re PR fortran/54387 ([F03] Wrongly accepts non-proc result variable on the RHS of...
[gcc.git] / gcc / fortran / expr.c
1 /* Routines for manipulation of expression nodes.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Andy Vaught
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "gfortran.h"
27 #include "arith.h"
28 #include "match.h"
29 #include "target-memory.h" /* for gfc_convert_boz */
30 #include "constructor.h"
31
32
33 /* The following set of functions provide access to gfc_expr* of
34 various types - actual all but EXPR_FUNCTION and EXPR_VARIABLE.
35
36 There are two functions available elsewhere that provide
37 slightly different flavours of variables. Namely:
38 expr.c (gfc_get_variable_expr)
39 symbol.c (gfc_lval_expr_from_sym)
40 TODO: Merge these functions, if possible. */
41
42 /* Get a new expression node. */
43
44 gfc_expr *
45 gfc_get_expr (void)
46 {
47 gfc_expr *e;
48
49 e = XCNEW (gfc_expr);
50 gfc_clear_ts (&e->ts);
51 e->shape = NULL;
52 e->ref = NULL;
53 e->symtree = NULL;
54 return e;
55 }
56
57
58 /* Get a new expression node that is an array constructor
59 of given type and kind. */
60
61 gfc_expr *
62 gfc_get_array_expr (bt type, int kind, locus *where)
63 {
64 gfc_expr *e;
65
66 e = gfc_get_expr ();
67 e->expr_type = EXPR_ARRAY;
68 e->value.constructor = NULL;
69 e->rank = 1;
70 e->shape = NULL;
71
72 e->ts.type = type;
73 e->ts.kind = kind;
74 if (where)
75 e->where = *where;
76
77 return e;
78 }
79
80
81 /* Get a new expression node that is the NULL expression. */
82
83 gfc_expr *
84 gfc_get_null_expr (locus *where)
85 {
86 gfc_expr *e;
87
88 e = gfc_get_expr ();
89 e->expr_type = EXPR_NULL;
90 e->ts.type = BT_UNKNOWN;
91
92 if (where)
93 e->where = *where;
94
95 return e;
96 }
97
98
99 /* Get a new expression node that is an operator expression node. */
100
101 gfc_expr *
102 gfc_get_operator_expr (locus *where, gfc_intrinsic_op op,
103 gfc_expr *op1, gfc_expr *op2)
104 {
105 gfc_expr *e;
106
107 e = gfc_get_expr ();
108 e->expr_type = EXPR_OP;
109 e->value.op.op = op;
110 e->value.op.op1 = op1;
111 e->value.op.op2 = op2;
112
113 if (where)
114 e->where = *where;
115
116 return e;
117 }
118
119
120 /* Get a new expression node that is an structure constructor
121 of given type and kind. */
122
123 gfc_expr *
124 gfc_get_structure_constructor_expr (bt type, int kind, locus *where)
125 {
126 gfc_expr *e;
127
128 e = gfc_get_expr ();
129 e->expr_type = EXPR_STRUCTURE;
130 e->value.constructor = NULL;
131
132 e->ts.type = type;
133 e->ts.kind = kind;
134 if (where)
135 e->where = *where;
136
137 return e;
138 }
139
140
141 /* Get a new expression node that is an constant of given type and kind. */
142
143 gfc_expr *
144 gfc_get_constant_expr (bt type, int kind, locus *where)
145 {
146 gfc_expr *e;
147
148 if (!where)
149 gfc_internal_error ("gfc_get_constant_expr(): locus 'where' cannot be NULL");
150
151 e = gfc_get_expr ();
152
153 e->expr_type = EXPR_CONSTANT;
154 e->ts.type = type;
155 e->ts.kind = kind;
156 e->where = *where;
157
158 switch (type)
159 {
160 case BT_INTEGER:
161 mpz_init (e->value.integer);
162 break;
163
164 case BT_REAL:
165 gfc_set_model_kind (kind);
166 mpfr_init (e->value.real);
167 break;
168
169 case BT_COMPLEX:
170 gfc_set_model_kind (kind);
171 mpc_init2 (e->value.complex, mpfr_get_default_prec());
172 break;
173
174 default:
175 break;
176 }
177
178 return e;
179 }
180
181
182 /* Get a new expression node that is an string constant.
183 If no string is passed, a string of len is allocated,
184 blanked and null-terminated. */
185
186 gfc_expr *
187 gfc_get_character_expr (int kind, locus *where, const char *src, int len)
188 {
189 gfc_expr *e;
190 gfc_char_t *dest;
191
192 if (!src)
193 {
194 dest = gfc_get_wide_string (len + 1);
195 gfc_wide_memset (dest, ' ', len);
196 dest[len] = '\0';
197 }
198 else
199 dest = gfc_char_to_widechar (src);
200
201 e = gfc_get_constant_expr (BT_CHARACTER, kind,
202 where ? where : &gfc_current_locus);
203 e->value.character.string = dest;
204 e->value.character.length = len;
205
206 return e;
207 }
208
209
210 /* Get a new expression node that is an integer constant. */
211
212 gfc_expr *
213 gfc_get_int_expr (int kind, locus *where, int value)
214 {
215 gfc_expr *p;
216 p = gfc_get_constant_expr (BT_INTEGER, kind,
217 where ? where : &gfc_current_locus);
218
219 mpz_set_si (p->value.integer, value);
220
221 return p;
222 }
223
224
225 /* Get a new expression node that is a logical constant. */
226
227 gfc_expr *
228 gfc_get_logical_expr (int kind, locus *where, bool value)
229 {
230 gfc_expr *p;
231 p = gfc_get_constant_expr (BT_LOGICAL, kind,
232 where ? where : &gfc_current_locus);
233
234 p->value.logical = value;
235
236 return p;
237 }
238
239
240 gfc_expr *
241 gfc_get_iokind_expr (locus *where, io_kind k)
242 {
243 gfc_expr *e;
244
245 /* Set the types to something compatible with iokind. This is needed to
246 get through gfc_free_expr later since iokind really has no Basic Type,
247 BT, of its own. */
248
249 e = gfc_get_expr ();
250 e->expr_type = EXPR_CONSTANT;
251 e->ts.type = BT_LOGICAL;
252 e->value.iokind = k;
253 e->where = *where;
254
255 return e;
256 }
257
258
259 /* Given an expression pointer, return a copy of the expression. This
260 subroutine is recursive. */
261
262 gfc_expr *
263 gfc_copy_expr (gfc_expr *p)
264 {
265 gfc_expr *q;
266 gfc_char_t *s;
267 char *c;
268
269 if (p == NULL)
270 return NULL;
271
272 q = gfc_get_expr ();
273 *q = *p;
274
275 switch (q->expr_type)
276 {
277 case EXPR_SUBSTRING:
278 s = gfc_get_wide_string (p->value.character.length + 1);
279 q->value.character.string = s;
280 memcpy (s, p->value.character.string,
281 (p->value.character.length + 1) * sizeof (gfc_char_t));
282 break;
283
284 case EXPR_CONSTANT:
285 /* Copy target representation, if it exists. */
286 if (p->representation.string)
287 {
288 c = XCNEWVEC (char, p->representation.length + 1);
289 q->representation.string = c;
290 memcpy (c, p->representation.string, (p->representation.length + 1));
291 }
292
293 /* Copy the values of any pointer components of p->value. */
294 switch (q->ts.type)
295 {
296 case BT_INTEGER:
297 mpz_init_set (q->value.integer, p->value.integer);
298 break;
299
300 case BT_REAL:
301 gfc_set_model_kind (q->ts.kind);
302 mpfr_init (q->value.real);
303 mpfr_set (q->value.real, p->value.real, GFC_RND_MODE);
304 break;
305
306 case BT_COMPLEX:
307 gfc_set_model_kind (q->ts.kind);
308 mpc_init2 (q->value.complex, mpfr_get_default_prec());
309 mpc_set (q->value.complex, p->value.complex, GFC_MPC_RND_MODE);
310 break;
311
312 case BT_CHARACTER:
313 if (p->representation.string)
314 q->value.character.string
315 = gfc_char_to_widechar (q->representation.string);
316 else
317 {
318 s = gfc_get_wide_string (p->value.character.length + 1);
319 q->value.character.string = s;
320
321 /* This is the case for the C_NULL_CHAR named constant. */
322 if (p->value.character.length == 0
323 && (p->ts.is_c_interop || p->ts.is_iso_c))
324 {
325 *s = '\0';
326 /* Need to set the length to 1 to make sure the NUL
327 terminator is copied. */
328 q->value.character.length = 1;
329 }
330 else
331 memcpy (s, p->value.character.string,
332 (p->value.character.length + 1) * sizeof (gfc_char_t));
333 }
334 break;
335
336 case BT_HOLLERITH:
337 case BT_LOGICAL:
338 case BT_DERIVED:
339 case BT_CLASS:
340 case BT_ASSUMED:
341 break; /* Already done. */
342
343 case BT_PROCEDURE:
344 case BT_VOID:
345 /* Should never be reached. */
346 case BT_UNKNOWN:
347 gfc_internal_error ("gfc_copy_expr(): Bad expr node");
348 /* Not reached. */
349 }
350
351 break;
352
353 case EXPR_OP:
354 switch (q->value.op.op)
355 {
356 case INTRINSIC_NOT:
357 case INTRINSIC_PARENTHESES:
358 case INTRINSIC_UPLUS:
359 case INTRINSIC_UMINUS:
360 q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
361 break;
362
363 default: /* Binary operators. */
364 q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
365 q->value.op.op2 = gfc_copy_expr (p->value.op.op2);
366 break;
367 }
368
369 break;
370
371 case EXPR_FUNCTION:
372 q->value.function.actual =
373 gfc_copy_actual_arglist (p->value.function.actual);
374 break;
375
376 case EXPR_COMPCALL:
377 case EXPR_PPC:
378 q->value.compcall.actual =
379 gfc_copy_actual_arglist (p->value.compcall.actual);
380 q->value.compcall.tbp = p->value.compcall.tbp;
381 break;
382
383 case EXPR_STRUCTURE:
384 case EXPR_ARRAY:
385 q->value.constructor = gfc_constructor_copy (p->value.constructor);
386 break;
387
388 case EXPR_VARIABLE:
389 case EXPR_NULL:
390 break;
391 }
392
393 q->shape = gfc_copy_shape (p->shape, p->rank);
394
395 q->ref = gfc_copy_ref (p->ref);
396
397 return q;
398 }
399
400
401 void
402 gfc_clear_shape (mpz_t *shape, int rank)
403 {
404 int i;
405
406 for (i = 0; i < rank; i++)
407 mpz_clear (shape[i]);
408 }
409
410
411 void
412 gfc_free_shape (mpz_t **shape, int rank)
413 {
414 if (*shape == NULL)
415 return;
416
417 gfc_clear_shape (*shape, rank);
418 free (*shape);
419 *shape = NULL;
420 }
421
422
423 /* Workhorse function for gfc_free_expr() that frees everything
424 beneath an expression node, but not the node itself. This is
425 useful when we want to simplify a node and replace it with
426 something else or the expression node belongs to another structure. */
427
428 static void
429 free_expr0 (gfc_expr *e)
430 {
431 switch (e->expr_type)
432 {
433 case EXPR_CONSTANT:
434 /* Free any parts of the value that need freeing. */
435 switch (e->ts.type)
436 {
437 case BT_INTEGER:
438 mpz_clear (e->value.integer);
439 break;
440
441 case BT_REAL:
442 mpfr_clear (e->value.real);
443 break;
444
445 case BT_CHARACTER:
446 free (e->value.character.string);
447 break;
448
449 case BT_COMPLEX:
450 mpc_clear (e->value.complex);
451 break;
452
453 default:
454 break;
455 }
456
457 /* Free the representation. */
458 free (e->representation.string);
459
460 break;
461
462 case EXPR_OP:
463 if (e->value.op.op1 != NULL)
464 gfc_free_expr (e->value.op.op1);
465 if (e->value.op.op2 != NULL)
466 gfc_free_expr (e->value.op.op2);
467 break;
468
469 case EXPR_FUNCTION:
470 gfc_free_actual_arglist (e->value.function.actual);
471 break;
472
473 case EXPR_COMPCALL:
474 case EXPR_PPC:
475 gfc_free_actual_arglist (e->value.compcall.actual);
476 break;
477
478 case EXPR_VARIABLE:
479 break;
480
481 case EXPR_ARRAY:
482 case EXPR_STRUCTURE:
483 gfc_constructor_free (e->value.constructor);
484 break;
485
486 case EXPR_SUBSTRING:
487 free (e->value.character.string);
488 break;
489
490 case EXPR_NULL:
491 break;
492
493 default:
494 gfc_internal_error ("free_expr0(): Bad expr type");
495 }
496
497 /* Free a shape array. */
498 gfc_free_shape (&e->shape, e->rank);
499
500 gfc_free_ref_list (e->ref);
501
502 memset (e, '\0', sizeof (gfc_expr));
503 }
504
505
506 /* Free an expression node and everything beneath it. */
507
508 void
509 gfc_free_expr (gfc_expr *e)
510 {
511 if (e == NULL)
512 return;
513 free_expr0 (e);
514 free (e);
515 }
516
517
518 /* Free an argument list and everything below it. */
519
520 void
521 gfc_free_actual_arglist (gfc_actual_arglist *a1)
522 {
523 gfc_actual_arglist *a2;
524
525 while (a1)
526 {
527 a2 = a1->next;
528 gfc_free_expr (a1->expr);
529 free (a1);
530 a1 = a2;
531 }
532 }
533
534
535 /* Copy an arglist structure and all of the arguments. */
536
537 gfc_actual_arglist *
538 gfc_copy_actual_arglist (gfc_actual_arglist *p)
539 {
540 gfc_actual_arglist *head, *tail, *new_arg;
541
542 head = tail = NULL;
543
544 for (; p; p = p->next)
545 {
546 new_arg = gfc_get_actual_arglist ();
547 *new_arg = *p;
548
549 new_arg->expr = gfc_copy_expr (p->expr);
550 new_arg->next = NULL;
551
552 if (head == NULL)
553 head = new_arg;
554 else
555 tail->next = new_arg;
556
557 tail = new_arg;
558 }
559
560 return head;
561 }
562
563
564 /* Free a list of reference structures. */
565
566 void
567 gfc_free_ref_list (gfc_ref *p)
568 {
569 gfc_ref *q;
570 int i;
571
572 for (; p; p = q)
573 {
574 q = p->next;
575
576 switch (p->type)
577 {
578 case REF_ARRAY:
579 for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
580 {
581 gfc_free_expr (p->u.ar.start[i]);
582 gfc_free_expr (p->u.ar.end[i]);
583 gfc_free_expr (p->u.ar.stride[i]);
584 }
585
586 break;
587
588 case REF_SUBSTRING:
589 gfc_free_expr (p->u.ss.start);
590 gfc_free_expr (p->u.ss.end);
591 break;
592
593 case REF_COMPONENT:
594 break;
595 }
596
597 free (p);
598 }
599 }
600
601
602 /* Graft the *src expression onto the *dest subexpression. */
603
604 void
605 gfc_replace_expr (gfc_expr *dest, gfc_expr *src)
606 {
607 free_expr0 (dest);
608 *dest = *src;
609 free (src);
610 }
611
612
613 /* Try to extract an integer constant from the passed expression node.
614 Returns an error message or NULL if the result is set. It is
615 tempting to generate an error and return SUCCESS or FAILURE, but
616 failure is OK for some callers. */
617
618 const char *
619 gfc_extract_int (gfc_expr *expr, int *result)
620 {
621 if (expr->expr_type != EXPR_CONSTANT)
622 return _("Constant expression required at %C");
623
624 if (expr->ts.type != BT_INTEGER)
625 return _("Integer expression required at %C");
626
627 if ((mpz_cmp_si (expr->value.integer, INT_MAX) > 0)
628 || (mpz_cmp_si (expr->value.integer, INT_MIN) < 0))
629 {
630 return _("Integer value too large in expression at %C");
631 }
632
633 *result = (int) mpz_get_si (expr->value.integer);
634
635 return NULL;
636 }
637
638
639 /* Recursively copy a list of reference structures. */
640
641 gfc_ref *
642 gfc_copy_ref (gfc_ref *src)
643 {
644 gfc_array_ref *ar;
645 gfc_ref *dest;
646
647 if (src == NULL)
648 return NULL;
649
650 dest = gfc_get_ref ();
651 dest->type = src->type;
652
653 switch (src->type)
654 {
655 case REF_ARRAY:
656 ar = gfc_copy_array_ref (&src->u.ar);
657 dest->u.ar = *ar;
658 free (ar);
659 break;
660
661 case REF_COMPONENT:
662 dest->u.c = src->u.c;
663 break;
664
665 case REF_SUBSTRING:
666 dest->u.ss = src->u.ss;
667 dest->u.ss.start = gfc_copy_expr (src->u.ss.start);
668 dest->u.ss.end = gfc_copy_expr (src->u.ss.end);
669 break;
670 }
671
672 dest->next = gfc_copy_ref (src->next);
673
674 return dest;
675 }
676
677
678 /* Detect whether an expression has any vector index array references. */
679
680 int
681 gfc_has_vector_index (gfc_expr *e)
682 {
683 gfc_ref *ref;
684 int i;
685 for (ref = e->ref; ref; ref = ref->next)
686 if (ref->type == REF_ARRAY)
687 for (i = 0; i < ref->u.ar.dimen; i++)
688 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
689 return 1;
690 return 0;
691 }
692
693
694 /* Copy a shape array. */
695
696 mpz_t *
697 gfc_copy_shape (mpz_t *shape, int rank)
698 {
699 mpz_t *new_shape;
700 int n;
701
702 if (shape == NULL)
703 return NULL;
704
705 new_shape = gfc_get_shape (rank);
706
707 for (n = 0; n < rank; n++)
708 mpz_init_set (new_shape[n], shape[n]);
709
710 return new_shape;
711 }
712
713
714 /* Copy a shape array excluding dimension N, where N is an integer
715 constant expression. Dimensions are numbered in Fortran style --
716 starting with ONE.
717
718 So, if the original shape array contains R elements
719 { s1 ... sN-1 sN sN+1 ... sR-1 sR}
720 the result contains R-1 elements:
721 { s1 ... sN-1 sN+1 ... sR-1}
722
723 If anything goes wrong -- N is not a constant, its value is out
724 of range -- or anything else, just returns NULL. */
725
726 mpz_t *
727 gfc_copy_shape_excluding (mpz_t *shape, int rank, gfc_expr *dim)
728 {
729 mpz_t *new_shape, *s;
730 int i, n;
731
732 if (shape == NULL
733 || rank <= 1
734 || dim == NULL
735 || dim->expr_type != EXPR_CONSTANT
736 || dim->ts.type != BT_INTEGER)
737 return NULL;
738
739 n = mpz_get_si (dim->value.integer);
740 n--; /* Convert to zero based index. */
741 if (n < 0 || n >= rank)
742 return NULL;
743
744 s = new_shape = gfc_get_shape (rank - 1);
745
746 for (i = 0; i < rank; i++)
747 {
748 if (i == n)
749 continue;
750 mpz_init_set (*s, shape[i]);
751 s++;
752 }
753
754 return new_shape;
755 }
756
757
758 /* Return the maximum kind of two expressions. In general, higher
759 kind numbers mean more precision for numeric types. */
760
761 int
762 gfc_kind_max (gfc_expr *e1, gfc_expr *e2)
763 {
764 return (e1->ts.kind > e2->ts.kind) ? e1->ts.kind : e2->ts.kind;
765 }
766
767
768 /* Returns nonzero if the type is numeric, zero otherwise. */
769
770 static int
771 numeric_type (bt type)
772 {
773 return type == BT_COMPLEX || type == BT_REAL || type == BT_INTEGER;
774 }
775
776
777 /* Returns nonzero if the typespec is a numeric type, zero otherwise. */
778
779 int
780 gfc_numeric_ts (gfc_typespec *ts)
781 {
782 return numeric_type (ts->type);
783 }
784
785
786 /* Return an expression node with an optional argument list attached.
787 A variable number of gfc_expr pointers are strung together in an
788 argument list with a NULL pointer terminating the list. */
789
790 gfc_expr *
791 gfc_build_conversion (gfc_expr *e)
792 {
793 gfc_expr *p;
794
795 p = gfc_get_expr ();
796 p->expr_type = EXPR_FUNCTION;
797 p->symtree = NULL;
798 p->value.function.actual = NULL;
799
800 p->value.function.actual = gfc_get_actual_arglist ();
801 p->value.function.actual->expr = e;
802
803 return p;
804 }
805
806
807 /* Given an expression node with some sort of numeric binary
808 expression, insert type conversions required to make the operands
809 have the same type. Conversion warnings are disabled if wconversion
810 is set to 0.
811
812 The exception is that the operands of an exponential don't have to
813 have the same type. If possible, the base is promoted to the type
814 of the exponent. For example, 1**2.3 becomes 1.0**2.3, but
815 1.0**2 stays as it is. */
816
817 void
818 gfc_type_convert_binary (gfc_expr *e, int wconversion)
819 {
820 gfc_expr *op1, *op2;
821
822 op1 = e->value.op.op1;
823 op2 = e->value.op.op2;
824
825 if (op1->ts.type == BT_UNKNOWN || op2->ts.type == BT_UNKNOWN)
826 {
827 gfc_clear_ts (&e->ts);
828 return;
829 }
830
831 /* Kind conversions of same type. */
832 if (op1->ts.type == op2->ts.type)
833 {
834 if (op1->ts.kind == op2->ts.kind)
835 {
836 /* No type conversions. */
837 e->ts = op1->ts;
838 goto done;
839 }
840
841 if (op1->ts.kind > op2->ts.kind)
842 gfc_convert_type_warn (op2, &op1->ts, 2, wconversion);
843 else
844 gfc_convert_type_warn (op1, &op2->ts, 2, wconversion);
845
846 e->ts = op1->ts;
847 goto done;
848 }
849
850 /* Integer combined with real or complex. */
851 if (op2->ts.type == BT_INTEGER)
852 {
853 e->ts = op1->ts;
854
855 /* Special case for ** operator. */
856 if (e->value.op.op == INTRINSIC_POWER)
857 goto done;
858
859 gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion);
860 goto done;
861 }
862
863 if (op1->ts.type == BT_INTEGER)
864 {
865 e->ts = op2->ts;
866 gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion);
867 goto done;
868 }
869
870 /* Real combined with complex. */
871 e->ts.type = BT_COMPLEX;
872 if (op1->ts.kind > op2->ts.kind)
873 e->ts.kind = op1->ts.kind;
874 else
875 e->ts.kind = op2->ts.kind;
876 if (op1->ts.type != BT_COMPLEX || op1->ts.kind != e->ts.kind)
877 gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion);
878 if (op2->ts.type != BT_COMPLEX || op2->ts.kind != e->ts.kind)
879 gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion);
880
881 done:
882 return;
883 }
884
885
886 /* Function to determine if an expression is constant or not. This
887 function expects that the expression has already been simplified. */
888
889 int
890 gfc_is_constant_expr (gfc_expr *e)
891 {
892 gfc_constructor *c;
893 gfc_actual_arglist *arg;
894 gfc_symbol *sym;
895
896 if (e == NULL)
897 return 1;
898
899 switch (e->expr_type)
900 {
901 case EXPR_OP:
902 return (gfc_is_constant_expr (e->value.op.op1)
903 && (e->value.op.op2 == NULL
904 || gfc_is_constant_expr (e->value.op.op2)));
905
906 case EXPR_VARIABLE:
907 return 0;
908
909 case EXPR_FUNCTION:
910 case EXPR_PPC:
911 case EXPR_COMPCALL:
912 gcc_assert (e->symtree || e->value.function.esym
913 || e->value.function.isym);
914
915 /* Call to intrinsic with at least one argument. */
916 if (e->value.function.isym && e->value.function.actual)
917 {
918 for (arg = e->value.function.actual; arg; arg = arg->next)
919 if (!gfc_is_constant_expr (arg->expr))
920 return 0;
921 }
922
923 /* Specification functions are constant. */
924 /* F95, 7.1.6.2; F2003, 7.1.7 */
925 sym = NULL;
926 if (e->symtree)
927 sym = e->symtree->n.sym;
928 if (e->value.function.esym)
929 sym = e->value.function.esym;
930
931 if (sym
932 && sym->attr.function
933 && sym->attr.pure
934 && !sym->attr.intrinsic
935 && !sym->attr.recursive
936 && sym->attr.proc != PROC_INTERNAL
937 && sym->attr.proc != PROC_ST_FUNCTION
938 && sym->attr.proc != PROC_UNKNOWN
939 && sym->formal == NULL)
940 return 1;
941
942 if (e->value.function.isym
943 && (e->value.function.isym->elemental
944 || e->value.function.isym->pure
945 || e->value.function.isym->inquiry
946 || e->value.function.isym->transformational))
947 return 1;
948
949 return 0;
950
951 case EXPR_CONSTANT:
952 case EXPR_NULL:
953 return 1;
954
955 case EXPR_SUBSTRING:
956 return e->ref == NULL || (gfc_is_constant_expr (e->ref->u.ss.start)
957 && gfc_is_constant_expr (e->ref->u.ss.end));
958
959 case EXPR_ARRAY:
960 case EXPR_STRUCTURE:
961 c = gfc_constructor_first (e->value.constructor);
962 if ((e->expr_type == EXPR_ARRAY) && c && c->iterator)
963 return gfc_constant_ac (e);
964
965 for (; c; c = gfc_constructor_next (c))
966 if (!gfc_is_constant_expr (c->expr))
967 return 0;
968
969 return 1;
970
971
972 default:
973 gfc_internal_error ("gfc_is_constant_expr(): Unknown expression type");
974 return 0;
975 }
976 }
977
978
979 /* Is true if an array reference is followed by a component or substring
980 reference. */
981 bool
982 is_subref_array (gfc_expr * e)
983 {
984 gfc_ref * ref;
985 bool seen_array;
986
987 if (e->expr_type != EXPR_VARIABLE)
988 return false;
989
990 if (e->symtree->n.sym->attr.subref_array_pointer)
991 return true;
992
993 seen_array = false;
994 for (ref = e->ref; ref; ref = ref->next)
995 {
996 if (ref->type == REF_ARRAY
997 && ref->u.ar.type != AR_ELEMENT)
998 seen_array = true;
999
1000 if (seen_array
1001 && ref->type != REF_ARRAY)
1002 return seen_array;
1003 }
1004 return false;
1005 }
1006
1007
1008 /* Try to collapse intrinsic expressions. */
1009
1010 static gfc_try
1011 simplify_intrinsic_op (gfc_expr *p, int type)
1012 {
1013 gfc_intrinsic_op op;
1014 gfc_expr *op1, *op2, *result;
1015
1016 if (p->value.op.op == INTRINSIC_USER)
1017 return SUCCESS;
1018
1019 op1 = p->value.op.op1;
1020 op2 = p->value.op.op2;
1021 op = p->value.op.op;
1022
1023 if (gfc_simplify_expr (op1, type) == FAILURE)
1024 return FAILURE;
1025 if (gfc_simplify_expr (op2, type) == FAILURE)
1026 return FAILURE;
1027
1028 if (!gfc_is_constant_expr (op1)
1029 || (op2 != NULL && !gfc_is_constant_expr (op2)))
1030 return SUCCESS;
1031
1032 /* Rip p apart. */
1033 p->value.op.op1 = NULL;
1034 p->value.op.op2 = NULL;
1035
1036 switch (op)
1037 {
1038 case INTRINSIC_PARENTHESES:
1039 result = gfc_parentheses (op1);
1040 break;
1041
1042 case INTRINSIC_UPLUS:
1043 result = gfc_uplus (op1);
1044 break;
1045
1046 case INTRINSIC_UMINUS:
1047 result = gfc_uminus (op1);
1048 break;
1049
1050 case INTRINSIC_PLUS:
1051 result = gfc_add (op1, op2);
1052 break;
1053
1054 case INTRINSIC_MINUS:
1055 result = gfc_subtract (op1, op2);
1056 break;
1057
1058 case INTRINSIC_TIMES:
1059 result = gfc_multiply (op1, op2);
1060 break;
1061
1062 case INTRINSIC_DIVIDE:
1063 result = gfc_divide (op1, op2);
1064 break;
1065
1066 case INTRINSIC_POWER:
1067 result = gfc_power (op1, op2);
1068 break;
1069
1070 case INTRINSIC_CONCAT:
1071 result = gfc_concat (op1, op2);
1072 break;
1073
1074 case INTRINSIC_EQ:
1075 case INTRINSIC_EQ_OS:
1076 result = gfc_eq (op1, op2, op);
1077 break;
1078
1079 case INTRINSIC_NE:
1080 case INTRINSIC_NE_OS:
1081 result = gfc_ne (op1, op2, op);
1082 break;
1083
1084 case INTRINSIC_GT:
1085 case INTRINSIC_GT_OS:
1086 result = gfc_gt (op1, op2, op);
1087 break;
1088
1089 case INTRINSIC_GE:
1090 case INTRINSIC_GE_OS:
1091 result = gfc_ge (op1, op2, op);
1092 break;
1093
1094 case INTRINSIC_LT:
1095 case INTRINSIC_LT_OS:
1096 result = gfc_lt (op1, op2, op);
1097 break;
1098
1099 case INTRINSIC_LE:
1100 case INTRINSIC_LE_OS:
1101 result = gfc_le (op1, op2, op);
1102 break;
1103
1104 case INTRINSIC_NOT:
1105 result = gfc_not (op1);
1106 break;
1107
1108 case INTRINSIC_AND:
1109 result = gfc_and (op1, op2);
1110 break;
1111
1112 case INTRINSIC_OR:
1113 result = gfc_or (op1, op2);
1114 break;
1115
1116 case INTRINSIC_EQV:
1117 result = gfc_eqv (op1, op2);
1118 break;
1119
1120 case INTRINSIC_NEQV:
1121 result = gfc_neqv (op1, op2);
1122 break;
1123
1124 default:
1125 gfc_internal_error ("simplify_intrinsic_op(): Bad operator");
1126 }
1127
1128 if (result == NULL)
1129 {
1130 gfc_free_expr (op1);
1131 gfc_free_expr (op2);
1132 return FAILURE;
1133 }
1134
1135 result->rank = p->rank;
1136 result->where = p->where;
1137 gfc_replace_expr (p, result);
1138
1139 return SUCCESS;
1140 }
1141
1142
1143 /* Subroutine to simplify constructor expressions. Mutually recursive
1144 with gfc_simplify_expr(). */
1145
1146 static gfc_try
1147 simplify_constructor (gfc_constructor_base base, int type)
1148 {
1149 gfc_constructor *c;
1150 gfc_expr *p;
1151
1152 for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
1153 {
1154 if (c->iterator
1155 && (gfc_simplify_expr (c->iterator->start, type) == FAILURE
1156 || gfc_simplify_expr (c->iterator->end, type) == FAILURE
1157 || gfc_simplify_expr (c->iterator->step, type) == FAILURE))
1158 return FAILURE;
1159
1160 if (c->expr)
1161 {
1162 /* Try and simplify a copy. Replace the original if successful
1163 but keep going through the constructor at all costs. Not
1164 doing so can make a dog's dinner of complicated things. */
1165 p = gfc_copy_expr (c->expr);
1166
1167 if (gfc_simplify_expr (p, type) == FAILURE)
1168 {
1169 gfc_free_expr (p);
1170 continue;
1171 }
1172
1173 gfc_replace_expr (c->expr, p);
1174 }
1175 }
1176
1177 return SUCCESS;
1178 }
1179
1180
1181 /* Pull a single array element out of an array constructor. */
1182
1183 static gfc_try
1184 find_array_element (gfc_constructor_base base, gfc_array_ref *ar,
1185 gfc_constructor **rval)
1186 {
1187 unsigned long nelemen;
1188 int i;
1189 mpz_t delta;
1190 mpz_t offset;
1191 mpz_t span;
1192 mpz_t tmp;
1193 gfc_constructor *cons;
1194 gfc_expr *e;
1195 gfc_try t;
1196
1197 t = SUCCESS;
1198 e = NULL;
1199
1200 mpz_init_set_ui (offset, 0);
1201 mpz_init (delta);
1202 mpz_init (tmp);
1203 mpz_init_set_ui (span, 1);
1204 for (i = 0; i < ar->dimen; i++)
1205 {
1206 if (gfc_reduce_init_expr (ar->as->lower[i]) == FAILURE
1207 || gfc_reduce_init_expr (ar->as->upper[i]) == FAILURE)
1208 {
1209 t = FAILURE;
1210 cons = NULL;
1211 goto depart;
1212 }
1213
1214 e = gfc_copy_expr (ar->start[i]);
1215 if (e->expr_type != EXPR_CONSTANT)
1216 {
1217 cons = NULL;
1218 goto depart;
1219 }
1220
1221 gcc_assert (ar->as->upper[i]->expr_type == EXPR_CONSTANT
1222 && ar->as->lower[i]->expr_type == EXPR_CONSTANT);
1223
1224 /* Check the bounds. */
1225 if ((ar->as->upper[i]
1226 && mpz_cmp (e->value.integer,
1227 ar->as->upper[i]->value.integer) > 0)
1228 || (mpz_cmp (e->value.integer,
1229 ar->as->lower[i]->value.integer) < 0))
1230 {
1231 gfc_error ("Index in dimension %d is out of bounds "
1232 "at %L", i + 1, &ar->c_where[i]);
1233 cons = NULL;
1234 t = FAILURE;
1235 goto depart;
1236 }
1237
1238 mpz_sub (delta, e->value.integer, ar->as->lower[i]->value.integer);
1239 mpz_mul (delta, delta, span);
1240 mpz_add (offset, offset, delta);
1241
1242 mpz_set_ui (tmp, 1);
1243 mpz_add (tmp, tmp, ar->as->upper[i]->value.integer);
1244 mpz_sub (tmp, tmp, ar->as->lower[i]->value.integer);
1245 mpz_mul (span, span, tmp);
1246 }
1247
1248 for (cons = gfc_constructor_first (base), nelemen = mpz_get_ui (offset);
1249 cons && nelemen > 0; cons = gfc_constructor_next (cons), nelemen--)
1250 {
1251 if (cons->iterator)
1252 {
1253 cons = NULL;
1254 goto depart;
1255 }
1256 }
1257
1258 depart:
1259 mpz_clear (delta);
1260 mpz_clear (offset);
1261 mpz_clear (span);
1262 mpz_clear (tmp);
1263 if (e)
1264 gfc_free_expr (e);
1265 *rval = cons;
1266 return t;
1267 }
1268
1269
1270 /* Find a component of a structure constructor. */
1271
1272 static gfc_constructor *
1273 find_component_ref (gfc_constructor_base base, gfc_ref *ref)
1274 {
1275 gfc_component *comp;
1276 gfc_component *pick;
1277 gfc_constructor *c = gfc_constructor_first (base);
1278
1279 comp = ref->u.c.sym->components;
1280 pick = ref->u.c.component;
1281 while (comp != pick)
1282 {
1283 comp = comp->next;
1284 c = gfc_constructor_next (c);
1285 }
1286
1287 return c;
1288 }
1289
1290
1291 /* Replace an expression with the contents of a constructor, removing
1292 the subobject reference in the process. */
1293
1294 static void
1295 remove_subobject_ref (gfc_expr *p, gfc_constructor *cons)
1296 {
1297 gfc_expr *e;
1298
1299 if (cons)
1300 {
1301 e = cons->expr;
1302 cons->expr = NULL;
1303 }
1304 else
1305 e = gfc_copy_expr (p);
1306 e->ref = p->ref->next;
1307 p->ref->next = NULL;
1308 gfc_replace_expr (p, e);
1309 }
1310
1311
1312 /* Pull an array section out of an array constructor. */
1313
1314 static gfc_try
1315 find_array_section (gfc_expr *expr, gfc_ref *ref)
1316 {
1317 int idx;
1318 int rank;
1319 int d;
1320 int shape_i;
1321 int limit;
1322 long unsigned one = 1;
1323 bool incr_ctr;
1324 mpz_t start[GFC_MAX_DIMENSIONS];
1325 mpz_t end[GFC_MAX_DIMENSIONS];
1326 mpz_t stride[GFC_MAX_DIMENSIONS];
1327 mpz_t delta[GFC_MAX_DIMENSIONS];
1328 mpz_t ctr[GFC_MAX_DIMENSIONS];
1329 mpz_t delta_mpz;
1330 mpz_t tmp_mpz;
1331 mpz_t nelts;
1332 mpz_t ptr;
1333 gfc_constructor_base base;
1334 gfc_constructor *cons, *vecsub[GFC_MAX_DIMENSIONS];
1335 gfc_expr *begin;
1336 gfc_expr *finish;
1337 gfc_expr *step;
1338 gfc_expr *upper;
1339 gfc_expr *lower;
1340 gfc_try t;
1341
1342 t = SUCCESS;
1343
1344 base = expr->value.constructor;
1345 expr->value.constructor = NULL;
1346
1347 rank = ref->u.ar.as->rank;
1348
1349 if (expr->shape == NULL)
1350 expr->shape = gfc_get_shape (rank);
1351
1352 mpz_init_set_ui (delta_mpz, one);
1353 mpz_init_set_ui (nelts, one);
1354 mpz_init (tmp_mpz);
1355
1356 /* Do the initialization now, so that we can cleanup without
1357 keeping track of where we were. */
1358 for (d = 0; d < rank; d++)
1359 {
1360 mpz_init (delta[d]);
1361 mpz_init (start[d]);
1362 mpz_init (end[d]);
1363 mpz_init (ctr[d]);
1364 mpz_init (stride[d]);
1365 vecsub[d] = NULL;
1366 }
1367
1368 /* Build the counters to clock through the array reference. */
1369 shape_i = 0;
1370 for (d = 0; d < rank; d++)
1371 {
1372 /* Make this stretch of code easier on the eye! */
1373 begin = ref->u.ar.start[d];
1374 finish = ref->u.ar.end[d];
1375 step = ref->u.ar.stride[d];
1376 lower = ref->u.ar.as->lower[d];
1377 upper = ref->u.ar.as->upper[d];
1378
1379 if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
1380 {
1381 gfc_constructor *ci;
1382 gcc_assert (begin);
1383
1384 if (begin->expr_type != EXPR_ARRAY || !gfc_is_constant_expr (begin))
1385 {
1386 t = FAILURE;
1387 goto cleanup;
1388 }
1389
1390 gcc_assert (begin->rank == 1);
1391 /* Zero-sized arrays have no shape and no elements, stop early. */
1392 if (!begin->shape)
1393 {
1394 mpz_init_set_ui (nelts, 0);
1395 break;
1396 }
1397
1398 vecsub[d] = gfc_constructor_first (begin->value.constructor);
1399 mpz_set (ctr[d], vecsub[d]->expr->value.integer);
1400 mpz_mul (nelts, nelts, begin->shape[0]);
1401 mpz_set (expr->shape[shape_i++], begin->shape[0]);
1402
1403 /* Check bounds. */
1404 for (ci = vecsub[d]; ci; ci = gfc_constructor_next (ci))
1405 {
1406 if (mpz_cmp (ci->expr->value.integer, upper->value.integer) > 0
1407 || mpz_cmp (ci->expr->value.integer,
1408 lower->value.integer) < 0)
1409 {
1410 gfc_error ("index in dimension %d is out of bounds "
1411 "at %L", d + 1, &ref->u.ar.c_where[d]);
1412 t = FAILURE;
1413 goto cleanup;
1414 }
1415 }
1416 }
1417 else
1418 {
1419 if ((begin && begin->expr_type != EXPR_CONSTANT)
1420 || (finish && finish->expr_type != EXPR_CONSTANT)
1421 || (step && step->expr_type != EXPR_CONSTANT))
1422 {
1423 t = FAILURE;
1424 goto cleanup;
1425 }
1426
1427 /* Obtain the stride. */
1428 if (step)
1429 mpz_set (stride[d], step->value.integer);
1430 else
1431 mpz_set_ui (stride[d], one);
1432
1433 if (mpz_cmp_ui (stride[d], 0) == 0)
1434 mpz_set_ui (stride[d], one);
1435
1436 /* Obtain the start value for the index. */
1437 if (begin)
1438 mpz_set (start[d], begin->value.integer);
1439 else
1440 mpz_set (start[d], lower->value.integer);
1441
1442 mpz_set (ctr[d], start[d]);
1443
1444 /* Obtain the end value for the index. */
1445 if (finish)
1446 mpz_set (end[d], finish->value.integer);
1447 else
1448 mpz_set (end[d], upper->value.integer);
1449
1450 /* Separate 'if' because elements sometimes arrive with
1451 non-null end. */
1452 if (ref->u.ar.dimen_type[d] == DIMEN_ELEMENT)
1453 mpz_set (end [d], begin->value.integer);
1454
1455 /* Check the bounds. */
1456 if (mpz_cmp (ctr[d], upper->value.integer) > 0
1457 || mpz_cmp (end[d], upper->value.integer) > 0
1458 || mpz_cmp (ctr[d], lower->value.integer) < 0
1459 || mpz_cmp (end[d], lower->value.integer) < 0)
1460 {
1461 gfc_error ("index in dimension %d is out of bounds "
1462 "at %L", d + 1, &ref->u.ar.c_where[d]);
1463 t = FAILURE;
1464 goto cleanup;
1465 }
1466
1467 /* Calculate the number of elements and the shape. */
1468 mpz_set (tmp_mpz, stride[d]);
1469 mpz_add (tmp_mpz, end[d], tmp_mpz);
1470 mpz_sub (tmp_mpz, tmp_mpz, ctr[d]);
1471 mpz_div (tmp_mpz, tmp_mpz, stride[d]);
1472 mpz_mul (nelts, nelts, tmp_mpz);
1473
1474 /* An element reference reduces the rank of the expression; don't
1475 add anything to the shape array. */
1476 if (ref->u.ar.dimen_type[d] != DIMEN_ELEMENT)
1477 mpz_set (expr->shape[shape_i++], tmp_mpz);
1478 }
1479
1480 /* Calculate the 'stride' (=delta) for conversion of the
1481 counter values into the index along the constructor. */
1482 mpz_set (delta[d], delta_mpz);
1483 mpz_sub (tmp_mpz, upper->value.integer, lower->value.integer);
1484 mpz_add_ui (tmp_mpz, tmp_mpz, one);
1485 mpz_mul (delta_mpz, delta_mpz, tmp_mpz);
1486 }
1487
1488 mpz_init (ptr);
1489 cons = gfc_constructor_first (base);
1490
1491 /* Now clock through the array reference, calculating the index in
1492 the source constructor and transferring the elements to the new
1493 constructor. */
1494 for (idx = 0; idx < (int) mpz_get_si (nelts); idx++)
1495 {
1496 mpz_init_set_ui (ptr, 0);
1497
1498 incr_ctr = true;
1499 for (d = 0; d < rank; d++)
1500 {
1501 mpz_set (tmp_mpz, ctr[d]);
1502 mpz_sub (tmp_mpz, tmp_mpz, ref->u.ar.as->lower[d]->value.integer);
1503 mpz_mul (tmp_mpz, tmp_mpz, delta[d]);
1504 mpz_add (ptr, ptr, tmp_mpz);
1505
1506 if (!incr_ctr) continue;
1507
1508 if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
1509 {
1510 gcc_assert(vecsub[d]);
1511
1512 if (!gfc_constructor_next (vecsub[d]))
1513 vecsub[d] = gfc_constructor_first (ref->u.ar.start[d]->value.constructor);
1514 else
1515 {
1516 vecsub[d] = gfc_constructor_next (vecsub[d]);
1517 incr_ctr = false;
1518 }
1519 mpz_set (ctr[d], vecsub[d]->expr->value.integer);
1520 }
1521 else
1522 {
1523 mpz_add (ctr[d], ctr[d], stride[d]);
1524
1525 if (mpz_cmp_ui (stride[d], 0) > 0
1526 ? mpz_cmp (ctr[d], end[d]) > 0
1527 : mpz_cmp (ctr[d], end[d]) < 0)
1528 mpz_set (ctr[d], start[d]);
1529 else
1530 incr_ctr = false;
1531 }
1532 }
1533
1534 limit = mpz_get_ui (ptr);
1535 if (limit >= gfc_option.flag_max_array_constructor)
1536 {
1537 gfc_error ("The number of elements in the array constructor "
1538 "at %L requires an increase of the allowed %d "
1539 "upper limit. See -fmax-array-constructor "
1540 "option", &expr->where,
1541 gfc_option.flag_max_array_constructor);
1542 return FAILURE;
1543 }
1544
1545 cons = gfc_constructor_lookup (base, limit);
1546 gcc_assert (cons);
1547 gfc_constructor_append_expr (&expr->value.constructor,
1548 gfc_copy_expr (cons->expr), NULL);
1549 }
1550
1551 mpz_clear (ptr);
1552
1553 cleanup:
1554
1555 mpz_clear (delta_mpz);
1556 mpz_clear (tmp_mpz);
1557 mpz_clear (nelts);
1558 for (d = 0; d < rank; d++)
1559 {
1560 mpz_clear (delta[d]);
1561 mpz_clear (start[d]);
1562 mpz_clear (end[d]);
1563 mpz_clear (ctr[d]);
1564 mpz_clear (stride[d]);
1565 }
1566 gfc_constructor_free (base);
1567 return t;
1568 }
1569
1570 /* Pull a substring out of an expression. */
1571
1572 static gfc_try
1573 find_substring_ref (gfc_expr *p, gfc_expr **newp)
1574 {
1575 int end;
1576 int start;
1577 int length;
1578 gfc_char_t *chr;
1579
1580 if (p->ref->u.ss.start->expr_type != EXPR_CONSTANT
1581 || p->ref->u.ss.end->expr_type != EXPR_CONSTANT)
1582 return FAILURE;
1583
1584 *newp = gfc_copy_expr (p);
1585 free ((*newp)->value.character.string);
1586
1587 end = (int) mpz_get_ui (p->ref->u.ss.end->value.integer);
1588 start = (int) mpz_get_ui (p->ref->u.ss.start->value.integer);
1589 length = end - start + 1;
1590
1591 chr = (*newp)->value.character.string = gfc_get_wide_string (length + 1);
1592 (*newp)->value.character.length = length;
1593 memcpy (chr, &p->value.character.string[start - 1],
1594 length * sizeof (gfc_char_t));
1595 chr[length] = '\0';
1596 return SUCCESS;
1597 }
1598
1599
1600
1601 /* Simplify a subobject reference of a constructor. This occurs when
1602 parameter variable values are substituted. */
1603
1604 static gfc_try
1605 simplify_const_ref (gfc_expr *p)
1606 {
1607 gfc_constructor *cons, *c;
1608 gfc_expr *newp;
1609 gfc_ref *last_ref;
1610
1611 while (p->ref)
1612 {
1613 switch (p->ref->type)
1614 {
1615 case REF_ARRAY:
1616 switch (p->ref->u.ar.type)
1617 {
1618 case AR_ELEMENT:
1619 /* <type/kind spec>, parameter :: x(<int>) = scalar_expr
1620 will generate this. */
1621 if (p->expr_type != EXPR_ARRAY)
1622 {
1623 remove_subobject_ref (p, NULL);
1624 break;
1625 }
1626 if (find_array_element (p->value.constructor, &p->ref->u.ar,
1627 &cons) == FAILURE)
1628 return FAILURE;
1629
1630 if (!cons)
1631 return SUCCESS;
1632
1633 remove_subobject_ref (p, cons);
1634 break;
1635
1636 case AR_SECTION:
1637 if (find_array_section (p, p->ref) == FAILURE)
1638 return FAILURE;
1639 p->ref->u.ar.type = AR_FULL;
1640
1641 /* Fall through. */
1642
1643 case AR_FULL:
1644 if (p->ref->next != NULL
1645 && (p->ts.type == BT_CHARACTER || p->ts.type == BT_DERIVED))
1646 {
1647 for (c = gfc_constructor_first (p->value.constructor);
1648 c; c = gfc_constructor_next (c))
1649 {
1650 c->expr->ref = gfc_copy_ref (p->ref->next);
1651 if (simplify_const_ref (c->expr) == FAILURE)
1652 return FAILURE;
1653 }
1654
1655 if (p->ts.type == BT_DERIVED
1656 && p->ref->next
1657 && (c = gfc_constructor_first (p->value.constructor)))
1658 {
1659 /* There may have been component references. */
1660 p->ts = c->expr->ts;
1661 }
1662
1663 last_ref = p->ref;
1664 for (; last_ref->next; last_ref = last_ref->next) {};
1665
1666 if (p->ts.type == BT_CHARACTER
1667 && last_ref->type == REF_SUBSTRING)
1668 {
1669 /* If this is a CHARACTER array and we possibly took
1670 a substring out of it, update the type-spec's
1671 character length according to the first element
1672 (as all should have the same length). */
1673 int string_len;
1674 if ((c = gfc_constructor_first (p->value.constructor)))
1675 {
1676 const gfc_expr* first = c->expr;
1677 gcc_assert (first->expr_type == EXPR_CONSTANT);
1678 gcc_assert (first->ts.type == BT_CHARACTER);
1679 string_len = first->value.character.length;
1680 }
1681 else
1682 string_len = 0;
1683
1684 if (!p->ts.u.cl)
1685 p->ts.u.cl = gfc_new_charlen (p->symtree->n.sym->ns,
1686 NULL);
1687 else
1688 gfc_free_expr (p->ts.u.cl->length);
1689
1690 p->ts.u.cl->length
1691 = gfc_get_int_expr (gfc_default_integer_kind,
1692 NULL, string_len);
1693 }
1694 }
1695 gfc_free_ref_list (p->ref);
1696 p->ref = NULL;
1697 break;
1698
1699 default:
1700 return SUCCESS;
1701 }
1702
1703 break;
1704
1705 case REF_COMPONENT:
1706 cons = find_component_ref (p->value.constructor, p->ref);
1707 remove_subobject_ref (p, cons);
1708 break;
1709
1710 case REF_SUBSTRING:
1711 if (find_substring_ref (p, &newp) == FAILURE)
1712 return FAILURE;
1713
1714 gfc_replace_expr (p, newp);
1715 gfc_free_ref_list (p->ref);
1716 p->ref = NULL;
1717 break;
1718 }
1719 }
1720
1721 return SUCCESS;
1722 }
1723
1724
1725 /* Simplify a chain of references. */
1726
1727 static gfc_try
1728 simplify_ref_chain (gfc_ref *ref, int type)
1729 {
1730 int n;
1731
1732 for (; ref; ref = ref->next)
1733 {
1734 switch (ref->type)
1735 {
1736 case REF_ARRAY:
1737 for (n = 0; n < ref->u.ar.dimen; n++)
1738 {
1739 if (gfc_simplify_expr (ref->u.ar.start[n], type) == FAILURE)
1740 return FAILURE;
1741 if (gfc_simplify_expr (ref->u.ar.end[n], type) == FAILURE)
1742 return FAILURE;
1743 if (gfc_simplify_expr (ref->u.ar.stride[n], type) == FAILURE)
1744 return FAILURE;
1745 }
1746 break;
1747
1748 case REF_SUBSTRING:
1749 if (gfc_simplify_expr (ref->u.ss.start, type) == FAILURE)
1750 return FAILURE;
1751 if (gfc_simplify_expr (ref->u.ss.end, type) == FAILURE)
1752 return FAILURE;
1753 break;
1754
1755 default:
1756 break;
1757 }
1758 }
1759 return SUCCESS;
1760 }
1761
1762
1763 /* Try to substitute the value of a parameter variable. */
1764
1765 static gfc_try
1766 simplify_parameter_variable (gfc_expr *p, int type)
1767 {
1768 gfc_expr *e;
1769 gfc_try t;
1770
1771 e = gfc_copy_expr (p->symtree->n.sym->value);
1772 if (e == NULL)
1773 return FAILURE;
1774
1775 e->rank = p->rank;
1776
1777 /* Do not copy subobject refs for constant. */
1778 if (e->expr_type != EXPR_CONSTANT && p->ref != NULL)
1779 e->ref = gfc_copy_ref (p->ref);
1780 t = gfc_simplify_expr (e, type);
1781
1782 /* Only use the simplification if it eliminated all subobject references. */
1783 if (t == SUCCESS && !e->ref)
1784 gfc_replace_expr (p, e);
1785 else
1786 gfc_free_expr (e);
1787
1788 return t;
1789 }
1790
1791 /* Given an expression, simplify it by collapsing constant
1792 expressions. Most simplification takes place when the expression
1793 tree is being constructed. If an intrinsic function is simplified
1794 at some point, we get called again to collapse the result against
1795 other constants.
1796
1797 We work by recursively simplifying expression nodes, simplifying
1798 intrinsic functions where possible, which can lead to further
1799 constant collapsing. If an operator has constant operand(s), we
1800 rip the expression apart, and rebuild it, hoping that it becomes
1801 something simpler.
1802
1803 The expression type is defined for:
1804 0 Basic expression parsing
1805 1 Simplifying array constructors -- will substitute
1806 iterator values.
1807 Returns FAILURE on error, SUCCESS otherwise.
1808 NOTE: Will return SUCCESS even if the expression can not be simplified. */
1809
1810 gfc_try
1811 gfc_simplify_expr (gfc_expr *p, int type)
1812 {
1813 gfc_actual_arglist *ap;
1814
1815 if (p == NULL)
1816 return SUCCESS;
1817
1818 switch (p->expr_type)
1819 {
1820 case EXPR_CONSTANT:
1821 case EXPR_NULL:
1822 break;
1823
1824 case EXPR_FUNCTION:
1825 for (ap = p->value.function.actual; ap; ap = ap->next)
1826 if (gfc_simplify_expr (ap->expr, type) == FAILURE)
1827 return FAILURE;
1828
1829 if (p->value.function.isym != NULL
1830 && gfc_intrinsic_func_interface (p, 1) == MATCH_ERROR)
1831 return FAILURE;
1832
1833 break;
1834
1835 case EXPR_SUBSTRING:
1836 if (simplify_ref_chain (p->ref, type) == FAILURE)
1837 return FAILURE;
1838
1839 if (gfc_is_constant_expr (p))
1840 {
1841 gfc_char_t *s;
1842 int start, end;
1843
1844 start = 0;
1845 if (p->ref && p->ref->u.ss.start)
1846 {
1847 gfc_extract_int (p->ref->u.ss.start, &start);
1848 start--; /* Convert from one-based to zero-based. */
1849 }
1850
1851 end = p->value.character.length;
1852 if (p->ref && p->ref->u.ss.end)
1853 gfc_extract_int (p->ref->u.ss.end, &end);
1854
1855 if (end < start)
1856 end = start;
1857
1858 s = gfc_get_wide_string (end - start + 2);
1859 memcpy (s, p->value.character.string + start,
1860 (end - start) * sizeof (gfc_char_t));
1861 s[end - start + 1] = '\0'; /* TODO: C-style string. */
1862 free (p->value.character.string);
1863 p->value.character.string = s;
1864 p->value.character.length = end - start;
1865 p->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1866 p->ts.u.cl->length = gfc_get_int_expr (gfc_default_integer_kind,
1867 NULL,
1868 p->value.character.length);
1869 gfc_free_ref_list (p->ref);
1870 p->ref = NULL;
1871 p->expr_type = EXPR_CONSTANT;
1872 }
1873 break;
1874
1875 case EXPR_OP:
1876 if (simplify_intrinsic_op (p, type) == FAILURE)
1877 return FAILURE;
1878 break;
1879
1880 case EXPR_VARIABLE:
1881 /* Only substitute array parameter variables if we are in an
1882 initialization expression, or we want a subsection. */
1883 if (p->symtree->n.sym->attr.flavor == FL_PARAMETER
1884 && (gfc_init_expr_flag || p->ref
1885 || p->symtree->n.sym->value->expr_type != EXPR_ARRAY))
1886 {
1887 if (simplify_parameter_variable (p, type) == FAILURE)
1888 return FAILURE;
1889 break;
1890 }
1891
1892 if (type == 1)
1893 {
1894 gfc_simplify_iterator_var (p);
1895 }
1896
1897 /* Simplify subcomponent references. */
1898 if (simplify_ref_chain (p->ref, type) == FAILURE)
1899 return FAILURE;
1900
1901 break;
1902
1903 case EXPR_STRUCTURE:
1904 case EXPR_ARRAY:
1905 if (simplify_ref_chain (p->ref, type) == FAILURE)
1906 return FAILURE;
1907
1908 if (simplify_constructor (p->value.constructor, type) == FAILURE)
1909 return FAILURE;
1910
1911 if (p->expr_type == EXPR_ARRAY && p->ref && p->ref->type == REF_ARRAY
1912 && p->ref->u.ar.type == AR_FULL)
1913 gfc_expand_constructor (p, false);
1914
1915 if (simplify_const_ref (p) == FAILURE)
1916 return FAILURE;
1917
1918 break;
1919
1920 case EXPR_COMPCALL:
1921 case EXPR_PPC:
1922 gcc_unreachable ();
1923 break;
1924 }
1925
1926 return SUCCESS;
1927 }
1928
1929
1930 /* Returns the type of an expression with the exception that iterator
1931 variables are automatically integers no matter what else they may
1932 be declared as. */
1933
1934 static bt
1935 et0 (gfc_expr *e)
1936 {
1937 if (e->expr_type == EXPR_VARIABLE && gfc_check_iter_variable (e) == SUCCESS)
1938 return BT_INTEGER;
1939
1940 return e->ts.type;
1941 }
1942
1943
1944 /* Scalarize an expression for an elemental intrinsic call. */
1945
1946 static gfc_try
1947 scalarize_intrinsic_call (gfc_expr *e)
1948 {
1949 gfc_actual_arglist *a, *b;
1950 gfc_constructor_base ctor;
1951 gfc_constructor *args[5];
1952 gfc_constructor *ci, *new_ctor;
1953 gfc_expr *expr, *old;
1954 int n, i, rank[5], array_arg;
1955
1956 /* Find which, if any, arguments are arrays. Assume that the old
1957 expression carries the type information and that the first arg
1958 that is an array expression carries all the shape information.*/
1959 n = array_arg = 0;
1960 a = e->value.function.actual;
1961 for (; a; a = a->next)
1962 {
1963 n++;
1964 if (a->expr->expr_type != EXPR_ARRAY)
1965 continue;
1966 array_arg = n;
1967 expr = gfc_copy_expr (a->expr);
1968 break;
1969 }
1970
1971 if (!array_arg)
1972 return FAILURE;
1973
1974 old = gfc_copy_expr (e);
1975
1976 gfc_constructor_free (expr->value.constructor);
1977 expr->value.constructor = NULL;
1978 expr->ts = old->ts;
1979 expr->where = old->where;
1980 expr->expr_type = EXPR_ARRAY;
1981
1982 /* Copy the array argument constructors into an array, with nulls
1983 for the scalars. */
1984 n = 0;
1985 a = old->value.function.actual;
1986 for (; a; a = a->next)
1987 {
1988 /* Check that this is OK for an initialization expression. */
1989 if (a->expr && gfc_check_init_expr (a->expr) == FAILURE)
1990 goto cleanup;
1991
1992 rank[n] = 0;
1993 if (a->expr && a->expr->rank && a->expr->expr_type == EXPR_VARIABLE)
1994 {
1995 rank[n] = a->expr->rank;
1996 ctor = a->expr->symtree->n.sym->value->value.constructor;
1997 args[n] = gfc_constructor_first (ctor);
1998 }
1999 else if (a->expr && a->expr->expr_type == EXPR_ARRAY)
2000 {
2001 if (a->expr->rank)
2002 rank[n] = a->expr->rank;
2003 else
2004 rank[n] = 1;
2005 ctor = gfc_constructor_copy (a->expr->value.constructor);
2006 args[n] = gfc_constructor_first (ctor);
2007 }
2008 else
2009 args[n] = NULL;
2010
2011 n++;
2012 }
2013
2014
2015 /* Using the array argument as the master, step through the array
2016 calling the function for each element and advancing the array
2017 constructors together. */
2018 for (ci = args[array_arg - 1]; ci; ci = gfc_constructor_next (ci))
2019 {
2020 new_ctor = gfc_constructor_append_expr (&expr->value.constructor,
2021 gfc_copy_expr (old), NULL);
2022
2023 gfc_free_actual_arglist (new_ctor->expr->value.function.actual);
2024 a = NULL;
2025 b = old->value.function.actual;
2026 for (i = 0; i < n; i++)
2027 {
2028 if (a == NULL)
2029 new_ctor->expr->value.function.actual
2030 = a = gfc_get_actual_arglist ();
2031 else
2032 {
2033 a->next = gfc_get_actual_arglist ();
2034 a = a->next;
2035 }
2036
2037 if (args[i])
2038 a->expr = gfc_copy_expr (args[i]->expr);
2039 else
2040 a->expr = gfc_copy_expr (b->expr);
2041
2042 b = b->next;
2043 }
2044
2045 /* Simplify the function calls. If the simplification fails, the
2046 error will be flagged up down-stream or the library will deal
2047 with it. */
2048 gfc_simplify_expr (new_ctor->expr, 0);
2049
2050 for (i = 0; i < n; i++)
2051 if (args[i])
2052 args[i] = gfc_constructor_next (args[i]);
2053
2054 for (i = 1; i < n; i++)
2055 if (rank[i] && ((args[i] != NULL && args[array_arg - 1] == NULL)
2056 || (args[i] == NULL && args[array_arg - 1] != NULL)))
2057 goto compliance;
2058 }
2059
2060 free_expr0 (e);
2061 *e = *expr;
2062 gfc_free_expr (old);
2063 return SUCCESS;
2064
2065 compliance:
2066 gfc_error_now ("elemental function arguments at %C are not compliant");
2067
2068 cleanup:
2069 gfc_free_expr (expr);
2070 gfc_free_expr (old);
2071 return FAILURE;
2072 }
2073
2074
2075 static gfc_try
2076 check_intrinsic_op (gfc_expr *e, gfc_try (*check_function) (gfc_expr *))
2077 {
2078 gfc_expr *op1 = e->value.op.op1;
2079 gfc_expr *op2 = e->value.op.op2;
2080
2081 if ((*check_function) (op1) == FAILURE)
2082 return FAILURE;
2083
2084 switch (e->value.op.op)
2085 {
2086 case INTRINSIC_UPLUS:
2087 case INTRINSIC_UMINUS:
2088 if (!numeric_type (et0 (op1)))
2089 goto not_numeric;
2090 break;
2091
2092 case INTRINSIC_EQ:
2093 case INTRINSIC_EQ_OS:
2094 case INTRINSIC_NE:
2095 case INTRINSIC_NE_OS:
2096 case INTRINSIC_GT:
2097 case INTRINSIC_GT_OS:
2098 case INTRINSIC_GE:
2099 case INTRINSIC_GE_OS:
2100 case INTRINSIC_LT:
2101 case INTRINSIC_LT_OS:
2102 case INTRINSIC_LE:
2103 case INTRINSIC_LE_OS:
2104 if ((*check_function) (op2) == FAILURE)
2105 return FAILURE;
2106
2107 if (!(et0 (op1) == BT_CHARACTER && et0 (op2) == BT_CHARACTER)
2108 && !(numeric_type (et0 (op1)) && numeric_type (et0 (op2))))
2109 {
2110 gfc_error ("Numeric or CHARACTER operands are required in "
2111 "expression at %L", &e->where);
2112 return FAILURE;
2113 }
2114 break;
2115
2116 case INTRINSIC_PLUS:
2117 case INTRINSIC_MINUS:
2118 case INTRINSIC_TIMES:
2119 case INTRINSIC_DIVIDE:
2120 case INTRINSIC_POWER:
2121 if ((*check_function) (op2) == FAILURE)
2122 return FAILURE;
2123
2124 if (!numeric_type (et0 (op1)) || !numeric_type (et0 (op2)))
2125 goto not_numeric;
2126
2127 break;
2128
2129 case INTRINSIC_CONCAT:
2130 if ((*check_function) (op2) == FAILURE)
2131 return FAILURE;
2132
2133 if (et0 (op1) != BT_CHARACTER || et0 (op2) != BT_CHARACTER)
2134 {
2135 gfc_error ("Concatenation operator in expression at %L "
2136 "must have two CHARACTER operands", &op1->where);
2137 return FAILURE;
2138 }
2139
2140 if (op1->ts.kind != op2->ts.kind)
2141 {
2142 gfc_error ("Concat operator at %L must concatenate strings of the "
2143 "same kind", &e->where);
2144 return FAILURE;
2145 }
2146
2147 break;
2148
2149 case INTRINSIC_NOT:
2150 if (et0 (op1) != BT_LOGICAL)
2151 {
2152 gfc_error (".NOT. operator in expression at %L must have a LOGICAL "
2153 "operand", &op1->where);
2154 return FAILURE;
2155 }
2156
2157 break;
2158
2159 case INTRINSIC_AND:
2160 case INTRINSIC_OR:
2161 case INTRINSIC_EQV:
2162 case INTRINSIC_NEQV:
2163 if ((*check_function) (op2) == FAILURE)
2164 return FAILURE;
2165
2166 if (et0 (op1) != BT_LOGICAL || et0 (op2) != BT_LOGICAL)
2167 {
2168 gfc_error ("LOGICAL operands are required in expression at %L",
2169 &e->where);
2170 return FAILURE;
2171 }
2172
2173 break;
2174
2175 case INTRINSIC_PARENTHESES:
2176 break;
2177
2178 default:
2179 gfc_error ("Only intrinsic operators can be used in expression at %L",
2180 &e->where);
2181 return FAILURE;
2182 }
2183
2184 return SUCCESS;
2185
2186 not_numeric:
2187 gfc_error ("Numeric operands are required in expression at %L", &e->where);
2188
2189 return FAILURE;
2190 }
2191
2192 /* F2003, 7.1.7 (3): In init expression, allocatable components
2193 must not be data-initialized. */
2194 static gfc_try
2195 check_alloc_comp_init (gfc_expr *e)
2196 {
2197 gfc_component *comp;
2198 gfc_constructor *ctor;
2199
2200 gcc_assert (e->expr_type == EXPR_STRUCTURE);
2201 gcc_assert (e->ts.type == BT_DERIVED);
2202
2203 for (comp = e->ts.u.derived->components,
2204 ctor = gfc_constructor_first (e->value.constructor);
2205 comp; comp = comp->next, ctor = gfc_constructor_next (ctor))
2206 {
2207 if (comp->attr.allocatable
2208 && ctor->expr->expr_type != EXPR_NULL)
2209 {
2210 gfc_error("Invalid initialization expression for ALLOCATABLE "
2211 "component '%s' in structure constructor at %L",
2212 comp->name, &ctor->expr->where);
2213 return FAILURE;
2214 }
2215 }
2216
2217 return SUCCESS;
2218 }
2219
2220 static match
2221 check_init_expr_arguments (gfc_expr *e)
2222 {
2223 gfc_actual_arglist *ap;
2224
2225 for (ap = e->value.function.actual; ap; ap = ap->next)
2226 if (gfc_check_init_expr (ap->expr) == FAILURE)
2227 return MATCH_ERROR;
2228
2229 return MATCH_YES;
2230 }
2231
2232 static gfc_try check_restricted (gfc_expr *);
2233
2234 /* F95, 7.1.6.1, Initialization expressions, (7)
2235 F2003, 7.1.7 Initialization expression, (8) */
2236
2237 static match
2238 check_inquiry (gfc_expr *e, int not_restricted)
2239 {
2240 const char *name;
2241 const char *const *functions;
2242
2243 static const char *const inquiry_func_f95[] = {
2244 "lbound", "shape", "size", "ubound",
2245 "bit_size", "len", "kind",
2246 "digits", "epsilon", "huge", "maxexponent", "minexponent",
2247 "precision", "radix", "range", "tiny",
2248 NULL
2249 };
2250
2251 static const char *const inquiry_func_f2003[] = {
2252 "lbound", "shape", "size", "ubound",
2253 "bit_size", "len", "kind",
2254 "digits", "epsilon", "huge", "maxexponent", "minexponent",
2255 "precision", "radix", "range", "tiny",
2256 "new_line", NULL
2257 };
2258
2259 int i;
2260 gfc_actual_arglist *ap;
2261
2262 if (!e->value.function.isym
2263 || !e->value.function.isym->inquiry)
2264 return MATCH_NO;
2265
2266 /* An undeclared parameter will get us here (PR25018). */
2267 if (e->symtree == NULL)
2268 return MATCH_NO;
2269
2270 name = e->symtree->n.sym->name;
2271
2272 functions = (gfc_option.warn_std & GFC_STD_F2003)
2273 ? inquiry_func_f2003 : inquiry_func_f95;
2274
2275 for (i = 0; functions[i]; i++)
2276 if (strcmp (functions[i], name) == 0)
2277 break;
2278
2279 if (functions[i] == NULL)
2280 return MATCH_ERROR;
2281
2282 /* At this point we have an inquiry function with a variable argument. The
2283 type of the variable might be undefined, but we need it now, because the
2284 arguments of these functions are not allowed to be undefined. */
2285
2286 for (ap = e->value.function.actual; ap; ap = ap->next)
2287 {
2288 if (!ap->expr)
2289 continue;
2290
2291 if (ap->expr->ts.type == BT_UNKNOWN)
2292 {
2293 if (ap->expr->symtree->n.sym->ts.type == BT_UNKNOWN
2294 && gfc_set_default_type (ap->expr->symtree->n.sym, 0, gfc_current_ns)
2295 == FAILURE)
2296 return MATCH_NO;
2297
2298 ap->expr->ts = ap->expr->symtree->n.sym->ts;
2299 }
2300
2301 /* Assumed character length will not reduce to a constant expression
2302 with LEN, as required by the standard. */
2303 if (i == 5 && not_restricted
2304 && ap->expr->symtree->n.sym->ts.type == BT_CHARACTER
2305 && (ap->expr->symtree->n.sym->ts.u.cl->length == NULL
2306 || ap->expr->symtree->n.sym->ts.deferred))
2307 {
2308 gfc_error ("Assumed or deferred character length variable '%s' "
2309 " in constant expression at %L",
2310 ap->expr->symtree->n.sym->name,
2311 &ap->expr->where);
2312 return MATCH_ERROR;
2313 }
2314 else if (not_restricted && gfc_check_init_expr (ap->expr) == FAILURE)
2315 return MATCH_ERROR;
2316
2317 if (not_restricted == 0
2318 && ap->expr->expr_type != EXPR_VARIABLE
2319 && check_restricted (ap->expr) == FAILURE)
2320 return MATCH_ERROR;
2321
2322 if (not_restricted == 0
2323 && ap->expr->expr_type == EXPR_VARIABLE
2324 && ap->expr->symtree->n.sym->attr.dummy
2325 && ap->expr->symtree->n.sym->attr.optional)
2326 return MATCH_NO;
2327 }
2328
2329 return MATCH_YES;
2330 }
2331
2332
2333 /* F95, 7.1.6.1, Initialization expressions, (5)
2334 F2003, 7.1.7 Initialization expression, (5) */
2335
2336 static match
2337 check_transformational (gfc_expr *e)
2338 {
2339 static const char * const trans_func_f95[] = {
2340 "repeat", "reshape", "selected_int_kind",
2341 "selected_real_kind", "transfer", "trim", NULL
2342 };
2343
2344 static const char * const trans_func_f2003[] = {
2345 "all", "any", "count", "dot_product", "matmul", "null", "pack",
2346 "product", "repeat", "reshape", "selected_char_kind", "selected_int_kind",
2347 "selected_real_kind", "spread", "sum", "transfer", "transpose",
2348 "trim", "unpack", NULL
2349 };
2350
2351 int i;
2352 const char *name;
2353 const char *const *functions;
2354
2355 if (!e->value.function.isym
2356 || !e->value.function.isym->transformational)
2357 return MATCH_NO;
2358
2359 name = e->symtree->n.sym->name;
2360
2361 functions = (gfc_option.allow_std & GFC_STD_F2003)
2362 ? trans_func_f2003 : trans_func_f95;
2363
2364 /* NULL() is dealt with below. */
2365 if (strcmp ("null", name) == 0)
2366 return MATCH_NO;
2367
2368 for (i = 0; functions[i]; i++)
2369 if (strcmp (functions[i], name) == 0)
2370 break;
2371
2372 if (functions[i] == NULL)
2373 {
2374 gfc_error("transformational intrinsic '%s' at %L is not permitted "
2375 "in an initialization expression", name, &e->where);
2376 return MATCH_ERROR;
2377 }
2378
2379 return check_init_expr_arguments (e);
2380 }
2381
2382
2383 /* F95, 7.1.6.1, Initialization expressions, (6)
2384 F2003, 7.1.7 Initialization expression, (6) */
2385
2386 static match
2387 check_null (gfc_expr *e)
2388 {
2389 if (strcmp ("null", e->symtree->n.sym->name) != 0)
2390 return MATCH_NO;
2391
2392 return check_init_expr_arguments (e);
2393 }
2394
2395
2396 static match
2397 check_elemental (gfc_expr *e)
2398 {
2399 if (!e->value.function.isym
2400 || !e->value.function.isym->elemental)
2401 return MATCH_NO;
2402
2403 if (e->ts.type != BT_INTEGER
2404 && e->ts.type != BT_CHARACTER
2405 && gfc_notify_std (GFC_STD_F2003, "Evaluation of "
2406 "nonstandard initialization expression at %L",
2407 &e->where) == FAILURE)
2408 return MATCH_ERROR;
2409
2410 return check_init_expr_arguments (e);
2411 }
2412
2413
2414 static match
2415 check_conversion (gfc_expr *e)
2416 {
2417 if (!e->value.function.isym
2418 || !e->value.function.isym->conversion)
2419 return MATCH_NO;
2420
2421 return check_init_expr_arguments (e);
2422 }
2423
2424
2425 /* Verify that an expression is an initialization expression. A side
2426 effect is that the expression tree is reduced to a single constant
2427 node if all goes well. This would normally happen when the
2428 expression is constructed but function references are assumed to be
2429 intrinsics in the context of initialization expressions. If
2430 FAILURE is returned an error message has been generated. */
2431
2432 gfc_try
2433 gfc_check_init_expr (gfc_expr *e)
2434 {
2435 match m;
2436 gfc_try t;
2437
2438 if (e == NULL)
2439 return SUCCESS;
2440
2441 switch (e->expr_type)
2442 {
2443 case EXPR_OP:
2444 t = check_intrinsic_op (e, gfc_check_init_expr);
2445 if (t == SUCCESS)
2446 t = gfc_simplify_expr (e, 0);
2447
2448 break;
2449
2450 case EXPR_FUNCTION:
2451 t = FAILURE;
2452
2453 {
2454 gfc_intrinsic_sym* isym;
2455 gfc_symbol* sym;
2456
2457 sym = e->symtree->n.sym;
2458 if (!gfc_is_intrinsic (sym, 0, e->where)
2459 || (m = gfc_intrinsic_func_interface (e, 0)) != MATCH_YES)
2460 {
2461 gfc_error ("Function '%s' in initialization expression at %L "
2462 "must be an intrinsic function",
2463 e->symtree->n.sym->name, &e->where);
2464 break;
2465 }
2466
2467 if ((m = check_conversion (e)) == MATCH_NO
2468 && (m = check_inquiry (e, 1)) == MATCH_NO
2469 && (m = check_null (e)) == MATCH_NO
2470 && (m = check_transformational (e)) == MATCH_NO
2471 && (m = check_elemental (e)) == MATCH_NO)
2472 {
2473 gfc_error ("Intrinsic function '%s' at %L is not permitted "
2474 "in an initialization expression",
2475 e->symtree->n.sym->name, &e->where);
2476 m = MATCH_ERROR;
2477 }
2478
2479 if (m == MATCH_ERROR)
2480 return FAILURE;
2481
2482 /* Try to scalarize an elemental intrinsic function that has an
2483 array argument. */
2484 isym = gfc_find_function (e->symtree->n.sym->name);
2485 if (isym && isym->elemental
2486 && (t = scalarize_intrinsic_call (e)) == SUCCESS)
2487 break;
2488 }
2489
2490 if (m == MATCH_YES)
2491 t = gfc_simplify_expr (e, 0);
2492
2493 break;
2494
2495 case EXPR_VARIABLE:
2496 t = SUCCESS;
2497
2498 if (gfc_check_iter_variable (e) == SUCCESS)
2499 break;
2500
2501 if (e->symtree->n.sym->attr.flavor == FL_PARAMETER)
2502 {
2503 /* A PARAMETER shall not be used to define itself, i.e.
2504 REAL, PARAMETER :: x = transfer(0, x)
2505 is invalid. */
2506 if (!e->symtree->n.sym->value)
2507 {
2508 gfc_error("PARAMETER '%s' is used at %L before its definition "
2509 "is complete", e->symtree->n.sym->name, &e->where);
2510 t = FAILURE;
2511 }
2512 else
2513 t = simplify_parameter_variable (e, 0);
2514
2515 break;
2516 }
2517
2518 if (gfc_in_match_data ())
2519 break;
2520
2521 t = FAILURE;
2522
2523 if (e->symtree->n.sym->as)
2524 {
2525 switch (e->symtree->n.sym->as->type)
2526 {
2527 case AS_ASSUMED_SIZE:
2528 gfc_error ("Assumed size array '%s' at %L is not permitted "
2529 "in an initialization expression",
2530 e->symtree->n.sym->name, &e->where);
2531 break;
2532
2533 case AS_ASSUMED_SHAPE:
2534 gfc_error ("Assumed shape array '%s' at %L is not permitted "
2535 "in an initialization expression",
2536 e->symtree->n.sym->name, &e->where);
2537 break;
2538
2539 case AS_DEFERRED:
2540 gfc_error ("Deferred array '%s' at %L is not permitted "
2541 "in an initialization expression",
2542 e->symtree->n.sym->name, &e->where);
2543 break;
2544
2545 case AS_EXPLICIT:
2546 gfc_error ("Array '%s' at %L is a variable, which does "
2547 "not reduce to a constant expression",
2548 e->symtree->n.sym->name, &e->where);
2549 break;
2550
2551 default:
2552 gcc_unreachable();
2553 }
2554 }
2555 else
2556 gfc_error ("Parameter '%s' at %L has not been declared or is "
2557 "a variable, which does not reduce to a constant "
2558 "expression", e->symtree->n.sym->name, &e->where);
2559
2560 break;
2561
2562 case EXPR_CONSTANT:
2563 case EXPR_NULL:
2564 t = SUCCESS;
2565 break;
2566
2567 case EXPR_SUBSTRING:
2568 t = gfc_check_init_expr (e->ref->u.ss.start);
2569 if (t == FAILURE)
2570 break;
2571
2572 t = gfc_check_init_expr (e->ref->u.ss.end);
2573 if (t == SUCCESS)
2574 t = gfc_simplify_expr (e, 0);
2575
2576 break;
2577
2578 case EXPR_STRUCTURE:
2579 t = e->ts.is_iso_c ? SUCCESS : FAILURE;
2580 if (t == SUCCESS)
2581 break;
2582
2583 t = check_alloc_comp_init (e);
2584 if (t == FAILURE)
2585 break;
2586
2587 t = gfc_check_constructor (e, gfc_check_init_expr);
2588 if (t == FAILURE)
2589 break;
2590
2591 break;
2592
2593 case EXPR_ARRAY:
2594 t = gfc_check_constructor (e, gfc_check_init_expr);
2595 if (t == FAILURE)
2596 break;
2597
2598 t = gfc_expand_constructor (e, true);
2599 if (t == FAILURE)
2600 break;
2601
2602 t = gfc_check_constructor_type (e);
2603 break;
2604
2605 default:
2606 gfc_internal_error ("check_init_expr(): Unknown expression type");
2607 }
2608
2609 return t;
2610 }
2611
2612 /* Reduces a general expression to an initialization expression (a constant).
2613 This used to be part of gfc_match_init_expr.
2614 Note that this function doesn't free the given expression on FAILURE. */
2615
2616 gfc_try
2617 gfc_reduce_init_expr (gfc_expr *expr)
2618 {
2619 gfc_try t;
2620
2621 gfc_init_expr_flag = true;
2622 t = gfc_resolve_expr (expr);
2623 if (t == SUCCESS)
2624 t = gfc_check_init_expr (expr);
2625 gfc_init_expr_flag = false;
2626
2627 if (t == FAILURE)
2628 return FAILURE;
2629
2630 if (expr->expr_type == EXPR_ARRAY)
2631 {
2632 if (gfc_check_constructor_type (expr) == FAILURE)
2633 return FAILURE;
2634 if (gfc_expand_constructor (expr, true) == FAILURE)
2635 return FAILURE;
2636 }
2637
2638 return SUCCESS;
2639 }
2640
2641
2642 /* Match an initialization expression. We work by first matching an
2643 expression, then reducing it to a constant. */
2644
2645 match
2646 gfc_match_init_expr (gfc_expr **result)
2647 {
2648 gfc_expr *expr;
2649 match m;
2650 gfc_try t;
2651
2652 expr = NULL;
2653
2654 gfc_init_expr_flag = true;
2655
2656 m = gfc_match_expr (&expr);
2657 if (m != MATCH_YES)
2658 {
2659 gfc_init_expr_flag = false;
2660 return m;
2661 }
2662
2663 t = gfc_reduce_init_expr (expr);
2664 if (t != SUCCESS)
2665 {
2666 gfc_free_expr (expr);
2667 gfc_init_expr_flag = false;
2668 return MATCH_ERROR;
2669 }
2670
2671 *result = expr;
2672 gfc_init_expr_flag = false;
2673
2674 return MATCH_YES;
2675 }
2676
2677
2678 /* Given an actual argument list, test to see that each argument is a
2679 restricted expression and optionally if the expression type is
2680 integer or character. */
2681
2682 static gfc_try
2683 restricted_args (gfc_actual_arglist *a)
2684 {
2685 for (; a; a = a->next)
2686 {
2687 if (check_restricted (a->expr) == FAILURE)
2688 return FAILURE;
2689 }
2690
2691 return SUCCESS;
2692 }
2693
2694
2695 /************* Restricted/specification expressions *************/
2696
2697
2698 /* Make sure a non-intrinsic function is a specification function. */
2699
2700 static gfc_try
2701 external_spec_function (gfc_expr *e)
2702 {
2703 gfc_symbol *f;
2704
2705 f = e->value.function.esym;
2706
2707 if (f->attr.proc == PROC_ST_FUNCTION)
2708 {
2709 gfc_error ("Specification function '%s' at %L cannot be a statement "
2710 "function", f->name, &e->where);
2711 return FAILURE;
2712 }
2713
2714 if (f->attr.proc == PROC_INTERNAL)
2715 {
2716 gfc_error ("Specification function '%s' at %L cannot be an internal "
2717 "function", f->name, &e->where);
2718 return FAILURE;
2719 }
2720
2721 if (!f->attr.pure && !f->attr.elemental)
2722 {
2723 gfc_error ("Specification function '%s' at %L must be PURE", f->name,
2724 &e->where);
2725 return FAILURE;
2726 }
2727
2728 if (f->attr.recursive)
2729 {
2730 gfc_error ("Specification function '%s' at %L cannot be RECURSIVE",
2731 f->name, &e->where);
2732 return FAILURE;
2733 }
2734
2735 return restricted_args (e->value.function.actual);
2736 }
2737
2738
2739 /* Check to see that a function reference to an intrinsic is a
2740 restricted expression. */
2741
2742 static gfc_try
2743 restricted_intrinsic (gfc_expr *e)
2744 {
2745 /* TODO: Check constraints on inquiry functions. 7.1.6.2 (7). */
2746 if (check_inquiry (e, 0) == MATCH_YES)
2747 return SUCCESS;
2748
2749 return restricted_args (e->value.function.actual);
2750 }
2751
2752
2753 /* Check the expressions of an actual arglist. Used by check_restricted. */
2754
2755 static gfc_try
2756 check_arglist (gfc_actual_arglist* arg, gfc_try (*checker) (gfc_expr*))
2757 {
2758 for (; arg; arg = arg->next)
2759 if (checker (arg->expr) == FAILURE)
2760 return FAILURE;
2761
2762 return SUCCESS;
2763 }
2764
2765
2766 /* Check the subscription expressions of a reference chain with a checking
2767 function; used by check_restricted. */
2768
2769 static gfc_try
2770 check_references (gfc_ref* ref, gfc_try (*checker) (gfc_expr*))
2771 {
2772 int dim;
2773
2774 if (!ref)
2775 return SUCCESS;
2776
2777 switch (ref->type)
2778 {
2779 case REF_ARRAY:
2780 for (dim = 0; dim != ref->u.ar.dimen; ++dim)
2781 {
2782 if (checker (ref->u.ar.start[dim]) == FAILURE)
2783 return FAILURE;
2784 if (checker (ref->u.ar.end[dim]) == FAILURE)
2785 return FAILURE;
2786 if (checker (ref->u.ar.stride[dim]) == FAILURE)
2787 return FAILURE;
2788 }
2789 break;
2790
2791 case REF_COMPONENT:
2792 /* Nothing needed, just proceed to next reference. */
2793 break;
2794
2795 case REF_SUBSTRING:
2796 if (checker (ref->u.ss.start) == FAILURE)
2797 return FAILURE;
2798 if (checker (ref->u.ss.end) == FAILURE)
2799 return FAILURE;
2800 break;
2801
2802 default:
2803 gcc_unreachable ();
2804 break;
2805 }
2806
2807 return check_references (ref->next, checker);
2808 }
2809
2810
2811 /* Verify that an expression is a restricted expression. Like its
2812 cousin check_init_expr(), an error message is generated if we
2813 return FAILURE. */
2814
2815 static gfc_try
2816 check_restricted (gfc_expr *e)
2817 {
2818 gfc_symbol* sym;
2819 gfc_try t;
2820
2821 if (e == NULL)
2822 return SUCCESS;
2823
2824 switch (e->expr_type)
2825 {
2826 case EXPR_OP:
2827 t = check_intrinsic_op (e, check_restricted);
2828 if (t == SUCCESS)
2829 t = gfc_simplify_expr (e, 0);
2830
2831 break;
2832
2833 case EXPR_FUNCTION:
2834 if (e->value.function.esym)
2835 {
2836 t = check_arglist (e->value.function.actual, &check_restricted);
2837 if (t == SUCCESS)
2838 t = external_spec_function (e);
2839 }
2840 else
2841 {
2842 if (e->value.function.isym && e->value.function.isym->inquiry)
2843 t = SUCCESS;
2844 else
2845 t = check_arglist (e->value.function.actual, &check_restricted);
2846
2847 if (t == SUCCESS)
2848 t = restricted_intrinsic (e);
2849 }
2850 break;
2851
2852 case EXPR_VARIABLE:
2853 sym = e->symtree->n.sym;
2854 t = FAILURE;
2855
2856 /* If a dummy argument appears in a context that is valid for a
2857 restricted expression in an elemental procedure, it will have
2858 already been simplified away once we get here. Therefore we
2859 don't need to jump through hoops to distinguish valid from
2860 invalid cases. */
2861 if (sym->attr.dummy && sym->ns == gfc_current_ns
2862 && sym->ns->proc_name && sym->ns->proc_name->attr.elemental)
2863 {
2864 gfc_error ("Dummy argument '%s' not allowed in expression at %L",
2865 sym->name, &e->where);
2866 break;
2867 }
2868
2869 if (sym->attr.optional)
2870 {
2871 gfc_error ("Dummy argument '%s' at %L cannot be OPTIONAL",
2872 sym->name, &e->where);
2873 break;
2874 }
2875
2876 if (sym->attr.intent == INTENT_OUT)
2877 {
2878 gfc_error ("Dummy argument '%s' at %L cannot be INTENT(OUT)",
2879 sym->name, &e->where);
2880 break;
2881 }
2882
2883 /* Check reference chain if any. */
2884 if (check_references (e->ref, &check_restricted) == FAILURE)
2885 break;
2886
2887 /* gfc_is_formal_arg broadcasts that a formal argument list is being
2888 processed in resolve.c(resolve_formal_arglist). This is done so
2889 that host associated dummy array indices are accepted (PR23446).
2890 This mechanism also does the same for the specification expressions
2891 of array-valued functions. */
2892 if (e->error
2893 || sym->attr.in_common
2894 || sym->attr.use_assoc
2895 || sym->attr.dummy
2896 || sym->attr.implied_index
2897 || sym->attr.flavor == FL_PARAMETER
2898 || (sym->ns && sym->ns == gfc_current_ns->parent)
2899 || (sym->ns && gfc_current_ns->parent
2900 && sym->ns == gfc_current_ns->parent->parent)
2901 || (sym->ns->proc_name != NULL
2902 && sym->ns->proc_name->attr.flavor == FL_MODULE)
2903 || (gfc_is_formal_arg () && (sym->ns == gfc_current_ns)))
2904 {
2905 t = SUCCESS;
2906 break;
2907 }
2908
2909 gfc_error ("Variable '%s' cannot appear in the expression at %L",
2910 sym->name, &e->where);
2911 /* Prevent a repetition of the error. */
2912 e->error = 1;
2913 break;
2914
2915 case EXPR_NULL:
2916 case EXPR_CONSTANT:
2917 t = SUCCESS;
2918 break;
2919
2920 case EXPR_SUBSTRING:
2921 t = gfc_specification_expr (e->ref->u.ss.start);
2922 if (t == FAILURE)
2923 break;
2924
2925 t = gfc_specification_expr (e->ref->u.ss.end);
2926 if (t == SUCCESS)
2927 t = gfc_simplify_expr (e, 0);
2928
2929 break;
2930
2931 case EXPR_STRUCTURE:
2932 t = gfc_check_constructor (e, check_restricted);
2933 break;
2934
2935 case EXPR_ARRAY:
2936 t = gfc_check_constructor (e, check_restricted);
2937 break;
2938
2939 default:
2940 gfc_internal_error ("check_restricted(): Unknown expression type");
2941 }
2942
2943 return t;
2944 }
2945
2946
2947 /* Check to see that an expression is a specification expression. If
2948 we return FAILURE, an error has been generated. */
2949
2950 gfc_try
2951 gfc_specification_expr (gfc_expr *e)
2952 {
2953 gfc_component *comp;
2954
2955 if (e == NULL)
2956 return SUCCESS;
2957
2958 if (e->ts.type != BT_INTEGER)
2959 {
2960 gfc_error ("Expression at %L must be of INTEGER type, found %s",
2961 &e->where, gfc_basic_typename (e->ts.type));
2962 return FAILURE;
2963 }
2964
2965 comp = gfc_get_proc_ptr_comp (e);
2966 if (e->expr_type == EXPR_FUNCTION
2967 && !e->value.function.isym
2968 && !e->value.function.esym
2969 && !gfc_pure (e->symtree->n.sym)
2970 && (!comp || !comp->attr.pure))
2971 {
2972 gfc_error ("Function '%s' at %L must be PURE",
2973 e->symtree->n.sym->name, &e->where);
2974 /* Prevent repeat error messages. */
2975 e->symtree->n.sym->attr.pure = 1;
2976 return FAILURE;
2977 }
2978
2979 if (e->rank != 0)
2980 {
2981 gfc_error ("Expression at %L must be scalar", &e->where);
2982 return FAILURE;
2983 }
2984
2985 if (gfc_simplify_expr (e, 0) == FAILURE)
2986 return FAILURE;
2987
2988 return check_restricted (e);
2989 }
2990
2991
2992 /************** Expression conformance checks. *************/
2993
2994 /* Given two expressions, make sure that the arrays are conformable. */
2995
2996 gfc_try
2997 gfc_check_conformance (gfc_expr *op1, gfc_expr *op2, const char *optype_msgid, ...)
2998 {
2999 int op1_flag, op2_flag, d;
3000 mpz_t op1_size, op2_size;
3001 gfc_try t;
3002
3003 va_list argp;
3004 char buffer[240];
3005
3006 if (op1->rank == 0 || op2->rank == 0)
3007 return SUCCESS;
3008
3009 va_start (argp, optype_msgid);
3010 vsnprintf (buffer, 240, optype_msgid, argp);
3011 va_end (argp);
3012
3013 if (op1->rank != op2->rank)
3014 {
3015 gfc_error ("Incompatible ranks in %s (%d and %d) at %L", _(buffer),
3016 op1->rank, op2->rank, &op1->where);
3017 return FAILURE;
3018 }
3019
3020 t = SUCCESS;
3021
3022 for (d = 0; d < op1->rank; d++)
3023 {
3024 op1_flag = gfc_array_dimen_size (op1, d, &op1_size) == SUCCESS;
3025 op2_flag = gfc_array_dimen_size (op2, d, &op2_size) == SUCCESS;
3026
3027 if (op1_flag && op2_flag && mpz_cmp (op1_size, op2_size) != 0)
3028 {
3029 gfc_error ("Different shape for %s at %L on dimension %d "
3030 "(%d and %d)", _(buffer), &op1->where, d + 1,
3031 (int) mpz_get_si (op1_size),
3032 (int) mpz_get_si (op2_size));
3033
3034 t = FAILURE;
3035 }
3036
3037 if (op1_flag)
3038 mpz_clear (op1_size);
3039 if (op2_flag)
3040 mpz_clear (op2_size);
3041
3042 if (t == FAILURE)
3043 return FAILURE;
3044 }
3045
3046 return SUCCESS;
3047 }
3048
3049
3050 /* Given an assignable expression and an arbitrary expression, make
3051 sure that the assignment can take place. */
3052
3053 gfc_try
3054 gfc_check_assign (gfc_expr *lvalue, gfc_expr *rvalue, int conform)
3055 {
3056 gfc_symbol *sym;
3057 gfc_ref *ref;
3058 int has_pointer;
3059
3060 sym = lvalue->symtree->n.sym;
3061
3062 /* See if this is the component or subcomponent of a pointer. */
3063 has_pointer = sym->attr.pointer;
3064 for (ref = lvalue->ref; ref; ref = ref->next)
3065 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
3066 {
3067 has_pointer = 1;
3068 break;
3069 }
3070
3071 /* 12.5.2.2, Note 12.26: The result variable is very similar to any other
3072 variable local to a function subprogram. Its existence begins when
3073 execution of the function is initiated and ends when execution of the
3074 function is terminated...
3075 Therefore, the left hand side is no longer a variable, when it is: */
3076 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_ST_FUNCTION
3077 && !sym->attr.external)
3078 {
3079 bool bad_proc;
3080 bad_proc = false;
3081
3082 /* (i) Use associated; */
3083 if (sym->attr.use_assoc)
3084 bad_proc = true;
3085
3086 /* (ii) The assignment is in the main program; or */
3087 if (gfc_current_ns->proc_name->attr.is_main_program)
3088 bad_proc = true;
3089
3090 /* (iii) A module or internal procedure... */
3091 if ((gfc_current_ns->proc_name->attr.proc == PROC_INTERNAL
3092 || gfc_current_ns->proc_name->attr.proc == PROC_MODULE)
3093 && gfc_current_ns->parent
3094 && (!(gfc_current_ns->parent->proc_name->attr.function
3095 || gfc_current_ns->parent->proc_name->attr.subroutine)
3096 || gfc_current_ns->parent->proc_name->attr.is_main_program))
3097 {
3098 /* ... that is not a function... */
3099 if (!gfc_current_ns->proc_name->attr.function)
3100 bad_proc = true;
3101
3102 /* ... or is not an entry and has a different name. */
3103 if (!sym->attr.entry && sym->name != gfc_current_ns->proc_name->name)
3104 bad_proc = true;
3105 }
3106
3107 /* (iv) Host associated and not the function symbol or the
3108 parent result. This picks up sibling references, which
3109 cannot be entries. */
3110 if (!sym->attr.entry
3111 && sym->ns == gfc_current_ns->parent
3112 && sym != gfc_current_ns->proc_name
3113 && sym != gfc_current_ns->parent->proc_name->result)
3114 bad_proc = true;
3115
3116 if (bad_proc)
3117 {
3118 gfc_error ("'%s' at %L is not a VALUE", sym->name, &lvalue->where);
3119 return FAILURE;
3120 }
3121 }
3122
3123 if (rvalue->rank != 0 && lvalue->rank != rvalue->rank)
3124 {
3125 gfc_error ("Incompatible ranks %d and %d in assignment at %L",
3126 lvalue->rank, rvalue->rank, &lvalue->where);
3127 return FAILURE;
3128 }
3129
3130 if (lvalue->ts.type == BT_UNKNOWN)
3131 {
3132 gfc_error ("Variable type is UNKNOWN in assignment at %L",
3133 &lvalue->where);
3134 return FAILURE;
3135 }
3136
3137 if (rvalue->expr_type == EXPR_NULL)
3138 {
3139 if (has_pointer && (ref == NULL || ref->next == NULL)
3140 && lvalue->symtree->n.sym->attr.data)
3141 return SUCCESS;
3142 else
3143 {
3144 gfc_error ("NULL appears on right-hand side in assignment at %L",
3145 &rvalue->where);
3146 return FAILURE;
3147 }
3148 }
3149
3150 /* This is possibly a typo: x = f() instead of x => f(). */
3151 if (gfc_option.warn_surprising
3152 && rvalue->expr_type == EXPR_FUNCTION
3153 && rvalue->symtree->n.sym->attr.pointer)
3154 gfc_warning ("POINTER valued function appears on right-hand side of "
3155 "assignment at %L", &rvalue->where);
3156
3157 /* Check size of array assignments. */
3158 if (lvalue->rank != 0 && rvalue->rank != 0
3159 && gfc_check_conformance (lvalue, rvalue, "array assignment") != SUCCESS)
3160 return FAILURE;
3161
3162 if (rvalue->is_boz && lvalue->ts.type != BT_INTEGER
3163 && lvalue->symtree->n.sym->attr.data
3164 && gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L used to "
3165 "initialize non-integer variable '%s'",
3166 &rvalue->where, lvalue->symtree->n.sym->name)
3167 == FAILURE)
3168 return FAILURE;
3169 else if (rvalue->is_boz && !lvalue->symtree->n.sym->attr.data
3170 && gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L outside "
3171 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
3172 &rvalue->where) == FAILURE)
3173 return FAILURE;
3174
3175 /* Handle the case of a BOZ literal on the RHS. */
3176 if (rvalue->is_boz && lvalue->ts.type != BT_INTEGER)
3177 {
3178 int rc;
3179 if (gfc_option.warn_surprising)
3180 gfc_warning ("BOZ literal at %L is bitwise transferred "
3181 "non-integer symbol '%s'", &rvalue->where,
3182 lvalue->symtree->n.sym->name);
3183 if (!gfc_convert_boz (rvalue, &lvalue->ts))
3184 return FAILURE;
3185 if ((rc = gfc_range_check (rvalue)) != ARITH_OK)
3186 {
3187 if (rc == ARITH_UNDERFLOW)
3188 gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
3189 ". This check can be disabled with the option "
3190 "-fno-range-check", &rvalue->where);
3191 else if (rc == ARITH_OVERFLOW)
3192 gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
3193 ". This check can be disabled with the option "
3194 "-fno-range-check", &rvalue->where);
3195 else if (rc == ARITH_NAN)
3196 gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
3197 ". This check can be disabled with the option "
3198 "-fno-range-check", &rvalue->where);
3199 return FAILURE;
3200 }
3201 }
3202
3203 /* Warn about type-changing conversions for REAL or COMPLEX constants.
3204 If lvalue and rvalue are mixed REAL and complex, gfc_compare_types
3205 will warn anyway, so there is no need to to so here. */
3206
3207 if (rvalue->expr_type == EXPR_CONSTANT && lvalue->ts.type == rvalue->ts.type
3208 && (lvalue->ts.type == BT_REAL || lvalue->ts.type == BT_COMPLEX))
3209 {
3210 if (lvalue->ts.kind < rvalue->ts.kind && gfc_option.gfc_warn_conversion)
3211 {
3212 /* As a special bonus, don't warn about REAL rvalues which are not
3213 changed by the conversion if -Wconversion is specified. */
3214 if (rvalue->ts.type == BT_REAL && mpfr_number_p (rvalue->value.real))
3215 {
3216 /* Calculate the difference between the constant and the rounded
3217 value and check it against zero. */
3218 mpfr_t rv, diff;
3219 gfc_set_model_kind (lvalue->ts.kind);
3220 mpfr_init (rv);
3221 gfc_set_model_kind (rvalue->ts.kind);
3222 mpfr_init (diff);
3223
3224 mpfr_set (rv, rvalue->value.real, GFC_RND_MODE);
3225 mpfr_sub (diff, rv, rvalue->value.real, GFC_RND_MODE);
3226
3227 if (!mpfr_zero_p (diff))
3228 gfc_warning ("Change of value in conversion from "
3229 " %s to %s at %L", gfc_typename (&rvalue->ts),
3230 gfc_typename (&lvalue->ts), &rvalue->where);
3231
3232 mpfr_clear (rv);
3233 mpfr_clear (diff);
3234 }
3235 else
3236 gfc_warning ("Possible change of value in conversion from %s "
3237 "to %s at %L",gfc_typename (&rvalue->ts),
3238 gfc_typename (&lvalue->ts), &rvalue->where);
3239
3240 }
3241 else if (gfc_option.warn_conversion_extra
3242 && lvalue->ts.kind > rvalue->ts.kind)
3243 {
3244 gfc_warning ("Conversion from %s to %s at %L",
3245 gfc_typename (&rvalue->ts),
3246 gfc_typename (&lvalue->ts), &rvalue->where);
3247 }
3248 }
3249
3250 if (gfc_compare_types (&lvalue->ts, &rvalue->ts))
3251 return SUCCESS;
3252
3253 /* Only DATA Statements come here. */
3254 if (!conform)
3255 {
3256 /* Numeric can be converted to any other numeric. And Hollerith can be
3257 converted to any other type. */
3258 if ((gfc_numeric_ts (&lvalue->ts) && gfc_numeric_ts (&rvalue->ts))
3259 || rvalue->ts.type == BT_HOLLERITH)
3260 return SUCCESS;
3261
3262 if (lvalue->ts.type == BT_LOGICAL && rvalue->ts.type == BT_LOGICAL)
3263 return SUCCESS;
3264
3265 gfc_error ("Incompatible types in DATA statement at %L; attempted "
3266 "conversion of %s to %s", &lvalue->where,
3267 gfc_typename (&rvalue->ts), gfc_typename (&lvalue->ts));
3268
3269 return FAILURE;
3270 }
3271
3272 /* Assignment is the only case where character variables of different
3273 kind values can be converted into one another. */
3274 if (lvalue->ts.type == BT_CHARACTER && rvalue->ts.type == BT_CHARACTER)
3275 {
3276 if (lvalue->ts.kind != rvalue->ts.kind)
3277 gfc_convert_chartype (rvalue, &lvalue->ts);
3278
3279 return SUCCESS;
3280 }
3281
3282 return gfc_convert_type (rvalue, &lvalue->ts, 1);
3283 }
3284
3285
3286 /* Check that a pointer assignment is OK. We first check lvalue, and
3287 we only check rvalue if it's not an assignment to NULL() or a
3288 NULLIFY statement. */
3289
3290 gfc_try
3291 gfc_check_pointer_assign (gfc_expr *lvalue, gfc_expr *rvalue)
3292 {
3293 symbol_attribute attr;
3294 gfc_ref *ref;
3295 bool is_pure, is_implicit_pure, rank_remap;
3296 int proc_pointer;
3297
3298 if (lvalue->symtree->n.sym->ts.type == BT_UNKNOWN
3299 && !lvalue->symtree->n.sym->attr.proc_pointer)
3300 {
3301 gfc_error ("Pointer assignment target is not a POINTER at %L",
3302 &lvalue->where);
3303 return FAILURE;
3304 }
3305
3306 if (lvalue->symtree->n.sym->attr.flavor == FL_PROCEDURE
3307 && lvalue->symtree->n.sym->attr.use_assoc
3308 && !lvalue->symtree->n.sym->attr.proc_pointer)
3309 {
3310 gfc_error ("'%s' in the pointer assignment at %L cannot be an "
3311 "l-value since it is a procedure",
3312 lvalue->symtree->n.sym->name, &lvalue->where);
3313 return FAILURE;
3314 }
3315
3316 proc_pointer = lvalue->symtree->n.sym->attr.proc_pointer;
3317
3318 rank_remap = false;
3319 for (ref = lvalue->ref; ref; ref = ref->next)
3320 {
3321 if (ref->type == REF_COMPONENT)
3322 proc_pointer = ref->u.c.component->attr.proc_pointer;
3323
3324 if (ref->type == REF_ARRAY && ref->next == NULL)
3325 {
3326 int dim;
3327
3328 if (ref->u.ar.type == AR_FULL)
3329 break;
3330
3331 if (ref->u.ar.type != AR_SECTION)
3332 {
3333 gfc_error ("Expected bounds specification for '%s' at %L",
3334 lvalue->symtree->n.sym->name, &lvalue->where);
3335 return FAILURE;
3336 }
3337
3338 if (gfc_notify_std (GFC_STD_F2003,"Bounds "
3339 "specification for '%s' in pointer assignment "
3340 "at %L", lvalue->symtree->n.sym->name,
3341 &lvalue->where) == FAILURE)
3342 return FAILURE;
3343
3344 /* When bounds are given, all lbounds are necessary and either all
3345 or none of the upper bounds; no strides are allowed. If the
3346 upper bounds are present, we may do rank remapping. */
3347 for (dim = 0; dim < ref->u.ar.dimen; ++dim)
3348 {
3349 if (!ref->u.ar.start[dim]
3350 || ref->u.ar.dimen_type[dim] != DIMEN_RANGE)
3351 {
3352 gfc_error ("Lower bound has to be present at %L",
3353 &lvalue->where);
3354 return FAILURE;
3355 }
3356 if (ref->u.ar.stride[dim])
3357 {
3358 gfc_error ("Stride must not be present at %L",
3359 &lvalue->where);
3360 return FAILURE;
3361 }
3362
3363 if (dim == 0)
3364 rank_remap = (ref->u.ar.end[dim] != NULL);
3365 else
3366 {
3367 if ((rank_remap && !ref->u.ar.end[dim])
3368 || (!rank_remap && ref->u.ar.end[dim]))
3369 {
3370 gfc_error ("Either all or none of the upper bounds"
3371 " must be specified at %L", &lvalue->where);
3372 return FAILURE;
3373 }
3374 }
3375 }
3376 }
3377 }
3378
3379 is_pure = gfc_pure (NULL);
3380 is_implicit_pure = gfc_implicit_pure (NULL);
3381
3382 /* If rvalue is a NULL() or NULLIFY, we're done. Otherwise the type,
3383 kind, etc for lvalue and rvalue must match, and rvalue must be a
3384 pure variable if we're in a pure function. */
3385 if (rvalue->expr_type == EXPR_NULL && rvalue->ts.type == BT_UNKNOWN)
3386 return SUCCESS;
3387
3388 /* F2008, C723 (pointer) and C726 (proc-pointer); for PURE also C1283. */
3389 if (lvalue->expr_type == EXPR_VARIABLE
3390 && gfc_is_coindexed (lvalue))
3391 {
3392 gfc_ref *ref;
3393 for (ref = lvalue->ref; ref; ref = ref->next)
3394 if (ref->type == REF_ARRAY && ref->u.ar.codimen)
3395 {
3396 gfc_error ("Pointer object at %L shall not have a coindex",
3397 &lvalue->where);
3398 return FAILURE;
3399 }
3400 }
3401
3402 /* Checks on rvalue for procedure pointer assignments. */
3403 if (proc_pointer)
3404 {
3405 char err[200];
3406 gfc_symbol *s1,*s2;
3407 gfc_component *comp;
3408 const char *name;
3409
3410 attr = gfc_expr_attr (rvalue);
3411 if (!((rvalue->expr_type == EXPR_NULL)
3412 || (rvalue->expr_type == EXPR_FUNCTION && attr.proc_pointer)
3413 || (rvalue->expr_type == EXPR_VARIABLE && attr.proc_pointer)
3414 || (rvalue->expr_type == EXPR_VARIABLE
3415 && attr.flavor == FL_PROCEDURE)))
3416 {
3417 gfc_error ("Invalid procedure pointer assignment at %L",
3418 &rvalue->where);
3419 return FAILURE;
3420 }
3421 if (rvalue->expr_type == EXPR_VARIABLE && !attr.proc_pointer)
3422 {
3423 /* Check for intrinsics. */
3424 gfc_symbol *sym = rvalue->symtree->n.sym;
3425 if (!sym->attr.intrinsic
3426 && (gfc_is_intrinsic (sym, 0, sym->declared_at)
3427 || gfc_is_intrinsic (sym, 1, sym->declared_at)))
3428 {
3429 sym->attr.intrinsic = 1;
3430 gfc_resolve_intrinsic (sym, &rvalue->where);
3431 attr = gfc_expr_attr (rvalue);
3432 }
3433 /* Check for result of embracing function. */
3434 if (sym == gfc_current_ns->proc_name
3435 && sym->attr.function && sym->result == sym)
3436 {
3437 gfc_error ("Function result '%s' is invalid as proc-target "
3438 "in procedure pointer assignment at %L",
3439 sym->name, &rvalue->where);
3440 return FAILURE;
3441 }
3442 }
3443 if (attr.abstract)
3444 {
3445 gfc_error ("Abstract interface '%s' is invalid "
3446 "in procedure pointer assignment at %L",
3447 rvalue->symtree->name, &rvalue->where);
3448 return FAILURE;
3449 }
3450 /* Check for F08:C729. */
3451 if (attr.flavor == FL_PROCEDURE)
3452 {
3453 if (attr.proc == PROC_ST_FUNCTION)
3454 {
3455 gfc_error ("Statement function '%s' is invalid "
3456 "in procedure pointer assignment at %L",
3457 rvalue->symtree->name, &rvalue->where);
3458 return FAILURE;
3459 }
3460 if (attr.proc == PROC_INTERNAL &&
3461 gfc_notify_std (GFC_STD_F2008, "Internal procedure "
3462 "'%s' is invalid in procedure pointer assignment "
3463 "at %L", rvalue->symtree->name, &rvalue->where)
3464 == FAILURE)
3465 return FAILURE;
3466 if (attr.intrinsic && gfc_intrinsic_actual_ok (rvalue->symtree->name,
3467 attr.subroutine) == 0)
3468 {
3469 gfc_error ("Intrinsic '%s' at %L is invalid in procedure pointer "
3470 "assignment", rvalue->symtree->name, &rvalue->where);
3471 return FAILURE;
3472 }
3473 }
3474 /* Check for F08:C730. */
3475 if (attr.elemental && !attr.intrinsic)
3476 {
3477 gfc_error ("Nonintrinsic elemental procedure '%s' is invalid "
3478 "in procedure pointer assignment at %L",
3479 rvalue->symtree->name, &rvalue->where);
3480 return FAILURE;
3481 }
3482
3483 /* Ensure that the calling convention is the same. As other attributes
3484 such as DLLEXPORT may differ, one explicitly only tests for the
3485 calling conventions. */
3486 if (rvalue->expr_type == EXPR_VARIABLE
3487 && lvalue->symtree->n.sym->attr.ext_attr
3488 != rvalue->symtree->n.sym->attr.ext_attr)
3489 {
3490 symbol_attribute calls;
3491
3492 calls.ext_attr = 0;
3493 gfc_add_ext_attribute (&calls, EXT_ATTR_CDECL, NULL);
3494 gfc_add_ext_attribute (&calls, EXT_ATTR_STDCALL, NULL);
3495 gfc_add_ext_attribute (&calls, EXT_ATTR_FASTCALL, NULL);
3496
3497 if ((calls.ext_attr & lvalue->symtree->n.sym->attr.ext_attr)
3498 != (calls.ext_attr & rvalue->symtree->n.sym->attr.ext_attr))
3499 {
3500 gfc_error ("Mismatch in the procedure pointer assignment "
3501 "at %L: mismatch in the calling convention",
3502 &rvalue->where);
3503 return FAILURE;
3504 }
3505 }
3506
3507 comp = gfc_get_proc_ptr_comp (lvalue);
3508 if (comp)
3509 s1 = comp->ts.interface;
3510 else
3511 s1 = lvalue->symtree->n.sym;
3512
3513 comp = gfc_get_proc_ptr_comp (rvalue);
3514 if (comp)
3515 {
3516 s2 = comp->ts.interface;
3517 name = comp->name;
3518 }
3519 else if (rvalue->expr_type == EXPR_FUNCTION)
3520 {
3521 s2 = rvalue->symtree->n.sym->result;
3522 name = rvalue->symtree->n.sym->result->name;
3523 }
3524 else
3525 {
3526 s2 = rvalue->symtree->n.sym;
3527 name = rvalue->symtree->n.sym->name;
3528 }
3529
3530 if (s1 && s2 && !gfc_compare_interfaces (s1, s2, name, 0, 1,
3531 err, sizeof(err), NULL, NULL))
3532 {
3533 gfc_error ("Interface mismatch in procedure pointer assignment "
3534 "at %L: %s", &rvalue->where, err);
3535 return FAILURE;
3536 }
3537
3538 return SUCCESS;
3539 }
3540
3541 if (!gfc_compare_types (&lvalue->ts, &rvalue->ts))
3542 {
3543 gfc_error ("Different types in pointer assignment at %L; attempted "
3544 "assignment of %s to %s", &lvalue->where,
3545 gfc_typename (&rvalue->ts), gfc_typename (&lvalue->ts));
3546 return FAILURE;
3547 }
3548
3549 if (lvalue->ts.type != BT_CLASS && lvalue->ts.kind != rvalue->ts.kind)
3550 {
3551 gfc_error ("Different kind type parameters in pointer "
3552 "assignment at %L", &lvalue->where);
3553 return FAILURE;
3554 }
3555
3556 if (lvalue->rank != rvalue->rank && !rank_remap)
3557 {
3558 gfc_error ("Different ranks in pointer assignment at %L", &lvalue->where);
3559 return FAILURE;
3560 }
3561
3562 if (lvalue->ts.type == BT_CLASS && rvalue->ts.type == BT_DERIVED)
3563 /* Make sure the vtab is present. */
3564 gfc_find_derived_vtab (rvalue->ts.u.derived);
3565
3566 /* Check rank remapping. */
3567 if (rank_remap)
3568 {
3569 mpz_t lsize, rsize;
3570
3571 /* If this can be determined, check that the target must be at least as
3572 large as the pointer assigned to it is. */
3573 if (gfc_array_size (lvalue, &lsize) == SUCCESS
3574 && gfc_array_size (rvalue, &rsize) == SUCCESS
3575 && mpz_cmp (rsize, lsize) < 0)
3576 {
3577 gfc_error ("Rank remapping target is smaller than size of the"
3578 " pointer (%ld < %ld) at %L",
3579 mpz_get_si (rsize), mpz_get_si (lsize),
3580 &lvalue->where);
3581 return FAILURE;
3582 }
3583
3584 /* The target must be either rank one or it must be simply contiguous
3585 and F2008 must be allowed. */
3586 if (rvalue->rank != 1)
3587 {
3588 if (!gfc_is_simply_contiguous (rvalue, true))
3589 {
3590 gfc_error ("Rank remapping target must be rank 1 or"
3591 " simply contiguous at %L", &rvalue->where);
3592 return FAILURE;
3593 }
3594 if (gfc_notify_std (GFC_STD_F2008, "Rank remapping"
3595 " target is not rank 1 at %L", &rvalue->where)
3596 == FAILURE)
3597 return FAILURE;
3598 }
3599 }
3600
3601 /* Now punt if we are dealing with a NULLIFY(X) or X = NULL(X). */
3602 if (rvalue->expr_type == EXPR_NULL)
3603 return SUCCESS;
3604
3605 if (lvalue->ts.type == BT_CHARACTER)
3606 {
3607 gfc_try t = gfc_check_same_strlen (lvalue, rvalue, "pointer assignment");
3608 if (t == FAILURE)
3609 return FAILURE;
3610 }
3611
3612 if (rvalue->expr_type == EXPR_VARIABLE && is_subref_array (rvalue))
3613 lvalue->symtree->n.sym->attr.subref_array_pointer = 1;
3614
3615 attr = gfc_expr_attr (rvalue);
3616
3617 if (rvalue->expr_type == EXPR_FUNCTION && !attr.pointer)
3618 {
3619 gfc_error ("Target expression in pointer assignment "
3620 "at %L must deliver a pointer result",
3621 &rvalue->where);
3622 return FAILURE;
3623 }
3624
3625 if (!attr.target && !attr.pointer)
3626 {
3627 gfc_error ("Pointer assignment target is neither TARGET "
3628 "nor POINTER at %L", &rvalue->where);
3629 return FAILURE;
3630 }
3631
3632 if (is_pure && gfc_impure_variable (rvalue->symtree->n.sym))
3633 {
3634 gfc_error ("Bad target in pointer assignment in PURE "
3635 "procedure at %L", &rvalue->where);
3636 }
3637
3638 if (is_implicit_pure && gfc_impure_variable (rvalue->symtree->n.sym))
3639 gfc_current_ns->proc_name->attr.implicit_pure = 0;
3640
3641
3642 if (gfc_has_vector_index (rvalue))
3643 {
3644 gfc_error ("Pointer assignment with vector subscript "
3645 "on rhs at %L", &rvalue->where);
3646 return FAILURE;
3647 }
3648
3649 if (attr.is_protected && attr.use_assoc
3650 && !(attr.pointer || attr.proc_pointer))
3651 {
3652 gfc_error ("Pointer assignment target has PROTECTED "
3653 "attribute at %L", &rvalue->where);
3654 return FAILURE;
3655 }
3656
3657 /* F2008, C725. For PURE also C1283. */
3658 if (rvalue->expr_type == EXPR_VARIABLE
3659 && gfc_is_coindexed (rvalue))
3660 {
3661 gfc_ref *ref;
3662 for (ref = rvalue->ref; ref; ref = ref->next)
3663 if (ref->type == REF_ARRAY && ref->u.ar.codimen)
3664 {
3665 gfc_error ("Data target at %L shall not have a coindex",
3666 &rvalue->where);
3667 return FAILURE;
3668 }
3669 }
3670
3671 /* Warn if it is the LHS pointer may lives longer than the RHS target. */
3672 if (gfc_option.warn_target_lifetime
3673 && rvalue->expr_type == EXPR_VARIABLE
3674 && !rvalue->symtree->n.sym->attr.save
3675 && !attr.pointer && !rvalue->symtree->n.sym->attr.host_assoc
3676 && !rvalue->symtree->n.sym->attr.in_common
3677 && !rvalue->symtree->n.sym->attr.use_assoc
3678 && !rvalue->symtree->n.sym->attr.dummy)
3679 {
3680 bool warn;
3681 gfc_namespace *ns;
3682
3683 warn = lvalue->symtree->n.sym->attr.dummy
3684 || lvalue->symtree->n.sym->attr.result
3685 || lvalue->symtree->n.sym->attr.function
3686 || lvalue->symtree->n.sym->attr.host_assoc
3687 || lvalue->symtree->n.sym->attr.use_assoc
3688 || lvalue->symtree->n.sym->attr.in_common;
3689
3690 if (rvalue->symtree->n.sym->ns->proc_name
3691 && rvalue->symtree->n.sym->ns->proc_name->attr.flavor != FL_PROCEDURE
3692 && rvalue->symtree->n.sym->ns->proc_name->attr.flavor != FL_PROGRAM)
3693 for (ns = rvalue->symtree->n.sym->ns;
3694 ns->proc_name && ns->proc_name->attr.flavor != FL_PROCEDURE;
3695 ns = ns->parent)
3696 if (ns->parent == lvalue->symtree->n.sym->ns)
3697 warn = true;
3698
3699 if (warn)
3700 gfc_warning ("Pointer at %L in pointer assignment might outlive the "
3701 "pointer target", &lvalue->where);
3702 }
3703
3704 return SUCCESS;
3705 }
3706
3707
3708 /* Relative of gfc_check_assign() except that the lvalue is a single
3709 symbol. Used for initialization assignments. */
3710
3711 gfc_try
3712 gfc_check_assign_symbol (gfc_symbol *sym, gfc_expr *rvalue)
3713 {
3714 gfc_expr lvalue;
3715 gfc_try r;
3716
3717 memset (&lvalue, '\0', sizeof (gfc_expr));
3718
3719 lvalue.expr_type = EXPR_VARIABLE;
3720 lvalue.ts = sym->ts;
3721 if (sym->as)
3722 lvalue.rank = sym->as->rank;
3723 lvalue.symtree = XCNEW (gfc_symtree);
3724 lvalue.symtree->n.sym = sym;
3725 lvalue.where = sym->declared_at;
3726
3727 if (sym->attr.pointer || sym->attr.proc_pointer
3728 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->attr.class_pointer
3729 && rvalue->expr_type == EXPR_NULL))
3730 r = gfc_check_pointer_assign (&lvalue, rvalue);
3731 else
3732 r = gfc_check_assign (&lvalue, rvalue, 1);
3733
3734 free (lvalue.symtree);
3735
3736 if (r == FAILURE)
3737 return r;
3738
3739 if (sym->attr.pointer && rvalue->expr_type != EXPR_NULL)
3740 {
3741 /* F08:C461. Additional checks for pointer initialization. */
3742 symbol_attribute attr;
3743 attr = gfc_expr_attr (rvalue);
3744 if (attr.allocatable)
3745 {
3746 gfc_error ("Pointer initialization target at %C "
3747 "must not be ALLOCATABLE ");
3748 return FAILURE;
3749 }
3750 if (!attr.target || attr.pointer)
3751 {
3752 gfc_error ("Pointer initialization target at %C "
3753 "must have the TARGET attribute");
3754 return FAILURE;
3755 }
3756 if (!attr.save)
3757 {
3758 gfc_error ("Pointer initialization target at %C "
3759 "must have the SAVE attribute");
3760 return FAILURE;
3761 }
3762 }
3763
3764 if (sym->attr.proc_pointer && rvalue->expr_type != EXPR_NULL)
3765 {
3766 /* F08:C1220. Additional checks for procedure pointer initialization. */
3767 symbol_attribute attr = gfc_expr_attr (rvalue);
3768 if (attr.proc_pointer)
3769 {
3770 gfc_error ("Procedure pointer initialization target at %L "
3771 "may not be a procedure pointer", &rvalue->where);
3772 return FAILURE;
3773 }
3774 }
3775
3776 return SUCCESS;
3777 }
3778
3779
3780 /* Check for default initializer; sym->value is not enough
3781 as it is also set for EXPR_NULL of allocatables. */
3782
3783 bool
3784 gfc_has_default_initializer (gfc_symbol *der)
3785 {
3786 gfc_component *c;
3787
3788 gcc_assert (der->attr.flavor == FL_DERIVED);
3789 for (c = der->components; c; c = c->next)
3790 if (c->ts.type == BT_DERIVED)
3791 {
3792 if (!c->attr.pointer
3793 && gfc_has_default_initializer (c->ts.u.derived))
3794 return true;
3795 if (c->attr.pointer && c->initializer)
3796 return true;
3797 }
3798 else
3799 {
3800 if (c->initializer)
3801 return true;
3802 }
3803
3804 return false;
3805 }
3806
3807
3808 /* Get an expression for a default initializer. */
3809
3810 gfc_expr *
3811 gfc_default_initializer (gfc_typespec *ts)
3812 {
3813 gfc_expr *init;
3814 gfc_component *comp;
3815
3816 /* See if we have a default initializer in this, but not in nested
3817 types (otherwise we could use gfc_has_default_initializer()). */
3818 for (comp = ts->u.derived->components; comp; comp = comp->next)
3819 if (comp->initializer || comp->attr.allocatable
3820 || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)->attr.allocatable))
3821 break;
3822
3823 if (!comp)
3824 return NULL;
3825
3826 init = gfc_get_structure_constructor_expr (ts->type, ts->kind,
3827 &ts->u.derived->declared_at);
3828 init->ts = *ts;
3829
3830 for (comp = ts->u.derived->components; comp; comp = comp->next)
3831 {
3832 gfc_constructor *ctor = gfc_constructor_get();
3833
3834 if (comp->initializer)
3835 {
3836 ctor->expr = gfc_copy_expr (comp->initializer);
3837 if ((comp->ts.type != comp->initializer->ts.type
3838 || comp->ts.kind != comp->initializer->ts.kind)
3839 && !comp->attr.pointer && !comp->attr.proc_pointer)
3840 gfc_convert_type_warn (ctor->expr, &comp->ts, 2, false);
3841 }
3842
3843 if (comp->attr.allocatable
3844 || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)->attr.allocatable))
3845 {
3846 ctor->expr = gfc_get_expr ();
3847 ctor->expr->expr_type = EXPR_NULL;
3848 ctor->expr->ts = comp->ts;
3849 }
3850
3851 gfc_constructor_append (&init->value.constructor, ctor);
3852 }
3853
3854 return init;
3855 }
3856
3857
3858 /* Given a symbol, create an expression node with that symbol as a
3859 variable. If the symbol is array valued, setup a reference of the
3860 whole array. */
3861
3862 gfc_expr *
3863 gfc_get_variable_expr (gfc_symtree *var)
3864 {
3865 gfc_expr *e;
3866
3867 e = gfc_get_expr ();
3868 e->expr_type = EXPR_VARIABLE;
3869 e->symtree = var;
3870 e->ts = var->n.sym->ts;
3871
3872 if ((var->n.sym->as != NULL && var->n.sym->ts.type != BT_CLASS)
3873 || (var->n.sym->ts.type == BT_CLASS && CLASS_DATA (var->n.sym)
3874 && CLASS_DATA (var->n.sym)->as))
3875 {
3876 e->rank = var->n.sym->ts.type == BT_CLASS
3877 ? CLASS_DATA (var->n.sym)->as->rank : var->n.sym->as->rank;
3878 e->ref = gfc_get_ref ();
3879 e->ref->type = REF_ARRAY;
3880 e->ref->u.ar.type = AR_FULL;
3881 e->ref->u.ar.as = gfc_copy_array_spec (var->n.sym->ts.type == BT_CLASS
3882 ? CLASS_DATA (var->n.sym)->as
3883 : var->n.sym->as);
3884 }
3885
3886 return e;
3887 }
3888
3889
3890 gfc_expr *
3891 gfc_lval_expr_from_sym (gfc_symbol *sym)
3892 {
3893 gfc_expr *lval;
3894 lval = gfc_get_expr ();
3895 lval->expr_type = EXPR_VARIABLE;
3896 lval->where = sym->declared_at;
3897 lval->ts = sym->ts;
3898 lval->symtree = gfc_find_symtree (sym->ns->sym_root, sym->name);
3899
3900 /* It will always be a full array. */
3901 lval->rank = sym->as ? sym->as->rank : 0;
3902 if (lval->rank)
3903 {
3904 lval->ref = gfc_get_ref ();
3905 lval->ref->type = REF_ARRAY;
3906 lval->ref->u.ar.type = AR_FULL;
3907 lval->ref->u.ar.dimen = lval->rank;
3908 lval->ref->u.ar.where = sym->declared_at;
3909 lval->ref->u.ar.as = sym->ts.type == BT_CLASS
3910 ? CLASS_DATA (sym)->as : sym->as;
3911 }
3912
3913 return lval;
3914 }
3915
3916
3917 /* Returns the array_spec of a full array expression. A NULL is
3918 returned otherwise. */
3919 gfc_array_spec *
3920 gfc_get_full_arrayspec_from_expr (gfc_expr *expr)
3921 {
3922 gfc_array_spec *as;
3923 gfc_ref *ref;
3924
3925 if (expr->rank == 0)
3926 return NULL;
3927
3928 /* Follow any component references. */
3929 if (expr->expr_type == EXPR_VARIABLE
3930 || expr->expr_type == EXPR_CONSTANT)
3931 {
3932 as = expr->symtree->n.sym->as;
3933 for (ref = expr->ref; ref; ref = ref->next)
3934 {
3935 switch (ref->type)
3936 {
3937 case REF_COMPONENT:
3938 as = ref->u.c.component->as;
3939 continue;
3940
3941 case REF_SUBSTRING:
3942 continue;
3943
3944 case REF_ARRAY:
3945 {
3946 switch (ref->u.ar.type)
3947 {
3948 case AR_ELEMENT:
3949 case AR_SECTION:
3950 case AR_UNKNOWN:
3951 as = NULL;
3952 continue;
3953
3954 case AR_FULL:
3955 break;
3956 }
3957 break;
3958 }
3959 }
3960 }
3961 }
3962 else
3963 as = NULL;
3964
3965 return as;
3966 }
3967
3968
3969 /* General expression traversal function. */
3970
3971 bool
3972 gfc_traverse_expr (gfc_expr *expr, gfc_symbol *sym,
3973 bool (*func)(gfc_expr *, gfc_symbol *, int*),
3974 int f)
3975 {
3976 gfc_array_ref ar;
3977 gfc_ref *ref;
3978 gfc_actual_arglist *args;
3979 gfc_constructor *c;
3980 int i;
3981
3982 if (!expr)
3983 return false;
3984
3985 if ((*func) (expr, sym, &f))
3986 return true;
3987
3988 if (expr->ts.type == BT_CHARACTER
3989 && expr->ts.u.cl
3990 && expr->ts.u.cl->length
3991 && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT
3992 && gfc_traverse_expr (expr->ts.u.cl->length, sym, func, f))
3993 return true;
3994
3995 switch (expr->expr_type)
3996 {
3997 case EXPR_PPC:
3998 case EXPR_COMPCALL:
3999 case EXPR_FUNCTION:
4000 for (args = expr->value.function.actual; args; args = args->next)
4001 {
4002 if (gfc_traverse_expr (args->expr, sym, func, f))
4003 return true;
4004 }
4005 break;
4006
4007 case EXPR_VARIABLE:
4008 case EXPR_CONSTANT:
4009 case EXPR_NULL:
4010 case EXPR_SUBSTRING:
4011 break;
4012
4013 case EXPR_STRUCTURE:
4014 case EXPR_ARRAY:
4015 for (c = gfc_constructor_first (expr->value.constructor);
4016 c; c = gfc_constructor_next (c))
4017 {
4018 if (gfc_traverse_expr (c->expr, sym, func, f))
4019 return true;
4020 if (c->iterator)
4021 {
4022 if (gfc_traverse_expr (c->iterator->var, sym, func, f))
4023 return true;
4024 if (gfc_traverse_expr (c->iterator->start, sym, func, f))
4025 return true;
4026 if (gfc_traverse_expr (c->iterator->end, sym, func, f))
4027 return true;
4028 if (gfc_traverse_expr (c->iterator->step, sym, func, f))
4029 return true;
4030 }
4031 }
4032 break;
4033
4034 case EXPR_OP:
4035 if (gfc_traverse_expr (expr->value.op.op1, sym, func, f))
4036 return true;
4037 if (gfc_traverse_expr (expr->value.op.op2, sym, func, f))
4038 return true;
4039 break;
4040
4041 default:
4042 gcc_unreachable ();
4043 break;
4044 }
4045
4046 ref = expr->ref;
4047 while (ref != NULL)
4048 {
4049 switch (ref->type)
4050 {
4051 case REF_ARRAY:
4052 ar = ref->u.ar;
4053 for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
4054 {
4055 if (gfc_traverse_expr (ar.start[i], sym, func, f))
4056 return true;
4057 if (gfc_traverse_expr (ar.end[i], sym, func, f))
4058 return true;
4059 if (gfc_traverse_expr (ar.stride[i], sym, func, f))
4060 return true;
4061 }
4062 break;
4063
4064 case REF_SUBSTRING:
4065 if (gfc_traverse_expr (ref->u.ss.start, sym, func, f))
4066 return true;
4067 if (gfc_traverse_expr (ref->u.ss.end, sym, func, f))
4068 return true;
4069 break;
4070
4071 case REF_COMPONENT:
4072 if (ref->u.c.component->ts.type == BT_CHARACTER
4073 && ref->u.c.component->ts.u.cl
4074 && ref->u.c.component->ts.u.cl->length
4075 && ref->u.c.component->ts.u.cl->length->expr_type
4076 != EXPR_CONSTANT
4077 && gfc_traverse_expr (ref->u.c.component->ts.u.cl->length,
4078 sym, func, f))
4079 return true;
4080
4081 if (ref->u.c.component->as)
4082 for (i = 0; i < ref->u.c.component->as->rank
4083 + ref->u.c.component->as->corank; i++)
4084 {
4085 if (gfc_traverse_expr (ref->u.c.component->as->lower[i],
4086 sym, func, f))
4087 return true;
4088 if (gfc_traverse_expr (ref->u.c.component->as->upper[i],
4089 sym, func, f))
4090 return true;
4091 }
4092 break;
4093
4094 default:
4095 gcc_unreachable ();
4096 }
4097 ref = ref->next;
4098 }
4099 return false;
4100 }
4101
4102 /* Traverse expr, marking all EXPR_VARIABLE symbols referenced. */
4103
4104 static bool
4105 expr_set_symbols_referenced (gfc_expr *expr,
4106 gfc_symbol *sym ATTRIBUTE_UNUSED,
4107 int *f ATTRIBUTE_UNUSED)
4108 {
4109 if (expr->expr_type != EXPR_VARIABLE)
4110 return false;
4111 gfc_set_sym_referenced (expr->symtree->n.sym);
4112 return false;
4113 }
4114
4115 void
4116 gfc_expr_set_symbols_referenced (gfc_expr *expr)
4117 {
4118 gfc_traverse_expr (expr, NULL, expr_set_symbols_referenced, 0);
4119 }
4120
4121
4122 /* Determine if an expression is a procedure pointer component and return
4123 the component in that case. Otherwise return NULL. */
4124
4125 gfc_component *
4126 gfc_get_proc_ptr_comp (gfc_expr *expr)
4127 {
4128 gfc_ref *ref;
4129
4130 if (!expr || !expr->ref)
4131 return NULL;
4132
4133 ref = expr->ref;
4134 while (ref->next)
4135 ref = ref->next;
4136
4137 if (ref->type == REF_COMPONENT
4138 && ref->u.c.component->attr.proc_pointer)
4139 return ref->u.c.component;
4140
4141 return NULL;
4142 }
4143
4144
4145 /* Determine if an expression is a procedure pointer component. */
4146
4147 bool
4148 gfc_is_proc_ptr_comp (gfc_expr *expr)
4149 {
4150 return (gfc_get_proc_ptr_comp (expr) != NULL);
4151 }
4152
4153
4154 /* Walk an expression tree and check each variable encountered for being typed.
4155 If strict is not set, a top-level variable is tolerated untyped in -std=gnu
4156 mode as is a basic arithmetic expression using those; this is for things in
4157 legacy-code like:
4158
4159 INTEGER :: arr(n), n
4160 INTEGER :: arr(n + 1), n
4161
4162 The namespace is needed for IMPLICIT typing. */
4163
4164 static gfc_namespace* check_typed_ns;
4165
4166 static bool
4167 expr_check_typed_help (gfc_expr* e, gfc_symbol* sym ATTRIBUTE_UNUSED,
4168 int* f ATTRIBUTE_UNUSED)
4169 {
4170 gfc_try t;
4171
4172 if (e->expr_type != EXPR_VARIABLE)
4173 return false;
4174
4175 gcc_assert (e->symtree);
4176 t = gfc_check_symbol_typed (e->symtree->n.sym, check_typed_ns,
4177 true, e->where);
4178
4179 return (t == FAILURE);
4180 }
4181
4182 gfc_try
4183 gfc_expr_check_typed (gfc_expr* e, gfc_namespace* ns, bool strict)
4184 {
4185 bool error_found;
4186
4187 /* If this is a top-level variable or EXPR_OP, do the check with strict given
4188 to us. */
4189 if (!strict)
4190 {
4191 if (e->expr_type == EXPR_VARIABLE && !e->ref)
4192 return gfc_check_symbol_typed (e->symtree->n.sym, ns, strict, e->where);
4193
4194 if (e->expr_type == EXPR_OP)
4195 {
4196 gfc_try t = SUCCESS;
4197
4198 gcc_assert (e->value.op.op1);
4199 t = gfc_expr_check_typed (e->value.op.op1, ns, strict);
4200
4201 if (t == SUCCESS && e->value.op.op2)
4202 t = gfc_expr_check_typed (e->value.op.op2, ns, strict);
4203
4204 return t;
4205 }
4206 }
4207
4208 /* Otherwise, walk the expression and do it strictly. */
4209 check_typed_ns = ns;
4210 error_found = gfc_traverse_expr (e, NULL, &expr_check_typed_help, 0);
4211
4212 return error_found ? FAILURE : SUCCESS;
4213 }
4214
4215
4216 /* Walk an expression tree and replace all dummy symbols by the corresponding
4217 symbol in the formal_ns of "sym". Needed for copying interfaces in PROCEDURE
4218 statements. The boolean return value is required by gfc_traverse_expr. */
4219
4220 static bool
4221 replace_symbol (gfc_expr *expr, gfc_symbol *sym, int *i ATTRIBUTE_UNUSED)
4222 {
4223 if ((expr->expr_type == EXPR_VARIABLE
4224 || (expr->expr_type == EXPR_FUNCTION
4225 && !gfc_is_intrinsic (expr->symtree->n.sym, 0, expr->where)))
4226 && expr->symtree->n.sym->ns == sym->ts.interface->formal_ns
4227 && expr->symtree->n.sym->attr.dummy)
4228 {
4229 gfc_symtree *root = sym->formal_ns ? sym->formal_ns->sym_root
4230 : gfc_current_ns->sym_root;
4231 gfc_symtree *stree = gfc_find_symtree (root, expr->symtree->n.sym->name);
4232 gcc_assert (stree);
4233 stree->n.sym->attr = expr->symtree->n.sym->attr;
4234 expr->symtree = stree;
4235 }
4236 return false;
4237 }
4238
4239 void
4240 gfc_expr_replace_symbols (gfc_expr *expr, gfc_symbol *dest)
4241 {
4242 gfc_traverse_expr (expr, dest, &replace_symbol, 0);
4243 }
4244
4245
4246 /* The following is analogous to 'replace_symbol', and needed for copying
4247 interfaces for procedure pointer components. The argument 'sym' must formally
4248 be a gfc_symbol, so that the function can be passed to gfc_traverse_expr.
4249 However, it gets actually passed a gfc_component (i.e. the procedure pointer
4250 component in whose formal_ns the arguments have to be). */
4251
4252 static bool
4253 replace_comp (gfc_expr *expr, gfc_symbol *sym, int *i ATTRIBUTE_UNUSED)
4254 {
4255 gfc_component *comp;
4256 comp = (gfc_component *)sym;
4257 if ((expr->expr_type == EXPR_VARIABLE
4258 || (expr->expr_type == EXPR_FUNCTION
4259 && !gfc_is_intrinsic (expr->symtree->n.sym, 0, expr->where)))
4260 && expr->symtree->n.sym->ns == comp->ts.interface->formal_ns)
4261 {
4262 gfc_symtree *stree;
4263 gfc_namespace *ns = comp->formal_ns;
4264 /* Don't use gfc_get_symtree as we prefer to fail badly if we don't find
4265 the symtree rather than create a new one (and probably fail later). */
4266 stree = gfc_find_symtree (ns ? ns->sym_root : gfc_current_ns->sym_root,
4267 expr->symtree->n.sym->name);
4268 gcc_assert (stree);
4269 stree->n.sym->attr = expr->symtree->n.sym->attr;
4270 expr->symtree = stree;
4271 }
4272 return false;
4273 }
4274
4275 void
4276 gfc_expr_replace_comp (gfc_expr *expr, gfc_component *dest)
4277 {
4278 gfc_traverse_expr (expr, (gfc_symbol *)dest, &replace_comp, 0);
4279 }
4280
4281
4282 bool
4283 gfc_ref_this_image (gfc_ref *ref)
4284 {
4285 int n;
4286
4287 gcc_assert (ref->type == REF_ARRAY && ref->u.ar.codimen > 0);
4288
4289 for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
4290 if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
4291 return false;
4292
4293 return true;
4294 }
4295
4296
4297 bool
4298 gfc_is_coindexed (gfc_expr *e)
4299 {
4300 gfc_ref *ref;
4301
4302 for (ref = e->ref; ref; ref = ref->next)
4303 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
4304 return !gfc_ref_this_image (ref);
4305
4306 return false;
4307 }
4308
4309
4310 /* Coarrays are variables with a corank but not being coindexed. However, also
4311 the following is a coarray: A subobject of a coarray is a coarray if it does
4312 not have any cosubscripts, vector subscripts, allocatable component
4313 selection, or pointer component selection. (F2008, 2.4.7) */
4314
4315 bool
4316 gfc_is_coarray (gfc_expr *e)
4317 {
4318 gfc_ref *ref;
4319 gfc_symbol *sym;
4320 gfc_component *comp;
4321 bool coindexed;
4322 bool coarray;
4323 int i;
4324
4325 if (e->expr_type != EXPR_VARIABLE)
4326 return false;
4327
4328 coindexed = false;
4329 sym = e->symtree->n.sym;
4330
4331 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
4332 coarray = CLASS_DATA (sym)->attr.codimension;
4333 else
4334 coarray = sym->attr.codimension;
4335
4336 for (ref = e->ref; ref; ref = ref->next)
4337 switch (ref->type)
4338 {
4339 case REF_COMPONENT:
4340 comp = ref->u.c.component;
4341 if (comp->ts.type == BT_CLASS && comp->attr.class_ok
4342 && (CLASS_DATA (comp)->attr.class_pointer
4343 || CLASS_DATA (comp)->attr.allocatable))
4344 {
4345 coindexed = false;
4346 coarray = CLASS_DATA (comp)->attr.codimension;
4347 }
4348 else if (comp->attr.pointer || comp->attr.allocatable)
4349 {
4350 coindexed = false;
4351 coarray = comp->attr.codimension;
4352 }
4353 break;
4354
4355 case REF_ARRAY:
4356 if (!coarray)
4357 break;
4358
4359 if (ref->u.ar.codimen > 0 && !gfc_ref_this_image (ref))
4360 {
4361 coindexed = true;
4362 break;
4363 }
4364
4365 for (i = 0; i < ref->u.ar.dimen; i++)
4366 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
4367 {
4368 coarray = false;
4369 break;
4370 }
4371 break;
4372
4373 case REF_SUBSTRING:
4374 break;
4375 }
4376
4377 return coarray && !coindexed;
4378 }
4379
4380
4381 int
4382 gfc_get_corank (gfc_expr *e)
4383 {
4384 int corank;
4385 gfc_ref *ref;
4386
4387 if (!gfc_is_coarray (e))
4388 return 0;
4389
4390 if (e->ts.type == BT_CLASS && e->ts.u.derived->components)
4391 corank = e->ts.u.derived->components->as
4392 ? e->ts.u.derived->components->as->corank : 0;
4393 else
4394 corank = e->symtree->n.sym->as ? e->symtree->n.sym->as->corank : 0;
4395
4396 for (ref = e->ref; ref; ref = ref->next)
4397 {
4398 if (ref->type == REF_ARRAY)
4399 corank = ref->u.ar.as->corank;
4400 gcc_assert (ref->type != REF_SUBSTRING);
4401 }
4402
4403 return corank;
4404 }
4405
4406
4407 /* Check whether the expression has an ultimate allocatable component.
4408 Being itself allocatable does not count. */
4409 bool
4410 gfc_has_ultimate_allocatable (gfc_expr *e)
4411 {
4412 gfc_ref *ref, *last = NULL;
4413
4414 if (e->expr_type != EXPR_VARIABLE)
4415 return false;
4416
4417 for (ref = e->ref; ref; ref = ref->next)
4418 if (ref->type == REF_COMPONENT)
4419 last = ref;
4420
4421 if (last && last->u.c.component->ts.type == BT_CLASS)
4422 return CLASS_DATA (last->u.c.component)->attr.alloc_comp;
4423 else if (last && last->u.c.component->ts.type == BT_DERIVED)
4424 return last->u.c.component->ts.u.derived->attr.alloc_comp;
4425 else if (last)
4426 return false;
4427
4428 if (e->ts.type == BT_CLASS)
4429 return CLASS_DATA (e)->attr.alloc_comp;
4430 else if (e->ts.type == BT_DERIVED)
4431 return e->ts.u.derived->attr.alloc_comp;
4432 else
4433 return false;
4434 }
4435
4436
4437 /* Check whether the expression has an pointer component.
4438 Being itself a pointer does not count. */
4439 bool
4440 gfc_has_ultimate_pointer (gfc_expr *e)
4441 {
4442 gfc_ref *ref, *last = NULL;
4443
4444 if (e->expr_type != EXPR_VARIABLE)
4445 return false;
4446
4447 for (ref = e->ref; ref; ref = ref->next)
4448 if (ref->type == REF_COMPONENT)
4449 last = ref;
4450
4451 if (last && last->u.c.component->ts.type == BT_CLASS)
4452 return CLASS_DATA (last->u.c.component)->attr.pointer_comp;
4453 else if (last && last->u.c.component->ts.type == BT_DERIVED)
4454 return last->u.c.component->ts.u.derived->attr.pointer_comp;
4455 else if (last)
4456 return false;
4457
4458 if (e->ts.type == BT_CLASS)
4459 return CLASS_DATA (e)->attr.pointer_comp;
4460 else if (e->ts.type == BT_DERIVED)
4461 return e->ts.u.derived->attr.pointer_comp;
4462 else
4463 return false;
4464 }
4465
4466
4467 /* Check whether an expression is "simply contiguous", cf. F2008, 6.5.4.
4468 Note: A scalar is not regarded as "simply contiguous" by the standard.
4469 if bool is not strict, some further checks are done - for instance,
4470 a "(::1)" is accepted. */
4471
4472 bool
4473 gfc_is_simply_contiguous (gfc_expr *expr, bool strict)
4474 {
4475 bool colon;
4476 int i;
4477 gfc_array_ref *ar = NULL;
4478 gfc_ref *ref, *part_ref = NULL;
4479 gfc_symbol *sym;
4480
4481 if (expr->expr_type == EXPR_FUNCTION)
4482 return expr->value.function.esym
4483 ? expr->value.function.esym->result->attr.contiguous : false;
4484 else if (expr->expr_type != EXPR_VARIABLE)
4485 return false;
4486
4487 if (expr->rank == 0)
4488 return false;
4489
4490 for (ref = expr->ref; ref; ref = ref->next)
4491 {
4492 if (ar)
4493 return false; /* Array shall be last part-ref. */
4494
4495 if (ref->type == REF_COMPONENT)
4496 part_ref = ref;
4497 else if (ref->type == REF_SUBSTRING)
4498 return false;
4499 else if (ref->u.ar.type != AR_ELEMENT)
4500 ar = &ref->u.ar;
4501 }
4502
4503 sym = expr->symtree->n.sym;
4504 if (expr->ts.type != BT_CLASS
4505 && ((part_ref
4506 && !part_ref->u.c.component->attr.contiguous
4507 && part_ref->u.c.component->attr.pointer)
4508 || (!part_ref
4509 && !sym->attr.contiguous
4510 && (sym->attr.pointer
4511 || sym->as->type == AS_ASSUMED_RANK
4512 || sym->as->type == AS_ASSUMED_SHAPE))))
4513 return false;
4514
4515 if (!ar || ar->type == AR_FULL)
4516 return true;
4517
4518 gcc_assert (ar->type == AR_SECTION);
4519
4520 /* Check for simply contiguous array */
4521 colon = true;
4522 for (i = 0; i < ar->dimen; i++)
4523 {
4524 if (ar->dimen_type[i] == DIMEN_VECTOR)
4525 return false;
4526
4527 if (ar->dimen_type[i] == DIMEN_ELEMENT)
4528 {
4529 colon = false;
4530 continue;
4531 }
4532
4533 gcc_assert (ar->dimen_type[i] == DIMEN_RANGE);
4534
4535
4536 /* If the previous section was not contiguous, that's an error,
4537 unless we have effective only one element and checking is not
4538 strict. */
4539 if (!colon && (strict || !ar->start[i] || !ar->end[i]
4540 || ar->start[i]->expr_type != EXPR_CONSTANT
4541 || ar->end[i]->expr_type != EXPR_CONSTANT
4542 || mpz_cmp (ar->start[i]->value.integer,
4543 ar->end[i]->value.integer) != 0))
4544 return false;
4545
4546 /* Following the standard, "(::1)" or - if known at compile time -
4547 "(lbound:ubound)" are not simply contiguous; if strict
4548 is false, they are regarded as simply contiguous. */
4549 if (ar->stride[i] && (strict || ar->stride[i]->expr_type != EXPR_CONSTANT
4550 || ar->stride[i]->ts.type != BT_INTEGER
4551 || mpz_cmp_si (ar->stride[i]->value.integer, 1) != 0))
4552 return false;
4553
4554 if (ar->start[i]
4555 && (strict || ar->start[i]->expr_type != EXPR_CONSTANT
4556 || !ar->as->lower[i]
4557 || ar->as->lower[i]->expr_type != EXPR_CONSTANT
4558 || mpz_cmp (ar->start[i]->value.integer,
4559 ar->as->lower[i]->value.integer) != 0))
4560 colon = false;
4561
4562 if (ar->end[i]
4563 && (strict || ar->end[i]->expr_type != EXPR_CONSTANT
4564 || !ar->as->upper[i]
4565 || ar->as->upper[i]->expr_type != EXPR_CONSTANT
4566 || mpz_cmp (ar->end[i]->value.integer,
4567 ar->as->upper[i]->value.integer) != 0))
4568 colon = false;
4569 }
4570
4571 return true;
4572 }
4573
4574
4575 /* Build call to an intrinsic procedure. The number of arguments has to be
4576 passed (rather than ending the list with a NULL value) because we may
4577 want to add arguments but with a NULL-expression. */
4578
4579 gfc_expr*
4580 gfc_build_intrinsic_call (const char* name, locus where, unsigned numarg, ...)
4581 {
4582 gfc_expr* result;
4583 gfc_actual_arglist* atail;
4584 gfc_intrinsic_sym* isym;
4585 va_list ap;
4586 unsigned i;
4587
4588 isym = gfc_find_function (name);
4589 gcc_assert (isym);
4590
4591 result = gfc_get_expr ();
4592 result->expr_type = EXPR_FUNCTION;
4593 result->ts = isym->ts;
4594 result->where = where;
4595 result->value.function.name = name;
4596 result->value.function.isym = isym;
4597
4598 result->symtree = gfc_find_symtree (gfc_current_ns->sym_root, name);
4599 gcc_assert (result->symtree
4600 && (result->symtree->n.sym->attr.flavor == FL_PROCEDURE
4601 || result->symtree->n.sym->attr.flavor == FL_UNKNOWN));
4602
4603 va_start (ap, numarg);
4604 atail = NULL;
4605 for (i = 0; i < numarg; ++i)
4606 {
4607 if (atail)
4608 {
4609 atail->next = gfc_get_actual_arglist ();
4610 atail = atail->next;
4611 }
4612 else
4613 atail = result->value.function.actual = gfc_get_actual_arglist ();
4614
4615 atail->expr = va_arg (ap, gfc_expr*);
4616 }
4617 va_end (ap);
4618
4619 return result;
4620 }
4621
4622
4623 /* Check if an expression may appear in a variable definition context
4624 (F2008, 16.6.7) or pointer association context (F2008, 16.6.8).
4625 This is called from the various places when resolving
4626 the pieces that make up such a context.
4627
4628 Optionally, a possible error message can be suppressed if context is NULL
4629 and just the return status (SUCCESS / FAILURE) be requested. */
4630
4631 gfc_try
4632 gfc_check_vardef_context (gfc_expr* e, bool pointer, bool alloc_obj,
4633 const char* context)
4634 {
4635 gfc_symbol* sym = NULL;
4636 bool is_pointer;
4637 bool check_intentin;
4638 bool ptr_component;
4639 symbol_attribute attr;
4640 gfc_ref* ref;
4641
4642 if (e->expr_type == EXPR_VARIABLE)
4643 {
4644 gcc_assert (e->symtree);
4645 sym = e->symtree->n.sym;
4646 }
4647 else if (e->expr_type == EXPR_FUNCTION)
4648 {
4649 gcc_assert (e->symtree);
4650 sym = e->value.function.esym ? e->value.function.esym : e->symtree->n.sym;
4651 }
4652
4653 attr = gfc_expr_attr (e);
4654 if (!pointer && e->expr_type == EXPR_FUNCTION && attr.pointer)
4655 {
4656 if (!(gfc_option.allow_std & GFC_STD_F2008))
4657 {
4658 if (context)
4659 gfc_error ("Fortran 2008: Pointer functions in variable definition"
4660 " context (%s) at %L", context, &e->where);
4661 return FAILURE;
4662 }
4663 }
4664 else if (e->expr_type != EXPR_VARIABLE)
4665 {
4666 if (context)
4667 gfc_error ("Non-variable expression in variable definition context (%s)"
4668 " at %L", context, &e->where);
4669 return FAILURE;
4670 }
4671
4672 if (!pointer && sym->attr.flavor == FL_PARAMETER)
4673 {
4674 if (context)
4675 gfc_error ("Named constant '%s' in variable definition context (%s)"
4676 " at %L", sym->name, context, &e->where);
4677 return FAILURE;
4678 }
4679 if (!pointer && sym->attr.flavor != FL_VARIABLE
4680 && !(sym->attr.flavor == FL_PROCEDURE && sym == sym->result)
4681 && !(sym->attr.flavor == FL_PROCEDURE && sym->attr.proc_pointer))
4682 {
4683 if (context)
4684 gfc_error ("'%s' in variable definition context (%s) at %L is not"
4685 " a variable", sym->name, context, &e->where);
4686 return FAILURE;
4687 }
4688
4689 /* Find out whether the expr is a pointer; this also means following
4690 component references to the last one. */
4691 is_pointer = (attr.pointer || attr.proc_pointer);
4692 if (pointer && !is_pointer)
4693 {
4694 if (context)
4695 gfc_error ("Non-POINTER in pointer association context (%s)"
4696 " at %L", context, &e->where);
4697 return FAILURE;
4698 }
4699
4700 /* F2008, C1303. */
4701 if (!alloc_obj
4702 && (attr.lock_comp
4703 || (e->ts.type == BT_DERIVED
4704 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
4705 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)))
4706 {
4707 if (context)
4708 gfc_error ("LOCK_TYPE in variable definition context (%s) at %L",
4709 context, &e->where);
4710 return FAILURE;
4711 }
4712
4713 /* INTENT(IN) dummy argument. Check this, unless the object itself is the
4714 component of sub-component of a pointer; we need to distinguish
4715 assignment to a pointer component from pointer-assignment to a pointer
4716 component. Note that (normal) assignment to procedure pointers is not
4717 possible. */
4718 check_intentin = true;
4719 ptr_component = (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
4720 ? CLASS_DATA (sym)->attr.class_pointer : sym->attr.pointer;
4721 for (ref = e->ref; ref && check_intentin; ref = ref->next)
4722 {
4723 if (ptr_component && ref->type == REF_COMPONENT)
4724 check_intentin = false;
4725 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
4726 {
4727 ptr_component = true;
4728 if (!pointer)
4729 check_intentin = false;
4730 }
4731 }
4732 if (check_intentin && sym->attr.intent == INTENT_IN)
4733 {
4734 if (pointer && is_pointer)
4735 {
4736 if (context)
4737 gfc_error ("Dummy argument '%s' with INTENT(IN) in pointer"
4738 " association context (%s) at %L",
4739 sym->name, context, &e->where);
4740 return FAILURE;
4741 }
4742 if (!pointer && !is_pointer && !sym->attr.pointer)
4743 {
4744 if (context)
4745 gfc_error ("Dummy argument '%s' with INTENT(IN) in variable"
4746 " definition context (%s) at %L",
4747 sym->name, context, &e->where);
4748 return FAILURE;
4749 }
4750 }
4751
4752 /* PROTECTED and use-associated. */
4753 if (sym->attr.is_protected && sym->attr.use_assoc && check_intentin)
4754 {
4755 if (pointer && is_pointer)
4756 {
4757 if (context)
4758 gfc_error ("Variable '%s' is PROTECTED and can not appear in a"
4759 " pointer association context (%s) at %L",
4760 sym->name, context, &e->where);
4761 return FAILURE;
4762 }
4763 if (!pointer && !is_pointer)
4764 {
4765 if (context)
4766 gfc_error ("Variable '%s' is PROTECTED and can not appear in a"
4767 " variable definition context (%s) at %L",
4768 sym->name, context, &e->where);
4769 return FAILURE;
4770 }
4771 }
4772
4773 /* Variable not assignable from a PURE procedure but appears in
4774 variable definition context. */
4775 if (!pointer && gfc_pure (NULL) && gfc_impure_variable (sym))
4776 {
4777 if (context)
4778 gfc_error ("Variable '%s' can not appear in a variable definition"
4779 " context (%s) at %L in PURE procedure",
4780 sym->name, context, &e->where);
4781 return FAILURE;
4782 }
4783
4784 if (!pointer && context && gfc_implicit_pure (NULL)
4785 && gfc_impure_variable (sym))
4786 {
4787 gfc_namespace *ns;
4788 gfc_symbol *sym;
4789
4790 for (ns = gfc_current_ns; ns; ns = ns->parent)
4791 {
4792 sym = ns->proc_name;
4793 if (sym == NULL)
4794 break;
4795 if (sym->attr.flavor == FL_PROCEDURE)
4796 {
4797 sym->attr.implicit_pure = 0;
4798 break;
4799 }
4800 }
4801 }
4802 /* Check variable definition context for associate-names. */
4803 if (!pointer && sym->assoc)
4804 {
4805 const char* name;
4806 gfc_association_list* assoc;
4807
4808 gcc_assert (sym->assoc->target);
4809
4810 /* If this is a SELECT TYPE temporary (the association is used internally
4811 for SELECT TYPE), silently go over to the target. */
4812 if (sym->attr.select_type_temporary)
4813 {
4814 gfc_expr* t = sym->assoc->target;
4815
4816 gcc_assert (t->expr_type == EXPR_VARIABLE);
4817 name = t->symtree->name;
4818
4819 if (t->symtree->n.sym->assoc)
4820 assoc = t->symtree->n.sym->assoc;
4821 else
4822 assoc = sym->assoc;
4823 }
4824 else
4825 {
4826 name = sym->name;
4827 assoc = sym->assoc;
4828 }
4829 gcc_assert (name && assoc);
4830
4831 /* Is association to a valid variable? */
4832 if (!assoc->variable)
4833 {
4834 if (context)
4835 {
4836 if (assoc->target->expr_type == EXPR_VARIABLE)
4837 gfc_error ("'%s' at %L associated to vector-indexed target can"
4838 " not be used in a variable definition context (%s)",
4839 name, &e->where, context);
4840 else
4841 gfc_error ("'%s' at %L associated to expression can"
4842 " not be used in a variable definition context (%s)",
4843 name, &e->where, context);
4844 }
4845 return FAILURE;
4846 }
4847
4848 /* Target must be allowed to appear in a variable definition context. */
4849 if (gfc_check_vardef_context (assoc->target, pointer, false, NULL)
4850 == FAILURE)
4851 {
4852 if (context)
4853 gfc_error ("Associate-name '%s' can not appear in a variable"
4854 " definition context (%s) at %L because its target"
4855 " at %L can not, either",
4856 name, context, &e->where,
4857 &assoc->target->where);
4858 return FAILURE;
4859 }
4860 }
4861
4862 return SUCCESS;
4863 }