re PR tree-optimization/93210 (Sub-optimal code optimization on struct/combound const...
[gcc.git] / gcc / fold-const.c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
27
28 /* The entry points in this file are fold, size_int_wide and size_binop.
29
30 fold takes a tree as argument and returns a simplified tree.
31
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
35
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
38
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
42
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "target.h"
48 #include "rtl.h"
49 #include "tree.h"
50 #include "gimple.h"
51 #include "predict.h"
52 #include "memmodel.h"
53 #include "tm_p.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
56 #include "cgraph.h"
57 #include "diagnostic-core.h"
58 #include "flags.h"
59 #include "alias.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
63 #include "calls.h"
64 #include "tree-iterator.h"
65 #include "expr.h"
66 #include "intl.h"
67 #include "langhooks.h"
68 #include "tree-eh.h"
69 #include "gimplify.h"
70 #include "tree-dfa.h"
71 #include "builtins.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
74 #include "tree-into-ssa.h"
75 #include "md5.h"
76 #include "case-cfn-macros.h"
77 #include "stringpool.h"
78 #include "tree-vrp.h"
79 #include "tree-ssanames.h"
80 #include "selftest.h"
81 #include "stringpool.h"
82 #include "attribs.h"
83 #include "tree-vector-builder.h"
84 #include "vec-perm-indices.h"
85
86 /* Nonzero if we are folding constants inside an initializer; zero
87 otherwise. */
88 int folding_initializer = 0;
89
90 /* The following constants represent a bit based encoding of GCC's
91 comparison operators. This encoding simplifies transformations
92 on relational comparison operators, such as AND and OR. */
93 enum comparison_code {
94 COMPCODE_FALSE = 0,
95 COMPCODE_LT = 1,
96 COMPCODE_EQ = 2,
97 COMPCODE_LE = 3,
98 COMPCODE_GT = 4,
99 COMPCODE_LTGT = 5,
100 COMPCODE_GE = 6,
101 COMPCODE_ORD = 7,
102 COMPCODE_UNORD = 8,
103 COMPCODE_UNLT = 9,
104 COMPCODE_UNEQ = 10,
105 COMPCODE_UNLE = 11,
106 COMPCODE_UNGT = 12,
107 COMPCODE_NE = 13,
108 COMPCODE_UNGE = 14,
109 COMPCODE_TRUE = 15
110 };
111
112 static bool negate_expr_p (tree);
113 static tree negate_expr (tree);
114 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
115 static enum comparison_code comparison_to_compcode (enum tree_code);
116 static enum tree_code compcode_to_comparison (enum comparison_code);
117 static bool twoval_comparison_p (tree, tree *, tree *);
118 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
119 static tree optimize_bit_field_compare (location_t, enum tree_code,
120 tree, tree, tree);
121 static bool simple_operand_p (const_tree);
122 static bool simple_operand_p_2 (tree);
123 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
124 static tree range_predecessor (tree);
125 static tree range_successor (tree);
126 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
127 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
128 static tree unextend (tree, int, int, tree);
129 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
130 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
131 static tree fold_binary_op_with_conditional_arg (location_t,
132 enum tree_code, tree,
133 tree, tree,
134 tree, tree, int);
135 static tree fold_negate_const (tree, tree);
136 static tree fold_not_const (const_tree, tree);
137 static tree fold_relational_const (enum tree_code, tree, tree, tree);
138 static tree fold_convert_const (enum tree_code, tree, tree);
139 static tree fold_view_convert_expr (tree, tree);
140 static tree fold_negate_expr (location_t, tree);
141
142
143 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
144 Otherwise, return LOC. */
145
146 static location_t
147 expr_location_or (tree t, location_t loc)
148 {
149 location_t tloc = EXPR_LOCATION (t);
150 return tloc == UNKNOWN_LOCATION ? loc : tloc;
151 }
152
153 /* Similar to protected_set_expr_location, but never modify x in place,
154 if location can and needs to be set, unshare it. */
155
156 static inline tree
157 protected_set_expr_location_unshare (tree x, location_t loc)
158 {
159 if (CAN_HAVE_LOCATION_P (x)
160 && EXPR_LOCATION (x) != loc
161 && !(TREE_CODE (x) == SAVE_EXPR
162 || TREE_CODE (x) == TARGET_EXPR
163 || TREE_CODE (x) == BIND_EXPR))
164 {
165 x = copy_node (x);
166 SET_EXPR_LOCATION (x, loc);
167 }
168 return x;
169 }
170 \f
171 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
172 division and returns the quotient. Otherwise returns
173 NULL_TREE. */
174
175 tree
176 div_if_zero_remainder (const_tree arg1, const_tree arg2)
177 {
178 widest_int quo;
179
180 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
181 SIGNED, &quo))
182 return wide_int_to_tree (TREE_TYPE (arg1), quo);
183
184 return NULL_TREE;
185 }
186 \f
187 /* This is nonzero if we should defer warnings about undefined
188 overflow. This facility exists because these warnings are a
189 special case. The code to estimate loop iterations does not want
190 to issue any warnings, since it works with expressions which do not
191 occur in user code. Various bits of cleanup code call fold(), but
192 only use the result if it has certain characteristics (e.g., is a
193 constant); that code only wants to issue a warning if the result is
194 used. */
195
196 static int fold_deferring_overflow_warnings;
197
198 /* If a warning about undefined overflow is deferred, this is the
199 warning. Note that this may cause us to turn two warnings into
200 one, but that is fine since it is sufficient to only give one
201 warning per expression. */
202
203 static const char* fold_deferred_overflow_warning;
204
205 /* If a warning about undefined overflow is deferred, this is the
206 level at which the warning should be emitted. */
207
208 static enum warn_strict_overflow_code fold_deferred_overflow_code;
209
210 /* Start deferring overflow warnings. We could use a stack here to
211 permit nested calls, but at present it is not necessary. */
212
213 void
214 fold_defer_overflow_warnings (void)
215 {
216 ++fold_deferring_overflow_warnings;
217 }
218
219 /* Stop deferring overflow warnings. If there is a pending warning,
220 and ISSUE is true, then issue the warning if appropriate. STMT is
221 the statement with which the warning should be associated (used for
222 location information); STMT may be NULL. CODE is the level of the
223 warning--a warn_strict_overflow_code value. This function will use
224 the smaller of CODE and the deferred code when deciding whether to
225 issue the warning. CODE may be zero to mean to always use the
226 deferred code. */
227
228 void
229 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code)
230 {
231 const char *warnmsg;
232 location_t locus;
233
234 gcc_assert (fold_deferring_overflow_warnings > 0);
235 --fold_deferring_overflow_warnings;
236 if (fold_deferring_overflow_warnings > 0)
237 {
238 if (fold_deferred_overflow_warning != NULL
239 && code != 0
240 && code < (int) fold_deferred_overflow_code)
241 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
242 return;
243 }
244
245 warnmsg = fold_deferred_overflow_warning;
246 fold_deferred_overflow_warning = NULL;
247
248 if (!issue || warnmsg == NULL)
249 return;
250
251 if (gimple_no_warning_p (stmt))
252 return;
253
254 /* Use the smallest code level when deciding to issue the
255 warning. */
256 if (code == 0 || code > (int) fold_deferred_overflow_code)
257 code = fold_deferred_overflow_code;
258
259 if (!issue_strict_overflow_warning (code))
260 return;
261
262 if (stmt == NULL)
263 locus = input_location;
264 else
265 locus = gimple_location (stmt);
266 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
267 }
268
269 /* Stop deferring overflow warnings, ignoring any deferred
270 warnings. */
271
272 void
273 fold_undefer_and_ignore_overflow_warnings (void)
274 {
275 fold_undefer_overflow_warnings (false, NULL, 0);
276 }
277
278 /* Whether we are deferring overflow warnings. */
279
280 bool
281 fold_deferring_overflow_warnings_p (void)
282 {
283 return fold_deferring_overflow_warnings > 0;
284 }
285
286 /* This is called when we fold something based on the fact that signed
287 overflow is undefined. */
288
289 void
290 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
291 {
292 if (fold_deferring_overflow_warnings > 0)
293 {
294 if (fold_deferred_overflow_warning == NULL
295 || wc < fold_deferred_overflow_code)
296 {
297 fold_deferred_overflow_warning = gmsgid;
298 fold_deferred_overflow_code = wc;
299 }
300 }
301 else if (issue_strict_overflow_warning (wc))
302 warning (OPT_Wstrict_overflow, gmsgid);
303 }
304 \f
305 /* Return true if the built-in mathematical function specified by CODE
306 is odd, i.e. -f(x) == f(-x). */
307
308 bool
309 negate_mathfn_p (combined_fn fn)
310 {
311 switch (fn)
312 {
313 CASE_CFN_ASIN:
314 CASE_CFN_ASINH:
315 CASE_CFN_ATAN:
316 CASE_CFN_ATANH:
317 CASE_CFN_CASIN:
318 CASE_CFN_CASINH:
319 CASE_CFN_CATAN:
320 CASE_CFN_CATANH:
321 CASE_CFN_CBRT:
322 CASE_CFN_CPROJ:
323 CASE_CFN_CSIN:
324 CASE_CFN_CSINH:
325 CASE_CFN_CTAN:
326 CASE_CFN_CTANH:
327 CASE_CFN_ERF:
328 CASE_CFN_LLROUND:
329 CASE_CFN_LROUND:
330 CASE_CFN_ROUND:
331 CASE_CFN_ROUNDEVEN:
332 CASE_CFN_ROUNDEVEN_FN:
333 CASE_CFN_SIN:
334 CASE_CFN_SINH:
335 CASE_CFN_TAN:
336 CASE_CFN_TANH:
337 CASE_CFN_TRUNC:
338 return true;
339
340 CASE_CFN_LLRINT:
341 CASE_CFN_LRINT:
342 CASE_CFN_NEARBYINT:
343 CASE_CFN_RINT:
344 return !flag_rounding_math;
345
346 default:
347 break;
348 }
349 return false;
350 }
351
352 /* Check whether we may negate an integer constant T without causing
353 overflow. */
354
355 bool
356 may_negate_without_overflow_p (const_tree t)
357 {
358 tree type;
359
360 gcc_assert (TREE_CODE (t) == INTEGER_CST);
361
362 type = TREE_TYPE (t);
363 if (TYPE_UNSIGNED (type))
364 return false;
365
366 return !wi::only_sign_bit_p (wi::to_wide (t));
367 }
368
369 /* Determine whether an expression T can be cheaply negated using
370 the function negate_expr without introducing undefined overflow. */
371
372 static bool
373 negate_expr_p (tree t)
374 {
375 tree type;
376
377 if (t == 0)
378 return false;
379
380 type = TREE_TYPE (t);
381
382 STRIP_SIGN_NOPS (t);
383 switch (TREE_CODE (t))
384 {
385 case INTEGER_CST:
386 if (INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type))
387 return true;
388
389 /* Check that -CST will not overflow type. */
390 return may_negate_without_overflow_p (t);
391 case BIT_NOT_EXPR:
392 return (INTEGRAL_TYPE_P (type)
393 && TYPE_OVERFLOW_WRAPS (type));
394
395 case FIXED_CST:
396 return true;
397
398 case NEGATE_EXPR:
399 return !TYPE_OVERFLOW_SANITIZED (type);
400
401 case REAL_CST:
402 /* We want to canonicalize to positive real constants. Pretend
403 that only negative ones can be easily negated. */
404 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
405
406 case COMPLEX_CST:
407 return negate_expr_p (TREE_REALPART (t))
408 && negate_expr_p (TREE_IMAGPART (t));
409
410 case VECTOR_CST:
411 {
412 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
413 return true;
414
415 /* Steps don't prevent negation. */
416 unsigned int count = vector_cst_encoded_nelts (t);
417 for (unsigned int i = 0; i < count; ++i)
418 if (!negate_expr_p (VECTOR_CST_ENCODED_ELT (t, i)))
419 return false;
420
421 return true;
422 }
423
424 case COMPLEX_EXPR:
425 return negate_expr_p (TREE_OPERAND (t, 0))
426 && negate_expr_p (TREE_OPERAND (t, 1));
427
428 case CONJ_EXPR:
429 return negate_expr_p (TREE_OPERAND (t, 0));
430
431 case PLUS_EXPR:
432 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
433 || HONOR_SIGNED_ZEROS (element_mode (type))
434 || (ANY_INTEGRAL_TYPE_P (type)
435 && ! TYPE_OVERFLOW_WRAPS (type)))
436 return false;
437 /* -(A + B) -> (-B) - A. */
438 if (negate_expr_p (TREE_OPERAND (t, 1)))
439 return true;
440 /* -(A + B) -> (-A) - B. */
441 return negate_expr_p (TREE_OPERAND (t, 0));
442
443 case MINUS_EXPR:
444 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
445 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
446 && !HONOR_SIGNED_ZEROS (element_mode (type))
447 && (! ANY_INTEGRAL_TYPE_P (type)
448 || TYPE_OVERFLOW_WRAPS (type));
449
450 case MULT_EXPR:
451 if (TYPE_UNSIGNED (type))
452 break;
453 /* INT_MIN/n * n doesn't overflow while negating one operand it does
454 if n is a (negative) power of two. */
455 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
456 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
457 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
458 && (wi::popcount
459 (wi::abs (wi::to_wide (TREE_OPERAND (t, 0))))) != 1)
460 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
461 && (wi::popcount
462 (wi::abs (wi::to_wide (TREE_OPERAND (t, 1))))) != 1)))
463 break;
464
465 /* Fall through. */
466
467 case RDIV_EXPR:
468 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
469 return negate_expr_p (TREE_OPERAND (t, 1))
470 || negate_expr_p (TREE_OPERAND (t, 0));
471 break;
472
473 case TRUNC_DIV_EXPR:
474 case ROUND_DIV_EXPR:
475 case EXACT_DIV_EXPR:
476 if (TYPE_UNSIGNED (type))
477 break;
478 /* In general we can't negate A in A / B, because if A is INT_MIN and
479 B is not 1 we change the sign of the result. */
480 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
481 && negate_expr_p (TREE_OPERAND (t, 0)))
482 return true;
483 /* In general we can't negate B in A / B, because if A is INT_MIN and
484 B is 1, we may turn this into INT_MIN / -1 which is undefined
485 and actually traps on some architectures. */
486 if (! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t))
487 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
488 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
489 && ! integer_onep (TREE_OPERAND (t, 1))))
490 return negate_expr_p (TREE_OPERAND (t, 1));
491 break;
492
493 case NOP_EXPR:
494 /* Negate -((double)float) as (double)(-float). */
495 if (TREE_CODE (type) == REAL_TYPE)
496 {
497 tree tem = strip_float_extensions (t);
498 if (tem != t)
499 return negate_expr_p (tem);
500 }
501 break;
502
503 case CALL_EXPR:
504 /* Negate -f(x) as f(-x). */
505 if (negate_mathfn_p (get_call_combined_fn (t)))
506 return negate_expr_p (CALL_EXPR_ARG (t, 0));
507 break;
508
509 case RSHIFT_EXPR:
510 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
511 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
512 {
513 tree op1 = TREE_OPERAND (t, 1);
514 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1)
515 return true;
516 }
517 break;
518
519 default:
520 break;
521 }
522 return false;
523 }
524
525 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
526 simplification is possible.
527 If negate_expr_p would return true for T, NULL_TREE will never be
528 returned. */
529
530 static tree
531 fold_negate_expr_1 (location_t loc, tree t)
532 {
533 tree type = TREE_TYPE (t);
534 tree tem;
535
536 switch (TREE_CODE (t))
537 {
538 /* Convert - (~A) to A + 1. */
539 case BIT_NOT_EXPR:
540 if (INTEGRAL_TYPE_P (type))
541 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
542 build_one_cst (type));
543 break;
544
545 case INTEGER_CST:
546 tem = fold_negate_const (t, type);
547 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
548 || (ANY_INTEGRAL_TYPE_P (type)
549 && !TYPE_OVERFLOW_TRAPS (type)
550 && TYPE_OVERFLOW_WRAPS (type))
551 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
552 return tem;
553 break;
554
555 case POLY_INT_CST:
556 case REAL_CST:
557 case FIXED_CST:
558 tem = fold_negate_const (t, type);
559 return tem;
560
561 case COMPLEX_CST:
562 {
563 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
564 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
565 if (rpart && ipart)
566 return build_complex (type, rpart, ipart);
567 }
568 break;
569
570 case VECTOR_CST:
571 {
572 tree_vector_builder elts;
573 elts.new_unary_operation (type, t, true);
574 unsigned int count = elts.encoded_nelts ();
575 for (unsigned int i = 0; i < count; ++i)
576 {
577 tree elt = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
578 if (elt == NULL_TREE)
579 return NULL_TREE;
580 elts.quick_push (elt);
581 }
582
583 return elts.build ();
584 }
585
586 case COMPLEX_EXPR:
587 if (negate_expr_p (t))
588 return fold_build2_loc (loc, COMPLEX_EXPR, type,
589 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
590 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
591 break;
592
593 case CONJ_EXPR:
594 if (negate_expr_p (t))
595 return fold_build1_loc (loc, CONJ_EXPR, type,
596 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
597 break;
598
599 case NEGATE_EXPR:
600 if (!TYPE_OVERFLOW_SANITIZED (type))
601 return TREE_OPERAND (t, 0);
602 break;
603
604 case PLUS_EXPR:
605 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
606 && !HONOR_SIGNED_ZEROS (element_mode (type)))
607 {
608 /* -(A + B) -> (-B) - A. */
609 if (negate_expr_p (TREE_OPERAND (t, 1)))
610 {
611 tem = negate_expr (TREE_OPERAND (t, 1));
612 return fold_build2_loc (loc, MINUS_EXPR, type,
613 tem, TREE_OPERAND (t, 0));
614 }
615
616 /* -(A + B) -> (-A) - B. */
617 if (negate_expr_p (TREE_OPERAND (t, 0)))
618 {
619 tem = negate_expr (TREE_OPERAND (t, 0));
620 return fold_build2_loc (loc, MINUS_EXPR, type,
621 tem, TREE_OPERAND (t, 1));
622 }
623 }
624 break;
625
626 case MINUS_EXPR:
627 /* - (A - B) -> B - A */
628 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
629 && !HONOR_SIGNED_ZEROS (element_mode (type)))
630 return fold_build2_loc (loc, MINUS_EXPR, type,
631 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
632 break;
633
634 case MULT_EXPR:
635 if (TYPE_UNSIGNED (type))
636 break;
637
638 /* Fall through. */
639
640 case RDIV_EXPR:
641 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
642 {
643 tem = TREE_OPERAND (t, 1);
644 if (negate_expr_p (tem))
645 return fold_build2_loc (loc, TREE_CODE (t), type,
646 TREE_OPERAND (t, 0), negate_expr (tem));
647 tem = TREE_OPERAND (t, 0);
648 if (negate_expr_p (tem))
649 return fold_build2_loc (loc, TREE_CODE (t), type,
650 negate_expr (tem), TREE_OPERAND (t, 1));
651 }
652 break;
653
654 case TRUNC_DIV_EXPR:
655 case ROUND_DIV_EXPR:
656 case EXACT_DIV_EXPR:
657 if (TYPE_UNSIGNED (type))
658 break;
659 /* In general we can't negate A in A / B, because if A is INT_MIN and
660 B is not 1 we change the sign of the result. */
661 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
662 && negate_expr_p (TREE_OPERAND (t, 0)))
663 return fold_build2_loc (loc, TREE_CODE (t), type,
664 negate_expr (TREE_OPERAND (t, 0)),
665 TREE_OPERAND (t, 1));
666 /* In general we can't negate B in A / B, because if A is INT_MIN and
667 B is 1, we may turn this into INT_MIN / -1 which is undefined
668 and actually traps on some architectures. */
669 if ((! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t))
670 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
671 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
672 && ! integer_onep (TREE_OPERAND (t, 1))))
673 && negate_expr_p (TREE_OPERAND (t, 1)))
674 return fold_build2_loc (loc, TREE_CODE (t), type,
675 TREE_OPERAND (t, 0),
676 negate_expr (TREE_OPERAND (t, 1)));
677 break;
678
679 case NOP_EXPR:
680 /* Convert -((double)float) into (double)(-float). */
681 if (TREE_CODE (type) == REAL_TYPE)
682 {
683 tem = strip_float_extensions (t);
684 if (tem != t && negate_expr_p (tem))
685 return fold_convert_loc (loc, type, negate_expr (tem));
686 }
687 break;
688
689 case CALL_EXPR:
690 /* Negate -f(x) as f(-x). */
691 if (negate_mathfn_p (get_call_combined_fn (t))
692 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
693 {
694 tree fndecl, arg;
695
696 fndecl = get_callee_fndecl (t);
697 arg = negate_expr (CALL_EXPR_ARG (t, 0));
698 return build_call_expr_loc (loc, fndecl, 1, arg);
699 }
700 break;
701
702 case RSHIFT_EXPR:
703 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
704 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
705 {
706 tree op1 = TREE_OPERAND (t, 1);
707 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1)
708 {
709 tree ntype = TYPE_UNSIGNED (type)
710 ? signed_type_for (type)
711 : unsigned_type_for (type);
712 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
713 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
714 return fold_convert_loc (loc, type, temp);
715 }
716 }
717 break;
718
719 default:
720 break;
721 }
722
723 return NULL_TREE;
724 }
725
726 /* A wrapper for fold_negate_expr_1. */
727
728 static tree
729 fold_negate_expr (location_t loc, tree t)
730 {
731 tree type = TREE_TYPE (t);
732 STRIP_SIGN_NOPS (t);
733 tree tem = fold_negate_expr_1 (loc, t);
734 if (tem == NULL_TREE)
735 return NULL_TREE;
736 return fold_convert_loc (loc, type, tem);
737 }
738
739 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T cannot be
740 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
741 return NULL_TREE. */
742
743 static tree
744 negate_expr (tree t)
745 {
746 tree type, tem;
747 location_t loc;
748
749 if (t == NULL_TREE)
750 return NULL_TREE;
751
752 loc = EXPR_LOCATION (t);
753 type = TREE_TYPE (t);
754 STRIP_SIGN_NOPS (t);
755
756 tem = fold_negate_expr (loc, t);
757 if (!tem)
758 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
759 return fold_convert_loc (loc, type, tem);
760 }
761 \f
762 /* Split a tree IN into a constant, literal and variable parts that could be
763 combined with CODE to make IN. "constant" means an expression with
764 TREE_CONSTANT but that isn't an actual constant. CODE must be a
765 commutative arithmetic operation. Store the constant part into *CONP,
766 the literal in *LITP and return the variable part. If a part isn't
767 present, set it to null. If the tree does not decompose in this way,
768 return the entire tree as the variable part and the other parts as null.
769
770 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
771 case, we negate an operand that was subtracted. Except if it is a
772 literal for which we use *MINUS_LITP instead.
773
774 If NEGATE_P is true, we are negating all of IN, again except a literal
775 for which we use *MINUS_LITP instead. If a variable part is of pointer
776 type, it is negated after converting to TYPE. This prevents us from
777 generating illegal MINUS pointer expression. LOC is the location of
778 the converted variable part.
779
780 If IN is itself a literal or constant, return it as appropriate.
781
782 Note that we do not guarantee that any of the three values will be the
783 same type as IN, but they will have the same signedness and mode. */
784
785 static tree
786 split_tree (tree in, tree type, enum tree_code code,
787 tree *minus_varp, tree *conp, tree *minus_conp,
788 tree *litp, tree *minus_litp, int negate_p)
789 {
790 tree var = 0;
791 *minus_varp = 0;
792 *conp = 0;
793 *minus_conp = 0;
794 *litp = 0;
795 *minus_litp = 0;
796
797 /* Strip any conversions that don't change the machine mode or signedness. */
798 STRIP_SIGN_NOPS (in);
799
800 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
801 || TREE_CODE (in) == FIXED_CST)
802 *litp = in;
803 else if (TREE_CODE (in) == code
804 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
805 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
806 /* We can associate addition and subtraction together (even
807 though the C standard doesn't say so) for integers because
808 the value is not affected. For reals, the value might be
809 affected, so we can't. */
810 && ((code == PLUS_EXPR && TREE_CODE (in) == POINTER_PLUS_EXPR)
811 || (code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
812 || (code == MINUS_EXPR
813 && (TREE_CODE (in) == PLUS_EXPR
814 || TREE_CODE (in) == POINTER_PLUS_EXPR)))))
815 {
816 tree op0 = TREE_OPERAND (in, 0);
817 tree op1 = TREE_OPERAND (in, 1);
818 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
819 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
820
821 /* First see if either of the operands is a literal, then a constant. */
822 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
823 || TREE_CODE (op0) == FIXED_CST)
824 *litp = op0, op0 = 0;
825 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
826 || TREE_CODE (op1) == FIXED_CST)
827 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
828
829 if (op0 != 0 && TREE_CONSTANT (op0))
830 *conp = op0, op0 = 0;
831 else if (op1 != 0 && TREE_CONSTANT (op1))
832 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
833
834 /* If we haven't dealt with either operand, this is not a case we can
835 decompose. Otherwise, VAR is either of the ones remaining, if any. */
836 if (op0 != 0 && op1 != 0)
837 var = in;
838 else if (op0 != 0)
839 var = op0;
840 else
841 var = op1, neg_var_p = neg1_p;
842
843 /* Now do any needed negations. */
844 if (neg_litp_p)
845 *minus_litp = *litp, *litp = 0;
846 if (neg_conp_p && *conp)
847 *minus_conp = *conp, *conp = 0;
848 if (neg_var_p && var)
849 *minus_varp = var, var = 0;
850 }
851 else if (TREE_CONSTANT (in))
852 *conp = in;
853 else if (TREE_CODE (in) == BIT_NOT_EXPR
854 && code == PLUS_EXPR)
855 {
856 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
857 when IN is constant. */
858 *litp = build_minus_one_cst (type);
859 *minus_varp = TREE_OPERAND (in, 0);
860 }
861 else
862 var = in;
863
864 if (negate_p)
865 {
866 if (*litp)
867 *minus_litp = *litp, *litp = 0;
868 else if (*minus_litp)
869 *litp = *minus_litp, *minus_litp = 0;
870 if (*conp)
871 *minus_conp = *conp, *conp = 0;
872 else if (*minus_conp)
873 *conp = *minus_conp, *minus_conp = 0;
874 if (var)
875 *minus_varp = var, var = 0;
876 else if (*minus_varp)
877 var = *minus_varp, *minus_varp = 0;
878 }
879
880 if (*litp
881 && TREE_OVERFLOW_P (*litp))
882 *litp = drop_tree_overflow (*litp);
883 if (*minus_litp
884 && TREE_OVERFLOW_P (*minus_litp))
885 *minus_litp = drop_tree_overflow (*minus_litp);
886
887 return var;
888 }
889
890 /* Re-associate trees split by the above function. T1 and T2 are
891 either expressions to associate or null. Return the new
892 expression, if any. LOC is the location of the new expression. If
893 we build an operation, do it in TYPE and with CODE. */
894
895 static tree
896 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
897 {
898 if (t1 == 0)
899 {
900 gcc_assert (t2 == 0 || code != MINUS_EXPR);
901 return t2;
902 }
903 else if (t2 == 0)
904 return t1;
905
906 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
907 try to fold this since we will have infinite recursion. But do
908 deal with any NEGATE_EXPRs. */
909 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
910 || TREE_CODE (t1) == PLUS_EXPR || TREE_CODE (t2) == PLUS_EXPR
911 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
912 {
913 if (code == PLUS_EXPR)
914 {
915 if (TREE_CODE (t1) == NEGATE_EXPR)
916 return build2_loc (loc, MINUS_EXPR, type,
917 fold_convert_loc (loc, type, t2),
918 fold_convert_loc (loc, type,
919 TREE_OPERAND (t1, 0)));
920 else if (TREE_CODE (t2) == NEGATE_EXPR)
921 return build2_loc (loc, MINUS_EXPR, type,
922 fold_convert_loc (loc, type, t1),
923 fold_convert_loc (loc, type,
924 TREE_OPERAND (t2, 0)));
925 else if (integer_zerop (t2))
926 return fold_convert_loc (loc, type, t1);
927 }
928 else if (code == MINUS_EXPR)
929 {
930 if (integer_zerop (t2))
931 return fold_convert_loc (loc, type, t1);
932 }
933
934 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
935 fold_convert_loc (loc, type, t2));
936 }
937
938 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
939 fold_convert_loc (loc, type, t2));
940 }
941 \f
942 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
943 for use in int_const_binop, size_binop and size_diffop. */
944
945 static bool
946 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
947 {
948 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
949 return false;
950 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
951 return false;
952
953 switch (code)
954 {
955 case LSHIFT_EXPR:
956 case RSHIFT_EXPR:
957 case LROTATE_EXPR:
958 case RROTATE_EXPR:
959 return true;
960
961 default:
962 break;
963 }
964
965 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
966 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
967 && TYPE_MODE (type1) == TYPE_MODE (type2);
968 }
969
970 /* Combine two wide ints ARG1 and ARG2 under operation CODE to produce
971 a new constant in RES. Return FALSE if we don't know how to
972 evaluate CODE at compile-time. */
973
974 bool
975 wide_int_binop (wide_int &res,
976 enum tree_code code, const wide_int &arg1, const wide_int &arg2,
977 signop sign, wi::overflow_type *overflow)
978 {
979 wide_int tmp;
980 *overflow = wi::OVF_NONE;
981 switch (code)
982 {
983 case BIT_IOR_EXPR:
984 res = wi::bit_or (arg1, arg2);
985 break;
986
987 case BIT_XOR_EXPR:
988 res = wi::bit_xor (arg1, arg2);
989 break;
990
991 case BIT_AND_EXPR:
992 res = wi::bit_and (arg1, arg2);
993 break;
994
995 case RSHIFT_EXPR:
996 case LSHIFT_EXPR:
997 if (wi::neg_p (arg2))
998 {
999 tmp = -arg2;
1000 if (code == RSHIFT_EXPR)
1001 code = LSHIFT_EXPR;
1002 else
1003 code = RSHIFT_EXPR;
1004 }
1005 else
1006 tmp = arg2;
1007
1008 if (code == RSHIFT_EXPR)
1009 /* It's unclear from the C standard whether shifts can overflow.
1010 The following code ignores overflow; perhaps a C standard
1011 interpretation ruling is needed. */
1012 res = wi::rshift (arg1, tmp, sign);
1013 else
1014 res = wi::lshift (arg1, tmp);
1015 break;
1016
1017 case RROTATE_EXPR:
1018 case LROTATE_EXPR:
1019 if (wi::neg_p (arg2))
1020 {
1021 tmp = -arg2;
1022 if (code == RROTATE_EXPR)
1023 code = LROTATE_EXPR;
1024 else
1025 code = RROTATE_EXPR;
1026 }
1027 else
1028 tmp = arg2;
1029
1030 if (code == RROTATE_EXPR)
1031 res = wi::rrotate (arg1, tmp);
1032 else
1033 res = wi::lrotate (arg1, tmp);
1034 break;
1035
1036 case PLUS_EXPR:
1037 res = wi::add (arg1, arg2, sign, overflow);
1038 break;
1039
1040 case MINUS_EXPR:
1041 res = wi::sub (arg1, arg2, sign, overflow);
1042 break;
1043
1044 case MULT_EXPR:
1045 res = wi::mul (arg1, arg2, sign, overflow);
1046 break;
1047
1048 case MULT_HIGHPART_EXPR:
1049 res = wi::mul_high (arg1, arg2, sign);
1050 break;
1051
1052 case TRUNC_DIV_EXPR:
1053 case EXACT_DIV_EXPR:
1054 if (arg2 == 0)
1055 return false;
1056 res = wi::div_trunc (arg1, arg2, sign, overflow);
1057 break;
1058
1059 case FLOOR_DIV_EXPR:
1060 if (arg2 == 0)
1061 return false;
1062 res = wi::div_floor (arg1, arg2, sign, overflow);
1063 break;
1064
1065 case CEIL_DIV_EXPR:
1066 if (arg2 == 0)
1067 return false;
1068 res = wi::div_ceil (arg1, arg2, sign, overflow);
1069 break;
1070
1071 case ROUND_DIV_EXPR:
1072 if (arg2 == 0)
1073 return false;
1074 res = wi::div_round (arg1, arg2, sign, overflow);
1075 break;
1076
1077 case TRUNC_MOD_EXPR:
1078 if (arg2 == 0)
1079 return false;
1080 res = wi::mod_trunc (arg1, arg2, sign, overflow);
1081 break;
1082
1083 case FLOOR_MOD_EXPR:
1084 if (arg2 == 0)
1085 return false;
1086 res = wi::mod_floor (arg1, arg2, sign, overflow);
1087 break;
1088
1089 case CEIL_MOD_EXPR:
1090 if (arg2 == 0)
1091 return false;
1092 res = wi::mod_ceil (arg1, arg2, sign, overflow);
1093 break;
1094
1095 case ROUND_MOD_EXPR:
1096 if (arg2 == 0)
1097 return false;
1098 res = wi::mod_round (arg1, arg2, sign, overflow);
1099 break;
1100
1101 case MIN_EXPR:
1102 res = wi::min (arg1, arg2, sign);
1103 break;
1104
1105 case MAX_EXPR:
1106 res = wi::max (arg1, arg2, sign);
1107 break;
1108
1109 default:
1110 return false;
1111 }
1112 return true;
1113 }
1114
1115 /* Combine two poly int's ARG1 and ARG2 under operation CODE to
1116 produce a new constant in RES. Return FALSE if we don't know how
1117 to evaluate CODE at compile-time. */
1118
1119 static bool
1120 poly_int_binop (poly_wide_int &res, enum tree_code code,
1121 const_tree arg1, const_tree arg2,
1122 signop sign, wi::overflow_type *overflow)
1123 {
1124 gcc_assert (NUM_POLY_INT_COEFFS != 1);
1125 gcc_assert (poly_int_tree_p (arg1) && poly_int_tree_p (arg2));
1126 switch (code)
1127 {
1128 case PLUS_EXPR:
1129 res = wi::add (wi::to_poly_wide (arg1),
1130 wi::to_poly_wide (arg2), sign, overflow);
1131 break;
1132
1133 case MINUS_EXPR:
1134 res = wi::sub (wi::to_poly_wide (arg1),
1135 wi::to_poly_wide (arg2), sign, overflow);
1136 break;
1137
1138 case MULT_EXPR:
1139 if (TREE_CODE (arg2) == INTEGER_CST)
1140 res = wi::mul (wi::to_poly_wide (arg1),
1141 wi::to_wide (arg2), sign, overflow);
1142 else if (TREE_CODE (arg1) == INTEGER_CST)
1143 res = wi::mul (wi::to_poly_wide (arg2),
1144 wi::to_wide (arg1), sign, overflow);
1145 else
1146 return NULL_TREE;
1147 break;
1148
1149 case LSHIFT_EXPR:
1150 if (TREE_CODE (arg2) == INTEGER_CST)
1151 res = wi::to_poly_wide (arg1) << wi::to_wide (arg2);
1152 else
1153 return false;
1154 break;
1155
1156 case BIT_IOR_EXPR:
1157 if (TREE_CODE (arg2) != INTEGER_CST
1158 || !can_ior_p (wi::to_poly_wide (arg1), wi::to_wide (arg2),
1159 &res))
1160 return false;
1161 break;
1162
1163 default:
1164 return false;
1165 }
1166 return true;
1167 }
1168
1169 /* Combine two integer constants ARG1 and ARG2 under operation CODE to
1170 produce a new constant. Return NULL_TREE if we don't know how to
1171 evaluate CODE at compile-time. */
1172
1173 tree
1174 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2,
1175 int overflowable)
1176 {
1177 poly_wide_int poly_res;
1178 tree type = TREE_TYPE (arg1);
1179 signop sign = TYPE_SIGN (type);
1180 wi::overflow_type overflow = wi::OVF_NONE;
1181
1182 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1183 {
1184 wide_int warg1 = wi::to_wide (arg1), res;
1185 wide_int warg2 = wi::to_wide (arg2, TYPE_PRECISION (type));
1186 if (!wide_int_binop (res, code, warg1, warg2, sign, &overflow))
1187 return NULL_TREE;
1188 poly_res = res;
1189 }
1190 else if (!poly_int_tree_p (arg1)
1191 || !poly_int_tree_p (arg2)
1192 || !poly_int_binop (poly_res, code, arg1, arg2, sign, &overflow))
1193 return NULL_TREE;
1194 return force_fit_type (type, poly_res, overflowable,
1195 (((sign == SIGNED || overflowable == -1)
1196 && overflow)
1197 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2)));
1198 }
1199
1200 /* Return true if binary operation OP distributes over addition in operand
1201 OPNO, with the other operand being held constant. OPNO counts from 1. */
1202
1203 static bool
1204 distributes_over_addition_p (tree_code op, int opno)
1205 {
1206 switch (op)
1207 {
1208 case PLUS_EXPR:
1209 case MINUS_EXPR:
1210 case MULT_EXPR:
1211 return true;
1212
1213 case LSHIFT_EXPR:
1214 return opno == 1;
1215
1216 default:
1217 return false;
1218 }
1219 }
1220
1221 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1222 constant. We assume ARG1 and ARG2 have the same data type, or at least
1223 are the same kind of constant and the same machine mode. Return zero if
1224 combining the constants is not allowed in the current operating mode. */
1225
1226 static tree
1227 const_binop (enum tree_code code, tree arg1, tree arg2)
1228 {
1229 /* Sanity check for the recursive cases. */
1230 if (!arg1 || !arg2)
1231 return NULL_TREE;
1232
1233 STRIP_NOPS (arg1);
1234 STRIP_NOPS (arg2);
1235
1236 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2))
1237 {
1238 if (code == POINTER_PLUS_EXPR)
1239 return int_const_binop (PLUS_EXPR,
1240 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1241
1242 return int_const_binop (code, arg1, arg2);
1243 }
1244
1245 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1246 {
1247 machine_mode mode;
1248 REAL_VALUE_TYPE d1;
1249 REAL_VALUE_TYPE d2;
1250 REAL_VALUE_TYPE value;
1251 REAL_VALUE_TYPE result;
1252 bool inexact;
1253 tree t, type;
1254
1255 /* The following codes are handled by real_arithmetic. */
1256 switch (code)
1257 {
1258 case PLUS_EXPR:
1259 case MINUS_EXPR:
1260 case MULT_EXPR:
1261 case RDIV_EXPR:
1262 case MIN_EXPR:
1263 case MAX_EXPR:
1264 break;
1265
1266 default:
1267 return NULL_TREE;
1268 }
1269
1270 d1 = TREE_REAL_CST (arg1);
1271 d2 = TREE_REAL_CST (arg2);
1272
1273 type = TREE_TYPE (arg1);
1274 mode = TYPE_MODE (type);
1275
1276 /* Don't perform operation if we honor signaling NaNs and
1277 either operand is a signaling NaN. */
1278 if (HONOR_SNANS (mode)
1279 && (REAL_VALUE_ISSIGNALING_NAN (d1)
1280 || REAL_VALUE_ISSIGNALING_NAN (d2)))
1281 return NULL_TREE;
1282
1283 /* Don't perform operation if it would raise a division
1284 by zero exception. */
1285 if (code == RDIV_EXPR
1286 && real_equal (&d2, &dconst0)
1287 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1288 return NULL_TREE;
1289
1290 /* If either operand is a NaN, just return it. Otherwise, set up
1291 for floating-point trap; we return an overflow. */
1292 if (REAL_VALUE_ISNAN (d1))
1293 {
1294 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1295 is off. */
1296 d1.signalling = 0;
1297 t = build_real (type, d1);
1298 return t;
1299 }
1300 else if (REAL_VALUE_ISNAN (d2))
1301 {
1302 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1303 is off. */
1304 d2.signalling = 0;
1305 t = build_real (type, d2);
1306 return t;
1307 }
1308
1309 inexact = real_arithmetic (&value, code, &d1, &d2);
1310 real_convert (&result, mode, &value);
1311
1312 /* Don't constant fold this floating point operation if
1313 the result has overflowed and flag_trapping_math. */
1314 if (flag_trapping_math
1315 && MODE_HAS_INFINITIES (mode)
1316 && REAL_VALUE_ISINF (result)
1317 && !REAL_VALUE_ISINF (d1)
1318 && !REAL_VALUE_ISINF (d2))
1319 return NULL_TREE;
1320
1321 /* Don't constant fold this floating point operation if the
1322 result may dependent upon the run-time rounding mode and
1323 flag_rounding_math is set, or if GCC's software emulation
1324 is unable to accurately represent the result. */
1325 if ((flag_rounding_math
1326 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1327 && (inexact || !real_identical (&result, &value)))
1328 return NULL_TREE;
1329
1330 t = build_real (type, result);
1331
1332 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1333 return t;
1334 }
1335
1336 if (TREE_CODE (arg1) == FIXED_CST)
1337 {
1338 FIXED_VALUE_TYPE f1;
1339 FIXED_VALUE_TYPE f2;
1340 FIXED_VALUE_TYPE result;
1341 tree t, type;
1342 int sat_p;
1343 bool overflow_p;
1344
1345 /* The following codes are handled by fixed_arithmetic. */
1346 switch (code)
1347 {
1348 case PLUS_EXPR:
1349 case MINUS_EXPR:
1350 case MULT_EXPR:
1351 case TRUNC_DIV_EXPR:
1352 if (TREE_CODE (arg2) != FIXED_CST)
1353 return NULL_TREE;
1354 f2 = TREE_FIXED_CST (arg2);
1355 break;
1356
1357 case LSHIFT_EXPR:
1358 case RSHIFT_EXPR:
1359 {
1360 if (TREE_CODE (arg2) != INTEGER_CST)
1361 return NULL_TREE;
1362 wi::tree_to_wide_ref w2 = wi::to_wide (arg2);
1363 f2.data.high = w2.elt (1);
1364 f2.data.low = w2.ulow ();
1365 f2.mode = SImode;
1366 }
1367 break;
1368
1369 default:
1370 return NULL_TREE;
1371 }
1372
1373 f1 = TREE_FIXED_CST (arg1);
1374 type = TREE_TYPE (arg1);
1375 sat_p = TYPE_SATURATING (type);
1376 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1377 t = build_fixed (type, result);
1378 /* Propagate overflow flags. */
1379 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1380 TREE_OVERFLOW (t) = 1;
1381 return t;
1382 }
1383
1384 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1385 {
1386 tree type = TREE_TYPE (arg1);
1387 tree r1 = TREE_REALPART (arg1);
1388 tree i1 = TREE_IMAGPART (arg1);
1389 tree r2 = TREE_REALPART (arg2);
1390 tree i2 = TREE_IMAGPART (arg2);
1391 tree real, imag;
1392
1393 switch (code)
1394 {
1395 case PLUS_EXPR:
1396 case MINUS_EXPR:
1397 real = const_binop (code, r1, r2);
1398 imag = const_binop (code, i1, i2);
1399 break;
1400
1401 case MULT_EXPR:
1402 if (COMPLEX_FLOAT_TYPE_P (type))
1403 return do_mpc_arg2 (arg1, arg2, type,
1404 /* do_nonfinite= */ folding_initializer,
1405 mpc_mul);
1406
1407 real = const_binop (MINUS_EXPR,
1408 const_binop (MULT_EXPR, r1, r2),
1409 const_binop (MULT_EXPR, i1, i2));
1410 imag = const_binop (PLUS_EXPR,
1411 const_binop (MULT_EXPR, r1, i2),
1412 const_binop (MULT_EXPR, i1, r2));
1413 break;
1414
1415 case RDIV_EXPR:
1416 if (COMPLEX_FLOAT_TYPE_P (type))
1417 return do_mpc_arg2 (arg1, arg2, type,
1418 /* do_nonfinite= */ folding_initializer,
1419 mpc_div);
1420 /* Fallthru. */
1421 case TRUNC_DIV_EXPR:
1422 case CEIL_DIV_EXPR:
1423 case FLOOR_DIV_EXPR:
1424 case ROUND_DIV_EXPR:
1425 if (flag_complex_method == 0)
1426 {
1427 /* Keep this algorithm in sync with
1428 tree-complex.c:expand_complex_div_straight().
1429
1430 Expand complex division to scalars, straightforward algorithm.
1431 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1432 t = br*br + bi*bi
1433 */
1434 tree magsquared
1435 = const_binop (PLUS_EXPR,
1436 const_binop (MULT_EXPR, r2, r2),
1437 const_binop (MULT_EXPR, i2, i2));
1438 tree t1
1439 = const_binop (PLUS_EXPR,
1440 const_binop (MULT_EXPR, r1, r2),
1441 const_binop (MULT_EXPR, i1, i2));
1442 tree t2
1443 = const_binop (MINUS_EXPR,
1444 const_binop (MULT_EXPR, i1, r2),
1445 const_binop (MULT_EXPR, r1, i2));
1446
1447 real = const_binop (code, t1, magsquared);
1448 imag = const_binop (code, t2, magsquared);
1449 }
1450 else
1451 {
1452 /* Keep this algorithm in sync with
1453 tree-complex.c:expand_complex_div_wide().
1454
1455 Expand complex division to scalars, modified algorithm to minimize
1456 overflow with wide input ranges. */
1457 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1458 fold_abs_const (r2, TREE_TYPE (type)),
1459 fold_abs_const (i2, TREE_TYPE (type)));
1460
1461 if (integer_nonzerop (compare))
1462 {
1463 /* In the TRUE branch, we compute
1464 ratio = br/bi;
1465 div = (br * ratio) + bi;
1466 tr = (ar * ratio) + ai;
1467 ti = (ai * ratio) - ar;
1468 tr = tr / div;
1469 ti = ti / div; */
1470 tree ratio = const_binop (code, r2, i2);
1471 tree div = const_binop (PLUS_EXPR, i2,
1472 const_binop (MULT_EXPR, r2, ratio));
1473 real = const_binop (MULT_EXPR, r1, ratio);
1474 real = const_binop (PLUS_EXPR, real, i1);
1475 real = const_binop (code, real, div);
1476
1477 imag = const_binop (MULT_EXPR, i1, ratio);
1478 imag = const_binop (MINUS_EXPR, imag, r1);
1479 imag = const_binop (code, imag, div);
1480 }
1481 else
1482 {
1483 /* In the FALSE branch, we compute
1484 ratio = d/c;
1485 divisor = (d * ratio) + c;
1486 tr = (b * ratio) + a;
1487 ti = b - (a * ratio);
1488 tr = tr / div;
1489 ti = ti / div; */
1490 tree ratio = const_binop (code, i2, r2);
1491 tree div = const_binop (PLUS_EXPR, r2,
1492 const_binop (MULT_EXPR, i2, ratio));
1493
1494 real = const_binop (MULT_EXPR, i1, ratio);
1495 real = const_binop (PLUS_EXPR, real, r1);
1496 real = const_binop (code, real, div);
1497
1498 imag = const_binop (MULT_EXPR, r1, ratio);
1499 imag = const_binop (MINUS_EXPR, i1, imag);
1500 imag = const_binop (code, imag, div);
1501 }
1502 }
1503 break;
1504
1505 default:
1506 return NULL_TREE;
1507 }
1508
1509 if (real && imag)
1510 return build_complex (type, real, imag);
1511 }
1512
1513 if (TREE_CODE (arg1) == VECTOR_CST
1514 && TREE_CODE (arg2) == VECTOR_CST
1515 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)),
1516 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2))))
1517 {
1518 tree type = TREE_TYPE (arg1);
1519 bool step_ok_p;
1520 if (VECTOR_CST_STEPPED_P (arg1)
1521 && VECTOR_CST_STEPPED_P (arg2))
1522 /* We can operate directly on the encoding if:
1523
1524 a3 - a2 == a2 - a1 && b3 - b2 == b2 - b1
1525 implies
1526 (a3 op b3) - (a2 op b2) == (a2 op b2) - (a1 op b1)
1527
1528 Addition and subtraction are the supported operators
1529 for which this is true. */
1530 step_ok_p = (code == PLUS_EXPR || code == MINUS_EXPR);
1531 else if (VECTOR_CST_STEPPED_P (arg1))
1532 /* We can operate directly on stepped encodings if:
1533
1534 a3 - a2 == a2 - a1
1535 implies:
1536 (a3 op c) - (a2 op c) == (a2 op c) - (a1 op c)
1537
1538 which is true if (x -> x op c) distributes over addition. */
1539 step_ok_p = distributes_over_addition_p (code, 1);
1540 else
1541 /* Similarly in reverse. */
1542 step_ok_p = distributes_over_addition_p (code, 2);
1543 tree_vector_builder elts;
1544 if (!elts.new_binary_operation (type, arg1, arg2, step_ok_p))
1545 return NULL_TREE;
1546 unsigned int count = elts.encoded_nelts ();
1547 for (unsigned int i = 0; i < count; ++i)
1548 {
1549 tree elem1 = VECTOR_CST_ELT (arg1, i);
1550 tree elem2 = VECTOR_CST_ELT (arg2, i);
1551
1552 tree elt = const_binop (code, elem1, elem2);
1553
1554 /* It is possible that const_binop cannot handle the given
1555 code and return NULL_TREE */
1556 if (elt == NULL_TREE)
1557 return NULL_TREE;
1558 elts.quick_push (elt);
1559 }
1560
1561 return elts.build ();
1562 }
1563
1564 /* Shifts allow a scalar offset for a vector. */
1565 if (TREE_CODE (arg1) == VECTOR_CST
1566 && TREE_CODE (arg2) == INTEGER_CST)
1567 {
1568 tree type = TREE_TYPE (arg1);
1569 bool step_ok_p = distributes_over_addition_p (code, 1);
1570 tree_vector_builder elts;
1571 if (!elts.new_unary_operation (type, arg1, step_ok_p))
1572 return NULL_TREE;
1573 unsigned int count = elts.encoded_nelts ();
1574 for (unsigned int i = 0; i < count; ++i)
1575 {
1576 tree elem1 = VECTOR_CST_ELT (arg1, i);
1577
1578 tree elt = const_binop (code, elem1, arg2);
1579
1580 /* It is possible that const_binop cannot handle the given
1581 code and return NULL_TREE. */
1582 if (elt == NULL_TREE)
1583 return NULL_TREE;
1584 elts.quick_push (elt);
1585 }
1586
1587 return elts.build ();
1588 }
1589 return NULL_TREE;
1590 }
1591
1592 /* Overload that adds a TYPE parameter to be able to dispatch
1593 to fold_relational_const. */
1594
1595 tree
1596 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1597 {
1598 if (TREE_CODE_CLASS (code) == tcc_comparison)
1599 return fold_relational_const (code, type, arg1, arg2);
1600
1601 /* ??? Until we make the const_binop worker take the type of the
1602 result as argument put those cases that need it here. */
1603 switch (code)
1604 {
1605 case VEC_SERIES_EXPR:
1606 if (CONSTANT_CLASS_P (arg1)
1607 && CONSTANT_CLASS_P (arg2))
1608 return build_vec_series (type, arg1, arg2);
1609 return NULL_TREE;
1610
1611 case COMPLEX_EXPR:
1612 if ((TREE_CODE (arg1) == REAL_CST
1613 && TREE_CODE (arg2) == REAL_CST)
1614 || (TREE_CODE (arg1) == INTEGER_CST
1615 && TREE_CODE (arg2) == INTEGER_CST))
1616 return build_complex (type, arg1, arg2);
1617 return NULL_TREE;
1618
1619 case POINTER_DIFF_EXPR:
1620 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2))
1621 {
1622 poly_offset_int res = (wi::to_poly_offset (arg1)
1623 - wi::to_poly_offset (arg2));
1624 return force_fit_type (type, res, 1,
1625 TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1626 }
1627 return NULL_TREE;
1628
1629 case VEC_PACK_TRUNC_EXPR:
1630 case VEC_PACK_FIX_TRUNC_EXPR:
1631 case VEC_PACK_FLOAT_EXPR:
1632 {
1633 unsigned int HOST_WIDE_INT out_nelts, in_nelts, i;
1634
1635 if (TREE_CODE (arg1) != VECTOR_CST
1636 || TREE_CODE (arg2) != VECTOR_CST)
1637 return NULL_TREE;
1638
1639 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts))
1640 return NULL_TREE;
1641
1642 out_nelts = in_nelts * 2;
1643 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2))
1644 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1645
1646 tree_vector_builder elts (type, out_nelts, 1);
1647 for (i = 0; i < out_nelts; i++)
1648 {
1649 tree elt = (i < in_nelts
1650 ? VECTOR_CST_ELT (arg1, i)
1651 : VECTOR_CST_ELT (arg2, i - in_nelts));
1652 elt = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1653 ? NOP_EXPR
1654 : code == VEC_PACK_FLOAT_EXPR
1655 ? FLOAT_EXPR : FIX_TRUNC_EXPR,
1656 TREE_TYPE (type), elt);
1657 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1658 return NULL_TREE;
1659 elts.quick_push (elt);
1660 }
1661
1662 return elts.build ();
1663 }
1664
1665 case VEC_WIDEN_MULT_LO_EXPR:
1666 case VEC_WIDEN_MULT_HI_EXPR:
1667 case VEC_WIDEN_MULT_EVEN_EXPR:
1668 case VEC_WIDEN_MULT_ODD_EXPR:
1669 {
1670 unsigned HOST_WIDE_INT out_nelts, in_nelts, out, ofs, scale;
1671
1672 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1673 return NULL_TREE;
1674
1675 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts))
1676 return NULL_TREE;
1677 out_nelts = in_nelts / 2;
1678 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2))
1679 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1680
1681 if (code == VEC_WIDEN_MULT_LO_EXPR)
1682 scale = 0, ofs = BYTES_BIG_ENDIAN ? out_nelts : 0;
1683 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1684 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : out_nelts;
1685 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1686 scale = 1, ofs = 0;
1687 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1688 scale = 1, ofs = 1;
1689
1690 tree_vector_builder elts (type, out_nelts, 1);
1691 for (out = 0; out < out_nelts; out++)
1692 {
1693 unsigned int in = (out << scale) + ofs;
1694 tree t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1695 VECTOR_CST_ELT (arg1, in));
1696 tree t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1697 VECTOR_CST_ELT (arg2, in));
1698
1699 if (t1 == NULL_TREE || t2 == NULL_TREE)
1700 return NULL_TREE;
1701 tree elt = const_binop (MULT_EXPR, t1, t2);
1702 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1703 return NULL_TREE;
1704 elts.quick_push (elt);
1705 }
1706
1707 return elts.build ();
1708 }
1709
1710 default:;
1711 }
1712
1713 if (TREE_CODE_CLASS (code) != tcc_binary)
1714 return NULL_TREE;
1715
1716 /* Make sure type and arg0 have the same saturating flag. */
1717 gcc_checking_assert (TYPE_SATURATING (type)
1718 == TYPE_SATURATING (TREE_TYPE (arg1)));
1719
1720 return const_binop (code, arg1, arg2);
1721 }
1722
1723 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1724 Return zero if computing the constants is not possible. */
1725
1726 tree
1727 const_unop (enum tree_code code, tree type, tree arg0)
1728 {
1729 /* Don't perform the operation, other than NEGATE and ABS, if
1730 flag_signaling_nans is on and the operand is a signaling NaN. */
1731 if (TREE_CODE (arg0) == REAL_CST
1732 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
1733 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1734 && code != NEGATE_EXPR
1735 && code != ABS_EXPR
1736 && code != ABSU_EXPR)
1737 return NULL_TREE;
1738
1739 switch (code)
1740 {
1741 CASE_CONVERT:
1742 case FLOAT_EXPR:
1743 case FIX_TRUNC_EXPR:
1744 case FIXED_CONVERT_EXPR:
1745 return fold_convert_const (code, type, arg0);
1746
1747 case ADDR_SPACE_CONVERT_EXPR:
1748 /* If the source address is 0, and the source address space
1749 cannot have a valid object at 0, fold to dest type null. */
1750 if (integer_zerop (arg0)
1751 && !(targetm.addr_space.zero_address_valid
1752 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))))))
1753 return fold_convert_const (code, type, arg0);
1754 break;
1755
1756 case VIEW_CONVERT_EXPR:
1757 return fold_view_convert_expr (type, arg0);
1758
1759 case NEGATE_EXPR:
1760 {
1761 /* Can't call fold_negate_const directly here as that doesn't
1762 handle all cases and we might not be able to negate some
1763 constants. */
1764 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1765 if (tem && CONSTANT_CLASS_P (tem))
1766 return tem;
1767 break;
1768 }
1769
1770 case ABS_EXPR:
1771 case ABSU_EXPR:
1772 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1773 return fold_abs_const (arg0, type);
1774 break;
1775
1776 case CONJ_EXPR:
1777 if (TREE_CODE (arg0) == COMPLEX_CST)
1778 {
1779 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1780 TREE_TYPE (type));
1781 return build_complex (type, TREE_REALPART (arg0), ipart);
1782 }
1783 break;
1784
1785 case BIT_NOT_EXPR:
1786 if (TREE_CODE (arg0) == INTEGER_CST)
1787 return fold_not_const (arg0, type);
1788 else if (POLY_INT_CST_P (arg0))
1789 return wide_int_to_tree (type, -poly_int_cst_value (arg0));
1790 /* Perform BIT_NOT_EXPR on each element individually. */
1791 else if (TREE_CODE (arg0) == VECTOR_CST)
1792 {
1793 tree elem;
1794
1795 /* This can cope with stepped encodings because ~x == -1 - x. */
1796 tree_vector_builder elements;
1797 elements.new_unary_operation (type, arg0, true);
1798 unsigned int i, count = elements.encoded_nelts ();
1799 for (i = 0; i < count; ++i)
1800 {
1801 elem = VECTOR_CST_ELT (arg0, i);
1802 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1803 if (elem == NULL_TREE)
1804 break;
1805 elements.quick_push (elem);
1806 }
1807 if (i == count)
1808 return elements.build ();
1809 }
1810 break;
1811
1812 case TRUTH_NOT_EXPR:
1813 if (TREE_CODE (arg0) == INTEGER_CST)
1814 return constant_boolean_node (integer_zerop (arg0), type);
1815 break;
1816
1817 case REALPART_EXPR:
1818 if (TREE_CODE (arg0) == COMPLEX_CST)
1819 return fold_convert (type, TREE_REALPART (arg0));
1820 break;
1821
1822 case IMAGPART_EXPR:
1823 if (TREE_CODE (arg0) == COMPLEX_CST)
1824 return fold_convert (type, TREE_IMAGPART (arg0));
1825 break;
1826
1827 case VEC_UNPACK_LO_EXPR:
1828 case VEC_UNPACK_HI_EXPR:
1829 case VEC_UNPACK_FLOAT_LO_EXPR:
1830 case VEC_UNPACK_FLOAT_HI_EXPR:
1831 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
1832 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
1833 {
1834 unsigned HOST_WIDE_INT out_nelts, in_nelts, i;
1835 enum tree_code subcode;
1836
1837 if (TREE_CODE (arg0) != VECTOR_CST)
1838 return NULL_TREE;
1839
1840 if (!VECTOR_CST_NELTS (arg0).is_constant (&in_nelts))
1841 return NULL_TREE;
1842 out_nelts = in_nelts / 2;
1843 gcc_assert (known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1844
1845 unsigned int offset = 0;
1846 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1847 || code == VEC_UNPACK_FLOAT_LO_EXPR
1848 || code == VEC_UNPACK_FIX_TRUNC_LO_EXPR))
1849 offset = out_nelts;
1850
1851 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1852 subcode = NOP_EXPR;
1853 else if (code == VEC_UNPACK_FLOAT_LO_EXPR
1854 || code == VEC_UNPACK_FLOAT_HI_EXPR)
1855 subcode = FLOAT_EXPR;
1856 else
1857 subcode = FIX_TRUNC_EXPR;
1858
1859 tree_vector_builder elts (type, out_nelts, 1);
1860 for (i = 0; i < out_nelts; i++)
1861 {
1862 tree elt = fold_convert_const (subcode, TREE_TYPE (type),
1863 VECTOR_CST_ELT (arg0, i + offset));
1864 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1865 return NULL_TREE;
1866 elts.quick_push (elt);
1867 }
1868
1869 return elts.build ();
1870 }
1871
1872 case VEC_DUPLICATE_EXPR:
1873 if (CONSTANT_CLASS_P (arg0))
1874 return build_vector_from_val (type, arg0);
1875 return NULL_TREE;
1876
1877 default:
1878 break;
1879 }
1880
1881 return NULL_TREE;
1882 }
1883
1884 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1885 indicates which particular sizetype to create. */
1886
1887 tree
1888 size_int_kind (poly_int64 number, enum size_type_kind kind)
1889 {
1890 return build_int_cst (sizetype_tab[(int) kind], number);
1891 }
1892 \f
1893 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1894 is a tree code. The type of the result is taken from the operands.
1895 Both must be equivalent integer types, ala int_binop_types_match_p.
1896 If the operands are constant, so is the result. */
1897
1898 tree
1899 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1900 {
1901 tree type = TREE_TYPE (arg0);
1902
1903 if (arg0 == error_mark_node || arg1 == error_mark_node)
1904 return error_mark_node;
1905
1906 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1907 TREE_TYPE (arg1)));
1908
1909 /* Handle the special case of two poly_int constants faster. */
1910 if (poly_int_tree_p (arg0) && poly_int_tree_p (arg1))
1911 {
1912 /* And some specific cases even faster than that. */
1913 if (code == PLUS_EXPR)
1914 {
1915 if (integer_zerop (arg0)
1916 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0)))
1917 return arg1;
1918 if (integer_zerop (arg1)
1919 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1)))
1920 return arg0;
1921 }
1922 else if (code == MINUS_EXPR)
1923 {
1924 if (integer_zerop (arg1)
1925 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1)))
1926 return arg0;
1927 }
1928 else if (code == MULT_EXPR)
1929 {
1930 if (integer_onep (arg0)
1931 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0)))
1932 return arg1;
1933 }
1934
1935 /* Handle general case of two integer constants. For sizetype
1936 constant calculations we always want to know about overflow,
1937 even in the unsigned case. */
1938 tree res = int_const_binop (code, arg0, arg1, -1);
1939 if (res != NULL_TREE)
1940 return res;
1941 }
1942
1943 return fold_build2_loc (loc, code, type, arg0, arg1);
1944 }
1945
1946 /* Given two values, either both of sizetype or both of bitsizetype,
1947 compute the difference between the two values. Return the value
1948 in signed type corresponding to the type of the operands. */
1949
1950 tree
1951 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1952 {
1953 tree type = TREE_TYPE (arg0);
1954 tree ctype;
1955
1956 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1957 TREE_TYPE (arg1)));
1958
1959 /* If the type is already signed, just do the simple thing. */
1960 if (!TYPE_UNSIGNED (type))
1961 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1962
1963 if (type == sizetype)
1964 ctype = ssizetype;
1965 else if (type == bitsizetype)
1966 ctype = sbitsizetype;
1967 else
1968 ctype = signed_type_for (type);
1969
1970 /* If either operand is not a constant, do the conversions to the signed
1971 type and subtract. The hardware will do the right thing with any
1972 overflow in the subtraction. */
1973 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1974 return size_binop_loc (loc, MINUS_EXPR,
1975 fold_convert_loc (loc, ctype, arg0),
1976 fold_convert_loc (loc, ctype, arg1));
1977
1978 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1979 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1980 overflow) and negate (which can't either). Special-case a result
1981 of zero while we're here. */
1982 if (tree_int_cst_equal (arg0, arg1))
1983 return build_int_cst (ctype, 0);
1984 else if (tree_int_cst_lt (arg1, arg0))
1985 return fold_convert_loc (loc, ctype,
1986 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1987 else
1988 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1989 fold_convert_loc (loc, ctype,
1990 size_binop_loc (loc,
1991 MINUS_EXPR,
1992 arg1, arg0)));
1993 }
1994 \f
1995 /* A subroutine of fold_convert_const handling conversions of an
1996 INTEGER_CST to another integer type. */
1997
1998 static tree
1999 fold_convert_const_int_from_int (tree type, const_tree arg1)
2000 {
2001 /* Given an integer constant, make new constant with new type,
2002 appropriately sign-extended or truncated. Use widest_int
2003 so that any extension is done according ARG1's type. */
2004 return force_fit_type (type, wi::to_widest (arg1),
2005 !POINTER_TYPE_P (TREE_TYPE (arg1)),
2006 TREE_OVERFLOW (arg1));
2007 }
2008
2009 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2010 to an integer type. */
2011
2012 static tree
2013 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
2014 {
2015 bool overflow = false;
2016 tree t;
2017
2018 /* The following code implements the floating point to integer
2019 conversion rules required by the Java Language Specification,
2020 that IEEE NaNs are mapped to zero and values that overflow
2021 the target precision saturate, i.e. values greater than
2022 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
2023 are mapped to INT_MIN. These semantics are allowed by the
2024 C and C++ standards that simply state that the behavior of
2025 FP-to-integer conversion is unspecified upon overflow. */
2026
2027 wide_int val;
2028 REAL_VALUE_TYPE r;
2029 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
2030
2031 switch (code)
2032 {
2033 case FIX_TRUNC_EXPR:
2034 real_trunc (&r, VOIDmode, &x);
2035 break;
2036
2037 default:
2038 gcc_unreachable ();
2039 }
2040
2041 /* If R is NaN, return zero and show we have an overflow. */
2042 if (REAL_VALUE_ISNAN (r))
2043 {
2044 overflow = true;
2045 val = wi::zero (TYPE_PRECISION (type));
2046 }
2047
2048 /* See if R is less than the lower bound or greater than the
2049 upper bound. */
2050
2051 if (! overflow)
2052 {
2053 tree lt = TYPE_MIN_VALUE (type);
2054 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
2055 if (real_less (&r, &l))
2056 {
2057 overflow = true;
2058 val = wi::to_wide (lt);
2059 }
2060 }
2061
2062 if (! overflow)
2063 {
2064 tree ut = TYPE_MAX_VALUE (type);
2065 if (ut)
2066 {
2067 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
2068 if (real_less (&u, &r))
2069 {
2070 overflow = true;
2071 val = wi::to_wide (ut);
2072 }
2073 }
2074 }
2075
2076 if (! overflow)
2077 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
2078
2079 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
2080 return t;
2081 }
2082
2083 /* A subroutine of fold_convert_const handling conversions of a
2084 FIXED_CST to an integer type. */
2085
2086 static tree
2087 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
2088 {
2089 tree t;
2090 double_int temp, temp_trunc;
2091 scalar_mode mode;
2092
2093 /* Right shift FIXED_CST to temp by fbit. */
2094 temp = TREE_FIXED_CST (arg1).data;
2095 mode = TREE_FIXED_CST (arg1).mode;
2096 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
2097 {
2098 temp = temp.rshift (GET_MODE_FBIT (mode),
2099 HOST_BITS_PER_DOUBLE_INT,
2100 SIGNED_FIXED_POINT_MODE_P (mode));
2101
2102 /* Left shift temp to temp_trunc by fbit. */
2103 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
2104 HOST_BITS_PER_DOUBLE_INT,
2105 SIGNED_FIXED_POINT_MODE_P (mode));
2106 }
2107 else
2108 {
2109 temp = double_int_zero;
2110 temp_trunc = double_int_zero;
2111 }
2112
2113 /* If FIXED_CST is negative, we need to round the value toward 0.
2114 By checking if the fractional bits are not zero to add 1 to temp. */
2115 if (SIGNED_FIXED_POINT_MODE_P (mode)
2116 && temp_trunc.is_negative ()
2117 && TREE_FIXED_CST (arg1).data != temp_trunc)
2118 temp += double_int_one;
2119
2120 /* Given a fixed-point constant, make new constant with new type,
2121 appropriately sign-extended or truncated. */
2122 t = force_fit_type (type, temp, -1,
2123 (temp.is_negative ()
2124 && (TYPE_UNSIGNED (type)
2125 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
2126 | TREE_OVERFLOW (arg1));
2127
2128 return t;
2129 }
2130
2131 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2132 to another floating point type. */
2133
2134 static tree
2135 fold_convert_const_real_from_real (tree type, const_tree arg1)
2136 {
2137 REAL_VALUE_TYPE value;
2138 tree t;
2139
2140 /* Don't perform the operation if flag_signaling_nans is on
2141 and the operand is a signaling NaN. */
2142 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
2143 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))
2144 return NULL_TREE;
2145
2146 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
2147 t = build_real (type, value);
2148
2149 /* If converting an infinity or NAN to a representation that doesn't
2150 have one, set the overflow bit so that we can produce some kind of
2151 error message at the appropriate point if necessary. It's not the
2152 most user-friendly message, but it's better than nothing. */
2153 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
2154 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
2155 TREE_OVERFLOW (t) = 1;
2156 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
2157 && !MODE_HAS_NANS (TYPE_MODE (type)))
2158 TREE_OVERFLOW (t) = 1;
2159 /* Regular overflow, conversion produced an infinity in a mode that
2160 can't represent them. */
2161 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
2162 && REAL_VALUE_ISINF (value)
2163 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
2164 TREE_OVERFLOW (t) = 1;
2165 else
2166 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2167 return t;
2168 }
2169
2170 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2171 to a floating point type. */
2172
2173 static tree
2174 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2175 {
2176 REAL_VALUE_TYPE value;
2177 tree t;
2178
2179 real_convert_from_fixed (&value, SCALAR_FLOAT_TYPE_MODE (type),
2180 &TREE_FIXED_CST (arg1));
2181 t = build_real (type, value);
2182
2183 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2184 return t;
2185 }
2186
2187 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2188 to another fixed-point type. */
2189
2190 static tree
2191 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2192 {
2193 FIXED_VALUE_TYPE value;
2194 tree t;
2195 bool overflow_p;
2196
2197 overflow_p = fixed_convert (&value, SCALAR_TYPE_MODE (type),
2198 &TREE_FIXED_CST (arg1), TYPE_SATURATING (type));
2199 t = build_fixed (type, value);
2200
2201 /* Propagate overflow flags. */
2202 if (overflow_p | TREE_OVERFLOW (arg1))
2203 TREE_OVERFLOW (t) = 1;
2204 return t;
2205 }
2206
2207 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2208 to a fixed-point type. */
2209
2210 static tree
2211 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2212 {
2213 FIXED_VALUE_TYPE value;
2214 tree t;
2215 bool overflow_p;
2216 double_int di;
2217
2218 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2219
2220 di.low = TREE_INT_CST_ELT (arg1, 0);
2221 if (TREE_INT_CST_NUNITS (arg1) == 1)
2222 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0;
2223 else
2224 di.high = TREE_INT_CST_ELT (arg1, 1);
2225
2226 overflow_p = fixed_convert_from_int (&value, SCALAR_TYPE_MODE (type), di,
2227 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2228 TYPE_SATURATING (type));
2229 t = build_fixed (type, value);
2230
2231 /* Propagate overflow flags. */
2232 if (overflow_p | TREE_OVERFLOW (arg1))
2233 TREE_OVERFLOW (t) = 1;
2234 return t;
2235 }
2236
2237 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2238 to a fixed-point type. */
2239
2240 static tree
2241 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2242 {
2243 FIXED_VALUE_TYPE value;
2244 tree t;
2245 bool overflow_p;
2246
2247 overflow_p = fixed_convert_from_real (&value, SCALAR_TYPE_MODE (type),
2248 &TREE_REAL_CST (arg1),
2249 TYPE_SATURATING (type));
2250 t = build_fixed (type, value);
2251
2252 /* Propagate overflow flags. */
2253 if (overflow_p | TREE_OVERFLOW (arg1))
2254 TREE_OVERFLOW (t) = 1;
2255 return t;
2256 }
2257
2258 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2259 type TYPE. If no simplification can be done return NULL_TREE. */
2260
2261 static tree
2262 fold_convert_const (enum tree_code code, tree type, tree arg1)
2263 {
2264 tree arg_type = TREE_TYPE (arg1);
2265 if (arg_type == type)
2266 return arg1;
2267
2268 /* We can't widen types, since the runtime value could overflow the
2269 original type before being extended to the new type. */
2270 if (POLY_INT_CST_P (arg1)
2271 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
2272 && TYPE_PRECISION (type) <= TYPE_PRECISION (arg_type))
2273 return build_poly_int_cst (type,
2274 poly_wide_int::from (poly_int_cst_value (arg1),
2275 TYPE_PRECISION (type),
2276 TYPE_SIGN (arg_type)));
2277
2278 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2279 || TREE_CODE (type) == OFFSET_TYPE)
2280 {
2281 if (TREE_CODE (arg1) == INTEGER_CST)
2282 return fold_convert_const_int_from_int (type, arg1);
2283 else if (TREE_CODE (arg1) == REAL_CST)
2284 return fold_convert_const_int_from_real (code, type, arg1);
2285 else if (TREE_CODE (arg1) == FIXED_CST)
2286 return fold_convert_const_int_from_fixed (type, arg1);
2287 }
2288 else if (TREE_CODE (type) == REAL_TYPE)
2289 {
2290 if (TREE_CODE (arg1) == INTEGER_CST)
2291 return build_real_from_int_cst (type, arg1);
2292 else if (TREE_CODE (arg1) == REAL_CST)
2293 return fold_convert_const_real_from_real (type, arg1);
2294 else if (TREE_CODE (arg1) == FIXED_CST)
2295 return fold_convert_const_real_from_fixed (type, arg1);
2296 }
2297 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2298 {
2299 if (TREE_CODE (arg1) == FIXED_CST)
2300 return fold_convert_const_fixed_from_fixed (type, arg1);
2301 else if (TREE_CODE (arg1) == INTEGER_CST)
2302 return fold_convert_const_fixed_from_int (type, arg1);
2303 else if (TREE_CODE (arg1) == REAL_CST)
2304 return fold_convert_const_fixed_from_real (type, arg1);
2305 }
2306 else if (TREE_CODE (type) == VECTOR_TYPE)
2307 {
2308 if (TREE_CODE (arg1) == VECTOR_CST
2309 && known_eq (TYPE_VECTOR_SUBPARTS (type), VECTOR_CST_NELTS (arg1)))
2310 {
2311 tree elttype = TREE_TYPE (type);
2312 tree arg1_elttype = TREE_TYPE (TREE_TYPE (arg1));
2313 /* We can't handle steps directly when extending, since the
2314 values need to wrap at the original precision first. */
2315 bool step_ok_p
2316 = (INTEGRAL_TYPE_P (elttype)
2317 && INTEGRAL_TYPE_P (arg1_elttype)
2318 && TYPE_PRECISION (elttype) <= TYPE_PRECISION (arg1_elttype));
2319 tree_vector_builder v;
2320 if (!v.new_unary_operation (type, arg1, step_ok_p))
2321 return NULL_TREE;
2322 unsigned int len = v.encoded_nelts ();
2323 for (unsigned int i = 0; i < len; ++i)
2324 {
2325 tree elt = VECTOR_CST_ELT (arg1, i);
2326 tree cvt = fold_convert_const (code, elttype, elt);
2327 if (cvt == NULL_TREE)
2328 return NULL_TREE;
2329 v.quick_push (cvt);
2330 }
2331 return v.build ();
2332 }
2333 }
2334 return NULL_TREE;
2335 }
2336
2337 /* Construct a vector of zero elements of vector type TYPE. */
2338
2339 static tree
2340 build_zero_vector (tree type)
2341 {
2342 tree t;
2343
2344 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2345 return build_vector_from_val (type, t);
2346 }
2347
2348 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2349
2350 bool
2351 fold_convertible_p (const_tree type, const_tree arg)
2352 {
2353 tree orig = TREE_TYPE (arg);
2354
2355 if (type == orig)
2356 return true;
2357
2358 if (TREE_CODE (arg) == ERROR_MARK
2359 || TREE_CODE (type) == ERROR_MARK
2360 || TREE_CODE (orig) == ERROR_MARK)
2361 return false;
2362
2363 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2364 return true;
2365
2366 switch (TREE_CODE (type))
2367 {
2368 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2369 case POINTER_TYPE: case REFERENCE_TYPE:
2370 case OFFSET_TYPE:
2371 return (INTEGRAL_TYPE_P (orig)
2372 || (POINTER_TYPE_P (orig)
2373 && TYPE_PRECISION (type) <= TYPE_PRECISION (orig))
2374 || TREE_CODE (orig) == OFFSET_TYPE);
2375
2376 case REAL_TYPE:
2377 case FIXED_POINT_TYPE:
2378 case VOID_TYPE:
2379 return TREE_CODE (type) == TREE_CODE (orig);
2380
2381 case VECTOR_TYPE:
2382 return (VECTOR_TYPE_P (orig)
2383 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2384 TYPE_VECTOR_SUBPARTS (orig))
2385 && fold_convertible_p (TREE_TYPE (type), TREE_TYPE (orig)));
2386
2387 default:
2388 return false;
2389 }
2390 }
2391
2392 /* Convert expression ARG to type TYPE. Used by the middle-end for
2393 simple conversions in preference to calling the front-end's convert. */
2394
2395 tree
2396 fold_convert_loc (location_t loc, tree type, tree arg)
2397 {
2398 tree orig = TREE_TYPE (arg);
2399 tree tem;
2400
2401 if (type == orig)
2402 return arg;
2403
2404 if (TREE_CODE (arg) == ERROR_MARK
2405 || TREE_CODE (type) == ERROR_MARK
2406 || TREE_CODE (orig) == ERROR_MARK)
2407 return error_mark_node;
2408
2409 switch (TREE_CODE (type))
2410 {
2411 case POINTER_TYPE:
2412 case REFERENCE_TYPE:
2413 /* Handle conversions between pointers to different address spaces. */
2414 if (POINTER_TYPE_P (orig)
2415 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2416 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2417 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2418 /* fall through */
2419
2420 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2421 case OFFSET_TYPE:
2422 if (TREE_CODE (arg) == INTEGER_CST)
2423 {
2424 tem = fold_convert_const (NOP_EXPR, type, arg);
2425 if (tem != NULL_TREE)
2426 return tem;
2427 }
2428 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2429 || TREE_CODE (orig) == OFFSET_TYPE)
2430 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2431 if (TREE_CODE (orig) == COMPLEX_TYPE)
2432 return fold_convert_loc (loc, type,
2433 fold_build1_loc (loc, REALPART_EXPR,
2434 TREE_TYPE (orig), arg));
2435 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2436 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2437 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2438
2439 case REAL_TYPE:
2440 if (TREE_CODE (arg) == INTEGER_CST)
2441 {
2442 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2443 if (tem != NULL_TREE)
2444 return tem;
2445 }
2446 else if (TREE_CODE (arg) == REAL_CST)
2447 {
2448 tem = fold_convert_const (NOP_EXPR, type, arg);
2449 if (tem != NULL_TREE)
2450 return tem;
2451 }
2452 else if (TREE_CODE (arg) == FIXED_CST)
2453 {
2454 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2455 if (tem != NULL_TREE)
2456 return tem;
2457 }
2458
2459 switch (TREE_CODE (orig))
2460 {
2461 case INTEGER_TYPE:
2462 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2463 case POINTER_TYPE: case REFERENCE_TYPE:
2464 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2465
2466 case REAL_TYPE:
2467 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2468
2469 case FIXED_POINT_TYPE:
2470 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2471
2472 case COMPLEX_TYPE:
2473 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2474 return fold_convert_loc (loc, type, tem);
2475
2476 default:
2477 gcc_unreachable ();
2478 }
2479
2480 case FIXED_POINT_TYPE:
2481 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2482 || TREE_CODE (arg) == REAL_CST)
2483 {
2484 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2485 if (tem != NULL_TREE)
2486 goto fold_convert_exit;
2487 }
2488
2489 switch (TREE_CODE (orig))
2490 {
2491 case FIXED_POINT_TYPE:
2492 case INTEGER_TYPE:
2493 case ENUMERAL_TYPE:
2494 case BOOLEAN_TYPE:
2495 case REAL_TYPE:
2496 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2497
2498 case COMPLEX_TYPE:
2499 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2500 return fold_convert_loc (loc, type, tem);
2501
2502 default:
2503 gcc_unreachable ();
2504 }
2505
2506 case COMPLEX_TYPE:
2507 switch (TREE_CODE (orig))
2508 {
2509 case INTEGER_TYPE:
2510 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2511 case POINTER_TYPE: case REFERENCE_TYPE:
2512 case REAL_TYPE:
2513 case FIXED_POINT_TYPE:
2514 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2515 fold_convert_loc (loc, TREE_TYPE (type), arg),
2516 fold_convert_loc (loc, TREE_TYPE (type),
2517 integer_zero_node));
2518 case COMPLEX_TYPE:
2519 {
2520 tree rpart, ipart;
2521
2522 if (TREE_CODE (arg) == COMPLEX_EXPR)
2523 {
2524 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2525 TREE_OPERAND (arg, 0));
2526 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2527 TREE_OPERAND (arg, 1));
2528 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2529 }
2530
2531 arg = save_expr (arg);
2532 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2533 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2534 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2535 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2536 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2537 }
2538
2539 default:
2540 gcc_unreachable ();
2541 }
2542
2543 case VECTOR_TYPE:
2544 if (integer_zerop (arg))
2545 return build_zero_vector (type);
2546 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2547 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2548 || TREE_CODE (orig) == VECTOR_TYPE);
2549 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2550
2551 case VOID_TYPE:
2552 tem = fold_ignored_result (arg);
2553 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2554
2555 default:
2556 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2557 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2558 gcc_unreachable ();
2559 }
2560 fold_convert_exit:
2561 protected_set_expr_location_unshare (tem, loc);
2562 return tem;
2563 }
2564 \f
2565 /* Return false if expr can be assumed not to be an lvalue, true
2566 otherwise. */
2567
2568 static bool
2569 maybe_lvalue_p (const_tree x)
2570 {
2571 /* We only need to wrap lvalue tree codes. */
2572 switch (TREE_CODE (x))
2573 {
2574 case VAR_DECL:
2575 case PARM_DECL:
2576 case RESULT_DECL:
2577 case LABEL_DECL:
2578 case FUNCTION_DECL:
2579 case SSA_NAME:
2580
2581 case COMPONENT_REF:
2582 case MEM_REF:
2583 case INDIRECT_REF:
2584 case ARRAY_REF:
2585 case ARRAY_RANGE_REF:
2586 case BIT_FIELD_REF:
2587 case OBJ_TYPE_REF:
2588
2589 case REALPART_EXPR:
2590 case IMAGPART_EXPR:
2591 case PREINCREMENT_EXPR:
2592 case PREDECREMENT_EXPR:
2593 case SAVE_EXPR:
2594 case TRY_CATCH_EXPR:
2595 case WITH_CLEANUP_EXPR:
2596 case COMPOUND_EXPR:
2597 case MODIFY_EXPR:
2598 case TARGET_EXPR:
2599 case COND_EXPR:
2600 case BIND_EXPR:
2601 case VIEW_CONVERT_EXPR:
2602 break;
2603
2604 default:
2605 /* Assume the worst for front-end tree codes. */
2606 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2607 break;
2608 return false;
2609 }
2610
2611 return true;
2612 }
2613
2614 /* Return an expr equal to X but certainly not valid as an lvalue. */
2615
2616 tree
2617 non_lvalue_loc (location_t loc, tree x)
2618 {
2619 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2620 us. */
2621 if (in_gimple_form)
2622 return x;
2623
2624 if (! maybe_lvalue_p (x))
2625 return x;
2626 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2627 }
2628
2629 /* When pedantic, return an expr equal to X but certainly not valid as a
2630 pedantic lvalue. Otherwise, return X. */
2631
2632 static tree
2633 pedantic_non_lvalue_loc (location_t loc, tree x)
2634 {
2635 return protected_set_expr_location_unshare (x, loc);
2636 }
2637 \f
2638 /* Given a tree comparison code, return the code that is the logical inverse.
2639 It is generally not safe to do this for floating-point comparisons, except
2640 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2641 ERROR_MARK in this case. */
2642
2643 enum tree_code
2644 invert_tree_comparison (enum tree_code code, bool honor_nans)
2645 {
2646 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2647 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2648 return ERROR_MARK;
2649
2650 switch (code)
2651 {
2652 case EQ_EXPR:
2653 return NE_EXPR;
2654 case NE_EXPR:
2655 return EQ_EXPR;
2656 case GT_EXPR:
2657 return honor_nans ? UNLE_EXPR : LE_EXPR;
2658 case GE_EXPR:
2659 return honor_nans ? UNLT_EXPR : LT_EXPR;
2660 case LT_EXPR:
2661 return honor_nans ? UNGE_EXPR : GE_EXPR;
2662 case LE_EXPR:
2663 return honor_nans ? UNGT_EXPR : GT_EXPR;
2664 case LTGT_EXPR:
2665 return UNEQ_EXPR;
2666 case UNEQ_EXPR:
2667 return LTGT_EXPR;
2668 case UNGT_EXPR:
2669 return LE_EXPR;
2670 case UNGE_EXPR:
2671 return LT_EXPR;
2672 case UNLT_EXPR:
2673 return GE_EXPR;
2674 case UNLE_EXPR:
2675 return GT_EXPR;
2676 case ORDERED_EXPR:
2677 return UNORDERED_EXPR;
2678 case UNORDERED_EXPR:
2679 return ORDERED_EXPR;
2680 default:
2681 gcc_unreachable ();
2682 }
2683 }
2684
2685 /* Similar, but return the comparison that results if the operands are
2686 swapped. This is safe for floating-point. */
2687
2688 enum tree_code
2689 swap_tree_comparison (enum tree_code code)
2690 {
2691 switch (code)
2692 {
2693 case EQ_EXPR:
2694 case NE_EXPR:
2695 case ORDERED_EXPR:
2696 case UNORDERED_EXPR:
2697 case LTGT_EXPR:
2698 case UNEQ_EXPR:
2699 return code;
2700 case GT_EXPR:
2701 return LT_EXPR;
2702 case GE_EXPR:
2703 return LE_EXPR;
2704 case LT_EXPR:
2705 return GT_EXPR;
2706 case LE_EXPR:
2707 return GE_EXPR;
2708 case UNGT_EXPR:
2709 return UNLT_EXPR;
2710 case UNGE_EXPR:
2711 return UNLE_EXPR;
2712 case UNLT_EXPR:
2713 return UNGT_EXPR;
2714 case UNLE_EXPR:
2715 return UNGE_EXPR;
2716 default:
2717 gcc_unreachable ();
2718 }
2719 }
2720
2721
2722 /* Convert a comparison tree code from an enum tree_code representation
2723 into a compcode bit-based encoding. This function is the inverse of
2724 compcode_to_comparison. */
2725
2726 static enum comparison_code
2727 comparison_to_compcode (enum tree_code code)
2728 {
2729 switch (code)
2730 {
2731 case LT_EXPR:
2732 return COMPCODE_LT;
2733 case EQ_EXPR:
2734 return COMPCODE_EQ;
2735 case LE_EXPR:
2736 return COMPCODE_LE;
2737 case GT_EXPR:
2738 return COMPCODE_GT;
2739 case NE_EXPR:
2740 return COMPCODE_NE;
2741 case GE_EXPR:
2742 return COMPCODE_GE;
2743 case ORDERED_EXPR:
2744 return COMPCODE_ORD;
2745 case UNORDERED_EXPR:
2746 return COMPCODE_UNORD;
2747 case UNLT_EXPR:
2748 return COMPCODE_UNLT;
2749 case UNEQ_EXPR:
2750 return COMPCODE_UNEQ;
2751 case UNLE_EXPR:
2752 return COMPCODE_UNLE;
2753 case UNGT_EXPR:
2754 return COMPCODE_UNGT;
2755 case LTGT_EXPR:
2756 return COMPCODE_LTGT;
2757 case UNGE_EXPR:
2758 return COMPCODE_UNGE;
2759 default:
2760 gcc_unreachable ();
2761 }
2762 }
2763
2764 /* Convert a compcode bit-based encoding of a comparison operator back
2765 to GCC's enum tree_code representation. This function is the
2766 inverse of comparison_to_compcode. */
2767
2768 static enum tree_code
2769 compcode_to_comparison (enum comparison_code code)
2770 {
2771 switch (code)
2772 {
2773 case COMPCODE_LT:
2774 return LT_EXPR;
2775 case COMPCODE_EQ:
2776 return EQ_EXPR;
2777 case COMPCODE_LE:
2778 return LE_EXPR;
2779 case COMPCODE_GT:
2780 return GT_EXPR;
2781 case COMPCODE_NE:
2782 return NE_EXPR;
2783 case COMPCODE_GE:
2784 return GE_EXPR;
2785 case COMPCODE_ORD:
2786 return ORDERED_EXPR;
2787 case COMPCODE_UNORD:
2788 return UNORDERED_EXPR;
2789 case COMPCODE_UNLT:
2790 return UNLT_EXPR;
2791 case COMPCODE_UNEQ:
2792 return UNEQ_EXPR;
2793 case COMPCODE_UNLE:
2794 return UNLE_EXPR;
2795 case COMPCODE_UNGT:
2796 return UNGT_EXPR;
2797 case COMPCODE_LTGT:
2798 return LTGT_EXPR;
2799 case COMPCODE_UNGE:
2800 return UNGE_EXPR;
2801 default:
2802 gcc_unreachable ();
2803 }
2804 }
2805
2806 /* Return true if COND1 tests the opposite condition of COND2. */
2807
2808 bool
2809 inverse_conditions_p (const_tree cond1, const_tree cond2)
2810 {
2811 return (COMPARISON_CLASS_P (cond1)
2812 && COMPARISON_CLASS_P (cond2)
2813 && (invert_tree_comparison
2814 (TREE_CODE (cond1),
2815 HONOR_NANS (TREE_OPERAND (cond1, 0))) == TREE_CODE (cond2))
2816 && operand_equal_p (TREE_OPERAND (cond1, 0),
2817 TREE_OPERAND (cond2, 0), 0)
2818 && operand_equal_p (TREE_OPERAND (cond1, 1),
2819 TREE_OPERAND (cond2, 1), 0));
2820 }
2821
2822 /* Return a tree for the comparison which is the combination of
2823 doing the AND or OR (depending on CODE) of the two operations LCODE
2824 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2825 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2826 if this makes the transformation invalid. */
2827
2828 tree
2829 combine_comparisons (location_t loc,
2830 enum tree_code code, enum tree_code lcode,
2831 enum tree_code rcode, tree truth_type,
2832 tree ll_arg, tree lr_arg)
2833 {
2834 bool honor_nans = HONOR_NANS (ll_arg);
2835 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2836 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2837 int compcode;
2838
2839 switch (code)
2840 {
2841 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2842 compcode = lcompcode & rcompcode;
2843 break;
2844
2845 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2846 compcode = lcompcode | rcompcode;
2847 break;
2848
2849 default:
2850 return NULL_TREE;
2851 }
2852
2853 if (!honor_nans)
2854 {
2855 /* Eliminate unordered comparisons, as well as LTGT and ORD
2856 which are not used unless the mode has NaNs. */
2857 compcode &= ~COMPCODE_UNORD;
2858 if (compcode == COMPCODE_LTGT)
2859 compcode = COMPCODE_NE;
2860 else if (compcode == COMPCODE_ORD)
2861 compcode = COMPCODE_TRUE;
2862 }
2863 else if (flag_trapping_math)
2864 {
2865 /* Check that the original operation and the optimized ones will trap
2866 under the same condition. */
2867 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2868 && (lcompcode != COMPCODE_EQ)
2869 && (lcompcode != COMPCODE_ORD);
2870 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2871 && (rcompcode != COMPCODE_EQ)
2872 && (rcompcode != COMPCODE_ORD);
2873 bool trap = (compcode & COMPCODE_UNORD) == 0
2874 && (compcode != COMPCODE_EQ)
2875 && (compcode != COMPCODE_ORD);
2876
2877 /* In a short-circuited boolean expression the LHS might be
2878 such that the RHS, if evaluated, will never trap. For
2879 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2880 if neither x nor y is NaN. (This is a mixed blessing: for
2881 example, the expression above will never trap, hence
2882 optimizing it to x < y would be invalid). */
2883 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2884 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2885 rtrap = false;
2886
2887 /* If the comparison was short-circuited, and only the RHS
2888 trapped, we may now generate a spurious trap. */
2889 if (rtrap && !ltrap
2890 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2891 return NULL_TREE;
2892
2893 /* If we changed the conditions that cause a trap, we lose. */
2894 if ((ltrap || rtrap) != trap)
2895 return NULL_TREE;
2896 }
2897
2898 if (compcode == COMPCODE_TRUE)
2899 return constant_boolean_node (true, truth_type);
2900 else if (compcode == COMPCODE_FALSE)
2901 return constant_boolean_node (false, truth_type);
2902 else
2903 {
2904 enum tree_code tcode;
2905
2906 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2907 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2908 }
2909 }
2910 \f
2911 /* Return nonzero if two operands (typically of the same tree node)
2912 are necessarily equal. FLAGS modifies behavior as follows:
2913
2914 If OEP_ONLY_CONST is set, only return nonzero for constants.
2915 This function tests whether the operands are indistinguishable;
2916 it does not test whether they are equal using C's == operation.
2917 The distinction is important for IEEE floating point, because
2918 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2919 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2920
2921 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2922 even though it may hold multiple values during a function.
2923 This is because a GCC tree node guarantees that nothing else is
2924 executed between the evaluation of its "operands" (which may often
2925 be evaluated in arbitrary order). Hence if the operands themselves
2926 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2927 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2928 unset means assuming isochronic (or instantaneous) tree equivalence.
2929 Unless comparing arbitrary expression trees, such as from different
2930 statements, this flag can usually be left unset.
2931
2932 If OEP_PURE_SAME is set, then pure functions with identical arguments
2933 are considered the same. It is used when the caller has other ways
2934 to ensure that global memory is unchanged in between.
2935
2936 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2937 not values of expressions.
2938
2939 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2940 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2941
2942 If OEP_BITWISE is set, then require the values to be bitwise identical
2943 rather than simply numerically equal. Do not take advantage of things
2944 like math-related flags or undefined behavior; only return true for
2945 values that are provably bitwise identical in all circumstances.
2946
2947 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2948 any operand with side effect. This is unnecesarily conservative in the
2949 case we know that arg0 and arg1 are in disjoint code paths (such as in
2950 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2951 addresses with TREE_CONSTANT flag set so we know that &var == &var
2952 even if var is volatile. */
2953
2954 bool
2955 operand_compare::operand_equal_p (const_tree arg0, const_tree arg1,
2956 unsigned int flags)
2957 {
2958 bool r;
2959 if (verify_hash_value (arg0, arg1, flags, &r))
2960 return r;
2961
2962 STRIP_ANY_LOCATION_WRAPPER (arg0);
2963 STRIP_ANY_LOCATION_WRAPPER (arg1);
2964
2965 /* If either is ERROR_MARK, they aren't equal. */
2966 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2967 || TREE_TYPE (arg0) == error_mark_node
2968 || TREE_TYPE (arg1) == error_mark_node)
2969 return false;
2970
2971 /* Similar, if either does not have a type (like a template id),
2972 they aren't equal. */
2973 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2974 return false;
2975
2976 /* Bitwise identity makes no sense if the values have different layouts. */
2977 if ((flags & OEP_BITWISE)
2978 && !tree_nop_conversion_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
2979 return false;
2980
2981 /* We cannot consider pointers to different address space equal. */
2982 if (POINTER_TYPE_P (TREE_TYPE (arg0))
2983 && POINTER_TYPE_P (TREE_TYPE (arg1))
2984 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2985 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2986 return false;
2987
2988 /* Check equality of integer constants before bailing out due to
2989 precision differences. */
2990 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2991 {
2992 /* Address of INTEGER_CST is not defined; check that we did not forget
2993 to drop the OEP_ADDRESS_OF flags. */
2994 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2995 return tree_int_cst_equal (arg0, arg1);
2996 }
2997
2998 if (!(flags & OEP_ADDRESS_OF))
2999 {
3000 /* If both types don't have the same signedness, then we can't consider
3001 them equal. We must check this before the STRIP_NOPS calls
3002 because they may change the signedness of the arguments. As pointers
3003 strictly don't have a signedness, require either two pointers or
3004 two non-pointers as well. */
3005 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
3006 || POINTER_TYPE_P (TREE_TYPE (arg0))
3007 != POINTER_TYPE_P (TREE_TYPE (arg1)))
3008 return false;
3009
3010 /* If both types don't have the same precision, then it is not safe
3011 to strip NOPs. */
3012 if (element_precision (TREE_TYPE (arg0))
3013 != element_precision (TREE_TYPE (arg1)))
3014 return false;
3015
3016 STRIP_NOPS (arg0);
3017 STRIP_NOPS (arg1);
3018 }
3019 #if 0
3020 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
3021 sanity check once the issue is solved. */
3022 else
3023 /* Addresses of conversions and SSA_NAMEs (and many other things)
3024 are not defined. Check that we did not forget to drop the
3025 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
3026 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1)
3027 && TREE_CODE (arg0) != SSA_NAME);
3028 #endif
3029
3030 /* In case both args are comparisons but with different comparison
3031 code, try to swap the comparison operands of one arg to produce
3032 a match and compare that variant. */
3033 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3034 && COMPARISON_CLASS_P (arg0)
3035 && COMPARISON_CLASS_P (arg1))
3036 {
3037 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
3038
3039 if (TREE_CODE (arg0) == swap_code)
3040 return operand_equal_p (TREE_OPERAND (arg0, 0),
3041 TREE_OPERAND (arg1, 1), flags)
3042 && operand_equal_p (TREE_OPERAND (arg0, 1),
3043 TREE_OPERAND (arg1, 0), flags);
3044 }
3045
3046 if (TREE_CODE (arg0) != TREE_CODE (arg1))
3047 {
3048 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
3049 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1))
3050 ;
3051 else if (flags & OEP_ADDRESS_OF)
3052 {
3053 /* If we are interested in comparing addresses ignore
3054 MEM_REF wrappings of the base that can appear just for
3055 TBAA reasons. */
3056 if (TREE_CODE (arg0) == MEM_REF
3057 && DECL_P (arg1)
3058 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR
3059 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1
3060 && integer_zerop (TREE_OPERAND (arg0, 1)))
3061 return true;
3062 else if (TREE_CODE (arg1) == MEM_REF
3063 && DECL_P (arg0)
3064 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR
3065 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0
3066 && integer_zerop (TREE_OPERAND (arg1, 1)))
3067 return true;
3068 return false;
3069 }
3070 else
3071 return false;
3072 }
3073
3074 /* When not checking adddresses, this is needed for conversions and for
3075 COMPONENT_REF. Might as well play it safe and always test this. */
3076 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
3077 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
3078 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1))
3079 && !(flags & OEP_ADDRESS_OF)))
3080 return false;
3081
3082 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3083 We don't care about side effects in that case because the SAVE_EXPR
3084 takes care of that for us. In all other cases, two expressions are
3085 equal if they have no side effects. If we have two identical
3086 expressions with side effects that should be treated the same due
3087 to the only side effects being identical SAVE_EXPR's, that will
3088 be detected in the recursive calls below.
3089 If we are taking an invariant address of two identical objects
3090 they are necessarily equal as well. */
3091 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
3092 && (TREE_CODE (arg0) == SAVE_EXPR
3093 || (flags & OEP_MATCH_SIDE_EFFECTS)
3094 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
3095 return true;
3096
3097 /* Next handle constant cases, those for which we can return 1 even
3098 if ONLY_CONST is set. */
3099 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
3100 switch (TREE_CODE (arg0))
3101 {
3102 case INTEGER_CST:
3103 return tree_int_cst_equal (arg0, arg1);
3104
3105 case FIXED_CST:
3106 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
3107 TREE_FIXED_CST (arg1));
3108
3109 case REAL_CST:
3110 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1)))
3111 return true;
3112
3113 if (!(flags & OEP_BITWISE) && !HONOR_SIGNED_ZEROS (arg0))
3114 {
3115 /* If we do not distinguish between signed and unsigned zero,
3116 consider them equal. */
3117 if (real_zerop (arg0) && real_zerop (arg1))
3118 return true;
3119 }
3120 return false;
3121
3122 case VECTOR_CST:
3123 {
3124 if (VECTOR_CST_LOG2_NPATTERNS (arg0)
3125 != VECTOR_CST_LOG2_NPATTERNS (arg1))
3126 return false;
3127
3128 if (VECTOR_CST_NELTS_PER_PATTERN (arg0)
3129 != VECTOR_CST_NELTS_PER_PATTERN (arg1))
3130 return false;
3131
3132 unsigned int count = vector_cst_encoded_nelts (arg0);
3133 for (unsigned int i = 0; i < count; ++i)
3134 if (!operand_equal_p (VECTOR_CST_ENCODED_ELT (arg0, i),
3135 VECTOR_CST_ENCODED_ELT (arg1, i), flags))
3136 return false;
3137 return true;
3138 }
3139
3140 case COMPLEX_CST:
3141 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
3142 flags)
3143 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
3144 flags));
3145
3146 case STRING_CST:
3147 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
3148 && ! memcmp (TREE_STRING_POINTER (arg0),
3149 TREE_STRING_POINTER (arg1),
3150 TREE_STRING_LENGTH (arg0)));
3151
3152 case ADDR_EXPR:
3153 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3154 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
3155 flags | OEP_ADDRESS_OF
3156 | OEP_MATCH_SIDE_EFFECTS);
3157 case CONSTRUCTOR:
3158 /* In GIMPLE empty constructors are allowed in initializers of
3159 aggregates. */
3160 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1);
3161 default:
3162 break;
3163 }
3164
3165 /* Don't handle more cases for OEP_BITWISE, since we can't guarantee that
3166 two instances of undefined behavior will give identical results. */
3167 if (flags & (OEP_ONLY_CONST | OEP_BITWISE))
3168 return false;
3169
3170 /* Define macros to test an operand from arg0 and arg1 for equality and a
3171 variant that allows null and views null as being different from any
3172 non-null value. In the latter case, if either is null, the both
3173 must be; otherwise, do the normal comparison. */
3174 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3175 TREE_OPERAND (arg1, N), flags)
3176
3177 #define OP_SAME_WITH_NULL(N) \
3178 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3179 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3180
3181 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
3182 {
3183 case tcc_unary:
3184 /* Two conversions are equal only if signedness and modes match. */
3185 switch (TREE_CODE (arg0))
3186 {
3187 CASE_CONVERT:
3188 case FIX_TRUNC_EXPR:
3189 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
3190 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
3191 return false;
3192 break;
3193 default:
3194 break;
3195 }
3196
3197 return OP_SAME (0);
3198
3199
3200 case tcc_comparison:
3201 case tcc_binary:
3202 if (OP_SAME (0) && OP_SAME (1))
3203 return true;
3204
3205 /* For commutative ops, allow the other order. */
3206 return (commutative_tree_code (TREE_CODE (arg0))
3207 && operand_equal_p (TREE_OPERAND (arg0, 0),
3208 TREE_OPERAND (arg1, 1), flags)
3209 && operand_equal_p (TREE_OPERAND (arg0, 1),
3210 TREE_OPERAND (arg1, 0), flags));
3211
3212 case tcc_reference:
3213 /* If either of the pointer (or reference) expressions we are
3214 dereferencing contain a side effect, these cannot be equal,
3215 but their addresses can be. */
3216 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0
3217 && (TREE_SIDE_EFFECTS (arg0)
3218 || TREE_SIDE_EFFECTS (arg1)))
3219 return false;
3220
3221 switch (TREE_CODE (arg0))
3222 {
3223 case INDIRECT_REF:
3224 if (!(flags & OEP_ADDRESS_OF))
3225 {
3226 if (TYPE_ALIGN (TREE_TYPE (arg0))
3227 != TYPE_ALIGN (TREE_TYPE (arg1)))
3228 return false;
3229 /* Verify that the access types are compatible. */
3230 if (TYPE_MAIN_VARIANT (TREE_TYPE (arg0))
3231 != TYPE_MAIN_VARIANT (TREE_TYPE (arg1)))
3232 return false;
3233 }
3234 flags &= ~OEP_ADDRESS_OF;
3235 return OP_SAME (0);
3236
3237 case IMAGPART_EXPR:
3238 /* Require the same offset. */
3239 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3240 TYPE_SIZE (TREE_TYPE (arg1)),
3241 flags & ~OEP_ADDRESS_OF))
3242 return false;
3243
3244 /* Fallthru. */
3245 case REALPART_EXPR:
3246 case VIEW_CONVERT_EXPR:
3247 return OP_SAME (0);
3248
3249 case TARGET_MEM_REF:
3250 case MEM_REF:
3251 if (!(flags & OEP_ADDRESS_OF))
3252 {
3253 /* Require equal access sizes */
3254 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1))
3255 && (!TYPE_SIZE (TREE_TYPE (arg0))
3256 || !TYPE_SIZE (TREE_TYPE (arg1))
3257 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3258 TYPE_SIZE (TREE_TYPE (arg1)),
3259 flags)))
3260 return false;
3261 /* Verify that access happens in similar types. */
3262 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3263 return false;
3264 /* Verify that accesses are TBAA compatible. */
3265 if (!alias_ptr_types_compatible_p
3266 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
3267 TREE_TYPE (TREE_OPERAND (arg1, 1)))
3268 || (MR_DEPENDENCE_CLIQUE (arg0)
3269 != MR_DEPENDENCE_CLIQUE (arg1))
3270 || (MR_DEPENDENCE_BASE (arg0)
3271 != MR_DEPENDENCE_BASE (arg1)))
3272 return false;
3273 /* Verify that alignment is compatible. */
3274 if (TYPE_ALIGN (TREE_TYPE (arg0))
3275 != TYPE_ALIGN (TREE_TYPE (arg1)))
3276 return false;
3277 }
3278 flags &= ~OEP_ADDRESS_OF;
3279 return (OP_SAME (0) && OP_SAME (1)
3280 /* TARGET_MEM_REF require equal extra operands. */
3281 && (TREE_CODE (arg0) != TARGET_MEM_REF
3282 || (OP_SAME_WITH_NULL (2)
3283 && OP_SAME_WITH_NULL (3)
3284 && OP_SAME_WITH_NULL (4))));
3285
3286 case ARRAY_REF:
3287 case ARRAY_RANGE_REF:
3288 if (!OP_SAME (0))
3289 return false;
3290 flags &= ~OEP_ADDRESS_OF;
3291 /* Compare the array index by value if it is constant first as we
3292 may have different types but same value here. */
3293 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3294 TREE_OPERAND (arg1, 1))
3295 || OP_SAME (1))
3296 && OP_SAME_WITH_NULL (2)
3297 && OP_SAME_WITH_NULL (3)
3298 /* Compare low bound and element size as with OEP_ADDRESS_OF
3299 we have to account for the offset of the ref. */
3300 && (TREE_TYPE (TREE_OPERAND (arg0, 0))
3301 == TREE_TYPE (TREE_OPERAND (arg1, 0))
3302 || (operand_equal_p (array_ref_low_bound
3303 (CONST_CAST_TREE (arg0)),
3304 array_ref_low_bound
3305 (CONST_CAST_TREE (arg1)), flags)
3306 && operand_equal_p (array_ref_element_size
3307 (CONST_CAST_TREE (arg0)),
3308 array_ref_element_size
3309 (CONST_CAST_TREE (arg1)),
3310 flags))));
3311
3312 case COMPONENT_REF:
3313 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3314 may be NULL when we're called to compare MEM_EXPRs. */
3315 if (!OP_SAME_WITH_NULL (0)
3316 || !OP_SAME (1))
3317 return false;
3318 flags &= ~OEP_ADDRESS_OF;
3319 return OP_SAME_WITH_NULL (2);
3320
3321 case BIT_FIELD_REF:
3322 if (!OP_SAME (0))
3323 return false;
3324 flags &= ~OEP_ADDRESS_OF;
3325 return OP_SAME (1) && OP_SAME (2);
3326
3327 /* Virtual table call. */
3328 case OBJ_TYPE_REF:
3329 {
3330 if (!operand_equal_p (OBJ_TYPE_REF_EXPR (arg0),
3331 OBJ_TYPE_REF_EXPR (arg1), flags))
3332 return false;
3333 if (tree_to_uhwi (OBJ_TYPE_REF_TOKEN (arg0))
3334 != tree_to_uhwi (OBJ_TYPE_REF_TOKEN (arg1)))
3335 return false;
3336 if (!operand_equal_p (OBJ_TYPE_REF_OBJECT (arg0),
3337 OBJ_TYPE_REF_OBJECT (arg1), flags))
3338 return false;
3339 if (!types_same_for_odr (obj_type_ref_class (arg0),
3340 obj_type_ref_class (arg1)))
3341 return false;
3342 return true;
3343 }
3344
3345 default:
3346 return false;
3347 }
3348
3349 case tcc_expression:
3350 switch (TREE_CODE (arg0))
3351 {
3352 case ADDR_EXPR:
3353 /* Be sure we pass right ADDRESS_OF flag. */
3354 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3355 return operand_equal_p (TREE_OPERAND (arg0, 0),
3356 TREE_OPERAND (arg1, 0),
3357 flags | OEP_ADDRESS_OF);
3358
3359 case TRUTH_NOT_EXPR:
3360 return OP_SAME (0);
3361
3362 case TRUTH_ANDIF_EXPR:
3363 case TRUTH_ORIF_EXPR:
3364 return OP_SAME (0) && OP_SAME (1);
3365
3366 case WIDEN_MULT_PLUS_EXPR:
3367 case WIDEN_MULT_MINUS_EXPR:
3368 if (!OP_SAME (2))
3369 return false;
3370 /* The multiplcation operands are commutative. */
3371 /* FALLTHRU */
3372
3373 case TRUTH_AND_EXPR:
3374 case TRUTH_OR_EXPR:
3375 case TRUTH_XOR_EXPR:
3376 if (OP_SAME (0) && OP_SAME (1))
3377 return true;
3378
3379 /* Otherwise take into account this is a commutative operation. */
3380 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3381 TREE_OPERAND (arg1, 1), flags)
3382 && operand_equal_p (TREE_OPERAND (arg0, 1),
3383 TREE_OPERAND (arg1, 0), flags));
3384
3385 case COND_EXPR:
3386 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3387 return false;
3388 flags &= ~OEP_ADDRESS_OF;
3389 return OP_SAME (0);
3390
3391 case BIT_INSERT_EXPR:
3392 /* BIT_INSERT_EXPR has an implict operand as the type precision
3393 of op1. Need to check to make sure they are the same. */
3394 if (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
3395 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
3396 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 1)))
3397 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 1))))
3398 return false;
3399 /* FALLTHRU */
3400
3401 case VEC_COND_EXPR:
3402 case DOT_PROD_EXPR:
3403 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3404
3405 case MODIFY_EXPR:
3406 case INIT_EXPR:
3407 case COMPOUND_EXPR:
3408 case PREDECREMENT_EXPR:
3409 case PREINCREMENT_EXPR:
3410 case POSTDECREMENT_EXPR:
3411 case POSTINCREMENT_EXPR:
3412 if (flags & OEP_LEXICOGRAPHIC)
3413 return OP_SAME (0) && OP_SAME (1);
3414 return false;
3415
3416 case CLEANUP_POINT_EXPR:
3417 case EXPR_STMT:
3418 case SAVE_EXPR:
3419 if (flags & OEP_LEXICOGRAPHIC)
3420 return OP_SAME (0);
3421 return false;
3422
3423 default:
3424 return false;
3425 }
3426
3427 case tcc_vl_exp:
3428 switch (TREE_CODE (arg0))
3429 {
3430 case CALL_EXPR:
3431 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3432 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3433 /* If not both CALL_EXPRs are either internal or normal function
3434 functions, then they are not equal. */
3435 return false;
3436 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3437 {
3438 /* If the CALL_EXPRs call different internal functions, then they
3439 are not equal. */
3440 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3441 return false;
3442 }
3443 else
3444 {
3445 /* If the CALL_EXPRs call different functions, then they are not
3446 equal. */
3447 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3448 flags))
3449 return false;
3450 }
3451
3452 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3453 {
3454 unsigned int cef = call_expr_flags (arg0);
3455 if (flags & OEP_PURE_SAME)
3456 cef &= ECF_CONST | ECF_PURE;
3457 else
3458 cef &= ECF_CONST;
3459 if (!cef && !(flags & OEP_LEXICOGRAPHIC))
3460 return false;
3461 }
3462
3463 /* Now see if all the arguments are the same. */
3464 {
3465 const_call_expr_arg_iterator iter0, iter1;
3466 const_tree a0, a1;
3467 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3468 a1 = first_const_call_expr_arg (arg1, &iter1);
3469 a0 && a1;
3470 a0 = next_const_call_expr_arg (&iter0),
3471 a1 = next_const_call_expr_arg (&iter1))
3472 if (! operand_equal_p (a0, a1, flags))
3473 return false;
3474
3475 /* If we get here and both argument lists are exhausted
3476 then the CALL_EXPRs are equal. */
3477 return ! (a0 || a1);
3478 }
3479 default:
3480 return false;
3481 }
3482
3483 case tcc_declaration:
3484 /* Consider __builtin_sqrt equal to sqrt. */
3485 return (TREE_CODE (arg0) == FUNCTION_DECL
3486 && fndecl_built_in_p (arg0) && fndecl_built_in_p (arg1)
3487 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3488 && (DECL_UNCHECKED_FUNCTION_CODE (arg0)
3489 == DECL_UNCHECKED_FUNCTION_CODE (arg1)));
3490
3491 case tcc_exceptional:
3492 if (TREE_CODE (arg0) == CONSTRUCTOR)
3493 {
3494 if (CONSTRUCTOR_NO_CLEARING (arg0) != CONSTRUCTOR_NO_CLEARING (arg1))
3495 return false;
3496
3497 /* In GIMPLE constructors are used only to build vectors from
3498 elements. Individual elements in the constructor must be
3499 indexed in increasing order and form an initial sequence.
3500
3501 We make no effort to compare constructors in generic.
3502 (see sem_variable::equals in ipa-icf which can do so for
3503 constants). */
3504 if (!VECTOR_TYPE_P (TREE_TYPE (arg0))
3505 || !VECTOR_TYPE_P (TREE_TYPE (arg1)))
3506 return false;
3507
3508 /* Be sure that vectors constructed have the same representation.
3509 We only tested element precision and modes to match.
3510 Vectors may be BLKmode and thus also check that the number of
3511 parts match. */
3512 if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)),
3513 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1))))
3514 return false;
3515
3516 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0);
3517 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1);
3518 unsigned int len = vec_safe_length (v0);
3519
3520 if (len != vec_safe_length (v1))
3521 return false;
3522
3523 for (unsigned int i = 0; i < len; i++)
3524 {
3525 constructor_elt *c0 = &(*v0)[i];
3526 constructor_elt *c1 = &(*v1)[i];
3527
3528 if (!operand_equal_p (c0->value, c1->value, flags)
3529 /* In GIMPLE the indexes can be either NULL or matching i.
3530 Double check this so we won't get false
3531 positives for GENERIC. */
3532 || (c0->index
3533 && (TREE_CODE (c0->index) != INTEGER_CST
3534 || compare_tree_int (c0->index, i)))
3535 || (c1->index
3536 && (TREE_CODE (c1->index) != INTEGER_CST
3537 || compare_tree_int (c1->index, i))))
3538 return false;
3539 }
3540 return true;
3541 }
3542 else if (TREE_CODE (arg0) == STATEMENT_LIST
3543 && (flags & OEP_LEXICOGRAPHIC))
3544 {
3545 /* Compare the STATEMENT_LISTs. */
3546 tree_stmt_iterator tsi1, tsi2;
3547 tree body1 = CONST_CAST_TREE (arg0);
3548 tree body2 = CONST_CAST_TREE (arg1);
3549 for (tsi1 = tsi_start (body1), tsi2 = tsi_start (body2); ;
3550 tsi_next (&tsi1), tsi_next (&tsi2))
3551 {
3552 /* The lists don't have the same number of statements. */
3553 if (tsi_end_p (tsi1) ^ tsi_end_p (tsi2))
3554 return false;
3555 if (tsi_end_p (tsi1) && tsi_end_p (tsi2))
3556 return true;
3557 if (!operand_equal_p (tsi_stmt (tsi1), tsi_stmt (tsi2),
3558 flags & (OEP_LEXICOGRAPHIC
3559 | OEP_NO_HASH_CHECK)))
3560 return false;
3561 }
3562 }
3563 return false;
3564
3565 case tcc_statement:
3566 switch (TREE_CODE (arg0))
3567 {
3568 case RETURN_EXPR:
3569 if (flags & OEP_LEXICOGRAPHIC)
3570 return OP_SAME_WITH_NULL (0);
3571 return false;
3572 case DEBUG_BEGIN_STMT:
3573 if (flags & OEP_LEXICOGRAPHIC)
3574 return true;
3575 return false;
3576 default:
3577 return false;
3578 }
3579
3580 default:
3581 return false;
3582 }
3583
3584 #undef OP_SAME
3585 #undef OP_SAME_WITH_NULL
3586 }
3587
3588 /* Generate a hash value for an expression. This can be used iteratively
3589 by passing a previous result as the HSTATE argument. */
3590
3591 void
3592 operand_compare::hash_operand (const_tree t, inchash::hash &hstate,
3593 unsigned int flags)
3594 {
3595 int i;
3596 enum tree_code code;
3597 enum tree_code_class tclass;
3598
3599 if (t == NULL_TREE || t == error_mark_node)
3600 {
3601 hstate.merge_hash (0);
3602 return;
3603 }
3604
3605 STRIP_ANY_LOCATION_WRAPPER (t);
3606
3607 if (!(flags & OEP_ADDRESS_OF))
3608 STRIP_NOPS (t);
3609
3610 code = TREE_CODE (t);
3611
3612 switch (code)
3613 {
3614 /* Alas, constants aren't shared, so we can't rely on pointer
3615 identity. */
3616 case VOID_CST:
3617 hstate.merge_hash (0);
3618 return;
3619 case INTEGER_CST:
3620 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3621 for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
3622 hstate.add_hwi (TREE_INT_CST_ELT (t, i));
3623 return;
3624 case REAL_CST:
3625 {
3626 unsigned int val2;
3627 if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
3628 val2 = rvc_zero;
3629 else
3630 val2 = real_hash (TREE_REAL_CST_PTR (t));
3631 hstate.merge_hash (val2);
3632 return;
3633 }
3634 case FIXED_CST:
3635 {
3636 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
3637 hstate.merge_hash (val2);
3638 return;
3639 }
3640 case STRING_CST:
3641 hstate.add ((const void *) TREE_STRING_POINTER (t),
3642 TREE_STRING_LENGTH (t));
3643 return;
3644 case COMPLEX_CST:
3645 hash_operand (TREE_REALPART (t), hstate, flags);
3646 hash_operand (TREE_IMAGPART (t), hstate, flags);
3647 return;
3648 case VECTOR_CST:
3649 {
3650 hstate.add_int (VECTOR_CST_NPATTERNS (t));
3651 hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t));
3652 unsigned int count = vector_cst_encoded_nelts (t);
3653 for (unsigned int i = 0; i < count; ++i)
3654 hash_operand (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags);
3655 return;
3656 }
3657 case SSA_NAME:
3658 /* We can just compare by pointer. */
3659 hstate.add_hwi (SSA_NAME_VERSION (t));
3660 return;
3661 case PLACEHOLDER_EXPR:
3662 /* The node itself doesn't matter. */
3663 return;
3664 case BLOCK:
3665 case OMP_CLAUSE:
3666 /* Ignore. */
3667 return;
3668 case TREE_LIST:
3669 /* A list of expressions, for a CALL_EXPR or as the elements of a
3670 VECTOR_CST. */
3671 for (; t; t = TREE_CHAIN (t))
3672 hash_operand (TREE_VALUE (t), hstate, flags);
3673 return;
3674 case CONSTRUCTOR:
3675 {
3676 unsigned HOST_WIDE_INT idx;
3677 tree field, value;
3678 flags &= ~OEP_ADDRESS_OF;
3679 hstate.add_int (CONSTRUCTOR_NO_CLEARING (t));
3680 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
3681 {
3682 /* In GIMPLE the indexes can be either NULL or matching i. */
3683 if (field == NULL_TREE)
3684 field = bitsize_int (idx);
3685 hash_operand (field, hstate, flags);
3686 hash_operand (value, hstate, flags);
3687 }
3688 return;
3689 }
3690 case STATEMENT_LIST:
3691 {
3692 tree_stmt_iterator i;
3693 for (i = tsi_start (CONST_CAST_TREE (t));
3694 !tsi_end_p (i); tsi_next (&i))
3695 hash_operand (tsi_stmt (i), hstate, flags);
3696 return;
3697 }
3698 case TREE_VEC:
3699 for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
3700 hash_operand (TREE_VEC_ELT (t, i), hstate, flags);
3701 return;
3702 case IDENTIFIER_NODE:
3703 hstate.add_object (IDENTIFIER_HASH_VALUE (t));
3704 return;
3705 case FUNCTION_DECL:
3706 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
3707 Otherwise nodes that compare equal according to operand_equal_p might
3708 get different hash codes. However, don't do this for machine specific
3709 or front end builtins, since the function code is overloaded in those
3710 cases. */
3711 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
3712 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
3713 {
3714 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
3715 code = TREE_CODE (t);
3716 }
3717 /* FALL THROUGH */
3718 default:
3719 if (POLY_INT_CST_P (t))
3720 {
3721 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
3722 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
3723 return;
3724 }
3725 tclass = TREE_CODE_CLASS (code);
3726
3727 if (tclass == tcc_declaration)
3728 {
3729 /* DECL's have a unique ID */
3730 hstate.add_hwi (DECL_UID (t));
3731 }
3732 else if (tclass == tcc_comparison && !commutative_tree_code (code))
3733 {
3734 /* For comparisons that can be swapped, use the lower
3735 tree code. */
3736 enum tree_code ccode = swap_tree_comparison (code);
3737 if (code < ccode)
3738 ccode = code;
3739 hstate.add_object (ccode);
3740 hash_operand (TREE_OPERAND (t, ccode != code), hstate, flags);
3741 hash_operand (TREE_OPERAND (t, ccode == code), hstate, flags);
3742 }
3743 else if (CONVERT_EXPR_CODE_P (code))
3744 {
3745 /* NOP_EXPR and CONVERT_EXPR are considered equal by
3746 operand_equal_p. */
3747 enum tree_code ccode = NOP_EXPR;
3748 hstate.add_object (ccode);
3749
3750 /* Don't hash the type, that can lead to having nodes which
3751 compare equal according to operand_equal_p, but which
3752 have different hash codes. Make sure to include signedness
3753 in the hash computation. */
3754 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
3755 hash_operand (TREE_OPERAND (t, 0), hstate, flags);
3756 }
3757 /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */
3758 else if (code == MEM_REF
3759 && (flags & OEP_ADDRESS_OF) != 0
3760 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
3761 && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
3762 && integer_zerop (TREE_OPERAND (t, 1)))
3763 hash_operand (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
3764 hstate, flags);
3765 /* Don't ICE on FE specific trees, or their arguments etc.
3766 during operand_equal_p hash verification. */
3767 else if (!IS_EXPR_CODE_CLASS (tclass))
3768 gcc_assert (flags & OEP_HASH_CHECK);
3769 else
3770 {
3771 unsigned int sflags = flags;
3772
3773 hstate.add_object (code);
3774
3775 switch (code)
3776 {
3777 case ADDR_EXPR:
3778 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3779 flags |= OEP_ADDRESS_OF;
3780 sflags = flags;
3781 break;
3782
3783 case INDIRECT_REF:
3784 case MEM_REF:
3785 case TARGET_MEM_REF:
3786 flags &= ~OEP_ADDRESS_OF;
3787 sflags = flags;
3788 break;
3789
3790 case ARRAY_REF:
3791 case ARRAY_RANGE_REF:
3792 case COMPONENT_REF:
3793 case BIT_FIELD_REF:
3794 sflags &= ~OEP_ADDRESS_OF;
3795 break;
3796
3797 case COND_EXPR:
3798 flags &= ~OEP_ADDRESS_OF;
3799 break;
3800
3801 case WIDEN_MULT_PLUS_EXPR:
3802 case WIDEN_MULT_MINUS_EXPR:
3803 {
3804 /* The multiplication operands are commutative. */
3805 inchash::hash one, two;
3806 hash_operand (TREE_OPERAND (t, 0), one, flags);
3807 hash_operand (TREE_OPERAND (t, 1), two, flags);
3808 hstate.add_commutative (one, two);
3809 hash_operand (TREE_OPERAND (t, 2), two, flags);
3810 return;
3811 }
3812
3813 case CALL_EXPR:
3814 if (CALL_EXPR_FN (t) == NULL_TREE)
3815 hstate.add_int (CALL_EXPR_IFN (t));
3816 break;
3817
3818 case TARGET_EXPR:
3819 /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
3820 Usually different TARGET_EXPRs just should use
3821 different temporaries in their slots. */
3822 hash_operand (TARGET_EXPR_SLOT (t), hstate, flags);
3823 return;
3824
3825 /* Virtual table call. */
3826 case OBJ_TYPE_REF:
3827 inchash::add_expr (OBJ_TYPE_REF_EXPR (t), hstate, flags);
3828 inchash::add_expr (OBJ_TYPE_REF_TOKEN (t), hstate, flags);
3829 inchash::add_expr (OBJ_TYPE_REF_OBJECT (t), hstate, flags);
3830 return;
3831 default:
3832 break;
3833 }
3834
3835 /* Don't hash the type, that can lead to having nodes which
3836 compare equal according to operand_equal_p, but which
3837 have different hash codes. */
3838 if (code == NON_LVALUE_EXPR)
3839 {
3840 /* Make sure to include signness in the hash computation. */
3841 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
3842 hash_operand (TREE_OPERAND (t, 0), hstate, flags);
3843 }
3844
3845 else if (commutative_tree_code (code))
3846 {
3847 /* It's a commutative expression. We want to hash it the same
3848 however it appears. We do this by first hashing both operands
3849 and then rehashing based on the order of their independent
3850 hashes. */
3851 inchash::hash one, two;
3852 hash_operand (TREE_OPERAND (t, 0), one, flags);
3853 hash_operand (TREE_OPERAND (t, 1), two, flags);
3854 hstate.add_commutative (one, two);
3855 }
3856 else
3857 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
3858 hash_operand (TREE_OPERAND (t, i), hstate,
3859 i == 0 ? flags : sflags);
3860 }
3861 return;
3862 }
3863 }
3864
3865 bool
3866 operand_compare::verify_hash_value (const_tree arg0, const_tree arg1,
3867 unsigned int flags, bool *ret)
3868 {
3869 /* When checking, verify at the outermost operand_equal_p call that
3870 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
3871 hash value. */
3872 if (flag_checking && !(flags & OEP_NO_HASH_CHECK))
3873 {
3874 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK))
3875 {
3876 if (arg0 != arg1)
3877 {
3878 inchash::hash hstate0 (0), hstate1 (0);
3879 hash_operand (arg0, hstate0, flags | OEP_HASH_CHECK);
3880 hash_operand (arg1, hstate1, flags | OEP_HASH_CHECK);
3881 hashval_t h0 = hstate0.end ();
3882 hashval_t h1 = hstate1.end ();
3883 gcc_assert (h0 == h1);
3884 }
3885 *ret = true;
3886 }
3887 else
3888 *ret = false;
3889
3890 return true;
3891 }
3892
3893 return false;
3894 }
3895
3896
3897 static operand_compare default_compare_instance;
3898
3899 /* Conveinece wrapper around operand_compare class because usually we do
3900 not need to play with the valueizer. */
3901
3902 bool
3903 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
3904 {
3905 return default_compare_instance.operand_equal_p (arg0, arg1, flags);
3906 }
3907
3908 namespace inchash
3909 {
3910
3911 /* Generate a hash value for an expression. This can be used iteratively
3912 by passing a previous result as the HSTATE argument.
3913
3914 This function is intended to produce the same hash for expressions which
3915 would compare equal using operand_equal_p. */
3916 void
3917 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
3918 {
3919 default_compare_instance.hash_operand (t, hstate, flags);
3920 }
3921
3922 }
3923 \f
3924 /* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1
3925 with a different signedness or a narrower precision. */
3926
3927 static bool
3928 operand_equal_for_comparison_p (tree arg0, tree arg1)
3929 {
3930 if (operand_equal_p (arg0, arg1, 0))
3931 return true;
3932
3933 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3934 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3935 return false;
3936
3937 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3938 and see if the inner values are the same. This removes any
3939 signedness comparison, which doesn't matter here. */
3940 tree op0 = arg0;
3941 tree op1 = arg1;
3942 STRIP_NOPS (op0);
3943 STRIP_NOPS (op1);
3944 if (operand_equal_p (op0, op1, 0))
3945 return true;
3946
3947 /* Discard a single widening conversion from ARG1 and see if the inner
3948 value is the same as ARG0. */
3949 if (CONVERT_EXPR_P (arg1)
3950 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0)))
3951 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0)))
3952 < TYPE_PRECISION (TREE_TYPE (arg1))
3953 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
3954 return true;
3955
3956 return false;
3957 }
3958 \f
3959 /* See if ARG is an expression that is either a comparison or is performing
3960 arithmetic on comparisons. The comparisons must only be comparing
3961 two different values, which will be stored in *CVAL1 and *CVAL2; if
3962 they are nonzero it means that some operands have already been found.
3963 No variables may be used anywhere else in the expression except in the
3964 comparisons.
3965
3966 If this is true, return 1. Otherwise, return zero. */
3967
3968 static bool
3969 twoval_comparison_p (tree arg, tree *cval1, tree *cval2)
3970 {
3971 enum tree_code code = TREE_CODE (arg);
3972 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3973
3974 /* We can handle some of the tcc_expression cases here. */
3975 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3976 tclass = tcc_unary;
3977 else if (tclass == tcc_expression
3978 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3979 || code == COMPOUND_EXPR))
3980 tclass = tcc_binary;
3981
3982 switch (tclass)
3983 {
3984 case tcc_unary:
3985 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2);
3986
3987 case tcc_binary:
3988 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2)
3989 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2));
3990
3991 case tcc_constant:
3992 return true;
3993
3994 case tcc_expression:
3995 if (code == COND_EXPR)
3996 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2)
3997 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2)
3998 && twoval_comparison_p (TREE_OPERAND (arg, 2), cval1, cval2));
3999 return false;
4000
4001 case tcc_comparison:
4002 /* First see if we can handle the first operand, then the second. For
4003 the second operand, we know *CVAL1 can't be zero. It must be that
4004 one side of the comparison is each of the values; test for the
4005 case where this isn't true by failing if the two operands
4006 are the same. */
4007
4008 if (operand_equal_p (TREE_OPERAND (arg, 0),
4009 TREE_OPERAND (arg, 1), 0))
4010 return false;
4011
4012 if (*cval1 == 0)
4013 *cval1 = TREE_OPERAND (arg, 0);
4014 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
4015 ;
4016 else if (*cval2 == 0)
4017 *cval2 = TREE_OPERAND (arg, 0);
4018 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
4019 ;
4020 else
4021 return false;
4022
4023 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
4024 ;
4025 else if (*cval2 == 0)
4026 *cval2 = TREE_OPERAND (arg, 1);
4027 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
4028 ;
4029 else
4030 return false;
4031
4032 return true;
4033
4034 default:
4035 return false;
4036 }
4037 }
4038 \f
4039 /* ARG is a tree that is known to contain just arithmetic operations and
4040 comparisons. Evaluate the operations in the tree substituting NEW0 for
4041 any occurrence of OLD0 as an operand of a comparison and likewise for
4042 NEW1 and OLD1. */
4043
4044 static tree
4045 eval_subst (location_t loc, tree arg, tree old0, tree new0,
4046 tree old1, tree new1)
4047 {
4048 tree type = TREE_TYPE (arg);
4049 enum tree_code code = TREE_CODE (arg);
4050 enum tree_code_class tclass = TREE_CODE_CLASS (code);
4051
4052 /* We can handle some of the tcc_expression cases here. */
4053 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
4054 tclass = tcc_unary;
4055 else if (tclass == tcc_expression
4056 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
4057 tclass = tcc_binary;
4058
4059 switch (tclass)
4060 {
4061 case tcc_unary:
4062 return fold_build1_loc (loc, code, type,
4063 eval_subst (loc, TREE_OPERAND (arg, 0),
4064 old0, new0, old1, new1));
4065
4066 case tcc_binary:
4067 return fold_build2_loc (loc, code, type,
4068 eval_subst (loc, TREE_OPERAND (arg, 0),
4069 old0, new0, old1, new1),
4070 eval_subst (loc, TREE_OPERAND (arg, 1),
4071 old0, new0, old1, new1));
4072
4073 case tcc_expression:
4074 switch (code)
4075 {
4076 case SAVE_EXPR:
4077 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
4078 old1, new1);
4079
4080 case COMPOUND_EXPR:
4081 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
4082 old1, new1);
4083
4084 case COND_EXPR:
4085 return fold_build3_loc (loc, code, type,
4086 eval_subst (loc, TREE_OPERAND (arg, 0),
4087 old0, new0, old1, new1),
4088 eval_subst (loc, TREE_OPERAND (arg, 1),
4089 old0, new0, old1, new1),
4090 eval_subst (loc, TREE_OPERAND (arg, 2),
4091 old0, new0, old1, new1));
4092 default:
4093 break;
4094 }
4095 /* Fall through - ??? */
4096
4097 case tcc_comparison:
4098 {
4099 tree arg0 = TREE_OPERAND (arg, 0);
4100 tree arg1 = TREE_OPERAND (arg, 1);
4101
4102 /* We need to check both for exact equality and tree equality. The
4103 former will be true if the operand has a side-effect. In that
4104 case, we know the operand occurred exactly once. */
4105
4106 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
4107 arg0 = new0;
4108 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
4109 arg0 = new1;
4110
4111 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
4112 arg1 = new0;
4113 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
4114 arg1 = new1;
4115
4116 return fold_build2_loc (loc, code, type, arg0, arg1);
4117 }
4118
4119 default:
4120 return arg;
4121 }
4122 }
4123 \f
4124 /* Return a tree for the case when the result of an expression is RESULT
4125 converted to TYPE and OMITTED was previously an operand of the expression
4126 but is now not needed (e.g., we folded OMITTED * 0).
4127
4128 If OMITTED has side effects, we must evaluate it. Otherwise, just do
4129 the conversion of RESULT to TYPE. */
4130
4131 tree
4132 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
4133 {
4134 tree t = fold_convert_loc (loc, type, result);
4135
4136 /* If the resulting operand is an empty statement, just return the omitted
4137 statement casted to void. */
4138 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
4139 return build1_loc (loc, NOP_EXPR, void_type_node,
4140 fold_ignored_result (omitted));
4141
4142 if (TREE_SIDE_EFFECTS (omitted))
4143 return build2_loc (loc, COMPOUND_EXPR, type,
4144 fold_ignored_result (omitted), t);
4145
4146 return non_lvalue_loc (loc, t);
4147 }
4148
4149 /* Return a tree for the case when the result of an expression is RESULT
4150 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
4151 of the expression but are now not needed.
4152
4153 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
4154 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
4155 evaluated before OMITTED2. Otherwise, if neither has side effects,
4156 just do the conversion of RESULT to TYPE. */
4157
4158 tree
4159 omit_two_operands_loc (location_t loc, tree type, tree result,
4160 tree omitted1, tree omitted2)
4161 {
4162 tree t = fold_convert_loc (loc, type, result);
4163
4164 if (TREE_SIDE_EFFECTS (omitted2))
4165 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
4166 if (TREE_SIDE_EFFECTS (omitted1))
4167 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
4168
4169 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
4170 }
4171
4172 \f
4173 /* Return a simplified tree node for the truth-negation of ARG. This
4174 never alters ARG itself. We assume that ARG is an operation that
4175 returns a truth value (0 or 1).
4176
4177 FIXME: one would think we would fold the result, but it causes
4178 problems with the dominator optimizer. */
4179
4180 static tree
4181 fold_truth_not_expr (location_t loc, tree arg)
4182 {
4183 tree type = TREE_TYPE (arg);
4184 enum tree_code code = TREE_CODE (arg);
4185 location_t loc1, loc2;
4186
4187 /* If this is a comparison, we can simply invert it, except for
4188 floating-point non-equality comparisons, in which case we just
4189 enclose a TRUTH_NOT_EXPR around what we have. */
4190
4191 if (TREE_CODE_CLASS (code) == tcc_comparison)
4192 {
4193 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
4194 if (FLOAT_TYPE_P (op_type)
4195 && flag_trapping_math
4196 && code != ORDERED_EXPR && code != UNORDERED_EXPR
4197 && code != NE_EXPR && code != EQ_EXPR)
4198 return NULL_TREE;
4199
4200 code = invert_tree_comparison (code, HONOR_NANS (op_type));
4201 if (code == ERROR_MARK)
4202 return NULL_TREE;
4203
4204 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
4205 TREE_OPERAND (arg, 1));
4206 if (TREE_NO_WARNING (arg))
4207 TREE_NO_WARNING (ret) = 1;
4208 return ret;
4209 }
4210
4211 switch (code)
4212 {
4213 case INTEGER_CST:
4214 return constant_boolean_node (integer_zerop (arg), type);
4215
4216 case TRUTH_AND_EXPR:
4217 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4218 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4219 return build2_loc (loc, TRUTH_OR_EXPR, type,
4220 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
4221 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
4222
4223 case TRUTH_OR_EXPR:
4224 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4225 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4226 return build2_loc (loc, TRUTH_AND_EXPR, type,
4227 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
4228 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
4229
4230 case TRUTH_XOR_EXPR:
4231 /* Here we can invert either operand. We invert the first operand
4232 unless the second operand is a TRUTH_NOT_EXPR in which case our
4233 result is the XOR of the first operand with the inside of the
4234 negation of the second operand. */
4235
4236 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
4237 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
4238 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
4239 else
4240 return build2_loc (loc, TRUTH_XOR_EXPR, type,
4241 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
4242 TREE_OPERAND (arg, 1));
4243
4244 case TRUTH_ANDIF_EXPR:
4245 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4246 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4247 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
4248 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
4249 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
4250
4251 case TRUTH_ORIF_EXPR:
4252 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4253 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4254 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
4255 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
4256 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
4257
4258 case TRUTH_NOT_EXPR:
4259 return TREE_OPERAND (arg, 0);
4260
4261 case COND_EXPR:
4262 {
4263 tree arg1 = TREE_OPERAND (arg, 1);
4264 tree arg2 = TREE_OPERAND (arg, 2);
4265
4266 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4267 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
4268
4269 /* A COND_EXPR may have a throw as one operand, which
4270 then has void type. Just leave void operands
4271 as they are. */
4272 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
4273 VOID_TYPE_P (TREE_TYPE (arg1))
4274 ? arg1 : invert_truthvalue_loc (loc1, arg1),
4275 VOID_TYPE_P (TREE_TYPE (arg2))
4276 ? arg2 : invert_truthvalue_loc (loc2, arg2));
4277 }
4278
4279 case COMPOUND_EXPR:
4280 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4281 return build2_loc (loc, COMPOUND_EXPR, type,
4282 TREE_OPERAND (arg, 0),
4283 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
4284
4285 case NON_LVALUE_EXPR:
4286 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4287 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
4288
4289 CASE_CONVERT:
4290 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
4291 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
4292
4293 /* fall through */
4294
4295 case FLOAT_EXPR:
4296 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4297 return build1_loc (loc, TREE_CODE (arg), type,
4298 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
4299
4300 case BIT_AND_EXPR:
4301 if (!integer_onep (TREE_OPERAND (arg, 1)))
4302 return NULL_TREE;
4303 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
4304
4305 case SAVE_EXPR:
4306 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
4307
4308 case CLEANUP_POINT_EXPR:
4309 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4310 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
4311 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
4312
4313 default:
4314 return NULL_TREE;
4315 }
4316 }
4317
4318 /* Fold the truth-negation of ARG. This never alters ARG itself. We
4319 assume that ARG is an operation that returns a truth value (0 or 1
4320 for scalars, 0 or -1 for vectors). Return the folded expression if
4321 folding is successful. Otherwise, return NULL_TREE. */
4322
4323 static tree
4324 fold_invert_truthvalue (location_t loc, tree arg)
4325 {
4326 tree type = TREE_TYPE (arg);
4327 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
4328 ? BIT_NOT_EXPR
4329 : TRUTH_NOT_EXPR,
4330 type, arg);
4331 }
4332
4333 /* Return a simplified tree node for the truth-negation of ARG. This
4334 never alters ARG itself. We assume that ARG is an operation that
4335 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
4336
4337 tree
4338 invert_truthvalue_loc (location_t loc, tree arg)
4339 {
4340 if (TREE_CODE (arg) == ERROR_MARK)
4341 return arg;
4342
4343 tree type = TREE_TYPE (arg);
4344 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
4345 ? BIT_NOT_EXPR
4346 : TRUTH_NOT_EXPR,
4347 type, arg);
4348 }
4349 \f
4350 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
4351 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
4352 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
4353 is the original memory reference used to preserve the alias set of
4354 the access. */
4355
4356 static tree
4357 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type,
4358 HOST_WIDE_INT bitsize, poly_int64 bitpos,
4359 int unsignedp, int reversep)
4360 {
4361 tree result, bftype;
4362
4363 /* Attempt not to lose the access path if possible. */
4364 if (TREE_CODE (orig_inner) == COMPONENT_REF)
4365 {
4366 tree ninner = TREE_OPERAND (orig_inner, 0);
4367 machine_mode nmode;
4368 poly_int64 nbitsize, nbitpos;
4369 tree noffset;
4370 int nunsignedp, nreversep, nvolatilep = 0;
4371 tree base = get_inner_reference (ninner, &nbitsize, &nbitpos,
4372 &noffset, &nmode, &nunsignedp,
4373 &nreversep, &nvolatilep);
4374 if (base == inner
4375 && noffset == NULL_TREE
4376 && known_subrange_p (bitpos, bitsize, nbitpos, nbitsize)
4377 && !reversep
4378 && !nreversep
4379 && !nvolatilep)
4380 {
4381 inner = ninner;
4382 bitpos -= nbitpos;
4383 }
4384 }
4385
4386 alias_set_type iset = get_alias_set (orig_inner);
4387 if (iset == 0 && get_alias_set (inner) != iset)
4388 inner = fold_build2 (MEM_REF, TREE_TYPE (inner),
4389 build_fold_addr_expr (inner),
4390 build_int_cst (ptr_type_node, 0));
4391
4392 if (known_eq (bitpos, 0) && !reversep)
4393 {
4394 tree size = TYPE_SIZE (TREE_TYPE (inner));
4395 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
4396 || POINTER_TYPE_P (TREE_TYPE (inner)))
4397 && tree_fits_shwi_p (size)
4398 && tree_to_shwi (size) == bitsize)
4399 return fold_convert_loc (loc, type, inner);
4400 }
4401
4402 bftype = type;
4403 if (TYPE_PRECISION (bftype) != bitsize
4404 || TYPE_UNSIGNED (bftype) == !unsignedp)
4405 bftype = build_nonstandard_integer_type (bitsize, 0);
4406
4407 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
4408 bitsize_int (bitsize), bitsize_int (bitpos));
4409 REF_REVERSE_STORAGE_ORDER (result) = reversep;
4410
4411 if (bftype != type)
4412 result = fold_convert_loc (loc, type, result);
4413
4414 return result;
4415 }
4416
4417 /* Optimize a bit-field compare.
4418
4419 There are two cases: First is a compare against a constant and the
4420 second is a comparison of two items where the fields are at the same
4421 bit position relative to the start of a chunk (byte, halfword, word)
4422 large enough to contain it. In these cases we can avoid the shift
4423 implicit in bitfield extractions.
4424
4425 For constants, we emit a compare of the shifted constant with the
4426 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
4427 compared. For two fields at the same position, we do the ANDs with the
4428 similar mask and compare the result of the ANDs.
4429
4430 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
4431 COMPARE_TYPE is the type of the comparison, and LHS and RHS
4432 are the left and right operands of the comparison, respectively.
4433
4434 If the optimization described above can be done, we return the resulting
4435 tree. Otherwise we return zero. */
4436
4437 static tree
4438 optimize_bit_field_compare (location_t loc, enum tree_code code,
4439 tree compare_type, tree lhs, tree rhs)
4440 {
4441 poly_int64 plbitpos, plbitsize, rbitpos, rbitsize;
4442 HOST_WIDE_INT lbitpos, lbitsize, nbitpos, nbitsize;
4443 tree type = TREE_TYPE (lhs);
4444 tree unsigned_type;
4445 int const_p = TREE_CODE (rhs) == INTEGER_CST;
4446 machine_mode lmode, rmode;
4447 scalar_int_mode nmode;
4448 int lunsignedp, runsignedp;
4449 int lreversep, rreversep;
4450 int lvolatilep = 0, rvolatilep = 0;
4451 tree linner, rinner = NULL_TREE;
4452 tree mask;
4453 tree offset;
4454
4455 /* Get all the information about the extractions being done. If the bit size
4456 is the same as the size of the underlying object, we aren't doing an
4457 extraction at all and so can do nothing. We also don't want to
4458 do anything if the inner expression is a PLACEHOLDER_EXPR since we
4459 then will no longer be able to replace it. */
4460 linner = get_inner_reference (lhs, &plbitsize, &plbitpos, &offset, &lmode,
4461 &lunsignedp, &lreversep, &lvolatilep);
4462 if (linner == lhs
4463 || !known_size_p (plbitsize)
4464 || !plbitsize.is_constant (&lbitsize)
4465 || !plbitpos.is_constant (&lbitpos)
4466 || known_eq (lbitsize, GET_MODE_BITSIZE (lmode))
4467 || offset != 0
4468 || TREE_CODE (linner) == PLACEHOLDER_EXPR
4469 || lvolatilep)
4470 return 0;
4471
4472 if (const_p)
4473 rreversep = lreversep;
4474 else
4475 {
4476 /* If this is not a constant, we can only do something if bit positions,
4477 sizes, signedness and storage order are the same. */
4478 rinner
4479 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
4480 &runsignedp, &rreversep, &rvolatilep);
4481
4482 if (rinner == rhs
4483 || maybe_ne (lbitpos, rbitpos)
4484 || maybe_ne (lbitsize, rbitsize)
4485 || lunsignedp != runsignedp
4486 || lreversep != rreversep
4487 || offset != 0
4488 || TREE_CODE (rinner) == PLACEHOLDER_EXPR
4489 || rvolatilep)
4490 return 0;
4491 }
4492
4493 /* Honor the C++ memory model and mimic what RTL expansion does. */
4494 poly_uint64 bitstart = 0;
4495 poly_uint64 bitend = 0;
4496 if (TREE_CODE (lhs) == COMPONENT_REF)
4497 {
4498 get_bit_range (&bitstart, &bitend, lhs, &plbitpos, &offset);
4499 if (!plbitpos.is_constant (&lbitpos) || offset != NULL_TREE)
4500 return 0;
4501 }
4502
4503 /* See if we can find a mode to refer to this field. We should be able to,
4504 but fail if we can't. */
4505 if (!get_best_mode (lbitsize, lbitpos, bitstart, bitend,
4506 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
4507 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
4508 TYPE_ALIGN (TREE_TYPE (rinner))),
4509 BITS_PER_WORD, false, &nmode))
4510 return 0;
4511
4512 /* Set signed and unsigned types of the precision of this mode for the
4513 shifts below. */
4514 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
4515
4516 /* Compute the bit position and size for the new reference and our offset
4517 within it. If the new reference is the same size as the original, we
4518 won't optimize anything, so return zero. */
4519 nbitsize = GET_MODE_BITSIZE (nmode);
4520 nbitpos = lbitpos & ~ (nbitsize - 1);
4521 lbitpos -= nbitpos;
4522 if (nbitsize == lbitsize)
4523 return 0;
4524
4525 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4526 lbitpos = nbitsize - lbitsize - lbitpos;
4527
4528 /* Make the mask to be used against the extracted field. */
4529 mask = build_int_cst_type (unsigned_type, -1);
4530 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
4531 mask = const_binop (RSHIFT_EXPR, mask,
4532 size_int (nbitsize - lbitsize - lbitpos));
4533
4534 if (! const_p)
4535 {
4536 if (nbitpos < 0)
4537 return 0;
4538
4539 /* If not comparing with constant, just rework the comparison
4540 and return. */
4541 tree t1 = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4542 nbitsize, nbitpos, 1, lreversep);
4543 t1 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t1, mask);
4544 tree t2 = make_bit_field_ref (loc, rinner, rhs, unsigned_type,
4545 nbitsize, nbitpos, 1, rreversep);
4546 t2 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t2, mask);
4547 return fold_build2_loc (loc, code, compare_type, t1, t2);
4548 }
4549
4550 /* Otherwise, we are handling the constant case. See if the constant is too
4551 big for the field. Warn and return a tree for 0 (false) if so. We do
4552 this not only for its own sake, but to avoid having to test for this
4553 error case below. If we didn't, we might generate wrong code.
4554
4555 For unsigned fields, the constant shifted right by the field length should
4556 be all zero. For signed fields, the high-order bits should agree with
4557 the sign bit. */
4558
4559 if (lunsignedp)
4560 {
4561 if (wi::lrshift (wi::to_wide (rhs), lbitsize) != 0)
4562 {
4563 warning (0, "comparison is always %d due to width of bit-field",
4564 code == NE_EXPR);
4565 return constant_boolean_node (code == NE_EXPR, compare_type);
4566 }
4567 }
4568 else
4569 {
4570 wide_int tem = wi::arshift (wi::to_wide (rhs), lbitsize - 1);
4571 if (tem != 0 && tem != -1)
4572 {
4573 warning (0, "comparison is always %d due to width of bit-field",
4574 code == NE_EXPR);
4575 return constant_boolean_node (code == NE_EXPR, compare_type);
4576 }
4577 }
4578
4579 if (nbitpos < 0)
4580 return 0;
4581
4582 /* Single-bit compares should always be against zero. */
4583 if (lbitsize == 1 && ! integer_zerop (rhs))
4584 {
4585 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
4586 rhs = build_int_cst (type, 0);
4587 }
4588
4589 /* Make a new bitfield reference, shift the constant over the
4590 appropriate number of bits and mask it with the computed mask
4591 (in case this was a signed field). If we changed it, make a new one. */
4592 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4593 nbitsize, nbitpos, 1, lreversep);
4594
4595 rhs = const_binop (BIT_AND_EXPR,
4596 const_binop (LSHIFT_EXPR,
4597 fold_convert_loc (loc, unsigned_type, rhs),
4598 size_int (lbitpos)),
4599 mask);
4600
4601 lhs = build2_loc (loc, code, compare_type,
4602 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
4603 return lhs;
4604 }
4605 \f
4606 /* Subroutine for fold_truth_andor_1: decode a field reference.
4607
4608 If EXP is a comparison reference, we return the innermost reference.
4609
4610 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4611 set to the starting bit number.
4612
4613 If the innermost field can be completely contained in a mode-sized
4614 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4615
4616 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4617 otherwise it is not changed.
4618
4619 *PUNSIGNEDP is set to the signedness of the field.
4620
4621 *PREVERSEP is set to the storage order of the field.
4622
4623 *PMASK is set to the mask used. This is either contained in a
4624 BIT_AND_EXPR or derived from the width of the field.
4625
4626 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4627
4628 Return 0 if this is not a component reference or is one that we can't
4629 do anything with. */
4630
4631 static tree
4632 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize,
4633 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
4634 int *punsignedp, int *preversep, int *pvolatilep,
4635 tree *pmask, tree *pand_mask)
4636 {
4637 tree exp = *exp_;
4638 tree outer_type = 0;
4639 tree and_mask = 0;
4640 tree mask, inner, offset;
4641 tree unsigned_type;
4642 unsigned int precision;
4643
4644 /* All the optimizations using this function assume integer fields.
4645 There are problems with FP fields since the type_for_size call
4646 below can fail for, e.g., XFmode. */
4647 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4648 return NULL_TREE;
4649
4650 /* We are interested in the bare arrangement of bits, so strip everything
4651 that doesn't affect the machine mode. However, record the type of the
4652 outermost expression if it may matter below. */
4653 if (CONVERT_EXPR_P (exp)
4654 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4655 outer_type = TREE_TYPE (exp);
4656 STRIP_NOPS (exp);
4657
4658 if (TREE_CODE (exp) == BIT_AND_EXPR)
4659 {
4660 and_mask = TREE_OPERAND (exp, 1);
4661 exp = TREE_OPERAND (exp, 0);
4662 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4663 if (TREE_CODE (and_mask) != INTEGER_CST)
4664 return NULL_TREE;
4665 }
4666
4667 poly_int64 poly_bitsize, poly_bitpos;
4668 inner = get_inner_reference (exp, &poly_bitsize, &poly_bitpos, &offset,
4669 pmode, punsignedp, preversep, pvolatilep);
4670 if ((inner == exp && and_mask == 0)
4671 || !poly_bitsize.is_constant (pbitsize)
4672 || !poly_bitpos.is_constant (pbitpos)
4673 || *pbitsize < 0
4674 || offset != 0
4675 || TREE_CODE (inner) == PLACEHOLDER_EXPR
4676 /* Reject out-of-bound accesses (PR79731). */
4677 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner))
4678 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner)),
4679 *pbitpos + *pbitsize) < 0))
4680 return NULL_TREE;
4681
4682 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4683 if (unsigned_type == NULL_TREE)
4684 return NULL_TREE;
4685
4686 *exp_ = exp;
4687
4688 /* If the number of bits in the reference is the same as the bitsize of
4689 the outer type, then the outer type gives the signedness. Otherwise
4690 (in case of a small bitfield) the signedness is unchanged. */
4691 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4692 *punsignedp = TYPE_UNSIGNED (outer_type);
4693
4694 /* Compute the mask to access the bitfield. */
4695 precision = TYPE_PRECISION (unsigned_type);
4696
4697 mask = build_int_cst_type (unsigned_type, -1);
4698
4699 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4700 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4701
4702 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4703 if (and_mask != 0)
4704 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4705 fold_convert_loc (loc, unsigned_type, and_mask), mask);
4706
4707 *pmask = mask;
4708 *pand_mask = and_mask;
4709 return inner;
4710 }
4711
4712 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4713 bit positions and MASK is SIGNED. */
4714
4715 static bool
4716 all_ones_mask_p (const_tree mask, unsigned int size)
4717 {
4718 tree type = TREE_TYPE (mask);
4719 unsigned int precision = TYPE_PRECISION (type);
4720
4721 /* If this function returns true when the type of the mask is
4722 UNSIGNED, then there will be errors. In particular see
4723 gcc.c-torture/execute/990326-1.c. There does not appear to be
4724 any documentation paper trail as to why this is so. But the pre
4725 wide-int worked with that restriction and it has been preserved
4726 here. */
4727 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
4728 return false;
4729
4730 return wi::mask (size, false, precision) == wi::to_wide (mask);
4731 }
4732
4733 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4734 represents the sign bit of EXP's type. If EXP represents a sign
4735 or zero extension, also test VAL against the unextended type.
4736 The return value is the (sub)expression whose sign bit is VAL,
4737 or NULL_TREE otherwise. */
4738
4739 tree
4740 sign_bit_p (tree exp, const_tree val)
4741 {
4742 int width;
4743 tree t;
4744
4745 /* Tree EXP must have an integral type. */
4746 t = TREE_TYPE (exp);
4747 if (! INTEGRAL_TYPE_P (t))
4748 return NULL_TREE;
4749
4750 /* Tree VAL must be an integer constant. */
4751 if (TREE_CODE (val) != INTEGER_CST
4752 || TREE_OVERFLOW (val))
4753 return NULL_TREE;
4754
4755 width = TYPE_PRECISION (t);
4756 if (wi::only_sign_bit_p (wi::to_wide (val), width))
4757 return exp;
4758
4759 /* Handle extension from a narrower type. */
4760 if (TREE_CODE (exp) == NOP_EXPR
4761 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4762 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4763
4764 return NULL_TREE;
4765 }
4766
4767 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4768 to be evaluated unconditionally. */
4769
4770 static bool
4771 simple_operand_p (const_tree exp)
4772 {
4773 /* Strip any conversions that don't change the machine mode. */
4774 STRIP_NOPS (exp);
4775
4776 return (CONSTANT_CLASS_P (exp)
4777 || TREE_CODE (exp) == SSA_NAME
4778 || (DECL_P (exp)
4779 && ! TREE_ADDRESSABLE (exp)
4780 && ! TREE_THIS_VOLATILE (exp)
4781 && ! DECL_NONLOCAL (exp)
4782 /* Don't regard global variables as simple. They may be
4783 allocated in ways unknown to the compiler (shared memory,
4784 #pragma weak, etc). */
4785 && ! TREE_PUBLIC (exp)
4786 && ! DECL_EXTERNAL (exp)
4787 /* Weakrefs are not safe to be read, since they can be NULL.
4788 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4789 have DECL_WEAK flag set. */
4790 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4791 /* Loading a static variable is unduly expensive, but global
4792 registers aren't expensive. */
4793 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4794 }
4795
4796 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4797 to be evaluated unconditionally.
4798 I addition to simple_operand_p, we assume that comparisons, conversions,
4799 and logic-not operations are simple, if their operands are simple, too. */
4800
4801 static bool
4802 simple_operand_p_2 (tree exp)
4803 {
4804 enum tree_code code;
4805
4806 if (TREE_SIDE_EFFECTS (exp) || generic_expr_could_trap_p (exp))
4807 return false;
4808
4809 while (CONVERT_EXPR_P (exp))
4810 exp = TREE_OPERAND (exp, 0);
4811
4812 code = TREE_CODE (exp);
4813
4814 if (TREE_CODE_CLASS (code) == tcc_comparison)
4815 return (simple_operand_p (TREE_OPERAND (exp, 0))
4816 && simple_operand_p (TREE_OPERAND (exp, 1)));
4817
4818 if (code == TRUTH_NOT_EXPR)
4819 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4820
4821 return simple_operand_p (exp);
4822 }
4823
4824 \f
4825 /* The following functions are subroutines to fold_range_test and allow it to
4826 try to change a logical combination of comparisons into a range test.
4827
4828 For example, both
4829 X == 2 || X == 3 || X == 4 || X == 5
4830 and
4831 X >= 2 && X <= 5
4832 are converted to
4833 (unsigned) (X - 2) <= 3
4834
4835 We describe each set of comparisons as being either inside or outside
4836 a range, using a variable named like IN_P, and then describe the
4837 range with a lower and upper bound. If one of the bounds is omitted,
4838 it represents either the highest or lowest value of the type.
4839
4840 In the comments below, we represent a range by two numbers in brackets
4841 preceded by a "+" to designate being inside that range, or a "-" to
4842 designate being outside that range, so the condition can be inverted by
4843 flipping the prefix. An omitted bound is represented by a "-". For
4844 example, "- [-, 10]" means being outside the range starting at the lowest
4845 possible value and ending at 10, in other words, being greater than 10.
4846 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4847 always false.
4848
4849 We set up things so that the missing bounds are handled in a consistent
4850 manner so neither a missing bound nor "true" and "false" need to be
4851 handled using a special case. */
4852
4853 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4854 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4855 and UPPER1_P are nonzero if the respective argument is an upper bound
4856 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4857 must be specified for a comparison. ARG1 will be converted to ARG0's
4858 type if both are specified. */
4859
4860 static tree
4861 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4862 tree arg1, int upper1_p)
4863 {
4864 tree tem;
4865 int result;
4866 int sgn0, sgn1;
4867
4868 /* If neither arg represents infinity, do the normal operation.
4869 Else, if not a comparison, return infinity. Else handle the special
4870 comparison rules. Note that most of the cases below won't occur, but
4871 are handled for consistency. */
4872
4873 if (arg0 != 0 && arg1 != 0)
4874 {
4875 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4876 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4877 STRIP_NOPS (tem);
4878 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4879 }
4880
4881 if (TREE_CODE_CLASS (code) != tcc_comparison)
4882 return 0;
4883
4884 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4885 for neither. In real maths, we cannot assume open ended ranges are
4886 the same. But, this is computer arithmetic, where numbers are finite.
4887 We can therefore make the transformation of any unbounded range with
4888 the value Z, Z being greater than any representable number. This permits
4889 us to treat unbounded ranges as equal. */
4890 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4891 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4892 switch (code)
4893 {
4894 case EQ_EXPR:
4895 result = sgn0 == sgn1;
4896 break;
4897 case NE_EXPR:
4898 result = sgn0 != sgn1;
4899 break;
4900 case LT_EXPR:
4901 result = sgn0 < sgn1;
4902 break;
4903 case LE_EXPR:
4904 result = sgn0 <= sgn1;
4905 break;
4906 case GT_EXPR:
4907 result = sgn0 > sgn1;
4908 break;
4909 case GE_EXPR:
4910 result = sgn0 >= sgn1;
4911 break;
4912 default:
4913 gcc_unreachable ();
4914 }
4915
4916 return constant_boolean_node (result, type);
4917 }
4918 \f
4919 /* Helper routine for make_range. Perform one step for it, return
4920 new expression if the loop should continue or NULL_TREE if it should
4921 stop. */
4922
4923 tree
4924 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4925 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4926 bool *strict_overflow_p)
4927 {
4928 tree arg0_type = TREE_TYPE (arg0);
4929 tree n_low, n_high, low = *p_low, high = *p_high;
4930 int in_p = *p_in_p, n_in_p;
4931
4932 switch (code)
4933 {
4934 case TRUTH_NOT_EXPR:
4935 /* We can only do something if the range is testing for zero. */
4936 if (low == NULL_TREE || high == NULL_TREE
4937 || ! integer_zerop (low) || ! integer_zerop (high))
4938 return NULL_TREE;
4939 *p_in_p = ! in_p;
4940 return arg0;
4941
4942 case EQ_EXPR: case NE_EXPR:
4943 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4944 /* We can only do something if the range is testing for zero
4945 and if the second operand is an integer constant. Note that
4946 saying something is "in" the range we make is done by
4947 complementing IN_P since it will set in the initial case of
4948 being not equal to zero; "out" is leaving it alone. */
4949 if (low == NULL_TREE || high == NULL_TREE
4950 || ! integer_zerop (low) || ! integer_zerop (high)
4951 || TREE_CODE (arg1) != INTEGER_CST)
4952 return NULL_TREE;
4953
4954 switch (code)
4955 {
4956 case NE_EXPR: /* - [c, c] */
4957 low = high = arg1;
4958 break;
4959 case EQ_EXPR: /* + [c, c] */
4960 in_p = ! in_p, low = high = arg1;
4961 break;
4962 case GT_EXPR: /* - [-, c] */
4963 low = 0, high = arg1;
4964 break;
4965 case GE_EXPR: /* + [c, -] */
4966 in_p = ! in_p, low = arg1, high = 0;
4967 break;
4968 case LT_EXPR: /* - [c, -] */
4969 low = arg1, high = 0;
4970 break;
4971 case LE_EXPR: /* + [-, c] */
4972 in_p = ! in_p, low = 0, high = arg1;
4973 break;
4974 default:
4975 gcc_unreachable ();
4976 }
4977
4978 /* If this is an unsigned comparison, we also know that EXP is
4979 greater than or equal to zero. We base the range tests we make
4980 on that fact, so we record it here so we can parse existing
4981 range tests. We test arg0_type since often the return type
4982 of, e.g. EQ_EXPR, is boolean. */
4983 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4984 {
4985 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4986 in_p, low, high, 1,
4987 build_int_cst (arg0_type, 0),
4988 NULL_TREE))
4989 return NULL_TREE;
4990
4991 in_p = n_in_p, low = n_low, high = n_high;
4992
4993 /* If the high bound is missing, but we have a nonzero low
4994 bound, reverse the range so it goes from zero to the low bound
4995 minus 1. */
4996 if (high == 0 && low && ! integer_zerop (low))
4997 {
4998 in_p = ! in_p;
4999 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
5000 build_int_cst (TREE_TYPE (low), 1), 0);
5001 low = build_int_cst (arg0_type, 0);
5002 }
5003 }
5004
5005 *p_low = low;
5006 *p_high = high;
5007 *p_in_p = in_p;
5008 return arg0;
5009
5010 case NEGATE_EXPR:
5011 /* If flag_wrapv and ARG0_TYPE is signed, make sure
5012 low and high are non-NULL, then normalize will DTRT. */
5013 if (!TYPE_UNSIGNED (arg0_type)
5014 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
5015 {
5016 if (low == NULL_TREE)
5017 low = TYPE_MIN_VALUE (arg0_type);
5018 if (high == NULL_TREE)
5019 high = TYPE_MAX_VALUE (arg0_type);
5020 }
5021
5022 /* (-x) IN [a,b] -> x in [-b, -a] */
5023 n_low = range_binop (MINUS_EXPR, exp_type,
5024 build_int_cst (exp_type, 0),
5025 0, high, 1);
5026 n_high = range_binop (MINUS_EXPR, exp_type,
5027 build_int_cst (exp_type, 0),
5028 0, low, 0);
5029 if (n_high != 0 && TREE_OVERFLOW (n_high))
5030 return NULL_TREE;
5031 goto normalize;
5032
5033 case BIT_NOT_EXPR:
5034 /* ~ X -> -X - 1 */
5035 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
5036 build_int_cst (exp_type, 1));
5037
5038 case PLUS_EXPR:
5039 case MINUS_EXPR:
5040 if (TREE_CODE (arg1) != INTEGER_CST)
5041 return NULL_TREE;
5042
5043 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
5044 move a constant to the other side. */
5045 if (!TYPE_UNSIGNED (arg0_type)
5046 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
5047 return NULL_TREE;
5048
5049 /* If EXP is signed, any overflow in the computation is undefined,
5050 so we don't worry about it so long as our computations on
5051 the bounds don't overflow. For unsigned, overflow is defined
5052 and this is exactly the right thing. */
5053 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
5054 arg0_type, low, 0, arg1, 0);
5055 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
5056 arg0_type, high, 1, arg1, 0);
5057 if ((n_low != 0 && TREE_OVERFLOW (n_low))
5058 || (n_high != 0 && TREE_OVERFLOW (n_high)))
5059 return NULL_TREE;
5060
5061 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
5062 *strict_overflow_p = true;
5063
5064 normalize:
5065 /* Check for an unsigned range which has wrapped around the maximum
5066 value thus making n_high < n_low, and normalize it. */
5067 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
5068 {
5069 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
5070 build_int_cst (TREE_TYPE (n_high), 1), 0);
5071 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
5072 build_int_cst (TREE_TYPE (n_low), 1), 0);
5073
5074 /* If the range is of the form +/- [ x+1, x ], we won't
5075 be able to normalize it. But then, it represents the
5076 whole range or the empty set, so make it
5077 +/- [ -, - ]. */
5078 if (tree_int_cst_equal (n_low, low)
5079 && tree_int_cst_equal (n_high, high))
5080 low = high = 0;
5081 else
5082 in_p = ! in_p;
5083 }
5084 else
5085 low = n_low, high = n_high;
5086
5087 *p_low = low;
5088 *p_high = high;
5089 *p_in_p = in_p;
5090 return arg0;
5091
5092 CASE_CONVERT:
5093 case NON_LVALUE_EXPR:
5094 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
5095 return NULL_TREE;
5096
5097 if (! INTEGRAL_TYPE_P (arg0_type)
5098 || (low != 0 && ! int_fits_type_p (low, arg0_type))
5099 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
5100 return NULL_TREE;
5101
5102 n_low = low, n_high = high;
5103
5104 if (n_low != 0)
5105 n_low = fold_convert_loc (loc, arg0_type, n_low);
5106
5107 if (n_high != 0)
5108 n_high = fold_convert_loc (loc, arg0_type, n_high);
5109
5110 /* If we're converting arg0 from an unsigned type, to exp,
5111 a signed type, we will be doing the comparison as unsigned.
5112 The tests above have already verified that LOW and HIGH
5113 are both positive.
5114
5115 So we have to ensure that we will handle large unsigned
5116 values the same way that the current signed bounds treat
5117 negative values. */
5118
5119 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
5120 {
5121 tree high_positive;
5122 tree equiv_type;
5123 /* For fixed-point modes, we need to pass the saturating flag
5124 as the 2nd parameter. */
5125 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
5126 equiv_type
5127 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
5128 TYPE_SATURATING (arg0_type));
5129 else
5130 equiv_type
5131 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
5132
5133 /* A range without an upper bound is, naturally, unbounded.
5134 Since convert would have cropped a very large value, use
5135 the max value for the destination type. */
5136 high_positive
5137 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
5138 : TYPE_MAX_VALUE (arg0_type);
5139
5140 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
5141 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
5142 fold_convert_loc (loc, arg0_type,
5143 high_positive),
5144 build_int_cst (arg0_type, 1));
5145
5146 /* If the low bound is specified, "and" the range with the
5147 range for which the original unsigned value will be
5148 positive. */
5149 if (low != 0)
5150 {
5151 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
5152 1, fold_convert_loc (loc, arg0_type,
5153 integer_zero_node),
5154 high_positive))
5155 return NULL_TREE;
5156
5157 in_p = (n_in_p == in_p);
5158 }
5159 else
5160 {
5161 /* Otherwise, "or" the range with the range of the input
5162 that will be interpreted as negative. */
5163 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
5164 1, fold_convert_loc (loc, arg0_type,
5165 integer_zero_node),
5166 high_positive))
5167 return NULL_TREE;
5168
5169 in_p = (in_p != n_in_p);
5170 }
5171 }
5172
5173 *p_low = n_low;
5174 *p_high = n_high;
5175 *p_in_p = in_p;
5176 return arg0;
5177
5178 default:
5179 return NULL_TREE;
5180 }
5181 }
5182
5183 /* Given EXP, a logical expression, set the range it is testing into
5184 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
5185 actually being tested. *PLOW and *PHIGH will be made of the same
5186 type as the returned expression. If EXP is not a comparison, we
5187 will most likely not be returning a useful value and range. Set
5188 *STRICT_OVERFLOW_P to true if the return value is only valid
5189 because signed overflow is undefined; otherwise, do not change
5190 *STRICT_OVERFLOW_P. */
5191
5192 tree
5193 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
5194 bool *strict_overflow_p)
5195 {
5196 enum tree_code code;
5197 tree arg0, arg1 = NULL_TREE;
5198 tree exp_type, nexp;
5199 int in_p;
5200 tree low, high;
5201 location_t loc = EXPR_LOCATION (exp);
5202
5203 /* Start with simply saying "EXP != 0" and then look at the code of EXP
5204 and see if we can refine the range. Some of the cases below may not
5205 happen, but it doesn't seem worth worrying about this. We "continue"
5206 the outer loop when we've changed something; otherwise we "break"
5207 the switch, which will "break" the while. */
5208
5209 in_p = 0;
5210 low = high = build_int_cst (TREE_TYPE (exp), 0);
5211
5212 while (1)
5213 {
5214 code = TREE_CODE (exp);
5215 exp_type = TREE_TYPE (exp);
5216 arg0 = NULL_TREE;
5217
5218 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
5219 {
5220 if (TREE_OPERAND_LENGTH (exp) > 0)
5221 arg0 = TREE_OPERAND (exp, 0);
5222 if (TREE_CODE_CLASS (code) == tcc_binary
5223 || TREE_CODE_CLASS (code) == tcc_comparison
5224 || (TREE_CODE_CLASS (code) == tcc_expression
5225 && TREE_OPERAND_LENGTH (exp) > 1))
5226 arg1 = TREE_OPERAND (exp, 1);
5227 }
5228 if (arg0 == NULL_TREE)
5229 break;
5230
5231 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
5232 &high, &in_p, strict_overflow_p);
5233 if (nexp == NULL_TREE)
5234 break;
5235 exp = nexp;
5236 }
5237
5238 /* If EXP is a constant, we can evaluate whether this is true or false. */
5239 if (TREE_CODE (exp) == INTEGER_CST)
5240 {
5241 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
5242 exp, 0, low, 0))
5243 && integer_onep (range_binop (LE_EXPR, integer_type_node,
5244 exp, 1, high, 1)));
5245 low = high = 0;
5246 exp = 0;
5247 }
5248
5249 *pin_p = in_p, *plow = low, *phigh = high;
5250 return exp;
5251 }
5252
5253 /* Returns TRUE if [LOW, HIGH] range check can be optimized to
5254 a bitwise check i.e. when
5255 LOW == 0xXX...X00...0
5256 HIGH == 0xXX...X11...1
5257 Return corresponding mask in MASK and stem in VALUE. */
5258
5259 static bool
5260 maskable_range_p (const_tree low, const_tree high, tree type, tree *mask,
5261 tree *value)
5262 {
5263 if (TREE_CODE (low) != INTEGER_CST
5264 || TREE_CODE (high) != INTEGER_CST)
5265 return false;
5266
5267 unsigned prec = TYPE_PRECISION (type);
5268 wide_int lo = wi::to_wide (low, prec);
5269 wide_int hi = wi::to_wide (high, prec);
5270
5271 wide_int end_mask = lo ^ hi;
5272 if ((end_mask & (end_mask + 1)) != 0
5273 || (lo & end_mask) != 0)
5274 return false;
5275
5276 wide_int stem_mask = ~end_mask;
5277 wide_int stem = lo & stem_mask;
5278 if (stem != (hi & stem_mask))
5279 return false;
5280
5281 *mask = wide_int_to_tree (type, stem_mask);
5282 *value = wide_int_to_tree (type, stem);
5283
5284 return true;
5285 }
5286 \f
5287 /* Helper routine for build_range_check and match.pd. Return the type to
5288 perform the check or NULL if it shouldn't be optimized. */
5289
5290 tree
5291 range_check_type (tree etype)
5292 {
5293 /* First make sure that arithmetics in this type is valid, then make sure
5294 that it wraps around. */
5295 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
5296 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype), 1);
5297
5298 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_UNSIGNED (etype))
5299 {
5300 tree utype, minv, maxv;
5301
5302 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
5303 for the type in question, as we rely on this here. */
5304 utype = unsigned_type_for (etype);
5305 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
5306 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
5307 build_int_cst (TREE_TYPE (maxv), 1), 1);
5308 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
5309
5310 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
5311 minv, 1, maxv, 1)))
5312 etype = utype;
5313 else
5314 return NULL_TREE;
5315 }
5316 else if (POINTER_TYPE_P (etype))
5317 etype = unsigned_type_for (etype);
5318 return etype;
5319 }
5320
5321 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
5322 type, TYPE, return an expression to test if EXP is in (or out of, depending
5323 on IN_P) the range. Return 0 if the test couldn't be created. */
5324
5325 tree
5326 build_range_check (location_t loc, tree type, tree exp, int in_p,
5327 tree low, tree high)
5328 {
5329 tree etype = TREE_TYPE (exp), mask, value;
5330
5331 /* Disable this optimization for function pointer expressions
5332 on targets that require function pointer canonicalization. */
5333 if (targetm.have_canonicalize_funcptr_for_compare ()
5334 && POINTER_TYPE_P (etype)
5335 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (etype)))
5336 return NULL_TREE;
5337
5338 if (! in_p)
5339 {
5340 value = build_range_check (loc, type, exp, 1, low, high);
5341 if (value != 0)
5342 return invert_truthvalue_loc (loc, value);
5343
5344 return 0;
5345 }
5346
5347 if (low == 0 && high == 0)
5348 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
5349
5350 if (low == 0)
5351 return fold_build2_loc (loc, LE_EXPR, type, exp,
5352 fold_convert_loc (loc, etype, high));
5353
5354 if (high == 0)
5355 return fold_build2_loc (loc, GE_EXPR, type, exp,
5356 fold_convert_loc (loc, etype, low));
5357
5358 if (operand_equal_p (low, high, 0))
5359 return fold_build2_loc (loc, EQ_EXPR, type, exp,
5360 fold_convert_loc (loc, etype, low));
5361
5362 if (TREE_CODE (exp) == BIT_AND_EXPR
5363 && maskable_range_p (low, high, etype, &mask, &value))
5364 return fold_build2_loc (loc, EQ_EXPR, type,
5365 fold_build2_loc (loc, BIT_AND_EXPR, etype,
5366 exp, mask),
5367 value);
5368
5369 if (integer_zerop (low))
5370 {
5371 if (! TYPE_UNSIGNED (etype))
5372 {
5373 etype = unsigned_type_for (etype);
5374 high = fold_convert_loc (loc, etype, high);
5375 exp = fold_convert_loc (loc, etype, exp);
5376 }
5377 return build_range_check (loc, type, exp, 1, 0, high);
5378 }
5379
5380 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
5381 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
5382 {
5383 int prec = TYPE_PRECISION (etype);
5384
5385 if (wi::mask <widest_int> (prec - 1, false) == wi::to_widest (high))
5386 {
5387 if (TYPE_UNSIGNED (etype))
5388 {
5389 tree signed_etype = signed_type_for (etype);
5390 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
5391 etype
5392 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
5393 else
5394 etype = signed_etype;
5395 exp = fold_convert_loc (loc, etype, exp);
5396 }
5397 return fold_build2_loc (loc, GT_EXPR, type, exp,
5398 build_int_cst (etype, 0));
5399 }
5400 }
5401
5402 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
5403 This requires wrap-around arithmetics for the type of the expression. */
5404 etype = range_check_type (etype);
5405 if (etype == NULL_TREE)
5406 return NULL_TREE;
5407
5408 high = fold_convert_loc (loc, etype, high);
5409 low = fold_convert_loc (loc, etype, low);
5410 exp = fold_convert_loc (loc, etype, exp);
5411
5412 value = const_binop (MINUS_EXPR, high, low);
5413
5414 if (value != 0 && !TREE_OVERFLOW (value))
5415 return build_range_check (loc, type,
5416 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
5417 1, build_int_cst (etype, 0), value);
5418
5419 return 0;
5420 }
5421 \f
5422 /* Return the predecessor of VAL in its type, handling the infinite case. */
5423
5424 static tree
5425 range_predecessor (tree val)
5426 {
5427 tree type = TREE_TYPE (val);
5428
5429 if (INTEGRAL_TYPE_P (type)
5430 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
5431 return 0;
5432 else
5433 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
5434 build_int_cst (TREE_TYPE (val), 1), 0);
5435 }
5436
5437 /* Return the successor of VAL in its type, handling the infinite case. */
5438
5439 static tree
5440 range_successor (tree val)
5441 {
5442 tree type = TREE_TYPE (val);
5443
5444 if (INTEGRAL_TYPE_P (type)
5445 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
5446 return 0;
5447 else
5448 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
5449 build_int_cst (TREE_TYPE (val), 1), 0);
5450 }
5451
5452 /* Given two ranges, see if we can merge them into one. Return 1 if we
5453 can, 0 if we can't. Set the output range into the specified parameters. */
5454
5455 bool
5456 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
5457 tree high0, int in1_p, tree low1, tree high1)
5458 {
5459 int no_overlap;
5460 int subset;
5461 int temp;
5462 tree tem;
5463 int in_p;
5464 tree low, high;
5465 int lowequal = ((low0 == 0 && low1 == 0)
5466 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
5467 low0, 0, low1, 0)));
5468 int highequal = ((high0 == 0 && high1 == 0)
5469 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
5470 high0, 1, high1, 1)));
5471
5472 /* Make range 0 be the range that starts first, or ends last if they
5473 start at the same value. Swap them if it isn't. */
5474 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
5475 low0, 0, low1, 0))
5476 || (lowequal
5477 && integer_onep (range_binop (GT_EXPR, integer_type_node,
5478 high1, 1, high0, 1))))
5479 {
5480 temp = in0_p, in0_p = in1_p, in1_p = temp;
5481 tem = low0, low0 = low1, low1 = tem;
5482 tem = high0, high0 = high1, high1 = tem;
5483 }
5484
5485 /* If the second range is != high1 where high1 is the type maximum of
5486 the type, try first merging with < high1 range. */
5487 if (low1
5488 && high1
5489 && TREE_CODE (low1) == INTEGER_CST
5490 && (TREE_CODE (TREE_TYPE (low1)) == INTEGER_TYPE
5491 || (TREE_CODE (TREE_TYPE (low1)) == ENUMERAL_TYPE
5492 && known_eq (TYPE_PRECISION (TREE_TYPE (low1)),
5493 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low1))))))
5494 && operand_equal_p (low1, high1, 0))
5495 {
5496 if (tree_int_cst_equal (low1, TYPE_MAX_VALUE (TREE_TYPE (low1)))
5497 && merge_ranges (pin_p, plow, phigh, in0_p, low0, high0,
5498 !in1_p, NULL_TREE, range_predecessor (low1)))
5499 return true;
5500 /* Similarly for the second range != low1 where low1 is the type minimum
5501 of the type, try first merging with > low1 range. */
5502 if (tree_int_cst_equal (low1, TYPE_MIN_VALUE (TREE_TYPE (low1)))
5503 && merge_ranges (pin_p, plow, phigh, in0_p, low0, high0,
5504 !in1_p, range_successor (low1), NULL_TREE))
5505 return true;
5506 }
5507
5508 /* Now flag two cases, whether the ranges are disjoint or whether the
5509 second range is totally subsumed in the first. Note that the tests
5510 below are simplified by the ones above. */
5511 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
5512 high0, 1, low1, 0));
5513 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
5514 high1, 1, high0, 1));
5515
5516 /* We now have four cases, depending on whether we are including or
5517 excluding the two ranges. */
5518 if (in0_p && in1_p)
5519 {
5520 /* If they don't overlap, the result is false. If the second range
5521 is a subset it is the result. Otherwise, the range is from the start
5522 of the second to the end of the first. */
5523 if (no_overlap)
5524 in_p = 0, low = high = 0;
5525 else if (subset)
5526 in_p = 1, low = low1, high = high1;
5527 else
5528 in_p = 1, low = low1, high = high0;
5529 }
5530
5531 else if (in0_p && ! in1_p)
5532 {
5533 /* If they don't overlap, the result is the first range. If they are
5534 equal, the result is false. If the second range is a subset of the
5535 first, and the ranges begin at the same place, we go from just after
5536 the end of the second range to the end of the first. If the second
5537 range is not a subset of the first, or if it is a subset and both
5538 ranges end at the same place, the range starts at the start of the
5539 first range and ends just before the second range.
5540 Otherwise, we can't describe this as a single range. */
5541 if (no_overlap)
5542 in_p = 1, low = low0, high = high0;
5543 else if (lowequal && highequal)
5544 in_p = 0, low = high = 0;
5545 else if (subset && lowequal)
5546 {
5547 low = range_successor (high1);
5548 high = high0;
5549 in_p = 1;
5550 if (low == 0)
5551 {
5552 /* We are in the weird situation where high0 > high1 but
5553 high1 has no successor. Punt. */
5554 return 0;
5555 }
5556 }
5557 else if (! subset || highequal)
5558 {
5559 low = low0;
5560 high = range_predecessor (low1);
5561 in_p = 1;
5562 if (high == 0)
5563 {
5564 /* low0 < low1 but low1 has no predecessor. Punt. */
5565 return 0;
5566 }
5567 }
5568 else
5569 return 0;
5570 }
5571
5572 else if (! in0_p && in1_p)
5573 {
5574 /* If they don't overlap, the result is the second range. If the second
5575 is a subset of the first, the result is false. Otherwise,
5576 the range starts just after the first range and ends at the
5577 end of the second. */
5578 if (no_overlap)
5579 in_p = 1, low = low1, high = high1;
5580 else if (subset || highequal)
5581 in_p = 0, low = high = 0;
5582 else
5583 {
5584 low = range_successor (high0);
5585 high = high1;
5586 in_p = 1;
5587 if (low == 0)
5588 {
5589 /* high1 > high0 but high0 has no successor. Punt. */
5590 return 0;
5591 }
5592 }
5593 }
5594
5595 else
5596 {
5597 /* The case where we are excluding both ranges. Here the complex case
5598 is if they don't overlap. In that case, the only time we have a
5599 range is if they are adjacent. If the second is a subset of the
5600 first, the result is the first. Otherwise, the range to exclude
5601 starts at the beginning of the first range and ends at the end of the
5602 second. */
5603 if (no_overlap)
5604 {
5605 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
5606 range_successor (high0),
5607 1, low1, 0)))
5608 in_p = 0, low = low0, high = high1;
5609 else
5610 {
5611 /* Canonicalize - [min, x] into - [-, x]. */
5612 if (low0 && TREE_CODE (low0) == INTEGER_CST)
5613 switch (TREE_CODE (TREE_TYPE (low0)))
5614 {
5615 case ENUMERAL_TYPE:
5616 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (low0)),
5617 GET_MODE_BITSIZE
5618 (TYPE_MODE (TREE_TYPE (low0)))))
5619 break;
5620 /* FALLTHROUGH */
5621 case INTEGER_TYPE:
5622 if (tree_int_cst_equal (low0,
5623 TYPE_MIN_VALUE (TREE_TYPE (low0))))
5624 low0 = 0;
5625 break;
5626 case POINTER_TYPE:
5627 if (TYPE_UNSIGNED (TREE_TYPE (low0))
5628 && integer_zerop (low0))
5629 low0 = 0;
5630 break;
5631 default:
5632 break;
5633 }
5634
5635 /* Canonicalize - [x, max] into - [x, -]. */
5636 if (high1 && TREE_CODE (high1) == INTEGER_CST)
5637 switch (TREE_CODE (TREE_TYPE (high1)))
5638 {
5639 case ENUMERAL_TYPE:
5640 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (high1)),
5641 GET_MODE_BITSIZE
5642 (TYPE_MODE (TREE_TYPE (high1)))))
5643 break;
5644 /* FALLTHROUGH */
5645 case INTEGER_TYPE:
5646 if (tree_int_cst_equal (high1,
5647 TYPE_MAX_VALUE (TREE_TYPE (high1))))
5648 high1 = 0;
5649 break;
5650 case POINTER_TYPE:
5651 if (TYPE_UNSIGNED (TREE_TYPE (high1))
5652 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
5653 high1, 1,
5654 build_int_cst (TREE_TYPE (high1), 1),
5655 1)))
5656 high1 = 0;
5657 break;
5658 default:
5659 break;
5660 }
5661
5662 /* The ranges might be also adjacent between the maximum and
5663 minimum values of the given type. For
5664 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5665 return + [x + 1, y - 1]. */
5666 if (low0 == 0 && high1 == 0)
5667 {
5668 low = range_successor (high0);
5669 high = range_predecessor (low1);
5670 if (low == 0 || high == 0)
5671 return 0;
5672
5673 in_p = 1;
5674 }
5675 else
5676 return 0;
5677 }
5678 }
5679 else if (subset)
5680 in_p = 0, low = low0, high = high0;
5681 else
5682 in_p = 0, low = low0, high = high1;
5683 }
5684
5685 *pin_p = in_p, *plow = low, *phigh = high;
5686 return 1;
5687 }
5688 \f
5689
5690 /* Subroutine of fold, looking inside expressions of the form
5691 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5692 of the COND_EXPR. This function is being used also to optimize
5693 A op B ? C : A, by reversing the comparison first.
5694
5695 Return a folded expression whose code is not a COND_EXPR
5696 anymore, or NULL_TREE if no folding opportunity is found. */
5697
5698 static tree
5699 fold_cond_expr_with_comparison (location_t loc, tree type,
5700 tree arg0, tree arg1, tree arg2)
5701 {
5702 enum tree_code comp_code = TREE_CODE (arg0);
5703 tree arg00 = TREE_OPERAND (arg0, 0);
5704 tree arg01 = TREE_OPERAND (arg0, 1);
5705 tree arg1_type = TREE_TYPE (arg1);
5706 tree tem;
5707
5708 STRIP_NOPS (arg1);
5709 STRIP_NOPS (arg2);
5710
5711 /* If we have A op 0 ? A : -A, consider applying the following
5712 transformations:
5713
5714 A == 0? A : -A same as -A
5715 A != 0? A : -A same as A
5716 A >= 0? A : -A same as abs (A)
5717 A > 0? A : -A same as abs (A)
5718 A <= 0? A : -A same as -abs (A)
5719 A < 0? A : -A same as -abs (A)
5720
5721 None of these transformations work for modes with signed
5722 zeros. If A is +/-0, the first two transformations will
5723 change the sign of the result (from +0 to -0, or vice
5724 versa). The last four will fix the sign of the result,
5725 even though the original expressions could be positive or
5726 negative, depending on the sign of A.
5727
5728 Note that all these transformations are correct if A is
5729 NaN, since the two alternatives (A and -A) are also NaNs. */
5730 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5731 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5732 ? real_zerop (arg01)
5733 : integer_zerop (arg01))
5734 && ((TREE_CODE (arg2) == NEGATE_EXPR
5735 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5736 /* In the case that A is of the form X-Y, '-A' (arg2) may
5737 have already been folded to Y-X, check for that. */
5738 || (TREE_CODE (arg1) == MINUS_EXPR
5739 && TREE_CODE (arg2) == MINUS_EXPR
5740 && operand_equal_p (TREE_OPERAND (arg1, 0),
5741 TREE_OPERAND (arg2, 1), 0)
5742 && operand_equal_p (TREE_OPERAND (arg1, 1),
5743 TREE_OPERAND (arg2, 0), 0))))
5744 switch (comp_code)
5745 {
5746 case EQ_EXPR:
5747 case UNEQ_EXPR:
5748 tem = fold_convert_loc (loc, arg1_type, arg1);
5749 return fold_convert_loc (loc, type, negate_expr (tem));
5750 case NE_EXPR:
5751 case LTGT_EXPR:
5752 return fold_convert_loc (loc, type, arg1);
5753 case UNGE_EXPR:
5754 case UNGT_EXPR:
5755 if (flag_trapping_math)
5756 break;
5757 /* Fall through. */
5758 case GE_EXPR:
5759 case GT_EXPR:
5760 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5761 break;
5762 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5763 return fold_convert_loc (loc, type, tem);
5764 case UNLE_EXPR:
5765 case UNLT_EXPR:
5766 if (flag_trapping_math)
5767 break;
5768 /* FALLTHRU */
5769 case LE_EXPR:
5770 case LT_EXPR:
5771 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5772 break;
5773 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5774 return negate_expr (fold_convert_loc (loc, type, tem));
5775 default:
5776 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5777 break;
5778 }
5779
5780 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5781 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5782 both transformations are correct when A is NaN: A != 0
5783 is then true, and A == 0 is false. */
5784
5785 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5786 && integer_zerop (arg01) && integer_zerop (arg2))
5787 {
5788 if (comp_code == NE_EXPR)
5789 return fold_convert_loc (loc, type, arg1);
5790 else if (comp_code == EQ_EXPR)
5791 return build_zero_cst (type);
5792 }
5793
5794 /* Try some transformations of A op B ? A : B.
5795
5796 A == B? A : B same as B
5797 A != B? A : B same as A
5798 A >= B? A : B same as max (A, B)
5799 A > B? A : B same as max (B, A)
5800 A <= B? A : B same as min (A, B)
5801 A < B? A : B same as min (B, A)
5802
5803 As above, these transformations don't work in the presence
5804 of signed zeros. For example, if A and B are zeros of
5805 opposite sign, the first two transformations will change
5806 the sign of the result. In the last four, the original
5807 expressions give different results for (A=+0, B=-0) and
5808 (A=-0, B=+0), but the transformed expressions do not.
5809
5810 The first two transformations are correct if either A or B
5811 is a NaN. In the first transformation, the condition will
5812 be false, and B will indeed be chosen. In the case of the
5813 second transformation, the condition A != B will be true,
5814 and A will be chosen.
5815
5816 The conversions to max() and min() are not correct if B is
5817 a number and A is not. The conditions in the original
5818 expressions will be false, so all four give B. The min()
5819 and max() versions would give a NaN instead. */
5820 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5821 && operand_equal_for_comparison_p (arg01, arg2)
5822 /* Avoid these transformations if the COND_EXPR may be used
5823 as an lvalue in the C++ front-end. PR c++/19199. */
5824 && (in_gimple_form
5825 || VECTOR_TYPE_P (type)
5826 || (! lang_GNU_CXX ()
5827 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5828 || ! maybe_lvalue_p (arg1)
5829 || ! maybe_lvalue_p (arg2)))
5830 {
5831 tree comp_op0 = arg00;
5832 tree comp_op1 = arg01;
5833 tree comp_type = TREE_TYPE (comp_op0);
5834
5835 switch (comp_code)
5836 {
5837 case EQ_EXPR:
5838 return fold_convert_loc (loc, type, arg2);
5839 case NE_EXPR:
5840 return fold_convert_loc (loc, type, arg1);
5841 case LE_EXPR:
5842 case LT_EXPR:
5843 case UNLE_EXPR:
5844 case UNLT_EXPR:
5845 /* In C++ a ?: expression can be an lvalue, so put the
5846 operand which will be used if they are equal first
5847 so that we can convert this back to the
5848 corresponding COND_EXPR. */
5849 if (!HONOR_NANS (arg1))
5850 {
5851 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5852 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5853 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5854 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5855 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5856 comp_op1, comp_op0);
5857 return fold_convert_loc (loc, type, tem);
5858 }
5859 break;
5860 case GE_EXPR:
5861 case GT_EXPR:
5862 case UNGE_EXPR:
5863 case UNGT_EXPR:
5864 if (!HONOR_NANS (arg1))
5865 {
5866 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5867 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5868 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5869 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
5870 : fold_build2_loc (loc, MAX_EXPR, comp_type,
5871 comp_op1, comp_op0);
5872 return fold_convert_loc (loc, type, tem);
5873 }
5874 break;
5875 case UNEQ_EXPR:
5876 if (!HONOR_NANS (arg1))
5877 return fold_convert_loc (loc, type, arg2);
5878 break;
5879 case LTGT_EXPR:
5880 if (!HONOR_NANS (arg1))
5881 return fold_convert_loc (loc, type, arg1);
5882 break;
5883 default:
5884 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5885 break;
5886 }
5887 }
5888
5889 return NULL_TREE;
5890 }
5891
5892
5893 \f
5894 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5895 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5896 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5897 false) >= 2)
5898 #endif
5899
5900 /* EXP is some logical combination of boolean tests. See if we can
5901 merge it into some range test. Return the new tree if so. */
5902
5903 static tree
5904 fold_range_test (location_t loc, enum tree_code code, tree type,
5905 tree op0, tree op1)
5906 {
5907 int or_op = (code == TRUTH_ORIF_EXPR
5908 || code == TRUTH_OR_EXPR);
5909 int in0_p, in1_p, in_p;
5910 tree low0, low1, low, high0, high1, high;
5911 bool strict_overflow_p = false;
5912 tree tem, lhs, rhs;
5913 const char * const warnmsg = G_("assuming signed overflow does not occur "
5914 "when simplifying range test");
5915
5916 if (!INTEGRAL_TYPE_P (type))
5917 return 0;
5918
5919 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5920 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5921
5922 /* If this is an OR operation, invert both sides; we will invert
5923 again at the end. */
5924 if (or_op)
5925 in0_p = ! in0_p, in1_p = ! in1_p;
5926
5927 /* If both expressions are the same, if we can merge the ranges, and we
5928 can build the range test, return it or it inverted. If one of the
5929 ranges is always true or always false, consider it to be the same
5930 expression as the other. */
5931 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5932 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5933 in1_p, low1, high1)
5934 && (tem = (build_range_check (loc, type,
5935 lhs != 0 ? lhs
5936 : rhs != 0 ? rhs : integer_zero_node,
5937 in_p, low, high))) != 0)
5938 {
5939 if (strict_overflow_p)
5940 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5941 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5942 }
5943
5944 /* On machines where the branch cost is expensive, if this is a
5945 short-circuited branch and the underlying object on both sides
5946 is the same, make a non-short-circuit operation. */
5947 bool logical_op_non_short_circuit = LOGICAL_OP_NON_SHORT_CIRCUIT;
5948 if (param_logical_op_non_short_circuit != -1)
5949 logical_op_non_short_circuit
5950 = param_logical_op_non_short_circuit;
5951 if (logical_op_non_short_circuit
5952 && !flag_sanitize_coverage
5953 && lhs != 0 && rhs != 0
5954 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)
5955 && operand_equal_p (lhs, rhs, 0))
5956 {
5957 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5958 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5959 which cases we can't do this. */
5960 if (simple_operand_p (lhs))
5961 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5962 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5963 type, op0, op1);
5964
5965 else if (!lang_hooks.decls.global_bindings_p ()
5966 && !CONTAINS_PLACEHOLDER_P (lhs))
5967 {
5968 tree common = save_expr (lhs);
5969
5970 if ((lhs = build_range_check (loc, type, common,
5971 or_op ? ! in0_p : in0_p,
5972 low0, high0)) != 0
5973 && (rhs = build_range_check (loc, type, common,
5974 or_op ? ! in1_p : in1_p,
5975 low1, high1)) != 0)
5976 {
5977 if (strict_overflow_p)
5978 fold_overflow_warning (warnmsg,
5979 WARN_STRICT_OVERFLOW_COMPARISON);
5980 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5981 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5982 type, lhs, rhs);
5983 }
5984 }
5985 }
5986
5987 return 0;
5988 }
5989 \f
5990 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5991 bit value. Arrange things so the extra bits will be set to zero if and
5992 only if C is signed-extended to its full width. If MASK is nonzero,
5993 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5994
5995 static tree
5996 unextend (tree c, int p, int unsignedp, tree mask)
5997 {
5998 tree type = TREE_TYPE (c);
5999 int modesize = GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type));
6000 tree temp;
6001
6002 if (p == modesize || unsignedp)
6003 return c;
6004
6005 /* We work by getting just the sign bit into the low-order bit, then
6006 into the high-order bit, then sign-extend. We then XOR that value
6007 with C. */
6008 temp = build_int_cst (TREE_TYPE (c),
6009 wi::extract_uhwi (wi::to_wide (c), p - 1, 1));
6010
6011 /* We must use a signed type in order to get an arithmetic right shift.
6012 However, we must also avoid introducing accidental overflows, so that
6013 a subsequent call to integer_zerop will work. Hence we must
6014 do the type conversion here. At this point, the constant is either
6015 zero or one, and the conversion to a signed type can never overflow.
6016 We could get an overflow if this conversion is done anywhere else. */
6017 if (TYPE_UNSIGNED (type))
6018 temp = fold_convert (signed_type_for (type), temp);
6019
6020 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
6021 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
6022 if (mask != 0)
6023 temp = const_binop (BIT_AND_EXPR, temp,
6024 fold_convert (TREE_TYPE (c), mask));
6025 /* If necessary, convert the type back to match the type of C. */
6026 if (TYPE_UNSIGNED (type))
6027 temp = fold_convert (type, temp);
6028
6029 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
6030 }
6031 \f
6032 /* For an expression that has the form
6033 (A && B) || ~B
6034 or
6035 (A || B) && ~B,
6036 we can drop one of the inner expressions and simplify to
6037 A || ~B
6038 or
6039 A && ~B
6040 LOC is the location of the resulting expression. OP is the inner
6041 logical operation; the left-hand side in the examples above, while CMPOP
6042 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
6043 removing a condition that guards another, as in
6044 (A != NULL && A->...) || A == NULL
6045 which we must not transform. If RHS_ONLY is true, only eliminate the
6046 right-most operand of the inner logical operation. */
6047
6048 static tree
6049 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
6050 bool rhs_only)
6051 {
6052 tree type = TREE_TYPE (cmpop);
6053 enum tree_code code = TREE_CODE (cmpop);
6054 enum tree_code truthop_code = TREE_CODE (op);
6055 tree lhs = TREE_OPERAND (op, 0);
6056 tree rhs = TREE_OPERAND (op, 1);
6057 tree orig_lhs = lhs, orig_rhs = rhs;
6058 enum tree_code rhs_code = TREE_CODE (rhs);
6059 enum tree_code lhs_code = TREE_CODE (lhs);
6060 enum tree_code inv_code;
6061
6062 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
6063 return NULL_TREE;
6064
6065 if (TREE_CODE_CLASS (code) != tcc_comparison)
6066 return NULL_TREE;
6067
6068 if (rhs_code == truthop_code)
6069 {
6070 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
6071 if (newrhs != NULL_TREE)
6072 {
6073 rhs = newrhs;
6074 rhs_code = TREE_CODE (rhs);
6075 }
6076 }
6077 if (lhs_code == truthop_code && !rhs_only)
6078 {
6079 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
6080 if (newlhs != NULL_TREE)
6081 {
6082 lhs = newlhs;
6083 lhs_code = TREE_CODE (lhs);
6084 }
6085 }
6086
6087 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
6088 if (inv_code == rhs_code
6089 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
6090 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
6091 return lhs;
6092 if (!rhs_only && inv_code == lhs_code
6093 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
6094 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
6095 return rhs;
6096 if (rhs != orig_rhs || lhs != orig_lhs)
6097 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
6098 lhs, rhs);
6099 return NULL_TREE;
6100 }
6101
6102 /* Find ways of folding logical expressions of LHS and RHS:
6103 Try to merge two comparisons to the same innermost item.
6104 Look for range tests like "ch >= '0' && ch <= '9'".
6105 Look for combinations of simple terms on machines with expensive branches
6106 and evaluate the RHS unconditionally.
6107
6108 For example, if we have p->a == 2 && p->b == 4 and we can make an
6109 object large enough to span both A and B, we can do this with a comparison
6110 against the object ANDed with the a mask.
6111
6112 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
6113 operations to do this with one comparison.
6114
6115 We check for both normal comparisons and the BIT_AND_EXPRs made this by
6116 function and the one above.
6117
6118 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
6119 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
6120
6121 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
6122 two operands.
6123
6124 We return the simplified tree or 0 if no optimization is possible. */
6125
6126 static tree
6127 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
6128 tree lhs, tree rhs)
6129 {
6130 /* If this is the "or" of two comparisons, we can do something if
6131 the comparisons are NE_EXPR. If this is the "and", we can do something
6132 if the comparisons are EQ_EXPR. I.e.,
6133 (a->b == 2 && a->c == 4) can become (a->new == NEW).
6134
6135 WANTED_CODE is this operation code. For single bit fields, we can
6136 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
6137 comparison for one-bit fields. */
6138
6139 enum tree_code wanted_code;
6140 enum tree_code lcode, rcode;
6141 tree ll_arg, lr_arg, rl_arg, rr_arg;
6142 tree ll_inner, lr_inner, rl_inner, rr_inner;
6143 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
6144 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
6145 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
6146 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
6147 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
6148 int ll_reversep, lr_reversep, rl_reversep, rr_reversep;
6149 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
6150 scalar_int_mode lnmode, rnmode;
6151 tree ll_mask, lr_mask, rl_mask, rr_mask;
6152 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
6153 tree l_const, r_const;
6154 tree lntype, rntype, result;
6155 HOST_WIDE_INT first_bit, end_bit;
6156 int volatilep;
6157
6158 /* Start by getting the comparison codes. Fail if anything is volatile.
6159 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
6160 it were surrounded with a NE_EXPR. */
6161
6162 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
6163 return 0;
6164
6165 lcode = TREE_CODE (lhs);
6166 rcode = TREE_CODE (rhs);
6167
6168 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
6169 {
6170 lhs = build2 (NE_EXPR, truth_type, lhs,
6171 build_int_cst (TREE_TYPE (lhs), 0));
6172 lcode = NE_EXPR;
6173 }
6174
6175 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
6176 {
6177 rhs = build2 (NE_EXPR, truth_type, rhs,
6178 build_int_cst (TREE_TYPE (rhs), 0));
6179 rcode = NE_EXPR;
6180 }
6181
6182 if (TREE_CODE_CLASS (lcode) != tcc_comparison
6183 || TREE_CODE_CLASS (rcode) != tcc_comparison)
6184 return 0;
6185
6186 ll_arg = TREE_OPERAND (lhs, 0);
6187 lr_arg = TREE_OPERAND (lhs, 1);
6188 rl_arg = TREE_OPERAND (rhs, 0);
6189 rr_arg = TREE_OPERAND (rhs, 1);
6190
6191 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
6192 if (simple_operand_p (ll_arg)
6193 && simple_operand_p (lr_arg))
6194 {
6195 if (operand_equal_p (ll_arg, rl_arg, 0)
6196 && operand_equal_p (lr_arg, rr_arg, 0))
6197 {
6198 result = combine_comparisons (loc, code, lcode, rcode,
6199 truth_type, ll_arg, lr_arg);
6200 if (result)
6201 return result;
6202 }
6203 else if (operand_equal_p (ll_arg, rr_arg, 0)
6204 && operand_equal_p (lr_arg, rl_arg, 0))
6205 {
6206 result = combine_comparisons (loc, code, lcode,
6207 swap_tree_comparison (rcode),
6208 truth_type, ll_arg, lr_arg);
6209 if (result)
6210 return result;
6211 }
6212 }
6213
6214 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
6215 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
6216
6217 /* If the RHS can be evaluated unconditionally and its operands are
6218 simple, it wins to evaluate the RHS unconditionally on machines
6219 with expensive branches. In this case, this isn't a comparison
6220 that can be merged. */
6221
6222 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
6223 false) >= 2
6224 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
6225 && simple_operand_p (rl_arg)
6226 && simple_operand_p (rr_arg))
6227 {
6228 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
6229 if (code == TRUTH_OR_EXPR
6230 && lcode == NE_EXPR && integer_zerop (lr_arg)
6231 && rcode == NE_EXPR && integer_zerop (rr_arg)
6232 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
6233 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
6234 return build2_loc (loc, NE_EXPR, truth_type,
6235 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
6236 ll_arg, rl_arg),
6237 build_int_cst (TREE_TYPE (ll_arg), 0));
6238
6239 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
6240 if (code == TRUTH_AND_EXPR
6241 && lcode == EQ_EXPR && integer_zerop (lr_arg)
6242 && rcode == EQ_EXPR && integer_zerop (rr_arg)
6243 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
6244 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
6245 return build2_loc (loc, EQ_EXPR, truth_type,
6246 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
6247 ll_arg, rl_arg),
6248 build_int_cst (TREE_TYPE (ll_arg), 0));
6249 }
6250
6251 /* See if the comparisons can be merged. Then get all the parameters for
6252 each side. */
6253
6254 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
6255 || (rcode != EQ_EXPR && rcode != NE_EXPR))
6256 return 0;
6257
6258 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0;
6259 volatilep = 0;
6260 ll_inner = decode_field_reference (loc, &ll_arg,
6261 &ll_bitsize, &ll_bitpos, &ll_mode,
6262 &ll_unsignedp, &ll_reversep, &volatilep,
6263 &ll_mask, &ll_and_mask);
6264 lr_inner = decode_field_reference (loc, &lr_arg,
6265 &lr_bitsize, &lr_bitpos, &lr_mode,
6266 &lr_unsignedp, &lr_reversep, &volatilep,
6267 &lr_mask, &lr_and_mask);
6268 rl_inner = decode_field_reference (loc, &rl_arg,
6269 &rl_bitsize, &rl_bitpos, &rl_mode,
6270 &rl_unsignedp, &rl_reversep, &volatilep,
6271 &rl_mask, &rl_and_mask);
6272 rr_inner = decode_field_reference (loc, &rr_arg,
6273 &rr_bitsize, &rr_bitpos, &rr_mode,
6274 &rr_unsignedp, &rr_reversep, &volatilep,
6275 &rr_mask, &rr_and_mask);
6276
6277 /* It must be true that the inner operation on the lhs of each
6278 comparison must be the same if we are to be able to do anything.
6279 Then see if we have constants. If not, the same must be true for
6280 the rhs's. */
6281 if (volatilep
6282 || ll_reversep != rl_reversep
6283 || ll_inner == 0 || rl_inner == 0
6284 || ! operand_equal_p (ll_inner, rl_inner, 0))
6285 return 0;
6286
6287 if (TREE_CODE (lr_arg) == INTEGER_CST
6288 && TREE_CODE (rr_arg) == INTEGER_CST)
6289 {
6290 l_const = lr_arg, r_const = rr_arg;
6291 lr_reversep = ll_reversep;
6292 }
6293 else if (lr_reversep != rr_reversep
6294 || lr_inner == 0 || rr_inner == 0
6295 || ! operand_equal_p (lr_inner, rr_inner, 0))
6296 return 0;
6297 else
6298 l_const = r_const = 0;
6299
6300 /* If either comparison code is not correct for our logical operation,
6301 fail. However, we can convert a one-bit comparison against zero into
6302 the opposite comparison against that bit being set in the field. */
6303
6304 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
6305 if (lcode != wanted_code)
6306 {
6307 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
6308 {
6309 /* Make the left operand unsigned, since we are only interested
6310 in the value of one bit. Otherwise we are doing the wrong
6311 thing below. */
6312 ll_unsignedp = 1;
6313 l_const = ll_mask;
6314 }
6315 else
6316 return 0;
6317 }
6318
6319 /* This is analogous to the code for l_const above. */
6320 if (rcode != wanted_code)
6321 {
6322 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
6323 {
6324 rl_unsignedp = 1;
6325 r_const = rl_mask;
6326 }
6327 else
6328 return 0;
6329 }
6330
6331 /* See if we can find a mode that contains both fields being compared on
6332 the left. If we can't, fail. Otherwise, update all constants and masks
6333 to be relative to a field of that size. */
6334 first_bit = MIN (ll_bitpos, rl_bitpos);
6335 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
6336 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
6337 TYPE_ALIGN (TREE_TYPE (ll_inner)), BITS_PER_WORD,
6338 volatilep, &lnmode))
6339 return 0;
6340
6341 lnbitsize = GET_MODE_BITSIZE (lnmode);
6342 lnbitpos = first_bit & ~ (lnbitsize - 1);
6343 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
6344 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
6345
6346 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
6347 {
6348 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
6349 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
6350 }
6351
6352 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
6353 size_int (xll_bitpos));
6354 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
6355 size_int (xrl_bitpos));
6356
6357 if (l_const)
6358 {
6359 l_const = fold_convert_loc (loc, lntype, l_const);
6360 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
6361 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
6362 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
6363 fold_build1_loc (loc, BIT_NOT_EXPR,
6364 lntype, ll_mask))))
6365 {
6366 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
6367
6368 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
6369 }
6370 }
6371 if (r_const)
6372 {
6373 r_const = fold_convert_loc (loc, lntype, r_const);
6374 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
6375 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
6376 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
6377 fold_build1_loc (loc, BIT_NOT_EXPR,
6378 lntype, rl_mask))))
6379 {
6380 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
6381
6382 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
6383 }
6384 }
6385
6386 /* If the right sides are not constant, do the same for it. Also,
6387 disallow this optimization if a size, signedness or storage order
6388 mismatch occurs between the left and right sides. */
6389 if (l_const == 0)
6390 {
6391 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
6392 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
6393 || ll_reversep != lr_reversep
6394 /* Make sure the two fields on the right
6395 correspond to the left without being swapped. */
6396 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
6397 return 0;
6398
6399 first_bit = MIN (lr_bitpos, rr_bitpos);
6400 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
6401 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
6402 TYPE_ALIGN (TREE_TYPE (lr_inner)), BITS_PER_WORD,
6403 volatilep, &rnmode))
6404 return 0;
6405
6406 rnbitsize = GET_MODE_BITSIZE (rnmode);
6407 rnbitpos = first_bit & ~ (rnbitsize - 1);
6408 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
6409 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
6410
6411 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
6412 {
6413 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
6414 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
6415 }
6416
6417 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
6418 rntype, lr_mask),
6419 size_int (xlr_bitpos));
6420 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
6421 rntype, rr_mask),
6422 size_int (xrr_bitpos));
6423
6424 /* Make a mask that corresponds to both fields being compared.
6425 Do this for both items being compared. If the operands are the
6426 same size and the bits being compared are in the same position
6427 then we can do this by masking both and comparing the masked
6428 results. */
6429 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
6430 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
6431 if (lnbitsize == rnbitsize
6432 && xll_bitpos == xlr_bitpos
6433 && lnbitpos >= 0
6434 && rnbitpos >= 0)
6435 {
6436 lhs = make_bit_field_ref (loc, ll_inner, ll_arg,
6437 lntype, lnbitsize, lnbitpos,
6438 ll_unsignedp || rl_unsignedp, ll_reversep);
6439 if (! all_ones_mask_p (ll_mask, lnbitsize))
6440 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
6441
6442 rhs = make_bit_field_ref (loc, lr_inner, lr_arg,
6443 rntype, rnbitsize, rnbitpos,
6444 lr_unsignedp || rr_unsignedp, lr_reversep);
6445 if (! all_ones_mask_p (lr_mask, rnbitsize))
6446 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
6447
6448 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
6449 }
6450
6451 /* There is still another way we can do something: If both pairs of
6452 fields being compared are adjacent, we may be able to make a wider
6453 field containing them both.
6454
6455 Note that we still must mask the lhs/rhs expressions. Furthermore,
6456 the mask must be shifted to account for the shift done by
6457 make_bit_field_ref. */
6458 if (((ll_bitsize + ll_bitpos == rl_bitpos
6459 && lr_bitsize + lr_bitpos == rr_bitpos)
6460 || (ll_bitpos == rl_bitpos + rl_bitsize
6461 && lr_bitpos == rr_bitpos + rr_bitsize))
6462 && ll_bitpos >= 0
6463 && rl_bitpos >= 0
6464 && lr_bitpos >= 0
6465 && rr_bitpos >= 0)
6466 {
6467 tree type;
6468
6469 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype,
6470 ll_bitsize + rl_bitsize,
6471 MIN (ll_bitpos, rl_bitpos),
6472 ll_unsignedp, ll_reversep);
6473 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype,
6474 lr_bitsize + rr_bitsize,
6475 MIN (lr_bitpos, rr_bitpos),
6476 lr_unsignedp, lr_reversep);
6477
6478 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
6479 size_int (MIN (xll_bitpos, xrl_bitpos)));
6480 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
6481 size_int (MIN (xlr_bitpos, xrr_bitpos)));
6482
6483 /* Convert to the smaller type before masking out unwanted bits. */
6484 type = lntype;
6485 if (lntype != rntype)
6486 {
6487 if (lnbitsize > rnbitsize)
6488 {
6489 lhs = fold_convert_loc (loc, rntype, lhs);
6490 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
6491 type = rntype;
6492 }
6493 else if (lnbitsize < rnbitsize)
6494 {
6495 rhs = fold_convert_loc (loc, lntype, rhs);
6496 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
6497 type = lntype;
6498 }
6499 }
6500
6501 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
6502 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
6503
6504 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
6505 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
6506
6507 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
6508 }
6509
6510 return 0;
6511 }
6512
6513 /* Handle the case of comparisons with constants. If there is something in
6514 common between the masks, those bits of the constants must be the same.
6515 If not, the condition is always false. Test for this to avoid generating
6516 incorrect code below. */
6517 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
6518 if (! integer_zerop (result)
6519 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
6520 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
6521 {
6522 if (wanted_code == NE_EXPR)
6523 {
6524 warning (0, "%<or%> of unmatched not-equal tests is always 1");
6525 return constant_boolean_node (true, truth_type);
6526 }
6527 else
6528 {
6529 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
6530 return constant_boolean_node (false, truth_type);
6531 }
6532 }
6533
6534 if (lnbitpos < 0)
6535 return 0;
6536
6537 /* Construct the expression we will return. First get the component
6538 reference we will make. Unless the mask is all ones the width of
6539 that field, perform the mask operation. Then compare with the
6540 merged constant. */
6541 result = make_bit_field_ref (loc, ll_inner, ll_arg,
6542 lntype, lnbitsize, lnbitpos,
6543 ll_unsignedp || rl_unsignedp, ll_reversep);
6544
6545 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
6546 if (! all_ones_mask_p (ll_mask, lnbitsize))
6547 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
6548
6549 return build2_loc (loc, wanted_code, truth_type, result,
6550 const_binop (BIT_IOR_EXPR, l_const, r_const));
6551 }
6552 \f
6553 /* T is an integer expression that is being multiplied, divided, or taken a
6554 modulus (CODE says which and what kind of divide or modulus) by a
6555 constant C. See if we can eliminate that operation by folding it with
6556 other operations already in T. WIDE_TYPE, if non-null, is a type that
6557 should be used for the computation if wider than our type.
6558
6559 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
6560 (X * 2) + (Y * 4). We must, however, be assured that either the original
6561 expression would not overflow or that overflow is undefined for the type
6562 in the language in question.
6563
6564 If we return a non-null expression, it is an equivalent form of the
6565 original computation, but need not be in the original type.
6566
6567 We set *STRICT_OVERFLOW_P to true if the return values depends on
6568 signed overflow being undefined. Otherwise we do not change
6569 *STRICT_OVERFLOW_P. */
6570
6571 static tree
6572 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
6573 bool *strict_overflow_p)
6574 {
6575 /* To avoid exponential search depth, refuse to allow recursion past
6576 three levels. Beyond that (1) it's highly unlikely that we'll find
6577 something interesting and (2) we've probably processed it before
6578 when we built the inner expression. */
6579
6580 static int depth;
6581 tree ret;
6582
6583 if (depth > 3)
6584 return NULL;
6585
6586 depth++;
6587 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
6588 depth--;
6589
6590 return ret;
6591 }
6592
6593 static tree
6594 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6595 bool *strict_overflow_p)
6596 {
6597 tree type = TREE_TYPE (t);
6598 enum tree_code tcode = TREE_CODE (t);
6599 tree ctype = (wide_type != 0
6600 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type))
6601 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)))
6602 ? wide_type : type);
6603 tree t1, t2;
6604 int same_p = tcode == code;
6605 tree op0 = NULL_TREE, op1 = NULL_TREE;
6606 bool sub_strict_overflow_p;
6607
6608 /* Don't deal with constants of zero here; they confuse the code below. */
6609 if (integer_zerop (c))
6610 return NULL_TREE;
6611
6612 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6613 op0 = TREE_OPERAND (t, 0);
6614
6615 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6616 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6617
6618 /* Note that we need not handle conditional operations here since fold
6619 already handles those cases. So just do arithmetic here. */
6620 switch (tcode)
6621 {
6622 case INTEGER_CST:
6623 /* For a constant, we can always simplify if we are a multiply
6624 or (for divide and modulus) if it is a multiple of our constant. */
6625 if (code == MULT_EXPR
6626 || wi::multiple_of_p (wi::to_wide (t), wi::to_wide (c),
6627 TYPE_SIGN (type)))
6628 {
6629 tree tem = const_binop (code, fold_convert (ctype, t),
6630 fold_convert (ctype, c));
6631 /* If the multiplication overflowed, we lost information on it.
6632 See PR68142 and PR69845. */
6633 if (TREE_OVERFLOW (tem))
6634 return NULL_TREE;
6635 return tem;
6636 }
6637 break;
6638
6639 CASE_CONVERT: case NON_LVALUE_EXPR:
6640 /* If op0 is an expression ... */
6641 if ((COMPARISON_CLASS_P (op0)
6642 || UNARY_CLASS_P (op0)
6643 || BINARY_CLASS_P (op0)
6644 || VL_EXP_CLASS_P (op0)
6645 || EXPRESSION_CLASS_P (op0))
6646 /* ... and has wrapping overflow, and its type is smaller
6647 than ctype, then we cannot pass through as widening. */
6648 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6649 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
6650 && (TYPE_PRECISION (ctype)
6651 > TYPE_PRECISION (TREE_TYPE (op0))))
6652 /* ... or this is a truncation (t is narrower than op0),
6653 then we cannot pass through this narrowing. */
6654 || (TYPE_PRECISION (type)
6655 < TYPE_PRECISION (TREE_TYPE (op0)))
6656 /* ... or signedness changes for division or modulus,
6657 then we cannot pass through this conversion. */
6658 || (code != MULT_EXPR
6659 && (TYPE_UNSIGNED (ctype)
6660 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6661 /* ... or has undefined overflow while the converted to
6662 type has not, we cannot do the operation in the inner type
6663 as that would introduce undefined overflow. */
6664 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6665 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
6666 && !TYPE_OVERFLOW_UNDEFINED (type))))
6667 break;
6668
6669 /* Pass the constant down and see if we can make a simplification. If
6670 we can, replace this expression with the inner simplification for
6671 possible later conversion to our or some other type. */
6672 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6673 && TREE_CODE (t2) == INTEGER_CST
6674 && !TREE_OVERFLOW (t2)
6675 && (t1 = extract_muldiv (op0, t2, code,
6676 code == MULT_EXPR ? ctype : NULL_TREE,
6677 strict_overflow_p)) != 0)
6678 return t1;
6679 break;
6680
6681 case ABS_EXPR:
6682 /* If widening the type changes it from signed to unsigned, then we
6683 must avoid building ABS_EXPR itself as unsigned. */
6684 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6685 {
6686 tree cstype = (*signed_type_for) (ctype);
6687 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6688 != 0)
6689 {
6690 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6691 return fold_convert (ctype, t1);
6692 }
6693 break;
6694 }
6695 /* If the constant is negative, we cannot simplify this. */
6696 if (tree_int_cst_sgn (c) == -1)
6697 break;
6698 /* FALLTHROUGH */
6699 case NEGATE_EXPR:
6700 /* For division and modulus, type can't be unsigned, as e.g.
6701 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6702 For signed types, even with wrapping overflow, this is fine. */
6703 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6704 break;
6705 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6706 != 0)
6707 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6708 break;
6709
6710 case MIN_EXPR: case MAX_EXPR:
6711 /* If widening the type changes the signedness, then we can't perform
6712 this optimization as that changes the result. */
6713 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6714 break;
6715
6716 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6717 sub_strict_overflow_p = false;
6718 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6719 &sub_strict_overflow_p)) != 0
6720 && (t2 = extract_muldiv (op1, c, code, wide_type,
6721 &sub_strict_overflow_p)) != 0)
6722 {
6723 if (tree_int_cst_sgn (c) < 0)
6724 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6725 if (sub_strict_overflow_p)
6726 *strict_overflow_p = true;
6727 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6728 fold_convert (ctype, t2));
6729 }
6730 break;
6731
6732 case LSHIFT_EXPR: case RSHIFT_EXPR:
6733 /* If the second operand is constant, this is a multiplication
6734 or floor division, by a power of two, so we can treat it that
6735 way unless the multiplier or divisor overflows. Signed
6736 left-shift overflow is implementation-defined rather than
6737 undefined in C90, so do not convert signed left shift into
6738 multiplication. */
6739 if (TREE_CODE (op1) == INTEGER_CST
6740 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6741 /* const_binop may not detect overflow correctly,
6742 so check for it explicitly here. */
6743 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)),
6744 wi::to_wide (op1))
6745 && (t1 = fold_convert (ctype,
6746 const_binop (LSHIFT_EXPR, size_one_node,
6747 op1))) != 0
6748 && !TREE_OVERFLOW (t1))
6749 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6750 ? MULT_EXPR : FLOOR_DIV_EXPR,
6751 ctype,
6752 fold_convert (ctype, op0),
6753 t1),
6754 c, code, wide_type, strict_overflow_p);
6755 break;
6756
6757 case PLUS_EXPR: case MINUS_EXPR:
6758 /* See if we can eliminate the operation on both sides. If we can, we
6759 can return a new PLUS or MINUS. If we can't, the only remaining
6760 cases where we can do anything are if the second operand is a
6761 constant. */
6762 sub_strict_overflow_p = false;
6763 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6764 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6765 if (t1 != 0 && t2 != 0
6766 && TYPE_OVERFLOW_WRAPS (ctype)
6767 && (code == MULT_EXPR
6768 /* If not multiplication, we can only do this if both operands
6769 are divisible by c. */
6770 || (multiple_of_p (ctype, op0, c)
6771 && multiple_of_p (ctype, op1, c))))
6772 {
6773 if (sub_strict_overflow_p)
6774 *strict_overflow_p = true;
6775 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6776 fold_convert (ctype, t2));
6777 }
6778
6779 /* If this was a subtraction, negate OP1 and set it to be an addition.
6780 This simplifies the logic below. */
6781 if (tcode == MINUS_EXPR)
6782 {
6783 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6784 /* If OP1 was not easily negatable, the constant may be OP0. */
6785 if (TREE_CODE (op0) == INTEGER_CST)
6786 {
6787 std::swap (op0, op1);
6788 std::swap (t1, t2);
6789 }
6790 }
6791
6792 if (TREE_CODE (op1) != INTEGER_CST)
6793 break;
6794
6795 /* If either OP1 or C are negative, this optimization is not safe for
6796 some of the division and remainder types while for others we need
6797 to change the code. */
6798 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6799 {
6800 if (code == CEIL_DIV_EXPR)
6801 code = FLOOR_DIV_EXPR;
6802 else if (code == FLOOR_DIV_EXPR)
6803 code = CEIL_DIV_EXPR;
6804 else if (code != MULT_EXPR
6805 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6806 break;
6807 }
6808
6809 /* If it's a multiply or a division/modulus operation of a multiple
6810 of our constant, do the operation and verify it doesn't overflow. */
6811 if (code == MULT_EXPR
6812 || wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6813 TYPE_SIGN (type)))
6814 {
6815 op1 = const_binop (code, fold_convert (ctype, op1),
6816 fold_convert (ctype, c));
6817 /* We allow the constant to overflow with wrapping semantics. */
6818 if (op1 == 0
6819 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6820 break;
6821 }
6822 else
6823 break;
6824
6825 /* If we have an unsigned type, we cannot widen the operation since it
6826 will change the result if the original computation overflowed. */
6827 if (TYPE_UNSIGNED (ctype) && ctype != type)
6828 break;
6829
6830 /* The last case is if we are a multiply. In that case, we can
6831 apply the distributive law to commute the multiply and addition
6832 if the multiplication of the constants doesn't overflow
6833 and overflow is defined. With undefined overflow
6834 op0 * c might overflow, while (op0 + orig_op1) * c doesn't.
6835 But fold_plusminus_mult_expr would factor back any power-of-two
6836 value so do not distribute in the first place in this case. */
6837 if (code == MULT_EXPR
6838 && TYPE_OVERFLOW_WRAPS (ctype)
6839 && !(tree_fits_shwi_p (c) && pow2p_hwi (absu_hwi (tree_to_shwi (c)))))
6840 return fold_build2 (tcode, ctype,
6841 fold_build2 (code, ctype,
6842 fold_convert (ctype, op0),
6843 fold_convert (ctype, c)),
6844 op1);
6845
6846 break;
6847
6848 case MULT_EXPR:
6849 /* We have a special case here if we are doing something like
6850 (C * 8) % 4 since we know that's zero. */
6851 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6852 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6853 /* If the multiplication can overflow we cannot optimize this. */
6854 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6855 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6856 && wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6857 TYPE_SIGN (type)))
6858 {
6859 *strict_overflow_p = true;
6860 return omit_one_operand (type, integer_zero_node, op0);
6861 }
6862
6863 /* ... fall through ... */
6864
6865 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6866 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6867 /* If we can extract our operation from the LHS, do so and return a
6868 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6869 do something only if the second operand is a constant. */
6870 if (same_p
6871 && TYPE_OVERFLOW_WRAPS (ctype)
6872 && (t1 = extract_muldiv (op0, c, code, wide_type,
6873 strict_overflow_p)) != 0)
6874 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6875 fold_convert (ctype, op1));
6876 else if (tcode == MULT_EXPR && code == MULT_EXPR
6877 && TYPE_OVERFLOW_WRAPS (ctype)
6878 && (t1 = extract_muldiv (op1, c, code, wide_type,
6879 strict_overflow_p)) != 0)
6880 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6881 fold_convert (ctype, t1));
6882 else if (TREE_CODE (op1) != INTEGER_CST)
6883 return 0;
6884
6885 /* If these are the same operation types, we can associate them
6886 assuming no overflow. */
6887 if (tcode == code)
6888 {
6889 bool overflow_p = false;
6890 wi::overflow_type overflow_mul;
6891 signop sign = TYPE_SIGN (ctype);
6892 unsigned prec = TYPE_PRECISION (ctype);
6893 wide_int mul = wi::mul (wi::to_wide (op1, prec),
6894 wi::to_wide (c, prec),
6895 sign, &overflow_mul);
6896 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6897 if (overflow_mul
6898 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6899 overflow_p = true;
6900 if (!overflow_p)
6901 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6902 wide_int_to_tree (ctype, mul));
6903 }
6904
6905 /* If these operations "cancel" each other, we have the main
6906 optimizations of this pass, which occur when either constant is a
6907 multiple of the other, in which case we replace this with either an
6908 operation or CODE or TCODE.
6909
6910 If we have an unsigned type, we cannot do this since it will change
6911 the result if the original computation overflowed. */
6912 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6913 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6914 || (tcode == MULT_EXPR
6915 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6916 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6917 && code != MULT_EXPR)))
6918 {
6919 if (wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6920 TYPE_SIGN (type)))
6921 {
6922 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6923 *strict_overflow_p = true;
6924 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6925 fold_convert (ctype,
6926 const_binop (TRUNC_DIV_EXPR,
6927 op1, c)));
6928 }
6929 else if (wi::multiple_of_p (wi::to_wide (c), wi::to_wide (op1),
6930 TYPE_SIGN (type)))
6931 {
6932 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6933 *strict_overflow_p = true;
6934 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6935 fold_convert (ctype,
6936 const_binop (TRUNC_DIV_EXPR,
6937 c, op1)));
6938 }
6939 }
6940 break;
6941
6942 default:
6943 break;
6944 }
6945
6946 return 0;
6947 }
6948 \f
6949 /* Return a node which has the indicated constant VALUE (either 0 or
6950 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6951 and is of the indicated TYPE. */
6952
6953 tree
6954 constant_boolean_node (bool value, tree type)
6955 {
6956 if (type == integer_type_node)
6957 return value ? integer_one_node : integer_zero_node;
6958 else if (type == boolean_type_node)
6959 return value ? boolean_true_node : boolean_false_node;
6960 else if (TREE_CODE (type) == VECTOR_TYPE)
6961 return build_vector_from_val (type,
6962 build_int_cst (TREE_TYPE (type),
6963 value ? -1 : 0));
6964 else
6965 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6966 }
6967
6968
6969 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6970 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6971 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6972 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6973 COND is the first argument to CODE; otherwise (as in the example
6974 given here), it is the second argument. TYPE is the type of the
6975 original expression. Return NULL_TREE if no simplification is
6976 possible. */
6977
6978 static tree
6979 fold_binary_op_with_conditional_arg (location_t loc,
6980 enum tree_code code,
6981 tree type, tree op0, tree op1,
6982 tree cond, tree arg, int cond_first_p)
6983 {
6984 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6985 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6986 tree test, true_value, false_value;
6987 tree lhs = NULL_TREE;
6988 tree rhs = NULL_TREE;
6989 enum tree_code cond_code = COND_EXPR;
6990
6991 /* Do not move possibly trapping operations into the conditional as this
6992 pessimizes code and causes gimplification issues when applied late. */
6993 if (operation_could_trap_p (code, FLOAT_TYPE_P (type),
6994 ANY_INTEGRAL_TYPE_P (type)
6995 && TYPE_OVERFLOW_TRAPS (type), op1))
6996 return NULL_TREE;
6997
6998 if (TREE_CODE (cond) == COND_EXPR
6999 || TREE_CODE (cond) == VEC_COND_EXPR)
7000 {
7001 test = TREE_OPERAND (cond, 0);
7002 true_value = TREE_OPERAND (cond, 1);
7003 false_value = TREE_OPERAND (cond, 2);
7004 /* If this operand throws an expression, then it does not make
7005 sense to try to perform a logical or arithmetic operation
7006 involving it. */
7007 if (VOID_TYPE_P (TREE_TYPE (true_value)))
7008 lhs = true_value;
7009 if (VOID_TYPE_P (TREE_TYPE (false_value)))
7010 rhs = false_value;
7011 }
7012 else if (!(TREE_CODE (type) != VECTOR_TYPE
7013 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE))
7014 {
7015 tree testtype = TREE_TYPE (cond);
7016 test = cond;
7017 true_value = constant_boolean_node (true, testtype);
7018 false_value = constant_boolean_node (false, testtype);
7019 }
7020 else
7021 /* Detect the case of mixing vector and scalar types - bail out. */
7022 return NULL_TREE;
7023
7024 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
7025 cond_code = VEC_COND_EXPR;
7026
7027 /* This transformation is only worthwhile if we don't have to wrap ARG
7028 in a SAVE_EXPR and the operation can be simplified without recursing
7029 on at least one of the branches once its pushed inside the COND_EXPR. */
7030 if (!TREE_CONSTANT (arg)
7031 && (TREE_SIDE_EFFECTS (arg)
7032 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
7033 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
7034 return NULL_TREE;
7035
7036 arg = fold_convert_loc (loc, arg_type, arg);
7037 if (lhs == 0)
7038 {
7039 true_value = fold_convert_loc (loc, cond_type, true_value);
7040 if (cond_first_p)
7041 lhs = fold_build2_loc (loc, code, type, true_value, arg);
7042 else
7043 lhs = fold_build2_loc (loc, code, type, arg, true_value);
7044 }
7045 if (rhs == 0)
7046 {
7047 false_value = fold_convert_loc (loc, cond_type, false_value);
7048 if (cond_first_p)
7049 rhs = fold_build2_loc (loc, code, type, false_value, arg);
7050 else
7051 rhs = fold_build2_loc (loc, code, type, arg, false_value);
7052 }
7053
7054 /* Check that we have simplified at least one of the branches. */
7055 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
7056 return NULL_TREE;
7057
7058 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
7059 }
7060
7061 \f
7062 /* Subroutine of fold() that checks for the addition of +/- 0.0.
7063
7064 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
7065 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
7066 ADDEND is the same as X.
7067
7068 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
7069 and finite. The problematic cases are when X is zero, and its mode
7070 has signed zeros. In the case of rounding towards -infinity,
7071 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
7072 modes, X + 0 is not the same as X because -0 + 0 is 0. */
7073
7074 bool
7075 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
7076 {
7077 if (!real_zerop (addend))
7078 return false;
7079
7080 /* Don't allow the fold with -fsignaling-nans. */
7081 if (HONOR_SNANS (type))
7082 return false;
7083
7084 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
7085 if (!HONOR_SIGNED_ZEROS (type))
7086 return true;
7087
7088 /* There is no case that is safe for all rounding modes. */
7089 if (HONOR_SIGN_DEPENDENT_ROUNDING (type))
7090 return false;
7091
7092 /* In a vector or complex, we would need to check the sign of all zeros. */
7093 if (TREE_CODE (addend) == VECTOR_CST)
7094 addend = uniform_vector_p (addend);
7095 if (!addend || TREE_CODE (addend) != REAL_CST)
7096 return false;
7097
7098 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
7099 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
7100 negate = !negate;
7101
7102 /* The mode has signed zeros, and we have to honor their sign.
7103 In this situation, there is only one case we can return true for.
7104 X - 0 is the same as X with default rounding. */
7105 return negate;
7106 }
7107
7108 /* Subroutine of match.pd that optimizes comparisons of a division by
7109 a nonzero integer constant against an integer constant, i.e.
7110 X/C1 op C2.
7111
7112 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
7113 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
7114
7115 enum tree_code
7116 fold_div_compare (enum tree_code code, tree c1, tree c2, tree *lo,
7117 tree *hi, bool *neg_overflow)
7118 {
7119 tree prod, tmp, type = TREE_TYPE (c1);
7120 signop sign = TYPE_SIGN (type);
7121 wi::overflow_type overflow;
7122
7123 /* We have to do this the hard way to detect unsigned overflow.
7124 prod = int_const_binop (MULT_EXPR, c1, c2); */
7125 wide_int val = wi::mul (wi::to_wide (c1), wi::to_wide (c2), sign, &overflow);
7126 prod = force_fit_type (type, val, -1, overflow);
7127 *neg_overflow = false;
7128
7129 if (sign == UNSIGNED)
7130 {
7131 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
7132 *lo = prod;
7133
7134 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
7135 val = wi::add (wi::to_wide (prod), wi::to_wide (tmp), sign, &overflow);
7136 *hi = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (prod));
7137 }
7138 else if (tree_int_cst_sgn (c1) >= 0)
7139 {
7140 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
7141 switch (tree_int_cst_sgn (c2))
7142 {
7143 case -1:
7144 *neg_overflow = true;
7145 *lo = int_const_binop (MINUS_EXPR, prod, tmp);
7146 *hi = prod;
7147 break;
7148
7149 case 0:
7150 *lo = fold_negate_const (tmp, type);
7151 *hi = tmp;
7152 break;
7153
7154 case 1:
7155 *hi = int_const_binop (PLUS_EXPR, prod, tmp);
7156 *lo = prod;
7157 break;
7158
7159 default:
7160 gcc_unreachable ();
7161 }
7162 }
7163 else
7164 {
7165 /* A negative divisor reverses the relational operators. */
7166 code = swap_tree_comparison (code);
7167
7168 tmp = int_const_binop (PLUS_EXPR, c1, build_int_cst (type, 1));
7169 switch (tree_int_cst_sgn (c2))
7170 {
7171 case -1:
7172 *hi = int_const_binop (MINUS_EXPR, prod, tmp);
7173 *lo = prod;
7174 break;
7175
7176 case 0:
7177 *hi = fold_negate_const (tmp, type);
7178 *lo = tmp;
7179 break;
7180
7181 case 1:
7182 *neg_overflow = true;
7183 *lo = int_const_binop (PLUS_EXPR, prod, tmp);
7184 *hi = prod;
7185 break;
7186
7187 default:
7188 gcc_unreachable ();
7189 }
7190 }
7191
7192 if (code != EQ_EXPR && code != NE_EXPR)
7193 return code;
7194
7195 if (TREE_OVERFLOW (*lo)
7196 || operand_equal_p (*lo, TYPE_MIN_VALUE (type), 0))
7197 *lo = NULL_TREE;
7198 if (TREE_OVERFLOW (*hi)
7199 || operand_equal_p (*hi, TYPE_MAX_VALUE (type), 0))
7200 *hi = NULL_TREE;
7201
7202 return code;
7203 }
7204
7205
7206 /* If CODE with arguments ARG0 and ARG1 represents a single bit
7207 equality/inequality test, then return a simplified form of the test
7208 using a sign testing. Otherwise return NULL. TYPE is the desired
7209 result type. */
7210
7211 static tree
7212 fold_single_bit_test_into_sign_test (location_t loc,
7213 enum tree_code code, tree arg0, tree arg1,
7214 tree result_type)
7215 {
7216 /* If this is testing a single bit, we can optimize the test. */
7217 if ((code == NE_EXPR || code == EQ_EXPR)
7218 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
7219 && integer_pow2p (TREE_OPERAND (arg0, 1)))
7220 {
7221 /* If we have (A & C) != 0 where C is the sign bit of A, convert
7222 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
7223 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
7224
7225 if (arg00 != NULL_TREE
7226 /* This is only a win if casting to a signed type is cheap,
7227 i.e. when arg00's type is not a partial mode. */
7228 && type_has_mode_precision_p (TREE_TYPE (arg00)))
7229 {
7230 tree stype = signed_type_for (TREE_TYPE (arg00));
7231 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
7232 result_type,
7233 fold_convert_loc (loc, stype, arg00),
7234 build_int_cst (stype, 0));
7235 }
7236 }
7237
7238 return NULL_TREE;
7239 }
7240
7241 /* If CODE with arguments ARG0 and ARG1 represents a single bit
7242 equality/inequality test, then return a simplified form of
7243 the test using shifts and logical operations. Otherwise return
7244 NULL. TYPE is the desired result type. */
7245
7246 tree
7247 fold_single_bit_test (location_t loc, enum tree_code code,
7248 tree arg0, tree arg1, tree result_type)
7249 {
7250 /* If this is testing a single bit, we can optimize the test. */
7251 if ((code == NE_EXPR || code == EQ_EXPR)
7252 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
7253 && integer_pow2p (TREE_OPERAND (arg0, 1)))
7254 {
7255 tree inner = TREE_OPERAND (arg0, 0);
7256 tree type = TREE_TYPE (arg0);
7257 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
7258 scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type);
7259 int ops_unsigned;
7260 tree signed_type, unsigned_type, intermediate_type;
7261 tree tem, one;
7262
7263 /* First, see if we can fold the single bit test into a sign-bit
7264 test. */
7265 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
7266 result_type);
7267 if (tem)
7268 return tem;
7269
7270 /* Otherwise we have (A & C) != 0 where C is a single bit,
7271 convert that into ((A >> C2) & 1). Where C2 = log2(C).
7272 Similarly for (A & C) == 0. */
7273
7274 /* If INNER is a right shift of a constant and it plus BITNUM does
7275 not overflow, adjust BITNUM and INNER. */
7276 if (TREE_CODE (inner) == RSHIFT_EXPR
7277 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
7278 && bitnum < TYPE_PRECISION (type)
7279 && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner, 1)),
7280 TYPE_PRECISION (type) - bitnum))
7281 {
7282 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
7283 inner = TREE_OPERAND (inner, 0);
7284 }
7285
7286 /* If we are going to be able to omit the AND below, we must do our
7287 operations as unsigned. If we must use the AND, we have a choice.
7288 Normally unsigned is faster, but for some machines signed is. */
7289 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND
7290 && !flag_syntax_only) ? 0 : 1;
7291
7292 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
7293 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
7294 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
7295 inner = fold_convert_loc (loc, intermediate_type, inner);
7296
7297 if (bitnum != 0)
7298 inner = build2 (RSHIFT_EXPR, intermediate_type,
7299 inner, size_int (bitnum));
7300
7301 one = build_int_cst (intermediate_type, 1);
7302
7303 if (code == EQ_EXPR)
7304 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
7305
7306 /* Put the AND last so it can combine with more things. */
7307 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
7308
7309 /* Make sure to return the proper type. */
7310 inner = fold_convert_loc (loc, result_type, inner);
7311
7312 return inner;
7313 }
7314 return NULL_TREE;
7315 }
7316
7317 /* Test whether it is preferable two swap two operands, ARG0 and
7318 ARG1, for example because ARG0 is an integer constant and ARG1
7319 isn't. */
7320
7321 bool
7322 tree_swap_operands_p (const_tree arg0, const_tree arg1)
7323 {
7324 if (CONSTANT_CLASS_P (arg1))
7325 return 0;
7326 if (CONSTANT_CLASS_P (arg0))
7327 return 1;
7328
7329 STRIP_NOPS (arg0);
7330 STRIP_NOPS (arg1);
7331
7332 if (TREE_CONSTANT (arg1))
7333 return 0;
7334 if (TREE_CONSTANT (arg0))
7335 return 1;
7336
7337 /* It is preferable to swap two SSA_NAME to ensure a canonical form
7338 for commutative and comparison operators. Ensuring a canonical
7339 form allows the optimizers to find additional redundancies without
7340 having to explicitly check for both orderings. */
7341 if (TREE_CODE (arg0) == SSA_NAME
7342 && TREE_CODE (arg1) == SSA_NAME
7343 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
7344 return 1;
7345
7346 /* Put SSA_NAMEs last. */
7347 if (TREE_CODE (arg1) == SSA_NAME)
7348 return 0;
7349 if (TREE_CODE (arg0) == SSA_NAME)
7350 return 1;
7351
7352 /* Put variables last. */
7353 if (DECL_P (arg1))
7354 return 0;
7355 if (DECL_P (arg0))
7356 return 1;
7357
7358 return 0;
7359 }
7360
7361
7362 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
7363 means A >= Y && A != MAX, but in this case we know that
7364 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
7365
7366 static tree
7367 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
7368 {
7369 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
7370
7371 if (TREE_CODE (bound) == LT_EXPR)
7372 a = TREE_OPERAND (bound, 0);
7373 else if (TREE_CODE (bound) == GT_EXPR)
7374 a = TREE_OPERAND (bound, 1);
7375 else
7376 return NULL_TREE;
7377
7378 typea = TREE_TYPE (a);
7379 if (!INTEGRAL_TYPE_P (typea)
7380 && !POINTER_TYPE_P (typea))
7381 return NULL_TREE;
7382
7383 if (TREE_CODE (ineq) == LT_EXPR)
7384 {
7385 a1 = TREE_OPERAND (ineq, 1);
7386 y = TREE_OPERAND (ineq, 0);
7387 }
7388 else if (TREE_CODE (ineq) == GT_EXPR)
7389 {
7390 a1 = TREE_OPERAND (ineq, 0);
7391 y = TREE_OPERAND (ineq, 1);
7392 }
7393 else
7394 return NULL_TREE;
7395
7396 if (TREE_TYPE (a1) != typea)
7397 return NULL_TREE;
7398
7399 if (POINTER_TYPE_P (typea))
7400 {
7401 /* Convert the pointer types into integer before taking the difference. */
7402 tree ta = fold_convert_loc (loc, ssizetype, a);
7403 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
7404 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
7405 }
7406 else
7407 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
7408
7409 if (!diff || !integer_onep (diff))
7410 return NULL_TREE;
7411
7412 return fold_build2_loc (loc, GE_EXPR, type, a, y);
7413 }
7414
7415 /* Fold a sum or difference of at least one multiplication.
7416 Returns the folded tree or NULL if no simplification could be made. */
7417
7418 static tree
7419 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
7420 tree arg0, tree arg1)
7421 {
7422 tree arg00, arg01, arg10, arg11;
7423 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
7424
7425 /* (A * C) +- (B * C) -> (A+-B) * C.
7426 (A * C) +- A -> A * (C+-1).
7427 We are most concerned about the case where C is a constant,
7428 but other combinations show up during loop reduction. Since
7429 it is not difficult, try all four possibilities. */
7430
7431 if (TREE_CODE (arg0) == MULT_EXPR)
7432 {
7433 arg00 = TREE_OPERAND (arg0, 0);
7434 arg01 = TREE_OPERAND (arg0, 1);
7435 }
7436 else if (TREE_CODE (arg0) == INTEGER_CST)
7437 {
7438 arg00 = build_one_cst (type);
7439 arg01 = arg0;
7440 }
7441 else
7442 {
7443 /* We cannot generate constant 1 for fract. */
7444 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7445 return NULL_TREE;
7446 arg00 = arg0;
7447 arg01 = build_one_cst (type);
7448 }
7449 if (TREE_CODE (arg1) == MULT_EXPR)
7450 {
7451 arg10 = TREE_OPERAND (arg1, 0);
7452 arg11 = TREE_OPERAND (arg1, 1);
7453 }
7454 else if (TREE_CODE (arg1) == INTEGER_CST)
7455 {
7456 arg10 = build_one_cst (type);
7457 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7458 the purpose of this canonicalization. */
7459 if (wi::neg_p (wi::to_wide (arg1), TYPE_SIGN (TREE_TYPE (arg1)))
7460 && negate_expr_p (arg1)
7461 && code == PLUS_EXPR)
7462 {
7463 arg11 = negate_expr (arg1);
7464 code = MINUS_EXPR;
7465 }
7466 else
7467 arg11 = arg1;
7468 }
7469 else
7470 {
7471 /* We cannot generate constant 1 for fract. */
7472 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7473 return NULL_TREE;
7474 arg10 = arg1;
7475 arg11 = build_one_cst (type);
7476 }
7477 same = NULL_TREE;
7478
7479 /* Prefer factoring a common non-constant. */
7480 if (operand_equal_p (arg00, arg10, 0))
7481 same = arg00, alt0 = arg01, alt1 = arg11;
7482 else if (operand_equal_p (arg01, arg11, 0))
7483 same = arg01, alt0 = arg00, alt1 = arg10;
7484 else if (operand_equal_p (arg00, arg11, 0))
7485 same = arg00, alt0 = arg01, alt1 = arg10;
7486 else if (operand_equal_p (arg01, arg10, 0))
7487 same = arg01, alt0 = arg00, alt1 = arg11;
7488
7489 /* No identical multiplicands; see if we can find a common
7490 power-of-two factor in non-power-of-two multiplies. This
7491 can help in multi-dimensional array access. */
7492 else if (tree_fits_shwi_p (arg01) && tree_fits_shwi_p (arg11))
7493 {
7494 HOST_WIDE_INT int01 = tree_to_shwi (arg01);
7495 HOST_WIDE_INT int11 = tree_to_shwi (arg11);
7496 HOST_WIDE_INT tmp;
7497 bool swap = false;
7498 tree maybe_same;
7499
7500 /* Move min of absolute values to int11. */
7501 if (absu_hwi (int01) < absu_hwi (int11))
7502 {
7503 tmp = int01, int01 = int11, int11 = tmp;
7504 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7505 maybe_same = arg01;
7506 swap = true;
7507 }
7508 else
7509 maybe_same = arg11;
7510
7511 const unsigned HOST_WIDE_INT factor = absu_hwi (int11);
7512 if (factor > 1
7513 && pow2p_hwi (factor)
7514 && (int01 & (factor - 1)) == 0
7515 /* The remainder should not be a constant, otherwise we
7516 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7517 increased the number of multiplications necessary. */
7518 && TREE_CODE (arg10) != INTEGER_CST)
7519 {
7520 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
7521 build_int_cst (TREE_TYPE (arg00),
7522 int01 / int11));
7523 alt1 = arg10;
7524 same = maybe_same;
7525 if (swap)
7526 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7527 }
7528 }
7529
7530 if (!same)
7531 return NULL_TREE;
7532
7533 if (! ANY_INTEGRAL_TYPE_P (type)
7534 || TYPE_OVERFLOW_WRAPS (type)
7535 /* We are neither factoring zero nor minus one. */
7536 || TREE_CODE (same) == INTEGER_CST)
7537 return fold_build2_loc (loc, MULT_EXPR, type,
7538 fold_build2_loc (loc, code, type,
7539 fold_convert_loc (loc, type, alt0),
7540 fold_convert_loc (loc, type, alt1)),
7541 fold_convert_loc (loc, type, same));
7542
7543 /* Same may be zero and thus the operation 'code' may overflow. Likewise
7544 same may be minus one and thus the multiplication may overflow. Perform
7545 the sum operation in an unsigned type. */
7546 tree utype = unsigned_type_for (type);
7547 tree tem = fold_build2_loc (loc, code, utype,
7548 fold_convert_loc (loc, utype, alt0),
7549 fold_convert_loc (loc, utype, alt1));
7550 /* If the sum evaluated to a constant that is not -INF the multiplication
7551 cannot overflow. */
7552 if (TREE_CODE (tem) == INTEGER_CST
7553 && (wi::to_wide (tem)
7554 != wi::min_value (TYPE_PRECISION (utype), SIGNED)))
7555 return fold_build2_loc (loc, MULT_EXPR, type,
7556 fold_convert (type, tem), same);
7557
7558 /* Do not resort to unsigned multiplication because
7559 we lose the no-overflow property of the expression. */
7560 return NULL_TREE;
7561 }
7562
7563 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7564 specified by EXPR into the buffer PTR of length LEN bytes.
7565 Return the number of bytes placed in the buffer, or zero
7566 upon failure. */
7567
7568 static int
7569 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
7570 {
7571 tree type = TREE_TYPE (expr);
7572 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
7573 int byte, offset, word, words;
7574 unsigned char value;
7575
7576 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7577 return 0;
7578 if (off == -1)
7579 off = 0;
7580
7581 if (ptr == NULL)
7582 /* Dry run. */
7583 return MIN (len, total_bytes - off);
7584
7585 words = total_bytes / UNITS_PER_WORD;
7586
7587 for (byte = 0; byte < total_bytes; byte++)
7588 {
7589 int bitpos = byte * BITS_PER_UNIT;
7590 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7591 number of bytes. */
7592 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
7593
7594 if (total_bytes > UNITS_PER_WORD)
7595 {
7596 word = byte / UNITS_PER_WORD;
7597 if (WORDS_BIG_ENDIAN)
7598 word = (words - 1) - word;
7599 offset = word * UNITS_PER_WORD;
7600 if (BYTES_BIG_ENDIAN)
7601 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7602 else
7603 offset += byte % UNITS_PER_WORD;
7604 }
7605 else
7606 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7607 if (offset >= off && offset - off < len)
7608 ptr[offset - off] = value;
7609 }
7610 return MIN (len, total_bytes - off);
7611 }
7612
7613
7614 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7615 specified by EXPR into the buffer PTR of length LEN bytes.
7616 Return the number of bytes placed in the buffer, or zero
7617 upon failure. */
7618
7619 static int
7620 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7621 {
7622 tree type = TREE_TYPE (expr);
7623 scalar_mode mode = SCALAR_TYPE_MODE (type);
7624 int total_bytes = GET_MODE_SIZE (mode);
7625 FIXED_VALUE_TYPE value;
7626 tree i_value, i_type;
7627
7628 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7629 return 0;
7630
7631 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7632
7633 if (NULL_TREE == i_type || TYPE_PRECISION (i_type) != total_bytes)
7634 return 0;
7635
7636 value = TREE_FIXED_CST (expr);
7637 i_value = double_int_to_tree (i_type, value.data);
7638
7639 return native_encode_int (i_value, ptr, len, off);
7640 }
7641
7642
7643 /* Subroutine of native_encode_expr. Encode the REAL_CST
7644 specified by EXPR into the buffer PTR of length LEN bytes.
7645 Return the number of bytes placed in the buffer, or zero
7646 upon failure. */
7647
7648 static int
7649 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7650 {
7651 tree type = TREE_TYPE (expr);
7652 int total_bytes = GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type));
7653 int byte, offset, word, words, bitpos;
7654 unsigned char value;
7655
7656 /* There are always 32 bits in each long, no matter the size of
7657 the hosts long. We handle floating point representations with
7658 up to 192 bits. */
7659 long tmp[6];
7660
7661 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7662 return 0;
7663 if (off == -1)
7664 off = 0;
7665
7666 if (ptr == NULL)
7667 /* Dry run. */
7668 return MIN (len, total_bytes - off);
7669
7670 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7671
7672 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7673
7674 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7675 bitpos += BITS_PER_UNIT)
7676 {
7677 byte = (bitpos / BITS_PER_UNIT) & 3;
7678 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7679
7680 if (UNITS_PER_WORD < 4)
7681 {
7682 word = byte / UNITS_PER_WORD;
7683 if (WORDS_BIG_ENDIAN)
7684 word = (words - 1) - word;
7685 offset = word * UNITS_PER_WORD;
7686 if (BYTES_BIG_ENDIAN)
7687 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7688 else
7689 offset += byte % UNITS_PER_WORD;
7690 }
7691 else
7692 {
7693 offset = byte;
7694 if (BYTES_BIG_ENDIAN)
7695 {
7696 /* Reverse bytes within each long, or within the entire float
7697 if it's smaller than a long (for HFmode). */
7698 offset = MIN (3, total_bytes - 1) - offset;
7699 gcc_assert (offset >= 0);
7700 }
7701 }
7702 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7703 if (offset >= off
7704 && offset - off < len)
7705 ptr[offset - off] = value;
7706 }
7707 return MIN (len, total_bytes - off);
7708 }
7709
7710 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7711 specified by EXPR into the buffer PTR of length LEN bytes.
7712 Return the number of bytes placed in the buffer, or zero
7713 upon failure. */
7714
7715 static int
7716 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7717 {
7718 int rsize, isize;
7719 tree part;
7720
7721 part = TREE_REALPART (expr);
7722 rsize = native_encode_expr (part, ptr, len, off);
7723 if (off == -1 && rsize == 0)
7724 return 0;
7725 part = TREE_IMAGPART (expr);
7726 if (off != -1)
7727 off = MAX (0, off - GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part))));
7728 isize = native_encode_expr (part, ptr ? ptr + rsize : NULL,
7729 len - rsize, off);
7730 if (off == -1 && isize != rsize)
7731 return 0;
7732 return rsize + isize;
7733 }
7734
7735 /* Like native_encode_vector, but only encode the first COUNT elements.
7736 The other arguments are as for native_encode_vector. */
7737
7738 static int
7739 native_encode_vector_part (const_tree expr, unsigned char *ptr, int len,
7740 int off, unsigned HOST_WIDE_INT count)
7741 {
7742 tree itype = TREE_TYPE (TREE_TYPE (expr));
7743 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (expr))
7744 && TYPE_PRECISION (itype) <= BITS_PER_UNIT)
7745 {
7746 /* This is the only case in which elements can be smaller than a byte.
7747 Element 0 is always in the lsb of the containing byte. */
7748 unsigned int elt_bits = TYPE_PRECISION (itype);
7749 int total_bytes = CEIL (elt_bits * count, BITS_PER_UNIT);
7750 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7751 return 0;
7752
7753 if (off == -1)
7754 off = 0;
7755
7756 /* Zero the buffer and then set bits later where necessary. */
7757 int extract_bytes = MIN (len, total_bytes - off);
7758 if (ptr)
7759 memset (ptr, 0, extract_bytes);
7760
7761 unsigned int elts_per_byte = BITS_PER_UNIT / elt_bits;
7762 unsigned int first_elt = off * elts_per_byte;
7763 unsigned int extract_elts = extract_bytes * elts_per_byte;
7764 for (unsigned int i = 0; i < extract_elts; ++i)
7765 {
7766 tree elt = VECTOR_CST_ELT (expr, first_elt + i);
7767 if (TREE_CODE (elt) != INTEGER_CST)
7768 return 0;
7769
7770 if (ptr && wi::extract_uhwi (wi::to_wide (elt), 0, 1))
7771 {
7772 unsigned int bit = i * elt_bits;
7773 ptr[bit / BITS_PER_UNIT] |= 1 << (bit % BITS_PER_UNIT);
7774 }
7775 }
7776 return extract_bytes;
7777 }
7778
7779 int offset = 0;
7780 int size = GET_MODE_SIZE (SCALAR_TYPE_MODE (itype));
7781 for (unsigned HOST_WIDE_INT i = 0; i < count; i++)
7782 {
7783 if (off >= size)
7784 {
7785 off -= size;
7786 continue;
7787 }
7788 tree elem = VECTOR_CST_ELT (expr, i);
7789 int res = native_encode_expr (elem, ptr ? ptr + offset : NULL,
7790 len - offset, off);
7791 if ((off == -1 && res != size) || res == 0)
7792 return 0;
7793 offset += res;
7794 if (offset >= len)
7795 return (off == -1 && i < count - 1) ? 0 : offset;
7796 if (off != -1)
7797 off = 0;
7798 }
7799 return offset;
7800 }
7801
7802 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7803 specified by EXPR into the buffer PTR of length LEN bytes.
7804 Return the number of bytes placed in the buffer, or zero
7805 upon failure. */
7806
7807 static int
7808 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7809 {
7810 unsigned HOST_WIDE_INT count;
7811 if (!VECTOR_CST_NELTS (expr).is_constant (&count))
7812 return 0;
7813 return native_encode_vector_part (expr, ptr, len, off, count);
7814 }
7815
7816
7817 /* Subroutine of native_encode_expr. Encode the STRING_CST
7818 specified by EXPR into the buffer PTR of length LEN bytes.
7819 Return the number of bytes placed in the buffer, or zero
7820 upon failure. */
7821
7822 static int
7823 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7824 {
7825 tree type = TREE_TYPE (expr);
7826
7827 /* Wide-char strings are encoded in target byte-order so native
7828 encoding them is trivial. */
7829 if (BITS_PER_UNIT != CHAR_BIT
7830 || TREE_CODE (type) != ARRAY_TYPE
7831 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7832 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7833 return 0;
7834
7835 HOST_WIDE_INT total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr)));
7836 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7837 return 0;
7838 if (off == -1)
7839 off = 0;
7840 len = MIN (total_bytes - off, len);
7841 if (ptr == NULL)
7842 /* Dry run. */;
7843 else
7844 {
7845 int written = 0;
7846 if (off < TREE_STRING_LENGTH (expr))
7847 {
7848 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7849 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7850 }
7851 memset (ptr + written, 0, len - written);
7852 }
7853 return len;
7854 }
7855
7856
7857 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7858 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7859 buffer PTR of length LEN bytes. If PTR is NULL, don't actually store
7860 anything, just do a dry run. If OFF is not -1 then start
7861 the encoding at byte offset OFF and encode at most LEN bytes.
7862 Return the number of bytes placed in the buffer, or zero upon failure. */
7863
7864 int
7865 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7866 {
7867 /* We don't support starting at negative offset and -1 is special. */
7868 if (off < -1)
7869 return 0;
7870
7871 switch (TREE_CODE (expr))
7872 {
7873 case INTEGER_CST:
7874 return native_encode_int (expr, ptr, len, off);
7875
7876 case REAL_CST:
7877 return native_encode_real (expr, ptr, len, off);
7878
7879 case FIXED_CST:
7880 return native_encode_fixed (expr, ptr, len, off);
7881
7882 case COMPLEX_CST:
7883 return native_encode_complex (expr, ptr, len, off);
7884
7885 case VECTOR_CST:
7886 return native_encode_vector (expr, ptr, len, off);
7887
7888 case STRING_CST:
7889 return native_encode_string (expr, ptr, len, off);
7890
7891 default:
7892 return 0;
7893 }
7894 }
7895
7896 /* Similar to native_encode_expr, but also handle CONSTRUCTORs, VCEs,
7897 NON_LVALUE_EXPRs and nops. */
7898
7899 int
7900 native_encode_initializer (tree init, unsigned char *ptr, int len,
7901 int off)
7902 {
7903 /* We don't support starting at negative offset and -1 is special. */
7904 if (off < -1 || init == NULL_TREE)
7905 return 0;
7906
7907 STRIP_NOPS (init);
7908 switch (TREE_CODE (init))
7909 {
7910 case VIEW_CONVERT_EXPR:
7911 case NON_LVALUE_EXPR:
7912 return native_encode_initializer (TREE_OPERAND (init, 0), ptr, len, off);
7913 default:
7914 return native_encode_expr (init, ptr, len, off);
7915 case CONSTRUCTOR:
7916 tree type = TREE_TYPE (init);
7917 HOST_WIDE_INT total_bytes = int_size_in_bytes (type);
7918 if (total_bytes < 0)
7919 return 0;
7920 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7921 return 0;
7922 int o = off == -1 ? 0 : off;
7923 if (TREE_CODE (type) == ARRAY_TYPE)
7924 {
7925 HOST_WIDE_INT min_index;
7926 unsigned HOST_WIDE_INT cnt;
7927 HOST_WIDE_INT curpos = 0, fieldsize;
7928 constructor_elt *ce;
7929
7930 if (TYPE_DOMAIN (type) == NULL_TREE
7931 || !tree_fits_shwi_p (TYPE_MIN_VALUE (TYPE_DOMAIN (type))))
7932 return 0;
7933
7934 fieldsize = int_size_in_bytes (TREE_TYPE (type));
7935 if (fieldsize <= 0)
7936 return 0;
7937
7938 min_index = tree_to_shwi (TYPE_MIN_VALUE (TYPE_DOMAIN (type)));
7939 if (ptr != NULL)
7940 memset (ptr, '\0', MIN (total_bytes - off, len));
7941
7942 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (init), cnt, ce)
7943 {
7944 tree val = ce->value;
7945 tree index = ce->index;
7946 HOST_WIDE_INT pos = curpos, count = 0;
7947 bool full = false;
7948 if (index && TREE_CODE (index) == RANGE_EXPR)
7949 {
7950 if (!tree_fits_shwi_p (TREE_OPERAND (index, 0))
7951 || !tree_fits_shwi_p (TREE_OPERAND (index, 1)))
7952 return 0;
7953 pos = (tree_to_shwi (TREE_OPERAND (index, 0)) - min_index)
7954 * fieldsize;
7955 count = (tree_to_shwi (TREE_OPERAND (index, 1))
7956 - tree_to_shwi (TREE_OPERAND (index, 0)));
7957 }
7958 else if (index)
7959 {
7960 if (!tree_fits_shwi_p (index))
7961 return 0;
7962 pos = (tree_to_shwi (index) - min_index) * fieldsize;
7963 }
7964
7965 curpos = pos;
7966 if (val)
7967 do
7968 {
7969 if (off == -1
7970 || (curpos >= off
7971 && (curpos + fieldsize
7972 <= (HOST_WIDE_INT) off + len)))
7973 {
7974 if (full)
7975 {
7976 if (ptr)
7977 memcpy (ptr + (curpos - o), ptr + (pos - o),
7978 fieldsize);
7979 }
7980 else if (!native_encode_initializer (val,
7981 ptr
7982 ? ptr + curpos - o
7983 : NULL,
7984 fieldsize,
7985 off == -1 ? -1
7986 : 0))
7987 return 0;
7988 else
7989 {
7990 full = true;
7991 pos = curpos;
7992 }
7993 }
7994 else if (curpos + fieldsize > off
7995 && curpos < (HOST_WIDE_INT) off + len)
7996 {
7997 /* Partial overlap. */
7998 unsigned char *p = NULL;
7999 int no = 0;
8000 int l;
8001 if (curpos >= off)
8002 {
8003 if (ptr)
8004 p = ptr + curpos - off;
8005 l = MIN ((HOST_WIDE_INT) off + len - curpos,
8006 fieldsize);
8007 }
8008 else
8009 {
8010 p = ptr;
8011 no = off - curpos;
8012 l = len;
8013 }
8014 if (!native_encode_initializer (val, p, l, no))
8015 return 0;
8016 }
8017 curpos += fieldsize;
8018 }
8019 while (count-- != 0);
8020 }
8021 return MIN (total_bytes - off, len);
8022 }
8023 else if (TREE_CODE (type) == RECORD_TYPE
8024 || TREE_CODE (type) == UNION_TYPE)
8025 {
8026 unsigned HOST_WIDE_INT cnt;
8027 constructor_elt *ce;
8028
8029 if (ptr != NULL)
8030 memset (ptr, '\0', MIN (total_bytes - off, len));
8031 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (init), cnt, ce)
8032 {
8033 tree field = ce->index;
8034 tree val = ce->value;
8035 HOST_WIDE_INT pos, fieldsize;
8036
8037 if (field == NULL_TREE)
8038 return 0;
8039
8040 pos = int_byte_position (field);
8041 if (off != -1 && (HOST_WIDE_INT) off + len <= pos)
8042 continue;
8043
8044 if (TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
8045 && TYPE_DOMAIN (TREE_TYPE (field))
8046 && ! TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (field))))
8047 return 0;
8048 if (DECL_SIZE_UNIT (field) == NULL_TREE
8049 || !tree_fits_shwi_p (DECL_SIZE_UNIT (field)))
8050 return 0;
8051 fieldsize = tree_to_shwi (DECL_SIZE_UNIT (field));
8052 if (fieldsize == 0)
8053 continue;
8054
8055 if (off != -1 && pos + fieldsize <= off)
8056 continue;
8057
8058 if (DECL_BIT_FIELD (field))
8059 return 0;
8060
8061 if (val == NULL_TREE)
8062 continue;
8063
8064 if (off == -1
8065 || (pos >= off
8066 && (pos + fieldsize <= (HOST_WIDE_INT) off + len)))
8067 {
8068 if (!native_encode_initializer (val, ptr ? ptr + pos - o
8069 : NULL,
8070 fieldsize,
8071 off == -1 ? -1 : 0))
8072 return 0;
8073 }
8074 else
8075 {
8076 /* Partial overlap. */
8077 unsigned char *p = NULL;
8078 int no = 0;
8079 int l;
8080 if (pos >= off)
8081 {
8082 if (ptr)
8083 p = ptr + pos - off;
8084 l = MIN ((HOST_WIDE_INT) off + len - pos,
8085 fieldsize);
8086 }
8087 else
8088 {
8089 p = ptr;
8090 no = off - pos;
8091 l = len;
8092 }
8093 if (!native_encode_initializer (val, p, l, no))
8094 return 0;
8095 }
8096 }
8097 return MIN (total_bytes - off, len);
8098 }
8099 return 0;
8100 }
8101 }
8102
8103
8104 /* Subroutine of native_interpret_expr. Interpret the contents of
8105 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
8106 If the buffer cannot be interpreted, return NULL_TREE. */
8107
8108 static tree
8109 native_interpret_int (tree type, const unsigned char *ptr, int len)
8110 {
8111 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
8112
8113 if (total_bytes > len
8114 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
8115 return NULL_TREE;
8116
8117 wide_int result = wi::from_buffer (ptr, total_bytes);
8118
8119 return wide_int_to_tree (type, result);
8120 }
8121
8122
8123 /* Subroutine of native_interpret_expr. Interpret the contents of
8124 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
8125 If the buffer cannot be interpreted, return NULL_TREE. */
8126
8127 static tree
8128 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
8129 {
8130 scalar_mode mode = SCALAR_TYPE_MODE (type);
8131 int total_bytes = GET_MODE_SIZE (mode);
8132 double_int result;
8133 FIXED_VALUE_TYPE fixed_value;
8134
8135 if (total_bytes > len
8136 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
8137 return NULL_TREE;
8138
8139 result = double_int::from_buffer (ptr, total_bytes);
8140 fixed_value = fixed_from_double_int (result, mode);
8141
8142 return build_fixed (type, fixed_value);
8143 }
8144
8145
8146 /* Subroutine of native_interpret_expr. Interpret the contents of
8147 the buffer PTR of length LEN as a REAL_CST of type TYPE.
8148 If the buffer cannot be interpreted, return NULL_TREE. */
8149
8150 static tree
8151 native_interpret_real (tree type, const unsigned char *ptr, int len)
8152 {
8153 scalar_float_mode mode = SCALAR_FLOAT_TYPE_MODE (type);
8154 int total_bytes = GET_MODE_SIZE (mode);
8155 unsigned char value;
8156 /* There are always 32 bits in each long, no matter the size of
8157 the hosts long. We handle floating point representations with
8158 up to 192 bits. */
8159 REAL_VALUE_TYPE r;
8160 long tmp[6];
8161
8162 if (total_bytes > len || total_bytes > 24)
8163 return NULL_TREE;
8164 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
8165
8166 memset (tmp, 0, sizeof (tmp));
8167 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
8168 bitpos += BITS_PER_UNIT)
8169 {
8170 /* Both OFFSET and BYTE index within a long;
8171 bitpos indexes the whole float. */
8172 int offset, byte = (bitpos / BITS_PER_UNIT) & 3;
8173 if (UNITS_PER_WORD < 4)
8174 {
8175 int word = byte / UNITS_PER_WORD;
8176 if (WORDS_BIG_ENDIAN)
8177 word = (words - 1) - word;
8178 offset = word * UNITS_PER_WORD;
8179 if (BYTES_BIG_ENDIAN)
8180 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
8181 else
8182 offset += byte % UNITS_PER_WORD;
8183 }
8184 else
8185 {
8186 offset = byte;
8187 if (BYTES_BIG_ENDIAN)
8188 {
8189 /* Reverse bytes within each long, or within the entire float
8190 if it's smaller than a long (for HFmode). */
8191 offset = MIN (3, total_bytes - 1) - offset;
8192 gcc_assert (offset >= 0);
8193 }
8194 }
8195 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
8196
8197 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
8198 }
8199
8200 real_from_target (&r, tmp, mode);
8201 return build_real (type, r);
8202 }
8203
8204
8205 /* Subroutine of native_interpret_expr. Interpret the contents of
8206 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
8207 If the buffer cannot be interpreted, return NULL_TREE. */
8208
8209 static tree
8210 native_interpret_complex (tree type, const unsigned char *ptr, int len)
8211 {
8212 tree etype, rpart, ipart;
8213 int size;
8214
8215 etype = TREE_TYPE (type);
8216 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype));
8217 if (size * 2 > len)
8218 return NULL_TREE;
8219 rpart = native_interpret_expr (etype, ptr, size);
8220 if (!rpart)
8221 return NULL_TREE;
8222 ipart = native_interpret_expr (etype, ptr+size, size);
8223 if (!ipart)
8224 return NULL_TREE;
8225 return build_complex (type, rpart, ipart);
8226 }
8227
8228 /* Read a vector of type TYPE from the target memory image given by BYTES,
8229 which contains LEN bytes. The vector is known to be encodable using
8230 NPATTERNS interleaved patterns with NELTS_PER_PATTERN elements each.
8231
8232 Return the vector on success, otherwise return null. */
8233
8234 static tree
8235 native_interpret_vector_part (tree type, const unsigned char *bytes,
8236 unsigned int len, unsigned int npatterns,
8237 unsigned int nelts_per_pattern)
8238 {
8239 tree elt_type = TREE_TYPE (type);
8240 if (VECTOR_BOOLEAN_TYPE_P (type)
8241 && TYPE_PRECISION (elt_type) <= BITS_PER_UNIT)
8242 {
8243 /* This is the only case in which elements can be smaller than a byte.
8244 Element 0 is always in the lsb of the containing byte. */
8245 unsigned int elt_bits = TYPE_PRECISION (elt_type);
8246 if (elt_bits * npatterns * nelts_per_pattern > len * BITS_PER_UNIT)
8247 return NULL_TREE;
8248
8249 tree_vector_builder builder (type, npatterns, nelts_per_pattern);
8250 for (unsigned int i = 0; i < builder.encoded_nelts (); ++i)
8251 {
8252 unsigned int bit_index = i * elt_bits;
8253 unsigned int byte_index = bit_index / BITS_PER_UNIT;
8254 unsigned int lsb = bit_index % BITS_PER_UNIT;
8255 builder.quick_push (bytes[byte_index] & (1 << lsb)
8256 ? build_all_ones_cst (elt_type)
8257 : build_zero_cst (elt_type));
8258 }
8259 return builder.build ();
8260 }
8261
8262 unsigned int elt_bytes = tree_to_uhwi (TYPE_SIZE_UNIT (elt_type));
8263 if (elt_bytes * npatterns * nelts_per_pattern > len)
8264 return NULL_TREE;
8265
8266 tree_vector_builder builder (type, npatterns, nelts_per_pattern);
8267 for (unsigned int i = 0; i < builder.encoded_nelts (); ++i)
8268 {
8269 tree elt = native_interpret_expr (elt_type, bytes, elt_bytes);
8270 if (!elt)
8271 return NULL_TREE;
8272 builder.quick_push (elt);
8273 bytes += elt_bytes;
8274 }
8275 return builder.build ();
8276 }
8277
8278 /* Subroutine of native_interpret_expr. Interpret the contents of
8279 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
8280 If the buffer cannot be interpreted, return NULL_TREE. */
8281
8282 static tree
8283 native_interpret_vector (tree type, const unsigned char *ptr, unsigned int len)
8284 {
8285 tree etype;
8286 unsigned int size;
8287 unsigned HOST_WIDE_INT count;
8288
8289 etype = TREE_TYPE (type);
8290 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype));
8291 if (!TYPE_VECTOR_SUBPARTS (type).is_constant (&count)
8292 || size * count > len)
8293 return NULL_TREE;
8294
8295 return native_interpret_vector_part (type, ptr, len, count, 1);
8296 }
8297
8298
8299 /* Subroutine of fold_view_convert_expr. Interpret the contents of
8300 the buffer PTR of length LEN as a constant of type TYPE. For
8301 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
8302 we return a REAL_CST, etc... If the buffer cannot be interpreted,
8303 return NULL_TREE. */
8304
8305 tree
8306 native_interpret_expr (tree type, const unsigned char *ptr, int len)
8307 {
8308 switch (TREE_CODE (type))
8309 {
8310 case INTEGER_TYPE:
8311 case ENUMERAL_TYPE:
8312 case BOOLEAN_TYPE:
8313 case POINTER_TYPE:
8314 case REFERENCE_TYPE:
8315 return native_interpret_int (type, ptr, len);
8316
8317 case REAL_TYPE:
8318 return native_interpret_real (type, ptr, len);
8319
8320 case FIXED_POINT_TYPE:
8321 return native_interpret_fixed (type, ptr, len);
8322
8323 case COMPLEX_TYPE:
8324 return native_interpret_complex (type, ptr, len);
8325
8326 case VECTOR_TYPE:
8327 return native_interpret_vector (type, ptr, len);
8328
8329 default:
8330 return NULL_TREE;
8331 }
8332 }
8333
8334 /* Returns true if we can interpret the contents of a native encoding
8335 as TYPE. */
8336
8337 bool
8338 can_native_interpret_type_p (tree type)
8339 {
8340 switch (TREE_CODE (type))
8341 {
8342 case INTEGER_TYPE:
8343 case ENUMERAL_TYPE:
8344 case BOOLEAN_TYPE:
8345 case POINTER_TYPE:
8346 case REFERENCE_TYPE:
8347 case FIXED_POINT_TYPE:
8348 case REAL_TYPE:
8349 case COMPLEX_TYPE:
8350 case VECTOR_TYPE:
8351 return true;
8352 default:
8353 return false;
8354 }
8355 }
8356
8357 /* Try to view-convert VECTOR_CST EXPR to VECTOR_TYPE TYPE by operating
8358 directly on the VECTOR_CST encoding, in a way that works for variable-
8359 length vectors. Return the resulting VECTOR_CST on success or null
8360 on failure. */
8361
8362 static tree
8363 fold_view_convert_vector_encoding (tree type, tree expr)
8364 {
8365 tree expr_type = TREE_TYPE (expr);
8366 poly_uint64 type_bits, expr_bits;
8367 if (!poly_int_tree_p (TYPE_SIZE (type), &type_bits)
8368 || !poly_int_tree_p (TYPE_SIZE (expr_type), &expr_bits))
8369 return NULL_TREE;
8370
8371 poly_uint64 type_units = TYPE_VECTOR_SUBPARTS (type);
8372 poly_uint64 expr_units = TYPE_VECTOR_SUBPARTS (expr_type);
8373 unsigned int type_elt_bits = vector_element_size (type_bits, type_units);
8374 unsigned int expr_elt_bits = vector_element_size (expr_bits, expr_units);
8375
8376 /* We can only preserve the semantics of a stepped pattern if the new
8377 vector element is an integer of the same size. */
8378 if (VECTOR_CST_STEPPED_P (expr)
8379 && (!INTEGRAL_TYPE_P (type) || type_elt_bits != expr_elt_bits))
8380 return NULL_TREE;
8381
8382 /* The number of bits needed to encode one element from every pattern
8383 of the original vector. */
8384 unsigned int expr_sequence_bits
8385 = VECTOR_CST_NPATTERNS (expr) * expr_elt_bits;
8386
8387 /* The number of bits needed to encode one element from every pattern
8388 of the result. */
8389 unsigned int type_sequence_bits
8390 = least_common_multiple (expr_sequence_bits, type_elt_bits);
8391
8392 /* Don't try to read more bytes than are available, which can happen
8393 for constant-sized vectors if TYPE has larger elements than EXPR_TYPE.
8394 The general VIEW_CONVERT handling can cope with that case, so there's
8395 no point complicating things here. */
8396 unsigned int nelts_per_pattern = VECTOR_CST_NELTS_PER_PATTERN (expr);
8397 unsigned int buffer_bytes = CEIL (nelts_per_pattern * type_sequence_bits,
8398 BITS_PER_UNIT);
8399 unsigned int buffer_bits = buffer_bytes * BITS_PER_UNIT;
8400 if (known_gt (buffer_bits, expr_bits))
8401 return NULL_TREE;
8402
8403 /* Get enough bytes of EXPR to form the new encoding. */
8404 auto_vec<unsigned char, 128> buffer (buffer_bytes);
8405 buffer.quick_grow (buffer_bytes);
8406 if (native_encode_vector_part (expr, buffer.address (), buffer_bytes, 0,
8407 buffer_bits / expr_elt_bits)
8408 != (int) buffer_bytes)
8409 return NULL_TREE;
8410
8411 /* Reencode the bytes as TYPE. */
8412 unsigned int type_npatterns = type_sequence_bits / type_elt_bits;
8413 return native_interpret_vector_part (type, &buffer[0], buffer.length (),
8414 type_npatterns, nelts_per_pattern);
8415 }
8416
8417 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
8418 TYPE at compile-time. If we're unable to perform the conversion
8419 return NULL_TREE. */
8420
8421 static tree
8422 fold_view_convert_expr (tree type, tree expr)
8423 {
8424 /* We support up to 512-bit values (for V8DFmode). */
8425 unsigned char buffer[64];
8426 int len;
8427
8428 /* Check that the host and target are sane. */
8429 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
8430 return NULL_TREE;
8431
8432 if (VECTOR_TYPE_P (type) && TREE_CODE (expr) == VECTOR_CST)
8433 if (tree res = fold_view_convert_vector_encoding (type, expr))
8434 return res;
8435
8436 len = native_encode_expr (expr, buffer, sizeof (buffer));
8437 if (len == 0)
8438 return NULL_TREE;
8439
8440 return native_interpret_expr (type, buffer, len);
8441 }
8442
8443 /* Build an expression for the address of T. Folds away INDIRECT_REF
8444 to avoid confusing the gimplify process. */
8445
8446 tree
8447 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
8448 {
8449 /* The size of the object is not relevant when talking about its address. */
8450 if (TREE_CODE (t) == WITH_SIZE_EXPR)
8451 t = TREE_OPERAND (t, 0);
8452
8453 if (TREE_CODE (t) == INDIRECT_REF)
8454 {
8455 t = TREE_OPERAND (t, 0);
8456
8457 if (TREE_TYPE (t) != ptrtype)
8458 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
8459 }
8460 else if (TREE_CODE (t) == MEM_REF
8461 && integer_zerop (TREE_OPERAND (t, 1)))
8462 return TREE_OPERAND (t, 0);
8463 else if (TREE_CODE (t) == MEM_REF
8464 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
8465 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
8466 TREE_OPERAND (t, 0),
8467 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
8468 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
8469 {
8470 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
8471
8472 if (TREE_TYPE (t) != ptrtype)
8473 t = fold_convert_loc (loc, ptrtype, t);
8474 }
8475 else
8476 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
8477
8478 return t;
8479 }
8480
8481 /* Build an expression for the address of T. */
8482
8483 tree
8484 build_fold_addr_expr_loc (location_t loc, tree t)
8485 {
8486 tree ptrtype = build_pointer_type (TREE_TYPE (t));
8487
8488 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
8489 }
8490
8491 /* Fold a unary expression of code CODE and type TYPE with operand
8492 OP0. Return the folded expression if folding is successful.
8493 Otherwise, return NULL_TREE. */
8494
8495 tree
8496 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
8497 {
8498 tree tem;
8499 tree arg0;
8500 enum tree_code_class kind = TREE_CODE_CLASS (code);
8501
8502 gcc_assert (IS_EXPR_CODE_CLASS (kind)
8503 && TREE_CODE_LENGTH (code) == 1);
8504
8505 arg0 = op0;
8506 if (arg0)
8507 {
8508 if (CONVERT_EXPR_CODE_P (code)
8509 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
8510 {
8511 /* Don't use STRIP_NOPS, because signedness of argument type
8512 matters. */
8513 STRIP_SIGN_NOPS (arg0);
8514 }
8515 else
8516 {
8517 /* Strip any conversions that don't change the mode. This
8518 is safe for every expression, except for a comparison
8519 expression because its signedness is derived from its
8520 operands.
8521
8522 Note that this is done as an internal manipulation within
8523 the constant folder, in order to find the simplest
8524 representation of the arguments so that their form can be
8525 studied. In any cases, the appropriate type conversions
8526 should be put back in the tree that will get out of the
8527 constant folder. */
8528 STRIP_NOPS (arg0);
8529 }
8530
8531 if (CONSTANT_CLASS_P (arg0))
8532 {
8533 tree tem = const_unop (code, type, arg0);
8534 if (tem)
8535 {
8536 if (TREE_TYPE (tem) != type)
8537 tem = fold_convert_loc (loc, type, tem);
8538 return tem;
8539 }
8540 }
8541 }
8542
8543 tem = generic_simplify (loc, code, type, op0);
8544 if (tem)
8545 return tem;
8546
8547 if (TREE_CODE_CLASS (code) == tcc_unary)
8548 {
8549 if (TREE_CODE (arg0) == COMPOUND_EXPR)
8550 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
8551 fold_build1_loc (loc, code, type,
8552 fold_convert_loc (loc, TREE_TYPE (op0),
8553 TREE_OPERAND (arg0, 1))));
8554 else if (TREE_CODE (arg0) == COND_EXPR)
8555 {
8556 tree arg01 = TREE_OPERAND (arg0, 1);
8557 tree arg02 = TREE_OPERAND (arg0, 2);
8558 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
8559 arg01 = fold_build1_loc (loc, code, type,
8560 fold_convert_loc (loc,
8561 TREE_TYPE (op0), arg01));
8562 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
8563 arg02 = fold_build1_loc (loc, code, type,
8564 fold_convert_loc (loc,
8565 TREE_TYPE (op0), arg02));
8566 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
8567 arg01, arg02);
8568
8569 /* If this was a conversion, and all we did was to move into
8570 inside the COND_EXPR, bring it back out. But leave it if
8571 it is a conversion from integer to integer and the
8572 result precision is no wider than a word since such a
8573 conversion is cheap and may be optimized away by combine,
8574 while it couldn't if it were outside the COND_EXPR. Then return
8575 so we don't get into an infinite recursion loop taking the
8576 conversion out and then back in. */
8577
8578 if ((CONVERT_EXPR_CODE_P (code)
8579 || code == NON_LVALUE_EXPR)
8580 && TREE_CODE (tem) == COND_EXPR
8581 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
8582 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
8583 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
8584 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
8585 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
8586 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
8587 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8588 && (INTEGRAL_TYPE_P
8589 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
8590 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
8591 || flag_syntax_only))
8592 tem = build1_loc (loc, code, type,
8593 build3 (COND_EXPR,
8594 TREE_TYPE (TREE_OPERAND
8595 (TREE_OPERAND (tem, 1), 0)),
8596 TREE_OPERAND (tem, 0),
8597 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
8598 TREE_OPERAND (TREE_OPERAND (tem, 2),
8599 0)));
8600 return tem;
8601 }
8602 }
8603
8604 switch (code)
8605 {
8606 case NON_LVALUE_EXPR:
8607 if (!maybe_lvalue_p (op0))
8608 return fold_convert_loc (loc, type, op0);
8609 return NULL_TREE;
8610
8611 CASE_CONVERT:
8612 case FLOAT_EXPR:
8613 case FIX_TRUNC_EXPR:
8614 if (COMPARISON_CLASS_P (op0))
8615 {
8616 /* If we have (type) (a CMP b) and type is an integral type, return
8617 new expression involving the new type. Canonicalize
8618 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
8619 non-integral type.
8620 Do not fold the result as that would not simplify further, also
8621 folding again results in recursions. */
8622 if (TREE_CODE (type) == BOOLEAN_TYPE)
8623 return build2_loc (loc, TREE_CODE (op0), type,
8624 TREE_OPERAND (op0, 0),
8625 TREE_OPERAND (op0, 1));
8626 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
8627 && TREE_CODE (type) != VECTOR_TYPE)
8628 return build3_loc (loc, COND_EXPR, type, op0,
8629 constant_boolean_node (true, type),
8630 constant_boolean_node (false, type));
8631 }
8632
8633 /* Handle (T *)&A.B.C for A being of type T and B and C
8634 living at offset zero. This occurs frequently in
8635 C++ upcasting and then accessing the base. */
8636 if (TREE_CODE (op0) == ADDR_EXPR
8637 && POINTER_TYPE_P (type)
8638 && handled_component_p (TREE_OPERAND (op0, 0)))
8639 {
8640 poly_int64 bitsize, bitpos;
8641 tree offset;
8642 machine_mode mode;
8643 int unsignedp, reversep, volatilep;
8644 tree base
8645 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos,
8646 &offset, &mode, &unsignedp, &reversep,
8647 &volatilep);
8648 /* If the reference was to a (constant) zero offset, we can use
8649 the address of the base if it has the same base type
8650 as the result type and the pointer type is unqualified. */
8651 if (!offset
8652 && known_eq (bitpos, 0)
8653 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
8654 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
8655 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
8656 return fold_convert_loc (loc, type,
8657 build_fold_addr_expr_loc (loc, base));
8658 }
8659
8660 if (TREE_CODE (op0) == MODIFY_EXPR
8661 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
8662 /* Detect assigning a bitfield. */
8663 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
8664 && DECL_BIT_FIELD
8665 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
8666 {
8667 /* Don't leave an assignment inside a conversion
8668 unless assigning a bitfield. */
8669 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
8670 /* First do the assignment, then return converted constant. */
8671 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
8672 TREE_NO_WARNING (tem) = 1;
8673 TREE_USED (tem) = 1;
8674 return tem;
8675 }
8676
8677 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
8678 constants (if x has signed type, the sign bit cannot be set
8679 in c). This folds extension into the BIT_AND_EXPR.
8680 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
8681 very likely don't have maximal range for their precision and this
8682 transformation effectively doesn't preserve non-maximal ranges. */
8683 if (TREE_CODE (type) == INTEGER_TYPE
8684 && TREE_CODE (op0) == BIT_AND_EXPR
8685 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
8686 {
8687 tree and_expr = op0;
8688 tree and0 = TREE_OPERAND (and_expr, 0);
8689 tree and1 = TREE_OPERAND (and_expr, 1);
8690 int change = 0;
8691
8692 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
8693 || (TYPE_PRECISION (type)
8694 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
8695 change = 1;
8696 else if (TYPE_PRECISION (TREE_TYPE (and1))
8697 <= HOST_BITS_PER_WIDE_INT
8698 && tree_fits_uhwi_p (and1))
8699 {
8700 unsigned HOST_WIDE_INT cst;
8701
8702 cst = tree_to_uhwi (and1);
8703 cst &= HOST_WIDE_INT_M1U
8704 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
8705 change = (cst == 0);
8706 if (change
8707 && !flag_syntax_only
8708 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0)))
8709 == ZERO_EXTEND))
8710 {
8711 tree uns = unsigned_type_for (TREE_TYPE (and0));
8712 and0 = fold_convert_loc (loc, uns, and0);
8713 and1 = fold_convert_loc (loc, uns, and1);
8714 }
8715 }
8716 if (change)
8717 {
8718 tem = force_fit_type (type, wi::to_widest (and1), 0,
8719 TREE_OVERFLOW (and1));
8720 return fold_build2_loc (loc, BIT_AND_EXPR, type,
8721 fold_convert_loc (loc, type, and0), tem);
8722 }
8723 }
8724
8725 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
8726 cast (T1)X will fold away. We assume that this happens when X itself
8727 is a cast. */
8728 if (POINTER_TYPE_P (type)
8729 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
8730 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0)))
8731 {
8732 tree arg00 = TREE_OPERAND (arg0, 0);
8733 tree arg01 = TREE_OPERAND (arg0, 1);
8734
8735 return fold_build_pointer_plus_loc
8736 (loc, fold_convert_loc (loc, type, arg00), arg01);
8737 }
8738
8739 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8740 of the same precision, and X is an integer type not narrower than
8741 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8742 if (INTEGRAL_TYPE_P (type)
8743 && TREE_CODE (op0) == BIT_NOT_EXPR
8744 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8745 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
8746 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
8747 {
8748 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
8749 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8750 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
8751 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
8752 fold_convert_loc (loc, type, tem));
8753 }
8754
8755 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
8756 type of X and Y (integer types only). */
8757 if (INTEGRAL_TYPE_P (type)
8758 && TREE_CODE (op0) == MULT_EXPR
8759 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8760 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
8761 {
8762 /* Be careful not to introduce new overflows. */
8763 tree mult_type;
8764 if (TYPE_OVERFLOW_WRAPS (type))
8765 mult_type = type;
8766 else
8767 mult_type = unsigned_type_for (type);
8768
8769 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
8770 {
8771 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
8772 fold_convert_loc (loc, mult_type,
8773 TREE_OPERAND (op0, 0)),
8774 fold_convert_loc (loc, mult_type,
8775 TREE_OPERAND (op0, 1)));
8776 return fold_convert_loc (loc, type, tem);
8777 }
8778 }
8779
8780 return NULL_TREE;
8781
8782 case VIEW_CONVERT_EXPR:
8783 if (TREE_CODE (op0) == MEM_REF)
8784 {
8785 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type))
8786 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0)));
8787 tem = fold_build2_loc (loc, MEM_REF, type,
8788 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
8789 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0);
8790 return tem;
8791 }
8792
8793 return NULL_TREE;
8794
8795 case NEGATE_EXPR:
8796 tem = fold_negate_expr (loc, arg0);
8797 if (tem)
8798 return fold_convert_loc (loc, type, tem);
8799 return NULL_TREE;
8800
8801 case ABS_EXPR:
8802 /* Convert fabs((double)float) into (double)fabsf(float). */
8803 if (TREE_CODE (arg0) == NOP_EXPR
8804 && TREE_CODE (type) == REAL_TYPE)
8805 {
8806 tree targ0 = strip_float_extensions (arg0);
8807 if (targ0 != arg0)
8808 return fold_convert_loc (loc, type,
8809 fold_build1_loc (loc, ABS_EXPR,
8810 TREE_TYPE (targ0),
8811 targ0));
8812 }
8813 return NULL_TREE;
8814
8815 case BIT_NOT_EXPR:
8816 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8817 if (TREE_CODE (arg0) == BIT_XOR_EXPR
8818 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8819 fold_convert_loc (loc, type,
8820 TREE_OPERAND (arg0, 0)))))
8821 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
8822 fold_convert_loc (loc, type,
8823 TREE_OPERAND (arg0, 1)));
8824 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8825 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8826 fold_convert_loc (loc, type,
8827 TREE_OPERAND (arg0, 1)))))
8828 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
8829 fold_convert_loc (loc, type,
8830 TREE_OPERAND (arg0, 0)), tem);
8831
8832 return NULL_TREE;
8833
8834 case TRUTH_NOT_EXPR:
8835 /* Note that the operand of this must be an int
8836 and its values must be 0 or 1.
8837 ("true" is a fixed value perhaps depending on the language,
8838 but we don't handle values other than 1 correctly yet.) */
8839 tem = fold_truth_not_expr (loc, arg0);
8840 if (!tem)
8841 return NULL_TREE;
8842 return fold_convert_loc (loc, type, tem);
8843
8844 case INDIRECT_REF:
8845 /* Fold *&X to X if X is an lvalue. */
8846 if (TREE_CODE (op0) == ADDR_EXPR)
8847 {
8848 tree op00 = TREE_OPERAND (op0, 0);
8849 if ((VAR_P (op00)
8850 || TREE_CODE (op00) == PARM_DECL
8851 || TREE_CODE (op00) == RESULT_DECL)
8852 && !TREE_READONLY (op00))
8853 return op00;
8854 }
8855 return NULL_TREE;
8856
8857 default:
8858 return NULL_TREE;
8859 } /* switch (code) */
8860 }
8861
8862
8863 /* If the operation was a conversion do _not_ mark a resulting constant
8864 with TREE_OVERFLOW if the original constant was not. These conversions
8865 have implementation defined behavior and retaining the TREE_OVERFLOW
8866 flag here would confuse later passes such as VRP. */
8867 tree
8868 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
8869 tree type, tree op0)
8870 {
8871 tree res = fold_unary_loc (loc, code, type, op0);
8872 if (res
8873 && TREE_CODE (res) == INTEGER_CST
8874 && TREE_CODE (op0) == INTEGER_CST
8875 && CONVERT_EXPR_CODE_P (code))
8876 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
8877
8878 return res;
8879 }
8880
8881 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8882 operands OP0 and OP1. LOC is the location of the resulting expression.
8883 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8884 Return the folded expression if folding is successful. Otherwise,
8885 return NULL_TREE. */
8886 static tree
8887 fold_truth_andor (location_t loc, enum tree_code code, tree type,
8888 tree arg0, tree arg1, tree op0, tree op1)
8889 {
8890 tree tem;
8891
8892 /* We only do these simplifications if we are optimizing. */
8893 if (!optimize)
8894 return NULL_TREE;
8895
8896 /* Check for things like (A || B) && (A || C). We can convert this
8897 to A || (B && C). Note that either operator can be any of the four
8898 truth and/or operations and the transformation will still be
8899 valid. Also note that we only care about order for the
8900 ANDIF and ORIF operators. If B contains side effects, this
8901 might change the truth-value of A. */
8902 if (TREE_CODE (arg0) == TREE_CODE (arg1)
8903 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
8904 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
8905 || TREE_CODE (arg0) == TRUTH_AND_EXPR
8906 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
8907 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
8908 {
8909 tree a00 = TREE_OPERAND (arg0, 0);
8910 tree a01 = TREE_OPERAND (arg0, 1);
8911 tree a10 = TREE_OPERAND (arg1, 0);
8912 tree a11 = TREE_OPERAND (arg1, 1);
8913 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
8914 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
8915 && (code == TRUTH_AND_EXPR
8916 || code == TRUTH_OR_EXPR));
8917
8918 if (operand_equal_p (a00, a10, 0))
8919 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8920 fold_build2_loc (loc, code, type, a01, a11));
8921 else if (commutative && operand_equal_p (a00, a11, 0))
8922 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8923 fold_build2_loc (loc, code, type, a01, a10));
8924 else if (commutative && operand_equal_p (a01, a10, 0))
8925 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
8926 fold_build2_loc (loc, code, type, a00, a11));
8927
8928 /* This case if tricky because we must either have commutative
8929 operators or else A10 must not have side-effects. */
8930
8931 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8932 && operand_equal_p (a01, a11, 0))
8933 return fold_build2_loc (loc, TREE_CODE (arg0), type,
8934 fold_build2_loc (loc, code, type, a00, a10),
8935 a01);
8936 }
8937
8938 /* See if we can build a range comparison. */
8939 if ((tem = fold_range_test (loc, code, type, op0, op1)) != 0)
8940 return tem;
8941
8942 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
8943 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
8944 {
8945 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
8946 if (tem)
8947 return fold_build2_loc (loc, code, type, tem, arg1);
8948 }
8949
8950 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
8951 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
8952 {
8953 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
8954 if (tem)
8955 return fold_build2_loc (loc, code, type, arg0, tem);
8956 }
8957
8958 /* Check for the possibility of merging component references. If our
8959 lhs is another similar operation, try to merge its rhs with our
8960 rhs. Then try to merge our lhs and rhs. */
8961 if (TREE_CODE (arg0) == code
8962 && (tem = fold_truth_andor_1 (loc, code, type,
8963 TREE_OPERAND (arg0, 1), arg1)) != 0)
8964 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8965
8966 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
8967 return tem;
8968
8969 bool logical_op_non_short_circuit = LOGICAL_OP_NON_SHORT_CIRCUIT;
8970 if (param_logical_op_non_short_circuit != -1)
8971 logical_op_non_short_circuit
8972 = param_logical_op_non_short_circuit;
8973 if (logical_op_non_short_circuit
8974 && !flag_sanitize_coverage
8975 && (code == TRUTH_AND_EXPR
8976 || code == TRUTH_ANDIF_EXPR
8977 || code == TRUTH_OR_EXPR
8978 || code == TRUTH_ORIF_EXPR))
8979 {
8980 enum tree_code ncode, icode;
8981
8982 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8983 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8984 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8985
8986 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8987 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8988 We don't want to pack more than two leafs to a non-IF AND/OR
8989 expression.
8990 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8991 equal to IF-CODE, then we don't want to add right-hand operand.
8992 If the inner right-hand side of left-hand operand has
8993 side-effects, or isn't simple, then we can't add to it,
8994 as otherwise we might destroy if-sequence. */
8995 if (TREE_CODE (arg0) == icode
8996 && simple_operand_p_2 (arg1)
8997 /* Needed for sequence points to handle trappings, and
8998 side-effects. */
8999 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
9000 {
9001 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
9002 arg1);
9003 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
9004 tem);
9005 }
9006 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
9007 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
9008 else if (TREE_CODE (arg1) == icode
9009 && simple_operand_p_2 (arg0)
9010 /* Needed for sequence points to handle trappings, and
9011 side-effects. */
9012 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
9013 {
9014 tem = fold_build2_loc (loc, ncode, type,
9015 arg0, TREE_OPERAND (arg1, 0));
9016 return fold_build2_loc (loc, icode, type, tem,
9017 TREE_OPERAND (arg1, 1));
9018 }
9019 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
9020 into (A OR B).
9021 For sequence point consistancy, we need to check for trapping,
9022 and side-effects. */
9023 else if (code == icode && simple_operand_p_2 (arg0)
9024 && simple_operand_p_2 (arg1))
9025 return fold_build2_loc (loc, ncode, type, arg0, arg1);
9026 }
9027
9028 return NULL_TREE;
9029 }
9030
9031 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
9032 by changing CODE to reduce the magnitude of constants involved in
9033 ARG0 of the comparison.
9034 Returns a canonicalized comparison tree if a simplification was
9035 possible, otherwise returns NULL_TREE.
9036 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
9037 valid if signed overflow is undefined. */
9038
9039 static tree
9040 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
9041 tree arg0, tree arg1,
9042 bool *strict_overflow_p)
9043 {
9044 enum tree_code code0 = TREE_CODE (arg0);
9045 tree t, cst0 = NULL_TREE;
9046 int sgn0;
9047
9048 /* Match A +- CST code arg1. We can change this only if overflow
9049 is undefined. */
9050 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9051 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
9052 /* In principle pointers also have undefined overflow behavior,
9053 but that causes problems elsewhere. */
9054 && !POINTER_TYPE_P (TREE_TYPE (arg0))
9055 && (code0 == MINUS_EXPR
9056 || code0 == PLUS_EXPR)
9057 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
9058 return NULL_TREE;
9059
9060 /* Identify the constant in arg0 and its sign. */
9061 cst0 = TREE_OPERAND (arg0, 1);
9062 sgn0 = tree_int_cst_sgn (cst0);
9063
9064 /* Overflowed constants and zero will cause problems. */
9065 if (integer_zerop (cst0)
9066 || TREE_OVERFLOW (cst0))
9067 return NULL_TREE;
9068
9069 /* See if we can reduce the magnitude of the constant in
9070 arg0 by changing the comparison code. */
9071 /* A - CST < arg1 -> A - CST-1 <= arg1. */
9072 if (code == LT_EXPR
9073 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
9074 code = LE_EXPR;
9075 /* A + CST > arg1 -> A + CST-1 >= arg1. */
9076 else if (code == GT_EXPR
9077 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
9078 code = GE_EXPR;
9079 /* A + CST <= arg1 -> A + CST-1 < arg1. */
9080 else if (code == LE_EXPR
9081 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
9082 code = LT_EXPR;
9083 /* A - CST >= arg1 -> A - CST-1 > arg1. */
9084 else if (code == GE_EXPR
9085 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
9086 code = GT_EXPR;
9087 else
9088 return NULL_TREE;
9089 *strict_overflow_p = true;
9090
9091 /* Now build the constant reduced in magnitude. But not if that
9092 would produce one outside of its types range. */
9093 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
9094 && ((sgn0 == 1
9095 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
9096 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
9097 || (sgn0 == -1
9098 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
9099 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
9100 return NULL_TREE;
9101
9102 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
9103 cst0, build_int_cst (TREE_TYPE (cst0), 1));
9104 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
9105 t = fold_convert (TREE_TYPE (arg1), t);
9106
9107 return fold_build2_loc (loc, code, type, t, arg1);
9108 }
9109
9110 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
9111 overflow further. Try to decrease the magnitude of constants involved
9112 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
9113 and put sole constants at the second argument position.
9114 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
9115
9116 static tree
9117 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
9118 tree arg0, tree arg1)
9119 {
9120 tree t;
9121 bool strict_overflow_p;
9122 const char * const warnmsg = G_("assuming signed overflow does not occur "
9123 "when reducing constant in comparison");
9124
9125 /* Try canonicalization by simplifying arg0. */
9126 strict_overflow_p = false;
9127 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
9128 &strict_overflow_p);
9129 if (t)
9130 {
9131 if (strict_overflow_p)
9132 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
9133 return t;
9134 }
9135
9136 /* Try canonicalization by simplifying arg1 using the swapped
9137 comparison. */
9138 code = swap_tree_comparison (code);
9139 strict_overflow_p = false;
9140 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
9141 &strict_overflow_p);
9142 if (t && strict_overflow_p)
9143 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
9144 return t;
9145 }
9146
9147 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
9148 space. This is used to avoid issuing overflow warnings for
9149 expressions like &p->x which cannot wrap. */
9150
9151 static bool
9152 pointer_may_wrap_p (tree base, tree offset, poly_int64 bitpos)
9153 {
9154 if (!POINTER_TYPE_P (TREE_TYPE (base)))
9155 return true;
9156
9157 if (maybe_lt (bitpos, 0))
9158 return true;
9159
9160 poly_wide_int wi_offset;
9161 int precision = TYPE_PRECISION (TREE_TYPE (base));
9162 if (offset == NULL_TREE)
9163 wi_offset = wi::zero (precision);
9164 else if (!poly_int_tree_p (offset) || TREE_OVERFLOW (offset))
9165 return true;
9166 else
9167 wi_offset = wi::to_poly_wide (offset);
9168
9169 wi::overflow_type overflow;
9170 poly_wide_int units = wi::shwi (bits_to_bytes_round_down (bitpos),
9171 precision);
9172 poly_wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
9173 if (overflow)
9174 return true;
9175
9176 poly_uint64 total_hwi, size;
9177 if (!total.to_uhwi (&total_hwi)
9178 || !poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base))),
9179 &size)
9180 || known_eq (size, 0U))
9181 return true;
9182
9183 if (known_le (total_hwi, size))
9184 return false;
9185
9186 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
9187 array. */
9188 if (TREE_CODE (base) == ADDR_EXPR
9189 && poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (base, 0))),
9190 &size)
9191 && maybe_ne (size, 0U)
9192 && known_le (total_hwi, size))
9193 return false;
9194
9195 return true;
9196 }
9197
9198 /* Return a positive integer when the symbol DECL is known to have
9199 a nonzero address, zero when it's known not to (e.g., it's a weak
9200 symbol), and a negative integer when the symbol is not yet in the
9201 symbol table and so whether or not its address is zero is unknown.
9202 For function local objects always return positive integer. */
9203 static int
9204 maybe_nonzero_address (tree decl)
9205 {
9206 if (DECL_P (decl) && decl_in_symtab_p (decl))
9207 if (struct symtab_node *symbol = symtab_node::get_create (decl))
9208 return symbol->nonzero_address ();
9209
9210 /* Function local objects are never NULL. */
9211 if (DECL_P (decl)
9212 && (DECL_CONTEXT (decl)
9213 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL
9214 && auto_var_in_fn_p (decl, DECL_CONTEXT (decl))))
9215 return 1;
9216
9217 return -1;
9218 }
9219
9220 /* Subroutine of fold_binary. This routine performs all of the
9221 transformations that are common to the equality/inequality
9222 operators (EQ_EXPR and NE_EXPR) and the ordering operators
9223 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
9224 fold_binary should call fold_binary. Fold a comparison with
9225 tree code CODE and type TYPE with operands OP0 and OP1. Return
9226 the folded comparison or NULL_TREE. */
9227
9228 static tree
9229 fold_comparison (location_t loc, enum tree_code code, tree type,
9230 tree op0, tree op1)
9231 {
9232 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
9233 tree arg0, arg1, tem;
9234
9235 arg0 = op0;
9236 arg1 = op1;
9237
9238 STRIP_SIGN_NOPS (arg0);
9239 STRIP_SIGN_NOPS (arg1);
9240
9241 /* For comparisons of pointers we can decompose it to a compile time
9242 comparison of the base objects and the offsets into the object.
9243 This requires at least one operand being an ADDR_EXPR or a
9244 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
9245 if (POINTER_TYPE_P (TREE_TYPE (arg0))
9246 && (TREE_CODE (arg0) == ADDR_EXPR
9247 || TREE_CODE (arg1) == ADDR_EXPR
9248 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
9249 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
9250 {
9251 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
9252 poly_int64 bitsize, bitpos0 = 0, bitpos1 = 0;
9253 machine_mode mode;
9254 int volatilep, reversep, unsignedp;
9255 bool indirect_base0 = false, indirect_base1 = false;
9256
9257 /* Get base and offset for the access. Strip ADDR_EXPR for
9258 get_inner_reference, but put it back by stripping INDIRECT_REF
9259 off the base object if possible. indirect_baseN will be true
9260 if baseN is not an address but refers to the object itself. */
9261 base0 = arg0;
9262 if (TREE_CODE (arg0) == ADDR_EXPR)
9263 {
9264 base0
9265 = get_inner_reference (TREE_OPERAND (arg0, 0),
9266 &bitsize, &bitpos0, &offset0, &mode,
9267 &unsignedp, &reversep, &volatilep);
9268 if (TREE_CODE (base0) == INDIRECT_REF)
9269 base0 = TREE_OPERAND (base0, 0);
9270 else
9271 indirect_base0 = true;
9272 }
9273 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
9274 {
9275 base0 = TREE_OPERAND (arg0, 0);
9276 STRIP_SIGN_NOPS (base0);
9277 if (TREE_CODE (base0) == ADDR_EXPR)
9278 {
9279 base0
9280 = get_inner_reference (TREE_OPERAND (base0, 0),
9281 &bitsize, &bitpos0, &offset0, &mode,
9282 &unsignedp, &reversep, &volatilep);
9283 if (TREE_CODE (base0) == INDIRECT_REF)
9284 base0 = TREE_OPERAND (base0, 0);
9285 else
9286 indirect_base0 = true;
9287 }
9288 if (offset0 == NULL_TREE || integer_zerop (offset0))
9289 offset0 = TREE_OPERAND (arg0, 1);
9290 else
9291 offset0 = size_binop (PLUS_EXPR, offset0,
9292 TREE_OPERAND (arg0, 1));
9293 if (poly_int_tree_p (offset0))
9294 {
9295 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset0),
9296 TYPE_PRECISION (sizetype));
9297 tem <<= LOG2_BITS_PER_UNIT;
9298 tem += bitpos0;
9299 if (tem.to_shwi (&bitpos0))
9300 offset0 = NULL_TREE;
9301 }
9302 }
9303
9304 base1 = arg1;
9305 if (TREE_CODE (arg1) == ADDR_EXPR)
9306 {
9307 base1
9308 = get_inner_reference (TREE_OPERAND (arg1, 0),
9309 &bitsize, &bitpos1, &offset1, &mode,
9310 &unsignedp, &reversep, &volatilep);
9311 if (TREE_CODE (base1) == INDIRECT_REF)
9312 base1 = TREE_OPERAND (base1, 0);
9313 else
9314 indirect_base1 = true;
9315 }
9316 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
9317 {
9318 base1 = TREE_OPERAND (arg1, 0);
9319 STRIP_SIGN_NOPS (base1);
9320 if (TREE_CODE (base1) == ADDR_EXPR)
9321 {
9322 base1
9323 = get_inner_reference (TREE_OPERAND (base1, 0),
9324 &bitsize, &bitpos1, &offset1, &mode,
9325 &unsignedp, &reversep, &volatilep);
9326 if (TREE_CODE (base1) == INDIRECT_REF)
9327 base1 = TREE_OPERAND (base1, 0);
9328 else
9329 indirect_base1 = true;
9330 }
9331 if (offset1 == NULL_TREE || integer_zerop (offset1))
9332 offset1 = TREE_OPERAND (arg1, 1);
9333 else
9334 offset1 = size_binop (PLUS_EXPR, offset1,
9335 TREE_OPERAND (arg1, 1));
9336 if (poly_int_tree_p (offset1))
9337 {
9338 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset1),
9339 TYPE_PRECISION (sizetype));
9340 tem <<= LOG2_BITS_PER_UNIT;
9341 tem += bitpos1;
9342 if (tem.to_shwi (&bitpos1))
9343 offset1 = NULL_TREE;
9344 }
9345 }
9346
9347 /* If we have equivalent bases we might be able to simplify. */
9348 if (indirect_base0 == indirect_base1
9349 && operand_equal_p (base0, base1,
9350 indirect_base0 ? OEP_ADDRESS_OF : 0))
9351 {
9352 /* We can fold this expression to a constant if the non-constant
9353 offset parts are equal. */
9354 if ((offset0 == offset1
9355 || (offset0 && offset1
9356 && operand_equal_p (offset0, offset1, 0)))
9357 && (equality_code
9358 || (indirect_base0
9359 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
9360 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
9361 {
9362 if (!equality_code
9363 && maybe_ne (bitpos0, bitpos1)
9364 && (pointer_may_wrap_p (base0, offset0, bitpos0)
9365 || pointer_may_wrap_p (base1, offset1, bitpos1)))
9366 fold_overflow_warning (("assuming pointer wraparound does not "
9367 "occur when comparing P +- C1 with "
9368 "P +- C2"),
9369 WARN_STRICT_OVERFLOW_CONDITIONAL);
9370
9371 switch (code)
9372 {
9373 case EQ_EXPR:
9374 if (known_eq (bitpos0, bitpos1))
9375 return constant_boolean_node (true, type);
9376 if (known_ne (bitpos0, bitpos1))
9377 return constant_boolean_node (false, type);
9378 break;
9379 case NE_EXPR:
9380 if (known_ne (bitpos0, bitpos1))
9381 return constant_boolean_node (true, type);
9382 if (known_eq (bitpos0, bitpos1))
9383 return constant_boolean_node (false, type);
9384 break;
9385 case LT_EXPR:
9386 if (known_lt (bitpos0, bitpos1))
9387 return constant_boolean_node (true, type);
9388 if (known_ge (bitpos0, bitpos1))
9389 return constant_boolean_node (false, type);
9390 break;
9391 case LE_EXPR:
9392 if (known_le (bitpos0, bitpos1))
9393 return constant_boolean_node (true, type);
9394 if (known_gt (bitpos0, bitpos1))
9395 return constant_boolean_node (false, type);
9396 break;
9397 case GE_EXPR:
9398 if (known_ge (bitpos0, bitpos1))
9399 return constant_boolean_node (true, type);
9400 if (known_lt (bitpos0, bitpos1))
9401 return constant_boolean_node (false, type);
9402 break;
9403 case GT_EXPR:
9404 if (known_gt (bitpos0, bitpos1))
9405 return constant_boolean_node (true, type);
9406 if (known_le (bitpos0, bitpos1))
9407 return constant_boolean_node (false, type);
9408 break;
9409 default:;
9410 }
9411 }
9412 /* We can simplify the comparison to a comparison of the variable
9413 offset parts if the constant offset parts are equal.
9414 Be careful to use signed sizetype here because otherwise we
9415 mess with array offsets in the wrong way. This is possible
9416 because pointer arithmetic is restricted to retain within an
9417 object and overflow on pointer differences is undefined as of
9418 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
9419 else if (known_eq (bitpos0, bitpos1)
9420 && (equality_code
9421 || (indirect_base0
9422 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
9423 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
9424 {
9425 /* By converting to signed sizetype we cover middle-end pointer
9426 arithmetic which operates on unsigned pointer types of size
9427 type size and ARRAY_REF offsets which are properly sign or
9428 zero extended from their type in case it is narrower than
9429 sizetype. */
9430 if (offset0 == NULL_TREE)
9431 offset0 = build_int_cst (ssizetype, 0);
9432 else
9433 offset0 = fold_convert_loc (loc, ssizetype, offset0);
9434 if (offset1 == NULL_TREE)
9435 offset1 = build_int_cst (ssizetype, 0);
9436 else
9437 offset1 = fold_convert_loc (loc, ssizetype, offset1);
9438
9439 if (!equality_code
9440 && (pointer_may_wrap_p (base0, offset0, bitpos0)
9441 || pointer_may_wrap_p (base1, offset1, bitpos1)))
9442 fold_overflow_warning (("assuming pointer wraparound does not "
9443 "occur when comparing P +- C1 with "
9444 "P +- C2"),
9445 WARN_STRICT_OVERFLOW_COMPARISON);
9446
9447 return fold_build2_loc (loc, code, type, offset0, offset1);
9448 }
9449 }
9450 /* For equal offsets we can simplify to a comparison of the
9451 base addresses. */
9452 else if (known_eq (bitpos0, bitpos1)
9453 && (indirect_base0
9454 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
9455 && (indirect_base1
9456 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
9457 && ((offset0 == offset1)
9458 || (offset0 && offset1
9459 && operand_equal_p (offset0, offset1, 0))))
9460 {
9461 if (indirect_base0)
9462 base0 = build_fold_addr_expr_loc (loc, base0);
9463 if (indirect_base1)
9464 base1 = build_fold_addr_expr_loc (loc, base1);
9465 return fold_build2_loc (loc, code, type, base0, base1);
9466 }
9467 /* Comparison between an ordinary (non-weak) symbol and a null
9468 pointer can be eliminated since such symbols must have a non
9469 null address. In C, relational expressions between pointers
9470 to objects and null pointers are undefined. The results
9471 below follow the C++ rules with the additional property that
9472 every object pointer compares greater than a null pointer.
9473 */
9474 else if (((DECL_P (base0)
9475 && maybe_nonzero_address (base0) > 0
9476 /* Avoid folding references to struct members at offset 0 to
9477 prevent tests like '&ptr->firstmember == 0' from getting
9478 eliminated. When ptr is null, although the -> expression
9479 is strictly speaking invalid, GCC retains it as a matter
9480 of QoI. See PR c/44555. */
9481 && (offset0 == NULL_TREE && known_ne (bitpos0, 0)))
9482 || CONSTANT_CLASS_P (base0))
9483 && indirect_base0
9484 /* The caller guarantees that when one of the arguments is
9485 constant (i.e., null in this case) it is second. */
9486 && integer_zerop (arg1))
9487 {
9488 switch (code)
9489 {
9490 case EQ_EXPR:
9491 case LE_EXPR:
9492 case LT_EXPR:
9493 return constant_boolean_node (false, type);
9494 case GE_EXPR:
9495 case GT_EXPR:
9496 case NE_EXPR:
9497 return constant_boolean_node (true, type);
9498 default:
9499 gcc_unreachable ();
9500 }
9501 }
9502 }
9503
9504 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
9505 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
9506 the resulting offset is smaller in absolute value than the
9507 original one and has the same sign. */
9508 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9509 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
9510 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
9511 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9512 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
9513 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
9514 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
9515 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
9516 {
9517 tree const1 = TREE_OPERAND (arg0, 1);
9518 tree const2 = TREE_OPERAND (arg1, 1);
9519 tree variable1 = TREE_OPERAND (arg0, 0);
9520 tree variable2 = TREE_OPERAND (arg1, 0);
9521 tree cst;
9522 const char * const warnmsg = G_("assuming signed overflow does not "
9523 "occur when combining constants around "
9524 "a comparison");
9525
9526 /* Put the constant on the side where it doesn't overflow and is
9527 of lower absolute value and of same sign than before. */
9528 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
9529 ? MINUS_EXPR : PLUS_EXPR,
9530 const2, const1);
9531 if (!TREE_OVERFLOW (cst)
9532 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
9533 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
9534 {
9535 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
9536 return fold_build2_loc (loc, code, type,
9537 variable1,
9538 fold_build2_loc (loc, TREE_CODE (arg1),
9539 TREE_TYPE (arg1),
9540 variable2, cst));
9541 }
9542
9543 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
9544 ? MINUS_EXPR : PLUS_EXPR,
9545 const1, const2);
9546 if (!TREE_OVERFLOW (cst)
9547 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
9548 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
9549 {
9550 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
9551 return fold_build2_loc (loc, code, type,
9552 fold_build2_loc (loc, TREE_CODE (arg0),
9553 TREE_TYPE (arg0),
9554 variable1, cst),
9555 variable2);
9556 }
9557 }
9558
9559 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
9560 if (tem)
9561 return tem;
9562
9563 /* If we are comparing an expression that just has comparisons
9564 of two integer values, arithmetic expressions of those comparisons,
9565 and constants, we can simplify it. There are only three cases
9566 to check: the two values can either be equal, the first can be
9567 greater, or the second can be greater. Fold the expression for
9568 those three values. Since each value must be 0 or 1, we have
9569 eight possibilities, each of which corresponds to the constant 0
9570 or 1 or one of the six possible comparisons.
9571
9572 This handles common cases like (a > b) == 0 but also handles
9573 expressions like ((x > y) - (y > x)) > 0, which supposedly
9574 occur in macroized code. */
9575
9576 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
9577 {
9578 tree cval1 = 0, cval2 = 0;
9579
9580 if (twoval_comparison_p (arg0, &cval1, &cval2)
9581 /* Don't handle degenerate cases here; they should already
9582 have been handled anyway. */
9583 && cval1 != 0 && cval2 != 0
9584 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
9585 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
9586 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
9587 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
9588 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
9589 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
9590 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
9591 {
9592 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
9593 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
9594
9595 /* We can't just pass T to eval_subst in case cval1 or cval2
9596 was the same as ARG1. */
9597
9598 tree high_result
9599 = fold_build2_loc (loc, code, type,
9600 eval_subst (loc, arg0, cval1, maxval,
9601 cval2, minval),
9602 arg1);
9603 tree equal_result
9604 = fold_build2_loc (loc, code, type,
9605 eval_subst (loc, arg0, cval1, maxval,
9606 cval2, maxval),
9607 arg1);
9608 tree low_result
9609 = fold_build2_loc (loc, code, type,
9610 eval_subst (loc, arg0, cval1, minval,
9611 cval2, maxval),
9612 arg1);
9613
9614 /* All three of these results should be 0 or 1. Confirm they are.
9615 Then use those values to select the proper code to use. */
9616
9617 if (TREE_CODE (high_result) == INTEGER_CST
9618 && TREE_CODE (equal_result) == INTEGER_CST
9619 && TREE_CODE (low_result) == INTEGER_CST)
9620 {
9621 /* Make a 3-bit mask with the high-order bit being the
9622 value for `>', the next for '=', and the low for '<'. */
9623 switch ((integer_onep (high_result) * 4)
9624 + (integer_onep (equal_result) * 2)
9625 + integer_onep (low_result))
9626 {
9627 case 0:
9628 /* Always false. */
9629 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
9630 case 1:
9631 code = LT_EXPR;
9632 break;
9633 case 2:
9634 code = EQ_EXPR;
9635 break;
9636 case 3:
9637 code = LE_EXPR;
9638 break;
9639 case 4:
9640 code = GT_EXPR;
9641 break;
9642 case 5:
9643 code = NE_EXPR;
9644 break;
9645 case 6:
9646 code = GE_EXPR;
9647 break;
9648 case 7:
9649 /* Always true. */
9650 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
9651 }
9652
9653 return fold_build2_loc (loc, code, type, cval1, cval2);
9654 }
9655 }
9656 }
9657
9658 return NULL_TREE;
9659 }
9660
9661
9662 /* Subroutine of fold_binary. Optimize complex multiplications of the
9663 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
9664 argument EXPR represents the expression "z" of type TYPE. */
9665
9666 static tree
9667 fold_mult_zconjz (location_t loc, tree type, tree expr)
9668 {
9669 tree itype = TREE_TYPE (type);
9670 tree rpart, ipart, tem;
9671
9672 if (TREE_CODE (expr) == COMPLEX_EXPR)
9673 {
9674 rpart = TREE_OPERAND (expr, 0);
9675 ipart = TREE_OPERAND (expr, 1);
9676 }
9677 else if (TREE_CODE (expr) == COMPLEX_CST)
9678 {
9679 rpart = TREE_REALPART (expr);
9680 ipart = TREE_IMAGPART (expr);
9681 }
9682 else
9683 {
9684 expr = save_expr (expr);
9685 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
9686 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
9687 }
9688
9689 rpart = save_expr (rpart);
9690 ipart = save_expr (ipart);
9691 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
9692 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
9693 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
9694 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
9695 build_zero_cst (itype));
9696 }
9697
9698
9699 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
9700 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return
9701 true if successful. */
9702
9703 static bool
9704 vec_cst_ctor_to_array (tree arg, unsigned int nelts, tree *elts)
9705 {
9706 unsigned HOST_WIDE_INT i, nunits;
9707
9708 if (TREE_CODE (arg) == VECTOR_CST
9709 && VECTOR_CST_NELTS (arg).is_constant (&nunits))
9710 {
9711 for (i = 0; i < nunits; ++i)
9712 elts[i] = VECTOR_CST_ELT (arg, i);
9713 }
9714 else if (TREE_CODE (arg) == CONSTRUCTOR)
9715 {
9716 constructor_elt *elt;
9717
9718 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
9719 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
9720 return false;
9721 else
9722 elts[i] = elt->value;
9723 }
9724 else
9725 return false;
9726 for (; i < nelts; i++)
9727 elts[i]
9728 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
9729 return true;
9730 }
9731
9732 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
9733 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
9734 NULL_TREE otherwise. */
9735
9736 tree
9737 fold_vec_perm (tree type, tree arg0, tree arg1, const vec_perm_indices &sel)
9738 {
9739 unsigned int i;
9740 unsigned HOST_WIDE_INT nelts;
9741 bool need_ctor = false;
9742
9743 if (!sel.length ().is_constant (&nelts))
9744 return NULL_TREE;
9745 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type), nelts)
9746 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)), nelts)
9747 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)), nelts));
9748 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
9749 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
9750 return NULL_TREE;
9751
9752 tree *in_elts = XALLOCAVEC (tree, nelts * 2);
9753 if (!vec_cst_ctor_to_array (arg0, nelts, in_elts)
9754 || !vec_cst_ctor_to_array (arg1, nelts, in_elts + nelts))
9755 return NULL_TREE;
9756
9757 tree_vector_builder out_elts (type, nelts, 1);
9758 for (i = 0; i < nelts; i++)
9759 {
9760 HOST_WIDE_INT index;
9761 if (!sel[i].is_constant (&index))
9762 return NULL_TREE;
9763 if (!CONSTANT_CLASS_P (in_elts[index]))
9764 need_ctor = true;
9765 out_elts.quick_push (unshare_expr (in_elts[index]));
9766 }
9767
9768 if (need_ctor)
9769 {
9770 vec<constructor_elt, va_gc> *v;
9771 vec_alloc (v, nelts);
9772 for (i = 0; i < nelts; i++)
9773 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, out_elts[i]);
9774 return build_constructor (type, v);
9775 }
9776 else
9777 return out_elts.build ();
9778 }
9779
9780 /* Try to fold a pointer difference of type TYPE two address expressions of
9781 array references AREF0 and AREF1 using location LOC. Return a
9782 simplified expression for the difference or NULL_TREE. */
9783
9784 static tree
9785 fold_addr_of_array_ref_difference (location_t loc, tree type,
9786 tree aref0, tree aref1,
9787 bool use_pointer_diff)
9788 {
9789 tree base0 = TREE_OPERAND (aref0, 0);
9790 tree base1 = TREE_OPERAND (aref1, 0);
9791 tree base_offset = build_int_cst (type, 0);
9792
9793 /* If the bases are array references as well, recurse. If the bases
9794 are pointer indirections compute the difference of the pointers.
9795 If the bases are equal, we are set. */
9796 if ((TREE_CODE (base0) == ARRAY_REF
9797 && TREE_CODE (base1) == ARRAY_REF
9798 && (base_offset
9799 = fold_addr_of_array_ref_difference (loc, type, base0, base1,
9800 use_pointer_diff)))
9801 || (INDIRECT_REF_P (base0)
9802 && INDIRECT_REF_P (base1)
9803 && (base_offset
9804 = use_pointer_diff
9805 ? fold_binary_loc (loc, POINTER_DIFF_EXPR, type,
9806 TREE_OPERAND (base0, 0),
9807 TREE_OPERAND (base1, 0))
9808 : fold_binary_loc (loc, MINUS_EXPR, type,
9809 fold_convert (type,
9810 TREE_OPERAND (base0, 0)),
9811 fold_convert (type,
9812 TREE_OPERAND (base1, 0)))))
9813 || operand_equal_p (base0, base1, OEP_ADDRESS_OF))
9814 {
9815 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
9816 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
9817 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
9818 tree diff = fold_build2_loc (loc, MINUS_EXPR, type, op0, op1);
9819 return fold_build2_loc (loc, PLUS_EXPR, type,
9820 base_offset,
9821 fold_build2_loc (loc, MULT_EXPR, type,
9822 diff, esz));
9823 }
9824 return NULL_TREE;
9825 }
9826
9827 /* If the real or vector real constant CST of type TYPE has an exact
9828 inverse, return it, else return NULL. */
9829
9830 tree
9831 exact_inverse (tree type, tree cst)
9832 {
9833 REAL_VALUE_TYPE r;
9834 tree unit_type;
9835 machine_mode mode;
9836
9837 switch (TREE_CODE (cst))
9838 {
9839 case REAL_CST:
9840 r = TREE_REAL_CST (cst);
9841
9842 if (exact_real_inverse (TYPE_MODE (type), &r))
9843 return build_real (type, r);
9844
9845 return NULL_TREE;
9846
9847 case VECTOR_CST:
9848 {
9849 unit_type = TREE_TYPE (type);
9850 mode = TYPE_MODE (unit_type);
9851
9852 tree_vector_builder elts;
9853 if (!elts.new_unary_operation (type, cst, false))
9854 return NULL_TREE;
9855 unsigned int count = elts.encoded_nelts ();
9856 for (unsigned int i = 0; i < count; ++i)
9857 {
9858 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
9859 if (!exact_real_inverse (mode, &r))
9860 return NULL_TREE;
9861 elts.quick_push (build_real (unit_type, r));
9862 }
9863
9864 return elts.build ();
9865 }
9866
9867 default:
9868 return NULL_TREE;
9869 }
9870 }
9871
9872 /* Mask out the tz least significant bits of X of type TYPE where
9873 tz is the number of trailing zeroes in Y. */
9874 static wide_int
9875 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
9876 {
9877 int tz = wi::ctz (y);
9878 if (tz > 0)
9879 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
9880 return x;
9881 }
9882
9883 /* Return true when T is an address and is known to be nonzero.
9884 For floating point we further ensure that T is not denormal.
9885 Similar logic is present in nonzero_address in rtlanal.h.
9886
9887 If the return value is based on the assumption that signed overflow
9888 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9889 change *STRICT_OVERFLOW_P. */
9890
9891 static bool
9892 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
9893 {
9894 tree type = TREE_TYPE (t);
9895 enum tree_code code;
9896
9897 /* Doing something useful for floating point would need more work. */
9898 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
9899 return false;
9900
9901 code = TREE_CODE (t);
9902 switch (TREE_CODE_CLASS (code))
9903 {
9904 case tcc_unary:
9905 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9906 strict_overflow_p);
9907 case tcc_binary:
9908 case tcc_comparison:
9909 return tree_binary_nonzero_warnv_p (code, type,
9910 TREE_OPERAND (t, 0),
9911 TREE_OPERAND (t, 1),
9912 strict_overflow_p);
9913 case tcc_constant:
9914 case tcc_declaration:
9915 case tcc_reference:
9916 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9917
9918 default:
9919 break;
9920 }
9921
9922 switch (code)
9923 {
9924 case TRUTH_NOT_EXPR:
9925 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9926 strict_overflow_p);
9927
9928 case TRUTH_AND_EXPR:
9929 case TRUTH_OR_EXPR:
9930 case TRUTH_XOR_EXPR:
9931 return tree_binary_nonzero_warnv_p (code, type,
9932 TREE_OPERAND (t, 0),
9933 TREE_OPERAND (t, 1),
9934 strict_overflow_p);
9935
9936 case COND_EXPR:
9937 case CONSTRUCTOR:
9938 case OBJ_TYPE_REF:
9939 case ASSERT_EXPR:
9940 case ADDR_EXPR:
9941 case WITH_SIZE_EXPR:
9942 case SSA_NAME:
9943 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9944
9945 case COMPOUND_EXPR:
9946 case MODIFY_EXPR:
9947 case BIND_EXPR:
9948 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
9949 strict_overflow_p);
9950
9951 case SAVE_EXPR:
9952 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
9953 strict_overflow_p);
9954
9955 case CALL_EXPR:
9956 {
9957 tree fndecl = get_callee_fndecl (t);
9958 if (!fndecl) return false;
9959 if (flag_delete_null_pointer_checks && !flag_check_new
9960 && DECL_IS_OPERATOR_NEW_P (fndecl)
9961 && !TREE_NOTHROW (fndecl))
9962 return true;
9963 if (flag_delete_null_pointer_checks
9964 && lookup_attribute ("returns_nonnull",
9965 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
9966 return true;
9967 return alloca_call_p (t);
9968 }
9969
9970 default:
9971 break;
9972 }
9973 return false;
9974 }
9975
9976 /* Return true when T is an address and is known to be nonzero.
9977 Handle warnings about undefined signed overflow. */
9978
9979 bool
9980 tree_expr_nonzero_p (tree t)
9981 {
9982 bool ret, strict_overflow_p;
9983
9984 strict_overflow_p = false;
9985 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9986 if (strict_overflow_p)
9987 fold_overflow_warning (("assuming signed overflow does not occur when "
9988 "determining that expression is always "
9989 "non-zero"),
9990 WARN_STRICT_OVERFLOW_MISC);
9991 return ret;
9992 }
9993
9994 /* Return true if T is known not to be equal to an integer W. */
9995
9996 bool
9997 expr_not_equal_to (tree t, const wide_int &w)
9998 {
9999 wide_int min, max, nz;
10000 value_range_kind rtype;
10001 switch (TREE_CODE (t))
10002 {
10003 case INTEGER_CST:
10004 return wi::to_wide (t) != w;
10005
10006 case SSA_NAME:
10007 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
10008 return false;
10009 rtype = get_range_info (t, &min, &max);
10010 if (rtype == VR_RANGE)
10011 {
10012 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t))))
10013 return true;
10014 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t))))
10015 return true;
10016 }
10017 else if (rtype == VR_ANTI_RANGE
10018 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t)))
10019 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t))))
10020 return true;
10021 /* If T has some known zero bits and W has any of those bits set,
10022 then T is known not to be equal to W. */
10023 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)),
10024 TYPE_PRECISION (TREE_TYPE (t))), 0))
10025 return true;
10026 return false;
10027
10028 default:
10029 return false;
10030 }
10031 }
10032
10033 /* Fold a binary expression of code CODE and type TYPE with operands
10034 OP0 and OP1. LOC is the location of the resulting expression.
10035 Return the folded expression if folding is successful. Otherwise,
10036 return NULL_TREE. */
10037
10038 tree
10039 fold_binary_loc (location_t loc, enum tree_code code, tree type,
10040 tree op0, tree op1)
10041 {
10042 enum tree_code_class kind = TREE_CODE_CLASS (code);
10043 tree arg0, arg1, tem;
10044 tree t1 = NULL_TREE;
10045 bool strict_overflow_p;
10046 unsigned int prec;
10047
10048 gcc_assert (IS_EXPR_CODE_CLASS (kind)
10049 && TREE_CODE_LENGTH (code) == 2
10050 && op0 != NULL_TREE
10051 && op1 != NULL_TREE);
10052
10053 arg0 = op0;
10054 arg1 = op1;
10055
10056 /* Strip any conversions that don't change the mode. This is
10057 safe for every expression, except for a comparison expression
10058 because its signedness is derived from its operands. So, in
10059 the latter case, only strip conversions that don't change the
10060 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
10061 preserved.
10062
10063 Note that this is done as an internal manipulation within the
10064 constant folder, in order to find the simplest representation
10065 of the arguments so that their form can be studied. In any
10066 cases, the appropriate type conversions should be put back in
10067 the tree that will get out of the constant folder. */
10068
10069 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
10070 {
10071 STRIP_SIGN_NOPS (arg0);
10072 STRIP_SIGN_NOPS (arg1);
10073 }
10074 else
10075 {
10076 STRIP_NOPS (arg0);
10077 STRIP_NOPS (arg1);
10078 }
10079
10080 /* Note that TREE_CONSTANT isn't enough: static var addresses are
10081 constant but we can't do arithmetic on them. */
10082 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
10083 {
10084 tem = const_binop (code, type, arg0, arg1);
10085 if (tem != NULL_TREE)
10086 {
10087 if (TREE_TYPE (tem) != type)
10088 tem = fold_convert_loc (loc, type, tem);
10089 return tem;
10090 }
10091 }
10092
10093 /* If this is a commutative operation, and ARG0 is a constant, move it
10094 to ARG1 to reduce the number of tests below. */
10095 if (commutative_tree_code (code)
10096 && tree_swap_operands_p (arg0, arg1))
10097 return fold_build2_loc (loc, code, type, op1, op0);
10098
10099 /* Likewise if this is a comparison, and ARG0 is a constant, move it
10100 to ARG1 to reduce the number of tests below. */
10101 if (kind == tcc_comparison
10102 && tree_swap_operands_p (arg0, arg1))
10103 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
10104
10105 tem = generic_simplify (loc, code, type, op0, op1);
10106 if (tem)
10107 return tem;
10108
10109 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
10110
10111 First check for cases where an arithmetic operation is applied to a
10112 compound, conditional, or comparison operation. Push the arithmetic
10113 operation inside the compound or conditional to see if any folding
10114 can then be done. Convert comparison to conditional for this purpose.
10115 The also optimizes non-constant cases that used to be done in
10116 expand_expr.
10117
10118 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
10119 one of the operands is a comparison and the other is a comparison, a
10120 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
10121 code below would make the expression more complex. Change it to a
10122 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
10123 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
10124
10125 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
10126 || code == EQ_EXPR || code == NE_EXPR)
10127 && !VECTOR_TYPE_P (TREE_TYPE (arg0))
10128 && ((truth_value_p (TREE_CODE (arg0))
10129 && (truth_value_p (TREE_CODE (arg1))
10130 || (TREE_CODE (arg1) == BIT_AND_EXPR
10131 && integer_onep (TREE_OPERAND (arg1, 1)))))
10132 || (truth_value_p (TREE_CODE (arg1))
10133 && (truth_value_p (TREE_CODE (arg0))
10134 || (TREE_CODE (arg0) == BIT_AND_EXPR
10135 && integer_onep (TREE_OPERAND (arg0, 1)))))))
10136 {
10137 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
10138 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
10139 : TRUTH_XOR_EXPR,
10140 boolean_type_node,
10141 fold_convert_loc (loc, boolean_type_node, arg0),
10142 fold_convert_loc (loc, boolean_type_node, arg1));
10143
10144 if (code == EQ_EXPR)
10145 tem = invert_truthvalue_loc (loc, tem);
10146
10147 return fold_convert_loc (loc, type, tem);
10148 }
10149
10150 if (TREE_CODE_CLASS (code) == tcc_binary
10151 || TREE_CODE_CLASS (code) == tcc_comparison)
10152 {
10153 if (TREE_CODE (arg0) == COMPOUND_EXPR)
10154 {
10155 tem = fold_build2_loc (loc, code, type,
10156 fold_convert_loc (loc, TREE_TYPE (op0),
10157 TREE_OPERAND (arg0, 1)), op1);
10158 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
10159 tem);
10160 }
10161 if (TREE_CODE (arg1) == COMPOUND_EXPR)
10162 {
10163 tem = fold_build2_loc (loc, code, type, op0,
10164 fold_convert_loc (loc, TREE_TYPE (op1),
10165 TREE_OPERAND (arg1, 1)));
10166 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
10167 tem);
10168 }
10169
10170 if (TREE_CODE (arg0) == COND_EXPR
10171 || TREE_CODE (arg0) == VEC_COND_EXPR
10172 || COMPARISON_CLASS_P (arg0))
10173 {
10174 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
10175 arg0, arg1,
10176 /*cond_first_p=*/1);
10177 if (tem != NULL_TREE)
10178 return tem;
10179 }
10180
10181 if (TREE_CODE (arg1) == COND_EXPR
10182 || TREE_CODE (arg1) == VEC_COND_EXPR
10183 || COMPARISON_CLASS_P (arg1))
10184 {
10185 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
10186 arg1, arg0,
10187 /*cond_first_p=*/0);
10188 if (tem != NULL_TREE)
10189 return tem;
10190 }
10191 }
10192
10193 switch (code)
10194 {
10195 case MEM_REF:
10196 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
10197 if (TREE_CODE (arg0) == ADDR_EXPR
10198 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
10199 {
10200 tree iref = TREE_OPERAND (arg0, 0);
10201 return fold_build2 (MEM_REF, type,
10202 TREE_OPERAND (iref, 0),
10203 int_const_binop (PLUS_EXPR, arg1,
10204 TREE_OPERAND (iref, 1)));
10205 }
10206
10207 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
10208 if (TREE_CODE (arg0) == ADDR_EXPR
10209 && handled_component_p (TREE_OPERAND (arg0, 0)))
10210 {
10211 tree base;
10212 poly_int64 coffset;
10213 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
10214 &coffset);
10215 if (!base)
10216 return NULL_TREE;
10217 return fold_build2 (MEM_REF, type,
10218 build_fold_addr_expr (base),
10219 int_const_binop (PLUS_EXPR, arg1,
10220 size_int (coffset)));
10221 }
10222
10223 return NULL_TREE;
10224
10225 case POINTER_PLUS_EXPR:
10226 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
10227 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10228 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
10229 return fold_convert_loc (loc, type,
10230 fold_build2_loc (loc, PLUS_EXPR, sizetype,
10231 fold_convert_loc (loc, sizetype,
10232 arg1),
10233 fold_convert_loc (loc, sizetype,
10234 arg0)));
10235
10236 return NULL_TREE;
10237
10238 case PLUS_EXPR:
10239 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
10240 {
10241 /* X + (X / CST) * -CST is X % CST. */
10242 if (TREE_CODE (arg1) == MULT_EXPR
10243 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
10244 && operand_equal_p (arg0,
10245 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
10246 {
10247 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
10248 tree cst1 = TREE_OPERAND (arg1, 1);
10249 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
10250 cst1, cst0);
10251 if (sum && integer_zerop (sum))
10252 return fold_convert_loc (loc, type,
10253 fold_build2_loc (loc, TRUNC_MOD_EXPR,
10254 TREE_TYPE (arg0), arg0,
10255 cst0));
10256 }
10257 }
10258
10259 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
10260 one. Make sure the type is not saturating and has the signedness of
10261 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10262 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10263 if ((TREE_CODE (arg0) == MULT_EXPR
10264 || TREE_CODE (arg1) == MULT_EXPR)
10265 && !TYPE_SATURATING (type)
10266 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
10267 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
10268 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10269 {
10270 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
10271 if (tem)
10272 return tem;
10273 }
10274
10275 if (! FLOAT_TYPE_P (type))
10276 {
10277 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
10278 (plus (plus (mult) (mult)) (foo)) so that we can
10279 take advantage of the factoring cases below. */
10280 if (ANY_INTEGRAL_TYPE_P (type)
10281 && TYPE_OVERFLOW_WRAPS (type)
10282 && (((TREE_CODE (arg0) == PLUS_EXPR
10283 || TREE_CODE (arg0) == MINUS_EXPR)
10284 && TREE_CODE (arg1) == MULT_EXPR)
10285 || ((TREE_CODE (arg1) == PLUS_EXPR
10286 || TREE_CODE (arg1) == MINUS_EXPR)
10287 && TREE_CODE (arg0) == MULT_EXPR)))
10288 {
10289 tree parg0, parg1, parg, marg;
10290 enum tree_code pcode;
10291
10292 if (TREE_CODE (arg1) == MULT_EXPR)
10293 parg = arg0, marg = arg1;
10294 else
10295 parg = arg1, marg = arg0;
10296 pcode = TREE_CODE (parg);
10297 parg0 = TREE_OPERAND (parg, 0);
10298 parg1 = TREE_OPERAND (parg, 1);
10299 STRIP_NOPS (parg0);
10300 STRIP_NOPS (parg1);
10301
10302 if (TREE_CODE (parg0) == MULT_EXPR
10303 && TREE_CODE (parg1) != MULT_EXPR)
10304 return fold_build2_loc (loc, pcode, type,
10305 fold_build2_loc (loc, PLUS_EXPR, type,
10306 fold_convert_loc (loc, type,
10307 parg0),
10308 fold_convert_loc (loc, type,
10309 marg)),
10310 fold_convert_loc (loc, type, parg1));
10311 if (TREE_CODE (parg0) != MULT_EXPR
10312 && TREE_CODE (parg1) == MULT_EXPR)
10313 return
10314 fold_build2_loc (loc, PLUS_EXPR, type,
10315 fold_convert_loc (loc, type, parg0),
10316 fold_build2_loc (loc, pcode, type,
10317 fold_convert_loc (loc, type, marg),
10318 fold_convert_loc (loc, type,
10319 parg1)));
10320 }
10321 }
10322 else
10323 {
10324 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
10325 to __complex__ ( x, y ). This is not the same for SNaNs or
10326 if signed zeros are involved. */
10327 if (!HONOR_SNANS (element_mode (arg0))
10328 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10329 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10330 {
10331 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10332 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
10333 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
10334 bool arg0rz = false, arg0iz = false;
10335 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10336 || (arg0i && (arg0iz = real_zerop (arg0i))))
10337 {
10338 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
10339 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
10340 if (arg0rz && arg1i && real_zerop (arg1i))
10341 {
10342 tree rp = arg1r ? arg1r
10343 : build1 (REALPART_EXPR, rtype, arg1);
10344 tree ip = arg0i ? arg0i
10345 : build1 (IMAGPART_EXPR, rtype, arg0);
10346 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10347 }
10348 else if (arg0iz && arg1r && real_zerop (arg1r))
10349 {
10350 tree rp = arg0r ? arg0r
10351 : build1 (REALPART_EXPR, rtype, arg0);
10352 tree ip = arg1i ? arg1i
10353 : build1 (IMAGPART_EXPR, rtype, arg1);
10354 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10355 }
10356 }
10357 }
10358
10359 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
10360 We associate floats only if the user has specified
10361 -fassociative-math. */
10362 if (flag_associative_math
10363 && TREE_CODE (arg1) == PLUS_EXPR
10364 && TREE_CODE (arg0) != MULT_EXPR)
10365 {
10366 tree tree10 = TREE_OPERAND (arg1, 0);
10367 tree tree11 = TREE_OPERAND (arg1, 1);
10368 if (TREE_CODE (tree11) == MULT_EXPR
10369 && TREE_CODE (tree10) == MULT_EXPR)
10370 {
10371 tree tree0;
10372 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
10373 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
10374 }
10375 }
10376 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
10377 We associate floats only if the user has specified
10378 -fassociative-math. */
10379 if (flag_associative_math
10380 && TREE_CODE (arg0) == PLUS_EXPR
10381 && TREE_CODE (arg1) != MULT_EXPR)
10382 {
10383 tree tree00 = TREE_OPERAND (arg0, 0);
10384 tree tree01 = TREE_OPERAND (arg0, 1);
10385 if (TREE_CODE (tree01) == MULT_EXPR
10386 && TREE_CODE (tree00) == MULT_EXPR)
10387 {
10388 tree tree0;
10389 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
10390 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
10391 }
10392 }
10393 }
10394
10395 bit_rotate:
10396 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
10397 is a rotate of A by C1 bits. */
10398 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
10399 is a rotate of A by B bits.
10400 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1,
10401 though in this case CODE must be | and not + or ^, otherwise
10402 it doesn't return A when B is 0. */
10403 {
10404 enum tree_code code0, code1;
10405 tree rtype;
10406 code0 = TREE_CODE (arg0);
10407 code1 = TREE_CODE (arg1);
10408 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
10409 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
10410 && operand_equal_p (TREE_OPERAND (arg0, 0),
10411 TREE_OPERAND (arg1, 0), 0)
10412 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
10413 TYPE_UNSIGNED (rtype))
10414 /* Only create rotates in complete modes. Other cases are not
10415 expanded properly. */
10416 && (element_precision (rtype)
10417 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
10418 {
10419 tree tree01, tree11;
10420 tree orig_tree01, orig_tree11;
10421 enum tree_code code01, code11;
10422
10423 tree01 = orig_tree01 = TREE_OPERAND (arg0, 1);
10424 tree11 = orig_tree11 = TREE_OPERAND (arg1, 1);
10425 STRIP_NOPS (tree01);
10426 STRIP_NOPS (tree11);
10427 code01 = TREE_CODE (tree01);
10428 code11 = TREE_CODE (tree11);
10429 if (code11 != MINUS_EXPR
10430 && (code01 == MINUS_EXPR || code01 == BIT_AND_EXPR))
10431 {
10432 std::swap (code0, code1);
10433 std::swap (code01, code11);
10434 std::swap (tree01, tree11);
10435 std::swap (orig_tree01, orig_tree11);
10436 }
10437 if (code01 == INTEGER_CST
10438 && code11 == INTEGER_CST
10439 && (wi::to_widest (tree01) + wi::to_widest (tree11)
10440 == element_precision (rtype)))
10441 {
10442 tem = build2_loc (loc, LROTATE_EXPR,
10443 rtype, TREE_OPERAND (arg0, 0),
10444 code0 == LSHIFT_EXPR
10445 ? orig_tree01 : orig_tree11);
10446 return fold_convert_loc (loc, type, tem);
10447 }
10448 else if (code11 == MINUS_EXPR)
10449 {
10450 tree tree110, tree111;
10451 tree110 = TREE_OPERAND (tree11, 0);
10452 tree111 = TREE_OPERAND (tree11, 1);
10453 STRIP_NOPS (tree110);
10454 STRIP_NOPS (tree111);
10455 if (TREE_CODE (tree110) == INTEGER_CST
10456 && compare_tree_int (tree110,
10457 element_precision (rtype)) == 0
10458 && operand_equal_p (tree01, tree111, 0))
10459 {
10460 tem = build2_loc (loc, (code0 == LSHIFT_EXPR
10461 ? LROTATE_EXPR : RROTATE_EXPR),
10462 rtype, TREE_OPERAND (arg0, 0),
10463 orig_tree01);
10464 return fold_convert_loc (loc, type, tem);
10465 }
10466 }
10467 else if (code == BIT_IOR_EXPR
10468 && code11 == BIT_AND_EXPR
10469 && pow2p_hwi (element_precision (rtype)))
10470 {
10471 tree tree110, tree111;
10472 tree110 = TREE_OPERAND (tree11, 0);
10473 tree111 = TREE_OPERAND (tree11, 1);
10474 STRIP_NOPS (tree110);
10475 STRIP_NOPS (tree111);
10476 if (TREE_CODE (tree110) == NEGATE_EXPR
10477 && TREE_CODE (tree111) == INTEGER_CST
10478 && compare_tree_int (tree111,
10479 element_precision (rtype) - 1) == 0
10480 && operand_equal_p (tree01, TREE_OPERAND (tree110, 0), 0))
10481 {
10482 tem = build2_loc (loc, (code0 == LSHIFT_EXPR
10483 ? LROTATE_EXPR : RROTATE_EXPR),
10484 rtype, TREE_OPERAND (arg0, 0),
10485 orig_tree01);
10486 return fold_convert_loc (loc, type, tem);
10487 }
10488 }
10489 }
10490 }
10491
10492 associate:
10493 /* In most languages, can't associate operations on floats through
10494 parentheses. Rather than remember where the parentheses were, we
10495 don't associate floats at all, unless the user has specified
10496 -fassociative-math.
10497 And, we need to make sure type is not saturating. */
10498
10499 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
10500 && !TYPE_SATURATING (type))
10501 {
10502 tree var0, minus_var0, con0, minus_con0, lit0, minus_lit0;
10503 tree var1, minus_var1, con1, minus_con1, lit1, minus_lit1;
10504 tree atype = type;
10505 bool ok = true;
10506
10507 /* Split both trees into variables, constants, and literals. Then
10508 associate each group together, the constants with literals,
10509 then the result with variables. This increases the chances of
10510 literals being recombined later and of generating relocatable
10511 expressions for the sum of a constant and literal. */
10512 var0 = split_tree (arg0, type, code,
10513 &minus_var0, &con0, &minus_con0,
10514 &lit0, &minus_lit0, 0);
10515 var1 = split_tree (arg1, type, code,
10516 &minus_var1, &con1, &minus_con1,
10517 &lit1, &minus_lit1, code == MINUS_EXPR);
10518
10519 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
10520 if (code == MINUS_EXPR)
10521 code = PLUS_EXPR;
10522
10523 /* With undefined overflow prefer doing association in a type
10524 which wraps on overflow, if that is one of the operand types. */
10525 if ((POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
10526 && !TYPE_OVERFLOW_WRAPS (type))
10527 {
10528 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10529 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10530 atype = TREE_TYPE (arg0);
10531 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10532 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
10533 atype = TREE_TYPE (arg1);
10534 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
10535 }
10536
10537 /* With undefined overflow we can only associate constants with one
10538 variable, and constants whose association doesn't overflow. */
10539 if ((POINTER_TYPE_P (atype) || INTEGRAL_TYPE_P (atype))
10540 && !TYPE_OVERFLOW_WRAPS (atype))
10541 {
10542 if ((var0 && var1) || (minus_var0 && minus_var1))
10543 {
10544 /* ??? If split_tree would handle NEGATE_EXPR we could
10545 simply reject these cases and the allowed cases would
10546 be the var0/minus_var1 ones. */
10547 tree tmp0 = var0 ? var0 : minus_var0;
10548 tree tmp1 = var1 ? var1 : minus_var1;
10549 bool one_neg = false;
10550
10551 if (TREE_CODE (tmp0) == NEGATE_EXPR)
10552 {
10553 tmp0 = TREE_OPERAND (tmp0, 0);
10554 one_neg = !one_neg;
10555 }
10556 if (CONVERT_EXPR_P (tmp0)
10557 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
10558 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
10559 <= TYPE_PRECISION (atype)))
10560 tmp0 = TREE_OPERAND (tmp0, 0);
10561 if (TREE_CODE (tmp1) == NEGATE_EXPR)
10562 {
10563 tmp1 = TREE_OPERAND (tmp1, 0);
10564 one_neg = !one_neg;
10565 }
10566 if (CONVERT_EXPR_P (tmp1)
10567 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
10568 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
10569 <= TYPE_PRECISION (atype)))
10570 tmp1 = TREE_OPERAND (tmp1, 0);
10571 /* The only case we can still associate with two variables
10572 is if they cancel out. */
10573 if (!one_neg
10574 || !operand_equal_p (tmp0, tmp1, 0))
10575 ok = false;
10576 }
10577 else if ((var0 && minus_var1
10578 && ! operand_equal_p (var0, minus_var1, 0))
10579 || (minus_var0 && var1
10580 && ! operand_equal_p (minus_var0, var1, 0)))
10581 ok = false;
10582 }
10583
10584 /* Only do something if we found more than two objects. Otherwise,
10585 nothing has changed and we risk infinite recursion. */
10586 if (ok
10587 && ((var0 != 0) + (var1 != 0)
10588 + (minus_var0 != 0) + (minus_var1 != 0)
10589 + (con0 != 0) + (con1 != 0)
10590 + (minus_con0 != 0) + (minus_con1 != 0)
10591 + (lit0 != 0) + (lit1 != 0)
10592 + (minus_lit0 != 0) + (minus_lit1 != 0)) > 2)
10593 {
10594 var0 = associate_trees (loc, var0, var1, code, atype);
10595 minus_var0 = associate_trees (loc, minus_var0, minus_var1,
10596 code, atype);
10597 con0 = associate_trees (loc, con0, con1, code, atype);
10598 minus_con0 = associate_trees (loc, minus_con0, minus_con1,
10599 code, atype);
10600 lit0 = associate_trees (loc, lit0, lit1, code, atype);
10601 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
10602 code, atype);
10603
10604 if (minus_var0 && var0)
10605 {
10606 var0 = associate_trees (loc, var0, minus_var0,
10607 MINUS_EXPR, atype);
10608 minus_var0 = 0;
10609 }
10610 if (minus_con0 && con0)
10611 {
10612 con0 = associate_trees (loc, con0, minus_con0,
10613 MINUS_EXPR, atype);
10614 minus_con0 = 0;
10615 }
10616
10617 /* Preserve the MINUS_EXPR if the negative part of the literal is
10618 greater than the positive part. Otherwise, the multiplicative
10619 folding code (i.e extract_muldiv) may be fooled in case
10620 unsigned constants are subtracted, like in the following
10621 example: ((X*2 + 4) - 8U)/2. */
10622 if (minus_lit0 && lit0)
10623 {
10624 if (TREE_CODE (lit0) == INTEGER_CST
10625 && TREE_CODE (minus_lit0) == INTEGER_CST
10626 && tree_int_cst_lt (lit0, minus_lit0)
10627 /* But avoid ending up with only negated parts. */
10628 && (var0 || con0))
10629 {
10630 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
10631 MINUS_EXPR, atype);
10632 lit0 = 0;
10633 }
10634 else
10635 {
10636 lit0 = associate_trees (loc, lit0, minus_lit0,
10637 MINUS_EXPR, atype);
10638 minus_lit0 = 0;
10639 }
10640 }
10641
10642 /* Don't introduce overflows through reassociation. */
10643 if ((lit0 && TREE_OVERFLOW_P (lit0))
10644 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0)))
10645 return NULL_TREE;
10646
10647 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
10648 con0 = associate_trees (loc, con0, lit0, code, atype);
10649 lit0 = 0;
10650 minus_con0 = associate_trees (loc, minus_con0, minus_lit0,
10651 code, atype);
10652 minus_lit0 = 0;
10653
10654 /* Eliminate minus_con0. */
10655 if (minus_con0)
10656 {
10657 if (con0)
10658 con0 = associate_trees (loc, con0, minus_con0,
10659 MINUS_EXPR, atype);
10660 else if (var0)
10661 var0 = associate_trees (loc, var0, minus_con0,
10662 MINUS_EXPR, atype);
10663 else
10664 gcc_unreachable ();
10665 minus_con0 = 0;
10666 }
10667
10668 /* Eliminate minus_var0. */
10669 if (minus_var0)
10670 {
10671 if (con0)
10672 con0 = associate_trees (loc, con0, minus_var0,
10673 MINUS_EXPR, atype);
10674 else
10675 gcc_unreachable ();
10676 minus_var0 = 0;
10677 }
10678
10679 return
10680 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
10681 code, atype));
10682 }
10683 }
10684
10685 return NULL_TREE;
10686
10687 case POINTER_DIFF_EXPR:
10688 case MINUS_EXPR:
10689 /* Fold &a[i] - &a[j] to i-j. */
10690 if (TREE_CODE (arg0) == ADDR_EXPR
10691 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
10692 && TREE_CODE (arg1) == ADDR_EXPR
10693 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
10694 {
10695 tree tem = fold_addr_of_array_ref_difference (loc, type,
10696 TREE_OPERAND (arg0, 0),
10697 TREE_OPERAND (arg1, 0),
10698 code
10699 == POINTER_DIFF_EXPR);
10700 if (tem)
10701 return tem;
10702 }
10703
10704 /* Further transformations are not for pointers. */
10705 if (code == POINTER_DIFF_EXPR)
10706 return NULL_TREE;
10707
10708 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
10709 if (TREE_CODE (arg0) == NEGATE_EXPR
10710 && negate_expr_p (op1)
10711 /* If arg0 is e.g. unsigned int and type is int, then this could
10712 introduce UB, because if A is INT_MIN at runtime, the original
10713 expression can be well defined while the latter is not.
10714 See PR83269. */
10715 && !(ANY_INTEGRAL_TYPE_P (type)
10716 && TYPE_OVERFLOW_UNDEFINED (type)
10717 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10718 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
10719 return fold_build2_loc (loc, MINUS_EXPR, type, negate_expr (op1),
10720 fold_convert_loc (loc, type,
10721 TREE_OPERAND (arg0, 0)));
10722
10723 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10724 __complex__ ( x, -y ). This is not the same for SNaNs or if
10725 signed zeros are involved. */
10726 if (!HONOR_SNANS (element_mode (arg0))
10727 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10728 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10729 {
10730 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10731 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
10732 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
10733 bool arg0rz = false, arg0iz = false;
10734 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10735 || (arg0i && (arg0iz = real_zerop (arg0i))))
10736 {
10737 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
10738 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
10739 if (arg0rz && arg1i && real_zerop (arg1i))
10740 {
10741 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10742 arg1r ? arg1r
10743 : build1 (REALPART_EXPR, rtype, arg1));
10744 tree ip = arg0i ? arg0i
10745 : build1 (IMAGPART_EXPR, rtype, arg0);
10746 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10747 }
10748 else if (arg0iz && arg1r && real_zerop (arg1r))
10749 {
10750 tree rp = arg0r ? arg0r
10751 : build1 (REALPART_EXPR, rtype, arg0);
10752 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10753 arg1i ? arg1i
10754 : build1 (IMAGPART_EXPR, rtype, arg1));
10755 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10756 }
10757 }
10758 }
10759
10760 /* A - B -> A + (-B) if B is easily negatable. */
10761 if (negate_expr_p (op1)
10762 && ! TYPE_OVERFLOW_SANITIZED (type)
10763 && ((FLOAT_TYPE_P (type)
10764 /* Avoid this transformation if B is a positive REAL_CST. */
10765 && (TREE_CODE (op1) != REAL_CST
10766 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1))))
10767 || INTEGRAL_TYPE_P (type)))
10768 return fold_build2_loc (loc, PLUS_EXPR, type,
10769 fold_convert_loc (loc, type, arg0),
10770 negate_expr (op1));
10771
10772 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
10773 one. Make sure the type is not saturating and has the signedness of
10774 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10775 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10776 if ((TREE_CODE (arg0) == MULT_EXPR
10777 || TREE_CODE (arg1) == MULT_EXPR)
10778 && !TYPE_SATURATING (type)
10779 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
10780 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
10781 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10782 {
10783 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
10784 if (tem)
10785 return tem;
10786 }
10787
10788 goto associate;
10789
10790 case MULT_EXPR:
10791 if (! FLOAT_TYPE_P (type))
10792 {
10793 /* Transform x * -C into -x * C if x is easily negatable. */
10794 if (TREE_CODE (op1) == INTEGER_CST
10795 && tree_int_cst_sgn (op1) == -1
10796 && negate_expr_p (op0)
10797 && negate_expr_p (op1)
10798 && (tem = negate_expr (op1)) != op1
10799 && ! TREE_OVERFLOW (tem))
10800 return fold_build2_loc (loc, MULT_EXPR, type,
10801 fold_convert_loc (loc, type,
10802 negate_expr (op0)), tem);
10803
10804 strict_overflow_p = false;
10805 if (TREE_CODE (arg1) == INTEGER_CST
10806 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10807 &strict_overflow_p)) != 0)
10808 {
10809 if (strict_overflow_p)
10810 fold_overflow_warning (("assuming signed overflow does not "
10811 "occur when simplifying "
10812 "multiplication"),
10813 WARN_STRICT_OVERFLOW_MISC);
10814 return fold_convert_loc (loc, type, tem);
10815 }
10816
10817 /* Optimize z * conj(z) for integer complex numbers. */
10818 if (TREE_CODE (arg0) == CONJ_EXPR
10819 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10820 return fold_mult_zconjz (loc, type, arg1);
10821 if (TREE_CODE (arg1) == CONJ_EXPR
10822 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10823 return fold_mult_zconjz (loc, type, arg0);
10824 }
10825 else
10826 {
10827 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10828 This is not the same for NaNs or if signed zeros are
10829 involved. */
10830 if (!HONOR_NANS (arg0)
10831 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10832 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10833 && TREE_CODE (arg1) == COMPLEX_CST
10834 && real_zerop (TREE_REALPART (arg1)))
10835 {
10836 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10837 if (real_onep (TREE_IMAGPART (arg1)))
10838 return
10839 fold_build2_loc (loc, COMPLEX_EXPR, type,
10840 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
10841 rtype, arg0)),
10842 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
10843 else if (real_minus_onep (TREE_IMAGPART (arg1)))
10844 return
10845 fold_build2_loc (loc, COMPLEX_EXPR, type,
10846 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
10847 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
10848 rtype, arg0)));
10849 }
10850
10851 /* Optimize z * conj(z) for floating point complex numbers.
10852 Guarded by flag_unsafe_math_optimizations as non-finite
10853 imaginary components don't produce scalar results. */
10854 if (flag_unsafe_math_optimizations
10855 && TREE_CODE (arg0) == CONJ_EXPR
10856 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10857 return fold_mult_zconjz (loc, type, arg1);
10858 if (flag_unsafe_math_optimizations
10859 && TREE_CODE (arg1) == CONJ_EXPR
10860 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10861 return fold_mult_zconjz (loc, type, arg0);
10862 }
10863 goto associate;
10864
10865 case BIT_IOR_EXPR:
10866 /* Canonicalize (X & C1) | C2. */
10867 if (TREE_CODE (arg0) == BIT_AND_EXPR
10868 && TREE_CODE (arg1) == INTEGER_CST
10869 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10870 {
10871 int width = TYPE_PRECISION (type), w;
10872 wide_int c1 = wi::to_wide (TREE_OPERAND (arg0, 1));
10873 wide_int c2 = wi::to_wide (arg1);
10874
10875 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10876 if ((c1 & c2) == c1)
10877 return omit_one_operand_loc (loc, type, arg1,
10878 TREE_OPERAND (arg0, 0));
10879
10880 wide_int msk = wi::mask (width, false,
10881 TYPE_PRECISION (TREE_TYPE (arg1)));
10882
10883 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10884 if (wi::bit_and_not (msk, c1 | c2) == 0)
10885 {
10886 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10887 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
10888 }
10889
10890 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10891 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10892 mode which allows further optimizations. */
10893 c1 &= msk;
10894 c2 &= msk;
10895 wide_int c3 = wi::bit_and_not (c1, c2);
10896 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
10897 {
10898 wide_int mask = wi::mask (w, false,
10899 TYPE_PRECISION (type));
10900 if (((c1 | c2) & mask) == mask
10901 && wi::bit_and_not (c1, mask) == 0)
10902 {
10903 c3 = mask;
10904 break;
10905 }
10906 }
10907
10908 if (c3 != c1)
10909 {
10910 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10911 tem = fold_build2_loc (loc, BIT_AND_EXPR, type, tem,
10912 wide_int_to_tree (type, c3));
10913 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
10914 }
10915 }
10916
10917 /* See if this can be simplified into a rotate first. If that
10918 is unsuccessful continue in the association code. */
10919 goto bit_rotate;
10920
10921 case BIT_XOR_EXPR:
10922 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10923 if (TREE_CODE (arg0) == BIT_AND_EXPR
10924 && INTEGRAL_TYPE_P (type)
10925 && integer_onep (TREE_OPERAND (arg0, 1))
10926 && integer_onep (arg1))
10927 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
10928 build_zero_cst (TREE_TYPE (arg0)));
10929
10930 /* See if this can be simplified into a rotate first. If that
10931 is unsuccessful continue in the association code. */
10932 goto bit_rotate;
10933
10934 case BIT_AND_EXPR:
10935 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10936 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10937 && INTEGRAL_TYPE_P (type)
10938 && integer_onep (TREE_OPERAND (arg0, 1))
10939 && integer_onep (arg1))
10940 {
10941 tree tem2;
10942 tem = TREE_OPERAND (arg0, 0);
10943 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10944 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10945 tem, tem2);
10946 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10947 build_zero_cst (TREE_TYPE (tem)));
10948 }
10949 /* Fold ~X & 1 as (X & 1) == 0. */
10950 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10951 && INTEGRAL_TYPE_P (type)
10952 && integer_onep (arg1))
10953 {
10954 tree tem2;
10955 tem = TREE_OPERAND (arg0, 0);
10956 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10957 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10958 tem, tem2);
10959 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10960 build_zero_cst (TREE_TYPE (tem)));
10961 }
10962 /* Fold !X & 1 as X == 0. */
10963 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10964 && integer_onep (arg1))
10965 {
10966 tem = TREE_OPERAND (arg0, 0);
10967 return fold_build2_loc (loc, EQ_EXPR, type, tem,
10968 build_zero_cst (TREE_TYPE (tem)));
10969 }
10970
10971 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10972 multiple of 1 << CST. */
10973 if (TREE_CODE (arg1) == INTEGER_CST)
10974 {
10975 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1);
10976 wide_int ncst1 = -cst1;
10977 if ((cst1 & ncst1) == ncst1
10978 && multiple_of_p (type, arg0,
10979 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
10980 return fold_convert_loc (loc, type, arg0);
10981 }
10982
10983 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10984 bits from CST2. */
10985 if (TREE_CODE (arg1) == INTEGER_CST
10986 && TREE_CODE (arg0) == MULT_EXPR
10987 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10988 {
10989 wi::tree_to_wide_ref warg1 = wi::to_wide (arg1);
10990 wide_int masked
10991 = mask_with_tz (type, warg1, wi::to_wide (TREE_OPERAND (arg0, 1)));
10992
10993 if (masked == 0)
10994 return omit_two_operands_loc (loc, type, build_zero_cst (type),
10995 arg0, arg1);
10996 else if (masked != warg1)
10997 {
10998 /* Avoid the transform if arg1 is a mask of some
10999 mode which allows further optimizations. */
11000 int pop = wi::popcount (warg1);
11001 if (!(pop >= BITS_PER_UNIT
11002 && pow2p_hwi (pop)
11003 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
11004 return fold_build2_loc (loc, code, type, op0,
11005 wide_int_to_tree (type, masked));
11006 }
11007 }
11008
11009 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
11010 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
11011 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
11012 {
11013 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
11014
11015 wide_int mask = wide_int::from (wi::to_wide (arg1), prec, UNSIGNED);
11016 if (mask == -1)
11017 return
11018 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11019 }
11020
11021 goto associate;
11022
11023 case RDIV_EXPR:
11024 /* Don't touch a floating-point divide by zero unless the mode
11025 of the constant can represent infinity. */
11026 if (TREE_CODE (arg1) == REAL_CST
11027 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
11028 && real_zerop (arg1))
11029 return NULL_TREE;
11030
11031 /* (-A) / (-B) -> A / B */
11032 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
11033 return fold_build2_loc (loc, RDIV_EXPR, type,
11034 TREE_OPERAND (arg0, 0),
11035 negate_expr (arg1));
11036 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
11037 return fold_build2_loc (loc, RDIV_EXPR, type,
11038 negate_expr (arg0),
11039 TREE_OPERAND (arg1, 0));
11040 return NULL_TREE;
11041
11042 case TRUNC_DIV_EXPR:
11043 /* Fall through */
11044
11045 case FLOOR_DIV_EXPR:
11046 /* Simplify A / (B << N) where A and B are positive and B is
11047 a power of 2, to A >> (N + log2(B)). */
11048 strict_overflow_p = false;
11049 if (TREE_CODE (arg1) == LSHIFT_EXPR
11050 && (TYPE_UNSIGNED (type)
11051 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
11052 {
11053 tree sval = TREE_OPERAND (arg1, 0);
11054 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
11055 {
11056 tree sh_cnt = TREE_OPERAND (arg1, 1);
11057 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
11058 wi::exact_log2 (wi::to_wide (sval)));
11059
11060 if (strict_overflow_p)
11061 fold_overflow_warning (("assuming signed overflow does not "
11062 "occur when simplifying A / (B << N)"),
11063 WARN_STRICT_OVERFLOW_MISC);
11064
11065 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
11066 sh_cnt, pow2);
11067 return fold_build2_loc (loc, RSHIFT_EXPR, type,
11068 fold_convert_loc (loc, type, arg0), sh_cnt);
11069 }
11070 }
11071
11072 /* Fall through */
11073
11074 case ROUND_DIV_EXPR:
11075 case CEIL_DIV_EXPR:
11076 case EXACT_DIV_EXPR:
11077 if (integer_zerop (arg1))
11078 return NULL_TREE;
11079
11080 /* Convert -A / -B to A / B when the type is signed and overflow is
11081 undefined. */
11082 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11083 && TREE_CODE (op0) == NEGATE_EXPR
11084 && negate_expr_p (op1))
11085 {
11086 if (INTEGRAL_TYPE_P (type))
11087 fold_overflow_warning (("assuming signed overflow does not occur "
11088 "when distributing negation across "
11089 "division"),
11090 WARN_STRICT_OVERFLOW_MISC);
11091 return fold_build2_loc (loc, code, type,
11092 fold_convert_loc (loc, type,
11093 TREE_OPERAND (arg0, 0)),
11094 negate_expr (op1));
11095 }
11096 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11097 && TREE_CODE (arg1) == NEGATE_EXPR
11098 && negate_expr_p (op0))
11099 {
11100 if (INTEGRAL_TYPE_P (type))
11101 fold_overflow_warning (("assuming signed overflow does not occur "
11102 "when distributing negation across "
11103 "division"),
11104 WARN_STRICT_OVERFLOW_MISC);
11105 return fold_build2_loc (loc, code, type,
11106 negate_expr (op0),
11107 fold_convert_loc (loc, type,
11108 TREE_OPERAND (arg1, 0)));
11109 }
11110
11111 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
11112 operation, EXACT_DIV_EXPR.
11113
11114 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
11115 At one time others generated faster code, it's not clear if they do
11116 after the last round to changes to the DIV code in expmed.c. */
11117 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
11118 && multiple_of_p (type, arg0, arg1))
11119 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
11120 fold_convert (type, arg0),
11121 fold_convert (type, arg1));
11122
11123 strict_overflow_p = false;
11124 if (TREE_CODE (arg1) == INTEGER_CST
11125 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11126 &strict_overflow_p)) != 0)
11127 {
11128 if (strict_overflow_p)
11129 fold_overflow_warning (("assuming signed overflow does not occur "
11130 "when simplifying division"),
11131 WARN_STRICT_OVERFLOW_MISC);
11132 return fold_convert_loc (loc, type, tem);
11133 }
11134
11135 return NULL_TREE;
11136
11137 case CEIL_MOD_EXPR:
11138 case FLOOR_MOD_EXPR:
11139 case ROUND_MOD_EXPR:
11140 case TRUNC_MOD_EXPR:
11141 strict_overflow_p = false;
11142 if (TREE_CODE (arg1) == INTEGER_CST
11143 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11144 &strict_overflow_p)) != 0)
11145 {
11146 if (strict_overflow_p)
11147 fold_overflow_warning (("assuming signed overflow does not occur "
11148 "when simplifying modulus"),
11149 WARN_STRICT_OVERFLOW_MISC);
11150 return fold_convert_loc (loc, type, tem);
11151 }
11152
11153 return NULL_TREE;
11154
11155 case LROTATE_EXPR:
11156 case RROTATE_EXPR:
11157 case RSHIFT_EXPR:
11158 case LSHIFT_EXPR:
11159 /* Since negative shift count is not well-defined,
11160 don't try to compute it in the compiler. */
11161 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
11162 return NULL_TREE;
11163
11164 prec = element_precision (type);
11165
11166 /* If we have a rotate of a bit operation with the rotate count and
11167 the second operand of the bit operation both constant,
11168 permute the two operations. */
11169 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11170 && (TREE_CODE (arg0) == BIT_AND_EXPR
11171 || TREE_CODE (arg0) == BIT_IOR_EXPR
11172 || TREE_CODE (arg0) == BIT_XOR_EXPR)
11173 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11174 {
11175 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11176 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11177 return fold_build2_loc (loc, TREE_CODE (arg0), type,
11178 fold_build2_loc (loc, code, type,
11179 arg00, arg1),
11180 fold_build2_loc (loc, code, type,
11181 arg01, arg1));
11182 }
11183
11184 /* Two consecutive rotates adding up to the some integer
11185 multiple of the precision of the type can be ignored. */
11186 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11187 && TREE_CODE (arg0) == RROTATE_EXPR
11188 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11189 && wi::umod_trunc (wi::to_wide (arg1)
11190 + wi::to_wide (TREE_OPERAND (arg0, 1)),
11191 prec) == 0)
11192 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11193
11194 return NULL_TREE;
11195
11196 case MIN_EXPR:
11197 case MAX_EXPR:
11198 goto associate;
11199
11200 case TRUTH_ANDIF_EXPR:
11201 /* Note that the operands of this must be ints
11202 and their values must be 0 or 1.
11203 ("true" is a fixed value perhaps depending on the language.) */
11204 /* If first arg is constant zero, return it. */
11205 if (integer_zerop (arg0))
11206 return fold_convert_loc (loc, type, arg0);
11207 /* FALLTHRU */
11208 case TRUTH_AND_EXPR:
11209 /* If either arg is constant true, drop it. */
11210 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11211 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
11212 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
11213 /* Preserve sequence points. */
11214 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
11215 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11216 /* If second arg is constant zero, result is zero, but first arg
11217 must be evaluated. */
11218 if (integer_zerop (arg1))
11219 return omit_one_operand_loc (loc, type, arg1, arg0);
11220 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
11221 case will be handled here. */
11222 if (integer_zerop (arg0))
11223 return omit_one_operand_loc (loc, type, arg0, arg1);
11224
11225 /* !X && X is always false. */
11226 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11227 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11228 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
11229 /* X && !X is always false. */
11230 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11231 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11232 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11233
11234 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
11235 means A >= Y && A != MAX, but in this case we know that
11236 A < X <= MAX. */
11237
11238 if (!TREE_SIDE_EFFECTS (arg0)
11239 && !TREE_SIDE_EFFECTS (arg1))
11240 {
11241 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
11242 if (tem && !operand_equal_p (tem, arg0, 0))
11243 return fold_build2_loc (loc, code, type, tem, arg1);
11244
11245 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
11246 if (tem && !operand_equal_p (tem, arg1, 0))
11247 return fold_build2_loc (loc, code, type, arg0, tem);
11248 }
11249
11250 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
11251 != NULL_TREE)
11252 return tem;
11253
11254 return NULL_TREE;
11255
11256 case TRUTH_ORIF_EXPR:
11257 /* Note that the operands of this must be ints
11258 and their values must be 0 or true.
11259 ("true" is a fixed value perhaps depending on the language.) */
11260 /* If first arg is constant true, return it. */
11261 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11262 return fold_convert_loc (loc, type, arg0);
11263 /* FALLTHRU */
11264 case TRUTH_OR_EXPR:
11265 /* If either arg is constant zero, drop it. */
11266 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
11267 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
11268 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
11269 /* Preserve sequence points. */
11270 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
11271 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11272 /* If second arg is constant true, result is true, but we must
11273 evaluate first arg. */
11274 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
11275 return omit_one_operand_loc (loc, type, arg1, arg0);
11276 /* Likewise for first arg, but note this only occurs here for
11277 TRUTH_OR_EXPR. */
11278 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11279 return omit_one_operand_loc (loc, type, arg0, arg1);
11280
11281 /* !X || X is always true. */
11282 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11283 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11284 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
11285 /* X || !X is always true. */
11286 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11287 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11288 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
11289
11290 /* (X && !Y) || (!X && Y) is X ^ Y */
11291 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
11292 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
11293 {
11294 tree a0, a1, l0, l1, n0, n1;
11295
11296 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
11297 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
11298
11299 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11300 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11301
11302 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
11303 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
11304
11305 if ((operand_equal_p (n0, a0, 0)
11306 && operand_equal_p (n1, a1, 0))
11307 || (operand_equal_p (n0, a1, 0)
11308 && operand_equal_p (n1, a0, 0)))
11309 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
11310 }
11311
11312 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
11313 != NULL_TREE)
11314 return tem;
11315
11316 return NULL_TREE;
11317
11318 case TRUTH_XOR_EXPR:
11319 /* If the second arg is constant zero, drop it. */
11320 if (integer_zerop (arg1))
11321 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11322 /* If the second arg is constant true, this is a logical inversion. */
11323 if (integer_onep (arg1))
11324 {
11325 tem = invert_truthvalue_loc (loc, arg0);
11326 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
11327 }
11328 /* Identical arguments cancel to zero. */
11329 if (operand_equal_p (arg0, arg1, 0))
11330 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11331
11332 /* !X ^ X is always true. */
11333 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11334 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11335 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
11336
11337 /* X ^ !X is always true. */
11338 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11339 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11340 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
11341
11342 return NULL_TREE;
11343
11344 case EQ_EXPR:
11345 case NE_EXPR:
11346 STRIP_NOPS (arg0);
11347 STRIP_NOPS (arg1);
11348
11349 tem = fold_comparison (loc, code, type, op0, op1);
11350 if (tem != NULL_TREE)
11351 return tem;
11352
11353 /* bool_var != 1 becomes !bool_var. */
11354 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
11355 && code == NE_EXPR)
11356 return fold_convert_loc (loc, type,
11357 fold_build1_loc (loc, TRUTH_NOT_EXPR,
11358 TREE_TYPE (arg0), arg0));
11359
11360 /* bool_var == 0 becomes !bool_var. */
11361 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
11362 && code == EQ_EXPR)
11363 return fold_convert_loc (loc, type,
11364 fold_build1_loc (loc, TRUTH_NOT_EXPR,
11365 TREE_TYPE (arg0), arg0));
11366
11367 /* !exp != 0 becomes !exp */
11368 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
11369 && code == NE_EXPR)
11370 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11371
11372 /* If this is an EQ or NE comparison with zero and ARG0 is
11373 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
11374 two operations, but the latter can be done in one less insn
11375 on machines that have only two-operand insns or on which a
11376 constant cannot be the first operand. */
11377 if (TREE_CODE (arg0) == BIT_AND_EXPR
11378 && integer_zerop (arg1))
11379 {
11380 tree arg00 = TREE_OPERAND (arg0, 0);
11381 tree arg01 = TREE_OPERAND (arg0, 1);
11382 if (TREE_CODE (arg00) == LSHIFT_EXPR
11383 && integer_onep (TREE_OPERAND (arg00, 0)))
11384 {
11385 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
11386 arg01, TREE_OPERAND (arg00, 1));
11387 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
11388 build_int_cst (TREE_TYPE (arg0), 1));
11389 return fold_build2_loc (loc, code, type,
11390 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
11391 arg1);
11392 }
11393 else if (TREE_CODE (arg01) == LSHIFT_EXPR
11394 && integer_onep (TREE_OPERAND (arg01, 0)))
11395 {
11396 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
11397 arg00, TREE_OPERAND (arg01, 1));
11398 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
11399 build_int_cst (TREE_TYPE (arg0), 1));
11400 return fold_build2_loc (loc, code, type,
11401 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
11402 arg1);
11403 }
11404 }
11405
11406 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
11407 C1 is a valid shift constant, and C2 is a power of two, i.e.
11408 a single bit. */
11409 if (TREE_CODE (arg0) == BIT_AND_EXPR
11410 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
11411 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
11412 == INTEGER_CST
11413 && integer_pow2p (TREE_OPERAND (arg0, 1))
11414 && integer_zerop (arg1))
11415 {
11416 tree itype = TREE_TYPE (arg0);
11417 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
11418 prec = TYPE_PRECISION (itype);
11419
11420 /* Check for a valid shift count. */
11421 if (wi::ltu_p (wi::to_wide (arg001), prec))
11422 {
11423 tree arg01 = TREE_OPERAND (arg0, 1);
11424 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
11425 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
11426 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
11427 can be rewritten as (X & (C2 << C1)) != 0. */
11428 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
11429 {
11430 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
11431 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
11432 return fold_build2_loc (loc, code, type, tem,
11433 fold_convert_loc (loc, itype, arg1));
11434 }
11435 /* Otherwise, for signed (arithmetic) shifts,
11436 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
11437 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
11438 else if (!TYPE_UNSIGNED (itype))
11439 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
11440 arg000, build_int_cst (itype, 0));
11441 /* Otherwise, of unsigned (logical) shifts,
11442 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
11443 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
11444 else
11445 return omit_one_operand_loc (loc, type,
11446 code == EQ_EXPR ? integer_one_node
11447 : integer_zero_node,
11448 arg000);
11449 }
11450 }
11451
11452 /* If this is a comparison of a field, we may be able to simplify it. */
11453 if ((TREE_CODE (arg0) == COMPONENT_REF
11454 || TREE_CODE (arg0) == BIT_FIELD_REF)
11455 /* Handle the constant case even without -O
11456 to make sure the warnings are given. */
11457 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
11458 {
11459 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
11460 if (t1)
11461 return t1;
11462 }
11463
11464 /* Optimize comparisons of strlen vs zero to a compare of the
11465 first character of the string vs zero. To wit,
11466 strlen(ptr) == 0 => *ptr == 0
11467 strlen(ptr) != 0 => *ptr != 0
11468 Other cases should reduce to one of these two (or a constant)
11469 due to the return value of strlen being unsigned. */
11470 if (TREE_CODE (arg0) == CALL_EXPR && integer_zerop (arg1))
11471 {
11472 tree fndecl = get_callee_fndecl (arg0);
11473
11474 if (fndecl
11475 && fndecl_built_in_p (fndecl, BUILT_IN_STRLEN)
11476 && call_expr_nargs (arg0) == 1
11477 && (TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0)))
11478 == POINTER_TYPE))
11479 {
11480 tree ptrtype
11481 = build_pointer_type (build_qualified_type (char_type_node,
11482 TYPE_QUAL_CONST));
11483 tree ptr = fold_convert_loc (loc, ptrtype,
11484 CALL_EXPR_ARG (arg0, 0));
11485 tree iref = build_fold_indirect_ref_loc (loc, ptr);
11486 return fold_build2_loc (loc, code, type, iref,
11487 build_int_cst (TREE_TYPE (iref), 0));
11488 }
11489 }
11490
11491 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
11492 of X. Similarly fold (X >> C) == 0 into X >= 0. */
11493 if (TREE_CODE (arg0) == RSHIFT_EXPR
11494 && integer_zerop (arg1)
11495 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11496 {
11497 tree arg00 = TREE_OPERAND (arg0, 0);
11498 tree arg01 = TREE_OPERAND (arg0, 1);
11499 tree itype = TREE_TYPE (arg00);
11500 if (wi::to_wide (arg01) == element_precision (itype) - 1)
11501 {
11502 if (TYPE_UNSIGNED (itype))
11503 {
11504 itype = signed_type_for (itype);
11505 arg00 = fold_convert_loc (loc, itype, arg00);
11506 }
11507 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
11508 type, arg00, build_zero_cst (itype));
11509 }
11510 }
11511
11512 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
11513 (X & C) == 0 when C is a single bit. */
11514 if (TREE_CODE (arg0) == BIT_AND_EXPR
11515 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
11516 && integer_zerop (arg1)
11517 && integer_pow2p (TREE_OPERAND (arg0, 1)))
11518 {
11519 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
11520 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
11521 TREE_OPERAND (arg0, 1));
11522 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
11523 type, tem,
11524 fold_convert_loc (loc, TREE_TYPE (arg0),
11525 arg1));
11526 }
11527
11528 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
11529 constant C is a power of two, i.e. a single bit. */
11530 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11531 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11532 && integer_zerop (arg1)
11533 && integer_pow2p (TREE_OPERAND (arg0, 1))
11534 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11535 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
11536 {
11537 tree arg00 = TREE_OPERAND (arg0, 0);
11538 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11539 arg00, build_int_cst (TREE_TYPE (arg00), 0));
11540 }
11541
11542 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
11543 when is C is a power of two, i.e. a single bit. */
11544 if (TREE_CODE (arg0) == BIT_AND_EXPR
11545 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
11546 && integer_zerop (arg1)
11547 && integer_pow2p (TREE_OPERAND (arg0, 1))
11548 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11549 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
11550 {
11551 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
11552 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
11553 arg000, TREE_OPERAND (arg0, 1));
11554 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11555 tem, build_int_cst (TREE_TYPE (tem), 0));
11556 }
11557
11558 if (integer_zerop (arg1)
11559 && tree_expr_nonzero_p (arg0))
11560 {
11561 tree res = constant_boolean_node (code==NE_EXPR, type);
11562 return omit_one_operand_loc (loc, type, res, arg0);
11563 }
11564
11565 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
11566 if (TREE_CODE (arg0) == BIT_AND_EXPR
11567 && TREE_CODE (arg1) == BIT_AND_EXPR)
11568 {
11569 tree arg00 = TREE_OPERAND (arg0, 0);
11570 tree arg01 = TREE_OPERAND (arg0, 1);
11571 tree arg10 = TREE_OPERAND (arg1, 0);
11572 tree arg11 = TREE_OPERAND (arg1, 1);
11573 tree itype = TREE_TYPE (arg0);
11574
11575 if (operand_equal_p (arg01, arg11, 0))
11576 {
11577 tem = fold_convert_loc (loc, itype, arg10);
11578 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
11579 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
11580 return fold_build2_loc (loc, code, type, tem,
11581 build_zero_cst (itype));
11582 }
11583 if (operand_equal_p (arg01, arg10, 0))
11584 {
11585 tem = fold_convert_loc (loc, itype, arg11);
11586 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
11587 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
11588 return fold_build2_loc (loc, code, type, tem,
11589 build_zero_cst (itype));
11590 }
11591 if (operand_equal_p (arg00, arg11, 0))
11592 {
11593 tem = fold_convert_loc (loc, itype, arg10);
11594 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
11595 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
11596 return fold_build2_loc (loc, code, type, tem,
11597 build_zero_cst (itype));
11598 }
11599 if (operand_equal_p (arg00, arg10, 0))
11600 {
11601 tem = fold_convert_loc (loc, itype, arg11);
11602 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
11603 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
11604 return fold_build2_loc (loc, code, type, tem,
11605 build_zero_cst (itype));
11606 }
11607 }
11608
11609 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11610 && TREE_CODE (arg1) == BIT_XOR_EXPR)
11611 {
11612 tree arg00 = TREE_OPERAND (arg0, 0);
11613 tree arg01 = TREE_OPERAND (arg0, 1);
11614 tree arg10 = TREE_OPERAND (arg1, 0);
11615 tree arg11 = TREE_OPERAND (arg1, 1);
11616 tree itype = TREE_TYPE (arg0);
11617
11618 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
11619 operand_equal_p guarantees no side-effects so we don't need
11620 to use omit_one_operand on Z. */
11621 if (operand_equal_p (arg01, arg11, 0))
11622 return fold_build2_loc (loc, code, type, arg00,
11623 fold_convert_loc (loc, TREE_TYPE (arg00),
11624 arg10));
11625 if (operand_equal_p (arg01, arg10, 0))
11626 return fold_build2_loc (loc, code, type, arg00,
11627 fold_convert_loc (loc, TREE_TYPE (arg00),
11628 arg11));
11629 if (operand_equal_p (arg00, arg11, 0))
11630 return fold_build2_loc (loc, code, type, arg01,
11631 fold_convert_loc (loc, TREE_TYPE (arg01),
11632 arg10));
11633 if (operand_equal_p (arg00, arg10, 0))
11634 return fold_build2_loc (loc, code, type, arg01,
11635 fold_convert_loc (loc, TREE_TYPE (arg01),
11636 arg11));
11637
11638 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
11639 if (TREE_CODE (arg01) == INTEGER_CST
11640 && TREE_CODE (arg11) == INTEGER_CST)
11641 {
11642 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
11643 fold_convert_loc (loc, itype, arg11));
11644 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
11645 return fold_build2_loc (loc, code, type, tem,
11646 fold_convert_loc (loc, itype, arg10));
11647 }
11648 }
11649
11650 /* Attempt to simplify equality/inequality comparisons of complex
11651 values. Only lower the comparison if the result is known or
11652 can be simplified to a single scalar comparison. */
11653 if ((TREE_CODE (arg0) == COMPLEX_EXPR
11654 || TREE_CODE (arg0) == COMPLEX_CST)
11655 && (TREE_CODE (arg1) == COMPLEX_EXPR
11656 || TREE_CODE (arg1) == COMPLEX_CST))
11657 {
11658 tree real0, imag0, real1, imag1;
11659 tree rcond, icond;
11660
11661 if (TREE_CODE (arg0) == COMPLEX_EXPR)
11662 {
11663 real0 = TREE_OPERAND (arg0, 0);
11664 imag0 = TREE_OPERAND (arg0, 1);
11665 }
11666 else
11667 {
11668 real0 = TREE_REALPART (arg0);
11669 imag0 = TREE_IMAGPART (arg0);
11670 }
11671
11672 if (TREE_CODE (arg1) == COMPLEX_EXPR)
11673 {
11674 real1 = TREE_OPERAND (arg1, 0);
11675 imag1 = TREE_OPERAND (arg1, 1);
11676 }
11677 else
11678 {
11679 real1 = TREE_REALPART (arg1);
11680 imag1 = TREE_IMAGPART (arg1);
11681 }
11682
11683 rcond = fold_binary_loc (loc, code, type, real0, real1);
11684 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
11685 {
11686 if (integer_zerop (rcond))
11687 {
11688 if (code == EQ_EXPR)
11689 return omit_two_operands_loc (loc, type, boolean_false_node,
11690 imag0, imag1);
11691 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
11692 }
11693 else
11694 {
11695 if (code == NE_EXPR)
11696 return omit_two_operands_loc (loc, type, boolean_true_node,
11697 imag0, imag1);
11698 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
11699 }
11700 }
11701
11702 icond = fold_binary_loc (loc, code, type, imag0, imag1);
11703 if (icond && TREE_CODE (icond) == INTEGER_CST)
11704 {
11705 if (integer_zerop (icond))
11706 {
11707 if (code == EQ_EXPR)
11708 return omit_two_operands_loc (loc, type, boolean_false_node,
11709 real0, real1);
11710 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
11711 }
11712 else
11713 {
11714 if (code == NE_EXPR)
11715 return omit_two_operands_loc (loc, type, boolean_true_node,
11716 real0, real1);
11717 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
11718 }
11719 }
11720 }
11721
11722 return NULL_TREE;
11723
11724 case LT_EXPR:
11725 case GT_EXPR:
11726 case LE_EXPR:
11727 case GE_EXPR:
11728 tem = fold_comparison (loc, code, type, op0, op1);
11729 if (tem != NULL_TREE)
11730 return tem;
11731
11732 /* Transform comparisons of the form X +- C CMP X. */
11733 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
11734 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11735 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
11736 && !HONOR_SNANS (arg0))
11737 {
11738 tree arg01 = TREE_OPERAND (arg0, 1);
11739 enum tree_code code0 = TREE_CODE (arg0);
11740 int is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
11741
11742 /* (X - c) > X becomes false. */
11743 if (code == GT_EXPR
11744 && ((code0 == MINUS_EXPR && is_positive >= 0)
11745 || (code0 == PLUS_EXPR && is_positive <= 0)))
11746 return constant_boolean_node (0, type);
11747
11748 /* Likewise (X + c) < X becomes false. */
11749 if (code == LT_EXPR
11750 && ((code0 == PLUS_EXPR && is_positive >= 0)
11751 || (code0 == MINUS_EXPR && is_positive <= 0)))
11752 return constant_boolean_node (0, type);
11753
11754 /* Convert (X - c) <= X to true. */
11755 if (!HONOR_NANS (arg1)
11756 && code == LE_EXPR
11757 && ((code0 == MINUS_EXPR && is_positive >= 0)
11758 || (code0 == PLUS_EXPR && is_positive <= 0)))
11759 return constant_boolean_node (1, type);
11760
11761 /* Convert (X + c) >= X to true. */
11762 if (!HONOR_NANS (arg1)
11763 && code == GE_EXPR
11764 && ((code0 == PLUS_EXPR && is_positive >= 0)
11765 || (code0 == MINUS_EXPR && is_positive <= 0)))
11766 return constant_boolean_node (1, type);
11767 }
11768
11769 /* If we are comparing an ABS_EXPR with a constant, we can
11770 convert all the cases into explicit comparisons, but they may
11771 well not be faster than doing the ABS and one comparison.
11772 But ABS (X) <= C is a range comparison, which becomes a subtraction
11773 and a comparison, and is probably faster. */
11774 if (code == LE_EXPR
11775 && TREE_CODE (arg1) == INTEGER_CST
11776 && TREE_CODE (arg0) == ABS_EXPR
11777 && ! TREE_SIDE_EFFECTS (arg0)
11778 && (tem = negate_expr (arg1)) != 0
11779 && TREE_CODE (tem) == INTEGER_CST
11780 && !TREE_OVERFLOW (tem))
11781 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
11782 build2 (GE_EXPR, type,
11783 TREE_OPERAND (arg0, 0), tem),
11784 build2 (LE_EXPR, type,
11785 TREE_OPERAND (arg0, 0), arg1));
11786
11787 /* Convert ABS_EXPR<x> >= 0 to true. */
11788 strict_overflow_p = false;
11789 if (code == GE_EXPR
11790 && (integer_zerop (arg1)
11791 || (! HONOR_NANS (arg0)
11792 && real_zerop (arg1)))
11793 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11794 {
11795 if (strict_overflow_p)
11796 fold_overflow_warning (("assuming signed overflow does not occur "
11797 "when simplifying comparison of "
11798 "absolute value and zero"),
11799 WARN_STRICT_OVERFLOW_CONDITIONAL);
11800 return omit_one_operand_loc (loc, type,
11801 constant_boolean_node (true, type),
11802 arg0);
11803 }
11804
11805 /* Convert ABS_EXPR<x> < 0 to false. */
11806 strict_overflow_p = false;
11807 if (code == LT_EXPR
11808 && (integer_zerop (arg1) || real_zerop (arg1))
11809 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11810 {
11811 if (strict_overflow_p)
11812 fold_overflow_warning (("assuming signed overflow does not occur "
11813 "when simplifying comparison of "
11814 "absolute value and zero"),
11815 WARN_STRICT_OVERFLOW_CONDITIONAL);
11816 return omit_one_operand_loc (loc, type,
11817 constant_boolean_node (false, type),
11818 arg0);
11819 }
11820
11821 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11822 and similarly for >= into !=. */
11823 if ((code == LT_EXPR || code == GE_EXPR)
11824 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11825 && TREE_CODE (arg1) == LSHIFT_EXPR
11826 && integer_onep (TREE_OPERAND (arg1, 0)))
11827 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11828 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11829 TREE_OPERAND (arg1, 1)),
11830 build_zero_cst (TREE_TYPE (arg0)));
11831
11832 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11833 otherwise Y might be >= # of bits in X's type and thus e.g.
11834 (unsigned char) (1 << Y) for Y 15 might be 0.
11835 If the cast is widening, then 1 << Y should have unsigned type,
11836 otherwise if Y is number of bits in the signed shift type minus 1,
11837 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11838 31 might be 0xffffffff80000000. */
11839 if ((code == LT_EXPR || code == GE_EXPR)
11840 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11841 && CONVERT_EXPR_P (arg1)
11842 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11843 && (element_precision (TREE_TYPE (arg1))
11844 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11845 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11846 || (element_precision (TREE_TYPE (arg1))
11847 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11848 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11849 {
11850 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11851 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11852 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11853 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11854 build_zero_cst (TREE_TYPE (arg0)));
11855 }
11856
11857 return NULL_TREE;
11858
11859 case UNORDERED_EXPR:
11860 case ORDERED_EXPR:
11861 case UNLT_EXPR:
11862 case UNLE_EXPR:
11863 case UNGT_EXPR:
11864 case UNGE_EXPR:
11865 case UNEQ_EXPR:
11866 case LTGT_EXPR:
11867 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11868 {
11869 tree targ0 = strip_float_extensions (arg0);
11870 tree targ1 = strip_float_extensions (arg1);
11871 tree newtype = TREE_TYPE (targ0);
11872
11873 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11874 newtype = TREE_TYPE (targ1);
11875
11876 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11877 return fold_build2_loc (loc, code, type,
11878 fold_convert_loc (loc, newtype, targ0),
11879 fold_convert_loc (loc, newtype, targ1));
11880 }
11881
11882 return NULL_TREE;
11883
11884 case COMPOUND_EXPR:
11885 /* When pedantic, a compound expression can be neither an lvalue
11886 nor an integer constant expression. */
11887 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11888 return NULL_TREE;
11889 /* Don't let (0, 0) be null pointer constant. */
11890 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11891 : fold_convert_loc (loc, type, arg1);
11892 return pedantic_non_lvalue_loc (loc, tem);
11893
11894 case ASSERT_EXPR:
11895 /* An ASSERT_EXPR should never be passed to fold_binary. */
11896 gcc_unreachable ();
11897
11898 default:
11899 return NULL_TREE;
11900 } /* switch (code) */
11901 }
11902
11903 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
11904 ((A & N) + B) & M -> (A + B) & M
11905 Similarly if (N & M) == 0,
11906 ((A | N) + B) & M -> (A + B) & M
11907 and for - instead of + (or unary - instead of +)
11908 and/or ^ instead of |.
11909 If B is constant and (B & M) == 0, fold into A & M.
11910
11911 This function is a helper for match.pd patterns. Return non-NULL
11912 type in which the simplified operation should be performed only
11913 if any optimization is possible.
11914
11915 ARG1 is M above, ARG00 is left operand of +/-, if CODE00 is BIT_*_EXPR,
11916 then ARG00{0,1} are operands of that bitop, otherwise CODE00 is ERROR_MARK.
11917 Similarly for ARG01, CODE01 and ARG01{0,1}, just for the right operand of
11918 +/-. */
11919 tree
11920 fold_bit_and_mask (tree type, tree arg1, enum tree_code code,
11921 tree arg00, enum tree_code code00, tree arg000, tree arg001,
11922 tree arg01, enum tree_code code01, tree arg010, tree arg011,
11923 tree *pmop)
11924 {
11925 gcc_assert (TREE_CODE (arg1) == INTEGER_CST);
11926 gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR || code == NEGATE_EXPR);
11927 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1);
11928 if (~cst1 == 0
11929 || (cst1 & (cst1 + 1)) != 0
11930 || !INTEGRAL_TYPE_P (type)
11931 || (!TYPE_OVERFLOW_WRAPS (type)
11932 && TREE_CODE (type) != INTEGER_TYPE)
11933 || (wi::max_value (type) & cst1) != cst1)
11934 return NULL_TREE;
11935
11936 enum tree_code codes[2] = { code00, code01 };
11937 tree arg0xx[4] = { arg000, arg001, arg010, arg011 };
11938 int which = 0;
11939 wide_int cst0;
11940
11941 /* Now we know that arg0 is (C + D) or (C - D) or -C and
11942 arg1 (M) is == (1LL << cst) - 1.
11943 Store C into PMOP[0] and D into PMOP[1]. */
11944 pmop[0] = arg00;
11945 pmop[1] = arg01;
11946 which = code != NEGATE_EXPR;
11947
11948 for (; which >= 0; which--)
11949 switch (codes[which])
11950 {
11951 case BIT_AND_EXPR:
11952 case BIT_IOR_EXPR:
11953 case BIT_XOR_EXPR:
11954 gcc_assert (TREE_CODE (arg0xx[2 * which + 1]) == INTEGER_CST);
11955 cst0 = wi::to_wide (arg0xx[2 * which + 1]) & cst1;
11956 if (codes[which] == BIT_AND_EXPR)
11957 {
11958 if (cst0 != cst1)
11959 break;
11960 }
11961 else if (cst0 != 0)
11962 break;
11963 /* If C or D is of the form (A & N) where
11964 (N & M) == M, or of the form (A | N) or
11965 (A ^ N) where (N & M) == 0, replace it with A. */
11966 pmop[which] = arg0xx[2 * which];
11967 break;
11968 case ERROR_MARK:
11969 if (TREE_CODE (pmop[which]) != INTEGER_CST)
11970 break;
11971 /* If C or D is a N where (N & M) == 0, it can be
11972 omitted (replaced with 0). */
11973 if ((code == PLUS_EXPR
11974 || (code == MINUS_EXPR && which == 0))
11975 && (cst1 & wi::to_wide (pmop[which])) == 0)
11976 pmop[which] = build_int_cst (type, 0);
11977 /* Similarly, with C - N where (-N & M) == 0. */
11978 if (code == MINUS_EXPR
11979 && which == 1
11980 && (cst1 & -wi::to_wide (pmop[which])) == 0)
11981 pmop[which] = build_int_cst (type, 0);
11982 break;
11983 default:
11984 gcc_unreachable ();
11985 }
11986
11987 /* Only build anything new if we optimized one or both arguments above. */
11988 if (pmop[0] == arg00 && pmop[1] == arg01)
11989 return NULL_TREE;
11990
11991 if (TYPE_OVERFLOW_WRAPS (type))
11992 return type;
11993 else
11994 return unsigned_type_for (type);
11995 }
11996
11997 /* Used by contains_label_[p1]. */
11998
11999 struct contains_label_data
12000 {
12001 hash_set<tree> *pset;
12002 bool inside_switch_p;
12003 };
12004
12005 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
12006 a LABEL_EXPR or CASE_LABEL_EXPR not inside of another SWITCH_EXPR; otherwise
12007 return NULL_TREE. Do not check the subtrees of GOTO_EXPR. */
12008
12009 static tree
12010 contains_label_1 (tree *tp, int *walk_subtrees, void *data)
12011 {
12012 contains_label_data *d = (contains_label_data *) data;
12013 switch (TREE_CODE (*tp))
12014 {
12015 case LABEL_EXPR:
12016 return *tp;
12017
12018 case CASE_LABEL_EXPR:
12019 if (!d->inside_switch_p)
12020 return *tp;
12021 return NULL_TREE;
12022
12023 case SWITCH_EXPR:
12024 if (!d->inside_switch_p)
12025 {
12026 if (walk_tree (&SWITCH_COND (*tp), contains_label_1, data, d->pset))
12027 return *tp;
12028 d->inside_switch_p = true;
12029 if (walk_tree (&SWITCH_BODY (*tp), contains_label_1, data, d->pset))
12030 return *tp;
12031 d->inside_switch_p = false;
12032 *walk_subtrees = 0;
12033 }
12034 return NULL_TREE;
12035
12036 case GOTO_EXPR:
12037 *walk_subtrees = 0;
12038 return NULL_TREE;
12039
12040 default:
12041 return NULL_TREE;
12042 }
12043 }
12044
12045 /* Return whether the sub-tree ST contains a label which is accessible from
12046 outside the sub-tree. */
12047
12048 static bool
12049 contains_label_p (tree st)
12050 {
12051 hash_set<tree> pset;
12052 contains_label_data data = { &pset, false };
12053 return walk_tree (&st, contains_label_1, &data, &pset) != NULL_TREE;
12054 }
12055
12056 /* Fold a ternary expression of code CODE and type TYPE with operands
12057 OP0, OP1, and OP2. Return the folded expression if folding is
12058 successful. Otherwise, return NULL_TREE. */
12059
12060 tree
12061 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
12062 tree op0, tree op1, tree op2)
12063 {
12064 tree tem;
12065 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
12066 enum tree_code_class kind = TREE_CODE_CLASS (code);
12067
12068 gcc_assert (IS_EXPR_CODE_CLASS (kind)
12069 && TREE_CODE_LENGTH (code) == 3);
12070
12071 /* If this is a commutative operation, and OP0 is a constant, move it
12072 to OP1 to reduce the number of tests below. */
12073 if (commutative_ternary_tree_code (code)
12074 && tree_swap_operands_p (op0, op1))
12075 return fold_build3_loc (loc, code, type, op1, op0, op2);
12076
12077 tem = generic_simplify (loc, code, type, op0, op1, op2);
12078 if (tem)
12079 return tem;
12080
12081 /* Strip any conversions that don't change the mode. This is safe
12082 for every expression, except for a comparison expression because
12083 its signedness is derived from its operands. So, in the latter
12084 case, only strip conversions that don't change the signedness.
12085
12086 Note that this is done as an internal manipulation within the
12087 constant folder, in order to find the simplest representation of
12088 the arguments so that their form can be studied. In any cases,
12089 the appropriate type conversions should be put back in the tree
12090 that will get out of the constant folder. */
12091 if (op0)
12092 {
12093 arg0 = op0;
12094 STRIP_NOPS (arg0);
12095 }
12096
12097 if (op1)
12098 {
12099 arg1 = op1;
12100 STRIP_NOPS (arg1);
12101 }
12102
12103 if (op2)
12104 {
12105 arg2 = op2;
12106 STRIP_NOPS (arg2);
12107 }
12108
12109 switch (code)
12110 {
12111 case COMPONENT_REF:
12112 if (TREE_CODE (arg0) == CONSTRUCTOR
12113 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
12114 {
12115 unsigned HOST_WIDE_INT idx;
12116 tree field, value;
12117 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
12118 if (field == arg1)
12119 return value;
12120 }
12121 return NULL_TREE;
12122
12123 case COND_EXPR:
12124 case VEC_COND_EXPR:
12125 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
12126 so all simple results must be passed through pedantic_non_lvalue. */
12127 if (TREE_CODE (arg0) == INTEGER_CST)
12128 {
12129 tree unused_op = integer_zerop (arg0) ? op1 : op2;
12130 tem = integer_zerop (arg0) ? op2 : op1;
12131 /* Only optimize constant conditions when the selected branch
12132 has the same type as the COND_EXPR. This avoids optimizing
12133 away "c ? x : throw", where the throw has a void type.
12134 Avoid throwing away that operand which contains label. */
12135 if ((!TREE_SIDE_EFFECTS (unused_op)
12136 || !contains_label_p (unused_op))
12137 && (! VOID_TYPE_P (TREE_TYPE (tem))
12138 || VOID_TYPE_P (type)))
12139 return pedantic_non_lvalue_loc (loc, tem);
12140 return NULL_TREE;
12141 }
12142 else if (TREE_CODE (arg0) == VECTOR_CST)
12143 {
12144 unsigned HOST_WIDE_INT nelts;
12145 if ((TREE_CODE (arg1) == VECTOR_CST
12146 || TREE_CODE (arg1) == CONSTRUCTOR)
12147 && (TREE_CODE (arg2) == VECTOR_CST
12148 || TREE_CODE (arg2) == CONSTRUCTOR)
12149 && TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
12150 {
12151 vec_perm_builder sel (nelts, nelts, 1);
12152 for (unsigned int i = 0; i < nelts; i++)
12153 {
12154 tree val = VECTOR_CST_ELT (arg0, i);
12155 if (integer_all_onesp (val))
12156 sel.quick_push (i);
12157 else if (integer_zerop (val))
12158 sel.quick_push (nelts + i);
12159 else /* Currently unreachable. */
12160 return NULL_TREE;
12161 }
12162 vec_perm_indices indices (sel, 2, nelts);
12163 tree t = fold_vec_perm (type, arg1, arg2, indices);
12164 if (t != NULL_TREE)
12165 return t;
12166 }
12167 }
12168
12169 /* If we have A op B ? A : C, we may be able to convert this to a
12170 simpler expression, depending on the operation and the values
12171 of B and C. Signed zeros prevent all of these transformations,
12172 for reasons given above each one.
12173
12174 Also try swapping the arguments and inverting the conditional. */
12175 if (COMPARISON_CLASS_P (arg0)
12176 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op1)
12177 && !HONOR_SIGNED_ZEROS (element_mode (op1)))
12178 {
12179 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
12180 if (tem)
12181 return tem;
12182 }
12183
12184 if (COMPARISON_CLASS_P (arg0)
12185 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op2)
12186 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
12187 {
12188 location_t loc0 = expr_location_or (arg0, loc);
12189 tem = fold_invert_truthvalue (loc0, arg0);
12190 if (tem && COMPARISON_CLASS_P (tem))
12191 {
12192 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
12193 if (tem)
12194 return tem;
12195 }
12196 }
12197
12198 /* If the second operand is simpler than the third, swap them
12199 since that produces better jump optimization results. */
12200 if (truth_value_p (TREE_CODE (arg0))
12201 && tree_swap_operands_p (op1, op2))
12202 {
12203 location_t loc0 = expr_location_or (arg0, loc);
12204 /* See if this can be inverted. If it can't, possibly because
12205 it was a floating-point inequality comparison, don't do
12206 anything. */
12207 tem = fold_invert_truthvalue (loc0, arg0);
12208 if (tem)
12209 return fold_build3_loc (loc, code, type, tem, op2, op1);
12210 }
12211
12212 /* Convert A ? 1 : 0 to simply A. */
12213 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
12214 : (integer_onep (op1)
12215 && !VECTOR_TYPE_P (type)))
12216 && integer_zerop (op2)
12217 /* If we try to convert OP0 to our type, the
12218 call to fold will try to move the conversion inside
12219 a COND, which will recurse. In that case, the COND_EXPR
12220 is probably the best choice, so leave it alone. */
12221 && type == TREE_TYPE (arg0))
12222 return pedantic_non_lvalue_loc (loc, arg0);
12223
12224 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
12225 over COND_EXPR in cases such as floating point comparisons. */
12226 if (integer_zerop (op1)
12227 && code == COND_EXPR
12228 && integer_onep (op2)
12229 && !VECTOR_TYPE_P (type)
12230 && truth_value_p (TREE_CODE (arg0)))
12231 return pedantic_non_lvalue_loc (loc,
12232 fold_convert_loc (loc, type,
12233 invert_truthvalue_loc (loc,
12234 arg0)));
12235
12236 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
12237 if (TREE_CODE (arg0) == LT_EXPR
12238 && integer_zerop (TREE_OPERAND (arg0, 1))
12239 && integer_zerop (op2)
12240 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
12241 {
12242 /* sign_bit_p looks through both zero and sign extensions,
12243 but for this optimization only sign extensions are
12244 usable. */
12245 tree tem2 = TREE_OPERAND (arg0, 0);
12246 while (tem != tem2)
12247 {
12248 if (TREE_CODE (tem2) != NOP_EXPR
12249 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
12250 {
12251 tem = NULL_TREE;
12252 break;
12253 }
12254 tem2 = TREE_OPERAND (tem2, 0);
12255 }
12256 /* sign_bit_p only checks ARG1 bits within A's precision.
12257 If <sign bit of A> has wider type than A, bits outside
12258 of A's precision in <sign bit of A> need to be checked.
12259 If they are all 0, this optimization needs to be done
12260 in unsigned A's type, if they are all 1 in signed A's type,
12261 otherwise this can't be done. */
12262 if (tem
12263 && TYPE_PRECISION (TREE_TYPE (tem))
12264 < TYPE_PRECISION (TREE_TYPE (arg1))
12265 && TYPE_PRECISION (TREE_TYPE (tem))
12266 < TYPE_PRECISION (type))
12267 {
12268 int inner_width, outer_width;
12269 tree tem_type;
12270
12271 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
12272 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
12273 if (outer_width > TYPE_PRECISION (type))
12274 outer_width = TYPE_PRECISION (type);
12275
12276 wide_int mask = wi::shifted_mask
12277 (inner_width, outer_width - inner_width, false,
12278 TYPE_PRECISION (TREE_TYPE (arg1)));
12279
12280 wide_int common = mask & wi::to_wide (arg1);
12281 if (common == mask)
12282 {
12283 tem_type = signed_type_for (TREE_TYPE (tem));
12284 tem = fold_convert_loc (loc, tem_type, tem);
12285 }
12286 else if (common == 0)
12287 {
12288 tem_type = unsigned_type_for (TREE_TYPE (tem));
12289 tem = fold_convert_loc (loc, tem_type, tem);
12290 }
12291 else
12292 tem = NULL;
12293 }
12294
12295 if (tem)
12296 return
12297 fold_convert_loc (loc, type,
12298 fold_build2_loc (loc, BIT_AND_EXPR,
12299 TREE_TYPE (tem), tem,
12300 fold_convert_loc (loc,
12301 TREE_TYPE (tem),
12302 arg1)));
12303 }
12304
12305 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
12306 already handled above. */
12307 if (TREE_CODE (arg0) == BIT_AND_EXPR
12308 && integer_onep (TREE_OPERAND (arg0, 1))
12309 && integer_zerop (op2)
12310 && integer_pow2p (arg1))
12311 {
12312 tree tem = TREE_OPERAND (arg0, 0);
12313 STRIP_NOPS (tem);
12314 if (TREE_CODE (tem) == RSHIFT_EXPR
12315 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
12316 && (unsigned HOST_WIDE_INT) tree_log2 (arg1)
12317 == tree_to_uhwi (TREE_OPERAND (tem, 1)))
12318 return fold_build2_loc (loc, BIT_AND_EXPR, type,
12319 fold_convert_loc (loc, type,
12320 TREE_OPERAND (tem, 0)),
12321 op1);
12322 }
12323
12324 /* A & N ? N : 0 is simply A & N if N is a power of two. This
12325 is probably obsolete because the first operand should be a
12326 truth value (that's why we have the two cases above), but let's
12327 leave it in until we can confirm this for all front-ends. */
12328 if (integer_zerop (op2)
12329 && TREE_CODE (arg0) == NE_EXPR
12330 && integer_zerop (TREE_OPERAND (arg0, 1))
12331 && integer_pow2p (arg1)
12332 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12333 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12334 arg1, OEP_ONLY_CONST)
12335 /* operand_equal_p compares just value, not precision, so e.g.
12336 arg1 could be 8-bit -128 and be power of two, but BIT_AND_EXPR
12337 second operand 32-bit -128, which is not a power of two (or vice
12338 versa. */
12339 && integer_pow2p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)))
12340 return pedantic_non_lvalue_loc (loc,
12341 fold_convert_loc (loc, type,
12342 TREE_OPERAND (arg0,
12343 0)));
12344
12345 /* Disable the transformations below for vectors, since
12346 fold_binary_op_with_conditional_arg may undo them immediately,
12347 yielding an infinite loop. */
12348 if (code == VEC_COND_EXPR)
12349 return NULL_TREE;
12350
12351 /* Convert A ? B : 0 into A && B if A and B are truth values. */
12352 if (integer_zerop (op2)
12353 && truth_value_p (TREE_CODE (arg0))
12354 && truth_value_p (TREE_CODE (arg1))
12355 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12356 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
12357 : TRUTH_ANDIF_EXPR,
12358 type, fold_convert_loc (loc, type, arg0), op1);
12359
12360 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
12361 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
12362 && truth_value_p (TREE_CODE (arg0))
12363 && truth_value_p (TREE_CODE (arg1))
12364 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12365 {
12366 location_t loc0 = expr_location_or (arg0, loc);
12367 /* Only perform transformation if ARG0 is easily inverted. */
12368 tem = fold_invert_truthvalue (loc0, arg0);
12369 if (tem)
12370 return fold_build2_loc (loc, code == VEC_COND_EXPR
12371 ? BIT_IOR_EXPR
12372 : TRUTH_ORIF_EXPR,
12373 type, fold_convert_loc (loc, type, tem),
12374 op1);
12375 }
12376
12377 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
12378 if (integer_zerop (arg1)
12379 && truth_value_p (TREE_CODE (arg0))
12380 && truth_value_p (TREE_CODE (op2))
12381 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12382 {
12383 location_t loc0 = expr_location_or (arg0, loc);
12384 /* Only perform transformation if ARG0 is easily inverted. */
12385 tem = fold_invert_truthvalue (loc0, arg0);
12386 if (tem)
12387 return fold_build2_loc (loc, code == VEC_COND_EXPR
12388 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
12389 type, fold_convert_loc (loc, type, tem),
12390 op2);
12391 }
12392
12393 /* Convert A ? 1 : B into A || B if A and B are truth values. */
12394 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
12395 && truth_value_p (TREE_CODE (arg0))
12396 && truth_value_p (TREE_CODE (op2))
12397 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12398 return fold_build2_loc (loc, code == VEC_COND_EXPR
12399 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
12400 type, fold_convert_loc (loc, type, arg0), op2);
12401
12402 return NULL_TREE;
12403
12404 case CALL_EXPR:
12405 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
12406 of fold_ternary on them. */
12407 gcc_unreachable ();
12408
12409 case BIT_FIELD_REF:
12410 if (TREE_CODE (arg0) == VECTOR_CST
12411 && (type == TREE_TYPE (TREE_TYPE (arg0))
12412 || (VECTOR_TYPE_P (type)
12413 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0))))
12414 && tree_fits_uhwi_p (op1)
12415 && tree_fits_uhwi_p (op2))
12416 {
12417 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
12418 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
12419 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
12420 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
12421
12422 if (n != 0
12423 && (idx % width) == 0
12424 && (n % width) == 0
12425 && known_le ((idx + n) / width,
12426 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))))
12427 {
12428 idx = idx / width;
12429 n = n / width;
12430
12431 if (TREE_CODE (arg0) == VECTOR_CST)
12432 {
12433 if (n == 1)
12434 {
12435 tem = VECTOR_CST_ELT (arg0, idx);
12436 if (VECTOR_TYPE_P (type))
12437 tem = fold_build1 (VIEW_CONVERT_EXPR, type, tem);
12438 return tem;
12439 }
12440
12441 tree_vector_builder vals (type, n, 1);
12442 for (unsigned i = 0; i < n; ++i)
12443 vals.quick_push (VECTOR_CST_ELT (arg0, idx + i));
12444 return vals.build ();
12445 }
12446 }
12447 }
12448
12449 /* On constants we can use native encode/interpret to constant
12450 fold (nearly) all BIT_FIELD_REFs. */
12451 if (CONSTANT_CLASS_P (arg0)
12452 && can_native_interpret_type_p (type)
12453 && BITS_PER_UNIT == 8
12454 && tree_fits_uhwi_p (op1)
12455 && tree_fits_uhwi_p (op2))
12456 {
12457 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
12458 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
12459 /* Limit us to a reasonable amount of work. To relax the
12460 other limitations we need bit-shifting of the buffer
12461 and rounding up the size. */
12462 if (bitpos % BITS_PER_UNIT == 0
12463 && bitsize % BITS_PER_UNIT == 0
12464 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE)
12465 {
12466 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
12467 unsigned HOST_WIDE_INT len
12468 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT,
12469 bitpos / BITS_PER_UNIT);
12470 if (len > 0
12471 && len * BITS_PER_UNIT >= bitsize)
12472 {
12473 tree v = native_interpret_expr (type, b,
12474 bitsize / BITS_PER_UNIT);
12475 if (v)
12476 return v;
12477 }
12478 }
12479 }
12480
12481 return NULL_TREE;
12482
12483 case VEC_PERM_EXPR:
12484 /* Perform constant folding of BIT_INSERT_EXPR. */
12485 if (TREE_CODE (arg2) == VECTOR_CST
12486 && TREE_CODE (op0) == VECTOR_CST
12487 && TREE_CODE (op1) == VECTOR_CST)
12488 {
12489 /* Build a vector of integers from the tree mask. */
12490 vec_perm_builder builder;
12491 if (!tree_to_vec_perm_builder (&builder, arg2))
12492 return NULL_TREE;
12493
12494 /* Create a vec_perm_indices for the integer vector. */
12495 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
12496 bool single_arg = (op0 == op1);
12497 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
12498 return fold_vec_perm (type, op0, op1, sel);
12499 }
12500 return NULL_TREE;
12501
12502 case BIT_INSERT_EXPR:
12503 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
12504 if (TREE_CODE (arg0) == INTEGER_CST
12505 && TREE_CODE (arg1) == INTEGER_CST)
12506 {
12507 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
12508 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1));
12509 wide_int tem = (wi::to_wide (arg0)
12510 & wi::shifted_mask (bitpos, bitsize, true,
12511 TYPE_PRECISION (type)));
12512 wide_int tem2
12513 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)),
12514 bitsize), bitpos);
12515 return wide_int_to_tree (type, wi::bit_or (tem, tem2));
12516 }
12517 else if (TREE_CODE (arg0) == VECTOR_CST
12518 && CONSTANT_CLASS_P (arg1)
12519 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)),
12520 TREE_TYPE (arg1)))
12521 {
12522 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
12523 unsigned HOST_WIDE_INT elsize
12524 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1)));
12525 if (bitpos % elsize == 0)
12526 {
12527 unsigned k = bitpos / elsize;
12528 unsigned HOST_WIDE_INT nelts;
12529 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0))
12530 return arg0;
12531 else if (VECTOR_CST_NELTS (arg0).is_constant (&nelts))
12532 {
12533 tree_vector_builder elts (type, nelts, 1);
12534 elts.quick_grow (nelts);
12535 for (unsigned HOST_WIDE_INT i = 0; i < nelts; ++i)
12536 elts[i] = (i == k ? arg1 : VECTOR_CST_ELT (arg0, i));
12537 return elts.build ();
12538 }
12539 }
12540 }
12541 return NULL_TREE;
12542
12543 default:
12544 return NULL_TREE;
12545 } /* switch (code) */
12546 }
12547
12548 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
12549 of an array (or vector). *CTOR_IDX if non-NULL is updated with the
12550 constructor element index of the value returned. If the element is
12551 not found NULL_TREE is returned and *CTOR_IDX is updated to
12552 the index of the element after the ACCESS_INDEX position (which
12553 may be outside of the CTOR array). */
12554
12555 tree
12556 get_array_ctor_element_at_index (tree ctor, offset_int access_index,
12557 unsigned *ctor_idx)
12558 {
12559 tree index_type = NULL_TREE;
12560 signop index_sgn = UNSIGNED;
12561 offset_int low_bound = 0;
12562
12563 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
12564 {
12565 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
12566 if (domain_type && TYPE_MIN_VALUE (domain_type))
12567 {
12568 /* Static constructors for variably sized objects makes no sense. */
12569 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
12570 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
12571 /* ??? When it is obvious that the range is signed, treat it so. */
12572 if (TYPE_UNSIGNED (index_type)
12573 && TYPE_MAX_VALUE (domain_type)
12574 && tree_int_cst_lt (TYPE_MAX_VALUE (domain_type),
12575 TYPE_MIN_VALUE (domain_type)))
12576 {
12577 index_sgn = SIGNED;
12578 low_bound
12579 = offset_int::from (wi::to_wide (TYPE_MIN_VALUE (domain_type)),
12580 SIGNED);
12581 }
12582 else
12583 {
12584 index_sgn = TYPE_SIGN (index_type);
12585 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
12586 }
12587 }
12588 }
12589
12590 if (index_type)
12591 access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
12592 index_sgn);
12593
12594 offset_int index = low_bound;
12595 if (index_type)
12596 index = wi::ext (index, TYPE_PRECISION (index_type), index_sgn);
12597
12598 offset_int max_index = index;
12599 unsigned cnt;
12600 tree cfield, cval;
12601 bool first_p = true;
12602
12603 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
12604 {
12605 /* Array constructor might explicitly set index, or specify a range,
12606 or leave index NULL meaning that it is next index after previous
12607 one. */
12608 if (cfield)
12609 {
12610 if (TREE_CODE (cfield) == INTEGER_CST)
12611 max_index = index
12612 = offset_int::from (wi::to_wide (cfield), index_sgn);
12613 else
12614 {
12615 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
12616 index = offset_int::from (wi::to_wide (TREE_OPERAND (cfield, 0)),
12617 index_sgn);
12618 max_index
12619 = offset_int::from (wi::to_wide (TREE_OPERAND (cfield, 1)),
12620 index_sgn);
12621 gcc_checking_assert (wi::le_p (index, max_index, index_sgn));
12622 }
12623 }
12624 else if (!first_p)
12625 {
12626 index = max_index + 1;
12627 if (index_type)
12628 index = wi::ext (index, TYPE_PRECISION (index_type), index_sgn);
12629 gcc_checking_assert (wi::gt_p (index, max_index, index_sgn));
12630 max_index = index;
12631 }
12632 else
12633 first_p = false;
12634
12635 /* Do we have match? */
12636 if (wi::cmp (access_index, index, index_sgn) >= 0)
12637 {
12638 if (wi::cmp (access_index, max_index, index_sgn) <= 0)
12639 {
12640 if (ctor_idx)
12641 *ctor_idx = cnt;
12642 return cval;
12643 }
12644 }
12645 else if (in_gimple_form)
12646 /* We're past the element we search for. Note during parsing
12647 the elements might not be sorted.
12648 ??? We should use a binary search and a flag on the
12649 CONSTRUCTOR as to whether elements are sorted in declaration
12650 order. */
12651 break;
12652 }
12653 if (ctor_idx)
12654 *ctor_idx = cnt;
12655 return NULL_TREE;
12656 }
12657
12658 /* Perform constant folding and related simplification of EXPR.
12659 The related simplifications include x*1 => x, x*0 => 0, etc.,
12660 and application of the associative law.
12661 NOP_EXPR conversions may be removed freely (as long as we
12662 are careful not to change the type of the overall expression).
12663 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
12664 but we can constant-fold them if they have constant operands. */
12665
12666 #ifdef ENABLE_FOLD_CHECKING
12667 # define fold(x) fold_1 (x)
12668 static tree fold_1 (tree);
12669 static
12670 #endif
12671 tree
12672 fold (tree expr)
12673 {
12674 const tree t = expr;
12675 enum tree_code code = TREE_CODE (t);
12676 enum tree_code_class kind = TREE_CODE_CLASS (code);
12677 tree tem;
12678 location_t loc = EXPR_LOCATION (expr);
12679
12680 /* Return right away if a constant. */
12681 if (kind == tcc_constant)
12682 return t;
12683
12684 /* CALL_EXPR-like objects with variable numbers of operands are
12685 treated specially. */
12686 if (kind == tcc_vl_exp)
12687 {
12688 if (code == CALL_EXPR)
12689 {
12690 tem = fold_call_expr (loc, expr, false);
12691 return tem ? tem : expr;
12692 }
12693 return expr;
12694 }
12695
12696 if (IS_EXPR_CODE_CLASS (kind))
12697 {
12698 tree type = TREE_TYPE (t);
12699 tree op0, op1, op2;
12700
12701 switch (TREE_CODE_LENGTH (code))
12702 {
12703 case 1:
12704 op0 = TREE_OPERAND (t, 0);
12705 tem = fold_unary_loc (loc, code, type, op0);
12706 return tem ? tem : expr;
12707 case 2:
12708 op0 = TREE_OPERAND (t, 0);
12709 op1 = TREE_OPERAND (t, 1);
12710 tem = fold_binary_loc (loc, code, type, op0, op1);
12711 return tem ? tem : expr;
12712 case 3:
12713 op0 = TREE_OPERAND (t, 0);
12714 op1 = TREE_OPERAND (t, 1);
12715 op2 = TREE_OPERAND (t, 2);
12716 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12717 return tem ? tem : expr;
12718 default:
12719 break;
12720 }
12721 }
12722
12723 switch (code)
12724 {
12725 case ARRAY_REF:
12726 {
12727 tree op0 = TREE_OPERAND (t, 0);
12728 tree op1 = TREE_OPERAND (t, 1);
12729
12730 if (TREE_CODE (op1) == INTEGER_CST
12731 && TREE_CODE (op0) == CONSTRUCTOR
12732 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
12733 {
12734 tree val = get_array_ctor_element_at_index (op0,
12735 wi::to_offset (op1));
12736 if (val)
12737 return val;
12738 }
12739
12740 return t;
12741 }
12742
12743 /* Return a VECTOR_CST if possible. */
12744 case CONSTRUCTOR:
12745 {
12746 tree type = TREE_TYPE (t);
12747 if (TREE_CODE (type) != VECTOR_TYPE)
12748 return t;
12749
12750 unsigned i;
12751 tree val;
12752 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
12753 if (! CONSTANT_CLASS_P (val))
12754 return t;
12755
12756 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t));
12757 }
12758
12759 case CONST_DECL:
12760 return fold (DECL_INITIAL (t));
12761
12762 default:
12763 return t;
12764 } /* switch (code) */
12765 }
12766
12767 #ifdef ENABLE_FOLD_CHECKING
12768 #undef fold
12769
12770 static void fold_checksum_tree (const_tree, struct md5_ctx *,
12771 hash_table<nofree_ptr_hash<const tree_node> > *);
12772 static void fold_check_failed (const_tree, const_tree);
12773 void print_fold_checksum (const_tree);
12774
12775 /* When --enable-checking=fold, compute a digest of expr before
12776 and after actual fold call to see if fold did not accidentally
12777 change original expr. */
12778
12779 tree
12780 fold (tree expr)
12781 {
12782 tree ret;
12783 struct md5_ctx ctx;
12784 unsigned char checksum_before[16], checksum_after[16];
12785 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12786
12787 md5_init_ctx (&ctx);
12788 fold_checksum_tree (expr, &ctx, &ht);
12789 md5_finish_ctx (&ctx, checksum_before);
12790 ht.empty ();
12791
12792 ret = fold_1 (expr);
12793
12794 md5_init_ctx (&ctx);
12795 fold_checksum_tree (expr, &ctx, &ht);
12796 md5_finish_ctx (&ctx, checksum_after);
12797
12798 if (memcmp (checksum_before, checksum_after, 16))
12799 fold_check_failed (expr, ret);
12800
12801 return ret;
12802 }
12803
12804 void
12805 print_fold_checksum (const_tree expr)
12806 {
12807 struct md5_ctx ctx;
12808 unsigned char checksum[16], cnt;
12809 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12810
12811 md5_init_ctx (&ctx);
12812 fold_checksum_tree (expr, &ctx, &ht);
12813 md5_finish_ctx (&ctx, checksum);
12814 for (cnt = 0; cnt < 16; ++cnt)
12815 fprintf (stderr, "%02x", checksum[cnt]);
12816 putc ('\n', stderr);
12817 }
12818
12819 static void
12820 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
12821 {
12822 internal_error ("fold check: original tree changed by fold");
12823 }
12824
12825 static void
12826 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
12827 hash_table<nofree_ptr_hash <const tree_node> > *ht)
12828 {
12829 const tree_node **slot;
12830 enum tree_code code;
12831 union tree_node *buf;
12832 int i, len;
12833
12834 recursive_label:
12835 if (expr == NULL)
12836 return;
12837 slot = ht->find_slot (expr, INSERT);
12838 if (*slot != NULL)
12839 return;
12840 *slot = expr;
12841 code = TREE_CODE (expr);
12842 if (TREE_CODE_CLASS (code) == tcc_declaration
12843 && HAS_DECL_ASSEMBLER_NAME_P (expr))
12844 {
12845 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12846 size_t sz = tree_size (expr);
12847 buf = XALLOCAVAR (union tree_node, sz);
12848 memcpy ((char *) buf, expr, sz);
12849 SET_DECL_ASSEMBLER_NAME ((tree) buf, NULL);
12850 buf->decl_with_vis.symtab_node = NULL;
12851 buf->base.nowarning_flag = 0;
12852 expr = (tree) buf;
12853 }
12854 else if (TREE_CODE_CLASS (code) == tcc_type
12855 && (TYPE_POINTER_TO (expr)
12856 || TYPE_REFERENCE_TO (expr)
12857 || TYPE_CACHED_VALUES_P (expr)
12858 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
12859 || TYPE_NEXT_VARIANT (expr)
12860 || TYPE_ALIAS_SET_KNOWN_P (expr)))
12861 {
12862 /* Allow these fields to be modified. */
12863 tree tmp;
12864 size_t sz = tree_size (expr);
12865 buf = XALLOCAVAR (union tree_node, sz);
12866 memcpy ((char *) buf, expr, sz);
12867 expr = tmp = (tree) buf;
12868 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
12869 TYPE_POINTER_TO (tmp) = NULL;
12870 TYPE_REFERENCE_TO (tmp) = NULL;
12871 TYPE_NEXT_VARIANT (tmp) = NULL;
12872 TYPE_ALIAS_SET (tmp) = -1;
12873 if (TYPE_CACHED_VALUES_P (tmp))
12874 {
12875 TYPE_CACHED_VALUES_P (tmp) = 0;
12876 TYPE_CACHED_VALUES (tmp) = NULL;
12877 }
12878 }
12879 else if (TREE_NO_WARNING (expr) && (DECL_P (expr) || EXPR_P (expr)))
12880 {
12881 /* Allow TREE_NO_WARNING to be set. Perhaps we shouldn't allow that
12882 and change builtins.c etc. instead - see PR89543. */
12883 size_t sz = tree_size (expr);
12884 buf = XALLOCAVAR (union tree_node, sz);
12885 memcpy ((char *) buf, expr, sz);
12886 buf->base.nowarning_flag = 0;
12887 expr = (tree) buf;
12888 }
12889 md5_process_bytes (expr, tree_size (expr), ctx);
12890 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
12891 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
12892 if (TREE_CODE_CLASS (code) != tcc_type
12893 && TREE_CODE_CLASS (code) != tcc_declaration
12894 && code != TREE_LIST
12895 && code != SSA_NAME
12896 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
12897 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
12898 switch (TREE_CODE_CLASS (code))
12899 {
12900 case tcc_constant:
12901 switch (code)
12902 {
12903 case STRING_CST:
12904 md5_process_bytes (TREE_STRING_POINTER (expr),
12905 TREE_STRING_LENGTH (expr), ctx);
12906 break;
12907 case COMPLEX_CST:
12908 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12909 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12910 break;
12911 case VECTOR_CST:
12912 len = vector_cst_encoded_nelts (expr);
12913 for (i = 0; i < len; ++i)
12914 fold_checksum_tree (VECTOR_CST_ENCODED_ELT (expr, i), ctx, ht);
12915 break;
12916 default:
12917 break;
12918 }
12919 break;
12920 case tcc_exceptional:
12921 switch (code)
12922 {
12923 case TREE_LIST:
12924 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12925 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12926 expr = TREE_CHAIN (expr);
12927 goto recursive_label;
12928 break;
12929 case TREE_VEC:
12930 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12931 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12932 break;
12933 default:
12934 break;
12935 }
12936 break;
12937 case tcc_expression:
12938 case tcc_reference:
12939 case tcc_comparison:
12940 case tcc_unary:
12941 case tcc_binary:
12942 case tcc_statement:
12943 case tcc_vl_exp:
12944 len = TREE_OPERAND_LENGTH (expr);
12945 for (i = 0; i < len; ++i)
12946 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12947 break;
12948 case tcc_declaration:
12949 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12950 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12951 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12952 {
12953 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12954 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12955 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12956 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12957 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12958 }
12959
12960 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12961 {
12962 if (TREE_CODE (expr) == FUNCTION_DECL)
12963 {
12964 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12965 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12966 }
12967 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12968 }
12969 break;
12970 case tcc_type:
12971 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12972 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12973 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12974 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12975 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12976 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12977 if (INTEGRAL_TYPE_P (expr)
12978 || SCALAR_FLOAT_TYPE_P (expr))
12979 {
12980 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12981 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12982 }
12983 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12984 if (TREE_CODE (expr) == RECORD_TYPE
12985 || TREE_CODE (expr) == UNION_TYPE
12986 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12987 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12988 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12989 break;
12990 default:
12991 break;
12992 }
12993 }
12994
12995 /* Helper function for outputting the checksum of a tree T. When
12996 debugging with gdb, you can "define mynext" to be "next" followed
12997 by "call debug_fold_checksum (op0)", then just trace down till the
12998 outputs differ. */
12999
13000 DEBUG_FUNCTION void
13001 debug_fold_checksum (const_tree t)
13002 {
13003 int i;
13004 unsigned char checksum[16];
13005 struct md5_ctx ctx;
13006 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13007
13008 md5_init_ctx (&ctx);
13009 fold_checksum_tree (t, &ctx, &ht);
13010 md5_finish_ctx (&ctx, checksum);
13011 ht.empty ();
13012
13013 for (i = 0; i < 16; i++)
13014 fprintf (stderr, "%d ", checksum[i]);
13015
13016 fprintf (stderr, "\n");
13017 }
13018
13019 #endif
13020
13021 /* Fold a unary tree expression with code CODE of type TYPE with an
13022 operand OP0. LOC is the location of the resulting expression.
13023 Return a folded expression if successful. Otherwise, return a tree
13024 expression with code CODE of type TYPE with an operand OP0. */
13025
13026 tree
13027 fold_build1_loc (location_t loc,
13028 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
13029 {
13030 tree tem;
13031 #ifdef ENABLE_FOLD_CHECKING
13032 unsigned char checksum_before[16], checksum_after[16];
13033 struct md5_ctx ctx;
13034 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13035
13036 md5_init_ctx (&ctx);
13037 fold_checksum_tree (op0, &ctx, &ht);
13038 md5_finish_ctx (&ctx, checksum_before);
13039 ht.empty ();
13040 #endif
13041
13042 tem = fold_unary_loc (loc, code, type, op0);
13043 if (!tem)
13044 tem = build1_loc (loc, code, type, op0 PASS_MEM_STAT);
13045
13046 #ifdef ENABLE_FOLD_CHECKING
13047 md5_init_ctx (&ctx);
13048 fold_checksum_tree (op0, &ctx, &ht);
13049 md5_finish_ctx (&ctx, checksum_after);
13050
13051 if (memcmp (checksum_before, checksum_after, 16))
13052 fold_check_failed (op0, tem);
13053 #endif
13054 return tem;
13055 }
13056
13057 /* Fold a binary tree expression with code CODE of type TYPE with
13058 operands OP0 and OP1. LOC is the location of the resulting
13059 expression. Return a folded expression if successful. Otherwise,
13060 return a tree expression with code CODE of type TYPE with operands
13061 OP0 and OP1. */
13062
13063 tree
13064 fold_build2_loc (location_t loc,
13065 enum tree_code code, tree type, tree op0, tree op1
13066 MEM_STAT_DECL)
13067 {
13068 tree tem;
13069 #ifdef ENABLE_FOLD_CHECKING
13070 unsigned char checksum_before_op0[16],
13071 checksum_before_op1[16],
13072 checksum_after_op0[16],
13073 checksum_after_op1[16];
13074 struct md5_ctx ctx;
13075 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13076
13077 md5_init_ctx (&ctx);
13078 fold_checksum_tree (op0, &ctx, &ht);
13079 md5_finish_ctx (&ctx, checksum_before_op0);
13080 ht.empty ();
13081
13082 md5_init_ctx (&ctx);
13083 fold_checksum_tree (op1, &ctx, &ht);
13084 md5_finish_ctx (&ctx, checksum_before_op1);
13085 ht.empty ();
13086 #endif
13087
13088 tem = fold_binary_loc (loc, code, type, op0, op1);
13089 if (!tem)
13090 tem = build2_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
13091
13092 #ifdef ENABLE_FOLD_CHECKING
13093 md5_init_ctx (&ctx);
13094 fold_checksum_tree (op0, &ctx, &ht);
13095 md5_finish_ctx (&ctx, checksum_after_op0);
13096 ht.empty ();
13097
13098 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
13099 fold_check_failed (op0, tem);
13100
13101 md5_init_ctx (&ctx);
13102 fold_checksum_tree (op1, &ctx, &ht);
13103 md5_finish_ctx (&ctx, checksum_after_op1);
13104
13105 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
13106 fold_check_failed (op1, tem);
13107 #endif
13108 return tem;
13109 }
13110
13111 /* Fold a ternary tree expression with code CODE of type TYPE with
13112 operands OP0, OP1, and OP2. Return a folded expression if
13113 successful. Otherwise, return a tree expression with code CODE of
13114 type TYPE with operands OP0, OP1, and OP2. */
13115
13116 tree
13117 fold_build3_loc (location_t loc, enum tree_code code, tree type,
13118 tree op0, tree op1, tree op2 MEM_STAT_DECL)
13119 {
13120 tree tem;
13121 #ifdef ENABLE_FOLD_CHECKING
13122 unsigned char checksum_before_op0[16],
13123 checksum_before_op1[16],
13124 checksum_before_op2[16],
13125 checksum_after_op0[16],
13126 checksum_after_op1[16],
13127 checksum_after_op2[16];
13128 struct md5_ctx ctx;
13129 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13130
13131 md5_init_ctx (&ctx);
13132 fold_checksum_tree (op0, &ctx, &ht);
13133 md5_finish_ctx (&ctx, checksum_before_op0);
13134 ht.empty ();
13135
13136 md5_init_ctx (&ctx);
13137 fold_checksum_tree (op1, &ctx, &ht);
13138 md5_finish_ctx (&ctx, checksum_before_op1);
13139 ht.empty ();
13140
13141 md5_init_ctx (&ctx);
13142 fold_checksum_tree (op2, &ctx, &ht);
13143 md5_finish_ctx (&ctx, checksum_before_op2);
13144 ht.empty ();
13145 #endif
13146
13147 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
13148 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
13149 if (!tem)
13150 tem = build3_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
13151
13152 #ifdef ENABLE_FOLD_CHECKING
13153 md5_init_ctx (&ctx);
13154 fold_checksum_tree (op0, &ctx, &ht);
13155 md5_finish_ctx (&ctx, checksum_after_op0);
13156 ht.empty ();
13157
13158 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
13159 fold_check_failed (op0, tem);
13160
13161 md5_init_ctx (&ctx);
13162 fold_checksum_tree (op1, &ctx, &ht);
13163 md5_finish_ctx (&ctx, checksum_after_op1);
13164 ht.empty ();
13165
13166 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
13167 fold_check_failed (op1, tem);
13168
13169 md5_init_ctx (&ctx);
13170 fold_checksum_tree (op2, &ctx, &ht);
13171 md5_finish_ctx (&ctx, checksum_after_op2);
13172
13173 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
13174 fold_check_failed (op2, tem);
13175 #endif
13176 return tem;
13177 }
13178
13179 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
13180 arguments in ARGARRAY, and a null static chain.
13181 Return a folded expression if successful. Otherwise, return a CALL_EXPR
13182 of type TYPE from the given operands as constructed by build_call_array. */
13183
13184 tree
13185 fold_build_call_array_loc (location_t loc, tree type, tree fn,
13186 int nargs, tree *argarray)
13187 {
13188 tree tem;
13189 #ifdef ENABLE_FOLD_CHECKING
13190 unsigned char checksum_before_fn[16],
13191 checksum_before_arglist[16],
13192 checksum_after_fn[16],
13193 checksum_after_arglist[16];
13194 struct md5_ctx ctx;
13195 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13196 int i;
13197
13198 md5_init_ctx (&ctx);
13199 fold_checksum_tree (fn, &ctx, &ht);
13200 md5_finish_ctx (&ctx, checksum_before_fn);
13201 ht.empty ();
13202
13203 md5_init_ctx (&ctx);
13204 for (i = 0; i < nargs; i++)
13205 fold_checksum_tree (argarray[i], &ctx, &ht);
13206 md5_finish_ctx (&ctx, checksum_before_arglist);
13207 ht.empty ();
13208 #endif
13209
13210 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
13211 if (!tem)
13212 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
13213
13214 #ifdef ENABLE_FOLD_CHECKING
13215 md5_init_ctx (&ctx);
13216 fold_checksum_tree (fn, &ctx, &ht);
13217 md5_finish_ctx (&ctx, checksum_after_fn);
13218 ht.empty ();
13219
13220 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
13221 fold_check_failed (fn, tem);
13222
13223 md5_init_ctx (&ctx);
13224 for (i = 0; i < nargs; i++)
13225 fold_checksum_tree (argarray[i], &ctx, &ht);
13226 md5_finish_ctx (&ctx, checksum_after_arglist);
13227
13228 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
13229 fold_check_failed (NULL_TREE, tem);
13230 #endif
13231 return tem;
13232 }
13233
13234 /* Perform constant folding and related simplification of initializer
13235 expression EXPR. These behave identically to "fold_buildN" but ignore
13236 potential run-time traps and exceptions that fold must preserve. */
13237
13238 #define START_FOLD_INIT \
13239 int saved_signaling_nans = flag_signaling_nans;\
13240 int saved_trapping_math = flag_trapping_math;\
13241 int saved_rounding_math = flag_rounding_math;\
13242 int saved_trapv = flag_trapv;\
13243 int saved_folding_initializer = folding_initializer;\
13244 flag_signaling_nans = 0;\
13245 flag_trapping_math = 0;\
13246 flag_rounding_math = 0;\
13247 flag_trapv = 0;\
13248 folding_initializer = 1;
13249
13250 #define END_FOLD_INIT \
13251 flag_signaling_nans = saved_signaling_nans;\
13252 flag_trapping_math = saved_trapping_math;\
13253 flag_rounding_math = saved_rounding_math;\
13254 flag_trapv = saved_trapv;\
13255 folding_initializer = saved_folding_initializer;
13256
13257 tree
13258 fold_build1_initializer_loc (location_t loc, enum tree_code code,
13259 tree type, tree op)
13260 {
13261 tree result;
13262 START_FOLD_INIT;
13263
13264 result = fold_build1_loc (loc, code, type, op);
13265
13266 END_FOLD_INIT;
13267 return result;
13268 }
13269
13270 tree
13271 fold_build2_initializer_loc (location_t loc, enum tree_code code,
13272 tree type, tree op0, tree op1)
13273 {
13274 tree result;
13275 START_FOLD_INIT;
13276
13277 result = fold_build2_loc (loc, code, type, op0, op1);
13278
13279 END_FOLD_INIT;
13280 return result;
13281 }
13282
13283 tree
13284 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
13285 int nargs, tree *argarray)
13286 {
13287 tree result;
13288 START_FOLD_INIT;
13289
13290 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
13291
13292 END_FOLD_INIT;
13293 return result;
13294 }
13295
13296 #undef START_FOLD_INIT
13297 #undef END_FOLD_INIT
13298
13299 /* Determine if first argument is a multiple of second argument. Return 0 if
13300 it is not, or we cannot easily determined it to be.
13301
13302 An example of the sort of thing we care about (at this point; this routine
13303 could surely be made more general, and expanded to do what the *_DIV_EXPR's
13304 fold cases do now) is discovering that
13305
13306 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13307
13308 is a multiple of
13309
13310 SAVE_EXPR (J * 8)
13311
13312 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
13313
13314 This code also handles discovering that
13315
13316 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13317
13318 is a multiple of 8 so we don't have to worry about dealing with a
13319 possible remainder.
13320
13321 Note that we *look* inside a SAVE_EXPR only to determine how it was
13322 calculated; it is not safe for fold to do much of anything else with the
13323 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
13324 at run time. For example, the latter example above *cannot* be implemented
13325 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
13326 evaluation time of the original SAVE_EXPR is not necessarily the same at
13327 the time the new expression is evaluated. The only optimization of this
13328 sort that would be valid is changing
13329
13330 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
13331
13332 divided by 8 to
13333
13334 SAVE_EXPR (I) * SAVE_EXPR (J)
13335
13336 (where the same SAVE_EXPR (J) is used in the original and the
13337 transformed version). */
13338
13339 int
13340 multiple_of_p (tree type, const_tree top, const_tree bottom)
13341 {
13342 gimple *stmt;
13343 tree t1, op1, op2;
13344
13345 if (operand_equal_p (top, bottom, 0))
13346 return 1;
13347
13348 if (TREE_CODE (type) != INTEGER_TYPE)
13349 return 0;
13350
13351 switch (TREE_CODE (top))
13352 {
13353 case BIT_AND_EXPR:
13354 /* Bitwise and provides a power of two multiple. If the mask is
13355 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
13356 if (!integer_pow2p (bottom))
13357 return 0;
13358 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
13359 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
13360
13361 case MULT_EXPR:
13362 if (TREE_CODE (bottom) == INTEGER_CST)
13363 {
13364 op1 = TREE_OPERAND (top, 0);
13365 op2 = TREE_OPERAND (top, 1);
13366 if (TREE_CODE (op1) == INTEGER_CST)
13367 std::swap (op1, op2);
13368 if (TREE_CODE (op2) == INTEGER_CST)
13369 {
13370 if (multiple_of_p (type, op2, bottom))
13371 return 1;
13372 /* Handle multiple_of_p ((x * 2 + 2) * 4, 8). */
13373 if (multiple_of_p (type, bottom, op2))
13374 {
13375 widest_int w = wi::sdiv_trunc (wi::to_widest (bottom),
13376 wi::to_widest (op2));
13377 if (wi::fits_to_tree_p (w, TREE_TYPE (bottom)))
13378 {
13379 op2 = wide_int_to_tree (TREE_TYPE (bottom), w);
13380 return multiple_of_p (type, op1, op2);
13381 }
13382 }
13383 return multiple_of_p (type, op1, bottom);
13384 }
13385 }
13386 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
13387 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
13388
13389 case MINUS_EXPR:
13390 /* It is impossible to prove if op0 - op1 is multiple of bottom
13391 precisely, so be conservative here checking if both op0 and op1
13392 are multiple of bottom. Note we check the second operand first
13393 since it's usually simpler. */
13394 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
13395 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
13396
13397 case PLUS_EXPR:
13398 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
13399 as op0 - 3 if the expression has unsigned type. For example,
13400 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
13401 op1 = TREE_OPERAND (top, 1);
13402 if (TYPE_UNSIGNED (type)
13403 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1))
13404 op1 = fold_build1 (NEGATE_EXPR, type, op1);
13405 return (multiple_of_p (type, op1, bottom)
13406 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
13407
13408 case LSHIFT_EXPR:
13409 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
13410 {
13411 op1 = TREE_OPERAND (top, 1);
13412 /* const_binop may not detect overflow correctly,
13413 so check for it explicitly here. */
13414 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)),
13415 wi::to_wide (op1))
13416 && (t1 = fold_convert (type,
13417 const_binop (LSHIFT_EXPR, size_one_node,
13418 op1))) != 0
13419 && !TREE_OVERFLOW (t1))
13420 return multiple_of_p (type, t1, bottom);
13421 }
13422 return 0;
13423
13424 case NOP_EXPR:
13425 /* Can't handle conversions from non-integral or wider integral type. */
13426 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
13427 || (TYPE_PRECISION (type)
13428 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
13429 return 0;
13430
13431 /* fall through */
13432
13433 case SAVE_EXPR:
13434 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
13435
13436 case COND_EXPR:
13437 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
13438 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
13439
13440 case INTEGER_CST:
13441 if (TREE_CODE (bottom) != INTEGER_CST
13442 || integer_zerop (bottom)
13443 || (TYPE_UNSIGNED (type)
13444 && (tree_int_cst_sgn (top) < 0
13445 || tree_int_cst_sgn (bottom) < 0)))
13446 return 0;
13447 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
13448 SIGNED);
13449
13450 case SSA_NAME:
13451 if (TREE_CODE (bottom) == INTEGER_CST
13452 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL
13453 && gimple_code (stmt) == GIMPLE_ASSIGN)
13454 {
13455 enum tree_code code = gimple_assign_rhs_code (stmt);
13456
13457 /* Check for special cases to see if top is defined as multiple
13458 of bottom:
13459
13460 top = (X & ~(bottom - 1) ; bottom is power of 2
13461
13462 or
13463
13464 Y = X % bottom
13465 top = X - Y. */
13466 if (code == BIT_AND_EXPR
13467 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
13468 && TREE_CODE (op2) == INTEGER_CST
13469 && integer_pow2p (bottom)
13470 && wi::multiple_of_p (wi::to_widest (op2),
13471 wi::to_widest (bottom), UNSIGNED))
13472 return 1;
13473
13474 op1 = gimple_assign_rhs1 (stmt);
13475 if (code == MINUS_EXPR
13476 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
13477 && TREE_CODE (op2) == SSA_NAME
13478 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL
13479 && gimple_code (stmt) == GIMPLE_ASSIGN
13480 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR
13481 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0)
13482 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0))
13483 return 1;
13484 }
13485
13486 /* fall through */
13487
13488 default:
13489 if (POLY_INT_CST_P (top) && poly_int_tree_p (bottom))
13490 return multiple_p (wi::to_poly_widest (top),
13491 wi::to_poly_widest (bottom));
13492
13493 return 0;
13494 }
13495 }
13496
13497 #define tree_expr_nonnegative_warnv_p(X, Y) \
13498 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13499
13500 #define RECURSE(X) \
13501 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
13502
13503 /* Return true if CODE or TYPE is known to be non-negative. */
13504
13505 static bool
13506 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
13507 {
13508 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
13509 && truth_value_p (code))
13510 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
13511 have a signed:1 type (where the value is -1 and 0). */
13512 return true;
13513 return false;
13514 }
13515
13516 /* Return true if (CODE OP0) is known to be non-negative. If the return
13517 value is based on the assumption that signed overflow is undefined,
13518 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13519 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13520
13521 bool
13522 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
13523 bool *strict_overflow_p, int depth)
13524 {
13525 if (TYPE_UNSIGNED (type))
13526 return true;
13527
13528 switch (code)
13529 {
13530 case ABS_EXPR:
13531 /* We can't return 1 if flag_wrapv is set because
13532 ABS_EXPR<INT_MIN> = INT_MIN. */
13533 if (!ANY_INTEGRAL_TYPE_P (type))
13534 return true;
13535 if (TYPE_OVERFLOW_UNDEFINED (type))
13536 {
13537 *strict_overflow_p = true;
13538 return true;
13539 }
13540 break;
13541
13542 case NON_LVALUE_EXPR:
13543 case FLOAT_EXPR:
13544 case FIX_TRUNC_EXPR:
13545 return RECURSE (op0);
13546
13547 CASE_CONVERT:
13548 {
13549 tree inner_type = TREE_TYPE (op0);
13550 tree outer_type = type;
13551
13552 if (TREE_CODE (outer_type) == REAL_TYPE)
13553 {
13554 if (TREE_CODE (inner_type) == REAL_TYPE)
13555 return RECURSE (op0);
13556 if (INTEGRAL_TYPE_P (inner_type))
13557 {
13558 if (TYPE_UNSIGNED (inner_type))
13559 return true;
13560 return RECURSE (op0);
13561 }
13562 }
13563 else if (INTEGRAL_TYPE_P (outer_type))
13564 {
13565 if (TREE_CODE (inner_type) == REAL_TYPE)
13566 return RECURSE (op0);
13567 if (INTEGRAL_TYPE_P (inner_type))
13568 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
13569 && TYPE_UNSIGNED (inner_type);
13570 }
13571 }
13572 break;
13573
13574 default:
13575 return tree_simple_nonnegative_warnv_p (code, type);
13576 }
13577
13578 /* We don't know sign of `t', so be conservative and return false. */
13579 return false;
13580 }
13581
13582 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
13583 value is based on the assumption that signed overflow is undefined,
13584 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13585 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13586
13587 bool
13588 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
13589 tree op1, bool *strict_overflow_p,
13590 int depth)
13591 {
13592 if (TYPE_UNSIGNED (type))
13593 return true;
13594
13595 switch (code)
13596 {
13597 case POINTER_PLUS_EXPR:
13598 case PLUS_EXPR:
13599 if (FLOAT_TYPE_P (type))
13600 return RECURSE (op0) && RECURSE (op1);
13601
13602 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
13603 both unsigned and at least 2 bits shorter than the result. */
13604 if (TREE_CODE (type) == INTEGER_TYPE
13605 && TREE_CODE (op0) == NOP_EXPR
13606 && TREE_CODE (op1) == NOP_EXPR)
13607 {
13608 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
13609 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
13610 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
13611 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
13612 {
13613 unsigned int prec = MAX (TYPE_PRECISION (inner1),
13614 TYPE_PRECISION (inner2)) + 1;
13615 return prec < TYPE_PRECISION (type);
13616 }
13617 }
13618 break;
13619
13620 case MULT_EXPR:
13621 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
13622 {
13623 /* x * x is always non-negative for floating point x
13624 or without overflow. */
13625 if (operand_equal_p (op0, op1, 0)
13626 || (RECURSE (op0) && RECURSE (op1)))
13627 {
13628 if (ANY_INTEGRAL_TYPE_P (type)
13629 && TYPE_OVERFLOW_UNDEFINED (type))
13630 *strict_overflow_p = true;
13631 return true;
13632 }
13633 }
13634
13635 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
13636 both unsigned and their total bits is shorter than the result. */
13637 if (TREE_CODE (type) == INTEGER_TYPE
13638 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
13639 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
13640 {
13641 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
13642 ? TREE_TYPE (TREE_OPERAND (op0, 0))
13643 : TREE_TYPE (op0);
13644 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
13645 ? TREE_TYPE (TREE_OPERAND (op1, 0))
13646 : TREE_TYPE (op1);
13647
13648 bool unsigned0 = TYPE_UNSIGNED (inner0);
13649 bool unsigned1 = TYPE_UNSIGNED (inner1);
13650
13651 if (TREE_CODE (op0) == INTEGER_CST)
13652 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
13653
13654 if (TREE_CODE (op1) == INTEGER_CST)
13655 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
13656
13657 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
13658 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
13659 {
13660 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
13661 ? tree_int_cst_min_precision (op0, UNSIGNED)
13662 : TYPE_PRECISION (inner0);
13663
13664 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
13665 ? tree_int_cst_min_precision (op1, UNSIGNED)
13666 : TYPE_PRECISION (inner1);
13667
13668 return precision0 + precision1 < TYPE_PRECISION (type);
13669 }
13670 }
13671 return false;
13672
13673 case BIT_AND_EXPR:
13674 case MAX_EXPR:
13675 return RECURSE (op0) || RECURSE (op1);
13676
13677 case BIT_IOR_EXPR:
13678 case BIT_XOR_EXPR:
13679 case MIN_EXPR:
13680 case RDIV_EXPR:
13681 case TRUNC_DIV_EXPR:
13682 case CEIL_DIV_EXPR:
13683 case FLOOR_DIV_EXPR:
13684 case ROUND_DIV_EXPR:
13685 return RECURSE (op0) && RECURSE (op1);
13686
13687 case TRUNC_MOD_EXPR:
13688 return RECURSE (op0);
13689
13690 case FLOOR_MOD_EXPR:
13691 return RECURSE (op1);
13692
13693 case CEIL_MOD_EXPR:
13694 case ROUND_MOD_EXPR:
13695 default:
13696 return tree_simple_nonnegative_warnv_p (code, type);
13697 }
13698
13699 /* We don't know sign of `t', so be conservative and return false. */
13700 return false;
13701 }
13702
13703 /* Return true if T is known to be non-negative. If the return
13704 value is based on the assumption that signed overflow is undefined,
13705 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13706 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13707
13708 bool
13709 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13710 {
13711 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13712 return true;
13713
13714 switch (TREE_CODE (t))
13715 {
13716 case INTEGER_CST:
13717 return tree_int_cst_sgn (t) >= 0;
13718
13719 case REAL_CST:
13720 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
13721
13722 case FIXED_CST:
13723 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
13724
13725 case COND_EXPR:
13726 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
13727
13728 case SSA_NAME:
13729 /* Limit the depth of recursion to avoid quadratic behavior.
13730 This is expected to catch almost all occurrences in practice.
13731 If this code misses important cases that unbounded recursion
13732 would not, passes that need this information could be revised
13733 to provide it through dataflow propagation. */
13734 return (!name_registered_for_update_p (t)
13735 && depth < param_max_ssa_name_query_depth
13736 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t),
13737 strict_overflow_p, depth));
13738
13739 default:
13740 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13741 }
13742 }
13743
13744 /* Return true if T is known to be non-negative. If the return
13745 value is based on the assumption that signed overflow is undefined,
13746 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13747 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13748
13749 bool
13750 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1,
13751 bool *strict_overflow_p, int depth)
13752 {
13753 switch (fn)
13754 {
13755 CASE_CFN_ACOS:
13756 CASE_CFN_ACOSH:
13757 CASE_CFN_CABS:
13758 CASE_CFN_COSH:
13759 CASE_CFN_ERFC:
13760 CASE_CFN_EXP:
13761 CASE_CFN_EXP10:
13762 CASE_CFN_EXP2:
13763 CASE_CFN_FABS:
13764 CASE_CFN_FDIM:
13765 CASE_CFN_HYPOT:
13766 CASE_CFN_POW10:
13767 CASE_CFN_FFS:
13768 CASE_CFN_PARITY:
13769 CASE_CFN_POPCOUNT:
13770 CASE_CFN_CLZ:
13771 CASE_CFN_CLRSB:
13772 case CFN_BUILT_IN_BSWAP32:
13773 case CFN_BUILT_IN_BSWAP64:
13774 /* Always true. */
13775 return true;
13776
13777 CASE_CFN_SQRT:
13778 CASE_CFN_SQRT_FN:
13779 /* sqrt(-0.0) is -0.0. */
13780 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
13781 return true;
13782 return RECURSE (arg0);
13783
13784 CASE_CFN_ASINH:
13785 CASE_CFN_ATAN:
13786 CASE_CFN_ATANH:
13787 CASE_CFN_CBRT:
13788 CASE_CFN_CEIL:
13789 CASE_CFN_CEIL_FN:
13790 CASE_CFN_ERF:
13791 CASE_CFN_EXPM1:
13792 CASE_CFN_FLOOR:
13793 CASE_CFN_FLOOR_FN:
13794 CASE_CFN_FMOD:
13795 CASE_CFN_FREXP:
13796 CASE_CFN_ICEIL:
13797 CASE_CFN_IFLOOR:
13798 CASE_CFN_IRINT:
13799 CASE_CFN_IROUND:
13800 CASE_CFN_LCEIL:
13801 CASE_CFN_LDEXP:
13802 CASE_CFN_LFLOOR:
13803 CASE_CFN_LLCEIL:
13804 CASE_CFN_LLFLOOR:
13805 CASE_CFN_LLRINT:
13806 CASE_CFN_LLROUND:
13807 CASE_CFN_LRINT:
13808 CASE_CFN_LROUND:
13809 CASE_CFN_MODF:
13810 CASE_CFN_NEARBYINT:
13811 CASE_CFN_NEARBYINT_FN:
13812 CASE_CFN_RINT:
13813 CASE_CFN_RINT_FN:
13814 CASE_CFN_ROUND:
13815 CASE_CFN_ROUND_FN:
13816 CASE_CFN_ROUNDEVEN:
13817 CASE_CFN_ROUNDEVEN_FN:
13818 CASE_CFN_SCALB:
13819 CASE_CFN_SCALBLN:
13820 CASE_CFN_SCALBN:
13821 CASE_CFN_SIGNBIT:
13822 CASE_CFN_SIGNIFICAND:
13823 CASE_CFN_SINH:
13824 CASE_CFN_TANH:
13825 CASE_CFN_TRUNC:
13826 CASE_CFN_TRUNC_FN:
13827 /* True if the 1st argument is nonnegative. */
13828 return RECURSE (arg0);
13829
13830 CASE_CFN_FMAX:
13831 CASE_CFN_FMAX_FN:
13832 /* True if the 1st OR 2nd arguments are nonnegative. */
13833 return RECURSE (arg0) || RECURSE (arg1);
13834
13835 CASE_CFN_FMIN:
13836 CASE_CFN_FMIN_FN:
13837 /* True if the 1st AND 2nd arguments are nonnegative. */
13838 return RECURSE (arg0) && RECURSE (arg1);
13839
13840 CASE_CFN_COPYSIGN:
13841 CASE_CFN_COPYSIGN_FN:
13842 /* True if the 2nd argument is nonnegative. */
13843 return RECURSE (arg1);
13844
13845 CASE_CFN_POWI:
13846 /* True if the 1st argument is nonnegative or the second
13847 argument is an even integer. */
13848 if (TREE_CODE (arg1) == INTEGER_CST
13849 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
13850 return true;
13851 return RECURSE (arg0);
13852
13853 CASE_CFN_POW:
13854 /* True if the 1st argument is nonnegative or the second
13855 argument is an even integer valued real. */
13856 if (TREE_CODE (arg1) == REAL_CST)
13857 {
13858 REAL_VALUE_TYPE c;
13859 HOST_WIDE_INT n;
13860
13861 c = TREE_REAL_CST (arg1);
13862 n = real_to_integer (&c);
13863 if ((n & 1) == 0)
13864 {
13865 REAL_VALUE_TYPE cint;
13866 real_from_integer (&cint, VOIDmode, n, SIGNED);
13867 if (real_identical (&c, &cint))
13868 return true;
13869 }
13870 }
13871 return RECURSE (arg0);
13872
13873 default:
13874 break;
13875 }
13876 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type);
13877 }
13878
13879 /* Return true if T is known to be non-negative. If the return
13880 value is based on the assumption that signed overflow is undefined,
13881 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13882 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13883
13884 static bool
13885 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13886 {
13887 enum tree_code code = TREE_CODE (t);
13888 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13889 return true;
13890
13891 switch (code)
13892 {
13893 case TARGET_EXPR:
13894 {
13895 tree temp = TARGET_EXPR_SLOT (t);
13896 t = TARGET_EXPR_INITIAL (t);
13897
13898 /* If the initializer is non-void, then it's a normal expression
13899 that will be assigned to the slot. */
13900 if (!VOID_TYPE_P (t))
13901 return RECURSE (t);
13902
13903 /* Otherwise, the initializer sets the slot in some way. One common
13904 way is an assignment statement at the end of the initializer. */
13905 while (1)
13906 {
13907 if (TREE_CODE (t) == BIND_EXPR)
13908 t = expr_last (BIND_EXPR_BODY (t));
13909 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13910 || TREE_CODE (t) == TRY_CATCH_EXPR)
13911 t = expr_last (TREE_OPERAND (t, 0));
13912 else if (TREE_CODE (t) == STATEMENT_LIST)
13913 t = expr_last (t);
13914 else
13915 break;
13916 }
13917 if (TREE_CODE (t) == MODIFY_EXPR
13918 && TREE_OPERAND (t, 0) == temp)
13919 return RECURSE (TREE_OPERAND (t, 1));
13920
13921 return false;
13922 }
13923
13924 case CALL_EXPR:
13925 {
13926 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
13927 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
13928
13929 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
13930 get_call_combined_fn (t),
13931 arg0,
13932 arg1,
13933 strict_overflow_p, depth);
13934 }
13935 case COMPOUND_EXPR:
13936 case MODIFY_EXPR:
13937 return RECURSE (TREE_OPERAND (t, 1));
13938
13939 case BIND_EXPR:
13940 return RECURSE (expr_last (TREE_OPERAND (t, 1)));
13941
13942 case SAVE_EXPR:
13943 return RECURSE (TREE_OPERAND (t, 0));
13944
13945 default:
13946 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13947 }
13948 }
13949
13950 #undef RECURSE
13951 #undef tree_expr_nonnegative_warnv_p
13952
13953 /* Return true if T is known to be non-negative. If the return
13954 value is based on the assumption that signed overflow is undefined,
13955 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13956 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13957
13958 bool
13959 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13960 {
13961 enum tree_code code;
13962 if (t == error_mark_node)
13963 return false;
13964
13965 code = TREE_CODE (t);
13966 switch (TREE_CODE_CLASS (code))
13967 {
13968 case tcc_binary:
13969 case tcc_comparison:
13970 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13971 TREE_TYPE (t),
13972 TREE_OPERAND (t, 0),
13973 TREE_OPERAND (t, 1),
13974 strict_overflow_p, depth);
13975
13976 case tcc_unary:
13977 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13978 TREE_TYPE (t),
13979 TREE_OPERAND (t, 0),
13980 strict_overflow_p, depth);
13981
13982 case tcc_constant:
13983 case tcc_declaration:
13984 case tcc_reference:
13985 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13986
13987 default:
13988 break;
13989 }
13990
13991 switch (code)
13992 {
13993 case TRUTH_AND_EXPR:
13994 case TRUTH_OR_EXPR:
13995 case TRUTH_XOR_EXPR:
13996 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13997 TREE_TYPE (t),
13998 TREE_OPERAND (t, 0),
13999 TREE_OPERAND (t, 1),
14000 strict_overflow_p, depth);
14001 case TRUTH_NOT_EXPR:
14002 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
14003 TREE_TYPE (t),
14004 TREE_OPERAND (t, 0),
14005 strict_overflow_p, depth);
14006
14007 case COND_EXPR:
14008 case CONSTRUCTOR:
14009 case OBJ_TYPE_REF:
14010 case ASSERT_EXPR:
14011 case ADDR_EXPR:
14012 case WITH_SIZE_EXPR:
14013 case SSA_NAME:
14014 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
14015
14016 default:
14017 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth);
14018 }
14019 }
14020
14021 /* Return true if `t' is known to be non-negative. Handle warnings
14022 about undefined signed overflow. */
14023
14024 bool
14025 tree_expr_nonnegative_p (tree t)
14026 {
14027 bool ret, strict_overflow_p;
14028
14029 strict_overflow_p = false;
14030 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
14031 if (strict_overflow_p)
14032 fold_overflow_warning (("assuming signed overflow does not occur when "
14033 "determining that expression is always "
14034 "non-negative"),
14035 WARN_STRICT_OVERFLOW_MISC);
14036 return ret;
14037 }
14038
14039
14040 /* Return true when (CODE OP0) is an address and is known to be nonzero.
14041 For floating point we further ensure that T is not denormal.
14042 Similar logic is present in nonzero_address in rtlanal.h.
14043
14044 If the return value is based on the assumption that signed overflow
14045 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14046 change *STRICT_OVERFLOW_P. */
14047
14048 bool
14049 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
14050 bool *strict_overflow_p)
14051 {
14052 switch (code)
14053 {
14054 case ABS_EXPR:
14055 return tree_expr_nonzero_warnv_p (op0,
14056 strict_overflow_p);
14057
14058 case NOP_EXPR:
14059 {
14060 tree inner_type = TREE_TYPE (op0);
14061 tree outer_type = type;
14062
14063 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
14064 && tree_expr_nonzero_warnv_p (op0,
14065 strict_overflow_p));
14066 }
14067 break;
14068
14069 case NON_LVALUE_EXPR:
14070 return tree_expr_nonzero_warnv_p (op0,
14071 strict_overflow_p);
14072
14073 default:
14074 break;
14075 }
14076
14077 return false;
14078 }
14079
14080 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
14081 For floating point we further ensure that T is not denormal.
14082 Similar logic is present in nonzero_address in rtlanal.h.
14083
14084 If the return value is based on the assumption that signed overflow
14085 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14086 change *STRICT_OVERFLOW_P. */
14087
14088 bool
14089 tree_binary_nonzero_warnv_p (enum tree_code code,
14090 tree type,
14091 tree op0,
14092 tree op1, bool *strict_overflow_p)
14093 {
14094 bool sub_strict_overflow_p;
14095 switch (code)
14096 {
14097 case POINTER_PLUS_EXPR:
14098 case PLUS_EXPR:
14099 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
14100 {
14101 /* With the presence of negative values it is hard
14102 to say something. */
14103 sub_strict_overflow_p = false;
14104 if (!tree_expr_nonnegative_warnv_p (op0,
14105 &sub_strict_overflow_p)
14106 || !tree_expr_nonnegative_warnv_p (op1,
14107 &sub_strict_overflow_p))
14108 return false;
14109 /* One of operands must be positive and the other non-negative. */
14110 /* We don't set *STRICT_OVERFLOW_P here: even if this value
14111 overflows, on a twos-complement machine the sum of two
14112 nonnegative numbers can never be zero. */
14113 return (tree_expr_nonzero_warnv_p (op0,
14114 strict_overflow_p)
14115 || tree_expr_nonzero_warnv_p (op1,
14116 strict_overflow_p));
14117 }
14118 break;
14119
14120 case MULT_EXPR:
14121 if (TYPE_OVERFLOW_UNDEFINED (type))
14122 {
14123 if (tree_expr_nonzero_warnv_p (op0,
14124 strict_overflow_p)
14125 && tree_expr_nonzero_warnv_p (op1,
14126 strict_overflow_p))
14127 {
14128 *strict_overflow_p = true;
14129 return true;
14130 }
14131 }
14132 break;
14133
14134 case MIN_EXPR:
14135 sub_strict_overflow_p = false;
14136 if (tree_expr_nonzero_warnv_p (op0,
14137 &sub_strict_overflow_p)
14138 && tree_expr_nonzero_warnv_p (op1,
14139 &sub_strict_overflow_p))
14140 {
14141 if (sub_strict_overflow_p)
14142 *strict_overflow_p = true;
14143 }
14144 break;
14145
14146 case MAX_EXPR:
14147 sub_strict_overflow_p = false;
14148 if (tree_expr_nonzero_warnv_p (op0,
14149 &sub_strict_overflow_p))
14150 {
14151 if (sub_strict_overflow_p)
14152 *strict_overflow_p = true;
14153
14154 /* When both operands are nonzero, then MAX must be too. */
14155 if (tree_expr_nonzero_warnv_p (op1,
14156 strict_overflow_p))
14157 return true;
14158
14159 /* MAX where operand 0 is positive is positive. */
14160 return tree_expr_nonnegative_warnv_p (op0,
14161 strict_overflow_p);
14162 }
14163 /* MAX where operand 1 is positive is positive. */
14164 else if (tree_expr_nonzero_warnv_p (op1,
14165 &sub_strict_overflow_p)
14166 && tree_expr_nonnegative_warnv_p (op1,
14167 &sub_strict_overflow_p))
14168 {
14169 if (sub_strict_overflow_p)
14170 *strict_overflow_p = true;
14171 return true;
14172 }
14173 break;
14174
14175 case BIT_IOR_EXPR:
14176 return (tree_expr_nonzero_warnv_p (op1,
14177 strict_overflow_p)
14178 || tree_expr_nonzero_warnv_p (op0,
14179 strict_overflow_p));
14180
14181 default:
14182 break;
14183 }
14184
14185 return false;
14186 }
14187
14188 /* Return true when T is an address and is known to be nonzero.
14189 For floating point we further ensure that T is not denormal.
14190 Similar logic is present in nonzero_address in rtlanal.h.
14191
14192 If the return value is based on the assumption that signed overflow
14193 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14194 change *STRICT_OVERFLOW_P. */
14195
14196 bool
14197 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
14198 {
14199 bool sub_strict_overflow_p;
14200 switch (TREE_CODE (t))
14201 {
14202 case INTEGER_CST:
14203 return !integer_zerop (t);
14204
14205 case ADDR_EXPR:
14206 {
14207 tree base = TREE_OPERAND (t, 0);
14208
14209 if (!DECL_P (base))
14210 base = get_base_address (base);
14211
14212 if (base && TREE_CODE (base) == TARGET_EXPR)
14213 base = TARGET_EXPR_SLOT (base);
14214
14215 if (!base)
14216 return false;
14217
14218 /* For objects in symbol table check if we know they are non-zero.
14219 Don't do anything for variables and functions before symtab is built;
14220 it is quite possible that they will be declared weak later. */
14221 int nonzero_addr = maybe_nonzero_address (base);
14222 if (nonzero_addr >= 0)
14223 return nonzero_addr;
14224
14225 /* Constants are never weak. */
14226 if (CONSTANT_CLASS_P (base))
14227 return true;
14228
14229 return false;
14230 }
14231
14232 case COND_EXPR:
14233 sub_strict_overflow_p = false;
14234 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14235 &sub_strict_overflow_p)
14236 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
14237 &sub_strict_overflow_p))
14238 {
14239 if (sub_strict_overflow_p)
14240 *strict_overflow_p = true;
14241 return true;
14242 }
14243 break;
14244
14245 case SSA_NAME:
14246 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
14247 break;
14248 return expr_not_equal_to (t, wi::zero (TYPE_PRECISION (TREE_TYPE (t))));
14249
14250 default:
14251 break;
14252 }
14253 return false;
14254 }
14255
14256 #define integer_valued_real_p(X) \
14257 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
14258
14259 #define RECURSE(X) \
14260 ((integer_valued_real_p) (X, depth + 1))
14261
14262 /* Return true if the floating point result of (CODE OP0) has an
14263 integer value. We also allow +Inf, -Inf and NaN to be considered
14264 integer values. Return false for signaling NaN.
14265
14266 DEPTH is the current nesting depth of the query. */
14267
14268 bool
14269 integer_valued_real_unary_p (tree_code code, tree op0, int depth)
14270 {
14271 switch (code)
14272 {
14273 case FLOAT_EXPR:
14274 return true;
14275
14276 case ABS_EXPR:
14277 return RECURSE (op0);
14278
14279 CASE_CONVERT:
14280 {
14281 tree type = TREE_TYPE (op0);
14282 if (TREE_CODE (type) == INTEGER_TYPE)
14283 return true;
14284 if (TREE_CODE (type) == REAL_TYPE)
14285 return RECURSE (op0);
14286 break;
14287 }
14288
14289 default:
14290 break;
14291 }
14292 return false;
14293 }
14294
14295 /* Return true if the floating point result of (CODE OP0 OP1) has an
14296 integer value. We also allow +Inf, -Inf and NaN to be considered
14297 integer values. Return false for signaling NaN.
14298
14299 DEPTH is the current nesting depth of the query. */
14300
14301 bool
14302 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth)
14303 {
14304 switch (code)
14305 {
14306 case PLUS_EXPR:
14307 case MINUS_EXPR:
14308 case MULT_EXPR:
14309 case MIN_EXPR:
14310 case MAX_EXPR:
14311 return RECURSE (op0) && RECURSE (op1);
14312
14313 default:
14314 break;
14315 }
14316 return false;
14317 }
14318
14319 /* Return true if the floating point result of calling FNDECL with arguments
14320 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
14321 considered integer values. Return false for signaling NaN. If FNDECL
14322 takes fewer than 2 arguments, the remaining ARGn are null.
14323
14324 DEPTH is the current nesting depth of the query. */
14325
14326 bool
14327 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth)
14328 {
14329 switch (fn)
14330 {
14331 CASE_CFN_CEIL:
14332 CASE_CFN_CEIL_FN:
14333 CASE_CFN_FLOOR:
14334 CASE_CFN_FLOOR_FN:
14335 CASE_CFN_NEARBYINT:
14336 CASE_CFN_NEARBYINT_FN:
14337 CASE_CFN_RINT:
14338 CASE_CFN_RINT_FN:
14339 CASE_CFN_ROUND:
14340 CASE_CFN_ROUND_FN:
14341 CASE_CFN_ROUNDEVEN:
14342 CASE_CFN_ROUNDEVEN_FN:
14343 CASE_CFN_TRUNC:
14344 CASE_CFN_TRUNC_FN:
14345 return true;
14346
14347 CASE_CFN_FMIN:
14348 CASE_CFN_FMIN_FN:
14349 CASE_CFN_FMAX:
14350 CASE_CFN_FMAX_FN:
14351 return RECURSE (arg0) && RECURSE (arg1);
14352
14353 default:
14354 break;
14355 }
14356 return false;
14357 }
14358
14359 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
14360 has an integer value. We also allow +Inf, -Inf and NaN to be
14361 considered integer values. Return false for signaling NaN.
14362
14363 DEPTH is the current nesting depth of the query. */
14364
14365 bool
14366 integer_valued_real_single_p (tree t, int depth)
14367 {
14368 switch (TREE_CODE (t))
14369 {
14370 case REAL_CST:
14371 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
14372
14373 case COND_EXPR:
14374 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
14375
14376 case SSA_NAME:
14377 /* Limit the depth of recursion to avoid quadratic behavior.
14378 This is expected to catch almost all occurrences in practice.
14379 If this code misses important cases that unbounded recursion
14380 would not, passes that need this information could be revised
14381 to provide it through dataflow propagation. */
14382 return (!name_registered_for_update_p (t)
14383 && depth < param_max_ssa_name_query_depth
14384 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t),
14385 depth));
14386
14387 default:
14388 break;
14389 }
14390 return false;
14391 }
14392
14393 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
14394 has an integer value. We also allow +Inf, -Inf and NaN to be
14395 considered integer values. Return false for signaling NaN.
14396
14397 DEPTH is the current nesting depth of the query. */
14398
14399 static bool
14400 integer_valued_real_invalid_p (tree t, int depth)
14401 {
14402 switch (TREE_CODE (t))
14403 {
14404 case COMPOUND_EXPR:
14405 case MODIFY_EXPR:
14406 case BIND_EXPR:
14407 return RECURSE (TREE_OPERAND (t, 1));
14408
14409 case SAVE_EXPR:
14410 return RECURSE (TREE_OPERAND (t, 0));
14411
14412 default:
14413 break;
14414 }
14415 return false;
14416 }
14417
14418 #undef RECURSE
14419 #undef integer_valued_real_p
14420
14421 /* Return true if the floating point expression T has an integer value.
14422 We also allow +Inf, -Inf and NaN to be considered integer values.
14423 Return false for signaling NaN.
14424
14425 DEPTH is the current nesting depth of the query. */
14426
14427 bool
14428 integer_valued_real_p (tree t, int depth)
14429 {
14430 if (t == error_mark_node)
14431 return false;
14432
14433 STRIP_ANY_LOCATION_WRAPPER (t);
14434
14435 tree_code code = TREE_CODE (t);
14436 switch (TREE_CODE_CLASS (code))
14437 {
14438 case tcc_binary:
14439 case tcc_comparison:
14440 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0),
14441 TREE_OPERAND (t, 1), depth);
14442
14443 case tcc_unary:
14444 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth);
14445
14446 case tcc_constant:
14447 case tcc_declaration:
14448 case tcc_reference:
14449 return integer_valued_real_single_p (t, depth);
14450
14451 default:
14452 break;
14453 }
14454
14455 switch (code)
14456 {
14457 case COND_EXPR:
14458 case SSA_NAME:
14459 return integer_valued_real_single_p (t, depth);
14460
14461 case CALL_EXPR:
14462 {
14463 tree arg0 = (call_expr_nargs (t) > 0
14464 ? CALL_EXPR_ARG (t, 0)
14465 : NULL_TREE);
14466 tree arg1 = (call_expr_nargs (t) > 1
14467 ? CALL_EXPR_ARG (t, 1)
14468 : NULL_TREE);
14469 return integer_valued_real_call_p (get_call_combined_fn (t),
14470 arg0, arg1, depth);
14471 }
14472
14473 default:
14474 return integer_valued_real_invalid_p (t, depth);
14475 }
14476 }
14477
14478 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
14479 attempt to fold the expression to a constant without modifying TYPE,
14480 OP0 or OP1.
14481
14482 If the expression could be simplified to a constant, then return
14483 the constant. If the expression would not be simplified to a
14484 constant, then return NULL_TREE. */
14485
14486 tree
14487 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
14488 {
14489 tree tem = fold_binary (code, type, op0, op1);
14490 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
14491 }
14492
14493 /* Given the components of a unary expression CODE, TYPE and OP0,
14494 attempt to fold the expression to a constant without modifying
14495 TYPE or OP0.
14496
14497 If the expression could be simplified to a constant, then return
14498 the constant. If the expression would not be simplified to a
14499 constant, then return NULL_TREE. */
14500
14501 tree
14502 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
14503 {
14504 tree tem = fold_unary (code, type, op0);
14505 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
14506 }
14507
14508 /* If EXP represents referencing an element in a constant string
14509 (either via pointer arithmetic or array indexing), return the
14510 tree representing the value accessed, otherwise return NULL. */
14511
14512 tree
14513 fold_read_from_constant_string (tree exp)
14514 {
14515 if ((TREE_CODE (exp) == INDIRECT_REF
14516 || TREE_CODE (exp) == ARRAY_REF)
14517 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
14518 {
14519 tree exp1 = TREE_OPERAND (exp, 0);
14520 tree index;
14521 tree string;
14522 location_t loc = EXPR_LOCATION (exp);
14523
14524 if (TREE_CODE (exp) == INDIRECT_REF)
14525 string = string_constant (exp1, &index, NULL, NULL);
14526 else
14527 {
14528 tree low_bound = array_ref_low_bound (exp);
14529 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
14530
14531 /* Optimize the special-case of a zero lower bound.
14532
14533 We convert the low_bound to sizetype to avoid some problems
14534 with constant folding. (E.g. suppose the lower bound is 1,
14535 and its mode is QI. Without the conversion,l (ARRAY
14536 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
14537 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
14538 if (! integer_zerop (low_bound))
14539 index = size_diffop_loc (loc, index,
14540 fold_convert_loc (loc, sizetype, low_bound));
14541
14542 string = exp1;
14543 }
14544
14545 scalar_int_mode char_mode;
14546 if (string
14547 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
14548 && TREE_CODE (string) == STRING_CST
14549 && TREE_CODE (index) == INTEGER_CST
14550 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
14551 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))),
14552 &char_mode)
14553 && GET_MODE_SIZE (char_mode) == 1)
14554 return build_int_cst_type (TREE_TYPE (exp),
14555 (TREE_STRING_POINTER (string)
14556 [TREE_INT_CST_LOW (index)]));
14557 }
14558 return NULL;
14559 }
14560
14561 /* Folds a read from vector element at IDX of vector ARG. */
14562
14563 tree
14564 fold_read_from_vector (tree arg, poly_uint64 idx)
14565 {
14566 unsigned HOST_WIDE_INT i;
14567 if (known_lt (idx, TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)))
14568 && known_ge (idx, 0u)
14569 && idx.is_constant (&i))
14570 {
14571 if (TREE_CODE (arg) == VECTOR_CST)
14572 return VECTOR_CST_ELT (arg, i);
14573 else if (TREE_CODE (arg) == CONSTRUCTOR)
14574 {
14575 if (i >= CONSTRUCTOR_NELTS (arg))
14576 return build_zero_cst (TREE_TYPE (TREE_TYPE (arg)));
14577 return CONSTRUCTOR_ELT (arg, i)->value;
14578 }
14579 }
14580 return NULL_TREE;
14581 }
14582
14583 /* Return the tree for neg (ARG0) when ARG0 is known to be either
14584 an integer constant, real, or fixed-point constant.
14585
14586 TYPE is the type of the result. */
14587
14588 static tree
14589 fold_negate_const (tree arg0, tree type)
14590 {
14591 tree t = NULL_TREE;
14592
14593 switch (TREE_CODE (arg0))
14594 {
14595 case REAL_CST:
14596 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
14597 break;
14598
14599 case FIXED_CST:
14600 {
14601 FIXED_VALUE_TYPE f;
14602 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
14603 &(TREE_FIXED_CST (arg0)), NULL,
14604 TYPE_SATURATING (type));
14605 t = build_fixed (type, f);
14606 /* Propagate overflow flags. */
14607 if (overflow_p | TREE_OVERFLOW (arg0))
14608 TREE_OVERFLOW (t) = 1;
14609 break;
14610 }
14611
14612 default:
14613 if (poly_int_tree_p (arg0))
14614 {
14615 wi::overflow_type overflow;
14616 poly_wide_int res = wi::neg (wi::to_poly_wide (arg0), &overflow);
14617 t = force_fit_type (type, res, 1,
14618 (overflow && ! TYPE_UNSIGNED (type))
14619 || TREE_OVERFLOW (arg0));
14620 break;
14621 }
14622
14623 gcc_unreachable ();
14624 }
14625
14626 return t;
14627 }
14628
14629 /* Return the tree for abs (ARG0) when ARG0 is known to be either
14630 an integer constant or real constant.
14631
14632 TYPE is the type of the result. */
14633
14634 tree
14635 fold_abs_const (tree arg0, tree type)
14636 {
14637 tree t = NULL_TREE;
14638
14639 switch (TREE_CODE (arg0))
14640 {
14641 case INTEGER_CST:
14642 {
14643 /* If the value is unsigned or non-negative, then the absolute value
14644 is the same as the ordinary value. */
14645 wide_int val = wi::to_wide (arg0);
14646 wi::overflow_type overflow = wi::OVF_NONE;
14647 if (!wi::neg_p (val, TYPE_SIGN (TREE_TYPE (arg0))))
14648 ;
14649
14650 /* If the value is negative, then the absolute value is
14651 its negation. */
14652 else
14653 val = wi::neg (val, &overflow);
14654
14655 /* Force to the destination type, set TREE_OVERFLOW for signed
14656 TYPE only. */
14657 t = force_fit_type (type, val, 1, overflow | TREE_OVERFLOW (arg0));
14658 }
14659 break;
14660
14661 case REAL_CST:
14662 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
14663 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
14664 else
14665 t = arg0;
14666 break;
14667
14668 default:
14669 gcc_unreachable ();
14670 }
14671
14672 return t;
14673 }
14674
14675 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
14676 constant. TYPE is the type of the result. */
14677
14678 static tree
14679 fold_not_const (const_tree arg0, tree type)
14680 {
14681 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
14682
14683 return force_fit_type (type, ~wi::to_wide (arg0), 0, TREE_OVERFLOW (arg0));
14684 }
14685
14686 /* Given CODE, a relational operator, the target type, TYPE and two
14687 constant operands OP0 and OP1, return the result of the
14688 relational operation. If the result is not a compile time
14689 constant, then return NULL_TREE. */
14690
14691 static tree
14692 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
14693 {
14694 int result, invert;
14695
14696 /* From here on, the only cases we handle are when the result is
14697 known to be a constant. */
14698
14699 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
14700 {
14701 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
14702 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
14703
14704 /* Handle the cases where either operand is a NaN. */
14705 if (real_isnan (c0) || real_isnan (c1))
14706 {
14707 switch (code)
14708 {
14709 case EQ_EXPR:
14710 case ORDERED_EXPR:
14711 result = 0;
14712 break;
14713
14714 case NE_EXPR:
14715 case UNORDERED_EXPR:
14716 case UNLT_EXPR:
14717 case UNLE_EXPR:
14718 case UNGT_EXPR:
14719 case UNGE_EXPR:
14720 case UNEQ_EXPR:
14721 result = 1;
14722 break;
14723
14724 case LT_EXPR:
14725 case LE_EXPR:
14726 case GT_EXPR:
14727 case GE_EXPR:
14728 case LTGT_EXPR:
14729 if (flag_trapping_math)
14730 return NULL_TREE;
14731 result = 0;
14732 break;
14733
14734 default:
14735 gcc_unreachable ();
14736 }
14737
14738 return constant_boolean_node (result, type);
14739 }
14740
14741 return constant_boolean_node (real_compare (code, c0, c1), type);
14742 }
14743
14744 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
14745 {
14746 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
14747 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
14748 return constant_boolean_node (fixed_compare (code, c0, c1), type);
14749 }
14750
14751 /* Handle equality/inequality of complex constants. */
14752 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
14753 {
14754 tree rcond = fold_relational_const (code, type,
14755 TREE_REALPART (op0),
14756 TREE_REALPART (op1));
14757 tree icond = fold_relational_const (code, type,
14758 TREE_IMAGPART (op0),
14759 TREE_IMAGPART (op1));
14760 if (code == EQ_EXPR)
14761 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
14762 else if (code == NE_EXPR)
14763 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
14764 else
14765 return NULL_TREE;
14766 }
14767
14768 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
14769 {
14770 if (!VECTOR_TYPE_P (type))
14771 {
14772 /* Have vector comparison with scalar boolean result. */
14773 gcc_assert ((code == EQ_EXPR || code == NE_EXPR)
14774 && known_eq (VECTOR_CST_NELTS (op0),
14775 VECTOR_CST_NELTS (op1)));
14776 unsigned HOST_WIDE_INT nunits;
14777 if (!VECTOR_CST_NELTS (op0).is_constant (&nunits))
14778 return NULL_TREE;
14779 for (unsigned i = 0; i < nunits; i++)
14780 {
14781 tree elem0 = VECTOR_CST_ELT (op0, i);
14782 tree elem1 = VECTOR_CST_ELT (op1, i);
14783 tree tmp = fold_relational_const (EQ_EXPR, type, elem0, elem1);
14784 if (tmp == NULL_TREE)
14785 return NULL_TREE;
14786 if (integer_zerop (tmp))
14787 return constant_boolean_node (code == NE_EXPR, type);
14788 }
14789 return constant_boolean_node (code == EQ_EXPR, type);
14790 }
14791 tree_vector_builder elts;
14792 if (!elts.new_binary_operation (type, op0, op1, false))
14793 return NULL_TREE;
14794 unsigned int count = elts.encoded_nelts ();
14795 for (unsigned i = 0; i < count; i++)
14796 {
14797 tree elem_type = TREE_TYPE (type);
14798 tree elem0 = VECTOR_CST_ELT (op0, i);
14799 tree elem1 = VECTOR_CST_ELT (op1, i);
14800
14801 tree tem = fold_relational_const (code, elem_type,
14802 elem0, elem1);
14803
14804 if (tem == NULL_TREE)
14805 return NULL_TREE;
14806
14807 elts.quick_push (build_int_cst (elem_type,
14808 integer_zerop (tem) ? 0 : -1));
14809 }
14810
14811 return elts.build ();
14812 }
14813
14814 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14815
14816 To compute GT, swap the arguments and do LT.
14817 To compute GE, do LT and invert the result.
14818 To compute LE, swap the arguments, do LT and invert the result.
14819 To compute NE, do EQ and invert the result.
14820
14821 Therefore, the code below must handle only EQ and LT. */
14822
14823 if (code == LE_EXPR || code == GT_EXPR)
14824 {
14825 std::swap (op0, op1);
14826 code = swap_tree_comparison (code);
14827 }
14828
14829 /* Note that it is safe to invert for real values here because we
14830 have already handled the one case that it matters. */
14831
14832 invert = 0;
14833 if (code == NE_EXPR || code == GE_EXPR)
14834 {
14835 invert = 1;
14836 code = invert_tree_comparison (code, false);
14837 }
14838
14839 /* Compute a result for LT or EQ if args permit;
14840 Otherwise return T. */
14841 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
14842 {
14843 if (code == EQ_EXPR)
14844 result = tree_int_cst_equal (op0, op1);
14845 else
14846 result = tree_int_cst_lt (op0, op1);
14847 }
14848 else
14849 return NULL_TREE;
14850
14851 if (invert)
14852 result ^= 1;
14853 return constant_boolean_node (result, type);
14854 }
14855
14856 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14857 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14858 itself. */
14859
14860 tree
14861 fold_build_cleanup_point_expr (tree type, tree expr)
14862 {
14863 /* If the expression does not have side effects then we don't have to wrap
14864 it with a cleanup point expression. */
14865 if (!TREE_SIDE_EFFECTS (expr))
14866 return expr;
14867
14868 /* If the expression is a return, check to see if the expression inside the
14869 return has no side effects or the right hand side of the modify expression
14870 inside the return. If either don't have side effects set we don't need to
14871 wrap the expression in a cleanup point expression. Note we don't check the
14872 left hand side of the modify because it should always be a return decl. */
14873 if (TREE_CODE (expr) == RETURN_EXPR)
14874 {
14875 tree op = TREE_OPERAND (expr, 0);
14876 if (!op || !TREE_SIDE_EFFECTS (op))
14877 return expr;
14878 op = TREE_OPERAND (op, 1);
14879 if (!TREE_SIDE_EFFECTS (op))
14880 return expr;
14881 }
14882
14883 return build1_loc (EXPR_LOCATION (expr), CLEANUP_POINT_EXPR, type, expr);
14884 }
14885
14886 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14887 of an indirection through OP0, or NULL_TREE if no simplification is
14888 possible. */
14889
14890 tree
14891 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
14892 {
14893 tree sub = op0;
14894 tree subtype;
14895 poly_uint64 const_op01;
14896
14897 STRIP_NOPS (sub);
14898 subtype = TREE_TYPE (sub);
14899 if (!POINTER_TYPE_P (subtype)
14900 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0)))
14901 return NULL_TREE;
14902
14903 if (TREE_CODE (sub) == ADDR_EXPR)
14904 {
14905 tree op = TREE_OPERAND (sub, 0);
14906 tree optype = TREE_TYPE (op);
14907
14908 /* *&CONST_DECL -> to the value of the const decl. */
14909 if (TREE_CODE (op) == CONST_DECL)
14910 return DECL_INITIAL (op);
14911 /* *&p => p; make sure to handle *&"str"[cst] here. */
14912 if (type == optype)
14913 {
14914 tree fop = fold_read_from_constant_string (op);
14915 if (fop)
14916 return fop;
14917 else
14918 return op;
14919 }
14920 /* *(foo *)&fooarray => fooarray[0] */
14921 else if (TREE_CODE (optype) == ARRAY_TYPE
14922 && type == TREE_TYPE (optype)
14923 && (!in_gimple_form
14924 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14925 {
14926 tree type_domain = TYPE_DOMAIN (optype);
14927 tree min_val = size_zero_node;
14928 if (type_domain && TYPE_MIN_VALUE (type_domain))
14929 min_val = TYPE_MIN_VALUE (type_domain);
14930 if (in_gimple_form
14931 && TREE_CODE (min_val) != INTEGER_CST)
14932 return NULL_TREE;
14933 return build4_loc (loc, ARRAY_REF, type, op, min_val,
14934 NULL_TREE, NULL_TREE);
14935 }
14936 /* *(foo *)&complexfoo => __real__ complexfoo */
14937 else if (TREE_CODE (optype) == COMPLEX_TYPE
14938 && type == TREE_TYPE (optype))
14939 return fold_build1_loc (loc, REALPART_EXPR, type, op);
14940 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14941 else if (VECTOR_TYPE_P (optype)
14942 && type == TREE_TYPE (optype))
14943 {
14944 tree part_width = TYPE_SIZE (type);
14945 tree index = bitsize_int (0);
14946 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width,
14947 index);
14948 }
14949 }
14950
14951 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14952 && poly_int_tree_p (TREE_OPERAND (sub, 1), &const_op01))
14953 {
14954 tree op00 = TREE_OPERAND (sub, 0);
14955 tree op01 = TREE_OPERAND (sub, 1);
14956
14957 STRIP_NOPS (op00);
14958 if (TREE_CODE (op00) == ADDR_EXPR)
14959 {
14960 tree op00type;
14961 op00 = TREE_OPERAND (op00, 0);
14962 op00type = TREE_TYPE (op00);
14963
14964 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14965 if (VECTOR_TYPE_P (op00type)
14966 && type == TREE_TYPE (op00type)
14967 /* POINTER_PLUS_EXPR second operand is sizetype, unsigned,
14968 but we want to treat offsets with MSB set as negative.
14969 For the code below negative offsets are invalid and
14970 TYPE_SIZE of the element is something unsigned, so
14971 check whether op01 fits into poly_int64, which implies
14972 it is from 0 to INTTYPE_MAXIMUM (HOST_WIDE_INT), and
14973 then just use poly_uint64 because we want to treat the
14974 value as unsigned. */
14975 && tree_fits_poly_int64_p (op01))
14976 {
14977 tree part_width = TYPE_SIZE (type);
14978 poly_uint64 max_offset
14979 = (tree_to_uhwi (part_width) / BITS_PER_UNIT
14980 * TYPE_VECTOR_SUBPARTS (op00type));
14981 if (known_lt (const_op01, max_offset))
14982 {
14983 tree index = bitsize_int (const_op01 * BITS_PER_UNIT);
14984 return fold_build3_loc (loc,
14985 BIT_FIELD_REF, type, op00,
14986 part_width, index);
14987 }
14988 }
14989 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14990 else if (TREE_CODE (op00type) == COMPLEX_TYPE
14991 && type == TREE_TYPE (op00type))
14992 {
14993 if (known_eq (wi::to_poly_offset (TYPE_SIZE_UNIT (type)),
14994 const_op01))
14995 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14996 }
14997 /* ((foo *)&fooarray)[1] => fooarray[1] */
14998 else if (TREE_CODE (op00type) == ARRAY_TYPE
14999 && type == TREE_TYPE (op00type))
15000 {
15001 tree type_domain = TYPE_DOMAIN (op00type);
15002 tree min_val = size_zero_node;
15003 if (type_domain && TYPE_MIN_VALUE (type_domain))
15004 min_val = TYPE_MIN_VALUE (type_domain);
15005 poly_uint64 type_size, index;
15006 if (poly_int_tree_p (min_val)
15007 && poly_int_tree_p (TYPE_SIZE_UNIT (type), &type_size)
15008 && multiple_p (const_op01, type_size, &index))
15009 {
15010 poly_offset_int off = index + wi::to_poly_offset (min_val);
15011 op01 = wide_int_to_tree (sizetype, off);
15012 return build4_loc (loc, ARRAY_REF, type, op00, op01,
15013 NULL_TREE, NULL_TREE);
15014 }
15015 }
15016 }
15017 }
15018
15019 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
15020 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
15021 && type == TREE_TYPE (TREE_TYPE (subtype))
15022 && (!in_gimple_form
15023 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
15024 {
15025 tree type_domain;
15026 tree min_val = size_zero_node;
15027 sub = build_fold_indirect_ref_loc (loc, sub);
15028 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
15029 if (type_domain && TYPE_MIN_VALUE (type_domain))
15030 min_val = TYPE_MIN_VALUE (type_domain);
15031 if (in_gimple_form
15032 && TREE_CODE (min_val) != INTEGER_CST)
15033 return NULL_TREE;
15034 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
15035 NULL_TREE);
15036 }
15037
15038 return NULL_TREE;
15039 }
15040
15041 /* Builds an expression for an indirection through T, simplifying some
15042 cases. */
15043
15044 tree
15045 build_fold_indirect_ref_loc (location_t loc, tree t)
15046 {
15047 tree type = TREE_TYPE (TREE_TYPE (t));
15048 tree sub = fold_indirect_ref_1 (loc, type, t);
15049
15050 if (sub)
15051 return sub;
15052
15053 return build1_loc (loc, INDIRECT_REF, type, t);
15054 }
15055
15056 /* Given an INDIRECT_REF T, return either T or a simplified version. */
15057
15058 tree
15059 fold_indirect_ref_loc (location_t loc, tree t)
15060 {
15061 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
15062
15063 if (sub)
15064 return sub;
15065 else
15066 return t;
15067 }
15068
15069 /* Strip non-trapping, non-side-effecting tree nodes from an expression
15070 whose result is ignored. The type of the returned tree need not be
15071 the same as the original expression. */
15072
15073 tree
15074 fold_ignored_result (tree t)
15075 {
15076 if (!TREE_SIDE_EFFECTS (t))
15077 return integer_zero_node;
15078
15079 for (;;)
15080 switch (TREE_CODE_CLASS (TREE_CODE (t)))
15081 {
15082 case tcc_unary:
15083 t = TREE_OPERAND (t, 0);
15084 break;
15085
15086 case tcc_binary:
15087 case tcc_comparison:
15088 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
15089 t = TREE_OPERAND (t, 0);
15090 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
15091 t = TREE_OPERAND (t, 1);
15092 else
15093 return t;
15094 break;
15095
15096 case tcc_expression:
15097 switch (TREE_CODE (t))
15098 {
15099 case COMPOUND_EXPR:
15100 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
15101 return t;
15102 t = TREE_OPERAND (t, 0);
15103 break;
15104
15105 case COND_EXPR:
15106 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
15107 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
15108 return t;
15109 t = TREE_OPERAND (t, 0);
15110 break;
15111
15112 default:
15113 return t;
15114 }
15115 break;
15116
15117 default:
15118 return t;
15119 }
15120 }
15121
15122 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
15123
15124 tree
15125 round_up_loc (location_t loc, tree value, unsigned int divisor)
15126 {
15127 tree div = NULL_TREE;
15128
15129 if (divisor == 1)
15130 return value;
15131
15132 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
15133 have to do anything. Only do this when we are not given a const,
15134 because in that case, this check is more expensive than just
15135 doing it. */
15136 if (TREE_CODE (value) != INTEGER_CST)
15137 {
15138 div = build_int_cst (TREE_TYPE (value), divisor);
15139
15140 if (multiple_of_p (TREE_TYPE (value), value, div))
15141 return value;
15142 }
15143
15144 /* If divisor is a power of two, simplify this to bit manipulation. */
15145 if (pow2_or_zerop (divisor))
15146 {
15147 if (TREE_CODE (value) == INTEGER_CST)
15148 {
15149 wide_int val = wi::to_wide (value);
15150 bool overflow_p;
15151
15152 if ((val & (divisor - 1)) == 0)
15153 return value;
15154
15155 overflow_p = TREE_OVERFLOW (value);
15156 val += divisor - 1;
15157 val &= (int) -divisor;
15158 if (val == 0)
15159 overflow_p = true;
15160
15161 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
15162 }
15163 else
15164 {
15165 tree t;
15166
15167 t = build_int_cst (TREE_TYPE (value), divisor - 1);
15168 value = size_binop_loc (loc, PLUS_EXPR, value, t);
15169 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
15170 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
15171 }
15172 }
15173 else
15174 {
15175 if (!div)
15176 div = build_int_cst (TREE_TYPE (value), divisor);
15177 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
15178 value = size_binop_loc (loc, MULT_EXPR, value, div);
15179 }
15180
15181 return value;
15182 }
15183
15184 /* Likewise, but round down. */
15185
15186 tree
15187 round_down_loc (location_t loc, tree value, int divisor)
15188 {
15189 tree div = NULL_TREE;
15190
15191 gcc_assert (divisor > 0);
15192 if (divisor == 1)
15193 return value;
15194
15195 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
15196 have to do anything. Only do this when we are not given a const,
15197 because in that case, this check is more expensive than just
15198 doing it. */
15199 if (TREE_CODE (value) != INTEGER_CST)
15200 {
15201 div = build_int_cst (TREE_TYPE (value), divisor);
15202
15203 if (multiple_of_p (TREE_TYPE (value), value, div))
15204 return value;
15205 }
15206
15207 /* If divisor is a power of two, simplify this to bit manipulation. */
15208 if (pow2_or_zerop (divisor))
15209 {
15210 tree t;
15211
15212 t = build_int_cst (TREE_TYPE (value), -divisor);
15213 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
15214 }
15215 else
15216 {
15217 if (!div)
15218 div = build_int_cst (TREE_TYPE (value), divisor);
15219 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
15220 value = size_binop_loc (loc, MULT_EXPR, value, div);
15221 }
15222
15223 return value;
15224 }
15225
15226 /* Returns the pointer to the base of the object addressed by EXP and
15227 extracts the information about the offset of the access, storing it
15228 to PBITPOS and POFFSET. */
15229
15230 static tree
15231 split_address_to_core_and_offset (tree exp,
15232 poly_int64_pod *pbitpos, tree *poffset)
15233 {
15234 tree core;
15235 machine_mode mode;
15236 int unsignedp, reversep, volatilep;
15237 poly_int64 bitsize;
15238 location_t loc = EXPR_LOCATION (exp);
15239
15240 if (TREE_CODE (exp) == ADDR_EXPR)
15241 {
15242 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
15243 poffset, &mode, &unsignedp, &reversep,
15244 &volatilep);
15245 core = build_fold_addr_expr_loc (loc, core);
15246 }
15247 else if (TREE_CODE (exp) == POINTER_PLUS_EXPR)
15248 {
15249 core = TREE_OPERAND (exp, 0);
15250 STRIP_NOPS (core);
15251 *pbitpos = 0;
15252 *poffset = TREE_OPERAND (exp, 1);
15253 if (poly_int_tree_p (*poffset))
15254 {
15255 poly_offset_int tem
15256 = wi::sext (wi::to_poly_offset (*poffset),
15257 TYPE_PRECISION (TREE_TYPE (*poffset)));
15258 tem <<= LOG2_BITS_PER_UNIT;
15259 if (tem.to_shwi (pbitpos))
15260 *poffset = NULL_TREE;
15261 }
15262 }
15263 else
15264 {
15265 core = exp;
15266 *pbitpos = 0;
15267 *poffset = NULL_TREE;
15268 }
15269
15270 return core;
15271 }
15272
15273 /* Returns true if addresses of E1 and E2 differ by a constant, false
15274 otherwise. If they do, E1 - E2 is stored in *DIFF. */
15275
15276 bool
15277 ptr_difference_const (tree e1, tree e2, poly_int64_pod *diff)
15278 {
15279 tree core1, core2;
15280 poly_int64 bitpos1, bitpos2;
15281 tree toffset1, toffset2, tdiff, type;
15282
15283 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
15284 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
15285
15286 poly_int64 bytepos1, bytepos2;
15287 if (!multiple_p (bitpos1, BITS_PER_UNIT, &bytepos1)
15288 || !multiple_p (bitpos2, BITS_PER_UNIT, &bytepos2)
15289 || !operand_equal_p (core1, core2, 0))
15290 return false;
15291
15292 if (toffset1 && toffset2)
15293 {
15294 type = TREE_TYPE (toffset1);
15295 if (type != TREE_TYPE (toffset2))
15296 toffset2 = fold_convert (type, toffset2);
15297
15298 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
15299 if (!cst_and_fits_in_hwi (tdiff))
15300 return false;
15301
15302 *diff = int_cst_value (tdiff);
15303 }
15304 else if (toffset1 || toffset2)
15305 {
15306 /* If only one of the offsets is non-constant, the difference cannot
15307 be a constant. */
15308 return false;
15309 }
15310 else
15311 *diff = 0;
15312
15313 *diff += bytepos1 - bytepos2;
15314 return true;
15315 }
15316
15317 /* Return OFF converted to a pointer offset type suitable as offset for
15318 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
15319 tree
15320 convert_to_ptrofftype_loc (location_t loc, tree off)
15321 {
15322 return fold_convert_loc (loc, sizetype, off);
15323 }
15324
15325 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
15326 tree
15327 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
15328 {
15329 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
15330 ptr, convert_to_ptrofftype_loc (loc, off));
15331 }
15332
15333 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
15334 tree
15335 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
15336 {
15337 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
15338 ptr, size_int (off));
15339 }
15340
15341 /* Return a pointer P to a NUL-terminated string representing the sequence
15342 of constant characters referred to by SRC (or a subsequence of such
15343 characters within it if SRC is a reference to a string plus some
15344 constant offset). If STRLEN is non-null, store the number of bytes
15345 in the string constant including the terminating NUL char. *STRLEN is
15346 typically strlen(P) + 1 in the absence of embedded NUL characters. */
15347
15348 const char *
15349 c_getstr (tree src, unsigned HOST_WIDE_INT *strlen /* = NULL */)
15350 {
15351 tree offset_node;
15352 tree mem_size;
15353
15354 if (strlen)
15355 *strlen = 0;
15356
15357 src = string_constant (src, &offset_node, &mem_size, NULL);
15358 if (src == 0)
15359 return NULL;
15360
15361 unsigned HOST_WIDE_INT offset = 0;
15362 if (offset_node != NULL_TREE)
15363 {
15364 if (!tree_fits_uhwi_p (offset_node))
15365 return NULL;
15366 else
15367 offset = tree_to_uhwi (offset_node);
15368 }
15369
15370 if (!tree_fits_uhwi_p (mem_size))
15371 return NULL;
15372
15373 /* STRING_LENGTH is the size of the string literal, including any
15374 embedded NULs. STRING_SIZE is the size of the array the string
15375 literal is stored in. */
15376 unsigned HOST_WIDE_INT string_length = TREE_STRING_LENGTH (src);
15377 unsigned HOST_WIDE_INT string_size = tree_to_uhwi (mem_size);
15378
15379 /* Ideally this would turn into a gcc_checking_assert over time. */
15380 if (string_length > string_size)
15381 string_length = string_size;
15382
15383 const char *string = TREE_STRING_POINTER (src);
15384
15385 /* Ideally this would turn into a gcc_checking_assert over time. */
15386 if (string_length > string_size)
15387 string_length = string_size;
15388
15389 if (string_length == 0
15390 || offset >= string_size)
15391 return NULL;
15392
15393 if (strlen)
15394 {
15395 /* Compute and store the length of the substring at OFFSET.
15396 All offsets past the initial length refer to null strings. */
15397 if (offset < string_length)
15398 *strlen = string_length - offset;
15399 else
15400 *strlen = 1;
15401 }
15402 else
15403 {
15404 tree eltype = TREE_TYPE (TREE_TYPE (src));
15405 /* Support only properly NUL-terminated single byte strings. */
15406 if (tree_to_uhwi (TYPE_SIZE_UNIT (eltype)) != 1)
15407 return NULL;
15408 if (string[string_length - 1] != '\0')
15409 return NULL;
15410 }
15411
15412 return offset < string_length ? string + offset : "";
15413 }
15414
15415 /* Given a tree T, compute which bits in T may be nonzero. */
15416
15417 wide_int
15418 tree_nonzero_bits (const_tree t)
15419 {
15420 switch (TREE_CODE (t))
15421 {
15422 case INTEGER_CST:
15423 return wi::to_wide (t);
15424 case SSA_NAME:
15425 return get_nonzero_bits (t);
15426 case NON_LVALUE_EXPR:
15427 case SAVE_EXPR:
15428 return tree_nonzero_bits (TREE_OPERAND (t, 0));
15429 case BIT_AND_EXPR:
15430 return wi::bit_and (tree_nonzero_bits (TREE_OPERAND (t, 0)),
15431 tree_nonzero_bits (TREE_OPERAND (t, 1)));
15432 case BIT_IOR_EXPR:
15433 case BIT_XOR_EXPR:
15434 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t, 0)),
15435 tree_nonzero_bits (TREE_OPERAND (t, 1)));
15436 case COND_EXPR:
15437 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t, 1)),
15438 tree_nonzero_bits (TREE_OPERAND (t, 2)));
15439 CASE_CONVERT:
15440 return wide_int::from (tree_nonzero_bits (TREE_OPERAND (t, 0)),
15441 TYPE_PRECISION (TREE_TYPE (t)),
15442 TYPE_SIGN (TREE_TYPE (TREE_OPERAND (t, 0))));
15443 case PLUS_EXPR:
15444 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
15445 {
15446 wide_int nzbits1 = tree_nonzero_bits (TREE_OPERAND (t, 0));
15447 wide_int nzbits2 = tree_nonzero_bits (TREE_OPERAND (t, 1));
15448 if (wi::bit_and (nzbits1, nzbits2) == 0)
15449 return wi::bit_or (nzbits1, nzbits2);
15450 }
15451 break;
15452 case LSHIFT_EXPR:
15453 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
15454 {
15455 tree type = TREE_TYPE (t);
15456 wide_int nzbits = tree_nonzero_bits (TREE_OPERAND (t, 0));
15457 wide_int arg1 = wi::to_wide (TREE_OPERAND (t, 1),
15458 TYPE_PRECISION (type));
15459 return wi::neg_p (arg1)
15460 ? wi::rshift (nzbits, -arg1, TYPE_SIGN (type))
15461 : wi::lshift (nzbits, arg1);
15462 }
15463 break;
15464 case RSHIFT_EXPR:
15465 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
15466 {
15467 tree type = TREE_TYPE (t);
15468 wide_int nzbits = tree_nonzero_bits (TREE_OPERAND (t, 0));
15469 wide_int arg1 = wi::to_wide (TREE_OPERAND (t, 1),
15470 TYPE_PRECISION (type));
15471 return wi::neg_p (arg1)
15472 ? wi::lshift (nzbits, -arg1)
15473 : wi::rshift (nzbits, arg1, TYPE_SIGN (type));
15474 }
15475 break;
15476 default:
15477 break;
15478 }
15479
15480 return wi::shwi (-1, TYPE_PRECISION (TREE_TYPE (t)));
15481 }
15482
15483 #if CHECKING_P
15484
15485 namespace selftest {
15486
15487 /* Helper functions for writing tests of folding trees. */
15488
15489 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
15490
15491 static void
15492 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs,
15493 tree constant)
15494 {
15495 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs));
15496 }
15497
15498 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
15499 wrapping WRAPPED_EXPR. */
15500
15501 static void
15502 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs,
15503 tree wrapped_expr)
15504 {
15505 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs);
15506 ASSERT_NE (wrapped_expr, result);
15507 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result));
15508 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0));
15509 }
15510
15511 /* Verify that various arithmetic binary operations are folded
15512 correctly. */
15513
15514 static void
15515 test_arithmetic_folding ()
15516 {
15517 tree type = integer_type_node;
15518 tree x = create_tmp_var_raw (type, "x");
15519 tree zero = build_zero_cst (type);
15520 tree one = build_int_cst (type, 1);
15521
15522 /* Addition. */
15523 /* 1 <-- (0 + 1) */
15524 assert_binop_folds_to_const (zero, PLUS_EXPR, one,
15525 one);
15526 assert_binop_folds_to_const (one, PLUS_EXPR, zero,
15527 one);
15528
15529 /* (nonlvalue)x <-- (x + 0) */
15530 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero,
15531 x);
15532
15533 /* Subtraction. */
15534 /* 0 <-- (x - x) */
15535 assert_binop_folds_to_const (x, MINUS_EXPR, x,
15536 zero);
15537 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero,
15538 x);
15539
15540 /* Multiplication. */
15541 /* 0 <-- (x * 0) */
15542 assert_binop_folds_to_const (x, MULT_EXPR, zero,
15543 zero);
15544
15545 /* (nonlvalue)x <-- (x * 1) */
15546 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one,
15547 x);
15548 }
15549
15550 /* Verify that various binary operations on vectors are folded
15551 correctly. */
15552
15553 static void
15554 test_vector_folding ()
15555 {
15556 tree inner_type = integer_type_node;
15557 tree type = build_vector_type (inner_type, 4);
15558 tree zero = build_zero_cst (type);
15559 tree one = build_one_cst (type);
15560 tree index = build_index_vector (type, 0, 1);
15561
15562 /* Verify equality tests that return a scalar boolean result. */
15563 tree res_type = boolean_type_node;
15564 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one)));
15565 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero)));
15566 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one)));
15567 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one)));
15568 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, index, one)));
15569 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type,
15570 index, one)));
15571 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type,
15572 index, index)));
15573 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type,
15574 index, index)));
15575 }
15576
15577 /* Verify folding of VEC_DUPLICATE_EXPRs. */
15578
15579 static void
15580 test_vec_duplicate_folding ()
15581 {
15582 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (ssizetype);
15583 machine_mode vec_mode = targetm.vectorize.preferred_simd_mode (int_mode);
15584 /* This will be 1 if VEC_MODE isn't a vector mode. */
15585 poly_uint64 nunits = GET_MODE_NUNITS (vec_mode);
15586
15587 tree type = build_vector_type (ssizetype, nunits);
15588 tree dup5_expr = fold_unary (VEC_DUPLICATE_EXPR, type, ssize_int (5));
15589 tree dup5_cst = build_vector_from_val (type, ssize_int (5));
15590 ASSERT_TRUE (operand_equal_p (dup5_expr, dup5_cst, 0));
15591 }
15592
15593 /* Run all of the selftests within this file. */
15594
15595 void
15596 fold_const_c_tests ()
15597 {
15598 test_arithmetic_folding ();
15599 test_vector_folding ();
15600 test_vec_duplicate_folding ();
15601 }
15602
15603 } // namespace selftest
15604
15605 #endif /* CHECKING_P */