fold-const.c (fold_binary_loc): Move ~X | X folding ...
[gcc.git] / gcc / fold-const.c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
27
28 /* The entry points in this file are fold, size_int_wide and size_binop.
29
30 fold takes a tree as argument and returns a simplified tree.
31
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
35
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
38
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
42
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "tm.h"
47 #include "flags.h"
48 #include "alias.h"
49 #include "symtab.h"
50 #include "tree.h"
51 #include "fold-const.h"
52 #include "stor-layout.h"
53 #include "calls.h"
54 #include "tree-iterator.h"
55 #include "realmpfr.h"
56 #include "rtl.h"
57 #include "hard-reg-set.h"
58 #include "function.h"
59 #include "insn-config.h"
60 #include "expmed.h"
61 #include "dojump.h"
62 #include "explow.h"
63 #include "emit-rtl.h"
64 #include "varasm.h"
65 #include "stmt.h"
66 #include "expr.h"
67 #include "tm_p.h"
68 #include "target.h"
69 #include "diagnostic-core.h"
70 #include "intl.h"
71 #include "langhooks.h"
72 #include "md5.h"
73 #include "predict.h"
74 #include "basic-block.h"
75 #include "tree-ssa-alias.h"
76 #include "internal-fn.h"
77 #include "tree-eh.h"
78 #include "gimple-expr.h"
79 #include "gimple.h"
80 #include "gimplify.h"
81 #include "tree-dfa.h"
82 #include "builtins.h"
83 #include "cgraph.h"
84 #include "generic-match.h"
85 #include "optabs.h"
86
87 /* Nonzero if we are folding constants inside an initializer; zero
88 otherwise. */
89 int folding_initializer = 0;
90
91 /* The following constants represent a bit based encoding of GCC's
92 comparison operators. This encoding simplifies transformations
93 on relational comparison operators, such as AND and OR. */
94 enum comparison_code {
95 COMPCODE_FALSE = 0,
96 COMPCODE_LT = 1,
97 COMPCODE_EQ = 2,
98 COMPCODE_LE = 3,
99 COMPCODE_GT = 4,
100 COMPCODE_LTGT = 5,
101 COMPCODE_GE = 6,
102 COMPCODE_ORD = 7,
103 COMPCODE_UNORD = 8,
104 COMPCODE_UNLT = 9,
105 COMPCODE_UNEQ = 10,
106 COMPCODE_UNLE = 11,
107 COMPCODE_UNGT = 12,
108 COMPCODE_NE = 13,
109 COMPCODE_UNGE = 14,
110 COMPCODE_TRUE = 15
111 };
112
113 static bool negate_mathfn_p (enum built_in_function);
114 static bool negate_expr_p (tree);
115 static tree negate_expr (tree);
116 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
117 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
118 static enum comparison_code comparison_to_compcode (enum tree_code);
119 static enum tree_code compcode_to_comparison (enum comparison_code);
120 static int operand_equal_for_comparison_p (tree, tree, tree);
121 static int twoval_comparison_p (tree, tree *, tree *, int *);
122 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
123 static tree distribute_bit_expr (location_t, enum tree_code, tree, tree, tree);
124 static tree make_bit_field_ref (location_t, tree, tree,
125 HOST_WIDE_INT, HOST_WIDE_INT, int);
126 static tree optimize_bit_field_compare (location_t, enum tree_code,
127 tree, tree, tree);
128 static tree decode_field_reference (location_t, tree, HOST_WIDE_INT *,
129 HOST_WIDE_INT *,
130 machine_mode *, int *, int *,
131 tree *, tree *);
132 static int simple_operand_p (const_tree);
133 static bool simple_operand_p_2 (tree);
134 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
135 static tree range_predecessor (tree);
136 static tree range_successor (tree);
137 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
138 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
139 static tree unextend (tree, int, int, tree);
140 static tree optimize_minmax_comparison (location_t, enum tree_code,
141 tree, tree, tree);
142 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
143 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
144 static tree fold_binary_op_with_conditional_arg (location_t,
145 enum tree_code, tree,
146 tree, tree,
147 tree, tree, int);
148 static tree fold_mathfn_compare (location_t,
149 enum built_in_function, enum tree_code,
150 tree, tree, tree);
151 static tree fold_inf_compare (location_t, enum tree_code, tree, tree, tree);
152 static tree fold_div_compare (location_t, enum tree_code, tree, tree, tree);
153 static bool reorder_operands_p (const_tree, const_tree);
154 static tree fold_negate_const (tree, tree);
155 static tree fold_not_const (const_tree, tree);
156 static tree fold_relational_const (enum tree_code, tree, tree, tree);
157 static tree fold_convert_const (enum tree_code, tree, tree);
158 static tree fold_view_convert_expr (tree, tree);
159 static bool vec_cst_ctor_to_array (tree, tree *);
160
161
162 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
163 Otherwise, return LOC. */
164
165 static location_t
166 expr_location_or (tree t, location_t loc)
167 {
168 location_t tloc = EXPR_LOCATION (t);
169 return tloc == UNKNOWN_LOCATION ? loc : tloc;
170 }
171
172 /* Similar to protected_set_expr_location, but never modify x in place,
173 if location can and needs to be set, unshare it. */
174
175 static inline tree
176 protected_set_expr_location_unshare (tree x, location_t loc)
177 {
178 if (CAN_HAVE_LOCATION_P (x)
179 && EXPR_LOCATION (x) != loc
180 && !(TREE_CODE (x) == SAVE_EXPR
181 || TREE_CODE (x) == TARGET_EXPR
182 || TREE_CODE (x) == BIND_EXPR))
183 {
184 x = copy_node (x);
185 SET_EXPR_LOCATION (x, loc);
186 }
187 return x;
188 }
189 \f
190 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
191 division and returns the quotient. Otherwise returns
192 NULL_TREE. */
193
194 tree
195 div_if_zero_remainder (const_tree arg1, const_tree arg2)
196 {
197 widest_int quo;
198
199 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
200 SIGNED, &quo))
201 return wide_int_to_tree (TREE_TYPE (arg1), quo);
202
203 return NULL_TREE;
204 }
205 \f
206 /* This is nonzero if we should defer warnings about undefined
207 overflow. This facility exists because these warnings are a
208 special case. The code to estimate loop iterations does not want
209 to issue any warnings, since it works with expressions which do not
210 occur in user code. Various bits of cleanup code call fold(), but
211 only use the result if it has certain characteristics (e.g., is a
212 constant); that code only wants to issue a warning if the result is
213 used. */
214
215 static int fold_deferring_overflow_warnings;
216
217 /* If a warning about undefined overflow is deferred, this is the
218 warning. Note that this may cause us to turn two warnings into
219 one, but that is fine since it is sufficient to only give one
220 warning per expression. */
221
222 static const char* fold_deferred_overflow_warning;
223
224 /* If a warning about undefined overflow is deferred, this is the
225 level at which the warning should be emitted. */
226
227 static enum warn_strict_overflow_code fold_deferred_overflow_code;
228
229 /* Start deferring overflow warnings. We could use a stack here to
230 permit nested calls, but at present it is not necessary. */
231
232 void
233 fold_defer_overflow_warnings (void)
234 {
235 ++fold_deferring_overflow_warnings;
236 }
237
238 /* Stop deferring overflow warnings. If there is a pending warning,
239 and ISSUE is true, then issue the warning if appropriate. STMT is
240 the statement with which the warning should be associated (used for
241 location information); STMT may be NULL. CODE is the level of the
242 warning--a warn_strict_overflow_code value. This function will use
243 the smaller of CODE and the deferred code when deciding whether to
244 issue the warning. CODE may be zero to mean to always use the
245 deferred code. */
246
247 void
248 fold_undefer_overflow_warnings (bool issue, const_gimple stmt, int code)
249 {
250 const char *warnmsg;
251 location_t locus;
252
253 gcc_assert (fold_deferring_overflow_warnings > 0);
254 --fold_deferring_overflow_warnings;
255 if (fold_deferring_overflow_warnings > 0)
256 {
257 if (fold_deferred_overflow_warning != NULL
258 && code != 0
259 && code < (int) fold_deferred_overflow_code)
260 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
261 return;
262 }
263
264 warnmsg = fold_deferred_overflow_warning;
265 fold_deferred_overflow_warning = NULL;
266
267 if (!issue || warnmsg == NULL)
268 return;
269
270 if (gimple_no_warning_p (stmt))
271 return;
272
273 /* Use the smallest code level when deciding to issue the
274 warning. */
275 if (code == 0 || code > (int) fold_deferred_overflow_code)
276 code = fold_deferred_overflow_code;
277
278 if (!issue_strict_overflow_warning (code))
279 return;
280
281 if (stmt == NULL)
282 locus = input_location;
283 else
284 locus = gimple_location (stmt);
285 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
286 }
287
288 /* Stop deferring overflow warnings, ignoring any deferred
289 warnings. */
290
291 void
292 fold_undefer_and_ignore_overflow_warnings (void)
293 {
294 fold_undefer_overflow_warnings (false, NULL, 0);
295 }
296
297 /* Whether we are deferring overflow warnings. */
298
299 bool
300 fold_deferring_overflow_warnings_p (void)
301 {
302 return fold_deferring_overflow_warnings > 0;
303 }
304
305 /* This is called when we fold something based on the fact that signed
306 overflow is undefined. */
307
308 static void
309 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
310 {
311 if (fold_deferring_overflow_warnings > 0)
312 {
313 if (fold_deferred_overflow_warning == NULL
314 || wc < fold_deferred_overflow_code)
315 {
316 fold_deferred_overflow_warning = gmsgid;
317 fold_deferred_overflow_code = wc;
318 }
319 }
320 else if (issue_strict_overflow_warning (wc))
321 warning (OPT_Wstrict_overflow, gmsgid);
322 }
323 \f
324 /* Return true if the built-in mathematical function specified by CODE
325 is odd, i.e. -f(x) == f(-x). */
326
327 static bool
328 negate_mathfn_p (enum built_in_function code)
329 {
330 switch (code)
331 {
332 CASE_FLT_FN (BUILT_IN_ASIN):
333 CASE_FLT_FN (BUILT_IN_ASINH):
334 CASE_FLT_FN (BUILT_IN_ATAN):
335 CASE_FLT_FN (BUILT_IN_ATANH):
336 CASE_FLT_FN (BUILT_IN_CASIN):
337 CASE_FLT_FN (BUILT_IN_CASINH):
338 CASE_FLT_FN (BUILT_IN_CATAN):
339 CASE_FLT_FN (BUILT_IN_CATANH):
340 CASE_FLT_FN (BUILT_IN_CBRT):
341 CASE_FLT_FN (BUILT_IN_CPROJ):
342 CASE_FLT_FN (BUILT_IN_CSIN):
343 CASE_FLT_FN (BUILT_IN_CSINH):
344 CASE_FLT_FN (BUILT_IN_CTAN):
345 CASE_FLT_FN (BUILT_IN_CTANH):
346 CASE_FLT_FN (BUILT_IN_ERF):
347 CASE_FLT_FN (BUILT_IN_LLROUND):
348 CASE_FLT_FN (BUILT_IN_LROUND):
349 CASE_FLT_FN (BUILT_IN_ROUND):
350 CASE_FLT_FN (BUILT_IN_SIN):
351 CASE_FLT_FN (BUILT_IN_SINH):
352 CASE_FLT_FN (BUILT_IN_TAN):
353 CASE_FLT_FN (BUILT_IN_TANH):
354 CASE_FLT_FN (BUILT_IN_TRUNC):
355 return true;
356
357 CASE_FLT_FN (BUILT_IN_LLRINT):
358 CASE_FLT_FN (BUILT_IN_LRINT):
359 CASE_FLT_FN (BUILT_IN_NEARBYINT):
360 CASE_FLT_FN (BUILT_IN_RINT):
361 return !flag_rounding_math;
362
363 default:
364 break;
365 }
366 return false;
367 }
368
369 /* Check whether we may negate an integer constant T without causing
370 overflow. */
371
372 bool
373 may_negate_without_overflow_p (const_tree t)
374 {
375 tree type;
376
377 gcc_assert (TREE_CODE (t) == INTEGER_CST);
378
379 type = TREE_TYPE (t);
380 if (TYPE_UNSIGNED (type))
381 return false;
382
383 return !wi::only_sign_bit_p (t);
384 }
385
386 /* Determine whether an expression T can be cheaply negated using
387 the function negate_expr without introducing undefined overflow. */
388
389 static bool
390 negate_expr_p (tree t)
391 {
392 tree type;
393
394 if (t == 0)
395 return false;
396
397 type = TREE_TYPE (t);
398
399 STRIP_SIGN_NOPS (t);
400 switch (TREE_CODE (t))
401 {
402 case INTEGER_CST:
403 if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
404 return true;
405
406 /* Check that -CST will not overflow type. */
407 return may_negate_without_overflow_p (t);
408 case BIT_NOT_EXPR:
409 return (INTEGRAL_TYPE_P (type)
410 && TYPE_OVERFLOW_WRAPS (type));
411
412 case FIXED_CST:
413 return true;
414
415 case NEGATE_EXPR:
416 return !TYPE_OVERFLOW_SANITIZED (type);
417
418 case REAL_CST:
419 /* We want to canonicalize to positive real constants. Pretend
420 that only negative ones can be easily negated. */
421 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
422
423 case COMPLEX_CST:
424 return negate_expr_p (TREE_REALPART (t))
425 && negate_expr_p (TREE_IMAGPART (t));
426
427 case VECTOR_CST:
428 {
429 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
430 return true;
431
432 int count = TYPE_VECTOR_SUBPARTS (type), i;
433
434 for (i = 0; i < count; i++)
435 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
436 return false;
437
438 return true;
439 }
440
441 case COMPLEX_EXPR:
442 return negate_expr_p (TREE_OPERAND (t, 0))
443 && negate_expr_p (TREE_OPERAND (t, 1));
444
445 case CONJ_EXPR:
446 return negate_expr_p (TREE_OPERAND (t, 0));
447
448 case PLUS_EXPR:
449 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
450 || HONOR_SIGNED_ZEROS (element_mode (type)))
451 return false;
452 /* -(A + B) -> (-B) - A. */
453 if (negate_expr_p (TREE_OPERAND (t, 1))
454 && reorder_operands_p (TREE_OPERAND (t, 0),
455 TREE_OPERAND (t, 1)))
456 return true;
457 /* -(A + B) -> (-A) - B. */
458 return negate_expr_p (TREE_OPERAND (t, 0));
459
460 case MINUS_EXPR:
461 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
462 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
463 && !HONOR_SIGNED_ZEROS (element_mode (type))
464 && reorder_operands_p (TREE_OPERAND (t, 0),
465 TREE_OPERAND (t, 1));
466
467 case MULT_EXPR:
468 if (TYPE_UNSIGNED (TREE_TYPE (t)))
469 break;
470
471 /* Fall through. */
472
473 case RDIV_EXPR:
474 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
475 return negate_expr_p (TREE_OPERAND (t, 1))
476 || negate_expr_p (TREE_OPERAND (t, 0));
477 break;
478
479 case TRUNC_DIV_EXPR:
480 case ROUND_DIV_EXPR:
481 case EXACT_DIV_EXPR:
482 /* In general we can't negate A / B, because if A is INT_MIN and
483 B is 1, we may turn this into INT_MIN / -1 which is undefined
484 and actually traps on some architectures. But if overflow is
485 undefined, we can negate, because - (INT_MIN / 1) is an
486 overflow. */
487 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
488 {
489 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
490 break;
491 /* If overflow is undefined then we have to be careful because
492 we ask whether it's ok to associate the negate with the
493 division which is not ok for example for
494 -((a - b) / c) where (-(a - b)) / c may invoke undefined
495 overflow because of negating INT_MIN. So do not use
496 negate_expr_p here but open-code the two important cases. */
497 if (TREE_CODE (TREE_OPERAND (t, 0)) == NEGATE_EXPR
498 || (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
499 && may_negate_without_overflow_p (TREE_OPERAND (t, 0))))
500 return true;
501 }
502 else if (negate_expr_p (TREE_OPERAND (t, 0)))
503 return true;
504 return negate_expr_p (TREE_OPERAND (t, 1));
505
506 case NOP_EXPR:
507 /* Negate -((double)float) as (double)(-float). */
508 if (TREE_CODE (type) == REAL_TYPE)
509 {
510 tree tem = strip_float_extensions (t);
511 if (tem != t)
512 return negate_expr_p (tem);
513 }
514 break;
515
516 case CALL_EXPR:
517 /* Negate -f(x) as f(-x). */
518 if (negate_mathfn_p (builtin_mathfn_code (t)))
519 return negate_expr_p (CALL_EXPR_ARG (t, 0));
520 break;
521
522 case RSHIFT_EXPR:
523 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
524 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
525 {
526 tree op1 = TREE_OPERAND (t, 1);
527 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
528 return true;
529 }
530 break;
531
532 default:
533 break;
534 }
535 return false;
536 }
537
538 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
539 simplification is possible.
540 If negate_expr_p would return true for T, NULL_TREE will never be
541 returned. */
542
543 static tree
544 fold_negate_expr (location_t loc, tree t)
545 {
546 tree type = TREE_TYPE (t);
547 tree tem;
548
549 switch (TREE_CODE (t))
550 {
551 /* Convert - (~A) to A + 1. */
552 case BIT_NOT_EXPR:
553 if (INTEGRAL_TYPE_P (type))
554 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
555 build_one_cst (type));
556 break;
557
558 case INTEGER_CST:
559 tem = fold_negate_const (t, type);
560 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
561 || (ANY_INTEGRAL_TYPE_P (type)
562 && !TYPE_OVERFLOW_TRAPS (type)
563 && TYPE_OVERFLOW_WRAPS (type))
564 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
565 return tem;
566 break;
567
568 case REAL_CST:
569 tem = fold_negate_const (t, type);
570 return tem;
571
572 case FIXED_CST:
573 tem = fold_negate_const (t, type);
574 return tem;
575
576 case COMPLEX_CST:
577 {
578 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
579 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
580 if (rpart && ipart)
581 return build_complex (type, rpart, ipart);
582 }
583 break;
584
585 case VECTOR_CST:
586 {
587 int count = TYPE_VECTOR_SUBPARTS (type), i;
588 tree *elts = XALLOCAVEC (tree, count);
589
590 for (i = 0; i < count; i++)
591 {
592 elts[i] = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
593 if (elts[i] == NULL_TREE)
594 return NULL_TREE;
595 }
596
597 return build_vector (type, elts);
598 }
599
600 case COMPLEX_EXPR:
601 if (negate_expr_p (t))
602 return fold_build2_loc (loc, COMPLEX_EXPR, type,
603 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
604 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
605 break;
606
607 case CONJ_EXPR:
608 if (negate_expr_p (t))
609 return fold_build1_loc (loc, CONJ_EXPR, type,
610 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
611 break;
612
613 case NEGATE_EXPR:
614 if (!TYPE_OVERFLOW_SANITIZED (type))
615 return TREE_OPERAND (t, 0);
616 break;
617
618 case PLUS_EXPR:
619 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
620 && !HONOR_SIGNED_ZEROS (element_mode (type)))
621 {
622 /* -(A + B) -> (-B) - A. */
623 if (negate_expr_p (TREE_OPERAND (t, 1))
624 && reorder_operands_p (TREE_OPERAND (t, 0),
625 TREE_OPERAND (t, 1)))
626 {
627 tem = negate_expr (TREE_OPERAND (t, 1));
628 return fold_build2_loc (loc, MINUS_EXPR, type,
629 tem, TREE_OPERAND (t, 0));
630 }
631
632 /* -(A + B) -> (-A) - B. */
633 if (negate_expr_p (TREE_OPERAND (t, 0)))
634 {
635 tem = negate_expr (TREE_OPERAND (t, 0));
636 return fold_build2_loc (loc, MINUS_EXPR, type,
637 tem, TREE_OPERAND (t, 1));
638 }
639 }
640 break;
641
642 case MINUS_EXPR:
643 /* - (A - B) -> B - A */
644 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
645 && !HONOR_SIGNED_ZEROS (element_mode (type))
646 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
647 return fold_build2_loc (loc, MINUS_EXPR, type,
648 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
649 break;
650
651 case MULT_EXPR:
652 if (TYPE_UNSIGNED (type))
653 break;
654
655 /* Fall through. */
656
657 case RDIV_EXPR:
658 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
659 {
660 tem = TREE_OPERAND (t, 1);
661 if (negate_expr_p (tem))
662 return fold_build2_loc (loc, TREE_CODE (t), type,
663 TREE_OPERAND (t, 0), negate_expr (tem));
664 tem = TREE_OPERAND (t, 0);
665 if (negate_expr_p (tem))
666 return fold_build2_loc (loc, TREE_CODE (t), type,
667 negate_expr (tem), TREE_OPERAND (t, 1));
668 }
669 break;
670
671 case TRUNC_DIV_EXPR:
672 case ROUND_DIV_EXPR:
673 case EXACT_DIV_EXPR:
674 /* In general we can't negate A / B, because if A is INT_MIN and
675 B is 1, we may turn this into INT_MIN / -1 which is undefined
676 and actually traps on some architectures. But if overflow is
677 undefined, we can negate, because - (INT_MIN / 1) is an
678 overflow. */
679 if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
680 {
681 const char * const warnmsg = G_("assuming signed overflow does not "
682 "occur when negating a division");
683 tem = TREE_OPERAND (t, 1);
684 if (negate_expr_p (tem))
685 {
686 if (INTEGRAL_TYPE_P (type)
687 && (TREE_CODE (tem) != INTEGER_CST
688 || integer_onep (tem)))
689 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
690 return fold_build2_loc (loc, TREE_CODE (t), type,
691 TREE_OPERAND (t, 0), negate_expr (tem));
692 }
693 /* If overflow is undefined then we have to be careful because
694 we ask whether it's ok to associate the negate with the
695 division which is not ok for example for
696 -((a - b) / c) where (-(a - b)) / c may invoke undefined
697 overflow because of negating INT_MIN. So do not use
698 negate_expr_p here but open-code the two important cases. */
699 tem = TREE_OPERAND (t, 0);
700 if ((INTEGRAL_TYPE_P (type)
701 && (TREE_CODE (tem) == NEGATE_EXPR
702 || (TREE_CODE (tem) == INTEGER_CST
703 && may_negate_without_overflow_p (tem))))
704 || !INTEGRAL_TYPE_P (type))
705 return fold_build2_loc (loc, TREE_CODE (t), type,
706 negate_expr (tem), TREE_OPERAND (t, 1));
707 }
708 break;
709
710 case NOP_EXPR:
711 /* Convert -((double)float) into (double)(-float). */
712 if (TREE_CODE (type) == REAL_TYPE)
713 {
714 tem = strip_float_extensions (t);
715 if (tem != t && negate_expr_p (tem))
716 return fold_convert_loc (loc, type, negate_expr (tem));
717 }
718 break;
719
720 case CALL_EXPR:
721 /* Negate -f(x) as f(-x). */
722 if (negate_mathfn_p (builtin_mathfn_code (t))
723 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
724 {
725 tree fndecl, arg;
726
727 fndecl = get_callee_fndecl (t);
728 arg = negate_expr (CALL_EXPR_ARG (t, 0));
729 return build_call_expr_loc (loc, fndecl, 1, arg);
730 }
731 break;
732
733 case RSHIFT_EXPR:
734 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
735 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
736 {
737 tree op1 = TREE_OPERAND (t, 1);
738 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
739 {
740 tree ntype = TYPE_UNSIGNED (type)
741 ? signed_type_for (type)
742 : unsigned_type_for (type);
743 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
744 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
745 return fold_convert_loc (loc, type, temp);
746 }
747 }
748 break;
749
750 default:
751 break;
752 }
753
754 return NULL_TREE;
755 }
756
757 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
758 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
759 return NULL_TREE. */
760
761 static tree
762 negate_expr (tree t)
763 {
764 tree type, tem;
765 location_t loc;
766
767 if (t == NULL_TREE)
768 return NULL_TREE;
769
770 loc = EXPR_LOCATION (t);
771 type = TREE_TYPE (t);
772 STRIP_SIGN_NOPS (t);
773
774 tem = fold_negate_expr (loc, t);
775 if (!tem)
776 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
777 return fold_convert_loc (loc, type, tem);
778 }
779 \f
780 /* Split a tree IN into a constant, literal and variable parts that could be
781 combined with CODE to make IN. "constant" means an expression with
782 TREE_CONSTANT but that isn't an actual constant. CODE must be a
783 commutative arithmetic operation. Store the constant part into *CONP,
784 the literal in *LITP and return the variable part. If a part isn't
785 present, set it to null. If the tree does not decompose in this way,
786 return the entire tree as the variable part and the other parts as null.
787
788 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
789 case, we negate an operand that was subtracted. Except if it is a
790 literal for which we use *MINUS_LITP instead.
791
792 If NEGATE_P is true, we are negating all of IN, again except a literal
793 for which we use *MINUS_LITP instead.
794
795 If IN is itself a literal or constant, return it as appropriate.
796
797 Note that we do not guarantee that any of the three values will be the
798 same type as IN, but they will have the same signedness and mode. */
799
800 static tree
801 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
802 tree *minus_litp, int negate_p)
803 {
804 tree var = 0;
805
806 *conp = 0;
807 *litp = 0;
808 *minus_litp = 0;
809
810 /* Strip any conversions that don't change the machine mode or signedness. */
811 STRIP_SIGN_NOPS (in);
812
813 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
814 || TREE_CODE (in) == FIXED_CST)
815 *litp = in;
816 else if (TREE_CODE (in) == code
817 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
818 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
819 /* We can associate addition and subtraction together (even
820 though the C standard doesn't say so) for integers because
821 the value is not affected. For reals, the value might be
822 affected, so we can't. */
823 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
824 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
825 {
826 tree op0 = TREE_OPERAND (in, 0);
827 tree op1 = TREE_OPERAND (in, 1);
828 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
829 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
830
831 /* First see if either of the operands is a literal, then a constant. */
832 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
833 || TREE_CODE (op0) == FIXED_CST)
834 *litp = op0, op0 = 0;
835 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
836 || TREE_CODE (op1) == FIXED_CST)
837 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
838
839 if (op0 != 0 && TREE_CONSTANT (op0))
840 *conp = op0, op0 = 0;
841 else if (op1 != 0 && TREE_CONSTANT (op1))
842 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
843
844 /* If we haven't dealt with either operand, this is not a case we can
845 decompose. Otherwise, VAR is either of the ones remaining, if any. */
846 if (op0 != 0 && op1 != 0)
847 var = in;
848 else if (op0 != 0)
849 var = op0;
850 else
851 var = op1, neg_var_p = neg1_p;
852
853 /* Now do any needed negations. */
854 if (neg_litp_p)
855 *minus_litp = *litp, *litp = 0;
856 if (neg_conp_p)
857 *conp = negate_expr (*conp);
858 if (neg_var_p)
859 var = negate_expr (var);
860 }
861 else if (TREE_CODE (in) == BIT_NOT_EXPR
862 && code == PLUS_EXPR)
863 {
864 /* -X - 1 is folded to ~X, undo that here. */
865 *minus_litp = build_one_cst (TREE_TYPE (in));
866 var = negate_expr (TREE_OPERAND (in, 0));
867 }
868 else if (TREE_CONSTANT (in))
869 *conp = in;
870 else
871 var = in;
872
873 if (negate_p)
874 {
875 if (*litp)
876 *minus_litp = *litp, *litp = 0;
877 else if (*minus_litp)
878 *litp = *minus_litp, *minus_litp = 0;
879 *conp = negate_expr (*conp);
880 var = negate_expr (var);
881 }
882
883 return var;
884 }
885
886 /* Re-associate trees split by the above function. T1 and T2 are
887 either expressions to associate or null. Return the new
888 expression, if any. LOC is the location of the new expression. If
889 we build an operation, do it in TYPE and with CODE. */
890
891 static tree
892 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
893 {
894 if (t1 == 0)
895 return t2;
896 else if (t2 == 0)
897 return t1;
898
899 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
900 try to fold this since we will have infinite recursion. But do
901 deal with any NEGATE_EXPRs. */
902 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
903 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
904 {
905 if (code == PLUS_EXPR)
906 {
907 if (TREE_CODE (t1) == NEGATE_EXPR)
908 return build2_loc (loc, MINUS_EXPR, type,
909 fold_convert_loc (loc, type, t2),
910 fold_convert_loc (loc, type,
911 TREE_OPERAND (t1, 0)));
912 else if (TREE_CODE (t2) == NEGATE_EXPR)
913 return build2_loc (loc, MINUS_EXPR, type,
914 fold_convert_loc (loc, type, t1),
915 fold_convert_loc (loc, type,
916 TREE_OPERAND (t2, 0)));
917 else if (integer_zerop (t2))
918 return fold_convert_loc (loc, type, t1);
919 }
920 else if (code == MINUS_EXPR)
921 {
922 if (integer_zerop (t2))
923 return fold_convert_loc (loc, type, t1);
924 }
925
926 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
927 fold_convert_loc (loc, type, t2));
928 }
929
930 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
931 fold_convert_loc (loc, type, t2));
932 }
933 \f
934 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
935 for use in int_const_binop, size_binop and size_diffop. */
936
937 static bool
938 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
939 {
940 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
941 return false;
942 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
943 return false;
944
945 switch (code)
946 {
947 case LSHIFT_EXPR:
948 case RSHIFT_EXPR:
949 case LROTATE_EXPR:
950 case RROTATE_EXPR:
951 return true;
952
953 default:
954 break;
955 }
956
957 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
958 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
959 && TYPE_MODE (type1) == TYPE_MODE (type2);
960 }
961
962
963 /* Combine two integer constants ARG1 and ARG2 under operation CODE
964 to produce a new constant. Return NULL_TREE if we don't know how
965 to evaluate CODE at compile-time. */
966
967 static tree
968 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree parg2,
969 int overflowable)
970 {
971 wide_int res;
972 tree t;
973 tree type = TREE_TYPE (arg1);
974 signop sign = TYPE_SIGN (type);
975 bool overflow = false;
976
977 wide_int arg2 = wide_int::from (parg2, TYPE_PRECISION (type),
978 TYPE_SIGN (TREE_TYPE (parg2)));
979
980 switch (code)
981 {
982 case BIT_IOR_EXPR:
983 res = wi::bit_or (arg1, arg2);
984 break;
985
986 case BIT_XOR_EXPR:
987 res = wi::bit_xor (arg1, arg2);
988 break;
989
990 case BIT_AND_EXPR:
991 res = wi::bit_and (arg1, arg2);
992 break;
993
994 case RSHIFT_EXPR:
995 case LSHIFT_EXPR:
996 if (wi::neg_p (arg2))
997 {
998 arg2 = -arg2;
999 if (code == RSHIFT_EXPR)
1000 code = LSHIFT_EXPR;
1001 else
1002 code = RSHIFT_EXPR;
1003 }
1004
1005 if (code == RSHIFT_EXPR)
1006 /* It's unclear from the C standard whether shifts can overflow.
1007 The following code ignores overflow; perhaps a C standard
1008 interpretation ruling is needed. */
1009 res = wi::rshift (arg1, arg2, sign);
1010 else
1011 res = wi::lshift (arg1, arg2);
1012 break;
1013
1014 case RROTATE_EXPR:
1015 case LROTATE_EXPR:
1016 if (wi::neg_p (arg2))
1017 {
1018 arg2 = -arg2;
1019 if (code == RROTATE_EXPR)
1020 code = LROTATE_EXPR;
1021 else
1022 code = RROTATE_EXPR;
1023 }
1024
1025 if (code == RROTATE_EXPR)
1026 res = wi::rrotate (arg1, arg2);
1027 else
1028 res = wi::lrotate (arg1, arg2);
1029 break;
1030
1031 case PLUS_EXPR:
1032 res = wi::add (arg1, arg2, sign, &overflow);
1033 break;
1034
1035 case MINUS_EXPR:
1036 res = wi::sub (arg1, arg2, sign, &overflow);
1037 break;
1038
1039 case MULT_EXPR:
1040 res = wi::mul (arg1, arg2, sign, &overflow);
1041 break;
1042
1043 case MULT_HIGHPART_EXPR:
1044 res = wi::mul_high (arg1, arg2, sign);
1045 break;
1046
1047 case TRUNC_DIV_EXPR:
1048 case EXACT_DIV_EXPR:
1049 if (arg2 == 0)
1050 return NULL_TREE;
1051 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1052 break;
1053
1054 case FLOOR_DIV_EXPR:
1055 if (arg2 == 0)
1056 return NULL_TREE;
1057 res = wi::div_floor (arg1, arg2, sign, &overflow);
1058 break;
1059
1060 case CEIL_DIV_EXPR:
1061 if (arg2 == 0)
1062 return NULL_TREE;
1063 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1064 break;
1065
1066 case ROUND_DIV_EXPR:
1067 if (arg2 == 0)
1068 return NULL_TREE;
1069 res = wi::div_round (arg1, arg2, sign, &overflow);
1070 break;
1071
1072 case TRUNC_MOD_EXPR:
1073 if (arg2 == 0)
1074 return NULL_TREE;
1075 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1076 break;
1077
1078 case FLOOR_MOD_EXPR:
1079 if (arg2 == 0)
1080 return NULL_TREE;
1081 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1082 break;
1083
1084 case CEIL_MOD_EXPR:
1085 if (arg2 == 0)
1086 return NULL_TREE;
1087 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1088 break;
1089
1090 case ROUND_MOD_EXPR:
1091 if (arg2 == 0)
1092 return NULL_TREE;
1093 res = wi::mod_round (arg1, arg2, sign, &overflow);
1094 break;
1095
1096 case MIN_EXPR:
1097 res = wi::min (arg1, arg2, sign);
1098 break;
1099
1100 case MAX_EXPR:
1101 res = wi::max (arg1, arg2, sign);
1102 break;
1103
1104 default:
1105 return NULL_TREE;
1106 }
1107
1108 t = force_fit_type (type, res, overflowable,
1109 (((sign == SIGNED || overflowable == -1)
1110 && overflow)
1111 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (parg2)));
1112
1113 return t;
1114 }
1115
1116 tree
1117 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1118 {
1119 return int_const_binop_1 (code, arg1, arg2, 1);
1120 }
1121
1122 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1123 constant. We assume ARG1 and ARG2 have the same data type, or at least
1124 are the same kind of constant and the same machine mode. Return zero if
1125 combining the constants is not allowed in the current operating mode. */
1126
1127 static tree
1128 const_binop (enum tree_code code, tree arg1, tree arg2)
1129 {
1130 /* Sanity check for the recursive cases. */
1131 if (!arg1 || !arg2)
1132 return NULL_TREE;
1133
1134 STRIP_NOPS (arg1);
1135 STRIP_NOPS (arg2);
1136
1137 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1138 {
1139 if (code == POINTER_PLUS_EXPR)
1140 return int_const_binop (PLUS_EXPR,
1141 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1142
1143 return int_const_binop (code, arg1, arg2);
1144 }
1145
1146 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1147 {
1148 machine_mode mode;
1149 REAL_VALUE_TYPE d1;
1150 REAL_VALUE_TYPE d2;
1151 REAL_VALUE_TYPE value;
1152 REAL_VALUE_TYPE result;
1153 bool inexact;
1154 tree t, type;
1155
1156 /* The following codes are handled by real_arithmetic. */
1157 switch (code)
1158 {
1159 case PLUS_EXPR:
1160 case MINUS_EXPR:
1161 case MULT_EXPR:
1162 case RDIV_EXPR:
1163 case MIN_EXPR:
1164 case MAX_EXPR:
1165 break;
1166
1167 default:
1168 return NULL_TREE;
1169 }
1170
1171 d1 = TREE_REAL_CST (arg1);
1172 d2 = TREE_REAL_CST (arg2);
1173
1174 type = TREE_TYPE (arg1);
1175 mode = TYPE_MODE (type);
1176
1177 /* Don't perform operation if we honor signaling NaNs and
1178 either operand is a NaN. */
1179 if (HONOR_SNANS (mode)
1180 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1181 return NULL_TREE;
1182
1183 /* Don't perform operation if it would raise a division
1184 by zero exception. */
1185 if (code == RDIV_EXPR
1186 && REAL_VALUES_EQUAL (d2, dconst0)
1187 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1188 return NULL_TREE;
1189
1190 /* If either operand is a NaN, just return it. Otherwise, set up
1191 for floating-point trap; we return an overflow. */
1192 if (REAL_VALUE_ISNAN (d1))
1193 return arg1;
1194 else if (REAL_VALUE_ISNAN (d2))
1195 return arg2;
1196
1197 inexact = real_arithmetic (&value, code, &d1, &d2);
1198 real_convert (&result, mode, &value);
1199
1200 /* Don't constant fold this floating point operation if
1201 the result has overflowed and flag_trapping_math. */
1202 if (flag_trapping_math
1203 && MODE_HAS_INFINITIES (mode)
1204 && REAL_VALUE_ISINF (result)
1205 && !REAL_VALUE_ISINF (d1)
1206 && !REAL_VALUE_ISINF (d2))
1207 return NULL_TREE;
1208
1209 /* Don't constant fold this floating point operation if the
1210 result may dependent upon the run-time rounding mode and
1211 flag_rounding_math is set, or if GCC's software emulation
1212 is unable to accurately represent the result. */
1213 if ((flag_rounding_math
1214 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1215 && (inexact || !real_identical (&result, &value)))
1216 return NULL_TREE;
1217
1218 t = build_real (type, result);
1219
1220 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1221 return t;
1222 }
1223
1224 if (TREE_CODE (arg1) == FIXED_CST)
1225 {
1226 FIXED_VALUE_TYPE f1;
1227 FIXED_VALUE_TYPE f2;
1228 FIXED_VALUE_TYPE result;
1229 tree t, type;
1230 int sat_p;
1231 bool overflow_p;
1232
1233 /* The following codes are handled by fixed_arithmetic. */
1234 switch (code)
1235 {
1236 case PLUS_EXPR:
1237 case MINUS_EXPR:
1238 case MULT_EXPR:
1239 case TRUNC_DIV_EXPR:
1240 if (TREE_CODE (arg2) != FIXED_CST)
1241 return NULL_TREE;
1242 f2 = TREE_FIXED_CST (arg2);
1243 break;
1244
1245 case LSHIFT_EXPR:
1246 case RSHIFT_EXPR:
1247 {
1248 if (TREE_CODE (arg2) != INTEGER_CST)
1249 return NULL_TREE;
1250 wide_int w2 = arg2;
1251 f2.data.high = w2.elt (1);
1252 f2.data.low = w2.elt (0);
1253 f2.mode = SImode;
1254 }
1255 break;
1256
1257 default:
1258 return NULL_TREE;
1259 }
1260
1261 f1 = TREE_FIXED_CST (arg1);
1262 type = TREE_TYPE (arg1);
1263 sat_p = TYPE_SATURATING (type);
1264 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1265 t = build_fixed (type, result);
1266 /* Propagate overflow flags. */
1267 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1268 TREE_OVERFLOW (t) = 1;
1269 return t;
1270 }
1271
1272 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1273 {
1274 tree type = TREE_TYPE (arg1);
1275 tree r1 = TREE_REALPART (arg1);
1276 tree i1 = TREE_IMAGPART (arg1);
1277 tree r2 = TREE_REALPART (arg2);
1278 tree i2 = TREE_IMAGPART (arg2);
1279 tree real, imag;
1280
1281 switch (code)
1282 {
1283 case PLUS_EXPR:
1284 case MINUS_EXPR:
1285 real = const_binop (code, r1, r2);
1286 imag = const_binop (code, i1, i2);
1287 break;
1288
1289 case MULT_EXPR:
1290 if (COMPLEX_FLOAT_TYPE_P (type))
1291 return do_mpc_arg2 (arg1, arg2, type,
1292 /* do_nonfinite= */ folding_initializer,
1293 mpc_mul);
1294
1295 real = const_binop (MINUS_EXPR,
1296 const_binop (MULT_EXPR, r1, r2),
1297 const_binop (MULT_EXPR, i1, i2));
1298 imag = const_binop (PLUS_EXPR,
1299 const_binop (MULT_EXPR, r1, i2),
1300 const_binop (MULT_EXPR, i1, r2));
1301 break;
1302
1303 case RDIV_EXPR:
1304 if (COMPLEX_FLOAT_TYPE_P (type))
1305 return do_mpc_arg2 (arg1, arg2, type,
1306 /* do_nonfinite= */ folding_initializer,
1307 mpc_div);
1308 /* Fallthru ... */
1309 case TRUNC_DIV_EXPR:
1310 case CEIL_DIV_EXPR:
1311 case FLOOR_DIV_EXPR:
1312 case ROUND_DIV_EXPR:
1313 if (flag_complex_method == 0)
1314 {
1315 /* Keep this algorithm in sync with
1316 tree-complex.c:expand_complex_div_straight().
1317
1318 Expand complex division to scalars, straightforward algorithm.
1319 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1320 t = br*br + bi*bi
1321 */
1322 tree magsquared
1323 = const_binop (PLUS_EXPR,
1324 const_binop (MULT_EXPR, r2, r2),
1325 const_binop (MULT_EXPR, i2, i2));
1326 tree t1
1327 = const_binop (PLUS_EXPR,
1328 const_binop (MULT_EXPR, r1, r2),
1329 const_binop (MULT_EXPR, i1, i2));
1330 tree t2
1331 = const_binop (MINUS_EXPR,
1332 const_binop (MULT_EXPR, i1, r2),
1333 const_binop (MULT_EXPR, r1, i2));
1334
1335 real = const_binop (code, t1, magsquared);
1336 imag = const_binop (code, t2, magsquared);
1337 }
1338 else
1339 {
1340 /* Keep this algorithm in sync with
1341 tree-complex.c:expand_complex_div_wide().
1342
1343 Expand complex division to scalars, modified algorithm to minimize
1344 overflow with wide input ranges. */
1345 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1346 fold_abs_const (r2, TREE_TYPE (type)),
1347 fold_abs_const (i2, TREE_TYPE (type)));
1348
1349 if (integer_nonzerop (compare))
1350 {
1351 /* In the TRUE branch, we compute
1352 ratio = br/bi;
1353 div = (br * ratio) + bi;
1354 tr = (ar * ratio) + ai;
1355 ti = (ai * ratio) - ar;
1356 tr = tr / div;
1357 ti = ti / div; */
1358 tree ratio = const_binop (code, r2, i2);
1359 tree div = const_binop (PLUS_EXPR, i2,
1360 const_binop (MULT_EXPR, r2, ratio));
1361 real = const_binop (MULT_EXPR, r1, ratio);
1362 real = const_binop (PLUS_EXPR, real, i1);
1363 real = const_binop (code, real, div);
1364
1365 imag = const_binop (MULT_EXPR, i1, ratio);
1366 imag = const_binop (MINUS_EXPR, imag, r1);
1367 imag = const_binop (code, imag, div);
1368 }
1369 else
1370 {
1371 /* In the FALSE branch, we compute
1372 ratio = d/c;
1373 divisor = (d * ratio) + c;
1374 tr = (b * ratio) + a;
1375 ti = b - (a * ratio);
1376 tr = tr / div;
1377 ti = ti / div; */
1378 tree ratio = const_binop (code, i2, r2);
1379 tree div = const_binop (PLUS_EXPR, r2,
1380 const_binop (MULT_EXPR, i2, ratio));
1381
1382 real = const_binop (MULT_EXPR, i1, ratio);
1383 real = const_binop (PLUS_EXPR, real, r1);
1384 real = const_binop (code, real, div);
1385
1386 imag = const_binop (MULT_EXPR, r1, ratio);
1387 imag = const_binop (MINUS_EXPR, i1, imag);
1388 imag = const_binop (code, imag, div);
1389 }
1390 }
1391 break;
1392
1393 default:
1394 return NULL_TREE;
1395 }
1396
1397 if (real && imag)
1398 return build_complex (type, real, imag);
1399 }
1400
1401 if (TREE_CODE (arg1) == VECTOR_CST
1402 && TREE_CODE (arg2) == VECTOR_CST)
1403 {
1404 tree type = TREE_TYPE (arg1);
1405 int count = TYPE_VECTOR_SUBPARTS (type), i;
1406 tree *elts = XALLOCAVEC (tree, count);
1407
1408 for (i = 0; i < count; i++)
1409 {
1410 tree elem1 = VECTOR_CST_ELT (arg1, i);
1411 tree elem2 = VECTOR_CST_ELT (arg2, i);
1412
1413 elts[i] = const_binop (code, elem1, elem2);
1414
1415 /* It is possible that const_binop cannot handle the given
1416 code and return NULL_TREE */
1417 if (elts[i] == NULL_TREE)
1418 return NULL_TREE;
1419 }
1420
1421 return build_vector (type, elts);
1422 }
1423
1424 /* Shifts allow a scalar offset for a vector. */
1425 if (TREE_CODE (arg1) == VECTOR_CST
1426 && TREE_CODE (arg2) == INTEGER_CST)
1427 {
1428 tree type = TREE_TYPE (arg1);
1429 int count = TYPE_VECTOR_SUBPARTS (type), i;
1430 tree *elts = XALLOCAVEC (tree, count);
1431
1432 for (i = 0; i < count; i++)
1433 {
1434 tree elem1 = VECTOR_CST_ELT (arg1, i);
1435
1436 elts[i] = const_binop (code, elem1, arg2);
1437
1438 /* It is possible that const_binop cannot handle the given
1439 code and return NULL_TREE. */
1440 if (elts[i] == NULL_TREE)
1441 return NULL_TREE;
1442 }
1443
1444 return build_vector (type, elts);
1445 }
1446 return NULL_TREE;
1447 }
1448
1449 /* Overload that adds a TYPE parameter to be able to dispatch
1450 to fold_relational_const. */
1451
1452 tree
1453 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1454 {
1455 if (TREE_CODE_CLASS (code) == tcc_comparison)
1456 return fold_relational_const (code, type, arg1, arg2);
1457
1458 /* ??? Until we make the const_binop worker take the type of the
1459 result as argument put those cases that need it here. */
1460 switch (code)
1461 {
1462 case COMPLEX_EXPR:
1463 if ((TREE_CODE (arg1) == REAL_CST
1464 && TREE_CODE (arg2) == REAL_CST)
1465 || (TREE_CODE (arg1) == INTEGER_CST
1466 && TREE_CODE (arg2) == INTEGER_CST))
1467 return build_complex (type, arg1, arg2);
1468 return NULL_TREE;
1469
1470 case VEC_PACK_TRUNC_EXPR:
1471 case VEC_PACK_FIX_TRUNC_EXPR:
1472 {
1473 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1474 tree *elts;
1475
1476 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts / 2
1477 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts / 2);
1478 if (TREE_CODE (arg1) != VECTOR_CST
1479 || TREE_CODE (arg2) != VECTOR_CST)
1480 return NULL_TREE;
1481
1482 elts = XALLOCAVEC (tree, nelts);
1483 if (!vec_cst_ctor_to_array (arg1, elts)
1484 || !vec_cst_ctor_to_array (arg2, elts + nelts / 2))
1485 return NULL_TREE;
1486
1487 for (i = 0; i < nelts; i++)
1488 {
1489 elts[i] = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1490 ? NOP_EXPR : FIX_TRUNC_EXPR,
1491 TREE_TYPE (type), elts[i]);
1492 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1493 return NULL_TREE;
1494 }
1495
1496 return build_vector (type, elts);
1497 }
1498
1499 case VEC_WIDEN_MULT_LO_EXPR:
1500 case VEC_WIDEN_MULT_HI_EXPR:
1501 case VEC_WIDEN_MULT_EVEN_EXPR:
1502 case VEC_WIDEN_MULT_ODD_EXPR:
1503 {
1504 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type);
1505 unsigned int out, ofs, scale;
1506 tree *elts;
1507
1508 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts * 2
1509 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts * 2);
1510 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1511 return NULL_TREE;
1512
1513 elts = XALLOCAVEC (tree, nelts * 4);
1514 if (!vec_cst_ctor_to_array (arg1, elts)
1515 || !vec_cst_ctor_to_array (arg2, elts + nelts * 2))
1516 return NULL_TREE;
1517
1518 if (code == VEC_WIDEN_MULT_LO_EXPR)
1519 scale = 0, ofs = BYTES_BIG_ENDIAN ? nelts : 0;
1520 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1521 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : nelts;
1522 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1523 scale = 1, ofs = 0;
1524 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1525 scale = 1, ofs = 1;
1526
1527 for (out = 0; out < nelts; out++)
1528 {
1529 unsigned int in1 = (out << scale) + ofs;
1530 unsigned int in2 = in1 + nelts * 2;
1531 tree t1, t2;
1532
1533 t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in1]);
1534 t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in2]);
1535
1536 if (t1 == NULL_TREE || t2 == NULL_TREE)
1537 return NULL_TREE;
1538 elts[out] = const_binop (MULT_EXPR, t1, t2);
1539 if (elts[out] == NULL_TREE || !CONSTANT_CLASS_P (elts[out]))
1540 return NULL_TREE;
1541 }
1542
1543 return build_vector (type, elts);
1544 }
1545
1546 default:;
1547 }
1548
1549 if (TREE_CODE_CLASS (code) != tcc_binary)
1550 return NULL_TREE;
1551
1552 /* Make sure type and arg0 have the same saturating flag. */
1553 gcc_checking_assert (TYPE_SATURATING (type)
1554 == TYPE_SATURATING (TREE_TYPE (arg1)));
1555
1556 return const_binop (code, arg1, arg2);
1557 }
1558
1559 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1560 Return zero if computing the constants is not possible. */
1561
1562 tree
1563 const_unop (enum tree_code code, tree type, tree arg0)
1564 {
1565 switch (code)
1566 {
1567 CASE_CONVERT:
1568 case FLOAT_EXPR:
1569 case FIX_TRUNC_EXPR:
1570 case FIXED_CONVERT_EXPR:
1571 return fold_convert_const (code, type, arg0);
1572
1573 case ADDR_SPACE_CONVERT_EXPR:
1574 if (integer_zerop (arg0))
1575 return fold_convert_const (code, type, arg0);
1576 break;
1577
1578 case VIEW_CONVERT_EXPR:
1579 return fold_view_convert_expr (type, arg0);
1580
1581 case NEGATE_EXPR:
1582 {
1583 /* Can't call fold_negate_const directly here as that doesn't
1584 handle all cases and we might not be able to negate some
1585 constants. */
1586 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1587 if (tem && CONSTANT_CLASS_P (tem))
1588 return tem;
1589 break;
1590 }
1591
1592 case ABS_EXPR:
1593 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1594 return fold_abs_const (arg0, type);
1595 break;
1596
1597 case CONJ_EXPR:
1598 if (TREE_CODE (arg0) == COMPLEX_CST)
1599 {
1600 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1601 TREE_TYPE (type));
1602 return build_complex (type, TREE_REALPART (arg0), ipart);
1603 }
1604 break;
1605
1606 case BIT_NOT_EXPR:
1607 if (TREE_CODE (arg0) == INTEGER_CST)
1608 return fold_not_const (arg0, type);
1609 /* Perform BIT_NOT_EXPR on each element individually. */
1610 else if (TREE_CODE (arg0) == VECTOR_CST)
1611 {
1612 tree *elements;
1613 tree elem;
1614 unsigned count = VECTOR_CST_NELTS (arg0), i;
1615
1616 elements = XALLOCAVEC (tree, count);
1617 for (i = 0; i < count; i++)
1618 {
1619 elem = VECTOR_CST_ELT (arg0, i);
1620 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1621 if (elem == NULL_TREE)
1622 break;
1623 elements[i] = elem;
1624 }
1625 if (i == count)
1626 return build_vector (type, elements);
1627 }
1628 break;
1629
1630 case TRUTH_NOT_EXPR:
1631 if (TREE_CODE (arg0) == INTEGER_CST)
1632 return constant_boolean_node (integer_zerop (arg0), type);
1633 break;
1634
1635 case REALPART_EXPR:
1636 if (TREE_CODE (arg0) == COMPLEX_CST)
1637 return fold_convert (type, TREE_REALPART (arg0));
1638 break;
1639
1640 case IMAGPART_EXPR:
1641 if (TREE_CODE (arg0) == COMPLEX_CST)
1642 return fold_convert (type, TREE_IMAGPART (arg0));
1643 break;
1644
1645 case VEC_UNPACK_LO_EXPR:
1646 case VEC_UNPACK_HI_EXPR:
1647 case VEC_UNPACK_FLOAT_LO_EXPR:
1648 case VEC_UNPACK_FLOAT_HI_EXPR:
1649 {
1650 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1651 tree *elts;
1652 enum tree_code subcode;
1653
1654 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts * 2);
1655 if (TREE_CODE (arg0) != VECTOR_CST)
1656 return NULL_TREE;
1657
1658 elts = XALLOCAVEC (tree, nelts * 2);
1659 if (!vec_cst_ctor_to_array (arg0, elts))
1660 return NULL_TREE;
1661
1662 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1663 || code == VEC_UNPACK_FLOAT_LO_EXPR))
1664 elts += nelts;
1665
1666 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1667 subcode = NOP_EXPR;
1668 else
1669 subcode = FLOAT_EXPR;
1670
1671 for (i = 0; i < nelts; i++)
1672 {
1673 elts[i] = fold_convert_const (subcode, TREE_TYPE (type), elts[i]);
1674 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1675 return NULL_TREE;
1676 }
1677
1678 return build_vector (type, elts);
1679 }
1680
1681 case REDUC_MIN_EXPR:
1682 case REDUC_MAX_EXPR:
1683 case REDUC_PLUS_EXPR:
1684 {
1685 unsigned int nelts, i;
1686 tree *elts;
1687 enum tree_code subcode;
1688
1689 if (TREE_CODE (arg0) != VECTOR_CST)
1690 return NULL_TREE;
1691 nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
1692
1693 elts = XALLOCAVEC (tree, nelts);
1694 if (!vec_cst_ctor_to_array (arg0, elts))
1695 return NULL_TREE;
1696
1697 switch (code)
1698 {
1699 case REDUC_MIN_EXPR: subcode = MIN_EXPR; break;
1700 case REDUC_MAX_EXPR: subcode = MAX_EXPR; break;
1701 case REDUC_PLUS_EXPR: subcode = PLUS_EXPR; break;
1702 default: gcc_unreachable ();
1703 }
1704
1705 for (i = 1; i < nelts; i++)
1706 {
1707 elts[0] = const_binop (subcode, elts[0], elts[i]);
1708 if (elts[0] == NULL_TREE || !CONSTANT_CLASS_P (elts[0]))
1709 return NULL_TREE;
1710 }
1711
1712 return elts[0];
1713 }
1714
1715 default:
1716 break;
1717 }
1718
1719 return NULL_TREE;
1720 }
1721
1722 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1723 indicates which particular sizetype to create. */
1724
1725 tree
1726 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1727 {
1728 return build_int_cst (sizetype_tab[(int) kind], number);
1729 }
1730 \f
1731 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1732 is a tree code. The type of the result is taken from the operands.
1733 Both must be equivalent integer types, ala int_binop_types_match_p.
1734 If the operands are constant, so is the result. */
1735
1736 tree
1737 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1738 {
1739 tree type = TREE_TYPE (arg0);
1740
1741 if (arg0 == error_mark_node || arg1 == error_mark_node)
1742 return error_mark_node;
1743
1744 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1745 TREE_TYPE (arg1)));
1746
1747 /* Handle the special case of two integer constants faster. */
1748 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1749 {
1750 /* And some specific cases even faster than that. */
1751 if (code == PLUS_EXPR)
1752 {
1753 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1754 return arg1;
1755 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1756 return arg0;
1757 }
1758 else if (code == MINUS_EXPR)
1759 {
1760 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1761 return arg0;
1762 }
1763 else if (code == MULT_EXPR)
1764 {
1765 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1766 return arg1;
1767 }
1768
1769 /* Handle general case of two integer constants. For sizetype
1770 constant calculations we always want to know about overflow,
1771 even in the unsigned case. */
1772 return int_const_binop_1 (code, arg0, arg1, -1);
1773 }
1774
1775 return fold_build2_loc (loc, code, type, arg0, arg1);
1776 }
1777
1778 /* Given two values, either both of sizetype or both of bitsizetype,
1779 compute the difference between the two values. Return the value
1780 in signed type corresponding to the type of the operands. */
1781
1782 tree
1783 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1784 {
1785 tree type = TREE_TYPE (arg0);
1786 tree ctype;
1787
1788 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1789 TREE_TYPE (arg1)));
1790
1791 /* If the type is already signed, just do the simple thing. */
1792 if (!TYPE_UNSIGNED (type))
1793 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1794
1795 if (type == sizetype)
1796 ctype = ssizetype;
1797 else if (type == bitsizetype)
1798 ctype = sbitsizetype;
1799 else
1800 ctype = signed_type_for (type);
1801
1802 /* If either operand is not a constant, do the conversions to the signed
1803 type and subtract. The hardware will do the right thing with any
1804 overflow in the subtraction. */
1805 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1806 return size_binop_loc (loc, MINUS_EXPR,
1807 fold_convert_loc (loc, ctype, arg0),
1808 fold_convert_loc (loc, ctype, arg1));
1809
1810 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1811 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1812 overflow) and negate (which can't either). Special-case a result
1813 of zero while we're here. */
1814 if (tree_int_cst_equal (arg0, arg1))
1815 return build_int_cst (ctype, 0);
1816 else if (tree_int_cst_lt (arg1, arg0))
1817 return fold_convert_loc (loc, ctype,
1818 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1819 else
1820 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1821 fold_convert_loc (loc, ctype,
1822 size_binop_loc (loc,
1823 MINUS_EXPR,
1824 arg1, arg0)));
1825 }
1826 \f
1827 /* A subroutine of fold_convert_const handling conversions of an
1828 INTEGER_CST to another integer type. */
1829
1830 static tree
1831 fold_convert_const_int_from_int (tree type, const_tree arg1)
1832 {
1833 /* Given an integer constant, make new constant with new type,
1834 appropriately sign-extended or truncated. Use widest_int
1835 so that any extension is done according ARG1's type. */
1836 return force_fit_type (type, wi::to_widest (arg1),
1837 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1838 TREE_OVERFLOW (arg1));
1839 }
1840
1841 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1842 to an integer type. */
1843
1844 static tree
1845 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1846 {
1847 bool overflow = false;
1848 tree t;
1849
1850 /* The following code implements the floating point to integer
1851 conversion rules required by the Java Language Specification,
1852 that IEEE NaNs are mapped to zero and values that overflow
1853 the target precision saturate, i.e. values greater than
1854 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1855 are mapped to INT_MIN. These semantics are allowed by the
1856 C and C++ standards that simply state that the behavior of
1857 FP-to-integer conversion is unspecified upon overflow. */
1858
1859 wide_int val;
1860 REAL_VALUE_TYPE r;
1861 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1862
1863 switch (code)
1864 {
1865 case FIX_TRUNC_EXPR:
1866 real_trunc (&r, VOIDmode, &x);
1867 break;
1868
1869 default:
1870 gcc_unreachable ();
1871 }
1872
1873 /* If R is NaN, return zero and show we have an overflow. */
1874 if (REAL_VALUE_ISNAN (r))
1875 {
1876 overflow = true;
1877 val = wi::zero (TYPE_PRECISION (type));
1878 }
1879
1880 /* See if R is less than the lower bound or greater than the
1881 upper bound. */
1882
1883 if (! overflow)
1884 {
1885 tree lt = TYPE_MIN_VALUE (type);
1886 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1887 if (REAL_VALUES_LESS (r, l))
1888 {
1889 overflow = true;
1890 val = lt;
1891 }
1892 }
1893
1894 if (! overflow)
1895 {
1896 tree ut = TYPE_MAX_VALUE (type);
1897 if (ut)
1898 {
1899 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1900 if (REAL_VALUES_LESS (u, r))
1901 {
1902 overflow = true;
1903 val = ut;
1904 }
1905 }
1906 }
1907
1908 if (! overflow)
1909 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1910
1911 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1912 return t;
1913 }
1914
1915 /* A subroutine of fold_convert_const handling conversions of a
1916 FIXED_CST to an integer type. */
1917
1918 static tree
1919 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1920 {
1921 tree t;
1922 double_int temp, temp_trunc;
1923 unsigned int mode;
1924
1925 /* Right shift FIXED_CST to temp by fbit. */
1926 temp = TREE_FIXED_CST (arg1).data;
1927 mode = TREE_FIXED_CST (arg1).mode;
1928 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1929 {
1930 temp = temp.rshift (GET_MODE_FBIT (mode),
1931 HOST_BITS_PER_DOUBLE_INT,
1932 SIGNED_FIXED_POINT_MODE_P (mode));
1933
1934 /* Left shift temp to temp_trunc by fbit. */
1935 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1936 HOST_BITS_PER_DOUBLE_INT,
1937 SIGNED_FIXED_POINT_MODE_P (mode));
1938 }
1939 else
1940 {
1941 temp = double_int_zero;
1942 temp_trunc = double_int_zero;
1943 }
1944
1945 /* If FIXED_CST is negative, we need to round the value toward 0.
1946 By checking if the fractional bits are not zero to add 1 to temp. */
1947 if (SIGNED_FIXED_POINT_MODE_P (mode)
1948 && temp_trunc.is_negative ()
1949 && TREE_FIXED_CST (arg1).data != temp_trunc)
1950 temp += double_int_one;
1951
1952 /* Given a fixed-point constant, make new constant with new type,
1953 appropriately sign-extended or truncated. */
1954 t = force_fit_type (type, temp, -1,
1955 (temp.is_negative ()
1956 && (TYPE_UNSIGNED (type)
1957 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1958 | TREE_OVERFLOW (arg1));
1959
1960 return t;
1961 }
1962
1963 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1964 to another floating point type. */
1965
1966 static tree
1967 fold_convert_const_real_from_real (tree type, const_tree arg1)
1968 {
1969 REAL_VALUE_TYPE value;
1970 tree t;
1971
1972 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1973 t = build_real (type, value);
1974
1975 /* If converting an infinity or NAN to a representation that doesn't
1976 have one, set the overflow bit so that we can produce some kind of
1977 error message at the appropriate point if necessary. It's not the
1978 most user-friendly message, but it's better than nothing. */
1979 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
1980 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
1981 TREE_OVERFLOW (t) = 1;
1982 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
1983 && !MODE_HAS_NANS (TYPE_MODE (type)))
1984 TREE_OVERFLOW (t) = 1;
1985 /* Regular overflow, conversion produced an infinity in a mode that
1986 can't represent them. */
1987 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
1988 && REAL_VALUE_ISINF (value)
1989 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
1990 TREE_OVERFLOW (t) = 1;
1991 else
1992 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1993 return t;
1994 }
1995
1996 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
1997 to a floating point type. */
1998
1999 static tree
2000 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2001 {
2002 REAL_VALUE_TYPE value;
2003 tree t;
2004
2005 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
2006 t = build_real (type, value);
2007
2008 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2009 return t;
2010 }
2011
2012 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2013 to another fixed-point type. */
2014
2015 static tree
2016 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2017 {
2018 FIXED_VALUE_TYPE value;
2019 tree t;
2020 bool overflow_p;
2021
2022 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2023 TYPE_SATURATING (type));
2024 t = build_fixed (type, value);
2025
2026 /* Propagate overflow flags. */
2027 if (overflow_p | TREE_OVERFLOW (arg1))
2028 TREE_OVERFLOW (t) = 1;
2029 return t;
2030 }
2031
2032 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2033 to a fixed-point type. */
2034
2035 static tree
2036 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2037 {
2038 FIXED_VALUE_TYPE value;
2039 tree t;
2040 bool overflow_p;
2041 double_int di;
2042
2043 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2044
2045 di.low = TREE_INT_CST_ELT (arg1, 0);
2046 if (TREE_INT_CST_NUNITS (arg1) == 1)
2047 di.high = (HOST_WIDE_INT) di.low < 0 ? (HOST_WIDE_INT) -1 : 0;
2048 else
2049 di.high = TREE_INT_CST_ELT (arg1, 1);
2050
2051 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type), di,
2052 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2053 TYPE_SATURATING (type));
2054 t = build_fixed (type, value);
2055
2056 /* Propagate overflow flags. */
2057 if (overflow_p | TREE_OVERFLOW (arg1))
2058 TREE_OVERFLOW (t) = 1;
2059 return t;
2060 }
2061
2062 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2063 to a fixed-point type. */
2064
2065 static tree
2066 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2067 {
2068 FIXED_VALUE_TYPE value;
2069 tree t;
2070 bool overflow_p;
2071
2072 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2073 &TREE_REAL_CST (arg1),
2074 TYPE_SATURATING (type));
2075 t = build_fixed (type, value);
2076
2077 /* Propagate overflow flags. */
2078 if (overflow_p | TREE_OVERFLOW (arg1))
2079 TREE_OVERFLOW (t) = 1;
2080 return t;
2081 }
2082
2083 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2084 type TYPE. If no simplification can be done return NULL_TREE. */
2085
2086 static tree
2087 fold_convert_const (enum tree_code code, tree type, tree arg1)
2088 {
2089 if (TREE_TYPE (arg1) == type)
2090 return arg1;
2091
2092 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2093 || TREE_CODE (type) == OFFSET_TYPE)
2094 {
2095 if (TREE_CODE (arg1) == INTEGER_CST)
2096 return fold_convert_const_int_from_int (type, arg1);
2097 else if (TREE_CODE (arg1) == REAL_CST)
2098 return fold_convert_const_int_from_real (code, type, arg1);
2099 else if (TREE_CODE (arg1) == FIXED_CST)
2100 return fold_convert_const_int_from_fixed (type, arg1);
2101 }
2102 else if (TREE_CODE (type) == REAL_TYPE)
2103 {
2104 if (TREE_CODE (arg1) == INTEGER_CST)
2105 return build_real_from_int_cst (type, arg1);
2106 else if (TREE_CODE (arg1) == REAL_CST)
2107 return fold_convert_const_real_from_real (type, arg1);
2108 else if (TREE_CODE (arg1) == FIXED_CST)
2109 return fold_convert_const_real_from_fixed (type, arg1);
2110 }
2111 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2112 {
2113 if (TREE_CODE (arg1) == FIXED_CST)
2114 return fold_convert_const_fixed_from_fixed (type, arg1);
2115 else if (TREE_CODE (arg1) == INTEGER_CST)
2116 return fold_convert_const_fixed_from_int (type, arg1);
2117 else if (TREE_CODE (arg1) == REAL_CST)
2118 return fold_convert_const_fixed_from_real (type, arg1);
2119 }
2120 return NULL_TREE;
2121 }
2122
2123 /* Construct a vector of zero elements of vector type TYPE. */
2124
2125 static tree
2126 build_zero_vector (tree type)
2127 {
2128 tree t;
2129
2130 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2131 return build_vector_from_val (type, t);
2132 }
2133
2134 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2135
2136 bool
2137 fold_convertible_p (const_tree type, const_tree arg)
2138 {
2139 tree orig = TREE_TYPE (arg);
2140
2141 if (type == orig)
2142 return true;
2143
2144 if (TREE_CODE (arg) == ERROR_MARK
2145 || TREE_CODE (type) == ERROR_MARK
2146 || TREE_CODE (orig) == ERROR_MARK)
2147 return false;
2148
2149 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2150 return true;
2151
2152 switch (TREE_CODE (type))
2153 {
2154 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2155 case POINTER_TYPE: case REFERENCE_TYPE:
2156 case OFFSET_TYPE:
2157 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2158 || TREE_CODE (orig) == OFFSET_TYPE)
2159 return true;
2160 return (TREE_CODE (orig) == VECTOR_TYPE
2161 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2162
2163 case REAL_TYPE:
2164 case FIXED_POINT_TYPE:
2165 case COMPLEX_TYPE:
2166 case VECTOR_TYPE:
2167 case VOID_TYPE:
2168 return TREE_CODE (type) == TREE_CODE (orig);
2169
2170 default:
2171 return false;
2172 }
2173 }
2174
2175 /* Convert expression ARG to type TYPE. Used by the middle-end for
2176 simple conversions in preference to calling the front-end's convert. */
2177
2178 tree
2179 fold_convert_loc (location_t loc, tree type, tree arg)
2180 {
2181 tree orig = TREE_TYPE (arg);
2182 tree tem;
2183
2184 if (type == orig)
2185 return arg;
2186
2187 if (TREE_CODE (arg) == ERROR_MARK
2188 || TREE_CODE (type) == ERROR_MARK
2189 || TREE_CODE (orig) == ERROR_MARK)
2190 return error_mark_node;
2191
2192 switch (TREE_CODE (type))
2193 {
2194 case POINTER_TYPE:
2195 case REFERENCE_TYPE:
2196 /* Handle conversions between pointers to different address spaces. */
2197 if (POINTER_TYPE_P (orig)
2198 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2199 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2200 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2201 /* fall through */
2202
2203 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2204 case OFFSET_TYPE:
2205 if (TREE_CODE (arg) == INTEGER_CST)
2206 {
2207 tem = fold_convert_const (NOP_EXPR, type, arg);
2208 if (tem != NULL_TREE)
2209 return tem;
2210 }
2211 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2212 || TREE_CODE (orig) == OFFSET_TYPE)
2213 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2214 if (TREE_CODE (orig) == COMPLEX_TYPE)
2215 return fold_convert_loc (loc, type,
2216 fold_build1_loc (loc, REALPART_EXPR,
2217 TREE_TYPE (orig), arg));
2218 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2219 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2220 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2221
2222 case REAL_TYPE:
2223 if (TREE_CODE (arg) == INTEGER_CST)
2224 {
2225 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2226 if (tem != NULL_TREE)
2227 return tem;
2228 }
2229 else if (TREE_CODE (arg) == REAL_CST)
2230 {
2231 tem = fold_convert_const (NOP_EXPR, type, arg);
2232 if (tem != NULL_TREE)
2233 return tem;
2234 }
2235 else if (TREE_CODE (arg) == FIXED_CST)
2236 {
2237 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2238 if (tem != NULL_TREE)
2239 return tem;
2240 }
2241
2242 switch (TREE_CODE (orig))
2243 {
2244 case INTEGER_TYPE:
2245 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2246 case POINTER_TYPE: case REFERENCE_TYPE:
2247 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2248
2249 case REAL_TYPE:
2250 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2251
2252 case FIXED_POINT_TYPE:
2253 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2254
2255 case COMPLEX_TYPE:
2256 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2257 return fold_convert_loc (loc, type, tem);
2258
2259 default:
2260 gcc_unreachable ();
2261 }
2262
2263 case FIXED_POINT_TYPE:
2264 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2265 || TREE_CODE (arg) == REAL_CST)
2266 {
2267 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2268 if (tem != NULL_TREE)
2269 goto fold_convert_exit;
2270 }
2271
2272 switch (TREE_CODE (orig))
2273 {
2274 case FIXED_POINT_TYPE:
2275 case INTEGER_TYPE:
2276 case ENUMERAL_TYPE:
2277 case BOOLEAN_TYPE:
2278 case REAL_TYPE:
2279 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2280
2281 case COMPLEX_TYPE:
2282 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2283 return fold_convert_loc (loc, type, tem);
2284
2285 default:
2286 gcc_unreachable ();
2287 }
2288
2289 case COMPLEX_TYPE:
2290 switch (TREE_CODE (orig))
2291 {
2292 case INTEGER_TYPE:
2293 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2294 case POINTER_TYPE: case REFERENCE_TYPE:
2295 case REAL_TYPE:
2296 case FIXED_POINT_TYPE:
2297 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2298 fold_convert_loc (loc, TREE_TYPE (type), arg),
2299 fold_convert_loc (loc, TREE_TYPE (type),
2300 integer_zero_node));
2301 case COMPLEX_TYPE:
2302 {
2303 tree rpart, ipart;
2304
2305 if (TREE_CODE (arg) == COMPLEX_EXPR)
2306 {
2307 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2308 TREE_OPERAND (arg, 0));
2309 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2310 TREE_OPERAND (arg, 1));
2311 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2312 }
2313
2314 arg = save_expr (arg);
2315 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2316 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2317 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2318 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2319 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2320 }
2321
2322 default:
2323 gcc_unreachable ();
2324 }
2325
2326 case VECTOR_TYPE:
2327 if (integer_zerop (arg))
2328 return build_zero_vector (type);
2329 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2330 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2331 || TREE_CODE (orig) == VECTOR_TYPE);
2332 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2333
2334 case VOID_TYPE:
2335 tem = fold_ignored_result (arg);
2336 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2337
2338 default:
2339 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2340 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2341 gcc_unreachable ();
2342 }
2343 fold_convert_exit:
2344 protected_set_expr_location_unshare (tem, loc);
2345 return tem;
2346 }
2347 \f
2348 /* Return false if expr can be assumed not to be an lvalue, true
2349 otherwise. */
2350
2351 static bool
2352 maybe_lvalue_p (const_tree x)
2353 {
2354 /* We only need to wrap lvalue tree codes. */
2355 switch (TREE_CODE (x))
2356 {
2357 case VAR_DECL:
2358 case PARM_DECL:
2359 case RESULT_DECL:
2360 case LABEL_DECL:
2361 case FUNCTION_DECL:
2362 case SSA_NAME:
2363
2364 case COMPONENT_REF:
2365 case MEM_REF:
2366 case INDIRECT_REF:
2367 case ARRAY_REF:
2368 case ARRAY_RANGE_REF:
2369 case BIT_FIELD_REF:
2370 case OBJ_TYPE_REF:
2371
2372 case REALPART_EXPR:
2373 case IMAGPART_EXPR:
2374 case PREINCREMENT_EXPR:
2375 case PREDECREMENT_EXPR:
2376 case SAVE_EXPR:
2377 case TRY_CATCH_EXPR:
2378 case WITH_CLEANUP_EXPR:
2379 case COMPOUND_EXPR:
2380 case MODIFY_EXPR:
2381 case TARGET_EXPR:
2382 case COND_EXPR:
2383 case BIND_EXPR:
2384 break;
2385
2386 default:
2387 /* Assume the worst for front-end tree codes. */
2388 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2389 break;
2390 return false;
2391 }
2392
2393 return true;
2394 }
2395
2396 /* Return an expr equal to X but certainly not valid as an lvalue. */
2397
2398 tree
2399 non_lvalue_loc (location_t loc, tree x)
2400 {
2401 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2402 us. */
2403 if (in_gimple_form)
2404 return x;
2405
2406 if (! maybe_lvalue_p (x))
2407 return x;
2408 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2409 }
2410
2411 /* When pedantic, return an expr equal to X but certainly not valid as a
2412 pedantic lvalue. Otherwise, return X. */
2413
2414 static tree
2415 pedantic_non_lvalue_loc (location_t loc, tree x)
2416 {
2417 return protected_set_expr_location_unshare (x, loc);
2418 }
2419 \f
2420 /* Given a tree comparison code, return the code that is the logical inverse.
2421 It is generally not safe to do this for floating-point comparisons, except
2422 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2423 ERROR_MARK in this case. */
2424
2425 enum tree_code
2426 invert_tree_comparison (enum tree_code code, bool honor_nans)
2427 {
2428 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2429 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2430 return ERROR_MARK;
2431
2432 switch (code)
2433 {
2434 case EQ_EXPR:
2435 return NE_EXPR;
2436 case NE_EXPR:
2437 return EQ_EXPR;
2438 case GT_EXPR:
2439 return honor_nans ? UNLE_EXPR : LE_EXPR;
2440 case GE_EXPR:
2441 return honor_nans ? UNLT_EXPR : LT_EXPR;
2442 case LT_EXPR:
2443 return honor_nans ? UNGE_EXPR : GE_EXPR;
2444 case LE_EXPR:
2445 return honor_nans ? UNGT_EXPR : GT_EXPR;
2446 case LTGT_EXPR:
2447 return UNEQ_EXPR;
2448 case UNEQ_EXPR:
2449 return LTGT_EXPR;
2450 case UNGT_EXPR:
2451 return LE_EXPR;
2452 case UNGE_EXPR:
2453 return LT_EXPR;
2454 case UNLT_EXPR:
2455 return GE_EXPR;
2456 case UNLE_EXPR:
2457 return GT_EXPR;
2458 case ORDERED_EXPR:
2459 return UNORDERED_EXPR;
2460 case UNORDERED_EXPR:
2461 return ORDERED_EXPR;
2462 default:
2463 gcc_unreachable ();
2464 }
2465 }
2466
2467 /* Similar, but return the comparison that results if the operands are
2468 swapped. This is safe for floating-point. */
2469
2470 enum tree_code
2471 swap_tree_comparison (enum tree_code code)
2472 {
2473 switch (code)
2474 {
2475 case EQ_EXPR:
2476 case NE_EXPR:
2477 case ORDERED_EXPR:
2478 case UNORDERED_EXPR:
2479 case LTGT_EXPR:
2480 case UNEQ_EXPR:
2481 return code;
2482 case GT_EXPR:
2483 return LT_EXPR;
2484 case GE_EXPR:
2485 return LE_EXPR;
2486 case LT_EXPR:
2487 return GT_EXPR;
2488 case LE_EXPR:
2489 return GE_EXPR;
2490 case UNGT_EXPR:
2491 return UNLT_EXPR;
2492 case UNGE_EXPR:
2493 return UNLE_EXPR;
2494 case UNLT_EXPR:
2495 return UNGT_EXPR;
2496 case UNLE_EXPR:
2497 return UNGE_EXPR;
2498 default:
2499 gcc_unreachable ();
2500 }
2501 }
2502
2503
2504 /* Convert a comparison tree code from an enum tree_code representation
2505 into a compcode bit-based encoding. This function is the inverse of
2506 compcode_to_comparison. */
2507
2508 static enum comparison_code
2509 comparison_to_compcode (enum tree_code code)
2510 {
2511 switch (code)
2512 {
2513 case LT_EXPR:
2514 return COMPCODE_LT;
2515 case EQ_EXPR:
2516 return COMPCODE_EQ;
2517 case LE_EXPR:
2518 return COMPCODE_LE;
2519 case GT_EXPR:
2520 return COMPCODE_GT;
2521 case NE_EXPR:
2522 return COMPCODE_NE;
2523 case GE_EXPR:
2524 return COMPCODE_GE;
2525 case ORDERED_EXPR:
2526 return COMPCODE_ORD;
2527 case UNORDERED_EXPR:
2528 return COMPCODE_UNORD;
2529 case UNLT_EXPR:
2530 return COMPCODE_UNLT;
2531 case UNEQ_EXPR:
2532 return COMPCODE_UNEQ;
2533 case UNLE_EXPR:
2534 return COMPCODE_UNLE;
2535 case UNGT_EXPR:
2536 return COMPCODE_UNGT;
2537 case LTGT_EXPR:
2538 return COMPCODE_LTGT;
2539 case UNGE_EXPR:
2540 return COMPCODE_UNGE;
2541 default:
2542 gcc_unreachable ();
2543 }
2544 }
2545
2546 /* Convert a compcode bit-based encoding of a comparison operator back
2547 to GCC's enum tree_code representation. This function is the
2548 inverse of comparison_to_compcode. */
2549
2550 static enum tree_code
2551 compcode_to_comparison (enum comparison_code code)
2552 {
2553 switch (code)
2554 {
2555 case COMPCODE_LT:
2556 return LT_EXPR;
2557 case COMPCODE_EQ:
2558 return EQ_EXPR;
2559 case COMPCODE_LE:
2560 return LE_EXPR;
2561 case COMPCODE_GT:
2562 return GT_EXPR;
2563 case COMPCODE_NE:
2564 return NE_EXPR;
2565 case COMPCODE_GE:
2566 return GE_EXPR;
2567 case COMPCODE_ORD:
2568 return ORDERED_EXPR;
2569 case COMPCODE_UNORD:
2570 return UNORDERED_EXPR;
2571 case COMPCODE_UNLT:
2572 return UNLT_EXPR;
2573 case COMPCODE_UNEQ:
2574 return UNEQ_EXPR;
2575 case COMPCODE_UNLE:
2576 return UNLE_EXPR;
2577 case COMPCODE_UNGT:
2578 return UNGT_EXPR;
2579 case COMPCODE_LTGT:
2580 return LTGT_EXPR;
2581 case COMPCODE_UNGE:
2582 return UNGE_EXPR;
2583 default:
2584 gcc_unreachable ();
2585 }
2586 }
2587
2588 /* Return a tree for the comparison which is the combination of
2589 doing the AND or OR (depending on CODE) of the two operations LCODE
2590 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2591 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2592 if this makes the transformation invalid. */
2593
2594 tree
2595 combine_comparisons (location_t loc,
2596 enum tree_code code, enum tree_code lcode,
2597 enum tree_code rcode, tree truth_type,
2598 tree ll_arg, tree lr_arg)
2599 {
2600 bool honor_nans = HONOR_NANS (ll_arg);
2601 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2602 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2603 int compcode;
2604
2605 switch (code)
2606 {
2607 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2608 compcode = lcompcode & rcompcode;
2609 break;
2610
2611 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2612 compcode = lcompcode | rcompcode;
2613 break;
2614
2615 default:
2616 return NULL_TREE;
2617 }
2618
2619 if (!honor_nans)
2620 {
2621 /* Eliminate unordered comparisons, as well as LTGT and ORD
2622 which are not used unless the mode has NaNs. */
2623 compcode &= ~COMPCODE_UNORD;
2624 if (compcode == COMPCODE_LTGT)
2625 compcode = COMPCODE_NE;
2626 else if (compcode == COMPCODE_ORD)
2627 compcode = COMPCODE_TRUE;
2628 }
2629 else if (flag_trapping_math)
2630 {
2631 /* Check that the original operation and the optimized ones will trap
2632 under the same condition. */
2633 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2634 && (lcompcode != COMPCODE_EQ)
2635 && (lcompcode != COMPCODE_ORD);
2636 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2637 && (rcompcode != COMPCODE_EQ)
2638 && (rcompcode != COMPCODE_ORD);
2639 bool trap = (compcode & COMPCODE_UNORD) == 0
2640 && (compcode != COMPCODE_EQ)
2641 && (compcode != COMPCODE_ORD);
2642
2643 /* In a short-circuited boolean expression the LHS might be
2644 such that the RHS, if evaluated, will never trap. For
2645 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2646 if neither x nor y is NaN. (This is a mixed blessing: for
2647 example, the expression above will never trap, hence
2648 optimizing it to x < y would be invalid). */
2649 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2650 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2651 rtrap = false;
2652
2653 /* If the comparison was short-circuited, and only the RHS
2654 trapped, we may now generate a spurious trap. */
2655 if (rtrap && !ltrap
2656 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2657 return NULL_TREE;
2658
2659 /* If we changed the conditions that cause a trap, we lose. */
2660 if ((ltrap || rtrap) != trap)
2661 return NULL_TREE;
2662 }
2663
2664 if (compcode == COMPCODE_TRUE)
2665 return constant_boolean_node (true, truth_type);
2666 else if (compcode == COMPCODE_FALSE)
2667 return constant_boolean_node (false, truth_type);
2668 else
2669 {
2670 enum tree_code tcode;
2671
2672 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2673 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2674 }
2675 }
2676 \f
2677 /* Return nonzero if two operands (typically of the same tree node)
2678 are necessarily equal. If either argument has side-effects this
2679 function returns zero. FLAGS modifies behavior as follows:
2680
2681 If OEP_ONLY_CONST is set, only return nonzero for constants.
2682 This function tests whether the operands are indistinguishable;
2683 it does not test whether they are equal using C's == operation.
2684 The distinction is important for IEEE floating point, because
2685 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2686 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2687
2688 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2689 even though it may hold multiple values during a function.
2690 This is because a GCC tree node guarantees that nothing else is
2691 executed between the evaluation of its "operands" (which may often
2692 be evaluated in arbitrary order). Hence if the operands themselves
2693 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2694 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2695 unset means assuming isochronic (or instantaneous) tree equivalence.
2696 Unless comparing arbitrary expression trees, such as from different
2697 statements, this flag can usually be left unset.
2698
2699 If OEP_PURE_SAME is set, then pure functions with identical arguments
2700 are considered the same. It is used when the caller has other ways
2701 to ensure that global memory is unchanged in between. */
2702
2703 int
2704 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2705 {
2706 /* If either is ERROR_MARK, they aren't equal. */
2707 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2708 || TREE_TYPE (arg0) == error_mark_node
2709 || TREE_TYPE (arg1) == error_mark_node)
2710 return 0;
2711
2712 /* Similar, if either does not have a type (like a released SSA name),
2713 they aren't equal. */
2714 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2715 return 0;
2716
2717 /* Check equality of integer constants before bailing out due to
2718 precision differences. */
2719 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2720 return tree_int_cst_equal (arg0, arg1);
2721
2722 /* If both types don't have the same signedness, then we can't consider
2723 them equal. We must check this before the STRIP_NOPS calls
2724 because they may change the signedness of the arguments. As pointers
2725 strictly don't have a signedness, require either two pointers or
2726 two non-pointers as well. */
2727 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2728 || POINTER_TYPE_P (TREE_TYPE (arg0)) != POINTER_TYPE_P (TREE_TYPE (arg1)))
2729 return 0;
2730
2731 /* We cannot consider pointers to different address space equal. */
2732 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && POINTER_TYPE_P (TREE_TYPE (arg1))
2733 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2734 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2735 return 0;
2736
2737 /* If both types don't have the same precision, then it is not safe
2738 to strip NOPs. */
2739 if (element_precision (TREE_TYPE (arg0))
2740 != element_precision (TREE_TYPE (arg1)))
2741 return 0;
2742
2743 STRIP_NOPS (arg0);
2744 STRIP_NOPS (arg1);
2745
2746 /* In case both args are comparisons but with different comparison
2747 code, try to swap the comparison operands of one arg to produce
2748 a match and compare that variant. */
2749 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2750 && COMPARISON_CLASS_P (arg0)
2751 && COMPARISON_CLASS_P (arg1))
2752 {
2753 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2754
2755 if (TREE_CODE (arg0) == swap_code)
2756 return operand_equal_p (TREE_OPERAND (arg0, 0),
2757 TREE_OPERAND (arg1, 1), flags)
2758 && operand_equal_p (TREE_OPERAND (arg0, 1),
2759 TREE_OPERAND (arg1, 0), flags);
2760 }
2761
2762 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2763 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2764 && !(CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1)))
2765 return 0;
2766
2767 /* This is needed for conversions and for COMPONENT_REF.
2768 Might as well play it safe and always test this. */
2769 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2770 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2771 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2772 return 0;
2773
2774 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2775 We don't care about side effects in that case because the SAVE_EXPR
2776 takes care of that for us. In all other cases, two expressions are
2777 equal if they have no side effects. If we have two identical
2778 expressions with side effects that should be treated the same due
2779 to the only side effects being identical SAVE_EXPR's, that will
2780 be detected in the recursive calls below.
2781 If we are taking an invariant address of two identical objects
2782 they are necessarily equal as well. */
2783 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2784 && (TREE_CODE (arg0) == SAVE_EXPR
2785 || (flags & OEP_CONSTANT_ADDRESS_OF)
2786 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2787 return 1;
2788
2789 /* Next handle constant cases, those for which we can return 1 even
2790 if ONLY_CONST is set. */
2791 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2792 switch (TREE_CODE (arg0))
2793 {
2794 case INTEGER_CST:
2795 return tree_int_cst_equal (arg0, arg1);
2796
2797 case FIXED_CST:
2798 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2799 TREE_FIXED_CST (arg1));
2800
2801 case REAL_CST:
2802 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2803 TREE_REAL_CST (arg1)))
2804 return 1;
2805
2806
2807 if (!HONOR_SIGNED_ZEROS (arg0))
2808 {
2809 /* If we do not distinguish between signed and unsigned zero,
2810 consider them equal. */
2811 if (real_zerop (arg0) && real_zerop (arg1))
2812 return 1;
2813 }
2814 return 0;
2815
2816 case VECTOR_CST:
2817 {
2818 unsigned i;
2819
2820 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2821 return 0;
2822
2823 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2824 {
2825 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2826 VECTOR_CST_ELT (arg1, i), flags))
2827 return 0;
2828 }
2829 return 1;
2830 }
2831
2832 case COMPLEX_CST:
2833 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2834 flags)
2835 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2836 flags));
2837
2838 case STRING_CST:
2839 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2840 && ! memcmp (TREE_STRING_POINTER (arg0),
2841 TREE_STRING_POINTER (arg1),
2842 TREE_STRING_LENGTH (arg0)));
2843
2844 case ADDR_EXPR:
2845 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2846 TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1)
2847 ? OEP_CONSTANT_ADDRESS_OF | OEP_ADDRESS_OF : 0);
2848 default:
2849 break;
2850 }
2851
2852 if (flags & OEP_ONLY_CONST)
2853 return 0;
2854
2855 /* Define macros to test an operand from arg0 and arg1 for equality and a
2856 variant that allows null and views null as being different from any
2857 non-null value. In the latter case, if either is null, the both
2858 must be; otherwise, do the normal comparison. */
2859 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2860 TREE_OPERAND (arg1, N), flags)
2861
2862 #define OP_SAME_WITH_NULL(N) \
2863 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2864 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2865
2866 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2867 {
2868 case tcc_unary:
2869 /* Two conversions are equal only if signedness and modes match. */
2870 switch (TREE_CODE (arg0))
2871 {
2872 CASE_CONVERT:
2873 case FIX_TRUNC_EXPR:
2874 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2875 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2876 return 0;
2877 break;
2878 default:
2879 break;
2880 }
2881
2882 return OP_SAME (0);
2883
2884
2885 case tcc_comparison:
2886 case tcc_binary:
2887 if (OP_SAME (0) && OP_SAME (1))
2888 return 1;
2889
2890 /* For commutative ops, allow the other order. */
2891 return (commutative_tree_code (TREE_CODE (arg0))
2892 && operand_equal_p (TREE_OPERAND (arg0, 0),
2893 TREE_OPERAND (arg1, 1), flags)
2894 && operand_equal_p (TREE_OPERAND (arg0, 1),
2895 TREE_OPERAND (arg1, 0), flags));
2896
2897 case tcc_reference:
2898 /* If either of the pointer (or reference) expressions we are
2899 dereferencing contain a side effect, these cannot be equal,
2900 but their addresses can be. */
2901 if ((flags & OEP_CONSTANT_ADDRESS_OF) == 0
2902 && (TREE_SIDE_EFFECTS (arg0)
2903 || TREE_SIDE_EFFECTS (arg1)))
2904 return 0;
2905
2906 switch (TREE_CODE (arg0))
2907 {
2908 case INDIRECT_REF:
2909 if (!(flags & OEP_ADDRESS_OF)
2910 && (TYPE_ALIGN (TREE_TYPE (arg0))
2911 != TYPE_ALIGN (TREE_TYPE (arg1))))
2912 return 0;
2913 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2914 return OP_SAME (0);
2915
2916 case REALPART_EXPR:
2917 case IMAGPART_EXPR:
2918 return OP_SAME (0);
2919
2920 case TARGET_MEM_REF:
2921 case MEM_REF:
2922 /* Require equal access sizes, and similar pointer types.
2923 We can have incomplete types for array references of
2924 variable-sized arrays from the Fortran frontend
2925 though. Also verify the types are compatible. */
2926 if (!((TYPE_SIZE (TREE_TYPE (arg0)) == TYPE_SIZE (TREE_TYPE (arg1))
2927 || (TYPE_SIZE (TREE_TYPE (arg0))
2928 && TYPE_SIZE (TREE_TYPE (arg1))
2929 && operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
2930 TYPE_SIZE (TREE_TYPE (arg1)), flags)))
2931 && types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1))
2932 && ((flags & OEP_ADDRESS_OF)
2933 || (alias_ptr_types_compatible_p
2934 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
2935 TREE_TYPE (TREE_OPERAND (arg1, 1)))
2936 && (MR_DEPENDENCE_CLIQUE (arg0)
2937 == MR_DEPENDENCE_CLIQUE (arg1))
2938 && (MR_DEPENDENCE_BASE (arg0)
2939 == MR_DEPENDENCE_BASE (arg1))
2940 && (TYPE_ALIGN (TREE_TYPE (arg0))
2941 == TYPE_ALIGN (TREE_TYPE (arg1)))))))
2942 return 0;
2943 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2944 return (OP_SAME (0) && OP_SAME (1)
2945 /* TARGET_MEM_REF require equal extra operands. */
2946 && (TREE_CODE (arg0) != TARGET_MEM_REF
2947 || (OP_SAME_WITH_NULL (2)
2948 && OP_SAME_WITH_NULL (3)
2949 && OP_SAME_WITH_NULL (4))));
2950
2951 case ARRAY_REF:
2952 case ARRAY_RANGE_REF:
2953 /* Operands 2 and 3 may be null.
2954 Compare the array index by value if it is constant first as we
2955 may have different types but same value here. */
2956 if (!OP_SAME (0))
2957 return 0;
2958 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2959 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
2960 TREE_OPERAND (arg1, 1))
2961 || OP_SAME (1))
2962 && OP_SAME_WITH_NULL (2)
2963 && OP_SAME_WITH_NULL (3));
2964
2965 case COMPONENT_REF:
2966 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
2967 may be NULL when we're called to compare MEM_EXPRs. */
2968 if (!OP_SAME_WITH_NULL (0)
2969 || !OP_SAME (1))
2970 return 0;
2971 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2972 return OP_SAME_WITH_NULL (2);
2973
2974 case BIT_FIELD_REF:
2975 if (!OP_SAME (0))
2976 return 0;
2977 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2978 return OP_SAME (1) && OP_SAME (2);
2979
2980 default:
2981 return 0;
2982 }
2983
2984 case tcc_expression:
2985 switch (TREE_CODE (arg0))
2986 {
2987 case ADDR_EXPR:
2988 return operand_equal_p (TREE_OPERAND (arg0, 0),
2989 TREE_OPERAND (arg1, 0),
2990 flags | OEP_ADDRESS_OF);
2991
2992 case TRUTH_NOT_EXPR:
2993 return OP_SAME (0);
2994
2995 case TRUTH_ANDIF_EXPR:
2996 case TRUTH_ORIF_EXPR:
2997 return OP_SAME (0) && OP_SAME (1);
2998
2999 case FMA_EXPR:
3000 case WIDEN_MULT_PLUS_EXPR:
3001 case WIDEN_MULT_MINUS_EXPR:
3002 if (!OP_SAME (2))
3003 return 0;
3004 /* The multiplcation operands are commutative. */
3005 /* FALLTHRU */
3006
3007 case TRUTH_AND_EXPR:
3008 case TRUTH_OR_EXPR:
3009 case TRUTH_XOR_EXPR:
3010 if (OP_SAME (0) && OP_SAME (1))
3011 return 1;
3012
3013 /* Otherwise take into account this is a commutative operation. */
3014 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3015 TREE_OPERAND (arg1, 1), flags)
3016 && operand_equal_p (TREE_OPERAND (arg0, 1),
3017 TREE_OPERAND (arg1, 0), flags));
3018
3019 case COND_EXPR:
3020 case VEC_COND_EXPR:
3021 case DOT_PROD_EXPR:
3022 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3023
3024 default:
3025 return 0;
3026 }
3027
3028 case tcc_vl_exp:
3029 switch (TREE_CODE (arg0))
3030 {
3031 case CALL_EXPR:
3032 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3033 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3034 /* If not both CALL_EXPRs are either internal or normal function
3035 functions, then they are not equal. */
3036 return 0;
3037 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3038 {
3039 /* If the CALL_EXPRs call different internal functions, then they
3040 are not equal. */
3041 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3042 return 0;
3043 }
3044 else
3045 {
3046 /* If the CALL_EXPRs call different functions, then they are not
3047 equal. */
3048 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3049 flags))
3050 return 0;
3051 }
3052
3053 {
3054 unsigned int cef = call_expr_flags (arg0);
3055 if (flags & OEP_PURE_SAME)
3056 cef &= ECF_CONST | ECF_PURE;
3057 else
3058 cef &= ECF_CONST;
3059 if (!cef)
3060 return 0;
3061 }
3062
3063 /* Now see if all the arguments are the same. */
3064 {
3065 const_call_expr_arg_iterator iter0, iter1;
3066 const_tree a0, a1;
3067 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3068 a1 = first_const_call_expr_arg (arg1, &iter1);
3069 a0 && a1;
3070 a0 = next_const_call_expr_arg (&iter0),
3071 a1 = next_const_call_expr_arg (&iter1))
3072 if (! operand_equal_p (a0, a1, flags))
3073 return 0;
3074
3075 /* If we get here and both argument lists are exhausted
3076 then the CALL_EXPRs are equal. */
3077 return ! (a0 || a1);
3078 }
3079 default:
3080 return 0;
3081 }
3082
3083 case tcc_declaration:
3084 /* Consider __builtin_sqrt equal to sqrt. */
3085 return (TREE_CODE (arg0) == FUNCTION_DECL
3086 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3087 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3088 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3089
3090 default:
3091 return 0;
3092 }
3093
3094 #undef OP_SAME
3095 #undef OP_SAME_WITH_NULL
3096 }
3097 \f
3098 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3099 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3100
3101 When in doubt, return 0. */
3102
3103 static int
3104 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3105 {
3106 int unsignedp1, unsignedpo;
3107 tree primarg0, primarg1, primother;
3108 unsigned int correct_width;
3109
3110 if (operand_equal_p (arg0, arg1, 0))
3111 return 1;
3112
3113 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3114 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3115 return 0;
3116
3117 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3118 and see if the inner values are the same. This removes any
3119 signedness comparison, which doesn't matter here. */
3120 primarg0 = arg0, primarg1 = arg1;
3121 STRIP_NOPS (primarg0);
3122 STRIP_NOPS (primarg1);
3123 if (operand_equal_p (primarg0, primarg1, 0))
3124 return 1;
3125
3126 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3127 actual comparison operand, ARG0.
3128
3129 First throw away any conversions to wider types
3130 already present in the operands. */
3131
3132 primarg1 = get_narrower (arg1, &unsignedp1);
3133 primother = get_narrower (other, &unsignedpo);
3134
3135 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3136 if (unsignedp1 == unsignedpo
3137 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3138 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3139 {
3140 tree type = TREE_TYPE (arg0);
3141
3142 /* Make sure shorter operand is extended the right way
3143 to match the longer operand. */
3144 primarg1 = fold_convert (signed_or_unsigned_type_for
3145 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3146
3147 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3148 return 1;
3149 }
3150
3151 return 0;
3152 }
3153 \f
3154 /* See if ARG is an expression that is either a comparison or is performing
3155 arithmetic on comparisons. The comparisons must only be comparing
3156 two different values, which will be stored in *CVAL1 and *CVAL2; if
3157 they are nonzero it means that some operands have already been found.
3158 No variables may be used anywhere else in the expression except in the
3159 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3160 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3161
3162 If this is true, return 1. Otherwise, return zero. */
3163
3164 static int
3165 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3166 {
3167 enum tree_code code = TREE_CODE (arg);
3168 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3169
3170 /* We can handle some of the tcc_expression cases here. */
3171 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3172 tclass = tcc_unary;
3173 else if (tclass == tcc_expression
3174 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3175 || code == COMPOUND_EXPR))
3176 tclass = tcc_binary;
3177
3178 else if (tclass == tcc_expression && code == SAVE_EXPR
3179 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3180 {
3181 /* If we've already found a CVAL1 or CVAL2, this expression is
3182 two complex to handle. */
3183 if (*cval1 || *cval2)
3184 return 0;
3185
3186 tclass = tcc_unary;
3187 *save_p = 1;
3188 }
3189
3190 switch (tclass)
3191 {
3192 case tcc_unary:
3193 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3194
3195 case tcc_binary:
3196 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3197 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3198 cval1, cval2, save_p));
3199
3200 case tcc_constant:
3201 return 1;
3202
3203 case tcc_expression:
3204 if (code == COND_EXPR)
3205 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3206 cval1, cval2, save_p)
3207 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3208 cval1, cval2, save_p)
3209 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3210 cval1, cval2, save_p));
3211 return 0;
3212
3213 case tcc_comparison:
3214 /* First see if we can handle the first operand, then the second. For
3215 the second operand, we know *CVAL1 can't be zero. It must be that
3216 one side of the comparison is each of the values; test for the
3217 case where this isn't true by failing if the two operands
3218 are the same. */
3219
3220 if (operand_equal_p (TREE_OPERAND (arg, 0),
3221 TREE_OPERAND (arg, 1), 0))
3222 return 0;
3223
3224 if (*cval1 == 0)
3225 *cval1 = TREE_OPERAND (arg, 0);
3226 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3227 ;
3228 else if (*cval2 == 0)
3229 *cval2 = TREE_OPERAND (arg, 0);
3230 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3231 ;
3232 else
3233 return 0;
3234
3235 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3236 ;
3237 else if (*cval2 == 0)
3238 *cval2 = TREE_OPERAND (arg, 1);
3239 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3240 ;
3241 else
3242 return 0;
3243
3244 return 1;
3245
3246 default:
3247 return 0;
3248 }
3249 }
3250 \f
3251 /* ARG is a tree that is known to contain just arithmetic operations and
3252 comparisons. Evaluate the operations in the tree substituting NEW0 for
3253 any occurrence of OLD0 as an operand of a comparison and likewise for
3254 NEW1 and OLD1. */
3255
3256 static tree
3257 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3258 tree old1, tree new1)
3259 {
3260 tree type = TREE_TYPE (arg);
3261 enum tree_code code = TREE_CODE (arg);
3262 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3263
3264 /* We can handle some of the tcc_expression cases here. */
3265 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3266 tclass = tcc_unary;
3267 else if (tclass == tcc_expression
3268 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3269 tclass = tcc_binary;
3270
3271 switch (tclass)
3272 {
3273 case tcc_unary:
3274 return fold_build1_loc (loc, code, type,
3275 eval_subst (loc, TREE_OPERAND (arg, 0),
3276 old0, new0, old1, new1));
3277
3278 case tcc_binary:
3279 return fold_build2_loc (loc, code, type,
3280 eval_subst (loc, TREE_OPERAND (arg, 0),
3281 old0, new0, old1, new1),
3282 eval_subst (loc, TREE_OPERAND (arg, 1),
3283 old0, new0, old1, new1));
3284
3285 case tcc_expression:
3286 switch (code)
3287 {
3288 case SAVE_EXPR:
3289 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3290 old1, new1);
3291
3292 case COMPOUND_EXPR:
3293 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3294 old1, new1);
3295
3296 case COND_EXPR:
3297 return fold_build3_loc (loc, code, type,
3298 eval_subst (loc, TREE_OPERAND (arg, 0),
3299 old0, new0, old1, new1),
3300 eval_subst (loc, TREE_OPERAND (arg, 1),
3301 old0, new0, old1, new1),
3302 eval_subst (loc, TREE_OPERAND (arg, 2),
3303 old0, new0, old1, new1));
3304 default:
3305 break;
3306 }
3307 /* Fall through - ??? */
3308
3309 case tcc_comparison:
3310 {
3311 tree arg0 = TREE_OPERAND (arg, 0);
3312 tree arg1 = TREE_OPERAND (arg, 1);
3313
3314 /* We need to check both for exact equality and tree equality. The
3315 former will be true if the operand has a side-effect. In that
3316 case, we know the operand occurred exactly once. */
3317
3318 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3319 arg0 = new0;
3320 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3321 arg0 = new1;
3322
3323 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3324 arg1 = new0;
3325 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3326 arg1 = new1;
3327
3328 return fold_build2_loc (loc, code, type, arg0, arg1);
3329 }
3330
3331 default:
3332 return arg;
3333 }
3334 }
3335 \f
3336 /* Return a tree for the case when the result of an expression is RESULT
3337 converted to TYPE and OMITTED was previously an operand of the expression
3338 but is now not needed (e.g., we folded OMITTED * 0).
3339
3340 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3341 the conversion of RESULT to TYPE. */
3342
3343 tree
3344 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3345 {
3346 tree t = fold_convert_loc (loc, type, result);
3347
3348 /* If the resulting operand is an empty statement, just return the omitted
3349 statement casted to void. */
3350 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3351 return build1_loc (loc, NOP_EXPR, void_type_node,
3352 fold_ignored_result (omitted));
3353
3354 if (TREE_SIDE_EFFECTS (omitted))
3355 return build2_loc (loc, COMPOUND_EXPR, type,
3356 fold_ignored_result (omitted), t);
3357
3358 return non_lvalue_loc (loc, t);
3359 }
3360
3361 /* Return a tree for the case when the result of an expression is RESULT
3362 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3363 of the expression but are now not needed.
3364
3365 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3366 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3367 evaluated before OMITTED2. Otherwise, if neither has side effects,
3368 just do the conversion of RESULT to TYPE. */
3369
3370 tree
3371 omit_two_operands_loc (location_t loc, tree type, tree result,
3372 tree omitted1, tree omitted2)
3373 {
3374 tree t = fold_convert_loc (loc, type, result);
3375
3376 if (TREE_SIDE_EFFECTS (omitted2))
3377 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3378 if (TREE_SIDE_EFFECTS (omitted1))
3379 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3380
3381 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3382 }
3383
3384 \f
3385 /* Return a simplified tree node for the truth-negation of ARG. This
3386 never alters ARG itself. We assume that ARG is an operation that
3387 returns a truth value (0 or 1).
3388
3389 FIXME: one would think we would fold the result, but it causes
3390 problems with the dominator optimizer. */
3391
3392 static tree
3393 fold_truth_not_expr (location_t loc, tree arg)
3394 {
3395 tree type = TREE_TYPE (arg);
3396 enum tree_code code = TREE_CODE (arg);
3397 location_t loc1, loc2;
3398
3399 /* If this is a comparison, we can simply invert it, except for
3400 floating-point non-equality comparisons, in which case we just
3401 enclose a TRUTH_NOT_EXPR around what we have. */
3402
3403 if (TREE_CODE_CLASS (code) == tcc_comparison)
3404 {
3405 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3406 if (FLOAT_TYPE_P (op_type)
3407 && flag_trapping_math
3408 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3409 && code != NE_EXPR && code != EQ_EXPR)
3410 return NULL_TREE;
3411
3412 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3413 if (code == ERROR_MARK)
3414 return NULL_TREE;
3415
3416 return build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3417 TREE_OPERAND (arg, 1));
3418 }
3419
3420 switch (code)
3421 {
3422 case INTEGER_CST:
3423 return constant_boolean_node (integer_zerop (arg), type);
3424
3425 case TRUTH_AND_EXPR:
3426 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3427 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3428 return build2_loc (loc, TRUTH_OR_EXPR, type,
3429 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3430 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3431
3432 case TRUTH_OR_EXPR:
3433 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3434 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3435 return build2_loc (loc, TRUTH_AND_EXPR, type,
3436 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3437 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3438
3439 case TRUTH_XOR_EXPR:
3440 /* Here we can invert either operand. We invert the first operand
3441 unless the second operand is a TRUTH_NOT_EXPR in which case our
3442 result is the XOR of the first operand with the inside of the
3443 negation of the second operand. */
3444
3445 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3446 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3447 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3448 else
3449 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3450 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3451 TREE_OPERAND (arg, 1));
3452
3453 case TRUTH_ANDIF_EXPR:
3454 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3455 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3456 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3457 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3458 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3459
3460 case TRUTH_ORIF_EXPR:
3461 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3462 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3463 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3464 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3465 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3466
3467 case TRUTH_NOT_EXPR:
3468 return TREE_OPERAND (arg, 0);
3469
3470 case COND_EXPR:
3471 {
3472 tree arg1 = TREE_OPERAND (arg, 1);
3473 tree arg2 = TREE_OPERAND (arg, 2);
3474
3475 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3476 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3477
3478 /* A COND_EXPR may have a throw as one operand, which
3479 then has void type. Just leave void operands
3480 as they are. */
3481 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3482 VOID_TYPE_P (TREE_TYPE (arg1))
3483 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3484 VOID_TYPE_P (TREE_TYPE (arg2))
3485 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3486 }
3487
3488 case COMPOUND_EXPR:
3489 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3490 return build2_loc (loc, COMPOUND_EXPR, type,
3491 TREE_OPERAND (arg, 0),
3492 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3493
3494 case NON_LVALUE_EXPR:
3495 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3496 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3497
3498 CASE_CONVERT:
3499 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3500 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3501
3502 /* ... fall through ... */
3503
3504 case FLOAT_EXPR:
3505 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3506 return build1_loc (loc, TREE_CODE (arg), type,
3507 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3508
3509 case BIT_AND_EXPR:
3510 if (!integer_onep (TREE_OPERAND (arg, 1)))
3511 return NULL_TREE;
3512 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3513
3514 case SAVE_EXPR:
3515 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3516
3517 case CLEANUP_POINT_EXPR:
3518 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3519 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3520 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3521
3522 default:
3523 return NULL_TREE;
3524 }
3525 }
3526
3527 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3528 assume that ARG is an operation that returns a truth value (0 or 1
3529 for scalars, 0 or -1 for vectors). Return the folded expression if
3530 folding is successful. Otherwise, return NULL_TREE. */
3531
3532 static tree
3533 fold_invert_truthvalue (location_t loc, tree arg)
3534 {
3535 tree type = TREE_TYPE (arg);
3536 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3537 ? BIT_NOT_EXPR
3538 : TRUTH_NOT_EXPR,
3539 type, arg);
3540 }
3541
3542 /* Return a simplified tree node for the truth-negation of ARG. This
3543 never alters ARG itself. We assume that ARG is an operation that
3544 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3545
3546 tree
3547 invert_truthvalue_loc (location_t loc, tree arg)
3548 {
3549 if (TREE_CODE (arg) == ERROR_MARK)
3550 return arg;
3551
3552 tree type = TREE_TYPE (arg);
3553 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3554 ? BIT_NOT_EXPR
3555 : TRUTH_NOT_EXPR,
3556 type, arg);
3557 }
3558
3559 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3560 operands are another bit-wise operation with a common input. If so,
3561 distribute the bit operations to save an operation and possibly two if
3562 constants are involved. For example, convert
3563 (A | B) & (A | C) into A | (B & C)
3564 Further simplification will occur if B and C are constants.
3565
3566 If this optimization cannot be done, 0 will be returned. */
3567
3568 static tree
3569 distribute_bit_expr (location_t loc, enum tree_code code, tree type,
3570 tree arg0, tree arg1)
3571 {
3572 tree common;
3573 tree left, right;
3574
3575 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3576 || TREE_CODE (arg0) == code
3577 || (TREE_CODE (arg0) != BIT_AND_EXPR
3578 && TREE_CODE (arg0) != BIT_IOR_EXPR))
3579 return 0;
3580
3581 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
3582 {
3583 common = TREE_OPERAND (arg0, 0);
3584 left = TREE_OPERAND (arg0, 1);
3585 right = TREE_OPERAND (arg1, 1);
3586 }
3587 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
3588 {
3589 common = TREE_OPERAND (arg0, 0);
3590 left = TREE_OPERAND (arg0, 1);
3591 right = TREE_OPERAND (arg1, 0);
3592 }
3593 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
3594 {
3595 common = TREE_OPERAND (arg0, 1);
3596 left = TREE_OPERAND (arg0, 0);
3597 right = TREE_OPERAND (arg1, 1);
3598 }
3599 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
3600 {
3601 common = TREE_OPERAND (arg0, 1);
3602 left = TREE_OPERAND (arg0, 0);
3603 right = TREE_OPERAND (arg1, 0);
3604 }
3605 else
3606 return 0;
3607
3608 common = fold_convert_loc (loc, type, common);
3609 left = fold_convert_loc (loc, type, left);
3610 right = fold_convert_loc (loc, type, right);
3611 return fold_build2_loc (loc, TREE_CODE (arg0), type, common,
3612 fold_build2_loc (loc, code, type, left, right));
3613 }
3614
3615 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3616 with code CODE. This optimization is unsafe. */
3617 static tree
3618 distribute_real_division (location_t loc, enum tree_code code, tree type,
3619 tree arg0, tree arg1)
3620 {
3621 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3622 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3623
3624 /* (A / C) +- (B / C) -> (A +- B) / C. */
3625 if (mul0 == mul1
3626 && operand_equal_p (TREE_OPERAND (arg0, 1),
3627 TREE_OPERAND (arg1, 1), 0))
3628 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3629 fold_build2_loc (loc, code, type,
3630 TREE_OPERAND (arg0, 0),
3631 TREE_OPERAND (arg1, 0)),
3632 TREE_OPERAND (arg0, 1));
3633
3634 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3635 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3636 TREE_OPERAND (arg1, 0), 0)
3637 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3638 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3639 {
3640 REAL_VALUE_TYPE r0, r1;
3641 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3642 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3643 if (!mul0)
3644 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3645 if (!mul1)
3646 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3647 real_arithmetic (&r0, code, &r0, &r1);
3648 return fold_build2_loc (loc, MULT_EXPR, type,
3649 TREE_OPERAND (arg0, 0),
3650 build_real (type, r0));
3651 }
3652
3653 return NULL_TREE;
3654 }
3655 \f
3656 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3657 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3658
3659 static tree
3660 make_bit_field_ref (location_t loc, tree inner, tree type,
3661 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos, int unsignedp)
3662 {
3663 tree result, bftype;
3664
3665 if (bitpos == 0)
3666 {
3667 tree size = TYPE_SIZE (TREE_TYPE (inner));
3668 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3669 || POINTER_TYPE_P (TREE_TYPE (inner)))
3670 && tree_fits_shwi_p (size)
3671 && tree_to_shwi (size) == bitsize)
3672 return fold_convert_loc (loc, type, inner);
3673 }
3674
3675 bftype = type;
3676 if (TYPE_PRECISION (bftype) != bitsize
3677 || TYPE_UNSIGNED (bftype) == !unsignedp)
3678 bftype = build_nonstandard_integer_type (bitsize, 0);
3679
3680 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3681 size_int (bitsize), bitsize_int (bitpos));
3682
3683 if (bftype != type)
3684 result = fold_convert_loc (loc, type, result);
3685
3686 return result;
3687 }
3688
3689 /* Optimize a bit-field compare.
3690
3691 There are two cases: First is a compare against a constant and the
3692 second is a comparison of two items where the fields are at the same
3693 bit position relative to the start of a chunk (byte, halfword, word)
3694 large enough to contain it. In these cases we can avoid the shift
3695 implicit in bitfield extractions.
3696
3697 For constants, we emit a compare of the shifted constant with the
3698 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3699 compared. For two fields at the same position, we do the ANDs with the
3700 similar mask and compare the result of the ANDs.
3701
3702 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3703 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3704 are the left and right operands of the comparison, respectively.
3705
3706 If the optimization described above can be done, we return the resulting
3707 tree. Otherwise we return zero. */
3708
3709 static tree
3710 optimize_bit_field_compare (location_t loc, enum tree_code code,
3711 tree compare_type, tree lhs, tree rhs)
3712 {
3713 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3714 tree type = TREE_TYPE (lhs);
3715 tree unsigned_type;
3716 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3717 machine_mode lmode, rmode, nmode;
3718 int lunsignedp, runsignedp;
3719 int lvolatilep = 0, rvolatilep = 0;
3720 tree linner, rinner = NULL_TREE;
3721 tree mask;
3722 tree offset;
3723
3724 /* Get all the information about the extractions being done. If the bit size
3725 if the same as the size of the underlying object, we aren't doing an
3726 extraction at all and so can do nothing. We also don't want to
3727 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3728 then will no longer be able to replace it. */
3729 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3730 &lunsignedp, &lvolatilep, false);
3731 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3732 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3733 return 0;
3734
3735 if (!const_p)
3736 {
3737 /* If this is not a constant, we can only do something if bit positions,
3738 sizes, and signedness are the same. */
3739 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3740 &runsignedp, &rvolatilep, false);
3741
3742 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3743 || lunsignedp != runsignedp || offset != 0
3744 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3745 return 0;
3746 }
3747
3748 /* See if we can find a mode to refer to this field. We should be able to,
3749 but fail if we can't. */
3750 nmode = get_best_mode (lbitsize, lbitpos, 0, 0,
3751 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3752 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3753 TYPE_ALIGN (TREE_TYPE (rinner))),
3754 word_mode, false);
3755 if (nmode == VOIDmode)
3756 return 0;
3757
3758 /* Set signed and unsigned types of the precision of this mode for the
3759 shifts below. */
3760 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3761
3762 /* Compute the bit position and size for the new reference and our offset
3763 within it. If the new reference is the same size as the original, we
3764 won't optimize anything, so return zero. */
3765 nbitsize = GET_MODE_BITSIZE (nmode);
3766 nbitpos = lbitpos & ~ (nbitsize - 1);
3767 lbitpos -= nbitpos;
3768 if (nbitsize == lbitsize)
3769 return 0;
3770
3771 if (BYTES_BIG_ENDIAN)
3772 lbitpos = nbitsize - lbitsize - lbitpos;
3773
3774 /* Make the mask to be used against the extracted field. */
3775 mask = build_int_cst_type (unsigned_type, -1);
3776 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
3777 mask = const_binop (RSHIFT_EXPR, mask,
3778 size_int (nbitsize - lbitsize - lbitpos));
3779
3780 if (! const_p)
3781 /* If not comparing with constant, just rework the comparison
3782 and return. */
3783 return fold_build2_loc (loc, code, compare_type,
3784 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3785 make_bit_field_ref (loc, linner,
3786 unsigned_type,
3787 nbitsize, nbitpos,
3788 1),
3789 mask),
3790 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3791 make_bit_field_ref (loc, rinner,
3792 unsigned_type,
3793 nbitsize, nbitpos,
3794 1),
3795 mask));
3796
3797 /* Otherwise, we are handling the constant case. See if the constant is too
3798 big for the field. Warn and return a tree of for 0 (false) if so. We do
3799 this not only for its own sake, but to avoid having to test for this
3800 error case below. If we didn't, we might generate wrong code.
3801
3802 For unsigned fields, the constant shifted right by the field length should
3803 be all zero. For signed fields, the high-order bits should agree with
3804 the sign bit. */
3805
3806 if (lunsignedp)
3807 {
3808 if (wi::lrshift (rhs, lbitsize) != 0)
3809 {
3810 warning (0, "comparison is always %d due to width of bit-field",
3811 code == NE_EXPR);
3812 return constant_boolean_node (code == NE_EXPR, compare_type);
3813 }
3814 }
3815 else
3816 {
3817 wide_int tem = wi::arshift (rhs, lbitsize - 1);
3818 if (tem != 0 && tem != -1)
3819 {
3820 warning (0, "comparison is always %d due to width of bit-field",
3821 code == NE_EXPR);
3822 return constant_boolean_node (code == NE_EXPR, compare_type);
3823 }
3824 }
3825
3826 /* Single-bit compares should always be against zero. */
3827 if (lbitsize == 1 && ! integer_zerop (rhs))
3828 {
3829 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3830 rhs = build_int_cst (type, 0);
3831 }
3832
3833 /* Make a new bitfield reference, shift the constant over the
3834 appropriate number of bits and mask it with the computed mask
3835 (in case this was a signed field). If we changed it, make a new one. */
3836 lhs = make_bit_field_ref (loc, linner, unsigned_type, nbitsize, nbitpos, 1);
3837
3838 rhs = const_binop (BIT_AND_EXPR,
3839 const_binop (LSHIFT_EXPR,
3840 fold_convert_loc (loc, unsigned_type, rhs),
3841 size_int (lbitpos)),
3842 mask);
3843
3844 lhs = build2_loc (loc, code, compare_type,
3845 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
3846 return lhs;
3847 }
3848 \f
3849 /* Subroutine for fold_truth_andor_1: decode a field reference.
3850
3851 If EXP is a comparison reference, we return the innermost reference.
3852
3853 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3854 set to the starting bit number.
3855
3856 If the innermost field can be completely contained in a mode-sized
3857 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3858
3859 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3860 otherwise it is not changed.
3861
3862 *PUNSIGNEDP is set to the signedness of the field.
3863
3864 *PMASK is set to the mask used. This is either contained in a
3865 BIT_AND_EXPR or derived from the width of the field.
3866
3867 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3868
3869 Return 0 if this is not a component reference or is one that we can't
3870 do anything with. */
3871
3872 static tree
3873 decode_field_reference (location_t loc, tree exp, HOST_WIDE_INT *pbitsize,
3874 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
3875 int *punsignedp, int *pvolatilep,
3876 tree *pmask, tree *pand_mask)
3877 {
3878 tree outer_type = 0;
3879 tree and_mask = 0;
3880 tree mask, inner, offset;
3881 tree unsigned_type;
3882 unsigned int precision;
3883
3884 /* All the optimizations using this function assume integer fields.
3885 There are problems with FP fields since the type_for_size call
3886 below can fail for, e.g., XFmode. */
3887 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3888 return 0;
3889
3890 /* We are interested in the bare arrangement of bits, so strip everything
3891 that doesn't affect the machine mode. However, record the type of the
3892 outermost expression if it may matter below. */
3893 if (CONVERT_EXPR_P (exp)
3894 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3895 outer_type = TREE_TYPE (exp);
3896 STRIP_NOPS (exp);
3897
3898 if (TREE_CODE (exp) == BIT_AND_EXPR)
3899 {
3900 and_mask = TREE_OPERAND (exp, 1);
3901 exp = TREE_OPERAND (exp, 0);
3902 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3903 if (TREE_CODE (and_mask) != INTEGER_CST)
3904 return 0;
3905 }
3906
3907 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3908 punsignedp, pvolatilep, false);
3909 if ((inner == exp && and_mask == 0)
3910 || *pbitsize < 0 || offset != 0
3911 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3912 return 0;
3913
3914 /* If the number of bits in the reference is the same as the bitsize of
3915 the outer type, then the outer type gives the signedness. Otherwise
3916 (in case of a small bitfield) the signedness is unchanged. */
3917 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3918 *punsignedp = TYPE_UNSIGNED (outer_type);
3919
3920 /* Compute the mask to access the bitfield. */
3921 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3922 precision = TYPE_PRECISION (unsigned_type);
3923
3924 mask = build_int_cst_type (unsigned_type, -1);
3925
3926 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3927 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3928
3929 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3930 if (and_mask != 0)
3931 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3932 fold_convert_loc (loc, unsigned_type, and_mask), mask);
3933
3934 *pmask = mask;
3935 *pand_mask = and_mask;
3936 return inner;
3937 }
3938
3939 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3940 bit positions and MASK is SIGNED. */
3941
3942 static int
3943 all_ones_mask_p (const_tree mask, unsigned int size)
3944 {
3945 tree type = TREE_TYPE (mask);
3946 unsigned int precision = TYPE_PRECISION (type);
3947
3948 /* If this function returns true when the type of the mask is
3949 UNSIGNED, then there will be errors. In particular see
3950 gcc.c-torture/execute/990326-1.c. There does not appear to be
3951 any documentation paper trail as to why this is so. But the pre
3952 wide-int worked with that restriction and it has been preserved
3953 here. */
3954 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
3955 return false;
3956
3957 return wi::mask (size, false, precision) == mask;
3958 }
3959
3960 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3961 represents the sign bit of EXP's type. If EXP represents a sign
3962 or zero extension, also test VAL against the unextended type.
3963 The return value is the (sub)expression whose sign bit is VAL,
3964 or NULL_TREE otherwise. */
3965
3966 tree
3967 sign_bit_p (tree exp, const_tree val)
3968 {
3969 int width;
3970 tree t;
3971
3972 /* Tree EXP must have an integral type. */
3973 t = TREE_TYPE (exp);
3974 if (! INTEGRAL_TYPE_P (t))
3975 return NULL_TREE;
3976
3977 /* Tree VAL must be an integer constant. */
3978 if (TREE_CODE (val) != INTEGER_CST
3979 || TREE_OVERFLOW (val))
3980 return NULL_TREE;
3981
3982 width = TYPE_PRECISION (t);
3983 if (wi::only_sign_bit_p (val, width))
3984 return exp;
3985
3986 /* Handle extension from a narrower type. */
3987 if (TREE_CODE (exp) == NOP_EXPR
3988 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
3989 return sign_bit_p (TREE_OPERAND (exp, 0), val);
3990
3991 return NULL_TREE;
3992 }
3993
3994 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
3995 to be evaluated unconditionally. */
3996
3997 static int
3998 simple_operand_p (const_tree exp)
3999 {
4000 /* Strip any conversions that don't change the machine mode. */
4001 STRIP_NOPS (exp);
4002
4003 return (CONSTANT_CLASS_P (exp)
4004 || TREE_CODE (exp) == SSA_NAME
4005 || (DECL_P (exp)
4006 && ! TREE_ADDRESSABLE (exp)
4007 && ! TREE_THIS_VOLATILE (exp)
4008 && ! DECL_NONLOCAL (exp)
4009 /* Don't regard global variables as simple. They may be
4010 allocated in ways unknown to the compiler (shared memory,
4011 #pragma weak, etc). */
4012 && ! TREE_PUBLIC (exp)
4013 && ! DECL_EXTERNAL (exp)
4014 /* Weakrefs are not safe to be read, since they can be NULL.
4015 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4016 have DECL_WEAK flag set. */
4017 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4018 /* Loading a static variable is unduly expensive, but global
4019 registers aren't expensive. */
4020 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4021 }
4022
4023 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4024 to be evaluated unconditionally.
4025 I addition to simple_operand_p, we assume that comparisons, conversions,
4026 and logic-not operations are simple, if their operands are simple, too. */
4027
4028 static bool
4029 simple_operand_p_2 (tree exp)
4030 {
4031 enum tree_code code;
4032
4033 if (TREE_SIDE_EFFECTS (exp)
4034 || tree_could_trap_p (exp))
4035 return false;
4036
4037 while (CONVERT_EXPR_P (exp))
4038 exp = TREE_OPERAND (exp, 0);
4039
4040 code = TREE_CODE (exp);
4041
4042 if (TREE_CODE_CLASS (code) == tcc_comparison)
4043 return (simple_operand_p (TREE_OPERAND (exp, 0))
4044 && simple_operand_p (TREE_OPERAND (exp, 1)));
4045
4046 if (code == TRUTH_NOT_EXPR)
4047 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4048
4049 return simple_operand_p (exp);
4050 }
4051
4052 \f
4053 /* The following functions are subroutines to fold_range_test and allow it to
4054 try to change a logical combination of comparisons into a range test.
4055
4056 For example, both
4057 X == 2 || X == 3 || X == 4 || X == 5
4058 and
4059 X >= 2 && X <= 5
4060 are converted to
4061 (unsigned) (X - 2) <= 3
4062
4063 We describe each set of comparisons as being either inside or outside
4064 a range, using a variable named like IN_P, and then describe the
4065 range with a lower and upper bound. If one of the bounds is omitted,
4066 it represents either the highest or lowest value of the type.
4067
4068 In the comments below, we represent a range by two numbers in brackets
4069 preceded by a "+" to designate being inside that range, or a "-" to
4070 designate being outside that range, so the condition can be inverted by
4071 flipping the prefix. An omitted bound is represented by a "-". For
4072 example, "- [-, 10]" means being outside the range starting at the lowest
4073 possible value and ending at 10, in other words, being greater than 10.
4074 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4075 always false.
4076
4077 We set up things so that the missing bounds are handled in a consistent
4078 manner so neither a missing bound nor "true" and "false" need to be
4079 handled using a special case. */
4080
4081 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4082 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4083 and UPPER1_P are nonzero if the respective argument is an upper bound
4084 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4085 must be specified for a comparison. ARG1 will be converted to ARG0's
4086 type if both are specified. */
4087
4088 static tree
4089 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4090 tree arg1, int upper1_p)
4091 {
4092 tree tem;
4093 int result;
4094 int sgn0, sgn1;
4095
4096 /* If neither arg represents infinity, do the normal operation.
4097 Else, if not a comparison, return infinity. Else handle the special
4098 comparison rules. Note that most of the cases below won't occur, but
4099 are handled for consistency. */
4100
4101 if (arg0 != 0 && arg1 != 0)
4102 {
4103 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4104 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4105 STRIP_NOPS (tem);
4106 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4107 }
4108
4109 if (TREE_CODE_CLASS (code) != tcc_comparison)
4110 return 0;
4111
4112 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4113 for neither. In real maths, we cannot assume open ended ranges are
4114 the same. But, this is computer arithmetic, where numbers are finite.
4115 We can therefore make the transformation of any unbounded range with
4116 the value Z, Z being greater than any representable number. This permits
4117 us to treat unbounded ranges as equal. */
4118 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4119 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4120 switch (code)
4121 {
4122 case EQ_EXPR:
4123 result = sgn0 == sgn1;
4124 break;
4125 case NE_EXPR:
4126 result = sgn0 != sgn1;
4127 break;
4128 case LT_EXPR:
4129 result = sgn0 < sgn1;
4130 break;
4131 case LE_EXPR:
4132 result = sgn0 <= sgn1;
4133 break;
4134 case GT_EXPR:
4135 result = sgn0 > sgn1;
4136 break;
4137 case GE_EXPR:
4138 result = sgn0 >= sgn1;
4139 break;
4140 default:
4141 gcc_unreachable ();
4142 }
4143
4144 return constant_boolean_node (result, type);
4145 }
4146 \f
4147 /* Helper routine for make_range. Perform one step for it, return
4148 new expression if the loop should continue or NULL_TREE if it should
4149 stop. */
4150
4151 tree
4152 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4153 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4154 bool *strict_overflow_p)
4155 {
4156 tree arg0_type = TREE_TYPE (arg0);
4157 tree n_low, n_high, low = *p_low, high = *p_high;
4158 int in_p = *p_in_p, n_in_p;
4159
4160 switch (code)
4161 {
4162 case TRUTH_NOT_EXPR:
4163 /* We can only do something if the range is testing for zero. */
4164 if (low == NULL_TREE || high == NULL_TREE
4165 || ! integer_zerop (low) || ! integer_zerop (high))
4166 return NULL_TREE;
4167 *p_in_p = ! in_p;
4168 return arg0;
4169
4170 case EQ_EXPR: case NE_EXPR:
4171 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4172 /* We can only do something if the range is testing for zero
4173 and if the second operand is an integer constant. Note that
4174 saying something is "in" the range we make is done by
4175 complementing IN_P since it will set in the initial case of
4176 being not equal to zero; "out" is leaving it alone. */
4177 if (low == NULL_TREE || high == NULL_TREE
4178 || ! integer_zerop (low) || ! integer_zerop (high)
4179 || TREE_CODE (arg1) != INTEGER_CST)
4180 return NULL_TREE;
4181
4182 switch (code)
4183 {
4184 case NE_EXPR: /* - [c, c] */
4185 low = high = arg1;
4186 break;
4187 case EQ_EXPR: /* + [c, c] */
4188 in_p = ! in_p, low = high = arg1;
4189 break;
4190 case GT_EXPR: /* - [-, c] */
4191 low = 0, high = arg1;
4192 break;
4193 case GE_EXPR: /* + [c, -] */
4194 in_p = ! in_p, low = arg1, high = 0;
4195 break;
4196 case LT_EXPR: /* - [c, -] */
4197 low = arg1, high = 0;
4198 break;
4199 case LE_EXPR: /* + [-, c] */
4200 in_p = ! in_p, low = 0, high = arg1;
4201 break;
4202 default:
4203 gcc_unreachable ();
4204 }
4205
4206 /* If this is an unsigned comparison, we also know that EXP is
4207 greater than or equal to zero. We base the range tests we make
4208 on that fact, so we record it here so we can parse existing
4209 range tests. We test arg0_type since often the return type
4210 of, e.g. EQ_EXPR, is boolean. */
4211 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4212 {
4213 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4214 in_p, low, high, 1,
4215 build_int_cst (arg0_type, 0),
4216 NULL_TREE))
4217 return NULL_TREE;
4218
4219 in_p = n_in_p, low = n_low, high = n_high;
4220
4221 /* If the high bound is missing, but we have a nonzero low
4222 bound, reverse the range so it goes from zero to the low bound
4223 minus 1. */
4224 if (high == 0 && low && ! integer_zerop (low))
4225 {
4226 in_p = ! in_p;
4227 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4228 build_int_cst (TREE_TYPE (low), 1), 0);
4229 low = build_int_cst (arg0_type, 0);
4230 }
4231 }
4232
4233 *p_low = low;
4234 *p_high = high;
4235 *p_in_p = in_p;
4236 return arg0;
4237
4238 case NEGATE_EXPR:
4239 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4240 low and high are non-NULL, then normalize will DTRT. */
4241 if (!TYPE_UNSIGNED (arg0_type)
4242 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4243 {
4244 if (low == NULL_TREE)
4245 low = TYPE_MIN_VALUE (arg0_type);
4246 if (high == NULL_TREE)
4247 high = TYPE_MAX_VALUE (arg0_type);
4248 }
4249
4250 /* (-x) IN [a,b] -> x in [-b, -a] */
4251 n_low = range_binop (MINUS_EXPR, exp_type,
4252 build_int_cst (exp_type, 0),
4253 0, high, 1);
4254 n_high = range_binop (MINUS_EXPR, exp_type,
4255 build_int_cst (exp_type, 0),
4256 0, low, 0);
4257 if (n_high != 0 && TREE_OVERFLOW (n_high))
4258 return NULL_TREE;
4259 goto normalize;
4260
4261 case BIT_NOT_EXPR:
4262 /* ~ X -> -X - 1 */
4263 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4264 build_int_cst (exp_type, 1));
4265
4266 case PLUS_EXPR:
4267 case MINUS_EXPR:
4268 if (TREE_CODE (arg1) != INTEGER_CST)
4269 return NULL_TREE;
4270
4271 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4272 move a constant to the other side. */
4273 if (!TYPE_UNSIGNED (arg0_type)
4274 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4275 return NULL_TREE;
4276
4277 /* If EXP is signed, any overflow in the computation is undefined,
4278 so we don't worry about it so long as our computations on
4279 the bounds don't overflow. For unsigned, overflow is defined
4280 and this is exactly the right thing. */
4281 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4282 arg0_type, low, 0, arg1, 0);
4283 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4284 arg0_type, high, 1, arg1, 0);
4285 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4286 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4287 return NULL_TREE;
4288
4289 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4290 *strict_overflow_p = true;
4291
4292 normalize:
4293 /* Check for an unsigned range which has wrapped around the maximum
4294 value thus making n_high < n_low, and normalize it. */
4295 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4296 {
4297 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4298 build_int_cst (TREE_TYPE (n_high), 1), 0);
4299 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4300 build_int_cst (TREE_TYPE (n_low), 1), 0);
4301
4302 /* If the range is of the form +/- [ x+1, x ], we won't
4303 be able to normalize it. But then, it represents the
4304 whole range or the empty set, so make it
4305 +/- [ -, - ]. */
4306 if (tree_int_cst_equal (n_low, low)
4307 && tree_int_cst_equal (n_high, high))
4308 low = high = 0;
4309 else
4310 in_p = ! in_p;
4311 }
4312 else
4313 low = n_low, high = n_high;
4314
4315 *p_low = low;
4316 *p_high = high;
4317 *p_in_p = in_p;
4318 return arg0;
4319
4320 CASE_CONVERT:
4321 case NON_LVALUE_EXPR:
4322 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4323 return NULL_TREE;
4324
4325 if (! INTEGRAL_TYPE_P (arg0_type)
4326 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4327 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4328 return NULL_TREE;
4329
4330 n_low = low, n_high = high;
4331
4332 if (n_low != 0)
4333 n_low = fold_convert_loc (loc, arg0_type, n_low);
4334
4335 if (n_high != 0)
4336 n_high = fold_convert_loc (loc, arg0_type, n_high);
4337
4338 /* If we're converting arg0 from an unsigned type, to exp,
4339 a signed type, we will be doing the comparison as unsigned.
4340 The tests above have already verified that LOW and HIGH
4341 are both positive.
4342
4343 So we have to ensure that we will handle large unsigned
4344 values the same way that the current signed bounds treat
4345 negative values. */
4346
4347 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4348 {
4349 tree high_positive;
4350 tree equiv_type;
4351 /* For fixed-point modes, we need to pass the saturating flag
4352 as the 2nd parameter. */
4353 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4354 equiv_type
4355 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4356 TYPE_SATURATING (arg0_type));
4357 else
4358 equiv_type
4359 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4360
4361 /* A range without an upper bound is, naturally, unbounded.
4362 Since convert would have cropped a very large value, use
4363 the max value for the destination type. */
4364 high_positive
4365 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4366 : TYPE_MAX_VALUE (arg0_type);
4367
4368 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4369 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4370 fold_convert_loc (loc, arg0_type,
4371 high_positive),
4372 build_int_cst (arg0_type, 1));
4373
4374 /* If the low bound is specified, "and" the range with the
4375 range for which the original unsigned value will be
4376 positive. */
4377 if (low != 0)
4378 {
4379 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4380 1, fold_convert_loc (loc, arg0_type,
4381 integer_zero_node),
4382 high_positive))
4383 return NULL_TREE;
4384
4385 in_p = (n_in_p == in_p);
4386 }
4387 else
4388 {
4389 /* Otherwise, "or" the range with the range of the input
4390 that will be interpreted as negative. */
4391 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4392 1, fold_convert_loc (loc, arg0_type,
4393 integer_zero_node),
4394 high_positive))
4395 return NULL_TREE;
4396
4397 in_p = (in_p != n_in_p);
4398 }
4399 }
4400
4401 *p_low = n_low;
4402 *p_high = n_high;
4403 *p_in_p = in_p;
4404 return arg0;
4405
4406 default:
4407 return NULL_TREE;
4408 }
4409 }
4410
4411 /* Given EXP, a logical expression, set the range it is testing into
4412 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4413 actually being tested. *PLOW and *PHIGH will be made of the same
4414 type as the returned expression. If EXP is not a comparison, we
4415 will most likely not be returning a useful value and range. Set
4416 *STRICT_OVERFLOW_P to true if the return value is only valid
4417 because signed overflow is undefined; otherwise, do not change
4418 *STRICT_OVERFLOW_P. */
4419
4420 tree
4421 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4422 bool *strict_overflow_p)
4423 {
4424 enum tree_code code;
4425 tree arg0, arg1 = NULL_TREE;
4426 tree exp_type, nexp;
4427 int in_p;
4428 tree low, high;
4429 location_t loc = EXPR_LOCATION (exp);
4430
4431 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4432 and see if we can refine the range. Some of the cases below may not
4433 happen, but it doesn't seem worth worrying about this. We "continue"
4434 the outer loop when we've changed something; otherwise we "break"
4435 the switch, which will "break" the while. */
4436
4437 in_p = 0;
4438 low = high = build_int_cst (TREE_TYPE (exp), 0);
4439
4440 while (1)
4441 {
4442 code = TREE_CODE (exp);
4443 exp_type = TREE_TYPE (exp);
4444 arg0 = NULL_TREE;
4445
4446 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4447 {
4448 if (TREE_OPERAND_LENGTH (exp) > 0)
4449 arg0 = TREE_OPERAND (exp, 0);
4450 if (TREE_CODE_CLASS (code) == tcc_binary
4451 || TREE_CODE_CLASS (code) == tcc_comparison
4452 || (TREE_CODE_CLASS (code) == tcc_expression
4453 && TREE_OPERAND_LENGTH (exp) > 1))
4454 arg1 = TREE_OPERAND (exp, 1);
4455 }
4456 if (arg0 == NULL_TREE)
4457 break;
4458
4459 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4460 &high, &in_p, strict_overflow_p);
4461 if (nexp == NULL_TREE)
4462 break;
4463 exp = nexp;
4464 }
4465
4466 /* If EXP is a constant, we can evaluate whether this is true or false. */
4467 if (TREE_CODE (exp) == INTEGER_CST)
4468 {
4469 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4470 exp, 0, low, 0))
4471 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4472 exp, 1, high, 1)));
4473 low = high = 0;
4474 exp = 0;
4475 }
4476
4477 *pin_p = in_p, *plow = low, *phigh = high;
4478 return exp;
4479 }
4480 \f
4481 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4482 type, TYPE, return an expression to test if EXP is in (or out of, depending
4483 on IN_P) the range. Return 0 if the test couldn't be created. */
4484
4485 tree
4486 build_range_check (location_t loc, tree type, tree exp, int in_p,
4487 tree low, tree high)
4488 {
4489 tree etype = TREE_TYPE (exp), value;
4490
4491 /* Disable this optimization for function pointer expressions
4492 on targets that require function pointer canonicalization. */
4493 if (targetm.have_canonicalize_funcptr_for_compare ()
4494 && TREE_CODE (etype) == POINTER_TYPE
4495 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4496 return NULL_TREE;
4497
4498 if (! in_p)
4499 {
4500 value = build_range_check (loc, type, exp, 1, low, high);
4501 if (value != 0)
4502 return invert_truthvalue_loc (loc, value);
4503
4504 return 0;
4505 }
4506
4507 if (low == 0 && high == 0)
4508 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4509
4510 if (low == 0)
4511 return fold_build2_loc (loc, LE_EXPR, type, exp,
4512 fold_convert_loc (loc, etype, high));
4513
4514 if (high == 0)
4515 return fold_build2_loc (loc, GE_EXPR, type, exp,
4516 fold_convert_loc (loc, etype, low));
4517
4518 if (operand_equal_p (low, high, 0))
4519 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4520 fold_convert_loc (loc, etype, low));
4521
4522 if (integer_zerop (low))
4523 {
4524 if (! TYPE_UNSIGNED (etype))
4525 {
4526 etype = unsigned_type_for (etype);
4527 high = fold_convert_loc (loc, etype, high);
4528 exp = fold_convert_loc (loc, etype, exp);
4529 }
4530 return build_range_check (loc, type, exp, 1, 0, high);
4531 }
4532
4533 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4534 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4535 {
4536 int prec = TYPE_PRECISION (etype);
4537
4538 if (wi::mask (prec - 1, false, prec) == high)
4539 {
4540 if (TYPE_UNSIGNED (etype))
4541 {
4542 tree signed_etype = signed_type_for (etype);
4543 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4544 etype
4545 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4546 else
4547 etype = signed_etype;
4548 exp = fold_convert_loc (loc, etype, exp);
4549 }
4550 return fold_build2_loc (loc, GT_EXPR, type, exp,
4551 build_int_cst (etype, 0));
4552 }
4553 }
4554
4555 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4556 This requires wrap-around arithmetics for the type of the expression.
4557 First make sure that arithmetics in this type is valid, then make sure
4558 that it wraps around. */
4559 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4560 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4561 TYPE_UNSIGNED (etype));
4562
4563 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4564 {
4565 tree utype, minv, maxv;
4566
4567 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4568 for the type in question, as we rely on this here. */
4569 utype = unsigned_type_for (etype);
4570 maxv = fold_convert_loc (loc, utype, TYPE_MAX_VALUE (etype));
4571 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4572 build_int_cst (TREE_TYPE (maxv), 1), 1);
4573 minv = fold_convert_loc (loc, utype, TYPE_MIN_VALUE (etype));
4574
4575 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4576 minv, 1, maxv, 1)))
4577 etype = utype;
4578 else
4579 return 0;
4580 }
4581
4582 high = fold_convert_loc (loc, etype, high);
4583 low = fold_convert_loc (loc, etype, low);
4584 exp = fold_convert_loc (loc, etype, exp);
4585
4586 value = const_binop (MINUS_EXPR, high, low);
4587
4588
4589 if (POINTER_TYPE_P (etype))
4590 {
4591 if (value != 0 && !TREE_OVERFLOW (value))
4592 {
4593 low = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (low), low);
4594 return build_range_check (loc, type,
4595 fold_build_pointer_plus_loc (loc, exp, low),
4596 1, build_int_cst (etype, 0), value);
4597 }
4598 return 0;
4599 }
4600
4601 if (value != 0 && !TREE_OVERFLOW (value))
4602 return build_range_check (loc, type,
4603 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4604 1, build_int_cst (etype, 0), value);
4605
4606 return 0;
4607 }
4608 \f
4609 /* Return the predecessor of VAL in its type, handling the infinite case. */
4610
4611 static tree
4612 range_predecessor (tree val)
4613 {
4614 tree type = TREE_TYPE (val);
4615
4616 if (INTEGRAL_TYPE_P (type)
4617 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4618 return 0;
4619 else
4620 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4621 build_int_cst (TREE_TYPE (val), 1), 0);
4622 }
4623
4624 /* Return the successor of VAL in its type, handling the infinite case. */
4625
4626 static tree
4627 range_successor (tree val)
4628 {
4629 tree type = TREE_TYPE (val);
4630
4631 if (INTEGRAL_TYPE_P (type)
4632 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4633 return 0;
4634 else
4635 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4636 build_int_cst (TREE_TYPE (val), 1), 0);
4637 }
4638
4639 /* Given two ranges, see if we can merge them into one. Return 1 if we
4640 can, 0 if we can't. Set the output range into the specified parameters. */
4641
4642 bool
4643 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4644 tree high0, int in1_p, tree low1, tree high1)
4645 {
4646 int no_overlap;
4647 int subset;
4648 int temp;
4649 tree tem;
4650 int in_p;
4651 tree low, high;
4652 int lowequal = ((low0 == 0 && low1 == 0)
4653 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4654 low0, 0, low1, 0)));
4655 int highequal = ((high0 == 0 && high1 == 0)
4656 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4657 high0, 1, high1, 1)));
4658
4659 /* Make range 0 be the range that starts first, or ends last if they
4660 start at the same value. Swap them if it isn't. */
4661 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4662 low0, 0, low1, 0))
4663 || (lowequal
4664 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4665 high1, 1, high0, 1))))
4666 {
4667 temp = in0_p, in0_p = in1_p, in1_p = temp;
4668 tem = low0, low0 = low1, low1 = tem;
4669 tem = high0, high0 = high1, high1 = tem;
4670 }
4671
4672 /* Now flag two cases, whether the ranges are disjoint or whether the
4673 second range is totally subsumed in the first. Note that the tests
4674 below are simplified by the ones above. */
4675 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4676 high0, 1, low1, 0));
4677 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4678 high1, 1, high0, 1));
4679
4680 /* We now have four cases, depending on whether we are including or
4681 excluding the two ranges. */
4682 if (in0_p && in1_p)
4683 {
4684 /* If they don't overlap, the result is false. If the second range
4685 is a subset it is the result. Otherwise, the range is from the start
4686 of the second to the end of the first. */
4687 if (no_overlap)
4688 in_p = 0, low = high = 0;
4689 else if (subset)
4690 in_p = 1, low = low1, high = high1;
4691 else
4692 in_p = 1, low = low1, high = high0;
4693 }
4694
4695 else if (in0_p && ! in1_p)
4696 {
4697 /* If they don't overlap, the result is the first range. If they are
4698 equal, the result is false. If the second range is a subset of the
4699 first, and the ranges begin at the same place, we go from just after
4700 the end of the second range to the end of the first. If the second
4701 range is not a subset of the first, or if it is a subset and both
4702 ranges end at the same place, the range starts at the start of the
4703 first range and ends just before the second range.
4704 Otherwise, we can't describe this as a single range. */
4705 if (no_overlap)
4706 in_p = 1, low = low0, high = high0;
4707 else if (lowequal && highequal)
4708 in_p = 0, low = high = 0;
4709 else if (subset && lowequal)
4710 {
4711 low = range_successor (high1);
4712 high = high0;
4713 in_p = 1;
4714 if (low == 0)
4715 {
4716 /* We are in the weird situation where high0 > high1 but
4717 high1 has no successor. Punt. */
4718 return 0;
4719 }
4720 }
4721 else if (! subset || highequal)
4722 {
4723 low = low0;
4724 high = range_predecessor (low1);
4725 in_p = 1;
4726 if (high == 0)
4727 {
4728 /* low0 < low1 but low1 has no predecessor. Punt. */
4729 return 0;
4730 }
4731 }
4732 else
4733 return 0;
4734 }
4735
4736 else if (! in0_p && in1_p)
4737 {
4738 /* If they don't overlap, the result is the second range. If the second
4739 is a subset of the first, the result is false. Otherwise,
4740 the range starts just after the first range and ends at the
4741 end of the second. */
4742 if (no_overlap)
4743 in_p = 1, low = low1, high = high1;
4744 else if (subset || highequal)
4745 in_p = 0, low = high = 0;
4746 else
4747 {
4748 low = range_successor (high0);
4749 high = high1;
4750 in_p = 1;
4751 if (low == 0)
4752 {
4753 /* high1 > high0 but high0 has no successor. Punt. */
4754 return 0;
4755 }
4756 }
4757 }
4758
4759 else
4760 {
4761 /* The case where we are excluding both ranges. Here the complex case
4762 is if they don't overlap. In that case, the only time we have a
4763 range is if they are adjacent. If the second is a subset of the
4764 first, the result is the first. Otherwise, the range to exclude
4765 starts at the beginning of the first range and ends at the end of the
4766 second. */
4767 if (no_overlap)
4768 {
4769 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4770 range_successor (high0),
4771 1, low1, 0)))
4772 in_p = 0, low = low0, high = high1;
4773 else
4774 {
4775 /* Canonicalize - [min, x] into - [-, x]. */
4776 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4777 switch (TREE_CODE (TREE_TYPE (low0)))
4778 {
4779 case ENUMERAL_TYPE:
4780 if (TYPE_PRECISION (TREE_TYPE (low0))
4781 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4782 break;
4783 /* FALLTHROUGH */
4784 case INTEGER_TYPE:
4785 if (tree_int_cst_equal (low0,
4786 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4787 low0 = 0;
4788 break;
4789 case POINTER_TYPE:
4790 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4791 && integer_zerop (low0))
4792 low0 = 0;
4793 break;
4794 default:
4795 break;
4796 }
4797
4798 /* Canonicalize - [x, max] into - [x, -]. */
4799 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4800 switch (TREE_CODE (TREE_TYPE (high1)))
4801 {
4802 case ENUMERAL_TYPE:
4803 if (TYPE_PRECISION (TREE_TYPE (high1))
4804 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4805 break;
4806 /* FALLTHROUGH */
4807 case INTEGER_TYPE:
4808 if (tree_int_cst_equal (high1,
4809 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4810 high1 = 0;
4811 break;
4812 case POINTER_TYPE:
4813 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4814 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4815 high1, 1,
4816 build_int_cst (TREE_TYPE (high1), 1),
4817 1)))
4818 high1 = 0;
4819 break;
4820 default:
4821 break;
4822 }
4823
4824 /* The ranges might be also adjacent between the maximum and
4825 minimum values of the given type. For
4826 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4827 return + [x + 1, y - 1]. */
4828 if (low0 == 0 && high1 == 0)
4829 {
4830 low = range_successor (high0);
4831 high = range_predecessor (low1);
4832 if (low == 0 || high == 0)
4833 return 0;
4834
4835 in_p = 1;
4836 }
4837 else
4838 return 0;
4839 }
4840 }
4841 else if (subset)
4842 in_p = 0, low = low0, high = high0;
4843 else
4844 in_p = 0, low = low0, high = high1;
4845 }
4846
4847 *pin_p = in_p, *plow = low, *phigh = high;
4848 return 1;
4849 }
4850 \f
4851
4852 /* Subroutine of fold, looking inside expressions of the form
4853 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4854 of the COND_EXPR. This function is being used also to optimize
4855 A op B ? C : A, by reversing the comparison first.
4856
4857 Return a folded expression whose code is not a COND_EXPR
4858 anymore, or NULL_TREE if no folding opportunity is found. */
4859
4860 static tree
4861 fold_cond_expr_with_comparison (location_t loc, tree type,
4862 tree arg0, tree arg1, tree arg2)
4863 {
4864 enum tree_code comp_code = TREE_CODE (arg0);
4865 tree arg00 = TREE_OPERAND (arg0, 0);
4866 tree arg01 = TREE_OPERAND (arg0, 1);
4867 tree arg1_type = TREE_TYPE (arg1);
4868 tree tem;
4869
4870 STRIP_NOPS (arg1);
4871 STRIP_NOPS (arg2);
4872
4873 /* If we have A op 0 ? A : -A, consider applying the following
4874 transformations:
4875
4876 A == 0? A : -A same as -A
4877 A != 0? A : -A same as A
4878 A >= 0? A : -A same as abs (A)
4879 A > 0? A : -A same as abs (A)
4880 A <= 0? A : -A same as -abs (A)
4881 A < 0? A : -A same as -abs (A)
4882
4883 None of these transformations work for modes with signed
4884 zeros. If A is +/-0, the first two transformations will
4885 change the sign of the result (from +0 to -0, or vice
4886 versa). The last four will fix the sign of the result,
4887 even though the original expressions could be positive or
4888 negative, depending on the sign of A.
4889
4890 Note that all these transformations are correct if A is
4891 NaN, since the two alternatives (A and -A) are also NaNs. */
4892 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4893 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
4894 ? real_zerop (arg01)
4895 : integer_zerop (arg01))
4896 && ((TREE_CODE (arg2) == NEGATE_EXPR
4897 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4898 /* In the case that A is of the form X-Y, '-A' (arg2) may
4899 have already been folded to Y-X, check for that. */
4900 || (TREE_CODE (arg1) == MINUS_EXPR
4901 && TREE_CODE (arg2) == MINUS_EXPR
4902 && operand_equal_p (TREE_OPERAND (arg1, 0),
4903 TREE_OPERAND (arg2, 1), 0)
4904 && operand_equal_p (TREE_OPERAND (arg1, 1),
4905 TREE_OPERAND (arg2, 0), 0))))
4906 switch (comp_code)
4907 {
4908 case EQ_EXPR:
4909 case UNEQ_EXPR:
4910 tem = fold_convert_loc (loc, arg1_type, arg1);
4911 return pedantic_non_lvalue_loc (loc,
4912 fold_convert_loc (loc, type,
4913 negate_expr (tem)));
4914 case NE_EXPR:
4915 case LTGT_EXPR:
4916 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4917 case UNGE_EXPR:
4918 case UNGT_EXPR:
4919 if (flag_trapping_math)
4920 break;
4921 /* Fall through. */
4922 case GE_EXPR:
4923 case GT_EXPR:
4924 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4925 arg1 = fold_convert_loc (loc, signed_type_for
4926 (TREE_TYPE (arg1)), arg1);
4927 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4928 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4929 case UNLE_EXPR:
4930 case UNLT_EXPR:
4931 if (flag_trapping_math)
4932 break;
4933 case LE_EXPR:
4934 case LT_EXPR:
4935 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4936 arg1 = fold_convert_loc (loc, signed_type_for
4937 (TREE_TYPE (arg1)), arg1);
4938 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4939 return negate_expr (fold_convert_loc (loc, type, tem));
4940 default:
4941 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4942 break;
4943 }
4944
4945 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4946 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4947 both transformations are correct when A is NaN: A != 0
4948 is then true, and A == 0 is false. */
4949
4950 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4951 && integer_zerop (arg01) && integer_zerop (arg2))
4952 {
4953 if (comp_code == NE_EXPR)
4954 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4955 else if (comp_code == EQ_EXPR)
4956 return build_zero_cst (type);
4957 }
4958
4959 /* Try some transformations of A op B ? A : B.
4960
4961 A == B? A : B same as B
4962 A != B? A : B same as A
4963 A >= B? A : B same as max (A, B)
4964 A > B? A : B same as max (B, A)
4965 A <= B? A : B same as min (A, B)
4966 A < B? A : B same as min (B, A)
4967
4968 As above, these transformations don't work in the presence
4969 of signed zeros. For example, if A and B are zeros of
4970 opposite sign, the first two transformations will change
4971 the sign of the result. In the last four, the original
4972 expressions give different results for (A=+0, B=-0) and
4973 (A=-0, B=+0), but the transformed expressions do not.
4974
4975 The first two transformations are correct if either A or B
4976 is a NaN. In the first transformation, the condition will
4977 be false, and B will indeed be chosen. In the case of the
4978 second transformation, the condition A != B will be true,
4979 and A will be chosen.
4980
4981 The conversions to max() and min() are not correct if B is
4982 a number and A is not. The conditions in the original
4983 expressions will be false, so all four give B. The min()
4984 and max() versions would give a NaN instead. */
4985 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4986 && operand_equal_for_comparison_p (arg01, arg2, arg00)
4987 /* Avoid these transformations if the COND_EXPR may be used
4988 as an lvalue in the C++ front-end. PR c++/19199. */
4989 && (in_gimple_form
4990 || VECTOR_TYPE_P (type)
4991 || (! lang_GNU_CXX ()
4992 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
4993 || ! maybe_lvalue_p (arg1)
4994 || ! maybe_lvalue_p (arg2)))
4995 {
4996 tree comp_op0 = arg00;
4997 tree comp_op1 = arg01;
4998 tree comp_type = TREE_TYPE (comp_op0);
4999
5000 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
5001 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
5002 {
5003 comp_type = type;
5004 comp_op0 = arg1;
5005 comp_op1 = arg2;
5006 }
5007
5008 switch (comp_code)
5009 {
5010 case EQ_EXPR:
5011 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg2));
5012 case NE_EXPR:
5013 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
5014 case LE_EXPR:
5015 case LT_EXPR:
5016 case UNLE_EXPR:
5017 case UNLT_EXPR:
5018 /* In C++ a ?: expression can be an lvalue, so put the
5019 operand which will be used if they are equal first
5020 so that we can convert this back to the
5021 corresponding COND_EXPR. */
5022 if (!HONOR_NANS (arg1))
5023 {
5024 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5025 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5026 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5027 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5028 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5029 comp_op1, comp_op0);
5030 return pedantic_non_lvalue_loc (loc,
5031 fold_convert_loc (loc, type, tem));
5032 }
5033 break;
5034 case GE_EXPR:
5035 case GT_EXPR:
5036 case UNGE_EXPR:
5037 case UNGT_EXPR:
5038 if (!HONOR_NANS (arg1))
5039 {
5040 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5041 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5042 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5043 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
5044 : fold_build2_loc (loc, MAX_EXPR, comp_type,
5045 comp_op1, comp_op0);
5046 return pedantic_non_lvalue_loc (loc,
5047 fold_convert_loc (loc, type, tem));
5048 }
5049 break;
5050 case UNEQ_EXPR:
5051 if (!HONOR_NANS (arg1))
5052 return pedantic_non_lvalue_loc (loc,
5053 fold_convert_loc (loc, type, arg2));
5054 break;
5055 case LTGT_EXPR:
5056 if (!HONOR_NANS (arg1))
5057 return pedantic_non_lvalue_loc (loc,
5058 fold_convert_loc (loc, type, arg1));
5059 break;
5060 default:
5061 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5062 break;
5063 }
5064 }
5065
5066 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5067 we might still be able to simplify this. For example,
5068 if C1 is one less or one more than C2, this might have started
5069 out as a MIN or MAX and been transformed by this function.
5070 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5071
5072 if (INTEGRAL_TYPE_P (type)
5073 && TREE_CODE (arg01) == INTEGER_CST
5074 && TREE_CODE (arg2) == INTEGER_CST)
5075 switch (comp_code)
5076 {
5077 case EQ_EXPR:
5078 if (TREE_CODE (arg1) == INTEGER_CST)
5079 break;
5080 /* We can replace A with C1 in this case. */
5081 arg1 = fold_convert_loc (loc, type, arg01);
5082 return fold_build3_loc (loc, COND_EXPR, type, arg0, arg1, arg2);
5083
5084 case LT_EXPR:
5085 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
5086 MIN_EXPR, to preserve the signedness of the comparison. */
5087 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5088 OEP_ONLY_CONST)
5089 && operand_equal_p (arg01,
5090 const_binop (PLUS_EXPR, arg2,
5091 build_int_cst (type, 1)),
5092 OEP_ONLY_CONST))
5093 {
5094 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5095 fold_convert_loc (loc, TREE_TYPE (arg00),
5096 arg2));
5097 return pedantic_non_lvalue_loc (loc,
5098 fold_convert_loc (loc, type, tem));
5099 }
5100 break;
5101
5102 case LE_EXPR:
5103 /* If C1 is C2 - 1, this is min(A, C2), with the same care
5104 as above. */
5105 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5106 OEP_ONLY_CONST)
5107 && operand_equal_p (arg01,
5108 const_binop (MINUS_EXPR, arg2,
5109 build_int_cst (type, 1)),
5110 OEP_ONLY_CONST))
5111 {
5112 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5113 fold_convert_loc (loc, TREE_TYPE (arg00),
5114 arg2));
5115 return pedantic_non_lvalue_loc (loc,
5116 fold_convert_loc (loc, type, tem));
5117 }
5118 break;
5119
5120 case GT_EXPR:
5121 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
5122 MAX_EXPR, to preserve the signedness of the comparison. */
5123 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5124 OEP_ONLY_CONST)
5125 && operand_equal_p (arg01,
5126 const_binop (MINUS_EXPR, arg2,
5127 build_int_cst (type, 1)),
5128 OEP_ONLY_CONST))
5129 {
5130 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5131 fold_convert_loc (loc, TREE_TYPE (arg00),
5132 arg2));
5133 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5134 }
5135 break;
5136
5137 case GE_EXPR:
5138 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
5139 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5140 OEP_ONLY_CONST)
5141 && operand_equal_p (arg01,
5142 const_binop (PLUS_EXPR, arg2,
5143 build_int_cst (type, 1)),
5144 OEP_ONLY_CONST))
5145 {
5146 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5147 fold_convert_loc (loc, TREE_TYPE (arg00),
5148 arg2));
5149 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5150 }
5151 break;
5152 case NE_EXPR:
5153 break;
5154 default:
5155 gcc_unreachable ();
5156 }
5157
5158 return NULL_TREE;
5159 }
5160
5161
5162 \f
5163 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5164 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5165 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5166 false) >= 2)
5167 #endif
5168
5169 /* EXP is some logical combination of boolean tests. See if we can
5170 merge it into some range test. Return the new tree if so. */
5171
5172 static tree
5173 fold_range_test (location_t loc, enum tree_code code, tree type,
5174 tree op0, tree op1)
5175 {
5176 int or_op = (code == TRUTH_ORIF_EXPR
5177 || code == TRUTH_OR_EXPR);
5178 int in0_p, in1_p, in_p;
5179 tree low0, low1, low, high0, high1, high;
5180 bool strict_overflow_p = false;
5181 tree tem, lhs, rhs;
5182 const char * const warnmsg = G_("assuming signed overflow does not occur "
5183 "when simplifying range test");
5184
5185 if (!INTEGRAL_TYPE_P (type))
5186 return 0;
5187
5188 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5189 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5190
5191 /* If this is an OR operation, invert both sides; we will invert
5192 again at the end. */
5193 if (or_op)
5194 in0_p = ! in0_p, in1_p = ! in1_p;
5195
5196 /* If both expressions are the same, if we can merge the ranges, and we
5197 can build the range test, return it or it inverted. If one of the
5198 ranges is always true or always false, consider it to be the same
5199 expression as the other. */
5200 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5201 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5202 in1_p, low1, high1)
5203 && 0 != (tem = (build_range_check (loc, type,
5204 lhs != 0 ? lhs
5205 : rhs != 0 ? rhs : integer_zero_node,
5206 in_p, low, high))))
5207 {
5208 if (strict_overflow_p)
5209 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5210 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5211 }
5212
5213 /* On machines where the branch cost is expensive, if this is a
5214 short-circuited branch and the underlying object on both sides
5215 is the same, make a non-short-circuit operation. */
5216 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5217 && lhs != 0 && rhs != 0
5218 && (code == TRUTH_ANDIF_EXPR
5219 || code == TRUTH_ORIF_EXPR)
5220 && operand_equal_p (lhs, rhs, 0))
5221 {
5222 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5223 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5224 which cases we can't do this. */
5225 if (simple_operand_p (lhs))
5226 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5227 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5228 type, op0, op1);
5229
5230 else if (!lang_hooks.decls.global_bindings_p ()
5231 && !CONTAINS_PLACEHOLDER_P (lhs))
5232 {
5233 tree common = save_expr (lhs);
5234
5235 if (0 != (lhs = build_range_check (loc, type, common,
5236 or_op ? ! in0_p : in0_p,
5237 low0, high0))
5238 && (0 != (rhs = build_range_check (loc, type, common,
5239 or_op ? ! in1_p : in1_p,
5240 low1, high1))))
5241 {
5242 if (strict_overflow_p)
5243 fold_overflow_warning (warnmsg,
5244 WARN_STRICT_OVERFLOW_COMPARISON);
5245 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5246 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5247 type, lhs, rhs);
5248 }
5249 }
5250 }
5251
5252 return 0;
5253 }
5254 \f
5255 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5256 bit value. Arrange things so the extra bits will be set to zero if and
5257 only if C is signed-extended to its full width. If MASK is nonzero,
5258 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5259
5260 static tree
5261 unextend (tree c, int p, int unsignedp, tree mask)
5262 {
5263 tree type = TREE_TYPE (c);
5264 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5265 tree temp;
5266
5267 if (p == modesize || unsignedp)
5268 return c;
5269
5270 /* We work by getting just the sign bit into the low-order bit, then
5271 into the high-order bit, then sign-extend. We then XOR that value
5272 with C. */
5273 temp = build_int_cst (TREE_TYPE (c), wi::extract_uhwi (c, p - 1, 1));
5274
5275 /* We must use a signed type in order to get an arithmetic right shift.
5276 However, we must also avoid introducing accidental overflows, so that
5277 a subsequent call to integer_zerop will work. Hence we must
5278 do the type conversion here. At this point, the constant is either
5279 zero or one, and the conversion to a signed type can never overflow.
5280 We could get an overflow if this conversion is done anywhere else. */
5281 if (TYPE_UNSIGNED (type))
5282 temp = fold_convert (signed_type_for (type), temp);
5283
5284 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5285 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5286 if (mask != 0)
5287 temp = const_binop (BIT_AND_EXPR, temp,
5288 fold_convert (TREE_TYPE (c), mask));
5289 /* If necessary, convert the type back to match the type of C. */
5290 if (TYPE_UNSIGNED (type))
5291 temp = fold_convert (type, temp);
5292
5293 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5294 }
5295 \f
5296 /* For an expression that has the form
5297 (A && B) || ~B
5298 or
5299 (A || B) && ~B,
5300 we can drop one of the inner expressions and simplify to
5301 A || ~B
5302 or
5303 A && ~B
5304 LOC is the location of the resulting expression. OP is the inner
5305 logical operation; the left-hand side in the examples above, while CMPOP
5306 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5307 removing a condition that guards another, as in
5308 (A != NULL && A->...) || A == NULL
5309 which we must not transform. If RHS_ONLY is true, only eliminate the
5310 right-most operand of the inner logical operation. */
5311
5312 static tree
5313 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5314 bool rhs_only)
5315 {
5316 tree type = TREE_TYPE (cmpop);
5317 enum tree_code code = TREE_CODE (cmpop);
5318 enum tree_code truthop_code = TREE_CODE (op);
5319 tree lhs = TREE_OPERAND (op, 0);
5320 tree rhs = TREE_OPERAND (op, 1);
5321 tree orig_lhs = lhs, orig_rhs = rhs;
5322 enum tree_code rhs_code = TREE_CODE (rhs);
5323 enum tree_code lhs_code = TREE_CODE (lhs);
5324 enum tree_code inv_code;
5325
5326 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5327 return NULL_TREE;
5328
5329 if (TREE_CODE_CLASS (code) != tcc_comparison)
5330 return NULL_TREE;
5331
5332 if (rhs_code == truthop_code)
5333 {
5334 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5335 if (newrhs != NULL_TREE)
5336 {
5337 rhs = newrhs;
5338 rhs_code = TREE_CODE (rhs);
5339 }
5340 }
5341 if (lhs_code == truthop_code && !rhs_only)
5342 {
5343 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5344 if (newlhs != NULL_TREE)
5345 {
5346 lhs = newlhs;
5347 lhs_code = TREE_CODE (lhs);
5348 }
5349 }
5350
5351 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5352 if (inv_code == rhs_code
5353 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5354 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5355 return lhs;
5356 if (!rhs_only && inv_code == lhs_code
5357 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5358 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5359 return rhs;
5360 if (rhs != orig_rhs || lhs != orig_lhs)
5361 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5362 lhs, rhs);
5363 return NULL_TREE;
5364 }
5365
5366 /* Find ways of folding logical expressions of LHS and RHS:
5367 Try to merge two comparisons to the same innermost item.
5368 Look for range tests like "ch >= '0' && ch <= '9'".
5369 Look for combinations of simple terms on machines with expensive branches
5370 and evaluate the RHS unconditionally.
5371
5372 For example, if we have p->a == 2 && p->b == 4 and we can make an
5373 object large enough to span both A and B, we can do this with a comparison
5374 against the object ANDed with the a mask.
5375
5376 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5377 operations to do this with one comparison.
5378
5379 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5380 function and the one above.
5381
5382 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5383 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5384
5385 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5386 two operands.
5387
5388 We return the simplified tree or 0 if no optimization is possible. */
5389
5390 static tree
5391 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5392 tree lhs, tree rhs)
5393 {
5394 /* If this is the "or" of two comparisons, we can do something if
5395 the comparisons are NE_EXPR. If this is the "and", we can do something
5396 if the comparisons are EQ_EXPR. I.e.,
5397 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5398
5399 WANTED_CODE is this operation code. For single bit fields, we can
5400 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5401 comparison for one-bit fields. */
5402
5403 enum tree_code wanted_code;
5404 enum tree_code lcode, rcode;
5405 tree ll_arg, lr_arg, rl_arg, rr_arg;
5406 tree ll_inner, lr_inner, rl_inner, rr_inner;
5407 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5408 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5409 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5410 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5411 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5412 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5413 machine_mode lnmode, rnmode;
5414 tree ll_mask, lr_mask, rl_mask, rr_mask;
5415 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5416 tree l_const, r_const;
5417 tree lntype, rntype, result;
5418 HOST_WIDE_INT first_bit, end_bit;
5419 int volatilep;
5420
5421 /* Start by getting the comparison codes. Fail if anything is volatile.
5422 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5423 it were surrounded with a NE_EXPR. */
5424
5425 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5426 return 0;
5427
5428 lcode = TREE_CODE (lhs);
5429 rcode = TREE_CODE (rhs);
5430
5431 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5432 {
5433 lhs = build2 (NE_EXPR, truth_type, lhs,
5434 build_int_cst (TREE_TYPE (lhs), 0));
5435 lcode = NE_EXPR;
5436 }
5437
5438 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5439 {
5440 rhs = build2 (NE_EXPR, truth_type, rhs,
5441 build_int_cst (TREE_TYPE (rhs), 0));
5442 rcode = NE_EXPR;
5443 }
5444
5445 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5446 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5447 return 0;
5448
5449 ll_arg = TREE_OPERAND (lhs, 0);
5450 lr_arg = TREE_OPERAND (lhs, 1);
5451 rl_arg = TREE_OPERAND (rhs, 0);
5452 rr_arg = TREE_OPERAND (rhs, 1);
5453
5454 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5455 if (simple_operand_p (ll_arg)
5456 && simple_operand_p (lr_arg))
5457 {
5458 if (operand_equal_p (ll_arg, rl_arg, 0)
5459 && operand_equal_p (lr_arg, rr_arg, 0))
5460 {
5461 result = combine_comparisons (loc, code, lcode, rcode,
5462 truth_type, ll_arg, lr_arg);
5463 if (result)
5464 return result;
5465 }
5466 else if (operand_equal_p (ll_arg, rr_arg, 0)
5467 && operand_equal_p (lr_arg, rl_arg, 0))
5468 {
5469 result = combine_comparisons (loc, code, lcode,
5470 swap_tree_comparison (rcode),
5471 truth_type, ll_arg, lr_arg);
5472 if (result)
5473 return result;
5474 }
5475 }
5476
5477 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5478 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5479
5480 /* If the RHS can be evaluated unconditionally and its operands are
5481 simple, it wins to evaluate the RHS unconditionally on machines
5482 with expensive branches. In this case, this isn't a comparison
5483 that can be merged. */
5484
5485 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5486 false) >= 2
5487 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5488 && simple_operand_p (rl_arg)
5489 && simple_operand_p (rr_arg))
5490 {
5491 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5492 if (code == TRUTH_OR_EXPR
5493 && lcode == NE_EXPR && integer_zerop (lr_arg)
5494 && rcode == NE_EXPR && integer_zerop (rr_arg)
5495 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5496 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5497 return build2_loc (loc, NE_EXPR, truth_type,
5498 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5499 ll_arg, rl_arg),
5500 build_int_cst (TREE_TYPE (ll_arg), 0));
5501
5502 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5503 if (code == TRUTH_AND_EXPR
5504 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5505 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5506 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5507 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5508 return build2_loc (loc, EQ_EXPR, truth_type,
5509 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5510 ll_arg, rl_arg),
5511 build_int_cst (TREE_TYPE (ll_arg), 0));
5512 }
5513
5514 /* See if the comparisons can be merged. Then get all the parameters for
5515 each side. */
5516
5517 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5518 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5519 return 0;
5520
5521 volatilep = 0;
5522 ll_inner = decode_field_reference (loc, ll_arg,
5523 &ll_bitsize, &ll_bitpos, &ll_mode,
5524 &ll_unsignedp, &volatilep, &ll_mask,
5525 &ll_and_mask);
5526 lr_inner = decode_field_reference (loc, lr_arg,
5527 &lr_bitsize, &lr_bitpos, &lr_mode,
5528 &lr_unsignedp, &volatilep, &lr_mask,
5529 &lr_and_mask);
5530 rl_inner = decode_field_reference (loc, rl_arg,
5531 &rl_bitsize, &rl_bitpos, &rl_mode,
5532 &rl_unsignedp, &volatilep, &rl_mask,
5533 &rl_and_mask);
5534 rr_inner = decode_field_reference (loc, rr_arg,
5535 &rr_bitsize, &rr_bitpos, &rr_mode,
5536 &rr_unsignedp, &volatilep, &rr_mask,
5537 &rr_and_mask);
5538
5539 /* It must be true that the inner operation on the lhs of each
5540 comparison must be the same if we are to be able to do anything.
5541 Then see if we have constants. If not, the same must be true for
5542 the rhs's. */
5543 if (volatilep || ll_inner == 0 || rl_inner == 0
5544 || ! operand_equal_p (ll_inner, rl_inner, 0))
5545 return 0;
5546
5547 if (TREE_CODE (lr_arg) == INTEGER_CST
5548 && TREE_CODE (rr_arg) == INTEGER_CST)
5549 l_const = lr_arg, r_const = rr_arg;
5550 else if (lr_inner == 0 || rr_inner == 0
5551 || ! operand_equal_p (lr_inner, rr_inner, 0))
5552 return 0;
5553 else
5554 l_const = r_const = 0;
5555
5556 /* If either comparison code is not correct for our logical operation,
5557 fail. However, we can convert a one-bit comparison against zero into
5558 the opposite comparison against that bit being set in the field. */
5559
5560 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5561 if (lcode != wanted_code)
5562 {
5563 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5564 {
5565 /* Make the left operand unsigned, since we are only interested
5566 in the value of one bit. Otherwise we are doing the wrong
5567 thing below. */
5568 ll_unsignedp = 1;
5569 l_const = ll_mask;
5570 }
5571 else
5572 return 0;
5573 }
5574
5575 /* This is analogous to the code for l_const above. */
5576 if (rcode != wanted_code)
5577 {
5578 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5579 {
5580 rl_unsignedp = 1;
5581 r_const = rl_mask;
5582 }
5583 else
5584 return 0;
5585 }
5586
5587 /* See if we can find a mode that contains both fields being compared on
5588 the left. If we can't, fail. Otherwise, update all constants and masks
5589 to be relative to a field of that size. */
5590 first_bit = MIN (ll_bitpos, rl_bitpos);
5591 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5592 lnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5593 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5594 volatilep);
5595 if (lnmode == VOIDmode)
5596 return 0;
5597
5598 lnbitsize = GET_MODE_BITSIZE (lnmode);
5599 lnbitpos = first_bit & ~ (lnbitsize - 1);
5600 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5601 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5602
5603 if (BYTES_BIG_ENDIAN)
5604 {
5605 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5606 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5607 }
5608
5609 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5610 size_int (xll_bitpos));
5611 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5612 size_int (xrl_bitpos));
5613
5614 if (l_const)
5615 {
5616 l_const = fold_convert_loc (loc, lntype, l_const);
5617 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5618 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5619 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5620 fold_build1_loc (loc, BIT_NOT_EXPR,
5621 lntype, ll_mask))))
5622 {
5623 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5624
5625 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5626 }
5627 }
5628 if (r_const)
5629 {
5630 r_const = fold_convert_loc (loc, lntype, r_const);
5631 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5632 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5633 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5634 fold_build1_loc (loc, BIT_NOT_EXPR,
5635 lntype, rl_mask))))
5636 {
5637 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5638
5639 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5640 }
5641 }
5642
5643 /* If the right sides are not constant, do the same for it. Also,
5644 disallow this optimization if a size or signedness mismatch occurs
5645 between the left and right sides. */
5646 if (l_const == 0)
5647 {
5648 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5649 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5650 /* Make sure the two fields on the right
5651 correspond to the left without being swapped. */
5652 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5653 return 0;
5654
5655 first_bit = MIN (lr_bitpos, rr_bitpos);
5656 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5657 rnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5658 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5659 volatilep);
5660 if (rnmode == VOIDmode)
5661 return 0;
5662
5663 rnbitsize = GET_MODE_BITSIZE (rnmode);
5664 rnbitpos = first_bit & ~ (rnbitsize - 1);
5665 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5666 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5667
5668 if (BYTES_BIG_ENDIAN)
5669 {
5670 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5671 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5672 }
5673
5674 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5675 rntype, lr_mask),
5676 size_int (xlr_bitpos));
5677 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5678 rntype, rr_mask),
5679 size_int (xrr_bitpos));
5680
5681 /* Make a mask that corresponds to both fields being compared.
5682 Do this for both items being compared. If the operands are the
5683 same size and the bits being compared are in the same position
5684 then we can do this by masking both and comparing the masked
5685 results. */
5686 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5687 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5688 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5689 {
5690 lhs = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5691 ll_unsignedp || rl_unsignedp);
5692 if (! all_ones_mask_p (ll_mask, lnbitsize))
5693 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5694
5695 rhs = make_bit_field_ref (loc, lr_inner, rntype, rnbitsize, rnbitpos,
5696 lr_unsignedp || rr_unsignedp);
5697 if (! all_ones_mask_p (lr_mask, rnbitsize))
5698 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5699
5700 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5701 }
5702
5703 /* There is still another way we can do something: If both pairs of
5704 fields being compared are adjacent, we may be able to make a wider
5705 field containing them both.
5706
5707 Note that we still must mask the lhs/rhs expressions. Furthermore,
5708 the mask must be shifted to account for the shift done by
5709 make_bit_field_ref. */
5710 if ((ll_bitsize + ll_bitpos == rl_bitpos
5711 && lr_bitsize + lr_bitpos == rr_bitpos)
5712 || (ll_bitpos == rl_bitpos + rl_bitsize
5713 && lr_bitpos == rr_bitpos + rr_bitsize))
5714 {
5715 tree type;
5716
5717 lhs = make_bit_field_ref (loc, ll_inner, lntype,
5718 ll_bitsize + rl_bitsize,
5719 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5720 rhs = make_bit_field_ref (loc, lr_inner, rntype,
5721 lr_bitsize + rr_bitsize,
5722 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5723
5724 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5725 size_int (MIN (xll_bitpos, xrl_bitpos)));
5726 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5727 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5728
5729 /* Convert to the smaller type before masking out unwanted bits. */
5730 type = lntype;
5731 if (lntype != rntype)
5732 {
5733 if (lnbitsize > rnbitsize)
5734 {
5735 lhs = fold_convert_loc (loc, rntype, lhs);
5736 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5737 type = rntype;
5738 }
5739 else if (lnbitsize < rnbitsize)
5740 {
5741 rhs = fold_convert_loc (loc, lntype, rhs);
5742 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5743 type = lntype;
5744 }
5745 }
5746
5747 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5748 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5749
5750 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5751 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5752
5753 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5754 }
5755
5756 return 0;
5757 }
5758
5759 /* Handle the case of comparisons with constants. If there is something in
5760 common between the masks, those bits of the constants must be the same.
5761 If not, the condition is always false. Test for this to avoid generating
5762 incorrect code below. */
5763 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5764 if (! integer_zerop (result)
5765 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5766 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5767 {
5768 if (wanted_code == NE_EXPR)
5769 {
5770 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5771 return constant_boolean_node (true, truth_type);
5772 }
5773 else
5774 {
5775 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5776 return constant_boolean_node (false, truth_type);
5777 }
5778 }
5779
5780 /* Construct the expression we will return. First get the component
5781 reference we will make. Unless the mask is all ones the width of
5782 that field, perform the mask operation. Then compare with the
5783 merged constant. */
5784 result = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5785 ll_unsignedp || rl_unsignedp);
5786
5787 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5788 if (! all_ones_mask_p (ll_mask, lnbitsize))
5789 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5790
5791 return build2_loc (loc, wanted_code, truth_type, result,
5792 const_binop (BIT_IOR_EXPR, l_const, r_const));
5793 }
5794 \f
5795 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5796 constant. */
5797
5798 static tree
5799 optimize_minmax_comparison (location_t loc, enum tree_code code, tree type,
5800 tree op0, tree op1)
5801 {
5802 tree arg0 = op0;
5803 enum tree_code op_code;
5804 tree comp_const;
5805 tree minmax_const;
5806 int consts_equal, consts_lt;
5807 tree inner;
5808
5809 STRIP_SIGN_NOPS (arg0);
5810
5811 op_code = TREE_CODE (arg0);
5812 minmax_const = TREE_OPERAND (arg0, 1);
5813 comp_const = fold_convert_loc (loc, TREE_TYPE (arg0), op1);
5814 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5815 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5816 inner = TREE_OPERAND (arg0, 0);
5817
5818 /* If something does not permit us to optimize, return the original tree. */
5819 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5820 || TREE_CODE (comp_const) != INTEGER_CST
5821 || TREE_OVERFLOW (comp_const)
5822 || TREE_CODE (minmax_const) != INTEGER_CST
5823 || TREE_OVERFLOW (minmax_const))
5824 return NULL_TREE;
5825
5826 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5827 and GT_EXPR, doing the rest with recursive calls using logical
5828 simplifications. */
5829 switch (code)
5830 {
5831 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5832 {
5833 tree tem
5834 = optimize_minmax_comparison (loc,
5835 invert_tree_comparison (code, false),
5836 type, op0, op1);
5837 if (tem)
5838 return invert_truthvalue_loc (loc, tem);
5839 return NULL_TREE;
5840 }
5841
5842 case GE_EXPR:
5843 return
5844 fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
5845 optimize_minmax_comparison
5846 (loc, EQ_EXPR, type, arg0, comp_const),
5847 optimize_minmax_comparison
5848 (loc, GT_EXPR, type, arg0, comp_const));
5849
5850 case EQ_EXPR:
5851 if (op_code == MAX_EXPR && consts_equal)
5852 /* MAX (X, 0) == 0 -> X <= 0 */
5853 return fold_build2_loc (loc, LE_EXPR, type, inner, comp_const);
5854
5855 else if (op_code == MAX_EXPR && consts_lt)
5856 /* MAX (X, 0) == 5 -> X == 5 */
5857 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5858
5859 else if (op_code == MAX_EXPR)
5860 /* MAX (X, 0) == -1 -> false */
5861 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5862
5863 else if (consts_equal)
5864 /* MIN (X, 0) == 0 -> X >= 0 */
5865 return fold_build2_loc (loc, GE_EXPR, type, inner, comp_const);
5866
5867 else if (consts_lt)
5868 /* MIN (X, 0) == 5 -> false */
5869 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5870
5871 else
5872 /* MIN (X, 0) == -1 -> X == -1 */
5873 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5874
5875 case GT_EXPR:
5876 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5877 /* MAX (X, 0) > 0 -> X > 0
5878 MAX (X, 0) > 5 -> X > 5 */
5879 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5880
5881 else if (op_code == MAX_EXPR)
5882 /* MAX (X, 0) > -1 -> true */
5883 return omit_one_operand_loc (loc, type, integer_one_node, inner);
5884
5885 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5886 /* MIN (X, 0) > 0 -> false
5887 MIN (X, 0) > 5 -> false */
5888 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5889
5890 else
5891 /* MIN (X, 0) > -1 -> X > -1 */
5892 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5893
5894 default:
5895 return NULL_TREE;
5896 }
5897 }
5898 \f
5899 /* T is an integer expression that is being multiplied, divided, or taken a
5900 modulus (CODE says which and what kind of divide or modulus) by a
5901 constant C. See if we can eliminate that operation by folding it with
5902 other operations already in T. WIDE_TYPE, if non-null, is a type that
5903 should be used for the computation if wider than our type.
5904
5905 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5906 (X * 2) + (Y * 4). We must, however, be assured that either the original
5907 expression would not overflow or that overflow is undefined for the type
5908 in the language in question.
5909
5910 If we return a non-null expression, it is an equivalent form of the
5911 original computation, but need not be in the original type.
5912
5913 We set *STRICT_OVERFLOW_P to true if the return values depends on
5914 signed overflow being undefined. Otherwise we do not change
5915 *STRICT_OVERFLOW_P. */
5916
5917 static tree
5918 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5919 bool *strict_overflow_p)
5920 {
5921 /* To avoid exponential search depth, refuse to allow recursion past
5922 three levels. Beyond that (1) it's highly unlikely that we'll find
5923 something interesting and (2) we've probably processed it before
5924 when we built the inner expression. */
5925
5926 static int depth;
5927 tree ret;
5928
5929 if (depth > 3)
5930 return NULL;
5931
5932 depth++;
5933 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
5934 depth--;
5935
5936 return ret;
5937 }
5938
5939 static tree
5940 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
5941 bool *strict_overflow_p)
5942 {
5943 tree type = TREE_TYPE (t);
5944 enum tree_code tcode = TREE_CODE (t);
5945 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5946 > GET_MODE_SIZE (TYPE_MODE (type)))
5947 ? wide_type : type);
5948 tree t1, t2;
5949 int same_p = tcode == code;
5950 tree op0 = NULL_TREE, op1 = NULL_TREE;
5951 bool sub_strict_overflow_p;
5952
5953 /* Don't deal with constants of zero here; they confuse the code below. */
5954 if (integer_zerop (c))
5955 return NULL_TREE;
5956
5957 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5958 op0 = TREE_OPERAND (t, 0);
5959
5960 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5961 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5962
5963 /* Note that we need not handle conditional operations here since fold
5964 already handles those cases. So just do arithmetic here. */
5965 switch (tcode)
5966 {
5967 case INTEGER_CST:
5968 /* For a constant, we can always simplify if we are a multiply
5969 or (for divide and modulus) if it is a multiple of our constant. */
5970 if (code == MULT_EXPR
5971 || wi::multiple_of_p (t, c, TYPE_SIGN (type)))
5972 return const_binop (code, fold_convert (ctype, t),
5973 fold_convert (ctype, c));
5974 break;
5975
5976 CASE_CONVERT: case NON_LVALUE_EXPR:
5977 /* If op0 is an expression ... */
5978 if ((COMPARISON_CLASS_P (op0)
5979 || UNARY_CLASS_P (op0)
5980 || BINARY_CLASS_P (op0)
5981 || VL_EXP_CLASS_P (op0)
5982 || EXPRESSION_CLASS_P (op0))
5983 /* ... and has wrapping overflow, and its type is smaller
5984 than ctype, then we cannot pass through as widening. */
5985 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
5986 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
5987 && (TYPE_PRECISION (ctype)
5988 > TYPE_PRECISION (TREE_TYPE (op0))))
5989 /* ... or this is a truncation (t is narrower than op0),
5990 then we cannot pass through this narrowing. */
5991 || (TYPE_PRECISION (type)
5992 < TYPE_PRECISION (TREE_TYPE (op0)))
5993 /* ... or signedness changes for division or modulus,
5994 then we cannot pass through this conversion. */
5995 || (code != MULT_EXPR
5996 && (TYPE_UNSIGNED (ctype)
5997 != TYPE_UNSIGNED (TREE_TYPE (op0))))
5998 /* ... or has undefined overflow while the converted to
5999 type has not, we cannot do the operation in the inner type
6000 as that would introduce undefined overflow. */
6001 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6002 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
6003 && !TYPE_OVERFLOW_UNDEFINED (type))))
6004 break;
6005
6006 /* Pass the constant down and see if we can make a simplification. If
6007 we can, replace this expression with the inner simplification for
6008 possible later conversion to our or some other type. */
6009 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6010 && TREE_CODE (t2) == INTEGER_CST
6011 && !TREE_OVERFLOW (t2)
6012 && (0 != (t1 = extract_muldiv (op0, t2, code,
6013 code == MULT_EXPR
6014 ? ctype : NULL_TREE,
6015 strict_overflow_p))))
6016 return t1;
6017 break;
6018
6019 case ABS_EXPR:
6020 /* If widening the type changes it from signed to unsigned, then we
6021 must avoid building ABS_EXPR itself as unsigned. */
6022 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6023 {
6024 tree cstype = (*signed_type_for) (ctype);
6025 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6026 != 0)
6027 {
6028 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6029 return fold_convert (ctype, t1);
6030 }
6031 break;
6032 }
6033 /* If the constant is negative, we cannot simplify this. */
6034 if (tree_int_cst_sgn (c) == -1)
6035 break;
6036 /* FALLTHROUGH */
6037 case NEGATE_EXPR:
6038 /* For division and modulus, type can't be unsigned, as e.g.
6039 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6040 For signed types, even with wrapping overflow, this is fine. */
6041 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6042 break;
6043 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6044 != 0)
6045 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6046 break;
6047
6048 case MIN_EXPR: case MAX_EXPR:
6049 /* If widening the type changes the signedness, then we can't perform
6050 this optimization as that changes the result. */
6051 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6052 break;
6053
6054 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6055 sub_strict_overflow_p = false;
6056 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6057 &sub_strict_overflow_p)) != 0
6058 && (t2 = extract_muldiv (op1, c, code, wide_type,
6059 &sub_strict_overflow_p)) != 0)
6060 {
6061 if (tree_int_cst_sgn (c) < 0)
6062 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6063 if (sub_strict_overflow_p)
6064 *strict_overflow_p = true;
6065 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6066 fold_convert (ctype, t2));
6067 }
6068 break;
6069
6070 case LSHIFT_EXPR: case RSHIFT_EXPR:
6071 /* If the second operand is constant, this is a multiplication
6072 or floor division, by a power of two, so we can treat it that
6073 way unless the multiplier or divisor overflows. Signed
6074 left-shift overflow is implementation-defined rather than
6075 undefined in C90, so do not convert signed left shift into
6076 multiplication. */
6077 if (TREE_CODE (op1) == INTEGER_CST
6078 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6079 /* const_binop may not detect overflow correctly,
6080 so check for it explicitly here. */
6081 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
6082 && 0 != (t1 = fold_convert (ctype,
6083 const_binop (LSHIFT_EXPR,
6084 size_one_node,
6085 op1)))
6086 && !TREE_OVERFLOW (t1))
6087 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6088 ? MULT_EXPR : FLOOR_DIV_EXPR,
6089 ctype,
6090 fold_convert (ctype, op0),
6091 t1),
6092 c, code, wide_type, strict_overflow_p);
6093 break;
6094
6095 case PLUS_EXPR: case MINUS_EXPR:
6096 /* See if we can eliminate the operation on both sides. If we can, we
6097 can return a new PLUS or MINUS. If we can't, the only remaining
6098 cases where we can do anything are if the second operand is a
6099 constant. */
6100 sub_strict_overflow_p = false;
6101 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6102 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6103 if (t1 != 0 && t2 != 0
6104 && (code == MULT_EXPR
6105 /* If not multiplication, we can only do this if both operands
6106 are divisible by c. */
6107 || (multiple_of_p (ctype, op0, c)
6108 && multiple_of_p (ctype, op1, c))))
6109 {
6110 if (sub_strict_overflow_p)
6111 *strict_overflow_p = true;
6112 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6113 fold_convert (ctype, t2));
6114 }
6115
6116 /* If this was a subtraction, negate OP1 and set it to be an addition.
6117 This simplifies the logic below. */
6118 if (tcode == MINUS_EXPR)
6119 {
6120 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6121 /* If OP1 was not easily negatable, the constant may be OP0. */
6122 if (TREE_CODE (op0) == INTEGER_CST)
6123 {
6124 std::swap (op0, op1);
6125 std::swap (t1, t2);
6126 }
6127 }
6128
6129 if (TREE_CODE (op1) != INTEGER_CST)
6130 break;
6131
6132 /* If either OP1 or C are negative, this optimization is not safe for
6133 some of the division and remainder types while for others we need
6134 to change the code. */
6135 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6136 {
6137 if (code == CEIL_DIV_EXPR)
6138 code = FLOOR_DIV_EXPR;
6139 else if (code == FLOOR_DIV_EXPR)
6140 code = CEIL_DIV_EXPR;
6141 else if (code != MULT_EXPR
6142 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6143 break;
6144 }
6145
6146 /* If it's a multiply or a division/modulus operation of a multiple
6147 of our constant, do the operation and verify it doesn't overflow. */
6148 if (code == MULT_EXPR
6149 || wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6150 {
6151 op1 = const_binop (code, fold_convert (ctype, op1),
6152 fold_convert (ctype, c));
6153 /* We allow the constant to overflow with wrapping semantics. */
6154 if (op1 == 0
6155 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6156 break;
6157 }
6158 else
6159 break;
6160
6161 /* If we have an unsigned type, we cannot widen the operation since it
6162 will change the result if the original computation overflowed. */
6163 if (TYPE_UNSIGNED (ctype) && ctype != type)
6164 break;
6165
6166 /* If we were able to eliminate our operation from the first side,
6167 apply our operation to the second side and reform the PLUS. */
6168 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
6169 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
6170
6171 /* The last case is if we are a multiply. In that case, we can
6172 apply the distributive law to commute the multiply and addition
6173 if the multiplication of the constants doesn't overflow
6174 and overflow is defined. With undefined overflow
6175 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6176 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6177 return fold_build2 (tcode, ctype,
6178 fold_build2 (code, ctype,
6179 fold_convert (ctype, op0),
6180 fold_convert (ctype, c)),
6181 op1);
6182
6183 break;
6184
6185 case MULT_EXPR:
6186 /* We have a special case here if we are doing something like
6187 (C * 8) % 4 since we know that's zero. */
6188 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6189 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6190 /* If the multiplication can overflow we cannot optimize this. */
6191 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6192 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6193 && wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6194 {
6195 *strict_overflow_p = true;
6196 return omit_one_operand (type, integer_zero_node, op0);
6197 }
6198
6199 /* ... fall through ... */
6200
6201 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6202 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6203 /* If we can extract our operation from the LHS, do so and return a
6204 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6205 do something only if the second operand is a constant. */
6206 if (same_p
6207 && (t1 = extract_muldiv (op0, c, code, wide_type,
6208 strict_overflow_p)) != 0)
6209 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6210 fold_convert (ctype, op1));
6211 else if (tcode == MULT_EXPR && code == MULT_EXPR
6212 && (t1 = extract_muldiv (op1, c, code, wide_type,
6213 strict_overflow_p)) != 0)
6214 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6215 fold_convert (ctype, t1));
6216 else if (TREE_CODE (op1) != INTEGER_CST)
6217 return 0;
6218
6219 /* If these are the same operation types, we can associate them
6220 assuming no overflow. */
6221 if (tcode == code)
6222 {
6223 bool overflow_p = false;
6224 bool overflow_mul_p;
6225 signop sign = TYPE_SIGN (ctype);
6226 wide_int mul = wi::mul (op1, c, sign, &overflow_mul_p);
6227 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6228 if (overflow_mul_p
6229 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6230 overflow_p = true;
6231 if (!overflow_p)
6232 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6233 wide_int_to_tree (ctype, mul));
6234 }
6235
6236 /* If these operations "cancel" each other, we have the main
6237 optimizations of this pass, which occur when either constant is a
6238 multiple of the other, in which case we replace this with either an
6239 operation or CODE or TCODE.
6240
6241 If we have an unsigned type, we cannot do this since it will change
6242 the result if the original computation overflowed. */
6243 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6244 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6245 || (tcode == MULT_EXPR
6246 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6247 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6248 && code != MULT_EXPR)))
6249 {
6250 if (wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6251 {
6252 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6253 *strict_overflow_p = true;
6254 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6255 fold_convert (ctype,
6256 const_binop (TRUNC_DIV_EXPR,
6257 op1, c)));
6258 }
6259 else if (wi::multiple_of_p (c, op1, TYPE_SIGN (type)))
6260 {
6261 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6262 *strict_overflow_p = true;
6263 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6264 fold_convert (ctype,
6265 const_binop (TRUNC_DIV_EXPR,
6266 c, op1)));
6267 }
6268 }
6269 break;
6270
6271 default:
6272 break;
6273 }
6274
6275 return 0;
6276 }
6277 \f
6278 /* Return a node which has the indicated constant VALUE (either 0 or
6279 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6280 and is of the indicated TYPE. */
6281
6282 tree
6283 constant_boolean_node (bool value, tree type)
6284 {
6285 if (type == integer_type_node)
6286 return value ? integer_one_node : integer_zero_node;
6287 else if (type == boolean_type_node)
6288 return value ? boolean_true_node : boolean_false_node;
6289 else if (TREE_CODE (type) == VECTOR_TYPE)
6290 return build_vector_from_val (type,
6291 build_int_cst (TREE_TYPE (type),
6292 value ? -1 : 0));
6293 else
6294 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6295 }
6296
6297
6298 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6299 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6300 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6301 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6302 COND is the first argument to CODE; otherwise (as in the example
6303 given here), it is the second argument. TYPE is the type of the
6304 original expression. Return NULL_TREE if no simplification is
6305 possible. */
6306
6307 static tree
6308 fold_binary_op_with_conditional_arg (location_t loc,
6309 enum tree_code code,
6310 tree type, tree op0, tree op1,
6311 tree cond, tree arg, int cond_first_p)
6312 {
6313 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6314 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6315 tree test, true_value, false_value;
6316 tree lhs = NULL_TREE;
6317 tree rhs = NULL_TREE;
6318 enum tree_code cond_code = COND_EXPR;
6319
6320 if (TREE_CODE (cond) == COND_EXPR
6321 || TREE_CODE (cond) == VEC_COND_EXPR)
6322 {
6323 test = TREE_OPERAND (cond, 0);
6324 true_value = TREE_OPERAND (cond, 1);
6325 false_value = TREE_OPERAND (cond, 2);
6326 /* If this operand throws an expression, then it does not make
6327 sense to try to perform a logical or arithmetic operation
6328 involving it. */
6329 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6330 lhs = true_value;
6331 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6332 rhs = false_value;
6333 }
6334 else
6335 {
6336 tree testtype = TREE_TYPE (cond);
6337 test = cond;
6338 true_value = constant_boolean_node (true, testtype);
6339 false_value = constant_boolean_node (false, testtype);
6340 }
6341
6342 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6343 cond_code = VEC_COND_EXPR;
6344
6345 /* This transformation is only worthwhile if we don't have to wrap ARG
6346 in a SAVE_EXPR and the operation can be simplified without recursing
6347 on at least one of the branches once its pushed inside the COND_EXPR. */
6348 if (!TREE_CONSTANT (arg)
6349 && (TREE_SIDE_EFFECTS (arg)
6350 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6351 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6352 return NULL_TREE;
6353
6354 arg = fold_convert_loc (loc, arg_type, arg);
6355 if (lhs == 0)
6356 {
6357 true_value = fold_convert_loc (loc, cond_type, true_value);
6358 if (cond_first_p)
6359 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6360 else
6361 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6362 }
6363 if (rhs == 0)
6364 {
6365 false_value = fold_convert_loc (loc, cond_type, false_value);
6366 if (cond_first_p)
6367 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6368 else
6369 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6370 }
6371
6372 /* Check that we have simplified at least one of the branches. */
6373 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6374 return NULL_TREE;
6375
6376 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6377 }
6378
6379 \f
6380 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6381
6382 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6383 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6384 ADDEND is the same as X.
6385
6386 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6387 and finite. The problematic cases are when X is zero, and its mode
6388 has signed zeros. In the case of rounding towards -infinity,
6389 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6390 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6391
6392 bool
6393 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6394 {
6395 if (!real_zerop (addend))
6396 return false;
6397
6398 /* Don't allow the fold with -fsignaling-nans. */
6399 if (HONOR_SNANS (element_mode (type)))
6400 return false;
6401
6402 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6403 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6404 return true;
6405
6406 /* In a vector or complex, we would need to check the sign of all zeros. */
6407 if (TREE_CODE (addend) != REAL_CST)
6408 return false;
6409
6410 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6411 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6412 negate = !negate;
6413
6414 /* The mode has signed zeros, and we have to honor their sign.
6415 In this situation, there is only one case we can return true for.
6416 X - 0 is the same as X unless rounding towards -infinity is
6417 supported. */
6418 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6419 }
6420
6421 /* Subroutine of fold() that checks comparisons of built-in math
6422 functions against real constants.
6423
6424 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
6425 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
6426 is the type of the result and ARG0 and ARG1 are the operands of the
6427 comparison. ARG1 must be a TREE_REAL_CST.
6428
6429 The function returns the constant folded tree if a simplification
6430 can be made, and NULL_TREE otherwise. */
6431
6432 static tree
6433 fold_mathfn_compare (location_t loc,
6434 enum built_in_function fcode, enum tree_code code,
6435 tree type, tree arg0, tree arg1)
6436 {
6437 REAL_VALUE_TYPE c;
6438
6439 if (BUILTIN_SQRT_P (fcode))
6440 {
6441 tree arg = CALL_EXPR_ARG (arg0, 0);
6442 machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
6443
6444 c = TREE_REAL_CST (arg1);
6445 if (REAL_VALUE_NEGATIVE (c))
6446 {
6447 /* sqrt(x) < y is always false, if y is negative. */
6448 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
6449 return omit_one_operand_loc (loc, type, integer_zero_node, arg);
6450
6451 /* sqrt(x) > y is always true, if y is negative and we
6452 don't care about NaNs, i.e. negative values of x. */
6453 if (code == NE_EXPR || !HONOR_NANS (mode))
6454 return omit_one_operand_loc (loc, type, integer_one_node, arg);
6455
6456 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
6457 return fold_build2_loc (loc, GE_EXPR, type, arg,
6458 build_real (TREE_TYPE (arg), dconst0));
6459 }
6460 else if (code == GT_EXPR || code == GE_EXPR)
6461 {
6462 REAL_VALUE_TYPE c2;
6463
6464 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6465 real_convert (&c2, mode, &c2);
6466
6467 if (REAL_VALUE_ISINF (c2))
6468 {
6469 /* sqrt(x) > y is x == +Inf, when y is very large. */
6470 if (HONOR_INFINITIES (mode))
6471 return fold_build2_loc (loc, EQ_EXPR, type, arg,
6472 build_real (TREE_TYPE (arg), c2));
6473
6474 /* sqrt(x) > y is always false, when y is very large
6475 and we don't care about infinities. */
6476 return omit_one_operand_loc (loc, type, integer_zero_node, arg);
6477 }
6478
6479 /* sqrt(x) > c is the same as x > c*c. */
6480 return fold_build2_loc (loc, code, type, arg,
6481 build_real (TREE_TYPE (arg), c2));
6482 }
6483 else if (code == LT_EXPR || code == LE_EXPR)
6484 {
6485 REAL_VALUE_TYPE c2;
6486
6487 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6488 real_convert (&c2, mode, &c2);
6489
6490 if (REAL_VALUE_ISINF (c2))
6491 {
6492 /* sqrt(x) < y is always true, when y is a very large
6493 value and we don't care about NaNs or Infinities. */
6494 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
6495 return omit_one_operand_loc (loc, type, integer_one_node, arg);
6496
6497 /* sqrt(x) < y is x != +Inf when y is very large and we
6498 don't care about NaNs. */
6499 if (! HONOR_NANS (mode))
6500 return fold_build2_loc (loc, NE_EXPR, type, arg,
6501 build_real (TREE_TYPE (arg), c2));
6502
6503 /* sqrt(x) < y is x >= 0 when y is very large and we
6504 don't care about Infinities. */
6505 if (! HONOR_INFINITIES (mode))
6506 return fold_build2_loc (loc, GE_EXPR, type, arg,
6507 build_real (TREE_TYPE (arg), dconst0));
6508
6509 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
6510 arg = save_expr (arg);
6511 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
6512 fold_build2_loc (loc, GE_EXPR, type, arg,
6513 build_real (TREE_TYPE (arg),
6514 dconst0)),
6515 fold_build2_loc (loc, NE_EXPR, type, arg,
6516 build_real (TREE_TYPE (arg),
6517 c2)));
6518 }
6519
6520 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
6521 if (! HONOR_NANS (mode))
6522 return fold_build2_loc (loc, code, type, arg,
6523 build_real (TREE_TYPE (arg), c2));
6524
6525 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
6526 arg = save_expr (arg);
6527 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
6528 fold_build2_loc (loc, GE_EXPR, type, arg,
6529 build_real (TREE_TYPE (arg),
6530 dconst0)),
6531 fold_build2_loc (loc, code, type, arg,
6532 build_real (TREE_TYPE (arg),
6533 c2)));
6534 }
6535 }
6536
6537 return NULL_TREE;
6538 }
6539
6540 /* Subroutine of fold() that optimizes comparisons against Infinities,
6541 either +Inf or -Inf.
6542
6543 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6544 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6545 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6546
6547 The function returns the constant folded tree if a simplification
6548 can be made, and NULL_TREE otherwise. */
6549
6550 static tree
6551 fold_inf_compare (location_t loc, enum tree_code code, tree type,
6552 tree arg0, tree arg1)
6553 {
6554 machine_mode mode;
6555 REAL_VALUE_TYPE max;
6556 tree temp;
6557 bool neg;
6558
6559 mode = TYPE_MODE (TREE_TYPE (arg0));
6560
6561 /* For negative infinity swap the sense of the comparison. */
6562 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
6563 if (neg)
6564 code = swap_tree_comparison (code);
6565
6566 switch (code)
6567 {
6568 case GT_EXPR:
6569 /* x > +Inf is always false, if with ignore sNANs. */
6570 if (HONOR_SNANS (mode))
6571 return NULL_TREE;
6572 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6573
6574 case LE_EXPR:
6575 /* x <= +Inf is always true, if we don't case about NaNs. */
6576 if (! HONOR_NANS (mode))
6577 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6578
6579 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
6580 arg0 = save_expr (arg0);
6581 return fold_build2_loc (loc, EQ_EXPR, type, arg0, arg0);
6582
6583 case EQ_EXPR:
6584 case GE_EXPR:
6585 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
6586 real_maxval (&max, neg, mode);
6587 return fold_build2_loc (loc, neg ? LT_EXPR : GT_EXPR, type,
6588 arg0, build_real (TREE_TYPE (arg0), max));
6589
6590 case LT_EXPR:
6591 /* x < +Inf is always equal to x <= DBL_MAX. */
6592 real_maxval (&max, neg, mode);
6593 return fold_build2_loc (loc, neg ? GE_EXPR : LE_EXPR, type,
6594 arg0, build_real (TREE_TYPE (arg0), max));
6595
6596 case NE_EXPR:
6597 /* x != +Inf is always equal to !(x > DBL_MAX). */
6598 real_maxval (&max, neg, mode);
6599 if (! HONOR_NANS (mode))
6600 return fold_build2_loc (loc, neg ? GE_EXPR : LE_EXPR, type,
6601 arg0, build_real (TREE_TYPE (arg0), max));
6602
6603 temp = fold_build2_loc (loc, neg ? LT_EXPR : GT_EXPR, type,
6604 arg0, build_real (TREE_TYPE (arg0), max));
6605 return fold_build1_loc (loc, TRUTH_NOT_EXPR, type, temp);
6606
6607 default:
6608 break;
6609 }
6610
6611 return NULL_TREE;
6612 }
6613
6614 /* Subroutine of fold() that optimizes comparisons of a division by
6615 a nonzero integer constant against an integer constant, i.e.
6616 X/C1 op C2.
6617
6618 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6619 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6620 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6621
6622 The function returns the constant folded tree if a simplification
6623 can be made, and NULL_TREE otherwise. */
6624
6625 static tree
6626 fold_div_compare (location_t loc,
6627 enum tree_code code, tree type, tree arg0, tree arg1)
6628 {
6629 tree prod, tmp, hi, lo;
6630 tree arg00 = TREE_OPERAND (arg0, 0);
6631 tree arg01 = TREE_OPERAND (arg0, 1);
6632 signop sign = TYPE_SIGN (TREE_TYPE (arg0));
6633 bool neg_overflow = false;
6634 bool overflow;
6635
6636 /* We have to do this the hard way to detect unsigned overflow.
6637 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6638 wide_int val = wi::mul (arg01, arg1, sign, &overflow);
6639 prod = force_fit_type (TREE_TYPE (arg00), val, -1, overflow);
6640 neg_overflow = false;
6641
6642 if (sign == UNSIGNED)
6643 {
6644 tmp = int_const_binop (MINUS_EXPR, arg01,
6645 build_int_cst (TREE_TYPE (arg01), 1));
6646 lo = prod;
6647
6648 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6649 val = wi::add (prod, tmp, sign, &overflow);
6650 hi = force_fit_type (TREE_TYPE (arg00), val,
6651 -1, overflow | TREE_OVERFLOW (prod));
6652 }
6653 else if (tree_int_cst_sgn (arg01) >= 0)
6654 {
6655 tmp = int_const_binop (MINUS_EXPR, arg01,
6656 build_int_cst (TREE_TYPE (arg01), 1));
6657 switch (tree_int_cst_sgn (arg1))
6658 {
6659 case -1:
6660 neg_overflow = true;
6661 lo = int_const_binop (MINUS_EXPR, prod, tmp);
6662 hi = prod;
6663 break;
6664
6665 case 0:
6666 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6667 hi = tmp;
6668 break;
6669
6670 case 1:
6671 hi = int_const_binop (PLUS_EXPR, prod, tmp);
6672 lo = prod;
6673 break;
6674
6675 default:
6676 gcc_unreachable ();
6677 }
6678 }
6679 else
6680 {
6681 /* A negative divisor reverses the relational operators. */
6682 code = swap_tree_comparison (code);
6683
6684 tmp = int_const_binop (PLUS_EXPR, arg01,
6685 build_int_cst (TREE_TYPE (arg01), 1));
6686 switch (tree_int_cst_sgn (arg1))
6687 {
6688 case -1:
6689 hi = int_const_binop (MINUS_EXPR, prod, tmp);
6690 lo = prod;
6691 break;
6692
6693 case 0:
6694 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6695 lo = tmp;
6696 break;
6697
6698 case 1:
6699 neg_overflow = true;
6700 lo = int_const_binop (PLUS_EXPR, prod, tmp);
6701 hi = prod;
6702 break;
6703
6704 default:
6705 gcc_unreachable ();
6706 }
6707 }
6708
6709 switch (code)
6710 {
6711 case EQ_EXPR:
6712 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6713 return omit_one_operand_loc (loc, type, integer_zero_node, arg00);
6714 if (TREE_OVERFLOW (hi))
6715 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6716 if (TREE_OVERFLOW (lo))
6717 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6718 return build_range_check (loc, type, arg00, 1, lo, hi);
6719
6720 case NE_EXPR:
6721 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6722 return omit_one_operand_loc (loc, type, integer_one_node, arg00);
6723 if (TREE_OVERFLOW (hi))
6724 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6725 if (TREE_OVERFLOW (lo))
6726 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6727 return build_range_check (loc, type, arg00, 0, lo, hi);
6728
6729 case LT_EXPR:
6730 if (TREE_OVERFLOW (lo))
6731 {
6732 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6733 return omit_one_operand_loc (loc, type, tmp, arg00);
6734 }
6735 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6736
6737 case LE_EXPR:
6738 if (TREE_OVERFLOW (hi))
6739 {
6740 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6741 return omit_one_operand_loc (loc, type, tmp, arg00);
6742 }
6743 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6744
6745 case GT_EXPR:
6746 if (TREE_OVERFLOW (hi))
6747 {
6748 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6749 return omit_one_operand_loc (loc, type, tmp, arg00);
6750 }
6751 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6752
6753 case GE_EXPR:
6754 if (TREE_OVERFLOW (lo))
6755 {
6756 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6757 return omit_one_operand_loc (loc, type, tmp, arg00);
6758 }
6759 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6760
6761 default:
6762 break;
6763 }
6764
6765 return NULL_TREE;
6766 }
6767
6768
6769 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6770 equality/inequality test, then return a simplified form of the test
6771 using a sign testing. Otherwise return NULL. TYPE is the desired
6772 result type. */
6773
6774 static tree
6775 fold_single_bit_test_into_sign_test (location_t loc,
6776 enum tree_code code, tree arg0, tree arg1,
6777 tree result_type)
6778 {
6779 /* If this is testing a single bit, we can optimize the test. */
6780 if ((code == NE_EXPR || code == EQ_EXPR)
6781 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6782 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6783 {
6784 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6785 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6786 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6787
6788 if (arg00 != NULL_TREE
6789 /* This is only a win if casting to a signed type is cheap,
6790 i.e. when arg00's type is not a partial mode. */
6791 && TYPE_PRECISION (TREE_TYPE (arg00))
6792 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00))))
6793 {
6794 tree stype = signed_type_for (TREE_TYPE (arg00));
6795 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6796 result_type,
6797 fold_convert_loc (loc, stype, arg00),
6798 build_int_cst (stype, 0));
6799 }
6800 }
6801
6802 return NULL_TREE;
6803 }
6804
6805 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6806 equality/inequality test, then return a simplified form of
6807 the test using shifts and logical operations. Otherwise return
6808 NULL. TYPE is the desired result type. */
6809
6810 tree
6811 fold_single_bit_test (location_t loc, enum tree_code code,
6812 tree arg0, tree arg1, tree result_type)
6813 {
6814 /* If this is testing a single bit, we can optimize the test. */
6815 if ((code == NE_EXPR || code == EQ_EXPR)
6816 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6817 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6818 {
6819 tree inner = TREE_OPERAND (arg0, 0);
6820 tree type = TREE_TYPE (arg0);
6821 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6822 machine_mode operand_mode = TYPE_MODE (type);
6823 int ops_unsigned;
6824 tree signed_type, unsigned_type, intermediate_type;
6825 tree tem, one;
6826
6827 /* First, see if we can fold the single bit test into a sign-bit
6828 test. */
6829 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6830 result_type);
6831 if (tem)
6832 return tem;
6833
6834 /* Otherwise we have (A & C) != 0 where C is a single bit,
6835 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6836 Similarly for (A & C) == 0. */
6837
6838 /* If INNER is a right shift of a constant and it plus BITNUM does
6839 not overflow, adjust BITNUM and INNER. */
6840 if (TREE_CODE (inner) == RSHIFT_EXPR
6841 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6842 && bitnum < TYPE_PRECISION (type)
6843 && wi::ltu_p (TREE_OPERAND (inner, 1),
6844 TYPE_PRECISION (type) - bitnum))
6845 {
6846 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6847 inner = TREE_OPERAND (inner, 0);
6848 }
6849
6850 /* If we are going to be able to omit the AND below, we must do our
6851 operations as unsigned. If we must use the AND, we have a choice.
6852 Normally unsigned is faster, but for some machines signed is. */
6853 #ifdef LOAD_EXTEND_OP
6854 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6855 && !flag_syntax_only) ? 0 : 1;
6856 #else
6857 ops_unsigned = 1;
6858 #endif
6859
6860 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6861 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6862 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6863 inner = fold_convert_loc (loc, intermediate_type, inner);
6864
6865 if (bitnum != 0)
6866 inner = build2 (RSHIFT_EXPR, intermediate_type,
6867 inner, size_int (bitnum));
6868
6869 one = build_int_cst (intermediate_type, 1);
6870
6871 if (code == EQ_EXPR)
6872 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6873
6874 /* Put the AND last so it can combine with more things. */
6875 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6876
6877 /* Make sure to return the proper type. */
6878 inner = fold_convert_loc (loc, result_type, inner);
6879
6880 return inner;
6881 }
6882 return NULL_TREE;
6883 }
6884
6885 /* Check whether we are allowed to reorder operands arg0 and arg1,
6886 such that the evaluation of arg1 occurs before arg0. */
6887
6888 static bool
6889 reorder_operands_p (const_tree arg0, const_tree arg1)
6890 {
6891 if (! flag_evaluation_order)
6892 return true;
6893 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6894 return true;
6895 return ! TREE_SIDE_EFFECTS (arg0)
6896 && ! TREE_SIDE_EFFECTS (arg1);
6897 }
6898
6899 /* Test whether it is preferable two swap two operands, ARG0 and
6900 ARG1, for example because ARG0 is an integer constant and ARG1
6901 isn't. If REORDER is true, only recommend swapping if we can
6902 evaluate the operands in reverse order. */
6903
6904 bool
6905 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
6906 {
6907 if (CONSTANT_CLASS_P (arg1))
6908 return 0;
6909 if (CONSTANT_CLASS_P (arg0))
6910 return 1;
6911
6912 STRIP_NOPS (arg0);
6913 STRIP_NOPS (arg1);
6914
6915 if (TREE_CONSTANT (arg1))
6916 return 0;
6917 if (TREE_CONSTANT (arg0))
6918 return 1;
6919
6920 if (reorder && flag_evaluation_order
6921 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6922 return 0;
6923
6924 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6925 for commutative and comparison operators. Ensuring a canonical
6926 form allows the optimizers to find additional redundancies without
6927 having to explicitly check for both orderings. */
6928 if (TREE_CODE (arg0) == SSA_NAME
6929 && TREE_CODE (arg1) == SSA_NAME
6930 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6931 return 1;
6932
6933 /* Put SSA_NAMEs last. */
6934 if (TREE_CODE (arg1) == SSA_NAME)
6935 return 0;
6936 if (TREE_CODE (arg0) == SSA_NAME)
6937 return 1;
6938
6939 /* Put variables last. */
6940 if (DECL_P (arg1))
6941 return 0;
6942 if (DECL_P (arg0))
6943 return 1;
6944
6945 return 0;
6946 }
6947
6948 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
6949 ARG0 is extended to a wider type. */
6950
6951 static tree
6952 fold_widened_comparison (location_t loc, enum tree_code code,
6953 tree type, tree arg0, tree arg1)
6954 {
6955 tree arg0_unw = get_unwidened (arg0, NULL_TREE);
6956 tree arg1_unw;
6957 tree shorter_type, outer_type;
6958 tree min, max;
6959 bool above, below;
6960
6961 if (arg0_unw == arg0)
6962 return NULL_TREE;
6963 shorter_type = TREE_TYPE (arg0_unw);
6964
6965 /* Disable this optimization if we're casting a function pointer
6966 type on targets that require function pointer canonicalization. */
6967 if (targetm.have_canonicalize_funcptr_for_compare ()
6968 && TREE_CODE (shorter_type) == POINTER_TYPE
6969 && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
6970 return NULL_TREE;
6971
6972 if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
6973 return NULL_TREE;
6974
6975 arg1_unw = get_unwidened (arg1, NULL_TREE);
6976
6977 /* If possible, express the comparison in the shorter mode. */
6978 if ((code == EQ_EXPR || code == NE_EXPR
6979 || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
6980 && (TREE_TYPE (arg1_unw) == shorter_type
6981 || ((TYPE_PRECISION (shorter_type)
6982 >= TYPE_PRECISION (TREE_TYPE (arg1_unw)))
6983 && (TYPE_UNSIGNED (shorter_type)
6984 == TYPE_UNSIGNED (TREE_TYPE (arg1_unw))))
6985 || (TREE_CODE (arg1_unw) == INTEGER_CST
6986 && (TREE_CODE (shorter_type) == INTEGER_TYPE
6987 || TREE_CODE (shorter_type) == BOOLEAN_TYPE)
6988 && int_fits_type_p (arg1_unw, shorter_type))))
6989 return fold_build2_loc (loc, code, type, arg0_unw,
6990 fold_convert_loc (loc, shorter_type, arg1_unw));
6991
6992 if (TREE_CODE (arg1_unw) != INTEGER_CST
6993 || TREE_CODE (shorter_type) != INTEGER_TYPE
6994 || !int_fits_type_p (arg1_unw, shorter_type))
6995 return NULL_TREE;
6996
6997 /* If we are comparing with the integer that does not fit into the range
6998 of the shorter type, the result is known. */
6999 outer_type = TREE_TYPE (arg1_unw);
7000 min = lower_bound_in_type (outer_type, shorter_type);
7001 max = upper_bound_in_type (outer_type, shorter_type);
7002
7003 above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
7004 max, arg1_unw));
7005 below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
7006 arg1_unw, min));
7007
7008 switch (code)
7009 {
7010 case EQ_EXPR:
7011 if (above || below)
7012 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
7013 break;
7014
7015 case NE_EXPR:
7016 if (above || below)
7017 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
7018 break;
7019
7020 case LT_EXPR:
7021 case LE_EXPR:
7022 if (above)
7023 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
7024 else if (below)
7025 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
7026
7027 case GT_EXPR:
7028 case GE_EXPR:
7029 if (above)
7030 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
7031 else if (below)
7032 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
7033
7034 default:
7035 break;
7036 }
7037
7038 return NULL_TREE;
7039 }
7040
7041 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
7042 ARG0 just the signedness is changed. */
7043
7044 static tree
7045 fold_sign_changed_comparison (location_t loc, enum tree_code code, tree type,
7046 tree arg0, tree arg1)
7047 {
7048 tree arg0_inner;
7049 tree inner_type, outer_type;
7050
7051 if (!CONVERT_EXPR_P (arg0))
7052 return NULL_TREE;
7053
7054 outer_type = TREE_TYPE (arg0);
7055 arg0_inner = TREE_OPERAND (arg0, 0);
7056 inner_type = TREE_TYPE (arg0_inner);
7057
7058 /* Disable this optimization if we're casting a function pointer
7059 type on targets that require function pointer canonicalization. */
7060 if (targetm.have_canonicalize_funcptr_for_compare ()
7061 && TREE_CODE (inner_type) == POINTER_TYPE
7062 && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
7063 return NULL_TREE;
7064
7065 if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
7066 return NULL_TREE;
7067
7068 if (TREE_CODE (arg1) != INTEGER_CST
7069 && !(CONVERT_EXPR_P (arg1)
7070 && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
7071 return NULL_TREE;
7072
7073 if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
7074 && code != NE_EXPR
7075 && code != EQ_EXPR)
7076 return NULL_TREE;
7077
7078 if (POINTER_TYPE_P (inner_type) != POINTER_TYPE_P (outer_type))
7079 return NULL_TREE;
7080
7081 if (TREE_CODE (arg1) == INTEGER_CST)
7082 arg1 = force_fit_type (inner_type, wi::to_widest (arg1), 0,
7083 TREE_OVERFLOW (arg1));
7084 else
7085 arg1 = fold_convert_loc (loc, inner_type, arg1);
7086
7087 return fold_build2_loc (loc, code, type, arg0_inner, arg1);
7088 }
7089
7090
7091 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
7092 means A >= Y && A != MAX, but in this case we know that
7093 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
7094
7095 static tree
7096 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
7097 {
7098 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
7099
7100 if (TREE_CODE (bound) == LT_EXPR)
7101 a = TREE_OPERAND (bound, 0);
7102 else if (TREE_CODE (bound) == GT_EXPR)
7103 a = TREE_OPERAND (bound, 1);
7104 else
7105 return NULL_TREE;
7106
7107 typea = TREE_TYPE (a);
7108 if (!INTEGRAL_TYPE_P (typea)
7109 && !POINTER_TYPE_P (typea))
7110 return NULL_TREE;
7111
7112 if (TREE_CODE (ineq) == LT_EXPR)
7113 {
7114 a1 = TREE_OPERAND (ineq, 1);
7115 y = TREE_OPERAND (ineq, 0);
7116 }
7117 else if (TREE_CODE (ineq) == GT_EXPR)
7118 {
7119 a1 = TREE_OPERAND (ineq, 0);
7120 y = TREE_OPERAND (ineq, 1);
7121 }
7122 else
7123 return NULL_TREE;
7124
7125 if (TREE_TYPE (a1) != typea)
7126 return NULL_TREE;
7127
7128 if (POINTER_TYPE_P (typea))
7129 {
7130 /* Convert the pointer types into integer before taking the difference. */
7131 tree ta = fold_convert_loc (loc, ssizetype, a);
7132 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
7133 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
7134 }
7135 else
7136 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
7137
7138 if (!diff || !integer_onep (diff))
7139 return NULL_TREE;
7140
7141 return fold_build2_loc (loc, GE_EXPR, type, a, y);
7142 }
7143
7144 /* Fold a sum or difference of at least one multiplication.
7145 Returns the folded tree or NULL if no simplification could be made. */
7146
7147 static tree
7148 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
7149 tree arg0, tree arg1)
7150 {
7151 tree arg00, arg01, arg10, arg11;
7152 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
7153
7154 /* (A * C) +- (B * C) -> (A+-B) * C.
7155 (A * C) +- A -> A * (C+-1).
7156 We are most concerned about the case where C is a constant,
7157 but other combinations show up during loop reduction. Since
7158 it is not difficult, try all four possibilities. */
7159
7160 if (TREE_CODE (arg0) == MULT_EXPR)
7161 {
7162 arg00 = TREE_OPERAND (arg0, 0);
7163 arg01 = TREE_OPERAND (arg0, 1);
7164 }
7165 else if (TREE_CODE (arg0) == INTEGER_CST)
7166 {
7167 arg00 = build_one_cst (type);
7168 arg01 = arg0;
7169 }
7170 else
7171 {
7172 /* We cannot generate constant 1 for fract. */
7173 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7174 return NULL_TREE;
7175 arg00 = arg0;
7176 arg01 = build_one_cst (type);
7177 }
7178 if (TREE_CODE (arg1) == MULT_EXPR)
7179 {
7180 arg10 = TREE_OPERAND (arg1, 0);
7181 arg11 = TREE_OPERAND (arg1, 1);
7182 }
7183 else if (TREE_CODE (arg1) == INTEGER_CST)
7184 {
7185 arg10 = build_one_cst (type);
7186 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7187 the purpose of this canonicalization. */
7188 if (wi::neg_p (arg1, TYPE_SIGN (TREE_TYPE (arg1)))
7189 && negate_expr_p (arg1)
7190 && code == PLUS_EXPR)
7191 {
7192 arg11 = negate_expr (arg1);
7193 code = MINUS_EXPR;
7194 }
7195 else
7196 arg11 = arg1;
7197 }
7198 else
7199 {
7200 /* We cannot generate constant 1 for fract. */
7201 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7202 return NULL_TREE;
7203 arg10 = arg1;
7204 arg11 = build_one_cst (type);
7205 }
7206 same = NULL_TREE;
7207
7208 if (operand_equal_p (arg01, arg11, 0))
7209 same = arg01, alt0 = arg00, alt1 = arg10;
7210 else if (operand_equal_p (arg00, arg10, 0))
7211 same = arg00, alt0 = arg01, alt1 = arg11;
7212 else if (operand_equal_p (arg00, arg11, 0))
7213 same = arg00, alt0 = arg01, alt1 = arg10;
7214 else if (operand_equal_p (arg01, arg10, 0))
7215 same = arg01, alt0 = arg00, alt1 = arg11;
7216
7217 /* No identical multiplicands; see if we can find a common
7218 power-of-two factor in non-power-of-two multiplies. This
7219 can help in multi-dimensional array access. */
7220 else if (tree_fits_shwi_p (arg01)
7221 && tree_fits_shwi_p (arg11))
7222 {
7223 HOST_WIDE_INT int01, int11, tmp;
7224 bool swap = false;
7225 tree maybe_same;
7226 int01 = tree_to_shwi (arg01);
7227 int11 = tree_to_shwi (arg11);
7228
7229 /* Move min of absolute values to int11. */
7230 if (absu_hwi (int01) < absu_hwi (int11))
7231 {
7232 tmp = int01, int01 = int11, int11 = tmp;
7233 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7234 maybe_same = arg01;
7235 swap = true;
7236 }
7237 else
7238 maybe_same = arg11;
7239
7240 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
7241 /* The remainder should not be a constant, otherwise we
7242 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7243 increased the number of multiplications necessary. */
7244 && TREE_CODE (arg10) != INTEGER_CST)
7245 {
7246 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
7247 build_int_cst (TREE_TYPE (arg00),
7248 int01 / int11));
7249 alt1 = arg10;
7250 same = maybe_same;
7251 if (swap)
7252 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7253 }
7254 }
7255
7256 if (same)
7257 return fold_build2_loc (loc, MULT_EXPR, type,
7258 fold_build2_loc (loc, code, type,
7259 fold_convert_loc (loc, type, alt0),
7260 fold_convert_loc (loc, type, alt1)),
7261 fold_convert_loc (loc, type, same));
7262
7263 return NULL_TREE;
7264 }
7265
7266 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7267 specified by EXPR into the buffer PTR of length LEN bytes.
7268 Return the number of bytes placed in the buffer, or zero
7269 upon failure. */
7270
7271 static int
7272 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
7273 {
7274 tree type = TREE_TYPE (expr);
7275 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7276 int byte, offset, word, words;
7277 unsigned char value;
7278
7279 if ((off == -1 && total_bytes > len)
7280 || off >= total_bytes)
7281 return 0;
7282 if (off == -1)
7283 off = 0;
7284 words = total_bytes / UNITS_PER_WORD;
7285
7286 for (byte = 0; byte < total_bytes; byte++)
7287 {
7288 int bitpos = byte * BITS_PER_UNIT;
7289 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7290 number of bytes. */
7291 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
7292
7293 if (total_bytes > UNITS_PER_WORD)
7294 {
7295 word = byte / UNITS_PER_WORD;
7296 if (WORDS_BIG_ENDIAN)
7297 word = (words - 1) - word;
7298 offset = word * UNITS_PER_WORD;
7299 if (BYTES_BIG_ENDIAN)
7300 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7301 else
7302 offset += byte % UNITS_PER_WORD;
7303 }
7304 else
7305 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7306 if (offset >= off
7307 && offset - off < len)
7308 ptr[offset - off] = value;
7309 }
7310 return MIN (len, total_bytes - off);
7311 }
7312
7313
7314 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7315 specified by EXPR into the buffer PTR of length LEN bytes.
7316 Return the number of bytes placed in the buffer, or zero
7317 upon failure. */
7318
7319 static int
7320 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7321 {
7322 tree type = TREE_TYPE (expr);
7323 machine_mode mode = TYPE_MODE (type);
7324 int total_bytes = GET_MODE_SIZE (mode);
7325 FIXED_VALUE_TYPE value;
7326 tree i_value, i_type;
7327
7328 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7329 return 0;
7330
7331 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7332
7333 if (NULL_TREE == i_type
7334 || TYPE_PRECISION (i_type) != total_bytes)
7335 return 0;
7336
7337 value = TREE_FIXED_CST (expr);
7338 i_value = double_int_to_tree (i_type, value.data);
7339
7340 return native_encode_int (i_value, ptr, len, off);
7341 }
7342
7343
7344 /* Subroutine of native_encode_expr. Encode the REAL_CST
7345 specified by EXPR into the buffer PTR of length LEN bytes.
7346 Return the number of bytes placed in the buffer, or zero
7347 upon failure. */
7348
7349 static int
7350 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7351 {
7352 tree type = TREE_TYPE (expr);
7353 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7354 int byte, offset, word, words, bitpos;
7355 unsigned char value;
7356
7357 /* There are always 32 bits in each long, no matter the size of
7358 the hosts long. We handle floating point representations with
7359 up to 192 bits. */
7360 long tmp[6];
7361
7362 if ((off == -1 && total_bytes > len)
7363 || off >= total_bytes)
7364 return 0;
7365 if (off == -1)
7366 off = 0;
7367 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7368
7369 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7370
7371 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7372 bitpos += BITS_PER_UNIT)
7373 {
7374 byte = (bitpos / BITS_PER_UNIT) & 3;
7375 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7376
7377 if (UNITS_PER_WORD < 4)
7378 {
7379 word = byte / UNITS_PER_WORD;
7380 if (WORDS_BIG_ENDIAN)
7381 word = (words - 1) - word;
7382 offset = word * UNITS_PER_WORD;
7383 if (BYTES_BIG_ENDIAN)
7384 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7385 else
7386 offset += byte % UNITS_PER_WORD;
7387 }
7388 else
7389 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7390 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7391 if (offset >= off
7392 && offset - off < len)
7393 ptr[offset - off] = value;
7394 }
7395 return MIN (len, total_bytes - off);
7396 }
7397
7398 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7399 specified by EXPR into the buffer PTR of length LEN bytes.
7400 Return the number of bytes placed in the buffer, or zero
7401 upon failure. */
7402
7403 static int
7404 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7405 {
7406 int rsize, isize;
7407 tree part;
7408
7409 part = TREE_REALPART (expr);
7410 rsize = native_encode_expr (part, ptr, len, off);
7411 if (off == -1
7412 && rsize == 0)
7413 return 0;
7414 part = TREE_IMAGPART (expr);
7415 if (off != -1)
7416 off = MAX (0, off - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part))));
7417 isize = native_encode_expr (part, ptr+rsize, len-rsize, off);
7418 if (off == -1
7419 && isize != rsize)
7420 return 0;
7421 return rsize + isize;
7422 }
7423
7424
7425 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7426 specified by EXPR into the buffer PTR of length LEN bytes.
7427 Return the number of bytes placed in the buffer, or zero
7428 upon failure. */
7429
7430 static int
7431 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7432 {
7433 unsigned i, count;
7434 int size, offset;
7435 tree itype, elem;
7436
7437 offset = 0;
7438 count = VECTOR_CST_NELTS (expr);
7439 itype = TREE_TYPE (TREE_TYPE (expr));
7440 size = GET_MODE_SIZE (TYPE_MODE (itype));
7441 for (i = 0; i < count; i++)
7442 {
7443 if (off >= size)
7444 {
7445 off -= size;
7446 continue;
7447 }
7448 elem = VECTOR_CST_ELT (expr, i);
7449 int res = native_encode_expr (elem, ptr+offset, len-offset, off);
7450 if ((off == -1 && res != size)
7451 || res == 0)
7452 return 0;
7453 offset += res;
7454 if (offset >= len)
7455 return offset;
7456 if (off != -1)
7457 off = 0;
7458 }
7459 return offset;
7460 }
7461
7462
7463 /* Subroutine of native_encode_expr. Encode the STRING_CST
7464 specified by EXPR into the buffer PTR of length LEN bytes.
7465 Return the number of bytes placed in the buffer, or zero
7466 upon failure. */
7467
7468 static int
7469 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7470 {
7471 tree type = TREE_TYPE (expr);
7472 HOST_WIDE_INT total_bytes;
7473
7474 if (TREE_CODE (type) != ARRAY_TYPE
7475 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7476 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7477 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7478 return 0;
7479 total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (type));
7480 if ((off == -1 && total_bytes > len)
7481 || off >= total_bytes)
7482 return 0;
7483 if (off == -1)
7484 off = 0;
7485 if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7486 {
7487 int written = 0;
7488 if (off < TREE_STRING_LENGTH (expr))
7489 {
7490 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7491 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7492 }
7493 memset (ptr + written, 0,
7494 MIN (total_bytes - written, len - written));
7495 }
7496 else
7497 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7498 return MIN (total_bytes - off, len);
7499 }
7500
7501
7502 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7503 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7504 buffer PTR of length LEN bytes. If OFF is not -1 then start
7505 the encoding at byte offset OFF and encode at most LEN bytes.
7506 Return the number of bytes placed in the buffer, or zero upon failure. */
7507
7508 int
7509 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7510 {
7511 switch (TREE_CODE (expr))
7512 {
7513 case INTEGER_CST:
7514 return native_encode_int (expr, ptr, len, off);
7515
7516 case REAL_CST:
7517 return native_encode_real (expr, ptr, len, off);
7518
7519 case FIXED_CST:
7520 return native_encode_fixed (expr, ptr, len, off);
7521
7522 case COMPLEX_CST:
7523 return native_encode_complex (expr, ptr, len, off);
7524
7525 case VECTOR_CST:
7526 return native_encode_vector (expr, ptr, len, off);
7527
7528 case STRING_CST:
7529 return native_encode_string (expr, ptr, len, off);
7530
7531 default:
7532 return 0;
7533 }
7534 }
7535
7536
7537 /* Subroutine of native_interpret_expr. Interpret the contents of
7538 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7539 If the buffer cannot be interpreted, return NULL_TREE. */
7540
7541 static tree
7542 native_interpret_int (tree type, const unsigned char *ptr, int len)
7543 {
7544 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7545
7546 if (total_bytes > len
7547 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7548 return NULL_TREE;
7549
7550 wide_int result = wi::from_buffer (ptr, total_bytes);
7551
7552 return wide_int_to_tree (type, result);
7553 }
7554
7555
7556 /* Subroutine of native_interpret_expr. Interpret the contents of
7557 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7558 If the buffer cannot be interpreted, return NULL_TREE. */
7559
7560 static tree
7561 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7562 {
7563 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7564 double_int result;
7565 FIXED_VALUE_TYPE fixed_value;
7566
7567 if (total_bytes > len
7568 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7569 return NULL_TREE;
7570
7571 result = double_int::from_buffer (ptr, total_bytes);
7572 fixed_value = fixed_from_double_int (result, TYPE_MODE (type));
7573
7574 return build_fixed (type, fixed_value);
7575 }
7576
7577
7578 /* Subroutine of native_interpret_expr. Interpret the contents of
7579 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7580 If the buffer cannot be interpreted, return NULL_TREE. */
7581
7582 static tree
7583 native_interpret_real (tree type, const unsigned char *ptr, int len)
7584 {
7585 machine_mode mode = TYPE_MODE (type);
7586 int total_bytes = GET_MODE_SIZE (mode);
7587 int byte, offset, word, words, bitpos;
7588 unsigned char value;
7589 /* There are always 32 bits in each long, no matter the size of
7590 the hosts long. We handle floating point representations with
7591 up to 192 bits. */
7592 REAL_VALUE_TYPE r;
7593 long tmp[6];
7594
7595 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7596 if (total_bytes > len || total_bytes > 24)
7597 return NULL_TREE;
7598 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7599
7600 memset (tmp, 0, sizeof (tmp));
7601 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7602 bitpos += BITS_PER_UNIT)
7603 {
7604 byte = (bitpos / BITS_PER_UNIT) & 3;
7605 if (UNITS_PER_WORD < 4)
7606 {
7607 word = byte / UNITS_PER_WORD;
7608 if (WORDS_BIG_ENDIAN)
7609 word = (words - 1) - word;
7610 offset = word * UNITS_PER_WORD;
7611 if (BYTES_BIG_ENDIAN)
7612 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7613 else
7614 offset += byte % UNITS_PER_WORD;
7615 }
7616 else
7617 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7618 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7619
7620 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7621 }
7622
7623 real_from_target (&r, tmp, mode);
7624 return build_real (type, r);
7625 }
7626
7627
7628 /* Subroutine of native_interpret_expr. Interpret the contents of
7629 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7630 If the buffer cannot be interpreted, return NULL_TREE. */
7631
7632 static tree
7633 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7634 {
7635 tree etype, rpart, ipart;
7636 int size;
7637
7638 etype = TREE_TYPE (type);
7639 size = GET_MODE_SIZE (TYPE_MODE (etype));
7640 if (size * 2 > len)
7641 return NULL_TREE;
7642 rpart = native_interpret_expr (etype, ptr, size);
7643 if (!rpart)
7644 return NULL_TREE;
7645 ipart = native_interpret_expr (etype, ptr+size, size);
7646 if (!ipart)
7647 return NULL_TREE;
7648 return build_complex (type, rpart, ipart);
7649 }
7650
7651
7652 /* Subroutine of native_interpret_expr. Interpret the contents of
7653 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7654 If the buffer cannot be interpreted, return NULL_TREE. */
7655
7656 static tree
7657 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7658 {
7659 tree etype, elem;
7660 int i, size, count;
7661 tree *elements;
7662
7663 etype = TREE_TYPE (type);
7664 size = GET_MODE_SIZE (TYPE_MODE (etype));
7665 count = TYPE_VECTOR_SUBPARTS (type);
7666 if (size * count > len)
7667 return NULL_TREE;
7668
7669 elements = XALLOCAVEC (tree, count);
7670 for (i = count - 1; i >= 0; i--)
7671 {
7672 elem = native_interpret_expr (etype, ptr+(i*size), size);
7673 if (!elem)
7674 return NULL_TREE;
7675 elements[i] = elem;
7676 }
7677 return build_vector (type, elements);
7678 }
7679
7680
7681 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7682 the buffer PTR of length LEN as a constant of type TYPE. For
7683 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7684 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7685 return NULL_TREE. */
7686
7687 tree
7688 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7689 {
7690 switch (TREE_CODE (type))
7691 {
7692 case INTEGER_TYPE:
7693 case ENUMERAL_TYPE:
7694 case BOOLEAN_TYPE:
7695 case POINTER_TYPE:
7696 case REFERENCE_TYPE:
7697 return native_interpret_int (type, ptr, len);
7698
7699 case REAL_TYPE:
7700 return native_interpret_real (type, ptr, len);
7701
7702 case FIXED_POINT_TYPE:
7703 return native_interpret_fixed (type, ptr, len);
7704
7705 case COMPLEX_TYPE:
7706 return native_interpret_complex (type, ptr, len);
7707
7708 case VECTOR_TYPE:
7709 return native_interpret_vector (type, ptr, len);
7710
7711 default:
7712 return NULL_TREE;
7713 }
7714 }
7715
7716 /* Returns true if we can interpret the contents of a native encoding
7717 as TYPE. */
7718
7719 static bool
7720 can_native_interpret_type_p (tree type)
7721 {
7722 switch (TREE_CODE (type))
7723 {
7724 case INTEGER_TYPE:
7725 case ENUMERAL_TYPE:
7726 case BOOLEAN_TYPE:
7727 case POINTER_TYPE:
7728 case REFERENCE_TYPE:
7729 case FIXED_POINT_TYPE:
7730 case REAL_TYPE:
7731 case COMPLEX_TYPE:
7732 case VECTOR_TYPE:
7733 return true;
7734 default:
7735 return false;
7736 }
7737 }
7738
7739 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7740 TYPE at compile-time. If we're unable to perform the conversion
7741 return NULL_TREE. */
7742
7743 static tree
7744 fold_view_convert_expr (tree type, tree expr)
7745 {
7746 /* We support up to 512-bit values (for V8DFmode). */
7747 unsigned char buffer[64];
7748 int len;
7749
7750 /* Check that the host and target are sane. */
7751 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7752 return NULL_TREE;
7753
7754 len = native_encode_expr (expr, buffer, sizeof (buffer));
7755 if (len == 0)
7756 return NULL_TREE;
7757
7758 return native_interpret_expr (type, buffer, len);
7759 }
7760
7761 /* Build an expression for the address of T. Folds away INDIRECT_REF
7762 to avoid confusing the gimplify process. */
7763
7764 tree
7765 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7766 {
7767 /* The size of the object is not relevant when talking about its address. */
7768 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7769 t = TREE_OPERAND (t, 0);
7770
7771 if (TREE_CODE (t) == INDIRECT_REF)
7772 {
7773 t = TREE_OPERAND (t, 0);
7774
7775 if (TREE_TYPE (t) != ptrtype)
7776 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7777 }
7778 else if (TREE_CODE (t) == MEM_REF
7779 && integer_zerop (TREE_OPERAND (t, 1)))
7780 return TREE_OPERAND (t, 0);
7781 else if (TREE_CODE (t) == MEM_REF
7782 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7783 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7784 TREE_OPERAND (t, 0),
7785 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7786 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7787 {
7788 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7789
7790 if (TREE_TYPE (t) != ptrtype)
7791 t = fold_convert_loc (loc, ptrtype, t);
7792 }
7793 else
7794 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7795
7796 return t;
7797 }
7798
7799 /* Build an expression for the address of T. */
7800
7801 tree
7802 build_fold_addr_expr_loc (location_t loc, tree t)
7803 {
7804 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7805
7806 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7807 }
7808
7809 /* Fold a unary expression of code CODE and type TYPE with operand
7810 OP0. Return the folded expression if folding is successful.
7811 Otherwise, return NULL_TREE. */
7812
7813 tree
7814 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7815 {
7816 tree tem;
7817 tree arg0;
7818 enum tree_code_class kind = TREE_CODE_CLASS (code);
7819
7820 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7821 && TREE_CODE_LENGTH (code) == 1);
7822
7823 arg0 = op0;
7824 if (arg0)
7825 {
7826 if (CONVERT_EXPR_CODE_P (code)
7827 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7828 {
7829 /* Don't use STRIP_NOPS, because signedness of argument type
7830 matters. */
7831 STRIP_SIGN_NOPS (arg0);
7832 }
7833 else
7834 {
7835 /* Strip any conversions that don't change the mode. This
7836 is safe for every expression, except for a comparison
7837 expression because its signedness is derived from its
7838 operands.
7839
7840 Note that this is done as an internal manipulation within
7841 the constant folder, in order to find the simplest
7842 representation of the arguments so that their form can be
7843 studied. In any cases, the appropriate type conversions
7844 should be put back in the tree that will get out of the
7845 constant folder. */
7846 STRIP_NOPS (arg0);
7847 }
7848
7849 if (CONSTANT_CLASS_P (arg0))
7850 {
7851 tree tem = const_unop (code, type, arg0);
7852 if (tem)
7853 {
7854 if (TREE_TYPE (tem) != type)
7855 tem = fold_convert_loc (loc, type, tem);
7856 return tem;
7857 }
7858 }
7859 }
7860
7861 tem = generic_simplify (loc, code, type, op0);
7862 if (tem)
7863 return tem;
7864
7865 if (TREE_CODE_CLASS (code) == tcc_unary)
7866 {
7867 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7868 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7869 fold_build1_loc (loc, code, type,
7870 fold_convert_loc (loc, TREE_TYPE (op0),
7871 TREE_OPERAND (arg0, 1))));
7872 else if (TREE_CODE (arg0) == COND_EXPR)
7873 {
7874 tree arg01 = TREE_OPERAND (arg0, 1);
7875 tree arg02 = TREE_OPERAND (arg0, 2);
7876 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7877 arg01 = fold_build1_loc (loc, code, type,
7878 fold_convert_loc (loc,
7879 TREE_TYPE (op0), arg01));
7880 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7881 arg02 = fold_build1_loc (loc, code, type,
7882 fold_convert_loc (loc,
7883 TREE_TYPE (op0), arg02));
7884 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7885 arg01, arg02);
7886
7887 /* If this was a conversion, and all we did was to move into
7888 inside the COND_EXPR, bring it back out. But leave it if
7889 it is a conversion from integer to integer and the
7890 result precision is no wider than a word since such a
7891 conversion is cheap and may be optimized away by combine,
7892 while it couldn't if it were outside the COND_EXPR. Then return
7893 so we don't get into an infinite recursion loop taking the
7894 conversion out and then back in. */
7895
7896 if ((CONVERT_EXPR_CODE_P (code)
7897 || code == NON_LVALUE_EXPR)
7898 && TREE_CODE (tem) == COND_EXPR
7899 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7900 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7901 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7902 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7903 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7904 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7905 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7906 && (INTEGRAL_TYPE_P
7907 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7908 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7909 || flag_syntax_only))
7910 tem = build1_loc (loc, code, type,
7911 build3 (COND_EXPR,
7912 TREE_TYPE (TREE_OPERAND
7913 (TREE_OPERAND (tem, 1), 0)),
7914 TREE_OPERAND (tem, 0),
7915 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7916 TREE_OPERAND (TREE_OPERAND (tem, 2),
7917 0)));
7918 return tem;
7919 }
7920 }
7921
7922 switch (code)
7923 {
7924 case NON_LVALUE_EXPR:
7925 if (!maybe_lvalue_p (op0))
7926 return fold_convert_loc (loc, type, op0);
7927 return NULL_TREE;
7928
7929 CASE_CONVERT:
7930 case FLOAT_EXPR:
7931 case FIX_TRUNC_EXPR:
7932 if (COMPARISON_CLASS_P (op0))
7933 {
7934 /* If we have (type) (a CMP b) and type is an integral type, return
7935 new expression involving the new type. Canonicalize
7936 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7937 non-integral type.
7938 Do not fold the result as that would not simplify further, also
7939 folding again results in recursions. */
7940 if (TREE_CODE (type) == BOOLEAN_TYPE)
7941 return build2_loc (loc, TREE_CODE (op0), type,
7942 TREE_OPERAND (op0, 0),
7943 TREE_OPERAND (op0, 1));
7944 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7945 && TREE_CODE (type) != VECTOR_TYPE)
7946 return build3_loc (loc, COND_EXPR, type, op0,
7947 constant_boolean_node (true, type),
7948 constant_boolean_node (false, type));
7949 }
7950
7951 /* Handle (T *)&A.B.C for A being of type T and B and C
7952 living at offset zero. This occurs frequently in
7953 C++ upcasting and then accessing the base. */
7954 if (TREE_CODE (op0) == ADDR_EXPR
7955 && POINTER_TYPE_P (type)
7956 && handled_component_p (TREE_OPERAND (op0, 0)))
7957 {
7958 HOST_WIDE_INT bitsize, bitpos;
7959 tree offset;
7960 machine_mode mode;
7961 int unsignedp, volatilep;
7962 tree base = TREE_OPERAND (op0, 0);
7963 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
7964 &mode, &unsignedp, &volatilep, false);
7965 /* If the reference was to a (constant) zero offset, we can use
7966 the address of the base if it has the same base type
7967 as the result type and the pointer type is unqualified. */
7968 if (! offset && bitpos == 0
7969 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7970 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7971 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7972 return fold_convert_loc (loc, type,
7973 build_fold_addr_expr_loc (loc, base));
7974 }
7975
7976 if (TREE_CODE (op0) == MODIFY_EXPR
7977 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7978 /* Detect assigning a bitfield. */
7979 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7980 && DECL_BIT_FIELD
7981 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7982 {
7983 /* Don't leave an assignment inside a conversion
7984 unless assigning a bitfield. */
7985 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7986 /* First do the assignment, then return converted constant. */
7987 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7988 TREE_NO_WARNING (tem) = 1;
7989 TREE_USED (tem) = 1;
7990 return tem;
7991 }
7992
7993 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7994 constants (if x has signed type, the sign bit cannot be set
7995 in c). This folds extension into the BIT_AND_EXPR.
7996 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7997 very likely don't have maximal range for their precision and this
7998 transformation effectively doesn't preserve non-maximal ranges. */
7999 if (TREE_CODE (type) == INTEGER_TYPE
8000 && TREE_CODE (op0) == BIT_AND_EXPR
8001 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
8002 {
8003 tree and_expr = op0;
8004 tree and0 = TREE_OPERAND (and_expr, 0);
8005 tree and1 = TREE_OPERAND (and_expr, 1);
8006 int change = 0;
8007
8008 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
8009 || (TYPE_PRECISION (type)
8010 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
8011 change = 1;
8012 else if (TYPE_PRECISION (TREE_TYPE (and1))
8013 <= HOST_BITS_PER_WIDE_INT
8014 && tree_fits_uhwi_p (and1))
8015 {
8016 unsigned HOST_WIDE_INT cst;
8017
8018 cst = tree_to_uhwi (and1);
8019 cst &= HOST_WIDE_INT_M1U
8020 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
8021 change = (cst == 0);
8022 #ifdef LOAD_EXTEND_OP
8023 if (change
8024 && !flag_syntax_only
8025 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
8026 == ZERO_EXTEND))
8027 {
8028 tree uns = unsigned_type_for (TREE_TYPE (and0));
8029 and0 = fold_convert_loc (loc, uns, and0);
8030 and1 = fold_convert_loc (loc, uns, and1);
8031 }
8032 #endif
8033 }
8034 if (change)
8035 {
8036 tem = force_fit_type (type, wi::to_widest (and1), 0,
8037 TREE_OVERFLOW (and1));
8038 return fold_build2_loc (loc, BIT_AND_EXPR, type,
8039 fold_convert_loc (loc, type, and0), tem);
8040 }
8041 }
8042
8043 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
8044 when one of the new casts will fold away. Conservatively we assume
8045 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
8046 if (POINTER_TYPE_P (type)
8047 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
8048 && (!TYPE_RESTRICT (type) || TYPE_RESTRICT (TREE_TYPE (arg0)))
8049 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8050 || TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
8051 || TREE_CODE (TREE_OPERAND (arg0, 1)) == NOP_EXPR))
8052 {
8053 tree arg00 = TREE_OPERAND (arg0, 0);
8054 tree arg01 = TREE_OPERAND (arg0, 1);
8055
8056 return fold_build_pointer_plus_loc
8057 (loc, fold_convert_loc (loc, type, arg00), arg01);
8058 }
8059
8060 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8061 of the same precision, and X is an integer type not narrower than
8062 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8063 if (INTEGRAL_TYPE_P (type)
8064 && TREE_CODE (op0) == BIT_NOT_EXPR
8065 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8066 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
8067 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
8068 {
8069 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
8070 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8071 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
8072 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
8073 fold_convert_loc (loc, type, tem));
8074 }
8075
8076 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
8077 type of X and Y (integer types only). */
8078 if (INTEGRAL_TYPE_P (type)
8079 && TREE_CODE (op0) == MULT_EXPR
8080 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8081 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
8082 {
8083 /* Be careful not to introduce new overflows. */
8084 tree mult_type;
8085 if (TYPE_OVERFLOW_WRAPS (type))
8086 mult_type = type;
8087 else
8088 mult_type = unsigned_type_for (type);
8089
8090 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
8091 {
8092 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
8093 fold_convert_loc (loc, mult_type,
8094 TREE_OPERAND (op0, 0)),
8095 fold_convert_loc (loc, mult_type,
8096 TREE_OPERAND (op0, 1)));
8097 return fold_convert_loc (loc, type, tem);
8098 }
8099 }
8100
8101 return NULL_TREE;
8102
8103 case VIEW_CONVERT_EXPR:
8104 if (TREE_CODE (op0) == MEM_REF)
8105 return fold_build2_loc (loc, MEM_REF, type,
8106 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
8107
8108 return NULL_TREE;
8109
8110 case NEGATE_EXPR:
8111 tem = fold_negate_expr (loc, arg0);
8112 if (tem)
8113 return fold_convert_loc (loc, type, tem);
8114 return NULL_TREE;
8115
8116 case ABS_EXPR:
8117 /* Convert fabs((double)float) into (double)fabsf(float). */
8118 if (TREE_CODE (arg0) == NOP_EXPR
8119 && TREE_CODE (type) == REAL_TYPE)
8120 {
8121 tree targ0 = strip_float_extensions (arg0);
8122 if (targ0 != arg0)
8123 return fold_convert_loc (loc, type,
8124 fold_build1_loc (loc, ABS_EXPR,
8125 TREE_TYPE (targ0),
8126 targ0));
8127 }
8128 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
8129 else if (TREE_CODE (arg0) == ABS_EXPR)
8130 return arg0;
8131
8132 /* Strip sign ops from argument. */
8133 if (TREE_CODE (type) == REAL_TYPE)
8134 {
8135 tem = fold_strip_sign_ops (arg0);
8136 if (tem)
8137 return fold_build1_loc (loc, ABS_EXPR, type,
8138 fold_convert_loc (loc, type, tem));
8139 }
8140 return NULL_TREE;
8141
8142 case CONJ_EXPR:
8143 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8144 return fold_convert_loc (loc, type, arg0);
8145 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8146 {
8147 tree itype = TREE_TYPE (type);
8148 tree rpart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 0));
8149 tree ipart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 1));
8150 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart,
8151 negate_expr (ipart));
8152 }
8153 if (TREE_CODE (arg0) == CONJ_EXPR)
8154 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
8155 return NULL_TREE;
8156
8157 case BIT_NOT_EXPR:
8158 /* Convert ~ (-A) to A - 1. */
8159 if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == NEGATE_EXPR)
8160 return fold_build2_loc (loc, MINUS_EXPR, type,
8161 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)),
8162 build_int_cst (type, 1));
8163 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
8164 else if (INTEGRAL_TYPE_P (type)
8165 && ((TREE_CODE (arg0) == MINUS_EXPR
8166 && integer_onep (TREE_OPERAND (arg0, 1)))
8167 || (TREE_CODE (arg0) == PLUS_EXPR
8168 && integer_all_onesp (TREE_OPERAND (arg0, 1)))))
8169 {
8170 /* Perform the negation in ARG0's type and only then convert
8171 to TYPE as to avoid introducing undefined behavior. */
8172 tree t = fold_build1_loc (loc, NEGATE_EXPR,
8173 TREE_TYPE (TREE_OPERAND (arg0, 0)),
8174 TREE_OPERAND (arg0, 0));
8175 return fold_convert_loc (loc, type, t);
8176 }
8177 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8178 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8179 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8180 fold_convert_loc (loc, type,
8181 TREE_OPERAND (arg0, 0)))))
8182 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
8183 fold_convert_loc (loc, type,
8184 TREE_OPERAND (arg0, 1)));
8185 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8186 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8187 fold_convert_loc (loc, type,
8188 TREE_OPERAND (arg0, 1)))))
8189 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
8190 fold_convert_loc (loc, type,
8191 TREE_OPERAND (arg0, 0)), tem);
8192
8193 return NULL_TREE;
8194
8195 case TRUTH_NOT_EXPR:
8196 /* Note that the operand of this must be an int
8197 and its values must be 0 or 1.
8198 ("true" is a fixed value perhaps depending on the language,
8199 but we don't handle values other than 1 correctly yet.) */
8200 tem = fold_truth_not_expr (loc, arg0);
8201 if (!tem)
8202 return NULL_TREE;
8203 return fold_convert_loc (loc, type, tem);
8204
8205 case REALPART_EXPR:
8206 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8207 return fold_convert_loc (loc, type, arg0);
8208 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8209 {
8210 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8211 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
8212 fold_build1_loc (loc, REALPART_EXPR, itype,
8213 TREE_OPERAND (arg0, 0)),
8214 fold_build1_loc (loc, REALPART_EXPR, itype,
8215 TREE_OPERAND (arg0, 1)));
8216 return fold_convert_loc (loc, type, tem);
8217 }
8218 if (TREE_CODE (arg0) == CONJ_EXPR)
8219 {
8220 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8221 tem = fold_build1_loc (loc, REALPART_EXPR, itype,
8222 TREE_OPERAND (arg0, 0));
8223 return fold_convert_loc (loc, type, tem);
8224 }
8225 if (TREE_CODE (arg0) == CALL_EXPR)
8226 {
8227 tree fn = get_callee_fndecl (arg0);
8228 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8229 switch (DECL_FUNCTION_CODE (fn))
8230 {
8231 CASE_FLT_FN (BUILT_IN_CEXPI):
8232 fn = mathfn_built_in (type, BUILT_IN_COS);
8233 if (fn)
8234 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
8235 break;
8236
8237 default:
8238 break;
8239 }
8240 }
8241 return NULL_TREE;
8242
8243 case IMAGPART_EXPR:
8244 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8245 return build_zero_cst (type);
8246 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8247 {
8248 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8249 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
8250 fold_build1_loc (loc, IMAGPART_EXPR, itype,
8251 TREE_OPERAND (arg0, 0)),
8252 fold_build1_loc (loc, IMAGPART_EXPR, itype,
8253 TREE_OPERAND (arg0, 1)));
8254 return fold_convert_loc (loc, type, tem);
8255 }
8256 if (TREE_CODE (arg0) == CONJ_EXPR)
8257 {
8258 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8259 tem = fold_build1_loc (loc, IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
8260 return fold_convert_loc (loc, type, negate_expr (tem));
8261 }
8262 if (TREE_CODE (arg0) == CALL_EXPR)
8263 {
8264 tree fn = get_callee_fndecl (arg0);
8265 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8266 switch (DECL_FUNCTION_CODE (fn))
8267 {
8268 CASE_FLT_FN (BUILT_IN_CEXPI):
8269 fn = mathfn_built_in (type, BUILT_IN_SIN);
8270 if (fn)
8271 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
8272 break;
8273
8274 default:
8275 break;
8276 }
8277 }
8278 return NULL_TREE;
8279
8280 case INDIRECT_REF:
8281 /* Fold *&X to X if X is an lvalue. */
8282 if (TREE_CODE (op0) == ADDR_EXPR)
8283 {
8284 tree op00 = TREE_OPERAND (op0, 0);
8285 if ((TREE_CODE (op00) == VAR_DECL
8286 || TREE_CODE (op00) == PARM_DECL
8287 || TREE_CODE (op00) == RESULT_DECL)
8288 && !TREE_READONLY (op00))
8289 return op00;
8290 }
8291 return NULL_TREE;
8292
8293 default:
8294 return NULL_TREE;
8295 } /* switch (code) */
8296 }
8297
8298
8299 /* If the operation was a conversion do _not_ mark a resulting constant
8300 with TREE_OVERFLOW if the original constant was not. These conversions
8301 have implementation defined behavior and retaining the TREE_OVERFLOW
8302 flag here would confuse later passes such as VRP. */
8303 tree
8304 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
8305 tree type, tree op0)
8306 {
8307 tree res = fold_unary_loc (loc, code, type, op0);
8308 if (res
8309 && TREE_CODE (res) == INTEGER_CST
8310 && TREE_CODE (op0) == INTEGER_CST
8311 && CONVERT_EXPR_CODE_P (code))
8312 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
8313
8314 return res;
8315 }
8316
8317 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8318 operands OP0 and OP1. LOC is the location of the resulting expression.
8319 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8320 Return the folded expression if folding is successful. Otherwise,
8321 return NULL_TREE. */
8322 static tree
8323 fold_truth_andor (location_t loc, enum tree_code code, tree type,
8324 tree arg0, tree arg1, tree op0, tree op1)
8325 {
8326 tree tem;
8327
8328 /* We only do these simplifications if we are optimizing. */
8329 if (!optimize)
8330 return NULL_TREE;
8331
8332 /* Check for things like (A || B) && (A || C). We can convert this
8333 to A || (B && C). Note that either operator can be any of the four
8334 truth and/or operations and the transformation will still be
8335 valid. Also note that we only care about order for the
8336 ANDIF and ORIF operators. If B contains side effects, this
8337 might change the truth-value of A. */
8338 if (TREE_CODE (arg0) == TREE_CODE (arg1)
8339 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
8340 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
8341 || TREE_CODE (arg0) == TRUTH_AND_EXPR
8342 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
8343 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
8344 {
8345 tree a00 = TREE_OPERAND (arg0, 0);
8346 tree a01 = TREE_OPERAND (arg0, 1);
8347 tree a10 = TREE_OPERAND (arg1, 0);
8348 tree a11 = TREE_OPERAND (arg1, 1);
8349 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
8350 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
8351 && (code == TRUTH_AND_EXPR
8352 || code == TRUTH_OR_EXPR));
8353
8354 if (operand_equal_p (a00, a10, 0))
8355 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8356 fold_build2_loc (loc, code, type, a01, a11));
8357 else if (commutative && operand_equal_p (a00, a11, 0))
8358 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8359 fold_build2_loc (loc, code, type, a01, a10));
8360 else if (commutative && operand_equal_p (a01, a10, 0))
8361 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
8362 fold_build2_loc (loc, code, type, a00, a11));
8363
8364 /* This case if tricky because we must either have commutative
8365 operators or else A10 must not have side-effects. */
8366
8367 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8368 && operand_equal_p (a01, a11, 0))
8369 return fold_build2_loc (loc, TREE_CODE (arg0), type,
8370 fold_build2_loc (loc, code, type, a00, a10),
8371 a01);
8372 }
8373
8374 /* See if we can build a range comparison. */
8375 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
8376 return tem;
8377
8378 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
8379 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
8380 {
8381 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
8382 if (tem)
8383 return fold_build2_loc (loc, code, type, tem, arg1);
8384 }
8385
8386 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
8387 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
8388 {
8389 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
8390 if (tem)
8391 return fold_build2_loc (loc, code, type, arg0, tem);
8392 }
8393
8394 /* Check for the possibility of merging component references. If our
8395 lhs is another similar operation, try to merge its rhs with our
8396 rhs. Then try to merge our lhs and rhs. */
8397 if (TREE_CODE (arg0) == code
8398 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
8399 TREE_OPERAND (arg0, 1), arg1)))
8400 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8401
8402 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
8403 return tem;
8404
8405 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8406 && (code == TRUTH_AND_EXPR
8407 || code == TRUTH_ANDIF_EXPR
8408 || code == TRUTH_OR_EXPR
8409 || code == TRUTH_ORIF_EXPR))
8410 {
8411 enum tree_code ncode, icode;
8412
8413 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8414 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8415 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8416
8417 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8418 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8419 We don't want to pack more than two leafs to a non-IF AND/OR
8420 expression.
8421 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8422 equal to IF-CODE, then we don't want to add right-hand operand.
8423 If the inner right-hand side of left-hand operand has
8424 side-effects, or isn't simple, then we can't add to it,
8425 as otherwise we might destroy if-sequence. */
8426 if (TREE_CODE (arg0) == icode
8427 && simple_operand_p_2 (arg1)
8428 /* Needed for sequence points to handle trappings, and
8429 side-effects. */
8430 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8431 {
8432 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8433 arg1);
8434 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8435 tem);
8436 }
8437 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8438 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8439 else if (TREE_CODE (arg1) == icode
8440 && simple_operand_p_2 (arg0)
8441 /* Needed for sequence points to handle trappings, and
8442 side-effects. */
8443 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8444 {
8445 tem = fold_build2_loc (loc, ncode, type,
8446 arg0, TREE_OPERAND (arg1, 0));
8447 return fold_build2_loc (loc, icode, type, tem,
8448 TREE_OPERAND (arg1, 1));
8449 }
8450 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8451 into (A OR B).
8452 For sequence point consistancy, we need to check for trapping,
8453 and side-effects. */
8454 else if (code == icode && simple_operand_p_2 (arg0)
8455 && simple_operand_p_2 (arg1))
8456 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8457 }
8458
8459 return NULL_TREE;
8460 }
8461
8462 /* Fold a binary expression of code CODE and type TYPE with operands
8463 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8464 Return the folded expression if folding is successful. Otherwise,
8465 return NULL_TREE. */
8466
8467 static tree
8468 fold_minmax (location_t loc, enum tree_code code, tree type, tree op0, tree op1)
8469 {
8470 enum tree_code compl_code;
8471
8472 if (code == MIN_EXPR)
8473 compl_code = MAX_EXPR;
8474 else if (code == MAX_EXPR)
8475 compl_code = MIN_EXPR;
8476 else
8477 gcc_unreachable ();
8478
8479 /* MIN (MAX (a, b), b) == b. */
8480 if (TREE_CODE (op0) == compl_code
8481 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
8482 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 0));
8483
8484 /* MIN (MAX (b, a), b) == b. */
8485 if (TREE_CODE (op0) == compl_code
8486 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
8487 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
8488 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 1));
8489
8490 /* MIN (a, MAX (a, b)) == a. */
8491 if (TREE_CODE (op1) == compl_code
8492 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
8493 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
8494 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 1));
8495
8496 /* MIN (a, MAX (b, a)) == a. */
8497 if (TREE_CODE (op1) == compl_code
8498 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
8499 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
8500 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 0));
8501
8502 return NULL_TREE;
8503 }
8504
8505 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8506 by changing CODE to reduce the magnitude of constants involved in
8507 ARG0 of the comparison.
8508 Returns a canonicalized comparison tree if a simplification was
8509 possible, otherwise returns NULL_TREE.
8510 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8511 valid if signed overflow is undefined. */
8512
8513 static tree
8514 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8515 tree arg0, tree arg1,
8516 bool *strict_overflow_p)
8517 {
8518 enum tree_code code0 = TREE_CODE (arg0);
8519 tree t, cst0 = NULL_TREE;
8520 int sgn0;
8521 bool swap = false;
8522
8523 /* Match A +- CST code arg1 and CST code arg1. We can change the
8524 first form only if overflow is undefined. */
8525 if (!(((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8526 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8527 /* In principle pointers also have undefined overflow behavior,
8528 but that causes problems elsewhere. */
8529 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8530 && (code0 == MINUS_EXPR
8531 || code0 == PLUS_EXPR)
8532 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8533 || code0 == INTEGER_CST))
8534 return NULL_TREE;
8535
8536 /* Identify the constant in arg0 and its sign. */
8537 if (code0 == INTEGER_CST)
8538 cst0 = arg0;
8539 else
8540 cst0 = TREE_OPERAND (arg0, 1);
8541 sgn0 = tree_int_cst_sgn (cst0);
8542
8543 /* Overflowed constants and zero will cause problems. */
8544 if (integer_zerop (cst0)
8545 || TREE_OVERFLOW (cst0))
8546 return NULL_TREE;
8547
8548 /* See if we can reduce the magnitude of the constant in
8549 arg0 by changing the comparison code. */
8550 if (code0 == INTEGER_CST)
8551 {
8552 /* CST <= arg1 -> CST-1 < arg1. */
8553 if (code == LE_EXPR && sgn0 == 1)
8554 code = LT_EXPR;
8555 /* -CST < arg1 -> -CST-1 <= arg1. */
8556 else if (code == LT_EXPR && sgn0 == -1)
8557 code = LE_EXPR;
8558 /* CST > arg1 -> CST-1 >= arg1. */
8559 else if (code == GT_EXPR && sgn0 == 1)
8560 code = GE_EXPR;
8561 /* -CST >= arg1 -> -CST-1 > arg1. */
8562 else if (code == GE_EXPR && sgn0 == -1)
8563 code = GT_EXPR;
8564 else
8565 return NULL_TREE;
8566 /* arg1 code' CST' might be more canonical. */
8567 swap = true;
8568 }
8569 else
8570 {
8571 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8572 if (code == LT_EXPR
8573 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8574 code = LE_EXPR;
8575 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8576 else if (code == GT_EXPR
8577 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8578 code = GE_EXPR;
8579 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8580 else if (code == LE_EXPR
8581 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8582 code = LT_EXPR;
8583 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8584 else if (code == GE_EXPR
8585 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8586 code = GT_EXPR;
8587 else
8588 return NULL_TREE;
8589 *strict_overflow_p = true;
8590 }
8591
8592 /* Now build the constant reduced in magnitude. But not if that
8593 would produce one outside of its types range. */
8594 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8595 && ((sgn0 == 1
8596 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8597 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8598 || (sgn0 == -1
8599 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8600 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8601 /* We cannot swap the comparison here as that would cause us to
8602 endlessly recurse. */
8603 return NULL_TREE;
8604
8605 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8606 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8607 if (code0 != INTEGER_CST)
8608 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8609 t = fold_convert (TREE_TYPE (arg1), t);
8610
8611 /* If swapping might yield to a more canonical form, do so. */
8612 if (swap)
8613 return fold_build2_loc (loc, swap_tree_comparison (code), type, arg1, t);
8614 else
8615 return fold_build2_loc (loc, code, type, t, arg1);
8616 }
8617
8618 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8619 overflow further. Try to decrease the magnitude of constants involved
8620 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8621 and put sole constants at the second argument position.
8622 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8623
8624 static tree
8625 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8626 tree arg0, tree arg1)
8627 {
8628 tree t;
8629 bool strict_overflow_p;
8630 const char * const warnmsg = G_("assuming signed overflow does not occur "
8631 "when reducing constant in comparison");
8632
8633 /* Try canonicalization by simplifying arg0. */
8634 strict_overflow_p = false;
8635 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8636 &strict_overflow_p);
8637 if (t)
8638 {
8639 if (strict_overflow_p)
8640 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8641 return t;
8642 }
8643
8644 /* Try canonicalization by simplifying arg1 using the swapped
8645 comparison. */
8646 code = swap_tree_comparison (code);
8647 strict_overflow_p = false;
8648 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8649 &strict_overflow_p);
8650 if (t && strict_overflow_p)
8651 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8652 return t;
8653 }
8654
8655 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8656 space. This is used to avoid issuing overflow warnings for
8657 expressions like &p->x which can not wrap. */
8658
8659 static bool
8660 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8661 {
8662 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8663 return true;
8664
8665 if (bitpos < 0)
8666 return true;
8667
8668 wide_int wi_offset;
8669 int precision = TYPE_PRECISION (TREE_TYPE (base));
8670 if (offset == NULL_TREE)
8671 wi_offset = wi::zero (precision);
8672 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8673 return true;
8674 else
8675 wi_offset = offset;
8676
8677 bool overflow;
8678 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8679 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8680 if (overflow)
8681 return true;
8682
8683 if (!wi::fits_uhwi_p (total))
8684 return true;
8685
8686 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8687 if (size <= 0)
8688 return true;
8689
8690 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8691 array. */
8692 if (TREE_CODE (base) == ADDR_EXPR)
8693 {
8694 HOST_WIDE_INT base_size;
8695
8696 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8697 if (base_size > 0 && size < base_size)
8698 size = base_size;
8699 }
8700
8701 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8702 }
8703
8704 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
8705 kind INTEGER_CST. This makes sure to properly sign-extend the
8706 constant. */
8707
8708 static HOST_WIDE_INT
8709 size_low_cst (const_tree t)
8710 {
8711 HOST_WIDE_INT w = TREE_INT_CST_ELT (t, 0);
8712 int prec = TYPE_PRECISION (TREE_TYPE (t));
8713 if (prec < HOST_BITS_PER_WIDE_INT)
8714 return sext_hwi (w, prec);
8715 return w;
8716 }
8717
8718 /* Subroutine of fold_binary. This routine performs all of the
8719 transformations that are common to the equality/inequality
8720 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8721 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8722 fold_binary should call fold_binary. Fold a comparison with
8723 tree code CODE and type TYPE with operands OP0 and OP1. Return
8724 the folded comparison or NULL_TREE. */
8725
8726 static tree
8727 fold_comparison (location_t loc, enum tree_code code, tree type,
8728 tree op0, tree op1)
8729 {
8730 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8731 tree arg0, arg1, tem;
8732
8733 arg0 = op0;
8734 arg1 = op1;
8735
8736 STRIP_SIGN_NOPS (arg0);
8737 STRIP_SIGN_NOPS (arg1);
8738
8739 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
8740 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8741 && (equality_code
8742 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8743 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
8744 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8745 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8746 && TREE_CODE (arg1) == INTEGER_CST
8747 && !TREE_OVERFLOW (arg1))
8748 {
8749 const enum tree_code
8750 reverse_op = TREE_CODE (arg0) == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR;
8751 tree const1 = TREE_OPERAND (arg0, 1);
8752 tree const2 = fold_convert_loc (loc, TREE_TYPE (const1), arg1);
8753 tree variable = TREE_OPERAND (arg0, 0);
8754 tree new_const = int_const_binop (reverse_op, const2, const1);
8755
8756 /* If the constant operation overflowed this can be
8757 simplified as a comparison against INT_MAX/INT_MIN. */
8758 if (TREE_OVERFLOW (new_const)
8759 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
8760 {
8761 int const1_sgn = tree_int_cst_sgn (const1);
8762 enum tree_code code2 = code;
8763
8764 /* Get the sign of the constant on the lhs if the
8765 operation were VARIABLE + CONST1. */
8766 if (TREE_CODE (arg0) == MINUS_EXPR)
8767 const1_sgn = -const1_sgn;
8768
8769 /* The sign of the constant determines if we overflowed
8770 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8771 Canonicalize to the INT_MIN overflow by swapping the comparison
8772 if necessary. */
8773 if (const1_sgn == -1)
8774 code2 = swap_tree_comparison (code);
8775
8776 /* We now can look at the canonicalized case
8777 VARIABLE + 1 CODE2 INT_MIN
8778 and decide on the result. */
8779 switch (code2)
8780 {
8781 case EQ_EXPR:
8782 case LT_EXPR:
8783 case LE_EXPR:
8784 return
8785 omit_one_operand_loc (loc, type, boolean_false_node, variable);
8786
8787 case NE_EXPR:
8788 case GE_EXPR:
8789 case GT_EXPR:
8790 return
8791 omit_one_operand_loc (loc, type, boolean_true_node, variable);
8792
8793 default:
8794 gcc_unreachable ();
8795 }
8796 }
8797 else
8798 {
8799 if (!equality_code)
8800 fold_overflow_warning ("assuming signed overflow does not occur "
8801 "when changing X +- C1 cmp C2 to "
8802 "X cmp C2 -+ C1",
8803 WARN_STRICT_OVERFLOW_COMPARISON);
8804 return fold_build2_loc (loc, code, type, variable, new_const);
8805 }
8806 }
8807
8808 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y. */
8809 if (TREE_CODE (arg0) == MINUS_EXPR
8810 && equality_code
8811 && integer_zerop (arg1))
8812 {
8813 /* ??? The transformation is valid for the other operators if overflow
8814 is undefined for the type, but performing it here badly interacts
8815 with the transformation in fold_cond_expr_with_comparison which
8816 attempts to synthetize ABS_EXPR. */
8817 if (!equality_code)
8818 fold_overflow_warning ("assuming signed overflow does not occur "
8819 "when changing X - Y cmp 0 to X cmp Y",
8820 WARN_STRICT_OVERFLOW_COMPARISON);
8821 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
8822 TREE_OPERAND (arg0, 1));
8823 }
8824
8825 /* For comparisons of pointers we can decompose it to a compile time
8826 comparison of the base objects and the offsets into the object.
8827 This requires at least one operand being an ADDR_EXPR or a
8828 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8829 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8830 && (TREE_CODE (arg0) == ADDR_EXPR
8831 || TREE_CODE (arg1) == ADDR_EXPR
8832 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8833 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8834 {
8835 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8836 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8837 machine_mode mode;
8838 int volatilep, unsignedp;
8839 bool indirect_base0 = false, indirect_base1 = false;
8840
8841 /* Get base and offset for the access. Strip ADDR_EXPR for
8842 get_inner_reference, but put it back by stripping INDIRECT_REF
8843 off the base object if possible. indirect_baseN will be true
8844 if baseN is not an address but refers to the object itself. */
8845 base0 = arg0;
8846 if (TREE_CODE (arg0) == ADDR_EXPR)
8847 {
8848 base0 = get_inner_reference (TREE_OPERAND (arg0, 0),
8849 &bitsize, &bitpos0, &offset0, &mode,
8850 &unsignedp, &volatilep, false);
8851 if (TREE_CODE (base0) == INDIRECT_REF)
8852 base0 = TREE_OPERAND (base0, 0);
8853 else
8854 indirect_base0 = true;
8855 }
8856 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8857 {
8858 base0 = TREE_OPERAND (arg0, 0);
8859 STRIP_SIGN_NOPS (base0);
8860 if (TREE_CODE (base0) == ADDR_EXPR)
8861 {
8862 base0 = TREE_OPERAND (base0, 0);
8863 indirect_base0 = true;
8864 }
8865 offset0 = TREE_OPERAND (arg0, 1);
8866 if (tree_fits_shwi_p (offset0))
8867 {
8868 HOST_WIDE_INT off = size_low_cst (offset0);
8869 if ((HOST_WIDE_INT) (((unsigned HOST_WIDE_INT) off)
8870 * BITS_PER_UNIT)
8871 / BITS_PER_UNIT == (HOST_WIDE_INT) off)
8872 {
8873 bitpos0 = off * BITS_PER_UNIT;
8874 offset0 = NULL_TREE;
8875 }
8876 }
8877 }
8878
8879 base1 = arg1;
8880 if (TREE_CODE (arg1) == ADDR_EXPR)
8881 {
8882 base1 = get_inner_reference (TREE_OPERAND (arg1, 0),
8883 &bitsize, &bitpos1, &offset1, &mode,
8884 &unsignedp, &volatilep, false);
8885 if (TREE_CODE (base1) == INDIRECT_REF)
8886 base1 = TREE_OPERAND (base1, 0);
8887 else
8888 indirect_base1 = true;
8889 }
8890 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8891 {
8892 base1 = TREE_OPERAND (arg1, 0);
8893 STRIP_SIGN_NOPS (base1);
8894 if (TREE_CODE (base1) == ADDR_EXPR)
8895 {
8896 base1 = TREE_OPERAND (base1, 0);
8897 indirect_base1 = true;
8898 }
8899 offset1 = TREE_OPERAND (arg1, 1);
8900 if (tree_fits_shwi_p (offset1))
8901 {
8902 HOST_WIDE_INT off = size_low_cst (offset1);
8903 if ((HOST_WIDE_INT) (((unsigned HOST_WIDE_INT) off)
8904 * BITS_PER_UNIT)
8905 / BITS_PER_UNIT == (HOST_WIDE_INT) off)
8906 {
8907 bitpos1 = off * BITS_PER_UNIT;
8908 offset1 = NULL_TREE;
8909 }
8910 }
8911 }
8912
8913 /* A local variable can never be pointed to by
8914 the default SSA name of an incoming parameter. */
8915 if ((TREE_CODE (arg0) == ADDR_EXPR
8916 && indirect_base0
8917 && TREE_CODE (base0) == VAR_DECL
8918 && auto_var_in_fn_p (base0, current_function_decl)
8919 && !indirect_base1
8920 && TREE_CODE (base1) == SSA_NAME
8921 && SSA_NAME_IS_DEFAULT_DEF (base1)
8922 && TREE_CODE (SSA_NAME_VAR (base1)) == PARM_DECL)
8923 || (TREE_CODE (arg1) == ADDR_EXPR
8924 && indirect_base1
8925 && TREE_CODE (base1) == VAR_DECL
8926 && auto_var_in_fn_p (base1, current_function_decl)
8927 && !indirect_base0
8928 && TREE_CODE (base0) == SSA_NAME
8929 && SSA_NAME_IS_DEFAULT_DEF (base0)
8930 && TREE_CODE (SSA_NAME_VAR (base0)) == PARM_DECL))
8931 {
8932 if (code == NE_EXPR)
8933 return constant_boolean_node (1, type);
8934 else if (code == EQ_EXPR)
8935 return constant_boolean_node (0, type);
8936 }
8937 /* If we have equivalent bases we might be able to simplify. */
8938 else if (indirect_base0 == indirect_base1
8939 && operand_equal_p (base0, base1, 0))
8940 {
8941 /* We can fold this expression to a constant if the non-constant
8942 offset parts are equal. */
8943 if ((offset0 == offset1
8944 || (offset0 && offset1
8945 && operand_equal_p (offset0, offset1, 0)))
8946 && (code == EQ_EXPR
8947 || code == NE_EXPR
8948 || (indirect_base0 && DECL_P (base0))
8949 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8950
8951 {
8952 if (!equality_code
8953 && bitpos0 != bitpos1
8954 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8955 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8956 fold_overflow_warning (("assuming pointer wraparound does not "
8957 "occur when comparing P +- C1 with "
8958 "P +- C2"),
8959 WARN_STRICT_OVERFLOW_CONDITIONAL);
8960
8961 switch (code)
8962 {
8963 case EQ_EXPR:
8964 return constant_boolean_node (bitpos0 == bitpos1, type);
8965 case NE_EXPR:
8966 return constant_boolean_node (bitpos0 != bitpos1, type);
8967 case LT_EXPR:
8968 return constant_boolean_node (bitpos0 < bitpos1, type);
8969 case LE_EXPR:
8970 return constant_boolean_node (bitpos0 <= bitpos1, type);
8971 case GE_EXPR:
8972 return constant_boolean_node (bitpos0 >= bitpos1, type);
8973 case GT_EXPR:
8974 return constant_boolean_node (bitpos0 > bitpos1, type);
8975 default:;
8976 }
8977 }
8978 /* We can simplify the comparison to a comparison of the variable
8979 offset parts if the constant offset parts are equal.
8980 Be careful to use signed sizetype here because otherwise we
8981 mess with array offsets in the wrong way. This is possible
8982 because pointer arithmetic is restricted to retain within an
8983 object and overflow on pointer differences is undefined as of
8984 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8985 else if (bitpos0 == bitpos1
8986 && (equality_code
8987 || (indirect_base0 && DECL_P (base0))
8988 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8989 {
8990 /* By converting to signed sizetype we cover middle-end pointer
8991 arithmetic which operates on unsigned pointer types of size
8992 type size and ARRAY_REF offsets which are properly sign or
8993 zero extended from their type in case it is narrower than
8994 sizetype. */
8995 if (offset0 == NULL_TREE)
8996 offset0 = build_int_cst (ssizetype, 0);
8997 else
8998 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8999 if (offset1 == NULL_TREE)
9000 offset1 = build_int_cst (ssizetype, 0);
9001 else
9002 offset1 = fold_convert_loc (loc, ssizetype, offset1);
9003
9004 if (!equality_code
9005 && (pointer_may_wrap_p (base0, offset0, bitpos0)
9006 || pointer_may_wrap_p (base1, offset1, bitpos1)))
9007 fold_overflow_warning (("assuming pointer wraparound does not "
9008 "occur when comparing P +- C1 with "
9009 "P +- C2"),
9010 WARN_STRICT_OVERFLOW_COMPARISON);
9011
9012 return fold_build2_loc (loc, code, type, offset0, offset1);
9013 }
9014 }
9015 /* For non-equal bases we can simplify if they are addresses
9016 declarations with different addresses. */
9017 else if (indirect_base0 && indirect_base1
9018 /* We know that !operand_equal_p (base0, base1, 0)
9019 because the if condition was false. But make
9020 sure two decls are not the same. */
9021 && base0 != base1
9022 && TREE_CODE (arg0) == ADDR_EXPR
9023 && TREE_CODE (arg1) == ADDR_EXPR
9024 && DECL_P (base0)
9025 && DECL_P (base1)
9026 /* Watch for aliases. */
9027 && (!decl_in_symtab_p (base0)
9028 || !decl_in_symtab_p (base1)
9029 || !symtab_node::get_create (base0)->equal_address_to
9030 (symtab_node::get_create (base1))))
9031 {
9032 if (code == EQ_EXPR)
9033 return omit_two_operands_loc (loc, type, boolean_false_node,
9034 arg0, arg1);
9035 else if (code == NE_EXPR)
9036 return omit_two_operands_loc (loc, type, boolean_true_node,
9037 arg0, arg1);
9038 }
9039 /* For equal offsets we can simplify to a comparison of the
9040 base addresses. */
9041 else if (bitpos0 == bitpos1
9042 && (indirect_base0
9043 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
9044 && (indirect_base1
9045 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
9046 && ((offset0 == offset1)
9047 || (offset0 && offset1
9048 && operand_equal_p (offset0, offset1, 0))))
9049 {
9050 if (indirect_base0)
9051 base0 = build_fold_addr_expr_loc (loc, base0);
9052 if (indirect_base1)
9053 base1 = build_fold_addr_expr_loc (loc, base1);
9054 return fold_build2_loc (loc, code, type, base0, base1);
9055 }
9056 }
9057
9058 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
9059 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
9060 the resulting offset is smaller in absolute value than the
9061 original one and has the same sign. */
9062 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9063 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
9064 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
9065 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9066 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
9067 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
9068 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
9069 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
9070 {
9071 tree const1 = TREE_OPERAND (arg0, 1);
9072 tree const2 = TREE_OPERAND (arg1, 1);
9073 tree variable1 = TREE_OPERAND (arg0, 0);
9074 tree variable2 = TREE_OPERAND (arg1, 0);
9075 tree cst;
9076 const char * const warnmsg = G_("assuming signed overflow does not "
9077 "occur when combining constants around "
9078 "a comparison");
9079
9080 /* Put the constant on the side where it doesn't overflow and is
9081 of lower absolute value and of same sign than before. */
9082 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
9083 ? MINUS_EXPR : PLUS_EXPR,
9084 const2, const1);
9085 if (!TREE_OVERFLOW (cst)
9086 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
9087 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
9088 {
9089 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
9090 return fold_build2_loc (loc, code, type,
9091 variable1,
9092 fold_build2_loc (loc, TREE_CODE (arg1),
9093 TREE_TYPE (arg1),
9094 variable2, cst));
9095 }
9096
9097 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
9098 ? MINUS_EXPR : PLUS_EXPR,
9099 const1, const2);
9100 if (!TREE_OVERFLOW (cst)
9101 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
9102 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
9103 {
9104 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
9105 return fold_build2_loc (loc, code, type,
9106 fold_build2_loc (loc, TREE_CODE (arg0),
9107 TREE_TYPE (arg0),
9108 variable1, cst),
9109 variable2);
9110 }
9111 }
9112
9113 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
9114 signed arithmetic case. That form is created by the compiler
9115 often enough for folding it to be of value. One example is in
9116 computing loop trip counts after Operator Strength Reduction. */
9117 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9118 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
9119 && TREE_CODE (arg0) == MULT_EXPR
9120 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9121 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
9122 && integer_zerop (arg1))
9123 {
9124 tree const1 = TREE_OPERAND (arg0, 1);
9125 tree const2 = arg1; /* zero */
9126 tree variable1 = TREE_OPERAND (arg0, 0);
9127 enum tree_code cmp_code = code;
9128
9129 /* Handle unfolded multiplication by zero. */
9130 if (integer_zerop (const1))
9131 return fold_build2_loc (loc, cmp_code, type, const1, const2);
9132
9133 fold_overflow_warning (("assuming signed overflow does not occur when "
9134 "eliminating multiplication in comparison "
9135 "with zero"),
9136 WARN_STRICT_OVERFLOW_COMPARISON);
9137
9138 /* If const1 is negative we swap the sense of the comparison. */
9139 if (tree_int_cst_sgn (const1) < 0)
9140 cmp_code = swap_tree_comparison (cmp_code);
9141
9142 return fold_build2_loc (loc, cmp_code, type, variable1, const2);
9143 }
9144
9145 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
9146 if (tem)
9147 return tem;
9148
9149 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
9150 {
9151 tree targ0 = strip_float_extensions (arg0);
9152 tree targ1 = strip_float_extensions (arg1);
9153 tree newtype = TREE_TYPE (targ0);
9154
9155 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
9156 newtype = TREE_TYPE (targ1);
9157
9158 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
9159 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
9160 return fold_build2_loc (loc, code, type,
9161 fold_convert_loc (loc, newtype, targ0),
9162 fold_convert_loc (loc, newtype, targ1));
9163
9164 if (TREE_CODE (arg1) == REAL_CST)
9165 {
9166 REAL_VALUE_TYPE cst;
9167 cst = TREE_REAL_CST (arg1);
9168
9169 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
9170 /* a CMP (-0) -> a CMP 0 */
9171 if (REAL_VALUE_MINUS_ZERO (cst))
9172 return fold_build2_loc (loc, code, type, arg0,
9173 build_real (TREE_TYPE (arg1), dconst0));
9174
9175 /* x != NaN is always true, other ops are always false. */
9176 if (REAL_VALUE_ISNAN (cst)
9177 && ! HONOR_SNANS (arg1))
9178 {
9179 tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
9180 return omit_one_operand_loc (loc, type, tem, arg0);
9181 }
9182
9183 /* Fold comparisons against infinity. */
9184 if (REAL_VALUE_ISINF (cst)
9185 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1))))
9186 {
9187 tem = fold_inf_compare (loc, code, type, arg0, arg1);
9188 if (tem != NULL_TREE)
9189 return tem;
9190 }
9191 }
9192
9193 /* If this is a comparison of a real constant with a PLUS_EXPR
9194 or a MINUS_EXPR of a real constant, we can convert it into a
9195 comparison with a revised real constant as long as no overflow
9196 occurs when unsafe_math_optimizations are enabled. */
9197 if (flag_unsafe_math_optimizations
9198 && TREE_CODE (arg1) == REAL_CST
9199 && (TREE_CODE (arg0) == PLUS_EXPR
9200 || TREE_CODE (arg0) == MINUS_EXPR)
9201 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
9202 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
9203 ? MINUS_EXPR : PLUS_EXPR,
9204 arg1, TREE_OPERAND (arg0, 1)))
9205 && !TREE_OVERFLOW (tem))
9206 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
9207
9208 /* Likewise, we can simplify a comparison of a real constant with
9209 a MINUS_EXPR whose first operand is also a real constant, i.e.
9210 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
9211 floating-point types only if -fassociative-math is set. */
9212 if (flag_associative_math
9213 && TREE_CODE (arg1) == REAL_CST
9214 && TREE_CODE (arg0) == MINUS_EXPR
9215 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
9216 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
9217 arg1))
9218 && !TREE_OVERFLOW (tem))
9219 return fold_build2_loc (loc, swap_tree_comparison (code), type,
9220 TREE_OPERAND (arg0, 1), tem);
9221
9222 /* Fold comparisons against built-in math functions. */
9223 if (TREE_CODE (arg1) == REAL_CST
9224 && flag_unsafe_math_optimizations
9225 && ! flag_errno_math)
9226 {
9227 enum built_in_function fcode = builtin_mathfn_code (arg0);
9228
9229 if (fcode != END_BUILTINS)
9230 {
9231 tem = fold_mathfn_compare (loc, fcode, code, type, arg0, arg1);
9232 if (tem != NULL_TREE)
9233 return tem;
9234 }
9235 }
9236 }
9237
9238 if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
9239 && CONVERT_EXPR_P (arg0))
9240 {
9241 /* If we are widening one operand of an integer comparison,
9242 see if the other operand is similarly being widened. Perhaps we
9243 can do the comparison in the narrower type. */
9244 tem = fold_widened_comparison (loc, code, type, arg0, arg1);
9245 if (tem)
9246 return tem;
9247
9248 /* Or if we are changing signedness. */
9249 tem = fold_sign_changed_comparison (loc, code, type, arg0, arg1);
9250 if (tem)
9251 return tem;
9252 }
9253
9254 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
9255 constant, we can simplify it. */
9256 if (TREE_CODE (arg1) == INTEGER_CST
9257 && (TREE_CODE (arg0) == MIN_EXPR
9258 || TREE_CODE (arg0) == MAX_EXPR)
9259 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9260 {
9261 tem = optimize_minmax_comparison (loc, code, type, op0, op1);
9262 if (tem)
9263 return tem;
9264 }
9265
9266 /* Simplify comparison of something with itself. (For IEEE
9267 floating-point, we can only do some of these simplifications.) */
9268 if (operand_equal_p (arg0, arg1, 0))
9269 {
9270 switch (code)
9271 {
9272 case EQ_EXPR:
9273 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9274 || ! HONOR_NANS (arg0))
9275 return constant_boolean_node (1, type);
9276 break;
9277
9278 case GE_EXPR:
9279 case LE_EXPR:
9280 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9281 || ! HONOR_NANS (arg0))
9282 return constant_boolean_node (1, type);
9283 return fold_build2_loc (loc, EQ_EXPR, type, arg0, arg1);
9284
9285 case NE_EXPR:
9286 /* For NE, we can only do this simplification if integer
9287 or we don't honor IEEE floating point NaNs. */
9288 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
9289 && HONOR_NANS (arg0))
9290 break;
9291 /* ... fall through ... */
9292 case GT_EXPR:
9293 case LT_EXPR:
9294 return constant_boolean_node (0, type);
9295 default:
9296 gcc_unreachable ();
9297 }
9298 }
9299
9300 /* If we are comparing an expression that just has comparisons
9301 of two integer values, arithmetic expressions of those comparisons,
9302 and constants, we can simplify it. There are only three cases
9303 to check: the two values can either be equal, the first can be
9304 greater, or the second can be greater. Fold the expression for
9305 those three values. Since each value must be 0 or 1, we have
9306 eight possibilities, each of which corresponds to the constant 0
9307 or 1 or one of the six possible comparisons.
9308
9309 This handles common cases like (a > b) == 0 but also handles
9310 expressions like ((x > y) - (y > x)) > 0, which supposedly
9311 occur in macroized code. */
9312
9313 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
9314 {
9315 tree cval1 = 0, cval2 = 0;
9316 int save_p = 0;
9317
9318 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
9319 /* Don't handle degenerate cases here; they should already
9320 have been handled anyway. */
9321 && cval1 != 0 && cval2 != 0
9322 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
9323 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
9324 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
9325 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
9326 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
9327 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
9328 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
9329 {
9330 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
9331 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
9332
9333 /* We can't just pass T to eval_subst in case cval1 or cval2
9334 was the same as ARG1. */
9335
9336 tree high_result
9337 = fold_build2_loc (loc, code, type,
9338 eval_subst (loc, arg0, cval1, maxval,
9339 cval2, minval),
9340 arg1);
9341 tree equal_result
9342 = fold_build2_loc (loc, code, type,
9343 eval_subst (loc, arg0, cval1, maxval,
9344 cval2, maxval),
9345 arg1);
9346 tree low_result
9347 = fold_build2_loc (loc, code, type,
9348 eval_subst (loc, arg0, cval1, minval,
9349 cval2, maxval),
9350 arg1);
9351
9352 /* All three of these results should be 0 or 1. Confirm they are.
9353 Then use those values to select the proper code to use. */
9354
9355 if (TREE_CODE (high_result) == INTEGER_CST
9356 && TREE_CODE (equal_result) == INTEGER_CST
9357 && TREE_CODE (low_result) == INTEGER_CST)
9358 {
9359 /* Make a 3-bit mask with the high-order bit being the
9360 value for `>', the next for '=', and the low for '<'. */
9361 switch ((integer_onep (high_result) * 4)
9362 + (integer_onep (equal_result) * 2)
9363 + integer_onep (low_result))
9364 {
9365 case 0:
9366 /* Always false. */
9367 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
9368 case 1:
9369 code = LT_EXPR;
9370 break;
9371 case 2:
9372 code = EQ_EXPR;
9373 break;
9374 case 3:
9375 code = LE_EXPR;
9376 break;
9377 case 4:
9378 code = GT_EXPR;
9379 break;
9380 case 5:
9381 code = NE_EXPR;
9382 break;
9383 case 6:
9384 code = GE_EXPR;
9385 break;
9386 case 7:
9387 /* Always true. */
9388 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
9389 }
9390
9391 if (save_p)
9392 {
9393 tem = save_expr (build2 (code, type, cval1, cval2));
9394 SET_EXPR_LOCATION (tem, loc);
9395 return tem;
9396 }
9397 return fold_build2_loc (loc, code, type, cval1, cval2);
9398 }
9399 }
9400 }
9401
9402 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
9403 into a single range test. */
9404 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
9405 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
9406 && TREE_CODE (arg1) == INTEGER_CST
9407 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9408 && !integer_zerop (TREE_OPERAND (arg0, 1))
9409 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
9410 && !TREE_OVERFLOW (arg1))
9411 {
9412 tem = fold_div_compare (loc, code, type, arg0, arg1);
9413 if (tem != NULL_TREE)
9414 return tem;
9415 }
9416
9417 /* Fold ~X op ~Y as Y op X. */
9418 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9419 && TREE_CODE (arg1) == BIT_NOT_EXPR)
9420 {
9421 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9422 return fold_build2_loc (loc, code, type,
9423 fold_convert_loc (loc, cmp_type,
9424 TREE_OPERAND (arg1, 0)),
9425 TREE_OPERAND (arg0, 0));
9426 }
9427
9428 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
9429 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9430 && (TREE_CODE (arg1) == INTEGER_CST || TREE_CODE (arg1) == VECTOR_CST))
9431 {
9432 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9433 return fold_build2_loc (loc, swap_tree_comparison (code), type,
9434 TREE_OPERAND (arg0, 0),
9435 fold_build1_loc (loc, BIT_NOT_EXPR, cmp_type,
9436 fold_convert_loc (loc, cmp_type, arg1)));
9437 }
9438
9439 return NULL_TREE;
9440 }
9441
9442
9443 /* Subroutine of fold_binary. Optimize complex multiplications of the
9444 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
9445 argument EXPR represents the expression "z" of type TYPE. */
9446
9447 static tree
9448 fold_mult_zconjz (location_t loc, tree type, tree expr)
9449 {
9450 tree itype = TREE_TYPE (type);
9451 tree rpart, ipart, tem;
9452
9453 if (TREE_CODE (expr) == COMPLEX_EXPR)
9454 {
9455 rpart = TREE_OPERAND (expr, 0);
9456 ipart = TREE_OPERAND (expr, 1);
9457 }
9458 else if (TREE_CODE (expr) == COMPLEX_CST)
9459 {
9460 rpart = TREE_REALPART (expr);
9461 ipart = TREE_IMAGPART (expr);
9462 }
9463 else
9464 {
9465 expr = save_expr (expr);
9466 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
9467 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
9468 }
9469
9470 rpart = save_expr (rpart);
9471 ipart = save_expr (ipart);
9472 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
9473 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
9474 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
9475 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
9476 build_zero_cst (itype));
9477 }
9478
9479
9480 /* Subroutine of fold_binary. If P is the value of EXPR, computes
9481 power-of-two M and (arbitrary) N such that M divides (P-N). This condition
9482 guarantees that P and N have the same least significant log2(M) bits.
9483 N is not otherwise constrained. In particular, N is not normalized to
9484 0 <= N < M as is common. In general, the precise value of P is unknown.
9485 M is chosen as large as possible such that constant N can be determined.
9486
9487 Returns M and sets *RESIDUE to N.
9488
9489 If ALLOW_FUNC_ALIGN is true, do take functions' DECL_ALIGN_UNIT into
9490 account. This is not always possible due to PR 35705.
9491 */
9492
9493 static unsigned HOST_WIDE_INT
9494 get_pointer_modulus_and_residue (tree expr, unsigned HOST_WIDE_INT *residue,
9495 bool allow_func_align)
9496 {
9497 enum tree_code code;
9498
9499 *residue = 0;
9500
9501 code = TREE_CODE (expr);
9502 if (code == ADDR_EXPR)
9503 {
9504 unsigned int bitalign;
9505 get_object_alignment_1 (TREE_OPERAND (expr, 0), &bitalign, residue);
9506 *residue /= BITS_PER_UNIT;
9507 return bitalign / BITS_PER_UNIT;
9508 }
9509 else if (code == POINTER_PLUS_EXPR)
9510 {
9511 tree op0, op1;
9512 unsigned HOST_WIDE_INT modulus;
9513 enum tree_code inner_code;
9514
9515 op0 = TREE_OPERAND (expr, 0);
9516 STRIP_NOPS (op0);
9517 modulus = get_pointer_modulus_and_residue (op0, residue,
9518 allow_func_align);
9519
9520 op1 = TREE_OPERAND (expr, 1);
9521 STRIP_NOPS (op1);
9522 inner_code = TREE_CODE (op1);
9523 if (inner_code == INTEGER_CST)
9524 {
9525 *residue += TREE_INT_CST_LOW (op1);
9526 return modulus;
9527 }
9528 else if (inner_code == MULT_EXPR)
9529 {
9530 op1 = TREE_OPERAND (op1, 1);
9531 if (TREE_CODE (op1) == INTEGER_CST)
9532 {
9533 unsigned HOST_WIDE_INT align;
9534
9535 /* Compute the greatest power-of-2 divisor of op1. */
9536 align = TREE_INT_CST_LOW (op1);
9537 align &= -align;
9538
9539 /* If align is non-zero and less than *modulus, replace
9540 *modulus with align., If align is 0, then either op1 is 0
9541 or the greatest power-of-2 divisor of op1 doesn't fit in an
9542 unsigned HOST_WIDE_INT. In either case, no additional
9543 constraint is imposed. */
9544 if (align)
9545 modulus = MIN (modulus, align);
9546
9547 return modulus;
9548 }
9549 }
9550 }
9551
9552 /* If we get here, we were unable to determine anything useful about the
9553 expression. */
9554 return 1;
9555 }
9556
9557 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
9558 CONSTRUCTOR ARG into array ELTS and return true if successful. */
9559
9560 static bool
9561 vec_cst_ctor_to_array (tree arg, tree *elts)
9562 {
9563 unsigned int nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)), i;
9564
9565 if (TREE_CODE (arg) == VECTOR_CST)
9566 {
9567 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
9568 elts[i] = VECTOR_CST_ELT (arg, i);
9569 }
9570 else if (TREE_CODE (arg) == CONSTRUCTOR)
9571 {
9572 constructor_elt *elt;
9573
9574 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
9575 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
9576 return false;
9577 else
9578 elts[i] = elt->value;
9579 }
9580 else
9581 return false;
9582 for (; i < nelts; i++)
9583 elts[i]
9584 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
9585 return true;
9586 }
9587
9588 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
9589 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
9590 NULL_TREE otherwise. */
9591
9592 static tree
9593 fold_vec_perm (tree type, tree arg0, tree arg1, const unsigned char *sel)
9594 {
9595 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
9596 tree *elts;
9597 bool need_ctor = false;
9598
9599 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
9600 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
9601 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
9602 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
9603 return NULL_TREE;
9604
9605 elts = XALLOCAVEC (tree, nelts * 3);
9606 if (!vec_cst_ctor_to_array (arg0, elts)
9607 || !vec_cst_ctor_to_array (arg1, elts + nelts))
9608 return NULL_TREE;
9609
9610 for (i = 0; i < nelts; i++)
9611 {
9612 if (!CONSTANT_CLASS_P (elts[sel[i]]))
9613 need_ctor = true;
9614 elts[i + 2 * nelts] = unshare_expr (elts[sel[i]]);
9615 }
9616
9617 if (need_ctor)
9618 {
9619 vec<constructor_elt, va_gc> *v;
9620 vec_alloc (v, nelts);
9621 for (i = 0; i < nelts; i++)
9622 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[2 * nelts + i]);
9623 return build_constructor (type, v);
9624 }
9625 else
9626 return build_vector (type, &elts[2 * nelts]);
9627 }
9628
9629 /* Try to fold a pointer difference of type TYPE two address expressions of
9630 array references AREF0 and AREF1 using location LOC. Return a
9631 simplified expression for the difference or NULL_TREE. */
9632
9633 static tree
9634 fold_addr_of_array_ref_difference (location_t loc, tree type,
9635 tree aref0, tree aref1)
9636 {
9637 tree base0 = TREE_OPERAND (aref0, 0);
9638 tree base1 = TREE_OPERAND (aref1, 0);
9639 tree base_offset = build_int_cst (type, 0);
9640
9641 /* If the bases are array references as well, recurse. If the bases
9642 are pointer indirections compute the difference of the pointers.
9643 If the bases are equal, we are set. */
9644 if ((TREE_CODE (base0) == ARRAY_REF
9645 && TREE_CODE (base1) == ARRAY_REF
9646 && (base_offset
9647 = fold_addr_of_array_ref_difference (loc, type, base0, base1)))
9648 || (INDIRECT_REF_P (base0)
9649 && INDIRECT_REF_P (base1)
9650 && (base_offset = fold_binary_loc (loc, MINUS_EXPR, type,
9651 TREE_OPERAND (base0, 0),
9652 TREE_OPERAND (base1, 0))))
9653 || operand_equal_p (base0, base1, 0))
9654 {
9655 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
9656 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
9657 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
9658 tree diff = build2 (MINUS_EXPR, type, op0, op1);
9659 return fold_build2_loc (loc, PLUS_EXPR, type,
9660 base_offset,
9661 fold_build2_loc (loc, MULT_EXPR, type,
9662 diff, esz));
9663 }
9664 return NULL_TREE;
9665 }
9666
9667 /* If the real or vector real constant CST of type TYPE has an exact
9668 inverse, return it, else return NULL. */
9669
9670 tree
9671 exact_inverse (tree type, tree cst)
9672 {
9673 REAL_VALUE_TYPE r;
9674 tree unit_type, *elts;
9675 machine_mode mode;
9676 unsigned vec_nelts, i;
9677
9678 switch (TREE_CODE (cst))
9679 {
9680 case REAL_CST:
9681 r = TREE_REAL_CST (cst);
9682
9683 if (exact_real_inverse (TYPE_MODE (type), &r))
9684 return build_real (type, r);
9685
9686 return NULL_TREE;
9687
9688 case VECTOR_CST:
9689 vec_nelts = VECTOR_CST_NELTS (cst);
9690 elts = XALLOCAVEC (tree, vec_nelts);
9691 unit_type = TREE_TYPE (type);
9692 mode = TYPE_MODE (unit_type);
9693
9694 for (i = 0; i < vec_nelts; i++)
9695 {
9696 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
9697 if (!exact_real_inverse (mode, &r))
9698 return NULL_TREE;
9699 elts[i] = build_real (unit_type, r);
9700 }
9701
9702 return build_vector (type, elts);
9703
9704 default:
9705 return NULL_TREE;
9706 }
9707 }
9708
9709 /* Mask out the tz least significant bits of X of type TYPE where
9710 tz is the number of trailing zeroes in Y. */
9711 static wide_int
9712 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
9713 {
9714 int tz = wi::ctz (y);
9715 if (tz > 0)
9716 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
9717 return x;
9718 }
9719
9720 /* Return true when T is an address and is known to be nonzero.
9721 For floating point we further ensure that T is not denormal.
9722 Similar logic is present in nonzero_address in rtlanal.h.
9723
9724 If the return value is based on the assumption that signed overflow
9725 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9726 change *STRICT_OVERFLOW_P. */
9727
9728 static bool
9729 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
9730 {
9731 tree type = TREE_TYPE (t);
9732 enum tree_code code;
9733
9734 /* Doing something useful for floating point would need more work. */
9735 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
9736 return false;
9737
9738 code = TREE_CODE (t);
9739 switch (TREE_CODE_CLASS (code))
9740 {
9741 case tcc_unary:
9742 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9743 strict_overflow_p);
9744 case tcc_binary:
9745 case tcc_comparison:
9746 return tree_binary_nonzero_warnv_p (code, type,
9747 TREE_OPERAND (t, 0),
9748 TREE_OPERAND (t, 1),
9749 strict_overflow_p);
9750 case tcc_constant:
9751 case tcc_declaration:
9752 case tcc_reference:
9753 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9754
9755 default:
9756 break;
9757 }
9758
9759 switch (code)
9760 {
9761 case TRUTH_NOT_EXPR:
9762 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9763 strict_overflow_p);
9764
9765 case TRUTH_AND_EXPR:
9766 case TRUTH_OR_EXPR:
9767 case TRUTH_XOR_EXPR:
9768 return tree_binary_nonzero_warnv_p (code, type,
9769 TREE_OPERAND (t, 0),
9770 TREE_OPERAND (t, 1),
9771 strict_overflow_p);
9772
9773 case COND_EXPR:
9774 case CONSTRUCTOR:
9775 case OBJ_TYPE_REF:
9776 case ASSERT_EXPR:
9777 case ADDR_EXPR:
9778 case WITH_SIZE_EXPR:
9779 case SSA_NAME:
9780 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9781
9782 case COMPOUND_EXPR:
9783 case MODIFY_EXPR:
9784 case BIND_EXPR:
9785 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
9786 strict_overflow_p);
9787
9788 case SAVE_EXPR:
9789 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
9790 strict_overflow_p);
9791
9792 case CALL_EXPR:
9793 {
9794 tree fndecl = get_callee_fndecl (t);
9795 if (!fndecl) return false;
9796 if (flag_delete_null_pointer_checks && !flag_check_new
9797 && DECL_IS_OPERATOR_NEW (fndecl)
9798 && !TREE_NOTHROW (fndecl))
9799 return true;
9800 if (flag_delete_null_pointer_checks
9801 && lookup_attribute ("returns_nonnull",
9802 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
9803 return true;
9804 return alloca_call_p (t);
9805 }
9806
9807 default:
9808 break;
9809 }
9810 return false;
9811 }
9812
9813 /* Return true when T is an address and is known to be nonzero.
9814 Handle warnings about undefined signed overflow. */
9815
9816 static bool
9817 tree_expr_nonzero_p (tree t)
9818 {
9819 bool ret, strict_overflow_p;
9820
9821 strict_overflow_p = false;
9822 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9823 if (strict_overflow_p)
9824 fold_overflow_warning (("assuming signed overflow does not occur when "
9825 "determining that expression is always "
9826 "non-zero"),
9827 WARN_STRICT_OVERFLOW_MISC);
9828 return ret;
9829 }
9830
9831 /* Fold a binary expression of code CODE and type TYPE with operands
9832 OP0 and OP1. LOC is the location of the resulting expression.
9833 Return the folded expression if folding is successful. Otherwise,
9834 return NULL_TREE. */
9835
9836 tree
9837 fold_binary_loc (location_t loc,
9838 enum tree_code code, tree type, tree op0, tree op1)
9839 {
9840 enum tree_code_class kind = TREE_CODE_CLASS (code);
9841 tree arg0, arg1, tem;
9842 tree t1 = NULL_TREE;
9843 bool strict_overflow_p;
9844 unsigned int prec;
9845
9846 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9847 && TREE_CODE_LENGTH (code) == 2
9848 && op0 != NULL_TREE
9849 && op1 != NULL_TREE);
9850
9851 arg0 = op0;
9852 arg1 = op1;
9853
9854 /* Strip any conversions that don't change the mode. This is
9855 safe for every expression, except for a comparison expression
9856 because its signedness is derived from its operands. So, in
9857 the latter case, only strip conversions that don't change the
9858 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9859 preserved.
9860
9861 Note that this is done as an internal manipulation within the
9862 constant folder, in order to find the simplest representation
9863 of the arguments so that their form can be studied. In any
9864 cases, the appropriate type conversions should be put back in
9865 the tree that will get out of the constant folder. */
9866
9867 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9868 {
9869 STRIP_SIGN_NOPS (arg0);
9870 STRIP_SIGN_NOPS (arg1);
9871 }
9872 else
9873 {
9874 STRIP_NOPS (arg0);
9875 STRIP_NOPS (arg1);
9876 }
9877
9878 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9879 constant but we can't do arithmetic on them. */
9880 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9881 {
9882 tem = const_binop (code, type, arg0, arg1);
9883 if (tem != NULL_TREE)
9884 {
9885 if (TREE_TYPE (tem) != type)
9886 tem = fold_convert_loc (loc, type, tem);
9887 return tem;
9888 }
9889 }
9890
9891 /* If this is a commutative operation, and ARG0 is a constant, move it
9892 to ARG1 to reduce the number of tests below. */
9893 if (commutative_tree_code (code)
9894 && tree_swap_operands_p (arg0, arg1, true))
9895 return fold_build2_loc (loc, code, type, op1, op0);
9896
9897 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9898 to ARG1 to reduce the number of tests below. */
9899 if (kind == tcc_comparison
9900 && tree_swap_operands_p (arg0, arg1, true))
9901 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9902
9903 tem = generic_simplify (loc, code, type, op0, op1);
9904 if (tem)
9905 return tem;
9906
9907 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9908
9909 First check for cases where an arithmetic operation is applied to a
9910 compound, conditional, or comparison operation. Push the arithmetic
9911 operation inside the compound or conditional to see if any folding
9912 can then be done. Convert comparison to conditional for this purpose.
9913 The also optimizes non-constant cases that used to be done in
9914 expand_expr.
9915
9916 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9917 one of the operands is a comparison and the other is a comparison, a
9918 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9919 code below would make the expression more complex. Change it to a
9920 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9921 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9922
9923 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9924 || code == EQ_EXPR || code == NE_EXPR)
9925 && TREE_CODE (type) != VECTOR_TYPE
9926 && ((truth_value_p (TREE_CODE (arg0))
9927 && (truth_value_p (TREE_CODE (arg1))
9928 || (TREE_CODE (arg1) == BIT_AND_EXPR
9929 && integer_onep (TREE_OPERAND (arg1, 1)))))
9930 || (truth_value_p (TREE_CODE (arg1))
9931 && (truth_value_p (TREE_CODE (arg0))
9932 || (TREE_CODE (arg0) == BIT_AND_EXPR
9933 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9934 {
9935 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9936 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9937 : TRUTH_XOR_EXPR,
9938 boolean_type_node,
9939 fold_convert_loc (loc, boolean_type_node, arg0),
9940 fold_convert_loc (loc, boolean_type_node, arg1));
9941
9942 if (code == EQ_EXPR)
9943 tem = invert_truthvalue_loc (loc, tem);
9944
9945 return fold_convert_loc (loc, type, tem);
9946 }
9947
9948 if (TREE_CODE_CLASS (code) == tcc_binary
9949 || TREE_CODE_CLASS (code) == tcc_comparison)
9950 {
9951 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9952 {
9953 tem = fold_build2_loc (loc, code, type,
9954 fold_convert_loc (loc, TREE_TYPE (op0),
9955 TREE_OPERAND (arg0, 1)), op1);
9956 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9957 tem);
9958 }
9959 if (TREE_CODE (arg1) == COMPOUND_EXPR
9960 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9961 {
9962 tem = fold_build2_loc (loc, code, type, op0,
9963 fold_convert_loc (loc, TREE_TYPE (op1),
9964 TREE_OPERAND (arg1, 1)));
9965 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9966 tem);
9967 }
9968
9969 if (TREE_CODE (arg0) == COND_EXPR
9970 || TREE_CODE (arg0) == VEC_COND_EXPR
9971 || COMPARISON_CLASS_P (arg0))
9972 {
9973 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9974 arg0, arg1,
9975 /*cond_first_p=*/1);
9976 if (tem != NULL_TREE)
9977 return tem;
9978 }
9979
9980 if (TREE_CODE (arg1) == COND_EXPR
9981 || TREE_CODE (arg1) == VEC_COND_EXPR
9982 || COMPARISON_CLASS_P (arg1))
9983 {
9984 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9985 arg1, arg0,
9986 /*cond_first_p=*/0);
9987 if (tem != NULL_TREE)
9988 return tem;
9989 }
9990 }
9991
9992 switch (code)
9993 {
9994 case MEM_REF:
9995 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9996 if (TREE_CODE (arg0) == ADDR_EXPR
9997 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9998 {
9999 tree iref = TREE_OPERAND (arg0, 0);
10000 return fold_build2 (MEM_REF, type,
10001 TREE_OPERAND (iref, 0),
10002 int_const_binop (PLUS_EXPR, arg1,
10003 TREE_OPERAND (iref, 1)));
10004 }
10005
10006 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
10007 if (TREE_CODE (arg0) == ADDR_EXPR
10008 && handled_component_p (TREE_OPERAND (arg0, 0)))
10009 {
10010 tree base;
10011 HOST_WIDE_INT coffset;
10012 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
10013 &coffset);
10014 if (!base)
10015 return NULL_TREE;
10016 return fold_build2 (MEM_REF, type,
10017 build_fold_addr_expr (base),
10018 int_const_binop (PLUS_EXPR, arg1,
10019 size_int (coffset)));
10020 }
10021
10022 return NULL_TREE;
10023
10024 case POINTER_PLUS_EXPR:
10025 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
10026 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10027 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
10028 return fold_convert_loc (loc, type,
10029 fold_build2_loc (loc, PLUS_EXPR, sizetype,
10030 fold_convert_loc (loc, sizetype,
10031 arg1),
10032 fold_convert_loc (loc, sizetype,
10033 arg0)));
10034
10035 return NULL_TREE;
10036
10037 case PLUS_EXPR:
10038 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
10039 {
10040 /* X + (X / CST) * -CST is X % CST. */
10041 if (TREE_CODE (arg1) == MULT_EXPR
10042 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
10043 && operand_equal_p (arg0,
10044 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
10045 {
10046 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
10047 tree cst1 = TREE_OPERAND (arg1, 1);
10048 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
10049 cst1, cst0);
10050 if (sum && integer_zerop (sum))
10051 return fold_convert_loc (loc, type,
10052 fold_build2_loc (loc, TRUNC_MOD_EXPR,
10053 TREE_TYPE (arg0), arg0,
10054 cst0));
10055 }
10056 }
10057
10058 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
10059 one. Make sure the type is not saturating and has the signedness of
10060 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10061 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10062 if ((TREE_CODE (arg0) == MULT_EXPR
10063 || TREE_CODE (arg1) == MULT_EXPR)
10064 && !TYPE_SATURATING (type)
10065 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
10066 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
10067 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10068 {
10069 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
10070 if (tem)
10071 return tem;
10072 }
10073
10074 if (! FLOAT_TYPE_P (type))
10075 {
10076 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
10077 with a constant, and the two constants have no bits in common,
10078 we should treat this as a BIT_IOR_EXPR since this may produce more
10079 simplifications. */
10080 if (TREE_CODE (arg0) == BIT_AND_EXPR
10081 && TREE_CODE (arg1) == BIT_AND_EXPR
10082 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10083 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
10084 && wi::bit_and (TREE_OPERAND (arg0, 1),
10085 TREE_OPERAND (arg1, 1)) == 0)
10086 {
10087 code = BIT_IOR_EXPR;
10088 goto bit_ior;
10089 }
10090
10091 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
10092 (plus (plus (mult) (mult)) (foo)) so that we can
10093 take advantage of the factoring cases below. */
10094 if (ANY_INTEGRAL_TYPE_P (type)
10095 && TYPE_OVERFLOW_WRAPS (type)
10096 && (((TREE_CODE (arg0) == PLUS_EXPR
10097 || TREE_CODE (arg0) == MINUS_EXPR)
10098 && TREE_CODE (arg1) == MULT_EXPR)
10099 || ((TREE_CODE (arg1) == PLUS_EXPR
10100 || TREE_CODE (arg1) == MINUS_EXPR)
10101 && TREE_CODE (arg0) == MULT_EXPR)))
10102 {
10103 tree parg0, parg1, parg, marg;
10104 enum tree_code pcode;
10105
10106 if (TREE_CODE (arg1) == MULT_EXPR)
10107 parg = arg0, marg = arg1;
10108 else
10109 parg = arg1, marg = arg0;
10110 pcode = TREE_CODE (parg);
10111 parg0 = TREE_OPERAND (parg, 0);
10112 parg1 = TREE_OPERAND (parg, 1);
10113 STRIP_NOPS (parg0);
10114 STRIP_NOPS (parg1);
10115
10116 if (TREE_CODE (parg0) == MULT_EXPR
10117 && TREE_CODE (parg1) != MULT_EXPR)
10118 return fold_build2_loc (loc, pcode, type,
10119 fold_build2_loc (loc, PLUS_EXPR, type,
10120 fold_convert_loc (loc, type,
10121 parg0),
10122 fold_convert_loc (loc, type,
10123 marg)),
10124 fold_convert_loc (loc, type, parg1));
10125 if (TREE_CODE (parg0) != MULT_EXPR
10126 && TREE_CODE (parg1) == MULT_EXPR)
10127 return
10128 fold_build2_loc (loc, PLUS_EXPR, type,
10129 fold_convert_loc (loc, type, parg0),
10130 fold_build2_loc (loc, pcode, type,
10131 fold_convert_loc (loc, type, marg),
10132 fold_convert_loc (loc, type,
10133 parg1)));
10134 }
10135 }
10136 else
10137 {
10138 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
10139 to __complex__ ( x, y ). This is not the same for SNaNs or
10140 if signed zeros are involved. */
10141 if (!HONOR_SNANS (element_mode (arg0))
10142 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10143 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10144 {
10145 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10146 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
10147 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
10148 bool arg0rz = false, arg0iz = false;
10149 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10150 || (arg0i && (arg0iz = real_zerop (arg0i))))
10151 {
10152 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
10153 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
10154 if (arg0rz && arg1i && real_zerop (arg1i))
10155 {
10156 tree rp = arg1r ? arg1r
10157 : build1 (REALPART_EXPR, rtype, arg1);
10158 tree ip = arg0i ? arg0i
10159 : build1 (IMAGPART_EXPR, rtype, arg0);
10160 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10161 }
10162 else if (arg0iz && arg1r && real_zerop (arg1r))
10163 {
10164 tree rp = arg0r ? arg0r
10165 : build1 (REALPART_EXPR, rtype, arg0);
10166 tree ip = arg1i ? arg1i
10167 : build1 (IMAGPART_EXPR, rtype, arg1);
10168 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10169 }
10170 }
10171 }
10172
10173 if (flag_unsafe_math_optimizations
10174 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
10175 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
10176 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
10177 return tem;
10178
10179 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
10180 We associate floats only if the user has specified
10181 -fassociative-math. */
10182 if (flag_associative_math
10183 && TREE_CODE (arg1) == PLUS_EXPR
10184 && TREE_CODE (arg0) != MULT_EXPR)
10185 {
10186 tree tree10 = TREE_OPERAND (arg1, 0);
10187 tree tree11 = TREE_OPERAND (arg1, 1);
10188 if (TREE_CODE (tree11) == MULT_EXPR
10189 && TREE_CODE (tree10) == MULT_EXPR)
10190 {
10191 tree tree0;
10192 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
10193 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
10194 }
10195 }
10196 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
10197 We associate floats only if the user has specified
10198 -fassociative-math. */
10199 if (flag_associative_math
10200 && TREE_CODE (arg0) == PLUS_EXPR
10201 && TREE_CODE (arg1) != MULT_EXPR)
10202 {
10203 tree tree00 = TREE_OPERAND (arg0, 0);
10204 tree tree01 = TREE_OPERAND (arg0, 1);
10205 if (TREE_CODE (tree01) == MULT_EXPR
10206 && TREE_CODE (tree00) == MULT_EXPR)
10207 {
10208 tree tree0;
10209 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
10210 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
10211 }
10212 }
10213 }
10214
10215 bit_rotate:
10216 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
10217 is a rotate of A by C1 bits. */
10218 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
10219 is a rotate of A by B bits. */
10220 {
10221 enum tree_code code0, code1;
10222 tree rtype;
10223 code0 = TREE_CODE (arg0);
10224 code1 = TREE_CODE (arg1);
10225 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
10226 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
10227 && operand_equal_p (TREE_OPERAND (arg0, 0),
10228 TREE_OPERAND (arg1, 0), 0)
10229 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
10230 TYPE_UNSIGNED (rtype))
10231 /* Only create rotates in complete modes. Other cases are not
10232 expanded properly. */
10233 && (element_precision (rtype)
10234 == element_precision (TYPE_MODE (rtype))))
10235 {
10236 tree tree01, tree11;
10237 enum tree_code code01, code11;
10238
10239 tree01 = TREE_OPERAND (arg0, 1);
10240 tree11 = TREE_OPERAND (arg1, 1);
10241 STRIP_NOPS (tree01);
10242 STRIP_NOPS (tree11);
10243 code01 = TREE_CODE (tree01);
10244 code11 = TREE_CODE (tree11);
10245 if (code01 == INTEGER_CST
10246 && code11 == INTEGER_CST
10247 && (wi::to_widest (tree01) + wi::to_widest (tree11)
10248 == element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
10249 {
10250 tem = build2_loc (loc, LROTATE_EXPR,
10251 TREE_TYPE (TREE_OPERAND (arg0, 0)),
10252 TREE_OPERAND (arg0, 0),
10253 code0 == LSHIFT_EXPR
10254 ? TREE_OPERAND (arg0, 1)
10255 : TREE_OPERAND (arg1, 1));
10256 return fold_convert_loc (loc, type, tem);
10257 }
10258 else if (code11 == MINUS_EXPR)
10259 {
10260 tree tree110, tree111;
10261 tree110 = TREE_OPERAND (tree11, 0);
10262 tree111 = TREE_OPERAND (tree11, 1);
10263 STRIP_NOPS (tree110);
10264 STRIP_NOPS (tree111);
10265 if (TREE_CODE (tree110) == INTEGER_CST
10266 && 0 == compare_tree_int (tree110,
10267 element_precision
10268 (TREE_TYPE (TREE_OPERAND
10269 (arg0, 0))))
10270 && operand_equal_p (tree01, tree111, 0))
10271 return
10272 fold_convert_loc (loc, type,
10273 build2 ((code0 == LSHIFT_EXPR
10274 ? LROTATE_EXPR
10275 : RROTATE_EXPR),
10276 TREE_TYPE (TREE_OPERAND (arg0, 0)),
10277 TREE_OPERAND (arg0, 0),
10278 TREE_OPERAND (arg0, 1)));
10279 }
10280 else if (code01 == MINUS_EXPR)
10281 {
10282 tree tree010, tree011;
10283 tree010 = TREE_OPERAND (tree01, 0);
10284 tree011 = TREE_OPERAND (tree01, 1);
10285 STRIP_NOPS (tree010);
10286 STRIP_NOPS (tree011);
10287 if (TREE_CODE (tree010) == INTEGER_CST
10288 && 0 == compare_tree_int (tree010,
10289 element_precision
10290 (TREE_TYPE (TREE_OPERAND
10291 (arg0, 0))))
10292 && operand_equal_p (tree11, tree011, 0))
10293 return fold_convert_loc
10294 (loc, type,
10295 build2 ((code0 != LSHIFT_EXPR
10296 ? LROTATE_EXPR
10297 : RROTATE_EXPR),
10298 TREE_TYPE (TREE_OPERAND (arg0, 0)),
10299 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1)));
10300 }
10301 }
10302 }
10303
10304 associate:
10305 /* In most languages, can't associate operations on floats through
10306 parentheses. Rather than remember where the parentheses were, we
10307 don't associate floats at all, unless the user has specified
10308 -fassociative-math.
10309 And, we need to make sure type is not saturating. */
10310
10311 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
10312 && !TYPE_SATURATING (type))
10313 {
10314 tree var0, con0, lit0, minus_lit0;
10315 tree var1, con1, lit1, minus_lit1;
10316 tree atype = type;
10317 bool ok = true;
10318
10319 /* Split both trees into variables, constants, and literals. Then
10320 associate each group together, the constants with literals,
10321 then the result with variables. This increases the chances of
10322 literals being recombined later and of generating relocatable
10323 expressions for the sum of a constant and literal. */
10324 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
10325 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
10326 code == MINUS_EXPR);
10327
10328 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
10329 if (code == MINUS_EXPR)
10330 code = PLUS_EXPR;
10331
10332 /* With undefined overflow prefer doing association in a type
10333 which wraps on overflow, if that is one of the operand types. */
10334 if ((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
10335 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
10336 {
10337 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10338 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10339 atype = TREE_TYPE (arg0);
10340 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10341 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
10342 atype = TREE_TYPE (arg1);
10343 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
10344 }
10345
10346 /* With undefined overflow we can only associate constants with one
10347 variable, and constants whose association doesn't overflow. */
10348 if ((POINTER_TYPE_P (atype) && POINTER_TYPE_OVERFLOW_UNDEFINED)
10349 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
10350 {
10351 if (var0 && var1)
10352 {
10353 tree tmp0 = var0;
10354 tree tmp1 = var1;
10355
10356 if (TREE_CODE (tmp0) == NEGATE_EXPR)
10357 tmp0 = TREE_OPERAND (tmp0, 0);
10358 if (CONVERT_EXPR_P (tmp0)
10359 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
10360 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
10361 <= TYPE_PRECISION (atype)))
10362 tmp0 = TREE_OPERAND (tmp0, 0);
10363 if (TREE_CODE (tmp1) == NEGATE_EXPR)
10364 tmp1 = TREE_OPERAND (tmp1, 0);
10365 if (CONVERT_EXPR_P (tmp1)
10366 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
10367 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
10368 <= TYPE_PRECISION (atype)))
10369 tmp1 = TREE_OPERAND (tmp1, 0);
10370 /* The only case we can still associate with two variables
10371 is if they are the same, modulo negation and bit-pattern
10372 preserving conversions. */
10373 if (!operand_equal_p (tmp0, tmp1, 0))
10374 ok = false;
10375 }
10376 }
10377
10378 /* Only do something if we found more than two objects. Otherwise,
10379 nothing has changed and we risk infinite recursion. */
10380 if (ok
10381 && (2 < ((var0 != 0) + (var1 != 0)
10382 + (con0 != 0) + (con1 != 0)
10383 + (lit0 != 0) + (lit1 != 0)
10384 + (minus_lit0 != 0) + (minus_lit1 != 0))))
10385 {
10386 bool any_overflows = false;
10387 if (lit0) any_overflows |= TREE_OVERFLOW (lit0);
10388 if (lit1) any_overflows |= TREE_OVERFLOW (lit1);
10389 if (minus_lit0) any_overflows |= TREE_OVERFLOW (minus_lit0);
10390 if (minus_lit1) any_overflows |= TREE_OVERFLOW (minus_lit1);
10391 var0 = associate_trees (loc, var0, var1, code, atype);
10392 con0 = associate_trees (loc, con0, con1, code, atype);
10393 lit0 = associate_trees (loc, lit0, lit1, code, atype);
10394 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
10395 code, atype);
10396
10397 /* Preserve the MINUS_EXPR if the negative part of the literal is
10398 greater than the positive part. Otherwise, the multiplicative
10399 folding code (i.e extract_muldiv) may be fooled in case
10400 unsigned constants are subtracted, like in the following
10401 example: ((X*2 + 4) - 8U)/2. */
10402 if (minus_lit0 && lit0)
10403 {
10404 if (TREE_CODE (lit0) == INTEGER_CST
10405 && TREE_CODE (minus_lit0) == INTEGER_CST
10406 && tree_int_cst_lt (lit0, minus_lit0))
10407 {
10408 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
10409 MINUS_EXPR, atype);
10410 lit0 = 0;
10411 }
10412 else
10413 {
10414 lit0 = associate_trees (loc, lit0, minus_lit0,
10415 MINUS_EXPR, atype);
10416 minus_lit0 = 0;
10417 }
10418 }
10419
10420 /* Don't introduce overflows through reassociation. */
10421 if (!any_overflows
10422 && ((lit0 && TREE_OVERFLOW_P (lit0))
10423 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0))))
10424 return NULL_TREE;
10425
10426 if (minus_lit0)
10427 {
10428 if (con0 == 0)
10429 return
10430 fold_convert_loc (loc, type,
10431 associate_trees (loc, var0, minus_lit0,
10432 MINUS_EXPR, atype));
10433 else
10434 {
10435 con0 = associate_trees (loc, con0, minus_lit0,
10436 MINUS_EXPR, atype);
10437 return
10438 fold_convert_loc (loc, type,
10439 associate_trees (loc, var0, con0,
10440 PLUS_EXPR, atype));
10441 }
10442 }
10443
10444 con0 = associate_trees (loc, con0, lit0, code, atype);
10445 return
10446 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
10447 code, atype));
10448 }
10449 }
10450
10451 return NULL_TREE;
10452
10453 case MINUS_EXPR:
10454 /* Pointer simplifications for subtraction, simple reassociations. */
10455 if (POINTER_TYPE_P (TREE_TYPE (arg1)) && POINTER_TYPE_P (TREE_TYPE (arg0)))
10456 {
10457 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
10458 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR
10459 && TREE_CODE (arg1) == POINTER_PLUS_EXPR)
10460 {
10461 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10462 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10463 tree arg10 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10464 tree arg11 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10465 return fold_build2_loc (loc, PLUS_EXPR, type,
10466 fold_build2_loc (loc, MINUS_EXPR, type,
10467 arg00, arg10),
10468 fold_build2_loc (loc, MINUS_EXPR, type,
10469 arg01, arg11));
10470 }
10471 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
10472 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
10473 {
10474 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10475 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10476 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type, arg00,
10477 fold_convert_loc (loc, type, arg1));
10478 if (tmp)
10479 return fold_build2_loc (loc, PLUS_EXPR, type, tmp, arg01);
10480 }
10481 /* PTR0 - (PTR1 p+ A) -> (PTR0 - PTR1) - A, assuming PTR0 - PTR1
10482 simplifies. */
10483 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
10484 {
10485 tree arg10 = fold_convert_loc (loc, type,
10486 TREE_OPERAND (arg1, 0));
10487 tree arg11 = fold_convert_loc (loc, type,
10488 TREE_OPERAND (arg1, 1));
10489 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type,
10490 fold_convert_loc (loc, type, arg0),
10491 arg10);
10492 if (tmp)
10493 return fold_build2_loc (loc, MINUS_EXPR, type, tmp, arg11);
10494 }
10495 }
10496 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
10497 if (TREE_CODE (arg0) == NEGATE_EXPR
10498 && negate_expr_p (arg1)
10499 && reorder_operands_p (arg0, arg1))
10500 return fold_build2_loc (loc, MINUS_EXPR, type,
10501 fold_convert_loc (loc, type,
10502 negate_expr (arg1)),
10503 fold_convert_loc (loc, type,
10504 TREE_OPERAND (arg0, 0)));
10505
10506 if (! FLOAT_TYPE_P (type))
10507 {
10508 /* Fold A - (A & B) into ~B & A. */
10509 if (!TREE_SIDE_EFFECTS (arg0)
10510 && TREE_CODE (arg1) == BIT_AND_EXPR)
10511 {
10512 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
10513 {
10514 tree arg10 = fold_convert_loc (loc, type,
10515 TREE_OPERAND (arg1, 0));
10516 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10517 fold_build1_loc (loc, BIT_NOT_EXPR,
10518 type, arg10),
10519 fold_convert_loc (loc, type, arg0));
10520 }
10521 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10522 {
10523 tree arg11 = fold_convert_loc (loc,
10524 type, TREE_OPERAND (arg1, 1));
10525 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10526 fold_build1_loc (loc, BIT_NOT_EXPR,
10527 type, arg11),
10528 fold_convert_loc (loc, type, arg0));
10529 }
10530 }
10531
10532 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
10533 any power of 2 minus 1. */
10534 if (TREE_CODE (arg0) == BIT_AND_EXPR
10535 && TREE_CODE (arg1) == BIT_AND_EXPR
10536 && operand_equal_p (TREE_OPERAND (arg0, 0),
10537 TREE_OPERAND (arg1, 0), 0))
10538 {
10539 tree mask0 = TREE_OPERAND (arg0, 1);
10540 tree mask1 = TREE_OPERAND (arg1, 1);
10541 tree tem = fold_build1_loc (loc, BIT_NOT_EXPR, type, mask0);
10542
10543 if (operand_equal_p (tem, mask1, 0))
10544 {
10545 tem = fold_build2_loc (loc, BIT_XOR_EXPR, type,
10546 TREE_OPERAND (arg0, 0), mask1);
10547 return fold_build2_loc (loc, MINUS_EXPR, type, tem, mask1);
10548 }
10549 }
10550 }
10551
10552 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10553 __complex__ ( x, -y ). This is not the same for SNaNs or if
10554 signed zeros are involved. */
10555 if (!HONOR_SNANS (element_mode (arg0))
10556 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10557 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10558 {
10559 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10560 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
10561 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
10562 bool arg0rz = false, arg0iz = false;
10563 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10564 || (arg0i && (arg0iz = real_zerop (arg0i))))
10565 {
10566 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
10567 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
10568 if (arg0rz && arg1i && real_zerop (arg1i))
10569 {
10570 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10571 arg1r ? arg1r
10572 : build1 (REALPART_EXPR, rtype, arg1));
10573 tree ip = arg0i ? arg0i
10574 : build1 (IMAGPART_EXPR, rtype, arg0);
10575 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10576 }
10577 else if (arg0iz && arg1r && real_zerop (arg1r))
10578 {
10579 tree rp = arg0r ? arg0r
10580 : build1 (REALPART_EXPR, rtype, arg0);
10581 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10582 arg1i ? arg1i
10583 : build1 (IMAGPART_EXPR, rtype, arg1));
10584 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10585 }
10586 }
10587 }
10588
10589 /* A - B -> A + (-B) if B is easily negatable. */
10590 if (negate_expr_p (arg1)
10591 && !TYPE_OVERFLOW_SANITIZED (type)
10592 && ((FLOAT_TYPE_P (type)
10593 /* Avoid this transformation if B is a positive REAL_CST. */
10594 && (TREE_CODE (arg1) != REAL_CST
10595 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
10596 || INTEGRAL_TYPE_P (type)))
10597 return fold_build2_loc (loc, PLUS_EXPR, type,
10598 fold_convert_loc (loc, type, arg0),
10599 fold_convert_loc (loc, type,
10600 negate_expr (arg1)));
10601
10602 /* Fold &a[i] - &a[j] to i-j. */
10603 if (TREE_CODE (arg0) == ADDR_EXPR
10604 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
10605 && TREE_CODE (arg1) == ADDR_EXPR
10606 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
10607 {
10608 tree tem = fold_addr_of_array_ref_difference (loc, type,
10609 TREE_OPERAND (arg0, 0),
10610 TREE_OPERAND (arg1, 0));
10611 if (tem)
10612 return tem;
10613 }
10614
10615 if (FLOAT_TYPE_P (type)
10616 && flag_unsafe_math_optimizations
10617 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
10618 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
10619 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
10620 return tem;
10621
10622 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
10623 one. Make sure the type is not saturating and has the signedness of
10624 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10625 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10626 if ((TREE_CODE (arg0) == MULT_EXPR
10627 || TREE_CODE (arg1) == MULT_EXPR)
10628 && !TYPE_SATURATING (type)
10629 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
10630 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
10631 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10632 {
10633 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
10634 if (tem)
10635 return tem;
10636 }
10637
10638 goto associate;
10639
10640 case MULT_EXPR:
10641 /* (-A) * (-B) -> A * B */
10642 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10643 return fold_build2_loc (loc, MULT_EXPR, type,
10644 fold_convert_loc (loc, type,
10645 TREE_OPERAND (arg0, 0)),
10646 fold_convert_loc (loc, type,
10647 negate_expr (arg1)));
10648 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10649 return fold_build2_loc (loc, MULT_EXPR, type,
10650 fold_convert_loc (loc, type,
10651 negate_expr (arg0)),
10652 fold_convert_loc (loc, type,
10653 TREE_OPERAND (arg1, 0)));
10654
10655 if (! FLOAT_TYPE_P (type))
10656 {
10657 /* Transform x * -C into -x * C if x is easily negatable. */
10658 if (TREE_CODE (arg1) == INTEGER_CST
10659 && tree_int_cst_sgn (arg1) == -1
10660 && negate_expr_p (arg0)
10661 && (tem = negate_expr (arg1)) != arg1
10662 && !TREE_OVERFLOW (tem))
10663 return fold_build2_loc (loc, MULT_EXPR, type,
10664 fold_convert_loc (loc, type,
10665 negate_expr (arg0)),
10666 tem);
10667
10668 /* (a * (1 << b)) is (a << b) */
10669 if (TREE_CODE (arg1) == LSHIFT_EXPR
10670 && integer_onep (TREE_OPERAND (arg1, 0)))
10671 return fold_build2_loc (loc, LSHIFT_EXPR, type, op0,
10672 TREE_OPERAND (arg1, 1));
10673 if (TREE_CODE (arg0) == LSHIFT_EXPR
10674 && integer_onep (TREE_OPERAND (arg0, 0)))
10675 return fold_build2_loc (loc, LSHIFT_EXPR, type, op1,
10676 TREE_OPERAND (arg0, 1));
10677
10678 /* (A + A) * C -> A * 2 * C */
10679 if (TREE_CODE (arg0) == PLUS_EXPR
10680 && TREE_CODE (arg1) == INTEGER_CST
10681 && operand_equal_p (TREE_OPERAND (arg0, 0),
10682 TREE_OPERAND (arg0, 1), 0))
10683 return fold_build2_loc (loc, MULT_EXPR, type,
10684 omit_one_operand_loc (loc, type,
10685 TREE_OPERAND (arg0, 0),
10686 TREE_OPERAND (arg0, 1)),
10687 fold_build2_loc (loc, MULT_EXPR, type,
10688 build_int_cst (type, 2) , arg1));
10689
10690 /* ((T) (X /[ex] C)) * C cancels out if the conversion is
10691 sign-changing only. */
10692 if (TREE_CODE (arg1) == INTEGER_CST
10693 && TREE_CODE (arg0) == EXACT_DIV_EXPR
10694 && operand_equal_p (arg1, TREE_OPERAND (arg0, 1), 0))
10695 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10696
10697 strict_overflow_p = false;
10698 if (TREE_CODE (arg1) == INTEGER_CST
10699 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10700 &strict_overflow_p)))
10701 {
10702 if (strict_overflow_p)
10703 fold_overflow_warning (("assuming signed overflow does not "
10704 "occur when simplifying "
10705 "multiplication"),
10706 WARN_STRICT_OVERFLOW_MISC);
10707 return fold_convert_loc (loc, type, tem);
10708 }
10709
10710 /* Optimize z * conj(z) for integer complex numbers. */
10711 if (TREE_CODE (arg0) == CONJ_EXPR
10712 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10713 return fold_mult_zconjz (loc, type, arg1);
10714 if (TREE_CODE (arg1) == CONJ_EXPR
10715 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10716 return fold_mult_zconjz (loc, type, arg0);
10717 }
10718 else
10719 {
10720 /* Convert (C1/X)*C2 into (C1*C2)/X. This transformation may change
10721 the result for floating point types due to rounding so it is applied
10722 only if -fassociative-math was specify. */
10723 if (flag_associative_math
10724 && TREE_CODE (arg0) == RDIV_EXPR
10725 && TREE_CODE (arg1) == REAL_CST
10726 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
10727 {
10728 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
10729 arg1);
10730 if (tem)
10731 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
10732 TREE_OPERAND (arg0, 1));
10733 }
10734
10735 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
10736 if (operand_equal_p (arg0, arg1, 0))
10737 {
10738 tree tem = fold_strip_sign_ops (arg0);
10739 if (tem != NULL_TREE)
10740 {
10741 tem = fold_convert_loc (loc, type, tem);
10742 return fold_build2_loc (loc, MULT_EXPR, type, tem, tem);
10743 }
10744 }
10745
10746 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10747 This is not the same for NaNs or if signed zeros are
10748 involved. */
10749 if (!HONOR_NANS (arg0)
10750 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10751 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10752 && TREE_CODE (arg1) == COMPLEX_CST
10753 && real_zerop (TREE_REALPART (arg1)))
10754 {
10755 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10756 if (real_onep (TREE_IMAGPART (arg1)))
10757 return
10758 fold_build2_loc (loc, COMPLEX_EXPR, type,
10759 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
10760 rtype, arg0)),
10761 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
10762 else if (real_minus_onep (TREE_IMAGPART (arg1)))
10763 return
10764 fold_build2_loc (loc, COMPLEX_EXPR, type,
10765 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
10766 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
10767 rtype, arg0)));
10768 }
10769
10770 /* Optimize z * conj(z) for floating point complex numbers.
10771 Guarded by flag_unsafe_math_optimizations as non-finite
10772 imaginary components don't produce scalar results. */
10773 if (flag_unsafe_math_optimizations
10774 && TREE_CODE (arg0) == CONJ_EXPR
10775 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10776 return fold_mult_zconjz (loc, type, arg1);
10777 if (flag_unsafe_math_optimizations
10778 && TREE_CODE (arg1) == CONJ_EXPR
10779 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10780 return fold_mult_zconjz (loc, type, arg0);
10781
10782 if (flag_unsafe_math_optimizations)
10783 {
10784 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
10785 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
10786
10787 /* Optimizations of root(...)*root(...). */
10788 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
10789 {
10790 tree rootfn, arg;
10791 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10792 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10793
10794 /* Optimize sqrt(x)*sqrt(x) as x. */
10795 if (BUILTIN_SQRT_P (fcode0)
10796 && operand_equal_p (arg00, arg10, 0)
10797 && ! HONOR_SNANS (element_mode (type)))
10798 return arg00;
10799
10800 /* Optimize root(x)*root(y) as root(x*y). */
10801 rootfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10802 arg = fold_build2_loc (loc, MULT_EXPR, type, arg00, arg10);
10803 return build_call_expr_loc (loc, rootfn, 1, arg);
10804 }
10805
10806 /* Optimize expN(x)*expN(y) as expN(x+y). */
10807 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
10808 {
10809 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10810 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
10811 CALL_EXPR_ARG (arg0, 0),
10812 CALL_EXPR_ARG (arg1, 0));
10813 return build_call_expr_loc (loc, expfn, 1, arg);
10814 }
10815
10816 /* Optimizations of pow(...)*pow(...). */
10817 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
10818 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
10819 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
10820 {
10821 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10822 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10823 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10824 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10825
10826 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
10827 if (operand_equal_p (arg01, arg11, 0))
10828 {
10829 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10830 tree arg = fold_build2_loc (loc, MULT_EXPR, type,
10831 arg00, arg10);
10832 return build_call_expr_loc (loc, powfn, 2, arg, arg01);
10833 }
10834
10835 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
10836 if (operand_equal_p (arg00, arg10, 0))
10837 {
10838 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10839 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
10840 arg01, arg11);
10841 return build_call_expr_loc (loc, powfn, 2, arg00, arg);
10842 }
10843 }
10844
10845 /* Optimize tan(x)*cos(x) as sin(x). */
10846 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
10847 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
10848 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
10849 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
10850 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
10851 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
10852 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10853 CALL_EXPR_ARG (arg1, 0), 0))
10854 {
10855 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
10856
10857 if (sinfn != NULL_TREE)
10858 return build_call_expr_loc (loc, sinfn, 1,
10859 CALL_EXPR_ARG (arg0, 0));
10860 }
10861
10862 /* Optimize x*pow(x,c) as pow(x,c+1). */
10863 if (fcode1 == BUILT_IN_POW
10864 || fcode1 == BUILT_IN_POWF
10865 || fcode1 == BUILT_IN_POWL)
10866 {
10867 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10868 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10869 if (TREE_CODE (arg11) == REAL_CST
10870 && !TREE_OVERFLOW (arg11)
10871 && operand_equal_p (arg0, arg10, 0))
10872 {
10873 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10874 REAL_VALUE_TYPE c;
10875 tree arg;
10876
10877 c = TREE_REAL_CST (arg11);
10878 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10879 arg = build_real (type, c);
10880 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
10881 }
10882 }
10883
10884 /* Optimize pow(x,c)*x as pow(x,c+1). */
10885 if (fcode0 == BUILT_IN_POW
10886 || fcode0 == BUILT_IN_POWF
10887 || fcode0 == BUILT_IN_POWL)
10888 {
10889 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10890 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10891 if (TREE_CODE (arg01) == REAL_CST
10892 && !TREE_OVERFLOW (arg01)
10893 && operand_equal_p (arg1, arg00, 0))
10894 {
10895 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10896 REAL_VALUE_TYPE c;
10897 tree arg;
10898
10899 c = TREE_REAL_CST (arg01);
10900 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10901 arg = build_real (type, c);
10902 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
10903 }
10904 }
10905
10906 /* Canonicalize x*x as pow(x,2.0), which is expanded as x*x. */
10907 if (!in_gimple_form
10908 && optimize
10909 && operand_equal_p (arg0, arg1, 0))
10910 {
10911 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
10912
10913 if (powfn)
10914 {
10915 tree arg = build_real (type, dconst2);
10916 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
10917 }
10918 }
10919 }
10920 }
10921 goto associate;
10922
10923 case BIT_IOR_EXPR:
10924 bit_ior:
10925 /* Canonicalize (X & C1) | C2. */
10926 if (TREE_CODE (arg0) == BIT_AND_EXPR
10927 && TREE_CODE (arg1) == INTEGER_CST
10928 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10929 {
10930 int width = TYPE_PRECISION (type), w;
10931 wide_int c1 = TREE_OPERAND (arg0, 1);
10932 wide_int c2 = arg1;
10933
10934 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10935 if ((c1 & c2) == c1)
10936 return omit_one_operand_loc (loc, type, arg1,
10937 TREE_OPERAND (arg0, 0));
10938
10939 wide_int msk = wi::mask (width, false,
10940 TYPE_PRECISION (TREE_TYPE (arg1)));
10941
10942 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10943 if (msk.and_not (c1 | c2) == 0)
10944 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
10945 TREE_OPERAND (arg0, 0), arg1);
10946
10947 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10948 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10949 mode which allows further optimizations. */
10950 c1 &= msk;
10951 c2 &= msk;
10952 wide_int c3 = c1.and_not (c2);
10953 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
10954 {
10955 wide_int mask = wi::mask (w, false,
10956 TYPE_PRECISION (type));
10957 if (((c1 | c2) & mask) == mask && c1.and_not (mask) == 0)
10958 {
10959 c3 = mask;
10960 break;
10961 }
10962 }
10963
10964 if (c3 != c1)
10965 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
10966 fold_build2_loc (loc, BIT_AND_EXPR, type,
10967 TREE_OPERAND (arg0, 0),
10968 wide_int_to_tree (type,
10969 c3)),
10970 arg1);
10971 }
10972
10973 /* (X & ~Y) | (~X & Y) is X ^ Y */
10974 if (TREE_CODE (arg0) == BIT_AND_EXPR
10975 && TREE_CODE (arg1) == BIT_AND_EXPR)
10976 {
10977 tree a0, a1, l0, l1, n0, n1;
10978
10979 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10980 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10981
10982 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10983 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10984
10985 n0 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l0);
10986 n1 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l1);
10987
10988 if ((operand_equal_p (n0, a0, 0)
10989 && operand_equal_p (n1, a1, 0))
10990 || (operand_equal_p (n0, a1, 0)
10991 && operand_equal_p (n1, a0, 0)))
10992 return fold_build2_loc (loc, BIT_XOR_EXPR, type, l0, n1);
10993 }
10994
10995 t1 = distribute_bit_expr (loc, code, type, arg0, arg1);
10996 if (t1 != NULL_TREE)
10997 return t1;
10998
10999 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
11000
11001 This results in more efficient code for machines without a NAND
11002 instruction. Combine will canonicalize to the first form
11003 which will allow use of NAND instructions provided by the
11004 backend if they exist. */
11005 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11006 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11007 {
11008 return
11009 fold_build1_loc (loc, BIT_NOT_EXPR, type,
11010 build2 (BIT_AND_EXPR, type,
11011 fold_convert_loc (loc, type,
11012 TREE_OPERAND (arg0, 0)),
11013 fold_convert_loc (loc, type,
11014 TREE_OPERAND (arg1, 0))));
11015 }
11016
11017 /* See if this can be simplified into a rotate first. If that
11018 is unsuccessful continue in the association code. */
11019 goto bit_rotate;
11020
11021 case BIT_XOR_EXPR:
11022 /* ~X ^ X is -1. */
11023 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11024 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11025 {
11026 t1 = build_zero_cst (type);
11027 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
11028 return omit_one_operand_loc (loc, type, t1, arg1);
11029 }
11030
11031 /* X ^ ~X is -1. */
11032 if (TREE_CODE (arg1) == BIT_NOT_EXPR
11033 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11034 {
11035 t1 = build_zero_cst (type);
11036 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
11037 return omit_one_operand_loc (loc, type, t1, arg0);
11038 }
11039
11040 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
11041 with a constant, and the two constants have no bits in common,
11042 we should treat this as a BIT_IOR_EXPR since this may produce more
11043 simplifications. */
11044 if (TREE_CODE (arg0) == BIT_AND_EXPR
11045 && TREE_CODE (arg1) == BIT_AND_EXPR
11046 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11047 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
11048 && wi::bit_and (TREE_OPERAND (arg0, 1),
11049 TREE_OPERAND (arg1, 1)) == 0)
11050 {
11051 code = BIT_IOR_EXPR;
11052 goto bit_ior;
11053 }
11054
11055 /* (X | Y) ^ X -> Y & ~ X*/
11056 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11057 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11058 {
11059 tree t2 = TREE_OPERAND (arg0, 1);
11060 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg1),
11061 arg1);
11062 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
11063 fold_convert_loc (loc, type, t2),
11064 fold_convert_loc (loc, type, t1));
11065 return t1;
11066 }
11067
11068 /* (Y | X) ^ X -> Y & ~ X*/
11069 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11070 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11071 {
11072 tree t2 = TREE_OPERAND (arg0, 0);
11073 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg1),
11074 arg1);
11075 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
11076 fold_convert_loc (loc, type, t2),
11077 fold_convert_loc (loc, type, t1));
11078 return t1;
11079 }
11080
11081 /* X ^ (X | Y) -> Y & ~ X*/
11082 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11083 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
11084 {
11085 tree t2 = TREE_OPERAND (arg1, 1);
11086 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg0),
11087 arg0);
11088 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
11089 fold_convert_loc (loc, type, t2),
11090 fold_convert_loc (loc, type, t1));
11091 return t1;
11092 }
11093
11094 /* X ^ (Y | X) -> Y & ~ X*/
11095 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11096 && operand_equal_p (TREE_OPERAND (arg1, 1), arg0, 0))
11097 {
11098 tree t2 = TREE_OPERAND (arg1, 0);
11099 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg0),
11100 arg0);
11101 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
11102 fold_convert_loc (loc, type, t2),
11103 fold_convert_loc (loc, type, t1));
11104 return t1;
11105 }
11106
11107 /* Convert ~X ^ ~Y to X ^ Y. */
11108 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11109 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11110 return fold_build2_loc (loc, code, type,
11111 fold_convert_loc (loc, type,
11112 TREE_OPERAND (arg0, 0)),
11113 fold_convert_loc (loc, type,
11114 TREE_OPERAND (arg1, 0)));
11115
11116 /* Convert ~X ^ C to X ^ ~C. */
11117 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11118 && TREE_CODE (arg1) == INTEGER_CST)
11119 return fold_build2_loc (loc, code, type,
11120 fold_convert_loc (loc, type,
11121 TREE_OPERAND (arg0, 0)),
11122 fold_build1_loc (loc, BIT_NOT_EXPR, type, arg1));
11123
11124 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
11125 if (TREE_CODE (arg0) == BIT_AND_EXPR
11126 && INTEGRAL_TYPE_P (type)
11127 && integer_onep (TREE_OPERAND (arg0, 1))
11128 && integer_onep (arg1))
11129 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
11130 build_zero_cst (TREE_TYPE (arg0)));
11131
11132 /* Fold (X & Y) ^ Y as ~X & Y. */
11133 if (TREE_CODE (arg0) == BIT_AND_EXPR
11134 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11135 {
11136 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11137 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11138 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11139 fold_convert_loc (loc, type, arg1));
11140 }
11141 /* Fold (X & Y) ^ X as ~Y & X. */
11142 if (TREE_CODE (arg0) == BIT_AND_EXPR
11143 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11144 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11145 {
11146 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11147 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11148 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11149 fold_convert_loc (loc, type, arg1));
11150 }
11151 /* Fold X ^ (X & Y) as X & ~Y. */
11152 if (TREE_CODE (arg1) == BIT_AND_EXPR
11153 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11154 {
11155 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
11156 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11157 fold_convert_loc (loc, type, arg0),
11158 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
11159 }
11160 /* Fold X ^ (Y & X) as ~Y & X. */
11161 if (TREE_CODE (arg1) == BIT_AND_EXPR
11162 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
11163 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
11164 {
11165 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
11166 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11167 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11168 fold_convert_loc (loc, type, arg0));
11169 }
11170
11171 /* See if this can be simplified into a rotate first. If that
11172 is unsuccessful continue in the association code. */
11173 goto bit_rotate;
11174
11175 case BIT_AND_EXPR:
11176 /* ~X & X, (X == 0) & X, and !X & X are always zero. */
11177 if ((TREE_CODE (arg0) == BIT_NOT_EXPR
11178 || TREE_CODE (arg0) == TRUTH_NOT_EXPR
11179 || (TREE_CODE (arg0) == EQ_EXPR
11180 && integer_zerop (TREE_OPERAND (arg0, 1))))
11181 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11182 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
11183
11184 /* X & ~X , X & (X == 0), and X & !X are always zero. */
11185 if ((TREE_CODE (arg1) == BIT_NOT_EXPR
11186 || TREE_CODE (arg1) == TRUTH_NOT_EXPR
11187 || (TREE_CODE (arg1) == EQ_EXPR
11188 && integer_zerop (TREE_OPERAND (arg1, 1))))
11189 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11190 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11191
11192 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
11193 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11194 && INTEGRAL_TYPE_P (type)
11195 && integer_onep (TREE_OPERAND (arg0, 1))
11196 && integer_onep (arg1))
11197 {
11198 tree tem2;
11199 tem = TREE_OPERAND (arg0, 0);
11200 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
11201 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
11202 tem, tem2);
11203 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
11204 build_zero_cst (TREE_TYPE (tem)));
11205 }
11206 /* Fold ~X & 1 as (X & 1) == 0. */
11207 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11208 && INTEGRAL_TYPE_P (type)
11209 && integer_onep (arg1))
11210 {
11211 tree tem2;
11212 tem = TREE_OPERAND (arg0, 0);
11213 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
11214 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
11215 tem, tem2);
11216 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
11217 build_zero_cst (TREE_TYPE (tem)));
11218 }
11219 /* Fold !X & 1 as X == 0. */
11220 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11221 && integer_onep (arg1))
11222 {
11223 tem = TREE_OPERAND (arg0, 0);
11224 return fold_build2_loc (loc, EQ_EXPR, type, tem,
11225 build_zero_cst (TREE_TYPE (tem)));
11226 }
11227
11228 /* Fold (X ^ Y) & Y as ~X & Y. */
11229 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11230 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11231 {
11232 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11233 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11234 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11235 fold_convert_loc (loc, type, arg1));
11236 }
11237 /* Fold (X ^ Y) & X as ~Y & X. */
11238 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11239 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11240 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11241 {
11242 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11243 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11244 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11245 fold_convert_loc (loc, type, arg1));
11246 }
11247 /* Fold X & (X ^ Y) as X & ~Y. */
11248 if (TREE_CODE (arg1) == BIT_XOR_EXPR
11249 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11250 {
11251 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
11252 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11253 fold_convert_loc (loc, type, arg0),
11254 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
11255 }
11256 /* Fold X & (Y ^ X) as ~Y & X. */
11257 if (TREE_CODE (arg1) == BIT_XOR_EXPR
11258 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
11259 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
11260 {
11261 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
11262 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11263 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11264 fold_convert_loc (loc, type, arg0));
11265 }
11266
11267 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
11268 multiple of 1 << CST. */
11269 if (TREE_CODE (arg1) == INTEGER_CST)
11270 {
11271 wide_int cst1 = arg1;
11272 wide_int ncst1 = -cst1;
11273 if ((cst1 & ncst1) == ncst1
11274 && multiple_of_p (type, arg0,
11275 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
11276 return fold_convert_loc (loc, type, arg0);
11277 }
11278
11279 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
11280 bits from CST2. */
11281 if (TREE_CODE (arg1) == INTEGER_CST
11282 && TREE_CODE (arg0) == MULT_EXPR
11283 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11284 {
11285 wide_int warg1 = arg1;
11286 wide_int masked = mask_with_tz (type, warg1, TREE_OPERAND (arg0, 1));
11287
11288 if (masked == 0)
11289 return omit_two_operands_loc (loc, type, build_zero_cst (type),
11290 arg0, arg1);
11291 else if (masked != warg1)
11292 {
11293 /* Avoid the transform if arg1 is a mask of some
11294 mode which allows further optimizations. */
11295 int pop = wi::popcount (warg1);
11296 if (!(pop >= BITS_PER_UNIT
11297 && exact_log2 (pop) != -1
11298 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
11299 return fold_build2_loc (loc, code, type, op0,
11300 wide_int_to_tree (type, masked));
11301 }
11302 }
11303
11304 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
11305 ((A & N) + B) & M -> (A + B) & M
11306 Similarly if (N & M) == 0,
11307 ((A | N) + B) & M -> (A + B) & M
11308 and for - instead of + (or unary - instead of +)
11309 and/or ^ instead of |.
11310 If B is constant and (B & M) == 0, fold into A & M. */
11311 if (TREE_CODE (arg1) == INTEGER_CST)
11312 {
11313 wide_int cst1 = arg1;
11314 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
11315 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
11316 && (TREE_CODE (arg0) == PLUS_EXPR
11317 || TREE_CODE (arg0) == MINUS_EXPR
11318 || TREE_CODE (arg0) == NEGATE_EXPR)
11319 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
11320 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
11321 {
11322 tree pmop[2];
11323 int which = 0;
11324 wide_int cst0;
11325
11326 /* Now we know that arg0 is (C + D) or (C - D) or
11327 -C and arg1 (M) is == (1LL << cst) - 1.
11328 Store C into PMOP[0] and D into PMOP[1]. */
11329 pmop[0] = TREE_OPERAND (arg0, 0);
11330 pmop[1] = NULL;
11331 if (TREE_CODE (arg0) != NEGATE_EXPR)
11332 {
11333 pmop[1] = TREE_OPERAND (arg0, 1);
11334 which = 1;
11335 }
11336
11337 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
11338 which = -1;
11339
11340 for (; which >= 0; which--)
11341 switch (TREE_CODE (pmop[which]))
11342 {
11343 case BIT_AND_EXPR:
11344 case BIT_IOR_EXPR:
11345 case BIT_XOR_EXPR:
11346 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
11347 != INTEGER_CST)
11348 break;
11349 cst0 = TREE_OPERAND (pmop[which], 1);
11350 cst0 &= cst1;
11351 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
11352 {
11353 if (cst0 != cst1)
11354 break;
11355 }
11356 else if (cst0 != 0)
11357 break;
11358 /* If C or D is of the form (A & N) where
11359 (N & M) == M, or of the form (A | N) or
11360 (A ^ N) where (N & M) == 0, replace it with A. */
11361 pmop[which] = TREE_OPERAND (pmop[which], 0);
11362 break;
11363 case INTEGER_CST:
11364 /* If C or D is a N where (N & M) == 0, it can be
11365 omitted (assumed 0). */
11366 if ((TREE_CODE (arg0) == PLUS_EXPR
11367 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
11368 && (cst1 & pmop[which]) == 0)
11369 pmop[which] = NULL;
11370 break;
11371 default:
11372 break;
11373 }
11374
11375 /* Only build anything new if we optimized one or both arguments
11376 above. */
11377 if (pmop[0] != TREE_OPERAND (arg0, 0)
11378 || (TREE_CODE (arg0) != NEGATE_EXPR
11379 && pmop[1] != TREE_OPERAND (arg0, 1)))
11380 {
11381 tree utype = TREE_TYPE (arg0);
11382 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
11383 {
11384 /* Perform the operations in a type that has defined
11385 overflow behavior. */
11386 utype = unsigned_type_for (TREE_TYPE (arg0));
11387 if (pmop[0] != NULL)
11388 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
11389 if (pmop[1] != NULL)
11390 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
11391 }
11392
11393 if (TREE_CODE (arg0) == NEGATE_EXPR)
11394 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
11395 else if (TREE_CODE (arg0) == PLUS_EXPR)
11396 {
11397 if (pmop[0] != NULL && pmop[1] != NULL)
11398 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
11399 pmop[0], pmop[1]);
11400 else if (pmop[0] != NULL)
11401 tem = pmop[0];
11402 else if (pmop[1] != NULL)
11403 tem = pmop[1];
11404 else
11405 return build_int_cst (type, 0);
11406 }
11407 else if (pmop[0] == NULL)
11408 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
11409 else
11410 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
11411 pmop[0], pmop[1]);
11412 /* TEM is now the new binary +, - or unary - replacement. */
11413 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
11414 fold_convert_loc (loc, utype, arg1));
11415 return fold_convert_loc (loc, type, tem);
11416 }
11417 }
11418 }
11419
11420 t1 = distribute_bit_expr (loc, code, type, arg0, arg1);
11421 if (t1 != NULL_TREE)
11422 return t1;
11423 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
11424 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
11425 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
11426 {
11427 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
11428
11429 wide_int mask = wide_int::from (arg1, prec, UNSIGNED);
11430 if (mask == -1)
11431 return
11432 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11433 }
11434
11435 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
11436
11437 This results in more efficient code for machines without a NOR
11438 instruction. Combine will canonicalize to the first form
11439 which will allow use of NOR instructions provided by the
11440 backend if they exist. */
11441 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11442 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11443 {
11444 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
11445 build2 (BIT_IOR_EXPR, type,
11446 fold_convert_loc (loc, type,
11447 TREE_OPERAND (arg0, 0)),
11448 fold_convert_loc (loc, type,
11449 TREE_OPERAND (arg1, 0))));
11450 }
11451
11452 /* If arg0 is derived from the address of an object or function, we may
11453 be able to fold this expression using the object or function's
11454 alignment. */
11455 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && tree_fits_uhwi_p (arg1))
11456 {
11457 unsigned HOST_WIDE_INT modulus, residue;
11458 unsigned HOST_WIDE_INT low = tree_to_uhwi (arg1);
11459
11460 modulus = get_pointer_modulus_and_residue (arg0, &residue,
11461 integer_onep (arg1));
11462
11463 /* This works because modulus is a power of 2. If this weren't the
11464 case, we'd have to replace it by its greatest power-of-2
11465 divisor: modulus & -modulus. */
11466 if (low < modulus)
11467 return build_int_cst (type, residue & low);
11468 }
11469
11470 goto associate;
11471
11472 case RDIV_EXPR:
11473 /* Don't touch a floating-point divide by zero unless the mode
11474 of the constant can represent infinity. */
11475 if (TREE_CODE (arg1) == REAL_CST
11476 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
11477 && real_zerop (arg1))
11478 return NULL_TREE;
11479
11480 /* (-A) / (-B) -> A / B */
11481 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
11482 return fold_build2_loc (loc, RDIV_EXPR, type,
11483 TREE_OPERAND (arg0, 0),
11484 negate_expr (arg1));
11485 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
11486 return fold_build2_loc (loc, RDIV_EXPR, type,
11487 negate_expr (arg0),
11488 TREE_OPERAND (arg1, 0));
11489
11490 /* Convert A/B/C to A/(B*C). */
11491 if (flag_reciprocal_math
11492 && TREE_CODE (arg0) == RDIV_EXPR)
11493 return fold_build2_loc (loc, RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
11494 fold_build2_loc (loc, MULT_EXPR, type,
11495 TREE_OPERAND (arg0, 1), arg1));
11496
11497 /* Convert A/(B/C) to (A/B)*C. */
11498 if (flag_reciprocal_math
11499 && TREE_CODE (arg1) == RDIV_EXPR)
11500 return fold_build2_loc (loc, MULT_EXPR, type,
11501 fold_build2_loc (loc, RDIV_EXPR, type, arg0,
11502 TREE_OPERAND (arg1, 0)),
11503 TREE_OPERAND (arg1, 1));
11504
11505 /* Convert C1/(X*C2) into (C1/C2)/X. */
11506 if (flag_reciprocal_math
11507 && TREE_CODE (arg1) == MULT_EXPR
11508 && TREE_CODE (arg0) == REAL_CST
11509 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
11510 {
11511 tree tem = const_binop (RDIV_EXPR, arg0,
11512 TREE_OPERAND (arg1, 1));
11513 if (tem)
11514 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
11515 TREE_OPERAND (arg1, 0));
11516 }
11517
11518 if (flag_unsafe_math_optimizations)
11519 {
11520 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
11521 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
11522
11523 /* Optimize sin(x)/cos(x) as tan(x). */
11524 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
11525 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
11526 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
11527 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11528 CALL_EXPR_ARG (arg1, 0), 0))
11529 {
11530 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11531
11532 if (tanfn != NULL_TREE)
11533 return build_call_expr_loc (loc, tanfn, 1, CALL_EXPR_ARG (arg0, 0));
11534 }
11535
11536 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
11537 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
11538 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
11539 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
11540 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11541 CALL_EXPR_ARG (arg1, 0), 0))
11542 {
11543 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11544
11545 if (tanfn != NULL_TREE)
11546 {
11547 tree tmp = build_call_expr_loc (loc, tanfn, 1,
11548 CALL_EXPR_ARG (arg0, 0));
11549 return fold_build2_loc (loc, RDIV_EXPR, type,
11550 build_real (type, dconst1), tmp);
11551 }
11552 }
11553
11554 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
11555 NaNs or Infinities. */
11556 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
11557 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
11558 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
11559 {
11560 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11561 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11562
11563 if (! HONOR_NANS (arg00)
11564 && ! HONOR_INFINITIES (element_mode (arg00))
11565 && operand_equal_p (arg00, arg01, 0))
11566 {
11567 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11568
11569 if (cosfn != NULL_TREE)
11570 return build_call_expr_loc (loc, cosfn, 1, arg00);
11571 }
11572 }
11573
11574 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
11575 NaNs or Infinities. */
11576 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
11577 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
11578 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
11579 {
11580 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11581 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11582
11583 if (! HONOR_NANS (arg00)
11584 && ! HONOR_INFINITIES (element_mode (arg00))
11585 && operand_equal_p (arg00, arg01, 0))
11586 {
11587 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11588
11589 if (cosfn != NULL_TREE)
11590 {
11591 tree tmp = build_call_expr_loc (loc, cosfn, 1, arg00);
11592 return fold_build2_loc (loc, RDIV_EXPR, type,
11593 build_real (type, dconst1),
11594 tmp);
11595 }
11596 }
11597 }
11598
11599 /* Optimize pow(x,c)/x as pow(x,c-1). */
11600 if (fcode0 == BUILT_IN_POW
11601 || fcode0 == BUILT_IN_POWF
11602 || fcode0 == BUILT_IN_POWL)
11603 {
11604 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11605 tree arg01 = CALL_EXPR_ARG (arg0, 1);
11606 if (TREE_CODE (arg01) == REAL_CST
11607 && !TREE_OVERFLOW (arg01)
11608 && operand_equal_p (arg1, arg00, 0))
11609 {
11610 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
11611 REAL_VALUE_TYPE c;
11612 tree arg;
11613
11614 c = TREE_REAL_CST (arg01);
11615 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
11616 arg = build_real (type, c);
11617 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
11618 }
11619 }
11620
11621 /* Optimize a/root(b/c) into a*root(c/b). */
11622 if (BUILTIN_ROOT_P (fcode1))
11623 {
11624 tree rootarg = CALL_EXPR_ARG (arg1, 0);
11625
11626 if (TREE_CODE (rootarg) == RDIV_EXPR)
11627 {
11628 tree rootfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11629 tree b = TREE_OPERAND (rootarg, 0);
11630 tree c = TREE_OPERAND (rootarg, 1);
11631
11632 tree tmp = fold_build2_loc (loc, RDIV_EXPR, type, c, b);
11633
11634 tmp = build_call_expr_loc (loc, rootfn, 1, tmp);
11635 return fold_build2_loc (loc, MULT_EXPR, type, arg0, tmp);
11636 }
11637 }
11638
11639 /* Optimize x/expN(y) into x*expN(-y). */
11640 if (BUILTIN_EXPONENT_P (fcode1))
11641 {
11642 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11643 tree arg = negate_expr (CALL_EXPR_ARG (arg1, 0));
11644 arg1 = build_call_expr_loc (loc,
11645 expfn, 1,
11646 fold_convert_loc (loc, type, arg));
11647 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11648 }
11649
11650 /* Optimize x/pow(y,z) into x*pow(y,-z). */
11651 if (fcode1 == BUILT_IN_POW
11652 || fcode1 == BUILT_IN_POWF
11653 || fcode1 == BUILT_IN_POWL)
11654 {
11655 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11656 tree arg10 = CALL_EXPR_ARG (arg1, 0);
11657 tree arg11 = CALL_EXPR_ARG (arg1, 1);
11658 tree neg11 = fold_convert_loc (loc, type,
11659 negate_expr (arg11));
11660 arg1 = build_call_expr_loc (loc, powfn, 2, arg10, neg11);
11661 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11662 }
11663 }
11664 return NULL_TREE;
11665
11666 case TRUNC_DIV_EXPR:
11667 /* Optimize (X & (-A)) / A where A is a power of 2,
11668 to X >> log2(A) */
11669 if (TREE_CODE (arg0) == BIT_AND_EXPR
11670 && !TYPE_UNSIGNED (type) && TREE_CODE (arg1) == INTEGER_CST
11671 && integer_pow2p (arg1) && tree_int_cst_sgn (arg1) > 0)
11672 {
11673 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (arg1),
11674 arg1, TREE_OPERAND (arg0, 1));
11675 if (sum && integer_zerop (sum)) {
11676 tree pow2 = build_int_cst (integer_type_node,
11677 wi::exact_log2 (arg1));
11678 return fold_build2_loc (loc, RSHIFT_EXPR, type,
11679 TREE_OPERAND (arg0, 0), pow2);
11680 }
11681 }
11682
11683 /* Fall through */
11684
11685 case FLOOR_DIV_EXPR:
11686 /* Simplify A / (B << N) where A and B are positive and B is
11687 a power of 2, to A >> (N + log2(B)). */
11688 strict_overflow_p = false;
11689 if (TREE_CODE (arg1) == LSHIFT_EXPR
11690 && (TYPE_UNSIGNED (type)
11691 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
11692 {
11693 tree sval = TREE_OPERAND (arg1, 0);
11694 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
11695 {
11696 tree sh_cnt = TREE_OPERAND (arg1, 1);
11697 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
11698 wi::exact_log2 (sval));
11699
11700 if (strict_overflow_p)
11701 fold_overflow_warning (("assuming signed overflow does not "
11702 "occur when simplifying A / (B << N)"),
11703 WARN_STRICT_OVERFLOW_MISC);
11704
11705 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
11706 sh_cnt, pow2);
11707 return fold_build2_loc (loc, RSHIFT_EXPR, type,
11708 fold_convert_loc (loc, type, arg0), sh_cnt);
11709 }
11710 }
11711
11712 /* Fall through */
11713
11714 case ROUND_DIV_EXPR:
11715 case CEIL_DIV_EXPR:
11716 case EXACT_DIV_EXPR:
11717 if (integer_zerop (arg1))
11718 return NULL_TREE;
11719
11720 /* Convert -A / -B to A / B when the type is signed and overflow is
11721 undefined. */
11722 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11723 && TREE_CODE (arg0) == NEGATE_EXPR
11724 && negate_expr_p (arg1))
11725 {
11726 if (INTEGRAL_TYPE_P (type))
11727 fold_overflow_warning (("assuming signed overflow does not occur "
11728 "when distributing negation across "
11729 "division"),
11730 WARN_STRICT_OVERFLOW_MISC);
11731 return fold_build2_loc (loc, code, type,
11732 fold_convert_loc (loc, type,
11733 TREE_OPERAND (arg0, 0)),
11734 fold_convert_loc (loc, type,
11735 negate_expr (arg1)));
11736 }
11737 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11738 && TREE_CODE (arg1) == NEGATE_EXPR
11739 && negate_expr_p (arg0))
11740 {
11741 if (INTEGRAL_TYPE_P (type))
11742 fold_overflow_warning (("assuming signed overflow does not occur "
11743 "when distributing negation across "
11744 "division"),
11745 WARN_STRICT_OVERFLOW_MISC);
11746 return fold_build2_loc (loc, code, type,
11747 fold_convert_loc (loc, type,
11748 negate_expr (arg0)),
11749 fold_convert_loc (loc, type,
11750 TREE_OPERAND (arg1, 0)));
11751 }
11752
11753 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
11754 operation, EXACT_DIV_EXPR.
11755
11756 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
11757 At one time others generated faster code, it's not clear if they do
11758 after the last round to changes to the DIV code in expmed.c. */
11759 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
11760 && multiple_of_p (type, arg0, arg1))
11761 return fold_build2_loc (loc, EXACT_DIV_EXPR, type, arg0, arg1);
11762
11763 strict_overflow_p = false;
11764 if (TREE_CODE (arg1) == INTEGER_CST
11765 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11766 &strict_overflow_p)))
11767 {
11768 if (strict_overflow_p)
11769 fold_overflow_warning (("assuming signed overflow does not occur "
11770 "when simplifying division"),
11771 WARN_STRICT_OVERFLOW_MISC);
11772 return fold_convert_loc (loc, type, tem);
11773 }
11774
11775 return NULL_TREE;
11776
11777 case CEIL_MOD_EXPR:
11778 case FLOOR_MOD_EXPR:
11779 case ROUND_MOD_EXPR:
11780 case TRUNC_MOD_EXPR:
11781 strict_overflow_p = false;
11782 if (TREE_CODE (arg1) == INTEGER_CST
11783 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11784 &strict_overflow_p)))
11785 {
11786 if (strict_overflow_p)
11787 fold_overflow_warning (("assuming signed overflow does not occur "
11788 "when simplifying modulus"),
11789 WARN_STRICT_OVERFLOW_MISC);
11790 return fold_convert_loc (loc, type, tem);
11791 }
11792
11793 return NULL_TREE;
11794
11795 case LROTATE_EXPR:
11796 case RROTATE_EXPR:
11797 case RSHIFT_EXPR:
11798 case LSHIFT_EXPR:
11799 /* Since negative shift count is not well-defined,
11800 don't try to compute it in the compiler. */
11801 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
11802 return NULL_TREE;
11803
11804 prec = element_precision (type);
11805
11806 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
11807 if (TREE_CODE (op0) == code && tree_fits_uhwi_p (arg1)
11808 && tree_to_uhwi (arg1) < prec
11809 && tree_fits_uhwi_p (TREE_OPERAND (arg0, 1))
11810 && tree_to_uhwi (TREE_OPERAND (arg0, 1)) < prec)
11811 {
11812 unsigned int low = (tree_to_uhwi (TREE_OPERAND (arg0, 1))
11813 + tree_to_uhwi (arg1));
11814
11815 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
11816 being well defined. */
11817 if (low >= prec)
11818 {
11819 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
11820 low = low % prec;
11821 else if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
11822 return omit_one_operand_loc (loc, type, build_zero_cst (type),
11823 TREE_OPERAND (arg0, 0));
11824 else
11825 low = prec - 1;
11826 }
11827
11828 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
11829 build_int_cst (TREE_TYPE (arg1), low));
11830 }
11831
11832 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
11833 into x & ((unsigned)-1 >> c) for unsigned types. */
11834 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
11835 || (TYPE_UNSIGNED (type)
11836 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
11837 && tree_fits_uhwi_p (arg1)
11838 && tree_to_uhwi (arg1) < prec
11839 && tree_fits_uhwi_p (TREE_OPERAND (arg0, 1))
11840 && tree_to_uhwi (TREE_OPERAND (arg0, 1)) < prec)
11841 {
11842 HOST_WIDE_INT low0 = tree_to_uhwi (TREE_OPERAND (arg0, 1));
11843 HOST_WIDE_INT low1 = tree_to_uhwi (arg1);
11844 tree lshift;
11845 tree arg00;
11846
11847 if (low0 == low1)
11848 {
11849 arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11850
11851 lshift = build_minus_one_cst (type);
11852 lshift = const_binop (code, lshift, arg1);
11853
11854 return fold_build2_loc (loc, BIT_AND_EXPR, type, arg00, lshift);
11855 }
11856 }
11857
11858 /* If we have a rotate of a bit operation with the rotate count and
11859 the second operand of the bit operation both constant,
11860 permute the two operations. */
11861 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11862 && (TREE_CODE (arg0) == BIT_AND_EXPR
11863 || TREE_CODE (arg0) == BIT_IOR_EXPR
11864 || TREE_CODE (arg0) == BIT_XOR_EXPR)
11865 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11866 return fold_build2_loc (loc, TREE_CODE (arg0), type,
11867 fold_build2_loc (loc, code, type,
11868 TREE_OPERAND (arg0, 0), arg1),
11869 fold_build2_loc (loc, code, type,
11870 TREE_OPERAND (arg0, 1), arg1));
11871
11872 /* Two consecutive rotates adding up to the some integer
11873 multiple of the precision of the type can be ignored. */
11874 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11875 && TREE_CODE (arg0) == RROTATE_EXPR
11876 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11877 && wi::umod_trunc (wi::add (arg1, TREE_OPERAND (arg0, 1)),
11878 prec) == 0)
11879 return TREE_OPERAND (arg0, 0);
11880
11881 /* Fold (X & C2) << C1 into (X << C1) & (C2 << C1)
11882 (X & C2) >> C1 into (X >> C1) & (C2 >> C1)
11883 if the latter can be further optimized. */
11884 if ((code == LSHIFT_EXPR || code == RSHIFT_EXPR)
11885 && TREE_CODE (arg0) == BIT_AND_EXPR
11886 && TREE_CODE (arg1) == INTEGER_CST
11887 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11888 {
11889 tree mask = fold_build2_loc (loc, code, type,
11890 fold_convert_loc (loc, type,
11891 TREE_OPERAND (arg0, 1)),
11892 arg1);
11893 tree shift = fold_build2_loc (loc, code, type,
11894 fold_convert_loc (loc, type,
11895 TREE_OPERAND (arg0, 0)),
11896 arg1);
11897 tem = fold_binary_loc (loc, BIT_AND_EXPR, type, shift, mask);
11898 if (tem)
11899 return tem;
11900 }
11901
11902 return NULL_TREE;
11903
11904 case MIN_EXPR:
11905 tem = fold_minmax (loc, MIN_EXPR, type, arg0, arg1);
11906 if (tem)
11907 return tem;
11908 goto associate;
11909
11910 case MAX_EXPR:
11911 tem = fold_minmax (loc, MAX_EXPR, type, arg0, arg1);
11912 if (tem)
11913 return tem;
11914 goto associate;
11915
11916 case TRUTH_ANDIF_EXPR:
11917 /* Note that the operands of this must be ints
11918 and their values must be 0 or 1.
11919 ("true" is a fixed value perhaps depending on the language.) */
11920 /* If first arg is constant zero, return it. */
11921 if (integer_zerop (arg0))
11922 return fold_convert_loc (loc, type, arg0);
11923 case TRUTH_AND_EXPR:
11924 /* If either arg is constant true, drop it. */
11925 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11926 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
11927 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
11928 /* Preserve sequence points. */
11929 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
11930 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11931 /* If second arg is constant zero, result is zero, but first arg
11932 must be evaluated. */
11933 if (integer_zerop (arg1))
11934 return omit_one_operand_loc (loc, type, arg1, arg0);
11935 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
11936 case will be handled here. */
11937 if (integer_zerop (arg0))
11938 return omit_one_operand_loc (loc, type, arg0, arg1);
11939
11940 /* !X && X is always false. */
11941 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11942 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11943 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
11944 /* X && !X is always false. */
11945 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11946 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11947 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11948
11949 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
11950 means A >= Y && A != MAX, but in this case we know that
11951 A < X <= MAX. */
11952
11953 if (!TREE_SIDE_EFFECTS (arg0)
11954 && !TREE_SIDE_EFFECTS (arg1))
11955 {
11956 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
11957 if (tem && !operand_equal_p (tem, arg0, 0))
11958 return fold_build2_loc (loc, code, type, tem, arg1);
11959
11960 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
11961 if (tem && !operand_equal_p (tem, arg1, 0))
11962 return fold_build2_loc (loc, code, type, arg0, tem);
11963 }
11964
11965 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
11966 != NULL_TREE)
11967 return tem;
11968
11969 return NULL_TREE;
11970
11971 case TRUTH_ORIF_EXPR:
11972 /* Note that the operands of this must be ints
11973 and their values must be 0 or true.
11974 ("true" is a fixed value perhaps depending on the language.) */
11975 /* If first arg is constant true, return it. */
11976 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11977 return fold_convert_loc (loc, type, arg0);
11978 case TRUTH_OR_EXPR:
11979 /* If either arg is constant zero, drop it. */
11980 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
11981 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
11982 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
11983 /* Preserve sequence points. */
11984 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
11985 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11986 /* If second arg is constant true, result is true, but we must
11987 evaluate first arg. */
11988 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
11989 return omit_one_operand_loc (loc, type, arg1, arg0);
11990 /* Likewise for first arg, but note this only occurs here for
11991 TRUTH_OR_EXPR. */
11992 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11993 return omit_one_operand_loc (loc, type, arg0, arg1);
11994
11995 /* !X || X is always true. */
11996 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11997 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11998 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
11999 /* X || !X is always true. */
12000 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12001 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12002 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12003
12004 /* (X && !Y) || (!X && Y) is X ^ Y */
12005 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
12006 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
12007 {
12008 tree a0, a1, l0, l1, n0, n1;
12009
12010 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
12011 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
12012
12013 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
12014 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
12015
12016 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
12017 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
12018
12019 if ((operand_equal_p (n0, a0, 0)
12020 && operand_equal_p (n1, a1, 0))
12021 || (operand_equal_p (n0, a1, 0)
12022 && operand_equal_p (n1, a0, 0)))
12023 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
12024 }
12025
12026 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
12027 != NULL_TREE)
12028 return tem;
12029
12030 return NULL_TREE;
12031
12032 case TRUTH_XOR_EXPR:
12033 /* If the second arg is constant zero, drop it. */
12034 if (integer_zerop (arg1))
12035 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12036 /* If the second arg is constant true, this is a logical inversion. */
12037 if (integer_onep (arg1))
12038 {
12039 tem = invert_truthvalue_loc (loc, arg0);
12040 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
12041 }
12042 /* Identical arguments cancel to zero. */
12043 if (operand_equal_p (arg0, arg1, 0))
12044 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12045
12046 /* !X ^ X is always true. */
12047 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12048 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12049 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
12050
12051 /* X ^ !X is always true. */
12052 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12053 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12054 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12055
12056 return NULL_TREE;
12057
12058 case EQ_EXPR:
12059 case NE_EXPR:
12060 STRIP_NOPS (arg0);
12061 STRIP_NOPS (arg1);
12062
12063 tem = fold_comparison (loc, code, type, op0, op1);
12064 if (tem != NULL_TREE)
12065 return tem;
12066
12067 /* bool_var != 0 becomes bool_var. */
12068 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12069 && code == NE_EXPR)
12070 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12071
12072 /* bool_var == 1 becomes bool_var. */
12073 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12074 && code == EQ_EXPR)
12075 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12076
12077 /* bool_var != 1 becomes !bool_var. */
12078 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12079 && code == NE_EXPR)
12080 return fold_convert_loc (loc, type,
12081 fold_build1_loc (loc, TRUTH_NOT_EXPR,
12082 TREE_TYPE (arg0), arg0));
12083
12084 /* bool_var == 0 becomes !bool_var. */
12085 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12086 && code == EQ_EXPR)
12087 return fold_convert_loc (loc, type,
12088 fold_build1_loc (loc, TRUTH_NOT_EXPR,
12089 TREE_TYPE (arg0), arg0));
12090
12091 /* !exp != 0 becomes !exp */
12092 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
12093 && code == NE_EXPR)
12094 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12095
12096 /* If this is an equality comparison of the address of two non-weak,
12097 unaliased symbols neither of which are extern (since we do not
12098 have access to attributes for externs), then we know the result. */
12099 if (TREE_CODE (arg0) == ADDR_EXPR
12100 && DECL_P (TREE_OPERAND (arg0, 0))
12101 && TREE_CODE (arg1) == ADDR_EXPR
12102 && DECL_P (TREE_OPERAND (arg1, 0)))
12103 {
12104 int equal;
12105
12106 if (decl_in_symtab_p (TREE_OPERAND (arg0, 0))
12107 && decl_in_symtab_p (TREE_OPERAND (arg1, 0)))
12108 equal = symtab_node::get_create (TREE_OPERAND (arg0, 0))
12109 ->equal_address_to (symtab_node::get_create
12110 (TREE_OPERAND (arg1, 0)));
12111 else
12112 equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
12113 if (equal != 2)
12114 return constant_boolean_node (equal
12115 ? code == EQ_EXPR : code != EQ_EXPR,
12116 type);
12117 }
12118
12119 /* Similarly for a BIT_XOR_EXPR; X ^ C1 == C2 is X == (C1 ^ C2). */
12120 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12121 && TREE_CODE (arg1) == INTEGER_CST
12122 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12123 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12124 fold_build2_loc (loc, BIT_XOR_EXPR, TREE_TYPE (arg0),
12125 fold_convert_loc (loc,
12126 TREE_TYPE (arg0),
12127 arg1),
12128 TREE_OPERAND (arg0, 1)));
12129
12130 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
12131 if ((TREE_CODE (arg0) == PLUS_EXPR
12132 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
12133 || TREE_CODE (arg0) == MINUS_EXPR)
12134 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
12135 0)),
12136 arg1, 0)
12137 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
12138 || POINTER_TYPE_P (TREE_TYPE (arg0))))
12139 {
12140 tree val = TREE_OPERAND (arg0, 1);
12141 return omit_two_operands_loc (loc, type,
12142 fold_build2_loc (loc, code, type,
12143 val,
12144 build_int_cst (TREE_TYPE (val),
12145 0)),
12146 TREE_OPERAND (arg0, 0), arg1);
12147 }
12148
12149 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
12150 if (TREE_CODE (arg0) == MINUS_EXPR
12151 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
12152 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
12153 1)),
12154 arg1, 0)
12155 && wi::extract_uhwi (TREE_OPERAND (arg0, 0), 0, 1) == 1)
12156 {
12157 return omit_two_operands_loc (loc, type,
12158 code == NE_EXPR
12159 ? boolean_true_node : boolean_false_node,
12160 TREE_OPERAND (arg0, 1), arg1);
12161 }
12162
12163 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
12164 if (TREE_CODE (arg0) == ABS_EXPR
12165 && (integer_zerop (arg1) || real_zerop (arg1)))
12166 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), arg1);
12167
12168 /* If this is an EQ or NE comparison with zero and ARG0 is
12169 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
12170 two operations, but the latter can be done in one less insn
12171 on machines that have only two-operand insns or on which a
12172 constant cannot be the first operand. */
12173 if (TREE_CODE (arg0) == BIT_AND_EXPR
12174 && integer_zerop (arg1))
12175 {
12176 tree arg00 = TREE_OPERAND (arg0, 0);
12177 tree arg01 = TREE_OPERAND (arg0, 1);
12178 if (TREE_CODE (arg00) == LSHIFT_EXPR
12179 && integer_onep (TREE_OPERAND (arg00, 0)))
12180 {
12181 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
12182 arg01, TREE_OPERAND (arg00, 1));
12183 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12184 build_int_cst (TREE_TYPE (arg0), 1));
12185 return fold_build2_loc (loc, code, type,
12186 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
12187 arg1);
12188 }
12189 else if (TREE_CODE (arg01) == LSHIFT_EXPR
12190 && integer_onep (TREE_OPERAND (arg01, 0)))
12191 {
12192 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
12193 arg00, TREE_OPERAND (arg01, 1));
12194 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12195 build_int_cst (TREE_TYPE (arg0), 1));
12196 return fold_build2_loc (loc, code, type,
12197 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
12198 arg1);
12199 }
12200 }
12201
12202 /* If this is an NE or EQ comparison of zero against the result of a
12203 signed MOD operation whose second operand is a power of 2, make
12204 the MOD operation unsigned since it is simpler and equivalent. */
12205 if (integer_zerop (arg1)
12206 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
12207 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
12208 || TREE_CODE (arg0) == CEIL_MOD_EXPR
12209 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
12210 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
12211 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12212 {
12213 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
12214 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
12215 fold_convert_loc (loc, newtype,
12216 TREE_OPERAND (arg0, 0)),
12217 fold_convert_loc (loc, newtype,
12218 TREE_OPERAND (arg0, 1)));
12219
12220 return fold_build2_loc (loc, code, type, newmod,
12221 fold_convert_loc (loc, newtype, arg1));
12222 }
12223
12224 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
12225 C1 is a valid shift constant, and C2 is a power of two, i.e.
12226 a single bit. */
12227 if (TREE_CODE (arg0) == BIT_AND_EXPR
12228 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
12229 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
12230 == INTEGER_CST
12231 && integer_pow2p (TREE_OPERAND (arg0, 1))
12232 && integer_zerop (arg1))
12233 {
12234 tree itype = TREE_TYPE (arg0);
12235 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
12236 prec = TYPE_PRECISION (itype);
12237
12238 /* Check for a valid shift count. */
12239 if (wi::ltu_p (arg001, prec))
12240 {
12241 tree arg01 = TREE_OPERAND (arg0, 1);
12242 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12243 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
12244 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
12245 can be rewritten as (X & (C2 << C1)) != 0. */
12246 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
12247 {
12248 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
12249 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
12250 return fold_build2_loc (loc, code, type, tem,
12251 fold_convert_loc (loc, itype, arg1));
12252 }
12253 /* Otherwise, for signed (arithmetic) shifts,
12254 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
12255 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
12256 else if (!TYPE_UNSIGNED (itype))
12257 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
12258 arg000, build_int_cst (itype, 0));
12259 /* Otherwise, of unsigned (logical) shifts,
12260 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
12261 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
12262 else
12263 return omit_one_operand_loc (loc, type,
12264 code == EQ_EXPR ? integer_one_node
12265 : integer_zero_node,
12266 arg000);
12267 }
12268 }
12269
12270 /* If we have (A & C) == C where C is a power of 2, convert this into
12271 (A & C) != 0. Similarly for NE_EXPR. */
12272 if (TREE_CODE (arg0) == BIT_AND_EXPR
12273 && integer_pow2p (TREE_OPERAND (arg0, 1))
12274 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
12275 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12276 arg0, fold_convert_loc (loc, TREE_TYPE (arg0),
12277 integer_zero_node));
12278
12279 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
12280 bit, then fold the expression into A < 0 or A >= 0. */
12281 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1, type);
12282 if (tem)
12283 return tem;
12284
12285 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
12286 Similarly for NE_EXPR. */
12287 if (TREE_CODE (arg0) == BIT_AND_EXPR
12288 && TREE_CODE (arg1) == INTEGER_CST
12289 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12290 {
12291 tree notc = fold_build1_loc (loc, BIT_NOT_EXPR,
12292 TREE_TYPE (TREE_OPERAND (arg0, 1)),
12293 TREE_OPERAND (arg0, 1));
12294 tree dandnotc
12295 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
12296 fold_convert_loc (loc, TREE_TYPE (arg0), arg1),
12297 notc);
12298 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
12299 if (integer_nonzerop (dandnotc))
12300 return omit_one_operand_loc (loc, type, rslt, arg0);
12301 }
12302
12303 /* If this is a comparison of a field, we may be able to simplify it. */
12304 if ((TREE_CODE (arg0) == COMPONENT_REF
12305 || TREE_CODE (arg0) == BIT_FIELD_REF)
12306 /* Handle the constant case even without -O
12307 to make sure the warnings are given. */
12308 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
12309 {
12310 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
12311 if (t1)
12312 return t1;
12313 }
12314
12315 /* Optimize comparisons of strlen vs zero to a compare of the
12316 first character of the string vs zero. To wit,
12317 strlen(ptr) == 0 => *ptr == 0
12318 strlen(ptr) != 0 => *ptr != 0
12319 Other cases should reduce to one of these two (or a constant)
12320 due to the return value of strlen being unsigned. */
12321 if (TREE_CODE (arg0) == CALL_EXPR
12322 && integer_zerop (arg1))
12323 {
12324 tree fndecl = get_callee_fndecl (arg0);
12325
12326 if (fndecl
12327 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
12328 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
12329 && call_expr_nargs (arg0) == 1
12330 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
12331 {
12332 tree iref = build_fold_indirect_ref_loc (loc,
12333 CALL_EXPR_ARG (arg0, 0));
12334 return fold_build2_loc (loc, code, type, iref,
12335 build_int_cst (TREE_TYPE (iref), 0));
12336 }
12337 }
12338
12339 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
12340 of X. Similarly fold (X >> C) == 0 into X >= 0. */
12341 if (TREE_CODE (arg0) == RSHIFT_EXPR
12342 && integer_zerop (arg1)
12343 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12344 {
12345 tree arg00 = TREE_OPERAND (arg0, 0);
12346 tree arg01 = TREE_OPERAND (arg0, 1);
12347 tree itype = TREE_TYPE (arg00);
12348 if (wi::eq_p (arg01, element_precision (itype) - 1))
12349 {
12350 if (TYPE_UNSIGNED (itype))
12351 {
12352 itype = signed_type_for (itype);
12353 arg00 = fold_convert_loc (loc, itype, arg00);
12354 }
12355 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
12356 type, arg00, build_zero_cst (itype));
12357 }
12358 }
12359
12360 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
12361 (X & C) == 0 when C is a single bit. */
12362 if (TREE_CODE (arg0) == BIT_AND_EXPR
12363 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
12364 && integer_zerop (arg1)
12365 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12366 {
12367 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
12368 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
12369 TREE_OPERAND (arg0, 1));
12370 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
12371 type, tem,
12372 fold_convert_loc (loc, TREE_TYPE (arg0),
12373 arg1));
12374 }
12375
12376 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
12377 constant C is a power of two, i.e. a single bit. */
12378 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12379 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12380 && integer_zerop (arg1)
12381 && integer_pow2p (TREE_OPERAND (arg0, 1))
12382 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12383 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12384 {
12385 tree arg00 = TREE_OPERAND (arg0, 0);
12386 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12387 arg00, build_int_cst (TREE_TYPE (arg00), 0));
12388 }
12389
12390 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
12391 when is C is a power of two, i.e. a single bit. */
12392 if (TREE_CODE (arg0) == BIT_AND_EXPR
12393 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
12394 && integer_zerop (arg1)
12395 && integer_pow2p (TREE_OPERAND (arg0, 1))
12396 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12397 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12398 {
12399 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12400 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
12401 arg000, TREE_OPERAND (arg0, 1));
12402 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12403 tem, build_int_cst (TREE_TYPE (tem), 0));
12404 }
12405
12406 if (integer_zerop (arg1)
12407 && tree_expr_nonzero_p (arg0))
12408 {
12409 tree res = constant_boolean_node (code==NE_EXPR, type);
12410 return omit_one_operand_loc (loc, type, res, arg0);
12411 }
12412
12413 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
12414 if (TREE_CODE (arg0) == BIT_AND_EXPR
12415 && TREE_CODE (arg1) == BIT_AND_EXPR)
12416 {
12417 tree arg00 = TREE_OPERAND (arg0, 0);
12418 tree arg01 = TREE_OPERAND (arg0, 1);
12419 tree arg10 = TREE_OPERAND (arg1, 0);
12420 tree arg11 = TREE_OPERAND (arg1, 1);
12421 tree itype = TREE_TYPE (arg0);
12422
12423 if (operand_equal_p (arg01, arg11, 0))
12424 return fold_build2_loc (loc, code, type,
12425 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12426 fold_build2_loc (loc,
12427 BIT_XOR_EXPR, itype,
12428 arg00, arg10),
12429 arg01),
12430 build_zero_cst (itype));
12431
12432 if (operand_equal_p (arg01, arg10, 0))
12433 return fold_build2_loc (loc, code, type,
12434 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12435 fold_build2_loc (loc,
12436 BIT_XOR_EXPR, itype,
12437 arg00, arg11),
12438 arg01),
12439 build_zero_cst (itype));
12440
12441 if (operand_equal_p (arg00, arg11, 0))
12442 return fold_build2_loc (loc, code, type,
12443 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12444 fold_build2_loc (loc,
12445 BIT_XOR_EXPR, itype,
12446 arg01, arg10),
12447 arg00),
12448 build_zero_cst (itype));
12449
12450 if (operand_equal_p (arg00, arg10, 0))
12451 return fold_build2_loc (loc, code, type,
12452 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12453 fold_build2_loc (loc,
12454 BIT_XOR_EXPR, itype,
12455 arg01, arg11),
12456 arg00),
12457 build_zero_cst (itype));
12458 }
12459
12460 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12461 && TREE_CODE (arg1) == BIT_XOR_EXPR)
12462 {
12463 tree arg00 = TREE_OPERAND (arg0, 0);
12464 tree arg01 = TREE_OPERAND (arg0, 1);
12465 tree arg10 = TREE_OPERAND (arg1, 0);
12466 tree arg11 = TREE_OPERAND (arg1, 1);
12467 tree itype = TREE_TYPE (arg0);
12468
12469 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
12470 operand_equal_p guarantees no side-effects so we don't need
12471 to use omit_one_operand on Z. */
12472 if (operand_equal_p (arg01, arg11, 0))
12473 return fold_build2_loc (loc, code, type, arg00,
12474 fold_convert_loc (loc, TREE_TYPE (arg00),
12475 arg10));
12476 if (operand_equal_p (arg01, arg10, 0))
12477 return fold_build2_loc (loc, code, type, arg00,
12478 fold_convert_loc (loc, TREE_TYPE (arg00),
12479 arg11));
12480 if (operand_equal_p (arg00, arg11, 0))
12481 return fold_build2_loc (loc, code, type, arg01,
12482 fold_convert_loc (loc, TREE_TYPE (arg01),
12483 arg10));
12484 if (operand_equal_p (arg00, arg10, 0))
12485 return fold_build2_loc (loc, code, type, arg01,
12486 fold_convert_loc (loc, TREE_TYPE (arg01),
12487 arg11));
12488
12489 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
12490 if (TREE_CODE (arg01) == INTEGER_CST
12491 && TREE_CODE (arg11) == INTEGER_CST)
12492 {
12493 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
12494 fold_convert_loc (loc, itype, arg11));
12495 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
12496 return fold_build2_loc (loc, code, type, tem,
12497 fold_convert_loc (loc, itype, arg10));
12498 }
12499 }
12500
12501 /* Attempt to simplify equality/inequality comparisons of complex
12502 values. Only lower the comparison if the result is known or
12503 can be simplified to a single scalar comparison. */
12504 if ((TREE_CODE (arg0) == COMPLEX_EXPR
12505 || TREE_CODE (arg0) == COMPLEX_CST)
12506 && (TREE_CODE (arg1) == COMPLEX_EXPR
12507 || TREE_CODE (arg1) == COMPLEX_CST))
12508 {
12509 tree real0, imag0, real1, imag1;
12510 tree rcond, icond;
12511
12512 if (TREE_CODE (arg0) == COMPLEX_EXPR)
12513 {
12514 real0 = TREE_OPERAND (arg0, 0);
12515 imag0 = TREE_OPERAND (arg0, 1);
12516 }
12517 else
12518 {
12519 real0 = TREE_REALPART (arg0);
12520 imag0 = TREE_IMAGPART (arg0);
12521 }
12522
12523 if (TREE_CODE (arg1) == COMPLEX_EXPR)
12524 {
12525 real1 = TREE_OPERAND (arg1, 0);
12526 imag1 = TREE_OPERAND (arg1, 1);
12527 }
12528 else
12529 {
12530 real1 = TREE_REALPART (arg1);
12531 imag1 = TREE_IMAGPART (arg1);
12532 }
12533
12534 rcond = fold_binary_loc (loc, code, type, real0, real1);
12535 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
12536 {
12537 if (integer_zerop (rcond))
12538 {
12539 if (code == EQ_EXPR)
12540 return omit_two_operands_loc (loc, type, boolean_false_node,
12541 imag0, imag1);
12542 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
12543 }
12544 else
12545 {
12546 if (code == NE_EXPR)
12547 return omit_two_operands_loc (loc, type, boolean_true_node,
12548 imag0, imag1);
12549 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
12550 }
12551 }
12552
12553 icond = fold_binary_loc (loc, code, type, imag0, imag1);
12554 if (icond && TREE_CODE (icond) == INTEGER_CST)
12555 {
12556 if (integer_zerop (icond))
12557 {
12558 if (code == EQ_EXPR)
12559 return omit_two_operands_loc (loc, type, boolean_false_node,
12560 real0, real1);
12561 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
12562 }
12563 else
12564 {
12565 if (code == NE_EXPR)
12566 return omit_two_operands_loc (loc, type, boolean_true_node,
12567 real0, real1);
12568 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
12569 }
12570 }
12571 }
12572
12573 return NULL_TREE;
12574
12575 case LT_EXPR:
12576 case GT_EXPR:
12577 case LE_EXPR:
12578 case GE_EXPR:
12579 tem = fold_comparison (loc, code, type, op0, op1);
12580 if (tem != NULL_TREE)
12581 return tem;
12582
12583 /* Transform comparisons of the form X +- C CMP X. */
12584 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
12585 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12586 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
12587 && !HONOR_SNANS (arg0))
12588 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12589 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
12590 {
12591 tree arg01 = TREE_OPERAND (arg0, 1);
12592 enum tree_code code0 = TREE_CODE (arg0);
12593 int is_positive;
12594
12595 if (TREE_CODE (arg01) == REAL_CST)
12596 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
12597 else
12598 is_positive = tree_int_cst_sgn (arg01);
12599
12600 /* (X - c) > X becomes false. */
12601 if (code == GT_EXPR
12602 && ((code0 == MINUS_EXPR && is_positive >= 0)
12603 || (code0 == PLUS_EXPR && is_positive <= 0)))
12604 {
12605 if (TREE_CODE (arg01) == INTEGER_CST
12606 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12607 fold_overflow_warning (("assuming signed overflow does not "
12608 "occur when assuming that (X - c) > X "
12609 "is always false"),
12610 WARN_STRICT_OVERFLOW_ALL);
12611 return constant_boolean_node (0, type);
12612 }
12613
12614 /* Likewise (X + c) < X becomes false. */
12615 if (code == LT_EXPR
12616 && ((code0 == PLUS_EXPR && is_positive >= 0)
12617 || (code0 == MINUS_EXPR && is_positive <= 0)))
12618 {
12619 if (TREE_CODE (arg01) == INTEGER_CST
12620 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12621 fold_overflow_warning (("assuming signed overflow does not "
12622 "occur when assuming that "
12623 "(X + c) < X is always false"),
12624 WARN_STRICT_OVERFLOW_ALL);
12625 return constant_boolean_node (0, type);
12626 }
12627
12628 /* Convert (X - c) <= X to true. */
12629 if (!HONOR_NANS (arg1)
12630 && code == LE_EXPR
12631 && ((code0 == MINUS_EXPR && is_positive >= 0)
12632 || (code0 == PLUS_EXPR && is_positive <= 0)))
12633 {
12634 if (TREE_CODE (arg01) == INTEGER_CST
12635 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12636 fold_overflow_warning (("assuming signed overflow does not "
12637 "occur when assuming that "
12638 "(X - c) <= X is always true"),
12639 WARN_STRICT_OVERFLOW_ALL);
12640 return constant_boolean_node (1, type);
12641 }
12642
12643 /* Convert (X + c) >= X to true. */
12644 if (!HONOR_NANS (arg1)
12645 && code == GE_EXPR
12646 && ((code0 == PLUS_EXPR && is_positive >= 0)
12647 || (code0 == MINUS_EXPR && is_positive <= 0)))
12648 {
12649 if (TREE_CODE (arg01) == INTEGER_CST
12650 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12651 fold_overflow_warning (("assuming signed overflow does not "
12652 "occur when assuming that "
12653 "(X + c) >= X is always true"),
12654 WARN_STRICT_OVERFLOW_ALL);
12655 return constant_boolean_node (1, type);
12656 }
12657
12658 if (TREE_CODE (arg01) == INTEGER_CST)
12659 {
12660 /* Convert X + c > X and X - c < X to true for integers. */
12661 if (code == GT_EXPR
12662 && ((code0 == PLUS_EXPR && is_positive > 0)
12663 || (code0 == MINUS_EXPR && is_positive < 0)))
12664 {
12665 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12666 fold_overflow_warning (("assuming signed overflow does "
12667 "not occur when assuming that "
12668 "(X + c) > X is always true"),
12669 WARN_STRICT_OVERFLOW_ALL);
12670 return constant_boolean_node (1, type);
12671 }
12672
12673 if (code == LT_EXPR
12674 && ((code0 == MINUS_EXPR && is_positive > 0)
12675 || (code0 == PLUS_EXPR && is_positive < 0)))
12676 {
12677 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12678 fold_overflow_warning (("assuming signed overflow does "
12679 "not occur when assuming that "
12680 "(X - c) < X is always true"),
12681 WARN_STRICT_OVERFLOW_ALL);
12682 return constant_boolean_node (1, type);
12683 }
12684
12685 /* Convert X + c <= X and X - c >= X to false for integers. */
12686 if (code == LE_EXPR
12687 && ((code0 == PLUS_EXPR && is_positive > 0)
12688 || (code0 == MINUS_EXPR && is_positive < 0)))
12689 {
12690 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12691 fold_overflow_warning (("assuming signed overflow does "
12692 "not occur when assuming that "
12693 "(X + c) <= X is always false"),
12694 WARN_STRICT_OVERFLOW_ALL);
12695 return constant_boolean_node (0, type);
12696 }
12697
12698 if (code == GE_EXPR
12699 && ((code0 == MINUS_EXPR && is_positive > 0)
12700 || (code0 == PLUS_EXPR && is_positive < 0)))
12701 {
12702 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12703 fold_overflow_warning (("assuming signed overflow does "
12704 "not occur when assuming that "
12705 "(X - c) >= X is always false"),
12706 WARN_STRICT_OVERFLOW_ALL);
12707 return constant_boolean_node (0, type);
12708 }
12709 }
12710 }
12711
12712 /* Comparisons with the highest or lowest possible integer of
12713 the specified precision will have known values. */
12714 {
12715 tree arg1_type = TREE_TYPE (arg1);
12716 unsigned int prec = TYPE_PRECISION (arg1_type);
12717
12718 if (TREE_CODE (arg1) == INTEGER_CST
12719 && (INTEGRAL_TYPE_P (arg1_type) || POINTER_TYPE_P (arg1_type)))
12720 {
12721 wide_int max = wi::max_value (arg1_type);
12722 wide_int signed_max = wi::max_value (prec, SIGNED);
12723 wide_int min = wi::min_value (arg1_type);
12724
12725 if (wi::eq_p (arg1, max))
12726 switch (code)
12727 {
12728 case GT_EXPR:
12729 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12730
12731 case GE_EXPR:
12732 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
12733
12734 case LE_EXPR:
12735 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12736
12737 case LT_EXPR:
12738 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
12739
12740 /* The GE_EXPR and LT_EXPR cases above are not normally
12741 reached because of previous transformations. */
12742
12743 default:
12744 break;
12745 }
12746 else if (wi::eq_p (arg1, max - 1))
12747 switch (code)
12748 {
12749 case GT_EXPR:
12750 arg1 = const_binop (PLUS_EXPR, arg1,
12751 build_int_cst (TREE_TYPE (arg1), 1));
12752 return fold_build2_loc (loc, EQ_EXPR, type,
12753 fold_convert_loc (loc,
12754 TREE_TYPE (arg1), arg0),
12755 arg1);
12756 case LE_EXPR:
12757 arg1 = const_binop (PLUS_EXPR, arg1,
12758 build_int_cst (TREE_TYPE (arg1), 1));
12759 return fold_build2_loc (loc, NE_EXPR, type,
12760 fold_convert_loc (loc, TREE_TYPE (arg1),
12761 arg0),
12762 arg1);
12763 default:
12764 break;
12765 }
12766 else if (wi::eq_p (arg1, min))
12767 switch (code)
12768 {
12769 case LT_EXPR:
12770 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12771
12772 case LE_EXPR:
12773 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
12774
12775 case GE_EXPR:
12776 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12777
12778 case GT_EXPR:
12779 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
12780
12781 default:
12782 break;
12783 }
12784 else if (wi::eq_p (arg1, min + 1))
12785 switch (code)
12786 {
12787 case GE_EXPR:
12788 arg1 = const_binop (MINUS_EXPR, arg1,
12789 build_int_cst (TREE_TYPE (arg1), 1));
12790 return fold_build2_loc (loc, NE_EXPR, type,
12791 fold_convert_loc (loc,
12792 TREE_TYPE (arg1), arg0),
12793 arg1);
12794 case LT_EXPR:
12795 arg1 = const_binop (MINUS_EXPR, arg1,
12796 build_int_cst (TREE_TYPE (arg1), 1));
12797 return fold_build2_loc (loc, EQ_EXPR, type,
12798 fold_convert_loc (loc, TREE_TYPE (arg1),
12799 arg0),
12800 arg1);
12801 default:
12802 break;
12803 }
12804
12805 else if (wi::eq_p (arg1, signed_max)
12806 && TYPE_UNSIGNED (arg1_type)
12807 /* We will flip the signedness of the comparison operator
12808 associated with the mode of arg1, so the sign bit is
12809 specified by this mode. Check that arg1 is the signed
12810 max associated with this sign bit. */
12811 && prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
12812 /* signed_type does not work on pointer types. */
12813 && INTEGRAL_TYPE_P (arg1_type))
12814 {
12815 /* The following case also applies to X < signed_max+1
12816 and X >= signed_max+1 because previous transformations. */
12817 if (code == LE_EXPR || code == GT_EXPR)
12818 {
12819 tree st = signed_type_for (arg1_type);
12820 return fold_build2_loc (loc,
12821 code == LE_EXPR ? GE_EXPR : LT_EXPR,
12822 type, fold_convert_loc (loc, st, arg0),
12823 build_int_cst (st, 0));
12824 }
12825 }
12826 }
12827 }
12828
12829 /* If we are comparing an ABS_EXPR with a constant, we can
12830 convert all the cases into explicit comparisons, but they may
12831 well not be faster than doing the ABS and one comparison.
12832 But ABS (X) <= C is a range comparison, which becomes a subtraction
12833 and a comparison, and is probably faster. */
12834 if (code == LE_EXPR
12835 && TREE_CODE (arg1) == INTEGER_CST
12836 && TREE_CODE (arg0) == ABS_EXPR
12837 && ! TREE_SIDE_EFFECTS (arg0)
12838 && (0 != (tem = negate_expr (arg1)))
12839 && TREE_CODE (tem) == INTEGER_CST
12840 && !TREE_OVERFLOW (tem))
12841 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
12842 build2 (GE_EXPR, type,
12843 TREE_OPERAND (arg0, 0), tem),
12844 build2 (LE_EXPR, type,
12845 TREE_OPERAND (arg0, 0), arg1));
12846
12847 /* Convert ABS_EXPR<x> >= 0 to true. */
12848 strict_overflow_p = false;
12849 if (code == GE_EXPR
12850 && (integer_zerop (arg1)
12851 || (! HONOR_NANS (arg0)
12852 && real_zerop (arg1)))
12853 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
12854 {
12855 if (strict_overflow_p)
12856 fold_overflow_warning (("assuming signed overflow does not occur "
12857 "when simplifying comparison of "
12858 "absolute value and zero"),
12859 WARN_STRICT_OVERFLOW_CONDITIONAL);
12860 return omit_one_operand_loc (loc, type,
12861 constant_boolean_node (true, type),
12862 arg0);
12863 }
12864
12865 /* Convert ABS_EXPR<x> < 0 to false. */
12866 strict_overflow_p = false;
12867 if (code == LT_EXPR
12868 && (integer_zerop (arg1) || real_zerop (arg1))
12869 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
12870 {
12871 if (strict_overflow_p)
12872 fold_overflow_warning (("assuming signed overflow does not occur "
12873 "when simplifying comparison of "
12874 "absolute value and zero"),
12875 WARN_STRICT_OVERFLOW_CONDITIONAL);
12876 return omit_one_operand_loc (loc, type,
12877 constant_boolean_node (false, type),
12878 arg0);
12879 }
12880
12881 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
12882 and similarly for >= into !=. */
12883 if ((code == LT_EXPR || code == GE_EXPR)
12884 && TYPE_UNSIGNED (TREE_TYPE (arg0))
12885 && TREE_CODE (arg1) == LSHIFT_EXPR
12886 && integer_onep (TREE_OPERAND (arg1, 0)))
12887 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
12888 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
12889 TREE_OPERAND (arg1, 1)),
12890 build_zero_cst (TREE_TYPE (arg0)));
12891
12892 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
12893 otherwise Y might be >= # of bits in X's type and thus e.g.
12894 (unsigned char) (1 << Y) for Y 15 might be 0.
12895 If the cast is widening, then 1 << Y should have unsigned type,
12896 otherwise if Y is number of bits in the signed shift type minus 1,
12897 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
12898 31 might be 0xffffffff80000000. */
12899 if ((code == LT_EXPR || code == GE_EXPR)
12900 && TYPE_UNSIGNED (TREE_TYPE (arg0))
12901 && CONVERT_EXPR_P (arg1)
12902 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
12903 && (element_precision (TREE_TYPE (arg1))
12904 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
12905 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
12906 || (element_precision (TREE_TYPE (arg1))
12907 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
12908 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
12909 {
12910 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
12911 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
12912 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
12913 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
12914 build_zero_cst (TREE_TYPE (arg0)));
12915 }
12916
12917 return NULL_TREE;
12918
12919 case UNORDERED_EXPR:
12920 case ORDERED_EXPR:
12921 case UNLT_EXPR:
12922 case UNLE_EXPR:
12923 case UNGT_EXPR:
12924 case UNGE_EXPR:
12925 case UNEQ_EXPR:
12926 case LTGT_EXPR:
12927 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
12928 {
12929 t1 = fold_relational_const (code, type, arg0, arg1);
12930 if (t1 != NULL_TREE)
12931 return t1;
12932 }
12933
12934 /* If the first operand is NaN, the result is constant. */
12935 if (TREE_CODE (arg0) == REAL_CST
12936 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
12937 && (code != LTGT_EXPR || ! flag_trapping_math))
12938 {
12939 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
12940 ? integer_zero_node
12941 : integer_one_node;
12942 return omit_one_operand_loc (loc, type, t1, arg1);
12943 }
12944
12945 /* If the second operand is NaN, the result is constant. */
12946 if (TREE_CODE (arg1) == REAL_CST
12947 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
12948 && (code != LTGT_EXPR || ! flag_trapping_math))
12949 {
12950 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
12951 ? integer_zero_node
12952 : integer_one_node;
12953 return omit_one_operand_loc (loc, type, t1, arg0);
12954 }
12955
12956 /* Simplify unordered comparison of something with itself. */
12957 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
12958 && operand_equal_p (arg0, arg1, 0))
12959 return constant_boolean_node (1, type);
12960
12961 if (code == LTGT_EXPR
12962 && !flag_trapping_math
12963 && operand_equal_p (arg0, arg1, 0))
12964 return constant_boolean_node (0, type);
12965
12966 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
12967 {
12968 tree targ0 = strip_float_extensions (arg0);
12969 tree targ1 = strip_float_extensions (arg1);
12970 tree newtype = TREE_TYPE (targ0);
12971
12972 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
12973 newtype = TREE_TYPE (targ1);
12974
12975 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
12976 return fold_build2_loc (loc, code, type,
12977 fold_convert_loc (loc, newtype, targ0),
12978 fold_convert_loc (loc, newtype, targ1));
12979 }
12980
12981 return NULL_TREE;
12982
12983 case COMPOUND_EXPR:
12984 /* When pedantic, a compound expression can be neither an lvalue
12985 nor an integer constant expression. */
12986 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
12987 return NULL_TREE;
12988 /* Don't let (0, 0) be null pointer constant. */
12989 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
12990 : fold_convert_loc (loc, type, arg1);
12991 return pedantic_non_lvalue_loc (loc, tem);
12992
12993 case ASSERT_EXPR:
12994 /* An ASSERT_EXPR should never be passed to fold_binary. */
12995 gcc_unreachable ();
12996
12997 default:
12998 return NULL_TREE;
12999 } /* switch (code) */
13000 }
13001
13002 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
13003 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
13004 of GOTO_EXPR. */
13005
13006 static tree
13007 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
13008 {
13009 switch (TREE_CODE (*tp))
13010 {
13011 case LABEL_EXPR:
13012 return *tp;
13013
13014 case GOTO_EXPR:
13015 *walk_subtrees = 0;
13016
13017 /* ... fall through ... */
13018
13019 default:
13020 return NULL_TREE;
13021 }
13022 }
13023
13024 /* Return whether the sub-tree ST contains a label which is accessible from
13025 outside the sub-tree. */
13026
13027 static bool
13028 contains_label_p (tree st)
13029 {
13030 return
13031 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
13032 }
13033
13034 /* Fold a ternary expression of code CODE and type TYPE with operands
13035 OP0, OP1, and OP2. Return the folded expression if folding is
13036 successful. Otherwise, return NULL_TREE. */
13037
13038 tree
13039 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
13040 tree op0, tree op1, tree op2)
13041 {
13042 tree tem;
13043 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
13044 enum tree_code_class kind = TREE_CODE_CLASS (code);
13045
13046 gcc_assert (IS_EXPR_CODE_CLASS (kind)
13047 && TREE_CODE_LENGTH (code) == 3);
13048
13049 /* If this is a commutative operation, and OP0 is a constant, move it
13050 to OP1 to reduce the number of tests below. */
13051 if (commutative_ternary_tree_code (code)
13052 && tree_swap_operands_p (op0, op1, true))
13053 return fold_build3_loc (loc, code, type, op1, op0, op2);
13054
13055 tem = generic_simplify (loc, code, type, op0, op1, op2);
13056 if (tem)
13057 return tem;
13058
13059 /* Strip any conversions that don't change the mode. This is safe
13060 for every expression, except for a comparison expression because
13061 its signedness is derived from its operands. So, in the latter
13062 case, only strip conversions that don't change the signedness.
13063
13064 Note that this is done as an internal manipulation within the
13065 constant folder, in order to find the simplest representation of
13066 the arguments so that their form can be studied. In any cases,
13067 the appropriate type conversions should be put back in the tree
13068 that will get out of the constant folder. */
13069 if (op0)
13070 {
13071 arg0 = op0;
13072 STRIP_NOPS (arg0);
13073 }
13074
13075 if (op1)
13076 {
13077 arg1 = op1;
13078 STRIP_NOPS (arg1);
13079 }
13080
13081 if (op2)
13082 {
13083 arg2 = op2;
13084 STRIP_NOPS (arg2);
13085 }
13086
13087 switch (code)
13088 {
13089 case COMPONENT_REF:
13090 if (TREE_CODE (arg0) == CONSTRUCTOR
13091 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
13092 {
13093 unsigned HOST_WIDE_INT idx;
13094 tree field, value;
13095 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
13096 if (field == arg1)
13097 return value;
13098 }
13099 return NULL_TREE;
13100
13101 case COND_EXPR:
13102 case VEC_COND_EXPR:
13103 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
13104 so all simple results must be passed through pedantic_non_lvalue. */
13105 if (TREE_CODE (arg0) == INTEGER_CST)
13106 {
13107 tree unused_op = integer_zerop (arg0) ? op1 : op2;
13108 tem = integer_zerop (arg0) ? op2 : op1;
13109 /* Only optimize constant conditions when the selected branch
13110 has the same type as the COND_EXPR. This avoids optimizing
13111 away "c ? x : throw", where the throw has a void type.
13112 Avoid throwing away that operand which contains label. */
13113 if ((!TREE_SIDE_EFFECTS (unused_op)
13114 || !contains_label_p (unused_op))
13115 && (! VOID_TYPE_P (TREE_TYPE (tem))
13116 || VOID_TYPE_P (type)))
13117 return pedantic_non_lvalue_loc (loc, tem);
13118 return NULL_TREE;
13119 }
13120 else if (TREE_CODE (arg0) == VECTOR_CST)
13121 {
13122 if ((TREE_CODE (arg1) == VECTOR_CST
13123 || TREE_CODE (arg1) == CONSTRUCTOR)
13124 && (TREE_CODE (arg2) == VECTOR_CST
13125 || TREE_CODE (arg2) == CONSTRUCTOR))
13126 {
13127 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
13128 unsigned char *sel = XALLOCAVEC (unsigned char, nelts);
13129 gcc_assert (nelts == VECTOR_CST_NELTS (arg0));
13130 for (i = 0; i < nelts; i++)
13131 {
13132 tree val = VECTOR_CST_ELT (arg0, i);
13133 if (integer_all_onesp (val))
13134 sel[i] = i;
13135 else if (integer_zerop (val))
13136 sel[i] = nelts + i;
13137 else /* Currently unreachable. */
13138 return NULL_TREE;
13139 }
13140 tree t = fold_vec_perm (type, arg1, arg2, sel);
13141 if (t != NULL_TREE)
13142 return t;
13143 }
13144 }
13145
13146 /* If we have A op B ? A : C, we may be able to convert this to a
13147 simpler expression, depending on the operation and the values
13148 of B and C. Signed zeros prevent all of these transformations,
13149 for reasons given above each one.
13150
13151 Also try swapping the arguments and inverting the conditional. */
13152 if (COMPARISON_CLASS_P (arg0)
13153 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
13154 arg1, TREE_OPERAND (arg0, 1))
13155 && !HONOR_SIGNED_ZEROS (element_mode (arg1)))
13156 {
13157 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
13158 if (tem)
13159 return tem;
13160 }
13161
13162 if (COMPARISON_CLASS_P (arg0)
13163 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
13164 op2,
13165 TREE_OPERAND (arg0, 1))
13166 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
13167 {
13168 location_t loc0 = expr_location_or (arg0, loc);
13169 tem = fold_invert_truthvalue (loc0, arg0);
13170 if (tem && COMPARISON_CLASS_P (tem))
13171 {
13172 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
13173 if (tem)
13174 return tem;
13175 }
13176 }
13177
13178 /* If the second operand is simpler than the third, swap them
13179 since that produces better jump optimization results. */
13180 if (truth_value_p (TREE_CODE (arg0))
13181 && tree_swap_operands_p (op1, op2, false))
13182 {
13183 location_t loc0 = expr_location_or (arg0, loc);
13184 /* See if this can be inverted. If it can't, possibly because
13185 it was a floating-point inequality comparison, don't do
13186 anything. */
13187 tem = fold_invert_truthvalue (loc0, arg0);
13188 if (tem)
13189 return fold_build3_loc (loc, code, type, tem, op2, op1);
13190 }
13191
13192 /* Convert A ? 1 : 0 to simply A. */
13193 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
13194 : (integer_onep (op1)
13195 && !VECTOR_TYPE_P (type)))
13196 && integer_zerop (op2)
13197 /* If we try to convert OP0 to our type, the
13198 call to fold will try to move the conversion inside
13199 a COND, which will recurse. In that case, the COND_EXPR
13200 is probably the best choice, so leave it alone. */
13201 && type == TREE_TYPE (arg0))
13202 return pedantic_non_lvalue_loc (loc, arg0);
13203
13204 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
13205 over COND_EXPR in cases such as floating point comparisons. */
13206 if (integer_zerop (op1)
13207 && (code == VEC_COND_EXPR ? integer_all_onesp (op2)
13208 : (integer_onep (op2)
13209 && !VECTOR_TYPE_P (type)))
13210 && truth_value_p (TREE_CODE (arg0)))
13211 return pedantic_non_lvalue_loc (loc,
13212 fold_convert_loc (loc, type,
13213 invert_truthvalue_loc (loc,
13214 arg0)));
13215
13216 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
13217 if (TREE_CODE (arg0) == LT_EXPR
13218 && integer_zerop (TREE_OPERAND (arg0, 1))
13219 && integer_zerop (op2)
13220 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
13221 {
13222 /* sign_bit_p looks through both zero and sign extensions,
13223 but for this optimization only sign extensions are
13224 usable. */
13225 tree tem2 = TREE_OPERAND (arg0, 0);
13226 while (tem != tem2)
13227 {
13228 if (TREE_CODE (tem2) != NOP_EXPR
13229 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
13230 {
13231 tem = NULL_TREE;
13232 break;
13233 }
13234 tem2 = TREE_OPERAND (tem2, 0);
13235 }
13236 /* sign_bit_p only checks ARG1 bits within A's precision.
13237 If <sign bit of A> has wider type than A, bits outside
13238 of A's precision in <sign bit of A> need to be checked.
13239 If they are all 0, this optimization needs to be done
13240 in unsigned A's type, if they are all 1 in signed A's type,
13241 otherwise this can't be done. */
13242 if (tem
13243 && TYPE_PRECISION (TREE_TYPE (tem))
13244 < TYPE_PRECISION (TREE_TYPE (arg1))
13245 && TYPE_PRECISION (TREE_TYPE (tem))
13246 < TYPE_PRECISION (type))
13247 {
13248 int inner_width, outer_width;
13249 tree tem_type;
13250
13251 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
13252 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
13253 if (outer_width > TYPE_PRECISION (type))
13254 outer_width = TYPE_PRECISION (type);
13255
13256 wide_int mask = wi::shifted_mask
13257 (inner_width, outer_width - inner_width, false,
13258 TYPE_PRECISION (TREE_TYPE (arg1)));
13259
13260 wide_int common = mask & arg1;
13261 if (common == mask)
13262 {
13263 tem_type = signed_type_for (TREE_TYPE (tem));
13264 tem = fold_convert_loc (loc, tem_type, tem);
13265 }
13266 else if (common == 0)
13267 {
13268 tem_type = unsigned_type_for (TREE_TYPE (tem));
13269 tem = fold_convert_loc (loc, tem_type, tem);
13270 }
13271 else
13272 tem = NULL;
13273 }
13274
13275 if (tem)
13276 return
13277 fold_convert_loc (loc, type,
13278 fold_build2_loc (loc, BIT_AND_EXPR,
13279 TREE_TYPE (tem), tem,
13280 fold_convert_loc (loc,
13281 TREE_TYPE (tem),
13282 arg1)));
13283 }
13284
13285 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
13286 already handled above. */
13287 if (TREE_CODE (arg0) == BIT_AND_EXPR
13288 && integer_onep (TREE_OPERAND (arg0, 1))
13289 && integer_zerop (op2)
13290 && integer_pow2p (arg1))
13291 {
13292 tree tem = TREE_OPERAND (arg0, 0);
13293 STRIP_NOPS (tem);
13294 if (TREE_CODE (tem) == RSHIFT_EXPR
13295 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
13296 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
13297 tree_to_uhwi (TREE_OPERAND (tem, 1)))
13298 return fold_build2_loc (loc, BIT_AND_EXPR, type,
13299 TREE_OPERAND (tem, 0), arg1);
13300 }
13301
13302 /* A & N ? N : 0 is simply A & N if N is a power of two. This
13303 is probably obsolete because the first operand should be a
13304 truth value (that's why we have the two cases above), but let's
13305 leave it in until we can confirm this for all front-ends. */
13306 if (integer_zerop (op2)
13307 && TREE_CODE (arg0) == NE_EXPR
13308 && integer_zerop (TREE_OPERAND (arg0, 1))
13309 && integer_pow2p (arg1)
13310 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
13311 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
13312 arg1, OEP_ONLY_CONST))
13313 return pedantic_non_lvalue_loc (loc,
13314 fold_convert_loc (loc, type,
13315 TREE_OPERAND (arg0, 0)));
13316
13317 /* Disable the transformations below for vectors, since
13318 fold_binary_op_with_conditional_arg may undo them immediately,
13319 yielding an infinite loop. */
13320 if (code == VEC_COND_EXPR)
13321 return NULL_TREE;
13322
13323 /* Convert A ? B : 0 into A && B if A and B are truth values. */
13324 if (integer_zerop (op2)
13325 && truth_value_p (TREE_CODE (arg0))
13326 && truth_value_p (TREE_CODE (arg1))
13327 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
13328 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
13329 : TRUTH_ANDIF_EXPR,
13330 type, fold_convert_loc (loc, type, arg0), arg1);
13331
13332 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
13333 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
13334 && truth_value_p (TREE_CODE (arg0))
13335 && truth_value_p (TREE_CODE (arg1))
13336 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
13337 {
13338 location_t loc0 = expr_location_or (arg0, loc);
13339 /* Only perform transformation if ARG0 is easily inverted. */
13340 tem = fold_invert_truthvalue (loc0, arg0);
13341 if (tem)
13342 return fold_build2_loc (loc, code == VEC_COND_EXPR
13343 ? BIT_IOR_EXPR
13344 : TRUTH_ORIF_EXPR,
13345 type, fold_convert_loc (loc, type, tem),
13346 arg1);
13347 }
13348
13349 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
13350 if (integer_zerop (arg1)
13351 && truth_value_p (TREE_CODE (arg0))
13352 && truth_value_p (TREE_CODE (op2))
13353 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
13354 {
13355 location_t loc0 = expr_location_or (arg0, loc);
13356 /* Only perform transformation if ARG0 is easily inverted. */
13357 tem = fold_invert_truthvalue (loc0, arg0);
13358 if (tem)
13359 return fold_build2_loc (loc, code == VEC_COND_EXPR
13360 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
13361 type, fold_convert_loc (loc, type, tem),
13362 op2);
13363 }
13364
13365 /* Convert A ? 1 : B into A || B if A and B are truth values. */
13366 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
13367 && truth_value_p (TREE_CODE (arg0))
13368 && truth_value_p (TREE_CODE (op2))
13369 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
13370 return fold_build2_loc (loc, code == VEC_COND_EXPR
13371 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
13372 type, fold_convert_loc (loc, type, arg0), op2);
13373
13374 return NULL_TREE;
13375
13376 case CALL_EXPR:
13377 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
13378 of fold_ternary on them. */
13379 gcc_unreachable ();
13380
13381 case BIT_FIELD_REF:
13382 if ((TREE_CODE (arg0) == VECTOR_CST
13383 || (TREE_CODE (arg0) == CONSTRUCTOR
13384 && TREE_CODE (TREE_TYPE (arg0)) == VECTOR_TYPE))
13385 && (type == TREE_TYPE (TREE_TYPE (arg0))
13386 || (TREE_CODE (type) == VECTOR_TYPE
13387 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
13388 {
13389 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
13390 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
13391 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
13392 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
13393
13394 if (n != 0
13395 && (idx % width) == 0
13396 && (n % width) == 0
13397 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
13398 {
13399 idx = idx / width;
13400 n = n / width;
13401
13402 if (TREE_CODE (arg0) == VECTOR_CST)
13403 {
13404 if (n == 1)
13405 return VECTOR_CST_ELT (arg0, idx);
13406
13407 tree *vals = XALLOCAVEC (tree, n);
13408 for (unsigned i = 0; i < n; ++i)
13409 vals[i] = VECTOR_CST_ELT (arg0, idx + i);
13410 return build_vector (type, vals);
13411 }
13412
13413 /* Constructor elements can be subvectors. */
13414 unsigned HOST_WIDE_INT k = 1;
13415 if (CONSTRUCTOR_NELTS (arg0) != 0)
13416 {
13417 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (arg0, 0)->value);
13418 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
13419 k = TYPE_VECTOR_SUBPARTS (cons_elem);
13420 }
13421
13422 /* We keep an exact subset of the constructor elements. */
13423 if ((idx % k) == 0 && (n % k) == 0)
13424 {
13425 if (CONSTRUCTOR_NELTS (arg0) == 0)
13426 return build_constructor (type, NULL);
13427 idx /= k;
13428 n /= k;
13429 if (n == 1)
13430 {
13431 if (idx < CONSTRUCTOR_NELTS (arg0))
13432 return CONSTRUCTOR_ELT (arg0, idx)->value;
13433 return build_zero_cst (type);
13434 }
13435
13436 vec<constructor_elt, va_gc> *vals;
13437 vec_alloc (vals, n);
13438 for (unsigned i = 0;
13439 i < n && idx + i < CONSTRUCTOR_NELTS (arg0);
13440 ++i)
13441 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
13442 CONSTRUCTOR_ELT
13443 (arg0, idx + i)->value);
13444 return build_constructor (type, vals);
13445 }
13446 /* The bitfield references a single constructor element. */
13447 else if (idx + n <= (idx / k + 1) * k)
13448 {
13449 if (CONSTRUCTOR_NELTS (arg0) <= idx / k)
13450 return build_zero_cst (type);
13451 else if (n == k)
13452 return CONSTRUCTOR_ELT (arg0, idx / k)->value;
13453 else
13454 return fold_build3_loc (loc, code, type,
13455 CONSTRUCTOR_ELT (arg0, idx / k)->value, op1,
13456 build_int_cst (TREE_TYPE (op2), (idx % k) * width));
13457 }
13458 }
13459 }
13460
13461 /* A bit-field-ref that referenced the full argument can be stripped. */
13462 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
13463 && TYPE_PRECISION (TREE_TYPE (arg0)) == tree_to_uhwi (arg1)
13464 && integer_zerop (op2))
13465 return fold_convert_loc (loc, type, arg0);
13466
13467 /* On constants we can use native encode/interpret to constant
13468 fold (nearly) all BIT_FIELD_REFs. */
13469 if (CONSTANT_CLASS_P (arg0)
13470 && can_native_interpret_type_p (type)
13471 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (arg0)))
13472 /* This limitation should not be necessary, we just need to
13473 round this up to mode size. */
13474 && tree_to_uhwi (op1) % BITS_PER_UNIT == 0
13475 /* Need bit-shifting of the buffer to relax the following. */
13476 && tree_to_uhwi (op2) % BITS_PER_UNIT == 0)
13477 {
13478 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
13479 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
13480 unsigned HOST_WIDE_INT clen;
13481 clen = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (arg0)));
13482 /* ??? We cannot tell native_encode_expr to start at
13483 some random byte only. So limit us to a reasonable amount
13484 of work. */
13485 if (clen <= 4096)
13486 {
13487 unsigned char *b = XALLOCAVEC (unsigned char, clen);
13488 unsigned HOST_WIDE_INT len = native_encode_expr (arg0, b, clen);
13489 if (len > 0
13490 && len * BITS_PER_UNIT >= bitpos + bitsize)
13491 {
13492 tree v = native_interpret_expr (type,
13493 b + bitpos / BITS_PER_UNIT,
13494 bitsize / BITS_PER_UNIT);
13495 if (v)
13496 return v;
13497 }
13498 }
13499 }
13500
13501 return NULL_TREE;
13502
13503 case FMA_EXPR:
13504 /* For integers we can decompose the FMA if possible. */
13505 if (TREE_CODE (arg0) == INTEGER_CST
13506 && TREE_CODE (arg1) == INTEGER_CST)
13507 return fold_build2_loc (loc, PLUS_EXPR, type,
13508 const_binop (MULT_EXPR, arg0, arg1), arg2);
13509 if (integer_zerop (arg2))
13510 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
13511
13512 return fold_fma (loc, type, arg0, arg1, arg2);
13513
13514 case VEC_PERM_EXPR:
13515 if (TREE_CODE (arg2) == VECTOR_CST)
13516 {
13517 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i, mask, mask2;
13518 unsigned char *sel = XALLOCAVEC (unsigned char, 2 * nelts);
13519 unsigned char *sel2 = sel + nelts;
13520 bool need_mask_canon = false;
13521 bool need_mask_canon2 = false;
13522 bool all_in_vec0 = true;
13523 bool all_in_vec1 = true;
13524 bool maybe_identity = true;
13525 bool single_arg = (op0 == op1);
13526 bool changed = false;
13527
13528 mask2 = 2 * nelts - 1;
13529 mask = single_arg ? (nelts - 1) : mask2;
13530 gcc_assert (nelts == VECTOR_CST_NELTS (arg2));
13531 for (i = 0; i < nelts; i++)
13532 {
13533 tree val = VECTOR_CST_ELT (arg2, i);
13534 if (TREE_CODE (val) != INTEGER_CST)
13535 return NULL_TREE;
13536
13537 /* Make sure that the perm value is in an acceptable
13538 range. */
13539 wide_int t = val;
13540 need_mask_canon |= wi::gtu_p (t, mask);
13541 need_mask_canon2 |= wi::gtu_p (t, mask2);
13542 sel[i] = t.to_uhwi () & mask;
13543 sel2[i] = t.to_uhwi () & mask2;
13544
13545 if (sel[i] < nelts)
13546 all_in_vec1 = false;
13547 else
13548 all_in_vec0 = false;
13549
13550 if ((sel[i] & (nelts-1)) != i)
13551 maybe_identity = false;
13552 }
13553
13554 if (maybe_identity)
13555 {
13556 if (all_in_vec0)
13557 return op0;
13558 if (all_in_vec1)
13559 return op1;
13560 }
13561
13562 if (all_in_vec0)
13563 op1 = op0;
13564 else if (all_in_vec1)
13565 {
13566 op0 = op1;
13567 for (i = 0; i < nelts; i++)
13568 sel[i] -= nelts;
13569 need_mask_canon = true;
13570 }
13571
13572 if ((TREE_CODE (op0) == VECTOR_CST
13573 || TREE_CODE (op0) == CONSTRUCTOR)
13574 && (TREE_CODE (op1) == VECTOR_CST
13575 || TREE_CODE (op1) == CONSTRUCTOR))
13576 {
13577 tree t = fold_vec_perm (type, op0, op1, sel);
13578 if (t != NULL_TREE)
13579 return t;
13580 }
13581
13582 if (op0 == op1 && !single_arg)
13583 changed = true;
13584
13585 /* Some targets are deficient and fail to expand a single
13586 argument permutation while still allowing an equivalent
13587 2-argument version. */
13588 if (need_mask_canon && arg2 == op2
13589 && !can_vec_perm_p (TYPE_MODE (type), false, sel)
13590 && can_vec_perm_p (TYPE_MODE (type), false, sel2))
13591 {
13592 need_mask_canon = need_mask_canon2;
13593 sel = sel2;
13594 }
13595
13596 if (need_mask_canon && arg2 == op2)
13597 {
13598 tree *tsel = XALLOCAVEC (tree, nelts);
13599 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
13600 for (i = 0; i < nelts; i++)
13601 tsel[i] = build_int_cst (eltype, sel[i]);
13602 op2 = build_vector (TREE_TYPE (arg2), tsel);
13603 changed = true;
13604 }
13605
13606 if (changed)
13607 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
13608 }
13609 return NULL_TREE;
13610
13611 default:
13612 return NULL_TREE;
13613 } /* switch (code) */
13614 }
13615
13616 /* Perform constant folding and related simplification of EXPR.
13617 The related simplifications include x*1 => x, x*0 => 0, etc.,
13618 and application of the associative law.
13619 NOP_EXPR conversions may be removed freely (as long as we
13620 are careful not to change the type of the overall expression).
13621 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
13622 but we can constant-fold them if they have constant operands. */
13623
13624 #ifdef ENABLE_FOLD_CHECKING
13625 # define fold(x) fold_1 (x)
13626 static tree fold_1 (tree);
13627 static
13628 #endif
13629 tree
13630 fold (tree expr)
13631 {
13632 const tree t = expr;
13633 enum tree_code code = TREE_CODE (t);
13634 enum tree_code_class kind = TREE_CODE_CLASS (code);
13635 tree tem;
13636 location_t loc = EXPR_LOCATION (expr);
13637
13638 /* Return right away if a constant. */
13639 if (kind == tcc_constant)
13640 return t;
13641
13642 /* CALL_EXPR-like objects with variable numbers of operands are
13643 treated specially. */
13644 if (kind == tcc_vl_exp)
13645 {
13646 if (code == CALL_EXPR)
13647 {
13648 tem = fold_call_expr (loc, expr, false);
13649 return tem ? tem : expr;
13650 }
13651 return expr;
13652 }
13653
13654 if (IS_EXPR_CODE_CLASS (kind))
13655 {
13656 tree type = TREE_TYPE (t);
13657 tree op0, op1, op2;
13658
13659 switch (TREE_CODE_LENGTH (code))
13660 {
13661 case 1:
13662 op0 = TREE_OPERAND (t, 0);
13663 tem = fold_unary_loc (loc, code, type, op0);
13664 return tem ? tem : expr;
13665 case 2:
13666 op0 = TREE_OPERAND (t, 0);
13667 op1 = TREE_OPERAND (t, 1);
13668 tem = fold_binary_loc (loc, code, type, op0, op1);
13669 return tem ? tem : expr;
13670 case 3:
13671 op0 = TREE_OPERAND (t, 0);
13672 op1 = TREE_OPERAND (t, 1);
13673 op2 = TREE_OPERAND (t, 2);
13674 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
13675 return tem ? tem : expr;
13676 default:
13677 break;
13678 }
13679 }
13680
13681 switch (code)
13682 {
13683 case ARRAY_REF:
13684 {
13685 tree op0 = TREE_OPERAND (t, 0);
13686 tree op1 = TREE_OPERAND (t, 1);
13687
13688 if (TREE_CODE (op1) == INTEGER_CST
13689 && TREE_CODE (op0) == CONSTRUCTOR
13690 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
13691 {
13692 vec<constructor_elt, va_gc> *elts = CONSTRUCTOR_ELTS (op0);
13693 unsigned HOST_WIDE_INT end = vec_safe_length (elts);
13694 unsigned HOST_WIDE_INT begin = 0;
13695
13696 /* Find a matching index by means of a binary search. */
13697 while (begin != end)
13698 {
13699 unsigned HOST_WIDE_INT middle = (begin + end) / 2;
13700 tree index = (*elts)[middle].index;
13701
13702 if (TREE_CODE (index) == INTEGER_CST
13703 && tree_int_cst_lt (index, op1))
13704 begin = middle + 1;
13705 else if (TREE_CODE (index) == INTEGER_CST
13706 && tree_int_cst_lt (op1, index))
13707 end = middle;
13708 else if (TREE_CODE (index) == RANGE_EXPR
13709 && tree_int_cst_lt (TREE_OPERAND (index, 1), op1))
13710 begin = middle + 1;
13711 else if (TREE_CODE (index) == RANGE_EXPR
13712 && tree_int_cst_lt (op1, TREE_OPERAND (index, 0)))
13713 end = middle;
13714 else
13715 return (*elts)[middle].value;
13716 }
13717 }
13718
13719 return t;
13720 }
13721
13722 /* Return a VECTOR_CST if possible. */
13723 case CONSTRUCTOR:
13724 {
13725 tree type = TREE_TYPE (t);
13726 if (TREE_CODE (type) != VECTOR_TYPE)
13727 return t;
13728
13729 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
13730 unsigned HOST_WIDE_INT idx, pos = 0;
13731 tree value;
13732
13733 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), idx, value)
13734 {
13735 if (!CONSTANT_CLASS_P (value))
13736 return t;
13737 if (TREE_CODE (value) == VECTOR_CST)
13738 {
13739 for (unsigned i = 0; i < VECTOR_CST_NELTS (value); ++i)
13740 vec[pos++] = VECTOR_CST_ELT (value, i);
13741 }
13742 else
13743 vec[pos++] = value;
13744 }
13745 for (; pos < TYPE_VECTOR_SUBPARTS (type); ++pos)
13746 vec[pos] = build_zero_cst (TREE_TYPE (type));
13747
13748 return build_vector (type, vec);
13749 }
13750
13751 case CONST_DECL:
13752 return fold (DECL_INITIAL (t));
13753
13754 default:
13755 return t;
13756 } /* switch (code) */
13757 }
13758
13759 #ifdef ENABLE_FOLD_CHECKING
13760 #undef fold
13761
13762 static void fold_checksum_tree (const_tree, struct md5_ctx *,
13763 hash_table<nofree_ptr_hash<const tree_node> > *);
13764 static void fold_check_failed (const_tree, const_tree);
13765 void print_fold_checksum (const_tree);
13766
13767 /* When --enable-checking=fold, compute a digest of expr before
13768 and after actual fold call to see if fold did not accidentally
13769 change original expr. */
13770
13771 tree
13772 fold (tree expr)
13773 {
13774 tree ret;
13775 struct md5_ctx ctx;
13776 unsigned char checksum_before[16], checksum_after[16];
13777 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13778
13779 md5_init_ctx (&ctx);
13780 fold_checksum_tree (expr, &ctx, &ht);
13781 md5_finish_ctx (&ctx, checksum_before);
13782 ht.empty ();
13783
13784 ret = fold_1 (expr);
13785
13786 md5_init_ctx (&ctx);
13787 fold_checksum_tree (expr, &ctx, &ht);
13788 md5_finish_ctx (&ctx, checksum_after);
13789
13790 if (memcmp (checksum_before, checksum_after, 16))
13791 fold_check_failed (expr, ret);
13792
13793 return ret;
13794 }
13795
13796 void
13797 print_fold_checksum (const_tree expr)
13798 {
13799 struct md5_ctx ctx;
13800 unsigned char checksum[16], cnt;
13801 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13802
13803 md5_init_ctx (&ctx);
13804 fold_checksum_tree (expr, &ctx, &ht);
13805 md5_finish_ctx (&ctx, checksum);
13806 for (cnt = 0; cnt < 16; ++cnt)
13807 fprintf (stderr, "%02x", checksum[cnt]);
13808 putc ('\n', stderr);
13809 }
13810
13811 static void
13812 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
13813 {
13814 internal_error ("fold check: original tree changed by fold");
13815 }
13816
13817 static void
13818 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
13819 hash_table<nofree_ptr_hash <const tree_node> > *ht)
13820 {
13821 const tree_node **slot;
13822 enum tree_code code;
13823 union tree_node buf;
13824 int i, len;
13825
13826 recursive_label:
13827 if (expr == NULL)
13828 return;
13829 slot = ht->find_slot (expr, INSERT);
13830 if (*slot != NULL)
13831 return;
13832 *slot = expr;
13833 code = TREE_CODE (expr);
13834 if (TREE_CODE_CLASS (code) == tcc_declaration
13835 && HAS_DECL_ASSEMBLER_NAME_P (expr))
13836 {
13837 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
13838 memcpy ((char *) &buf, expr, tree_size (expr));
13839 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
13840 buf.decl_with_vis.symtab_node = NULL;
13841 expr = (tree) &buf;
13842 }
13843 else if (TREE_CODE_CLASS (code) == tcc_type
13844 && (TYPE_POINTER_TO (expr)
13845 || TYPE_REFERENCE_TO (expr)
13846 || TYPE_CACHED_VALUES_P (expr)
13847 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
13848 || TYPE_NEXT_VARIANT (expr)))
13849 {
13850 /* Allow these fields to be modified. */
13851 tree tmp;
13852 memcpy ((char *) &buf, expr, tree_size (expr));
13853 expr = tmp = (tree) &buf;
13854 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
13855 TYPE_POINTER_TO (tmp) = NULL;
13856 TYPE_REFERENCE_TO (tmp) = NULL;
13857 TYPE_NEXT_VARIANT (tmp) = NULL;
13858 if (TYPE_CACHED_VALUES_P (tmp))
13859 {
13860 TYPE_CACHED_VALUES_P (tmp) = 0;
13861 TYPE_CACHED_VALUES (tmp) = NULL;
13862 }
13863 }
13864 md5_process_bytes (expr, tree_size (expr), ctx);
13865 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
13866 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
13867 if (TREE_CODE_CLASS (code) != tcc_type
13868 && TREE_CODE_CLASS (code) != tcc_declaration
13869 && code != TREE_LIST
13870 && code != SSA_NAME
13871 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
13872 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
13873 switch (TREE_CODE_CLASS (code))
13874 {
13875 case tcc_constant:
13876 switch (code)
13877 {
13878 case STRING_CST:
13879 md5_process_bytes (TREE_STRING_POINTER (expr),
13880 TREE_STRING_LENGTH (expr), ctx);
13881 break;
13882 case COMPLEX_CST:
13883 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
13884 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
13885 break;
13886 case VECTOR_CST:
13887 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
13888 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
13889 break;
13890 default:
13891 break;
13892 }
13893 break;
13894 case tcc_exceptional:
13895 switch (code)
13896 {
13897 case TREE_LIST:
13898 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
13899 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
13900 expr = TREE_CHAIN (expr);
13901 goto recursive_label;
13902 break;
13903 case TREE_VEC:
13904 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
13905 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
13906 break;
13907 default:
13908 break;
13909 }
13910 break;
13911 case tcc_expression:
13912 case tcc_reference:
13913 case tcc_comparison:
13914 case tcc_unary:
13915 case tcc_binary:
13916 case tcc_statement:
13917 case tcc_vl_exp:
13918 len = TREE_OPERAND_LENGTH (expr);
13919 for (i = 0; i < len; ++i)
13920 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
13921 break;
13922 case tcc_declaration:
13923 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
13924 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
13925 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
13926 {
13927 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
13928 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
13929 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
13930 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
13931 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
13932 }
13933
13934 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
13935 {
13936 if (TREE_CODE (expr) == FUNCTION_DECL)
13937 {
13938 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
13939 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
13940 }
13941 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
13942 }
13943 break;
13944 case tcc_type:
13945 if (TREE_CODE (expr) == ENUMERAL_TYPE)
13946 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
13947 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
13948 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
13949 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
13950 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
13951 if (INTEGRAL_TYPE_P (expr)
13952 || SCALAR_FLOAT_TYPE_P (expr))
13953 {
13954 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
13955 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
13956 }
13957 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
13958 if (TREE_CODE (expr) == RECORD_TYPE
13959 || TREE_CODE (expr) == UNION_TYPE
13960 || TREE_CODE (expr) == QUAL_UNION_TYPE)
13961 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
13962 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
13963 break;
13964 default:
13965 break;
13966 }
13967 }
13968
13969 /* Helper function for outputting the checksum of a tree T. When
13970 debugging with gdb, you can "define mynext" to be "next" followed
13971 by "call debug_fold_checksum (op0)", then just trace down till the
13972 outputs differ. */
13973
13974 DEBUG_FUNCTION void
13975 debug_fold_checksum (const_tree t)
13976 {
13977 int i;
13978 unsigned char checksum[16];
13979 struct md5_ctx ctx;
13980 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13981
13982 md5_init_ctx (&ctx);
13983 fold_checksum_tree (t, &ctx, &ht);
13984 md5_finish_ctx (&ctx, checksum);
13985 ht.empty ();
13986
13987 for (i = 0; i < 16; i++)
13988 fprintf (stderr, "%d ", checksum[i]);
13989
13990 fprintf (stderr, "\n");
13991 }
13992
13993 #endif
13994
13995 /* Fold a unary tree expression with code CODE of type TYPE with an
13996 operand OP0. LOC is the location of the resulting expression.
13997 Return a folded expression if successful. Otherwise, return a tree
13998 expression with code CODE of type TYPE with an operand OP0. */
13999
14000 tree
14001 fold_build1_stat_loc (location_t loc,
14002 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
14003 {
14004 tree tem;
14005 #ifdef ENABLE_FOLD_CHECKING
14006 unsigned char checksum_before[16], checksum_after[16];
14007 struct md5_ctx ctx;
14008 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
14009
14010 md5_init_ctx (&ctx);
14011 fold_checksum_tree (op0, &ctx, &ht);
14012 md5_finish_ctx (&ctx, checksum_before);
14013 ht.empty ();
14014 #endif
14015
14016 tem = fold_unary_loc (loc, code, type, op0);
14017 if (!tem)
14018 tem = build1_stat_loc (loc, code, type, op0 PASS_MEM_STAT);
14019
14020 #ifdef ENABLE_FOLD_CHECKING
14021 md5_init_ctx (&ctx);
14022 fold_checksum_tree (op0, &ctx, &ht);
14023 md5_finish_ctx (&ctx, checksum_after);
14024
14025 if (memcmp (checksum_before, checksum_after, 16))
14026 fold_check_failed (op0, tem);
14027 #endif
14028 return tem;
14029 }
14030
14031 /* Fold a binary tree expression with code CODE of type TYPE with
14032 operands OP0 and OP1. LOC is the location of the resulting
14033 expression. Return a folded expression if successful. Otherwise,
14034 return a tree expression with code CODE of type TYPE with operands
14035 OP0 and OP1. */
14036
14037 tree
14038 fold_build2_stat_loc (location_t loc,
14039 enum tree_code code, tree type, tree op0, tree op1
14040 MEM_STAT_DECL)
14041 {
14042 tree tem;
14043 #ifdef ENABLE_FOLD_CHECKING
14044 unsigned char checksum_before_op0[16],
14045 checksum_before_op1[16],
14046 checksum_after_op0[16],
14047 checksum_after_op1[16];
14048 struct md5_ctx ctx;
14049 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
14050
14051 md5_init_ctx (&ctx);
14052 fold_checksum_tree (op0, &ctx, &ht);
14053 md5_finish_ctx (&ctx, checksum_before_op0);
14054 ht.empty ();
14055
14056 md5_init_ctx (&ctx);
14057 fold_checksum_tree (op1, &ctx, &ht);
14058 md5_finish_ctx (&ctx, checksum_before_op1);
14059 ht.empty ();
14060 #endif
14061
14062 tem = fold_binary_loc (loc, code, type, op0, op1);
14063 if (!tem)
14064 tem = build2_stat_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
14065
14066 #ifdef ENABLE_FOLD_CHECKING
14067 md5_init_ctx (&ctx);
14068 fold_checksum_tree (op0, &ctx, &ht);
14069 md5_finish_ctx (&ctx, checksum_after_op0);
14070 ht.empty ();
14071
14072 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
14073 fold_check_failed (op0, tem);
14074
14075 md5_init_ctx (&ctx);
14076 fold_checksum_tree (op1, &ctx, &ht);
14077 md5_finish_ctx (&ctx, checksum_after_op1);
14078
14079 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
14080 fold_check_failed (op1, tem);
14081 #endif
14082 return tem;
14083 }
14084
14085 /* Fold a ternary tree expression with code CODE of type TYPE with
14086 operands OP0, OP1, and OP2. Return a folded expression if
14087 successful. Otherwise, return a tree expression with code CODE of
14088 type TYPE with operands OP0, OP1, and OP2. */
14089
14090 tree
14091 fold_build3_stat_loc (location_t loc, enum tree_code code, tree type,
14092 tree op0, tree op1, tree op2 MEM_STAT_DECL)
14093 {
14094 tree tem;
14095 #ifdef ENABLE_FOLD_CHECKING
14096 unsigned char checksum_before_op0[16],
14097 checksum_before_op1[16],
14098 checksum_before_op2[16],
14099 checksum_after_op0[16],
14100 checksum_after_op1[16],
14101 checksum_after_op2[16];
14102 struct md5_ctx ctx;
14103 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
14104
14105 md5_init_ctx (&ctx);
14106 fold_checksum_tree (op0, &ctx, &ht);
14107 md5_finish_ctx (&ctx, checksum_before_op0);
14108 ht.empty ();
14109
14110 md5_init_ctx (&ctx);
14111 fold_checksum_tree (op1, &ctx, &ht);
14112 md5_finish_ctx (&ctx, checksum_before_op1);
14113 ht.empty ();
14114
14115 md5_init_ctx (&ctx);
14116 fold_checksum_tree (op2, &ctx, &ht);
14117 md5_finish_ctx (&ctx, checksum_before_op2);
14118 ht.empty ();
14119 #endif
14120
14121 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
14122 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
14123 if (!tem)
14124 tem = build3_stat_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
14125
14126 #ifdef ENABLE_FOLD_CHECKING
14127 md5_init_ctx (&ctx);
14128 fold_checksum_tree (op0, &ctx, &ht);
14129 md5_finish_ctx (&ctx, checksum_after_op0);
14130 ht.empty ();
14131
14132 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
14133 fold_check_failed (op0, tem);
14134
14135 md5_init_ctx (&ctx);
14136 fold_checksum_tree (op1, &ctx, &ht);
14137 md5_finish_ctx (&ctx, checksum_after_op1);
14138 ht.empty ();
14139
14140 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
14141 fold_check_failed (op1, tem);
14142
14143 md5_init_ctx (&ctx);
14144 fold_checksum_tree (op2, &ctx, &ht);
14145 md5_finish_ctx (&ctx, checksum_after_op2);
14146
14147 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
14148 fold_check_failed (op2, tem);
14149 #endif
14150 return tem;
14151 }
14152
14153 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
14154 arguments in ARGARRAY, and a null static chain.
14155 Return a folded expression if successful. Otherwise, return a CALL_EXPR
14156 of type TYPE from the given operands as constructed by build_call_array. */
14157
14158 tree
14159 fold_build_call_array_loc (location_t loc, tree type, tree fn,
14160 int nargs, tree *argarray)
14161 {
14162 tree tem;
14163 #ifdef ENABLE_FOLD_CHECKING
14164 unsigned char checksum_before_fn[16],
14165 checksum_before_arglist[16],
14166 checksum_after_fn[16],
14167 checksum_after_arglist[16];
14168 struct md5_ctx ctx;
14169 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
14170 int i;
14171
14172 md5_init_ctx (&ctx);
14173 fold_checksum_tree (fn, &ctx, &ht);
14174 md5_finish_ctx (&ctx, checksum_before_fn);
14175 ht.empty ();
14176
14177 md5_init_ctx (&ctx);
14178 for (i = 0; i < nargs; i++)
14179 fold_checksum_tree (argarray[i], &ctx, &ht);
14180 md5_finish_ctx (&ctx, checksum_before_arglist);
14181 ht.empty ();
14182 #endif
14183
14184 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
14185 if (!tem)
14186 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
14187
14188 #ifdef ENABLE_FOLD_CHECKING
14189 md5_init_ctx (&ctx);
14190 fold_checksum_tree (fn, &ctx, &ht);
14191 md5_finish_ctx (&ctx, checksum_after_fn);
14192 ht.empty ();
14193
14194 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
14195 fold_check_failed (fn, tem);
14196
14197 md5_init_ctx (&ctx);
14198 for (i = 0; i < nargs; i++)
14199 fold_checksum_tree (argarray[i], &ctx, &ht);
14200 md5_finish_ctx (&ctx, checksum_after_arglist);
14201
14202 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
14203 fold_check_failed (NULL_TREE, tem);
14204 #endif
14205 return tem;
14206 }
14207
14208 /* Perform constant folding and related simplification of initializer
14209 expression EXPR. These behave identically to "fold_buildN" but ignore
14210 potential run-time traps and exceptions that fold must preserve. */
14211
14212 #define START_FOLD_INIT \
14213 int saved_signaling_nans = flag_signaling_nans;\
14214 int saved_trapping_math = flag_trapping_math;\
14215 int saved_rounding_math = flag_rounding_math;\
14216 int saved_trapv = flag_trapv;\
14217 int saved_folding_initializer = folding_initializer;\
14218 flag_signaling_nans = 0;\
14219 flag_trapping_math = 0;\
14220 flag_rounding_math = 0;\
14221 flag_trapv = 0;\
14222 folding_initializer = 1;
14223
14224 #define END_FOLD_INIT \
14225 flag_signaling_nans = saved_signaling_nans;\
14226 flag_trapping_math = saved_trapping_math;\
14227 flag_rounding_math = saved_rounding_math;\
14228 flag_trapv = saved_trapv;\
14229 folding_initializer = saved_folding_initializer;
14230
14231 tree
14232 fold_build1_initializer_loc (location_t loc, enum tree_code code,
14233 tree type, tree op)
14234 {
14235 tree result;
14236 START_FOLD_INIT;
14237
14238 result = fold_build1_loc (loc, code, type, op);
14239
14240 END_FOLD_INIT;
14241 return result;
14242 }
14243
14244 tree
14245 fold_build2_initializer_loc (location_t loc, enum tree_code code,
14246 tree type, tree op0, tree op1)
14247 {
14248 tree result;
14249 START_FOLD_INIT;
14250
14251 result = fold_build2_loc (loc, code, type, op0, op1);
14252
14253 END_FOLD_INIT;
14254 return result;
14255 }
14256
14257 tree
14258 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
14259 int nargs, tree *argarray)
14260 {
14261 tree result;
14262 START_FOLD_INIT;
14263
14264 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
14265
14266 END_FOLD_INIT;
14267 return result;
14268 }
14269
14270 #undef START_FOLD_INIT
14271 #undef END_FOLD_INIT
14272
14273 /* Determine if first argument is a multiple of second argument. Return 0 if
14274 it is not, or we cannot easily determined it to be.
14275
14276 An example of the sort of thing we care about (at this point; this routine
14277 could surely be made more general, and expanded to do what the *_DIV_EXPR's
14278 fold cases do now) is discovering that
14279
14280 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14281
14282 is a multiple of
14283
14284 SAVE_EXPR (J * 8)
14285
14286 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
14287
14288 This code also handles discovering that
14289
14290 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14291
14292 is a multiple of 8 so we don't have to worry about dealing with a
14293 possible remainder.
14294
14295 Note that we *look* inside a SAVE_EXPR only to determine how it was
14296 calculated; it is not safe for fold to do much of anything else with the
14297 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
14298 at run time. For example, the latter example above *cannot* be implemented
14299 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
14300 evaluation time of the original SAVE_EXPR is not necessarily the same at
14301 the time the new expression is evaluated. The only optimization of this
14302 sort that would be valid is changing
14303
14304 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
14305
14306 divided by 8 to
14307
14308 SAVE_EXPR (I) * SAVE_EXPR (J)
14309
14310 (where the same SAVE_EXPR (J) is used in the original and the
14311 transformed version). */
14312
14313 int
14314 multiple_of_p (tree type, const_tree top, const_tree bottom)
14315 {
14316 if (operand_equal_p (top, bottom, 0))
14317 return 1;
14318
14319 if (TREE_CODE (type) != INTEGER_TYPE)
14320 return 0;
14321
14322 switch (TREE_CODE (top))
14323 {
14324 case BIT_AND_EXPR:
14325 /* Bitwise and provides a power of two multiple. If the mask is
14326 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
14327 if (!integer_pow2p (bottom))
14328 return 0;
14329 /* FALLTHRU */
14330
14331 case MULT_EXPR:
14332 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
14333 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
14334
14335 case PLUS_EXPR:
14336 case MINUS_EXPR:
14337 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
14338 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
14339
14340 case LSHIFT_EXPR:
14341 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
14342 {
14343 tree op1, t1;
14344
14345 op1 = TREE_OPERAND (top, 1);
14346 /* const_binop may not detect overflow correctly,
14347 so check for it explicitly here. */
14348 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
14349 && 0 != (t1 = fold_convert (type,
14350 const_binop (LSHIFT_EXPR,
14351 size_one_node,
14352 op1)))
14353 && !TREE_OVERFLOW (t1))
14354 return multiple_of_p (type, t1, bottom);
14355 }
14356 return 0;
14357
14358 case NOP_EXPR:
14359 /* Can't handle conversions from non-integral or wider integral type. */
14360 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
14361 || (TYPE_PRECISION (type)
14362 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
14363 return 0;
14364
14365 /* .. fall through ... */
14366
14367 case SAVE_EXPR:
14368 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
14369
14370 case COND_EXPR:
14371 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
14372 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
14373
14374 case INTEGER_CST:
14375 if (TREE_CODE (bottom) != INTEGER_CST
14376 || integer_zerop (bottom)
14377 || (TYPE_UNSIGNED (type)
14378 && (tree_int_cst_sgn (top) < 0
14379 || tree_int_cst_sgn (bottom) < 0)))
14380 return 0;
14381 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
14382 SIGNED);
14383
14384 default:
14385 return 0;
14386 }
14387 }
14388
14389 /* Return true if CODE or TYPE is known to be non-negative. */
14390
14391 static bool
14392 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
14393 {
14394 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
14395 && truth_value_p (code))
14396 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
14397 have a signed:1 type (where the value is -1 and 0). */
14398 return true;
14399 return false;
14400 }
14401
14402 /* Return true if (CODE OP0) is known to be non-negative. If the return
14403 value is based on the assumption that signed overflow is undefined,
14404 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14405 *STRICT_OVERFLOW_P. */
14406
14407 bool
14408 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14409 bool *strict_overflow_p)
14410 {
14411 if (TYPE_UNSIGNED (type))
14412 return true;
14413
14414 switch (code)
14415 {
14416 case ABS_EXPR:
14417 /* We can't return 1 if flag_wrapv is set because
14418 ABS_EXPR<INT_MIN> = INT_MIN. */
14419 if (!ANY_INTEGRAL_TYPE_P (type))
14420 return true;
14421 if (TYPE_OVERFLOW_UNDEFINED (type))
14422 {
14423 *strict_overflow_p = true;
14424 return true;
14425 }
14426 break;
14427
14428 case NON_LVALUE_EXPR:
14429 case FLOAT_EXPR:
14430 case FIX_TRUNC_EXPR:
14431 return tree_expr_nonnegative_warnv_p (op0,
14432 strict_overflow_p);
14433
14434 CASE_CONVERT:
14435 {
14436 tree inner_type = TREE_TYPE (op0);
14437 tree outer_type = type;
14438
14439 if (TREE_CODE (outer_type) == REAL_TYPE)
14440 {
14441 if (TREE_CODE (inner_type) == REAL_TYPE)
14442 return tree_expr_nonnegative_warnv_p (op0,
14443 strict_overflow_p);
14444 if (INTEGRAL_TYPE_P (inner_type))
14445 {
14446 if (TYPE_UNSIGNED (inner_type))
14447 return true;
14448 return tree_expr_nonnegative_warnv_p (op0,
14449 strict_overflow_p);
14450 }
14451 }
14452 else if (INTEGRAL_TYPE_P (outer_type))
14453 {
14454 if (TREE_CODE (inner_type) == REAL_TYPE)
14455 return tree_expr_nonnegative_warnv_p (op0,
14456 strict_overflow_p);
14457 if (INTEGRAL_TYPE_P (inner_type))
14458 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
14459 && TYPE_UNSIGNED (inner_type);
14460 }
14461 }
14462 break;
14463
14464 default:
14465 return tree_simple_nonnegative_warnv_p (code, type);
14466 }
14467
14468 /* We don't know sign of `t', so be conservative and return false. */
14469 return false;
14470 }
14471
14472 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
14473 value is based on the assumption that signed overflow is undefined,
14474 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14475 *STRICT_OVERFLOW_P. */
14476
14477 bool
14478 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14479 tree op1, bool *strict_overflow_p)
14480 {
14481 if (TYPE_UNSIGNED (type))
14482 return true;
14483
14484 switch (code)
14485 {
14486 case POINTER_PLUS_EXPR:
14487 case PLUS_EXPR:
14488 if (FLOAT_TYPE_P (type))
14489 return (tree_expr_nonnegative_warnv_p (op0,
14490 strict_overflow_p)
14491 && tree_expr_nonnegative_warnv_p (op1,
14492 strict_overflow_p));
14493
14494 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
14495 both unsigned and at least 2 bits shorter than the result. */
14496 if (TREE_CODE (type) == INTEGER_TYPE
14497 && TREE_CODE (op0) == NOP_EXPR
14498 && TREE_CODE (op1) == NOP_EXPR)
14499 {
14500 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
14501 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
14502 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
14503 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
14504 {
14505 unsigned int prec = MAX (TYPE_PRECISION (inner1),
14506 TYPE_PRECISION (inner2)) + 1;
14507 return prec < TYPE_PRECISION (type);
14508 }
14509 }
14510 break;
14511
14512 case MULT_EXPR:
14513 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
14514 {
14515 /* x * x is always non-negative for floating point x
14516 or without overflow. */
14517 if (operand_equal_p (op0, op1, 0)
14518 || (tree_expr_nonnegative_warnv_p (op0, strict_overflow_p)
14519 && tree_expr_nonnegative_warnv_p (op1, strict_overflow_p)))
14520 {
14521 if (ANY_INTEGRAL_TYPE_P (type)
14522 && TYPE_OVERFLOW_UNDEFINED (type))
14523 *strict_overflow_p = true;
14524 return true;
14525 }
14526 }
14527
14528 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
14529 both unsigned and their total bits is shorter than the result. */
14530 if (TREE_CODE (type) == INTEGER_TYPE
14531 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
14532 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
14533 {
14534 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
14535 ? TREE_TYPE (TREE_OPERAND (op0, 0))
14536 : TREE_TYPE (op0);
14537 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
14538 ? TREE_TYPE (TREE_OPERAND (op1, 0))
14539 : TREE_TYPE (op1);
14540
14541 bool unsigned0 = TYPE_UNSIGNED (inner0);
14542 bool unsigned1 = TYPE_UNSIGNED (inner1);
14543
14544 if (TREE_CODE (op0) == INTEGER_CST)
14545 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
14546
14547 if (TREE_CODE (op1) == INTEGER_CST)
14548 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
14549
14550 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
14551 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
14552 {
14553 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
14554 ? tree_int_cst_min_precision (op0, UNSIGNED)
14555 : TYPE_PRECISION (inner0);
14556
14557 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
14558 ? tree_int_cst_min_precision (op1, UNSIGNED)
14559 : TYPE_PRECISION (inner1);
14560
14561 return precision0 + precision1 < TYPE_PRECISION (type);
14562 }
14563 }
14564 return false;
14565
14566 case BIT_AND_EXPR:
14567 case MAX_EXPR:
14568 return (tree_expr_nonnegative_warnv_p (op0,
14569 strict_overflow_p)
14570 || tree_expr_nonnegative_warnv_p (op1,
14571 strict_overflow_p));
14572
14573 case BIT_IOR_EXPR:
14574 case BIT_XOR_EXPR:
14575 case MIN_EXPR:
14576 case RDIV_EXPR:
14577 case TRUNC_DIV_EXPR:
14578 case CEIL_DIV_EXPR:
14579 case FLOOR_DIV_EXPR:
14580 case ROUND_DIV_EXPR:
14581 return (tree_expr_nonnegative_warnv_p (op0,
14582 strict_overflow_p)
14583 && tree_expr_nonnegative_warnv_p (op1,
14584 strict_overflow_p));
14585
14586 case TRUNC_MOD_EXPR:
14587 case CEIL_MOD_EXPR:
14588 case FLOOR_MOD_EXPR:
14589 case ROUND_MOD_EXPR:
14590 return tree_expr_nonnegative_warnv_p (op0,
14591 strict_overflow_p);
14592 default:
14593 return tree_simple_nonnegative_warnv_p (code, type);
14594 }
14595
14596 /* We don't know sign of `t', so be conservative and return false. */
14597 return false;
14598 }
14599
14600 /* Return true if T is known to be non-negative. If the return
14601 value is based on the assumption that signed overflow is undefined,
14602 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14603 *STRICT_OVERFLOW_P. */
14604
14605 bool
14606 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14607 {
14608 if (TYPE_UNSIGNED (TREE_TYPE (t)))
14609 return true;
14610
14611 switch (TREE_CODE (t))
14612 {
14613 case INTEGER_CST:
14614 return tree_int_cst_sgn (t) >= 0;
14615
14616 case REAL_CST:
14617 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
14618
14619 case FIXED_CST:
14620 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
14621
14622 case COND_EXPR:
14623 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14624 strict_overflow_p)
14625 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
14626 strict_overflow_p));
14627 default:
14628 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
14629 TREE_TYPE (t));
14630 }
14631 /* We don't know sign of `t', so be conservative and return false. */
14632 return false;
14633 }
14634
14635 /* Return true if T is known to be non-negative. If the return
14636 value is based on the assumption that signed overflow is undefined,
14637 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14638 *STRICT_OVERFLOW_P. */
14639
14640 bool
14641 tree_call_nonnegative_warnv_p (tree type, tree fndecl,
14642 tree arg0, tree arg1, bool *strict_overflow_p)
14643 {
14644 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
14645 switch (DECL_FUNCTION_CODE (fndecl))
14646 {
14647 CASE_FLT_FN (BUILT_IN_ACOS):
14648 CASE_FLT_FN (BUILT_IN_ACOSH):
14649 CASE_FLT_FN (BUILT_IN_CABS):
14650 CASE_FLT_FN (BUILT_IN_COSH):
14651 CASE_FLT_FN (BUILT_IN_ERFC):
14652 CASE_FLT_FN (BUILT_IN_EXP):
14653 CASE_FLT_FN (BUILT_IN_EXP10):
14654 CASE_FLT_FN (BUILT_IN_EXP2):
14655 CASE_FLT_FN (BUILT_IN_FABS):
14656 CASE_FLT_FN (BUILT_IN_FDIM):
14657 CASE_FLT_FN (BUILT_IN_HYPOT):
14658 CASE_FLT_FN (BUILT_IN_POW10):
14659 CASE_INT_FN (BUILT_IN_FFS):
14660 CASE_INT_FN (BUILT_IN_PARITY):
14661 CASE_INT_FN (BUILT_IN_POPCOUNT):
14662 CASE_INT_FN (BUILT_IN_CLZ):
14663 CASE_INT_FN (BUILT_IN_CLRSB):
14664 case BUILT_IN_BSWAP32:
14665 case BUILT_IN_BSWAP64:
14666 /* Always true. */
14667 return true;
14668
14669 CASE_FLT_FN (BUILT_IN_SQRT):
14670 /* sqrt(-0.0) is -0.0. */
14671 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
14672 return true;
14673 return tree_expr_nonnegative_warnv_p (arg0,
14674 strict_overflow_p);
14675
14676 CASE_FLT_FN (BUILT_IN_ASINH):
14677 CASE_FLT_FN (BUILT_IN_ATAN):
14678 CASE_FLT_FN (BUILT_IN_ATANH):
14679 CASE_FLT_FN (BUILT_IN_CBRT):
14680 CASE_FLT_FN (BUILT_IN_CEIL):
14681 CASE_FLT_FN (BUILT_IN_ERF):
14682 CASE_FLT_FN (BUILT_IN_EXPM1):
14683 CASE_FLT_FN (BUILT_IN_FLOOR):
14684 CASE_FLT_FN (BUILT_IN_FMOD):
14685 CASE_FLT_FN (BUILT_IN_FREXP):
14686 CASE_FLT_FN (BUILT_IN_ICEIL):
14687 CASE_FLT_FN (BUILT_IN_IFLOOR):
14688 CASE_FLT_FN (BUILT_IN_IRINT):
14689 CASE_FLT_FN (BUILT_IN_IROUND):
14690 CASE_FLT_FN (BUILT_IN_LCEIL):
14691 CASE_FLT_FN (BUILT_IN_LDEXP):
14692 CASE_FLT_FN (BUILT_IN_LFLOOR):
14693 CASE_FLT_FN (BUILT_IN_LLCEIL):
14694 CASE_FLT_FN (BUILT_IN_LLFLOOR):
14695 CASE_FLT_FN (BUILT_IN_LLRINT):
14696 CASE_FLT_FN (BUILT_IN_LLROUND):
14697 CASE_FLT_FN (BUILT_IN_LRINT):
14698 CASE_FLT_FN (BUILT_IN_LROUND):
14699 CASE_FLT_FN (BUILT_IN_MODF):
14700 CASE_FLT_FN (BUILT_IN_NEARBYINT):
14701 CASE_FLT_FN (BUILT_IN_RINT):
14702 CASE_FLT_FN (BUILT_IN_ROUND):
14703 CASE_FLT_FN (BUILT_IN_SCALB):
14704 CASE_FLT_FN (BUILT_IN_SCALBLN):
14705 CASE_FLT_FN (BUILT_IN_SCALBN):
14706 CASE_FLT_FN (BUILT_IN_SIGNBIT):
14707 CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
14708 CASE_FLT_FN (BUILT_IN_SINH):
14709 CASE_FLT_FN (BUILT_IN_TANH):
14710 CASE_FLT_FN (BUILT_IN_TRUNC):
14711 /* True if the 1st argument is nonnegative. */
14712 return tree_expr_nonnegative_warnv_p (arg0,
14713 strict_overflow_p);
14714
14715 CASE_FLT_FN (BUILT_IN_FMAX):
14716 /* True if the 1st OR 2nd arguments are nonnegative. */
14717 return (tree_expr_nonnegative_warnv_p (arg0,
14718 strict_overflow_p)
14719 || (tree_expr_nonnegative_warnv_p (arg1,
14720 strict_overflow_p)));
14721
14722 CASE_FLT_FN (BUILT_IN_FMIN):
14723 /* True if the 1st AND 2nd arguments are nonnegative. */
14724 return (tree_expr_nonnegative_warnv_p (arg0,
14725 strict_overflow_p)
14726 && (tree_expr_nonnegative_warnv_p (arg1,
14727 strict_overflow_p)));
14728
14729 CASE_FLT_FN (BUILT_IN_COPYSIGN):
14730 /* True if the 2nd argument is nonnegative. */
14731 return tree_expr_nonnegative_warnv_p (arg1,
14732 strict_overflow_p);
14733
14734 CASE_FLT_FN (BUILT_IN_POWI):
14735 /* True if the 1st argument is nonnegative or the second
14736 argument is an even integer. */
14737 if (TREE_CODE (arg1) == INTEGER_CST
14738 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
14739 return true;
14740 return tree_expr_nonnegative_warnv_p (arg0,
14741 strict_overflow_p);
14742
14743 CASE_FLT_FN (BUILT_IN_POW):
14744 /* True if the 1st argument is nonnegative or the second
14745 argument is an even integer valued real. */
14746 if (TREE_CODE (arg1) == REAL_CST)
14747 {
14748 REAL_VALUE_TYPE c;
14749 HOST_WIDE_INT n;
14750
14751 c = TREE_REAL_CST (arg1);
14752 n = real_to_integer (&c);
14753 if ((n & 1) == 0)
14754 {
14755 REAL_VALUE_TYPE cint;
14756 real_from_integer (&cint, VOIDmode, n, SIGNED);
14757 if (real_identical (&c, &cint))
14758 return true;
14759 }
14760 }
14761 return tree_expr_nonnegative_warnv_p (arg0,
14762 strict_overflow_p);
14763
14764 default:
14765 break;
14766 }
14767 return tree_simple_nonnegative_warnv_p (CALL_EXPR,
14768 type);
14769 }
14770
14771 /* Return true if T is known to be non-negative. If the return
14772 value is based on the assumption that signed overflow is undefined,
14773 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14774 *STRICT_OVERFLOW_P. */
14775
14776 static bool
14777 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14778 {
14779 enum tree_code code = TREE_CODE (t);
14780 if (TYPE_UNSIGNED (TREE_TYPE (t)))
14781 return true;
14782
14783 switch (code)
14784 {
14785 case TARGET_EXPR:
14786 {
14787 tree temp = TARGET_EXPR_SLOT (t);
14788 t = TARGET_EXPR_INITIAL (t);
14789
14790 /* If the initializer is non-void, then it's a normal expression
14791 that will be assigned to the slot. */
14792 if (!VOID_TYPE_P (t))
14793 return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
14794
14795 /* Otherwise, the initializer sets the slot in some way. One common
14796 way is an assignment statement at the end of the initializer. */
14797 while (1)
14798 {
14799 if (TREE_CODE (t) == BIND_EXPR)
14800 t = expr_last (BIND_EXPR_BODY (t));
14801 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
14802 || TREE_CODE (t) == TRY_CATCH_EXPR)
14803 t = expr_last (TREE_OPERAND (t, 0));
14804 else if (TREE_CODE (t) == STATEMENT_LIST)
14805 t = expr_last (t);
14806 else
14807 break;
14808 }
14809 if (TREE_CODE (t) == MODIFY_EXPR
14810 && TREE_OPERAND (t, 0) == temp)
14811 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14812 strict_overflow_p);
14813
14814 return false;
14815 }
14816
14817 case CALL_EXPR:
14818 {
14819 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
14820 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
14821
14822 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
14823 get_callee_fndecl (t),
14824 arg0,
14825 arg1,
14826 strict_overflow_p);
14827 }
14828 case COMPOUND_EXPR:
14829 case MODIFY_EXPR:
14830 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14831 strict_overflow_p);
14832 case BIND_EXPR:
14833 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
14834 strict_overflow_p);
14835 case SAVE_EXPR:
14836 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
14837 strict_overflow_p);
14838
14839 default:
14840 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
14841 TREE_TYPE (t));
14842 }
14843
14844 /* We don't know sign of `t', so be conservative and return false. */
14845 return false;
14846 }
14847
14848 /* Return true if T is known to be non-negative. If the return
14849 value is based on the assumption that signed overflow is undefined,
14850 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14851 *STRICT_OVERFLOW_P. */
14852
14853 bool
14854 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14855 {
14856 enum tree_code code;
14857 if (t == error_mark_node)
14858 return false;
14859
14860 code = TREE_CODE (t);
14861 switch (TREE_CODE_CLASS (code))
14862 {
14863 case tcc_binary:
14864 case tcc_comparison:
14865 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
14866 TREE_TYPE (t),
14867 TREE_OPERAND (t, 0),
14868 TREE_OPERAND (t, 1),
14869 strict_overflow_p);
14870
14871 case tcc_unary:
14872 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
14873 TREE_TYPE (t),
14874 TREE_OPERAND (t, 0),
14875 strict_overflow_p);
14876
14877 case tcc_constant:
14878 case tcc_declaration:
14879 case tcc_reference:
14880 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
14881
14882 default:
14883 break;
14884 }
14885
14886 switch (code)
14887 {
14888 case TRUTH_AND_EXPR:
14889 case TRUTH_OR_EXPR:
14890 case TRUTH_XOR_EXPR:
14891 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
14892 TREE_TYPE (t),
14893 TREE_OPERAND (t, 0),
14894 TREE_OPERAND (t, 1),
14895 strict_overflow_p);
14896 case TRUTH_NOT_EXPR:
14897 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
14898 TREE_TYPE (t),
14899 TREE_OPERAND (t, 0),
14900 strict_overflow_p);
14901
14902 case COND_EXPR:
14903 case CONSTRUCTOR:
14904 case OBJ_TYPE_REF:
14905 case ASSERT_EXPR:
14906 case ADDR_EXPR:
14907 case WITH_SIZE_EXPR:
14908 case SSA_NAME:
14909 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
14910
14911 default:
14912 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p);
14913 }
14914 }
14915
14916 /* Return true if `t' is known to be non-negative. Handle warnings
14917 about undefined signed overflow. */
14918
14919 bool
14920 tree_expr_nonnegative_p (tree t)
14921 {
14922 bool ret, strict_overflow_p;
14923
14924 strict_overflow_p = false;
14925 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
14926 if (strict_overflow_p)
14927 fold_overflow_warning (("assuming signed overflow does not occur when "
14928 "determining that expression is always "
14929 "non-negative"),
14930 WARN_STRICT_OVERFLOW_MISC);
14931 return ret;
14932 }
14933
14934
14935 /* Return true when (CODE OP0) is an address and is known to be nonzero.
14936 For floating point we further ensure that T is not denormal.
14937 Similar logic is present in nonzero_address in rtlanal.h.
14938
14939 If the return value is based on the assumption that signed overflow
14940 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14941 change *STRICT_OVERFLOW_P. */
14942
14943 bool
14944 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
14945 bool *strict_overflow_p)
14946 {
14947 switch (code)
14948 {
14949 case ABS_EXPR:
14950 return tree_expr_nonzero_warnv_p (op0,
14951 strict_overflow_p);
14952
14953 case NOP_EXPR:
14954 {
14955 tree inner_type = TREE_TYPE (op0);
14956 tree outer_type = type;
14957
14958 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
14959 && tree_expr_nonzero_warnv_p (op0,
14960 strict_overflow_p));
14961 }
14962 break;
14963
14964 case NON_LVALUE_EXPR:
14965 return tree_expr_nonzero_warnv_p (op0,
14966 strict_overflow_p);
14967
14968 default:
14969 break;
14970 }
14971
14972 return false;
14973 }
14974
14975 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
14976 For floating point we further ensure that T is not denormal.
14977 Similar logic is present in nonzero_address in rtlanal.h.
14978
14979 If the return value is based on the assumption that signed overflow
14980 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14981 change *STRICT_OVERFLOW_P. */
14982
14983 bool
14984 tree_binary_nonzero_warnv_p (enum tree_code code,
14985 tree type,
14986 tree op0,
14987 tree op1, bool *strict_overflow_p)
14988 {
14989 bool sub_strict_overflow_p;
14990 switch (code)
14991 {
14992 case POINTER_PLUS_EXPR:
14993 case PLUS_EXPR:
14994 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
14995 {
14996 /* With the presence of negative values it is hard
14997 to say something. */
14998 sub_strict_overflow_p = false;
14999 if (!tree_expr_nonnegative_warnv_p (op0,
15000 &sub_strict_overflow_p)
15001 || !tree_expr_nonnegative_warnv_p (op1,
15002 &sub_strict_overflow_p))
15003 return false;
15004 /* One of operands must be positive and the other non-negative. */
15005 /* We don't set *STRICT_OVERFLOW_P here: even if this value
15006 overflows, on a twos-complement machine the sum of two
15007 nonnegative numbers can never be zero. */
15008 return (tree_expr_nonzero_warnv_p (op0,
15009 strict_overflow_p)
15010 || tree_expr_nonzero_warnv_p (op1,
15011 strict_overflow_p));
15012 }
15013 break;
15014
15015 case MULT_EXPR:
15016 if (TYPE_OVERFLOW_UNDEFINED (type))
15017 {
15018 if (tree_expr_nonzero_warnv_p (op0,
15019 strict_overflow_p)
15020 && tree_expr_nonzero_warnv_p (op1,
15021 strict_overflow_p))
15022 {
15023 *strict_overflow_p = true;
15024 return true;
15025 }
15026 }
15027 break;
15028
15029 case MIN_EXPR:
15030 sub_strict_overflow_p = false;
15031 if (tree_expr_nonzero_warnv_p (op0,
15032 &sub_strict_overflow_p)
15033 && tree_expr_nonzero_warnv_p (op1,
15034 &sub_strict_overflow_p))
15035 {
15036 if (sub_strict_overflow_p)
15037 *strict_overflow_p = true;
15038 }
15039 break;
15040
15041 case MAX_EXPR:
15042 sub_strict_overflow_p = false;
15043 if (tree_expr_nonzero_warnv_p (op0,
15044 &sub_strict_overflow_p))
15045 {
15046 if (sub_strict_overflow_p)
15047 *strict_overflow_p = true;
15048
15049 /* When both operands are nonzero, then MAX must be too. */
15050 if (tree_expr_nonzero_warnv_p (op1,
15051 strict_overflow_p))
15052 return true;
15053
15054 /* MAX where operand 0 is positive is positive. */
15055 return tree_expr_nonnegative_warnv_p (op0,
15056 strict_overflow_p);
15057 }
15058 /* MAX where operand 1 is positive is positive. */
15059 else if (tree_expr_nonzero_warnv_p (op1,
15060 &sub_strict_overflow_p)
15061 && tree_expr_nonnegative_warnv_p (op1,
15062 &sub_strict_overflow_p))
15063 {
15064 if (sub_strict_overflow_p)
15065 *strict_overflow_p = true;
15066 return true;
15067 }
15068 break;
15069
15070 case BIT_IOR_EXPR:
15071 return (tree_expr_nonzero_warnv_p (op1,
15072 strict_overflow_p)
15073 || tree_expr_nonzero_warnv_p (op0,
15074 strict_overflow_p));
15075
15076 default:
15077 break;
15078 }
15079
15080 return false;
15081 }
15082
15083 /* Return true when T is an address and is known to be nonzero.
15084 For floating point we further ensure that T is not denormal.
15085 Similar logic is present in nonzero_address in rtlanal.h.
15086
15087 If the return value is based on the assumption that signed overflow
15088 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15089 change *STRICT_OVERFLOW_P. */
15090
15091 bool
15092 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
15093 {
15094 bool sub_strict_overflow_p;
15095 switch (TREE_CODE (t))
15096 {
15097 case INTEGER_CST:
15098 return !integer_zerop (t);
15099
15100 case ADDR_EXPR:
15101 {
15102 tree base = TREE_OPERAND (t, 0);
15103
15104 if (!DECL_P (base))
15105 base = get_base_address (base);
15106
15107 if (!base)
15108 return false;
15109
15110 /* For objects in symbol table check if we know they are non-zero.
15111 Don't do anything for variables and functions before symtab is built;
15112 it is quite possible that they will be declared weak later. */
15113 if (DECL_P (base) && decl_in_symtab_p (base))
15114 {
15115 struct symtab_node *symbol;
15116
15117 symbol = symtab_node::get_create (base);
15118 if (symbol)
15119 return symbol->nonzero_address ();
15120 else
15121 return false;
15122 }
15123
15124 /* Function local objects are never NULL. */
15125 if (DECL_P (base)
15126 && (DECL_CONTEXT (base)
15127 && TREE_CODE (DECL_CONTEXT (base)) == FUNCTION_DECL
15128 && auto_var_in_fn_p (base, DECL_CONTEXT (base))))
15129 return true;
15130
15131 /* Constants are never weak. */
15132 if (CONSTANT_CLASS_P (base))
15133 return true;
15134
15135 return false;
15136 }
15137
15138 case COND_EXPR:
15139 sub_strict_overflow_p = false;
15140 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
15141 &sub_strict_overflow_p)
15142 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
15143 &sub_strict_overflow_p))
15144 {
15145 if (sub_strict_overflow_p)
15146 *strict_overflow_p = true;
15147 return true;
15148 }
15149 break;
15150
15151 default:
15152 break;
15153 }
15154 return false;
15155 }
15156
15157 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
15158 attempt to fold the expression to a constant without modifying TYPE,
15159 OP0 or OP1.
15160
15161 If the expression could be simplified to a constant, then return
15162 the constant. If the expression would not be simplified to a
15163 constant, then return NULL_TREE. */
15164
15165 tree
15166 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
15167 {
15168 tree tem = fold_binary (code, type, op0, op1);
15169 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15170 }
15171
15172 /* Given the components of a unary expression CODE, TYPE and OP0,
15173 attempt to fold the expression to a constant without modifying
15174 TYPE or OP0.
15175
15176 If the expression could be simplified to a constant, then return
15177 the constant. If the expression would not be simplified to a
15178 constant, then return NULL_TREE. */
15179
15180 tree
15181 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
15182 {
15183 tree tem = fold_unary (code, type, op0);
15184 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15185 }
15186
15187 /* If EXP represents referencing an element in a constant string
15188 (either via pointer arithmetic or array indexing), return the
15189 tree representing the value accessed, otherwise return NULL. */
15190
15191 tree
15192 fold_read_from_constant_string (tree exp)
15193 {
15194 if ((TREE_CODE (exp) == INDIRECT_REF
15195 || TREE_CODE (exp) == ARRAY_REF)
15196 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
15197 {
15198 tree exp1 = TREE_OPERAND (exp, 0);
15199 tree index;
15200 tree string;
15201 location_t loc = EXPR_LOCATION (exp);
15202
15203 if (TREE_CODE (exp) == INDIRECT_REF)
15204 string = string_constant (exp1, &index);
15205 else
15206 {
15207 tree low_bound = array_ref_low_bound (exp);
15208 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
15209
15210 /* Optimize the special-case of a zero lower bound.
15211
15212 We convert the low_bound to sizetype to avoid some problems
15213 with constant folding. (E.g. suppose the lower bound is 1,
15214 and its mode is QI. Without the conversion,l (ARRAY
15215 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
15216 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
15217 if (! integer_zerop (low_bound))
15218 index = size_diffop_loc (loc, index,
15219 fold_convert_loc (loc, sizetype, low_bound));
15220
15221 string = exp1;
15222 }
15223
15224 if (string
15225 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
15226 && TREE_CODE (string) == STRING_CST
15227 && TREE_CODE (index) == INTEGER_CST
15228 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
15229 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
15230 == MODE_INT)
15231 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
15232 return build_int_cst_type (TREE_TYPE (exp),
15233 (TREE_STRING_POINTER (string)
15234 [TREE_INT_CST_LOW (index)]));
15235 }
15236 return NULL;
15237 }
15238
15239 /* Return the tree for neg (ARG0) when ARG0 is known to be either
15240 an integer constant, real, or fixed-point constant.
15241
15242 TYPE is the type of the result. */
15243
15244 static tree
15245 fold_negate_const (tree arg0, tree type)
15246 {
15247 tree t = NULL_TREE;
15248
15249 switch (TREE_CODE (arg0))
15250 {
15251 case INTEGER_CST:
15252 {
15253 bool overflow;
15254 wide_int val = wi::neg (arg0, &overflow);
15255 t = force_fit_type (type, val, 1,
15256 (overflow | TREE_OVERFLOW (arg0))
15257 && !TYPE_UNSIGNED (type));
15258 break;
15259 }
15260
15261 case REAL_CST:
15262 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
15263 break;
15264
15265 case FIXED_CST:
15266 {
15267 FIXED_VALUE_TYPE f;
15268 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
15269 &(TREE_FIXED_CST (arg0)), NULL,
15270 TYPE_SATURATING (type));
15271 t = build_fixed (type, f);
15272 /* Propagate overflow flags. */
15273 if (overflow_p | TREE_OVERFLOW (arg0))
15274 TREE_OVERFLOW (t) = 1;
15275 break;
15276 }
15277
15278 default:
15279 gcc_unreachable ();
15280 }
15281
15282 return t;
15283 }
15284
15285 /* Return the tree for abs (ARG0) when ARG0 is known to be either
15286 an integer constant or real constant.
15287
15288 TYPE is the type of the result. */
15289
15290 tree
15291 fold_abs_const (tree arg0, tree type)
15292 {
15293 tree t = NULL_TREE;
15294
15295 switch (TREE_CODE (arg0))
15296 {
15297 case INTEGER_CST:
15298 {
15299 /* If the value is unsigned or non-negative, then the absolute value
15300 is the same as the ordinary value. */
15301 if (!wi::neg_p (arg0, TYPE_SIGN (type)))
15302 t = arg0;
15303
15304 /* If the value is negative, then the absolute value is
15305 its negation. */
15306 else
15307 {
15308 bool overflow;
15309 wide_int val = wi::neg (arg0, &overflow);
15310 t = force_fit_type (type, val, -1,
15311 overflow | TREE_OVERFLOW (arg0));
15312 }
15313 }
15314 break;
15315
15316 case REAL_CST:
15317 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
15318 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
15319 else
15320 t = arg0;
15321 break;
15322
15323 default:
15324 gcc_unreachable ();
15325 }
15326
15327 return t;
15328 }
15329
15330 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
15331 constant. TYPE is the type of the result. */
15332
15333 static tree
15334 fold_not_const (const_tree arg0, tree type)
15335 {
15336 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
15337
15338 return force_fit_type (type, wi::bit_not (arg0), 0, TREE_OVERFLOW (arg0));
15339 }
15340
15341 /* Given CODE, a relational operator, the target type, TYPE and two
15342 constant operands OP0 and OP1, return the result of the
15343 relational operation. If the result is not a compile time
15344 constant, then return NULL_TREE. */
15345
15346 static tree
15347 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
15348 {
15349 int result, invert;
15350
15351 /* From here on, the only cases we handle are when the result is
15352 known to be a constant. */
15353
15354 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
15355 {
15356 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
15357 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
15358
15359 /* Handle the cases where either operand is a NaN. */
15360 if (real_isnan (c0) || real_isnan (c1))
15361 {
15362 switch (code)
15363 {
15364 case EQ_EXPR:
15365 case ORDERED_EXPR:
15366 result = 0;
15367 break;
15368
15369 case NE_EXPR:
15370 case UNORDERED_EXPR:
15371 case UNLT_EXPR:
15372 case UNLE_EXPR:
15373 case UNGT_EXPR:
15374 case UNGE_EXPR:
15375 case UNEQ_EXPR:
15376 result = 1;
15377 break;
15378
15379 case LT_EXPR:
15380 case LE_EXPR:
15381 case GT_EXPR:
15382 case GE_EXPR:
15383 case LTGT_EXPR:
15384 if (flag_trapping_math)
15385 return NULL_TREE;
15386 result = 0;
15387 break;
15388
15389 default:
15390 gcc_unreachable ();
15391 }
15392
15393 return constant_boolean_node (result, type);
15394 }
15395
15396 return constant_boolean_node (real_compare (code, c0, c1), type);
15397 }
15398
15399 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
15400 {
15401 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
15402 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
15403 return constant_boolean_node (fixed_compare (code, c0, c1), type);
15404 }
15405
15406 /* Handle equality/inequality of complex constants. */
15407 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
15408 {
15409 tree rcond = fold_relational_const (code, type,
15410 TREE_REALPART (op0),
15411 TREE_REALPART (op1));
15412 tree icond = fold_relational_const (code, type,
15413 TREE_IMAGPART (op0),
15414 TREE_IMAGPART (op1));
15415 if (code == EQ_EXPR)
15416 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
15417 else if (code == NE_EXPR)
15418 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
15419 else
15420 return NULL_TREE;
15421 }
15422
15423 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
15424 {
15425 unsigned count = VECTOR_CST_NELTS (op0);
15426 tree *elts = XALLOCAVEC (tree, count);
15427 gcc_assert (VECTOR_CST_NELTS (op1) == count
15428 && TYPE_VECTOR_SUBPARTS (type) == count);
15429
15430 for (unsigned i = 0; i < count; i++)
15431 {
15432 tree elem_type = TREE_TYPE (type);
15433 tree elem0 = VECTOR_CST_ELT (op0, i);
15434 tree elem1 = VECTOR_CST_ELT (op1, i);
15435
15436 tree tem = fold_relational_const (code, elem_type,
15437 elem0, elem1);
15438
15439 if (tem == NULL_TREE)
15440 return NULL_TREE;
15441
15442 elts[i] = build_int_cst (elem_type, integer_zerop (tem) ? 0 : -1);
15443 }
15444
15445 return build_vector (type, elts);
15446 }
15447
15448 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
15449
15450 To compute GT, swap the arguments and do LT.
15451 To compute GE, do LT and invert the result.
15452 To compute LE, swap the arguments, do LT and invert the result.
15453 To compute NE, do EQ and invert the result.
15454
15455 Therefore, the code below must handle only EQ and LT. */
15456
15457 if (code == LE_EXPR || code == GT_EXPR)
15458 {
15459 std::swap (op0, op1);
15460 code = swap_tree_comparison (code);
15461 }
15462
15463 /* Note that it is safe to invert for real values here because we
15464 have already handled the one case that it matters. */
15465
15466 invert = 0;
15467 if (code == NE_EXPR || code == GE_EXPR)
15468 {
15469 invert = 1;
15470 code = invert_tree_comparison (code, false);
15471 }
15472
15473 /* Compute a result for LT or EQ if args permit;
15474 Otherwise return T. */
15475 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
15476 {
15477 if (code == EQ_EXPR)
15478 result = tree_int_cst_equal (op0, op1);
15479 else
15480 result = tree_int_cst_lt (op0, op1);
15481 }
15482 else
15483 return NULL_TREE;
15484
15485 if (invert)
15486 result ^= 1;
15487 return constant_boolean_node (result, type);
15488 }
15489
15490 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
15491 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
15492 itself. */
15493
15494 tree
15495 fold_build_cleanup_point_expr (tree type, tree expr)
15496 {
15497 /* If the expression does not have side effects then we don't have to wrap
15498 it with a cleanup point expression. */
15499 if (!TREE_SIDE_EFFECTS (expr))
15500 return expr;
15501
15502 /* If the expression is a return, check to see if the expression inside the
15503 return has no side effects or the right hand side of the modify expression
15504 inside the return. If either don't have side effects set we don't need to
15505 wrap the expression in a cleanup point expression. Note we don't check the
15506 left hand side of the modify because it should always be a return decl. */
15507 if (TREE_CODE (expr) == RETURN_EXPR)
15508 {
15509 tree op = TREE_OPERAND (expr, 0);
15510 if (!op || !TREE_SIDE_EFFECTS (op))
15511 return expr;
15512 op = TREE_OPERAND (op, 1);
15513 if (!TREE_SIDE_EFFECTS (op))
15514 return expr;
15515 }
15516
15517 return build1 (CLEANUP_POINT_EXPR, type, expr);
15518 }
15519
15520 /* Given a pointer value OP0 and a type TYPE, return a simplified version
15521 of an indirection through OP0, or NULL_TREE if no simplification is
15522 possible. */
15523
15524 tree
15525 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
15526 {
15527 tree sub = op0;
15528 tree subtype;
15529
15530 STRIP_NOPS (sub);
15531 subtype = TREE_TYPE (sub);
15532 if (!POINTER_TYPE_P (subtype))
15533 return NULL_TREE;
15534
15535 if (TREE_CODE (sub) == ADDR_EXPR)
15536 {
15537 tree op = TREE_OPERAND (sub, 0);
15538 tree optype = TREE_TYPE (op);
15539 /* *&CONST_DECL -> to the value of the const decl. */
15540 if (TREE_CODE (op) == CONST_DECL)
15541 return DECL_INITIAL (op);
15542 /* *&p => p; make sure to handle *&"str"[cst] here. */
15543 if (type == optype)
15544 {
15545 tree fop = fold_read_from_constant_string (op);
15546 if (fop)
15547 return fop;
15548 else
15549 return op;
15550 }
15551 /* *(foo *)&fooarray => fooarray[0] */
15552 else if (TREE_CODE (optype) == ARRAY_TYPE
15553 && type == TREE_TYPE (optype)
15554 && (!in_gimple_form
15555 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
15556 {
15557 tree type_domain = TYPE_DOMAIN (optype);
15558 tree min_val = size_zero_node;
15559 if (type_domain && TYPE_MIN_VALUE (type_domain))
15560 min_val = TYPE_MIN_VALUE (type_domain);
15561 if (in_gimple_form
15562 && TREE_CODE (min_val) != INTEGER_CST)
15563 return NULL_TREE;
15564 return build4_loc (loc, ARRAY_REF, type, op, min_val,
15565 NULL_TREE, NULL_TREE);
15566 }
15567 /* *(foo *)&complexfoo => __real__ complexfoo */
15568 else if (TREE_CODE (optype) == COMPLEX_TYPE
15569 && type == TREE_TYPE (optype))
15570 return fold_build1_loc (loc, REALPART_EXPR, type, op);
15571 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
15572 else if (TREE_CODE (optype) == VECTOR_TYPE
15573 && type == TREE_TYPE (optype))
15574 {
15575 tree part_width = TYPE_SIZE (type);
15576 tree index = bitsize_int (0);
15577 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
15578 }
15579 }
15580
15581 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
15582 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
15583 {
15584 tree op00 = TREE_OPERAND (sub, 0);
15585 tree op01 = TREE_OPERAND (sub, 1);
15586
15587 STRIP_NOPS (op00);
15588 if (TREE_CODE (op00) == ADDR_EXPR)
15589 {
15590 tree op00type;
15591 op00 = TREE_OPERAND (op00, 0);
15592 op00type = TREE_TYPE (op00);
15593
15594 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
15595 if (TREE_CODE (op00type) == VECTOR_TYPE
15596 && type == TREE_TYPE (op00type))
15597 {
15598 HOST_WIDE_INT offset = tree_to_shwi (op01);
15599 tree part_width = TYPE_SIZE (type);
15600 unsigned HOST_WIDE_INT part_widthi = tree_to_shwi (part_width)/BITS_PER_UNIT;
15601 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
15602 tree index = bitsize_int (indexi);
15603
15604 if (offset / part_widthi < TYPE_VECTOR_SUBPARTS (op00type))
15605 return fold_build3_loc (loc,
15606 BIT_FIELD_REF, type, op00,
15607 part_width, index);
15608
15609 }
15610 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
15611 else if (TREE_CODE (op00type) == COMPLEX_TYPE
15612 && type == TREE_TYPE (op00type))
15613 {
15614 tree size = TYPE_SIZE_UNIT (type);
15615 if (tree_int_cst_equal (size, op01))
15616 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
15617 }
15618 /* ((foo *)&fooarray)[1] => fooarray[1] */
15619 else if (TREE_CODE (op00type) == ARRAY_TYPE
15620 && type == TREE_TYPE (op00type))
15621 {
15622 tree type_domain = TYPE_DOMAIN (op00type);
15623 tree min_val = size_zero_node;
15624 if (type_domain && TYPE_MIN_VALUE (type_domain))
15625 min_val = TYPE_MIN_VALUE (type_domain);
15626 op01 = size_binop_loc (loc, EXACT_DIV_EXPR, op01,
15627 TYPE_SIZE_UNIT (type));
15628 op01 = size_binop_loc (loc, PLUS_EXPR, op01, min_val);
15629 return build4_loc (loc, ARRAY_REF, type, op00, op01,
15630 NULL_TREE, NULL_TREE);
15631 }
15632 }
15633 }
15634
15635 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
15636 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
15637 && type == TREE_TYPE (TREE_TYPE (subtype))
15638 && (!in_gimple_form
15639 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
15640 {
15641 tree type_domain;
15642 tree min_val = size_zero_node;
15643 sub = build_fold_indirect_ref_loc (loc, sub);
15644 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
15645 if (type_domain && TYPE_MIN_VALUE (type_domain))
15646 min_val = TYPE_MIN_VALUE (type_domain);
15647 if (in_gimple_form
15648 && TREE_CODE (min_val) != INTEGER_CST)
15649 return NULL_TREE;
15650 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
15651 NULL_TREE);
15652 }
15653
15654 return NULL_TREE;
15655 }
15656
15657 /* Builds an expression for an indirection through T, simplifying some
15658 cases. */
15659
15660 tree
15661 build_fold_indirect_ref_loc (location_t loc, tree t)
15662 {
15663 tree type = TREE_TYPE (TREE_TYPE (t));
15664 tree sub = fold_indirect_ref_1 (loc, type, t);
15665
15666 if (sub)
15667 return sub;
15668
15669 return build1_loc (loc, INDIRECT_REF, type, t);
15670 }
15671
15672 /* Given an INDIRECT_REF T, return either T or a simplified version. */
15673
15674 tree
15675 fold_indirect_ref_loc (location_t loc, tree t)
15676 {
15677 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
15678
15679 if (sub)
15680 return sub;
15681 else
15682 return t;
15683 }
15684
15685 /* Strip non-trapping, non-side-effecting tree nodes from an expression
15686 whose result is ignored. The type of the returned tree need not be
15687 the same as the original expression. */
15688
15689 tree
15690 fold_ignored_result (tree t)
15691 {
15692 if (!TREE_SIDE_EFFECTS (t))
15693 return integer_zero_node;
15694
15695 for (;;)
15696 switch (TREE_CODE_CLASS (TREE_CODE (t)))
15697 {
15698 case tcc_unary:
15699 t = TREE_OPERAND (t, 0);
15700 break;
15701
15702 case tcc_binary:
15703 case tcc_comparison:
15704 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
15705 t = TREE_OPERAND (t, 0);
15706 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
15707 t = TREE_OPERAND (t, 1);
15708 else
15709 return t;
15710 break;
15711
15712 case tcc_expression:
15713 switch (TREE_CODE (t))
15714 {
15715 case COMPOUND_EXPR:
15716 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
15717 return t;
15718 t = TREE_OPERAND (t, 0);
15719 break;
15720
15721 case COND_EXPR:
15722 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
15723 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
15724 return t;
15725 t = TREE_OPERAND (t, 0);
15726 break;
15727
15728 default:
15729 return t;
15730 }
15731 break;
15732
15733 default:
15734 return t;
15735 }
15736 }
15737
15738 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
15739
15740 tree
15741 round_up_loc (location_t loc, tree value, unsigned int divisor)
15742 {
15743 tree div = NULL_TREE;
15744
15745 if (divisor == 1)
15746 return value;
15747
15748 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
15749 have to do anything. Only do this when we are not given a const,
15750 because in that case, this check is more expensive than just
15751 doing it. */
15752 if (TREE_CODE (value) != INTEGER_CST)
15753 {
15754 div = build_int_cst (TREE_TYPE (value), divisor);
15755
15756 if (multiple_of_p (TREE_TYPE (value), value, div))
15757 return value;
15758 }
15759
15760 /* If divisor is a power of two, simplify this to bit manipulation. */
15761 if (divisor == (divisor & -divisor))
15762 {
15763 if (TREE_CODE (value) == INTEGER_CST)
15764 {
15765 wide_int val = value;
15766 bool overflow_p;
15767
15768 if ((val & (divisor - 1)) == 0)
15769 return value;
15770
15771 overflow_p = TREE_OVERFLOW (value);
15772 val += divisor - 1;
15773 val &= - (int) divisor;
15774 if (val == 0)
15775 overflow_p = true;
15776
15777 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
15778 }
15779 else
15780 {
15781 tree t;
15782
15783 t = build_int_cst (TREE_TYPE (value), divisor - 1);
15784 value = size_binop_loc (loc, PLUS_EXPR, value, t);
15785 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
15786 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
15787 }
15788 }
15789 else
15790 {
15791 if (!div)
15792 div = build_int_cst (TREE_TYPE (value), divisor);
15793 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
15794 value = size_binop_loc (loc, MULT_EXPR, value, div);
15795 }
15796
15797 return value;
15798 }
15799
15800 /* Likewise, but round down. */
15801
15802 tree
15803 round_down_loc (location_t loc, tree value, int divisor)
15804 {
15805 tree div = NULL_TREE;
15806
15807 gcc_assert (divisor > 0);
15808 if (divisor == 1)
15809 return value;
15810
15811 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
15812 have to do anything. Only do this when we are not given a const,
15813 because in that case, this check is more expensive than just
15814 doing it. */
15815 if (TREE_CODE (value) != INTEGER_CST)
15816 {
15817 div = build_int_cst (TREE_TYPE (value), divisor);
15818
15819 if (multiple_of_p (TREE_TYPE (value), value, div))
15820 return value;
15821 }
15822
15823 /* If divisor is a power of two, simplify this to bit manipulation. */
15824 if (divisor == (divisor & -divisor))
15825 {
15826 tree t;
15827
15828 t = build_int_cst (TREE_TYPE (value), -divisor);
15829 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
15830 }
15831 else
15832 {
15833 if (!div)
15834 div = build_int_cst (TREE_TYPE (value), divisor);
15835 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
15836 value = size_binop_loc (loc, MULT_EXPR, value, div);
15837 }
15838
15839 return value;
15840 }
15841
15842 /* Returns the pointer to the base of the object addressed by EXP and
15843 extracts the information about the offset of the access, storing it
15844 to PBITPOS and POFFSET. */
15845
15846 static tree
15847 split_address_to_core_and_offset (tree exp,
15848 HOST_WIDE_INT *pbitpos, tree *poffset)
15849 {
15850 tree core;
15851 machine_mode mode;
15852 int unsignedp, volatilep;
15853 HOST_WIDE_INT bitsize;
15854 location_t loc = EXPR_LOCATION (exp);
15855
15856 if (TREE_CODE (exp) == ADDR_EXPR)
15857 {
15858 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
15859 poffset, &mode, &unsignedp, &volatilep,
15860 false);
15861 core = build_fold_addr_expr_loc (loc, core);
15862 }
15863 else
15864 {
15865 core = exp;
15866 *pbitpos = 0;
15867 *poffset = NULL_TREE;
15868 }
15869
15870 return core;
15871 }
15872
15873 /* Returns true if addresses of E1 and E2 differ by a constant, false
15874 otherwise. If they do, E1 - E2 is stored in *DIFF. */
15875
15876 bool
15877 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
15878 {
15879 tree core1, core2;
15880 HOST_WIDE_INT bitpos1, bitpos2;
15881 tree toffset1, toffset2, tdiff, type;
15882
15883 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
15884 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
15885
15886 if (bitpos1 % BITS_PER_UNIT != 0
15887 || bitpos2 % BITS_PER_UNIT != 0
15888 || !operand_equal_p (core1, core2, 0))
15889 return false;
15890
15891 if (toffset1 && toffset2)
15892 {
15893 type = TREE_TYPE (toffset1);
15894 if (type != TREE_TYPE (toffset2))
15895 toffset2 = fold_convert (type, toffset2);
15896
15897 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
15898 if (!cst_and_fits_in_hwi (tdiff))
15899 return false;
15900
15901 *diff = int_cst_value (tdiff);
15902 }
15903 else if (toffset1 || toffset2)
15904 {
15905 /* If only one of the offsets is non-constant, the difference cannot
15906 be a constant. */
15907 return false;
15908 }
15909 else
15910 *diff = 0;
15911
15912 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
15913 return true;
15914 }
15915
15916 /* Simplify the floating point expression EXP when the sign of the
15917 result is not significant. Return NULL_TREE if no simplification
15918 is possible. */
15919
15920 tree
15921 fold_strip_sign_ops (tree exp)
15922 {
15923 tree arg0, arg1;
15924 location_t loc = EXPR_LOCATION (exp);
15925
15926 switch (TREE_CODE (exp))
15927 {
15928 case ABS_EXPR:
15929 case NEGATE_EXPR:
15930 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
15931 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
15932
15933 case MULT_EXPR:
15934 case RDIV_EXPR:
15935 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (exp)))
15936 return NULL_TREE;
15937 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
15938 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15939 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
15940 return fold_build2_loc (loc, TREE_CODE (exp), TREE_TYPE (exp),
15941 arg0 ? arg0 : TREE_OPERAND (exp, 0),
15942 arg1 ? arg1 : TREE_OPERAND (exp, 1));
15943 break;
15944
15945 case COMPOUND_EXPR:
15946 arg0 = TREE_OPERAND (exp, 0);
15947 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15948 if (arg1)
15949 return fold_build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (exp), arg0, arg1);
15950 break;
15951
15952 case COND_EXPR:
15953 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15954 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 2));
15955 if (arg0 || arg1)
15956 return fold_build3_loc (loc,
15957 COND_EXPR, TREE_TYPE (exp), TREE_OPERAND (exp, 0),
15958 arg0 ? arg0 : TREE_OPERAND (exp, 1),
15959 arg1 ? arg1 : TREE_OPERAND (exp, 2));
15960 break;
15961
15962 case CALL_EXPR:
15963 {
15964 const enum built_in_function fcode = builtin_mathfn_code (exp);
15965 switch (fcode)
15966 {
15967 CASE_FLT_FN (BUILT_IN_COPYSIGN):
15968 /* Strip copysign function call, return the 1st argument. */
15969 arg0 = CALL_EXPR_ARG (exp, 0);
15970 arg1 = CALL_EXPR_ARG (exp, 1);
15971 return omit_one_operand_loc (loc, TREE_TYPE (exp), arg0, arg1);
15972
15973 default:
15974 /* Strip sign ops from the argument of "odd" math functions. */
15975 if (negate_mathfn_p (fcode))
15976 {
15977 arg0 = fold_strip_sign_ops (CALL_EXPR_ARG (exp, 0));
15978 if (arg0)
15979 return build_call_expr_loc (loc, get_callee_fndecl (exp), 1, arg0);
15980 }
15981 break;
15982 }
15983 }
15984 break;
15985
15986 default:
15987 break;
15988 }
15989 return NULL_TREE;
15990 }
15991
15992 /* Return OFF converted to a pointer offset type suitable as offset for
15993 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
15994 tree
15995 convert_to_ptrofftype_loc (location_t loc, tree off)
15996 {
15997 return fold_convert_loc (loc, sizetype, off);
15998 }
15999
16000 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
16001 tree
16002 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
16003 {
16004 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
16005 ptr, convert_to_ptrofftype_loc (loc, off));
16006 }
16007
16008 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
16009 tree
16010 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
16011 {
16012 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
16013 ptr, size_int (off));
16014 }