Update ChangeLogs for wide-int work.
[gcc.git] / gcc / fortran / interface.c
1 /* Deal with interfaces.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* Deal with interfaces. An explicit interface is represented as a
23 singly linked list of formal argument structures attached to the
24 relevant symbols. For an implicit interface, the arguments don't
25 point to symbols. Explicit interfaces point to namespaces that
26 contain the symbols within that interface.
27
28 Implicit interfaces are linked together in a singly linked list
29 along the next_if member of symbol nodes. Since a particular
30 symbol can only have a single explicit interface, the symbol cannot
31 be part of multiple lists and a single next-member suffices.
32
33 This is not the case for general classes, though. An operator
34 definition is independent of just about all other uses and has it's
35 own head pointer.
36
37 Nameless interfaces:
38 Nameless interfaces create symbols with explicit interfaces within
39 the current namespace. They are otherwise unlinked.
40
41 Generic interfaces:
42 The generic name points to a linked list of symbols. Each symbol
43 has an explicit interface. Each explicit interface has its own
44 namespace containing the arguments. Module procedures are symbols in
45 which the interface is added later when the module procedure is parsed.
46
47 User operators:
48 User-defined operators are stored in a their own set of symtrees
49 separate from regular symbols. The symtrees point to gfc_user_op
50 structures which in turn head up a list of relevant interfaces.
51
52 Extended intrinsics and assignment:
53 The head of these interface lists are stored in the containing namespace.
54
55 Implicit interfaces:
56 An implicit interface is represented as a singly linked list of
57 formal argument list structures that don't point to any symbol
58 nodes -- they just contain types.
59
60
61 When a subprogram is defined, the program unit's name points to an
62 interface as usual, but the link to the namespace is NULL and the
63 formal argument list points to symbols within the same namespace as
64 the program unit name. */
65
66 #include "config.h"
67 #include "system.h"
68 #include "coretypes.h"
69 #include "gfortran.h"
70 #include "match.h"
71 #include "arith.h"
72
73 /* The current_interface structure holds information about the
74 interface currently being parsed. This structure is saved and
75 restored during recursive interfaces. */
76
77 gfc_interface_info current_interface;
78
79
80 /* Free a singly linked list of gfc_interface structures. */
81
82 void
83 gfc_free_interface (gfc_interface *intr)
84 {
85 gfc_interface *next;
86
87 for (; intr; intr = next)
88 {
89 next = intr->next;
90 free (intr);
91 }
92 }
93
94
95 /* Change the operators unary plus and minus into binary plus and
96 minus respectively, leaving the rest unchanged. */
97
98 static gfc_intrinsic_op
99 fold_unary_intrinsic (gfc_intrinsic_op op)
100 {
101 switch (op)
102 {
103 case INTRINSIC_UPLUS:
104 op = INTRINSIC_PLUS;
105 break;
106 case INTRINSIC_UMINUS:
107 op = INTRINSIC_MINUS;
108 break;
109 default:
110 break;
111 }
112
113 return op;
114 }
115
116
117 /* Match a generic specification. Depending on which type of
118 interface is found, the 'name' or 'op' pointers may be set.
119 This subroutine doesn't return MATCH_NO. */
120
121 match
122 gfc_match_generic_spec (interface_type *type,
123 char *name,
124 gfc_intrinsic_op *op)
125 {
126 char buffer[GFC_MAX_SYMBOL_LEN + 1];
127 match m;
128 gfc_intrinsic_op i;
129
130 if (gfc_match (" assignment ( = )") == MATCH_YES)
131 {
132 *type = INTERFACE_INTRINSIC_OP;
133 *op = INTRINSIC_ASSIGN;
134 return MATCH_YES;
135 }
136
137 if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
138 { /* Operator i/f */
139 *type = INTERFACE_INTRINSIC_OP;
140 *op = fold_unary_intrinsic (i);
141 return MATCH_YES;
142 }
143
144 *op = INTRINSIC_NONE;
145 if (gfc_match (" operator ( ") == MATCH_YES)
146 {
147 m = gfc_match_defined_op_name (buffer, 1);
148 if (m == MATCH_NO)
149 goto syntax;
150 if (m != MATCH_YES)
151 return MATCH_ERROR;
152
153 m = gfc_match_char (')');
154 if (m == MATCH_NO)
155 goto syntax;
156 if (m != MATCH_YES)
157 return MATCH_ERROR;
158
159 strcpy (name, buffer);
160 *type = INTERFACE_USER_OP;
161 return MATCH_YES;
162 }
163
164 if (gfc_match_name (buffer) == MATCH_YES)
165 {
166 strcpy (name, buffer);
167 *type = INTERFACE_GENERIC;
168 return MATCH_YES;
169 }
170
171 *type = INTERFACE_NAMELESS;
172 return MATCH_YES;
173
174 syntax:
175 gfc_error ("Syntax error in generic specification at %C");
176 return MATCH_ERROR;
177 }
178
179
180 /* Match one of the five F95 forms of an interface statement. The
181 matcher for the abstract interface follows. */
182
183 match
184 gfc_match_interface (void)
185 {
186 char name[GFC_MAX_SYMBOL_LEN + 1];
187 interface_type type;
188 gfc_symbol *sym;
189 gfc_intrinsic_op op;
190 match m;
191
192 m = gfc_match_space ();
193
194 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
195 return MATCH_ERROR;
196
197 /* If we're not looking at the end of the statement now, or if this
198 is not a nameless interface but we did not see a space, punt. */
199 if (gfc_match_eos () != MATCH_YES
200 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
201 {
202 gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
203 "at %C");
204 return MATCH_ERROR;
205 }
206
207 current_interface.type = type;
208
209 switch (type)
210 {
211 case INTERFACE_GENERIC:
212 if (gfc_get_symbol (name, NULL, &sym))
213 return MATCH_ERROR;
214
215 if (!sym->attr.generic
216 && !gfc_add_generic (&sym->attr, sym->name, NULL))
217 return MATCH_ERROR;
218
219 if (sym->attr.dummy)
220 {
221 gfc_error ("Dummy procedure '%s' at %C cannot have a "
222 "generic interface", sym->name);
223 return MATCH_ERROR;
224 }
225
226 current_interface.sym = gfc_new_block = sym;
227 break;
228
229 case INTERFACE_USER_OP:
230 current_interface.uop = gfc_get_uop (name);
231 break;
232
233 case INTERFACE_INTRINSIC_OP:
234 current_interface.op = op;
235 break;
236
237 case INTERFACE_NAMELESS:
238 case INTERFACE_ABSTRACT:
239 break;
240 }
241
242 return MATCH_YES;
243 }
244
245
246
247 /* Match a F2003 abstract interface. */
248
249 match
250 gfc_match_abstract_interface (void)
251 {
252 match m;
253
254 if (!gfc_notify_std (GFC_STD_F2003, "ABSTRACT INTERFACE at %C"))
255 return MATCH_ERROR;
256
257 m = gfc_match_eos ();
258
259 if (m != MATCH_YES)
260 {
261 gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
262 return MATCH_ERROR;
263 }
264
265 current_interface.type = INTERFACE_ABSTRACT;
266
267 return m;
268 }
269
270
271 /* Match the different sort of generic-specs that can be present after
272 the END INTERFACE itself. */
273
274 match
275 gfc_match_end_interface (void)
276 {
277 char name[GFC_MAX_SYMBOL_LEN + 1];
278 interface_type type;
279 gfc_intrinsic_op op;
280 match m;
281
282 m = gfc_match_space ();
283
284 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
285 return MATCH_ERROR;
286
287 /* If we're not looking at the end of the statement now, or if this
288 is not a nameless interface but we did not see a space, punt. */
289 if (gfc_match_eos () != MATCH_YES
290 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
291 {
292 gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
293 "statement at %C");
294 return MATCH_ERROR;
295 }
296
297 m = MATCH_YES;
298
299 switch (current_interface.type)
300 {
301 case INTERFACE_NAMELESS:
302 case INTERFACE_ABSTRACT:
303 if (type != INTERFACE_NAMELESS)
304 {
305 gfc_error ("Expected a nameless interface at %C");
306 m = MATCH_ERROR;
307 }
308
309 break;
310
311 case INTERFACE_INTRINSIC_OP:
312 if (type != current_interface.type || op != current_interface.op)
313 {
314
315 if (current_interface.op == INTRINSIC_ASSIGN)
316 {
317 m = MATCH_ERROR;
318 gfc_error ("Expected 'END INTERFACE ASSIGNMENT (=)' at %C");
319 }
320 else
321 {
322 const char *s1, *s2;
323 s1 = gfc_op2string (current_interface.op);
324 s2 = gfc_op2string (op);
325
326 /* The following if-statements are used to enforce C1202
327 from F2003. */
328 if ((strcmp(s1, "==") == 0 && strcmp (s2, ".eq.") == 0)
329 || (strcmp(s1, ".eq.") == 0 && strcmp (s2, "==") == 0))
330 break;
331 if ((strcmp(s1, "/=") == 0 && strcmp (s2, ".ne.") == 0)
332 || (strcmp(s1, ".ne.") == 0 && strcmp (s2, "/=") == 0))
333 break;
334 if ((strcmp(s1, "<=") == 0 && strcmp (s2, ".le.") == 0)
335 || (strcmp(s1, ".le.") == 0 && strcmp (s2, "<=") == 0))
336 break;
337 if ((strcmp(s1, "<") == 0 && strcmp (s2, ".lt.") == 0)
338 || (strcmp(s1, ".lt.") == 0 && strcmp (s2, "<") == 0))
339 break;
340 if ((strcmp(s1, ">=") == 0 && strcmp (s2, ".ge.") == 0)
341 || (strcmp(s1, ".ge.") == 0 && strcmp (s2, ">=") == 0))
342 break;
343 if ((strcmp(s1, ">") == 0 && strcmp (s2, ".gt.") == 0)
344 || (strcmp(s1, ".gt.") == 0 && strcmp (s2, ">") == 0))
345 break;
346
347 m = MATCH_ERROR;
348 gfc_error ("Expecting 'END INTERFACE OPERATOR (%s)' at %C, "
349 "but got %s", s1, s2);
350 }
351
352 }
353
354 break;
355
356 case INTERFACE_USER_OP:
357 /* Comparing the symbol node names is OK because only use-associated
358 symbols can be renamed. */
359 if (type != current_interface.type
360 || strcmp (current_interface.uop->name, name) != 0)
361 {
362 gfc_error ("Expecting 'END INTERFACE OPERATOR (.%s.)' at %C",
363 current_interface.uop->name);
364 m = MATCH_ERROR;
365 }
366
367 break;
368
369 case INTERFACE_GENERIC:
370 if (type != current_interface.type
371 || strcmp (current_interface.sym->name, name) != 0)
372 {
373 gfc_error ("Expecting 'END INTERFACE %s' at %C",
374 current_interface.sym->name);
375 m = MATCH_ERROR;
376 }
377
378 break;
379 }
380
381 return m;
382 }
383
384
385 /* Compare two derived types using the criteria in 4.4.2 of the standard,
386 recursing through gfc_compare_types for the components. */
387
388 int
389 gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2)
390 {
391 gfc_component *dt1, *dt2;
392
393 if (derived1 == derived2)
394 return 1;
395
396 gcc_assert (derived1 && derived2);
397
398 /* Special case for comparing derived types across namespaces. If the
399 true names and module names are the same and the module name is
400 nonnull, then they are equal. */
401 if (strcmp (derived1->name, derived2->name) == 0
402 && derived1->module != NULL && derived2->module != NULL
403 && strcmp (derived1->module, derived2->module) == 0)
404 return 1;
405
406 /* Compare type via the rules of the standard. Both types must have
407 the SEQUENCE or BIND(C) attribute to be equal. */
408
409 if (strcmp (derived1->name, derived2->name))
410 return 0;
411
412 if (derived1->component_access == ACCESS_PRIVATE
413 || derived2->component_access == ACCESS_PRIVATE)
414 return 0;
415
416 if (!(derived1->attr.sequence && derived2->attr.sequence)
417 && !(derived1->attr.is_bind_c && derived2->attr.is_bind_c))
418 return 0;
419
420 dt1 = derived1->components;
421 dt2 = derived2->components;
422
423 /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
424 simple test can speed things up. Otherwise, lots of things have to
425 match. */
426 for (;;)
427 {
428 if (strcmp (dt1->name, dt2->name) != 0)
429 return 0;
430
431 if (dt1->attr.access != dt2->attr.access)
432 return 0;
433
434 if (dt1->attr.pointer != dt2->attr.pointer)
435 return 0;
436
437 if (dt1->attr.dimension != dt2->attr.dimension)
438 return 0;
439
440 if (dt1->attr.allocatable != dt2->attr.allocatable)
441 return 0;
442
443 if (dt1->attr.dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0)
444 return 0;
445
446 /* Make sure that link lists do not put this function into an
447 endless recursive loop! */
448 if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
449 && !(dt2->ts.type == BT_DERIVED && derived2 == dt2->ts.u.derived)
450 && gfc_compare_types (&dt1->ts, &dt2->ts) == 0)
451 return 0;
452
453 else if ((dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
454 && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
455 return 0;
456
457 else if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
458 && (dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
459 return 0;
460
461 dt1 = dt1->next;
462 dt2 = dt2->next;
463
464 if (dt1 == NULL && dt2 == NULL)
465 break;
466 if (dt1 == NULL || dt2 == NULL)
467 return 0;
468 }
469
470 return 1;
471 }
472
473
474 /* Compare two typespecs, recursively if necessary. */
475
476 int
477 gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2)
478 {
479 /* See if one of the typespecs is a BT_VOID, which is what is being used
480 to allow the funcs like c_f_pointer to accept any pointer type.
481 TODO: Possibly should narrow this to just the one typespec coming in
482 that is for the formal arg, but oh well. */
483 if (ts1->type == BT_VOID || ts2->type == BT_VOID)
484 return 1;
485
486 if (ts1->type == BT_CLASS
487 && ts1->u.derived->components->ts.u.derived->attr.unlimited_polymorphic)
488 return 1;
489
490 /* F2003: C717 */
491 if (ts2->type == BT_CLASS && ts1->type == BT_DERIVED
492 && ts2->u.derived->components->ts.u.derived->attr.unlimited_polymorphic
493 && (ts1->u.derived->attr.sequence || ts1->u.derived->attr.is_bind_c))
494 return 1;
495
496 if (ts1->type != ts2->type
497 && ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
498 || (ts2->type != BT_DERIVED && ts2->type != BT_CLASS)))
499 return 0;
500 if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
501 return (ts1->kind == ts2->kind);
502
503 /* Compare derived types. */
504 if (gfc_type_compatible (ts1, ts2))
505 return 1;
506
507 return gfc_compare_derived_types (ts1->u.derived ,ts2->u.derived);
508 }
509
510
511 static int
512 compare_type (gfc_symbol *s1, gfc_symbol *s2)
513 {
514 if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
515 return 1;
516
517 /* TYPE and CLASS of the same declared type are type compatible,
518 but have different characteristics. */
519 if ((s1->ts.type == BT_CLASS && s2->ts.type == BT_DERIVED)
520 || (s1->ts.type == BT_DERIVED && s2->ts.type == BT_CLASS))
521 return 0;
522
523 return gfc_compare_types (&s1->ts, &s2->ts) || s2->ts.type == BT_ASSUMED;
524 }
525
526
527 static int
528 compare_rank (gfc_symbol *s1, gfc_symbol *s2)
529 {
530 gfc_array_spec *as1, *as2;
531 int r1, r2;
532
533 if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
534 return 1;
535
536 as1 = (s1->ts.type == BT_CLASS) ? CLASS_DATA (s1)->as : s1->as;
537 as2 = (s2->ts.type == BT_CLASS) ? CLASS_DATA (s2)->as : s2->as;
538
539 r1 = as1 ? as1->rank : 0;
540 r2 = as2 ? as2->rank : 0;
541
542 if (r1 != r2 && (!as2 || as2->type != AS_ASSUMED_RANK))
543 return 0; /* Ranks differ. */
544
545 return 1;
546 }
547
548
549 /* Given two symbols that are formal arguments, compare their ranks
550 and types. Returns nonzero if they have the same rank and type,
551 zero otherwise. */
552
553 static int
554 compare_type_rank (gfc_symbol *s1, gfc_symbol *s2)
555 {
556 return compare_type (s1, s2) && compare_rank (s1, s2);
557 }
558
559
560 /* Given two symbols that are formal arguments, compare their types
561 and rank and their formal interfaces if they are both dummy
562 procedures. Returns nonzero if the same, zero if different. */
563
564 static int
565 compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2)
566 {
567 if (s1 == NULL || s2 == NULL)
568 return s1 == s2 ? 1 : 0;
569
570 if (s1 == s2)
571 return 1;
572
573 if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
574 return compare_type_rank (s1, s2);
575
576 if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
577 return 0;
578
579 /* At this point, both symbols are procedures. It can happen that
580 external procedures are compared, where one is identified by usage
581 to be a function or subroutine but the other is not. Check TKR
582 nonetheless for these cases. */
583 if (s1->attr.function == 0 && s1->attr.subroutine == 0)
584 return s1->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
585
586 if (s2->attr.function == 0 && s2->attr.subroutine == 0)
587 return s2->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
588
589 /* Now the type of procedure has been identified. */
590 if (s1->attr.function != s2->attr.function
591 || s1->attr.subroutine != s2->attr.subroutine)
592 return 0;
593
594 if (s1->attr.function && compare_type_rank (s1, s2) == 0)
595 return 0;
596
597 /* Originally, gfortran recursed here to check the interfaces of passed
598 procedures. This is explicitly not required by the standard. */
599 return 1;
600 }
601
602
603 /* Given a formal argument list and a keyword name, search the list
604 for that keyword. Returns the correct symbol node if found, NULL
605 if not found. */
606
607 static gfc_symbol *
608 find_keyword_arg (const char *name, gfc_formal_arglist *f)
609 {
610 for (; f; f = f->next)
611 if (strcmp (f->sym->name, name) == 0)
612 return f->sym;
613
614 return NULL;
615 }
616
617
618 /******** Interface checking subroutines **********/
619
620
621 /* Given an operator interface and the operator, make sure that all
622 interfaces for that operator are legal. */
623
624 bool
625 gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op,
626 locus opwhere)
627 {
628 gfc_formal_arglist *formal;
629 sym_intent i1, i2;
630 bt t1, t2;
631 int args, r1, r2, k1, k2;
632
633 gcc_assert (sym);
634
635 args = 0;
636 t1 = t2 = BT_UNKNOWN;
637 i1 = i2 = INTENT_UNKNOWN;
638 r1 = r2 = -1;
639 k1 = k2 = -1;
640
641 for (formal = gfc_sym_get_dummy_args (sym); formal; formal = formal->next)
642 {
643 gfc_symbol *fsym = formal->sym;
644 if (fsym == NULL)
645 {
646 gfc_error ("Alternate return cannot appear in operator "
647 "interface at %L", &sym->declared_at);
648 return false;
649 }
650 if (args == 0)
651 {
652 t1 = fsym->ts.type;
653 i1 = fsym->attr.intent;
654 r1 = (fsym->as != NULL) ? fsym->as->rank : 0;
655 k1 = fsym->ts.kind;
656 }
657 if (args == 1)
658 {
659 t2 = fsym->ts.type;
660 i2 = fsym->attr.intent;
661 r2 = (fsym->as != NULL) ? fsym->as->rank : 0;
662 k2 = fsym->ts.kind;
663 }
664 args++;
665 }
666
667 /* Only +, - and .not. can be unary operators.
668 .not. cannot be a binary operator. */
669 if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS
670 && op != INTRINSIC_MINUS
671 && op != INTRINSIC_NOT)
672 || (args == 2 && op == INTRINSIC_NOT))
673 {
674 if (op == INTRINSIC_ASSIGN)
675 gfc_error ("Assignment operator interface at %L must have "
676 "two arguments", &sym->declared_at);
677 else
678 gfc_error ("Operator interface at %L has the wrong number of arguments",
679 &sym->declared_at);
680 return false;
681 }
682
683 /* Check that intrinsics are mapped to functions, except
684 INTRINSIC_ASSIGN which should map to a subroutine. */
685 if (op == INTRINSIC_ASSIGN)
686 {
687 gfc_formal_arglist *dummy_args;
688
689 if (!sym->attr.subroutine)
690 {
691 gfc_error ("Assignment operator interface at %L must be "
692 "a SUBROUTINE", &sym->declared_at);
693 return false;
694 }
695
696 /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
697 - First argument an array with different rank than second,
698 - First argument is a scalar and second an array,
699 - Types and kinds do not conform, or
700 - First argument is of derived type. */
701 dummy_args = gfc_sym_get_dummy_args (sym);
702 if (dummy_args->sym->ts.type != BT_DERIVED
703 && dummy_args->sym->ts.type != BT_CLASS
704 && (r2 == 0 || r1 == r2)
705 && (dummy_args->sym->ts.type == dummy_args->next->sym->ts.type
706 || (gfc_numeric_ts (&dummy_args->sym->ts)
707 && gfc_numeric_ts (&dummy_args->next->sym->ts))))
708 {
709 gfc_error ("Assignment operator interface at %L must not redefine "
710 "an INTRINSIC type assignment", &sym->declared_at);
711 return false;
712 }
713 }
714 else
715 {
716 if (!sym->attr.function)
717 {
718 gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
719 &sym->declared_at);
720 return false;
721 }
722 }
723
724 /* Check intents on operator interfaces. */
725 if (op == INTRINSIC_ASSIGN)
726 {
727 if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
728 {
729 gfc_error ("First argument of defined assignment at %L must be "
730 "INTENT(OUT) or INTENT(INOUT)", &sym->declared_at);
731 return false;
732 }
733
734 if (i2 != INTENT_IN)
735 {
736 gfc_error ("Second argument of defined assignment at %L must be "
737 "INTENT(IN)", &sym->declared_at);
738 return false;
739 }
740 }
741 else
742 {
743 if (i1 != INTENT_IN)
744 {
745 gfc_error ("First argument of operator interface at %L must be "
746 "INTENT(IN)", &sym->declared_at);
747 return false;
748 }
749
750 if (args == 2 && i2 != INTENT_IN)
751 {
752 gfc_error ("Second argument of operator interface at %L must be "
753 "INTENT(IN)", &sym->declared_at);
754 return false;
755 }
756 }
757
758 /* From now on, all we have to do is check that the operator definition
759 doesn't conflict with an intrinsic operator. The rules for this
760 game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
761 as well as 12.3.2.1.1 of Fortran 2003:
762
763 "If the operator is an intrinsic-operator (R310), the number of
764 function arguments shall be consistent with the intrinsic uses of
765 that operator, and the types, kind type parameters, or ranks of the
766 dummy arguments shall differ from those required for the intrinsic
767 operation (7.1.2)." */
768
769 #define IS_NUMERIC_TYPE(t) \
770 ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)
771
772 /* Unary ops are easy, do them first. */
773 if (op == INTRINSIC_NOT)
774 {
775 if (t1 == BT_LOGICAL)
776 goto bad_repl;
777 else
778 return true;
779 }
780
781 if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS))
782 {
783 if (IS_NUMERIC_TYPE (t1))
784 goto bad_repl;
785 else
786 return true;
787 }
788
789 /* Character intrinsic operators have same character kind, thus
790 operator definitions with operands of different character kinds
791 are always safe. */
792 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2)
793 return true;
794
795 /* Intrinsic operators always perform on arguments of same rank,
796 so different ranks is also always safe. (rank == 0) is an exception
797 to that, because all intrinsic operators are elemental. */
798 if (r1 != r2 && r1 != 0 && r2 != 0)
799 return true;
800
801 switch (op)
802 {
803 case INTRINSIC_EQ:
804 case INTRINSIC_EQ_OS:
805 case INTRINSIC_NE:
806 case INTRINSIC_NE_OS:
807 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
808 goto bad_repl;
809 /* Fall through. */
810
811 case INTRINSIC_PLUS:
812 case INTRINSIC_MINUS:
813 case INTRINSIC_TIMES:
814 case INTRINSIC_DIVIDE:
815 case INTRINSIC_POWER:
816 if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2))
817 goto bad_repl;
818 break;
819
820 case INTRINSIC_GT:
821 case INTRINSIC_GT_OS:
822 case INTRINSIC_GE:
823 case INTRINSIC_GE_OS:
824 case INTRINSIC_LT:
825 case INTRINSIC_LT_OS:
826 case INTRINSIC_LE:
827 case INTRINSIC_LE_OS:
828 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
829 goto bad_repl;
830 if ((t1 == BT_INTEGER || t1 == BT_REAL)
831 && (t2 == BT_INTEGER || t2 == BT_REAL))
832 goto bad_repl;
833 break;
834
835 case INTRINSIC_CONCAT:
836 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
837 goto bad_repl;
838 break;
839
840 case INTRINSIC_AND:
841 case INTRINSIC_OR:
842 case INTRINSIC_EQV:
843 case INTRINSIC_NEQV:
844 if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
845 goto bad_repl;
846 break;
847
848 default:
849 break;
850 }
851
852 return true;
853
854 #undef IS_NUMERIC_TYPE
855
856 bad_repl:
857 gfc_error ("Operator interface at %L conflicts with intrinsic interface",
858 &opwhere);
859 return false;
860 }
861
862
863 /* Given a pair of formal argument lists, we see if the two lists can
864 be distinguished by counting the number of nonoptional arguments of
865 a given type/rank in f1 and seeing if there are less then that
866 number of those arguments in f2 (including optional arguments).
867 Since this test is asymmetric, it has to be called twice to make it
868 symmetric. Returns nonzero if the argument lists are incompatible
869 by this test. This subroutine implements rule 1 of section F03:16.2.3.
870 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
871
872 static int
873 count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
874 const char *p1, const char *p2)
875 {
876 int rc, ac1, ac2, i, j, k, n1;
877 gfc_formal_arglist *f;
878
879 typedef struct
880 {
881 int flag;
882 gfc_symbol *sym;
883 }
884 arginfo;
885
886 arginfo *arg;
887
888 n1 = 0;
889
890 for (f = f1; f; f = f->next)
891 n1++;
892
893 /* Build an array of integers that gives the same integer to
894 arguments of the same type/rank. */
895 arg = XCNEWVEC (arginfo, n1);
896
897 f = f1;
898 for (i = 0; i < n1; i++, f = f->next)
899 {
900 arg[i].flag = -1;
901 arg[i].sym = f->sym;
902 }
903
904 k = 0;
905
906 for (i = 0; i < n1; i++)
907 {
908 if (arg[i].flag != -1)
909 continue;
910
911 if (arg[i].sym && (arg[i].sym->attr.optional
912 || (p1 && strcmp (arg[i].sym->name, p1) == 0)))
913 continue; /* Skip OPTIONAL and PASS arguments. */
914
915 arg[i].flag = k;
916
917 /* Find other non-optional, non-pass arguments of the same type/rank. */
918 for (j = i + 1; j < n1; j++)
919 if ((arg[j].sym == NULL
920 || !(arg[j].sym->attr.optional
921 || (p1 && strcmp (arg[j].sym->name, p1) == 0)))
922 && (compare_type_rank_if (arg[i].sym, arg[j].sym)
923 || compare_type_rank_if (arg[j].sym, arg[i].sym)))
924 arg[j].flag = k;
925
926 k++;
927 }
928
929 /* Now loop over each distinct type found in f1. */
930 k = 0;
931 rc = 0;
932
933 for (i = 0; i < n1; i++)
934 {
935 if (arg[i].flag != k)
936 continue;
937
938 ac1 = 1;
939 for (j = i + 1; j < n1; j++)
940 if (arg[j].flag == k)
941 ac1++;
942
943 /* Count the number of non-pass arguments in f2 with that type,
944 including those that are optional. */
945 ac2 = 0;
946
947 for (f = f2; f; f = f->next)
948 if ((!p2 || strcmp (f->sym->name, p2) != 0)
949 && (compare_type_rank_if (arg[i].sym, f->sym)
950 || compare_type_rank_if (f->sym, arg[i].sym)))
951 ac2++;
952
953 if (ac1 > ac2)
954 {
955 rc = 1;
956 break;
957 }
958
959 k++;
960 }
961
962 free (arg);
963
964 return rc;
965 }
966
967
968 /* Perform the correspondence test in rule (3) of F08:C1215.
969 Returns zero if no argument is found that satisfies this rule,
970 nonzero otherwise. 'p1' and 'p2' are the PASS arguments of both procedures
971 (if applicable).
972
973 This test is also not symmetric in f1 and f2 and must be called
974 twice. This test finds problems caused by sorting the actual
975 argument list with keywords. For example:
976
977 INTERFACE FOO
978 SUBROUTINE F1(A, B)
979 INTEGER :: A ; REAL :: B
980 END SUBROUTINE F1
981
982 SUBROUTINE F2(B, A)
983 INTEGER :: A ; REAL :: B
984 END SUBROUTINE F1
985 END INTERFACE FOO
986
987 At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
988
989 static int
990 generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
991 const char *p1, const char *p2)
992 {
993 gfc_formal_arglist *f2_save, *g;
994 gfc_symbol *sym;
995
996 f2_save = f2;
997
998 while (f1)
999 {
1000 if (f1->sym->attr.optional)
1001 goto next;
1002
1003 if (p1 && strcmp (f1->sym->name, p1) == 0)
1004 f1 = f1->next;
1005 if (f2 && p2 && strcmp (f2->sym->name, p2) == 0)
1006 f2 = f2->next;
1007
1008 if (f2 != NULL && (compare_type_rank (f1->sym, f2->sym)
1009 || compare_type_rank (f2->sym, f1->sym))
1010 && !((gfc_option.allow_std & GFC_STD_F2008)
1011 && ((f1->sym->attr.allocatable && f2->sym->attr.pointer)
1012 || (f2->sym->attr.allocatable && f1->sym->attr.pointer))))
1013 goto next;
1014
1015 /* Now search for a disambiguating keyword argument starting at
1016 the current non-match. */
1017 for (g = f1; g; g = g->next)
1018 {
1019 if (g->sym->attr.optional || (p1 && strcmp (g->sym->name, p1) == 0))
1020 continue;
1021
1022 sym = find_keyword_arg (g->sym->name, f2_save);
1023 if (sym == NULL || !compare_type_rank (g->sym, sym)
1024 || ((gfc_option.allow_std & GFC_STD_F2008)
1025 && ((sym->attr.allocatable && g->sym->attr.pointer)
1026 || (sym->attr.pointer && g->sym->attr.allocatable))))
1027 return 1;
1028 }
1029
1030 next:
1031 if (f1 != NULL)
1032 f1 = f1->next;
1033 if (f2 != NULL)
1034 f2 = f2->next;
1035 }
1036
1037 return 0;
1038 }
1039
1040
1041 static int
1042 symbol_rank (gfc_symbol *sym)
1043 {
1044 gfc_array_spec *as;
1045 as = (sym->ts.type == BT_CLASS) ? CLASS_DATA (sym)->as : sym->as;
1046 return as ? as->rank : 0;
1047 }
1048
1049
1050 /* Check if the characteristics of two dummy arguments match,
1051 cf. F08:12.3.2. */
1052
1053 static bool
1054 check_dummy_characteristics (gfc_symbol *s1, gfc_symbol *s2,
1055 bool type_must_agree, char *errmsg, int err_len)
1056 {
1057 if (s1 == NULL || s2 == NULL)
1058 return s1 == s2 ? true : false;
1059
1060 /* Check type and rank. */
1061 if (type_must_agree)
1062 {
1063 if (!compare_type (s1, s2) || !compare_type (s2, s1))
1064 {
1065 snprintf (errmsg, err_len, "Type mismatch in argument '%s' (%s/%s)",
1066 s1->name, gfc_typename (&s1->ts), gfc_typename (&s2->ts));
1067 return false;
1068 }
1069 if (!compare_rank (s1, s2))
1070 {
1071 snprintf (errmsg, err_len, "Rank mismatch in argument '%s' (%i/%i)",
1072 s1->name, symbol_rank (s1), symbol_rank (s2));
1073 return false;
1074 }
1075 }
1076
1077 /* Check INTENT. */
1078 if (s1->attr.intent != s2->attr.intent)
1079 {
1080 snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'",
1081 s1->name);
1082 return false;
1083 }
1084
1085 /* Check OPTIONAL attribute. */
1086 if (s1->attr.optional != s2->attr.optional)
1087 {
1088 snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'",
1089 s1->name);
1090 return false;
1091 }
1092
1093 /* Check ALLOCATABLE attribute. */
1094 if (s1->attr.allocatable != s2->attr.allocatable)
1095 {
1096 snprintf (errmsg, err_len, "ALLOCATABLE mismatch in argument '%s'",
1097 s1->name);
1098 return false;
1099 }
1100
1101 /* Check POINTER attribute. */
1102 if (s1->attr.pointer != s2->attr.pointer)
1103 {
1104 snprintf (errmsg, err_len, "POINTER mismatch in argument '%s'",
1105 s1->name);
1106 return false;
1107 }
1108
1109 /* Check TARGET attribute. */
1110 if (s1->attr.target != s2->attr.target)
1111 {
1112 snprintf (errmsg, err_len, "TARGET mismatch in argument '%s'",
1113 s1->name);
1114 return false;
1115 }
1116
1117 /* Check ASYNCHRONOUS attribute. */
1118 if (s1->attr.asynchronous != s2->attr.asynchronous)
1119 {
1120 snprintf (errmsg, err_len, "ASYNCHRONOUS mismatch in argument '%s'",
1121 s1->name);
1122 return false;
1123 }
1124
1125 /* Check CONTIGUOUS attribute. */
1126 if (s1->attr.contiguous != s2->attr.contiguous)
1127 {
1128 snprintf (errmsg, err_len, "CONTIGUOUS mismatch in argument '%s'",
1129 s1->name);
1130 return false;
1131 }
1132
1133 /* Check VALUE attribute. */
1134 if (s1->attr.value != s2->attr.value)
1135 {
1136 snprintf (errmsg, err_len, "VALUE mismatch in argument '%s'",
1137 s1->name);
1138 return false;
1139 }
1140
1141 /* Check VOLATILE attribute. */
1142 if (s1->attr.volatile_ != s2->attr.volatile_)
1143 {
1144 snprintf (errmsg, err_len, "VOLATILE mismatch in argument '%s'",
1145 s1->name);
1146 return false;
1147 }
1148
1149 /* Check interface of dummy procedures. */
1150 if (s1->attr.flavor == FL_PROCEDURE)
1151 {
1152 char err[200];
1153 if (!gfc_compare_interfaces (s1, s2, s2->name, 0, 1, err, sizeof(err),
1154 NULL, NULL))
1155 {
1156 snprintf (errmsg, err_len, "Interface mismatch in dummy procedure "
1157 "'%s': %s", s1->name, err);
1158 return false;
1159 }
1160 }
1161
1162 /* Check string length. */
1163 if (s1->ts.type == BT_CHARACTER
1164 && s1->ts.u.cl && s1->ts.u.cl->length
1165 && s2->ts.u.cl && s2->ts.u.cl->length)
1166 {
1167 int compval = gfc_dep_compare_expr (s1->ts.u.cl->length,
1168 s2->ts.u.cl->length);
1169 switch (compval)
1170 {
1171 case -1:
1172 case 1:
1173 case -3:
1174 snprintf (errmsg, err_len, "Character length mismatch "
1175 "in argument '%s'", s1->name);
1176 return false;
1177
1178 case -2:
1179 /* FIXME: Implement a warning for this case.
1180 gfc_warning ("Possible character length mismatch in argument '%s'",
1181 s1->name);*/
1182 break;
1183
1184 case 0:
1185 break;
1186
1187 default:
1188 gfc_internal_error ("check_dummy_characteristics: Unexpected result "
1189 "%i of gfc_dep_compare_expr", compval);
1190 break;
1191 }
1192 }
1193
1194 /* Check array shape. */
1195 if (s1->as && s2->as)
1196 {
1197 int i, compval;
1198 gfc_expr *shape1, *shape2;
1199
1200 if (s1->as->type != s2->as->type)
1201 {
1202 snprintf (errmsg, err_len, "Shape mismatch in argument '%s'",
1203 s1->name);
1204 return false;
1205 }
1206
1207 if (s1->as->type == AS_EXPLICIT)
1208 for (i = 0; i < s1->as->rank + s1->as->corank; i++)
1209 {
1210 shape1 = gfc_subtract (gfc_copy_expr (s1->as->upper[i]),
1211 gfc_copy_expr (s1->as->lower[i]));
1212 shape2 = gfc_subtract (gfc_copy_expr (s2->as->upper[i]),
1213 gfc_copy_expr (s2->as->lower[i]));
1214 compval = gfc_dep_compare_expr (shape1, shape2);
1215 gfc_free_expr (shape1);
1216 gfc_free_expr (shape2);
1217 switch (compval)
1218 {
1219 case -1:
1220 case 1:
1221 case -3:
1222 snprintf (errmsg, err_len, "Shape mismatch in dimension %i of "
1223 "argument '%s'", i + 1, s1->name);
1224 return false;
1225
1226 case -2:
1227 /* FIXME: Implement a warning for this case.
1228 gfc_warning ("Possible shape mismatch in argument '%s'",
1229 s1->name);*/
1230 break;
1231
1232 case 0:
1233 break;
1234
1235 default:
1236 gfc_internal_error ("check_dummy_characteristics: Unexpected "
1237 "result %i of gfc_dep_compare_expr",
1238 compval);
1239 break;
1240 }
1241 }
1242 }
1243
1244 return true;
1245 }
1246
1247
1248 /* Check if the characteristics of two function results match,
1249 cf. F08:12.3.3. */
1250
1251 static bool
1252 check_result_characteristics (gfc_symbol *s1, gfc_symbol *s2,
1253 char *errmsg, int err_len)
1254 {
1255 gfc_symbol *r1, *r2;
1256
1257 if (s1->ts.interface && s1->ts.interface->result)
1258 r1 = s1->ts.interface->result;
1259 else
1260 r1 = s1->result ? s1->result : s1;
1261
1262 if (s2->ts.interface && s2->ts.interface->result)
1263 r2 = s2->ts.interface->result;
1264 else
1265 r2 = s2->result ? s2->result : s2;
1266
1267 if (r1->ts.type == BT_UNKNOWN)
1268 return true;
1269
1270 /* Check type and rank. */
1271 if (!compare_type (r1, r2))
1272 {
1273 snprintf (errmsg, err_len, "Type mismatch in function result (%s/%s)",
1274 gfc_typename (&r1->ts), gfc_typename (&r2->ts));
1275 return false;
1276 }
1277 if (!compare_rank (r1, r2))
1278 {
1279 snprintf (errmsg, err_len, "Rank mismatch in function result (%i/%i)",
1280 symbol_rank (r1), symbol_rank (r2));
1281 return false;
1282 }
1283
1284 /* Check ALLOCATABLE attribute. */
1285 if (r1->attr.allocatable != r2->attr.allocatable)
1286 {
1287 snprintf (errmsg, err_len, "ALLOCATABLE attribute mismatch in "
1288 "function result");
1289 return false;
1290 }
1291
1292 /* Check POINTER attribute. */
1293 if (r1->attr.pointer != r2->attr.pointer)
1294 {
1295 snprintf (errmsg, err_len, "POINTER attribute mismatch in "
1296 "function result");
1297 return false;
1298 }
1299
1300 /* Check CONTIGUOUS attribute. */
1301 if (r1->attr.contiguous != r2->attr.contiguous)
1302 {
1303 snprintf (errmsg, err_len, "CONTIGUOUS attribute mismatch in "
1304 "function result");
1305 return false;
1306 }
1307
1308 /* Check PROCEDURE POINTER attribute. */
1309 if (r1 != s1 && r1->attr.proc_pointer != r2->attr.proc_pointer)
1310 {
1311 snprintf (errmsg, err_len, "PROCEDURE POINTER mismatch in "
1312 "function result");
1313 return false;
1314 }
1315
1316 /* Check string length. */
1317 if (r1->ts.type == BT_CHARACTER && r1->ts.u.cl && r2->ts.u.cl)
1318 {
1319 if (r1->ts.deferred != r2->ts.deferred)
1320 {
1321 snprintf (errmsg, err_len, "Character length mismatch "
1322 "in function result");
1323 return false;
1324 }
1325
1326 if (r1->ts.u.cl->length && r2->ts.u.cl->length)
1327 {
1328 int compval = gfc_dep_compare_expr (r1->ts.u.cl->length,
1329 r2->ts.u.cl->length);
1330 switch (compval)
1331 {
1332 case -1:
1333 case 1:
1334 case -3:
1335 snprintf (errmsg, err_len, "Character length mismatch "
1336 "in function result");
1337 return false;
1338
1339 case -2:
1340 /* FIXME: Implement a warning for this case.
1341 snprintf (errmsg, err_len, "Possible character length mismatch "
1342 "in function result");*/
1343 break;
1344
1345 case 0:
1346 break;
1347
1348 default:
1349 gfc_internal_error ("check_result_characteristics (1): Unexpected "
1350 "result %i of gfc_dep_compare_expr", compval);
1351 break;
1352 }
1353 }
1354 }
1355
1356 /* Check array shape. */
1357 if (!r1->attr.allocatable && !r1->attr.pointer && r1->as && r2->as)
1358 {
1359 int i, compval;
1360 gfc_expr *shape1, *shape2;
1361
1362 if (r1->as->type != r2->as->type)
1363 {
1364 snprintf (errmsg, err_len, "Shape mismatch in function result");
1365 return false;
1366 }
1367
1368 if (r1->as->type == AS_EXPLICIT)
1369 for (i = 0; i < r1->as->rank + r1->as->corank; i++)
1370 {
1371 shape1 = gfc_subtract (gfc_copy_expr (r1->as->upper[i]),
1372 gfc_copy_expr (r1->as->lower[i]));
1373 shape2 = gfc_subtract (gfc_copy_expr (r2->as->upper[i]),
1374 gfc_copy_expr (r2->as->lower[i]));
1375 compval = gfc_dep_compare_expr (shape1, shape2);
1376 gfc_free_expr (shape1);
1377 gfc_free_expr (shape2);
1378 switch (compval)
1379 {
1380 case -1:
1381 case 1:
1382 case -3:
1383 snprintf (errmsg, err_len, "Shape mismatch in dimension %i of "
1384 "function result", i + 1);
1385 return false;
1386
1387 case -2:
1388 /* FIXME: Implement a warning for this case.
1389 gfc_warning ("Possible shape mismatch in return value");*/
1390 break;
1391
1392 case 0:
1393 break;
1394
1395 default:
1396 gfc_internal_error ("check_result_characteristics (2): "
1397 "Unexpected result %i of "
1398 "gfc_dep_compare_expr", compval);
1399 break;
1400 }
1401 }
1402 }
1403
1404 return true;
1405 }
1406
1407
1408 /* 'Compare' two formal interfaces associated with a pair of symbols.
1409 We return nonzero if there exists an actual argument list that
1410 would be ambiguous between the two interfaces, zero otherwise.
1411 'strict_flag' specifies whether all the characteristics are
1412 required to match, which is not the case for ambiguity checks.
1413 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
1414
1415 int
1416 gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2,
1417 int generic_flag, int strict_flag,
1418 char *errmsg, int err_len,
1419 const char *p1, const char *p2)
1420 {
1421 gfc_formal_arglist *f1, *f2;
1422
1423 gcc_assert (name2 != NULL);
1424
1425 if (s1->attr.function && (s2->attr.subroutine
1426 || (!s2->attr.function && s2->ts.type == BT_UNKNOWN
1427 && gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN)))
1428 {
1429 if (errmsg != NULL)
1430 snprintf (errmsg, err_len, "'%s' is not a function", name2);
1431 return 0;
1432 }
1433
1434 if (s1->attr.subroutine && s2->attr.function)
1435 {
1436 if (errmsg != NULL)
1437 snprintf (errmsg, err_len, "'%s' is not a subroutine", name2);
1438 return 0;
1439 }
1440
1441 /* Do strict checks on all characteristics
1442 (for dummy procedures and procedure pointer assignments). */
1443 if (!generic_flag && strict_flag)
1444 {
1445 if (s1->attr.function && s2->attr.function)
1446 {
1447 /* If both are functions, check result characteristics. */
1448 if (!check_result_characteristics (s1, s2, errmsg, err_len)
1449 || !check_result_characteristics (s2, s1, errmsg, err_len))
1450 return 0;
1451 }
1452
1453 if (s1->attr.pure && !s2->attr.pure)
1454 {
1455 snprintf (errmsg, err_len, "Mismatch in PURE attribute");
1456 return 0;
1457 }
1458 if (s1->attr.elemental && !s2->attr.elemental)
1459 {
1460 snprintf (errmsg, err_len, "Mismatch in ELEMENTAL attribute");
1461 return 0;
1462 }
1463 }
1464
1465 if (s1->attr.if_source == IFSRC_UNKNOWN
1466 || s2->attr.if_source == IFSRC_UNKNOWN)
1467 return 1;
1468
1469 f1 = gfc_sym_get_dummy_args (s1);
1470 f2 = gfc_sym_get_dummy_args (s2);
1471
1472 if (f1 == NULL && f2 == NULL)
1473 return 1; /* Special case: No arguments. */
1474
1475 if (generic_flag)
1476 {
1477 if (count_types_test (f1, f2, p1, p2)
1478 || count_types_test (f2, f1, p2, p1))
1479 return 0;
1480 if (generic_correspondence (f1, f2, p1, p2)
1481 || generic_correspondence (f2, f1, p2, p1))
1482 return 0;
1483 }
1484 else
1485 /* Perform the abbreviated correspondence test for operators (the
1486 arguments cannot be optional and are always ordered correctly).
1487 This is also done when comparing interfaces for dummy procedures and in
1488 procedure pointer assignments. */
1489
1490 for (;;)
1491 {
1492 /* Check existence. */
1493 if (f1 == NULL && f2 == NULL)
1494 break;
1495 if (f1 == NULL || f2 == NULL)
1496 {
1497 if (errmsg != NULL)
1498 snprintf (errmsg, err_len, "'%s' has the wrong number of "
1499 "arguments", name2);
1500 return 0;
1501 }
1502
1503 if (UNLIMITED_POLY (f1->sym))
1504 goto next;
1505
1506 if (strict_flag)
1507 {
1508 /* Check all characteristics. */
1509 if (!check_dummy_characteristics (f1->sym, f2->sym, true,
1510 errmsg, err_len))
1511 return 0;
1512 }
1513 else
1514 {
1515 /* Only check type and rank. */
1516 if (!compare_type (f2->sym, f1->sym))
1517 {
1518 if (errmsg != NULL)
1519 snprintf (errmsg, err_len, "Type mismatch in argument '%s' "
1520 "(%s/%s)", f1->sym->name,
1521 gfc_typename (&f1->sym->ts),
1522 gfc_typename (&f2->sym->ts));
1523 return 0;
1524 }
1525 if (!compare_rank (f2->sym, f1->sym))
1526 {
1527 if (errmsg != NULL)
1528 snprintf (errmsg, err_len, "Rank mismatch in argument '%s' "
1529 "(%i/%i)", f1->sym->name, symbol_rank (f1->sym),
1530 symbol_rank (f2->sym));
1531 return 0;
1532 }
1533 }
1534 next:
1535 f1 = f1->next;
1536 f2 = f2->next;
1537 }
1538
1539 return 1;
1540 }
1541
1542
1543 /* Given a pointer to an interface pointer, remove duplicate
1544 interfaces and make sure that all symbols are either functions
1545 or subroutines, and all of the same kind. Returns nonzero if
1546 something goes wrong. */
1547
1548 static int
1549 check_interface0 (gfc_interface *p, const char *interface_name)
1550 {
1551 gfc_interface *psave, *q, *qlast;
1552
1553 psave = p;
1554 for (; p; p = p->next)
1555 {
1556 /* Make sure all symbols in the interface have been defined as
1557 functions or subroutines. */
1558 if (((!p->sym->attr.function && !p->sym->attr.subroutine)
1559 || !p->sym->attr.if_source)
1560 && p->sym->attr.flavor != FL_DERIVED)
1561 {
1562 if (p->sym->attr.external)
1563 gfc_error ("Procedure '%s' in %s at %L has no explicit interface",
1564 p->sym->name, interface_name, &p->sym->declared_at);
1565 else
1566 gfc_error ("Procedure '%s' in %s at %L is neither function nor "
1567 "subroutine", p->sym->name, interface_name,
1568 &p->sym->declared_at);
1569 return 1;
1570 }
1571
1572 /* Verify that procedures are either all SUBROUTINEs or all FUNCTIONs. */
1573 if ((psave->sym->attr.function && !p->sym->attr.function
1574 && p->sym->attr.flavor != FL_DERIVED)
1575 || (psave->sym->attr.subroutine && !p->sym->attr.subroutine))
1576 {
1577 if (p->sym->attr.flavor != FL_DERIVED)
1578 gfc_error ("In %s at %L procedures must be either all SUBROUTINEs"
1579 " or all FUNCTIONs", interface_name,
1580 &p->sym->declared_at);
1581 else
1582 gfc_error ("In %s at %L procedures must be all FUNCTIONs as the "
1583 "generic name is also the name of a derived type",
1584 interface_name, &p->sym->declared_at);
1585 return 1;
1586 }
1587
1588 /* F2003, C1207. F2008, C1207. */
1589 if (p->sym->attr.proc == PROC_INTERNAL
1590 && !gfc_notify_std (GFC_STD_F2008, "Internal procedure "
1591 "'%s' in %s at %L", p->sym->name,
1592 interface_name, &p->sym->declared_at))
1593 return 1;
1594 }
1595 p = psave;
1596
1597 /* Remove duplicate interfaces in this interface list. */
1598 for (; p; p = p->next)
1599 {
1600 qlast = p;
1601
1602 for (q = p->next; q;)
1603 {
1604 if (p->sym != q->sym)
1605 {
1606 qlast = q;
1607 q = q->next;
1608 }
1609 else
1610 {
1611 /* Duplicate interface. */
1612 qlast->next = q->next;
1613 free (q);
1614 q = qlast->next;
1615 }
1616 }
1617 }
1618
1619 return 0;
1620 }
1621
1622
1623 /* Check lists of interfaces to make sure that no two interfaces are
1624 ambiguous. Duplicate interfaces (from the same symbol) are OK here. */
1625
1626 static int
1627 check_interface1 (gfc_interface *p, gfc_interface *q0,
1628 int generic_flag, const char *interface_name,
1629 bool referenced)
1630 {
1631 gfc_interface *q;
1632 for (; p; p = p->next)
1633 for (q = q0; q; q = q->next)
1634 {
1635 if (p->sym == q->sym)
1636 continue; /* Duplicates OK here. */
1637
1638 if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
1639 continue;
1640
1641 if (p->sym->attr.flavor != FL_DERIVED
1642 && q->sym->attr.flavor != FL_DERIVED
1643 && gfc_compare_interfaces (p->sym, q->sym, q->sym->name,
1644 generic_flag, 0, NULL, 0, NULL, NULL))
1645 {
1646 if (referenced)
1647 gfc_error ("Ambiguous interfaces '%s' and '%s' in %s at %L",
1648 p->sym->name, q->sym->name, interface_name,
1649 &p->where);
1650 else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
1651 gfc_warning ("Ambiguous interfaces '%s' and '%s' in %s at %L",
1652 p->sym->name, q->sym->name, interface_name,
1653 &p->where);
1654 else
1655 gfc_warning ("Although not referenced, '%s' has ambiguous "
1656 "interfaces at %L", interface_name, &p->where);
1657 return 1;
1658 }
1659 }
1660 return 0;
1661 }
1662
1663
1664 /* Check the generic and operator interfaces of symbols to make sure
1665 that none of the interfaces conflict. The check has to be done
1666 after all of the symbols are actually loaded. */
1667
1668 static void
1669 check_sym_interfaces (gfc_symbol *sym)
1670 {
1671 char interface_name[100];
1672 gfc_interface *p;
1673
1674 if (sym->ns != gfc_current_ns)
1675 return;
1676
1677 if (sym->generic != NULL)
1678 {
1679 sprintf (interface_name, "generic interface '%s'", sym->name);
1680 if (check_interface0 (sym->generic, interface_name))
1681 return;
1682
1683 for (p = sym->generic; p; p = p->next)
1684 {
1685 if (p->sym->attr.mod_proc
1686 && (p->sym->attr.if_source != IFSRC_DECL
1687 || p->sym->attr.procedure))
1688 {
1689 gfc_error ("'%s' at %L is not a module procedure",
1690 p->sym->name, &p->where);
1691 return;
1692 }
1693 }
1694
1695 /* Originally, this test was applied to host interfaces too;
1696 this is incorrect since host associated symbols, from any
1697 source, cannot be ambiguous with local symbols. */
1698 check_interface1 (sym->generic, sym->generic, 1, interface_name,
1699 sym->attr.referenced || !sym->attr.use_assoc);
1700 }
1701 }
1702
1703
1704 static void
1705 check_uop_interfaces (gfc_user_op *uop)
1706 {
1707 char interface_name[100];
1708 gfc_user_op *uop2;
1709 gfc_namespace *ns;
1710
1711 sprintf (interface_name, "operator interface '%s'", uop->name);
1712 if (check_interface0 (uop->op, interface_name))
1713 return;
1714
1715 for (ns = gfc_current_ns; ns; ns = ns->parent)
1716 {
1717 uop2 = gfc_find_uop (uop->name, ns);
1718 if (uop2 == NULL)
1719 continue;
1720
1721 check_interface1 (uop->op, uop2->op, 0,
1722 interface_name, true);
1723 }
1724 }
1725
1726 /* Given an intrinsic op, return an equivalent op if one exists,
1727 or INTRINSIC_NONE otherwise. */
1728
1729 gfc_intrinsic_op
1730 gfc_equivalent_op (gfc_intrinsic_op op)
1731 {
1732 switch(op)
1733 {
1734 case INTRINSIC_EQ:
1735 return INTRINSIC_EQ_OS;
1736
1737 case INTRINSIC_EQ_OS:
1738 return INTRINSIC_EQ;
1739
1740 case INTRINSIC_NE:
1741 return INTRINSIC_NE_OS;
1742
1743 case INTRINSIC_NE_OS:
1744 return INTRINSIC_NE;
1745
1746 case INTRINSIC_GT:
1747 return INTRINSIC_GT_OS;
1748
1749 case INTRINSIC_GT_OS:
1750 return INTRINSIC_GT;
1751
1752 case INTRINSIC_GE:
1753 return INTRINSIC_GE_OS;
1754
1755 case INTRINSIC_GE_OS:
1756 return INTRINSIC_GE;
1757
1758 case INTRINSIC_LT:
1759 return INTRINSIC_LT_OS;
1760
1761 case INTRINSIC_LT_OS:
1762 return INTRINSIC_LT;
1763
1764 case INTRINSIC_LE:
1765 return INTRINSIC_LE_OS;
1766
1767 case INTRINSIC_LE_OS:
1768 return INTRINSIC_LE;
1769
1770 default:
1771 return INTRINSIC_NONE;
1772 }
1773 }
1774
1775 /* For the namespace, check generic, user operator and intrinsic
1776 operator interfaces for consistency and to remove duplicate
1777 interfaces. We traverse the whole namespace, counting on the fact
1778 that most symbols will not have generic or operator interfaces. */
1779
1780 void
1781 gfc_check_interfaces (gfc_namespace *ns)
1782 {
1783 gfc_namespace *old_ns, *ns2;
1784 char interface_name[100];
1785 int i;
1786
1787 old_ns = gfc_current_ns;
1788 gfc_current_ns = ns;
1789
1790 gfc_traverse_ns (ns, check_sym_interfaces);
1791
1792 gfc_traverse_user_op (ns, check_uop_interfaces);
1793
1794 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
1795 {
1796 if (i == INTRINSIC_USER)
1797 continue;
1798
1799 if (i == INTRINSIC_ASSIGN)
1800 strcpy (interface_name, "intrinsic assignment operator");
1801 else
1802 sprintf (interface_name, "intrinsic '%s' operator",
1803 gfc_op2string ((gfc_intrinsic_op) i));
1804
1805 if (check_interface0 (ns->op[i], interface_name))
1806 continue;
1807
1808 if (ns->op[i])
1809 gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i,
1810 ns->op[i]->where);
1811
1812 for (ns2 = ns; ns2; ns2 = ns2->parent)
1813 {
1814 gfc_intrinsic_op other_op;
1815
1816 if (check_interface1 (ns->op[i], ns2->op[i], 0,
1817 interface_name, true))
1818 goto done;
1819
1820 /* i should be gfc_intrinsic_op, but has to be int with this cast
1821 here for stupid C++ compatibility rules. */
1822 other_op = gfc_equivalent_op ((gfc_intrinsic_op) i);
1823 if (other_op != INTRINSIC_NONE
1824 && check_interface1 (ns->op[i], ns2->op[other_op],
1825 0, interface_name, true))
1826 goto done;
1827 }
1828 }
1829
1830 done:
1831 gfc_current_ns = old_ns;
1832 }
1833
1834
1835 /* Given a symbol of a formal argument list and an expression, if the
1836 formal argument is allocatable, check that the actual argument is
1837 allocatable. Returns nonzero if compatible, zero if not compatible. */
1838
1839 static int
1840 compare_allocatable (gfc_symbol *formal, gfc_expr *actual)
1841 {
1842 symbol_attribute attr;
1843
1844 if (formal->attr.allocatable
1845 || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.allocatable))
1846 {
1847 attr = gfc_expr_attr (actual);
1848 if (!attr.allocatable)
1849 return 0;
1850 }
1851
1852 return 1;
1853 }
1854
1855
1856 /* Given a symbol of a formal argument list and an expression, if the
1857 formal argument is a pointer, see if the actual argument is a
1858 pointer. Returns nonzero if compatible, zero if not compatible. */
1859
1860 static int
1861 compare_pointer (gfc_symbol *formal, gfc_expr *actual)
1862 {
1863 symbol_attribute attr;
1864
1865 if (formal->attr.pointer
1866 || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)
1867 && CLASS_DATA (formal)->attr.class_pointer))
1868 {
1869 attr = gfc_expr_attr (actual);
1870
1871 /* Fortran 2008 allows non-pointer actual arguments. */
1872 if (!attr.pointer && attr.target && formal->attr.intent == INTENT_IN)
1873 return 2;
1874
1875 if (!attr.pointer)
1876 return 0;
1877 }
1878
1879 return 1;
1880 }
1881
1882
1883 /* Emit clear error messages for rank mismatch. */
1884
1885 static void
1886 argument_rank_mismatch (const char *name, locus *where,
1887 int rank1, int rank2)
1888 {
1889
1890 /* TS 29113, C407b. */
1891 if (rank2 == -1)
1892 {
1893 gfc_error ("The assumed-rank array at %L requires that the dummy argument"
1894 " '%s' has assumed-rank", where, name);
1895 }
1896 else if (rank1 == 0)
1897 {
1898 gfc_error ("Rank mismatch in argument '%s' at %L "
1899 "(scalar and rank-%d)", name, where, rank2);
1900 }
1901 else if (rank2 == 0)
1902 {
1903 gfc_error ("Rank mismatch in argument '%s' at %L "
1904 "(rank-%d and scalar)", name, where, rank1);
1905 }
1906 else
1907 {
1908 gfc_error ("Rank mismatch in argument '%s' at %L "
1909 "(rank-%d and rank-%d)", name, where, rank1, rank2);
1910 }
1911 }
1912
1913
1914 /* Given a symbol of a formal argument list and an expression, see if
1915 the two are compatible as arguments. Returns nonzero if
1916 compatible, zero if not compatible. */
1917
1918 static int
1919 compare_parameter (gfc_symbol *formal, gfc_expr *actual,
1920 int ranks_must_agree, int is_elemental, locus *where)
1921 {
1922 gfc_ref *ref;
1923 bool rank_check, is_pointer;
1924
1925 /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
1926 procs c_f_pointer or c_f_procpointer, and we need to accept most
1927 pointers the user could give us. This should allow that. */
1928 if (formal->ts.type == BT_VOID)
1929 return 1;
1930
1931 if (formal->ts.type == BT_DERIVED
1932 && formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c
1933 && actual->ts.type == BT_DERIVED
1934 && actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c)
1935 return 1;
1936
1937 if (formal->ts.type == BT_CLASS && actual->ts.type == BT_DERIVED)
1938 /* Make sure the vtab symbol is present when
1939 the module variables are generated. */
1940 gfc_find_derived_vtab (actual->ts.u.derived);
1941
1942 if (actual->ts.type == BT_PROCEDURE)
1943 {
1944 char err[200];
1945 gfc_symbol *act_sym = actual->symtree->n.sym;
1946
1947 if (formal->attr.flavor != FL_PROCEDURE)
1948 {
1949 if (where)
1950 gfc_error ("Invalid procedure argument at %L", &actual->where);
1951 return 0;
1952 }
1953
1954 if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err,
1955 sizeof(err), NULL, NULL))
1956 {
1957 if (where)
1958 gfc_error ("Interface mismatch in dummy procedure '%s' at %L: %s",
1959 formal->name, &actual->where, err);
1960 return 0;
1961 }
1962
1963 if (formal->attr.function && !act_sym->attr.function)
1964 {
1965 gfc_add_function (&act_sym->attr, act_sym->name,
1966 &act_sym->declared_at);
1967 if (act_sym->ts.type == BT_UNKNOWN
1968 && !gfc_set_default_type (act_sym, 1, act_sym->ns))
1969 return 0;
1970 }
1971 else if (formal->attr.subroutine && !act_sym->attr.subroutine)
1972 gfc_add_subroutine (&act_sym->attr, act_sym->name,
1973 &act_sym->declared_at);
1974
1975 return 1;
1976 }
1977
1978 /* F2008, C1241. */
1979 if (formal->attr.pointer && formal->attr.contiguous
1980 && !gfc_is_simply_contiguous (actual, true))
1981 {
1982 if (where)
1983 gfc_error ("Actual argument to contiguous pointer dummy '%s' at %L "
1984 "must be simply contiguous", formal->name, &actual->where);
1985 return 0;
1986 }
1987
1988 if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
1989 && actual->ts.type != BT_HOLLERITH
1990 && formal->ts.type != BT_ASSUMED
1991 && !(formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
1992 && !gfc_compare_types (&formal->ts, &actual->ts)
1993 && !(formal->ts.type == BT_DERIVED && actual->ts.type == BT_CLASS
1994 && gfc_compare_derived_types (formal->ts.u.derived,
1995 CLASS_DATA (actual)->ts.u.derived)))
1996 {
1997 if (where)
1998 gfc_error ("Type mismatch in argument '%s' at %L; passed %s to %s",
1999 formal->name, &actual->where, gfc_typename (&actual->ts),
2000 gfc_typename (&formal->ts));
2001 return 0;
2002 }
2003
2004 if (actual->ts.type == BT_ASSUMED && formal->ts.type != BT_ASSUMED)
2005 {
2006 if (where)
2007 gfc_error ("Assumed-type actual argument at %L requires that dummy "
2008 "argument '%s' is of assumed type", &actual->where,
2009 formal->name);
2010 return 0;
2011 }
2012
2013 /* F2008, 12.5.2.5; IR F08/0073. */
2014 if (formal->ts.type == BT_CLASS && formal->attr.class_ok
2015 && actual->expr_type != EXPR_NULL
2016 && ((CLASS_DATA (formal)->attr.class_pointer
2017 && !formal->attr.intent == INTENT_IN)
2018 || CLASS_DATA (formal)->attr.allocatable))
2019 {
2020 if (actual->ts.type != BT_CLASS)
2021 {
2022 if (where)
2023 gfc_error ("Actual argument to '%s' at %L must be polymorphic",
2024 formal->name, &actual->where);
2025 return 0;
2026 }
2027
2028 if (!gfc_expr_attr (actual).class_ok)
2029 return 0;
2030
2031 if ((!UNLIMITED_POLY (formal) || !UNLIMITED_POLY(actual))
2032 && !gfc_compare_derived_types (CLASS_DATA (actual)->ts.u.derived,
2033 CLASS_DATA (formal)->ts.u.derived))
2034 {
2035 if (where)
2036 gfc_error ("Actual argument to '%s' at %L must have the same "
2037 "declared type", formal->name, &actual->where);
2038 return 0;
2039 }
2040 }
2041
2042 /* F08: 12.5.2.5 Allocatable and pointer dummy variables. However, this
2043 is necessary also for F03, so retain error for both.
2044 NOTE: Other type/kind errors pre-empt this error. Since they are F03
2045 compatible, no attempt has been made to channel to this one. */
2046 if (UNLIMITED_POLY (formal) && !UNLIMITED_POLY (actual)
2047 && (CLASS_DATA (formal)->attr.allocatable
2048 ||CLASS_DATA (formal)->attr.class_pointer))
2049 {
2050 if (where)
2051 gfc_error ("Actual argument to '%s' at %L must be unlimited "
2052 "polymorphic since the formal argument is a "
2053 "pointer or allocatable unlimited polymorphic "
2054 "entity [F2008: 12.5.2.5]", formal->name,
2055 &actual->where);
2056 return 0;
2057 }
2058
2059 if (formal->attr.codimension && !gfc_is_coarray (actual))
2060 {
2061 if (where)
2062 gfc_error ("Actual argument to '%s' at %L must be a coarray",
2063 formal->name, &actual->where);
2064 return 0;
2065 }
2066
2067 if (formal->attr.codimension && formal->attr.allocatable)
2068 {
2069 gfc_ref *last = NULL;
2070
2071 for (ref = actual->ref; ref; ref = ref->next)
2072 if (ref->type == REF_COMPONENT)
2073 last = ref;
2074
2075 /* F2008, 12.5.2.6. */
2076 if ((last && last->u.c.component->as->corank != formal->as->corank)
2077 || (!last
2078 && actual->symtree->n.sym->as->corank != formal->as->corank))
2079 {
2080 if (where)
2081 gfc_error ("Corank mismatch in argument '%s' at %L (%d and %d)",
2082 formal->name, &actual->where, formal->as->corank,
2083 last ? last->u.c.component->as->corank
2084 : actual->symtree->n.sym->as->corank);
2085 return 0;
2086 }
2087 }
2088
2089 if (formal->attr.codimension)
2090 {
2091 /* F2008, 12.5.2.8. */
2092 if (formal->attr.dimension
2093 && (formal->attr.contiguous || formal->as->type != AS_ASSUMED_SHAPE)
2094 && gfc_expr_attr (actual).dimension
2095 && !gfc_is_simply_contiguous (actual, true))
2096 {
2097 if (where)
2098 gfc_error ("Actual argument to '%s' at %L must be simply "
2099 "contiguous", formal->name, &actual->where);
2100 return 0;
2101 }
2102
2103 /* F2008, C1303 and C1304. */
2104 if (formal->attr.intent != INTENT_INOUT
2105 && (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS)
2106 && formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
2107 && formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
2108 || formal->attr.lock_comp))
2109
2110 {
2111 if (where)
2112 gfc_error ("Actual argument to non-INTENT(INOUT) dummy '%s' at %L, "
2113 "which is LOCK_TYPE or has a LOCK_TYPE component",
2114 formal->name, &actual->where);
2115 return 0;
2116 }
2117 }
2118
2119 /* F2008, C1239/C1240. */
2120 if (actual->expr_type == EXPR_VARIABLE
2121 && (actual->symtree->n.sym->attr.asynchronous
2122 || actual->symtree->n.sym->attr.volatile_)
2123 && (formal->attr.asynchronous || formal->attr.volatile_)
2124 && actual->rank && formal->as && !gfc_is_simply_contiguous (actual, true)
2125 && ((formal->as->type != AS_ASSUMED_SHAPE
2126 && formal->as->type != AS_ASSUMED_RANK && !formal->attr.pointer)
2127 || formal->attr.contiguous))
2128 {
2129 if (where)
2130 gfc_error ("Dummy argument '%s' has to be a pointer, assumed-shape or "
2131 "assumed-rank array without CONTIGUOUS attribute - as actual"
2132 " argument at %L is not simply contiguous and both are "
2133 "ASYNCHRONOUS or VOLATILE", formal->name, &actual->where);
2134 return 0;
2135 }
2136
2137 if (formal->attr.allocatable && !formal->attr.codimension
2138 && gfc_expr_attr (actual).codimension)
2139 {
2140 if (formal->attr.intent == INTENT_OUT)
2141 {
2142 if (where)
2143 gfc_error ("Passing coarray at %L to allocatable, noncoarray, "
2144 "INTENT(OUT) dummy argument '%s'", &actual->where,
2145 formal->name);
2146 return 0;
2147 }
2148 else if (gfc_option.warn_surprising && where
2149 && formal->attr.intent != INTENT_IN)
2150 gfc_warning ("Passing coarray at %L to allocatable, noncoarray dummy "
2151 "argument '%s', which is invalid if the allocation status"
2152 " is modified", &actual->where, formal->name);
2153 }
2154
2155 /* If the rank is the same or the formal argument has assumed-rank. */
2156 if (symbol_rank (formal) == actual->rank || symbol_rank (formal) == -1)
2157 return 1;
2158
2159 if (actual->ts.type == BT_CLASS && CLASS_DATA (actual)->as
2160 && CLASS_DATA (actual)->as->rank == symbol_rank (formal))
2161 return 1;
2162
2163 rank_check = where != NULL && !is_elemental && formal->as
2164 && (formal->as->type == AS_ASSUMED_SHAPE
2165 || formal->as->type == AS_DEFERRED)
2166 && actual->expr_type != EXPR_NULL;
2167
2168 /* Skip rank checks for NO_ARG_CHECK. */
2169 if (formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2170 return 1;
2171
2172 /* Scalar & coindexed, see: F2008, Section 12.5.2.4. */
2173 if (rank_check || ranks_must_agree
2174 || (formal->attr.pointer && actual->expr_type != EXPR_NULL)
2175 || (actual->rank != 0 && !(is_elemental || formal->attr.dimension))
2176 || (actual->rank == 0
2177 && ((formal->ts.type == BT_CLASS
2178 && CLASS_DATA (formal)->as->type == AS_ASSUMED_SHAPE)
2179 || (formal->ts.type != BT_CLASS
2180 && formal->as->type == AS_ASSUMED_SHAPE))
2181 && actual->expr_type != EXPR_NULL)
2182 || (actual->rank == 0 && formal->attr.dimension
2183 && gfc_is_coindexed (actual)))
2184 {
2185 if (where)
2186 argument_rank_mismatch (formal->name, &actual->where,
2187 symbol_rank (formal), actual->rank);
2188 return 0;
2189 }
2190 else if (actual->rank != 0 && (is_elemental || formal->attr.dimension))
2191 return 1;
2192
2193 /* At this point, we are considering a scalar passed to an array. This
2194 is valid (cf. F95 12.4.1.1, F2003 12.4.1.2, and F2008 12.5.2.4),
2195 - if the actual argument is (a substring of) an element of a
2196 non-assumed-shape/non-pointer/non-polymorphic array; or
2197 - (F2003) if the actual argument is of type character of default/c_char
2198 kind. */
2199
2200 is_pointer = actual->expr_type == EXPR_VARIABLE
2201 ? actual->symtree->n.sym->attr.pointer : false;
2202
2203 for (ref = actual->ref; ref; ref = ref->next)
2204 {
2205 if (ref->type == REF_COMPONENT)
2206 is_pointer = ref->u.c.component->attr.pointer;
2207 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
2208 && ref->u.ar.dimen > 0
2209 && (!ref->next
2210 || (ref->next->type == REF_SUBSTRING && !ref->next->next)))
2211 break;
2212 }
2213
2214 if (actual->ts.type == BT_CLASS && actual->expr_type != EXPR_NULL)
2215 {
2216 if (where)
2217 gfc_error ("Polymorphic scalar passed to array dummy argument '%s' "
2218 "at %L", formal->name, &actual->where);
2219 return 0;
2220 }
2221
2222 if (actual->expr_type != EXPR_NULL && ref && actual->ts.type != BT_CHARACTER
2223 && (is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
2224 {
2225 if (where)
2226 gfc_error ("Element of assumed-shaped or pointer "
2227 "array passed to array dummy argument '%s' at %L",
2228 formal->name, &actual->where);
2229 return 0;
2230 }
2231
2232 if (actual->ts.type == BT_CHARACTER && actual->expr_type != EXPR_NULL
2233 && (!ref || is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
2234 {
2235 if (formal->ts.kind != 1 && (gfc_option.allow_std & GFC_STD_GNU) == 0)
2236 {
2237 if (where)
2238 gfc_error ("Extension: Scalar non-default-kind, non-C_CHAR-kind "
2239 "CHARACTER actual argument with array dummy argument "
2240 "'%s' at %L", formal->name, &actual->where);
2241 return 0;
2242 }
2243
2244 if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0)
2245 {
2246 gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
2247 "array dummy argument '%s' at %L",
2248 formal->name, &actual->where);
2249 return 0;
2250 }
2251 else if ((gfc_option.allow_std & GFC_STD_F2003) == 0)
2252 return 0;
2253 else
2254 return 1;
2255 }
2256
2257 if (ref == NULL && actual->expr_type != EXPR_NULL)
2258 {
2259 if (where)
2260 argument_rank_mismatch (formal->name, &actual->where,
2261 symbol_rank (formal), actual->rank);
2262 return 0;
2263 }
2264
2265 return 1;
2266 }
2267
2268
2269 /* Returns the storage size of a symbol (formal argument) or
2270 zero if it cannot be determined. */
2271
2272 static unsigned long
2273 get_sym_storage_size (gfc_symbol *sym)
2274 {
2275 int i;
2276 unsigned long strlen, elements;
2277
2278 if (sym->ts.type == BT_CHARACTER)
2279 {
2280 if (sym->ts.u.cl && sym->ts.u.cl->length
2281 && sym->ts.u.cl->length->expr_type == EXPR_CONSTANT)
2282 strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer);
2283 else
2284 return 0;
2285 }
2286 else
2287 strlen = 1;
2288
2289 if (symbol_rank (sym) == 0)
2290 return strlen;
2291
2292 elements = 1;
2293 if (sym->as->type != AS_EXPLICIT)
2294 return 0;
2295 for (i = 0; i < sym->as->rank; i++)
2296 {
2297 if (sym->as->upper[i]->expr_type != EXPR_CONSTANT
2298 || sym->as->lower[i]->expr_type != EXPR_CONSTANT)
2299 return 0;
2300
2301 elements *= mpz_get_si (sym->as->upper[i]->value.integer)
2302 - mpz_get_si (sym->as->lower[i]->value.integer) + 1L;
2303 }
2304
2305 return strlen*elements;
2306 }
2307
2308
2309 /* Returns the storage size of an expression (actual argument) or
2310 zero if it cannot be determined. For an array element, it returns
2311 the remaining size as the element sequence consists of all storage
2312 units of the actual argument up to the end of the array. */
2313
2314 static unsigned long
2315 get_expr_storage_size (gfc_expr *e)
2316 {
2317 int i;
2318 long int strlen, elements;
2319 long int substrlen = 0;
2320 bool is_str_storage = false;
2321 gfc_ref *ref;
2322
2323 if (e == NULL)
2324 return 0;
2325
2326 if (e->ts.type == BT_CHARACTER)
2327 {
2328 if (e->ts.u.cl && e->ts.u.cl->length
2329 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
2330 strlen = mpz_get_si (e->ts.u.cl->length->value.integer);
2331 else if (e->expr_type == EXPR_CONSTANT
2332 && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
2333 strlen = e->value.character.length;
2334 else
2335 return 0;
2336 }
2337 else
2338 strlen = 1; /* Length per element. */
2339
2340 if (e->rank == 0 && !e->ref)
2341 return strlen;
2342
2343 elements = 1;
2344 if (!e->ref)
2345 {
2346 if (!e->shape)
2347 return 0;
2348 for (i = 0; i < e->rank; i++)
2349 elements *= mpz_get_si (e->shape[i]);
2350 return elements*strlen;
2351 }
2352
2353 for (ref = e->ref; ref; ref = ref->next)
2354 {
2355 if (ref->type == REF_SUBSTRING && ref->u.ss.start
2356 && ref->u.ss.start->expr_type == EXPR_CONSTANT)
2357 {
2358 if (is_str_storage)
2359 {
2360 /* The string length is the substring length.
2361 Set now to full string length. */
2362 if (!ref->u.ss.length || !ref->u.ss.length->length
2363 || ref->u.ss.length->length->expr_type != EXPR_CONSTANT)
2364 return 0;
2365
2366 strlen = mpz_get_ui (ref->u.ss.length->length->value.integer);
2367 }
2368 substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1;
2369 continue;
2370 }
2371
2372 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
2373 for (i = 0; i < ref->u.ar.dimen; i++)
2374 {
2375 long int start, end, stride;
2376 stride = 1;
2377
2378 if (ref->u.ar.stride[i])
2379 {
2380 if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT)
2381 stride = mpz_get_si (ref->u.ar.stride[i]->value.integer);
2382 else
2383 return 0;
2384 }
2385
2386 if (ref->u.ar.start[i])
2387 {
2388 if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT)
2389 start = mpz_get_si (ref->u.ar.start[i]->value.integer);
2390 else
2391 return 0;
2392 }
2393 else if (ref->u.ar.as->lower[i]
2394 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT)
2395 start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer);
2396 else
2397 return 0;
2398
2399 if (ref->u.ar.end[i])
2400 {
2401 if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT)
2402 end = mpz_get_si (ref->u.ar.end[i]->value.integer);
2403 else
2404 return 0;
2405 }
2406 else if (ref->u.ar.as->upper[i]
2407 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
2408 end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer);
2409 else
2410 return 0;
2411
2412 elements *= (end - start)/stride + 1L;
2413 }
2414 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL)
2415 for (i = 0; i < ref->u.ar.as->rank; i++)
2416 {
2417 if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i]
2418 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
2419 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
2420 elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
2421 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
2422 + 1L;
2423 else
2424 return 0;
2425 }
2426 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
2427 && e->expr_type == EXPR_VARIABLE)
2428 {
2429 if (ref->u.ar.as->type == AS_ASSUMED_SHAPE
2430 || e->symtree->n.sym->attr.pointer)
2431 {
2432 elements = 1;
2433 continue;
2434 }
2435
2436 /* Determine the number of remaining elements in the element
2437 sequence for array element designators. */
2438 is_str_storage = true;
2439 for (i = ref->u.ar.dimen - 1; i >= 0; i--)
2440 {
2441 if (ref->u.ar.start[i] == NULL
2442 || ref->u.ar.start[i]->expr_type != EXPR_CONSTANT
2443 || ref->u.ar.as->upper[i] == NULL
2444 || ref->u.ar.as->lower[i] == NULL
2445 || ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT
2446 || ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT)
2447 return 0;
2448
2449 elements
2450 = elements
2451 * (mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
2452 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
2453 + 1L)
2454 - (mpz_get_si (ref->u.ar.start[i]->value.integer)
2455 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer));
2456 }
2457 }
2458 else if (ref->type == REF_COMPONENT && ref->u.c.component->attr.function
2459 && ref->u.c.component->attr.proc_pointer
2460 && ref->u.c.component->attr.dimension)
2461 {
2462 /* Array-valued procedure-pointer components. */
2463 gfc_array_spec *as = ref->u.c.component->as;
2464 for (i = 0; i < as->rank; i++)
2465 {
2466 if (!as->upper[i] || !as->lower[i]
2467 || as->upper[i]->expr_type != EXPR_CONSTANT
2468 || as->lower[i]->expr_type != EXPR_CONSTANT)
2469 return 0;
2470
2471 elements = elements
2472 * (mpz_get_si (as->upper[i]->value.integer)
2473 - mpz_get_si (as->lower[i]->value.integer) + 1L);
2474 }
2475 }
2476 }
2477
2478 if (substrlen)
2479 return (is_str_storage) ? substrlen + (elements-1)*strlen
2480 : elements*strlen;
2481 else
2482 return elements*strlen;
2483 }
2484
2485
2486 /* Given an expression, check whether it is an array section
2487 which has a vector subscript. If it has, one is returned,
2488 otherwise zero. */
2489
2490 int
2491 gfc_has_vector_subscript (gfc_expr *e)
2492 {
2493 int i;
2494 gfc_ref *ref;
2495
2496 if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE)
2497 return 0;
2498
2499 for (ref = e->ref; ref; ref = ref->next)
2500 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
2501 for (i = 0; i < ref->u.ar.dimen; i++)
2502 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
2503 return 1;
2504
2505 return 0;
2506 }
2507
2508
2509 /* Given formal and actual argument lists, see if they are compatible.
2510 If they are compatible, the actual argument list is sorted to
2511 correspond with the formal list, and elements for missing optional
2512 arguments are inserted. If WHERE pointer is nonnull, then we issue
2513 errors when things don't match instead of just returning the status
2514 code. */
2515
2516 static int
2517 compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal,
2518 int ranks_must_agree, int is_elemental, locus *where)
2519 {
2520 gfc_actual_arglist **new_arg, *a, *actual, temp;
2521 gfc_formal_arglist *f;
2522 int i, n, na;
2523 unsigned long actual_size, formal_size;
2524 bool full_array = false;
2525
2526 actual = *ap;
2527
2528 if (actual == NULL && formal == NULL)
2529 return 1;
2530
2531 n = 0;
2532 for (f = formal; f; f = f->next)
2533 n++;
2534
2535 new_arg = XALLOCAVEC (gfc_actual_arglist *, n);
2536
2537 for (i = 0; i < n; i++)
2538 new_arg[i] = NULL;
2539
2540 na = 0;
2541 f = formal;
2542 i = 0;
2543
2544 for (a = actual; a; a = a->next, f = f->next)
2545 {
2546 /* Look for keywords but ignore g77 extensions like %VAL. */
2547 if (a->name != NULL && a->name[0] != '%')
2548 {
2549 i = 0;
2550 for (f = formal; f; f = f->next, i++)
2551 {
2552 if (f->sym == NULL)
2553 continue;
2554 if (strcmp (f->sym->name, a->name) == 0)
2555 break;
2556 }
2557
2558 if (f == NULL)
2559 {
2560 if (where)
2561 gfc_error ("Keyword argument '%s' at %L is not in "
2562 "the procedure", a->name, &a->expr->where);
2563 return 0;
2564 }
2565
2566 if (new_arg[i] != NULL)
2567 {
2568 if (where)
2569 gfc_error ("Keyword argument '%s' at %L is already associated "
2570 "with another actual argument", a->name,
2571 &a->expr->where);
2572 return 0;
2573 }
2574 }
2575
2576 if (f == NULL)
2577 {
2578 if (where)
2579 gfc_error ("More actual than formal arguments in procedure "
2580 "call at %L", where);
2581
2582 return 0;
2583 }
2584
2585 if (f->sym == NULL && a->expr == NULL)
2586 goto match;
2587
2588 if (f->sym == NULL)
2589 {
2590 if (where)
2591 gfc_error ("Missing alternate return spec in subroutine call "
2592 "at %L", where);
2593 return 0;
2594 }
2595
2596 if (a->expr == NULL)
2597 {
2598 if (where)
2599 gfc_error ("Unexpected alternate return spec in subroutine "
2600 "call at %L", where);
2601 return 0;
2602 }
2603
2604 /* Make sure that intrinsic vtables exist for calls to unlimited
2605 polymorphic formal arguments. */
2606 if (UNLIMITED_POLY (f->sym)
2607 && a->expr->ts.type != BT_DERIVED
2608 && a->expr->ts.type != BT_CLASS)
2609 gfc_find_vtab (&a->expr->ts);
2610
2611 if (a->expr->expr_type == EXPR_NULL
2612 && ((f->sym->ts.type != BT_CLASS && !f->sym->attr.pointer
2613 && (f->sym->attr.allocatable || !f->sym->attr.optional
2614 || (gfc_option.allow_std & GFC_STD_F2008) == 0))
2615 || (f->sym->ts.type == BT_CLASS
2616 && !CLASS_DATA (f->sym)->attr.class_pointer
2617 && (CLASS_DATA (f->sym)->attr.allocatable
2618 || !f->sym->attr.optional
2619 || (gfc_option.allow_std & GFC_STD_F2008) == 0))))
2620 {
2621 if (where
2622 && (!f->sym->attr.optional
2623 || (f->sym->ts.type != BT_CLASS && f->sym->attr.allocatable)
2624 || (f->sym->ts.type == BT_CLASS
2625 && CLASS_DATA (f->sym)->attr.allocatable)))
2626 gfc_error ("Unexpected NULL() intrinsic at %L to dummy '%s'",
2627 where, f->sym->name);
2628 else if (where)
2629 gfc_error ("Fortran 2008: Null pointer at %L to non-pointer "
2630 "dummy '%s'", where, f->sym->name);
2631
2632 return 0;
2633 }
2634
2635 if (!compare_parameter (f->sym, a->expr, ranks_must_agree,
2636 is_elemental, where))
2637 return 0;
2638
2639 /* TS 29113, 6.3p2. */
2640 if (f->sym->ts.type == BT_ASSUMED
2641 && (a->expr->ts.type == BT_DERIVED
2642 || (a->expr->ts.type == BT_CLASS && CLASS_DATA (a->expr))))
2643 {
2644 gfc_namespace *f2k_derived;
2645
2646 f2k_derived = a->expr->ts.type == BT_DERIVED
2647 ? a->expr->ts.u.derived->f2k_derived
2648 : CLASS_DATA (a->expr)->ts.u.derived->f2k_derived;
2649
2650 if (f2k_derived
2651 && (f2k_derived->finalizers || f2k_derived->tb_sym_root))
2652 {
2653 gfc_error ("Actual argument at %L to assumed-type dummy is of "
2654 "derived type with type-bound or FINAL procedures",
2655 &a->expr->where);
2656 return false;
2657 }
2658 }
2659
2660 /* Special case for character arguments. For allocatable, pointer
2661 and assumed-shape dummies, the string length needs to match
2662 exactly. */
2663 if (a->expr->ts.type == BT_CHARACTER
2664 && a->expr->ts.u.cl && a->expr->ts.u.cl->length
2665 && a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
2666 && f->sym->ts.u.cl && f->sym->ts.u.cl && f->sym->ts.u.cl->length
2667 && f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT
2668 && (f->sym->attr.pointer || f->sym->attr.allocatable
2669 || (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2670 && (mpz_cmp (a->expr->ts.u.cl->length->value.integer,
2671 f->sym->ts.u.cl->length->value.integer) != 0))
2672 {
2673 if (where && (f->sym->attr.pointer || f->sym->attr.allocatable))
2674 gfc_warning ("Character length mismatch (%ld/%ld) between actual "
2675 "argument and pointer or allocatable dummy argument "
2676 "'%s' at %L",
2677 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
2678 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
2679 f->sym->name, &a->expr->where);
2680 else if (where)
2681 gfc_warning ("Character length mismatch (%ld/%ld) between actual "
2682 "argument and assumed-shape dummy argument '%s' "
2683 "at %L",
2684 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
2685 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
2686 f->sym->name, &a->expr->where);
2687 return 0;
2688 }
2689
2690 if ((f->sym->attr.pointer || f->sym->attr.allocatable)
2691 && f->sym->ts.deferred != a->expr->ts.deferred
2692 && a->expr->ts.type == BT_CHARACTER)
2693 {
2694 if (where)
2695 gfc_error ("Actual argument at %L to allocatable or "
2696 "pointer dummy argument '%s' must have a deferred "
2697 "length type parameter if and only if the dummy has one",
2698 &a->expr->where, f->sym->name);
2699 return 0;
2700 }
2701
2702 if (f->sym->ts.type == BT_CLASS)
2703 goto skip_size_check;
2704
2705 actual_size = get_expr_storage_size (a->expr);
2706 formal_size = get_sym_storage_size (f->sym);
2707 if (actual_size != 0 && actual_size < formal_size
2708 && a->expr->ts.type != BT_PROCEDURE
2709 && f->sym->attr.flavor != FL_PROCEDURE)
2710 {
2711 if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where)
2712 gfc_warning ("Character length of actual argument shorter "
2713 "than of dummy argument '%s' (%lu/%lu) at %L",
2714 f->sym->name, actual_size, formal_size,
2715 &a->expr->where);
2716 else if (where)
2717 gfc_warning ("Actual argument contains too few "
2718 "elements for dummy argument '%s' (%lu/%lu) at %L",
2719 f->sym->name, actual_size, formal_size,
2720 &a->expr->where);
2721 return 0;
2722 }
2723
2724 skip_size_check:
2725
2726 /* Satisfy F03:12.4.1.3 by ensuring that a procedure pointer actual
2727 argument is provided for a procedure pointer formal argument. */
2728 if (f->sym->attr.proc_pointer
2729 && !((a->expr->expr_type == EXPR_VARIABLE
2730 && a->expr->symtree->n.sym->attr.proc_pointer)
2731 || (a->expr->expr_type == EXPR_FUNCTION
2732 && a->expr->symtree->n.sym->result->attr.proc_pointer)
2733 || gfc_is_proc_ptr_comp (a->expr)))
2734 {
2735 if (where)
2736 gfc_error ("Expected a procedure pointer for argument '%s' at %L",
2737 f->sym->name, &a->expr->where);
2738 return 0;
2739 }
2740
2741 /* Satisfy F03:12.4.1.3 by ensuring that a procedure actual argument is
2742 provided for a procedure formal argument. */
2743 if (f->sym->attr.flavor == FL_PROCEDURE
2744 && gfc_expr_attr (a->expr).flavor != FL_PROCEDURE)
2745 {
2746 if (where)
2747 gfc_error ("Expected a procedure for argument '%s' at %L",
2748 f->sym->name, &a->expr->where);
2749 return 0;
2750 }
2751
2752 if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE
2753 && a->expr->expr_type == EXPR_VARIABLE
2754 && a->expr->symtree->n.sym->as
2755 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
2756 && (a->expr->ref == NULL
2757 || (a->expr->ref->type == REF_ARRAY
2758 && a->expr->ref->u.ar.type == AR_FULL)))
2759 {
2760 if (where)
2761 gfc_error ("Actual argument for '%s' cannot be an assumed-size"
2762 " array at %L", f->sym->name, where);
2763 return 0;
2764 }
2765
2766 if (a->expr->expr_type != EXPR_NULL
2767 && compare_pointer (f->sym, a->expr) == 0)
2768 {
2769 if (where)
2770 gfc_error ("Actual argument for '%s' must be a pointer at %L",
2771 f->sym->name, &a->expr->where);
2772 return 0;
2773 }
2774
2775 if (a->expr->expr_type != EXPR_NULL
2776 && (gfc_option.allow_std & GFC_STD_F2008) == 0
2777 && compare_pointer (f->sym, a->expr) == 2)
2778 {
2779 if (where)
2780 gfc_error ("Fortran 2008: Non-pointer actual argument at %L to "
2781 "pointer dummy '%s'", &a->expr->where,f->sym->name);
2782 return 0;
2783 }
2784
2785
2786 /* Fortran 2008, C1242. */
2787 if (f->sym->attr.pointer && gfc_is_coindexed (a->expr))
2788 {
2789 if (where)
2790 gfc_error ("Coindexed actual argument at %L to pointer "
2791 "dummy '%s'",
2792 &a->expr->where, f->sym->name);
2793 return 0;
2794 }
2795
2796 /* Fortran 2008, 12.5.2.5 (no constraint). */
2797 if (a->expr->expr_type == EXPR_VARIABLE
2798 && f->sym->attr.intent != INTENT_IN
2799 && f->sym->attr.allocatable
2800 && gfc_is_coindexed (a->expr))
2801 {
2802 if (where)
2803 gfc_error ("Coindexed actual argument at %L to allocatable "
2804 "dummy '%s' requires INTENT(IN)",
2805 &a->expr->where, f->sym->name);
2806 return 0;
2807 }
2808
2809 /* Fortran 2008, C1237. */
2810 if (a->expr->expr_type == EXPR_VARIABLE
2811 && (f->sym->attr.asynchronous || f->sym->attr.volatile_)
2812 && gfc_is_coindexed (a->expr)
2813 && (a->expr->symtree->n.sym->attr.volatile_
2814 || a->expr->symtree->n.sym->attr.asynchronous))
2815 {
2816 if (where)
2817 gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at "
2818 "%L requires that dummy '%s' has neither "
2819 "ASYNCHRONOUS nor VOLATILE", &a->expr->where,
2820 f->sym->name);
2821 return 0;
2822 }
2823
2824 /* Fortran 2008, 12.5.2.4 (no constraint). */
2825 if (a->expr->expr_type == EXPR_VARIABLE
2826 && f->sym->attr.intent != INTENT_IN && !f->sym->attr.value
2827 && gfc_is_coindexed (a->expr)
2828 && gfc_has_ultimate_allocatable (a->expr))
2829 {
2830 if (where)
2831 gfc_error ("Coindexed actual argument at %L with allocatable "
2832 "ultimate component to dummy '%s' requires either VALUE "
2833 "or INTENT(IN)", &a->expr->where, f->sym->name);
2834 return 0;
2835 }
2836
2837 if (f->sym->ts.type == BT_CLASS
2838 && CLASS_DATA (f->sym)->attr.allocatable
2839 && gfc_is_class_array_ref (a->expr, &full_array)
2840 && !full_array)
2841 {
2842 if (where)
2843 gfc_error ("Actual CLASS array argument for '%s' must be a full "
2844 "array at %L", f->sym->name, &a->expr->where);
2845 return 0;
2846 }
2847
2848
2849 if (a->expr->expr_type != EXPR_NULL
2850 && compare_allocatable (f->sym, a->expr) == 0)
2851 {
2852 if (where)
2853 gfc_error ("Actual argument for '%s' must be ALLOCATABLE at %L",
2854 f->sym->name, &a->expr->where);
2855 return 0;
2856 }
2857
2858 /* Check intent = OUT/INOUT for definable actual argument. */
2859 if ((f->sym->attr.intent == INTENT_OUT
2860 || f->sym->attr.intent == INTENT_INOUT))
2861 {
2862 const char* context = (where
2863 ? _("actual argument to INTENT = OUT/INOUT")
2864 : NULL);
2865
2866 if (((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
2867 && CLASS_DATA (f->sym)->attr.class_pointer)
2868 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
2869 && !gfc_check_vardef_context (a->expr, true, false, false, context))
2870 return 0;
2871 if (!gfc_check_vardef_context (a->expr, false, false, false, context))
2872 return 0;
2873 }
2874
2875 if ((f->sym->attr.intent == INTENT_OUT
2876 || f->sym->attr.intent == INTENT_INOUT
2877 || f->sym->attr.volatile_
2878 || f->sym->attr.asynchronous)
2879 && gfc_has_vector_subscript (a->expr))
2880 {
2881 if (where)
2882 gfc_error ("Array-section actual argument with vector "
2883 "subscripts at %L is incompatible with INTENT(OUT), "
2884 "INTENT(INOUT), VOLATILE or ASYNCHRONOUS attribute "
2885 "of the dummy argument '%s'",
2886 &a->expr->where, f->sym->name);
2887 return 0;
2888 }
2889
2890 /* C1232 (R1221) For an actual argument which is an array section or
2891 an assumed-shape array, the dummy argument shall be an assumed-
2892 shape array, if the dummy argument has the VOLATILE attribute. */
2893
2894 if (f->sym->attr.volatile_
2895 && a->expr->symtree->n.sym->as
2896 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
2897 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2898 {
2899 if (where)
2900 gfc_error ("Assumed-shape actual argument at %L is "
2901 "incompatible with the non-assumed-shape "
2902 "dummy argument '%s' due to VOLATILE attribute",
2903 &a->expr->where,f->sym->name);
2904 return 0;
2905 }
2906
2907 if (f->sym->attr.volatile_
2908 && a->expr->ref && a->expr->ref->u.ar.type == AR_SECTION
2909 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2910 {
2911 if (where)
2912 gfc_error ("Array-section actual argument at %L is "
2913 "incompatible with the non-assumed-shape "
2914 "dummy argument '%s' due to VOLATILE attribute",
2915 &a->expr->where,f->sym->name);
2916 return 0;
2917 }
2918
2919 /* C1233 (R1221) For an actual argument which is a pointer array, the
2920 dummy argument shall be an assumed-shape or pointer array, if the
2921 dummy argument has the VOLATILE attribute. */
2922
2923 if (f->sym->attr.volatile_
2924 && a->expr->symtree->n.sym->attr.pointer
2925 && a->expr->symtree->n.sym->as
2926 && !(f->sym->as
2927 && (f->sym->as->type == AS_ASSUMED_SHAPE
2928 || f->sym->attr.pointer)))
2929 {
2930 if (where)
2931 gfc_error ("Pointer-array actual argument at %L requires "
2932 "an assumed-shape or pointer-array dummy "
2933 "argument '%s' due to VOLATILE attribute",
2934 &a->expr->where,f->sym->name);
2935 return 0;
2936 }
2937
2938 match:
2939 if (a == actual)
2940 na = i;
2941
2942 new_arg[i++] = a;
2943 }
2944
2945 /* Make sure missing actual arguments are optional. */
2946 i = 0;
2947 for (f = formal; f; f = f->next, i++)
2948 {
2949 if (new_arg[i] != NULL)
2950 continue;
2951 if (f->sym == NULL)
2952 {
2953 if (where)
2954 gfc_error ("Missing alternate return spec in subroutine call "
2955 "at %L", where);
2956 return 0;
2957 }
2958 if (!f->sym->attr.optional)
2959 {
2960 if (where)
2961 gfc_error ("Missing actual argument for argument '%s' at %L",
2962 f->sym->name, where);
2963 return 0;
2964 }
2965 }
2966
2967 /* The argument lists are compatible. We now relink a new actual
2968 argument list with null arguments in the right places. The head
2969 of the list remains the head. */
2970 for (i = 0; i < n; i++)
2971 if (new_arg[i] == NULL)
2972 new_arg[i] = gfc_get_actual_arglist ();
2973
2974 if (na != 0)
2975 {
2976 temp = *new_arg[0];
2977 *new_arg[0] = *actual;
2978 *actual = temp;
2979
2980 a = new_arg[0];
2981 new_arg[0] = new_arg[na];
2982 new_arg[na] = a;
2983 }
2984
2985 for (i = 0; i < n - 1; i++)
2986 new_arg[i]->next = new_arg[i + 1];
2987
2988 new_arg[i]->next = NULL;
2989
2990 if (*ap == NULL && n > 0)
2991 *ap = new_arg[0];
2992
2993 /* Note the types of omitted optional arguments. */
2994 for (a = *ap, f = formal; a; a = a->next, f = f->next)
2995 if (a->expr == NULL && a->label == NULL)
2996 a->missing_arg_type = f->sym->ts.type;
2997
2998 return 1;
2999 }
3000
3001
3002 typedef struct
3003 {
3004 gfc_formal_arglist *f;
3005 gfc_actual_arglist *a;
3006 }
3007 argpair;
3008
3009 /* qsort comparison function for argument pairs, with the following
3010 order:
3011 - p->a->expr == NULL
3012 - p->a->expr->expr_type != EXPR_VARIABLE
3013 - growing p->a->expr->symbol. */
3014
3015 static int
3016 pair_cmp (const void *p1, const void *p2)
3017 {
3018 const gfc_actual_arglist *a1, *a2;
3019
3020 /* *p1 and *p2 are elements of the to-be-sorted array. */
3021 a1 = ((const argpair *) p1)->a;
3022 a2 = ((const argpair *) p2)->a;
3023 if (!a1->expr)
3024 {
3025 if (!a2->expr)
3026 return 0;
3027 return -1;
3028 }
3029 if (!a2->expr)
3030 return 1;
3031 if (a1->expr->expr_type != EXPR_VARIABLE)
3032 {
3033 if (a2->expr->expr_type != EXPR_VARIABLE)
3034 return 0;
3035 return -1;
3036 }
3037 if (a2->expr->expr_type != EXPR_VARIABLE)
3038 return 1;
3039 return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
3040 }
3041
3042
3043 /* Given two expressions from some actual arguments, test whether they
3044 refer to the same expression. The analysis is conservative.
3045 Returning false will produce no warning. */
3046
3047 static bool
3048 compare_actual_expr (gfc_expr *e1, gfc_expr *e2)
3049 {
3050 const gfc_ref *r1, *r2;
3051
3052 if (!e1 || !e2
3053 || e1->expr_type != EXPR_VARIABLE
3054 || e2->expr_type != EXPR_VARIABLE
3055 || e1->symtree->n.sym != e2->symtree->n.sym)
3056 return false;
3057
3058 /* TODO: improve comparison, see expr.c:show_ref(). */
3059 for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
3060 {
3061 if (r1->type != r2->type)
3062 return false;
3063 switch (r1->type)
3064 {
3065 case REF_ARRAY:
3066 if (r1->u.ar.type != r2->u.ar.type)
3067 return false;
3068 /* TODO: At the moment, consider only full arrays;
3069 we could do better. */
3070 if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
3071 return false;
3072 break;
3073
3074 case REF_COMPONENT:
3075 if (r1->u.c.component != r2->u.c.component)
3076 return false;
3077 break;
3078
3079 case REF_SUBSTRING:
3080 return false;
3081
3082 default:
3083 gfc_internal_error ("compare_actual_expr(): Bad component code");
3084 }
3085 }
3086 if (!r1 && !r2)
3087 return true;
3088 return false;
3089 }
3090
3091
3092 /* Given formal and actual argument lists that correspond to one
3093 another, check that identical actual arguments aren't not
3094 associated with some incompatible INTENTs. */
3095
3096 static bool
3097 check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a)
3098 {
3099 sym_intent f1_intent, f2_intent;
3100 gfc_formal_arglist *f1;
3101 gfc_actual_arglist *a1;
3102 size_t n, i, j;
3103 argpair *p;
3104 bool t = true;
3105
3106 n = 0;
3107 for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
3108 {
3109 if (f1 == NULL && a1 == NULL)
3110 break;
3111 if (f1 == NULL || a1 == NULL)
3112 gfc_internal_error ("check_some_aliasing(): List mismatch");
3113 n++;
3114 }
3115 if (n == 0)
3116 return t;
3117 p = XALLOCAVEC (argpair, n);
3118
3119 for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
3120 {
3121 p[i].f = f1;
3122 p[i].a = a1;
3123 }
3124
3125 qsort (p, n, sizeof (argpair), pair_cmp);
3126
3127 for (i = 0; i < n; i++)
3128 {
3129 if (!p[i].a->expr
3130 || p[i].a->expr->expr_type != EXPR_VARIABLE
3131 || p[i].a->expr->ts.type == BT_PROCEDURE)
3132 continue;
3133 f1_intent = p[i].f->sym->attr.intent;
3134 for (j = i + 1; j < n; j++)
3135 {
3136 /* Expected order after the sort. */
3137 if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
3138 gfc_internal_error ("check_some_aliasing(): corrupted data");
3139
3140 /* Are the expression the same? */
3141 if (!compare_actual_expr (p[i].a->expr, p[j].a->expr))
3142 break;
3143 f2_intent = p[j].f->sym->attr.intent;
3144 if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
3145 || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN)
3146 || (f1_intent == INTENT_OUT && f2_intent == INTENT_OUT))
3147 {
3148 gfc_warning ("Same actual argument associated with INTENT(%s) "
3149 "argument '%s' and INTENT(%s) argument '%s' at %L",
3150 gfc_intent_string (f1_intent), p[i].f->sym->name,
3151 gfc_intent_string (f2_intent), p[j].f->sym->name,
3152 &p[i].a->expr->where);
3153 t = false;
3154 }
3155 }
3156 }
3157
3158 return t;
3159 }
3160
3161
3162 /* Given formal and actual argument lists that correspond to one
3163 another, check that they are compatible in the sense that intents
3164 are not mismatched. */
3165
3166 static bool
3167 check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a)
3168 {
3169 sym_intent f_intent;
3170
3171 for (;; f = f->next, a = a->next)
3172 {
3173 if (f == NULL && a == NULL)
3174 break;
3175 if (f == NULL || a == NULL)
3176 gfc_internal_error ("check_intents(): List mismatch");
3177
3178 if (a->expr == NULL || a->expr->expr_type != EXPR_VARIABLE)
3179 continue;
3180
3181 f_intent = f->sym->attr.intent;
3182
3183 if (gfc_pure (NULL) && gfc_impure_variable (a->expr->symtree->n.sym))
3184 {
3185 if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
3186 && CLASS_DATA (f->sym)->attr.class_pointer)
3187 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
3188 {
3189 gfc_error ("Procedure argument at %L is local to a PURE "
3190 "procedure and has the POINTER attribute",
3191 &a->expr->where);
3192 return false;
3193 }
3194 }
3195
3196 /* Fortran 2008, C1283. */
3197 if (gfc_pure (NULL) && gfc_is_coindexed (a->expr))
3198 {
3199 if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
3200 {
3201 gfc_error ("Coindexed actual argument at %L in PURE procedure "
3202 "is passed to an INTENT(%s) argument",
3203 &a->expr->where, gfc_intent_string (f_intent));
3204 return false;
3205 }
3206
3207 if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
3208 && CLASS_DATA (f->sym)->attr.class_pointer)
3209 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
3210 {
3211 gfc_error ("Coindexed actual argument at %L in PURE procedure "
3212 "is passed to a POINTER dummy argument",
3213 &a->expr->where);
3214 return false;
3215 }
3216 }
3217
3218 /* F2008, Section 12.5.2.4. */
3219 if (a->expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS
3220 && gfc_is_coindexed (a->expr))
3221 {
3222 gfc_error ("Coindexed polymorphic actual argument at %L is passed "
3223 "polymorphic dummy argument '%s'",
3224 &a->expr->where, f->sym->name);
3225 return false;
3226 }
3227 }
3228
3229 return true;
3230 }
3231
3232
3233 /* Check how a procedure is used against its interface. If all goes
3234 well, the actual argument list will also end up being properly
3235 sorted. */
3236
3237 bool
3238 gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where)
3239 {
3240 gfc_formal_arglist *dummy_args;
3241
3242 /* Warn about calls with an implicit interface. Special case
3243 for calling a ISO_C_BINDING because c_loc and c_funloc
3244 are pseudo-unknown. Additionally, warn about procedures not
3245 explicitly declared at all if requested. */
3246 if (sym->attr.if_source == IFSRC_UNKNOWN && ! sym->attr.is_iso_c)
3247 {
3248 if (gfc_option.warn_implicit_interface)
3249 gfc_warning ("Procedure '%s' called with an implicit interface at %L",
3250 sym->name, where);
3251 else if (gfc_option.warn_implicit_procedure
3252 && sym->attr.proc == PROC_UNKNOWN)
3253 gfc_warning ("Procedure '%s' called at %L is not explicitly declared",
3254 sym->name, where);
3255 }
3256
3257 if (sym->attr.if_source == IFSRC_UNKNOWN)
3258 {
3259 gfc_actual_arglist *a;
3260
3261 if (sym->attr.pointer)
3262 {
3263 gfc_error("The pointer object '%s' at %L must have an explicit "
3264 "function interface or be declared as array",
3265 sym->name, where);
3266 return false;
3267 }
3268
3269 if (sym->attr.allocatable && !sym->attr.external)
3270 {
3271 gfc_error("The allocatable object '%s' at %L must have an explicit "
3272 "function interface or be declared as array",
3273 sym->name, where);
3274 return false;
3275 }
3276
3277 if (sym->attr.allocatable)
3278 {
3279 gfc_error("Allocatable function '%s' at %L must have an explicit "
3280 "function interface", sym->name, where);
3281 return false;
3282 }
3283
3284 for (a = *ap; a; a = a->next)
3285 {
3286 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
3287 if (a->name != NULL && a->name[0] != '%')
3288 {
3289 gfc_error("Keyword argument requires explicit interface "
3290 "for procedure '%s' at %L", sym->name, &a->expr->where);
3291 break;
3292 }
3293
3294 /* TS 29113, 6.2. */
3295 if (a->expr && a->expr->ts.type == BT_ASSUMED
3296 && sym->intmod_sym_id != ISOCBINDING_LOC)
3297 {
3298 gfc_error ("Assumed-type argument %s at %L requires an explicit "
3299 "interface", a->expr->symtree->n.sym->name,
3300 &a->expr->where);
3301 break;
3302 }
3303
3304 /* F2008, C1303 and C1304. */
3305 if (a->expr
3306 && (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS)
3307 && ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
3308 && a->expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
3309 || gfc_expr_attr (a->expr).lock_comp))
3310 {
3311 gfc_error("Actual argument of LOCK_TYPE or with LOCK_TYPE "
3312 "component at %L requires an explicit interface for "
3313 "procedure '%s'", &a->expr->where, sym->name);
3314 break;
3315 }
3316
3317 if (a->expr && a->expr->expr_type == EXPR_NULL
3318 && a->expr->ts.type == BT_UNKNOWN)
3319 {
3320 gfc_error ("MOLD argument to NULL required at %L", &a->expr->where);
3321 return false;
3322 }
3323
3324 /* TS 29113, C407b. */
3325 if (a->expr && a->expr->expr_type == EXPR_VARIABLE
3326 && symbol_rank (a->expr->symtree->n.sym) == -1)
3327 {
3328 gfc_error ("Assumed-rank argument requires an explicit interface "
3329 "at %L", &a->expr->where);
3330 return false;
3331 }
3332 }
3333
3334 return true;
3335 }
3336
3337 dummy_args = gfc_sym_get_dummy_args (sym);
3338
3339 if (!compare_actual_formal (ap, dummy_args, 0, sym->attr.elemental, where))
3340 return false;
3341
3342 if (!check_intents (dummy_args, *ap))
3343 return false;
3344
3345 if (gfc_option.warn_aliasing)
3346 check_some_aliasing (dummy_args, *ap);
3347
3348 return true;
3349 }
3350
3351
3352 /* Check how a procedure pointer component is used against its interface.
3353 If all goes well, the actual argument list will also end up being properly
3354 sorted. Completely analogous to gfc_procedure_use. */
3355
3356 void
3357 gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where)
3358 {
3359 /* Warn about calls with an implicit interface. Special case
3360 for calling a ISO_C_BINDING because c_loc and c_funloc
3361 are pseudo-unknown. */
3362 if (gfc_option.warn_implicit_interface
3363 && comp->attr.if_source == IFSRC_UNKNOWN
3364 && !comp->attr.is_iso_c)
3365 gfc_warning ("Procedure pointer component '%s' called with an implicit "
3366 "interface at %L", comp->name, where);
3367
3368 if (comp->attr.if_source == IFSRC_UNKNOWN)
3369 {
3370 gfc_actual_arglist *a;
3371 for (a = *ap; a; a = a->next)
3372 {
3373 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
3374 if (a->name != NULL && a->name[0] != '%')
3375 {
3376 gfc_error("Keyword argument requires explicit interface "
3377 "for procedure pointer component '%s' at %L",
3378 comp->name, &a->expr->where);
3379 break;
3380 }
3381 }
3382
3383 return;
3384 }
3385
3386 if (!compare_actual_formal (ap, comp->ts.interface->formal, 0,
3387 comp->attr.elemental, where))
3388 return;
3389
3390 check_intents (comp->ts.interface->formal, *ap);
3391 if (gfc_option.warn_aliasing)
3392 check_some_aliasing (comp->ts.interface->formal, *ap);
3393 }
3394
3395
3396 /* Try if an actual argument list matches the formal list of a symbol,
3397 respecting the symbol's attributes like ELEMENTAL. This is used for
3398 GENERIC resolution. */
3399
3400 bool
3401 gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym)
3402 {
3403 gfc_formal_arglist *dummy_args;
3404 bool r;
3405
3406 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
3407
3408 dummy_args = gfc_sym_get_dummy_args (sym);
3409
3410 r = !sym->attr.elemental;
3411 if (compare_actual_formal (args, dummy_args, r, !r, NULL))
3412 {
3413 check_intents (dummy_args, *args);
3414 if (gfc_option.warn_aliasing)
3415 check_some_aliasing (dummy_args, *args);
3416 return true;
3417 }
3418
3419 return false;
3420 }
3421
3422
3423 /* Given an interface pointer and an actual argument list, search for
3424 a formal argument list that matches the actual. If found, returns
3425 a pointer to the symbol of the correct interface. Returns NULL if
3426 not found. */
3427
3428 gfc_symbol *
3429 gfc_search_interface (gfc_interface *intr, int sub_flag,
3430 gfc_actual_arglist **ap)
3431 {
3432 gfc_symbol *elem_sym = NULL;
3433 gfc_symbol *null_sym = NULL;
3434 locus null_expr_loc;
3435 gfc_actual_arglist *a;
3436 bool has_null_arg = false;
3437
3438 for (a = *ap; a; a = a->next)
3439 if (a->expr && a->expr->expr_type == EXPR_NULL
3440 && a->expr->ts.type == BT_UNKNOWN)
3441 {
3442 has_null_arg = true;
3443 null_expr_loc = a->expr->where;
3444 break;
3445 }
3446
3447 for (; intr; intr = intr->next)
3448 {
3449 if (intr->sym->attr.flavor == FL_DERIVED)
3450 continue;
3451 if (sub_flag && intr->sym->attr.function)
3452 continue;
3453 if (!sub_flag && intr->sym->attr.subroutine)
3454 continue;
3455
3456 if (gfc_arglist_matches_symbol (ap, intr->sym))
3457 {
3458 if (has_null_arg && null_sym)
3459 {
3460 gfc_error ("MOLD= required in NULL() argument at %L: Ambiguity "
3461 "between specific functions %s and %s",
3462 &null_expr_loc, null_sym->name, intr->sym->name);
3463 return NULL;
3464 }
3465 else if (has_null_arg)
3466 {
3467 null_sym = intr->sym;
3468 continue;
3469 }
3470
3471 /* Satisfy 12.4.4.1 such that an elemental match has lower
3472 weight than a non-elemental match. */
3473 if (intr->sym->attr.elemental)
3474 {
3475 elem_sym = intr->sym;
3476 continue;
3477 }
3478 return intr->sym;
3479 }
3480 }
3481
3482 if (null_sym)
3483 return null_sym;
3484
3485 return elem_sym ? elem_sym : NULL;
3486 }
3487
3488
3489 /* Do a brute force recursive search for a symbol. */
3490
3491 static gfc_symtree *
3492 find_symtree0 (gfc_symtree *root, gfc_symbol *sym)
3493 {
3494 gfc_symtree * st;
3495
3496 if (root->n.sym == sym)
3497 return root;
3498
3499 st = NULL;
3500 if (root->left)
3501 st = find_symtree0 (root->left, sym);
3502 if (root->right && ! st)
3503 st = find_symtree0 (root->right, sym);
3504 return st;
3505 }
3506
3507
3508 /* Find a symtree for a symbol. */
3509
3510 gfc_symtree *
3511 gfc_find_sym_in_symtree (gfc_symbol *sym)
3512 {
3513 gfc_symtree *st;
3514 gfc_namespace *ns;
3515
3516 /* First try to find it by name. */
3517 gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
3518 if (st && st->n.sym == sym)
3519 return st;
3520
3521 /* If it's been renamed, resort to a brute-force search. */
3522 /* TODO: avoid having to do this search. If the symbol doesn't exist
3523 in the symtree for the current namespace, it should probably be added. */
3524 for (ns = gfc_current_ns; ns; ns = ns->parent)
3525 {
3526 st = find_symtree0 (ns->sym_root, sym);
3527 if (st)
3528 return st;
3529 }
3530 gfc_internal_error ("Unable to find symbol %s", sym->name);
3531 /* Not reached. */
3532 }
3533
3534
3535 /* See if the arglist to an operator-call contains a derived-type argument
3536 with a matching type-bound operator. If so, return the matching specific
3537 procedure defined as operator-target as well as the base-object to use
3538 (which is the found derived-type argument with operator). The generic
3539 name, if any, is transmitted to the final expression via 'gname'. */
3540
3541 static gfc_typebound_proc*
3542 matching_typebound_op (gfc_expr** tb_base,
3543 gfc_actual_arglist* args,
3544 gfc_intrinsic_op op, const char* uop,
3545 const char ** gname)
3546 {
3547 gfc_actual_arglist* base;
3548
3549 for (base = args; base; base = base->next)
3550 if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS)
3551 {
3552 gfc_typebound_proc* tb;
3553 gfc_symbol* derived;
3554 bool result;
3555
3556 while (base->expr->expr_type == EXPR_OP
3557 && base->expr->value.op.op == INTRINSIC_PARENTHESES)
3558 base->expr = base->expr->value.op.op1;
3559
3560 if (base->expr->ts.type == BT_CLASS)
3561 {
3562 if (CLASS_DATA (base->expr) == NULL
3563 || !gfc_expr_attr (base->expr).class_ok)
3564 continue;
3565 derived = CLASS_DATA (base->expr)->ts.u.derived;
3566 }
3567 else
3568 derived = base->expr->ts.u.derived;
3569
3570 if (op == INTRINSIC_USER)
3571 {
3572 gfc_symtree* tb_uop;
3573
3574 gcc_assert (uop);
3575 tb_uop = gfc_find_typebound_user_op (derived, &result, uop,
3576 false, NULL);
3577
3578 if (tb_uop)
3579 tb = tb_uop->n.tb;
3580 else
3581 tb = NULL;
3582 }
3583 else
3584 tb = gfc_find_typebound_intrinsic_op (derived, &result, op,
3585 false, NULL);
3586
3587 /* This means we hit a PRIVATE operator which is use-associated and
3588 should thus not be seen. */
3589 if (!result)
3590 tb = NULL;
3591
3592 /* Look through the super-type hierarchy for a matching specific
3593 binding. */
3594 for (; tb; tb = tb->overridden)
3595 {
3596 gfc_tbp_generic* g;
3597
3598 gcc_assert (tb->is_generic);
3599 for (g = tb->u.generic; g; g = g->next)
3600 {
3601 gfc_symbol* target;
3602 gfc_actual_arglist* argcopy;
3603 bool matches;
3604
3605 gcc_assert (g->specific);
3606 if (g->specific->error)
3607 continue;
3608
3609 target = g->specific->u.specific->n.sym;
3610
3611 /* Check if this arglist matches the formal. */
3612 argcopy = gfc_copy_actual_arglist (args);
3613 matches = gfc_arglist_matches_symbol (&argcopy, target);
3614 gfc_free_actual_arglist (argcopy);
3615
3616 /* Return if we found a match. */
3617 if (matches)
3618 {
3619 *tb_base = base->expr;
3620 *gname = g->specific_st->name;
3621 return g->specific;
3622 }
3623 }
3624 }
3625 }
3626
3627 return NULL;
3628 }
3629
3630
3631 /* For the 'actual arglist' of an operator call and a specific typebound
3632 procedure that has been found the target of a type-bound operator, build the
3633 appropriate EXPR_COMPCALL and resolve it. We take this indirection over
3634 type-bound procedures rather than resolving type-bound operators 'directly'
3635 so that we can reuse the existing logic. */
3636
3637 static void
3638 build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual,
3639 gfc_expr* base, gfc_typebound_proc* target,
3640 const char *gname)
3641 {
3642 e->expr_type = EXPR_COMPCALL;
3643 e->value.compcall.tbp = target;
3644 e->value.compcall.name = gname ? gname : "$op";
3645 e->value.compcall.actual = actual;
3646 e->value.compcall.base_object = base;
3647 e->value.compcall.ignore_pass = 1;
3648 e->value.compcall.assign = 0;
3649 if (e->ts.type == BT_UNKNOWN
3650 && target->function)
3651 {
3652 if (target->is_generic)
3653 e->ts = target->u.generic->specific->u.specific->n.sym->ts;
3654 else
3655 e->ts = target->u.specific->n.sym->ts;
3656 }
3657 }
3658
3659
3660 /* This subroutine is called when an expression is being resolved.
3661 The expression node in question is either a user defined operator
3662 or an intrinsic operator with arguments that aren't compatible
3663 with the operator. This subroutine builds an actual argument list
3664 corresponding to the operands, then searches for a compatible
3665 interface. If one is found, the expression node is replaced with
3666 the appropriate function call. We use the 'match' enum to specify
3667 whether a replacement has been made or not, or if an error occurred. */
3668
3669 match
3670 gfc_extend_expr (gfc_expr *e)
3671 {
3672 gfc_actual_arglist *actual;
3673 gfc_symbol *sym;
3674 gfc_namespace *ns;
3675 gfc_user_op *uop;
3676 gfc_intrinsic_op i;
3677 const char *gname;
3678
3679 sym = NULL;
3680
3681 actual = gfc_get_actual_arglist ();
3682 actual->expr = e->value.op.op1;
3683
3684 gname = NULL;
3685
3686 if (e->value.op.op2 != NULL)
3687 {
3688 actual->next = gfc_get_actual_arglist ();
3689 actual->next->expr = e->value.op.op2;
3690 }
3691
3692 i = fold_unary_intrinsic (e->value.op.op);
3693
3694 if (i == INTRINSIC_USER)
3695 {
3696 for (ns = gfc_current_ns; ns; ns = ns->parent)
3697 {
3698 uop = gfc_find_uop (e->value.op.uop->name, ns);
3699 if (uop == NULL)
3700 continue;
3701
3702 sym = gfc_search_interface (uop->op, 0, &actual);
3703 if (sym != NULL)
3704 break;
3705 }
3706 }
3707 else
3708 {
3709 for (ns = gfc_current_ns; ns; ns = ns->parent)
3710 {
3711 /* Due to the distinction between '==' and '.eq.' and friends, one has
3712 to check if either is defined. */
3713 switch (i)
3714 {
3715 #define CHECK_OS_COMPARISON(comp) \
3716 case INTRINSIC_##comp: \
3717 case INTRINSIC_##comp##_OS: \
3718 sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \
3719 if (!sym) \
3720 sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \
3721 break;
3722 CHECK_OS_COMPARISON(EQ)
3723 CHECK_OS_COMPARISON(NE)
3724 CHECK_OS_COMPARISON(GT)
3725 CHECK_OS_COMPARISON(GE)
3726 CHECK_OS_COMPARISON(LT)
3727 CHECK_OS_COMPARISON(LE)
3728 #undef CHECK_OS_COMPARISON
3729
3730 default:
3731 sym = gfc_search_interface (ns->op[i], 0, &actual);
3732 }
3733
3734 if (sym != NULL)
3735 break;
3736 }
3737 }
3738
3739 /* TODO: Do an ambiguity-check and error if multiple matching interfaces are
3740 found rather than just taking the first one and not checking further. */
3741
3742 if (sym == NULL)
3743 {
3744 gfc_typebound_proc* tbo;
3745 gfc_expr* tb_base;
3746
3747 /* See if we find a matching type-bound operator. */
3748 if (i == INTRINSIC_USER)
3749 tbo = matching_typebound_op (&tb_base, actual,
3750 i, e->value.op.uop->name, &gname);
3751 else
3752 switch (i)
3753 {
3754 #define CHECK_OS_COMPARISON(comp) \
3755 case INTRINSIC_##comp: \
3756 case INTRINSIC_##comp##_OS: \
3757 tbo = matching_typebound_op (&tb_base, actual, \
3758 INTRINSIC_##comp, NULL, &gname); \
3759 if (!tbo) \
3760 tbo = matching_typebound_op (&tb_base, actual, \
3761 INTRINSIC_##comp##_OS, NULL, &gname); \
3762 break;
3763 CHECK_OS_COMPARISON(EQ)
3764 CHECK_OS_COMPARISON(NE)
3765 CHECK_OS_COMPARISON(GT)
3766 CHECK_OS_COMPARISON(GE)
3767 CHECK_OS_COMPARISON(LT)
3768 CHECK_OS_COMPARISON(LE)
3769 #undef CHECK_OS_COMPARISON
3770
3771 default:
3772 tbo = matching_typebound_op (&tb_base, actual, i, NULL, &gname);
3773 break;
3774 }
3775
3776 /* If there is a matching typebound-operator, replace the expression with
3777 a call to it and succeed. */
3778 if (tbo)
3779 {
3780 bool result;
3781
3782 gcc_assert (tb_base);
3783 build_compcall_for_operator (e, actual, tb_base, tbo, gname);
3784
3785 result = gfc_resolve_expr (e);
3786 if (!result)
3787 return MATCH_ERROR;
3788
3789 return MATCH_YES;
3790 }
3791
3792 /* Don't use gfc_free_actual_arglist(). */
3793 free (actual->next);
3794 free (actual);
3795
3796 return MATCH_NO;
3797 }
3798
3799 /* Change the expression node to a function call. */
3800 e->expr_type = EXPR_FUNCTION;
3801 e->symtree = gfc_find_sym_in_symtree (sym);
3802 e->value.function.actual = actual;
3803 e->value.function.esym = NULL;
3804 e->value.function.isym = NULL;
3805 e->value.function.name = NULL;
3806 e->user_operator = 1;
3807
3808 if (!gfc_resolve_expr (e))
3809 return MATCH_ERROR;
3810
3811 return MATCH_YES;
3812 }
3813
3814
3815 /* Tries to replace an assignment code node with a subroutine call to the
3816 subroutine associated with the assignment operator. Return true if the node
3817 was replaced. On false, no error is generated. */
3818
3819 bool
3820 gfc_extend_assign (gfc_code *c, gfc_namespace *ns)
3821 {
3822 gfc_actual_arglist *actual;
3823 gfc_expr *lhs, *rhs, *tb_base;
3824 gfc_symbol *sym = NULL;
3825 const char *gname = NULL;
3826 gfc_typebound_proc* tbo;
3827
3828 lhs = c->expr1;
3829 rhs = c->expr2;
3830
3831 /* Don't allow an intrinsic assignment to be replaced. */
3832 if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS
3833 && (rhs->rank == 0 || rhs->rank == lhs->rank)
3834 && (lhs->ts.type == rhs->ts.type
3835 || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts))))
3836 return false;
3837
3838 actual = gfc_get_actual_arglist ();
3839 actual->expr = lhs;
3840
3841 actual->next = gfc_get_actual_arglist ();
3842 actual->next->expr = rhs;
3843
3844 /* TODO: Ambiguity-check, see above for gfc_extend_expr. */
3845
3846 /* See if we find a matching type-bound assignment. */
3847 tbo = matching_typebound_op (&tb_base, actual, INTRINSIC_ASSIGN,
3848 NULL, &gname);
3849
3850 if (tbo)
3851 {
3852 /* Success: Replace the expression with a type-bound call. */
3853 gcc_assert (tb_base);
3854 c->expr1 = gfc_get_expr ();
3855 build_compcall_for_operator (c->expr1, actual, tb_base, tbo, gname);
3856 c->expr1->value.compcall.assign = 1;
3857 c->expr1->where = c->loc;
3858 c->expr2 = NULL;
3859 c->op = EXEC_COMPCALL;
3860 return true;
3861 }
3862
3863 /* See if we find an 'ordinary' (non-typebound) assignment procedure. */
3864 for (; ns; ns = ns->parent)
3865 {
3866 sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual);
3867 if (sym != NULL)
3868 break;
3869 }
3870
3871 if (sym)
3872 {
3873 /* Success: Replace the assignment with the call. */
3874 c->op = EXEC_ASSIGN_CALL;
3875 c->symtree = gfc_find_sym_in_symtree (sym);
3876 c->expr1 = NULL;
3877 c->expr2 = NULL;
3878 c->ext.actual = actual;
3879 return true;
3880 }
3881
3882 /* Failure: No assignment procedure found. */
3883 free (actual->next);
3884 free (actual);
3885 return false;
3886 }
3887
3888
3889 /* Make sure that the interface just parsed is not already present in
3890 the given interface list. Ambiguity isn't checked yet since module
3891 procedures can be present without interfaces. */
3892
3893 bool
3894 gfc_check_new_interface (gfc_interface *base, gfc_symbol *new_sym, locus loc)
3895 {
3896 gfc_interface *ip;
3897
3898 for (ip = base; ip; ip = ip->next)
3899 {
3900 if (ip->sym == new_sym)
3901 {
3902 gfc_error ("Entity '%s' at %L is already present in the interface",
3903 new_sym->name, &loc);
3904 return false;
3905 }
3906 }
3907
3908 return true;
3909 }
3910
3911
3912 /* Add a symbol to the current interface. */
3913
3914 bool
3915 gfc_add_interface (gfc_symbol *new_sym)
3916 {
3917 gfc_interface **head, *intr;
3918 gfc_namespace *ns;
3919 gfc_symbol *sym;
3920
3921 switch (current_interface.type)
3922 {
3923 case INTERFACE_NAMELESS:
3924 case INTERFACE_ABSTRACT:
3925 return true;
3926
3927 case INTERFACE_INTRINSIC_OP:
3928 for (ns = current_interface.ns; ns; ns = ns->parent)
3929 switch (current_interface.op)
3930 {
3931 case INTRINSIC_EQ:
3932 case INTRINSIC_EQ_OS:
3933 if (!gfc_check_new_interface (ns->op[INTRINSIC_EQ], new_sym,
3934 gfc_current_locus)
3935 || !gfc_check_new_interface (ns->op[INTRINSIC_EQ_OS],
3936 new_sym, gfc_current_locus))
3937 return false;
3938 break;
3939
3940 case INTRINSIC_NE:
3941 case INTRINSIC_NE_OS:
3942 if (!gfc_check_new_interface (ns->op[INTRINSIC_NE], new_sym,
3943 gfc_current_locus)
3944 || !gfc_check_new_interface (ns->op[INTRINSIC_NE_OS],
3945 new_sym, gfc_current_locus))
3946 return false;
3947 break;
3948
3949 case INTRINSIC_GT:
3950 case INTRINSIC_GT_OS:
3951 if (!gfc_check_new_interface (ns->op[INTRINSIC_GT],
3952 new_sym, gfc_current_locus)
3953 || !gfc_check_new_interface (ns->op[INTRINSIC_GT_OS],
3954 new_sym, gfc_current_locus))
3955 return false;
3956 break;
3957
3958 case INTRINSIC_GE:
3959 case INTRINSIC_GE_OS:
3960 if (!gfc_check_new_interface (ns->op[INTRINSIC_GE],
3961 new_sym, gfc_current_locus)
3962 || !gfc_check_new_interface (ns->op[INTRINSIC_GE_OS],
3963 new_sym, gfc_current_locus))
3964 return false;
3965 break;
3966
3967 case INTRINSIC_LT:
3968 case INTRINSIC_LT_OS:
3969 if (!gfc_check_new_interface (ns->op[INTRINSIC_LT],
3970 new_sym, gfc_current_locus)
3971 || !gfc_check_new_interface (ns->op[INTRINSIC_LT_OS],
3972 new_sym, gfc_current_locus))
3973 return false;
3974 break;
3975
3976 case INTRINSIC_LE:
3977 case INTRINSIC_LE_OS:
3978 if (!gfc_check_new_interface (ns->op[INTRINSIC_LE],
3979 new_sym, gfc_current_locus)
3980 || !gfc_check_new_interface (ns->op[INTRINSIC_LE_OS],
3981 new_sym, gfc_current_locus))
3982 return false;
3983 break;
3984
3985 default:
3986 if (!gfc_check_new_interface (ns->op[current_interface.op],
3987 new_sym, gfc_current_locus))
3988 return false;
3989 }
3990
3991 head = &current_interface.ns->op[current_interface.op];
3992 break;
3993
3994 case INTERFACE_GENERIC:
3995 for (ns = current_interface.ns; ns; ns = ns->parent)
3996 {
3997 gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
3998 if (sym == NULL)
3999 continue;
4000
4001 if (!gfc_check_new_interface (sym->generic,
4002 new_sym, gfc_current_locus))
4003 return false;
4004 }
4005
4006 head = &current_interface.sym->generic;
4007 break;
4008
4009 case INTERFACE_USER_OP:
4010 if (!gfc_check_new_interface (current_interface.uop->op,
4011 new_sym, gfc_current_locus))
4012 return false;
4013
4014 head = &current_interface.uop->op;
4015 break;
4016
4017 default:
4018 gfc_internal_error ("gfc_add_interface(): Bad interface type");
4019 }
4020
4021 intr = gfc_get_interface ();
4022 intr->sym = new_sym;
4023 intr->where = gfc_current_locus;
4024
4025 intr->next = *head;
4026 *head = intr;
4027
4028 return true;
4029 }
4030
4031
4032 gfc_interface *
4033 gfc_current_interface_head (void)
4034 {
4035 switch (current_interface.type)
4036 {
4037 case INTERFACE_INTRINSIC_OP:
4038 return current_interface.ns->op[current_interface.op];
4039 break;
4040
4041 case INTERFACE_GENERIC:
4042 return current_interface.sym->generic;
4043 break;
4044
4045 case INTERFACE_USER_OP:
4046 return current_interface.uop->op;
4047 break;
4048
4049 default:
4050 gcc_unreachable ();
4051 }
4052 }
4053
4054
4055 void
4056 gfc_set_current_interface_head (gfc_interface *i)
4057 {
4058 switch (current_interface.type)
4059 {
4060 case INTERFACE_INTRINSIC_OP:
4061 current_interface.ns->op[current_interface.op] = i;
4062 break;
4063
4064 case INTERFACE_GENERIC:
4065 current_interface.sym->generic = i;
4066 break;
4067
4068 case INTERFACE_USER_OP:
4069 current_interface.uop->op = i;
4070 break;
4071
4072 default:
4073 gcc_unreachable ();
4074 }
4075 }
4076
4077
4078 /* Gets rid of a formal argument list. We do not free symbols.
4079 Symbols are freed when a namespace is freed. */
4080
4081 void
4082 gfc_free_formal_arglist (gfc_formal_arglist *p)
4083 {
4084 gfc_formal_arglist *q;
4085
4086 for (; p; p = q)
4087 {
4088 q = p->next;
4089 free (p);
4090 }
4091 }
4092
4093
4094 /* Check that it is ok for the type-bound procedure 'proc' to override the
4095 procedure 'old', cf. F08:4.5.7.3. */
4096
4097 bool
4098 gfc_check_typebound_override (gfc_symtree* proc, gfc_symtree* old)
4099 {
4100 locus where;
4101 gfc_symbol *proc_target, *old_target;
4102 unsigned proc_pass_arg, old_pass_arg, argpos;
4103 gfc_formal_arglist *proc_formal, *old_formal;
4104 bool check_type;
4105 char err[200];
4106
4107 /* This procedure should only be called for non-GENERIC proc. */
4108 gcc_assert (!proc->n.tb->is_generic);
4109
4110 /* If the overwritten procedure is GENERIC, this is an error. */
4111 if (old->n.tb->is_generic)
4112 {
4113 gfc_error ("Can't overwrite GENERIC '%s' at %L",
4114 old->name, &proc->n.tb->where);
4115 return false;
4116 }
4117
4118 where = proc->n.tb->where;
4119 proc_target = proc->n.tb->u.specific->n.sym;
4120 old_target = old->n.tb->u.specific->n.sym;
4121
4122 /* Check that overridden binding is not NON_OVERRIDABLE. */
4123 if (old->n.tb->non_overridable)
4124 {
4125 gfc_error ("'%s' at %L overrides a procedure binding declared"
4126 " NON_OVERRIDABLE", proc->name, &where);
4127 return false;
4128 }
4129
4130 /* It's an error to override a non-DEFERRED procedure with a DEFERRED one. */
4131 if (!old->n.tb->deferred && proc->n.tb->deferred)
4132 {
4133 gfc_error ("'%s' at %L must not be DEFERRED as it overrides a"
4134 " non-DEFERRED binding", proc->name, &where);
4135 return false;
4136 }
4137
4138 /* If the overridden binding is PURE, the overriding must be, too. */
4139 if (old_target->attr.pure && !proc_target->attr.pure)
4140 {
4141 gfc_error ("'%s' at %L overrides a PURE procedure and must also be PURE",
4142 proc->name, &where);
4143 return false;
4144 }
4145
4146 /* If the overridden binding is ELEMENTAL, the overriding must be, too. If it
4147 is not, the overriding must not be either. */
4148 if (old_target->attr.elemental && !proc_target->attr.elemental)
4149 {
4150 gfc_error ("'%s' at %L overrides an ELEMENTAL procedure and must also be"
4151 " ELEMENTAL", proc->name, &where);
4152 return false;
4153 }
4154 if (!old_target->attr.elemental && proc_target->attr.elemental)
4155 {
4156 gfc_error ("'%s' at %L overrides a non-ELEMENTAL procedure and must not"
4157 " be ELEMENTAL, either", proc->name, &where);
4158 return false;
4159 }
4160
4161 /* If the overridden binding is a SUBROUTINE, the overriding must also be a
4162 SUBROUTINE. */
4163 if (old_target->attr.subroutine && !proc_target->attr.subroutine)
4164 {
4165 gfc_error ("'%s' at %L overrides a SUBROUTINE and must also be a"
4166 " SUBROUTINE", proc->name, &where);
4167 return false;
4168 }
4169
4170 /* If the overridden binding is a FUNCTION, the overriding must also be a
4171 FUNCTION and have the same characteristics. */
4172 if (old_target->attr.function)
4173 {
4174 if (!proc_target->attr.function)
4175 {
4176 gfc_error ("'%s' at %L overrides a FUNCTION and must also be a"
4177 " FUNCTION", proc->name, &where);
4178 return false;
4179 }
4180
4181 if (!check_result_characteristics (proc_target, old_target, err,
4182 sizeof(err)))
4183 {
4184 gfc_error ("Result mismatch for the overriding procedure "
4185 "'%s' at %L: %s", proc->name, &where, err);
4186 return false;
4187 }
4188 }
4189
4190 /* If the overridden binding is PUBLIC, the overriding one must not be
4191 PRIVATE. */
4192 if (old->n.tb->access == ACCESS_PUBLIC
4193 && proc->n.tb->access == ACCESS_PRIVATE)
4194 {
4195 gfc_error ("'%s' at %L overrides a PUBLIC procedure and must not be"
4196 " PRIVATE", proc->name, &where);
4197 return false;
4198 }
4199
4200 /* Compare the formal argument lists of both procedures. This is also abused
4201 to find the position of the passed-object dummy arguments of both
4202 bindings as at least the overridden one might not yet be resolved and we
4203 need those positions in the check below. */
4204 proc_pass_arg = old_pass_arg = 0;
4205 if (!proc->n.tb->nopass && !proc->n.tb->pass_arg)
4206 proc_pass_arg = 1;
4207 if (!old->n.tb->nopass && !old->n.tb->pass_arg)
4208 old_pass_arg = 1;
4209 argpos = 1;
4210 proc_formal = gfc_sym_get_dummy_args (proc_target);
4211 old_formal = gfc_sym_get_dummy_args (old_target);
4212 for ( ; proc_formal && old_formal;
4213 proc_formal = proc_formal->next, old_formal = old_formal->next)
4214 {
4215 if (proc->n.tb->pass_arg
4216 && !strcmp (proc->n.tb->pass_arg, proc_formal->sym->name))
4217 proc_pass_arg = argpos;
4218 if (old->n.tb->pass_arg
4219 && !strcmp (old->n.tb->pass_arg, old_formal->sym->name))
4220 old_pass_arg = argpos;
4221
4222 /* Check that the names correspond. */
4223 if (strcmp (proc_formal->sym->name, old_formal->sym->name))
4224 {
4225 gfc_error ("Dummy argument '%s' of '%s' at %L should be named '%s' as"
4226 " to match the corresponding argument of the overridden"
4227 " procedure", proc_formal->sym->name, proc->name, &where,
4228 old_formal->sym->name);
4229 return false;
4230 }
4231
4232 check_type = proc_pass_arg != argpos && old_pass_arg != argpos;
4233 if (!check_dummy_characteristics (proc_formal->sym, old_formal->sym,
4234 check_type, err, sizeof(err)))
4235 {
4236 gfc_error ("Argument mismatch for the overriding procedure "
4237 "'%s' at %L: %s", proc->name, &where, err);
4238 return false;
4239 }
4240
4241 ++argpos;
4242 }
4243 if (proc_formal || old_formal)
4244 {
4245 gfc_error ("'%s' at %L must have the same number of formal arguments as"
4246 " the overridden procedure", proc->name, &where);
4247 return false;
4248 }
4249
4250 /* If the overridden binding is NOPASS, the overriding one must also be
4251 NOPASS. */
4252 if (old->n.tb->nopass && !proc->n.tb->nopass)
4253 {
4254 gfc_error ("'%s' at %L overrides a NOPASS binding and must also be"
4255 " NOPASS", proc->name, &where);
4256 return false;
4257 }
4258
4259 /* If the overridden binding is PASS(x), the overriding one must also be
4260 PASS and the passed-object dummy arguments must correspond. */
4261 if (!old->n.tb->nopass)
4262 {
4263 if (proc->n.tb->nopass)
4264 {
4265 gfc_error ("'%s' at %L overrides a binding with PASS and must also be"
4266 " PASS", proc->name, &where);
4267 return false;
4268 }
4269
4270 if (proc_pass_arg != old_pass_arg)
4271 {
4272 gfc_error ("Passed-object dummy argument of '%s' at %L must be at"
4273 " the same position as the passed-object dummy argument of"
4274 " the overridden procedure", proc->name, &where);
4275 return false;
4276 }
4277 }
4278
4279 return true;
4280 }