fold-const.c (fold_binary_loc): Move X % -Y -> X % Y and X % C -> X & (C - 1) for...
[gcc.git] / gcc / fold-const.c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
27
28 /* The entry points in this file are fold, size_int_wide and size_binop.
29
30 fold takes a tree as argument and returns a simplified tree.
31
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
35
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
38
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
42
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "tm.h"
47 #include "flags.h"
48 #include "hash-set.h"
49 #include "machmode.h"
50 #include "vec.h"
51 #include "double-int.h"
52 #include "input.h"
53 #include "alias.h"
54 #include "symtab.h"
55 #include "wide-int.h"
56 #include "inchash.h"
57 #include "tree.h"
58 #include "fold-const.h"
59 #include "stor-layout.h"
60 #include "calls.h"
61 #include "tree-iterator.h"
62 #include "realmpfr.h"
63 #include "rtl.h"
64 #include "hashtab.h"
65 #include "hard-reg-set.h"
66 #include "function.h"
67 #include "statistics.h"
68 #include "real.h"
69 #include "fixed-value.h"
70 #include "insn-config.h"
71 #include "expmed.h"
72 #include "dojump.h"
73 #include "explow.h"
74 #include "emit-rtl.h"
75 #include "varasm.h"
76 #include "stmt.h"
77 #include "expr.h"
78 #include "tm_p.h"
79 #include "target.h"
80 #include "diagnostic-core.h"
81 #include "intl.h"
82 #include "langhooks.h"
83 #include "md5.h"
84 #include "predict.h"
85 #include "basic-block.h"
86 #include "tree-ssa-alias.h"
87 #include "internal-fn.h"
88 #include "tree-eh.h"
89 #include "gimple-expr.h"
90 #include "is-a.h"
91 #include "gimple.h"
92 #include "gimplify.h"
93 #include "tree-dfa.h"
94 #include "hash-table.h" /* Required for ENABLE_FOLD_CHECKING. */
95 #include "builtins.h"
96 #include "hash-map.h"
97 #include "plugin-api.h"
98 #include "ipa-ref.h"
99 #include "cgraph.h"
100 #include "generic-match.h"
101 #include "optabs.h"
102
103 /* Nonzero if we are folding constants inside an initializer; zero
104 otherwise. */
105 int folding_initializer = 0;
106
107 /* The following constants represent a bit based encoding of GCC's
108 comparison operators. This encoding simplifies transformations
109 on relational comparison operators, such as AND and OR. */
110 enum comparison_code {
111 COMPCODE_FALSE = 0,
112 COMPCODE_LT = 1,
113 COMPCODE_EQ = 2,
114 COMPCODE_LE = 3,
115 COMPCODE_GT = 4,
116 COMPCODE_LTGT = 5,
117 COMPCODE_GE = 6,
118 COMPCODE_ORD = 7,
119 COMPCODE_UNORD = 8,
120 COMPCODE_UNLT = 9,
121 COMPCODE_UNEQ = 10,
122 COMPCODE_UNLE = 11,
123 COMPCODE_UNGT = 12,
124 COMPCODE_NE = 13,
125 COMPCODE_UNGE = 14,
126 COMPCODE_TRUE = 15
127 };
128
129 static bool negate_mathfn_p (enum built_in_function);
130 static bool negate_expr_p (tree);
131 static tree negate_expr (tree);
132 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
133 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
134 static enum comparison_code comparison_to_compcode (enum tree_code);
135 static enum tree_code compcode_to_comparison (enum comparison_code);
136 static int operand_equal_for_comparison_p (tree, tree, tree);
137 static int twoval_comparison_p (tree, tree *, tree *, int *);
138 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
139 static tree distribute_bit_expr (location_t, enum tree_code, tree, tree, tree);
140 static tree make_bit_field_ref (location_t, tree, tree,
141 HOST_WIDE_INT, HOST_WIDE_INT, int);
142 static tree optimize_bit_field_compare (location_t, enum tree_code,
143 tree, tree, tree);
144 static tree decode_field_reference (location_t, tree, HOST_WIDE_INT *,
145 HOST_WIDE_INT *,
146 machine_mode *, int *, int *,
147 tree *, tree *);
148 static int simple_operand_p (const_tree);
149 static bool simple_operand_p_2 (tree);
150 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
151 static tree range_predecessor (tree);
152 static tree range_successor (tree);
153 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
154 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
155 static tree unextend (tree, int, int, tree);
156 static tree optimize_minmax_comparison (location_t, enum tree_code,
157 tree, tree, tree);
158 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
159 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
160 static tree fold_binary_op_with_conditional_arg (location_t,
161 enum tree_code, tree,
162 tree, tree,
163 tree, tree, int);
164 static tree fold_mathfn_compare (location_t,
165 enum built_in_function, enum tree_code,
166 tree, tree, tree);
167 static tree fold_inf_compare (location_t, enum tree_code, tree, tree, tree);
168 static tree fold_div_compare (location_t, enum tree_code, tree, tree, tree);
169 static bool reorder_operands_p (const_tree, const_tree);
170 static tree fold_negate_const (tree, tree);
171 static tree fold_not_const (const_tree, tree);
172 static tree fold_relational_const (enum tree_code, tree, tree, tree);
173 static tree fold_convert_const (enum tree_code, tree, tree);
174 static tree fold_view_convert_expr (tree, tree);
175 static bool vec_cst_ctor_to_array (tree, tree *);
176
177
178 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
179 Otherwise, return LOC. */
180
181 static location_t
182 expr_location_or (tree t, location_t loc)
183 {
184 location_t tloc = EXPR_LOCATION (t);
185 return tloc == UNKNOWN_LOCATION ? loc : tloc;
186 }
187
188 /* Similar to protected_set_expr_location, but never modify x in place,
189 if location can and needs to be set, unshare it. */
190
191 static inline tree
192 protected_set_expr_location_unshare (tree x, location_t loc)
193 {
194 if (CAN_HAVE_LOCATION_P (x)
195 && EXPR_LOCATION (x) != loc
196 && !(TREE_CODE (x) == SAVE_EXPR
197 || TREE_CODE (x) == TARGET_EXPR
198 || TREE_CODE (x) == BIND_EXPR))
199 {
200 x = copy_node (x);
201 SET_EXPR_LOCATION (x, loc);
202 }
203 return x;
204 }
205 \f
206 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
207 division and returns the quotient. Otherwise returns
208 NULL_TREE. */
209
210 tree
211 div_if_zero_remainder (const_tree arg1, const_tree arg2)
212 {
213 widest_int quo;
214
215 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
216 SIGNED, &quo))
217 return wide_int_to_tree (TREE_TYPE (arg1), quo);
218
219 return NULL_TREE;
220 }
221 \f
222 /* This is nonzero if we should defer warnings about undefined
223 overflow. This facility exists because these warnings are a
224 special case. The code to estimate loop iterations does not want
225 to issue any warnings, since it works with expressions which do not
226 occur in user code. Various bits of cleanup code call fold(), but
227 only use the result if it has certain characteristics (e.g., is a
228 constant); that code only wants to issue a warning if the result is
229 used. */
230
231 static int fold_deferring_overflow_warnings;
232
233 /* If a warning about undefined overflow is deferred, this is the
234 warning. Note that this may cause us to turn two warnings into
235 one, but that is fine since it is sufficient to only give one
236 warning per expression. */
237
238 static const char* fold_deferred_overflow_warning;
239
240 /* If a warning about undefined overflow is deferred, this is the
241 level at which the warning should be emitted. */
242
243 static enum warn_strict_overflow_code fold_deferred_overflow_code;
244
245 /* Start deferring overflow warnings. We could use a stack here to
246 permit nested calls, but at present it is not necessary. */
247
248 void
249 fold_defer_overflow_warnings (void)
250 {
251 ++fold_deferring_overflow_warnings;
252 }
253
254 /* Stop deferring overflow warnings. If there is a pending warning,
255 and ISSUE is true, then issue the warning if appropriate. STMT is
256 the statement with which the warning should be associated (used for
257 location information); STMT may be NULL. CODE is the level of the
258 warning--a warn_strict_overflow_code value. This function will use
259 the smaller of CODE and the deferred code when deciding whether to
260 issue the warning. CODE may be zero to mean to always use the
261 deferred code. */
262
263 void
264 fold_undefer_overflow_warnings (bool issue, const_gimple stmt, int code)
265 {
266 const char *warnmsg;
267 location_t locus;
268
269 gcc_assert (fold_deferring_overflow_warnings > 0);
270 --fold_deferring_overflow_warnings;
271 if (fold_deferring_overflow_warnings > 0)
272 {
273 if (fold_deferred_overflow_warning != NULL
274 && code != 0
275 && code < (int) fold_deferred_overflow_code)
276 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
277 return;
278 }
279
280 warnmsg = fold_deferred_overflow_warning;
281 fold_deferred_overflow_warning = NULL;
282
283 if (!issue || warnmsg == NULL)
284 return;
285
286 if (gimple_no_warning_p (stmt))
287 return;
288
289 /* Use the smallest code level when deciding to issue the
290 warning. */
291 if (code == 0 || code > (int) fold_deferred_overflow_code)
292 code = fold_deferred_overflow_code;
293
294 if (!issue_strict_overflow_warning (code))
295 return;
296
297 if (stmt == NULL)
298 locus = input_location;
299 else
300 locus = gimple_location (stmt);
301 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
302 }
303
304 /* Stop deferring overflow warnings, ignoring any deferred
305 warnings. */
306
307 void
308 fold_undefer_and_ignore_overflow_warnings (void)
309 {
310 fold_undefer_overflow_warnings (false, NULL, 0);
311 }
312
313 /* Whether we are deferring overflow warnings. */
314
315 bool
316 fold_deferring_overflow_warnings_p (void)
317 {
318 return fold_deferring_overflow_warnings > 0;
319 }
320
321 /* This is called when we fold something based on the fact that signed
322 overflow is undefined. */
323
324 static void
325 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
326 {
327 if (fold_deferring_overflow_warnings > 0)
328 {
329 if (fold_deferred_overflow_warning == NULL
330 || wc < fold_deferred_overflow_code)
331 {
332 fold_deferred_overflow_warning = gmsgid;
333 fold_deferred_overflow_code = wc;
334 }
335 }
336 else if (issue_strict_overflow_warning (wc))
337 warning (OPT_Wstrict_overflow, gmsgid);
338 }
339 \f
340 /* Return true if the built-in mathematical function specified by CODE
341 is odd, i.e. -f(x) == f(-x). */
342
343 static bool
344 negate_mathfn_p (enum built_in_function code)
345 {
346 switch (code)
347 {
348 CASE_FLT_FN (BUILT_IN_ASIN):
349 CASE_FLT_FN (BUILT_IN_ASINH):
350 CASE_FLT_FN (BUILT_IN_ATAN):
351 CASE_FLT_FN (BUILT_IN_ATANH):
352 CASE_FLT_FN (BUILT_IN_CASIN):
353 CASE_FLT_FN (BUILT_IN_CASINH):
354 CASE_FLT_FN (BUILT_IN_CATAN):
355 CASE_FLT_FN (BUILT_IN_CATANH):
356 CASE_FLT_FN (BUILT_IN_CBRT):
357 CASE_FLT_FN (BUILT_IN_CPROJ):
358 CASE_FLT_FN (BUILT_IN_CSIN):
359 CASE_FLT_FN (BUILT_IN_CSINH):
360 CASE_FLT_FN (BUILT_IN_CTAN):
361 CASE_FLT_FN (BUILT_IN_CTANH):
362 CASE_FLT_FN (BUILT_IN_ERF):
363 CASE_FLT_FN (BUILT_IN_LLROUND):
364 CASE_FLT_FN (BUILT_IN_LROUND):
365 CASE_FLT_FN (BUILT_IN_ROUND):
366 CASE_FLT_FN (BUILT_IN_SIN):
367 CASE_FLT_FN (BUILT_IN_SINH):
368 CASE_FLT_FN (BUILT_IN_TAN):
369 CASE_FLT_FN (BUILT_IN_TANH):
370 CASE_FLT_FN (BUILT_IN_TRUNC):
371 return true;
372
373 CASE_FLT_FN (BUILT_IN_LLRINT):
374 CASE_FLT_FN (BUILT_IN_LRINT):
375 CASE_FLT_FN (BUILT_IN_NEARBYINT):
376 CASE_FLT_FN (BUILT_IN_RINT):
377 return !flag_rounding_math;
378
379 default:
380 break;
381 }
382 return false;
383 }
384
385 /* Check whether we may negate an integer constant T without causing
386 overflow. */
387
388 bool
389 may_negate_without_overflow_p (const_tree t)
390 {
391 tree type;
392
393 gcc_assert (TREE_CODE (t) == INTEGER_CST);
394
395 type = TREE_TYPE (t);
396 if (TYPE_UNSIGNED (type))
397 return false;
398
399 return !wi::only_sign_bit_p (t);
400 }
401
402 /* Determine whether an expression T can be cheaply negated using
403 the function negate_expr without introducing undefined overflow. */
404
405 static bool
406 negate_expr_p (tree t)
407 {
408 tree type;
409
410 if (t == 0)
411 return false;
412
413 type = TREE_TYPE (t);
414
415 STRIP_SIGN_NOPS (t);
416 switch (TREE_CODE (t))
417 {
418 case INTEGER_CST:
419 if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
420 return true;
421
422 /* Check that -CST will not overflow type. */
423 return may_negate_without_overflow_p (t);
424 case BIT_NOT_EXPR:
425 return (INTEGRAL_TYPE_P (type)
426 && TYPE_OVERFLOW_WRAPS (type));
427
428 case FIXED_CST:
429 return true;
430
431 case NEGATE_EXPR:
432 return !TYPE_OVERFLOW_SANITIZED (type);
433
434 case REAL_CST:
435 /* We want to canonicalize to positive real constants. Pretend
436 that only negative ones can be easily negated. */
437 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
438
439 case COMPLEX_CST:
440 return negate_expr_p (TREE_REALPART (t))
441 && negate_expr_p (TREE_IMAGPART (t));
442
443 case VECTOR_CST:
444 {
445 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
446 return true;
447
448 int count = TYPE_VECTOR_SUBPARTS (type), i;
449
450 for (i = 0; i < count; i++)
451 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
452 return false;
453
454 return true;
455 }
456
457 case COMPLEX_EXPR:
458 return negate_expr_p (TREE_OPERAND (t, 0))
459 && negate_expr_p (TREE_OPERAND (t, 1));
460
461 case CONJ_EXPR:
462 return negate_expr_p (TREE_OPERAND (t, 0));
463
464 case PLUS_EXPR:
465 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
466 || HONOR_SIGNED_ZEROS (element_mode (type)))
467 return false;
468 /* -(A + B) -> (-B) - A. */
469 if (negate_expr_p (TREE_OPERAND (t, 1))
470 && reorder_operands_p (TREE_OPERAND (t, 0),
471 TREE_OPERAND (t, 1)))
472 return true;
473 /* -(A + B) -> (-A) - B. */
474 return negate_expr_p (TREE_OPERAND (t, 0));
475
476 case MINUS_EXPR:
477 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
478 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
479 && !HONOR_SIGNED_ZEROS (element_mode (type))
480 && reorder_operands_p (TREE_OPERAND (t, 0),
481 TREE_OPERAND (t, 1));
482
483 case MULT_EXPR:
484 if (TYPE_UNSIGNED (TREE_TYPE (t)))
485 break;
486
487 /* Fall through. */
488
489 case RDIV_EXPR:
490 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
491 return negate_expr_p (TREE_OPERAND (t, 1))
492 || negate_expr_p (TREE_OPERAND (t, 0));
493 break;
494
495 case TRUNC_DIV_EXPR:
496 case ROUND_DIV_EXPR:
497 case EXACT_DIV_EXPR:
498 /* In general we can't negate A / B, because if A is INT_MIN and
499 B is 1, we may turn this into INT_MIN / -1 which is undefined
500 and actually traps on some architectures. But if overflow is
501 undefined, we can negate, because - (INT_MIN / 1) is an
502 overflow. */
503 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
504 {
505 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
506 break;
507 /* If overflow is undefined then we have to be careful because
508 we ask whether it's ok to associate the negate with the
509 division which is not ok for example for
510 -((a - b) / c) where (-(a - b)) / c may invoke undefined
511 overflow because of negating INT_MIN. So do not use
512 negate_expr_p here but open-code the two important cases. */
513 if (TREE_CODE (TREE_OPERAND (t, 0)) == NEGATE_EXPR
514 || (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
515 && may_negate_without_overflow_p (TREE_OPERAND (t, 0))))
516 return true;
517 }
518 else if (negate_expr_p (TREE_OPERAND (t, 0)))
519 return true;
520 return negate_expr_p (TREE_OPERAND (t, 1));
521
522 case NOP_EXPR:
523 /* Negate -((double)float) as (double)(-float). */
524 if (TREE_CODE (type) == REAL_TYPE)
525 {
526 tree tem = strip_float_extensions (t);
527 if (tem != t)
528 return negate_expr_p (tem);
529 }
530 break;
531
532 case CALL_EXPR:
533 /* Negate -f(x) as f(-x). */
534 if (negate_mathfn_p (builtin_mathfn_code (t)))
535 return negate_expr_p (CALL_EXPR_ARG (t, 0));
536 break;
537
538 case RSHIFT_EXPR:
539 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
540 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
541 {
542 tree op1 = TREE_OPERAND (t, 1);
543 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
544 return true;
545 }
546 break;
547
548 default:
549 break;
550 }
551 return false;
552 }
553
554 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
555 simplification is possible.
556 If negate_expr_p would return true for T, NULL_TREE will never be
557 returned. */
558
559 static tree
560 fold_negate_expr (location_t loc, tree t)
561 {
562 tree type = TREE_TYPE (t);
563 tree tem;
564
565 switch (TREE_CODE (t))
566 {
567 /* Convert - (~A) to A + 1. */
568 case BIT_NOT_EXPR:
569 if (INTEGRAL_TYPE_P (type))
570 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
571 build_one_cst (type));
572 break;
573
574 case INTEGER_CST:
575 tem = fold_negate_const (t, type);
576 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
577 || (ANY_INTEGRAL_TYPE_P (type)
578 && !TYPE_OVERFLOW_TRAPS (type)
579 && TYPE_OVERFLOW_WRAPS (type))
580 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
581 return tem;
582 break;
583
584 case REAL_CST:
585 tem = fold_negate_const (t, type);
586 return tem;
587
588 case FIXED_CST:
589 tem = fold_negate_const (t, type);
590 return tem;
591
592 case COMPLEX_CST:
593 {
594 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
595 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
596 if (rpart && ipart)
597 return build_complex (type, rpart, ipart);
598 }
599 break;
600
601 case VECTOR_CST:
602 {
603 int count = TYPE_VECTOR_SUBPARTS (type), i;
604 tree *elts = XALLOCAVEC (tree, count);
605
606 for (i = 0; i < count; i++)
607 {
608 elts[i] = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
609 if (elts[i] == NULL_TREE)
610 return NULL_TREE;
611 }
612
613 return build_vector (type, elts);
614 }
615
616 case COMPLEX_EXPR:
617 if (negate_expr_p (t))
618 return fold_build2_loc (loc, COMPLEX_EXPR, type,
619 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
620 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
621 break;
622
623 case CONJ_EXPR:
624 if (negate_expr_p (t))
625 return fold_build1_loc (loc, CONJ_EXPR, type,
626 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
627 break;
628
629 case NEGATE_EXPR:
630 if (!TYPE_OVERFLOW_SANITIZED (type))
631 return TREE_OPERAND (t, 0);
632 break;
633
634 case PLUS_EXPR:
635 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
636 && !HONOR_SIGNED_ZEROS (element_mode (type)))
637 {
638 /* -(A + B) -> (-B) - A. */
639 if (negate_expr_p (TREE_OPERAND (t, 1))
640 && reorder_operands_p (TREE_OPERAND (t, 0),
641 TREE_OPERAND (t, 1)))
642 {
643 tem = negate_expr (TREE_OPERAND (t, 1));
644 return fold_build2_loc (loc, MINUS_EXPR, type,
645 tem, TREE_OPERAND (t, 0));
646 }
647
648 /* -(A + B) -> (-A) - B. */
649 if (negate_expr_p (TREE_OPERAND (t, 0)))
650 {
651 tem = negate_expr (TREE_OPERAND (t, 0));
652 return fold_build2_loc (loc, MINUS_EXPR, type,
653 tem, TREE_OPERAND (t, 1));
654 }
655 }
656 break;
657
658 case MINUS_EXPR:
659 /* - (A - B) -> B - A */
660 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
661 && !HONOR_SIGNED_ZEROS (element_mode (type))
662 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
663 return fold_build2_loc (loc, MINUS_EXPR, type,
664 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
665 break;
666
667 case MULT_EXPR:
668 if (TYPE_UNSIGNED (type))
669 break;
670
671 /* Fall through. */
672
673 case RDIV_EXPR:
674 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
675 {
676 tem = TREE_OPERAND (t, 1);
677 if (negate_expr_p (tem))
678 return fold_build2_loc (loc, TREE_CODE (t), type,
679 TREE_OPERAND (t, 0), negate_expr (tem));
680 tem = TREE_OPERAND (t, 0);
681 if (negate_expr_p (tem))
682 return fold_build2_loc (loc, TREE_CODE (t), type,
683 negate_expr (tem), TREE_OPERAND (t, 1));
684 }
685 break;
686
687 case TRUNC_DIV_EXPR:
688 case ROUND_DIV_EXPR:
689 case EXACT_DIV_EXPR:
690 /* In general we can't negate A / B, because if A is INT_MIN and
691 B is 1, we may turn this into INT_MIN / -1 which is undefined
692 and actually traps on some architectures. But if overflow is
693 undefined, we can negate, because - (INT_MIN / 1) is an
694 overflow. */
695 if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
696 {
697 const char * const warnmsg = G_("assuming signed overflow does not "
698 "occur when negating a division");
699 tem = TREE_OPERAND (t, 1);
700 if (negate_expr_p (tem))
701 {
702 if (INTEGRAL_TYPE_P (type)
703 && (TREE_CODE (tem) != INTEGER_CST
704 || integer_onep (tem)))
705 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
706 return fold_build2_loc (loc, TREE_CODE (t), type,
707 TREE_OPERAND (t, 0), negate_expr (tem));
708 }
709 /* If overflow is undefined then we have to be careful because
710 we ask whether it's ok to associate the negate with the
711 division which is not ok for example for
712 -((a - b) / c) where (-(a - b)) / c may invoke undefined
713 overflow because of negating INT_MIN. So do not use
714 negate_expr_p here but open-code the two important cases. */
715 tem = TREE_OPERAND (t, 0);
716 if ((INTEGRAL_TYPE_P (type)
717 && (TREE_CODE (tem) == NEGATE_EXPR
718 || (TREE_CODE (tem) == INTEGER_CST
719 && may_negate_without_overflow_p (tem))))
720 || !INTEGRAL_TYPE_P (type))
721 return fold_build2_loc (loc, TREE_CODE (t), type,
722 negate_expr (tem), TREE_OPERAND (t, 1));
723 }
724 break;
725
726 case NOP_EXPR:
727 /* Convert -((double)float) into (double)(-float). */
728 if (TREE_CODE (type) == REAL_TYPE)
729 {
730 tem = strip_float_extensions (t);
731 if (tem != t && negate_expr_p (tem))
732 return fold_convert_loc (loc, type, negate_expr (tem));
733 }
734 break;
735
736 case CALL_EXPR:
737 /* Negate -f(x) as f(-x). */
738 if (negate_mathfn_p (builtin_mathfn_code (t))
739 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
740 {
741 tree fndecl, arg;
742
743 fndecl = get_callee_fndecl (t);
744 arg = negate_expr (CALL_EXPR_ARG (t, 0));
745 return build_call_expr_loc (loc, fndecl, 1, arg);
746 }
747 break;
748
749 case RSHIFT_EXPR:
750 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
751 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
752 {
753 tree op1 = TREE_OPERAND (t, 1);
754 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
755 {
756 tree ntype = TYPE_UNSIGNED (type)
757 ? signed_type_for (type)
758 : unsigned_type_for (type);
759 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
760 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
761 return fold_convert_loc (loc, type, temp);
762 }
763 }
764 break;
765
766 default:
767 break;
768 }
769
770 return NULL_TREE;
771 }
772
773 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
774 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
775 return NULL_TREE. */
776
777 static tree
778 negate_expr (tree t)
779 {
780 tree type, tem;
781 location_t loc;
782
783 if (t == NULL_TREE)
784 return NULL_TREE;
785
786 loc = EXPR_LOCATION (t);
787 type = TREE_TYPE (t);
788 STRIP_SIGN_NOPS (t);
789
790 tem = fold_negate_expr (loc, t);
791 if (!tem)
792 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
793 return fold_convert_loc (loc, type, tem);
794 }
795 \f
796 /* Split a tree IN into a constant, literal and variable parts that could be
797 combined with CODE to make IN. "constant" means an expression with
798 TREE_CONSTANT but that isn't an actual constant. CODE must be a
799 commutative arithmetic operation. Store the constant part into *CONP,
800 the literal in *LITP and return the variable part. If a part isn't
801 present, set it to null. If the tree does not decompose in this way,
802 return the entire tree as the variable part and the other parts as null.
803
804 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
805 case, we negate an operand that was subtracted. Except if it is a
806 literal for which we use *MINUS_LITP instead.
807
808 If NEGATE_P is true, we are negating all of IN, again except a literal
809 for which we use *MINUS_LITP instead.
810
811 If IN is itself a literal or constant, return it as appropriate.
812
813 Note that we do not guarantee that any of the three values will be the
814 same type as IN, but they will have the same signedness and mode. */
815
816 static tree
817 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
818 tree *minus_litp, int negate_p)
819 {
820 tree var = 0;
821
822 *conp = 0;
823 *litp = 0;
824 *minus_litp = 0;
825
826 /* Strip any conversions that don't change the machine mode or signedness. */
827 STRIP_SIGN_NOPS (in);
828
829 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
830 || TREE_CODE (in) == FIXED_CST)
831 *litp = in;
832 else if (TREE_CODE (in) == code
833 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
834 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
835 /* We can associate addition and subtraction together (even
836 though the C standard doesn't say so) for integers because
837 the value is not affected. For reals, the value might be
838 affected, so we can't. */
839 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
840 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
841 {
842 tree op0 = TREE_OPERAND (in, 0);
843 tree op1 = TREE_OPERAND (in, 1);
844 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
845 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
846
847 /* First see if either of the operands is a literal, then a constant. */
848 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
849 || TREE_CODE (op0) == FIXED_CST)
850 *litp = op0, op0 = 0;
851 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
852 || TREE_CODE (op1) == FIXED_CST)
853 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
854
855 if (op0 != 0 && TREE_CONSTANT (op0))
856 *conp = op0, op0 = 0;
857 else if (op1 != 0 && TREE_CONSTANT (op1))
858 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
859
860 /* If we haven't dealt with either operand, this is not a case we can
861 decompose. Otherwise, VAR is either of the ones remaining, if any. */
862 if (op0 != 0 && op1 != 0)
863 var = in;
864 else if (op0 != 0)
865 var = op0;
866 else
867 var = op1, neg_var_p = neg1_p;
868
869 /* Now do any needed negations. */
870 if (neg_litp_p)
871 *minus_litp = *litp, *litp = 0;
872 if (neg_conp_p)
873 *conp = negate_expr (*conp);
874 if (neg_var_p)
875 var = negate_expr (var);
876 }
877 else if (TREE_CODE (in) == BIT_NOT_EXPR
878 && code == PLUS_EXPR)
879 {
880 /* -X - 1 is folded to ~X, undo that here. */
881 *minus_litp = build_one_cst (TREE_TYPE (in));
882 var = negate_expr (TREE_OPERAND (in, 0));
883 }
884 else if (TREE_CONSTANT (in))
885 *conp = in;
886 else
887 var = in;
888
889 if (negate_p)
890 {
891 if (*litp)
892 *minus_litp = *litp, *litp = 0;
893 else if (*minus_litp)
894 *litp = *minus_litp, *minus_litp = 0;
895 *conp = negate_expr (*conp);
896 var = negate_expr (var);
897 }
898
899 return var;
900 }
901
902 /* Re-associate trees split by the above function. T1 and T2 are
903 either expressions to associate or null. Return the new
904 expression, if any. LOC is the location of the new expression. If
905 we build an operation, do it in TYPE and with CODE. */
906
907 static tree
908 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
909 {
910 if (t1 == 0)
911 return t2;
912 else if (t2 == 0)
913 return t1;
914
915 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
916 try to fold this since we will have infinite recursion. But do
917 deal with any NEGATE_EXPRs. */
918 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
919 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
920 {
921 if (code == PLUS_EXPR)
922 {
923 if (TREE_CODE (t1) == NEGATE_EXPR)
924 return build2_loc (loc, MINUS_EXPR, type,
925 fold_convert_loc (loc, type, t2),
926 fold_convert_loc (loc, type,
927 TREE_OPERAND (t1, 0)));
928 else if (TREE_CODE (t2) == NEGATE_EXPR)
929 return build2_loc (loc, MINUS_EXPR, type,
930 fold_convert_loc (loc, type, t1),
931 fold_convert_loc (loc, type,
932 TREE_OPERAND (t2, 0)));
933 else if (integer_zerop (t2))
934 return fold_convert_loc (loc, type, t1);
935 }
936 else if (code == MINUS_EXPR)
937 {
938 if (integer_zerop (t2))
939 return fold_convert_loc (loc, type, t1);
940 }
941
942 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
943 fold_convert_loc (loc, type, t2));
944 }
945
946 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
947 fold_convert_loc (loc, type, t2));
948 }
949 \f
950 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
951 for use in int_const_binop, size_binop and size_diffop. */
952
953 static bool
954 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
955 {
956 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
957 return false;
958 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
959 return false;
960
961 switch (code)
962 {
963 case LSHIFT_EXPR:
964 case RSHIFT_EXPR:
965 case LROTATE_EXPR:
966 case RROTATE_EXPR:
967 return true;
968
969 default:
970 break;
971 }
972
973 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
974 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
975 && TYPE_MODE (type1) == TYPE_MODE (type2);
976 }
977
978
979 /* Combine two integer constants ARG1 and ARG2 under operation CODE
980 to produce a new constant. Return NULL_TREE if we don't know how
981 to evaluate CODE at compile-time. */
982
983 static tree
984 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree parg2,
985 int overflowable)
986 {
987 wide_int res;
988 tree t;
989 tree type = TREE_TYPE (arg1);
990 signop sign = TYPE_SIGN (type);
991 bool overflow = false;
992
993 wide_int arg2 = wide_int::from (parg2, TYPE_PRECISION (type),
994 TYPE_SIGN (TREE_TYPE (parg2)));
995
996 switch (code)
997 {
998 case BIT_IOR_EXPR:
999 res = wi::bit_or (arg1, arg2);
1000 break;
1001
1002 case BIT_XOR_EXPR:
1003 res = wi::bit_xor (arg1, arg2);
1004 break;
1005
1006 case BIT_AND_EXPR:
1007 res = wi::bit_and (arg1, arg2);
1008 break;
1009
1010 case RSHIFT_EXPR:
1011 case LSHIFT_EXPR:
1012 if (wi::neg_p (arg2))
1013 {
1014 arg2 = -arg2;
1015 if (code == RSHIFT_EXPR)
1016 code = LSHIFT_EXPR;
1017 else
1018 code = RSHIFT_EXPR;
1019 }
1020
1021 if (code == RSHIFT_EXPR)
1022 /* It's unclear from the C standard whether shifts can overflow.
1023 The following code ignores overflow; perhaps a C standard
1024 interpretation ruling is needed. */
1025 res = wi::rshift (arg1, arg2, sign);
1026 else
1027 res = wi::lshift (arg1, arg2);
1028 break;
1029
1030 case RROTATE_EXPR:
1031 case LROTATE_EXPR:
1032 if (wi::neg_p (arg2))
1033 {
1034 arg2 = -arg2;
1035 if (code == RROTATE_EXPR)
1036 code = LROTATE_EXPR;
1037 else
1038 code = RROTATE_EXPR;
1039 }
1040
1041 if (code == RROTATE_EXPR)
1042 res = wi::rrotate (arg1, arg2);
1043 else
1044 res = wi::lrotate (arg1, arg2);
1045 break;
1046
1047 case PLUS_EXPR:
1048 res = wi::add (arg1, arg2, sign, &overflow);
1049 break;
1050
1051 case MINUS_EXPR:
1052 res = wi::sub (arg1, arg2, sign, &overflow);
1053 break;
1054
1055 case MULT_EXPR:
1056 res = wi::mul (arg1, arg2, sign, &overflow);
1057 break;
1058
1059 case MULT_HIGHPART_EXPR:
1060 res = wi::mul_high (arg1, arg2, sign);
1061 break;
1062
1063 case TRUNC_DIV_EXPR:
1064 case EXACT_DIV_EXPR:
1065 if (arg2 == 0)
1066 return NULL_TREE;
1067 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1068 break;
1069
1070 case FLOOR_DIV_EXPR:
1071 if (arg2 == 0)
1072 return NULL_TREE;
1073 res = wi::div_floor (arg1, arg2, sign, &overflow);
1074 break;
1075
1076 case CEIL_DIV_EXPR:
1077 if (arg2 == 0)
1078 return NULL_TREE;
1079 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1080 break;
1081
1082 case ROUND_DIV_EXPR:
1083 if (arg2 == 0)
1084 return NULL_TREE;
1085 res = wi::div_round (arg1, arg2, sign, &overflow);
1086 break;
1087
1088 case TRUNC_MOD_EXPR:
1089 if (arg2 == 0)
1090 return NULL_TREE;
1091 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1092 break;
1093
1094 case FLOOR_MOD_EXPR:
1095 if (arg2 == 0)
1096 return NULL_TREE;
1097 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1098 break;
1099
1100 case CEIL_MOD_EXPR:
1101 if (arg2 == 0)
1102 return NULL_TREE;
1103 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1104 break;
1105
1106 case ROUND_MOD_EXPR:
1107 if (arg2 == 0)
1108 return NULL_TREE;
1109 res = wi::mod_round (arg1, arg2, sign, &overflow);
1110 break;
1111
1112 case MIN_EXPR:
1113 res = wi::min (arg1, arg2, sign);
1114 break;
1115
1116 case MAX_EXPR:
1117 res = wi::max (arg1, arg2, sign);
1118 break;
1119
1120 default:
1121 return NULL_TREE;
1122 }
1123
1124 t = force_fit_type (type, res, overflowable,
1125 (((sign == SIGNED || overflowable == -1)
1126 && overflow)
1127 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (parg2)));
1128
1129 return t;
1130 }
1131
1132 tree
1133 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1134 {
1135 return int_const_binop_1 (code, arg1, arg2, 1);
1136 }
1137
1138 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1139 constant. We assume ARG1 and ARG2 have the same data type, or at least
1140 are the same kind of constant and the same machine mode. Return zero if
1141 combining the constants is not allowed in the current operating mode. */
1142
1143 static tree
1144 const_binop (enum tree_code code, tree arg1, tree arg2)
1145 {
1146 /* Sanity check for the recursive cases. */
1147 if (!arg1 || !arg2)
1148 return NULL_TREE;
1149
1150 STRIP_NOPS (arg1);
1151 STRIP_NOPS (arg2);
1152
1153 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1154 {
1155 if (code == POINTER_PLUS_EXPR)
1156 return int_const_binop (PLUS_EXPR,
1157 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1158
1159 return int_const_binop (code, arg1, arg2);
1160 }
1161
1162 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1163 {
1164 machine_mode mode;
1165 REAL_VALUE_TYPE d1;
1166 REAL_VALUE_TYPE d2;
1167 REAL_VALUE_TYPE value;
1168 REAL_VALUE_TYPE result;
1169 bool inexact;
1170 tree t, type;
1171
1172 /* The following codes are handled by real_arithmetic. */
1173 switch (code)
1174 {
1175 case PLUS_EXPR:
1176 case MINUS_EXPR:
1177 case MULT_EXPR:
1178 case RDIV_EXPR:
1179 case MIN_EXPR:
1180 case MAX_EXPR:
1181 break;
1182
1183 default:
1184 return NULL_TREE;
1185 }
1186
1187 d1 = TREE_REAL_CST (arg1);
1188 d2 = TREE_REAL_CST (arg2);
1189
1190 type = TREE_TYPE (arg1);
1191 mode = TYPE_MODE (type);
1192
1193 /* Don't perform operation if we honor signaling NaNs and
1194 either operand is a NaN. */
1195 if (HONOR_SNANS (mode)
1196 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1197 return NULL_TREE;
1198
1199 /* Don't perform operation if it would raise a division
1200 by zero exception. */
1201 if (code == RDIV_EXPR
1202 && REAL_VALUES_EQUAL (d2, dconst0)
1203 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1204 return NULL_TREE;
1205
1206 /* If either operand is a NaN, just return it. Otherwise, set up
1207 for floating-point trap; we return an overflow. */
1208 if (REAL_VALUE_ISNAN (d1))
1209 return arg1;
1210 else if (REAL_VALUE_ISNAN (d2))
1211 return arg2;
1212
1213 inexact = real_arithmetic (&value, code, &d1, &d2);
1214 real_convert (&result, mode, &value);
1215
1216 /* Don't constant fold this floating point operation if
1217 the result has overflowed and flag_trapping_math. */
1218 if (flag_trapping_math
1219 && MODE_HAS_INFINITIES (mode)
1220 && REAL_VALUE_ISINF (result)
1221 && !REAL_VALUE_ISINF (d1)
1222 && !REAL_VALUE_ISINF (d2))
1223 return NULL_TREE;
1224
1225 /* Don't constant fold this floating point operation if the
1226 result may dependent upon the run-time rounding mode and
1227 flag_rounding_math is set, or if GCC's software emulation
1228 is unable to accurately represent the result. */
1229 if ((flag_rounding_math
1230 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1231 && (inexact || !real_identical (&result, &value)))
1232 return NULL_TREE;
1233
1234 t = build_real (type, result);
1235
1236 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1237 return t;
1238 }
1239
1240 if (TREE_CODE (arg1) == FIXED_CST)
1241 {
1242 FIXED_VALUE_TYPE f1;
1243 FIXED_VALUE_TYPE f2;
1244 FIXED_VALUE_TYPE result;
1245 tree t, type;
1246 int sat_p;
1247 bool overflow_p;
1248
1249 /* The following codes are handled by fixed_arithmetic. */
1250 switch (code)
1251 {
1252 case PLUS_EXPR:
1253 case MINUS_EXPR:
1254 case MULT_EXPR:
1255 case TRUNC_DIV_EXPR:
1256 if (TREE_CODE (arg2) != FIXED_CST)
1257 return NULL_TREE;
1258 f2 = TREE_FIXED_CST (arg2);
1259 break;
1260
1261 case LSHIFT_EXPR:
1262 case RSHIFT_EXPR:
1263 {
1264 if (TREE_CODE (arg2) != INTEGER_CST)
1265 return NULL_TREE;
1266 wide_int w2 = arg2;
1267 f2.data.high = w2.elt (1);
1268 f2.data.low = w2.elt (0);
1269 f2.mode = SImode;
1270 }
1271 break;
1272
1273 default:
1274 return NULL_TREE;
1275 }
1276
1277 f1 = TREE_FIXED_CST (arg1);
1278 type = TREE_TYPE (arg1);
1279 sat_p = TYPE_SATURATING (type);
1280 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1281 t = build_fixed (type, result);
1282 /* Propagate overflow flags. */
1283 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1284 TREE_OVERFLOW (t) = 1;
1285 return t;
1286 }
1287
1288 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1289 {
1290 tree type = TREE_TYPE (arg1);
1291 tree r1 = TREE_REALPART (arg1);
1292 tree i1 = TREE_IMAGPART (arg1);
1293 tree r2 = TREE_REALPART (arg2);
1294 tree i2 = TREE_IMAGPART (arg2);
1295 tree real, imag;
1296
1297 switch (code)
1298 {
1299 case PLUS_EXPR:
1300 case MINUS_EXPR:
1301 real = const_binop (code, r1, r2);
1302 imag = const_binop (code, i1, i2);
1303 break;
1304
1305 case MULT_EXPR:
1306 if (COMPLEX_FLOAT_TYPE_P (type))
1307 return do_mpc_arg2 (arg1, arg2, type,
1308 /* do_nonfinite= */ folding_initializer,
1309 mpc_mul);
1310
1311 real = const_binop (MINUS_EXPR,
1312 const_binop (MULT_EXPR, r1, r2),
1313 const_binop (MULT_EXPR, i1, i2));
1314 imag = const_binop (PLUS_EXPR,
1315 const_binop (MULT_EXPR, r1, i2),
1316 const_binop (MULT_EXPR, i1, r2));
1317 break;
1318
1319 case RDIV_EXPR:
1320 if (COMPLEX_FLOAT_TYPE_P (type))
1321 return do_mpc_arg2 (arg1, arg2, type,
1322 /* do_nonfinite= */ folding_initializer,
1323 mpc_div);
1324 /* Fallthru ... */
1325 case TRUNC_DIV_EXPR:
1326 case CEIL_DIV_EXPR:
1327 case FLOOR_DIV_EXPR:
1328 case ROUND_DIV_EXPR:
1329 if (flag_complex_method == 0)
1330 {
1331 /* Keep this algorithm in sync with
1332 tree-complex.c:expand_complex_div_straight().
1333
1334 Expand complex division to scalars, straightforward algorithm.
1335 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1336 t = br*br + bi*bi
1337 */
1338 tree magsquared
1339 = const_binop (PLUS_EXPR,
1340 const_binop (MULT_EXPR, r2, r2),
1341 const_binop (MULT_EXPR, i2, i2));
1342 tree t1
1343 = const_binop (PLUS_EXPR,
1344 const_binop (MULT_EXPR, r1, r2),
1345 const_binop (MULT_EXPR, i1, i2));
1346 tree t2
1347 = const_binop (MINUS_EXPR,
1348 const_binop (MULT_EXPR, i1, r2),
1349 const_binop (MULT_EXPR, r1, i2));
1350
1351 real = const_binop (code, t1, magsquared);
1352 imag = const_binop (code, t2, magsquared);
1353 }
1354 else
1355 {
1356 /* Keep this algorithm in sync with
1357 tree-complex.c:expand_complex_div_wide().
1358
1359 Expand complex division to scalars, modified algorithm to minimize
1360 overflow with wide input ranges. */
1361 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1362 fold_abs_const (r2, TREE_TYPE (type)),
1363 fold_abs_const (i2, TREE_TYPE (type)));
1364
1365 if (integer_nonzerop (compare))
1366 {
1367 /* In the TRUE branch, we compute
1368 ratio = br/bi;
1369 div = (br * ratio) + bi;
1370 tr = (ar * ratio) + ai;
1371 ti = (ai * ratio) - ar;
1372 tr = tr / div;
1373 ti = ti / div; */
1374 tree ratio = const_binop (code, r2, i2);
1375 tree div = const_binop (PLUS_EXPR, i2,
1376 const_binop (MULT_EXPR, r2, ratio));
1377 real = const_binop (MULT_EXPR, r1, ratio);
1378 real = const_binop (PLUS_EXPR, real, i1);
1379 real = const_binop (code, real, div);
1380
1381 imag = const_binop (MULT_EXPR, i1, ratio);
1382 imag = const_binop (MINUS_EXPR, imag, r1);
1383 imag = const_binop (code, imag, div);
1384 }
1385 else
1386 {
1387 /* In the FALSE branch, we compute
1388 ratio = d/c;
1389 divisor = (d * ratio) + c;
1390 tr = (b * ratio) + a;
1391 ti = b - (a * ratio);
1392 tr = tr / div;
1393 ti = ti / div; */
1394 tree ratio = const_binop (code, i2, r2);
1395 tree div = const_binop (PLUS_EXPR, r2,
1396 const_binop (MULT_EXPR, i2, ratio));
1397
1398 real = const_binop (MULT_EXPR, i1, ratio);
1399 real = const_binop (PLUS_EXPR, real, r1);
1400 real = const_binop (code, real, div);
1401
1402 imag = const_binop (MULT_EXPR, r1, ratio);
1403 imag = const_binop (MINUS_EXPR, i1, imag);
1404 imag = const_binop (code, imag, div);
1405 }
1406 }
1407 break;
1408
1409 default:
1410 return NULL_TREE;
1411 }
1412
1413 if (real && imag)
1414 return build_complex (type, real, imag);
1415 }
1416
1417 if (TREE_CODE (arg1) == VECTOR_CST
1418 && TREE_CODE (arg2) == VECTOR_CST)
1419 {
1420 tree type = TREE_TYPE (arg1);
1421 int count = TYPE_VECTOR_SUBPARTS (type), i;
1422 tree *elts = XALLOCAVEC (tree, count);
1423
1424 for (i = 0; i < count; i++)
1425 {
1426 tree elem1 = VECTOR_CST_ELT (arg1, i);
1427 tree elem2 = VECTOR_CST_ELT (arg2, i);
1428
1429 elts[i] = const_binop (code, elem1, elem2);
1430
1431 /* It is possible that const_binop cannot handle the given
1432 code and return NULL_TREE */
1433 if (elts[i] == NULL_TREE)
1434 return NULL_TREE;
1435 }
1436
1437 return build_vector (type, elts);
1438 }
1439
1440 /* Shifts allow a scalar offset for a vector. */
1441 if (TREE_CODE (arg1) == VECTOR_CST
1442 && TREE_CODE (arg2) == INTEGER_CST)
1443 {
1444 tree type = TREE_TYPE (arg1);
1445 int count = TYPE_VECTOR_SUBPARTS (type), i;
1446 tree *elts = XALLOCAVEC (tree, count);
1447
1448 for (i = 0; i < count; i++)
1449 {
1450 tree elem1 = VECTOR_CST_ELT (arg1, i);
1451
1452 elts[i] = const_binop (code, elem1, arg2);
1453
1454 /* It is possible that const_binop cannot handle the given
1455 code and return NULL_TREE. */
1456 if (elts[i] == NULL_TREE)
1457 return NULL_TREE;
1458 }
1459
1460 return build_vector (type, elts);
1461 }
1462 return NULL_TREE;
1463 }
1464
1465 /* Overload that adds a TYPE parameter to be able to dispatch
1466 to fold_relational_const. */
1467
1468 tree
1469 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1470 {
1471 if (TREE_CODE_CLASS (code) == tcc_comparison)
1472 return fold_relational_const (code, type, arg1, arg2);
1473
1474 /* ??? Until we make the const_binop worker take the type of the
1475 result as argument put those cases that need it here. */
1476 switch (code)
1477 {
1478 case COMPLEX_EXPR:
1479 if ((TREE_CODE (arg1) == REAL_CST
1480 && TREE_CODE (arg2) == REAL_CST)
1481 || (TREE_CODE (arg1) == INTEGER_CST
1482 && TREE_CODE (arg2) == INTEGER_CST))
1483 return build_complex (type, arg1, arg2);
1484 return NULL_TREE;
1485
1486 case VEC_PACK_TRUNC_EXPR:
1487 case VEC_PACK_FIX_TRUNC_EXPR:
1488 {
1489 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1490 tree *elts;
1491
1492 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts / 2
1493 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts / 2);
1494 if (TREE_CODE (arg1) != VECTOR_CST
1495 || TREE_CODE (arg2) != VECTOR_CST)
1496 return NULL_TREE;
1497
1498 elts = XALLOCAVEC (tree, nelts);
1499 if (!vec_cst_ctor_to_array (arg1, elts)
1500 || !vec_cst_ctor_to_array (arg2, elts + nelts / 2))
1501 return NULL_TREE;
1502
1503 for (i = 0; i < nelts; i++)
1504 {
1505 elts[i] = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1506 ? NOP_EXPR : FIX_TRUNC_EXPR,
1507 TREE_TYPE (type), elts[i]);
1508 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1509 return NULL_TREE;
1510 }
1511
1512 return build_vector (type, elts);
1513 }
1514
1515 case VEC_WIDEN_MULT_LO_EXPR:
1516 case VEC_WIDEN_MULT_HI_EXPR:
1517 case VEC_WIDEN_MULT_EVEN_EXPR:
1518 case VEC_WIDEN_MULT_ODD_EXPR:
1519 {
1520 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type);
1521 unsigned int out, ofs, scale;
1522 tree *elts;
1523
1524 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts * 2
1525 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts * 2);
1526 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1527 return NULL_TREE;
1528
1529 elts = XALLOCAVEC (tree, nelts * 4);
1530 if (!vec_cst_ctor_to_array (arg1, elts)
1531 || !vec_cst_ctor_to_array (arg2, elts + nelts * 2))
1532 return NULL_TREE;
1533
1534 if (code == VEC_WIDEN_MULT_LO_EXPR)
1535 scale = 0, ofs = BYTES_BIG_ENDIAN ? nelts : 0;
1536 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1537 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : nelts;
1538 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1539 scale = 1, ofs = 0;
1540 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1541 scale = 1, ofs = 1;
1542
1543 for (out = 0; out < nelts; out++)
1544 {
1545 unsigned int in1 = (out << scale) + ofs;
1546 unsigned int in2 = in1 + nelts * 2;
1547 tree t1, t2;
1548
1549 t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in1]);
1550 t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in2]);
1551
1552 if (t1 == NULL_TREE || t2 == NULL_TREE)
1553 return NULL_TREE;
1554 elts[out] = const_binop (MULT_EXPR, t1, t2);
1555 if (elts[out] == NULL_TREE || !CONSTANT_CLASS_P (elts[out]))
1556 return NULL_TREE;
1557 }
1558
1559 return build_vector (type, elts);
1560 }
1561
1562 default:;
1563 }
1564
1565 if (TREE_CODE_CLASS (code) != tcc_binary)
1566 return NULL_TREE;
1567
1568 /* Make sure type and arg0 have the same saturating flag. */
1569 gcc_checking_assert (TYPE_SATURATING (type)
1570 == TYPE_SATURATING (TREE_TYPE (arg1)));
1571
1572 return const_binop (code, arg1, arg2);
1573 }
1574
1575 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1576 Return zero if computing the constants is not possible. */
1577
1578 tree
1579 const_unop (enum tree_code code, tree type, tree arg0)
1580 {
1581 switch (code)
1582 {
1583 CASE_CONVERT:
1584 case FLOAT_EXPR:
1585 case FIX_TRUNC_EXPR:
1586 case FIXED_CONVERT_EXPR:
1587 return fold_convert_const (code, type, arg0);
1588
1589 case ADDR_SPACE_CONVERT_EXPR:
1590 if (integer_zerop (arg0))
1591 return fold_convert_const (code, type, arg0);
1592 break;
1593
1594 case VIEW_CONVERT_EXPR:
1595 return fold_view_convert_expr (type, arg0);
1596
1597 case NEGATE_EXPR:
1598 {
1599 /* Can't call fold_negate_const directly here as that doesn't
1600 handle all cases and we might not be able to negate some
1601 constants. */
1602 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1603 if (tem && CONSTANT_CLASS_P (tem))
1604 return tem;
1605 break;
1606 }
1607
1608 case ABS_EXPR:
1609 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1610 return fold_abs_const (arg0, type);
1611 break;
1612
1613 case CONJ_EXPR:
1614 if (TREE_CODE (arg0) == COMPLEX_CST)
1615 {
1616 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1617 TREE_TYPE (type));
1618 return build_complex (type, TREE_REALPART (arg0), ipart);
1619 }
1620 break;
1621
1622 case BIT_NOT_EXPR:
1623 if (TREE_CODE (arg0) == INTEGER_CST)
1624 return fold_not_const (arg0, type);
1625 /* Perform BIT_NOT_EXPR on each element individually. */
1626 else if (TREE_CODE (arg0) == VECTOR_CST)
1627 {
1628 tree *elements;
1629 tree elem;
1630 unsigned count = VECTOR_CST_NELTS (arg0), i;
1631
1632 elements = XALLOCAVEC (tree, count);
1633 for (i = 0; i < count; i++)
1634 {
1635 elem = VECTOR_CST_ELT (arg0, i);
1636 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1637 if (elem == NULL_TREE)
1638 break;
1639 elements[i] = elem;
1640 }
1641 if (i == count)
1642 return build_vector (type, elements);
1643 }
1644 break;
1645
1646 case TRUTH_NOT_EXPR:
1647 if (TREE_CODE (arg0) == INTEGER_CST)
1648 return constant_boolean_node (integer_zerop (arg0), type);
1649 break;
1650
1651 case REALPART_EXPR:
1652 if (TREE_CODE (arg0) == COMPLEX_CST)
1653 return fold_convert (type, TREE_REALPART (arg0));
1654 break;
1655
1656 case IMAGPART_EXPR:
1657 if (TREE_CODE (arg0) == COMPLEX_CST)
1658 return fold_convert (type, TREE_IMAGPART (arg0));
1659 break;
1660
1661 case VEC_UNPACK_LO_EXPR:
1662 case VEC_UNPACK_HI_EXPR:
1663 case VEC_UNPACK_FLOAT_LO_EXPR:
1664 case VEC_UNPACK_FLOAT_HI_EXPR:
1665 {
1666 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1667 tree *elts;
1668 enum tree_code subcode;
1669
1670 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts * 2);
1671 if (TREE_CODE (arg0) != VECTOR_CST)
1672 return NULL_TREE;
1673
1674 elts = XALLOCAVEC (tree, nelts * 2);
1675 if (!vec_cst_ctor_to_array (arg0, elts))
1676 return NULL_TREE;
1677
1678 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1679 || code == VEC_UNPACK_FLOAT_LO_EXPR))
1680 elts += nelts;
1681
1682 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1683 subcode = NOP_EXPR;
1684 else
1685 subcode = FLOAT_EXPR;
1686
1687 for (i = 0; i < nelts; i++)
1688 {
1689 elts[i] = fold_convert_const (subcode, TREE_TYPE (type), elts[i]);
1690 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1691 return NULL_TREE;
1692 }
1693
1694 return build_vector (type, elts);
1695 }
1696
1697 case REDUC_MIN_EXPR:
1698 case REDUC_MAX_EXPR:
1699 case REDUC_PLUS_EXPR:
1700 {
1701 unsigned int nelts, i;
1702 tree *elts;
1703 enum tree_code subcode;
1704
1705 if (TREE_CODE (arg0) != VECTOR_CST)
1706 return NULL_TREE;
1707 nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
1708
1709 elts = XALLOCAVEC (tree, nelts);
1710 if (!vec_cst_ctor_to_array (arg0, elts))
1711 return NULL_TREE;
1712
1713 switch (code)
1714 {
1715 case REDUC_MIN_EXPR: subcode = MIN_EXPR; break;
1716 case REDUC_MAX_EXPR: subcode = MAX_EXPR; break;
1717 case REDUC_PLUS_EXPR: subcode = PLUS_EXPR; break;
1718 default: gcc_unreachable ();
1719 }
1720
1721 for (i = 1; i < nelts; i++)
1722 {
1723 elts[0] = const_binop (subcode, elts[0], elts[i]);
1724 if (elts[0] == NULL_TREE || !CONSTANT_CLASS_P (elts[0]))
1725 return NULL_TREE;
1726 }
1727
1728 return elts[0];
1729 }
1730
1731 default:
1732 break;
1733 }
1734
1735 return NULL_TREE;
1736 }
1737
1738 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1739 indicates which particular sizetype to create. */
1740
1741 tree
1742 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1743 {
1744 return build_int_cst (sizetype_tab[(int) kind], number);
1745 }
1746 \f
1747 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1748 is a tree code. The type of the result is taken from the operands.
1749 Both must be equivalent integer types, ala int_binop_types_match_p.
1750 If the operands are constant, so is the result. */
1751
1752 tree
1753 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1754 {
1755 tree type = TREE_TYPE (arg0);
1756
1757 if (arg0 == error_mark_node || arg1 == error_mark_node)
1758 return error_mark_node;
1759
1760 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1761 TREE_TYPE (arg1)));
1762
1763 /* Handle the special case of two integer constants faster. */
1764 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1765 {
1766 /* And some specific cases even faster than that. */
1767 if (code == PLUS_EXPR)
1768 {
1769 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1770 return arg1;
1771 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1772 return arg0;
1773 }
1774 else if (code == MINUS_EXPR)
1775 {
1776 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1777 return arg0;
1778 }
1779 else if (code == MULT_EXPR)
1780 {
1781 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1782 return arg1;
1783 }
1784
1785 /* Handle general case of two integer constants. For sizetype
1786 constant calculations we always want to know about overflow,
1787 even in the unsigned case. */
1788 return int_const_binop_1 (code, arg0, arg1, -1);
1789 }
1790
1791 return fold_build2_loc (loc, code, type, arg0, arg1);
1792 }
1793
1794 /* Given two values, either both of sizetype or both of bitsizetype,
1795 compute the difference between the two values. Return the value
1796 in signed type corresponding to the type of the operands. */
1797
1798 tree
1799 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1800 {
1801 tree type = TREE_TYPE (arg0);
1802 tree ctype;
1803
1804 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1805 TREE_TYPE (arg1)));
1806
1807 /* If the type is already signed, just do the simple thing. */
1808 if (!TYPE_UNSIGNED (type))
1809 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1810
1811 if (type == sizetype)
1812 ctype = ssizetype;
1813 else if (type == bitsizetype)
1814 ctype = sbitsizetype;
1815 else
1816 ctype = signed_type_for (type);
1817
1818 /* If either operand is not a constant, do the conversions to the signed
1819 type and subtract. The hardware will do the right thing with any
1820 overflow in the subtraction. */
1821 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1822 return size_binop_loc (loc, MINUS_EXPR,
1823 fold_convert_loc (loc, ctype, arg0),
1824 fold_convert_loc (loc, ctype, arg1));
1825
1826 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1827 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1828 overflow) and negate (which can't either). Special-case a result
1829 of zero while we're here. */
1830 if (tree_int_cst_equal (arg0, arg1))
1831 return build_int_cst (ctype, 0);
1832 else if (tree_int_cst_lt (arg1, arg0))
1833 return fold_convert_loc (loc, ctype,
1834 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1835 else
1836 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1837 fold_convert_loc (loc, ctype,
1838 size_binop_loc (loc,
1839 MINUS_EXPR,
1840 arg1, arg0)));
1841 }
1842 \f
1843 /* A subroutine of fold_convert_const handling conversions of an
1844 INTEGER_CST to another integer type. */
1845
1846 static tree
1847 fold_convert_const_int_from_int (tree type, const_tree arg1)
1848 {
1849 /* Given an integer constant, make new constant with new type,
1850 appropriately sign-extended or truncated. Use widest_int
1851 so that any extension is done according ARG1's type. */
1852 return force_fit_type (type, wi::to_widest (arg1),
1853 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1854 TREE_OVERFLOW (arg1));
1855 }
1856
1857 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1858 to an integer type. */
1859
1860 static tree
1861 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1862 {
1863 bool overflow = false;
1864 tree t;
1865
1866 /* The following code implements the floating point to integer
1867 conversion rules required by the Java Language Specification,
1868 that IEEE NaNs are mapped to zero and values that overflow
1869 the target precision saturate, i.e. values greater than
1870 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1871 are mapped to INT_MIN. These semantics are allowed by the
1872 C and C++ standards that simply state that the behavior of
1873 FP-to-integer conversion is unspecified upon overflow. */
1874
1875 wide_int val;
1876 REAL_VALUE_TYPE r;
1877 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1878
1879 switch (code)
1880 {
1881 case FIX_TRUNC_EXPR:
1882 real_trunc (&r, VOIDmode, &x);
1883 break;
1884
1885 default:
1886 gcc_unreachable ();
1887 }
1888
1889 /* If R is NaN, return zero and show we have an overflow. */
1890 if (REAL_VALUE_ISNAN (r))
1891 {
1892 overflow = true;
1893 val = wi::zero (TYPE_PRECISION (type));
1894 }
1895
1896 /* See if R is less than the lower bound or greater than the
1897 upper bound. */
1898
1899 if (! overflow)
1900 {
1901 tree lt = TYPE_MIN_VALUE (type);
1902 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1903 if (REAL_VALUES_LESS (r, l))
1904 {
1905 overflow = true;
1906 val = lt;
1907 }
1908 }
1909
1910 if (! overflow)
1911 {
1912 tree ut = TYPE_MAX_VALUE (type);
1913 if (ut)
1914 {
1915 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1916 if (REAL_VALUES_LESS (u, r))
1917 {
1918 overflow = true;
1919 val = ut;
1920 }
1921 }
1922 }
1923
1924 if (! overflow)
1925 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1926
1927 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1928 return t;
1929 }
1930
1931 /* A subroutine of fold_convert_const handling conversions of a
1932 FIXED_CST to an integer type. */
1933
1934 static tree
1935 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1936 {
1937 tree t;
1938 double_int temp, temp_trunc;
1939 unsigned int mode;
1940
1941 /* Right shift FIXED_CST to temp by fbit. */
1942 temp = TREE_FIXED_CST (arg1).data;
1943 mode = TREE_FIXED_CST (arg1).mode;
1944 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1945 {
1946 temp = temp.rshift (GET_MODE_FBIT (mode),
1947 HOST_BITS_PER_DOUBLE_INT,
1948 SIGNED_FIXED_POINT_MODE_P (mode));
1949
1950 /* Left shift temp to temp_trunc by fbit. */
1951 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1952 HOST_BITS_PER_DOUBLE_INT,
1953 SIGNED_FIXED_POINT_MODE_P (mode));
1954 }
1955 else
1956 {
1957 temp = double_int_zero;
1958 temp_trunc = double_int_zero;
1959 }
1960
1961 /* If FIXED_CST is negative, we need to round the value toward 0.
1962 By checking if the fractional bits are not zero to add 1 to temp. */
1963 if (SIGNED_FIXED_POINT_MODE_P (mode)
1964 && temp_trunc.is_negative ()
1965 && TREE_FIXED_CST (arg1).data != temp_trunc)
1966 temp += double_int_one;
1967
1968 /* Given a fixed-point constant, make new constant with new type,
1969 appropriately sign-extended or truncated. */
1970 t = force_fit_type (type, temp, -1,
1971 (temp.is_negative ()
1972 && (TYPE_UNSIGNED (type)
1973 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1974 | TREE_OVERFLOW (arg1));
1975
1976 return t;
1977 }
1978
1979 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1980 to another floating point type. */
1981
1982 static tree
1983 fold_convert_const_real_from_real (tree type, const_tree arg1)
1984 {
1985 REAL_VALUE_TYPE value;
1986 tree t;
1987
1988 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1989 t = build_real (type, value);
1990
1991 /* If converting an infinity or NAN to a representation that doesn't
1992 have one, set the overflow bit so that we can produce some kind of
1993 error message at the appropriate point if necessary. It's not the
1994 most user-friendly message, but it's better than nothing. */
1995 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
1996 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
1997 TREE_OVERFLOW (t) = 1;
1998 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
1999 && !MODE_HAS_NANS (TYPE_MODE (type)))
2000 TREE_OVERFLOW (t) = 1;
2001 /* Regular overflow, conversion produced an infinity in a mode that
2002 can't represent them. */
2003 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
2004 && REAL_VALUE_ISINF (value)
2005 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
2006 TREE_OVERFLOW (t) = 1;
2007 else
2008 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2009 return t;
2010 }
2011
2012 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2013 to a floating point type. */
2014
2015 static tree
2016 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2017 {
2018 REAL_VALUE_TYPE value;
2019 tree t;
2020
2021 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
2022 t = build_real (type, value);
2023
2024 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2025 return t;
2026 }
2027
2028 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2029 to another fixed-point type. */
2030
2031 static tree
2032 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2033 {
2034 FIXED_VALUE_TYPE value;
2035 tree t;
2036 bool overflow_p;
2037
2038 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2039 TYPE_SATURATING (type));
2040 t = build_fixed (type, value);
2041
2042 /* Propagate overflow flags. */
2043 if (overflow_p | TREE_OVERFLOW (arg1))
2044 TREE_OVERFLOW (t) = 1;
2045 return t;
2046 }
2047
2048 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2049 to a fixed-point type. */
2050
2051 static tree
2052 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2053 {
2054 FIXED_VALUE_TYPE value;
2055 tree t;
2056 bool overflow_p;
2057 double_int di;
2058
2059 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2060
2061 di.low = TREE_INT_CST_ELT (arg1, 0);
2062 if (TREE_INT_CST_NUNITS (arg1) == 1)
2063 di.high = (HOST_WIDE_INT) di.low < 0 ? (HOST_WIDE_INT) -1 : 0;
2064 else
2065 di.high = TREE_INT_CST_ELT (arg1, 1);
2066
2067 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type), di,
2068 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2069 TYPE_SATURATING (type));
2070 t = build_fixed (type, value);
2071
2072 /* Propagate overflow flags. */
2073 if (overflow_p | TREE_OVERFLOW (arg1))
2074 TREE_OVERFLOW (t) = 1;
2075 return t;
2076 }
2077
2078 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2079 to a fixed-point type. */
2080
2081 static tree
2082 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2083 {
2084 FIXED_VALUE_TYPE value;
2085 tree t;
2086 bool overflow_p;
2087
2088 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2089 &TREE_REAL_CST (arg1),
2090 TYPE_SATURATING (type));
2091 t = build_fixed (type, value);
2092
2093 /* Propagate overflow flags. */
2094 if (overflow_p | TREE_OVERFLOW (arg1))
2095 TREE_OVERFLOW (t) = 1;
2096 return t;
2097 }
2098
2099 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2100 type TYPE. If no simplification can be done return NULL_TREE. */
2101
2102 static tree
2103 fold_convert_const (enum tree_code code, tree type, tree arg1)
2104 {
2105 if (TREE_TYPE (arg1) == type)
2106 return arg1;
2107
2108 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2109 || TREE_CODE (type) == OFFSET_TYPE)
2110 {
2111 if (TREE_CODE (arg1) == INTEGER_CST)
2112 return fold_convert_const_int_from_int (type, arg1);
2113 else if (TREE_CODE (arg1) == REAL_CST)
2114 return fold_convert_const_int_from_real (code, type, arg1);
2115 else if (TREE_CODE (arg1) == FIXED_CST)
2116 return fold_convert_const_int_from_fixed (type, arg1);
2117 }
2118 else if (TREE_CODE (type) == REAL_TYPE)
2119 {
2120 if (TREE_CODE (arg1) == INTEGER_CST)
2121 return build_real_from_int_cst (type, arg1);
2122 else if (TREE_CODE (arg1) == REAL_CST)
2123 return fold_convert_const_real_from_real (type, arg1);
2124 else if (TREE_CODE (arg1) == FIXED_CST)
2125 return fold_convert_const_real_from_fixed (type, arg1);
2126 }
2127 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2128 {
2129 if (TREE_CODE (arg1) == FIXED_CST)
2130 return fold_convert_const_fixed_from_fixed (type, arg1);
2131 else if (TREE_CODE (arg1) == INTEGER_CST)
2132 return fold_convert_const_fixed_from_int (type, arg1);
2133 else if (TREE_CODE (arg1) == REAL_CST)
2134 return fold_convert_const_fixed_from_real (type, arg1);
2135 }
2136 return NULL_TREE;
2137 }
2138
2139 /* Construct a vector of zero elements of vector type TYPE. */
2140
2141 static tree
2142 build_zero_vector (tree type)
2143 {
2144 tree t;
2145
2146 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2147 return build_vector_from_val (type, t);
2148 }
2149
2150 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2151
2152 bool
2153 fold_convertible_p (const_tree type, const_tree arg)
2154 {
2155 tree orig = TREE_TYPE (arg);
2156
2157 if (type == orig)
2158 return true;
2159
2160 if (TREE_CODE (arg) == ERROR_MARK
2161 || TREE_CODE (type) == ERROR_MARK
2162 || TREE_CODE (orig) == ERROR_MARK)
2163 return false;
2164
2165 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2166 return true;
2167
2168 switch (TREE_CODE (type))
2169 {
2170 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2171 case POINTER_TYPE: case REFERENCE_TYPE:
2172 case OFFSET_TYPE:
2173 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2174 || TREE_CODE (orig) == OFFSET_TYPE)
2175 return true;
2176 return (TREE_CODE (orig) == VECTOR_TYPE
2177 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2178
2179 case REAL_TYPE:
2180 case FIXED_POINT_TYPE:
2181 case COMPLEX_TYPE:
2182 case VECTOR_TYPE:
2183 case VOID_TYPE:
2184 return TREE_CODE (type) == TREE_CODE (orig);
2185
2186 default:
2187 return false;
2188 }
2189 }
2190
2191 /* Convert expression ARG to type TYPE. Used by the middle-end for
2192 simple conversions in preference to calling the front-end's convert. */
2193
2194 tree
2195 fold_convert_loc (location_t loc, tree type, tree arg)
2196 {
2197 tree orig = TREE_TYPE (arg);
2198 tree tem;
2199
2200 if (type == orig)
2201 return arg;
2202
2203 if (TREE_CODE (arg) == ERROR_MARK
2204 || TREE_CODE (type) == ERROR_MARK
2205 || TREE_CODE (orig) == ERROR_MARK)
2206 return error_mark_node;
2207
2208 switch (TREE_CODE (type))
2209 {
2210 case POINTER_TYPE:
2211 case REFERENCE_TYPE:
2212 /* Handle conversions between pointers to different address spaces. */
2213 if (POINTER_TYPE_P (orig)
2214 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2215 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2216 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2217 /* fall through */
2218
2219 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2220 case OFFSET_TYPE:
2221 if (TREE_CODE (arg) == INTEGER_CST)
2222 {
2223 tem = fold_convert_const (NOP_EXPR, type, arg);
2224 if (tem != NULL_TREE)
2225 return tem;
2226 }
2227 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2228 || TREE_CODE (orig) == OFFSET_TYPE)
2229 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2230 if (TREE_CODE (orig) == COMPLEX_TYPE)
2231 return fold_convert_loc (loc, type,
2232 fold_build1_loc (loc, REALPART_EXPR,
2233 TREE_TYPE (orig), arg));
2234 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2235 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2236 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2237
2238 case REAL_TYPE:
2239 if (TREE_CODE (arg) == INTEGER_CST)
2240 {
2241 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2242 if (tem != NULL_TREE)
2243 return tem;
2244 }
2245 else if (TREE_CODE (arg) == REAL_CST)
2246 {
2247 tem = fold_convert_const (NOP_EXPR, type, arg);
2248 if (tem != NULL_TREE)
2249 return tem;
2250 }
2251 else if (TREE_CODE (arg) == FIXED_CST)
2252 {
2253 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2254 if (tem != NULL_TREE)
2255 return tem;
2256 }
2257
2258 switch (TREE_CODE (orig))
2259 {
2260 case INTEGER_TYPE:
2261 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2262 case POINTER_TYPE: case REFERENCE_TYPE:
2263 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2264
2265 case REAL_TYPE:
2266 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2267
2268 case FIXED_POINT_TYPE:
2269 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2270
2271 case COMPLEX_TYPE:
2272 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2273 return fold_convert_loc (loc, type, tem);
2274
2275 default:
2276 gcc_unreachable ();
2277 }
2278
2279 case FIXED_POINT_TYPE:
2280 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2281 || TREE_CODE (arg) == REAL_CST)
2282 {
2283 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2284 if (tem != NULL_TREE)
2285 goto fold_convert_exit;
2286 }
2287
2288 switch (TREE_CODE (orig))
2289 {
2290 case FIXED_POINT_TYPE:
2291 case INTEGER_TYPE:
2292 case ENUMERAL_TYPE:
2293 case BOOLEAN_TYPE:
2294 case REAL_TYPE:
2295 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2296
2297 case COMPLEX_TYPE:
2298 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2299 return fold_convert_loc (loc, type, tem);
2300
2301 default:
2302 gcc_unreachable ();
2303 }
2304
2305 case COMPLEX_TYPE:
2306 switch (TREE_CODE (orig))
2307 {
2308 case INTEGER_TYPE:
2309 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2310 case POINTER_TYPE: case REFERENCE_TYPE:
2311 case REAL_TYPE:
2312 case FIXED_POINT_TYPE:
2313 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2314 fold_convert_loc (loc, TREE_TYPE (type), arg),
2315 fold_convert_loc (loc, TREE_TYPE (type),
2316 integer_zero_node));
2317 case COMPLEX_TYPE:
2318 {
2319 tree rpart, ipart;
2320
2321 if (TREE_CODE (arg) == COMPLEX_EXPR)
2322 {
2323 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2324 TREE_OPERAND (arg, 0));
2325 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2326 TREE_OPERAND (arg, 1));
2327 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2328 }
2329
2330 arg = save_expr (arg);
2331 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2332 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2333 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2334 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2335 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2336 }
2337
2338 default:
2339 gcc_unreachable ();
2340 }
2341
2342 case VECTOR_TYPE:
2343 if (integer_zerop (arg))
2344 return build_zero_vector (type);
2345 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2346 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2347 || TREE_CODE (orig) == VECTOR_TYPE);
2348 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2349
2350 case VOID_TYPE:
2351 tem = fold_ignored_result (arg);
2352 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2353
2354 default:
2355 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2356 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2357 gcc_unreachable ();
2358 }
2359 fold_convert_exit:
2360 protected_set_expr_location_unshare (tem, loc);
2361 return tem;
2362 }
2363 \f
2364 /* Return false if expr can be assumed not to be an lvalue, true
2365 otherwise. */
2366
2367 static bool
2368 maybe_lvalue_p (const_tree x)
2369 {
2370 /* We only need to wrap lvalue tree codes. */
2371 switch (TREE_CODE (x))
2372 {
2373 case VAR_DECL:
2374 case PARM_DECL:
2375 case RESULT_DECL:
2376 case LABEL_DECL:
2377 case FUNCTION_DECL:
2378 case SSA_NAME:
2379
2380 case COMPONENT_REF:
2381 case MEM_REF:
2382 case INDIRECT_REF:
2383 case ARRAY_REF:
2384 case ARRAY_RANGE_REF:
2385 case BIT_FIELD_REF:
2386 case OBJ_TYPE_REF:
2387
2388 case REALPART_EXPR:
2389 case IMAGPART_EXPR:
2390 case PREINCREMENT_EXPR:
2391 case PREDECREMENT_EXPR:
2392 case SAVE_EXPR:
2393 case TRY_CATCH_EXPR:
2394 case WITH_CLEANUP_EXPR:
2395 case COMPOUND_EXPR:
2396 case MODIFY_EXPR:
2397 case TARGET_EXPR:
2398 case COND_EXPR:
2399 case BIND_EXPR:
2400 break;
2401
2402 default:
2403 /* Assume the worst for front-end tree codes. */
2404 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2405 break;
2406 return false;
2407 }
2408
2409 return true;
2410 }
2411
2412 /* Return an expr equal to X but certainly not valid as an lvalue. */
2413
2414 tree
2415 non_lvalue_loc (location_t loc, tree x)
2416 {
2417 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2418 us. */
2419 if (in_gimple_form)
2420 return x;
2421
2422 if (! maybe_lvalue_p (x))
2423 return x;
2424 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2425 }
2426
2427 /* When pedantic, return an expr equal to X but certainly not valid as a
2428 pedantic lvalue. Otherwise, return X. */
2429
2430 static tree
2431 pedantic_non_lvalue_loc (location_t loc, tree x)
2432 {
2433 return protected_set_expr_location_unshare (x, loc);
2434 }
2435 \f
2436 /* Given a tree comparison code, return the code that is the logical inverse.
2437 It is generally not safe to do this for floating-point comparisons, except
2438 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2439 ERROR_MARK in this case. */
2440
2441 enum tree_code
2442 invert_tree_comparison (enum tree_code code, bool honor_nans)
2443 {
2444 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2445 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2446 return ERROR_MARK;
2447
2448 switch (code)
2449 {
2450 case EQ_EXPR:
2451 return NE_EXPR;
2452 case NE_EXPR:
2453 return EQ_EXPR;
2454 case GT_EXPR:
2455 return honor_nans ? UNLE_EXPR : LE_EXPR;
2456 case GE_EXPR:
2457 return honor_nans ? UNLT_EXPR : LT_EXPR;
2458 case LT_EXPR:
2459 return honor_nans ? UNGE_EXPR : GE_EXPR;
2460 case LE_EXPR:
2461 return honor_nans ? UNGT_EXPR : GT_EXPR;
2462 case LTGT_EXPR:
2463 return UNEQ_EXPR;
2464 case UNEQ_EXPR:
2465 return LTGT_EXPR;
2466 case UNGT_EXPR:
2467 return LE_EXPR;
2468 case UNGE_EXPR:
2469 return LT_EXPR;
2470 case UNLT_EXPR:
2471 return GE_EXPR;
2472 case UNLE_EXPR:
2473 return GT_EXPR;
2474 case ORDERED_EXPR:
2475 return UNORDERED_EXPR;
2476 case UNORDERED_EXPR:
2477 return ORDERED_EXPR;
2478 default:
2479 gcc_unreachable ();
2480 }
2481 }
2482
2483 /* Similar, but return the comparison that results if the operands are
2484 swapped. This is safe for floating-point. */
2485
2486 enum tree_code
2487 swap_tree_comparison (enum tree_code code)
2488 {
2489 switch (code)
2490 {
2491 case EQ_EXPR:
2492 case NE_EXPR:
2493 case ORDERED_EXPR:
2494 case UNORDERED_EXPR:
2495 case LTGT_EXPR:
2496 case UNEQ_EXPR:
2497 return code;
2498 case GT_EXPR:
2499 return LT_EXPR;
2500 case GE_EXPR:
2501 return LE_EXPR;
2502 case LT_EXPR:
2503 return GT_EXPR;
2504 case LE_EXPR:
2505 return GE_EXPR;
2506 case UNGT_EXPR:
2507 return UNLT_EXPR;
2508 case UNGE_EXPR:
2509 return UNLE_EXPR;
2510 case UNLT_EXPR:
2511 return UNGT_EXPR;
2512 case UNLE_EXPR:
2513 return UNGE_EXPR;
2514 default:
2515 gcc_unreachable ();
2516 }
2517 }
2518
2519
2520 /* Convert a comparison tree code from an enum tree_code representation
2521 into a compcode bit-based encoding. This function is the inverse of
2522 compcode_to_comparison. */
2523
2524 static enum comparison_code
2525 comparison_to_compcode (enum tree_code code)
2526 {
2527 switch (code)
2528 {
2529 case LT_EXPR:
2530 return COMPCODE_LT;
2531 case EQ_EXPR:
2532 return COMPCODE_EQ;
2533 case LE_EXPR:
2534 return COMPCODE_LE;
2535 case GT_EXPR:
2536 return COMPCODE_GT;
2537 case NE_EXPR:
2538 return COMPCODE_NE;
2539 case GE_EXPR:
2540 return COMPCODE_GE;
2541 case ORDERED_EXPR:
2542 return COMPCODE_ORD;
2543 case UNORDERED_EXPR:
2544 return COMPCODE_UNORD;
2545 case UNLT_EXPR:
2546 return COMPCODE_UNLT;
2547 case UNEQ_EXPR:
2548 return COMPCODE_UNEQ;
2549 case UNLE_EXPR:
2550 return COMPCODE_UNLE;
2551 case UNGT_EXPR:
2552 return COMPCODE_UNGT;
2553 case LTGT_EXPR:
2554 return COMPCODE_LTGT;
2555 case UNGE_EXPR:
2556 return COMPCODE_UNGE;
2557 default:
2558 gcc_unreachable ();
2559 }
2560 }
2561
2562 /* Convert a compcode bit-based encoding of a comparison operator back
2563 to GCC's enum tree_code representation. This function is the
2564 inverse of comparison_to_compcode. */
2565
2566 static enum tree_code
2567 compcode_to_comparison (enum comparison_code code)
2568 {
2569 switch (code)
2570 {
2571 case COMPCODE_LT:
2572 return LT_EXPR;
2573 case COMPCODE_EQ:
2574 return EQ_EXPR;
2575 case COMPCODE_LE:
2576 return LE_EXPR;
2577 case COMPCODE_GT:
2578 return GT_EXPR;
2579 case COMPCODE_NE:
2580 return NE_EXPR;
2581 case COMPCODE_GE:
2582 return GE_EXPR;
2583 case COMPCODE_ORD:
2584 return ORDERED_EXPR;
2585 case COMPCODE_UNORD:
2586 return UNORDERED_EXPR;
2587 case COMPCODE_UNLT:
2588 return UNLT_EXPR;
2589 case COMPCODE_UNEQ:
2590 return UNEQ_EXPR;
2591 case COMPCODE_UNLE:
2592 return UNLE_EXPR;
2593 case COMPCODE_UNGT:
2594 return UNGT_EXPR;
2595 case COMPCODE_LTGT:
2596 return LTGT_EXPR;
2597 case COMPCODE_UNGE:
2598 return UNGE_EXPR;
2599 default:
2600 gcc_unreachable ();
2601 }
2602 }
2603
2604 /* Return a tree for the comparison which is the combination of
2605 doing the AND or OR (depending on CODE) of the two operations LCODE
2606 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2607 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2608 if this makes the transformation invalid. */
2609
2610 tree
2611 combine_comparisons (location_t loc,
2612 enum tree_code code, enum tree_code lcode,
2613 enum tree_code rcode, tree truth_type,
2614 tree ll_arg, tree lr_arg)
2615 {
2616 bool honor_nans = HONOR_NANS (ll_arg);
2617 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2618 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2619 int compcode;
2620
2621 switch (code)
2622 {
2623 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2624 compcode = lcompcode & rcompcode;
2625 break;
2626
2627 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2628 compcode = lcompcode | rcompcode;
2629 break;
2630
2631 default:
2632 return NULL_TREE;
2633 }
2634
2635 if (!honor_nans)
2636 {
2637 /* Eliminate unordered comparisons, as well as LTGT and ORD
2638 which are not used unless the mode has NaNs. */
2639 compcode &= ~COMPCODE_UNORD;
2640 if (compcode == COMPCODE_LTGT)
2641 compcode = COMPCODE_NE;
2642 else if (compcode == COMPCODE_ORD)
2643 compcode = COMPCODE_TRUE;
2644 }
2645 else if (flag_trapping_math)
2646 {
2647 /* Check that the original operation and the optimized ones will trap
2648 under the same condition. */
2649 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2650 && (lcompcode != COMPCODE_EQ)
2651 && (lcompcode != COMPCODE_ORD);
2652 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2653 && (rcompcode != COMPCODE_EQ)
2654 && (rcompcode != COMPCODE_ORD);
2655 bool trap = (compcode & COMPCODE_UNORD) == 0
2656 && (compcode != COMPCODE_EQ)
2657 && (compcode != COMPCODE_ORD);
2658
2659 /* In a short-circuited boolean expression the LHS might be
2660 such that the RHS, if evaluated, will never trap. For
2661 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2662 if neither x nor y is NaN. (This is a mixed blessing: for
2663 example, the expression above will never trap, hence
2664 optimizing it to x < y would be invalid). */
2665 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2666 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2667 rtrap = false;
2668
2669 /* If the comparison was short-circuited, and only the RHS
2670 trapped, we may now generate a spurious trap. */
2671 if (rtrap && !ltrap
2672 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2673 return NULL_TREE;
2674
2675 /* If we changed the conditions that cause a trap, we lose. */
2676 if ((ltrap || rtrap) != trap)
2677 return NULL_TREE;
2678 }
2679
2680 if (compcode == COMPCODE_TRUE)
2681 return constant_boolean_node (true, truth_type);
2682 else if (compcode == COMPCODE_FALSE)
2683 return constant_boolean_node (false, truth_type);
2684 else
2685 {
2686 enum tree_code tcode;
2687
2688 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2689 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2690 }
2691 }
2692 \f
2693 /* Return nonzero if two operands (typically of the same tree node)
2694 are necessarily equal. If either argument has side-effects this
2695 function returns zero. FLAGS modifies behavior as follows:
2696
2697 If OEP_ONLY_CONST is set, only return nonzero for constants.
2698 This function tests whether the operands are indistinguishable;
2699 it does not test whether they are equal using C's == operation.
2700 The distinction is important for IEEE floating point, because
2701 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2702 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2703
2704 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2705 even though it may hold multiple values during a function.
2706 This is because a GCC tree node guarantees that nothing else is
2707 executed between the evaluation of its "operands" (which may often
2708 be evaluated in arbitrary order). Hence if the operands themselves
2709 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2710 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2711 unset means assuming isochronic (or instantaneous) tree equivalence.
2712 Unless comparing arbitrary expression trees, such as from different
2713 statements, this flag can usually be left unset.
2714
2715 If OEP_PURE_SAME is set, then pure functions with identical arguments
2716 are considered the same. It is used when the caller has other ways
2717 to ensure that global memory is unchanged in between. */
2718
2719 int
2720 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2721 {
2722 /* If either is ERROR_MARK, they aren't equal. */
2723 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2724 || TREE_TYPE (arg0) == error_mark_node
2725 || TREE_TYPE (arg1) == error_mark_node)
2726 return 0;
2727
2728 /* Similar, if either does not have a type (like a released SSA name),
2729 they aren't equal. */
2730 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2731 return 0;
2732
2733 /* Check equality of integer constants before bailing out due to
2734 precision differences. */
2735 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2736 return tree_int_cst_equal (arg0, arg1);
2737
2738 /* If both types don't have the same signedness, then we can't consider
2739 them equal. We must check this before the STRIP_NOPS calls
2740 because they may change the signedness of the arguments. As pointers
2741 strictly don't have a signedness, require either two pointers or
2742 two non-pointers as well. */
2743 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2744 || POINTER_TYPE_P (TREE_TYPE (arg0)) != POINTER_TYPE_P (TREE_TYPE (arg1)))
2745 return 0;
2746
2747 /* We cannot consider pointers to different address space equal. */
2748 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && POINTER_TYPE_P (TREE_TYPE (arg1))
2749 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2750 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2751 return 0;
2752
2753 /* If both types don't have the same precision, then it is not safe
2754 to strip NOPs. */
2755 if (element_precision (TREE_TYPE (arg0))
2756 != element_precision (TREE_TYPE (arg1)))
2757 return 0;
2758
2759 STRIP_NOPS (arg0);
2760 STRIP_NOPS (arg1);
2761
2762 /* In case both args are comparisons but with different comparison
2763 code, try to swap the comparison operands of one arg to produce
2764 a match and compare that variant. */
2765 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2766 && COMPARISON_CLASS_P (arg0)
2767 && COMPARISON_CLASS_P (arg1))
2768 {
2769 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2770
2771 if (TREE_CODE (arg0) == swap_code)
2772 return operand_equal_p (TREE_OPERAND (arg0, 0),
2773 TREE_OPERAND (arg1, 1), flags)
2774 && operand_equal_p (TREE_OPERAND (arg0, 1),
2775 TREE_OPERAND (arg1, 0), flags);
2776 }
2777
2778 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2779 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2780 && !(CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1)))
2781 return 0;
2782
2783 /* This is needed for conversions and for COMPONENT_REF.
2784 Might as well play it safe and always test this. */
2785 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2786 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2787 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2788 return 0;
2789
2790 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2791 We don't care about side effects in that case because the SAVE_EXPR
2792 takes care of that for us. In all other cases, two expressions are
2793 equal if they have no side effects. If we have two identical
2794 expressions with side effects that should be treated the same due
2795 to the only side effects being identical SAVE_EXPR's, that will
2796 be detected in the recursive calls below.
2797 If we are taking an invariant address of two identical objects
2798 they are necessarily equal as well. */
2799 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2800 && (TREE_CODE (arg0) == SAVE_EXPR
2801 || (flags & OEP_CONSTANT_ADDRESS_OF)
2802 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2803 return 1;
2804
2805 /* Next handle constant cases, those for which we can return 1 even
2806 if ONLY_CONST is set. */
2807 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2808 switch (TREE_CODE (arg0))
2809 {
2810 case INTEGER_CST:
2811 return tree_int_cst_equal (arg0, arg1);
2812
2813 case FIXED_CST:
2814 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2815 TREE_FIXED_CST (arg1));
2816
2817 case REAL_CST:
2818 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2819 TREE_REAL_CST (arg1)))
2820 return 1;
2821
2822
2823 if (!HONOR_SIGNED_ZEROS (arg0))
2824 {
2825 /* If we do not distinguish between signed and unsigned zero,
2826 consider them equal. */
2827 if (real_zerop (arg0) && real_zerop (arg1))
2828 return 1;
2829 }
2830 return 0;
2831
2832 case VECTOR_CST:
2833 {
2834 unsigned i;
2835
2836 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2837 return 0;
2838
2839 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2840 {
2841 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2842 VECTOR_CST_ELT (arg1, i), flags))
2843 return 0;
2844 }
2845 return 1;
2846 }
2847
2848 case COMPLEX_CST:
2849 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2850 flags)
2851 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2852 flags));
2853
2854 case STRING_CST:
2855 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2856 && ! memcmp (TREE_STRING_POINTER (arg0),
2857 TREE_STRING_POINTER (arg1),
2858 TREE_STRING_LENGTH (arg0)));
2859
2860 case ADDR_EXPR:
2861 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2862 TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1)
2863 ? OEP_CONSTANT_ADDRESS_OF | OEP_ADDRESS_OF : 0);
2864 default:
2865 break;
2866 }
2867
2868 if (flags & OEP_ONLY_CONST)
2869 return 0;
2870
2871 /* Define macros to test an operand from arg0 and arg1 for equality and a
2872 variant that allows null and views null as being different from any
2873 non-null value. In the latter case, if either is null, the both
2874 must be; otherwise, do the normal comparison. */
2875 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2876 TREE_OPERAND (arg1, N), flags)
2877
2878 #define OP_SAME_WITH_NULL(N) \
2879 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2880 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2881
2882 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2883 {
2884 case tcc_unary:
2885 /* Two conversions are equal only if signedness and modes match. */
2886 switch (TREE_CODE (arg0))
2887 {
2888 CASE_CONVERT:
2889 case FIX_TRUNC_EXPR:
2890 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2891 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2892 return 0;
2893 break;
2894 default:
2895 break;
2896 }
2897
2898 return OP_SAME (0);
2899
2900
2901 case tcc_comparison:
2902 case tcc_binary:
2903 if (OP_SAME (0) && OP_SAME (1))
2904 return 1;
2905
2906 /* For commutative ops, allow the other order. */
2907 return (commutative_tree_code (TREE_CODE (arg0))
2908 && operand_equal_p (TREE_OPERAND (arg0, 0),
2909 TREE_OPERAND (arg1, 1), flags)
2910 && operand_equal_p (TREE_OPERAND (arg0, 1),
2911 TREE_OPERAND (arg1, 0), flags));
2912
2913 case tcc_reference:
2914 /* If either of the pointer (or reference) expressions we are
2915 dereferencing contain a side effect, these cannot be equal,
2916 but their addresses can be. */
2917 if ((flags & OEP_CONSTANT_ADDRESS_OF) == 0
2918 && (TREE_SIDE_EFFECTS (arg0)
2919 || TREE_SIDE_EFFECTS (arg1)))
2920 return 0;
2921
2922 switch (TREE_CODE (arg0))
2923 {
2924 case INDIRECT_REF:
2925 if (!(flags & OEP_ADDRESS_OF)
2926 && (TYPE_ALIGN (TREE_TYPE (arg0))
2927 != TYPE_ALIGN (TREE_TYPE (arg1))))
2928 return 0;
2929 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2930 return OP_SAME (0);
2931
2932 case REALPART_EXPR:
2933 case IMAGPART_EXPR:
2934 return OP_SAME (0);
2935
2936 case TARGET_MEM_REF:
2937 case MEM_REF:
2938 /* Require equal access sizes, and similar pointer types.
2939 We can have incomplete types for array references of
2940 variable-sized arrays from the Fortran frontend
2941 though. Also verify the types are compatible. */
2942 if (!((TYPE_SIZE (TREE_TYPE (arg0)) == TYPE_SIZE (TREE_TYPE (arg1))
2943 || (TYPE_SIZE (TREE_TYPE (arg0))
2944 && TYPE_SIZE (TREE_TYPE (arg1))
2945 && operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
2946 TYPE_SIZE (TREE_TYPE (arg1)), flags)))
2947 && types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1))
2948 && ((flags & OEP_ADDRESS_OF)
2949 || (alias_ptr_types_compatible_p
2950 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
2951 TREE_TYPE (TREE_OPERAND (arg1, 1)))
2952 && (MR_DEPENDENCE_CLIQUE (arg0)
2953 == MR_DEPENDENCE_CLIQUE (arg1))
2954 && (MR_DEPENDENCE_BASE (arg0)
2955 == MR_DEPENDENCE_BASE (arg1))
2956 && (TYPE_ALIGN (TREE_TYPE (arg0))
2957 == TYPE_ALIGN (TREE_TYPE (arg1)))))))
2958 return 0;
2959 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2960 return (OP_SAME (0) && OP_SAME (1)
2961 /* TARGET_MEM_REF require equal extra operands. */
2962 && (TREE_CODE (arg0) != TARGET_MEM_REF
2963 || (OP_SAME_WITH_NULL (2)
2964 && OP_SAME_WITH_NULL (3)
2965 && OP_SAME_WITH_NULL (4))));
2966
2967 case ARRAY_REF:
2968 case ARRAY_RANGE_REF:
2969 /* Operands 2 and 3 may be null.
2970 Compare the array index by value if it is constant first as we
2971 may have different types but same value here. */
2972 if (!OP_SAME (0))
2973 return 0;
2974 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2975 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
2976 TREE_OPERAND (arg1, 1))
2977 || OP_SAME (1))
2978 && OP_SAME_WITH_NULL (2)
2979 && OP_SAME_WITH_NULL (3));
2980
2981 case COMPONENT_REF:
2982 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
2983 may be NULL when we're called to compare MEM_EXPRs. */
2984 if (!OP_SAME_WITH_NULL (0)
2985 || !OP_SAME (1))
2986 return 0;
2987 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2988 return OP_SAME_WITH_NULL (2);
2989
2990 case BIT_FIELD_REF:
2991 if (!OP_SAME (0))
2992 return 0;
2993 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2994 return OP_SAME (1) && OP_SAME (2);
2995
2996 default:
2997 return 0;
2998 }
2999
3000 case tcc_expression:
3001 switch (TREE_CODE (arg0))
3002 {
3003 case ADDR_EXPR:
3004 return operand_equal_p (TREE_OPERAND (arg0, 0),
3005 TREE_OPERAND (arg1, 0),
3006 flags | OEP_ADDRESS_OF);
3007
3008 case TRUTH_NOT_EXPR:
3009 return OP_SAME (0);
3010
3011 case TRUTH_ANDIF_EXPR:
3012 case TRUTH_ORIF_EXPR:
3013 return OP_SAME (0) && OP_SAME (1);
3014
3015 case FMA_EXPR:
3016 case WIDEN_MULT_PLUS_EXPR:
3017 case WIDEN_MULT_MINUS_EXPR:
3018 if (!OP_SAME (2))
3019 return 0;
3020 /* The multiplcation operands are commutative. */
3021 /* FALLTHRU */
3022
3023 case TRUTH_AND_EXPR:
3024 case TRUTH_OR_EXPR:
3025 case TRUTH_XOR_EXPR:
3026 if (OP_SAME (0) && OP_SAME (1))
3027 return 1;
3028
3029 /* Otherwise take into account this is a commutative operation. */
3030 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3031 TREE_OPERAND (arg1, 1), flags)
3032 && operand_equal_p (TREE_OPERAND (arg0, 1),
3033 TREE_OPERAND (arg1, 0), flags));
3034
3035 case COND_EXPR:
3036 case VEC_COND_EXPR:
3037 case DOT_PROD_EXPR:
3038 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3039
3040 default:
3041 return 0;
3042 }
3043
3044 case tcc_vl_exp:
3045 switch (TREE_CODE (arg0))
3046 {
3047 case CALL_EXPR:
3048 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3049 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3050 /* If not both CALL_EXPRs are either internal or normal function
3051 functions, then they are not equal. */
3052 return 0;
3053 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3054 {
3055 /* If the CALL_EXPRs call different internal functions, then they
3056 are not equal. */
3057 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3058 return 0;
3059 }
3060 else
3061 {
3062 /* If the CALL_EXPRs call different functions, then they are not
3063 equal. */
3064 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3065 flags))
3066 return 0;
3067 }
3068
3069 {
3070 unsigned int cef = call_expr_flags (arg0);
3071 if (flags & OEP_PURE_SAME)
3072 cef &= ECF_CONST | ECF_PURE;
3073 else
3074 cef &= ECF_CONST;
3075 if (!cef)
3076 return 0;
3077 }
3078
3079 /* Now see if all the arguments are the same. */
3080 {
3081 const_call_expr_arg_iterator iter0, iter1;
3082 const_tree a0, a1;
3083 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3084 a1 = first_const_call_expr_arg (arg1, &iter1);
3085 a0 && a1;
3086 a0 = next_const_call_expr_arg (&iter0),
3087 a1 = next_const_call_expr_arg (&iter1))
3088 if (! operand_equal_p (a0, a1, flags))
3089 return 0;
3090
3091 /* If we get here and both argument lists are exhausted
3092 then the CALL_EXPRs are equal. */
3093 return ! (a0 || a1);
3094 }
3095 default:
3096 return 0;
3097 }
3098
3099 case tcc_declaration:
3100 /* Consider __builtin_sqrt equal to sqrt. */
3101 return (TREE_CODE (arg0) == FUNCTION_DECL
3102 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3103 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3104 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3105
3106 default:
3107 return 0;
3108 }
3109
3110 #undef OP_SAME
3111 #undef OP_SAME_WITH_NULL
3112 }
3113 \f
3114 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3115 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3116
3117 When in doubt, return 0. */
3118
3119 static int
3120 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3121 {
3122 int unsignedp1, unsignedpo;
3123 tree primarg0, primarg1, primother;
3124 unsigned int correct_width;
3125
3126 if (operand_equal_p (arg0, arg1, 0))
3127 return 1;
3128
3129 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3130 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3131 return 0;
3132
3133 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3134 and see if the inner values are the same. This removes any
3135 signedness comparison, which doesn't matter here. */
3136 primarg0 = arg0, primarg1 = arg1;
3137 STRIP_NOPS (primarg0);
3138 STRIP_NOPS (primarg1);
3139 if (operand_equal_p (primarg0, primarg1, 0))
3140 return 1;
3141
3142 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3143 actual comparison operand, ARG0.
3144
3145 First throw away any conversions to wider types
3146 already present in the operands. */
3147
3148 primarg1 = get_narrower (arg1, &unsignedp1);
3149 primother = get_narrower (other, &unsignedpo);
3150
3151 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3152 if (unsignedp1 == unsignedpo
3153 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3154 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3155 {
3156 tree type = TREE_TYPE (arg0);
3157
3158 /* Make sure shorter operand is extended the right way
3159 to match the longer operand. */
3160 primarg1 = fold_convert (signed_or_unsigned_type_for
3161 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3162
3163 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3164 return 1;
3165 }
3166
3167 return 0;
3168 }
3169 \f
3170 /* See if ARG is an expression that is either a comparison or is performing
3171 arithmetic on comparisons. The comparisons must only be comparing
3172 two different values, which will be stored in *CVAL1 and *CVAL2; if
3173 they are nonzero it means that some operands have already been found.
3174 No variables may be used anywhere else in the expression except in the
3175 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3176 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3177
3178 If this is true, return 1. Otherwise, return zero. */
3179
3180 static int
3181 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3182 {
3183 enum tree_code code = TREE_CODE (arg);
3184 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3185
3186 /* We can handle some of the tcc_expression cases here. */
3187 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3188 tclass = tcc_unary;
3189 else if (tclass == tcc_expression
3190 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3191 || code == COMPOUND_EXPR))
3192 tclass = tcc_binary;
3193
3194 else if (tclass == tcc_expression && code == SAVE_EXPR
3195 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3196 {
3197 /* If we've already found a CVAL1 or CVAL2, this expression is
3198 two complex to handle. */
3199 if (*cval1 || *cval2)
3200 return 0;
3201
3202 tclass = tcc_unary;
3203 *save_p = 1;
3204 }
3205
3206 switch (tclass)
3207 {
3208 case tcc_unary:
3209 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3210
3211 case tcc_binary:
3212 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3213 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3214 cval1, cval2, save_p));
3215
3216 case tcc_constant:
3217 return 1;
3218
3219 case tcc_expression:
3220 if (code == COND_EXPR)
3221 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3222 cval1, cval2, save_p)
3223 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3224 cval1, cval2, save_p)
3225 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3226 cval1, cval2, save_p));
3227 return 0;
3228
3229 case tcc_comparison:
3230 /* First see if we can handle the first operand, then the second. For
3231 the second operand, we know *CVAL1 can't be zero. It must be that
3232 one side of the comparison is each of the values; test for the
3233 case where this isn't true by failing if the two operands
3234 are the same. */
3235
3236 if (operand_equal_p (TREE_OPERAND (arg, 0),
3237 TREE_OPERAND (arg, 1), 0))
3238 return 0;
3239
3240 if (*cval1 == 0)
3241 *cval1 = TREE_OPERAND (arg, 0);
3242 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3243 ;
3244 else if (*cval2 == 0)
3245 *cval2 = TREE_OPERAND (arg, 0);
3246 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3247 ;
3248 else
3249 return 0;
3250
3251 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3252 ;
3253 else if (*cval2 == 0)
3254 *cval2 = TREE_OPERAND (arg, 1);
3255 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3256 ;
3257 else
3258 return 0;
3259
3260 return 1;
3261
3262 default:
3263 return 0;
3264 }
3265 }
3266 \f
3267 /* ARG is a tree that is known to contain just arithmetic operations and
3268 comparisons. Evaluate the operations in the tree substituting NEW0 for
3269 any occurrence of OLD0 as an operand of a comparison and likewise for
3270 NEW1 and OLD1. */
3271
3272 static tree
3273 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3274 tree old1, tree new1)
3275 {
3276 tree type = TREE_TYPE (arg);
3277 enum tree_code code = TREE_CODE (arg);
3278 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3279
3280 /* We can handle some of the tcc_expression cases here. */
3281 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3282 tclass = tcc_unary;
3283 else if (tclass == tcc_expression
3284 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3285 tclass = tcc_binary;
3286
3287 switch (tclass)
3288 {
3289 case tcc_unary:
3290 return fold_build1_loc (loc, code, type,
3291 eval_subst (loc, TREE_OPERAND (arg, 0),
3292 old0, new0, old1, new1));
3293
3294 case tcc_binary:
3295 return fold_build2_loc (loc, code, type,
3296 eval_subst (loc, TREE_OPERAND (arg, 0),
3297 old0, new0, old1, new1),
3298 eval_subst (loc, TREE_OPERAND (arg, 1),
3299 old0, new0, old1, new1));
3300
3301 case tcc_expression:
3302 switch (code)
3303 {
3304 case SAVE_EXPR:
3305 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3306 old1, new1);
3307
3308 case COMPOUND_EXPR:
3309 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3310 old1, new1);
3311
3312 case COND_EXPR:
3313 return fold_build3_loc (loc, code, type,
3314 eval_subst (loc, TREE_OPERAND (arg, 0),
3315 old0, new0, old1, new1),
3316 eval_subst (loc, TREE_OPERAND (arg, 1),
3317 old0, new0, old1, new1),
3318 eval_subst (loc, TREE_OPERAND (arg, 2),
3319 old0, new0, old1, new1));
3320 default:
3321 break;
3322 }
3323 /* Fall through - ??? */
3324
3325 case tcc_comparison:
3326 {
3327 tree arg0 = TREE_OPERAND (arg, 0);
3328 tree arg1 = TREE_OPERAND (arg, 1);
3329
3330 /* We need to check both for exact equality and tree equality. The
3331 former will be true if the operand has a side-effect. In that
3332 case, we know the operand occurred exactly once. */
3333
3334 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3335 arg0 = new0;
3336 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3337 arg0 = new1;
3338
3339 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3340 arg1 = new0;
3341 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3342 arg1 = new1;
3343
3344 return fold_build2_loc (loc, code, type, arg0, arg1);
3345 }
3346
3347 default:
3348 return arg;
3349 }
3350 }
3351 \f
3352 /* Return a tree for the case when the result of an expression is RESULT
3353 converted to TYPE and OMITTED was previously an operand of the expression
3354 but is now not needed (e.g., we folded OMITTED * 0).
3355
3356 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3357 the conversion of RESULT to TYPE. */
3358
3359 tree
3360 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3361 {
3362 tree t = fold_convert_loc (loc, type, result);
3363
3364 /* If the resulting operand is an empty statement, just return the omitted
3365 statement casted to void. */
3366 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3367 return build1_loc (loc, NOP_EXPR, void_type_node,
3368 fold_ignored_result (omitted));
3369
3370 if (TREE_SIDE_EFFECTS (omitted))
3371 return build2_loc (loc, COMPOUND_EXPR, type,
3372 fold_ignored_result (omitted), t);
3373
3374 return non_lvalue_loc (loc, t);
3375 }
3376
3377 /* Return a tree for the case when the result of an expression is RESULT
3378 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3379 of the expression but are now not needed.
3380
3381 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3382 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3383 evaluated before OMITTED2. Otherwise, if neither has side effects,
3384 just do the conversion of RESULT to TYPE. */
3385
3386 tree
3387 omit_two_operands_loc (location_t loc, tree type, tree result,
3388 tree omitted1, tree omitted2)
3389 {
3390 tree t = fold_convert_loc (loc, type, result);
3391
3392 if (TREE_SIDE_EFFECTS (omitted2))
3393 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3394 if (TREE_SIDE_EFFECTS (omitted1))
3395 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3396
3397 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3398 }
3399
3400 \f
3401 /* Return a simplified tree node for the truth-negation of ARG. This
3402 never alters ARG itself. We assume that ARG is an operation that
3403 returns a truth value (0 or 1).
3404
3405 FIXME: one would think we would fold the result, but it causes
3406 problems with the dominator optimizer. */
3407
3408 static tree
3409 fold_truth_not_expr (location_t loc, tree arg)
3410 {
3411 tree type = TREE_TYPE (arg);
3412 enum tree_code code = TREE_CODE (arg);
3413 location_t loc1, loc2;
3414
3415 /* If this is a comparison, we can simply invert it, except for
3416 floating-point non-equality comparisons, in which case we just
3417 enclose a TRUTH_NOT_EXPR around what we have. */
3418
3419 if (TREE_CODE_CLASS (code) == tcc_comparison)
3420 {
3421 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3422 if (FLOAT_TYPE_P (op_type)
3423 && flag_trapping_math
3424 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3425 && code != NE_EXPR && code != EQ_EXPR)
3426 return NULL_TREE;
3427
3428 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3429 if (code == ERROR_MARK)
3430 return NULL_TREE;
3431
3432 return build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3433 TREE_OPERAND (arg, 1));
3434 }
3435
3436 switch (code)
3437 {
3438 case INTEGER_CST:
3439 return constant_boolean_node (integer_zerop (arg), type);
3440
3441 case TRUTH_AND_EXPR:
3442 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3443 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3444 return build2_loc (loc, TRUTH_OR_EXPR, type,
3445 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3446 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3447
3448 case TRUTH_OR_EXPR:
3449 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3450 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3451 return build2_loc (loc, TRUTH_AND_EXPR, type,
3452 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3453 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3454
3455 case TRUTH_XOR_EXPR:
3456 /* Here we can invert either operand. We invert the first operand
3457 unless the second operand is a TRUTH_NOT_EXPR in which case our
3458 result is the XOR of the first operand with the inside of the
3459 negation of the second operand. */
3460
3461 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3462 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3463 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3464 else
3465 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3466 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3467 TREE_OPERAND (arg, 1));
3468
3469 case TRUTH_ANDIF_EXPR:
3470 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3471 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3472 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3473 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3474 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3475
3476 case TRUTH_ORIF_EXPR:
3477 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3478 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3479 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3480 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3481 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3482
3483 case TRUTH_NOT_EXPR:
3484 return TREE_OPERAND (arg, 0);
3485
3486 case COND_EXPR:
3487 {
3488 tree arg1 = TREE_OPERAND (arg, 1);
3489 tree arg2 = TREE_OPERAND (arg, 2);
3490
3491 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3492 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3493
3494 /* A COND_EXPR may have a throw as one operand, which
3495 then has void type. Just leave void operands
3496 as they are. */
3497 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3498 VOID_TYPE_P (TREE_TYPE (arg1))
3499 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3500 VOID_TYPE_P (TREE_TYPE (arg2))
3501 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3502 }
3503
3504 case COMPOUND_EXPR:
3505 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3506 return build2_loc (loc, COMPOUND_EXPR, type,
3507 TREE_OPERAND (arg, 0),
3508 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3509
3510 case NON_LVALUE_EXPR:
3511 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3512 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3513
3514 CASE_CONVERT:
3515 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3516 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3517
3518 /* ... fall through ... */
3519
3520 case FLOAT_EXPR:
3521 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3522 return build1_loc (loc, TREE_CODE (arg), type,
3523 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3524
3525 case BIT_AND_EXPR:
3526 if (!integer_onep (TREE_OPERAND (arg, 1)))
3527 return NULL_TREE;
3528 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3529
3530 case SAVE_EXPR:
3531 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3532
3533 case CLEANUP_POINT_EXPR:
3534 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3535 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3536 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3537
3538 default:
3539 return NULL_TREE;
3540 }
3541 }
3542
3543 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3544 assume that ARG is an operation that returns a truth value (0 or 1
3545 for scalars, 0 or -1 for vectors). Return the folded expression if
3546 folding is successful. Otherwise, return NULL_TREE. */
3547
3548 static tree
3549 fold_invert_truthvalue (location_t loc, tree arg)
3550 {
3551 tree type = TREE_TYPE (arg);
3552 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3553 ? BIT_NOT_EXPR
3554 : TRUTH_NOT_EXPR,
3555 type, arg);
3556 }
3557
3558 /* Return a simplified tree node for the truth-negation of ARG. This
3559 never alters ARG itself. We assume that ARG is an operation that
3560 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3561
3562 tree
3563 invert_truthvalue_loc (location_t loc, tree arg)
3564 {
3565 if (TREE_CODE (arg) == ERROR_MARK)
3566 return arg;
3567
3568 tree type = TREE_TYPE (arg);
3569 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3570 ? BIT_NOT_EXPR
3571 : TRUTH_NOT_EXPR,
3572 type, arg);
3573 }
3574
3575 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3576 operands are another bit-wise operation with a common input. If so,
3577 distribute the bit operations to save an operation and possibly two if
3578 constants are involved. For example, convert
3579 (A | B) & (A | C) into A | (B & C)
3580 Further simplification will occur if B and C are constants.
3581
3582 If this optimization cannot be done, 0 will be returned. */
3583
3584 static tree
3585 distribute_bit_expr (location_t loc, enum tree_code code, tree type,
3586 tree arg0, tree arg1)
3587 {
3588 tree common;
3589 tree left, right;
3590
3591 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3592 || TREE_CODE (arg0) == code
3593 || (TREE_CODE (arg0) != BIT_AND_EXPR
3594 && TREE_CODE (arg0) != BIT_IOR_EXPR))
3595 return 0;
3596
3597 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
3598 {
3599 common = TREE_OPERAND (arg0, 0);
3600 left = TREE_OPERAND (arg0, 1);
3601 right = TREE_OPERAND (arg1, 1);
3602 }
3603 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
3604 {
3605 common = TREE_OPERAND (arg0, 0);
3606 left = TREE_OPERAND (arg0, 1);
3607 right = TREE_OPERAND (arg1, 0);
3608 }
3609 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
3610 {
3611 common = TREE_OPERAND (arg0, 1);
3612 left = TREE_OPERAND (arg0, 0);
3613 right = TREE_OPERAND (arg1, 1);
3614 }
3615 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
3616 {
3617 common = TREE_OPERAND (arg0, 1);
3618 left = TREE_OPERAND (arg0, 0);
3619 right = TREE_OPERAND (arg1, 0);
3620 }
3621 else
3622 return 0;
3623
3624 common = fold_convert_loc (loc, type, common);
3625 left = fold_convert_loc (loc, type, left);
3626 right = fold_convert_loc (loc, type, right);
3627 return fold_build2_loc (loc, TREE_CODE (arg0), type, common,
3628 fold_build2_loc (loc, code, type, left, right));
3629 }
3630
3631 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3632 with code CODE. This optimization is unsafe. */
3633 static tree
3634 distribute_real_division (location_t loc, enum tree_code code, tree type,
3635 tree arg0, tree arg1)
3636 {
3637 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3638 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3639
3640 /* (A / C) +- (B / C) -> (A +- B) / C. */
3641 if (mul0 == mul1
3642 && operand_equal_p (TREE_OPERAND (arg0, 1),
3643 TREE_OPERAND (arg1, 1), 0))
3644 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3645 fold_build2_loc (loc, code, type,
3646 TREE_OPERAND (arg0, 0),
3647 TREE_OPERAND (arg1, 0)),
3648 TREE_OPERAND (arg0, 1));
3649
3650 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3651 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3652 TREE_OPERAND (arg1, 0), 0)
3653 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3654 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3655 {
3656 REAL_VALUE_TYPE r0, r1;
3657 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3658 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3659 if (!mul0)
3660 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3661 if (!mul1)
3662 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3663 real_arithmetic (&r0, code, &r0, &r1);
3664 return fold_build2_loc (loc, MULT_EXPR, type,
3665 TREE_OPERAND (arg0, 0),
3666 build_real (type, r0));
3667 }
3668
3669 return NULL_TREE;
3670 }
3671 \f
3672 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3673 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3674
3675 static tree
3676 make_bit_field_ref (location_t loc, tree inner, tree type,
3677 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos, int unsignedp)
3678 {
3679 tree result, bftype;
3680
3681 if (bitpos == 0)
3682 {
3683 tree size = TYPE_SIZE (TREE_TYPE (inner));
3684 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3685 || POINTER_TYPE_P (TREE_TYPE (inner)))
3686 && tree_fits_shwi_p (size)
3687 && tree_to_shwi (size) == bitsize)
3688 return fold_convert_loc (loc, type, inner);
3689 }
3690
3691 bftype = type;
3692 if (TYPE_PRECISION (bftype) != bitsize
3693 || TYPE_UNSIGNED (bftype) == !unsignedp)
3694 bftype = build_nonstandard_integer_type (bitsize, 0);
3695
3696 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3697 size_int (bitsize), bitsize_int (bitpos));
3698
3699 if (bftype != type)
3700 result = fold_convert_loc (loc, type, result);
3701
3702 return result;
3703 }
3704
3705 /* Optimize a bit-field compare.
3706
3707 There are two cases: First is a compare against a constant and the
3708 second is a comparison of two items where the fields are at the same
3709 bit position relative to the start of a chunk (byte, halfword, word)
3710 large enough to contain it. In these cases we can avoid the shift
3711 implicit in bitfield extractions.
3712
3713 For constants, we emit a compare of the shifted constant with the
3714 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3715 compared. For two fields at the same position, we do the ANDs with the
3716 similar mask and compare the result of the ANDs.
3717
3718 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3719 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3720 are the left and right operands of the comparison, respectively.
3721
3722 If the optimization described above can be done, we return the resulting
3723 tree. Otherwise we return zero. */
3724
3725 static tree
3726 optimize_bit_field_compare (location_t loc, enum tree_code code,
3727 tree compare_type, tree lhs, tree rhs)
3728 {
3729 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3730 tree type = TREE_TYPE (lhs);
3731 tree unsigned_type;
3732 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3733 machine_mode lmode, rmode, nmode;
3734 int lunsignedp, runsignedp;
3735 int lvolatilep = 0, rvolatilep = 0;
3736 tree linner, rinner = NULL_TREE;
3737 tree mask;
3738 tree offset;
3739
3740 /* Get all the information about the extractions being done. If the bit size
3741 if the same as the size of the underlying object, we aren't doing an
3742 extraction at all and so can do nothing. We also don't want to
3743 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3744 then will no longer be able to replace it. */
3745 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3746 &lunsignedp, &lvolatilep, false);
3747 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3748 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3749 return 0;
3750
3751 if (!const_p)
3752 {
3753 /* If this is not a constant, we can only do something if bit positions,
3754 sizes, and signedness are the same. */
3755 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3756 &runsignedp, &rvolatilep, false);
3757
3758 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3759 || lunsignedp != runsignedp || offset != 0
3760 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3761 return 0;
3762 }
3763
3764 /* See if we can find a mode to refer to this field. We should be able to,
3765 but fail if we can't. */
3766 nmode = get_best_mode (lbitsize, lbitpos, 0, 0,
3767 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3768 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3769 TYPE_ALIGN (TREE_TYPE (rinner))),
3770 word_mode, false);
3771 if (nmode == VOIDmode)
3772 return 0;
3773
3774 /* Set signed and unsigned types of the precision of this mode for the
3775 shifts below. */
3776 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3777
3778 /* Compute the bit position and size for the new reference and our offset
3779 within it. If the new reference is the same size as the original, we
3780 won't optimize anything, so return zero. */
3781 nbitsize = GET_MODE_BITSIZE (nmode);
3782 nbitpos = lbitpos & ~ (nbitsize - 1);
3783 lbitpos -= nbitpos;
3784 if (nbitsize == lbitsize)
3785 return 0;
3786
3787 if (BYTES_BIG_ENDIAN)
3788 lbitpos = nbitsize - lbitsize - lbitpos;
3789
3790 /* Make the mask to be used against the extracted field. */
3791 mask = build_int_cst_type (unsigned_type, -1);
3792 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
3793 mask = const_binop (RSHIFT_EXPR, mask,
3794 size_int (nbitsize - lbitsize - lbitpos));
3795
3796 if (! const_p)
3797 /* If not comparing with constant, just rework the comparison
3798 and return. */
3799 return fold_build2_loc (loc, code, compare_type,
3800 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3801 make_bit_field_ref (loc, linner,
3802 unsigned_type,
3803 nbitsize, nbitpos,
3804 1),
3805 mask),
3806 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3807 make_bit_field_ref (loc, rinner,
3808 unsigned_type,
3809 nbitsize, nbitpos,
3810 1),
3811 mask));
3812
3813 /* Otherwise, we are handling the constant case. See if the constant is too
3814 big for the field. Warn and return a tree of for 0 (false) if so. We do
3815 this not only for its own sake, but to avoid having to test for this
3816 error case below. If we didn't, we might generate wrong code.
3817
3818 For unsigned fields, the constant shifted right by the field length should
3819 be all zero. For signed fields, the high-order bits should agree with
3820 the sign bit. */
3821
3822 if (lunsignedp)
3823 {
3824 if (wi::lrshift (rhs, lbitsize) != 0)
3825 {
3826 warning (0, "comparison is always %d due to width of bit-field",
3827 code == NE_EXPR);
3828 return constant_boolean_node (code == NE_EXPR, compare_type);
3829 }
3830 }
3831 else
3832 {
3833 wide_int tem = wi::arshift (rhs, lbitsize - 1);
3834 if (tem != 0 && tem != -1)
3835 {
3836 warning (0, "comparison is always %d due to width of bit-field",
3837 code == NE_EXPR);
3838 return constant_boolean_node (code == NE_EXPR, compare_type);
3839 }
3840 }
3841
3842 /* Single-bit compares should always be against zero. */
3843 if (lbitsize == 1 && ! integer_zerop (rhs))
3844 {
3845 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3846 rhs = build_int_cst (type, 0);
3847 }
3848
3849 /* Make a new bitfield reference, shift the constant over the
3850 appropriate number of bits and mask it with the computed mask
3851 (in case this was a signed field). If we changed it, make a new one. */
3852 lhs = make_bit_field_ref (loc, linner, unsigned_type, nbitsize, nbitpos, 1);
3853
3854 rhs = const_binop (BIT_AND_EXPR,
3855 const_binop (LSHIFT_EXPR,
3856 fold_convert_loc (loc, unsigned_type, rhs),
3857 size_int (lbitpos)),
3858 mask);
3859
3860 lhs = build2_loc (loc, code, compare_type,
3861 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
3862 return lhs;
3863 }
3864 \f
3865 /* Subroutine for fold_truth_andor_1: decode a field reference.
3866
3867 If EXP is a comparison reference, we return the innermost reference.
3868
3869 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3870 set to the starting bit number.
3871
3872 If the innermost field can be completely contained in a mode-sized
3873 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3874
3875 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3876 otherwise it is not changed.
3877
3878 *PUNSIGNEDP is set to the signedness of the field.
3879
3880 *PMASK is set to the mask used. This is either contained in a
3881 BIT_AND_EXPR or derived from the width of the field.
3882
3883 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3884
3885 Return 0 if this is not a component reference or is one that we can't
3886 do anything with. */
3887
3888 static tree
3889 decode_field_reference (location_t loc, tree exp, HOST_WIDE_INT *pbitsize,
3890 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
3891 int *punsignedp, int *pvolatilep,
3892 tree *pmask, tree *pand_mask)
3893 {
3894 tree outer_type = 0;
3895 tree and_mask = 0;
3896 tree mask, inner, offset;
3897 tree unsigned_type;
3898 unsigned int precision;
3899
3900 /* All the optimizations using this function assume integer fields.
3901 There are problems with FP fields since the type_for_size call
3902 below can fail for, e.g., XFmode. */
3903 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3904 return 0;
3905
3906 /* We are interested in the bare arrangement of bits, so strip everything
3907 that doesn't affect the machine mode. However, record the type of the
3908 outermost expression if it may matter below. */
3909 if (CONVERT_EXPR_P (exp)
3910 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3911 outer_type = TREE_TYPE (exp);
3912 STRIP_NOPS (exp);
3913
3914 if (TREE_CODE (exp) == BIT_AND_EXPR)
3915 {
3916 and_mask = TREE_OPERAND (exp, 1);
3917 exp = TREE_OPERAND (exp, 0);
3918 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3919 if (TREE_CODE (and_mask) != INTEGER_CST)
3920 return 0;
3921 }
3922
3923 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3924 punsignedp, pvolatilep, false);
3925 if ((inner == exp && and_mask == 0)
3926 || *pbitsize < 0 || offset != 0
3927 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3928 return 0;
3929
3930 /* If the number of bits in the reference is the same as the bitsize of
3931 the outer type, then the outer type gives the signedness. Otherwise
3932 (in case of a small bitfield) the signedness is unchanged. */
3933 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3934 *punsignedp = TYPE_UNSIGNED (outer_type);
3935
3936 /* Compute the mask to access the bitfield. */
3937 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3938 precision = TYPE_PRECISION (unsigned_type);
3939
3940 mask = build_int_cst_type (unsigned_type, -1);
3941
3942 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3943 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3944
3945 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3946 if (and_mask != 0)
3947 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3948 fold_convert_loc (loc, unsigned_type, and_mask), mask);
3949
3950 *pmask = mask;
3951 *pand_mask = and_mask;
3952 return inner;
3953 }
3954
3955 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3956 bit positions and MASK is SIGNED. */
3957
3958 static int
3959 all_ones_mask_p (const_tree mask, unsigned int size)
3960 {
3961 tree type = TREE_TYPE (mask);
3962 unsigned int precision = TYPE_PRECISION (type);
3963
3964 /* If this function returns true when the type of the mask is
3965 UNSIGNED, then there will be errors. In particular see
3966 gcc.c-torture/execute/990326-1.c. There does not appear to be
3967 any documentation paper trail as to why this is so. But the pre
3968 wide-int worked with that restriction and it has been preserved
3969 here. */
3970 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
3971 return false;
3972
3973 return wi::mask (size, false, precision) == mask;
3974 }
3975
3976 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3977 represents the sign bit of EXP's type. If EXP represents a sign
3978 or zero extension, also test VAL against the unextended type.
3979 The return value is the (sub)expression whose sign bit is VAL,
3980 or NULL_TREE otherwise. */
3981
3982 tree
3983 sign_bit_p (tree exp, const_tree val)
3984 {
3985 int width;
3986 tree t;
3987
3988 /* Tree EXP must have an integral type. */
3989 t = TREE_TYPE (exp);
3990 if (! INTEGRAL_TYPE_P (t))
3991 return NULL_TREE;
3992
3993 /* Tree VAL must be an integer constant. */
3994 if (TREE_CODE (val) != INTEGER_CST
3995 || TREE_OVERFLOW (val))
3996 return NULL_TREE;
3997
3998 width = TYPE_PRECISION (t);
3999 if (wi::only_sign_bit_p (val, width))
4000 return exp;
4001
4002 /* Handle extension from a narrower type. */
4003 if (TREE_CODE (exp) == NOP_EXPR
4004 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4005 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4006
4007 return NULL_TREE;
4008 }
4009
4010 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4011 to be evaluated unconditionally. */
4012
4013 static int
4014 simple_operand_p (const_tree exp)
4015 {
4016 /* Strip any conversions that don't change the machine mode. */
4017 STRIP_NOPS (exp);
4018
4019 return (CONSTANT_CLASS_P (exp)
4020 || TREE_CODE (exp) == SSA_NAME
4021 || (DECL_P (exp)
4022 && ! TREE_ADDRESSABLE (exp)
4023 && ! TREE_THIS_VOLATILE (exp)
4024 && ! DECL_NONLOCAL (exp)
4025 /* Don't regard global variables as simple. They may be
4026 allocated in ways unknown to the compiler (shared memory,
4027 #pragma weak, etc). */
4028 && ! TREE_PUBLIC (exp)
4029 && ! DECL_EXTERNAL (exp)
4030 /* Weakrefs are not safe to be read, since they can be NULL.
4031 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4032 have DECL_WEAK flag set. */
4033 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4034 /* Loading a static variable is unduly expensive, but global
4035 registers aren't expensive. */
4036 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4037 }
4038
4039 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4040 to be evaluated unconditionally.
4041 I addition to simple_operand_p, we assume that comparisons, conversions,
4042 and logic-not operations are simple, if their operands are simple, too. */
4043
4044 static bool
4045 simple_operand_p_2 (tree exp)
4046 {
4047 enum tree_code code;
4048
4049 if (TREE_SIDE_EFFECTS (exp)
4050 || tree_could_trap_p (exp))
4051 return false;
4052
4053 while (CONVERT_EXPR_P (exp))
4054 exp = TREE_OPERAND (exp, 0);
4055
4056 code = TREE_CODE (exp);
4057
4058 if (TREE_CODE_CLASS (code) == tcc_comparison)
4059 return (simple_operand_p (TREE_OPERAND (exp, 0))
4060 && simple_operand_p (TREE_OPERAND (exp, 1)));
4061
4062 if (code == TRUTH_NOT_EXPR)
4063 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4064
4065 return simple_operand_p (exp);
4066 }
4067
4068 \f
4069 /* The following functions are subroutines to fold_range_test and allow it to
4070 try to change a logical combination of comparisons into a range test.
4071
4072 For example, both
4073 X == 2 || X == 3 || X == 4 || X == 5
4074 and
4075 X >= 2 && X <= 5
4076 are converted to
4077 (unsigned) (X - 2) <= 3
4078
4079 We describe each set of comparisons as being either inside or outside
4080 a range, using a variable named like IN_P, and then describe the
4081 range with a lower and upper bound. If one of the bounds is omitted,
4082 it represents either the highest or lowest value of the type.
4083
4084 In the comments below, we represent a range by two numbers in brackets
4085 preceded by a "+" to designate being inside that range, or a "-" to
4086 designate being outside that range, so the condition can be inverted by
4087 flipping the prefix. An omitted bound is represented by a "-". For
4088 example, "- [-, 10]" means being outside the range starting at the lowest
4089 possible value and ending at 10, in other words, being greater than 10.
4090 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4091 always false.
4092
4093 We set up things so that the missing bounds are handled in a consistent
4094 manner so neither a missing bound nor "true" and "false" need to be
4095 handled using a special case. */
4096
4097 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4098 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4099 and UPPER1_P are nonzero if the respective argument is an upper bound
4100 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4101 must be specified for a comparison. ARG1 will be converted to ARG0's
4102 type if both are specified. */
4103
4104 static tree
4105 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4106 tree arg1, int upper1_p)
4107 {
4108 tree tem;
4109 int result;
4110 int sgn0, sgn1;
4111
4112 /* If neither arg represents infinity, do the normal operation.
4113 Else, if not a comparison, return infinity. Else handle the special
4114 comparison rules. Note that most of the cases below won't occur, but
4115 are handled for consistency. */
4116
4117 if (arg0 != 0 && arg1 != 0)
4118 {
4119 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4120 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4121 STRIP_NOPS (tem);
4122 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4123 }
4124
4125 if (TREE_CODE_CLASS (code) != tcc_comparison)
4126 return 0;
4127
4128 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4129 for neither. In real maths, we cannot assume open ended ranges are
4130 the same. But, this is computer arithmetic, where numbers are finite.
4131 We can therefore make the transformation of any unbounded range with
4132 the value Z, Z being greater than any representable number. This permits
4133 us to treat unbounded ranges as equal. */
4134 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4135 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4136 switch (code)
4137 {
4138 case EQ_EXPR:
4139 result = sgn0 == sgn1;
4140 break;
4141 case NE_EXPR:
4142 result = sgn0 != sgn1;
4143 break;
4144 case LT_EXPR:
4145 result = sgn0 < sgn1;
4146 break;
4147 case LE_EXPR:
4148 result = sgn0 <= sgn1;
4149 break;
4150 case GT_EXPR:
4151 result = sgn0 > sgn1;
4152 break;
4153 case GE_EXPR:
4154 result = sgn0 >= sgn1;
4155 break;
4156 default:
4157 gcc_unreachable ();
4158 }
4159
4160 return constant_boolean_node (result, type);
4161 }
4162 \f
4163 /* Helper routine for make_range. Perform one step for it, return
4164 new expression if the loop should continue or NULL_TREE if it should
4165 stop. */
4166
4167 tree
4168 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4169 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4170 bool *strict_overflow_p)
4171 {
4172 tree arg0_type = TREE_TYPE (arg0);
4173 tree n_low, n_high, low = *p_low, high = *p_high;
4174 int in_p = *p_in_p, n_in_p;
4175
4176 switch (code)
4177 {
4178 case TRUTH_NOT_EXPR:
4179 /* We can only do something if the range is testing for zero. */
4180 if (low == NULL_TREE || high == NULL_TREE
4181 || ! integer_zerop (low) || ! integer_zerop (high))
4182 return NULL_TREE;
4183 *p_in_p = ! in_p;
4184 return arg0;
4185
4186 case EQ_EXPR: case NE_EXPR:
4187 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4188 /* We can only do something if the range is testing for zero
4189 and if the second operand is an integer constant. Note that
4190 saying something is "in" the range we make is done by
4191 complementing IN_P since it will set in the initial case of
4192 being not equal to zero; "out" is leaving it alone. */
4193 if (low == NULL_TREE || high == NULL_TREE
4194 || ! integer_zerop (low) || ! integer_zerop (high)
4195 || TREE_CODE (arg1) != INTEGER_CST)
4196 return NULL_TREE;
4197
4198 switch (code)
4199 {
4200 case NE_EXPR: /* - [c, c] */
4201 low = high = arg1;
4202 break;
4203 case EQ_EXPR: /* + [c, c] */
4204 in_p = ! in_p, low = high = arg1;
4205 break;
4206 case GT_EXPR: /* - [-, c] */
4207 low = 0, high = arg1;
4208 break;
4209 case GE_EXPR: /* + [c, -] */
4210 in_p = ! in_p, low = arg1, high = 0;
4211 break;
4212 case LT_EXPR: /* - [c, -] */
4213 low = arg1, high = 0;
4214 break;
4215 case LE_EXPR: /* + [-, c] */
4216 in_p = ! in_p, low = 0, high = arg1;
4217 break;
4218 default:
4219 gcc_unreachable ();
4220 }
4221
4222 /* If this is an unsigned comparison, we also know that EXP is
4223 greater than or equal to zero. We base the range tests we make
4224 on that fact, so we record it here so we can parse existing
4225 range tests. We test arg0_type since often the return type
4226 of, e.g. EQ_EXPR, is boolean. */
4227 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4228 {
4229 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4230 in_p, low, high, 1,
4231 build_int_cst (arg0_type, 0),
4232 NULL_TREE))
4233 return NULL_TREE;
4234
4235 in_p = n_in_p, low = n_low, high = n_high;
4236
4237 /* If the high bound is missing, but we have a nonzero low
4238 bound, reverse the range so it goes from zero to the low bound
4239 minus 1. */
4240 if (high == 0 && low && ! integer_zerop (low))
4241 {
4242 in_p = ! in_p;
4243 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4244 build_int_cst (TREE_TYPE (low), 1), 0);
4245 low = build_int_cst (arg0_type, 0);
4246 }
4247 }
4248
4249 *p_low = low;
4250 *p_high = high;
4251 *p_in_p = in_p;
4252 return arg0;
4253
4254 case NEGATE_EXPR:
4255 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4256 low and high are non-NULL, then normalize will DTRT. */
4257 if (!TYPE_UNSIGNED (arg0_type)
4258 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4259 {
4260 if (low == NULL_TREE)
4261 low = TYPE_MIN_VALUE (arg0_type);
4262 if (high == NULL_TREE)
4263 high = TYPE_MAX_VALUE (arg0_type);
4264 }
4265
4266 /* (-x) IN [a,b] -> x in [-b, -a] */
4267 n_low = range_binop (MINUS_EXPR, exp_type,
4268 build_int_cst (exp_type, 0),
4269 0, high, 1);
4270 n_high = range_binop (MINUS_EXPR, exp_type,
4271 build_int_cst (exp_type, 0),
4272 0, low, 0);
4273 if (n_high != 0 && TREE_OVERFLOW (n_high))
4274 return NULL_TREE;
4275 goto normalize;
4276
4277 case BIT_NOT_EXPR:
4278 /* ~ X -> -X - 1 */
4279 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4280 build_int_cst (exp_type, 1));
4281
4282 case PLUS_EXPR:
4283 case MINUS_EXPR:
4284 if (TREE_CODE (arg1) != INTEGER_CST)
4285 return NULL_TREE;
4286
4287 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4288 move a constant to the other side. */
4289 if (!TYPE_UNSIGNED (arg0_type)
4290 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4291 return NULL_TREE;
4292
4293 /* If EXP is signed, any overflow in the computation is undefined,
4294 so we don't worry about it so long as our computations on
4295 the bounds don't overflow. For unsigned, overflow is defined
4296 and this is exactly the right thing. */
4297 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4298 arg0_type, low, 0, arg1, 0);
4299 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4300 arg0_type, high, 1, arg1, 0);
4301 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4302 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4303 return NULL_TREE;
4304
4305 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4306 *strict_overflow_p = true;
4307
4308 normalize:
4309 /* Check for an unsigned range which has wrapped around the maximum
4310 value thus making n_high < n_low, and normalize it. */
4311 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4312 {
4313 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4314 build_int_cst (TREE_TYPE (n_high), 1), 0);
4315 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4316 build_int_cst (TREE_TYPE (n_low), 1), 0);
4317
4318 /* If the range is of the form +/- [ x+1, x ], we won't
4319 be able to normalize it. But then, it represents the
4320 whole range or the empty set, so make it
4321 +/- [ -, - ]. */
4322 if (tree_int_cst_equal (n_low, low)
4323 && tree_int_cst_equal (n_high, high))
4324 low = high = 0;
4325 else
4326 in_p = ! in_p;
4327 }
4328 else
4329 low = n_low, high = n_high;
4330
4331 *p_low = low;
4332 *p_high = high;
4333 *p_in_p = in_p;
4334 return arg0;
4335
4336 CASE_CONVERT:
4337 case NON_LVALUE_EXPR:
4338 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4339 return NULL_TREE;
4340
4341 if (! INTEGRAL_TYPE_P (arg0_type)
4342 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4343 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4344 return NULL_TREE;
4345
4346 n_low = low, n_high = high;
4347
4348 if (n_low != 0)
4349 n_low = fold_convert_loc (loc, arg0_type, n_low);
4350
4351 if (n_high != 0)
4352 n_high = fold_convert_loc (loc, arg0_type, n_high);
4353
4354 /* If we're converting arg0 from an unsigned type, to exp,
4355 a signed type, we will be doing the comparison as unsigned.
4356 The tests above have already verified that LOW and HIGH
4357 are both positive.
4358
4359 So we have to ensure that we will handle large unsigned
4360 values the same way that the current signed bounds treat
4361 negative values. */
4362
4363 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4364 {
4365 tree high_positive;
4366 tree equiv_type;
4367 /* For fixed-point modes, we need to pass the saturating flag
4368 as the 2nd parameter. */
4369 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4370 equiv_type
4371 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4372 TYPE_SATURATING (arg0_type));
4373 else
4374 equiv_type
4375 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4376
4377 /* A range without an upper bound is, naturally, unbounded.
4378 Since convert would have cropped a very large value, use
4379 the max value for the destination type. */
4380 high_positive
4381 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4382 : TYPE_MAX_VALUE (arg0_type);
4383
4384 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4385 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4386 fold_convert_loc (loc, arg0_type,
4387 high_positive),
4388 build_int_cst (arg0_type, 1));
4389
4390 /* If the low bound is specified, "and" the range with the
4391 range for which the original unsigned value will be
4392 positive. */
4393 if (low != 0)
4394 {
4395 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4396 1, fold_convert_loc (loc, arg0_type,
4397 integer_zero_node),
4398 high_positive))
4399 return NULL_TREE;
4400
4401 in_p = (n_in_p == in_p);
4402 }
4403 else
4404 {
4405 /* Otherwise, "or" the range with the range of the input
4406 that will be interpreted as negative. */
4407 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4408 1, fold_convert_loc (loc, arg0_type,
4409 integer_zero_node),
4410 high_positive))
4411 return NULL_TREE;
4412
4413 in_p = (in_p != n_in_p);
4414 }
4415 }
4416
4417 *p_low = n_low;
4418 *p_high = n_high;
4419 *p_in_p = in_p;
4420 return arg0;
4421
4422 default:
4423 return NULL_TREE;
4424 }
4425 }
4426
4427 /* Given EXP, a logical expression, set the range it is testing into
4428 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4429 actually being tested. *PLOW and *PHIGH will be made of the same
4430 type as the returned expression. If EXP is not a comparison, we
4431 will most likely not be returning a useful value and range. Set
4432 *STRICT_OVERFLOW_P to true if the return value is only valid
4433 because signed overflow is undefined; otherwise, do not change
4434 *STRICT_OVERFLOW_P. */
4435
4436 tree
4437 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4438 bool *strict_overflow_p)
4439 {
4440 enum tree_code code;
4441 tree arg0, arg1 = NULL_TREE;
4442 tree exp_type, nexp;
4443 int in_p;
4444 tree low, high;
4445 location_t loc = EXPR_LOCATION (exp);
4446
4447 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4448 and see if we can refine the range. Some of the cases below may not
4449 happen, but it doesn't seem worth worrying about this. We "continue"
4450 the outer loop when we've changed something; otherwise we "break"
4451 the switch, which will "break" the while. */
4452
4453 in_p = 0;
4454 low = high = build_int_cst (TREE_TYPE (exp), 0);
4455
4456 while (1)
4457 {
4458 code = TREE_CODE (exp);
4459 exp_type = TREE_TYPE (exp);
4460 arg0 = NULL_TREE;
4461
4462 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4463 {
4464 if (TREE_OPERAND_LENGTH (exp) > 0)
4465 arg0 = TREE_OPERAND (exp, 0);
4466 if (TREE_CODE_CLASS (code) == tcc_binary
4467 || TREE_CODE_CLASS (code) == tcc_comparison
4468 || (TREE_CODE_CLASS (code) == tcc_expression
4469 && TREE_OPERAND_LENGTH (exp) > 1))
4470 arg1 = TREE_OPERAND (exp, 1);
4471 }
4472 if (arg0 == NULL_TREE)
4473 break;
4474
4475 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4476 &high, &in_p, strict_overflow_p);
4477 if (nexp == NULL_TREE)
4478 break;
4479 exp = nexp;
4480 }
4481
4482 /* If EXP is a constant, we can evaluate whether this is true or false. */
4483 if (TREE_CODE (exp) == INTEGER_CST)
4484 {
4485 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4486 exp, 0, low, 0))
4487 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4488 exp, 1, high, 1)));
4489 low = high = 0;
4490 exp = 0;
4491 }
4492
4493 *pin_p = in_p, *plow = low, *phigh = high;
4494 return exp;
4495 }
4496 \f
4497 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4498 type, TYPE, return an expression to test if EXP is in (or out of, depending
4499 on IN_P) the range. Return 0 if the test couldn't be created. */
4500
4501 tree
4502 build_range_check (location_t loc, tree type, tree exp, int in_p,
4503 tree low, tree high)
4504 {
4505 tree etype = TREE_TYPE (exp), value;
4506
4507 #ifdef HAVE_canonicalize_funcptr_for_compare
4508 /* Disable this optimization for function pointer expressions
4509 on targets that require function pointer canonicalization. */
4510 if (HAVE_canonicalize_funcptr_for_compare
4511 && TREE_CODE (etype) == POINTER_TYPE
4512 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4513 return NULL_TREE;
4514 #endif
4515
4516 if (! in_p)
4517 {
4518 value = build_range_check (loc, type, exp, 1, low, high);
4519 if (value != 0)
4520 return invert_truthvalue_loc (loc, value);
4521
4522 return 0;
4523 }
4524
4525 if (low == 0 && high == 0)
4526 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4527
4528 if (low == 0)
4529 return fold_build2_loc (loc, LE_EXPR, type, exp,
4530 fold_convert_loc (loc, etype, high));
4531
4532 if (high == 0)
4533 return fold_build2_loc (loc, GE_EXPR, type, exp,
4534 fold_convert_loc (loc, etype, low));
4535
4536 if (operand_equal_p (low, high, 0))
4537 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4538 fold_convert_loc (loc, etype, low));
4539
4540 if (integer_zerop (low))
4541 {
4542 if (! TYPE_UNSIGNED (etype))
4543 {
4544 etype = unsigned_type_for (etype);
4545 high = fold_convert_loc (loc, etype, high);
4546 exp = fold_convert_loc (loc, etype, exp);
4547 }
4548 return build_range_check (loc, type, exp, 1, 0, high);
4549 }
4550
4551 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4552 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4553 {
4554 int prec = TYPE_PRECISION (etype);
4555
4556 if (wi::mask (prec - 1, false, prec) == high)
4557 {
4558 if (TYPE_UNSIGNED (etype))
4559 {
4560 tree signed_etype = signed_type_for (etype);
4561 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4562 etype
4563 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4564 else
4565 etype = signed_etype;
4566 exp = fold_convert_loc (loc, etype, exp);
4567 }
4568 return fold_build2_loc (loc, GT_EXPR, type, exp,
4569 build_int_cst (etype, 0));
4570 }
4571 }
4572
4573 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4574 This requires wrap-around arithmetics for the type of the expression.
4575 First make sure that arithmetics in this type is valid, then make sure
4576 that it wraps around. */
4577 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4578 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4579 TYPE_UNSIGNED (etype));
4580
4581 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4582 {
4583 tree utype, minv, maxv;
4584
4585 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4586 for the type in question, as we rely on this here. */
4587 utype = unsigned_type_for (etype);
4588 maxv = fold_convert_loc (loc, utype, TYPE_MAX_VALUE (etype));
4589 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4590 build_int_cst (TREE_TYPE (maxv), 1), 1);
4591 minv = fold_convert_loc (loc, utype, TYPE_MIN_VALUE (etype));
4592
4593 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4594 minv, 1, maxv, 1)))
4595 etype = utype;
4596 else
4597 return 0;
4598 }
4599
4600 high = fold_convert_loc (loc, etype, high);
4601 low = fold_convert_loc (loc, etype, low);
4602 exp = fold_convert_loc (loc, etype, exp);
4603
4604 value = const_binop (MINUS_EXPR, high, low);
4605
4606
4607 if (POINTER_TYPE_P (etype))
4608 {
4609 if (value != 0 && !TREE_OVERFLOW (value))
4610 {
4611 low = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (low), low);
4612 return build_range_check (loc, type,
4613 fold_build_pointer_plus_loc (loc, exp, low),
4614 1, build_int_cst (etype, 0), value);
4615 }
4616 return 0;
4617 }
4618
4619 if (value != 0 && !TREE_OVERFLOW (value))
4620 return build_range_check (loc, type,
4621 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4622 1, build_int_cst (etype, 0), value);
4623
4624 return 0;
4625 }
4626 \f
4627 /* Return the predecessor of VAL in its type, handling the infinite case. */
4628
4629 static tree
4630 range_predecessor (tree val)
4631 {
4632 tree type = TREE_TYPE (val);
4633
4634 if (INTEGRAL_TYPE_P (type)
4635 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4636 return 0;
4637 else
4638 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4639 build_int_cst (TREE_TYPE (val), 1), 0);
4640 }
4641
4642 /* Return the successor of VAL in its type, handling the infinite case. */
4643
4644 static tree
4645 range_successor (tree val)
4646 {
4647 tree type = TREE_TYPE (val);
4648
4649 if (INTEGRAL_TYPE_P (type)
4650 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4651 return 0;
4652 else
4653 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4654 build_int_cst (TREE_TYPE (val), 1), 0);
4655 }
4656
4657 /* Given two ranges, see if we can merge them into one. Return 1 if we
4658 can, 0 if we can't. Set the output range into the specified parameters. */
4659
4660 bool
4661 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4662 tree high0, int in1_p, tree low1, tree high1)
4663 {
4664 int no_overlap;
4665 int subset;
4666 int temp;
4667 tree tem;
4668 int in_p;
4669 tree low, high;
4670 int lowequal = ((low0 == 0 && low1 == 0)
4671 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4672 low0, 0, low1, 0)));
4673 int highequal = ((high0 == 0 && high1 == 0)
4674 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4675 high0, 1, high1, 1)));
4676
4677 /* Make range 0 be the range that starts first, or ends last if they
4678 start at the same value. Swap them if it isn't. */
4679 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4680 low0, 0, low1, 0))
4681 || (lowequal
4682 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4683 high1, 1, high0, 1))))
4684 {
4685 temp = in0_p, in0_p = in1_p, in1_p = temp;
4686 tem = low0, low0 = low1, low1 = tem;
4687 tem = high0, high0 = high1, high1 = tem;
4688 }
4689
4690 /* Now flag two cases, whether the ranges are disjoint or whether the
4691 second range is totally subsumed in the first. Note that the tests
4692 below are simplified by the ones above. */
4693 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4694 high0, 1, low1, 0));
4695 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4696 high1, 1, high0, 1));
4697
4698 /* We now have four cases, depending on whether we are including or
4699 excluding the two ranges. */
4700 if (in0_p && in1_p)
4701 {
4702 /* If they don't overlap, the result is false. If the second range
4703 is a subset it is the result. Otherwise, the range is from the start
4704 of the second to the end of the first. */
4705 if (no_overlap)
4706 in_p = 0, low = high = 0;
4707 else if (subset)
4708 in_p = 1, low = low1, high = high1;
4709 else
4710 in_p = 1, low = low1, high = high0;
4711 }
4712
4713 else if (in0_p && ! in1_p)
4714 {
4715 /* If they don't overlap, the result is the first range. If they are
4716 equal, the result is false. If the second range is a subset of the
4717 first, and the ranges begin at the same place, we go from just after
4718 the end of the second range to the end of the first. If the second
4719 range is not a subset of the first, or if it is a subset and both
4720 ranges end at the same place, the range starts at the start of the
4721 first range and ends just before the second range.
4722 Otherwise, we can't describe this as a single range. */
4723 if (no_overlap)
4724 in_p = 1, low = low0, high = high0;
4725 else if (lowequal && highequal)
4726 in_p = 0, low = high = 0;
4727 else if (subset && lowequal)
4728 {
4729 low = range_successor (high1);
4730 high = high0;
4731 in_p = 1;
4732 if (low == 0)
4733 {
4734 /* We are in the weird situation where high0 > high1 but
4735 high1 has no successor. Punt. */
4736 return 0;
4737 }
4738 }
4739 else if (! subset || highequal)
4740 {
4741 low = low0;
4742 high = range_predecessor (low1);
4743 in_p = 1;
4744 if (high == 0)
4745 {
4746 /* low0 < low1 but low1 has no predecessor. Punt. */
4747 return 0;
4748 }
4749 }
4750 else
4751 return 0;
4752 }
4753
4754 else if (! in0_p && in1_p)
4755 {
4756 /* If they don't overlap, the result is the second range. If the second
4757 is a subset of the first, the result is false. Otherwise,
4758 the range starts just after the first range and ends at the
4759 end of the second. */
4760 if (no_overlap)
4761 in_p = 1, low = low1, high = high1;
4762 else if (subset || highequal)
4763 in_p = 0, low = high = 0;
4764 else
4765 {
4766 low = range_successor (high0);
4767 high = high1;
4768 in_p = 1;
4769 if (low == 0)
4770 {
4771 /* high1 > high0 but high0 has no successor. Punt. */
4772 return 0;
4773 }
4774 }
4775 }
4776
4777 else
4778 {
4779 /* The case where we are excluding both ranges. Here the complex case
4780 is if they don't overlap. In that case, the only time we have a
4781 range is if they are adjacent. If the second is a subset of the
4782 first, the result is the first. Otherwise, the range to exclude
4783 starts at the beginning of the first range and ends at the end of the
4784 second. */
4785 if (no_overlap)
4786 {
4787 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4788 range_successor (high0),
4789 1, low1, 0)))
4790 in_p = 0, low = low0, high = high1;
4791 else
4792 {
4793 /* Canonicalize - [min, x] into - [-, x]. */
4794 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4795 switch (TREE_CODE (TREE_TYPE (low0)))
4796 {
4797 case ENUMERAL_TYPE:
4798 if (TYPE_PRECISION (TREE_TYPE (low0))
4799 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4800 break;
4801 /* FALLTHROUGH */
4802 case INTEGER_TYPE:
4803 if (tree_int_cst_equal (low0,
4804 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4805 low0 = 0;
4806 break;
4807 case POINTER_TYPE:
4808 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4809 && integer_zerop (low0))
4810 low0 = 0;
4811 break;
4812 default:
4813 break;
4814 }
4815
4816 /* Canonicalize - [x, max] into - [x, -]. */
4817 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4818 switch (TREE_CODE (TREE_TYPE (high1)))
4819 {
4820 case ENUMERAL_TYPE:
4821 if (TYPE_PRECISION (TREE_TYPE (high1))
4822 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4823 break;
4824 /* FALLTHROUGH */
4825 case INTEGER_TYPE:
4826 if (tree_int_cst_equal (high1,
4827 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4828 high1 = 0;
4829 break;
4830 case POINTER_TYPE:
4831 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4832 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4833 high1, 1,
4834 build_int_cst (TREE_TYPE (high1), 1),
4835 1)))
4836 high1 = 0;
4837 break;
4838 default:
4839 break;
4840 }
4841
4842 /* The ranges might be also adjacent between the maximum and
4843 minimum values of the given type. For
4844 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4845 return + [x + 1, y - 1]. */
4846 if (low0 == 0 && high1 == 0)
4847 {
4848 low = range_successor (high0);
4849 high = range_predecessor (low1);
4850 if (low == 0 || high == 0)
4851 return 0;
4852
4853 in_p = 1;
4854 }
4855 else
4856 return 0;
4857 }
4858 }
4859 else if (subset)
4860 in_p = 0, low = low0, high = high0;
4861 else
4862 in_p = 0, low = low0, high = high1;
4863 }
4864
4865 *pin_p = in_p, *plow = low, *phigh = high;
4866 return 1;
4867 }
4868 \f
4869
4870 /* Subroutine of fold, looking inside expressions of the form
4871 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4872 of the COND_EXPR. This function is being used also to optimize
4873 A op B ? C : A, by reversing the comparison first.
4874
4875 Return a folded expression whose code is not a COND_EXPR
4876 anymore, or NULL_TREE if no folding opportunity is found. */
4877
4878 static tree
4879 fold_cond_expr_with_comparison (location_t loc, tree type,
4880 tree arg0, tree arg1, tree arg2)
4881 {
4882 enum tree_code comp_code = TREE_CODE (arg0);
4883 tree arg00 = TREE_OPERAND (arg0, 0);
4884 tree arg01 = TREE_OPERAND (arg0, 1);
4885 tree arg1_type = TREE_TYPE (arg1);
4886 tree tem;
4887
4888 STRIP_NOPS (arg1);
4889 STRIP_NOPS (arg2);
4890
4891 /* If we have A op 0 ? A : -A, consider applying the following
4892 transformations:
4893
4894 A == 0? A : -A same as -A
4895 A != 0? A : -A same as A
4896 A >= 0? A : -A same as abs (A)
4897 A > 0? A : -A same as abs (A)
4898 A <= 0? A : -A same as -abs (A)
4899 A < 0? A : -A same as -abs (A)
4900
4901 None of these transformations work for modes with signed
4902 zeros. If A is +/-0, the first two transformations will
4903 change the sign of the result (from +0 to -0, or vice
4904 versa). The last four will fix the sign of the result,
4905 even though the original expressions could be positive or
4906 negative, depending on the sign of A.
4907
4908 Note that all these transformations are correct if A is
4909 NaN, since the two alternatives (A and -A) are also NaNs. */
4910 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4911 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
4912 ? real_zerop (arg01)
4913 : integer_zerop (arg01))
4914 && ((TREE_CODE (arg2) == NEGATE_EXPR
4915 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4916 /* In the case that A is of the form X-Y, '-A' (arg2) may
4917 have already been folded to Y-X, check for that. */
4918 || (TREE_CODE (arg1) == MINUS_EXPR
4919 && TREE_CODE (arg2) == MINUS_EXPR
4920 && operand_equal_p (TREE_OPERAND (arg1, 0),
4921 TREE_OPERAND (arg2, 1), 0)
4922 && operand_equal_p (TREE_OPERAND (arg1, 1),
4923 TREE_OPERAND (arg2, 0), 0))))
4924 switch (comp_code)
4925 {
4926 case EQ_EXPR:
4927 case UNEQ_EXPR:
4928 tem = fold_convert_loc (loc, arg1_type, arg1);
4929 return pedantic_non_lvalue_loc (loc,
4930 fold_convert_loc (loc, type,
4931 negate_expr (tem)));
4932 case NE_EXPR:
4933 case LTGT_EXPR:
4934 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4935 case UNGE_EXPR:
4936 case UNGT_EXPR:
4937 if (flag_trapping_math)
4938 break;
4939 /* Fall through. */
4940 case GE_EXPR:
4941 case GT_EXPR:
4942 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4943 arg1 = fold_convert_loc (loc, signed_type_for
4944 (TREE_TYPE (arg1)), arg1);
4945 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4946 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4947 case UNLE_EXPR:
4948 case UNLT_EXPR:
4949 if (flag_trapping_math)
4950 break;
4951 case LE_EXPR:
4952 case LT_EXPR:
4953 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4954 arg1 = fold_convert_loc (loc, signed_type_for
4955 (TREE_TYPE (arg1)), arg1);
4956 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4957 return negate_expr (fold_convert_loc (loc, type, tem));
4958 default:
4959 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4960 break;
4961 }
4962
4963 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4964 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4965 both transformations are correct when A is NaN: A != 0
4966 is then true, and A == 0 is false. */
4967
4968 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4969 && integer_zerop (arg01) && integer_zerop (arg2))
4970 {
4971 if (comp_code == NE_EXPR)
4972 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4973 else if (comp_code == EQ_EXPR)
4974 return build_zero_cst (type);
4975 }
4976
4977 /* Try some transformations of A op B ? A : B.
4978
4979 A == B? A : B same as B
4980 A != B? A : B same as A
4981 A >= B? A : B same as max (A, B)
4982 A > B? A : B same as max (B, A)
4983 A <= B? A : B same as min (A, B)
4984 A < B? A : B same as min (B, A)
4985
4986 As above, these transformations don't work in the presence
4987 of signed zeros. For example, if A and B are zeros of
4988 opposite sign, the first two transformations will change
4989 the sign of the result. In the last four, the original
4990 expressions give different results for (A=+0, B=-0) and
4991 (A=-0, B=+0), but the transformed expressions do not.
4992
4993 The first two transformations are correct if either A or B
4994 is a NaN. In the first transformation, the condition will
4995 be false, and B will indeed be chosen. In the case of the
4996 second transformation, the condition A != B will be true,
4997 and A will be chosen.
4998
4999 The conversions to max() and min() are not correct if B is
5000 a number and A is not. The conditions in the original
5001 expressions will be false, so all four give B. The min()
5002 and max() versions would give a NaN instead. */
5003 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5004 && operand_equal_for_comparison_p (arg01, arg2, arg00)
5005 /* Avoid these transformations if the COND_EXPR may be used
5006 as an lvalue in the C++ front-end. PR c++/19199. */
5007 && (in_gimple_form
5008 || VECTOR_TYPE_P (type)
5009 || (! lang_GNU_CXX ()
5010 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5011 || ! maybe_lvalue_p (arg1)
5012 || ! maybe_lvalue_p (arg2)))
5013 {
5014 tree comp_op0 = arg00;
5015 tree comp_op1 = arg01;
5016 tree comp_type = TREE_TYPE (comp_op0);
5017
5018 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
5019 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
5020 {
5021 comp_type = type;
5022 comp_op0 = arg1;
5023 comp_op1 = arg2;
5024 }
5025
5026 switch (comp_code)
5027 {
5028 case EQ_EXPR:
5029 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg2));
5030 case NE_EXPR:
5031 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
5032 case LE_EXPR:
5033 case LT_EXPR:
5034 case UNLE_EXPR:
5035 case UNLT_EXPR:
5036 /* In C++ a ?: expression can be an lvalue, so put the
5037 operand which will be used if they are equal first
5038 so that we can convert this back to the
5039 corresponding COND_EXPR. */
5040 if (!HONOR_NANS (arg1))
5041 {
5042 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5043 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5044 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5045 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5046 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5047 comp_op1, comp_op0);
5048 return pedantic_non_lvalue_loc (loc,
5049 fold_convert_loc (loc, type, tem));
5050 }
5051 break;
5052 case GE_EXPR:
5053 case GT_EXPR:
5054 case UNGE_EXPR:
5055 case UNGT_EXPR:
5056 if (!HONOR_NANS (arg1))
5057 {
5058 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5059 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5060 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5061 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
5062 : fold_build2_loc (loc, MAX_EXPR, comp_type,
5063 comp_op1, comp_op0);
5064 return pedantic_non_lvalue_loc (loc,
5065 fold_convert_loc (loc, type, tem));
5066 }
5067 break;
5068 case UNEQ_EXPR:
5069 if (!HONOR_NANS (arg1))
5070 return pedantic_non_lvalue_loc (loc,
5071 fold_convert_loc (loc, type, arg2));
5072 break;
5073 case LTGT_EXPR:
5074 if (!HONOR_NANS (arg1))
5075 return pedantic_non_lvalue_loc (loc,
5076 fold_convert_loc (loc, type, arg1));
5077 break;
5078 default:
5079 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5080 break;
5081 }
5082 }
5083
5084 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5085 we might still be able to simplify this. For example,
5086 if C1 is one less or one more than C2, this might have started
5087 out as a MIN or MAX and been transformed by this function.
5088 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5089
5090 if (INTEGRAL_TYPE_P (type)
5091 && TREE_CODE (arg01) == INTEGER_CST
5092 && TREE_CODE (arg2) == INTEGER_CST)
5093 switch (comp_code)
5094 {
5095 case EQ_EXPR:
5096 if (TREE_CODE (arg1) == INTEGER_CST)
5097 break;
5098 /* We can replace A with C1 in this case. */
5099 arg1 = fold_convert_loc (loc, type, arg01);
5100 return fold_build3_loc (loc, COND_EXPR, type, arg0, arg1, arg2);
5101
5102 case LT_EXPR:
5103 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
5104 MIN_EXPR, to preserve the signedness of the comparison. */
5105 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5106 OEP_ONLY_CONST)
5107 && operand_equal_p (arg01,
5108 const_binop (PLUS_EXPR, arg2,
5109 build_int_cst (type, 1)),
5110 OEP_ONLY_CONST))
5111 {
5112 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5113 fold_convert_loc (loc, TREE_TYPE (arg00),
5114 arg2));
5115 return pedantic_non_lvalue_loc (loc,
5116 fold_convert_loc (loc, type, tem));
5117 }
5118 break;
5119
5120 case LE_EXPR:
5121 /* If C1 is C2 - 1, this is min(A, C2), with the same care
5122 as above. */
5123 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5124 OEP_ONLY_CONST)
5125 && operand_equal_p (arg01,
5126 const_binop (MINUS_EXPR, arg2,
5127 build_int_cst (type, 1)),
5128 OEP_ONLY_CONST))
5129 {
5130 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5131 fold_convert_loc (loc, TREE_TYPE (arg00),
5132 arg2));
5133 return pedantic_non_lvalue_loc (loc,
5134 fold_convert_loc (loc, type, tem));
5135 }
5136 break;
5137
5138 case GT_EXPR:
5139 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
5140 MAX_EXPR, to preserve the signedness of the comparison. */
5141 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5142 OEP_ONLY_CONST)
5143 && operand_equal_p (arg01,
5144 const_binop (MINUS_EXPR, arg2,
5145 build_int_cst (type, 1)),
5146 OEP_ONLY_CONST))
5147 {
5148 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5149 fold_convert_loc (loc, TREE_TYPE (arg00),
5150 arg2));
5151 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5152 }
5153 break;
5154
5155 case GE_EXPR:
5156 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
5157 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5158 OEP_ONLY_CONST)
5159 && operand_equal_p (arg01,
5160 const_binop (PLUS_EXPR, arg2,
5161 build_int_cst (type, 1)),
5162 OEP_ONLY_CONST))
5163 {
5164 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5165 fold_convert_loc (loc, TREE_TYPE (arg00),
5166 arg2));
5167 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5168 }
5169 break;
5170 case NE_EXPR:
5171 break;
5172 default:
5173 gcc_unreachable ();
5174 }
5175
5176 return NULL_TREE;
5177 }
5178
5179
5180 \f
5181 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5182 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5183 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5184 false) >= 2)
5185 #endif
5186
5187 /* EXP is some logical combination of boolean tests. See if we can
5188 merge it into some range test. Return the new tree if so. */
5189
5190 static tree
5191 fold_range_test (location_t loc, enum tree_code code, tree type,
5192 tree op0, tree op1)
5193 {
5194 int or_op = (code == TRUTH_ORIF_EXPR
5195 || code == TRUTH_OR_EXPR);
5196 int in0_p, in1_p, in_p;
5197 tree low0, low1, low, high0, high1, high;
5198 bool strict_overflow_p = false;
5199 tree tem, lhs, rhs;
5200 const char * const warnmsg = G_("assuming signed overflow does not occur "
5201 "when simplifying range test");
5202
5203 if (!INTEGRAL_TYPE_P (type))
5204 return 0;
5205
5206 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5207 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5208
5209 /* If this is an OR operation, invert both sides; we will invert
5210 again at the end. */
5211 if (or_op)
5212 in0_p = ! in0_p, in1_p = ! in1_p;
5213
5214 /* If both expressions are the same, if we can merge the ranges, and we
5215 can build the range test, return it or it inverted. If one of the
5216 ranges is always true or always false, consider it to be the same
5217 expression as the other. */
5218 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5219 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5220 in1_p, low1, high1)
5221 && 0 != (tem = (build_range_check (loc, type,
5222 lhs != 0 ? lhs
5223 : rhs != 0 ? rhs : integer_zero_node,
5224 in_p, low, high))))
5225 {
5226 if (strict_overflow_p)
5227 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5228 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5229 }
5230
5231 /* On machines where the branch cost is expensive, if this is a
5232 short-circuited branch and the underlying object on both sides
5233 is the same, make a non-short-circuit operation. */
5234 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5235 && lhs != 0 && rhs != 0
5236 && (code == TRUTH_ANDIF_EXPR
5237 || code == TRUTH_ORIF_EXPR)
5238 && operand_equal_p (lhs, rhs, 0))
5239 {
5240 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5241 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5242 which cases we can't do this. */
5243 if (simple_operand_p (lhs))
5244 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5245 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5246 type, op0, op1);
5247
5248 else if (!lang_hooks.decls.global_bindings_p ()
5249 && !CONTAINS_PLACEHOLDER_P (lhs))
5250 {
5251 tree common = save_expr (lhs);
5252
5253 if (0 != (lhs = build_range_check (loc, type, common,
5254 or_op ? ! in0_p : in0_p,
5255 low0, high0))
5256 && (0 != (rhs = build_range_check (loc, type, common,
5257 or_op ? ! in1_p : in1_p,
5258 low1, high1))))
5259 {
5260 if (strict_overflow_p)
5261 fold_overflow_warning (warnmsg,
5262 WARN_STRICT_OVERFLOW_COMPARISON);
5263 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5264 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5265 type, lhs, rhs);
5266 }
5267 }
5268 }
5269
5270 return 0;
5271 }
5272 \f
5273 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5274 bit value. Arrange things so the extra bits will be set to zero if and
5275 only if C is signed-extended to its full width. If MASK is nonzero,
5276 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5277
5278 static tree
5279 unextend (tree c, int p, int unsignedp, tree mask)
5280 {
5281 tree type = TREE_TYPE (c);
5282 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5283 tree temp;
5284
5285 if (p == modesize || unsignedp)
5286 return c;
5287
5288 /* We work by getting just the sign bit into the low-order bit, then
5289 into the high-order bit, then sign-extend. We then XOR that value
5290 with C. */
5291 temp = build_int_cst (TREE_TYPE (c), wi::extract_uhwi (c, p - 1, 1));
5292
5293 /* We must use a signed type in order to get an arithmetic right shift.
5294 However, we must also avoid introducing accidental overflows, so that
5295 a subsequent call to integer_zerop will work. Hence we must
5296 do the type conversion here. At this point, the constant is either
5297 zero or one, and the conversion to a signed type can never overflow.
5298 We could get an overflow if this conversion is done anywhere else. */
5299 if (TYPE_UNSIGNED (type))
5300 temp = fold_convert (signed_type_for (type), temp);
5301
5302 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5303 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5304 if (mask != 0)
5305 temp = const_binop (BIT_AND_EXPR, temp,
5306 fold_convert (TREE_TYPE (c), mask));
5307 /* If necessary, convert the type back to match the type of C. */
5308 if (TYPE_UNSIGNED (type))
5309 temp = fold_convert (type, temp);
5310
5311 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5312 }
5313 \f
5314 /* For an expression that has the form
5315 (A && B) || ~B
5316 or
5317 (A || B) && ~B,
5318 we can drop one of the inner expressions and simplify to
5319 A || ~B
5320 or
5321 A && ~B
5322 LOC is the location of the resulting expression. OP is the inner
5323 logical operation; the left-hand side in the examples above, while CMPOP
5324 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5325 removing a condition that guards another, as in
5326 (A != NULL && A->...) || A == NULL
5327 which we must not transform. If RHS_ONLY is true, only eliminate the
5328 right-most operand of the inner logical operation. */
5329
5330 static tree
5331 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5332 bool rhs_only)
5333 {
5334 tree type = TREE_TYPE (cmpop);
5335 enum tree_code code = TREE_CODE (cmpop);
5336 enum tree_code truthop_code = TREE_CODE (op);
5337 tree lhs = TREE_OPERAND (op, 0);
5338 tree rhs = TREE_OPERAND (op, 1);
5339 tree orig_lhs = lhs, orig_rhs = rhs;
5340 enum tree_code rhs_code = TREE_CODE (rhs);
5341 enum tree_code lhs_code = TREE_CODE (lhs);
5342 enum tree_code inv_code;
5343
5344 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5345 return NULL_TREE;
5346
5347 if (TREE_CODE_CLASS (code) != tcc_comparison)
5348 return NULL_TREE;
5349
5350 if (rhs_code == truthop_code)
5351 {
5352 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5353 if (newrhs != NULL_TREE)
5354 {
5355 rhs = newrhs;
5356 rhs_code = TREE_CODE (rhs);
5357 }
5358 }
5359 if (lhs_code == truthop_code && !rhs_only)
5360 {
5361 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5362 if (newlhs != NULL_TREE)
5363 {
5364 lhs = newlhs;
5365 lhs_code = TREE_CODE (lhs);
5366 }
5367 }
5368
5369 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5370 if (inv_code == rhs_code
5371 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5372 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5373 return lhs;
5374 if (!rhs_only && inv_code == lhs_code
5375 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5376 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5377 return rhs;
5378 if (rhs != orig_rhs || lhs != orig_lhs)
5379 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5380 lhs, rhs);
5381 return NULL_TREE;
5382 }
5383
5384 /* Find ways of folding logical expressions of LHS and RHS:
5385 Try to merge two comparisons to the same innermost item.
5386 Look for range tests like "ch >= '0' && ch <= '9'".
5387 Look for combinations of simple terms on machines with expensive branches
5388 and evaluate the RHS unconditionally.
5389
5390 For example, if we have p->a == 2 && p->b == 4 and we can make an
5391 object large enough to span both A and B, we can do this with a comparison
5392 against the object ANDed with the a mask.
5393
5394 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5395 operations to do this with one comparison.
5396
5397 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5398 function and the one above.
5399
5400 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5401 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5402
5403 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5404 two operands.
5405
5406 We return the simplified tree or 0 if no optimization is possible. */
5407
5408 static tree
5409 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5410 tree lhs, tree rhs)
5411 {
5412 /* If this is the "or" of two comparisons, we can do something if
5413 the comparisons are NE_EXPR. If this is the "and", we can do something
5414 if the comparisons are EQ_EXPR. I.e.,
5415 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5416
5417 WANTED_CODE is this operation code. For single bit fields, we can
5418 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5419 comparison for one-bit fields. */
5420
5421 enum tree_code wanted_code;
5422 enum tree_code lcode, rcode;
5423 tree ll_arg, lr_arg, rl_arg, rr_arg;
5424 tree ll_inner, lr_inner, rl_inner, rr_inner;
5425 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5426 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5427 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5428 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5429 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5430 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5431 machine_mode lnmode, rnmode;
5432 tree ll_mask, lr_mask, rl_mask, rr_mask;
5433 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5434 tree l_const, r_const;
5435 tree lntype, rntype, result;
5436 HOST_WIDE_INT first_bit, end_bit;
5437 int volatilep;
5438
5439 /* Start by getting the comparison codes. Fail if anything is volatile.
5440 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5441 it were surrounded with a NE_EXPR. */
5442
5443 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5444 return 0;
5445
5446 lcode = TREE_CODE (lhs);
5447 rcode = TREE_CODE (rhs);
5448
5449 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5450 {
5451 lhs = build2 (NE_EXPR, truth_type, lhs,
5452 build_int_cst (TREE_TYPE (lhs), 0));
5453 lcode = NE_EXPR;
5454 }
5455
5456 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5457 {
5458 rhs = build2 (NE_EXPR, truth_type, rhs,
5459 build_int_cst (TREE_TYPE (rhs), 0));
5460 rcode = NE_EXPR;
5461 }
5462
5463 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5464 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5465 return 0;
5466
5467 ll_arg = TREE_OPERAND (lhs, 0);
5468 lr_arg = TREE_OPERAND (lhs, 1);
5469 rl_arg = TREE_OPERAND (rhs, 0);
5470 rr_arg = TREE_OPERAND (rhs, 1);
5471
5472 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5473 if (simple_operand_p (ll_arg)
5474 && simple_operand_p (lr_arg))
5475 {
5476 if (operand_equal_p (ll_arg, rl_arg, 0)
5477 && operand_equal_p (lr_arg, rr_arg, 0))
5478 {
5479 result = combine_comparisons (loc, code, lcode, rcode,
5480 truth_type, ll_arg, lr_arg);
5481 if (result)
5482 return result;
5483 }
5484 else if (operand_equal_p (ll_arg, rr_arg, 0)
5485 && operand_equal_p (lr_arg, rl_arg, 0))
5486 {
5487 result = combine_comparisons (loc, code, lcode,
5488 swap_tree_comparison (rcode),
5489 truth_type, ll_arg, lr_arg);
5490 if (result)
5491 return result;
5492 }
5493 }
5494
5495 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5496 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5497
5498 /* If the RHS can be evaluated unconditionally and its operands are
5499 simple, it wins to evaluate the RHS unconditionally on machines
5500 with expensive branches. In this case, this isn't a comparison
5501 that can be merged. */
5502
5503 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5504 false) >= 2
5505 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5506 && simple_operand_p (rl_arg)
5507 && simple_operand_p (rr_arg))
5508 {
5509 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5510 if (code == TRUTH_OR_EXPR
5511 && lcode == NE_EXPR && integer_zerop (lr_arg)
5512 && rcode == NE_EXPR && integer_zerop (rr_arg)
5513 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5514 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5515 return build2_loc (loc, NE_EXPR, truth_type,
5516 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5517 ll_arg, rl_arg),
5518 build_int_cst (TREE_TYPE (ll_arg), 0));
5519
5520 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5521 if (code == TRUTH_AND_EXPR
5522 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5523 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5524 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5525 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5526 return build2_loc (loc, EQ_EXPR, truth_type,
5527 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5528 ll_arg, rl_arg),
5529 build_int_cst (TREE_TYPE (ll_arg), 0));
5530 }
5531
5532 /* See if the comparisons can be merged. Then get all the parameters for
5533 each side. */
5534
5535 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5536 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5537 return 0;
5538
5539 volatilep = 0;
5540 ll_inner = decode_field_reference (loc, ll_arg,
5541 &ll_bitsize, &ll_bitpos, &ll_mode,
5542 &ll_unsignedp, &volatilep, &ll_mask,
5543 &ll_and_mask);
5544 lr_inner = decode_field_reference (loc, lr_arg,
5545 &lr_bitsize, &lr_bitpos, &lr_mode,
5546 &lr_unsignedp, &volatilep, &lr_mask,
5547 &lr_and_mask);
5548 rl_inner = decode_field_reference (loc, rl_arg,
5549 &rl_bitsize, &rl_bitpos, &rl_mode,
5550 &rl_unsignedp, &volatilep, &rl_mask,
5551 &rl_and_mask);
5552 rr_inner = decode_field_reference (loc, rr_arg,
5553 &rr_bitsize, &rr_bitpos, &rr_mode,
5554 &rr_unsignedp, &volatilep, &rr_mask,
5555 &rr_and_mask);
5556
5557 /* It must be true that the inner operation on the lhs of each
5558 comparison must be the same if we are to be able to do anything.
5559 Then see if we have constants. If not, the same must be true for
5560 the rhs's. */
5561 if (volatilep || ll_inner == 0 || rl_inner == 0
5562 || ! operand_equal_p (ll_inner, rl_inner, 0))
5563 return 0;
5564
5565 if (TREE_CODE (lr_arg) == INTEGER_CST
5566 && TREE_CODE (rr_arg) == INTEGER_CST)
5567 l_const = lr_arg, r_const = rr_arg;
5568 else if (lr_inner == 0 || rr_inner == 0
5569 || ! operand_equal_p (lr_inner, rr_inner, 0))
5570 return 0;
5571 else
5572 l_const = r_const = 0;
5573
5574 /* If either comparison code is not correct for our logical operation,
5575 fail. However, we can convert a one-bit comparison against zero into
5576 the opposite comparison against that bit being set in the field. */
5577
5578 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5579 if (lcode != wanted_code)
5580 {
5581 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5582 {
5583 /* Make the left operand unsigned, since we are only interested
5584 in the value of one bit. Otherwise we are doing the wrong
5585 thing below. */
5586 ll_unsignedp = 1;
5587 l_const = ll_mask;
5588 }
5589 else
5590 return 0;
5591 }
5592
5593 /* This is analogous to the code for l_const above. */
5594 if (rcode != wanted_code)
5595 {
5596 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5597 {
5598 rl_unsignedp = 1;
5599 r_const = rl_mask;
5600 }
5601 else
5602 return 0;
5603 }
5604
5605 /* See if we can find a mode that contains both fields being compared on
5606 the left. If we can't, fail. Otherwise, update all constants and masks
5607 to be relative to a field of that size. */
5608 first_bit = MIN (ll_bitpos, rl_bitpos);
5609 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5610 lnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5611 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5612 volatilep);
5613 if (lnmode == VOIDmode)
5614 return 0;
5615
5616 lnbitsize = GET_MODE_BITSIZE (lnmode);
5617 lnbitpos = first_bit & ~ (lnbitsize - 1);
5618 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5619 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5620
5621 if (BYTES_BIG_ENDIAN)
5622 {
5623 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5624 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5625 }
5626
5627 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5628 size_int (xll_bitpos));
5629 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5630 size_int (xrl_bitpos));
5631
5632 if (l_const)
5633 {
5634 l_const = fold_convert_loc (loc, lntype, l_const);
5635 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5636 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5637 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5638 fold_build1_loc (loc, BIT_NOT_EXPR,
5639 lntype, ll_mask))))
5640 {
5641 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5642
5643 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5644 }
5645 }
5646 if (r_const)
5647 {
5648 r_const = fold_convert_loc (loc, lntype, r_const);
5649 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5650 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5651 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5652 fold_build1_loc (loc, BIT_NOT_EXPR,
5653 lntype, rl_mask))))
5654 {
5655 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5656
5657 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5658 }
5659 }
5660
5661 /* If the right sides are not constant, do the same for it. Also,
5662 disallow this optimization if a size or signedness mismatch occurs
5663 between the left and right sides. */
5664 if (l_const == 0)
5665 {
5666 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5667 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5668 /* Make sure the two fields on the right
5669 correspond to the left without being swapped. */
5670 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5671 return 0;
5672
5673 first_bit = MIN (lr_bitpos, rr_bitpos);
5674 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5675 rnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5676 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5677 volatilep);
5678 if (rnmode == VOIDmode)
5679 return 0;
5680
5681 rnbitsize = GET_MODE_BITSIZE (rnmode);
5682 rnbitpos = first_bit & ~ (rnbitsize - 1);
5683 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5684 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5685
5686 if (BYTES_BIG_ENDIAN)
5687 {
5688 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5689 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5690 }
5691
5692 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5693 rntype, lr_mask),
5694 size_int (xlr_bitpos));
5695 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5696 rntype, rr_mask),
5697 size_int (xrr_bitpos));
5698
5699 /* Make a mask that corresponds to both fields being compared.
5700 Do this for both items being compared. If the operands are the
5701 same size and the bits being compared are in the same position
5702 then we can do this by masking both and comparing the masked
5703 results. */
5704 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5705 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5706 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5707 {
5708 lhs = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5709 ll_unsignedp || rl_unsignedp);
5710 if (! all_ones_mask_p (ll_mask, lnbitsize))
5711 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5712
5713 rhs = make_bit_field_ref (loc, lr_inner, rntype, rnbitsize, rnbitpos,
5714 lr_unsignedp || rr_unsignedp);
5715 if (! all_ones_mask_p (lr_mask, rnbitsize))
5716 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5717
5718 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5719 }
5720
5721 /* There is still another way we can do something: If both pairs of
5722 fields being compared are adjacent, we may be able to make a wider
5723 field containing them both.
5724
5725 Note that we still must mask the lhs/rhs expressions. Furthermore,
5726 the mask must be shifted to account for the shift done by
5727 make_bit_field_ref. */
5728 if ((ll_bitsize + ll_bitpos == rl_bitpos
5729 && lr_bitsize + lr_bitpos == rr_bitpos)
5730 || (ll_bitpos == rl_bitpos + rl_bitsize
5731 && lr_bitpos == rr_bitpos + rr_bitsize))
5732 {
5733 tree type;
5734
5735 lhs = make_bit_field_ref (loc, ll_inner, lntype,
5736 ll_bitsize + rl_bitsize,
5737 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5738 rhs = make_bit_field_ref (loc, lr_inner, rntype,
5739 lr_bitsize + rr_bitsize,
5740 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5741
5742 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5743 size_int (MIN (xll_bitpos, xrl_bitpos)));
5744 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5745 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5746
5747 /* Convert to the smaller type before masking out unwanted bits. */
5748 type = lntype;
5749 if (lntype != rntype)
5750 {
5751 if (lnbitsize > rnbitsize)
5752 {
5753 lhs = fold_convert_loc (loc, rntype, lhs);
5754 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5755 type = rntype;
5756 }
5757 else if (lnbitsize < rnbitsize)
5758 {
5759 rhs = fold_convert_loc (loc, lntype, rhs);
5760 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5761 type = lntype;
5762 }
5763 }
5764
5765 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5766 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5767
5768 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5769 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5770
5771 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5772 }
5773
5774 return 0;
5775 }
5776
5777 /* Handle the case of comparisons with constants. If there is something in
5778 common between the masks, those bits of the constants must be the same.
5779 If not, the condition is always false. Test for this to avoid generating
5780 incorrect code below. */
5781 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5782 if (! integer_zerop (result)
5783 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5784 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5785 {
5786 if (wanted_code == NE_EXPR)
5787 {
5788 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5789 return constant_boolean_node (true, truth_type);
5790 }
5791 else
5792 {
5793 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5794 return constant_boolean_node (false, truth_type);
5795 }
5796 }
5797
5798 /* Construct the expression we will return. First get the component
5799 reference we will make. Unless the mask is all ones the width of
5800 that field, perform the mask operation. Then compare with the
5801 merged constant. */
5802 result = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5803 ll_unsignedp || rl_unsignedp);
5804
5805 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5806 if (! all_ones_mask_p (ll_mask, lnbitsize))
5807 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5808
5809 return build2_loc (loc, wanted_code, truth_type, result,
5810 const_binop (BIT_IOR_EXPR, l_const, r_const));
5811 }
5812 \f
5813 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5814 constant. */
5815
5816 static tree
5817 optimize_minmax_comparison (location_t loc, enum tree_code code, tree type,
5818 tree op0, tree op1)
5819 {
5820 tree arg0 = op0;
5821 enum tree_code op_code;
5822 tree comp_const;
5823 tree minmax_const;
5824 int consts_equal, consts_lt;
5825 tree inner;
5826
5827 STRIP_SIGN_NOPS (arg0);
5828
5829 op_code = TREE_CODE (arg0);
5830 minmax_const = TREE_OPERAND (arg0, 1);
5831 comp_const = fold_convert_loc (loc, TREE_TYPE (arg0), op1);
5832 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5833 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5834 inner = TREE_OPERAND (arg0, 0);
5835
5836 /* If something does not permit us to optimize, return the original tree. */
5837 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5838 || TREE_CODE (comp_const) != INTEGER_CST
5839 || TREE_OVERFLOW (comp_const)
5840 || TREE_CODE (minmax_const) != INTEGER_CST
5841 || TREE_OVERFLOW (minmax_const))
5842 return NULL_TREE;
5843
5844 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5845 and GT_EXPR, doing the rest with recursive calls using logical
5846 simplifications. */
5847 switch (code)
5848 {
5849 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5850 {
5851 tree tem
5852 = optimize_minmax_comparison (loc,
5853 invert_tree_comparison (code, false),
5854 type, op0, op1);
5855 if (tem)
5856 return invert_truthvalue_loc (loc, tem);
5857 return NULL_TREE;
5858 }
5859
5860 case GE_EXPR:
5861 return
5862 fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
5863 optimize_minmax_comparison
5864 (loc, EQ_EXPR, type, arg0, comp_const),
5865 optimize_minmax_comparison
5866 (loc, GT_EXPR, type, arg0, comp_const));
5867
5868 case EQ_EXPR:
5869 if (op_code == MAX_EXPR && consts_equal)
5870 /* MAX (X, 0) == 0 -> X <= 0 */
5871 return fold_build2_loc (loc, LE_EXPR, type, inner, comp_const);
5872
5873 else if (op_code == MAX_EXPR && consts_lt)
5874 /* MAX (X, 0) == 5 -> X == 5 */
5875 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5876
5877 else if (op_code == MAX_EXPR)
5878 /* MAX (X, 0) == -1 -> false */
5879 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5880
5881 else if (consts_equal)
5882 /* MIN (X, 0) == 0 -> X >= 0 */
5883 return fold_build2_loc (loc, GE_EXPR, type, inner, comp_const);
5884
5885 else if (consts_lt)
5886 /* MIN (X, 0) == 5 -> false */
5887 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5888
5889 else
5890 /* MIN (X, 0) == -1 -> X == -1 */
5891 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5892
5893 case GT_EXPR:
5894 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5895 /* MAX (X, 0) > 0 -> X > 0
5896 MAX (X, 0) > 5 -> X > 5 */
5897 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5898
5899 else if (op_code == MAX_EXPR)
5900 /* MAX (X, 0) > -1 -> true */
5901 return omit_one_operand_loc (loc, type, integer_one_node, inner);
5902
5903 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5904 /* MIN (X, 0) > 0 -> false
5905 MIN (X, 0) > 5 -> false */
5906 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5907
5908 else
5909 /* MIN (X, 0) > -1 -> X > -1 */
5910 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5911
5912 default:
5913 return NULL_TREE;
5914 }
5915 }
5916 \f
5917 /* T is an integer expression that is being multiplied, divided, or taken a
5918 modulus (CODE says which and what kind of divide or modulus) by a
5919 constant C. See if we can eliminate that operation by folding it with
5920 other operations already in T. WIDE_TYPE, if non-null, is a type that
5921 should be used for the computation if wider than our type.
5922
5923 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5924 (X * 2) + (Y * 4). We must, however, be assured that either the original
5925 expression would not overflow or that overflow is undefined for the type
5926 in the language in question.
5927
5928 If we return a non-null expression, it is an equivalent form of the
5929 original computation, but need not be in the original type.
5930
5931 We set *STRICT_OVERFLOW_P to true if the return values depends on
5932 signed overflow being undefined. Otherwise we do not change
5933 *STRICT_OVERFLOW_P. */
5934
5935 static tree
5936 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5937 bool *strict_overflow_p)
5938 {
5939 /* To avoid exponential search depth, refuse to allow recursion past
5940 three levels. Beyond that (1) it's highly unlikely that we'll find
5941 something interesting and (2) we've probably processed it before
5942 when we built the inner expression. */
5943
5944 static int depth;
5945 tree ret;
5946
5947 if (depth > 3)
5948 return NULL;
5949
5950 depth++;
5951 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
5952 depth--;
5953
5954 return ret;
5955 }
5956
5957 static tree
5958 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
5959 bool *strict_overflow_p)
5960 {
5961 tree type = TREE_TYPE (t);
5962 enum tree_code tcode = TREE_CODE (t);
5963 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5964 > GET_MODE_SIZE (TYPE_MODE (type)))
5965 ? wide_type : type);
5966 tree t1, t2;
5967 int same_p = tcode == code;
5968 tree op0 = NULL_TREE, op1 = NULL_TREE;
5969 bool sub_strict_overflow_p;
5970
5971 /* Don't deal with constants of zero here; they confuse the code below. */
5972 if (integer_zerop (c))
5973 return NULL_TREE;
5974
5975 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5976 op0 = TREE_OPERAND (t, 0);
5977
5978 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5979 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5980
5981 /* Note that we need not handle conditional operations here since fold
5982 already handles those cases. So just do arithmetic here. */
5983 switch (tcode)
5984 {
5985 case INTEGER_CST:
5986 /* For a constant, we can always simplify if we are a multiply
5987 or (for divide and modulus) if it is a multiple of our constant. */
5988 if (code == MULT_EXPR
5989 || wi::multiple_of_p (t, c, TYPE_SIGN (type)))
5990 return const_binop (code, fold_convert (ctype, t),
5991 fold_convert (ctype, c));
5992 break;
5993
5994 CASE_CONVERT: case NON_LVALUE_EXPR:
5995 /* If op0 is an expression ... */
5996 if ((COMPARISON_CLASS_P (op0)
5997 || UNARY_CLASS_P (op0)
5998 || BINARY_CLASS_P (op0)
5999 || VL_EXP_CLASS_P (op0)
6000 || EXPRESSION_CLASS_P (op0))
6001 /* ... and has wrapping overflow, and its type is smaller
6002 than ctype, then we cannot pass through as widening. */
6003 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6004 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
6005 && (TYPE_PRECISION (ctype)
6006 > TYPE_PRECISION (TREE_TYPE (op0))))
6007 /* ... or this is a truncation (t is narrower than op0),
6008 then we cannot pass through this narrowing. */
6009 || (TYPE_PRECISION (type)
6010 < TYPE_PRECISION (TREE_TYPE (op0)))
6011 /* ... or signedness changes for division or modulus,
6012 then we cannot pass through this conversion. */
6013 || (code != MULT_EXPR
6014 && (TYPE_UNSIGNED (ctype)
6015 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6016 /* ... or has undefined overflow while the converted to
6017 type has not, we cannot do the operation in the inner type
6018 as that would introduce undefined overflow. */
6019 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6020 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
6021 && !TYPE_OVERFLOW_UNDEFINED (type))))
6022 break;
6023
6024 /* Pass the constant down and see if we can make a simplification. If
6025 we can, replace this expression with the inner simplification for
6026 possible later conversion to our or some other type. */
6027 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6028 && TREE_CODE (t2) == INTEGER_CST
6029 && !TREE_OVERFLOW (t2)
6030 && (0 != (t1 = extract_muldiv (op0, t2, code,
6031 code == MULT_EXPR
6032 ? ctype : NULL_TREE,
6033 strict_overflow_p))))
6034 return t1;
6035 break;
6036
6037 case ABS_EXPR:
6038 /* If widening the type changes it from signed to unsigned, then we
6039 must avoid building ABS_EXPR itself as unsigned. */
6040 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6041 {
6042 tree cstype = (*signed_type_for) (ctype);
6043 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6044 != 0)
6045 {
6046 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6047 return fold_convert (ctype, t1);
6048 }
6049 break;
6050 }
6051 /* If the constant is negative, we cannot simplify this. */
6052 if (tree_int_cst_sgn (c) == -1)
6053 break;
6054 /* FALLTHROUGH */
6055 case NEGATE_EXPR:
6056 /* For division and modulus, type can't be unsigned, as e.g.
6057 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6058 For signed types, even with wrapping overflow, this is fine. */
6059 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6060 break;
6061 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6062 != 0)
6063 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6064 break;
6065
6066 case MIN_EXPR: case MAX_EXPR:
6067 /* If widening the type changes the signedness, then we can't perform
6068 this optimization as that changes the result. */
6069 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6070 break;
6071
6072 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6073 sub_strict_overflow_p = false;
6074 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6075 &sub_strict_overflow_p)) != 0
6076 && (t2 = extract_muldiv (op1, c, code, wide_type,
6077 &sub_strict_overflow_p)) != 0)
6078 {
6079 if (tree_int_cst_sgn (c) < 0)
6080 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6081 if (sub_strict_overflow_p)
6082 *strict_overflow_p = true;
6083 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6084 fold_convert (ctype, t2));
6085 }
6086 break;
6087
6088 case LSHIFT_EXPR: case RSHIFT_EXPR:
6089 /* If the second operand is constant, this is a multiplication
6090 or floor division, by a power of two, so we can treat it that
6091 way unless the multiplier or divisor overflows. Signed
6092 left-shift overflow is implementation-defined rather than
6093 undefined in C90, so do not convert signed left shift into
6094 multiplication. */
6095 if (TREE_CODE (op1) == INTEGER_CST
6096 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6097 /* const_binop may not detect overflow correctly,
6098 so check for it explicitly here. */
6099 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
6100 && 0 != (t1 = fold_convert (ctype,
6101 const_binop (LSHIFT_EXPR,
6102 size_one_node,
6103 op1)))
6104 && !TREE_OVERFLOW (t1))
6105 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6106 ? MULT_EXPR : FLOOR_DIV_EXPR,
6107 ctype,
6108 fold_convert (ctype, op0),
6109 t1),
6110 c, code, wide_type, strict_overflow_p);
6111 break;
6112
6113 case PLUS_EXPR: case MINUS_EXPR:
6114 /* See if we can eliminate the operation on both sides. If we can, we
6115 can return a new PLUS or MINUS. If we can't, the only remaining
6116 cases where we can do anything are if the second operand is a
6117 constant. */
6118 sub_strict_overflow_p = false;
6119 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6120 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6121 if (t1 != 0 && t2 != 0
6122 && (code == MULT_EXPR
6123 /* If not multiplication, we can only do this if both operands
6124 are divisible by c. */
6125 || (multiple_of_p (ctype, op0, c)
6126 && multiple_of_p (ctype, op1, c))))
6127 {
6128 if (sub_strict_overflow_p)
6129 *strict_overflow_p = true;
6130 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6131 fold_convert (ctype, t2));
6132 }
6133
6134 /* If this was a subtraction, negate OP1 and set it to be an addition.
6135 This simplifies the logic below. */
6136 if (tcode == MINUS_EXPR)
6137 {
6138 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6139 /* If OP1 was not easily negatable, the constant may be OP0. */
6140 if (TREE_CODE (op0) == INTEGER_CST)
6141 {
6142 std::swap (op0, op1);
6143 std::swap (t1, t2);
6144 }
6145 }
6146
6147 if (TREE_CODE (op1) != INTEGER_CST)
6148 break;
6149
6150 /* If either OP1 or C are negative, this optimization is not safe for
6151 some of the division and remainder types while for others we need
6152 to change the code. */
6153 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6154 {
6155 if (code == CEIL_DIV_EXPR)
6156 code = FLOOR_DIV_EXPR;
6157 else if (code == FLOOR_DIV_EXPR)
6158 code = CEIL_DIV_EXPR;
6159 else if (code != MULT_EXPR
6160 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6161 break;
6162 }
6163
6164 /* If it's a multiply or a division/modulus operation of a multiple
6165 of our constant, do the operation and verify it doesn't overflow. */
6166 if (code == MULT_EXPR
6167 || wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6168 {
6169 op1 = const_binop (code, fold_convert (ctype, op1),
6170 fold_convert (ctype, c));
6171 /* We allow the constant to overflow with wrapping semantics. */
6172 if (op1 == 0
6173 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6174 break;
6175 }
6176 else
6177 break;
6178
6179 /* If we have an unsigned type, we cannot widen the operation since it
6180 will change the result if the original computation overflowed. */
6181 if (TYPE_UNSIGNED (ctype) && ctype != type)
6182 break;
6183
6184 /* If we were able to eliminate our operation from the first side,
6185 apply our operation to the second side and reform the PLUS. */
6186 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
6187 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
6188
6189 /* The last case is if we are a multiply. In that case, we can
6190 apply the distributive law to commute the multiply and addition
6191 if the multiplication of the constants doesn't overflow
6192 and overflow is defined. With undefined overflow
6193 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6194 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6195 return fold_build2 (tcode, ctype,
6196 fold_build2 (code, ctype,
6197 fold_convert (ctype, op0),
6198 fold_convert (ctype, c)),
6199 op1);
6200
6201 break;
6202
6203 case MULT_EXPR:
6204 /* We have a special case here if we are doing something like
6205 (C * 8) % 4 since we know that's zero. */
6206 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6207 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6208 /* If the multiplication can overflow we cannot optimize this. */
6209 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6210 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6211 && wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6212 {
6213 *strict_overflow_p = true;
6214 return omit_one_operand (type, integer_zero_node, op0);
6215 }
6216
6217 /* ... fall through ... */
6218
6219 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6220 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6221 /* If we can extract our operation from the LHS, do so and return a
6222 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6223 do something only if the second operand is a constant. */
6224 if (same_p
6225 && (t1 = extract_muldiv (op0, c, code, wide_type,
6226 strict_overflow_p)) != 0)
6227 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6228 fold_convert (ctype, op1));
6229 else if (tcode == MULT_EXPR && code == MULT_EXPR
6230 && (t1 = extract_muldiv (op1, c, code, wide_type,
6231 strict_overflow_p)) != 0)
6232 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6233 fold_convert (ctype, t1));
6234 else if (TREE_CODE (op1) != INTEGER_CST)
6235 return 0;
6236
6237 /* If these are the same operation types, we can associate them
6238 assuming no overflow. */
6239 if (tcode == code)
6240 {
6241 bool overflow_p = false;
6242 bool overflow_mul_p;
6243 signop sign = TYPE_SIGN (ctype);
6244 wide_int mul = wi::mul (op1, c, sign, &overflow_mul_p);
6245 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6246 if (overflow_mul_p
6247 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6248 overflow_p = true;
6249 if (!overflow_p)
6250 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6251 wide_int_to_tree (ctype, mul));
6252 }
6253
6254 /* If these operations "cancel" each other, we have the main
6255 optimizations of this pass, which occur when either constant is a
6256 multiple of the other, in which case we replace this with either an
6257 operation or CODE or TCODE.
6258
6259 If we have an unsigned type, we cannot do this since it will change
6260 the result if the original computation overflowed. */
6261 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6262 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6263 || (tcode == MULT_EXPR
6264 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6265 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6266 && code != MULT_EXPR)))
6267 {
6268 if (wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6269 {
6270 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6271 *strict_overflow_p = true;
6272 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6273 fold_convert (ctype,
6274 const_binop (TRUNC_DIV_EXPR,
6275 op1, c)));
6276 }
6277 else if (wi::multiple_of_p (c, op1, TYPE_SIGN (type)))
6278 {
6279 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6280 *strict_overflow_p = true;
6281 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6282 fold_convert (ctype,
6283 const_binop (TRUNC_DIV_EXPR,
6284 c, op1)));
6285 }
6286 }
6287 break;
6288
6289 default:
6290 break;
6291 }
6292
6293 return 0;
6294 }
6295 \f
6296 /* Return a node which has the indicated constant VALUE (either 0 or
6297 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6298 and is of the indicated TYPE. */
6299
6300 tree
6301 constant_boolean_node (bool value, tree type)
6302 {
6303 if (type == integer_type_node)
6304 return value ? integer_one_node : integer_zero_node;
6305 else if (type == boolean_type_node)
6306 return value ? boolean_true_node : boolean_false_node;
6307 else if (TREE_CODE (type) == VECTOR_TYPE)
6308 return build_vector_from_val (type,
6309 build_int_cst (TREE_TYPE (type),
6310 value ? -1 : 0));
6311 else
6312 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6313 }
6314
6315
6316 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6317 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6318 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6319 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6320 COND is the first argument to CODE; otherwise (as in the example
6321 given here), it is the second argument. TYPE is the type of the
6322 original expression. Return NULL_TREE if no simplification is
6323 possible. */
6324
6325 static tree
6326 fold_binary_op_with_conditional_arg (location_t loc,
6327 enum tree_code code,
6328 tree type, tree op0, tree op1,
6329 tree cond, tree arg, int cond_first_p)
6330 {
6331 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6332 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6333 tree test, true_value, false_value;
6334 tree lhs = NULL_TREE;
6335 tree rhs = NULL_TREE;
6336 enum tree_code cond_code = COND_EXPR;
6337
6338 if (TREE_CODE (cond) == COND_EXPR
6339 || TREE_CODE (cond) == VEC_COND_EXPR)
6340 {
6341 test = TREE_OPERAND (cond, 0);
6342 true_value = TREE_OPERAND (cond, 1);
6343 false_value = TREE_OPERAND (cond, 2);
6344 /* If this operand throws an expression, then it does not make
6345 sense to try to perform a logical or arithmetic operation
6346 involving it. */
6347 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6348 lhs = true_value;
6349 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6350 rhs = false_value;
6351 }
6352 else
6353 {
6354 tree testtype = TREE_TYPE (cond);
6355 test = cond;
6356 true_value = constant_boolean_node (true, testtype);
6357 false_value = constant_boolean_node (false, testtype);
6358 }
6359
6360 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6361 cond_code = VEC_COND_EXPR;
6362
6363 /* This transformation is only worthwhile if we don't have to wrap ARG
6364 in a SAVE_EXPR and the operation can be simplified without recursing
6365 on at least one of the branches once its pushed inside the COND_EXPR. */
6366 if (!TREE_CONSTANT (arg)
6367 && (TREE_SIDE_EFFECTS (arg)
6368 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6369 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6370 return NULL_TREE;
6371
6372 arg = fold_convert_loc (loc, arg_type, arg);
6373 if (lhs == 0)
6374 {
6375 true_value = fold_convert_loc (loc, cond_type, true_value);
6376 if (cond_first_p)
6377 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6378 else
6379 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6380 }
6381 if (rhs == 0)
6382 {
6383 false_value = fold_convert_loc (loc, cond_type, false_value);
6384 if (cond_first_p)
6385 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6386 else
6387 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6388 }
6389
6390 /* Check that we have simplified at least one of the branches. */
6391 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6392 return NULL_TREE;
6393
6394 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6395 }
6396
6397 \f
6398 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6399
6400 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6401 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6402 ADDEND is the same as X.
6403
6404 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6405 and finite. The problematic cases are when X is zero, and its mode
6406 has signed zeros. In the case of rounding towards -infinity,
6407 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6408 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6409
6410 bool
6411 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6412 {
6413 if (!real_zerop (addend))
6414 return false;
6415
6416 /* Don't allow the fold with -fsignaling-nans. */
6417 if (HONOR_SNANS (element_mode (type)))
6418 return false;
6419
6420 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6421 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6422 return true;
6423
6424 /* In a vector or complex, we would need to check the sign of all zeros. */
6425 if (TREE_CODE (addend) != REAL_CST)
6426 return false;
6427
6428 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6429 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6430 negate = !negate;
6431
6432 /* The mode has signed zeros, and we have to honor their sign.
6433 In this situation, there is only one case we can return true for.
6434 X - 0 is the same as X unless rounding towards -infinity is
6435 supported. */
6436 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6437 }
6438
6439 /* Subroutine of fold() that checks comparisons of built-in math
6440 functions against real constants.
6441
6442 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
6443 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
6444 is the type of the result and ARG0 and ARG1 are the operands of the
6445 comparison. ARG1 must be a TREE_REAL_CST.
6446
6447 The function returns the constant folded tree if a simplification
6448 can be made, and NULL_TREE otherwise. */
6449
6450 static tree
6451 fold_mathfn_compare (location_t loc,
6452 enum built_in_function fcode, enum tree_code code,
6453 tree type, tree arg0, tree arg1)
6454 {
6455 REAL_VALUE_TYPE c;
6456
6457 if (BUILTIN_SQRT_P (fcode))
6458 {
6459 tree arg = CALL_EXPR_ARG (arg0, 0);
6460 machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
6461
6462 c = TREE_REAL_CST (arg1);
6463 if (REAL_VALUE_NEGATIVE (c))
6464 {
6465 /* sqrt(x) < y is always false, if y is negative. */
6466 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
6467 return omit_one_operand_loc (loc, type, integer_zero_node, arg);
6468
6469 /* sqrt(x) > y is always true, if y is negative and we
6470 don't care about NaNs, i.e. negative values of x. */
6471 if (code == NE_EXPR || !HONOR_NANS (mode))
6472 return omit_one_operand_loc (loc, type, integer_one_node, arg);
6473
6474 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
6475 return fold_build2_loc (loc, GE_EXPR, type, arg,
6476 build_real (TREE_TYPE (arg), dconst0));
6477 }
6478 else if (code == GT_EXPR || code == GE_EXPR)
6479 {
6480 REAL_VALUE_TYPE c2;
6481
6482 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6483 real_convert (&c2, mode, &c2);
6484
6485 if (REAL_VALUE_ISINF (c2))
6486 {
6487 /* sqrt(x) > y is x == +Inf, when y is very large. */
6488 if (HONOR_INFINITIES (mode))
6489 return fold_build2_loc (loc, EQ_EXPR, type, arg,
6490 build_real (TREE_TYPE (arg), c2));
6491
6492 /* sqrt(x) > y is always false, when y is very large
6493 and we don't care about infinities. */
6494 return omit_one_operand_loc (loc, type, integer_zero_node, arg);
6495 }
6496
6497 /* sqrt(x) > c is the same as x > c*c. */
6498 return fold_build2_loc (loc, code, type, arg,
6499 build_real (TREE_TYPE (arg), c2));
6500 }
6501 else if (code == LT_EXPR || code == LE_EXPR)
6502 {
6503 REAL_VALUE_TYPE c2;
6504
6505 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6506 real_convert (&c2, mode, &c2);
6507
6508 if (REAL_VALUE_ISINF (c2))
6509 {
6510 /* sqrt(x) < y is always true, when y is a very large
6511 value and we don't care about NaNs or Infinities. */
6512 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
6513 return omit_one_operand_loc (loc, type, integer_one_node, arg);
6514
6515 /* sqrt(x) < y is x != +Inf when y is very large and we
6516 don't care about NaNs. */
6517 if (! HONOR_NANS (mode))
6518 return fold_build2_loc (loc, NE_EXPR, type, arg,
6519 build_real (TREE_TYPE (arg), c2));
6520
6521 /* sqrt(x) < y is x >= 0 when y is very large and we
6522 don't care about Infinities. */
6523 if (! HONOR_INFINITIES (mode))
6524 return fold_build2_loc (loc, GE_EXPR, type, arg,
6525 build_real (TREE_TYPE (arg), dconst0));
6526
6527 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
6528 arg = save_expr (arg);
6529 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
6530 fold_build2_loc (loc, GE_EXPR, type, arg,
6531 build_real (TREE_TYPE (arg),
6532 dconst0)),
6533 fold_build2_loc (loc, NE_EXPR, type, arg,
6534 build_real (TREE_TYPE (arg),
6535 c2)));
6536 }
6537
6538 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
6539 if (! HONOR_NANS (mode))
6540 return fold_build2_loc (loc, code, type, arg,
6541 build_real (TREE_TYPE (arg), c2));
6542
6543 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
6544 arg = save_expr (arg);
6545 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
6546 fold_build2_loc (loc, GE_EXPR, type, arg,
6547 build_real (TREE_TYPE (arg),
6548 dconst0)),
6549 fold_build2_loc (loc, code, type, arg,
6550 build_real (TREE_TYPE (arg),
6551 c2)));
6552 }
6553 }
6554
6555 return NULL_TREE;
6556 }
6557
6558 /* Subroutine of fold() that optimizes comparisons against Infinities,
6559 either +Inf or -Inf.
6560
6561 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6562 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6563 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6564
6565 The function returns the constant folded tree if a simplification
6566 can be made, and NULL_TREE otherwise. */
6567
6568 static tree
6569 fold_inf_compare (location_t loc, enum tree_code code, tree type,
6570 tree arg0, tree arg1)
6571 {
6572 machine_mode mode;
6573 REAL_VALUE_TYPE max;
6574 tree temp;
6575 bool neg;
6576
6577 mode = TYPE_MODE (TREE_TYPE (arg0));
6578
6579 /* For negative infinity swap the sense of the comparison. */
6580 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
6581 if (neg)
6582 code = swap_tree_comparison (code);
6583
6584 switch (code)
6585 {
6586 case GT_EXPR:
6587 /* x > +Inf is always false, if with ignore sNANs. */
6588 if (HONOR_SNANS (mode))
6589 return NULL_TREE;
6590 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6591
6592 case LE_EXPR:
6593 /* x <= +Inf is always true, if we don't case about NaNs. */
6594 if (! HONOR_NANS (mode))
6595 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6596
6597 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
6598 arg0 = save_expr (arg0);
6599 return fold_build2_loc (loc, EQ_EXPR, type, arg0, arg0);
6600
6601 case EQ_EXPR:
6602 case GE_EXPR:
6603 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
6604 real_maxval (&max, neg, mode);
6605 return fold_build2_loc (loc, neg ? LT_EXPR : GT_EXPR, type,
6606 arg0, build_real (TREE_TYPE (arg0), max));
6607
6608 case LT_EXPR:
6609 /* x < +Inf is always equal to x <= DBL_MAX. */
6610 real_maxval (&max, neg, mode);
6611 return fold_build2_loc (loc, neg ? GE_EXPR : LE_EXPR, type,
6612 arg0, build_real (TREE_TYPE (arg0), max));
6613
6614 case NE_EXPR:
6615 /* x != +Inf is always equal to !(x > DBL_MAX). */
6616 real_maxval (&max, neg, mode);
6617 if (! HONOR_NANS (mode))
6618 return fold_build2_loc (loc, neg ? GE_EXPR : LE_EXPR, type,
6619 arg0, build_real (TREE_TYPE (arg0), max));
6620
6621 temp = fold_build2_loc (loc, neg ? LT_EXPR : GT_EXPR, type,
6622 arg0, build_real (TREE_TYPE (arg0), max));
6623 return fold_build1_loc (loc, TRUTH_NOT_EXPR, type, temp);
6624
6625 default:
6626 break;
6627 }
6628
6629 return NULL_TREE;
6630 }
6631
6632 /* Subroutine of fold() that optimizes comparisons of a division by
6633 a nonzero integer constant against an integer constant, i.e.
6634 X/C1 op C2.
6635
6636 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6637 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6638 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6639
6640 The function returns the constant folded tree if a simplification
6641 can be made, and NULL_TREE otherwise. */
6642
6643 static tree
6644 fold_div_compare (location_t loc,
6645 enum tree_code code, tree type, tree arg0, tree arg1)
6646 {
6647 tree prod, tmp, hi, lo;
6648 tree arg00 = TREE_OPERAND (arg0, 0);
6649 tree arg01 = TREE_OPERAND (arg0, 1);
6650 signop sign = TYPE_SIGN (TREE_TYPE (arg0));
6651 bool neg_overflow = false;
6652 bool overflow;
6653
6654 /* We have to do this the hard way to detect unsigned overflow.
6655 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6656 wide_int val = wi::mul (arg01, arg1, sign, &overflow);
6657 prod = force_fit_type (TREE_TYPE (arg00), val, -1, overflow);
6658 neg_overflow = false;
6659
6660 if (sign == UNSIGNED)
6661 {
6662 tmp = int_const_binop (MINUS_EXPR, arg01,
6663 build_int_cst (TREE_TYPE (arg01), 1));
6664 lo = prod;
6665
6666 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6667 val = wi::add (prod, tmp, sign, &overflow);
6668 hi = force_fit_type (TREE_TYPE (arg00), val,
6669 -1, overflow | TREE_OVERFLOW (prod));
6670 }
6671 else if (tree_int_cst_sgn (arg01) >= 0)
6672 {
6673 tmp = int_const_binop (MINUS_EXPR, arg01,
6674 build_int_cst (TREE_TYPE (arg01), 1));
6675 switch (tree_int_cst_sgn (arg1))
6676 {
6677 case -1:
6678 neg_overflow = true;
6679 lo = int_const_binop (MINUS_EXPR, prod, tmp);
6680 hi = prod;
6681 break;
6682
6683 case 0:
6684 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6685 hi = tmp;
6686 break;
6687
6688 case 1:
6689 hi = int_const_binop (PLUS_EXPR, prod, tmp);
6690 lo = prod;
6691 break;
6692
6693 default:
6694 gcc_unreachable ();
6695 }
6696 }
6697 else
6698 {
6699 /* A negative divisor reverses the relational operators. */
6700 code = swap_tree_comparison (code);
6701
6702 tmp = int_const_binop (PLUS_EXPR, arg01,
6703 build_int_cst (TREE_TYPE (arg01), 1));
6704 switch (tree_int_cst_sgn (arg1))
6705 {
6706 case -1:
6707 hi = int_const_binop (MINUS_EXPR, prod, tmp);
6708 lo = prod;
6709 break;
6710
6711 case 0:
6712 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6713 lo = tmp;
6714 break;
6715
6716 case 1:
6717 neg_overflow = true;
6718 lo = int_const_binop (PLUS_EXPR, prod, tmp);
6719 hi = prod;
6720 break;
6721
6722 default:
6723 gcc_unreachable ();
6724 }
6725 }
6726
6727 switch (code)
6728 {
6729 case EQ_EXPR:
6730 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6731 return omit_one_operand_loc (loc, type, integer_zero_node, arg00);
6732 if (TREE_OVERFLOW (hi))
6733 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6734 if (TREE_OVERFLOW (lo))
6735 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6736 return build_range_check (loc, type, arg00, 1, lo, hi);
6737
6738 case NE_EXPR:
6739 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6740 return omit_one_operand_loc (loc, type, integer_one_node, arg00);
6741 if (TREE_OVERFLOW (hi))
6742 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6743 if (TREE_OVERFLOW (lo))
6744 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6745 return build_range_check (loc, type, arg00, 0, lo, hi);
6746
6747 case LT_EXPR:
6748 if (TREE_OVERFLOW (lo))
6749 {
6750 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6751 return omit_one_operand_loc (loc, type, tmp, arg00);
6752 }
6753 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6754
6755 case LE_EXPR:
6756 if (TREE_OVERFLOW (hi))
6757 {
6758 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6759 return omit_one_operand_loc (loc, type, tmp, arg00);
6760 }
6761 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6762
6763 case GT_EXPR:
6764 if (TREE_OVERFLOW (hi))
6765 {
6766 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6767 return omit_one_operand_loc (loc, type, tmp, arg00);
6768 }
6769 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6770
6771 case GE_EXPR:
6772 if (TREE_OVERFLOW (lo))
6773 {
6774 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6775 return omit_one_operand_loc (loc, type, tmp, arg00);
6776 }
6777 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6778
6779 default:
6780 break;
6781 }
6782
6783 return NULL_TREE;
6784 }
6785
6786
6787 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6788 equality/inequality test, then return a simplified form of the test
6789 using a sign testing. Otherwise return NULL. TYPE is the desired
6790 result type. */
6791
6792 static tree
6793 fold_single_bit_test_into_sign_test (location_t loc,
6794 enum tree_code code, tree arg0, tree arg1,
6795 tree result_type)
6796 {
6797 /* If this is testing a single bit, we can optimize the test. */
6798 if ((code == NE_EXPR || code == EQ_EXPR)
6799 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6800 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6801 {
6802 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6803 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6804 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6805
6806 if (arg00 != NULL_TREE
6807 /* This is only a win if casting to a signed type is cheap,
6808 i.e. when arg00's type is not a partial mode. */
6809 && TYPE_PRECISION (TREE_TYPE (arg00))
6810 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00))))
6811 {
6812 tree stype = signed_type_for (TREE_TYPE (arg00));
6813 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6814 result_type,
6815 fold_convert_loc (loc, stype, arg00),
6816 build_int_cst (stype, 0));
6817 }
6818 }
6819
6820 return NULL_TREE;
6821 }
6822
6823 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6824 equality/inequality test, then return a simplified form of
6825 the test using shifts and logical operations. Otherwise return
6826 NULL. TYPE is the desired result type. */
6827
6828 tree
6829 fold_single_bit_test (location_t loc, enum tree_code code,
6830 tree arg0, tree arg1, tree result_type)
6831 {
6832 /* If this is testing a single bit, we can optimize the test. */
6833 if ((code == NE_EXPR || code == EQ_EXPR)
6834 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6835 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6836 {
6837 tree inner = TREE_OPERAND (arg0, 0);
6838 tree type = TREE_TYPE (arg0);
6839 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6840 machine_mode operand_mode = TYPE_MODE (type);
6841 int ops_unsigned;
6842 tree signed_type, unsigned_type, intermediate_type;
6843 tree tem, one;
6844
6845 /* First, see if we can fold the single bit test into a sign-bit
6846 test. */
6847 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6848 result_type);
6849 if (tem)
6850 return tem;
6851
6852 /* Otherwise we have (A & C) != 0 where C is a single bit,
6853 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6854 Similarly for (A & C) == 0. */
6855
6856 /* If INNER is a right shift of a constant and it plus BITNUM does
6857 not overflow, adjust BITNUM and INNER. */
6858 if (TREE_CODE (inner) == RSHIFT_EXPR
6859 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6860 && bitnum < TYPE_PRECISION (type)
6861 && wi::ltu_p (TREE_OPERAND (inner, 1),
6862 TYPE_PRECISION (type) - bitnum))
6863 {
6864 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6865 inner = TREE_OPERAND (inner, 0);
6866 }
6867
6868 /* If we are going to be able to omit the AND below, we must do our
6869 operations as unsigned. If we must use the AND, we have a choice.
6870 Normally unsigned is faster, but for some machines signed is. */
6871 #ifdef LOAD_EXTEND_OP
6872 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6873 && !flag_syntax_only) ? 0 : 1;
6874 #else
6875 ops_unsigned = 1;
6876 #endif
6877
6878 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6879 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6880 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6881 inner = fold_convert_loc (loc, intermediate_type, inner);
6882
6883 if (bitnum != 0)
6884 inner = build2 (RSHIFT_EXPR, intermediate_type,
6885 inner, size_int (bitnum));
6886
6887 one = build_int_cst (intermediate_type, 1);
6888
6889 if (code == EQ_EXPR)
6890 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6891
6892 /* Put the AND last so it can combine with more things. */
6893 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6894
6895 /* Make sure to return the proper type. */
6896 inner = fold_convert_loc (loc, result_type, inner);
6897
6898 return inner;
6899 }
6900 return NULL_TREE;
6901 }
6902
6903 /* Check whether we are allowed to reorder operands arg0 and arg1,
6904 such that the evaluation of arg1 occurs before arg0. */
6905
6906 static bool
6907 reorder_operands_p (const_tree arg0, const_tree arg1)
6908 {
6909 if (! flag_evaluation_order)
6910 return true;
6911 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6912 return true;
6913 return ! TREE_SIDE_EFFECTS (arg0)
6914 && ! TREE_SIDE_EFFECTS (arg1);
6915 }
6916
6917 /* Test whether it is preferable two swap two operands, ARG0 and
6918 ARG1, for example because ARG0 is an integer constant and ARG1
6919 isn't. If REORDER is true, only recommend swapping if we can
6920 evaluate the operands in reverse order. */
6921
6922 bool
6923 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
6924 {
6925 if (CONSTANT_CLASS_P (arg1))
6926 return 0;
6927 if (CONSTANT_CLASS_P (arg0))
6928 return 1;
6929
6930 STRIP_NOPS (arg0);
6931 STRIP_NOPS (arg1);
6932
6933 if (TREE_CONSTANT (arg1))
6934 return 0;
6935 if (TREE_CONSTANT (arg0))
6936 return 1;
6937
6938 if (reorder && flag_evaluation_order
6939 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6940 return 0;
6941
6942 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6943 for commutative and comparison operators. Ensuring a canonical
6944 form allows the optimizers to find additional redundancies without
6945 having to explicitly check for both orderings. */
6946 if (TREE_CODE (arg0) == SSA_NAME
6947 && TREE_CODE (arg1) == SSA_NAME
6948 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6949 return 1;
6950
6951 /* Put SSA_NAMEs last. */
6952 if (TREE_CODE (arg1) == SSA_NAME)
6953 return 0;
6954 if (TREE_CODE (arg0) == SSA_NAME)
6955 return 1;
6956
6957 /* Put variables last. */
6958 if (DECL_P (arg1))
6959 return 0;
6960 if (DECL_P (arg0))
6961 return 1;
6962
6963 return 0;
6964 }
6965
6966 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
6967 ARG0 is extended to a wider type. */
6968
6969 static tree
6970 fold_widened_comparison (location_t loc, enum tree_code code,
6971 tree type, tree arg0, tree arg1)
6972 {
6973 tree arg0_unw = get_unwidened (arg0, NULL_TREE);
6974 tree arg1_unw;
6975 tree shorter_type, outer_type;
6976 tree min, max;
6977 bool above, below;
6978
6979 if (arg0_unw == arg0)
6980 return NULL_TREE;
6981 shorter_type = TREE_TYPE (arg0_unw);
6982
6983 #ifdef HAVE_canonicalize_funcptr_for_compare
6984 /* Disable this optimization if we're casting a function pointer
6985 type on targets that require function pointer canonicalization. */
6986 if (HAVE_canonicalize_funcptr_for_compare
6987 && TREE_CODE (shorter_type) == POINTER_TYPE
6988 && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
6989 return NULL_TREE;
6990 #endif
6991
6992 if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
6993 return NULL_TREE;
6994
6995 arg1_unw = get_unwidened (arg1, NULL_TREE);
6996
6997 /* If possible, express the comparison in the shorter mode. */
6998 if ((code == EQ_EXPR || code == NE_EXPR
6999 || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
7000 && (TREE_TYPE (arg1_unw) == shorter_type
7001 || ((TYPE_PRECISION (shorter_type)
7002 >= TYPE_PRECISION (TREE_TYPE (arg1_unw)))
7003 && (TYPE_UNSIGNED (shorter_type)
7004 == TYPE_UNSIGNED (TREE_TYPE (arg1_unw))))
7005 || (TREE_CODE (arg1_unw) == INTEGER_CST
7006 && (TREE_CODE (shorter_type) == INTEGER_TYPE
7007 || TREE_CODE (shorter_type) == BOOLEAN_TYPE)
7008 && int_fits_type_p (arg1_unw, shorter_type))))
7009 return fold_build2_loc (loc, code, type, arg0_unw,
7010 fold_convert_loc (loc, shorter_type, arg1_unw));
7011
7012 if (TREE_CODE (arg1_unw) != INTEGER_CST
7013 || TREE_CODE (shorter_type) != INTEGER_TYPE
7014 || !int_fits_type_p (arg1_unw, shorter_type))
7015 return NULL_TREE;
7016
7017 /* If we are comparing with the integer that does not fit into the range
7018 of the shorter type, the result is known. */
7019 outer_type = TREE_TYPE (arg1_unw);
7020 min = lower_bound_in_type (outer_type, shorter_type);
7021 max = upper_bound_in_type (outer_type, shorter_type);
7022
7023 above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
7024 max, arg1_unw));
7025 below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
7026 arg1_unw, min));
7027
7028 switch (code)
7029 {
7030 case EQ_EXPR:
7031 if (above || below)
7032 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
7033 break;
7034
7035 case NE_EXPR:
7036 if (above || below)
7037 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
7038 break;
7039
7040 case LT_EXPR:
7041 case LE_EXPR:
7042 if (above)
7043 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
7044 else if (below)
7045 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
7046
7047 case GT_EXPR:
7048 case GE_EXPR:
7049 if (above)
7050 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
7051 else if (below)
7052 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
7053
7054 default:
7055 break;
7056 }
7057
7058 return NULL_TREE;
7059 }
7060
7061 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
7062 ARG0 just the signedness is changed. */
7063
7064 static tree
7065 fold_sign_changed_comparison (location_t loc, enum tree_code code, tree type,
7066 tree arg0, tree arg1)
7067 {
7068 tree arg0_inner;
7069 tree inner_type, outer_type;
7070
7071 if (!CONVERT_EXPR_P (arg0))
7072 return NULL_TREE;
7073
7074 outer_type = TREE_TYPE (arg0);
7075 arg0_inner = TREE_OPERAND (arg0, 0);
7076 inner_type = TREE_TYPE (arg0_inner);
7077
7078 #ifdef HAVE_canonicalize_funcptr_for_compare
7079 /* Disable this optimization if we're casting a function pointer
7080 type on targets that require function pointer canonicalization. */
7081 if (HAVE_canonicalize_funcptr_for_compare
7082 && TREE_CODE (inner_type) == POINTER_TYPE
7083 && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
7084 return NULL_TREE;
7085 #endif
7086
7087 if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
7088 return NULL_TREE;
7089
7090 if (TREE_CODE (arg1) != INTEGER_CST
7091 && !(CONVERT_EXPR_P (arg1)
7092 && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
7093 return NULL_TREE;
7094
7095 if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
7096 && code != NE_EXPR
7097 && code != EQ_EXPR)
7098 return NULL_TREE;
7099
7100 if (POINTER_TYPE_P (inner_type) != POINTER_TYPE_P (outer_type))
7101 return NULL_TREE;
7102
7103 if (TREE_CODE (arg1) == INTEGER_CST)
7104 arg1 = force_fit_type (inner_type, wi::to_widest (arg1), 0,
7105 TREE_OVERFLOW (arg1));
7106 else
7107 arg1 = fold_convert_loc (loc, inner_type, arg1);
7108
7109 return fold_build2_loc (loc, code, type, arg0_inner, arg1);
7110 }
7111
7112
7113 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
7114 means A >= Y && A != MAX, but in this case we know that
7115 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
7116
7117 static tree
7118 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
7119 {
7120 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
7121
7122 if (TREE_CODE (bound) == LT_EXPR)
7123 a = TREE_OPERAND (bound, 0);
7124 else if (TREE_CODE (bound) == GT_EXPR)
7125 a = TREE_OPERAND (bound, 1);
7126 else
7127 return NULL_TREE;
7128
7129 typea = TREE_TYPE (a);
7130 if (!INTEGRAL_TYPE_P (typea)
7131 && !POINTER_TYPE_P (typea))
7132 return NULL_TREE;
7133
7134 if (TREE_CODE (ineq) == LT_EXPR)
7135 {
7136 a1 = TREE_OPERAND (ineq, 1);
7137 y = TREE_OPERAND (ineq, 0);
7138 }
7139 else if (TREE_CODE (ineq) == GT_EXPR)
7140 {
7141 a1 = TREE_OPERAND (ineq, 0);
7142 y = TREE_OPERAND (ineq, 1);
7143 }
7144 else
7145 return NULL_TREE;
7146
7147 if (TREE_TYPE (a1) != typea)
7148 return NULL_TREE;
7149
7150 if (POINTER_TYPE_P (typea))
7151 {
7152 /* Convert the pointer types into integer before taking the difference. */
7153 tree ta = fold_convert_loc (loc, ssizetype, a);
7154 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
7155 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
7156 }
7157 else
7158 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
7159
7160 if (!diff || !integer_onep (diff))
7161 return NULL_TREE;
7162
7163 return fold_build2_loc (loc, GE_EXPR, type, a, y);
7164 }
7165
7166 /* Fold a sum or difference of at least one multiplication.
7167 Returns the folded tree or NULL if no simplification could be made. */
7168
7169 static tree
7170 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
7171 tree arg0, tree arg1)
7172 {
7173 tree arg00, arg01, arg10, arg11;
7174 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
7175
7176 /* (A * C) +- (B * C) -> (A+-B) * C.
7177 (A * C) +- A -> A * (C+-1).
7178 We are most concerned about the case where C is a constant,
7179 but other combinations show up during loop reduction. Since
7180 it is not difficult, try all four possibilities. */
7181
7182 if (TREE_CODE (arg0) == MULT_EXPR)
7183 {
7184 arg00 = TREE_OPERAND (arg0, 0);
7185 arg01 = TREE_OPERAND (arg0, 1);
7186 }
7187 else if (TREE_CODE (arg0) == INTEGER_CST)
7188 {
7189 arg00 = build_one_cst (type);
7190 arg01 = arg0;
7191 }
7192 else
7193 {
7194 /* We cannot generate constant 1 for fract. */
7195 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7196 return NULL_TREE;
7197 arg00 = arg0;
7198 arg01 = build_one_cst (type);
7199 }
7200 if (TREE_CODE (arg1) == MULT_EXPR)
7201 {
7202 arg10 = TREE_OPERAND (arg1, 0);
7203 arg11 = TREE_OPERAND (arg1, 1);
7204 }
7205 else if (TREE_CODE (arg1) == INTEGER_CST)
7206 {
7207 arg10 = build_one_cst (type);
7208 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7209 the purpose of this canonicalization. */
7210 if (wi::neg_p (arg1, TYPE_SIGN (TREE_TYPE (arg1)))
7211 && negate_expr_p (arg1)
7212 && code == PLUS_EXPR)
7213 {
7214 arg11 = negate_expr (arg1);
7215 code = MINUS_EXPR;
7216 }
7217 else
7218 arg11 = arg1;
7219 }
7220 else
7221 {
7222 /* We cannot generate constant 1 for fract. */
7223 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7224 return NULL_TREE;
7225 arg10 = arg1;
7226 arg11 = build_one_cst (type);
7227 }
7228 same = NULL_TREE;
7229
7230 if (operand_equal_p (arg01, arg11, 0))
7231 same = arg01, alt0 = arg00, alt1 = arg10;
7232 else if (operand_equal_p (arg00, arg10, 0))
7233 same = arg00, alt0 = arg01, alt1 = arg11;
7234 else if (operand_equal_p (arg00, arg11, 0))
7235 same = arg00, alt0 = arg01, alt1 = arg10;
7236 else if (operand_equal_p (arg01, arg10, 0))
7237 same = arg01, alt0 = arg00, alt1 = arg11;
7238
7239 /* No identical multiplicands; see if we can find a common
7240 power-of-two factor in non-power-of-two multiplies. This
7241 can help in multi-dimensional array access. */
7242 else if (tree_fits_shwi_p (arg01)
7243 && tree_fits_shwi_p (arg11))
7244 {
7245 HOST_WIDE_INT int01, int11, tmp;
7246 bool swap = false;
7247 tree maybe_same;
7248 int01 = tree_to_shwi (arg01);
7249 int11 = tree_to_shwi (arg11);
7250
7251 /* Move min of absolute values to int11. */
7252 if (absu_hwi (int01) < absu_hwi (int11))
7253 {
7254 tmp = int01, int01 = int11, int11 = tmp;
7255 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7256 maybe_same = arg01;
7257 swap = true;
7258 }
7259 else
7260 maybe_same = arg11;
7261
7262 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
7263 /* The remainder should not be a constant, otherwise we
7264 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7265 increased the number of multiplications necessary. */
7266 && TREE_CODE (arg10) != INTEGER_CST)
7267 {
7268 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
7269 build_int_cst (TREE_TYPE (arg00),
7270 int01 / int11));
7271 alt1 = arg10;
7272 same = maybe_same;
7273 if (swap)
7274 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7275 }
7276 }
7277
7278 if (same)
7279 return fold_build2_loc (loc, MULT_EXPR, type,
7280 fold_build2_loc (loc, code, type,
7281 fold_convert_loc (loc, type, alt0),
7282 fold_convert_loc (loc, type, alt1)),
7283 fold_convert_loc (loc, type, same));
7284
7285 return NULL_TREE;
7286 }
7287
7288 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7289 specified by EXPR into the buffer PTR of length LEN bytes.
7290 Return the number of bytes placed in the buffer, or zero
7291 upon failure. */
7292
7293 static int
7294 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
7295 {
7296 tree type = TREE_TYPE (expr);
7297 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7298 int byte, offset, word, words;
7299 unsigned char value;
7300
7301 if ((off == -1 && total_bytes > len)
7302 || off >= total_bytes)
7303 return 0;
7304 if (off == -1)
7305 off = 0;
7306 words = total_bytes / UNITS_PER_WORD;
7307
7308 for (byte = 0; byte < total_bytes; byte++)
7309 {
7310 int bitpos = byte * BITS_PER_UNIT;
7311 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7312 number of bytes. */
7313 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
7314
7315 if (total_bytes > UNITS_PER_WORD)
7316 {
7317 word = byte / UNITS_PER_WORD;
7318 if (WORDS_BIG_ENDIAN)
7319 word = (words - 1) - word;
7320 offset = word * UNITS_PER_WORD;
7321 if (BYTES_BIG_ENDIAN)
7322 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7323 else
7324 offset += byte % UNITS_PER_WORD;
7325 }
7326 else
7327 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7328 if (offset >= off
7329 && offset - off < len)
7330 ptr[offset - off] = value;
7331 }
7332 return MIN (len, total_bytes - off);
7333 }
7334
7335
7336 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7337 specified by EXPR into the buffer PTR of length LEN bytes.
7338 Return the number of bytes placed in the buffer, or zero
7339 upon failure. */
7340
7341 static int
7342 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7343 {
7344 tree type = TREE_TYPE (expr);
7345 machine_mode mode = TYPE_MODE (type);
7346 int total_bytes = GET_MODE_SIZE (mode);
7347 FIXED_VALUE_TYPE value;
7348 tree i_value, i_type;
7349
7350 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7351 return 0;
7352
7353 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7354
7355 if (NULL_TREE == i_type
7356 || TYPE_PRECISION (i_type) != total_bytes)
7357 return 0;
7358
7359 value = TREE_FIXED_CST (expr);
7360 i_value = double_int_to_tree (i_type, value.data);
7361
7362 return native_encode_int (i_value, ptr, len, off);
7363 }
7364
7365
7366 /* Subroutine of native_encode_expr. Encode the REAL_CST
7367 specified by EXPR into the buffer PTR of length LEN bytes.
7368 Return the number of bytes placed in the buffer, or zero
7369 upon failure. */
7370
7371 static int
7372 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7373 {
7374 tree type = TREE_TYPE (expr);
7375 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7376 int byte, offset, word, words, bitpos;
7377 unsigned char value;
7378
7379 /* There are always 32 bits in each long, no matter the size of
7380 the hosts long. We handle floating point representations with
7381 up to 192 bits. */
7382 long tmp[6];
7383
7384 if ((off == -1 && total_bytes > len)
7385 || off >= total_bytes)
7386 return 0;
7387 if (off == -1)
7388 off = 0;
7389 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7390
7391 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7392
7393 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7394 bitpos += BITS_PER_UNIT)
7395 {
7396 byte = (bitpos / BITS_PER_UNIT) & 3;
7397 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7398
7399 if (UNITS_PER_WORD < 4)
7400 {
7401 word = byte / UNITS_PER_WORD;
7402 if (WORDS_BIG_ENDIAN)
7403 word = (words - 1) - word;
7404 offset = word * UNITS_PER_WORD;
7405 if (BYTES_BIG_ENDIAN)
7406 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7407 else
7408 offset += byte % UNITS_PER_WORD;
7409 }
7410 else
7411 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7412 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7413 if (offset >= off
7414 && offset - off < len)
7415 ptr[offset - off] = value;
7416 }
7417 return MIN (len, total_bytes - off);
7418 }
7419
7420 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7421 specified by EXPR into the buffer PTR of length LEN bytes.
7422 Return the number of bytes placed in the buffer, or zero
7423 upon failure. */
7424
7425 static int
7426 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7427 {
7428 int rsize, isize;
7429 tree part;
7430
7431 part = TREE_REALPART (expr);
7432 rsize = native_encode_expr (part, ptr, len, off);
7433 if (off == -1
7434 && rsize == 0)
7435 return 0;
7436 part = TREE_IMAGPART (expr);
7437 if (off != -1)
7438 off = MAX (0, off - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part))));
7439 isize = native_encode_expr (part, ptr+rsize, len-rsize, off);
7440 if (off == -1
7441 && isize != rsize)
7442 return 0;
7443 return rsize + isize;
7444 }
7445
7446
7447 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7448 specified by EXPR into the buffer PTR of length LEN bytes.
7449 Return the number of bytes placed in the buffer, or zero
7450 upon failure. */
7451
7452 static int
7453 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7454 {
7455 unsigned i, count;
7456 int size, offset;
7457 tree itype, elem;
7458
7459 offset = 0;
7460 count = VECTOR_CST_NELTS (expr);
7461 itype = TREE_TYPE (TREE_TYPE (expr));
7462 size = GET_MODE_SIZE (TYPE_MODE (itype));
7463 for (i = 0; i < count; i++)
7464 {
7465 if (off >= size)
7466 {
7467 off -= size;
7468 continue;
7469 }
7470 elem = VECTOR_CST_ELT (expr, i);
7471 int res = native_encode_expr (elem, ptr+offset, len-offset, off);
7472 if ((off == -1 && res != size)
7473 || res == 0)
7474 return 0;
7475 offset += res;
7476 if (offset >= len)
7477 return offset;
7478 if (off != -1)
7479 off = 0;
7480 }
7481 return offset;
7482 }
7483
7484
7485 /* Subroutine of native_encode_expr. Encode the STRING_CST
7486 specified by EXPR into the buffer PTR of length LEN bytes.
7487 Return the number of bytes placed in the buffer, or zero
7488 upon failure. */
7489
7490 static int
7491 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7492 {
7493 tree type = TREE_TYPE (expr);
7494 HOST_WIDE_INT total_bytes;
7495
7496 if (TREE_CODE (type) != ARRAY_TYPE
7497 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7498 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7499 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7500 return 0;
7501 total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (type));
7502 if ((off == -1 && total_bytes > len)
7503 || off >= total_bytes)
7504 return 0;
7505 if (off == -1)
7506 off = 0;
7507 if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7508 {
7509 int written = 0;
7510 if (off < TREE_STRING_LENGTH (expr))
7511 {
7512 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7513 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7514 }
7515 memset (ptr + written, 0,
7516 MIN (total_bytes - written, len - written));
7517 }
7518 else
7519 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7520 return MIN (total_bytes - off, len);
7521 }
7522
7523
7524 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7525 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7526 buffer PTR of length LEN bytes. If OFF is not -1 then start
7527 the encoding at byte offset OFF and encode at most LEN bytes.
7528 Return the number of bytes placed in the buffer, or zero upon failure. */
7529
7530 int
7531 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7532 {
7533 switch (TREE_CODE (expr))
7534 {
7535 case INTEGER_CST:
7536 return native_encode_int (expr, ptr, len, off);
7537
7538 case REAL_CST:
7539 return native_encode_real (expr, ptr, len, off);
7540
7541 case FIXED_CST:
7542 return native_encode_fixed (expr, ptr, len, off);
7543
7544 case COMPLEX_CST:
7545 return native_encode_complex (expr, ptr, len, off);
7546
7547 case VECTOR_CST:
7548 return native_encode_vector (expr, ptr, len, off);
7549
7550 case STRING_CST:
7551 return native_encode_string (expr, ptr, len, off);
7552
7553 default:
7554 return 0;
7555 }
7556 }
7557
7558
7559 /* Subroutine of native_interpret_expr. Interpret the contents of
7560 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7561 If the buffer cannot be interpreted, return NULL_TREE. */
7562
7563 static tree
7564 native_interpret_int (tree type, const unsigned char *ptr, int len)
7565 {
7566 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7567
7568 if (total_bytes > len
7569 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7570 return NULL_TREE;
7571
7572 wide_int result = wi::from_buffer (ptr, total_bytes);
7573
7574 return wide_int_to_tree (type, result);
7575 }
7576
7577
7578 /* Subroutine of native_interpret_expr. Interpret the contents of
7579 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7580 If the buffer cannot be interpreted, return NULL_TREE. */
7581
7582 static tree
7583 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7584 {
7585 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7586 double_int result;
7587 FIXED_VALUE_TYPE fixed_value;
7588
7589 if (total_bytes > len
7590 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7591 return NULL_TREE;
7592
7593 result = double_int::from_buffer (ptr, total_bytes);
7594 fixed_value = fixed_from_double_int (result, TYPE_MODE (type));
7595
7596 return build_fixed (type, fixed_value);
7597 }
7598
7599
7600 /* Subroutine of native_interpret_expr. Interpret the contents of
7601 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7602 If the buffer cannot be interpreted, return NULL_TREE. */
7603
7604 static tree
7605 native_interpret_real (tree type, const unsigned char *ptr, int len)
7606 {
7607 machine_mode mode = TYPE_MODE (type);
7608 int total_bytes = GET_MODE_SIZE (mode);
7609 int byte, offset, word, words, bitpos;
7610 unsigned char value;
7611 /* There are always 32 bits in each long, no matter the size of
7612 the hosts long. We handle floating point representations with
7613 up to 192 bits. */
7614 REAL_VALUE_TYPE r;
7615 long tmp[6];
7616
7617 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7618 if (total_bytes > len || total_bytes > 24)
7619 return NULL_TREE;
7620 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7621
7622 memset (tmp, 0, sizeof (tmp));
7623 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7624 bitpos += BITS_PER_UNIT)
7625 {
7626 byte = (bitpos / BITS_PER_UNIT) & 3;
7627 if (UNITS_PER_WORD < 4)
7628 {
7629 word = byte / UNITS_PER_WORD;
7630 if (WORDS_BIG_ENDIAN)
7631 word = (words - 1) - word;
7632 offset = word * UNITS_PER_WORD;
7633 if (BYTES_BIG_ENDIAN)
7634 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7635 else
7636 offset += byte % UNITS_PER_WORD;
7637 }
7638 else
7639 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7640 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7641
7642 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7643 }
7644
7645 real_from_target (&r, tmp, mode);
7646 return build_real (type, r);
7647 }
7648
7649
7650 /* Subroutine of native_interpret_expr. Interpret the contents of
7651 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7652 If the buffer cannot be interpreted, return NULL_TREE. */
7653
7654 static tree
7655 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7656 {
7657 tree etype, rpart, ipart;
7658 int size;
7659
7660 etype = TREE_TYPE (type);
7661 size = GET_MODE_SIZE (TYPE_MODE (etype));
7662 if (size * 2 > len)
7663 return NULL_TREE;
7664 rpart = native_interpret_expr (etype, ptr, size);
7665 if (!rpart)
7666 return NULL_TREE;
7667 ipart = native_interpret_expr (etype, ptr+size, size);
7668 if (!ipart)
7669 return NULL_TREE;
7670 return build_complex (type, rpart, ipart);
7671 }
7672
7673
7674 /* Subroutine of native_interpret_expr. Interpret the contents of
7675 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7676 If the buffer cannot be interpreted, return NULL_TREE. */
7677
7678 static tree
7679 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7680 {
7681 tree etype, elem;
7682 int i, size, count;
7683 tree *elements;
7684
7685 etype = TREE_TYPE (type);
7686 size = GET_MODE_SIZE (TYPE_MODE (etype));
7687 count = TYPE_VECTOR_SUBPARTS (type);
7688 if (size * count > len)
7689 return NULL_TREE;
7690
7691 elements = XALLOCAVEC (tree, count);
7692 for (i = count - 1; i >= 0; i--)
7693 {
7694 elem = native_interpret_expr (etype, ptr+(i*size), size);
7695 if (!elem)
7696 return NULL_TREE;
7697 elements[i] = elem;
7698 }
7699 return build_vector (type, elements);
7700 }
7701
7702
7703 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7704 the buffer PTR of length LEN as a constant of type TYPE. For
7705 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7706 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7707 return NULL_TREE. */
7708
7709 tree
7710 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7711 {
7712 switch (TREE_CODE (type))
7713 {
7714 case INTEGER_TYPE:
7715 case ENUMERAL_TYPE:
7716 case BOOLEAN_TYPE:
7717 case POINTER_TYPE:
7718 case REFERENCE_TYPE:
7719 return native_interpret_int (type, ptr, len);
7720
7721 case REAL_TYPE:
7722 return native_interpret_real (type, ptr, len);
7723
7724 case FIXED_POINT_TYPE:
7725 return native_interpret_fixed (type, ptr, len);
7726
7727 case COMPLEX_TYPE:
7728 return native_interpret_complex (type, ptr, len);
7729
7730 case VECTOR_TYPE:
7731 return native_interpret_vector (type, ptr, len);
7732
7733 default:
7734 return NULL_TREE;
7735 }
7736 }
7737
7738 /* Returns true if we can interpret the contents of a native encoding
7739 as TYPE. */
7740
7741 static bool
7742 can_native_interpret_type_p (tree type)
7743 {
7744 switch (TREE_CODE (type))
7745 {
7746 case INTEGER_TYPE:
7747 case ENUMERAL_TYPE:
7748 case BOOLEAN_TYPE:
7749 case POINTER_TYPE:
7750 case REFERENCE_TYPE:
7751 case FIXED_POINT_TYPE:
7752 case REAL_TYPE:
7753 case COMPLEX_TYPE:
7754 case VECTOR_TYPE:
7755 return true;
7756 default:
7757 return false;
7758 }
7759 }
7760
7761 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7762 TYPE at compile-time. If we're unable to perform the conversion
7763 return NULL_TREE. */
7764
7765 static tree
7766 fold_view_convert_expr (tree type, tree expr)
7767 {
7768 /* We support up to 512-bit values (for V8DFmode). */
7769 unsigned char buffer[64];
7770 int len;
7771
7772 /* Check that the host and target are sane. */
7773 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7774 return NULL_TREE;
7775
7776 len = native_encode_expr (expr, buffer, sizeof (buffer));
7777 if (len == 0)
7778 return NULL_TREE;
7779
7780 return native_interpret_expr (type, buffer, len);
7781 }
7782
7783 /* Build an expression for the address of T. Folds away INDIRECT_REF
7784 to avoid confusing the gimplify process. */
7785
7786 tree
7787 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7788 {
7789 /* The size of the object is not relevant when talking about its address. */
7790 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7791 t = TREE_OPERAND (t, 0);
7792
7793 if (TREE_CODE (t) == INDIRECT_REF)
7794 {
7795 t = TREE_OPERAND (t, 0);
7796
7797 if (TREE_TYPE (t) != ptrtype)
7798 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7799 }
7800 else if (TREE_CODE (t) == MEM_REF
7801 && integer_zerop (TREE_OPERAND (t, 1)))
7802 return TREE_OPERAND (t, 0);
7803 else if (TREE_CODE (t) == MEM_REF
7804 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7805 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7806 TREE_OPERAND (t, 0),
7807 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7808 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7809 {
7810 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7811
7812 if (TREE_TYPE (t) != ptrtype)
7813 t = fold_convert_loc (loc, ptrtype, t);
7814 }
7815 else
7816 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7817
7818 return t;
7819 }
7820
7821 /* Build an expression for the address of T. */
7822
7823 tree
7824 build_fold_addr_expr_loc (location_t loc, tree t)
7825 {
7826 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7827
7828 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7829 }
7830
7831 /* Fold a unary expression of code CODE and type TYPE with operand
7832 OP0. Return the folded expression if folding is successful.
7833 Otherwise, return NULL_TREE. */
7834
7835 tree
7836 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7837 {
7838 tree tem;
7839 tree arg0;
7840 enum tree_code_class kind = TREE_CODE_CLASS (code);
7841
7842 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7843 && TREE_CODE_LENGTH (code) == 1);
7844
7845 arg0 = op0;
7846 if (arg0)
7847 {
7848 if (CONVERT_EXPR_CODE_P (code)
7849 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7850 {
7851 /* Don't use STRIP_NOPS, because signedness of argument type
7852 matters. */
7853 STRIP_SIGN_NOPS (arg0);
7854 }
7855 else
7856 {
7857 /* Strip any conversions that don't change the mode. This
7858 is safe for every expression, except for a comparison
7859 expression because its signedness is derived from its
7860 operands.
7861
7862 Note that this is done as an internal manipulation within
7863 the constant folder, in order to find the simplest
7864 representation of the arguments so that their form can be
7865 studied. In any cases, the appropriate type conversions
7866 should be put back in the tree that will get out of the
7867 constant folder. */
7868 STRIP_NOPS (arg0);
7869 }
7870
7871 if (CONSTANT_CLASS_P (arg0))
7872 {
7873 tree tem = const_unop (code, type, arg0);
7874 if (tem)
7875 {
7876 if (TREE_TYPE (tem) != type)
7877 tem = fold_convert_loc (loc, type, tem);
7878 return tem;
7879 }
7880 }
7881 }
7882
7883 tem = generic_simplify (loc, code, type, op0);
7884 if (tem)
7885 return tem;
7886
7887 if (TREE_CODE_CLASS (code) == tcc_unary)
7888 {
7889 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7890 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7891 fold_build1_loc (loc, code, type,
7892 fold_convert_loc (loc, TREE_TYPE (op0),
7893 TREE_OPERAND (arg0, 1))));
7894 else if (TREE_CODE (arg0) == COND_EXPR)
7895 {
7896 tree arg01 = TREE_OPERAND (arg0, 1);
7897 tree arg02 = TREE_OPERAND (arg0, 2);
7898 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7899 arg01 = fold_build1_loc (loc, code, type,
7900 fold_convert_loc (loc,
7901 TREE_TYPE (op0), arg01));
7902 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7903 arg02 = fold_build1_loc (loc, code, type,
7904 fold_convert_loc (loc,
7905 TREE_TYPE (op0), arg02));
7906 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7907 arg01, arg02);
7908
7909 /* If this was a conversion, and all we did was to move into
7910 inside the COND_EXPR, bring it back out. But leave it if
7911 it is a conversion from integer to integer and the
7912 result precision is no wider than a word since such a
7913 conversion is cheap and may be optimized away by combine,
7914 while it couldn't if it were outside the COND_EXPR. Then return
7915 so we don't get into an infinite recursion loop taking the
7916 conversion out and then back in. */
7917
7918 if ((CONVERT_EXPR_CODE_P (code)
7919 || code == NON_LVALUE_EXPR)
7920 && TREE_CODE (tem) == COND_EXPR
7921 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7922 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7923 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7924 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7925 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7926 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7927 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7928 && (INTEGRAL_TYPE_P
7929 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7930 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7931 || flag_syntax_only))
7932 tem = build1_loc (loc, code, type,
7933 build3 (COND_EXPR,
7934 TREE_TYPE (TREE_OPERAND
7935 (TREE_OPERAND (tem, 1), 0)),
7936 TREE_OPERAND (tem, 0),
7937 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7938 TREE_OPERAND (TREE_OPERAND (tem, 2),
7939 0)));
7940 return tem;
7941 }
7942 }
7943
7944 switch (code)
7945 {
7946 case NON_LVALUE_EXPR:
7947 if (!maybe_lvalue_p (op0))
7948 return fold_convert_loc (loc, type, op0);
7949 return NULL_TREE;
7950
7951 CASE_CONVERT:
7952 case FLOAT_EXPR:
7953 case FIX_TRUNC_EXPR:
7954 if (COMPARISON_CLASS_P (op0))
7955 {
7956 /* If we have (type) (a CMP b) and type is an integral type, return
7957 new expression involving the new type. Canonicalize
7958 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7959 non-integral type.
7960 Do not fold the result as that would not simplify further, also
7961 folding again results in recursions. */
7962 if (TREE_CODE (type) == BOOLEAN_TYPE)
7963 return build2_loc (loc, TREE_CODE (op0), type,
7964 TREE_OPERAND (op0, 0),
7965 TREE_OPERAND (op0, 1));
7966 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7967 && TREE_CODE (type) != VECTOR_TYPE)
7968 return build3_loc (loc, COND_EXPR, type, op0,
7969 constant_boolean_node (true, type),
7970 constant_boolean_node (false, type));
7971 }
7972
7973 /* Handle (T *)&A.B.C for A being of type T and B and C
7974 living at offset zero. This occurs frequently in
7975 C++ upcasting and then accessing the base. */
7976 if (TREE_CODE (op0) == ADDR_EXPR
7977 && POINTER_TYPE_P (type)
7978 && handled_component_p (TREE_OPERAND (op0, 0)))
7979 {
7980 HOST_WIDE_INT bitsize, bitpos;
7981 tree offset;
7982 machine_mode mode;
7983 int unsignedp, volatilep;
7984 tree base = TREE_OPERAND (op0, 0);
7985 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
7986 &mode, &unsignedp, &volatilep, false);
7987 /* If the reference was to a (constant) zero offset, we can use
7988 the address of the base if it has the same base type
7989 as the result type and the pointer type is unqualified. */
7990 if (! offset && bitpos == 0
7991 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7992 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7993 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7994 return fold_convert_loc (loc, type,
7995 build_fold_addr_expr_loc (loc, base));
7996 }
7997
7998 if (TREE_CODE (op0) == MODIFY_EXPR
7999 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
8000 /* Detect assigning a bitfield. */
8001 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
8002 && DECL_BIT_FIELD
8003 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
8004 {
8005 /* Don't leave an assignment inside a conversion
8006 unless assigning a bitfield. */
8007 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
8008 /* First do the assignment, then return converted constant. */
8009 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
8010 TREE_NO_WARNING (tem) = 1;
8011 TREE_USED (tem) = 1;
8012 return tem;
8013 }
8014
8015 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
8016 constants (if x has signed type, the sign bit cannot be set
8017 in c). This folds extension into the BIT_AND_EXPR.
8018 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
8019 very likely don't have maximal range for their precision and this
8020 transformation effectively doesn't preserve non-maximal ranges. */
8021 if (TREE_CODE (type) == INTEGER_TYPE
8022 && TREE_CODE (op0) == BIT_AND_EXPR
8023 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
8024 {
8025 tree and_expr = op0;
8026 tree and0 = TREE_OPERAND (and_expr, 0);
8027 tree and1 = TREE_OPERAND (and_expr, 1);
8028 int change = 0;
8029
8030 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
8031 || (TYPE_PRECISION (type)
8032 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
8033 change = 1;
8034 else if (TYPE_PRECISION (TREE_TYPE (and1))
8035 <= HOST_BITS_PER_WIDE_INT
8036 && tree_fits_uhwi_p (and1))
8037 {
8038 unsigned HOST_WIDE_INT cst;
8039
8040 cst = tree_to_uhwi (and1);
8041 cst &= HOST_WIDE_INT_M1U
8042 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
8043 change = (cst == 0);
8044 #ifdef LOAD_EXTEND_OP
8045 if (change
8046 && !flag_syntax_only
8047 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
8048 == ZERO_EXTEND))
8049 {
8050 tree uns = unsigned_type_for (TREE_TYPE (and0));
8051 and0 = fold_convert_loc (loc, uns, and0);
8052 and1 = fold_convert_loc (loc, uns, and1);
8053 }
8054 #endif
8055 }
8056 if (change)
8057 {
8058 tem = force_fit_type (type, wi::to_widest (and1), 0,
8059 TREE_OVERFLOW (and1));
8060 return fold_build2_loc (loc, BIT_AND_EXPR, type,
8061 fold_convert_loc (loc, type, and0), tem);
8062 }
8063 }
8064
8065 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
8066 when one of the new casts will fold away. Conservatively we assume
8067 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
8068 if (POINTER_TYPE_P (type)
8069 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
8070 && (!TYPE_RESTRICT (type) || TYPE_RESTRICT (TREE_TYPE (arg0)))
8071 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8072 || TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
8073 || TREE_CODE (TREE_OPERAND (arg0, 1)) == NOP_EXPR))
8074 {
8075 tree arg00 = TREE_OPERAND (arg0, 0);
8076 tree arg01 = TREE_OPERAND (arg0, 1);
8077
8078 return fold_build_pointer_plus_loc
8079 (loc, fold_convert_loc (loc, type, arg00), arg01);
8080 }
8081
8082 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8083 of the same precision, and X is an integer type not narrower than
8084 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8085 if (INTEGRAL_TYPE_P (type)
8086 && TREE_CODE (op0) == BIT_NOT_EXPR
8087 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8088 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
8089 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
8090 {
8091 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
8092 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8093 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
8094 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
8095 fold_convert_loc (loc, type, tem));
8096 }
8097
8098 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
8099 type of X and Y (integer types only). */
8100 if (INTEGRAL_TYPE_P (type)
8101 && TREE_CODE (op0) == MULT_EXPR
8102 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8103 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
8104 {
8105 /* Be careful not to introduce new overflows. */
8106 tree mult_type;
8107 if (TYPE_OVERFLOW_WRAPS (type))
8108 mult_type = type;
8109 else
8110 mult_type = unsigned_type_for (type);
8111
8112 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
8113 {
8114 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
8115 fold_convert_loc (loc, mult_type,
8116 TREE_OPERAND (op0, 0)),
8117 fold_convert_loc (loc, mult_type,
8118 TREE_OPERAND (op0, 1)));
8119 return fold_convert_loc (loc, type, tem);
8120 }
8121 }
8122
8123 return NULL_TREE;
8124
8125 case VIEW_CONVERT_EXPR:
8126 if (TREE_CODE (op0) == MEM_REF)
8127 return fold_build2_loc (loc, MEM_REF, type,
8128 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
8129
8130 return NULL_TREE;
8131
8132 case NEGATE_EXPR:
8133 tem = fold_negate_expr (loc, arg0);
8134 if (tem)
8135 return fold_convert_loc (loc, type, tem);
8136 return NULL_TREE;
8137
8138 case ABS_EXPR:
8139 /* Convert fabs((double)float) into (double)fabsf(float). */
8140 if (TREE_CODE (arg0) == NOP_EXPR
8141 && TREE_CODE (type) == REAL_TYPE)
8142 {
8143 tree targ0 = strip_float_extensions (arg0);
8144 if (targ0 != arg0)
8145 return fold_convert_loc (loc, type,
8146 fold_build1_loc (loc, ABS_EXPR,
8147 TREE_TYPE (targ0),
8148 targ0));
8149 }
8150 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
8151 else if (TREE_CODE (arg0) == ABS_EXPR)
8152 return arg0;
8153
8154 /* Strip sign ops from argument. */
8155 if (TREE_CODE (type) == REAL_TYPE)
8156 {
8157 tem = fold_strip_sign_ops (arg0);
8158 if (tem)
8159 return fold_build1_loc (loc, ABS_EXPR, type,
8160 fold_convert_loc (loc, type, tem));
8161 }
8162 return NULL_TREE;
8163
8164 case CONJ_EXPR:
8165 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8166 return fold_convert_loc (loc, type, arg0);
8167 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8168 {
8169 tree itype = TREE_TYPE (type);
8170 tree rpart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 0));
8171 tree ipart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 1));
8172 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart,
8173 negate_expr (ipart));
8174 }
8175 if (TREE_CODE (arg0) == CONJ_EXPR)
8176 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
8177 return NULL_TREE;
8178
8179 case BIT_NOT_EXPR:
8180 /* Convert ~ (-A) to A - 1. */
8181 if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == NEGATE_EXPR)
8182 return fold_build2_loc (loc, MINUS_EXPR, type,
8183 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)),
8184 build_int_cst (type, 1));
8185 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
8186 else if (INTEGRAL_TYPE_P (type)
8187 && ((TREE_CODE (arg0) == MINUS_EXPR
8188 && integer_onep (TREE_OPERAND (arg0, 1)))
8189 || (TREE_CODE (arg0) == PLUS_EXPR
8190 && integer_all_onesp (TREE_OPERAND (arg0, 1)))))
8191 {
8192 /* Perform the negation in ARG0's type and only then convert
8193 to TYPE as to avoid introducing undefined behavior. */
8194 tree t = fold_build1_loc (loc, NEGATE_EXPR,
8195 TREE_TYPE (TREE_OPERAND (arg0, 0)),
8196 TREE_OPERAND (arg0, 0));
8197 return fold_convert_loc (loc, type, t);
8198 }
8199 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8200 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8201 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8202 fold_convert_loc (loc, type,
8203 TREE_OPERAND (arg0, 0)))))
8204 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
8205 fold_convert_loc (loc, type,
8206 TREE_OPERAND (arg0, 1)));
8207 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8208 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8209 fold_convert_loc (loc, type,
8210 TREE_OPERAND (arg0, 1)))))
8211 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
8212 fold_convert_loc (loc, type,
8213 TREE_OPERAND (arg0, 0)), tem);
8214
8215 return NULL_TREE;
8216
8217 case TRUTH_NOT_EXPR:
8218 /* Note that the operand of this must be an int
8219 and its values must be 0 or 1.
8220 ("true" is a fixed value perhaps depending on the language,
8221 but we don't handle values other than 1 correctly yet.) */
8222 tem = fold_truth_not_expr (loc, arg0);
8223 if (!tem)
8224 return NULL_TREE;
8225 return fold_convert_loc (loc, type, tem);
8226
8227 case REALPART_EXPR:
8228 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8229 return fold_convert_loc (loc, type, arg0);
8230 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8231 {
8232 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8233 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
8234 fold_build1_loc (loc, REALPART_EXPR, itype,
8235 TREE_OPERAND (arg0, 0)),
8236 fold_build1_loc (loc, REALPART_EXPR, itype,
8237 TREE_OPERAND (arg0, 1)));
8238 return fold_convert_loc (loc, type, tem);
8239 }
8240 if (TREE_CODE (arg0) == CONJ_EXPR)
8241 {
8242 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8243 tem = fold_build1_loc (loc, REALPART_EXPR, itype,
8244 TREE_OPERAND (arg0, 0));
8245 return fold_convert_loc (loc, type, tem);
8246 }
8247 if (TREE_CODE (arg0) == CALL_EXPR)
8248 {
8249 tree fn = get_callee_fndecl (arg0);
8250 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8251 switch (DECL_FUNCTION_CODE (fn))
8252 {
8253 CASE_FLT_FN (BUILT_IN_CEXPI):
8254 fn = mathfn_built_in (type, BUILT_IN_COS);
8255 if (fn)
8256 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
8257 break;
8258
8259 default:
8260 break;
8261 }
8262 }
8263 return NULL_TREE;
8264
8265 case IMAGPART_EXPR:
8266 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8267 return build_zero_cst (type);
8268 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8269 {
8270 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8271 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
8272 fold_build1_loc (loc, IMAGPART_EXPR, itype,
8273 TREE_OPERAND (arg0, 0)),
8274 fold_build1_loc (loc, IMAGPART_EXPR, itype,
8275 TREE_OPERAND (arg0, 1)));
8276 return fold_convert_loc (loc, type, tem);
8277 }
8278 if (TREE_CODE (arg0) == CONJ_EXPR)
8279 {
8280 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8281 tem = fold_build1_loc (loc, IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
8282 return fold_convert_loc (loc, type, negate_expr (tem));
8283 }
8284 if (TREE_CODE (arg0) == CALL_EXPR)
8285 {
8286 tree fn = get_callee_fndecl (arg0);
8287 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8288 switch (DECL_FUNCTION_CODE (fn))
8289 {
8290 CASE_FLT_FN (BUILT_IN_CEXPI):
8291 fn = mathfn_built_in (type, BUILT_IN_SIN);
8292 if (fn)
8293 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
8294 break;
8295
8296 default:
8297 break;
8298 }
8299 }
8300 return NULL_TREE;
8301
8302 case INDIRECT_REF:
8303 /* Fold *&X to X if X is an lvalue. */
8304 if (TREE_CODE (op0) == ADDR_EXPR)
8305 {
8306 tree op00 = TREE_OPERAND (op0, 0);
8307 if ((TREE_CODE (op00) == VAR_DECL
8308 || TREE_CODE (op00) == PARM_DECL
8309 || TREE_CODE (op00) == RESULT_DECL)
8310 && !TREE_READONLY (op00))
8311 return op00;
8312 }
8313 return NULL_TREE;
8314
8315 default:
8316 return NULL_TREE;
8317 } /* switch (code) */
8318 }
8319
8320
8321 /* If the operation was a conversion do _not_ mark a resulting constant
8322 with TREE_OVERFLOW if the original constant was not. These conversions
8323 have implementation defined behavior and retaining the TREE_OVERFLOW
8324 flag here would confuse later passes such as VRP. */
8325 tree
8326 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
8327 tree type, tree op0)
8328 {
8329 tree res = fold_unary_loc (loc, code, type, op0);
8330 if (res
8331 && TREE_CODE (res) == INTEGER_CST
8332 && TREE_CODE (op0) == INTEGER_CST
8333 && CONVERT_EXPR_CODE_P (code))
8334 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
8335
8336 return res;
8337 }
8338
8339 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8340 operands OP0 and OP1. LOC is the location of the resulting expression.
8341 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8342 Return the folded expression if folding is successful. Otherwise,
8343 return NULL_TREE. */
8344 static tree
8345 fold_truth_andor (location_t loc, enum tree_code code, tree type,
8346 tree arg0, tree arg1, tree op0, tree op1)
8347 {
8348 tree tem;
8349
8350 /* We only do these simplifications if we are optimizing. */
8351 if (!optimize)
8352 return NULL_TREE;
8353
8354 /* Check for things like (A || B) && (A || C). We can convert this
8355 to A || (B && C). Note that either operator can be any of the four
8356 truth and/or operations and the transformation will still be
8357 valid. Also note that we only care about order for the
8358 ANDIF and ORIF operators. If B contains side effects, this
8359 might change the truth-value of A. */
8360 if (TREE_CODE (arg0) == TREE_CODE (arg1)
8361 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
8362 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
8363 || TREE_CODE (arg0) == TRUTH_AND_EXPR
8364 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
8365 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
8366 {
8367 tree a00 = TREE_OPERAND (arg0, 0);
8368 tree a01 = TREE_OPERAND (arg0, 1);
8369 tree a10 = TREE_OPERAND (arg1, 0);
8370 tree a11 = TREE_OPERAND (arg1, 1);
8371 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
8372 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
8373 && (code == TRUTH_AND_EXPR
8374 || code == TRUTH_OR_EXPR));
8375
8376 if (operand_equal_p (a00, a10, 0))
8377 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8378 fold_build2_loc (loc, code, type, a01, a11));
8379 else if (commutative && operand_equal_p (a00, a11, 0))
8380 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8381 fold_build2_loc (loc, code, type, a01, a10));
8382 else if (commutative && operand_equal_p (a01, a10, 0))
8383 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
8384 fold_build2_loc (loc, code, type, a00, a11));
8385
8386 /* This case if tricky because we must either have commutative
8387 operators or else A10 must not have side-effects. */
8388
8389 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8390 && operand_equal_p (a01, a11, 0))
8391 return fold_build2_loc (loc, TREE_CODE (arg0), type,
8392 fold_build2_loc (loc, code, type, a00, a10),
8393 a01);
8394 }
8395
8396 /* See if we can build a range comparison. */
8397 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
8398 return tem;
8399
8400 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
8401 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
8402 {
8403 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
8404 if (tem)
8405 return fold_build2_loc (loc, code, type, tem, arg1);
8406 }
8407
8408 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
8409 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
8410 {
8411 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
8412 if (tem)
8413 return fold_build2_loc (loc, code, type, arg0, tem);
8414 }
8415
8416 /* Check for the possibility of merging component references. If our
8417 lhs is another similar operation, try to merge its rhs with our
8418 rhs. Then try to merge our lhs and rhs. */
8419 if (TREE_CODE (arg0) == code
8420 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
8421 TREE_OPERAND (arg0, 1), arg1)))
8422 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8423
8424 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
8425 return tem;
8426
8427 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8428 && (code == TRUTH_AND_EXPR
8429 || code == TRUTH_ANDIF_EXPR
8430 || code == TRUTH_OR_EXPR
8431 || code == TRUTH_ORIF_EXPR))
8432 {
8433 enum tree_code ncode, icode;
8434
8435 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8436 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8437 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8438
8439 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8440 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8441 We don't want to pack more than two leafs to a non-IF AND/OR
8442 expression.
8443 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8444 equal to IF-CODE, then we don't want to add right-hand operand.
8445 If the inner right-hand side of left-hand operand has
8446 side-effects, or isn't simple, then we can't add to it,
8447 as otherwise we might destroy if-sequence. */
8448 if (TREE_CODE (arg0) == icode
8449 && simple_operand_p_2 (arg1)
8450 /* Needed for sequence points to handle trappings, and
8451 side-effects. */
8452 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8453 {
8454 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8455 arg1);
8456 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8457 tem);
8458 }
8459 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8460 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8461 else if (TREE_CODE (arg1) == icode
8462 && simple_operand_p_2 (arg0)
8463 /* Needed for sequence points to handle trappings, and
8464 side-effects. */
8465 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8466 {
8467 tem = fold_build2_loc (loc, ncode, type,
8468 arg0, TREE_OPERAND (arg1, 0));
8469 return fold_build2_loc (loc, icode, type, tem,
8470 TREE_OPERAND (arg1, 1));
8471 }
8472 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8473 into (A OR B).
8474 For sequence point consistancy, we need to check for trapping,
8475 and side-effects. */
8476 else if (code == icode && simple_operand_p_2 (arg0)
8477 && simple_operand_p_2 (arg1))
8478 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8479 }
8480
8481 return NULL_TREE;
8482 }
8483
8484 /* Fold a binary expression of code CODE and type TYPE with operands
8485 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8486 Return the folded expression if folding is successful. Otherwise,
8487 return NULL_TREE. */
8488
8489 static tree
8490 fold_minmax (location_t loc, enum tree_code code, tree type, tree op0, tree op1)
8491 {
8492 enum tree_code compl_code;
8493
8494 if (code == MIN_EXPR)
8495 compl_code = MAX_EXPR;
8496 else if (code == MAX_EXPR)
8497 compl_code = MIN_EXPR;
8498 else
8499 gcc_unreachable ();
8500
8501 /* MIN (MAX (a, b), b) == b. */
8502 if (TREE_CODE (op0) == compl_code
8503 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
8504 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 0));
8505
8506 /* MIN (MAX (b, a), b) == b. */
8507 if (TREE_CODE (op0) == compl_code
8508 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
8509 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
8510 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 1));
8511
8512 /* MIN (a, MAX (a, b)) == a. */
8513 if (TREE_CODE (op1) == compl_code
8514 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
8515 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
8516 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 1));
8517
8518 /* MIN (a, MAX (b, a)) == a. */
8519 if (TREE_CODE (op1) == compl_code
8520 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
8521 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
8522 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 0));
8523
8524 return NULL_TREE;
8525 }
8526
8527 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8528 by changing CODE to reduce the magnitude of constants involved in
8529 ARG0 of the comparison.
8530 Returns a canonicalized comparison tree if a simplification was
8531 possible, otherwise returns NULL_TREE.
8532 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8533 valid if signed overflow is undefined. */
8534
8535 static tree
8536 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8537 tree arg0, tree arg1,
8538 bool *strict_overflow_p)
8539 {
8540 enum tree_code code0 = TREE_CODE (arg0);
8541 tree t, cst0 = NULL_TREE;
8542 int sgn0;
8543 bool swap = false;
8544
8545 /* Match A +- CST code arg1 and CST code arg1. We can change the
8546 first form only if overflow is undefined. */
8547 if (!(((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8548 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8549 /* In principle pointers also have undefined overflow behavior,
8550 but that causes problems elsewhere. */
8551 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8552 && (code0 == MINUS_EXPR
8553 || code0 == PLUS_EXPR)
8554 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8555 || code0 == INTEGER_CST))
8556 return NULL_TREE;
8557
8558 /* Identify the constant in arg0 and its sign. */
8559 if (code0 == INTEGER_CST)
8560 cst0 = arg0;
8561 else
8562 cst0 = TREE_OPERAND (arg0, 1);
8563 sgn0 = tree_int_cst_sgn (cst0);
8564
8565 /* Overflowed constants and zero will cause problems. */
8566 if (integer_zerop (cst0)
8567 || TREE_OVERFLOW (cst0))
8568 return NULL_TREE;
8569
8570 /* See if we can reduce the magnitude of the constant in
8571 arg0 by changing the comparison code. */
8572 if (code0 == INTEGER_CST)
8573 {
8574 /* CST <= arg1 -> CST-1 < arg1. */
8575 if (code == LE_EXPR && sgn0 == 1)
8576 code = LT_EXPR;
8577 /* -CST < arg1 -> -CST-1 <= arg1. */
8578 else if (code == LT_EXPR && sgn0 == -1)
8579 code = LE_EXPR;
8580 /* CST > arg1 -> CST-1 >= arg1. */
8581 else if (code == GT_EXPR && sgn0 == 1)
8582 code = GE_EXPR;
8583 /* -CST >= arg1 -> -CST-1 > arg1. */
8584 else if (code == GE_EXPR && sgn0 == -1)
8585 code = GT_EXPR;
8586 else
8587 return NULL_TREE;
8588 /* arg1 code' CST' might be more canonical. */
8589 swap = true;
8590 }
8591 else
8592 {
8593 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8594 if (code == LT_EXPR
8595 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8596 code = LE_EXPR;
8597 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8598 else if (code == GT_EXPR
8599 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8600 code = GE_EXPR;
8601 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8602 else if (code == LE_EXPR
8603 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8604 code = LT_EXPR;
8605 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8606 else if (code == GE_EXPR
8607 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8608 code = GT_EXPR;
8609 else
8610 return NULL_TREE;
8611 *strict_overflow_p = true;
8612 }
8613
8614 /* Now build the constant reduced in magnitude. But not if that
8615 would produce one outside of its types range. */
8616 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8617 && ((sgn0 == 1
8618 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8619 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8620 || (sgn0 == -1
8621 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8622 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8623 /* We cannot swap the comparison here as that would cause us to
8624 endlessly recurse. */
8625 return NULL_TREE;
8626
8627 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8628 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8629 if (code0 != INTEGER_CST)
8630 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8631 t = fold_convert (TREE_TYPE (arg1), t);
8632
8633 /* If swapping might yield to a more canonical form, do so. */
8634 if (swap)
8635 return fold_build2_loc (loc, swap_tree_comparison (code), type, arg1, t);
8636 else
8637 return fold_build2_loc (loc, code, type, t, arg1);
8638 }
8639
8640 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8641 overflow further. Try to decrease the magnitude of constants involved
8642 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8643 and put sole constants at the second argument position.
8644 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8645
8646 static tree
8647 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8648 tree arg0, tree arg1)
8649 {
8650 tree t;
8651 bool strict_overflow_p;
8652 const char * const warnmsg = G_("assuming signed overflow does not occur "
8653 "when reducing constant in comparison");
8654
8655 /* Try canonicalization by simplifying arg0. */
8656 strict_overflow_p = false;
8657 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8658 &strict_overflow_p);
8659 if (t)
8660 {
8661 if (strict_overflow_p)
8662 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8663 return t;
8664 }
8665
8666 /* Try canonicalization by simplifying arg1 using the swapped
8667 comparison. */
8668 code = swap_tree_comparison (code);
8669 strict_overflow_p = false;
8670 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8671 &strict_overflow_p);
8672 if (t && strict_overflow_p)
8673 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8674 return t;
8675 }
8676
8677 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8678 space. This is used to avoid issuing overflow warnings for
8679 expressions like &p->x which can not wrap. */
8680
8681 static bool
8682 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8683 {
8684 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8685 return true;
8686
8687 if (bitpos < 0)
8688 return true;
8689
8690 wide_int wi_offset;
8691 int precision = TYPE_PRECISION (TREE_TYPE (base));
8692 if (offset == NULL_TREE)
8693 wi_offset = wi::zero (precision);
8694 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8695 return true;
8696 else
8697 wi_offset = offset;
8698
8699 bool overflow;
8700 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8701 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8702 if (overflow)
8703 return true;
8704
8705 if (!wi::fits_uhwi_p (total))
8706 return true;
8707
8708 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8709 if (size <= 0)
8710 return true;
8711
8712 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8713 array. */
8714 if (TREE_CODE (base) == ADDR_EXPR)
8715 {
8716 HOST_WIDE_INT base_size;
8717
8718 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8719 if (base_size > 0 && size < base_size)
8720 size = base_size;
8721 }
8722
8723 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8724 }
8725
8726 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
8727 kind INTEGER_CST. This makes sure to properly sign-extend the
8728 constant. */
8729
8730 static HOST_WIDE_INT
8731 size_low_cst (const_tree t)
8732 {
8733 HOST_WIDE_INT w = TREE_INT_CST_ELT (t, 0);
8734 int prec = TYPE_PRECISION (TREE_TYPE (t));
8735 if (prec < HOST_BITS_PER_WIDE_INT)
8736 return sext_hwi (w, prec);
8737 return w;
8738 }
8739
8740 /* Subroutine of fold_binary. This routine performs all of the
8741 transformations that are common to the equality/inequality
8742 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8743 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8744 fold_binary should call fold_binary. Fold a comparison with
8745 tree code CODE and type TYPE with operands OP0 and OP1. Return
8746 the folded comparison or NULL_TREE. */
8747
8748 static tree
8749 fold_comparison (location_t loc, enum tree_code code, tree type,
8750 tree op0, tree op1)
8751 {
8752 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8753 tree arg0, arg1, tem;
8754
8755 arg0 = op0;
8756 arg1 = op1;
8757
8758 STRIP_SIGN_NOPS (arg0);
8759 STRIP_SIGN_NOPS (arg1);
8760
8761 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
8762 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8763 && (equality_code
8764 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8765 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
8766 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8767 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8768 && TREE_CODE (arg1) == INTEGER_CST
8769 && !TREE_OVERFLOW (arg1))
8770 {
8771 const enum tree_code
8772 reverse_op = TREE_CODE (arg0) == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR;
8773 tree const1 = TREE_OPERAND (arg0, 1);
8774 tree const2 = fold_convert_loc (loc, TREE_TYPE (const1), arg1);
8775 tree variable = TREE_OPERAND (arg0, 0);
8776 tree new_const = int_const_binop (reverse_op, const2, const1);
8777
8778 /* If the constant operation overflowed this can be
8779 simplified as a comparison against INT_MAX/INT_MIN. */
8780 if (TREE_OVERFLOW (new_const)
8781 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
8782 {
8783 int const1_sgn = tree_int_cst_sgn (const1);
8784 enum tree_code code2 = code;
8785
8786 /* Get the sign of the constant on the lhs if the
8787 operation were VARIABLE + CONST1. */
8788 if (TREE_CODE (arg0) == MINUS_EXPR)
8789 const1_sgn = -const1_sgn;
8790
8791 /* The sign of the constant determines if we overflowed
8792 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8793 Canonicalize to the INT_MIN overflow by swapping the comparison
8794 if necessary. */
8795 if (const1_sgn == -1)
8796 code2 = swap_tree_comparison (code);
8797
8798 /* We now can look at the canonicalized case
8799 VARIABLE + 1 CODE2 INT_MIN
8800 and decide on the result. */
8801 switch (code2)
8802 {
8803 case EQ_EXPR:
8804 case LT_EXPR:
8805 case LE_EXPR:
8806 return
8807 omit_one_operand_loc (loc, type, boolean_false_node, variable);
8808
8809 case NE_EXPR:
8810 case GE_EXPR:
8811 case GT_EXPR:
8812 return
8813 omit_one_operand_loc (loc, type, boolean_true_node, variable);
8814
8815 default:
8816 gcc_unreachable ();
8817 }
8818 }
8819 else
8820 {
8821 if (!equality_code)
8822 fold_overflow_warning ("assuming signed overflow does not occur "
8823 "when changing X +- C1 cmp C2 to "
8824 "X cmp C2 -+ C1",
8825 WARN_STRICT_OVERFLOW_COMPARISON);
8826 return fold_build2_loc (loc, code, type, variable, new_const);
8827 }
8828 }
8829
8830 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y. */
8831 if (TREE_CODE (arg0) == MINUS_EXPR
8832 && equality_code
8833 && integer_zerop (arg1))
8834 {
8835 /* ??? The transformation is valid for the other operators if overflow
8836 is undefined for the type, but performing it here badly interacts
8837 with the transformation in fold_cond_expr_with_comparison which
8838 attempts to synthetize ABS_EXPR. */
8839 if (!equality_code)
8840 fold_overflow_warning ("assuming signed overflow does not occur "
8841 "when changing X - Y cmp 0 to X cmp Y",
8842 WARN_STRICT_OVERFLOW_COMPARISON);
8843 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
8844 TREE_OPERAND (arg0, 1));
8845 }
8846
8847 /* For comparisons of pointers we can decompose it to a compile time
8848 comparison of the base objects and the offsets into the object.
8849 This requires at least one operand being an ADDR_EXPR or a
8850 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8851 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8852 && (TREE_CODE (arg0) == ADDR_EXPR
8853 || TREE_CODE (arg1) == ADDR_EXPR
8854 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8855 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8856 {
8857 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8858 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8859 machine_mode mode;
8860 int volatilep, unsignedp;
8861 bool indirect_base0 = false, indirect_base1 = false;
8862
8863 /* Get base and offset for the access. Strip ADDR_EXPR for
8864 get_inner_reference, but put it back by stripping INDIRECT_REF
8865 off the base object if possible. indirect_baseN will be true
8866 if baseN is not an address but refers to the object itself. */
8867 base0 = arg0;
8868 if (TREE_CODE (arg0) == ADDR_EXPR)
8869 {
8870 base0 = get_inner_reference (TREE_OPERAND (arg0, 0),
8871 &bitsize, &bitpos0, &offset0, &mode,
8872 &unsignedp, &volatilep, false);
8873 if (TREE_CODE (base0) == INDIRECT_REF)
8874 base0 = TREE_OPERAND (base0, 0);
8875 else
8876 indirect_base0 = true;
8877 }
8878 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8879 {
8880 base0 = TREE_OPERAND (arg0, 0);
8881 STRIP_SIGN_NOPS (base0);
8882 if (TREE_CODE (base0) == ADDR_EXPR)
8883 {
8884 base0 = TREE_OPERAND (base0, 0);
8885 indirect_base0 = true;
8886 }
8887 offset0 = TREE_OPERAND (arg0, 1);
8888 if (tree_fits_shwi_p (offset0))
8889 {
8890 HOST_WIDE_INT off = size_low_cst (offset0);
8891 if ((HOST_WIDE_INT) (((unsigned HOST_WIDE_INT) off)
8892 * BITS_PER_UNIT)
8893 / BITS_PER_UNIT == (HOST_WIDE_INT) off)
8894 {
8895 bitpos0 = off * BITS_PER_UNIT;
8896 offset0 = NULL_TREE;
8897 }
8898 }
8899 }
8900
8901 base1 = arg1;
8902 if (TREE_CODE (arg1) == ADDR_EXPR)
8903 {
8904 base1 = get_inner_reference (TREE_OPERAND (arg1, 0),
8905 &bitsize, &bitpos1, &offset1, &mode,
8906 &unsignedp, &volatilep, false);
8907 if (TREE_CODE (base1) == INDIRECT_REF)
8908 base1 = TREE_OPERAND (base1, 0);
8909 else
8910 indirect_base1 = true;
8911 }
8912 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8913 {
8914 base1 = TREE_OPERAND (arg1, 0);
8915 STRIP_SIGN_NOPS (base1);
8916 if (TREE_CODE (base1) == ADDR_EXPR)
8917 {
8918 base1 = TREE_OPERAND (base1, 0);
8919 indirect_base1 = true;
8920 }
8921 offset1 = TREE_OPERAND (arg1, 1);
8922 if (tree_fits_shwi_p (offset1))
8923 {
8924 HOST_WIDE_INT off = size_low_cst (offset1);
8925 if ((HOST_WIDE_INT) (((unsigned HOST_WIDE_INT) off)
8926 * BITS_PER_UNIT)
8927 / BITS_PER_UNIT == (HOST_WIDE_INT) off)
8928 {
8929 bitpos1 = off * BITS_PER_UNIT;
8930 offset1 = NULL_TREE;
8931 }
8932 }
8933 }
8934
8935 /* A local variable can never be pointed to by
8936 the default SSA name of an incoming parameter. */
8937 if ((TREE_CODE (arg0) == ADDR_EXPR
8938 && indirect_base0
8939 && TREE_CODE (base0) == VAR_DECL
8940 && auto_var_in_fn_p (base0, current_function_decl)
8941 && !indirect_base1
8942 && TREE_CODE (base1) == SSA_NAME
8943 && SSA_NAME_IS_DEFAULT_DEF (base1)
8944 && TREE_CODE (SSA_NAME_VAR (base1)) == PARM_DECL)
8945 || (TREE_CODE (arg1) == ADDR_EXPR
8946 && indirect_base1
8947 && TREE_CODE (base1) == VAR_DECL
8948 && auto_var_in_fn_p (base1, current_function_decl)
8949 && !indirect_base0
8950 && TREE_CODE (base0) == SSA_NAME
8951 && SSA_NAME_IS_DEFAULT_DEF (base0)
8952 && TREE_CODE (SSA_NAME_VAR (base0)) == PARM_DECL))
8953 {
8954 if (code == NE_EXPR)
8955 return constant_boolean_node (1, type);
8956 else if (code == EQ_EXPR)
8957 return constant_boolean_node (0, type);
8958 }
8959 /* If we have equivalent bases we might be able to simplify. */
8960 else if (indirect_base0 == indirect_base1
8961 && operand_equal_p (base0, base1, 0))
8962 {
8963 /* We can fold this expression to a constant if the non-constant
8964 offset parts are equal. */
8965 if ((offset0 == offset1
8966 || (offset0 && offset1
8967 && operand_equal_p (offset0, offset1, 0)))
8968 && (code == EQ_EXPR
8969 || code == NE_EXPR
8970 || (indirect_base0 && DECL_P (base0))
8971 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8972
8973 {
8974 if (!equality_code
8975 && bitpos0 != bitpos1
8976 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8977 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8978 fold_overflow_warning (("assuming pointer wraparound does not "
8979 "occur when comparing P +- C1 with "
8980 "P +- C2"),
8981 WARN_STRICT_OVERFLOW_CONDITIONAL);
8982
8983 switch (code)
8984 {
8985 case EQ_EXPR:
8986 return constant_boolean_node (bitpos0 == bitpos1, type);
8987 case NE_EXPR:
8988 return constant_boolean_node (bitpos0 != bitpos1, type);
8989 case LT_EXPR:
8990 return constant_boolean_node (bitpos0 < bitpos1, type);
8991 case LE_EXPR:
8992 return constant_boolean_node (bitpos0 <= bitpos1, type);
8993 case GE_EXPR:
8994 return constant_boolean_node (bitpos0 >= bitpos1, type);
8995 case GT_EXPR:
8996 return constant_boolean_node (bitpos0 > bitpos1, type);
8997 default:;
8998 }
8999 }
9000 /* We can simplify the comparison to a comparison of the variable
9001 offset parts if the constant offset parts are equal.
9002 Be careful to use signed sizetype here because otherwise we
9003 mess with array offsets in the wrong way. This is possible
9004 because pointer arithmetic is restricted to retain within an
9005 object and overflow on pointer differences is undefined as of
9006 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
9007 else if (bitpos0 == bitpos1
9008 && (equality_code
9009 || (indirect_base0 && DECL_P (base0))
9010 || POINTER_TYPE_OVERFLOW_UNDEFINED))
9011 {
9012 /* By converting to signed sizetype we cover middle-end pointer
9013 arithmetic which operates on unsigned pointer types of size
9014 type size and ARRAY_REF offsets which are properly sign or
9015 zero extended from their type in case it is narrower than
9016 sizetype. */
9017 if (offset0 == NULL_TREE)
9018 offset0 = build_int_cst (ssizetype, 0);
9019 else
9020 offset0 = fold_convert_loc (loc, ssizetype, offset0);
9021 if (offset1 == NULL_TREE)
9022 offset1 = build_int_cst (ssizetype, 0);
9023 else
9024 offset1 = fold_convert_loc (loc, ssizetype, offset1);
9025
9026 if (!equality_code
9027 && (pointer_may_wrap_p (base0, offset0, bitpos0)
9028 || pointer_may_wrap_p (base1, offset1, bitpos1)))
9029 fold_overflow_warning (("assuming pointer wraparound does not "
9030 "occur when comparing P +- C1 with "
9031 "P +- C2"),
9032 WARN_STRICT_OVERFLOW_COMPARISON);
9033
9034 return fold_build2_loc (loc, code, type, offset0, offset1);
9035 }
9036 }
9037 /* For non-equal bases we can simplify if they are addresses
9038 declarations with different addresses. */
9039 else if (indirect_base0 && indirect_base1
9040 /* We know that !operand_equal_p (base0, base1, 0)
9041 because the if condition was false. But make
9042 sure two decls are not the same. */
9043 && base0 != base1
9044 && TREE_CODE (arg0) == ADDR_EXPR
9045 && TREE_CODE (arg1) == ADDR_EXPR
9046 && DECL_P (base0)
9047 && DECL_P (base1)
9048 /* Watch for aliases. */
9049 && (!decl_in_symtab_p (base0)
9050 || !decl_in_symtab_p (base1)
9051 || !symtab_node::get_create (base0)->equal_address_to
9052 (symtab_node::get_create (base1))))
9053 {
9054 if (code == EQ_EXPR)
9055 return omit_two_operands_loc (loc, type, boolean_false_node,
9056 arg0, arg1);
9057 else if (code == NE_EXPR)
9058 return omit_two_operands_loc (loc, type, boolean_true_node,
9059 arg0, arg1);
9060 }
9061 /* For equal offsets we can simplify to a comparison of the
9062 base addresses. */
9063 else if (bitpos0 == bitpos1
9064 && (indirect_base0
9065 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
9066 && (indirect_base1
9067 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
9068 && ((offset0 == offset1)
9069 || (offset0 && offset1
9070 && operand_equal_p (offset0, offset1, 0))))
9071 {
9072 if (indirect_base0)
9073 base0 = build_fold_addr_expr_loc (loc, base0);
9074 if (indirect_base1)
9075 base1 = build_fold_addr_expr_loc (loc, base1);
9076 return fold_build2_loc (loc, code, type, base0, base1);
9077 }
9078 }
9079
9080 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
9081 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
9082 the resulting offset is smaller in absolute value than the
9083 original one and has the same sign. */
9084 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9085 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
9086 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
9087 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9088 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
9089 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
9090 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
9091 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
9092 {
9093 tree const1 = TREE_OPERAND (arg0, 1);
9094 tree const2 = TREE_OPERAND (arg1, 1);
9095 tree variable1 = TREE_OPERAND (arg0, 0);
9096 tree variable2 = TREE_OPERAND (arg1, 0);
9097 tree cst;
9098 const char * const warnmsg = G_("assuming signed overflow does not "
9099 "occur when combining constants around "
9100 "a comparison");
9101
9102 /* Put the constant on the side where it doesn't overflow and is
9103 of lower absolute value and of same sign than before. */
9104 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
9105 ? MINUS_EXPR : PLUS_EXPR,
9106 const2, const1);
9107 if (!TREE_OVERFLOW (cst)
9108 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
9109 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
9110 {
9111 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
9112 return fold_build2_loc (loc, code, type,
9113 variable1,
9114 fold_build2_loc (loc, TREE_CODE (arg1),
9115 TREE_TYPE (arg1),
9116 variable2, cst));
9117 }
9118
9119 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
9120 ? MINUS_EXPR : PLUS_EXPR,
9121 const1, const2);
9122 if (!TREE_OVERFLOW (cst)
9123 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
9124 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
9125 {
9126 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
9127 return fold_build2_loc (loc, code, type,
9128 fold_build2_loc (loc, TREE_CODE (arg0),
9129 TREE_TYPE (arg0),
9130 variable1, cst),
9131 variable2);
9132 }
9133 }
9134
9135 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
9136 signed arithmetic case. That form is created by the compiler
9137 often enough for folding it to be of value. One example is in
9138 computing loop trip counts after Operator Strength Reduction. */
9139 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9140 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
9141 && TREE_CODE (arg0) == MULT_EXPR
9142 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9143 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
9144 && integer_zerop (arg1))
9145 {
9146 tree const1 = TREE_OPERAND (arg0, 1);
9147 tree const2 = arg1; /* zero */
9148 tree variable1 = TREE_OPERAND (arg0, 0);
9149 enum tree_code cmp_code = code;
9150
9151 /* Handle unfolded multiplication by zero. */
9152 if (integer_zerop (const1))
9153 return fold_build2_loc (loc, cmp_code, type, const1, const2);
9154
9155 fold_overflow_warning (("assuming signed overflow does not occur when "
9156 "eliminating multiplication in comparison "
9157 "with zero"),
9158 WARN_STRICT_OVERFLOW_COMPARISON);
9159
9160 /* If const1 is negative we swap the sense of the comparison. */
9161 if (tree_int_cst_sgn (const1) < 0)
9162 cmp_code = swap_tree_comparison (cmp_code);
9163
9164 return fold_build2_loc (loc, cmp_code, type, variable1, const2);
9165 }
9166
9167 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
9168 if (tem)
9169 return tem;
9170
9171 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
9172 {
9173 tree targ0 = strip_float_extensions (arg0);
9174 tree targ1 = strip_float_extensions (arg1);
9175 tree newtype = TREE_TYPE (targ0);
9176
9177 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
9178 newtype = TREE_TYPE (targ1);
9179
9180 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
9181 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
9182 return fold_build2_loc (loc, code, type,
9183 fold_convert_loc (loc, newtype, targ0),
9184 fold_convert_loc (loc, newtype, targ1));
9185
9186 if (TREE_CODE (arg1) == REAL_CST)
9187 {
9188 REAL_VALUE_TYPE cst;
9189 cst = TREE_REAL_CST (arg1);
9190
9191 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
9192 /* a CMP (-0) -> a CMP 0 */
9193 if (REAL_VALUE_MINUS_ZERO (cst))
9194 return fold_build2_loc (loc, code, type, arg0,
9195 build_real (TREE_TYPE (arg1), dconst0));
9196
9197 /* x != NaN is always true, other ops are always false. */
9198 if (REAL_VALUE_ISNAN (cst)
9199 && ! HONOR_SNANS (arg1))
9200 {
9201 tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
9202 return omit_one_operand_loc (loc, type, tem, arg0);
9203 }
9204
9205 /* Fold comparisons against infinity. */
9206 if (REAL_VALUE_ISINF (cst)
9207 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1))))
9208 {
9209 tem = fold_inf_compare (loc, code, type, arg0, arg1);
9210 if (tem != NULL_TREE)
9211 return tem;
9212 }
9213 }
9214
9215 /* If this is a comparison of a real constant with a PLUS_EXPR
9216 or a MINUS_EXPR of a real constant, we can convert it into a
9217 comparison with a revised real constant as long as no overflow
9218 occurs when unsafe_math_optimizations are enabled. */
9219 if (flag_unsafe_math_optimizations
9220 && TREE_CODE (arg1) == REAL_CST
9221 && (TREE_CODE (arg0) == PLUS_EXPR
9222 || TREE_CODE (arg0) == MINUS_EXPR)
9223 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
9224 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
9225 ? MINUS_EXPR : PLUS_EXPR,
9226 arg1, TREE_OPERAND (arg0, 1)))
9227 && !TREE_OVERFLOW (tem))
9228 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
9229
9230 /* Likewise, we can simplify a comparison of a real constant with
9231 a MINUS_EXPR whose first operand is also a real constant, i.e.
9232 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
9233 floating-point types only if -fassociative-math is set. */
9234 if (flag_associative_math
9235 && TREE_CODE (arg1) == REAL_CST
9236 && TREE_CODE (arg0) == MINUS_EXPR
9237 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
9238 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
9239 arg1))
9240 && !TREE_OVERFLOW (tem))
9241 return fold_build2_loc (loc, swap_tree_comparison (code), type,
9242 TREE_OPERAND (arg0, 1), tem);
9243
9244 /* Fold comparisons against built-in math functions. */
9245 if (TREE_CODE (arg1) == REAL_CST
9246 && flag_unsafe_math_optimizations
9247 && ! flag_errno_math)
9248 {
9249 enum built_in_function fcode = builtin_mathfn_code (arg0);
9250
9251 if (fcode != END_BUILTINS)
9252 {
9253 tem = fold_mathfn_compare (loc, fcode, code, type, arg0, arg1);
9254 if (tem != NULL_TREE)
9255 return tem;
9256 }
9257 }
9258 }
9259
9260 if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
9261 && CONVERT_EXPR_P (arg0))
9262 {
9263 /* If we are widening one operand of an integer comparison,
9264 see if the other operand is similarly being widened. Perhaps we
9265 can do the comparison in the narrower type. */
9266 tem = fold_widened_comparison (loc, code, type, arg0, arg1);
9267 if (tem)
9268 return tem;
9269
9270 /* Or if we are changing signedness. */
9271 tem = fold_sign_changed_comparison (loc, code, type, arg0, arg1);
9272 if (tem)
9273 return tem;
9274 }
9275
9276 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
9277 constant, we can simplify it. */
9278 if (TREE_CODE (arg1) == INTEGER_CST
9279 && (TREE_CODE (arg0) == MIN_EXPR
9280 || TREE_CODE (arg0) == MAX_EXPR)
9281 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9282 {
9283 tem = optimize_minmax_comparison (loc, code, type, op0, op1);
9284 if (tem)
9285 return tem;
9286 }
9287
9288 /* Simplify comparison of something with itself. (For IEEE
9289 floating-point, we can only do some of these simplifications.) */
9290 if (operand_equal_p (arg0, arg1, 0))
9291 {
9292 switch (code)
9293 {
9294 case EQ_EXPR:
9295 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9296 || ! HONOR_NANS (arg0))
9297 return constant_boolean_node (1, type);
9298 break;
9299
9300 case GE_EXPR:
9301 case LE_EXPR:
9302 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9303 || ! HONOR_NANS (arg0))
9304 return constant_boolean_node (1, type);
9305 return fold_build2_loc (loc, EQ_EXPR, type, arg0, arg1);
9306
9307 case NE_EXPR:
9308 /* For NE, we can only do this simplification if integer
9309 or we don't honor IEEE floating point NaNs. */
9310 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
9311 && HONOR_NANS (arg0))
9312 break;
9313 /* ... fall through ... */
9314 case GT_EXPR:
9315 case LT_EXPR:
9316 return constant_boolean_node (0, type);
9317 default:
9318 gcc_unreachable ();
9319 }
9320 }
9321
9322 /* If we are comparing an expression that just has comparisons
9323 of two integer values, arithmetic expressions of those comparisons,
9324 and constants, we can simplify it. There are only three cases
9325 to check: the two values can either be equal, the first can be
9326 greater, or the second can be greater. Fold the expression for
9327 those three values. Since each value must be 0 or 1, we have
9328 eight possibilities, each of which corresponds to the constant 0
9329 or 1 or one of the six possible comparisons.
9330
9331 This handles common cases like (a > b) == 0 but also handles
9332 expressions like ((x > y) - (y > x)) > 0, which supposedly
9333 occur in macroized code. */
9334
9335 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
9336 {
9337 tree cval1 = 0, cval2 = 0;
9338 int save_p = 0;
9339
9340 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
9341 /* Don't handle degenerate cases here; they should already
9342 have been handled anyway. */
9343 && cval1 != 0 && cval2 != 0
9344 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
9345 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
9346 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
9347 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
9348 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
9349 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
9350 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
9351 {
9352 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
9353 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
9354
9355 /* We can't just pass T to eval_subst in case cval1 or cval2
9356 was the same as ARG1. */
9357
9358 tree high_result
9359 = fold_build2_loc (loc, code, type,
9360 eval_subst (loc, arg0, cval1, maxval,
9361 cval2, minval),
9362 arg1);
9363 tree equal_result
9364 = fold_build2_loc (loc, code, type,
9365 eval_subst (loc, arg0, cval1, maxval,
9366 cval2, maxval),
9367 arg1);
9368 tree low_result
9369 = fold_build2_loc (loc, code, type,
9370 eval_subst (loc, arg0, cval1, minval,
9371 cval2, maxval),
9372 arg1);
9373
9374 /* All three of these results should be 0 or 1. Confirm they are.
9375 Then use those values to select the proper code to use. */
9376
9377 if (TREE_CODE (high_result) == INTEGER_CST
9378 && TREE_CODE (equal_result) == INTEGER_CST
9379 && TREE_CODE (low_result) == INTEGER_CST)
9380 {
9381 /* Make a 3-bit mask with the high-order bit being the
9382 value for `>', the next for '=', and the low for '<'. */
9383 switch ((integer_onep (high_result) * 4)
9384 + (integer_onep (equal_result) * 2)
9385 + integer_onep (low_result))
9386 {
9387 case 0:
9388 /* Always false. */
9389 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
9390 case 1:
9391 code = LT_EXPR;
9392 break;
9393 case 2:
9394 code = EQ_EXPR;
9395 break;
9396 case 3:
9397 code = LE_EXPR;
9398 break;
9399 case 4:
9400 code = GT_EXPR;
9401 break;
9402 case 5:
9403 code = NE_EXPR;
9404 break;
9405 case 6:
9406 code = GE_EXPR;
9407 break;
9408 case 7:
9409 /* Always true. */
9410 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
9411 }
9412
9413 if (save_p)
9414 {
9415 tem = save_expr (build2 (code, type, cval1, cval2));
9416 SET_EXPR_LOCATION (tem, loc);
9417 return tem;
9418 }
9419 return fold_build2_loc (loc, code, type, cval1, cval2);
9420 }
9421 }
9422 }
9423
9424 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
9425 into a single range test. */
9426 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
9427 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
9428 && TREE_CODE (arg1) == INTEGER_CST
9429 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9430 && !integer_zerop (TREE_OPERAND (arg0, 1))
9431 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
9432 && !TREE_OVERFLOW (arg1))
9433 {
9434 tem = fold_div_compare (loc, code, type, arg0, arg1);
9435 if (tem != NULL_TREE)
9436 return tem;
9437 }
9438
9439 /* Fold ~X op ~Y as Y op X. */
9440 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9441 && TREE_CODE (arg1) == BIT_NOT_EXPR)
9442 {
9443 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9444 return fold_build2_loc (loc, code, type,
9445 fold_convert_loc (loc, cmp_type,
9446 TREE_OPERAND (arg1, 0)),
9447 TREE_OPERAND (arg0, 0));
9448 }
9449
9450 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
9451 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9452 && (TREE_CODE (arg1) == INTEGER_CST || TREE_CODE (arg1) == VECTOR_CST))
9453 {
9454 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9455 return fold_build2_loc (loc, swap_tree_comparison (code), type,
9456 TREE_OPERAND (arg0, 0),
9457 fold_build1_loc (loc, BIT_NOT_EXPR, cmp_type,
9458 fold_convert_loc (loc, cmp_type, arg1)));
9459 }
9460
9461 return NULL_TREE;
9462 }
9463
9464
9465 /* Subroutine of fold_binary. Optimize complex multiplications of the
9466 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
9467 argument EXPR represents the expression "z" of type TYPE. */
9468
9469 static tree
9470 fold_mult_zconjz (location_t loc, tree type, tree expr)
9471 {
9472 tree itype = TREE_TYPE (type);
9473 tree rpart, ipart, tem;
9474
9475 if (TREE_CODE (expr) == COMPLEX_EXPR)
9476 {
9477 rpart = TREE_OPERAND (expr, 0);
9478 ipart = TREE_OPERAND (expr, 1);
9479 }
9480 else if (TREE_CODE (expr) == COMPLEX_CST)
9481 {
9482 rpart = TREE_REALPART (expr);
9483 ipart = TREE_IMAGPART (expr);
9484 }
9485 else
9486 {
9487 expr = save_expr (expr);
9488 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
9489 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
9490 }
9491
9492 rpart = save_expr (rpart);
9493 ipart = save_expr (ipart);
9494 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
9495 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
9496 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
9497 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
9498 build_zero_cst (itype));
9499 }
9500
9501
9502 /* Subroutine of fold_binary. If P is the value of EXPR, computes
9503 power-of-two M and (arbitrary) N such that M divides (P-N). This condition
9504 guarantees that P and N have the same least significant log2(M) bits.
9505 N is not otherwise constrained. In particular, N is not normalized to
9506 0 <= N < M as is common. In general, the precise value of P is unknown.
9507 M is chosen as large as possible such that constant N can be determined.
9508
9509 Returns M and sets *RESIDUE to N.
9510
9511 If ALLOW_FUNC_ALIGN is true, do take functions' DECL_ALIGN_UNIT into
9512 account. This is not always possible due to PR 35705.
9513 */
9514
9515 static unsigned HOST_WIDE_INT
9516 get_pointer_modulus_and_residue (tree expr, unsigned HOST_WIDE_INT *residue,
9517 bool allow_func_align)
9518 {
9519 enum tree_code code;
9520
9521 *residue = 0;
9522
9523 code = TREE_CODE (expr);
9524 if (code == ADDR_EXPR)
9525 {
9526 unsigned int bitalign;
9527 get_object_alignment_1 (TREE_OPERAND (expr, 0), &bitalign, residue);
9528 *residue /= BITS_PER_UNIT;
9529 return bitalign / BITS_PER_UNIT;
9530 }
9531 else if (code == POINTER_PLUS_EXPR)
9532 {
9533 tree op0, op1;
9534 unsigned HOST_WIDE_INT modulus;
9535 enum tree_code inner_code;
9536
9537 op0 = TREE_OPERAND (expr, 0);
9538 STRIP_NOPS (op0);
9539 modulus = get_pointer_modulus_and_residue (op0, residue,
9540 allow_func_align);
9541
9542 op1 = TREE_OPERAND (expr, 1);
9543 STRIP_NOPS (op1);
9544 inner_code = TREE_CODE (op1);
9545 if (inner_code == INTEGER_CST)
9546 {
9547 *residue += TREE_INT_CST_LOW (op1);
9548 return modulus;
9549 }
9550 else if (inner_code == MULT_EXPR)
9551 {
9552 op1 = TREE_OPERAND (op1, 1);
9553 if (TREE_CODE (op1) == INTEGER_CST)
9554 {
9555 unsigned HOST_WIDE_INT align;
9556
9557 /* Compute the greatest power-of-2 divisor of op1. */
9558 align = TREE_INT_CST_LOW (op1);
9559 align &= -align;
9560
9561 /* If align is non-zero and less than *modulus, replace
9562 *modulus with align., If align is 0, then either op1 is 0
9563 or the greatest power-of-2 divisor of op1 doesn't fit in an
9564 unsigned HOST_WIDE_INT. In either case, no additional
9565 constraint is imposed. */
9566 if (align)
9567 modulus = MIN (modulus, align);
9568
9569 return modulus;
9570 }
9571 }
9572 }
9573
9574 /* If we get here, we were unable to determine anything useful about the
9575 expression. */
9576 return 1;
9577 }
9578
9579 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
9580 CONSTRUCTOR ARG into array ELTS and return true if successful. */
9581
9582 static bool
9583 vec_cst_ctor_to_array (tree arg, tree *elts)
9584 {
9585 unsigned int nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)), i;
9586
9587 if (TREE_CODE (arg) == VECTOR_CST)
9588 {
9589 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
9590 elts[i] = VECTOR_CST_ELT (arg, i);
9591 }
9592 else if (TREE_CODE (arg) == CONSTRUCTOR)
9593 {
9594 constructor_elt *elt;
9595
9596 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
9597 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
9598 return false;
9599 else
9600 elts[i] = elt->value;
9601 }
9602 else
9603 return false;
9604 for (; i < nelts; i++)
9605 elts[i]
9606 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
9607 return true;
9608 }
9609
9610 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
9611 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
9612 NULL_TREE otherwise. */
9613
9614 static tree
9615 fold_vec_perm (tree type, tree arg0, tree arg1, const unsigned char *sel)
9616 {
9617 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
9618 tree *elts;
9619 bool need_ctor = false;
9620
9621 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
9622 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
9623 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
9624 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
9625 return NULL_TREE;
9626
9627 elts = XALLOCAVEC (tree, nelts * 3);
9628 if (!vec_cst_ctor_to_array (arg0, elts)
9629 || !vec_cst_ctor_to_array (arg1, elts + nelts))
9630 return NULL_TREE;
9631
9632 for (i = 0; i < nelts; i++)
9633 {
9634 if (!CONSTANT_CLASS_P (elts[sel[i]]))
9635 need_ctor = true;
9636 elts[i + 2 * nelts] = unshare_expr (elts[sel[i]]);
9637 }
9638
9639 if (need_ctor)
9640 {
9641 vec<constructor_elt, va_gc> *v;
9642 vec_alloc (v, nelts);
9643 for (i = 0; i < nelts; i++)
9644 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[2 * nelts + i]);
9645 return build_constructor (type, v);
9646 }
9647 else
9648 return build_vector (type, &elts[2 * nelts]);
9649 }
9650
9651 /* Try to fold a pointer difference of type TYPE two address expressions of
9652 array references AREF0 and AREF1 using location LOC. Return a
9653 simplified expression for the difference or NULL_TREE. */
9654
9655 static tree
9656 fold_addr_of_array_ref_difference (location_t loc, tree type,
9657 tree aref0, tree aref1)
9658 {
9659 tree base0 = TREE_OPERAND (aref0, 0);
9660 tree base1 = TREE_OPERAND (aref1, 0);
9661 tree base_offset = build_int_cst (type, 0);
9662
9663 /* If the bases are array references as well, recurse. If the bases
9664 are pointer indirections compute the difference of the pointers.
9665 If the bases are equal, we are set. */
9666 if ((TREE_CODE (base0) == ARRAY_REF
9667 && TREE_CODE (base1) == ARRAY_REF
9668 && (base_offset
9669 = fold_addr_of_array_ref_difference (loc, type, base0, base1)))
9670 || (INDIRECT_REF_P (base0)
9671 && INDIRECT_REF_P (base1)
9672 && (base_offset = fold_binary_loc (loc, MINUS_EXPR, type,
9673 TREE_OPERAND (base0, 0),
9674 TREE_OPERAND (base1, 0))))
9675 || operand_equal_p (base0, base1, 0))
9676 {
9677 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
9678 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
9679 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
9680 tree diff = build2 (MINUS_EXPR, type, op0, op1);
9681 return fold_build2_loc (loc, PLUS_EXPR, type,
9682 base_offset,
9683 fold_build2_loc (loc, MULT_EXPR, type,
9684 diff, esz));
9685 }
9686 return NULL_TREE;
9687 }
9688
9689 /* If the real or vector real constant CST of type TYPE has an exact
9690 inverse, return it, else return NULL. */
9691
9692 tree
9693 exact_inverse (tree type, tree cst)
9694 {
9695 REAL_VALUE_TYPE r;
9696 tree unit_type, *elts;
9697 machine_mode mode;
9698 unsigned vec_nelts, i;
9699
9700 switch (TREE_CODE (cst))
9701 {
9702 case REAL_CST:
9703 r = TREE_REAL_CST (cst);
9704
9705 if (exact_real_inverse (TYPE_MODE (type), &r))
9706 return build_real (type, r);
9707
9708 return NULL_TREE;
9709
9710 case VECTOR_CST:
9711 vec_nelts = VECTOR_CST_NELTS (cst);
9712 elts = XALLOCAVEC (tree, vec_nelts);
9713 unit_type = TREE_TYPE (type);
9714 mode = TYPE_MODE (unit_type);
9715
9716 for (i = 0; i < vec_nelts; i++)
9717 {
9718 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
9719 if (!exact_real_inverse (mode, &r))
9720 return NULL_TREE;
9721 elts[i] = build_real (unit_type, r);
9722 }
9723
9724 return build_vector (type, elts);
9725
9726 default:
9727 return NULL_TREE;
9728 }
9729 }
9730
9731 /* Mask out the tz least significant bits of X of type TYPE where
9732 tz is the number of trailing zeroes in Y. */
9733 static wide_int
9734 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
9735 {
9736 int tz = wi::ctz (y);
9737 if (tz > 0)
9738 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
9739 return x;
9740 }
9741
9742 /* Return true when T is an address and is known to be nonzero.
9743 For floating point we further ensure that T is not denormal.
9744 Similar logic is present in nonzero_address in rtlanal.h.
9745
9746 If the return value is based on the assumption that signed overflow
9747 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9748 change *STRICT_OVERFLOW_P. */
9749
9750 static bool
9751 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
9752 {
9753 tree type = TREE_TYPE (t);
9754 enum tree_code code;
9755
9756 /* Doing something useful for floating point would need more work. */
9757 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
9758 return false;
9759
9760 code = TREE_CODE (t);
9761 switch (TREE_CODE_CLASS (code))
9762 {
9763 case tcc_unary:
9764 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9765 strict_overflow_p);
9766 case tcc_binary:
9767 case tcc_comparison:
9768 return tree_binary_nonzero_warnv_p (code, type,
9769 TREE_OPERAND (t, 0),
9770 TREE_OPERAND (t, 1),
9771 strict_overflow_p);
9772 case tcc_constant:
9773 case tcc_declaration:
9774 case tcc_reference:
9775 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9776
9777 default:
9778 break;
9779 }
9780
9781 switch (code)
9782 {
9783 case TRUTH_NOT_EXPR:
9784 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9785 strict_overflow_p);
9786
9787 case TRUTH_AND_EXPR:
9788 case TRUTH_OR_EXPR:
9789 case TRUTH_XOR_EXPR:
9790 return tree_binary_nonzero_warnv_p (code, type,
9791 TREE_OPERAND (t, 0),
9792 TREE_OPERAND (t, 1),
9793 strict_overflow_p);
9794
9795 case COND_EXPR:
9796 case CONSTRUCTOR:
9797 case OBJ_TYPE_REF:
9798 case ASSERT_EXPR:
9799 case ADDR_EXPR:
9800 case WITH_SIZE_EXPR:
9801 case SSA_NAME:
9802 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9803
9804 case COMPOUND_EXPR:
9805 case MODIFY_EXPR:
9806 case BIND_EXPR:
9807 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
9808 strict_overflow_p);
9809
9810 case SAVE_EXPR:
9811 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
9812 strict_overflow_p);
9813
9814 case CALL_EXPR:
9815 {
9816 tree fndecl = get_callee_fndecl (t);
9817 if (!fndecl) return false;
9818 if (flag_delete_null_pointer_checks && !flag_check_new
9819 && DECL_IS_OPERATOR_NEW (fndecl)
9820 && !TREE_NOTHROW (fndecl))
9821 return true;
9822 if (flag_delete_null_pointer_checks
9823 && lookup_attribute ("returns_nonnull",
9824 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
9825 return true;
9826 return alloca_call_p (t);
9827 }
9828
9829 default:
9830 break;
9831 }
9832 return false;
9833 }
9834
9835 /* Return true when T is an address and is known to be nonzero.
9836 Handle warnings about undefined signed overflow. */
9837
9838 static bool
9839 tree_expr_nonzero_p (tree t)
9840 {
9841 bool ret, strict_overflow_p;
9842
9843 strict_overflow_p = false;
9844 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9845 if (strict_overflow_p)
9846 fold_overflow_warning (("assuming signed overflow does not occur when "
9847 "determining that expression is always "
9848 "non-zero"),
9849 WARN_STRICT_OVERFLOW_MISC);
9850 return ret;
9851 }
9852
9853 /* Fold a binary expression of code CODE and type TYPE with operands
9854 OP0 and OP1. LOC is the location of the resulting expression.
9855 Return the folded expression if folding is successful. Otherwise,
9856 return NULL_TREE. */
9857
9858 tree
9859 fold_binary_loc (location_t loc,
9860 enum tree_code code, tree type, tree op0, tree op1)
9861 {
9862 enum tree_code_class kind = TREE_CODE_CLASS (code);
9863 tree arg0, arg1, tem;
9864 tree t1 = NULL_TREE;
9865 bool strict_overflow_p;
9866 unsigned int prec;
9867
9868 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9869 && TREE_CODE_LENGTH (code) == 2
9870 && op0 != NULL_TREE
9871 && op1 != NULL_TREE);
9872
9873 arg0 = op0;
9874 arg1 = op1;
9875
9876 /* Strip any conversions that don't change the mode. This is
9877 safe for every expression, except for a comparison expression
9878 because its signedness is derived from its operands. So, in
9879 the latter case, only strip conversions that don't change the
9880 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9881 preserved.
9882
9883 Note that this is done as an internal manipulation within the
9884 constant folder, in order to find the simplest representation
9885 of the arguments so that their form can be studied. In any
9886 cases, the appropriate type conversions should be put back in
9887 the tree that will get out of the constant folder. */
9888
9889 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9890 {
9891 STRIP_SIGN_NOPS (arg0);
9892 STRIP_SIGN_NOPS (arg1);
9893 }
9894 else
9895 {
9896 STRIP_NOPS (arg0);
9897 STRIP_NOPS (arg1);
9898 }
9899
9900 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9901 constant but we can't do arithmetic on them. */
9902 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9903 {
9904 tem = const_binop (code, type, arg0, arg1);
9905 if (tem != NULL_TREE)
9906 {
9907 if (TREE_TYPE (tem) != type)
9908 tem = fold_convert_loc (loc, type, tem);
9909 return tem;
9910 }
9911 }
9912
9913 /* If this is a commutative operation, and ARG0 is a constant, move it
9914 to ARG1 to reduce the number of tests below. */
9915 if (commutative_tree_code (code)
9916 && tree_swap_operands_p (arg0, arg1, true))
9917 return fold_build2_loc (loc, code, type, op1, op0);
9918
9919 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9920 to ARG1 to reduce the number of tests below. */
9921 if (kind == tcc_comparison
9922 && tree_swap_operands_p (arg0, arg1, true))
9923 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9924
9925 tem = generic_simplify (loc, code, type, op0, op1);
9926 if (tem)
9927 return tem;
9928
9929 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9930
9931 First check for cases where an arithmetic operation is applied to a
9932 compound, conditional, or comparison operation. Push the arithmetic
9933 operation inside the compound or conditional to see if any folding
9934 can then be done. Convert comparison to conditional for this purpose.
9935 The also optimizes non-constant cases that used to be done in
9936 expand_expr.
9937
9938 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9939 one of the operands is a comparison and the other is a comparison, a
9940 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9941 code below would make the expression more complex. Change it to a
9942 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9943 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9944
9945 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9946 || code == EQ_EXPR || code == NE_EXPR)
9947 && TREE_CODE (type) != VECTOR_TYPE
9948 && ((truth_value_p (TREE_CODE (arg0))
9949 && (truth_value_p (TREE_CODE (arg1))
9950 || (TREE_CODE (arg1) == BIT_AND_EXPR
9951 && integer_onep (TREE_OPERAND (arg1, 1)))))
9952 || (truth_value_p (TREE_CODE (arg1))
9953 && (truth_value_p (TREE_CODE (arg0))
9954 || (TREE_CODE (arg0) == BIT_AND_EXPR
9955 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9956 {
9957 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9958 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9959 : TRUTH_XOR_EXPR,
9960 boolean_type_node,
9961 fold_convert_loc (loc, boolean_type_node, arg0),
9962 fold_convert_loc (loc, boolean_type_node, arg1));
9963
9964 if (code == EQ_EXPR)
9965 tem = invert_truthvalue_loc (loc, tem);
9966
9967 return fold_convert_loc (loc, type, tem);
9968 }
9969
9970 if (TREE_CODE_CLASS (code) == tcc_binary
9971 || TREE_CODE_CLASS (code) == tcc_comparison)
9972 {
9973 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9974 {
9975 tem = fold_build2_loc (loc, code, type,
9976 fold_convert_loc (loc, TREE_TYPE (op0),
9977 TREE_OPERAND (arg0, 1)), op1);
9978 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9979 tem);
9980 }
9981 if (TREE_CODE (arg1) == COMPOUND_EXPR
9982 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9983 {
9984 tem = fold_build2_loc (loc, code, type, op0,
9985 fold_convert_loc (loc, TREE_TYPE (op1),
9986 TREE_OPERAND (arg1, 1)));
9987 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9988 tem);
9989 }
9990
9991 if (TREE_CODE (arg0) == COND_EXPR
9992 || TREE_CODE (arg0) == VEC_COND_EXPR
9993 || COMPARISON_CLASS_P (arg0))
9994 {
9995 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9996 arg0, arg1,
9997 /*cond_first_p=*/1);
9998 if (tem != NULL_TREE)
9999 return tem;
10000 }
10001
10002 if (TREE_CODE (arg1) == COND_EXPR
10003 || TREE_CODE (arg1) == VEC_COND_EXPR
10004 || COMPARISON_CLASS_P (arg1))
10005 {
10006 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
10007 arg1, arg0,
10008 /*cond_first_p=*/0);
10009 if (tem != NULL_TREE)
10010 return tem;
10011 }
10012 }
10013
10014 switch (code)
10015 {
10016 case MEM_REF:
10017 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
10018 if (TREE_CODE (arg0) == ADDR_EXPR
10019 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
10020 {
10021 tree iref = TREE_OPERAND (arg0, 0);
10022 return fold_build2 (MEM_REF, type,
10023 TREE_OPERAND (iref, 0),
10024 int_const_binop (PLUS_EXPR, arg1,
10025 TREE_OPERAND (iref, 1)));
10026 }
10027
10028 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
10029 if (TREE_CODE (arg0) == ADDR_EXPR
10030 && handled_component_p (TREE_OPERAND (arg0, 0)))
10031 {
10032 tree base;
10033 HOST_WIDE_INT coffset;
10034 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
10035 &coffset);
10036 if (!base)
10037 return NULL_TREE;
10038 return fold_build2 (MEM_REF, type,
10039 build_fold_addr_expr (base),
10040 int_const_binop (PLUS_EXPR, arg1,
10041 size_int (coffset)));
10042 }
10043
10044 return NULL_TREE;
10045
10046 case POINTER_PLUS_EXPR:
10047 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
10048 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10049 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
10050 return fold_convert_loc (loc, type,
10051 fold_build2_loc (loc, PLUS_EXPR, sizetype,
10052 fold_convert_loc (loc, sizetype,
10053 arg1),
10054 fold_convert_loc (loc, sizetype,
10055 arg0)));
10056
10057 return NULL_TREE;
10058
10059 case PLUS_EXPR:
10060 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
10061 {
10062 /* X + (X / CST) * -CST is X % CST. */
10063 if (TREE_CODE (arg1) == MULT_EXPR
10064 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
10065 && operand_equal_p (arg0,
10066 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
10067 {
10068 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
10069 tree cst1 = TREE_OPERAND (arg1, 1);
10070 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
10071 cst1, cst0);
10072 if (sum && integer_zerop (sum))
10073 return fold_convert_loc (loc, type,
10074 fold_build2_loc (loc, TRUNC_MOD_EXPR,
10075 TREE_TYPE (arg0), arg0,
10076 cst0));
10077 }
10078 }
10079
10080 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
10081 one. Make sure the type is not saturating and has the signedness of
10082 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10083 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10084 if ((TREE_CODE (arg0) == MULT_EXPR
10085 || TREE_CODE (arg1) == MULT_EXPR)
10086 && !TYPE_SATURATING (type)
10087 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
10088 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
10089 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10090 {
10091 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
10092 if (tem)
10093 return tem;
10094 }
10095
10096 if (! FLOAT_TYPE_P (type))
10097 {
10098 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
10099 with a constant, and the two constants have no bits in common,
10100 we should treat this as a BIT_IOR_EXPR since this may produce more
10101 simplifications. */
10102 if (TREE_CODE (arg0) == BIT_AND_EXPR
10103 && TREE_CODE (arg1) == BIT_AND_EXPR
10104 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10105 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
10106 && wi::bit_and (TREE_OPERAND (arg0, 1),
10107 TREE_OPERAND (arg1, 1)) == 0)
10108 {
10109 code = BIT_IOR_EXPR;
10110 goto bit_ior;
10111 }
10112
10113 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
10114 (plus (plus (mult) (mult)) (foo)) so that we can
10115 take advantage of the factoring cases below. */
10116 if (ANY_INTEGRAL_TYPE_P (type)
10117 && TYPE_OVERFLOW_WRAPS (type)
10118 && (((TREE_CODE (arg0) == PLUS_EXPR
10119 || TREE_CODE (arg0) == MINUS_EXPR)
10120 && TREE_CODE (arg1) == MULT_EXPR)
10121 || ((TREE_CODE (arg1) == PLUS_EXPR
10122 || TREE_CODE (arg1) == MINUS_EXPR)
10123 && TREE_CODE (arg0) == MULT_EXPR)))
10124 {
10125 tree parg0, parg1, parg, marg;
10126 enum tree_code pcode;
10127
10128 if (TREE_CODE (arg1) == MULT_EXPR)
10129 parg = arg0, marg = arg1;
10130 else
10131 parg = arg1, marg = arg0;
10132 pcode = TREE_CODE (parg);
10133 parg0 = TREE_OPERAND (parg, 0);
10134 parg1 = TREE_OPERAND (parg, 1);
10135 STRIP_NOPS (parg0);
10136 STRIP_NOPS (parg1);
10137
10138 if (TREE_CODE (parg0) == MULT_EXPR
10139 && TREE_CODE (parg1) != MULT_EXPR)
10140 return fold_build2_loc (loc, pcode, type,
10141 fold_build2_loc (loc, PLUS_EXPR, type,
10142 fold_convert_loc (loc, type,
10143 parg0),
10144 fold_convert_loc (loc, type,
10145 marg)),
10146 fold_convert_loc (loc, type, parg1));
10147 if (TREE_CODE (parg0) != MULT_EXPR
10148 && TREE_CODE (parg1) == MULT_EXPR)
10149 return
10150 fold_build2_loc (loc, PLUS_EXPR, type,
10151 fold_convert_loc (loc, type, parg0),
10152 fold_build2_loc (loc, pcode, type,
10153 fold_convert_loc (loc, type, marg),
10154 fold_convert_loc (loc, type,
10155 parg1)));
10156 }
10157 }
10158 else
10159 {
10160 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
10161 to __complex__ ( x, y ). This is not the same for SNaNs or
10162 if signed zeros are involved. */
10163 if (!HONOR_SNANS (element_mode (arg0))
10164 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10165 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10166 {
10167 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10168 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
10169 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
10170 bool arg0rz = false, arg0iz = false;
10171 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10172 || (arg0i && (arg0iz = real_zerop (arg0i))))
10173 {
10174 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
10175 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
10176 if (arg0rz && arg1i && real_zerop (arg1i))
10177 {
10178 tree rp = arg1r ? arg1r
10179 : build1 (REALPART_EXPR, rtype, arg1);
10180 tree ip = arg0i ? arg0i
10181 : build1 (IMAGPART_EXPR, rtype, arg0);
10182 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10183 }
10184 else if (arg0iz && arg1r && real_zerop (arg1r))
10185 {
10186 tree rp = arg0r ? arg0r
10187 : build1 (REALPART_EXPR, rtype, arg0);
10188 tree ip = arg1i ? arg1i
10189 : build1 (IMAGPART_EXPR, rtype, arg1);
10190 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10191 }
10192 }
10193 }
10194
10195 if (flag_unsafe_math_optimizations
10196 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
10197 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
10198 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
10199 return tem;
10200
10201 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
10202 We associate floats only if the user has specified
10203 -fassociative-math. */
10204 if (flag_associative_math
10205 && TREE_CODE (arg1) == PLUS_EXPR
10206 && TREE_CODE (arg0) != MULT_EXPR)
10207 {
10208 tree tree10 = TREE_OPERAND (arg1, 0);
10209 tree tree11 = TREE_OPERAND (arg1, 1);
10210 if (TREE_CODE (tree11) == MULT_EXPR
10211 && TREE_CODE (tree10) == MULT_EXPR)
10212 {
10213 tree tree0;
10214 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
10215 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
10216 }
10217 }
10218 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
10219 We associate floats only if the user has specified
10220 -fassociative-math. */
10221 if (flag_associative_math
10222 && TREE_CODE (arg0) == PLUS_EXPR
10223 && TREE_CODE (arg1) != MULT_EXPR)
10224 {
10225 tree tree00 = TREE_OPERAND (arg0, 0);
10226 tree tree01 = TREE_OPERAND (arg0, 1);
10227 if (TREE_CODE (tree01) == MULT_EXPR
10228 && TREE_CODE (tree00) == MULT_EXPR)
10229 {
10230 tree tree0;
10231 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
10232 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
10233 }
10234 }
10235 }
10236
10237 bit_rotate:
10238 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
10239 is a rotate of A by C1 bits. */
10240 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
10241 is a rotate of A by B bits. */
10242 {
10243 enum tree_code code0, code1;
10244 tree rtype;
10245 code0 = TREE_CODE (arg0);
10246 code1 = TREE_CODE (arg1);
10247 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
10248 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
10249 && operand_equal_p (TREE_OPERAND (arg0, 0),
10250 TREE_OPERAND (arg1, 0), 0)
10251 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
10252 TYPE_UNSIGNED (rtype))
10253 /* Only create rotates in complete modes. Other cases are not
10254 expanded properly. */
10255 && (element_precision (rtype)
10256 == element_precision (TYPE_MODE (rtype))))
10257 {
10258 tree tree01, tree11;
10259 enum tree_code code01, code11;
10260
10261 tree01 = TREE_OPERAND (arg0, 1);
10262 tree11 = TREE_OPERAND (arg1, 1);
10263 STRIP_NOPS (tree01);
10264 STRIP_NOPS (tree11);
10265 code01 = TREE_CODE (tree01);
10266 code11 = TREE_CODE (tree11);
10267 if (code01 == INTEGER_CST
10268 && code11 == INTEGER_CST
10269 && (wi::to_widest (tree01) + wi::to_widest (tree11)
10270 == element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
10271 {
10272 tem = build2_loc (loc, LROTATE_EXPR,
10273 TREE_TYPE (TREE_OPERAND (arg0, 0)),
10274 TREE_OPERAND (arg0, 0),
10275 code0 == LSHIFT_EXPR
10276 ? TREE_OPERAND (arg0, 1)
10277 : TREE_OPERAND (arg1, 1));
10278 return fold_convert_loc (loc, type, tem);
10279 }
10280 else if (code11 == MINUS_EXPR)
10281 {
10282 tree tree110, tree111;
10283 tree110 = TREE_OPERAND (tree11, 0);
10284 tree111 = TREE_OPERAND (tree11, 1);
10285 STRIP_NOPS (tree110);
10286 STRIP_NOPS (tree111);
10287 if (TREE_CODE (tree110) == INTEGER_CST
10288 && 0 == compare_tree_int (tree110,
10289 element_precision
10290 (TREE_TYPE (TREE_OPERAND
10291 (arg0, 0))))
10292 && operand_equal_p (tree01, tree111, 0))
10293 return
10294 fold_convert_loc (loc, type,
10295 build2 ((code0 == LSHIFT_EXPR
10296 ? LROTATE_EXPR
10297 : RROTATE_EXPR),
10298 TREE_TYPE (TREE_OPERAND (arg0, 0)),
10299 TREE_OPERAND (arg0, 0),
10300 TREE_OPERAND (arg0, 1)));
10301 }
10302 else if (code01 == MINUS_EXPR)
10303 {
10304 tree tree010, tree011;
10305 tree010 = TREE_OPERAND (tree01, 0);
10306 tree011 = TREE_OPERAND (tree01, 1);
10307 STRIP_NOPS (tree010);
10308 STRIP_NOPS (tree011);
10309 if (TREE_CODE (tree010) == INTEGER_CST
10310 && 0 == compare_tree_int (tree010,
10311 element_precision
10312 (TREE_TYPE (TREE_OPERAND
10313 (arg0, 0))))
10314 && operand_equal_p (tree11, tree011, 0))
10315 return fold_convert_loc
10316 (loc, type,
10317 build2 ((code0 != LSHIFT_EXPR
10318 ? LROTATE_EXPR
10319 : RROTATE_EXPR),
10320 TREE_TYPE (TREE_OPERAND (arg0, 0)),
10321 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1)));
10322 }
10323 }
10324 }
10325
10326 associate:
10327 /* In most languages, can't associate operations on floats through
10328 parentheses. Rather than remember where the parentheses were, we
10329 don't associate floats at all, unless the user has specified
10330 -fassociative-math.
10331 And, we need to make sure type is not saturating. */
10332
10333 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
10334 && !TYPE_SATURATING (type))
10335 {
10336 tree var0, con0, lit0, minus_lit0;
10337 tree var1, con1, lit1, minus_lit1;
10338 tree atype = type;
10339 bool ok = true;
10340
10341 /* Split both trees into variables, constants, and literals. Then
10342 associate each group together, the constants with literals,
10343 then the result with variables. This increases the chances of
10344 literals being recombined later and of generating relocatable
10345 expressions for the sum of a constant and literal. */
10346 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
10347 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
10348 code == MINUS_EXPR);
10349
10350 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
10351 if (code == MINUS_EXPR)
10352 code = PLUS_EXPR;
10353
10354 /* With undefined overflow prefer doing association in a type
10355 which wraps on overflow, if that is one of the operand types. */
10356 if ((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
10357 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
10358 {
10359 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10360 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10361 atype = TREE_TYPE (arg0);
10362 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10363 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
10364 atype = TREE_TYPE (arg1);
10365 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
10366 }
10367
10368 /* With undefined overflow we can only associate constants with one
10369 variable, and constants whose association doesn't overflow. */
10370 if ((POINTER_TYPE_P (atype) && POINTER_TYPE_OVERFLOW_UNDEFINED)
10371 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
10372 {
10373 if (var0 && var1)
10374 {
10375 tree tmp0 = var0;
10376 tree tmp1 = var1;
10377
10378 if (TREE_CODE (tmp0) == NEGATE_EXPR)
10379 tmp0 = TREE_OPERAND (tmp0, 0);
10380 if (CONVERT_EXPR_P (tmp0)
10381 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
10382 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
10383 <= TYPE_PRECISION (atype)))
10384 tmp0 = TREE_OPERAND (tmp0, 0);
10385 if (TREE_CODE (tmp1) == NEGATE_EXPR)
10386 tmp1 = TREE_OPERAND (tmp1, 0);
10387 if (CONVERT_EXPR_P (tmp1)
10388 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
10389 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
10390 <= TYPE_PRECISION (atype)))
10391 tmp1 = TREE_OPERAND (tmp1, 0);
10392 /* The only case we can still associate with two variables
10393 is if they are the same, modulo negation and bit-pattern
10394 preserving conversions. */
10395 if (!operand_equal_p (tmp0, tmp1, 0))
10396 ok = false;
10397 }
10398 }
10399
10400 /* Only do something if we found more than two objects. Otherwise,
10401 nothing has changed and we risk infinite recursion. */
10402 if (ok
10403 && (2 < ((var0 != 0) + (var1 != 0)
10404 + (con0 != 0) + (con1 != 0)
10405 + (lit0 != 0) + (lit1 != 0)
10406 + (minus_lit0 != 0) + (minus_lit1 != 0))))
10407 {
10408 bool any_overflows = false;
10409 if (lit0) any_overflows |= TREE_OVERFLOW (lit0);
10410 if (lit1) any_overflows |= TREE_OVERFLOW (lit1);
10411 if (minus_lit0) any_overflows |= TREE_OVERFLOW (minus_lit0);
10412 if (minus_lit1) any_overflows |= TREE_OVERFLOW (minus_lit1);
10413 var0 = associate_trees (loc, var0, var1, code, atype);
10414 con0 = associate_trees (loc, con0, con1, code, atype);
10415 lit0 = associate_trees (loc, lit0, lit1, code, atype);
10416 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
10417 code, atype);
10418
10419 /* Preserve the MINUS_EXPR if the negative part of the literal is
10420 greater than the positive part. Otherwise, the multiplicative
10421 folding code (i.e extract_muldiv) may be fooled in case
10422 unsigned constants are subtracted, like in the following
10423 example: ((X*2 + 4) - 8U)/2. */
10424 if (minus_lit0 && lit0)
10425 {
10426 if (TREE_CODE (lit0) == INTEGER_CST
10427 && TREE_CODE (minus_lit0) == INTEGER_CST
10428 && tree_int_cst_lt (lit0, minus_lit0))
10429 {
10430 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
10431 MINUS_EXPR, atype);
10432 lit0 = 0;
10433 }
10434 else
10435 {
10436 lit0 = associate_trees (loc, lit0, minus_lit0,
10437 MINUS_EXPR, atype);
10438 minus_lit0 = 0;
10439 }
10440 }
10441
10442 /* Don't introduce overflows through reassociation. */
10443 if (!any_overflows
10444 && ((lit0 && TREE_OVERFLOW_P (lit0))
10445 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0))))
10446 return NULL_TREE;
10447
10448 if (minus_lit0)
10449 {
10450 if (con0 == 0)
10451 return
10452 fold_convert_loc (loc, type,
10453 associate_trees (loc, var0, minus_lit0,
10454 MINUS_EXPR, atype));
10455 else
10456 {
10457 con0 = associate_trees (loc, con0, minus_lit0,
10458 MINUS_EXPR, atype);
10459 return
10460 fold_convert_loc (loc, type,
10461 associate_trees (loc, var0, con0,
10462 PLUS_EXPR, atype));
10463 }
10464 }
10465
10466 con0 = associate_trees (loc, con0, lit0, code, atype);
10467 return
10468 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
10469 code, atype));
10470 }
10471 }
10472
10473 return NULL_TREE;
10474
10475 case MINUS_EXPR:
10476 /* Pointer simplifications for subtraction, simple reassociations. */
10477 if (POINTER_TYPE_P (TREE_TYPE (arg1)) && POINTER_TYPE_P (TREE_TYPE (arg0)))
10478 {
10479 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
10480 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR
10481 && TREE_CODE (arg1) == POINTER_PLUS_EXPR)
10482 {
10483 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10484 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10485 tree arg10 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10486 tree arg11 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10487 return fold_build2_loc (loc, PLUS_EXPR, type,
10488 fold_build2_loc (loc, MINUS_EXPR, type,
10489 arg00, arg10),
10490 fold_build2_loc (loc, MINUS_EXPR, type,
10491 arg01, arg11));
10492 }
10493 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
10494 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
10495 {
10496 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10497 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10498 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type, arg00,
10499 fold_convert_loc (loc, type, arg1));
10500 if (tmp)
10501 return fold_build2_loc (loc, PLUS_EXPR, type, tmp, arg01);
10502 }
10503 /* PTR0 - (PTR1 p+ A) -> (PTR0 - PTR1) - A, assuming PTR0 - PTR1
10504 simplifies. */
10505 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
10506 {
10507 tree arg10 = fold_convert_loc (loc, type,
10508 TREE_OPERAND (arg1, 0));
10509 tree arg11 = fold_convert_loc (loc, type,
10510 TREE_OPERAND (arg1, 1));
10511 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type,
10512 fold_convert_loc (loc, type, arg0),
10513 arg10);
10514 if (tmp)
10515 return fold_build2_loc (loc, MINUS_EXPR, type, tmp, arg11);
10516 }
10517 }
10518 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
10519 if (TREE_CODE (arg0) == NEGATE_EXPR
10520 && negate_expr_p (arg1)
10521 && reorder_operands_p (arg0, arg1))
10522 return fold_build2_loc (loc, MINUS_EXPR, type,
10523 fold_convert_loc (loc, type,
10524 negate_expr (arg1)),
10525 fold_convert_loc (loc, type,
10526 TREE_OPERAND (arg0, 0)));
10527
10528 /* X - (X / Y) * Y is X % Y. */
10529 if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
10530 && TREE_CODE (arg1) == MULT_EXPR
10531 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
10532 && operand_equal_p (arg0,
10533 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0)
10534 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg1, 0), 1),
10535 TREE_OPERAND (arg1, 1), 0))
10536 return
10537 fold_convert_loc (loc, type,
10538 fold_build2_loc (loc, TRUNC_MOD_EXPR, TREE_TYPE (arg0),
10539 arg0, TREE_OPERAND (arg1, 1)));
10540
10541 if (! FLOAT_TYPE_P (type))
10542 {
10543 /* Fold A - (A & B) into ~B & A. */
10544 if (!TREE_SIDE_EFFECTS (arg0)
10545 && TREE_CODE (arg1) == BIT_AND_EXPR)
10546 {
10547 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
10548 {
10549 tree arg10 = fold_convert_loc (loc, type,
10550 TREE_OPERAND (arg1, 0));
10551 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10552 fold_build1_loc (loc, BIT_NOT_EXPR,
10553 type, arg10),
10554 fold_convert_loc (loc, type, arg0));
10555 }
10556 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10557 {
10558 tree arg11 = fold_convert_loc (loc,
10559 type, TREE_OPERAND (arg1, 1));
10560 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10561 fold_build1_loc (loc, BIT_NOT_EXPR,
10562 type, arg11),
10563 fold_convert_loc (loc, type, arg0));
10564 }
10565 }
10566
10567 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
10568 any power of 2 minus 1. */
10569 if (TREE_CODE (arg0) == BIT_AND_EXPR
10570 && TREE_CODE (arg1) == BIT_AND_EXPR
10571 && operand_equal_p (TREE_OPERAND (arg0, 0),
10572 TREE_OPERAND (arg1, 0), 0))
10573 {
10574 tree mask0 = TREE_OPERAND (arg0, 1);
10575 tree mask1 = TREE_OPERAND (arg1, 1);
10576 tree tem = fold_build1_loc (loc, BIT_NOT_EXPR, type, mask0);
10577
10578 if (operand_equal_p (tem, mask1, 0))
10579 {
10580 tem = fold_build2_loc (loc, BIT_XOR_EXPR, type,
10581 TREE_OPERAND (arg0, 0), mask1);
10582 return fold_build2_loc (loc, MINUS_EXPR, type, tem, mask1);
10583 }
10584 }
10585 }
10586
10587 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10588 __complex__ ( x, -y ). This is not the same for SNaNs or if
10589 signed zeros are involved. */
10590 if (!HONOR_SNANS (element_mode (arg0))
10591 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10592 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10593 {
10594 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10595 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
10596 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
10597 bool arg0rz = false, arg0iz = false;
10598 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10599 || (arg0i && (arg0iz = real_zerop (arg0i))))
10600 {
10601 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
10602 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
10603 if (arg0rz && arg1i && real_zerop (arg1i))
10604 {
10605 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10606 arg1r ? arg1r
10607 : build1 (REALPART_EXPR, rtype, arg1));
10608 tree ip = arg0i ? arg0i
10609 : build1 (IMAGPART_EXPR, rtype, arg0);
10610 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10611 }
10612 else if (arg0iz && arg1r && real_zerop (arg1r))
10613 {
10614 tree rp = arg0r ? arg0r
10615 : build1 (REALPART_EXPR, rtype, arg0);
10616 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10617 arg1i ? arg1i
10618 : build1 (IMAGPART_EXPR, rtype, arg1));
10619 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10620 }
10621 }
10622 }
10623
10624 /* A - B -> A + (-B) if B is easily negatable. */
10625 if (negate_expr_p (arg1)
10626 && !TYPE_OVERFLOW_SANITIZED (type)
10627 && ((FLOAT_TYPE_P (type)
10628 /* Avoid this transformation if B is a positive REAL_CST. */
10629 && (TREE_CODE (arg1) != REAL_CST
10630 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
10631 || INTEGRAL_TYPE_P (type)))
10632 return fold_build2_loc (loc, PLUS_EXPR, type,
10633 fold_convert_loc (loc, type, arg0),
10634 fold_convert_loc (loc, type,
10635 negate_expr (arg1)));
10636
10637 /* Try folding difference of addresses. */
10638 {
10639 HOST_WIDE_INT diff;
10640
10641 if ((TREE_CODE (arg0) == ADDR_EXPR
10642 || TREE_CODE (arg1) == ADDR_EXPR)
10643 && ptr_difference_const (arg0, arg1, &diff))
10644 return build_int_cst_type (type, diff);
10645 }
10646
10647 /* Fold &a[i] - &a[j] to i-j. */
10648 if (TREE_CODE (arg0) == ADDR_EXPR
10649 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
10650 && TREE_CODE (arg1) == ADDR_EXPR
10651 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
10652 {
10653 tree tem = fold_addr_of_array_ref_difference (loc, type,
10654 TREE_OPERAND (arg0, 0),
10655 TREE_OPERAND (arg1, 0));
10656 if (tem)
10657 return tem;
10658 }
10659
10660 if (FLOAT_TYPE_P (type)
10661 && flag_unsafe_math_optimizations
10662 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
10663 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
10664 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
10665 return tem;
10666
10667 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
10668 one. Make sure the type is not saturating and has the signedness of
10669 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10670 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10671 if ((TREE_CODE (arg0) == MULT_EXPR
10672 || TREE_CODE (arg1) == MULT_EXPR)
10673 && !TYPE_SATURATING (type)
10674 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
10675 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
10676 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10677 {
10678 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
10679 if (tem)
10680 return tem;
10681 }
10682
10683 goto associate;
10684
10685 case MULT_EXPR:
10686 /* (-A) * (-B) -> A * B */
10687 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10688 return fold_build2_loc (loc, MULT_EXPR, type,
10689 fold_convert_loc (loc, type,
10690 TREE_OPERAND (arg0, 0)),
10691 fold_convert_loc (loc, type,
10692 negate_expr (arg1)));
10693 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10694 return fold_build2_loc (loc, MULT_EXPR, type,
10695 fold_convert_loc (loc, type,
10696 negate_expr (arg0)),
10697 fold_convert_loc (loc, type,
10698 TREE_OPERAND (arg1, 0)));
10699
10700 if (! FLOAT_TYPE_P (type))
10701 {
10702 /* Transform x * -C into -x * C if x is easily negatable. */
10703 if (TREE_CODE (arg1) == INTEGER_CST
10704 && tree_int_cst_sgn (arg1) == -1
10705 && negate_expr_p (arg0)
10706 && (tem = negate_expr (arg1)) != arg1
10707 && !TREE_OVERFLOW (tem))
10708 return fold_build2_loc (loc, MULT_EXPR, type,
10709 fold_convert_loc (loc, type,
10710 negate_expr (arg0)),
10711 tem);
10712
10713 /* (a * (1 << b)) is (a << b) */
10714 if (TREE_CODE (arg1) == LSHIFT_EXPR
10715 && integer_onep (TREE_OPERAND (arg1, 0)))
10716 return fold_build2_loc (loc, LSHIFT_EXPR, type, op0,
10717 TREE_OPERAND (arg1, 1));
10718 if (TREE_CODE (arg0) == LSHIFT_EXPR
10719 && integer_onep (TREE_OPERAND (arg0, 0)))
10720 return fold_build2_loc (loc, LSHIFT_EXPR, type, op1,
10721 TREE_OPERAND (arg0, 1));
10722
10723 /* (A + A) * C -> A * 2 * C */
10724 if (TREE_CODE (arg0) == PLUS_EXPR
10725 && TREE_CODE (arg1) == INTEGER_CST
10726 && operand_equal_p (TREE_OPERAND (arg0, 0),
10727 TREE_OPERAND (arg0, 1), 0))
10728 return fold_build2_loc (loc, MULT_EXPR, type,
10729 omit_one_operand_loc (loc, type,
10730 TREE_OPERAND (arg0, 0),
10731 TREE_OPERAND (arg0, 1)),
10732 fold_build2_loc (loc, MULT_EXPR, type,
10733 build_int_cst (type, 2) , arg1));
10734
10735 /* ((T) (X /[ex] C)) * C cancels out if the conversion is
10736 sign-changing only. */
10737 if (TREE_CODE (arg1) == INTEGER_CST
10738 && TREE_CODE (arg0) == EXACT_DIV_EXPR
10739 && operand_equal_p (arg1, TREE_OPERAND (arg0, 1), 0))
10740 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10741
10742 strict_overflow_p = false;
10743 if (TREE_CODE (arg1) == INTEGER_CST
10744 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10745 &strict_overflow_p)))
10746 {
10747 if (strict_overflow_p)
10748 fold_overflow_warning (("assuming signed overflow does not "
10749 "occur when simplifying "
10750 "multiplication"),
10751 WARN_STRICT_OVERFLOW_MISC);
10752 return fold_convert_loc (loc, type, tem);
10753 }
10754
10755 /* Optimize z * conj(z) for integer complex numbers. */
10756 if (TREE_CODE (arg0) == CONJ_EXPR
10757 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10758 return fold_mult_zconjz (loc, type, arg1);
10759 if (TREE_CODE (arg1) == CONJ_EXPR
10760 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10761 return fold_mult_zconjz (loc, type, arg0);
10762 }
10763 else
10764 {
10765 /* Convert (C1/X)*C2 into (C1*C2)/X. This transformation may change
10766 the result for floating point types due to rounding so it is applied
10767 only if -fassociative-math was specify. */
10768 if (flag_associative_math
10769 && TREE_CODE (arg0) == RDIV_EXPR
10770 && TREE_CODE (arg1) == REAL_CST
10771 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
10772 {
10773 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
10774 arg1);
10775 if (tem)
10776 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
10777 TREE_OPERAND (arg0, 1));
10778 }
10779
10780 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
10781 if (operand_equal_p (arg0, arg1, 0))
10782 {
10783 tree tem = fold_strip_sign_ops (arg0);
10784 if (tem != NULL_TREE)
10785 {
10786 tem = fold_convert_loc (loc, type, tem);
10787 return fold_build2_loc (loc, MULT_EXPR, type, tem, tem);
10788 }
10789 }
10790
10791 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10792 This is not the same for NaNs or if signed zeros are
10793 involved. */
10794 if (!HONOR_NANS (arg0)
10795 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10796 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10797 && TREE_CODE (arg1) == COMPLEX_CST
10798 && real_zerop (TREE_REALPART (arg1)))
10799 {
10800 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10801 if (real_onep (TREE_IMAGPART (arg1)))
10802 return
10803 fold_build2_loc (loc, COMPLEX_EXPR, type,
10804 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
10805 rtype, arg0)),
10806 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
10807 else if (real_minus_onep (TREE_IMAGPART (arg1)))
10808 return
10809 fold_build2_loc (loc, COMPLEX_EXPR, type,
10810 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
10811 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
10812 rtype, arg0)));
10813 }
10814
10815 /* Optimize z * conj(z) for floating point complex numbers.
10816 Guarded by flag_unsafe_math_optimizations as non-finite
10817 imaginary components don't produce scalar results. */
10818 if (flag_unsafe_math_optimizations
10819 && TREE_CODE (arg0) == CONJ_EXPR
10820 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10821 return fold_mult_zconjz (loc, type, arg1);
10822 if (flag_unsafe_math_optimizations
10823 && TREE_CODE (arg1) == CONJ_EXPR
10824 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10825 return fold_mult_zconjz (loc, type, arg0);
10826
10827 if (flag_unsafe_math_optimizations)
10828 {
10829 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
10830 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
10831
10832 /* Optimizations of root(...)*root(...). */
10833 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
10834 {
10835 tree rootfn, arg;
10836 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10837 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10838
10839 /* Optimize sqrt(x)*sqrt(x) as x. */
10840 if (BUILTIN_SQRT_P (fcode0)
10841 && operand_equal_p (arg00, arg10, 0)
10842 && ! HONOR_SNANS (element_mode (type)))
10843 return arg00;
10844
10845 /* Optimize root(x)*root(y) as root(x*y). */
10846 rootfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10847 arg = fold_build2_loc (loc, MULT_EXPR, type, arg00, arg10);
10848 return build_call_expr_loc (loc, rootfn, 1, arg);
10849 }
10850
10851 /* Optimize expN(x)*expN(y) as expN(x+y). */
10852 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
10853 {
10854 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10855 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
10856 CALL_EXPR_ARG (arg0, 0),
10857 CALL_EXPR_ARG (arg1, 0));
10858 return build_call_expr_loc (loc, expfn, 1, arg);
10859 }
10860
10861 /* Optimizations of pow(...)*pow(...). */
10862 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
10863 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
10864 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
10865 {
10866 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10867 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10868 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10869 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10870
10871 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
10872 if (operand_equal_p (arg01, arg11, 0))
10873 {
10874 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10875 tree arg = fold_build2_loc (loc, MULT_EXPR, type,
10876 arg00, arg10);
10877 return build_call_expr_loc (loc, powfn, 2, arg, arg01);
10878 }
10879
10880 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
10881 if (operand_equal_p (arg00, arg10, 0))
10882 {
10883 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10884 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
10885 arg01, arg11);
10886 return build_call_expr_loc (loc, powfn, 2, arg00, arg);
10887 }
10888 }
10889
10890 /* Optimize tan(x)*cos(x) as sin(x). */
10891 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
10892 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
10893 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
10894 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
10895 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
10896 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
10897 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10898 CALL_EXPR_ARG (arg1, 0), 0))
10899 {
10900 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
10901
10902 if (sinfn != NULL_TREE)
10903 return build_call_expr_loc (loc, sinfn, 1,
10904 CALL_EXPR_ARG (arg0, 0));
10905 }
10906
10907 /* Optimize x*pow(x,c) as pow(x,c+1). */
10908 if (fcode1 == BUILT_IN_POW
10909 || fcode1 == BUILT_IN_POWF
10910 || fcode1 == BUILT_IN_POWL)
10911 {
10912 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10913 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10914 if (TREE_CODE (arg11) == REAL_CST
10915 && !TREE_OVERFLOW (arg11)
10916 && operand_equal_p (arg0, arg10, 0))
10917 {
10918 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10919 REAL_VALUE_TYPE c;
10920 tree arg;
10921
10922 c = TREE_REAL_CST (arg11);
10923 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10924 arg = build_real (type, c);
10925 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
10926 }
10927 }
10928
10929 /* Optimize pow(x,c)*x as pow(x,c+1). */
10930 if (fcode0 == BUILT_IN_POW
10931 || fcode0 == BUILT_IN_POWF
10932 || fcode0 == BUILT_IN_POWL)
10933 {
10934 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10935 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10936 if (TREE_CODE (arg01) == REAL_CST
10937 && !TREE_OVERFLOW (arg01)
10938 && operand_equal_p (arg1, arg00, 0))
10939 {
10940 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10941 REAL_VALUE_TYPE c;
10942 tree arg;
10943
10944 c = TREE_REAL_CST (arg01);
10945 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10946 arg = build_real (type, c);
10947 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
10948 }
10949 }
10950
10951 /* Canonicalize x*x as pow(x,2.0), which is expanded as x*x. */
10952 if (!in_gimple_form
10953 && optimize
10954 && operand_equal_p (arg0, arg1, 0))
10955 {
10956 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
10957
10958 if (powfn)
10959 {
10960 tree arg = build_real (type, dconst2);
10961 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
10962 }
10963 }
10964 }
10965 }
10966 goto associate;
10967
10968 case BIT_IOR_EXPR:
10969 bit_ior:
10970 /* ~X | X is -1. */
10971 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10972 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10973 {
10974 t1 = build_zero_cst (type);
10975 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
10976 return omit_one_operand_loc (loc, type, t1, arg1);
10977 }
10978
10979 /* X | ~X is -1. */
10980 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10981 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10982 {
10983 t1 = build_zero_cst (type);
10984 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
10985 return omit_one_operand_loc (loc, type, t1, arg0);
10986 }
10987
10988 /* Canonicalize (X & C1) | C2. */
10989 if (TREE_CODE (arg0) == BIT_AND_EXPR
10990 && TREE_CODE (arg1) == INTEGER_CST
10991 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10992 {
10993 int width = TYPE_PRECISION (type), w;
10994 wide_int c1 = TREE_OPERAND (arg0, 1);
10995 wide_int c2 = arg1;
10996
10997 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10998 if ((c1 & c2) == c1)
10999 return omit_one_operand_loc (loc, type, arg1,
11000 TREE_OPERAND (arg0, 0));
11001
11002 wide_int msk = wi::mask (width, false,
11003 TYPE_PRECISION (TREE_TYPE (arg1)));
11004
11005 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
11006 if (msk.and_not (c1 | c2) == 0)
11007 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
11008 TREE_OPERAND (arg0, 0), arg1);
11009
11010 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
11011 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
11012 mode which allows further optimizations. */
11013 c1 &= msk;
11014 c2 &= msk;
11015 wide_int c3 = c1.and_not (c2);
11016 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
11017 {
11018 wide_int mask = wi::mask (w, false,
11019 TYPE_PRECISION (type));
11020 if (((c1 | c2) & mask) == mask && c1.and_not (mask) == 0)
11021 {
11022 c3 = mask;
11023 break;
11024 }
11025 }
11026
11027 if (c3 != c1)
11028 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
11029 fold_build2_loc (loc, BIT_AND_EXPR, type,
11030 TREE_OPERAND (arg0, 0),
11031 wide_int_to_tree (type,
11032 c3)),
11033 arg1);
11034 }
11035
11036 /* (X & ~Y) | (~X & Y) is X ^ Y */
11037 if (TREE_CODE (arg0) == BIT_AND_EXPR
11038 && TREE_CODE (arg1) == BIT_AND_EXPR)
11039 {
11040 tree a0, a1, l0, l1, n0, n1;
11041
11042 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
11043 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
11044
11045 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11046 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11047
11048 n0 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l0);
11049 n1 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l1);
11050
11051 if ((operand_equal_p (n0, a0, 0)
11052 && operand_equal_p (n1, a1, 0))
11053 || (operand_equal_p (n0, a1, 0)
11054 && operand_equal_p (n1, a0, 0)))
11055 return fold_build2_loc (loc, BIT_XOR_EXPR, type, l0, n1);
11056 }
11057
11058 t1 = distribute_bit_expr (loc, code, type, arg0, arg1);
11059 if (t1 != NULL_TREE)
11060 return t1;
11061
11062 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
11063
11064 This results in more efficient code for machines without a NAND
11065 instruction. Combine will canonicalize to the first form
11066 which will allow use of NAND instructions provided by the
11067 backend if they exist. */
11068 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11069 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11070 {
11071 return
11072 fold_build1_loc (loc, BIT_NOT_EXPR, type,
11073 build2 (BIT_AND_EXPR, type,
11074 fold_convert_loc (loc, type,
11075 TREE_OPERAND (arg0, 0)),
11076 fold_convert_loc (loc, type,
11077 TREE_OPERAND (arg1, 0))));
11078 }
11079
11080 /* See if this can be simplified into a rotate first. If that
11081 is unsuccessful continue in the association code. */
11082 goto bit_rotate;
11083
11084 case BIT_XOR_EXPR:
11085 /* ~X ^ X is -1. */
11086 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11087 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11088 {
11089 t1 = build_zero_cst (type);
11090 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
11091 return omit_one_operand_loc (loc, type, t1, arg1);
11092 }
11093
11094 /* X ^ ~X is -1. */
11095 if (TREE_CODE (arg1) == BIT_NOT_EXPR
11096 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11097 {
11098 t1 = build_zero_cst (type);
11099 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
11100 return omit_one_operand_loc (loc, type, t1, arg0);
11101 }
11102
11103 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
11104 with a constant, and the two constants have no bits in common,
11105 we should treat this as a BIT_IOR_EXPR since this may produce more
11106 simplifications. */
11107 if (TREE_CODE (arg0) == BIT_AND_EXPR
11108 && TREE_CODE (arg1) == BIT_AND_EXPR
11109 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11110 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
11111 && wi::bit_and (TREE_OPERAND (arg0, 1),
11112 TREE_OPERAND (arg1, 1)) == 0)
11113 {
11114 code = BIT_IOR_EXPR;
11115 goto bit_ior;
11116 }
11117
11118 /* (X | Y) ^ X -> Y & ~ X*/
11119 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11120 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11121 {
11122 tree t2 = TREE_OPERAND (arg0, 1);
11123 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg1),
11124 arg1);
11125 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
11126 fold_convert_loc (loc, type, t2),
11127 fold_convert_loc (loc, type, t1));
11128 return t1;
11129 }
11130
11131 /* (Y | X) ^ X -> Y & ~ X*/
11132 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11133 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11134 {
11135 tree t2 = TREE_OPERAND (arg0, 0);
11136 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg1),
11137 arg1);
11138 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
11139 fold_convert_loc (loc, type, t2),
11140 fold_convert_loc (loc, type, t1));
11141 return t1;
11142 }
11143
11144 /* X ^ (X | Y) -> Y & ~ X*/
11145 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11146 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
11147 {
11148 tree t2 = TREE_OPERAND (arg1, 1);
11149 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg0),
11150 arg0);
11151 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
11152 fold_convert_loc (loc, type, t2),
11153 fold_convert_loc (loc, type, t1));
11154 return t1;
11155 }
11156
11157 /* X ^ (Y | X) -> Y & ~ X*/
11158 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11159 && operand_equal_p (TREE_OPERAND (arg1, 1), arg0, 0))
11160 {
11161 tree t2 = TREE_OPERAND (arg1, 0);
11162 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg0),
11163 arg0);
11164 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
11165 fold_convert_loc (loc, type, t2),
11166 fold_convert_loc (loc, type, t1));
11167 return t1;
11168 }
11169
11170 /* Convert ~X ^ ~Y to X ^ Y. */
11171 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11172 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11173 return fold_build2_loc (loc, code, type,
11174 fold_convert_loc (loc, type,
11175 TREE_OPERAND (arg0, 0)),
11176 fold_convert_loc (loc, type,
11177 TREE_OPERAND (arg1, 0)));
11178
11179 /* Convert ~X ^ C to X ^ ~C. */
11180 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11181 && TREE_CODE (arg1) == INTEGER_CST)
11182 return fold_build2_loc (loc, code, type,
11183 fold_convert_loc (loc, type,
11184 TREE_OPERAND (arg0, 0)),
11185 fold_build1_loc (loc, BIT_NOT_EXPR, type, arg1));
11186
11187 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
11188 if (TREE_CODE (arg0) == BIT_AND_EXPR
11189 && INTEGRAL_TYPE_P (type)
11190 && integer_onep (TREE_OPERAND (arg0, 1))
11191 && integer_onep (arg1))
11192 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
11193 build_zero_cst (TREE_TYPE (arg0)));
11194
11195 /* Fold (X & Y) ^ Y as ~X & Y. */
11196 if (TREE_CODE (arg0) == BIT_AND_EXPR
11197 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11198 {
11199 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11200 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11201 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11202 fold_convert_loc (loc, type, arg1));
11203 }
11204 /* Fold (X & Y) ^ X as ~Y & X. */
11205 if (TREE_CODE (arg0) == BIT_AND_EXPR
11206 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11207 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11208 {
11209 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11210 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11211 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11212 fold_convert_loc (loc, type, arg1));
11213 }
11214 /* Fold X ^ (X & Y) as X & ~Y. */
11215 if (TREE_CODE (arg1) == BIT_AND_EXPR
11216 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11217 {
11218 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
11219 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11220 fold_convert_loc (loc, type, arg0),
11221 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
11222 }
11223 /* Fold X ^ (Y & X) as ~Y & X. */
11224 if (TREE_CODE (arg1) == BIT_AND_EXPR
11225 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
11226 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
11227 {
11228 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
11229 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11230 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11231 fold_convert_loc (loc, type, arg0));
11232 }
11233
11234 /* See if this can be simplified into a rotate first. If that
11235 is unsuccessful continue in the association code. */
11236 goto bit_rotate;
11237
11238 case BIT_AND_EXPR:
11239 /* ~X & X, (X == 0) & X, and !X & X are always zero. */
11240 if ((TREE_CODE (arg0) == BIT_NOT_EXPR
11241 || TREE_CODE (arg0) == TRUTH_NOT_EXPR
11242 || (TREE_CODE (arg0) == EQ_EXPR
11243 && integer_zerop (TREE_OPERAND (arg0, 1))))
11244 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11245 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
11246
11247 /* X & ~X , X & (X == 0), and X & !X are always zero. */
11248 if ((TREE_CODE (arg1) == BIT_NOT_EXPR
11249 || TREE_CODE (arg1) == TRUTH_NOT_EXPR
11250 || (TREE_CODE (arg1) == EQ_EXPR
11251 && integer_zerop (TREE_OPERAND (arg1, 1))))
11252 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11253 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11254
11255 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
11256 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11257 && INTEGRAL_TYPE_P (type)
11258 && integer_onep (TREE_OPERAND (arg0, 1))
11259 && integer_onep (arg1))
11260 {
11261 tree tem2;
11262 tem = TREE_OPERAND (arg0, 0);
11263 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
11264 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
11265 tem, tem2);
11266 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
11267 build_zero_cst (TREE_TYPE (tem)));
11268 }
11269 /* Fold ~X & 1 as (X & 1) == 0. */
11270 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11271 && INTEGRAL_TYPE_P (type)
11272 && integer_onep (arg1))
11273 {
11274 tree tem2;
11275 tem = TREE_OPERAND (arg0, 0);
11276 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
11277 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
11278 tem, tem2);
11279 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
11280 build_zero_cst (TREE_TYPE (tem)));
11281 }
11282 /* Fold !X & 1 as X == 0. */
11283 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11284 && integer_onep (arg1))
11285 {
11286 tem = TREE_OPERAND (arg0, 0);
11287 return fold_build2_loc (loc, EQ_EXPR, type, tem,
11288 build_zero_cst (TREE_TYPE (tem)));
11289 }
11290
11291 /* Fold (X ^ Y) & Y as ~X & Y. */
11292 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11293 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11294 {
11295 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11296 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11297 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11298 fold_convert_loc (loc, type, arg1));
11299 }
11300 /* Fold (X ^ Y) & X as ~Y & X. */
11301 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11302 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11303 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11304 {
11305 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11306 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11307 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11308 fold_convert_loc (loc, type, arg1));
11309 }
11310 /* Fold X & (X ^ Y) as X & ~Y. */
11311 if (TREE_CODE (arg1) == BIT_XOR_EXPR
11312 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11313 {
11314 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
11315 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11316 fold_convert_loc (loc, type, arg0),
11317 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
11318 }
11319 /* Fold X & (Y ^ X) as ~Y & X. */
11320 if (TREE_CODE (arg1) == BIT_XOR_EXPR
11321 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
11322 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
11323 {
11324 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
11325 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11326 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11327 fold_convert_loc (loc, type, arg0));
11328 }
11329
11330 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
11331 multiple of 1 << CST. */
11332 if (TREE_CODE (arg1) == INTEGER_CST)
11333 {
11334 wide_int cst1 = arg1;
11335 wide_int ncst1 = -cst1;
11336 if ((cst1 & ncst1) == ncst1
11337 && multiple_of_p (type, arg0,
11338 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
11339 return fold_convert_loc (loc, type, arg0);
11340 }
11341
11342 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
11343 bits from CST2. */
11344 if (TREE_CODE (arg1) == INTEGER_CST
11345 && TREE_CODE (arg0) == MULT_EXPR
11346 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11347 {
11348 wide_int warg1 = arg1;
11349 wide_int masked = mask_with_tz (type, warg1, TREE_OPERAND (arg0, 1));
11350
11351 if (masked == 0)
11352 return omit_two_operands_loc (loc, type, build_zero_cst (type),
11353 arg0, arg1);
11354 else if (masked != warg1)
11355 {
11356 /* Avoid the transform if arg1 is a mask of some
11357 mode which allows further optimizations. */
11358 int pop = wi::popcount (warg1);
11359 if (!(pop >= BITS_PER_UNIT
11360 && exact_log2 (pop) != -1
11361 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
11362 return fold_build2_loc (loc, code, type, op0,
11363 wide_int_to_tree (type, masked));
11364 }
11365 }
11366
11367 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
11368 ((A & N) + B) & M -> (A + B) & M
11369 Similarly if (N & M) == 0,
11370 ((A | N) + B) & M -> (A + B) & M
11371 and for - instead of + (or unary - instead of +)
11372 and/or ^ instead of |.
11373 If B is constant and (B & M) == 0, fold into A & M. */
11374 if (TREE_CODE (arg1) == INTEGER_CST)
11375 {
11376 wide_int cst1 = arg1;
11377 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
11378 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
11379 && (TREE_CODE (arg0) == PLUS_EXPR
11380 || TREE_CODE (arg0) == MINUS_EXPR
11381 || TREE_CODE (arg0) == NEGATE_EXPR)
11382 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
11383 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
11384 {
11385 tree pmop[2];
11386 int which = 0;
11387 wide_int cst0;
11388
11389 /* Now we know that arg0 is (C + D) or (C - D) or
11390 -C and arg1 (M) is == (1LL << cst) - 1.
11391 Store C into PMOP[0] and D into PMOP[1]. */
11392 pmop[0] = TREE_OPERAND (arg0, 0);
11393 pmop[1] = NULL;
11394 if (TREE_CODE (arg0) != NEGATE_EXPR)
11395 {
11396 pmop[1] = TREE_OPERAND (arg0, 1);
11397 which = 1;
11398 }
11399
11400 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
11401 which = -1;
11402
11403 for (; which >= 0; which--)
11404 switch (TREE_CODE (pmop[which]))
11405 {
11406 case BIT_AND_EXPR:
11407 case BIT_IOR_EXPR:
11408 case BIT_XOR_EXPR:
11409 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
11410 != INTEGER_CST)
11411 break;
11412 cst0 = TREE_OPERAND (pmop[which], 1);
11413 cst0 &= cst1;
11414 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
11415 {
11416 if (cst0 != cst1)
11417 break;
11418 }
11419 else if (cst0 != 0)
11420 break;
11421 /* If C or D is of the form (A & N) where
11422 (N & M) == M, or of the form (A | N) or
11423 (A ^ N) where (N & M) == 0, replace it with A. */
11424 pmop[which] = TREE_OPERAND (pmop[which], 0);
11425 break;
11426 case INTEGER_CST:
11427 /* If C or D is a N where (N & M) == 0, it can be
11428 omitted (assumed 0). */
11429 if ((TREE_CODE (arg0) == PLUS_EXPR
11430 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
11431 && (cst1 & pmop[which]) == 0)
11432 pmop[which] = NULL;
11433 break;
11434 default:
11435 break;
11436 }
11437
11438 /* Only build anything new if we optimized one or both arguments
11439 above. */
11440 if (pmop[0] != TREE_OPERAND (arg0, 0)
11441 || (TREE_CODE (arg0) != NEGATE_EXPR
11442 && pmop[1] != TREE_OPERAND (arg0, 1)))
11443 {
11444 tree utype = TREE_TYPE (arg0);
11445 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
11446 {
11447 /* Perform the operations in a type that has defined
11448 overflow behavior. */
11449 utype = unsigned_type_for (TREE_TYPE (arg0));
11450 if (pmop[0] != NULL)
11451 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
11452 if (pmop[1] != NULL)
11453 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
11454 }
11455
11456 if (TREE_CODE (arg0) == NEGATE_EXPR)
11457 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
11458 else if (TREE_CODE (arg0) == PLUS_EXPR)
11459 {
11460 if (pmop[0] != NULL && pmop[1] != NULL)
11461 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
11462 pmop[0], pmop[1]);
11463 else if (pmop[0] != NULL)
11464 tem = pmop[0];
11465 else if (pmop[1] != NULL)
11466 tem = pmop[1];
11467 else
11468 return build_int_cst (type, 0);
11469 }
11470 else if (pmop[0] == NULL)
11471 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
11472 else
11473 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
11474 pmop[0], pmop[1]);
11475 /* TEM is now the new binary +, - or unary - replacement. */
11476 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
11477 fold_convert_loc (loc, utype, arg1));
11478 return fold_convert_loc (loc, type, tem);
11479 }
11480 }
11481 }
11482
11483 t1 = distribute_bit_expr (loc, code, type, arg0, arg1);
11484 if (t1 != NULL_TREE)
11485 return t1;
11486 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
11487 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
11488 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
11489 {
11490 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
11491
11492 wide_int mask = wide_int::from (arg1, prec, UNSIGNED);
11493 if (mask == -1)
11494 return
11495 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11496 }
11497
11498 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
11499
11500 This results in more efficient code for machines without a NOR
11501 instruction. Combine will canonicalize to the first form
11502 which will allow use of NOR instructions provided by the
11503 backend if they exist. */
11504 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11505 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11506 {
11507 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
11508 build2 (BIT_IOR_EXPR, type,
11509 fold_convert_loc (loc, type,
11510 TREE_OPERAND (arg0, 0)),
11511 fold_convert_loc (loc, type,
11512 TREE_OPERAND (arg1, 0))));
11513 }
11514
11515 /* If arg0 is derived from the address of an object or function, we may
11516 be able to fold this expression using the object or function's
11517 alignment. */
11518 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && tree_fits_uhwi_p (arg1))
11519 {
11520 unsigned HOST_WIDE_INT modulus, residue;
11521 unsigned HOST_WIDE_INT low = tree_to_uhwi (arg1);
11522
11523 modulus = get_pointer_modulus_and_residue (arg0, &residue,
11524 integer_onep (arg1));
11525
11526 /* This works because modulus is a power of 2. If this weren't the
11527 case, we'd have to replace it by its greatest power-of-2
11528 divisor: modulus & -modulus. */
11529 if (low < modulus)
11530 return build_int_cst (type, residue & low);
11531 }
11532
11533 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
11534 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
11535 if the new mask might be further optimized. */
11536 if ((TREE_CODE (arg0) == LSHIFT_EXPR
11537 || TREE_CODE (arg0) == RSHIFT_EXPR)
11538 && TYPE_PRECISION (TREE_TYPE (arg0)) <= HOST_BITS_PER_WIDE_INT
11539 && TREE_CODE (arg1) == INTEGER_CST
11540 && tree_fits_uhwi_p (TREE_OPERAND (arg0, 1))
11541 && tree_to_uhwi (TREE_OPERAND (arg0, 1)) > 0
11542 && (tree_to_uhwi (TREE_OPERAND (arg0, 1))
11543 < TYPE_PRECISION (TREE_TYPE (arg0))))
11544 {
11545 unsigned int shiftc = tree_to_uhwi (TREE_OPERAND (arg0, 1));
11546 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (arg1);
11547 unsigned HOST_WIDE_INT newmask, zerobits = 0;
11548 tree shift_type = TREE_TYPE (arg0);
11549
11550 if (TREE_CODE (arg0) == LSHIFT_EXPR)
11551 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
11552 else if (TREE_CODE (arg0) == RSHIFT_EXPR
11553 && TYPE_PRECISION (TREE_TYPE (arg0))
11554 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg0))))
11555 {
11556 prec = TYPE_PRECISION (TREE_TYPE (arg0));
11557 tree arg00 = TREE_OPERAND (arg0, 0);
11558 /* See if more bits can be proven as zero because of
11559 zero extension. */
11560 if (TREE_CODE (arg00) == NOP_EXPR
11561 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg00, 0))))
11562 {
11563 tree inner_type = TREE_TYPE (TREE_OPERAND (arg00, 0));
11564 if (TYPE_PRECISION (inner_type)
11565 == GET_MODE_PRECISION (TYPE_MODE (inner_type))
11566 && TYPE_PRECISION (inner_type) < prec)
11567 {
11568 prec = TYPE_PRECISION (inner_type);
11569 /* See if we can shorten the right shift. */
11570 if (shiftc < prec)
11571 shift_type = inner_type;
11572 /* Otherwise X >> C1 is all zeros, so we'll optimize
11573 it into (X, 0) later on by making sure zerobits
11574 is all ones. */
11575 }
11576 }
11577 zerobits = ~(unsigned HOST_WIDE_INT) 0;
11578 if (shiftc < prec)
11579 {
11580 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
11581 zerobits <<= prec - shiftc;
11582 }
11583 /* For arithmetic shift if sign bit could be set, zerobits
11584 can contain actually sign bits, so no transformation is
11585 possible, unless MASK masks them all away. In that
11586 case the shift needs to be converted into logical shift. */
11587 if (!TYPE_UNSIGNED (TREE_TYPE (arg0))
11588 && prec == TYPE_PRECISION (TREE_TYPE (arg0)))
11589 {
11590 if ((mask & zerobits) == 0)
11591 shift_type = unsigned_type_for (TREE_TYPE (arg0));
11592 else
11593 zerobits = 0;
11594 }
11595 }
11596
11597 /* ((X << 16) & 0xff00) is (X, 0). */
11598 if ((mask & zerobits) == mask)
11599 return omit_one_operand_loc (loc, type,
11600 build_int_cst (type, 0), arg0);
11601
11602 newmask = mask | zerobits;
11603 if (newmask != mask && (newmask & (newmask + 1)) == 0)
11604 {
11605 /* Only do the transformation if NEWMASK is some integer
11606 mode's mask. */
11607 for (prec = BITS_PER_UNIT;
11608 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
11609 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
11610 break;
11611 if (prec < HOST_BITS_PER_WIDE_INT
11612 || newmask == ~(unsigned HOST_WIDE_INT) 0)
11613 {
11614 tree newmaskt;
11615
11616 if (shift_type != TREE_TYPE (arg0))
11617 {
11618 tem = fold_build2_loc (loc, TREE_CODE (arg0), shift_type,
11619 fold_convert_loc (loc, shift_type,
11620 TREE_OPERAND (arg0, 0)),
11621 TREE_OPERAND (arg0, 1));
11622 tem = fold_convert_loc (loc, type, tem);
11623 }
11624 else
11625 tem = op0;
11626 newmaskt = build_int_cst_type (TREE_TYPE (op1), newmask);
11627 if (!tree_int_cst_equal (newmaskt, arg1))
11628 return fold_build2_loc (loc, BIT_AND_EXPR, type, tem, newmaskt);
11629 }
11630 }
11631 }
11632
11633 goto associate;
11634
11635 case RDIV_EXPR:
11636 /* Don't touch a floating-point divide by zero unless the mode
11637 of the constant can represent infinity. */
11638 if (TREE_CODE (arg1) == REAL_CST
11639 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
11640 && real_zerop (arg1))
11641 return NULL_TREE;
11642
11643 /* (-A) / (-B) -> A / B */
11644 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
11645 return fold_build2_loc (loc, RDIV_EXPR, type,
11646 TREE_OPERAND (arg0, 0),
11647 negate_expr (arg1));
11648 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
11649 return fold_build2_loc (loc, RDIV_EXPR, type,
11650 negate_expr (arg0),
11651 TREE_OPERAND (arg1, 0));
11652
11653 /* Convert A/B/C to A/(B*C). */
11654 if (flag_reciprocal_math
11655 && TREE_CODE (arg0) == RDIV_EXPR)
11656 return fold_build2_loc (loc, RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
11657 fold_build2_loc (loc, MULT_EXPR, type,
11658 TREE_OPERAND (arg0, 1), arg1));
11659
11660 /* Convert A/(B/C) to (A/B)*C. */
11661 if (flag_reciprocal_math
11662 && TREE_CODE (arg1) == RDIV_EXPR)
11663 return fold_build2_loc (loc, MULT_EXPR, type,
11664 fold_build2_loc (loc, RDIV_EXPR, type, arg0,
11665 TREE_OPERAND (arg1, 0)),
11666 TREE_OPERAND (arg1, 1));
11667
11668 /* Convert C1/(X*C2) into (C1/C2)/X. */
11669 if (flag_reciprocal_math
11670 && TREE_CODE (arg1) == MULT_EXPR
11671 && TREE_CODE (arg0) == REAL_CST
11672 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
11673 {
11674 tree tem = const_binop (RDIV_EXPR, arg0,
11675 TREE_OPERAND (arg1, 1));
11676 if (tem)
11677 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
11678 TREE_OPERAND (arg1, 0));
11679 }
11680
11681 if (flag_unsafe_math_optimizations)
11682 {
11683 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
11684 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
11685
11686 /* Optimize sin(x)/cos(x) as tan(x). */
11687 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
11688 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
11689 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
11690 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11691 CALL_EXPR_ARG (arg1, 0), 0))
11692 {
11693 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11694
11695 if (tanfn != NULL_TREE)
11696 return build_call_expr_loc (loc, tanfn, 1, CALL_EXPR_ARG (arg0, 0));
11697 }
11698
11699 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
11700 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
11701 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
11702 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
11703 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11704 CALL_EXPR_ARG (arg1, 0), 0))
11705 {
11706 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11707
11708 if (tanfn != NULL_TREE)
11709 {
11710 tree tmp = build_call_expr_loc (loc, tanfn, 1,
11711 CALL_EXPR_ARG (arg0, 0));
11712 return fold_build2_loc (loc, RDIV_EXPR, type,
11713 build_real (type, dconst1), tmp);
11714 }
11715 }
11716
11717 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
11718 NaNs or Infinities. */
11719 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
11720 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
11721 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
11722 {
11723 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11724 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11725
11726 if (! HONOR_NANS (arg00)
11727 && ! HONOR_INFINITIES (element_mode (arg00))
11728 && operand_equal_p (arg00, arg01, 0))
11729 {
11730 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11731
11732 if (cosfn != NULL_TREE)
11733 return build_call_expr_loc (loc, cosfn, 1, arg00);
11734 }
11735 }
11736
11737 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
11738 NaNs or Infinities. */
11739 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
11740 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
11741 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
11742 {
11743 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11744 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11745
11746 if (! HONOR_NANS (arg00)
11747 && ! HONOR_INFINITIES (element_mode (arg00))
11748 && operand_equal_p (arg00, arg01, 0))
11749 {
11750 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11751
11752 if (cosfn != NULL_TREE)
11753 {
11754 tree tmp = build_call_expr_loc (loc, cosfn, 1, arg00);
11755 return fold_build2_loc (loc, RDIV_EXPR, type,
11756 build_real (type, dconst1),
11757 tmp);
11758 }
11759 }
11760 }
11761
11762 /* Optimize pow(x,c)/x as pow(x,c-1). */
11763 if (fcode0 == BUILT_IN_POW
11764 || fcode0 == BUILT_IN_POWF
11765 || fcode0 == BUILT_IN_POWL)
11766 {
11767 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11768 tree arg01 = CALL_EXPR_ARG (arg0, 1);
11769 if (TREE_CODE (arg01) == REAL_CST
11770 && !TREE_OVERFLOW (arg01)
11771 && operand_equal_p (arg1, arg00, 0))
11772 {
11773 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
11774 REAL_VALUE_TYPE c;
11775 tree arg;
11776
11777 c = TREE_REAL_CST (arg01);
11778 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
11779 arg = build_real (type, c);
11780 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
11781 }
11782 }
11783
11784 /* Optimize a/root(b/c) into a*root(c/b). */
11785 if (BUILTIN_ROOT_P (fcode1))
11786 {
11787 tree rootarg = CALL_EXPR_ARG (arg1, 0);
11788
11789 if (TREE_CODE (rootarg) == RDIV_EXPR)
11790 {
11791 tree rootfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11792 tree b = TREE_OPERAND (rootarg, 0);
11793 tree c = TREE_OPERAND (rootarg, 1);
11794
11795 tree tmp = fold_build2_loc (loc, RDIV_EXPR, type, c, b);
11796
11797 tmp = build_call_expr_loc (loc, rootfn, 1, tmp);
11798 return fold_build2_loc (loc, MULT_EXPR, type, arg0, tmp);
11799 }
11800 }
11801
11802 /* Optimize x/expN(y) into x*expN(-y). */
11803 if (BUILTIN_EXPONENT_P (fcode1))
11804 {
11805 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11806 tree arg = negate_expr (CALL_EXPR_ARG (arg1, 0));
11807 arg1 = build_call_expr_loc (loc,
11808 expfn, 1,
11809 fold_convert_loc (loc, type, arg));
11810 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11811 }
11812
11813 /* Optimize x/pow(y,z) into x*pow(y,-z). */
11814 if (fcode1 == BUILT_IN_POW
11815 || fcode1 == BUILT_IN_POWF
11816 || fcode1 == BUILT_IN_POWL)
11817 {
11818 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11819 tree arg10 = CALL_EXPR_ARG (arg1, 0);
11820 tree arg11 = CALL_EXPR_ARG (arg1, 1);
11821 tree neg11 = fold_convert_loc (loc, type,
11822 negate_expr (arg11));
11823 arg1 = build_call_expr_loc (loc, powfn, 2, arg10, neg11);
11824 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11825 }
11826 }
11827 return NULL_TREE;
11828
11829 case TRUNC_DIV_EXPR:
11830 /* Optimize (X & (-A)) / A where A is a power of 2,
11831 to X >> log2(A) */
11832 if (TREE_CODE (arg0) == BIT_AND_EXPR
11833 && !TYPE_UNSIGNED (type) && TREE_CODE (arg1) == INTEGER_CST
11834 && integer_pow2p (arg1) && tree_int_cst_sgn (arg1) > 0)
11835 {
11836 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (arg1),
11837 arg1, TREE_OPERAND (arg0, 1));
11838 if (sum && integer_zerop (sum)) {
11839 tree pow2 = build_int_cst (integer_type_node,
11840 wi::exact_log2 (arg1));
11841 return fold_build2_loc (loc, RSHIFT_EXPR, type,
11842 TREE_OPERAND (arg0, 0), pow2);
11843 }
11844 }
11845
11846 /* Fall through */
11847
11848 case FLOOR_DIV_EXPR:
11849 /* Simplify A / (B << N) where A and B are positive and B is
11850 a power of 2, to A >> (N + log2(B)). */
11851 strict_overflow_p = false;
11852 if (TREE_CODE (arg1) == LSHIFT_EXPR
11853 && (TYPE_UNSIGNED (type)
11854 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
11855 {
11856 tree sval = TREE_OPERAND (arg1, 0);
11857 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
11858 {
11859 tree sh_cnt = TREE_OPERAND (arg1, 1);
11860 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
11861 wi::exact_log2 (sval));
11862
11863 if (strict_overflow_p)
11864 fold_overflow_warning (("assuming signed overflow does not "
11865 "occur when simplifying A / (B << N)"),
11866 WARN_STRICT_OVERFLOW_MISC);
11867
11868 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
11869 sh_cnt, pow2);
11870 return fold_build2_loc (loc, RSHIFT_EXPR, type,
11871 fold_convert_loc (loc, type, arg0), sh_cnt);
11872 }
11873 }
11874
11875 /* Fall through */
11876
11877 case ROUND_DIV_EXPR:
11878 case CEIL_DIV_EXPR:
11879 case EXACT_DIV_EXPR:
11880 if (integer_zerop (arg1))
11881 return NULL_TREE;
11882
11883 /* Convert -A / -B to A / B when the type is signed and overflow is
11884 undefined. */
11885 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11886 && TREE_CODE (arg0) == NEGATE_EXPR
11887 && negate_expr_p (arg1))
11888 {
11889 if (INTEGRAL_TYPE_P (type))
11890 fold_overflow_warning (("assuming signed overflow does not occur "
11891 "when distributing negation across "
11892 "division"),
11893 WARN_STRICT_OVERFLOW_MISC);
11894 return fold_build2_loc (loc, code, type,
11895 fold_convert_loc (loc, type,
11896 TREE_OPERAND (arg0, 0)),
11897 fold_convert_loc (loc, type,
11898 negate_expr (arg1)));
11899 }
11900 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11901 && TREE_CODE (arg1) == NEGATE_EXPR
11902 && negate_expr_p (arg0))
11903 {
11904 if (INTEGRAL_TYPE_P (type))
11905 fold_overflow_warning (("assuming signed overflow does not occur "
11906 "when distributing negation across "
11907 "division"),
11908 WARN_STRICT_OVERFLOW_MISC);
11909 return fold_build2_loc (loc, code, type,
11910 fold_convert_loc (loc, type,
11911 negate_expr (arg0)),
11912 fold_convert_loc (loc, type,
11913 TREE_OPERAND (arg1, 0)));
11914 }
11915
11916 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
11917 operation, EXACT_DIV_EXPR.
11918
11919 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
11920 At one time others generated faster code, it's not clear if they do
11921 after the last round to changes to the DIV code in expmed.c. */
11922 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
11923 && multiple_of_p (type, arg0, arg1))
11924 return fold_build2_loc (loc, EXACT_DIV_EXPR, type, arg0, arg1);
11925
11926 strict_overflow_p = false;
11927 if (TREE_CODE (arg1) == INTEGER_CST
11928 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11929 &strict_overflow_p)))
11930 {
11931 if (strict_overflow_p)
11932 fold_overflow_warning (("assuming signed overflow does not occur "
11933 "when simplifying division"),
11934 WARN_STRICT_OVERFLOW_MISC);
11935 return fold_convert_loc (loc, type, tem);
11936 }
11937
11938 return NULL_TREE;
11939
11940 case CEIL_MOD_EXPR:
11941 case FLOOR_MOD_EXPR:
11942 case ROUND_MOD_EXPR:
11943 case TRUNC_MOD_EXPR:
11944 strict_overflow_p = false;
11945 if (TREE_CODE (arg1) == INTEGER_CST
11946 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11947 &strict_overflow_p)))
11948 {
11949 if (strict_overflow_p)
11950 fold_overflow_warning (("assuming signed overflow does not occur "
11951 "when simplifying modulus"),
11952 WARN_STRICT_OVERFLOW_MISC);
11953 return fold_convert_loc (loc, type, tem);
11954 }
11955
11956 return NULL_TREE;
11957
11958 case LROTATE_EXPR:
11959 case RROTATE_EXPR:
11960 case RSHIFT_EXPR:
11961 case LSHIFT_EXPR:
11962 /* Since negative shift count is not well-defined,
11963 don't try to compute it in the compiler. */
11964 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
11965 return NULL_TREE;
11966
11967 prec = element_precision (type);
11968
11969 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
11970 if (TREE_CODE (op0) == code && tree_fits_uhwi_p (arg1)
11971 && tree_to_uhwi (arg1) < prec
11972 && tree_fits_uhwi_p (TREE_OPERAND (arg0, 1))
11973 && tree_to_uhwi (TREE_OPERAND (arg0, 1)) < prec)
11974 {
11975 unsigned int low = (tree_to_uhwi (TREE_OPERAND (arg0, 1))
11976 + tree_to_uhwi (arg1));
11977
11978 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
11979 being well defined. */
11980 if (low >= prec)
11981 {
11982 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
11983 low = low % prec;
11984 else if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
11985 return omit_one_operand_loc (loc, type, build_zero_cst (type),
11986 TREE_OPERAND (arg0, 0));
11987 else
11988 low = prec - 1;
11989 }
11990
11991 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
11992 build_int_cst (TREE_TYPE (arg1), low));
11993 }
11994
11995 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
11996 into x & ((unsigned)-1 >> c) for unsigned types. */
11997 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
11998 || (TYPE_UNSIGNED (type)
11999 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
12000 && tree_fits_uhwi_p (arg1)
12001 && tree_to_uhwi (arg1) < prec
12002 && tree_fits_uhwi_p (TREE_OPERAND (arg0, 1))
12003 && tree_to_uhwi (TREE_OPERAND (arg0, 1)) < prec)
12004 {
12005 HOST_WIDE_INT low0 = tree_to_uhwi (TREE_OPERAND (arg0, 1));
12006 HOST_WIDE_INT low1 = tree_to_uhwi (arg1);
12007 tree lshift;
12008 tree arg00;
12009
12010 if (low0 == low1)
12011 {
12012 arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
12013
12014 lshift = build_minus_one_cst (type);
12015 lshift = const_binop (code, lshift, arg1);
12016
12017 return fold_build2_loc (loc, BIT_AND_EXPR, type, arg00, lshift);
12018 }
12019 }
12020
12021 /* If we have a rotate of a bit operation with the rotate count and
12022 the second operand of the bit operation both constant,
12023 permute the two operations. */
12024 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
12025 && (TREE_CODE (arg0) == BIT_AND_EXPR
12026 || TREE_CODE (arg0) == BIT_IOR_EXPR
12027 || TREE_CODE (arg0) == BIT_XOR_EXPR)
12028 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12029 return fold_build2_loc (loc, TREE_CODE (arg0), type,
12030 fold_build2_loc (loc, code, type,
12031 TREE_OPERAND (arg0, 0), arg1),
12032 fold_build2_loc (loc, code, type,
12033 TREE_OPERAND (arg0, 1), arg1));
12034
12035 /* Two consecutive rotates adding up to the some integer
12036 multiple of the precision of the type can be ignored. */
12037 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
12038 && TREE_CODE (arg0) == RROTATE_EXPR
12039 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12040 && wi::umod_trunc (wi::add (arg1, TREE_OPERAND (arg0, 1)),
12041 prec) == 0)
12042 return TREE_OPERAND (arg0, 0);
12043
12044 /* Fold (X & C2) << C1 into (X << C1) & (C2 << C1)
12045 (X & C2) >> C1 into (X >> C1) & (C2 >> C1)
12046 if the latter can be further optimized. */
12047 if ((code == LSHIFT_EXPR || code == RSHIFT_EXPR)
12048 && TREE_CODE (arg0) == BIT_AND_EXPR
12049 && TREE_CODE (arg1) == INTEGER_CST
12050 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12051 {
12052 tree mask = fold_build2_loc (loc, code, type,
12053 fold_convert_loc (loc, type,
12054 TREE_OPERAND (arg0, 1)),
12055 arg1);
12056 tree shift = fold_build2_loc (loc, code, type,
12057 fold_convert_loc (loc, type,
12058 TREE_OPERAND (arg0, 0)),
12059 arg1);
12060 tem = fold_binary_loc (loc, BIT_AND_EXPR, type, shift, mask);
12061 if (tem)
12062 return tem;
12063 }
12064
12065 return NULL_TREE;
12066
12067 case MIN_EXPR:
12068 tem = fold_minmax (loc, MIN_EXPR, type, arg0, arg1);
12069 if (tem)
12070 return tem;
12071 goto associate;
12072
12073 case MAX_EXPR:
12074 tem = fold_minmax (loc, MAX_EXPR, type, arg0, arg1);
12075 if (tem)
12076 return tem;
12077 goto associate;
12078
12079 case TRUTH_ANDIF_EXPR:
12080 /* Note that the operands of this must be ints
12081 and their values must be 0 or 1.
12082 ("true" is a fixed value perhaps depending on the language.) */
12083 /* If first arg is constant zero, return it. */
12084 if (integer_zerop (arg0))
12085 return fold_convert_loc (loc, type, arg0);
12086 case TRUTH_AND_EXPR:
12087 /* If either arg is constant true, drop it. */
12088 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12089 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
12090 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
12091 /* Preserve sequence points. */
12092 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
12093 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12094 /* If second arg is constant zero, result is zero, but first arg
12095 must be evaluated. */
12096 if (integer_zerop (arg1))
12097 return omit_one_operand_loc (loc, type, arg1, arg0);
12098 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
12099 case will be handled here. */
12100 if (integer_zerop (arg0))
12101 return omit_one_operand_loc (loc, type, arg0, arg1);
12102
12103 /* !X && X is always false. */
12104 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12105 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12106 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
12107 /* X && !X is always false. */
12108 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12109 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12110 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12111
12112 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
12113 means A >= Y && A != MAX, but in this case we know that
12114 A < X <= MAX. */
12115
12116 if (!TREE_SIDE_EFFECTS (arg0)
12117 && !TREE_SIDE_EFFECTS (arg1))
12118 {
12119 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
12120 if (tem && !operand_equal_p (tem, arg0, 0))
12121 return fold_build2_loc (loc, code, type, tem, arg1);
12122
12123 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
12124 if (tem && !operand_equal_p (tem, arg1, 0))
12125 return fold_build2_loc (loc, code, type, arg0, tem);
12126 }
12127
12128 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
12129 != NULL_TREE)
12130 return tem;
12131
12132 return NULL_TREE;
12133
12134 case TRUTH_ORIF_EXPR:
12135 /* Note that the operands of this must be ints
12136 and their values must be 0 or true.
12137 ("true" is a fixed value perhaps depending on the language.) */
12138 /* If first arg is constant true, return it. */
12139 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12140 return fold_convert_loc (loc, type, arg0);
12141 case TRUTH_OR_EXPR:
12142 /* If either arg is constant zero, drop it. */
12143 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
12144 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
12145 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
12146 /* Preserve sequence points. */
12147 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
12148 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12149 /* If second arg is constant true, result is true, but we must
12150 evaluate first arg. */
12151 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
12152 return omit_one_operand_loc (loc, type, arg1, arg0);
12153 /* Likewise for first arg, but note this only occurs here for
12154 TRUTH_OR_EXPR. */
12155 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12156 return omit_one_operand_loc (loc, type, arg0, arg1);
12157
12158 /* !X || X is always true. */
12159 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12160 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12161 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
12162 /* X || !X is always true. */
12163 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12164 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12165 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12166
12167 /* (X && !Y) || (!X && Y) is X ^ Y */
12168 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
12169 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
12170 {
12171 tree a0, a1, l0, l1, n0, n1;
12172
12173 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
12174 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
12175
12176 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
12177 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
12178
12179 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
12180 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
12181
12182 if ((operand_equal_p (n0, a0, 0)
12183 && operand_equal_p (n1, a1, 0))
12184 || (operand_equal_p (n0, a1, 0)
12185 && operand_equal_p (n1, a0, 0)))
12186 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
12187 }
12188
12189 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
12190 != NULL_TREE)
12191 return tem;
12192
12193 return NULL_TREE;
12194
12195 case TRUTH_XOR_EXPR:
12196 /* If the second arg is constant zero, drop it. */
12197 if (integer_zerop (arg1))
12198 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12199 /* If the second arg is constant true, this is a logical inversion. */
12200 if (integer_onep (arg1))
12201 {
12202 tem = invert_truthvalue_loc (loc, arg0);
12203 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
12204 }
12205 /* Identical arguments cancel to zero. */
12206 if (operand_equal_p (arg0, arg1, 0))
12207 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12208
12209 /* !X ^ X is always true. */
12210 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12211 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12212 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
12213
12214 /* X ^ !X is always true. */
12215 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12216 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12217 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12218
12219 return NULL_TREE;
12220
12221 case EQ_EXPR:
12222 case NE_EXPR:
12223 STRIP_NOPS (arg0);
12224 STRIP_NOPS (arg1);
12225
12226 tem = fold_comparison (loc, code, type, op0, op1);
12227 if (tem != NULL_TREE)
12228 return tem;
12229
12230 /* bool_var != 0 becomes bool_var. */
12231 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12232 && code == NE_EXPR)
12233 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12234
12235 /* bool_var == 1 becomes bool_var. */
12236 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12237 && code == EQ_EXPR)
12238 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12239
12240 /* bool_var != 1 becomes !bool_var. */
12241 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12242 && code == NE_EXPR)
12243 return fold_convert_loc (loc, type,
12244 fold_build1_loc (loc, TRUTH_NOT_EXPR,
12245 TREE_TYPE (arg0), arg0));
12246
12247 /* bool_var == 0 becomes !bool_var. */
12248 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12249 && code == EQ_EXPR)
12250 return fold_convert_loc (loc, type,
12251 fold_build1_loc (loc, TRUTH_NOT_EXPR,
12252 TREE_TYPE (arg0), arg0));
12253
12254 /* !exp != 0 becomes !exp */
12255 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
12256 && code == NE_EXPR)
12257 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12258
12259 /* If this is an equality comparison of the address of two non-weak,
12260 unaliased symbols neither of which are extern (since we do not
12261 have access to attributes for externs), then we know the result. */
12262 if (TREE_CODE (arg0) == ADDR_EXPR
12263 && DECL_P (TREE_OPERAND (arg0, 0))
12264 && TREE_CODE (arg1) == ADDR_EXPR
12265 && DECL_P (TREE_OPERAND (arg1, 0)))
12266 {
12267 int equal;
12268
12269 if (decl_in_symtab_p (TREE_OPERAND (arg0, 0))
12270 && decl_in_symtab_p (TREE_OPERAND (arg1, 0)))
12271 equal = symtab_node::get_create (TREE_OPERAND (arg0, 0))
12272 ->equal_address_to (symtab_node::get_create
12273 (TREE_OPERAND (arg1, 0)));
12274 else
12275 equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
12276 if (equal != 2)
12277 return constant_boolean_node (equal
12278 ? code == EQ_EXPR : code != EQ_EXPR,
12279 type);
12280 }
12281
12282 /* Similarly for a NEGATE_EXPR. */
12283 if (TREE_CODE (arg0) == NEGATE_EXPR
12284 && TREE_CODE (arg1) == INTEGER_CST
12285 && 0 != (tem = negate_expr (fold_convert_loc (loc, TREE_TYPE (arg0),
12286 arg1)))
12287 && TREE_CODE (tem) == INTEGER_CST
12288 && !TREE_OVERFLOW (tem))
12289 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
12290
12291 /* Similarly for a BIT_XOR_EXPR; X ^ C1 == C2 is X == (C1 ^ C2). */
12292 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12293 && TREE_CODE (arg1) == INTEGER_CST
12294 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12295 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12296 fold_build2_loc (loc, BIT_XOR_EXPR, TREE_TYPE (arg0),
12297 fold_convert_loc (loc,
12298 TREE_TYPE (arg0),
12299 arg1),
12300 TREE_OPERAND (arg0, 1)));
12301
12302 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
12303 if ((TREE_CODE (arg0) == PLUS_EXPR
12304 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
12305 || TREE_CODE (arg0) == MINUS_EXPR)
12306 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
12307 0)),
12308 arg1, 0)
12309 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
12310 || POINTER_TYPE_P (TREE_TYPE (arg0))))
12311 {
12312 tree val = TREE_OPERAND (arg0, 1);
12313 return omit_two_operands_loc (loc, type,
12314 fold_build2_loc (loc, code, type,
12315 val,
12316 build_int_cst (TREE_TYPE (val),
12317 0)),
12318 TREE_OPERAND (arg0, 0), arg1);
12319 }
12320
12321 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
12322 if (TREE_CODE (arg0) == MINUS_EXPR
12323 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
12324 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
12325 1)),
12326 arg1, 0)
12327 && wi::extract_uhwi (TREE_OPERAND (arg0, 0), 0, 1) == 1)
12328 {
12329 return omit_two_operands_loc (loc, type,
12330 code == NE_EXPR
12331 ? boolean_true_node : boolean_false_node,
12332 TREE_OPERAND (arg0, 1), arg1);
12333 }
12334
12335 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
12336 if (TREE_CODE (arg0) == ABS_EXPR
12337 && (integer_zerop (arg1) || real_zerop (arg1)))
12338 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), arg1);
12339
12340 /* If this is an EQ or NE comparison with zero and ARG0 is
12341 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
12342 two operations, but the latter can be done in one less insn
12343 on machines that have only two-operand insns or on which a
12344 constant cannot be the first operand. */
12345 if (TREE_CODE (arg0) == BIT_AND_EXPR
12346 && integer_zerop (arg1))
12347 {
12348 tree arg00 = TREE_OPERAND (arg0, 0);
12349 tree arg01 = TREE_OPERAND (arg0, 1);
12350 if (TREE_CODE (arg00) == LSHIFT_EXPR
12351 && integer_onep (TREE_OPERAND (arg00, 0)))
12352 {
12353 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
12354 arg01, TREE_OPERAND (arg00, 1));
12355 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12356 build_int_cst (TREE_TYPE (arg0), 1));
12357 return fold_build2_loc (loc, code, type,
12358 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
12359 arg1);
12360 }
12361 else if (TREE_CODE (arg01) == LSHIFT_EXPR
12362 && integer_onep (TREE_OPERAND (arg01, 0)))
12363 {
12364 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
12365 arg00, TREE_OPERAND (arg01, 1));
12366 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12367 build_int_cst (TREE_TYPE (arg0), 1));
12368 return fold_build2_loc (loc, code, type,
12369 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
12370 arg1);
12371 }
12372 }
12373
12374 /* If this is an NE or EQ comparison of zero against the result of a
12375 signed MOD operation whose second operand is a power of 2, make
12376 the MOD operation unsigned since it is simpler and equivalent. */
12377 if (integer_zerop (arg1)
12378 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
12379 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
12380 || TREE_CODE (arg0) == CEIL_MOD_EXPR
12381 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
12382 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
12383 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12384 {
12385 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
12386 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
12387 fold_convert_loc (loc, newtype,
12388 TREE_OPERAND (arg0, 0)),
12389 fold_convert_loc (loc, newtype,
12390 TREE_OPERAND (arg0, 1)));
12391
12392 return fold_build2_loc (loc, code, type, newmod,
12393 fold_convert_loc (loc, newtype, arg1));
12394 }
12395
12396 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
12397 C1 is a valid shift constant, and C2 is a power of two, i.e.
12398 a single bit. */
12399 if (TREE_CODE (arg0) == BIT_AND_EXPR
12400 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
12401 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
12402 == INTEGER_CST
12403 && integer_pow2p (TREE_OPERAND (arg0, 1))
12404 && integer_zerop (arg1))
12405 {
12406 tree itype = TREE_TYPE (arg0);
12407 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
12408 prec = TYPE_PRECISION (itype);
12409
12410 /* Check for a valid shift count. */
12411 if (wi::ltu_p (arg001, prec))
12412 {
12413 tree arg01 = TREE_OPERAND (arg0, 1);
12414 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12415 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
12416 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
12417 can be rewritten as (X & (C2 << C1)) != 0. */
12418 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
12419 {
12420 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
12421 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
12422 return fold_build2_loc (loc, code, type, tem,
12423 fold_convert_loc (loc, itype, arg1));
12424 }
12425 /* Otherwise, for signed (arithmetic) shifts,
12426 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
12427 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
12428 else if (!TYPE_UNSIGNED (itype))
12429 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
12430 arg000, build_int_cst (itype, 0));
12431 /* Otherwise, of unsigned (logical) shifts,
12432 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
12433 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
12434 else
12435 return omit_one_operand_loc (loc, type,
12436 code == EQ_EXPR ? integer_one_node
12437 : integer_zero_node,
12438 arg000);
12439 }
12440 }
12441
12442 /* If we have (A & C) == C where C is a power of 2, convert this into
12443 (A & C) != 0. Similarly for NE_EXPR. */
12444 if (TREE_CODE (arg0) == BIT_AND_EXPR
12445 && integer_pow2p (TREE_OPERAND (arg0, 1))
12446 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
12447 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12448 arg0, fold_convert_loc (loc, TREE_TYPE (arg0),
12449 integer_zero_node));
12450
12451 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
12452 bit, then fold the expression into A < 0 or A >= 0. */
12453 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1, type);
12454 if (tem)
12455 return tem;
12456
12457 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
12458 Similarly for NE_EXPR. */
12459 if (TREE_CODE (arg0) == BIT_AND_EXPR
12460 && TREE_CODE (arg1) == INTEGER_CST
12461 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12462 {
12463 tree notc = fold_build1_loc (loc, BIT_NOT_EXPR,
12464 TREE_TYPE (TREE_OPERAND (arg0, 1)),
12465 TREE_OPERAND (arg0, 1));
12466 tree dandnotc
12467 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
12468 fold_convert_loc (loc, TREE_TYPE (arg0), arg1),
12469 notc);
12470 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
12471 if (integer_nonzerop (dandnotc))
12472 return omit_one_operand_loc (loc, type, rslt, arg0);
12473 }
12474
12475 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
12476 Similarly for NE_EXPR. */
12477 if (TREE_CODE (arg0) == BIT_IOR_EXPR
12478 && TREE_CODE (arg1) == INTEGER_CST
12479 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12480 {
12481 tree notd = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg1), arg1);
12482 tree candnotd
12483 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
12484 TREE_OPERAND (arg0, 1),
12485 fold_convert_loc (loc, TREE_TYPE (arg0), notd));
12486 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
12487 if (integer_nonzerop (candnotd))
12488 return omit_one_operand_loc (loc, type, rslt, arg0);
12489 }
12490
12491 /* If this is a comparison of a field, we may be able to simplify it. */
12492 if ((TREE_CODE (arg0) == COMPONENT_REF
12493 || TREE_CODE (arg0) == BIT_FIELD_REF)
12494 /* Handle the constant case even without -O
12495 to make sure the warnings are given. */
12496 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
12497 {
12498 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
12499 if (t1)
12500 return t1;
12501 }
12502
12503 /* Optimize comparisons of strlen vs zero to a compare of the
12504 first character of the string vs zero. To wit,
12505 strlen(ptr) == 0 => *ptr == 0
12506 strlen(ptr) != 0 => *ptr != 0
12507 Other cases should reduce to one of these two (or a constant)
12508 due to the return value of strlen being unsigned. */
12509 if (TREE_CODE (arg0) == CALL_EXPR
12510 && integer_zerop (arg1))
12511 {
12512 tree fndecl = get_callee_fndecl (arg0);
12513
12514 if (fndecl
12515 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
12516 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
12517 && call_expr_nargs (arg0) == 1
12518 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
12519 {
12520 tree iref = build_fold_indirect_ref_loc (loc,
12521 CALL_EXPR_ARG (arg0, 0));
12522 return fold_build2_loc (loc, code, type, iref,
12523 build_int_cst (TREE_TYPE (iref), 0));
12524 }
12525 }
12526
12527 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
12528 of X. Similarly fold (X >> C) == 0 into X >= 0. */
12529 if (TREE_CODE (arg0) == RSHIFT_EXPR
12530 && integer_zerop (arg1)
12531 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12532 {
12533 tree arg00 = TREE_OPERAND (arg0, 0);
12534 tree arg01 = TREE_OPERAND (arg0, 1);
12535 tree itype = TREE_TYPE (arg00);
12536 if (wi::eq_p (arg01, element_precision (itype) - 1))
12537 {
12538 if (TYPE_UNSIGNED (itype))
12539 {
12540 itype = signed_type_for (itype);
12541 arg00 = fold_convert_loc (loc, itype, arg00);
12542 }
12543 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
12544 type, arg00, build_zero_cst (itype));
12545 }
12546 }
12547
12548 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
12549 if (integer_zerop (arg1)
12550 && TREE_CODE (arg0) == BIT_XOR_EXPR)
12551 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12552 TREE_OPERAND (arg0, 1));
12553
12554 /* (X ^ Y) == Y becomes X == 0. We know that Y has no side-effects. */
12555 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12556 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
12557 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12558 build_zero_cst (TREE_TYPE (arg0)));
12559 /* Likewise (X ^ Y) == X becomes Y == 0. X has no side-effects. */
12560 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12561 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12562 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
12563 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 1),
12564 build_zero_cst (TREE_TYPE (arg0)));
12565
12566 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
12567 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12568 && TREE_CODE (arg1) == INTEGER_CST
12569 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12570 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12571 fold_build2_loc (loc, BIT_XOR_EXPR, TREE_TYPE (arg1),
12572 TREE_OPERAND (arg0, 1), arg1));
12573
12574 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
12575 (X & C) == 0 when C is a single bit. */
12576 if (TREE_CODE (arg0) == BIT_AND_EXPR
12577 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
12578 && integer_zerop (arg1)
12579 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12580 {
12581 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
12582 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
12583 TREE_OPERAND (arg0, 1));
12584 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
12585 type, tem,
12586 fold_convert_loc (loc, TREE_TYPE (arg0),
12587 arg1));
12588 }
12589
12590 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
12591 constant C is a power of two, i.e. a single bit. */
12592 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12593 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12594 && integer_zerop (arg1)
12595 && integer_pow2p (TREE_OPERAND (arg0, 1))
12596 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12597 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12598 {
12599 tree arg00 = TREE_OPERAND (arg0, 0);
12600 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12601 arg00, build_int_cst (TREE_TYPE (arg00), 0));
12602 }
12603
12604 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
12605 when is C is a power of two, i.e. a single bit. */
12606 if (TREE_CODE (arg0) == BIT_AND_EXPR
12607 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
12608 && integer_zerop (arg1)
12609 && integer_pow2p (TREE_OPERAND (arg0, 1))
12610 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12611 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12612 {
12613 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12614 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
12615 arg000, TREE_OPERAND (arg0, 1));
12616 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12617 tem, build_int_cst (TREE_TYPE (tem), 0));
12618 }
12619
12620 if (integer_zerop (arg1)
12621 && tree_expr_nonzero_p (arg0))
12622 {
12623 tree res = constant_boolean_node (code==NE_EXPR, type);
12624 return omit_one_operand_loc (loc, type, res, arg0);
12625 }
12626
12627 /* Fold -X op -Y as X op Y, where op is eq/ne. */
12628 if (TREE_CODE (arg0) == NEGATE_EXPR
12629 && TREE_CODE (arg1) == NEGATE_EXPR)
12630 return fold_build2_loc (loc, code, type,
12631 TREE_OPERAND (arg0, 0),
12632 fold_convert_loc (loc, TREE_TYPE (arg0),
12633 TREE_OPERAND (arg1, 0)));
12634
12635 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
12636 if (TREE_CODE (arg0) == BIT_AND_EXPR
12637 && TREE_CODE (arg1) == BIT_AND_EXPR)
12638 {
12639 tree arg00 = TREE_OPERAND (arg0, 0);
12640 tree arg01 = TREE_OPERAND (arg0, 1);
12641 tree arg10 = TREE_OPERAND (arg1, 0);
12642 tree arg11 = TREE_OPERAND (arg1, 1);
12643 tree itype = TREE_TYPE (arg0);
12644
12645 if (operand_equal_p (arg01, arg11, 0))
12646 return fold_build2_loc (loc, code, type,
12647 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12648 fold_build2_loc (loc,
12649 BIT_XOR_EXPR, itype,
12650 arg00, arg10),
12651 arg01),
12652 build_zero_cst (itype));
12653
12654 if (operand_equal_p (arg01, arg10, 0))
12655 return fold_build2_loc (loc, code, type,
12656 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12657 fold_build2_loc (loc,
12658 BIT_XOR_EXPR, itype,
12659 arg00, arg11),
12660 arg01),
12661 build_zero_cst (itype));
12662
12663 if (operand_equal_p (arg00, arg11, 0))
12664 return fold_build2_loc (loc, code, type,
12665 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12666 fold_build2_loc (loc,
12667 BIT_XOR_EXPR, itype,
12668 arg01, arg10),
12669 arg00),
12670 build_zero_cst (itype));
12671
12672 if (operand_equal_p (arg00, arg10, 0))
12673 return fold_build2_loc (loc, code, type,
12674 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12675 fold_build2_loc (loc,
12676 BIT_XOR_EXPR, itype,
12677 arg01, arg11),
12678 arg00),
12679 build_zero_cst (itype));
12680 }
12681
12682 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12683 && TREE_CODE (arg1) == BIT_XOR_EXPR)
12684 {
12685 tree arg00 = TREE_OPERAND (arg0, 0);
12686 tree arg01 = TREE_OPERAND (arg0, 1);
12687 tree arg10 = TREE_OPERAND (arg1, 0);
12688 tree arg11 = TREE_OPERAND (arg1, 1);
12689 tree itype = TREE_TYPE (arg0);
12690
12691 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
12692 operand_equal_p guarantees no side-effects so we don't need
12693 to use omit_one_operand on Z. */
12694 if (operand_equal_p (arg01, arg11, 0))
12695 return fold_build2_loc (loc, code, type, arg00,
12696 fold_convert_loc (loc, TREE_TYPE (arg00),
12697 arg10));
12698 if (operand_equal_p (arg01, arg10, 0))
12699 return fold_build2_loc (loc, code, type, arg00,
12700 fold_convert_loc (loc, TREE_TYPE (arg00),
12701 arg11));
12702 if (operand_equal_p (arg00, arg11, 0))
12703 return fold_build2_loc (loc, code, type, arg01,
12704 fold_convert_loc (loc, TREE_TYPE (arg01),
12705 arg10));
12706 if (operand_equal_p (arg00, arg10, 0))
12707 return fold_build2_loc (loc, code, type, arg01,
12708 fold_convert_loc (loc, TREE_TYPE (arg01),
12709 arg11));
12710
12711 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
12712 if (TREE_CODE (arg01) == INTEGER_CST
12713 && TREE_CODE (arg11) == INTEGER_CST)
12714 {
12715 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
12716 fold_convert_loc (loc, itype, arg11));
12717 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
12718 return fold_build2_loc (loc, code, type, tem,
12719 fold_convert_loc (loc, itype, arg10));
12720 }
12721 }
12722
12723 /* Attempt to simplify equality/inequality comparisons of complex
12724 values. Only lower the comparison if the result is known or
12725 can be simplified to a single scalar comparison. */
12726 if ((TREE_CODE (arg0) == COMPLEX_EXPR
12727 || TREE_CODE (arg0) == COMPLEX_CST)
12728 && (TREE_CODE (arg1) == COMPLEX_EXPR
12729 || TREE_CODE (arg1) == COMPLEX_CST))
12730 {
12731 tree real0, imag0, real1, imag1;
12732 tree rcond, icond;
12733
12734 if (TREE_CODE (arg0) == COMPLEX_EXPR)
12735 {
12736 real0 = TREE_OPERAND (arg0, 0);
12737 imag0 = TREE_OPERAND (arg0, 1);
12738 }
12739 else
12740 {
12741 real0 = TREE_REALPART (arg0);
12742 imag0 = TREE_IMAGPART (arg0);
12743 }
12744
12745 if (TREE_CODE (arg1) == COMPLEX_EXPR)
12746 {
12747 real1 = TREE_OPERAND (arg1, 0);
12748 imag1 = TREE_OPERAND (arg1, 1);
12749 }
12750 else
12751 {
12752 real1 = TREE_REALPART (arg1);
12753 imag1 = TREE_IMAGPART (arg1);
12754 }
12755
12756 rcond = fold_binary_loc (loc, code, type, real0, real1);
12757 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
12758 {
12759 if (integer_zerop (rcond))
12760 {
12761 if (code == EQ_EXPR)
12762 return omit_two_operands_loc (loc, type, boolean_false_node,
12763 imag0, imag1);
12764 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
12765 }
12766 else
12767 {
12768 if (code == NE_EXPR)
12769 return omit_two_operands_loc (loc, type, boolean_true_node,
12770 imag0, imag1);
12771 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
12772 }
12773 }
12774
12775 icond = fold_binary_loc (loc, code, type, imag0, imag1);
12776 if (icond && TREE_CODE (icond) == INTEGER_CST)
12777 {
12778 if (integer_zerop (icond))
12779 {
12780 if (code == EQ_EXPR)
12781 return omit_two_operands_loc (loc, type, boolean_false_node,
12782 real0, real1);
12783 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
12784 }
12785 else
12786 {
12787 if (code == NE_EXPR)
12788 return omit_two_operands_loc (loc, type, boolean_true_node,
12789 real0, real1);
12790 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
12791 }
12792 }
12793 }
12794
12795 return NULL_TREE;
12796
12797 case LT_EXPR:
12798 case GT_EXPR:
12799 case LE_EXPR:
12800 case GE_EXPR:
12801 tem = fold_comparison (loc, code, type, op0, op1);
12802 if (tem != NULL_TREE)
12803 return tem;
12804
12805 /* Transform comparisons of the form X +- C CMP X. */
12806 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
12807 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12808 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
12809 && !HONOR_SNANS (arg0))
12810 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12811 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
12812 {
12813 tree arg01 = TREE_OPERAND (arg0, 1);
12814 enum tree_code code0 = TREE_CODE (arg0);
12815 int is_positive;
12816
12817 if (TREE_CODE (arg01) == REAL_CST)
12818 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
12819 else
12820 is_positive = tree_int_cst_sgn (arg01);
12821
12822 /* (X - c) > X becomes false. */
12823 if (code == GT_EXPR
12824 && ((code0 == MINUS_EXPR && is_positive >= 0)
12825 || (code0 == PLUS_EXPR && is_positive <= 0)))
12826 {
12827 if (TREE_CODE (arg01) == INTEGER_CST
12828 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12829 fold_overflow_warning (("assuming signed overflow does not "
12830 "occur when assuming that (X - c) > X "
12831 "is always false"),
12832 WARN_STRICT_OVERFLOW_ALL);
12833 return constant_boolean_node (0, type);
12834 }
12835
12836 /* Likewise (X + c) < X becomes false. */
12837 if (code == LT_EXPR
12838 && ((code0 == PLUS_EXPR && is_positive >= 0)
12839 || (code0 == MINUS_EXPR && is_positive <= 0)))
12840 {
12841 if (TREE_CODE (arg01) == INTEGER_CST
12842 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12843 fold_overflow_warning (("assuming signed overflow does not "
12844 "occur when assuming that "
12845 "(X + c) < X is always false"),
12846 WARN_STRICT_OVERFLOW_ALL);
12847 return constant_boolean_node (0, type);
12848 }
12849
12850 /* Convert (X - c) <= X to true. */
12851 if (!HONOR_NANS (arg1)
12852 && code == LE_EXPR
12853 && ((code0 == MINUS_EXPR && is_positive >= 0)
12854 || (code0 == PLUS_EXPR && is_positive <= 0)))
12855 {
12856 if (TREE_CODE (arg01) == INTEGER_CST
12857 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12858 fold_overflow_warning (("assuming signed overflow does not "
12859 "occur when assuming that "
12860 "(X - c) <= X is always true"),
12861 WARN_STRICT_OVERFLOW_ALL);
12862 return constant_boolean_node (1, type);
12863 }
12864
12865 /* Convert (X + c) >= X to true. */
12866 if (!HONOR_NANS (arg1)
12867 && code == GE_EXPR
12868 && ((code0 == PLUS_EXPR && is_positive >= 0)
12869 || (code0 == MINUS_EXPR && is_positive <= 0)))
12870 {
12871 if (TREE_CODE (arg01) == INTEGER_CST
12872 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12873 fold_overflow_warning (("assuming signed overflow does not "
12874 "occur when assuming that "
12875 "(X + c) >= X is always true"),
12876 WARN_STRICT_OVERFLOW_ALL);
12877 return constant_boolean_node (1, type);
12878 }
12879
12880 if (TREE_CODE (arg01) == INTEGER_CST)
12881 {
12882 /* Convert X + c > X and X - c < X to true for integers. */
12883 if (code == GT_EXPR
12884 && ((code0 == PLUS_EXPR && is_positive > 0)
12885 || (code0 == MINUS_EXPR && is_positive < 0)))
12886 {
12887 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12888 fold_overflow_warning (("assuming signed overflow does "
12889 "not occur when assuming that "
12890 "(X + c) > X is always true"),
12891 WARN_STRICT_OVERFLOW_ALL);
12892 return constant_boolean_node (1, type);
12893 }
12894
12895 if (code == LT_EXPR
12896 && ((code0 == MINUS_EXPR && is_positive > 0)
12897 || (code0 == PLUS_EXPR && is_positive < 0)))
12898 {
12899 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12900 fold_overflow_warning (("assuming signed overflow does "
12901 "not occur when assuming that "
12902 "(X - c) < X is always true"),
12903 WARN_STRICT_OVERFLOW_ALL);
12904 return constant_boolean_node (1, type);
12905 }
12906
12907 /* Convert X + c <= X and X - c >= X to false for integers. */
12908 if (code == LE_EXPR
12909 && ((code0 == PLUS_EXPR && is_positive > 0)
12910 || (code0 == MINUS_EXPR && is_positive < 0)))
12911 {
12912 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12913 fold_overflow_warning (("assuming signed overflow does "
12914 "not occur when assuming that "
12915 "(X + c) <= X is always false"),
12916 WARN_STRICT_OVERFLOW_ALL);
12917 return constant_boolean_node (0, type);
12918 }
12919
12920 if (code == GE_EXPR
12921 && ((code0 == MINUS_EXPR && is_positive > 0)
12922 || (code0 == PLUS_EXPR && is_positive < 0)))
12923 {
12924 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12925 fold_overflow_warning (("assuming signed overflow does "
12926 "not occur when assuming that "
12927 "(X - c) >= X is always false"),
12928 WARN_STRICT_OVERFLOW_ALL);
12929 return constant_boolean_node (0, type);
12930 }
12931 }
12932 }
12933
12934 /* Comparisons with the highest or lowest possible integer of
12935 the specified precision will have known values. */
12936 {
12937 tree arg1_type = TREE_TYPE (arg1);
12938 unsigned int prec = TYPE_PRECISION (arg1_type);
12939
12940 if (TREE_CODE (arg1) == INTEGER_CST
12941 && (INTEGRAL_TYPE_P (arg1_type) || POINTER_TYPE_P (arg1_type)))
12942 {
12943 wide_int max = wi::max_value (arg1_type);
12944 wide_int signed_max = wi::max_value (prec, SIGNED);
12945 wide_int min = wi::min_value (arg1_type);
12946
12947 if (wi::eq_p (arg1, max))
12948 switch (code)
12949 {
12950 case GT_EXPR:
12951 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12952
12953 case GE_EXPR:
12954 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
12955
12956 case LE_EXPR:
12957 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12958
12959 case LT_EXPR:
12960 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
12961
12962 /* The GE_EXPR and LT_EXPR cases above are not normally
12963 reached because of previous transformations. */
12964
12965 default:
12966 break;
12967 }
12968 else if (wi::eq_p (arg1, max - 1))
12969 switch (code)
12970 {
12971 case GT_EXPR:
12972 arg1 = const_binop (PLUS_EXPR, arg1,
12973 build_int_cst (TREE_TYPE (arg1), 1));
12974 return fold_build2_loc (loc, EQ_EXPR, type,
12975 fold_convert_loc (loc,
12976 TREE_TYPE (arg1), arg0),
12977 arg1);
12978 case LE_EXPR:
12979 arg1 = const_binop (PLUS_EXPR, arg1,
12980 build_int_cst (TREE_TYPE (arg1), 1));
12981 return fold_build2_loc (loc, NE_EXPR, type,
12982 fold_convert_loc (loc, TREE_TYPE (arg1),
12983 arg0),
12984 arg1);
12985 default:
12986 break;
12987 }
12988 else if (wi::eq_p (arg1, min))
12989 switch (code)
12990 {
12991 case LT_EXPR:
12992 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12993
12994 case LE_EXPR:
12995 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
12996
12997 case GE_EXPR:
12998 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12999
13000 case GT_EXPR:
13001 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
13002
13003 default:
13004 break;
13005 }
13006 else if (wi::eq_p (arg1, min + 1))
13007 switch (code)
13008 {
13009 case GE_EXPR:
13010 arg1 = const_binop (MINUS_EXPR, arg1,
13011 build_int_cst (TREE_TYPE (arg1), 1));
13012 return fold_build2_loc (loc, NE_EXPR, type,
13013 fold_convert_loc (loc,
13014 TREE_TYPE (arg1), arg0),
13015 arg1);
13016 case LT_EXPR:
13017 arg1 = const_binop (MINUS_EXPR, arg1,
13018 build_int_cst (TREE_TYPE (arg1), 1));
13019 return fold_build2_loc (loc, EQ_EXPR, type,
13020 fold_convert_loc (loc, TREE_TYPE (arg1),
13021 arg0),
13022 arg1);
13023 default:
13024 break;
13025 }
13026
13027 else if (wi::eq_p (arg1, signed_max)
13028 && TYPE_UNSIGNED (arg1_type)
13029 /* We will flip the signedness of the comparison operator
13030 associated with the mode of arg1, so the sign bit is
13031 specified by this mode. Check that arg1 is the signed
13032 max associated with this sign bit. */
13033 && prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
13034 /* signed_type does not work on pointer types. */
13035 && INTEGRAL_TYPE_P (arg1_type))
13036 {
13037 /* The following case also applies to X < signed_max+1
13038 and X >= signed_max+1 because previous transformations. */
13039 if (code == LE_EXPR || code == GT_EXPR)
13040 {
13041 tree st = signed_type_for (arg1_type);
13042 return fold_build2_loc (loc,
13043 code == LE_EXPR ? GE_EXPR : LT_EXPR,
13044 type, fold_convert_loc (loc, st, arg0),
13045 build_int_cst (st, 0));
13046 }
13047 }
13048 }
13049 }
13050
13051 /* If we are comparing an ABS_EXPR with a constant, we can
13052 convert all the cases into explicit comparisons, but they may
13053 well not be faster than doing the ABS and one comparison.
13054 But ABS (X) <= C is a range comparison, which becomes a subtraction
13055 and a comparison, and is probably faster. */
13056 if (code == LE_EXPR
13057 && TREE_CODE (arg1) == INTEGER_CST
13058 && TREE_CODE (arg0) == ABS_EXPR
13059 && ! TREE_SIDE_EFFECTS (arg0)
13060 && (0 != (tem = negate_expr (arg1)))
13061 && TREE_CODE (tem) == INTEGER_CST
13062 && !TREE_OVERFLOW (tem))
13063 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
13064 build2 (GE_EXPR, type,
13065 TREE_OPERAND (arg0, 0), tem),
13066 build2 (LE_EXPR, type,
13067 TREE_OPERAND (arg0, 0), arg1));
13068
13069 /* Convert ABS_EXPR<x> >= 0 to true. */
13070 strict_overflow_p = false;
13071 if (code == GE_EXPR
13072 && (integer_zerop (arg1)
13073 || (! HONOR_NANS (arg0)
13074 && real_zerop (arg1)))
13075 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
13076 {
13077 if (strict_overflow_p)
13078 fold_overflow_warning (("assuming signed overflow does not occur "
13079 "when simplifying comparison of "
13080 "absolute value and zero"),
13081 WARN_STRICT_OVERFLOW_CONDITIONAL);
13082 return omit_one_operand_loc (loc, type,
13083 constant_boolean_node (true, type),
13084 arg0);
13085 }
13086
13087 /* Convert ABS_EXPR<x> < 0 to false. */
13088 strict_overflow_p = false;
13089 if (code == LT_EXPR
13090 && (integer_zerop (arg1) || real_zerop (arg1))
13091 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
13092 {
13093 if (strict_overflow_p)
13094 fold_overflow_warning (("assuming signed overflow does not occur "
13095 "when simplifying comparison of "
13096 "absolute value and zero"),
13097 WARN_STRICT_OVERFLOW_CONDITIONAL);
13098 return omit_one_operand_loc (loc, type,
13099 constant_boolean_node (false, type),
13100 arg0);
13101 }
13102
13103 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
13104 and similarly for >= into !=. */
13105 if ((code == LT_EXPR || code == GE_EXPR)
13106 && TYPE_UNSIGNED (TREE_TYPE (arg0))
13107 && TREE_CODE (arg1) == LSHIFT_EXPR
13108 && integer_onep (TREE_OPERAND (arg1, 0)))
13109 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
13110 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
13111 TREE_OPERAND (arg1, 1)),
13112 build_zero_cst (TREE_TYPE (arg0)));
13113
13114 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
13115 otherwise Y might be >= # of bits in X's type and thus e.g.
13116 (unsigned char) (1 << Y) for Y 15 might be 0.
13117 If the cast is widening, then 1 << Y should have unsigned type,
13118 otherwise if Y is number of bits in the signed shift type minus 1,
13119 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
13120 31 might be 0xffffffff80000000. */
13121 if ((code == LT_EXPR || code == GE_EXPR)
13122 && TYPE_UNSIGNED (TREE_TYPE (arg0))
13123 && CONVERT_EXPR_P (arg1)
13124 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
13125 && (element_precision (TREE_TYPE (arg1))
13126 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
13127 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
13128 || (element_precision (TREE_TYPE (arg1))
13129 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
13130 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
13131 {
13132 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
13133 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
13134 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
13135 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
13136 build_zero_cst (TREE_TYPE (arg0)));
13137 }
13138
13139 return NULL_TREE;
13140
13141 case UNORDERED_EXPR:
13142 case ORDERED_EXPR:
13143 case UNLT_EXPR:
13144 case UNLE_EXPR:
13145 case UNGT_EXPR:
13146 case UNGE_EXPR:
13147 case UNEQ_EXPR:
13148 case LTGT_EXPR:
13149 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
13150 {
13151 t1 = fold_relational_const (code, type, arg0, arg1);
13152 if (t1 != NULL_TREE)
13153 return t1;
13154 }
13155
13156 /* If the first operand is NaN, the result is constant. */
13157 if (TREE_CODE (arg0) == REAL_CST
13158 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
13159 && (code != LTGT_EXPR || ! flag_trapping_math))
13160 {
13161 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
13162 ? integer_zero_node
13163 : integer_one_node;
13164 return omit_one_operand_loc (loc, type, t1, arg1);
13165 }
13166
13167 /* If the second operand is NaN, the result is constant. */
13168 if (TREE_CODE (arg1) == REAL_CST
13169 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
13170 && (code != LTGT_EXPR || ! flag_trapping_math))
13171 {
13172 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
13173 ? integer_zero_node
13174 : integer_one_node;
13175 return omit_one_operand_loc (loc, type, t1, arg0);
13176 }
13177
13178 /* Simplify unordered comparison of something with itself. */
13179 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
13180 && operand_equal_p (arg0, arg1, 0))
13181 return constant_boolean_node (1, type);
13182
13183 if (code == LTGT_EXPR
13184 && !flag_trapping_math
13185 && operand_equal_p (arg0, arg1, 0))
13186 return constant_boolean_node (0, type);
13187
13188 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
13189 {
13190 tree targ0 = strip_float_extensions (arg0);
13191 tree targ1 = strip_float_extensions (arg1);
13192 tree newtype = TREE_TYPE (targ0);
13193
13194 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
13195 newtype = TREE_TYPE (targ1);
13196
13197 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
13198 return fold_build2_loc (loc, code, type,
13199 fold_convert_loc (loc, newtype, targ0),
13200 fold_convert_loc (loc, newtype, targ1));
13201 }
13202
13203 return NULL_TREE;
13204
13205 case COMPOUND_EXPR:
13206 /* When pedantic, a compound expression can be neither an lvalue
13207 nor an integer constant expression. */
13208 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
13209 return NULL_TREE;
13210 /* Don't let (0, 0) be null pointer constant. */
13211 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
13212 : fold_convert_loc (loc, type, arg1);
13213 return pedantic_non_lvalue_loc (loc, tem);
13214
13215 case ASSERT_EXPR:
13216 /* An ASSERT_EXPR should never be passed to fold_binary. */
13217 gcc_unreachable ();
13218
13219 default:
13220 return NULL_TREE;
13221 } /* switch (code) */
13222 }
13223
13224 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
13225 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
13226 of GOTO_EXPR. */
13227
13228 static tree
13229 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
13230 {
13231 switch (TREE_CODE (*tp))
13232 {
13233 case LABEL_EXPR:
13234 return *tp;
13235
13236 case GOTO_EXPR:
13237 *walk_subtrees = 0;
13238
13239 /* ... fall through ... */
13240
13241 default:
13242 return NULL_TREE;
13243 }
13244 }
13245
13246 /* Return whether the sub-tree ST contains a label which is accessible from
13247 outside the sub-tree. */
13248
13249 static bool
13250 contains_label_p (tree st)
13251 {
13252 return
13253 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
13254 }
13255
13256 /* Fold a ternary expression of code CODE and type TYPE with operands
13257 OP0, OP1, and OP2. Return the folded expression if folding is
13258 successful. Otherwise, return NULL_TREE. */
13259
13260 tree
13261 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
13262 tree op0, tree op1, tree op2)
13263 {
13264 tree tem;
13265 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
13266 enum tree_code_class kind = TREE_CODE_CLASS (code);
13267
13268 gcc_assert (IS_EXPR_CODE_CLASS (kind)
13269 && TREE_CODE_LENGTH (code) == 3);
13270
13271 /* If this is a commutative operation, and OP0 is a constant, move it
13272 to OP1 to reduce the number of tests below. */
13273 if (commutative_ternary_tree_code (code)
13274 && tree_swap_operands_p (op0, op1, true))
13275 return fold_build3_loc (loc, code, type, op1, op0, op2);
13276
13277 tem = generic_simplify (loc, code, type, op0, op1, op2);
13278 if (tem)
13279 return tem;
13280
13281 /* Strip any conversions that don't change the mode. This is safe
13282 for every expression, except for a comparison expression because
13283 its signedness is derived from its operands. So, in the latter
13284 case, only strip conversions that don't change the signedness.
13285
13286 Note that this is done as an internal manipulation within the
13287 constant folder, in order to find the simplest representation of
13288 the arguments so that their form can be studied. In any cases,
13289 the appropriate type conversions should be put back in the tree
13290 that will get out of the constant folder. */
13291 if (op0)
13292 {
13293 arg0 = op0;
13294 STRIP_NOPS (arg0);
13295 }
13296
13297 if (op1)
13298 {
13299 arg1 = op1;
13300 STRIP_NOPS (arg1);
13301 }
13302
13303 if (op2)
13304 {
13305 arg2 = op2;
13306 STRIP_NOPS (arg2);
13307 }
13308
13309 switch (code)
13310 {
13311 case COMPONENT_REF:
13312 if (TREE_CODE (arg0) == CONSTRUCTOR
13313 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
13314 {
13315 unsigned HOST_WIDE_INT idx;
13316 tree field, value;
13317 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
13318 if (field == arg1)
13319 return value;
13320 }
13321 return NULL_TREE;
13322
13323 case COND_EXPR:
13324 case VEC_COND_EXPR:
13325 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
13326 so all simple results must be passed through pedantic_non_lvalue. */
13327 if (TREE_CODE (arg0) == INTEGER_CST)
13328 {
13329 tree unused_op = integer_zerop (arg0) ? op1 : op2;
13330 tem = integer_zerop (arg0) ? op2 : op1;
13331 /* Only optimize constant conditions when the selected branch
13332 has the same type as the COND_EXPR. This avoids optimizing
13333 away "c ? x : throw", where the throw has a void type.
13334 Avoid throwing away that operand which contains label. */
13335 if ((!TREE_SIDE_EFFECTS (unused_op)
13336 || !contains_label_p (unused_op))
13337 && (! VOID_TYPE_P (TREE_TYPE (tem))
13338 || VOID_TYPE_P (type)))
13339 return pedantic_non_lvalue_loc (loc, tem);
13340 return NULL_TREE;
13341 }
13342 else if (TREE_CODE (arg0) == VECTOR_CST)
13343 {
13344 if ((TREE_CODE (arg1) == VECTOR_CST
13345 || TREE_CODE (arg1) == CONSTRUCTOR)
13346 && (TREE_CODE (arg2) == VECTOR_CST
13347 || TREE_CODE (arg2) == CONSTRUCTOR))
13348 {
13349 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
13350 unsigned char *sel = XALLOCAVEC (unsigned char, nelts);
13351 gcc_assert (nelts == VECTOR_CST_NELTS (arg0));
13352 for (i = 0; i < nelts; i++)
13353 {
13354 tree val = VECTOR_CST_ELT (arg0, i);
13355 if (integer_all_onesp (val))
13356 sel[i] = i;
13357 else if (integer_zerop (val))
13358 sel[i] = nelts + i;
13359 else /* Currently unreachable. */
13360 return NULL_TREE;
13361 }
13362 tree t = fold_vec_perm (type, arg1, arg2, sel);
13363 if (t != NULL_TREE)
13364 return t;
13365 }
13366 }
13367
13368 /* If we have A op B ? A : C, we may be able to convert this to a
13369 simpler expression, depending on the operation and the values
13370 of B and C. Signed zeros prevent all of these transformations,
13371 for reasons given above each one.
13372
13373 Also try swapping the arguments and inverting the conditional. */
13374 if (COMPARISON_CLASS_P (arg0)
13375 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
13376 arg1, TREE_OPERAND (arg0, 1))
13377 && !HONOR_SIGNED_ZEROS (element_mode (arg1)))
13378 {
13379 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
13380 if (tem)
13381 return tem;
13382 }
13383
13384 if (COMPARISON_CLASS_P (arg0)
13385 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
13386 op2,
13387 TREE_OPERAND (arg0, 1))
13388 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
13389 {
13390 location_t loc0 = expr_location_or (arg0, loc);
13391 tem = fold_invert_truthvalue (loc0, arg0);
13392 if (tem && COMPARISON_CLASS_P (tem))
13393 {
13394 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
13395 if (tem)
13396 return tem;
13397 }
13398 }
13399
13400 /* If the second operand is simpler than the third, swap them
13401 since that produces better jump optimization results. */
13402 if (truth_value_p (TREE_CODE (arg0))
13403 && tree_swap_operands_p (op1, op2, false))
13404 {
13405 location_t loc0 = expr_location_or (arg0, loc);
13406 /* See if this can be inverted. If it can't, possibly because
13407 it was a floating-point inequality comparison, don't do
13408 anything. */
13409 tem = fold_invert_truthvalue (loc0, arg0);
13410 if (tem)
13411 return fold_build3_loc (loc, code, type, tem, op2, op1);
13412 }
13413
13414 /* Convert A ? 1 : 0 to simply A. */
13415 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
13416 : (integer_onep (op1)
13417 && !VECTOR_TYPE_P (type)))
13418 && integer_zerop (op2)
13419 /* If we try to convert OP0 to our type, the
13420 call to fold will try to move the conversion inside
13421 a COND, which will recurse. In that case, the COND_EXPR
13422 is probably the best choice, so leave it alone. */
13423 && type == TREE_TYPE (arg0))
13424 return pedantic_non_lvalue_loc (loc, arg0);
13425
13426 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
13427 over COND_EXPR in cases such as floating point comparisons. */
13428 if (integer_zerop (op1)
13429 && (code == VEC_COND_EXPR ? integer_all_onesp (op2)
13430 : (integer_onep (op2)
13431 && !VECTOR_TYPE_P (type)))
13432 && truth_value_p (TREE_CODE (arg0)))
13433 return pedantic_non_lvalue_loc (loc,
13434 fold_convert_loc (loc, type,
13435 invert_truthvalue_loc (loc,
13436 arg0)));
13437
13438 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
13439 if (TREE_CODE (arg0) == LT_EXPR
13440 && integer_zerop (TREE_OPERAND (arg0, 1))
13441 && integer_zerop (op2)
13442 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
13443 {
13444 /* sign_bit_p looks through both zero and sign extensions,
13445 but for this optimization only sign extensions are
13446 usable. */
13447 tree tem2 = TREE_OPERAND (arg0, 0);
13448 while (tem != tem2)
13449 {
13450 if (TREE_CODE (tem2) != NOP_EXPR
13451 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
13452 {
13453 tem = NULL_TREE;
13454 break;
13455 }
13456 tem2 = TREE_OPERAND (tem2, 0);
13457 }
13458 /* sign_bit_p only checks ARG1 bits within A's precision.
13459 If <sign bit of A> has wider type than A, bits outside
13460 of A's precision in <sign bit of A> need to be checked.
13461 If they are all 0, this optimization needs to be done
13462 in unsigned A's type, if they are all 1 in signed A's type,
13463 otherwise this can't be done. */
13464 if (tem
13465 && TYPE_PRECISION (TREE_TYPE (tem))
13466 < TYPE_PRECISION (TREE_TYPE (arg1))
13467 && TYPE_PRECISION (TREE_TYPE (tem))
13468 < TYPE_PRECISION (type))
13469 {
13470 int inner_width, outer_width;
13471 tree tem_type;
13472
13473 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
13474 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
13475 if (outer_width > TYPE_PRECISION (type))
13476 outer_width = TYPE_PRECISION (type);
13477
13478 wide_int mask = wi::shifted_mask
13479 (inner_width, outer_width - inner_width, false,
13480 TYPE_PRECISION (TREE_TYPE (arg1)));
13481
13482 wide_int common = mask & arg1;
13483 if (common == mask)
13484 {
13485 tem_type = signed_type_for (TREE_TYPE (tem));
13486 tem = fold_convert_loc (loc, tem_type, tem);
13487 }
13488 else if (common == 0)
13489 {
13490 tem_type = unsigned_type_for (TREE_TYPE (tem));
13491 tem = fold_convert_loc (loc, tem_type, tem);
13492 }
13493 else
13494 tem = NULL;
13495 }
13496
13497 if (tem)
13498 return
13499 fold_convert_loc (loc, type,
13500 fold_build2_loc (loc, BIT_AND_EXPR,
13501 TREE_TYPE (tem), tem,
13502 fold_convert_loc (loc,
13503 TREE_TYPE (tem),
13504 arg1)));
13505 }
13506
13507 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
13508 already handled above. */
13509 if (TREE_CODE (arg0) == BIT_AND_EXPR
13510 && integer_onep (TREE_OPERAND (arg0, 1))
13511 && integer_zerop (op2)
13512 && integer_pow2p (arg1))
13513 {
13514 tree tem = TREE_OPERAND (arg0, 0);
13515 STRIP_NOPS (tem);
13516 if (TREE_CODE (tem) == RSHIFT_EXPR
13517 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
13518 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
13519 tree_to_uhwi (TREE_OPERAND (tem, 1)))
13520 return fold_build2_loc (loc, BIT_AND_EXPR, type,
13521 TREE_OPERAND (tem, 0), arg1);
13522 }
13523
13524 /* A & N ? N : 0 is simply A & N if N is a power of two. This
13525 is probably obsolete because the first operand should be a
13526 truth value (that's why we have the two cases above), but let's
13527 leave it in until we can confirm this for all front-ends. */
13528 if (integer_zerop (op2)
13529 && TREE_CODE (arg0) == NE_EXPR
13530 && integer_zerop (TREE_OPERAND (arg0, 1))
13531 && integer_pow2p (arg1)
13532 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
13533 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
13534 arg1, OEP_ONLY_CONST))
13535 return pedantic_non_lvalue_loc (loc,
13536 fold_convert_loc (loc, type,
13537 TREE_OPERAND (arg0, 0)));
13538
13539 /* Disable the transformations below for vectors, since
13540 fold_binary_op_with_conditional_arg may undo them immediately,
13541 yielding an infinite loop. */
13542 if (code == VEC_COND_EXPR)
13543 return NULL_TREE;
13544
13545 /* Convert A ? B : 0 into A && B if A and B are truth values. */
13546 if (integer_zerop (op2)
13547 && truth_value_p (TREE_CODE (arg0))
13548 && truth_value_p (TREE_CODE (arg1))
13549 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
13550 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
13551 : TRUTH_ANDIF_EXPR,
13552 type, fold_convert_loc (loc, type, arg0), arg1);
13553
13554 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
13555 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
13556 && truth_value_p (TREE_CODE (arg0))
13557 && truth_value_p (TREE_CODE (arg1))
13558 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
13559 {
13560 location_t loc0 = expr_location_or (arg0, loc);
13561 /* Only perform transformation if ARG0 is easily inverted. */
13562 tem = fold_invert_truthvalue (loc0, arg0);
13563 if (tem)
13564 return fold_build2_loc (loc, code == VEC_COND_EXPR
13565 ? BIT_IOR_EXPR
13566 : TRUTH_ORIF_EXPR,
13567 type, fold_convert_loc (loc, type, tem),
13568 arg1);
13569 }
13570
13571 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
13572 if (integer_zerop (arg1)
13573 && truth_value_p (TREE_CODE (arg0))
13574 && truth_value_p (TREE_CODE (op2))
13575 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
13576 {
13577 location_t loc0 = expr_location_or (arg0, loc);
13578 /* Only perform transformation if ARG0 is easily inverted. */
13579 tem = fold_invert_truthvalue (loc0, arg0);
13580 if (tem)
13581 return fold_build2_loc (loc, code == VEC_COND_EXPR
13582 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
13583 type, fold_convert_loc (loc, type, tem),
13584 op2);
13585 }
13586
13587 /* Convert A ? 1 : B into A || B if A and B are truth values. */
13588 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
13589 && truth_value_p (TREE_CODE (arg0))
13590 && truth_value_p (TREE_CODE (op2))
13591 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
13592 return fold_build2_loc (loc, code == VEC_COND_EXPR
13593 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
13594 type, fold_convert_loc (loc, type, arg0), op2);
13595
13596 return NULL_TREE;
13597
13598 case CALL_EXPR:
13599 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
13600 of fold_ternary on them. */
13601 gcc_unreachable ();
13602
13603 case BIT_FIELD_REF:
13604 if ((TREE_CODE (arg0) == VECTOR_CST
13605 || (TREE_CODE (arg0) == CONSTRUCTOR
13606 && TREE_CODE (TREE_TYPE (arg0)) == VECTOR_TYPE))
13607 && (type == TREE_TYPE (TREE_TYPE (arg0))
13608 || (TREE_CODE (type) == VECTOR_TYPE
13609 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
13610 {
13611 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
13612 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
13613 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
13614 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
13615
13616 if (n != 0
13617 && (idx % width) == 0
13618 && (n % width) == 0
13619 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
13620 {
13621 idx = idx / width;
13622 n = n / width;
13623
13624 if (TREE_CODE (arg0) == VECTOR_CST)
13625 {
13626 if (n == 1)
13627 return VECTOR_CST_ELT (arg0, idx);
13628
13629 tree *vals = XALLOCAVEC (tree, n);
13630 for (unsigned i = 0; i < n; ++i)
13631 vals[i] = VECTOR_CST_ELT (arg0, idx + i);
13632 return build_vector (type, vals);
13633 }
13634
13635 /* Constructor elements can be subvectors. */
13636 unsigned HOST_WIDE_INT k = 1;
13637 if (CONSTRUCTOR_NELTS (arg0) != 0)
13638 {
13639 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (arg0, 0)->value);
13640 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
13641 k = TYPE_VECTOR_SUBPARTS (cons_elem);
13642 }
13643
13644 /* We keep an exact subset of the constructor elements. */
13645 if ((idx % k) == 0 && (n % k) == 0)
13646 {
13647 if (CONSTRUCTOR_NELTS (arg0) == 0)
13648 return build_constructor (type, NULL);
13649 idx /= k;
13650 n /= k;
13651 if (n == 1)
13652 {
13653 if (idx < CONSTRUCTOR_NELTS (arg0))
13654 return CONSTRUCTOR_ELT (arg0, idx)->value;
13655 return build_zero_cst (type);
13656 }
13657
13658 vec<constructor_elt, va_gc> *vals;
13659 vec_alloc (vals, n);
13660 for (unsigned i = 0;
13661 i < n && idx + i < CONSTRUCTOR_NELTS (arg0);
13662 ++i)
13663 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
13664 CONSTRUCTOR_ELT
13665 (arg0, idx + i)->value);
13666 return build_constructor (type, vals);
13667 }
13668 /* The bitfield references a single constructor element. */
13669 else if (idx + n <= (idx / k + 1) * k)
13670 {
13671 if (CONSTRUCTOR_NELTS (arg0) <= idx / k)
13672 return build_zero_cst (type);
13673 else if (n == k)
13674 return CONSTRUCTOR_ELT (arg0, idx / k)->value;
13675 else
13676 return fold_build3_loc (loc, code, type,
13677 CONSTRUCTOR_ELT (arg0, idx / k)->value, op1,
13678 build_int_cst (TREE_TYPE (op2), (idx % k) * width));
13679 }
13680 }
13681 }
13682
13683 /* A bit-field-ref that referenced the full argument can be stripped. */
13684 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
13685 && TYPE_PRECISION (TREE_TYPE (arg0)) == tree_to_uhwi (arg1)
13686 && integer_zerop (op2))
13687 return fold_convert_loc (loc, type, arg0);
13688
13689 /* On constants we can use native encode/interpret to constant
13690 fold (nearly) all BIT_FIELD_REFs. */
13691 if (CONSTANT_CLASS_P (arg0)
13692 && can_native_interpret_type_p (type)
13693 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (arg0)))
13694 /* This limitation should not be necessary, we just need to
13695 round this up to mode size. */
13696 && tree_to_uhwi (op1) % BITS_PER_UNIT == 0
13697 /* Need bit-shifting of the buffer to relax the following. */
13698 && tree_to_uhwi (op2) % BITS_PER_UNIT == 0)
13699 {
13700 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
13701 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
13702 unsigned HOST_WIDE_INT clen;
13703 clen = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (arg0)));
13704 /* ??? We cannot tell native_encode_expr to start at
13705 some random byte only. So limit us to a reasonable amount
13706 of work. */
13707 if (clen <= 4096)
13708 {
13709 unsigned char *b = XALLOCAVEC (unsigned char, clen);
13710 unsigned HOST_WIDE_INT len = native_encode_expr (arg0, b, clen);
13711 if (len > 0
13712 && len * BITS_PER_UNIT >= bitpos + bitsize)
13713 {
13714 tree v = native_interpret_expr (type,
13715 b + bitpos / BITS_PER_UNIT,
13716 bitsize / BITS_PER_UNIT);
13717 if (v)
13718 return v;
13719 }
13720 }
13721 }
13722
13723 return NULL_TREE;
13724
13725 case FMA_EXPR:
13726 /* For integers we can decompose the FMA if possible. */
13727 if (TREE_CODE (arg0) == INTEGER_CST
13728 && TREE_CODE (arg1) == INTEGER_CST)
13729 return fold_build2_loc (loc, PLUS_EXPR, type,
13730 const_binop (MULT_EXPR, arg0, arg1), arg2);
13731 if (integer_zerop (arg2))
13732 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
13733
13734 return fold_fma (loc, type, arg0, arg1, arg2);
13735
13736 case VEC_PERM_EXPR:
13737 if (TREE_CODE (arg2) == VECTOR_CST)
13738 {
13739 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i, mask, mask2;
13740 unsigned char *sel = XALLOCAVEC (unsigned char, 2 * nelts);
13741 unsigned char *sel2 = sel + nelts;
13742 bool need_mask_canon = false;
13743 bool need_mask_canon2 = false;
13744 bool all_in_vec0 = true;
13745 bool all_in_vec1 = true;
13746 bool maybe_identity = true;
13747 bool single_arg = (op0 == op1);
13748 bool changed = false;
13749
13750 mask2 = 2 * nelts - 1;
13751 mask = single_arg ? (nelts - 1) : mask2;
13752 gcc_assert (nelts == VECTOR_CST_NELTS (arg2));
13753 for (i = 0; i < nelts; i++)
13754 {
13755 tree val = VECTOR_CST_ELT (arg2, i);
13756 if (TREE_CODE (val) != INTEGER_CST)
13757 return NULL_TREE;
13758
13759 /* Make sure that the perm value is in an acceptable
13760 range. */
13761 wide_int t = val;
13762 need_mask_canon |= wi::gtu_p (t, mask);
13763 need_mask_canon2 |= wi::gtu_p (t, mask2);
13764 sel[i] = t.to_uhwi () & mask;
13765 sel2[i] = t.to_uhwi () & mask2;
13766
13767 if (sel[i] < nelts)
13768 all_in_vec1 = false;
13769 else
13770 all_in_vec0 = false;
13771
13772 if ((sel[i] & (nelts-1)) != i)
13773 maybe_identity = false;
13774 }
13775
13776 if (maybe_identity)
13777 {
13778 if (all_in_vec0)
13779 return op0;
13780 if (all_in_vec1)
13781 return op1;
13782 }
13783
13784 if (all_in_vec0)
13785 op1 = op0;
13786 else if (all_in_vec1)
13787 {
13788 op0 = op1;
13789 for (i = 0; i < nelts; i++)
13790 sel[i] -= nelts;
13791 need_mask_canon = true;
13792 }
13793
13794 if ((TREE_CODE (op0) == VECTOR_CST
13795 || TREE_CODE (op0) == CONSTRUCTOR)
13796 && (TREE_CODE (op1) == VECTOR_CST
13797 || TREE_CODE (op1) == CONSTRUCTOR))
13798 {
13799 tree t = fold_vec_perm (type, op0, op1, sel);
13800 if (t != NULL_TREE)
13801 return t;
13802 }
13803
13804 if (op0 == op1 && !single_arg)
13805 changed = true;
13806
13807 /* Some targets are deficient and fail to expand a single
13808 argument permutation while still allowing an equivalent
13809 2-argument version. */
13810 if (need_mask_canon && arg2 == op2
13811 && !can_vec_perm_p (TYPE_MODE (type), false, sel)
13812 && can_vec_perm_p (TYPE_MODE (type), false, sel2))
13813 {
13814 need_mask_canon = need_mask_canon2;
13815 sel = sel2;
13816 }
13817
13818 if (need_mask_canon && arg2 == op2)
13819 {
13820 tree *tsel = XALLOCAVEC (tree, nelts);
13821 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
13822 for (i = 0; i < nelts; i++)
13823 tsel[i] = build_int_cst (eltype, sel[i]);
13824 op2 = build_vector (TREE_TYPE (arg2), tsel);
13825 changed = true;
13826 }
13827
13828 if (changed)
13829 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
13830 }
13831 return NULL_TREE;
13832
13833 default:
13834 return NULL_TREE;
13835 } /* switch (code) */
13836 }
13837
13838 /* Perform constant folding and related simplification of EXPR.
13839 The related simplifications include x*1 => x, x*0 => 0, etc.,
13840 and application of the associative law.
13841 NOP_EXPR conversions may be removed freely (as long as we
13842 are careful not to change the type of the overall expression).
13843 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
13844 but we can constant-fold them if they have constant operands. */
13845
13846 #ifdef ENABLE_FOLD_CHECKING
13847 # define fold(x) fold_1 (x)
13848 static tree fold_1 (tree);
13849 static
13850 #endif
13851 tree
13852 fold (tree expr)
13853 {
13854 const tree t = expr;
13855 enum tree_code code = TREE_CODE (t);
13856 enum tree_code_class kind = TREE_CODE_CLASS (code);
13857 tree tem;
13858 location_t loc = EXPR_LOCATION (expr);
13859
13860 /* Return right away if a constant. */
13861 if (kind == tcc_constant)
13862 return t;
13863
13864 /* CALL_EXPR-like objects with variable numbers of operands are
13865 treated specially. */
13866 if (kind == tcc_vl_exp)
13867 {
13868 if (code == CALL_EXPR)
13869 {
13870 tem = fold_call_expr (loc, expr, false);
13871 return tem ? tem : expr;
13872 }
13873 return expr;
13874 }
13875
13876 if (IS_EXPR_CODE_CLASS (kind))
13877 {
13878 tree type = TREE_TYPE (t);
13879 tree op0, op1, op2;
13880
13881 switch (TREE_CODE_LENGTH (code))
13882 {
13883 case 1:
13884 op0 = TREE_OPERAND (t, 0);
13885 tem = fold_unary_loc (loc, code, type, op0);
13886 return tem ? tem : expr;
13887 case 2:
13888 op0 = TREE_OPERAND (t, 0);
13889 op1 = TREE_OPERAND (t, 1);
13890 tem = fold_binary_loc (loc, code, type, op0, op1);
13891 return tem ? tem : expr;
13892 case 3:
13893 op0 = TREE_OPERAND (t, 0);
13894 op1 = TREE_OPERAND (t, 1);
13895 op2 = TREE_OPERAND (t, 2);
13896 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
13897 return tem ? tem : expr;
13898 default:
13899 break;
13900 }
13901 }
13902
13903 switch (code)
13904 {
13905 case ARRAY_REF:
13906 {
13907 tree op0 = TREE_OPERAND (t, 0);
13908 tree op1 = TREE_OPERAND (t, 1);
13909
13910 if (TREE_CODE (op1) == INTEGER_CST
13911 && TREE_CODE (op0) == CONSTRUCTOR
13912 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
13913 {
13914 vec<constructor_elt, va_gc> *elts = CONSTRUCTOR_ELTS (op0);
13915 unsigned HOST_WIDE_INT end = vec_safe_length (elts);
13916 unsigned HOST_WIDE_INT begin = 0;
13917
13918 /* Find a matching index by means of a binary search. */
13919 while (begin != end)
13920 {
13921 unsigned HOST_WIDE_INT middle = (begin + end) / 2;
13922 tree index = (*elts)[middle].index;
13923
13924 if (TREE_CODE (index) == INTEGER_CST
13925 && tree_int_cst_lt (index, op1))
13926 begin = middle + 1;
13927 else if (TREE_CODE (index) == INTEGER_CST
13928 && tree_int_cst_lt (op1, index))
13929 end = middle;
13930 else if (TREE_CODE (index) == RANGE_EXPR
13931 && tree_int_cst_lt (TREE_OPERAND (index, 1), op1))
13932 begin = middle + 1;
13933 else if (TREE_CODE (index) == RANGE_EXPR
13934 && tree_int_cst_lt (op1, TREE_OPERAND (index, 0)))
13935 end = middle;
13936 else
13937 return (*elts)[middle].value;
13938 }
13939 }
13940
13941 return t;
13942 }
13943
13944 /* Return a VECTOR_CST if possible. */
13945 case CONSTRUCTOR:
13946 {
13947 tree type = TREE_TYPE (t);
13948 if (TREE_CODE (type) != VECTOR_TYPE)
13949 return t;
13950
13951 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
13952 unsigned HOST_WIDE_INT idx, pos = 0;
13953 tree value;
13954
13955 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), idx, value)
13956 {
13957 if (!CONSTANT_CLASS_P (value))
13958 return t;
13959 if (TREE_CODE (value) == VECTOR_CST)
13960 {
13961 for (unsigned i = 0; i < VECTOR_CST_NELTS (value); ++i)
13962 vec[pos++] = VECTOR_CST_ELT (value, i);
13963 }
13964 else
13965 vec[pos++] = value;
13966 }
13967 for (; pos < TYPE_VECTOR_SUBPARTS (type); ++pos)
13968 vec[pos] = build_zero_cst (TREE_TYPE (type));
13969
13970 return build_vector (type, vec);
13971 }
13972
13973 case CONST_DECL:
13974 return fold (DECL_INITIAL (t));
13975
13976 default:
13977 return t;
13978 } /* switch (code) */
13979 }
13980
13981 #ifdef ENABLE_FOLD_CHECKING
13982 #undef fold
13983
13984 static void fold_checksum_tree (const_tree, struct md5_ctx *,
13985 hash_table<pointer_hash<const tree_node> > *);
13986 static void fold_check_failed (const_tree, const_tree);
13987 void print_fold_checksum (const_tree);
13988
13989 /* When --enable-checking=fold, compute a digest of expr before
13990 and after actual fold call to see if fold did not accidentally
13991 change original expr. */
13992
13993 tree
13994 fold (tree expr)
13995 {
13996 tree ret;
13997 struct md5_ctx ctx;
13998 unsigned char checksum_before[16], checksum_after[16];
13999 hash_table<pointer_hash<const tree_node> > ht (32);
14000
14001 md5_init_ctx (&ctx);
14002 fold_checksum_tree (expr, &ctx, &ht);
14003 md5_finish_ctx (&ctx, checksum_before);
14004 ht.empty ();
14005
14006 ret = fold_1 (expr);
14007
14008 md5_init_ctx (&ctx);
14009 fold_checksum_tree (expr, &ctx, &ht);
14010 md5_finish_ctx (&ctx, checksum_after);
14011
14012 if (memcmp (checksum_before, checksum_after, 16))
14013 fold_check_failed (expr, ret);
14014
14015 return ret;
14016 }
14017
14018 void
14019 print_fold_checksum (const_tree expr)
14020 {
14021 struct md5_ctx ctx;
14022 unsigned char checksum[16], cnt;
14023 hash_table<pointer_hash<const tree_node> > ht (32);
14024
14025 md5_init_ctx (&ctx);
14026 fold_checksum_tree (expr, &ctx, &ht);
14027 md5_finish_ctx (&ctx, checksum);
14028 for (cnt = 0; cnt < 16; ++cnt)
14029 fprintf (stderr, "%02x", checksum[cnt]);
14030 putc ('\n', stderr);
14031 }
14032
14033 static void
14034 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
14035 {
14036 internal_error ("fold check: original tree changed by fold");
14037 }
14038
14039 static void
14040 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
14041 hash_table<pointer_hash <const tree_node> > *ht)
14042 {
14043 const tree_node **slot;
14044 enum tree_code code;
14045 union tree_node buf;
14046 int i, len;
14047
14048 recursive_label:
14049 if (expr == NULL)
14050 return;
14051 slot = ht->find_slot (expr, INSERT);
14052 if (*slot != NULL)
14053 return;
14054 *slot = expr;
14055 code = TREE_CODE (expr);
14056 if (TREE_CODE_CLASS (code) == tcc_declaration
14057 && HAS_DECL_ASSEMBLER_NAME_P (expr))
14058 {
14059 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
14060 memcpy ((char *) &buf, expr, tree_size (expr));
14061 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
14062 buf.decl_with_vis.symtab_node = NULL;
14063 expr = (tree) &buf;
14064 }
14065 else if (TREE_CODE_CLASS (code) == tcc_type
14066 && (TYPE_POINTER_TO (expr)
14067 || TYPE_REFERENCE_TO (expr)
14068 || TYPE_CACHED_VALUES_P (expr)
14069 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
14070 || TYPE_NEXT_VARIANT (expr)))
14071 {
14072 /* Allow these fields to be modified. */
14073 tree tmp;
14074 memcpy ((char *) &buf, expr, tree_size (expr));
14075 expr = tmp = (tree) &buf;
14076 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
14077 TYPE_POINTER_TO (tmp) = NULL;
14078 TYPE_REFERENCE_TO (tmp) = NULL;
14079 TYPE_NEXT_VARIANT (tmp) = NULL;
14080 if (TYPE_CACHED_VALUES_P (tmp))
14081 {
14082 TYPE_CACHED_VALUES_P (tmp) = 0;
14083 TYPE_CACHED_VALUES (tmp) = NULL;
14084 }
14085 }
14086 md5_process_bytes (expr, tree_size (expr), ctx);
14087 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
14088 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
14089 if (TREE_CODE_CLASS (code) != tcc_type
14090 && TREE_CODE_CLASS (code) != tcc_declaration
14091 && code != TREE_LIST
14092 && code != SSA_NAME
14093 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
14094 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
14095 switch (TREE_CODE_CLASS (code))
14096 {
14097 case tcc_constant:
14098 switch (code)
14099 {
14100 case STRING_CST:
14101 md5_process_bytes (TREE_STRING_POINTER (expr),
14102 TREE_STRING_LENGTH (expr), ctx);
14103 break;
14104 case COMPLEX_CST:
14105 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
14106 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
14107 break;
14108 case VECTOR_CST:
14109 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
14110 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
14111 break;
14112 default:
14113 break;
14114 }
14115 break;
14116 case tcc_exceptional:
14117 switch (code)
14118 {
14119 case TREE_LIST:
14120 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
14121 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
14122 expr = TREE_CHAIN (expr);
14123 goto recursive_label;
14124 break;
14125 case TREE_VEC:
14126 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
14127 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
14128 break;
14129 default:
14130 break;
14131 }
14132 break;
14133 case tcc_expression:
14134 case tcc_reference:
14135 case tcc_comparison:
14136 case tcc_unary:
14137 case tcc_binary:
14138 case tcc_statement:
14139 case tcc_vl_exp:
14140 len = TREE_OPERAND_LENGTH (expr);
14141 for (i = 0; i < len; ++i)
14142 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
14143 break;
14144 case tcc_declaration:
14145 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
14146 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
14147 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
14148 {
14149 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
14150 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
14151 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
14152 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
14153 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
14154 }
14155
14156 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
14157 {
14158 if (TREE_CODE (expr) == FUNCTION_DECL)
14159 {
14160 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
14161 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
14162 }
14163 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
14164 }
14165 break;
14166 case tcc_type:
14167 if (TREE_CODE (expr) == ENUMERAL_TYPE)
14168 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
14169 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
14170 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
14171 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
14172 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
14173 if (INTEGRAL_TYPE_P (expr)
14174 || SCALAR_FLOAT_TYPE_P (expr))
14175 {
14176 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
14177 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
14178 }
14179 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
14180 if (TREE_CODE (expr) == RECORD_TYPE
14181 || TREE_CODE (expr) == UNION_TYPE
14182 || TREE_CODE (expr) == QUAL_UNION_TYPE)
14183 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
14184 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
14185 break;
14186 default:
14187 break;
14188 }
14189 }
14190
14191 /* Helper function for outputting the checksum of a tree T. When
14192 debugging with gdb, you can "define mynext" to be "next" followed
14193 by "call debug_fold_checksum (op0)", then just trace down till the
14194 outputs differ. */
14195
14196 DEBUG_FUNCTION void
14197 debug_fold_checksum (const_tree t)
14198 {
14199 int i;
14200 unsigned char checksum[16];
14201 struct md5_ctx ctx;
14202 hash_table<pointer_hash<const tree_node> > ht (32);
14203
14204 md5_init_ctx (&ctx);
14205 fold_checksum_tree (t, &ctx, &ht);
14206 md5_finish_ctx (&ctx, checksum);
14207 ht.empty ();
14208
14209 for (i = 0; i < 16; i++)
14210 fprintf (stderr, "%d ", checksum[i]);
14211
14212 fprintf (stderr, "\n");
14213 }
14214
14215 #endif
14216
14217 /* Fold a unary tree expression with code CODE of type TYPE with an
14218 operand OP0. LOC is the location of the resulting expression.
14219 Return a folded expression if successful. Otherwise, return a tree
14220 expression with code CODE of type TYPE with an operand OP0. */
14221
14222 tree
14223 fold_build1_stat_loc (location_t loc,
14224 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
14225 {
14226 tree tem;
14227 #ifdef ENABLE_FOLD_CHECKING
14228 unsigned char checksum_before[16], checksum_after[16];
14229 struct md5_ctx ctx;
14230 hash_table<pointer_hash<const tree_node> > ht (32);
14231
14232 md5_init_ctx (&ctx);
14233 fold_checksum_tree (op0, &ctx, &ht);
14234 md5_finish_ctx (&ctx, checksum_before);
14235 ht.empty ();
14236 #endif
14237
14238 tem = fold_unary_loc (loc, code, type, op0);
14239 if (!tem)
14240 tem = build1_stat_loc (loc, code, type, op0 PASS_MEM_STAT);
14241
14242 #ifdef ENABLE_FOLD_CHECKING
14243 md5_init_ctx (&ctx);
14244 fold_checksum_tree (op0, &ctx, &ht);
14245 md5_finish_ctx (&ctx, checksum_after);
14246
14247 if (memcmp (checksum_before, checksum_after, 16))
14248 fold_check_failed (op0, tem);
14249 #endif
14250 return tem;
14251 }
14252
14253 /* Fold a binary tree expression with code CODE of type TYPE with
14254 operands OP0 and OP1. LOC is the location of the resulting
14255 expression. Return a folded expression if successful. Otherwise,
14256 return a tree expression with code CODE of type TYPE with operands
14257 OP0 and OP1. */
14258
14259 tree
14260 fold_build2_stat_loc (location_t loc,
14261 enum tree_code code, tree type, tree op0, tree op1
14262 MEM_STAT_DECL)
14263 {
14264 tree tem;
14265 #ifdef ENABLE_FOLD_CHECKING
14266 unsigned char checksum_before_op0[16],
14267 checksum_before_op1[16],
14268 checksum_after_op0[16],
14269 checksum_after_op1[16];
14270 struct md5_ctx ctx;
14271 hash_table<pointer_hash<const tree_node> > ht (32);
14272
14273 md5_init_ctx (&ctx);
14274 fold_checksum_tree (op0, &ctx, &ht);
14275 md5_finish_ctx (&ctx, checksum_before_op0);
14276 ht.empty ();
14277
14278 md5_init_ctx (&ctx);
14279 fold_checksum_tree (op1, &ctx, &ht);
14280 md5_finish_ctx (&ctx, checksum_before_op1);
14281 ht.empty ();
14282 #endif
14283
14284 tem = fold_binary_loc (loc, code, type, op0, op1);
14285 if (!tem)
14286 tem = build2_stat_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
14287
14288 #ifdef ENABLE_FOLD_CHECKING
14289 md5_init_ctx (&ctx);
14290 fold_checksum_tree (op0, &ctx, &ht);
14291 md5_finish_ctx (&ctx, checksum_after_op0);
14292 ht.empty ();
14293
14294 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
14295 fold_check_failed (op0, tem);
14296
14297 md5_init_ctx (&ctx);
14298 fold_checksum_tree (op1, &ctx, &ht);
14299 md5_finish_ctx (&ctx, checksum_after_op1);
14300
14301 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
14302 fold_check_failed (op1, tem);
14303 #endif
14304 return tem;
14305 }
14306
14307 /* Fold a ternary tree expression with code CODE of type TYPE with
14308 operands OP0, OP1, and OP2. Return a folded expression if
14309 successful. Otherwise, return a tree expression with code CODE of
14310 type TYPE with operands OP0, OP1, and OP2. */
14311
14312 tree
14313 fold_build3_stat_loc (location_t loc, enum tree_code code, tree type,
14314 tree op0, tree op1, tree op2 MEM_STAT_DECL)
14315 {
14316 tree tem;
14317 #ifdef ENABLE_FOLD_CHECKING
14318 unsigned char checksum_before_op0[16],
14319 checksum_before_op1[16],
14320 checksum_before_op2[16],
14321 checksum_after_op0[16],
14322 checksum_after_op1[16],
14323 checksum_after_op2[16];
14324 struct md5_ctx ctx;
14325 hash_table<pointer_hash<const tree_node> > ht (32);
14326
14327 md5_init_ctx (&ctx);
14328 fold_checksum_tree (op0, &ctx, &ht);
14329 md5_finish_ctx (&ctx, checksum_before_op0);
14330 ht.empty ();
14331
14332 md5_init_ctx (&ctx);
14333 fold_checksum_tree (op1, &ctx, &ht);
14334 md5_finish_ctx (&ctx, checksum_before_op1);
14335 ht.empty ();
14336
14337 md5_init_ctx (&ctx);
14338 fold_checksum_tree (op2, &ctx, &ht);
14339 md5_finish_ctx (&ctx, checksum_before_op2);
14340 ht.empty ();
14341 #endif
14342
14343 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
14344 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
14345 if (!tem)
14346 tem = build3_stat_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
14347
14348 #ifdef ENABLE_FOLD_CHECKING
14349 md5_init_ctx (&ctx);
14350 fold_checksum_tree (op0, &ctx, &ht);
14351 md5_finish_ctx (&ctx, checksum_after_op0);
14352 ht.empty ();
14353
14354 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
14355 fold_check_failed (op0, tem);
14356
14357 md5_init_ctx (&ctx);
14358 fold_checksum_tree (op1, &ctx, &ht);
14359 md5_finish_ctx (&ctx, checksum_after_op1);
14360 ht.empty ();
14361
14362 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
14363 fold_check_failed (op1, tem);
14364
14365 md5_init_ctx (&ctx);
14366 fold_checksum_tree (op2, &ctx, &ht);
14367 md5_finish_ctx (&ctx, checksum_after_op2);
14368
14369 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
14370 fold_check_failed (op2, tem);
14371 #endif
14372 return tem;
14373 }
14374
14375 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
14376 arguments in ARGARRAY, and a null static chain.
14377 Return a folded expression if successful. Otherwise, return a CALL_EXPR
14378 of type TYPE from the given operands as constructed by build_call_array. */
14379
14380 tree
14381 fold_build_call_array_loc (location_t loc, tree type, tree fn,
14382 int nargs, tree *argarray)
14383 {
14384 tree tem;
14385 #ifdef ENABLE_FOLD_CHECKING
14386 unsigned char checksum_before_fn[16],
14387 checksum_before_arglist[16],
14388 checksum_after_fn[16],
14389 checksum_after_arglist[16];
14390 struct md5_ctx ctx;
14391 hash_table<pointer_hash<const tree_node> > ht (32);
14392 int i;
14393
14394 md5_init_ctx (&ctx);
14395 fold_checksum_tree (fn, &ctx, &ht);
14396 md5_finish_ctx (&ctx, checksum_before_fn);
14397 ht.empty ();
14398
14399 md5_init_ctx (&ctx);
14400 for (i = 0; i < nargs; i++)
14401 fold_checksum_tree (argarray[i], &ctx, &ht);
14402 md5_finish_ctx (&ctx, checksum_before_arglist);
14403 ht.empty ();
14404 #endif
14405
14406 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
14407 if (!tem)
14408 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
14409
14410 #ifdef ENABLE_FOLD_CHECKING
14411 md5_init_ctx (&ctx);
14412 fold_checksum_tree (fn, &ctx, &ht);
14413 md5_finish_ctx (&ctx, checksum_after_fn);
14414 ht.empty ();
14415
14416 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
14417 fold_check_failed (fn, tem);
14418
14419 md5_init_ctx (&ctx);
14420 for (i = 0; i < nargs; i++)
14421 fold_checksum_tree (argarray[i], &ctx, &ht);
14422 md5_finish_ctx (&ctx, checksum_after_arglist);
14423
14424 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
14425 fold_check_failed (NULL_TREE, tem);
14426 #endif
14427 return tem;
14428 }
14429
14430 /* Perform constant folding and related simplification of initializer
14431 expression EXPR. These behave identically to "fold_buildN" but ignore
14432 potential run-time traps and exceptions that fold must preserve. */
14433
14434 #define START_FOLD_INIT \
14435 int saved_signaling_nans = flag_signaling_nans;\
14436 int saved_trapping_math = flag_trapping_math;\
14437 int saved_rounding_math = flag_rounding_math;\
14438 int saved_trapv = flag_trapv;\
14439 int saved_folding_initializer = folding_initializer;\
14440 flag_signaling_nans = 0;\
14441 flag_trapping_math = 0;\
14442 flag_rounding_math = 0;\
14443 flag_trapv = 0;\
14444 folding_initializer = 1;
14445
14446 #define END_FOLD_INIT \
14447 flag_signaling_nans = saved_signaling_nans;\
14448 flag_trapping_math = saved_trapping_math;\
14449 flag_rounding_math = saved_rounding_math;\
14450 flag_trapv = saved_trapv;\
14451 folding_initializer = saved_folding_initializer;
14452
14453 tree
14454 fold_build1_initializer_loc (location_t loc, enum tree_code code,
14455 tree type, tree op)
14456 {
14457 tree result;
14458 START_FOLD_INIT;
14459
14460 result = fold_build1_loc (loc, code, type, op);
14461
14462 END_FOLD_INIT;
14463 return result;
14464 }
14465
14466 tree
14467 fold_build2_initializer_loc (location_t loc, enum tree_code code,
14468 tree type, tree op0, tree op1)
14469 {
14470 tree result;
14471 START_FOLD_INIT;
14472
14473 result = fold_build2_loc (loc, code, type, op0, op1);
14474
14475 END_FOLD_INIT;
14476 return result;
14477 }
14478
14479 tree
14480 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
14481 int nargs, tree *argarray)
14482 {
14483 tree result;
14484 START_FOLD_INIT;
14485
14486 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
14487
14488 END_FOLD_INIT;
14489 return result;
14490 }
14491
14492 #undef START_FOLD_INIT
14493 #undef END_FOLD_INIT
14494
14495 /* Determine if first argument is a multiple of second argument. Return 0 if
14496 it is not, or we cannot easily determined it to be.
14497
14498 An example of the sort of thing we care about (at this point; this routine
14499 could surely be made more general, and expanded to do what the *_DIV_EXPR's
14500 fold cases do now) is discovering that
14501
14502 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14503
14504 is a multiple of
14505
14506 SAVE_EXPR (J * 8)
14507
14508 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
14509
14510 This code also handles discovering that
14511
14512 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14513
14514 is a multiple of 8 so we don't have to worry about dealing with a
14515 possible remainder.
14516
14517 Note that we *look* inside a SAVE_EXPR only to determine how it was
14518 calculated; it is not safe for fold to do much of anything else with the
14519 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
14520 at run time. For example, the latter example above *cannot* be implemented
14521 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
14522 evaluation time of the original SAVE_EXPR is not necessarily the same at
14523 the time the new expression is evaluated. The only optimization of this
14524 sort that would be valid is changing
14525
14526 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
14527
14528 divided by 8 to
14529
14530 SAVE_EXPR (I) * SAVE_EXPR (J)
14531
14532 (where the same SAVE_EXPR (J) is used in the original and the
14533 transformed version). */
14534
14535 int
14536 multiple_of_p (tree type, const_tree top, const_tree bottom)
14537 {
14538 if (operand_equal_p (top, bottom, 0))
14539 return 1;
14540
14541 if (TREE_CODE (type) != INTEGER_TYPE)
14542 return 0;
14543
14544 switch (TREE_CODE (top))
14545 {
14546 case BIT_AND_EXPR:
14547 /* Bitwise and provides a power of two multiple. If the mask is
14548 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
14549 if (!integer_pow2p (bottom))
14550 return 0;
14551 /* FALLTHRU */
14552
14553 case MULT_EXPR:
14554 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
14555 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
14556
14557 case PLUS_EXPR:
14558 case MINUS_EXPR:
14559 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
14560 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
14561
14562 case LSHIFT_EXPR:
14563 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
14564 {
14565 tree op1, t1;
14566
14567 op1 = TREE_OPERAND (top, 1);
14568 /* const_binop may not detect overflow correctly,
14569 so check for it explicitly here. */
14570 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
14571 && 0 != (t1 = fold_convert (type,
14572 const_binop (LSHIFT_EXPR,
14573 size_one_node,
14574 op1)))
14575 && !TREE_OVERFLOW (t1))
14576 return multiple_of_p (type, t1, bottom);
14577 }
14578 return 0;
14579
14580 case NOP_EXPR:
14581 /* Can't handle conversions from non-integral or wider integral type. */
14582 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
14583 || (TYPE_PRECISION (type)
14584 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
14585 return 0;
14586
14587 /* .. fall through ... */
14588
14589 case SAVE_EXPR:
14590 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
14591
14592 case COND_EXPR:
14593 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
14594 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
14595
14596 case INTEGER_CST:
14597 if (TREE_CODE (bottom) != INTEGER_CST
14598 || integer_zerop (bottom)
14599 || (TYPE_UNSIGNED (type)
14600 && (tree_int_cst_sgn (top) < 0
14601 || tree_int_cst_sgn (bottom) < 0)))
14602 return 0;
14603 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
14604 SIGNED);
14605
14606 default:
14607 return 0;
14608 }
14609 }
14610
14611 /* Return true if CODE or TYPE is known to be non-negative. */
14612
14613 static bool
14614 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
14615 {
14616 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
14617 && truth_value_p (code))
14618 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
14619 have a signed:1 type (where the value is -1 and 0). */
14620 return true;
14621 return false;
14622 }
14623
14624 /* Return true if (CODE OP0) is known to be non-negative. If the return
14625 value is based on the assumption that signed overflow is undefined,
14626 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14627 *STRICT_OVERFLOW_P. */
14628
14629 bool
14630 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14631 bool *strict_overflow_p)
14632 {
14633 if (TYPE_UNSIGNED (type))
14634 return true;
14635
14636 switch (code)
14637 {
14638 case ABS_EXPR:
14639 /* We can't return 1 if flag_wrapv is set because
14640 ABS_EXPR<INT_MIN> = INT_MIN. */
14641 if (!ANY_INTEGRAL_TYPE_P (type))
14642 return true;
14643 if (TYPE_OVERFLOW_UNDEFINED (type))
14644 {
14645 *strict_overflow_p = true;
14646 return true;
14647 }
14648 break;
14649
14650 case NON_LVALUE_EXPR:
14651 case FLOAT_EXPR:
14652 case FIX_TRUNC_EXPR:
14653 return tree_expr_nonnegative_warnv_p (op0,
14654 strict_overflow_p);
14655
14656 CASE_CONVERT:
14657 {
14658 tree inner_type = TREE_TYPE (op0);
14659 tree outer_type = type;
14660
14661 if (TREE_CODE (outer_type) == REAL_TYPE)
14662 {
14663 if (TREE_CODE (inner_type) == REAL_TYPE)
14664 return tree_expr_nonnegative_warnv_p (op0,
14665 strict_overflow_p);
14666 if (INTEGRAL_TYPE_P (inner_type))
14667 {
14668 if (TYPE_UNSIGNED (inner_type))
14669 return true;
14670 return tree_expr_nonnegative_warnv_p (op0,
14671 strict_overflow_p);
14672 }
14673 }
14674 else if (INTEGRAL_TYPE_P (outer_type))
14675 {
14676 if (TREE_CODE (inner_type) == REAL_TYPE)
14677 return tree_expr_nonnegative_warnv_p (op0,
14678 strict_overflow_p);
14679 if (INTEGRAL_TYPE_P (inner_type))
14680 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
14681 && TYPE_UNSIGNED (inner_type);
14682 }
14683 }
14684 break;
14685
14686 default:
14687 return tree_simple_nonnegative_warnv_p (code, type);
14688 }
14689
14690 /* We don't know sign of `t', so be conservative and return false. */
14691 return false;
14692 }
14693
14694 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
14695 value is based on the assumption that signed overflow is undefined,
14696 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14697 *STRICT_OVERFLOW_P. */
14698
14699 bool
14700 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14701 tree op1, bool *strict_overflow_p)
14702 {
14703 if (TYPE_UNSIGNED (type))
14704 return true;
14705
14706 switch (code)
14707 {
14708 case POINTER_PLUS_EXPR:
14709 case PLUS_EXPR:
14710 if (FLOAT_TYPE_P (type))
14711 return (tree_expr_nonnegative_warnv_p (op0,
14712 strict_overflow_p)
14713 && tree_expr_nonnegative_warnv_p (op1,
14714 strict_overflow_p));
14715
14716 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
14717 both unsigned and at least 2 bits shorter than the result. */
14718 if (TREE_CODE (type) == INTEGER_TYPE
14719 && TREE_CODE (op0) == NOP_EXPR
14720 && TREE_CODE (op1) == NOP_EXPR)
14721 {
14722 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
14723 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
14724 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
14725 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
14726 {
14727 unsigned int prec = MAX (TYPE_PRECISION (inner1),
14728 TYPE_PRECISION (inner2)) + 1;
14729 return prec < TYPE_PRECISION (type);
14730 }
14731 }
14732 break;
14733
14734 case MULT_EXPR:
14735 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
14736 {
14737 /* x * x is always non-negative for floating point x
14738 or without overflow. */
14739 if (operand_equal_p (op0, op1, 0)
14740 || (tree_expr_nonnegative_warnv_p (op0, strict_overflow_p)
14741 && tree_expr_nonnegative_warnv_p (op1, strict_overflow_p)))
14742 {
14743 if (ANY_INTEGRAL_TYPE_P (type)
14744 && TYPE_OVERFLOW_UNDEFINED (type))
14745 *strict_overflow_p = true;
14746 return true;
14747 }
14748 }
14749
14750 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
14751 both unsigned and their total bits is shorter than the result. */
14752 if (TREE_CODE (type) == INTEGER_TYPE
14753 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
14754 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
14755 {
14756 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
14757 ? TREE_TYPE (TREE_OPERAND (op0, 0))
14758 : TREE_TYPE (op0);
14759 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
14760 ? TREE_TYPE (TREE_OPERAND (op1, 0))
14761 : TREE_TYPE (op1);
14762
14763 bool unsigned0 = TYPE_UNSIGNED (inner0);
14764 bool unsigned1 = TYPE_UNSIGNED (inner1);
14765
14766 if (TREE_CODE (op0) == INTEGER_CST)
14767 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
14768
14769 if (TREE_CODE (op1) == INTEGER_CST)
14770 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
14771
14772 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
14773 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
14774 {
14775 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
14776 ? tree_int_cst_min_precision (op0, UNSIGNED)
14777 : TYPE_PRECISION (inner0);
14778
14779 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
14780 ? tree_int_cst_min_precision (op1, UNSIGNED)
14781 : TYPE_PRECISION (inner1);
14782
14783 return precision0 + precision1 < TYPE_PRECISION (type);
14784 }
14785 }
14786 return false;
14787
14788 case BIT_AND_EXPR:
14789 case MAX_EXPR:
14790 return (tree_expr_nonnegative_warnv_p (op0,
14791 strict_overflow_p)
14792 || tree_expr_nonnegative_warnv_p (op1,
14793 strict_overflow_p));
14794
14795 case BIT_IOR_EXPR:
14796 case BIT_XOR_EXPR:
14797 case MIN_EXPR:
14798 case RDIV_EXPR:
14799 case TRUNC_DIV_EXPR:
14800 case CEIL_DIV_EXPR:
14801 case FLOOR_DIV_EXPR:
14802 case ROUND_DIV_EXPR:
14803 return (tree_expr_nonnegative_warnv_p (op0,
14804 strict_overflow_p)
14805 && tree_expr_nonnegative_warnv_p (op1,
14806 strict_overflow_p));
14807
14808 case TRUNC_MOD_EXPR:
14809 case CEIL_MOD_EXPR:
14810 case FLOOR_MOD_EXPR:
14811 case ROUND_MOD_EXPR:
14812 return tree_expr_nonnegative_warnv_p (op0,
14813 strict_overflow_p);
14814 default:
14815 return tree_simple_nonnegative_warnv_p (code, type);
14816 }
14817
14818 /* We don't know sign of `t', so be conservative and return false. */
14819 return false;
14820 }
14821
14822 /* Return true if T is known to be non-negative. If the return
14823 value is based on the assumption that signed overflow is undefined,
14824 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14825 *STRICT_OVERFLOW_P. */
14826
14827 bool
14828 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14829 {
14830 if (TYPE_UNSIGNED (TREE_TYPE (t)))
14831 return true;
14832
14833 switch (TREE_CODE (t))
14834 {
14835 case INTEGER_CST:
14836 return tree_int_cst_sgn (t) >= 0;
14837
14838 case REAL_CST:
14839 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
14840
14841 case FIXED_CST:
14842 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
14843
14844 case COND_EXPR:
14845 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14846 strict_overflow_p)
14847 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
14848 strict_overflow_p));
14849 default:
14850 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
14851 TREE_TYPE (t));
14852 }
14853 /* We don't know sign of `t', so be conservative and return false. */
14854 return false;
14855 }
14856
14857 /* Return true if T is known to be non-negative. If the return
14858 value is based on the assumption that signed overflow is undefined,
14859 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14860 *STRICT_OVERFLOW_P. */
14861
14862 bool
14863 tree_call_nonnegative_warnv_p (tree type, tree fndecl,
14864 tree arg0, tree arg1, bool *strict_overflow_p)
14865 {
14866 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
14867 switch (DECL_FUNCTION_CODE (fndecl))
14868 {
14869 CASE_FLT_FN (BUILT_IN_ACOS):
14870 CASE_FLT_FN (BUILT_IN_ACOSH):
14871 CASE_FLT_FN (BUILT_IN_CABS):
14872 CASE_FLT_FN (BUILT_IN_COSH):
14873 CASE_FLT_FN (BUILT_IN_ERFC):
14874 CASE_FLT_FN (BUILT_IN_EXP):
14875 CASE_FLT_FN (BUILT_IN_EXP10):
14876 CASE_FLT_FN (BUILT_IN_EXP2):
14877 CASE_FLT_FN (BUILT_IN_FABS):
14878 CASE_FLT_FN (BUILT_IN_FDIM):
14879 CASE_FLT_FN (BUILT_IN_HYPOT):
14880 CASE_FLT_FN (BUILT_IN_POW10):
14881 CASE_INT_FN (BUILT_IN_FFS):
14882 CASE_INT_FN (BUILT_IN_PARITY):
14883 CASE_INT_FN (BUILT_IN_POPCOUNT):
14884 CASE_INT_FN (BUILT_IN_CLZ):
14885 CASE_INT_FN (BUILT_IN_CLRSB):
14886 case BUILT_IN_BSWAP32:
14887 case BUILT_IN_BSWAP64:
14888 /* Always true. */
14889 return true;
14890
14891 CASE_FLT_FN (BUILT_IN_SQRT):
14892 /* sqrt(-0.0) is -0.0. */
14893 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
14894 return true;
14895 return tree_expr_nonnegative_warnv_p (arg0,
14896 strict_overflow_p);
14897
14898 CASE_FLT_FN (BUILT_IN_ASINH):
14899 CASE_FLT_FN (BUILT_IN_ATAN):
14900 CASE_FLT_FN (BUILT_IN_ATANH):
14901 CASE_FLT_FN (BUILT_IN_CBRT):
14902 CASE_FLT_FN (BUILT_IN_CEIL):
14903 CASE_FLT_FN (BUILT_IN_ERF):
14904 CASE_FLT_FN (BUILT_IN_EXPM1):
14905 CASE_FLT_FN (BUILT_IN_FLOOR):
14906 CASE_FLT_FN (BUILT_IN_FMOD):
14907 CASE_FLT_FN (BUILT_IN_FREXP):
14908 CASE_FLT_FN (BUILT_IN_ICEIL):
14909 CASE_FLT_FN (BUILT_IN_IFLOOR):
14910 CASE_FLT_FN (BUILT_IN_IRINT):
14911 CASE_FLT_FN (BUILT_IN_IROUND):
14912 CASE_FLT_FN (BUILT_IN_LCEIL):
14913 CASE_FLT_FN (BUILT_IN_LDEXP):
14914 CASE_FLT_FN (BUILT_IN_LFLOOR):
14915 CASE_FLT_FN (BUILT_IN_LLCEIL):
14916 CASE_FLT_FN (BUILT_IN_LLFLOOR):
14917 CASE_FLT_FN (BUILT_IN_LLRINT):
14918 CASE_FLT_FN (BUILT_IN_LLROUND):
14919 CASE_FLT_FN (BUILT_IN_LRINT):
14920 CASE_FLT_FN (BUILT_IN_LROUND):
14921 CASE_FLT_FN (BUILT_IN_MODF):
14922 CASE_FLT_FN (BUILT_IN_NEARBYINT):
14923 CASE_FLT_FN (BUILT_IN_RINT):
14924 CASE_FLT_FN (BUILT_IN_ROUND):
14925 CASE_FLT_FN (BUILT_IN_SCALB):
14926 CASE_FLT_FN (BUILT_IN_SCALBLN):
14927 CASE_FLT_FN (BUILT_IN_SCALBN):
14928 CASE_FLT_FN (BUILT_IN_SIGNBIT):
14929 CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
14930 CASE_FLT_FN (BUILT_IN_SINH):
14931 CASE_FLT_FN (BUILT_IN_TANH):
14932 CASE_FLT_FN (BUILT_IN_TRUNC):
14933 /* True if the 1st argument is nonnegative. */
14934 return tree_expr_nonnegative_warnv_p (arg0,
14935 strict_overflow_p);
14936
14937 CASE_FLT_FN (BUILT_IN_FMAX):
14938 /* True if the 1st OR 2nd arguments are nonnegative. */
14939 return (tree_expr_nonnegative_warnv_p (arg0,
14940 strict_overflow_p)
14941 || (tree_expr_nonnegative_warnv_p (arg1,
14942 strict_overflow_p)));
14943
14944 CASE_FLT_FN (BUILT_IN_FMIN):
14945 /* True if the 1st AND 2nd arguments are nonnegative. */
14946 return (tree_expr_nonnegative_warnv_p (arg0,
14947 strict_overflow_p)
14948 && (tree_expr_nonnegative_warnv_p (arg1,
14949 strict_overflow_p)));
14950
14951 CASE_FLT_FN (BUILT_IN_COPYSIGN):
14952 /* True if the 2nd argument is nonnegative. */
14953 return tree_expr_nonnegative_warnv_p (arg1,
14954 strict_overflow_p);
14955
14956 CASE_FLT_FN (BUILT_IN_POWI):
14957 /* True if the 1st argument is nonnegative or the second
14958 argument is an even integer. */
14959 if (TREE_CODE (arg1) == INTEGER_CST
14960 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
14961 return true;
14962 return tree_expr_nonnegative_warnv_p (arg0,
14963 strict_overflow_p);
14964
14965 CASE_FLT_FN (BUILT_IN_POW):
14966 /* True if the 1st argument is nonnegative or the second
14967 argument is an even integer valued real. */
14968 if (TREE_CODE (arg1) == REAL_CST)
14969 {
14970 REAL_VALUE_TYPE c;
14971 HOST_WIDE_INT n;
14972
14973 c = TREE_REAL_CST (arg1);
14974 n = real_to_integer (&c);
14975 if ((n & 1) == 0)
14976 {
14977 REAL_VALUE_TYPE cint;
14978 real_from_integer (&cint, VOIDmode, n, SIGNED);
14979 if (real_identical (&c, &cint))
14980 return true;
14981 }
14982 }
14983 return tree_expr_nonnegative_warnv_p (arg0,
14984 strict_overflow_p);
14985
14986 default:
14987 break;
14988 }
14989 return tree_simple_nonnegative_warnv_p (CALL_EXPR,
14990 type);
14991 }
14992
14993 /* Return true if T is known to be non-negative. If the return
14994 value is based on the assumption that signed overflow is undefined,
14995 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14996 *STRICT_OVERFLOW_P. */
14997
14998 static bool
14999 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
15000 {
15001 enum tree_code code = TREE_CODE (t);
15002 if (TYPE_UNSIGNED (TREE_TYPE (t)))
15003 return true;
15004
15005 switch (code)
15006 {
15007 case TARGET_EXPR:
15008 {
15009 tree temp = TARGET_EXPR_SLOT (t);
15010 t = TARGET_EXPR_INITIAL (t);
15011
15012 /* If the initializer is non-void, then it's a normal expression
15013 that will be assigned to the slot. */
15014 if (!VOID_TYPE_P (t))
15015 return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
15016
15017 /* Otherwise, the initializer sets the slot in some way. One common
15018 way is an assignment statement at the end of the initializer. */
15019 while (1)
15020 {
15021 if (TREE_CODE (t) == BIND_EXPR)
15022 t = expr_last (BIND_EXPR_BODY (t));
15023 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
15024 || TREE_CODE (t) == TRY_CATCH_EXPR)
15025 t = expr_last (TREE_OPERAND (t, 0));
15026 else if (TREE_CODE (t) == STATEMENT_LIST)
15027 t = expr_last (t);
15028 else
15029 break;
15030 }
15031 if (TREE_CODE (t) == MODIFY_EXPR
15032 && TREE_OPERAND (t, 0) == temp)
15033 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
15034 strict_overflow_p);
15035
15036 return false;
15037 }
15038
15039 case CALL_EXPR:
15040 {
15041 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
15042 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
15043
15044 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
15045 get_callee_fndecl (t),
15046 arg0,
15047 arg1,
15048 strict_overflow_p);
15049 }
15050 case COMPOUND_EXPR:
15051 case MODIFY_EXPR:
15052 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
15053 strict_overflow_p);
15054 case BIND_EXPR:
15055 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
15056 strict_overflow_p);
15057 case SAVE_EXPR:
15058 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
15059 strict_overflow_p);
15060
15061 default:
15062 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
15063 TREE_TYPE (t));
15064 }
15065
15066 /* We don't know sign of `t', so be conservative and return false. */
15067 return false;
15068 }
15069
15070 /* Return true if T is known to be non-negative. If the return
15071 value is based on the assumption that signed overflow is undefined,
15072 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15073 *STRICT_OVERFLOW_P. */
15074
15075 bool
15076 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
15077 {
15078 enum tree_code code;
15079 if (t == error_mark_node)
15080 return false;
15081
15082 code = TREE_CODE (t);
15083 switch (TREE_CODE_CLASS (code))
15084 {
15085 case tcc_binary:
15086 case tcc_comparison:
15087 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
15088 TREE_TYPE (t),
15089 TREE_OPERAND (t, 0),
15090 TREE_OPERAND (t, 1),
15091 strict_overflow_p);
15092
15093 case tcc_unary:
15094 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
15095 TREE_TYPE (t),
15096 TREE_OPERAND (t, 0),
15097 strict_overflow_p);
15098
15099 case tcc_constant:
15100 case tcc_declaration:
15101 case tcc_reference:
15102 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
15103
15104 default:
15105 break;
15106 }
15107
15108 switch (code)
15109 {
15110 case TRUTH_AND_EXPR:
15111 case TRUTH_OR_EXPR:
15112 case TRUTH_XOR_EXPR:
15113 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
15114 TREE_TYPE (t),
15115 TREE_OPERAND (t, 0),
15116 TREE_OPERAND (t, 1),
15117 strict_overflow_p);
15118 case TRUTH_NOT_EXPR:
15119 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
15120 TREE_TYPE (t),
15121 TREE_OPERAND (t, 0),
15122 strict_overflow_p);
15123
15124 case COND_EXPR:
15125 case CONSTRUCTOR:
15126 case OBJ_TYPE_REF:
15127 case ASSERT_EXPR:
15128 case ADDR_EXPR:
15129 case WITH_SIZE_EXPR:
15130 case SSA_NAME:
15131 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
15132
15133 default:
15134 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p);
15135 }
15136 }
15137
15138 /* Return true if `t' is known to be non-negative. Handle warnings
15139 about undefined signed overflow. */
15140
15141 bool
15142 tree_expr_nonnegative_p (tree t)
15143 {
15144 bool ret, strict_overflow_p;
15145
15146 strict_overflow_p = false;
15147 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
15148 if (strict_overflow_p)
15149 fold_overflow_warning (("assuming signed overflow does not occur when "
15150 "determining that expression is always "
15151 "non-negative"),
15152 WARN_STRICT_OVERFLOW_MISC);
15153 return ret;
15154 }
15155
15156
15157 /* Return true when (CODE OP0) is an address and is known to be nonzero.
15158 For floating point we further ensure that T is not denormal.
15159 Similar logic is present in nonzero_address in rtlanal.h.
15160
15161 If the return value is based on the assumption that signed overflow
15162 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15163 change *STRICT_OVERFLOW_P. */
15164
15165 bool
15166 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
15167 bool *strict_overflow_p)
15168 {
15169 switch (code)
15170 {
15171 case ABS_EXPR:
15172 return tree_expr_nonzero_warnv_p (op0,
15173 strict_overflow_p);
15174
15175 case NOP_EXPR:
15176 {
15177 tree inner_type = TREE_TYPE (op0);
15178 tree outer_type = type;
15179
15180 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
15181 && tree_expr_nonzero_warnv_p (op0,
15182 strict_overflow_p));
15183 }
15184 break;
15185
15186 case NON_LVALUE_EXPR:
15187 return tree_expr_nonzero_warnv_p (op0,
15188 strict_overflow_p);
15189
15190 default:
15191 break;
15192 }
15193
15194 return false;
15195 }
15196
15197 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
15198 For floating point we further ensure that T is not denormal.
15199 Similar logic is present in nonzero_address in rtlanal.h.
15200
15201 If the return value is based on the assumption that signed overflow
15202 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15203 change *STRICT_OVERFLOW_P. */
15204
15205 bool
15206 tree_binary_nonzero_warnv_p (enum tree_code code,
15207 tree type,
15208 tree op0,
15209 tree op1, bool *strict_overflow_p)
15210 {
15211 bool sub_strict_overflow_p;
15212 switch (code)
15213 {
15214 case POINTER_PLUS_EXPR:
15215 case PLUS_EXPR:
15216 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
15217 {
15218 /* With the presence of negative values it is hard
15219 to say something. */
15220 sub_strict_overflow_p = false;
15221 if (!tree_expr_nonnegative_warnv_p (op0,
15222 &sub_strict_overflow_p)
15223 || !tree_expr_nonnegative_warnv_p (op1,
15224 &sub_strict_overflow_p))
15225 return false;
15226 /* One of operands must be positive and the other non-negative. */
15227 /* We don't set *STRICT_OVERFLOW_P here: even if this value
15228 overflows, on a twos-complement machine the sum of two
15229 nonnegative numbers can never be zero. */
15230 return (tree_expr_nonzero_warnv_p (op0,
15231 strict_overflow_p)
15232 || tree_expr_nonzero_warnv_p (op1,
15233 strict_overflow_p));
15234 }
15235 break;
15236
15237 case MULT_EXPR:
15238 if (TYPE_OVERFLOW_UNDEFINED (type))
15239 {
15240 if (tree_expr_nonzero_warnv_p (op0,
15241 strict_overflow_p)
15242 && tree_expr_nonzero_warnv_p (op1,
15243 strict_overflow_p))
15244 {
15245 *strict_overflow_p = true;
15246 return true;
15247 }
15248 }
15249 break;
15250
15251 case MIN_EXPR:
15252 sub_strict_overflow_p = false;
15253 if (tree_expr_nonzero_warnv_p (op0,
15254 &sub_strict_overflow_p)
15255 && tree_expr_nonzero_warnv_p (op1,
15256 &sub_strict_overflow_p))
15257 {
15258 if (sub_strict_overflow_p)
15259 *strict_overflow_p = true;
15260 }
15261 break;
15262
15263 case MAX_EXPR:
15264 sub_strict_overflow_p = false;
15265 if (tree_expr_nonzero_warnv_p (op0,
15266 &sub_strict_overflow_p))
15267 {
15268 if (sub_strict_overflow_p)
15269 *strict_overflow_p = true;
15270
15271 /* When both operands are nonzero, then MAX must be too. */
15272 if (tree_expr_nonzero_warnv_p (op1,
15273 strict_overflow_p))
15274 return true;
15275
15276 /* MAX where operand 0 is positive is positive. */
15277 return tree_expr_nonnegative_warnv_p (op0,
15278 strict_overflow_p);
15279 }
15280 /* MAX where operand 1 is positive is positive. */
15281 else if (tree_expr_nonzero_warnv_p (op1,
15282 &sub_strict_overflow_p)
15283 && tree_expr_nonnegative_warnv_p (op1,
15284 &sub_strict_overflow_p))
15285 {
15286 if (sub_strict_overflow_p)
15287 *strict_overflow_p = true;
15288 return true;
15289 }
15290 break;
15291
15292 case BIT_IOR_EXPR:
15293 return (tree_expr_nonzero_warnv_p (op1,
15294 strict_overflow_p)
15295 || tree_expr_nonzero_warnv_p (op0,
15296 strict_overflow_p));
15297
15298 default:
15299 break;
15300 }
15301
15302 return false;
15303 }
15304
15305 /* Return true when T is an address and is known to be nonzero.
15306 For floating point we further ensure that T is not denormal.
15307 Similar logic is present in nonzero_address in rtlanal.h.
15308
15309 If the return value is based on the assumption that signed overflow
15310 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15311 change *STRICT_OVERFLOW_P. */
15312
15313 bool
15314 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
15315 {
15316 bool sub_strict_overflow_p;
15317 switch (TREE_CODE (t))
15318 {
15319 case INTEGER_CST:
15320 return !integer_zerop (t);
15321
15322 case ADDR_EXPR:
15323 {
15324 tree base = TREE_OPERAND (t, 0);
15325
15326 if (!DECL_P (base))
15327 base = get_base_address (base);
15328
15329 if (!base)
15330 return false;
15331
15332 /* For objects in symbol table check if we know they are non-zero.
15333 Don't do anything for variables and functions before symtab is built;
15334 it is quite possible that they will be declared weak later. */
15335 if (DECL_P (base) && decl_in_symtab_p (base))
15336 {
15337 struct symtab_node *symbol;
15338
15339 symbol = symtab_node::get_create (base);
15340 if (symbol)
15341 return symbol->nonzero_address ();
15342 else
15343 return false;
15344 }
15345
15346 /* Function local objects are never NULL. */
15347 if (DECL_P (base)
15348 && (DECL_CONTEXT (base)
15349 && TREE_CODE (DECL_CONTEXT (base)) == FUNCTION_DECL
15350 && auto_var_in_fn_p (base, DECL_CONTEXT (base))))
15351 return true;
15352
15353 /* Constants are never weak. */
15354 if (CONSTANT_CLASS_P (base))
15355 return true;
15356
15357 return false;
15358 }
15359
15360 case COND_EXPR:
15361 sub_strict_overflow_p = false;
15362 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
15363 &sub_strict_overflow_p)
15364 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
15365 &sub_strict_overflow_p))
15366 {
15367 if (sub_strict_overflow_p)
15368 *strict_overflow_p = true;
15369 return true;
15370 }
15371 break;
15372
15373 default:
15374 break;
15375 }
15376 return false;
15377 }
15378
15379 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
15380 attempt to fold the expression to a constant without modifying TYPE,
15381 OP0 or OP1.
15382
15383 If the expression could be simplified to a constant, then return
15384 the constant. If the expression would not be simplified to a
15385 constant, then return NULL_TREE. */
15386
15387 tree
15388 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
15389 {
15390 tree tem = fold_binary (code, type, op0, op1);
15391 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15392 }
15393
15394 /* Given the components of a unary expression CODE, TYPE and OP0,
15395 attempt to fold the expression to a constant without modifying
15396 TYPE or OP0.
15397
15398 If the expression could be simplified to a constant, then return
15399 the constant. If the expression would not be simplified to a
15400 constant, then return NULL_TREE. */
15401
15402 tree
15403 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
15404 {
15405 tree tem = fold_unary (code, type, op0);
15406 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15407 }
15408
15409 /* If EXP represents referencing an element in a constant string
15410 (either via pointer arithmetic or array indexing), return the
15411 tree representing the value accessed, otherwise return NULL. */
15412
15413 tree
15414 fold_read_from_constant_string (tree exp)
15415 {
15416 if ((TREE_CODE (exp) == INDIRECT_REF
15417 || TREE_CODE (exp) == ARRAY_REF)
15418 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
15419 {
15420 tree exp1 = TREE_OPERAND (exp, 0);
15421 tree index;
15422 tree string;
15423 location_t loc = EXPR_LOCATION (exp);
15424
15425 if (TREE_CODE (exp) == INDIRECT_REF)
15426 string = string_constant (exp1, &index);
15427 else
15428 {
15429 tree low_bound = array_ref_low_bound (exp);
15430 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
15431
15432 /* Optimize the special-case of a zero lower bound.
15433
15434 We convert the low_bound to sizetype to avoid some problems
15435 with constant folding. (E.g. suppose the lower bound is 1,
15436 and its mode is QI. Without the conversion,l (ARRAY
15437 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
15438 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
15439 if (! integer_zerop (low_bound))
15440 index = size_diffop_loc (loc, index,
15441 fold_convert_loc (loc, sizetype, low_bound));
15442
15443 string = exp1;
15444 }
15445
15446 if (string
15447 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
15448 && TREE_CODE (string) == STRING_CST
15449 && TREE_CODE (index) == INTEGER_CST
15450 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
15451 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
15452 == MODE_INT)
15453 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
15454 return build_int_cst_type (TREE_TYPE (exp),
15455 (TREE_STRING_POINTER (string)
15456 [TREE_INT_CST_LOW (index)]));
15457 }
15458 return NULL;
15459 }
15460
15461 /* Return the tree for neg (ARG0) when ARG0 is known to be either
15462 an integer constant, real, or fixed-point constant.
15463
15464 TYPE is the type of the result. */
15465
15466 static tree
15467 fold_negate_const (tree arg0, tree type)
15468 {
15469 tree t = NULL_TREE;
15470
15471 switch (TREE_CODE (arg0))
15472 {
15473 case INTEGER_CST:
15474 {
15475 bool overflow;
15476 wide_int val = wi::neg (arg0, &overflow);
15477 t = force_fit_type (type, val, 1,
15478 (overflow | TREE_OVERFLOW (arg0))
15479 && !TYPE_UNSIGNED (type));
15480 break;
15481 }
15482
15483 case REAL_CST:
15484 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
15485 break;
15486
15487 case FIXED_CST:
15488 {
15489 FIXED_VALUE_TYPE f;
15490 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
15491 &(TREE_FIXED_CST (arg0)), NULL,
15492 TYPE_SATURATING (type));
15493 t = build_fixed (type, f);
15494 /* Propagate overflow flags. */
15495 if (overflow_p | TREE_OVERFLOW (arg0))
15496 TREE_OVERFLOW (t) = 1;
15497 break;
15498 }
15499
15500 default:
15501 gcc_unreachable ();
15502 }
15503
15504 return t;
15505 }
15506
15507 /* Return the tree for abs (ARG0) when ARG0 is known to be either
15508 an integer constant or real constant.
15509
15510 TYPE is the type of the result. */
15511
15512 tree
15513 fold_abs_const (tree arg0, tree type)
15514 {
15515 tree t = NULL_TREE;
15516
15517 switch (TREE_CODE (arg0))
15518 {
15519 case INTEGER_CST:
15520 {
15521 /* If the value is unsigned or non-negative, then the absolute value
15522 is the same as the ordinary value. */
15523 if (!wi::neg_p (arg0, TYPE_SIGN (type)))
15524 t = arg0;
15525
15526 /* If the value is negative, then the absolute value is
15527 its negation. */
15528 else
15529 {
15530 bool overflow;
15531 wide_int val = wi::neg (arg0, &overflow);
15532 t = force_fit_type (type, val, -1,
15533 overflow | TREE_OVERFLOW (arg0));
15534 }
15535 }
15536 break;
15537
15538 case REAL_CST:
15539 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
15540 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
15541 else
15542 t = arg0;
15543 break;
15544
15545 default:
15546 gcc_unreachable ();
15547 }
15548
15549 return t;
15550 }
15551
15552 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
15553 constant. TYPE is the type of the result. */
15554
15555 static tree
15556 fold_not_const (const_tree arg0, tree type)
15557 {
15558 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
15559
15560 return force_fit_type (type, wi::bit_not (arg0), 0, TREE_OVERFLOW (arg0));
15561 }
15562
15563 /* Given CODE, a relational operator, the target type, TYPE and two
15564 constant operands OP0 and OP1, return the result of the
15565 relational operation. If the result is not a compile time
15566 constant, then return NULL_TREE. */
15567
15568 static tree
15569 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
15570 {
15571 int result, invert;
15572
15573 /* From here on, the only cases we handle are when the result is
15574 known to be a constant. */
15575
15576 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
15577 {
15578 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
15579 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
15580
15581 /* Handle the cases where either operand is a NaN. */
15582 if (real_isnan (c0) || real_isnan (c1))
15583 {
15584 switch (code)
15585 {
15586 case EQ_EXPR:
15587 case ORDERED_EXPR:
15588 result = 0;
15589 break;
15590
15591 case NE_EXPR:
15592 case UNORDERED_EXPR:
15593 case UNLT_EXPR:
15594 case UNLE_EXPR:
15595 case UNGT_EXPR:
15596 case UNGE_EXPR:
15597 case UNEQ_EXPR:
15598 result = 1;
15599 break;
15600
15601 case LT_EXPR:
15602 case LE_EXPR:
15603 case GT_EXPR:
15604 case GE_EXPR:
15605 case LTGT_EXPR:
15606 if (flag_trapping_math)
15607 return NULL_TREE;
15608 result = 0;
15609 break;
15610
15611 default:
15612 gcc_unreachable ();
15613 }
15614
15615 return constant_boolean_node (result, type);
15616 }
15617
15618 return constant_boolean_node (real_compare (code, c0, c1), type);
15619 }
15620
15621 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
15622 {
15623 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
15624 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
15625 return constant_boolean_node (fixed_compare (code, c0, c1), type);
15626 }
15627
15628 /* Handle equality/inequality of complex constants. */
15629 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
15630 {
15631 tree rcond = fold_relational_const (code, type,
15632 TREE_REALPART (op0),
15633 TREE_REALPART (op1));
15634 tree icond = fold_relational_const (code, type,
15635 TREE_IMAGPART (op0),
15636 TREE_IMAGPART (op1));
15637 if (code == EQ_EXPR)
15638 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
15639 else if (code == NE_EXPR)
15640 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
15641 else
15642 return NULL_TREE;
15643 }
15644
15645 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
15646 {
15647 unsigned count = VECTOR_CST_NELTS (op0);
15648 tree *elts = XALLOCAVEC (tree, count);
15649 gcc_assert (VECTOR_CST_NELTS (op1) == count
15650 && TYPE_VECTOR_SUBPARTS (type) == count);
15651
15652 for (unsigned i = 0; i < count; i++)
15653 {
15654 tree elem_type = TREE_TYPE (type);
15655 tree elem0 = VECTOR_CST_ELT (op0, i);
15656 tree elem1 = VECTOR_CST_ELT (op1, i);
15657
15658 tree tem = fold_relational_const (code, elem_type,
15659 elem0, elem1);
15660
15661 if (tem == NULL_TREE)
15662 return NULL_TREE;
15663
15664 elts[i] = build_int_cst (elem_type, integer_zerop (tem) ? 0 : -1);
15665 }
15666
15667 return build_vector (type, elts);
15668 }
15669
15670 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
15671
15672 To compute GT, swap the arguments and do LT.
15673 To compute GE, do LT and invert the result.
15674 To compute LE, swap the arguments, do LT and invert the result.
15675 To compute NE, do EQ and invert the result.
15676
15677 Therefore, the code below must handle only EQ and LT. */
15678
15679 if (code == LE_EXPR || code == GT_EXPR)
15680 {
15681 tree tem = op0;
15682 op0 = op1;
15683 op1 = tem;
15684 code = swap_tree_comparison (code);
15685 }
15686
15687 /* Note that it is safe to invert for real values here because we
15688 have already handled the one case that it matters. */
15689
15690 invert = 0;
15691 if (code == NE_EXPR || code == GE_EXPR)
15692 {
15693 invert = 1;
15694 code = invert_tree_comparison (code, false);
15695 }
15696
15697 /* Compute a result for LT or EQ if args permit;
15698 Otherwise return T. */
15699 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
15700 {
15701 if (code == EQ_EXPR)
15702 result = tree_int_cst_equal (op0, op1);
15703 else
15704 result = tree_int_cst_lt (op0, op1);
15705 }
15706 else
15707 return NULL_TREE;
15708
15709 if (invert)
15710 result ^= 1;
15711 return constant_boolean_node (result, type);
15712 }
15713
15714 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
15715 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
15716 itself. */
15717
15718 tree
15719 fold_build_cleanup_point_expr (tree type, tree expr)
15720 {
15721 /* If the expression does not have side effects then we don't have to wrap
15722 it with a cleanup point expression. */
15723 if (!TREE_SIDE_EFFECTS (expr))
15724 return expr;
15725
15726 /* If the expression is a return, check to see if the expression inside the
15727 return has no side effects or the right hand side of the modify expression
15728 inside the return. If either don't have side effects set we don't need to
15729 wrap the expression in a cleanup point expression. Note we don't check the
15730 left hand side of the modify because it should always be a return decl. */
15731 if (TREE_CODE (expr) == RETURN_EXPR)
15732 {
15733 tree op = TREE_OPERAND (expr, 0);
15734 if (!op || !TREE_SIDE_EFFECTS (op))
15735 return expr;
15736 op = TREE_OPERAND (op, 1);
15737 if (!TREE_SIDE_EFFECTS (op))
15738 return expr;
15739 }
15740
15741 return build1 (CLEANUP_POINT_EXPR, type, expr);
15742 }
15743
15744 /* Given a pointer value OP0 and a type TYPE, return a simplified version
15745 of an indirection through OP0, or NULL_TREE if no simplification is
15746 possible. */
15747
15748 tree
15749 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
15750 {
15751 tree sub = op0;
15752 tree subtype;
15753
15754 STRIP_NOPS (sub);
15755 subtype = TREE_TYPE (sub);
15756 if (!POINTER_TYPE_P (subtype))
15757 return NULL_TREE;
15758
15759 if (TREE_CODE (sub) == ADDR_EXPR)
15760 {
15761 tree op = TREE_OPERAND (sub, 0);
15762 tree optype = TREE_TYPE (op);
15763 /* *&CONST_DECL -> to the value of the const decl. */
15764 if (TREE_CODE (op) == CONST_DECL)
15765 return DECL_INITIAL (op);
15766 /* *&p => p; make sure to handle *&"str"[cst] here. */
15767 if (type == optype)
15768 {
15769 tree fop = fold_read_from_constant_string (op);
15770 if (fop)
15771 return fop;
15772 else
15773 return op;
15774 }
15775 /* *(foo *)&fooarray => fooarray[0] */
15776 else if (TREE_CODE (optype) == ARRAY_TYPE
15777 && type == TREE_TYPE (optype)
15778 && (!in_gimple_form
15779 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
15780 {
15781 tree type_domain = TYPE_DOMAIN (optype);
15782 tree min_val = size_zero_node;
15783 if (type_domain && TYPE_MIN_VALUE (type_domain))
15784 min_val = TYPE_MIN_VALUE (type_domain);
15785 if (in_gimple_form
15786 && TREE_CODE (min_val) != INTEGER_CST)
15787 return NULL_TREE;
15788 return build4_loc (loc, ARRAY_REF, type, op, min_val,
15789 NULL_TREE, NULL_TREE);
15790 }
15791 /* *(foo *)&complexfoo => __real__ complexfoo */
15792 else if (TREE_CODE (optype) == COMPLEX_TYPE
15793 && type == TREE_TYPE (optype))
15794 return fold_build1_loc (loc, REALPART_EXPR, type, op);
15795 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
15796 else if (TREE_CODE (optype) == VECTOR_TYPE
15797 && type == TREE_TYPE (optype))
15798 {
15799 tree part_width = TYPE_SIZE (type);
15800 tree index = bitsize_int (0);
15801 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
15802 }
15803 }
15804
15805 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
15806 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
15807 {
15808 tree op00 = TREE_OPERAND (sub, 0);
15809 tree op01 = TREE_OPERAND (sub, 1);
15810
15811 STRIP_NOPS (op00);
15812 if (TREE_CODE (op00) == ADDR_EXPR)
15813 {
15814 tree op00type;
15815 op00 = TREE_OPERAND (op00, 0);
15816 op00type = TREE_TYPE (op00);
15817
15818 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
15819 if (TREE_CODE (op00type) == VECTOR_TYPE
15820 && type == TREE_TYPE (op00type))
15821 {
15822 HOST_WIDE_INT offset = tree_to_shwi (op01);
15823 tree part_width = TYPE_SIZE (type);
15824 unsigned HOST_WIDE_INT part_widthi = tree_to_shwi (part_width)/BITS_PER_UNIT;
15825 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
15826 tree index = bitsize_int (indexi);
15827
15828 if (offset / part_widthi < TYPE_VECTOR_SUBPARTS (op00type))
15829 return fold_build3_loc (loc,
15830 BIT_FIELD_REF, type, op00,
15831 part_width, index);
15832
15833 }
15834 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
15835 else if (TREE_CODE (op00type) == COMPLEX_TYPE
15836 && type == TREE_TYPE (op00type))
15837 {
15838 tree size = TYPE_SIZE_UNIT (type);
15839 if (tree_int_cst_equal (size, op01))
15840 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
15841 }
15842 /* ((foo *)&fooarray)[1] => fooarray[1] */
15843 else if (TREE_CODE (op00type) == ARRAY_TYPE
15844 && type == TREE_TYPE (op00type))
15845 {
15846 tree type_domain = TYPE_DOMAIN (op00type);
15847 tree min_val = size_zero_node;
15848 if (type_domain && TYPE_MIN_VALUE (type_domain))
15849 min_val = TYPE_MIN_VALUE (type_domain);
15850 op01 = size_binop_loc (loc, EXACT_DIV_EXPR, op01,
15851 TYPE_SIZE_UNIT (type));
15852 op01 = size_binop_loc (loc, PLUS_EXPR, op01, min_val);
15853 return build4_loc (loc, ARRAY_REF, type, op00, op01,
15854 NULL_TREE, NULL_TREE);
15855 }
15856 }
15857 }
15858
15859 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
15860 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
15861 && type == TREE_TYPE (TREE_TYPE (subtype))
15862 && (!in_gimple_form
15863 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
15864 {
15865 tree type_domain;
15866 tree min_val = size_zero_node;
15867 sub = build_fold_indirect_ref_loc (loc, sub);
15868 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
15869 if (type_domain && TYPE_MIN_VALUE (type_domain))
15870 min_val = TYPE_MIN_VALUE (type_domain);
15871 if (in_gimple_form
15872 && TREE_CODE (min_val) != INTEGER_CST)
15873 return NULL_TREE;
15874 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
15875 NULL_TREE);
15876 }
15877
15878 return NULL_TREE;
15879 }
15880
15881 /* Builds an expression for an indirection through T, simplifying some
15882 cases. */
15883
15884 tree
15885 build_fold_indirect_ref_loc (location_t loc, tree t)
15886 {
15887 tree type = TREE_TYPE (TREE_TYPE (t));
15888 tree sub = fold_indirect_ref_1 (loc, type, t);
15889
15890 if (sub)
15891 return sub;
15892
15893 return build1_loc (loc, INDIRECT_REF, type, t);
15894 }
15895
15896 /* Given an INDIRECT_REF T, return either T or a simplified version. */
15897
15898 tree
15899 fold_indirect_ref_loc (location_t loc, tree t)
15900 {
15901 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
15902
15903 if (sub)
15904 return sub;
15905 else
15906 return t;
15907 }
15908
15909 /* Strip non-trapping, non-side-effecting tree nodes from an expression
15910 whose result is ignored. The type of the returned tree need not be
15911 the same as the original expression. */
15912
15913 tree
15914 fold_ignored_result (tree t)
15915 {
15916 if (!TREE_SIDE_EFFECTS (t))
15917 return integer_zero_node;
15918
15919 for (;;)
15920 switch (TREE_CODE_CLASS (TREE_CODE (t)))
15921 {
15922 case tcc_unary:
15923 t = TREE_OPERAND (t, 0);
15924 break;
15925
15926 case tcc_binary:
15927 case tcc_comparison:
15928 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
15929 t = TREE_OPERAND (t, 0);
15930 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
15931 t = TREE_OPERAND (t, 1);
15932 else
15933 return t;
15934 break;
15935
15936 case tcc_expression:
15937 switch (TREE_CODE (t))
15938 {
15939 case COMPOUND_EXPR:
15940 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
15941 return t;
15942 t = TREE_OPERAND (t, 0);
15943 break;
15944
15945 case COND_EXPR:
15946 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
15947 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
15948 return t;
15949 t = TREE_OPERAND (t, 0);
15950 break;
15951
15952 default:
15953 return t;
15954 }
15955 break;
15956
15957 default:
15958 return t;
15959 }
15960 }
15961
15962 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
15963
15964 tree
15965 round_up_loc (location_t loc, tree value, unsigned int divisor)
15966 {
15967 tree div = NULL_TREE;
15968
15969 if (divisor == 1)
15970 return value;
15971
15972 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
15973 have to do anything. Only do this when we are not given a const,
15974 because in that case, this check is more expensive than just
15975 doing it. */
15976 if (TREE_CODE (value) != INTEGER_CST)
15977 {
15978 div = build_int_cst (TREE_TYPE (value), divisor);
15979
15980 if (multiple_of_p (TREE_TYPE (value), value, div))
15981 return value;
15982 }
15983
15984 /* If divisor is a power of two, simplify this to bit manipulation. */
15985 if (divisor == (divisor & -divisor))
15986 {
15987 if (TREE_CODE (value) == INTEGER_CST)
15988 {
15989 wide_int val = value;
15990 bool overflow_p;
15991
15992 if ((val & (divisor - 1)) == 0)
15993 return value;
15994
15995 overflow_p = TREE_OVERFLOW (value);
15996 val += divisor - 1;
15997 val &= - (int) divisor;
15998 if (val == 0)
15999 overflow_p = true;
16000
16001 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
16002 }
16003 else
16004 {
16005 tree t;
16006
16007 t = build_int_cst (TREE_TYPE (value), divisor - 1);
16008 value = size_binop_loc (loc, PLUS_EXPR, value, t);
16009 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
16010 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
16011 }
16012 }
16013 else
16014 {
16015 if (!div)
16016 div = build_int_cst (TREE_TYPE (value), divisor);
16017 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
16018 value = size_binop_loc (loc, MULT_EXPR, value, div);
16019 }
16020
16021 return value;
16022 }
16023
16024 /* Likewise, but round down. */
16025
16026 tree
16027 round_down_loc (location_t loc, tree value, int divisor)
16028 {
16029 tree div = NULL_TREE;
16030
16031 gcc_assert (divisor > 0);
16032 if (divisor == 1)
16033 return value;
16034
16035 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
16036 have to do anything. Only do this when we are not given a const,
16037 because in that case, this check is more expensive than just
16038 doing it. */
16039 if (TREE_CODE (value) != INTEGER_CST)
16040 {
16041 div = build_int_cst (TREE_TYPE (value), divisor);
16042
16043 if (multiple_of_p (TREE_TYPE (value), value, div))
16044 return value;
16045 }
16046
16047 /* If divisor is a power of two, simplify this to bit manipulation. */
16048 if (divisor == (divisor & -divisor))
16049 {
16050 tree t;
16051
16052 t = build_int_cst (TREE_TYPE (value), -divisor);
16053 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
16054 }
16055 else
16056 {
16057 if (!div)
16058 div = build_int_cst (TREE_TYPE (value), divisor);
16059 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
16060 value = size_binop_loc (loc, MULT_EXPR, value, div);
16061 }
16062
16063 return value;
16064 }
16065
16066 /* Returns the pointer to the base of the object addressed by EXP and
16067 extracts the information about the offset of the access, storing it
16068 to PBITPOS and POFFSET. */
16069
16070 static tree
16071 split_address_to_core_and_offset (tree exp,
16072 HOST_WIDE_INT *pbitpos, tree *poffset)
16073 {
16074 tree core;
16075 machine_mode mode;
16076 int unsignedp, volatilep;
16077 HOST_WIDE_INT bitsize;
16078 location_t loc = EXPR_LOCATION (exp);
16079
16080 if (TREE_CODE (exp) == ADDR_EXPR)
16081 {
16082 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
16083 poffset, &mode, &unsignedp, &volatilep,
16084 false);
16085 core = build_fold_addr_expr_loc (loc, core);
16086 }
16087 else
16088 {
16089 core = exp;
16090 *pbitpos = 0;
16091 *poffset = NULL_TREE;
16092 }
16093
16094 return core;
16095 }
16096
16097 /* Returns true if addresses of E1 and E2 differ by a constant, false
16098 otherwise. If they do, E1 - E2 is stored in *DIFF. */
16099
16100 bool
16101 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
16102 {
16103 tree core1, core2;
16104 HOST_WIDE_INT bitpos1, bitpos2;
16105 tree toffset1, toffset2, tdiff, type;
16106
16107 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
16108 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
16109
16110 if (bitpos1 % BITS_PER_UNIT != 0
16111 || bitpos2 % BITS_PER_UNIT != 0
16112 || !operand_equal_p (core1, core2, 0))
16113 return false;
16114
16115 if (toffset1 && toffset2)
16116 {
16117 type = TREE_TYPE (toffset1);
16118 if (type != TREE_TYPE (toffset2))
16119 toffset2 = fold_convert (type, toffset2);
16120
16121 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
16122 if (!cst_and_fits_in_hwi (tdiff))
16123 return false;
16124
16125 *diff = int_cst_value (tdiff);
16126 }
16127 else if (toffset1 || toffset2)
16128 {
16129 /* If only one of the offsets is non-constant, the difference cannot
16130 be a constant. */
16131 return false;
16132 }
16133 else
16134 *diff = 0;
16135
16136 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
16137 return true;
16138 }
16139
16140 /* Simplify the floating point expression EXP when the sign of the
16141 result is not significant. Return NULL_TREE if no simplification
16142 is possible. */
16143
16144 tree
16145 fold_strip_sign_ops (tree exp)
16146 {
16147 tree arg0, arg1;
16148 location_t loc = EXPR_LOCATION (exp);
16149
16150 switch (TREE_CODE (exp))
16151 {
16152 case ABS_EXPR:
16153 case NEGATE_EXPR:
16154 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
16155 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
16156
16157 case MULT_EXPR:
16158 case RDIV_EXPR:
16159 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (exp)))
16160 return NULL_TREE;
16161 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
16162 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
16163 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
16164 return fold_build2_loc (loc, TREE_CODE (exp), TREE_TYPE (exp),
16165 arg0 ? arg0 : TREE_OPERAND (exp, 0),
16166 arg1 ? arg1 : TREE_OPERAND (exp, 1));
16167 break;
16168
16169 case COMPOUND_EXPR:
16170 arg0 = TREE_OPERAND (exp, 0);
16171 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
16172 if (arg1)
16173 return fold_build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (exp), arg0, arg1);
16174 break;
16175
16176 case COND_EXPR:
16177 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
16178 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 2));
16179 if (arg0 || arg1)
16180 return fold_build3_loc (loc,
16181 COND_EXPR, TREE_TYPE (exp), TREE_OPERAND (exp, 0),
16182 arg0 ? arg0 : TREE_OPERAND (exp, 1),
16183 arg1 ? arg1 : TREE_OPERAND (exp, 2));
16184 break;
16185
16186 case CALL_EXPR:
16187 {
16188 const enum built_in_function fcode = builtin_mathfn_code (exp);
16189 switch (fcode)
16190 {
16191 CASE_FLT_FN (BUILT_IN_COPYSIGN):
16192 /* Strip copysign function call, return the 1st argument. */
16193 arg0 = CALL_EXPR_ARG (exp, 0);
16194 arg1 = CALL_EXPR_ARG (exp, 1);
16195 return omit_one_operand_loc (loc, TREE_TYPE (exp), arg0, arg1);
16196
16197 default:
16198 /* Strip sign ops from the argument of "odd" math functions. */
16199 if (negate_mathfn_p (fcode))
16200 {
16201 arg0 = fold_strip_sign_ops (CALL_EXPR_ARG (exp, 0));
16202 if (arg0)
16203 return build_call_expr_loc (loc, get_callee_fndecl (exp), 1, arg0);
16204 }
16205 break;
16206 }
16207 }
16208 break;
16209
16210 default:
16211 break;
16212 }
16213 return NULL_TREE;
16214 }
16215
16216 /* Return OFF converted to a pointer offset type suitable as offset for
16217 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
16218 tree
16219 convert_to_ptrofftype_loc (location_t loc, tree off)
16220 {
16221 return fold_convert_loc (loc, sizetype, off);
16222 }
16223
16224 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
16225 tree
16226 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
16227 {
16228 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
16229 ptr, convert_to_ptrofftype_loc (loc, off));
16230 }
16231
16232 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
16233 tree
16234 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
16235 {
16236 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
16237 ptr, size_int (off));
16238 }