re PR fortran/64508 ([F03] interface check missing for procedure pointer component...
[gcc.git] / gcc / fortran / interface.c
1 /* Deal with interfaces.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* Deal with interfaces. An explicit interface is represented as a
23 singly linked list of formal argument structures attached to the
24 relevant symbols. For an implicit interface, the arguments don't
25 point to symbols. Explicit interfaces point to namespaces that
26 contain the symbols within that interface.
27
28 Implicit interfaces are linked together in a singly linked list
29 along the next_if member of symbol nodes. Since a particular
30 symbol can only have a single explicit interface, the symbol cannot
31 be part of multiple lists and a single next-member suffices.
32
33 This is not the case for general classes, though. An operator
34 definition is independent of just about all other uses and has it's
35 own head pointer.
36
37 Nameless interfaces:
38 Nameless interfaces create symbols with explicit interfaces within
39 the current namespace. They are otherwise unlinked.
40
41 Generic interfaces:
42 The generic name points to a linked list of symbols. Each symbol
43 has an explicit interface. Each explicit interface has its own
44 namespace containing the arguments. Module procedures are symbols in
45 which the interface is added later when the module procedure is parsed.
46
47 User operators:
48 User-defined operators are stored in a their own set of symtrees
49 separate from regular symbols. The symtrees point to gfc_user_op
50 structures which in turn head up a list of relevant interfaces.
51
52 Extended intrinsics and assignment:
53 The head of these interface lists are stored in the containing namespace.
54
55 Implicit interfaces:
56 An implicit interface is represented as a singly linked list of
57 formal argument list structures that don't point to any symbol
58 nodes -- they just contain types.
59
60
61 When a subprogram is defined, the program unit's name points to an
62 interface as usual, but the link to the namespace is NULL and the
63 formal argument list points to symbols within the same namespace as
64 the program unit name. */
65
66 #include "config.h"
67 #include "system.h"
68 #include "coretypes.h"
69 #include "flags.h"
70 #include "gfortran.h"
71 #include "match.h"
72 #include "arith.h"
73
74 /* The current_interface structure holds information about the
75 interface currently being parsed. This structure is saved and
76 restored during recursive interfaces. */
77
78 gfc_interface_info current_interface;
79
80
81 /* Free a singly linked list of gfc_interface structures. */
82
83 void
84 gfc_free_interface (gfc_interface *intr)
85 {
86 gfc_interface *next;
87
88 for (; intr; intr = next)
89 {
90 next = intr->next;
91 free (intr);
92 }
93 }
94
95
96 /* Change the operators unary plus and minus into binary plus and
97 minus respectively, leaving the rest unchanged. */
98
99 static gfc_intrinsic_op
100 fold_unary_intrinsic (gfc_intrinsic_op op)
101 {
102 switch (op)
103 {
104 case INTRINSIC_UPLUS:
105 op = INTRINSIC_PLUS;
106 break;
107 case INTRINSIC_UMINUS:
108 op = INTRINSIC_MINUS;
109 break;
110 default:
111 break;
112 }
113
114 return op;
115 }
116
117
118 /* Match a generic specification. Depending on which type of
119 interface is found, the 'name' or 'op' pointers may be set.
120 This subroutine doesn't return MATCH_NO. */
121
122 match
123 gfc_match_generic_spec (interface_type *type,
124 char *name,
125 gfc_intrinsic_op *op)
126 {
127 char buffer[GFC_MAX_SYMBOL_LEN + 1];
128 match m;
129 gfc_intrinsic_op i;
130
131 if (gfc_match (" assignment ( = )") == MATCH_YES)
132 {
133 *type = INTERFACE_INTRINSIC_OP;
134 *op = INTRINSIC_ASSIGN;
135 return MATCH_YES;
136 }
137
138 if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
139 { /* Operator i/f */
140 *type = INTERFACE_INTRINSIC_OP;
141 *op = fold_unary_intrinsic (i);
142 return MATCH_YES;
143 }
144
145 *op = INTRINSIC_NONE;
146 if (gfc_match (" operator ( ") == MATCH_YES)
147 {
148 m = gfc_match_defined_op_name (buffer, 1);
149 if (m == MATCH_NO)
150 goto syntax;
151 if (m != MATCH_YES)
152 return MATCH_ERROR;
153
154 m = gfc_match_char (')');
155 if (m == MATCH_NO)
156 goto syntax;
157 if (m != MATCH_YES)
158 return MATCH_ERROR;
159
160 strcpy (name, buffer);
161 *type = INTERFACE_USER_OP;
162 return MATCH_YES;
163 }
164
165 if (gfc_match_name (buffer) == MATCH_YES)
166 {
167 strcpy (name, buffer);
168 *type = INTERFACE_GENERIC;
169 return MATCH_YES;
170 }
171
172 *type = INTERFACE_NAMELESS;
173 return MATCH_YES;
174
175 syntax:
176 gfc_error ("Syntax error in generic specification at %C");
177 return MATCH_ERROR;
178 }
179
180
181 /* Match one of the five F95 forms of an interface statement. The
182 matcher for the abstract interface follows. */
183
184 match
185 gfc_match_interface (void)
186 {
187 char name[GFC_MAX_SYMBOL_LEN + 1];
188 interface_type type;
189 gfc_symbol *sym;
190 gfc_intrinsic_op op;
191 match m;
192
193 m = gfc_match_space ();
194
195 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
196 return MATCH_ERROR;
197
198 /* If we're not looking at the end of the statement now, or if this
199 is not a nameless interface but we did not see a space, punt. */
200 if (gfc_match_eos () != MATCH_YES
201 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
202 {
203 gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
204 "at %C");
205 return MATCH_ERROR;
206 }
207
208 current_interface.type = type;
209
210 switch (type)
211 {
212 case INTERFACE_GENERIC:
213 if (gfc_get_symbol (name, NULL, &sym))
214 return MATCH_ERROR;
215
216 if (!sym->attr.generic
217 && !gfc_add_generic (&sym->attr, sym->name, NULL))
218 return MATCH_ERROR;
219
220 if (sym->attr.dummy)
221 {
222 gfc_error ("Dummy procedure %qs at %C cannot have a "
223 "generic interface", sym->name);
224 return MATCH_ERROR;
225 }
226
227 current_interface.sym = gfc_new_block = sym;
228 break;
229
230 case INTERFACE_USER_OP:
231 current_interface.uop = gfc_get_uop (name);
232 break;
233
234 case INTERFACE_INTRINSIC_OP:
235 current_interface.op = op;
236 break;
237
238 case INTERFACE_NAMELESS:
239 case INTERFACE_ABSTRACT:
240 break;
241 }
242
243 return MATCH_YES;
244 }
245
246
247
248 /* Match a F2003 abstract interface. */
249
250 match
251 gfc_match_abstract_interface (void)
252 {
253 match m;
254
255 if (!gfc_notify_std (GFC_STD_F2003, "ABSTRACT INTERFACE at %C"))
256 return MATCH_ERROR;
257
258 m = gfc_match_eos ();
259
260 if (m != MATCH_YES)
261 {
262 gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
263 return MATCH_ERROR;
264 }
265
266 current_interface.type = INTERFACE_ABSTRACT;
267
268 return m;
269 }
270
271
272 /* Match the different sort of generic-specs that can be present after
273 the END INTERFACE itself. */
274
275 match
276 gfc_match_end_interface (void)
277 {
278 char name[GFC_MAX_SYMBOL_LEN + 1];
279 interface_type type;
280 gfc_intrinsic_op op;
281 match m;
282
283 m = gfc_match_space ();
284
285 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
286 return MATCH_ERROR;
287
288 /* If we're not looking at the end of the statement now, or if this
289 is not a nameless interface but we did not see a space, punt. */
290 if (gfc_match_eos () != MATCH_YES
291 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
292 {
293 gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
294 "statement at %C");
295 return MATCH_ERROR;
296 }
297
298 m = MATCH_YES;
299
300 switch (current_interface.type)
301 {
302 case INTERFACE_NAMELESS:
303 case INTERFACE_ABSTRACT:
304 if (type != INTERFACE_NAMELESS)
305 {
306 gfc_error ("Expected a nameless interface at %C");
307 m = MATCH_ERROR;
308 }
309
310 break;
311
312 case INTERFACE_INTRINSIC_OP:
313 if (type != current_interface.type || op != current_interface.op)
314 {
315
316 if (current_interface.op == INTRINSIC_ASSIGN)
317 {
318 m = MATCH_ERROR;
319 gfc_error ("Expected %<END INTERFACE ASSIGNMENT (=)%> at %C");
320 }
321 else
322 {
323 const char *s1, *s2;
324 s1 = gfc_op2string (current_interface.op);
325 s2 = gfc_op2string (op);
326
327 /* The following if-statements are used to enforce C1202
328 from F2003. */
329 if ((strcmp(s1, "==") == 0 && strcmp (s2, ".eq.") == 0)
330 || (strcmp(s1, ".eq.") == 0 && strcmp (s2, "==") == 0))
331 break;
332 if ((strcmp(s1, "/=") == 0 && strcmp (s2, ".ne.") == 0)
333 || (strcmp(s1, ".ne.") == 0 && strcmp (s2, "/=") == 0))
334 break;
335 if ((strcmp(s1, "<=") == 0 && strcmp (s2, ".le.") == 0)
336 || (strcmp(s1, ".le.") == 0 && strcmp (s2, "<=") == 0))
337 break;
338 if ((strcmp(s1, "<") == 0 && strcmp (s2, ".lt.") == 0)
339 || (strcmp(s1, ".lt.") == 0 && strcmp (s2, "<") == 0))
340 break;
341 if ((strcmp(s1, ">=") == 0 && strcmp (s2, ".ge.") == 0)
342 || (strcmp(s1, ".ge.") == 0 && strcmp (s2, ">=") == 0))
343 break;
344 if ((strcmp(s1, ">") == 0 && strcmp (s2, ".gt.") == 0)
345 || (strcmp(s1, ".gt.") == 0 && strcmp (s2, ">") == 0))
346 break;
347
348 m = MATCH_ERROR;
349 gfc_error ("Expecting %<END INTERFACE OPERATOR (%s)%> at %C, "
350 "but got %s", s1, s2);
351 }
352
353 }
354
355 break;
356
357 case INTERFACE_USER_OP:
358 /* Comparing the symbol node names is OK because only use-associated
359 symbols can be renamed. */
360 if (type != current_interface.type
361 || strcmp (current_interface.uop->name, name) != 0)
362 {
363 gfc_error ("Expecting %<END INTERFACE OPERATOR (.%s.)%> at %C",
364 current_interface.uop->name);
365 m = MATCH_ERROR;
366 }
367
368 break;
369
370 case INTERFACE_GENERIC:
371 if (type != current_interface.type
372 || strcmp (current_interface.sym->name, name) != 0)
373 {
374 gfc_error ("Expecting %<END INTERFACE %s%> at %C",
375 current_interface.sym->name);
376 m = MATCH_ERROR;
377 }
378
379 break;
380 }
381
382 return m;
383 }
384
385
386 /* Compare two derived types using the criteria in 4.4.2 of the standard,
387 recursing through gfc_compare_types for the components. */
388
389 int
390 gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2)
391 {
392 gfc_component *dt1, *dt2;
393
394 if (derived1 == derived2)
395 return 1;
396
397 gcc_assert (derived1 && derived2);
398
399 /* Special case for comparing derived types across namespaces. If the
400 true names and module names are the same and the module name is
401 nonnull, then they are equal. */
402 if (strcmp (derived1->name, derived2->name) == 0
403 && derived1->module != NULL && derived2->module != NULL
404 && strcmp (derived1->module, derived2->module) == 0)
405 return 1;
406
407 /* Compare type via the rules of the standard. Both types must have
408 the SEQUENCE or BIND(C) attribute to be equal. */
409
410 if (strcmp (derived1->name, derived2->name))
411 return 0;
412
413 if (derived1->component_access == ACCESS_PRIVATE
414 || derived2->component_access == ACCESS_PRIVATE)
415 return 0;
416
417 if (!(derived1->attr.sequence && derived2->attr.sequence)
418 && !(derived1->attr.is_bind_c && derived2->attr.is_bind_c))
419 return 0;
420
421 dt1 = derived1->components;
422 dt2 = derived2->components;
423
424 /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
425 simple test can speed things up. Otherwise, lots of things have to
426 match. */
427 for (;;)
428 {
429 if (strcmp (dt1->name, dt2->name) != 0)
430 return 0;
431
432 if (dt1->attr.access != dt2->attr.access)
433 return 0;
434
435 if (dt1->attr.pointer != dt2->attr.pointer)
436 return 0;
437
438 if (dt1->attr.dimension != dt2->attr.dimension)
439 return 0;
440
441 if (dt1->attr.allocatable != dt2->attr.allocatable)
442 return 0;
443
444 if (dt1->attr.dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0)
445 return 0;
446
447 /* Make sure that link lists do not put this function into an
448 endless recursive loop! */
449 if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
450 && !(dt2->ts.type == BT_DERIVED && derived2 == dt2->ts.u.derived)
451 && gfc_compare_types (&dt1->ts, &dt2->ts) == 0)
452 return 0;
453
454 else if ((dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
455 && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
456 return 0;
457
458 else if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
459 && (dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
460 return 0;
461
462 dt1 = dt1->next;
463 dt2 = dt2->next;
464
465 if (dt1 == NULL && dt2 == NULL)
466 break;
467 if (dt1 == NULL || dt2 == NULL)
468 return 0;
469 }
470
471 return 1;
472 }
473
474
475 /* Compare two typespecs, recursively if necessary. */
476
477 int
478 gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2)
479 {
480 /* See if one of the typespecs is a BT_VOID, which is what is being used
481 to allow the funcs like c_f_pointer to accept any pointer type.
482 TODO: Possibly should narrow this to just the one typespec coming in
483 that is for the formal arg, but oh well. */
484 if (ts1->type == BT_VOID || ts2->type == BT_VOID)
485 return 1;
486
487 if (ts1->type == BT_CLASS
488 && ts1->u.derived->components->ts.u.derived->attr.unlimited_polymorphic)
489 return 1;
490
491 /* F2003: C717 */
492 if (ts2->type == BT_CLASS && ts1->type == BT_DERIVED
493 && ts2->u.derived->components->ts.u.derived->attr.unlimited_polymorphic
494 && (ts1->u.derived->attr.sequence || ts1->u.derived->attr.is_bind_c))
495 return 1;
496
497 if (ts1->type != ts2->type
498 && ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
499 || (ts2->type != BT_DERIVED && ts2->type != BT_CLASS)))
500 return 0;
501 if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
502 return (ts1->kind == ts2->kind);
503
504 /* Compare derived types. */
505 if (gfc_type_compatible (ts1, ts2))
506 return 1;
507
508 return gfc_compare_derived_types (ts1->u.derived ,ts2->u.derived);
509 }
510
511
512 static int
513 compare_type (gfc_symbol *s1, gfc_symbol *s2)
514 {
515 if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
516 return 1;
517
518 /* TYPE and CLASS of the same declared type are type compatible,
519 but have different characteristics. */
520 if ((s1->ts.type == BT_CLASS && s2->ts.type == BT_DERIVED)
521 || (s1->ts.type == BT_DERIVED && s2->ts.type == BT_CLASS))
522 return 0;
523
524 return gfc_compare_types (&s1->ts, &s2->ts) || s2->ts.type == BT_ASSUMED;
525 }
526
527
528 static int
529 compare_rank (gfc_symbol *s1, gfc_symbol *s2)
530 {
531 gfc_array_spec *as1, *as2;
532 int r1, r2;
533
534 if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
535 return 1;
536
537 as1 = (s1->ts.type == BT_CLASS) ? CLASS_DATA (s1)->as : s1->as;
538 as2 = (s2->ts.type == BT_CLASS) ? CLASS_DATA (s2)->as : s2->as;
539
540 r1 = as1 ? as1->rank : 0;
541 r2 = as2 ? as2->rank : 0;
542
543 if (r1 != r2 && (!as2 || as2->type != AS_ASSUMED_RANK))
544 return 0; /* Ranks differ. */
545
546 return 1;
547 }
548
549
550 /* Given two symbols that are formal arguments, compare their ranks
551 and types. Returns nonzero if they have the same rank and type,
552 zero otherwise. */
553
554 static int
555 compare_type_rank (gfc_symbol *s1, gfc_symbol *s2)
556 {
557 return compare_type (s1, s2) && compare_rank (s1, s2);
558 }
559
560
561 /* Given two symbols that are formal arguments, compare their types
562 and rank and their formal interfaces if they are both dummy
563 procedures. Returns nonzero if the same, zero if different. */
564
565 static int
566 compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2)
567 {
568 if (s1 == NULL || s2 == NULL)
569 return s1 == s2 ? 1 : 0;
570
571 if (s1 == s2)
572 return 1;
573
574 if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
575 return compare_type_rank (s1, s2);
576
577 if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
578 return 0;
579
580 /* At this point, both symbols are procedures. It can happen that
581 external procedures are compared, where one is identified by usage
582 to be a function or subroutine but the other is not. Check TKR
583 nonetheless for these cases. */
584 if (s1->attr.function == 0 && s1->attr.subroutine == 0)
585 return s1->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
586
587 if (s2->attr.function == 0 && s2->attr.subroutine == 0)
588 return s2->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
589
590 /* Now the type of procedure has been identified. */
591 if (s1->attr.function != s2->attr.function
592 || s1->attr.subroutine != s2->attr.subroutine)
593 return 0;
594
595 if (s1->attr.function && compare_type_rank (s1, s2) == 0)
596 return 0;
597
598 /* Originally, gfortran recursed here to check the interfaces of passed
599 procedures. This is explicitly not required by the standard. */
600 return 1;
601 }
602
603
604 /* Given a formal argument list and a keyword name, search the list
605 for that keyword. Returns the correct symbol node if found, NULL
606 if not found. */
607
608 static gfc_symbol *
609 find_keyword_arg (const char *name, gfc_formal_arglist *f)
610 {
611 for (; f; f = f->next)
612 if (strcmp (f->sym->name, name) == 0)
613 return f->sym;
614
615 return NULL;
616 }
617
618
619 /******** Interface checking subroutines **********/
620
621
622 /* Given an operator interface and the operator, make sure that all
623 interfaces for that operator are legal. */
624
625 bool
626 gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op,
627 locus opwhere)
628 {
629 gfc_formal_arglist *formal;
630 sym_intent i1, i2;
631 bt t1, t2;
632 int args, r1, r2, k1, k2;
633
634 gcc_assert (sym);
635
636 args = 0;
637 t1 = t2 = BT_UNKNOWN;
638 i1 = i2 = INTENT_UNKNOWN;
639 r1 = r2 = -1;
640 k1 = k2 = -1;
641
642 for (formal = gfc_sym_get_dummy_args (sym); formal; formal = formal->next)
643 {
644 gfc_symbol *fsym = formal->sym;
645 if (fsym == NULL)
646 {
647 gfc_error ("Alternate return cannot appear in operator "
648 "interface at %L", &sym->declared_at);
649 return false;
650 }
651 if (args == 0)
652 {
653 t1 = fsym->ts.type;
654 i1 = fsym->attr.intent;
655 r1 = (fsym->as != NULL) ? fsym->as->rank : 0;
656 k1 = fsym->ts.kind;
657 }
658 if (args == 1)
659 {
660 t2 = fsym->ts.type;
661 i2 = fsym->attr.intent;
662 r2 = (fsym->as != NULL) ? fsym->as->rank : 0;
663 k2 = fsym->ts.kind;
664 }
665 args++;
666 }
667
668 /* Only +, - and .not. can be unary operators.
669 .not. cannot be a binary operator. */
670 if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS
671 && op != INTRINSIC_MINUS
672 && op != INTRINSIC_NOT)
673 || (args == 2 && op == INTRINSIC_NOT))
674 {
675 if (op == INTRINSIC_ASSIGN)
676 gfc_error ("Assignment operator interface at %L must have "
677 "two arguments", &sym->declared_at);
678 else
679 gfc_error ("Operator interface at %L has the wrong number of arguments",
680 &sym->declared_at);
681 return false;
682 }
683
684 /* Check that intrinsics are mapped to functions, except
685 INTRINSIC_ASSIGN which should map to a subroutine. */
686 if (op == INTRINSIC_ASSIGN)
687 {
688 gfc_formal_arglist *dummy_args;
689
690 if (!sym->attr.subroutine)
691 {
692 gfc_error ("Assignment operator interface at %L must be "
693 "a SUBROUTINE", &sym->declared_at);
694 return false;
695 }
696
697 /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
698 - First argument an array with different rank than second,
699 - First argument is a scalar and second an array,
700 - Types and kinds do not conform, or
701 - First argument is of derived type. */
702 dummy_args = gfc_sym_get_dummy_args (sym);
703 if (dummy_args->sym->ts.type != BT_DERIVED
704 && dummy_args->sym->ts.type != BT_CLASS
705 && (r2 == 0 || r1 == r2)
706 && (dummy_args->sym->ts.type == dummy_args->next->sym->ts.type
707 || (gfc_numeric_ts (&dummy_args->sym->ts)
708 && gfc_numeric_ts (&dummy_args->next->sym->ts))))
709 {
710 gfc_error ("Assignment operator interface at %L must not redefine "
711 "an INTRINSIC type assignment", &sym->declared_at);
712 return false;
713 }
714 }
715 else
716 {
717 if (!sym->attr.function)
718 {
719 gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
720 &sym->declared_at);
721 return false;
722 }
723 }
724
725 /* Check intents on operator interfaces. */
726 if (op == INTRINSIC_ASSIGN)
727 {
728 if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
729 {
730 gfc_error ("First argument of defined assignment at %L must be "
731 "INTENT(OUT) or INTENT(INOUT)", &sym->declared_at);
732 return false;
733 }
734
735 if (i2 != INTENT_IN)
736 {
737 gfc_error ("Second argument of defined assignment at %L must be "
738 "INTENT(IN)", &sym->declared_at);
739 return false;
740 }
741 }
742 else
743 {
744 if (i1 != INTENT_IN)
745 {
746 gfc_error ("First argument of operator interface at %L must be "
747 "INTENT(IN)", &sym->declared_at);
748 return false;
749 }
750
751 if (args == 2 && i2 != INTENT_IN)
752 {
753 gfc_error ("Second argument of operator interface at %L must be "
754 "INTENT(IN)", &sym->declared_at);
755 return false;
756 }
757 }
758
759 /* From now on, all we have to do is check that the operator definition
760 doesn't conflict with an intrinsic operator. The rules for this
761 game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
762 as well as 12.3.2.1.1 of Fortran 2003:
763
764 "If the operator is an intrinsic-operator (R310), the number of
765 function arguments shall be consistent with the intrinsic uses of
766 that operator, and the types, kind type parameters, or ranks of the
767 dummy arguments shall differ from those required for the intrinsic
768 operation (7.1.2)." */
769
770 #define IS_NUMERIC_TYPE(t) \
771 ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)
772
773 /* Unary ops are easy, do them first. */
774 if (op == INTRINSIC_NOT)
775 {
776 if (t1 == BT_LOGICAL)
777 goto bad_repl;
778 else
779 return true;
780 }
781
782 if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS))
783 {
784 if (IS_NUMERIC_TYPE (t1))
785 goto bad_repl;
786 else
787 return true;
788 }
789
790 /* Character intrinsic operators have same character kind, thus
791 operator definitions with operands of different character kinds
792 are always safe. */
793 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2)
794 return true;
795
796 /* Intrinsic operators always perform on arguments of same rank,
797 so different ranks is also always safe. (rank == 0) is an exception
798 to that, because all intrinsic operators are elemental. */
799 if (r1 != r2 && r1 != 0 && r2 != 0)
800 return true;
801
802 switch (op)
803 {
804 case INTRINSIC_EQ:
805 case INTRINSIC_EQ_OS:
806 case INTRINSIC_NE:
807 case INTRINSIC_NE_OS:
808 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
809 goto bad_repl;
810 /* Fall through. */
811
812 case INTRINSIC_PLUS:
813 case INTRINSIC_MINUS:
814 case INTRINSIC_TIMES:
815 case INTRINSIC_DIVIDE:
816 case INTRINSIC_POWER:
817 if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2))
818 goto bad_repl;
819 break;
820
821 case INTRINSIC_GT:
822 case INTRINSIC_GT_OS:
823 case INTRINSIC_GE:
824 case INTRINSIC_GE_OS:
825 case INTRINSIC_LT:
826 case INTRINSIC_LT_OS:
827 case INTRINSIC_LE:
828 case INTRINSIC_LE_OS:
829 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
830 goto bad_repl;
831 if ((t1 == BT_INTEGER || t1 == BT_REAL)
832 && (t2 == BT_INTEGER || t2 == BT_REAL))
833 goto bad_repl;
834 break;
835
836 case INTRINSIC_CONCAT:
837 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
838 goto bad_repl;
839 break;
840
841 case INTRINSIC_AND:
842 case INTRINSIC_OR:
843 case INTRINSIC_EQV:
844 case INTRINSIC_NEQV:
845 if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
846 goto bad_repl;
847 break;
848
849 default:
850 break;
851 }
852
853 return true;
854
855 #undef IS_NUMERIC_TYPE
856
857 bad_repl:
858 gfc_error ("Operator interface at %L conflicts with intrinsic interface",
859 &opwhere);
860 return false;
861 }
862
863
864 /* Given a pair of formal argument lists, we see if the two lists can
865 be distinguished by counting the number of nonoptional arguments of
866 a given type/rank in f1 and seeing if there are less then that
867 number of those arguments in f2 (including optional arguments).
868 Since this test is asymmetric, it has to be called twice to make it
869 symmetric. Returns nonzero if the argument lists are incompatible
870 by this test. This subroutine implements rule 1 of section F03:16.2.3.
871 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
872
873 static int
874 count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
875 const char *p1, const char *p2)
876 {
877 int rc, ac1, ac2, i, j, k, n1;
878 gfc_formal_arglist *f;
879
880 typedef struct
881 {
882 int flag;
883 gfc_symbol *sym;
884 }
885 arginfo;
886
887 arginfo *arg;
888
889 n1 = 0;
890
891 for (f = f1; f; f = f->next)
892 n1++;
893
894 /* Build an array of integers that gives the same integer to
895 arguments of the same type/rank. */
896 arg = XCNEWVEC (arginfo, n1);
897
898 f = f1;
899 for (i = 0; i < n1; i++, f = f->next)
900 {
901 arg[i].flag = -1;
902 arg[i].sym = f->sym;
903 }
904
905 k = 0;
906
907 for (i = 0; i < n1; i++)
908 {
909 if (arg[i].flag != -1)
910 continue;
911
912 if (arg[i].sym && (arg[i].sym->attr.optional
913 || (p1 && strcmp (arg[i].sym->name, p1) == 0)))
914 continue; /* Skip OPTIONAL and PASS arguments. */
915
916 arg[i].flag = k;
917
918 /* Find other non-optional, non-pass arguments of the same type/rank. */
919 for (j = i + 1; j < n1; j++)
920 if ((arg[j].sym == NULL
921 || !(arg[j].sym->attr.optional
922 || (p1 && strcmp (arg[j].sym->name, p1) == 0)))
923 && (compare_type_rank_if (arg[i].sym, arg[j].sym)
924 || compare_type_rank_if (arg[j].sym, arg[i].sym)))
925 arg[j].flag = k;
926
927 k++;
928 }
929
930 /* Now loop over each distinct type found in f1. */
931 k = 0;
932 rc = 0;
933
934 for (i = 0; i < n1; i++)
935 {
936 if (arg[i].flag != k)
937 continue;
938
939 ac1 = 1;
940 for (j = i + 1; j < n1; j++)
941 if (arg[j].flag == k)
942 ac1++;
943
944 /* Count the number of non-pass arguments in f2 with that type,
945 including those that are optional. */
946 ac2 = 0;
947
948 for (f = f2; f; f = f->next)
949 if ((!p2 || strcmp (f->sym->name, p2) != 0)
950 && (compare_type_rank_if (arg[i].sym, f->sym)
951 || compare_type_rank_if (f->sym, arg[i].sym)))
952 ac2++;
953
954 if (ac1 > ac2)
955 {
956 rc = 1;
957 break;
958 }
959
960 k++;
961 }
962
963 free (arg);
964
965 return rc;
966 }
967
968
969 /* Perform the correspondence test in rule (3) of F08:C1215.
970 Returns zero if no argument is found that satisfies this rule,
971 nonzero otherwise. 'p1' and 'p2' are the PASS arguments of both procedures
972 (if applicable).
973
974 This test is also not symmetric in f1 and f2 and must be called
975 twice. This test finds problems caused by sorting the actual
976 argument list with keywords. For example:
977
978 INTERFACE FOO
979 SUBROUTINE F1(A, B)
980 INTEGER :: A ; REAL :: B
981 END SUBROUTINE F1
982
983 SUBROUTINE F2(B, A)
984 INTEGER :: A ; REAL :: B
985 END SUBROUTINE F1
986 END INTERFACE FOO
987
988 At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
989
990 static int
991 generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
992 const char *p1, const char *p2)
993 {
994 gfc_formal_arglist *f2_save, *g;
995 gfc_symbol *sym;
996
997 f2_save = f2;
998
999 while (f1)
1000 {
1001 if (f1->sym->attr.optional)
1002 goto next;
1003
1004 if (p1 && strcmp (f1->sym->name, p1) == 0)
1005 f1 = f1->next;
1006 if (f2 && p2 && strcmp (f2->sym->name, p2) == 0)
1007 f2 = f2->next;
1008
1009 if (f2 != NULL && (compare_type_rank (f1->sym, f2->sym)
1010 || compare_type_rank (f2->sym, f1->sym))
1011 && !((gfc_option.allow_std & GFC_STD_F2008)
1012 && ((f1->sym->attr.allocatable && f2->sym->attr.pointer)
1013 || (f2->sym->attr.allocatable && f1->sym->attr.pointer))))
1014 goto next;
1015
1016 /* Now search for a disambiguating keyword argument starting at
1017 the current non-match. */
1018 for (g = f1; g; g = g->next)
1019 {
1020 if (g->sym->attr.optional || (p1 && strcmp (g->sym->name, p1) == 0))
1021 continue;
1022
1023 sym = find_keyword_arg (g->sym->name, f2_save);
1024 if (sym == NULL || !compare_type_rank (g->sym, sym)
1025 || ((gfc_option.allow_std & GFC_STD_F2008)
1026 && ((sym->attr.allocatable && g->sym->attr.pointer)
1027 || (sym->attr.pointer && g->sym->attr.allocatable))))
1028 return 1;
1029 }
1030
1031 next:
1032 if (f1 != NULL)
1033 f1 = f1->next;
1034 if (f2 != NULL)
1035 f2 = f2->next;
1036 }
1037
1038 return 0;
1039 }
1040
1041
1042 static int
1043 symbol_rank (gfc_symbol *sym)
1044 {
1045 gfc_array_spec *as;
1046 as = (sym->ts.type == BT_CLASS) ? CLASS_DATA (sym)->as : sym->as;
1047 return as ? as->rank : 0;
1048 }
1049
1050
1051 /* Check if the characteristics of two dummy arguments match,
1052 cf. F08:12.3.2. */
1053
1054 static bool
1055 check_dummy_characteristics (gfc_symbol *s1, gfc_symbol *s2,
1056 bool type_must_agree, char *errmsg, int err_len)
1057 {
1058 if (s1 == NULL || s2 == NULL)
1059 return s1 == s2 ? true : false;
1060
1061 /* Check type and rank. */
1062 if (type_must_agree)
1063 {
1064 if (!compare_type (s1, s2) || !compare_type (s2, s1))
1065 {
1066 snprintf (errmsg, err_len, "Type mismatch in argument '%s' (%s/%s)",
1067 s1->name, gfc_typename (&s1->ts), gfc_typename (&s2->ts));
1068 return false;
1069 }
1070 if (!compare_rank (s1, s2))
1071 {
1072 snprintf (errmsg, err_len, "Rank mismatch in argument '%s' (%i/%i)",
1073 s1->name, symbol_rank (s1), symbol_rank (s2));
1074 return false;
1075 }
1076 }
1077
1078 /* Check INTENT. */
1079 if (s1->attr.intent != s2->attr.intent)
1080 {
1081 snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'",
1082 s1->name);
1083 return false;
1084 }
1085
1086 /* Check OPTIONAL attribute. */
1087 if (s1->attr.optional != s2->attr.optional)
1088 {
1089 snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'",
1090 s1->name);
1091 return false;
1092 }
1093
1094 /* Check ALLOCATABLE attribute. */
1095 if (s1->attr.allocatable != s2->attr.allocatable)
1096 {
1097 snprintf (errmsg, err_len, "ALLOCATABLE mismatch in argument '%s'",
1098 s1->name);
1099 return false;
1100 }
1101
1102 /* Check POINTER attribute. */
1103 if (s1->attr.pointer != s2->attr.pointer)
1104 {
1105 snprintf (errmsg, err_len, "POINTER mismatch in argument '%s'",
1106 s1->name);
1107 return false;
1108 }
1109
1110 /* Check TARGET attribute. */
1111 if (s1->attr.target != s2->attr.target)
1112 {
1113 snprintf (errmsg, err_len, "TARGET mismatch in argument '%s'",
1114 s1->name);
1115 return false;
1116 }
1117
1118 /* Check ASYNCHRONOUS attribute. */
1119 if (s1->attr.asynchronous != s2->attr.asynchronous)
1120 {
1121 snprintf (errmsg, err_len, "ASYNCHRONOUS mismatch in argument '%s'",
1122 s1->name);
1123 return false;
1124 }
1125
1126 /* Check CONTIGUOUS attribute. */
1127 if (s1->attr.contiguous != s2->attr.contiguous)
1128 {
1129 snprintf (errmsg, err_len, "CONTIGUOUS mismatch in argument '%s'",
1130 s1->name);
1131 return false;
1132 }
1133
1134 /* Check VALUE attribute. */
1135 if (s1->attr.value != s2->attr.value)
1136 {
1137 snprintf (errmsg, err_len, "VALUE mismatch in argument '%s'",
1138 s1->name);
1139 return false;
1140 }
1141
1142 /* Check VOLATILE attribute. */
1143 if (s1->attr.volatile_ != s2->attr.volatile_)
1144 {
1145 snprintf (errmsg, err_len, "VOLATILE mismatch in argument '%s'",
1146 s1->name);
1147 return false;
1148 }
1149
1150 /* Check interface of dummy procedures. */
1151 if (s1->attr.flavor == FL_PROCEDURE)
1152 {
1153 char err[200];
1154 if (!gfc_compare_interfaces (s1, s2, s2->name, 0, 1, err, sizeof(err),
1155 NULL, NULL))
1156 {
1157 snprintf (errmsg, err_len, "Interface mismatch in dummy procedure "
1158 "'%s': %s", s1->name, err);
1159 return false;
1160 }
1161 }
1162
1163 /* Check string length. */
1164 if (s1->ts.type == BT_CHARACTER
1165 && s1->ts.u.cl && s1->ts.u.cl->length
1166 && s2->ts.u.cl && s2->ts.u.cl->length)
1167 {
1168 int compval = gfc_dep_compare_expr (s1->ts.u.cl->length,
1169 s2->ts.u.cl->length);
1170 switch (compval)
1171 {
1172 case -1:
1173 case 1:
1174 case -3:
1175 snprintf (errmsg, err_len, "Character length mismatch "
1176 "in argument '%s'", s1->name);
1177 return false;
1178
1179 case -2:
1180 /* FIXME: Implement a warning for this case.
1181 gfc_warning ("Possible character length mismatch in argument %qs",
1182 s1->name);*/
1183 break;
1184
1185 case 0:
1186 break;
1187
1188 default:
1189 gfc_internal_error ("check_dummy_characteristics: Unexpected result "
1190 "%i of gfc_dep_compare_expr", compval);
1191 break;
1192 }
1193 }
1194
1195 /* Check array shape. */
1196 if (s1->as && s2->as)
1197 {
1198 int i, compval;
1199 gfc_expr *shape1, *shape2;
1200
1201 if (s1->as->type != s2->as->type)
1202 {
1203 snprintf (errmsg, err_len, "Shape mismatch in argument '%s'",
1204 s1->name);
1205 return false;
1206 }
1207
1208 if (s1->as->type == AS_EXPLICIT)
1209 for (i = 0; i < s1->as->rank + s1->as->corank; i++)
1210 {
1211 shape1 = gfc_subtract (gfc_copy_expr (s1->as->upper[i]),
1212 gfc_copy_expr (s1->as->lower[i]));
1213 shape2 = gfc_subtract (gfc_copy_expr (s2->as->upper[i]),
1214 gfc_copy_expr (s2->as->lower[i]));
1215 compval = gfc_dep_compare_expr (shape1, shape2);
1216 gfc_free_expr (shape1);
1217 gfc_free_expr (shape2);
1218 switch (compval)
1219 {
1220 case -1:
1221 case 1:
1222 case -3:
1223 snprintf (errmsg, err_len, "Shape mismatch in dimension %i of "
1224 "argument '%s'", i + 1, s1->name);
1225 return false;
1226
1227 case -2:
1228 /* FIXME: Implement a warning for this case.
1229 gfc_warning ("Possible shape mismatch in argument %qs",
1230 s1->name);*/
1231 break;
1232
1233 case 0:
1234 break;
1235
1236 default:
1237 gfc_internal_error ("check_dummy_characteristics: Unexpected "
1238 "result %i of gfc_dep_compare_expr",
1239 compval);
1240 break;
1241 }
1242 }
1243 }
1244
1245 return true;
1246 }
1247
1248
1249 /* Check if the characteristics of two function results match,
1250 cf. F08:12.3.3. */
1251
1252 static bool
1253 check_result_characteristics (gfc_symbol *s1, gfc_symbol *s2,
1254 char *errmsg, int err_len)
1255 {
1256 gfc_symbol *r1, *r2;
1257
1258 if (s1->ts.interface && s1->ts.interface->result)
1259 r1 = s1->ts.interface->result;
1260 else
1261 r1 = s1->result ? s1->result : s1;
1262
1263 if (s2->ts.interface && s2->ts.interface->result)
1264 r2 = s2->ts.interface->result;
1265 else
1266 r2 = s2->result ? s2->result : s2;
1267
1268 if (r1->ts.type == BT_UNKNOWN)
1269 return true;
1270
1271 /* Check type and rank. */
1272 if (!compare_type (r1, r2))
1273 {
1274 snprintf (errmsg, err_len, "Type mismatch in function result (%s/%s)",
1275 gfc_typename (&r1->ts), gfc_typename (&r2->ts));
1276 return false;
1277 }
1278 if (!compare_rank (r1, r2))
1279 {
1280 snprintf (errmsg, err_len, "Rank mismatch in function result (%i/%i)",
1281 symbol_rank (r1), symbol_rank (r2));
1282 return false;
1283 }
1284
1285 /* Check ALLOCATABLE attribute. */
1286 if (r1->attr.allocatable != r2->attr.allocatable)
1287 {
1288 snprintf (errmsg, err_len, "ALLOCATABLE attribute mismatch in "
1289 "function result");
1290 return false;
1291 }
1292
1293 /* Check POINTER attribute. */
1294 if (r1->attr.pointer != r2->attr.pointer)
1295 {
1296 snprintf (errmsg, err_len, "POINTER attribute mismatch in "
1297 "function result");
1298 return false;
1299 }
1300
1301 /* Check CONTIGUOUS attribute. */
1302 if (r1->attr.contiguous != r2->attr.contiguous)
1303 {
1304 snprintf (errmsg, err_len, "CONTIGUOUS attribute mismatch in "
1305 "function result");
1306 return false;
1307 }
1308
1309 /* Check PROCEDURE POINTER attribute. */
1310 if (r1 != s1 && r1->attr.proc_pointer != r2->attr.proc_pointer)
1311 {
1312 snprintf (errmsg, err_len, "PROCEDURE POINTER mismatch in "
1313 "function result");
1314 return false;
1315 }
1316
1317 /* Check string length. */
1318 if (r1->ts.type == BT_CHARACTER && r1->ts.u.cl && r2->ts.u.cl)
1319 {
1320 if (r1->ts.deferred != r2->ts.deferred)
1321 {
1322 snprintf (errmsg, err_len, "Character length mismatch "
1323 "in function result");
1324 return false;
1325 }
1326
1327 if (r1->ts.u.cl->length && r2->ts.u.cl->length)
1328 {
1329 int compval = gfc_dep_compare_expr (r1->ts.u.cl->length,
1330 r2->ts.u.cl->length);
1331 switch (compval)
1332 {
1333 case -1:
1334 case 1:
1335 case -3:
1336 snprintf (errmsg, err_len, "Character length mismatch "
1337 "in function result");
1338 return false;
1339
1340 case -2:
1341 /* FIXME: Implement a warning for this case.
1342 snprintf (errmsg, err_len, "Possible character length mismatch "
1343 "in function result");*/
1344 break;
1345
1346 case 0:
1347 break;
1348
1349 default:
1350 gfc_internal_error ("check_result_characteristics (1): Unexpected "
1351 "result %i of gfc_dep_compare_expr", compval);
1352 break;
1353 }
1354 }
1355 }
1356
1357 /* Check array shape. */
1358 if (!r1->attr.allocatable && !r1->attr.pointer && r1->as && r2->as)
1359 {
1360 int i, compval;
1361 gfc_expr *shape1, *shape2;
1362
1363 if (r1->as->type != r2->as->type)
1364 {
1365 snprintf (errmsg, err_len, "Shape mismatch in function result");
1366 return false;
1367 }
1368
1369 if (r1->as->type == AS_EXPLICIT)
1370 for (i = 0; i < r1->as->rank + r1->as->corank; i++)
1371 {
1372 shape1 = gfc_subtract (gfc_copy_expr (r1->as->upper[i]),
1373 gfc_copy_expr (r1->as->lower[i]));
1374 shape2 = gfc_subtract (gfc_copy_expr (r2->as->upper[i]),
1375 gfc_copy_expr (r2->as->lower[i]));
1376 compval = gfc_dep_compare_expr (shape1, shape2);
1377 gfc_free_expr (shape1);
1378 gfc_free_expr (shape2);
1379 switch (compval)
1380 {
1381 case -1:
1382 case 1:
1383 case -3:
1384 snprintf (errmsg, err_len, "Shape mismatch in dimension %i of "
1385 "function result", i + 1);
1386 return false;
1387
1388 case -2:
1389 /* FIXME: Implement a warning for this case.
1390 gfc_warning ("Possible shape mismatch in return value");*/
1391 break;
1392
1393 case 0:
1394 break;
1395
1396 default:
1397 gfc_internal_error ("check_result_characteristics (2): "
1398 "Unexpected result %i of "
1399 "gfc_dep_compare_expr", compval);
1400 break;
1401 }
1402 }
1403 }
1404
1405 return true;
1406 }
1407
1408
1409 /* 'Compare' two formal interfaces associated with a pair of symbols.
1410 We return nonzero if there exists an actual argument list that
1411 would be ambiguous between the two interfaces, zero otherwise.
1412 'strict_flag' specifies whether all the characteristics are
1413 required to match, which is not the case for ambiguity checks.
1414 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
1415
1416 int
1417 gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2,
1418 int generic_flag, int strict_flag,
1419 char *errmsg, int err_len,
1420 const char *p1, const char *p2)
1421 {
1422 gfc_formal_arglist *f1, *f2;
1423
1424 gcc_assert (name2 != NULL);
1425
1426 if (s1->attr.function && (s2->attr.subroutine
1427 || (!s2->attr.function && s2->ts.type == BT_UNKNOWN
1428 && gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN)))
1429 {
1430 if (errmsg != NULL)
1431 snprintf (errmsg, err_len, "'%s' is not a function", name2);
1432 return 0;
1433 }
1434
1435 if (s1->attr.subroutine && s2->attr.function)
1436 {
1437 if (errmsg != NULL)
1438 snprintf (errmsg, err_len, "'%s' is not a subroutine", name2);
1439 return 0;
1440 }
1441
1442 /* Do strict checks on all characteristics
1443 (for dummy procedures and procedure pointer assignments). */
1444 if (!generic_flag && strict_flag)
1445 {
1446 if (s1->attr.function && s2->attr.function)
1447 {
1448 /* If both are functions, check result characteristics. */
1449 if (!check_result_characteristics (s1, s2, errmsg, err_len)
1450 || !check_result_characteristics (s2, s1, errmsg, err_len))
1451 return 0;
1452 }
1453
1454 if (s1->attr.pure && !s2->attr.pure)
1455 {
1456 snprintf (errmsg, err_len, "Mismatch in PURE attribute");
1457 return 0;
1458 }
1459 if (s1->attr.elemental && !s2->attr.elemental)
1460 {
1461 snprintf (errmsg, err_len, "Mismatch in ELEMENTAL attribute");
1462 return 0;
1463 }
1464 }
1465
1466 if (s1->attr.if_source == IFSRC_UNKNOWN
1467 || s2->attr.if_source == IFSRC_UNKNOWN)
1468 return 1;
1469
1470 f1 = gfc_sym_get_dummy_args (s1);
1471 f2 = gfc_sym_get_dummy_args (s2);
1472
1473 if (f1 == NULL && f2 == NULL)
1474 return 1; /* Special case: No arguments. */
1475
1476 if (generic_flag)
1477 {
1478 if (count_types_test (f1, f2, p1, p2)
1479 || count_types_test (f2, f1, p2, p1))
1480 return 0;
1481 if (generic_correspondence (f1, f2, p1, p2)
1482 || generic_correspondence (f2, f1, p2, p1))
1483 return 0;
1484 }
1485 else
1486 /* Perform the abbreviated correspondence test for operators (the
1487 arguments cannot be optional and are always ordered correctly).
1488 This is also done when comparing interfaces for dummy procedures and in
1489 procedure pointer assignments. */
1490
1491 for (;;)
1492 {
1493 /* Check existence. */
1494 if (f1 == NULL && f2 == NULL)
1495 break;
1496 if (f1 == NULL || f2 == NULL)
1497 {
1498 if (errmsg != NULL)
1499 snprintf (errmsg, err_len, "'%s' has the wrong number of "
1500 "arguments", name2);
1501 return 0;
1502 }
1503
1504 if (UNLIMITED_POLY (f1->sym))
1505 goto next;
1506
1507 if (strict_flag)
1508 {
1509 /* Check all characteristics. */
1510 if (!check_dummy_characteristics (f1->sym, f2->sym, true,
1511 errmsg, err_len))
1512 return 0;
1513 }
1514 else
1515 {
1516 /* Only check type and rank. */
1517 if (!compare_type (f2->sym, f1->sym))
1518 {
1519 if (errmsg != NULL)
1520 snprintf (errmsg, err_len, "Type mismatch in argument '%s' "
1521 "(%s/%s)", f1->sym->name,
1522 gfc_typename (&f1->sym->ts),
1523 gfc_typename (&f2->sym->ts));
1524 return 0;
1525 }
1526 if (!compare_rank (f2->sym, f1->sym))
1527 {
1528 if (errmsg != NULL)
1529 snprintf (errmsg, err_len, "Rank mismatch in argument '%s' "
1530 "(%i/%i)", f1->sym->name, symbol_rank (f1->sym),
1531 symbol_rank (f2->sym));
1532 return 0;
1533 }
1534 }
1535 next:
1536 f1 = f1->next;
1537 f2 = f2->next;
1538 }
1539
1540 return 1;
1541 }
1542
1543
1544 /* Given a pointer to an interface pointer, remove duplicate
1545 interfaces and make sure that all symbols are either functions
1546 or subroutines, and all of the same kind. Returns nonzero if
1547 something goes wrong. */
1548
1549 static int
1550 check_interface0 (gfc_interface *p, const char *interface_name)
1551 {
1552 gfc_interface *psave, *q, *qlast;
1553
1554 psave = p;
1555 for (; p; p = p->next)
1556 {
1557 /* Make sure all symbols in the interface have been defined as
1558 functions or subroutines. */
1559 if (((!p->sym->attr.function && !p->sym->attr.subroutine)
1560 || !p->sym->attr.if_source)
1561 && p->sym->attr.flavor != FL_DERIVED)
1562 {
1563 if (p->sym->attr.external)
1564 gfc_error ("Procedure %qs in %s at %L has no explicit interface",
1565 p->sym->name, interface_name, &p->sym->declared_at);
1566 else
1567 gfc_error ("Procedure %qs in %s at %L is neither function nor "
1568 "subroutine", p->sym->name, interface_name,
1569 &p->sym->declared_at);
1570 return 1;
1571 }
1572
1573 /* Verify that procedures are either all SUBROUTINEs or all FUNCTIONs. */
1574 if ((psave->sym->attr.function && !p->sym->attr.function
1575 && p->sym->attr.flavor != FL_DERIVED)
1576 || (psave->sym->attr.subroutine && !p->sym->attr.subroutine))
1577 {
1578 if (p->sym->attr.flavor != FL_DERIVED)
1579 gfc_error ("In %s at %L procedures must be either all SUBROUTINEs"
1580 " or all FUNCTIONs", interface_name,
1581 &p->sym->declared_at);
1582 else
1583 gfc_error ("In %s at %L procedures must be all FUNCTIONs as the "
1584 "generic name is also the name of a derived type",
1585 interface_name, &p->sym->declared_at);
1586 return 1;
1587 }
1588
1589 /* F2003, C1207. F2008, C1207. */
1590 if (p->sym->attr.proc == PROC_INTERNAL
1591 && !gfc_notify_std (GFC_STD_F2008, "Internal procedure "
1592 "%qs in %s at %L", p->sym->name,
1593 interface_name, &p->sym->declared_at))
1594 return 1;
1595 }
1596 p = psave;
1597
1598 /* Remove duplicate interfaces in this interface list. */
1599 for (; p; p = p->next)
1600 {
1601 qlast = p;
1602
1603 for (q = p->next; q;)
1604 {
1605 if (p->sym != q->sym)
1606 {
1607 qlast = q;
1608 q = q->next;
1609 }
1610 else
1611 {
1612 /* Duplicate interface. */
1613 qlast->next = q->next;
1614 free (q);
1615 q = qlast->next;
1616 }
1617 }
1618 }
1619
1620 return 0;
1621 }
1622
1623
1624 /* Check lists of interfaces to make sure that no two interfaces are
1625 ambiguous. Duplicate interfaces (from the same symbol) are OK here. */
1626
1627 static int
1628 check_interface1 (gfc_interface *p, gfc_interface *q0,
1629 int generic_flag, const char *interface_name,
1630 bool referenced)
1631 {
1632 gfc_interface *q;
1633 for (; p; p = p->next)
1634 for (q = q0; q; q = q->next)
1635 {
1636 if (p->sym == q->sym)
1637 continue; /* Duplicates OK here. */
1638
1639 if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
1640 continue;
1641
1642 if (p->sym->attr.flavor != FL_DERIVED
1643 && q->sym->attr.flavor != FL_DERIVED
1644 && gfc_compare_interfaces (p->sym, q->sym, q->sym->name,
1645 generic_flag, 0, NULL, 0, NULL, NULL))
1646 {
1647 if (referenced)
1648 gfc_error ("Ambiguous interfaces %qs and %qs in %s at %L",
1649 p->sym->name, q->sym->name, interface_name,
1650 &p->where);
1651 else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
1652 gfc_warning ("Ambiguous interfaces %qs and %qs in %s at %L",
1653 p->sym->name, q->sym->name, interface_name,
1654 &p->where);
1655 else
1656 gfc_warning ("Although not referenced, %qs has ambiguous "
1657 "interfaces at %L", interface_name, &p->where);
1658 return 1;
1659 }
1660 }
1661 return 0;
1662 }
1663
1664
1665 /* Check the generic and operator interfaces of symbols to make sure
1666 that none of the interfaces conflict. The check has to be done
1667 after all of the symbols are actually loaded. */
1668
1669 static void
1670 check_sym_interfaces (gfc_symbol *sym)
1671 {
1672 char interface_name[100];
1673 gfc_interface *p;
1674
1675 if (sym->ns != gfc_current_ns)
1676 return;
1677
1678 if (sym->generic != NULL)
1679 {
1680 sprintf (interface_name, "generic interface '%s'", sym->name);
1681 if (check_interface0 (sym->generic, interface_name))
1682 return;
1683
1684 for (p = sym->generic; p; p = p->next)
1685 {
1686 if (p->sym->attr.mod_proc
1687 && (p->sym->attr.if_source != IFSRC_DECL
1688 || p->sym->attr.procedure))
1689 {
1690 gfc_error ("%qs at %L is not a module procedure",
1691 p->sym->name, &p->where);
1692 return;
1693 }
1694 }
1695
1696 /* Originally, this test was applied to host interfaces too;
1697 this is incorrect since host associated symbols, from any
1698 source, cannot be ambiguous with local symbols. */
1699 check_interface1 (sym->generic, sym->generic, 1, interface_name,
1700 sym->attr.referenced || !sym->attr.use_assoc);
1701 }
1702 }
1703
1704
1705 static void
1706 check_uop_interfaces (gfc_user_op *uop)
1707 {
1708 char interface_name[100];
1709 gfc_user_op *uop2;
1710 gfc_namespace *ns;
1711
1712 sprintf (interface_name, "operator interface '%s'", uop->name);
1713 if (check_interface0 (uop->op, interface_name))
1714 return;
1715
1716 for (ns = gfc_current_ns; ns; ns = ns->parent)
1717 {
1718 uop2 = gfc_find_uop (uop->name, ns);
1719 if (uop2 == NULL)
1720 continue;
1721
1722 check_interface1 (uop->op, uop2->op, 0,
1723 interface_name, true);
1724 }
1725 }
1726
1727 /* Given an intrinsic op, return an equivalent op if one exists,
1728 or INTRINSIC_NONE otherwise. */
1729
1730 gfc_intrinsic_op
1731 gfc_equivalent_op (gfc_intrinsic_op op)
1732 {
1733 switch(op)
1734 {
1735 case INTRINSIC_EQ:
1736 return INTRINSIC_EQ_OS;
1737
1738 case INTRINSIC_EQ_OS:
1739 return INTRINSIC_EQ;
1740
1741 case INTRINSIC_NE:
1742 return INTRINSIC_NE_OS;
1743
1744 case INTRINSIC_NE_OS:
1745 return INTRINSIC_NE;
1746
1747 case INTRINSIC_GT:
1748 return INTRINSIC_GT_OS;
1749
1750 case INTRINSIC_GT_OS:
1751 return INTRINSIC_GT;
1752
1753 case INTRINSIC_GE:
1754 return INTRINSIC_GE_OS;
1755
1756 case INTRINSIC_GE_OS:
1757 return INTRINSIC_GE;
1758
1759 case INTRINSIC_LT:
1760 return INTRINSIC_LT_OS;
1761
1762 case INTRINSIC_LT_OS:
1763 return INTRINSIC_LT;
1764
1765 case INTRINSIC_LE:
1766 return INTRINSIC_LE_OS;
1767
1768 case INTRINSIC_LE_OS:
1769 return INTRINSIC_LE;
1770
1771 default:
1772 return INTRINSIC_NONE;
1773 }
1774 }
1775
1776 /* For the namespace, check generic, user operator and intrinsic
1777 operator interfaces for consistency and to remove duplicate
1778 interfaces. We traverse the whole namespace, counting on the fact
1779 that most symbols will not have generic or operator interfaces. */
1780
1781 void
1782 gfc_check_interfaces (gfc_namespace *ns)
1783 {
1784 gfc_namespace *old_ns, *ns2;
1785 char interface_name[100];
1786 int i;
1787
1788 old_ns = gfc_current_ns;
1789 gfc_current_ns = ns;
1790
1791 gfc_traverse_ns (ns, check_sym_interfaces);
1792
1793 gfc_traverse_user_op (ns, check_uop_interfaces);
1794
1795 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
1796 {
1797 if (i == INTRINSIC_USER)
1798 continue;
1799
1800 if (i == INTRINSIC_ASSIGN)
1801 strcpy (interface_name, "intrinsic assignment operator");
1802 else
1803 sprintf (interface_name, "intrinsic '%s' operator",
1804 gfc_op2string ((gfc_intrinsic_op) i));
1805
1806 if (check_interface0 (ns->op[i], interface_name))
1807 continue;
1808
1809 if (ns->op[i])
1810 gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i,
1811 ns->op[i]->where);
1812
1813 for (ns2 = ns; ns2; ns2 = ns2->parent)
1814 {
1815 gfc_intrinsic_op other_op;
1816
1817 if (check_interface1 (ns->op[i], ns2->op[i], 0,
1818 interface_name, true))
1819 goto done;
1820
1821 /* i should be gfc_intrinsic_op, but has to be int with this cast
1822 here for stupid C++ compatibility rules. */
1823 other_op = gfc_equivalent_op ((gfc_intrinsic_op) i);
1824 if (other_op != INTRINSIC_NONE
1825 && check_interface1 (ns->op[i], ns2->op[other_op],
1826 0, interface_name, true))
1827 goto done;
1828 }
1829 }
1830
1831 done:
1832 gfc_current_ns = old_ns;
1833 }
1834
1835
1836 /* Given a symbol of a formal argument list and an expression, if the
1837 formal argument is allocatable, check that the actual argument is
1838 allocatable. Returns nonzero if compatible, zero if not compatible. */
1839
1840 static int
1841 compare_allocatable (gfc_symbol *formal, gfc_expr *actual)
1842 {
1843 symbol_attribute attr;
1844
1845 if (formal->attr.allocatable
1846 || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.allocatable))
1847 {
1848 attr = gfc_expr_attr (actual);
1849 if (!attr.allocatable)
1850 return 0;
1851 }
1852
1853 return 1;
1854 }
1855
1856
1857 /* Given a symbol of a formal argument list and an expression, if the
1858 formal argument is a pointer, see if the actual argument is a
1859 pointer. Returns nonzero if compatible, zero if not compatible. */
1860
1861 static int
1862 compare_pointer (gfc_symbol *formal, gfc_expr *actual)
1863 {
1864 symbol_attribute attr;
1865
1866 if (formal->attr.pointer
1867 || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)
1868 && CLASS_DATA (formal)->attr.class_pointer))
1869 {
1870 attr = gfc_expr_attr (actual);
1871
1872 /* Fortran 2008 allows non-pointer actual arguments. */
1873 if (!attr.pointer && attr.target && formal->attr.intent == INTENT_IN)
1874 return 2;
1875
1876 if (!attr.pointer)
1877 return 0;
1878 }
1879
1880 return 1;
1881 }
1882
1883
1884 /* Emit clear error messages for rank mismatch. */
1885
1886 static void
1887 argument_rank_mismatch (const char *name, locus *where,
1888 int rank1, int rank2)
1889 {
1890
1891 /* TS 29113, C407b. */
1892 if (rank2 == -1)
1893 {
1894 gfc_error ("The assumed-rank array at %L requires that the dummy argument"
1895 " %qs has assumed-rank", where, name);
1896 }
1897 else if (rank1 == 0)
1898 {
1899 gfc_error ("Rank mismatch in argument %qs at %L "
1900 "(scalar and rank-%d)", name, where, rank2);
1901 }
1902 else if (rank2 == 0)
1903 {
1904 gfc_error ("Rank mismatch in argument %qs at %L "
1905 "(rank-%d and scalar)", name, where, rank1);
1906 }
1907 else
1908 {
1909 gfc_error ("Rank mismatch in argument %qs at %L "
1910 "(rank-%d and rank-%d)", name, where, rank1, rank2);
1911 }
1912 }
1913
1914
1915 /* Given a symbol of a formal argument list and an expression, see if
1916 the two are compatible as arguments. Returns nonzero if
1917 compatible, zero if not compatible. */
1918
1919 static int
1920 compare_parameter (gfc_symbol *formal, gfc_expr *actual,
1921 int ranks_must_agree, int is_elemental, locus *where)
1922 {
1923 gfc_ref *ref;
1924 bool rank_check, is_pointer;
1925 char err[200];
1926 gfc_component *ppc;
1927
1928 /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
1929 procs c_f_pointer or c_f_procpointer, and we need to accept most
1930 pointers the user could give us. This should allow that. */
1931 if (formal->ts.type == BT_VOID)
1932 return 1;
1933
1934 if (formal->ts.type == BT_DERIVED
1935 && formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c
1936 && actual->ts.type == BT_DERIVED
1937 && actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c)
1938 return 1;
1939
1940 if (formal->ts.type == BT_CLASS && actual->ts.type == BT_DERIVED)
1941 /* Make sure the vtab symbol is present when
1942 the module variables are generated. */
1943 gfc_find_derived_vtab (actual->ts.u.derived);
1944
1945 if (actual->ts.type == BT_PROCEDURE)
1946 {
1947 gfc_symbol *act_sym = actual->symtree->n.sym;
1948
1949 if (formal->attr.flavor != FL_PROCEDURE)
1950 {
1951 if (where)
1952 gfc_error ("Invalid procedure argument at %L", &actual->where);
1953 return 0;
1954 }
1955
1956 if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err,
1957 sizeof(err), NULL, NULL))
1958 {
1959 if (where)
1960 gfc_error ("Interface mismatch in dummy procedure %qs at %L: %s",
1961 formal->name, &actual->where, err);
1962 return 0;
1963 }
1964
1965 if (formal->attr.function && !act_sym->attr.function)
1966 {
1967 gfc_add_function (&act_sym->attr, act_sym->name,
1968 &act_sym->declared_at);
1969 if (act_sym->ts.type == BT_UNKNOWN
1970 && !gfc_set_default_type (act_sym, 1, act_sym->ns))
1971 return 0;
1972 }
1973 else if (formal->attr.subroutine && !act_sym->attr.subroutine)
1974 gfc_add_subroutine (&act_sym->attr, act_sym->name,
1975 &act_sym->declared_at);
1976
1977 return 1;
1978 }
1979
1980 ppc = gfc_get_proc_ptr_comp (actual);
1981 if (ppc)
1982 {
1983 if (!gfc_compare_interfaces (formal, ppc->ts.interface, ppc->name, 0, 1,
1984 err, sizeof(err), NULL, NULL))
1985 {
1986 if (where)
1987 gfc_error ("Interface mismatch in dummy procedure %qs at %L: %s",
1988 formal->name, &actual->where, err);
1989 return 0;
1990 }
1991 }
1992
1993 /* F2008, C1241. */
1994 if (formal->attr.pointer && formal->attr.contiguous
1995 && !gfc_is_simply_contiguous (actual, true))
1996 {
1997 if (where)
1998 gfc_error ("Actual argument to contiguous pointer dummy %qs at %L "
1999 "must be simply contiguous", formal->name, &actual->where);
2000 return 0;
2001 }
2002
2003 if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
2004 && actual->ts.type != BT_HOLLERITH
2005 && formal->ts.type != BT_ASSUMED
2006 && !(formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2007 && !gfc_compare_types (&formal->ts, &actual->ts)
2008 && !(formal->ts.type == BT_DERIVED && actual->ts.type == BT_CLASS
2009 && gfc_compare_derived_types (formal->ts.u.derived,
2010 CLASS_DATA (actual)->ts.u.derived)))
2011 {
2012 if (where)
2013 gfc_error ("Type mismatch in argument %qs at %L; passed %s to %s",
2014 formal->name, &actual->where, gfc_typename (&actual->ts),
2015 gfc_typename (&formal->ts));
2016 return 0;
2017 }
2018
2019 if (actual->ts.type == BT_ASSUMED && formal->ts.type != BT_ASSUMED)
2020 {
2021 if (where)
2022 gfc_error ("Assumed-type actual argument at %L requires that dummy "
2023 "argument %qs is of assumed type", &actual->where,
2024 formal->name);
2025 return 0;
2026 }
2027
2028 /* F2008, 12.5.2.5; IR F08/0073. */
2029 if (formal->ts.type == BT_CLASS && formal->attr.class_ok
2030 && actual->expr_type != EXPR_NULL
2031 && ((CLASS_DATA (formal)->attr.class_pointer
2032 && formal->attr.intent != INTENT_IN)
2033 || CLASS_DATA (formal)->attr.allocatable))
2034 {
2035 if (actual->ts.type != BT_CLASS)
2036 {
2037 if (where)
2038 gfc_error ("Actual argument to %qs at %L must be polymorphic",
2039 formal->name, &actual->where);
2040 return 0;
2041 }
2042
2043 if (!gfc_expr_attr (actual).class_ok)
2044 return 0;
2045
2046 if ((!UNLIMITED_POLY (formal) || !UNLIMITED_POLY(actual))
2047 && !gfc_compare_derived_types (CLASS_DATA (actual)->ts.u.derived,
2048 CLASS_DATA (formal)->ts.u.derived))
2049 {
2050 if (where)
2051 gfc_error ("Actual argument to %qs at %L must have the same "
2052 "declared type", formal->name, &actual->where);
2053 return 0;
2054 }
2055 }
2056
2057 /* F08: 12.5.2.5 Allocatable and pointer dummy variables. However, this
2058 is necessary also for F03, so retain error for both.
2059 NOTE: Other type/kind errors pre-empt this error. Since they are F03
2060 compatible, no attempt has been made to channel to this one. */
2061 if (UNLIMITED_POLY (formal) && !UNLIMITED_POLY (actual)
2062 && (CLASS_DATA (formal)->attr.allocatable
2063 ||CLASS_DATA (formal)->attr.class_pointer))
2064 {
2065 if (where)
2066 gfc_error ("Actual argument to %qs at %L must be unlimited "
2067 "polymorphic since the formal argument is a "
2068 "pointer or allocatable unlimited polymorphic "
2069 "entity [F2008: 12.5.2.5]", formal->name,
2070 &actual->where);
2071 return 0;
2072 }
2073
2074 if (formal->attr.codimension && !gfc_is_coarray (actual))
2075 {
2076 if (where)
2077 gfc_error ("Actual argument to %qs at %L must be a coarray",
2078 formal->name, &actual->where);
2079 return 0;
2080 }
2081
2082 if (formal->attr.codimension && formal->attr.allocatable)
2083 {
2084 gfc_ref *last = NULL;
2085
2086 for (ref = actual->ref; ref; ref = ref->next)
2087 if (ref->type == REF_COMPONENT)
2088 last = ref;
2089
2090 /* F2008, 12.5.2.6. */
2091 if ((last && last->u.c.component->as->corank != formal->as->corank)
2092 || (!last
2093 && actual->symtree->n.sym->as->corank != formal->as->corank))
2094 {
2095 if (where)
2096 gfc_error ("Corank mismatch in argument %qs at %L (%d and %d)",
2097 formal->name, &actual->where, formal->as->corank,
2098 last ? last->u.c.component->as->corank
2099 : actual->symtree->n.sym->as->corank);
2100 return 0;
2101 }
2102 }
2103
2104 if (formal->attr.codimension)
2105 {
2106 /* F2008, 12.5.2.8. */
2107 if (formal->attr.dimension
2108 && (formal->attr.contiguous || formal->as->type != AS_ASSUMED_SHAPE)
2109 && gfc_expr_attr (actual).dimension
2110 && !gfc_is_simply_contiguous (actual, true))
2111 {
2112 if (where)
2113 gfc_error ("Actual argument to %qs at %L must be simply "
2114 "contiguous", formal->name, &actual->where);
2115 return 0;
2116 }
2117
2118 /* F2008, C1303 and C1304. */
2119 if (formal->attr.intent != INTENT_INOUT
2120 && (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS)
2121 && formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
2122 && formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
2123 || formal->attr.lock_comp))
2124
2125 {
2126 if (where)
2127 gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, "
2128 "which is LOCK_TYPE or has a LOCK_TYPE component",
2129 formal->name, &actual->where);
2130 return 0;
2131 }
2132 }
2133
2134 /* F2008, C1239/C1240. */
2135 if (actual->expr_type == EXPR_VARIABLE
2136 && (actual->symtree->n.sym->attr.asynchronous
2137 || actual->symtree->n.sym->attr.volatile_)
2138 && (formal->attr.asynchronous || formal->attr.volatile_)
2139 && actual->rank && formal->as && !gfc_is_simply_contiguous (actual, true)
2140 && ((formal->as->type != AS_ASSUMED_SHAPE
2141 && formal->as->type != AS_ASSUMED_RANK && !formal->attr.pointer)
2142 || formal->attr.contiguous))
2143 {
2144 if (where)
2145 gfc_error ("Dummy argument %qs has to be a pointer, assumed-shape or "
2146 "assumed-rank array without CONTIGUOUS attribute - as actual"
2147 " argument at %L is not simply contiguous and both are "
2148 "ASYNCHRONOUS or VOLATILE", formal->name, &actual->where);
2149 return 0;
2150 }
2151
2152 if (formal->attr.allocatable && !formal->attr.codimension
2153 && gfc_expr_attr (actual).codimension)
2154 {
2155 if (formal->attr.intent == INTENT_OUT)
2156 {
2157 if (where)
2158 gfc_error ("Passing coarray at %L to allocatable, noncoarray, "
2159 "INTENT(OUT) dummy argument %qs", &actual->where,
2160 formal->name);
2161 return 0;
2162 }
2163 else if (warn_surprising && where && formal->attr.intent != INTENT_IN)
2164 gfc_warning (OPT_Wsurprising,
2165 "Passing coarray at %L to allocatable, noncoarray dummy "
2166 "argument %qs, which is invalid if the allocation status"
2167 " is modified", &actual->where, formal->name);
2168 }
2169
2170 /* If the rank is the same or the formal argument has assumed-rank. */
2171 if (symbol_rank (formal) == actual->rank || symbol_rank (formal) == -1)
2172 return 1;
2173
2174 rank_check = where != NULL && !is_elemental && formal->as
2175 && (formal->as->type == AS_ASSUMED_SHAPE
2176 || formal->as->type == AS_DEFERRED)
2177 && actual->expr_type != EXPR_NULL;
2178
2179 /* Skip rank checks for NO_ARG_CHECK. */
2180 if (formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2181 return 1;
2182
2183 /* Scalar & coindexed, see: F2008, Section 12.5.2.4. */
2184 if (rank_check || ranks_must_agree
2185 || (formal->attr.pointer && actual->expr_type != EXPR_NULL)
2186 || (actual->rank != 0 && !(is_elemental || formal->attr.dimension))
2187 || (actual->rank == 0
2188 && ((formal->ts.type == BT_CLASS
2189 && CLASS_DATA (formal)->as->type == AS_ASSUMED_SHAPE)
2190 || (formal->ts.type != BT_CLASS
2191 && formal->as->type == AS_ASSUMED_SHAPE))
2192 && actual->expr_type != EXPR_NULL)
2193 || (actual->rank == 0 && formal->attr.dimension
2194 && gfc_is_coindexed (actual)))
2195 {
2196 if (where)
2197 argument_rank_mismatch (formal->name, &actual->where,
2198 symbol_rank (formal), actual->rank);
2199 return 0;
2200 }
2201 else if (actual->rank != 0 && (is_elemental || formal->attr.dimension))
2202 return 1;
2203
2204 /* At this point, we are considering a scalar passed to an array. This
2205 is valid (cf. F95 12.4.1.1, F2003 12.4.1.2, and F2008 12.5.2.4),
2206 - if the actual argument is (a substring of) an element of a
2207 non-assumed-shape/non-pointer/non-polymorphic array; or
2208 - (F2003) if the actual argument is of type character of default/c_char
2209 kind. */
2210
2211 is_pointer = actual->expr_type == EXPR_VARIABLE
2212 ? actual->symtree->n.sym->attr.pointer : false;
2213
2214 for (ref = actual->ref; ref; ref = ref->next)
2215 {
2216 if (ref->type == REF_COMPONENT)
2217 is_pointer = ref->u.c.component->attr.pointer;
2218 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
2219 && ref->u.ar.dimen > 0
2220 && (!ref->next
2221 || (ref->next->type == REF_SUBSTRING && !ref->next->next)))
2222 break;
2223 }
2224
2225 if (actual->ts.type == BT_CLASS && actual->expr_type != EXPR_NULL)
2226 {
2227 if (where)
2228 gfc_error ("Polymorphic scalar passed to array dummy argument %qs "
2229 "at %L", formal->name, &actual->where);
2230 return 0;
2231 }
2232
2233 if (actual->expr_type != EXPR_NULL && ref && actual->ts.type != BT_CHARACTER
2234 && (is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
2235 {
2236 if (where)
2237 gfc_error ("Element of assumed-shaped or pointer "
2238 "array passed to array dummy argument %qs at %L",
2239 formal->name, &actual->where);
2240 return 0;
2241 }
2242
2243 if (actual->ts.type == BT_CHARACTER && actual->expr_type != EXPR_NULL
2244 && (!ref || is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
2245 {
2246 if (formal->ts.kind != 1 && (gfc_option.allow_std & GFC_STD_GNU) == 0)
2247 {
2248 if (where)
2249 gfc_error ("Extension: Scalar non-default-kind, non-C_CHAR-kind "
2250 "CHARACTER actual argument with array dummy argument "
2251 "%qs at %L", formal->name, &actual->where);
2252 return 0;
2253 }
2254
2255 if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0)
2256 {
2257 gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
2258 "array dummy argument %qs at %L",
2259 formal->name, &actual->where);
2260 return 0;
2261 }
2262 else if ((gfc_option.allow_std & GFC_STD_F2003) == 0)
2263 return 0;
2264 else
2265 return 1;
2266 }
2267
2268 if (ref == NULL && actual->expr_type != EXPR_NULL)
2269 {
2270 if (where)
2271 argument_rank_mismatch (formal->name, &actual->where,
2272 symbol_rank (formal), actual->rank);
2273 return 0;
2274 }
2275
2276 return 1;
2277 }
2278
2279
2280 /* Returns the storage size of a symbol (formal argument) or
2281 zero if it cannot be determined. */
2282
2283 static unsigned long
2284 get_sym_storage_size (gfc_symbol *sym)
2285 {
2286 int i;
2287 unsigned long strlen, elements;
2288
2289 if (sym->ts.type == BT_CHARACTER)
2290 {
2291 if (sym->ts.u.cl && sym->ts.u.cl->length
2292 && sym->ts.u.cl->length->expr_type == EXPR_CONSTANT)
2293 strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer);
2294 else
2295 return 0;
2296 }
2297 else
2298 strlen = 1;
2299
2300 if (symbol_rank (sym) == 0)
2301 return strlen;
2302
2303 elements = 1;
2304 if (sym->as->type != AS_EXPLICIT)
2305 return 0;
2306 for (i = 0; i < sym->as->rank; i++)
2307 {
2308 if (sym->as->upper[i]->expr_type != EXPR_CONSTANT
2309 || sym->as->lower[i]->expr_type != EXPR_CONSTANT)
2310 return 0;
2311
2312 elements *= mpz_get_si (sym->as->upper[i]->value.integer)
2313 - mpz_get_si (sym->as->lower[i]->value.integer) + 1L;
2314 }
2315
2316 return strlen*elements;
2317 }
2318
2319
2320 /* Returns the storage size of an expression (actual argument) or
2321 zero if it cannot be determined. For an array element, it returns
2322 the remaining size as the element sequence consists of all storage
2323 units of the actual argument up to the end of the array. */
2324
2325 static unsigned long
2326 get_expr_storage_size (gfc_expr *e)
2327 {
2328 int i;
2329 long int strlen, elements;
2330 long int substrlen = 0;
2331 bool is_str_storage = false;
2332 gfc_ref *ref;
2333
2334 if (e == NULL)
2335 return 0;
2336
2337 if (e->ts.type == BT_CHARACTER)
2338 {
2339 if (e->ts.u.cl && e->ts.u.cl->length
2340 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
2341 strlen = mpz_get_si (e->ts.u.cl->length->value.integer);
2342 else if (e->expr_type == EXPR_CONSTANT
2343 && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
2344 strlen = e->value.character.length;
2345 else
2346 return 0;
2347 }
2348 else
2349 strlen = 1; /* Length per element. */
2350
2351 if (e->rank == 0 && !e->ref)
2352 return strlen;
2353
2354 elements = 1;
2355 if (!e->ref)
2356 {
2357 if (!e->shape)
2358 return 0;
2359 for (i = 0; i < e->rank; i++)
2360 elements *= mpz_get_si (e->shape[i]);
2361 return elements*strlen;
2362 }
2363
2364 for (ref = e->ref; ref; ref = ref->next)
2365 {
2366 if (ref->type == REF_SUBSTRING && ref->u.ss.start
2367 && ref->u.ss.start->expr_type == EXPR_CONSTANT)
2368 {
2369 if (is_str_storage)
2370 {
2371 /* The string length is the substring length.
2372 Set now to full string length. */
2373 if (!ref->u.ss.length || !ref->u.ss.length->length
2374 || ref->u.ss.length->length->expr_type != EXPR_CONSTANT)
2375 return 0;
2376
2377 strlen = mpz_get_ui (ref->u.ss.length->length->value.integer);
2378 }
2379 substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1;
2380 continue;
2381 }
2382
2383 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
2384 for (i = 0; i < ref->u.ar.dimen; i++)
2385 {
2386 long int start, end, stride;
2387 stride = 1;
2388
2389 if (ref->u.ar.stride[i])
2390 {
2391 if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT)
2392 stride = mpz_get_si (ref->u.ar.stride[i]->value.integer);
2393 else
2394 return 0;
2395 }
2396
2397 if (ref->u.ar.start[i])
2398 {
2399 if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT)
2400 start = mpz_get_si (ref->u.ar.start[i]->value.integer);
2401 else
2402 return 0;
2403 }
2404 else if (ref->u.ar.as->lower[i]
2405 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT)
2406 start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer);
2407 else
2408 return 0;
2409
2410 if (ref->u.ar.end[i])
2411 {
2412 if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT)
2413 end = mpz_get_si (ref->u.ar.end[i]->value.integer);
2414 else
2415 return 0;
2416 }
2417 else if (ref->u.ar.as->upper[i]
2418 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
2419 end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer);
2420 else
2421 return 0;
2422
2423 elements *= (end - start)/stride + 1L;
2424 }
2425 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL)
2426 for (i = 0; i < ref->u.ar.as->rank; i++)
2427 {
2428 if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i]
2429 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
2430 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
2431 elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
2432 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
2433 + 1L;
2434 else
2435 return 0;
2436 }
2437 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
2438 && e->expr_type == EXPR_VARIABLE)
2439 {
2440 if (ref->u.ar.as->type == AS_ASSUMED_SHAPE
2441 || e->symtree->n.sym->attr.pointer)
2442 {
2443 elements = 1;
2444 continue;
2445 }
2446
2447 /* Determine the number of remaining elements in the element
2448 sequence for array element designators. */
2449 is_str_storage = true;
2450 for (i = ref->u.ar.dimen - 1; i >= 0; i--)
2451 {
2452 if (ref->u.ar.start[i] == NULL
2453 || ref->u.ar.start[i]->expr_type != EXPR_CONSTANT
2454 || ref->u.ar.as->upper[i] == NULL
2455 || ref->u.ar.as->lower[i] == NULL
2456 || ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT
2457 || ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT)
2458 return 0;
2459
2460 elements
2461 = elements
2462 * (mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
2463 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
2464 + 1L)
2465 - (mpz_get_si (ref->u.ar.start[i]->value.integer)
2466 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer));
2467 }
2468 }
2469 else if (ref->type == REF_COMPONENT && ref->u.c.component->attr.function
2470 && ref->u.c.component->attr.proc_pointer
2471 && ref->u.c.component->attr.dimension)
2472 {
2473 /* Array-valued procedure-pointer components. */
2474 gfc_array_spec *as = ref->u.c.component->as;
2475 for (i = 0; i < as->rank; i++)
2476 {
2477 if (!as->upper[i] || !as->lower[i]
2478 || as->upper[i]->expr_type != EXPR_CONSTANT
2479 || as->lower[i]->expr_type != EXPR_CONSTANT)
2480 return 0;
2481
2482 elements = elements
2483 * (mpz_get_si (as->upper[i]->value.integer)
2484 - mpz_get_si (as->lower[i]->value.integer) + 1L);
2485 }
2486 }
2487 }
2488
2489 if (substrlen)
2490 return (is_str_storage) ? substrlen + (elements-1)*strlen
2491 : elements*strlen;
2492 else
2493 return elements*strlen;
2494 }
2495
2496
2497 /* Given an expression, check whether it is an array section
2498 which has a vector subscript. If it has, one is returned,
2499 otherwise zero. */
2500
2501 int
2502 gfc_has_vector_subscript (gfc_expr *e)
2503 {
2504 int i;
2505 gfc_ref *ref;
2506
2507 if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE)
2508 return 0;
2509
2510 for (ref = e->ref; ref; ref = ref->next)
2511 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
2512 for (i = 0; i < ref->u.ar.dimen; i++)
2513 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
2514 return 1;
2515
2516 return 0;
2517 }
2518
2519
2520 static bool
2521 is_procptr_result (gfc_expr *expr)
2522 {
2523 gfc_component *c = gfc_get_proc_ptr_comp (expr);
2524 if (c)
2525 return (c->ts.interface && (c->ts.interface->attr.proc_pointer == 1));
2526 else
2527 return ((expr->symtree->n.sym->result != expr->symtree->n.sym)
2528 && (expr->symtree->n.sym->result->attr.proc_pointer == 1));
2529 }
2530
2531
2532 /* Given formal and actual argument lists, see if they are compatible.
2533 If they are compatible, the actual argument list is sorted to
2534 correspond with the formal list, and elements for missing optional
2535 arguments are inserted. If WHERE pointer is nonnull, then we issue
2536 errors when things don't match instead of just returning the status
2537 code. */
2538
2539 static int
2540 compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal,
2541 int ranks_must_agree, int is_elemental, locus *where)
2542 {
2543 gfc_actual_arglist **new_arg, *a, *actual, temp;
2544 gfc_formal_arglist *f;
2545 int i, n, na;
2546 unsigned long actual_size, formal_size;
2547 bool full_array = false;
2548
2549 actual = *ap;
2550
2551 if (actual == NULL && formal == NULL)
2552 return 1;
2553
2554 n = 0;
2555 for (f = formal; f; f = f->next)
2556 n++;
2557
2558 new_arg = XALLOCAVEC (gfc_actual_arglist *, n);
2559
2560 for (i = 0; i < n; i++)
2561 new_arg[i] = NULL;
2562
2563 na = 0;
2564 f = formal;
2565 i = 0;
2566
2567 for (a = actual; a; a = a->next, f = f->next)
2568 {
2569 /* Look for keywords but ignore g77 extensions like %VAL. */
2570 if (a->name != NULL && a->name[0] != '%')
2571 {
2572 i = 0;
2573 for (f = formal; f; f = f->next, i++)
2574 {
2575 if (f->sym == NULL)
2576 continue;
2577 if (strcmp (f->sym->name, a->name) == 0)
2578 break;
2579 }
2580
2581 if (f == NULL)
2582 {
2583 if (where)
2584 gfc_error ("Keyword argument %qs at %L is not in "
2585 "the procedure", a->name, &a->expr->where);
2586 return 0;
2587 }
2588
2589 if (new_arg[i] != NULL)
2590 {
2591 if (where)
2592 gfc_error ("Keyword argument %qs at %L is already associated "
2593 "with another actual argument", a->name,
2594 &a->expr->where);
2595 return 0;
2596 }
2597 }
2598
2599 if (f == NULL)
2600 {
2601 if (where)
2602 gfc_error ("More actual than formal arguments in procedure "
2603 "call at %L", where);
2604
2605 return 0;
2606 }
2607
2608 if (f->sym == NULL && a->expr == NULL)
2609 goto match;
2610
2611 if (f->sym == NULL)
2612 {
2613 if (where)
2614 gfc_error ("Missing alternate return spec in subroutine call "
2615 "at %L", where);
2616 return 0;
2617 }
2618
2619 if (a->expr == NULL)
2620 {
2621 if (where)
2622 gfc_error ("Unexpected alternate return spec in subroutine "
2623 "call at %L", where);
2624 return 0;
2625 }
2626
2627 /* Make sure that intrinsic vtables exist for calls to unlimited
2628 polymorphic formal arguments. */
2629 if (UNLIMITED_POLY (f->sym)
2630 && a->expr->ts.type != BT_DERIVED
2631 && a->expr->ts.type != BT_CLASS)
2632 gfc_find_vtab (&a->expr->ts);
2633
2634 if (a->expr->expr_type == EXPR_NULL
2635 && ((f->sym->ts.type != BT_CLASS && !f->sym->attr.pointer
2636 && (f->sym->attr.allocatable || !f->sym->attr.optional
2637 || (gfc_option.allow_std & GFC_STD_F2008) == 0))
2638 || (f->sym->ts.type == BT_CLASS
2639 && !CLASS_DATA (f->sym)->attr.class_pointer
2640 && (CLASS_DATA (f->sym)->attr.allocatable
2641 || !f->sym->attr.optional
2642 || (gfc_option.allow_std & GFC_STD_F2008) == 0))))
2643 {
2644 if (where
2645 && (!f->sym->attr.optional
2646 || (f->sym->ts.type != BT_CLASS && f->sym->attr.allocatable)
2647 || (f->sym->ts.type == BT_CLASS
2648 && CLASS_DATA (f->sym)->attr.allocatable)))
2649 gfc_error ("Unexpected NULL() intrinsic at %L to dummy %qs",
2650 where, f->sym->name);
2651 else if (where)
2652 gfc_error ("Fortran 2008: Null pointer at %L to non-pointer "
2653 "dummy %qs", where, f->sym->name);
2654
2655 return 0;
2656 }
2657
2658 if (!compare_parameter (f->sym, a->expr, ranks_must_agree,
2659 is_elemental, where))
2660 return 0;
2661
2662 /* TS 29113, 6.3p2. */
2663 if (f->sym->ts.type == BT_ASSUMED
2664 && (a->expr->ts.type == BT_DERIVED
2665 || (a->expr->ts.type == BT_CLASS && CLASS_DATA (a->expr))))
2666 {
2667 gfc_namespace *f2k_derived;
2668
2669 f2k_derived = a->expr->ts.type == BT_DERIVED
2670 ? a->expr->ts.u.derived->f2k_derived
2671 : CLASS_DATA (a->expr)->ts.u.derived->f2k_derived;
2672
2673 if (f2k_derived
2674 && (f2k_derived->finalizers || f2k_derived->tb_sym_root))
2675 {
2676 gfc_error ("Actual argument at %L to assumed-type dummy is of "
2677 "derived type with type-bound or FINAL procedures",
2678 &a->expr->where);
2679 return false;
2680 }
2681 }
2682
2683 /* Special case for character arguments. For allocatable, pointer
2684 and assumed-shape dummies, the string length needs to match
2685 exactly. */
2686 if (a->expr->ts.type == BT_CHARACTER
2687 && a->expr->ts.u.cl && a->expr->ts.u.cl->length
2688 && a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
2689 && f->sym->ts.u.cl && f->sym->ts.u.cl && f->sym->ts.u.cl->length
2690 && f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT
2691 && (f->sym->attr.pointer || f->sym->attr.allocatable
2692 || (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2693 && (mpz_cmp (a->expr->ts.u.cl->length->value.integer,
2694 f->sym->ts.u.cl->length->value.integer) != 0))
2695 {
2696 if (where && (f->sym->attr.pointer || f->sym->attr.allocatable))
2697 gfc_warning ("Character length mismatch (%ld/%ld) between actual "
2698 "argument and pointer or allocatable dummy argument "
2699 "%qs at %L",
2700 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
2701 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
2702 f->sym->name, &a->expr->where);
2703 else if (where)
2704 gfc_warning ("Character length mismatch (%ld/%ld) between actual "
2705 "argument and assumed-shape dummy argument %qs "
2706 "at %L",
2707 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
2708 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
2709 f->sym->name, &a->expr->where);
2710 return 0;
2711 }
2712
2713 if ((f->sym->attr.pointer || f->sym->attr.allocatable)
2714 && f->sym->ts.deferred != a->expr->ts.deferred
2715 && a->expr->ts.type == BT_CHARACTER)
2716 {
2717 if (where)
2718 gfc_error ("Actual argument at %L to allocatable or "
2719 "pointer dummy argument %qs must have a deferred "
2720 "length type parameter if and only if the dummy has one",
2721 &a->expr->where, f->sym->name);
2722 return 0;
2723 }
2724
2725 if (f->sym->ts.type == BT_CLASS)
2726 goto skip_size_check;
2727
2728 actual_size = get_expr_storage_size (a->expr);
2729 formal_size = get_sym_storage_size (f->sym);
2730 if (actual_size != 0 && actual_size < formal_size
2731 && a->expr->ts.type != BT_PROCEDURE
2732 && f->sym->attr.flavor != FL_PROCEDURE)
2733 {
2734 if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where)
2735 gfc_warning ("Character length of actual argument shorter "
2736 "than of dummy argument %qs (%lu/%lu) at %L",
2737 f->sym->name, actual_size, formal_size,
2738 &a->expr->where);
2739 else if (where)
2740 gfc_warning ("Actual argument contains too few "
2741 "elements for dummy argument %qs (%lu/%lu) at %L",
2742 f->sym->name, actual_size, formal_size,
2743 &a->expr->where);
2744 return 0;
2745 }
2746
2747 skip_size_check:
2748
2749 /* Satisfy F03:12.4.1.3 by ensuring that a procedure pointer actual
2750 argument is provided for a procedure pointer formal argument. */
2751 if (f->sym->attr.proc_pointer
2752 && !((a->expr->expr_type == EXPR_VARIABLE
2753 && (a->expr->symtree->n.sym->attr.proc_pointer
2754 || gfc_is_proc_ptr_comp (a->expr)))
2755 || (a->expr->expr_type == EXPR_FUNCTION
2756 && is_procptr_result (a->expr))))
2757 {
2758 if (where)
2759 gfc_error ("Expected a procedure pointer for argument %qs at %L",
2760 f->sym->name, &a->expr->where);
2761 return 0;
2762 }
2763
2764 /* Satisfy F03:12.4.1.3 by ensuring that a procedure actual argument is
2765 provided for a procedure formal argument. */
2766 if (f->sym->attr.flavor == FL_PROCEDURE
2767 && !((a->expr->expr_type == EXPR_VARIABLE
2768 && (a->expr->symtree->n.sym->attr.flavor == FL_PROCEDURE
2769 || a->expr->symtree->n.sym->attr.proc_pointer
2770 || gfc_is_proc_ptr_comp (a->expr)))
2771 || (a->expr->expr_type == EXPR_FUNCTION
2772 && is_procptr_result (a->expr))))
2773 {
2774 if (where)
2775 gfc_error ("Expected a procedure for argument %qs at %L",
2776 f->sym->name, &a->expr->where);
2777 return 0;
2778 }
2779
2780 if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE
2781 && a->expr->expr_type == EXPR_VARIABLE
2782 && a->expr->symtree->n.sym->as
2783 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
2784 && (a->expr->ref == NULL
2785 || (a->expr->ref->type == REF_ARRAY
2786 && a->expr->ref->u.ar.type == AR_FULL)))
2787 {
2788 if (where)
2789 gfc_error ("Actual argument for %qs cannot be an assumed-size"
2790 " array at %L", f->sym->name, where);
2791 return 0;
2792 }
2793
2794 if (a->expr->expr_type != EXPR_NULL
2795 && compare_pointer (f->sym, a->expr) == 0)
2796 {
2797 if (where)
2798 gfc_error ("Actual argument for %qs must be a pointer at %L",
2799 f->sym->name, &a->expr->where);
2800 return 0;
2801 }
2802
2803 if (a->expr->expr_type != EXPR_NULL
2804 && (gfc_option.allow_std & GFC_STD_F2008) == 0
2805 && compare_pointer (f->sym, a->expr) == 2)
2806 {
2807 if (where)
2808 gfc_error ("Fortran 2008: Non-pointer actual argument at %L to "
2809 "pointer dummy %qs", &a->expr->where,f->sym->name);
2810 return 0;
2811 }
2812
2813
2814 /* Fortran 2008, C1242. */
2815 if (f->sym->attr.pointer && gfc_is_coindexed (a->expr))
2816 {
2817 if (where)
2818 gfc_error ("Coindexed actual argument at %L to pointer "
2819 "dummy %qs",
2820 &a->expr->where, f->sym->name);
2821 return 0;
2822 }
2823
2824 /* Fortran 2008, 12.5.2.5 (no constraint). */
2825 if (a->expr->expr_type == EXPR_VARIABLE
2826 && f->sym->attr.intent != INTENT_IN
2827 && f->sym->attr.allocatable
2828 && gfc_is_coindexed (a->expr))
2829 {
2830 if (where)
2831 gfc_error ("Coindexed actual argument at %L to allocatable "
2832 "dummy %qs requires INTENT(IN)",
2833 &a->expr->where, f->sym->name);
2834 return 0;
2835 }
2836
2837 /* Fortran 2008, C1237. */
2838 if (a->expr->expr_type == EXPR_VARIABLE
2839 && (f->sym->attr.asynchronous || f->sym->attr.volatile_)
2840 && gfc_is_coindexed (a->expr)
2841 && (a->expr->symtree->n.sym->attr.volatile_
2842 || a->expr->symtree->n.sym->attr.asynchronous))
2843 {
2844 if (where)
2845 gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at "
2846 "%L requires that dummy %qs has neither "
2847 "ASYNCHRONOUS nor VOLATILE", &a->expr->where,
2848 f->sym->name);
2849 return 0;
2850 }
2851
2852 /* Fortran 2008, 12.5.2.4 (no constraint). */
2853 if (a->expr->expr_type == EXPR_VARIABLE
2854 && f->sym->attr.intent != INTENT_IN && !f->sym->attr.value
2855 && gfc_is_coindexed (a->expr)
2856 && gfc_has_ultimate_allocatable (a->expr))
2857 {
2858 if (where)
2859 gfc_error ("Coindexed actual argument at %L with allocatable "
2860 "ultimate component to dummy %qs requires either VALUE "
2861 "or INTENT(IN)", &a->expr->where, f->sym->name);
2862 return 0;
2863 }
2864
2865 if (f->sym->ts.type == BT_CLASS
2866 && CLASS_DATA (f->sym)->attr.allocatable
2867 && gfc_is_class_array_ref (a->expr, &full_array)
2868 && !full_array)
2869 {
2870 if (where)
2871 gfc_error ("Actual CLASS array argument for %qs must be a full "
2872 "array at %L", f->sym->name, &a->expr->where);
2873 return 0;
2874 }
2875
2876
2877 if (a->expr->expr_type != EXPR_NULL
2878 && compare_allocatable (f->sym, a->expr) == 0)
2879 {
2880 if (where)
2881 gfc_error ("Actual argument for %qs must be ALLOCATABLE at %L",
2882 f->sym->name, &a->expr->where);
2883 return 0;
2884 }
2885
2886 /* Check intent = OUT/INOUT for definable actual argument. */
2887 if ((f->sym->attr.intent == INTENT_OUT
2888 || f->sym->attr.intent == INTENT_INOUT))
2889 {
2890 const char* context = (where
2891 ? _("actual argument to INTENT = OUT/INOUT")
2892 : NULL);
2893
2894 if (((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
2895 && CLASS_DATA (f->sym)->attr.class_pointer)
2896 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
2897 && !gfc_check_vardef_context (a->expr, true, false, false, context))
2898 return 0;
2899 if (!gfc_check_vardef_context (a->expr, false, false, false, context))
2900 return 0;
2901 }
2902
2903 if ((f->sym->attr.intent == INTENT_OUT
2904 || f->sym->attr.intent == INTENT_INOUT
2905 || f->sym->attr.volatile_
2906 || f->sym->attr.asynchronous)
2907 && gfc_has_vector_subscript (a->expr))
2908 {
2909 if (where)
2910 gfc_error ("Array-section actual argument with vector "
2911 "subscripts at %L is incompatible with INTENT(OUT), "
2912 "INTENT(INOUT), VOLATILE or ASYNCHRONOUS attribute "
2913 "of the dummy argument %qs",
2914 &a->expr->where, f->sym->name);
2915 return 0;
2916 }
2917
2918 /* C1232 (R1221) For an actual argument which is an array section or
2919 an assumed-shape array, the dummy argument shall be an assumed-
2920 shape array, if the dummy argument has the VOLATILE attribute. */
2921
2922 if (f->sym->attr.volatile_
2923 && a->expr->symtree->n.sym->as
2924 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
2925 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2926 {
2927 if (where)
2928 gfc_error ("Assumed-shape actual argument at %L is "
2929 "incompatible with the non-assumed-shape "
2930 "dummy argument %qs due to VOLATILE attribute",
2931 &a->expr->where,f->sym->name);
2932 return 0;
2933 }
2934
2935 if (f->sym->attr.volatile_
2936 && a->expr->ref && a->expr->ref->u.ar.type == AR_SECTION
2937 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2938 {
2939 if (where)
2940 gfc_error ("Array-section actual argument at %L is "
2941 "incompatible with the non-assumed-shape "
2942 "dummy argument %qs due to VOLATILE attribute",
2943 &a->expr->where,f->sym->name);
2944 return 0;
2945 }
2946
2947 /* C1233 (R1221) For an actual argument which is a pointer array, the
2948 dummy argument shall be an assumed-shape or pointer array, if the
2949 dummy argument has the VOLATILE attribute. */
2950
2951 if (f->sym->attr.volatile_
2952 && a->expr->symtree->n.sym->attr.pointer
2953 && a->expr->symtree->n.sym->as
2954 && !(f->sym->as
2955 && (f->sym->as->type == AS_ASSUMED_SHAPE
2956 || f->sym->attr.pointer)))
2957 {
2958 if (where)
2959 gfc_error ("Pointer-array actual argument at %L requires "
2960 "an assumed-shape or pointer-array dummy "
2961 "argument %qs due to VOLATILE attribute",
2962 &a->expr->where,f->sym->name);
2963 return 0;
2964 }
2965
2966 match:
2967 if (a == actual)
2968 na = i;
2969
2970 new_arg[i++] = a;
2971 }
2972
2973 /* Make sure missing actual arguments are optional. */
2974 i = 0;
2975 for (f = formal; f; f = f->next, i++)
2976 {
2977 if (new_arg[i] != NULL)
2978 continue;
2979 if (f->sym == NULL)
2980 {
2981 if (where)
2982 gfc_error ("Missing alternate return spec in subroutine call "
2983 "at %L", where);
2984 return 0;
2985 }
2986 if (!f->sym->attr.optional)
2987 {
2988 if (where)
2989 gfc_error ("Missing actual argument for argument %qs at %L",
2990 f->sym->name, where);
2991 return 0;
2992 }
2993 }
2994
2995 /* The argument lists are compatible. We now relink a new actual
2996 argument list with null arguments in the right places. The head
2997 of the list remains the head. */
2998 for (i = 0; i < n; i++)
2999 if (new_arg[i] == NULL)
3000 new_arg[i] = gfc_get_actual_arglist ();
3001
3002 if (na != 0)
3003 {
3004 temp = *new_arg[0];
3005 *new_arg[0] = *actual;
3006 *actual = temp;
3007
3008 a = new_arg[0];
3009 new_arg[0] = new_arg[na];
3010 new_arg[na] = a;
3011 }
3012
3013 for (i = 0; i < n - 1; i++)
3014 new_arg[i]->next = new_arg[i + 1];
3015
3016 new_arg[i]->next = NULL;
3017
3018 if (*ap == NULL && n > 0)
3019 *ap = new_arg[0];
3020
3021 /* Note the types of omitted optional arguments. */
3022 for (a = *ap, f = formal; a; a = a->next, f = f->next)
3023 if (a->expr == NULL && a->label == NULL)
3024 a->missing_arg_type = f->sym->ts.type;
3025
3026 return 1;
3027 }
3028
3029
3030 typedef struct
3031 {
3032 gfc_formal_arglist *f;
3033 gfc_actual_arglist *a;
3034 }
3035 argpair;
3036
3037 /* qsort comparison function for argument pairs, with the following
3038 order:
3039 - p->a->expr == NULL
3040 - p->a->expr->expr_type != EXPR_VARIABLE
3041 - growing p->a->expr->symbol. */
3042
3043 static int
3044 pair_cmp (const void *p1, const void *p2)
3045 {
3046 const gfc_actual_arglist *a1, *a2;
3047
3048 /* *p1 and *p2 are elements of the to-be-sorted array. */
3049 a1 = ((const argpair *) p1)->a;
3050 a2 = ((const argpair *) p2)->a;
3051 if (!a1->expr)
3052 {
3053 if (!a2->expr)
3054 return 0;
3055 return -1;
3056 }
3057 if (!a2->expr)
3058 return 1;
3059 if (a1->expr->expr_type != EXPR_VARIABLE)
3060 {
3061 if (a2->expr->expr_type != EXPR_VARIABLE)
3062 return 0;
3063 return -1;
3064 }
3065 if (a2->expr->expr_type != EXPR_VARIABLE)
3066 return 1;
3067 return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
3068 }
3069
3070
3071 /* Given two expressions from some actual arguments, test whether they
3072 refer to the same expression. The analysis is conservative.
3073 Returning false will produce no warning. */
3074
3075 static bool
3076 compare_actual_expr (gfc_expr *e1, gfc_expr *e2)
3077 {
3078 const gfc_ref *r1, *r2;
3079
3080 if (!e1 || !e2
3081 || e1->expr_type != EXPR_VARIABLE
3082 || e2->expr_type != EXPR_VARIABLE
3083 || e1->symtree->n.sym != e2->symtree->n.sym)
3084 return false;
3085
3086 /* TODO: improve comparison, see expr.c:show_ref(). */
3087 for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
3088 {
3089 if (r1->type != r2->type)
3090 return false;
3091 switch (r1->type)
3092 {
3093 case REF_ARRAY:
3094 if (r1->u.ar.type != r2->u.ar.type)
3095 return false;
3096 /* TODO: At the moment, consider only full arrays;
3097 we could do better. */
3098 if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
3099 return false;
3100 break;
3101
3102 case REF_COMPONENT:
3103 if (r1->u.c.component != r2->u.c.component)
3104 return false;
3105 break;
3106
3107 case REF_SUBSTRING:
3108 return false;
3109
3110 default:
3111 gfc_internal_error ("compare_actual_expr(): Bad component code");
3112 }
3113 }
3114 if (!r1 && !r2)
3115 return true;
3116 return false;
3117 }
3118
3119
3120 /* Given formal and actual argument lists that correspond to one
3121 another, check that identical actual arguments aren't not
3122 associated with some incompatible INTENTs. */
3123
3124 static bool
3125 check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a)
3126 {
3127 sym_intent f1_intent, f2_intent;
3128 gfc_formal_arglist *f1;
3129 gfc_actual_arglist *a1;
3130 size_t n, i, j;
3131 argpair *p;
3132 bool t = true;
3133
3134 n = 0;
3135 for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
3136 {
3137 if (f1 == NULL && a1 == NULL)
3138 break;
3139 if (f1 == NULL || a1 == NULL)
3140 gfc_internal_error ("check_some_aliasing(): List mismatch");
3141 n++;
3142 }
3143 if (n == 0)
3144 return t;
3145 p = XALLOCAVEC (argpair, n);
3146
3147 for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
3148 {
3149 p[i].f = f1;
3150 p[i].a = a1;
3151 }
3152
3153 qsort (p, n, sizeof (argpair), pair_cmp);
3154
3155 for (i = 0; i < n; i++)
3156 {
3157 if (!p[i].a->expr
3158 || p[i].a->expr->expr_type != EXPR_VARIABLE
3159 || p[i].a->expr->ts.type == BT_PROCEDURE)
3160 continue;
3161 f1_intent = p[i].f->sym->attr.intent;
3162 for (j = i + 1; j < n; j++)
3163 {
3164 /* Expected order after the sort. */
3165 if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
3166 gfc_internal_error ("check_some_aliasing(): corrupted data");
3167
3168 /* Are the expression the same? */
3169 if (!compare_actual_expr (p[i].a->expr, p[j].a->expr))
3170 break;
3171 f2_intent = p[j].f->sym->attr.intent;
3172 if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
3173 || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN)
3174 || (f1_intent == INTENT_OUT && f2_intent == INTENT_OUT))
3175 {
3176 gfc_warning ("Same actual argument associated with INTENT(%s) "
3177 "argument %qs and INTENT(%s) argument %qs at %L",
3178 gfc_intent_string (f1_intent), p[i].f->sym->name,
3179 gfc_intent_string (f2_intent), p[j].f->sym->name,
3180 &p[i].a->expr->where);
3181 t = false;
3182 }
3183 }
3184 }
3185
3186 return t;
3187 }
3188
3189
3190 /* Given formal and actual argument lists that correspond to one
3191 another, check that they are compatible in the sense that intents
3192 are not mismatched. */
3193
3194 static bool
3195 check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a)
3196 {
3197 sym_intent f_intent;
3198
3199 for (;; f = f->next, a = a->next)
3200 {
3201 gfc_expr *expr;
3202
3203 if (f == NULL && a == NULL)
3204 break;
3205 if (f == NULL || a == NULL)
3206 gfc_internal_error ("check_intents(): List mismatch");
3207
3208 if (a->expr && a->expr->expr_type == EXPR_FUNCTION
3209 && a->expr->value.function.isym
3210 && a->expr->value.function.isym->id == GFC_ISYM_CAF_GET)
3211 expr = a->expr->value.function.actual->expr;
3212 else
3213 expr = a->expr;
3214
3215 if (expr == NULL || expr->expr_type != EXPR_VARIABLE)
3216 continue;
3217
3218 f_intent = f->sym->attr.intent;
3219
3220 if (gfc_pure (NULL) && gfc_impure_variable (expr->symtree->n.sym))
3221 {
3222 if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
3223 && CLASS_DATA (f->sym)->attr.class_pointer)
3224 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
3225 {
3226 gfc_error ("Procedure argument at %L is local to a PURE "
3227 "procedure and has the POINTER attribute",
3228 &expr->where);
3229 return false;
3230 }
3231 }
3232
3233 /* Fortran 2008, C1283. */
3234 if (gfc_pure (NULL) && gfc_is_coindexed (expr))
3235 {
3236 if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
3237 {
3238 gfc_error ("Coindexed actual argument at %L in PURE procedure "
3239 "is passed to an INTENT(%s) argument",
3240 &expr->where, gfc_intent_string (f_intent));
3241 return false;
3242 }
3243
3244 if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
3245 && CLASS_DATA (f->sym)->attr.class_pointer)
3246 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
3247 {
3248 gfc_error ("Coindexed actual argument at %L in PURE procedure "
3249 "is passed to a POINTER dummy argument",
3250 &expr->where);
3251 return false;
3252 }
3253 }
3254
3255 /* F2008, Section 12.5.2.4. */
3256 if (expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS
3257 && gfc_is_coindexed (expr))
3258 {
3259 gfc_error ("Coindexed polymorphic actual argument at %L is passed "
3260 "polymorphic dummy argument %qs",
3261 &expr->where, f->sym->name);
3262 return false;
3263 }
3264 }
3265
3266 return true;
3267 }
3268
3269
3270 /* Check how a procedure is used against its interface. If all goes
3271 well, the actual argument list will also end up being properly
3272 sorted. */
3273
3274 bool
3275 gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where)
3276 {
3277 gfc_formal_arglist *dummy_args;
3278
3279 /* Warn about calls with an implicit interface. Special case
3280 for calling a ISO_C_BINDING because c_loc and c_funloc
3281 are pseudo-unknown. Additionally, warn about procedures not
3282 explicitly declared at all if requested. */
3283 if (sym->attr.if_source == IFSRC_UNKNOWN && !sym->attr.is_iso_c)
3284 {
3285 if (sym->ns->has_implicit_none_export && sym->attr.proc == PROC_UNKNOWN)
3286 {
3287 gfc_error ("Procedure %qs called at %L is not explicitly declared",
3288 sym->name, where);
3289 return false;
3290 }
3291 if (warn_implicit_interface)
3292 gfc_warning (OPT_Wimplicit_interface,
3293 "Procedure %qs called with an implicit interface at %L",
3294 sym->name, where);
3295 else if (warn_implicit_procedure && sym->attr.proc == PROC_UNKNOWN)
3296 gfc_warning (OPT_Wimplicit_procedure,
3297 "Procedure %qs called at %L is not explicitly declared",
3298 sym->name, where);
3299 }
3300
3301 if (sym->attr.if_source == IFSRC_UNKNOWN)
3302 {
3303 gfc_actual_arglist *a;
3304
3305 if (sym->attr.pointer)
3306 {
3307 gfc_error ("The pointer object %qs at %L must have an explicit "
3308 "function interface or be declared as array",
3309 sym->name, where);
3310 return false;
3311 }
3312
3313 if (sym->attr.allocatable && !sym->attr.external)
3314 {
3315 gfc_error ("The allocatable object %qs at %L must have an explicit "
3316 "function interface or be declared as array",
3317 sym->name, where);
3318 return false;
3319 }
3320
3321 if (sym->attr.allocatable)
3322 {
3323 gfc_error ("Allocatable function %qs at %L must have an explicit "
3324 "function interface", sym->name, where);
3325 return false;
3326 }
3327
3328 for (a = *ap; a; a = a->next)
3329 {
3330 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
3331 if (a->name != NULL && a->name[0] != '%')
3332 {
3333 gfc_error ("Keyword argument requires explicit interface "
3334 "for procedure %qs at %L", sym->name, &a->expr->where);
3335 break;
3336 }
3337
3338 /* TS 29113, 6.2. */
3339 if (a->expr && a->expr->ts.type == BT_ASSUMED
3340 && sym->intmod_sym_id != ISOCBINDING_LOC)
3341 {
3342 gfc_error ("Assumed-type argument %s at %L requires an explicit "
3343 "interface", a->expr->symtree->n.sym->name,
3344 &a->expr->where);
3345 break;
3346 }
3347
3348 /* F2008, C1303 and C1304. */
3349 if (a->expr
3350 && (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS)
3351 && ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
3352 && a->expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
3353 || gfc_expr_attr (a->expr).lock_comp))
3354 {
3355 gfc_error ("Actual argument of LOCK_TYPE or with LOCK_TYPE "
3356 "component at %L requires an explicit interface for "
3357 "procedure %qs", &a->expr->where, sym->name);
3358 break;
3359 }
3360
3361 if (a->expr && a->expr->expr_type == EXPR_NULL
3362 && a->expr->ts.type == BT_UNKNOWN)
3363 {
3364 gfc_error ("MOLD argument to NULL required at %L", &a->expr->where);
3365 return false;
3366 }
3367
3368 /* TS 29113, C407b. */
3369 if (a->expr && a->expr->expr_type == EXPR_VARIABLE
3370 && symbol_rank (a->expr->symtree->n.sym) == -1)
3371 {
3372 gfc_error ("Assumed-rank argument requires an explicit interface "
3373 "at %L", &a->expr->where);
3374 return false;
3375 }
3376 }
3377
3378 return true;
3379 }
3380
3381 dummy_args = gfc_sym_get_dummy_args (sym);
3382
3383 if (!compare_actual_formal (ap, dummy_args, 0, sym->attr.elemental, where))
3384 return false;
3385
3386 if (!check_intents (dummy_args, *ap))
3387 return false;
3388
3389 if (warn_aliasing)
3390 check_some_aliasing (dummy_args, *ap);
3391
3392 return true;
3393 }
3394
3395
3396 /* Check how a procedure pointer component is used against its interface.
3397 If all goes well, the actual argument list will also end up being properly
3398 sorted. Completely analogous to gfc_procedure_use. */
3399
3400 void
3401 gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where)
3402 {
3403 /* Warn about calls with an implicit interface. Special case
3404 for calling a ISO_C_BINDING because c_loc and c_funloc
3405 are pseudo-unknown. */
3406 if (warn_implicit_interface
3407 && comp->attr.if_source == IFSRC_UNKNOWN
3408 && !comp->attr.is_iso_c)
3409 gfc_warning (OPT_Wimplicit_interface,
3410 "Procedure pointer component %qs called with an implicit "
3411 "interface at %L", comp->name, where);
3412
3413 if (comp->attr.if_source == IFSRC_UNKNOWN)
3414 {
3415 gfc_actual_arglist *a;
3416 for (a = *ap; a; a = a->next)
3417 {
3418 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
3419 if (a->name != NULL && a->name[0] != '%')
3420 {
3421 gfc_error ("Keyword argument requires explicit interface "
3422 "for procedure pointer component %qs at %L",
3423 comp->name, &a->expr->where);
3424 break;
3425 }
3426 }
3427
3428 return;
3429 }
3430
3431 if (!compare_actual_formal (ap, comp->ts.interface->formal, 0,
3432 comp->attr.elemental, where))
3433 return;
3434
3435 check_intents (comp->ts.interface->formal, *ap);
3436 if (warn_aliasing)
3437 check_some_aliasing (comp->ts.interface->formal, *ap);
3438 }
3439
3440
3441 /* Try if an actual argument list matches the formal list of a symbol,
3442 respecting the symbol's attributes like ELEMENTAL. This is used for
3443 GENERIC resolution. */
3444
3445 bool
3446 gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym)
3447 {
3448 gfc_formal_arglist *dummy_args;
3449 bool r;
3450
3451 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
3452
3453 dummy_args = gfc_sym_get_dummy_args (sym);
3454
3455 r = !sym->attr.elemental;
3456 if (compare_actual_formal (args, dummy_args, r, !r, NULL))
3457 {
3458 check_intents (dummy_args, *args);
3459 if (warn_aliasing)
3460 check_some_aliasing (dummy_args, *args);
3461 return true;
3462 }
3463
3464 return false;
3465 }
3466
3467
3468 /* Given an interface pointer and an actual argument list, search for
3469 a formal argument list that matches the actual. If found, returns
3470 a pointer to the symbol of the correct interface. Returns NULL if
3471 not found. */
3472
3473 gfc_symbol *
3474 gfc_search_interface (gfc_interface *intr, int sub_flag,
3475 gfc_actual_arglist **ap)
3476 {
3477 gfc_symbol *elem_sym = NULL;
3478 gfc_symbol *null_sym = NULL;
3479 locus null_expr_loc;
3480 gfc_actual_arglist *a;
3481 bool has_null_arg = false;
3482
3483 for (a = *ap; a; a = a->next)
3484 if (a->expr && a->expr->expr_type == EXPR_NULL
3485 && a->expr->ts.type == BT_UNKNOWN)
3486 {
3487 has_null_arg = true;
3488 null_expr_loc = a->expr->where;
3489 break;
3490 }
3491
3492 for (; intr; intr = intr->next)
3493 {
3494 if (intr->sym->attr.flavor == FL_DERIVED)
3495 continue;
3496 if (sub_flag && intr->sym->attr.function)
3497 continue;
3498 if (!sub_flag && intr->sym->attr.subroutine)
3499 continue;
3500
3501 if (gfc_arglist_matches_symbol (ap, intr->sym))
3502 {
3503 if (has_null_arg && null_sym)
3504 {
3505 gfc_error ("MOLD= required in NULL() argument at %L: Ambiguity "
3506 "between specific functions %s and %s",
3507 &null_expr_loc, null_sym->name, intr->sym->name);
3508 return NULL;
3509 }
3510 else if (has_null_arg)
3511 {
3512 null_sym = intr->sym;
3513 continue;
3514 }
3515
3516 /* Satisfy 12.4.4.1 such that an elemental match has lower
3517 weight than a non-elemental match. */
3518 if (intr->sym->attr.elemental)
3519 {
3520 elem_sym = intr->sym;
3521 continue;
3522 }
3523 return intr->sym;
3524 }
3525 }
3526
3527 if (null_sym)
3528 return null_sym;
3529
3530 return elem_sym ? elem_sym : NULL;
3531 }
3532
3533
3534 /* Do a brute force recursive search for a symbol. */
3535
3536 static gfc_symtree *
3537 find_symtree0 (gfc_symtree *root, gfc_symbol *sym)
3538 {
3539 gfc_symtree * st;
3540
3541 if (root->n.sym == sym)
3542 return root;
3543
3544 st = NULL;
3545 if (root->left)
3546 st = find_symtree0 (root->left, sym);
3547 if (root->right && ! st)
3548 st = find_symtree0 (root->right, sym);
3549 return st;
3550 }
3551
3552
3553 /* Find a symtree for a symbol. */
3554
3555 gfc_symtree *
3556 gfc_find_sym_in_symtree (gfc_symbol *sym)
3557 {
3558 gfc_symtree *st;
3559 gfc_namespace *ns;
3560
3561 /* First try to find it by name. */
3562 gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
3563 if (st && st->n.sym == sym)
3564 return st;
3565
3566 /* If it's been renamed, resort to a brute-force search. */
3567 /* TODO: avoid having to do this search. If the symbol doesn't exist
3568 in the symtree for the current namespace, it should probably be added. */
3569 for (ns = gfc_current_ns; ns; ns = ns->parent)
3570 {
3571 st = find_symtree0 (ns->sym_root, sym);
3572 if (st)
3573 return st;
3574 }
3575 gfc_internal_error ("Unable to find symbol %qs", sym->name);
3576 /* Not reached. */
3577 }
3578
3579
3580 /* See if the arglist to an operator-call contains a derived-type argument
3581 with a matching type-bound operator. If so, return the matching specific
3582 procedure defined as operator-target as well as the base-object to use
3583 (which is the found derived-type argument with operator). The generic
3584 name, if any, is transmitted to the final expression via 'gname'. */
3585
3586 static gfc_typebound_proc*
3587 matching_typebound_op (gfc_expr** tb_base,
3588 gfc_actual_arglist* args,
3589 gfc_intrinsic_op op, const char* uop,
3590 const char ** gname)
3591 {
3592 gfc_actual_arglist* base;
3593
3594 for (base = args; base; base = base->next)
3595 if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS)
3596 {
3597 gfc_typebound_proc* tb;
3598 gfc_symbol* derived;
3599 bool result;
3600
3601 while (base->expr->expr_type == EXPR_OP
3602 && base->expr->value.op.op == INTRINSIC_PARENTHESES)
3603 base->expr = base->expr->value.op.op1;
3604
3605 if (base->expr->ts.type == BT_CLASS)
3606 {
3607 if (CLASS_DATA (base->expr) == NULL
3608 || !gfc_expr_attr (base->expr).class_ok)
3609 continue;
3610 derived = CLASS_DATA (base->expr)->ts.u.derived;
3611 }
3612 else
3613 derived = base->expr->ts.u.derived;
3614
3615 if (op == INTRINSIC_USER)
3616 {
3617 gfc_symtree* tb_uop;
3618
3619 gcc_assert (uop);
3620 tb_uop = gfc_find_typebound_user_op (derived, &result, uop,
3621 false, NULL);
3622
3623 if (tb_uop)
3624 tb = tb_uop->n.tb;
3625 else
3626 tb = NULL;
3627 }
3628 else
3629 tb = gfc_find_typebound_intrinsic_op (derived, &result, op,
3630 false, NULL);
3631
3632 /* This means we hit a PRIVATE operator which is use-associated and
3633 should thus not be seen. */
3634 if (!result)
3635 tb = NULL;
3636
3637 /* Look through the super-type hierarchy for a matching specific
3638 binding. */
3639 for (; tb; tb = tb->overridden)
3640 {
3641 gfc_tbp_generic* g;
3642
3643 gcc_assert (tb->is_generic);
3644 for (g = tb->u.generic; g; g = g->next)
3645 {
3646 gfc_symbol* target;
3647 gfc_actual_arglist* argcopy;
3648 bool matches;
3649
3650 gcc_assert (g->specific);
3651 if (g->specific->error)
3652 continue;
3653
3654 target = g->specific->u.specific->n.sym;
3655
3656 /* Check if this arglist matches the formal. */
3657 argcopy = gfc_copy_actual_arglist (args);
3658 matches = gfc_arglist_matches_symbol (&argcopy, target);
3659 gfc_free_actual_arglist (argcopy);
3660
3661 /* Return if we found a match. */
3662 if (matches)
3663 {
3664 *tb_base = base->expr;
3665 *gname = g->specific_st->name;
3666 return g->specific;
3667 }
3668 }
3669 }
3670 }
3671
3672 return NULL;
3673 }
3674
3675
3676 /* For the 'actual arglist' of an operator call and a specific typebound
3677 procedure that has been found the target of a type-bound operator, build the
3678 appropriate EXPR_COMPCALL and resolve it. We take this indirection over
3679 type-bound procedures rather than resolving type-bound operators 'directly'
3680 so that we can reuse the existing logic. */
3681
3682 static void
3683 build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual,
3684 gfc_expr* base, gfc_typebound_proc* target,
3685 const char *gname)
3686 {
3687 e->expr_type = EXPR_COMPCALL;
3688 e->value.compcall.tbp = target;
3689 e->value.compcall.name = gname ? gname : "$op";
3690 e->value.compcall.actual = actual;
3691 e->value.compcall.base_object = base;
3692 e->value.compcall.ignore_pass = 1;
3693 e->value.compcall.assign = 0;
3694 if (e->ts.type == BT_UNKNOWN
3695 && target->function)
3696 {
3697 if (target->is_generic)
3698 e->ts = target->u.generic->specific->u.specific->n.sym->ts;
3699 else
3700 e->ts = target->u.specific->n.sym->ts;
3701 }
3702 }
3703
3704
3705 /* This subroutine is called when an expression is being resolved.
3706 The expression node in question is either a user defined operator
3707 or an intrinsic operator with arguments that aren't compatible
3708 with the operator. This subroutine builds an actual argument list
3709 corresponding to the operands, then searches for a compatible
3710 interface. If one is found, the expression node is replaced with
3711 the appropriate function call. We use the 'match' enum to specify
3712 whether a replacement has been made or not, or if an error occurred. */
3713
3714 match
3715 gfc_extend_expr (gfc_expr *e)
3716 {
3717 gfc_actual_arglist *actual;
3718 gfc_symbol *sym;
3719 gfc_namespace *ns;
3720 gfc_user_op *uop;
3721 gfc_intrinsic_op i;
3722 const char *gname;
3723
3724 sym = NULL;
3725
3726 actual = gfc_get_actual_arglist ();
3727 actual->expr = e->value.op.op1;
3728
3729 gname = NULL;
3730
3731 if (e->value.op.op2 != NULL)
3732 {
3733 actual->next = gfc_get_actual_arglist ();
3734 actual->next->expr = e->value.op.op2;
3735 }
3736
3737 i = fold_unary_intrinsic (e->value.op.op);
3738
3739 if (i == INTRINSIC_USER)
3740 {
3741 for (ns = gfc_current_ns; ns; ns = ns->parent)
3742 {
3743 uop = gfc_find_uop (e->value.op.uop->name, ns);
3744 if (uop == NULL)
3745 continue;
3746
3747 sym = gfc_search_interface (uop->op, 0, &actual);
3748 if (sym != NULL)
3749 break;
3750 }
3751 }
3752 else
3753 {
3754 for (ns = gfc_current_ns; ns; ns = ns->parent)
3755 {
3756 /* Due to the distinction between '==' and '.eq.' and friends, one has
3757 to check if either is defined. */
3758 switch (i)
3759 {
3760 #define CHECK_OS_COMPARISON(comp) \
3761 case INTRINSIC_##comp: \
3762 case INTRINSIC_##comp##_OS: \
3763 sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \
3764 if (!sym) \
3765 sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \
3766 break;
3767 CHECK_OS_COMPARISON(EQ)
3768 CHECK_OS_COMPARISON(NE)
3769 CHECK_OS_COMPARISON(GT)
3770 CHECK_OS_COMPARISON(GE)
3771 CHECK_OS_COMPARISON(LT)
3772 CHECK_OS_COMPARISON(LE)
3773 #undef CHECK_OS_COMPARISON
3774
3775 default:
3776 sym = gfc_search_interface (ns->op[i], 0, &actual);
3777 }
3778
3779 if (sym != NULL)
3780 break;
3781 }
3782 }
3783
3784 /* TODO: Do an ambiguity-check and error if multiple matching interfaces are
3785 found rather than just taking the first one and not checking further. */
3786
3787 if (sym == NULL)
3788 {
3789 gfc_typebound_proc* tbo;
3790 gfc_expr* tb_base;
3791
3792 /* See if we find a matching type-bound operator. */
3793 if (i == INTRINSIC_USER)
3794 tbo = matching_typebound_op (&tb_base, actual,
3795 i, e->value.op.uop->name, &gname);
3796 else
3797 switch (i)
3798 {
3799 #define CHECK_OS_COMPARISON(comp) \
3800 case INTRINSIC_##comp: \
3801 case INTRINSIC_##comp##_OS: \
3802 tbo = matching_typebound_op (&tb_base, actual, \
3803 INTRINSIC_##comp, NULL, &gname); \
3804 if (!tbo) \
3805 tbo = matching_typebound_op (&tb_base, actual, \
3806 INTRINSIC_##comp##_OS, NULL, &gname); \
3807 break;
3808 CHECK_OS_COMPARISON(EQ)
3809 CHECK_OS_COMPARISON(NE)
3810 CHECK_OS_COMPARISON(GT)
3811 CHECK_OS_COMPARISON(GE)
3812 CHECK_OS_COMPARISON(LT)
3813 CHECK_OS_COMPARISON(LE)
3814 #undef CHECK_OS_COMPARISON
3815
3816 default:
3817 tbo = matching_typebound_op (&tb_base, actual, i, NULL, &gname);
3818 break;
3819 }
3820
3821 /* If there is a matching typebound-operator, replace the expression with
3822 a call to it and succeed. */
3823 if (tbo)
3824 {
3825 bool result;
3826
3827 gcc_assert (tb_base);
3828 build_compcall_for_operator (e, actual, tb_base, tbo, gname);
3829
3830 result = gfc_resolve_expr (e);
3831 if (!result)
3832 return MATCH_ERROR;
3833
3834 return MATCH_YES;
3835 }
3836
3837 /* Don't use gfc_free_actual_arglist(). */
3838 free (actual->next);
3839 free (actual);
3840
3841 return MATCH_NO;
3842 }
3843
3844 /* Change the expression node to a function call. */
3845 e->expr_type = EXPR_FUNCTION;
3846 e->symtree = gfc_find_sym_in_symtree (sym);
3847 e->value.function.actual = actual;
3848 e->value.function.esym = NULL;
3849 e->value.function.isym = NULL;
3850 e->value.function.name = NULL;
3851 e->user_operator = 1;
3852
3853 if (!gfc_resolve_expr (e))
3854 return MATCH_ERROR;
3855
3856 return MATCH_YES;
3857 }
3858
3859
3860 /* Tries to replace an assignment code node with a subroutine call to the
3861 subroutine associated with the assignment operator. Return true if the node
3862 was replaced. On false, no error is generated. */
3863
3864 bool
3865 gfc_extend_assign (gfc_code *c, gfc_namespace *ns)
3866 {
3867 gfc_actual_arglist *actual;
3868 gfc_expr *lhs, *rhs, *tb_base;
3869 gfc_symbol *sym = NULL;
3870 const char *gname = NULL;
3871 gfc_typebound_proc* tbo;
3872
3873 lhs = c->expr1;
3874 rhs = c->expr2;
3875
3876 /* Don't allow an intrinsic assignment to be replaced. */
3877 if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS
3878 && (rhs->rank == 0 || rhs->rank == lhs->rank)
3879 && (lhs->ts.type == rhs->ts.type
3880 || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts))))
3881 return false;
3882
3883 actual = gfc_get_actual_arglist ();
3884 actual->expr = lhs;
3885
3886 actual->next = gfc_get_actual_arglist ();
3887 actual->next->expr = rhs;
3888
3889 /* TODO: Ambiguity-check, see above for gfc_extend_expr. */
3890
3891 /* See if we find a matching type-bound assignment. */
3892 tbo = matching_typebound_op (&tb_base, actual, INTRINSIC_ASSIGN,
3893 NULL, &gname);
3894
3895 if (tbo)
3896 {
3897 /* Success: Replace the expression with a type-bound call. */
3898 gcc_assert (tb_base);
3899 c->expr1 = gfc_get_expr ();
3900 build_compcall_for_operator (c->expr1, actual, tb_base, tbo, gname);
3901 c->expr1->value.compcall.assign = 1;
3902 c->expr1->where = c->loc;
3903 c->expr2 = NULL;
3904 c->op = EXEC_COMPCALL;
3905 return true;
3906 }
3907
3908 /* See if we find an 'ordinary' (non-typebound) assignment procedure. */
3909 for (; ns; ns = ns->parent)
3910 {
3911 sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual);
3912 if (sym != NULL)
3913 break;
3914 }
3915
3916 if (sym)
3917 {
3918 /* Success: Replace the assignment with the call. */
3919 c->op = EXEC_ASSIGN_CALL;
3920 c->symtree = gfc_find_sym_in_symtree (sym);
3921 c->expr1 = NULL;
3922 c->expr2 = NULL;
3923 c->ext.actual = actual;
3924 return true;
3925 }
3926
3927 /* Failure: No assignment procedure found. */
3928 free (actual->next);
3929 free (actual);
3930 return false;
3931 }
3932
3933
3934 /* Make sure that the interface just parsed is not already present in
3935 the given interface list. Ambiguity isn't checked yet since module
3936 procedures can be present without interfaces. */
3937
3938 bool
3939 gfc_check_new_interface (gfc_interface *base, gfc_symbol *new_sym, locus loc)
3940 {
3941 gfc_interface *ip;
3942
3943 for (ip = base; ip; ip = ip->next)
3944 {
3945 if (ip->sym == new_sym)
3946 {
3947 gfc_error ("Entity %qs at %L is already present in the interface",
3948 new_sym->name, &loc);
3949 return false;
3950 }
3951 }
3952
3953 return true;
3954 }
3955
3956
3957 /* Add a symbol to the current interface. */
3958
3959 bool
3960 gfc_add_interface (gfc_symbol *new_sym)
3961 {
3962 gfc_interface **head, *intr;
3963 gfc_namespace *ns;
3964 gfc_symbol *sym;
3965
3966 switch (current_interface.type)
3967 {
3968 case INTERFACE_NAMELESS:
3969 case INTERFACE_ABSTRACT:
3970 return true;
3971
3972 case INTERFACE_INTRINSIC_OP:
3973 for (ns = current_interface.ns; ns; ns = ns->parent)
3974 switch (current_interface.op)
3975 {
3976 case INTRINSIC_EQ:
3977 case INTRINSIC_EQ_OS:
3978 if (!gfc_check_new_interface (ns->op[INTRINSIC_EQ], new_sym,
3979 gfc_current_locus)
3980 || !gfc_check_new_interface (ns->op[INTRINSIC_EQ_OS],
3981 new_sym, gfc_current_locus))
3982 return false;
3983 break;
3984
3985 case INTRINSIC_NE:
3986 case INTRINSIC_NE_OS:
3987 if (!gfc_check_new_interface (ns->op[INTRINSIC_NE], new_sym,
3988 gfc_current_locus)
3989 || !gfc_check_new_interface (ns->op[INTRINSIC_NE_OS],
3990 new_sym, gfc_current_locus))
3991 return false;
3992 break;
3993
3994 case INTRINSIC_GT:
3995 case INTRINSIC_GT_OS:
3996 if (!gfc_check_new_interface (ns->op[INTRINSIC_GT],
3997 new_sym, gfc_current_locus)
3998 || !gfc_check_new_interface (ns->op[INTRINSIC_GT_OS],
3999 new_sym, gfc_current_locus))
4000 return false;
4001 break;
4002
4003 case INTRINSIC_GE:
4004 case INTRINSIC_GE_OS:
4005 if (!gfc_check_new_interface (ns->op[INTRINSIC_GE],
4006 new_sym, gfc_current_locus)
4007 || !gfc_check_new_interface (ns->op[INTRINSIC_GE_OS],
4008 new_sym, gfc_current_locus))
4009 return false;
4010 break;
4011
4012 case INTRINSIC_LT:
4013 case INTRINSIC_LT_OS:
4014 if (!gfc_check_new_interface (ns->op[INTRINSIC_LT],
4015 new_sym, gfc_current_locus)
4016 || !gfc_check_new_interface (ns->op[INTRINSIC_LT_OS],
4017 new_sym, gfc_current_locus))
4018 return false;
4019 break;
4020
4021 case INTRINSIC_LE:
4022 case INTRINSIC_LE_OS:
4023 if (!gfc_check_new_interface (ns->op[INTRINSIC_LE],
4024 new_sym, gfc_current_locus)
4025 || !gfc_check_new_interface (ns->op[INTRINSIC_LE_OS],
4026 new_sym, gfc_current_locus))
4027 return false;
4028 break;
4029
4030 default:
4031 if (!gfc_check_new_interface (ns->op[current_interface.op],
4032 new_sym, gfc_current_locus))
4033 return false;
4034 }
4035
4036 head = &current_interface.ns->op[current_interface.op];
4037 break;
4038
4039 case INTERFACE_GENERIC:
4040 for (ns = current_interface.ns; ns; ns = ns->parent)
4041 {
4042 gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
4043 if (sym == NULL)
4044 continue;
4045
4046 if (!gfc_check_new_interface (sym->generic,
4047 new_sym, gfc_current_locus))
4048 return false;
4049 }
4050
4051 head = &current_interface.sym->generic;
4052 break;
4053
4054 case INTERFACE_USER_OP:
4055 if (!gfc_check_new_interface (current_interface.uop->op,
4056 new_sym, gfc_current_locus))
4057 return false;
4058
4059 head = &current_interface.uop->op;
4060 break;
4061
4062 default:
4063 gfc_internal_error ("gfc_add_interface(): Bad interface type");
4064 }
4065
4066 intr = gfc_get_interface ();
4067 intr->sym = new_sym;
4068 intr->where = gfc_current_locus;
4069
4070 intr->next = *head;
4071 *head = intr;
4072
4073 return true;
4074 }
4075
4076
4077 gfc_interface *
4078 gfc_current_interface_head (void)
4079 {
4080 switch (current_interface.type)
4081 {
4082 case INTERFACE_INTRINSIC_OP:
4083 return current_interface.ns->op[current_interface.op];
4084 break;
4085
4086 case INTERFACE_GENERIC:
4087 return current_interface.sym->generic;
4088 break;
4089
4090 case INTERFACE_USER_OP:
4091 return current_interface.uop->op;
4092 break;
4093
4094 default:
4095 gcc_unreachable ();
4096 }
4097 }
4098
4099
4100 void
4101 gfc_set_current_interface_head (gfc_interface *i)
4102 {
4103 switch (current_interface.type)
4104 {
4105 case INTERFACE_INTRINSIC_OP:
4106 current_interface.ns->op[current_interface.op] = i;
4107 break;
4108
4109 case INTERFACE_GENERIC:
4110 current_interface.sym->generic = i;
4111 break;
4112
4113 case INTERFACE_USER_OP:
4114 current_interface.uop->op = i;
4115 break;
4116
4117 default:
4118 gcc_unreachable ();
4119 }
4120 }
4121
4122
4123 /* Gets rid of a formal argument list. We do not free symbols.
4124 Symbols are freed when a namespace is freed. */
4125
4126 void
4127 gfc_free_formal_arglist (gfc_formal_arglist *p)
4128 {
4129 gfc_formal_arglist *q;
4130
4131 for (; p; p = q)
4132 {
4133 q = p->next;
4134 free (p);
4135 }
4136 }
4137
4138
4139 /* Check that it is ok for the type-bound procedure 'proc' to override the
4140 procedure 'old', cf. F08:4.5.7.3. */
4141
4142 bool
4143 gfc_check_typebound_override (gfc_symtree* proc, gfc_symtree* old)
4144 {
4145 locus where;
4146 gfc_symbol *proc_target, *old_target;
4147 unsigned proc_pass_arg, old_pass_arg, argpos;
4148 gfc_formal_arglist *proc_formal, *old_formal;
4149 bool check_type;
4150 char err[200];
4151
4152 /* This procedure should only be called for non-GENERIC proc. */
4153 gcc_assert (!proc->n.tb->is_generic);
4154
4155 /* If the overwritten procedure is GENERIC, this is an error. */
4156 if (old->n.tb->is_generic)
4157 {
4158 gfc_error ("Can't overwrite GENERIC %qs at %L",
4159 old->name, &proc->n.tb->where);
4160 return false;
4161 }
4162
4163 where = proc->n.tb->where;
4164 proc_target = proc->n.tb->u.specific->n.sym;
4165 old_target = old->n.tb->u.specific->n.sym;
4166
4167 /* Check that overridden binding is not NON_OVERRIDABLE. */
4168 if (old->n.tb->non_overridable)
4169 {
4170 gfc_error ("%qs at %L overrides a procedure binding declared"
4171 " NON_OVERRIDABLE", proc->name, &where);
4172 return false;
4173 }
4174
4175 /* It's an error to override a non-DEFERRED procedure with a DEFERRED one. */
4176 if (!old->n.tb->deferred && proc->n.tb->deferred)
4177 {
4178 gfc_error ("%qs at %L must not be DEFERRED as it overrides a"
4179 " non-DEFERRED binding", proc->name, &where);
4180 return false;
4181 }
4182
4183 /* If the overridden binding is PURE, the overriding must be, too. */
4184 if (old_target->attr.pure && !proc_target->attr.pure)
4185 {
4186 gfc_error ("%qs at %L overrides a PURE procedure and must also be PURE",
4187 proc->name, &where);
4188 return false;
4189 }
4190
4191 /* If the overridden binding is ELEMENTAL, the overriding must be, too. If it
4192 is not, the overriding must not be either. */
4193 if (old_target->attr.elemental && !proc_target->attr.elemental)
4194 {
4195 gfc_error ("%qs at %L overrides an ELEMENTAL procedure and must also be"
4196 " ELEMENTAL", proc->name, &where);
4197 return false;
4198 }
4199 if (!old_target->attr.elemental && proc_target->attr.elemental)
4200 {
4201 gfc_error ("%qs at %L overrides a non-ELEMENTAL procedure and must not"
4202 " be ELEMENTAL, either", proc->name, &where);
4203 return false;
4204 }
4205
4206 /* If the overridden binding is a SUBROUTINE, the overriding must also be a
4207 SUBROUTINE. */
4208 if (old_target->attr.subroutine && !proc_target->attr.subroutine)
4209 {
4210 gfc_error ("%qs at %L overrides a SUBROUTINE and must also be a"
4211 " SUBROUTINE", proc->name, &where);
4212 return false;
4213 }
4214
4215 /* If the overridden binding is a FUNCTION, the overriding must also be a
4216 FUNCTION and have the same characteristics. */
4217 if (old_target->attr.function)
4218 {
4219 if (!proc_target->attr.function)
4220 {
4221 gfc_error ("%qs at %L overrides a FUNCTION and must also be a"
4222 " FUNCTION", proc->name, &where);
4223 return false;
4224 }
4225
4226 if (!check_result_characteristics (proc_target, old_target, err,
4227 sizeof(err)))
4228 {
4229 gfc_error ("Result mismatch for the overriding procedure "
4230 "%qs at %L: %s", proc->name, &where, err);
4231 return false;
4232 }
4233 }
4234
4235 /* If the overridden binding is PUBLIC, the overriding one must not be
4236 PRIVATE. */
4237 if (old->n.tb->access == ACCESS_PUBLIC
4238 && proc->n.tb->access == ACCESS_PRIVATE)
4239 {
4240 gfc_error ("%qs at %L overrides a PUBLIC procedure and must not be"
4241 " PRIVATE", proc->name, &where);
4242 return false;
4243 }
4244
4245 /* Compare the formal argument lists of both procedures. This is also abused
4246 to find the position of the passed-object dummy arguments of both
4247 bindings as at least the overridden one might not yet be resolved and we
4248 need those positions in the check below. */
4249 proc_pass_arg = old_pass_arg = 0;
4250 if (!proc->n.tb->nopass && !proc->n.tb->pass_arg)
4251 proc_pass_arg = 1;
4252 if (!old->n.tb->nopass && !old->n.tb->pass_arg)
4253 old_pass_arg = 1;
4254 argpos = 1;
4255 proc_formal = gfc_sym_get_dummy_args (proc_target);
4256 old_formal = gfc_sym_get_dummy_args (old_target);
4257 for ( ; proc_formal && old_formal;
4258 proc_formal = proc_formal->next, old_formal = old_formal->next)
4259 {
4260 if (proc->n.tb->pass_arg
4261 && !strcmp (proc->n.tb->pass_arg, proc_formal->sym->name))
4262 proc_pass_arg = argpos;
4263 if (old->n.tb->pass_arg
4264 && !strcmp (old->n.tb->pass_arg, old_formal->sym->name))
4265 old_pass_arg = argpos;
4266
4267 /* Check that the names correspond. */
4268 if (strcmp (proc_formal->sym->name, old_formal->sym->name))
4269 {
4270 gfc_error ("Dummy argument %qs of %qs at %L should be named %qs as"
4271 " to match the corresponding argument of the overridden"
4272 " procedure", proc_formal->sym->name, proc->name, &where,
4273 old_formal->sym->name);
4274 return false;
4275 }
4276
4277 check_type = proc_pass_arg != argpos && old_pass_arg != argpos;
4278 if (!check_dummy_characteristics (proc_formal->sym, old_formal->sym,
4279 check_type, err, sizeof(err)))
4280 {
4281 gfc_error ("Argument mismatch for the overriding procedure "
4282 "%qs at %L: %s", proc->name, &where, err);
4283 return false;
4284 }
4285
4286 ++argpos;
4287 }
4288 if (proc_formal || old_formal)
4289 {
4290 gfc_error ("%qs at %L must have the same number of formal arguments as"
4291 " the overridden procedure", proc->name, &where);
4292 return false;
4293 }
4294
4295 /* If the overridden binding is NOPASS, the overriding one must also be
4296 NOPASS. */
4297 if (old->n.tb->nopass && !proc->n.tb->nopass)
4298 {
4299 gfc_error ("%qs at %L overrides a NOPASS binding and must also be"
4300 " NOPASS", proc->name, &where);
4301 return false;
4302 }
4303
4304 /* If the overridden binding is PASS(x), the overriding one must also be
4305 PASS and the passed-object dummy arguments must correspond. */
4306 if (!old->n.tb->nopass)
4307 {
4308 if (proc->n.tb->nopass)
4309 {
4310 gfc_error ("%qs at %L overrides a binding with PASS and must also be"
4311 " PASS", proc->name, &where);
4312 return false;
4313 }
4314
4315 if (proc_pass_arg != old_pass_arg)
4316 {
4317 gfc_error ("Passed-object dummy argument of %qs at %L must be at"
4318 " the same position as the passed-object dummy argument of"
4319 " the overridden procedure", proc->name, &where);
4320 return false;
4321 }
4322 }
4323
4324 return true;
4325 }