ab6f7a522054c15d307d0dccf7197f028003a50e
[gcc.git] / gcc / fortran / expr.c
1 /* Routines for manipulation of expression nodes.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "flags.h"
25 #include "gfortran.h"
26 #include "arith.h"
27 #include "match.h"
28 #include "target-memory.h" /* for gfc_convert_boz */
29 #include "constructor.h"
30
31
32 /* The following set of functions provide access to gfc_expr* of
33 various types - actual all but EXPR_FUNCTION and EXPR_VARIABLE.
34
35 There are two functions available elsewhere that provide
36 slightly different flavours of variables. Namely:
37 expr.c (gfc_get_variable_expr)
38 symbol.c (gfc_lval_expr_from_sym)
39 TODO: Merge these functions, if possible. */
40
41 /* Get a new expression node. */
42
43 gfc_expr *
44 gfc_get_expr (void)
45 {
46 gfc_expr *e;
47
48 e = XCNEW (gfc_expr);
49 gfc_clear_ts (&e->ts);
50 e->shape = NULL;
51 e->ref = NULL;
52 e->symtree = NULL;
53 return e;
54 }
55
56
57 /* Get a new expression node that is an array constructor
58 of given type and kind. */
59
60 gfc_expr *
61 gfc_get_array_expr (bt type, int kind, locus *where)
62 {
63 gfc_expr *e;
64
65 e = gfc_get_expr ();
66 e->expr_type = EXPR_ARRAY;
67 e->value.constructor = NULL;
68 e->rank = 1;
69 e->shape = NULL;
70
71 e->ts.type = type;
72 e->ts.kind = kind;
73 if (where)
74 e->where = *where;
75
76 return e;
77 }
78
79
80 /* Get a new expression node that is the NULL expression. */
81
82 gfc_expr *
83 gfc_get_null_expr (locus *where)
84 {
85 gfc_expr *e;
86
87 e = gfc_get_expr ();
88 e->expr_type = EXPR_NULL;
89 e->ts.type = BT_UNKNOWN;
90
91 if (where)
92 e->where = *where;
93
94 return e;
95 }
96
97
98 /* Get a new expression node that is an operator expression node. */
99
100 gfc_expr *
101 gfc_get_operator_expr (locus *where, gfc_intrinsic_op op,
102 gfc_expr *op1, gfc_expr *op2)
103 {
104 gfc_expr *e;
105
106 e = gfc_get_expr ();
107 e->expr_type = EXPR_OP;
108 e->value.op.op = op;
109 e->value.op.op1 = op1;
110 e->value.op.op2 = op2;
111
112 if (where)
113 e->where = *where;
114
115 return e;
116 }
117
118
119 /* Get a new expression node that is an structure constructor
120 of given type and kind. */
121
122 gfc_expr *
123 gfc_get_structure_constructor_expr (bt type, int kind, locus *where)
124 {
125 gfc_expr *e;
126
127 e = gfc_get_expr ();
128 e->expr_type = EXPR_STRUCTURE;
129 e->value.constructor = NULL;
130
131 e->ts.type = type;
132 e->ts.kind = kind;
133 if (where)
134 e->where = *where;
135
136 return e;
137 }
138
139
140 /* Get a new expression node that is an constant of given type and kind. */
141
142 gfc_expr *
143 gfc_get_constant_expr (bt type, int kind, locus *where)
144 {
145 gfc_expr *e;
146
147 if (!where)
148 gfc_internal_error ("gfc_get_constant_expr(): locus %<where%> cannot be "
149 "NULL");
150
151 e = gfc_get_expr ();
152
153 e->expr_type = EXPR_CONSTANT;
154 e->ts.type = type;
155 e->ts.kind = kind;
156 e->where = *where;
157
158 switch (type)
159 {
160 case BT_INTEGER:
161 mpz_init (e->value.integer);
162 break;
163
164 case BT_REAL:
165 gfc_set_model_kind (kind);
166 mpfr_init (e->value.real);
167 break;
168
169 case BT_COMPLEX:
170 gfc_set_model_kind (kind);
171 mpc_init2 (e->value.complex, mpfr_get_default_prec());
172 break;
173
174 default:
175 break;
176 }
177
178 return e;
179 }
180
181
182 /* Get a new expression node that is an string constant.
183 If no string is passed, a string of len is allocated,
184 blanked and null-terminated. */
185
186 gfc_expr *
187 gfc_get_character_expr (int kind, locus *where, const char *src, int len)
188 {
189 gfc_expr *e;
190 gfc_char_t *dest;
191
192 if (!src)
193 {
194 dest = gfc_get_wide_string (len + 1);
195 gfc_wide_memset (dest, ' ', len);
196 dest[len] = '\0';
197 }
198 else
199 dest = gfc_char_to_widechar (src);
200
201 e = gfc_get_constant_expr (BT_CHARACTER, kind,
202 where ? where : &gfc_current_locus);
203 e->value.character.string = dest;
204 e->value.character.length = len;
205
206 return e;
207 }
208
209
210 /* Get a new expression node that is an integer constant. */
211
212 gfc_expr *
213 gfc_get_int_expr (int kind, locus *where, int value)
214 {
215 gfc_expr *p;
216 p = gfc_get_constant_expr (BT_INTEGER, kind,
217 where ? where : &gfc_current_locus);
218
219 mpz_set_si (p->value.integer, value);
220
221 return p;
222 }
223
224
225 /* Get a new expression node that is a logical constant. */
226
227 gfc_expr *
228 gfc_get_logical_expr (int kind, locus *where, bool value)
229 {
230 gfc_expr *p;
231 p = gfc_get_constant_expr (BT_LOGICAL, kind,
232 where ? where : &gfc_current_locus);
233
234 p->value.logical = value;
235
236 return p;
237 }
238
239
240 gfc_expr *
241 gfc_get_iokind_expr (locus *where, io_kind k)
242 {
243 gfc_expr *e;
244
245 /* Set the types to something compatible with iokind. This is needed to
246 get through gfc_free_expr later since iokind really has no Basic Type,
247 BT, of its own. */
248
249 e = gfc_get_expr ();
250 e->expr_type = EXPR_CONSTANT;
251 e->ts.type = BT_LOGICAL;
252 e->value.iokind = k;
253 e->where = *where;
254
255 return e;
256 }
257
258
259 /* Given an expression pointer, return a copy of the expression. This
260 subroutine is recursive. */
261
262 gfc_expr *
263 gfc_copy_expr (gfc_expr *p)
264 {
265 gfc_expr *q;
266 gfc_char_t *s;
267 char *c;
268
269 if (p == NULL)
270 return NULL;
271
272 q = gfc_get_expr ();
273 *q = *p;
274
275 switch (q->expr_type)
276 {
277 case EXPR_SUBSTRING:
278 s = gfc_get_wide_string (p->value.character.length + 1);
279 q->value.character.string = s;
280 memcpy (s, p->value.character.string,
281 (p->value.character.length + 1) * sizeof (gfc_char_t));
282 break;
283
284 case EXPR_CONSTANT:
285 /* Copy target representation, if it exists. */
286 if (p->representation.string)
287 {
288 c = XCNEWVEC (char, p->representation.length + 1);
289 q->representation.string = c;
290 memcpy (c, p->representation.string, (p->representation.length + 1));
291 }
292
293 /* Copy the values of any pointer components of p->value. */
294 switch (q->ts.type)
295 {
296 case BT_INTEGER:
297 mpz_init_set (q->value.integer, p->value.integer);
298 break;
299
300 case BT_REAL:
301 gfc_set_model_kind (q->ts.kind);
302 mpfr_init (q->value.real);
303 mpfr_set (q->value.real, p->value.real, GFC_RND_MODE);
304 break;
305
306 case BT_COMPLEX:
307 gfc_set_model_kind (q->ts.kind);
308 mpc_init2 (q->value.complex, mpfr_get_default_prec());
309 mpc_set (q->value.complex, p->value.complex, GFC_MPC_RND_MODE);
310 break;
311
312 case BT_CHARACTER:
313 if (p->representation.string)
314 q->value.character.string
315 = gfc_char_to_widechar (q->representation.string);
316 else
317 {
318 s = gfc_get_wide_string (p->value.character.length + 1);
319 q->value.character.string = s;
320
321 /* This is the case for the C_NULL_CHAR named constant. */
322 if (p->value.character.length == 0
323 && (p->ts.is_c_interop || p->ts.is_iso_c))
324 {
325 *s = '\0';
326 /* Need to set the length to 1 to make sure the NUL
327 terminator is copied. */
328 q->value.character.length = 1;
329 }
330 else
331 memcpy (s, p->value.character.string,
332 (p->value.character.length + 1) * sizeof (gfc_char_t));
333 }
334 break;
335
336 case BT_HOLLERITH:
337 case BT_LOGICAL:
338 case BT_DERIVED:
339 case BT_CLASS:
340 case BT_ASSUMED:
341 break; /* Already done. */
342
343 case BT_PROCEDURE:
344 case BT_VOID:
345 /* Should never be reached. */
346 case BT_UNKNOWN:
347 gfc_internal_error ("gfc_copy_expr(): Bad expr node");
348 /* Not reached. */
349 }
350
351 break;
352
353 case EXPR_OP:
354 switch (q->value.op.op)
355 {
356 case INTRINSIC_NOT:
357 case INTRINSIC_PARENTHESES:
358 case INTRINSIC_UPLUS:
359 case INTRINSIC_UMINUS:
360 q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
361 break;
362
363 default: /* Binary operators. */
364 q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
365 q->value.op.op2 = gfc_copy_expr (p->value.op.op2);
366 break;
367 }
368
369 break;
370
371 case EXPR_FUNCTION:
372 q->value.function.actual =
373 gfc_copy_actual_arglist (p->value.function.actual);
374 break;
375
376 case EXPR_COMPCALL:
377 case EXPR_PPC:
378 q->value.compcall.actual =
379 gfc_copy_actual_arglist (p->value.compcall.actual);
380 q->value.compcall.tbp = p->value.compcall.tbp;
381 break;
382
383 case EXPR_STRUCTURE:
384 case EXPR_ARRAY:
385 q->value.constructor = gfc_constructor_copy (p->value.constructor);
386 break;
387
388 case EXPR_VARIABLE:
389 case EXPR_NULL:
390 break;
391 }
392
393 q->shape = gfc_copy_shape (p->shape, p->rank);
394
395 q->ref = gfc_copy_ref (p->ref);
396
397 return q;
398 }
399
400
401 void
402 gfc_clear_shape (mpz_t *shape, int rank)
403 {
404 int i;
405
406 for (i = 0; i < rank; i++)
407 mpz_clear (shape[i]);
408 }
409
410
411 void
412 gfc_free_shape (mpz_t **shape, int rank)
413 {
414 if (*shape == NULL)
415 return;
416
417 gfc_clear_shape (*shape, rank);
418 free (*shape);
419 *shape = NULL;
420 }
421
422
423 /* Workhorse function for gfc_free_expr() that frees everything
424 beneath an expression node, but not the node itself. This is
425 useful when we want to simplify a node and replace it with
426 something else or the expression node belongs to another structure. */
427
428 static void
429 free_expr0 (gfc_expr *e)
430 {
431 switch (e->expr_type)
432 {
433 case EXPR_CONSTANT:
434 /* Free any parts of the value that need freeing. */
435 switch (e->ts.type)
436 {
437 case BT_INTEGER:
438 mpz_clear (e->value.integer);
439 break;
440
441 case BT_REAL:
442 mpfr_clear (e->value.real);
443 break;
444
445 case BT_CHARACTER:
446 free (e->value.character.string);
447 break;
448
449 case BT_COMPLEX:
450 mpc_clear (e->value.complex);
451 break;
452
453 default:
454 break;
455 }
456
457 /* Free the representation. */
458 free (e->representation.string);
459
460 break;
461
462 case EXPR_OP:
463 if (e->value.op.op1 != NULL)
464 gfc_free_expr (e->value.op.op1);
465 if (e->value.op.op2 != NULL)
466 gfc_free_expr (e->value.op.op2);
467 break;
468
469 case EXPR_FUNCTION:
470 gfc_free_actual_arglist (e->value.function.actual);
471 break;
472
473 case EXPR_COMPCALL:
474 case EXPR_PPC:
475 gfc_free_actual_arglist (e->value.compcall.actual);
476 break;
477
478 case EXPR_VARIABLE:
479 break;
480
481 case EXPR_ARRAY:
482 case EXPR_STRUCTURE:
483 gfc_constructor_free (e->value.constructor);
484 break;
485
486 case EXPR_SUBSTRING:
487 free (e->value.character.string);
488 break;
489
490 case EXPR_NULL:
491 break;
492
493 default:
494 gfc_internal_error ("free_expr0(): Bad expr type");
495 }
496
497 /* Free a shape array. */
498 gfc_free_shape (&e->shape, e->rank);
499
500 gfc_free_ref_list (e->ref);
501
502 memset (e, '\0', sizeof (gfc_expr));
503 }
504
505
506 /* Free an expression node and everything beneath it. */
507
508 void
509 gfc_free_expr (gfc_expr *e)
510 {
511 if (e == NULL)
512 return;
513 free_expr0 (e);
514 free (e);
515 }
516
517
518 /* Free an argument list and everything below it. */
519
520 void
521 gfc_free_actual_arglist (gfc_actual_arglist *a1)
522 {
523 gfc_actual_arglist *a2;
524
525 while (a1)
526 {
527 a2 = a1->next;
528 gfc_free_expr (a1->expr);
529 free (a1);
530 a1 = a2;
531 }
532 }
533
534
535 /* Copy an arglist structure and all of the arguments. */
536
537 gfc_actual_arglist *
538 gfc_copy_actual_arglist (gfc_actual_arglist *p)
539 {
540 gfc_actual_arglist *head, *tail, *new_arg;
541
542 head = tail = NULL;
543
544 for (; p; p = p->next)
545 {
546 new_arg = gfc_get_actual_arglist ();
547 *new_arg = *p;
548
549 new_arg->expr = gfc_copy_expr (p->expr);
550 new_arg->next = NULL;
551
552 if (head == NULL)
553 head = new_arg;
554 else
555 tail->next = new_arg;
556
557 tail = new_arg;
558 }
559
560 return head;
561 }
562
563
564 /* Free a list of reference structures. */
565
566 void
567 gfc_free_ref_list (gfc_ref *p)
568 {
569 gfc_ref *q;
570 int i;
571
572 for (; p; p = q)
573 {
574 q = p->next;
575
576 switch (p->type)
577 {
578 case REF_ARRAY:
579 for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
580 {
581 gfc_free_expr (p->u.ar.start[i]);
582 gfc_free_expr (p->u.ar.end[i]);
583 gfc_free_expr (p->u.ar.stride[i]);
584 }
585
586 break;
587
588 case REF_SUBSTRING:
589 gfc_free_expr (p->u.ss.start);
590 gfc_free_expr (p->u.ss.end);
591 break;
592
593 case REF_COMPONENT:
594 break;
595 }
596
597 free (p);
598 }
599 }
600
601
602 /* Graft the *src expression onto the *dest subexpression. */
603
604 void
605 gfc_replace_expr (gfc_expr *dest, gfc_expr *src)
606 {
607 free_expr0 (dest);
608 *dest = *src;
609 free (src);
610 }
611
612
613 /* Try to extract an integer constant from the passed expression node.
614 Returns an error message or NULL if the result is set. It is
615 tempting to generate an error and return true or false, but
616 failure is OK for some callers. */
617
618 const char *
619 gfc_extract_int (gfc_expr *expr, int *result)
620 {
621 if (expr->expr_type != EXPR_CONSTANT)
622 return _("Constant expression required at %C");
623
624 if (expr->ts.type != BT_INTEGER)
625 return _("Integer expression required at %C");
626
627 if ((mpz_cmp_si (expr->value.integer, INT_MAX) > 0)
628 || (mpz_cmp_si (expr->value.integer, INT_MIN) < 0))
629 {
630 return _("Integer value too large in expression at %C");
631 }
632
633 *result = (int) mpz_get_si (expr->value.integer);
634
635 return NULL;
636 }
637
638
639 /* Recursively copy a list of reference structures. */
640
641 gfc_ref *
642 gfc_copy_ref (gfc_ref *src)
643 {
644 gfc_array_ref *ar;
645 gfc_ref *dest;
646
647 if (src == NULL)
648 return NULL;
649
650 dest = gfc_get_ref ();
651 dest->type = src->type;
652
653 switch (src->type)
654 {
655 case REF_ARRAY:
656 ar = gfc_copy_array_ref (&src->u.ar);
657 dest->u.ar = *ar;
658 free (ar);
659 break;
660
661 case REF_COMPONENT:
662 dest->u.c = src->u.c;
663 break;
664
665 case REF_SUBSTRING:
666 dest->u.ss = src->u.ss;
667 dest->u.ss.start = gfc_copy_expr (src->u.ss.start);
668 dest->u.ss.end = gfc_copy_expr (src->u.ss.end);
669 break;
670 }
671
672 dest->next = gfc_copy_ref (src->next);
673
674 return dest;
675 }
676
677
678 /* Detect whether an expression has any vector index array references. */
679
680 int
681 gfc_has_vector_index (gfc_expr *e)
682 {
683 gfc_ref *ref;
684 int i;
685 for (ref = e->ref; ref; ref = ref->next)
686 if (ref->type == REF_ARRAY)
687 for (i = 0; i < ref->u.ar.dimen; i++)
688 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
689 return 1;
690 return 0;
691 }
692
693
694 /* Copy a shape array. */
695
696 mpz_t *
697 gfc_copy_shape (mpz_t *shape, int rank)
698 {
699 mpz_t *new_shape;
700 int n;
701
702 if (shape == NULL)
703 return NULL;
704
705 new_shape = gfc_get_shape (rank);
706
707 for (n = 0; n < rank; n++)
708 mpz_init_set (new_shape[n], shape[n]);
709
710 return new_shape;
711 }
712
713
714 /* Copy a shape array excluding dimension N, where N is an integer
715 constant expression. Dimensions are numbered in Fortran style --
716 starting with ONE.
717
718 So, if the original shape array contains R elements
719 { s1 ... sN-1 sN sN+1 ... sR-1 sR}
720 the result contains R-1 elements:
721 { s1 ... sN-1 sN+1 ... sR-1}
722
723 If anything goes wrong -- N is not a constant, its value is out
724 of range -- or anything else, just returns NULL. */
725
726 mpz_t *
727 gfc_copy_shape_excluding (mpz_t *shape, int rank, gfc_expr *dim)
728 {
729 mpz_t *new_shape, *s;
730 int i, n;
731
732 if (shape == NULL
733 || rank <= 1
734 || dim == NULL
735 || dim->expr_type != EXPR_CONSTANT
736 || dim->ts.type != BT_INTEGER)
737 return NULL;
738
739 n = mpz_get_si (dim->value.integer);
740 n--; /* Convert to zero based index. */
741 if (n < 0 || n >= rank)
742 return NULL;
743
744 s = new_shape = gfc_get_shape (rank - 1);
745
746 for (i = 0; i < rank; i++)
747 {
748 if (i == n)
749 continue;
750 mpz_init_set (*s, shape[i]);
751 s++;
752 }
753
754 return new_shape;
755 }
756
757
758 /* Return the maximum kind of two expressions. In general, higher
759 kind numbers mean more precision for numeric types. */
760
761 int
762 gfc_kind_max (gfc_expr *e1, gfc_expr *e2)
763 {
764 return (e1->ts.kind > e2->ts.kind) ? e1->ts.kind : e2->ts.kind;
765 }
766
767
768 /* Returns nonzero if the type is numeric, zero otherwise. */
769
770 static int
771 numeric_type (bt type)
772 {
773 return type == BT_COMPLEX || type == BT_REAL || type == BT_INTEGER;
774 }
775
776
777 /* Returns nonzero if the typespec is a numeric type, zero otherwise. */
778
779 int
780 gfc_numeric_ts (gfc_typespec *ts)
781 {
782 return numeric_type (ts->type);
783 }
784
785
786 /* Return an expression node with an optional argument list attached.
787 A variable number of gfc_expr pointers are strung together in an
788 argument list with a NULL pointer terminating the list. */
789
790 gfc_expr *
791 gfc_build_conversion (gfc_expr *e)
792 {
793 gfc_expr *p;
794
795 p = gfc_get_expr ();
796 p->expr_type = EXPR_FUNCTION;
797 p->symtree = NULL;
798 p->value.function.actual = NULL;
799
800 p->value.function.actual = gfc_get_actual_arglist ();
801 p->value.function.actual->expr = e;
802
803 return p;
804 }
805
806
807 /* Given an expression node with some sort of numeric binary
808 expression, insert type conversions required to make the operands
809 have the same type. Conversion warnings are disabled if wconversion
810 is set to 0.
811
812 The exception is that the operands of an exponential don't have to
813 have the same type. If possible, the base is promoted to the type
814 of the exponent. For example, 1**2.3 becomes 1.0**2.3, but
815 1.0**2 stays as it is. */
816
817 void
818 gfc_type_convert_binary (gfc_expr *e, int wconversion)
819 {
820 gfc_expr *op1, *op2;
821
822 op1 = e->value.op.op1;
823 op2 = e->value.op.op2;
824
825 if (op1->ts.type == BT_UNKNOWN || op2->ts.type == BT_UNKNOWN)
826 {
827 gfc_clear_ts (&e->ts);
828 return;
829 }
830
831 /* Kind conversions of same type. */
832 if (op1->ts.type == op2->ts.type)
833 {
834 if (op1->ts.kind == op2->ts.kind)
835 {
836 /* No type conversions. */
837 e->ts = op1->ts;
838 goto done;
839 }
840
841 if (op1->ts.kind > op2->ts.kind)
842 gfc_convert_type_warn (op2, &op1->ts, 2, wconversion);
843 else
844 gfc_convert_type_warn (op1, &op2->ts, 2, wconversion);
845
846 e->ts = op1->ts;
847 goto done;
848 }
849
850 /* Integer combined with real or complex. */
851 if (op2->ts.type == BT_INTEGER)
852 {
853 e->ts = op1->ts;
854
855 /* Special case for ** operator. */
856 if (e->value.op.op == INTRINSIC_POWER)
857 goto done;
858
859 gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion);
860 goto done;
861 }
862
863 if (op1->ts.type == BT_INTEGER)
864 {
865 e->ts = op2->ts;
866 gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion);
867 goto done;
868 }
869
870 /* Real combined with complex. */
871 e->ts.type = BT_COMPLEX;
872 if (op1->ts.kind > op2->ts.kind)
873 e->ts.kind = op1->ts.kind;
874 else
875 e->ts.kind = op2->ts.kind;
876 if (op1->ts.type != BT_COMPLEX || op1->ts.kind != e->ts.kind)
877 gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion);
878 if (op2->ts.type != BT_COMPLEX || op2->ts.kind != e->ts.kind)
879 gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion);
880
881 done:
882 return;
883 }
884
885
886 /* Function to determine if an expression is constant or not. This
887 function expects that the expression has already been simplified. */
888
889 int
890 gfc_is_constant_expr (gfc_expr *e)
891 {
892 gfc_constructor *c;
893 gfc_actual_arglist *arg;
894 gfc_symbol *sym;
895
896 if (e == NULL)
897 return 1;
898
899 switch (e->expr_type)
900 {
901 case EXPR_OP:
902 return (gfc_is_constant_expr (e->value.op.op1)
903 && (e->value.op.op2 == NULL
904 || gfc_is_constant_expr (e->value.op.op2)));
905
906 case EXPR_VARIABLE:
907 return 0;
908
909 case EXPR_FUNCTION:
910 case EXPR_PPC:
911 case EXPR_COMPCALL:
912 gcc_assert (e->symtree || e->value.function.esym
913 || e->value.function.isym);
914
915 /* Call to intrinsic with at least one argument. */
916 if (e->value.function.isym && e->value.function.actual)
917 {
918 for (arg = e->value.function.actual; arg; arg = arg->next)
919 if (!gfc_is_constant_expr (arg->expr))
920 return 0;
921 }
922
923 /* Specification functions are constant. */
924 /* F95, 7.1.6.2; F2003, 7.1.7 */
925 sym = NULL;
926 if (e->symtree)
927 sym = e->symtree->n.sym;
928 if (e->value.function.esym)
929 sym = e->value.function.esym;
930
931 if (sym
932 && sym->attr.function
933 && sym->attr.pure
934 && !sym->attr.intrinsic
935 && !sym->attr.recursive
936 && sym->attr.proc != PROC_INTERNAL
937 && sym->attr.proc != PROC_ST_FUNCTION
938 && sym->attr.proc != PROC_UNKNOWN
939 && gfc_sym_get_dummy_args (sym) == NULL)
940 return 1;
941
942 if (e->value.function.isym
943 && (e->value.function.isym->elemental
944 || e->value.function.isym->pure
945 || e->value.function.isym->inquiry
946 || e->value.function.isym->transformational))
947 return 1;
948
949 return 0;
950
951 case EXPR_CONSTANT:
952 case EXPR_NULL:
953 return 1;
954
955 case EXPR_SUBSTRING:
956 return e->ref == NULL || (gfc_is_constant_expr (e->ref->u.ss.start)
957 && gfc_is_constant_expr (e->ref->u.ss.end));
958
959 case EXPR_ARRAY:
960 case EXPR_STRUCTURE:
961 c = gfc_constructor_first (e->value.constructor);
962 if ((e->expr_type == EXPR_ARRAY) && c && c->iterator)
963 return gfc_constant_ac (e);
964
965 for (; c; c = gfc_constructor_next (c))
966 if (!gfc_is_constant_expr (c->expr))
967 return 0;
968
969 return 1;
970
971
972 default:
973 gfc_internal_error ("gfc_is_constant_expr(): Unknown expression type");
974 return 0;
975 }
976 }
977
978
979 /* Is true if an array reference is followed by a component or substring
980 reference. */
981 bool
982 is_subref_array (gfc_expr * e)
983 {
984 gfc_ref * ref;
985 bool seen_array;
986
987 if (e->expr_type != EXPR_VARIABLE)
988 return false;
989
990 if (e->symtree->n.sym->attr.subref_array_pointer)
991 return true;
992
993 seen_array = false;
994 for (ref = e->ref; ref; ref = ref->next)
995 {
996 if (ref->type == REF_ARRAY
997 && ref->u.ar.type != AR_ELEMENT)
998 seen_array = true;
999
1000 if (seen_array
1001 && ref->type != REF_ARRAY)
1002 return seen_array;
1003 }
1004 return false;
1005 }
1006
1007
1008 /* Try to collapse intrinsic expressions. */
1009
1010 static bool
1011 simplify_intrinsic_op (gfc_expr *p, int type)
1012 {
1013 gfc_intrinsic_op op;
1014 gfc_expr *op1, *op2, *result;
1015
1016 if (p->value.op.op == INTRINSIC_USER)
1017 return true;
1018
1019 op1 = p->value.op.op1;
1020 op2 = p->value.op.op2;
1021 op = p->value.op.op;
1022
1023 if (!gfc_simplify_expr (op1, type))
1024 return false;
1025 if (!gfc_simplify_expr (op2, type))
1026 return false;
1027
1028 if (!gfc_is_constant_expr (op1)
1029 || (op2 != NULL && !gfc_is_constant_expr (op2)))
1030 return true;
1031
1032 /* Rip p apart. */
1033 p->value.op.op1 = NULL;
1034 p->value.op.op2 = NULL;
1035
1036 switch (op)
1037 {
1038 case INTRINSIC_PARENTHESES:
1039 result = gfc_parentheses (op1);
1040 break;
1041
1042 case INTRINSIC_UPLUS:
1043 result = gfc_uplus (op1);
1044 break;
1045
1046 case INTRINSIC_UMINUS:
1047 result = gfc_uminus (op1);
1048 break;
1049
1050 case INTRINSIC_PLUS:
1051 result = gfc_add (op1, op2);
1052 break;
1053
1054 case INTRINSIC_MINUS:
1055 result = gfc_subtract (op1, op2);
1056 break;
1057
1058 case INTRINSIC_TIMES:
1059 result = gfc_multiply (op1, op2);
1060 break;
1061
1062 case INTRINSIC_DIVIDE:
1063 result = gfc_divide (op1, op2);
1064 break;
1065
1066 case INTRINSIC_POWER:
1067 result = gfc_power (op1, op2);
1068 break;
1069
1070 case INTRINSIC_CONCAT:
1071 result = gfc_concat (op1, op2);
1072 break;
1073
1074 case INTRINSIC_EQ:
1075 case INTRINSIC_EQ_OS:
1076 result = gfc_eq (op1, op2, op);
1077 break;
1078
1079 case INTRINSIC_NE:
1080 case INTRINSIC_NE_OS:
1081 result = gfc_ne (op1, op2, op);
1082 break;
1083
1084 case INTRINSIC_GT:
1085 case INTRINSIC_GT_OS:
1086 result = gfc_gt (op1, op2, op);
1087 break;
1088
1089 case INTRINSIC_GE:
1090 case INTRINSIC_GE_OS:
1091 result = gfc_ge (op1, op2, op);
1092 break;
1093
1094 case INTRINSIC_LT:
1095 case INTRINSIC_LT_OS:
1096 result = gfc_lt (op1, op2, op);
1097 break;
1098
1099 case INTRINSIC_LE:
1100 case INTRINSIC_LE_OS:
1101 result = gfc_le (op1, op2, op);
1102 break;
1103
1104 case INTRINSIC_NOT:
1105 result = gfc_not (op1);
1106 break;
1107
1108 case INTRINSIC_AND:
1109 result = gfc_and (op1, op2);
1110 break;
1111
1112 case INTRINSIC_OR:
1113 result = gfc_or (op1, op2);
1114 break;
1115
1116 case INTRINSIC_EQV:
1117 result = gfc_eqv (op1, op2);
1118 break;
1119
1120 case INTRINSIC_NEQV:
1121 result = gfc_neqv (op1, op2);
1122 break;
1123
1124 default:
1125 gfc_internal_error ("simplify_intrinsic_op(): Bad operator");
1126 }
1127
1128 if (result == NULL)
1129 {
1130 gfc_free_expr (op1);
1131 gfc_free_expr (op2);
1132 return false;
1133 }
1134
1135 result->rank = p->rank;
1136 result->where = p->where;
1137 gfc_replace_expr (p, result);
1138
1139 return true;
1140 }
1141
1142
1143 /* Subroutine to simplify constructor expressions. Mutually recursive
1144 with gfc_simplify_expr(). */
1145
1146 static bool
1147 simplify_constructor (gfc_constructor_base base, int type)
1148 {
1149 gfc_constructor *c;
1150 gfc_expr *p;
1151
1152 for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
1153 {
1154 if (c->iterator
1155 && (!gfc_simplify_expr(c->iterator->start, type)
1156 || !gfc_simplify_expr (c->iterator->end, type)
1157 || !gfc_simplify_expr (c->iterator->step, type)))
1158 return false;
1159
1160 if (c->expr)
1161 {
1162 /* Try and simplify a copy. Replace the original if successful
1163 but keep going through the constructor at all costs. Not
1164 doing so can make a dog's dinner of complicated things. */
1165 p = gfc_copy_expr (c->expr);
1166
1167 if (!gfc_simplify_expr (p, type))
1168 {
1169 gfc_free_expr (p);
1170 continue;
1171 }
1172
1173 gfc_replace_expr (c->expr, p);
1174 }
1175 }
1176
1177 return true;
1178 }
1179
1180
1181 /* Pull a single array element out of an array constructor. */
1182
1183 static bool
1184 find_array_element (gfc_constructor_base base, gfc_array_ref *ar,
1185 gfc_constructor **rval)
1186 {
1187 unsigned long nelemen;
1188 int i;
1189 mpz_t delta;
1190 mpz_t offset;
1191 mpz_t span;
1192 mpz_t tmp;
1193 gfc_constructor *cons;
1194 gfc_expr *e;
1195 bool t;
1196
1197 t = true;
1198 e = NULL;
1199
1200 mpz_init_set_ui (offset, 0);
1201 mpz_init (delta);
1202 mpz_init (tmp);
1203 mpz_init_set_ui (span, 1);
1204 for (i = 0; i < ar->dimen; i++)
1205 {
1206 if (!gfc_reduce_init_expr (ar->as->lower[i])
1207 || !gfc_reduce_init_expr (ar->as->upper[i]))
1208 {
1209 t = false;
1210 cons = NULL;
1211 goto depart;
1212 }
1213
1214 e = ar->start[i];
1215 if (e->expr_type != EXPR_CONSTANT)
1216 {
1217 cons = NULL;
1218 goto depart;
1219 }
1220
1221 gcc_assert (ar->as->upper[i]->expr_type == EXPR_CONSTANT
1222 && ar->as->lower[i]->expr_type == EXPR_CONSTANT);
1223
1224 /* Check the bounds. */
1225 if ((ar->as->upper[i]
1226 && mpz_cmp (e->value.integer,
1227 ar->as->upper[i]->value.integer) > 0)
1228 || (mpz_cmp (e->value.integer,
1229 ar->as->lower[i]->value.integer) < 0))
1230 {
1231 gfc_error ("Index in dimension %d is out of bounds "
1232 "at %L", i + 1, &ar->c_where[i]);
1233 cons = NULL;
1234 t = false;
1235 goto depart;
1236 }
1237
1238 mpz_sub (delta, e->value.integer, ar->as->lower[i]->value.integer);
1239 mpz_mul (delta, delta, span);
1240 mpz_add (offset, offset, delta);
1241
1242 mpz_set_ui (tmp, 1);
1243 mpz_add (tmp, tmp, ar->as->upper[i]->value.integer);
1244 mpz_sub (tmp, tmp, ar->as->lower[i]->value.integer);
1245 mpz_mul (span, span, tmp);
1246 }
1247
1248 for (cons = gfc_constructor_first (base), nelemen = mpz_get_ui (offset);
1249 cons && nelemen > 0; cons = gfc_constructor_next (cons), nelemen--)
1250 {
1251 if (cons->iterator)
1252 {
1253 cons = NULL;
1254 goto depart;
1255 }
1256 }
1257
1258 depart:
1259 mpz_clear (delta);
1260 mpz_clear (offset);
1261 mpz_clear (span);
1262 mpz_clear (tmp);
1263 *rval = cons;
1264 return t;
1265 }
1266
1267
1268 /* Find a component of a structure constructor. */
1269
1270 static gfc_constructor *
1271 find_component_ref (gfc_constructor_base base, gfc_ref *ref)
1272 {
1273 gfc_component *pick = ref->u.c.component;
1274 gfc_constructor *c = gfc_constructor_first (base);
1275
1276 gfc_symbol *dt = ref->u.c.sym;
1277 int ext = dt->attr.extension;
1278
1279 /* For extended types, check if the desired component is in one of the
1280 * parent types. */
1281 while (ext > 0 && gfc_find_component (dt->components->ts.u.derived,
1282 pick->name, true, true))
1283 {
1284 dt = dt->components->ts.u.derived;
1285 c = gfc_constructor_first (c->expr->value.constructor);
1286 ext--;
1287 }
1288
1289 gfc_component *comp = dt->components;
1290 while (comp != pick)
1291 {
1292 comp = comp->next;
1293 c = gfc_constructor_next (c);
1294 }
1295
1296 return c;
1297 }
1298
1299
1300 /* Replace an expression with the contents of a constructor, removing
1301 the subobject reference in the process. */
1302
1303 static void
1304 remove_subobject_ref (gfc_expr *p, gfc_constructor *cons)
1305 {
1306 gfc_expr *e;
1307
1308 if (cons)
1309 {
1310 e = cons->expr;
1311 cons->expr = NULL;
1312 }
1313 else
1314 e = gfc_copy_expr (p);
1315 e->ref = p->ref->next;
1316 p->ref->next = NULL;
1317 gfc_replace_expr (p, e);
1318 }
1319
1320
1321 /* Pull an array section out of an array constructor. */
1322
1323 static bool
1324 find_array_section (gfc_expr *expr, gfc_ref *ref)
1325 {
1326 int idx;
1327 int rank;
1328 int d;
1329 int shape_i;
1330 int limit;
1331 long unsigned one = 1;
1332 bool incr_ctr;
1333 mpz_t start[GFC_MAX_DIMENSIONS];
1334 mpz_t end[GFC_MAX_DIMENSIONS];
1335 mpz_t stride[GFC_MAX_DIMENSIONS];
1336 mpz_t delta[GFC_MAX_DIMENSIONS];
1337 mpz_t ctr[GFC_MAX_DIMENSIONS];
1338 mpz_t delta_mpz;
1339 mpz_t tmp_mpz;
1340 mpz_t nelts;
1341 mpz_t ptr;
1342 gfc_constructor_base base;
1343 gfc_constructor *cons, *vecsub[GFC_MAX_DIMENSIONS];
1344 gfc_expr *begin;
1345 gfc_expr *finish;
1346 gfc_expr *step;
1347 gfc_expr *upper;
1348 gfc_expr *lower;
1349 bool t;
1350
1351 t = true;
1352
1353 base = expr->value.constructor;
1354 expr->value.constructor = NULL;
1355
1356 rank = ref->u.ar.as->rank;
1357
1358 if (expr->shape == NULL)
1359 expr->shape = gfc_get_shape (rank);
1360
1361 mpz_init_set_ui (delta_mpz, one);
1362 mpz_init_set_ui (nelts, one);
1363 mpz_init (tmp_mpz);
1364
1365 /* Do the initialization now, so that we can cleanup without
1366 keeping track of where we were. */
1367 for (d = 0; d < rank; d++)
1368 {
1369 mpz_init (delta[d]);
1370 mpz_init (start[d]);
1371 mpz_init (end[d]);
1372 mpz_init (ctr[d]);
1373 mpz_init (stride[d]);
1374 vecsub[d] = NULL;
1375 }
1376
1377 /* Build the counters to clock through the array reference. */
1378 shape_i = 0;
1379 for (d = 0; d < rank; d++)
1380 {
1381 /* Make this stretch of code easier on the eye! */
1382 begin = ref->u.ar.start[d];
1383 finish = ref->u.ar.end[d];
1384 step = ref->u.ar.stride[d];
1385 lower = ref->u.ar.as->lower[d];
1386 upper = ref->u.ar.as->upper[d];
1387
1388 if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
1389 {
1390 gfc_constructor *ci;
1391 gcc_assert (begin);
1392
1393 if (begin->expr_type != EXPR_ARRAY || !gfc_is_constant_expr (begin))
1394 {
1395 t = false;
1396 goto cleanup;
1397 }
1398
1399 gcc_assert (begin->rank == 1);
1400 /* Zero-sized arrays have no shape and no elements, stop early. */
1401 if (!begin->shape)
1402 {
1403 mpz_init_set_ui (nelts, 0);
1404 break;
1405 }
1406
1407 vecsub[d] = gfc_constructor_first (begin->value.constructor);
1408 mpz_set (ctr[d], vecsub[d]->expr->value.integer);
1409 mpz_mul (nelts, nelts, begin->shape[0]);
1410 mpz_set (expr->shape[shape_i++], begin->shape[0]);
1411
1412 /* Check bounds. */
1413 for (ci = vecsub[d]; ci; ci = gfc_constructor_next (ci))
1414 {
1415 if (mpz_cmp (ci->expr->value.integer, upper->value.integer) > 0
1416 || mpz_cmp (ci->expr->value.integer,
1417 lower->value.integer) < 0)
1418 {
1419 gfc_error ("index in dimension %d is out of bounds "
1420 "at %L", d + 1, &ref->u.ar.c_where[d]);
1421 t = false;
1422 goto cleanup;
1423 }
1424 }
1425 }
1426 else
1427 {
1428 if ((begin && begin->expr_type != EXPR_CONSTANT)
1429 || (finish && finish->expr_type != EXPR_CONSTANT)
1430 || (step && step->expr_type != EXPR_CONSTANT))
1431 {
1432 t = false;
1433 goto cleanup;
1434 }
1435
1436 /* Obtain the stride. */
1437 if (step)
1438 mpz_set (stride[d], step->value.integer);
1439 else
1440 mpz_set_ui (stride[d], one);
1441
1442 if (mpz_cmp_ui (stride[d], 0) == 0)
1443 mpz_set_ui (stride[d], one);
1444
1445 /* Obtain the start value for the index. */
1446 if (begin)
1447 mpz_set (start[d], begin->value.integer);
1448 else
1449 mpz_set (start[d], lower->value.integer);
1450
1451 mpz_set (ctr[d], start[d]);
1452
1453 /* Obtain the end value for the index. */
1454 if (finish)
1455 mpz_set (end[d], finish->value.integer);
1456 else
1457 mpz_set (end[d], upper->value.integer);
1458
1459 /* Separate 'if' because elements sometimes arrive with
1460 non-null end. */
1461 if (ref->u.ar.dimen_type[d] == DIMEN_ELEMENT)
1462 mpz_set (end [d], begin->value.integer);
1463
1464 /* Check the bounds. */
1465 if (mpz_cmp (ctr[d], upper->value.integer) > 0
1466 || mpz_cmp (end[d], upper->value.integer) > 0
1467 || mpz_cmp (ctr[d], lower->value.integer) < 0
1468 || mpz_cmp (end[d], lower->value.integer) < 0)
1469 {
1470 gfc_error ("index in dimension %d is out of bounds "
1471 "at %L", d + 1, &ref->u.ar.c_where[d]);
1472 t = false;
1473 goto cleanup;
1474 }
1475
1476 /* Calculate the number of elements and the shape. */
1477 mpz_set (tmp_mpz, stride[d]);
1478 mpz_add (tmp_mpz, end[d], tmp_mpz);
1479 mpz_sub (tmp_mpz, tmp_mpz, ctr[d]);
1480 mpz_div (tmp_mpz, tmp_mpz, stride[d]);
1481 mpz_mul (nelts, nelts, tmp_mpz);
1482
1483 /* An element reference reduces the rank of the expression; don't
1484 add anything to the shape array. */
1485 if (ref->u.ar.dimen_type[d] != DIMEN_ELEMENT)
1486 mpz_set (expr->shape[shape_i++], tmp_mpz);
1487 }
1488
1489 /* Calculate the 'stride' (=delta) for conversion of the
1490 counter values into the index along the constructor. */
1491 mpz_set (delta[d], delta_mpz);
1492 mpz_sub (tmp_mpz, upper->value.integer, lower->value.integer);
1493 mpz_add_ui (tmp_mpz, tmp_mpz, one);
1494 mpz_mul (delta_mpz, delta_mpz, tmp_mpz);
1495 }
1496
1497 mpz_init (ptr);
1498 cons = gfc_constructor_first (base);
1499
1500 /* Now clock through the array reference, calculating the index in
1501 the source constructor and transferring the elements to the new
1502 constructor. */
1503 for (idx = 0; idx < (int) mpz_get_si (nelts); idx++)
1504 {
1505 mpz_init_set_ui (ptr, 0);
1506
1507 incr_ctr = true;
1508 for (d = 0; d < rank; d++)
1509 {
1510 mpz_set (tmp_mpz, ctr[d]);
1511 mpz_sub (tmp_mpz, tmp_mpz, ref->u.ar.as->lower[d]->value.integer);
1512 mpz_mul (tmp_mpz, tmp_mpz, delta[d]);
1513 mpz_add (ptr, ptr, tmp_mpz);
1514
1515 if (!incr_ctr) continue;
1516
1517 if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
1518 {
1519 gcc_assert(vecsub[d]);
1520
1521 if (!gfc_constructor_next (vecsub[d]))
1522 vecsub[d] = gfc_constructor_first (ref->u.ar.start[d]->value.constructor);
1523 else
1524 {
1525 vecsub[d] = gfc_constructor_next (vecsub[d]);
1526 incr_ctr = false;
1527 }
1528 mpz_set (ctr[d], vecsub[d]->expr->value.integer);
1529 }
1530 else
1531 {
1532 mpz_add (ctr[d], ctr[d], stride[d]);
1533
1534 if (mpz_cmp_ui (stride[d], 0) > 0
1535 ? mpz_cmp (ctr[d], end[d]) > 0
1536 : mpz_cmp (ctr[d], end[d]) < 0)
1537 mpz_set (ctr[d], start[d]);
1538 else
1539 incr_ctr = false;
1540 }
1541 }
1542
1543 limit = mpz_get_ui (ptr);
1544 if (limit >= flag_max_array_constructor)
1545 {
1546 gfc_error ("The number of elements in the array constructor "
1547 "at %L requires an increase of the allowed %d "
1548 "upper limit. See -fmax-array-constructor "
1549 "option", &expr->where, flag_max_array_constructor);
1550 return false;
1551 }
1552
1553 cons = gfc_constructor_lookup (base, limit);
1554 gcc_assert (cons);
1555 gfc_constructor_append_expr (&expr->value.constructor,
1556 gfc_copy_expr (cons->expr), NULL);
1557 }
1558
1559 mpz_clear (ptr);
1560
1561 cleanup:
1562
1563 mpz_clear (delta_mpz);
1564 mpz_clear (tmp_mpz);
1565 mpz_clear (nelts);
1566 for (d = 0; d < rank; d++)
1567 {
1568 mpz_clear (delta[d]);
1569 mpz_clear (start[d]);
1570 mpz_clear (end[d]);
1571 mpz_clear (ctr[d]);
1572 mpz_clear (stride[d]);
1573 }
1574 gfc_constructor_free (base);
1575 return t;
1576 }
1577
1578 /* Pull a substring out of an expression. */
1579
1580 static bool
1581 find_substring_ref (gfc_expr *p, gfc_expr **newp)
1582 {
1583 int end;
1584 int start;
1585 int length;
1586 gfc_char_t *chr;
1587
1588 if (p->ref->u.ss.start->expr_type != EXPR_CONSTANT
1589 || p->ref->u.ss.end->expr_type != EXPR_CONSTANT)
1590 return false;
1591
1592 *newp = gfc_copy_expr (p);
1593 free ((*newp)->value.character.string);
1594
1595 end = (int) mpz_get_ui (p->ref->u.ss.end->value.integer);
1596 start = (int) mpz_get_ui (p->ref->u.ss.start->value.integer);
1597 length = end - start + 1;
1598
1599 chr = (*newp)->value.character.string = gfc_get_wide_string (length + 1);
1600 (*newp)->value.character.length = length;
1601 memcpy (chr, &p->value.character.string[start - 1],
1602 length * sizeof (gfc_char_t));
1603 chr[length] = '\0';
1604 return true;
1605 }
1606
1607
1608
1609 /* Simplify a subobject reference of a constructor. This occurs when
1610 parameter variable values are substituted. */
1611
1612 static bool
1613 simplify_const_ref (gfc_expr *p)
1614 {
1615 gfc_constructor *cons, *c;
1616 gfc_expr *newp;
1617 gfc_ref *last_ref;
1618
1619 while (p->ref)
1620 {
1621 switch (p->ref->type)
1622 {
1623 case REF_ARRAY:
1624 switch (p->ref->u.ar.type)
1625 {
1626 case AR_ELEMENT:
1627 /* <type/kind spec>, parameter :: x(<int>) = scalar_expr
1628 will generate this. */
1629 if (p->expr_type != EXPR_ARRAY)
1630 {
1631 remove_subobject_ref (p, NULL);
1632 break;
1633 }
1634 if (!find_array_element (p->value.constructor, &p->ref->u.ar, &cons))
1635 return false;
1636
1637 if (!cons)
1638 return true;
1639
1640 remove_subobject_ref (p, cons);
1641 break;
1642
1643 case AR_SECTION:
1644 if (!find_array_section (p, p->ref))
1645 return false;
1646 p->ref->u.ar.type = AR_FULL;
1647
1648 /* Fall through. */
1649
1650 case AR_FULL:
1651 if (p->ref->next != NULL
1652 && (p->ts.type == BT_CHARACTER || p->ts.type == BT_DERIVED))
1653 {
1654 for (c = gfc_constructor_first (p->value.constructor);
1655 c; c = gfc_constructor_next (c))
1656 {
1657 c->expr->ref = gfc_copy_ref (p->ref->next);
1658 if (!simplify_const_ref (c->expr))
1659 return false;
1660 }
1661
1662 if (p->ts.type == BT_DERIVED
1663 && p->ref->next
1664 && (c = gfc_constructor_first (p->value.constructor)))
1665 {
1666 /* There may have been component references. */
1667 p->ts = c->expr->ts;
1668 }
1669
1670 last_ref = p->ref;
1671 for (; last_ref->next; last_ref = last_ref->next) {};
1672
1673 if (p->ts.type == BT_CHARACTER
1674 && last_ref->type == REF_SUBSTRING)
1675 {
1676 /* If this is a CHARACTER array and we possibly took
1677 a substring out of it, update the type-spec's
1678 character length according to the first element
1679 (as all should have the same length). */
1680 int string_len;
1681 if ((c = gfc_constructor_first (p->value.constructor)))
1682 {
1683 const gfc_expr* first = c->expr;
1684 gcc_assert (first->expr_type == EXPR_CONSTANT);
1685 gcc_assert (first->ts.type == BT_CHARACTER);
1686 string_len = first->value.character.length;
1687 }
1688 else
1689 string_len = 0;
1690
1691 if (!p->ts.u.cl)
1692 p->ts.u.cl = gfc_new_charlen (p->symtree->n.sym->ns,
1693 NULL);
1694 else
1695 gfc_free_expr (p->ts.u.cl->length);
1696
1697 p->ts.u.cl->length
1698 = gfc_get_int_expr (gfc_default_integer_kind,
1699 NULL, string_len);
1700 }
1701 }
1702 gfc_free_ref_list (p->ref);
1703 p->ref = NULL;
1704 break;
1705
1706 default:
1707 return true;
1708 }
1709
1710 break;
1711
1712 case REF_COMPONENT:
1713 cons = find_component_ref (p->value.constructor, p->ref);
1714 remove_subobject_ref (p, cons);
1715 break;
1716
1717 case REF_SUBSTRING:
1718 if (!find_substring_ref (p, &newp))
1719 return false;
1720
1721 gfc_replace_expr (p, newp);
1722 gfc_free_ref_list (p->ref);
1723 p->ref = NULL;
1724 break;
1725 }
1726 }
1727
1728 return true;
1729 }
1730
1731
1732 /* Simplify a chain of references. */
1733
1734 static bool
1735 simplify_ref_chain (gfc_ref *ref, int type)
1736 {
1737 int n;
1738
1739 for (; ref; ref = ref->next)
1740 {
1741 switch (ref->type)
1742 {
1743 case REF_ARRAY:
1744 for (n = 0; n < ref->u.ar.dimen; n++)
1745 {
1746 if (!gfc_simplify_expr (ref->u.ar.start[n], type))
1747 return false;
1748 if (!gfc_simplify_expr (ref->u.ar.end[n], type))
1749 return false;
1750 if (!gfc_simplify_expr (ref->u.ar.stride[n], type))
1751 return false;
1752 }
1753 break;
1754
1755 case REF_SUBSTRING:
1756 if (!gfc_simplify_expr (ref->u.ss.start, type))
1757 return false;
1758 if (!gfc_simplify_expr (ref->u.ss.end, type))
1759 return false;
1760 break;
1761
1762 default:
1763 break;
1764 }
1765 }
1766 return true;
1767 }
1768
1769
1770 /* Try to substitute the value of a parameter variable. */
1771
1772 static bool
1773 simplify_parameter_variable (gfc_expr *p, int type)
1774 {
1775 gfc_expr *e;
1776 bool t;
1777
1778 e = gfc_copy_expr (p->symtree->n.sym->value);
1779 if (e == NULL)
1780 return false;
1781
1782 e->rank = p->rank;
1783
1784 /* Do not copy subobject refs for constant. */
1785 if (e->expr_type != EXPR_CONSTANT && p->ref != NULL)
1786 e->ref = gfc_copy_ref (p->ref);
1787 t = gfc_simplify_expr (e, type);
1788
1789 /* Only use the simplification if it eliminated all subobject references. */
1790 if (t && !e->ref)
1791 gfc_replace_expr (p, e);
1792 else
1793 gfc_free_expr (e);
1794
1795 return t;
1796 }
1797
1798 /* Given an expression, simplify it by collapsing constant
1799 expressions. Most simplification takes place when the expression
1800 tree is being constructed. If an intrinsic function is simplified
1801 at some point, we get called again to collapse the result against
1802 other constants.
1803
1804 We work by recursively simplifying expression nodes, simplifying
1805 intrinsic functions where possible, which can lead to further
1806 constant collapsing. If an operator has constant operand(s), we
1807 rip the expression apart, and rebuild it, hoping that it becomes
1808 something simpler.
1809
1810 The expression type is defined for:
1811 0 Basic expression parsing
1812 1 Simplifying array constructors -- will substitute
1813 iterator values.
1814 Returns false on error, true otherwise.
1815 NOTE: Will return true even if the expression can not be simplified. */
1816
1817 bool
1818 gfc_simplify_expr (gfc_expr *p, int type)
1819 {
1820 gfc_actual_arglist *ap;
1821
1822 if (p == NULL)
1823 return true;
1824
1825 switch (p->expr_type)
1826 {
1827 case EXPR_CONSTANT:
1828 case EXPR_NULL:
1829 break;
1830
1831 case EXPR_FUNCTION:
1832 for (ap = p->value.function.actual; ap; ap = ap->next)
1833 if (!gfc_simplify_expr (ap->expr, type))
1834 return false;
1835
1836 if (p->value.function.isym != NULL
1837 && gfc_intrinsic_func_interface (p, 1) == MATCH_ERROR)
1838 return false;
1839
1840 break;
1841
1842 case EXPR_SUBSTRING:
1843 if (!simplify_ref_chain (p->ref, type))
1844 return false;
1845
1846 if (gfc_is_constant_expr (p))
1847 {
1848 gfc_char_t *s;
1849 int start, end;
1850
1851 start = 0;
1852 if (p->ref && p->ref->u.ss.start)
1853 {
1854 gfc_extract_int (p->ref->u.ss.start, &start);
1855 start--; /* Convert from one-based to zero-based. */
1856 }
1857
1858 end = p->value.character.length;
1859 if (p->ref && p->ref->u.ss.end)
1860 gfc_extract_int (p->ref->u.ss.end, &end);
1861
1862 if (end < start)
1863 end = start;
1864
1865 s = gfc_get_wide_string (end - start + 2);
1866 memcpy (s, p->value.character.string + start,
1867 (end - start) * sizeof (gfc_char_t));
1868 s[end - start + 1] = '\0'; /* TODO: C-style string. */
1869 free (p->value.character.string);
1870 p->value.character.string = s;
1871 p->value.character.length = end - start;
1872 p->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1873 p->ts.u.cl->length = gfc_get_int_expr (gfc_default_integer_kind,
1874 NULL,
1875 p->value.character.length);
1876 gfc_free_ref_list (p->ref);
1877 p->ref = NULL;
1878 p->expr_type = EXPR_CONSTANT;
1879 }
1880 break;
1881
1882 case EXPR_OP:
1883 if (!simplify_intrinsic_op (p, type))
1884 return false;
1885 break;
1886
1887 case EXPR_VARIABLE:
1888 /* Only substitute array parameter variables if we are in an
1889 initialization expression, or we want a subsection. */
1890 if (p->symtree->n.sym->attr.flavor == FL_PARAMETER
1891 && (gfc_init_expr_flag || p->ref
1892 || p->symtree->n.sym->value->expr_type != EXPR_ARRAY))
1893 {
1894 if (!simplify_parameter_variable (p, type))
1895 return false;
1896 break;
1897 }
1898
1899 if (type == 1)
1900 {
1901 gfc_simplify_iterator_var (p);
1902 }
1903
1904 /* Simplify subcomponent references. */
1905 if (!simplify_ref_chain (p->ref, type))
1906 return false;
1907
1908 break;
1909
1910 case EXPR_STRUCTURE:
1911 case EXPR_ARRAY:
1912 if (!simplify_ref_chain (p->ref, type))
1913 return false;
1914
1915 if (!simplify_constructor (p->value.constructor, type))
1916 return false;
1917
1918 if (p->expr_type == EXPR_ARRAY && p->ref && p->ref->type == REF_ARRAY
1919 && p->ref->u.ar.type == AR_FULL)
1920 gfc_expand_constructor (p, false);
1921
1922 if (!simplify_const_ref (p))
1923 return false;
1924
1925 break;
1926
1927 case EXPR_COMPCALL:
1928 case EXPR_PPC:
1929 break;
1930 }
1931
1932 return true;
1933 }
1934
1935
1936 /* Returns the type of an expression with the exception that iterator
1937 variables are automatically integers no matter what else they may
1938 be declared as. */
1939
1940 static bt
1941 et0 (gfc_expr *e)
1942 {
1943 if (e->expr_type == EXPR_VARIABLE && gfc_check_iter_variable (e))
1944 return BT_INTEGER;
1945
1946 return e->ts.type;
1947 }
1948
1949
1950 /* Scalarize an expression for an elemental intrinsic call. */
1951
1952 static bool
1953 scalarize_intrinsic_call (gfc_expr *e)
1954 {
1955 gfc_actual_arglist *a, *b;
1956 gfc_constructor_base ctor;
1957 gfc_constructor *args[5];
1958 gfc_constructor *ci, *new_ctor;
1959 gfc_expr *expr, *old;
1960 int n, i, rank[5], array_arg;
1961
1962 /* Find which, if any, arguments are arrays. Assume that the old
1963 expression carries the type information and that the first arg
1964 that is an array expression carries all the shape information.*/
1965 n = array_arg = 0;
1966 a = e->value.function.actual;
1967 for (; a; a = a->next)
1968 {
1969 n++;
1970 if (!a->expr || a->expr->expr_type != EXPR_ARRAY)
1971 continue;
1972 array_arg = n;
1973 expr = gfc_copy_expr (a->expr);
1974 break;
1975 }
1976
1977 if (!array_arg)
1978 return false;
1979
1980 old = gfc_copy_expr (e);
1981
1982 gfc_constructor_free (expr->value.constructor);
1983 expr->value.constructor = NULL;
1984 expr->ts = old->ts;
1985 expr->where = old->where;
1986 expr->expr_type = EXPR_ARRAY;
1987
1988 /* Copy the array argument constructors into an array, with nulls
1989 for the scalars. */
1990 n = 0;
1991 a = old->value.function.actual;
1992 for (; a; a = a->next)
1993 {
1994 /* Check that this is OK for an initialization expression. */
1995 if (a->expr && !gfc_check_init_expr (a->expr))
1996 goto cleanup;
1997
1998 rank[n] = 0;
1999 if (a->expr && a->expr->rank && a->expr->expr_type == EXPR_VARIABLE)
2000 {
2001 rank[n] = a->expr->rank;
2002 ctor = a->expr->symtree->n.sym->value->value.constructor;
2003 args[n] = gfc_constructor_first (ctor);
2004 }
2005 else if (a->expr && a->expr->expr_type == EXPR_ARRAY)
2006 {
2007 if (a->expr->rank)
2008 rank[n] = a->expr->rank;
2009 else
2010 rank[n] = 1;
2011 ctor = gfc_constructor_copy (a->expr->value.constructor);
2012 args[n] = gfc_constructor_first (ctor);
2013 }
2014 else
2015 args[n] = NULL;
2016
2017 n++;
2018 }
2019
2020
2021 /* Using the array argument as the master, step through the array
2022 calling the function for each element and advancing the array
2023 constructors together. */
2024 for (ci = args[array_arg - 1]; ci; ci = gfc_constructor_next (ci))
2025 {
2026 new_ctor = gfc_constructor_append_expr (&expr->value.constructor,
2027 gfc_copy_expr (old), NULL);
2028
2029 gfc_free_actual_arglist (new_ctor->expr->value.function.actual);
2030 a = NULL;
2031 b = old->value.function.actual;
2032 for (i = 0; i < n; i++)
2033 {
2034 if (a == NULL)
2035 new_ctor->expr->value.function.actual
2036 = a = gfc_get_actual_arglist ();
2037 else
2038 {
2039 a->next = gfc_get_actual_arglist ();
2040 a = a->next;
2041 }
2042
2043 if (args[i])
2044 a->expr = gfc_copy_expr (args[i]->expr);
2045 else
2046 a->expr = gfc_copy_expr (b->expr);
2047
2048 b = b->next;
2049 }
2050
2051 /* Simplify the function calls. If the simplification fails, the
2052 error will be flagged up down-stream or the library will deal
2053 with it. */
2054 gfc_simplify_expr (new_ctor->expr, 0);
2055
2056 for (i = 0; i < n; i++)
2057 if (args[i])
2058 args[i] = gfc_constructor_next (args[i]);
2059
2060 for (i = 1; i < n; i++)
2061 if (rank[i] && ((args[i] != NULL && args[array_arg - 1] == NULL)
2062 || (args[i] == NULL && args[array_arg - 1] != NULL)))
2063 goto compliance;
2064 }
2065
2066 free_expr0 (e);
2067 *e = *expr;
2068 /* Free "expr" but not the pointers it contains. */
2069 free (expr);
2070 gfc_free_expr (old);
2071 return true;
2072
2073 compliance:
2074 gfc_error_now ("elemental function arguments at %C are not compliant");
2075
2076 cleanup:
2077 gfc_free_expr (expr);
2078 gfc_free_expr (old);
2079 return false;
2080 }
2081
2082
2083 static bool
2084 check_intrinsic_op (gfc_expr *e, bool (*check_function) (gfc_expr *))
2085 {
2086 gfc_expr *op1 = e->value.op.op1;
2087 gfc_expr *op2 = e->value.op.op2;
2088
2089 if (!(*check_function)(op1))
2090 return false;
2091
2092 switch (e->value.op.op)
2093 {
2094 case INTRINSIC_UPLUS:
2095 case INTRINSIC_UMINUS:
2096 if (!numeric_type (et0 (op1)))
2097 goto not_numeric;
2098 break;
2099
2100 case INTRINSIC_EQ:
2101 case INTRINSIC_EQ_OS:
2102 case INTRINSIC_NE:
2103 case INTRINSIC_NE_OS:
2104 case INTRINSIC_GT:
2105 case INTRINSIC_GT_OS:
2106 case INTRINSIC_GE:
2107 case INTRINSIC_GE_OS:
2108 case INTRINSIC_LT:
2109 case INTRINSIC_LT_OS:
2110 case INTRINSIC_LE:
2111 case INTRINSIC_LE_OS:
2112 if (!(*check_function)(op2))
2113 return false;
2114
2115 if (!(et0 (op1) == BT_CHARACTER && et0 (op2) == BT_CHARACTER)
2116 && !(numeric_type (et0 (op1)) && numeric_type (et0 (op2))))
2117 {
2118 gfc_error ("Numeric or CHARACTER operands are required in "
2119 "expression at %L", &e->where);
2120 return false;
2121 }
2122 break;
2123
2124 case INTRINSIC_PLUS:
2125 case INTRINSIC_MINUS:
2126 case INTRINSIC_TIMES:
2127 case INTRINSIC_DIVIDE:
2128 case INTRINSIC_POWER:
2129 if (!(*check_function)(op2))
2130 return false;
2131
2132 if (!numeric_type (et0 (op1)) || !numeric_type (et0 (op2)))
2133 goto not_numeric;
2134
2135 break;
2136
2137 case INTRINSIC_CONCAT:
2138 if (!(*check_function)(op2))
2139 return false;
2140
2141 if (et0 (op1) != BT_CHARACTER || et0 (op2) != BT_CHARACTER)
2142 {
2143 gfc_error ("Concatenation operator in expression at %L "
2144 "must have two CHARACTER operands", &op1->where);
2145 return false;
2146 }
2147
2148 if (op1->ts.kind != op2->ts.kind)
2149 {
2150 gfc_error ("Concat operator at %L must concatenate strings of the "
2151 "same kind", &e->where);
2152 return false;
2153 }
2154
2155 break;
2156
2157 case INTRINSIC_NOT:
2158 if (et0 (op1) != BT_LOGICAL)
2159 {
2160 gfc_error (".NOT. operator in expression at %L must have a LOGICAL "
2161 "operand", &op1->where);
2162 return false;
2163 }
2164
2165 break;
2166
2167 case INTRINSIC_AND:
2168 case INTRINSIC_OR:
2169 case INTRINSIC_EQV:
2170 case INTRINSIC_NEQV:
2171 if (!(*check_function)(op2))
2172 return false;
2173
2174 if (et0 (op1) != BT_LOGICAL || et0 (op2) != BT_LOGICAL)
2175 {
2176 gfc_error ("LOGICAL operands are required in expression at %L",
2177 &e->where);
2178 return false;
2179 }
2180
2181 break;
2182
2183 case INTRINSIC_PARENTHESES:
2184 break;
2185
2186 default:
2187 gfc_error ("Only intrinsic operators can be used in expression at %L",
2188 &e->where);
2189 return false;
2190 }
2191
2192 return true;
2193
2194 not_numeric:
2195 gfc_error ("Numeric operands are required in expression at %L", &e->where);
2196
2197 return false;
2198 }
2199
2200 /* F2003, 7.1.7 (3): In init expression, allocatable components
2201 must not be data-initialized. */
2202 static bool
2203 check_alloc_comp_init (gfc_expr *e)
2204 {
2205 gfc_component *comp;
2206 gfc_constructor *ctor;
2207
2208 gcc_assert (e->expr_type == EXPR_STRUCTURE);
2209 gcc_assert (e->ts.type == BT_DERIVED);
2210
2211 for (comp = e->ts.u.derived->components,
2212 ctor = gfc_constructor_first (e->value.constructor);
2213 comp; comp = comp->next, ctor = gfc_constructor_next (ctor))
2214 {
2215 if (comp->attr.allocatable && ctor->expr
2216 && ctor->expr->expr_type != EXPR_NULL)
2217 {
2218 gfc_error ("Invalid initialization expression for ALLOCATABLE "
2219 "component %qs in structure constructor at %L",
2220 comp->name, &ctor->expr->where);
2221 return false;
2222 }
2223 }
2224
2225 return true;
2226 }
2227
2228 static match
2229 check_init_expr_arguments (gfc_expr *e)
2230 {
2231 gfc_actual_arglist *ap;
2232
2233 for (ap = e->value.function.actual; ap; ap = ap->next)
2234 if (!gfc_check_init_expr (ap->expr))
2235 return MATCH_ERROR;
2236
2237 return MATCH_YES;
2238 }
2239
2240 static bool check_restricted (gfc_expr *);
2241
2242 /* F95, 7.1.6.1, Initialization expressions, (7)
2243 F2003, 7.1.7 Initialization expression, (8) */
2244
2245 static match
2246 check_inquiry (gfc_expr *e, int not_restricted)
2247 {
2248 const char *name;
2249 const char *const *functions;
2250
2251 static const char *const inquiry_func_f95[] = {
2252 "lbound", "shape", "size", "ubound",
2253 "bit_size", "len", "kind",
2254 "digits", "epsilon", "huge", "maxexponent", "minexponent",
2255 "precision", "radix", "range", "tiny",
2256 NULL
2257 };
2258
2259 static const char *const inquiry_func_f2003[] = {
2260 "lbound", "shape", "size", "ubound",
2261 "bit_size", "len", "kind",
2262 "digits", "epsilon", "huge", "maxexponent", "minexponent",
2263 "precision", "radix", "range", "tiny",
2264 "new_line", NULL
2265 };
2266
2267 int i = 0;
2268 gfc_actual_arglist *ap;
2269
2270 if (!e->value.function.isym
2271 || !e->value.function.isym->inquiry)
2272 return MATCH_NO;
2273
2274 /* An undeclared parameter will get us here (PR25018). */
2275 if (e->symtree == NULL)
2276 return MATCH_NO;
2277
2278 if (e->symtree->n.sym->from_intmod)
2279 {
2280 if (e->symtree->n.sym->from_intmod == INTMOD_ISO_FORTRAN_ENV
2281 && e->symtree->n.sym->intmod_sym_id != ISOFORTRAN_COMPILER_OPTIONS
2282 && e->symtree->n.sym->intmod_sym_id != ISOFORTRAN_COMPILER_VERSION)
2283 return MATCH_NO;
2284
2285 if (e->symtree->n.sym->from_intmod == INTMOD_ISO_C_BINDING
2286 && e->symtree->n.sym->intmod_sym_id != ISOCBINDING_C_SIZEOF)
2287 return MATCH_NO;
2288 }
2289 else
2290 {
2291 name = e->symtree->n.sym->name;
2292
2293 functions = (gfc_option.warn_std & GFC_STD_F2003)
2294 ? inquiry_func_f2003 : inquiry_func_f95;
2295
2296 for (i = 0; functions[i]; i++)
2297 if (strcmp (functions[i], name) == 0)
2298 break;
2299
2300 if (functions[i] == NULL)
2301 return MATCH_ERROR;
2302 }
2303
2304 /* At this point we have an inquiry function with a variable argument. The
2305 type of the variable might be undefined, but we need it now, because the
2306 arguments of these functions are not allowed to be undefined. */
2307
2308 for (ap = e->value.function.actual; ap; ap = ap->next)
2309 {
2310 if (!ap->expr)
2311 continue;
2312
2313 if (ap->expr->ts.type == BT_UNKNOWN)
2314 {
2315 if (ap->expr->symtree->n.sym->ts.type == BT_UNKNOWN
2316 && !gfc_set_default_type (ap->expr->symtree->n.sym, 0, gfc_current_ns))
2317 return MATCH_NO;
2318
2319 ap->expr->ts = ap->expr->symtree->n.sym->ts;
2320 }
2321
2322 /* Assumed character length will not reduce to a constant expression
2323 with LEN, as required by the standard. */
2324 if (i == 5 && not_restricted
2325 && ap->expr->symtree->n.sym->ts.type == BT_CHARACTER
2326 && (ap->expr->symtree->n.sym->ts.u.cl->length == NULL
2327 || ap->expr->symtree->n.sym->ts.deferred))
2328 {
2329 gfc_error ("Assumed or deferred character length variable %qs "
2330 " in constant expression at %L",
2331 ap->expr->symtree->n.sym->name,
2332 &ap->expr->where);
2333 return MATCH_ERROR;
2334 }
2335 else if (not_restricted && !gfc_check_init_expr (ap->expr))
2336 return MATCH_ERROR;
2337
2338 if (not_restricted == 0
2339 && ap->expr->expr_type != EXPR_VARIABLE
2340 && !check_restricted (ap->expr))
2341 return MATCH_ERROR;
2342
2343 if (not_restricted == 0
2344 && ap->expr->expr_type == EXPR_VARIABLE
2345 && ap->expr->symtree->n.sym->attr.dummy
2346 && ap->expr->symtree->n.sym->attr.optional)
2347 return MATCH_NO;
2348 }
2349
2350 return MATCH_YES;
2351 }
2352
2353
2354 /* F95, 7.1.6.1, Initialization expressions, (5)
2355 F2003, 7.1.7 Initialization expression, (5) */
2356
2357 static match
2358 check_transformational (gfc_expr *e)
2359 {
2360 static const char * const trans_func_f95[] = {
2361 "repeat", "reshape", "selected_int_kind",
2362 "selected_real_kind", "transfer", "trim", NULL
2363 };
2364
2365 static const char * const trans_func_f2003[] = {
2366 "all", "any", "count", "dot_product", "matmul", "null", "pack",
2367 "product", "repeat", "reshape", "selected_char_kind", "selected_int_kind",
2368 "selected_real_kind", "spread", "sum", "transfer", "transpose",
2369 "trim", "unpack", NULL
2370 };
2371
2372 int i;
2373 const char *name;
2374 const char *const *functions;
2375
2376 if (!e->value.function.isym
2377 || !e->value.function.isym->transformational)
2378 return MATCH_NO;
2379
2380 name = e->symtree->n.sym->name;
2381
2382 functions = (gfc_option.allow_std & GFC_STD_F2003)
2383 ? trans_func_f2003 : trans_func_f95;
2384
2385 /* NULL() is dealt with below. */
2386 if (strcmp ("null", name) == 0)
2387 return MATCH_NO;
2388
2389 for (i = 0; functions[i]; i++)
2390 if (strcmp (functions[i], name) == 0)
2391 break;
2392
2393 if (functions[i] == NULL)
2394 {
2395 gfc_error ("transformational intrinsic %qs at %L is not permitted "
2396 "in an initialization expression", name, &e->where);
2397 return MATCH_ERROR;
2398 }
2399
2400 return check_init_expr_arguments (e);
2401 }
2402
2403
2404 /* F95, 7.1.6.1, Initialization expressions, (6)
2405 F2003, 7.1.7 Initialization expression, (6) */
2406
2407 static match
2408 check_null (gfc_expr *e)
2409 {
2410 if (strcmp ("null", e->symtree->n.sym->name) != 0)
2411 return MATCH_NO;
2412
2413 return check_init_expr_arguments (e);
2414 }
2415
2416
2417 static match
2418 check_elemental (gfc_expr *e)
2419 {
2420 if (!e->value.function.isym
2421 || !e->value.function.isym->elemental)
2422 return MATCH_NO;
2423
2424 if (e->ts.type != BT_INTEGER
2425 && e->ts.type != BT_CHARACTER
2426 && !gfc_notify_std (GFC_STD_F2003, "Evaluation of nonstandard "
2427 "initialization expression at %L", &e->where))
2428 return MATCH_ERROR;
2429
2430 return check_init_expr_arguments (e);
2431 }
2432
2433
2434 static match
2435 check_conversion (gfc_expr *e)
2436 {
2437 if (!e->value.function.isym
2438 || !e->value.function.isym->conversion)
2439 return MATCH_NO;
2440
2441 return check_init_expr_arguments (e);
2442 }
2443
2444
2445 /* Verify that an expression is an initialization expression. A side
2446 effect is that the expression tree is reduced to a single constant
2447 node if all goes well. This would normally happen when the
2448 expression is constructed but function references are assumed to be
2449 intrinsics in the context of initialization expressions. If
2450 false is returned an error message has been generated. */
2451
2452 bool
2453 gfc_check_init_expr (gfc_expr *e)
2454 {
2455 match m;
2456 bool t;
2457
2458 if (e == NULL)
2459 return true;
2460
2461 switch (e->expr_type)
2462 {
2463 case EXPR_OP:
2464 t = check_intrinsic_op (e, gfc_check_init_expr);
2465 if (t)
2466 t = gfc_simplify_expr (e, 0);
2467
2468 break;
2469
2470 case EXPR_FUNCTION:
2471 t = false;
2472
2473 {
2474 gfc_intrinsic_sym* isym;
2475 gfc_symbol* sym = e->symtree->n.sym;
2476
2477 /* Special case for IEEE_SELECTED_REAL_KIND from the intrinsic
2478 module IEEE_ARITHMETIC, which is allowed in initialization
2479 expressions. */
2480 if (!strcmp(sym->name, "ieee_selected_real_kind")
2481 && sym->from_intmod == INTMOD_IEEE_ARITHMETIC)
2482 {
2483 gfc_expr *new_expr = gfc_simplify_ieee_selected_real_kind (e);
2484 if (new_expr)
2485 {
2486 gfc_replace_expr (e, new_expr);
2487 t = true;
2488 break;
2489 }
2490 }
2491
2492 if (!gfc_is_intrinsic (sym, 0, e->where)
2493 || (m = gfc_intrinsic_func_interface (e, 0)) != MATCH_YES)
2494 {
2495 gfc_error ("Function %qs in initialization expression at %L "
2496 "must be an intrinsic function",
2497 e->symtree->n.sym->name, &e->where);
2498 break;
2499 }
2500
2501 if ((m = check_conversion (e)) == MATCH_NO
2502 && (m = check_inquiry (e, 1)) == MATCH_NO
2503 && (m = check_null (e)) == MATCH_NO
2504 && (m = check_transformational (e)) == MATCH_NO
2505 && (m = check_elemental (e)) == MATCH_NO)
2506 {
2507 gfc_error ("Intrinsic function %qs at %L is not permitted "
2508 "in an initialization expression",
2509 e->symtree->n.sym->name, &e->where);
2510 m = MATCH_ERROR;
2511 }
2512
2513 if (m == MATCH_ERROR)
2514 return false;
2515
2516 /* Try to scalarize an elemental intrinsic function that has an
2517 array argument. */
2518 isym = gfc_find_function (e->symtree->n.sym->name);
2519 if (isym && isym->elemental
2520 && (t = scalarize_intrinsic_call(e)))
2521 break;
2522 }
2523
2524 if (m == MATCH_YES)
2525 t = gfc_simplify_expr (e, 0);
2526
2527 break;
2528
2529 case EXPR_VARIABLE:
2530 t = true;
2531
2532 if (gfc_check_iter_variable (e))
2533 break;
2534
2535 if (e->symtree->n.sym->attr.flavor == FL_PARAMETER)
2536 {
2537 /* A PARAMETER shall not be used to define itself, i.e.
2538 REAL, PARAMETER :: x = transfer(0, x)
2539 is invalid. */
2540 if (!e->symtree->n.sym->value)
2541 {
2542 gfc_error ("PARAMETER %qs is used at %L before its definition "
2543 "is complete", e->symtree->n.sym->name, &e->where);
2544 t = false;
2545 }
2546 else
2547 t = simplify_parameter_variable (e, 0);
2548
2549 break;
2550 }
2551
2552 if (gfc_in_match_data ())
2553 break;
2554
2555 t = false;
2556
2557 if (e->symtree->n.sym->as)
2558 {
2559 switch (e->symtree->n.sym->as->type)
2560 {
2561 case AS_ASSUMED_SIZE:
2562 gfc_error ("Assumed size array %qs at %L is not permitted "
2563 "in an initialization expression",
2564 e->symtree->n.sym->name, &e->where);
2565 break;
2566
2567 case AS_ASSUMED_SHAPE:
2568 gfc_error ("Assumed shape array %qs at %L is not permitted "
2569 "in an initialization expression",
2570 e->symtree->n.sym->name, &e->where);
2571 break;
2572
2573 case AS_DEFERRED:
2574 gfc_error ("Deferred array %qs at %L is not permitted "
2575 "in an initialization expression",
2576 e->symtree->n.sym->name, &e->where);
2577 break;
2578
2579 case AS_EXPLICIT:
2580 gfc_error ("Array %qs at %L is a variable, which does "
2581 "not reduce to a constant expression",
2582 e->symtree->n.sym->name, &e->where);
2583 break;
2584
2585 default:
2586 gcc_unreachable();
2587 }
2588 }
2589 else
2590 gfc_error ("Parameter %qs at %L has not been declared or is "
2591 "a variable, which does not reduce to a constant "
2592 "expression", e->symtree->n.sym->name, &e->where);
2593
2594 break;
2595
2596 case EXPR_CONSTANT:
2597 case EXPR_NULL:
2598 t = true;
2599 break;
2600
2601 case EXPR_SUBSTRING:
2602 t = gfc_check_init_expr (e->ref->u.ss.start);
2603 if (!t)
2604 break;
2605
2606 t = gfc_check_init_expr (e->ref->u.ss.end);
2607 if (t)
2608 t = gfc_simplify_expr (e, 0);
2609
2610 break;
2611
2612 case EXPR_STRUCTURE:
2613 t = e->ts.is_iso_c ? true : false;
2614 if (t)
2615 break;
2616
2617 t = check_alloc_comp_init (e);
2618 if (!t)
2619 break;
2620
2621 t = gfc_check_constructor (e, gfc_check_init_expr);
2622 if (!t)
2623 break;
2624
2625 break;
2626
2627 case EXPR_ARRAY:
2628 t = gfc_check_constructor (e, gfc_check_init_expr);
2629 if (!t)
2630 break;
2631
2632 t = gfc_expand_constructor (e, true);
2633 if (!t)
2634 break;
2635
2636 t = gfc_check_constructor_type (e);
2637 break;
2638
2639 default:
2640 gfc_internal_error ("check_init_expr(): Unknown expression type");
2641 }
2642
2643 return t;
2644 }
2645
2646 /* Reduces a general expression to an initialization expression (a constant).
2647 This used to be part of gfc_match_init_expr.
2648 Note that this function doesn't free the given expression on false. */
2649
2650 bool
2651 gfc_reduce_init_expr (gfc_expr *expr)
2652 {
2653 bool t;
2654
2655 gfc_init_expr_flag = true;
2656 t = gfc_resolve_expr (expr);
2657 if (t)
2658 t = gfc_check_init_expr (expr);
2659 gfc_init_expr_flag = false;
2660
2661 if (!t)
2662 return false;
2663
2664 if (expr->expr_type == EXPR_ARRAY)
2665 {
2666 if (!gfc_check_constructor_type (expr))
2667 return false;
2668 if (!gfc_expand_constructor (expr, true))
2669 return false;
2670 }
2671
2672 return true;
2673 }
2674
2675
2676 /* Match an initialization expression. We work by first matching an
2677 expression, then reducing it to a constant. */
2678
2679 match
2680 gfc_match_init_expr (gfc_expr **result)
2681 {
2682 gfc_expr *expr;
2683 match m;
2684 bool t;
2685
2686 expr = NULL;
2687
2688 gfc_init_expr_flag = true;
2689
2690 m = gfc_match_expr (&expr);
2691 if (m != MATCH_YES)
2692 {
2693 gfc_init_expr_flag = false;
2694 return m;
2695 }
2696
2697 t = gfc_reduce_init_expr (expr);
2698 if (!t)
2699 {
2700 gfc_free_expr (expr);
2701 gfc_init_expr_flag = false;
2702 return MATCH_ERROR;
2703 }
2704
2705 *result = expr;
2706 gfc_init_expr_flag = false;
2707
2708 return MATCH_YES;
2709 }
2710
2711
2712 /* Given an actual argument list, test to see that each argument is a
2713 restricted expression and optionally if the expression type is
2714 integer or character. */
2715
2716 static bool
2717 restricted_args (gfc_actual_arglist *a)
2718 {
2719 for (; a; a = a->next)
2720 {
2721 if (!check_restricted (a->expr))
2722 return false;
2723 }
2724
2725 return true;
2726 }
2727
2728
2729 /************* Restricted/specification expressions *************/
2730
2731
2732 /* Make sure a non-intrinsic function is a specification function. */
2733
2734 static bool
2735 external_spec_function (gfc_expr *e)
2736 {
2737 gfc_symbol *f;
2738
2739 f = e->value.function.esym;
2740
2741 if (f->attr.proc == PROC_ST_FUNCTION)
2742 {
2743 gfc_error ("Specification function %qs at %L cannot be a statement "
2744 "function", f->name, &e->where);
2745 return false;
2746 }
2747
2748 if (f->attr.proc == PROC_INTERNAL)
2749 {
2750 gfc_error ("Specification function %qs at %L cannot be an internal "
2751 "function", f->name, &e->where);
2752 return false;
2753 }
2754
2755 if (!f->attr.pure && !f->attr.elemental)
2756 {
2757 gfc_error ("Specification function %qs at %L must be PURE", f->name,
2758 &e->where);
2759 return false;
2760 }
2761
2762 if (f->attr.recursive)
2763 {
2764 gfc_error ("Specification function %qs at %L cannot be RECURSIVE",
2765 f->name, &e->where);
2766 return false;
2767 }
2768
2769 return restricted_args (e->value.function.actual);
2770 }
2771
2772
2773 /* Check to see that a function reference to an intrinsic is a
2774 restricted expression. */
2775
2776 static bool
2777 restricted_intrinsic (gfc_expr *e)
2778 {
2779 /* TODO: Check constraints on inquiry functions. 7.1.6.2 (7). */
2780 if (check_inquiry (e, 0) == MATCH_YES)
2781 return true;
2782
2783 return restricted_args (e->value.function.actual);
2784 }
2785
2786
2787 /* Check the expressions of an actual arglist. Used by check_restricted. */
2788
2789 static bool
2790 check_arglist (gfc_actual_arglist* arg, bool (*checker) (gfc_expr*))
2791 {
2792 for (; arg; arg = arg->next)
2793 if (!checker (arg->expr))
2794 return false;
2795
2796 return true;
2797 }
2798
2799
2800 /* Check the subscription expressions of a reference chain with a checking
2801 function; used by check_restricted. */
2802
2803 static bool
2804 check_references (gfc_ref* ref, bool (*checker) (gfc_expr*))
2805 {
2806 int dim;
2807
2808 if (!ref)
2809 return true;
2810
2811 switch (ref->type)
2812 {
2813 case REF_ARRAY:
2814 for (dim = 0; dim != ref->u.ar.dimen; ++dim)
2815 {
2816 if (!checker (ref->u.ar.start[dim]))
2817 return false;
2818 if (!checker (ref->u.ar.end[dim]))
2819 return false;
2820 if (!checker (ref->u.ar.stride[dim]))
2821 return false;
2822 }
2823 break;
2824
2825 case REF_COMPONENT:
2826 /* Nothing needed, just proceed to next reference. */
2827 break;
2828
2829 case REF_SUBSTRING:
2830 if (!checker (ref->u.ss.start))
2831 return false;
2832 if (!checker (ref->u.ss.end))
2833 return false;
2834 break;
2835
2836 default:
2837 gcc_unreachable ();
2838 break;
2839 }
2840
2841 return check_references (ref->next, checker);
2842 }
2843
2844
2845 /* Verify that an expression is a restricted expression. Like its
2846 cousin check_init_expr(), an error message is generated if we
2847 return false. */
2848
2849 static bool
2850 check_restricted (gfc_expr *e)
2851 {
2852 gfc_symbol* sym;
2853 bool t;
2854
2855 if (e == NULL)
2856 return true;
2857
2858 switch (e->expr_type)
2859 {
2860 case EXPR_OP:
2861 t = check_intrinsic_op (e, check_restricted);
2862 if (t)
2863 t = gfc_simplify_expr (e, 0);
2864
2865 break;
2866
2867 case EXPR_FUNCTION:
2868 if (e->value.function.esym)
2869 {
2870 t = check_arglist (e->value.function.actual, &check_restricted);
2871 if (t)
2872 t = external_spec_function (e);
2873 }
2874 else
2875 {
2876 if (e->value.function.isym && e->value.function.isym->inquiry)
2877 t = true;
2878 else
2879 t = check_arglist (e->value.function.actual, &check_restricted);
2880
2881 if (t)
2882 t = restricted_intrinsic (e);
2883 }
2884 break;
2885
2886 case EXPR_VARIABLE:
2887 sym = e->symtree->n.sym;
2888 t = false;
2889
2890 /* If a dummy argument appears in a context that is valid for a
2891 restricted expression in an elemental procedure, it will have
2892 already been simplified away once we get here. Therefore we
2893 don't need to jump through hoops to distinguish valid from
2894 invalid cases. */
2895 if (sym->attr.dummy && sym->ns == gfc_current_ns
2896 && sym->ns->proc_name && sym->ns->proc_name->attr.elemental)
2897 {
2898 gfc_error ("Dummy argument %qs not allowed in expression at %L",
2899 sym->name, &e->where);
2900 break;
2901 }
2902
2903 if (sym->attr.optional)
2904 {
2905 gfc_error ("Dummy argument %qs at %L cannot be OPTIONAL",
2906 sym->name, &e->where);
2907 break;
2908 }
2909
2910 if (sym->attr.intent == INTENT_OUT)
2911 {
2912 gfc_error ("Dummy argument %qs at %L cannot be INTENT(OUT)",
2913 sym->name, &e->where);
2914 break;
2915 }
2916
2917 /* Check reference chain if any. */
2918 if (!check_references (e->ref, &check_restricted))
2919 break;
2920
2921 /* gfc_is_formal_arg broadcasts that a formal argument list is being
2922 processed in resolve.c(resolve_formal_arglist). This is done so
2923 that host associated dummy array indices are accepted (PR23446).
2924 This mechanism also does the same for the specification expressions
2925 of array-valued functions. */
2926 if (e->error
2927 || sym->attr.in_common
2928 || sym->attr.use_assoc
2929 || sym->attr.dummy
2930 || sym->attr.implied_index
2931 || sym->attr.flavor == FL_PARAMETER
2932 || (sym->ns && sym->ns == gfc_current_ns->parent)
2933 || (sym->ns && gfc_current_ns->parent
2934 && sym->ns == gfc_current_ns->parent->parent)
2935 || (sym->ns->proc_name != NULL
2936 && sym->ns->proc_name->attr.flavor == FL_MODULE)
2937 || (gfc_is_formal_arg () && (sym->ns == gfc_current_ns)))
2938 {
2939 t = true;
2940 break;
2941 }
2942
2943 gfc_error ("Variable %qs cannot appear in the expression at %L",
2944 sym->name, &e->where);
2945 /* Prevent a repetition of the error. */
2946 e->error = 1;
2947 break;
2948
2949 case EXPR_NULL:
2950 case EXPR_CONSTANT:
2951 t = true;
2952 break;
2953
2954 case EXPR_SUBSTRING:
2955 t = gfc_specification_expr (e->ref->u.ss.start);
2956 if (!t)
2957 break;
2958
2959 t = gfc_specification_expr (e->ref->u.ss.end);
2960 if (t)
2961 t = gfc_simplify_expr (e, 0);
2962
2963 break;
2964
2965 case EXPR_STRUCTURE:
2966 t = gfc_check_constructor (e, check_restricted);
2967 break;
2968
2969 case EXPR_ARRAY:
2970 t = gfc_check_constructor (e, check_restricted);
2971 break;
2972
2973 default:
2974 gfc_internal_error ("check_restricted(): Unknown expression type");
2975 }
2976
2977 return t;
2978 }
2979
2980
2981 /* Check to see that an expression is a specification expression. If
2982 we return false, an error has been generated. */
2983
2984 bool
2985 gfc_specification_expr (gfc_expr *e)
2986 {
2987 gfc_component *comp;
2988
2989 if (e == NULL)
2990 return true;
2991
2992 if (e->ts.type != BT_INTEGER)
2993 {
2994 gfc_error ("Expression at %L must be of INTEGER type, found %s",
2995 &e->where, gfc_basic_typename (e->ts.type));
2996 return false;
2997 }
2998
2999 comp = gfc_get_proc_ptr_comp (e);
3000 if (e->expr_type == EXPR_FUNCTION
3001 && !e->value.function.isym
3002 && !e->value.function.esym
3003 && !gfc_pure (e->symtree->n.sym)
3004 && (!comp || !comp->attr.pure))
3005 {
3006 gfc_error ("Function %qs at %L must be PURE",
3007 e->symtree->n.sym->name, &e->where);
3008 /* Prevent repeat error messages. */
3009 e->symtree->n.sym->attr.pure = 1;
3010 return false;
3011 }
3012
3013 if (e->rank != 0)
3014 {
3015 gfc_error ("Expression at %L must be scalar", &e->where);
3016 return false;
3017 }
3018
3019 if (!gfc_simplify_expr (e, 0))
3020 return false;
3021
3022 return check_restricted (e);
3023 }
3024
3025
3026 /************** Expression conformance checks. *************/
3027
3028 /* Given two expressions, make sure that the arrays are conformable. */
3029
3030 bool
3031 gfc_check_conformance (gfc_expr *op1, gfc_expr *op2, const char *optype_msgid, ...)
3032 {
3033 int op1_flag, op2_flag, d;
3034 mpz_t op1_size, op2_size;
3035 bool t;
3036
3037 va_list argp;
3038 char buffer[240];
3039
3040 if (op1->rank == 0 || op2->rank == 0)
3041 return true;
3042
3043 va_start (argp, optype_msgid);
3044 vsnprintf (buffer, 240, optype_msgid, argp);
3045 va_end (argp);
3046
3047 if (op1->rank != op2->rank)
3048 {
3049 gfc_error ("Incompatible ranks in %s (%d and %d) at %L", _(buffer),
3050 op1->rank, op2->rank, &op1->where);
3051 return false;
3052 }
3053
3054 t = true;
3055
3056 for (d = 0; d < op1->rank; d++)
3057 {
3058 op1_flag = gfc_array_dimen_size(op1, d, &op1_size);
3059 op2_flag = gfc_array_dimen_size(op2, d, &op2_size);
3060
3061 if (op1_flag && op2_flag && mpz_cmp (op1_size, op2_size) != 0)
3062 {
3063 gfc_error ("Different shape for %s at %L on dimension %d "
3064 "(%d and %d)", _(buffer), &op1->where, d + 1,
3065 (int) mpz_get_si (op1_size),
3066 (int) mpz_get_si (op2_size));
3067
3068 t = false;
3069 }
3070
3071 if (op1_flag)
3072 mpz_clear (op1_size);
3073 if (op2_flag)
3074 mpz_clear (op2_size);
3075
3076 if (!t)
3077 return false;
3078 }
3079
3080 return true;
3081 }
3082
3083
3084 /* Given an assignable expression and an arbitrary expression, make
3085 sure that the assignment can take place. */
3086
3087 bool
3088 gfc_check_assign (gfc_expr *lvalue, gfc_expr *rvalue, int conform)
3089 {
3090 gfc_symbol *sym;
3091 gfc_ref *ref;
3092 int has_pointer;
3093
3094 sym = lvalue->symtree->n.sym;
3095
3096 /* See if this is the component or subcomponent of a pointer. */
3097 has_pointer = sym->attr.pointer;
3098 for (ref = lvalue->ref; ref; ref = ref->next)
3099 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
3100 {
3101 has_pointer = 1;
3102 break;
3103 }
3104
3105 /* 12.5.2.2, Note 12.26: The result variable is very similar to any other
3106 variable local to a function subprogram. Its existence begins when
3107 execution of the function is initiated and ends when execution of the
3108 function is terminated...
3109 Therefore, the left hand side is no longer a variable, when it is: */
3110 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_ST_FUNCTION
3111 && !sym->attr.external)
3112 {
3113 bool bad_proc;
3114 bad_proc = false;
3115
3116 /* (i) Use associated; */
3117 if (sym->attr.use_assoc)
3118 bad_proc = true;
3119
3120 /* (ii) The assignment is in the main program; or */
3121 if (gfc_current_ns->proc_name->attr.is_main_program)
3122 bad_proc = true;
3123
3124 /* (iii) A module or internal procedure... */
3125 if ((gfc_current_ns->proc_name->attr.proc == PROC_INTERNAL
3126 || gfc_current_ns->proc_name->attr.proc == PROC_MODULE)
3127 && gfc_current_ns->parent
3128 && (!(gfc_current_ns->parent->proc_name->attr.function
3129 || gfc_current_ns->parent->proc_name->attr.subroutine)
3130 || gfc_current_ns->parent->proc_name->attr.is_main_program))
3131 {
3132 /* ... that is not a function... */
3133 if (!gfc_current_ns->proc_name->attr.function)
3134 bad_proc = true;
3135
3136 /* ... or is not an entry and has a different name. */
3137 if (!sym->attr.entry && sym->name != gfc_current_ns->proc_name->name)
3138 bad_proc = true;
3139 }
3140
3141 /* (iv) Host associated and not the function symbol or the
3142 parent result. This picks up sibling references, which
3143 cannot be entries. */
3144 if (!sym->attr.entry
3145 && sym->ns == gfc_current_ns->parent
3146 && sym != gfc_current_ns->proc_name
3147 && sym != gfc_current_ns->parent->proc_name->result)
3148 bad_proc = true;
3149
3150 if (bad_proc)
3151 {
3152 gfc_error ("%qs at %L is not a VALUE", sym->name, &lvalue->where);
3153 return false;
3154 }
3155 }
3156
3157 if (rvalue->rank != 0 && lvalue->rank != rvalue->rank)
3158 {
3159 gfc_error ("Incompatible ranks %d and %d in assignment at %L",
3160 lvalue->rank, rvalue->rank, &lvalue->where);
3161 return false;
3162 }
3163
3164 if (lvalue->ts.type == BT_UNKNOWN)
3165 {
3166 gfc_error ("Variable type is UNKNOWN in assignment at %L",
3167 &lvalue->where);
3168 return false;
3169 }
3170
3171 if (rvalue->expr_type == EXPR_NULL)
3172 {
3173 if (has_pointer && (ref == NULL || ref->next == NULL)
3174 && lvalue->symtree->n.sym->attr.data)
3175 return true;
3176 else
3177 {
3178 gfc_error ("NULL appears on right-hand side in assignment at %L",
3179 &rvalue->where);
3180 return false;
3181 }
3182 }
3183
3184 /* This is possibly a typo: x = f() instead of x => f(). */
3185 if (warn_surprising
3186 && rvalue->expr_type == EXPR_FUNCTION && gfc_expr_attr (rvalue).pointer)
3187 gfc_warning (OPT_Wsurprising,
3188 "POINTER-valued function appears on right-hand side of "
3189 "assignment at %L", &rvalue->where);
3190
3191 /* Check size of array assignments. */
3192 if (lvalue->rank != 0 && rvalue->rank != 0
3193 && !gfc_check_conformance (lvalue, rvalue, "array assignment"))
3194 return false;
3195
3196 if (rvalue->is_boz && lvalue->ts.type != BT_INTEGER
3197 && lvalue->symtree->n.sym->attr.data
3198 && !gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L used to "
3199 "initialize non-integer variable %qs",
3200 &rvalue->where, lvalue->symtree->n.sym->name))
3201 return false;
3202 else if (rvalue->is_boz && !lvalue->symtree->n.sym->attr.data
3203 && !gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L outside "
3204 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
3205 &rvalue->where))
3206 return false;
3207
3208 /* Handle the case of a BOZ literal on the RHS. */
3209 if (rvalue->is_boz && lvalue->ts.type != BT_INTEGER)
3210 {
3211 int rc;
3212 if (warn_surprising)
3213 gfc_warning (OPT_Wsurprising,
3214 "BOZ literal at %L is bitwise transferred "
3215 "non-integer symbol %qs", &rvalue->where,
3216 lvalue->symtree->n.sym->name);
3217 if (!gfc_convert_boz (rvalue, &lvalue->ts))
3218 return false;
3219 if ((rc = gfc_range_check (rvalue)) != ARITH_OK)
3220 {
3221 if (rc == ARITH_UNDERFLOW)
3222 gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
3223 ". This check can be disabled with the option "
3224 "%<-fno-range-check%>", &rvalue->where);
3225 else if (rc == ARITH_OVERFLOW)
3226 gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
3227 ". This check can be disabled with the option "
3228 "%<-fno-range-check%>", &rvalue->where);
3229 else if (rc == ARITH_NAN)
3230 gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
3231 ". This check can be disabled with the option "
3232 "%<-fno-range-check%>", &rvalue->where);
3233 return false;
3234 }
3235 }
3236
3237 /* Warn about type-changing conversions for REAL or COMPLEX constants.
3238 If lvalue and rvalue are mixed REAL and complex, gfc_compare_types
3239 will warn anyway, so there is no need to to so here. */
3240
3241 if (rvalue->expr_type == EXPR_CONSTANT && lvalue->ts.type == rvalue->ts.type
3242 && (lvalue->ts.type == BT_REAL || lvalue->ts.type == BT_COMPLEX))
3243 {
3244 if (lvalue->ts.kind < rvalue->ts.kind && warn_conversion)
3245 {
3246 /* As a special bonus, don't warn about REAL rvalues which are not
3247 changed by the conversion if -Wconversion is specified. */
3248 if (rvalue->ts.type == BT_REAL && mpfr_number_p (rvalue->value.real))
3249 {
3250 /* Calculate the difference between the constant and the rounded
3251 value and check it against zero. */
3252 mpfr_t rv, diff;
3253 gfc_set_model_kind (lvalue->ts.kind);
3254 mpfr_init (rv);
3255 gfc_set_model_kind (rvalue->ts.kind);
3256 mpfr_init (diff);
3257
3258 mpfr_set (rv, rvalue->value.real, GFC_RND_MODE);
3259 mpfr_sub (diff, rv, rvalue->value.real, GFC_RND_MODE);
3260
3261 if (!mpfr_zero_p (diff))
3262 gfc_warning (OPT_Wconversion,
3263 "Change of value in conversion from "
3264 " %qs to %qs at %L", gfc_typename (&rvalue->ts),
3265 gfc_typename (&lvalue->ts), &rvalue->where);
3266
3267 mpfr_clear (rv);
3268 mpfr_clear (diff);
3269 }
3270 else
3271 gfc_warning (OPT_Wconversion,
3272 "Possible change of value in conversion from %qs "
3273 "to %qs at %L", gfc_typename (&rvalue->ts),
3274 gfc_typename (&lvalue->ts), &rvalue->where);
3275
3276 }
3277 else if (warn_conversion_extra && lvalue->ts.kind > rvalue->ts.kind)
3278 {
3279 gfc_warning (OPT_Wconversion_extra,
3280 "Conversion from %qs to %qs at %L",
3281 gfc_typename (&rvalue->ts),
3282 gfc_typename (&lvalue->ts), &rvalue->where);
3283 }
3284 }
3285
3286 if (gfc_compare_types (&lvalue->ts, &rvalue->ts))
3287 return true;
3288
3289 /* Only DATA Statements come here. */
3290 if (!conform)
3291 {
3292 /* Numeric can be converted to any other numeric. And Hollerith can be
3293 converted to any other type. */
3294 if ((gfc_numeric_ts (&lvalue->ts) && gfc_numeric_ts (&rvalue->ts))
3295 || rvalue->ts.type == BT_HOLLERITH)
3296 return true;
3297
3298 if (lvalue->ts.type == BT_LOGICAL && rvalue->ts.type == BT_LOGICAL)
3299 return true;
3300
3301 gfc_error ("Incompatible types in DATA statement at %L; attempted "
3302 "conversion of %s to %s", &lvalue->where,
3303 gfc_typename (&rvalue->ts), gfc_typename (&lvalue->ts));
3304
3305 return false;
3306 }
3307
3308 /* Assignment is the only case where character variables of different
3309 kind values can be converted into one another. */
3310 if (lvalue->ts.type == BT_CHARACTER && rvalue->ts.type == BT_CHARACTER)
3311 {
3312 if (lvalue->ts.kind != rvalue->ts.kind)
3313 gfc_convert_chartype (rvalue, &lvalue->ts);
3314
3315 return true;
3316 }
3317
3318 return gfc_convert_type (rvalue, &lvalue->ts, 1);
3319 }
3320
3321
3322 /* Check that a pointer assignment is OK. We first check lvalue, and
3323 we only check rvalue if it's not an assignment to NULL() or a
3324 NULLIFY statement. */
3325
3326 bool
3327 gfc_check_pointer_assign (gfc_expr *lvalue, gfc_expr *rvalue)
3328 {
3329 symbol_attribute attr, lhs_attr;
3330 gfc_ref *ref;
3331 bool is_pure, is_implicit_pure, rank_remap;
3332 int proc_pointer;
3333
3334 lhs_attr = gfc_expr_attr (lvalue);
3335 if (lvalue->ts.type == BT_UNKNOWN && !lhs_attr.proc_pointer)
3336 {
3337 gfc_error ("Pointer assignment target is not a POINTER at %L",
3338 &lvalue->where);
3339 return false;
3340 }
3341
3342 if (lhs_attr.flavor == FL_PROCEDURE && lhs_attr.use_assoc
3343 && !lhs_attr.proc_pointer)
3344 {
3345 gfc_error ("%qs in the pointer assignment at %L cannot be an "
3346 "l-value since it is a procedure",
3347 lvalue->symtree->n.sym->name, &lvalue->where);
3348 return false;
3349 }
3350
3351 proc_pointer = lvalue->symtree->n.sym->attr.proc_pointer;
3352
3353 rank_remap = false;
3354 for (ref = lvalue->ref; ref; ref = ref->next)
3355 {
3356 if (ref->type == REF_COMPONENT)
3357 proc_pointer = ref->u.c.component->attr.proc_pointer;
3358
3359 if (ref->type == REF_ARRAY && ref->next == NULL)
3360 {
3361 int dim;
3362
3363 if (ref->u.ar.type == AR_FULL)
3364 break;
3365
3366 if (ref->u.ar.type != AR_SECTION)
3367 {
3368 gfc_error ("Expected bounds specification for %qs at %L",
3369 lvalue->symtree->n.sym->name, &lvalue->where);
3370 return false;
3371 }
3372
3373 if (!gfc_notify_std (GFC_STD_F2003, "Bounds specification "
3374 "for %qs in pointer assignment at %L",
3375 lvalue->symtree->n.sym->name, &lvalue->where))
3376 return false;
3377
3378 /* When bounds are given, all lbounds are necessary and either all
3379 or none of the upper bounds; no strides are allowed. If the
3380 upper bounds are present, we may do rank remapping. */
3381 for (dim = 0; dim < ref->u.ar.dimen; ++dim)
3382 {
3383 if (!ref->u.ar.start[dim]
3384 || ref->u.ar.dimen_type[dim] != DIMEN_RANGE)
3385 {
3386 gfc_error ("Lower bound has to be present at %L",
3387 &lvalue->where);
3388 return false;
3389 }
3390 if (ref->u.ar.stride[dim])
3391 {
3392 gfc_error ("Stride must not be present at %L",
3393 &lvalue->where);
3394 return false;
3395 }
3396
3397 if (dim == 0)
3398 rank_remap = (ref->u.ar.end[dim] != NULL);
3399 else
3400 {
3401 if ((rank_remap && !ref->u.ar.end[dim])
3402 || (!rank_remap && ref->u.ar.end[dim]))
3403 {
3404 gfc_error ("Either all or none of the upper bounds"
3405 " must be specified at %L", &lvalue->where);
3406 return false;
3407 }
3408 }
3409 }
3410 }
3411 }
3412
3413 is_pure = gfc_pure (NULL);
3414 is_implicit_pure = gfc_implicit_pure (NULL);
3415
3416 /* If rvalue is a NULL() or NULLIFY, we're done. Otherwise the type,
3417 kind, etc for lvalue and rvalue must match, and rvalue must be a
3418 pure variable if we're in a pure function. */
3419 if (rvalue->expr_type == EXPR_NULL && rvalue->ts.type == BT_UNKNOWN)
3420 return true;
3421
3422 /* F2008, C723 (pointer) and C726 (proc-pointer); for PURE also C1283. */
3423 if (lvalue->expr_type == EXPR_VARIABLE
3424 && gfc_is_coindexed (lvalue))
3425 {
3426 gfc_ref *ref;
3427 for (ref = lvalue->ref; ref; ref = ref->next)
3428 if (ref->type == REF_ARRAY && ref->u.ar.codimen)
3429 {
3430 gfc_error ("Pointer object at %L shall not have a coindex",
3431 &lvalue->where);
3432 return false;
3433 }
3434 }
3435
3436 /* Checks on rvalue for procedure pointer assignments. */
3437 if (proc_pointer)
3438 {
3439 char err[200];
3440 gfc_symbol *s1,*s2;
3441 gfc_component *comp;
3442 const char *name;
3443
3444 attr = gfc_expr_attr (rvalue);
3445 if (!((rvalue->expr_type == EXPR_NULL)
3446 || (rvalue->expr_type == EXPR_FUNCTION && attr.proc_pointer)
3447 || (rvalue->expr_type == EXPR_VARIABLE && attr.proc_pointer)
3448 || (rvalue->expr_type == EXPR_VARIABLE
3449 && attr.flavor == FL_PROCEDURE)))
3450 {
3451 gfc_error ("Invalid procedure pointer assignment at %L",
3452 &rvalue->where);
3453 return false;
3454 }
3455 if (rvalue->expr_type == EXPR_VARIABLE && !attr.proc_pointer)
3456 {
3457 /* Check for intrinsics. */
3458 gfc_symbol *sym = rvalue->symtree->n.sym;
3459 if (!sym->attr.intrinsic
3460 && (gfc_is_intrinsic (sym, 0, sym->declared_at)
3461 || gfc_is_intrinsic (sym, 1, sym->declared_at)))
3462 {
3463 sym->attr.intrinsic = 1;
3464 gfc_resolve_intrinsic (sym, &rvalue->where);
3465 attr = gfc_expr_attr (rvalue);
3466 }
3467 /* Check for result of embracing function. */
3468 if (sym->attr.function && sym->result == sym)
3469 {
3470 gfc_namespace *ns;
3471
3472 for (ns = gfc_current_ns; ns; ns = ns->parent)
3473 if (sym == ns->proc_name)
3474 {
3475 gfc_error ("Function result %qs is invalid as proc-target "
3476 "in procedure pointer assignment at %L",
3477 sym->name, &rvalue->where);
3478 return false;
3479 }
3480 }
3481 }
3482 if (attr.abstract)
3483 {
3484 gfc_error ("Abstract interface %qs is invalid "
3485 "in procedure pointer assignment at %L",
3486 rvalue->symtree->name, &rvalue->where);
3487 return false;
3488 }
3489 /* Check for F08:C729. */
3490 if (attr.flavor == FL_PROCEDURE)
3491 {
3492 if (attr.proc == PROC_ST_FUNCTION)
3493 {
3494 gfc_error ("Statement function %qs is invalid "
3495 "in procedure pointer assignment at %L",
3496 rvalue->symtree->name, &rvalue->where);
3497 return false;
3498 }
3499 if (attr.proc == PROC_INTERNAL &&
3500 !gfc_notify_std(GFC_STD_F2008, "Internal procedure %qs "
3501 "is invalid in procedure pointer assignment "
3502 "at %L", rvalue->symtree->name, &rvalue->where))
3503 return false;
3504 if (attr.intrinsic && gfc_intrinsic_actual_ok (rvalue->symtree->name,
3505 attr.subroutine) == 0)
3506 {
3507 gfc_error ("Intrinsic %qs at %L is invalid in procedure pointer "
3508 "assignment", rvalue->symtree->name, &rvalue->where);
3509 return false;
3510 }
3511 }
3512 /* Check for F08:C730. */
3513 if (attr.elemental && !attr.intrinsic)
3514 {
3515 gfc_error ("Nonintrinsic elemental procedure %qs is invalid "
3516 "in procedure pointer assignment at %L",
3517 rvalue->symtree->name, &rvalue->where);
3518 return false;
3519 }
3520
3521 /* Ensure that the calling convention is the same. As other attributes
3522 such as DLLEXPORT may differ, one explicitly only tests for the
3523 calling conventions. */
3524 if (rvalue->expr_type == EXPR_VARIABLE
3525 && lvalue->symtree->n.sym->attr.ext_attr
3526 != rvalue->symtree->n.sym->attr.ext_attr)
3527 {
3528 symbol_attribute calls;
3529
3530 calls.ext_attr = 0;
3531 gfc_add_ext_attribute (&calls, EXT_ATTR_CDECL, NULL);
3532 gfc_add_ext_attribute (&calls, EXT_ATTR_STDCALL, NULL);
3533 gfc_add_ext_attribute (&calls, EXT_ATTR_FASTCALL, NULL);
3534
3535 if ((calls.ext_attr & lvalue->symtree->n.sym->attr.ext_attr)
3536 != (calls.ext_attr & rvalue->symtree->n.sym->attr.ext_attr))
3537 {
3538 gfc_error ("Mismatch in the procedure pointer assignment "
3539 "at %L: mismatch in the calling convention",
3540 &rvalue->where);
3541 return false;
3542 }
3543 }
3544
3545 comp = gfc_get_proc_ptr_comp (lvalue);
3546 if (comp)
3547 s1 = comp->ts.interface;
3548 else
3549 {
3550 s1 = lvalue->symtree->n.sym;
3551 if (s1->ts.interface)
3552 s1 = s1->ts.interface;
3553 }
3554
3555 comp = gfc_get_proc_ptr_comp (rvalue);
3556 if (comp)
3557 {
3558 if (rvalue->expr_type == EXPR_FUNCTION)
3559 {
3560 s2 = comp->ts.interface->result;
3561 name = s2->name;
3562 }
3563 else
3564 {
3565 s2 = comp->ts.interface;
3566 name = comp->name;
3567 }
3568 }
3569 else if (rvalue->expr_type == EXPR_FUNCTION)
3570 {
3571 if (rvalue->value.function.esym)
3572 s2 = rvalue->value.function.esym->result;
3573 else
3574 s2 = rvalue->symtree->n.sym->result;
3575
3576 name = s2->name;
3577 }
3578 else
3579 {
3580 s2 = rvalue->symtree->n.sym;
3581 name = s2->name;
3582 }
3583
3584 if (s2 && s2->attr.proc_pointer && s2->ts.interface)
3585 s2 = s2->ts.interface;
3586
3587 if (s1 == s2 || !s1 || !s2)
3588 return true;
3589
3590 /* F08:7.2.2.4 (4) */
3591 if (s1->attr.if_source == IFSRC_UNKNOWN
3592 && gfc_explicit_interface_required (s2, err, sizeof(err)))
3593 {
3594 gfc_error ("Explicit interface required for %qs at %L: %s",
3595 s1->name, &lvalue->where, err);
3596 return false;
3597 }
3598 if (s2->attr.if_source == IFSRC_UNKNOWN
3599 && gfc_explicit_interface_required (s1, err, sizeof(err)))
3600 {
3601 gfc_error ("Explicit interface required for %qs at %L: %s",
3602 s2->name, &rvalue->where, err);
3603 return false;
3604 }
3605
3606 if (!gfc_compare_interfaces (s1, s2, name, 0, 1,
3607 err, sizeof(err), NULL, NULL))
3608 {
3609 gfc_error ("Interface mismatch in procedure pointer assignment "
3610 "at %L: %s", &rvalue->where, err);
3611 return false;
3612 }
3613
3614 /* Check F2008Cor2, C729. */
3615 if (!s2->attr.intrinsic && s2->attr.if_source == IFSRC_UNKNOWN
3616 && !s2->attr.external && !s2->attr.subroutine && !s2->attr.function)
3617 {
3618 gfc_error ("Procedure pointer target %qs at %L must be either an "
3619 "intrinsic, host or use associated, referenced or have "
3620 "the EXTERNAL attribute", s2->name, &rvalue->where);
3621 return false;
3622 }
3623
3624 return true;
3625 }
3626
3627 if (!gfc_compare_types (&lvalue->ts, &rvalue->ts))
3628 {
3629 /* Check for F03:C717. */
3630 if (UNLIMITED_POLY (rvalue)
3631 && !(UNLIMITED_POLY (lvalue)
3632 || (lvalue->ts.type == BT_DERIVED
3633 && (lvalue->ts.u.derived->attr.is_bind_c
3634 || lvalue->ts.u.derived->attr.sequence))))
3635 gfc_error ("Data-pointer-object &L must be unlimited "
3636 "polymorphic, a sequence derived type or of a "
3637 "type with the BIND attribute assignment at %L "
3638 "to be compatible with an unlimited polymorphic "
3639 "target", &lvalue->where);
3640 else
3641 gfc_error ("Different types in pointer assignment at %L; "
3642 "attempted assignment of %s to %s", &lvalue->where,
3643 gfc_typename (&rvalue->ts),
3644 gfc_typename (&lvalue->ts));
3645 return false;
3646 }
3647
3648 if (lvalue->ts.type != BT_CLASS && lvalue->ts.kind != rvalue->ts.kind)
3649 {
3650 gfc_error ("Different kind type parameters in pointer "
3651 "assignment at %L", &lvalue->where);
3652 return false;
3653 }
3654
3655 if (lvalue->rank != rvalue->rank && !rank_remap)
3656 {
3657 gfc_error ("Different ranks in pointer assignment at %L", &lvalue->where);
3658 return false;
3659 }
3660
3661 /* Make sure the vtab is present. */
3662 if (lvalue->ts.type == BT_CLASS && !UNLIMITED_POLY (rvalue))
3663 gfc_find_vtab (&rvalue->ts);
3664
3665 /* Check rank remapping. */
3666 if (rank_remap)
3667 {
3668 mpz_t lsize, rsize;
3669
3670 /* If this can be determined, check that the target must be at least as
3671 large as the pointer assigned to it is. */
3672 if (gfc_array_size (lvalue, &lsize)
3673 && gfc_array_size (rvalue, &rsize)
3674 && mpz_cmp (rsize, lsize) < 0)
3675 {
3676 gfc_error ("Rank remapping target is smaller than size of the"
3677 " pointer (%ld < %ld) at %L",
3678 mpz_get_si (rsize), mpz_get_si (lsize),
3679 &lvalue->where);
3680 return false;
3681 }
3682
3683 /* The target must be either rank one or it must be simply contiguous
3684 and F2008 must be allowed. */
3685 if (rvalue->rank != 1)
3686 {
3687 if (!gfc_is_simply_contiguous (rvalue, true))
3688 {
3689 gfc_error ("Rank remapping target must be rank 1 or"
3690 " simply contiguous at %L", &rvalue->where);
3691 return false;
3692 }
3693 if (!gfc_notify_std (GFC_STD_F2008, "Rank remapping target is not "
3694 "rank 1 at %L", &rvalue->where))
3695 return false;
3696 }
3697 }
3698
3699 /* Now punt if we are dealing with a NULLIFY(X) or X = NULL(X). */
3700 if (rvalue->expr_type == EXPR_NULL)
3701 return true;
3702
3703 if (lvalue->ts.type == BT_CHARACTER)
3704 {
3705 bool t = gfc_check_same_strlen (lvalue, rvalue, "pointer assignment");
3706 if (!t)
3707 return false;
3708 }
3709
3710 if (rvalue->expr_type == EXPR_VARIABLE && is_subref_array (rvalue))
3711 lvalue->symtree->n.sym->attr.subref_array_pointer = 1;
3712
3713 attr = gfc_expr_attr (rvalue);
3714
3715 if (rvalue->expr_type == EXPR_FUNCTION && !attr.pointer)
3716 {
3717 gfc_error ("Target expression in pointer assignment "
3718 "at %L must deliver a pointer result",
3719 &rvalue->where);
3720 return false;
3721 }
3722
3723 if (!attr.target && !attr.pointer)
3724 {
3725 gfc_error ("Pointer assignment target is neither TARGET "
3726 "nor POINTER at %L", &rvalue->where);
3727 return false;
3728 }
3729
3730 if (is_pure && gfc_impure_variable (rvalue->symtree->n.sym))
3731 {
3732 gfc_error ("Bad target in pointer assignment in PURE "
3733 "procedure at %L", &rvalue->where);
3734 }
3735
3736 if (is_implicit_pure && gfc_impure_variable (rvalue->symtree->n.sym))
3737 gfc_unset_implicit_pure (gfc_current_ns->proc_name);
3738
3739 if (gfc_has_vector_index (rvalue))
3740 {
3741 gfc_error ("Pointer assignment with vector subscript "
3742 "on rhs at %L", &rvalue->where);
3743 return false;
3744 }
3745
3746 if (attr.is_protected && attr.use_assoc
3747 && !(attr.pointer || attr.proc_pointer))
3748 {
3749 gfc_error ("Pointer assignment target has PROTECTED "
3750 "attribute at %L", &rvalue->where);
3751 return false;
3752 }
3753
3754 /* F2008, C725. For PURE also C1283. */
3755 if (rvalue->expr_type == EXPR_VARIABLE
3756 && gfc_is_coindexed (rvalue))
3757 {
3758 gfc_ref *ref;
3759 for (ref = rvalue->ref; ref; ref = ref->next)
3760 if (ref->type == REF_ARRAY && ref->u.ar.codimen)
3761 {
3762 gfc_error ("Data target at %L shall not have a coindex",
3763 &rvalue->where);
3764 return false;
3765 }
3766 }
3767
3768 /* Warn if it is the LHS pointer may lives longer than the RHS target. */
3769 if (warn_target_lifetime
3770 && rvalue->expr_type == EXPR_VARIABLE
3771 && !rvalue->symtree->n.sym->attr.save
3772 && !attr.pointer && !rvalue->symtree->n.sym->attr.host_assoc
3773 && !rvalue->symtree->n.sym->attr.in_common
3774 && !rvalue->symtree->n.sym->attr.use_assoc
3775 && !rvalue->symtree->n.sym->attr.dummy)
3776 {
3777 bool warn;
3778 gfc_namespace *ns;
3779
3780 warn = lvalue->symtree->n.sym->attr.dummy
3781 || lvalue->symtree->n.sym->attr.result
3782 || lvalue->symtree->n.sym->attr.function
3783 || (lvalue->symtree->n.sym->attr.host_assoc
3784 && lvalue->symtree->n.sym->ns
3785 != rvalue->symtree->n.sym->ns)
3786 || lvalue->symtree->n.sym->attr.use_assoc
3787 || lvalue->symtree->n.sym->attr.in_common;
3788
3789 if (rvalue->symtree->n.sym->ns->proc_name
3790 && rvalue->symtree->n.sym->ns->proc_name->attr.flavor != FL_PROCEDURE
3791 && rvalue->symtree->n.sym->ns->proc_name->attr.flavor != FL_PROGRAM)
3792 for (ns = rvalue->symtree->n.sym->ns;
3793 ns && ns->proc_name && ns->proc_name->attr.flavor != FL_PROCEDURE;
3794 ns = ns->parent)
3795 if (ns->parent == lvalue->symtree->n.sym->ns)
3796 {
3797 warn = true;
3798 break;
3799 }
3800
3801 if (warn)
3802 gfc_warning (OPT_Wtarget_lifetime,
3803 "Pointer at %L in pointer assignment might outlive the "
3804 "pointer target", &lvalue->where);
3805 }
3806
3807 return true;
3808 }
3809
3810
3811 /* Relative of gfc_check_assign() except that the lvalue is a single
3812 symbol. Used for initialization assignments. */
3813
3814 bool
3815 gfc_check_assign_symbol (gfc_symbol *sym, gfc_component *comp, gfc_expr *rvalue)
3816 {
3817 gfc_expr lvalue;
3818 bool r;
3819 bool pointer, proc_pointer;
3820
3821 memset (&lvalue, '\0', sizeof (gfc_expr));
3822
3823 lvalue.expr_type = EXPR_VARIABLE;
3824 lvalue.ts = sym->ts;
3825 if (sym->as)
3826 lvalue.rank = sym->as->rank;
3827 lvalue.symtree = XCNEW (gfc_symtree);
3828 lvalue.symtree->n.sym = sym;
3829 lvalue.where = sym->declared_at;
3830
3831 if (comp)
3832 {
3833 lvalue.ref = gfc_get_ref ();
3834 lvalue.ref->type = REF_COMPONENT;
3835 lvalue.ref->u.c.component = comp;
3836 lvalue.ref->u.c.sym = sym;
3837 lvalue.ts = comp->ts;
3838 lvalue.rank = comp->as ? comp->as->rank : 0;
3839 lvalue.where = comp->loc;
3840 pointer = comp->ts.type == BT_CLASS && CLASS_DATA (comp)
3841 ? CLASS_DATA (comp)->attr.class_pointer : comp->attr.pointer;
3842 proc_pointer = comp->attr.proc_pointer;
3843 }
3844 else
3845 {
3846 pointer = sym->ts.type == BT_CLASS && CLASS_DATA (sym)
3847 ? CLASS_DATA (sym)->attr.class_pointer : sym->attr.pointer;
3848 proc_pointer = sym->attr.proc_pointer;
3849 }
3850
3851 if (pointer || proc_pointer)
3852 r = gfc_check_pointer_assign (&lvalue, rvalue);
3853 else
3854 r = gfc_check_assign (&lvalue, rvalue, 1);
3855
3856 free (lvalue.symtree);
3857 free (lvalue.ref);
3858
3859 if (!r)
3860 return r;
3861
3862 if (pointer && rvalue->expr_type != EXPR_NULL)
3863 {
3864 /* F08:C461. Additional checks for pointer initialization. */
3865 symbol_attribute attr;
3866 attr = gfc_expr_attr (rvalue);
3867 if (attr.allocatable)
3868 {
3869 gfc_error ("Pointer initialization target at %L "
3870 "must not be ALLOCATABLE", &rvalue->where);
3871 return false;
3872 }
3873 if (!attr.target || attr.pointer)
3874 {
3875 gfc_error ("Pointer initialization target at %L "
3876 "must have the TARGET attribute", &rvalue->where);
3877 return false;
3878 }
3879
3880 if (!attr.save && rvalue->expr_type == EXPR_VARIABLE
3881 && rvalue->symtree->n.sym->ns->proc_name
3882 && rvalue->symtree->n.sym->ns->proc_name->attr.is_main_program)
3883 {
3884 rvalue->symtree->n.sym->ns->proc_name->attr.save = SAVE_IMPLICIT;
3885 attr.save = SAVE_IMPLICIT;
3886 }
3887
3888 if (!attr.save)
3889 {
3890 gfc_error ("Pointer initialization target at %L "
3891 "must have the SAVE attribute", &rvalue->where);
3892 return false;
3893 }
3894 }
3895
3896 if (proc_pointer && rvalue->expr_type != EXPR_NULL)
3897 {
3898 /* F08:C1220. Additional checks for procedure pointer initialization. */
3899 symbol_attribute attr = gfc_expr_attr (rvalue);
3900 if (attr.proc_pointer)
3901 {
3902 gfc_error ("Procedure pointer initialization target at %L "
3903 "may not be a procedure pointer", &rvalue->where);
3904 return false;
3905 }
3906 }
3907
3908 return true;
3909 }
3910
3911
3912 /* Check for default initializer; sym->value is not enough
3913 as it is also set for EXPR_NULL of allocatables. */
3914
3915 bool
3916 gfc_has_default_initializer (gfc_symbol *der)
3917 {
3918 gfc_component *c;
3919
3920 gcc_assert (der->attr.flavor == FL_DERIVED);
3921 for (c = der->components; c; c = c->next)
3922 if (c->ts.type == BT_DERIVED)
3923 {
3924 if (!c->attr.pointer
3925 && gfc_has_default_initializer (c->ts.u.derived))
3926 return true;
3927 if (c->attr.pointer && c->initializer)
3928 return true;
3929 }
3930 else
3931 {
3932 if (c->initializer)
3933 return true;
3934 }
3935
3936 return false;
3937 }
3938
3939
3940 /* Get an expression for a default initializer. */
3941
3942 gfc_expr *
3943 gfc_default_initializer (gfc_typespec *ts)
3944 {
3945 gfc_expr *init;
3946 gfc_component *comp;
3947
3948 /* See if we have a default initializer in this, but not in nested
3949 types (otherwise we could use gfc_has_default_initializer()). */
3950 for (comp = ts->u.derived->components; comp; comp = comp->next)
3951 if (comp->initializer || comp->attr.allocatable
3952 || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
3953 && CLASS_DATA (comp)->attr.allocatable))
3954 break;
3955
3956 if (!comp)
3957 return NULL;
3958
3959 init = gfc_get_structure_constructor_expr (ts->type, ts->kind,
3960 &ts->u.derived->declared_at);
3961 init->ts = *ts;
3962
3963 for (comp = ts->u.derived->components; comp; comp = comp->next)
3964 {
3965 gfc_constructor *ctor = gfc_constructor_get();
3966
3967 if (comp->initializer)
3968 {
3969 ctor->expr = gfc_copy_expr (comp->initializer);
3970 if ((comp->ts.type != comp->initializer->ts.type
3971 || comp->ts.kind != comp->initializer->ts.kind)
3972 && !comp->attr.pointer && !comp->attr.proc_pointer)
3973 gfc_convert_type_warn (ctor->expr, &comp->ts, 2, false);
3974 }
3975
3976 if (comp->attr.allocatable
3977 || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)->attr.allocatable))
3978 {
3979 ctor->expr = gfc_get_expr ();
3980 ctor->expr->expr_type = EXPR_NULL;
3981 ctor->expr->ts = comp->ts;
3982 }
3983
3984 gfc_constructor_append (&init->value.constructor, ctor);
3985 }
3986
3987 return init;
3988 }
3989
3990
3991 /* Given a symbol, create an expression node with that symbol as a
3992 variable. If the symbol is array valued, setup a reference of the
3993 whole array. */
3994
3995 gfc_expr *
3996 gfc_get_variable_expr (gfc_symtree *var)
3997 {
3998 gfc_expr *e;
3999
4000 e = gfc_get_expr ();
4001 e->expr_type = EXPR_VARIABLE;
4002 e->symtree = var;
4003 e->ts = var->n.sym->ts;
4004
4005 if (var->n.sym->attr.flavor != FL_PROCEDURE
4006 && ((var->n.sym->as != NULL && var->n.sym->ts.type != BT_CLASS)
4007 || (var->n.sym->ts.type == BT_CLASS && CLASS_DATA (var->n.sym)
4008 && CLASS_DATA (var->n.sym)->as)))
4009 {
4010 e->rank = var->n.sym->ts.type == BT_CLASS
4011 ? CLASS_DATA (var->n.sym)->as->rank : var->n.sym->as->rank;
4012 e->ref = gfc_get_ref ();
4013 e->ref->type = REF_ARRAY;
4014 e->ref->u.ar.type = AR_FULL;
4015 e->ref->u.ar.as = gfc_copy_array_spec (var->n.sym->ts.type == BT_CLASS
4016 ? CLASS_DATA (var->n.sym)->as
4017 : var->n.sym->as);
4018 }
4019
4020 return e;
4021 }
4022
4023
4024 /* Adds a full array reference to an expression, as needed. */
4025
4026 void
4027 gfc_add_full_array_ref (gfc_expr *e, gfc_array_spec *as)
4028 {
4029 gfc_ref *ref;
4030 for (ref = e->ref; ref; ref = ref->next)
4031 if (!ref->next)
4032 break;
4033 if (ref)
4034 {
4035 ref->next = gfc_get_ref ();
4036 ref = ref->next;
4037 }
4038 else
4039 {
4040 e->ref = gfc_get_ref ();
4041 ref = e->ref;
4042 }
4043 ref->type = REF_ARRAY;
4044 ref->u.ar.type = AR_FULL;
4045 ref->u.ar.dimen = e->rank;
4046 ref->u.ar.where = e->where;
4047 ref->u.ar.as = as;
4048 }
4049
4050
4051 gfc_expr *
4052 gfc_lval_expr_from_sym (gfc_symbol *sym)
4053 {
4054 gfc_expr *lval;
4055 lval = gfc_get_expr ();
4056 lval->expr_type = EXPR_VARIABLE;
4057 lval->where = sym->declared_at;
4058 lval->ts = sym->ts;
4059 lval->symtree = gfc_find_symtree (sym->ns->sym_root, sym->name);
4060
4061 /* It will always be a full array. */
4062 lval->rank = sym->as ? sym->as->rank : 0;
4063 if (lval->rank)
4064 gfc_add_full_array_ref (lval, sym->ts.type == BT_CLASS ?
4065 CLASS_DATA (sym)->as : sym->as);
4066 return lval;
4067 }
4068
4069
4070 /* Returns the array_spec of a full array expression. A NULL is
4071 returned otherwise. */
4072 gfc_array_spec *
4073 gfc_get_full_arrayspec_from_expr (gfc_expr *expr)
4074 {
4075 gfc_array_spec *as;
4076 gfc_ref *ref;
4077
4078 if (expr->rank == 0)
4079 return NULL;
4080
4081 /* Follow any component references. */
4082 if (expr->expr_type == EXPR_VARIABLE
4083 || expr->expr_type == EXPR_CONSTANT)
4084 {
4085 as = expr->symtree->n.sym->as;
4086 for (ref = expr->ref; ref; ref = ref->next)
4087 {
4088 switch (ref->type)
4089 {
4090 case REF_COMPONENT:
4091 as = ref->u.c.component->as;
4092 continue;
4093
4094 case REF_SUBSTRING:
4095 continue;
4096
4097 case REF_ARRAY:
4098 {
4099 switch (ref->u.ar.type)
4100 {
4101 case AR_ELEMENT:
4102 case AR_SECTION:
4103 case AR_UNKNOWN:
4104 as = NULL;
4105 continue;
4106
4107 case AR_FULL:
4108 break;
4109 }
4110 break;
4111 }
4112 }
4113 }
4114 }
4115 else
4116 as = NULL;
4117
4118 return as;
4119 }
4120
4121
4122 /* General expression traversal function. */
4123
4124 bool
4125 gfc_traverse_expr (gfc_expr *expr, gfc_symbol *sym,
4126 bool (*func)(gfc_expr *, gfc_symbol *, int*),
4127 int f)
4128 {
4129 gfc_array_ref ar;
4130 gfc_ref *ref;
4131 gfc_actual_arglist *args;
4132 gfc_constructor *c;
4133 int i;
4134
4135 if (!expr)
4136 return false;
4137
4138 if ((*func) (expr, sym, &f))
4139 return true;
4140
4141 if (expr->ts.type == BT_CHARACTER
4142 && expr->ts.u.cl
4143 && expr->ts.u.cl->length
4144 && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT
4145 && gfc_traverse_expr (expr->ts.u.cl->length, sym, func, f))
4146 return true;
4147
4148 switch (expr->expr_type)
4149 {
4150 case EXPR_PPC:
4151 case EXPR_COMPCALL:
4152 case EXPR_FUNCTION:
4153 for (args = expr->value.function.actual; args; args = args->next)
4154 {
4155 if (gfc_traverse_expr (args->expr, sym, func, f))
4156 return true;
4157 }
4158 break;
4159
4160 case EXPR_VARIABLE:
4161 case EXPR_CONSTANT:
4162 case EXPR_NULL:
4163 case EXPR_SUBSTRING:
4164 break;
4165
4166 case EXPR_STRUCTURE:
4167 case EXPR_ARRAY:
4168 for (c = gfc_constructor_first (expr->value.constructor);
4169 c; c = gfc_constructor_next (c))
4170 {
4171 if (gfc_traverse_expr (c->expr, sym, func, f))
4172 return true;
4173 if (c->iterator)
4174 {
4175 if (gfc_traverse_expr (c->iterator->var, sym, func, f))
4176 return true;
4177 if (gfc_traverse_expr (c->iterator->start, sym, func, f))
4178 return true;
4179 if (gfc_traverse_expr (c->iterator->end, sym, func, f))
4180 return true;
4181 if (gfc_traverse_expr (c->iterator->step, sym, func, f))
4182 return true;
4183 }
4184 }
4185 break;
4186
4187 case EXPR_OP:
4188 if (gfc_traverse_expr (expr->value.op.op1, sym, func, f))
4189 return true;
4190 if (gfc_traverse_expr (expr->value.op.op2, sym, func, f))
4191 return true;
4192 break;
4193
4194 default:
4195 gcc_unreachable ();
4196 break;
4197 }
4198
4199 ref = expr->ref;
4200 while (ref != NULL)
4201 {
4202 switch (ref->type)
4203 {
4204 case REF_ARRAY:
4205 ar = ref->u.ar;
4206 for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
4207 {
4208 if (gfc_traverse_expr (ar.start[i], sym, func, f))
4209 return true;
4210 if (gfc_traverse_expr (ar.end[i], sym, func, f))
4211 return true;
4212 if (gfc_traverse_expr (ar.stride[i], sym, func, f))
4213 return true;
4214 }
4215 break;
4216
4217 case REF_SUBSTRING:
4218 if (gfc_traverse_expr (ref->u.ss.start, sym, func, f))
4219 return true;
4220 if (gfc_traverse_expr (ref->u.ss.end, sym, func, f))
4221 return true;
4222 break;
4223
4224 case REF_COMPONENT:
4225 if (ref->u.c.component->ts.type == BT_CHARACTER
4226 && ref->u.c.component->ts.u.cl
4227 && ref->u.c.component->ts.u.cl->length
4228 && ref->u.c.component->ts.u.cl->length->expr_type
4229 != EXPR_CONSTANT
4230 && gfc_traverse_expr (ref->u.c.component->ts.u.cl->length,
4231 sym, func, f))
4232 return true;
4233
4234 if (ref->u.c.component->as)
4235 for (i = 0; i < ref->u.c.component->as->rank
4236 + ref->u.c.component->as->corank; i++)
4237 {
4238 if (gfc_traverse_expr (ref->u.c.component->as->lower[i],
4239 sym, func, f))
4240 return true;
4241 if (gfc_traverse_expr (ref->u.c.component->as->upper[i],
4242 sym, func, f))
4243 return true;
4244 }
4245 break;
4246
4247 default:
4248 gcc_unreachable ();
4249 }
4250 ref = ref->next;
4251 }
4252 return false;
4253 }
4254
4255 /* Traverse expr, marking all EXPR_VARIABLE symbols referenced. */
4256
4257 static bool
4258 expr_set_symbols_referenced (gfc_expr *expr,
4259 gfc_symbol *sym ATTRIBUTE_UNUSED,
4260 int *f ATTRIBUTE_UNUSED)
4261 {
4262 if (expr->expr_type != EXPR_VARIABLE)
4263 return false;
4264 gfc_set_sym_referenced (expr->symtree->n.sym);
4265 return false;
4266 }
4267
4268 void
4269 gfc_expr_set_symbols_referenced (gfc_expr *expr)
4270 {
4271 gfc_traverse_expr (expr, NULL, expr_set_symbols_referenced, 0);
4272 }
4273
4274
4275 /* Determine if an expression is a procedure pointer component and return
4276 the component in that case. Otherwise return NULL. */
4277
4278 gfc_component *
4279 gfc_get_proc_ptr_comp (gfc_expr *expr)
4280 {
4281 gfc_ref *ref;
4282
4283 if (!expr || !expr->ref)
4284 return NULL;
4285
4286 ref = expr->ref;
4287 while (ref->next)
4288 ref = ref->next;
4289
4290 if (ref->type == REF_COMPONENT
4291 && ref->u.c.component->attr.proc_pointer)
4292 return ref->u.c.component;
4293
4294 return NULL;
4295 }
4296
4297
4298 /* Determine if an expression is a procedure pointer component. */
4299
4300 bool
4301 gfc_is_proc_ptr_comp (gfc_expr *expr)
4302 {
4303 return (gfc_get_proc_ptr_comp (expr) != NULL);
4304 }
4305
4306
4307 /* Determine if an expression is a function with an allocatable class scalar
4308 result. */
4309 bool
4310 gfc_is_alloc_class_scalar_function (gfc_expr *expr)
4311 {
4312 if (expr->expr_type == EXPR_FUNCTION
4313 && expr->value.function.esym
4314 && expr->value.function.esym->result
4315 && expr->value.function.esym->result->ts.type == BT_CLASS
4316 && !CLASS_DATA (expr->value.function.esym->result)->attr.dimension
4317 && CLASS_DATA (expr->value.function.esym->result)->attr.allocatable)
4318 return true;
4319
4320 return false;
4321 }
4322
4323
4324 /* Determine if an expression is a function with an allocatable class array
4325 result. */
4326 bool
4327 gfc_is_alloc_class_array_function (gfc_expr *expr)
4328 {
4329 if (expr->expr_type == EXPR_FUNCTION
4330 && expr->value.function.esym
4331 && expr->value.function.esym->result
4332 && expr->value.function.esym->result->ts.type == BT_CLASS
4333 && CLASS_DATA (expr->value.function.esym->result)->attr.dimension
4334 && CLASS_DATA (expr->value.function.esym->result)->attr.allocatable)
4335 return true;
4336
4337 return false;
4338 }
4339
4340
4341 /* Walk an expression tree and check each variable encountered for being typed.
4342 If strict is not set, a top-level variable is tolerated untyped in -std=gnu
4343 mode as is a basic arithmetic expression using those; this is for things in
4344 legacy-code like:
4345
4346 INTEGER :: arr(n), n
4347 INTEGER :: arr(n + 1), n
4348
4349 The namespace is needed for IMPLICIT typing. */
4350
4351 static gfc_namespace* check_typed_ns;
4352
4353 static bool
4354 expr_check_typed_help (gfc_expr* e, gfc_symbol* sym ATTRIBUTE_UNUSED,
4355 int* f ATTRIBUTE_UNUSED)
4356 {
4357 bool t;
4358
4359 if (e->expr_type != EXPR_VARIABLE)
4360 return false;
4361
4362 gcc_assert (e->symtree);
4363 t = gfc_check_symbol_typed (e->symtree->n.sym, check_typed_ns,
4364 true, e->where);
4365
4366 return (!t);
4367 }
4368
4369 bool
4370 gfc_expr_check_typed (gfc_expr* e, gfc_namespace* ns, bool strict)
4371 {
4372 bool error_found;
4373
4374 /* If this is a top-level variable or EXPR_OP, do the check with strict given
4375 to us. */
4376 if (!strict)
4377 {
4378 if (e->expr_type == EXPR_VARIABLE && !e->ref)
4379 return gfc_check_symbol_typed (e->symtree->n.sym, ns, strict, e->where);
4380
4381 if (e->expr_type == EXPR_OP)
4382 {
4383 bool t = true;
4384
4385 gcc_assert (e->value.op.op1);
4386 t = gfc_expr_check_typed (e->value.op.op1, ns, strict);
4387
4388 if (t && e->value.op.op2)
4389 t = gfc_expr_check_typed (e->value.op.op2, ns, strict);
4390
4391 return t;
4392 }
4393 }
4394
4395 /* Otherwise, walk the expression and do it strictly. */
4396 check_typed_ns = ns;
4397 error_found = gfc_traverse_expr (e, NULL, &expr_check_typed_help, 0);
4398
4399 return error_found ? false : true;
4400 }
4401
4402
4403 bool
4404 gfc_ref_this_image (gfc_ref *ref)
4405 {
4406 int n;
4407
4408 gcc_assert (ref->type == REF_ARRAY && ref->u.ar.codimen > 0);
4409
4410 for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
4411 if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
4412 return false;
4413
4414 return true;
4415 }
4416
4417
4418 bool
4419 gfc_is_coindexed (gfc_expr *e)
4420 {
4421 gfc_ref *ref;
4422
4423 for (ref = e->ref; ref; ref = ref->next)
4424 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
4425 return !gfc_ref_this_image (ref);
4426
4427 return false;
4428 }
4429
4430
4431 /* Coarrays are variables with a corank but not being coindexed. However, also
4432 the following is a coarray: A subobject of a coarray is a coarray if it does
4433 not have any cosubscripts, vector subscripts, allocatable component
4434 selection, or pointer component selection. (F2008, 2.4.7) */
4435
4436 bool
4437 gfc_is_coarray (gfc_expr *e)
4438 {
4439 gfc_ref *ref;
4440 gfc_symbol *sym;
4441 gfc_component *comp;
4442 bool coindexed;
4443 bool coarray;
4444 int i;
4445
4446 if (e->expr_type != EXPR_VARIABLE)
4447 return false;
4448
4449 coindexed = false;
4450 sym = e->symtree->n.sym;
4451
4452 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
4453 coarray = CLASS_DATA (sym)->attr.codimension;
4454 else
4455 coarray = sym->attr.codimension;
4456
4457 for (ref = e->ref; ref; ref = ref->next)
4458 switch (ref->type)
4459 {
4460 case REF_COMPONENT:
4461 comp = ref->u.c.component;
4462 if (comp->ts.type == BT_CLASS && comp->attr.class_ok
4463 && (CLASS_DATA (comp)->attr.class_pointer
4464 || CLASS_DATA (comp)->attr.allocatable))
4465 {
4466 coindexed = false;
4467 coarray = CLASS_DATA (comp)->attr.codimension;
4468 }
4469 else if (comp->attr.pointer || comp->attr.allocatable)
4470 {
4471 coindexed = false;
4472 coarray = comp->attr.codimension;
4473 }
4474 break;
4475
4476 case REF_ARRAY:
4477 if (!coarray)
4478 break;
4479
4480 if (ref->u.ar.codimen > 0 && !gfc_ref_this_image (ref))
4481 {
4482 coindexed = true;
4483 break;
4484 }
4485
4486 for (i = 0; i < ref->u.ar.dimen; i++)
4487 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
4488 {
4489 coarray = false;
4490 break;
4491 }
4492 break;
4493
4494 case REF_SUBSTRING:
4495 break;
4496 }
4497
4498 return coarray && !coindexed;
4499 }
4500
4501
4502 int
4503 gfc_get_corank (gfc_expr *e)
4504 {
4505 int corank;
4506 gfc_ref *ref;
4507
4508 if (!gfc_is_coarray (e))
4509 return 0;
4510
4511 if (e->ts.type == BT_CLASS && e->ts.u.derived->components)
4512 corank = e->ts.u.derived->components->as
4513 ? e->ts.u.derived->components->as->corank : 0;
4514 else
4515 corank = e->symtree->n.sym->as ? e->symtree->n.sym->as->corank : 0;
4516
4517 for (ref = e->ref; ref; ref = ref->next)
4518 {
4519 if (ref->type == REF_ARRAY)
4520 corank = ref->u.ar.as->corank;
4521 gcc_assert (ref->type != REF_SUBSTRING);
4522 }
4523
4524 return corank;
4525 }
4526
4527
4528 /* Check whether the expression has an ultimate allocatable component.
4529 Being itself allocatable does not count. */
4530 bool
4531 gfc_has_ultimate_allocatable (gfc_expr *e)
4532 {
4533 gfc_ref *ref, *last = NULL;
4534
4535 if (e->expr_type != EXPR_VARIABLE)
4536 return false;
4537
4538 for (ref = e->ref; ref; ref = ref->next)
4539 if (ref->type == REF_COMPONENT)
4540 last = ref;
4541
4542 if (last && last->u.c.component->ts.type == BT_CLASS)
4543 return CLASS_DATA (last->u.c.component)->attr.alloc_comp;
4544 else if (last && last->u.c.component->ts.type == BT_DERIVED)
4545 return last->u.c.component->ts.u.derived->attr.alloc_comp;
4546 else if (last)
4547 return false;
4548
4549 if (e->ts.type == BT_CLASS)
4550 return CLASS_DATA (e)->attr.alloc_comp;
4551 else if (e->ts.type == BT_DERIVED)
4552 return e->ts.u.derived->attr.alloc_comp;
4553 else
4554 return false;
4555 }
4556
4557
4558 /* Check whether the expression has an pointer component.
4559 Being itself a pointer does not count. */
4560 bool
4561 gfc_has_ultimate_pointer (gfc_expr *e)
4562 {
4563 gfc_ref *ref, *last = NULL;
4564
4565 if (e->expr_type != EXPR_VARIABLE)
4566 return false;
4567
4568 for (ref = e->ref; ref; ref = ref->next)
4569 if (ref->type == REF_COMPONENT)
4570 last = ref;
4571
4572 if (last && last->u.c.component->ts.type == BT_CLASS)
4573 return CLASS_DATA (last->u.c.component)->attr.pointer_comp;
4574 else if (last && last->u.c.component->ts.type == BT_DERIVED)
4575 return last->u.c.component->ts.u.derived->attr.pointer_comp;
4576 else if (last)
4577 return false;
4578
4579 if (e->ts.type == BT_CLASS)
4580 return CLASS_DATA (e)->attr.pointer_comp;
4581 else if (e->ts.type == BT_DERIVED)
4582 return e->ts.u.derived->attr.pointer_comp;
4583 else
4584 return false;
4585 }
4586
4587
4588 /* Check whether an expression is "simply contiguous", cf. F2008, 6.5.4.
4589 Note: A scalar is not regarded as "simply contiguous" by the standard.
4590 if bool is not strict, some further checks are done - for instance,
4591 a "(::1)" is accepted. */
4592
4593 bool
4594 gfc_is_simply_contiguous (gfc_expr *expr, bool strict)
4595 {
4596 bool colon;
4597 int i;
4598 gfc_array_ref *ar = NULL;
4599 gfc_ref *ref, *part_ref = NULL;
4600 gfc_symbol *sym;
4601
4602 if (expr->expr_type == EXPR_FUNCTION)
4603 return expr->value.function.esym
4604 ? expr->value.function.esym->result->attr.contiguous : false;
4605 else if (expr->expr_type != EXPR_VARIABLE)
4606 return false;
4607
4608 if (expr->rank == 0)
4609 return false;
4610
4611 for (ref = expr->ref; ref; ref = ref->next)
4612 {
4613 if (ar)
4614 return false; /* Array shall be last part-ref. */
4615
4616 if (ref->type == REF_COMPONENT)
4617 part_ref = ref;
4618 else if (ref->type == REF_SUBSTRING)
4619 return false;
4620 else if (ref->u.ar.type != AR_ELEMENT)
4621 ar = &ref->u.ar;
4622 }
4623
4624 sym = expr->symtree->n.sym;
4625 if (expr->ts.type != BT_CLASS
4626 && ((part_ref
4627 && !part_ref->u.c.component->attr.contiguous
4628 && part_ref->u.c.component->attr.pointer)
4629 || (!part_ref
4630 && !sym->attr.contiguous
4631 && (sym->attr.pointer
4632 || sym->as->type == AS_ASSUMED_RANK
4633 || sym->as->type == AS_ASSUMED_SHAPE))))
4634 return false;
4635
4636 if (!ar || ar->type == AR_FULL)
4637 return true;
4638
4639 gcc_assert (ar->type == AR_SECTION);
4640
4641 /* Check for simply contiguous array */
4642 colon = true;
4643 for (i = 0; i < ar->dimen; i++)
4644 {
4645 if (ar->dimen_type[i] == DIMEN_VECTOR)
4646 return false;
4647
4648 if (ar->dimen_type[i] == DIMEN_ELEMENT)
4649 {
4650 colon = false;
4651 continue;
4652 }
4653
4654 gcc_assert (ar->dimen_type[i] == DIMEN_RANGE);
4655
4656
4657 /* If the previous section was not contiguous, that's an error,
4658 unless we have effective only one element and checking is not
4659 strict. */
4660 if (!colon && (strict || !ar->start[i] || !ar->end[i]
4661 || ar->start[i]->expr_type != EXPR_CONSTANT
4662 || ar->end[i]->expr_type != EXPR_CONSTANT
4663 || mpz_cmp (ar->start[i]->value.integer,
4664 ar->end[i]->value.integer) != 0))
4665 return false;
4666
4667 /* Following the standard, "(::1)" or - if known at compile time -
4668 "(lbound:ubound)" are not simply contiguous; if strict
4669 is false, they are regarded as simply contiguous. */
4670 if (ar->stride[i] && (strict || ar->stride[i]->expr_type != EXPR_CONSTANT
4671 || ar->stride[i]->ts.type != BT_INTEGER
4672 || mpz_cmp_si (ar->stride[i]->value.integer, 1) != 0))
4673 return false;
4674
4675 if (ar->start[i]
4676 && (strict || ar->start[i]->expr_type != EXPR_CONSTANT
4677 || !ar->as->lower[i]
4678 || ar->as->lower[i]->expr_type != EXPR_CONSTANT
4679 || mpz_cmp (ar->start[i]->value.integer,
4680 ar->as->lower[i]->value.integer) != 0))
4681 colon = false;
4682
4683 if (ar->end[i]
4684 && (strict || ar->end[i]->expr_type != EXPR_CONSTANT
4685 || !ar->as->upper[i]
4686 || ar->as->upper[i]->expr_type != EXPR_CONSTANT
4687 || mpz_cmp (ar->end[i]->value.integer,
4688 ar->as->upper[i]->value.integer) != 0))
4689 colon = false;
4690 }
4691
4692 return true;
4693 }
4694
4695
4696 /* Build call to an intrinsic procedure. The number of arguments has to be
4697 passed (rather than ending the list with a NULL value) because we may
4698 want to add arguments but with a NULL-expression. */
4699
4700 gfc_expr*
4701 gfc_build_intrinsic_call (gfc_namespace *ns, gfc_isym_id id, const char* name,
4702 locus where, unsigned numarg, ...)
4703 {
4704 gfc_expr* result;
4705 gfc_actual_arglist* atail;
4706 gfc_intrinsic_sym* isym;
4707 va_list ap;
4708 unsigned i;
4709 const char *mangled_name = gfc_get_string (GFC_PREFIX ("%s"), name);
4710
4711 isym = gfc_intrinsic_function_by_id (id);
4712 gcc_assert (isym);
4713
4714 result = gfc_get_expr ();
4715 result->expr_type = EXPR_FUNCTION;
4716 result->ts = isym->ts;
4717 result->where = where;
4718 result->value.function.name = mangled_name;
4719 result->value.function.isym = isym;
4720
4721 gfc_get_sym_tree (mangled_name, ns, &result->symtree, false);
4722 gfc_commit_symbol (result->symtree->n.sym);
4723 gcc_assert (result->symtree
4724 && (result->symtree->n.sym->attr.flavor == FL_PROCEDURE
4725 || result->symtree->n.sym->attr.flavor == FL_UNKNOWN));
4726 result->symtree->n.sym->intmod_sym_id = id;
4727 result->symtree->n.sym->attr.flavor = FL_PROCEDURE;
4728 result->symtree->n.sym->attr.intrinsic = 1;
4729 result->symtree->n.sym->attr.artificial = 1;
4730
4731 va_start (ap, numarg);
4732 atail = NULL;
4733 for (i = 0; i < numarg; ++i)
4734 {
4735 if (atail)
4736 {
4737 atail->next = gfc_get_actual_arglist ();
4738 atail = atail->next;
4739 }
4740 else
4741 atail = result->value.function.actual = gfc_get_actual_arglist ();
4742
4743 atail->expr = va_arg (ap, gfc_expr*);
4744 }
4745 va_end (ap);
4746
4747 return result;
4748 }
4749
4750
4751 /* Check if an expression may appear in a variable definition context
4752 (F2008, 16.6.7) or pointer association context (F2008, 16.6.8).
4753 This is called from the various places when resolving
4754 the pieces that make up such a context.
4755 If own_scope is true (applies to, e.g., ac-implied-do/data-implied-do
4756 variables), some checks are not performed.
4757
4758 Optionally, a possible error message can be suppressed if context is NULL
4759 and just the return status (true / false) be requested. */
4760
4761 bool
4762 gfc_check_vardef_context (gfc_expr* e, bool pointer, bool alloc_obj,
4763 bool own_scope, const char* context)
4764 {
4765 gfc_symbol* sym = NULL;
4766 bool is_pointer;
4767 bool check_intentin;
4768 bool ptr_component;
4769 symbol_attribute attr;
4770 gfc_ref* ref;
4771 int i;
4772
4773 if (e->expr_type == EXPR_VARIABLE)
4774 {
4775 gcc_assert (e->symtree);
4776 sym = e->symtree->n.sym;
4777 }
4778 else if (e->expr_type == EXPR_FUNCTION)
4779 {
4780 gcc_assert (e->symtree);
4781 sym = e->value.function.esym ? e->value.function.esym : e->symtree->n.sym;
4782 }
4783
4784 attr = gfc_expr_attr (e);
4785 if (!pointer && e->expr_type == EXPR_FUNCTION && attr.pointer)
4786 {
4787 if (!(gfc_option.allow_std & GFC_STD_F2008))
4788 {
4789 if (context)
4790 gfc_error ("Fortran 2008: Pointer functions in variable definition"
4791 " context (%s) at %L", context, &e->where);
4792 return false;
4793 }
4794 }
4795 else if (e->expr_type != EXPR_VARIABLE)
4796 {
4797 if (context)
4798 gfc_error ("Non-variable expression in variable definition context (%s)"
4799 " at %L", context, &e->where);
4800 return false;
4801 }
4802
4803 if (!pointer && sym->attr.flavor == FL_PARAMETER)
4804 {
4805 if (context)
4806 gfc_error ("Named constant %qs in variable definition context (%s)"
4807 " at %L", sym->name, context, &e->where);
4808 return false;
4809 }
4810 if (!pointer && sym->attr.flavor != FL_VARIABLE
4811 && !(sym->attr.flavor == FL_PROCEDURE && sym == sym->result)
4812 && !(sym->attr.flavor == FL_PROCEDURE && sym->attr.proc_pointer))
4813 {
4814 if (context)
4815 gfc_error ("%qs in variable definition context (%s) at %L is not"
4816 " a variable", sym->name, context, &e->where);
4817 return false;
4818 }
4819
4820 /* Find out whether the expr is a pointer; this also means following
4821 component references to the last one. */
4822 is_pointer = (attr.pointer || attr.proc_pointer);
4823 if (pointer && !is_pointer)
4824 {
4825 if (context)
4826 gfc_error ("Non-POINTER in pointer association context (%s)"
4827 " at %L", context, &e->where);
4828 return false;
4829 }
4830
4831 /* F2008, C1303. */
4832 if (!alloc_obj
4833 && (attr.lock_comp
4834 || (e->ts.type == BT_DERIVED
4835 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
4836 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)))
4837 {
4838 if (context)
4839 gfc_error ("LOCK_TYPE in variable definition context (%s) at %L",
4840 context, &e->where);
4841 return false;
4842 }
4843
4844 /* INTENT(IN) dummy argument. Check this, unless the object itself is the
4845 component of sub-component of a pointer; we need to distinguish
4846 assignment to a pointer component from pointer-assignment to a pointer
4847 component. Note that (normal) assignment to procedure pointers is not
4848 possible. */
4849 check_intentin = !own_scope;
4850 ptr_component = (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
4851 ? CLASS_DATA (sym)->attr.class_pointer : sym->attr.pointer;
4852 for (ref = e->ref; ref && check_intentin; ref = ref->next)
4853 {
4854 if (ptr_component && ref->type == REF_COMPONENT)
4855 check_intentin = false;
4856 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
4857 {
4858 ptr_component = true;
4859 if (!pointer)
4860 check_intentin = false;
4861 }
4862 }
4863 if (check_intentin && sym->attr.intent == INTENT_IN)
4864 {
4865 if (pointer && is_pointer)
4866 {
4867 if (context)
4868 gfc_error ("Dummy argument %qs with INTENT(IN) in pointer"
4869 " association context (%s) at %L",
4870 sym->name, context, &e->where);
4871 return false;
4872 }
4873 if (!pointer && !is_pointer && !sym->attr.pointer)
4874 {
4875 if (context)
4876 gfc_error ("Dummy argument %qs with INTENT(IN) in variable"
4877 " definition context (%s) at %L",
4878 sym->name, context, &e->where);
4879 return false;
4880 }
4881 }
4882
4883 /* PROTECTED and use-associated. */
4884 if (sym->attr.is_protected && sym->attr.use_assoc && check_intentin)
4885 {
4886 if (pointer && is_pointer)
4887 {
4888 if (context)
4889 gfc_error ("Variable %qs is PROTECTED and can not appear in a"
4890 " pointer association context (%s) at %L",
4891 sym->name, context, &e->where);
4892 return false;
4893 }
4894 if (!pointer && !is_pointer)
4895 {
4896 if (context)
4897 gfc_error ("Variable %qs is PROTECTED and can not appear in a"
4898 " variable definition context (%s) at %L",
4899 sym->name, context, &e->where);
4900 return false;
4901 }
4902 }
4903
4904 /* Variable not assignable from a PURE procedure but appears in
4905 variable definition context. */
4906 if (!pointer && !own_scope && gfc_pure (NULL) && gfc_impure_variable (sym))
4907 {
4908 if (context)
4909 gfc_error ("Variable %qs can not appear in a variable definition"
4910 " context (%s) at %L in PURE procedure",
4911 sym->name, context, &e->where);
4912 return false;
4913 }
4914
4915 if (!pointer && context && gfc_implicit_pure (NULL)
4916 && gfc_impure_variable (sym))
4917 {
4918 gfc_namespace *ns;
4919 gfc_symbol *sym;
4920
4921 for (ns = gfc_current_ns; ns; ns = ns->parent)
4922 {
4923 sym = ns->proc_name;
4924 if (sym == NULL)
4925 break;
4926 if (sym->attr.flavor == FL_PROCEDURE)
4927 {
4928 sym->attr.implicit_pure = 0;
4929 break;
4930 }
4931 }
4932 }
4933 /* Check variable definition context for associate-names. */
4934 if (!pointer && sym->assoc)
4935 {
4936 const char* name;
4937 gfc_association_list* assoc;
4938
4939 gcc_assert (sym->assoc->target);
4940
4941 /* If this is a SELECT TYPE temporary (the association is used internally
4942 for SELECT TYPE), silently go over to the target. */
4943 if (sym->attr.select_type_temporary)
4944 {
4945 gfc_expr* t = sym->assoc->target;
4946
4947 gcc_assert (t->expr_type == EXPR_VARIABLE);
4948 name = t->symtree->name;
4949
4950 if (t->symtree->n.sym->assoc)
4951 assoc = t->symtree->n.sym->assoc;
4952 else
4953 assoc = sym->assoc;
4954 }
4955 else
4956 {
4957 name = sym->name;
4958 assoc = sym->assoc;
4959 }
4960 gcc_assert (name && assoc);
4961
4962 /* Is association to a valid variable? */
4963 if (!assoc->variable)
4964 {
4965 if (context)
4966 {
4967 if (assoc->target->expr_type == EXPR_VARIABLE)
4968 gfc_error ("%qs at %L associated to vector-indexed target can"
4969 " not be used in a variable definition context (%s)",
4970 name, &e->where, context);
4971 else
4972 gfc_error ("%qs at %L associated to expression can"
4973 " not be used in a variable definition context (%s)",
4974 name, &e->where, context);
4975 }
4976 return false;
4977 }
4978
4979 /* Target must be allowed to appear in a variable definition context. */
4980 if (!gfc_check_vardef_context (assoc->target, pointer, false, false, NULL))
4981 {
4982 if (context)
4983 gfc_error_1 ("Associate-name '%s' can not appear in a variable"
4984 " definition context (%s) at %L because its target"
4985 " at %L can not, either",
4986 name, context, &e->where,
4987 &assoc->target->where);
4988 return false;
4989 }
4990 }
4991
4992 /* Check for same value in vector expression subscript. */
4993
4994 if (e->rank > 0)
4995 for (ref = e->ref; ref != NULL; ref = ref->next)
4996 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
4997 for (i = 0; i < GFC_MAX_DIMENSIONS
4998 && ref->u.ar.dimen_type[i] != 0; i++)
4999 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
5000 {
5001 gfc_expr *arr = ref->u.ar.start[i];
5002 if (arr->expr_type == EXPR_ARRAY)
5003 {
5004 gfc_constructor *c, *n;
5005 gfc_expr *ec, *en;
5006
5007 for (c = gfc_constructor_first (arr->value.constructor);
5008 c != NULL; c = gfc_constructor_next (c))
5009 {
5010 if (c == NULL || c->iterator != NULL)
5011 continue;
5012
5013 ec = c->expr;
5014
5015 for (n = gfc_constructor_next (c); n != NULL;
5016 n = gfc_constructor_next (n))
5017 {
5018 if (n->iterator != NULL)
5019 continue;
5020
5021 en = n->expr;
5022 if (gfc_dep_compare_expr (ec, en) == 0)
5023 {
5024 if (context)
5025 gfc_error_now_1 ("Elements with the same value "
5026 "at %L and %L in vector "
5027 "subscript in a variable "
5028 "definition context (%s)",
5029 &(ec->where), &(en->where),
5030 context);
5031 return false;
5032 }
5033 }
5034 }
5035 }
5036 }
5037
5038 return true;
5039 }