fold-const.c (fold_binary_loc): Move A - (A & B) into ~B & A ...
[gcc.git] / gcc / fold-const.c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
27
28 /* The entry points in this file are fold, size_int_wide and size_binop.
29
30 fold takes a tree as argument and returns a simplified tree.
31
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
35
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
38
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
42
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "predict.h"
48 #include "tree.h"
49 #include "gimple.h"
50 #include "rtl.h"
51 #include "flags.h"
52 #include "alias.h"
53 #include "fold-const.h"
54 #include "stor-layout.h"
55 #include "calls.h"
56 #include "tree-iterator.h"
57 #include "realmpfr.h"
58 #include "insn-config.h"
59 #include "expmed.h"
60 #include "dojump.h"
61 #include "explow.h"
62 #include "emit-rtl.h"
63 #include "varasm.h"
64 #include "stmt.h"
65 #include "expr.h"
66 #include "tm_p.h"
67 #include "target.h"
68 #include "diagnostic-core.h"
69 #include "intl.h"
70 #include "langhooks.h"
71 #include "md5.h"
72 #include "internal-fn.h"
73 #include "tree-eh.h"
74 #include "gimplify.h"
75 #include "tree-dfa.h"
76 #include "builtins.h"
77 #include "cgraph.h"
78 #include "generic-match.h"
79 #include "optabs.h"
80
81 #ifndef LOAD_EXTEND_OP
82 #define LOAD_EXTEND_OP(M) UNKNOWN
83 #endif
84
85 /* Nonzero if we are folding constants inside an initializer; zero
86 otherwise. */
87 int folding_initializer = 0;
88
89 /* The following constants represent a bit based encoding of GCC's
90 comparison operators. This encoding simplifies transformations
91 on relational comparison operators, such as AND and OR. */
92 enum comparison_code {
93 COMPCODE_FALSE = 0,
94 COMPCODE_LT = 1,
95 COMPCODE_EQ = 2,
96 COMPCODE_LE = 3,
97 COMPCODE_GT = 4,
98 COMPCODE_LTGT = 5,
99 COMPCODE_GE = 6,
100 COMPCODE_ORD = 7,
101 COMPCODE_UNORD = 8,
102 COMPCODE_UNLT = 9,
103 COMPCODE_UNEQ = 10,
104 COMPCODE_UNLE = 11,
105 COMPCODE_UNGT = 12,
106 COMPCODE_NE = 13,
107 COMPCODE_UNGE = 14,
108 COMPCODE_TRUE = 15
109 };
110
111 static bool negate_mathfn_p (enum built_in_function);
112 static bool negate_expr_p (tree);
113 static tree negate_expr (tree);
114 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
115 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
116 static enum comparison_code comparison_to_compcode (enum tree_code);
117 static enum tree_code compcode_to_comparison (enum comparison_code);
118 static int operand_equal_for_comparison_p (tree, tree, tree);
119 static int twoval_comparison_p (tree, tree *, tree *, int *);
120 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
121 static tree make_bit_field_ref (location_t, tree, tree,
122 HOST_WIDE_INT, HOST_WIDE_INT, int);
123 static tree optimize_bit_field_compare (location_t, enum tree_code,
124 tree, tree, tree);
125 static tree decode_field_reference (location_t, tree, HOST_WIDE_INT *,
126 HOST_WIDE_INT *,
127 machine_mode *, int *, int *,
128 tree *, tree *);
129 static int simple_operand_p (const_tree);
130 static bool simple_operand_p_2 (tree);
131 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
132 static tree range_predecessor (tree);
133 static tree range_successor (tree);
134 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
135 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
136 static tree unextend (tree, int, int, tree);
137 static tree optimize_minmax_comparison (location_t, enum tree_code,
138 tree, tree, tree);
139 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
140 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
141 static tree fold_binary_op_with_conditional_arg (location_t,
142 enum tree_code, tree,
143 tree, tree,
144 tree, tree, int);
145 static tree fold_div_compare (location_t, enum tree_code, tree, tree, tree);
146 static bool reorder_operands_p (const_tree, const_tree);
147 static tree fold_negate_const (tree, tree);
148 static tree fold_not_const (const_tree, tree);
149 static tree fold_relational_const (enum tree_code, tree, tree, tree);
150 static tree fold_convert_const (enum tree_code, tree, tree);
151 static tree fold_view_convert_expr (tree, tree);
152 static bool vec_cst_ctor_to_array (tree, tree *);
153
154
155 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
156 Otherwise, return LOC. */
157
158 static location_t
159 expr_location_or (tree t, location_t loc)
160 {
161 location_t tloc = EXPR_LOCATION (t);
162 return tloc == UNKNOWN_LOCATION ? loc : tloc;
163 }
164
165 /* Similar to protected_set_expr_location, but never modify x in place,
166 if location can and needs to be set, unshare it. */
167
168 static inline tree
169 protected_set_expr_location_unshare (tree x, location_t loc)
170 {
171 if (CAN_HAVE_LOCATION_P (x)
172 && EXPR_LOCATION (x) != loc
173 && !(TREE_CODE (x) == SAVE_EXPR
174 || TREE_CODE (x) == TARGET_EXPR
175 || TREE_CODE (x) == BIND_EXPR))
176 {
177 x = copy_node (x);
178 SET_EXPR_LOCATION (x, loc);
179 }
180 return x;
181 }
182 \f
183 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
184 division and returns the quotient. Otherwise returns
185 NULL_TREE. */
186
187 tree
188 div_if_zero_remainder (const_tree arg1, const_tree arg2)
189 {
190 widest_int quo;
191
192 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
193 SIGNED, &quo))
194 return wide_int_to_tree (TREE_TYPE (arg1), quo);
195
196 return NULL_TREE;
197 }
198 \f
199 /* This is nonzero if we should defer warnings about undefined
200 overflow. This facility exists because these warnings are a
201 special case. The code to estimate loop iterations does not want
202 to issue any warnings, since it works with expressions which do not
203 occur in user code. Various bits of cleanup code call fold(), but
204 only use the result if it has certain characteristics (e.g., is a
205 constant); that code only wants to issue a warning if the result is
206 used. */
207
208 static int fold_deferring_overflow_warnings;
209
210 /* If a warning about undefined overflow is deferred, this is the
211 warning. Note that this may cause us to turn two warnings into
212 one, but that is fine since it is sufficient to only give one
213 warning per expression. */
214
215 static const char* fold_deferred_overflow_warning;
216
217 /* If a warning about undefined overflow is deferred, this is the
218 level at which the warning should be emitted. */
219
220 static enum warn_strict_overflow_code fold_deferred_overflow_code;
221
222 /* Start deferring overflow warnings. We could use a stack here to
223 permit nested calls, but at present it is not necessary. */
224
225 void
226 fold_defer_overflow_warnings (void)
227 {
228 ++fold_deferring_overflow_warnings;
229 }
230
231 /* Stop deferring overflow warnings. If there is a pending warning,
232 and ISSUE is true, then issue the warning if appropriate. STMT is
233 the statement with which the warning should be associated (used for
234 location information); STMT may be NULL. CODE is the level of the
235 warning--a warn_strict_overflow_code value. This function will use
236 the smaller of CODE and the deferred code when deciding whether to
237 issue the warning. CODE may be zero to mean to always use the
238 deferred code. */
239
240 void
241 fold_undefer_overflow_warnings (bool issue, const_gimple stmt, int code)
242 {
243 const char *warnmsg;
244 location_t locus;
245
246 gcc_assert (fold_deferring_overflow_warnings > 0);
247 --fold_deferring_overflow_warnings;
248 if (fold_deferring_overflow_warnings > 0)
249 {
250 if (fold_deferred_overflow_warning != NULL
251 && code != 0
252 && code < (int) fold_deferred_overflow_code)
253 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
254 return;
255 }
256
257 warnmsg = fold_deferred_overflow_warning;
258 fold_deferred_overflow_warning = NULL;
259
260 if (!issue || warnmsg == NULL)
261 return;
262
263 if (gimple_no_warning_p (stmt))
264 return;
265
266 /* Use the smallest code level when deciding to issue the
267 warning. */
268 if (code == 0 || code > (int) fold_deferred_overflow_code)
269 code = fold_deferred_overflow_code;
270
271 if (!issue_strict_overflow_warning (code))
272 return;
273
274 if (stmt == NULL)
275 locus = input_location;
276 else
277 locus = gimple_location (stmt);
278 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
279 }
280
281 /* Stop deferring overflow warnings, ignoring any deferred
282 warnings. */
283
284 void
285 fold_undefer_and_ignore_overflow_warnings (void)
286 {
287 fold_undefer_overflow_warnings (false, NULL, 0);
288 }
289
290 /* Whether we are deferring overflow warnings. */
291
292 bool
293 fold_deferring_overflow_warnings_p (void)
294 {
295 return fold_deferring_overflow_warnings > 0;
296 }
297
298 /* This is called when we fold something based on the fact that signed
299 overflow is undefined. */
300
301 static void
302 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
303 {
304 if (fold_deferring_overflow_warnings > 0)
305 {
306 if (fold_deferred_overflow_warning == NULL
307 || wc < fold_deferred_overflow_code)
308 {
309 fold_deferred_overflow_warning = gmsgid;
310 fold_deferred_overflow_code = wc;
311 }
312 }
313 else if (issue_strict_overflow_warning (wc))
314 warning (OPT_Wstrict_overflow, gmsgid);
315 }
316 \f
317 /* Return true if the built-in mathematical function specified by CODE
318 is odd, i.e. -f(x) == f(-x). */
319
320 static bool
321 negate_mathfn_p (enum built_in_function code)
322 {
323 switch (code)
324 {
325 CASE_FLT_FN (BUILT_IN_ASIN):
326 CASE_FLT_FN (BUILT_IN_ASINH):
327 CASE_FLT_FN (BUILT_IN_ATAN):
328 CASE_FLT_FN (BUILT_IN_ATANH):
329 CASE_FLT_FN (BUILT_IN_CASIN):
330 CASE_FLT_FN (BUILT_IN_CASINH):
331 CASE_FLT_FN (BUILT_IN_CATAN):
332 CASE_FLT_FN (BUILT_IN_CATANH):
333 CASE_FLT_FN (BUILT_IN_CBRT):
334 CASE_FLT_FN (BUILT_IN_CPROJ):
335 CASE_FLT_FN (BUILT_IN_CSIN):
336 CASE_FLT_FN (BUILT_IN_CSINH):
337 CASE_FLT_FN (BUILT_IN_CTAN):
338 CASE_FLT_FN (BUILT_IN_CTANH):
339 CASE_FLT_FN (BUILT_IN_ERF):
340 CASE_FLT_FN (BUILT_IN_LLROUND):
341 CASE_FLT_FN (BUILT_IN_LROUND):
342 CASE_FLT_FN (BUILT_IN_ROUND):
343 CASE_FLT_FN (BUILT_IN_SIN):
344 CASE_FLT_FN (BUILT_IN_SINH):
345 CASE_FLT_FN (BUILT_IN_TAN):
346 CASE_FLT_FN (BUILT_IN_TANH):
347 CASE_FLT_FN (BUILT_IN_TRUNC):
348 return true;
349
350 CASE_FLT_FN (BUILT_IN_LLRINT):
351 CASE_FLT_FN (BUILT_IN_LRINT):
352 CASE_FLT_FN (BUILT_IN_NEARBYINT):
353 CASE_FLT_FN (BUILT_IN_RINT):
354 return !flag_rounding_math;
355
356 default:
357 break;
358 }
359 return false;
360 }
361
362 /* Check whether we may negate an integer constant T without causing
363 overflow. */
364
365 bool
366 may_negate_without_overflow_p (const_tree t)
367 {
368 tree type;
369
370 gcc_assert (TREE_CODE (t) == INTEGER_CST);
371
372 type = TREE_TYPE (t);
373 if (TYPE_UNSIGNED (type))
374 return false;
375
376 return !wi::only_sign_bit_p (t);
377 }
378
379 /* Determine whether an expression T can be cheaply negated using
380 the function negate_expr without introducing undefined overflow. */
381
382 static bool
383 negate_expr_p (tree t)
384 {
385 tree type;
386
387 if (t == 0)
388 return false;
389
390 type = TREE_TYPE (t);
391
392 STRIP_SIGN_NOPS (t);
393 switch (TREE_CODE (t))
394 {
395 case INTEGER_CST:
396 if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
397 return true;
398
399 /* Check that -CST will not overflow type. */
400 return may_negate_without_overflow_p (t);
401 case BIT_NOT_EXPR:
402 return (INTEGRAL_TYPE_P (type)
403 && TYPE_OVERFLOW_WRAPS (type));
404
405 case FIXED_CST:
406 return true;
407
408 case NEGATE_EXPR:
409 return !TYPE_OVERFLOW_SANITIZED (type);
410
411 case REAL_CST:
412 /* We want to canonicalize to positive real constants. Pretend
413 that only negative ones can be easily negated. */
414 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
415
416 case COMPLEX_CST:
417 return negate_expr_p (TREE_REALPART (t))
418 && negate_expr_p (TREE_IMAGPART (t));
419
420 case VECTOR_CST:
421 {
422 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
423 return true;
424
425 int count = TYPE_VECTOR_SUBPARTS (type), i;
426
427 for (i = 0; i < count; i++)
428 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
429 return false;
430
431 return true;
432 }
433
434 case COMPLEX_EXPR:
435 return negate_expr_p (TREE_OPERAND (t, 0))
436 && negate_expr_p (TREE_OPERAND (t, 1));
437
438 case CONJ_EXPR:
439 return negate_expr_p (TREE_OPERAND (t, 0));
440
441 case PLUS_EXPR:
442 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
443 || HONOR_SIGNED_ZEROS (element_mode (type)))
444 return false;
445 /* -(A + B) -> (-B) - A. */
446 if (negate_expr_p (TREE_OPERAND (t, 1))
447 && reorder_operands_p (TREE_OPERAND (t, 0),
448 TREE_OPERAND (t, 1)))
449 return true;
450 /* -(A + B) -> (-A) - B. */
451 return negate_expr_p (TREE_OPERAND (t, 0));
452
453 case MINUS_EXPR:
454 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
455 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
456 && !HONOR_SIGNED_ZEROS (element_mode (type))
457 && reorder_operands_p (TREE_OPERAND (t, 0),
458 TREE_OPERAND (t, 1));
459
460 case MULT_EXPR:
461 if (TYPE_UNSIGNED (TREE_TYPE (t)))
462 break;
463
464 /* Fall through. */
465
466 case RDIV_EXPR:
467 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
468 return negate_expr_p (TREE_OPERAND (t, 1))
469 || negate_expr_p (TREE_OPERAND (t, 0));
470 break;
471
472 case TRUNC_DIV_EXPR:
473 case ROUND_DIV_EXPR:
474 case EXACT_DIV_EXPR:
475 /* In general we can't negate A / B, because if A is INT_MIN and
476 B is 1, we may turn this into INT_MIN / -1 which is undefined
477 and actually traps on some architectures. But if overflow is
478 undefined, we can negate, because - (INT_MIN / 1) is an
479 overflow. */
480 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
481 {
482 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
483 break;
484 /* If overflow is undefined then we have to be careful because
485 we ask whether it's ok to associate the negate with the
486 division which is not ok for example for
487 -((a - b) / c) where (-(a - b)) / c may invoke undefined
488 overflow because of negating INT_MIN. So do not use
489 negate_expr_p here but open-code the two important cases. */
490 if (TREE_CODE (TREE_OPERAND (t, 0)) == NEGATE_EXPR
491 || (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
492 && may_negate_without_overflow_p (TREE_OPERAND (t, 0))))
493 return true;
494 }
495 else if (negate_expr_p (TREE_OPERAND (t, 0)))
496 return true;
497 return negate_expr_p (TREE_OPERAND (t, 1));
498
499 case NOP_EXPR:
500 /* Negate -((double)float) as (double)(-float). */
501 if (TREE_CODE (type) == REAL_TYPE)
502 {
503 tree tem = strip_float_extensions (t);
504 if (tem != t)
505 return negate_expr_p (tem);
506 }
507 break;
508
509 case CALL_EXPR:
510 /* Negate -f(x) as f(-x). */
511 if (negate_mathfn_p (builtin_mathfn_code (t)))
512 return negate_expr_p (CALL_EXPR_ARG (t, 0));
513 break;
514
515 case RSHIFT_EXPR:
516 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
517 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
518 {
519 tree op1 = TREE_OPERAND (t, 1);
520 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
521 return true;
522 }
523 break;
524
525 default:
526 break;
527 }
528 return false;
529 }
530
531 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
532 simplification is possible.
533 If negate_expr_p would return true for T, NULL_TREE will never be
534 returned. */
535
536 static tree
537 fold_negate_expr (location_t loc, tree t)
538 {
539 tree type = TREE_TYPE (t);
540 tree tem;
541
542 switch (TREE_CODE (t))
543 {
544 /* Convert - (~A) to A + 1. */
545 case BIT_NOT_EXPR:
546 if (INTEGRAL_TYPE_P (type))
547 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
548 build_one_cst (type));
549 break;
550
551 case INTEGER_CST:
552 tem = fold_negate_const (t, type);
553 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
554 || (ANY_INTEGRAL_TYPE_P (type)
555 && !TYPE_OVERFLOW_TRAPS (type)
556 && TYPE_OVERFLOW_WRAPS (type))
557 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
558 return tem;
559 break;
560
561 case REAL_CST:
562 tem = fold_negate_const (t, type);
563 return tem;
564
565 case FIXED_CST:
566 tem = fold_negate_const (t, type);
567 return tem;
568
569 case COMPLEX_CST:
570 {
571 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
572 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
573 if (rpart && ipart)
574 return build_complex (type, rpart, ipart);
575 }
576 break;
577
578 case VECTOR_CST:
579 {
580 int count = TYPE_VECTOR_SUBPARTS (type), i;
581 tree *elts = XALLOCAVEC (tree, count);
582
583 for (i = 0; i < count; i++)
584 {
585 elts[i] = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
586 if (elts[i] == NULL_TREE)
587 return NULL_TREE;
588 }
589
590 return build_vector (type, elts);
591 }
592
593 case COMPLEX_EXPR:
594 if (negate_expr_p (t))
595 return fold_build2_loc (loc, COMPLEX_EXPR, type,
596 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
597 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
598 break;
599
600 case CONJ_EXPR:
601 if (negate_expr_p (t))
602 return fold_build1_loc (loc, CONJ_EXPR, type,
603 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
604 break;
605
606 case NEGATE_EXPR:
607 if (!TYPE_OVERFLOW_SANITIZED (type))
608 return TREE_OPERAND (t, 0);
609 break;
610
611 case PLUS_EXPR:
612 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
613 && !HONOR_SIGNED_ZEROS (element_mode (type)))
614 {
615 /* -(A + B) -> (-B) - A. */
616 if (negate_expr_p (TREE_OPERAND (t, 1))
617 && reorder_operands_p (TREE_OPERAND (t, 0),
618 TREE_OPERAND (t, 1)))
619 {
620 tem = negate_expr (TREE_OPERAND (t, 1));
621 return fold_build2_loc (loc, MINUS_EXPR, type,
622 tem, TREE_OPERAND (t, 0));
623 }
624
625 /* -(A + B) -> (-A) - B. */
626 if (negate_expr_p (TREE_OPERAND (t, 0)))
627 {
628 tem = negate_expr (TREE_OPERAND (t, 0));
629 return fold_build2_loc (loc, MINUS_EXPR, type,
630 tem, TREE_OPERAND (t, 1));
631 }
632 }
633 break;
634
635 case MINUS_EXPR:
636 /* - (A - B) -> B - A */
637 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
638 && !HONOR_SIGNED_ZEROS (element_mode (type))
639 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
640 return fold_build2_loc (loc, MINUS_EXPR, type,
641 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
642 break;
643
644 case MULT_EXPR:
645 if (TYPE_UNSIGNED (type))
646 break;
647
648 /* Fall through. */
649
650 case RDIV_EXPR:
651 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
652 {
653 tem = TREE_OPERAND (t, 1);
654 if (negate_expr_p (tem))
655 return fold_build2_loc (loc, TREE_CODE (t), type,
656 TREE_OPERAND (t, 0), negate_expr (tem));
657 tem = TREE_OPERAND (t, 0);
658 if (negate_expr_p (tem))
659 return fold_build2_loc (loc, TREE_CODE (t), type,
660 negate_expr (tem), TREE_OPERAND (t, 1));
661 }
662 break;
663
664 case TRUNC_DIV_EXPR:
665 case ROUND_DIV_EXPR:
666 case EXACT_DIV_EXPR:
667 /* In general we can't negate A / B, because if A is INT_MIN and
668 B is 1, we may turn this into INT_MIN / -1 which is undefined
669 and actually traps on some architectures. But if overflow is
670 undefined, we can negate, because - (INT_MIN / 1) is an
671 overflow. */
672 if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
673 {
674 const char * const warnmsg = G_("assuming signed overflow does not "
675 "occur when negating a division");
676 tem = TREE_OPERAND (t, 1);
677 if (negate_expr_p (tem))
678 {
679 if (INTEGRAL_TYPE_P (type)
680 && (TREE_CODE (tem) != INTEGER_CST
681 || integer_onep (tem)))
682 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
683 return fold_build2_loc (loc, TREE_CODE (t), type,
684 TREE_OPERAND (t, 0), negate_expr (tem));
685 }
686 /* If overflow is undefined then we have to be careful because
687 we ask whether it's ok to associate the negate with the
688 division which is not ok for example for
689 -((a - b) / c) where (-(a - b)) / c may invoke undefined
690 overflow because of negating INT_MIN. So do not use
691 negate_expr_p here but open-code the two important cases. */
692 tem = TREE_OPERAND (t, 0);
693 if ((INTEGRAL_TYPE_P (type)
694 && (TREE_CODE (tem) == NEGATE_EXPR
695 || (TREE_CODE (tem) == INTEGER_CST
696 && may_negate_without_overflow_p (tem))))
697 || !INTEGRAL_TYPE_P (type))
698 return fold_build2_loc (loc, TREE_CODE (t), type,
699 negate_expr (tem), TREE_OPERAND (t, 1));
700 }
701 break;
702
703 case NOP_EXPR:
704 /* Convert -((double)float) into (double)(-float). */
705 if (TREE_CODE (type) == REAL_TYPE)
706 {
707 tem = strip_float_extensions (t);
708 if (tem != t && negate_expr_p (tem))
709 return fold_convert_loc (loc, type, negate_expr (tem));
710 }
711 break;
712
713 case CALL_EXPR:
714 /* Negate -f(x) as f(-x). */
715 if (negate_mathfn_p (builtin_mathfn_code (t))
716 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
717 {
718 tree fndecl, arg;
719
720 fndecl = get_callee_fndecl (t);
721 arg = negate_expr (CALL_EXPR_ARG (t, 0));
722 return build_call_expr_loc (loc, fndecl, 1, arg);
723 }
724 break;
725
726 case RSHIFT_EXPR:
727 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
728 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
729 {
730 tree op1 = TREE_OPERAND (t, 1);
731 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
732 {
733 tree ntype = TYPE_UNSIGNED (type)
734 ? signed_type_for (type)
735 : unsigned_type_for (type);
736 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
737 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
738 return fold_convert_loc (loc, type, temp);
739 }
740 }
741 break;
742
743 default:
744 break;
745 }
746
747 return NULL_TREE;
748 }
749
750 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
751 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
752 return NULL_TREE. */
753
754 static tree
755 negate_expr (tree t)
756 {
757 tree type, tem;
758 location_t loc;
759
760 if (t == NULL_TREE)
761 return NULL_TREE;
762
763 loc = EXPR_LOCATION (t);
764 type = TREE_TYPE (t);
765 STRIP_SIGN_NOPS (t);
766
767 tem = fold_negate_expr (loc, t);
768 if (!tem)
769 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
770 return fold_convert_loc (loc, type, tem);
771 }
772 \f
773 /* Split a tree IN into a constant, literal and variable parts that could be
774 combined with CODE to make IN. "constant" means an expression with
775 TREE_CONSTANT but that isn't an actual constant. CODE must be a
776 commutative arithmetic operation. Store the constant part into *CONP,
777 the literal in *LITP and return the variable part. If a part isn't
778 present, set it to null. If the tree does not decompose in this way,
779 return the entire tree as the variable part and the other parts as null.
780
781 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
782 case, we negate an operand that was subtracted. Except if it is a
783 literal for which we use *MINUS_LITP instead.
784
785 If NEGATE_P is true, we are negating all of IN, again except a literal
786 for which we use *MINUS_LITP instead.
787
788 If IN is itself a literal or constant, return it as appropriate.
789
790 Note that we do not guarantee that any of the three values will be the
791 same type as IN, but they will have the same signedness and mode. */
792
793 static tree
794 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
795 tree *minus_litp, int negate_p)
796 {
797 tree var = 0;
798
799 *conp = 0;
800 *litp = 0;
801 *minus_litp = 0;
802
803 /* Strip any conversions that don't change the machine mode or signedness. */
804 STRIP_SIGN_NOPS (in);
805
806 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
807 || TREE_CODE (in) == FIXED_CST)
808 *litp = in;
809 else if (TREE_CODE (in) == code
810 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
811 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
812 /* We can associate addition and subtraction together (even
813 though the C standard doesn't say so) for integers because
814 the value is not affected. For reals, the value might be
815 affected, so we can't. */
816 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
817 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
818 {
819 tree op0 = TREE_OPERAND (in, 0);
820 tree op1 = TREE_OPERAND (in, 1);
821 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
822 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
823
824 /* First see if either of the operands is a literal, then a constant. */
825 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
826 || TREE_CODE (op0) == FIXED_CST)
827 *litp = op0, op0 = 0;
828 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
829 || TREE_CODE (op1) == FIXED_CST)
830 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
831
832 if (op0 != 0 && TREE_CONSTANT (op0))
833 *conp = op0, op0 = 0;
834 else if (op1 != 0 && TREE_CONSTANT (op1))
835 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
836
837 /* If we haven't dealt with either operand, this is not a case we can
838 decompose. Otherwise, VAR is either of the ones remaining, if any. */
839 if (op0 != 0 && op1 != 0)
840 var = in;
841 else if (op0 != 0)
842 var = op0;
843 else
844 var = op1, neg_var_p = neg1_p;
845
846 /* Now do any needed negations. */
847 if (neg_litp_p)
848 *minus_litp = *litp, *litp = 0;
849 if (neg_conp_p)
850 *conp = negate_expr (*conp);
851 if (neg_var_p)
852 var = negate_expr (var);
853 }
854 else if (TREE_CODE (in) == BIT_NOT_EXPR
855 && code == PLUS_EXPR)
856 {
857 /* -X - 1 is folded to ~X, undo that here. */
858 *minus_litp = build_one_cst (TREE_TYPE (in));
859 var = negate_expr (TREE_OPERAND (in, 0));
860 }
861 else if (TREE_CONSTANT (in))
862 *conp = in;
863 else
864 var = in;
865
866 if (negate_p)
867 {
868 if (*litp)
869 *minus_litp = *litp, *litp = 0;
870 else if (*minus_litp)
871 *litp = *minus_litp, *minus_litp = 0;
872 *conp = negate_expr (*conp);
873 var = negate_expr (var);
874 }
875
876 return var;
877 }
878
879 /* Re-associate trees split by the above function. T1 and T2 are
880 either expressions to associate or null. Return the new
881 expression, if any. LOC is the location of the new expression. If
882 we build an operation, do it in TYPE and with CODE. */
883
884 static tree
885 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
886 {
887 if (t1 == 0)
888 return t2;
889 else if (t2 == 0)
890 return t1;
891
892 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
893 try to fold this since we will have infinite recursion. But do
894 deal with any NEGATE_EXPRs. */
895 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
896 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
897 {
898 if (code == PLUS_EXPR)
899 {
900 if (TREE_CODE (t1) == NEGATE_EXPR)
901 return build2_loc (loc, MINUS_EXPR, type,
902 fold_convert_loc (loc, type, t2),
903 fold_convert_loc (loc, type,
904 TREE_OPERAND (t1, 0)));
905 else if (TREE_CODE (t2) == NEGATE_EXPR)
906 return build2_loc (loc, MINUS_EXPR, type,
907 fold_convert_loc (loc, type, t1),
908 fold_convert_loc (loc, type,
909 TREE_OPERAND (t2, 0)));
910 else if (integer_zerop (t2))
911 return fold_convert_loc (loc, type, t1);
912 }
913 else if (code == MINUS_EXPR)
914 {
915 if (integer_zerop (t2))
916 return fold_convert_loc (loc, type, t1);
917 }
918
919 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
920 fold_convert_loc (loc, type, t2));
921 }
922
923 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
924 fold_convert_loc (loc, type, t2));
925 }
926 \f
927 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
928 for use in int_const_binop, size_binop and size_diffop. */
929
930 static bool
931 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
932 {
933 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
934 return false;
935 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
936 return false;
937
938 switch (code)
939 {
940 case LSHIFT_EXPR:
941 case RSHIFT_EXPR:
942 case LROTATE_EXPR:
943 case RROTATE_EXPR:
944 return true;
945
946 default:
947 break;
948 }
949
950 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
951 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
952 && TYPE_MODE (type1) == TYPE_MODE (type2);
953 }
954
955
956 /* Combine two integer constants ARG1 and ARG2 under operation CODE
957 to produce a new constant. Return NULL_TREE if we don't know how
958 to evaluate CODE at compile-time. */
959
960 static tree
961 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree parg2,
962 int overflowable)
963 {
964 wide_int res;
965 tree t;
966 tree type = TREE_TYPE (arg1);
967 signop sign = TYPE_SIGN (type);
968 bool overflow = false;
969
970 wide_int arg2 = wide_int::from (parg2, TYPE_PRECISION (type),
971 TYPE_SIGN (TREE_TYPE (parg2)));
972
973 switch (code)
974 {
975 case BIT_IOR_EXPR:
976 res = wi::bit_or (arg1, arg2);
977 break;
978
979 case BIT_XOR_EXPR:
980 res = wi::bit_xor (arg1, arg2);
981 break;
982
983 case BIT_AND_EXPR:
984 res = wi::bit_and (arg1, arg2);
985 break;
986
987 case RSHIFT_EXPR:
988 case LSHIFT_EXPR:
989 if (wi::neg_p (arg2))
990 {
991 arg2 = -arg2;
992 if (code == RSHIFT_EXPR)
993 code = LSHIFT_EXPR;
994 else
995 code = RSHIFT_EXPR;
996 }
997
998 if (code == RSHIFT_EXPR)
999 /* It's unclear from the C standard whether shifts can overflow.
1000 The following code ignores overflow; perhaps a C standard
1001 interpretation ruling is needed. */
1002 res = wi::rshift (arg1, arg2, sign);
1003 else
1004 res = wi::lshift (arg1, arg2);
1005 break;
1006
1007 case RROTATE_EXPR:
1008 case LROTATE_EXPR:
1009 if (wi::neg_p (arg2))
1010 {
1011 arg2 = -arg2;
1012 if (code == RROTATE_EXPR)
1013 code = LROTATE_EXPR;
1014 else
1015 code = RROTATE_EXPR;
1016 }
1017
1018 if (code == RROTATE_EXPR)
1019 res = wi::rrotate (arg1, arg2);
1020 else
1021 res = wi::lrotate (arg1, arg2);
1022 break;
1023
1024 case PLUS_EXPR:
1025 res = wi::add (arg1, arg2, sign, &overflow);
1026 break;
1027
1028 case MINUS_EXPR:
1029 res = wi::sub (arg1, arg2, sign, &overflow);
1030 break;
1031
1032 case MULT_EXPR:
1033 res = wi::mul (arg1, arg2, sign, &overflow);
1034 break;
1035
1036 case MULT_HIGHPART_EXPR:
1037 res = wi::mul_high (arg1, arg2, sign);
1038 break;
1039
1040 case TRUNC_DIV_EXPR:
1041 case EXACT_DIV_EXPR:
1042 if (arg2 == 0)
1043 return NULL_TREE;
1044 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1045 break;
1046
1047 case FLOOR_DIV_EXPR:
1048 if (arg2 == 0)
1049 return NULL_TREE;
1050 res = wi::div_floor (arg1, arg2, sign, &overflow);
1051 break;
1052
1053 case CEIL_DIV_EXPR:
1054 if (arg2 == 0)
1055 return NULL_TREE;
1056 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1057 break;
1058
1059 case ROUND_DIV_EXPR:
1060 if (arg2 == 0)
1061 return NULL_TREE;
1062 res = wi::div_round (arg1, arg2, sign, &overflow);
1063 break;
1064
1065 case TRUNC_MOD_EXPR:
1066 if (arg2 == 0)
1067 return NULL_TREE;
1068 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1069 break;
1070
1071 case FLOOR_MOD_EXPR:
1072 if (arg2 == 0)
1073 return NULL_TREE;
1074 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1075 break;
1076
1077 case CEIL_MOD_EXPR:
1078 if (arg2 == 0)
1079 return NULL_TREE;
1080 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1081 break;
1082
1083 case ROUND_MOD_EXPR:
1084 if (arg2 == 0)
1085 return NULL_TREE;
1086 res = wi::mod_round (arg1, arg2, sign, &overflow);
1087 break;
1088
1089 case MIN_EXPR:
1090 res = wi::min (arg1, arg2, sign);
1091 break;
1092
1093 case MAX_EXPR:
1094 res = wi::max (arg1, arg2, sign);
1095 break;
1096
1097 default:
1098 return NULL_TREE;
1099 }
1100
1101 t = force_fit_type (type, res, overflowable,
1102 (((sign == SIGNED || overflowable == -1)
1103 && overflow)
1104 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (parg2)));
1105
1106 return t;
1107 }
1108
1109 tree
1110 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1111 {
1112 return int_const_binop_1 (code, arg1, arg2, 1);
1113 }
1114
1115 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1116 constant. We assume ARG1 and ARG2 have the same data type, or at least
1117 are the same kind of constant and the same machine mode. Return zero if
1118 combining the constants is not allowed in the current operating mode. */
1119
1120 static tree
1121 const_binop (enum tree_code code, tree arg1, tree arg2)
1122 {
1123 /* Sanity check for the recursive cases. */
1124 if (!arg1 || !arg2)
1125 return NULL_TREE;
1126
1127 STRIP_NOPS (arg1);
1128 STRIP_NOPS (arg2);
1129
1130 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1131 {
1132 if (code == POINTER_PLUS_EXPR)
1133 return int_const_binop (PLUS_EXPR,
1134 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1135
1136 return int_const_binop (code, arg1, arg2);
1137 }
1138
1139 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1140 {
1141 machine_mode mode;
1142 REAL_VALUE_TYPE d1;
1143 REAL_VALUE_TYPE d2;
1144 REAL_VALUE_TYPE value;
1145 REAL_VALUE_TYPE result;
1146 bool inexact;
1147 tree t, type;
1148
1149 /* The following codes are handled by real_arithmetic. */
1150 switch (code)
1151 {
1152 case PLUS_EXPR:
1153 case MINUS_EXPR:
1154 case MULT_EXPR:
1155 case RDIV_EXPR:
1156 case MIN_EXPR:
1157 case MAX_EXPR:
1158 break;
1159
1160 default:
1161 return NULL_TREE;
1162 }
1163
1164 d1 = TREE_REAL_CST (arg1);
1165 d2 = TREE_REAL_CST (arg2);
1166
1167 type = TREE_TYPE (arg1);
1168 mode = TYPE_MODE (type);
1169
1170 /* Don't perform operation if we honor signaling NaNs and
1171 either operand is a NaN. */
1172 if (HONOR_SNANS (mode)
1173 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1174 return NULL_TREE;
1175
1176 /* Don't perform operation if it would raise a division
1177 by zero exception. */
1178 if (code == RDIV_EXPR
1179 && REAL_VALUES_EQUAL (d2, dconst0)
1180 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1181 return NULL_TREE;
1182
1183 /* If either operand is a NaN, just return it. Otherwise, set up
1184 for floating-point trap; we return an overflow. */
1185 if (REAL_VALUE_ISNAN (d1))
1186 return arg1;
1187 else if (REAL_VALUE_ISNAN (d2))
1188 return arg2;
1189
1190 inexact = real_arithmetic (&value, code, &d1, &d2);
1191 real_convert (&result, mode, &value);
1192
1193 /* Don't constant fold this floating point operation if
1194 the result has overflowed and flag_trapping_math. */
1195 if (flag_trapping_math
1196 && MODE_HAS_INFINITIES (mode)
1197 && REAL_VALUE_ISINF (result)
1198 && !REAL_VALUE_ISINF (d1)
1199 && !REAL_VALUE_ISINF (d2))
1200 return NULL_TREE;
1201
1202 /* Don't constant fold this floating point operation if the
1203 result may dependent upon the run-time rounding mode and
1204 flag_rounding_math is set, or if GCC's software emulation
1205 is unable to accurately represent the result. */
1206 if ((flag_rounding_math
1207 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1208 && (inexact || !real_identical (&result, &value)))
1209 return NULL_TREE;
1210
1211 t = build_real (type, result);
1212
1213 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1214 return t;
1215 }
1216
1217 if (TREE_CODE (arg1) == FIXED_CST)
1218 {
1219 FIXED_VALUE_TYPE f1;
1220 FIXED_VALUE_TYPE f2;
1221 FIXED_VALUE_TYPE result;
1222 tree t, type;
1223 int sat_p;
1224 bool overflow_p;
1225
1226 /* The following codes are handled by fixed_arithmetic. */
1227 switch (code)
1228 {
1229 case PLUS_EXPR:
1230 case MINUS_EXPR:
1231 case MULT_EXPR:
1232 case TRUNC_DIV_EXPR:
1233 if (TREE_CODE (arg2) != FIXED_CST)
1234 return NULL_TREE;
1235 f2 = TREE_FIXED_CST (arg2);
1236 break;
1237
1238 case LSHIFT_EXPR:
1239 case RSHIFT_EXPR:
1240 {
1241 if (TREE_CODE (arg2) != INTEGER_CST)
1242 return NULL_TREE;
1243 wide_int w2 = arg2;
1244 f2.data.high = w2.elt (1);
1245 f2.data.low = w2.elt (0);
1246 f2.mode = SImode;
1247 }
1248 break;
1249
1250 default:
1251 return NULL_TREE;
1252 }
1253
1254 f1 = TREE_FIXED_CST (arg1);
1255 type = TREE_TYPE (arg1);
1256 sat_p = TYPE_SATURATING (type);
1257 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1258 t = build_fixed (type, result);
1259 /* Propagate overflow flags. */
1260 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1261 TREE_OVERFLOW (t) = 1;
1262 return t;
1263 }
1264
1265 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1266 {
1267 tree type = TREE_TYPE (arg1);
1268 tree r1 = TREE_REALPART (arg1);
1269 tree i1 = TREE_IMAGPART (arg1);
1270 tree r2 = TREE_REALPART (arg2);
1271 tree i2 = TREE_IMAGPART (arg2);
1272 tree real, imag;
1273
1274 switch (code)
1275 {
1276 case PLUS_EXPR:
1277 case MINUS_EXPR:
1278 real = const_binop (code, r1, r2);
1279 imag = const_binop (code, i1, i2);
1280 break;
1281
1282 case MULT_EXPR:
1283 if (COMPLEX_FLOAT_TYPE_P (type))
1284 return do_mpc_arg2 (arg1, arg2, type,
1285 /* do_nonfinite= */ folding_initializer,
1286 mpc_mul);
1287
1288 real = const_binop (MINUS_EXPR,
1289 const_binop (MULT_EXPR, r1, r2),
1290 const_binop (MULT_EXPR, i1, i2));
1291 imag = const_binop (PLUS_EXPR,
1292 const_binop (MULT_EXPR, r1, i2),
1293 const_binop (MULT_EXPR, i1, r2));
1294 break;
1295
1296 case RDIV_EXPR:
1297 if (COMPLEX_FLOAT_TYPE_P (type))
1298 return do_mpc_arg2 (arg1, arg2, type,
1299 /* do_nonfinite= */ folding_initializer,
1300 mpc_div);
1301 /* Fallthru ... */
1302 case TRUNC_DIV_EXPR:
1303 case CEIL_DIV_EXPR:
1304 case FLOOR_DIV_EXPR:
1305 case ROUND_DIV_EXPR:
1306 if (flag_complex_method == 0)
1307 {
1308 /* Keep this algorithm in sync with
1309 tree-complex.c:expand_complex_div_straight().
1310
1311 Expand complex division to scalars, straightforward algorithm.
1312 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1313 t = br*br + bi*bi
1314 */
1315 tree magsquared
1316 = const_binop (PLUS_EXPR,
1317 const_binop (MULT_EXPR, r2, r2),
1318 const_binop (MULT_EXPR, i2, i2));
1319 tree t1
1320 = const_binop (PLUS_EXPR,
1321 const_binop (MULT_EXPR, r1, r2),
1322 const_binop (MULT_EXPR, i1, i2));
1323 tree t2
1324 = const_binop (MINUS_EXPR,
1325 const_binop (MULT_EXPR, i1, r2),
1326 const_binop (MULT_EXPR, r1, i2));
1327
1328 real = const_binop (code, t1, magsquared);
1329 imag = const_binop (code, t2, magsquared);
1330 }
1331 else
1332 {
1333 /* Keep this algorithm in sync with
1334 tree-complex.c:expand_complex_div_wide().
1335
1336 Expand complex division to scalars, modified algorithm to minimize
1337 overflow with wide input ranges. */
1338 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1339 fold_abs_const (r2, TREE_TYPE (type)),
1340 fold_abs_const (i2, TREE_TYPE (type)));
1341
1342 if (integer_nonzerop (compare))
1343 {
1344 /* In the TRUE branch, we compute
1345 ratio = br/bi;
1346 div = (br * ratio) + bi;
1347 tr = (ar * ratio) + ai;
1348 ti = (ai * ratio) - ar;
1349 tr = tr / div;
1350 ti = ti / div; */
1351 tree ratio = const_binop (code, r2, i2);
1352 tree div = const_binop (PLUS_EXPR, i2,
1353 const_binop (MULT_EXPR, r2, ratio));
1354 real = const_binop (MULT_EXPR, r1, ratio);
1355 real = const_binop (PLUS_EXPR, real, i1);
1356 real = const_binop (code, real, div);
1357
1358 imag = const_binop (MULT_EXPR, i1, ratio);
1359 imag = const_binop (MINUS_EXPR, imag, r1);
1360 imag = const_binop (code, imag, div);
1361 }
1362 else
1363 {
1364 /* In the FALSE branch, we compute
1365 ratio = d/c;
1366 divisor = (d * ratio) + c;
1367 tr = (b * ratio) + a;
1368 ti = b - (a * ratio);
1369 tr = tr / div;
1370 ti = ti / div; */
1371 tree ratio = const_binop (code, i2, r2);
1372 tree div = const_binop (PLUS_EXPR, r2,
1373 const_binop (MULT_EXPR, i2, ratio));
1374
1375 real = const_binop (MULT_EXPR, i1, ratio);
1376 real = const_binop (PLUS_EXPR, real, r1);
1377 real = const_binop (code, real, div);
1378
1379 imag = const_binop (MULT_EXPR, r1, ratio);
1380 imag = const_binop (MINUS_EXPR, i1, imag);
1381 imag = const_binop (code, imag, div);
1382 }
1383 }
1384 break;
1385
1386 default:
1387 return NULL_TREE;
1388 }
1389
1390 if (real && imag)
1391 return build_complex (type, real, imag);
1392 }
1393
1394 if (TREE_CODE (arg1) == VECTOR_CST
1395 && TREE_CODE (arg2) == VECTOR_CST)
1396 {
1397 tree type = TREE_TYPE (arg1);
1398 int count = TYPE_VECTOR_SUBPARTS (type), i;
1399 tree *elts = XALLOCAVEC (tree, count);
1400
1401 for (i = 0; i < count; i++)
1402 {
1403 tree elem1 = VECTOR_CST_ELT (arg1, i);
1404 tree elem2 = VECTOR_CST_ELT (arg2, i);
1405
1406 elts[i] = const_binop (code, elem1, elem2);
1407
1408 /* It is possible that const_binop cannot handle the given
1409 code and return NULL_TREE */
1410 if (elts[i] == NULL_TREE)
1411 return NULL_TREE;
1412 }
1413
1414 return build_vector (type, elts);
1415 }
1416
1417 /* Shifts allow a scalar offset for a vector. */
1418 if (TREE_CODE (arg1) == VECTOR_CST
1419 && TREE_CODE (arg2) == INTEGER_CST)
1420 {
1421 tree type = TREE_TYPE (arg1);
1422 int count = TYPE_VECTOR_SUBPARTS (type), i;
1423 tree *elts = XALLOCAVEC (tree, count);
1424
1425 for (i = 0; i < count; i++)
1426 {
1427 tree elem1 = VECTOR_CST_ELT (arg1, i);
1428
1429 elts[i] = const_binop (code, elem1, arg2);
1430
1431 /* It is possible that const_binop cannot handle the given
1432 code and return NULL_TREE. */
1433 if (elts[i] == NULL_TREE)
1434 return NULL_TREE;
1435 }
1436
1437 return build_vector (type, elts);
1438 }
1439 return NULL_TREE;
1440 }
1441
1442 /* Overload that adds a TYPE parameter to be able to dispatch
1443 to fold_relational_const. */
1444
1445 tree
1446 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1447 {
1448 if (TREE_CODE_CLASS (code) == tcc_comparison)
1449 return fold_relational_const (code, type, arg1, arg2);
1450
1451 /* ??? Until we make the const_binop worker take the type of the
1452 result as argument put those cases that need it here. */
1453 switch (code)
1454 {
1455 case COMPLEX_EXPR:
1456 if ((TREE_CODE (arg1) == REAL_CST
1457 && TREE_CODE (arg2) == REAL_CST)
1458 || (TREE_CODE (arg1) == INTEGER_CST
1459 && TREE_CODE (arg2) == INTEGER_CST))
1460 return build_complex (type, arg1, arg2);
1461 return NULL_TREE;
1462
1463 case VEC_PACK_TRUNC_EXPR:
1464 case VEC_PACK_FIX_TRUNC_EXPR:
1465 {
1466 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1467 tree *elts;
1468
1469 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts / 2
1470 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts / 2);
1471 if (TREE_CODE (arg1) != VECTOR_CST
1472 || TREE_CODE (arg2) != VECTOR_CST)
1473 return NULL_TREE;
1474
1475 elts = XALLOCAVEC (tree, nelts);
1476 if (!vec_cst_ctor_to_array (arg1, elts)
1477 || !vec_cst_ctor_to_array (arg2, elts + nelts / 2))
1478 return NULL_TREE;
1479
1480 for (i = 0; i < nelts; i++)
1481 {
1482 elts[i] = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1483 ? NOP_EXPR : FIX_TRUNC_EXPR,
1484 TREE_TYPE (type), elts[i]);
1485 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1486 return NULL_TREE;
1487 }
1488
1489 return build_vector (type, elts);
1490 }
1491
1492 case VEC_WIDEN_MULT_LO_EXPR:
1493 case VEC_WIDEN_MULT_HI_EXPR:
1494 case VEC_WIDEN_MULT_EVEN_EXPR:
1495 case VEC_WIDEN_MULT_ODD_EXPR:
1496 {
1497 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type);
1498 unsigned int out, ofs, scale;
1499 tree *elts;
1500
1501 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts * 2
1502 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts * 2);
1503 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1504 return NULL_TREE;
1505
1506 elts = XALLOCAVEC (tree, nelts * 4);
1507 if (!vec_cst_ctor_to_array (arg1, elts)
1508 || !vec_cst_ctor_to_array (arg2, elts + nelts * 2))
1509 return NULL_TREE;
1510
1511 if (code == VEC_WIDEN_MULT_LO_EXPR)
1512 scale = 0, ofs = BYTES_BIG_ENDIAN ? nelts : 0;
1513 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1514 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : nelts;
1515 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1516 scale = 1, ofs = 0;
1517 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1518 scale = 1, ofs = 1;
1519
1520 for (out = 0; out < nelts; out++)
1521 {
1522 unsigned int in1 = (out << scale) + ofs;
1523 unsigned int in2 = in1 + nelts * 2;
1524 tree t1, t2;
1525
1526 t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in1]);
1527 t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in2]);
1528
1529 if (t1 == NULL_TREE || t2 == NULL_TREE)
1530 return NULL_TREE;
1531 elts[out] = const_binop (MULT_EXPR, t1, t2);
1532 if (elts[out] == NULL_TREE || !CONSTANT_CLASS_P (elts[out]))
1533 return NULL_TREE;
1534 }
1535
1536 return build_vector (type, elts);
1537 }
1538
1539 default:;
1540 }
1541
1542 if (TREE_CODE_CLASS (code) != tcc_binary)
1543 return NULL_TREE;
1544
1545 /* Make sure type and arg0 have the same saturating flag. */
1546 gcc_checking_assert (TYPE_SATURATING (type)
1547 == TYPE_SATURATING (TREE_TYPE (arg1)));
1548
1549 return const_binop (code, arg1, arg2);
1550 }
1551
1552 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1553 Return zero if computing the constants is not possible. */
1554
1555 tree
1556 const_unop (enum tree_code code, tree type, tree arg0)
1557 {
1558 switch (code)
1559 {
1560 CASE_CONVERT:
1561 case FLOAT_EXPR:
1562 case FIX_TRUNC_EXPR:
1563 case FIXED_CONVERT_EXPR:
1564 return fold_convert_const (code, type, arg0);
1565
1566 case ADDR_SPACE_CONVERT_EXPR:
1567 if (integer_zerop (arg0))
1568 return fold_convert_const (code, type, arg0);
1569 break;
1570
1571 case VIEW_CONVERT_EXPR:
1572 return fold_view_convert_expr (type, arg0);
1573
1574 case NEGATE_EXPR:
1575 {
1576 /* Can't call fold_negate_const directly here as that doesn't
1577 handle all cases and we might not be able to negate some
1578 constants. */
1579 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1580 if (tem && CONSTANT_CLASS_P (tem))
1581 return tem;
1582 break;
1583 }
1584
1585 case ABS_EXPR:
1586 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1587 return fold_abs_const (arg0, type);
1588 break;
1589
1590 case CONJ_EXPR:
1591 if (TREE_CODE (arg0) == COMPLEX_CST)
1592 {
1593 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1594 TREE_TYPE (type));
1595 return build_complex (type, TREE_REALPART (arg0), ipart);
1596 }
1597 break;
1598
1599 case BIT_NOT_EXPR:
1600 if (TREE_CODE (arg0) == INTEGER_CST)
1601 return fold_not_const (arg0, type);
1602 /* Perform BIT_NOT_EXPR on each element individually. */
1603 else if (TREE_CODE (arg0) == VECTOR_CST)
1604 {
1605 tree *elements;
1606 tree elem;
1607 unsigned count = VECTOR_CST_NELTS (arg0), i;
1608
1609 elements = XALLOCAVEC (tree, count);
1610 for (i = 0; i < count; i++)
1611 {
1612 elem = VECTOR_CST_ELT (arg0, i);
1613 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1614 if (elem == NULL_TREE)
1615 break;
1616 elements[i] = elem;
1617 }
1618 if (i == count)
1619 return build_vector (type, elements);
1620 }
1621 break;
1622
1623 case TRUTH_NOT_EXPR:
1624 if (TREE_CODE (arg0) == INTEGER_CST)
1625 return constant_boolean_node (integer_zerop (arg0), type);
1626 break;
1627
1628 case REALPART_EXPR:
1629 if (TREE_CODE (arg0) == COMPLEX_CST)
1630 return fold_convert (type, TREE_REALPART (arg0));
1631 break;
1632
1633 case IMAGPART_EXPR:
1634 if (TREE_CODE (arg0) == COMPLEX_CST)
1635 return fold_convert (type, TREE_IMAGPART (arg0));
1636 break;
1637
1638 case VEC_UNPACK_LO_EXPR:
1639 case VEC_UNPACK_HI_EXPR:
1640 case VEC_UNPACK_FLOAT_LO_EXPR:
1641 case VEC_UNPACK_FLOAT_HI_EXPR:
1642 {
1643 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1644 tree *elts;
1645 enum tree_code subcode;
1646
1647 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts * 2);
1648 if (TREE_CODE (arg0) != VECTOR_CST)
1649 return NULL_TREE;
1650
1651 elts = XALLOCAVEC (tree, nelts * 2);
1652 if (!vec_cst_ctor_to_array (arg0, elts))
1653 return NULL_TREE;
1654
1655 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1656 || code == VEC_UNPACK_FLOAT_LO_EXPR))
1657 elts += nelts;
1658
1659 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1660 subcode = NOP_EXPR;
1661 else
1662 subcode = FLOAT_EXPR;
1663
1664 for (i = 0; i < nelts; i++)
1665 {
1666 elts[i] = fold_convert_const (subcode, TREE_TYPE (type), elts[i]);
1667 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1668 return NULL_TREE;
1669 }
1670
1671 return build_vector (type, elts);
1672 }
1673
1674 case REDUC_MIN_EXPR:
1675 case REDUC_MAX_EXPR:
1676 case REDUC_PLUS_EXPR:
1677 {
1678 unsigned int nelts, i;
1679 tree *elts;
1680 enum tree_code subcode;
1681
1682 if (TREE_CODE (arg0) != VECTOR_CST)
1683 return NULL_TREE;
1684 nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
1685
1686 elts = XALLOCAVEC (tree, nelts);
1687 if (!vec_cst_ctor_to_array (arg0, elts))
1688 return NULL_TREE;
1689
1690 switch (code)
1691 {
1692 case REDUC_MIN_EXPR: subcode = MIN_EXPR; break;
1693 case REDUC_MAX_EXPR: subcode = MAX_EXPR; break;
1694 case REDUC_PLUS_EXPR: subcode = PLUS_EXPR; break;
1695 default: gcc_unreachable ();
1696 }
1697
1698 for (i = 1; i < nelts; i++)
1699 {
1700 elts[0] = const_binop (subcode, elts[0], elts[i]);
1701 if (elts[0] == NULL_TREE || !CONSTANT_CLASS_P (elts[0]))
1702 return NULL_TREE;
1703 }
1704
1705 return elts[0];
1706 }
1707
1708 default:
1709 break;
1710 }
1711
1712 return NULL_TREE;
1713 }
1714
1715 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1716 indicates which particular sizetype to create. */
1717
1718 tree
1719 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1720 {
1721 return build_int_cst (sizetype_tab[(int) kind], number);
1722 }
1723 \f
1724 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1725 is a tree code. The type of the result is taken from the operands.
1726 Both must be equivalent integer types, ala int_binop_types_match_p.
1727 If the operands are constant, so is the result. */
1728
1729 tree
1730 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1731 {
1732 tree type = TREE_TYPE (arg0);
1733
1734 if (arg0 == error_mark_node || arg1 == error_mark_node)
1735 return error_mark_node;
1736
1737 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1738 TREE_TYPE (arg1)));
1739
1740 /* Handle the special case of two integer constants faster. */
1741 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1742 {
1743 /* And some specific cases even faster than that. */
1744 if (code == PLUS_EXPR)
1745 {
1746 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1747 return arg1;
1748 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1749 return arg0;
1750 }
1751 else if (code == MINUS_EXPR)
1752 {
1753 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1754 return arg0;
1755 }
1756 else if (code == MULT_EXPR)
1757 {
1758 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1759 return arg1;
1760 }
1761
1762 /* Handle general case of two integer constants. For sizetype
1763 constant calculations we always want to know about overflow,
1764 even in the unsigned case. */
1765 return int_const_binop_1 (code, arg0, arg1, -1);
1766 }
1767
1768 return fold_build2_loc (loc, code, type, arg0, arg1);
1769 }
1770
1771 /* Given two values, either both of sizetype or both of bitsizetype,
1772 compute the difference between the two values. Return the value
1773 in signed type corresponding to the type of the operands. */
1774
1775 tree
1776 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1777 {
1778 tree type = TREE_TYPE (arg0);
1779 tree ctype;
1780
1781 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1782 TREE_TYPE (arg1)));
1783
1784 /* If the type is already signed, just do the simple thing. */
1785 if (!TYPE_UNSIGNED (type))
1786 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1787
1788 if (type == sizetype)
1789 ctype = ssizetype;
1790 else if (type == bitsizetype)
1791 ctype = sbitsizetype;
1792 else
1793 ctype = signed_type_for (type);
1794
1795 /* If either operand is not a constant, do the conversions to the signed
1796 type and subtract. The hardware will do the right thing with any
1797 overflow in the subtraction. */
1798 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1799 return size_binop_loc (loc, MINUS_EXPR,
1800 fold_convert_loc (loc, ctype, arg0),
1801 fold_convert_loc (loc, ctype, arg1));
1802
1803 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1804 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1805 overflow) and negate (which can't either). Special-case a result
1806 of zero while we're here. */
1807 if (tree_int_cst_equal (arg0, arg1))
1808 return build_int_cst (ctype, 0);
1809 else if (tree_int_cst_lt (arg1, arg0))
1810 return fold_convert_loc (loc, ctype,
1811 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1812 else
1813 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1814 fold_convert_loc (loc, ctype,
1815 size_binop_loc (loc,
1816 MINUS_EXPR,
1817 arg1, arg0)));
1818 }
1819 \f
1820 /* A subroutine of fold_convert_const handling conversions of an
1821 INTEGER_CST to another integer type. */
1822
1823 static tree
1824 fold_convert_const_int_from_int (tree type, const_tree arg1)
1825 {
1826 /* Given an integer constant, make new constant with new type,
1827 appropriately sign-extended or truncated. Use widest_int
1828 so that any extension is done according ARG1's type. */
1829 return force_fit_type (type, wi::to_widest (arg1),
1830 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1831 TREE_OVERFLOW (arg1));
1832 }
1833
1834 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1835 to an integer type. */
1836
1837 static tree
1838 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1839 {
1840 bool overflow = false;
1841 tree t;
1842
1843 /* The following code implements the floating point to integer
1844 conversion rules required by the Java Language Specification,
1845 that IEEE NaNs are mapped to zero and values that overflow
1846 the target precision saturate, i.e. values greater than
1847 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1848 are mapped to INT_MIN. These semantics are allowed by the
1849 C and C++ standards that simply state that the behavior of
1850 FP-to-integer conversion is unspecified upon overflow. */
1851
1852 wide_int val;
1853 REAL_VALUE_TYPE r;
1854 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1855
1856 switch (code)
1857 {
1858 case FIX_TRUNC_EXPR:
1859 real_trunc (&r, VOIDmode, &x);
1860 break;
1861
1862 default:
1863 gcc_unreachable ();
1864 }
1865
1866 /* If R is NaN, return zero and show we have an overflow. */
1867 if (REAL_VALUE_ISNAN (r))
1868 {
1869 overflow = true;
1870 val = wi::zero (TYPE_PRECISION (type));
1871 }
1872
1873 /* See if R is less than the lower bound or greater than the
1874 upper bound. */
1875
1876 if (! overflow)
1877 {
1878 tree lt = TYPE_MIN_VALUE (type);
1879 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1880 if (REAL_VALUES_LESS (r, l))
1881 {
1882 overflow = true;
1883 val = lt;
1884 }
1885 }
1886
1887 if (! overflow)
1888 {
1889 tree ut = TYPE_MAX_VALUE (type);
1890 if (ut)
1891 {
1892 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1893 if (REAL_VALUES_LESS (u, r))
1894 {
1895 overflow = true;
1896 val = ut;
1897 }
1898 }
1899 }
1900
1901 if (! overflow)
1902 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1903
1904 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1905 return t;
1906 }
1907
1908 /* A subroutine of fold_convert_const handling conversions of a
1909 FIXED_CST to an integer type. */
1910
1911 static tree
1912 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1913 {
1914 tree t;
1915 double_int temp, temp_trunc;
1916 unsigned int mode;
1917
1918 /* Right shift FIXED_CST to temp by fbit. */
1919 temp = TREE_FIXED_CST (arg1).data;
1920 mode = TREE_FIXED_CST (arg1).mode;
1921 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1922 {
1923 temp = temp.rshift (GET_MODE_FBIT (mode),
1924 HOST_BITS_PER_DOUBLE_INT,
1925 SIGNED_FIXED_POINT_MODE_P (mode));
1926
1927 /* Left shift temp to temp_trunc by fbit. */
1928 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1929 HOST_BITS_PER_DOUBLE_INT,
1930 SIGNED_FIXED_POINT_MODE_P (mode));
1931 }
1932 else
1933 {
1934 temp = double_int_zero;
1935 temp_trunc = double_int_zero;
1936 }
1937
1938 /* If FIXED_CST is negative, we need to round the value toward 0.
1939 By checking if the fractional bits are not zero to add 1 to temp. */
1940 if (SIGNED_FIXED_POINT_MODE_P (mode)
1941 && temp_trunc.is_negative ()
1942 && TREE_FIXED_CST (arg1).data != temp_trunc)
1943 temp += double_int_one;
1944
1945 /* Given a fixed-point constant, make new constant with new type,
1946 appropriately sign-extended or truncated. */
1947 t = force_fit_type (type, temp, -1,
1948 (temp.is_negative ()
1949 && (TYPE_UNSIGNED (type)
1950 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1951 | TREE_OVERFLOW (arg1));
1952
1953 return t;
1954 }
1955
1956 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1957 to another floating point type. */
1958
1959 static tree
1960 fold_convert_const_real_from_real (tree type, const_tree arg1)
1961 {
1962 REAL_VALUE_TYPE value;
1963 tree t;
1964
1965 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1966 t = build_real (type, value);
1967
1968 /* If converting an infinity or NAN to a representation that doesn't
1969 have one, set the overflow bit so that we can produce some kind of
1970 error message at the appropriate point if necessary. It's not the
1971 most user-friendly message, but it's better than nothing. */
1972 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
1973 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
1974 TREE_OVERFLOW (t) = 1;
1975 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
1976 && !MODE_HAS_NANS (TYPE_MODE (type)))
1977 TREE_OVERFLOW (t) = 1;
1978 /* Regular overflow, conversion produced an infinity in a mode that
1979 can't represent them. */
1980 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
1981 && REAL_VALUE_ISINF (value)
1982 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
1983 TREE_OVERFLOW (t) = 1;
1984 else
1985 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1986 return t;
1987 }
1988
1989 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
1990 to a floating point type. */
1991
1992 static tree
1993 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
1994 {
1995 REAL_VALUE_TYPE value;
1996 tree t;
1997
1998 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
1999 t = build_real (type, value);
2000
2001 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2002 return t;
2003 }
2004
2005 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2006 to another fixed-point type. */
2007
2008 static tree
2009 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2010 {
2011 FIXED_VALUE_TYPE value;
2012 tree t;
2013 bool overflow_p;
2014
2015 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2016 TYPE_SATURATING (type));
2017 t = build_fixed (type, value);
2018
2019 /* Propagate overflow flags. */
2020 if (overflow_p | TREE_OVERFLOW (arg1))
2021 TREE_OVERFLOW (t) = 1;
2022 return t;
2023 }
2024
2025 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2026 to a fixed-point type. */
2027
2028 static tree
2029 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2030 {
2031 FIXED_VALUE_TYPE value;
2032 tree t;
2033 bool overflow_p;
2034 double_int di;
2035
2036 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2037
2038 di.low = TREE_INT_CST_ELT (arg1, 0);
2039 if (TREE_INT_CST_NUNITS (arg1) == 1)
2040 di.high = (HOST_WIDE_INT) di.low < 0 ? (HOST_WIDE_INT) -1 : 0;
2041 else
2042 di.high = TREE_INT_CST_ELT (arg1, 1);
2043
2044 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type), di,
2045 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2046 TYPE_SATURATING (type));
2047 t = build_fixed (type, value);
2048
2049 /* Propagate overflow flags. */
2050 if (overflow_p | TREE_OVERFLOW (arg1))
2051 TREE_OVERFLOW (t) = 1;
2052 return t;
2053 }
2054
2055 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2056 to a fixed-point type. */
2057
2058 static tree
2059 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2060 {
2061 FIXED_VALUE_TYPE value;
2062 tree t;
2063 bool overflow_p;
2064
2065 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2066 &TREE_REAL_CST (arg1),
2067 TYPE_SATURATING (type));
2068 t = build_fixed (type, value);
2069
2070 /* Propagate overflow flags. */
2071 if (overflow_p | TREE_OVERFLOW (arg1))
2072 TREE_OVERFLOW (t) = 1;
2073 return t;
2074 }
2075
2076 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2077 type TYPE. If no simplification can be done return NULL_TREE. */
2078
2079 static tree
2080 fold_convert_const (enum tree_code code, tree type, tree arg1)
2081 {
2082 if (TREE_TYPE (arg1) == type)
2083 return arg1;
2084
2085 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2086 || TREE_CODE (type) == OFFSET_TYPE)
2087 {
2088 if (TREE_CODE (arg1) == INTEGER_CST)
2089 return fold_convert_const_int_from_int (type, arg1);
2090 else if (TREE_CODE (arg1) == REAL_CST)
2091 return fold_convert_const_int_from_real (code, type, arg1);
2092 else if (TREE_CODE (arg1) == FIXED_CST)
2093 return fold_convert_const_int_from_fixed (type, arg1);
2094 }
2095 else if (TREE_CODE (type) == REAL_TYPE)
2096 {
2097 if (TREE_CODE (arg1) == INTEGER_CST)
2098 return build_real_from_int_cst (type, arg1);
2099 else if (TREE_CODE (arg1) == REAL_CST)
2100 return fold_convert_const_real_from_real (type, arg1);
2101 else if (TREE_CODE (arg1) == FIXED_CST)
2102 return fold_convert_const_real_from_fixed (type, arg1);
2103 }
2104 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2105 {
2106 if (TREE_CODE (arg1) == FIXED_CST)
2107 return fold_convert_const_fixed_from_fixed (type, arg1);
2108 else if (TREE_CODE (arg1) == INTEGER_CST)
2109 return fold_convert_const_fixed_from_int (type, arg1);
2110 else if (TREE_CODE (arg1) == REAL_CST)
2111 return fold_convert_const_fixed_from_real (type, arg1);
2112 }
2113 return NULL_TREE;
2114 }
2115
2116 /* Construct a vector of zero elements of vector type TYPE. */
2117
2118 static tree
2119 build_zero_vector (tree type)
2120 {
2121 tree t;
2122
2123 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2124 return build_vector_from_val (type, t);
2125 }
2126
2127 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2128
2129 bool
2130 fold_convertible_p (const_tree type, const_tree arg)
2131 {
2132 tree orig = TREE_TYPE (arg);
2133
2134 if (type == orig)
2135 return true;
2136
2137 if (TREE_CODE (arg) == ERROR_MARK
2138 || TREE_CODE (type) == ERROR_MARK
2139 || TREE_CODE (orig) == ERROR_MARK)
2140 return false;
2141
2142 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2143 return true;
2144
2145 switch (TREE_CODE (type))
2146 {
2147 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2148 case POINTER_TYPE: case REFERENCE_TYPE:
2149 case OFFSET_TYPE:
2150 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2151 || TREE_CODE (orig) == OFFSET_TYPE)
2152 return true;
2153 return (TREE_CODE (orig) == VECTOR_TYPE
2154 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2155
2156 case REAL_TYPE:
2157 case FIXED_POINT_TYPE:
2158 case COMPLEX_TYPE:
2159 case VECTOR_TYPE:
2160 case VOID_TYPE:
2161 return TREE_CODE (type) == TREE_CODE (orig);
2162
2163 default:
2164 return false;
2165 }
2166 }
2167
2168 /* Convert expression ARG to type TYPE. Used by the middle-end for
2169 simple conversions in preference to calling the front-end's convert. */
2170
2171 tree
2172 fold_convert_loc (location_t loc, tree type, tree arg)
2173 {
2174 tree orig = TREE_TYPE (arg);
2175 tree tem;
2176
2177 if (type == orig)
2178 return arg;
2179
2180 if (TREE_CODE (arg) == ERROR_MARK
2181 || TREE_CODE (type) == ERROR_MARK
2182 || TREE_CODE (orig) == ERROR_MARK)
2183 return error_mark_node;
2184
2185 switch (TREE_CODE (type))
2186 {
2187 case POINTER_TYPE:
2188 case REFERENCE_TYPE:
2189 /* Handle conversions between pointers to different address spaces. */
2190 if (POINTER_TYPE_P (orig)
2191 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2192 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2193 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2194 /* fall through */
2195
2196 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2197 case OFFSET_TYPE:
2198 if (TREE_CODE (arg) == INTEGER_CST)
2199 {
2200 tem = fold_convert_const (NOP_EXPR, type, arg);
2201 if (tem != NULL_TREE)
2202 return tem;
2203 }
2204 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2205 || TREE_CODE (orig) == OFFSET_TYPE)
2206 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2207 if (TREE_CODE (orig) == COMPLEX_TYPE)
2208 return fold_convert_loc (loc, type,
2209 fold_build1_loc (loc, REALPART_EXPR,
2210 TREE_TYPE (orig), arg));
2211 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2212 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2213 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2214
2215 case REAL_TYPE:
2216 if (TREE_CODE (arg) == INTEGER_CST)
2217 {
2218 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2219 if (tem != NULL_TREE)
2220 return tem;
2221 }
2222 else if (TREE_CODE (arg) == REAL_CST)
2223 {
2224 tem = fold_convert_const (NOP_EXPR, type, arg);
2225 if (tem != NULL_TREE)
2226 return tem;
2227 }
2228 else if (TREE_CODE (arg) == FIXED_CST)
2229 {
2230 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2231 if (tem != NULL_TREE)
2232 return tem;
2233 }
2234
2235 switch (TREE_CODE (orig))
2236 {
2237 case INTEGER_TYPE:
2238 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2239 case POINTER_TYPE: case REFERENCE_TYPE:
2240 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2241
2242 case REAL_TYPE:
2243 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2244
2245 case FIXED_POINT_TYPE:
2246 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2247
2248 case COMPLEX_TYPE:
2249 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2250 return fold_convert_loc (loc, type, tem);
2251
2252 default:
2253 gcc_unreachable ();
2254 }
2255
2256 case FIXED_POINT_TYPE:
2257 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2258 || TREE_CODE (arg) == REAL_CST)
2259 {
2260 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2261 if (tem != NULL_TREE)
2262 goto fold_convert_exit;
2263 }
2264
2265 switch (TREE_CODE (orig))
2266 {
2267 case FIXED_POINT_TYPE:
2268 case INTEGER_TYPE:
2269 case ENUMERAL_TYPE:
2270 case BOOLEAN_TYPE:
2271 case REAL_TYPE:
2272 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2273
2274 case COMPLEX_TYPE:
2275 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2276 return fold_convert_loc (loc, type, tem);
2277
2278 default:
2279 gcc_unreachable ();
2280 }
2281
2282 case COMPLEX_TYPE:
2283 switch (TREE_CODE (orig))
2284 {
2285 case INTEGER_TYPE:
2286 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2287 case POINTER_TYPE: case REFERENCE_TYPE:
2288 case REAL_TYPE:
2289 case FIXED_POINT_TYPE:
2290 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2291 fold_convert_loc (loc, TREE_TYPE (type), arg),
2292 fold_convert_loc (loc, TREE_TYPE (type),
2293 integer_zero_node));
2294 case COMPLEX_TYPE:
2295 {
2296 tree rpart, ipart;
2297
2298 if (TREE_CODE (arg) == COMPLEX_EXPR)
2299 {
2300 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2301 TREE_OPERAND (arg, 0));
2302 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2303 TREE_OPERAND (arg, 1));
2304 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2305 }
2306
2307 arg = save_expr (arg);
2308 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2309 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2310 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2311 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2312 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2313 }
2314
2315 default:
2316 gcc_unreachable ();
2317 }
2318
2319 case VECTOR_TYPE:
2320 if (integer_zerop (arg))
2321 return build_zero_vector (type);
2322 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2323 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2324 || TREE_CODE (orig) == VECTOR_TYPE);
2325 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2326
2327 case VOID_TYPE:
2328 tem = fold_ignored_result (arg);
2329 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2330
2331 default:
2332 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2333 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2334 gcc_unreachable ();
2335 }
2336 fold_convert_exit:
2337 protected_set_expr_location_unshare (tem, loc);
2338 return tem;
2339 }
2340 \f
2341 /* Return false if expr can be assumed not to be an lvalue, true
2342 otherwise. */
2343
2344 static bool
2345 maybe_lvalue_p (const_tree x)
2346 {
2347 /* We only need to wrap lvalue tree codes. */
2348 switch (TREE_CODE (x))
2349 {
2350 case VAR_DECL:
2351 case PARM_DECL:
2352 case RESULT_DECL:
2353 case LABEL_DECL:
2354 case FUNCTION_DECL:
2355 case SSA_NAME:
2356
2357 case COMPONENT_REF:
2358 case MEM_REF:
2359 case INDIRECT_REF:
2360 case ARRAY_REF:
2361 case ARRAY_RANGE_REF:
2362 case BIT_FIELD_REF:
2363 case OBJ_TYPE_REF:
2364
2365 case REALPART_EXPR:
2366 case IMAGPART_EXPR:
2367 case PREINCREMENT_EXPR:
2368 case PREDECREMENT_EXPR:
2369 case SAVE_EXPR:
2370 case TRY_CATCH_EXPR:
2371 case WITH_CLEANUP_EXPR:
2372 case COMPOUND_EXPR:
2373 case MODIFY_EXPR:
2374 case TARGET_EXPR:
2375 case COND_EXPR:
2376 case BIND_EXPR:
2377 break;
2378
2379 default:
2380 /* Assume the worst for front-end tree codes. */
2381 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2382 break;
2383 return false;
2384 }
2385
2386 return true;
2387 }
2388
2389 /* Return an expr equal to X but certainly not valid as an lvalue. */
2390
2391 tree
2392 non_lvalue_loc (location_t loc, tree x)
2393 {
2394 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2395 us. */
2396 if (in_gimple_form)
2397 return x;
2398
2399 if (! maybe_lvalue_p (x))
2400 return x;
2401 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2402 }
2403
2404 /* When pedantic, return an expr equal to X but certainly not valid as a
2405 pedantic lvalue. Otherwise, return X. */
2406
2407 static tree
2408 pedantic_non_lvalue_loc (location_t loc, tree x)
2409 {
2410 return protected_set_expr_location_unshare (x, loc);
2411 }
2412 \f
2413 /* Given a tree comparison code, return the code that is the logical inverse.
2414 It is generally not safe to do this for floating-point comparisons, except
2415 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2416 ERROR_MARK in this case. */
2417
2418 enum tree_code
2419 invert_tree_comparison (enum tree_code code, bool honor_nans)
2420 {
2421 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2422 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2423 return ERROR_MARK;
2424
2425 switch (code)
2426 {
2427 case EQ_EXPR:
2428 return NE_EXPR;
2429 case NE_EXPR:
2430 return EQ_EXPR;
2431 case GT_EXPR:
2432 return honor_nans ? UNLE_EXPR : LE_EXPR;
2433 case GE_EXPR:
2434 return honor_nans ? UNLT_EXPR : LT_EXPR;
2435 case LT_EXPR:
2436 return honor_nans ? UNGE_EXPR : GE_EXPR;
2437 case LE_EXPR:
2438 return honor_nans ? UNGT_EXPR : GT_EXPR;
2439 case LTGT_EXPR:
2440 return UNEQ_EXPR;
2441 case UNEQ_EXPR:
2442 return LTGT_EXPR;
2443 case UNGT_EXPR:
2444 return LE_EXPR;
2445 case UNGE_EXPR:
2446 return LT_EXPR;
2447 case UNLT_EXPR:
2448 return GE_EXPR;
2449 case UNLE_EXPR:
2450 return GT_EXPR;
2451 case ORDERED_EXPR:
2452 return UNORDERED_EXPR;
2453 case UNORDERED_EXPR:
2454 return ORDERED_EXPR;
2455 default:
2456 gcc_unreachable ();
2457 }
2458 }
2459
2460 /* Similar, but return the comparison that results if the operands are
2461 swapped. This is safe for floating-point. */
2462
2463 enum tree_code
2464 swap_tree_comparison (enum tree_code code)
2465 {
2466 switch (code)
2467 {
2468 case EQ_EXPR:
2469 case NE_EXPR:
2470 case ORDERED_EXPR:
2471 case UNORDERED_EXPR:
2472 case LTGT_EXPR:
2473 case UNEQ_EXPR:
2474 return code;
2475 case GT_EXPR:
2476 return LT_EXPR;
2477 case GE_EXPR:
2478 return LE_EXPR;
2479 case LT_EXPR:
2480 return GT_EXPR;
2481 case LE_EXPR:
2482 return GE_EXPR;
2483 case UNGT_EXPR:
2484 return UNLT_EXPR;
2485 case UNGE_EXPR:
2486 return UNLE_EXPR;
2487 case UNLT_EXPR:
2488 return UNGT_EXPR;
2489 case UNLE_EXPR:
2490 return UNGE_EXPR;
2491 default:
2492 gcc_unreachable ();
2493 }
2494 }
2495
2496
2497 /* Convert a comparison tree code from an enum tree_code representation
2498 into a compcode bit-based encoding. This function is the inverse of
2499 compcode_to_comparison. */
2500
2501 static enum comparison_code
2502 comparison_to_compcode (enum tree_code code)
2503 {
2504 switch (code)
2505 {
2506 case LT_EXPR:
2507 return COMPCODE_LT;
2508 case EQ_EXPR:
2509 return COMPCODE_EQ;
2510 case LE_EXPR:
2511 return COMPCODE_LE;
2512 case GT_EXPR:
2513 return COMPCODE_GT;
2514 case NE_EXPR:
2515 return COMPCODE_NE;
2516 case GE_EXPR:
2517 return COMPCODE_GE;
2518 case ORDERED_EXPR:
2519 return COMPCODE_ORD;
2520 case UNORDERED_EXPR:
2521 return COMPCODE_UNORD;
2522 case UNLT_EXPR:
2523 return COMPCODE_UNLT;
2524 case UNEQ_EXPR:
2525 return COMPCODE_UNEQ;
2526 case UNLE_EXPR:
2527 return COMPCODE_UNLE;
2528 case UNGT_EXPR:
2529 return COMPCODE_UNGT;
2530 case LTGT_EXPR:
2531 return COMPCODE_LTGT;
2532 case UNGE_EXPR:
2533 return COMPCODE_UNGE;
2534 default:
2535 gcc_unreachable ();
2536 }
2537 }
2538
2539 /* Convert a compcode bit-based encoding of a comparison operator back
2540 to GCC's enum tree_code representation. This function is the
2541 inverse of comparison_to_compcode. */
2542
2543 static enum tree_code
2544 compcode_to_comparison (enum comparison_code code)
2545 {
2546 switch (code)
2547 {
2548 case COMPCODE_LT:
2549 return LT_EXPR;
2550 case COMPCODE_EQ:
2551 return EQ_EXPR;
2552 case COMPCODE_LE:
2553 return LE_EXPR;
2554 case COMPCODE_GT:
2555 return GT_EXPR;
2556 case COMPCODE_NE:
2557 return NE_EXPR;
2558 case COMPCODE_GE:
2559 return GE_EXPR;
2560 case COMPCODE_ORD:
2561 return ORDERED_EXPR;
2562 case COMPCODE_UNORD:
2563 return UNORDERED_EXPR;
2564 case COMPCODE_UNLT:
2565 return UNLT_EXPR;
2566 case COMPCODE_UNEQ:
2567 return UNEQ_EXPR;
2568 case COMPCODE_UNLE:
2569 return UNLE_EXPR;
2570 case COMPCODE_UNGT:
2571 return UNGT_EXPR;
2572 case COMPCODE_LTGT:
2573 return LTGT_EXPR;
2574 case COMPCODE_UNGE:
2575 return UNGE_EXPR;
2576 default:
2577 gcc_unreachable ();
2578 }
2579 }
2580
2581 /* Return a tree for the comparison which is the combination of
2582 doing the AND or OR (depending on CODE) of the two operations LCODE
2583 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2584 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2585 if this makes the transformation invalid. */
2586
2587 tree
2588 combine_comparisons (location_t loc,
2589 enum tree_code code, enum tree_code lcode,
2590 enum tree_code rcode, tree truth_type,
2591 tree ll_arg, tree lr_arg)
2592 {
2593 bool honor_nans = HONOR_NANS (ll_arg);
2594 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2595 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2596 int compcode;
2597
2598 switch (code)
2599 {
2600 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2601 compcode = lcompcode & rcompcode;
2602 break;
2603
2604 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2605 compcode = lcompcode | rcompcode;
2606 break;
2607
2608 default:
2609 return NULL_TREE;
2610 }
2611
2612 if (!honor_nans)
2613 {
2614 /* Eliminate unordered comparisons, as well as LTGT and ORD
2615 which are not used unless the mode has NaNs. */
2616 compcode &= ~COMPCODE_UNORD;
2617 if (compcode == COMPCODE_LTGT)
2618 compcode = COMPCODE_NE;
2619 else if (compcode == COMPCODE_ORD)
2620 compcode = COMPCODE_TRUE;
2621 }
2622 else if (flag_trapping_math)
2623 {
2624 /* Check that the original operation and the optimized ones will trap
2625 under the same condition. */
2626 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2627 && (lcompcode != COMPCODE_EQ)
2628 && (lcompcode != COMPCODE_ORD);
2629 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2630 && (rcompcode != COMPCODE_EQ)
2631 && (rcompcode != COMPCODE_ORD);
2632 bool trap = (compcode & COMPCODE_UNORD) == 0
2633 && (compcode != COMPCODE_EQ)
2634 && (compcode != COMPCODE_ORD);
2635
2636 /* In a short-circuited boolean expression the LHS might be
2637 such that the RHS, if evaluated, will never trap. For
2638 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2639 if neither x nor y is NaN. (This is a mixed blessing: for
2640 example, the expression above will never trap, hence
2641 optimizing it to x < y would be invalid). */
2642 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2643 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2644 rtrap = false;
2645
2646 /* If the comparison was short-circuited, and only the RHS
2647 trapped, we may now generate a spurious trap. */
2648 if (rtrap && !ltrap
2649 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2650 return NULL_TREE;
2651
2652 /* If we changed the conditions that cause a trap, we lose. */
2653 if ((ltrap || rtrap) != trap)
2654 return NULL_TREE;
2655 }
2656
2657 if (compcode == COMPCODE_TRUE)
2658 return constant_boolean_node (true, truth_type);
2659 else if (compcode == COMPCODE_FALSE)
2660 return constant_boolean_node (false, truth_type);
2661 else
2662 {
2663 enum tree_code tcode;
2664
2665 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2666 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2667 }
2668 }
2669 \f
2670 /* Return nonzero if two operands (typically of the same tree node)
2671 are necessarily equal. If either argument has side-effects this
2672 function returns zero. FLAGS modifies behavior as follows:
2673
2674 If OEP_ONLY_CONST is set, only return nonzero for constants.
2675 This function tests whether the operands are indistinguishable;
2676 it does not test whether they are equal using C's == operation.
2677 The distinction is important for IEEE floating point, because
2678 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2679 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2680
2681 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2682 even though it may hold multiple values during a function.
2683 This is because a GCC tree node guarantees that nothing else is
2684 executed between the evaluation of its "operands" (which may often
2685 be evaluated in arbitrary order). Hence if the operands themselves
2686 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2687 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2688 unset means assuming isochronic (or instantaneous) tree equivalence.
2689 Unless comparing arbitrary expression trees, such as from different
2690 statements, this flag can usually be left unset.
2691
2692 If OEP_PURE_SAME is set, then pure functions with identical arguments
2693 are considered the same. It is used when the caller has other ways
2694 to ensure that global memory is unchanged in between. */
2695
2696 int
2697 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2698 {
2699 /* If either is ERROR_MARK, they aren't equal. */
2700 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2701 || TREE_TYPE (arg0) == error_mark_node
2702 || TREE_TYPE (arg1) == error_mark_node)
2703 return 0;
2704
2705 /* Similar, if either does not have a type (like a released SSA name),
2706 they aren't equal. */
2707 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2708 return 0;
2709
2710 /* Check equality of integer constants before bailing out due to
2711 precision differences. */
2712 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2713 return tree_int_cst_equal (arg0, arg1);
2714
2715 /* If both types don't have the same signedness, then we can't consider
2716 them equal. We must check this before the STRIP_NOPS calls
2717 because they may change the signedness of the arguments. As pointers
2718 strictly don't have a signedness, require either two pointers or
2719 two non-pointers as well. */
2720 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2721 || POINTER_TYPE_P (TREE_TYPE (arg0)) != POINTER_TYPE_P (TREE_TYPE (arg1)))
2722 return 0;
2723
2724 /* We cannot consider pointers to different address space equal. */
2725 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && POINTER_TYPE_P (TREE_TYPE (arg1))
2726 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2727 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2728 return 0;
2729
2730 /* If both types don't have the same precision, then it is not safe
2731 to strip NOPs. */
2732 if (element_precision (TREE_TYPE (arg0))
2733 != element_precision (TREE_TYPE (arg1)))
2734 return 0;
2735
2736 STRIP_NOPS (arg0);
2737 STRIP_NOPS (arg1);
2738
2739 /* In case both args are comparisons but with different comparison
2740 code, try to swap the comparison operands of one arg to produce
2741 a match and compare that variant. */
2742 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2743 && COMPARISON_CLASS_P (arg0)
2744 && COMPARISON_CLASS_P (arg1))
2745 {
2746 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2747
2748 if (TREE_CODE (arg0) == swap_code)
2749 return operand_equal_p (TREE_OPERAND (arg0, 0),
2750 TREE_OPERAND (arg1, 1), flags)
2751 && operand_equal_p (TREE_OPERAND (arg0, 1),
2752 TREE_OPERAND (arg1, 0), flags);
2753 }
2754
2755 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2756 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2757 && !(CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1)))
2758 return 0;
2759
2760 /* This is needed for conversions and for COMPONENT_REF.
2761 Might as well play it safe and always test this. */
2762 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2763 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2764 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2765 return 0;
2766
2767 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2768 We don't care about side effects in that case because the SAVE_EXPR
2769 takes care of that for us. In all other cases, two expressions are
2770 equal if they have no side effects. If we have two identical
2771 expressions with side effects that should be treated the same due
2772 to the only side effects being identical SAVE_EXPR's, that will
2773 be detected in the recursive calls below.
2774 If we are taking an invariant address of two identical objects
2775 they are necessarily equal as well. */
2776 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2777 && (TREE_CODE (arg0) == SAVE_EXPR
2778 || (flags & OEP_CONSTANT_ADDRESS_OF)
2779 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2780 return 1;
2781
2782 /* Next handle constant cases, those for which we can return 1 even
2783 if ONLY_CONST is set. */
2784 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2785 switch (TREE_CODE (arg0))
2786 {
2787 case INTEGER_CST:
2788 return tree_int_cst_equal (arg0, arg1);
2789
2790 case FIXED_CST:
2791 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2792 TREE_FIXED_CST (arg1));
2793
2794 case REAL_CST:
2795 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2796 TREE_REAL_CST (arg1)))
2797 return 1;
2798
2799
2800 if (!HONOR_SIGNED_ZEROS (arg0))
2801 {
2802 /* If we do not distinguish between signed and unsigned zero,
2803 consider them equal. */
2804 if (real_zerop (arg0) && real_zerop (arg1))
2805 return 1;
2806 }
2807 return 0;
2808
2809 case VECTOR_CST:
2810 {
2811 unsigned i;
2812
2813 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2814 return 0;
2815
2816 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2817 {
2818 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2819 VECTOR_CST_ELT (arg1, i), flags))
2820 return 0;
2821 }
2822 return 1;
2823 }
2824
2825 case COMPLEX_CST:
2826 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2827 flags)
2828 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2829 flags));
2830
2831 case STRING_CST:
2832 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2833 && ! memcmp (TREE_STRING_POINTER (arg0),
2834 TREE_STRING_POINTER (arg1),
2835 TREE_STRING_LENGTH (arg0)));
2836
2837 case ADDR_EXPR:
2838 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2839 TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1)
2840 ? OEP_CONSTANT_ADDRESS_OF | OEP_ADDRESS_OF : 0);
2841 default:
2842 break;
2843 }
2844
2845 if (flags & OEP_ONLY_CONST)
2846 return 0;
2847
2848 /* Define macros to test an operand from arg0 and arg1 for equality and a
2849 variant that allows null and views null as being different from any
2850 non-null value. In the latter case, if either is null, the both
2851 must be; otherwise, do the normal comparison. */
2852 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2853 TREE_OPERAND (arg1, N), flags)
2854
2855 #define OP_SAME_WITH_NULL(N) \
2856 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2857 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2858
2859 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2860 {
2861 case tcc_unary:
2862 /* Two conversions are equal only if signedness and modes match. */
2863 switch (TREE_CODE (arg0))
2864 {
2865 CASE_CONVERT:
2866 case FIX_TRUNC_EXPR:
2867 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2868 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2869 return 0;
2870 break;
2871 default:
2872 break;
2873 }
2874
2875 return OP_SAME (0);
2876
2877
2878 case tcc_comparison:
2879 case tcc_binary:
2880 if (OP_SAME (0) && OP_SAME (1))
2881 return 1;
2882
2883 /* For commutative ops, allow the other order. */
2884 return (commutative_tree_code (TREE_CODE (arg0))
2885 && operand_equal_p (TREE_OPERAND (arg0, 0),
2886 TREE_OPERAND (arg1, 1), flags)
2887 && operand_equal_p (TREE_OPERAND (arg0, 1),
2888 TREE_OPERAND (arg1, 0), flags));
2889
2890 case tcc_reference:
2891 /* If either of the pointer (or reference) expressions we are
2892 dereferencing contain a side effect, these cannot be equal,
2893 but their addresses can be. */
2894 if ((flags & OEP_CONSTANT_ADDRESS_OF) == 0
2895 && (TREE_SIDE_EFFECTS (arg0)
2896 || TREE_SIDE_EFFECTS (arg1)))
2897 return 0;
2898
2899 switch (TREE_CODE (arg0))
2900 {
2901 case INDIRECT_REF:
2902 if (!(flags & OEP_ADDRESS_OF)
2903 && (TYPE_ALIGN (TREE_TYPE (arg0))
2904 != TYPE_ALIGN (TREE_TYPE (arg1))))
2905 return 0;
2906 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2907 return OP_SAME (0);
2908
2909 case REALPART_EXPR:
2910 case IMAGPART_EXPR:
2911 return OP_SAME (0);
2912
2913 case TARGET_MEM_REF:
2914 case MEM_REF:
2915 /* Require equal access sizes, and similar pointer types.
2916 We can have incomplete types for array references of
2917 variable-sized arrays from the Fortran frontend
2918 though. Also verify the types are compatible. */
2919 if (!((TYPE_SIZE (TREE_TYPE (arg0)) == TYPE_SIZE (TREE_TYPE (arg1))
2920 || (TYPE_SIZE (TREE_TYPE (arg0))
2921 && TYPE_SIZE (TREE_TYPE (arg1))
2922 && operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
2923 TYPE_SIZE (TREE_TYPE (arg1)), flags)))
2924 && types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1))
2925 && ((flags & OEP_ADDRESS_OF)
2926 || (alias_ptr_types_compatible_p
2927 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
2928 TREE_TYPE (TREE_OPERAND (arg1, 1)))
2929 && (MR_DEPENDENCE_CLIQUE (arg0)
2930 == MR_DEPENDENCE_CLIQUE (arg1))
2931 && (MR_DEPENDENCE_BASE (arg0)
2932 == MR_DEPENDENCE_BASE (arg1))
2933 && (TYPE_ALIGN (TREE_TYPE (arg0))
2934 == TYPE_ALIGN (TREE_TYPE (arg1)))))))
2935 return 0;
2936 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2937 return (OP_SAME (0) && OP_SAME (1)
2938 /* TARGET_MEM_REF require equal extra operands. */
2939 && (TREE_CODE (arg0) != TARGET_MEM_REF
2940 || (OP_SAME_WITH_NULL (2)
2941 && OP_SAME_WITH_NULL (3)
2942 && OP_SAME_WITH_NULL (4))));
2943
2944 case ARRAY_REF:
2945 case ARRAY_RANGE_REF:
2946 /* Operands 2 and 3 may be null.
2947 Compare the array index by value if it is constant first as we
2948 may have different types but same value here. */
2949 if (!OP_SAME (0))
2950 return 0;
2951 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2952 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
2953 TREE_OPERAND (arg1, 1))
2954 || OP_SAME (1))
2955 && OP_SAME_WITH_NULL (2)
2956 && OP_SAME_WITH_NULL (3));
2957
2958 case COMPONENT_REF:
2959 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
2960 may be NULL when we're called to compare MEM_EXPRs. */
2961 if (!OP_SAME_WITH_NULL (0)
2962 || !OP_SAME (1))
2963 return 0;
2964 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2965 return OP_SAME_WITH_NULL (2);
2966
2967 case BIT_FIELD_REF:
2968 if (!OP_SAME (0))
2969 return 0;
2970 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2971 return OP_SAME (1) && OP_SAME (2);
2972
2973 default:
2974 return 0;
2975 }
2976
2977 case tcc_expression:
2978 switch (TREE_CODE (arg0))
2979 {
2980 case ADDR_EXPR:
2981 return operand_equal_p (TREE_OPERAND (arg0, 0),
2982 TREE_OPERAND (arg1, 0),
2983 flags | OEP_ADDRESS_OF);
2984
2985 case TRUTH_NOT_EXPR:
2986 return OP_SAME (0);
2987
2988 case TRUTH_ANDIF_EXPR:
2989 case TRUTH_ORIF_EXPR:
2990 return OP_SAME (0) && OP_SAME (1);
2991
2992 case FMA_EXPR:
2993 case WIDEN_MULT_PLUS_EXPR:
2994 case WIDEN_MULT_MINUS_EXPR:
2995 if (!OP_SAME (2))
2996 return 0;
2997 /* The multiplcation operands are commutative. */
2998 /* FALLTHRU */
2999
3000 case TRUTH_AND_EXPR:
3001 case TRUTH_OR_EXPR:
3002 case TRUTH_XOR_EXPR:
3003 if (OP_SAME (0) && OP_SAME (1))
3004 return 1;
3005
3006 /* Otherwise take into account this is a commutative operation. */
3007 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3008 TREE_OPERAND (arg1, 1), flags)
3009 && operand_equal_p (TREE_OPERAND (arg0, 1),
3010 TREE_OPERAND (arg1, 0), flags));
3011
3012 case COND_EXPR:
3013 case VEC_COND_EXPR:
3014 case DOT_PROD_EXPR:
3015 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3016
3017 default:
3018 return 0;
3019 }
3020
3021 case tcc_vl_exp:
3022 switch (TREE_CODE (arg0))
3023 {
3024 case CALL_EXPR:
3025 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3026 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3027 /* If not both CALL_EXPRs are either internal or normal function
3028 functions, then they are not equal. */
3029 return 0;
3030 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3031 {
3032 /* If the CALL_EXPRs call different internal functions, then they
3033 are not equal. */
3034 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3035 return 0;
3036 }
3037 else
3038 {
3039 /* If the CALL_EXPRs call different functions, then they are not
3040 equal. */
3041 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3042 flags))
3043 return 0;
3044 }
3045
3046 {
3047 unsigned int cef = call_expr_flags (arg0);
3048 if (flags & OEP_PURE_SAME)
3049 cef &= ECF_CONST | ECF_PURE;
3050 else
3051 cef &= ECF_CONST;
3052 if (!cef)
3053 return 0;
3054 }
3055
3056 /* Now see if all the arguments are the same. */
3057 {
3058 const_call_expr_arg_iterator iter0, iter1;
3059 const_tree a0, a1;
3060 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3061 a1 = first_const_call_expr_arg (arg1, &iter1);
3062 a0 && a1;
3063 a0 = next_const_call_expr_arg (&iter0),
3064 a1 = next_const_call_expr_arg (&iter1))
3065 if (! operand_equal_p (a0, a1, flags))
3066 return 0;
3067
3068 /* If we get here and both argument lists are exhausted
3069 then the CALL_EXPRs are equal. */
3070 return ! (a0 || a1);
3071 }
3072 default:
3073 return 0;
3074 }
3075
3076 case tcc_declaration:
3077 /* Consider __builtin_sqrt equal to sqrt. */
3078 return (TREE_CODE (arg0) == FUNCTION_DECL
3079 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3080 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3081 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3082
3083 default:
3084 return 0;
3085 }
3086
3087 #undef OP_SAME
3088 #undef OP_SAME_WITH_NULL
3089 }
3090 \f
3091 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3092 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3093
3094 When in doubt, return 0. */
3095
3096 static int
3097 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3098 {
3099 int unsignedp1, unsignedpo;
3100 tree primarg0, primarg1, primother;
3101 unsigned int correct_width;
3102
3103 if (operand_equal_p (arg0, arg1, 0))
3104 return 1;
3105
3106 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3107 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3108 return 0;
3109
3110 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3111 and see if the inner values are the same. This removes any
3112 signedness comparison, which doesn't matter here. */
3113 primarg0 = arg0, primarg1 = arg1;
3114 STRIP_NOPS (primarg0);
3115 STRIP_NOPS (primarg1);
3116 if (operand_equal_p (primarg0, primarg1, 0))
3117 return 1;
3118
3119 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3120 actual comparison operand, ARG0.
3121
3122 First throw away any conversions to wider types
3123 already present in the operands. */
3124
3125 primarg1 = get_narrower (arg1, &unsignedp1);
3126 primother = get_narrower (other, &unsignedpo);
3127
3128 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3129 if (unsignedp1 == unsignedpo
3130 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3131 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3132 {
3133 tree type = TREE_TYPE (arg0);
3134
3135 /* Make sure shorter operand is extended the right way
3136 to match the longer operand. */
3137 primarg1 = fold_convert (signed_or_unsigned_type_for
3138 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3139
3140 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3141 return 1;
3142 }
3143
3144 return 0;
3145 }
3146 \f
3147 /* See if ARG is an expression that is either a comparison or is performing
3148 arithmetic on comparisons. The comparisons must only be comparing
3149 two different values, which will be stored in *CVAL1 and *CVAL2; if
3150 they are nonzero it means that some operands have already been found.
3151 No variables may be used anywhere else in the expression except in the
3152 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3153 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3154
3155 If this is true, return 1. Otherwise, return zero. */
3156
3157 static int
3158 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3159 {
3160 enum tree_code code = TREE_CODE (arg);
3161 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3162
3163 /* We can handle some of the tcc_expression cases here. */
3164 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3165 tclass = tcc_unary;
3166 else if (tclass == tcc_expression
3167 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3168 || code == COMPOUND_EXPR))
3169 tclass = tcc_binary;
3170
3171 else if (tclass == tcc_expression && code == SAVE_EXPR
3172 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3173 {
3174 /* If we've already found a CVAL1 or CVAL2, this expression is
3175 two complex to handle. */
3176 if (*cval1 || *cval2)
3177 return 0;
3178
3179 tclass = tcc_unary;
3180 *save_p = 1;
3181 }
3182
3183 switch (tclass)
3184 {
3185 case tcc_unary:
3186 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3187
3188 case tcc_binary:
3189 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3190 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3191 cval1, cval2, save_p));
3192
3193 case tcc_constant:
3194 return 1;
3195
3196 case tcc_expression:
3197 if (code == COND_EXPR)
3198 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3199 cval1, cval2, save_p)
3200 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3201 cval1, cval2, save_p)
3202 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3203 cval1, cval2, save_p));
3204 return 0;
3205
3206 case tcc_comparison:
3207 /* First see if we can handle the first operand, then the second. For
3208 the second operand, we know *CVAL1 can't be zero. It must be that
3209 one side of the comparison is each of the values; test for the
3210 case where this isn't true by failing if the two operands
3211 are the same. */
3212
3213 if (operand_equal_p (TREE_OPERAND (arg, 0),
3214 TREE_OPERAND (arg, 1), 0))
3215 return 0;
3216
3217 if (*cval1 == 0)
3218 *cval1 = TREE_OPERAND (arg, 0);
3219 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3220 ;
3221 else if (*cval2 == 0)
3222 *cval2 = TREE_OPERAND (arg, 0);
3223 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3224 ;
3225 else
3226 return 0;
3227
3228 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3229 ;
3230 else if (*cval2 == 0)
3231 *cval2 = TREE_OPERAND (arg, 1);
3232 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3233 ;
3234 else
3235 return 0;
3236
3237 return 1;
3238
3239 default:
3240 return 0;
3241 }
3242 }
3243 \f
3244 /* ARG is a tree that is known to contain just arithmetic operations and
3245 comparisons. Evaluate the operations in the tree substituting NEW0 for
3246 any occurrence of OLD0 as an operand of a comparison and likewise for
3247 NEW1 and OLD1. */
3248
3249 static tree
3250 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3251 tree old1, tree new1)
3252 {
3253 tree type = TREE_TYPE (arg);
3254 enum tree_code code = TREE_CODE (arg);
3255 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3256
3257 /* We can handle some of the tcc_expression cases here. */
3258 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3259 tclass = tcc_unary;
3260 else if (tclass == tcc_expression
3261 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3262 tclass = tcc_binary;
3263
3264 switch (tclass)
3265 {
3266 case tcc_unary:
3267 return fold_build1_loc (loc, code, type,
3268 eval_subst (loc, TREE_OPERAND (arg, 0),
3269 old0, new0, old1, new1));
3270
3271 case tcc_binary:
3272 return fold_build2_loc (loc, code, type,
3273 eval_subst (loc, TREE_OPERAND (arg, 0),
3274 old0, new0, old1, new1),
3275 eval_subst (loc, TREE_OPERAND (arg, 1),
3276 old0, new0, old1, new1));
3277
3278 case tcc_expression:
3279 switch (code)
3280 {
3281 case SAVE_EXPR:
3282 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3283 old1, new1);
3284
3285 case COMPOUND_EXPR:
3286 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3287 old1, new1);
3288
3289 case COND_EXPR:
3290 return fold_build3_loc (loc, code, type,
3291 eval_subst (loc, TREE_OPERAND (arg, 0),
3292 old0, new0, old1, new1),
3293 eval_subst (loc, TREE_OPERAND (arg, 1),
3294 old0, new0, old1, new1),
3295 eval_subst (loc, TREE_OPERAND (arg, 2),
3296 old0, new0, old1, new1));
3297 default:
3298 break;
3299 }
3300 /* Fall through - ??? */
3301
3302 case tcc_comparison:
3303 {
3304 tree arg0 = TREE_OPERAND (arg, 0);
3305 tree arg1 = TREE_OPERAND (arg, 1);
3306
3307 /* We need to check both for exact equality and tree equality. The
3308 former will be true if the operand has a side-effect. In that
3309 case, we know the operand occurred exactly once. */
3310
3311 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3312 arg0 = new0;
3313 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3314 arg0 = new1;
3315
3316 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3317 arg1 = new0;
3318 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3319 arg1 = new1;
3320
3321 return fold_build2_loc (loc, code, type, arg0, arg1);
3322 }
3323
3324 default:
3325 return arg;
3326 }
3327 }
3328 \f
3329 /* Return a tree for the case when the result of an expression is RESULT
3330 converted to TYPE and OMITTED was previously an operand of the expression
3331 but is now not needed (e.g., we folded OMITTED * 0).
3332
3333 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3334 the conversion of RESULT to TYPE. */
3335
3336 tree
3337 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3338 {
3339 tree t = fold_convert_loc (loc, type, result);
3340
3341 /* If the resulting operand is an empty statement, just return the omitted
3342 statement casted to void. */
3343 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3344 return build1_loc (loc, NOP_EXPR, void_type_node,
3345 fold_ignored_result (omitted));
3346
3347 if (TREE_SIDE_EFFECTS (omitted))
3348 return build2_loc (loc, COMPOUND_EXPR, type,
3349 fold_ignored_result (omitted), t);
3350
3351 return non_lvalue_loc (loc, t);
3352 }
3353
3354 /* Return a tree for the case when the result of an expression is RESULT
3355 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3356 of the expression but are now not needed.
3357
3358 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3359 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3360 evaluated before OMITTED2. Otherwise, if neither has side effects,
3361 just do the conversion of RESULT to TYPE. */
3362
3363 tree
3364 omit_two_operands_loc (location_t loc, tree type, tree result,
3365 tree omitted1, tree omitted2)
3366 {
3367 tree t = fold_convert_loc (loc, type, result);
3368
3369 if (TREE_SIDE_EFFECTS (omitted2))
3370 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3371 if (TREE_SIDE_EFFECTS (omitted1))
3372 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3373
3374 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3375 }
3376
3377 \f
3378 /* Return a simplified tree node for the truth-negation of ARG. This
3379 never alters ARG itself. We assume that ARG is an operation that
3380 returns a truth value (0 or 1).
3381
3382 FIXME: one would think we would fold the result, but it causes
3383 problems with the dominator optimizer. */
3384
3385 static tree
3386 fold_truth_not_expr (location_t loc, tree arg)
3387 {
3388 tree type = TREE_TYPE (arg);
3389 enum tree_code code = TREE_CODE (arg);
3390 location_t loc1, loc2;
3391
3392 /* If this is a comparison, we can simply invert it, except for
3393 floating-point non-equality comparisons, in which case we just
3394 enclose a TRUTH_NOT_EXPR around what we have. */
3395
3396 if (TREE_CODE_CLASS (code) == tcc_comparison)
3397 {
3398 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3399 if (FLOAT_TYPE_P (op_type)
3400 && flag_trapping_math
3401 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3402 && code != NE_EXPR && code != EQ_EXPR)
3403 return NULL_TREE;
3404
3405 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3406 if (code == ERROR_MARK)
3407 return NULL_TREE;
3408
3409 return build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3410 TREE_OPERAND (arg, 1));
3411 }
3412
3413 switch (code)
3414 {
3415 case INTEGER_CST:
3416 return constant_boolean_node (integer_zerop (arg), type);
3417
3418 case TRUTH_AND_EXPR:
3419 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3420 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3421 return build2_loc (loc, TRUTH_OR_EXPR, type,
3422 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3423 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3424
3425 case TRUTH_OR_EXPR:
3426 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3427 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3428 return build2_loc (loc, TRUTH_AND_EXPR, type,
3429 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3430 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3431
3432 case TRUTH_XOR_EXPR:
3433 /* Here we can invert either operand. We invert the first operand
3434 unless the second operand is a TRUTH_NOT_EXPR in which case our
3435 result is the XOR of the first operand with the inside of the
3436 negation of the second operand. */
3437
3438 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3439 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3440 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3441 else
3442 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3443 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3444 TREE_OPERAND (arg, 1));
3445
3446 case TRUTH_ANDIF_EXPR:
3447 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3448 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3449 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3450 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3451 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3452
3453 case TRUTH_ORIF_EXPR:
3454 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3455 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3456 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3457 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3458 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3459
3460 case TRUTH_NOT_EXPR:
3461 return TREE_OPERAND (arg, 0);
3462
3463 case COND_EXPR:
3464 {
3465 tree arg1 = TREE_OPERAND (arg, 1);
3466 tree arg2 = TREE_OPERAND (arg, 2);
3467
3468 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3469 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3470
3471 /* A COND_EXPR may have a throw as one operand, which
3472 then has void type. Just leave void operands
3473 as they are. */
3474 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3475 VOID_TYPE_P (TREE_TYPE (arg1))
3476 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3477 VOID_TYPE_P (TREE_TYPE (arg2))
3478 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3479 }
3480
3481 case COMPOUND_EXPR:
3482 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3483 return build2_loc (loc, COMPOUND_EXPR, type,
3484 TREE_OPERAND (arg, 0),
3485 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3486
3487 case NON_LVALUE_EXPR:
3488 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3489 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3490
3491 CASE_CONVERT:
3492 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3493 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3494
3495 /* ... fall through ... */
3496
3497 case FLOAT_EXPR:
3498 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3499 return build1_loc (loc, TREE_CODE (arg), type,
3500 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3501
3502 case BIT_AND_EXPR:
3503 if (!integer_onep (TREE_OPERAND (arg, 1)))
3504 return NULL_TREE;
3505 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3506
3507 case SAVE_EXPR:
3508 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3509
3510 case CLEANUP_POINT_EXPR:
3511 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3512 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3513 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3514
3515 default:
3516 return NULL_TREE;
3517 }
3518 }
3519
3520 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3521 assume that ARG is an operation that returns a truth value (0 or 1
3522 for scalars, 0 or -1 for vectors). Return the folded expression if
3523 folding is successful. Otherwise, return NULL_TREE. */
3524
3525 static tree
3526 fold_invert_truthvalue (location_t loc, tree arg)
3527 {
3528 tree type = TREE_TYPE (arg);
3529 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3530 ? BIT_NOT_EXPR
3531 : TRUTH_NOT_EXPR,
3532 type, arg);
3533 }
3534
3535 /* Return a simplified tree node for the truth-negation of ARG. This
3536 never alters ARG itself. We assume that ARG is an operation that
3537 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3538
3539 tree
3540 invert_truthvalue_loc (location_t loc, tree arg)
3541 {
3542 if (TREE_CODE (arg) == ERROR_MARK)
3543 return arg;
3544
3545 tree type = TREE_TYPE (arg);
3546 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3547 ? BIT_NOT_EXPR
3548 : TRUTH_NOT_EXPR,
3549 type, arg);
3550 }
3551
3552 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3553 with code CODE. This optimization is unsafe. */
3554 static tree
3555 distribute_real_division (location_t loc, enum tree_code code, tree type,
3556 tree arg0, tree arg1)
3557 {
3558 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3559 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3560
3561 /* (A / C) +- (B / C) -> (A +- B) / C. */
3562 if (mul0 == mul1
3563 && operand_equal_p (TREE_OPERAND (arg0, 1),
3564 TREE_OPERAND (arg1, 1), 0))
3565 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3566 fold_build2_loc (loc, code, type,
3567 TREE_OPERAND (arg0, 0),
3568 TREE_OPERAND (arg1, 0)),
3569 TREE_OPERAND (arg0, 1));
3570
3571 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3572 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3573 TREE_OPERAND (arg1, 0), 0)
3574 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3575 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3576 {
3577 REAL_VALUE_TYPE r0, r1;
3578 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3579 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3580 if (!mul0)
3581 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3582 if (!mul1)
3583 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3584 real_arithmetic (&r0, code, &r0, &r1);
3585 return fold_build2_loc (loc, MULT_EXPR, type,
3586 TREE_OPERAND (arg0, 0),
3587 build_real (type, r0));
3588 }
3589
3590 return NULL_TREE;
3591 }
3592 \f
3593 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3594 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3595
3596 static tree
3597 make_bit_field_ref (location_t loc, tree inner, tree type,
3598 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos, int unsignedp)
3599 {
3600 tree result, bftype;
3601
3602 if (bitpos == 0)
3603 {
3604 tree size = TYPE_SIZE (TREE_TYPE (inner));
3605 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3606 || POINTER_TYPE_P (TREE_TYPE (inner)))
3607 && tree_fits_shwi_p (size)
3608 && tree_to_shwi (size) == bitsize)
3609 return fold_convert_loc (loc, type, inner);
3610 }
3611
3612 bftype = type;
3613 if (TYPE_PRECISION (bftype) != bitsize
3614 || TYPE_UNSIGNED (bftype) == !unsignedp)
3615 bftype = build_nonstandard_integer_type (bitsize, 0);
3616
3617 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3618 size_int (bitsize), bitsize_int (bitpos));
3619
3620 if (bftype != type)
3621 result = fold_convert_loc (loc, type, result);
3622
3623 return result;
3624 }
3625
3626 /* Optimize a bit-field compare.
3627
3628 There are two cases: First is a compare against a constant and the
3629 second is a comparison of two items where the fields are at the same
3630 bit position relative to the start of a chunk (byte, halfword, word)
3631 large enough to contain it. In these cases we can avoid the shift
3632 implicit in bitfield extractions.
3633
3634 For constants, we emit a compare of the shifted constant with the
3635 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3636 compared. For two fields at the same position, we do the ANDs with the
3637 similar mask and compare the result of the ANDs.
3638
3639 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3640 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3641 are the left and right operands of the comparison, respectively.
3642
3643 If the optimization described above can be done, we return the resulting
3644 tree. Otherwise we return zero. */
3645
3646 static tree
3647 optimize_bit_field_compare (location_t loc, enum tree_code code,
3648 tree compare_type, tree lhs, tree rhs)
3649 {
3650 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3651 tree type = TREE_TYPE (lhs);
3652 tree unsigned_type;
3653 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3654 machine_mode lmode, rmode, nmode;
3655 int lunsignedp, runsignedp;
3656 int lvolatilep = 0, rvolatilep = 0;
3657 tree linner, rinner = NULL_TREE;
3658 tree mask;
3659 tree offset;
3660
3661 /* Get all the information about the extractions being done. If the bit size
3662 if the same as the size of the underlying object, we aren't doing an
3663 extraction at all and so can do nothing. We also don't want to
3664 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3665 then will no longer be able to replace it. */
3666 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3667 &lunsignedp, &lvolatilep, false);
3668 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3669 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3670 return 0;
3671
3672 if (!const_p)
3673 {
3674 /* If this is not a constant, we can only do something if bit positions,
3675 sizes, and signedness are the same. */
3676 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3677 &runsignedp, &rvolatilep, false);
3678
3679 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3680 || lunsignedp != runsignedp || offset != 0
3681 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3682 return 0;
3683 }
3684
3685 /* See if we can find a mode to refer to this field. We should be able to,
3686 but fail if we can't. */
3687 nmode = get_best_mode (lbitsize, lbitpos, 0, 0,
3688 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3689 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3690 TYPE_ALIGN (TREE_TYPE (rinner))),
3691 word_mode, false);
3692 if (nmode == VOIDmode)
3693 return 0;
3694
3695 /* Set signed and unsigned types of the precision of this mode for the
3696 shifts below. */
3697 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3698
3699 /* Compute the bit position and size for the new reference and our offset
3700 within it. If the new reference is the same size as the original, we
3701 won't optimize anything, so return zero. */
3702 nbitsize = GET_MODE_BITSIZE (nmode);
3703 nbitpos = lbitpos & ~ (nbitsize - 1);
3704 lbitpos -= nbitpos;
3705 if (nbitsize == lbitsize)
3706 return 0;
3707
3708 if (BYTES_BIG_ENDIAN)
3709 lbitpos = nbitsize - lbitsize - lbitpos;
3710
3711 /* Make the mask to be used against the extracted field. */
3712 mask = build_int_cst_type (unsigned_type, -1);
3713 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
3714 mask = const_binop (RSHIFT_EXPR, mask,
3715 size_int (nbitsize - lbitsize - lbitpos));
3716
3717 if (! const_p)
3718 /* If not comparing with constant, just rework the comparison
3719 and return. */
3720 return fold_build2_loc (loc, code, compare_type,
3721 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3722 make_bit_field_ref (loc, linner,
3723 unsigned_type,
3724 nbitsize, nbitpos,
3725 1),
3726 mask),
3727 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3728 make_bit_field_ref (loc, rinner,
3729 unsigned_type,
3730 nbitsize, nbitpos,
3731 1),
3732 mask));
3733
3734 /* Otherwise, we are handling the constant case. See if the constant is too
3735 big for the field. Warn and return a tree of for 0 (false) if so. We do
3736 this not only for its own sake, but to avoid having to test for this
3737 error case below. If we didn't, we might generate wrong code.
3738
3739 For unsigned fields, the constant shifted right by the field length should
3740 be all zero. For signed fields, the high-order bits should agree with
3741 the sign bit. */
3742
3743 if (lunsignedp)
3744 {
3745 if (wi::lrshift (rhs, lbitsize) != 0)
3746 {
3747 warning (0, "comparison is always %d due to width of bit-field",
3748 code == NE_EXPR);
3749 return constant_boolean_node (code == NE_EXPR, compare_type);
3750 }
3751 }
3752 else
3753 {
3754 wide_int tem = wi::arshift (rhs, lbitsize - 1);
3755 if (tem != 0 && tem != -1)
3756 {
3757 warning (0, "comparison is always %d due to width of bit-field",
3758 code == NE_EXPR);
3759 return constant_boolean_node (code == NE_EXPR, compare_type);
3760 }
3761 }
3762
3763 /* Single-bit compares should always be against zero. */
3764 if (lbitsize == 1 && ! integer_zerop (rhs))
3765 {
3766 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3767 rhs = build_int_cst (type, 0);
3768 }
3769
3770 /* Make a new bitfield reference, shift the constant over the
3771 appropriate number of bits and mask it with the computed mask
3772 (in case this was a signed field). If we changed it, make a new one. */
3773 lhs = make_bit_field_ref (loc, linner, unsigned_type, nbitsize, nbitpos, 1);
3774
3775 rhs = const_binop (BIT_AND_EXPR,
3776 const_binop (LSHIFT_EXPR,
3777 fold_convert_loc (loc, unsigned_type, rhs),
3778 size_int (lbitpos)),
3779 mask);
3780
3781 lhs = build2_loc (loc, code, compare_type,
3782 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
3783 return lhs;
3784 }
3785 \f
3786 /* Subroutine for fold_truth_andor_1: decode a field reference.
3787
3788 If EXP is a comparison reference, we return the innermost reference.
3789
3790 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3791 set to the starting bit number.
3792
3793 If the innermost field can be completely contained in a mode-sized
3794 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3795
3796 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3797 otherwise it is not changed.
3798
3799 *PUNSIGNEDP is set to the signedness of the field.
3800
3801 *PMASK is set to the mask used. This is either contained in a
3802 BIT_AND_EXPR or derived from the width of the field.
3803
3804 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3805
3806 Return 0 if this is not a component reference or is one that we can't
3807 do anything with. */
3808
3809 static tree
3810 decode_field_reference (location_t loc, tree exp, HOST_WIDE_INT *pbitsize,
3811 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
3812 int *punsignedp, int *pvolatilep,
3813 tree *pmask, tree *pand_mask)
3814 {
3815 tree outer_type = 0;
3816 tree and_mask = 0;
3817 tree mask, inner, offset;
3818 tree unsigned_type;
3819 unsigned int precision;
3820
3821 /* All the optimizations using this function assume integer fields.
3822 There are problems with FP fields since the type_for_size call
3823 below can fail for, e.g., XFmode. */
3824 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3825 return 0;
3826
3827 /* We are interested in the bare arrangement of bits, so strip everything
3828 that doesn't affect the machine mode. However, record the type of the
3829 outermost expression if it may matter below. */
3830 if (CONVERT_EXPR_P (exp)
3831 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3832 outer_type = TREE_TYPE (exp);
3833 STRIP_NOPS (exp);
3834
3835 if (TREE_CODE (exp) == BIT_AND_EXPR)
3836 {
3837 and_mask = TREE_OPERAND (exp, 1);
3838 exp = TREE_OPERAND (exp, 0);
3839 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3840 if (TREE_CODE (and_mask) != INTEGER_CST)
3841 return 0;
3842 }
3843
3844 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3845 punsignedp, pvolatilep, false);
3846 if ((inner == exp && and_mask == 0)
3847 || *pbitsize < 0 || offset != 0
3848 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3849 return 0;
3850
3851 /* If the number of bits in the reference is the same as the bitsize of
3852 the outer type, then the outer type gives the signedness. Otherwise
3853 (in case of a small bitfield) the signedness is unchanged. */
3854 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3855 *punsignedp = TYPE_UNSIGNED (outer_type);
3856
3857 /* Compute the mask to access the bitfield. */
3858 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3859 precision = TYPE_PRECISION (unsigned_type);
3860
3861 mask = build_int_cst_type (unsigned_type, -1);
3862
3863 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3864 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3865
3866 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3867 if (and_mask != 0)
3868 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3869 fold_convert_loc (loc, unsigned_type, and_mask), mask);
3870
3871 *pmask = mask;
3872 *pand_mask = and_mask;
3873 return inner;
3874 }
3875
3876 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3877 bit positions and MASK is SIGNED. */
3878
3879 static int
3880 all_ones_mask_p (const_tree mask, unsigned int size)
3881 {
3882 tree type = TREE_TYPE (mask);
3883 unsigned int precision = TYPE_PRECISION (type);
3884
3885 /* If this function returns true when the type of the mask is
3886 UNSIGNED, then there will be errors. In particular see
3887 gcc.c-torture/execute/990326-1.c. There does not appear to be
3888 any documentation paper trail as to why this is so. But the pre
3889 wide-int worked with that restriction and it has been preserved
3890 here. */
3891 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
3892 return false;
3893
3894 return wi::mask (size, false, precision) == mask;
3895 }
3896
3897 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3898 represents the sign bit of EXP's type. If EXP represents a sign
3899 or zero extension, also test VAL against the unextended type.
3900 The return value is the (sub)expression whose sign bit is VAL,
3901 or NULL_TREE otherwise. */
3902
3903 tree
3904 sign_bit_p (tree exp, const_tree val)
3905 {
3906 int width;
3907 tree t;
3908
3909 /* Tree EXP must have an integral type. */
3910 t = TREE_TYPE (exp);
3911 if (! INTEGRAL_TYPE_P (t))
3912 return NULL_TREE;
3913
3914 /* Tree VAL must be an integer constant. */
3915 if (TREE_CODE (val) != INTEGER_CST
3916 || TREE_OVERFLOW (val))
3917 return NULL_TREE;
3918
3919 width = TYPE_PRECISION (t);
3920 if (wi::only_sign_bit_p (val, width))
3921 return exp;
3922
3923 /* Handle extension from a narrower type. */
3924 if (TREE_CODE (exp) == NOP_EXPR
3925 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
3926 return sign_bit_p (TREE_OPERAND (exp, 0), val);
3927
3928 return NULL_TREE;
3929 }
3930
3931 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
3932 to be evaluated unconditionally. */
3933
3934 static int
3935 simple_operand_p (const_tree exp)
3936 {
3937 /* Strip any conversions that don't change the machine mode. */
3938 STRIP_NOPS (exp);
3939
3940 return (CONSTANT_CLASS_P (exp)
3941 || TREE_CODE (exp) == SSA_NAME
3942 || (DECL_P (exp)
3943 && ! TREE_ADDRESSABLE (exp)
3944 && ! TREE_THIS_VOLATILE (exp)
3945 && ! DECL_NONLOCAL (exp)
3946 /* Don't regard global variables as simple. They may be
3947 allocated in ways unknown to the compiler (shared memory,
3948 #pragma weak, etc). */
3949 && ! TREE_PUBLIC (exp)
3950 && ! DECL_EXTERNAL (exp)
3951 /* Weakrefs are not safe to be read, since they can be NULL.
3952 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
3953 have DECL_WEAK flag set. */
3954 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
3955 /* Loading a static variable is unduly expensive, but global
3956 registers aren't expensive. */
3957 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3958 }
3959
3960 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
3961 to be evaluated unconditionally.
3962 I addition to simple_operand_p, we assume that comparisons, conversions,
3963 and logic-not operations are simple, if their operands are simple, too. */
3964
3965 static bool
3966 simple_operand_p_2 (tree exp)
3967 {
3968 enum tree_code code;
3969
3970 if (TREE_SIDE_EFFECTS (exp)
3971 || tree_could_trap_p (exp))
3972 return false;
3973
3974 while (CONVERT_EXPR_P (exp))
3975 exp = TREE_OPERAND (exp, 0);
3976
3977 code = TREE_CODE (exp);
3978
3979 if (TREE_CODE_CLASS (code) == tcc_comparison)
3980 return (simple_operand_p (TREE_OPERAND (exp, 0))
3981 && simple_operand_p (TREE_OPERAND (exp, 1)));
3982
3983 if (code == TRUTH_NOT_EXPR)
3984 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
3985
3986 return simple_operand_p (exp);
3987 }
3988
3989 \f
3990 /* The following functions are subroutines to fold_range_test and allow it to
3991 try to change a logical combination of comparisons into a range test.
3992
3993 For example, both
3994 X == 2 || X == 3 || X == 4 || X == 5
3995 and
3996 X >= 2 && X <= 5
3997 are converted to
3998 (unsigned) (X - 2) <= 3
3999
4000 We describe each set of comparisons as being either inside or outside
4001 a range, using a variable named like IN_P, and then describe the
4002 range with a lower and upper bound. If one of the bounds is omitted,
4003 it represents either the highest or lowest value of the type.
4004
4005 In the comments below, we represent a range by two numbers in brackets
4006 preceded by a "+" to designate being inside that range, or a "-" to
4007 designate being outside that range, so the condition can be inverted by
4008 flipping the prefix. An omitted bound is represented by a "-". For
4009 example, "- [-, 10]" means being outside the range starting at the lowest
4010 possible value and ending at 10, in other words, being greater than 10.
4011 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4012 always false.
4013
4014 We set up things so that the missing bounds are handled in a consistent
4015 manner so neither a missing bound nor "true" and "false" need to be
4016 handled using a special case. */
4017
4018 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4019 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4020 and UPPER1_P are nonzero if the respective argument is an upper bound
4021 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4022 must be specified for a comparison. ARG1 will be converted to ARG0's
4023 type if both are specified. */
4024
4025 static tree
4026 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4027 tree arg1, int upper1_p)
4028 {
4029 tree tem;
4030 int result;
4031 int sgn0, sgn1;
4032
4033 /* If neither arg represents infinity, do the normal operation.
4034 Else, if not a comparison, return infinity. Else handle the special
4035 comparison rules. Note that most of the cases below won't occur, but
4036 are handled for consistency. */
4037
4038 if (arg0 != 0 && arg1 != 0)
4039 {
4040 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4041 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4042 STRIP_NOPS (tem);
4043 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4044 }
4045
4046 if (TREE_CODE_CLASS (code) != tcc_comparison)
4047 return 0;
4048
4049 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4050 for neither. In real maths, we cannot assume open ended ranges are
4051 the same. But, this is computer arithmetic, where numbers are finite.
4052 We can therefore make the transformation of any unbounded range with
4053 the value Z, Z being greater than any representable number. This permits
4054 us to treat unbounded ranges as equal. */
4055 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4056 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4057 switch (code)
4058 {
4059 case EQ_EXPR:
4060 result = sgn0 == sgn1;
4061 break;
4062 case NE_EXPR:
4063 result = sgn0 != sgn1;
4064 break;
4065 case LT_EXPR:
4066 result = sgn0 < sgn1;
4067 break;
4068 case LE_EXPR:
4069 result = sgn0 <= sgn1;
4070 break;
4071 case GT_EXPR:
4072 result = sgn0 > sgn1;
4073 break;
4074 case GE_EXPR:
4075 result = sgn0 >= sgn1;
4076 break;
4077 default:
4078 gcc_unreachable ();
4079 }
4080
4081 return constant_boolean_node (result, type);
4082 }
4083 \f
4084 /* Helper routine for make_range. Perform one step for it, return
4085 new expression if the loop should continue or NULL_TREE if it should
4086 stop. */
4087
4088 tree
4089 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4090 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4091 bool *strict_overflow_p)
4092 {
4093 tree arg0_type = TREE_TYPE (arg0);
4094 tree n_low, n_high, low = *p_low, high = *p_high;
4095 int in_p = *p_in_p, n_in_p;
4096
4097 switch (code)
4098 {
4099 case TRUTH_NOT_EXPR:
4100 /* We can only do something if the range is testing for zero. */
4101 if (low == NULL_TREE || high == NULL_TREE
4102 || ! integer_zerop (low) || ! integer_zerop (high))
4103 return NULL_TREE;
4104 *p_in_p = ! in_p;
4105 return arg0;
4106
4107 case EQ_EXPR: case NE_EXPR:
4108 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4109 /* We can only do something if the range is testing for zero
4110 and if the second operand is an integer constant. Note that
4111 saying something is "in" the range we make is done by
4112 complementing IN_P since it will set in the initial case of
4113 being not equal to zero; "out" is leaving it alone. */
4114 if (low == NULL_TREE || high == NULL_TREE
4115 || ! integer_zerop (low) || ! integer_zerop (high)
4116 || TREE_CODE (arg1) != INTEGER_CST)
4117 return NULL_TREE;
4118
4119 switch (code)
4120 {
4121 case NE_EXPR: /* - [c, c] */
4122 low = high = arg1;
4123 break;
4124 case EQ_EXPR: /* + [c, c] */
4125 in_p = ! in_p, low = high = arg1;
4126 break;
4127 case GT_EXPR: /* - [-, c] */
4128 low = 0, high = arg1;
4129 break;
4130 case GE_EXPR: /* + [c, -] */
4131 in_p = ! in_p, low = arg1, high = 0;
4132 break;
4133 case LT_EXPR: /* - [c, -] */
4134 low = arg1, high = 0;
4135 break;
4136 case LE_EXPR: /* + [-, c] */
4137 in_p = ! in_p, low = 0, high = arg1;
4138 break;
4139 default:
4140 gcc_unreachable ();
4141 }
4142
4143 /* If this is an unsigned comparison, we also know that EXP is
4144 greater than or equal to zero. We base the range tests we make
4145 on that fact, so we record it here so we can parse existing
4146 range tests. We test arg0_type since often the return type
4147 of, e.g. EQ_EXPR, is boolean. */
4148 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4149 {
4150 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4151 in_p, low, high, 1,
4152 build_int_cst (arg0_type, 0),
4153 NULL_TREE))
4154 return NULL_TREE;
4155
4156 in_p = n_in_p, low = n_low, high = n_high;
4157
4158 /* If the high bound is missing, but we have a nonzero low
4159 bound, reverse the range so it goes from zero to the low bound
4160 minus 1. */
4161 if (high == 0 && low && ! integer_zerop (low))
4162 {
4163 in_p = ! in_p;
4164 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4165 build_int_cst (TREE_TYPE (low), 1), 0);
4166 low = build_int_cst (arg0_type, 0);
4167 }
4168 }
4169
4170 *p_low = low;
4171 *p_high = high;
4172 *p_in_p = in_p;
4173 return arg0;
4174
4175 case NEGATE_EXPR:
4176 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4177 low and high are non-NULL, then normalize will DTRT. */
4178 if (!TYPE_UNSIGNED (arg0_type)
4179 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4180 {
4181 if (low == NULL_TREE)
4182 low = TYPE_MIN_VALUE (arg0_type);
4183 if (high == NULL_TREE)
4184 high = TYPE_MAX_VALUE (arg0_type);
4185 }
4186
4187 /* (-x) IN [a,b] -> x in [-b, -a] */
4188 n_low = range_binop (MINUS_EXPR, exp_type,
4189 build_int_cst (exp_type, 0),
4190 0, high, 1);
4191 n_high = range_binop (MINUS_EXPR, exp_type,
4192 build_int_cst (exp_type, 0),
4193 0, low, 0);
4194 if (n_high != 0 && TREE_OVERFLOW (n_high))
4195 return NULL_TREE;
4196 goto normalize;
4197
4198 case BIT_NOT_EXPR:
4199 /* ~ X -> -X - 1 */
4200 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4201 build_int_cst (exp_type, 1));
4202
4203 case PLUS_EXPR:
4204 case MINUS_EXPR:
4205 if (TREE_CODE (arg1) != INTEGER_CST)
4206 return NULL_TREE;
4207
4208 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4209 move a constant to the other side. */
4210 if (!TYPE_UNSIGNED (arg0_type)
4211 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4212 return NULL_TREE;
4213
4214 /* If EXP is signed, any overflow in the computation is undefined,
4215 so we don't worry about it so long as our computations on
4216 the bounds don't overflow. For unsigned, overflow is defined
4217 and this is exactly the right thing. */
4218 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4219 arg0_type, low, 0, arg1, 0);
4220 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4221 arg0_type, high, 1, arg1, 0);
4222 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4223 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4224 return NULL_TREE;
4225
4226 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4227 *strict_overflow_p = true;
4228
4229 normalize:
4230 /* Check for an unsigned range which has wrapped around the maximum
4231 value thus making n_high < n_low, and normalize it. */
4232 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4233 {
4234 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4235 build_int_cst (TREE_TYPE (n_high), 1), 0);
4236 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4237 build_int_cst (TREE_TYPE (n_low), 1), 0);
4238
4239 /* If the range is of the form +/- [ x+1, x ], we won't
4240 be able to normalize it. But then, it represents the
4241 whole range or the empty set, so make it
4242 +/- [ -, - ]. */
4243 if (tree_int_cst_equal (n_low, low)
4244 && tree_int_cst_equal (n_high, high))
4245 low = high = 0;
4246 else
4247 in_p = ! in_p;
4248 }
4249 else
4250 low = n_low, high = n_high;
4251
4252 *p_low = low;
4253 *p_high = high;
4254 *p_in_p = in_p;
4255 return arg0;
4256
4257 CASE_CONVERT:
4258 case NON_LVALUE_EXPR:
4259 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4260 return NULL_TREE;
4261
4262 if (! INTEGRAL_TYPE_P (arg0_type)
4263 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4264 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4265 return NULL_TREE;
4266
4267 n_low = low, n_high = high;
4268
4269 if (n_low != 0)
4270 n_low = fold_convert_loc (loc, arg0_type, n_low);
4271
4272 if (n_high != 0)
4273 n_high = fold_convert_loc (loc, arg0_type, n_high);
4274
4275 /* If we're converting arg0 from an unsigned type, to exp,
4276 a signed type, we will be doing the comparison as unsigned.
4277 The tests above have already verified that LOW and HIGH
4278 are both positive.
4279
4280 So we have to ensure that we will handle large unsigned
4281 values the same way that the current signed bounds treat
4282 negative values. */
4283
4284 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4285 {
4286 tree high_positive;
4287 tree equiv_type;
4288 /* For fixed-point modes, we need to pass the saturating flag
4289 as the 2nd parameter. */
4290 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4291 equiv_type
4292 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4293 TYPE_SATURATING (arg0_type));
4294 else
4295 equiv_type
4296 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4297
4298 /* A range without an upper bound is, naturally, unbounded.
4299 Since convert would have cropped a very large value, use
4300 the max value for the destination type. */
4301 high_positive
4302 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4303 : TYPE_MAX_VALUE (arg0_type);
4304
4305 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4306 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4307 fold_convert_loc (loc, arg0_type,
4308 high_positive),
4309 build_int_cst (arg0_type, 1));
4310
4311 /* If the low bound is specified, "and" the range with the
4312 range for which the original unsigned value will be
4313 positive. */
4314 if (low != 0)
4315 {
4316 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4317 1, fold_convert_loc (loc, arg0_type,
4318 integer_zero_node),
4319 high_positive))
4320 return NULL_TREE;
4321
4322 in_p = (n_in_p == in_p);
4323 }
4324 else
4325 {
4326 /* Otherwise, "or" the range with the range of the input
4327 that will be interpreted as negative. */
4328 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4329 1, fold_convert_loc (loc, arg0_type,
4330 integer_zero_node),
4331 high_positive))
4332 return NULL_TREE;
4333
4334 in_p = (in_p != n_in_p);
4335 }
4336 }
4337
4338 *p_low = n_low;
4339 *p_high = n_high;
4340 *p_in_p = in_p;
4341 return arg0;
4342
4343 default:
4344 return NULL_TREE;
4345 }
4346 }
4347
4348 /* Given EXP, a logical expression, set the range it is testing into
4349 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4350 actually being tested. *PLOW and *PHIGH will be made of the same
4351 type as the returned expression. If EXP is not a comparison, we
4352 will most likely not be returning a useful value and range. Set
4353 *STRICT_OVERFLOW_P to true if the return value is only valid
4354 because signed overflow is undefined; otherwise, do not change
4355 *STRICT_OVERFLOW_P. */
4356
4357 tree
4358 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4359 bool *strict_overflow_p)
4360 {
4361 enum tree_code code;
4362 tree arg0, arg1 = NULL_TREE;
4363 tree exp_type, nexp;
4364 int in_p;
4365 tree low, high;
4366 location_t loc = EXPR_LOCATION (exp);
4367
4368 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4369 and see if we can refine the range. Some of the cases below may not
4370 happen, but it doesn't seem worth worrying about this. We "continue"
4371 the outer loop when we've changed something; otherwise we "break"
4372 the switch, which will "break" the while. */
4373
4374 in_p = 0;
4375 low = high = build_int_cst (TREE_TYPE (exp), 0);
4376
4377 while (1)
4378 {
4379 code = TREE_CODE (exp);
4380 exp_type = TREE_TYPE (exp);
4381 arg0 = NULL_TREE;
4382
4383 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4384 {
4385 if (TREE_OPERAND_LENGTH (exp) > 0)
4386 arg0 = TREE_OPERAND (exp, 0);
4387 if (TREE_CODE_CLASS (code) == tcc_binary
4388 || TREE_CODE_CLASS (code) == tcc_comparison
4389 || (TREE_CODE_CLASS (code) == tcc_expression
4390 && TREE_OPERAND_LENGTH (exp) > 1))
4391 arg1 = TREE_OPERAND (exp, 1);
4392 }
4393 if (arg0 == NULL_TREE)
4394 break;
4395
4396 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4397 &high, &in_p, strict_overflow_p);
4398 if (nexp == NULL_TREE)
4399 break;
4400 exp = nexp;
4401 }
4402
4403 /* If EXP is a constant, we can evaluate whether this is true or false. */
4404 if (TREE_CODE (exp) == INTEGER_CST)
4405 {
4406 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4407 exp, 0, low, 0))
4408 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4409 exp, 1, high, 1)));
4410 low = high = 0;
4411 exp = 0;
4412 }
4413
4414 *pin_p = in_p, *plow = low, *phigh = high;
4415 return exp;
4416 }
4417 \f
4418 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4419 type, TYPE, return an expression to test if EXP is in (or out of, depending
4420 on IN_P) the range. Return 0 if the test couldn't be created. */
4421
4422 tree
4423 build_range_check (location_t loc, tree type, tree exp, int in_p,
4424 tree low, tree high)
4425 {
4426 tree etype = TREE_TYPE (exp), value;
4427
4428 /* Disable this optimization for function pointer expressions
4429 on targets that require function pointer canonicalization. */
4430 if (targetm.have_canonicalize_funcptr_for_compare ()
4431 && TREE_CODE (etype) == POINTER_TYPE
4432 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4433 return NULL_TREE;
4434
4435 if (! in_p)
4436 {
4437 value = build_range_check (loc, type, exp, 1, low, high);
4438 if (value != 0)
4439 return invert_truthvalue_loc (loc, value);
4440
4441 return 0;
4442 }
4443
4444 if (low == 0 && high == 0)
4445 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4446
4447 if (low == 0)
4448 return fold_build2_loc (loc, LE_EXPR, type, exp,
4449 fold_convert_loc (loc, etype, high));
4450
4451 if (high == 0)
4452 return fold_build2_loc (loc, GE_EXPR, type, exp,
4453 fold_convert_loc (loc, etype, low));
4454
4455 if (operand_equal_p (low, high, 0))
4456 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4457 fold_convert_loc (loc, etype, low));
4458
4459 if (integer_zerop (low))
4460 {
4461 if (! TYPE_UNSIGNED (etype))
4462 {
4463 etype = unsigned_type_for (etype);
4464 high = fold_convert_loc (loc, etype, high);
4465 exp = fold_convert_loc (loc, etype, exp);
4466 }
4467 return build_range_check (loc, type, exp, 1, 0, high);
4468 }
4469
4470 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4471 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4472 {
4473 int prec = TYPE_PRECISION (etype);
4474
4475 if (wi::mask (prec - 1, false, prec) == high)
4476 {
4477 if (TYPE_UNSIGNED (etype))
4478 {
4479 tree signed_etype = signed_type_for (etype);
4480 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4481 etype
4482 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4483 else
4484 etype = signed_etype;
4485 exp = fold_convert_loc (loc, etype, exp);
4486 }
4487 return fold_build2_loc (loc, GT_EXPR, type, exp,
4488 build_int_cst (etype, 0));
4489 }
4490 }
4491
4492 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4493 This requires wrap-around arithmetics for the type of the expression.
4494 First make sure that arithmetics in this type is valid, then make sure
4495 that it wraps around. */
4496 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4497 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4498 TYPE_UNSIGNED (etype));
4499
4500 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4501 {
4502 tree utype, minv, maxv;
4503
4504 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4505 for the type in question, as we rely on this here. */
4506 utype = unsigned_type_for (etype);
4507 maxv = fold_convert_loc (loc, utype, TYPE_MAX_VALUE (etype));
4508 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4509 build_int_cst (TREE_TYPE (maxv), 1), 1);
4510 minv = fold_convert_loc (loc, utype, TYPE_MIN_VALUE (etype));
4511
4512 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4513 minv, 1, maxv, 1)))
4514 etype = utype;
4515 else
4516 return 0;
4517 }
4518
4519 high = fold_convert_loc (loc, etype, high);
4520 low = fold_convert_loc (loc, etype, low);
4521 exp = fold_convert_loc (loc, etype, exp);
4522
4523 value = const_binop (MINUS_EXPR, high, low);
4524
4525
4526 if (POINTER_TYPE_P (etype))
4527 {
4528 if (value != 0 && !TREE_OVERFLOW (value))
4529 {
4530 low = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (low), low);
4531 return build_range_check (loc, type,
4532 fold_build_pointer_plus_loc (loc, exp, low),
4533 1, build_int_cst (etype, 0), value);
4534 }
4535 return 0;
4536 }
4537
4538 if (value != 0 && !TREE_OVERFLOW (value))
4539 return build_range_check (loc, type,
4540 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4541 1, build_int_cst (etype, 0), value);
4542
4543 return 0;
4544 }
4545 \f
4546 /* Return the predecessor of VAL in its type, handling the infinite case. */
4547
4548 static tree
4549 range_predecessor (tree val)
4550 {
4551 tree type = TREE_TYPE (val);
4552
4553 if (INTEGRAL_TYPE_P (type)
4554 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4555 return 0;
4556 else
4557 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4558 build_int_cst (TREE_TYPE (val), 1), 0);
4559 }
4560
4561 /* Return the successor of VAL in its type, handling the infinite case. */
4562
4563 static tree
4564 range_successor (tree val)
4565 {
4566 tree type = TREE_TYPE (val);
4567
4568 if (INTEGRAL_TYPE_P (type)
4569 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4570 return 0;
4571 else
4572 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4573 build_int_cst (TREE_TYPE (val), 1), 0);
4574 }
4575
4576 /* Given two ranges, see if we can merge them into one. Return 1 if we
4577 can, 0 if we can't. Set the output range into the specified parameters. */
4578
4579 bool
4580 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4581 tree high0, int in1_p, tree low1, tree high1)
4582 {
4583 int no_overlap;
4584 int subset;
4585 int temp;
4586 tree tem;
4587 int in_p;
4588 tree low, high;
4589 int lowequal = ((low0 == 0 && low1 == 0)
4590 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4591 low0, 0, low1, 0)));
4592 int highequal = ((high0 == 0 && high1 == 0)
4593 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4594 high0, 1, high1, 1)));
4595
4596 /* Make range 0 be the range that starts first, or ends last if they
4597 start at the same value. Swap them if it isn't. */
4598 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4599 low0, 0, low1, 0))
4600 || (lowequal
4601 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4602 high1, 1, high0, 1))))
4603 {
4604 temp = in0_p, in0_p = in1_p, in1_p = temp;
4605 tem = low0, low0 = low1, low1 = tem;
4606 tem = high0, high0 = high1, high1 = tem;
4607 }
4608
4609 /* Now flag two cases, whether the ranges are disjoint or whether the
4610 second range is totally subsumed in the first. Note that the tests
4611 below are simplified by the ones above. */
4612 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4613 high0, 1, low1, 0));
4614 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4615 high1, 1, high0, 1));
4616
4617 /* We now have four cases, depending on whether we are including or
4618 excluding the two ranges. */
4619 if (in0_p && in1_p)
4620 {
4621 /* If they don't overlap, the result is false. If the second range
4622 is a subset it is the result. Otherwise, the range is from the start
4623 of the second to the end of the first. */
4624 if (no_overlap)
4625 in_p = 0, low = high = 0;
4626 else if (subset)
4627 in_p = 1, low = low1, high = high1;
4628 else
4629 in_p = 1, low = low1, high = high0;
4630 }
4631
4632 else if (in0_p && ! in1_p)
4633 {
4634 /* If they don't overlap, the result is the first range. If they are
4635 equal, the result is false. If the second range is a subset of the
4636 first, and the ranges begin at the same place, we go from just after
4637 the end of the second range to the end of the first. If the second
4638 range is not a subset of the first, or if it is a subset and both
4639 ranges end at the same place, the range starts at the start of the
4640 first range and ends just before the second range.
4641 Otherwise, we can't describe this as a single range. */
4642 if (no_overlap)
4643 in_p = 1, low = low0, high = high0;
4644 else if (lowequal && highequal)
4645 in_p = 0, low = high = 0;
4646 else if (subset && lowequal)
4647 {
4648 low = range_successor (high1);
4649 high = high0;
4650 in_p = 1;
4651 if (low == 0)
4652 {
4653 /* We are in the weird situation where high0 > high1 but
4654 high1 has no successor. Punt. */
4655 return 0;
4656 }
4657 }
4658 else if (! subset || highequal)
4659 {
4660 low = low0;
4661 high = range_predecessor (low1);
4662 in_p = 1;
4663 if (high == 0)
4664 {
4665 /* low0 < low1 but low1 has no predecessor. Punt. */
4666 return 0;
4667 }
4668 }
4669 else
4670 return 0;
4671 }
4672
4673 else if (! in0_p && in1_p)
4674 {
4675 /* If they don't overlap, the result is the second range. If the second
4676 is a subset of the first, the result is false. Otherwise,
4677 the range starts just after the first range and ends at the
4678 end of the second. */
4679 if (no_overlap)
4680 in_p = 1, low = low1, high = high1;
4681 else if (subset || highequal)
4682 in_p = 0, low = high = 0;
4683 else
4684 {
4685 low = range_successor (high0);
4686 high = high1;
4687 in_p = 1;
4688 if (low == 0)
4689 {
4690 /* high1 > high0 but high0 has no successor. Punt. */
4691 return 0;
4692 }
4693 }
4694 }
4695
4696 else
4697 {
4698 /* The case where we are excluding both ranges. Here the complex case
4699 is if they don't overlap. In that case, the only time we have a
4700 range is if they are adjacent. If the second is a subset of the
4701 first, the result is the first. Otherwise, the range to exclude
4702 starts at the beginning of the first range and ends at the end of the
4703 second. */
4704 if (no_overlap)
4705 {
4706 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4707 range_successor (high0),
4708 1, low1, 0)))
4709 in_p = 0, low = low0, high = high1;
4710 else
4711 {
4712 /* Canonicalize - [min, x] into - [-, x]. */
4713 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4714 switch (TREE_CODE (TREE_TYPE (low0)))
4715 {
4716 case ENUMERAL_TYPE:
4717 if (TYPE_PRECISION (TREE_TYPE (low0))
4718 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4719 break;
4720 /* FALLTHROUGH */
4721 case INTEGER_TYPE:
4722 if (tree_int_cst_equal (low0,
4723 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4724 low0 = 0;
4725 break;
4726 case POINTER_TYPE:
4727 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4728 && integer_zerop (low0))
4729 low0 = 0;
4730 break;
4731 default:
4732 break;
4733 }
4734
4735 /* Canonicalize - [x, max] into - [x, -]. */
4736 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4737 switch (TREE_CODE (TREE_TYPE (high1)))
4738 {
4739 case ENUMERAL_TYPE:
4740 if (TYPE_PRECISION (TREE_TYPE (high1))
4741 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4742 break;
4743 /* FALLTHROUGH */
4744 case INTEGER_TYPE:
4745 if (tree_int_cst_equal (high1,
4746 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4747 high1 = 0;
4748 break;
4749 case POINTER_TYPE:
4750 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4751 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4752 high1, 1,
4753 build_int_cst (TREE_TYPE (high1), 1),
4754 1)))
4755 high1 = 0;
4756 break;
4757 default:
4758 break;
4759 }
4760
4761 /* The ranges might be also adjacent between the maximum and
4762 minimum values of the given type. For
4763 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4764 return + [x + 1, y - 1]. */
4765 if (low0 == 0 && high1 == 0)
4766 {
4767 low = range_successor (high0);
4768 high = range_predecessor (low1);
4769 if (low == 0 || high == 0)
4770 return 0;
4771
4772 in_p = 1;
4773 }
4774 else
4775 return 0;
4776 }
4777 }
4778 else if (subset)
4779 in_p = 0, low = low0, high = high0;
4780 else
4781 in_p = 0, low = low0, high = high1;
4782 }
4783
4784 *pin_p = in_p, *plow = low, *phigh = high;
4785 return 1;
4786 }
4787 \f
4788
4789 /* Subroutine of fold, looking inside expressions of the form
4790 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4791 of the COND_EXPR. This function is being used also to optimize
4792 A op B ? C : A, by reversing the comparison first.
4793
4794 Return a folded expression whose code is not a COND_EXPR
4795 anymore, or NULL_TREE if no folding opportunity is found. */
4796
4797 static tree
4798 fold_cond_expr_with_comparison (location_t loc, tree type,
4799 tree arg0, tree arg1, tree arg2)
4800 {
4801 enum tree_code comp_code = TREE_CODE (arg0);
4802 tree arg00 = TREE_OPERAND (arg0, 0);
4803 tree arg01 = TREE_OPERAND (arg0, 1);
4804 tree arg1_type = TREE_TYPE (arg1);
4805 tree tem;
4806
4807 STRIP_NOPS (arg1);
4808 STRIP_NOPS (arg2);
4809
4810 /* If we have A op 0 ? A : -A, consider applying the following
4811 transformations:
4812
4813 A == 0? A : -A same as -A
4814 A != 0? A : -A same as A
4815 A >= 0? A : -A same as abs (A)
4816 A > 0? A : -A same as abs (A)
4817 A <= 0? A : -A same as -abs (A)
4818 A < 0? A : -A same as -abs (A)
4819
4820 None of these transformations work for modes with signed
4821 zeros. If A is +/-0, the first two transformations will
4822 change the sign of the result (from +0 to -0, or vice
4823 versa). The last four will fix the sign of the result,
4824 even though the original expressions could be positive or
4825 negative, depending on the sign of A.
4826
4827 Note that all these transformations are correct if A is
4828 NaN, since the two alternatives (A and -A) are also NaNs. */
4829 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4830 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
4831 ? real_zerop (arg01)
4832 : integer_zerop (arg01))
4833 && ((TREE_CODE (arg2) == NEGATE_EXPR
4834 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4835 /* In the case that A is of the form X-Y, '-A' (arg2) may
4836 have already been folded to Y-X, check for that. */
4837 || (TREE_CODE (arg1) == MINUS_EXPR
4838 && TREE_CODE (arg2) == MINUS_EXPR
4839 && operand_equal_p (TREE_OPERAND (arg1, 0),
4840 TREE_OPERAND (arg2, 1), 0)
4841 && operand_equal_p (TREE_OPERAND (arg1, 1),
4842 TREE_OPERAND (arg2, 0), 0))))
4843 switch (comp_code)
4844 {
4845 case EQ_EXPR:
4846 case UNEQ_EXPR:
4847 tem = fold_convert_loc (loc, arg1_type, arg1);
4848 return pedantic_non_lvalue_loc (loc,
4849 fold_convert_loc (loc, type,
4850 negate_expr (tem)));
4851 case NE_EXPR:
4852 case LTGT_EXPR:
4853 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4854 case UNGE_EXPR:
4855 case UNGT_EXPR:
4856 if (flag_trapping_math)
4857 break;
4858 /* Fall through. */
4859 case GE_EXPR:
4860 case GT_EXPR:
4861 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4862 arg1 = fold_convert_loc (loc, signed_type_for
4863 (TREE_TYPE (arg1)), arg1);
4864 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4865 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4866 case UNLE_EXPR:
4867 case UNLT_EXPR:
4868 if (flag_trapping_math)
4869 break;
4870 case LE_EXPR:
4871 case LT_EXPR:
4872 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4873 arg1 = fold_convert_loc (loc, signed_type_for
4874 (TREE_TYPE (arg1)), arg1);
4875 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4876 return negate_expr (fold_convert_loc (loc, type, tem));
4877 default:
4878 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4879 break;
4880 }
4881
4882 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4883 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4884 both transformations are correct when A is NaN: A != 0
4885 is then true, and A == 0 is false. */
4886
4887 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4888 && integer_zerop (arg01) && integer_zerop (arg2))
4889 {
4890 if (comp_code == NE_EXPR)
4891 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4892 else if (comp_code == EQ_EXPR)
4893 return build_zero_cst (type);
4894 }
4895
4896 /* Try some transformations of A op B ? A : B.
4897
4898 A == B? A : B same as B
4899 A != B? A : B same as A
4900 A >= B? A : B same as max (A, B)
4901 A > B? A : B same as max (B, A)
4902 A <= B? A : B same as min (A, B)
4903 A < B? A : B same as min (B, A)
4904
4905 As above, these transformations don't work in the presence
4906 of signed zeros. For example, if A and B are zeros of
4907 opposite sign, the first two transformations will change
4908 the sign of the result. In the last four, the original
4909 expressions give different results for (A=+0, B=-0) and
4910 (A=-0, B=+0), but the transformed expressions do not.
4911
4912 The first two transformations are correct if either A or B
4913 is a NaN. In the first transformation, the condition will
4914 be false, and B will indeed be chosen. In the case of the
4915 second transformation, the condition A != B will be true,
4916 and A will be chosen.
4917
4918 The conversions to max() and min() are not correct if B is
4919 a number and A is not. The conditions in the original
4920 expressions will be false, so all four give B. The min()
4921 and max() versions would give a NaN instead. */
4922 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4923 && operand_equal_for_comparison_p (arg01, arg2, arg00)
4924 /* Avoid these transformations if the COND_EXPR may be used
4925 as an lvalue in the C++ front-end. PR c++/19199. */
4926 && (in_gimple_form
4927 || VECTOR_TYPE_P (type)
4928 || (! lang_GNU_CXX ()
4929 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
4930 || ! maybe_lvalue_p (arg1)
4931 || ! maybe_lvalue_p (arg2)))
4932 {
4933 tree comp_op0 = arg00;
4934 tree comp_op1 = arg01;
4935 tree comp_type = TREE_TYPE (comp_op0);
4936
4937 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4938 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
4939 {
4940 comp_type = type;
4941 comp_op0 = arg1;
4942 comp_op1 = arg2;
4943 }
4944
4945 switch (comp_code)
4946 {
4947 case EQ_EXPR:
4948 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg2));
4949 case NE_EXPR:
4950 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4951 case LE_EXPR:
4952 case LT_EXPR:
4953 case UNLE_EXPR:
4954 case UNLT_EXPR:
4955 /* In C++ a ?: expression can be an lvalue, so put the
4956 operand which will be used if they are equal first
4957 so that we can convert this back to the
4958 corresponding COND_EXPR. */
4959 if (!HONOR_NANS (arg1))
4960 {
4961 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4962 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4963 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
4964 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
4965 : fold_build2_loc (loc, MIN_EXPR, comp_type,
4966 comp_op1, comp_op0);
4967 return pedantic_non_lvalue_loc (loc,
4968 fold_convert_loc (loc, type, tem));
4969 }
4970 break;
4971 case GE_EXPR:
4972 case GT_EXPR:
4973 case UNGE_EXPR:
4974 case UNGT_EXPR:
4975 if (!HONOR_NANS (arg1))
4976 {
4977 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4978 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4979 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
4980 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
4981 : fold_build2_loc (loc, MAX_EXPR, comp_type,
4982 comp_op1, comp_op0);
4983 return pedantic_non_lvalue_loc (loc,
4984 fold_convert_loc (loc, type, tem));
4985 }
4986 break;
4987 case UNEQ_EXPR:
4988 if (!HONOR_NANS (arg1))
4989 return pedantic_non_lvalue_loc (loc,
4990 fold_convert_loc (loc, type, arg2));
4991 break;
4992 case LTGT_EXPR:
4993 if (!HONOR_NANS (arg1))
4994 return pedantic_non_lvalue_loc (loc,
4995 fold_convert_loc (loc, type, arg1));
4996 break;
4997 default:
4998 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4999 break;
5000 }
5001 }
5002
5003 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5004 we might still be able to simplify this. For example,
5005 if C1 is one less or one more than C2, this might have started
5006 out as a MIN or MAX and been transformed by this function.
5007 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5008
5009 if (INTEGRAL_TYPE_P (type)
5010 && TREE_CODE (arg01) == INTEGER_CST
5011 && TREE_CODE (arg2) == INTEGER_CST)
5012 switch (comp_code)
5013 {
5014 case EQ_EXPR:
5015 if (TREE_CODE (arg1) == INTEGER_CST)
5016 break;
5017 /* We can replace A with C1 in this case. */
5018 arg1 = fold_convert_loc (loc, type, arg01);
5019 return fold_build3_loc (loc, COND_EXPR, type, arg0, arg1, arg2);
5020
5021 case LT_EXPR:
5022 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
5023 MIN_EXPR, to preserve the signedness of the comparison. */
5024 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5025 OEP_ONLY_CONST)
5026 && operand_equal_p (arg01,
5027 const_binop (PLUS_EXPR, arg2,
5028 build_int_cst (type, 1)),
5029 OEP_ONLY_CONST))
5030 {
5031 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5032 fold_convert_loc (loc, TREE_TYPE (arg00),
5033 arg2));
5034 return pedantic_non_lvalue_loc (loc,
5035 fold_convert_loc (loc, type, tem));
5036 }
5037 break;
5038
5039 case LE_EXPR:
5040 /* If C1 is C2 - 1, this is min(A, C2), with the same care
5041 as above. */
5042 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5043 OEP_ONLY_CONST)
5044 && operand_equal_p (arg01,
5045 const_binop (MINUS_EXPR, arg2,
5046 build_int_cst (type, 1)),
5047 OEP_ONLY_CONST))
5048 {
5049 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5050 fold_convert_loc (loc, TREE_TYPE (arg00),
5051 arg2));
5052 return pedantic_non_lvalue_loc (loc,
5053 fold_convert_loc (loc, type, tem));
5054 }
5055 break;
5056
5057 case GT_EXPR:
5058 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
5059 MAX_EXPR, to preserve the signedness of the comparison. */
5060 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5061 OEP_ONLY_CONST)
5062 && operand_equal_p (arg01,
5063 const_binop (MINUS_EXPR, arg2,
5064 build_int_cst (type, 1)),
5065 OEP_ONLY_CONST))
5066 {
5067 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5068 fold_convert_loc (loc, TREE_TYPE (arg00),
5069 arg2));
5070 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5071 }
5072 break;
5073
5074 case GE_EXPR:
5075 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
5076 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5077 OEP_ONLY_CONST)
5078 && operand_equal_p (arg01,
5079 const_binop (PLUS_EXPR, arg2,
5080 build_int_cst (type, 1)),
5081 OEP_ONLY_CONST))
5082 {
5083 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5084 fold_convert_loc (loc, TREE_TYPE (arg00),
5085 arg2));
5086 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5087 }
5088 break;
5089 case NE_EXPR:
5090 break;
5091 default:
5092 gcc_unreachable ();
5093 }
5094
5095 return NULL_TREE;
5096 }
5097
5098
5099 \f
5100 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5101 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5102 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5103 false) >= 2)
5104 #endif
5105
5106 /* EXP is some logical combination of boolean tests. See if we can
5107 merge it into some range test. Return the new tree if so. */
5108
5109 static tree
5110 fold_range_test (location_t loc, enum tree_code code, tree type,
5111 tree op0, tree op1)
5112 {
5113 int or_op = (code == TRUTH_ORIF_EXPR
5114 || code == TRUTH_OR_EXPR);
5115 int in0_p, in1_p, in_p;
5116 tree low0, low1, low, high0, high1, high;
5117 bool strict_overflow_p = false;
5118 tree tem, lhs, rhs;
5119 const char * const warnmsg = G_("assuming signed overflow does not occur "
5120 "when simplifying range test");
5121
5122 if (!INTEGRAL_TYPE_P (type))
5123 return 0;
5124
5125 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5126 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5127
5128 /* If this is an OR operation, invert both sides; we will invert
5129 again at the end. */
5130 if (or_op)
5131 in0_p = ! in0_p, in1_p = ! in1_p;
5132
5133 /* If both expressions are the same, if we can merge the ranges, and we
5134 can build the range test, return it or it inverted. If one of the
5135 ranges is always true or always false, consider it to be the same
5136 expression as the other. */
5137 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5138 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5139 in1_p, low1, high1)
5140 && 0 != (tem = (build_range_check (loc, type,
5141 lhs != 0 ? lhs
5142 : rhs != 0 ? rhs : integer_zero_node,
5143 in_p, low, high))))
5144 {
5145 if (strict_overflow_p)
5146 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5147 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5148 }
5149
5150 /* On machines where the branch cost is expensive, if this is a
5151 short-circuited branch and the underlying object on both sides
5152 is the same, make a non-short-circuit operation. */
5153 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5154 && lhs != 0 && rhs != 0
5155 && (code == TRUTH_ANDIF_EXPR
5156 || code == TRUTH_ORIF_EXPR)
5157 && operand_equal_p (lhs, rhs, 0))
5158 {
5159 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5160 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5161 which cases we can't do this. */
5162 if (simple_operand_p (lhs))
5163 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5164 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5165 type, op0, op1);
5166
5167 else if (!lang_hooks.decls.global_bindings_p ()
5168 && !CONTAINS_PLACEHOLDER_P (lhs))
5169 {
5170 tree common = save_expr (lhs);
5171
5172 if (0 != (lhs = build_range_check (loc, type, common,
5173 or_op ? ! in0_p : in0_p,
5174 low0, high0))
5175 && (0 != (rhs = build_range_check (loc, type, common,
5176 or_op ? ! in1_p : in1_p,
5177 low1, high1))))
5178 {
5179 if (strict_overflow_p)
5180 fold_overflow_warning (warnmsg,
5181 WARN_STRICT_OVERFLOW_COMPARISON);
5182 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5183 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5184 type, lhs, rhs);
5185 }
5186 }
5187 }
5188
5189 return 0;
5190 }
5191 \f
5192 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5193 bit value. Arrange things so the extra bits will be set to zero if and
5194 only if C is signed-extended to its full width. If MASK is nonzero,
5195 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5196
5197 static tree
5198 unextend (tree c, int p, int unsignedp, tree mask)
5199 {
5200 tree type = TREE_TYPE (c);
5201 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5202 tree temp;
5203
5204 if (p == modesize || unsignedp)
5205 return c;
5206
5207 /* We work by getting just the sign bit into the low-order bit, then
5208 into the high-order bit, then sign-extend. We then XOR that value
5209 with C. */
5210 temp = build_int_cst (TREE_TYPE (c), wi::extract_uhwi (c, p - 1, 1));
5211
5212 /* We must use a signed type in order to get an arithmetic right shift.
5213 However, we must also avoid introducing accidental overflows, so that
5214 a subsequent call to integer_zerop will work. Hence we must
5215 do the type conversion here. At this point, the constant is either
5216 zero or one, and the conversion to a signed type can never overflow.
5217 We could get an overflow if this conversion is done anywhere else. */
5218 if (TYPE_UNSIGNED (type))
5219 temp = fold_convert (signed_type_for (type), temp);
5220
5221 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5222 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5223 if (mask != 0)
5224 temp = const_binop (BIT_AND_EXPR, temp,
5225 fold_convert (TREE_TYPE (c), mask));
5226 /* If necessary, convert the type back to match the type of C. */
5227 if (TYPE_UNSIGNED (type))
5228 temp = fold_convert (type, temp);
5229
5230 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5231 }
5232 \f
5233 /* For an expression that has the form
5234 (A && B) || ~B
5235 or
5236 (A || B) && ~B,
5237 we can drop one of the inner expressions and simplify to
5238 A || ~B
5239 or
5240 A && ~B
5241 LOC is the location of the resulting expression. OP is the inner
5242 logical operation; the left-hand side in the examples above, while CMPOP
5243 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5244 removing a condition that guards another, as in
5245 (A != NULL && A->...) || A == NULL
5246 which we must not transform. If RHS_ONLY is true, only eliminate the
5247 right-most operand of the inner logical operation. */
5248
5249 static tree
5250 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5251 bool rhs_only)
5252 {
5253 tree type = TREE_TYPE (cmpop);
5254 enum tree_code code = TREE_CODE (cmpop);
5255 enum tree_code truthop_code = TREE_CODE (op);
5256 tree lhs = TREE_OPERAND (op, 0);
5257 tree rhs = TREE_OPERAND (op, 1);
5258 tree orig_lhs = lhs, orig_rhs = rhs;
5259 enum tree_code rhs_code = TREE_CODE (rhs);
5260 enum tree_code lhs_code = TREE_CODE (lhs);
5261 enum tree_code inv_code;
5262
5263 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5264 return NULL_TREE;
5265
5266 if (TREE_CODE_CLASS (code) != tcc_comparison)
5267 return NULL_TREE;
5268
5269 if (rhs_code == truthop_code)
5270 {
5271 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5272 if (newrhs != NULL_TREE)
5273 {
5274 rhs = newrhs;
5275 rhs_code = TREE_CODE (rhs);
5276 }
5277 }
5278 if (lhs_code == truthop_code && !rhs_only)
5279 {
5280 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5281 if (newlhs != NULL_TREE)
5282 {
5283 lhs = newlhs;
5284 lhs_code = TREE_CODE (lhs);
5285 }
5286 }
5287
5288 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5289 if (inv_code == rhs_code
5290 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5291 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5292 return lhs;
5293 if (!rhs_only && inv_code == lhs_code
5294 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5295 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5296 return rhs;
5297 if (rhs != orig_rhs || lhs != orig_lhs)
5298 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5299 lhs, rhs);
5300 return NULL_TREE;
5301 }
5302
5303 /* Find ways of folding logical expressions of LHS and RHS:
5304 Try to merge two comparisons to the same innermost item.
5305 Look for range tests like "ch >= '0' && ch <= '9'".
5306 Look for combinations of simple terms on machines with expensive branches
5307 and evaluate the RHS unconditionally.
5308
5309 For example, if we have p->a == 2 && p->b == 4 and we can make an
5310 object large enough to span both A and B, we can do this with a comparison
5311 against the object ANDed with the a mask.
5312
5313 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5314 operations to do this with one comparison.
5315
5316 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5317 function and the one above.
5318
5319 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5320 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5321
5322 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5323 two operands.
5324
5325 We return the simplified tree or 0 if no optimization is possible. */
5326
5327 static tree
5328 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5329 tree lhs, tree rhs)
5330 {
5331 /* If this is the "or" of two comparisons, we can do something if
5332 the comparisons are NE_EXPR. If this is the "and", we can do something
5333 if the comparisons are EQ_EXPR. I.e.,
5334 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5335
5336 WANTED_CODE is this operation code. For single bit fields, we can
5337 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5338 comparison for one-bit fields. */
5339
5340 enum tree_code wanted_code;
5341 enum tree_code lcode, rcode;
5342 tree ll_arg, lr_arg, rl_arg, rr_arg;
5343 tree ll_inner, lr_inner, rl_inner, rr_inner;
5344 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5345 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5346 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5347 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5348 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5349 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5350 machine_mode lnmode, rnmode;
5351 tree ll_mask, lr_mask, rl_mask, rr_mask;
5352 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5353 tree l_const, r_const;
5354 tree lntype, rntype, result;
5355 HOST_WIDE_INT first_bit, end_bit;
5356 int volatilep;
5357
5358 /* Start by getting the comparison codes. Fail if anything is volatile.
5359 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5360 it were surrounded with a NE_EXPR. */
5361
5362 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5363 return 0;
5364
5365 lcode = TREE_CODE (lhs);
5366 rcode = TREE_CODE (rhs);
5367
5368 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5369 {
5370 lhs = build2 (NE_EXPR, truth_type, lhs,
5371 build_int_cst (TREE_TYPE (lhs), 0));
5372 lcode = NE_EXPR;
5373 }
5374
5375 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5376 {
5377 rhs = build2 (NE_EXPR, truth_type, rhs,
5378 build_int_cst (TREE_TYPE (rhs), 0));
5379 rcode = NE_EXPR;
5380 }
5381
5382 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5383 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5384 return 0;
5385
5386 ll_arg = TREE_OPERAND (lhs, 0);
5387 lr_arg = TREE_OPERAND (lhs, 1);
5388 rl_arg = TREE_OPERAND (rhs, 0);
5389 rr_arg = TREE_OPERAND (rhs, 1);
5390
5391 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5392 if (simple_operand_p (ll_arg)
5393 && simple_operand_p (lr_arg))
5394 {
5395 if (operand_equal_p (ll_arg, rl_arg, 0)
5396 && operand_equal_p (lr_arg, rr_arg, 0))
5397 {
5398 result = combine_comparisons (loc, code, lcode, rcode,
5399 truth_type, ll_arg, lr_arg);
5400 if (result)
5401 return result;
5402 }
5403 else if (operand_equal_p (ll_arg, rr_arg, 0)
5404 && operand_equal_p (lr_arg, rl_arg, 0))
5405 {
5406 result = combine_comparisons (loc, code, lcode,
5407 swap_tree_comparison (rcode),
5408 truth_type, ll_arg, lr_arg);
5409 if (result)
5410 return result;
5411 }
5412 }
5413
5414 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5415 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5416
5417 /* If the RHS can be evaluated unconditionally and its operands are
5418 simple, it wins to evaluate the RHS unconditionally on machines
5419 with expensive branches. In this case, this isn't a comparison
5420 that can be merged. */
5421
5422 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5423 false) >= 2
5424 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5425 && simple_operand_p (rl_arg)
5426 && simple_operand_p (rr_arg))
5427 {
5428 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5429 if (code == TRUTH_OR_EXPR
5430 && lcode == NE_EXPR && integer_zerop (lr_arg)
5431 && rcode == NE_EXPR && integer_zerop (rr_arg)
5432 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5433 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5434 return build2_loc (loc, NE_EXPR, truth_type,
5435 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5436 ll_arg, rl_arg),
5437 build_int_cst (TREE_TYPE (ll_arg), 0));
5438
5439 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5440 if (code == TRUTH_AND_EXPR
5441 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5442 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5443 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5444 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5445 return build2_loc (loc, EQ_EXPR, truth_type,
5446 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5447 ll_arg, rl_arg),
5448 build_int_cst (TREE_TYPE (ll_arg), 0));
5449 }
5450
5451 /* See if the comparisons can be merged. Then get all the parameters for
5452 each side. */
5453
5454 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5455 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5456 return 0;
5457
5458 volatilep = 0;
5459 ll_inner = decode_field_reference (loc, ll_arg,
5460 &ll_bitsize, &ll_bitpos, &ll_mode,
5461 &ll_unsignedp, &volatilep, &ll_mask,
5462 &ll_and_mask);
5463 lr_inner = decode_field_reference (loc, lr_arg,
5464 &lr_bitsize, &lr_bitpos, &lr_mode,
5465 &lr_unsignedp, &volatilep, &lr_mask,
5466 &lr_and_mask);
5467 rl_inner = decode_field_reference (loc, rl_arg,
5468 &rl_bitsize, &rl_bitpos, &rl_mode,
5469 &rl_unsignedp, &volatilep, &rl_mask,
5470 &rl_and_mask);
5471 rr_inner = decode_field_reference (loc, rr_arg,
5472 &rr_bitsize, &rr_bitpos, &rr_mode,
5473 &rr_unsignedp, &volatilep, &rr_mask,
5474 &rr_and_mask);
5475
5476 /* It must be true that the inner operation on the lhs of each
5477 comparison must be the same if we are to be able to do anything.
5478 Then see if we have constants. If not, the same must be true for
5479 the rhs's. */
5480 if (volatilep || ll_inner == 0 || rl_inner == 0
5481 || ! operand_equal_p (ll_inner, rl_inner, 0))
5482 return 0;
5483
5484 if (TREE_CODE (lr_arg) == INTEGER_CST
5485 && TREE_CODE (rr_arg) == INTEGER_CST)
5486 l_const = lr_arg, r_const = rr_arg;
5487 else if (lr_inner == 0 || rr_inner == 0
5488 || ! operand_equal_p (lr_inner, rr_inner, 0))
5489 return 0;
5490 else
5491 l_const = r_const = 0;
5492
5493 /* If either comparison code is not correct for our logical operation,
5494 fail. However, we can convert a one-bit comparison against zero into
5495 the opposite comparison against that bit being set in the field. */
5496
5497 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5498 if (lcode != wanted_code)
5499 {
5500 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5501 {
5502 /* Make the left operand unsigned, since we are only interested
5503 in the value of one bit. Otherwise we are doing the wrong
5504 thing below. */
5505 ll_unsignedp = 1;
5506 l_const = ll_mask;
5507 }
5508 else
5509 return 0;
5510 }
5511
5512 /* This is analogous to the code for l_const above. */
5513 if (rcode != wanted_code)
5514 {
5515 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5516 {
5517 rl_unsignedp = 1;
5518 r_const = rl_mask;
5519 }
5520 else
5521 return 0;
5522 }
5523
5524 /* See if we can find a mode that contains both fields being compared on
5525 the left. If we can't, fail. Otherwise, update all constants and masks
5526 to be relative to a field of that size. */
5527 first_bit = MIN (ll_bitpos, rl_bitpos);
5528 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5529 lnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5530 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5531 volatilep);
5532 if (lnmode == VOIDmode)
5533 return 0;
5534
5535 lnbitsize = GET_MODE_BITSIZE (lnmode);
5536 lnbitpos = first_bit & ~ (lnbitsize - 1);
5537 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5538 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5539
5540 if (BYTES_BIG_ENDIAN)
5541 {
5542 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5543 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5544 }
5545
5546 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5547 size_int (xll_bitpos));
5548 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5549 size_int (xrl_bitpos));
5550
5551 if (l_const)
5552 {
5553 l_const = fold_convert_loc (loc, lntype, l_const);
5554 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5555 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5556 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5557 fold_build1_loc (loc, BIT_NOT_EXPR,
5558 lntype, ll_mask))))
5559 {
5560 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5561
5562 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5563 }
5564 }
5565 if (r_const)
5566 {
5567 r_const = fold_convert_loc (loc, lntype, r_const);
5568 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5569 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5570 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5571 fold_build1_loc (loc, BIT_NOT_EXPR,
5572 lntype, rl_mask))))
5573 {
5574 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5575
5576 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5577 }
5578 }
5579
5580 /* If the right sides are not constant, do the same for it. Also,
5581 disallow this optimization if a size or signedness mismatch occurs
5582 between the left and right sides. */
5583 if (l_const == 0)
5584 {
5585 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5586 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5587 /* Make sure the two fields on the right
5588 correspond to the left without being swapped. */
5589 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5590 return 0;
5591
5592 first_bit = MIN (lr_bitpos, rr_bitpos);
5593 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5594 rnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5595 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5596 volatilep);
5597 if (rnmode == VOIDmode)
5598 return 0;
5599
5600 rnbitsize = GET_MODE_BITSIZE (rnmode);
5601 rnbitpos = first_bit & ~ (rnbitsize - 1);
5602 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5603 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5604
5605 if (BYTES_BIG_ENDIAN)
5606 {
5607 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5608 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5609 }
5610
5611 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5612 rntype, lr_mask),
5613 size_int (xlr_bitpos));
5614 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5615 rntype, rr_mask),
5616 size_int (xrr_bitpos));
5617
5618 /* Make a mask that corresponds to both fields being compared.
5619 Do this for both items being compared. If the operands are the
5620 same size and the bits being compared are in the same position
5621 then we can do this by masking both and comparing the masked
5622 results. */
5623 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5624 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5625 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5626 {
5627 lhs = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5628 ll_unsignedp || rl_unsignedp);
5629 if (! all_ones_mask_p (ll_mask, lnbitsize))
5630 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5631
5632 rhs = make_bit_field_ref (loc, lr_inner, rntype, rnbitsize, rnbitpos,
5633 lr_unsignedp || rr_unsignedp);
5634 if (! all_ones_mask_p (lr_mask, rnbitsize))
5635 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5636
5637 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5638 }
5639
5640 /* There is still another way we can do something: If both pairs of
5641 fields being compared are adjacent, we may be able to make a wider
5642 field containing them both.
5643
5644 Note that we still must mask the lhs/rhs expressions. Furthermore,
5645 the mask must be shifted to account for the shift done by
5646 make_bit_field_ref. */
5647 if ((ll_bitsize + ll_bitpos == rl_bitpos
5648 && lr_bitsize + lr_bitpos == rr_bitpos)
5649 || (ll_bitpos == rl_bitpos + rl_bitsize
5650 && lr_bitpos == rr_bitpos + rr_bitsize))
5651 {
5652 tree type;
5653
5654 lhs = make_bit_field_ref (loc, ll_inner, lntype,
5655 ll_bitsize + rl_bitsize,
5656 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5657 rhs = make_bit_field_ref (loc, lr_inner, rntype,
5658 lr_bitsize + rr_bitsize,
5659 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5660
5661 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5662 size_int (MIN (xll_bitpos, xrl_bitpos)));
5663 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5664 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5665
5666 /* Convert to the smaller type before masking out unwanted bits. */
5667 type = lntype;
5668 if (lntype != rntype)
5669 {
5670 if (lnbitsize > rnbitsize)
5671 {
5672 lhs = fold_convert_loc (loc, rntype, lhs);
5673 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5674 type = rntype;
5675 }
5676 else if (lnbitsize < rnbitsize)
5677 {
5678 rhs = fold_convert_loc (loc, lntype, rhs);
5679 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5680 type = lntype;
5681 }
5682 }
5683
5684 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5685 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5686
5687 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5688 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5689
5690 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5691 }
5692
5693 return 0;
5694 }
5695
5696 /* Handle the case of comparisons with constants. If there is something in
5697 common between the masks, those bits of the constants must be the same.
5698 If not, the condition is always false. Test for this to avoid generating
5699 incorrect code below. */
5700 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5701 if (! integer_zerop (result)
5702 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5703 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5704 {
5705 if (wanted_code == NE_EXPR)
5706 {
5707 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5708 return constant_boolean_node (true, truth_type);
5709 }
5710 else
5711 {
5712 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5713 return constant_boolean_node (false, truth_type);
5714 }
5715 }
5716
5717 /* Construct the expression we will return. First get the component
5718 reference we will make. Unless the mask is all ones the width of
5719 that field, perform the mask operation. Then compare with the
5720 merged constant. */
5721 result = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5722 ll_unsignedp || rl_unsignedp);
5723
5724 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5725 if (! all_ones_mask_p (ll_mask, lnbitsize))
5726 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5727
5728 return build2_loc (loc, wanted_code, truth_type, result,
5729 const_binop (BIT_IOR_EXPR, l_const, r_const));
5730 }
5731 \f
5732 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5733 constant. */
5734
5735 static tree
5736 optimize_minmax_comparison (location_t loc, enum tree_code code, tree type,
5737 tree op0, tree op1)
5738 {
5739 tree arg0 = op0;
5740 enum tree_code op_code;
5741 tree comp_const;
5742 tree minmax_const;
5743 int consts_equal, consts_lt;
5744 tree inner;
5745
5746 STRIP_SIGN_NOPS (arg0);
5747
5748 op_code = TREE_CODE (arg0);
5749 minmax_const = TREE_OPERAND (arg0, 1);
5750 comp_const = fold_convert_loc (loc, TREE_TYPE (arg0), op1);
5751 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5752 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5753 inner = TREE_OPERAND (arg0, 0);
5754
5755 /* If something does not permit us to optimize, return the original tree. */
5756 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5757 || TREE_CODE (comp_const) != INTEGER_CST
5758 || TREE_OVERFLOW (comp_const)
5759 || TREE_CODE (minmax_const) != INTEGER_CST
5760 || TREE_OVERFLOW (minmax_const))
5761 return NULL_TREE;
5762
5763 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5764 and GT_EXPR, doing the rest with recursive calls using logical
5765 simplifications. */
5766 switch (code)
5767 {
5768 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5769 {
5770 tree tem
5771 = optimize_minmax_comparison (loc,
5772 invert_tree_comparison (code, false),
5773 type, op0, op1);
5774 if (tem)
5775 return invert_truthvalue_loc (loc, tem);
5776 return NULL_TREE;
5777 }
5778
5779 case GE_EXPR:
5780 return
5781 fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
5782 optimize_minmax_comparison
5783 (loc, EQ_EXPR, type, arg0, comp_const),
5784 optimize_minmax_comparison
5785 (loc, GT_EXPR, type, arg0, comp_const));
5786
5787 case EQ_EXPR:
5788 if (op_code == MAX_EXPR && consts_equal)
5789 /* MAX (X, 0) == 0 -> X <= 0 */
5790 return fold_build2_loc (loc, LE_EXPR, type, inner, comp_const);
5791
5792 else if (op_code == MAX_EXPR && consts_lt)
5793 /* MAX (X, 0) == 5 -> X == 5 */
5794 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5795
5796 else if (op_code == MAX_EXPR)
5797 /* MAX (X, 0) == -1 -> false */
5798 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5799
5800 else if (consts_equal)
5801 /* MIN (X, 0) == 0 -> X >= 0 */
5802 return fold_build2_loc (loc, GE_EXPR, type, inner, comp_const);
5803
5804 else if (consts_lt)
5805 /* MIN (X, 0) == 5 -> false */
5806 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5807
5808 else
5809 /* MIN (X, 0) == -1 -> X == -1 */
5810 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5811
5812 case GT_EXPR:
5813 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5814 /* MAX (X, 0) > 0 -> X > 0
5815 MAX (X, 0) > 5 -> X > 5 */
5816 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5817
5818 else if (op_code == MAX_EXPR)
5819 /* MAX (X, 0) > -1 -> true */
5820 return omit_one_operand_loc (loc, type, integer_one_node, inner);
5821
5822 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5823 /* MIN (X, 0) > 0 -> false
5824 MIN (X, 0) > 5 -> false */
5825 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5826
5827 else
5828 /* MIN (X, 0) > -1 -> X > -1 */
5829 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5830
5831 default:
5832 return NULL_TREE;
5833 }
5834 }
5835 \f
5836 /* T is an integer expression that is being multiplied, divided, or taken a
5837 modulus (CODE says which and what kind of divide or modulus) by a
5838 constant C. See if we can eliminate that operation by folding it with
5839 other operations already in T. WIDE_TYPE, if non-null, is a type that
5840 should be used for the computation if wider than our type.
5841
5842 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5843 (X * 2) + (Y * 4). We must, however, be assured that either the original
5844 expression would not overflow or that overflow is undefined for the type
5845 in the language in question.
5846
5847 If we return a non-null expression, it is an equivalent form of the
5848 original computation, but need not be in the original type.
5849
5850 We set *STRICT_OVERFLOW_P to true if the return values depends on
5851 signed overflow being undefined. Otherwise we do not change
5852 *STRICT_OVERFLOW_P. */
5853
5854 static tree
5855 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5856 bool *strict_overflow_p)
5857 {
5858 /* To avoid exponential search depth, refuse to allow recursion past
5859 three levels. Beyond that (1) it's highly unlikely that we'll find
5860 something interesting and (2) we've probably processed it before
5861 when we built the inner expression. */
5862
5863 static int depth;
5864 tree ret;
5865
5866 if (depth > 3)
5867 return NULL;
5868
5869 depth++;
5870 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
5871 depth--;
5872
5873 return ret;
5874 }
5875
5876 static tree
5877 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
5878 bool *strict_overflow_p)
5879 {
5880 tree type = TREE_TYPE (t);
5881 enum tree_code tcode = TREE_CODE (t);
5882 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5883 > GET_MODE_SIZE (TYPE_MODE (type)))
5884 ? wide_type : type);
5885 tree t1, t2;
5886 int same_p = tcode == code;
5887 tree op0 = NULL_TREE, op1 = NULL_TREE;
5888 bool sub_strict_overflow_p;
5889
5890 /* Don't deal with constants of zero here; they confuse the code below. */
5891 if (integer_zerop (c))
5892 return NULL_TREE;
5893
5894 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5895 op0 = TREE_OPERAND (t, 0);
5896
5897 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5898 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5899
5900 /* Note that we need not handle conditional operations here since fold
5901 already handles those cases. So just do arithmetic here. */
5902 switch (tcode)
5903 {
5904 case INTEGER_CST:
5905 /* For a constant, we can always simplify if we are a multiply
5906 or (for divide and modulus) if it is a multiple of our constant. */
5907 if (code == MULT_EXPR
5908 || wi::multiple_of_p (t, c, TYPE_SIGN (type)))
5909 return const_binop (code, fold_convert (ctype, t),
5910 fold_convert (ctype, c));
5911 break;
5912
5913 CASE_CONVERT: case NON_LVALUE_EXPR:
5914 /* If op0 is an expression ... */
5915 if ((COMPARISON_CLASS_P (op0)
5916 || UNARY_CLASS_P (op0)
5917 || BINARY_CLASS_P (op0)
5918 || VL_EXP_CLASS_P (op0)
5919 || EXPRESSION_CLASS_P (op0))
5920 /* ... and has wrapping overflow, and its type is smaller
5921 than ctype, then we cannot pass through as widening. */
5922 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
5923 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
5924 && (TYPE_PRECISION (ctype)
5925 > TYPE_PRECISION (TREE_TYPE (op0))))
5926 /* ... or this is a truncation (t is narrower than op0),
5927 then we cannot pass through this narrowing. */
5928 || (TYPE_PRECISION (type)
5929 < TYPE_PRECISION (TREE_TYPE (op0)))
5930 /* ... or signedness changes for division or modulus,
5931 then we cannot pass through this conversion. */
5932 || (code != MULT_EXPR
5933 && (TYPE_UNSIGNED (ctype)
5934 != TYPE_UNSIGNED (TREE_TYPE (op0))))
5935 /* ... or has undefined overflow while the converted to
5936 type has not, we cannot do the operation in the inner type
5937 as that would introduce undefined overflow. */
5938 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
5939 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
5940 && !TYPE_OVERFLOW_UNDEFINED (type))))
5941 break;
5942
5943 /* Pass the constant down and see if we can make a simplification. If
5944 we can, replace this expression with the inner simplification for
5945 possible later conversion to our or some other type. */
5946 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5947 && TREE_CODE (t2) == INTEGER_CST
5948 && !TREE_OVERFLOW (t2)
5949 && (0 != (t1 = extract_muldiv (op0, t2, code,
5950 code == MULT_EXPR
5951 ? ctype : NULL_TREE,
5952 strict_overflow_p))))
5953 return t1;
5954 break;
5955
5956 case ABS_EXPR:
5957 /* If widening the type changes it from signed to unsigned, then we
5958 must avoid building ABS_EXPR itself as unsigned. */
5959 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
5960 {
5961 tree cstype = (*signed_type_for) (ctype);
5962 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
5963 != 0)
5964 {
5965 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
5966 return fold_convert (ctype, t1);
5967 }
5968 break;
5969 }
5970 /* If the constant is negative, we cannot simplify this. */
5971 if (tree_int_cst_sgn (c) == -1)
5972 break;
5973 /* FALLTHROUGH */
5974 case NEGATE_EXPR:
5975 /* For division and modulus, type can't be unsigned, as e.g.
5976 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
5977 For signed types, even with wrapping overflow, this is fine. */
5978 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
5979 break;
5980 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
5981 != 0)
5982 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
5983 break;
5984
5985 case MIN_EXPR: case MAX_EXPR:
5986 /* If widening the type changes the signedness, then we can't perform
5987 this optimization as that changes the result. */
5988 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
5989 break;
5990
5991 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5992 sub_strict_overflow_p = false;
5993 if ((t1 = extract_muldiv (op0, c, code, wide_type,
5994 &sub_strict_overflow_p)) != 0
5995 && (t2 = extract_muldiv (op1, c, code, wide_type,
5996 &sub_strict_overflow_p)) != 0)
5997 {
5998 if (tree_int_cst_sgn (c) < 0)
5999 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6000 if (sub_strict_overflow_p)
6001 *strict_overflow_p = true;
6002 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6003 fold_convert (ctype, t2));
6004 }
6005 break;
6006
6007 case LSHIFT_EXPR: case RSHIFT_EXPR:
6008 /* If the second operand is constant, this is a multiplication
6009 or floor division, by a power of two, so we can treat it that
6010 way unless the multiplier or divisor overflows. Signed
6011 left-shift overflow is implementation-defined rather than
6012 undefined in C90, so do not convert signed left shift into
6013 multiplication. */
6014 if (TREE_CODE (op1) == INTEGER_CST
6015 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6016 /* const_binop may not detect overflow correctly,
6017 so check for it explicitly here. */
6018 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
6019 && 0 != (t1 = fold_convert (ctype,
6020 const_binop (LSHIFT_EXPR,
6021 size_one_node,
6022 op1)))
6023 && !TREE_OVERFLOW (t1))
6024 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6025 ? MULT_EXPR : FLOOR_DIV_EXPR,
6026 ctype,
6027 fold_convert (ctype, op0),
6028 t1),
6029 c, code, wide_type, strict_overflow_p);
6030 break;
6031
6032 case PLUS_EXPR: case MINUS_EXPR:
6033 /* See if we can eliminate the operation on both sides. If we can, we
6034 can return a new PLUS or MINUS. If we can't, the only remaining
6035 cases where we can do anything are if the second operand is a
6036 constant. */
6037 sub_strict_overflow_p = false;
6038 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6039 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6040 if (t1 != 0 && t2 != 0
6041 && (code == MULT_EXPR
6042 /* If not multiplication, we can only do this if both operands
6043 are divisible by c. */
6044 || (multiple_of_p (ctype, op0, c)
6045 && multiple_of_p (ctype, op1, c))))
6046 {
6047 if (sub_strict_overflow_p)
6048 *strict_overflow_p = true;
6049 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6050 fold_convert (ctype, t2));
6051 }
6052
6053 /* If this was a subtraction, negate OP1 and set it to be an addition.
6054 This simplifies the logic below. */
6055 if (tcode == MINUS_EXPR)
6056 {
6057 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6058 /* If OP1 was not easily negatable, the constant may be OP0. */
6059 if (TREE_CODE (op0) == INTEGER_CST)
6060 {
6061 std::swap (op0, op1);
6062 std::swap (t1, t2);
6063 }
6064 }
6065
6066 if (TREE_CODE (op1) != INTEGER_CST)
6067 break;
6068
6069 /* If either OP1 or C are negative, this optimization is not safe for
6070 some of the division and remainder types while for others we need
6071 to change the code. */
6072 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6073 {
6074 if (code == CEIL_DIV_EXPR)
6075 code = FLOOR_DIV_EXPR;
6076 else if (code == FLOOR_DIV_EXPR)
6077 code = CEIL_DIV_EXPR;
6078 else if (code != MULT_EXPR
6079 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6080 break;
6081 }
6082
6083 /* If it's a multiply or a division/modulus operation of a multiple
6084 of our constant, do the operation and verify it doesn't overflow. */
6085 if (code == MULT_EXPR
6086 || wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6087 {
6088 op1 = const_binop (code, fold_convert (ctype, op1),
6089 fold_convert (ctype, c));
6090 /* We allow the constant to overflow with wrapping semantics. */
6091 if (op1 == 0
6092 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6093 break;
6094 }
6095 else
6096 break;
6097
6098 /* If we have an unsigned type, we cannot widen the operation since it
6099 will change the result if the original computation overflowed. */
6100 if (TYPE_UNSIGNED (ctype) && ctype != type)
6101 break;
6102
6103 /* If we were able to eliminate our operation from the first side,
6104 apply our operation to the second side and reform the PLUS. */
6105 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
6106 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
6107
6108 /* The last case is if we are a multiply. In that case, we can
6109 apply the distributive law to commute the multiply and addition
6110 if the multiplication of the constants doesn't overflow
6111 and overflow is defined. With undefined overflow
6112 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6113 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6114 return fold_build2 (tcode, ctype,
6115 fold_build2 (code, ctype,
6116 fold_convert (ctype, op0),
6117 fold_convert (ctype, c)),
6118 op1);
6119
6120 break;
6121
6122 case MULT_EXPR:
6123 /* We have a special case here if we are doing something like
6124 (C * 8) % 4 since we know that's zero. */
6125 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6126 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6127 /* If the multiplication can overflow we cannot optimize this. */
6128 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6129 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6130 && wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6131 {
6132 *strict_overflow_p = true;
6133 return omit_one_operand (type, integer_zero_node, op0);
6134 }
6135
6136 /* ... fall through ... */
6137
6138 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6139 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6140 /* If we can extract our operation from the LHS, do so and return a
6141 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6142 do something only if the second operand is a constant. */
6143 if (same_p
6144 && (t1 = extract_muldiv (op0, c, code, wide_type,
6145 strict_overflow_p)) != 0)
6146 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6147 fold_convert (ctype, op1));
6148 else if (tcode == MULT_EXPR && code == MULT_EXPR
6149 && (t1 = extract_muldiv (op1, c, code, wide_type,
6150 strict_overflow_p)) != 0)
6151 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6152 fold_convert (ctype, t1));
6153 else if (TREE_CODE (op1) != INTEGER_CST)
6154 return 0;
6155
6156 /* If these are the same operation types, we can associate them
6157 assuming no overflow. */
6158 if (tcode == code)
6159 {
6160 bool overflow_p = false;
6161 bool overflow_mul_p;
6162 signop sign = TYPE_SIGN (ctype);
6163 wide_int mul = wi::mul (op1, c, sign, &overflow_mul_p);
6164 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6165 if (overflow_mul_p
6166 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6167 overflow_p = true;
6168 if (!overflow_p)
6169 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6170 wide_int_to_tree (ctype, mul));
6171 }
6172
6173 /* If these operations "cancel" each other, we have the main
6174 optimizations of this pass, which occur when either constant is a
6175 multiple of the other, in which case we replace this with either an
6176 operation or CODE or TCODE.
6177
6178 If we have an unsigned type, we cannot do this since it will change
6179 the result if the original computation overflowed. */
6180 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6181 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6182 || (tcode == MULT_EXPR
6183 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6184 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6185 && code != MULT_EXPR)))
6186 {
6187 if (wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6188 {
6189 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6190 *strict_overflow_p = true;
6191 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6192 fold_convert (ctype,
6193 const_binop (TRUNC_DIV_EXPR,
6194 op1, c)));
6195 }
6196 else if (wi::multiple_of_p (c, op1, TYPE_SIGN (type)))
6197 {
6198 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6199 *strict_overflow_p = true;
6200 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6201 fold_convert (ctype,
6202 const_binop (TRUNC_DIV_EXPR,
6203 c, op1)));
6204 }
6205 }
6206 break;
6207
6208 default:
6209 break;
6210 }
6211
6212 return 0;
6213 }
6214 \f
6215 /* Return a node which has the indicated constant VALUE (either 0 or
6216 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6217 and is of the indicated TYPE. */
6218
6219 tree
6220 constant_boolean_node (bool value, tree type)
6221 {
6222 if (type == integer_type_node)
6223 return value ? integer_one_node : integer_zero_node;
6224 else if (type == boolean_type_node)
6225 return value ? boolean_true_node : boolean_false_node;
6226 else if (TREE_CODE (type) == VECTOR_TYPE)
6227 return build_vector_from_val (type,
6228 build_int_cst (TREE_TYPE (type),
6229 value ? -1 : 0));
6230 else
6231 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6232 }
6233
6234
6235 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6236 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6237 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6238 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6239 COND is the first argument to CODE; otherwise (as in the example
6240 given here), it is the second argument. TYPE is the type of the
6241 original expression. Return NULL_TREE if no simplification is
6242 possible. */
6243
6244 static tree
6245 fold_binary_op_with_conditional_arg (location_t loc,
6246 enum tree_code code,
6247 tree type, tree op0, tree op1,
6248 tree cond, tree arg, int cond_first_p)
6249 {
6250 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6251 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6252 tree test, true_value, false_value;
6253 tree lhs = NULL_TREE;
6254 tree rhs = NULL_TREE;
6255 enum tree_code cond_code = COND_EXPR;
6256
6257 if (TREE_CODE (cond) == COND_EXPR
6258 || TREE_CODE (cond) == VEC_COND_EXPR)
6259 {
6260 test = TREE_OPERAND (cond, 0);
6261 true_value = TREE_OPERAND (cond, 1);
6262 false_value = TREE_OPERAND (cond, 2);
6263 /* If this operand throws an expression, then it does not make
6264 sense to try to perform a logical or arithmetic operation
6265 involving it. */
6266 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6267 lhs = true_value;
6268 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6269 rhs = false_value;
6270 }
6271 else
6272 {
6273 tree testtype = TREE_TYPE (cond);
6274 test = cond;
6275 true_value = constant_boolean_node (true, testtype);
6276 false_value = constant_boolean_node (false, testtype);
6277 }
6278
6279 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6280 cond_code = VEC_COND_EXPR;
6281
6282 /* This transformation is only worthwhile if we don't have to wrap ARG
6283 in a SAVE_EXPR and the operation can be simplified without recursing
6284 on at least one of the branches once its pushed inside the COND_EXPR. */
6285 if (!TREE_CONSTANT (arg)
6286 && (TREE_SIDE_EFFECTS (arg)
6287 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6288 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6289 return NULL_TREE;
6290
6291 arg = fold_convert_loc (loc, arg_type, arg);
6292 if (lhs == 0)
6293 {
6294 true_value = fold_convert_loc (loc, cond_type, true_value);
6295 if (cond_first_p)
6296 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6297 else
6298 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6299 }
6300 if (rhs == 0)
6301 {
6302 false_value = fold_convert_loc (loc, cond_type, false_value);
6303 if (cond_first_p)
6304 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6305 else
6306 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6307 }
6308
6309 /* Check that we have simplified at least one of the branches. */
6310 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6311 return NULL_TREE;
6312
6313 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6314 }
6315
6316 \f
6317 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6318
6319 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6320 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6321 ADDEND is the same as X.
6322
6323 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6324 and finite. The problematic cases are when X is zero, and its mode
6325 has signed zeros. In the case of rounding towards -infinity,
6326 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6327 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6328
6329 bool
6330 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6331 {
6332 if (!real_zerop (addend))
6333 return false;
6334
6335 /* Don't allow the fold with -fsignaling-nans. */
6336 if (HONOR_SNANS (element_mode (type)))
6337 return false;
6338
6339 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6340 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6341 return true;
6342
6343 /* In a vector or complex, we would need to check the sign of all zeros. */
6344 if (TREE_CODE (addend) != REAL_CST)
6345 return false;
6346
6347 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6348 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6349 negate = !negate;
6350
6351 /* The mode has signed zeros, and we have to honor their sign.
6352 In this situation, there is only one case we can return true for.
6353 X - 0 is the same as X unless rounding towards -infinity is
6354 supported. */
6355 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6356 }
6357
6358 /* Subroutine of fold() that optimizes comparisons of a division by
6359 a nonzero integer constant against an integer constant, i.e.
6360 X/C1 op C2.
6361
6362 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6363 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6364 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6365
6366 The function returns the constant folded tree if a simplification
6367 can be made, and NULL_TREE otherwise. */
6368
6369 static tree
6370 fold_div_compare (location_t loc,
6371 enum tree_code code, tree type, tree arg0, tree arg1)
6372 {
6373 tree prod, tmp, hi, lo;
6374 tree arg00 = TREE_OPERAND (arg0, 0);
6375 tree arg01 = TREE_OPERAND (arg0, 1);
6376 signop sign = TYPE_SIGN (TREE_TYPE (arg0));
6377 bool neg_overflow = false;
6378 bool overflow;
6379
6380 /* We have to do this the hard way to detect unsigned overflow.
6381 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6382 wide_int val = wi::mul (arg01, arg1, sign, &overflow);
6383 prod = force_fit_type (TREE_TYPE (arg00), val, -1, overflow);
6384 neg_overflow = false;
6385
6386 if (sign == UNSIGNED)
6387 {
6388 tmp = int_const_binop (MINUS_EXPR, arg01,
6389 build_int_cst (TREE_TYPE (arg01), 1));
6390 lo = prod;
6391
6392 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6393 val = wi::add (prod, tmp, sign, &overflow);
6394 hi = force_fit_type (TREE_TYPE (arg00), val,
6395 -1, overflow | TREE_OVERFLOW (prod));
6396 }
6397 else if (tree_int_cst_sgn (arg01) >= 0)
6398 {
6399 tmp = int_const_binop (MINUS_EXPR, arg01,
6400 build_int_cst (TREE_TYPE (arg01), 1));
6401 switch (tree_int_cst_sgn (arg1))
6402 {
6403 case -1:
6404 neg_overflow = true;
6405 lo = int_const_binop (MINUS_EXPR, prod, tmp);
6406 hi = prod;
6407 break;
6408
6409 case 0:
6410 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6411 hi = tmp;
6412 break;
6413
6414 case 1:
6415 hi = int_const_binop (PLUS_EXPR, prod, tmp);
6416 lo = prod;
6417 break;
6418
6419 default:
6420 gcc_unreachable ();
6421 }
6422 }
6423 else
6424 {
6425 /* A negative divisor reverses the relational operators. */
6426 code = swap_tree_comparison (code);
6427
6428 tmp = int_const_binop (PLUS_EXPR, arg01,
6429 build_int_cst (TREE_TYPE (arg01), 1));
6430 switch (tree_int_cst_sgn (arg1))
6431 {
6432 case -1:
6433 hi = int_const_binop (MINUS_EXPR, prod, tmp);
6434 lo = prod;
6435 break;
6436
6437 case 0:
6438 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6439 lo = tmp;
6440 break;
6441
6442 case 1:
6443 neg_overflow = true;
6444 lo = int_const_binop (PLUS_EXPR, prod, tmp);
6445 hi = prod;
6446 break;
6447
6448 default:
6449 gcc_unreachable ();
6450 }
6451 }
6452
6453 switch (code)
6454 {
6455 case EQ_EXPR:
6456 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6457 return omit_one_operand_loc (loc, type, integer_zero_node, arg00);
6458 if (TREE_OVERFLOW (hi))
6459 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6460 if (TREE_OVERFLOW (lo))
6461 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6462 return build_range_check (loc, type, arg00, 1, lo, hi);
6463
6464 case NE_EXPR:
6465 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6466 return omit_one_operand_loc (loc, type, integer_one_node, arg00);
6467 if (TREE_OVERFLOW (hi))
6468 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6469 if (TREE_OVERFLOW (lo))
6470 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6471 return build_range_check (loc, type, arg00, 0, lo, hi);
6472
6473 case LT_EXPR:
6474 if (TREE_OVERFLOW (lo))
6475 {
6476 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6477 return omit_one_operand_loc (loc, type, tmp, arg00);
6478 }
6479 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6480
6481 case LE_EXPR:
6482 if (TREE_OVERFLOW (hi))
6483 {
6484 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6485 return omit_one_operand_loc (loc, type, tmp, arg00);
6486 }
6487 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6488
6489 case GT_EXPR:
6490 if (TREE_OVERFLOW (hi))
6491 {
6492 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6493 return omit_one_operand_loc (loc, type, tmp, arg00);
6494 }
6495 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6496
6497 case GE_EXPR:
6498 if (TREE_OVERFLOW (lo))
6499 {
6500 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6501 return omit_one_operand_loc (loc, type, tmp, arg00);
6502 }
6503 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6504
6505 default:
6506 break;
6507 }
6508
6509 return NULL_TREE;
6510 }
6511
6512
6513 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6514 equality/inequality test, then return a simplified form of the test
6515 using a sign testing. Otherwise return NULL. TYPE is the desired
6516 result type. */
6517
6518 static tree
6519 fold_single_bit_test_into_sign_test (location_t loc,
6520 enum tree_code code, tree arg0, tree arg1,
6521 tree result_type)
6522 {
6523 /* If this is testing a single bit, we can optimize the test. */
6524 if ((code == NE_EXPR || code == EQ_EXPR)
6525 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6526 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6527 {
6528 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6529 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6530 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6531
6532 if (arg00 != NULL_TREE
6533 /* This is only a win if casting to a signed type is cheap,
6534 i.e. when arg00's type is not a partial mode. */
6535 && TYPE_PRECISION (TREE_TYPE (arg00))
6536 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00))))
6537 {
6538 tree stype = signed_type_for (TREE_TYPE (arg00));
6539 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6540 result_type,
6541 fold_convert_loc (loc, stype, arg00),
6542 build_int_cst (stype, 0));
6543 }
6544 }
6545
6546 return NULL_TREE;
6547 }
6548
6549 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6550 equality/inequality test, then return a simplified form of
6551 the test using shifts and logical operations. Otherwise return
6552 NULL. TYPE is the desired result type. */
6553
6554 tree
6555 fold_single_bit_test (location_t loc, enum tree_code code,
6556 tree arg0, tree arg1, tree result_type)
6557 {
6558 /* If this is testing a single bit, we can optimize the test. */
6559 if ((code == NE_EXPR || code == EQ_EXPR)
6560 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6561 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6562 {
6563 tree inner = TREE_OPERAND (arg0, 0);
6564 tree type = TREE_TYPE (arg0);
6565 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6566 machine_mode operand_mode = TYPE_MODE (type);
6567 int ops_unsigned;
6568 tree signed_type, unsigned_type, intermediate_type;
6569 tree tem, one;
6570
6571 /* First, see if we can fold the single bit test into a sign-bit
6572 test. */
6573 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6574 result_type);
6575 if (tem)
6576 return tem;
6577
6578 /* Otherwise we have (A & C) != 0 where C is a single bit,
6579 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6580 Similarly for (A & C) == 0. */
6581
6582 /* If INNER is a right shift of a constant and it plus BITNUM does
6583 not overflow, adjust BITNUM and INNER. */
6584 if (TREE_CODE (inner) == RSHIFT_EXPR
6585 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6586 && bitnum < TYPE_PRECISION (type)
6587 && wi::ltu_p (TREE_OPERAND (inner, 1),
6588 TYPE_PRECISION (type) - bitnum))
6589 {
6590 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6591 inner = TREE_OPERAND (inner, 0);
6592 }
6593
6594 /* If we are going to be able to omit the AND below, we must do our
6595 operations as unsigned. If we must use the AND, we have a choice.
6596 Normally unsigned is faster, but for some machines signed is. */
6597 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6598 && !flag_syntax_only) ? 0 : 1;
6599
6600 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6601 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6602 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6603 inner = fold_convert_loc (loc, intermediate_type, inner);
6604
6605 if (bitnum != 0)
6606 inner = build2 (RSHIFT_EXPR, intermediate_type,
6607 inner, size_int (bitnum));
6608
6609 one = build_int_cst (intermediate_type, 1);
6610
6611 if (code == EQ_EXPR)
6612 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6613
6614 /* Put the AND last so it can combine with more things. */
6615 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6616
6617 /* Make sure to return the proper type. */
6618 inner = fold_convert_loc (loc, result_type, inner);
6619
6620 return inner;
6621 }
6622 return NULL_TREE;
6623 }
6624
6625 /* Check whether we are allowed to reorder operands arg0 and arg1,
6626 such that the evaluation of arg1 occurs before arg0. */
6627
6628 static bool
6629 reorder_operands_p (const_tree arg0, const_tree arg1)
6630 {
6631 if (! flag_evaluation_order)
6632 return true;
6633 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6634 return true;
6635 return ! TREE_SIDE_EFFECTS (arg0)
6636 && ! TREE_SIDE_EFFECTS (arg1);
6637 }
6638
6639 /* Test whether it is preferable two swap two operands, ARG0 and
6640 ARG1, for example because ARG0 is an integer constant and ARG1
6641 isn't. If REORDER is true, only recommend swapping if we can
6642 evaluate the operands in reverse order. */
6643
6644 bool
6645 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
6646 {
6647 if (CONSTANT_CLASS_P (arg1))
6648 return 0;
6649 if (CONSTANT_CLASS_P (arg0))
6650 return 1;
6651
6652 STRIP_NOPS (arg0);
6653 STRIP_NOPS (arg1);
6654
6655 if (TREE_CONSTANT (arg1))
6656 return 0;
6657 if (TREE_CONSTANT (arg0))
6658 return 1;
6659
6660 if (reorder && flag_evaluation_order
6661 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6662 return 0;
6663
6664 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6665 for commutative and comparison operators. Ensuring a canonical
6666 form allows the optimizers to find additional redundancies without
6667 having to explicitly check for both orderings. */
6668 if (TREE_CODE (arg0) == SSA_NAME
6669 && TREE_CODE (arg1) == SSA_NAME
6670 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6671 return 1;
6672
6673 /* Put SSA_NAMEs last. */
6674 if (TREE_CODE (arg1) == SSA_NAME)
6675 return 0;
6676 if (TREE_CODE (arg0) == SSA_NAME)
6677 return 1;
6678
6679 /* Put variables last. */
6680 if (DECL_P (arg1))
6681 return 0;
6682 if (DECL_P (arg0))
6683 return 1;
6684
6685 return 0;
6686 }
6687
6688
6689 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6690 means A >= Y && A != MAX, but in this case we know that
6691 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6692
6693 static tree
6694 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6695 {
6696 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6697
6698 if (TREE_CODE (bound) == LT_EXPR)
6699 a = TREE_OPERAND (bound, 0);
6700 else if (TREE_CODE (bound) == GT_EXPR)
6701 a = TREE_OPERAND (bound, 1);
6702 else
6703 return NULL_TREE;
6704
6705 typea = TREE_TYPE (a);
6706 if (!INTEGRAL_TYPE_P (typea)
6707 && !POINTER_TYPE_P (typea))
6708 return NULL_TREE;
6709
6710 if (TREE_CODE (ineq) == LT_EXPR)
6711 {
6712 a1 = TREE_OPERAND (ineq, 1);
6713 y = TREE_OPERAND (ineq, 0);
6714 }
6715 else if (TREE_CODE (ineq) == GT_EXPR)
6716 {
6717 a1 = TREE_OPERAND (ineq, 0);
6718 y = TREE_OPERAND (ineq, 1);
6719 }
6720 else
6721 return NULL_TREE;
6722
6723 if (TREE_TYPE (a1) != typea)
6724 return NULL_TREE;
6725
6726 if (POINTER_TYPE_P (typea))
6727 {
6728 /* Convert the pointer types into integer before taking the difference. */
6729 tree ta = fold_convert_loc (loc, ssizetype, a);
6730 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
6731 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
6732 }
6733 else
6734 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
6735
6736 if (!diff || !integer_onep (diff))
6737 return NULL_TREE;
6738
6739 return fold_build2_loc (loc, GE_EXPR, type, a, y);
6740 }
6741
6742 /* Fold a sum or difference of at least one multiplication.
6743 Returns the folded tree or NULL if no simplification could be made. */
6744
6745 static tree
6746 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
6747 tree arg0, tree arg1)
6748 {
6749 tree arg00, arg01, arg10, arg11;
6750 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6751
6752 /* (A * C) +- (B * C) -> (A+-B) * C.
6753 (A * C) +- A -> A * (C+-1).
6754 We are most concerned about the case where C is a constant,
6755 but other combinations show up during loop reduction. Since
6756 it is not difficult, try all four possibilities. */
6757
6758 if (TREE_CODE (arg0) == MULT_EXPR)
6759 {
6760 arg00 = TREE_OPERAND (arg0, 0);
6761 arg01 = TREE_OPERAND (arg0, 1);
6762 }
6763 else if (TREE_CODE (arg0) == INTEGER_CST)
6764 {
6765 arg00 = build_one_cst (type);
6766 arg01 = arg0;
6767 }
6768 else
6769 {
6770 /* We cannot generate constant 1 for fract. */
6771 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6772 return NULL_TREE;
6773 arg00 = arg0;
6774 arg01 = build_one_cst (type);
6775 }
6776 if (TREE_CODE (arg1) == MULT_EXPR)
6777 {
6778 arg10 = TREE_OPERAND (arg1, 0);
6779 arg11 = TREE_OPERAND (arg1, 1);
6780 }
6781 else if (TREE_CODE (arg1) == INTEGER_CST)
6782 {
6783 arg10 = build_one_cst (type);
6784 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6785 the purpose of this canonicalization. */
6786 if (wi::neg_p (arg1, TYPE_SIGN (TREE_TYPE (arg1)))
6787 && negate_expr_p (arg1)
6788 && code == PLUS_EXPR)
6789 {
6790 arg11 = negate_expr (arg1);
6791 code = MINUS_EXPR;
6792 }
6793 else
6794 arg11 = arg1;
6795 }
6796 else
6797 {
6798 /* We cannot generate constant 1 for fract. */
6799 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6800 return NULL_TREE;
6801 arg10 = arg1;
6802 arg11 = build_one_cst (type);
6803 }
6804 same = NULL_TREE;
6805
6806 if (operand_equal_p (arg01, arg11, 0))
6807 same = arg01, alt0 = arg00, alt1 = arg10;
6808 else if (operand_equal_p (arg00, arg10, 0))
6809 same = arg00, alt0 = arg01, alt1 = arg11;
6810 else if (operand_equal_p (arg00, arg11, 0))
6811 same = arg00, alt0 = arg01, alt1 = arg10;
6812 else if (operand_equal_p (arg01, arg10, 0))
6813 same = arg01, alt0 = arg00, alt1 = arg11;
6814
6815 /* No identical multiplicands; see if we can find a common
6816 power-of-two factor in non-power-of-two multiplies. This
6817 can help in multi-dimensional array access. */
6818 else if (tree_fits_shwi_p (arg01)
6819 && tree_fits_shwi_p (arg11))
6820 {
6821 HOST_WIDE_INT int01, int11, tmp;
6822 bool swap = false;
6823 tree maybe_same;
6824 int01 = tree_to_shwi (arg01);
6825 int11 = tree_to_shwi (arg11);
6826
6827 /* Move min of absolute values to int11. */
6828 if (absu_hwi (int01) < absu_hwi (int11))
6829 {
6830 tmp = int01, int01 = int11, int11 = tmp;
6831 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6832 maybe_same = arg01;
6833 swap = true;
6834 }
6835 else
6836 maybe_same = arg11;
6837
6838 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
6839 /* The remainder should not be a constant, otherwise we
6840 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
6841 increased the number of multiplications necessary. */
6842 && TREE_CODE (arg10) != INTEGER_CST)
6843 {
6844 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
6845 build_int_cst (TREE_TYPE (arg00),
6846 int01 / int11));
6847 alt1 = arg10;
6848 same = maybe_same;
6849 if (swap)
6850 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
6851 }
6852 }
6853
6854 if (same)
6855 return fold_build2_loc (loc, MULT_EXPR, type,
6856 fold_build2_loc (loc, code, type,
6857 fold_convert_loc (loc, type, alt0),
6858 fold_convert_loc (loc, type, alt1)),
6859 fold_convert_loc (loc, type, same));
6860
6861 return NULL_TREE;
6862 }
6863
6864 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
6865 specified by EXPR into the buffer PTR of length LEN bytes.
6866 Return the number of bytes placed in the buffer, or zero
6867 upon failure. */
6868
6869 static int
6870 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
6871 {
6872 tree type = TREE_TYPE (expr);
6873 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
6874 int byte, offset, word, words;
6875 unsigned char value;
6876
6877 if ((off == -1 && total_bytes > len)
6878 || off >= total_bytes)
6879 return 0;
6880 if (off == -1)
6881 off = 0;
6882 words = total_bytes / UNITS_PER_WORD;
6883
6884 for (byte = 0; byte < total_bytes; byte++)
6885 {
6886 int bitpos = byte * BITS_PER_UNIT;
6887 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
6888 number of bytes. */
6889 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
6890
6891 if (total_bytes > UNITS_PER_WORD)
6892 {
6893 word = byte / UNITS_PER_WORD;
6894 if (WORDS_BIG_ENDIAN)
6895 word = (words - 1) - word;
6896 offset = word * UNITS_PER_WORD;
6897 if (BYTES_BIG_ENDIAN)
6898 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
6899 else
6900 offset += byte % UNITS_PER_WORD;
6901 }
6902 else
6903 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
6904 if (offset >= off
6905 && offset - off < len)
6906 ptr[offset - off] = value;
6907 }
6908 return MIN (len, total_bytes - off);
6909 }
6910
6911
6912 /* Subroutine of native_encode_expr. Encode the FIXED_CST
6913 specified by EXPR into the buffer PTR of length LEN bytes.
6914 Return the number of bytes placed in the buffer, or zero
6915 upon failure. */
6916
6917 static int
6918 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
6919 {
6920 tree type = TREE_TYPE (expr);
6921 machine_mode mode = TYPE_MODE (type);
6922 int total_bytes = GET_MODE_SIZE (mode);
6923 FIXED_VALUE_TYPE value;
6924 tree i_value, i_type;
6925
6926 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
6927 return 0;
6928
6929 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
6930
6931 if (NULL_TREE == i_type
6932 || TYPE_PRECISION (i_type) != total_bytes)
6933 return 0;
6934
6935 value = TREE_FIXED_CST (expr);
6936 i_value = double_int_to_tree (i_type, value.data);
6937
6938 return native_encode_int (i_value, ptr, len, off);
6939 }
6940
6941
6942 /* Subroutine of native_encode_expr. Encode the REAL_CST
6943 specified by EXPR into the buffer PTR of length LEN bytes.
6944 Return the number of bytes placed in the buffer, or zero
6945 upon failure. */
6946
6947 static int
6948 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
6949 {
6950 tree type = TREE_TYPE (expr);
6951 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
6952 int byte, offset, word, words, bitpos;
6953 unsigned char value;
6954
6955 /* There are always 32 bits in each long, no matter the size of
6956 the hosts long. We handle floating point representations with
6957 up to 192 bits. */
6958 long tmp[6];
6959
6960 if ((off == -1 && total_bytes > len)
6961 || off >= total_bytes)
6962 return 0;
6963 if (off == -1)
6964 off = 0;
6965 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
6966
6967 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
6968
6969 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
6970 bitpos += BITS_PER_UNIT)
6971 {
6972 byte = (bitpos / BITS_PER_UNIT) & 3;
6973 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
6974
6975 if (UNITS_PER_WORD < 4)
6976 {
6977 word = byte / UNITS_PER_WORD;
6978 if (WORDS_BIG_ENDIAN)
6979 word = (words - 1) - word;
6980 offset = word * UNITS_PER_WORD;
6981 if (BYTES_BIG_ENDIAN)
6982 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
6983 else
6984 offset += byte % UNITS_PER_WORD;
6985 }
6986 else
6987 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
6988 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
6989 if (offset >= off
6990 && offset - off < len)
6991 ptr[offset - off] = value;
6992 }
6993 return MIN (len, total_bytes - off);
6994 }
6995
6996 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
6997 specified by EXPR into the buffer PTR of length LEN bytes.
6998 Return the number of bytes placed in the buffer, or zero
6999 upon failure. */
7000
7001 static int
7002 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7003 {
7004 int rsize, isize;
7005 tree part;
7006
7007 part = TREE_REALPART (expr);
7008 rsize = native_encode_expr (part, ptr, len, off);
7009 if (off == -1
7010 && rsize == 0)
7011 return 0;
7012 part = TREE_IMAGPART (expr);
7013 if (off != -1)
7014 off = MAX (0, off - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part))));
7015 isize = native_encode_expr (part, ptr+rsize, len-rsize, off);
7016 if (off == -1
7017 && isize != rsize)
7018 return 0;
7019 return rsize + isize;
7020 }
7021
7022
7023 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7024 specified by EXPR into the buffer PTR of length LEN bytes.
7025 Return the number of bytes placed in the buffer, or zero
7026 upon failure. */
7027
7028 static int
7029 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7030 {
7031 unsigned i, count;
7032 int size, offset;
7033 tree itype, elem;
7034
7035 offset = 0;
7036 count = VECTOR_CST_NELTS (expr);
7037 itype = TREE_TYPE (TREE_TYPE (expr));
7038 size = GET_MODE_SIZE (TYPE_MODE (itype));
7039 for (i = 0; i < count; i++)
7040 {
7041 if (off >= size)
7042 {
7043 off -= size;
7044 continue;
7045 }
7046 elem = VECTOR_CST_ELT (expr, i);
7047 int res = native_encode_expr (elem, ptr+offset, len-offset, off);
7048 if ((off == -1 && res != size)
7049 || res == 0)
7050 return 0;
7051 offset += res;
7052 if (offset >= len)
7053 return offset;
7054 if (off != -1)
7055 off = 0;
7056 }
7057 return offset;
7058 }
7059
7060
7061 /* Subroutine of native_encode_expr. Encode the STRING_CST
7062 specified by EXPR into the buffer PTR of length LEN bytes.
7063 Return the number of bytes placed in the buffer, or zero
7064 upon failure. */
7065
7066 static int
7067 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7068 {
7069 tree type = TREE_TYPE (expr);
7070 HOST_WIDE_INT total_bytes;
7071
7072 if (TREE_CODE (type) != ARRAY_TYPE
7073 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7074 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7075 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7076 return 0;
7077 total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (type));
7078 if ((off == -1 && total_bytes > len)
7079 || off >= total_bytes)
7080 return 0;
7081 if (off == -1)
7082 off = 0;
7083 if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7084 {
7085 int written = 0;
7086 if (off < TREE_STRING_LENGTH (expr))
7087 {
7088 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7089 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7090 }
7091 memset (ptr + written, 0,
7092 MIN (total_bytes - written, len - written));
7093 }
7094 else
7095 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7096 return MIN (total_bytes - off, len);
7097 }
7098
7099
7100 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7101 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7102 buffer PTR of length LEN bytes. If OFF is not -1 then start
7103 the encoding at byte offset OFF and encode at most LEN bytes.
7104 Return the number of bytes placed in the buffer, or zero upon failure. */
7105
7106 int
7107 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7108 {
7109 switch (TREE_CODE (expr))
7110 {
7111 case INTEGER_CST:
7112 return native_encode_int (expr, ptr, len, off);
7113
7114 case REAL_CST:
7115 return native_encode_real (expr, ptr, len, off);
7116
7117 case FIXED_CST:
7118 return native_encode_fixed (expr, ptr, len, off);
7119
7120 case COMPLEX_CST:
7121 return native_encode_complex (expr, ptr, len, off);
7122
7123 case VECTOR_CST:
7124 return native_encode_vector (expr, ptr, len, off);
7125
7126 case STRING_CST:
7127 return native_encode_string (expr, ptr, len, off);
7128
7129 default:
7130 return 0;
7131 }
7132 }
7133
7134
7135 /* Subroutine of native_interpret_expr. Interpret the contents of
7136 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7137 If the buffer cannot be interpreted, return NULL_TREE. */
7138
7139 static tree
7140 native_interpret_int (tree type, const unsigned char *ptr, int len)
7141 {
7142 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7143
7144 if (total_bytes > len
7145 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7146 return NULL_TREE;
7147
7148 wide_int result = wi::from_buffer (ptr, total_bytes);
7149
7150 return wide_int_to_tree (type, result);
7151 }
7152
7153
7154 /* Subroutine of native_interpret_expr. Interpret the contents of
7155 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7156 If the buffer cannot be interpreted, return NULL_TREE. */
7157
7158 static tree
7159 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7160 {
7161 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7162 double_int result;
7163 FIXED_VALUE_TYPE fixed_value;
7164
7165 if (total_bytes > len
7166 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7167 return NULL_TREE;
7168
7169 result = double_int::from_buffer (ptr, total_bytes);
7170 fixed_value = fixed_from_double_int (result, TYPE_MODE (type));
7171
7172 return build_fixed (type, fixed_value);
7173 }
7174
7175
7176 /* Subroutine of native_interpret_expr. Interpret the contents of
7177 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7178 If the buffer cannot be interpreted, return NULL_TREE. */
7179
7180 static tree
7181 native_interpret_real (tree type, const unsigned char *ptr, int len)
7182 {
7183 machine_mode mode = TYPE_MODE (type);
7184 int total_bytes = GET_MODE_SIZE (mode);
7185 int byte, offset, word, words, bitpos;
7186 unsigned char value;
7187 /* There are always 32 bits in each long, no matter the size of
7188 the hosts long. We handle floating point representations with
7189 up to 192 bits. */
7190 REAL_VALUE_TYPE r;
7191 long tmp[6];
7192
7193 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7194 if (total_bytes > len || total_bytes > 24)
7195 return NULL_TREE;
7196 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7197
7198 memset (tmp, 0, sizeof (tmp));
7199 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7200 bitpos += BITS_PER_UNIT)
7201 {
7202 byte = (bitpos / BITS_PER_UNIT) & 3;
7203 if (UNITS_PER_WORD < 4)
7204 {
7205 word = byte / UNITS_PER_WORD;
7206 if (WORDS_BIG_ENDIAN)
7207 word = (words - 1) - word;
7208 offset = word * UNITS_PER_WORD;
7209 if (BYTES_BIG_ENDIAN)
7210 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7211 else
7212 offset += byte % UNITS_PER_WORD;
7213 }
7214 else
7215 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7216 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7217
7218 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7219 }
7220
7221 real_from_target (&r, tmp, mode);
7222 return build_real (type, r);
7223 }
7224
7225
7226 /* Subroutine of native_interpret_expr. Interpret the contents of
7227 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7228 If the buffer cannot be interpreted, return NULL_TREE. */
7229
7230 static tree
7231 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7232 {
7233 tree etype, rpart, ipart;
7234 int size;
7235
7236 etype = TREE_TYPE (type);
7237 size = GET_MODE_SIZE (TYPE_MODE (etype));
7238 if (size * 2 > len)
7239 return NULL_TREE;
7240 rpart = native_interpret_expr (etype, ptr, size);
7241 if (!rpart)
7242 return NULL_TREE;
7243 ipart = native_interpret_expr (etype, ptr+size, size);
7244 if (!ipart)
7245 return NULL_TREE;
7246 return build_complex (type, rpart, ipart);
7247 }
7248
7249
7250 /* Subroutine of native_interpret_expr. Interpret the contents of
7251 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7252 If the buffer cannot be interpreted, return NULL_TREE. */
7253
7254 static tree
7255 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7256 {
7257 tree etype, elem;
7258 int i, size, count;
7259 tree *elements;
7260
7261 etype = TREE_TYPE (type);
7262 size = GET_MODE_SIZE (TYPE_MODE (etype));
7263 count = TYPE_VECTOR_SUBPARTS (type);
7264 if (size * count > len)
7265 return NULL_TREE;
7266
7267 elements = XALLOCAVEC (tree, count);
7268 for (i = count - 1; i >= 0; i--)
7269 {
7270 elem = native_interpret_expr (etype, ptr+(i*size), size);
7271 if (!elem)
7272 return NULL_TREE;
7273 elements[i] = elem;
7274 }
7275 return build_vector (type, elements);
7276 }
7277
7278
7279 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7280 the buffer PTR of length LEN as a constant of type TYPE. For
7281 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7282 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7283 return NULL_TREE. */
7284
7285 tree
7286 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7287 {
7288 switch (TREE_CODE (type))
7289 {
7290 case INTEGER_TYPE:
7291 case ENUMERAL_TYPE:
7292 case BOOLEAN_TYPE:
7293 case POINTER_TYPE:
7294 case REFERENCE_TYPE:
7295 return native_interpret_int (type, ptr, len);
7296
7297 case REAL_TYPE:
7298 return native_interpret_real (type, ptr, len);
7299
7300 case FIXED_POINT_TYPE:
7301 return native_interpret_fixed (type, ptr, len);
7302
7303 case COMPLEX_TYPE:
7304 return native_interpret_complex (type, ptr, len);
7305
7306 case VECTOR_TYPE:
7307 return native_interpret_vector (type, ptr, len);
7308
7309 default:
7310 return NULL_TREE;
7311 }
7312 }
7313
7314 /* Returns true if we can interpret the contents of a native encoding
7315 as TYPE. */
7316
7317 static bool
7318 can_native_interpret_type_p (tree type)
7319 {
7320 switch (TREE_CODE (type))
7321 {
7322 case INTEGER_TYPE:
7323 case ENUMERAL_TYPE:
7324 case BOOLEAN_TYPE:
7325 case POINTER_TYPE:
7326 case REFERENCE_TYPE:
7327 case FIXED_POINT_TYPE:
7328 case REAL_TYPE:
7329 case COMPLEX_TYPE:
7330 case VECTOR_TYPE:
7331 return true;
7332 default:
7333 return false;
7334 }
7335 }
7336
7337 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7338 TYPE at compile-time. If we're unable to perform the conversion
7339 return NULL_TREE. */
7340
7341 static tree
7342 fold_view_convert_expr (tree type, tree expr)
7343 {
7344 /* We support up to 512-bit values (for V8DFmode). */
7345 unsigned char buffer[64];
7346 int len;
7347
7348 /* Check that the host and target are sane. */
7349 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7350 return NULL_TREE;
7351
7352 len = native_encode_expr (expr, buffer, sizeof (buffer));
7353 if (len == 0)
7354 return NULL_TREE;
7355
7356 return native_interpret_expr (type, buffer, len);
7357 }
7358
7359 /* Build an expression for the address of T. Folds away INDIRECT_REF
7360 to avoid confusing the gimplify process. */
7361
7362 tree
7363 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7364 {
7365 /* The size of the object is not relevant when talking about its address. */
7366 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7367 t = TREE_OPERAND (t, 0);
7368
7369 if (TREE_CODE (t) == INDIRECT_REF)
7370 {
7371 t = TREE_OPERAND (t, 0);
7372
7373 if (TREE_TYPE (t) != ptrtype)
7374 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7375 }
7376 else if (TREE_CODE (t) == MEM_REF
7377 && integer_zerop (TREE_OPERAND (t, 1)))
7378 return TREE_OPERAND (t, 0);
7379 else if (TREE_CODE (t) == MEM_REF
7380 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7381 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7382 TREE_OPERAND (t, 0),
7383 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7384 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7385 {
7386 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7387
7388 if (TREE_TYPE (t) != ptrtype)
7389 t = fold_convert_loc (loc, ptrtype, t);
7390 }
7391 else
7392 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7393
7394 return t;
7395 }
7396
7397 /* Build an expression for the address of T. */
7398
7399 tree
7400 build_fold_addr_expr_loc (location_t loc, tree t)
7401 {
7402 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7403
7404 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7405 }
7406
7407 /* Fold a unary expression of code CODE and type TYPE with operand
7408 OP0. Return the folded expression if folding is successful.
7409 Otherwise, return NULL_TREE. */
7410
7411 tree
7412 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7413 {
7414 tree tem;
7415 tree arg0;
7416 enum tree_code_class kind = TREE_CODE_CLASS (code);
7417
7418 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7419 && TREE_CODE_LENGTH (code) == 1);
7420
7421 arg0 = op0;
7422 if (arg0)
7423 {
7424 if (CONVERT_EXPR_CODE_P (code)
7425 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7426 {
7427 /* Don't use STRIP_NOPS, because signedness of argument type
7428 matters. */
7429 STRIP_SIGN_NOPS (arg0);
7430 }
7431 else
7432 {
7433 /* Strip any conversions that don't change the mode. This
7434 is safe for every expression, except for a comparison
7435 expression because its signedness is derived from its
7436 operands.
7437
7438 Note that this is done as an internal manipulation within
7439 the constant folder, in order to find the simplest
7440 representation of the arguments so that their form can be
7441 studied. In any cases, the appropriate type conversions
7442 should be put back in the tree that will get out of the
7443 constant folder. */
7444 STRIP_NOPS (arg0);
7445 }
7446
7447 if (CONSTANT_CLASS_P (arg0))
7448 {
7449 tree tem = const_unop (code, type, arg0);
7450 if (tem)
7451 {
7452 if (TREE_TYPE (tem) != type)
7453 tem = fold_convert_loc (loc, type, tem);
7454 return tem;
7455 }
7456 }
7457 }
7458
7459 tem = generic_simplify (loc, code, type, op0);
7460 if (tem)
7461 return tem;
7462
7463 if (TREE_CODE_CLASS (code) == tcc_unary)
7464 {
7465 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7466 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7467 fold_build1_loc (loc, code, type,
7468 fold_convert_loc (loc, TREE_TYPE (op0),
7469 TREE_OPERAND (arg0, 1))));
7470 else if (TREE_CODE (arg0) == COND_EXPR)
7471 {
7472 tree arg01 = TREE_OPERAND (arg0, 1);
7473 tree arg02 = TREE_OPERAND (arg0, 2);
7474 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7475 arg01 = fold_build1_loc (loc, code, type,
7476 fold_convert_loc (loc,
7477 TREE_TYPE (op0), arg01));
7478 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7479 arg02 = fold_build1_loc (loc, code, type,
7480 fold_convert_loc (loc,
7481 TREE_TYPE (op0), arg02));
7482 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7483 arg01, arg02);
7484
7485 /* If this was a conversion, and all we did was to move into
7486 inside the COND_EXPR, bring it back out. But leave it if
7487 it is a conversion from integer to integer and the
7488 result precision is no wider than a word since such a
7489 conversion is cheap and may be optimized away by combine,
7490 while it couldn't if it were outside the COND_EXPR. Then return
7491 so we don't get into an infinite recursion loop taking the
7492 conversion out and then back in. */
7493
7494 if ((CONVERT_EXPR_CODE_P (code)
7495 || code == NON_LVALUE_EXPR)
7496 && TREE_CODE (tem) == COND_EXPR
7497 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7498 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7499 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7500 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7501 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7502 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7503 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7504 && (INTEGRAL_TYPE_P
7505 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7506 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7507 || flag_syntax_only))
7508 tem = build1_loc (loc, code, type,
7509 build3 (COND_EXPR,
7510 TREE_TYPE (TREE_OPERAND
7511 (TREE_OPERAND (tem, 1), 0)),
7512 TREE_OPERAND (tem, 0),
7513 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7514 TREE_OPERAND (TREE_OPERAND (tem, 2),
7515 0)));
7516 return tem;
7517 }
7518 }
7519
7520 switch (code)
7521 {
7522 case NON_LVALUE_EXPR:
7523 if (!maybe_lvalue_p (op0))
7524 return fold_convert_loc (loc, type, op0);
7525 return NULL_TREE;
7526
7527 CASE_CONVERT:
7528 case FLOAT_EXPR:
7529 case FIX_TRUNC_EXPR:
7530 if (COMPARISON_CLASS_P (op0))
7531 {
7532 /* If we have (type) (a CMP b) and type is an integral type, return
7533 new expression involving the new type. Canonicalize
7534 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7535 non-integral type.
7536 Do not fold the result as that would not simplify further, also
7537 folding again results in recursions. */
7538 if (TREE_CODE (type) == BOOLEAN_TYPE)
7539 return build2_loc (loc, TREE_CODE (op0), type,
7540 TREE_OPERAND (op0, 0),
7541 TREE_OPERAND (op0, 1));
7542 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7543 && TREE_CODE (type) != VECTOR_TYPE)
7544 return build3_loc (loc, COND_EXPR, type, op0,
7545 constant_boolean_node (true, type),
7546 constant_boolean_node (false, type));
7547 }
7548
7549 /* Handle (T *)&A.B.C for A being of type T and B and C
7550 living at offset zero. This occurs frequently in
7551 C++ upcasting and then accessing the base. */
7552 if (TREE_CODE (op0) == ADDR_EXPR
7553 && POINTER_TYPE_P (type)
7554 && handled_component_p (TREE_OPERAND (op0, 0)))
7555 {
7556 HOST_WIDE_INT bitsize, bitpos;
7557 tree offset;
7558 machine_mode mode;
7559 int unsignedp, volatilep;
7560 tree base = TREE_OPERAND (op0, 0);
7561 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
7562 &mode, &unsignedp, &volatilep, false);
7563 /* If the reference was to a (constant) zero offset, we can use
7564 the address of the base if it has the same base type
7565 as the result type and the pointer type is unqualified. */
7566 if (! offset && bitpos == 0
7567 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7568 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7569 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7570 return fold_convert_loc (loc, type,
7571 build_fold_addr_expr_loc (loc, base));
7572 }
7573
7574 if (TREE_CODE (op0) == MODIFY_EXPR
7575 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7576 /* Detect assigning a bitfield. */
7577 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7578 && DECL_BIT_FIELD
7579 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7580 {
7581 /* Don't leave an assignment inside a conversion
7582 unless assigning a bitfield. */
7583 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7584 /* First do the assignment, then return converted constant. */
7585 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7586 TREE_NO_WARNING (tem) = 1;
7587 TREE_USED (tem) = 1;
7588 return tem;
7589 }
7590
7591 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7592 constants (if x has signed type, the sign bit cannot be set
7593 in c). This folds extension into the BIT_AND_EXPR.
7594 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7595 very likely don't have maximal range for their precision and this
7596 transformation effectively doesn't preserve non-maximal ranges. */
7597 if (TREE_CODE (type) == INTEGER_TYPE
7598 && TREE_CODE (op0) == BIT_AND_EXPR
7599 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7600 {
7601 tree and_expr = op0;
7602 tree and0 = TREE_OPERAND (and_expr, 0);
7603 tree and1 = TREE_OPERAND (and_expr, 1);
7604 int change = 0;
7605
7606 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7607 || (TYPE_PRECISION (type)
7608 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7609 change = 1;
7610 else if (TYPE_PRECISION (TREE_TYPE (and1))
7611 <= HOST_BITS_PER_WIDE_INT
7612 && tree_fits_uhwi_p (and1))
7613 {
7614 unsigned HOST_WIDE_INT cst;
7615
7616 cst = tree_to_uhwi (and1);
7617 cst &= HOST_WIDE_INT_M1U
7618 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7619 change = (cst == 0);
7620 if (change
7621 && !flag_syntax_only
7622 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
7623 == ZERO_EXTEND))
7624 {
7625 tree uns = unsigned_type_for (TREE_TYPE (and0));
7626 and0 = fold_convert_loc (loc, uns, and0);
7627 and1 = fold_convert_loc (loc, uns, and1);
7628 }
7629 }
7630 if (change)
7631 {
7632 tem = force_fit_type (type, wi::to_widest (and1), 0,
7633 TREE_OVERFLOW (and1));
7634 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7635 fold_convert_loc (loc, type, and0), tem);
7636 }
7637 }
7638
7639 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
7640 when one of the new casts will fold away. Conservatively we assume
7641 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
7642 if (POINTER_TYPE_P (type)
7643 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7644 && (!TYPE_RESTRICT (type) || TYPE_RESTRICT (TREE_TYPE (arg0)))
7645 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7646 || TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
7647 || TREE_CODE (TREE_OPERAND (arg0, 1)) == NOP_EXPR))
7648 {
7649 tree arg00 = TREE_OPERAND (arg0, 0);
7650 tree arg01 = TREE_OPERAND (arg0, 1);
7651
7652 return fold_build_pointer_plus_loc
7653 (loc, fold_convert_loc (loc, type, arg00), arg01);
7654 }
7655
7656 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7657 of the same precision, and X is an integer type not narrower than
7658 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7659 if (INTEGRAL_TYPE_P (type)
7660 && TREE_CODE (op0) == BIT_NOT_EXPR
7661 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7662 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7663 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7664 {
7665 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7666 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7667 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7668 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7669 fold_convert_loc (loc, type, tem));
7670 }
7671
7672 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7673 type of X and Y (integer types only). */
7674 if (INTEGRAL_TYPE_P (type)
7675 && TREE_CODE (op0) == MULT_EXPR
7676 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7677 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
7678 {
7679 /* Be careful not to introduce new overflows. */
7680 tree mult_type;
7681 if (TYPE_OVERFLOW_WRAPS (type))
7682 mult_type = type;
7683 else
7684 mult_type = unsigned_type_for (type);
7685
7686 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
7687 {
7688 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
7689 fold_convert_loc (loc, mult_type,
7690 TREE_OPERAND (op0, 0)),
7691 fold_convert_loc (loc, mult_type,
7692 TREE_OPERAND (op0, 1)));
7693 return fold_convert_loc (loc, type, tem);
7694 }
7695 }
7696
7697 return NULL_TREE;
7698
7699 case VIEW_CONVERT_EXPR:
7700 if (TREE_CODE (op0) == MEM_REF)
7701 return fold_build2_loc (loc, MEM_REF, type,
7702 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
7703
7704 return NULL_TREE;
7705
7706 case NEGATE_EXPR:
7707 tem = fold_negate_expr (loc, arg0);
7708 if (tem)
7709 return fold_convert_loc (loc, type, tem);
7710 return NULL_TREE;
7711
7712 case ABS_EXPR:
7713 /* Convert fabs((double)float) into (double)fabsf(float). */
7714 if (TREE_CODE (arg0) == NOP_EXPR
7715 && TREE_CODE (type) == REAL_TYPE)
7716 {
7717 tree targ0 = strip_float_extensions (arg0);
7718 if (targ0 != arg0)
7719 return fold_convert_loc (loc, type,
7720 fold_build1_loc (loc, ABS_EXPR,
7721 TREE_TYPE (targ0),
7722 targ0));
7723 }
7724
7725 /* Strip sign ops from argument. */
7726 if (TREE_CODE (type) == REAL_TYPE)
7727 {
7728 tem = fold_strip_sign_ops (arg0);
7729 if (tem)
7730 return fold_build1_loc (loc, ABS_EXPR, type,
7731 fold_convert_loc (loc, type, tem));
7732 }
7733 return NULL_TREE;
7734
7735 case CONJ_EXPR:
7736 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7737 return fold_convert_loc (loc, type, arg0);
7738 if (TREE_CODE (arg0) == COMPLEX_EXPR)
7739 {
7740 tree itype = TREE_TYPE (type);
7741 tree rpart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 0));
7742 tree ipart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 1));
7743 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart,
7744 negate_expr (ipart));
7745 }
7746 if (TREE_CODE (arg0) == CONJ_EXPR)
7747 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
7748 return NULL_TREE;
7749
7750 case BIT_NOT_EXPR:
7751 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7752 if (TREE_CODE (arg0) == BIT_XOR_EXPR
7753 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7754 fold_convert_loc (loc, type,
7755 TREE_OPERAND (arg0, 0)))))
7756 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
7757 fold_convert_loc (loc, type,
7758 TREE_OPERAND (arg0, 1)));
7759 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7760 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7761 fold_convert_loc (loc, type,
7762 TREE_OPERAND (arg0, 1)))))
7763 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
7764 fold_convert_loc (loc, type,
7765 TREE_OPERAND (arg0, 0)), tem);
7766
7767 return NULL_TREE;
7768
7769 case TRUTH_NOT_EXPR:
7770 /* Note that the operand of this must be an int
7771 and its values must be 0 or 1.
7772 ("true" is a fixed value perhaps depending on the language,
7773 but we don't handle values other than 1 correctly yet.) */
7774 tem = fold_truth_not_expr (loc, arg0);
7775 if (!tem)
7776 return NULL_TREE;
7777 return fold_convert_loc (loc, type, tem);
7778
7779 case REALPART_EXPR:
7780 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7781 return fold_convert_loc (loc, type, arg0);
7782 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7783 {
7784 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7785 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
7786 fold_build1_loc (loc, REALPART_EXPR, itype,
7787 TREE_OPERAND (arg0, 0)),
7788 fold_build1_loc (loc, REALPART_EXPR, itype,
7789 TREE_OPERAND (arg0, 1)));
7790 return fold_convert_loc (loc, type, tem);
7791 }
7792 if (TREE_CODE (arg0) == CONJ_EXPR)
7793 {
7794 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7795 tem = fold_build1_loc (loc, REALPART_EXPR, itype,
7796 TREE_OPERAND (arg0, 0));
7797 return fold_convert_loc (loc, type, tem);
7798 }
7799 if (TREE_CODE (arg0) == CALL_EXPR)
7800 {
7801 tree fn = get_callee_fndecl (arg0);
7802 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
7803 switch (DECL_FUNCTION_CODE (fn))
7804 {
7805 CASE_FLT_FN (BUILT_IN_CEXPI):
7806 fn = mathfn_built_in (type, BUILT_IN_COS);
7807 if (fn)
7808 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
7809 break;
7810
7811 default:
7812 break;
7813 }
7814 }
7815 return NULL_TREE;
7816
7817 case IMAGPART_EXPR:
7818 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7819 return build_zero_cst (type);
7820 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7821 {
7822 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7823 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
7824 fold_build1_loc (loc, IMAGPART_EXPR, itype,
7825 TREE_OPERAND (arg0, 0)),
7826 fold_build1_loc (loc, IMAGPART_EXPR, itype,
7827 TREE_OPERAND (arg0, 1)));
7828 return fold_convert_loc (loc, type, tem);
7829 }
7830 if (TREE_CODE (arg0) == CONJ_EXPR)
7831 {
7832 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7833 tem = fold_build1_loc (loc, IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
7834 return fold_convert_loc (loc, type, negate_expr (tem));
7835 }
7836 if (TREE_CODE (arg0) == CALL_EXPR)
7837 {
7838 tree fn = get_callee_fndecl (arg0);
7839 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
7840 switch (DECL_FUNCTION_CODE (fn))
7841 {
7842 CASE_FLT_FN (BUILT_IN_CEXPI):
7843 fn = mathfn_built_in (type, BUILT_IN_SIN);
7844 if (fn)
7845 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
7846 break;
7847
7848 default:
7849 break;
7850 }
7851 }
7852 return NULL_TREE;
7853
7854 case INDIRECT_REF:
7855 /* Fold *&X to X if X is an lvalue. */
7856 if (TREE_CODE (op0) == ADDR_EXPR)
7857 {
7858 tree op00 = TREE_OPERAND (op0, 0);
7859 if ((TREE_CODE (op00) == VAR_DECL
7860 || TREE_CODE (op00) == PARM_DECL
7861 || TREE_CODE (op00) == RESULT_DECL)
7862 && !TREE_READONLY (op00))
7863 return op00;
7864 }
7865 return NULL_TREE;
7866
7867 default:
7868 return NULL_TREE;
7869 } /* switch (code) */
7870 }
7871
7872
7873 /* If the operation was a conversion do _not_ mark a resulting constant
7874 with TREE_OVERFLOW if the original constant was not. These conversions
7875 have implementation defined behavior and retaining the TREE_OVERFLOW
7876 flag here would confuse later passes such as VRP. */
7877 tree
7878 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
7879 tree type, tree op0)
7880 {
7881 tree res = fold_unary_loc (loc, code, type, op0);
7882 if (res
7883 && TREE_CODE (res) == INTEGER_CST
7884 && TREE_CODE (op0) == INTEGER_CST
7885 && CONVERT_EXPR_CODE_P (code))
7886 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
7887
7888 return res;
7889 }
7890
7891 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
7892 operands OP0 and OP1. LOC is the location of the resulting expression.
7893 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
7894 Return the folded expression if folding is successful. Otherwise,
7895 return NULL_TREE. */
7896 static tree
7897 fold_truth_andor (location_t loc, enum tree_code code, tree type,
7898 tree arg0, tree arg1, tree op0, tree op1)
7899 {
7900 tree tem;
7901
7902 /* We only do these simplifications if we are optimizing. */
7903 if (!optimize)
7904 return NULL_TREE;
7905
7906 /* Check for things like (A || B) && (A || C). We can convert this
7907 to A || (B && C). Note that either operator can be any of the four
7908 truth and/or operations and the transformation will still be
7909 valid. Also note that we only care about order for the
7910 ANDIF and ORIF operators. If B contains side effects, this
7911 might change the truth-value of A. */
7912 if (TREE_CODE (arg0) == TREE_CODE (arg1)
7913 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
7914 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
7915 || TREE_CODE (arg0) == TRUTH_AND_EXPR
7916 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
7917 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
7918 {
7919 tree a00 = TREE_OPERAND (arg0, 0);
7920 tree a01 = TREE_OPERAND (arg0, 1);
7921 tree a10 = TREE_OPERAND (arg1, 0);
7922 tree a11 = TREE_OPERAND (arg1, 1);
7923 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
7924 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
7925 && (code == TRUTH_AND_EXPR
7926 || code == TRUTH_OR_EXPR));
7927
7928 if (operand_equal_p (a00, a10, 0))
7929 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7930 fold_build2_loc (loc, code, type, a01, a11));
7931 else if (commutative && operand_equal_p (a00, a11, 0))
7932 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7933 fold_build2_loc (loc, code, type, a01, a10));
7934 else if (commutative && operand_equal_p (a01, a10, 0))
7935 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
7936 fold_build2_loc (loc, code, type, a00, a11));
7937
7938 /* This case if tricky because we must either have commutative
7939 operators or else A10 must not have side-effects. */
7940
7941 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
7942 && operand_equal_p (a01, a11, 0))
7943 return fold_build2_loc (loc, TREE_CODE (arg0), type,
7944 fold_build2_loc (loc, code, type, a00, a10),
7945 a01);
7946 }
7947
7948 /* See if we can build a range comparison. */
7949 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
7950 return tem;
7951
7952 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
7953 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
7954 {
7955 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
7956 if (tem)
7957 return fold_build2_loc (loc, code, type, tem, arg1);
7958 }
7959
7960 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
7961 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
7962 {
7963 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
7964 if (tem)
7965 return fold_build2_loc (loc, code, type, arg0, tem);
7966 }
7967
7968 /* Check for the possibility of merging component references. If our
7969 lhs is another similar operation, try to merge its rhs with our
7970 rhs. Then try to merge our lhs and rhs. */
7971 if (TREE_CODE (arg0) == code
7972 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
7973 TREE_OPERAND (arg0, 1), arg1)))
7974 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
7975
7976 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
7977 return tem;
7978
7979 if (LOGICAL_OP_NON_SHORT_CIRCUIT
7980 && (code == TRUTH_AND_EXPR
7981 || code == TRUTH_ANDIF_EXPR
7982 || code == TRUTH_OR_EXPR
7983 || code == TRUTH_ORIF_EXPR))
7984 {
7985 enum tree_code ncode, icode;
7986
7987 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
7988 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
7989 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
7990
7991 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
7992 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
7993 We don't want to pack more than two leafs to a non-IF AND/OR
7994 expression.
7995 If tree-code of left-hand operand isn't an AND/OR-IF code and not
7996 equal to IF-CODE, then we don't want to add right-hand operand.
7997 If the inner right-hand side of left-hand operand has
7998 side-effects, or isn't simple, then we can't add to it,
7999 as otherwise we might destroy if-sequence. */
8000 if (TREE_CODE (arg0) == icode
8001 && simple_operand_p_2 (arg1)
8002 /* Needed for sequence points to handle trappings, and
8003 side-effects. */
8004 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8005 {
8006 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8007 arg1);
8008 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8009 tem);
8010 }
8011 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8012 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8013 else if (TREE_CODE (arg1) == icode
8014 && simple_operand_p_2 (arg0)
8015 /* Needed for sequence points to handle trappings, and
8016 side-effects. */
8017 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8018 {
8019 tem = fold_build2_loc (loc, ncode, type,
8020 arg0, TREE_OPERAND (arg1, 0));
8021 return fold_build2_loc (loc, icode, type, tem,
8022 TREE_OPERAND (arg1, 1));
8023 }
8024 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8025 into (A OR B).
8026 For sequence point consistancy, we need to check for trapping,
8027 and side-effects. */
8028 else if (code == icode && simple_operand_p_2 (arg0)
8029 && simple_operand_p_2 (arg1))
8030 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8031 }
8032
8033 return NULL_TREE;
8034 }
8035
8036 /* Fold a binary expression of code CODE and type TYPE with operands
8037 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8038 Return the folded expression if folding is successful. Otherwise,
8039 return NULL_TREE. */
8040
8041 static tree
8042 fold_minmax (location_t loc, enum tree_code code, tree type, tree op0, tree op1)
8043 {
8044 enum tree_code compl_code;
8045
8046 if (code == MIN_EXPR)
8047 compl_code = MAX_EXPR;
8048 else if (code == MAX_EXPR)
8049 compl_code = MIN_EXPR;
8050 else
8051 gcc_unreachable ();
8052
8053 /* MIN (MAX (a, b), b) == b. */
8054 if (TREE_CODE (op0) == compl_code
8055 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
8056 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 0));
8057
8058 /* MIN (MAX (b, a), b) == b. */
8059 if (TREE_CODE (op0) == compl_code
8060 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
8061 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
8062 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 1));
8063
8064 /* MIN (a, MAX (a, b)) == a. */
8065 if (TREE_CODE (op1) == compl_code
8066 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
8067 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
8068 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 1));
8069
8070 /* MIN (a, MAX (b, a)) == a. */
8071 if (TREE_CODE (op1) == compl_code
8072 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
8073 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
8074 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 0));
8075
8076 return NULL_TREE;
8077 }
8078
8079 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8080 by changing CODE to reduce the magnitude of constants involved in
8081 ARG0 of the comparison.
8082 Returns a canonicalized comparison tree if a simplification was
8083 possible, otherwise returns NULL_TREE.
8084 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8085 valid if signed overflow is undefined. */
8086
8087 static tree
8088 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8089 tree arg0, tree arg1,
8090 bool *strict_overflow_p)
8091 {
8092 enum tree_code code0 = TREE_CODE (arg0);
8093 tree t, cst0 = NULL_TREE;
8094 int sgn0;
8095 bool swap = false;
8096
8097 /* Match A +- CST code arg1 and CST code arg1. We can change the
8098 first form only if overflow is undefined. */
8099 if (!(((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8100 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8101 /* In principle pointers also have undefined overflow behavior,
8102 but that causes problems elsewhere. */
8103 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8104 && (code0 == MINUS_EXPR
8105 || code0 == PLUS_EXPR)
8106 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8107 || code0 == INTEGER_CST))
8108 return NULL_TREE;
8109
8110 /* Identify the constant in arg0 and its sign. */
8111 if (code0 == INTEGER_CST)
8112 cst0 = arg0;
8113 else
8114 cst0 = TREE_OPERAND (arg0, 1);
8115 sgn0 = tree_int_cst_sgn (cst0);
8116
8117 /* Overflowed constants and zero will cause problems. */
8118 if (integer_zerop (cst0)
8119 || TREE_OVERFLOW (cst0))
8120 return NULL_TREE;
8121
8122 /* See if we can reduce the magnitude of the constant in
8123 arg0 by changing the comparison code. */
8124 if (code0 == INTEGER_CST)
8125 {
8126 /* CST <= arg1 -> CST-1 < arg1. */
8127 if (code == LE_EXPR && sgn0 == 1)
8128 code = LT_EXPR;
8129 /* -CST < arg1 -> -CST-1 <= arg1. */
8130 else if (code == LT_EXPR && sgn0 == -1)
8131 code = LE_EXPR;
8132 /* CST > arg1 -> CST-1 >= arg1. */
8133 else if (code == GT_EXPR && sgn0 == 1)
8134 code = GE_EXPR;
8135 /* -CST >= arg1 -> -CST-1 > arg1. */
8136 else if (code == GE_EXPR && sgn0 == -1)
8137 code = GT_EXPR;
8138 else
8139 return NULL_TREE;
8140 /* arg1 code' CST' might be more canonical. */
8141 swap = true;
8142 }
8143 else
8144 {
8145 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8146 if (code == LT_EXPR
8147 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8148 code = LE_EXPR;
8149 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8150 else if (code == GT_EXPR
8151 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8152 code = GE_EXPR;
8153 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8154 else if (code == LE_EXPR
8155 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8156 code = LT_EXPR;
8157 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8158 else if (code == GE_EXPR
8159 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8160 code = GT_EXPR;
8161 else
8162 return NULL_TREE;
8163 *strict_overflow_p = true;
8164 }
8165
8166 /* Now build the constant reduced in magnitude. But not if that
8167 would produce one outside of its types range. */
8168 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8169 && ((sgn0 == 1
8170 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8171 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8172 || (sgn0 == -1
8173 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8174 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8175 /* We cannot swap the comparison here as that would cause us to
8176 endlessly recurse. */
8177 return NULL_TREE;
8178
8179 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8180 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8181 if (code0 != INTEGER_CST)
8182 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8183 t = fold_convert (TREE_TYPE (arg1), t);
8184
8185 /* If swapping might yield to a more canonical form, do so. */
8186 if (swap)
8187 return fold_build2_loc (loc, swap_tree_comparison (code), type, arg1, t);
8188 else
8189 return fold_build2_loc (loc, code, type, t, arg1);
8190 }
8191
8192 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8193 overflow further. Try to decrease the magnitude of constants involved
8194 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8195 and put sole constants at the second argument position.
8196 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8197
8198 static tree
8199 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8200 tree arg0, tree arg1)
8201 {
8202 tree t;
8203 bool strict_overflow_p;
8204 const char * const warnmsg = G_("assuming signed overflow does not occur "
8205 "when reducing constant in comparison");
8206
8207 /* Try canonicalization by simplifying arg0. */
8208 strict_overflow_p = false;
8209 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8210 &strict_overflow_p);
8211 if (t)
8212 {
8213 if (strict_overflow_p)
8214 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8215 return t;
8216 }
8217
8218 /* Try canonicalization by simplifying arg1 using the swapped
8219 comparison. */
8220 code = swap_tree_comparison (code);
8221 strict_overflow_p = false;
8222 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8223 &strict_overflow_p);
8224 if (t && strict_overflow_p)
8225 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8226 return t;
8227 }
8228
8229 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8230 space. This is used to avoid issuing overflow warnings for
8231 expressions like &p->x which can not wrap. */
8232
8233 static bool
8234 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8235 {
8236 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8237 return true;
8238
8239 if (bitpos < 0)
8240 return true;
8241
8242 wide_int wi_offset;
8243 int precision = TYPE_PRECISION (TREE_TYPE (base));
8244 if (offset == NULL_TREE)
8245 wi_offset = wi::zero (precision);
8246 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8247 return true;
8248 else
8249 wi_offset = offset;
8250
8251 bool overflow;
8252 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8253 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8254 if (overflow)
8255 return true;
8256
8257 if (!wi::fits_uhwi_p (total))
8258 return true;
8259
8260 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8261 if (size <= 0)
8262 return true;
8263
8264 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8265 array. */
8266 if (TREE_CODE (base) == ADDR_EXPR)
8267 {
8268 HOST_WIDE_INT base_size;
8269
8270 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8271 if (base_size > 0 && size < base_size)
8272 size = base_size;
8273 }
8274
8275 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8276 }
8277
8278 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
8279 kind INTEGER_CST. This makes sure to properly sign-extend the
8280 constant. */
8281
8282 static HOST_WIDE_INT
8283 size_low_cst (const_tree t)
8284 {
8285 HOST_WIDE_INT w = TREE_INT_CST_ELT (t, 0);
8286 int prec = TYPE_PRECISION (TREE_TYPE (t));
8287 if (prec < HOST_BITS_PER_WIDE_INT)
8288 return sext_hwi (w, prec);
8289 return w;
8290 }
8291
8292 /* Subroutine of fold_binary. This routine performs all of the
8293 transformations that are common to the equality/inequality
8294 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8295 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8296 fold_binary should call fold_binary. Fold a comparison with
8297 tree code CODE and type TYPE with operands OP0 and OP1. Return
8298 the folded comparison or NULL_TREE. */
8299
8300 static tree
8301 fold_comparison (location_t loc, enum tree_code code, tree type,
8302 tree op0, tree op1)
8303 {
8304 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8305 tree arg0, arg1, tem;
8306
8307 arg0 = op0;
8308 arg1 = op1;
8309
8310 STRIP_SIGN_NOPS (arg0);
8311 STRIP_SIGN_NOPS (arg1);
8312
8313 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
8314 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8315 && (equality_code
8316 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8317 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
8318 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8319 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8320 && TREE_CODE (arg1) == INTEGER_CST
8321 && !TREE_OVERFLOW (arg1))
8322 {
8323 const enum tree_code
8324 reverse_op = TREE_CODE (arg0) == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR;
8325 tree const1 = TREE_OPERAND (arg0, 1);
8326 tree const2 = fold_convert_loc (loc, TREE_TYPE (const1), arg1);
8327 tree variable = TREE_OPERAND (arg0, 0);
8328 tree new_const = int_const_binop (reverse_op, const2, const1);
8329
8330 /* If the constant operation overflowed this can be
8331 simplified as a comparison against INT_MAX/INT_MIN. */
8332 if (TREE_OVERFLOW (new_const)
8333 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
8334 {
8335 int const1_sgn = tree_int_cst_sgn (const1);
8336 enum tree_code code2 = code;
8337
8338 /* Get the sign of the constant on the lhs if the
8339 operation were VARIABLE + CONST1. */
8340 if (TREE_CODE (arg0) == MINUS_EXPR)
8341 const1_sgn = -const1_sgn;
8342
8343 /* The sign of the constant determines if we overflowed
8344 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8345 Canonicalize to the INT_MIN overflow by swapping the comparison
8346 if necessary. */
8347 if (const1_sgn == -1)
8348 code2 = swap_tree_comparison (code);
8349
8350 /* We now can look at the canonicalized case
8351 VARIABLE + 1 CODE2 INT_MIN
8352 and decide on the result. */
8353 switch (code2)
8354 {
8355 case EQ_EXPR:
8356 case LT_EXPR:
8357 case LE_EXPR:
8358 return
8359 omit_one_operand_loc (loc, type, boolean_false_node, variable);
8360
8361 case NE_EXPR:
8362 case GE_EXPR:
8363 case GT_EXPR:
8364 return
8365 omit_one_operand_loc (loc, type, boolean_true_node, variable);
8366
8367 default:
8368 gcc_unreachable ();
8369 }
8370 }
8371 else
8372 {
8373 if (!equality_code)
8374 fold_overflow_warning ("assuming signed overflow does not occur "
8375 "when changing X +- C1 cmp C2 to "
8376 "X cmp C2 -+ C1",
8377 WARN_STRICT_OVERFLOW_COMPARISON);
8378 return fold_build2_loc (loc, code, type, variable, new_const);
8379 }
8380 }
8381
8382 /* For comparisons of pointers we can decompose it to a compile time
8383 comparison of the base objects and the offsets into the object.
8384 This requires at least one operand being an ADDR_EXPR or a
8385 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8386 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8387 && (TREE_CODE (arg0) == ADDR_EXPR
8388 || TREE_CODE (arg1) == ADDR_EXPR
8389 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8390 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8391 {
8392 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8393 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8394 machine_mode mode;
8395 int volatilep, unsignedp;
8396 bool indirect_base0 = false, indirect_base1 = false;
8397
8398 /* Get base and offset for the access. Strip ADDR_EXPR for
8399 get_inner_reference, but put it back by stripping INDIRECT_REF
8400 off the base object if possible. indirect_baseN will be true
8401 if baseN is not an address but refers to the object itself. */
8402 base0 = arg0;
8403 if (TREE_CODE (arg0) == ADDR_EXPR)
8404 {
8405 base0 = get_inner_reference (TREE_OPERAND (arg0, 0),
8406 &bitsize, &bitpos0, &offset0, &mode,
8407 &unsignedp, &volatilep, false);
8408 if (TREE_CODE (base0) == INDIRECT_REF)
8409 base0 = TREE_OPERAND (base0, 0);
8410 else
8411 indirect_base0 = true;
8412 }
8413 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8414 {
8415 base0 = TREE_OPERAND (arg0, 0);
8416 STRIP_SIGN_NOPS (base0);
8417 if (TREE_CODE (base0) == ADDR_EXPR)
8418 {
8419 base0 = TREE_OPERAND (base0, 0);
8420 indirect_base0 = true;
8421 }
8422 offset0 = TREE_OPERAND (arg0, 1);
8423 if (tree_fits_shwi_p (offset0))
8424 {
8425 HOST_WIDE_INT off = size_low_cst (offset0);
8426 if ((HOST_WIDE_INT) (((unsigned HOST_WIDE_INT) off)
8427 * BITS_PER_UNIT)
8428 / BITS_PER_UNIT == (HOST_WIDE_INT) off)
8429 {
8430 bitpos0 = off * BITS_PER_UNIT;
8431 offset0 = NULL_TREE;
8432 }
8433 }
8434 }
8435
8436 base1 = arg1;
8437 if (TREE_CODE (arg1) == ADDR_EXPR)
8438 {
8439 base1 = get_inner_reference (TREE_OPERAND (arg1, 0),
8440 &bitsize, &bitpos1, &offset1, &mode,
8441 &unsignedp, &volatilep, false);
8442 if (TREE_CODE (base1) == INDIRECT_REF)
8443 base1 = TREE_OPERAND (base1, 0);
8444 else
8445 indirect_base1 = true;
8446 }
8447 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8448 {
8449 base1 = TREE_OPERAND (arg1, 0);
8450 STRIP_SIGN_NOPS (base1);
8451 if (TREE_CODE (base1) == ADDR_EXPR)
8452 {
8453 base1 = TREE_OPERAND (base1, 0);
8454 indirect_base1 = true;
8455 }
8456 offset1 = TREE_OPERAND (arg1, 1);
8457 if (tree_fits_shwi_p (offset1))
8458 {
8459 HOST_WIDE_INT off = size_low_cst (offset1);
8460 if ((HOST_WIDE_INT) (((unsigned HOST_WIDE_INT) off)
8461 * BITS_PER_UNIT)
8462 / BITS_PER_UNIT == (HOST_WIDE_INT) off)
8463 {
8464 bitpos1 = off * BITS_PER_UNIT;
8465 offset1 = NULL_TREE;
8466 }
8467 }
8468 }
8469
8470 /* A local variable can never be pointed to by
8471 the default SSA name of an incoming parameter. */
8472 if ((TREE_CODE (arg0) == ADDR_EXPR
8473 && indirect_base0
8474 && TREE_CODE (base0) == VAR_DECL
8475 && auto_var_in_fn_p (base0, current_function_decl)
8476 && !indirect_base1
8477 && TREE_CODE (base1) == SSA_NAME
8478 && SSA_NAME_IS_DEFAULT_DEF (base1)
8479 && TREE_CODE (SSA_NAME_VAR (base1)) == PARM_DECL)
8480 || (TREE_CODE (arg1) == ADDR_EXPR
8481 && indirect_base1
8482 && TREE_CODE (base1) == VAR_DECL
8483 && auto_var_in_fn_p (base1, current_function_decl)
8484 && !indirect_base0
8485 && TREE_CODE (base0) == SSA_NAME
8486 && SSA_NAME_IS_DEFAULT_DEF (base0)
8487 && TREE_CODE (SSA_NAME_VAR (base0)) == PARM_DECL))
8488 {
8489 if (code == NE_EXPR)
8490 return constant_boolean_node (1, type);
8491 else if (code == EQ_EXPR)
8492 return constant_boolean_node (0, type);
8493 }
8494 /* If we have equivalent bases we might be able to simplify. */
8495 else if (indirect_base0 == indirect_base1
8496 && operand_equal_p (base0, base1, 0))
8497 {
8498 /* We can fold this expression to a constant if the non-constant
8499 offset parts are equal. */
8500 if ((offset0 == offset1
8501 || (offset0 && offset1
8502 && operand_equal_p (offset0, offset1, 0)))
8503 && (code == EQ_EXPR
8504 || code == NE_EXPR
8505 || (indirect_base0 && DECL_P (base0))
8506 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8507
8508 {
8509 if (!equality_code
8510 && bitpos0 != bitpos1
8511 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8512 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8513 fold_overflow_warning (("assuming pointer wraparound does not "
8514 "occur when comparing P +- C1 with "
8515 "P +- C2"),
8516 WARN_STRICT_OVERFLOW_CONDITIONAL);
8517
8518 switch (code)
8519 {
8520 case EQ_EXPR:
8521 return constant_boolean_node (bitpos0 == bitpos1, type);
8522 case NE_EXPR:
8523 return constant_boolean_node (bitpos0 != bitpos1, type);
8524 case LT_EXPR:
8525 return constant_boolean_node (bitpos0 < bitpos1, type);
8526 case LE_EXPR:
8527 return constant_boolean_node (bitpos0 <= bitpos1, type);
8528 case GE_EXPR:
8529 return constant_boolean_node (bitpos0 >= bitpos1, type);
8530 case GT_EXPR:
8531 return constant_boolean_node (bitpos0 > bitpos1, type);
8532 default:;
8533 }
8534 }
8535 /* We can simplify the comparison to a comparison of the variable
8536 offset parts if the constant offset parts are equal.
8537 Be careful to use signed sizetype here because otherwise we
8538 mess with array offsets in the wrong way. This is possible
8539 because pointer arithmetic is restricted to retain within an
8540 object and overflow on pointer differences is undefined as of
8541 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8542 else if (bitpos0 == bitpos1
8543 && (equality_code
8544 || (indirect_base0 && DECL_P (base0))
8545 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8546 {
8547 /* By converting to signed sizetype we cover middle-end pointer
8548 arithmetic which operates on unsigned pointer types of size
8549 type size and ARRAY_REF offsets which are properly sign or
8550 zero extended from their type in case it is narrower than
8551 sizetype. */
8552 if (offset0 == NULL_TREE)
8553 offset0 = build_int_cst (ssizetype, 0);
8554 else
8555 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8556 if (offset1 == NULL_TREE)
8557 offset1 = build_int_cst (ssizetype, 0);
8558 else
8559 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8560
8561 if (!equality_code
8562 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8563 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8564 fold_overflow_warning (("assuming pointer wraparound does not "
8565 "occur when comparing P +- C1 with "
8566 "P +- C2"),
8567 WARN_STRICT_OVERFLOW_COMPARISON);
8568
8569 return fold_build2_loc (loc, code, type, offset0, offset1);
8570 }
8571 }
8572 /* For non-equal bases we can simplify if they are addresses
8573 declarations with different addresses. */
8574 else if (indirect_base0 && indirect_base1
8575 /* We know that !operand_equal_p (base0, base1, 0)
8576 because the if condition was false. But make
8577 sure two decls are not the same. */
8578 && base0 != base1
8579 && TREE_CODE (arg0) == ADDR_EXPR
8580 && TREE_CODE (arg1) == ADDR_EXPR
8581 && DECL_P (base0)
8582 && DECL_P (base1)
8583 /* Watch for aliases. */
8584 && (!decl_in_symtab_p (base0)
8585 || !decl_in_symtab_p (base1)
8586 || !symtab_node::get_create (base0)->equal_address_to
8587 (symtab_node::get_create (base1))))
8588 {
8589 if (code == EQ_EXPR)
8590 return omit_two_operands_loc (loc, type, boolean_false_node,
8591 arg0, arg1);
8592 else if (code == NE_EXPR)
8593 return omit_two_operands_loc (loc, type, boolean_true_node,
8594 arg0, arg1);
8595 }
8596 /* For equal offsets we can simplify to a comparison of the
8597 base addresses. */
8598 else if (bitpos0 == bitpos1
8599 && (indirect_base0
8600 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8601 && (indirect_base1
8602 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8603 && ((offset0 == offset1)
8604 || (offset0 && offset1
8605 && operand_equal_p (offset0, offset1, 0))))
8606 {
8607 if (indirect_base0)
8608 base0 = build_fold_addr_expr_loc (loc, base0);
8609 if (indirect_base1)
8610 base1 = build_fold_addr_expr_loc (loc, base1);
8611 return fold_build2_loc (loc, code, type, base0, base1);
8612 }
8613 }
8614
8615 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8616 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8617 the resulting offset is smaller in absolute value than the
8618 original one and has the same sign. */
8619 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8620 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8621 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8622 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8623 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8624 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8625 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8626 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8627 {
8628 tree const1 = TREE_OPERAND (arg0, 1);
8629 tree const2 = TREE_OPERAND (arg1, 1);
8630 tree variable1 = TREE_OPERAND (arg0, 0);
8631 tree variable2 = TREE_OPERAND (arg1, 0);
8632 tree cst;
8633 const char * const warnmsg = G_("assuming signed overflow does not "
8634 "occur when combining constants around "
8635 "a comparison");
8636
8637 /* Put the constant on the side where it doesn't overflow and is
8638 of lower absolute value and of same sign than before. */
8639 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8640 ? MINUS_EXPR : PLUS_EXPR,
8641 const2, const1);
8642 if (!TREE_OVERFLOW (cst)
8643 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8644 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8645 {
8646 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8647 return fold_build2_loc (loc, code, type,
8648 variable1,
8649 fold_build2_loc (loc, TREE_CODE (arg1),
8650 TREE_TYPE (arg1),
8651 variable2, cst));
8652 }
8653
8654 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8655 ? MINUS_EXPR : PLUS_EXPR,
8656 const1, const2);
8657 if (!TREE_OVERFLOW (cst)
8658 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8659 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8660 {
8661 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8662 return fold_build2_loc (loc, code, type,
8663 fold_build2_loc (loc, TREE_CODE (arg0),
8664 TREE_TYPE (arg0),
8665 variable1, cst),
8666 variable2);
8667 }
8668 }
8669
8670 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8671 if (tem)
8672 return tem;
8673
8674 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
8675 constant, we can simplify it. */
8676 if (TREE_CODE (arg1) == INTEGER_CST
8677 && (TREE_CODE (arg0) == MIN_EXPR
8678 || TREE_CODE (arg0) == MAX_EXPR)
8679 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8680 {
8681 tem = optimize_minmax_comparison (loc, code, type, op0, op1);
8682 if (tem)
8683 return tem;
8684 }
8685
8686 /* If we are comparing an expression that just has comparisons
8687 of two integer values, arithmetic expressions of those comparisons,
8688 and constants, we can simplify it. There are only three cases
8689 to check: the two values can either be equal, the first can be
8690 greater, or the second can be greater. Fold the expression for
8691 those three values. Since each value must be 0 or 1, we have
8692 eight possibilities, each of which corresponds to the constant 0
8693 or 1 or one of the six possible comparisons.
8694
8695 This handles common cases like (a > b) == 0 but also handles
8696 expressions like ((x > y) - (y > x)) > 0, which supposedly
8697 occur in macroized code. */
8698
8699 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8700 {
8701 tree cval1 = 0, cval2 = 0;
8702 int save_p = 0;
8703
8704 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8705 /* Don't handle degenerate cases here; they should already
8706 have been handled anyway. */
8707 && cval1 != 0 && cval2 != 0
8708 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8709 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8710 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8711 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8712 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8713 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8714 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8715 {
8716 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8717 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8718
8719 /* We can't just pass T to eval_subst in case cval1 or cval2
8720 was the same as ARG1. */
8721
8722 tree high_result
8723 = fold_build2_loc (loc, code, type,
8724 eval_subst (loc, arg0, cval1, maxval,
8725 cval2, minval),
8726 arg1);
8727 tree equal_result
8728 = fold_build2_loc (loc, code, type,
8729 eval_subst (loc, arg0, cval1, maxval,
8730 cval2, maxval),
8731 arg1);
8732 tree low_result
8733 = fold_build2_loc (loc, code, type,
8734 eval_subst (loc, arg0, cval1, minval,
8735 cval2, maxval),
8736 arg1);
8737
8738 /* All three of these results should be 0 or 1. Confirm they are.
8739 Then use those values to select the proper code to use. */
8740
8741 if (TREE_CODE (high_result) == INTEGER_CST
8742 && TREE_CODE (equal_result) == INTEGER_CST
8743 && TREE_CODE (low_result) == INTEGER_CST)
8744 {
8745 /* Make a 3-bit mask with the high-order bit being the
8746 value for `>', the next for '=', and the low for '<'. */
8747 switch ((integer_onep (high_result) * 4)
8748 + (integer_onep (equal_result) * 2)
8749 + integer_onep (low_result))
8750 {
8751 case 0:
8752 /* Always false. */
8753 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8754 case 1:
8755 code = LT_EXPR;
8756 break;
8757 case 2:
8758 code = EQ_EXPR;
8759 break;
8760 case 3:
8761 code = LE_EXPR;
8762 break;
8763 case 4:
8764 code = GT_EXPR;
8765 break;
8766 case 5:
8767 code = NE_EXPR;
8768 break;
8769 case 6:
8770 code = GE_EXPR;
8771 break;
8772 case 7:
8773 /* Always true. */
8774 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8775 }
8776
8777 if (save_p)
8778 {
8779 tem = save_expr (build2 (code, type, cval1, cval2));
8780 SET_EXPR_LOCATION (tem, loc);
8781 return tem;
8782 }
8783 return fold_build2_loc (loc, code, type, cval1, cval2);
8784 }
8785 }
8786 }
8787
8788 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8789 into a single range test. */
8790 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
8791 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
8792 && TREE_CODE (arg1) == INTEGER_CST
8793 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8794 && !integer_zerop (TREE_OPERAND (arg0, 1))
8795 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8796 && !TREE_OVERFLOW (arg1))
8797 {
8798 tem = fold_div_compare (loc, code, type, arg0, arg1);
8799 if (tem != NULL_TREE)
8800 return tem;
8801 }
8802
8803 return NULL_TREE;
8804 }
8805
8806
8807 /* Subroutine of fold_binary. Optimize complex multiplications of the
8808 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8809 argument EXPR represents the expression "z" of type TYPE. */
8810
8811 static tree
8812 fold_mult_zconjz (location_t loc, tree type, tree expr)
8813 {
8814 tree itype = TREE_TYPE (type);
8815 tree rpart, ipart, tem;
8816
8817 if (TREE_CODE (expr) == COMPLEX_EXPR)
8818 {
8819 rpart = TREE_OPERAND (expr, 0);
8820 ipart = TREE_OPERAND (expr, 1);
8821 }
8822 else if (TREE_CODE (expr) == COMPLEX_CST)
8823 {
8824 rpart = TREE_REALPART (expr);
8825 ipart = TREE_IMAGPART (expr);
8826 }
8827 else
8828 {
8829 expr = save_expr (expr);
8830 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8831 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8832 }
8833
8834 rpart = save_expr (rpart);
8835 ipart = save_expr (ipart);
8836 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8837 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8838 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8839 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8840 build_zero_cst (itype));
8841 }
8842
8843
8844 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8845 CONSTRUCTOR ARG into array ELTS and return true if successful. */
8846
8847 static bool
8848 vec_cst_ctor_to_array (tree arg, tree *elts)
8849 {
8850 unsigned int nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)), i;
8851
8852 if (TREE_CODE (arg) == VECTOR_CST)
8853 {
8854 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
8855 elts[i] = VECTOR_CST_ELT (arg, i);
8856 }
8857 else if (TREE_CODE (arg) == CONSTRUCTOR)
8858 {
8859 constructor_elt *elt;
8860
8861 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
8862 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
8863 return false;
8864 else
8865 elts[i] = elt->value;
8866 }
8867 else
8868 return false;
8869 for (; i < nelts; i++)
8870 elts[i]
8871 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
8872 return true;
8873 }
8874
8875 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8876 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8877 NULL_TREE otherwise. */
8878
8879 static tree
8880 fold_vec_perm (tree type, tree arg0, tree arg1, const unsigned char *sel)
8881 {
8882 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
8883 tree *elts;
8884 bool need_ctor = false;
8885
8886 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
8887 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
8888 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
8889 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
8890 return NULL_TREE;
8891
8892 elts = XALLOCAVEC (tree, nelts * 3);
8893 if (!vec_cst_ctor_to_array (arg0, elts)
8894 || !vec_cst_ctor_to_array (arg1, elts + nelts))
8895 return NULL_TREE;
8896
8897 for (i = 0; i < nelts; i++)
8898 {
8899 if (!CONSTANT_CLASS_P (elts[sel[i]]))
8900 need_ctor = true;
8901 elts[i + 2 * nelts] = unshare_expr (elts[sel[i]]);
8902 }
8903
8904 if (need_ctor)
8905 {
8906 vec<constructor_elt, va_gc> *v;
8907 vec_alloc (v, nelts);
8908 for (i = 0; i < nelts; i++)
8909 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[2 * nelts + i]);
8910 return build_constructor (type, v);
8911 }
8912 else
8913 return build_vector (type, &elts[2 * nelts]);
8914 }
8915
8916 /* Try to fold a pointer difference of type TYPE two address expressions of
8917 array references AREF0 and AREF1 using location LOC. Return a
8918 simplified expression for the difference or NULL_TREE. */
8919
8920 static tree
8921 fold_addr_of_array_ref_difference (location_t loc, tree type,
8922 tree aref0, tree aref1)
8923 {
8924 tree base0 = TREE_OPERAND (aref0, 0);
8925 tree base1 = TREE_OPERAND (aref1, 0);
8926 tree base_offset = build_int_cst (type, 0);
8927
8928 /* If the bases are array references as well, recurse. If the bases
8929 are pointer indirections compute the difference of the pointers.
8930 If the bases are equal, we are set. */
8931 if ((TREE_CODE (base0) == ARRAY_REF
8932 && TREE_CODE (base1) == ARRAY_REF
8933 && (base_offset
8934 = fold_addr_of_array_ref_difference (loc, type, base0, base1)))
8935 || (INDIRECT_REF_P (base0)
8936 && INDIRECT_REF_P (base1)
8937 && (base_offset = fold_binary_loc (loc, MINUS_EXPR, type,
8938 TREE_OPERAND (base0, 0),
8939 TREE_OPERAND (base1, 0))))
8940 || operand_equal_p (base0, base1, 0))
8941 {
8942 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
8943 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
8944 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
8945 tree diff = build2 (MINUS_EXPR, type, op0, op1);
8946 return fold_build2_loc (loc, PLUS_EXPR, type,
8947 base_offset,
8948 fold_build2_loc (loc, MULT_EXPR, type,
8949 diff, esz));
8950 }
8951 return NULL_TREE;
8952 }
8953
8954 /* If the real or vector real constant CST of type TYPE has an exact
8955 inverse, return it, else return NULL. */
8956
8957 tree
8958 exact_inverse (tree type, tree cst)
8959 {
8960 REAL_VALUE_TYPE r;
8961 tree unit_type, *elts;
8962 machine_mode mode;
8963 unsigned vec_nelts, i;
8964
8965 switch (TREE_CODE (cst))
8966 {
8967 case REAL_CST:
8968 r = TREE_REAL_CST (cst);
8969
8970 if (exact_real_inverse (TYPE_MODE (type), &r))
8971 return build_real (type, r);
8972
8973 return NULL_TREE;
8974
8975 case VECTOR_CST:
8976 vec_nelts = VECTOR_CST_NELTS (cst);
8977 elts = XALLOCAVEC (tree, vec_nelts);
8978 unit_type = TREE_TYPE (type);
8979 mode = TYPE_MODE (unit_type);
8980
8981 for (i = 0; i < vec_nelts; i++)
8982 {
8983 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
8984 if (!exact_real_inverse (mode, &r))
8985 return NULL_TREE;
8986 elts[i] = build_real (unit_type, r);
8987 }
8988
8989 return build_vector (type, elts);
8990
8991 default:
8992 return NULL_TREE;
8993 }
8994 }
8995
8996 /* Mask out the tz least significant bits of X of type TYPE where
8997 tz is the number of trailing zeroes in Y. */
8998 static wide_int
8999 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
9000 {
9001 int tz = wi::ctz (y);
9002 if (tz > 0)
9003 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
9004 return x;
9005 }
9006
9007 /* Return true when T is an address and is known to be nonzero.
9008 For floating point we further ensure that T is not denormal.
9009 Similar logic is present in nonzero_address in rtlanal.h.
9010
9011 If the return value is based on the assumption that signed overflow
9012 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9013 change *STRICT_OVERFLOW_P. */
9014
9015 static bool
9016 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
9017 {
9018 tree type = TREE_TYPE (t);
9019 enum tree_code code;
9020
9021 /* Doing something useful for floating point would need more work. */
9022 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
9023 return false;
9024
9025 code = TREE_CODE (t);
9026 switch (TREE_CODE_CLASS (code))
9027 {
9028 case tcc_unary:
9029 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9030 strict_overflow_p);
9031 case tcc_binary:
9032 case tcc_comparison:
9033 return tree_binary_nonzero_warnv_p (code, type,
9034 TREE_OPERAND (t, 0),
9035 TREE_OPERAND (t, 1),
9036 strict_overflow_p);
9037 case tcc_constant:
9038 case tcc_declaration:
9039 case tcc_reference:
9040 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9041
9042 default:
9043 break;
9044 }
9045
9046 switch (code)
9047 {
9048 case TRUTH_NOT_EXPR:
9049 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9050 strict_overflow_p);
9051
9052 case TRUTH_AND_EXPR:
9053 case TRUTH_OR_EXPR:
9054 case TRUTH_XOR_EXPR:
9055 return tree_binary_nonzero_warnv_p (code, type,
9056 TREE_OPERAND (t, 0),
9057 TREE_OPERAND (t, 1),
9058 strict_overflow_p);
9059
9060 case COND_EXPR:
9061 case CONSTRUCTOR:
9062 case OBJ_TYPE_REF:
9063 case ASSERT_EXPR:
9064 case ADDR_EXPR:
9065 case WITH_SIZE_EXPR:
9066 case SSA_NAME:
9067 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9068
9069 case COMPOUND_EXPR:
9070 case MODIFY_EXPR:
9071 case BIND_EXPR:
9072 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
9073 strict_overflow_p);
9074
9075 case SAVE_EXPR:
9076 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
9077 strict_overflow_p);
9078
9079 case CALL_EXPR:
9080 {
9081 tree fndecl = get_callee_fndecl (t);
9082 if (!fndecl) return false;
9083 if (flag_delete_null_pointer_checks && !flag_check_new
9084 && DECL_IS_OPERATOR_NEW (fndecl)
9085 && !TREE_NOTHROW (fndecl))
9086 return true;
9087 if (flag_delete_null_pointer_checks
9088 && lookup_attribute ("returns_nonnull",
9089 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
9090 return true;
9091 return alloca_call_p (t);
9092 }
9093
9094 default:
9095 break;
9096 }
9097 return false;
9098 }
9099
9100 /* Return true when T is an address and is known to be nonzero.
9101 Handle warnings about undefined signed overflow. */
9102
9103 static bool
9104 tree_expr_nonzero_p (tree t)
9105 {
9106 bool ret, strict_overflow_p;
9107
9108 strict_overflow_p = false;
9109 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9110 if (strict_overflow_p)
9111 fold_overflow_warning (("assuming signed overflow does not occur when "
9112 "determining that expression is always "
9113 "non-zero"),
9114 WARN_STRICT_OVERFLOW_MISC);
9115 return ret;
9116 }
9117
9118 /* Fold a binary expression of code CODE and type TYPE with operands
9119 OP0 and OP1. LOC is the location of the resulting expression.
9120 Return the folded expression if folding is successful. Otherwise,
9121 return NULL_TREE. */
9122
9123 tree
9124 fold_binary_loc (location_t loc,
9125 enum tree_code code, tree type, tree op0, tree op1)
9126 {
9127 enum tree_code_class kind = TREE_CODE_CLASS (code);
9128 tree arg0, arg1, tem;
9129 tree t1 = NULL_TREE;
9130 bool strict_overflow_p;
9131 unsigned int prec;
9132
9133 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9134 && TREE_CODE_LENGTH (code) == 2
9135 && op0 != NULL_TREE
9136 && op1 != NULL_TREE);
9137
9138 arg0 = op0;
9139 arg1 = op1;
9140
9141 /* Strip any conversions that don't change the mode. This is
9142 safe for every expression, except for a comparison expression
9143 because its signedness is derived from its operands. So, in
9144 the latter case, only strip conversions that don't change the
9145 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9146 preserved.
9147
9148 Note that this is done as an internal manipulation within the
9149 constant folder, in order to find the simplest representation
9150 of the arguments so that their form can be studied. In any
9151 cases, the appropriate type conversions should be put back in
9152 the tree that will get out of the constant folder. */
9153
9154 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9155 {
9156 STRIP_SIGN_NOPS (arg0);
9157 STRIP_SIGN_NOPS (arg1);
9158 }
9159 else
9160 {
9161 STRIP_NOPS (arg0);
9162 STRIP_NOPS (arg1);
9163 }
9164
9165 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9166 constant but we can't do arithmetic on them. */
9167 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9168 {
9169 tem = const_binop (code, type, arg0, arg1);
9170 if (tem != NULL_TREE)
9171 {
9172 if (TREE_TYPE (tem) != type)
9173 tem = fold_convert_loc (loc, type, tem);
9174 return tem;
9175 }
9176 }
9177
9178 /* If this is a commutative operation, and ARG0 is a constant, move it
9179 to ARG1 to reduce the number of tests below. */
9180 if (commutative_tree_code (code)
9181 && tree_swap_operands_p (arg0, arg1, true))
9182 return fold_build2_loc (loc, code, type, op1, op0);
9183
9184 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9185 to ARG1 to reduce the number of tests below. */
9186 if (kind == tcc_comparison
9187 && tree_swap_operands_p (arg0, arg1, true))
9188 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9189
9190 tem = generic_simplify (loc, code, type, op0, op1);
9191 if (tem)
9192 return tem;
9193
9194 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9195
9196 First check for cases where an arithmetic operation is applied to a
9197 compound, conditional, or comparison operation. Push the arithmetic
9198 operation inside the compound or conditional to see if any folding
9199 can then be done. Convert comparison to conditional for this purpose.
9200 The also optimizes non-constant cases that used to be done in
9201 expand_expr.
9202
9203 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9204 one of the operands is a comparison and the other is a comparison, a
9205 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9206 code below would make the expression more complex. Change it to a
9207 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9208 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9209
9210 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9211 || code == EQ_EXPR || code == NE_EXPR)
9212 && TREE_CODE (type) != VECTOR_TYPE
9213 && ((truth_value_p (TREE_CODE (arg0))
9214 && (truth_value_p (TREE_CODE (arg1))
9215 || (TREE_CODE (arg1) == BIT_AND_EXPR
9216 && integer_onep (TREE_OPERAND (arg1, 1)))))
9217 || (truth_value_p (TREE_CODE (arg1))
9218 && (truth_value_p (TREE_CODE (arg0))
9219 || (TREE_CODE (arg0) == BIT_AND_EXPR
9220 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9221 {
9222 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9223 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9224 : TRUTH_XOR_EXPR,
9225 boolean_type_node,
9226 fold_convert_loc (loc, boolean_type_node, arg0),
9227 fold_convert_loc (loc, boolean_type_node, arg1));
9228
9229 if (code == EQ_EXPR)
9230 tem = invert_truthvalue_loc (loc, tem);
9231
9232 return fold_convert_loc (loc, type, tem);
9233 }
9234
9235 if (TREE_CODE_CLASS (code) == tcc_binary
9236 || TREE_CODE_CLASS (code) == tcc_comparison)
9237 {
9238 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9239 {
9240 tem = fold_build2_loc (loc, code, type,
9241 fold_convert_loc (loc, TREE_TYPE (op0),
9242 TREE_OPERAND (arg0, 1)), op1);
9243 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9244 tem);
9245 }
9246 if (TREE_CODE (arg1) == COMPOUND_EXPR
9247 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9248 {
9249 tem = fold_build2_loc (loc, code, type, op0,
9250 fold_convert_loc (loc, TREE_TYPE (op1),
9251 TREE_OPERAND (arg1, 1)));
9252 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9253 tem);
9254 }
9255
9256 if (TREE_CODE (arg0) == COND_EXPR
9257 || TREE_CODE (arg0) == VEC_COND_EXPR
9258 || COMPARISON_CLASS_P (arg0))
9259 {
9260 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9261 arg0, arg1,
9262 /*cond_first_p=*/1);
9263 if (tem != NULL_TREE)
9264 return tem;
9265 }
9266
9267 if (TREE_CODE (arg1) == COND_EXPR
9268 || TREE_CODE (arg1) == VEC_COND_EXPR
9269 || COMPARISON_CLASS_P (arg1))
9270 {
9271 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9272 arg1, arg0,
9273 /*cond_first_p=*/0);
9274 if (tem != NULL_TREE)
9275 return tem;
9276 }
9277 }
9278
9279 switch (code)
9280 {
9281 case MEM_REF:
9282 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9283 if (TREE_CODE (arg0) == ADDR_EXPR
9284 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9285 {
9286 tree iref = TREE_OPERAND (arg0, 0);
9287 return fold_build2 (MEM_REF, type,
9288 TREE_OPERAND (iref, 0),
9289 int_const_binop (PLUS_EXPR, arg1,
9290 TREE_OPERAND (iref, 1)));
9291 }
9292
9293 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9294 if (TREE_CODE (arg0) == ADDR_EXPR
9295 && handled_component_p (TREE_OPERAND (arg0, 0)))
9296 {
9297 tree base;
9298 HOST_WIDE_INT coffset;
9299 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9300 &coffset);
9301 if (!base)
9302 return NULL_TREE;
9303 return fold_build2 (MEM_REF, type,
9304 build_fold_addr_expr (base),
9305 int_const_binop (PLUS_EXPR, arg1,
9306 size_int (coffset)));
9307 }
9308
9309 return NULL_TREE;
9310
9311 case POINTER_PLUS_EXPR:
9312 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9313 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9314 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9315 return fold_convert_loc (loc, type,
9316 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9317 fold_convert_loc (loc, sizetype,
9318 arg1),
9319 fold_convert_loc (loc, sizetype,
9320 arg0)));
9321
9322 return NULL_TREE;
9323
9324 case PLUS_EXPR:
9325 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9326 {
9327 /* X + (X / CST) * -CST is X % CST. */
9328 if (TREE_CODE (arg1) == MULT_EXPR
9329 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9330 && operand_equal_p (arg0,
9331 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9332 {
9333 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9334 tree cst1 = TREE_OPERAND (arg1, 1);
9335 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9336 cst1, cst0);
9337 if (sum && integer_zerop (sum))
9338 return fold_convert_loc (loc, type,
9339 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9340 TREE_TYPE (arg0), arg0,
9341 cst0));
9342 }
9343 }
9344
9345 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9346 one. Make sure the type is not saturating and has the signedness of
9347 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9348 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9349 if ((TREE_CODE (arg0) == MULT_EXPR
9350 || TREE_CODE (arg1) == MULT_EXPR)
9351 && !TYPE_SATURATING (type)
9352 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9353 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9354 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9355 {
9356 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9357 if (tem)
9358 return tem;
9359 }
9360
9361 if (! FLOAT_TYPE_P (type))
9362 {
9363 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9364 (plus (plus (mult) (mult)) (foo)) so that we can
9365 take advantage of the factoring cases below. */
9366 if (ANY_INTEGRAL_TYPE_P (type)
9367 && TYPE_OVERFLOW_WRAPS (type)
9368 && (((TREE_CODE (arg0) == PLUS_EXPR
9369 || TREE_CODE (arg0) == MINUS_EXPR)
9370 && TREE_CODE (arg1) == MULT_EXPR)
9371 || ((TREE_CODE (arg1) == PLUS_EXPR
9372 || TREE_CODE (arg1) == MINUS_EXPR)
9373 && TREE_CODE (arg0) == MULT_EXPR)))
9374 {
9375 tree parg0, parg1, parg, marg;
9376 enum tree_code pcode;
9377
9378 if (TREE_CODE (arg1) == MULT_EXPR)
9379 parg = arg0, marg = arg1;
9380 else
9381 parg = arg1, marg = arg0;
9382 pcode = TREE_CODE (parg);
9383 parg0 = TREE_OPERAND (parg, 0);
9384 parg1 = TREE_OPERAND (parg, 1);
9385 STRIP_NOPS (parg0);
9386 STRIP_NOPS (parg1);
9387
9388 if (TREE_CODE (parg0) == MULT_EXPR
9389 && TREE_CODE (parg1) != MULT_EXPR)
9390 return fold_build2_loc (loc, pcode, type,
9391 fold_build2_loc (loc, PLUS_EXPR, type,
9392 fold_convert_loc (loc, type,
9393 parg0),
9394 fold_convert_loc (loc, type,
9395 marg)),
9396 fold_convert_loc (loc, type, parg1));
9397 if (TREE_CODE (parg0) != MULT_EXPR
9398 && TREE_CODE (parg1) == MULT_EXPR)
9399 return
9400 fold_build2_loc (loc, PLUS_EXPR, type,
9401 fold_convert_loc (loc, type, parg0),
9402 fold_build2_loc (loc, pcode, type,
9403 fold_convert_loc (loc, type, marg),
9404 fold_convert_loc (loc, type,
9405 parg1)));
9406 }
9407 }
9408 else
9409 {
9410 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9411 to __complex__ ( x, y ). This is not the same for SNaNs or
9412 if signed zeros are involved. */
9413 if (!HONOR_SNANS (element_mode (arg0))
9414 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9415 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9416 {
9417 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9418 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9419 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9420 bool arg0rz = false, arg0iz = false;
9421 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9422 || (arg0i && (arg0iz = real_zerop (arg0i))))
9423 {
9424 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9425 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9426 if (arg0rz && arg1i && real_zerop (arg1i))
9427 {
9428 tree rp = arg1r ? arg1r
9429 : build1 (REALPART_EXPR, rtype, arg1);
9430 tree ip = arg0i ? arg0i
9431 : build1 (IMAGPART_EXPR, rtype, arg0);
9432 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9433 }
9434 else if (arg0iz && arg1r && real_zerop (arg1r))
9435 {
9436 tree rp = arg0r ? arg0r
9437 : build1 (REALPART_EXPR, rtype, arg0);
9438 tree ip = arg1i ? arg1i
9439 : build1 (IMAGPART_EXPR, rtype, arg1);
9440 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9441 }
9442 }
9443 }
9444
9445 if (flag_unsafe_math_optimizations
9446 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9447 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9448 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9449 return tem;
9450
9451 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9452 We associate floats only if the user has specified
9453 -fassociative-math. */
9454 if (flag_associative_math
9455 && TREE_CODE (arg1) == PLUS_EXPR
9456 && TREE_CODE (arg0) != MULT_EXPR)
9457 {
9458 tree tree10 = TREE_OPERAND (arg1, 0);
9459 tree tree11 = TREE_OPERAND (arg1, 1);
9460 if (TREE_CODE (tree11) == MULT_EXPR
9461 && TREE_CODE (tree10) == MULT_EXPR)
9462 {
9463 tree tree0;
9464 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9465 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9466 }
9467 }
9468 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9469 We associate floats only if the user has specified
9470 -fassociative-math. */
9471 if (flag_associative_math
9472 && TREE_CODE (arg0) == PLUS_EXPR
9473 && TREE_CODE (arg1) != MULT_EXPR)
9474 {
9475 tree tree00 = TREE_OPERAND (arg0, 0);
9476 tree tree01 = TREE_OPERAND (arg0, 1);
9477 if (TREE_CODE (tree01) == MULT_EXPR
9478 && TREE_CODE (tree00) == MULT_EXPR)
9479 {
9480 tree tree0;
9481 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9482 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9483 }
9484 }
9485 }
9486
9487 bit_rotate:
9488 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9489 is a rotate of A by C1 bits. */
9490 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9491 is a rotate of A by B bits. */
9492 {
9493 enum tree_code code0, code1;
9494 tree rtype;
9495 code0 = TREE_CODE (arg0);
9496 code1 = TREE_CODE (arg1);
9497 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9498 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9499 && operand_equal_p (TREE_OPERAND (arg0, 0),
9500 TREE_OPERAND (arg1, 0), 0)
9501 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9502 TYPE_UNSIGNED (rtype))
9503 /* Only create rotates in complete modes. Other cases are not
9504 expanded properly. */
9505 && (element_precision (rtype)
9506 == element_precision (TYPE_MODE (rtype))))
9507 {
9508 tree tree01, tree11;
9509 enum tree_code code01, code11;
9510
9511 tree01 = TREE_OPERAND (arg0, 1);
9512 tree11 = TREE_OPERAND (arg1, 1);
9513 STRIP_NOPS (tree01);
9514 STRIP_NOPS (tree11);
9515 code01 = TREE_CODE (tree01);
9516 code11 = TREE_CODE (tree11);
9517 if (code01 == INTEGER_CST
9518 && code11 == INTEGER_CST
9519 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9520 == element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9521 {
9522 tem = build2_loc (loc, LROTATE_EXPR,
9523 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9524 TREE_OPERAND (arg0, 0),
9525 code0 == LSHIFT_EXPR
9526 ? TREE_OPERAND (arg0, 1)
9527 : TREE_OPERAND (arg1, 1));
9528 return fold_convert_loc (loc, type, tem);
9529 }
9530 else if (code11 == MINUS_EXPR)
9531 {
9532 tree tree110, tree111;
9533 tree110 = TREE_OPERAND (tree11, 0);
9534 tree111 = TREE_OPERAND (tree11, 1);
9535 STRIP_NOPS (tree110);
9536 STRIP_NOPS (tree111);
9537 if (TREE_CODE (tree110) == INTEGER_CST
9538 && 0 == compare_tree_int (tree110,
9539 element_precision
9540 (TREE_TYPE (TREE_OPERAND
9541 (arg0, 0))))
9542 && operand_equal_p (tree01, tree111, 0))
9543 return
9544 fold_convert_loc (loc, type,
9545 build2 ((code0 == LSHIFT_EXPR
9546 ? LROTATE_EXPR
9547 : RROTATE_EXPR),
9548 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9549 TREE_OPERAND (arg0, 0),
9550 TREE_OPERAND (arg0, 1)));
9551 }
9552 else if (code01 == MINUS_EXPR)
9553 {
9554 tree tree010, tree011;
9555 tree010 = TREE_OPERAND (tree01, 0);
9556 tree011 = TREE_OPERAND (tree01, 1);
9557 STRIP_NOPS (tree010);
9558 STRIP_NOPS (tree011);
9559 if (TREE_CODE (tree010) == INTEGER_CST
9560 && 0 == compare_tree_int (tree010,
9561 element_precision
9562 (TREE_TYPE (TREE_OPERAND
9563 (arg0, 0))))
9564 && operand_equal_p (tree11, tree011, 0))
9565 return fold_convert_loc
9566 (loc, type,
9567 build2 ((code0 != LSHIFT_EXPR
9568 ? LROTATE_EXPR
9569 : RROTATE_EXPR),
9570 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9571 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1)));
9572 }
9573 }
9574 }
9575
9576 associate:
9577 /* In most languages, can't associate operations on floats through
9578 parentheses. Rather than remember where the parentheses were, we
9579 don't associate floats at all, unless the user has specified
9580 -fassociative-math.
9581 And, we need to make sure type is not saturating. */
9582
9583 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9584 && !TYPE_SATURATING (type))
9585 {
9586 tree var0, con0, lit0, minus_lit0;
9587 tree var1, con1, lit1, minus_lit1;
9588 tree atype = type;
9589 bool ok = true;
9590
9591 /* Split both trees into variables, constants, and literals. Then
9592 associate each group together, the constants with literals,
9593 then the result with variables. This increases the chances of
9594 literals being recombined later and of generating relocatable
9595 expressions for the sum of a constant and literal. */
9596 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
9597 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
9598 code == MINUS_EXPR);
9599
9600 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9601 if (code == MINUS_EXPR)
9602 code = PLUS_EXPR;
9603
9604 /* With undefined overflow prefer doing association in a type
9605 which wraps on overflow, if that is one of the operand types. */
9606 if ((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9607 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9608 {
9609 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9610 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9611 atype = TREE_TYPE (arg0);
9612 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9613 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9614 atype = TREE_TYPE (arg1);
9615 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9616 }
9617
9618 /* With undefined overflow we can only associate constants with one
9619 variable, and constants whose association doesn't overflow. */
9620 if ((POINTER_TYPE_P (atype) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9621 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
9622 {
9623 if (var0 && var1)
9624 {
9625 tree tmp0 = var0;
9626 tree tmp1 = var1;
9627
9628 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9629 tmp0 = TREE_OPERAND (tmp0, 0);
9630 if (CONVERT_EXPR_P (tmp0)
9631 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9632 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9633 <= TYPE_PRECISION (atype)))
9634 tmp0 = TREE_OPERAND (tmp0, 0);
9635 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9636 tmp1 = TREE_OPERAND (tmp1, 0);
9637 if (CONVERT_EXPR_P (tmp1)
9638 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9639 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9640 <= TYPE_PRECISION (atype)))
9641 tmp1 = TREE_OPERAND (tmp1, 0);
9642 /* The only case we can still associate with two variables
9643 is if they are the same, modulo negation and bit-pattern
9644 preserving conversions. */
9645 if (!operand_equal_p (tmp0, tmp1, 0))
9646 ok = false;
9647 }
9648 }
9649
9650 /* Only do something if we found more than two objects. Otherwise,
9651 nothing has changed and we risk infinite recursion. */
9652 if (ok
9653 && (2 < ((var0 != 0) + (var1 != 0)
9654 + (con0 != 0) + (con1 != 0)
9655 + (lit0 != 0) + (lit1 != 0)
9656 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9657 {
9658 bool any_overflows = false;
9659 if (lit0) any_overflows |= TREE_OVERFLOW (lit0);
9660 if (lit1) any_overflows |= TREE_OVERFLOW (lit1);
9661 if (minus_lit0) any_overflows |= TREE_OVERFLOW (minus_lit0);
9662 if (minus_lit1) any_overflows |= TREE_OVERFLOW (minus_lit1);
9663 var0 = associate_trees (loc, var0, var1, code, atype);
9664 con0 = associate_trees (loc, con0, con1, code, atype);
9665 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9666 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9667 code, atype);
9668
9669 /* Preserve the MINUS_EXPR if the negative part of the literal is
9670 greater than the positive part. Otherwise, the multiplicative
9671 folding code (i.e extract_muldiv) may be fooled in case
9672 unsigned constants are subtracted, like in the following
9673 example: ((X*2 + 4) - 8U)/2. */
9674 if (minus_lit0 && lit0)
9675 {
9676 if (TREE_CODE (lit0) == INTEGER_CST
9677 && TREE_CODE (minus_lit0) == INTEGER_CST
9678 && tree_int_cst_lt (lit0, minus_lit0))
9679 {
9680 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9681 MINUS_EXPR, atype);
9682 lit0 = 0;
9683 }
9684 else
9685 {
9686 lit0 = associate_trees (loc, lit0, minus_lit0,
9687 MINUS_EXPR, atype);
9688 minus_lit0 = 0;
9689 }
9690 }
9691
9692 /* Don't introduce overflows through reassociation. */
9693 if (!any_overflows
9694 && ((lit0 && TREE_OVERFLOW_P (lit0))
9695 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0))))
9696 return NULL_TREE;
9697
9698 if (minus_lit0)
9699 {
9700 if (con0 == 0)
9701 return
9702 fold_convert_loc (loc, type,
9703 associate_trees (loc, var0, minus_lit0,
9704 MINUS_EXPR, atype));
9705 else
9706 {
9707 con0 = associate_trees (loc, con0, minus_lit0,
9708 MINUS_EXPR, atype);
9709 return
9710 fold_convert_loc (loc, type,
9711 associate_trees (loc, var0, con0,
9712 PLUS_EXPR, atype));
9713 }
9714 }
9715
9716 con0 = associate_trees (loc, con0, lit0, code, atype);
9717 return
9718 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9719 code, atype));
9720 }
9721 }
9722
9723 return NULL_TREE;
9724
9725 case MINUS_EXPR:
9726 /* Pointer simplifications for subtraction, simple reassociations. */
9727 if (POINTER_TYPE_P (TREE_TYPE (arg1)) && POINTER_TYPE_P (TREE_TYPE (arg0)))
9728 {
9729 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
9730 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR
9731 && TREE_CODE (arg1) == POINTER_PLUS_EXPR)
9732 {
9733 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9734 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
9735 tree arg10 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
9736 tree arg11 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
9737 return fold_build2_loc (loc, PLUS_EXPR, type,
9738 fold_build2_loc (loc, MINUS_EXPR, type,
9739 arg00, arg10),
9740 fold_build2_loc (loc, MINUS_EXPR, type,
9741 arg01, arg11));
9742 }
9743 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
9744 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
9745 {
9746 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9747 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
9748 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type, arg00,
9749 fold_convert_loc (loc, type, arg1));
9750 if (tmp)
9751 return fold_build2_loc (loc, PLUS_EXPR, type, tmp, arg01);
9752 }
9753 /* PTR0 - (PTR1 p+ A) -> (PTR0 - PTR1) - A, assuming PTR0 - PTR1
9754 simplifies. */
9755 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
9756 {
9757 tree arg10 = fold_convert_loc (loc, type,
9758 TREE_OPERAND (arg1, 0));
9759 tree arg11 = fold_convert_loc (loc, type,
9760 TREE_OPERAND (arg1, 1));
9761 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type,
9762 fold_convert_loc (loc, type, arg0),
9763 arg10);
9764 if (tmp)
9765 return fold_build2_loc (loc, MINUS_EXPR, type, tmp, arg11);
9766 }
9767 }
9768 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9769 if (TREE_CODE (arg0) == NEGATE_EXPR
9770 && negate_expr_p (arg1)
9771 && reorder_operands_p (arg0, arg1))
9772 return fold_build2_loc (loc, MINUS_EXPR, type,
9773 fold_convert_loc (loc, type,
9774 negate_expr (arg1)),
9775 fold_convert_loc (loc, type,
9776 TREE_OPERAND (arg0, 0)));
9777
9778 if (! FLOAT_TYPE_P (type))
9779 {
9780 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
9781 any power of 2 minus 1. */
9782 if (TREE_CODE (arg0) == BIT_AND_EXPR
9783 && TREE_CODE (arg1) == BIT_AND_EXPR
9784 && operand_equal_p (TREE_OPERAND (arg0, 0),
9785 TREE_OPERAND (arg1, 0), 0))
9786 {
9787 tree mask0 = TREE_OPERAND (arg0, 1);
9788 tree mask1 = TREE_OPERAND (arg1, 1);
9789 tree tem = fold_build1_loc (loc, BIT_NOT_EXPR, type, mask0);
9790
9791 if (operand_equal_p (tem, mask1, 0))
9792 {
9793 tem = fold_build2_loc (loc, BIT_XOR_EXPR, type,
9794 TREE_OPERAND (arg0, 0), mask1);
9795 return fold_build2_loc (loc, MINUS_EXPR, type, tem, mask1);
9796 }
9797 }
9798 }
9799
9800 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9801 __complex__ ( x, -y ). This is not the same for SNaNs or if
9802 signed zeros are involved. */
9803 if (!HONOR_SNANS (element_mode (arg0))
9804 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9805 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9806 {
9807 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9808 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9809 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9810 bool arg0rz = false, arg0iz = false;
9811 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9812 || (arg0i && (arg0iz = real_zerop (arg0i))))
9813 {
9814 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9815 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9816 if (arg0rz && arg1i && real_zerop (arg1i))
9817 {
9818 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9819 arg1r ? arg1r
9820 : build1 (REALPART_EXPR, rtype, arg1));
9821 tree ip = arg0i ? arg0i
9822 : build1 (IMAGPART_EXPR, rtype, arg0);
9823 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9824 }
9825 else if (arg0iz && arg1r && real_zerop (arg1r))
9826 {
9827 tree rp = arg0r ? arg0r
9828 : build1 (REALPART_EXPR, rtype, arg0);
9829 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9830 arg1i ? arg1i
9831 : build1 (IMAGPART_EXPR, rtype, arg1));
9832 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9833 }
9834 }
9835 }
9836
9837 /* A - B -> A + (-B) if B is easily negatable. */
9838 if (negate_expr_p (arg1)
9839 && !TYPE_OVERFLOW_SANITIZED (type)
9840 && ((FLOAT_TYPE_P (type)
9841 /* Avoid this transformation if B is a positive REAL_CST. */
9842 && (TREE_CODE (arg1) != REAL_CST
9843 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
9844 || INTEGRAL_TYPE_P (type)))
9845 return fold_build2_loc (loc, PLUS_EXPR, type,
9846 fold_convert_loc (loc, type, arg0),
9847 fold_convert_loc (loc, type,
9848 negate_expr (arg1)));
9849
9850 /* Fold &a[i] - &a[j] to i-j. */
9851 if (TREE_CODE (arg0) == ADDR_EXPR
9852 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9853 && TREE_CODE (arg1) == ADDR_EXPR
9854 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9855 {
9856 tree tem = fold_addr_of_array_ref_difference (loc, type,
9857 TREE_OPERAND (arg0, 0),
9858 TREE_OPERAND (arg1, 0));
9859 if (tem)
9860 return tem;
9861 }
9862
9863 if (FLOAT_TYPE_P (type)
9864 && flag_unsafe_math_optimizations
9865 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9866 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9867 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9868 return tem;
9869
9870 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9871 one. Make sure the type is not saturating and has the signedness of
9872 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9873 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9874 if ((TREE_CODE (arg0) == MULT_EXPR
9875 || TREE_CODE (arg1) == MULT_EXPR)
9876 && !TYPE_SATURATING (type)
9877 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9878 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9879 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9880 {
9881 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9882 if (tem)
9883 return tem;
9884 }
9885
9886 goto associate;
9887
9888 case MULT_EXPR:
9889 /* (-A) * (-B) -> A * B */
9890 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
9891 return fold_build2_loc (loc, MULT_EXPR, type,
9892 fold_convert_loc (loc, type,
9893 TREE_OPERAND (arg0, 0)),
9894 fold_convert_loc (loc, type,
9895 negate_expr (arg1)));
9896 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
9897 return fold_build2_loc (loc, MULT_EXPR, type,
9898 fold_convert_loc (loc, type,
9899 negate_expr (arg0)),
9900 fold_convert_loc (loc, type,
9901 TREE_OPERAND (arg1, 0)));
9902
9903 if (! FLOAT_TYPE_P (type))
9904 {
9905 /* Transform x * -C into -x * C if x is easily negatable. */
9906 if (TREE_CODE (arg1) == INTEGER_CST
9907 && tree_int_cst_sgn (arg1) == -1
9908 && negate_expr_p (arg0)
9909 && (tem = negate_expr (arg1)) != arg1
9910 && !TREE_OVERFLOW (tem))
9911 return fold_build2_loc (loc, MULT_EXPR, type,
9912 fold_convert_loc (loc, type,
9913 negate_expr (arg0)),
9914 tem);
9915
9916 /* (a * (1 << b)) is (a << b) */
9917 if (TREE_CODE (arg1) == LSHIFT_EXPR
9918 && integer_onep (TREE_OPERAND (arg1, 0)))
9919 return fold_build2_loc (loc, LSHIFT_EXPR, type, op0,
9920 TREE_OPERAND (arg1, 1));
9921 if (TREE_CODE (arg0) == LSHIFT_EXPR
9922 && integer_onep (TREE_OPERAND (arg0, 0)))
9923 return fold_build2_loc (loc, LSHIFT_EXPR, type, op1,
9924 TREE_OPERAND (arg0, 1));
9925
9926 /* (A + A) * C -> A * 2 * C */
9927 if (TREE_CODE (arg0) == PLUS_EXPR
9928 && TREE_CODE (arg1) == INTEGER_CST
9929 && operand_equal_p (TREE_OPERAND (arg0, 0),
9930 TREE_OPERAND (arg0, 1), 0))
9931 return fold_build2_loc (loc, MULT_EXPR, type,
9932 omit_one_operand_loc (loc, type,
9933 TREE_OPERAND (arg0, 0),
9934 TREE_OPERAND (arg0, 1)),
9935 fold_build2_loc (loc, MULT_EXPR, type,
9936 build_int_cst (type, 2) , arg1));
9937
9938 /* ((T) (X /[ex] C)) * C cancels out if the conversion is
9939 sign-changing only. */
9940 if (TREE_CODE (arg1) == INTEGER_CST
9941 && TREE_CODE (arg0) == EXACT_DIV_EXPR
9942 && operand_equal_p (arg1, TREE_OPERAND (arg0, 1), 0))
9943 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9944
9945 strict_overflow_p = false;
9946 if (TREE_CODE (arg1) == INTEGER_CST
9947 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
9948 &strict_overflow_p)))
9949 {
9950 if (strict_overflow_p)
9951 fold_overflow_warning (("assuming signed overflow does not "
9952 "occur when simplifying "
9953 "multiplication"),
9954 WARN_STRICT_OVERFLOW_MISC);
9955 return fold_convert_loc (loc, type, tem);
9956 }
9957
9958 /* Optimize z * conj(z) for integer complex numbers. */
9959 if (TREE_CODE (arg0) == CONJ_EXPR
9960 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9961 return fold_mult_zconjz (loc, type, arg1);
9962 if (TREE_CODE (arg1) == CONJ_EXPR
9963 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9964 return fold_mult_zconjz (loc, type, arg0);
9965 }
9966 else
9967 {
9968 /* Convert (C1/X)*C2 into (C1*C2)/X. This transformation may change
9969 the result for floating point types due to rounding so it is applied
9970 only if -fassociative-math was specify. */
9971 if (flag_associative_math
9972 && TREE_CODE (arg0) == RDIV_EXPR
9973 && TREE_CODE (arg1) == REAL_CST
9974 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
9975 {
9976 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
9977 arg1);
9978 if (tem)
9979 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
9980 TREE_OPERAND (arg0, 1));
9981 }
9982
9983 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
9984 if (operand_equal_p (arg0, arg1, 0))
9985 {
9986 tree tem = fold_strip_sign_ops (arg0);
9987 if (tem != NULL_TREE)
9988 {
9989 tem = fold_convert_loc (loc, type, tem);
9990 return fold_build2_loc (loc, MULT_EXPR, type, tem, tem);
9991 }
9992 }
9993
9994 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9995 This is not the same for NaNs or if signed zeros are
9996 involved. */
9997 if (!HONOR_NANS (arg0)
9998 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9999 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10000 && TREE_CODE (arg1) == COMPLEX_CST
10001 && real_zerop (TREE_REALPART (arg1)))
10002 {
10003 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10004 if (real_onep (TREE_IMAGPART (arg1)))
10005 return
10006 fold_build2_loc (loc, COMPLEX_EXPR, type,
10007 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
10008 rtype, arg0)),
10009 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
10010 else if (real_minus_onep (TREE_IMAGPART (arg1)))
10011 return
10012 fold_build2_loc (loc, COMPLEX_EXPR, type,
10013 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
10014 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
10015 rtype, arg0)));
10016 }
10017
10018 /* Optimize z * conj(z) for floating point complex numbers.
10019 Guarded by flag_unsafe_math_optimizations as non-finite
10020 imaginary components don't produce scalar results. */
10021 if (flag_unsafe_math_optimizations
10022 && TREE_CODE (arg0) == CONJ_EXPR
10023 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10024 return fold_mult_zconjz (loc, type, arg1);
10025 if (flag_unsafe_math_optimizations
10026 && TREE_CODE (arg1) == CONJ_EXPR
10027 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10028 return fold_mult_zconjz (loc, type, arg0);
10029
10030 if (flag_unsafe_math_optimizations)
10031 {
10032 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
10033 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
10034
10035 /* Optimizations of root(...)*root(...). */
10036 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
10037 {
10038 tree rootfn, arg;
10039 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10040 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10041
10042 /* Optimize sqrt(x)*sqrt(x) as x. */
10043 if (BUILTIN_SQRT_P (fcode0)
10044 && operand_equal_p (arg00, arg10, 0)
10045 && ! HONOR_SNANS (element_mode (type)))
10046 return arg00;
10047
10048 /* Optimize root(x)*root(y) as root(x*y). */
10049 rootfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10050 arg = fold_build2_loc (loc, MULT_EXPR, type, arg00, arg10);
10051 return build_call_expr_loc (loc, rootfn, 1, arg);
10052 }
10053
10054 /* Optimize expN(x)*expN(y) as expN(x+y). */
10055 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
10056 {
10057 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10058 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
10059 CALL_EXPR_ARG (arg0, 0),
10060 CALL_EXPR_ARG (arg1, 0));
10061 return build_call_expr_loc (loc, expfn, 1, arg);
10062 }
10063
10064 /* Optimizations of pow(...)*pow(...). */
10065 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
10066 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
10067 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
10068 {
10069 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10070 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10071 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10072 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10073
10074 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
10075 if (operand_equal_p (arg01, arg11, 0))
10076 {
10077 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10078 tree arg = fold_build2_loc (loc, MULT_EXPR, type,
10079 arg00, arg10);
10080 return build_call_expr_loc (loc, powfn, 2, arg, arg01);
10081 }
10082
10083 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
10084 if (operand_equal_p (arg00, arg10, 0))
10085 {
10086 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10087 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
10088 arg01, arg11);
10089 return build_call_expr_loc (loc, powfn, 2, arg00, arg);
10090 }
10091 }
10092
10093 /* Optimize tan(x)*cos(x) as sin(x). */
10094 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
10095 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
10096 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
10097 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
10098 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
10099 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
10100 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10101 CALL_EXPR_ARG (arg1, 0), 0))
10102 {
10103 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
10104
10105 if (sinfn != NULL_TREE)
10106 return build_call_expr_loc (loc, sinfn, 1,
10107 CALL_EXPR_ARG (arg0, 0));
10108 }
10109
10110 /* Optimize x*pow(x,c) as pow(x,c+1). */
10111 if (fcode1 == BUILT_IN_POW
10112 || fcode1 == BUILT_IN_POWF
10113 || fcode1 == BUILT_IN_POWL)
10114 {
10115 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10116 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10117 if (TREE_CODE (arg11) == REAL_CST
10118 && !TREE_OVERFLOW (arg11)
10119 && operand_equal_p (arg0, arg10, 0))
10120 {
10121 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10122 REAL_VALUE_TYPE c;
10123 tree arg;
10124
10125 c = TREE_REAL_CST (arg11);
10126 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10127 arg = build_real (type, c);
10128 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
10129 }
10130 }
10131
10132 /* Optimize pow(x,c)*x as pow(x,c+1). */
10133 if (fcode0 == BUILT_IN_POW
10134 || fcode0 == BUILT_IN_POWF
10135 || fcode0 == BUILT_IN_POWL)
10136 {
10137 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10138 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10139 if (TREE_CODE (arg01) == REAL_CST
10140 && !TREE_OVERFLOW (arg01)
10141 && operand_equal_p (arg1, arg00, 0))
10142 {
10143 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10144 REAL_VALUE_TYPE c;
10145 tree arg;
10146
10147 c = TREE_REAL_CST (arg01);
10148 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10149 arg = build_real (type, c);
10150 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
10151 }
10152 }
10153
10154 /* Canonicalize x*x as pow(x,2.0), which is expanded as x*x. */
10155 if (!in_gimple_form
10156 && optimize
10157 && operand_equal_p (arg0, arg1, 0))
10158 {
10159 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
10160
10161 if (powfn)
10162 {
10163 tree arg = build_real (type, dconst2);
10164 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
10165 }
10166 }
10167 }
10168 }
10169 goto associate;
10170
10171 case BIT_IOR_EXPR:
10172 /* Canonicalize (X & C1) | C2. */
10173 if (TREE_CODE (arg0) == BIT_AND_EXPR
10174 && TREE_CODE (arg1) == INTEGER_CST
10175 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10176 {
10177 int width = TYPE_PRECISION (type), w;
10178 wide_int c1 = TREE_OPERAND (arg0, 1);
10179 wide_int c2 = arg1;
10180
10181 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10182 if ((c1 & c2) == c1)
10183 return omit_one_operand_loc (loc, type, arg1,
10184 TREE_OPERAND (arg0, 0));
10185
10186 wide_int msk = wi::mask (width, false,
10187 TYPE_PRECISION (TREE_TYPE (arg1)));
10188
10189 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10190 if (msk.and_not (c1 | c2) == 0)
10191 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
10192 TREE_OPERAND (arg0, 0), arg1);
10193
10194 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10195 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10196 mode which allows further optimizations. */
10197 c1 &= msk;
10198 c2 &= msk;
10199 wide_int c3 = c1.and_not (c2);
10200 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
10201 {
10202 wide_int mask = wi::mask (w, false,
10203 TYPE_PRECISION (type));
10204 if (((c1 | c2) & mask) == mask && c1.and_not (mask) == 0)
10205 {
10206 c3 = mask;
10207 break;
10208 }
10209 }
10210
10211 if (c3 != c1)
10212 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
10213 fold_build2_loc (loc, BIT_AND_EXPR, type,
10214 TREE_OPERAND (arg0, 0),
10215 wide_int_to_tree (type,
10216 c3)),
10217 arg1);
10218 }
10219
10220 /* (X & ~Y) | (~X & Y) is X ^ Y */
10221 if (TREE_CODE (arg0) == BIT_AND_EXPR
10222 && TREE_CODE (arg1) == BIT_AND_EXPR)
10223 {
10224 tree a0, a1, l0, l1, n0, n1;
10225
10226 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10227 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10228
10229 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10230 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10231
10232 n0 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l0);
10233 n1 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l1);
10234
10235 if ((operand_equal_p (n0, a0, 0)
10236 && operand_equal_p (n1, a1, 0))
10237 || (operand_equal_p (n0, a1, 0)
10238 && operand_equal_p (n1, a0, 0)))
10239 return fold_build2_loc (loc, BIT_XOR_EXPR, type, l0, n1);
10240 }
10241
10242 /* See if this can be simplified into a rotate first. If that
10243 is unsuccessful continue in the association code. */
10244 goto bit_rotate;
10245
10246 case BIT_XOR_EXPR:
10247 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10248 if (TREE_CODE (arg0) == BIT_AND_EXPR
10249 && INTEGRAL_TYPE_P (type)
10250 && integer_onep (TREE_OPERAND (arg0, 1))
10251 && integer_onep (arg1))
10252 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
10253 build_zero_cst (TREE_TYPE (arg0)));
10254
10255 /* See if this can be simplified into a rotate first. If that
10256 is unsuccessful continue in the association code. */
10257 goto bit_rotate;
10258
10259 case BIT_AND_EXPR:
10260 /* ~X & X, (X == 0) & X, and !X & X are always zero. */
10261 if ((TREE_CODE (arg0) == BIT_NOT_EXPR
10262 || TREE_CODE (arg0) == TRUTH_NOT_EXPR
10263 || (TREE_CODE (arg0) == EQ_EXPR
10264 && integer_zerop (TREE_OPERAND (arg0, 1))))
10265 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10266 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10267
10268 /* X & ~X , X & (X == 0), and X & !X are always zero. */
10269 if ((TREE_CODE (arg1) == BIT_NOT_EXPR
10270 || TREE_CODE (arg1) == TRUTH_NOT_EXPR
10271 || (TREE_CODE (arg1) == EQ_EXPR
10272 && integer_zerop (TREE_OPERAND (arg1, 1))))
10273 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10274 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10275
10276 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10277 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10278 && INTEGRAL_TYPE_P (type)
10279 && integer_onep (TREE_OPERAND (arg0, 1))
10280 && integer_onep (arg1))
10281 {
10282 tree tem2;
10283 tem = TREE_OPERAND (arg0, 0);
10284 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10285 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10286 tem, tem2);
10287 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10288 build_zero_cst (TREE_TYPE (tem)));
10289 }
10290 /* Fold ~X & 1 as (X & 1) == 0. */
10291 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10292 && INTEGRAL_TYPE_P (type)
10293 && integer_onep (arg1))
10294 {
10295 tree tem2;
10296 tem = TREE_OPERAND (arg0, 0);
10297 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10298 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10299 tem, tem2);
10300 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10301 build_zero_cst (TREE_TYPE (tem)));
10302 }
10303 /* Fold !X & 1 as X == 0. */
10304 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10305 && integer_onep (arg1))
10306 {
10307 tem = TREE_OPERAND (arg0, 0);
10308 return fold_build2_loc (loc, EQ_EXPR, type, tem,
10309 build_zero_cst (TREE_TYPE (tem)));
10310 }
10311
10312 /* Fold (X ^ Y) & Y as ~X & Y. */
10313 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10314 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10315 {
10316 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10317 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10318 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10319 fold_convert_loc (loc, type, arg1));
10320 }
10321 /* Fold (X ^ Y) & X as ~Y & X. */
10322 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10323 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10324 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10325 {
10326 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10327 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10328 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10329 fold_convert_loc (loc, type, arg1));
10330 }
10331 /* Fold X & (X ^ Y) as X & ~Y. */
10332 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10333 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10334 {
10335 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10336 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10337 fold_convert_loc (loc, type, arg0),
10338 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
10339 }
10340 /* Fold X & (Y ^ X) as ~Y & X. */
10341 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10342 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10343 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10344 {
10345 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10346 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10347 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10348 fold_convert_loc (loc, type, arg0));
10349 }
10350
10351 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10352 multiple of 1 << CST. */
10353 if (TREE_CODE (arg1) == INTEGER_CST)
10354 {
10355 wide_int cst1 = arg1;
10356 wide_int ncst1 = -cst1;
10357 if ((cst1 & ncst1) == ncst1
10358 && multiple_of_p (type, arg0,
10359 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
10360 return fold_convert_loc (loc, type, arg0);
10361 }
10362
10363 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10364 bits from CST2. */
10365 if (TREE_CODE (arg1) == INTEGER_CST
10366 && TREE_CODE (arg0) == MULT_EXPR
10367 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10368 {
10369 wide_int warg1 = arg1;
10370 wide_int masked = mask_with_tz (type, warg1, TREE_OPERAND (arg0, 1));
10371
10372 if (masked == 0)
10373 return omit_two_operands_loc (loc, type, build_zero_cst (type),
10374 arg0, arg1);
10375 else if (masked != warg1)
10376 {
10377 /* Avoid the transform if arg1 is a mask of some
10378 mode which allows further optimizations. */
10379 int pop = wi::popcount (warg1);
10380 if (!(pop >= BITS_PER_UNIT
10381 && exact_log2 (pop) != -1
10382 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
10383 return fold_build2_loc (loc, code, type, op0,
10384 wide_int_to_tree (type, masked));
10385 }
10386 }
10387
10388 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10389 ((A & N) + B) & M -> (A + B) & M
10390 Similarly if (N & M) == 0,
10391 ((A | N) + B) & M -> (A + B) & M
10392 and for - instead of + (or unary - instead of +)
10393 and/or ^ instead of |.
10394 If B is constant and (B & M) == 0, fold into A & M. */
10395 if (TREE_CODE (arg1) == INTEGER_CST)
10396 {
10397 wide_int cst1 = arg1;
10398 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
10399 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10400 && (TREE_CODE (arg0) == PLUS_EXPR
10401 || TREE_CODE (arg0) == MINUS_EXPR
10402 || TREE_CODE (arg0) == NEGATE_EXPR)
10403 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
10404 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
10405 {
10406 tree pmop[2];
10407 int which = 0;
10408 wide_int cst0;
10409
10410 /* Now we know that arg0 is (C + D) or (C - D) or
10411 -C and arg1 (M) is == (1LL << cst) - 1.
10412 Store C into PMOP[0] and D into PMOP[1]. */
10413 pmop[0] = TREE_OPERAND (arg0, 0);
10414 pmop[1] = NULL;
10415 if (TREE_CODE (arg0) != NEGATE_EXPR)
10416 {
10417 pmop[1] = TREE_OPERAND (arg0, 1);
10418 which = 1;
10419 }
10420
10421 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
10422 which = -1;
10423
10424 for (; which >= 0; which--)
10425 switch (TREE_CODE (pmop[which]))
10426 {
10427 case BIT_AND_EXPR:
10428 case BIT_IOR_EXPR:
10429 case BIT_XOR_EXPR:
10430 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
10431 != INTEGER_CST)
10432 break;
10433 cst0 = TREE_OPERAND (pmop[which], 1);
10434 cst0 &= cst1;
10435 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
10436 {
10437 if (cst0 != cst1)
10438 break;
10439 }
10440 else if (cst0 != 0)
10441 break;
10442 /* If C or D is of the form (A & N) where
10443 (N & M) == M, or of the form (A | N) or
10444 (A ^ N) where (N & M) == 0, replace it with A. */
10445 pmop[which] = TREE_OPERAND (pmop[which], 0);
10446 break;
10447 case INTEGER_CST:
10448 /* If C or D is a N where (N & M) == 0, it can be
10449 omitted (assumed 0). */
10450 if ((TREE_CODE (arg0) == PLUS_EXPR
10451 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
10452 && (cst1 & pmop[which]) == 0)
10453 pmop[which] = NULL;
10454 break;
10455 default:
10456 break;
10457 }
10458
10459 /* Only build anything new if we optimized one or both arguments
10460 above. */
10461 if (pmop[0] != TREE_OPERAND (arg0, 0)
10462 || (TREE_CODE (arg0) != NEGATE_EXPR
10463 && pmop[1] != TREE_OPERAND (arg0, 1)))
10464 {
10465 tree utype = TREE_TYPE (arg0);
10466 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10467 {
10468 /* Perform the operations in a type that has defined
10469 overflow behavior. */
10470 utype = unsigned_type_for (TREE_TYPE (arg0));
10471 if (pmop[0] != NULL)
10472 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
10473 if (pmop[1] != NULL)
10474 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
10475 }
10476
10477 if (TREE_CODE (arg0) == NEGATE_EXPR)
10478 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
10479 else if (TREE_CODE (arg0) == PLUS_EXPR)
10480 {
10481 if (pmop[0] != NULL && pmop[1] != NULL)
10482 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
10483 pmop[0], pmop[1]);
10484 else if (pmop[0] != NULL)
10485 tem = pmop[0];
10486 else if (pmop[1] != NULL)
10487 tem = pmop[1];
10488 else
10489 return build_int_cst (type, 0);
10490 }
10491 else if (pmop[0] == NULL)
10492 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
10493 else
10494 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
10495 pmop[0], pmop[1]);
10496 /* TEM is now the new binary +, - or unary - replacement. */
10497 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
10498 fold_convert_loc (loc, utype, arg1));
10499 return fold_convert_loc (loc, type, tem);
10500 }
10501 }
10502 }
10503
10504 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10505 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10506 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10507 {
10508 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10509
10510 wide_int mask = wide_int::from (arg1, prec, UNSIGNED);
10511 if (mask == -1)
10512 return
10513 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10514 }
10515
10516 goto associate;
10517
10518 case RDIV_EXPR:
10519 /* Don't touch a floating-point divide by zero unless the mode
10520 of the constant can represent infinity. */
10521 if (TREE_CODE (arg1) == REAL_CST
10522 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10523 && real_zerop (arg1))
10524 return NULL_TREE;
10525
10526 /* (-A) / (-B) -> A / B */
10527 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10528 return fold_build2_loc (loc, RDIV_EXPR, type,
10529 TREE_OPERAND (arg0, 0),
10530 negate_expr (arg1));
10531 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10532 return fold_build2_loc (loc, RDIV_EXPR, type,
10533 negate_expr (arg0),
10534 TREE_OPERAND (arg1, 0));
10535
10536 /* Convert A/B/C to A/(B*C). */
10537 if (flag_reciprocal_math
10538 && TREE_CODE (arg0) == RDIV_EXPR)
10539 return fold_build2_loc (loc, RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
10540 fold_build2_loc (loc, MULT_EXPR, type,
10541 TREE_OPERAND (arg0, 1), arg1));
10542
10543 /* Convert A/(B/C) to (A/B)*C. */
10544 if (flag_reciprocal_math
10545 && TREE_CODE (arg1) == RDIV_EXPR)
10546 return fold_build2_loc (loc, MULT_EXPR, type,
10547 fold_build2_loc (loc, RDIV_EXPR, type, arg0,
10548 TREE_OPERAND (arg1, 0)),
10549 TREE_OPERAND (arg1, 1));
10550
10551 /* Convert C1/(X*C2) into (C1/C2)/X. */
10552 if (flag_reciprocal_math
10553 && TREE_CODE (arg1) == MULT_EXPR
10554 && TREE_CODE (arg0) == REAL_CST
10555 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
10556 {
10557 tree tem = const_binop (RDIV_EXPR, arg0,
10558 TREE_OPERAND (arg1, 1));
10559 if (tem)
10560 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
10561 TREE_OPERAND (arg1, 0));
10562 }
10563
10564 if (flag_unsafe_math_optimizations)
10565 {
10566 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
10567 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
10568
10569 /* Optimize sin(x)/cos(x) as tan(x). */
10570 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
10571 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
10572 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
10573 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10574 CALL_EXPR_ARG (arg1, 0), 0))
10575 {
10576 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
10577
10578 if (tanfn != NULL_TREE)
10579 return build_call_expr_loc (loc, tanfn, 1, CALL_EXPR_ARG (arg0, 0));
10580 }
10581
10582 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
10583 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
10584 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
10585 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
10586 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10587 CALL_EXPR_ARG (arg1, 0), 0))
10588 {
10589 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
10590
10591 if (tanfn != NULL_TREE)
10592 {
10593 tree tmp = build_call_expr_loc (loc, tanfn, 1,
10594 CALL_EXPR_ARG (arg0, 0));
10595 return fold_build2_loc (loc, RDIV_EXPR, type,
10596 build_real (type, dconst1), tmp);
10597 }
10598 }
10599
10600 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
10601 NaNs or Infinities. */
10602 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
10603 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
10604 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
10605 {
10606 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10607 tree arg01 = CALL_EXPR_ARG (arg1, 0);
10608
10609 if (! HONOR_NANS (arg00)
10610 && ! HONOR_INFINITIES (element_mode (arg00))
10611 && operand_equal_p (arg00, arg01, 0))
10612 {
10613 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
10614
10615 if (cosfn != NULL_TREE)
10616 return build_call_expr_loc (loc, cosfn, 1, arg00);
10617 }
10618 }
10619
10620 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
10621 NaNs or Infinities. */
10622 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
10623 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
10624 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
10625 {
10626 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10627 tree arg01 = CALL_EXPR_ARG (arg1, 0);
10628
10629 if (! HONOR_NANS (arg00)
10630 && ! HONOR_INFINITIES (element_mode (arg00))
10631 && operand_equal_p (arg00, arg01, 0))
10632 {
10633 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
10634
10635 if (cosfn != NULL_TREE)
10636 {
10637 tree tmp = build_call_expr_loc (loc, cosfn, 1, arg00);
10638 return fold_build2_loc (loc, RDIV_EXPR, type,
10639 build_real (type, dconst1),
10640 tmp);
10641 }
10642 }
10643 }
10644
10645 /* Optimize pow(x,c)/x as pow(x,c-1). */
10646 if (fcode0 == BUILT_IN_POW
10647 || fcode0 == BUILT_IN_POWF
10648 || fcode0 == BUILT_IN_POWL)
10649 {
10650 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10651 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10652 if (TREE_CODE (arg01) == REAL_CST
10653 && !TREE_OVERFLOW (arg01)
10654 && operand_equal_p (arg1, arg00, 0))
10655 {
10656 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10657 REAL_VALUE_TYPE c;
10658 tree arg;
10659
10660 c = TREE_REAL_CST (arg01);
10661 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
10662 arg = build_real (type, c);
10663 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
10664 }
10665 }
10666
10667 /* Optimize a/root(b/c) into a*root(c/b). */
10668 if (BUILTIN_ROOT_P (fcode1))
10669 {
10670 tree rootarg = CALL_EXPR_ARG (arg1, 0);
10671
10672 if (TREE_CODE (rootarg) == RDIV_EXPR)
10673 {
10674 tree rootfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10675 tree b = TREE_OPERAND (rootarg, 0);
10676 tree c = TREE_OPERAND (rootarg, 1);
10677
10678 tree tmp = fold_build2_loc (loc, RDIV_EXPR, type, c, b);
10679
10680 tmp = build_call_expr_loc (loc, rootfn, 1, tmp);
10681 return fold_build2_loc (loc, MULT_EXPR, type, arg0, tmp);
10682 }
10683 }
10684
10685 /* Optimize x/expN(y) into x*expN(-y). */
10686 if (BUILTIN_EXPONENT_P (fcode1))
10687 {
10688 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10689 tree arg = negate_expr (CALL_EXPR_ARG (arg1, 0));
10690 arg1 = build_call_expr_loc (loc,
10691 expfn, 1,
10692 fold_convert_loc (loc, type, arg));
10693 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
10694 }
10695
10696 /* Optimize x/pow(y,z) into x*pow(y,-z). */
10697 if (fcode1 == BUILT_IN_POW
10698 || fcode1 == BUILT_IN_POWF
10699 || fcode1 == BUILT_IN_POWL)
10700 {
10701 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10702 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10703 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10704 tree neg11 = fold_convert_loc (loc, type,
10705 negate_expr (arg11));
10706 arg1 = build_call_expr_loc (loc, powfn, 2, arg10, neg11);
10707 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
10708 }
10709 }
10710 return NULL_TREE;
10711
10712 case TRUNC_DIV_EXPR:
10713 /* Optimize (X & (-A)) / A where A is a power of 2,
10714 to X >> log2(A) */
10715 if (TREE_CODE (arg0) == BIT_AND_EXPR
10716 && !TYPE_UNSIGNED (type) && TREE_CODE (arg1) == INTEGER_CST
10717 && integer_pow2p (arg1) && tree_int_cst_sgn (arg1) > 0)
10718 {
10719 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (arg1),
10720 arg1, TREE_OPERAND (arg0, 1));
10721 if (sum && integer_zerop (sum)) {
10722 tree pow2 = build_int_cst (integer_type_node,
10723 wi::exact_log2 (arg1));
10724 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10725 TREE_OPERAND (arg0, 0), pow2);
10726 }
10727 }
10728
10729 /* Fall through */
10730
10731 case FLOOR_DIV_EXPR:
10732 /* Simplify A / (B << N) where A and B are positive and B is
10733 a power of 2, to A >> (N + log2(B)). */
10734 strict_overflow_p = false;
10735 if (TREE_CODE (arg1) == LSHIFT_EXPR
10736 && (TYPE_UNSIGNED (type)
10737 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10738 {
10739 tree sval = TREE_OPERAND (arg1, 0);
10740 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10741 {
10742 tree sh_cnt = TREE_OPERAND (arg1, 1);
10743 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10744 wi::exact_log2 (sval));
10745
10746 if (strict_overflow_p)
10747 fold_overflow_warning (("assuming signed overflow does not "
10748 "occur when simplifying A / (B << N)"),
10749 WARN_STRICT_OVERFLOW_MISC);
10750
10751 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10752 sh_cnt, pow2);
10753 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10754 fold_convert_loc (loc, type, arg0), sh_cnt);
10755 }
10756 }
10757
10758 /* Fall through */
10759
10760 case ROUND_DIV_EXPR:
10761 case CEIL_DIV_EXPR:
10762 case EXACT_DIV_EXPR:
10763 if (integer_zerop (arg1))
10764 return NULL_TREE;
10765
10766 /* Convert -A / -B to A / B when the type is signed and overflow is
10767 undefined. */
10768 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10769 && TREE_CODE (arg0) == NEGATE_EXPR
10770 && negate_expr_p (arg1))
10771 {
10772 if (INTEGRAL_TYPE_P (type))
10773 fold_overflow_warning (("assuming signed overflow does not occur "
10774 "when distributing negation across "
10775 "division"),
10776 WARN_STRICT_OVERFLOW_MISC);
10777 return fold_build2_loc (loc, code, type,
10778 fold_convert_loc (loc, type,
10779 TREE_OPERAND (arg0, 0)),
10780 fold_convert_loc (loc, type,
10781 negate_expr (arg1)));
10782 }
10783 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10784 && TREE_CODE (arg1) == NEGATE_EXPR
10785 && negate_expr_p (arg0))
10786 {
10787 if (INTEGRAL_TYPE_P (type))
10788 fold_overflow_warning (("assuming signed overflow does not occur "
10789 "when distributing negation across "
10790 "division"),
10791 WARN_STRICT_OVERFLOW_MISC);
10792 return fold_build2_loc (loc, code, type,
10793 fold_convert_loc (loc, type,
10794 negate_expr (arg0)),
10795 fold_convert_loc (loc, type,
10796 TREE_OPERAND (arg1, 0)));
10797 }
10798
10799 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10800 operation, EXACT_DIV_EXPR.
10801
10802 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10803 At one time others generated faster code, it's not clear if they do
10804 after the last round to changes to the DIV code in expmed.c. */
10805 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10806 && multiple_of_p (type, arg0, arg1))
10807 return fold_build2_loc (loc, EXACT_DIV_EXPR, type, arg0, arg1);
10808
10809 strict_overflow_p = false;
10810 if (TREE_CODE (arg1) == INTEGER_CST
10811 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10812 &strict_overflow_p)))
10813 {
10814 if (strict_overflow_p)
10815 fold_overflow_warning (("assuming signed overflow does not occur "
10816 "when simplifying division"),
10817 WARN_STRICT_OVERFLOW_MISC);
10818 return fold_convert_loc (loc, type, tem);
10819 }
10820
10821 return NULL_TREE;
10822
10823 case CEIL_MOD_EXPR:
10824 case FLOOR_MOD_EXPR:
10825 case ROUND_MOD_EXPR:
10826 case TRUNC_MOD_EXPR:
10827 strict_overflow_p = false;
10828 if (TREE_CODE (arg1) == INTEGER_CST
10829 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10830 &strict_overflow_p)))
10831 {
10832 if (strict_overflow_p)
10833 fold_overflow_warning (("assuming signed overflow does not occur "
10834 "when simplifying modulus"),
10835 WARN_STRICT_OVERFLOW_MISC);
10836 return fold_convert_loc (loc, type, tem);
10837 }
10838
10839 return NULL_TREE;
10840
10841 case LROTATE_EXPR:
10842 case RROTATE_EXPR:
10843 case RSHIFT_EXPR:
10844 case LSHIFT_EXPR:
10845 /* Since negative shift count is not well-defined,
10846 don't try to compute it in the compiler. */
10847 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10848 return NULL_TREE;
10849
10850 prec = element_precision (type);
10851
10852 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
10853 into x & ((unsigned)-1 >> c) for unsigned types. */
10854 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
10855 || (TYPE_UNSIGNED (type)
10856 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
10857 && tree_fits_uhwi_p (arg1)
10858 && tree_to_uhwi (arg1) < prec
10859 && tree_fits_uhwi_p (TREE_OPERAND (arg0, 1))
10860 && tree_to_uhwi (TREE_OPERAND (arg0, 1)) < prec)
10861 {
10862 HOST_WIDE_INT low0 = tree_to_uhwi (TREE_OPERAND (arg0, 1));
10863 HOST_WIDE_INT low1 = tree_to_uhwi (arg1);
10864 tree lshift;
10865 tree arg00;
10866
10867 if (low0 == low1)
10868 {
10869 arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10870
10871 lshift = build_minus_one_cst (type);
10872 lshift = const_binop (code, lshift, arg1);
10873
10874 return fold_build2_loc (loc, BIT_AND_EXPR, type, arg00, lshift);
10875 }
10876 }
10877
10878 /* If we have a rotate of a bit operation with the rotate count and
10879 the second operand of the bit operation both constant,
10880 permute the two operations. */
10881 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10882 && (TREE_CODE (arg0) == BIT_AND_EXPR
10883 || TREE_CODE (arg0) == BIT_IOR_EXPR
10884 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10885 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10886 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10887 fold_build2_loc (loc, code, type,
10888 TREE_OPERAND (arg0, 0), arg1),
10889 fold_build2_loc (loc, code, type,
10890 TREE_OPERAND (arg0, 1), arg1));
10891
10892 /* Two consecutive rotates adding up to the some integer
10893 multiple of the precision of the type can be ignored. */
10894 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10895 && TREE_CODE (arg0) == RROTATE_EXPR
10896 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10897 && wi::umod_trunc (wi::add (arg1, TREE_OPERAND (arg0, 1)),
10898 prec) == 0)
10899 return TREE_OPERAND (arg0, 0);
10900
10901 return NULL_TREE;
10902
10903 case MIN_EXPR:
10904 tem = fold_minmax (loc, MIN_EXPR, type, arg0, arg1);
10905 if (tem)
10906 return tem;
10907 goto associate;
10908
10909 case MAX_EXPR:
10910 tem = fold_minmax (loc, MAX_EXPR, type, arg0, arg1);
10911 if (tem)
10912 return tem;
10913 goto associate;
10914
10915 case TRUTH_ANDIF_EXPR:
10916 /* Note that the operands of this must be ints
10917 and their values must be 0 or 1.
10918 ("true" is a fixed value perhaps depending on the language.) */
10919 /* If first arg is constant zero, return it. */
10920 if (integer_zerop (arg0))
10921 return fold_convert_loc (loc, type, arg0);
10922 case TRUTH_AND_EXPR:
10923 /* If either arg is constant true, drop it. */
10924 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10925 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10926 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10927 /* Preserve sequence points. */
10928 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10929 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10930 /* If second arg is constant zero, result is zero, but first arg
10931 must be evaluated. */
10932 if (integer_zerop (arg1))
10933 return omit_one_operand_loc (loc, type, arg1, arg0);
10934 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10935 case will be handled here. */
10936 if (integer_zerop (arg0))
10937 return omit_one_operand_loc (loc, type, arg0, arg1);
10938
10939 /* !X && X is always false. */
10940 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10941 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10942 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10943 /* X && !X is always false. */
10944 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10945 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10946 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10947
10948 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10949 means A >= Y && A != MAX, but in this case we know that
10950 A < X <= MAX. */
10951
10952 if (!TREE_SIDE_EFFECTS (arg0)
10953 && !TREE_SIDE_EFFECTS (arg1))
10954 {
10955 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
10956 if (tem && !operand_equal_p (tem, arg0, 0))
10957 return fold_build2_loc (loc, code, type, tem, arg1);
10958
10959 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
10960 if (tem && !operand_equal_p (tem, arg1, 0))
10961 return fold_build2_loc (loc, code, type, arg0, tem);
10962 }
10963
10964 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10965 != NULL_TREE)
10966 return tem;
10967
10968 return NULL_TREE;
10969
10970 case TRUTH_ORIF_EXPR:
10971 /* Note that the operands of this must be ints
10972 and their values must be 0 or true.
10973 ("true" is a fixed value perhaps depending on the language.) */
10974 /* If first arg is constant true, return it. */
10975 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10976 return fold_convert_loc (loc, type, arg0);
10977 case TRUTH_OR_EXPR:
10978 /* If either arg is constant zero, drop it. */
10979 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10980 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10981 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10982 /* Preserve sequence points. */
10983 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10984 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10985 /* If second arg is constant true, result is true, but we must
10986 evaluate first arg. */
10987 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10988 return omit_one_operand_loc (loc, type, arg1, arg0);
10989 /* Likewise for first arg, but note this only occurs here for
10990 TRUTH_OR_EXPR. */
10991 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10992 return omit_one_operand_loc (loc, type, arg0, arg1);
10993
10994 /* !X || X is always true. */
10995 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10996 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10997 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10998 /* X || !X is always true. */
10999 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11000 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11001 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
11002
11003 /* (X && !Y) || (!X && Y) is X ^ Y */
11004 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
11005 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
11006 {
11007 tree a0, a1, l0, l1, n0, n1;
11008
11009 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
11010 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
11011
11012 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11013 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11014
11015 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
11016 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
11017
11018 if ((operand_equal_p (n0, a0, 0)
11019 && operand_equal_p (n1, a1, 0))
11020 || (operand_equal_p (n0, a1, 0)
11021 && operand_equal_p (n1, a0, 0)))
11022 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
11023 }
11024
11025 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
11026 != NULL_TREE)
11027 return tem;
11028
11029 return NULL_TREE;
11030
11031 case TRUTH_XOR_EXPR:
11032 /* If the second arg is constant zero, drop it. */
11033 if (integer_zerop (arg1))
11034 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11035 /* If the second arg is constant true, this is a logical inversion. */
11036 if (integer_onep (arg1))
11037 {
11038 tem = invert_truthvalue_loc (loc, arg0);
11039 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
11040 }
11041 /* Identical arguments cancel to zero. */
11042 if (operand_equal_p (arg0, arg1, 0))
11043 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11044
11045 /* !X ^ X is always true. */
11046 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11047 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11048 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
11049
11050 /* X ^ !X is always true. */
11051 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11052 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11053 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
11054
11055 return NULL_TREE;
11056
11057 case EQ_EXPR:
11058 case NE_EXPR:
11059 STRIP_NOPS (arg0);
11060 STRIP_NOPS (arg1);
11061
11062 tem = fold_comparison (loc, code, type, op0, op1);
11063 if (tem != NULL_TREE)
11064 return tem;
11065
11066 /* bool_var != 1 becomes !bool_var. */
11067 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
11068 && code == NE_EXPR)
11069 return fold_convert_loc (loc, type,
11070 fold_build1_loc (loc, TRUTH_NOT_EXPR,
11071 TREE_TYPE (arg0), arg0));
11072
11073 /* bool_var == 0 becomes !bool_var. */
11074 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
11075 && code == EQ_EXPR)
11076 return fold_convert_loc (loc, type,
11077 fold_build1_loc (loc, TRUTH_NOT_EXPR,
11078 TREE_TYPE (arg0), arg0));
11079
11080 /* !exp != 0 becomes !exp */
11081 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
11082 && code == NE_EXPR)
11083 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11084
11085 /* If this is an equality comparison of the address of two non-weak,
11086 unaliased symbols neither of which are extern (since we do not
11087 have access to attributes for externs), then we know the result. */
11088 if (TREE_CODE (arg0) == ADDR_EXPR
11089 && DECL_P (TREE_OPERAND (arg0, 0))
11090 && TREE_CODE (arg1) == ADDR_EXPR
11091 && DECL_P (TREE_OPERAND (arg1, 0)))
11092 {
11093 int equal;
11094
11095 if (decl_in_symtab_p (TREE_OPERAND (arg0, 0))
11096 && decl_in_symtab_p (TREE_OPERAND (arg1, 0)))
11097 equal = symtab_node::get_create (TREE_OPERAND (arg0, 0))
11098 ->equal_address_to (symtab_node::get_create
11099 (TREE_OPERAND (arg1, 0)));
11100 else
11101 equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
11102 if (equal != 2)
11103 return constant_boolean_node (equal
11104 ? code == EQ_EXPR : code != EQ_EXPR,
11105 type);
11106 }
11107
11108 /* Similarly for a BIT_XOR_EXPR; X ^ C1 == C2 is X == (C1 ^ C2). */
11109 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11110 && TREE_CODE (arg1) == INTEGER_CST
11111 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11112 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
11113 fold_build2_loc (loc, BIT_XOR_EXPR, TREE_TYPE (arg0),
11114 fold_convert_loc (loc,
11115 TREE_TYPE (arg0),
11116 arg1),
11117 TREE_OPERAND (arg0, 1)));
11118
11119 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
11120 if ((TREE_CODE (arg0) == PLUS_EXPR
11121 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
11122 || TREE_CODE (arg0) == MINUS_EXPR)
11123 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
11124 0)),
11125 arg1, 0)
11126 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
11127 || POINTER_TYPE_P (TREE_TYPE (arg0))))
11128 {
11129 tree val = TREE_OPERAND (arg0, 1);
11130 return omit_two_operands_loc (loc, type,
11131 fold_build2_loc (loc, code, type,
11132 val,
11133 build_int_cst (TREE_TYPE (val),
11134 0)),
11135 TREE_OPERAND (arg0, 0), arg1);
11136 }
11137
11138 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
11139 if (TREE_CODE (arg0) == MINUS_EXPR
11140 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
11141 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
11142 1)),
11143 arg1, 0)
11144 && wi::extract_uhwi (TREE_OPERAND (arg0, 0), 0, 1) == 1)
11145 {
11146 return omit_two_operands_loc (loc, type,
11147 code == NE_EXPR
11148 ? boolean_true_node : boolean_false_node,
11149 TREE_OPERAND (arg0, 1), arg1);
11150 }
11151
11152 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
11153 if (TREE_CODE (arg0) == ABS_EXPR
11154 && (integer_zerop (arg1) || real_zerop (arg1)))
11155 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), arg1);
11156
11157 /* If this is an EQ or NE comparison with zero and ARG0 is
11158 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
11159 two operations, but the latter can be done in one less insn
11160 on machines that have only two-operand insns or on which a
11161 constant cannot be the first operand. */
11162 if (TREE_CODE (arg0) == BIT_AND_EXPR
11163 && integer_zerop (arg1))
11164 {
11165 tree arg00 = TREE_OPERAND (arg0, 0);
11166 tree arg01 = TREE_OPERAND (arg0, 1);
11167 if (TREE_CODE (arg00) == LSHIFT_EXPR
11168 && integer_onep (TREE_OPERAND (arg00, 0)))
11169 {
11170 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
11171 arg01, TREE_OPERAND (arg00, 1));
11172 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
11173 build_int_cst (TREE_TYPE (arg0), 1));
11174 return fold_build2_loc (loc, code, type,
11175 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
11176 arg1);
11177 }
11178 else if (TREE_CODE (arg01) == LSHIFT_EXPR
11179 && integer_onep (TREE_OPERAND (arg01, 0)))
11180 {
11181 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
11182 arg00, TREE_OPERAND (arg01, 1));
11183 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
11184 build_int_cst (TREE_TYPE (arg0), 1));
11185 return fold_build2_loc (loc, code, type,
11186 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
11187 arg1);
11188 }
11189 }
11190
11191 /* If this is an NE or EQ comparison of zero against the result of a
11192 signed MOD operation whose second operand is a power of 2, make
11193 the MOD operation unsigned since it is simpler and equivalent. */
11194 if (integer_zerop (arg1)
11195 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
11196 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
11197 || TREE_CODE (arg0) == CEIL_MOD_EXPR
11198 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
11199 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
11200 && integer_pow2p (TREE_OPERAND (arg0, 1)))
11201 {
11202 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
11203 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
11204 fold_convert_loc (loc, newtype,
11205 TREE_OPERAND (arg0, 0)),
11206 fold_convert_loc (loc, newtype,
11207 TREE_OPERAND (arg0, 1)));
11208
11209 return fold_build2_loc (loc, code, type, newmod,
11210 fold_convert_loc (loc, newtype, arg1));
11211 }
11212
11213 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
11214 C1 is a valid shift constant, and C2 is a power of two, i.e.
11215 a single bit. */
11216 if (TREE_CODE (arg0) == BIT_AND_EXPR
11217 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
11218 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
11219 == INTEGER_CST
11220 && integer_pow2p (TREE_OPERAND (arg0, 1))
11221 && integer_zerop (arg1))
11222 {
11223 tree itype = TREE_TYPE (arg0);
11224 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
11225 prec = TYPE_PRECISION (itype);
11226
11227 /* Check for a valid shift count. */
11228 if (wi::ltu_p (arg001, prec))
11229 {
11230 tree arg01 = TREE_OPERAND (arg0, 1);
11231 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
11232 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
11233 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
11234 can be rewritten as (X & (C2 << C1)) != 0. */
11235 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
11236 {
11237 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
11238 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
11239 return fold_build2_loc (loc, code, type, tem,
11240 fold_convert_loc (loc, itype, arg1));
11241 }
11242 /* Otherwise, for signed (arithmetic) shifts,
11243 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
11244 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
11245 else if (!TYPE_UNSIGNED (itype))
11246 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
11247 arg000, build_int_cst (itype, 0));
11248 /* Otherwise, of unsigned (logical) shifts,
11249 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
11250 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
11251 else
11252 return omit_one_operand_loc (loc, type,
11253 code == EQ_EXPR ? integer_one_node
11254 : integer_zero_node,
11255 arg000);
11256 }
11257 }
11258
11259 /* If we have (A & C) == C where C is a power of 2, convert this into
11260 (A & C) != 0. Similarly for NE_EXPR. */
11261 if (TREE_CODE (arg0) == BIT_AND_EXPR
11262 && integer_pow2p (TREE_OPERAND (arg0, 1))
11263 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11264 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11265 arg0, fold_convert_loc (loc, TREE_TYPE (arg0),
11266 integer_zero_node));
11267
11268 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
11269 bit, then fold the expression into A < 0 or A >= 0. */
11270 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1, type);
11271 if (tem)
11272 return tem;
11273
11274 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
11275 Similarly for NE_EXPR. */
11276 if (TREE_CODE (arg0) == BIT_AND_EXPR
11277 && TREE_CODE (arg1) == INTEGER_CST
11278 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11279 {
11280 tree notc = fold_build1_loc (loc, BIT_NOT_EXPR,
11281 TREE_TYPE (TREE_OPERAND (arg0, 1)),
11282 TREE_OPERAND (arg0, 1));
11283 tree dandnotc
11284 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
11285 fold_convert_loc (loc, TREE_TYPE (arg0), arg1),
11286 notc);
11287 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
11288 if (integer_nonzerop (dandnotc))
11289 return omit_one_operand_loc (loc, type, rslt, arg0);
11290 }
11291
11292 /* If this is a comparison of a field, we may be able to simplify it. */
11293 if ((TREE_CODE (arg0) == COMPONENT_REF
11294 || TREE_CODE (arg0) == BIT_FIELD_REF)
11295 /* Handle the constant case even without -O
11296 to make sure the warnings are given. */
11297 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
11298 {
11299 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
11300 if (t1)
11301 return t1;
11302 }
11303
11304 /* Optimize comparisons of strlen vs zero to a compare of the
11305 first character of the string vs zero. To wit,
11306 strlen(ptr) == 0 => *ptr == 0
11307 strlen(ptr) != 0 => *ptr != 0
11308 Other cases should reduce to one of these two (or a constant)
11309 due to the return value of strlen being unsigned. */
11310 if (TREE_CODE (arg0) == CALL_EXPR
11311 && integer_zerop (arg1))
11312 {
11313 tree fndecl = get_callee_fndecl (arg0);
11314
11315 if (fndecl
11316 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
11317 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
11318 && call_expr_nargs (arg0) == 1
11319 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
11320 {
11321 tree iref = build_fold_indirect_ref_loc (loc,
11322 CALL_EXPR_ARG (arg0, 0));
11323 return fold_build2_loc (loc, code, type, iref,
11324 build_int_cst (TREE_TYPE (iref), 0));
11325 }
11326 }
11327
11328 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
11329 of X. Similarly fold (X >> C) == 0 into X >= 0. */
11330 if (TREE_CODE (arg0) == RSHIFT_EXPR
11331 && integer_zerop (arg1)
11332 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11333 {
11334 tree arg00 = TREE_OPERAND (arg0, 0);
11335 tree arg01 = TREE_OPERAND (arg0, 1);
11336 tree itype = TREE_TYPE (arg00);
11337 if (wi::eq_p (arg01, element_precision (itype) - 1))
11338 {
11339 if (TYPE_UNSIGNED (itype))
11340 {
11341 itype = signed_type_for (itype);
11342 arg00 = fold_convert_loc (loc, itype, arg00);
11343 }
11344 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
11345 type, arg00, build_zero_cst (itype));
11346 }
11347 }
11348
11349 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
11350 (X & C) == 0 when C is a single bit. */
11351 if (TREE_CODE (arg0) == BIT_AND_EXPR
11352 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
11353 && integer_zerop (arg1)
11354 && integer_pow2p (TREE_OPERAND (arg0, 1)))
11355 {
11356 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
11357 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
11358 TREE_OPERAND (arg0, 1));
11359 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
11360 type, tem,
11361 fold_convert_loc (loc, TREE_TYPE (arg0),
11362 arg1));
11363 }
11364
11365 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
11366 constant C is a power of two, i.e. a single bit. */
11367 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11368 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11369 && integer_zerop (arg1)
11370 && integer_pow2p (TREE_OPERAND (arg0, 1))
11371 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11372 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
11373 {
11374 tree arg00 = TREE_OPERAND (arg0, 0);
11375 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11376 arg00, build_int_cst (TREE_TYPE (arg00), 0));
11377 }
11378
11379 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
11380 when is C is a power of two, i.e. a single bit. */
11381 if (TREE_CODE (arg0) == BIT_AND_EXPR
11382 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
11383 && integer_zerop (arg1)
11384 && integer_pow2p (TREE_OPERAND (arg0, 1))
11385 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11386 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
11387 {
11388 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
11389 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
11390 arg000, TREE_OPERAND (arg0, 1));
11391 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11392 tem, build_int_cst (TREE_TYPE (tem), 0));
11393 }
11394
11395 if (integer_zerop (arg1)
11396 && tree_expr_nonzero_p (arg0))
11397 {
11398 tree res = constant_boolean_node (code==NE_EXPR, type);
11399 return omit_one_operand_loc (loc, type, res, arg0);
11400 }
11401
11402 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
11403 if (TREE_CODE (arg0) == BIT_AND_EXPR
11404 && TREE_CODE (arg1) == BIT_AND_EXPR)
11405 {
11406 tree arg00 = TREE_OPERAND (arg0, 0);
11407 tree arg01 = TREE_OPERAND (arg0, 1);
11408 tree arg10 = TREE_OPERAND (arg1, 0);
11409 tree arg11 = TREE_OPERAND (arg1, 1);
11410 tree itype = TREE_TYPE (arg0);
11411
11412 if (operand_equal_p (arg01, arg11, 0))
11413 return fold_build2_loc (loc, code, type,
11414 fold_build2_loc (loc, BIT_AND_EXPR, itype,
11415 fold_build2_loc (loc,
11416 BIT_XOR_EXPR, itype,
11417 arg00, arg10),
11418 arg01),
11419 build_zero_cst (itype));
11420
11421 if (operand_equal_p (arg01, arg10, 0))
11422 return fold_build2_loc (loc, code, type,
11423 fold_build2_loc (loc, BIT_AND_EXPR, itype,
11424 fold_build2_loc (loc,
11425 BIT_XOR_EXPR, itype,
11426 arg00, arg11),
11427 arg01),
11428 build_zero_cst (itype));
11429
11430 if (operand_equal_p (arg00, arg11, 0))
11431 return fold_build2_loc (loc, code, type,
11432 fold_build2_loc (loc, BIT_AND_EXPR, itype,
11433 fold_build2_loc (loc,
11434 BIT_XOR_EXPR, itype,
11435 arg01, arg10),
11436 arg00),
11437 build_zero_cst (itype));
11438
11439 if (operand_equal_p (arg00, arg10, 0))
11440 return fold_build2_loc (loc, code, type,
11441 fold_build2_loc (loc, BIT_AND_EXPR, itype,
11442 fold_build2_loc (loc,
11443 BIT_XOR_EXPR, itype,
11444 arg01, arg11),
11445 arg00),
11446 build_zero_cst (itype));
11447 }
11448
11449 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11450 && TREE_CODE (arg1) == BIT_XOR_EXPR)
11451 {
11452 tree arg00 = TREE_OPERAND (arg0, 0);
11453 tree arg01 = TREE_OPERAND (arg0, 1);
11454 tree arg10 = TREE_OPERAND (arg1, 0);
11455 tree arg11 = TREE_OPERAND (arg1, 1);
11456 tree itype = TREE_TYPE (arg0);
11457
11458 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
11459 operand_equal_p guarantees no side-effects so we don't need
11460 to use omit_one_operand on Z. */
11461 if (operand_equal_p (arg01, arg11, 0))
11462 return fold_build2_loc (loc, code, type, arg00,
11463 fold_convert_loc (loc, TREE_TYPE (arg00),
11464 arg10));
11465 if (operand_equal_p (arg01, arg10, 0))
11466 return fold_build2_loc (loc, code, type, arg00,
11467 fold_convert_loc (loc, TREE_TYPE (arg00),
11468 arg11));
11469 if (operand_equal_p (arg00, arg11, 0))
11470 return fold_build2_loc (loc, code, type, arg01,
11471 fold_convert_loc (loc, TREE_TYPE (arg01),
11472 arg10));
11473 if (operand_equal_p (arg00, arg10, 0))
11474 return fold_build2_loc (loc, code, type, arg01,
11475 fold_convert_loc (loc, TREE_TYPE (arg01),
11476 arg11));
11477
11478 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
11479 if (TREE_CODE (arg01) == INTEGER_CST
11480 && TREE_CODE (arg11) == INTEGER_CST)
11481 {
11482 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
11483 fold_convert_loc (loc, itype, arg11));
11484 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
11485 return fold_build2_loc (loc, code, type, tem,
11486 fold_convert_loc (loc, itype, arg10));
11487 }
11488 }
11489
11490 /* Attempt to simplify equality/inequality comparisons of complex
11491 values. Only lower the comparison if the result is known or
11492 can be simplified to a single scalar comparison. */
11493 if ((TREE_CODE (arg0) == COMPLEX_EXPR
11494 || TREE_CODE (arg0) == COMPLEX_CST)
11495 && (TREE_CODE (arg1) == COMPLEX_EXPR
11496 || TREE_CODE (arg1) == COMPLEX_CST))
11497 {
11498 tree real0, imag0, real1, imag1;
11499 tree rcond, icond;
11500
11501 if (TREE_CODE (arg0) == COMPLEX_EXPR)
11502 {
11503 real0 = TREE_OPERAND (arg0, 0);
11504 imag0 = TREE_OPERAND (arg0, 1);
11505 }
11506 else
11507 {
11508 real0 = TREE_REALPART (arg0);
11509 imag0 = TREE_IMAGPART (arg0);
11510 }
11511
11512 if (TREE_CODE (arg1) == COMPLEX_EXPR)
11513 {
11514 real1 = TREE_OPERAND (arg1, 0);
11515 imag1 = TREE_OPERAND (arg1, 1);
11516 }
11517 else
11518 {
11519 real1 = TREE_REALPART (arg1);
11520 imag1 = TREE_IMAGPART (arg1);
11521 }
11522
11523 rcond = fold_binary_loc (loc, code, type, real0, real1);
11524 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
11525 {
11526 if (integer_zerop (rcond))
11527 {
11528 if (code == EQ_EXPR)
11529 return omit_two_operands_loc (loc, type, boolean_false_node,
11530 imag0, imag1);
11531 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
11532 }
11533 else
11534 {
11535 if (code == NE_EXPR)
11536 return omit_two_operands_loc (loc, type, boolean_true_node,
11537 imag0, imag1);
11538 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
11539 }
11540 }
11541
11542 icond = fold_binary_loc (loc, code, type, imag0, imag1);
11543 if (icond && TREE_CODE (icond) == INTEGER_CST)
11544 {
11545 if (integer_zerop (icond))
11546 {
11547 if (code == EQ_EXPR)
11548 return omit_two_operands_loc (loc, type, boolean_false_node,
11549 real0, real1);
11550 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
11551 }
11552 else
11553 {
11554 if (code == NE_EXPR)
11555 return omit_two_operands_loc (loc, type, boolean_true_node,
11556 real0, real1);
11557 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
11558 }
11559 }
11560 }
11561
11562 return NULL_TREE;
11563
11564 case LT_EXPR:
11565 case GT_EXPR:
11566 case LE_EXPR:
11567 case GE_EXPR:
11568 tem = fold_comparison (loc, code, type, op0, op1);
11569 if (tem != NULL_TREE)
11570 return tem;
11571
11572 /* Transform comparisons of the form X +- C CMP X. */
11573 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
11574 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11575 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
11576 && !HONOR_SNANS (arg0))
11577 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11578 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
11579 {
11580 tree arg01 = TREE_OPERAND (arg0, 1);
11581 enum tree_code code0 = TREE_CODE (arg0);
11582 int is_positive;
11583
11584 if (TREE_CODE (arg01) == REAL_CST)
11585 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
11586 else
11587 is_positive = tree_int_cst_sgn (arg01);
11588
11589 /* (X - c) > X becomes false. */
11590 if (code == GT_EXPR
11591 && ((code0 == MINUS_EXPR && is_positive >= 0)
11592 || (code0 == PLUS_EXPR && is_positive <= 0)))
11593 {
11594 if (TREE_CODE (arg01) == INTEGER_CST
11595 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11596 fold_overflow_warning (("assuming signed overflow does not "
11597 "occur when assuming that (X - c) > X "
11598 "is always false"),
11599 WARN_STRICT_OVERFLOW_ALL);
11600 return constant_boolean_node (0, type);
11601 }
11602
11603 /* Likewise (X + c) < X becomes false. */
11604 if (code == LT_EXPR
11605 && ((code0 == PLUS_EXPR && is_positive >= 0)
11606 || (code0 == MINUS_EXPR && is_positive <= 0)))
11607 {
11608 if (TREE_CODE (arg01) == INTEGER_CST
11609 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11610 fold_overflow_warning (("assuming signed overflow does not "
11611 "occur when assuming that "
11612 "(X + c) < X is always false"),
11613 WARN_STRICT_OVERFLOW_ALL);
11614 return constant_boolean_node (0, type);
11615 }
11616
11617 /* Convert (X - c) <= X to true. */
11618 if (!HONOR_NANS (arg1)
11619 && code == LE_EXPR
11620 && ((code0 == MINUS_EXPR && is_positive >= 0)
11621 || (code0 == PLUS_EXPR && is_positive <= 0)))
11622 {
11623 if (TREE_CODE (arg01) == INTEGER_CST
11624 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11625 fold_overflow_warning (("assuming signed overflow does not "
11626 "occur when assuming that "
11627 "(X - c) <= X is always true"),
11628 WARN_STRICT_OVERFLOW_ALL);
11629 return constant_boolean_node (1, type);
11630 }
11631
11632 /* Convert (X + c) >= X to true. */
11633 if (!HONOR_NANS (arg1)
11634 && code == GE_EXPR
11635 && ((code0 == PLUS_EXPR && is_positive >= 0)
11636 || (code0 == MINUS_EXPR && is_positive <= 0)))
11637 {
11638 if (TREE_CODE (arg01) == INTEGER_CST
11639 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11640 fold_overflow_warning (("assuming signed overflow does not "
11641 "occur when assuming that "
11642 "(X + c) >= X is always true"),
11643 WARN_STRICT_OVERFLOW_ALL);
11644 return constant_boolean_node (1, type);
11645 }
11646
11647 if (TREE_CODE (arg01) == INTEGER_CST)
11648 {
11649 /* Convert X + c > X and X - c < X to true for integers. */
11650 if (code == GT_EXPR
11651 && ((code0 == PLUS_EXPR && is_positive > 0)
11652 || (code0 == MINUS_EXPR && is_positive < 0)))
11653 {
11654 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11655 fold_overflow_warning (("assuming signed overflow does "
11656 "not occur when assuming that "
11657 "(X + c) > X is always true"),
11658 WARN_STRICT_OVERFLOW_ALL);
11659 return constant_boolean_node (1, type);
11660 }
11661
11662 if (code == LT_EXPR
11663 && ((code0 == MINUS_EXPR && is_positive > 0)
11664 || (code0 == PLUS_EXPR && is_positive < 0)))
11665 {
11666 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11667 fold_overflow_warning (("assuming signed overflow does "
11668 "not occur when assuming that "
11669 "(X - c) < X is always true"),
11670 WARN_STRICT_OVERFLOW_ALL);
11671 return constant_boolean_node (1, type);
11672 }
11673
11674 /* Convert X + c <= X and X - c >= X to false for integers. */
11675 if (code == LE_EXPR
11676 && ((code0 == PLUS_EXPR && is_positive > 0)
11677 || (code0 == MINUS_EXPR && is_positive < 0)))
11678 {
11679 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11680 fold_overflow_warning (("assuming signed overflow does "
11681 "not occur when assuming that "
11682 "(X + c) <= X is always false"),
11683 WARN_STRICT_OVERFLOW_ALL);
11684 return constant_boolean_node (0, type);
11685 }
11686
11687 if (code == GE_EXPR
11688 && ((code0 == MINUS_EXPR && is_positive > 0)
11689 || (code0 == PLUS_EXPR && is_positive < 0)))
11690 {
11691 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11692 fold_overflow_warning (("assuming signed overflow does "
11693 "not occur when assuming that "
11694 "(X - c) >= X is always false"),
11695 WARN_STRICT_OVERFLOW_ALL);
11696 return constant_boolean_node (0, type);
11697 }
11698 }
11699 }
11700
11701 /* Comparisons with the highest or lowest possible integer of
11702 the specified precision will have known values. */
11703 {
11704 tree arg1_type = TREE_TYPE (arg1);
11705 unsigned int prec = TYPE_PRECISION (arg1_type);
11706
11707 if (TREE_CODE (arg1) == INTEGER_CST
11708 && (INTEGRAL_TYPE_P (arg1_type) || POINTER_TYPE_P (arg1_type)))
11709 {
11710 wide_int max = wi::max_value (arg1_type);
11711 wide_int signed_max = wi::max_value (prec, SIGNED);
11712 wide_int min = wi::min_value (arg1_type);
11713
11714 if (wi::eq_p (arg1, max))
11715 switch (code)
11716 {
11717 case GT_EXPR:
11718 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11719
11720 case GE_EXPR:
11721 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
11722
11723 case LE_EXPR:
11724 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
11725
11726 case LT_EXPR:
11727 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
11728
11729 /* The GE_EXPR and LT_EXPR cases above are not normally
11730 reached because of previous transformations. */
11731
11732 default:
11733 break;
11734 }
11735 else if (wi::eq_p (arg1, max - 1))
11736 switch (code)
11737 {
11738 case GT_EXPR:
11739 arg1 = const_binop (PLUS_EXPR, arg1,
11740 build_int_cst (TREE_TYPE (arg1), 1));
11741 return fold_build2_loc (loc, EQ_EXPR, type,
11742 fold_convert_loc (loc,
11743 TREE_TYPE (arg1), arg0),
11744 arg1);
11745 case LE_EXPR:
11746 arg1 = const_binop (PLUS_EXPR, arg1,
11747 build_int_cst (TREE_TYPE (arg1), 1));
11748 return fold_build2_loc (loc, NE_EXPR, type,
11749 fold_convert_loc (loc, TREE_TYPE (arg1),
11750 arg0),
11751 arg1);
11752 default:
11753 break;
11754 }
11755 else if (wi::eq_p (arg1, min))
11756 switch (code)
11757 {
11758 case LT_EXPR:
11759 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11760
11761 case LE_EXPR:
11762 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
11763
11764 case GE_EXPR:
11765 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
11766
11767 case GT_EXPR:
11768 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
11769
11770 default:
11771 break;
11772 }
11773 else if (wi::eq_p (arg1, min + 1))
11774 switch (code)
11775 {
11776 case GE_EXPR:
11777 arg1 = const_binop (MINUS_EXPR, arg1,
11778 build_int_cst (TREE_TYPE (arg1), 1));
11779 return fold_build2_loc (loc, NE_EXPR, type,
11780 fold_convert_loc (loc,
11781 TREE_TYPE (arg1), arg0),
11782 arg1);
11783 case LT_EXPR:
11784 arg1 = const_binop (MINUS_EXPR, arg1,
11785 build_int_cst (TREE_TYPE (arg1), 1));
11786 return fold_build2_loc (loc, EQ_EXPR, type,
11787 fold_convert_loc (loc, TREE_TYPE (arg1),
11788 arg0),
11789 arg1);
11790 default:
11791 break;
11792 }
11793
11794 else if (wi::eq_p (arg1, signed_max)
11795 && TYPE_UNSIGNED (arg1_type)
11796 /* We will flip the signedness of the comparison operator
11797 associated with the mode of arg1, so the sign bit is
11798 specified by this mode. Check that arg1 is the signed
11799 max associated with this sign bit. */
11800 && prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
11801 /* signed_type does not work on pointer types. */
11802 && INTEGRAL_TYPE_P (arg1_type))
11803 {
11804 /* The following case also applies to X < signed_max+1
11805 and X >= signed_max+1 because previous transformations. */
11806 if (code == LE_EXPR || code == GT_EXPR)
11807 {
11808 tree st = signed_type_for (arg1_type);
11809 return fold_build2_loc (loc,
11810 code == LE_EXPR ? GE_EXPR : LT_EXPR,
11811 type, fold_convert_loc (loc, st, arg0),
11812 build_int_cst (st, 0));
11813 }
11814 }
11815 }
11816 }
11817
11818 /* If we are comparing an ABS_EXPR with a constant, we can
11819 convert all the cases into explicit comparisons, but they may
11820 well not be faster than doing the ABS and one comparison.
11821 But ABS (X) <= C is a range comparison, which becomes a subtraction
11822 and a comparison, and is probably faster. */
11823 if (code == LE_EXPR
11824 && TREE_CODE (arg1) == INTEGER_CST
11825 && TREE_CODE (arg0) == ABS_EXPR
11826 && ! TREE_SIDE_EFFECTS (arg0)
11827 && (0 != (tem = negate_expr (arg1)))
11828 && TREE_CODE (tem) == INTEGER_CST
11829 && !TREE_OVERFLOW (tem))
11830 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
11831 build2 (GE_EXPR, type,
11832 TREE_OPERAND (arg0, 0), tem),
11833 build2 (LE_EXPR, type,
11834 TREE_OPERAND (arg0, 0), arg1));
11835
11836 /* Convert ABS_EXPR<x> >= 0 to true. */
11837 strict_overflow_p = false;
11838 if (code == GE_EXPR
11839 && (integer_zerop (arg1)
11840 || (! HONOR_NANS (arg0)
11841 && real_zerop (arg1)))
11842 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11843 {
11844 if (strict_overflow_p)
11845 fold_overflow_warning (("assuming signed overflow does not occur "
11846 "when simplifying comparison of "
11847 "absolute value and zero"),
11848 WARN_STRICT_OVERFLOW_CONDITIONAL);
11849 return omit_one_operand_loc (loc, type,
11850 constant_boolean_node (true, type),
11851 arg0);
11852 }
11853
11854 /* Convert ABS_EXPR<x> < 0 to false. */
11855 strict_overflow_p = false;
11856 if (code == LT_EXPR
11857 && (integer_zerop (arg1) || real_zerop (arg1))
11858 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11859 {
11860 if (strict_overflow_p)
11861 fold_overflow_warning (("assuming signed overflow does not occur "
11862 "when simplifying comparison of "
11863 "absolute value and zero"),
11864 WARN_STRICT_OVERFLOW_CONDITIONAL);
11865 return omit_one_operand_loc (loc, type,
11866 constant_boolean_node (false, type),
11867 arg0);
11868 }
11869
11870 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11871 and similarly for >= into !=. */
11872 if ((code == LT_EXPR || code == GE_EXPR)
11873 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11874 && TREE_CODE (arg1) == LSHIFT_EXPR
11875 && integer_onep (TREE_OPERAND (arg1, 0)))
11876 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11877 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11878 TREE_OPERAND (arg1, 1)),
11879 build_zero_cst (TREE_TYPE (arg0)));
11880
11881 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11882 otherwise Y might be >= # of bits in X's type and thus e.g.
11883 (unsigned char) (1 << Y) for Y 15 might be 0.
11884 If the cast is widening, then 1 << Y should have unsigned type,
11885 otherwise if Y is number of bits in the signed shift type minus 1,
11886 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11887 31 might be 0xffffffff80000000. */
11888 if ((code == LT_EXPR || code == GE_EXPR)
11889 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11890 && CONVERT_EXPR_P (arg1)
11891 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11892 && (element_precision (TREE_TYPE (arg1))
11893 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11894 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11895 || (element_precision (TREE_TYPE (arg1))
11896 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11897 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11898 {
11899 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11900 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11901 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11902 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11903 build_zero_cst (TREE_TYPE (arg0)));
11904 }
11905
11906 return NULL_TREE;
11907
11908 case UNORDERED_EXPR:
11909 case ORDERED_EXPR:
11910 case UNLT_EXPR:
11911 case UNLE_EXPR:
11912 case UNGT_EXPR:
11913 case UNGE_EXPR:
11914 case UNEQ_EXPR:
11915 case LTGT_EXPR:
11916 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
11917 {
11918 t1 = fold_relational_const (code, type, arg0, arg1);
11919 if (t1 != NULL_TREE)
11920 return t1;
11921 }
11922
11923 /* If the first operand is NaN, the result is constant. */
11924 if (TREE_CODE (arg0) == REAL_CST
11925 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
11926 && (code != LTGT_EXPR || ! flag_trapping_math))
11927 {
11928 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
11929 ? integer_zero_node
11930 : integer_one_node;
11931 return omit_one_operand_loc (loc, type, t1, arg1);
11932 }
11933
11934 /* If the second operand is NaN, the result is constant. */
11935 if (TREE_CODE (arg1) == REAL_CST
11936 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
11937 && (code != LTGT_EXPR || ! flag_trapping_math))
11938 {
11939 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
11940 ? integer_zero_node
11941 : integer_one_node;
11942 return omit_one_operand_loc (loc, type, t1, arg0);
11943 }
11944
11945 /* Simplify unordered comparison of something with itself. */
11946 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
11947 && operand_equal_p (arg0, arg1, 0))
11948 return constant_boolean_node (1, type);
11949
11950 if (code == LTGT_EXPR
11951 && !flag_trapping_math
11952 && operand_equal_p (arg0, arg1, 0))
11953 return constant_boolean_node (0, type);
11954
11955 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11956 {
11957 tree targ0 = strip_float_extensions (arg0);
11958 tree targ1 = strip_float_extensions (arg1);
11959 tree newtype = TREE_TYPE (targ0);
11960
11961 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11962 newtype = TREE_TYPE (targ1);
11963
11964 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11965 return fold_build2_loc (loc, code, type,
11966 fold_convert_loc (loc, newtype, targ0),
11967 fold_convert_loc (loc, newtype, targ1));
11968 }
11969
11970 return NULL_TREE;
11971
11972 case COMPOUND_EXPR:
11973 /* When pedantic, a compound expression can be neither an lvalue
11974 nor an integer constant expression. */
11975 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11976 return NULL_TREE;
11977 /* Don't let (0, 0) be null pointer constant. */
11978 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11979 : fold_convert_loc (loc, type, arg1);
11980 return pedantic_non_lvalue_loc (loc, tem);
11981
11982 case ASSERT_EXPR:
11983 /* An ASSERT_EXPR should never be passed to fold_binary. */
11984 gcc_unreachable ();
11985
11986 default:
11987 return NULL_TREE;
11988 } /* switch (code) */
11989 }
11990
11991 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11992 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
11993 of GOTO_EXPR. */
11994
11995 static tree
11996 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
11997 {
11998 switch (TREE_CODE (*tp))
11999 {
12000 case LABEL_EXPR:
12001 return *tp;
12002
12003 case GOTO_EXPR:
12004 *walk_subtrees = 0;
12005
12006 /* ... fall through ... */
12007
12008 default:
12009 return NULL_TREE;
12010 }
12011 }
12012
12013 /* Return whether the sub-tree ST contains a label which is accessible from
12014 outside the sub-tree. */
12015
12016 static bool
12017 contains_label_p (tree st)
12018 {
12019 return
12020 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
12021 }
12022
12023 /* Fold a ternary expression of code CODE and type TYPE with operands
12024 OP0, OP1, and OP2. Return the folded expression if folding is
12025 successful. Otherwise, return NULL_TREE. */
12026
12027 tree
12028 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
12029 tree op0, tree op1, tree op2)
12030 {
12031 tree tem;
12032 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
12033 enum tree_code_class kind = TREE_CODE_CLASS (code);
12034
12035 gcc_assert (IS_EXPR_CODE_CLASS (kind)
12036 && TREE_CODE_LENGTH (code) == 3);
12037
12038 /* If this is a commutative operation, and OP0 is a constant, move it
12039 to OP1 to reduce the number of tests below. */
12040 if (commutative_ternary_tree_code (code)
12041 && tree_swap_operands_p (op0, op1, true))
12042 return fold_build3_loc (loc, code, type, op1, op0, op2);
12043
12044 tem = generic_simplify (loc, code, type, op0, op1, op2);
12045 if (tem)
12046 return tem;
12047
12048 /* Strip any conversions that don't change the mode. This is safe
12049 for every expression, except for a comparison expression because
12050 its signedness is derived from its operands. So, in the latter
12051 case, only strip conversions that don't change the signedness.
12052
12053 Note that this is done as an internal manipulation within the
12054 constant folder, in order to find the simplest representation of
12055 the arguments so that their form can be studied. In any cases,
12056 the appropriate type conversions should be put back in the tree
12057 that will get out of the constant folder. */
12058 if (op0)
12059 {
12060 arg0 = op0;
12061 STRIP_NOPS (arg0);
12062 }
12063
12064 if (op1)
12065 {
12066 arg1 = op1;
12067 STRIP_NOPS (arg1);
12068 }
12069
12070 if (op2)
12071 {
12072 arg2 = op2;
12073 STRIP_NOPS (arg2);
12074 }
12075
12076 switch (code)
12077 {
12078 case COMPONENT_REF:
12079 if (TREE_CODE (arg0) == CONSTRUCTOR
12080 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
12081 {
12082 unsigned HOST_WIDE_INT idx;
12083 tree field, value;
12084 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
12085 if (field == arg1)
12086 return value;
12087 }
12088 return NULL_TREE;
12089
12090 case COND_EXPR:
12091 case VEC_COND_EXPR:
12092 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
12093 so all simple results must be passed through pedantic_non_lvalue. */
12094 if (TREE_CODE (arg0) == INTEGER_CST)
12095 {
12096 tree unused_op = integer_zerop (arg0) ? op1 : op2;
12097 tem = integer_zerop (arg0) ? op2 : op1;
12098 /* Only optimize constant conditions when the selected branch
12099 has the same type as the COND_EXPR. This avoids optimizing
12100 away "c ? x : throw", where the throw has a void type.
12101 Avoid throwing away that operand which contains label. */
12102 if ((!TREE_SIDE_EFFECTS (unused_op)
12103 || !contains_label_p (unused_op))
12104 && (! VOID_TYPE_P (TREE_TYPE (tem))
12105 || VOID_TYPE_P (type)))
12106 return pedantic_non_lvalue_loc (loc, tem);
12107 return NULL_TREE;
12108 }
12109 else if (TREE_CODE (arg0) == VECTOR_CST)
12110 {
12111 if ((TREE_CODE (arg1) == VECTOR_CST
12112 || TREE_CODE (arg1) == CONSTRUCTOR)
12113 && (TREE_CODE (arg2) == VECTOR_CST
12114 || TREE_CODE (arg2) == CONSTRUCTOR))
12115 {
12116 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
12117 unsigned char *sel = XALLOCAVEC (unsigned char, nelts);
12118 gcc_assert (nelts == VECTOR_CST_NELTS (arg0));
12119 for (i = 0; i < nelts; i++)
12120 {
12121 tree val = VECTOR_CST_ELT (arg0, i);
12122 if (integer_all_onesp (val))
12123 sel[i] = i;
12124 else if (integer_zerop (val))
12125 sel[i] = nelts + i;
12126 else /* Currently unreachable. */
12127 return NULL_TREE;
12128 }
12129 tree t = fold_vec_perm (type, arg1, arg2, sel);
12130 if (t != NULL_TREE)
12131 return t;
12132 }
12133 }
12134
12135 /* If we have A op B ? A : C, we may be able to convert this to a
12136 simpler expression, depending on the operation and the values
12137 of B and C. Signed zeros prevent all of these transformations,
12138 for reasons given above each one.
12139
12140 Also try swapping the arguments and inverting the conditional. */
12141 if (COMPARISON_CLASS_P (arg0)
12142 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
12143 arg1, TREE_OPERAND (arg0, 1))
12144 && !HONOR_SIGNED_ZEROS (element_mode (arg1)))
12145 {
12146 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
12147 if (tem)
12148 return tem;
12149 }
12150
12151 if (COMPARISON_CLASS_P (arg0)
12152 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
12153 op2,
12154 TREE_OPERAND (arg0, 1))
12155 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
12156 {
12157 location_t loc0 = expr_location_or (arg0, loc);
12158 tem = fold_invert_truthvalue (loc0, arg0);
12159 if (tem && COMPARISON_CLASS_P (tem))
12160 {
12161 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
12162 if (tem)
12163 return tem;
12164 }
12165 }
12166
12167 /* If the second operand is simpler than the third, swap them
12168 since that produces better jump optimization results. */
12169 if (truth_value_p (TREE_CODE (arg0))
12170 && tree_swap_operands_p (op1, op2, false))
12171 {
12172 location_t loc0 = expr_location_or (arg0, loc);
12173 /* See if this can be inverted. If it can't, possibly because
12174 it was a floating-point inequality comparison, don't do
12175 anything. */
12176 tem = fold_invert_truthvalue (loc0, arg0);
12177 if (tem)
12178 return fold_build3_loc (loc, code, type, tem, op2, op1);
12179 }
12180
12181 /* Convert A ? 1 : 0 to simply A. */
12182 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
12183 : (integer_onep (op1)
12184 && !VECTOR_TYPE_P (type)))
12185 && integer_zerop (op2)
12186 /* If we try to convert OP0 to our type, the
12187 call to fold will try to move the conversion inside
12188 a COND, which will recurse. In that case, the COND_EXPR
12189 is probably the best choice, so leave it alone. */
12190 && type == TREE_TYPE (arg0))
12191 return pedantic_non_lvalue_loc (loc, arg0);
12192
12193 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
12194 over COND_EXPR in cases such as floating point comparisons. */
12195 if (integer_zerop (op1)
12196 && (code == VEC_COND_EXPR ? integer_all_onesp (op2)
12197 : (integer_onep (op2)
12198 && !VECTOR_TYPE_P (type)))
12199 && truth_value_p (TREE_CODE (arg0)))
12200 return pedantic_non_lvalue_loc (loc,
12201 fold_convert_loc (loc, type,
12202 invert_truthvalue_loc (loc,
12203 arg0)));
12204
12205 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
12206 if (TREE_CODE (arg0) == LT_EXPR
12207 && integer_zerop (TREE_OPERAND (arg0, 1))
12208 && integer_zerop (op2)
12209 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
12210 {
12211 /* sign_bit_p looks through both zero and sign extensions,
12212 but for this optimization only sign extensions are
12213 usable. */
12214 tree tem2 = TREE_OPERAND (arg0, 0);
12215 while (tem != tem2)
12216 {
12217 if (TREE_CODE (tem2) != NOP_EXPR
12218 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
12219 {
12220 tem = NULL_TREE;
12221 break;
12222 }
12223 tem2 = TREE_OPERAND (tem2, 0);
12224 }
12225 /* sign_bit_p only checks ARG1 bits within A's precision.
12226 If <sign bit of A> has wider type than A, bits outside
12227 of A's precision in <sign bit of A> need to be checked.
12228 If they are all 0, this optimization needs to be done
12229 in unsigned A's type, if they are all 1 in signed A's type,
12230 otherwise this can't be done. */
12231 if (tem
12232 && TYPE_PRECISION (TREE_TYPE (tem))
12233 < TYPE_PRECISION (TREE_TYPE (arg1))
12234 && TYPE_PRECISION (TREE_TYPE (tem))
12235 < TYPE_PRECISION (type))
12236 {
12237 int inner_width, outer_width;
12238 tree tem_type;
12239
12240 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
12241 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
12242 if (outer_width > TYPE_PRECISION (type))
12243 outer_width = TYPE_PRECISION (type);
12244
12245 wide_int mask = wi::shifted_mask
12246 (inner_width, outer_width - inner_width, false,
12247 TYPE_PRECISION (TREE_TYPE (arg1)));
12248
12249 wide_int common = mask & arg1;
12250 if (common == mask)
12251 {
12252 tem_type = signed_type_for (TREE_TYPE (tem));
12253 tem = fold_convert_loc (loc, tem_type, tem);
12254 }
12255 else if (common == 0)
12256 {
12257 tem_type = unsigned_type_for (TREE_TYPE (tem));
12258 tem = fold_convert_loc (loc, tem_type, tem);
12259 }
12260 else
12261 tem = NULL;
12262 }
12263
12264 if (tem)
12265 return
12266 fold_convert_loc (loc, type,
12267 fold_build2_loc (loc, BIT_AND_EXPR,
12268 TREE_TYPE (tem), tem,
12269 fold_convert_loc (loc,
12270 TREE_TYPE (tem),
12271 arg1)));
12272 }
12273
12274 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
12275 already handled above. */
12276 if (TREE_CODE (arg0) == BIT_AND_EXPR
12277 && integer_onep (TREE_OPERAND (arg0, 1))
12278 && integer_zerop (op2)
12279 && integer_pow2p (arg1))
12280 {
12281 tree tem = TREE_OPERAND (arg0, 0);
12282 STRIP_NOPS (tem);
12283 if (TREE_CODE (tem) == RSHIFT_EXPR
12284 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
12285 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
12286 tree_to_uhwi (TREE_OPERAND (tem, 1)))
12287 return fold_build2_loc (loc, BIT_AND_EXPR, type,
12288 TREE_OPERAND (tem, 0), arg1);
12289 }
12290
12291 /* A & N ? N : 0 is simply A & N if N is a power of two. This
12292 is probably obsolete because the first operand should be a
12293 truth value (that's why we have the two cases above), but let's
12294 leave it in until we can confirm this for all front-ends. */
12295 if (integer_zerop (op2)
12296 && TREE_CODE (arg0) == NE_EXPR
12297 && integer_zerop (TREE_OPERAND (arg0, 1))
12298 && integer_pow2p (arg1)
12299 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12300 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12301 arg1, OEP_ONLY_CONST))
12302 return pedantic_non_lvalue_loc (loc,
12303 fold_convert_loc (loc, type,
12304 TREE_OPERAND (arg0, 0)));
12305
12306 /* Disable the transformations below for vectors, since
12307 fold_binary_op_with_conditional_arg may undo them immediately,
12308 yielding an infinite loop. */
12309 if (code == VEC_COND_EXPR)
12310 return NULL_TREE;
12311
12312 /* Convert A ? B : 0 into A && B if A and B are truth values. */
12313 if (integer_zerop (op2)
12314 && truth_value_p (TREE_CODE (arg0))
12315 && truth_value_p (TREE_CODE (arg1))
12316 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12317 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
12318 : TRUTH_ANDIF_EXPR,
12319 type, fold_convert_loc (loc, type, arg0), arg1);
12320
12321 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
12322 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
12323 && truth_value_p (TREE_CODE (arg0))
12324 && truth_value_p (TREE_CODE (arg1))
12325 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12326 {
12327 location_t loc0 = expr_location_or (arg0, loc);
12328 /* Only perform transformation if ARG0 is easily inverted. */
12329 tem = fold_invert_truthvalue (loc0, arg0);
12330 if (tem)
12331 return fold_build2_loc (loc, code == VEC_COND_EXPR
12332 ? BIT_IOR_EXPR
12333 : TRUTH_ORIF_EXPR,
12334 type, fold_convert_loc (loc, type, tem),
12335 arg1);
12336 }
12337
12338 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
12339 if (integer_zerop (arg1)
12340 && truth_value_p (TREE_CODE (arg0))
12341 && truth_value_p (TREE_CODE (op2))
12342 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12343 {
12344 location_t loc0 = expr_location_or (arg0, loc);
12345 /* Only perform transformation if ARG0 is easily inverted. */
12346 tem = fold_invert_truthvalue (loc0, arg0);
12347 if (tem)
12348 return fold_build2_loc (loc, code == VEC_COND_EXPR
12349 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
12350 type, fold_convert_loc (loc, type, tem),
12351 op2);
12352 }
12353
12354 /* Convert A ? 1 : B into A || B if A and B are truth values. */
12355 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
12356 && truth_value_p (TREE_CODE (arg0))
12357 && truth_value_p (TREE_CODE (op2))
12358 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12359 return fold_build2_loc (loc, code == VEC_COND_EXPR
12360 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
12361 type, fold_convert_loc (loc, type, arg0), op2);
12362
12363 return NULL_TREE;
12364
12365 case CALL_EXPR:
12366 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
12367 of fold_ternary on them. */
12368 gcc_unreachable ();
12369
12370 case BIT_FIELD_REF:
12371 if ((TREE_CODE (arg0) == VECTOR_CST
12372 || (TREE_CODE (arg0) == CONSTRUCTOR
12373 && TREE_CODE (TREE_TYPE (arg0)) == VECTOR_TYPE))
12374 && (type == TREE_TYPE (TREE_TYPE (arg0))
12375 || (TREE_CODE (type) == VECTOR_TYPE
12376 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
12377 {
12378 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
12379 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
12380 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
12381 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
12382
12383 if (n != 0
12384 && (idx % width) == 0
12385 && (n % width) == 0
12386 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
12387 {
12388 idx = idx / width;
12389 n = n / width;
12390
12391 if (TREE_CODE (arg0) == VECTOR_CST)
12392 {
12393 if (n == 1)
12394 return VECTOR_CST_ELT (arg0, idx);
12395
12396 tree *vals = XALLOCAVEC (tree, n);
12397 for (unsigned i = 0; i < n; ++i)
12398 vals[i] = VECTOR_CST_ELT (arg0, idx + i);
12399 return build_vector (type, vals);
12400 }
12401
12402 /* Constructor elements can be subvectors. */
12403 unsigned HOST_WIDE_INT k = 1;
12404 if (CONSTRUCTOR_NELTS (arg0) != 0)
12405 {
12406 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (arg0, 0)->value);
12407 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
12408 k = TYPE_VECTOR_SUBPARTS (cons_elem);
12409 }
12410
12411 /* We keep an exact subset of the constructor elements. */
12412 if ((idx % k) == 0 && (n % k) == 0)
12413 {
12414 if (CONSTRUCTOR_NELTS (arg0) == 0)
12415 return build_constructor (type, NULL);
12416 idx /= k;
12417 n /= k;
12418 if (n == 1)
12419 {
12420 if (idx < CONSTRUCTOR_NELTS (arg0))
12421 return CONSTRUCTOR_ELT (arg0, idx)->value;
12422 return build_zero_cst (type);
12423 }
12424
12425 vec<constructor_elt, va_gc> *vals;
12426 vec_alloc (vals, n);
12427 for (unsigned i = 0;
12428 i < n && idx + i < CONSTRUCTOR_NELTS (arg0);
12429 ++i)
12430 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
12431 CONSTRUCTOR_ELT
12432 (arg0, idx + i)->value);
12433 return build_constructor (type, vals);
12434 }
12435 /* The bitfield references a single constructor element. */
12436 else if (idx + n <= (idx / k + 1) * k)
12437 {
12438 if (CONSTRUCTOR_NELTS (arg0) <= idx / k)
12439 return build_zero_cst (type);
12440 else if (n == k)
12441 return CONSTRUCTOR_ELT (arg0, idx / k)->value;
12442 else
12443 return fold_build3_loc (loc, code, type,
12444 CONSTRUCTOR_ELT (arg0, idx / k)->value, op1,
12445 build_int_cst (TREE_TYPE (op2), (idx % k) * width));
12446 }
12447 }
12448 }
12449
12450 /* A bit-field-ref that referenced the full argument can be stripped. */
12451 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
12452 && TYPE_PRECISION (TREE_TYPE (arg0)) == tree_to_uhwi (arg1)
12453 && integer_zerop (op2))
12454 return fold_convert_loc (loc, type, arg0);
12455
12456 /* On constants we can use native encode/interpret to constant
12457 fold (nearly) all BIT_FIELD_REFs. */
12458 if (CONSTANT_CLASS_P (arg0)
12459 && can_native_interpret_type_p (type)
12460 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (arg0)))
12461 /* This limitation should not be necessary, we just need to
12462 round this up to mode size. */
12463 && tree_to_uhwi (op1) % BITS_PER_UNIT == 0
12464 /* Need bit-shifting of the buffer to relax the following. */
12465 && tree_to_uhwi (op2) % BITS_PER_UNIT == 0)
12466 {
12467 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
12468 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
12469 unsigned HOST_WIDE_INT clen;
12470 clen = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (arg0)));
12471 /* ??? We cannot tell native_encode_expr to start at
12472 some random byte only. So limit us to a reasonable amount
12473 of work. */
12474 if (clen <= 4096)
12475 {
12476 unsigned char *b = XALLOCAVEC (unsigned char, clen);
12477 unsigned HOST_WIDE_INT len = native_encode_expr (arg0, b, clen);
12478 if (len > 0
12479 && len * BITS_PER_UNIT >= bitpos + bitsize)
12480 {
12481 tree v = native_interpret_expr (type,
12482 b + bitpos / BITS_PER_UNIT,
12483 bitsize / BITS_PER_UNIT);
12484 if (v)
12485 return v;
12486 }
12487 }
12488 }
12489
12490 return NULL_TREE;
12491
12492 case FMA_EXPR:
12493 /* For integers we can decompose the FMA if possible. */
12494 if (TREE_CODE (arg0) == INTEGER_CST
12495 && TREE_CODE (arg1) == INTEGER_CST)
12496 return fold_build2_loc (loc, PLUS_EXPR, type,
12497 const_binop (MULT_EXPR, arg0, arg1), arg2);
12498 if (integer_zerop (arg2))
12499 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
12500
12501 return fold_fma (loc, type, arg0, arg1, arg2);
12502
12503 case VEC_PERM_EXPR:
12504 if (TREE_CODE (arg2) == VECTOR_CST)
12505 {
12506 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i, mask, mask2;
12507 unsigned char *sel = XALLOCAVEC (unsigned char, 2 * nelts);
12508 unsigned char *sel2 = sel + nelts;
12509 bool need_mask_canon = false;
12510 bool need_mask_canon2 = false;
12511 bool all_in_vec0 = true;
12512 bool all_in_vec1 = true;
12513 bool maybe_identity = true;
12514 bool single_arg = (op0 == op1);
12515 bool changed = false;
12516
12517 mask2 = 2 * nelts - 1;
12518 mask = single_arg ? (nelts - 1) : mask2;
12519 gcc_assert (nelts == VECTOR_CST_NELTS (arg2));
12520 for (i = 0; i < nelts; i++)
12521 {
12522 tree val = VECTOR_CST_ELT (arg2, i);
12523 if (TREE_CODE (val) != INTEGER_CST)
12524 return NULL_TREE;
12525
12526 /* Make sure that the perm value is in an acceptable
12527 range. */
12528 wide_int t = val;
12529 need_mask_canon |= wi::gtu_p (t, mask);
12530 need_mask_canon2 |= wi::gtu_p (t, mask2);
12531 sel[i] = t.to_uhwi () & mask;
12532 sel2[i] = t.to_uhwi () & mask2;
12533
12534 if (sel[i] < nelts)
12535 all_in_vec1 = false;
12536 else
12537 all_in_vec0 = false;
12538
12539 if ((sel[i] & (nelts-1)) != i)
12540 maybe_identity = false;
12541 }
12542
12543 if (maybe_identity)
12544 {
12545 if (all_in_vec0)
12546 return op0;
12547 if (all_in_vec1)
12548 return op1;
12549 }
12550
12551 if (all_in_vec0)
12552 op1 = op0;
12553 else if (all_in_vec1)
12554 {
12555 op0 = op1;
12556 for (i = 0; i < nelts; i++)
12557 sel[i] -= nelts;
12558 need_mask_canon = true;
12559 }
12560
12561 if ((TREE_CODE (op0) == VECTOR_CST
12562 || TREE_CODE (op0) == CONSTRUCTOR)
12563 && (TREE_CODE (op1) == VECTOR_CST
12564 || TREE_CODE (op1) == CONSTRUCTOR))
12565 {
12566 tree t = fold_vec_perm (type, op0, op1, sel);
12567 if (t != NULL_TREE)
12568 return t;
12569 }
12570
12571 if (op0 == op1 && !single_arg)
12572 changed = true;
12573
12574 /* Some targets are deficient and fail to expand a single
12575 argument permutation while still allowing an equivalent
12576 2-argument version. */
12577 if (need_mask_canon && arg2 == op2
12578 && !can_vec_perm_p (TYPE_MODE (type), false, sel)
12579 && can_vec_perm_p (TYPE_MODE (type), false, sel2))
12580 {
12581 need_mask_canon = need_mask_canon2;
12582 sel = sel2;
12583 }
12584
12585 if (need_mask_canon && arg2 == op2)
12586 {
12587 tree *tsel = XALLOCAVEC (tree, nelts);
12588 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
12589 for (i = 0; i < nelts; i++)
12590 tsel[i] = build_int_cst (eltype, sel[i]);
12591 op2 = build_vector (TREE_TYPE (arg2), tsel);
12592 changed = true;
12593 }
12594
12595 if (changed)
12596 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
12597 }
12598 return NULL_TREE;
12599
12600 default:
12601 return NULL_TREE;
12602 } /* switch (code) */
12603 }
12604
12605 /* Perform constant folding and related simplification of EXPR.
12606 The related simplifications include x*1 => x, x*0 => 0, etc.,
12607 and application of the associative law.
12608 NOP_EXPR conversions may be removed freely (as long as we
12609 are careful not to change the type of the overall expression).
12610 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
12611 but we can constant-fold them if they have constant operands. */
12612
12613 #ifdef ENABLE_FOLD_CHECKING
12614 # define fold(x) fold_1 (x)
12615 static tree fold_1 (tree);
12616 static
12617 #endif
12618 tree
12619 fold (tree expr)
12620 {
12621 const tree t = expr;
12622 enum tree_code code = TREE_CODE (t);
12623 enum tree_code_class kind = TREE_CODE_CLASS (code);
12624 tree tem;
12625 location_t loc = EXPR_LOCATION (expr);
12626
12627 /* Return right away if a constant. */
12628 if (kind == tcc_constant)
12629 return t;
12630
12631 /* CALL_EXPR-like objects with variable numbers of operands are
12632 treated specially. */
12633 if (kind == tcc_vl_exp)
12634 {
12635 if (code == CALL_EXPR)
12636 {
12637 tem = fold_call_expr (loc, expr, false);
12638 return tem ? tem : expr;
12639 }
12640 return expr;
12641 }
12642
12643 if (IS_EXPR_CODE_CLASS (kind))
12644 {
12645 tree type = TREE_TYPE (t);
12646 tree op0, op1, op2;
12647
12648 switch (TREE_CODE_LENGTH (code))
12649 {
12650 case 1:
12651 op0 = TREE_OPERAND (t, 0);
12652 tem = fold_unary_loc (loc, code, type, op0);
12653 return tem ? tem : expr;
12654 case 2:
12655 op0 = TREE_OPERAND (t, 0);
12656 op1 = TREE_OPERAND (t, 1);
12657 tem = fold_binary_loc (loc, code, type, op0, op1);
12658 return tem ? tem : expr;
12659 case 3:
12660 op0 = TREE_OPERAND (t, 0);
12661 op1 = TREE_OPERAND (t, 1);
12662 op2 = TREE_OPERAND (t, 2);
12663 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12664 return tem ? tem : expr;
12665 default:
12666 break;
12667 }
12668 }
12669
12670 switch (code)
12671 {
12672 case ARRAY_REF:
12673 {
12674 tree op0 = TREE_OPERAND (t, 0);
12675 tree op1 = TREE_OPERAND (t, 1);
12676
12677 if (TREE_CODE (op1) == INTEGER_CST
12678 && TREE_CODE (op0) == CONSTRUCTOR
12679 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
12680 {
12681 vec<constructor_elt, va_gc> *elts = CONSTRUCTOR_ELTS (op0);
12682 unsigned HOST_WIDE_INT end = vec_safe_length (elts);
12683 unsigned HOST_WIDE_INT begin = 0;
12684
12685 /* Find a matching index by means of a binary search. */
12686 while (begin != end)
12687 {
12688 unsigned HOST_WIDE_INT middle = (begin + end) / 2;
12689 tree index = (*elts)[middle].index;
12690
12691 if (TREE_CODE (index) == INTEGER_CST
12692 && tree_int_cst_lt (index, op1))
12693 begin = middle + 1;
12694 else if (TREE_CODE (index) == INTEGER_CST
12695 && tree_int_cst_lt (op1, index))
12696 end = middle;
12697 else if (TREE_CODE (index) == RANGE_EXPR
12698 && tree_int_cst_lt (TREE_OPERAND (index, 1), op1))
12699 begin = middle + 1;
12700 else if (TREE_CODE (index) == RANGE_EXPR
12701 && tree_int_cst_lt (op1, TREE_OPERAND (index, 0)))
12702 end = middle;
12703 else
12704 return (*elts)[middle].value;
12705 }
12706 }
12707
12708 return t;
12709 }
12710
12711 /* Return a VECTOR_CST if possible. */
12712 case CONSTRUCTOR:
12713 {
12714 tree type = TREE_TYPE (t);
12715 if (TREE_CODE (type) != VECTOR_TYPE)
12716 return t;
12717
12718 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
12719 unsigned HOST_WIDE_INT idx, pos = 0;
12720 tree value;
12721
12722 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), idx, value)
12723 {
12724 if (!CONSTANT_CLASS_P (value))
12725 return t;
12726 if (TREE_CODE (value) == VECTOR_CST)
12727 {
12728 for (unsigned i = 0; i < VECTOR_CST_NELTS (value); ++i)
12729 vec[pos++] = VECTOR_CST_ELT (value, i);
12730 }
12731 else
12732 vec[pos++] = value;
12733 }
12734 for (; pos < TYPE_VECTOR_SUBPARTS (type); ++pos)
12735 vec[pos] = build_zero_cst (TREE_TYPE (type));
12736
12737 return build_vector (type, vec);
12738 }
12739
12740 case CONST_DECL:
12741 return fold (DECL_INITIAL (t));
12742
12743 default:
12744 return t;
12745 } /* switch (code) */
12746 }
12747
12748 #ifdef ENABLE_FOLD_CHECKING
12749 #undef fold
12750
12751 static void fold_checksum_tree (const_tree, struct md5_ctx *,
12752 hash_table<nofree_ptr_hash<const tree_node> > *);
12753 static void fold_check_failed (const_tree, const_tree);
12754 void print_fold_checksum (const_tree);
12755
12756 /* When --enable-checking=fold, compute a digest of expr before
12757 and after actual fold call to see if fold did not accidentally
12758 change original expr. */
12759
12760 tree
12761 fold (tree expr)
12762 {
12763 tree ret;
12764 struct md5_ctx ctx;
12765 unsigned char checksum_before[16], checksum_after[16];
12766 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12767
12768 md5_init_ctx (&ctx);
12769 fold_checksum_tree (expr, &ctx, &ht);
12770 md5_finish_ctx (&ctx, checksum_before);
12771 ht.empty ();
12772
12773 ret = fold_1 (expr);
12774
12775 md5_init_ctx (&ctx);
12776 fold_checksum_tree (expr, &ctx, &ht);
12777 md5_finish_ctx (&ctx, checksum_after);
12778
12779 if (memcmp (checksum_before, checksum_after, 16))
12780 fold_check_failed (expr, ret);
12781
12782 return ret;
12783 }
12784
12785 void
12786 print_fold_checksum (const_tree expr)
12787 {
12788 struct md5_ctx ctx;
12789 unsigned char checksum[16], cnt;
12790 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12791
12792 md5_init_ctx (&ctx);
12793 fold_checksum_tree (expr, &ctx, &ht);
12794 md5_finish_ctx (&ctx, checksum);
12795 for (cnt = 0; cnt < 16; ++cnt)
12796 fprintf (stderr, "%02x", checksum[cnt]);
12797 putc ('\n', stderr);
12798 }
12799
12800 static void
12801 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
12802 {
12803 internal_error ("fold check: original tree changed by fold");
12804 }
12805
12806 static void
12807 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
12808 hash_table<nofree_ptr_hash <const tree_node> > *ht)
12809 {
12810 const tree_node **slot;
12811 enum tree_code code;
12812 union tree_node buf;
12813 int i, len;
12814
12815 recursive_label:
12816 if (expr == NULL)
12817 return;
12818 slot = ht->find_slot (expr, INSERT);
12819 if (*slot != NULL)
12820 return;
12821 *slot = expr;
12822 code = TREE_CODE (expr);
12823 if (TREE_CODE_CLASS (code) == tcc_declaration
12824 && HAS_DECL_ASSEMBLER_NAME_P (expr))
12825 {
12826 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12827 memcpy ((char *) &buf, expr, tree_size (expr));
12828 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
12829 buf.decl_with_vis.symtab_node = NULL;
12830 expr = (tree) &buf;
12831 }
12832 else if (TREE_CODE_CLASS (code) == tcc_type
12833 && (TYPE_POINTER_TO (expr)
12834 || TYPE_REFERENCE_TO (expr)
12835 || TYPE_CACHED_VALUES_P (expr)
12836 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
12837 || TYPE_NEXT_VARIANT (expr)))
12838 {
12839 /* Allow these fields to be modified. */
12840 tree tmp;
12841 memcpy ((char *) &buf, expr, tree_size (expr));
12842 expr = tmp = (tree) &buf;
12843 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
12844 TYPE_POINTER_TO (tmp) = NULL;
12845 TYPE_REFERENCE_TO (tmp) = NULL;
12846 TYPE_NEXT_VARIANT (tmp) = NULL;
12847 if (TYPE_CACHED_VALUES_P (tmp))
12848 {
12849 TYPE_CACHED_VALUES_P (tmp) = 0;
12850 TYPE_CACHED_VALUES (tmp) = NULL;
12851 }
12852 }
12853 md5_process_bytes (expr, tree_size (expr), ctx);
12854 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
12855 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
12856 if (TREE_CODE_CLASS (code) != tcc_type
12857 && TREE_CODE_CLASS (code) != tcc_declaration
12858 && code != TREE_LIST
12859 && code != SSA_NAME
12860 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
12861 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
12862 switch (TREE_CODE_CLASS (code))
12863 {
12864 case tcc_constant:
12865 switch (code)
12866 {
12867 case STRING_CST:
12868 md5_process_bytes (TREE_STRING_POINTER (expr),
12869 TREE_STRING_LENGTH (expr), ctx);
12870 break;
12871 case COMPLEX_CST:
12872 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12873 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12874 break;
12875 case VECTOR_CST:
12876 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
12877 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
12878 break;
12879 default:
12880 break;
12881 }
12882 break;
12883 case tcc_exceptional:
12884 switch (code)
12885 {
12886 case TREE_LIST:
12887 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12888 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12889 expr = TREE_CHAIN (expr);
12890 goto recursive_label;
12891 break;
12892 case TREE_VEC:
12893 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12894 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12895 break;
12896 default:
12897 break;
12898 }
12899 break;
12900 case tcc_expression:
12901 case tcc_reference:
12902 case tcc_comparison:
12903 case tcc_unary:
12904 case tcc_binary:
12905 case tcc_statement:
12906 case tcc_vl_exp:
12907 len = TREE_OPERAND_LENGTH (expr);
12908 for (i = 0; i < len; ++i)
12909 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12910 break;
12911 case tcc_declaration:
12912 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12913 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12914 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12915 {
12916 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12917 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12918 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12919 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12920 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12921 }
12922
12923 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12924 {
12925 if (TREE_CODE (expr) == FUNCTION_DECL)
12926 {
12927 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12928 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12929 }
12930 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12931 }
12932 break;
12933 case tcc_type:
12934 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12935 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12936 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12937 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12938 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12939 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12940 if (INTEGRAL_TYPE_P (expr)
12941 || SCALAR_FLOAT_TYPE_P (expr))
12942 {
12943 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12944 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12945 }
12946 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12947 if (TREE_CODE (expr) == RECORD_TYPE
12948 || TREE_CODE (expr) == UNION_TYPE
12949 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12950 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12951 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12952 break;
12953 default:
12954 break;
12955 }
12956 }
12957
12958 /* Helper function for outputting the checksum of a tree T. When
12959 debugging with gdb, you can "define mynext" to be "next" followed
12960 by "call debug_fold_checksum (op0)", then just trace down till the
12961 outputs differ. */
12962
12963 DEBUG_FUNCTION void
12964 debug_fold_checksum (const_tree t)
12965 {
12966 int i;
12967 unsigned char checksum[16];
12968 struct md5_ctx ctx;
12969 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12970
12971 md5_init_ctx (&ctx);
12972 fold_checksum_tree (t, &ctx, &ht);
12973 md5_finish_ctx (&ctx, checksum);
12974 ht.empty ();
12975
12976 for (i = 0; i < 16; i++)
12977 fprintf (stderr, "%d ", checksum[i]);
12978
12979 fprintf (stderr, "\n");
12980 }
12981
12982 #endif
12983
12984 /* Fold a unary tree expression with code CODE of type TYPE with an
12985 operand OP0. LOC is the location of the resulting expression.
12986 Return a folded expression if successful. Otherwise, return a tree
12987 expression with code CODE of type TYPE with an operand OP0. */
12988
12989 tree
12990 fold_build1_stat_loc (location_t loc,
12991 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12992 {
12993 tree tem;
12994 #ifdef ENABLE_FOLD_CHECKING
12995 unsigned char checksum_before[16], checksum_after[16];
12996 struct md5_ctx ctx;
12997 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12998
12999 md5_init_ctx (&ctx);
13000 fold_checksum_tree (op0, &ctx, &ht);
13001 md5_finish_ctx (&ctx, checksum_before);
13002 ht.empty ();
13003 #endif
13004
13005 tem = fold_unary_loc (loc, code, type, op0);
13006 if (!tem)
13007 tem = build1_stat_loc (loc, code, type, op0 PASS_MEM_STAT);
13008
13009 #ifdef ENABLE_FOLD_CHECKING
13010 md5_init_ctx (&ctx);
13011 fold_checksum_tree (op0, &ctx, &ht);
13012 md5_finish_ctx (&ctx, checksum_after);
13013
13014 if (memcmp (checksum_before, checksum_after, 16))
13015 fold_check_failed (op0, tem);
13016 #endif
13017 return tem;
13018 }
13019
13020 /* Fold a binary tree expression with code CODE of type TYPE with
13021 operands OP0 and OP1. LOC is the location of the resulting
13022 expression. Return a folded expression if successful. Otherwise,
13023 return a tree expression with code CODE of type TYPE with operands
13024 OP0 and OP1. */
13025
13026 tree
13027 fold_build2_stat_loc (location_t loc,
13028 enum tree_code code, tree type, tree op0, tree op1
13029 MEM_STAT_DECL)
13030 {
13031 tree tem;
13032 #ifdef ENABLE_FOLD_CHECKING
13033 unsigned char checksum_before_op0[16],
13034 checksum_before_op1[16],
13035 checksum_after_op0[16],
13036 checksum_after_op1[16];
13037 struct md5_ctx ctx;
13038 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13039
13040 md5_init_ctx (&ctx);
13041 fold_checksum_tree (op0, &ctx, &ht);
13042 md5_finish_ctx (&ctx, checksum_before_op0);
13043 ht.empty ();
13044
13045 md5_init_ctx (&ctx);
13046 fold_checksum_tree (op1, &ctx, &ht);
13047 md5_finish_ctx (&ctx, checksum_before_op1);
13048 ht.empty ();
13049 #endif
13050
13051 tem = fold_binary_loc (loc, code, type, op0, op1);
13052 if (!tem)
13053 tem = build2_stat_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
13054
13055 #ifdef ENABLE_FOLD_CHECKING
13056 md5_init_ctx (&ctx);
13057 fold_checksum_tree (op0, &ctx, &ht);
13058 md5_finish_ctx (&ctx, checksum_after_op0);
13059 ht.empty ();
13060
13061 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
13062 fold_check_failed (op0, tem);
13063
13064 md5_init_ctx (&ctx);
13065 fold_checksum_tree (op1, &ctx, &ht);
13066 md5_finish_ctx (&ctx, checksum_after_op1);
13067
13068 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
13069 fold_check_failed (op1, tem);
13070 #endif
13071 return tem;
13072 }
13073
13074 /* Fold a ternary tree expression with code CODE of type TYPE with
13075 operands OP0, OP1, and OP2. Return a folded expression if
13076 successful. Otherwise, return a tree expression with code CODE of
13077 type TYPE with operands OP0, OP1, and OP2. */
13078
13079 tree
13080 fold_build3_stat_loc (location_t loc, enum tree_code code, tree type,
13081 tree op0, tree op1, tree op2 MEM_STAT_DECL)
13082 {
13083 tree tem;
13084 #ifdef ENABLE_FOLD_CHECKING
13085 unsigned char checksum_before_op0[16],
13086 checksum_before_op1[16],
13087 checksum_before_op2[16],
13088 checksum_after_op0[16],
13089 checksum_after_op1[16],
13090 checksum_after_op2[16];
13091 struct md5_ctx ctx;
13092 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13093
13094 md5_init_ctx (&ctx);
13095 fold_checksum_tree (op0, &ctx, &ht);
13096 md5_finish_ctx (&ctx, checksum_before_op0);
13097 ht.empty ();
13098
13099 md5_init_ctx (&ctx);
13100 fold_checksum_tree (op1, &ctx, &ht);
13101 md5_finish_ctx (&ctx, checksum_before_op1);
13102 ht.empty ();
13103
13104 md5_init_ctx (&ctx);
13105 fold_checksum_tree (op2, &ctx, &ht);
13106 md5_finish_ctx (&ctx, checksum_before_op2);
13107 ht.empty ();
13108 #endif
13109
13110 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
13111 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
13112 if (!tem)
13113 tem = build3_stat_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
13114
13115 #ifdef ENABLE_FOLD_CHECKING
13116 md5_init_ctx (&ctx);
13117 fold_checksum_tree (op0, &ctx, &ht);
13118 md5_finish_ctx (&ctx, checksum_after_op0);
13119 ht.empty ();
13120
13121 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
13122 fold_check_failed (op0, tem);
13123
13124 md5_init_ctx (&ctx);
13125 fold_checksum_tree (op1, &ctx, &ht);
13126 md5_finish_ctx (&ctx, checksum_after_op1);
13127 ht.empty ();
13128
13129 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
13130 fold_check_failed (op1, tem);
13131
13132 md5_init_ctx (&ctx);
13133 fold_checksum_tree (op2, &ctx, &ht);
13134 md5_finish_ctx (&ctx, checksum_after_op2);
13135
13136 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
13137 fold_check_failed (op2, tem);
13138 #endif
13139 return tem;
13140 }
13141
13142 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
13143 arguments in ARGARRAY, and a null static chain.
13144 Return a folded expression if successful. Otherwise, return a CALL_EXPR
13145 of type TYPE from the given operands as constructed by build_call_array. */
13146
13147 tree
13148 fold_build_call_array_loc (location_t loc, tree type, tree fn,
13149 int nargs, tree *argarray)
13150 {
13151 tree tem;
13152 #ifdef ENABLE_FOLD_CHECKING
13153 unsigned char checksum_before_fn[16],
13154 checksum_before_arglist[16],
13155 checksum_after_fn[16],
13156 checksum_after_arglist[16];
13157 struct md5_ctx ctx;
13158 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13159 int i;
13160
13161 md5_init_ctx (&ctx);
13162 fold_checksum_tree (fn, &ctx, &ht);
13163 md5_finish_ctx (&ctx, checksum_before_fn);
13164 ht.empty ();
13165
13166 md5_init_ctx (&ctx);
13167 for (i = 0; i < nargs; i++)
13168 fold_checksum_tree (argarray[i], &ctx, &ht);
13169 md5_finish_ctx (&ctx, checksum_before_arglist);
13170 ht.empty ();
13171 #endif
13172
13173 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
13174 if (!tem)
13175 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
13176
13177 #ifdef ENABLE_FOLD_CHECKING
13178 md5_init_ctx (&ctx);
13179 fold_checksum_tree (fn, &ctx, &ht);
13180 md5_finish_ctx (&ctx, checksum_after_fn);
13181 ht.empty ();
13182
13183 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
13184 fold_check_failed (fn, tem);
13185
13186 md5_init_ctx (&ctx);
13187 for (i = 0; i < nargs; i++)
13188 fold_checksum_tree (argarray[i], &ctx, &ht);
13189 md5_finish_ctx (&ctx, checksum_after_arglist);
13190
13191 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
13192 fold_check_failed (NULL_TREE, tem);
13193 #endif
13194 return tem;
13195 }
13196
13197 /* Perform constant folding and related simplification of initializer
13198 expression EXPR. These behave identically to "fold_buildN" but ignore
13199 potential run-time traps and exceptions that fold must preserve. */
13200
13201 #define START_FOLD_INIT \
13202 int saved_signaling_nans = flag_signaling_nans;\
13203 int saved_trapping_math = flag_trapping_math;\
13204 int saved_rounding_math = flag_rounding_math;\
13205 int saved_trapv = flag_trapv;\
13206 int saved_folding_initializer = folding_initializer;\
13207 flag_signaling_nans = 0;\
13208 flag_trapping_math = 0;\
13209 flag_rounding_math = 0;\
13210 flag_trapv = 0;\
13211 folding_initializer = 1;
13212
13213 #define END_FOLD_INIT \
13214 flag_signaling_nans = saved_signaling_nans;\
13215 flag_trapping_math = saved_trapping_math;\
13216 flag_rounding_math = saved_rounding_math;\
13217 flag_trapv = saved_trapv;\
13218 folding_initializer = saved_folding_initializer;
13219
13220 tree
13221 fold_build1_initializer_loc (location_t loc, enum tree_code code,
13222 tree type, tree op)
13223 {
13224 tree result;
13225 START_FOLD_INIT;
13226
13227 result = fold_build1_loc (loc, code, type, op);
13228
13229 END_FOLD_INIT;
13230 return result;
13231 }
13232
13233 tree
13234 fold_build2_initializer_loc (location_t loc, enum tree_code code,
13235 tree type, tree op0, tree op1)
13236 {
13237 tree result;
13238 START_FOLD_INIT;
13239
13240 result = fold_build2_loc (loc, code, type, op0, op1);
13241
13242 END_FOLD_INIT;
13243 return result;
13244 }
13245
13246 tree
13247 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
13248 int nargs, tree *argarray)
13249 {
13250 tree result;
13251 START_FOLD_INIT;
13252
13253 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
13254
13255 END_FOLD_INIT;
13256 return result;
13257 }
13258
13259 #undef START_FOLD_INIT
13260 #undef END_FOLD_INIT
13261
13262 /* Determine if first argument is a multiple of second argument. Return 0 if
13263 it is not, or we cannot easily determined it to be.
13264
13265 An example of the sort of thing we care about (at this point; this routine
13266 could surely be made more general, and expanded to do what the *_DIV_EXPR's
13267 fold cases do now) is discovering that
13268
13269 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13270
13271 is a multiple of
13272
13273 SAVE_EXPR (J * 8)
13274
13275 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
13276
13277 This code also handles discovering that
13278
13279 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13280
13281 is a multiple of 8 so we don't have to worry about dealing with a
13282 possible remainder.
13283
13284 Note that we *look* inside a SAVE_EXPR only to determine how it was
13285 calculated; it is not safe for fold to do much of anything else with the
13286 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
13287 at run time. For example, the latter example above *cannot* be implemented
13288 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
13289 evaluation time of the original SAVE_EXPR is not necessarily the same at
13290 the time the new expression is evaluated. The only optimization of this
13291 sort that would be valid is changing
13292
13293 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
13294
13295 divided by 8 to
13296
13297 SAVE_EXPR (I) * SAVE_EXPR (J)
13298
13299 (where the same SAVE_EXPR (J) is used in the original and the
13300 transformed version). */
13301
13302 int
13303 multiple_of_p (tree type, const_tree top, const_tree bottom)
13304 {
13305 if (operand_equal_p (top, bottom, 0))
13306 return 1;
13307
13308 if (TREE_CODE (type) != INTEGER_TYPE)
13309 return 0;
13310
13311 switch (TREE_CODE (top))
13312 {
13313 case BIT_AND_EXPR:
13314 /* Bitwise and provides a power of two multiple. If the mask is
13315 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
13316 if (!integer_pow2p (bottom))
13317 return 0;
13318 /* FALLTHRU */
13319
13320 case MULT_EXPR:
13321 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
13322 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
13323
13324 case PLUS_EXPR:
13325 case MINUS_EXPR:
13326 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
13327 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
13328
13329 case LSHIFT_EXPR:
13330 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
13331 {
13332 tree op1, t1;
13333
13334 op1 = TREE_OPERAND (top, 1);
13335 /* const_binop may not detect overflow correctly,
13336 so check for it explicitly here. */
13337 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
13338 && 0 != (t1 = fold_convert (type,
13339 const_binop (LSHIFT_EXPR,
13340 size_one_node,
13341 op1)))
13342 && !TREE_OVERFLOW (t1))
13343 return multiple_of_p (type, t1, bottom);
13344 }
13345 return 0;
13346
13347 case NOP_EXPR:
13348 /* Can't handle conversions from non-integral or wider integral type. */
13349 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
13350 || (TYPE_PRECISION (type)
13351 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
13352 return 0;
13353
13354 /* .. fall through ... */
13355
13356 case SAVE_EXPR:
13357 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
13358
13359 case COND_EXPR:
13360 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
13361 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
13362
13363 case INTEGER_CST:
13364 if (TREE_CODE (bottom) != INTEGER_CST
13365 || integer_zerop (bottom)
13366 || (TYPE_UNSIGNED (type)
13367 && (tree_int_cst_sgn (top) < 0
13368 || tree_int_cst_sgn (bottom) < 0)))
13369 return 0;
13370 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
13371 SIGNED);
13372
13373 default:
13374 return 0;
13375 }
13376 }
13377
13378 /* Return true if CODE or TYPE is known to be non-negative. */
13379
13380 static bool
13381 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
13382 {
13383 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
13384 && truth_value_p (code))
13385 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
13386 have a signed:1 type (where the value is -1 and 0). */
13387 return true;
13388 return false;
13389 }
13390
13391 /* Return true if (CODE OP0) is known to be non-negative. If the return
13392 value is based on the assumption that signed overflow is undefined,
13393 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13394 *STRICT_OVERFLOW_P. */
13395
13396 bool
13397 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
13398 bool *strict_overflow_p)
13399 {
13400 if (TYPE_UNSIGNED (type))
13401 return true;
13402
13403 switch (code)
13404 {
13405 case ABS_EXPR:
13406 /* We can't return 1 if flag_wrapv is set because
13407 ABS_EXPR<INT_MIN> = INT_MIN. */
13408 if (!ANY_INTEGRAL_TYPE_P (type))
13409 return true;
13410 if (TYPE_OVERFLOW_UNDEFINED (type))
13411 {
13412 *strict_overflow_p = true;
13413 return true;
13414 }
13415 break;
13416
13417 case NON_LVALUE_EXPR:
13418 case FLOAT_EXPR:
13419 case FIX_TRUNC_EXPR:
13420 return tree_expr_nonnegative_warnv_p (op0,
13421 strict_overflow_p);
13422
13423 CASE_CONVERT:
13424 {
13425 tree inner_type = TREE_TYPE (op0);
13426 tree outer_type = type;
13427
13428 if (TREE_CODE (outer_type) == REAL_TYPE)
13429 {
13430 if (TREE_CODE (inner_type) == REAL_TYPE)
13431 return tree_expr_nonnegative_warnv_p (op0,
13432 strict_overflow_p);
13433 if (INTEGRAL_TYPE_P (inner_type))
13434 {
13435 if (TYPE_UNSIGNED (inner_type))
13436 return true;
13437 return tree_expr_nonnegative_warnv_p (op0,
13438 strict_overflow_p);
13439 }
13440 }
13441 else if (INTEGRAL_TYPE_P (outer_type))
13442 {
13443 if (TREE_CODE (inner_type) == REAL_TYPE)
13444 return tree_expr_nonnegative_warnv_p (op0,
13445 strict_overflow_p);
13446 if (INTEGRAL_TYPE_P (inner_type))
13447 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
13448 && TYPE_UNSIGNED (inner_type);
13449 }
13450 }
13451 break;
13452
13453 default:
13454 return tree_simple_nonnegative_warnv_p (code, type);
13455 }
13456
13457 /* We don't know sign of `t', so be conservative and return false. */
13458 return false;
13459 }
13460
13461 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
13462 value is based on the assumption that signed overflow is undefined,
13463 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13464 *STRICT_OVERFLOW_P. */
13465
13466 bool
13467 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
13468 tree op1, bool *strict_overflow_p)
13469 {
13470 if (TYPE_UNSIGNED (type))
13471 return true;
13472
13473 switch (code)
13474 {
13475 case POINTER_PLUS_EXPR:
13476 case PLUS_EXPR:
13477 if (FLOAT_TYPE_P (type))
13478 return (tree_expr_nonnegative_warnv_p (op0,
13479 strict_overflow_p)
13480 && tree_expr_nonnegative_warnv_p (op1,
13481 strict_overflow_p));
13482
13483 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
13484 both unsigned and at least 2 bits shorter than the result. */
13485 if (TREE_CODE (type) == INTEGER_TYPE
13486 && TREE_CODE (op0) == NOP_EXPR
13487 && TREE_CODE (op1) == NOP_EXPR)
13488 {
13489 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
13490 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
13491 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
13492 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
13493 {
13494 unsigned int prec = MAX (TYPE_PRECISION (inner1),
13495 TYPE_PRECISION (inner2)) + 1;
13496 return prec < TYPE_PRECISION (type);
13497 }
13498 }
13499 break;
13500
13501 case MULT_EXPR:
13502 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
13503 {
13504 /* x * x is always non-negative for floating point x
13505 or without overflow. */
13506 if (operand_equal_p (op0, op1, 0)
13507 || (tree_expr_nonnegative_warnv_p (op0, strict_overflow_p)
13508 && tree_expr_nonnegative_warnv_p (op1, strict_overflow_p)))
13509 {
13510 if (ANY_INTEGRAL_TYPE_P (type)
13511 && TYPE_OVERFLOW_UNDEFINED (type))
13512 *strict_overflow_p = true;
13513 return true;
13514 }
13515 }
13516
13517 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
13518 both unsigned and their total bits is shorter than the result. */
13519 if (TREE_CODE (type) == INTEGER_TYPE
13520 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
13521 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
13522 {
13523 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
13524 ? TREE_TYPE (TREE_OPERAND (op0, 0))
13525 : TREE_TYPE (op0);
13526 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
13527 ? TREE_TYPE (TREE_OPERAND (op1, 0))
13528 : TREE_TYPE (op1);
13529
13530 bool unsigned0 = TYPE_UNSIGNED (inner0);
13531 bool unsigned1 = TYPE_UNSIGNED (inner1);
13532
13533 if (TREE_CODE (op0) == INTEGER_CST)
13534 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
13535
13536 if (TREE_CODE (op1) == INTEGER_CST)
13537 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
13538
13539 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
13540 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
13541 {
13542 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
13543 ? tree_int_cst_min_precision (op0, UNSIGNED)
13544 : TYPE_PRECISION (inner0);
13545
13546 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
13547 ? tree_int_cst_min_precision (op1, UNSIGNED)
13548 : TYPE_PRECISION (inner1);
13549
13550 return precision0 + precision1 < TYPE_PRECISION (type);
13551 }
13552 }
13553 return false;
13554
13555 case BIT_AND_EXPR:
13556 case MAX_EXPR:
13557 return (tree_expr_nonnegative_warnv_p (op0,
13558 strict_overflow_p)
13559 || tree_expr_nonnegative_warnv_p (op1,
13560 strict_overflow_p));
13561
13562 case BIT_IOR_EXPR:
13563 case BIT_XOR_EXPR:
13564 case MIN_EXPR:
13565 case RDIV_EXPR:
13566 case TRUNC_DIV_EXPR:
13567 case CEIL_DIV_EXPR:
13568 case FLOOR_DIV_EXPR:
13569 case ROUND_DIV_EXPR:
13570 return (tree_expr_nonnegative_warnv_p (op0,
13571 strict_overflow_p)
13572 && tree_expr_nonnegative_warnv_p (op1,
13573 strict_overflow_p));
13574
13575 case TRUNC_MOD_EXPR:
13576 case CEIL_MOD_EXPR:
13577 case FLOOR_MOD_EXPR:
13578 case ROUND_MOD_EXPR:
13579 return tree_expr_nonnegative_warnv_p (op0,
13580 strict_overflow_p);
13581 default:
13582 return tree_simple_nonnegative_warnv_p (code, type);
13583 }
13584
13585 /* We don't know sign of `t', so be conservative and return false. */
13586 return false;
13587 }
13588
13589 /* Return true if T is known to be non-negative. If the return
13590 value is based on the assumption that signed overflow is undefined,
13591 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13592 *STRICT_OVERFLOW_P. */
13593
13594 bool
13595 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
13596 {
13597 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13598 return true;
13599
13600 switch (TREE_CODE (t))
13601 {
13602 case INTEGER_CST:
13603 return tree_int_cst_sgn (t) >= 0;
13604
13605 case REAL_CST:
13606 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
13607
13608 case FIXED_CST:
13609 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
13610
13611 case COND_EXPR:
13612 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13613 strict_overflow_p)
13614 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
13615 strict_overflow_p));
13616 default:
13617 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
13618 TREE_TYPE (t));
13619 }
13620 /* We don't know sign of `t', so be conservative and return false. */
13621 return false;
13622 }
13623
13624 /* Return true if T is known to be non-negative. If the return
13625 value is based on the assumption that signed overflow is undefined,
13626 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13627 *STRICT_OVERFLOW_P. */
13628
13629 bool
13630 tree_call_nonnegative_warnv_p (tree type, tree fndecl,
13631 tree arg0, tree arg1, bool *strict_overflow_p)
13632 {
13633 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
13634 switch (DECL_FUNCTION_CODE (fndecl))
13635 {
13636 CASE_FLT_FN (BUILT_IN_ACOS):
13637 CASE_FLT_FN (BUILT_IN_ACOSH):
13638 CASE_FLT_FN (BUILT_IN_CABS):
13639 CASE_FLT_FN (BUILT_IN_COSH):
13640 CASE_FLT_FN (BUILT_IN_ERFC):
13641 CASE_FLT_FN (BUILT_IN_EXP):
13642 CASE_FLT_FN (BUILT_IN_EXP10):
13643 CASE_FLT_FN (BUILT_IN_EXP2):
13644 CASE_FLT_FN (BUILT_IN_FABS):
13645 CASE_FLT_FN (BUILT_IN_FDIM):
13646 CASE_FLT_FN (BUILT_IN_HYPOT):
13647 CASE_FLT_FN (BUILT_IN_POW10):
13648 CASE_INT_FN (BUILT_IN_FFS):
13649 CASE_INT_FN (BUILT_IN_PARITY):
13650 CASE_INT_FN (BUILT_IN_POPCOUNT):
13651 CASE_INT_FN (BUILT_IN_CLZ):
13652 CASE_INT_FN (BUILT_IN_CLRSB):
13653 case BUILT_IN_BSWAP32:
13654 case BUILT_IN_BSWAP64:
13655 /* Always true. */
13656 return true;
13657
13658 CASE_FLT_FN (BUILT_IN_SQRT):
13659 /* sqrt(-0.0) is -0.0. */
13660 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
13661 return true;
13662 return tree_expr_nonnegative_warnv_p (arg0,
13663 strict_overflow_p);
13664
13665 CASE_FLT_FN (BUILT_IN_ASINH):
13666 CASE_FLT_FN (BUILT_IN_ATAN):
13667 CASE_FLT_FN (BUILT_IN_ATANH):
13668 CASE_FLT_FN (BUILT_IN_CBRT):
13669 CASE_FLT_FN (BUILT_IN_CEIL):
13670 CASE_FLT_FN (BUILT_IN_ERF):
13671 CASE_FLT_FN (BUILT_IN_EXPM1):
13672 CASE_FLT_FN (BUILT_IN_FLOOR):
13673 CASE_FLT_FN (BUILT_IN_FMOD):
13674 CASE_FLT_FN (BUILT_IN_FREXP):
13675 CASE_FLT_FN (BUILT_IN_ICEIL):
13676 CASE_FLT_FN (BUILT_IN_IFLOOR):
13677 CASE_FLT_FN (BUILT_IN_IRINT):
13678 CASE_FLT_FN (BUILT_IN_IROUND):
13679 CASE_FLT_FN (BUILT_IN_LCEIL):
13680 CASE_FLT_FN (BUILT_IN_LDEXP):
13681 CASE_FLT_FN (BUILT_IN_LFLOOR):
13682 CASE_FLT_FN (BUILT_IN_LLCEIL):
13683 CASE_FLT_FN (BUILT_IN_LLFLOOR):
13684 CASE_FLT_FN (BUILT_IN_LLRINT):
13685 CASE_FLT_FN (BUILT_IN_LLROUND):
13686 CASE_FLT_FN (BUILT_IN_LRINT):
13687 CASE_FLT_FN (BUILT_IN_LROUND):
13688 CASE_FLT_FN (BUILT_IN_MODF):
13689 CASE_FLT_FN (BUILT_IN_NEARBYINT):
13690 CASE_FLT_FN (BUILT_IN_RINT):
13691 CASE_FLT_FN (BUILT_IN_ROUND):
13692 CASE_FLT_FN (BUILT_IN_SCALB):
13693 CASE_FLT_FN (BUILT_IN_SCALBLN):
13694 CASE_FLT_FN (BUILT_IN_SCALBN):
13695 CASE_FLT_FN (BUILT_IN_SIGNBIT):
13696 CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
13697 CASE_FLT_FN (BUILT_IN_SINH):
13698 CASE_FLT_FN (BUILT_IN_TANH):
13699 CASE_FLT_FN (BUILT_IN_TRUNC):
13700 /* True if the 1st argument is nonnegative. */
13701 return tree_expr_nonnegative_warnv_p (arg0,
13702 strict_overflow_p);
13703
13704 CASE_FLT_FN (BUILT_IN_FMAX):
13705 /* True if the 1st OR 2nd arguments are nonnegative. */
13706 return (tree_expr_nonnegative_warnv_p (arg0,
13707 strict_overflow_p)
13708 || (tree_expr_nonnegative_warnv_p (arg1,
13709 strict_overflow_p)));
13710
13711 CASE_FLT_FN (BUILT_IN_FMIN):
13712 /* True if the 1st AND 2nd arguments are nonnegative. */
13713 return (tree_expr_nonnegative_warnv_p (arg0,
13714 strict_overflow_p)
13715 && (tree_expr_nonnegative_warnv_p (arg1,
13716 strict_overflow_p)));
13717
13718 CASE_FLT_FN (BUILT_IN_COPYSIGN):
13719 /* True if the 2nd argument is nonnegative. */
13720 return tree_expr_nonnegative_warnv_p (arg1,
13721 strict_overflow_p);
13722
13723 CASE_FLT_FN (BUILT_IN_POWI):
13724 /* True if the 1st argument is nonnegative or the second
13725 argument is an even integer. */
13726 if (TREE_CODE (arg1) == INTEGER_CST
13727 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
13728 return true;
13729 return tree_expr_nonnegative_warnv_p (arg0,
13730 strict_overflow_p);
13731
13732 CASE_FLT_FN (BUILT_IN_POW):
13733 /* True if the 1st argument is nonnegative or the second
13734 argument is an even integer valued real. */
13735 if (TREE_CODE (arg1) == REAL_CST)
13736 {
13737 REAL_VALUE_TYPE c;
13738 HOST_WIDE_INT n;
13739
13740 c = TREE_REAL_CST (arg1);
13741 n = real_to_integer (&c);
13742 if ((n & 1) == 0)
13743 {
13744 REAL_VALUE_TYPE cint;
13745 real_from_integer (&cint, VOIDmode, n, SIGNED);
13746 if (real_identical (&c, &cint))
13747 return true;
13748 }
13749 }
13750 return tree_expr_nonnegative_warnv_p (arg0,
13751 strict_overflow_p);
13752
13753 default:
13754 break;
13755 }
13756 return tree_simple_nonnegative_warnv_p (CALL_EXPR,
13757 type);
13758 }
13759
13760 /* Return true if T is known to be non-negative. If the return
13761 value is based on the assumption that signed overflow is undefined,
13762 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13763 *STRICT_OVERFLOW_P. */
13764
13765 static bool
13766 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
13767 {
13768 enum tree_code code = TREE_CODE (t);
13769 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13770 return true;
13771
13772 switch (code)
13773 {
13774 case TARGET_EXPR:
13775 {
13776 tree temp = TARGET_EXPR_SLOT (t);
13777 t = TARGET_EXPR_INITIAL (t);
13778
13779 /* If the initializer is non-void, then it's a normal expression
13780 that will be assigned to the slot. */
13781 if (!VOID_TYPE_P (t))
13782 return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
13783
13784 /* Otherwise, the initializer sets the slot in some way. One common
13785 way is an assignment statement at the end of the initializer. */
13786 while (1)
13787 {
13788 if (TREE_CODE (t) == BIND_EXPR)
13789 t = expr_last (BIND_EXPR_BODY (t));
13790 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13791 || TREE_CODE (t) == TRY_CATCH_EXPR)
13792 t = expr_last (TREE_OPERAND (t, 0));
13793 else if (TREE_CODE (t) == STATEMENT_LIST)
13794 t = expr_last (t);
13795 else
13796 break;
13797 }
13798 if (TREE_CODE (t) == MODIFY_EXPR
13799 && TREE_OPERAND (t, 0) == temp)
13800 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13801 strict_overflow_p);
13802
13803 return false;
13804 }
13805
13806 case CALL_EXPR:
13807 {
13808 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
13809 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
13810
13811 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
13812 get_callee_fndecl (t),
13813 arg0,
13814 arg1,
13815 strict_overflow_p);
13816 }
13817 case COMPOUND_EXPR:
13818 case MODIFY_EXPR:
13819 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13820 strict_overflow_p);
13821 case BIND_EXPR:
13822 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
13823 strict_overflow_p);
13824 case SAVE_EXPR:
13825 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13826 strict_overflow_p);
13827
13828 default:
13829 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
13830 TREE_TYPE (t));
13831 }
13832
13833 /* We don't know sign of `t', so be conservative and return false. */
13834 return false;
13835 }
13836
13837 /* Return true if T is known to be non-negative. If the return
13838 value is based on the assumption that signed overflow is undefined,
13839 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13840 *STRICT_OVERFLOW_P. */
13841
13842 bool
13843 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
13844 {
13845 enum tree_code code;
13846 if (t == error_mark_node)
13847 return false;
13848
13849 code = TREE_CODE (t);
13850 switch (TREE_CODE_CLASS (code))
13851 {
13852 case tcc_binary:
13853 case tcc_comparison:
13854 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13855 TREE_TYPE (t),
13856 TREE_OPERAND (t, 0),
13857 TREE_OPERAND (t, 1),
13858 strict_overflow_p);
13859
13860 case tcc_unary:
13861 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13862 TREE_TYPE (t),
13863 TREE_OPERAND (t, 0),
13864 strict_overflow_p);
13865
13866 case tcc_constant:
13867 case tcc_declaration:
13868 case tcc_reference:
13869 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
13870
13871 default:
13872 break;
13873 }
13874
13875 switch (code)
13876 {
13877 case TRUTH_AND_EXPR:
13878 case TRUTH_OR_EXPR:
13879 case TRUTH_XOR_EXPR:
13880 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13881 TREE_TYPE (t),
13882 TREE_OPERAND (t, 0),
13883 TREE_OPERAND (t, 1),
13884 strict_overflow_p);
13885 case TRUTH_NOT_EXPR:
13886 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13887 TREE_TYPE (t),
13888 TREE_OPERAND (t, 0),
13889 strict_overflow_p);
13890
13891 case COND_EXPR:
13892 case CONSTRUCTOR:
13893 case OBJ_TYPE_REF:
13894 case ASSERT_EXPR:
13895 case ADDR_EXPR:
13896 case WITH_SIZE_EXPR:
13897 case SSA_NAME:
13898 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
13899
13900 default:
13901 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p);
13902 }
13903 }
13904
13905 /* Return true if `t' is known to be non-negative. Handle warnings
13906 about undefined signed overflow. */
13907
13908 bool
13909 tree_expr_nonnegative_p (tree t)
13910 {
13911 bool ret, strict_overflow_p;
13912
13913 strict_overflow_p = false;
13914 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13915 if (strict_overflow_p)
13916 fold_overflow_warning (("assuming signed overflow does not occur when "
13917 "determining that expression is always "
13918 "non-negative"),
13919 WARN_STRICT_OVERFLOW_MISC);
13920 return ret;
13921 }
13922
13923
13924 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13925 For floating point we further ensure that T is not denormal.
13926 Similar logic is present in nonzero_address in rtlanal.h.
13927
13928 If the return value is based on the assumption that signed overflow
13929 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13930 change *STRICT_OVERFLOW_P. */
13931
13932 bool
13933 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13934 bool *strict_overflow_p)
13935 {
13936 switch (code)
13937 {
13938 case ABS_EXPR:
13939 return tree_expr_nonzero_warnv_p (op0,
13940 strict_overflow_p);
13941
13942 case NOP_EXPR:
13943 {
13944 tree inner_type = TREE_TYPE (op0);
13945 tree outer_type = type;
13946
13947 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13948 && tree_expr_nonzero_warnv_p (op0,
13949 strict_overflow_p));
13950 }
13951 break;
13952
13953 case NON_LVALUE_EXPR:
13954 return tree_expr_nonzero_warnv_p (op0,
13955 strict_overflow_p);
13956
13957 default:
13958 break;
13959 }
13960
13961 return false;
13962 }
13963
13964 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13965 For floating point we further ensure that T is not denormal.
13966 Similar logic is present in nonzero_address in rtlanal.h.
13967
13968 If the return value is based on the assumption that signed overflow
13969 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13970 change *STRICT_OVERFLOW_P. */
13971
13972 bool
13973 tree_binary_nonzero_warnv_p (enum tree_code code,
13974 tree type,
13975 tree op0,
13976 tree op1, bool *strict_overflow_p)
13977 {
13978 bool sub_strict_overflow_p;
13979 switch (code)
13980 {
13981 case POINTER_PLUS_EXPR:
13982 case PLUS_EXPR:
13983 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13984 {
13985 /* With the presence of negative values it is hard
13986 to say something. */
13987 sub_strict_overflow_p = false;
13988 if (!tree_expr_nonnegative_warnv_p (op0,
13989 &sub_strict_overflow_p)
13990 || !tree_expr_nonnegative_warnv_p (op1,
13991 &sub_strict_overflow_p))
13992 return false;
13993 /* One of operands must be positive and the other non-negative. */
13994 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13995 overflows, on a twos-complement machine the sum of two
13996 nonnegative numbers can never be zero. */
13997 return (tree_expr_nonzero_warnv_p (op0,
13998 strict_overflow_p)
13999 || tree_expr_nonzero_warnv_p (op1,
14000 strict_overflow_p));
14001 }
14002 break;
14003
14004 case MULT_EXPR:
14005 if (TYPE_OVERFLOW_UNDEFINED (type))
14006 {
14007 if (tree_expr_nonzero_warnv_p (op0,
14008 strict_overflow_p)
14009 && tree_expr_nonzero_warnv_p (op1,
14010 strict_overflow_p))
14011 {
14012 *strict_overflow_p = true;
14013 return true;
14014 }
14015 }
14016 break;
14017
14018 case MIN_EXPR:
14019 sub_strict_overflow_p = false;
14020 if (tree_expr_nonzero_warnv_p (op0,
14021 &sub_strict_overflow_p)
14022 && tree_expr_nonzero_warnv_p (op1,
14023 &sub_strict_overflow_p))
14024 {
14025 if (sub_strict_overflow_p)
14026 *strict_overflow_p = true;
14027 }
14028 break;
14029
14030 case MAX_EXPR:
14031 sub_strict_overflow_p = false;
14032 if (tree_expr_nonzero_warnv_p (op0,
14033 &sub_strict_overflow_p))
14034 {
14035 if (sub_strict_overflow_p)
14036 *strict_overflow_p = true;
14037
14038 /* When both operands are nonzero, then MAX must be too. */
14039 if (tree_expr_nonzero_warnv_p (op1,
14040 strict_overflow_p))
14041 return true;
14042
14043 /* MAX where operand 0 is positive is positive. */
14044 return tree_expr_nonnegative_warnv_p (op0,
14045 strict_overflow_p);
14046 }
14047 /* MAX where operand 1 is positive is positive. */
14048 else if (tree_expr_nonzero_warnv_p (op1,
14049 &sub_strict_overflow_p)
14050 && tree_expr_nonnegative_warnv_p (op1,
14051 &sub_strict_overflow_p))
14052 {
14053 if (sub_strict_overflow_p)
14054 *strict_overflow_p = true;
14055 return true;
14056 }
14057 break;
14058
14059 case BIT_IOR_EXPR:
14060 return (tree_expr_nonzero_warnv_p (op1,
14061 strict_overflow_p)
14062 || tree_expr_nonzero_warnv_p (op0,
14063 strict_overflow_p));
14064
14065 default:
14066 break;
14067 }
14068
14069 return false;
14070 }
14071
14072 /* Return true when T is an address and is known to be nonzero.
14073 For floating point we further ensure that T is not denormal.
14074 Similar logic is present in nonzero_address in rtlanal.h.
14075
14076 If the return value is based on the assumption that signed overflow
14077 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14078 change *STRICT_OVERFLOW_P. */
14079
14080 bool
14081 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
14082 {
14083 bool sub_strict_overflow_p;
14084 switch (TREE_CODE (t))
14085 {
14086 case INTEGER_CST:
14087 return !integer_zerop (t);
14088
14089 case ADDR_EXPR:
14090 {
14091 tree base = TREE_OPERAND (t, 0);
14092
14093 if (!DECL_P (base))
14094 base = get_base_address (base);
14095
14096 if (!base)
14097 return false;
14098
14099 /* For objects in symbol table check if we know they are non-zero.
14100 Don't do anything for variables and functions before symtab is built;
14101 it is quite possible that they will be declared weak later. */
14102 if (DECL_P (base) && decl_in_symtab_p (base))
14103 {
14104 struct symtab_node *symbol;
14105
14106 symbol = symtab_node::get_create (base);
14107 if (symbol)
14108 return symbol->nonzero_address ();
14109 else
14110 return false;
14111 }
14112
14113 /* Function local objects are never NULL. */
14114 if (DECL_P (base)
14115 && (DECL_CONTEXT (base)
14116 && TREE_CODE (DECL_CONTEXT (base)) == FUNCTION_DECL
14117 && auto_var_in_fn_p (base, DECL_CONTEXT (base))))
14118 return true;
14119
14120 /* Constants are never weak. */
14121 if (CONSTANT_CLASS_P (base))
14122 return true;
14123
14124 return false;
14125 }
14126
14127 case COND_EXPR:
14128 sub_strict_overflow_p = false;
14129 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14130 &sub_strict_overflow_p)
14131 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
14132 &sub_strict_overflow_p))
14133 {
14134 if (sub_strict_overflow_p)
14135 *strict_overflow_p = true;
14136 return true;
14137 }
14138 break;
14139
14140 default:
14141 break;
14142 }
14143 return false;
14144 }
14145
14146 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
14147 attempt to fold the expression to a constant without modifying TYPE,
14148 OP0 or OP1.
14149
14150 If the expression could be simplified to a constant, then return
14151 the constant. If the expression would not be simplified to a
14152 constant, then return NULL_TREE. */
14153
14154 tree
14155 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
14156 {
14157 tree tem = fold_binary (code, type, op0, op1);
14158 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
14159 }
14160
14161 /* Given the components of a unary expression CODE, TYPE and OP0,
14162 attempt to fold the expression to a constant without modifying
14163 TYPE or OP0.
14164
14165 If the expression could be simplified to a constant, then return
14166 the constant. If the expression would not be simplified to a
14167 constant, then return NULL_TREE. */
14168
14169 tree
14170 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
14171 {
14172 tree tem = fold_unary (code, type, op0);
14173 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
14174 }
14175
14176 /* If EXP represents referencing an element in a constant string
14177 (either via pointer arithmetic or array indexing), return the
14178 tree representing the value accessed, otherwise return NULL. */
14179
14180 tree
14181 fold_read_from_constant_string (tree exp)
14182 {
14183 if ((TREE_CODE (exp) == INDIRECT_REF
14184 || TREE_CODE (exp) == ARRAY_REF)
14185 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
14186 {
14187 tree exp1 = TREE_OPERAND (exp, 0);
14188 tree index;
14189 tree string;
14190 location_t loc = EXPR_LOCATION (exp);
14191
14192 if (TREE_CODE (exp) == INDIRECT_REF)
14193 string = string_constant (exp1, &index);
14194 else
14195 {
14196 tree low_bound = array_ref_low_bound (exp);
14197 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
14198
14199 /* Optimize the special-case of a zero lower bound.
14200
14201 We convert the low_bound to sizetype to avoid some problems
14202 with constant folding. (E.g. suppose the lower bound is 1,
14203 and its mode is QI. Without the conversion,l (ARRAY
14204 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
14205 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
14206 if (! integer_zerop (low_bound))
14207 index = size_diffop_loc (loc, index,
14208 fold_convert_loc (loc, sizetype, low_bound));
14209
14210 string = exp1;
14211 }
14212
14213 if (string
14214 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
14215 && TREE_CODE (string) == STRING_CST
14216 && TREE_CODE (index) == INTEGER_CST
14217 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
14218 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
14219 == MODE_INT)
14220 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
14221 return build_int_cst_type (TREE_TYPE (exp),
14222 (TREE_STRING_POINTER (string)
14223 [TREE_INT_CST_LOW (index)]));
14224 }
14225 return NULL;
14226 }
14227
14228 /* Return the tree for neg (ARG0) when ARG0 is known to be either
14229 an integer constant, real, or fixed-point constant.
14230
14231 TYPE is the type of the result. */
14232
14233 static tree
14234 fold_negate_const (tree arg0, tree type)
14235 {
14236 tree t = NULL_TREE;
14237
14238 switch (TREE_CODE (arg0))
14239 {
14240 case INTEGER_CST:
14241 {
14242 bool overflow;
14243 wide_int val = wi::neg (arg0, &overflow);
14244 t = force_fit_type (type, val, 1,
14245 (overflow | TREE_OVERFLOW (arg0))
14246 && !TYPE_UNSIGNED (type));
14247 break;
14248 }
14249
14250 case REAL_CST:
14251 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
14252 break;
14253
14254 case FIXED_CST:
14255 {
14256 FIXED_VALUE_TYPE f;
14257 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
14258 &(TREE_FIXED_CST (arg0)), NULL,
14259 TYPE_SATURATING (type));
14260 t = build_fixed (type, f);
14261 /* Propagate overflow flags. */
14262 if (overflow_p | TREE_OVERFLOW (arg0))
14263 TREE_OVERFLOW (t) = 1;
14264 break;
14265 }
14266
14267 default:
14268 gcc_unreachable ();
14269 }
14270
14271 return t;
14272 }
14273
14274 /* Return the tree for abs (ARG0) when ARG0 is known to be either
14275 an integer constant or real constant.
14276
14277 TYPE is the type of the result. */
14278
14279 tree
14280 fold_abs_const (tree arg0, tree type)
14281 {
14282 tree t = NULL_TREE;
14283
14284 switch (TREE_CODE (arg0))
14285 {
14286 case INTEGER_CST:
14287 {
14288 /* If the value is unsigned or non-negative, then the absolute value
14289 is the same as the ordinary value. */
14290 if (!wi::neg_p (arg0, TYPE_SIGN (type)))
14291 t = arg0;
14292
14293 /* If the value is negative, then the absolute value is
14294 its negation. */
14295 else
14296 {
14297 bool overflow;
14298 wide_int val = wi::neg (arg0, &overflow);
14299 t = force_fit_type (type, val, -1,
14300 overflow | TREE_OVERFLOW (arg0));
14301 }
14302 }
14303 break;
14304
14305 case REAL_CST:
14306 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
14307 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
14308 else
14309 t = arg0;
14310 break;
14311
14312 default:
14313 gcc_unreachable ();
14314 }
14315
14316 return t;
14317 }
14318
14319 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
14320 constant. TYPE is the type of the result. */
14321
14322 static tree
14323 fold_not_const (const_tree arg0, tree type)
14324 {
14325 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
14326
14327 return force_fit_type (type, wi::bit_not (arg0), 0, TREE_OVERFLOW (arg0));
14328 }
14329
14330 /* Given CODE, a relational operator, the target type, TYPE and two
14331 constant operands OP0 and OP1, return the result of the
14332 relational operation. If the result is not a compile time
14333 constant, then return NULL_TREE. */
14334
14335 static tree
14336 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
14337 {
14338 int result, invert;
14339
14340 /* From here on, the only cases we handle are when the result is
14341 known to be a constant. */
14342
14343 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
14344 {
14345 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
14346 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
14347
14348 /* Handle the cases where either operand is a NaN. */
14349 if (real_isnan (c0) || real_isnan (c1))
14350 {
14351 switch (code)
14352 {
14353 case EQ_EXPR:
14354 case ORDERED_EXPR:
14355 result = 0;
14356 break;
14357
14358 case NE_EXPR:
14359 case UNORDERED_EXPR:
14360 case UNLT_EXPR:
14361 case UNLE_EXPR:
14362 case UNGT_EXPR:
14363 case UNGE_EXPR:
14364 case UNEQ_EXPR:
14365 result = 1;
14366 break;
14367
14368 case LT_EXPR:
14369 case LE_EXPR:
14370 case GT_EXPR:
14371 case GE_EXPR:
14372 case LTGT_EXPR:
14373 if (flag_trapping_math)
14374 return NULL_TREE;
14375 result = 0;
14376 break;
14377
14378 default:
14379 gcc_unreachable ();
14380 }
14381
14382 return constant_boolean_node (result, type);
14383 }
14384
14385 return constant_boolean_node (real_compare (code, c0, c1), type);
14386 }
14387
14388 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
14389 {
14390 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
14391 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
14392 return constant_boolean_node (fixed_compare (code, c0, c1), type);
14393 }
14394
14395 /* Handle equality/inequality of complex constants. */
14396 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
14397 {
14398 tree rcond = fold_relational_const (code, type,
14399 TREE_REALPART (op0),
14400 TREE_REALPART (op1));
14401 tree icond = fold_relational_const (code, type,
14402 TREE_IMAGPART (op0),
14403 TREE_IMAGPART (op1));
14404 if (code == EQ_EXPR)
14405 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
14406 else if (code == NE_EXPR)
14407 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
14408 else
14409 return NULL_TREE;
14410 }
14411
14412 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
14413 {
14414 unsigned count = VECTOR_CST_NELTS (op0);
14415 tree *elts = XALLOCAVEC (tree, count);
14416 gcc_assert (VECTOR_CST_NELTS (op1) == count
14417 && TYPE_VECTOR_SUBPARTS (type) == count);
14418
14419 for (unsigned i = 0; i < count; i++)
14420 {
14421 tree elem_type = TREE_TYPE (type);
14422 tree elem0 = VECTOR_CST_ELT (op0, i);
14423 tree elem1 = VECTOR_CST_ELT (op1, i);
14424
14425 tree tem = fold_relational_const (code, elem_type,
14426 elem0, elem1);
14427
14428 if (tem == NULL_TREE)
14429 return NULL_TREE;
14430
14431 elts[i] = build_int_cst (elem_type, integer_zerop (tem) ? 0 : -1);
14432 }
14433
14434 return build_vector (type, elts);
14435 }
14436
14437 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14438
14439 To compute GT, swap the arguments and do LT.
14440 To compute GE, do LT and invert the result.
14441 To compute LE, swap the arguments, do LT and invert the result.
14442 To compute NE, do EQ and invert the result.
14443
14444 Therefore, the code below must handle only EQ and LT. */
14445
14446 if (code == LE_EXPR || code == GT_EXPR)
14447 {
14448 std::swap (op0, op1);
14449 code = swap_tree_comparison (code);
14450 }
14451
14452 /* Note that it is safe to invert for real values here because we
14453 have already handled the one case that it matters. */
14454
14455 invert = 0;
14456 if (code == NE_EXPR || code == GE_EXPR)
14457 {
14458 invert = 1;
14459 code = invert_tree_comparison (code, false);
14460 }
14461
14462 /* Compute a result for LT or EQ if args permit;
14463 Otherwise return T. */
14464 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
14465 {
14466 if (code == EQ_EXPR)
14467 result = tree_int_cst_equal (op0, op1);
14468 else
14469 result = tree_int_cst_lt (op0, op1);
14470 }
14471 else
14472 return NULL_TREE;
14473
14474 if (invert)
14475 result ^= 1;
14476 return constant_boolean_node (result, type);
14477 }
14478
14479 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14480 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14481 itself. */
14482
14483 tree
14484 fold_build_cleanup_point_expr (tree type, tree expr)
14485 {
14486 /* If the expression does not have side effects then we don't have to wrap
14487 it with a cleanup point expression. */
14488 if (!TREE_SIDE_EFFECTS (expr))
14489 return expr;
14490
14491 /* If the expression is a return, check to see if the expression inside the
14492 return has no side effects or the right hand side of the modify expression
14493 inside the return. If either don't have side effects set we don't need to
14494 wrap the expression in a cleanup point expression. Note we don't check the
14495 left hand side of the modify because it should always be a return decl. */
14496 if (TREE_CODE (expr) == RETURN_EXPR)
14497 {
14498 tree op = TREE_OPERAND (expr, 0);
14499 if (!op || !TREE_SIDE_EFFECTS (op))
14500 return expr;
14501 op = TREE_OPERAND (op, 1);
14502 if (!TREE_SIDE_EFFECTS (op))
14503 return expr;
14504 }
14505
14506 return build1 (CLEANUP_POINT_EXPR, type, expr);
14507 }
14508
14509 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14510 of an indirection through OP0, or NULL_TREE if no simplification is
14511 possible. */
14512
14513 tree
14514 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
14515 {
14516 tree sub = op0;
14517 tree subtype;
14518
14519 STRIP_NOPS (sub);
14520 subtype = TREE_TYPE (sub);
14521 if (!POINTER_TYPE_P (subtype))
14522 return NULL_TREE;
14523
14524 if (TREE_CODE (sub) == ADDR_EXPR)
14525 {
14526 tree op = TREE_OPERAND (sub, 0);
14527 tree optype = TREE_TYPE (op);
14528 /* *&CONST_DECL -> to the value of the const decl. */
14529 if (TREE_CODE (op) == CONST_DECL)
14530 return DECL_INITIAL (op);
14531 /* *&p => p; make sure to handle *&"str"[cst] here. */
14532 if (type == optype)
14533 {
14534 tree fop = fold_read_from_constant_string (op);
14535 if (fop)
14536 return fop;
14537 else
14538 return op;
14539 }
14540 /* *(foo *)&fooarray => fooarray[0] */
14541 else if (TREE_CODE (optype) == ARRAY_TYPE
14542 && type == TREE_TYPE (optype)
14543 && (!in_gimple_form
14544 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14545 {
14546 tree type_domain = TYPE_DOMAIN (optype);
14547 tree min_val = size_zero_node;
14548 if (type_domain && TYPE_MIN_VALUE (type_domain))
14549 min_val = TYPE_MIN_VALUE (type_domain);
14550 if (in_gimple_form
14551 && TREE_CODE (min_val) != INTEGER_CST)
14552 return NULL_TREE;
14553 return build4_loc (loc, ARRAY_REF, type, op, min_val,
14554 NULL_TREE, NULL_TREE);
14555 }
14556 /* *(foo *)&complexfoo => __real__ complexfoo */
14557 else if (TREE_CODE (optype) == COMPLEX_TYPE
14558 && type == TREE_TYPE (optype))
14559 return fold_build1_loc (loc, REALPART_EXPR, type, op);
14560 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14561 else if (TREE_CODE (optype) == VECTOR_TYPE
14562 && type == TREE_TYPE (optype))
14563 {
14564 tree part_width = TYPE_SIZE (type);
14565 tree index = bitsize_int (0);
14566 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
14567 }
14568 }
14569
14570 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14571 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
14572 {
14573 tree op00 = TREE_OPERAND (sub, 0);
14574 tree op01 = TREE_OPERAND (sub, 1);
14575
14576 STRIP_NOPS (op00);
14577 if (TREE_CODE (op00) == ADDR_EXPR)
14578 {
14579 tree op00type;
14580 op00 = TREE_OPERAND (op00, 0);
14581 op00type = TREE_TYPE (op00);
14582
14583 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14584 if (TREE_CODE (op00type) == VECTOR_TYPE
14585 && type == TREE_TYPE (op00type))
14586 {
14587 HOST_WIDE_INT offset = tree_to_shwi (op01);
14588 tree part_width = TYPE_SIZE (type);
14589 unsigned HOST_WIDE_INT part_widthi = tree_to_shwi (part_width)/BITS_PER_UNIT;
14590 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
14591 tree index = bitsize_int (indexi);
14592
14593 if (offset / part_widthi < TYPE_VECTOR_SUBPARTS (op00type))
14594 return fold_build3_loc (loc,
14595 BIT_FIELD_REF, type, op00,
14596 part_width, index);
14597
14598 }
14599 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14600 else if (TREE_CODE (op00type) == COMPLEX_TYPE
14601 && type == TREE_TYPE (op00type))
14602 {
14603 tree size = TYPE_SIZE_UNIT (type);
14604 if (tree_int_cst_equal (size, op01))
14605 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14606 }
14607 /* ((foo *)&fooarray)[1] => fooarray[1] */
14608 else if (TREE_CODE (op00type) == ARRAY_TYPE
14609 && type == TREE_TYPE (op00type))
14610 {
14611 tree type_domain = TYPE_DOMAIN (op00type);
14612 tree min_val = size_zero_node;
14613 if (type_domain && TYPE_MIN_VALUE (type_domain))
14614 min_val = TYPE_MIN_VALUE (type_domain);
14615 op01 = size_binop_loc (loc, EXACT_DIV_EXPR, op01,
14616 TYPE_SIZE_UNIT (type));
14617 op01 = size_binop_loc (loc, PLUS_EXPR, op01, min_val);
14618 return build4_loc (loc, ARRAY_REF, type, op00, op01,
14619 NULL_TREE, NULL_TREE);
14620 }
14621 }
14622 }
14623
14624 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14625 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14626 && type == TREE_TYPE (TREE_TYPE (subtype))
14627 && (!in_gimple_form
14628 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14629 {
14630 tree type_domain;
14631 tree min_val = size_zero_node;
14632 sub = build_fold_indirect_ref_loc (loc, sub);
14633 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14634 if (type_domain && TYPE_MIN_VALUE (type_domain))
14635 min_val = TYPE_MIN_VALUE (type_domain);
14636 if (in_gimple_form
14637 && TREE_CODE (min_val) != INTEGER_CST)
14638 return NULL_TREE;
14639 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
14640 NULL_TREE);
14641 }
14642
14643 return NULL_TREE;
14644 }
14645
14646 /* Builds an expression for an indirection through T, simplifying some
14647 cases. */
14648
14649 tree
14650 build_fold_indirect_ref_loc (location_t loc, tree t)
14651 {
14652 tree type = TREE_TYPE (TREE_TYPE (t));
14653 tree sub = fold_indirect_ref_1 (loc, type, t);
14654
14655 if (sub)
14656 return sub;
14657
14658 return build1_loc (loc, INDIRECT_REF, type, t);
14659 }
14660
14661 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14662
14663 tree
14664 fold_indirect_ref_loc (location_t loc, tree t)
14665 {
14666 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14667
14668 if (sub)
14669 return sub;
14670 else
14671 return t;
14672 }
14673
14674 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14675 whose result is ignored. The type of the returned tree need not be
14676 the same as the original expression. */
14677
14678 tree
14679 fold_ignored_result (tree t)
14680 {
14681 if (!TREE_SIDE_EFFECTS (t))
14682 return integer_zero_node;
14683
14684 for (;;)
14685 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14686 {
14687 case tcc_unary:
14688 t = TREE_OPERAND (t, 0);
14689 break;
14690
14691 case tcc_binary:
14692 case tcc_comparison:
14693 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14694 t = TREE_OPERAND (t, 0);
14695 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14696 t = TREE_OPERAND (t, 1);
14697 else
14698 return t;
14699 break;
14700
14701 case tcc_expression:
14702 switch (TREE_CODE (t))
14703 {
14704 case COMPOUND_EXPR:
14705 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14706 return t;
14707 t = TREE_OPERAND (t, 0);
14708 break;
14709
14710 case COND_EXPR:
14711 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14712 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14713 return t;
14714 t = TREE_OPERAND (t, 0);
14715 break;
14716
14717 default:
14718 return t;
14719 }
14720 break;
14721
14722 default:
14723 return t;
14724 }
14725 }
14726
14727 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14728
14729 tree
14730 round_up_loc (location_t loc, tree value, unsigned int divisor)
14731 {
14732 tree div = NULL_TREE;
14733
14734 if (divisor == 1)
14735 return value;
14736
14737 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14738 have to do anything. Only do this when we are not given a const,
14739 because in that case, this check is more expensive than just
14740 doing it. */
14741 if (TREE_CODE (value) != INTEGER_CST)
14742 {
14743 div = build_int_cst (TREE_TYPE (value), divisor);
14744
14745 if (multiple_of_p (TREE_TYPE (value), value, div))
14746 return value;
14747 }
14748
14749 /* If divisor is a power of two, simplify this to bit manipulation. */
14750 if (divisor == (divisor & -divisor))
14751 {
14752 if (TREE_CODE (value) == INTEGER_CST)
14753 {
14754 wide_int val = value;
14755 bool overflow_p;
14756
14757 if ((val & (divisor - 1)) == 0)
14758 return value;
14759
14760 overflow_p = TREE_OVERFLOW (value);
14761 val += divisor - 1;
14762 val &= - (int) divisor;
14763 if (val == 0)
14764 overflow_p = true;
14765
14766 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14767 }
14768 else
14769 {
14770 tree t;
14771
14772 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14773 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14774 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14775 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14776 }
14777 }
14778 else
14779 {
14780 if (!div)
14781 div = build_int_cst (TREE_TYPE (value), divisor);
14782 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14783 value = size_binop_loc (loc, MULT_EXPR, value, div);
14784 }
14785
14786 return value;
14787 }
14788
14789 /* Likewise, but round down. */
14790
14791 tree
14792 round_down_loc (location_t loc, tree value, int divisor)
14793 {
14794 tree div = NULL_TREE;
14795
14796 gcc_assert (divisor > 0);
14797 if (divisor == 1)
14798 return value;
14799
14800 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14801 have to do anything. Only do this when we are not given a const,
14802 because in that case, this check is more expensive than just
14803 doing it. */
14804 if (TREE_CODE (value) != INTEGER_CST)
14805 {
14806 div = build_int_cst (TREE_TYPE (value), divisor);
14807
14808 if (multiple_of_p (TREE_TYPE (value), value, div))
14809 return value;
14810 }
14811
14812 /* If divisor is a power of two, simplify this to bit manipulation. */
14813 if (divisor == (divisor & -divisor))
14814 {
14815 tree t;
14816
14817 t = build_int_cst (TREE_TYPE (value), -divisor);
14818 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14819 }
14820 else
14821 {
14822 if (!div)
14823 div = build_int_cst (TREE_TYPE (value), divisor);
14824 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
14825 value = size_binop_loc (loc, MULT_EXPR, value, div);
14826 }
14827
14828 return value;
14829 }
14830
14831 /* Returns the pointer to the base of the object addressed by EXP and
14832 extracts the information about the offset of the access, storing it
14833 to PBITPOS and POFFSET. */
14834
14835 static tree
14836 split_address_to_core_and_offset (tree exp,
14837 HOST_WIDE_INT *pbitpos, tree *poffset)
14838 {
14839 tree core;
14840 machine_mode mode;
14841 int unsignedp, volatilep;
14842 HOST_WIDE_INT bitsize;
14843 location_t loc = EXPR_LOCATION (exp);
14844
14845 if (TREE_CODE (exp) == ADDR_EXPR)
14846 {
14847 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14848 poffset, &mode, &unsignedp, &volatilep,
14849 false);
14850 core = build_fold_addr_expr_loc (loc, core);
14851 }
14852 else
14853 {
14854 core = exp;
14855 *pbitpos = 0;
14856 *poffset = NULL_TREE;
14857 }
14858
14859 return core;
14860 }
14861
14862 /* Returns true if addresses of E1 and E2 differ by a constant, false
14863 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14864
14865 bool
14866 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
14867 {
14868 tree core1, core2;
14869 HOST_WIDE_INT bitpos1, bitpos2;
14870 tree toffset1, toffset2, tdiff, type;
14871
14872 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14873 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14874
14875 if (bitpos1 % BITS_PER_UNIT != 0
14876 || bitpos2 % BITS_PER_UNIT != 0
14877 || !operand_equal_p (core1, core2, 0))
14878 return false;
14879
14880 if (toffset1 && toffset2)
14881 {
14882 type = TREE_TYPE (toffset1);
14883 if (type != TREE_TYPE (toffset2))
14884 toffset2 = fold_convert (type, toffset2);
14885
14886 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14887 if (!cst_and_fits_in_hwi (tdiff))
14888 return false;
14889
14890 *diff = int_cst_value (tdiff);
14891 }
14892 else if (toffset1 || toffset2)
14893 {
14894 /* If only one of the offsets is non-constant, the difference cannot
14895 be a constant. */
14896 return false;
14897 }
14898 else
14899 *diff = 0;
14900
14901 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
14902 return true;
14903 }
14904
14905 /* Simplify the floating point expression EXP when the sign of the
14906 result is not significant. Return NULL_TREE if no simplification
14907 is possible. */
14908
14909 tree
14910 fold_strip_sign_ops (tree exp)
14911 {
14912 tree arg0, arg1;
14913 location_t loc = EXPR_LOCATION (exp);
14914
14915 switch (TREE_CODE (exp))
14916 {
14917 case ABS_EXPR:
14918 case NEGATE_EXPR:
14919 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
14920 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
14921
14922 case MULT_EXPR:
14923 case RDIV_EXPR:
14924 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (exp)))
14925 return NULL_TREE;
14926 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
14927 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
14928 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
14929 return fold_build2_loc (loc, TREE_CODE (exp), TREE_TYPE (exp),
14930 arg0 ? arg0 : TREE_OPERAND (exp, 0),
14931 arg1 ? arg1 : TREE_OPERAND (exp, 1));
14932 break;
14933
14934 case COMPOUND_EXPR:
14935 arg0 = TREE_OPERAND (exp, 0);
14936 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
14937 if (arg1)
14938 return fold_build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (exp), arg0, arg1);
14939 break;
14940
14941 case COND_EXPR:
14942 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
14943 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 2));
14944 if (arg0 || arg1)
14945 return fold_build3_loc (loc,
14946 COND_EXPR, TREE_TYPE (exp), TREE_OPERAND (exp, 0),
14947 arg0 ? arg0 : TREE_OPERAND (exp, 1),
14948 arg1 ? arg1 : TREE_OPERAND (exp, 2));
14949 break;
14950
14951 case CALL_EXPR:
14952 {
14953 const enum built_in_function fcode = builtin_mathfn_code (exp);
14954 switch (fcode)
14955 {
14956 CASE_FLT_FN (BUILT_IN_COPYSIGN):
14957 /* Strip copysign function call, return the 1st argument. */
14958 arg0 = CALL_EXPR_ARG (exp, 0);
14959 arg1 = CALL_EXPR_ARG (exp, 1);
14960 return omit_one_operand_loc (loc, TREE_TYPE (exp), arg0, arg1);
14961
14962 default:
14963 /* Strip sign ops from the argument of "odd" math functions. */
14964 if (negate_mathfn_p (fcode))
14965 {
14966 arg0 = fold_strip_sign_ops (CALL_EXPR_ARG (exp, 0));
14967 if (arg0)
14968 return build_call_expr_loc (loc, get_callee_fndecl (exp), 1, arg0);
14969 }
14970 break;
14971 }
14972 }
14973 break;
14974
14975 default:
14976 break;
14977 }
14978 return NULL_TREE;
14979 }
14980
14981 /* Return OFF converted to a pointer offset type suitable as offset for
14982 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14983 tree
14984 convert_to_ptrofftype_loc (location_t loc, tree off)
14985 {
14986 return fold_convert_loc (loc, sizetype, off);
14987 }
14988
14989 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14990 tree
14991 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
14992 {
14993 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14994 ptr, convert_to_ptrofftype_loc (loc, off));
14995 }
14996
14997 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14998 tree
14999 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
15000 {
15001 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
15002 ptr, size_int (off));
15003 }