re PR fortran/33664 (crash on invalid program)
[gcc.git] / gcc / fortran / expr.c
1 /* Routines for manipulation of expression nodes.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Andy Vaught
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "gfortran.h"
25 #include "arith.h"
26 #include "match.h"
27
28 /* Get a new expr node. */
29
30 gfc_expr *
31 gfc_get_expr (void)
32 {
33 gfc_expr *e;
34
35 e = gfc_getmem (sizeof (gfc_expr));
36 gfc_clear_ts (&e->ts);
37 e->shape = NULL;
38 e->ref = NULL;
39 e->symtree = NULL;
40 e->con_by_offset = NULL;
41 return e;
42 }
43
44
45 /* Free an argument list and everything below it. */
46
47 void
48 gfc_free_actual_arglist (gfc_actual_arglist *a1)
49 {
50 gfc_actual_arglist *a2;
51
52 while (a1)
53 {
54 a2 = a1->next;
55 gfc_free_expr (a1->expr);
56 gfc_free (a1);
57 a1 = a2;
58 }
59 }
60
61
62 /* Copy an arglist structure and all of the arguments. */
63
64 gfc_actual_arglist *
65 gfc_copy_actual_arglist (gfc_actual_arglist *p)
66 {
67 gfc_actual_arglist *head, *tail, *new;
68
69 head = tail = NULL;
70
71 for (; p; p = p->next)
72 {
73 new = gfc_get_actual_arglist ();
74 *new = *p;
75
76 new->expr = gfc_copy_expr (p->expr);
77 new->next = NULL;
78
79 if (head == NULL)
80 head = new;
81 else
82 tail->next = new;
83
84 tail = new;
85 }
86
87 return head;
88 }
89
90
91 /* Free a list of reference structures. */
92
93 void
94 gfc_free_ref_list (gfc_ref *p)
95 {
96 gfc_ref *q;
97 int i;
98
99 for (; p; p = q)
100 {
101 q = p->next;
102
103 switch (p->type)
104 {
105 case REF_ARRAY:
106 for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
107 {
108 gfc_free_expr (p->u.ar.start[i]);
109 gfc_free_expr (p->u.ar.end[i]);
110 gfc_free_expr (p->u.ar.stride[i]);
111 }
112
113 break;
114
115 case REF_SUBSTRING:
116 gfc_free_expr (p->u.ss.start);
117 gfc_free_expr (p->u.ss.end);
118 break;
119
120 case REF_COMPONENT:
121 break;
122 }
123
124 gfc_free (p);
125 }
126 }
127
128
129 /* Workhorse function for gfc_free_expr() that frees everything
130 beneath an expression node, but not the node itself. This is
131 useful when we want to simplify a node and replace it with
132 something else or the expression node belongs to another structure. */
133
134 static void
135 free_expr0 (gfc_expr *e)
136 {
137 int n;
138
139 switch (e->expr_type)
140 {
141 case EXPR_CONSTANT:
142 /* Free any parts of the value that need freeing. */
143 switch (e->ts.type)
144 {
145 case BT_INTEGER:
146 mpz_clear (e->value.integer);
147 break;
148
149 case BT_REAL:
150 mpfr_clear (e->value.real);
151 break;
152
153 case BT_CHARACTER:
154 gfc_free (e->value.character.string);
155 break;
156
157 case BT_COMPLEX:
158 mpfr_clear (e->value.complex.r);
159 mpfr_clear (e->value.complex.i);
160 break;
161
162 default:
163 break;
164 }
165
166 /* Free the representation, except in character constants where it
167 is the same as value.character.string and thus already freed. */
168 if (e->representation.string && e->ts.type != BT_CHARACTER)
169 gfc_free (e->representation.string);
170
171 break;
172
173 case EXPR_OP:
174 if (e->value.op.op1 != NULL)
175 gfc_free_expr (e->value.op.op1);
176 if (e->value.op.op2 != NULL)
177 gfc_free_expr (e->value.op.op2);
178 break;
179
180 case EXPR_FUNCTION:
181 gfc_free_actual_arglist (e->value.function.actual);
182 break;
183
184 case EXPR_VARIABLE:
185 break;
186
187 case EXPR_ARRAY:
188 case EXPR_STRUCTURE:
189 gfc_free_constructor (e->value.constructor);
190 break;
191
192 case EXPR_SUBSTRING:
193 gfc_free (e->value.character.string);
194 break;
195
196 case EXPR_NULL:
197 break;
198
199 default:
200 gfc_internal_error ("free_expr0(): Bad expr type");
201 }
202
203 /* Free a shape array. */
204 if (e->shape != NULL)
205 {
206 for (n = 0; n < e->rank; n++)
207 mpz_clear (e->shape[n]);
208
209 gfc_free (e->shape);
210 }
211
212 gfc_free_ref_list (e->ref);
213
214 memset (e, '\0', sizeof (gfc_expr));
215 }
216
217
218 /* Free an expression node and everything beneath it. */
219
220 void
221 gfc_free_expr (gfc_expr *e)
222 {
223 if (e == NULL)
224 return;
225 if (e->con_by_offset)
226 splay_tree_delete (e->con_by_offset);
227 free_expr0 (e);
228 gfc_free (e);
229 }
230
231
232 /* Graft the *src expression onto the *dest subexpression. */
233
234 void
235 gfc_replace_expr (gfc_expr *dest, gfc_expr *src)
236 {
237 free_expr0 (dest);
238 *dest = *src;
239 gfc_free (src);
240 }
241
242
243 /* Try to extract an integer constant from the passed expression node.
244 Returns an error message or NULL if the result is set. It is
245 tempting to generate an error and return SUCCESS or FAILURE, but
246 failure is OK for some callers. */
247
248 const char *
249 gfc_extract_int (gfc_expr *expr, int *result)
250 {
251 if (expr->expr_type != EXPR_CONSTANT)
252 return _("Constant expression required at %C");
253
254 if (expr->ts.type != BT_INTEGER)
255 return _("Integer expression required at %C");
256
257 if ((mpz_cmp_si (expr->value.integer, INT_MAX) > 0)
258 || (mpz_cmp_si (expr->value.integer, INT_MIN) < 0))
259 {
260 return _("Integer value too large in expression at %C");
261 }
262
263 *result = (int) mpz_get_si (expr->value.integer);
264
265 return NULL;
266 }
267
268
269 /* Recursively copy a list of reference structures. */
270
271 static gfc_ref *
272 copy_ref (gfc_ref *src)
273 {
274 gfc_array_ref *ar;
275 gfc_ref *dest;
276
277 if (src == NULL)
278 return NULL;
279
280 dest = gfc_get_ref ();
281 dest->type = src->type;
282
283 switch (src->type)
284 {
285 case REF_ARRAY:
286 ar = gfc_copy_array_ref (&src->u.ar);
287 dest->u.ar = *ar;
288 gfc_free (ar);
289 break;
290
291 case REF_COMPONENT:
292 dest->u.c = src->u.c;
293 break;
294
295 case REF_SUBSTRING:
296 dest->u.ss = src->u.ss;
297 dest->u.ss.start = gfc_copy_expr (src->u.ss.start);
298 dest->u.ss.end = gfc_copy_expr (src->u.ss.end);
299 break;
300 }
301
302 dest->next = copy_ref (src->next);
303
304 return dest;
305 }
306
307
308 /* Detect whether an expression has any vector index array references. */
309
310 int
311 gfc_has_vector_index (gfc_expr *e)
312 {
313 gfc_ref *ref;
314 int i;
315 for (ref = e->ref; ref; ref = ref->next)
316 if (ref->type == REF_ARRAY)
317 for (i = 0; i < ref->u.ar.dimen; i++)
318 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
319 return 1;
320 return 0;
321 }
322
323
324 /* Copy a shape array. */
325
326 mpz_t *
327 gfc_copy_shape (mpz_t *shape, int rank)
328 {
329 mpz_t *new_shape;
330 int n;
331
332 if (shape == NULL)
333 return NULL;
334
335 new_shape = gfc_get_shape (rank);
336
337 for (n = 0; n < rank; n++)
338 mpz_init_set (new_shape[n], shape[n]);
339
340 return new_shape;
341 }
342
343
344 /* Copy a shape array excluding dimension N, where N is an integer
345 constant expression. Dimensions are numbered in fortran style --
346 starting with ONE.
347
348 So, if the original shape array contains R elements
349 { s1 ... sN-1 sN sN+1 ... sR-1 sR}
350 the result contains R-1 elements:
351 { s1 ... sN-1 sN+1 ... sR-1}
352
353 If anything goes wrong -- N is not a constant, its value is out
354 of range -- or anything else, just returns NULL. */
355
356 mpz_t *
357 gfc_copy_shape_excluding (mpz_t *shape, int rank, gfc_expr *dim)
358 {
359 mpz_t *new_shape, *s;
360 int i, n;
361
362 if (shape == NULL
363 || rank <= 1
364 || dim == NULL
365 || dim->expr_type != EXPR_CONSTANT
366 || dim->ts.type != BT_INTEGER)
367 return NULL;
368
369 n = mpz_get_si (dim->value.integer);
370 n--; /* Convert to zero based index. */
371 if (n < 0 || n >= rank)
372 return NULL;
373
374 s = new_shape = gfc_get_shape (rank - 1);
375
376 for (i = 0; i < rank; i++)
377 {
378 if (i == n)
379 continue;
380 mpz_init_set (*s, shape[i]);
381 s++;
382 }
383
384 return new_shape;
385 }
386
387
388 /* Given an expression pointer, return a copy of the expression. This
389 subroutine is recursive. */
390
391 gfc_expr *
392 gfc_copy_expr (gfc_expr *p)
393 {
394 gfc_expr *q;
395 char *s;
396
397 if (p == NULL)
398 return NULL;
399
400 q = gfc_get_expr ();
401 *q = *p;
402
403 switch (q->expr_type)
404 {
405 case EXPR_SUBSTRING:
406 s = gfc_getmem (p->value.character.length + 1);
407 q->value.character.string = s;
408
409 memcpy (s, p->value.character.string, p->value.character.length + 1);
410 break;
411
412 case EXPR_CONSTANT:
413 /* Copy target representation, if it exists. */
414 if (p->representation.string)
415 {
416 s = gfc_getmem (p->representation.length + 1);
417 q->representation.string = s;
418
419 memcpy (s, p->representation.string, p->representation.length + 1);
420 }
421
422 /* Copy the values of any pointer components of p->value. */
423 switch (q->ts.type)
424 {
425 case BT_INTEGER:
426 mpz_init_set (q->value.integer, p->value.integer);
427 break;
428
429 case BT_REAL:
430 gfc_set_model_kind (q->ts.kind);
431 mpfr_init (q->value.real);
432 mpfr_set (q->value.real, p->value.real, GFC_RND_MODE);
433 break;
434
435 case BT_COMPLEX:
436 gfc_set_model_kind (q->ts.kind);
437 mpfr_init (q->value.complex.r);
438 mpfr_init (q->value.complex.i);
439 mpfr_set (q->value.complex.r, p->value.complex.r, GFC_RND_MODE);
440 mpfr_set (q->value.complex.i, p->value.complex.i, GFC_RND_MODE);
441 break;
442
443 case BT_CHARACTER:
444 if (p->representation.string)
445 q->value.character.string = q->representation.string;
446 else
447 {
448 s = gfc_getmem (p->value.character.length + 1);
449 q->value.character.string = s;
450
451 /* This is the case for the C_NULL_CHAR named constant. */
452 if (p->value.character.length == 0
453 && (p->ts.is_c_interop || p->ts.is_iso_c))
454 {
455 *s = '\0';
456 /* Need to set the length to 1 to make sure the NUL
457 terminator is copied. */
458 q->value.character.length = 1;
459 }
460 else
461 memcpy (s, p->value.character.string,
462 p->value.character.length + 1);
463 }
464 break;
465
466 case BT_HOLLERITH:
467 case BT_LOGICAL:
468 case BT_DERIVED:
469 break; /* Already done. */
470
471 case BT_PROCEDURE:
472 case BT_VOID:
473 /* Should never be reached. */
474 case BT_UNKNOWN:
475 gfc_internal_error ("gfc_copy_expr(): Bad expr node");
476 /* Not reached. */
477 }
478
479 break;
480
481 case EXPR_OP:
482 switch (q->value.op.operator)
483 {
484 case INTRINSIC_NOT:
485 case INTRINSIC_PARENTHESES:
486 case INTRINSIC_UPLUS:
487 case INTRINSIC_UMINUS:
488 q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
489 break;
490
491 default: /* Binary operators. */
492 q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
493 q->value.op.op2 = gfc_copy_expr (p->value.op.op2);
494 break;
495 }
496
497 break;
498
499 case EXPR_FUNCTION:
500 q->value.function.actual =
501 gfc_copy_actual_arglist (p->value.function.actual);
502 break;
503
504 case EXPR_STRUCTURE:
505 case EXPR_ARRAY:
506 q->value.constructor = gfc_copy_constructor (p->value.constructor);
507 break;
508
509 case EXPR_VARIABLE:
510 case EXPR_NULL:
511 break;
512 }
513
514 q->shape = gfc_copy_shape (p->shape, p->rank);
515
516 q->ref = copy_ref (p->ref);
517
518 return q;
519 }
520
521
522 /* Return the maximum kind of two expressions. In general, higher
523 kind numbers mean more precision for numeric types. */
524
525 int
526 gfc_kind_max (gfc_expr *e1, gfc_expr *e2)
527 {
528 return (e1->ts.kind > e2->ts.kind) ? e1->ts.kind : e2->ts.kind;
529 }
530
531
532 /* Returns nonzero if the type is numeric, zero otherwise. */
533
534 static int
535 numeric_type (bt type)
536 {
537 return type == BT_COMPLEX || type == BT_REAL || type == BT_INTEGER;
538 }
539
540
541 /* Returns nonzero if the typespec is a numeric type, zero otherwise. */
542
543 int
544 gfc_numeric_ts (gfc_typespec *ts)
545 {
546 return numeric_type (ts->type);
547 }
548
549
550 /* Returns an expression node that is an integer constant. */
551
552 gfc_expr *
553 gfc_int_expr (int i)
554 {
555 gfc_expr *p;
556
557 p = gfc_get_expr ();
558
559 p->expr_type = EXPR_CONSTANT;
560 p->ts.type = BT_INTEGER;
561 p->ts.kind = gfc_default_integer_kind;
562
563 p->where = gfc_current_locus;
564 mpz_init_set_si (p->value.integer, i);
565
566 return p;
567 }
568
569
570 /* Returns an expression node that is a logical constant. */
571
572 gfc_expr *
573 gfc_logical_expr (int i, locus *where)
574 {
575 gfc_expr *p;
576
577 p = gfc_get_expr ();
578
579 p->expr_type = EXPR_CONSTANT;
580 p->ts.type = BT_LOGICAL;
581 p->ts.kind = gfc_default_logical_kind;
582
583 if (where == NULL)
584 where = &gfc_current_locus;
585 p->where = *where;
586 p->value.logical = i;
587
588 return p;
589 }
590
591
592 /* Return an expression node with an optional argument list attached.
593 A variable number of gfc_expr pointers are strung together in an
594 argument list with a NULL pointer terminating the list. */
595
596 gfc_expr *
597 gfc_build_conversion (gfc_expr *e)
598 {
599 gfc_expr *p;
600
601 p = gfc_get_expr ();
602 p->expr_type = EXPR_FUNCTION;
603 p->symtree = NULL;
604 p->value.function.actual = NULL;
605
606 p->value.function.actual = gfc_get_actual_arglist ();
607 p->value.function.actual->expr = e;
608
609 return p;
610 }
611
612
613 /* Given an expression node with some sort of numeric binary
614 expression, insert type conversions required to make the operands
615 have the same type.
616
617 The exception is that the operands of an exponential don't have to
618 have the same type. If possible, the base is promoted to the type
619 of the exponent. For example, 1**2.3 becomes 1.0**2.3, but
620 1.0**2 stays as it is. */
621
622 void
623 gfc_type_convert_binary (gfc_expr *e)
624 {
625 gfc_expr *op1, *op2;
626
627 op1 = e->value.op.op1;
628 op2 = e->value.op.op2;
629
630 if (op1->ts.type == BT_UNKNOWN || op2->ts.type == BT_UNKNOWN)
631 {
632 gfc_clear_ts (&e->ts);
633 return;
634 }
635
636 /* Kind conversions of same type. */
637 if (op1->ts.type == op2->ts.type)
638 {
639 if (op1->ts.kind == op2->ts.kind)
640 {
641 /* No type conversions. */
642 e->ts = op1->ts;
643 goto done;
644 }
645
646 if (op1->ts.kind > op2->ts.kind)
647 gfc_convert_type (op2, &op1->ts, 2);
648 else
649 gfc_convert_type (op1, &op2->ts, 2);
650
651 e->ts = op1->ts;
652 goto done;
653 }
654
655 /* Integer combined with real or complex. */
656 if (op2->ts.type == BT_INTEGER)
657 {
658 e->ts = op1->ts;
659
660 /* Special case for ** operator. */
661 if (e->value.op.operator == INTRINSIC_POWER)
662 goto done;
663
664 gfc_convert_type (e->value.op.op2, &e->ts, 2);
665 goto done;
666 }
667
668 if (op1->ts.type == BT_INTEGER)
669 {
670 e->ts = op2->ts;
671 gfc_convert_type (e->value.op.op1, &e->ts, 2);
672 goto done;
673 }
674
675 /* Real combined with complex. */
676 e->ts.type = BT_COMPLEX;
677 if (op1->ts.kind > op2->ts.kind)
678 e->ts.kind = op1->ts.kind;
679 else
680 e->ts.kind = op2->ts.kind;
681 if (op1->ts.type != BT_COMPLEX || op1->ts.kind != e->ts.kind)
682 gfc_convert_type (e->value.op.op1, &e->ts, 2);
683 if (op2->ts.type != BT_COMPLEX || op2->ts.kind != e->ts.kind)
684 gfc_convert_type (e->value.op.op2, &e->ts, 2);
685
686 done:
687 return;
688 }
689
690
691 static match
692 check_specification_function (gfc_expr *e)
693 {
694 gfc_symbol *sym;
695
696 if (!e->symtree)
697 return MATCH_NO;
698
699 sym = e->symtree->n.sym;
700
701 /* F95, 7.1.6.2; F2003, 7.1.7 */
702 if (sym
703 && sym->attr.function
704 && sym->attr.pure
705 && !sym->attr.intrinsic
706 && !sym->attr.recursive
707 && sym->attr.proc != PROC_INTERNAL
708 && sym->attr.proc != PROC_ST_FUNCTION
709 && sym->attr.proc != PROC_UNKNOWN
710 && sym->formal == NULL)
711 return MATCH_YES;
712
713 return MATCH_NO;
714 }
715
716 /* Function to determine if an expression is constant or not. This
717 function expects that the expression has already been simplified. */
718
719 int
720 gfc_is_constant_expr (gfc_expr *e)
721 {
722 gfc_constructor *c;
723 gfc_actual_arglist *arg;
724 int rv;
725
726 if (e == NULL)
727 return 1;
728
729 switch (e->expr_type)
730 {
731 case EXPR_OP:
732 rv = (gfc_is_constant_expr (e->value.op.op1)
733 && (e->value.op.op2 == NULL
734 || gfc_is_constant_expr (e->value.op.op2)));
735 break;
736
737 case EXPR_VARIABLE:
738 rv = 0;
739 break;
740
741 case EXPR_FUNCTION:
742 /* Specification functions are constant. */
743 if (check_specification_function (e) == MATCH_YES)
744 {
745 rv = 1;
746 break;
747 }
748
749 /* Call to intrinsic with at least one argument. */
750 rv = 0;
751 if (e->value.function.isym && e->value.function.actual)
752 {
753 for (arg = e->value.function.actual; arg; arg = arg->next)
754 {
755 if (!gfc_is_constant_expr (arg->expr))
756 break;
757 }
758 if (arg == NULL)
759 rv = 1;
760 }
761 break;
762
763 case EXPR_CONSTANT:
764 case EXPR_NULL:
765 rv = 1;
766 break;
767
768 case EXPR_SUBSTRING:
769 rv = e->ref == NULL || (gfc_is_constant_expr (e->ref->u.ss.start)
770 && gfc_is_constant_expr (e->ref->u.ss.end));
771 break;
772
773 case EXPR_STRUCTURE:
774 rv = 0;
775 for (c = e->value.constructor; c; c = c->next)
776 if (!gfc_is_constant_expr (c->expr))
777 break;
778
779 if (c == NULL)
780 rv = 1;
781 break;
782
783 case EXPR_ARRAY:
784 rv = gfc_constant_ac (e);
785 break;
786
787 default:
788 gfc_internal_error ("gfc_is_constant_expr(): Unknown expression type");
789 }
790
791 return rv;
792 }
793
794
795 /* Is true if an array reference is followed by a component or substring
796 reference. */
797 bool
798 is_subref_array (gfc_expr * e)
799 {
800 gfc_ref * ref;
801 bool seen_array;
802
803 if (e->expr_type != EXPR_VARIABLE)
804 return false;
805
806 if (e->symtree->n.sym->attr.subref_array_pointer)
807 return true;
808
809 seen_array = false;
810 for (ref = e->ref; ref; ref = ref->next)
811 {
812 if (ref->type == REF_ARRAY
813 && ref->u.ar.type != AR_ELEMENT)
814 seen_array = true;
815
816 if (seen_array
817 && ref->type != REF_ARRAY)
818 return seen_array;
819 }
820 return false;
821 }
822
823
824 /* Try to collapse intrinsic expressions. */
825
826 static try
827 simplify_intrinsic_op (gfc_expr *p, int type)
828 {
829 gfc_intrinsic_op op;
830 gfc_expr *op1, *op2, *result;
831
832 if (p->value.op.operator == INTRINSIC_USER)
833 return SUCCESS;
834
835 op1 = p->value.op.op1;
836 op2 = p->value.op.op2;
837 op = p->value.op.operator;
838
839 if (gfc_simplify_expr (op1, type) == FAILURE)
840 return FAILURE;
841 if (gfc_simplify_expr (op2, type) == FAILURE)
842 return FAILURE;
843
844 if (!gfc_is_constant_expr (op1)
845 || (op2 != NULL && !gfc_is_constant_expr (op2)))
846 return SUCCESS;
847
848 /* Rip p apart. */
849 p->value.op.op1 = NULL;
850 p->value.op.op2 = NULL;
851
852 switch (op)
853 {
854 case INTRINSIC_PARENTHESES:
855 result = gfc_parentheses (op1);
856 break;
857
858 case INTRINSIC_UPLUS:
859 result = gfc_uplus (op1);
860 break;
861
862 case INTRINSIC_UMINUS:
863 result = gfc_uminus (op1);
864 break;
865
866 case INTRINSIC_PLUS:
867 result = gfc_add (op1, op2);
868 break;
869
870 case INTRINSIC_MINUS:
871 result = gfc_subtract (op1, op2);
872 break;
873
874 case INTRINSIC_TIMES:
875 result = gfc_multiply (op1, op2);
876 break;
877
878 case INTRINSIC_DIVIDE:
879 result = gfc_divide (op1, op2);
880 break;
881
882 case INTRINSIC_POWER:
883 result = gfc_power (op1, op2);
884 break;
885
886 case INTRINSIC_CONCAT:
887 result = gfc_concat (op1, op2);
888 break;
889
890 case INTRINSIC_EQ:
891 case INTRINSIC_EQ_OS:
892 result = gfc_eq (op1, op2, op);
893 break;
894
895 case INTRINSIC_NE:
896 case INTRINSIC_NE_OS:
897 result = gfc_ne (op1, op2, op);
898 break;
899
900 case INTRINSIC_GT:
901 case INTRINSIC_GT_OS:
902 result = gfc_gt (op1, op2, op);
903 break;
904
905 case INTRINSIC_GE:
906 case INTRINSIC_GE_OS:
907 result = gfc_ge (op1, op2, op);
908 break;
909
910 case INTRINSIC_LT:
911 case INTRINSIC_LT_OS:
912 result = gfc_lt (op1, op2, op);
913 break;
914
915 case INTRINSIC_LE:
916 case INTRINSIC_LE_OS:
917 result = gfc_le (op1, op2, op);
918 break;
919
920 case INTRINSIC_NOT:
921 result = gfc_not (op1);
922 break;
923
924 case INTRINSIC_AND:
925 result = gfc_and (op1, op2);
926 break;
927
928 case INTRINSIC_OR:
929 result = gfc_or (op1, op2);
930 break;
931
932 case INTRINSIC_EQV:
933 result = gfc_eqv (op1, op2);
934 break;
935
936 case INTRINSIC_NEQV:
937 result = gfc_neqv (op1, op2);
938 break;
939
940 default:
941 gfc_internal_error ("simplify_intrinsic_op(): Bad operator");
942 }
943
944 if (result == NULL)
945 {
946 gfc_free_expr (op1);
947 gfc_free_expr (op2);
948 return FAILURE;
949 }
950
951 result->rank = p->rank;
952 result->where = p->where;
953 gfc_replace_expr (p, result);
954
955 return SUCCESS;
956 }
957
958
959 /* Subroutine to simplify constructor expressions. Mutually recursive
960 with gfc_simplify_expr(). */
961
962 static try
963 simplify_constructor (gfc_constructor *c, int type)
964 {
965 for (; c; c = c->next)
966 {
967 if (c->iterator
968 && (gfc_simplify_expr (c->iterator->start, type) == FAILURE
969 || gfc_simplify_expr (c->iterator->end, type) == FAILURE
970 || gfc_simplify_expr (c->iterator->step, type) == FAILURE))
971 return FAILURE;
972
973 if (c->expr && gfc_simplify_expr (c->expr, type) == FAILURE)
974 return FAILURE;
975 }
976
977 return SUCCESS;
978 }
979
980
981 /* Pull a single array element out of an array constructor. */
982
983 static try
984 find_array_element (gfc_constructor *cons, gfc_array_ref *ar,
985 gfc_constructor **rval)
986 {
987 unsigned long nelemen;
988 int i;
989 mpz_t delta;
990 mpz_t offset;
991 mpz_t span;
992 mpz_t tmp;
993 gfc_expr *e;
994 try t;
995
996 t = SUCCESS;
997 e = NULL;
998
999 mpz_init_set_ui (offset, 0);
1000 mpz_init (delta);
1001 mpz_init (tmp);
1002 mpz_init_set_ui (span, 1);
1003 for (i = 0; i < ar->dimen; i++)
1004 {
1005 e = gfc_copy_expr (ar->start[i]);
1006 if (e->expr_type != EXPR_CONSTANT)
1007 {
1008 cons = NULL;
1009 goto depart;
1010 }
1011
1012 /* Check the bounds. */
1013 if (ar->as->upper[i]
1014 && (mpz_cmp (e->value.integer, ar->as->upper[i]->value.integer) > 0
1015 || mpz_cmp (e->value.integer,
1016 ar->as->lower[i]->value.integer) < 0))
1017 {
1018 gfc_error ("index in dimension %d is out of bounds "
1019 "at %L", i + 1, &ar->c_where[i]);
1020 cons = NULL;
1021 t = FAILURE;
1022 goto depart;
1023 }
1024
1025 mpz_sub (delta, e->value.integer, ar->as->lower[i]->value.integer);
1026 mpz_mul (delta, delta, span);
1027 mpz_add (offset, offset, delta);
1028
1029 mpz_set_ui (tmp, 1);
1030 mpz_add (tmp, tmp, ar->as->upper[i]->value.integer);
1031 mpz_sub (tmp, tmp, ar->as->lower[i]->value.integer);
1032 mpz_mul (span, span, tmp);
1033 }
1034
1035 if (cons)
1036 {
1037 for (nelemen = mpz_get_ui (offset); nelemen > 0; nelemen--)
1038 {
1039 if (cons->iterator)
1040 {
1041 cons = NULL;
1042 goto depart;
1043 }
1044 cons = cons->next;
1045 }
1046 }
1047
1048 depart:
1049 mpz_clear (delta);
1050 mpz_clear (offset);
1051 mpz_clear (span);
1052 mpz_clear (tmp);
1053 if (e)
1054 gfc_free_expr (e);
1055 *rval = cons;
1056 return t;
1057 }
1058
1059
1060 /* Find a component of a structure constructor. */
1061
1062 static gfc_constructor *
1063 find_component_ref (gfc_constructor *cons, gfc_ref *ref)
1064 {
1065 gfc_component *comp;
1066 gfc_component *pick;
1067
1068 comp = ref->u.c.sym->components;
1069 pick = ref->u.c.component;
1070 while (comp != pick)
1071 {
1072 comp = comp->next;
1073 cons = cons->next;
1074 }
1075
1076 return cons;
1077 }
1078
1079
1080 /* Replace an expression with the contents of a constructor, removing
1081 the subobject reference in the process. */
1082
1083 static void
1084 remove_subobject_ref (gfc_expr *p, gfc_constructor *cons)
1085 {
1086 gfc_expr *e;
1087
1088 e = cons->expr;
1089 cons->expr = NULL;
1090 e->ref = p->ref->next;
1091 p->ref->next = NULL;
1092 gfc_replace_expr (p, e);
1093 }
1094
1095
1096 /* Pull an array section out of an array constructor. */
1097
1098 static try
1099 find_array_section (gfc_expr *expr, gfc_ref *ref)
1100 {
1101 int idx;
1102 int rank;
1103 int d;
1104 int shape_i;
1105 long unsigned one = 1;
1106 bool incr_ctr;
1107 mpz_t start[GFC_MAX_DIMENSIONS];
1108 mpz_t end[GFC_MAX_DIMENSIONS];
1109 mpz_t stride[GFC_MAX_DIMENSIONS];
1110 mpz_t delta[GFC_MAX_DIMENSIONS];
1111 mpz_t ctr[GFC_MAX_DIMENSIONS];
1112 mpz_t delta_mpz;
1113 mpz_t tmp_mpz;
1114 mpz_t nelts;
1115 mpz_t ptr;
1116 mpz_t index;
1117 gfc_constructor *cons;
1118 gfc_constructor *base;
1119 gfc_expr *begin;
1120 gfc_expr *finish;
1121 gfc_expr *step;
1122 gfc_expr *upper;
1123 gfc_expr *lower;
1124 gfc_constructor *vecsub[GFC_MAX_DIMENSIONS], *c;
1125 try t;
1126
1127 t = SUCCESS;
1128
1129 base = expr->value.constructor;
1130 expr->value.constructor = NULL;
1131
1132 rank = ref->u.ar.as->rank;
1133
1134 if (expr->shape == NULL)
1135 expr->shape = gfc_get_shape (rank);
1136
1137 mpz_init_set_ui (delta_mpz, one);
1138 mpz_init_set_ui (nelts, one);
1139 mpz_init (tmp_mpz);
1140
1141 /* Do the initialization now, so that we can cleanup without
1142 keeping track of where we were. */
1143 for (d = 0; d < rank; d++)
1144 {
1145 mpz_init (delta[d]);
1146 mpz_init (start[d]);
1147 mpz_init (end[d]);
1148 mpz_init (ctr[d]);
1149 mpz_init (stride[d]);
1150 vecsub[d] = NULL;
1151 }
1152
1153 /* Build the counters to clock through the array reference. */
1154 shape_i = 0;
1155 for (d = 0; d < rank; d++)
1156 {
1157 /* Make this stretch of code easier on the eye! */
1158 begin = ref->u.ar.start[d];
1159 finish = ref->u.ar.end[d];
1160 step = ref->u.ar.stride[d];
1161 lower = ref->u.ar.as->lower[d];
1162 upper = ref->u.ar.as->upper[d];
1163
1164 if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
1165 {
1166 gcc_assert (begin);
1167
1168 if (begin->expr_type != EXPR_ARRAY || !gfc_is_constant_expr (begin))
1169 {
1170 t = FAILURE;
1171 goto cleanup;
1172 }
1173
1174 gcc_assert (begin->rank == 1);
1175 gcc_assert (begin->shape);
1176
1177 vecsub[d] = begin->value.constructor;
1178 mpz_set (ctr[d], vecsub[d]->expr->value.integer);
1179 mpz_mul (nelts, nelts, begin->shape[0]);
1180 mpz_set (expr->shape[shape_i++], begin->shape[0]);
1181
1182 /* Check bounds. */
1183 for (c = vecsub[d]; c; c = c->next)
1184 {
1185 if (mpz_cmp (c->expr->value.integer, upper->value.integer) > 0
1186 || mpz_cmp (c->expr->value.integer,
1187 lower->value.integer) < 0)
1188 {
1189 gfc_error ("index in dimension %d is out of bounds "
1190 "at %L", d + 1, &ref->u.ar.c_where[d]);
1191 t = FAILURE;
1192 goto cleanup;
1193 }
1194 }
1195 }
1196 else
1197 {
1198 if ((begin && begin->expr_type != EXPR_CONSTANT)
1199 || (finish && finish->expr_type != EXPR_CONSTANT)
1200 || (step && step->expr_type != EXPR_CONSTANT))
1201 {
1202 t = FAILURE;
1203 goto cleanup;
1204 }
1205
1206 /* Obtain the stride. */
1207 if (step)
1208 mpz_set (stride[d], step->value.integer);
1209 else
1210 mpz_set_ui (stride[d], one);
1211
1212 if (mpz_cmp_ui (stride[d], 0) == 0)
1213 mpz_set_ui (stride[d], one);
1214
1215 /* Obtain the start value for the index. */
1216 if (begin)
1217 mpz_set (start[d], begin->value.integer);
1218 else
1219 mpz_set (start[d], lower->value.integer);
1220
1221 mpz_set (ctr[d], start[d]);
1222
1223 /* Obtain the end value for the index. */
1224 if (finish)
1225 mpz_set (end[d], finish->value.integer);
1226 else
1227 mpz_set (end[d], upper->value.integer);
1228
1229 /* Separate 'if' because elements sometimes arrive with
1230 non-null end. */
1231 if (ref->u.ar.dimen_type[d] == DIMEN_ELEMENT)
1232 mpz_set (end [d], begin->value.integer);
1233
1234 /* Check the bounds. */
1235 if (mpz_cmp (ctr[d], upper->value.integer) > 0
1236 || mpz_cmp (end[d], upper->value.integer) > 0
1237 || mpz_cmp (ctr[d], lower->value.integer) < 0
1238 || mpz_cmp (end[d], lower->value.integer) < 0)
1239 {
1240 gfc_error ("index in dimension %d is out of bounds "
1241 "at %L", d + 1, &ref->u.ar.c_where[d]);
1242 t = FAILURE;
1243 goto cleanup;
1244 }
1245
1246 /* Calculate the number of elements and the shape. */
1247 mpz_set (tmp_mpz, stride[d]);
1248 mpz_add (tmp_mpz, end[d], tmp_mpz);
1249 mpz_sub (tmp_mpz, tmp_mpz, ctr[d]);
1250 mpz_div (tmp_mpz, tmp_mpz, stride[d]);
1251 mpz_mul (nelts, nelts, tmp_mpz);
1252
1253 /* An element reference reduces the rank of the expression; don't
1254 add anything to the shape array. */
1255 if (ref->u.ar.dimen_type[d] != DIMEN_ELEMENT)
1256 mpz_set (expr->shape[shape_i++], tmp_mpz);
1257 }
1258
1259 /* Calculate the 'stride' (=delta) for conversion of the
1260 counter values into the index along the constructor. */
1261 mpz_set (delta[d], delta_mpz);
1262 mpz_sub (tmp_mpz, upper->value.integer, lower->value.integer);
1263 mpz_add_ui (tmp_mpz, tmp_mpz, one);
1264 mpz_mul (delta_mpz, delta_mpz, tmp_mpz);
1265 }
1266
1267 mpz_init (index);
1268 mpz_init (ptr);
1269 cons = base;
1270
1271 /* Now clock through the array reference, calculating the index in
1272 the source constructor and transferring the elements to the new
1273 constructor. */
1274 for (idx = 0; idx < (int) mpz_get_si (nelts); idx++)
1275 {
1276 if (ref->u.ar.offset)
1277 mpz_set (ptr, ref->u.ar.offset->value.integer);
1278 else
1279 mpz_init_set_ui (ptr, 0);
1280
1281 incr_ctr = true;
1282 for (d = 0; d < rank; d++)
1283 {
1284 mpz_set (tmp_mpz, ctr[d]);
1285 mpz_sub (tmp_mpz, tmp_mpz, ref->u.ar.as->lower[d]->value.integer);
1286 mpz_mul (tmp_mpz, tmp_mpz, delta[d]);
1287 mpz_add (ptr, ptr, tmp_mpz);
1288
1289 if (!incr_ctr) continue;
1290
1291 if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
1292 {
1293 gcc_assert(vecsub[d]);
1294
1295 if (!vecsub[d]->next)
1296 vecsub[d] = ref->u.ar.start[d]->value.constructor;
1297 else
1298 {
1299 vecsub[d] = vecsub[d]->next;
1300 incr_ctr = false;
1301 }
1302 mpz_set (ctr[d], vecsub[d]->expr->value.integer);
1303 }
1304 else
1305 {
1306 mpz_add (ctr[d], ctr[d], stride[d]);
1307
1308 if (mpz_cmp_ui (stride[d], 0) > 0
1309 ? mpz_cmp (ctr[d], end[d]) > 0
1310 : mpz_cmp (ctr[d], end[d]) < 0)
1311 mpz_set (ctr[d], start[d]);
1312 else
1313 incr_ctr = false;
1314 }
1315 }
1316
1317 /* There must be a better way of dealing with negative strides
1318 than resetting the index and the constructor pointer! */
1319 if (mpz_cmp (ptr, index) < 0)
1320 {
1321 mpz_set_ui (index, 0);
1322 cons = base;
1323 }
1324
1325 while (mpz_cmp (ptr, index) > 0)
1326 {
1327 mpz_add_ui (index, index, one);
1328 cons = cons->next;
1329 }
1330
1331 gfc_append_constructor (expr, gfc_copy_expr (cons->expr));
1332 }
1333
1334 mpz_clear (ptr);
1335 mpz_clear (index);
1336
1337 cleanup:
1338
1339 mpz_clear (delta_mpz);
1340 mpz_clear (tmp_mpz);
1341 mpz_clear (nelts);
1342 for (d = 0; d < rank; d++)
1343 {
1344 mpz_clear (delta[d]);
1345 mpz_clear (start[d]);
1346 mpz_clear (end[d]);
1347 mpz_clear (ctr[d]);
1348 mpz_clear (stride[d]);
1349 }
1350 gfc_free_constructor (base);
1351 return t;
1352 }
1353
1354 /* Pull a substring out of an expression. */
1355
1356 static try
1357 find_substring_ref (gfc_expr *p, gfc_expr **newp)
1358 {
1359 int end;
1360 int start;
1361 int length;
1362 char *chr;
1363
1364 if (p->ref->u.ss.start->expr_type != EXPR_CONSTANT
1365 || p->ref->u.ss.end->expr_type != EXPR_CONSTANT)
1366 return FAILURE;
1367
1368 *newp = gfc_copy_expr (p);
1369 gfc_free ((*newp)->value.character.string);
1370
1371 end = (int) mpz_get_ui (p->ref->u.ss.end->value.integer);
1372 start = (int) mpz_get_ui (p->ref->u.ss.start->value.integer);
1373 length = end - start + 1;
1374
1375 chr = (*newp)->value.character.string = gfc_getmem (length + 1);
1376 (*newp)->value.character.length = length;
1377 memcpy (chr, &p->value.character.string[start - 1], length);
1378 chr[length] = '\0';
1379 return SUCCESS;
1380 }
1381
1382
1383
1384 /* Simplify a subobject reference of a constructor. This occurs when
1385 parameter variable values are substituted. */
1386
1387 static try
1388 simplify_const_ref (gfc_expr *p)
1389 {
1390 gfc_constructor *cons;
1391 gfc_expr *newp;
1392
1393 while (p->ref)
1394 {
1395 switch (p->ref->type)
1396 {
1397 case REF_ARRAY:
1398 switch (p->ref->u.ar.type)
1399 {
1400 case AR_ELEMENT:
1401 if (find_array_element (p->value.constructor, &p->ref->u.ar,
1402 &cons) == FAILURE)
1403 return FAILURE;
1404
1405 if (!cons)
1406 return SUCCESS;
1407
1408 remove_subobject_ref (p, cons);
1409 break;
1410
1411 case AR_SECTION:
1412 if (find_array_section (p, p->ref) == FAILURE)
1413 return FAILURE;
1414 p->ref->u.ar.type = AR_FULL;
1415
1416 /* Fall through. */
1417
1418 case AR_FULL:
1419 if (p->ref->next != NULL
1420 && (p->ts.type == BT_CHARACTER || p->ts.type == BT_DERIVED))
1421 {
1422 cons = p->value.constructor;
1423 for (; cons; cons = cons->next)
1424 {
1425 cons->expr->ref = copy_ref (p->ref->next);
1426 simplify_const_ref (cons->expr);
1427 }
1428 }
1429 gfc_free_ref_list (p->ref);
1430 p->ref = NULL;
1431 break;
1432
1433 default:
1434 return SUCCESS;
1435 }
1436
1437 break;
1438
1439 case REF_COMPONENT:
1440 cons = find_component_ref (p->value.constructor, p->ref);
1441 remove_subobject_ref (p, cons);
1442 break;
1443
1444 case REF_SUBSTRING:
1445 if (find_substring_ref (p, &newp) == FAILURE)
1446 return FAILURE;
1447
1448 gfc_replace_expr (p, newp);
1449 gfc_free_ref_list (p->ref);
1450 p->ref = NULL;
1451 break;
1452 }
1453 }
1454
1455 return SUCCESS;
1456 }
1457
1458
1459 /* Simplify a chain of references. */
1460
1461 static try
1462 simplify_ref_chain (gfc_ref *ref, int type)
1463 {
1464 int n;
1465
1466 for (; ref; ref = ref->next)
1467 {
1468 switch (ref->type)
1469 {
1470 case REF_ARRAY:
1471 for (n = 0; n < ref->u.ar.dimen; n++)
1472 {
1473 if (gfc_simplify_expr (ref->u.ar.start[n], type) == FAILURE)
1474 return FAILURE;
1475 if (gfc_simplify_expr (ref->u.ar.end[n], type) == FAILURE)
1476 return FAILURE;
1477 if (gfc_simplify_expr (ref->u.ar.stride[n], type) == FAILURE)
1478 return FAILURE;
1479 }
1480 break;
1481
1482 case REF_SUBSTRING:
1483 if (gfc_simplify_expr (ref->u.ss.start, type) == FAILURE)
1484 return FAILURE;
1485 if (gfc_simplify_expr (ref->u.ss.end, type) == FAILURE)
1486 return FAILURE;
1487 break;
1488
1489 default:
1490 break;
1491 }
1492 }
1493 return SUCCESS;
1494 }
1495
1496
1497 /* Try to substitute the value of a parameter variable. */
1498
1499 static try
1500 simplify_parameter_variable (gfc_expr *p, int type)
1501 {
1502 gfc_expr *e;
1503 try t;
1504
1505 e = gfc_copy_expr (p->symtree->n.sym->value);
1506 if (e == NULL)
1507 return FAILURE;
1508
1509 e->rank = p->rank;
1510
1511 /* Do not copy subobject refs for constant. */
1512 if (e->expr_type != EXPR_CONSTANT && p->ref != NULL)
1513 e->ref = copy_ref (p->ref);
1514 t = gfc_simplify_expr (e, type);
1515
1516 /* Only use the simplification if it eliminated all subobject references. */
1517 if (t == SUCCESS && !e->ref)
1518 gfc_replace_expr (p, e);
1519 else
1520 gfc_free_expr (e);
1521
1522 return t;
1523 }
1524
1525 /* Given an expression, simplify it by collapsing constant
1526 expressions. Most simplification takes place when the expression
1527 tree is being constructed. If an intrinsic function is simplified
1528 at some point, we get called again to collapse the result against
1529 other constants.
1530
1531 We work by recursively simplifying expression nodes, simplifying
1532 intrinsic functions where possible, which can lead to further
1533 constant collapsing. If an operator has constant operand(s), we
1534 rip the expression apart, and rebuild it, hoping that it becomes
1535 something simpler.
1536
1537 The expression type is defined for:
1538 0 Basic expression parsing
1539 1 Simplifying array constructors -- will substitute
1540 iterator values.
1541 Returns FAILURE on error, SUCCESS otherwise.
1542 NOTE: Will return SUCCESS even if the expression can not be simplified. */
1543
1544 try
1545 gfc_simplify_expr (gfc_expr *p, int type)
1546 {
1547 gfc_actual_arglist *ap;
1548
1549 if (p == NULL)
1550 return SUCCESS;
1551
1552 switch (p->expr_type)
1553 {
1554 case EXPR_CONSTANT:
1555 case EXPR_NULL:
1556 break;
1557
1558 case EXPR_FUNCTION:
1559 for (ap = p->value.function.actual; ap; ap = ap->next)
1560 if (gfc_simplify_expr (ap->expr, type) == FAILURE)
1561 return FAILURE;
1562
1563 if (p->value.function.isym != NULL
1564 && gfc_intrinsic_func_interface (p, 1) == MATCH_ERROR)
1565 return FAILURE;
1566
1567 break;
1568
1569 case EXPR_SUBSTRING:
1570 if (simplify_ref_chain (p->ref, type) == FAILURE)
1571 return FAILURE;
1572
1573 if (gfc_is_constant_expr (p))
1574 {
1575 char *s;
1576 int start, end;
1577
1578 if (p->ref && p->ref->u.ss.start)
1579 {
1580 gfc_extract_int (p->ref->u.ss.start, &start);
1581 start--; /* Convert from one-based to zero-based. */
1582 }
1583 else
1584 start = 0;
1585
1586 if (p->ref && p->ref->u.ss.end)
1587 gfc_extract_int (p->ref->u.ss.end, &end);
1588 else
1589 end = p->value.character.length;
1590
1591 s = gfc_getmem (end - start + 2);
1592 memcpy (s, p->value.character.string + start, end - start);
1593 s[end - start + 1] = '\0'; /* TODO: C-style string. */
1594 gfc_free (p->value.character.string);
1595 p->value.character.string = s;
1596 p->value.character.length = end - start;
1597 p->ts.cl = gfc_get_charlen ();
1598 p->ts.cl->next = gfc_current_ns->cl_list;
1599 gfc_current_ns->cl_list = p->ts.cl;
1600 p->ts.cl->length = gfc_int_expr (p->value.character.length);
1601 gfc_free_ref_list (p->ref);
1602 p->ref = NULL;
1603 p->expr_type = EXPR_CONSTANT;
1604 }
1605 break;
1606
1607 case EXPR_OP:
1608 if (simplify_intrinsic_op (p, type) == FAILURE)
1609 return FAILURE;
1610 break;
1611
1612 case EXPR_VARIABLE:
1613 /* Only substitute array parameter variables if we are in an
1614 initialization expression, or we want a subsection. */
1615 if (p->symtree->n.sym->attr.flavor == FL_PARAMETER
1616 && (gfc_init_expr || p->ref
1617 || p->symtree->n.sym->value->expr_type != EXPR_ARRAY))
1618 {
1619 if (simplify_parameter_variable (p, type) == FAILURE)
1620 return FAILURE;
1621 break;
1622 }
1623
1624 if (type == 1)
1625 {
1626 gfc_simplify_iterator_var (p);
1627 }
1628
1629 /* Simplify subcomponent references. */
1630 if (simplify_ref_chain (p->ref, type) == FAILURE)
1631 return FAILURE;
1632
1633 break;
1634
1635 case EXPR_STRUCTURE:
1636 case EXPR_ARRAY:
1637 if (simplify_ref_chain (p->ref, type) == FAILURE)
1638 return FAILURE;
1639
1640 if (simplify_constructor (p->value.constructor, type) == FAILURE)
1641 return FAILURE;
1642
1643 if (p->expr_type == EXPR_ARRAY && p->ref && p->ref->type == REF_ARRAY
1644 && p->ref->u.ar.type == AR_FULL)
1645 gfc_expand_constructor (p);
1646
1647 if (simplify_const_ref (p) == FAILURE)
1648 return FAILURE;
1649
1650 break;
1651 }
1652
1653 return SUCCESS;
1654 }
1655
1656
1657 /* Returns the type of an expression with the exception that iterator
1658 variables are automatically integers no matter what else they may
1659 be declared as. */
1660
1661 static bt
1662 et0 (gfc_expr *e)
1663 {
1664 if (e->expr_type == EXPR_VARIABLE && gfc_check_iter_variable (e) == SUCCESS)
1665 return BT_INTEGER;
1666
1667 return e->ts.type;
1668 }
1669
1670
1671 /* Check an intrinsic arithmetic operation to see if it is consistent
1672 with some type of expression. */
1673
1674 static try check_init_expr (gfc_expr *);
1675
1676
1677 /* Scalarize an expression for an elemental intrinsic call. */
1678
1679 static try
1680 scalarize_intrinsic_call (gfc_expr *e)
1681 {
1682 gfc_actual_arglist *a, *b;
1683 gfc_constructor *args[5], *ctor, *new_ctor;
1684 gfc_expr *expr, *old;
1685 int n, i, rank[5];
1686
1687 old = gfc_copy_expr (e);
1688
1689 /* Assume that the old expression carries the type information and
1690 that the first arg carries all the shape information. */
1691 expr = gfc_copy_expr (old->value.function.actual->expr);
1692 gfc_free_constructor (expr->value.constructor);
1693 expr->value.constructor = NULL;
1694
1695 expr->ts = old->ts;
1696 expr->expr_type = EXPR_ARRAY;
1697
1698 /* Copy the array argument constructors into an array, with nulls
1699 for the scalars. */
1700 n = 0;
1701 a = old->value.function.actual;
1702 for (; a; a = a->next)
1703 {
1704 /* Check that this is OK for an initialization expression. */
1705 if (a->expr && check_init_expr (a->expr) == FAILURE)
1706 goto cleanup;
1707
1708 rank[n] = 0;
1709 if (a->expr && a->expr->rank && a->expr->expr_type == EXPR_VARIABLE)
1710 {
1711 rank[n] = a->expr->rank;
1712 ctor = a->expr->symtree->n.sym->value->value.constructor;
1713 args[n] = gfc_copy_constructor (ctor);
1714 }
1715 else if (a->expr && a->expr->expr_type == EXPR_ARRAY)
1716 {
1717 if (a->expr->rank)
1718 rank[n] = a->expr->rank;
1719 else
1720 rank[n] = 1;
1721 args[n] = gfc_copy_constructor (a->expr->value.constructor);
1722 }
1723 else
1724 args[n] = NULL;
1725 n++;
1726 }
1727
1728 for (i = 1; i < n; i++)
1729 if (rank[i] && rank[i] != rank[0])
1730 goto compliance;
1731
1732 /* Using the first argument as the master, step through the array
1733 calling the function for each element and advancing the array
1734 constructors together. */
1735 ctor = args[0];
1736 new_ctor = NULL;
1737 for (; ctor; ctor = ctor->next)
1738 {
1739 if (expr->value.constructor == NULL)
1740 expr->value.constructor
1741 = new_ctor = gfc_get_constructor ();
1742 else
1743 {
1744 new_ctor->next = gfc_get_constructor ();
1745 new_ctor = new_ctor->next;
1746 }
1747 new_ctor->expr = gfc_copy_expr (old);
1748 gfc_free_actual_arglist (new_ctor->expr->value.function.actual);
1749 a = NULL;
1750 b = old->value.function.actual;
1751 for (i = 0; i < n; i++)
1752 {
1753 if (a == NULL)
1754 new_ctor->expr->value.function.actual
1755 = a = gfc_get_actual_arglist ();
1756 else
1757 {
1758 a->next = gfc_get_actual_arglist ();
1759 a = a->next;
1760 }
1761 if (args[i])
1762 a->expr = gfc_copy_expr (args[i]->expr);
1763 else
1764 a->expr = gfc_copy_expr (b->expr);
1765
1766 b = b->next;
1767 }
1768
1769 /* Simplify the function calls. */
1770 if (gfc_simplify_expr (new_ctor->expr, 0) == FAILURE)
1771 goto cleanup;
1772
1773 for (i = 0; i < n; i++)
1774 if (args[i])
1775 args[i] = args[i]->next;
1776
1777 for (i = 1; i < n; i++)
1778 if (rank[i] && ((args[i] != NULL && args[0] == NULL)
1779 || (args[i] == NULL && args[0] != NULL)))
1780 goto compliance;
1781 }
1782
1783 free_expr0 (e);
1784 *e = *expr;
1785 gfc_free_expr (old);
1786 return SUCCESS;
1787
1788 compliance:
1789 gfc_error_now ("elemental function arguments at %C are not compliant");
1790
1791 cleanup:
1792 gfc_free_expr (expr);
1793 gfc_free_expr (old);
1794 return FAILURE;
1795 }
1796
1797
1798 static try
1799 check_intrinsic_op (gfc_expr *e, try (*check_function) (gfc_expr *))
1800 {
1801 gfc_expr *op1 = e->value.op.op1;
1802 gfc_expr *op2 = e->value.op.op2;
1803
1804 if ((*check_function) (op1) == FAILURE)
1805 return FAILURE;
1806
1807 switch (e->value.op.operator)
1808 {
1809 case INTRINSIC_UPLUS:
1810 case INTRINSIC_UMINUS:
1811 if (!numeric_type (et0 (op1)))
1812 goto not_numeric;
1813 break;
1814
1815 case INTRINSIC_EQ:
1816 case INTRINSIC_EQ_OS:
1817 case INTRINSIC_NE:
1818 case INTRINSIC_NE_OS:
1819 case INTRINSIC_GT:
1820 case INTRINSIC_GT_OS:
1821 case INTRINSIC_GE:
1822 case INTRINSIC_GE_OS:
1823 case INTRINSIC_LT:
1824 case INTRINSIC_LT_OS:
1825 case INTRINSIC_LE:
1826 case INTRINSIC_LE_OS:
1827 if ((*check_function) (op2) == FAILURE)
1828 return FAILURE;
1829
1830 if (!(et0 (op1) == BT_CHARACTER && et0 (op2) == BT_CHARACTER)
1831 && !(numeric_type (et0 (op1)) && numeric_type (et0 (op2))))
1832 {
1833 gfc_error ("Numeric or CHARACTER operands are required in "
1834 "expression at %L", &e->where);
1835 return FAILURE;
1836 }
1837 break;
1838
1839 case INTRINSIC_PLUS:
1840 case INTRINSIC_MINUS:
1841 case INTRINSIC_TIMES:
1842 case INTRINSIC_DIVIDE:
1843 case INTRINSIC_POWER:
1844 if ((*check_function) (op2) == FAILURE)
1845 return FAILURE;
1846
1847 if (!numeric_type (et0 (op1)) || !numeric_type (et0 (op2)))
1848 goto not_numeric;
1849
1850 if (e->value.op.operator == INTRINSIC_POWER
1851 && check_function == check_init_expr && et0 (op2) != BT_INTEGER)
1852 {
1853 if (gfc_notify_std (GFC_STD_F2003,"Fortran 2003: Noninteger "
1854 "exponent in an initialization "
1855 "expression at %L", &op2->where)
1856 == FAILURE)
1857 return FAILURE;
1858 }
1859
1860 break;
1861
1862 case INTRINSIC_CONCAT:
1863 if ((*check_function) (op2) == FAILURE)
1864 return FAILURE;
1865
1866 if (et0 (op1) != BT_CHARACTER || et0 (op2) != BT_CHARACTER)
1867 {
1868 gfc_error ("Concatenation operator in expression at %L "
1869 "must have two CHARACTER operands", &op1->where);
1870 return FAILURE;
1871 }
1872
1873 if (op1->ts.kind != op2->ts.kind)
1874 {
1875 gfc_error ("Concat operator at %L must concatenate strings of the "
1876 "same kind", &e->where);
1877 return FAILURE;
1878 }
1879
1880 break;
1881
1882 case INTRINSIC_NOT:
1883 if (et0 (op1) != BT_LOGICAL)
1884 {
1885 gfc_error (".NOT. operator in expression at %L must have a LOGICAL "
1886 "operand", &op1->where);
1887 return FAILURE;
1888 }
1889
1890 break;
1891
1892 case INTRINSIC_AND:
1893 case INTRINSIC_OR:
1894 case INTRINSIC_EQV:
1895 case INTRINSIC_NEQV:
1896 if ((*check_function) (op2) == FAILURE)
1897 return FAILURE;
1898
1899 if (et0 (op1) != BT_LOGICAL || et0 (op2) != BT_LOGICAL)
1900 {
1901 gfc_error ("LOGICAL operands are required in expression at %L",
1902 &e->where);
1903 return FAILURE;
1904 }
1905
1906 break;
1907
1908 case INTRINSIC_PARENTHESES:
1909 break;
1910
1911 default:
1912 gfc_error ("Only intrinsic operators can be used in expression at %L",
1913 &e->where);
1914 return FAILURE;
1915 }
1916
1917 return SUCCESS;
1918
1919 not_numeric:
1920 gfc_error ("Numeric operands are required in expression at %L", &e->where);
1921
1922 return FAILURE;
1923 }
1924
1925
1926 static match
1927 check_init_expr_arguments (gfc_expr *e)
1928 {
1929 gfc_actual_arglist *ap;
1930
1931 for (ap = e->value.function.actual; ap; ap = ap->next)
1932 if (check_init_expr (ap->expr) == FAILURE)
1933 return MATCH_ERROR;
1934
1935 return MATCH_YES;
1936 }
1937
1938 /* F95, 7.1.6.1, Initialization expressions, (7)
1939 F2003, 7.1.7 Initialization expression, (8) */
1940
1941 static match
1942 check_inquiry (gfc_expr *e, int not_restricted)
1943 {
1944 const char *name;
1945 const char *const *functions;
1946
1947 static const char *const inquiry_func_f95[] = {
1948 "lbound", "shape", "size", "ubound",
1949 "bit_size", "len", "kind",
1950 "digits", "epsilon", "huge", "maxexponent", "minexponent",
1951 "precision", "radix", "range", "tiny",
1952 NULL
1953 };
1954
1955 static const char *const inquiry_func_f2003[] = {
1956 "lbound", "shape", "size", "ubound",
1957 "bit_size", "len", "kind",
1958 "digits", "epsilon", "huge", "maxexponent", "minexponent",
1959 "precision", "radix", "range", "tiny",
1960 "new_line", NULL
1961 };
1962
1963 int i;
1964 gfc_actual_arglist *ap;
1965
1966 if (!e->value.function.isym
1967 || !e->value.function.isym->inquiry)
1968 return MATCH_NO;
1969
1970 /* An undeclared parameter will get us here (PR25018). */
1971 if (e->symtree == NULL)
1972 return MATCH_NO;
1973
1974 name = e->symtree->n.sym->name;
1975
1976 functions = (gfc_option.warn_std & GFC_STD_F2003)
1977 ? inquiry_func_f2003 : inquiry_func_f95;
1978
1979 for (i = 0; functions[i]; i++)
1980 if (strcmp (functions[i], name) == 0)
1981 break;
1982
1983 if (functions[i] == NULL)
1984 {
1985 gfc_error ("Inquiry function '%s' at %L is not permitted "
1986 "in an initialization expression", name, &e->where);
1987 return MATCH_ERROR;
1988 }
1989
1990 /* At this point we have an inquiry function with a variable argument. The
1991 type of the variable might be undefined, but we need it now, because the
1992 arguments of these functions are not allowed to be undefined. */
1993
1994 for (ap = e->value.function.actual; ap; ap = ap->next)
1995 {
1996 if (!ap->expr)
1997 continue;
1998
1999 if (ap->expr->ts.type == BT_UNKNOWN)
2000 {
2001 if (ap->expr->symtree->n.sym->ts.type == BT_UNKNOWN
2002 && gfc_set_default_type (ap->expr->symtree->n.sym, 0, gfc_current_ns)
2003 == FAILURE)
2004 return MATCH_NO;
2005
2006 ap->expr->ts = ap->expr->symtree->n.sym->ts;
2007 }
2008
2009 /* Assumed character length will not reduce to a constant expression
2010 with LEN, as required by the standard. */
2011 if (i == 5 && not_restricted
2012 && ap->expr->symtree->n.sym->ts.type == BT_CHARACTER
2013 && ap->expr->symtree->n.sym->ts.cl->length == NULL)
2014 {
2015 gfc_error ("Assumed character length variable '%s' in constant "
2016 "expression at %L", e->symtree->n.sym->name, &e->where);
2017 return MATCH_ERROR;
2018 }
2019 else if (not_restricted && check_init_expr (ap->expr) == FAILURE)
2020 return MATCH_ERROR;
2021 }
2022
2023 return MATCH_YES;
2024 }
2025
2026
2027 /* F95, 7.1.6.1, Initialization expressions, (5)
2028 F2003, 7.1.7 Initialization expression, (5) */
2029
2030 static match
2031 check_transformational (gfc_expr *e)
2032 {
2033 static const char * const trans_func_f95[] = {
2034 "repeat", "reshape", "selected_int_kind",
2035 "selected_real_kind", "transfer", "trim", NULL
2036 };
2037
2038 int i;
2039 const char *name;
2040
2041 if (!e->value.function.isym
2042 || !e->value.function.isym->transformational)
2043 return MATCH_NO;
2044
2045 name = e->symtree->n.sym->name;
2046
2047 /* NULL() is dealt with below. */
2048 if (strcmp ("null", name) == 0)
2049 return MATCH_NO;
2050
2051 for (i = 0; trans_func_f95[i]; i++)
2052 if (strcmp (trans_func_f95[i], name) == 0)
2053 break;
2054
2055 /* FIXME, F2003: implement translation of initialization
2056 expressions before enabling this check. For F95, error
2057 out if the transformational function is not in the list. */
2058 #if 0
2059 if (trans_func_f95[i] == NULL
2060 && gfc_notify_std (GFC_STD_F2003,
2061 "transformational intrinsic '%s' at %L is not permitted "
2062 "in an initialization expression", name, &e->where) == FAILURE)
2063 return MATCH_ERROR;
2064 #else
2065 if (trans_func_f95[i] == NULL)
2066 {
2067 gfc_error("transformational intrinsic '%s' at %L is not permitted "
2068 "in an initialization expression", name, &e->where);
2069 return MATCH_ERROR;
2070 }
2071 #endif
2072
2073 return check_init_expr_arguments (e);
2074 }
2075
2076
2077 /* F95, 7.1.6.1, Initialization expressions, (6)
2078 F2003, 7.1.7 Initialization expression, (6) */
2079
2080 static match
2081 check_null (gfc_expr *e)
2082 {
2083 if (strcmp ("null", e->symtree->n.sym->name) != 0)
2084 return MATCH_NO;
2085
2086 return check_init_expr_arguments (e);
2087 }
2088
2089
2090 static match
2091 check_elemental (gfc_expr *e)
2092 {
2093 if (!e->value.function.isym
2094 || !e->value.function.isym->elemental)
2095 return MATCH_NO;
2096
2097 if ((e->ts.type != BT_INTEGER || e->ts.type != BT_CHARACTER)
2098 && gfc_notify_std (GFC_STD_F2003, "Extension: Evaluation of "
2099 "nonstandard initialization expression at %L",
2100 &e->where) == FAILURE)
2101 return MATCH_ERROR;
2102
2103 return check_init_expr_arguments (e);
2104 }
2105
2106
2107 static match
2108 check_conversion (gfc_expr *e)
2109 {
2110 if (!e->value.function.isym
2111 || !e->value.function.isym->conversion)
2112 return MATCH_NO;
2113
2114 return check_init_expr_arguments (e);
2115 }
2116
2117
2118 /* Verify that an expression is an initialization expression. A side
2119 effect is that the expression tree is reduced to a single constant
2120 node if all goes well. This would normally happen when the
2121 expression is constructed but function references are assumed to be
2122 intrinsics in the context of initialization expressions. If
2123 FAILURE is returned an error message has been generated. */
2124
2125 static try
2126 check_init_expr (gfc_expr *e)
2127 {
2128 match m;
2129 try t;
2130 gfc_intrinsic_sym *isym;
2131
2132 if (e == NULL)
2133 return SUCCESS;
2134
2135 switch (e->expr_type)
2136 {
2137 case EXPR_OP:
2138 t = check_intrinsic_op (e, check_init_expr);
2139 if (t == SUCCESS)
2140 t = gfc_simplify_expr (e, 0);
2141
2142 break;
2143
2144 case EXPR_FUNCTION:
2145 t = FAILURE;
2146
2147 if ((m = check_specification_function (e)) != MATCH_YES)
2148 {
2149 if ((m = gfc_intrinsic_func_interface (e, 0)) != MATCH_YES)
2150 {
2151 gfc_error ("Function '%s' in initialization expression at %L "
2152 "must be an intrinsic or a specification function",
2153 e->symtree->n.sym->name, &e->where);
2154 break;
2155 }
2156
2157 if ((m = check_conversion (e)) == MATCH_NO
2158 && (m = check_inquiry (e, 1)) == MATCH_NO
2159 && (m = check_null (e)) == MATCH_NO
2160 && (m = check_transformational (e)) == MATCH_NO
2161 && (m = check_elemental (e)) == MATCH_NO)
2162 {
2163 gfc_error ("Intrinsic function '%s' at %L is not permitted "
2164 "in an initialization expression",
2165 e->symtree->n.sym->name, &e->where);
2166 m = MATCH_ERROR;
2167 }
2168
2169 /* Try to scalarize an elemental intrinsic function that has an
2170 array argument. */
2171 isym = gfc_find_function (e->symtree->n.sym->name);
2172 if (isym && isym->elemental
2173 && e->value.function.actual->expr->expr_type == EXPR_ARRAY)
2174 {
2175 if ((t = scalarize_intrinsic_call (e)) == SUCCESS)
2176 break;
2177 }
2178 }
2179
2180 if (m == MATCH_YES)
2181 t = gfc_simplify_expr (e, 0);
2182
2183 break;
2184
2185 case EXPR_VARIABLE:
2186 t = SUCCESS;
2187
2188 if (gfc_check_iter_variable (e) == SUCCESS)
2189 break;
2190
2191 if (e->symtree->n.sym->attr.flavor == FL_PARAMETER)
2192 {
2193 t = simplify_parameter_variable (e, 0);
2194 break;
2195 }
2196
2197 if (gfc_in_match_data ())
2198 break;
2199
2200 t = FAILURE;
2201
2202 if (e->symtree->n.sym->as)
2203 {
2204 switch (e->symtree->n.sym->as->type)
2205 {
2206 case AS_ASSUMED_SIZE:
2207 gfc_error ("Assumed size array '%s' at %L is not permitted "
2208 "in an initialization expression",
2209 e->symtree->n.sym->name, &e->where);
2210 break;
2211
2212 case AS_ASSUMED_SHAPE:
2213 gfc_error ("Assumed shape array '%s' at %L is not permitted "
2214 "in an initialization expression",
2215 e->symtree->n.sym->name, &e->where);
2216 break;
2217
2218 case AS_DEFERRED:
2219 gfc_error ("Deferred array '%s' at %L is not permitted "
2220 "in an initialization expression",
2221 e->symtree->n.sym->name, &e->where);
2222 break;
2223
2224 default:
2225 gcc_unreachable();
2226 }
2227 }
2228 else
2229 gfc_error ("Parameter '%s' at %L has not been declared or is "
2230 "a variable, which does not reduce to a constant "
2231 "expression", e->symtree->n.sym->name, &e->where);
2232
2233 break;
2234
2235 case EXPR_CONSTANT:
2236 case EXPR_NULL:
2237 t = SUCCESS;
2238 break;
2239
2240 case EXPR_SUBSTRING:
2241 t = check_init_expr (e->ref->u.ss.start);
2242 if (t == FAILURE)
2243 break;
2244
2245 t = check_init_expr (e->ref->u.ss.end);
2246 if (t == SUCCESS)
2247 t = gfc_simplify_expr (e, 0);
2248
2249 break;
2250
2251 case EXPR_STRUCTURE:
2252 t = gfc_check_constructor (e, check_init_expr);
2253 break;
2254
2255 case EXPR_ARRAY:
2256 t = gfc_check_constructor (e, check_init_expr);
2257 if (t == FAILURE)
2258 break;
2259
2260 t = gfc_expand_constructor (e);
2261 if (t == FAILURE)
2262 break;
2263
2264 t = gfc_check_constructor_type (e);
2265 break;
2266
2267 default:
2268 gfc_internal_error ("check_init_expr(): Unknown expression type");
2269 }
2270
2271 return t;
2272 }
2273
2274
2275 /* Match an initialization expression. We work by first matching an
2276 expression, then reducing it to a constant. */
2277
2278 match
2279 gfc_match_init_expr (gfc_expr **result)
2280 {
2281 gfc_expr *expr;
2282 match m;
2283 try t;
2284
2285 m = gfc_match_expr (&expr);
2286 if (m != MATCH_YES)
2287 return m;
2288
2289 gfc_init_expr = 1;
2290 t = gfc_resolve_expr (expr);
2291 if (t == SUCCESS)
2292 t = check_init_expr (expr);
2293 gfc_init_expr = 0;
2294
2295 if (t == FAILURE)
2296 {
2297 gfc_free_expr (expr);
2298 return MATCH_ERROR;
2299 }
2300
2301 if (expr->expr_type == EXPR_ARRAY
2302 && (gfc_check_constructor_type (expr) == FAILURE
2303 || gfc_expand_constructor (expr) == FAILURE))
2304 {
2305 gfc_free_expr (expr);
2306 return MATCH_ERROR;
2307 }
2308
2309 /* Not all inquiry functions are simplified to constant expressions
2310 so it is necessary to call check_inquiry again. */
2311 if (!gfc_is_constant_expr (expr) && check_inquiry (expr, 1) != MATCH_YES
2312 && !gfc_in_match_data ())
2313 {
2314 gfc_error ("Initialization expression didn't reduce %C");
2315 return MATCH_ERROR;
2316 }
2317
2318 *result = expr;
2319
2320 return MATCH_YES;
2321 }
2322
2323
2324 static try check_restricted (gfc_expr *);
2325
2326 /* Given an actual argument list, test to see that each argument is a
2327 restricted expression and optionally if the expression type is
2328 integer or character. */
2329
2330 static try
2331 restricted_args (gfc_actual_arglist *a)
2332 {
2333 for (; a; a = a->next)
2334 {
2335 if (check_restricted (a->expr) == FAILURE)
2336 return FAILURE;
2337 }
2338
2339 return SUCCESS;
2340 }
2341
2342
2343 /************* Restricted/specification expressions *************/
2344
2345
2346 /* Make sure a non-intrinsic function is a specification function. */
2347
2348 static try
2349 external_spec_function (gfc_expr *e)
2350 {
2351 gfc_symbol *f;
2352
2353 f = e->value.function.esym;
2354
2355 if (f->attr.proc == PROC_ST_FUNCTION)
2356 {
2357 gfc_error ("Specification function '%s' at %L cannot be a statement "
2358 "function", f->name, &e->where);
2359 return FAILURE;
2360 }
2361
2362 if (f->attr.proc == PROC_INTERNAL)
2363 {
2364 gfc_error ("Specification function '%s' at %L cannot be an internal "
2365 "function", f->name, &e->where);
2366 return FAILURE;
2367 }
2368
2369 if (!f->attr.pure && !f->attr.elemental)
2370 {
2371 gfc_error ("Specification function '%s' at %L must be PURE", f->name,
2372 &e->where);
2373 return FAILURE;
2374 }
2375
2376 if (f->attr.recursive)
2377 {
2378 gfc_error ("Specification function '%s' at %L cannot be RECURSIVE",
2379 f->name, &e->where);
2380 return FAILURE;
2381 }
2382
2383 return restricted_args (e->value.function.actual);
2384 }
2385
2386
2387 /* Check to see that a function reference to an intrinsic is a
2388 restricted expression. */
2389
2390 static try
2391 restricted_intrinsic (gfc_expr *e)
2392 {
2393 /* TODO: Check constraints on inquiry functions. 7.1.6.2 (7). */
2394 if (check_inquiry (e, 0) == MATCH_YES)
2395 return SUCCESS;
2396
2397 return restricted_args (e->value.function.actual);
2398 }
2399
2400
2401 /* Verify that an expression is a restricted expression. Like its
2402 cousin check_init_expr(), an error message is generated if we
2403 return FAILURE. */
2404
2405 static try
2406 check_restricted (gfc_expr *e)
2407 {
2408 gfc_symbol *sym;
2409 try t;
2410
2411 if (e == NULL)
2412 return SUCCESS;
2413
2414 switch (e->expr_type)
2415 {
2416 case EXPR_OP:
2417 t = check_intrinsic_op (e, check_restricted);
2418 if (t == SUCCESS)
2419 t = gfc_simplify_expr (e, 0);
2420
2421 break;
2422
2423 case EXPR_FUNCTION:
2424 t = e->value.function.esym ? external_spec_function (e)
2425 : restricted_intrinsic (e);
2426 break;
2427
2428 case EXPR_VARIABLE:
2429 sym = e->symtree->n.sym;
2430 t = FAILURE;
2431
2432 /* If a dummy argument appears in a context that is valid for a
2433 restricted expression in an elemental procedure, it will have
2434 already been simplified away once we get here. Therefore we
2435 don't need to jump through hoops to distinguish valid from
2436 invalid cases. */
2437 if (sym->attr.dummy && sym->ns == gfc_current_ns
2438 && sym->ns->proc_name && sym->ns->proc_name->attr.elemental)
2439 {
2440 gfc_error ("Dummy argument '%s' not allowed in expression at %L",
2441 sym->name, &e->where);
2442 break;
2443 }
2444
2445 if (sym->attr.optional)
2446 {
2447 gfc_error ("Dummy argument '%s' at %L cannot be OPTIONAL",
2448 sym->name, &e->where);
2449 break;
2450 }
2451
2452 if (sym->attr.intent == INTENT_OUT)
2453 {
2454 gfc_error ("Dummy argument '%s' at %L cannot be INTENT(OUT)",
2455 sym->name, &e->where);
2456 break;
2457 }
2458
2459 /* gfc_is_formal_arg broadcasts that a formal argument list is being
2460 processed in resolve.c(resolve_formal_arglist). This is done so
2461 that host associated dummy array indices are accepted (PR23446).
2462 This mechanism also does the same for the specification expressions
2463 of array-valued functions. */
2464 if (sym->attr.in_common
2465 || sym->attr.use_assoc
2466 || sym->attr.dummy
2467 || sym->ns != gfc_current_ns
2468 || (sym->ns->proc_name != NULL
2469 && sym->ns->proc_name->attr.flavor == FL_MODULE)
2470 || (gfc_is_formal_arg () && (sym->ns == gfc_current_ns)))
2471 {
2472 t = SUCCESS;
2473 break;
2474 }
2475
2476 gfc_error ("Variable '%s' cannot appear in the expression at %L",
2477 sym->name, &e->where);
2478
2479 break;
2480
2481 case EXPR_NULL:
2482 case EXPR_CONSTANT:
2483 t = SUCCESS;
2484 break;
2485
2486 case EXPR_SUBSTRING:
2487 t = gfc_specification_expr (e->ref->u.ss.start);
2488 if (t == FAILURE)
2489 break;
2490
2491 t = gfc_specification_expr (e->ref->u.ss.end);
2492 if (t == SUCCESS)
2493 t = gfc_simplify_expr (e, 0);
2494
2495 break;
2496
2497 case EXPR_STRUCTURE:
2498 t = gfc_check_constructor (e, check_restricted);
2499 break;
2500
2501 case EXPR_ARRAY:
2502 t = gfc_check_constructor (e, check_restricted);
2503 break;
2504
2505 default:
2506 gfc_internal_error ("check_restricted(): Unknown expression type");
2507 }
2508
2509 return t;
2510 }
2511
2512
2513 /* Check to see that an expression is a specification expression. If
2514 we return FAILURE, an error has been generated. */
2515
2516 try
2517 gfc_specification_expr (gfc_expr *e)
2518 {
2519
2520 if (e == NULL)
2521 return SUCCESS;
2522
2523 if (e->ts.type != BT_INTEGER)
2524 {
2525 gfc_error ("Expression at %L must be of INTEGER type", &e->where);
2526 return FAILURE;
2527 }
2528
2529 if (e->expr_type == EXPR_FUNCTION
2530 && !e->value.function.isym
2531 && !e->value.function.esym
2532 && !gfc_pure (e->symtree->n.sym))
2533 {
2534 gfc_error ("Function '%s' at %L must be PURE",
2535 e->symtree->n.sym->name, &e->where);
2536 /* Prevent repeat error messages. */
2537 e->symtree->n.sym->attr.pure = 1;
2538 return FAILURE;
2539 }
2540
2541 if (e->rank != 0)
2542 {
2543 gfc_error ("Expression at %L must be scalar", &e->where);
2544 return FAILURE;
2545 }
2546
2547 if (gfc_simplify_expr (e, 0) == FAILURE)
2548 return FAILURE;
2549
2550 return check_restricted (e);
2551 }
2552
2553
2554 /************** Expression conformance checks. *************/
2555
2556 /* Given two expressions, make sure that the arrays are conformable. */
2557
2558 try
2559 gfc_check_conformance (const char *optype_msgid, gfc_expr *op1, gfc_expr *op2)
2560 {
2561 int op1_flag, op2_flag, d;
2562 mpz_t op1_size, op2_size;
2563 try t;
2564
2565 if (op1->rank == 0 || op2->rank == 0)
2566 return SUCCESS;
2567
2568 if (op1->rank != op2->rank)
2569 {
2570 gfc_error ("Incompatible ranks in %s (%d and %d) at %L", _(optype_msgid),
2571 op1->rank, op2->rank, &op1->where);
2572 return FAILURE;
2573 }
2574
2575 t = SUCCESS;
2576
2577 for (d = 0; d < op1->rank; d++)
2578 {
2579 op1_flag = gfc_array_dimen_size (op1, d, &op1_size) == SUCCESS;
2580 op2_flag = gfc_array_dimen_size (op2, d, &op2_size) == SUCCESS;
2581
2582 if (op1_flag && op2_flag && mpz_cmp (op1_size, op2_size) != 0)
2583 {
2584 gfc_error ("Different shape for %s at %L on dimension %d "
2585 "(%d and %d)", _(optype_msgid), &op1->where, d + 1,
2586 (int) mpz_get_si (op1_size),
2587 (int) mpz_get_si (op2_size));
2588
2589 t = FAILURE;
2590 }
2591
2592 if (op1_flag)
2593 mpz_clear (op1_size);
2594 if (op2_flag)
2595 mpz_clear (op2_size);
2596
2597 if (t == FAILURE)
2598 return FAILURE;
2599 }
2600
2601 return SUCCESS;
2602 }
2603
2604
2605 /* Given an assignable expression and an arbitrary expression, make
2606 sure that the assignment can take place. */
2607
2608 try
2609 gfc_check_assign (gfc_expr *lvalue, gfc_expr *rvalue, int conform)
2610 {
2611 gfc_symbol *sym;
2612 gfc_ref *ref;
2613 int has_pointer;
2614
2615 sym = lvalue->symtree->n.sym;
2616
2617 /* Check INTENT(IN), unless the object itself is the component or
2618 sub-component of a pointer. */
2619 has_pointer = sym->attr.pointer;
2620
2621 for (ref = lvalue->ref; ref; ref = ref->next)
2622 if (ref->type == REF_COMPONENT && ref->u.c.component->pointer)
2623 {
2624 has_pointer = 1;
2625 break;
2626 }
2627
2628 if (!has_pointer && sym->attr.intent == INTENT_IN)
2629 {
2630 gfc_error ("Cannot assign to INTENT(IN) variable '%s' at %L",
2631 sym->name, &lvalue->where);
2632 return FAILURE;
2633 }
2634
2635 /* 12.5.2.2, Note 12.26: The result variable is very similar to any other
2636 variable local to a function subprogram. Its existence begins when
2637 execution of the function is initiated and ends when execution of the
2638 function is terminated...
2639 Therefore, the left hand side is no longer a variable, when it is: */
2640 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_ST_FUNCTION
2641 && !sym->attr.external)
2642 {
2643 bool bad_proc;
2644 bad_proc = false;
2645
2646 /* (i) Use associated; */
2647 if (sym->attr.use_assoc)
2648 bad_proc = true;
2649
2650 /* (ii) The assignment is in the main program; or */
2651 if (gfc_current_ns->proc_name->attr.is_main_program)
2652 bad_proc = true;
2653
2654 /* (iii) A module or internal procedure... */
2655 if ((gfc_current_ns->proc_name->attr.proc == PROC_INTERNAL
2656 || gfc_current_ns->proc_name->attr.proc == PROC_MODULE)
2657 && gfc_current_ns->parent
2658 && (!(gfc_current_ns->parent->proc_name->attr.function
2659 || gfc_current_ns->parent->proc_name->attr.subroutine)
2660 || gfc_current_ns->parent->proc_name->attr.is_main_program))
2661 {
2662 /* ... that is not a function... */
2663 if (!gfc_current_ns->proc_name->attr.function)
2664 bad_proc = true;
2665
2666 /* ... or is not an entry and has a different name. */
2667 if (!sym->attr.entry && sym->name != gfc_current_ns->proc_name->name)
2668 bad_proc = true;
2669 }
2670
2671 if (bad_proc)
2672 {
2673 gfc_error ("'%s' at %L is not a VALUE", sym->name, &lvalue->where);
2674 return FAILURE;
2675 }
2676 }
2677
2678 if (rvalue->rank != 0 && lvalue->rank != rvalue->rank)
2679 {
2680 gfc_error ("Incompatible ranks %d and %d in assignment at %L",
2681 lvalue->rank, rvalue->rank, &lvalue->where);
2682 return FAILURE;
2683 }
2684
2685 if (lvalue->ts.type == BT_UNKNOWN)
2686 {
2687 gfc_error ("Variable type is UNKNOWN in assignment at %L",
2688 &lvalue->where);
2689 return FAILURE;
2690 }
2691
2692 if (rvalue->expr_type == EXPR_NULL)
2693 {
2694 if (lvalue->symtree->n.sym->attr.pointer
2695 && lvalue->symtree->n.sym->attr.data)
2696 return SUCCESS;
2697 else
2698 {
2699 gfc_error ("NULL appears on right-hand side in assignment at %L",
2700 &rvalue->where);
2701 return FAILURE;
2702 }
2703 }
2704
2705 if (sym->attr.cray_pointee
2706 && lvalue->ref != NULL
2707 && lvalue->ref->u.ar.type == AR_FULL
2708 && lvalue->ref->u.ar.as->cp_was_assumed)
2709 {
2710 gfc_error ("Vector assignment to assumed-size Cray Pointee at %L "
2711 "is illegal", &lvalue->where);
2712 return FAILURE;
2713 }
2714
2715 /* This is possibly a typo: x = f() instead of x => f(). */
2716 if (gfc_option.warn_surprising
2717 && rvalue->expr_type == EXPR_FUNCTION
2718 && rvalue->symtree->n.sym->attr.pointer)
2719 gfc_warning ("POINTER valued function appears on right-hand side of "
2720 "assignment at %L", &rvalue->where);
2721
2722 /* Check size of array assignments. */
2723 if (lvalue->rank != 0 && rvalue->rank != 0
2724 && gfc_check_conformance ("array assignment", lvalue, rvalue) != SUCCESS)
2725 return FAILURE;
2726
2727 if (gfc_compare_types (&lvalue->ts, &rvalue->ts))
2728 return SUCCESS;
2729
2730 if (!conform)
2731 {
2732 /* Numeric can be converted to any other numeric. And Hollerith can be
2733 converted to any other type. */
2734 if ((gfc_numeric_ts (&lvalue->ts) && gfc_numeric_ts (&rvalue->ts))
2735 || rvalue->ts.type == BT_HOLLERITH)
2736 return SUCCESS;
2737
2738 if (lvalue->ts.type == BT_LOGICAL && rvalue->ts.type == BT_LOGICAL)
2739 return SUCCESS;
2740
2741 gfc_error ("Incompatible types in assignment at %L, %s to %s",
2742 &rvalue->where, gfc_typename (&rvalue->ts),
2743 gfc_typename (&lvalue->ts));
2744
2745 return FAILURE;
2746 }
2747
2748 return gfc_convert_type (rvalue, &lvalue->ts, 1);
2749 }
2750
2751
2752 /* Check that a pointer assignment is OK. We first check lvalue, and
2753 we only check rvalue if it's not an assignment to NULL() or a
2754 NULLIFY statement. */
2755
2756 try
2757 gfc_check_pointer_assign (gfc_expr *lvalue, gfc_expr *rvalue)
2758 {
2759 symbol_attribute attr;
2760 gfc_ref *ref;
2761 int is_pure;
2762 int pointer, check_intent_in;
2763
2764 if (lvalue->symtree->n.sym->ts.type == BT_UNKNOWN)
2765 {
2766 gfc_error ("Pointer assignment target is not a POINTER at %L",
2767 &lvalue->where);
2768 return FAILURE;
2769 }
2770
2771 if (lvalue->symtree->n.sym->attr.flavor == FL_PROCEDURE
2772 && lvalue->symtree->n.sym->attr.use_assoc)
2773 {
2774 gfc_error ("'%s' in the pointer assignment at %L cannot be an "
2775 "l-value since it is a procedure",
2776 lvalue->symtree->n.sym->name, &lvalue->where);
2777 return FAILURE;
2778 }
2779
2780
2781 /* Check INTENT(IN), unless the object itself is the component or
2782 sub-component of a pointer. */
2783 check_intent_in = 1;
2784 pointer = lvalue->symtree->n.sym->attr.pointer;
2785
2786 for (ref = lvalue->ref; ref; ref = ref->next)
2787 {
2788 if (pointer)
2789 check_intent_in = 0;
2790
2791 if (ref->type == REF_COMPONENT && ref->u.c.component->pointer)
2792 pointer = 1;
2793 }
2794
2795 if (check_intent_in && lvalue->symtree->n.sym->attr.intent == INTENT_IN)
2796 {
2797 gfc_error ("Cannot assign to INTENT(IN) variable '%s' at %L",
2798 lvalue->symtree->n.sym->name, &lvalue->where);
2799 return FAILURE;
2800 }
2801
2802 if (!pointer)
2803 {
2804 gfc_error ("Pointer assignment to non-POINTER at %L", &lvalue->where);
2805 return FAILURE;
2806 }
2807
2808 is_pure = gfc_pure (NULL);
2809
2810 if (is_pure && gfc_impure_variable (lvalue->symtree->n.sym)
2811 && lvalue->symtree->n.sym->value != rvalue)
2812 {
2813 gfc_error ("Bad pointer object in PURE procedure at %L", &lvalue->where);
2814 return FAILURE;
2815 }
2816
2817 /* If rvalue is a NULL() or NULLIFY, we're done. Otherwise the type,
2818 kind, etc for lvalue and rvalue must match, and rvalue must be a
2819 pure variable if we're in a pure function. */
2820 if (rvalue->expr_type == EXPR_NULL && rvalue->ts.type == BT_UNKNOWN)
2821 return SUCCESS;
2822
2823 if (!gfc_compare_types (&lvalue->ts, &rvalue->ts))
2824 {
2825 gfc_error ("Different types in pointer assignment at %L",
2826 &lvalue->where);
2827 return FAILURE;
2828 }
2829
2830 if (lvalue->ts.kind != rvalue->ts.kind)
2831 {
2832 gfc_error ("Different kind type parameters in pointer "
2833 "assignment at %L", &lvalue->where);
2834 return FAILURE;
2835 }
2836
2837 if (lvalue->rank != rvalue->rank)
2838 {
2839 gfc_error ("Different ranks in pointer assignment at %L",
2840 &lvalue->where);
2841 return FAILURE;
2842 }
2843
2844 /* Now punt if we are dealing with a NULLIFY(X) or X = NULL(X). */
2845 if (rvalue->expr_type == EXPR_NULL)
2846 return SUCCESS;
2847
2848 if (lvalue->ts.type == BT_CHARACTER
2849 && lvalue->ts.cl && rvalue->ts.cl
2850 && lvalue->ts.cl->length && rvalue->ts.cl->length
2851 && abs (gfc_dep_compare_expr (lvalue->ts.cl->length,
2852 rvalue->ts.cl->length)) == 1)
2853 {
2854 gfc_error ("Different character lengths in pointer "
2855 "assignment at %L", &lvalue->where);
2856 return FAILURE;
2857 }
2858
2859 if (rvalue->expr_type == EXPR_VARIABLE && is_subref_array (rvalue))
2860 lvalue->symtree->n.sym->attr.subref_array_pointer = 1;
2861
2862 attr = gfc_expr_attr (rvalue);
2863 if (!attr.target && !attr.pointer)
2864 {
2865 gfc_error ("Pointer assignment target is neither TARGET "
2866 "nor POINTER at %L", &rvalue->where);
2867 return FAILURE;
2868 }
2869
2870 if (is_pure && gfc_impure_variable (rvalue->symtree->n.sym))
2871 {
2872 gfc_error ("Bad target in pointer assignment in PURE "
2873 "procedure at %L", &rvalue->where);
2874 }
2875
2876 if (gfc_has_vector_index (rvalue))
2877 {
2878 gfc_error ("Pointer assignment with vector subscript "
2879 "on rhs at %L", &rvalue->where);
2880 return FAILURE;
2881 }
2882
2883 if (attr.protected && attr.use_assoc)
2884 {
2885 gfc_error ("Pointer assigment target has PROTECTED "
2886 "attribute at %L", &rvalue->where);
2887 return FAILURE;
2888 }
2889
2890 return SUCCESS;
2891 }
2892
2893
2894 /* Relative of gfc_check_assign() except that the lvalue is a single
2895 symbol. Used for initialization assignments. */
2896
2897 try
2898 gfc_check_assign_symbol (gfc_symbol *sym, gfc_expr *rvalue)
2899 {
2900 gfc_expr lvalue;
2901 try r;
2902
2903 memset (&lvalue, '\0', sizeof (gfc_expr));
2904
2905 lvalue.expr_type = EXPR_VARIABLE;
2906 lvalue.ts = sym->ts;
2907 if (sym->as)
2908 lvalue.rank = sym->as->rank;
2909 lvalue.symtree = (gfc_symtree *) gfc_getmem (sizeof (gfc_symtree));
2910 lvalue.symtree->n.sym = sym;
2911 lvalue.where = sym->declared_at;
2912
2913 if (sym->attr.pointer)
2914 r = gfc_check_pointer_assign (&lvalue, rvalue);
2915 else
2916 r = gfc_check_assign (&lvalue, rvalue, 1);
2917
2918 gfc_free (lvalue.symtree);
2919
2920 return r;
2921 }
2922
2923
2924 /* Get an expression for a default initializer. */
2925
2926 gfc_expr *
2927 gfc_default_initializer (gfc_typespec *ts)
2928 {
2929 gfc_constructor *tail;
2930 gfc_expr *init;
2931 gfc_component *c;
2932
2933 /* See if we have a default initializer. */
2934 for (c = ts->derived->components; c; c = c->next)
2935 if (c->initializer || c->allocatable)
2936 break;
2937
2938 if (!c)
2939 return NULL;
2940
2941 /* Build the constructor. */
2942 init = gfc_get_expr ();
2943 init->expr_type = EXPR_STRUCTURE;
2944 init->ts = *ts;
2945 init->where = ts->derived->declared_at;
2946
2947 tail = NULL;
2948 for (c = ts->derived->components; c; c = c->next)
2949 {
2950 if (tail == NULL)
2951 init->value.constructor = tail = gfc_get_constructor ();
2952 else
2953 {
2954 tail->next = gfc_get_constructor ();
2955 tail = tail->next;
2956 }
2957
2958 if (c->initializer)
2959 tail->expr = gfc_copy_expr (c->initializer);
2960
2961 if (c->allocatable)
2962 {
2963 tail->expr = gfc_get_expr ();
2964 tail->expr->expr_type = EXPR_NULL;
2965 tail->expr->ts = c->ts;
2966 }
2967 }
2968 return init;
2969 }
2970
2971
2972 /* Given a symbol, create an expression node with that symbol as a
2973 variable. If the symbol is array valued, setup a reference of the
2974 whole array. */
2975
2976 gfc_expr *
2977 gfc_get_variable_expr (gfc_symtree *var)
2978 {
2979 gfc_expr *e;
2980
2981 e = gfc_get_expr ();
2982 e->expr_type = EXPR_VARIABLE;
2983 e->symtree = var;
2984 e->ts = var->n.sym->ts;
2985
2986 if (var->n.sym->as != NULL)
2987 {
2988 e->rank = var->n.sym->as->rank;
2989 e->ref = gfc_get_ref ();
2990 e->ref->type = REF_ARRAY;
2991 e->ref->u.ar.type = AR_FULL;
2992 }
2993
2994 return e;
2995 }
2996
2997
2998 /* Traverse expr, marking all EXPR_VARIABLE symbols referenced. */
2999
3000 void
3001 gfc_expr_set_symbols_referenced (gfc_expr *expr)
3002 {
3003 gfc_actual_arglist *arg;
3004 gfc_constructor *c;
3005 gfc_ref *ref;
3006 int i;
3007
3008 if (!expr) return;
3009
3010 switch (expr->expr_type)
3011 {
3012 case EXPR_OP:
3013 gfc_expr_set_symbols_referenced (expr->value.op.op1);
3014 gfc_expr_set_symbols_referenced (expr->value.op.op2);
3015 break;
3016
3017 case EXPR_FUNCTION:
3018 for (arg = expr->value.function.actual; arg; arg = arg->next)
3019 gfc_expr_set_symbols_referenced (arg->expr);
3020 break;
3021
3022 case EXPR_VARIABLE:
3023 gfc_set_sym_referenced (expr->symtree->n.sym);
3024 break;
3025
3026 case EXPR_CONSTANT:
3027 case EXPR_NULL:
3028 case EXPR_SUBSTRING:
3029 break;
3030
3031 case EXPR_STRUCTURE:
3032 case EXPR_ARRAY:
3033 for (c = expr->value.constructor; c; c = c->next)
3034 gfc_expr_set_symbols_referenced (c->expr);
3035 break;
3036
3037 default:
3038 gcc_unreachable ();
3039 break;
3040 }
3041
3042 for (ref = expr->ref; ref; ref = ref->next)
3043 switch (ref->type)
3044 {
3045 case REF_ARRAY:
3046 for (i = 0; i < ref->u.ar.dimen; i++)
3047 {
3048 gfc_expr_set_symbols_referenced (ref->u.ar.start[i]);
3049 gfc_expr_set_symbols_referenced (ref->u.ar.end[i]);
3050 gfc_expr_set_symbols_referenced (ref->u.ar.stride[i]);
3051 }
3052 break;
3053
3054 case REF_COMPONENT:
3055 break;
3056
3057 case REF_SUBSTRING:
3058 gfc_expr_set_symbols_referenced (ref->u.ss.start);
3059 gfc_expr_set_symbols_referenced (ref->u.ss.end);
3060 break;
3061
3062 default:
3063 gcc_unreachable ();
3064 break;
3065 }
3066 }