFT_EXPR, mask,
6583 size_int (precision - size), 0);
6584 newconst = fold (build (BIT_AND_EXPR,
6585 TREE_TYPE (varop), newconst,
6586 convert (TREE_TYPE (varop),
6587 mask)));
6588 }
6589
6590 t = build (code, type,
6591 (constopnum == 0) ? newconst : varop,
6592 (constopnum == 1) ? newconst : varop);
6593 return t;
6594 }
6595 }
6596 else if (constop && TREE_CODE (varop) == POSTDECREMENT_EXPR)
6597 {
6598 if (POINTER_TYPE_P (TREE_TYPE (varop))
6599 || (! FLOAT_TYPE_P (TREE_TYPE (varop))
6600 && (code == EQ_EXPR || code == NE_EXPR)))
6601 {
6602 tree newconst
6603 = fold (build (MINUS_EXPR, TREE_TYPE (varop),
6604 constop, TREE_OPERAND (varop, 1)));
6605
6606 /* Do not overwrite the current varop to be a predecrement,
6607 create a new node so that we won't confuse our caller who
6608 might create trees and throw them away, reusing the
6609 arguments that they passed to build. This shows up in
6610 the THEN or ELSE parts of ?: being postdecrements. */
6611 varop = build (PREDECREMENT_EXPR, TREE_TYPE (varop),
6612 TREE_OPERAND (varop, 0),
6613 TREE_OPERAND (varop, 1));
6614
6615 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
6616 && DECL_BIT_FIELD(TREE_OPERAND
6617 (TREE_OPERAND (varop, 0), 1)))
6618 {
6619 int size
6620 = TREE_INT_CST_LOW (DECL_SIZE
6621 (TREE_OPERAND
6622 (TREE_OPERAND (varop, 0), 1)));
6623 tree mask, unsigned_type;
6624 unsigned int precision;
6625 tree folded_compare;
6626
6627 if (constopnum == 0)
6628 folded_compare = fold (build (code, type, constop,
6629 TREE_OPERAND (varop, 0)));
6630 else
6631 folded_compare = fold (build (code, type,
6632 TREE_OPERAND (varop, 0),
6633 constop));
6634 if (integer_zerop (folded_compare)
6635 || integer_onep (folded_compare))
6636 return omit_one_operand (type, folded_compare, varop);
6637
6638 unsigned_type = (*lang_hooks.types.type_for_size)(size, 1);
6639 precision = TYPE_PRECISION (unsigned_type);
6640 mask = build_int_2 (~0, ~0);
6641 TREE_TYPE (mask) = TREE_TYPE (varop);
6642 force_fit_type (mask, 0);
6643 mask = const_binop (RSHIFT_EXPR, mask,
6644 size_int (precision - size), 0);
6645 newconst = fold (build (BIT_AND_EXPR,
6646 TREE_TYPE (varop), newconst,
6647 convert (TREE_TYPE (varop),
6648 mask)));
6649 }
6650
6651 t = build (code, type,
6652 (constopnum == 0) ? newconst : varop,
6653 (constopnum == 1) ? newconst : varop);
6654 return t;
6655 }
6656 }
6657 }
6658
6659 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
6660 This transformation affects the cases which are handled in later
6661 optimizations involving comparisons with non-negative constants. */
6662 if (TREE_CODE (arg1) == INTEGER_CST
6663 && TREE_CODE (arg0) != INTEGER_CST
6664 && tree_int_cst_sgn (arg1) > 0)
6665 {
6666 switch (code)
6667 {
6668 case GE_EXPR:
6669 code = GT_EXPR;
6670 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6671 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6672 break;
6673
6674 case LT_EXPR:
6675 code = LE_EXPR;
6676 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6677 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6678 break;
6679
6680 default:
6681 break;
6682 }
6683 }
6684
6685 /* Comparisons with the highest or lowest possible integer of
6686 the specified size will have known values. */
6687 {
6688 int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1)));
6689
6690 if (TREE_CODE (arg1) == INTEGER_CST
6691 && ! TREE_CONSTANT_OVERFLOW (arg1)
6692 && width <= HOST_BITS_PER_WIDE_INT
6693 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
6694 || POINTER_TYPE_P (TREE_TYPE (arg1))))
6695 {
6696 unsigned HOST_WIDE_INT signed_max;
6697 unsigned HOST_WIDE_INT max, min;
6698
6699 signed_max = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
6700
6701 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
6702 {
6703 max = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
6704 min = 0;
6705 }
6706 else
6707 {
6708 max = signed_max;
6709 min = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
6710 }
6711
6712 if (TREE_INT_CST_HIGH (arg1) == 0
6713 && TREE_INT_CST_LOW (arg1) == max)
6714 switch (code)
6715 {
6716 case GT_EXPR:
6717 return omit_one_operand (type,
6718 convert (type, integer_zero_node),
6719 arg0);
6720 case GE_EXPR:
6721 code = EQ_EXPR;
6722 TREE_SET_CODE (t, EQ_EXPR);
6723 break;
6724 case LE_EXPR:
6725 return omit_one_operand (type,
6726 convert (type, integer_one_node),
6727 arg0);
6728 case LT_EXPR:
6729 code = NE_EXPR;
6730 TREE_SET_CODE (t, NE_EXPR);
6731 break;
6732
6733 /* The GE_EXPR and LT_EXPR cases above are not normally
6734 reached because of previous transformations. */
6735
6736 default:
6737 break;
6738 }
6739 else if (TREE_INT_CST_HIGH (arg1) == 0
6740 && TREE_INT_CST_LOW (arg1) == max - 1)
6741 switch (code)
6742 {
6743 case GT_EXPR:
6744 code = EQ_EXPR;
6745 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
6746 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6747 break;
6748 case LE_EXPR:
6749 code = NE_EXPR;
6750 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
6751 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6752 break;
6753 default:
6754 break;
6755 }
6756 else if (TREE_INT_CST_HIGH (arg1) == (min ? -1 : 0)
6757 && TREE_INT_CST_LOW (arg1) == min)
6758 switch (code)
6759 {
6760 case LT_EXPR:
6761 return omit_one_operand (type,
6762 convert (type, integer_zero_node),
6763 arg0);
6764 case LE_EXPR:
6765 code = EQ_EXPR;
6766 TREE_SET_CODE (t, EQ_EXPR);
6767 break;
6768
6769 case GE_EXPR:
6770 return omit_one_operand (type,
6771 convert (type, integer_one_node),
6772 arg0);
6773 case GT_EXPR:
6774 code = NE_EXPR;
6775 TREE_SET_CODE (t, NE_EXPR);
6776 break;
6777
6778 default:
6779 break;
6780 }
6781 else if (TREE_INT_CST_HIGH (arg1) == (min ? -1 : 0)
6782 && TREE_INT_CST_LOW (arg1) == min + 1)
6783 switch (code)
6784 {
6785 case GE_EXPR:
6786 code = NE_EXPR;
6787 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6788 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6789 break;
6790 case LT_EXPR:
6791 code = EQ_EXPR;
6792 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6793 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6794 break;
6795 default:
6796 break;
6797 }
6798
6799 else if (TREE_INT_CST_HIGH (arg1) == 0
6800 && TREE_INT_CST_LOW (arg1) == signed_max
6801 && TREE_UNSIGNED (TREE_TYPE (arg1))
6802 /* signed_type does not work on pointer types. */
6803 && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
6804 {
6805 /* The following case also applies to X < signed_max+1
6806 and X >= signed_max+1 because previous transformations. */
6807 if (code == LE_EXPR || code == GT_EXPR)
6808 {
6809 tree st0, st1;
6810 st0 = (*lang_hooks.types.signed_type) (TREE_TYPE (arg0));
6811 st1 = (*lang_hooks.types.signed_type) (TREE_TYPE (arg1));
6812 return fold
6813 (build (code == LE_EXPR ? GE_EXPR: LT_EXPR,
6814 type, convert (st0, arg0),
6815 convert (st1, integer_zero_node)));
6816 }
6817 }
6818 }
6819 }
6820
6821 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
6822 a MINUS_EXPR of a constant, we can convert it into a comparison with
6823 a revised constant as long as no overflow occurs. */
6824 if ((code == EQ_EXPR || code == NE_EXPR)
6825 && TREE_CODE (arg1) == INTEGER_CST
6826 && (TREE_CODE (arg0) == PLUS_EXPR
6827 || TREE_CODE (arg0) == MINUS_EXPR)
6828 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6829 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
6830 ? MINUS_EXPR : PLUS_EXPR,
6831 arg1, TREE_OPERAND (arg0, 1), 0))
6832 && ! TREE_CONSTANT_OVERFLOW (tem))
6833 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6834
6835 /* Similarly for a NEGATE_EXPR. */
6836 else if ((code == EQ_EXPR || code == NE_EXPR)
6837 && TREE_CODE (arg0) == NEGATE_EXPR
6838 && TREE_CODE (arg1) == INTEGER_CST
6839 && 0 != (tem = negate_expr (arg1))
6840 && TREE_CODE (tem) == INTEGER_CST
6841 && ! TREE_CONSTANT_OVERFLOW (tem))
6842 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6843
6844 /* If we have X - Y == 0, we can convert that to X == Y and similarly
6845 for !=. Don't do this for ordered comparisons due to overflow. */
6846 else if ((code == NE_EXPR || code == EQ_EXPR)
6847 && integer_zerop (arg1) && TREE_CODE (arg0) == MINUS_EXPR)
6848 return fold (build (code, type,
6849 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1)));
6850
6851 /* If we are widening one operand of an integer comparison,
6852 see if the other operand is similarly being widened. Perhaps we
6853 can do the comparison in the narrower type. */
6854 else if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
6855 && TREE_CODE (arg0) == NOP_EXPR
6856 && (tem = get_unwidened (arg0, NULL_TREE)) != arg0
6857 && (t1 = get_unwidened (arg1, TREE_TYPE (tem))) != 0
6858 && (TREE_TYPE (t1) == TREE_TYPE (tem)
6859 || (TREE_CODE (t1) == INTEGER_CST
6860 && int_fits_type_p (t1, TREE_TYPE (tem)))))
6861 return fold (build (code, type, tem, convert (TREE_TYPE (tem), t1)));
6862
6863 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
6864 constant, we can simplify it. */
6865 else if (TREE_CODE (arg1) == INTEGER_CST
6866 && (TREE_CODE (arg0) == MIN_EXPR
6867 || TREE_CODE (arg0) == MAX_EXPR)
6868 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
6869 return optimize_minmax_comparison (t);
6870
6871 /* If we are comparing an ABS_EXPR with a constant, we can
6872 convert all the cases into explicit comparisons, but they may
6873 well not be faster than doing the ABS and one comparison.
6874 But ABS (X) <= C is a range comparison, which becomes a subtraction
6875 and a comparison, and is probably faster. */
6876 else if (code == LE_EXPR && TREE_CODE (arg1) == INTEGER_CST
6877 && TREE_CODE (arg0) == ABS_EXPR
6878 && ! TREE_SIDE_EFFECTS (arg0)
6879 && (0 != (tem = negate_expr (arg1)))
6880 && TREE_CODE (tem) == INTEGER_CST
6881 && ! TREE_CONSTANT_OVERFLOW (tem))
6882 return fold (build (TRUTH_ANDIF_EXPR, type,
6883 build (GE_EXPR, type, TREE_OPERAND (arg0, 0), tem),
6884 build (LE_EXPR, type,
6885 TREE_OPERAND (arg0, 0), arg1)));
6886
6887 /* If this is an EQ or NE comparison with zero and ARG0 is
6888 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
6889 two operations, but the latter can be done in one less insn
6890 on machines that have only two-operand insns or on which a
6891 constant cannot be the first operand. */
6892 if (integer_zerop (arg1) && (code == EQ_EXPR || code == NE_EXPR)
6893 && TREE_CODE (arg0) == BIT_AND_EXPR)
6894 {
6895 if (TREE_CODE (TREE_OPERAND (arg0, 0)) == LSHIFT_EXPR
6896 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 0), 0)))
6897 return
6898 fold (build (code, type,
6899 build (BIT_AND_EXPR, TREE_TYPE (arg0),
6900 build (RSHIFT_EXPR,
6901 TREE_TYPE (TREE_OPERAND (arg0, 0)),
6902 TREE_OPERAND (arg0, 1),
6903 TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)),
6904 convert (TREE_TYPE (arg0),
6905 integer_one_node)),
6906 arg1));
6907 else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
6908 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
6909 return
6910 fold (build (code, type,
6911 build (BIT_AND_EXPR, TREE_TYPE (arg0),
6912 build (RSHIFT_EXPR,
6913 TREE_TYPE (TREE_OPERAND (arg0, 1)),
6914 TREE_OPERAND (arg0, 0),
6915 TREE_OPERAND (TREE_OPERAND (arg0, 1), 1)),
6916 convert (TREE_TYPE (arg0),
6917 integer_one_node)),
6918 arg1));
6919 }
6920
6921 /* If this is an NE or EQ comparison of zero against the result of a
6922 signed MOD operation whose second operand is a power of 2, make
6923 the MOD operation unsigned since it is simpler and equivalent. */
6924 if ((code == NE_EXPR || code == EQ_EXPR)
6925 && integer_zerop (arg1)
6926 && ! TREE_UNSIGNED (TREE_TYPE (arg0))
6927 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
6928 || TREE_CODE (arg0) == CEIL_MOD_EXPR
6929 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
6930 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
6931 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6932 {
6933 tree newtype = (*lang_hooks.types.unsigned_type) (TREE_TYPE (arg0));
6934 tree newmod = build (TREE_CODE (arg0), newtype,
6935 convert (newtype, TREE_OPERAND (arg0, 0)),
6936 convert (newtype, TREE_OPERAND (arg0, 1)));
6937
6938 return build (code, type, newmod, convert (newtype, arg1));
6939 }
6940
6941 /* If this is an NE comparison of zero with an AND of one, remove the
6942 comparison since the AND will give the correct value. */
6943 if (code == NE_EXPR && integer_zerop (arg1)
6944 && TREE_CODE (arg0) == BIT_AND_EXPR
6945 && integer_onep (TREE_OPERAND (arg0, 1)))
6946 return convert (type, arg0);
6947
6948 /* If we have (A & C) == C where C is a power of 2, convert this into
6949 (A & C) != 0. Similarly for NE_EXPR. */
6950 if ((code == EQ_EXPR || code == NE_EXPR)
6951 && TREE_CODE (arg0) == BIT_AND_EXPR
6952 && integer_pow2p (TREE_OPERAND (arg0, 1))
6953 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
6954 return fold (build (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
6955 arg0, integer_zero_node));
6956
6957 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6958 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6959 if ((code == EQ_EXPR || code == NE_EXPR)
6960 && TREE_CODE (arg0) == BIT_AND_EXPR
6961 && integer_zerop (arg1))
6962 {
6963 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0),
6964 TREE_OPERAND (arg0, 1));
6965 if (arg00 != NULL_TREE)
6966 {
6967 tree stype = (*lang_hooks.types.signed_type) (TREE_TYPE (arg00));
6968 return fold (build (code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
6969 convert (stype, arg00),
6970 convert (stype, integer_zero_node)));
6971 }
6972 }
6973
6974 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
6975 and similarly for >= into !=. */
6976 if ((code == LT_EXPR || code == GE_EXPR)
6977 && TREE_UNSIGNED (TREE_TYPE (arg0))
6978 && TREE_CODE (arg1) == LSHIFT_EXPR
6979 && integer_onep (TREE_OPERAND (arg1, 0)))
6980 return build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
6981 build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
6982 TREE_OPERAND (arg1, 1)),
6983 convert (TREE_TYPE (arg0), integer_zero_node));
6984
6985 else if ((code == LT_EXPR || code == GE_EXPR)
6986 && TREE_UNSIGNED (TREE_TYPE (arg0))
6987 && (TREE_CODE (arg1) == NOP_EXPR
6988 || TREE_CODE (arg1) == CONVERT_EXPR)
6989 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
6990 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
6991 return
6992 build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
6993 convert (TREE_TYPE (arg0),
6994 build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
6995 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1))),
6996 convert (TREE_TYPE (arg0), integer_zero_node));
6997
6998 /* Simplify comparison of something with itself. (For IEEE
6999 floating-point, we can only do some of these simplifications.) */
7000 if (operand_equal_p (arg0, arg1, 0))
7001 {
7002 switch (code)
7003 {
7004 case EQ_EXPR:
7005 case GE_EXPR:
7006 case LE_EXPR:
7007 if (! FLOAT_TYPE_P (TREE_TYPE (arg0)))
7008 return constant_boolean_node (1, type);
7009 code = EQ_EXPR;
7010 TREE_SET_CODE (t, code);
7011 break;
7012
7013 case NE_EXPR:
7014 /* For NE, we can only do this simplification if integer. */
7015 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
7016 break;
7017 /* ... fall through ... */
7018 case GT_EXPR:
7019 case LT_EXPR:
7020 return constant_boolean_node (0, type);
7021 default:
7022 abort ();
7023 }
7024 }
7025
7026 /* If we are comparing an expression that just has comparisons
7027 of two integer values, arithmetic expressions of those comparisons,
7028 and constants, we can simplify it. There are only three cases
7029 to check: the two values can either be equal, the first can be
7030 greater, or the second can be greater. Fold the expression for
7031 those three values. Since each value must be 0 or 1, we have
7032 eight possibilities, each of which corresponds to the constant 0
7033 or 1 or one of the six possible comparisons.
7034
7035 This handles common cases like (a > b) == 0 but also handles
7036 expressions like ((x > y) - (y > x)) > 0, which supposedly
7037 occur in macroized code. */
7038
7039 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
7040 {
7041 tree cval1 = 0, cval2 = 0;
7042 int save_p = 0;
7043
7044 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
7045 /* Don't handle degenerate cases here; they should already
7046 have been handled anyway. */
7047 && cval1 != 0 && cval2 != 0
7048 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
7049 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
7050 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
7051 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
7052 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
7053 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
7054 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
7055 {
7056 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
7057 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
7058
7059 /* We can't just pass T to eval_subst in case cval1 or cval2
7060 was the same as ARG1. */
7061
7062 tree high_result
7063 = fold (build (code, type,
7064 eval_subst (arg0, cval1, maxval, cval2, minval),
7065 arg1));
7066 tree equal_result
7067 = fold (build (code, type,
7068 eval_subst (arg0, cval1, maxval, cval2, maxval),
7069 arg1));
7070 tree low_result
7071 = fold (build (code, type,
7072 eval_subst (arg0, cval1, minval, cval2, maxval),
7073 arg1));
7074
7075 /* All three of these results should be 0 or 1. Confirm they
7076 are. Then use those values to select the proper code
7077 to use. */
7078
7079 if ((integer_zerop (high_result)
7080 || integer_onep (high_result))
7081 && (integer_zerop (equal_result)
7082 || integer_onep (equal_result))
7083 && (integer_zerop (low_result)
7084 || integer_onep (low_result)))
7085 {
7086 /* Make a 3-bit mask with the high-order bit being the
7087 value for `>', the next for '=', and the low for '<'. */
7088 switch ((integer_onep (high_result) * 4)
7089 + (integer_onep (equal_result) * 2)
7090 + integer_onep (low_result))
7091 {
7092 case 0:
7093 /* Always false. */
7094 return omit_one_operand (type, integer_zero_node, arg0);
7095 case 1:
7096 code = LT_EXPR;
7097 break;
7098 case 2:
7099 code = EQ_EXPR;
7100 break;
7101 case 3:
7102 code = LE_EXPR;
7103 break;
7104 case 4:
7105 code = GT_EXPR;
7106 break;
7107 case 5:
7108 code = NE_EXPR;
7109 break;
7110 case 6:
7111 code = GE_EXPR;
7112 break;
7113 case 7:
7114 /* Always true. */
7115 return omit_one_operand (type, integer_one_node, arg0);
7116 }
7117
7118 t = build (code, type, cval1, cval2);
7119 if (save_p)
7120 return save_expr (t);
7121 else
7122 return fold (t);
7123 }
7124 }
7125 }
7126
7127 /* If this is a comparison of a field, we may be able to simplify it. */
7128 if (((TREE_CODE (arg0) == COMPONENT_REF
7129 && (*lang_hooks.can_use_bit_fields_p) ())
7130 || TREE_CODE (arg0) == BIT_FIELD_REF)
7131 && (code == EQ_EXPR || code == NE_EXPR)
7132 /* Handle the constant case even without -O
7133 to make sure the warnings are given. */
7134 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
7135 {
7136 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
7137 return t1 ? t1 : t;
7138 }
7139
7140 /* If this is a comparison of complex values and either or both sides
7141 are a COMPLEX_EXPR or COMPLEX_CST, it is best to split up the
7142 comparisons and join them with a TRUTH_ANDIF_EXPR or TRUTH_ORIF_EXPR.
7143 This may prevent needless evaluations. */
7144 if ((code == EQ_EXPR || code == NE_EXPR)
7145 && TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
7146 && (TREE_CODE (arg0) == COMPLEX_EXPR
7147 || TREE_CODE (arg1) == COMPLEX_EXPR
7148 || TREE_CODE (arg0) == COMPLEX_CST
7149 || TREE_CODE (arg1) == COMPLEX_CST))
7150 {
7151 tree subtype = TREE_TYPE (TREE_TYPE (arg0));
7152 tree real0, imag0, real1, imag1;
7153
7154 arg0 = save_expr (arg0);
7155 arg1 = save_expr (arg1);
7156 real0 = fold (build1 (REALPART_EXPR, subtype, arg0));
7157 imag0 = fold (build1 (IMAGPART_EXPR, subtype, arg0));
7158 real1 = fold (build1 (REALPART_EXPR, subtype, arg1));
7159 imag1 = fold (build1 (IMAGPART_EXPR, subtype, arg1));
7160
7161 return fold (build ((code == EQ_EXPR ? TRUTH_ANDIF_EXPR
7162 : TRUTH_ORIF_EXPR),
7163 type,
7164 fold (build (code, type, real0, real1)),
7165 fold (build (code, type, imag0, imag1))));
7166 }
7167
7168 /* Optimize comparisons of strlen vs zero to a compare of the
7169 first character of the string vs zero. To wit,
7170 strlen(ptr) == 0 => *ptr == 0
7171 strlen(ptr) != 0 => *ptr != 0
7172 Other cases should reduce to one of these two (or a constant)
7173 due to the return value of strlen being unsigned. */
7174 if ((code == EQ_EXPR || code == NE_EXPR)
7175 && integer_zerop (arg1)
7176 && TREE_CODE (arg0) == CALL_EXPR
7177 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR)
7178 {
7179 tree fndecl = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7180 tree arglist;
7181
7182 if (TREE_CODE (fndecl) == FUNCTION_DECL
7183 && DECL_BUILT_IN (fndecl)
7184 && DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD
7185 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
7186 && (arglist = TREE_OPERAND (arg0, 1))
7187 && TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) == POINTER_TYPE
7188 && ! TREE_CHAIN (arglist))
7189 return fold (build (code, type,
7190 build1 (INDIRECT_REF, char_type_node,
7191 TREE_VALUE(arglist)),
7192 integer_zero_node));
7193 }
7194
7195 /* From here on, the only cases we handle are when the result is
7196 known to be a constant.
7197
7198 To compute GT, swap the arguments and do LT.
7199 To compute GE, do LT and invert the result.
7200 To compute LE, swap the arguments, do LT and invert the result.
7201 To compute NE, do EQ and invert the result.
7202
7203 Therefore, the code below must handle only EQ and LT. */
7204
7205 if (code == LE_EXPR || code == GT_EXPR)
7206 {
7207 tem = arg0, arg0 = arg1, arg1 = tem;
7208 code = swap_tree_comparison (code);
7209 }
7210
7211 /* Note that it is safe to invert for real values here because we
7212 will check below in the one case that it matters. */
7213
7214 t1 = NULL_TREE;
7215 invert = 0;
7216 if (code == NE_EXPR || code == GE_EXPR)
7217 {
7218 invert = 1;
7219 code = invert_tree_comparison (code);
7220 }
7221
7222 /* Compute a result for LT or EQ if args permit;
7223 otherwise return T. */
7224 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
7225 {
7226 if (code == EQ_EXPR)
7227 t1 = build_int_2 (tree_int_cst_equal (arg0, arg1), 0);
7228 else
7229 t1 = build_int_2 ((TREE_UNSIGNED (TREE_TYPE (arg0))
7230 ? INT_CST_LT_UNSIGNED (arg0, arg1)
7231 : INT_CST_LT (arg0, arg1)),
7232 0);
7233 }
7234
7235 #if 0 /* This is no longer useful, but breaks some real code. */
7236 /* Assume a nonexplicit constant cannot equal an explicit one,
7237 since such code would be undefined anyway.
7238 Exception: on sysvr4, using #pragma weak,
7239 a label can come out as 0. */
7240 else if (TREE_CODE (arg1) == INTEGER_CST
7241 && !integer_zerop (arg1)
7242 && TREE_CONSTANT (arg0)
7243 && TREE_CODE (arg0) == ADDR_EXPR
7244 && code == EQ_EXPR)
7245 t1 = build_int_2 (0, 0);
7246 #endif
7247 /* Two real constants can be compared explicitly. */
7248 else if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
7249 {
7250 /* If either operand is a NaN, the result is false with two
7251 exceptions: First, an NE_EXPR is true on NaNs, but that case
7252 is already handled correctly since we will be inverting the
7253 result for NE_EXPR. Second, if we had inverted a LE_EXPR
7254 or a GE_EXPR into a LT_EXPR, we must return true so that it
7255 will be inverted into false. */
7256
7257 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
7258 || REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
7259 t1 = build_int_2 (invert && code == LT_EXPR, 0);
7260
7261 else if (code == EQ_EXPR)
7262 t1 = build_int_2 (REAL_VALUES_EQUAL (TREE_REAL_CST (arg0),
7263 TREE_REAL_CST (arg1)),
7264 0);
7265 else
7266 t1 = build_int_2 (REAL_VALUES_LESS (TREE_REAL_CST (arg0),
7267 TREE_REAL_CST (arg1)),
7268 0);
7269 }
7270
7271 if (t1 == NULL_TREE)
7272 return t;
7273
7274 if (invert)
7275 TREE_INT_CST_LOW (t1) ^= 1;
7276
7277 TREE_TYPE (t1) = type;
7278 if (TREE_CODE (type) == BOOLEAN_TYPE)
7279 return (*lang_hooks.truthvalue_conversion) (t1);
7280 return t1;
7281
7282 case COND_EXPR:
7283 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
7284 so all simple results must be passed through pedantic_non_lvalue. */
7285 if (TREE_CODE (arg0) == INTEGER_CST)
7286 return pedantic_non_lvalue
7287 (TREE_OPERAND (t, (integer_zerop (arg0) ? 2 : 1)));
7288 else if (operand_equal_p (arg1, TREE_OPERAND (expr, 2), 0))
7289 return pedantic_omit_one_operand (type, arg1, arg0);
7290
7291 /* If the second operand is zero, invert the comparison and swap
7292 the second and third operands. Likewise if the second operand
7293 is constant and the third is not or if the third operand is
7294 equivalent to the first operand of the comparison. */
7295
7296 if (integer_zerop (arg1)
7297 || (TREE_CONSTANT (arg1) && ! TREE_CONSTANT (TREE_OPERAND (t, 2)))
7298 || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
7299 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
7300 TREE_OPERAND (t, 2),
7301 TREE_OPERAND (arg0, 1))))
7302 {
7303 /* See if this can be inverted. If it can't, possibly because
7304 it was a floating-point inequality comparison, don't do
7305 anything. */
7306 tem = invert_truthvalue (arg0);
7307
7308 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
7309 {
7310 t = build (code, type, tem,
7311 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
7312 arg0 = tem;
7313 /* arg1 should be the first argument of the new T. */
7314 arg1 = TREE_OPERAND (t, 1);
7315 STRIP_NOPS (arg1);
7316 }
7317 }
7318
7319 /* If we have A op B ? A : C, we may be able to convert this to a
7320 simpler expression, depending on the operation and the values
7321 of B and C. Signed zeros prevent all of these transformations,
7322 for reasons given above each one. */
7323
7324 if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
7325 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
7326 arg1, TREE_OPERAND (arg0, 1))
7327 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
7328 {
7329 tree arg2 = TREE_OPERAND (t, 2);
7330 enum tree_code comp_code = TREE_CODE (arg0);
7331
7332 STRIP_NOPS (arg2);
7333
7334 /* If we have A op 0 ? A : -A, consider applying the following
7335 transformations:
7336
7337 A == 0? A : -A same as -A
7338 A != 0? A : -A same as A
7339 A >= 0? A : -A same as abs (A)
7340 A > 0? A : -A same as abs (A)
7341 A <= 0? A : -A same as -abs (A)
7342 A < 0? A : -A same as -abs (A)
7343
7344 None of these transformations work for modes with signed
7345 zeros. If A is +/-0, the first two transformations will
7346 change the sign of the result (from +0 to -0, or vice
7347 versa). The last four will fix the sign of the result,
7348 even though the original expressions could be positive or
7349 negative, depending on the sign of A.
7350
7351 Note that all these transformations are correct if A is
7352 NaN, since the two alternatives (A and -A) are also NaNs. */
7353 if ((FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 1)))
7354 ? real_zerop (TREE_OPERAND (arg0, 1))
7355 : integer_zerop (TREE_OPERAND (arg0, 1)))
7356 && TREE_CODE (arg2) == NEGATE_EXPR
7357 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
7358 switch (comp_code)
7359 {
7360 case EQ_EXPR:
7361 return
7362 pedantic_non_lvalue
7363 (convert (type,
7364 negate_expr
7365 (convert (TREE_TYPE (TREE_OPERAND (t, 1)),
7366 arg1))));
7367 case NE_EXPR:
7368 return pedantic_non_lvalue (convert (type, arg1));
7369 case GE_EXPR:
7370 case GT_EXPR:
7371 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
7372 arg1 = convert ((*lang_hooks.types.signed_type)
7373 (TREE_TYPE (arg1)), arg1);
7374 return pedantic_non_lvalue
7375 (convert (type, fold (build1 (ABS_EXPR,
7376 TREE_TYPE (arg1), arg1))));
7377 case LE_EXPR:
7378 case LT_EXPR:
7379 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
7380 arg1 = convert ((lang_hooks.types.signed_type)
7381 (TREE_TYPE (arg1)), arg1);
7382 return pedantic_non_lvalue
7383 (negate_expr (convert (type,
7384 fold (build1 (ABS_EXPR,
7385 TREE_TYPE (arg1),
7386 arg1)))));
7387 default:
7388 abort ();
7389 }
7390
7391 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
7392 A == 0 ? A : 0 is always 0 unless A is -0. Note that
7393 both transformations are correct when A is NaN: A != 0
7394 is then true, and A == 0 is false. */
7395
7396 if (integer_zerop (TREE_OPERAND (arg0, 1)) && integer_zerop (arg2))
7397 {
7398 if (comp_code == NE_EXPR)
7399 return pedantic_non_lvalue (convert (type, arg1));
7400 else if (comp_code == EQ_EXPR)
7401 return pedantic_non_lvalue (convert (type, integer_zero_node));
7402 }
7403
7404 /* Try some transformations of A op B ? A : B.
7405
7406 A == B? A : B same as B
7407 A != B? A : B same as A
7408 A >= B? A : B same as max (A, B)
7409 A > B? A : B same as max (B, A)
7410 A <= B? A : B same as min (A, B)
7411 A < B? A : B same as min (B, A)
7412
7413 As above, these transformations don't work in the presence
7414 of signed zeros. For example, if A and B are zeros of
7415 opposite sign, the first two transformations will change
7416 the sign of the result. In the last four, the original
7417 expressions give different results for (A=+0, B=-0) and
7418 (A=-0, B=+0), but the transformed expressions do not.
7419
7420 The first two transformations are correct if either A or B
7421 is a NaN. In the first transformation, the condition will
7422 be false, and B will indeed be chosen. In the case of the
7423 second transformation, the condition A != B will be true,
7424 and A will be chosen.
7425
7426 The conversions to max() and min() are not correct if B is
7427 a number and A is not. The conditions in the original
7428 expressions will be false, so all four give B. The min()
7429 and max() versions would give a NaN instead. */
7430 if (operand_equal_for_comparison_p (TREE_OPERAND (arg0, 1),
7431 arg2, TREE_OPERAND (arg0, 0)))
7432 {
7433 tree comp_op0 = TREE_OPERAND (arg0, 0);
7434 tree comp_op1 = TREE_OPERAND (arg0, 1);
7435 tree comp_type = TREE_TYPE (comp_op0);
7436
7437 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
7438 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
7439 {
7440 comp_type = type;
7441 comp_op0 = arg1;
7442 comp_op1 = arg2;
7443 }
7444
7445 switch (comp_code)
7446 {
7447 case EQ_EXPR:
7448 return pedantic_non_lvalue (convert (type, arg2));
7449 case NE_EXPR:
7450 return pedantic_non_lvalue (convert (type, arg1));
7451 case LE_EXPR:
7452 case LT_EXPR:
7453 /* In C++ a ?: expression can be an lvalue, so put the
7454 operand which will be used if they are equal first
7455 so that we can convert this back to the
7456 corresponding COND_EXPR. */
7457 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
7458 return pedantic_non_lvalue
7459 (convert (type, fold (build (MIN_EXPR, comp_type,
7460 (comp_code == LE_EXPR
7461 ? comp_op0 : comp_op1),
7462 (comp_code == LE_EXPR
7463 ? comp_op1 : comp_op0)))));
7464 break;
7465 case GE_EXPR:
7466 case GT_EXPR:
7467 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
7468 return pedantic_non_lvalue
7469 (convert (type, fold (build (MAX_EXPR, comp_type,
7470 (comp_code == GE_EXPR
7471 ? comp_op0 : comp_op1),
7472 (comp_code == GE_EXPR
7473 ? comp_op1 : comp_op0)))));
7474 break;
7475 default:
7476 abort ();
7477 }
7478 }
7479
7480 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
7481 we might still be able to simplify this. For example,
7482 if C1 is one less or one more than C2, this might have started
7483 out as a MIN or MAX and been transformed by this function.
7484 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
7485
7486 if (INTEGRAL_TYPE_P (type)
7487 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7488 && TREE_CODE (arg2) == INTEGER_CST)
7489 switch (comp_code)
7490 {
7491 case EQ_EXPR:
7492 /* We can replace A with C1 in this case. */
7493 arg1 = convert (type, TREE_OPERAND (arg0, 1));
7494 t = build (code, type, TREE_OPERAND (t, 0), arg1,
7495 TREE_OPERAND (t, 2));
7496 break;
7497
7498 case LT_EXPR:
7499 /* If C1 is C2 + 1, this is min(A, C2). */
7500 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
7501 && operand_equal_p (TREE_OPERAND (arg0, 1),
7502 const_binop (PLUS_EXPR, arg2,
7503 integer_one_node, 0), 1))
7504 return pedantic_non_lvalue
7505 (fold (build (MIN_EXPR, type, arg1, arg2)));
7506 break;
7507
7508 case LE_EXPR:
7509 /* If C1 is C2 - 1, this is min(A, C2). */
7510 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
7511 && operand_equal_p (TREE_OPERAND (arg0, 1),
7512 const_binop (MINUS_EXPR, arg2,
7513 integer_one_node, 0), 1))
7514 return pedantic_non_lvalue
7515 (fold (build (MIN_EXPR, type, arg1, arg2)));
7516 break;
7517
7518 case GT_EXPR:
7519 /* If C1 is C2 - 1, this is max(A, C2). */
7520 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
7521 && operand_equal_p (TREE_OPERAND (arg0, 1),
7522 const_binop (MINUS_EXPR, arg2,
7523 integer_one_node, 0), 1))
7524 return pedantic_non_lvalue
7525 (fold (build (MAX_EXPR, type, arg1, arg2)));
7526 break;
7527
7528 case GE_EXPR:
7529 /* If C1 is C2 + 1, this is max(A, C2). */
7530 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
7531 && operand_equal_p (TREE_OPERAND (arg0, 1),
7532 const_binop (PLUS_EXPR, arg2,
7533 integer_one_node, 0), 1))
7534 return pedantic_non_lvalue
7535 (fold (build (MAX_EXPR, type, arg1, arg2)));
7536 break;
7537 case NE_EXPR:
7538 break;
7539 default:
7540 abort ();
7541 }
7542 }
7543
7544 /* If the second operand is simpler than the third, swap them
7545 since that produces better jump optimization results. */
7546 if ((TREE_CONSTANT (arg1) || DECL_P (arg1)
7547 || TREE_CODE (arg1) == SAVE_EXPR)
7548 && ! (TREE_CONSTANT (TREE_OPERAND (t, 2))
7549 || DECL_P (TREE_OPERAND (t, 2))
7550 || TREE_CODE (TREE_OPERAND (t, 2)) == SAVE_EXPR))
7551 {
7552 /* See if this can be inverted. If it can't, possibly because
7553 it was a floating-point inequality comparison, don't do
7554 anything. */
7555 tem = invert_truthvalue (arg0);
7556
7557 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
7558 {
7559 t = build (code, type, tem,
7560 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
7561 arg0 = tem;
7562 /* arg1 should be the first argument of the new T. */
7563 arg1 = TREE_OPERAND (t, 1);
7564 STRIP_NOPS (arg1);
7565 }
7566 }
7567
7568 /* Convert A ? 1 : 0 to simply A. */
7569 if (integer_onep (TREE_OPERAND (t, 1))
7570 && integer_zerop (TREE_OPERAND (t, 2))
7571 /* If we try to convert TREE_OPERAND (t, 0) to our type, the
7572 call to fold will try to move the conversion inside
7573 a COND, which will recurse. In that case, the COND_EXPR
7574 is probably the best choice, so leave it alone. */
7575 && type == TREE_TYPE (arg0))
7576 return pedantic_non_lvalue (arg0);
7577
7578 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
7579 over COND_EXPR in cases such as floating point comparisons. */
7580 if (integer_zerop (TREE_OPERAND (t, 1))
7581 && integer_onep (TREE_OPERAND (t, 2))
7582 && truth_value_p (TREE_CODE (arg0)))
7583 return pedantic_non_lvalue (convert (type,
7584 invert_truthvalue (arg0)));
7585
7586 /* Look for expressions of the form A & 2 ? 2 : 0. The result of this
7587 operation is simply A & 2. */
7588
7589 if (integer_zerop (TREE_OPERAND (t, 2))
7590 && TREE_CODE (arg0) == NE_EXPR
7591 && integer_zerop (TREE_OPERAND (arg0, 1))
7592 && integer_pow2p (arg1)
7593 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
7594 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
7595 arg1, 1))
7596 return pedantic_non_lvalue (convert (type, TREE_OPERAND (arg0, 0)));
7597
7598 /* Convert A ? B : 0 into A && B if A and B are truth values. */
7599 if (integer_zerop (TREE_OPERAND (t, 2))
7600 && truth_value_p (TREE_CODE (arg0))
7601 && truth_value_p (TREE_CODE (arg1)))
7602 return pedantic_non_lvalue (fold (build (TRUTH_ANDIF_EXPR, type,
7603 arg0, arg1)));
7604
7605 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
7606 if (integer_onep (TREE_OPERAND (t, 2))
7607 && truth_value_p (TREE_CODE (arg0))
7608 && truth_value_p (TREE_CODE (arg1)))
7609 {
7610 /* Only perform transformation if ARG0 is easily inverted. */
7611 tem = invert_truthvalue (arg0);
7612 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
7613 return pedantic_non_lvalue (fold (build (TRUTH_ORIF_EXPR, type,
7614 tem, arg1)));
7615 }
7616
7617 return t;
7618
7619 case COMPOUND_EXPR:
7620 /* When pedantic, a compound expression can be neither an lvalue
7621 nor an integer constant expression. */
7622 if (TREE_SIDE_EFFECTS (arg0) || pedantic)
7623 return t;
7624 /* Don't let (0, 0) be null pointer constant. */
7625 if (integer_zerop (arg1))
7626 return build1 (NOP_EXPR, type, arg1);
7627 return convert (type, arg1);
7628
7629 case COMPLEX_EXPR:
7630 if (wins)
7631 return build_complex (type, arg0, arg1);
7632 return t;
7633
7634 case REALPART_EXPR:
7635 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7636 return t;
7637 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
7638 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
7639 TREE_OPERAND (arg0, 1));
7640 else if (TREE_CODE (arg0) == COMPLEX_CST)
7641 return TREE_REALPART (arg0);
7642 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7643 return fold (build (TREE_CODE (arg0), type,
7644 fold (build1 (REALPART_EXPR, type,
7645 TREE_OPERAND (arg0, 0))),
7646 fold (build1 (REALPART_EXPR,
7647 type, TREE_OPERAND (arg0, 1)))));
7648 return t;
7649
7650 case IMAGPART_EXPR:
7651 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7652 return convert (type, integer_zero_node);
7653 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
7654 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
7655 TREE_OPERAND (arg0, 0));
7656 else if (TREE_CODE (arg0) == COMPLEX_CST)
7657 return TREE_IMAGPART (arg0);
7658 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7659 return fold (build (TREE_CODE (arg0), type,
7660 fold (build1 (IMAGPART_EXPR, type,
7661 TREE_OPERAND (arg0, 0))),
7662 fold (build1 (IMAGPART_EXPR, type,
7663 TREE_OPERAND (arg0, 1)))));
7664 return t;
7665
7666 /* Pull arithmetic ops out of the CLEANUP_POINT_EXPR where
7667 appropriate. */
7668 case CLEANUP_POINT_EXPR:
7669 if (! has_cleanups (arg0))
7670 return TREE_OPERAND (t, 0);
7671
7672 {
7673 enum tree_code code0 = TREE_CODE (arg0);
7674 int kind0 = TREE_CODE_CLASS (code0);
7675 tree arg00 = TREE_OPERAND (arg0, 0);
7676 tree arg01;
7677
7678 if (kind0 == '1' || code0 == TRUTH_NOT_EXPR)
7679 return fold (build1 (code0, type,
7680 fold (build1 (CLEANUP_POINT_EXPR,
7681 TREE_TYPE (arg00), arg00))));
7682
7683 if (kind0 == '<' || kind0 == '2'
7684 || code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR
7685 || code0 == TRUTH_AND_EXPR || code0 == TRUTH_OR_EXPR
7686 || code0 == TRUTH_XOR_EXPR)
7687 {
7688 arg01 = TREE_OPERAND (arg0, 1);
7689
7690 if (TREE_CONSTANT (arg00)
7691 || ((code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR)
7692 && ! has_cleanups (arg00)))
7693 return fold (build (code0, type, arg00,
7694 fold (build1 (CLEANUP_POINT_EXPR,
7695 TREE_TYPE (arg01), arg01))));
7696
7697 if (TREE_CONSTANT (arg01))
7698 return fold (build (code0, type,
7699 fold (build1 (CLEANUP_POINT_EXPR,
7700 TREE_TYPE (arg00), arg00)),
7701 arg01));
7702 }
7703
7704 return t;
7705 }
7706
7707 case CALL_EXPR:
7708 /* Check for a built-in function. */
7709 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
7710 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (expr, 0), 0))
7711 == FUNCTION_DECL)
7712 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
7713 {
7714 tree tmp = fold_builtin (expr);
7715 if (tmp)
7716 return tmp;
7717 }
7718 return t;
7719
7720 default:
7721 return t;
7722 } /* switch (code) */
7723 }
7724
7725 /* Determine if first argument is a multiple of second argument. Return 0 if
7726 it is not, or we cannot easily determined it to be.
7727
7728 An example of the sort of thing we care about (at this point; this routine
7729 could surely be made more general, and expanded to do what the *_DIV_EXPR's
7730 fold cases do now) is discovering that
7731
7732 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
7733
7734 is a multiple of
7735
7736 SAVE_EXPR (J * 8)
7737
7738 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
7739
7740 This code also handles discovering that
7741
7742 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
7743
7744 is a multiple of 8 so we don't have to worry about dealing with a
7745 possible remainder.
7746
7747 Note that we *look* inside a SAVE_EXPR only to determine how it was
7748 calculated; it is not safe for fold to do much of anything else with the
7749 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
7750 at run time. For example, the latter example above *cannot* be implemented
7751 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
7752 evaluation time of the original SAVE_EXPR is not necessarily the same at
7753 the time the new expression is evaluated. The only optimization of this
7754 sort that would be valid is changing
7755
7756 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
7757
7758 divided by 8 to
7759
7760 SAVE_EXPR (I) * SAVE_EXPR (J)
7761
7762 (where the same SAVE_EXPR (J) is used in the original and the
7763 transformed version). */
7764
7765 static int
7766 multiple_of_p (type, top, bottom)
7767 tree type;
7768 tree top;
7769 tree bottom;
7770 {
7771 if (operand_equal_p (top, bottom, 0))
7772 return 1;
7773
7774 if (TREE_CODE (type) != INTEGER_TYPE)
7775 return 0;
7776
7777 switch (TREE_CODE (top))
7778 {
7779 case MULT_EXPR:
7780 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
7781 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
7782
7783 case PLUS_EXPR:
7784 case MINUS_EXPR:
7785 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
7786 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
7787
7788 case LSHIFT_EXPR:
7789 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
7790 {
7791 tree op1, t1;
7792
7793 op1 = TREE_OPERAND (top, 1);
7794 /* const_binop may not detect overflow correctly,
7795 so check for it explicitly here. */
7796 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
7797 > TREE_INT_CST_LOW (op1)
7798 && TREE_INT_CST_HIGH (op1) == 0
7799 && 0 != (t1 = convert (type,
7800 const_binop (LSHIFT_EXPR, size_one_node,
7801 op1, 0)))
7802 && ! TREE_OVERFLOW (t1))
7803 return multiple_of_p (type, t1, bottom);
7804 }
7805 return 0;
7806
7807 case NOP_EXPR:
7808 /* Can't handle conversions from non-integral or wider integral type. */
7809 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
7810 || (TYPE_PRECISION (type)
7811 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
7812 return 0;
7813
7814 /* .. fall through ... */
7815
7816 case SAVE_EXPR:
7817 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
7818
7819 case INTEGER_CST:
7820 if (TREE_CODE (bottom) != INTEGER_CST
7821 || (TREE_UNSIGNED (type)
7822 && (tree_int_cst_sgn (top) < 0
7823 || tree_int_cst_sgn (bottom) < 0)))
7824 return 0;
7825 return integer_zerop (const_binop (TRUNC_MOD_EXPR,
7826 top, bottom, 0));
7827
7828 default:
7829 return 0;
7830 }
7831 }
7832
7833 /* Return true if `t' is known to be non-negative. */
7834
7835 int
7836 tree_expr_nonnegative_p (t)
7837 tree t;
7838 {
7839 switch (TREE_CODE (t))
7840 {
7841 case ABS_EXPR:
7842 case FFS_EXPR:
7843 case POPCOUNT_EXPR:
7844 case PARITY_EXPR:
7845 return 1;
7846
7847 case CLZ_EXPR:
7848 case CTZ_EXPR:
7849 /* These are undefined at zero. This is true even if
7850 C[LT]Z_DEFINED_VALUE_AT_ZERO is set, since what we're
7851 computing here is a user-visible property. */
7852 return 0;
7853
7854 case INTEGER_CST:
7855 return tree_int_cst_sgn (t) >= 0;
7856 case TRUNC_DIV_EXPR:
7857 case CEIL_DIV_EXPR:
7858 case FLOOR_DIV_EXPR:
7859 case ROUND_DIV_EXPR:
7860 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
7861 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7862 case TRUNC_MOD_EXPR:
7863 case CEIL_MOD_EXPR:
7864 case FLOOR_MOD_EXPR:
7865 case ROUND_MOD_EXPR:
7866 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
7867 case COND_EXPR:
7868 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1))
7869 && tree_expr_nonnegative_p (TREE_OPERAND (t, 2));
7870 case COMPOUND_EXPR:
7871 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7872 case MIN_EXPR:
7873 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
7874 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7875 case MAX_EXPR:
7876 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
7877 || tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7878 case MODIFY_EXPR:
7879 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7880 case BIND_EXPR:
7881 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7882 case SAVE_EXPR:
7883 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
7884 case NON_LVALUE_EXPR:
7885 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
7886 case RTL_EXPR:
7887 return rtl_expr_nonnegative_p (RTL_EXPR_RTL (t));
7888
7889 default:
7890 if (truth_value_p (TREE_CODE (t)))
7891 /* Truth values evaluate to 0 or 1, which is nonnegative. */
7892 return 1;
7893 else
7894 /* We don't know sign of `t', so be conservative and return false. */
7895 return 0;
7896 }
7897 }
7898
7899 /* Return true if `r' is known to be non-negative.
7900 Only handles constants at the moment. */
7901
7902 int
7903 rtl_expr_nonnegative_p (r)
7904 rtx r;
7905 {
7906 switch (GET_CODE (r))
7907 {
7908 case CONST_INT:
7909 return INTVAL (r) >= 0;
7910
7911 case CONST_DOUBLE:
7912 if (GET_MODE (r) == VOIDmode)
7913 return CONST_DOUBLE_HIGH (r) >= 0;
7914 return 0;
7915
7916 case CONST_VECTOR:
7917 {
7918 int units, i;
7919 rtx elt;
7920
7921 units = CONST_VECTOR_NUNITS (r);
7922
7923 for (i = 0; i < units; ++i)
7924 {
7925 elt = CONST_VECTOR_ELT (r, i);
7926 if (!rtl_expr_nonnegative_p (elt))
7927 return 0;
7928 }
7929
7930 return 1;
7931 }
7932
7933 case SYMBOL_REF:
7934 case LABEL_REF:
7935 /* These are always nonnegative. */
7936 return 1;
7937
7938 default:
7939 return 0;
7940 }
7941 }
7942
7943 #include "gt-fold-const.h"