Update ChangeLogs for wide-int work.
[gcc.git] / gcc / fortran / intrinsic.texi
1 @ignore
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3 This is part of the GNU Fortran manual.
4 For copying conditions, see the file gfortran.texi.
5
6 Permission is granted to copy, distribute and/or modify this document
7 under the terms of the GNU Free Documentation License, Version 1.3 or
8 any later version published by the Free Software Foundation; with the
9 Invariant Sections being ``Funding Free Software'', the Front-Cover
10 Texts being (a) (see below), and with the Back-Cover Texts being (b)
11 (see below). A copy of the license is included in the gfdl(7) man page.
12
13
14 Some basic guidelines for editing this document:
15
16 (1) The intrinsic procedures are to be listed in alphabetical order.
17 (2) The generic name is to be used.
18 (3) The specific names are included in the function index and in a
19 table at the end of the node (See ABS entry).
20 (4) Try to maintain the same style for each entry.
21
22
23 @end ignore
24
25 @tex
26 \gdef\acos{\mathop{\rm acos}\nolimits}
27 \gdef\asin{\mathop{\rm asin}\nolimits}
28 \gdef\atan{\mathop{\rm atan}\nolimits}
29 \gdef\acosh{\mathop{\rm acosh}\nolimits}
30 \gdef\asinh{\mathop{\rm asinh}\nolimits}
31 \gdef\atanh{\mathop{\rm atanh}\nolimits}
32 @end tex
33
34
35 @node Intrinsic Procedures
36 @chapter Intrinsic Procedures
37 @cindex intrinsic procedures
38
39 @menu
40 * Introduction: Introduction to Intrinsics
41 * @code{ABORT}: ABORT, Abort the program
42 * @code{ABS}: ABS, Absolute value
43 * @code{ACCESS}: ACCESS, Checks file access modes
44 * @code{ACHAR}: ACHAR, Character in @acronym{ASCII} collating sequence
45 * @code{ACOS}: ACOS, Arccosine function
46 * @code{ACOSH}: ACOSH, Inverse hyperbolic cosine function
47 * @code{ADJUSTL}: ADJUSTL, Left adjust a string
48 * @code{ADJUSTR}: ADJUSTR, Right adjust a string
49 * @code{AIMAG}: AIMAG, Imaginary part of complex number
50 * @code{AINT}: AINT, Truncate to a whole number
51 * @code{ALARM}: ALARM, Set an alarm clock
52 * @code{ALL}: ALL, Determine if all values are true
53 * @code{ALLOCATED}: ALLOCATED, Status of allocatable entity
54 * @code{AND}: AND, Bitwise logical AND
55 * @code{ANINT}: ANINT, Nearest whole number
56 * @code{ANY}: ANY, Determine if any values are true
57 * @code{ASIN}: ASIN, Arcsine function
58 * @code{ASINH}: ASINH, Inverse hyperbolic sine function
59 * @code{ASSOCIATED}: ASSOCIATED, Status of a pointer or pointer/target pair
60 * @code{ATAN}: ATAN, Arctangent function
61 * @code{ATAN2}: ATAN2, Arctangent function
62 * @code{ATANH}: ATANH, Inverse hyperbolic tangent function
63 * @code{ATOMIC_DEFINE}: ATOMIC_DEFINE, Setting a variable atomically
64 * @code{ATOMIC_REF}: ATOMIC_REF, Obtaining the value of a variable atomically
65 * @code{BACKTRACE}: BACKTRACE, Show a backtrace
66 * @code{BESSEL_J0}: BESSEL_J0, Bessel function of the first kind of order 0
67 * @code{BESSEL_J1}: BESSEL_J1, Bessel function of the first kind of order 1
68 * @code{BESSEL_JN}: BESSEL_JN, Bessel function of the first kind
69 * @code{BESSEL_Y0}: BESSEL_Y0, Bessel function of the second kind of order 0
70 * @code{BESSEL_Y1}: BESSEL_Y1, Bessel function of the second kind of order 1
71 * @code{BESSEL_YN}: BESSEL_YN, Bessel function of the second kind
72 * @code{BGE}: BGE, Bitwise greater than or equal to
73 * @code{BGT}: BGT, Bitwise greater than
74 * @code{BIT_SIZE}: BIT_SIZE, Bit size inquiry function
75 * @code{BLE}: BLE, Bitwise less than or equal to
76 * @code{BLT}: BLT, Bitwise less than
77 * @code{BTEST}: BTEST, Bit test function
78 * @code{C_ASSOCIATED}: C_ASSOCIATED, Status of a C pointer
79 * @code{C_F_POINTER}: C_F_POINTER, Convert C into Fortran pointer
80 * @code{C_F_PROCPOINTER}: C_F_PROCPOINTER, Convert C into Fortran procedure pointer
81 * @code{C_FUNLOC}: C_FUNLOC, Obtain the C address of a procedure
82 * @code{C_LOC}: C_LOC, Obtain the C address of an object
83 * @code{C_SIZEOF}: C_SIZEOF, Size in bytes of an expression
84 * @code{CEILING}: CEILING, Integer ceiling function
85 * @code{CHAR}: CHAR, Integer-to-character conversion function
86 * @code{CHDIR}: CHDIR, Change working directory
87 * @code{CHMOD}: CHMOD, Change access permissions of files
88 * @code{CMPLX}: CMPLX, Complex conversion function
89 * @code{COMMAND_ARGUMENT_COUNT}: COMMAND_ARGUMENT_COUNT, Get number of command line arguments
90 * @code{COMPILER_OPTIONS}: COMPILER_OPTIONS, Options passed to the compiler
91 * @code{COMPILER_VERSION}: COMPILER_VERSION, Compiler version string
92 * @code{COMPLEX}: COMPLEX, Complex conversion function
93 * @code{CONJG}: CONJG, Complex conjugate function
94 * @code{COS}: COS, Cosine function
95 * @code{COSH}: COSH, Hyperbolic cosine function
96 * @code{COUNT}: COUNT, Count occurrences of TRUE in an array
97 * @code{CPU_TIME}: CPU_TIME, CPU time subroutine
98 * @code{CSHIFT}: CSHIFT, Circular shift elements of an array
99 * @code{CTIME}: CTIME, Subroutine (or function) to convert a time into a string
100 * @code{DATE_AND_TIME}: DATE_AND_TIME, Date and time subroutine
101 * @code{DBLE}: DBLE, Double precision conversion function
102 * @code{DCMPLX}: DCMPLX, Double complex conversion function
103 * @code{DIGITS}: DIGITS, Significant digits function
104 * @code{DIM}: DIM, Positive difference
105 * @code{DOT_PRODUCT}: DOT_PRODUCT, Dot product function
106 * @code{DPROD}: DPROD, Double product function
107 * @code{DREAL}: DREAL, Double real part function
108 * @code{DSHIFTL}: DSHIFTL, Combined left shift
109 * @code{DSHIFTR}: DSHIFTR, Combined right shift
110 * @code{DTIME}: DTIME, Execution time subroutine (or function)
111 * @code{EOSHIFT}: EOSHIFT, End-off shift elements of an array
112 * @code{EPSILON}: EPSILON, Epsilon function
113 * @code{ERF}: ERF, Error function
114 * @code{ERFC}: ERFC, Complementary error function
115 * @code{ERFC_SCALED}: ERFC_SCALED, Exponentially-scaled complementary error function
116 * @code{ETIME}: ETIME, Execution time subroutine (or function)
117 * @code{EXECUTE_COMMAND_LINE}: EXECUTE_COMMAND_LINE, Execute a shell command
118 * @code{EXIT}: EXIT, Exit the program with status.
119 * @code{EXP}: EXP, Exponential function
120 * @code{EXPONENT}: EXPONENT, Exponent function
121 * @code{EXTENDS_TYPE_OF}: EXTENDS_TYPE_OF, Query dynamic type for extension
122 * @code{FDATE}: FDATE, Subroutine (or function) to get the current time as a string
123 * @code{FGET}: FGET, Read a single character in stream mode from stdin
124 * @code{FGETC}: FGETC, Read a single character in stream mode
125 * @code{FLOOR}: FLOOR, Integer floor function
126 * @code{FLUSH}: FLUSH, Flush I/O unit(s)
127 * @code{FNUM}: FNUM, File number function
128 * @code{FPUT}: FPUT, Write a single character in stream mode to stdout
129 * @code{FPUTC}: FPUTC, Write a single character in stream mode
130 * @code{FRACTION}: FRACTION, Fractional part of the model representation
131 * @code{FREE}: FREE, Memory de-allocation subroutine
132 * @code{FSEEK}: FSEEK, Low level file positioning subroutine
133 * @code{FSTAT}: FSTAT, Get file status
134 * @code{FTELL}: FTELL, Current stream position
135 * @code{GAMMA}: GAMMA, Gamma function
136 * @code{GERROR}: GERROR, Get last system error message
137 * @code{GETARG}: GETARG, Get command line arguments
138 * @code{GET_COMMAND}: GET_COMMAND, Get the entire command line
139 * @code{GET_COMMAND_ARGUMENT}: GET_COMMAND_ARGUMENT, Get command line arguments
140 * @code{GETCWD}: GETCWD, Get current working directory
141 * @code{GETENV}: GETENV, Get an environmental variable
142 * @code{GET_ENVIRONMENT_VARIABLE}: GET_ENVIRONMENT_VARIABLE, Get an environmental variable
143 * @code{GETGID}: GETGID, Group ID function
144 * @code{GETLOG}: GETLOG, Get login name
145 * @code{GETPID}: GETPID, Process ID function
146 * @code{GETUID}: GETUID, User ID function
147 * @code{GMTIME}: GMTIME, Convert time to GMT info
148 * @code{HOSTNM}: HOSTNM, Get system host name
149 * @code{HUGE}: HUGE, Largest number of a kind
150 * @code{HYPOT}: HYPOT, Euclidean distance function
151 * @code{IACHAR}: IACHAR, Code in @acronym{ASCII} collating sequence
152 * @code{IALL}: IALL, Bitwise AND of array elements
153 * @code{IAND}: IAND, Bitwise logical and
154 * @code{IANY}: IANY, Bitwise OR of array elements
155 * @code{IARGC}: IARGC, Get the number of command line arguments
156 * @code{IBCLR}: IBCLR, Clear bit
157 * @code{IBITS}: IBITS, Bit extraction
158 * @code{IBSET}: IBSET, Set bit
159 * @code{ICHAR}: ICHAR, Character-to-integer conversion function
160 * @code{IDATE}: IDATE, Current local time (day/month/year)
161 * @code{IEOR}: IEOR, Bitwise logical exclusive or
162 * @code{IERRNO}: IERRNO, Function to get the last system error number
163 * @code{IMAGE_INDEX}: IMAGE_INDEX, Cosubscript to image index conversion
164 * @code{INDEX}: INDEX intrinsic, Position of a substring within a string
165 * @code{INT}: INT, Convert to integer type
166 * @code{INT2}: INT2, Convert to 16-bit integer type
167 * @code{INT8}: INT8, Convert to 64-bit integer type
168 * @code{IOR}: IOR, Bitwise logical or
169 * @code{IPARITY}: IPARITY, Bitwise XOR of array elements
170 * @code{IRAND}: IRAND, Integer pseudo-random number
171 * @code{IS_IOSTAT_END}: IS_IOSTAT_END, Test for end-of-file value
172 * @code{IS_IOSTAT_EOR}: IS_IOSTAT_EOR, Test for end-of-record value
173 * @code{ISATTY}: ISATTY, Whether a unit is a terminal device
174 * @code{ISHFT}: ISHFT, Shift bits
175 * @code{ISHFTC}: ISHFTC, Shift bits circularly
176 * @code{ISNAN}: ISNAN, Tests for a NaN
177 * @code{ITIME}: ITIME, Current local time (hour/minutes/seconds)
178 * @code{KILL}: KILL, Send a signal to a process
179 * @code{KIND}: KIND, Kind of an entity
180 * @code{LBOUND}: LBOUND, Lower dimension bounds of an array
181 * @code{LCOBOUND}: LCOBOUND, Lower codimension bounds of an array
182 * @code{LEADZ}: LEADZ, Number of leading zero bits of an integer
183 * @code{LEN}: LEN, Length of a character entity
184 * @code{LEN_TRIM}: LEN_TRIM, Length of a character entity without trailing blank characters
185 * @code{LGE}: LGE, Lexical greater than or equal
186 * @code{LGT}: LGT, Lexical greater than
187 * @code{LINK}: LINK, Create a hard link
188 * @code{LLE}: LLE, Lexical less than or equal
189 * @code{LLT}: LLT, Lexical less than
190 * @code{LNBLNK}: LNBLNK, Index of the last non-blank character in a string
191 * @code{LOC}: LOC, Returns the address of a variable
192 * @code{LOG}: LOG, Logarithm function
193 * @code{LOG10}: LOG10, Base 10 logarithm function
194 * @code{LOG_GAMMA}: LOG_GAMMA, Logarithm of the Gamma function
195 * @code{LOGICAL}: LOGICAL, Convert to logical type
196 * @code{LONG}: LONG, Convert to integer type
197 * @code{LSHIFT}: LSHIFT, Left shift bits
198 * @code{LSTAT}: LSTAT, Get file status
199 * @code{LTIME}: LTIME, Convert time to local time info
200 * @code{MALLOC}: MALLOC, Dynamic memory allocation function
201 * @code{MASKL}: MASKL, Left justified mask
202 * @code{MASKR}: MASKR, Right justified mask
203 * @code{MATMUL}: MATMUL, matrix multiplication
204 * @code{MAX}: MAX, Maximum value of an argument list
205 * @code{MAXEXPONENT}: MAXEXPONENT, Maximum exponent of a real kind
206 * @code{MAXLOC}: MAXLOC, Location of the maximum value within an array
207 * @code{MAXVAL}: MAXVAL, Maximum value of an array
208 * @code{MCLOCK}: MCLOCK, Time function
209 * @code{MCLOCK8}: MCLOCK8, Time function (64-bit)
210 * @code{MERGE}: MERGE, Merge arrays
211 * @code{MERGE_BITS}: MERGE_BITS, Merge of bits under mask
212 * @code{MIN}: MIN, Minimum value of an argument list
213 * @code{MINEXPONENT}: MINEXPONENT, Minimum exponent of a real kind
214 * @code{MINLOC}: MINLOC, Location of the minimum value within an array
215 * @code{MINVAL}: MINVAL, Minimum value of an array
216 * @code{MOD}: MOD, Remainder function
217 * @code{MODULO}: MODULO, Modulo function
218 * @code{MOVE_ALLOC}: MOVE_ALLOC, Move allocation from one object to another
219 * @code{MVBITS}: MVBITS, Move bits from one integer to another
220 * @code{NEAREST}: NEAREST, Nearest representable number
221 * @code{NEW_LINE}: NEW_LINE, New line character
222 * @code{NINT}: NINT, Nearest whole number
223 * @code{NORM2}: NORM2, Euclidean vector norm
224 * @code{NOT}: NOT, Logical negation
225 * @code{NULL}: NULL, Function that returns an disassociated pointer
226 * @code{NUM_IMAGES}: NUM_IMAGES, Number of images
227 * @code{OR}: OR, Bitwise logical OR
228 * @code{PACK}: PACK, Pack an array into an array of rank one
229 * @code{PARITY}: PARITY, Reduction with exclusive OR
230 * @code{PERROR}: PERROR, Print system error message
231 * @code{POPCNT}: POPCNT, Number of bits set
232 * @code{POPPAR}: POPPAR, Parity of the number of bits set
233 * @code{PRECISION}: PRECISION, Decimal precision of a real kind
234 * @code{PRESENT}: PRESENT, Determine whether an optional dummy argument is specified
235 * @code{PRODUCT}: PRODUCT, Product of array elements
236 * @code{RADIX}: RADIX, Base of a data model
237 * @code{RAN}: RAN, Real pseudo-random number
238 * @code{RAND}: RAND, Real pseudo-random number
239 * @code{RANDOM_NUMBER}: RANDOM_NUMBER, Pseudo-random number
240 * @code{RANDOM_SEED}: RANDOM_SEED, Initialize a pseudo-random number sequence
241 * @code{RANGE}: RANGE, Decimal exponent range
242 * @code{RANK} : RANK, Rank of a data object
243 * @code{REAL}: REAL, Convert to real type
244 * @code{RENAME}: RENAME, Rename a file
245 * @code{REPEAT}: REPEAT, Repeated string concatenation
246 * @code{RESHAPE}: RESHAPE, Function to reshape an array
247 * @code{RRSPACING}: RRSPACING, Reciprocal of the relative spacing
248 * @code{RSHIFT}: RSHIFT, Right shift bits
249 * @code{SAME_TYPE_AS}: SAME_TYPE_AS, Query dynamic types for equality
250 * @code{SCALE}: SCALE, Scale a real value
251 * @code{SCAN}: SCAN, Scan a string for the presence of a set of characters
252 * @code{SECNDS}: SECNDS, Time function
253 * @code{SECOND}: SECOND, CPU time function
254 * @code{SELECTED_CHAR_KIND}: SELECTED_CHAR_KIND, Choose character kind
255 * @code{SELECTED_INT_KIND}: SELECTED_INT_KIND, Choose integer kind
256 * @code{SELECTED_REAL_KIND}: SELECTED_REAL_KIND, Choose real kind
257 * @code{SET_EXPONENT}: SET_EXPONENT, Set the exponent of the model
258 * @code{SHAPE}: SHAPE, Determine the shape of an array
259 * @code{SHIFTA}: SHIFTA, Right shift with fill
260 * @code{SHIFTL}: SHIFTL, Left shift
261 * @code{SHIFTR}: SHIFTR, Right shift
262 * @code{SIGN}: SIGN, Sign copying function
263 * @code{SIGNAL}: SIGNAL, Signal handling subroutine (or function)
264 * @code{SIN}: SIN, Sine function
265 * @code{SINH}: SINH, Hyperbolic sine function
266 * @code{SIZE}: SIZE, Function to determine the size of an array
267 * @code{SIZEOF}: SIZEOF, Determine the size in bytes of an expression
268 * @code{SLEEP}: SLEEP, Sleep for the specified number of seconds
269 * @code{SPACING}: SPACING, Smallest distance between two numbers of a given type
270 * @code{SPREAD}: SPREAD, Add a dimension to an array
271 * @code{SQRT}: SQRT, Square-root function
272 * @code{SRAND}: SRAND, Reinitialize the random number generator
273 * @code{STAT}: STAT, Get file status
274 * @code{STORAGE_SIZE}: STORAGE_SIZE, Storage size in bits
275 * @code{SUM}: SUM, Sum of array elements
276 * @code{SYMLNK}: SYMLNK, Create a symbolic link
277 * @code{SYSTEM}: SYSTEM, Execute a shell command
278 * @code{SYSTEM_CLOCK}: SYSTEM_CLOCK, Time function
279 * @code{TAN}: TAN, Tangent function
280 * @code{TANH}: TANH, Hyperbolic tangent function
281 * @code{THIS_IMAGE}: THIS_IMAGE, Cosubscript index of this image
282 * @code{TIME}: TIME, Time function
283 * @code{TIME8}: TIME8, Time function (64-bit)
284 * @code{TINY}: TINY, Smallest positive number of a real kind
285 * @code{TRAILZ}: TRAILZ, Number of trailing zero bits of an integer
286 * @code{TRANSFER}: TRANSFER, Transfer bit patterns
287 * @code{TRANSPOSE}: TRANSPOSE, Transpose an array of rank two
288 * @code{TRIM}: TRIM, Remove trailing blank characters of a string
289 * @code{TTYNAM}: TTYNAM, Get the name of a terminal device.
290 * @code{UBOUND}: UBOUND, Upper dimension bounds of an array
291 * @code{UCOBOUND}: UCOBOUND, Upper codimension bounds of an array
292 * @code{UMASK}: UMASK, Set the file creation mask
293 * @code{UNLINK}: UNLINK, Remove a file from the file system
294 * @code{UNPACK}: UNPACK, Unpack an array of rank one into an array
295 * @code{VERIFY}: VERIFY, Scan a string for the absence of a set of characters
296 * @code{XOR}: XOR, Bitwise logical exclusive or
297 @end menu
298
299 @node Introduction to Intrinsics
300 @section Introduction to intrinsic procedures
301
302 The intrinsic procedures provided by GNU Fortran include all of the
303 intrinsic procedures required by the Fortran 95 standard, a set of
304 intrinsic procedures for backwards compatibility with G77, and a
305 selection of intrinsic procedures from the Fortran 2003 and Fortran 2008
306 standards. Any conflict between a description here and a description in
307 either the Fortran 95 standard, the Fortran 2003 standard or the Fortran
308 2008 standard is unintentional, and the standard(s) should be considered
309 authoritative.
310
311 The enumeration of the @code{KIND} type parameter is processor defined in
312 the Fortran 95 standard. GNU Fortran defines the default integer type and
313 default real type by @code{INTEGER(KIND=4)} and @code{REAL(KIND=4)},
314 respectively. The standard mandates that both data types shall have
315 another kind, which have more precision. On typical target architectures
316 supported by @command{gfortran}, this kind type parameter is @code{KIND=8}.
317 Hence, @code{REAL(KIND=8)} and @code{DOUBLE PRECISION} are equivalent.
318 In the description of generic intrinsic procedures, the kind type parameter
319 will be specified by @code{KIND=*}, and in the description of specific
320 names for an intrinsic procedure the kind type parameter will be explicitly
321 given (e.g., @code{REAL(KIND=4)} or @code{REAL(KIND=8)}). Finally, for
322 brevity the optional @code{KIND=} syntax will be omitted.
323
324 Many of the intrinsic procedures take one or more optional arguments.
325 This document follows the convention used in the Fortran 95 standard,
326 and denotes such arguments by square brackets.
327
328 GNU Fortran offers the @option{-std=f95} and @option{-std=gnu} options,
329 which can be used to restrict the set of intrinsic procedures to a
330 given standard. By default, @command{gfortran} sets the @option{-std=gnu}
331 option, and so all intrinsic procedures described here are accepted. There
332 is one caveat. For a select group of intrinsic procedures, @command{g77}
333 implemented both a function and a subroutine. Both classes
334 have been implemented in @command{gfortran} for backwards compatibility
335 with @command{g77}. It is noted here that these functions and subroutines
336 cannot be intermixed in a given subprogram. In the descriptions that follow,
337 the applicable standard for each intrinsic procedure is noted.
338
339
340
341 @node ABORT
342 @section @code{ABORT} --- Abort the program
343 @fnindex ABORT
344 @cindex program termination, with core dump
345 @cindex terminate program, with core dump
346 @cindex core, dump
347
348 @table @asis
349 @item @emph{Description}:
350 @code{ABORT} causes immediate termination of the program. On operating
351 systems that support a core dump, @code{ABORT} will produce a core dump.
352 It will also print a backtrace, unless @code{-fno-backtrace} is given.
353
354 @item @emph{Standard}:
355 GNU extension
356
357 @item @emph{Class}:
358 Subroutine
359
360 @item @emph{Syntax}:
361 @code{CALL ABORT}
362
363 @item @emph{Return value}:
364 Does not return.
365
366 @item @emph{Example}:
367 @smallexample
368 program test_abort
369 integer :: i = 1, j = 2
370 if (i /= j) call abort
371 end program test_abort
372 @end smallexample
373
374 @item @emph{See also}:
375 @ref{EXIT}, @ref{KILL}, @ref{BACKTRACE}
376
377 @end table
378
379
380
381 @node ABS
382 @section @code{ABS} --- Absolute value
383 @fnindex ABS
384 @fnindex CABS
385 @fnindex DABS
386 @fnindex IABS
387 @fnindex ZABS
388 @fnindex CDABS
389 @cindex absolute value
390
391 @table @asis
392 @item @emph{Description}:
393 @code{ABS(A)} computes the absolute value of @code{A}.
394
395 @item @emph{Standard}:
396 Fortran 77 and later, has overloads that are GNU extensions
397
398 @item @emph{Class}:
399 Elemental function
400
401 @item @emph{Syntax}:
402 @code{RESULT = ABS(A)}
403
404 @item @emph{Arguments}:
405 @multitable @columnfractions .15 .70
406 @item @var{A} @tab The type of the argument shall be an @code{INTEGER},
407 @code{REAL}, or @code{COMPLEX}.
408 @end multitable
409
410 @item @emph{Return value}:
411 The return value is of the same type and
412 kind as the argument except the return value is @code{REAL} for a
413 @code{COMPLEX} argument.
414
415 @item @emph{Example}:
416 @smallexample
417 program test_abs
418 integer :: i = -1
419 real :: x = -1.e0
420 complex :: z = (-1.e0,0.e0)
421 i = abs(i)
422 x = abs(x)
423 x = abs(z)
424 end program test_abs
425 @end smallexample
426
427 @item @emph{Specific names}:
428 @multitable @columnfractions .20 .20 .20 .25
429 @item Name @tab Argument @tab Return type @tab Standard
430 @item @code{ABS(A)} @tab @code{REAL(4) A} @tab @code{REAL(4)} @tab Fortran 77 and later
431 @item @code{CABS(A)} @tab @code{COMPLEX(4) A} @tab @code{REAL(4)} @tab Fortran 77 and later
432 @item @code{DABS(A)} @tab @code{REAL(8) A} @tab @code{REAL(8)} @tab Fortran 77 and later
433 @item @code{IABS(A)} @tab @code{INTEGER(4) A} @tab @code{INTEGER(4)} @tab Fortran 77 and later
434 @item @code{ZABS(A)} @tab @code{COMPLEX(8) A} @tab @code{COMPLEX(8)} @tab GNU extension
435 @item @code{CDABS(A)} @tab @code{COMPLEX(8) A} @tab @code{COMPLEX(8)} @tab GNU extension
436 @end multitable
437 @end table
438
439
440
441 @node ACCESS
442 @section @code{ACCESS} --- Checks file access modes
443 @fnindex ACCESS
444 @cindex file system, access mode
445
446 @table @asis
447 @item @emph{Description}:
448 @code{ACCESS(NAME, MODE)} checks whether the file @var{NAME}
449 exists, is readable, writable or executable. Except for the
450 executable check, @code{ACCESS} can be replaced by
451 Fortran 95's @code{INQUIRE}.
452
453 @item @emph{Standard}:
454 GNU extension
455
456 @item @emph{Class}:
457 Inquiry function
458
459 @item @emph{Syntax}:
460 @code{RESULT = ACCESS(NAME, MODE)}
461
462 @item @emph{Arguments}:
463 @multitable @columnfractions .15 .70
464 @item @var{NAME} @tab Scalar @code{CHARACTER} of default kind with the
465 file name. Tailing blank are ignored unless the character @code{achar(0)}
466 is present, then all characters up to and excluding @code{achar(0)} are
467 used as file name.
468 @item @var{MODE} @tab Scalar @code{CHARACTER} of default kind with the
469 file access mode, may be any concatenation of @code{"r"} (readable),
470 @code{"w"} (writable) and @code{"x"} (executable), or @code{" "} to check
471 for existence.
472 @end multitable
473
474 @item @emph{Return value}:
475 Returns a scalar @code{INTEGER}, which is @code{0} if the file is
476 accessible in the given mode; otherwise or if an invalid argument
477 has been given for @code{MODE} the value @code{1} is returned.
478
479 @item @emph{Example}:
480 @smallexample
481 program access_test
482 implicit none
483 character(len=*), parameter :: file = 'test.dat'
484 character(len=*), parameter :: file2 = 'test.dat '//achar(0)
485 if(access(file,' ') == 0) print *, trim(file),' is exists'
486 if(access(file,'r') == 0) print *, trim(file),' is readable'
487 if(access(file,'w') == 0) print *, trim(file),' is writable'
488 if(access(file,'x') == 0) print *, trim(file),' is executable'
489 if(access(file2,'rwx') == 0) &
490 print *, trim(file2),' is readable, writable and executable'
491 end program access_test
492 @end smallexample
493 @item @emph{Specific names}:
494 @item @emph{See also}:
495
496 @end table
497
498
499
500 @node ACHAR
501 @section @code{ACHAR} --- Character in @acronym{ASCII} collating sequence
502 @fnindex ACHAR
503 @cindex @acronym{ASCII} collating sequence
504 @cindex collating sequence, @acronym{ASCII}
505
506 @table @asis
507 @item @emph{Description}:
508 @code{ACHAR(I)} returns the character located at position @code{I}
509 in the @acronym{ASCII} collating sequence.
510
511 @item @emph{Standard}:
512 Fortran 77 and later, with @var{KIND} argument Fortran 2003 and later
513
514 @item @emph{Class}:
515 Elemental function
516
517 @item @emph{Syntax}:
518 @code{RESULT = ACHAR(I [, KIND])}
519
520 @item @emph{Arguments}:
521 @multitable @columnfractions .15 .70
522 @item @var{I} @tab The type shall be @code{INTEGER}.
523 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
524 expression indicating the kind parameter of the result.
525 @end multitable
526
527 @item @emph{Return value}:
528 The return value is of type @code{CHARACTER} with a length of one.
529 If the @var{KIND} argument is present, the return value is of the
530 specified kind and of the default kind otherwise.
531
532 @item @emph{Example}:
533 @smallexample
534 program test_achar
535 character c
536 c = achar(32)
537 end program test_achar
538 @end smallexample
539
540 @item @emph{Note}:
541 See @ref{ICHAR} for a discussion of converting between numerical values
542 and formatted string representations.
543
544 @item @emph{See also}:
545 @ref{CHAR}, @ref{IACHAR}, @ref{ICHAR}
546
547 @end table
548
549
550
551 @node ACOS
552 @section @code{ACOS} --- Arccosine function
553 @fnindex ACOS
554 @fnindex DACOS
555 @cindex trigonometric function, cosine, inverse
556 @cindex cosine, inverse
557
558 @table @asis
559 @item @emph{Description}:
560 @code{ACOS(X)} computes the arccosine of @var{X} (inverse of @code{COS(X)}).
561
562 @item @emph{Standard}:
563 Fortran 77 and later, for a complex argument Fortran 2008 or later
564
565 @item @emph{Class}:
566 Elemental function
567
568 @item @emph{Syntax}:
569 @code{RESULT = ACOS(X)}
570
571 @item @emph{Arguments}:
572 @multitable @columnfractions .15 .70
573 @item @var{X} @tab The type shall either be @code{REAL} with a magnitude that is
574 less than or equal to one - or the type shall be @code{COMPLEX}.
575 @end multitable
576
577 @item @emph{Return value}:
578 The return value is of the same type and kind as @var{X}.
579 The real part of the result is in radians and lies in the range
580 @math{0 \leq \Re \acos(x) \leq \pi}.
581
582 @item @emph{Example}:
583 @smallexample
584 program test_acos
585 real(8) :: x = 0.866_8
586 x = acos(x)
587 end program test_acos
588 @end smallexample
589
590 @item @emph{Specific names}:
591 @multitable @columnfractions .20 .20 .20 .25
592 @item Name @tab Argument @tab Return type @tab Standard
593 @item @code{ACOS(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later
594 @item @code{DACOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
595 @end multitable
596
597 @item @emph{See also}:
598 Inverse function: @ref{COS}
599
600 @end table
601
602
603
604 @node ACOSH
605 @section @code{ACOSH} --- Inverse hyperbolic cosine function
606 @fnindex ACOSH
607 @fnindex DACOSH
608 @cindex area hyperbolic cosine
609 @cindex inverse hyperbolic cosine
610 @cindex hyperbolic function, cosine, inverse
611 @cindex cosine, hyperbolic, inverse
612
613 @table @asis
614 @item @emph{Description}:
615 @code{ACOSH(X)} computes the inverse hyperbolic cosine of @var{X}.
616
617 @item @emph{Standard}:
618 Fortran 2008 and later
619
620 @item @emph{Class}:
621 Elemental function
622
623 @item @emph{Syntax}:
624 @code{RESULT = ACOSH(X)}
625
626 @item @emph{Arguments}:
627 @multitable @columnfractions .15 .70
628 @item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
629 @end multitable
630
631 @item @emph{Return value}:
632 The return value has the same type and kind as @var{X}. If @var{X} is
633 complex, the imaginary part of the result is in radians and lies between
634 @math{ 0 \leq \Im \acosh(x) \leq \pi}.
635
636 @item @emph{Example}:
637 @smallexample
638 PROGRAM test_acosh
639 REAL(8), DIMENSION(3) :: x = (/ 1.0, 2.0, 3.0 /)
640 WRITE (*,*) ACOSH(x)
641 END PROGRAM
642 @end smallexample
643
644 @item @emph{Specific names}:
645 @multitable @columnfractions .20 .20 .20 .25
646 @item Name @tab Argument @tab Return type @tab Standard
647 @item @code{DACOSH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
648 @end multitable
649
650 @item @emph{See also}:
651 Inverse function: @ref{COSH}
652 @end table
653
654
655
656 @node ADJUSTL
657 @section @code{ADJUSTL} --- Left adjust a string
658 @fnindex ADJUSTL
659 @cindex string, adjust left
660 @cindex adjust string
661
662 @table @asis
663 @item @emph{Description}:
664 @code{ADJUSTL(STRING)} will left adjust a string by removing leading spaces.
665 Spaces are inserted at the end of the string as needed.
666
667 @item @emph{Standard}:
668 Fortran 90 and later
669
670 @item @emph{Class}:
671 Elemental function
672
673 @item @emph{Syntax}:
674 @code{RESULT = ADJUSTL(STRING)}
675
676 @item @emph{Arguments}:
677 @multitable @columnfractions .15 .70
678 @item @var{STRING} @tab The type shall be @code{CHARACTER}.
679 @end multitable
680
681 @item @emph{Return value}:
682 The return value is of type @code{CHARACTER} and of the same kind as
683 @var{STRING} where leading spaces are removed and the same number of
684 spaces are inserted on the end of @var{STRING}.
685
686 @item @emph{Example}:
687 @smallexample
688 program test_adjustl
689 character(len=20) :: str = ' gfortran'
690 str = adjustl(str)
691 print *, str
692 end program test_adjustl
693 @end smallexample
694
695 @item @emph{See also}:
696 @ref{ADJUSTR}, @ref{TRIM}
697 @end table
698
699
700
701 @node ADJUSTR
702 @section @code{ADJUSTR} --- Right adjust a string
703 @fnindex ADJUSTR
704 @cindex string, adjust right
705 @cindex adjust string
706
707 @table @asis
708 @item @emph{Description}:
709 @code{ADJUSTR(STRING)} will right adjust a string by removing trailing spaces.
710 Spaces are inserted at the start of the string as needed.
711
712 @item @emph{Standard}:
713 Fortran 95 and later
714
715 @item @emph{Class}:
716 Elemental function
717
718 @item @emph{Syntax}:
719 @code{RESULT = ADJUSTR(STRING)}
720
721 @item @emph{Arguments}:
722 @multitable @columnfractions .15 .70
723 @item @var{STR} @tab The type shall be @code{CHARACTER}.
724 @end multitable
725
726 @item @emph{Return value}:
727 The return value is of type @code{CHARACTER} and of the same kind as
728 @var{STRING} where trailing spaces are removed and the same number of
729 spaces are inserted at the start of @var{STRING}.
730
731 @item @emph{Example}:
732 @smallexample
733 program test_adjustr
734 character(len=20) :: str = 'gfortran'
735 str = adjustr(str)
736 print *, str
737 end program test_adjustr
738 @end smallexample
739
740 @item @emph{See also}:
741 @ref{ADJUSTL}, @ref{TRIM}
742 @end table
743
744
745
746 @node AIMAG
747 @section @code{AIMAG} --- Imaginary part of complex number
748 @fnindex AIMAG
749 @fnindex DIMAG
750 @fnindex IMAG
751 @fnindex IMAGPART
752 @cindex complex numbers, imaginary part
753
754 @table @asis
755 @item @emph{Description}:
756 @code{AIMAG(Z)} yields the imaginary part of complex argument @code{Z}.
757 The @code{IMAG(Z)} and @code{IMAGPART(Z)} intrinsic functions are provided
758 for compatibility with @command{g77}, and their use in new code is
759 strongly discouraged.
760
761 @item @emph{Standard}:
762 Fortran 77 and later, has overloads that are GNU extensions
763
764 @item @emph{Class}:
765 Elemental function
766
767 @item @emph{Syntax}:
768 @code{RESULT = AIMAG(Z)}
769
770 @item @emph{Arguments}:
771 @multitable @columnfractions .15 .70
772 @item @var{Z} @tab The type of the argument shall be @code{COMPLEX}.
773 @end multitable
774
775 @item @emph{Return value}:
776 The return value is of type @code{REAL} with the
777 kind type parameter of the argument.
778
779 @item @emph{Example}:
780 @smallexample
781 program test_aimag
782 complex(4) z4
783 complex(8) z8
784 z4 = cmplx(1.e0_4, 0.e0_4)
785 z8 = cmplx(0.e0_8, 1.e0_8)
786 print *, aimag(z4), dimag(z8)
787 end program test_aimag
788 @end smallexample
789
790 @item @emph{Specific names}:
791 @multitable @columnfractions .20 .20 .20 .25
792 @item Name @tab Argument @tab Return type @tab Standard
793 @item @code{AIMAG(Z)} @tab @code{COMPLEX Z} @tab @code{REAL} @tab GNU extension
794 @item @code{DIMAG(Z)} @tab @code{COMPLEX(8) Z} @tab @code{REAL(8)} @tab GNU extension
795 @item @code{IMAG(Z)} @tab @code{COMPLEX Z} @tab @code{REAL} @tab GNU extension
796 @item @code{IMAGPART(Z)} @tab @code{COMPLEX Z} @tab @code{REAL} @tab GNU extension
797 @end multitable
798 @end table
799
800
801
802 @node AINT
803 @section @code{AINT} --- Truncate to a whole number
804 @fnindex AINT
805 @fnindex DINT
806 @cindex floor
807 @cindex rounding, floor
808
809 @table @asis
810 @item @emph{Description}:
811 @code{AINT(A [, KIND])} truncates its argument to a whole number.
812
813 @item @emph{Standard}:
814 Fortran 77 and later
815
816 @item @emph{Class}:
817 Elemental function
818
819 @item @emph{Syntax}:
820 @code{RESULT = AINT(A [, KIND])}
821
822 @item @emph{Arguments}:
823 @multitable @columnfractions .15 .70
824 @item @var{A} @tab The type of the argument shall be @code{REAL}.
825 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
826 expression indicating the kind parameter of the result.
827 @end multitable
828
829 @item @emph{Return value}:
830 The return value is of type @code{REAL} with the kind type parameter of the
831 argument if the optional @var{KIND} is absent; otherwise, the kind
832 type parameter will be given by @var{KIND}. If the magnitude of
833 @var{X} is less than one, @code{AINT(X)} returns zero. If the
834 magnitude is equal to or greater than one then it returns the largest
835 whole number that does not exceed its magnitude. The sign is the same
836 as the sign of @var{X}.
837
838 @item @emph{Example}:
839 @smallexample
840 program test_aint
841 real(4) x4
842 real(8) x8
843 x4 = 1.234E0_4
844 x8 = 4.321_8
845 print *, aint(x4), dint(x8)
846 x8 = aint(x4,8)
847 end program test_aint
848 @end smallexample
849
850 @item @emph{Specific names}:
851 @multitable @columnfractions .20 .20 .20 .25
852 @item Name @tab Argument @tab Return type @tab Standard
853 @item @code{AINT(A)} @tab @code{REAL(4) A} @tab @code{REAL(4)} @tab Fortran 77 and later
854 @item @code{DINT(A)} @tab @code{REAL(8) A} @tab @code{REAL(8)} @tab Fortran 77 and later
855 @end multitable
856 @end table
857
858
859
860 @node ALARM
861 @section @code{ALARM} --- Execute a routine after a given delay
862 @fnindex ALARM
863 @cindex delayed execution
864
865 @table @asis
866 @item @emph{Description}:
867 @code{ALARM(SECONDS, HANDLER [, STATUS])} causes external subroutine @var{HANDLER}
868 to be executed after a delay of @var{SECONDS} by using @code{alarm(2)} to
869 set up a signal and @code{signal(2)} to catch it. If @var{STATUS} is
870 supplied, it will be returned with the number of seconds remaining until
871 any previously scheduled alarm was due to be delivered, or zero if there
872 was no previously scheduled alarm.
873
874 @item @emph{Standard}:
875 GNU extension
876
877 @item @emph{Class}:
878 Subroutine
879
880 @item @emph{Syntax}:
881 @code{CALL ALARM(SECONDS, HANDLER [, STATUS])}
882
883 @item @emph{Arguments}:
884 @multitable @columnfractions .15 .70
885 @item @var{SECONDS} @tab The type of the argument shall be a scalar
886 @code{INTEGER}. It is @code{INTENT(IN)}.
887 @item @var{HANDLER} @tab Signal handler (@code{INTEGER FUNCTION} or
888 @code{SUBROUTINE}) or dummy/global @code{INTEGER} scalar. The scalar
889 values may be either @code{SIG_IGN=1} to ignore the alarm generated
890 or @code{SIG_DFL=0} to set the default action. It is @code{INTENT(IN)}.
891 @item @var{STATUS} @tab (Optional) @var{STATUS} shall be a scalar
892 variable of the default @code{INTEGER} kind. It is @code{INTENT(OUT)}.
893 @end multitable
894
895 @item @emph{Example}:
896 @smallexample
897 program test_alarm
898 external handler_print
899 integer i
900 call alarm (3, handler_print, i)
901 print *, i
902 call sleep(10)
903 end program test_alarm
904 @end smallexample
905 This will cause the external routine @var{handler_print} to be called
906 after 3 seconds.
907 @end table
908
909
910
911 @node ALL
912 @section @code{ALL} --- All values in @var{MASK} along @var{DIM} are true
913 @fnindex ALL
914 @cindex array, apply condition
915 @cindex array, condition testing
916
917 @table @asis
918 @item @emph{Description}:
919 @code{ALL(MASK [, DIM])} determines if all the values are true in @var{MASK}
920 in the array along dimension @var{DIM}.
921
922 @item @emph{Standard}:
923 Fortran 95 and later
924
925 @item @emph{Class}:
926 Transformational function
927
928 @item @emph{Syntax}:
929 @code{RESULT = ALL(MASK [, DIM])}
930
931 @item @emph{Arguments}:
932 @multitable @columnfractions .15 .70
933 @item @var{MASK} @tab The type of the argument shall be @code{LOGICAL} and
934 it shall not be scalar.
935 @item @var{DIM} @tab (Optional) @var{DIM} shall be a scalar integer
936 with a value that lies between one and the rank of @var{MASK}.
937 @end multitable
938
939 @item @emph{Return value}:
940 @code{ALL(MASK)} returns a scalar value of type @code{LOGICAL} where
941 the kind type parameter is the same as the kind type parameter of
942 @var{MASK}. If @var{DIM} is present, then @code{ALL(MASK, DIM)} returns
943 an array with the rank of @var{MASK} minus 1. The shape is determined from
944 the shape of @var{MASK} where the @var{DIM} dimension is elided.
945
946 @table @asis
947 @item (A)
948 @code{ALL(MASK)} is true if all elements of @var{MASK} are true.
949 It also is true if @var{MASK} has zero size; otherwise, it is false.
950 @item (B)
951 If the rank of @var{MASK} is one, then @code{ALL(MASK,DIM)} is equivalent
952 to @code{ALL(MASK)}. If the rank is greater than one, then @code{ALL(MASK,DIM)}
953 is determined by applying @code{ALL} to the array sections.
954 @end table
955
956 @item @emph{Example}:
957 @smallexample
958 program test_all
959 logical l
960 l = all((/.true., .true., .true./))
961 print *, l
962 call section
963 contains
964 subroutine section
965 integer a(2,3), b(2,3)
966 a = 1
967 b = 1
968 b(2,2) = 2
969 print *, all(a .eq. b, 1)
970 print *, all(a .eq. b, 2)
971 end subroutine section
972 end program test_all
973 @end smallexample
974 @end table
975
976
977
978 @node ALLOCATED
979 @section @code{ALLOCATED} --- Status of an allocatable entity
980 @fnindex ALLOCATED
981 @cindex allocation, status
982
983 @table @asis
984 @item @emph{Description}:
985 @code{ALLOCATED(ARRAY)} and @code{ALLOCATED(SCALAR)} check the allocation
986 status of @var{ARRAY} and @var{SCALAR}, respectively.
987
988 @item @emph{Standard}:
989 Fortran 95 and later. Note, the @code{SCALAR=} keyword and allocatable
990 scalar entities are available in Fortran 2003 and later.
991
992 @item @emph{Class}:
993 Inquiry function
994
995 @item @emph{Syntax}:
996 @multitable @columnfractions .80
997 @item @code{RESULT = ALLOCATED(ARRAY)}
998 @item @code{RESULT = ALLOCATED(SCALAR)}
999 @end multitable
1000
1001 @item @emph{Arguments}:
1002 @multitable @columnfractions .15 .70
1003 @item @var{ARRAY} @tab The argument shall be an @code{ALLOCATABLE} array.
1004 @item @var{SCALAR} @tab The argument shall be an @code{ALLOCATABLE} scalar.
1005 @end multitable
1006
1007 @item @emph{Return value}:
1008 The return value is a scalar @code{LOGICAL} with the default logical
1009 kind type parameter. If the argument is allocated, then the result is
1010 @code{.TRUE.}; otherwise, it returns @code{.FALSE.}
1011
1012 @item @emph{Example}:
1013 @smallexample
1014 program test_allocated
1015 integer :: i = 4
1016 real(4), allocatable :: x(:)
1017 if (.not. allocated(x)) allocate(x(i))
1018 end program test_allocated
1019 @end smallexample
1020 @end table
1021
1022
1023
1024 @node AND
1025 @section @code{AND} --- Bitwise logical AND
1026 @fnindex AND
1027 @cindex bitwise logical and
1028 @cindex logical and, bitwise
1029
1030 @table @asis
1031 @item @emph{Description}:
1032 Bitwise logical @code{AND}.
1033
1034 This intrinsic routine is provided for backwards compatibility with
1035 GNU Fortran 77. For integer arguments, programmers should consider
1036 the use of the @ref{IAND} intrinsic defined by the Fortran standard.
1037
1038 @item @emph{Standard}:
1039 GNU extension
1040
1041 @item @emph{Class}:
1042 Function
1043
1044 @item @emph{Syntax}:
1045 @code{RESULT = AND(I, J)}
1046
1047 @item @emph{Arguments}:
1048 @multitable @columnfractions .15 .70
1049 @item @var{I} @tab The type shall be either a scalar @code{INTEGER}
1050 type or a scalar @code{LOGICAL} type.
1051 @item @var{J} @tab The type shall be the same as the type of @var{I}.
1052 @end multitable
1053
1054 @item @emph{Return value}:
1055 The return type is either a scalar @code{INTEGER} or a scalar
1056 @code{LOGICAL}. If the kind type parameters differ, then the
1057 smaller kind type is implicitly converted to larger kind, and the
1058 return has the larger kind.
1059
1060 @item @emph{Example}:
1061 @smallexample
1062 PROGRAM test_and
1063 LOGICAL :: T = .TRUE., F = .FALSE.
1064 INTEGER :: a, b
1065 DATA a / Z'F' /, b / Z'3' /
1066
1067 WRITE (*,*) AND(T, T), AND(T, F), AND(F, T), AND(F, F)
1068 WRITE (*,*) AND(a, b)
1069 END PROGRAM
1070 @end smallexample
1071
1072 @item @emph{See also}:
1073 Fortran 95 elemental function: @ref{IAND}
1074 @end table
1075
1076
1077
1078 @node ANINT
1079 @section @code{ANINT} --- Nearest whole number
1080 @fnindex ANINT
1081 @fnindex DNINT
1082 @cindex ceiling
1083 @cindex rounding, ceiling
1084
1085 @table @asis
1086 @item @emph{Description}:
1087 @code{ANINT(A [, KIND])} rounds its argument to the nearest whole number.
1088
1089 @item @emph{Standard}:
1090 Fortran 77 and later
1091
1092 @item @emph{Class}:
1093 Elemental function
1094
1095 @item @emph{Syntax}:
1096 @code{RESULT = ANINT(A [, KIND])}
1097
1098 @item @emph{Arguments}:
1099 @multitable @columnfractions .15 .70
1100 @item @var{A} @tab The type of the argument shall be @code{REAL}.
1101 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
1102 expression indicating the kind parameter of the result.
1103 @end multitable
1104
1105 @item @emph{Return value}:
1106 The return value is of type real with the kind type parameter of the
1107 argument if the optional @var{KIND} is absent; otherwise, the kind
1108 type parameter will be given by @var{KIND}. If @var{A} is greater than
1109 zero, @code{ANINT(A)} returns @code{AINT(X+0.5)}. If @var{A} is
1110 less than or equal to zero then it returns @code{AINT(X-0.5)}.
1111
1112 @item @emph{Example}:
1113 @smallexample
1114 program test_anint
1115 real(4) x4
1116 real(8) x8
1117 x4 = 1.234E0_4
1118 x8 = 4.321_8
1119 print *, anint(x4), dnint(x8)
1120 x8 = anint(x4,8)
1121 end program test_anint
1122 @end smallexample
1123
1124 @item @emph{Specific names}:
1125 @multitable @columnfractions .20 .20 .20 .25
1126 @item Name @tab Argument @tab Return type @tab Standard
1127 @item @code{AINT(A)} @tab @code{REAL(4) A} @tab @code{REAL(4)} @tab Fortran 77 and later
1128 @item @code{DNINT(A)} @tab @code{REAL(8) A} @tab @code{REAL(8)} @tab Fortran 77 and later
1129 @end multitable
1130 @end table
1131
1132
1133
1134 @node ANY
1135 @section @code{ANY} --- Any value in @var{MASK} along @var{DIM} is true
1136 @fnindex ANY
1137 @cindex array, apply condition
1138 @cindex array, condition testing
1139
1140 @table @asis
1141 @item @emph{Description}:
1142 @code{ANY(MASK [, DIM])} determines if any of the values in the logical array
1143 @var{MASK} along dimension @var{DIM} are @code{.TRUE.}.
1144
1145 @item @emph{Standard}:
1146 Fortran 95 and later
1147
1148 @item @emph{Class}:
1149 Transformational function
1150
1151 @item @emph{Syntax}:
1152 @code{RESULT = ANY(MASK [, DIM])}
1153
1154 @item @emph{Arguments}:
1155 @multitable @columnfractions .15 .70
1156 @item @var{MASK} @tab The type of the argument shall be @code{LOGICAL} and
1157 it shall not be scalar.
1158 @item @var{DIM} @tab (Optional) @var{DIM} shall be a scalar integer
1159 with a value that lies between one and the rank of @var{MASK}.
1160 @end multitable
1161
1162 @item @emph{Return value}:
1163 @code{ANY(MASK)} returns a scalar value of type @code{LOGICAL} where
1164 the kind type parameter is the same as the kind type parameter of
1165 @var{MASK}. If @var{DIM} is present, then @code{ANY(MASK, DIM)} returns
1166 an array with the rank of @var{MASK} minus 1. The shape is determined from
1167 the shape of @var{MASK} where the @var{DIM} dimension is elided.
1168
1169 @table @asis
1170 @item (A)
1171 @code{ANY(MASK)} is true if any element of @var{MASK} is true;
1172 otherwise, it is false. It also is false if @var{MASK} has zero size.
1173 @item (B)
1174 If the rank of @var{MASK} is one, then @code{ANY(MASK,DIM)} is equivalent
1175 to @code{ANY(MASK)}. If the rank is greater than one, then @code{ANY(MASK,DIM)}
1176 is determined by applying @code{ANY} to the array sections.
1177 @end table
1178
1179 @item @emph{Example}:
1180 @smallexample
1181 program test_any
1182 logical l
1183 l = any((/.true., .true., .true./))
1184 print *, l
1185 call section
1186 contains
1187 subroutine section
1188 integer a(2,3), b(2,3)
1189 a = 1
1190 b = 1
1191 b(2,2) = 2
1192 print *, any(a .eq. b, 1)
1193 print *, any(a .eq. b, 2)
1194 end subroutine section
1195 end program test_any
1196 @end smallexample
1197 @end table
1198
1199
1200
1201 @node ASIN
1202 @section @code{ASIN} --- Arcsine function
1203 @fnindex ASIN
1204 @fnindex DASIN
1205 @cindex trigonometric function, sine, inverse
1206 @cindex sine, inverse
1207
1208 @table @asis
1209 @item @emph{Description}:
1210 @code{ASIN(X)} computes the arcsine of its @var{X} (inverse of @code{SIN(X)}).
1211
1212 @item @emph{Standard}:
1213 Fortran 77 and later, for a complex argument Fortran 2008 or later
1214
1215 @item @emph{Class}:
1216 Elemental function
1217
1218 @item @emph{Syntax}:
1219 @code{RESULT = ASIN(X)}
1220
1221 @item @emph{Arguments}:
1222 @multitable @columnfractions .15 .70
1223 @item @var{X} @tab The type shall be either @code{REAL} and a magnitude that is
1224 less than or equal to one - or be @code{COMPLEX}.
1225 @end multitable
1226
1227 @item @emph{Return value}:
1228 The return value is of the same type and kind as @var{X}.
1229 The real part of the result is in radians and lies in the range
1230 @math{-\pi/2 \leq \Re \asin(x) \leq \pi/2}.
1231
1232 @item @emph{Example}:
1233 @smallexample
1234 program test_asin
1235 real(8) :: x = 0.866_8
1236 x = asin(x)
1237 end program test_asin
1238 @end smallexample
1239
1240 @item @emph{Specific names}:
1241 @multitable @columnfractions .20 .20 .20 .25
1242 @item Name @tab Argument @tab Return type @tab Standard
1243 @item @code{ASIN(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later
1244 @item @code{DASIN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
1245 @end multitable
1246
1247 @item @emph{See also}:
1248 Inverse function: @ref{SIN}
1249
1250 @end table
1251
1252
1253
1254 @node ASINH
1255 @section @code{ASINH} --- Inverse hyperbolic sine function
1256 @fnindex ASINH
1257 @fnindex DASINH
1258 @cindex area hyperbolic sine
1259 @cindex inverse hyperbolic sine
1260 @cindex hyperbolic function, sine, inverse
1261 @cindex sine, hyperbolic, inverse
1262
1263 @table @asis
1264 @item @emph{Description}:
1265 @code{ASINH(X)} computes the inverse hyperbolic sine of @var{X}.
1266
1267 @item @emph{Standard}:
1268 Fortran 2008 and later
1269
1270 @item @emph{Class}:
1271 Elemental function
1272
1273 @item @emph{Syntax}:
1274 @code{RESULT = ASINH(X)}
1275
1276 @item @emph{Arguments}:
1277 @multitable @columnfractions .15 .70
1278 @item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
1279 @end multitable
1280
1281 @item @emph{Return value}:
1282 The return value is of the same type and kind as @var{X}. If @var{X} is
1283 complex, the imaginary part of the result is in radians and lies between
1284 @math{-\pi/2 \leq \Im \asinh(x) \leq \pi/2}.
1285
1286 @item @emph{Example}:
1287 @smallexample
1288 PROGRAM test_asinh
1289 REAL(8), DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
1290 WRITE (*,*) ASINH(x)
1291 END PROGRAM
1292 @end smallexample
1293
1294 @item @emph{Specific names}:
1295 @multitable @columnfractions .20 .20 .20 .25
1296 @item Name @tab Argument @tab Return type @tab Standard
1297 @item @code{DASINH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension.
1298 @end multitable
1299
1300 @item @emph{See also}:
1301 Inverse function: @ref{SINH}
1302 @end table
1303
1304
1305
1306 @node ASSOCIATED
1307 @section @code{ASSOCIATED} --- Status of a pointer or pointer/target pair
1308 @fnindex ASSOCIATED
1309 @cindex pointer, status
1310 @cindex association status
1311
1312 @table @asis
1313 @item @emph{Description}:
1314 @code{ASSOCIATED(POINTER [, TARGET])} determines the status of the pointer
1315 @var{POINTER} or if @var{POINTER} is associated with the target @var{TARGET}.
1316
1317 @item @emph{Standard}:
1318 Fortran 95 and later
1319
1320 @item @emph{Class}:
1321 Inquiry function
1322
1323 @item @emph{Syntax}:
1324 @code{RESULT = ASSOCIATED(POINTER [, TARGET])}
1325
1326 @item @emph{Arguments}:
1327 @multitable @columnfractions .15 .70
1328 @item @var{POINTER} @tab @var{POINTER} shall have the @code{POINTER} attribute
1329 and it can be of any type.
1330 @item @var{TARGET} @tab (Optional) @var{TARGET} shall be a pointer or
1331 a target. It must have the same type, kind type parameter, and
1332 array rank as @var{POINTER}.
1333 @end multitable
1334 The association status of neither @var{POINTER} nor @var{TARGET} shall be
1335 undefined.
1336
1337 @item @emph{Return value}:
1338 @code{ASSOCIATED(POINTER)} returns a scalar value of type @code{LOGICAL(4)}.
1339 There are several cases:
1340 @table @asis
1341 @item (A) When the optional @var{TARGET} is not present then
1342 @code{ASSOCIATED(POINTER)} is true if @var{POINTER} is associated with a target; otherwise, it returns false.
1343 @item (B) If @var{TARGET} is present and a scalar target, the result is true if
1344 @var{TARGET} is not a zero-sized storage sequence and the target associated with @var{POINTER} occupies the same storage units. If @var{POINTER} is
1345 disassociated, the result is false.
1346 @item (C) If @var{TARGET} is present and an array target, the result is true if
1347 @var{TARGET} and @var{POINTER} have the same shape, are not zero-sized arrays,
1348 are arrays whose elements are not zero-sized storage sequences, and
1349 @var{TARGET} and @var{POINTER} occupy the same storage units in array element
1350 order.
1351 As in case(B), the result is false, if @var{POINTER} is disassociated.
1352 @item (D) If @var{TARGET} is present and an scalar pointer, the result is true
1353 if @var{TARGET} is associated with @var{POINTER}, the target associated with
1354 @var{TARGET} are not zero-sized storage sequences and occupy the same storage
1355 units.
1356 The result is false, if either @var{TARGET} or @var{POINTER} is disassociated.
1357 @item (E) If @var{TARGET} is present and an array pointer, the result is true if
1358 target associated with @var{POINTER} and the target associated with @var{TARGET}
1359 have the same shape, are not zero-sized arrays, are arrays whose elements are
1360 not zero-sized storage sequences, and @var{TARGET} and @var{POINTER} occupy
1361 the same storage units in array element order.
1362 The result is false, if either @var{TARGET} or @var{POINTER} is disassociated.
1363 @end table
1364
1365 @item @emph{Example}:
1366 @smallexample
1367 program test_associated
1368 implicit none
1369 real, target :: tgt(2) = (/1., 2./)
1370 real, pointer :: ptr(:)
1371 ptr => tgt
1372 if (associated(ptr) .eqv. .false.) call abort
1373 if (associated(ptr,tgt) .eqv. .false.) call abort
1374 end program test_associated
1375 @end smallexample
1376
1377 @item @emph{See also}:
1378 @ref{NULL}
1379 @end table
1380
1381
1382
1383 @node ATAN
1384 @section @code{ATAN} --- Arctangent function
1385 @fnindex ATAN
1386 @fnindex DATAN
1387 @cindex trigonometric function, tangent, inverse
1388 @cindex tangent, inverse
1389
1390 @table @asis
1391 @item @emph{Description}:
1392 @code{ATAN(X)} computes the arctangent of @var{X}.
1393
1394 @item @emph{Standard}:
1395 Fortran 77 and later, for a complex argument and for two arguments
1396 Fortran 2008 or later
1397
1398 @item @emph{Class}:
1399 Elemental function
1400
1401 @item @emph{Syntax}:
1402 @multitable @columnfractions .80
1403 @item @code{RESULT = ATAN(X)}
1404 @item @code{RESULT = ATAN(Y, X)}
1405 @end multitable
1406
1407 @item @emph{Arguments}:
1408 @multitable @columnfractions .15 .70
1409 @item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX};
1410 if @var{Y} is present, @var{X} shall be REAL.
1411 @item @var{Y} shall be of the same type and kind as @var{X}.
1412 @end multitable
1413
1414 @item @emph{Return value}:
1415 The return value is of the same type and kind as @var{X}.
1416 If @var{Y} is present, the result is identical to @code{ATAN2(Y,X)}.
1417 Otherwise, it the arcus tangent of @var{X}, where the real part of
1418 the result is in radians and lies in the range
1419 @math{-\pi/2 \leq \Re \atan(x) \leq \pi/2}.
1420
1421 @item @emph{Example}:
1422 @smallexample
1423 program test_atan
1424 real(8) :: x = 2.866_8
1425 x = atan(x)
1426 end program test_atan
1427 @end smallexample
1428
1429 @item @emph{Specific names}:
1430 @multitable @columnfractions .20 .20 .20 .25
1431 @item Name @tab Argument @tab Return type @tab Standard
1432 @item @code{ATAN(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later
1433 @item @code{DATAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
1434 @end multitable
1435
1436 @item @emph{See also}:
1437 Inverse function: @ref{TAN}
1438
1439 @end table
1440
1441
1442
1443 @node ATAN2
1444 @section @code{ATAN2} --- Arctangent function
1445 @fnindex ATAN2
1446 @fnindex DATAN2
1447 @cindex trigonometric function, tangent, inverse
1448 @cindex tangent, inverse
1449
1450 @table @asis
1451 @item @emph{Description}:
1452 @code{ATAN2(Y, X)} computes the principal value of the argument
1453 function of the complex number @math{X + i Y}. This function can
1454 be used to transform from Cartesian into polar coordinates and
1455 allows to determine the angle in the correct quadrant.
1456
1457 @item @emph{Standard}:
1458 Fortran 77 and later
1459
1460 @item @emph{Class}:
1461 Elemental function
1462
1463 @item @emph{Syntax}:
1464 @code{RESULT = ATAN2(Y, X)}
1465
1466 @item @emph{Arguments}:
1467 @multitable @columnfractions .15 .70
1468 @item @var{Y} @tab The type shall be @code{REAL}.
1469 @item @var{X} @tab The type and kind type parameter shall be the same as @var{Y}.
1470 If @var{Y} is zero, then @var{X} must be nonzero.
1471 @end multitable
1472
1473 @item @emph{Return value}:
1474 The return value has the same type and kind type parameter as @var{Y}. It
1475 is the principal value of the complex number @math{X + i Y}. If @var{X}
1476 is nonzero, then it lies in the range @math{-\pi \le \atan (x) \leq \pi}.
1477 The sign is positive if @var{Y} is positive. If @var{Y} is zero, then
1478 the return value is zero if @var{X} is strictly positive, @math{\pi} if
1479 @var{X} is negative and @var{Y} is positive zero (or the processor does
1480 not handle signed zeros), and @math{-\pi} if @var{X} is negative and
1481 @var{Y} is negative zero. Finally, if @var{X} is zero, then the
1482 magnitude of the result is @math{\pi/2}.
1483
1484 @item @emph{Example}:
1485 @smallexample
1486 program test_atan2
1487 real(4) :: x = 1.e0_4, y = 0.5e0_4
1488 x = atan2(y,x)
1489 end program test_atan2
1490 @end smallexample
1491
1492 @item @emph{Specific names}:
1493 @multitable @columnfractions .20 .20 .20 .25
1494 @item Name @tab Argument @tab Return type @tab Standard
1495 @item @code{ATAN2(X, Y)} @tab @code{REAL(4) X, Y} @tab @code{REAL(4)} @tab Fortran 77 and later
1496 @item @code{DATAN2(X, Y)} @tab @code{REAL(8) X, Y} @tab @code{REAL(8)} @tab Fortran 77 and later
1497 @end multitable
1498 @end table
1499
1500
1501
1502 @node ATANH
1503 @section @code{ATANH} --- Inverse hyperbolic tangent function
1504 @fnindex ATANH
1505 @fnindex DATANH
1506 @cindex area hyperbolic tangent
1507 @cindex inverse hyperbolic tangent
1508 @cindex hyperbolic function, tangent, inverse
1509 @cindex tangent, hyperbolic, inverse
1510
1511 @table @asis
1512 @item @emph{Description}:
1513 @code{ATANH(X)} computes the inverse hyperbolic tangent of @var{X}.
1514
1515 @item @emph{Standard}:
1516 Fortran 2008 and later
1517
1518 @item @emph{Class}:
1519 Elemental function
1520
1521 @item @emph{Syntax}:
1522 @code{RESULT = ATANH(X)}
1523
1524 @item @emph{Arguments}:
1525 @multitable @columnfractions .15 .70
1526 @item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
1527 @end multitable
1528
1529 @item @emph{Return value}:
1530 The return value has same type and kind as @var{X}. If @var{X} is
1531 complex, the imaginary part of the result is in radians and lies between
1532 @math{-\pi/2 \leq \Im \atanh(x) \leq \pi/2}.
1533
1534 @item @emph{Example}:
1535 @smallexample
1536 PROGRAM test_atanh
1537 REAL, DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
1538 WRITE (*,*) ATANH(x)
1539 END PROGRAM
1540 @end smallexample
1541
1542 @item @emph{Specific names}:
1543 @multitable @columnfractions .20 .20 .20 .25
1544 @item Name @tab Argument @tab Return type @tab Standard
1545 @item @code{DATANH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
1546 @end multitable
1547
1548 @item @emph{See also}:
1549 Inverse function: @ref{TANH}
1550 @end table
1551
1552
1553
1554 @node ATOMIC_DEFINE
1555 @section @code{ATOMIC_DEFINE} --- Setting a variable atomically
1556 @fnindex ATOMIC_DEFINE
1557 @cindex Atomic subroutine, define
1558
1559 @table @asis
1560 @item @emph{Description}:
1561 @code{ATOMIC_DEFINE(ATOM, VALUE)} defines the variable @var{ATOM} with the value
1562 @var{VALUE} atomically.
1563
1564 @item @emph{Standard}:
1565 Fortran 2008 and later
1566
1567 @item @emph{Class}:
1568 Atomic subroutine
1569
1570 @item @emph{Syntax}:
1571 @code{CALL ATOMIC_DEFINE(ATOM, VALUE)}
1572
1573 @item @emph{Arguments}:
1574 @multitable @columnfractions .15 .70
1575 @item @var{ATOM} @tab Scalar coarray or coindexed variable of either integer
1576 type with @code{ATOMIC_INT_KIND} kind or logical type
1577 with @code{ATOMIC_LOGICAL_KIND} kind.
1578 @item @var{VALURE} @tab Scalar and of the same type as @var{ATOM}. If the kind
1579 is different, the value is converted to the kind of
1580 @var{ATOM}.
1581 @end multitable
1582
1583 @item @emph{Example}:
1584 @smallexample
1585 program atomic
1586 use iso_fortran_env
1587 integer(atomic_int_kind) :: atom[*]
1588 call atomic_define (atom[1], this_image())
1589 end program atomic
1590 @end smallexample
1591
1592 @item @emph{See also}:
1593 @ref{ATOMIC_REF}, @ref{ISO_FORTRAN_ENV}
1594 @end table
1595
1596
1597
1598 @node ATOMIC_REF
1599 @section @code{ATOMIC_REF} --- Obtaining the value of a variable atomically
1600 @fnindex ATOMIC_REF
1601 @cindex Atomic subroutine, reference
1602
1603 @table @asis
1604 @item @emph{Description}:
1605 @code{ATOMIC_DEFINE(ATOM, VALUE)} atomically assigns the value of the
1606 variable @var{ATOM} to @var{VALUE}.
1607
1608 @item @emph{Standard}:
1609 Fortran 2008 and later
1610
1611 @item @emph{Class}:
1612 Atomic subroutine
1613
1614 @item @emph{Syntax}:
1615 @code{CALL ATOMIC_REF(VALUE, ATOM)}
1616
1617 @item @emph{Arguments}:
1618 @multitable @columnfractions .15 .70
1619 @item @var{VALURE} @tab Scalar and of the same type as @var{ATOM}. If the kind
1620 is different, the value is converted to the kind of
1621 @var{ATOM}.
1622 @item @var{ATOM} @tab Scalar coarray or coindexed variable of either integer
1623 type with @code{ATOMIC_INT_KIND} kind or logical type
1624 with @code{ATOMIC_LOGICAL_KIND} kind.
1625 @end multitable
1626
1627 @item @emph{Example}:
1628 @smallexample
1629 program atomic
1630 use iso_fortran_env
1631 logical(atomic_logical_kind) :: atom[*]
1632 logical :: val
1633 call atomic_ref (atom, .false.)
1634 ! ...
1635 call atomic_ref (atom, val)
1636 if (val) then
1637 print *, "Obtained"
1638 end if
1639 end program atomic
1640 @end smallexample
1641
1642 @item @emph{See also}:
1643 @ref{ATOMIC_DEFINE}, @ref{ISO_FORTRAN_ENV}
1644 @end table
1645
1646
1647
1648 @node BACKTRACE
1649 @section @code{BACKTRACE} --- Show a backtrace
1650 @fnindex BACKTRACE
1651 @cindex backtrace
1652
1653 @table @asis
1654 @item @emph{Description}:
1655 @code{BACKTRACE} shows a backtrace at an arbitrary place in user code. Program
1656 execution continues normally afterwards. The backtrace information is printed
1657 to the unit corresponding to @code{ERROR_UNIT} in @code{ISO_FORTRAN_ENV}.
1658
1659 @item @emph{Standard}:
1660 GNU Extension
1661
1662 @item @emph{Class}:
1663 Subroutine
1664
1665 @item @emph{Syntax}:
1666 @code{CALL BACKTRACE}
1667
1668 @item @emph{Arguments}:
1669 None
1670
1671 @item @emph{See also}:
1672 @ref{ABORT}
1673 @end table
1674
1675
1676
1677 @node BESSEL_J0
1678 @section @code{BESSEL_J0} --- Bessel function of the first kind of order 0
1679 @fnindex BESSEL_J0
1680 @fnindex BESJ0
1681 @fnindex DBESJ0
1682 @cindex Bessel function, first kind
1683
1684 @table @asis
1685 @item @emph{Description}:
1686 @code{BESSEL_J0(X)} computes the Bessel function of the first kind of
1687 order 0 of @var{X}. This function is available under the name
1688 @code{BESJ0} as a GNU extension.
1689
1690 @item @emph{Standard}:
1691 Fortran 2008 and later
1692
1693 @item @emph{Class}:
1694 Elemental function
1695
1696 @item @emph{Syntax}:
1697 @code{RESULT = BESSEL_J0(X)}
1698
1699 @item @emph{Arguments}:
1700 @multitable @columnfractions .15 .70
1701 @item @var{X} @tab The type shall be @code{REAL}, and it shall be scalar.
1702 @end multitable
1703
1704 @item @emph{Return value}:
1705 The return value is of type @code{REAL} and lies in the
1706 range @math{ - 0.4027... \leq Bessel (0,x) \leq 1}. It has the same
1707 kind as @var{X}.
1708
1709 @item @emph{Example}:
1710 @smallexample
1711 program test_besj0
1712 real(8) :: x = 0.0_8
1713 x = bessel_j0(x)
1714 end program test_besj0
1715 @end smallexample
1716
1717 @item @emph{Specific names}:
1718 @multitable @columnfractions .20 .20 .20 .25
1719 @item Name @tab Argument @tab Return type @tab Standard
1720 @item @code{DBESJ0(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
1721 @end multitable
1722 @end table
1723
1724
1725
1726 @node BESSEL_J1
1727 @section @code{BESSEL_J1} --- Bessel function of the first kind of order 1
1728 @fnindex BESSEL_J1
1729 @fnindex BESJ1
1730 @fnindex DBESJ1
1731 @cindex Bessel function, first kind
1732
1733 @table @asis
1734 @item @emph{Description}:
1735 @code{BESSEL_J1(X)} computes the Bessel function of the first kind of
1736 order 1 of @var{X}. This function is available under the name
1737 @code{BESJ1} as a GNU extension.
1738
1739 @item @emph{Standard}:
1740 Fortran 2008
1741
1742 @item @emph{Class}:
1743 Elemental function
1744
1745 @item @emph{Syntax}:
1746 @code{RESULT = BESSEL_J1(X)}
1747
1748 @item @emph{Arguments}:
1749 @multitable @columnfractions .15 .70
1750 @item @var{X} @tab The type shall be @code{REAL}, and it shall be scalar.
1751 @end multitable
1752
1753 @item @emph{Return value}:
1754 The return value is of type @code{REAL} and it lies in the
1755 range @math{ - 0.5818... \leq Bessel (0,x) \leq 0.5818 }. It has the same
1756 kind as @var{X}.
1757
1758 @item @emph{Example}:
1759 @smallexample
1760 program test_besj1
1761 real(8) :: x = 1.0_8
1762 x = bessel_j1(x)
1763 end program test_besj1
1764 @end smallexample
1765
1766 @item @emph{Specific names}:
1767 @multitable @columnfractions .20 .20 .20 .25
1768 @item Name @tab Argument @tab Return type @tab Standard
1769 @item @code{DBESJ1(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
1770 @end multitable
1771 @end table
1772
1773
1774
1775 @node BESSEL_JN
1776 @section @code{BESSEL_JN} --- Bessel function of the first kind
1777 @fnindex BESSEL_JN
1778 @fnindex BESJN
1779 @fnindex DBESJN
1780 @cindex Bessel function, first kind
1781
1782 @table @asis
1783 @item @emph{Description}:
1784 @code{BESSEL_JN(N, X)} computes the Bessel function of the first kind of
1785 order @var{N} of @var{X}. This function is available under the name
1786 @code{BESJN} as a GNU extension. If @var{N} and @var{X} are arrays,
1787 their ranks and shapes shall conform.
1788
1789 @code{BESSEL_JN(N1, N2, X)} returns an array with the Bessel functions
1790 of the first kind of the orders @var{N1} to @var{N2}.
1791
1792 @item @emph{Standard}:
1793 Fortran 2008 and later, negative @var{N} is allowed as GNU extension
1794
1795 @item @emph{Class}:
1796 Elemental function, except for the transformational function
1797 @code{BESSEL_JN(N1, N2, X)}
1798
1799 @item @emph{Syntax}:
1800 @multitable @columnfractions .80
1801 @item @code{RESULT = BESSEL_JN(N, X)}
1802 @item @code{RESULT = BESSEL_JN(N1, N2, X)}
1803 @end multitable
1804
1805 @item @emph{Arguments}:
1806 @multitable @columnfractions .15 .70
1807 @item @var{N} @tab Shall be a scalar or an array of type @code{INTEGER}.
1808 @item @var{N1} @tab Shall be a non-negative scalar of type @code{INTEGER}.
1809 @item @var{N2} @tab Shall be a non-negative scalar of type @code{INTEGER}.
1810 @item @var{X} @tab Shall be a scalar or an array of type @code{REAL};
1811 for @code{BESSEL_JN(N1, N2, X)} it shall be scalar.
1812 @end multitable
1813
1814 @item @emph{Return value}:
1815 The return value is a scalar of type @code{REAL}. It has the same
1816 kind as @var{X}.
1817
1818 @item @emph{Note}:
1819 The transformational function uses a recurrence algorithm which might,
1820 for some values of @var{X}, lead to different results than calls to
1821 the elemental function.
1822
1823 @item @emph{Example}:
1824 @smallexample
1825 program test_besjn
1826 real(8) :: x = 1.0_8
1827 x = bessel_jn(5,x)
1828 end program test_besjn
1829 @end smallexample
1830
1831 @item @emph{Specific names}:
1832 @multitable @columnfractions .20 .20 .20 .25
1833 @item Name @tab Argument @tab Return type @tab Standard
1834 @item @code{DBESJN(N, X)} @tab @code{INTEGER N} @tab @code{REAL(8)} @tab GNU extension
1835 @item @tab @code{REAL(8) X} @tab @tab
1836 @end multitable
1837 @end table
1838
1839
1840
1841 @node BESSEL_Y0
1842 @section @code{BESSEL_Y0} --- Bessel function of the second kind of order 0
1843 @fnindex BESSEL_Y0
1844 @fnindex BESY0
1845 @fnindex DBESY0
1846 @cindex Bessel function, second kind
1847
1848 @table @asis
1849 @item @emph{Description}:
1850 @code{BESSEL_Y0(X)} computes the Bessel function of the second kind of
1851 order 0 of @var{X}. This function is available under the name
1852 @code{BESY0} as a GNU extension.
1853
1854 @item @emph{Standard}:
1855 Fortran 2008 and later
1856
1857 @item @emph{Class}:
1858 Elemental function
1859
1860 @item @emph{Syntax}:
1861 @code{RESULT = BESSEL_Y0(X)}
1862
1863 @item @emph{Arguments}:
1864 @multitable @columnfractions .15 .70
1865 @item @var{X} @tab The type shall be @code{REAL}, and it shall be scalar.
1866 @end multitable
1867
1868 @item @emph{Return value}:
1869 The return value is a scalar of type @code{REAL}. It has the same
1870 kind as @var{X}.
1871
1872 @item @emph{Example}:
1873 @smallexample
1874 program test_besy0
1875 real(8) :: x = 0.0_8
1876 x = bessel_y0(x)
1877 end program test_besy0
1878 @end smallexample
1879
1880 @item @emph{Specific names}:
1881 @multitable @columnfractions .20 .20 .20 .25
1882 @item Name @tab Argument @tab Return type @tab Standard
1883 @item @code{DBESY0(X)}@tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
1884 @end multitable
1885 @end table
1886
1887
1888
1889 @node BESSEL_Y1
1890 @section @code{BESSEL_Y1} --- Bessel function of the second kind of order 1
1891 @fnindex BESSEL_Y1
1892 @fnindex BESY1
1893 @fnindex DBESY1
1894 @cindex Bessel function, second kind
1895
1896 @table @asis
1897 @item @emph{Description}:
1898 @code{BESSEL_Y1(X)} computes the Bessel function of the second kind of
1899 order 1 of @var{X}. This function is available under the name
1900 @code{BESY1} as a GNU extension.
1901
1902 @item @emph{Standard}:
1903 Fortran 2008 and later
1904
1905 @item @emph{Class}:
1906 Elemental function
1907
1908 @item @emph{Syntax}:
1909 @code{RESULT = BESSEL_Y1(X)}
1910
1911 @item @emph{Arguments}:
1912 @multitable @columnfractions .15 .70
1913 @item @var{X} @tab The type shall be @code{REAL}, and it shall be scalar.
1914 @end multitable
1915
1916 @item @emph{Return value}:
1917 The return value is a scalar of type @code{REAL}. It has the same
1918 kind as @var{X}.
1919
1920 @item @emph{Example}:
1921 @smallexample
1922 program test_besy1
1923 real(8) :: x = 1.0_8
1924 x = bessel_y1(x)
1925 end program test_besy1
1926 @end smallexample
1927
1928 @item @emph{Specific names}:
1929 @multitable @columnfractions .20 .20 .20 .25
1930 @item Name @tab Argument @tab Return type @tab Standard
1931 @item @code{DBESY1(X)}@tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
1932 @end multitable
1933 @end table
1934
1935
1936
1937 @node BESSEL_YN
1938 @section @code{BESSEL_YN} --- Bessel function of the second kind
1939 @fnindex BESSEL_YN
1940 @fnindex BESYN
1941 @fnindex DBESYN
1942 @cindex Bessel function, second kind
1943
1944 @table @asis
1945 @item @emph{Description}:
1946 @code{BESSEL_YN(N, X)} computes the Bessel function of the second kind of
1947 order @var{N} of @var{X}. This function is available under the name
1948 @code{BESYN} as a GNU extension. If @var{N} and @var{X} are arrays,
1949 their ranks and shapes shall conform.
1950
1951 @code{BESSEL_YN(N1, N2, X)} returns an array with the Bessel functions
1952 of the first kind of the orders @var{N1} to @var{N2}.
1953
1954 @item @emph{Standard}:
1955 Fortran 2008 and later, negative @var{N} is allowed as GNU extension
1956
1957 @item @emph{Class}:
1958 Elemental function, except for the transformational function
1959 @code{BESSEL_YN(N1, N2, X)}
1960
1961 @item @emph{Syntax}:
1962 @multitable @columnfractions .80
1963 @item @code{RESULT = BESSEL_YN(N, X)}
1964 @item @code{RESULT = BESSEL_YN(N1, N2, X)}
1965 @end multitable
1966
1967 @item @emph{Arguments}:
1968 @multitable @columnfractions .15 .70
1969 @item @var{N} @tab Shall be a scalar or an array of type @code{INTEGER} .
1970 @item @var{N1} @tab Shall be a non-negative scalar of type @code{INTEGER}.
1971 @item @var{N2} @tab Shall be a non-negative scalar of type @code{INTEGER}.
1972 @item @var{X} @tab Shall be a scalar or an array of type @code{REAL};
1973 for @code{BESSEL_YN(N1, N2, X)} it shall be scalar.
1974 @end multitable
1975
1976 @item @emph{Return value}:
1977 The return value is a scalar of type @code{REAL}. It has the same
1978 kind as @var{X}.
1979
1980 @item @emph{Note}:
1981 The transformational function uses a recurrence algorithm which might,
1982 for some values of @var{X}, lead to different results than calls to
1983 the elemental function.
1984
1985 @item @emph{Example}:
1986 @smallexample
1987 program test_besyn
1988 real(8) :: x = 1.0_8
1989 x = bessel_yn(5,x)
1990 end program test_besyn
1991 @end smallexample
1992
1993 @item @emph{Specific names}:
1994 @multitable @columnfractions .20 .20 .20 .25
1995 @item Name @tab Argument @tab Return type @tab Standard
1996 @item @code{DBESYN(N,X)} @tab @code{INTEGER N} @tab @code{REAL(8)} @tab GNU extension
1997 @item @tab @code{REAL(8) X} @tab @tab
1998 @end multitable
1999 @end table
2000
2001
2002
2003 @node BGE
2004 @section @code{BGE} --- Bitwise greater than or equal to
2005 @fnindex BGE
2006 @cindex bitwise comparison
2007
2008 @table @asis
2009 @item @emph{Description}:
2010 Determines whether an integral is a bitwise greater than or equal to
2011 another.
2012
2013 @item @emph{Standard}:
2014 Fortran 2008 and later
2015
2016 @item @emph{Class}:
2017 Elemental function
2018
2019 @item @emph{Syntax}:
2020 @code{RESULT = BGE(I, J)}
2021
2022 @item @emph{Arguments}:
2023 @multitable @columnfractions .15 .70
2024 @item @var{I} @tab Shall be of @code{INTEGER} type.
2025 @item @var{J} @tab Shall be of @code{INTEGER} type, and of the same kind
2026 as @var{I}.
2027 @end multitable
2028
2029 @item @emph{Return value}:
2030 The return value is of type @code{LOGICAL} and of the default kind.
2031
2032 @item @emph{See also}:
2033 @ref{BGT}, @ref{BLE}, @ref{BLT}
2034 @end table
2035
2036
2037
2038 @node BGT
2039 @section @code{BGT} --- Bitwise greater than
2040 @fnindex BGT
2041 @cindex bitwise comparison
2042
2043 @table @asis
2044 @item @emph{Description}:
2045 Determines whether an integral is a bitwise greater than another.
2046
2047 @item @emph{Standard}:
2048 Fortran 2008 and later
2049
2050 @item @emph{Class}:
2051 Elemental function
2052
2053 @item @emph{Syntax}:
2054 @code{RESULT = BGT(I, J)}
2055
2056 @item @emph{Arguments}:
2057 @multitable @columnfractions .15 .70
2058 @item @var{I} @tab Shall be of @code{INTEGER} type.
2059 @item @var{J} @tab Shall be of @code{INTEGER} type, and of the same kind
2060 as @var{I}.
2061 @end multitable
2062
2063 @item @emph{Return value}:
2064 The return value is of type @code{LOGICAL} and of the default kind.
2065
2066 @item @emph{See also}:
2067 @ref{BGE}, @ref{BLE}, @ref{BLT}
2068 @end table
2069
2070
2071
2072 @node BIT_SIZE
2073 @section @code{BIT_SIZE} --- Bit size inquiry function
2074 @fnindex BIT_SIZE
2075 @cindex bits, number of
2076 @cindex size of a variable, in bits
2077
2078 @table @asis
2079 @item @emph{Description}:
2080 @code{BIT_SIZE(I)} returns the number of bits (integer precision plus sign bit)
2081 represented by the type of @var{I}. The result of @code{BIT_SIZE(I)} is
2082 independent of the actual value of @var{I}.
2083
2084 @item @emph{Standard}:
2085 Fortran 95 and later
2086
2087 @item @emph{Class}:
2088 Inquiry function
2089
2090 @item @emph{Syntax}:
2091 @code{RESULT = BIT_SIZE(I)}
2092
2093 @item @emph{Arguments}:
2094 @multitable @columnfractions .15 .70
2095 @item @var{I} @tab The type shall be @code{INTEGER}.
2096 @end multitable
2097
2098 @item @emph{Return value}:
2099 The return value is of type @code{INTEGER}
2100
2101 @item @emph{Example}:
2102 @smallexample
2103 program test_bit_size
2104 integer :: i = 123
2105 integer :: size
2106 size = bit_size(i)
2107 print *, size
2108 end program test_bit_size
2109 @end smallexample
2110 @end table
2111
2112
2113
2114 @node BLE
2115 @section @code{BLE} --- Bitwise less than or equal to
2116 @fnindex BLE
2117 @cindex bitwise comparison
2118
2119 @table @asis
2120 @item @emph{Description}:
2121 Determines whether an integral is a bitwise less than or equal to
2122 another.
2123
2124 @item @emph{Standard}:
2125 Fortran 2008 and later
2126
2127 @item @emph{Class}:
2128 Elemental function
2129
2130 @item @emph{Syntax}:
2131 @code{RESULT = BLE(I, J)}
2132
2133 @item @emph{Arguments}:
2134 @multitable @columnfractions .15 .70
2135 @item @var{I} @tab Shall be of @code{INTEGER} type.
2136 @item @var{J} @tab Shall be of @code{INTEGER} type, and of the same kind
2137 as @var{I}.
2138 @end multitable
2139
2140 @item @emph{Return value}:
2141 The return value is of type @code{LOGICAL} and of the default kind.
2142
2143 @item @emph{See also}:
2144 @ref{BGT}, @ref{BGE}, @ref{BLT}
2145 @end table
2146
2147
2148
2149 @node BLT
2150 @section @code{BLT} --- Bitwise less than
2151 @fnindex BLT
2152 @cindex bitwise comparison
2153
2154 @table @asis
2155 @item @emph{Description}:
2156 Determines whether an integral is a bitwise less than another.
2157
2158 @item @emph{Standard}:
2159 Fortran 2008 and later
2160
2161 @item @emph{Class}:
2162 Elemental function
2163
2164 @item @emph{Syntax}:
2165 @code{RESULT = BLT(I, J)}
2166
2167 @item @emph{Arguments}:
2168 @multitable @columnfractions .15 .70
2169 @item @var{I} @tab Shall be of @code{INTEGER} type.
2170 @item @var{J} @tab Shall be of @code{INTEGER} type, and of the same kind
2171 as @var{I}.
2172 @end multitable
2173
2174 @item @emph{Return value}:
2175 The return value is of type @code{LOGICAL} and of the default kind.
2176
2177 @item @emph{See also}:
2178 @ref{BGE}, @ref{BGT}, @ref{BLE}
2179 @end table
2180
2181
2182
2183 @node BTEST
2184 @section @code{BTEST} --- Bit test function
2185 @fnindex BTEST
2186 @cindex bits, testing
2187
2188 @table @asis
2189 @item @emph{Description}:
2190 @code{BTEST(I,POS)} returns logical @code{.TRUE.} if the bit at @var{POS}
2191 in @var{I} is set. The counting of the bits starts at 0.
2192
2193 @item @emph{Standard}:
2194 Fortran 95 and later
2195
2196 @item @emph{Class}:
2197 Elemental function
2198
2199 @item @emph{Syntax}:
2200 @code{RESULT = BTEST(I, POS)}
2201
2202 @item @emph{Arguments}:
2203 @multitable @columnfractions .15 .70
2204 @item @var{I} @tab The type shall be @code{INTEGER}.
2205 @item @var{POS} @tab The type shall be @code{INTEGER}.
2206 @end multitable
2207
2208 @item @emph{Return value}:
2209 The return value is of type @code{LOGICAL}
2210
2211 @item @emph{Example}:
2212 @smallexample
2213 program test_btest
2214 integer :: i = 32768 + 1024 + 64
2215 integer :: pos
2216 logical :: bool
2217 do pos=0,16
2218 bool = btest(i, pos)
2219 print *, pos, bool
2220 end do
2221 end program test_btest
2222 @end smallexample
2223 @end table
2224
2225
2226 @node C_ASSOCIATED
2227 @section @code{C_ASSOCIATED} --- Status of a C pointer
2228 @fnindex C_ASSOCIATED
2229 @cindex association status, C pointer
2230 @cindex pointer, C association status
2231
2232 @table @asis
2233 @item @emph{Description}:
2234 @code{C_ASSOCIATED(c_prt_1[, c_ptr_2])} determines the status of the C pointer
2235 @var{c_ptr_1} or if @var{c_ptr_1} is associated with the target @var{c_ptr_2}.
2236
2237 @item @emph{Standard}:
2238 Fortran 2003 and later
2239
2240 @item @emph{Class}:
2241 Inquiry function
2242
2243 @item @emph{Syntax}:
2244 @code{RESULT = C_ASSOCIATED(c_prt_1[, c_ptr_2])}
2245
2246 @item @emph{Arguments}:
2247 @multitable @columnfractions .15 .70
2248 @item @var{c_ptr_1} @tab Scalar of the type @code{C_PTR} or @code{C_FUNPTR}.
2249 @item @var{c_ptr_2} @tab (Optional) Scalar of the same type as @var{c_ptr_1}.
2250 @end multitable
2251
2252 @item @emph{Return value}:
2253 The return value is of type @code{LOGICAL}; it is @code{.false.} if either
2254 @var{c_ptr_1} is a C NULL pointer or if @var{c_ptr1} and @var{c_ptr_2}
2255 point to different addresses.
2256
2257 @item @emph{Example}:
2258 @smallexample
2259 subroutine association_test(a,b)
2260 use iso_c_binding, only: c_associated, c_loc, c_ptr
2261 implicit none
2262 real, pointer :: a
2263 type(c_ptr) :: b
2264 if(c_associated(b, c_loc(a))) &
2265 stop 'b and a do not point to same target'
2266 end subroutine association_test
2267 @end smallexample
2268
2269 @item @emph{See also}:
2270 @ref{C_LOC}, @ref{C_FUNLOC}
2271 @end table
2272
2273
2274 @node C_F_POINTER
2275 @section @code{C_F_POINTER} --- Convert C into Fortran pointer
2276 @fnindex C_F_POINTER
2277 @cindex pointer, convert C to Fortran
2278
2279 @table @asis
2280 @item @emph{Description}:
2281 @code{C_F_POINTER(CPTR, FPTR[, SHAPE])} assigns the target of the C pointer
2282 @var{CPTR} to the Fortran pointer @var{FPTR} and specifies its shape.
2283
2284 @item @emph{Standard}:
2285 Fortran 2003 and later
2286
2287 @item @emph{Class}:
2288 Subroutine
2289
2290 @item @emph{Syntax}:
2291 @code{CALL C_F_POINTER(CPTR, FPTR[, SHAPE])}
2292
2293 @item @emph{Arguments}:
2294 @multitable @columnfractions .15 .70
2295 @item @var{CPTR} @tab scalar of the type @code{C_PTR}. It is
2296 @code{INTENT(IN)}.
2297 @item @var{FPTR} @tab pointer interoperable with @var{cptr}. It is
2298 @code{INTENT(OUT)}.
2299 @item @var{SHAPE} @tab (Optional) Rank-one array of type @code{INTEGER}
2300 with @code{INTENT(IN)}. It shall be present
2301 if and only if @var{fptr} is an array. The size
2302 must be equal to the rank of @var{fptr}.
2303 @end multitable
2304
2305 @item @emph{Example}:
2306 @smallexample
2307 program main
2308 use iso_c_binding
2309 implicit none
2310 interface
2311 subroutine my_routine(p) bind(c,name='myC_func')
2312 import :: c_ptr
2313 type(c_ptr), intent(out) :: p
2314 end subroutine
2315 end interface
2316 type(c_ptr) :: cptr
2317 real,pointer :: a(:)
2318 call my_routine(cptr)
2319 call c_f_pointer(cptr, a, [12])
2320 end program main
2321 @end smallexample
2322
2323 @item @emph{See also}:
2324 @ref{C_LOC}, @ref{C_F_PROCPOINTER}
2325 @end table
2326
2327
2328 @node C_F_PROCPOINTER
2329 @section @code{C_F_PROCPOINTER} --- Convert C into Fortran procedure pointer
2330 @fnindex C_F_PROCPOINTER
2331 @cindex pointer, C address of pointers
2332
2333 @table @asis
2334 @item @emph{Description}:
2335 @code{C_F_PROCPOINTER(CPTR, FPTR)} Assign the target of the C function pointer
2336 @var{CPTR} to the Fortran procedure pointer @var{FPTR}.
2337
2338 @item @emph{Standard}:
2339 Fortran 2003 and later
2340
2341 @item @emph{Class}:
2342 Subroutine
2343
2344 @item @emph{Syntax}:
2345 @code{CALL C_F_PROCPOINTER(cptr, fptr)}
2346
2347 @item @emph{Arguments}:
2348 @multitable @columnfractions .15 .70
2349 @item @var{CPTR} @tab scalar of the type @code{C_FUNPTR}. It is
2350 @code{INTENT(IN)}.
2351 @item @var{FPTR} @tab procedure pointer interoperable with @var{cptr}. It is
2352 @code{INTENT(OUT)}.
2353 @end multitable
2354
2355 @item @emph{Example}:
2356 @smallexample
2357 program main
2358 use iso_c_binding
2359 implicit none
2360 abstract interface
2361 function func(a)
2362 import :: c_float
2363 real(c_float), intent(in) :: a
2364 real(c_float) :: func
2365 end function
2366 end interface
2367 interface
2368 function getIterFunc() bind(c,name="getIterFunc")
2369 import :: c_funptr
2370 type(c_funptr) :: getIterFunc
2371 end function
2372 end interface
2373 type(c_funptr) :: cfunptr
2374 procedure(func), pointer :: myFunc
2375 cfunptr = getIterFunc()
2376 call c_f_procpointer(cfunptr, myFunc)
2377 end program main
2378 @end smallexample
2379
2380 @item @emph{See also}:
2381 @ref{C_LOC}, @ref{C_F_POINTER}
2382 @end table
2383
2384
2385 @node C_FUNLOC
2386 @section @code{C_FUNLOC} --- Obtain the C address of a procedure
2387 @fnindex C_FUNLOC
2388 @cindex pointer, C address of procedures
2389
2390 @table @asis
2391 @item @emph{Description}:
2392 @code{C_FUNLOC(x)} determines the C address of the argument.
2393
2394 @item @emph{Standard}:
2395 Fortran 2003 and later
2396
2397 @item @emph{Class}:
2398 Inquiry function
2399
2400 @item @emph{Syntax}:
2401 @code{RESULT = C_FUNLOC(x)}
2402
2403 @item @emph{Arguments}:
2404 @multitable @columnfractions .15 .70
2405 @item @var{x} @tab Interoperable function or pointer to such function.
2406 @end multitable
2407
2408 @item @emph{Return value}:
2409 The return value is of type @code{C_FUNPTR} and contains the C address
2410 of the argument.
2411
2412 @item @emph{Example}:
2413 @smallexample
2414 module x
2415 use iso_c_binding
2416 implicit none
2417 contains
2418 subroutine sub(a) bind(c)
2419 real(c_float) :: a
2420 a = sqrt(a)+5.0
2421 end subroutine sub
2422 end module x
2423 program main
2424 use iso_c_binding
2425 use x
2426 implicit none
2427 interface
2428 subroutine my_routine(p) bind(c,name='myC_func')
2429 import :: c_funptr
2430 type(c_funptr), intent(in) :: p
2431 end subroutine
2432 end interface
2433 call my_routine(c_funloc(sub))
2434 end program main
2435 @end smallexample
2436
2437 @item @emph{See also}:
2438 @ref{C_ASSOCIATED}, @ref{C_LOC}, @ref{C_F_POINTER}, @ref{C_F_PROCPOINTER}
2439 @end table
2440
2441
2442 @node C_LOC
2443 @section @code{C_LOC} --- Obtain the C address of an object
2444 @fnindex C_LOC
2445 @cindex procedure pointer, convert C to Fortran
2446
2447 @table @asis
2448 @item @emph{Description}:
2449 @code{C_LOC(X)} determines the C address of the argument.
2450
2451 @item @emph{Standard}:
2452 Fortran 2003 and later
2453
2454 @item @emph{Class}:
2455 Inquiry function
2456
2457 @item @emph{Syntax}:
2458 @code{RESULT = C_LOC(X)}
2459
2460 @item @emph{Arguments}:
2461 @multitable @columnfractions .10 .75
2462 @item @var{X} @tab Shall have either the POINTER or TARGET attribute. It shall not be a coindexed object. It shall either be a variable with interoperable type and kind type parameters, or be a scalar, nonpolymorphic variable with no length type parameters.
2463
2464 @end multitable
2465
2466 @item @emph{Return value}:
2467 The return value is of type @code{C_PTR} and contains the C address
2468 of the argument.
2469
2470 @item @emph{Example}:
2471 @smallexample
2472 subroutine association_test(a,b)
2473 use iso_c_binding, only: c_associated, c_loc, c_ptr
2474 implicit none
2475 real, pointer :: a
2476 type(c_ptr) :: b
2477 if(c_associated(b, c_loc(a))) &
2478 stop 'b and a do not point to same target'
2479 end subroutine association_test
2480 @end smallexample
2481
2482 @item @emph{See also}:
2483 @ref{C_ASSOCIATED}, @ref{C_FUNLOC}, @ref{C_F_POINTER}, @ref{C_F_PROCPOINTER}
2484 @end table
2485
2486
2487 @node C_SIZEOF
2488 @section @code{C_SIZEOF} --- Size in bytes of an expression
2489 @fnindex C_SIZEOF
2490 @cindex expression size
2491 @cindex size of an expression
2492
2493 @table @asis
2494 @item @emph{Description}:
2495 @code{C_SIZEOF(X)} calculates the number of bytes of storage the
2496 expression @code{X} occupies.
2497
2498 @item @emph{Standard}:
2499 Fortran 2008
2500
2501 @item @emph{Class}:
2502 Inquiry function of the module @code{ISO_C_BINDING}
2503
2504 @item @emph{Syntax}:
2505 @code{N = C_SIZEOF(X)}
2506
2507 @item @emph{Arguments}:
2508 @multitable @columnfractions .15 .70
2509 @item @var{X} @tab The argument shall be an interoperable data entity.
2510 @end multitable
2511
2512 @item @emph{Return value}:
2513 The return value is of type integer and of the system-dependent kind
2514 @code{C_SIZE_T} (from the @code{ISO_C_BINDING} module). Its value is the
2515 number of bytes occupied by the argument. If the argument has the
2516 @code{POINTER} attribute, the number of bytes of the storage area pointed
2517 to is returned. If the argument is of a derived type with @code{POINTER}
2518 or @code{ALLOCATABLE} components, the return value does not account for
2519 the sizes of the data pointed to by these components.
2520
2521 @item @emph{Example}:
2522 @smallexample
2523 use iso_c_binding
2524 integer(c_int) :: i
2525 real(c_float) :: r, s(5)
2526 print *, (c_sizeof(s)/c_sizeof(r) == 5)
2527 end
2528 @end smallexample
2529 The example will print @code{.TRUE.} unless you are using a platform
2530 where default @code{REAL} variables are unusually padded.
2531
2532 @item @emph{See also}:
2533 @ref{SIZEOF}, @ref{STORAGE_SIZE}
2534 @end table
2535
2536
2537 @node CEILING
2538 @section @code{CEILING} --- Integer ceiling function
2539 @fnindex CEILING
2540 @cindex ceiling
2541 @cindex rounding, ceiling
2542
2543 @table @asis
2544 @item @emph{Description}:
2545 @code{CEILING(A)} returns the least integer greater than or equal to @var{A}.
2546
2547 @item @emph{Standard}:
2548 Fortran 95 and later
2549
2550 @item @emph{Class}:
2551 Elemental function
2552
2553 @item @emph{Syntax}:
2554 @code{RESULT = CEILING(A [, KIND])}
2555
2556 @item @emph{Arguments}:
2557 @multitable @columnfractions .15 .70
2558 @item @var{A} @tab The type shall be @code{REAL}.
2559 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
2560 expression indicating the kind parameter of the result.
2561 @end multitable
2562
2563 @item @emph{Return value}:
2564 The return value is of type @code{INTEGER(KIND)} if @var{KIND} is present
2565 and a default-kind @code{INTEGER} otherwise.
2566
2567 @item @emph{Example}:
2568 @smallexample
2569 program test_ceiling
2570 real :: x = 63.29
2571 real :: y = -63.59
2572 print *, ceiling(x) ! returns 64
2573 print *, ceiling(y) ! returns -63
2574 end program test_ceiling
2575 @end smallexample
2576
2577 @item @emph{See also}:
2578 @ref{FLOOR}, @ref{NINT}
2579
2580 @end table
2581
2582
2583
2584 @node CHAR
2585 @section @code{CHAR} --- Character conversion function
2586 @fnindex CHAR
2587 @cindex conversion, to character
2588
2589 @table @asis
2590 @item @emph{Description}:
2591 @code{CHAR(I [, KIND])} returns the character represented by the integer @var{I}.
2592
2593 @item @emph{Standard}:
2594 Fortran 77 and later
2595
2596 @item @emph{Class}:
2597 Elemental function
2598
2599 @item @emph{Syntax}:
2600 @code{RESULT = CHAR(I [, KIND])}
2601
2602 @item @emph{Arguments}:
2603 @multitable @columnfractions .15 .70
2604 @item @var{I} @tab The type shall be @code{INTEGER}.
2605 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
2606 expression indicating the kind parameter of the result.
2607 @end multitable
2608
2609 @item @emph{Return value}:
2610 The return value is of type @code{CHARACTER(1)}
2611
2612 @item @emph{Example}:
2613 @smallexample
2614 program test_char
2615 integer :: i = 74
2616 character(1) :: c
2617 c = char(i)
2618 print *, i, c ! returns 'J'
2619 end program test_char
2620 @end smallexample
2621
2622 @item @emph{Specific names}:
2623 @multitable @columnfractions .20 .20 .20 .25
2624 @item Name @tab Argument @tab Return type @tab Standard
2625 @item @code{CHAR(I)} @tab @code{INTEGER I} @tab @code{CHARACTER(LEN=1)} @tab F77 and later
2626 @end multitable
2627
2628 @item @emph{Note}:
2629 See @ref{ICHAR} for a discussion of converting between numerical values
2630 and formatted string representations.
2631
2632 @item @emph{See also}:
2633 @ref{ACHAR}, @ref{IACHAR}, @ref{ICHAR}
2634
2635 @end table
2636
2637
2638
2639 @node CHDIR
2640 @section @code{CHDIR} --- Change working directory
2641 @fnindex CHDIR
2642 @cindex system, working directory
2643
2644 @table @asis
2645 @item @emph{Description}:
2646 Change current working directory to a specified path.
2647
2648 This intrinsic is provided in both subroutine and function forms; however,
2649 only one form can be used in any given program unit.
2650
2651 @item @emph{Standard}:
2652 GNU extension
2653
2654 @item @emph{Class}:
2655 Subroutine, function
2656
2657 @item @emph{Syntax}:
2658 @multitable @columnfractions .80
2659 @item @code{CALL CHDIR(NAME [, STATUS])}
2660 @item @code{STATUS = CHDIR(NAME)}
2661 @end multitable
2662
2663 @item @emph{Arguments}:
2664 @multitable @columnfractions .15 .70
2665 @item @var{NAME} @tab The type shall be @code{CHARACTER} of default
2666 kind and shall specify a valid path within the file system.
2667 @item @var{STATUS} @tab (Optional) @code{INTEGER} status flag of the default
2668 kind. Returns 0 on success, and a system specific and nonzero error code
2669 otherwise.
2670 @end multitable
2671
2672 @item @emph{Example}:
2673 @smallexample
2674 PROGRAM test_chdir
2675 CHARACTER(len=255) :: path
2676 CALL getcwd(path)
2677 WRITE(*,*) TRIM(path)
2678 CALL chdir("/tmp")
2679 CALL getcwd(path)
2680 WRITE(*,*) TRIM(path)
2681 END PROGRAM
2682 @end smallexample
2683
2684 @item @emph{See also}:
2685 @ref{GETCWD}
2686 @end table
2687
2688
2689
2690 @node CHMOD
2691 @section @code{CHMOD} --- Change access permissions of files
2692 @fnindex CHMOD
2693 @cindex file system, change access mode
2694
2695 @table @asis
2696 @item @emph{Description}:
2697 @code{CHMOD} changes the permissions of a file.
2698
2699 This intrinsic is provided in both subroutine and function forms; however,
2700 only one form can be used in any given program unit.
2701
2702 @item @emph{Standard}:
2703 GNU extension
2704
2705 @item @emph{Class}:
2706 Subroutine, function
2707
2708 @item @emph{Syntax}:
2709 @multitable @columnfractions .80
2710 @item @code{CALL CHMOD(NAME, MODE[, STATUS])}
2711 @item @code{STATUS = CHMOD(NAME, MODE)}
2712 @end multitable
2713
2714 @item @emph{Arguments}:
2715 @multitable @columnfractions .15 .70
2716
2717 @item @var{NAME} @tab Scalar @code{CHARACTER} of default kind with the
2718 file name. Trailing blanks are ignored unless the character
2719 @code{achar(0)} is present, then all characters up to and excluding
2720 @code{achar(0)} are used as the file name.
2721
2722 @item @var{MODE} @tab Scalar @code{CHARACTER} of default kind giving the
2723 file permission. @var{MODE} uses the same syntax as the @code{chmod} utility
2724 as defined by the POSIX standard. The argument shall either be a string of
2725 a nonnegative octal number or a symbolic mode.
2726
2727 @item @var{STATUS} @tab (optional) scalar @code{INTEGER}, which is
2728 @code{0} on success and nonzero otherwise.
2729 @end multitable
2730
2731 @item @emph{Return value}:
2732 In either syntax, @var{STATUS} is set to @code{0} on success and nonzero
2733 otherwise.
2734
2735 @item @emph{Example}:
2736 @code{CHMOD} as subroutine
2737 @smallexample
2738 program chmod_test
2739 implicit none
2740 integer :: status
2741 call chmod('test.dat','u+x',status)
2742 print *, 'Status: ', status
2743 end program chmod_test
2744 @end smallexample
2745 @code{CHMOD} as function:
2746 @smallexample
2747 program chmod_test
2748 implicit none
2749 integer :: status
2750 status = chmod('test.dat','u+x')
2751 print *, 'Status: ', status
2752 end program chmod_test
2753 @end smallexample
2754
2755 @end table
2756
2757
2758
2759 @node CMPLX
2760 @section @code{CMPLX} --- Complex conversion function
2761 @fnindex CMPLX
2762 @cindex complex numbers, conversion to
2763 @cindex conversion, to complex
2764
2765 @table @asis
2766 @item @emph{Description}:
2767 @code{CMPLX(X [, Y [, KIND]])} returns a complex number where @var{X} is converted to
2768 the real component. If @var{Y} is present it is converted to the imaginary
2769 component. If @var{Y} is not present then the imaginary component is set to
2770 0.0. If @var{X} is complex then @var{Y} must not be present.
2771
2772 @item @emph{Standard}:
2773 Fortran 77 and later
2774
2775 @item @emph{Class}:
2776 Elemental function
2777
2778 @item @emph{Syntax}:
2779 @code{RESULT = CMPLX(X [, Y [, KIND]])}
2780
2781 @item @emph{Arguments}:
2782 @multitable @columnfractions .15 .70
2783 @item @var{X} @tab The type may be @code{INTEGER}, @code{REAL},
2784 or @code{COMPLEX}.
2785 @item @var{Y} @tab (Optional; only allowed if @var{X} is not
2786 @code{COMPLEX}.) May be @code{INTEGER} or @code{REAL}.
2787 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
2788 expression indicating the kind parameter of the result.
2789 @end multitable
2790
2791 @item @emph{Return value}:
2792 The return value is of @code{COMPLEX} type, with a kind equal to
2793 @var{KIND} if it is specified. If @var{KIND} is not specified, the
2794 result is of the default @code{COMPLEX} kind, regardless of the kinds of
2795 @var{X} and @var{Y}.
2796
2797 @item @emph{Example}:
2798 @smallexample
2799 program test_cmplx
2800 integer :: i = 42
2801 real :: x = 3.14
2802 complex :: z
2803 z = cmplx(i, x)
2804 print *, z, cmplx(x)
2805 end program test_cmplx
2806 @end smallexample
2807
2808 @item @emph{See also}:
2809 @ref{COMPLEX}
2810 @end table
2811
2812
2813
2814 @node COMMAND_ARGUMENT_COUNT
2815 @section @code{COMMAND_ARGUMENT_COUNT} --- Get number of command line arguments
2816 @fnindex COMMAND_ARGUMENT_COUNT
2817 @cindex command-line arguments
2818 @cindex command-line arguments, number of
2819 @cindex arguments, to program
2820
2821 @table @asis
2822 @item @emph{Description}:
2823 @code{COMMAND_ARGUMENT_COUNT} returns the number of arguments passed on the
2824 command line when the containing program was invoked.
2825
2826 @item @emph{Standard}:
2827 Fortran 2003 and later
2828
2829 @item @emph{Class}:
2830 Inquiry function
2831
2832 @item @emph{Syntax}:
2833 @code{RESULT = COMMAND_ARGUMENT_COUNT()}
2834
2835 @item @emph{Arguments}:
2836 @multitable @columnfractions .15 .70
2837 @item None
2838 @end multitable
2839
2840 @item @emph{Return value}:
2841 The return value is an @code{INTEGER} of default kind.
2842
2843 @item @emph{Example}:
2844 @smallexample
2845 program test_command_argument_count
2846 integer :: count
2847 count = command_argument_count()
2848 print *, count
2849 end program test_command_argument_count
2850 @end smallexample
2851
2852 @item @emph{See also}:
2853 @ref{GET_COMMAND}, @ref{GET_COMMAND_ARGUMENT}
2854 @end table
2855
2856
2857
2858 @node COMPILER_OPTIONS
2859 @section @code{COMPILER_OPTIONS} --- Options passed to the compiler
2860 @fnindex COMPILER_OPTIONS
2861 @cindex flags inquiry function
2862 @cindex options inquiry function
2863 @cindex compiler flags inquiry function
2864
2865 @table @asis
2866 @item @emph{Description}:
2867 @code{COMPILER_OPTIONS} returns a string with the options used for
2868 compiling.
2869
2870 @item @emph{Standard}:
2871 Fortran 2008
2872
2873 @item @emph{Class}:
2874 Inquiry function of the module @code{ISO_FORTRAN_ENV}
2875
2876 @item @emph{Syntax}:
2877 @code{STR = COMPILER_OPTIONS()}
2878
2879 @item @emph{Arguments}:
2880 None.
2881
2882 @item @emph{Return value}:
2883 The return value is a default-kind string with system-dependent length.
2884 It contains the compiler flags used to compile the file, which called
2885 the @code{COMPILER_OPTIONS} intrinsic.
2886
2887 @item @emph{Example}:
2888 @smallexample
2889 use iso_fortran_env
2890 print '(4a)', 'This file was compiled by ', &
2891 compiler_version(), ' using the options ', &
2892 compiler_options()
2893 end
2894 @end smallexample
2895
2896 @item @emph{See also}:
2897 @ref{COMPILER_VERSION}, @ref{ISO_FORTRAN_ENV}
2898 @end table
2899
2900
2901
2902 @node COMPILER_VERSION
2903 @section @code{COMPILER_VERSION} --- Compiler version string
2904 @fnindex COMPILER_VERSION
2905 @cindex compiler, name and version
2906 @cindex version of the compiler
2907
2908 @table @asis
2909 @item @emph{Description}:
2910 @code{COMPILER_VERSION} returns a string with the name and the
2911 version of the compiler.
2912
2913 @item @emph{Standard}:
2914 Fortran 2008
2915
2916 @item @emph{Class}:
2917 Inquiry function of the module @code{ISO_FORTRAN_ENV}
2918
2919 @item @emph{Syntax}:
2920 @code{STR = COMPILER_VERSION()}
2921
2922 @item @emph{Arguments}:
2923 None.
2924
2925 @item @emph{Return value}:
2926 The return value is a default-kind string with system-dependent length.
2927 It contains the name of the compiler and its version number.
2928
2929 @item @emph{Example}:
2930 @smallexample
2931 use iso_fortran_env
2932 print '(4a)', 'This file was compiled by ', &
2933 compiler_version(), ' using the options ', &
2934 compiler_options()
2935 end
2936 @end smallexample
2937
2938 @item @emph{See also}:
2939 @ref{COMPILER_OPTIONS}, @ref{ISO_FORTRAN_ENV}
2940 @end table
2941
2942
2943
2944 @node COMPLEX
2945 @section @code{COMPLEX} --- Complex conversion function
2946 @fnindex COMPLEX
2947 @cindex complex numbers, conversion to
2948 @cindex conversion, to complex
2949
2950 @table @asis
2951 @item @emph{Description}:
2952 @code{COMPLEX(X, Y)} returns a complex number where @var{X} is converted
2953 to the real component and @var{Y} is converted to the imaginary
2954 component.
2955
2956 @item @emph{Standard}:
2957 GNU extension
2958
2959 @item @emph{Class}:
2960 Elemental function
2961
2962 @item @emph{Syntax}:
2963 @code{RESULT = COMPLEX(X, Y)}
2964
2965 @item @emph{Arguments}:
2966 @multitable @columnfractions .15 .70
2967 @item @var{X} @tab The type may be @code{INTEGER} or @code{REAL}.
2968 @item @var{Y} @tab The type may be @code{INTEGER} or @code{REAL}.
2969 @end multitable
2970
2971 @item @emph{Return value}:
2972 If @var{X} and @var{Y} are both of @code{INTEGER} type, then the return
2973 value is of default @code{COMPLEX} type.
2974
2975 If @var{X} and @var{Y} are of @code{REAL} type, or one is of @code{REAL}
2976 type and one is of @code{INTEGER} type, then the return value is of
2977 @code{COMPLEX} type with a kind equal to that of the @code{REAL}
2978 argument with the highest precision.
2979
2980 @item @emph{Example}:
2981 @smallexample
2982 program test_complex
2983 integer :: i = 42
2984 real :: x = 3.14
2985 print *, complex(i, x)
2986 end program test_complex
2987 @end smallexample
2988
2989 @item @emph{See also}:
2990 @ref{CMPLX}
2991 @end table
2992
2993
2994
2995 @node CONJG
2996 @section @code{CONJG} --- Complex conjugate function
2997 @fnindex CONJG
2998 @fnindex DCONJG
2999 @cindex complex conjugate
3000
3001 @table @asis
3002 @item @emph{Description}:
3003 @code{CONJG(Z)} returns the conjugate of @var{Z}. If @var{Z} is @code{(x, y)}
3004 then the result is @code{(x, -y)}
3005
3006 @item @emph{Standard}:
3007 Fortran 77 and later, has overloads that are GNU extensions
3008
3009 @item @emph{Class}:
3010 Elemental function
3011
3012 @item @emph{Syntax}:
3013 @code{Z = CONJG(Z)}
3014
3015 @item @emph{Arguments}:
3016 @multitable @columnfractions .15 .70
3017 @item @var{Z} @tab The type shall be @code{COMPLEX}.
3018 @end multitable
3019
3020 @item @emph{Return value}:
3021 The return value is of type @code{COMPLEX}.
3022
3023 @item @emph{Example}:
3024 @smallexample
3025 program test_conjg
3026 complex :: z = (2.0, 3.0)
3027 complex(8) :: dz = (2.71_8, -3.14_8)
3028 z= conjg(z)
3029 print *, z
3030 dz = dconjg(dz)
3031 print *, dz
3032 end program test_conjg
3033 @end smallexample
3034
3035 @item @emph{Specific names}:
3036 @multitable @columnfractions .20 .20 .20 .25
3037 @item Name @tab Argument @tab Return type @tab Standard
3038 @item @code{CONJG(Z)} @tab @code{COMPLEX Z} @tab @code{COMPLEX} @tab GNU extension
3039 @item @code{DCONJG(Z)} @tab @code{COMPLEX(8) Z} @tab @code{COMPLEX(8)} @tab GNU extension
3040 @end multitable
3041 @end table
3042
3043
3044
3045 @node COS
3046 @section @code{COS} --- Cosine function
3047 @fnindex COS
3048 @fnindex DCOS
3049 @fnindex CCOS
3050 @fnindex ZCOS
3051 @fnindex CDCOS
3052 @cindex trigonometric function, cosine
3053 @cindex cosine
3054
3055 @table @asis
3056 @item @emph{Description}:
3057 @code{COS(X)} computes the cosine of @var{X}.
3058
3059 @item @emph{Standard}:
3060 Fortran 77 and later, has overloads that are GNU extensions
3061
3062 @item @emph{Class}:
3063 Elemental function
3064
3065 @item @emph{Syntax}:
3066 @code{RESULT = COS(X)}
3067
3068 @item @emph{Arguments}:
3069 @multitable @columnfractions .15 .70
3070 @item @var{X} @tab The type shall be @code{REAL} or
3071 @code{COMPLEX}.
3072 @end multitable
3073
3074 @item @emph{Return value}:
3075 The return value is of the same type and kind as @var{X}. The real part
3076 of the result is in radians. If @var{X} is of the type @code{REAL},
3077 the return value lies in the range @math{ -1 \leq \cos (x) \leq 1}.
3078
3079 @item @emph{Example}:
3080 @smallexample
3081 program test_cos
3082 real :: x = 0.0
3083 x = cos(x)
3084 end program test_cos
3085 @end smallexample
3086
3087 @item @emph{Specific names}:
3088 @multitable @columnfractions .20 .20 .20 .25
3089 @item Name @tab Argument @tab Return type @tab Standard
3090 @item @code{COS(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later
3091 @item @code{DCOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
3092 @item @code{CCOS(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab Fortran 77 and later
3093 @item @code{ZCOS(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
3094 @item @code{CDCOS(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
3095 @end multitable
3096
3097 @item @emph{See also}:
3098 Inverse function: @ref{ACOS}
3099
3100 @end table
3101
3102
3103
3104 @node COSH
3105 @section @code{COSH} --- Hyperbolic cosine function
3106 @fnindex COSH
3107 @fnindex DCOSH
3108 @cindex hyperbolic cosine
3109 @cindex hyperbolic function, cosine
3110 @cindex cosine, hyperbolic
3111
3112 @table @asis
3113 @item @emph{Description}:
3114 @code{COSH(X)} computes the hyperbolic cosine of @var{X}.
3115
3116 @item @emph{Standard}:
3117 Fortran 77 and later, for a complex argument Fortran 2008 or later
3118
3119 @item @emph{Class}:
3120 Elemental function
3121
3122 @item @emph{Syntax}:
3123 @code{X = COSH(X)}
3124
3125 @item @emph{Arguments}:
3126 @multitable @columnfractions .15 .70
3127 @item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
3128 @end multitable
3129
3130 @item @emph{Return value}:
3131 The return value has same type and kind as @var{X}. If @var{X} is
3132 complex, the imaginary part of the result is in radians. If @var{X}
3133 is @code{REAL}, the return value has a lower bound of one,
3134 @math{\cosh (x) \geq 1}.
3135
3136 @item @emph{Example}:
3137 @smallexample
3138 program test_cosh
3139 real(8) :: x = 1.0_8
3140 x = cosh(x)
3141 end program test_cosh
3142 @end smallexample
3143
3144 @item @emph{Specific names}:
3145 @multitable @columnfractions .20 .20 .20 .25
3146 @item Name @tab Argument @tab Return type @tab Standard
3147 @item @code{COSH(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later
3148 @item @code{DCOSH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
3149 @end multitable
3150
3151 @item @emph{See also}:
3152 Inverse function: @ref{ACOSH}
3153
3154 @end table
3155
3156
3157
3158 @node COUNT
3159 @section @code{COUNT} --- Count function
3160 @fnindex COUNT
3161 @cindex array, conditionally count elements
3162 @cindex array, element counting
3163 @cindex array, number of elements
3164
3165 @table @asis
3166 @item @emph{Description}:
3167
3168 Counts the number of @code{.TRUE.} elements in a logical @var{MASK},
3169 or, if the @var{DIM} argument is supplied, counts the number of
3170 elements along each row of the array in the @var{DIM} direction.
3171 If the array has zero size, or all of the elements of @var{MASK} are
3172 @code{.FALSE.}, then the result is @code{0}.
3173
3174 @item @emph{Standard}:
3175 Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
3176
3177 @item @emph{Class}:
3178 Transformational function
3179
3180 @item @emph{Syntax}:
3181 @code{RESULT = COUNT(MASK [, DIM, KIND])}
3182
3183 @item @emph{Arguments}:
3184 @multitable @columnfractions .15 .70
3185 @item @var{MASK} @tab The type shall be @code{LOGICAL}.
3186 @item @var{DIM} @tab (Optional) The type shall be @code{INTEGER}.
3187 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
3188 expression indicating the kind parameter of the result.
3189 @end multitable
3190
3191 @item @emph{Return value}:
3192 The return value is of type @code{INTEGER} and of kind @var{KIND}. If
3193 @var{KIND} is absent, the return value is of default integer kind.
3194 If @var{DIM} is present, the result is an array with a rank one less
3195 than the rank of @var{ARRAY}, and a size corresponding to the shape
3196 of @var{ARRAY} with the @var{DIM} dimension removed.
3197
3198 @item @emph{Example}:
3199 @smallexample
3200 program test_count
3201 integer, dimension(2,3) :: a, b
3202 logical, dimension(2,3) :: mask
3203 a = reshape( (/ 1, 2, 3, 4, 5, 6 /), (/ 2, 3 /))
3204 b = reshape( (/ 0, 7, 3, 4, 5, 8 /), (/ 2, 3 /))
3205 print '(3i3)', a(1,:)
3206 print '(3i3)', a(2,:)
3207 print *
3208 print '(3i3)', b(1,:)
3209 print '(3i3)', b(2,:)
3210 print *
3211 mask = a.ne.b
3212 print '(3l3)', mask(1,:)
3213 print '(3l3)', mask(2,:)
3214 print *
3215 print '(3i3)', count(mask)
3216 print *
3217 print '(3i3)', count(mask, 1)
3218 print *
3219 print '(3i3)', count(mask, 2)
3220 end program test_count
3221 @end smallexample
3222 @end table
3223
3224
3225
3226 @node CPU_TIME
3227 @section @code{CPU_TIME} --- CPU elapsed time in seconds
3228 @fnindex CPU_TIME
3229 @cindex time, elapsed
3230
3231 @table @asis
3232 @item @emph{Description}:
3233 Returns a @code{REAL} value representing the elapsed CPU time in
3234 seconds. This is useful for testing segments of code to determine
3235 execution time.
3236
3237 If a time source is available, time will be reported with microsecond
3238 resolution. If no time source is available, @var{TIME} is set to
3239 @code{-1.0}.
3240
3241 Note that @var{TIME} may contain a, system dependent, arbitrary offset
3242 and may not start with @code{0.0}. For @code{CPU_TIME}, the absolute
3243 value is meaningless, only differences between subsequent calls to
3244 this subroutine, as shown in the example below, should be used.
3245
3246
3247 @item @emph{Standard}:
3248 Fortran 95 and later
3249
3250 @item @emph{Class}:
3251 Subroutine
3252
3253 @item @emph{Syntax}:
3254 @code{CALL CPU_TIME(TIME)}
3255
3256 @item @emph{Arguments}:
3257 @multitable @columnfractions .15 .70
3258 @item @var{TIME} @tab The type shall be @code{REAL} with @code{INTENT(OUT)}.
3259 @end multitable
3260
3261 @item @emph{Return value}:
3262 None
3263
3264 @item @emph{Example}:
3265 @smallexample
3266 program test_cpu_time
3267 real :: start, finish
3268 call cpu_time(start)
3269 ! put code to test here
3270 call cpu_time(finish)
3271 print '("Time = ",f6.3," seconds.")',finish-start
3272 end program test_cpu_time
3273 @end smallexample
3274
3275 @item @emph{See also}:
3276 @ref{SYSTEM_CLOCK}, @ref{DATE_AND_TIME}
3277 @end table
3278
3279
3280
3281 @node CSHIFT
3282 @section @code{CSHIFT} --- Circular shift elements of an array
3283 @fnindex CSHIFT
3284 @cindex array, shift circularly
3285 @cindex array, permutation
3286 @cindex array, rotate
3287
3288 @table @asis
3289 @item @emph{Description}:
3290 @code{CSHIFT(ARRAY, SHIFT [, DIM])} performs a circular shift on elements of
3291 @var{ARRAY} along the dimension of @var{DIM}. If @var{DIM} is omitted it is
3292 taken to be @code{1}. @var{DIM} is a scalar of type @code{INTEGER} in the
3293 range of @math{1 \leq DIM \leq n)} where @math{n} is the rank of @var{ARRAY}.
3294 If the rank of @var{ARRAY} is one, then all elements of @var{ARRAY} are shifted
3295 by @var{SHIFT} places. If rank is greater than one, then all complete rank one
3296 sections of @var{ARRAY} along the given dimension are shifted. Elements
3297 shifted out one end of each rank one section are shifted back in the other end.
3298
3299 @item @emph{Standard}:
3300 Fortran 95 and later
3301
3302 @item @emph{Class}:
3303 Transformational function
3304
3305 @item @emph{Syntax}:
3306 @code{RESULT = CSHIFT(ARRAY, SHIFT [, DIM])}
3307
3308 @item @emph{Arguments}:
3309 @multitable @columnfractions .15 .70
3310 @item @var{ARRAY} @tab Shall be an array of any type.
3311 @item @var{SHIFT} @tab The type shall be @code{INTEGER}.
3312 @item @var{DIM} @tab The type shall be @code{INTEGER}.
3313 @end multitable
3314
3315 @item @emph{Return value}:
3316 Returns an array of same type and rank as the @var{ARRAY} argument.
3317
3318 @item @emph{Example}:
3319 @smallexample
3320 program test_cshift
3321 integer, dimension(3,3) :: a
3322 a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
3323 print '(3i3)', a(1,:)
3324 print '(3i3)', a(2,:)
3325 print '(3i3)', a(3,:)
3326 a = cshift(a, SHIFT=(/1, 2, -1/), DIM=2)
3327 print *
3328 print '(3i3)', a(1,:)
3329 print '(3i3)', a(2,:)
3330 print '(3i3)', a(3,:)
3331 end program test_cshift
3332 @end smallexample
3333 @end table
3334
3335
3336
3337 @node CTIME
3338 @section @code{CTIME} --- Convert a time into a string
3339 @fnindex CTIME
3340 @cindex time, conversion to string
3341 @cindex conversion, to string
3342
3343 @table @asis
3344 @item @emph{Description}:
3345 @code{CTIME} converts a system time value, such as returned by
3346 @code{TIME8}, to a string. Unless the application has called
3347 @code{setlocale}, the output will be in the default locale, of length
3348 24 and of the form @samp{Sat Aug 19 18:13:14 1995}. In other locales,
3349 a longer string may result.
3350
3351 This intrinsic is provided in both subroutine and function forms; however,
3352 only one form can be used in any given program unit.
3353
3354 @item @emph{Standard}:
3355 GNU extension
3356
3357 @item @emph{Class}:
3358 Subroutine, function
3359
3360 @item @emph{Syntax}:
3361 @multitable @columnfractions .80
3362 @item @code{CALL CTIME(TIME, RESULT)}.
3363 @item @code{RESULT = CTIME(TIME)}.
3364 @end multitable
3365
3366 @item @emph{Arguments}:
3367 @multitable @columnfractions .15 .70
3368 @item @var{TIME} @tab The type shall be of type @code{INTEGER}.
3369 @item @var{RESULT} @tab The type shall be of type @code{CHARACTER} and
3370 of default kind. It is an @code{INTENT(OUT)} argument. If the length
3371 of this variable is too short for the time and date string to fit
3372 completely, it will be blank on procedure return.
3373 @end multitable
3374
3375 @item @emph{Return value}:
3376 The converted date and time as a string.
3377
3378 @item @emph{Example}:
3379 @smallexample
3380 program test_ctime
3381 integer(8) :: i
3382 character(len=30) :: date
3383 i = time8()
3384
3385 ! Do something, main part of the program
3386
3387 call ctime(i,date)
3388 print *, 'Program was started on ', date
3389 end program test_ctime
3390 @end smallexample
3391
3392 @item @emph{See Also}:
3393 @ref{DATE_AND_TIME}, @ref{GMTIME}, @ref{LTIME}, @ref{TIME}, @ref{TIME8}
3394 @end table
3395
3396
3397
3398 @node DATE_AND_TIME
3399 @section @code{DATE_AND_TIME} --- Date and time subroutine
3400 @fnindex DATE_AND_TIME
3401 @cindex date, current
3402 @cindex current date
3403 @cindex time, current
3404 @cindex current time
3405
3406 @table @asis
3407 @item @emph{Description}:
3408 @code{DATE_AND_TIME(DATE, TIME, ZONE, VALUES)} gets the corresponding date and
3409 time information from the real-time system clock. @var{DATE} is
3410 @code{INTENT(OUT)} and has form ccyymmdd. @var{TIME} is @code{INTENT(OUT)} and
3411 has form hhmmss.sss. @var{ZONE} is @code{INTENT(OUT)} and has form (+-)hhmm,
3412 representing the difference with respect to Coordinated Universal Time (UTC).
3413 Unavailable time and date parameters return blanks.
3414
3415 @var{VALUES} is @code{INTENT(OUT)} and provides the following:
3416
3417 @multitable @columnfractions .15 .30 .40
3418 @item @tab @code{VALUE(1)}: @tab The year
3419 @item @tab @code{VALUE(2)}: @tab The month
3420 @item @tab @code{VALUE(3)}: @tab The day of the month
3421 @item @tab @code{VALUE(4)}: @tab Time difference with UTC in minutes
3422 @item @tab @code{VALUE(5)}: @tab The hour of the day
3423 @item @tab @code{VALUE(6)}: @tab The minutes of the hour
3424 @item @tab @code{VALUE(7)}: @tab The seconds of the minute
3425 @item @tab @code{VALUE(8)}: @tab The milliseconds of the second
3426 @end multitable
3427
3428 @item @emph{Standard}:
3429 Fortran 95 and later
3430
3431 @item @emph{Class}:
3432 Subroutine
3433
3434 @item @emph{Syntax}:
3435 @code{CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])}
3436
3437 @item @emph{Arguments}:
3438 @multitable @columnfractions .15 .70
3439 @item @var{DATE} @tab (Optional) The type shall be @code{CHARACTER(LEN=8)}
3440 or larger, and of default kind.
3441 @item @var{TIME} @tab (Optional) The type shall be @code{CHARACTER(LEN=10)}
3442 or larger, and of default kind.
3443 @item @var{ZONE} @tab (Optional) The type shall be @code{CHARACTER(LEN=5)}
3444 or larger, and of default kind.
3445 @item @var{VALUES}@tab (Optional) The type shall be @code{INTEGER(8)}.
3446 @end multitable
3447
3448 @item @emph{Return value}:
3449 None
3450
3451 @item @emph{Example}:
3452 @smallexample
3453 program test_time_and_date
3454 character(8) :: date
3455 character(10) :: time
3456 character(5) :: zone
3457 integer,dimension(8) :: values
3458 ! using keyword arguments
3459 call date_and_time(date,time,zone,values)
3460 call date_and_time(DATE=date,ZONE=zone)
3461 call date_and_time(TIME=time)
3462 call date_and_time(VALUES=values)
3463 print '(a,2x,a,2x,a)', date, time, zone
3464 print '(8i5)', values
3465 end program test_time_and_date
3466 @end smallexample
3467
3468 @item @emph{See also}:
3469 @ref{CPU_TIME}, @ref{SYSTEM_CLOCK}
3470 @end table
3471
3472
3473
3474 @node DBLE
3475 @section @code{DBLE} --- Double conversion function
3476 @fnindex DBLE
3477 @cindex conversion, to real
3478
3479 @table @asis
3480 @item @emph{Description}:
3481 @code{DBLE(A)} Converts @var{A} to double precision real type.
3482
3483 @item @emph{Standard}:
3484 Fortran 77 and later
3485
3486 @item @emph{Class}:
3487 Elemental function
3488
3489 @item @emph{Syntax}:
3490 @code{RESULT = DBLE(A)}
3491
3492 @item @emph{Arguments}:
3493 @multitable @columnfractions .15 .70
3494 @item @var{A} @tab The type shall be @code{INTEGER}, @code{REAL},
3495 or @code{COMPLEX}.
3496 @end multitable
3497
3498 @item @emph{Return value}:
3499 The return value is of type double precision real.
3500
3501 @item @emph{Example}:
3502 @smallexample
3503 program test_dble
3504 real :: x = 2.18
3505 integer :: i = 5
3506 complex :: z = (2.3,1.14)
3507 print *, dble(x), dble(i), dble(z)
3508 end program test_dble
3509 @end smallexample
3510
3511 @item @emph{See also}:
3512 @ref{REAL}
3513 @end table
3514
3515
3516
3517 @node DCMPLX
3518 @section @code{DCMPLX} --- Double complex conversion function
3519 @fnindex DCMPLX
3520 @cindex complex numbers, conversion to
3521 @cindex conversion, to complex
3522
3523 @table @asis
3524 @item @emph{Description}:
3525 @code{DCMPLX(X [,Y])} returns a double complex number where @var{X} is
3526 converted to the real component. If @var{Y} is present it is converted to the
3527 imaginary component. If @var{Y} is not present then the imaginary component is
3528 set to 0.0. If @var{X} is complex then @var{Y} must not be present.
3529
3530 @item @emph{Standard}:
3531 GNU extension
3532
3533 @item @emph{Class}:
3534 Elemental function
3535
3536 @item @emph{Syntax}:
3537 @code{RESULT = DCMPLX(X [, Y])}
3538
3539 @item @emph{Arguments}:
3540 @multitable @columnfractions .15 .70
3541 @item @var{X} @tab The type may be @code{INTEGER}, @code{REAL},
3542 or @code{COMPLEX}.
3543 @item @var{Y} @tab (Optional if @var{X} is not @code{COMPLEX}.) May be
3544 @code{INTEGER} or @code{REAL}.
3545 @end multitable
3546
3547 @item @emph{Return value}:
3548 The return value is of type @code{COMPLEX(8)}
3549
3550 @item @emph{Example}:
3551 @smallexample
3552 program test_dcmplx
3553 integer :: i = 42
3554 real :: x = 3.14
3555 complex :: z
3556 z = cmplx(i, x)
3557 print *, dcmplx(i)
3558 print *, dcmplx(x)
3559 print *, dcmplx(z)
3560 print *, dcmplx(x,i)
3561 end program test_dcmplx
3562 @end smallexample
3563 @end table
3564
3565
3566 @node DIGITS
3567 @section @code{DIGITS} --- Significant binary digits function
3568 @fnindex DIGITS
3569 @cindex model representation, significant digits
3570
3571 @table @asis
3572 @item @emph{Description}:
3573 @code{DIGITS(X)} returns the number of significant binary digits of the internal
3574 model representation of @var{X}. For example, on a system using a 32-bit
3575 floating point representation, a default real number would likely return 24.
3576
3577 @item @emph{Standard}:
3578 Fortran 95 and later
3579
3580 @item @emph{Class}:
3581 Inquiry function
3582
3583 @item @emph{Syntax}:
3584 @code{RESULT = DIGITS(X)}
3585
3586 @item @emph{Arguments}:
3587 @multitable @columnfractions .15 .70
3588 @item @var{X} @tab The type may be @code{INTEGER} or @code{REAL}.
3589 @end multitable
3590
3591 @item @emph{Return value}:
3592 The return value is of type @code{INTEGER}.
3593
3594 @item @emph{Example}:
3595 @smallexample
3596 program test_digits
3597 integer :: i = 12345
3598 real :: x = 3.143
3599 real(8) :: y = 2.33
3600 print *, digits(i)
3601 print *, digits(x)
3602 print *, digits(y)
3603 end program test_digits
3604 @end smallexample
3605 @end table
3606
3607
3608
3609 @node DIM
3610 @section @code{DIM} --- Positive difference
3611 @fnindex DIM
3612 @fnindex IDIM
3613 @fnindex DDIM
3614 @cindex positive difference
3615
3616 @table @asis
3617 @item @emph{Description}:
3618 @code{DIM(X,Y)} returns the difference @code{X-Y} if the result is positive;
3619 otherwise returns zero.
3620
3621 @item @emph{Standard}:
3622 Fortran 77 and later
3623
3624 @item @emph{Class}:
3625 Elemental function
3626
3627 @item @emph{Syntax}:
3628 @code{RESULT = DIM(X, Y)}
3629
3630 @item @emph{Arguments}:
3631 @multitable @columnfractions .15 .70
3632 @item @var{X} @tab The type shall be @code{INTEGER} or @code{REAL}
3633 @item @var{Y} @tab The type shall be the same type and kind as @var{X}.
3634 @end multitable
3635
3636 @item @emph{Return value}:
3637 The return value is of type @code{INTEGER} or @code{REAL}.
3638
3639 @item @emph{Example}:
3640 @smallexample
3641 program test_dim
3642 integer :: i
3643 real(8) :: x
3644 i = dim(4, 15)
3645 x = dim(4.345_8, 2.111_8)
3646 print *, i
3647 print *, x
3648 end program test_dim
3649 @end smallexample
3650
3651 @item @emph{Specific names}:
3652 @multitable @columnfractions .20 .20 .20 .25
3653 @item Name @tab Argument @tab Return type @tab Standard
3654 @item @code{DIM(X,Y)} @tab @code{REAL(4) X, Y} @tab @code{REAL(4)} @tab Fortran 77 and later
3655 @item @code{IDIM(X,Y)} @tab @code{INTEGER(4) X, Y} @tab @code{INTEGER(4)} @tab Fortran 77 and later
3656 @item @code{DDIM(X,Y)} @tab @code{REAL(8) X, Y} @tab @code{REAL(8)} @tab Fortran 77 and later
3657 @end multitable
3658 @end table
3659
3660
3661
3662 @node DOT_PRODUCT
3663 @section @code{DOT_PRODUCT} --- Dot product function
3664 @fnindex DOT_PRODUCT
3665 @cindex dot product
3666 @cindex vector product
3667 @cindex product, vector
3668
3669 @table @asis
3670 @item @emph{Description}:
3671 @code{DOT_PRODUCT(VECTOR_A, VECTOR_B)} computes the dot product multiplication
3672 of two vectors @var{VECTOR_A} and @var{VECTOR_B}. The two vectors may be
3673 either numeric or logical and must be arrays of rank one and of equal size. If
3674 the vectors are @code{INTEGER} or @code{REAL}, the result is
3675 @code{SUM(VECTOR_A*VECTOR_B)}. If the vectors are @code{COMPLEX}, the result
3676 is @code{SUM(CONJG(VECTOR_A)*VECTOR_B)}. If the vectors are @code{LOGICAL},
3677 the result is @code{ANY(VECTOR_A .AND. VECTOR_B)}.
3678
3679 @item @emph{Standard}:
3680 Fortran 95 and later
3681
3682 @item @emph{Class}:
3683 Transformational function
3684
3685 @item @emph{Syntax}:
3686 @code{RESULT = DOT_PRODUCT(VECTOR_A, VECTOR_B)}
3687
3688 @item @emph{Arguments}:
3689 @multitable @columnfractions .15 .70
3690 @item @var{VECTOR_A} @tab The type shall be numeric or @code{LOGICAL}, rank 1.
3691 @item @var{VECTOR_B} @tab The type shall be numeric if @var{VECTOR_A} is of numeric type or @code{LOGICAL} if @var{VECTOR_A} is of type @code{LOGICAL}. @var{VECTOR_B} shall be a rank-one array.
3692 @end multitable
3693
3694 @item @emph{Return value}:
3695 If the arguments are numeric, the return value is a scalar of numeric type,
3696 @code{INTEGER}, @code{REAL}, or @code{COMPLEX}. If the arguments are
3697 @code{LOGICAL}, the return value is @code{.TRUE.} or @code{.FALSE.}.
3698
3699 @item @emph{Example}:
3700 @smallexample
3701 program test_dot_prod
3702 integer, dimension(3) :: a, b
3703 a = (/ 1, 2, 3 /)
3704 b = (/ 4, 5, 6 /)
3705 print '(3i3)', a
3706 print *
3707 print '(3i3)', b
3708 print *
3709 print *, dot_product(a,b)
3710 end program test_dot_prod
3711 @end smallexample
3712 @end table
3713
3714
3715
3716 @node DPROD
3717 @section @code{DPROD} --- Double product function
3718 @fnindex DPROD
3719 @cindex product, double-precision
3720
3721 @table @asis
3722 @item @emph{Description}:
3723 @code{DPROD(X,Y)} returns the product @code{X*Y}.
3724
3725 @item @emph{Standard}:
3726 Fortran 77 and later
3727
3728 @item @emph{Class}:
3729 Elemental function
3730
3731 @item @emph{Syntax}:
3732 @code{RESULT = DPROD(X, Y)}
3733
3734 @item @emph{Arguments}:
3735 @multitable @columnfractions .15 .70
3736 @item @var{X} @tab The type shall be @code{REAL}.
3737 @item @var{Y} @tab The type shall be @code{REAL}.
3738 @end multitable
3739
3740 @item @emph{Return value}:
3741 The return value is of type @code{REAL(8)}.
3742
3743 @item @emph{Example}:
3744 @smallexample
3745 program test_dprod
3746 real :: x = 5.2
3747 real :: y = 2.3
3748 real(8) :: d
3749 d = dprod(x,y)
3750 print *, d
3751 end program test_dprod
3752 @end smallexample
3753
3754 @item @emph{Specific names}:
3755 @multitable @columnfractions .20 .20 .20 .25
3756 @item Name @tab Argument @tab Return type @tab Standard
3757 @item @code{DPROD(X,Y)} @tab @code{REAL(4) X, Y} @tab @code{REAL(4)} @tab Fortran 77 and later
3758 @end multitable
3759
3760 @end table
3761
3762
3763 @node DREAL
3764 @section @code{DREAL} --- Double real part function
3765 @fnindex DREAL
3766 @cindex complex numbers, real part
3767
3768 @table @asis
3769 @item @emph{Description}:
3770 @code{DREAL(Z)} returns the real part of complex variable @var{Z}.
3771
3772 @item @emph{Standard}:
3773 GNU extension
3774
3775 @item @emph{Class}:
3776 Elemental function
3777
3778 @item @emph{Syntax}:
3779 @code{RESULT = DREAL(A)}
3780
3781 @item @emph{Arguments}:
3782 @multitable @columnfractions .15 .70
3783 @item @var{A} @tab The type shall be @code{COMPLEX(8)}.
3784 @end multitable
3785
3786 @item @emph{Return value}:
3787 The return value is of type @code{REAL(8)}.
3788
3789 @item @emph{Example}:
3790 @smallexample
3791 program test_dreal
3792 complex(8) :: z = (1.3_8,7.2_8)
3793 print *, dreal(z)
3794 end program test_dreal
3795 @end smallexample
3796
3797 @item @emph{See also}:
3798 @ref{AIMAG}
3799
3800 @end table
3801
3802
3803
3804 @node DSHIFTL
3805 @section @code{DSHIFTL} --- Combined left shift
3806 @fnindex DSHIFTL
3807 @cindex left shift, combined
3808 @cindex shift, left
3809
3810 @table @asis
3811 @item @emph{Description}:
3812 @code{DSHIFTL(I, J, SHIFT)} combines bits of @var{I} and @var{J}. The
3813 rightmost @var{SHIFT} bits of the result are the leftmost @var{SHIFT}
3814 bits of @var{J}, and the remaining bits are the rightmost bits of
3815 @var{I}.
3816
3817 @item @emph{Standard}:
3818 Fortran 2008 and later
3819
3820 @item @emph{Class}:
3821 Elemental function
3822
3823 @item @emph{Syntax}:
3824 @code{RESULT = DSHIFTL(I, J, SHIFT)}
3825
3826 @item @emph{Arguments}:
3827 @multitable @columnfractions .15 .70
3828 @item @var{I} @tab Shall be of type @code{INTEGER} or a BOZ constant.
3829 @item @var{J} @tab Shall be of type @code{INTEGER} or a BOZ constant.
3830 If both @var{I} and @var{J} have integer type, then they shall have
3831 the same kind type parameter. @var{I} and @var{J} shall not both be
3832 BOZ constants.
3833 @item @var{SHIFT} @tab Shall be of type @code{INTEGER}. It shall
3834 be nonnegative. If @var{I} is not a BOZ constant, then @var{SHIFT}
3835 shall be less than or equal to @code{BIT_SIZE(I)}; otherwise,
3836 @var{SHIFT} shall be less than or equal to @code{BIT_SIZE(J)}.
3837 @end multitable
3838
3839 @item @emph{Return value}:
3840 If either @var{I} or @var{J} is a BOZ constant, it is first converted
3841 as if by the intrinsic function @code{INT} to an integer type with the
3842 kind type parameter of the other.
3843
3844 @item @emph{See also}:
3845 @ref{DSHIFTR}
3846 @end table
3847
3848
3849 @node DSHIFTR
3850 @section @code{DSHIFTR} --- Combined right shift
3851 @fnindex DSHIFTR
3852 @cindex right shift, combined
3853 @cindex shift, right
3854
3855 @table @asis
3856 @item @emph{Description}:
3857 @code{DSHIFTR(I, J, SHIFT)} combines bits of @var{I} and @var{J}. The
3858 leftmost @var{SHIFT} bits of the result are the rightmost @var{SHIFT}
3859 bits of @var{I}, and the remaining bits are the leftmost bits of
3860 @var{J}.
3861
3862 @item @emph{Standard}:
3863 Fortran 2008 and later
3864
3865 @item @emph{Class}:
3866 Elemental function
3867
3868 @item @emph{Syntax}:
3869 @code{RESULT = DSHIFTR(I, J, SHIFT)}
3870
3871 @item @emph{Arguments}:
3872 @multitable @columnfractions .15 .70
3873 @item @var{I} @tab Shall be of type @code{INTEGER} or a BOZ constant.
3874 @item @var{J} @tab Shall be of type @code{INTEGER} or a BOZ constant.
3875 If both @var{I} and @var{J} have integer type, then they shall have
3876 the same kind type parameter. @var{I} and @var{J} shall not both be
3877 BOZ constants.
3878 @item @var{SHIFT} @tab Shall be of type @code{INTEGER}. It shall
3879 be nonnegative. If @var{I} is not a BOZ constant, then @var{SHIFT}
3880 shall be less than or equal to @code{BIT_SIZE(I)}; otherwise,
3881 @var{SHIFT} shall be less than or equal to @code{BIT_SIZE(J)}.
3882 @end multitable
3883
3884 @item @emph{Return value}:
3885 If either @var{I} or @var{J} is a BOZ constant, it is first converted
3886 as if by the intrinsic function @code{INT} to an integer type with the
3887 kind type parameter of the other.
3888
3889 @item @emph{See also}:
3890 @ref{DSHIFTL}
3891 @end table
3892
3893
3894 @node DTIME
3895 @section @code{DTIME} --- Execution time subroutine (or function)
3896 @fnindex DTIME
3897 @cindex time, elapsed
3898 @cindex elapsed time
3899
3900 @table @asis
3901 @item @emph{Description}:
3902 @code{DTIME(VALUES, TIME)} initially returns the number of seconds of runtime
3903 since the start of the process's execution in @var{TIME}. @var{VALUES}
3904 returns the user and system components of this time in @code{VALUES(1)} and
3905 @code{VALUES(2)} respectively. @var{TIME} is equal to @code{VALUES(1) +
3906 VALUES(2)}.
3907
3908 Subsequent invocations of @code{DTIME} return values accumulated since the
3909 previous invocation.
3910
3911 On some systems, the underlying timings are represented using types with
3912 sufficiently small limits that overflows (wrap around) are possible, such as
3913 32-bit types. Therefore, the values returned by this intrinsic might be, or
3914 become, negative, or numerically less than previous values, during a single
3915 run of the compiled program.
3916
3917 Please note, that this implementation is thread safe if used within OpenMP
3918 directives, i.e., its state will be consistent while called from multiple
3919 threads. However, if @code{DTIME} is called from multiple threads, the result
3920 is still the time since the last invocation. This may not give the intended
3921 results. If possible, use @code{CPU_TIME} instead.
3922
3923 This intrinsic is provided in both subroutine and function forms; however,
3924 only one form can be used in any given program unit.
3925
3926 @var{VALUES} and @var{TIME} are @code{INTENT(OUT)} and provide the following:
3927
3928 @multitable @columnfractions .15 .30 .40
3929 @item @tab @code{VALUES(1)}: @tab User time in seconds.
3930 @item @tab @code{VALUES(2)}: @tab System time in seconds.
3931 @item @tab @code{TIME}: @tab Run time since start in seconds.
3932 @end multitable
3933
3934 @item @emph{Standard}:
3935 GNU extension
3936
3937 @item @emph{Class}:
3938 Subroutine, function
3939
3940 @item @emph{Syntax}:
3941 @multitable @columnfractions .80
3942 @item @code{CALL DTIME(VALUES, TIME)}.
3943 @item @code{TIME = DTIME(VALUES)}, (not recommended).
3944 @end multitable
3945
3946 @item @emph{Arguments}:
3947 @multitable @columnfractions .15 .70
3948 @item @var{VALUES}@tab The type shall be @code{REAL(4), DIMENSION(2)}.
3949 @item @var{TIME}@tab The type shall be @code{REAL(4)}.
3950 @end multitable
3951
3952 @item @emph{Return value}:
3953 Elapsed time in seconds since the last invocation or since the start of program
3954 execution if not called before.
3955
3956 @item @emph{Example}:
3957 @smallexample
3958 program test_dtime
3959 integer(8) :: i, j
3960 real, dimension(2) :: tarray
3961 real :: result
3962 call dtime(tarray, result)
3963 print *, result
3964 print *, tarray(1)
3965 print *, tarray(2)
3966 do i=1,100000000 ! Just a delay
3967 j = i * i - i
3968 end do
3969 call dtime(tarray, result)
3970 print *, result
3971 print *, tarray(1)
3972 print *, tarray(2)
3973 end program test_dtime
3974 @end smallexample
3975
3976 @item @emph{See also}:
3977 @ref{CPU_TIME}
3978
3979 @end table
3980
3981
3982
3983 @node EOSHIFT
3984 @section @code{EOSHIFT} --- End-off shift elements of an array
3985 @fnindex EOSHIFT
3986 @cindex array, shift
3987
3988 @table @asis
3989 @item @emph{Description}:
3990 @code{EOSHIFT(ARRAY, SHIFT[, BOUNDARY, DIM])} performs an end-off shift on
3991 elements of @var{ARRAY} along the dimension of @var{DIM}. If @var{DIM} is
3992 omitted it is taken to be @code{1}. @var{DIM} is a scalar of type
3993 @code{INTEGER} in the range of @math{1 \leq DIM \leq n)} where @math{n} is the
3994 rank of @var{ARRAY}. If the rank of @var{ARRAY} is one, then all elements of
3995 @var{ARRAY} are shifted by @var{SHIFT} places. If rank is greater than one,
3996 then all complete rank one sections of @var{ARRAY} along the given dimension are
3997 shifted. Elements shifted out one end of each rank one section are dropped. If
3998 @var{BOUNDARY} is present then the corresponding value of from @var{BOUNDARY}
3999 is copied back in the other end. If @var{BOUNDARY} is not present then the
4000 following are copied in depending on the type of @var{ARRAY}.
4001
4002 @multitable @columnfractions .15 .80
4003 @item @emph{Array Type} @tab @emph{Boundary Value}
4004 @item Numeric @tab 0 of the type and kind of @var{ARRAY}.
4005 @item Logical @tab @code{.FALSE.}.
4006 @item Character(@var{len}) @tab @var{len} blanks.
4007 @end multitable
4008
4009 @item @emph{Standard}:
4010 Fortran 95 and later
4011
4012 @item @emph{Class}:
4013 Transformational function
4014
4015 @item @emph{Syntax}:
4016 @code{RESULT = EOSHIFT(ARRAY, SHIFT [, BOUNDARY, DIM])}
4017
4018 @item @emph{Arguments}:
4019 @multitable @columnfractions .15 .70
4020 @item @var{ARRAY} @tab May be any type, not scalar.
4021 @item @var{SHIFT} @tab The type shall be @code{INTEGER}.
4022 @item @var{BOUNDARY} @tab Same type as @var{ARRAY}.
4023 @item @var{DIM} @tab The type shall be @code{INTEGER}.
4024 @end multitable
4025
4026 @item @emph{Return value}:
4027 Returns an array of same type and rank as the @var{ARRAY} argument.
4028
4029 @item @emph{Example}:
4030 @smallexample
4031 program test_eoshift
4032 integer, dimension(3,3) :: a
4033 a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
4034 print '(3i3)', a(1,:)
4035 print '(3i3)', a(2,:)
4036 print '(3i3)', a(3,:)
4037 a = EOSHIFT(a, SHIFT=(/1, 2, 1/), BOUNDARY=-5, DIM=2)
4038 print *
4039 print '(3i3)', a(1,:)
4040 print '(3i3)', a(2,:)
4041 print '(3i3)', a(3,:)
4042 end program test_eoshift
4043 @end smallexample
4044 @end table
4045
4046
4047
4048 @node EPSILON
4049 @section @code{EPSILON} --- Epsilon function
4050 @fnindex EPSILON
4051 @cindex model representation, epsilon
4052
4053 @table @asis
4054 @item @emph{Description}:
4055 @code{EPSILON(X)} returns the smallest number @var{E} of the same kind
4056 as @var{X} such that @math{1 + E > 1}.
4057
4058 @item @emph{Standard}:
4059 Fortran 95 and later
4060
4061 @item @emph{Class}:
4062 Inquiry function
4063
4064 @item @emph{Syntax}:
4065 @code{RESULT = EPSILON(X)}
4066
4067 @item @emph{Arguments}:
4068 @multitable @columnfractions .15 .70
4069 @item @var{X} @tab The type shall be @code{REAL}.
4070 @end multitable
4071
4072 @item @emph{Return value}:
4073 The return value is of same type as the argument.
4074
4075 @item @emph{Example}:
4076 @smallexample
4077 program test_epsilon
4078 real :: x = 3.143
4079 real(8) :: y = 2.33
4080 print *, EPSILON(x)
4081 print *, EPSILON(y)
4082 end program test_epsilon
4083 @end smallexample
4084 @end table
4085
4086
4087
4088 @node ERF
4089 @section @code{ERF} --- Error function
4090 @fnindex ERF
4091 @cindex error function
4092
4093 @table @asis
4094 @item @emph{Description}:
4095 @code{ERF(X)} computes the error function of @var{X}.
4096
4097 @item @emph{Standard}:
4098 Fortran 2008 and later
4099
4100 @item @emph{Class}:
4101 Elemental function
4102
4103 @item @emph{Syntax}:
4104 @code{RESULT = ERF(X)}
4105
4106 @item @emph{Arguments}:
4107 @multitable @columnfractions .15 .70
4108 @item @var{X} @tab The type shall be @code{REAL}.
4109 @end multitable
4110
4111 @item @emph{Return value}:
4112 The return value is of type @code{REAL}, of the same kind as
4113 @var{X} and lies in the range @math{-1 \leq erf (x) \leq 1 }.
4114
4115 @item @emph{Example}:
4116 @smallexample
4117 program test_erf
4118 real(8) :: x = 0.17_8
4119 x = erf(x)
4120 end program test_erf
4121 @end smallexample
4122
4123 @item @emph{Specific names}:
4124 @multitable @columnfractions .20 .20 .20 .25
4125 @item Name @tab Argument @tab Return type @tab Standard
4126 @item @code{DERF(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
4127 @end multitable
4128 @end table
4129
4130
4131
4132 @node ERFC
4133 @section @code{ERFC} --- Error function
4134 @fnindex ERFC
4135 @cindex error function, complementary
4136
4137 @table @asis
4138 @item @emph{Description}:
4139 @code{ERFC(X)} computes the complementary error function of @var{X}.
4140
4141 @item @emph{Standard}:
4142 Fortran 2008 and later
4143
4144 @item @emph{Class}:
4145 Elemental function
4146
4147 @item @emph{Syntax}:
4148 @code{RESULT = ERFC(X)}
4149
4150 @item @emph{Arguments}:
4151 @multitable @columnfractions .15 .70
4152 @item @var{X} @tab The type shall be @code{REAL}.
4153 @end multitable
4154
4155 @item @emph{Return value}:
4156 The return value is of type @code{REAL} and of the same kind as @var{X}.
4157 It lies in the range @math{ 0 \leq erfc (x) \leq 2 }.
4158
4159 @item @emph{Example}:
4160 @smallexample
4161 program test_erfc
4162 real(8) :: x = 0.17_8
4163 x = erfc(x)
4164 end program test_erfc
4165 @end smallexample
4166
4167 @item @emph{Specific names}:
4168 @multitable @columnfractions .20 .20 .20 .25
4169 @item Name @tab Argument @tab Return type @tab Standard
4170 @item @code{DERFC(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
4171 @end multitable
4172 @end table
4173
4174
4175
4176 @node ERFC_SCALED
4177 @section @code{ERFC_SCALED} --- Error function
4178 @fnindex ERFC_SCALED
4179 @cindex error function, complementary, exponentially-scaled
4180
4181 @table @asis
4182 @item @emph{Description}:
4183 @code{ERFC_SCALED(X)} computes the exponentially-scaled complementary
4184 error function of @var{X}.
4185
4186 @item @emph{Standard}:
4187 Fortran 2008 and later
4188
4189 @item @emph{Class}:
4190 Elemental function
4191
4192 @item @emph{Syntax}:
4193 @code{RESULT = ERFC_SCALED(X)}
4194
4195 @item @emph{Arguments}:
4196 @multitable @columnfractions .15 .70
4197 @item @var{X} @tab The type shall be @code{REAL}.
4198 @end multitable
4199
4200 @item @emph{Return value}:
4201 The return value is of type @code{REAL} and of the same kind as @var{X}.
4202
4203 @item @emph{Example}:
4204 @smallexample
4205 program test_erfc_scaled
4206 real(8) :: x = 0.17_8
4207 x = erfc_scaled(x)
4208 end program test_erfc_scaled
4209 @end smallexample
4210 @end table
4211
4212
4213
4214 @node ETIME
4215 @section @code{ETIME} --- Execution time subroutine (or function)
4216 @fnindex ETIME
4217 @cindex time, elapsed
4218
4219 @table @asis
4220 @item @emph{Description}:
4221 @code{ETIME(VALUES, TIME)} returns the number of seconds of runtime
4222 since the start of the process's execution in @var{TIME}. @var{VALUES}
4223 returns the user and system components of this time in @code{VALUES(1)} and
4224 @code{VALUES(2)} respectively. @var{TIME} is equal to @code{VALUES(1) + VALUES(2)}.
4225
4226 On some systems, the underlying timings are represented using types with
4227 sufficiently small limits that overflows (wrap around) are possible, such as
4228 32-bit types. Therefore, the values returned by this intrinsic might be, or
4229 become, negative, or numerically less than previous values, during a single
4230 run of the compiled program.
4231
4232 This intrinsic is provided in both subroutine and function forms; however,
4233 only one form can be used in any given program unit.
4234
4235 @var{VALUES} and @var{TIME} are @code{INTENT(OUT)} and provide the following:
4236
4237 @multitable @columnfractions .15 .30 .60
4238 @item @tab @code{VALUES(1)}: @tab User time in seconds.
4239 @item @tab @code{VALUES(2)}: @tab System time in seconds.
4240 @item @tab @code{TIME}: @tab Run time since start in seconds.
4241 @end multitable
4242
4243 @item @emph{Standard}:
4244 GNU extension
4245
4246 @item @emph{Class}:
4247 Subroutine, function
4248
4249 @item @emph{Syntax}:
4250 @multitable @columnfractions .80
4251 @item @code{CALL ETIME(VALUES, TIME)}.
4252 @item @code{TIME = ETIME(VALUES)}, (not recommended).
4253 @end multitable
4254
4255 @item @emph{Arguments}:
4256 @multitable @columnfractions .15 .70
4257 @item @var{VALUES}@tab The type shall be @code{REAL(4), DIMENSION(2)}.
4258 @item @var{TIME}@tab The type shall be @code{REAL(4)}.
4259 @end multitable
4260
4261 @item @emph{Return value}:
4262 Elapsed time in seconds since the start of program execution.
4263
4264 @item @emph{Example}:
4265 @smallexample
4266 program test_etime
4267 integer(8) :: i, j
4268 real, dimension(2) :: tarray
4269 real :: result
4270 call ETIME(tarray, result)
4271 print *, result
4272 print *, tarray(1)
4273 print *, tarray(2)
4274 do i=1,100000000 ! Just a delay
4275 j = i * i - i
4276 end do
4277 call ETIME(tarray, result)
4278 print *, result
4279 print *, tarray(1)
4280 print *, tarray(2)
4281 end program test_etime
4282 @end smallexample
4283
4284 @item @emph{See also}:
4285 @ref{CPU_TIME}
4286
4287 @end table
4288
4289
4290
4291 @node EXECUTE_COMMAND_LINE
4292 @section @code{EXECUTE_COMMAND_LINE} --- Execute a shell command
4293 @fnindex EXECUTE_COMMAND_LINE
4294 @cindex system, system call
4295 @cindex command line
4296
4297 @table @asis
4298 @item @emph{Description}:
4299 @code{EXECUTE_COMMAND_LINE} runs a shell command, synchronously or
4300 asynchronously.
4301
4302 The @code{COMMAND} argument is passed to the shell and executed, using
4303 the C library's @code{system} call. (The shell is @code{sh} on Unix
4304 systems, and @code{cmd.exe} on Windows.) If @code{WAIT} is present
4305 and has the value false, the execution of the command is asynchronous
4306 if the system supports it; otherwise, the command is executed
4307 synchronously.
4308
4309 The three last arguments allow the user to get status information. After
4310 synchronous execution, @code{EXITSTAT} contains the integer exit code of
4311 the command, as returned by @code{system}. @code{CMDSTAT} is set to zero
4312 if the command line was executed (whatever its exit status was).
4313 @code{CMDMSG} is assigned an error message if an error has occurred.
4314
4315 Note that the @code{system} function need not be thread-safe. It is
4316 the responsibility of the user to ensure that @code{system} is not
4317 called concurrently.
4318
4319 @item @emph{Standard}:
4320 Fortran 2008 and later
4321
4322 @item @emph{Class}:
4323 Subroutine
4324
4325 @item @emph{Syntax}:
4326 @code{CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT, CMDMSG ])}
4327
4328 @item @emph{Arguments}:
4329 @multitable @columnfractions .15 .70
4330 @item @var{COMMAND} @tab Shall be a default @code{CHARACTER} scalar.
4331 @item @var{WAIT} @tab (Optional) Shall be a default @code{LOGICAL} scalar.
4332 @item @var{EXITSTAT} @tab (Optional) Shall be an @code{INTEGER} of the
4333 default kind.
4334 @item @var{CMDSTAT} @tab (Optional) Shall be an @code{INTEGER} of the
4335 default kind.
4336 @item @var{CMDMSG} @tab (Optional) Shall be an @code{CHARACTER} scalar of the
4337 default kind.
4338 @end multitable
4339
4340 @item @emph{Example}:
4341 @smallexample
4342 program test_exec
4343 integer :: i
4344
4345 call execute_command_line ("external_prog.exe", exitstat=i)
4346 print *, "Exit status of external_prog.exe was ", i
4347
4348 call execute_command_line ("reindex_files.exe", wait=.false.)
4349 print *, "Now reindexing files in the background"
4350
4351 end program test_exec
4352 @end smallexample
4353
4354
4355 @item @emph{Note}:
4356
4357 Because this intrinsic is implemented in terms of the @code{system}
4358 function call, its behavior with respect to signaling is processor
4359 dependent. In particular, on POSIX-compliant systems, the SIGINT and
4360 SIGQUIT signals will be ignored, and the SIGCHLD will be blocked. As
4361 such, if the parent process is terminated, the child process might not be
4362 terminated alongside.
4363
4364
4365 @item @emph{See also}:
4366 @ref{SYSTEM}
4367 @end table
4368
4369
4370
4371 @node EXIT
4372 @section @code{EXIT} --- Exit the program with status.
4373 @fnindex EXIT
4374 @cindex program termination
4375 @cindex terminate program
4376
4377 @table @asis
4378 @item @emph{Description}:
4379 @code{EXIT} causes immediate termination of the program with status. If status
4380 is omitted it returns the canonical @emph{success} for the system. All Fortran
4381 I/O units are closed.
4382
4383 @item @emph{Standard}:
4384 GNU extension
4385
4386 @item @emph{Class}:
4387 Subroutine
4388
4389 @item @emph{Syntax}:
4390 @code{CALL EXIT([STATUS])}
4391
4392 @item @emph{Arguments}:
4393 @multitable @columnfractions .15 .70
4394 @item @var{STATUS} @tab Shall be an @code{INTEGER} of the default kind.
4395 @end multitable
4396
4397 @item @emph{Return value}:
4398 @code{STATUS} is passed to the parent process on exit.
4399
4400 @item @emph{Example}:
4401 @smallexample
4402 program test_exit
4403 integer :: STATUS = 0
4404 print *, 'This program is going to exit.'
4405 call EXIT(STATUS)
4406 end program test_exit
4407 @end smallexample
4408
4409 @item @emph{See also}:
4410 @ref{ABORT}, @ref{KILL}
4411 @end table
4412
4413
4414
4415 @node EXP
4416 @section @code{EXP} --- Exponential function
4417 @fnindex EXP
4418 @fnindex DEXP
4419 @fnindex CEXP
4420 @fnindex ZEXP
4421 @fnindex CDEXP
4422 @cindex exponential function
4423 @cindex logarithm function, inverse
4424
4425 @table @asis
4426 @item @emph{Description}:
4427 @code{EXP(X)} computes the base @math{e} exponential of @var{X}.
4428
4429 @item @emph{Standard}:
4430 Fortran 77 and later, has overloads that are GNU extensions
4431
4432 @item @emph{Class}:
4433 Elemental function
4434
4435 @item @emph{Syntax}:
4436 @code{RESULT = EXP(X)}
4437
4438 @item @emph{Arguments}:
4439 @multitable @columnfractions .15 .70
4440 @item @var{X} @tab The type shall be @code{REAL} or
4441 @code{COMPLEX}.
4442 @end multitable
4443
4444 @item @emph{Return value}:
4445 The return value has same type and kind as @var{X}.
4446
4447 @item @emph{Example}:
4448 @smallexample
4449 program test_exp
4450 real :: x = 1.0
4451 x = exp(x)
4452 end program test_exp
4453 @end smallexample
4454
4455 @item @emph{Specific names}:
4456 @multitable @columnfractions .20 .20 .20 .25
4457 @item Name @tab Argument @tab Return type @tab Standard
4458 @item @code{EXP(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later
4459 @item @code{DEXP(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
4460 @item @code{CEXP(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab Fortran 77 and later
4461 @item @code{ZEXP(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
4462 @item @code{CDEXP(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
4463 @end multitable
4464 @end table
4465
4466
4467
4468 @node EXPONENT
4469 @section @code{EXPONENT} --- Exponent function
4470 @fnindex EXPONENT
4471 @cindex real number, exponent
4472 @cindex floating point, exponent
4473
4474 @table @asis
4475 @item @emph{Description}:
4476 @code{EXPONENT(X)} returns the value of the exponent part of @var{X}. If @var{X}
4477 is zero the value returned is zero.
4478
4479 @item @emph{Standard}:
4480 Fortran 95 and later
4481
4482 @item @emph{Class}:
4483 Elemental function
4484
4485 @item @emph{Syntax}:
4486 @code{RESULT = EXPONENT(X)}
4487
4488 @item @emph{Arguments}:
4489 @multitable @columnfractions .15 .70
4490 @item @var{X} @tab The type shall be @code{REAL}.
4491 @end multitable
4492
4493 @item @emph{Return value}:
4494 The return value is of type default @code{INTEGER}.
4495
4496 @item @emph{Example}:
4497 @smallexample
4498 program test_exponent
4499 real :: x = 1.0
4500 integer :: i
4501 i = exponent(x)
4502 print *, i
4503 print *, exponent(0.0)
4504 end program test_exponent
4505 @end smallexample
4506 @end table
4507
4508
4509
4510 @node EXTENDS_TYPE_OF
4511 @section @code{EXTENDS_TYPE_OF} --- Query dynamic type for extension
4512 @fnindex EXTENDS_TYPE_OF
4513
4514 @table @asis
4515 @item @emph{Description}:
4516 Query dynamic type for extension.
4517
4518 @item @emph{Standard}:
4519 Fortran 2003 and later
4520
4521 @item @emph{Class}:
4522 Inquiry function
4523
4524 @item @emph{Syntax}:
4525 @code{RESULT = EXTENDS_TYPE_OF(A, MOLD)}
4526
4527 @item @emph{Arguments}:
4528 @multitable @columnfractions .15 .70
4529 @item @var{A} @tab Shall be an object of extensible declared type or
4530 unlimited polymorphic.
4531 @item @var{MOLD} @tab Shall be an object of extensible declared type or
4532 unlimited polymorphic.
4533 @end multitable
4534
4535 @item @emph{Return value}:
4536 The return value is a scalar of type default logical. It is true if and only if
4537 the dynamic type of A is an extension type of the dynamic type of MOLD.
4538
4539
4540 @item @emph{See also}:
4541 @ref{SAME_TYPE_AS}
4542 @end table
4543
4544
4545
4546 @node FDATE
4547 @section @code{FDATE} --- Get the current time as a string
4548 @fnindex FDATE
4549 @cindex time, current
4550 @cindex current time
4551 @cindex date, current
4552 @cindex current date
4553
4554 @table @asis
4555 @item @emph{Description}:
4556 @code{FDATE(DATE)} returns the current date (using the same format as
4557 @code{CTIME}) in @var{DATE}. It is equivalent to @code{CALL CTIME(DATE,
4558 TIME())}.
4559
4560 This intrinsic is provided in both subroutine and function forms; however,
4561 only one form can be used in any given program unit.
4562
4563 @item @emph{Standard}:
4564 GNU extension
4565
4566 @item @emph{Class}:
4567 Subroutine, function
4568
4569 @item @emph{Syntax}:
4570 @multitable @columnfractions .80
4571 @item @code{CALL FDATE(DATE)}.
4572 @item @code{DATE = FDATE()}.
4573 @end multitable
4574
4575 @item @emph{Arguments}:
4576 @multitable @columnfractions .15 .70
4577 @item @var{DATE}@tab The type shall be of type @code{CHARACTER} of the
4578 default kind. It is an @code{INTENT(OUT)} argument. If the length of
4579 this variable is too short for the date and time string to fit
4580 completely, it will be blank on procedure return.
4581 @end multitable
4582
4583 @item @emph{Return value}:
4584 The current date and time as a string.
4585
4586 @item @emph{Example}:
4587 @smallexample
4588 program test_fdate
4589 integer(8) :: i, j
4590 character(len=30) :: date
4591 call fdate(date)
4592 print *, 'Program started on ', date
4593 do i = 1, 100000000 ! Just a delay
4594 j = i * i - i
4595 end do
4596 call fdate(date)
4597 print *, 'Program ended on ', date
4598 end program test_fdate
4599 @end smallexample
4600
4601 @item @emph{See also}:
4602 @ref{DATE_AND_TIME}, @ref{CTIME}
4603 @end table
4604
4605
4606 @node FGET
4607 @section @code{FGET} --- Read a single character in stream mode from stdin
4608 @fnindex FGET
4609 @cindex read character, stream mode
4610 @cindex stream mode, read character
4611 @cindex file operation, read character
4612
4613 @table @asis
4614 @item @emph{Description}:
4615 Read a single character in stream mode from stdin by bypassing normal
4616 formatted output. Stream I/O should not be mixed with normal record-oriented
4617 (formatted or unformatted) I/O on the same unit; the results are unpredictable.
4618
4619 This intrinsic is provided in both subroutine and function forms; however,
4620 only one form can be used in any given program unit.
4621
4622 Note that the @code{FGET} intrinsic is provided for backwards compatibility with
4623 @command{g77}. GNU Fortran provides the Fortran 2003 Stream facility.
4624 Programmers should consider the use of new stream IO feature in new code
4625 for future portability. See also @ref{Fortran 2003 status}.
4626
4627 @item @emph{Standard}:
4628 GNU extension
4629
4630 @item @emph{Class}:
4631 Subroutine, function
4632
4633 @item @emph{Syntax}:
4634 @multitable @columnfractions .80
4635 @item @code{CALL FGET(C [, STATUS])}
4636 @item @code{STATUS = FGET(C)}
4637 @end multitable
4638
4639 @item @emph{Arguments}:
4640 @multitable @columnfractions .15 .70
4641 @item @var{C} @tab The type shall be @code{CHARACTER} and of default
4642 kind.
4643 @item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}.
4644 Returns 0 on success, -1 on end-of-file, and a system specific positive
4645 error code otherwise.
4646 @end multitable
4647
4648 @item @emph{Example}:
4649 @smallexample
4650 PROGRAM test_fget
4651 INTEGER, PARAMETER :: strlen = 100
4652 INTEGER :: status, i = 1
4653 CHARACTER(len=strlen) :: str = ""
4654
4655 WRITE (*,*) 'Enter text:'
4656 DO
4657 CALL fget(str(i:i), status)
4658 if (status /= 0 .OR. i > strlen) exit
4659 i = i + 1
4660 END DO
4661 WRITE (*,*) TRIM(str)
4662 END PROGRAM
4663 @end smallexample
4664
4665 @item @emph{See also}:
4666 @ref{FGETC}, @ref{FPUT}, @ref{FPUTC}
4667 @end table
4668
4669
4670
4671 @node FGETC
4672 @section @code{FGETC} --- Read a single character in stream mode
4673 @fnindex FGETC
4674 @cindex read character, stream mode
4675 @cindex stream mode, read character
4676 @cindex file operation, read character
4677
4678 @table @asis
4679 @item @emph{Description}:
4680 Read a single character in stream mode by bypassing normal formatted output.
4681 Stream I/O should not be mixed with normal record-oriented (formatted or
4682 unformatted) I/O on the same unit; the results are unpredictable.
4683
4684 This intrinsic is provided in both subroutine and function forms; however,
4685 only one form can be used in any given program unit.
4686
4687 Note that the @code{FGET} intrinsic is provided for backwards compatibility
4688 with @command{g77}. GNU Fortran provides the Fortran 2003 Stream facility.
4689 Programmers should consider the use of new stream IO feature in new code
4690 for future portability. See also @ref{Fortran 2003 status}.
4691
4692 @item @emph{Standard}:
4693 GNU extension
4694
4695 @item @emph{Class}:
4696 Subroutine, function
4697
4698 @item @emph{Syntax}:
4699 @multitable @columnfractions .80
4700 @item @code{CALL FGETC(UNIT, C [, STATUS])}
4701 @item @code{STATUS = FGETC(UNIT, C)}
4702 @end multitable
4703
4704 @item @emph{Arguments}:
4705 @multitable @columnfractions .15 .70
4706 @item @var{UNIT} @tab The type shall be @code{INTEGER}.
4707 @item @var{C} @tab The type shall be @code{CHARACTER} and of default
4708 kind.
4709 @item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}.
4710 Returns 0 on success, -1 on end-of-file and a system specific positive
4711 error code otherwise.
4712 @end multitable
4713
4714 @item @emph{Example}:
4715 @smallexample
4716 PROGRAM test_fgetc
4717 INTEGER :: fd = 42, status
4718 CHARACTER :: c
4719
4720 OPEN(UNIT=fd, FILE="/etc/passwd", ACTION="READ", STATUS = "OLD")
4721 DO
4722 CALL fgetc(fd, c, status)
4723 IF (status /= 0) EXIT
4724 call fput(c)
4725 END DO
4726 CLOSE(UNIT=fd)
4727 END PROGRAM
4728 @end smallexample
4729
4730 @item @emph{See also}:
4731 @ref{FGET}, @ref{FPUT}, @ref{FPUTC}
4732 @end table
4733
4734
4735
4736 @node FLOOR
4737 @section @code{FLOOR} --- Integer floor function
4738 @fnindex FLOOR
4739 @cindex floor
4740 @cindex rounding, floor
4741
4742 @table @asis
4743 @item @emph{Description}:
4744 @code{FLOOR(A)} returns the greatest integer less than or equal to @var{X}.
4745
4746 @item @emph{Standard}:
4747 Fortran 95 and later
4748
4749 @item @emph{Class}:
4750 Elemental function
4751
4752 @item @emph{Syntax}:
4753 @code{RESULT = FLOOR(A [, KIND])}
4754
4755 @item @emph{Arguments}:
4756 @multitable @columnfractions .15 .70
4757 @item @var{A} @tab The type shall be @code{REAL}.
4758 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
4759 expression indicating the kind parameter of the result.
4760 @end multitable
4761
4762 @item @emph{Return value}:
4763 The return value is of type @code{INTEGER(KIND)} if @var{KIND} is present
4764 and of default-kind @code{INTEGER} otherwise.
4765
4766 @item @emph{Example}:
4767 @smallexample
4768 program test_floor
4769 real :: x = 63.29
4770 real :: y = -63.59
4771 print *, floor(x) ! returns 63
4772 print *, floor(y) ! returns -64
4773 end program test_floor
4774 @end smallexample
4775
4776 @item @emph{See also}:
4777 @ref{CEILING}, @ref{NINT}
4778
4779 @end table
4780
4781
4782
4783 @node FLUSH
4784 @section @code{FLUSH} --- Flush I/O unit(s)
4785 @fnindex FLUSH
4786 @cindex file operation, flush
4787
4788 @table @asis
4789 @item @emph{Description}:
4790 Flushes Fortran unit(s) currently open for output. Without the optional
4791 argument, all units are flushed, otherwise just the unit specified.
4792
4793 @item @emph{Standard}:
4794 GNU extension
4795
4796 @item @emph{Class}:
4797 Subroutine
4798
4799 @item @emph{Syntax}:
4800 @code{CALL FLUSH(UNIT)}
4801
4802 @item @emph{Arguments}:
4803 @multitable @columnfractions .15 .70
4804 @item @var{UNIT} @tab (Optional) The type shall be @code{INTEGER}.
4805 @end multitable
4806
4807 @item @emph{Note}:
4808 Beginning with the Fortran 2003 standard, there is a @code{FLUSH}
4809 statement that should be preferred over the @code{FLUSH} intrinsic.
4810
4811 The @code{FLUSH} intrinsic and the Fortran 2003 @code{FLUSH} statement
4812 have identical effect: they flush the runtime library's I/O buffer so
4813 that the data becomes visible to other processes. This does not guarantee
4814 that the data is committed to disk.
4815
4816 On POSIX systems, you can request that all data is transferred to the
4817 storage device by calling the @code{fsync} function, with the POSIX file
4818 descriptor of the I/O unit as argument (retrieved with GNU intrinsic
4819 @code{FNUM}). The following example shows how:
4820
4821 @smallexample
4822 ! Declare the interface for POSIX fsync function
4823 interface
4824 function fsync (fd) bind(c,name="fsync")
4825 use iso_c_binding, only: c_int
4826 integer(c_int), value :: fd
4827 integer(c_int) :: fsync
4828 end function fsync
4829 end interface
4830
4831 ! Variable declaration
4832 integer :: ret
4833
4834 ! Opening unit 10
4835 open (10,file="foo")
4836
4837 ! ...
4838 ! Perform I/O on unit 10
4839 ! ...
4840
4841 ! Flush and sync
4842 flush(10)
4843 ret = fsync(fnum(10))
4844
4845 ! Handle possible error
4846 if (ret /= 0) stop "Error calling FSYNC"
4847 @end smallexample
4848
4849 @end table
4850
4851
4852
4853 @node FNUM
4854 @section @code{FNUM} --- File number function
4855 @fnindex FNUM
4856 @cindex file operation, file number
4857
4858 @table @asis
4859 @item @emph{Description}:
4860 @code{FNUM(UNIT)} returns the POSIX file descriptor number corresponding to the
4861 open Fortran I/O unit @code{UNIT}.
4862
4863 @item @emph{Standard}:
4864 GNU extension
4865
4866 @item @emph{Class}:
4867 Function
4868
4869 @item @emph{Syntax}:
4870 @code{RESULT = FNUM(UNIT)}
4871
4872 @item @emph{Arguments}:
4873 @multitable @columnfractions .15 .70
4874 @item @var{UNIT} @tab The type shall be @code{INTEGER}.
4875 @end multitable
4876
4877 @item @emph{Return value}:
4878 The return value is of type @code{INTEGER}
4879
4880 @item @emph{Example}:
4881 @smallexample
4882 program test_fnum
4883 integer :: i
4884 open (unit=10, status = "scratch")
4885 i = fnum(10)
4886 print *, i
4887 close (10)
4888 end program test_fnum
4889 @end smallexample
4890 @end table
4891
4892
4893
4894 @node FPUT
4895 @section @code{FPUT} --- Write a single character in stream mode to stdout
4896 @fnindex FPUT
4897 @cindex write character, stream mode
4898 @cindex stream mode, write character
4899 @cindex file operation, write character
4900
4901 @table @asis
4902 @item @emph{Description}:
4903 Write a single character in stream mode to stdout by bypassing normal
4904 formatted output. Stream I/O should not be mixed with normal record-oriented
4905 (formatted or unformatted) I/O on the same unit; the results are unpredictable.
4906
4907 This intrinsic is provided in both subroutine and function forms; however,
4908 only one form can be used in any given program unit.
4909
4910 Note that the @code{FGET} intrinsic is provided for backwards compatibility with
4911 @command{g77}. GNU Fortran provides the Fortran 2003 Stream facility.
4912 Programmers should consider the use of new stream IO feature in new code
4913 for future portability. See also @ref{Fortran 2003 status}.
4914
4915 @item @emph{Standard}:
4916 GNU extension
4917
4918 @item @emph{Class}:
4919 Subroutine, function
4920
4921 @item @emph{Syntax}:
4922 @multitable @columnfractions .80
4923 @item @code{CALL FPUT(C [, STATUS])}
4924 @item @code{STATUS = FPUT(C)}
4925 @end multitable
4926
4927 @item @emph{Arguments}:
4928 @multitable @columnfractions .15 .70
4929 @item @var{C} @tab The type shall be @code{CHARACTER} and of default
4930 kind.
4931 @item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}.
4932 Returns 0 on success, -1 on end-of-file and a system specific positive
4933 error code otherwise.
4934 @end multitable
4935
4936 @item @emph{Example}:
4937 @smallexample
4938 PROGRAM test_fput
4939 CHARACTER(len=10) :: str = "gfortran"
4940 INTEGER :: i
4941 DO i = 1, len_trim(str)
4942 CALL fput(str(i:i))
4943 END DO
4944 END PROGRAM
4945 @end smallexample
4946
4947 @item @emph{See also}:
4948 @ref{FPUTC}, @ref{FGET}, @ref{FGETC}
4949 @end table
4950
4951
4952
4953 @node FPUTC
4954 @section @code{FPUTC} --- Write a single character in stream mode
4955 @fnindex FPUTC
4956 @cindex write character, stream mode
4957 @cindex stream mode, write character
4958 @cindex file operation, write character
4959
4960 @table @asis
4961 @item @emph{Description}:
4962 Write a single character in stream mode by bypassing normal formatted
4963 output. Stream I/O should not be mixed with normal record-oriented
4964 (formatted or unformatted) I/O on the same unit; the results are unpredictable.
4965
4966 This intrinsic is provided in both subroutine and function forms; however,
4967 only one form can be used in any given program unit.
4968
4969 Note that the @code{FGET} intrinsic is provided for backwards compatibility with
4970 @command{g77}. GNU Fortran provides the Fortran 2003 Stream facility.
4971 Programmers should consider the use of new stream IO feature in new code
4972 for future portability. See also @ref{Fortran 2003 status}.
4973
4974 @item @emph{Standard}:
4975 GNU extension
4976
4977 @item @emph{Class}:
4978 Subroutine, function
4979
4980 @item @emph{Syntax}:
4981 @multitable @columnfractions .80
4982 @item @code{CALL FPUTC(UNIT, C [, STATUS])}
4983 @item @code{STATUS = FPUTC(UNIT, C)}
4984 @end multitable
4985
4986 @item @emph{Arguments}:
4987 @multitable @columnfractions .15 .70
4988 @item @var{UNIT} @tab The type shall be @code{INTEGER}.
4989 @item @var{C} @tab The type shall be @code{CHARACTER} and of default
4990 kind.
4991 @item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}.
4992 Returns 0 on success, -1 on end-of-file and a system specific positive
4993 error code otherwise.
4994 @end multitable
4995
4996 @item @emph{Example}:
4997 @smallexample
4998 PROGRAM test_fputc
4999 CHARACTER(len=10) :: str = "gfortran"
5000 INTEGER :: fd = 42, i
5001
5002 OPEN(UNIT = fd, FILE = "out", ACTION = "WRITE", STATUS="NEW")
5003 DO i = 1, len_trim(str)
5004 CALL fputc(fd, str(i:i))
5005 END DO
5006 CLOSE(fd)
5007 END PROGRAM
5008 @end smallexample
5009
5010 @item @emph{See also}:
5011 @ref{FPUT}, @ref{FGET}, @ref{FGETC}
5012 @end table
5013
5014
5015
5016 @node FRACTION
5017 @section @code{FRACTION} --- Fractional part of the model representation
5018 @fnindex FRACTION
5019 @cindex real number, fraction
5020 @cindex floating point, fraction
5021
5022 @table @asis
5023 @item @emph{Description}:
5024 @code{FRACTION(X)} returns the fractional part of the model
5025 representation of @code{X}.
5026
5027 @item @emph{Standard}:
5028 Fortran 95 and later
5029
5030 @item @emph{Class}:
5031 Elemental function
5032
5033 @item @emph{Syntax}:
5034 @code{Y = FRACTION(X)}
5035
5036 @item @emph{Arguments}:
5037 @multitable @columnfractions .15 .70
5038 @item @var{X} @tab The type of the argument shall be a @code{REAL}.
5039 @end multitable
5040
5041 @item @emph{Return value}:
5042 The return value is of the same type and kind as the argument.
5043 The fractional part of the model representation of @code{X} is returned;
5044 it is @code{X * RADIX(X)**(-EXPONENT(X))}.
5045
5046 @item @emph{Example}:
5047 @smallexample
5048 program test_fraction
5049 real :: x
5050 x = 178.1387e-4
5051 print *, fraction(x), x * radix(x)**(-exponent(x))
5052 end program test_fraction
5053 @end smallexample
5054
5055 @end table
5056
5057
5058
5059 @node FREE
5060 @section @code{FREE} --- Frees memory
5061 @fnindex FREE
5062 @cindex pointer, cray
5063
5064 @table @asis
5065 @item @emph{Description}:
5066 Frees memory previously allocated by @code{MALLOC}. The @code{FREE}
5067 intrinsic is an extension intended to be used with Cray pointers, and is
5068 provided in GNU Fortran to allow user to compile legacy code. For
5069 new code using Fortran 95 pointers, the memory de-allocation intrinsic is
5070 @code{DEALLOCATE}.
5071
5072 @item @emph{Standard}:
5073 GNU extension
5074
5075 @item @emph{Class}:
5076 Subroutine
5077
5078 @item @emph{Syntax}:
5079 @code{CALL FREE(PTR)}
5080
5081 @item @emph{Arguments}:
5082 @multitable @columnfractions .15 .70
5083 @item @var{PTR} @tab The type shall be @code{INTEGER}. It represents the
5084 location of the memory that should be de-allocated.
5085 @end multitable
5086
5087 @item @emph{Return value}:
5088 None
5089
5090 @item @emph{Example}:
5091 See @code{MALLOC} for an example.
5092
5093 @item @emph{See also}:
5094 @ref{MALLOC}
5095 @end table
5096
5097
5098
5099 @node FSEEK
5100 @section @code{FSEEK} --- Low level file positioning subroutine
5101 @fnindex FSEEK
5102 @cindex file operation, seek
5103 @cindex file operation, position
5104
5105 @table @asis
5106 @item @emph{Description}:
5107 Moves @var{UNIT} to the specified @var{OFFSET}. If @var{WHENCE}
5108 is set to 0, the @var{OFFSET} is taken as an absolute value @code{SEEK_SET},
5109 if set to 1, @var{OFFSET} is taken to be relative to the current position
5110 @code{SEEK_CUR}, and if set to 2 relative to the end of the file @code{SEEK_END}.
5111 On error, @var{STATUS} is set to a nonzero value. If @var{STATUS} the seek
5112 fails silently.
5113
5114 This intrinsic routine is not fully backwards compatible with @command{g77}.
5115 In @command{g77}, the @code{FSEEK} takes a statement label instead of a
5116 @var{STATUS} variable. If FSEEK is used in old code, change
5117 @smallexample
5118 CALL FSEEK(UNIT, OFFSET, WHENCE, *label)
5119 @end smallexample
5120 to
5121 @smallexample
5122 INTEGER :: status
5123 CALL FSEEK(UNIT, OFFSET, WHENCE, status)
5124 IF (status /= 0) GOTO label
5125 @end smallexample
5126
5127 Please note that GNU Fortran provides the Fortran 2003 Stream facility.
5128 Programmers should consider the use of new stream IO feature in new code
5129 for future portability. See also @ref{Fortran 2003 status}.
5130
5131 @item @emph{Standard}:
5132 GNU extension
5133
5134 @item @emph{Class}:
5135 Subroutine
5136
5137 @item @emph{Syntax}:
5138 @code{CALL FSEEK(UNIT, OFFSET, WHENCE[, STATUS])}
5139
5140 @item @emph{Arguments}:
5141 @multitable @columnfractions .15 .70
5142 @item @var{UNIT} @tab Shall be a scalar of type @code{INTEGER}.
5143 @item @var{OFFSET} @tab Shall be a scalar of type @code{INTEGER}.
5144 @item @var{WHENCE} @tab Shall be a scalar of type @code{INTEGER}.
5145 Its value shall be either 0, 1 or 2.
5146 @item @var{STATUS} @tab (Optional) shall be a scalar of type
5147 @code{INTEGER(4)}.
5148 @end multitable
5149
5150 @item @emph{Example}:
5151 @smallexample
5152 PROGRAM test_fseek
5153 INTEGER, PARAMETER :: SEEK_SET = 0, SEEK_CUR = 1, SEEK_END = 2
5154 INTEGER :: fd, offset, ierr
5155
5156 ierr = 0
5157 offset = 5
5158 fd = 10
5159
5160 OPEN(UNIT=fd, FILE="fseek.test")
5161 CALL FSEEK(fd, offset, SEEK_SET, ierr) ! move to OFFSET
5162 print *, FTELL(fd), ierr
5163
5164 CALL FSEEK(fd, 0, SEEK_END, ierr) ! move to end
5165 print *, FTELL(fd), ierr
5166
5167 CALL FSEEK(fd, 0, SEEK_SET, ierr) ! move to beginning
5168 print *, FTELL(fd), ierr
5169
5170 CLOSE(UNIT=fd)
5171 END PROGRAM
5172 @end smallexample
5173
5174 @item @emph{See also}:
5175 @ref{FTELL}
5176 @end table
5177
5178
5179
5180 @node FSTAT
5181 @section @code{FSTAT} --- Get file status
5182 @fnindex FSTAT
5183 @cindex file system, file status
5184
5185 @table @asis
5186 @item @emph{Description}:
5187 @code{FSTAT} is identical to @ref{STAT}, except that information about an
5188 already opened file is obtained.
5189
5190 The elements in @code{VALUES} are the same as described by @ref{STAT}.
5191
5192 This intrinsic is provided in both subroutine and function forms; however,
5193 only one form can be used in any given program unit.
5194
5195 @item @emph{Standard}:
5196 GNU extension
5197
5198 @item @emph{Class}:
5199 Subroutine, function
5200
5201 @item @emph{Syntax}:
5202 @multitable @columnfractions .80
5203 @item @code{CALL FSTAT(UNIT, VALUES [, STATUS])}
5204 @item @code{STATUS = FSTAT(UNIT, VALUES)}
5205 @end multitable
5206
5207 @item @emph{Arguments}:
5208 @multitable @columnfractions .15 .70
5209 @item @var{UNIT} @tab An open I/O unit number of type @code{INTEGER}.
5210 @item @var{VALUES} @tab The type shall be @code{INTEGER(4), DIMENSION(13)}.
5211 @item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)}. Returns 0
5212 on success and a system specific error code otherwise.
5213 @end multitable
5214
5215 @item @emph{Example}:
5216 See @ref{STAT} for an example.
5217
5218 @item @emph{See also}:
5219 To stat a link: @ref{LSTAT}, to stat a file: @ref{STAT}
5220 @end table
5221
5222
5223
5224 @node FTELL
5225 @section @code{FTELL} --- Current stream position
5226 @fnindex FTELL
5227 @cindex file operation, position
5228
5229 @table @asis
5230 @item @emph{Description}:
5231 Retrieves the current position within an open file.
5232
5233 This intrinsic is provided in both subroutine and function forms; however,
5234 only one form can be used in any given program unit.
5235
5236 @item @emph{Standard}:
5237 GNU extension
5238
5239 @item @emph{Class}:
5240 Subroutine, function
5241
5242 @item @emph{Syntax}:
5243 @multitable @columnfractions .80
5244 @item @code{CALL FTELL(UNIT, OFFSET)}
5245 @item @code{OFFSET = FTELL(UNIT)}
5246 @end multitable
5247
5248 @item @emph{Arguments}:
5249 @multitable @columnfractions .15 .70
5250 @item @var{OFFSET} @tab Shall of type @code{INTEGER}.
5251 @item @var{UNIT} @tab Shall of type @code{INTEGER}.
5252 @end multitable
5253
5254 @item @emph{Return value}:
5255 In either syntax, @var{OFFSET} is set to the current offset of unit
5256 number @var{UNIT}, or to @math{-1} if the unit is not currently open.
5257
5258 @item @emph{Example}:
5259 @smallexample
5260 PROGRAM test_ftell
5261 INTEGER :: i
5262 OPEN(10, FILE="temp.dat")
5263 CALL ftell(10,i)
5264 WRITE(*,*) i
5265 END PROGRAM
5266 @end smallexample
5267
5268 @item @emph{See also}:
5269 @ref{FSEEK}
5270 @end table
5271
5272
5273
5274 @node GAMMA
5275 @section @code{GAMMA} --- Gamma function
5276 @fnindex GAMMA
5277 @fnindex DGAMMA
5278 @cindex Gamma function
5279 @cindex Factorial function
5280
5281 @table @asis
5282 @item @emph{Description}:
5283 @code{GAMMA(X)} computes Gamma (@math{\Gamma}) of @var{X}. For positive,
5284 integer values of @var{X} the Gamma function simplifies to the factorial
5285 function @math{\Gamma(x)=(x-1)!}.
5286
5287 @tex
5288 $$
5289 \Gamma(x) = \int_0^\infty t^{x-1}{\rm e}^{-t}\,{\rm d}t
5290 $$
5291 @end tex
5292
5293 @item @emph{Standard}:
5294 Fortran 2008 and later
5295
5296 @item @emph{Class}:
5297 Elemental function
5298
5299 @item @emph{Syntax}:
5300 @code{X = GAMMA(X)}
5301
5302 @item @emph{Arguments}:
5303 @multitable @columnfractions .15 .70
5304 @item @var{X} @tab Shall be of type @code{REAL} and neither zero
5305 nor a negative integer.
5306 @end multitable
5307
5308 @item @emph{Return value}:
5309 The return value is of type @code{REAL} of the same kind as @var{X}.
5310
5311 @item @emph{Example}:
5312 @smallexample
5313 program test_gamma
5314 real :: x = 1.0
5315 x = gamma(x) ! returns 1.0
5316 end program test_gamma
5317 @end smallexample
5318
5319 @item @emph{Specific names}:
5320 @multitable @columnfractions .20 .20 .20 .25
5321 @item Name @tab Argument @tab Return type @tab Standard
5322 @item @code{GAMMA(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab GNU Extension
5323 @item @code{DGAMMA(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU Extension
5324 @end multitable
5325
5326 @item @emph{See also}:
5327 Logarithm of the Gamma function: @ref{LOG_GAMMA}
5328
5329 @end table
5330
5331
5332
5333 @node GERROR
5334 @section @code{GERROR} --- Get last system error message
5335 @fnindex GERROR
5336 @cindex system, error handling
5337
5338 @table @asis
5339 @item @emph{Description}:
5340 Returns the system error message corresponding to the last system error.
5341 This resembles the functionality of @code{strerror(3)} in C.
5342
5343 @item @emph{Standard}:
5344 GNU extension
5345
5346 @item @emph{Class}:
5347 Subroutine
5348
5349 @item @emph{Syntax}:
5350 @code{CALL GERROR(RESULT)}
5351
5352 @item @emph{Arguments}:
5353 @multitable @columnfractions .15 .70
5354 @item @var{RESULT} @tab Shall of type @code{CHARACTER} and of default
5355 @end multitable
5356
5357 @item @emph{Example}:
5358 @smallexample
5359 PROGRAM test_gerror
5360 CHARACTER(len=100) :: msg
5361 CALL gerror(msg)
5362 WRITE(*,*) msg
5363 END PROGRAM
5364 @end smallexample
5365
5366 @item @emph{See also}:
5367 @ref{IERRNO}, @ref{PERROR}
5368 @end table
5369
5370
5371
5372 @node GETARG
5373 @section @code{GETARG} --- Get command line arguments
5374 @fnindex GETARG
5375 @cindex command-line arguments
5376 @cindex arguments, to program
5377
5378 @table @asis
5379 @item @emph{Description}:
5380 Retrieve the @var{POS}-th argument that was passed on the
5381 command line when the containing program was invoked.
5382
5383 This intrinsic routine is provided for backwards compatibility with
5384 GNU Fortran 77. In new code, programmers should consider the use of
5385 the @ref{GET_COMMAND_ARGUMENT} intrinsic defined by the Fortran 2003
5386 standard.
5387
5388 @item @emph{Standard}:
5389 GNU extension
5390
5391 @item @emph{Class}:
5392 Subroutine
5393
5394 @item @emph{Syntax}:
5395 @code{CALL GETARG(POS, VALUE)}
5396
5397 @item @emph{Arguments}:
5398 @multitable @columnfractions .15 .70
5399 @item @var{POS} @tab Shall be of type @code{INTEGER} and not wider than
5400 the default integer kind; @math{@var{POS} \geq 0}
5401 @item @var{VALUE} @tab Shall be of type @code{CHARACTER} and of default
5402 kind.
5403 @item @var{VALUE} @tab Shall be of type @code{CHARACTER}.
5404 @end multitable
5405
5406 @item @emph{Return value}:
5407 After @code{GETARG} returns, the @var{VALUE} argument holds the
5408 @var{POS}th command line argument. If @var{VALUE} can not hold the
5409 argument, it is truncated to fit the length of @var{VALUE}. If there are
5410 less than @var{POS} arguments specified at the command line, @var{VALUE}
5411 will be filled with blanks. If @math{@var{POS} = 0}, @var{VALUE} is set
5412 to the name of the program (on systems that support this feature).
5413
5414 @item @emph{Example}:
5415 @smallexample
5416 PROGRAM test_getarg
5417 INTEGER :: i
5418 CHARACTER(len=32) :: arg
5419
5420 DO i = 1, iargc()
5421 CALL getarg(i, arg)
5422 WRITE (*,*) arg
5423 END DO
5424 END PROGRAM
5425 @end smallexample
5426
5427 @item @emph{See also}:
5428 GNU Fortran 77 compatibility function: @ref{IARGC}
5429
5430 Fortran 2003 functions and subroutines: @ref{GET_COMMAND},
5431 @ref{GET_COMMAND_ARGUMENT}, @ref{COMMAND_ARGUMENT_COUNT}
5432 @end table
5433
5434
5435
5436 @node GET_COMMAND
5437 @section @code{GET_COMMAND} --- Get the entire command line
5438 @fnindex GET_COMMAND
5439 @cindex command-line arguments
5440 @cindex arguments, to program
5441
5442 @table @asis
5443 @item @emph{Description}:
5444 Retrieve the entire command line that was used to invoke the program.
5445
5446 @item @emph{Standard}:
5447 Fortran 2003 and later
5448
5449 @item @emph{Class}:
5450 Subroutine
5451
5452 @item @emph{Syntax}:
5453 @code{CALL GET_COMMAND([COMMAND, LENGTH, STATUS])}
5454
5455 @item @emph{Arguments}:
5456 @multitable @columnfractions .15 .70
5457 @item @var{COMMAND} @tab (Optional) shall be of type @code{CHARACTER} and
5458 of default kind.
5459 @item @var{LENGTH} @tab (Optional) Shall be of type @code{INTEGER} and of
5460 default kind.
5461 @item @var{STATUS} @tab (Optional) Shall be of type @code{INTEGER} and of
5462 default kind.
5463 @end multitable
5464
5465 @item @emph{Return value}:
5466 If @var{COMMAND} is present, stores the entire command line that was used
5467 to invoke the program in @var{COMMAND}. If @var{LENGTH} is present, it is
5468 assigned the length of the command line. If @var{STATUS} is present, it
5469 is assigned 0 upon success of the command, -1 if @var{COMMAND} is too
5470 short to store the command line, or a positive value in case of an error.
5471
5472 @item @emph{Example}:
5473 @smallexample
5474 PROGRAM test_get_command
5475 CHARACTER(len=255) :: cmd
5476 CALL get_command(cmd)
5477 WRITE (*,*) TRIM(cmd)
5478 END PROGRAM
5479 @end smallexample
5480
5481 @item @emph{See also}:
5482 @ref{GET_COMMAND_ARGUMENT}, @ref{COMMAND_ARGUMENT_COUNT}
5483 @end table
5484
5485
5486
5487 @node GET_COMMAND_ARGUMENT
5488 @section @code{GET_COMMAND_ARGUMENT} --- Get command line arguments
5489 @fnindex GET_COMMAND_ARGUMENT
5490 @cindex command-line arguments
5491 @cindex arguments, to program
5492
5493 @table @asis
5494 @item @emph{Description}:
5495 Retrieve the @var{NUMBER}-th argument that was passed on the
5496 command line when the containing program was invoked.
5497
5498 @item @emph{Standard}:
5499 Fortran 2003 and later
5500
5501 @item @emph{Class}:
5502 Subroutine
5503
5504 @item @emph{Syntax}:
5505 @code{CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])}
5506
5507 @item @emph{Arguments}:
5508 @multitable @columnfractions .15 .70
5509 @item @var{NUMBER} @tab Shall be a scalar of type @code{INTEGER} and of
5510 default kind, @math{@var{NUMBER} \geq 0}
5511 @item @var{VALUE} @tab (Optional) Shall be a scalar of type @code{CHARACTER}
5512 and of default kind.
5513 @item @var{LENGTH} @tab (Optional) Shall be a scalar of type @code{INTEGER}
5514 and of default kind.
5515 @item @var{STATUS} @tab (Optional) Shall be a scalar of type @code{INTEGER}
5516 and of default kind.
5517 @end multitable
5518
5519 @item @emph{Return value}:
5520 After @code{GET_COMMAND_ARGUMENT} returns, the @var{VALUE} argument holds the
5521 @var{NUMBER}-th command line argument. If @var{VALUE} can not hold the argument, it is
5522 truncated to fit the length of @var{VALUE}. If there are less than @var{NUMBER}
5523 arguments specified at the command line, @var{VALUE} will be filled with blanks.
5524 If @math{@var{NUMBER} = 0}, @var{VALUE} is set to the name of the program (on
5525 systems that support this feature). The @var{LENGTH} argument contains the
5526 length of the @var{NUMBER}-th command line argument. If the argument retrieval
5527 fails, @var{STATUS} is a positive number; if @var{VALUE} contains a truncated
5528 command line argument, @var{STATUS} is -1; and otherwise the @var{STATUS} is
5529 zero.
5530
5531 @item @emph{Example}:
5532 @smallexample
5533 PROGRAM test_get_command_argument
5534 INTEGER :: i
5535 CHARACTER(len=32) :: arg
5536
5537 i = 0
5538 DO
5539 CALL get_command_argument(i, arg)
5540 IF (LEN_TRIM(arg) == 0) EXIT
5541
5542 WRITE (*,*) TRIM(arg)
5543 i = i+1
5544 END DO
5545 END PROGRAM
5546 @end smallexample
5547
5548 @item @emph{See also}:
5549 @ref{GET_COMMAND}, @ref{COMMAND_ARGUMENT_COUNT}
5550 @end table
5551
5552
5553
5554 @node GETCWD
5555 @section @code{GETCWD} --- Get current working directory
5556 @fnindex GETCWD
5557 @cindex system, working directory
5558
5559 @table @asis
5560 @item @emph{Description}:
5561 Get current working directory.
5562
5563 This intrinsic is provided in both subroutine and function forms; however,
5564 only one form can be used in any given program unit.
5565
5566 @item @emph{Standard}:
5567 GNU extension
5568
5569 @item @emph{Class}:
5570 Subroutine, function
5571
5572 @item @emph{Syntax}:
5573 @multitable @columnfractions .80
5574 @item @code{CALL GETCWD(C [, STATUS])}
5575 @item @code{STATUS = GETCWD(C)}
5576 @end multitable
5577
5578 @item @emph{Arguments}:
5579 @multitable @columnfractions .15 .70
5580 @item @var{C} @tab The type shall be @code{CHARACTER} and of default kind.
5581 @item @var{STATUS} @tab (Optional) status flag. Returns 0 on success,
5582 a system specific and nonzero error code otherwise.
5583 @end multitable
5584
5585 @item @emph{Example}:
5586 @smallexample
5587 PROGRAM test_getcwd
5588 CHARACTER(len=255) :: cwd
5589 CALL getcwd(cwd)
5590 WRITE(*,*) TRIM(cwd)
5591 END PROGRAM
5592 @end smallexample
5593
5594 @item @emph{See also}:
5595 @ref{CHDIR}
5596 @end table
5597
5598
5599
5600 @node GETENV
5601 @section @code{GETENV} --- Get an environmental variable
5602 @fnindex GETENV
5603 @cindex environment variable
5604
5605 @table @asis
5606 @item @emph{Description}:
5607 Get the @var{VALUE} of the environmental variable @var{NAME}.
5608
5609 This intrinsic routine is provided for backwards compatibility with
5610 GNU Fortran 77. In new code, programmers should consider the use of
5611 the @ref{GET_ENVIRONMENT_VARIABLE} intrinsic defined by the Fortran
5612 2003 standard.
5613
5614 Note that @code{GETENV} need not be thread-safe. It is the
5615 responsibility of the user to ensure that the environment is not being
5616 updated concurrently with a call to the @code{GETENV} intrinsic.
5617
5618 @item @emph{Standard}:
5619 GNU extension
5620
5621 @item @emph{Class}:
5622 Subroutine
5623
5624 @item @emph{Syntax}:
5625 @code{CALL GETENV(NAME, VALUE)}
5626
5627 @item @emph{Arguments}:
5628 @multitable @columnfractions .15 .70
5629 @item @var{NAME} @tab Shall be of type @code{CHARACTER} and of default kind.
5630 @item @var{VALUE} @tab Shall be of type @code{CHARACTER} and of default kind.
5631 @end multitable
5632
5633 @item @emph{Return value}:
5634 Stores the value of @var{NAME} in @var{VALUE}. If @var{VALUE} is
5635 not large enough to hold the data, it is truncated. If @var{NAME}
5636 is not set, @var{VALUE} will be filled with blanks.
5637
5638 @item @emph{Example}:
5639 @smallexample
5640 PROGRAM test_getenv
5641 CHARACTER(len=255) :: homedir
5642 CALL getenv("HOME", homedir)
5643 WRITE (*,*) TRIM(homedir)
5644 END PROGRAM
5645 @end smallexample
5646
5647 @item @emph{See also}:
5648 @ref{GET_ENVIRONMENT_VARIABLE}
5649 @end table
5650
5651
5652
5653 @node GET_ENVIRONMENT_VARIABLE
5654 @section @code{GET_ENVIRONMENT_VARIABLE} --- Get an environmental variable
5655 @fnindex GET_ENVIRONMENT_VARIABLE
5656 @cindex environment variable
5657
5658 @table @asis
5659 @item @emph{Description}:
5660 Get the @var{VALUE} of the environmental variable @var{NAME}.
5661
5662 Note that @code{GET_ENVIRONMENT_VARIABLE} need not be thread-safe. It
5663 is the responsibility of the user to ensure that the environment is
5664 not being updated concurrently with a call to the
5665 @code{GET_ENVIRONMENT_VARIABLE} intrinsic.
5666
5667 @item @emph{Standard}:
5668 Fortran 2003 and later
5669
5670 @item @emph{Class}:
5671 Subroutine
5672
5673 @item @emph{Syntax}:
5674 @code{CALL GET_ENVIRONMENT_VARIABLE(NAME[, VALUE, LENGTH, STATUS, TRIM_NAME)}
5675
5676 @item @emph{Arguments}:
5677 @multitable @columnfractions .15 .70
5678 @item @var{NAME} @tab Shall be a scalar of type @code{CHARACTER}
5679 and of default kind.
5680 @item @var{VALUE} @tab (Optional) Shall be a scalar of type @code{CHARACTER}
5681 and of default kind.
5682 @item @var{LENGTH} @tab (Optional) Shall be a scalar of type @code{INTEGER}
5683 and of default kind.
5684 @item @var{STATUS} @tab (Optional) Shall be a scalar of type @code{INTEGER}
5685 and of default kind.
5686 @item @var{TRIM_NAME} @tab (Optional) Shall be a scalar of type @code{LOGICAL}
5687 and of default kind.
5688 @end multitable
5689
5690 @item @emph{Return value}:
5691 Stores the value of @var{NAME} in @var{VALUE}. If @var{VALUE} is
5692 not large enough to hold the data, it is truncated. If @var{NAME}
5693 is not set, @var{VALUE} will be filled with blanks. Argument @var{LENGTH}
5694 contains the length needed for storing the environment variable @var{NAME}
5695 or zero if it is not present. @var{STATUS} is -1 if @var{VALUE} is present
5696 but too short for the environment variable; it is 1 if the environment
5697 variable does not exist and 2 if the processor does not support environment
5698 variables; in all other cases @var{STATUS} is zero. If @var{TRIM_NAME} is
5699 present with the value @code{.FALSE.}, the trailing blanks in @var{NAME}
5700 are significant; otherwise they are not part of the environment variable
5701 name.
5702
5703 @item @emph{Example}:
5704 @smallexample
5705 PROGRAM test_getenv
5706 CHARACTER(len=255) :: homedir
5707 CALL get_environment_variable("HOME", homedir)
5708 WRITE (*,*) TRIM(homedir)
5709 END PROGRAM
5710 @end smallexample
5711 @end table
5712
5713
5714
5715 @node GETGID
5716 @section @code{GETGID} --- Group ID function
5717 @fnindex GETGID
5718 @cindex system, group ID
5719
5720 @table @asis
5721 @item @emph{Description}:
5722 Returns the numerical group ID of the current process.
5723
5724 @item @emph{Standard}:
5725 GNU extension
5726
5727 @item @emph{Class}:
5728 Function
5729
5730 @item @emph{Syntax}:
5731 @code{RESULT = GETGID()}
5732
5733 @item @emph{Return value}:
5734 The return value of @code{GETGID} is an @code{INTEGER} of the default
5735 kind.
5736
5737
5738 @item @emph{Example}:
5739 See @code{GETPID} for an example.
5740
5741 @item @emph{See also}:
5742 @ref{GETPID}, @ref{GETUID}
5743 @end table
5744
5745
5746
5747 @node GETLOG
5748 @section @code{GETLOG} --- Get login name
5749 @fnindex GETLOG
5750 @cindex system, login name
5751 @cindex login name
5752
5753 @table @asis
5754 @item @emph{Description}:
5755 Gets the username under which the program is running.
5756
5757 @item @emph{Standard}:
5758 GNU extension
5759
5760 @item @emph{Class}:
5761 Subroutine
5762
5763 @item @emph{Syntax}:
5764 @code{CALL GETLOG(C)}
5765
5766 @item @emph{Arguments}:
5767 @multitable @columnfractions .15 .70
5768 @item @var{C} @tab Shall be of type @code{CHARACTER} and of default kind.
5769 @end multitable
5770
5771 @item @emph{Return value}:
5772 Stores the current user name in @var{LOGIN}. (On systems where POSIX
5773 functions @code{geteuid} and @code{getpwuid} are not available, and
5774 the @code{getlogin} function is not implemented either, this will
5775 return a blank string.)
5776
5777 @item @emph{Example}:
5778 @smallexample
5779 PROGRAM TEST_GETLOG
5780 CHARACTER(32) :: login
5781 CALL GETLOG(login)
5782 WRITE(*,*) login
5783 END PROGRAM
5784 @end smallexample
5785
5786 @item @emph{See also}:
5787 @ref{GETUID}
5788 @end table
5789
5790
5791
5792 @node GETPID
5793 @section @code{GETPID} --- Process ID function
5794 @fnindex GETPID
5795 @cindex system, process ID
5796 @cindex process ID
5797
5798 @table @asis
5799 @item @emph{Description}:
5800 Returns the numerical process identifier of the current process.
5801
5802 @item @emph{Standard}:
5803 GNU extension
5804
5805 @item @emph{Class}:
5806 Function
5807
5808 @item @emph{Syntax}:
5809 @code{RESULT = GETPID()}
5810
5811 @item @emph{Return value}:
5812 The return value of @code{GETPID} is an @code{INTEGER} of the default
5813 kind.
5814
5815
5816 @item @emph{Example}:
5817 @smallexample
5818 program info
5819 print *, "The current process ID is ", getpid()
5820 print *, "Your numerical user ID is ", getuid()
5821 print *, "Your numerical group ID is ", getgid()
5822 end program info
5823 @end smallexample
5824
5825 @item @emph{See also}:
5826 @ref{GETGID}, @ref{GETUID}
5827 @end table
5828
5829
5830
5831 @node GETUID
5832 @section @code{GETUID} --- User ID function
5833 @fnindex GETUID
5834 @cindex system, user ID
5835 @cindex user id
5836
5837 @table @asis
5838 @item @emph{Description}:
5839 Returns the numerical user ID of the current process.
5840
5841 @item @emph{Standard}:
5842 GNU extension
5843
5844 @item @emph{Class}:
5845 Function
5846
5847 @item @emph{Syntax}:
5848 @code{RESULT = GETUID()}
5849
5850 @item @emph{Return value}:
5851 The return value of @code{GETUID} is an @code{INTEGER} of the default
5852 kind.
5853
5854
5855 @item @emph{Example}:
5856 See @code{GETPID} for an example.
5857
5858 @item @emph{See also}:
5859 @ref{GETPID}, @ref{GETLOG}
5860 @end table
5861
5862
5863
5864 @node GMTIME
5865 @section @code{GMTIME} --- Convert time to GMT info
5866 @fnindex GMTIME
5867 @cindex time, conversion to GMT info
5868
5869 @table @asis
5870 @item @emph{Description}:
5871 Given a system time value @var{TIME} (as provided by the @code{TIME8}
5872 intrinsic), fills @var{VALUES} with values extracted from it appropriate
5873 to the UTC time zone (Universal Coordinated Time, also known in some
5874 countries as GMT, Greenwich Mean Time), using @code{gmtime(3)}.
5875
5876 @item @emph{Standard}:
5877 GNU extension
5878
5879 @item @emph{Class}:
5880 Subroutine
5881
5882 @item @emph{Syntax}:
5883 @code{CALL GMTIME(TIME, VALUES)}
5884
5885 @item @emph{Arguments}:
5886 @multitable @columnfractions .15 .70
5887 @item @var{TIME} @tab An @code{INTEGER} scalar expression
5888 corresponding to a system time, with @code{INTENT(IN)}.
5889 @item @var{VALUES} @tab A default @code{INTEGER} array with 9 elements,
5890 with @code{INTENT(OUT)}.
5891 @end multitable
5892
5893 @item @emph{Return value}:
5894 The elements of @var{VALUES} are assigned as follows:
5895 @enumerate
5896 @item Seconds after the minute, range 0--59 or 0--61 to allow for leap
5897 seconds
5898 @item Minutes after the hour, range 0--59
5899 @item Hours past midnight, range 0--23
5900 @item Day of month, range 0--31
5901 @item Number of months since January, range 0--12
5902 @item Years since 1900
5903 @item Number of days since Sunday, range 0--6
5904 @item Days since January 1
5905 @item Daylight savings indicator: positive if daylight savings is in
5906 effect, zero if not, and negative if the information is not available.
5907 @end enumerate
5908
5909 @item @emph{See also}:
5910 @ref{CTIME}, @ref{LTIME}, @ref{TIME}, @ref{TIME8}
5911
5912 @end table
5913
5914
5915
5916 @node HOSTNM
5917 @section @code{HOSTNM} --- Get system host name
5918 @fnindex HOSTNM
5919 @cindex system, host name
5920
5921 @table @asis
5922 @item @emph{Description}:
5923 Retrieves the host name of the system on which the program is running.
5924
5925 This intrinsic is provided in both subroutine and function forms; however,
5926 only one form can be used in any given program unit.
5927
5928 @item @emph{Standard}:
5929 GNU extension
5930
5931 @item @emph{Class}:
5932 Subroutine, function
5933
5934 @item @emph{Syntax}:
5935 @multitable @columnfractions .80
5936 @item @code{CALL HOSTNM(C [, STATUS])}
5937 @item @code{STATUS = HOSTNM(NAME)}
5938 @end multitable
5939
5940 @item @emph{Arguments}:
5941 @multitable @columnfractions .15 .70
5942 @item @var{C} @tab Shall of type @code{CHARACTER} and of default kind.
5943 @item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}.
5944 Returns 0 on success, or a system specific error code otherwise.
5945 @end multitable
5946
5947 @item @emph{Return value}:
5948 In either syntax, @var{NAME} is set to the current hostname if it can
5949 be obtained, or to a blank string otherwise.
5950
5951 @end table
5952
5953
5954
5955 @node HUGE
5956 @section @code{HUGE} --- Largest number of a kind
5957 @fnindex HUGE
5958 @cindex limits, largest number
5959 @cindex model representation, largest number
5960
5961 @table @asis
5962 @item @emph{Description}:
5963 @code{HUGE(X)} returns the largest number that is not an infinity in
5964 the model of the type of @code{X}.
5965
5966 @item @emph{Standard}:
5967 Fortran 95 and later
5968
5969 @item @emph{Class}:
5970 Inquiry function
5971
5972 @item @emph{Syntax}:
5973 @code{RESULT = HUGE(X)}
5974
5975 @item @emph{Arguments}:
5976 @multitable @columnfractions .15 .70
5977 @item @var{X} @tab Shall be of type @code{REAL} or @code{INTEGER}.
5978 @end multitable
5979
5980 @item @emph{Return value}:
5981 The return value is of the same type and kind as @var{X}
5982
5983 @item @emph{Example}:
5984 @smallexample
5985 program test_huge_tiny
5986 print *, huge(0), huge(0.0), huge(0.0d0)
5987 print *, tiny(0.0), tiny(0.0d0)
5988 end program test_huge_tiny
5989 @end smallexample
5990 @end table
5991
5992
5993
5994 @node HYPOT
5995 @section @code{HYPOT} --- Euclidean distance function
5996 @fnindex HYPOT
5997 @cindex Euclidean distance
5998
5999 @table @asis
6000 @item @emph{Description}:
6001 @code{HYPOT(X,Y)} is the Euclidean distance function. It is equal to
6002 @math{\sqrt{X^2 + Y^2}}, without undue underflow or overflow.
6003
6004 @item @emph{Standard}:
6005 Fortran 2008 and later
6006
6007 @item @emph{Class}:
6008 Elemental function
6009
6010 @item @emph{Syntax}:
6011 @code{RESULT = HYPOT(X, Y)}
6012
6013 @item @emph{Arguments}:
6014 @multitable @columnfractions .15 .70
6015 @item @var{X} @tab The type shall be @code{REAL}.
6016 @item @var{Y} @tab The type and kind type parameter shall be the same as
6017 @var{X}.
6018 @end multitable
6019
6020 @item @emph{Return value}:
6021 The return value has the same type and kind type parameter as @var{X}.
6022
6023 @item @emph{Example}:
6024 @smallexample
6025 program test_hypot
6026 real(4) :: x = 1.e0_4, y = 0.5e0_4
6027 x = hypot(x,y)
6028 end program test_hypot
6029 @end smallexample
6030 @end table
6031
6032
6033
6034 @node IACHAR
6035 @section @code{IACHAR} --- Code in @acronym{ASCII} collating sequence
6036 @fnindex IACHAR
6037 @cindex @acronym{ASCII} collating sequence
6038 @cindex collating sequence, @acronym{ASCII}
6039 @cindex conversion, to integer
6040
6041 @table @asis
6042 @item @emph{Description}:
6043 @code{IACHAR(C)} returns the code for the @acronym{ASCII} character
6044 in the first character position of @code{C}.
6045
6046 @item @emph{Standard}:
6047 Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
6048
6049 @item @emph{Class}:
6050 Elemental function
6051
6052 @item @emph{Syntax}:
6053 @code{RESULT = IACHAR(C [, KIND])}
6054
6055 @item @emph{Arguments}:
6056 @multitable @columnfractions .15 .70
6057 @item @var{C} @tab Shall be a scalar @code{CHARACTER}, with @code{INTENT(IN)}
6058 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
6059 expression indicating the kind parameter of the result.
6060 @end multitable
6061
6062 @item @emph{Return value}:
6063 The return value is of type @code{INTEGER} and of kind @var{KIND}. If
6064 @var{KIND} is absent, the return value is of default integer kind.
6065
6066 @item @emph{Example}:
6067 @smallexample
6068 program test_iachar
6069 integer i
6070 i = iachar(' ')
6071 end program test_iachar
6072 @end smallexample
6073
6074 @item @emph{Note}:
6075 See @ref{ICHAR} for a discussion of converting between numerical values
6076 and formatted string representations.
6077
6078 @item @emph{See also}:
6079 @ref{ACHAR}, @ref{CHAR}, @ref{ICHAR}
6080
6081 @end table
6082
6083
6084
6085 @node IALL
6086 @section @code{IALL} --- Bitwise AND of array elements
6087 @fnindex IALL
6088 @cindex array, AND
6089 @cindex bits, AND of array elements
6090
6091 @table @asis
6092 @item @emph{Description}:
6093 Reduces with bitwise AND the elements of @var{ARRAY} along dimension @var{DIM}
6094 if the corresponding element in @var{MASK} is @code{TRUE}.
6095
6096 @item @emph{Standard}:
6097 Fortran 2008 and later
6098
6099 @item @emph{Class}:
6100 Transformational function
6101
6102 @item @emph{Syntax}:
6103 @multitable @columnfractions .80
6104 @item @code{RESULT = IALL(ARRAY[, MASK])}
6105 @item @code{RESULT = IALL(ARRAY, DIM[, MASK])}
6106 @end multitable
6107
6108 @item @emph{Arguments}:
6109 @multitable @columnfractions .15 .70
6110 @item @var{ARRAY} @tab Shall be an array of type @code{INTEGER}
6111 @item @var{DIM} @tab (Optional) shall be a scalar of type
6112 @code{INTEGER} with a value in the range from 1 to n, where n
6113 equals the rank of @var{ARRAY}.
6114 @item @var{MASK} @tab (Optional) shall be of type @code{LOGICAL}
6115 and either be a scalar or an array of the same shape as @var{ARRAY}.
6116 @end multitable
6117
6118 @item @emph{Return value}:
6119 The result is of the same type as @var{ARRAY}.
6120
6121 If @var{DIM} is absent, a scalar with the bitwise ALL of all elements in
6122 @var{ARRAY} is returned. Otherwise, an array of rank n-1, where n equals
6123 the rank of @var{ARRAY}, and a shape similar to that of @var{ARRAY} with
6124 dimension @var{DIM} dropped is returned.
6125
6126 @item @emph{Example}:
6127 @smallexample
6128 PROGRAM test_iall
6129 INTEGER(1) :: a(2)
6130
6131 a(1) = b'00100100'
6132 a(2) = b'01101010'
6133
6134 ! prints 00100000
6135 PRINT '(b8.8)', IALL(a)
6136 END PROGRAM
6137 @end smallexample
6138
6139 @item @emph{See also}:
6140 @ref{IANY}, @ref{IPARITY}, @ref{IAND}
6141 @end table
6142
6143
6144
6145 @node IAND
6146 @section @code{IAND} --- Bitwise logical and
6147 @fnindex IAND
6148 @cindex bitwise logical and
6149 @cindex logical and, bitwise
6150
6151 @table @asis
6152 @item @emph{Description}:
6153 Bitwise logical @code{AND}.
6154
6155 @item @emph{Standard}:
6156 Fortran 95 and later
6157
6158 @item @emph{Class}:
6159 Elemental function
6160
6161 @item @emph{Syntax}:
6162 @code{RESULT = IAND(I, J)}
6163
6164 @item @emph{Arguments}:
6165 @multitable @columnfractions .15 .70
6166 @item @var{I} @tab The type shall be @code{INTEGER}.
6167 @item @var{J} @tab The type shall be @code{INTEGER}, of the same
6168 kind as @var{I}. (As a GNU extension, different kinds are also
6169 permitted.)
6170 @end multitable
6171
6172 @item @emph{Return value}:
6173 The return type is @code{INTEGER}, of the same kind as the
6174 arguments. (If the argument kinds differ, it is of the same kind as
6175 the larger argument.)
6176
6177 @item @emph{Example}:
6178 @smallexample
6179 PROGRAM test_iand
6180 INTEGER :: a, b
6181 DATA a / Z'F' /, b / Z'3' /
6182 WRITE (*,*) IAND(a, b)
6183 END PROGRAM
6184 @end smallexample
6185
6186 @item @emph{See also}:
6187 @ref{IOR}, @ref{IEOR}, @ref{IBITS}, @ref{IBSET}, @ref{IBCLR}, @ref{NOT}
6188
6189 @end table
6190
6191
6192
6193 @node IANY
6194 @section @code{IANY} --- Bitwise OR of array elements
6195 @fnindex IANY
6196 @cindex array, OR
6197 @cindex bits, OR of array elements
6198
6199 @table @asis
6200 @item @emph{Description}:
6201 Reduces with bitwise OR (inclusive or) the elements of @var{ARRAY} along
6202 dimension @var{DIM} if the corresponding element in @var{MASK} is @code{TRUE}.
6203
6204 @item @emph{Standard}:
6205 Fortran 2008 and later
6206
6207 @item @emph{Class}:
6208 Transformational function
6209
6210 @item @emph{Syntax}:
6211 @multitable @columnfractions .80
6212 @item @code{RESULT = IANY(ARRAY[, MASK])}
6213 @item @code{RESULT = IANY(ARRAY, DIM[, MASK])}
6214 @end multitable
6215
6216 @item @emph{Arguments}:
6217 @multitable @columnfractions .15 .70
6218 @item @var{ARRAY} @tab Shall be an array of type @code{INTEGER}
6219 @item @var{DIM} @tab (Optional) shall be a scalar of type
6220 @code{INTEGER} with a value in the range from 1 to n, where n
6221 equals the rank of @var{ARRAY}.
6222 @item @var{MASK} @tab (Optional) shall be of type @code{LOGICAL}
6223 and either be a scalar or an array of the same shape as @var{ARRAY}.
6224 @end multitable
6225
6226 @item @emph{Return value}:
6227 The result is of the same type as @var{ARRAY}.
6228
6229 If @var{DIM} is absent, a scalar with the bitwise OR of all elements in
6230 @var{ARRAY} is returned. Otherwise, an array of rank n-1, where n equals
6231 the rank of @var{ARRAY}, and a shape similar to that of @var{ARRAY} with
6232 dimension @var{DIM} dropped is returned.
6233
6234 @item @emph{Example}:
6235 @smallexample
6236 PROGRAM test_iany
6237 INTEGER(1) :: a(2)
6238
6239 a(1) = b'00100100'
6240 a(2) = b'01101010'
6241
6242 ! prints 01101110
6243 PRINT '(b8.8)', IANY(a)
6244 END PROGRAM
6245 @end smallexample
6246
6247 @item @emph{See also}:
6248 @ref{IPARITY}, @ref{IALL}, @ref{IOR}
6249 @end table
6250
6251
6252
6253 @node IARGC
6254 @section @code{IARGC} --- Get the number of command line arguments
6255 @fnindex IARGC
6256 @cindex command-line arguments
6257 @cindex command-line arguments, number of
6258 @cindex arguments, to program
6259
6260 @table @asis
6261 @item @emph{Description}:
6262 @code{IARGC} returns the number of arguments passed on the
6263 command line when the containing program was invoked.
6264
6265 This intrinsic routine is provided for backwards compatibility with
6266 GNU Fortran 77. In new code, programmers should consider the use of
6267 the @ref{COMMAND_ARGUMENT_COUNT} intrinsic defined by the Fortran 2003
6268 standard.
6269
6270 @item @emph{Standard}:
6271 GNU extension
6272
6273 @item @emph{Class}:
6274 Function
6275
6276 @item @emph{Syntax}:
6277 @code{RESULT = IARGC()}
6278
6279 @item @emph{Arguments}:
6280 None.
6281
6282 @item @emph{Return value}:
6283 The number of command line arguments, type @code{INTEGER(4)}.
6284
6285 @item @emph{Example}:
6286 See @ref{GETARG}
6287
6288 @item @emph{See also}:
6289 GNU Fortran 77 compatibility subroutine: @ref{GETARG}
6290
6291 Fortran 2003 functions and subroutines: @ref{GET_COMMAND},
6292 @ref{GET_COMMAND_ARGUMENT}, @ref{COMMAND_ARGUMENT_COUNT}
6293 @end table
6294
6295
6296
6297 @node IBCLR
6298 @section @code{IBCLR} --- Clear bit
6299 @fnindex IBCLR
6300 @cindex bits, unset
6301 @cindex bits, clear
6302
6303 @table @asis
6304 @item @emph{Description}:
6305 @code{IBCLR} returns the value of @var{I} with the bit at position
6306 @var{POS} set to zero.
6307
6308 @item @emph{Standard}:
6309 Fortran 95 and later
6310
6311 @item @emph{Class}:
6312 Elemental function
6313
6314 @item @emph{Syntax}:
6315 @code{RESULT = IBCLR(I, POS)}
6316
6317 @item @emph{Arguments}:
6318 @multitable @columnfractions .15 .70
6319 @item @var{I} @tab The type shall be @code{INTEGER}.
6320 @item @var{POS} @tab The type shall be @code{INTEGER}.
6321 @end multitable
6322
6323 @item @emph{Return value}:
6324 The return value is of type @code{INTEGER} and of the same kind as
6325 @var{I}.
6326
6327 @item @emph{See also}:
6328 @ref{IBITS}, @ref{IBSET}, @ref{IAND}, @ref{IOR}, @ref{IEOR}, @ref{MVBITS}
6329
6330 @end table
6331
6332
6333
6334 @node IBITS
6335 @section @code{IBITS} --- Bit extraction
6336 @fnindex IBITS
6337 @cindex bits, get
6338 @cindex bits, extract
6339
6340 @table @asis
6341 @item @emph{Description}:
6342 @code{IBITS} extracts a field of length @var{LEN} from @var{I},
6343 starting from bit position @var{POS} and extending left for @var{LEN}
6344 bits. The result is right-justified and the remaining bits are
6345 zeroed. The value of @code{POS+LEN} must be less than or equal to the
6346 value @code{BIT_SIZE(I)}.
6347
6348 @item @emph{Standard}:
6349 Fortran 95 and later
6350
6351 @item @emph{Class}:
6352 Elemental function
6353
6354 @item @emph{Syntax}:
6355 @code{RESULT = IBITS(I, POS, LEN)}
6356
6357 @item @emph{Arguments}:
6358 @multitable @columnfractions .15 .70
6359 @item @var{I} @tab The type shall be @code{INTEGER}.
6360 @item @var{POS} @tab The type shall be @code{INTEGER}.
6361 @item @var{LEN} @tab The type shall be @code{INTEGER}.
6362 @end multitable
6363
6364 @item @emph{Return value}:
6365 The return value is of type @code{INTEGER} and of the same kind as
6366 @var{I}.
6367
6368 @item @emph{See also}:
6369 @ref{BIT_SIZE}, @ref{IBCLR}, @ref{IBSET}, @ref{IAND}, @ref{IOR}, @ref{IEOR}
6370 @end table
6371
6372
6373
6374 @node IBSET
6375 @section @code{IBSET} --- Set bit
6376 @fnindex IBSET
6377 @cindex bits, set
6378
6379 @table @asis
6380 @item @emph{Description}:
6381 @code{IBSET} returns the value of @var{I} with the bit at position
6382 @var{POS} set to one.
6383
6384 @item @emph{Standard}:
6385 Fortran 95 and later
6386
6387 @item @emph{Class}:
6388 Elemental function
6389
6390 @item @emph{Syntax}:
6391 @code{RESULT = IBSET(I, POS)}
6392
6393 @item @emph{Arguments}:
6394 @multitable @columnfractions .15 .70
6395 @item @var{I} @tab The type shall be @code{INTEGER}.
6396 @item @var{POS} @tab The type shall be @code{INTEGER}.
6397 @end multitable
6398
6399 @item @emph{Return value}:
6400 The return value is of type @code{INTEGER} and of the same kind as
6401 @var{I}.
6402
6403 @item @emph{See also}:
6404 @ref{IBCLR}, @ref{IBITS}, @ref{IAND}, @ref{IOR}, @ref{IEOR}, @ref{MVBITS}
6405
6406 @end table
6407
6408
6409
6410 @node ICHAR
6411 @section @code{ICHAR} --- Character-to-integer conversion function
6412 @fnindex ICHAR
6413 @cindex conversion, to integer
6414
6415 @table @asis
6416 @item @emph{Description}:
6417 @code{ICHAR(C)} returns the code for the character in the first character
6418 position of @code{C} in the system's native character set.
6419 The correspondence between characters and their codes is not necessarily
6420 the same across different GNU Fortran implementations.
6421
6422 @item @emph{Standard}:
6423 Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
6424
6425 @item @emph{Class}:
6426 Elemental function
6427
6428 @item @emph{Syntax}:
6429 @code{RESULT = ICHAR(C [, KIND])}
6430
6431 @item @emph{Arguments}:
6432 @multitable @columnfractions .15 .70
6433 @item @var{C} @tab Shall be a scalar @code{CHARACTER}, with @code{INTENT(IN)}
6434 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
6435 expression indicating the kind parameter of the result.
6436 @end multitable
6437
6438 @item @emph{Return value}:
6439 The return value is of type @code{INTEGER} and of kind @var{KIND}. If
6440 @var{KIND} is absent, the return value is of default integer kind.
6441
6442 @item @emph{Example}:
6443 @smallexample
6444 program test_ichar
6445 integer i
6446 i = ichar(' ')
6447 end program test_ichar
6448 @end smallexample
6449
6450 @item @emph{Specific names}:
6451 @multitable @columnfractions .20 .20 .20 .25
6452 @item Name @tab Argument @tab Return type @tab Standard
6453 @item @code{ICHAR(C)} @tab @code{CHARACTER C} @tab @code{INTEGER(4)} @tab Fortran 77 and later
6454 @end multitable
6455
6456 @item @emph{Note}:
6457 No intrinsic exists to convert between a numeric value and a formatted
6458 character string representation -- for instance, given the
6459 @code{CHARACTER} value @code{'154'}, obtaining an @code{INTEGER} or
6460 @code{REAL} value with the value 154, or vice versa. Instead, this
6461 functionality is provided by internal-file I/O, as in the following
6462 example:
6463 @smallexample
6464 program read_val
6465 integer value
6466 character(len=10) string, string2
6467 string = '154'
6468
6469 ! Convert a string to a numeric value
6470 read (string,'(I10)') value
6471 print *, value
6472
6473 ! Convert a value to a formatted string
6474 write (string2,'(I10)') value
6475 print *, string2
6476 end program read_val
6477 @end smallexample
6478
6479 @item @emph{See also}:
6480 @ref{ACHAR}, @ref{CHAR}, @ref{IACHAR}
6481
6482 @end table
6483
6484
6485
6486 @node IDATE
6487 @section @code{IDATE} --- Get current local time subroutine (day/month/year)
6488 @fnindex IDATE
6489 @cindex date, current
6490 @cindex current date
6491
6492 @table @asis
6493 @item @emph{Description}:
6494 @code{IDATE(VALUES)} Fills @var{VALUES} with the numerical values at the
6495 current local time. The day (in the range 1-31), month (in the range 1-12),
6496 and year appear in elements 1, 2, and 3 of @var{VALUES}, respectively.
6497 The year has four significant digits.
6498
6499 @item @emph{Standard}:
6500 GNU extension
6501
6502 @item @emph{Class}:
6503 Subroutine
6504
6505 @item @emph{Syntax}:
6506 @code{CALL IDATE(VALUES)}
6507
6508 @item @emph{Arguments}:
6509 @multitable @columnfractions .15 .70
6510 @item @var{VALUES} @tab The type shall be @code{INTEGER, DIMENSION(3)} and
6511 the kind shall be the default integer kind.
6512 @end multitable
6513
6514 @item @emph{Return value}:
6515 Does not return anything.
6516
6517 @item @emph{Example}:
6518 @smallexample
6519 program test_idate
6520 integer, dimension(3) :: tarray
6521 call idate(tarray)
6522 print *, tarray(1)
6523 print *, tarray(2)
6524 print *, tarray(3)
6525 end program test_idate
6526 @end smallexample
6527 @end table
6528
6529
6530
6531 @node IEOR
6532 @section @code{IEOR} --- Bitwise logical exclusive or
6533 @fnindex IEOR
6534 @cindex bitwise logical exclusive or
6535 @cindex logical exclusive or, bitwise
6536
6537 @table @asis
6538 @item @emph{Description}:
6539 @code{IEOR} returns the bitwise Boolean exclusive-OR of @var{I} and
6540 @var{J}.
6541
6542 @item @emph{Standard}:
6543 Fortran 95 and later
6544
6545 @item @emph{Class}:
6546 Elemental function
6547
6548 @item @emph{Syntax}:
6549 @code{RESULT = IEOR(I, J)}
6550
6551 @item @emph{Arguments}:
6552 @multitable @columnfractions .15 .70
6553 @item @var{I} @tab The type shall be @code{INTEGER}.
6554 @item @var{J} @tab The type shall be @code{INTEGER}, of the same
6555 kind as @var{I}. (As a GNU extension, different kinds are also
6556 permitted.)
6557 @end multitable
6558
6559 @item @emph{Return value}:
6560 The return type is @code{INTEGER}, of the same kind as the
6561 arguments. (If the argument kinds differ, it is of the same kind as
6562 the larger argument.)
6563
6564 @item @emph{See also}:
6565 @ref{IOR}, @ref{IAND}, @ref{IBITS}, @ref{IBSET}, @ref{IBCLR}, @ref{NOT}
6566 @end table
6567
6568
6569
6570 @node IERRNO
6571 @section @code{IERRNO} --- Get the last system error number
6572 @fnindex IERRNO
6573 @cindex system, error handling
6574
6575 @table @asis
6576 @item @emph{Description}:
6577 Returns the last system error number, as given by the C @code{errno}
6578 variable.
6579
6580 @item @emph{Standard}:
6581 GNU extension
6582
6583 @item @emph{Class}:
6584 Function
6585
6586 @item @emph{Syntax}:
6587 @code{RESULT = IERRNO()}
6588
6589 @item @emph{Arguments}:
6590 None.
6591
6592 @item @emph{Return value}:
6593 The return value is of type @code{INTEGER} and of the default integer
6594 kind.
6595
6596 @item @emph{See also}:
6597 @ref{PERROR}
6598 @end table
6599
6600
6601
6602 @node IMAGE_INDEX
6603 @section @code{IMAGE_INDEX} --- Function that converts a cosubscript to an image index
6604 @fnindex IMAGE_INDEX
6605 @cindex coarray, @code{IMAGE_INDEX}
6606 @cindex images, cosubscript to image index conversion
6607
6608 @table @asis
6609 @item @emph{Description}:
6610 Returns the image index belonging to a cosubscript.
6611
6612 @item @emph{Standard}:
6613 Fortran 2008 and later
6614
6615 @item @emph{Class}:
6616 Inquiry function.
6617
6618 @item @emph{Syntax}:
6619 @code{RESULT = IMAGE_INDEX(COARRAY, SUB)}
6620
6621 @item @emph{Arguments}: None.
6622 @multitable @columnfractions .15 .70
6623 @item @var{COARRAY} @tab Coarray of any type.
6624 @item @var{SUB} @tab default integer rank-1 array of a size equal to
6625 the corank of @var{COARRAY}.
6626 @end multitable
6627
6628
6629 @item @emph{Return value}:
6630 Scalar default integer with the value of the image index which corresponds
6631 to the cosubscripts. For invalid cosubscripts the result is zero.
6632
6633 @item @emph{Example}:
6634 @smallexample
6635 INTEGER :: array[2,-1:4,8,*]
6636 ! Writes 28 (or 0 if there are fewer than 28 images)
6637 WRITE (*,*) IMAGE_INDEX (array, [2,0,3,1])
6638 @end smallexample
6639
6640 @item @emph{See also}:
6641 @ref{THIS_IMAGE}, @ref{NUM_IMAGES}
6642 @end table
6643
6644
6645
6646 @node INDEX intrinsic
6647 @section @code{INDEX} --- Position of a substring within a string
6648 @fnindex INDEX
6649 @cindex substring position
6650 @cindex string, find substring
6651
6652 @table @asis
6653 @item @emph{Description}:
6654 Returns the position of the start of the first occurrence of string
6655 @var{SUBSTRING} as a substring in @var{STRING}, counting from one. If
6656 @var{SUBSTRING} is not present in @var{STRING}, zero is returned. If
6657 the @var{BACK} argument is present and true, the return value is the
6658 start of the last occurrence rather than the first.
6659
6660 @item @emph{Standard}:
6661 Fortran 77 and later, with @var{KIND} argument Fortran 2003 and later
6662
6663 @item @emph{Class}:
6664 Elemental function
6665
6666 @item @emph{Syntax}:
6667 @code{RESULT = INDEX(STRING, SUBSTRING [, BACK [, KIND]])}
6668
6669 @item @emph{Arguments}:
6670 @multitable @columnfractions .15 .70
6671 @item @var{STRING} @tab Shall be a scalar @code{CHARACTER}, with
6672 @code{INTENT(IN)}
6673 @item @var{SUBSTRING} @tab Shall be a scalar @code{CHARACTER}, with
6674 @code{INTENT(IN)}
6675 @item @var{BACK} @tab (Optional) Shall be a scalar @code{LOGICAL}, with
6676 @code{INTENT(IN)}
6677 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
6678 expression indicating the kind parameter of the result.
6679 @end multitable
6680
6681 @item @emph{Return value}:
6682 The return value is of type @code{INTEGER} and of kind @var{KIND}. If
6683 @var{KIND} is absent, the return value is of default integer kind.
6684
6685 @item @emph{Specific names}:
6686 @multitable @columnfractions .20 .20 .20 .25
6687 @item Name @tab Argument @tab Return type @tab Standard
6688 @item @code{INDEX(STRING, SUBSTRING)} @tab @code{CHARACTER} @tab @code{INTEGER(4)} @tab Fortran 77 and later
6689 @end multitable
6690
6691 @item @emph{See also}:
6692 @ref{SCAN}, @ref{VERIFY}
6693 @end table
6694
6695
6696
6697 @node INT
6698 @section @code{INT} --- Convert to integer type
6699 @fnindex INT
6700 @fnindex IFIX
6701 @fnindex IDINT
6702 @cindex conversion, to integer
6703
6704 @table @asis
6705 @item @emph{Description}:
6706 Convert to integer type
6707
6708 @item @emph{Standard}:
6709 Fortran 77 and later
6710
6711 @item @emph{Class}:
6712 Elemental function
6713
6714 @item @emph{Syntax}:
6715 @code{RESULT = INT(A [, KIND))}
6716
6717 @item @emph{Arguments}:
6718 @multitable @columnfractions .15 .70
6719 @item @var{A} @tab Shall be of type @code{INTEGER},
6720 @code{REAL}, or @code{COMPLEX}.
6721 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
6722 expression indicating the kind parameter of the result.
6723 @end multitable
6724
6725 @item @emph{Return value}:
6726 These functions return a @code{INTEGER} variable or array under
6727 the following rules:
6728
6729 @table @asis
6730 @item (A)
6731 If @var{A} is of type @code{INTEGER}, @code{INT(A) = A}
6732 @item (B)
6733 If @var{A} is of type @code{REAL} and @math{|A| < 1}, @code{INT(A)} equals @code{0}.
6734 If @math{|A| \geq 1}, then @code{INT(A)} equals the largest integer that does not exceed
6735 the range of @var{A} and whose sign is the same as the sign of @var{A}.
6736 @item (C)
6737 If @var{A} is of type @code{COMPLEX}, rule B is applied to the real part of @var{A}.
6738 @end table
6739
6740 @item @emph{Example}:
6741 @smallexample
6742 program test_int
6743 integer :: i = 42
6744 complex :: z = (-3.7, 1.0)
6745 print *, int(i)
6746 print *, int(z), int(z,8)
6747 end program
6748 @end smallexample
6749
6750 @item @emph{Specific names}:
6751 @multitable @columnfractions .20 .20 .20 .25
6752 @item Name @tab Argument @tab Return type @tab Standard
6753 @item @code{INT(A)} @tab @code{REAL(4) A} @tab @code{INTEGER} @tab Fortran 77 and later
6754 @item @code{IFIX(A)} @tab @code{REAL(4) A} @tab @code{INTEGER} @tab Fortran 77 and later
6755 @item @code{IDINT(A)} @tab @code{REAL(8) A} @tab @code{INTEGER} @tab Fortran 77 and later
6756 @end multitable
6757
6758 @end table
6759
6760
6761 @node INT2
6762 @section @code{INT2} --- Convert to 16-bit integer type
6763 @fnindex INT2
6764 @fnindex SHORT
6765 @cindex conversion, to integer
6766
6767 @table @asis
6768 @item @emph{Description}:
6769 Convert to a @code{KIND=2} integer type. This is equivalent to the
6770 standard @code{INT} intrinsic with an optional argument of
6771 @code{KIND=2}, and is only included for backwards compatibility.
6772
6773 The @code{SHORT} intrinsic is equivalent to @code{INT2}.
6774
6775 @item @emph{Standard}:
6776 GNU extension
6777
6778 @item @emph{Class}:
6779 Elemental function
6780
6781 @item @emph{Syntax}:
6782 @code{RESULT = INT2(A)}
6783
6784 @item @emph{Arguments}:
6785 @multitable @columnfractions .15 .70
6786 @item @var{A} @tab Shall be of type @code{INTEGER},
6787 @code{REAL}, or @code{COMPLEX}.
6788 @end multitable
6789
6790 @item @emph{Return value}:
6791 The return value is a @code{INTEGER(2)} variable.
6792
6793 @item @emph{See also}:
6794 @ref{INT}, @ref{INT8}, @ref{LONG}
6795 @end table
6796
6797
6798
6799 @node INT8
6800 @section @code{INT8} --- Convert to 64-bit integer type
6801 @fnindex INT8
6802 @cindex conversion, to integer
6803
6804 @table @asis
6805 @item @emph{Description}:
6806 Convert to a @code{KIND=8} integer type. This is equivalent to the
6807 standard @code{INT} intrinsic with an optional argument of
6808 @code{KIND=8}, and is only included for backwards compatibility.
6809
6810 @item @emph{Standard}:
6811 GNU extension
6812
6813 @item @emph{Class}:
6814 Elemental function
6815
6816 @item @emph{Syntax}:
6817 @code{RESULT = INT8(A)}
6818
6819 @item @emph{Arguments}:
6820 @multitable @columnfractions .15 .70
6821 @item @var{A} @tab Shall be of type @code{INTEGER},
6822 @code{REAL}, or @code{COMPLEX}.
6823 @end multitable
6824
6825 @item @emph{Return value}:
6826 The return value is a @code{INTEGER(8)} variable.
6827
6828 @item @emph{See also}:
6829 @ref{INT}, @ref{INT2}, @ref{LONG}
6830 @end table
6831
6832
6833
6834 @node IOR
6835 @section @code{IOR} --- Bitwise logical or
6836 @fnindex IOR
6837 @cindex bitwise logical or
6838 @cindex logical or, bitwise
6839
6840 @table @asis
6841 @item @emph{Description}:
6842 @code{IOR} returns the bitwise Boolean inclusive-OR of @var{I} and
6843 @var{J}.
6844
6845 @item @emph{Standard}:
6846 Fortran 95 and later
6847
6848 @item @emph{Class}:
6849 Elemental function
6850
6851 @item @emph{Syntax}:
6852 @code{RESULT = IOR(I, J)}
6853
6854 @item @emph{Arguments}:
6855 @multitable @columnfractions .15 .70
6856 @item @var{I} @tab The type shall be @code{INTEGER}.
6857 @item @var{J} @tab The type shall be @code{INTEGER}, of the same
6858 kind as @var{I}. (As a GNU extension, different kinds are also
6859 permitted.)
6860 @end multitable
6861
6862 @item @emph{Return value}:
6863 The return type is @code{INTEGER}, of the same kind as the
6864 arguments. (If the argument kinds differ, it is of the same kind as
6865 the larger argument.)
6866
6867 @item @emph{See also}:
6868 @ref{IEOR}, @ref{IAND}, @ref{IBITS}, @ref{IBSET}, @ref{IBCLR}, @ref{NOT}
6869 @end table
6870
6871
6872
6873 @node IPARITY
6874 @section @code{IPARITY} --- Bitwise XOR of array elements
6875 @fnindex IPARITY
6876 @cindex array, parity
6877 @cindex array, XOR
6878 @cindex bits, XOR of array elements
6879
6880 @table @asis
6881 @item @emph{Description}:
6882 Reduces with bitwise XOR (exclusive or) the elements of @var{ARRAY} along
6883 dimension @var{DIM} if the corresponding element in @var{MASK} is @code{TRUE}.
6884
6885 @item @emph{Standard}:
6886 Fortran 2008 and later
6887
6888 @item @emph{Class}:
6889 Transformational function
6890
6891 @item @emph{Syntax}:
6892 @multitable @columnfractions .80
6893 @item @code{RESULT = IPARITY(ARRAY[, MASK])}
6894 @item @code{RESULT = IPARITY(ARRAY, DIM[, MASK])}
6895 @end multitable
6896
6897 @item @emph{Arguments}:
6898 @multitable @columnfractions .15 .70
6899 @item @var{ARRAY} @tab Shall be an array of type @code{INTEGER}
6900 @item @var{DIM} @tab (Optional) shall be a scalar of type
6901 @code{INTEGER} with a value in the range from 1 to n, where n
6902 equals the rank of @var{ARRAY}.
6903 @item @var{MASK} @tab (Optional) shall be of type @code{LOGICAL}
6904 and either be a scalar or an array of the same shape as @var{ARRAY}.
6905 @end multitable
6906
6907 @item @emph{Return value}:
6908 The result is of the same type as @var{ARRAY}.
6909
6910 If @var{DIM} is absent, a scalar with the bitwise XOR of all elements in
6911 @var{ARRAY} is returned. Otherwise, an array of rank n-1, where n equals
6912 the rank of @var{ARRAY}, and a shape similar to that of @var{ARRAY} with
6913 dimension @var{DIM} dropped is returned.
6914
6915 @item @emph{Example}:
6916 @smallexample
6917 PROGRAM test_iparity
6918 INTEGER(1) :: a(2)
6919
6920 a(1) = b'00100100'
6921 a(2) = b'01101010'
6922
6923 ! prints 01001110
6924 PRINT '(b8.8)', IPARITY(a)
6925 END PROGRAM
6926 @end smallexample
6927
6928 @item @emph{See also}:
6929 @ref{IANY}, @ref{IALL}, @ref{IEOR}, @ref{PARITY}
6930 @end table
6931
6932
6933
6934 @node IRAND
6935 @section @code{IRAND} --- Integer pseudo-random number
6936 @fnindex IRAND
6937 @cindex random number generation
6938
6939 @table @asis
6940 @item @emph{Description}:
6941 @code{IRAND(FLAG)} returns a pseudo-random number from a uniform
6942 distribution between 0 and a system-dependent limit (which is in most
6943 cases 2147483647). If @var{FLAG} is 0, the next number
6944 in the current sequence is returned; if @var{FLAG} is 1, the generator
6945 is restarted by @code{CALL SRAND(0)}; if @var{FLAG} has any other value,
6946 it is used as a new seed with @code{SRAND}.
6947
6948 This intrinsic routine is provided for backwards compatibility with
6949 GNU Fortran 77. It implements a simple modulo generator as provided
6950 by @command{g77}. For new code, one should consider the use of
6951 @ref{RANDOM_NUMBER} as it implements a superior algorithm.
6952
6953 @item @emph{Standard}:
6954 GNU extension
6955
6956 @item @emph{Class}:
6957 Function
6958
6959 @item @emph{Syntax}:
6960 @code{RESULT = IRAND(I)}
6961
6962 @item @emph{Arguments}:
6963 @multitable @columnfractions .15 .70
6964 @item @var{I} @tab Shall be a scalar @code{INTEGER} of kind 4.
6965 @end multitable
6966
6967 @item @emph{Return value}:
6968 The return value is of @code{INTEGER(kind=4)} type.
6969
6970 @item @emph{Example}:
6971 @smallexample
6972 program test_irand
6973 integer,parameter :: seed = 86456
6974
6975 call srand(seed)
6976 print *, irand(), irand(), irand(), irand()
6977 print *, irand(seed), irand(), irand(), irand()
6978 end program test_irand
6979 @end smallexample
6980
6981 @end table
6982
6983
6984
6985 @node IS_IOSTAT_END
6986 @section @code{IS_IOSTAT_END} --- Test for end-of-file value
6987 @fnindex IS_IOSTAT_END
6988 @cindex @code{IOSTAT}, end of file
6989
6990 @table @asis
6991 @item @emph{Description}:
6992 @code{IS_IOSTAT_END} tests whether an variable has the value of the I/O
6993 status ``end of file''. The function is equivalent to comparing the variable
6994 with the @code{IOSTAT_END} parameter of the intrinsic module
6995 @code{ISO_FORTRAN_ENV}.
6996
6997 @item @emph{Standard}:
6998 Fortran 2003 and later
6999
7000 @item @emph{Class}:
7001 Elemental function
7002
7003 @item @emph{Syntax}:
7004 @code{RESULT = IS_IOSTAT_END(I)}
7005
7006 @item @emph{Arguments}:
7007 @multitable @columnfractions .15 .70
7008 @item @var{I} @tab Shall be of the type @code{INTEGER}.
7009 @end multitable
7010
7011 @item @emph{Return value}:
7012 Returns a @code{LOGICAL} of the default kind, which @code{.TRUE.} if
7013 @var{I} has the value which indicates an end of file condition for
7014 @code{IOSTAT=} specifiers, and is @code{.FALSE.} otherwise.
7015
7016 @item @emph{Example}:
7017 @smallexample
7018 PROGRAM iostat
7019 IMPLICIT NONE
7020 INTEGER :: stat, i
7021 OPEN(88, FILE='test.dat')
7022 READ(88, *, IOSTAT=stat) i
7023 IF(IS_IOSTAT_END(stat)) STOP 'END OF FILE'
7024 END PROGRAM
7025 @end smallexample
7026 @end table
7027
7028
7029
7030 @node IS_IOSTAT_EOR
7031 @section @code{IS_IOSTAT_EOR} --- Test for end-of-record value
7032 @fnindex IS_IOSTAT_EOR
7033 @cindex @code{IOSTAT}, end of record
7034
7035 @table @asis
7036 @item @emph{Description}:
7037 @code{IS_IOSTAT_EOR} tests whether an variable has the value of the I/O
7038 status ``end of record''. The function is equivalent to comparing the
7039 variable with the @code{IOSTAT_EOR} parameter of the intrinsic module
7040 @code{ISO_FORTRAN_ENV}.
7041
7042 @item @emph{Standard}:
7043 Fortran 2003 and later
7044
7045 @item @emph{Class}:
7046 Elemental function
7047
7048 @item @emph{Syntax}:
7049 @code{RESULT = IS_IOSTAT_EOR(I)}
7050
7051 @item @emph{Arguments}:
7052 @multitable @columnfractions .15 .70
7053 @item @var{I} @tab Shall be of the type @code{INTEGER}.
7054 @end multitable
7055
7056 @item @emph{Return value}:
7057 Returns a @code{LOGICAL} of the default kind, which @code{.TRUE.} if
7058 @var{I} has the value which indicates an end of file condition for
7059 @code{IOSTAT=} specifiers, and is @code{.FALSE.} otherwise.
7060
7061 @item @emph{Example}:
7062 @smallexample
7063 PROGRAM iostat
7064 IMPLICIT NONE
7065 INTEGER :: stat, i(50)
7066 OPEN(88, FILE='test.dat', FORM='UNFORMATTED')
7067 READ(88, IOSTAT=stat) i
7068 IF(IS_IOSTAT_EOR(stat)) STOP 'END OF RECORD'
7069 END PROGRAM
7070 @end smallexample
7071 @end table
7072
7073
7074
7075 @node ISATTY
7076 @section @code{ISATTY} --- Whether a unit is a terminal device.
7077 @fnindex ISATTY
7078 @cindex system, terminal
7079
7080 @table @asis
7081 @item @emph{Description}:
7082 Determine whether a unit is connected to a terminal device.
7083
7084 @item @emph{Standard}:
7085 GNU extension
7086
7087 @item @emph{Class}:
7088 Function
7089
7090 @item @emph{Syntax}:
7091 @code{RESULT = ISATTY(UNIT)}
7092
7093 @item @emph{Arguments}:
7094 @multitable @columnfractions .15 .70
7095 @item @var{UNIT} @tab Shall be a scalar @code{INTEGER}.
7096 @end multitable
7097
7098 @item @emph{Return value}:
7099 Returns @code{.TRUE.} if the @var{UNIT} is connected to a terminal
7100 device, @code{.FALSE.} otherwise.
7101
7102 @item @emph{Example}:
7103 @smallexample
7104 PROGRAM test_isatty
7105 INTEGER(kind=1) :: unit
7106 DO unit = 1, 10
7107 write(*,*) isatty(unit=unit)
7108 END DO
7109 END PROGRAM
7110 @end smallexample
7111 @item @emph{See also}:
7112 @ref{TTYNAM}
7113 @end table
7114
7115
7116
7117 @node ISHFT
7118 @section @code{ISHFT} --- Shift bits
7119 @fnindex ISHFT
7120 @cindex bits, shift
7121
7122 @table @asis
7123 @item @emph{Description}:
7124 @code{ISHFT} returns a value corresponding to @var{I} with all of the
7125 bits shifted @var{SHIFT} places. A value of @var{SHIFT} greater than
7126 zero corresponds to a left shift, a value of zero corresponds to no
7127 shift, and a value less than zero corresponds to a right shift. If the
7128 absolute value of @var{SHIFT} is greater than @code{BIT_SIZE(I)}, the
7129 value is undefined. Bits shifted out from the left end or right end are
7130 lost; zeros are shifted in from the opposite end.
7131
7132 @item @emph{Standard}:
7133 Fortran 95 and later
7134
7135 @item @emph{Class}:
7136 Elemental function
7137
7138 @item @emph{Syntax}:
7139 @code{RESULT = ISHFT(I, SHIFT)}
7140
7141 @item @emph{Arguments}:
7142 @multitable @columnfractions .15 .70
7143 @item @var{I} @tab The type shall be @code{INTEGER}.
7144 @item @var{SHIFT} @tab The type shall be @code{INTEGER}.
7145 @end multitable
7146
7147 @item @emph{Return value}:
7148 The return value is of type @code{INTEGER} and of the same kind as
7149 @var{I}.
7150
7151 @item @emph{See also}:
7152 @ref{ISHFTC}
7153 @end table
7154
7155
7156
7157 @node ISHFTC
7158 @section @code{ISHFTC} --- Shift bits circularly
7159 @fnindex ISHFTC
7160 @cindex bits, shift circular
7161
7162 @table @asis
7163 @item @emph{Description}:
7164 @code{ISHFTC} returns a value corresponding to @var{I} with the
7165 rightmost @var{SIZE} bits shifted circularly @var{SHIFT} places; that
7166 is, bits shifted out one end are shifted into the opposite end. A value
7167 of @var{SHIFT} greater than zero corresponds to a left shift, a value of
7168 zero corresponds to no shift, and a value less than zero corresponds to
7169 a right shift. The absolute value of @var{SHIFT} must be less than
7170 @var{SIZE}. If the @var{SIZE} argument is omitted, it is taken to be
7171 equivalent to @code{BIT_SIZE(I)}.
7172
7173 @item @emph{Standard}:
7174 Fortran 95 and later
7175
7176 @item @emph{Class}:
7177 Elemental function
7178
7179 @item @emph{Syntax}:
7180 @code{RESULT = ISHFTC(I, SHIFT [, SIZE])}
7181
7182 @item @emph{Arguments}:
7183 @multitable @columnfractions .15 .70
7184 @item @var{I} @tab The type shall be @code{INTEGER}.
7185 @item @var{SHIFT} @tab The type shall be @code{INTEGER}.
7186 @item @var{SIZE} @tab (Optional) The type shall be @code{INTEGER};
7187 the value must be greater than zero and less than or equal to
7188 @code{BIT_SIZE(I)}.
7189 @end multitable
7190
7191 @item @emph{Return value}:
7192 The return value is of type @code{INTEGER} and of the same kind as
7193 @var{I}.
7194
7195 @item @emph{See also}:
7196 @ref{ISHFT}
7197 @end table
7198
7199
7200
7201 @node ISNAN
7202 @section @code{ISNAN} --- Test for a NaN
7203 @fnindex ISNAN
7204 @cindex IEEE, ISNAN
7205
7206 @table @asis
7207 @item @emph{Description}:
7208 @code{ISNAN} tests whether a floating-point value is an IEEE
7209 Not-a-Number (NaN).
7210 @item @emph{Standard}:
7211 GNU extension
7212
7213 @item @emph{Class}:
7214 Elemental function
7215
7216 @item @emph{Syntax}:
7217 @code{ISNAN(X)}
7218
7219 @item @emph{Arguments}:
7220 @multitable @columnfractions .15 .70
7221 @item @var{X} @tab Variable of the type @code{REAL}.
7222
7223 @end multitable
7224
7225 @item @emph{Return value}:
7226 Returns a default-kind @code{LOGICAL}. The returned value is @code{TRUE}
7227 if @var{X} is a NaN and @code{FALSE} otherwise.
7228
7229 @item @emph{Example}:
7230 @smallexample
7231 program test_nan
7232 implicit none
7233 real :: x
7234 x = -1.0
7235 x = sqrt(x)
7236 if (isnan(x)) stop '"x" is a NaN'
7237 end program test_nan
7238 @end smallexample
7239 @end table
7240
7241
7242
7243 @node ITIME
7244 @section @code{ITIME} --- Get current local time subroutine (hour/minutes/seconds)
7245 @fnindex ITIME
7246 @cindex time, current
7247 @cindex current time
7248
7249 @table @asis
7250 @item @emph{Description}:
7251 @code{IDATE(VALUES)} Fills @var{VALUES} with the numerical values at the
7252 current local time. The hour (in the range 1-24), minute (in the range 1-60),
7253 and seconds (in the range 1-60) appear in elements 1, 2, and 3 of @var{VALUES},
7254 respectively.
7255
7256 @item @emph{Standard}:
7257 GNU extension
7258
7259 @item @emph{Class}:
7260 Subroutine
7261
7262 @item @emph{Syntax}:
7263 @code{CALL ITIME(VALUES)}
7264
7265 @item @emph{Arguments}:
7266 @multitable @columnfractions .15 .70
7267 @item @var{VALUES} @tab The type shall be @code{INTEGER, DIMENSION(3)}
7268 and the kind shall be the default integer kind.
7269 @end multitable
7270
7271 @item @emph{Return value}:
7272 Does not return anything.
7273
7274
7275 @item @emph{Example}:
7276 @smallexample
7277 program test_itime
7278 integer, dimension(3) :: tarray
7279 call itime(tarray)
7280 print *, tarray(1)
7281 print *, tarray(2)
7282 print *, tarray(3)
7283 end program test_itime
7284 @end smallexample
7285 @end table
7286
7287
7288
7289 @node KILL
7290 @section @code{KILL} --- Send a signal to a process
7291 @fnindex KILL
7292
7293 @table @asis
7294 @item @emph{Description}:
7295 @item @emph{Standard}:
7296 Sends the signal specified by @var{SIGNAL} to the process @var{PID}.
7297 See @code{kill(2)}.
7298
7299 This intrinsic is provided in both subroutine and function forms; however,
7300 only one form can be used in any given program unit.
7301
7302 @item @emph{Class}:
7303 Subroutine, function
7304
7305 @item @emph{Syntax}:
7306 @multitable @columnfractions .80
7307 @item @code{CALL KILL(C, VALUE [, STATUS])}
7308 @item @code{STATUS = KILL(C, VALUE)}
7309 @end multitable
7310
7311 @item @emph{Arguments}:
7312 @multitable @columnfractions .15 .70
7313 @item @var{C} @tab Shall be a scalar @code{INTEGER}, with
7314 @code{INTENT(IN)}
7315 @item @var{VALUE} @tab Shall be a scalar @code{INTEGER}, with
7316 @code{INTENT(IN)}
7317 @item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)} or
7318 @code{INTEGER(8)}. Returns 0 on success, or a system-specific error code
7319 otherwise.
7320 @end multitable
7321
7322 @item @emph{See also}:
7323 @ref{ABORT}, @ref{EXIT}
7324 @end table
7325
7326
7327
7328 @node KIND
7329 @section @code{KIND} --- Kind of an entity
7330 @fnindex KIND
7331 @cindex kind
7332
7333 @table @asis
7334 @item @emph{Description}:
7335 @code{KIND(X)} returns the kind value of the entity @var{X}.
7336
7337 @item @emph{Standard}:
7338 Fortran 95 and later
7339
7340 @item @emph{Class}:
7341 Inquiry function
7342
7343 @item @emph{Syntax}:
7344 @code{K = KIND(X)}
7345
7346 @item @emph{Arguments}:
7347 @multitable @columnfractions .15 .70
7348 @item @var{X} @tab Shall be of type @code{LOGICAL}, @code{INTEGER},
7349 @code{REAL}, @code{COMPLEX} or @code{CHARACTER}.
7350 @end multitable
7351
7352 @item @emph{Return value}:
7353 The return value is a scalar of type @code{INTEGER} and of the default
7354 integer kind.
7355
7356 @item @emph{Example}:
7357 @smallexample
7358 program test_kind
7359 integer,parameter :: kc = kind(' ')
7360 integer,parameter :: kl = kind(.true.)
7361
7362 print *, "The default character kind is ", kc
7363 print *, "The default logical kind is ", kl
7364 end program test_kind
7365 @end smallexample
7366
7367 @end table
7368
7369
7370
7371 @node LBOUND
7372 @section @code{LBOUND} --- Lower dimension bounds of an array
7373 @fnindex LBOUND
7374 @cindex array, lower bound
7375
7376 @table @asis
7377 @item @emph{Description}:
7378 Returns the lower bounds of an array, or a single lower bound
7379 along the @var{DIM} dimension.
7380 @item @emph{Standard}:
7381 Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
7382
7383 @item @emph{Class}:
7384 Inquiry function
7385
7386 @item @emph{Syntax}:
7387 @code{RESULT = LBOUND(ARRAY [, DIM [, KIND]])}
7388
7389 @item @emph{Arguments}:
7390 @multitable @columnfractions .15 .70
7391 @item @var{ARRAY} @tab Shall be an array, of any type.
7392 @item @var{DIM} @tab (Optional) Shall be a scalar @code{INTEGER}.
7393 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
7394 expression indicating the kind parameter of the result.
7395 @end multitable
7396
7397 @item @emph{Return value}:
7398 The return value is of type @code{INTEGER} and of kind @var{KIND}. If
7399 @var{KIND} is absent, the return value is of default integer kind.
7400 If @var{DIM} is absent, the result is an array of the lower bounds of
7401 @var{ARRAY}. If @var{DIM} is present, the result is a scalar
7402 corresponding to the lower bound of the array along that dimension. If
7403 @var{ARRAY} is an expression rather than a whole array or array
7404 structure component, or if it has a zero extent along the relevant
7405 dimension, the lower bound is taken to be 1.
7406
7407 @item @emph{See also}:
7408 @ref{UBOUND}, @ref{LCOBOUND}
7409 @end table
7410
7411
7412
7413 @node LCOBOUND
7414 @section @code{LCOBOUND} --- Lower codimension bounds of an array
7415 @fnindex LCOBOUND
7416 @cindex coarray, lower bound
7417
7418 @table @asis
7419 @item @emph{Description}:
7420 Returns the lower bounds of a coarray, or a single lower cobound
7421 along the @var{DIM} codimension.
7422 @item @emph{Standard}:
7423 Fortran 2008 and later
7424
7425 @item @emph{Class}:
7426 Inquiry function
7427
7428 @item @emph{Syntax}:
7429 @code{RESULT = LCOBOUND(COARRAY [, DIM [, KIND]])}
7430
7431 @item @emph{Arguments}:
7432 @multitable @columnfractions .15 .70
7433 @item @var{ARRAY} @tab Shall be an coarray, of any type.
7434 @item @var{DIM} @tab (Optional) Shall be a scalar @code{INTEGER}.
7435 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
7436 expression indicating the kind parameter of the result.
7437 @end multitable
7438
7439 @item @emph{Return value}:
7440 The return value is of type @code{INTEGER} and of kind @var{KIND}. If
7441 @var{KIND} is absent, the return value is of default integer kind.
7442 If @var{DIM} is absent, the result is an array of the lower cobounds of
7443 @var{COARRAY}. If @var{DIM} is present, the result is a scalar
7444 corresponding to the lower cobound of the array along that codimension.
7445
7446 @item @emph{See also}:
7447 @ref{UCOBOUND}, @ref{LBOUND}
7448 @end table
7449
7450
7451
7452 @node LEADZ
7453 @section @code{LEADZ} --- Number of leading zero bits of an integer
7454 @fnindex LEADZ
7455 @cindex zero bits
7456
7457 @table @asis
7458 @item @emph{Description}:
7459 @code{LEADZ} returns the number of leading zero bits of an integer.
7460
7461 @item @emph{Standard}:
7462 Fortran 2008 and later
7463
7464 @item @emph{Class}:
7465 Elemental function
7466
7467 @item @emph{Syntax}:
7468 @code{RESULT = LEADZ(I)}
7469
7470 @item @emph{Arguments}:
7471 @multitable @columnfractions .15 .70
7472 @item @var{I} @tab Shall be of type @code{INTEGER}.
7473 @end multitable
7474
7475 @item @emph{Return value}:
7476 The type of the return value is the default @code{INTEGER}.
7477 If all the bits of @code{I} are zero, the result value is @code{BIT_SIZE(I)}.
7478
7479 @item @emph{Example}:
7480 @smallexample
7481 PROGRAM test_leadz
7482 WRITE (*,*) BIT_SIZE(1) ! prints 32
7483 WRITE (*,*) LEADZ(1) ! prints 31
7484 END PROGRAM
7485 @end smallexample
7486
7487 @item @emph{See also}:
7488 @ref{BIT_SIZE}, @ref{TRAILZ}, @ref{POPCNT}, @ref{POPPAR}
7489 @end table
7490
7491
7492
7493 @node LEN
7494 @section @code{LEN} --- Length of a character entity
7495 @fnindex LEN
7496 @cindex string, length
7497
7498 @table @asis
7499 @item @emph{Description}:
7500 Returns the length of a character string. If @var{STRING} is an array,
7501 the length of an element of @var{STRING} is returned. Note that
7502 @var{STRING} need not be defined when this intrinsic is invoked, since
7503 only the length, not the content, of @var{STRING} is needed.
7504
7505 @item @emph{Standard}:
7506 Fortran 77 and later, with @var{KIND} argument Fortran 2003 and later
7507
7508 @item @emph{Class}:
7509 Inquiry function
7510
7511 @item @emph{Syntax}:
7512 @code{L = LEN(STRING [, KIND])}
7513
7514 @item @emph{Arguments}:
7515 @multitable @columnfractions .15 .70
7516 @item @var{STRING} @tab Shall be a scalar or array of type
7517 @code{CHARACTER}, with @code{INTENT(IN)}
7518 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
7519 expression indicating the kind parameter of the result.
7520 @end multitable
7521
7522 @item @emph{Return value}:
7523 The return value is of type @code{INTEGER} and of kind @var{KIND}. If
7524 @var{KIND} is absent, the return value is of default integer kind.
7525
7526
7527 @item @emph{Specific names}:
7528 @multitable @columnfractions .20 .20 .20 .25
7529 @item Name @tab Argument @tab Return type @tab Standard
7530 @item @code{LEN(STRING)} @tab @code{CHARACTER} @tab @code{INTEGER} @tab Fortran 77 and later
7531 @end multitable
7532
7533
7534 @item @emph{See also}:
7535 @ref{LEN_TRIM}, @ref{ADJUSTL}, @ref{ADJUSTR}
7536 @end table
7537
7538
7539
7540 @node LEN_TRIM
7541 @section @code{LEN_TRIM} --- Length of a character entity without trailing blank characters
7542 @fnindex LEN_TRIM
7543 @cindex string, length, without trailing whitespace
7544
7545 @table @asis
7546 @item @emph{Description}:
7547 Returns the length of a character string, ignoring any trailing blanks.
7548
7549 @item @emph{Standard}:
7550 Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
7551
7552 @item @emph{Class}:
7553 Elemental function
7554
7555 @item @emph{Syntax}:
7556 @code{RESULT = LEN_TRIM(STRING [, KIND])}
7557
7558 @item @emph{Arguments}:
7559 @multitable @columnfractions .15 .70
7560 @item @var{STRING} @tab Shall be a scalar of type @code{CHARACTER},
7561 with @code{INTENT(IN)}
7562 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
7563 expression indicating the kind parameter of the result.
7564 @end multitable
7565
7566 @item @emph{Return value}:
7567 The return value is of type @code{INTEGER} and of kind @var{KIND}. If
7568 @var{KIND} is absent, the return value is of default integer kind.
7569
7570 @item @emph{See also}:
7571 @ref{LEN}, @ref{ADJUSTL}, @ref{ADJUSTR}
7572 @end table
7573
7574
7575
7576 @node LGE
7577 @section @code{LGE} --- Lexical greater than or equal
7578 @fnindex LGE
7579 @cindex lexical comparison of strings
7580 @cindex string, comparison
7581
7582 @table @asis
7583 @item @emph{Description}:
7584 Determines whether one string is lexically greater than or equal to
7585 another string, where the two strings are interpreted as containing
7586 ASCII character codes. If the String A and String B are not the same
7587 length, the shorter is compared as if spaces were appended to it to form
7588 a value that has the same length as the longer.
7589
7590 In general, the lexical comparison intrinsics @code{LGE}, @code{LGT},
7591 @code{LLE}, and @code{LLT} differ from the corresponding intrinsic
7592 operators @code{.GE.}, @code{.GT.}, @code{.LE.}, and @code{.LT.}, in
7593 that the latter use the processor's character ordering (which is not
7594 ASCII on some targets), whereas the former always use the ASCII
7595 ordering.
7596
7597 @item @emph{Standard}:
7598 Fortran 77 and later
7599
7600 @item @emph{Class}:
7601 Elemental function
7602
7603 @item @emph{Syntax}:
7604 @code{RESULT = LGE(STRING_A, STRING_B)}
7605
7606 @item @emph{Arguments}:
7607 @multitable @columnfractions .15 .70
7608 @item @var{STRING_A} @tab Shall be of default @code{CHARACTER} type.
7609 @item @var{STRING_B} @tab Shall be of default @code{CHARACTER} type.
7610 @end multitable
7611
7612 @item @emph{Return value}:
7613 Returns @code{.TRUE.} if @code{STRING_A >= STRING_B}, and @code{.FALSE.}
7614 otherwise, based on the ASCII ordering.
7615
7616 @item @emph{Specific names}:
7617 @multitable @columnfractions .20 .20 .20 .25
7618 @item Name @tab Argument @tab Return type @tab Standard
7619 @item @code{LGE(STRING_A, STRING_B)} @tab @code{CHARACTER} @tab @code{LOGICAL} @tab Fortran 77 and later
7620 @end multitable
7621
7622 @item @emph{See also}:
7623 @ref{LGT}, @ref{LLE}, @ref{LLT}
7624 @end table
7625
7626
7627
7628 @node LGT
7629 @section @code{LGT} --- Lexical greater than
7630 @fnindex LGT
7631 @cindex lexical comparison of strings
7632 @cindex string, comparison
7633
7634 @table @asis
7635 @item @emph{Description}:
7636 Determines whether one string is lexically greater than another string,
7637 where the two strings are interpreted as containing ASCII character
7638 codes. If the String A and String B are not the same length, the
7639 shorter is compared as if spaces were appended to it to form a value
7640 that has the same length as the longer.
7641
7642 In general, the lexical comparison intrinsics @code{LGE}, @code{LGT},
7643 @code{LLE}, and @code{LLT} differ from the corresponding intrinsic
7644 operators @code{.GE.}, @code{.GT.}, @code{.LE.}, and @code{.LT.}, in
7645 that the latter use the processor's character ordering (which is not
7646 ASCII on some targets), whereas the former always use the ASCII
7647 ordering.
7648
7649 @item @emph{Standard}:
7650 Fortran 77 and later
7651
7652 @item @emph{Class}:
7653 Elemental function
7654
7655 @item @emph{Syntax}:
7656 @code{RESULT = LGT(STRING_A, STRING_B)}
7657
7658 @item @emph{Arguments}:
7659 @multitable @columnfractions .15 .70
7660 @item @var{STRING_A} @tab Shall be of default @code{CHARACTER} type.
7661 @item @var{STRING_B} @tab Shall be of default @code{CHARACTER} type.
7662 @end multitable
7663
7664 @item @emph{Return value}:
7665 Returns @code{.TRUE.} if @code{STRING_A > STRING_B}, and @code{.FALSE.}
7666 otherwise, based on the ASCII ordering.
7667
7668 @item @emph{Specific names}:
7669 @multitable @columnfractions .20 .20 .20 .25
7670 @item Name @tab Argument @tab Return type @tab Standard
7671 @item @code{LGT(STRING_A, STRING_B)} @tab @code{CHARACTER} @tab @code{LOGICAL} @tab Fortran 77 and later
7672 @end multitable
7673
7674 @item @emph{See also}:
7675 @ref{LGE}, @ref{LLE}, @ref{LLT}
7676 @end table
7677
7678
7679
7680 @node LINK
7681 @section @code{LINK} --- Create a hard link
7682 @fnindex LINK
7683 @cindex file system, create link
7684 @cindex file system, hard link
7685
7686 @table @asis
7687 @item @emph{Description}:
7688 Makes a (hard) link from file @var{PATH1} to @var{PATH2}. A null
7689 character (@code{CHAR(0)}) can be used to mark the end of the names in
7690 @var{PATH1} and @var{PATH2}; otherwise, trailing blanks in the file
7691 names are ignored. If the @var{STATUS} argument is supplied, it
7692 contains 0 on success or a nonzero error code upon return; see
7693 @code{link(2)}.
7694
7695 This intrinsic is provided in both subroutine and function forms;
7696 however, only one form can be used in any given program unit.
7697
7698 @item @emph{Standard}:
7699 GNU extension
7700
7701 @item @emph{Class}:
7702 Subroutine, function
7703
7704 @item @emph{Syntax}:
7705 @multitable @columnfractions .80
7706 @item @code{CALL LINK(PATH1, PATH2 [, STATUS])}
7707 @item @code{STATUS = LINK(PATH1, PATH2)}
7708 @end multitable
7709
7710 @item @emph{Arguments}:
7711 @multitable @columnfractions .15 .70
7712 @item @var{PATH1} @tab Shall be of default @code{CHARACTER} type.
7713 @item @var{PATH2} @tab Shall be of default @code{CHARACTER} type.
7714 @item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
7715 @end multitable
7716
7717 @item @emph{See also}:
7718 @ref{SYMLNK}, @ref{UNLINK}
7719 @end table
7720
7721
7722
7723 @node LLE
7724 @section @code{LLE} --- Lexical less than or equal
7725 @fnindex LLE
7726 @cindex lexical comparison of strings
7727 @cindex string, comparison
7728
7729 @table @asis
7730 @item @emph{Description}:
7731 Determines whether one string is lexically less than or equal to another
7732 string, where the two strings are interpreted as containing ASCII
7733 character codes. If the String A and String B are not the same length,
7734 the shorter is compared as if spaces were appended to it to form a value
7735 that has the same length as the longer.
7736
7737 In general, the lexical comparison intrinsics @code{LGE}, @code{LGT},
7738 @code{LLE}, and @code{LLT} differ from the corresponding intrinsic
7739 operators @code{.GE.}, @code{.GT.}, @code{.LE.}, and @code{.LT.}, in
7740 that the latter use the processor's character ordering (which is not
7741 ASCII on some targets), whereas the former always use the ASCII
7742 ordering.
7743
7744 @item @emph{Standard}:
7745 Fortran 77 and later
7746
7747 @item @emph{Class}:
7748 Elemental function
7749
7750 @item @emph{Syntax}:
7751 @code{RESULT = LLE(STRING_A, STRING_B)}
7752
7753 @item @emph{Arguments}:
7754 @multitable @columnfractions .15 .70
7755 @item @var{STRING_A} @tab Shall be of default @code{CHARACTER} type.
7756 @item @var{STRING_B} @tab Shall be of default @code{CHARACTER} type.
7757 @end multitable
7758
7759 @item @emph{Return value}:
7760 Returns @code{.TRUE.} if @code{STRING_A <= STRING_B}, and @code{.FALSE.}
7761 otherwise, based on the ASCII ordering.
7762
7763 @item @emph{Specific names}:
7764 @multitable @columnfractions .20 .20 .20 .25
7765 @item Name @tab Argument @tab Return type @tab Standard
7766 @item @code{LLE(STRING_A, STRING_B)} @tab @code{CHARACTER} @tab @code{LOGICAL} @tab Fortran 77 and later
7767 @end multitable
7768
7769 @item @emph{See also}:
7770 @ref{LGE}, @ref{LGT}, @ref{LLT}
7771 @end table
7772
7773
7774
7775 @node LLT
7776 @section @code{LLT} --- Lexical less than
7777 @fnindex LLT
7778 @cindex lexical comparison of strings
7779 @cindex string, comparison
7780
7781 @table @asis
7782 @item @emph{Description}:
7783 Determines whether one string is lexically less than another string,
7784 where the two strings are interpreted as containing ASCII character
7785 codes. If the String A and String B are not the same length, the
7786 shorter is compared as if spaces were appended to it to form a value
7787 that has the same length as the longer.
7788
7789 In general, the lexical comparison intrinsics @code{LGE}, @code{LGT},
7790 @code{LLE}, and @code{LLT} differ from the corresponding intrinsic
7791 operators @code{.GE.}, @code{.GT.}, @code{.LE.}, and @code{.LT.}, in
7792 that the latter use the processor's character ordering (which is not
7793 ASCII on some targets), whereas the former always use the ASCII
7794 ordering.
7795
7796 @item @emph{Standard}:
7797 Fortran 77 and later
7798
7799 @item @emph{Class}:
7800 Elemental function
7801
7802 @item @emph{Syntax}:
7803 @code{RESULT = LLT(STRING_A, STRING_B)}
7804
7805 @item @emph{Arguments}:
7806 @multitable @columnfractions .15 .70
7807 @item @var{STRING_A} @tab Shall be of default @code{CHARACTER} type.
7808 @item @var{STRING_B} @tab Shall be of default @code{CHARACTER} type.
7809 @end multitable
7810
7811 @item @emph{Return value}:
7812 Returns @code{.TRUE.} if @code{STRING_A < STRING_B}, and @code{.FALSE.}
7813 otherwise, based on the ASCII ordering.
7814
7815 @item @emph{Specific names}:
7816 @multitable @columnfractions .20 .20 .20 .25
7817 @item Name @tab Argument @tab Return type @tab Standard
7818 @item @code{LLT(STRING_A, STRING_B)} @tab @code{CHARACTER} @tab @code{LOGICAL} @tab Fortran 77 and later
7819 @end multitable
7820
7821 @item @emph{See also}:
7822 @ref{LGE}, @ref{LGT}, @ref{LLE}
7823 @end table
7824
7825
7826
7827 @node LNBLNK
7828 @section @code{LNBLNK} --- Index of the last non-blank character in a string
7829 @fnindex LNBLNK
7830 @cindex string, find non-blank character
7831
7832 @table @asis
7833 @item @emph{Description}:
7834 Returns the length of a character string, ignoring any trailing blanks.
7835 This is identical to the standard @code{LEN_TRIM} intrinsic, and is only
7836 included for backwards compatibility.
7837
7838 @item @emph{Standard}:
7839 GNU extension
7840
7841 @item @emph{Class}:
7842 Elemental function
7843
7844 @item @emph{Syntax}:
7845 @code{RESULT = LNBLNK(STRING)}
7846
7847 @item @emph{Arguments}:
7848 @multitable @columnfractions .15 .70
7849 @item @var{STRING} @tab Shall be a scalar of type @code{CHARACTER},
7850 with @code{INTENT(IN)}
7851 @end multitable
7852
7853 @item @emph{Return value}:
7854 The return value is of @code{INTEGER(kind=4)} type.
7855
7856 @item @emph{See also}:
7857 @ref{INDEX intrinsic}, @ref{LEN_TRIM}
7858 @end table
7859
7860
7861
7862 @node LOC
7863 @section @code{LOC} --- Returns the address of a variable
7864 @fnindex LOC
7865 @cindex location of a variable in memory
7866
7867 @table @asis
7868 @item @emph{Description}:
7869 @code{LOC(X)} returns the address of @var{X} as an integer.
7870
7871 @item @emph{Standard}:
7872 GNU extension
7873
7874 @item @emph{Class}:
7875 Inquiry function
7876
7877 @item @emph{Syntax}:
7878 @code{RESULT = LOC(X)}
7879
7880 @item @emph{Arguments}:
7881 @multitable @columnfractions .15 .70
7882 @item @var{X} @tab Variable of any type.
7883 @end multitable
7884
7885 @item @emph{Return value}:
7886 The return value is of type @code{INTEGER}, with a @code{KIND}
7887 corresponding to the size (in bytes) of a memory address on the target
7888 machine.
7889
7890 @item @emph{Example}:
7891 @smallexample
7892 program test_loc
7893 integer :: i
7894 real :: r
7895 i = loc(r)
7896 print *, i
7897 end program test_loc
7898 @end smallexample
7899 @end table
7900
7901
7902
7903 @node LOG
7904 @section @code{LOG} --- Natural logarithm function
7905 @fnindex LOG
7906 @fnindex ALOG
7907 @fnindex DLOG
7908 @fnindex CLOG
7909 @fnindex ZLOG
7910 @fnindex CDLOG
7911 @cindex exponential function, inverse
7912 @cindex logarithm function
7913 @cindex natural logarithm function
7914
7915 @table @asis
7916 @item @emph{Description}:
7917 @code{LOG(X)} computes the natural logarithm of @var{X}, i.e. the
7918 logarithm to the base @math{e}.
7919
7920 @item @emph{Standard}:
7921 Fortran 77 and later
7922
7923 @item @emph{Class}:
7924 Elemental function
7925
7926 @item @emph{Syntax}:
7927 @code{RESULT = LOG(X)}
7928
7929 @item @emph{Arguments}:
7930 @multitable @columnfractions .15 .70
7931 @item @var{X} @tab The type shall be @code{REAL} or
7932 @code{COMPLEX}.
7933 @end multitable
7934
7935 @item @emph{Return value}:
7936 The return value is of type @code{REAL} or @code{COMPLEX}.
7937 The kind type parameter is the same as @var{X}.
7938 If @var{X} is @code{COMPLEX}, the imaginary part @math{\omega} is in the range
7939 @math{-\pi \leq \omega \leq \pi}.
7940
7941 @item @emph{Example}:
7942 @smallexample
7943 program test_log
7944 real(8) :: x = 2.7182818284590451_8
7945 complex :: z = (1.0, 2.0)
7946 x = log(x) ! will yield (approximately) 1
7947 z = log(z)
7948 end program test_log
7949 @end smallexample
7950
7951 @item @emph{Specific names}:
7952 @multitable @columnfractions .20 .20 .20 .25
7953 @item Name @tab Argument @tab Return type @tab Standard
7954 @item @code{ALOG(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab f95, gnu
7955 @item @code{DLOG(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu
7956 @item @code{CLOG(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab f95, gnu
7957 @item @code{ZLOG(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu
7958 @item @code{CDLOG(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu
7959 @end multitable
7960 @end table
7961
7962
7963
7964 @node LOG10
7965 @section @code{LOG10} --- Base 10 logarithm function
7966 @fnindex LOG10
7967 @fnindex ALOG10
7968 @fnindex DLOG10
7969 @cindex exponential function, inverse
7970 @cindex logarithm function with base 10
7971 @cindex base 10 logarithm function
7972
7973 @table @asis
7974 @item @emph{Description}:
7975 @code{LOG10(X)} computes the base 10 logarithm of @var{X}.
7976
7977 @item @emph{Standard}:
7978 Fortran 77 and later
7979
7980 @item @emph{Class}:
7981 Elemental function
7982
7983 @item @emph{Syntax}:
7984 @code{RESULT = LOG10(X)}
7985
7986 @item @emph{Arguments}:
7987 @multitable @columnfractions .15 .70
7988 @item @var{X} @tab The type shall be @code{REAL}.
7989 @end multitable
7990
7991 @item @emph{Return value}:
7992 The return value is of type @code{REAL} or @code{COMPLEX}.
7993 The kind type parameter is the same as @var{X}.
7994
7995 @item @emph{Example}:
7996 @smallexample
7997 program test_log10
7998 real(8) :: x = 10.0_8
7999 x = log10(x)
8000 end program test_log10
8001 @end smallexample
8002
8003 @item @emph{Specific names}:
8004 @multitable @columnfractions .20 .20 .20 .25
8005 @item Name @tab Argument @tab Return type @tab Standard
8006 @item @code{ALOG10(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 95 and later
8007 @item @code{DLOG10(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later
8008 @end multitable
8009 @end table
8010
8011
8012
8013 @node LOG_GAMMA
8014 @section @code{LOG_GAMMA} --- Logarithm of the Gamma function
8015 @fnindex LOG_GAMMA
8016 @fnindex LGAMMA
8017 @fnindex ALGAMA
8018 @fnindex DLGAMA
8019 @cindex Gamma function, logarithm of
8020
8021 @table @asis
8022 @item @emph{Description}:
8023 @code{LOG_GAMMA(X)} computes the natural logarithm of the absolute value
8024 of the Gamma (@math{\Gamma}) function.
8025
8026 @item @emph{Standard}:
8027 Fortran 2008 and later
8028
8029 @item @emph{Class}:
8030 Elemental function
8031
8032 @item @emph{Syntax}:
8033 @code{X = LOG_GAMMA(X)}
8034
8035 @item @emph{Arguments}:
8036 @multitable @columnfractions .15 .70
8037 @item @var{X} @tab Shall be of type @code{REAL} and neither zero
8038 nor a negative integer.
8039 @end multitable
8040
8041 @item @emph{Return value}:
8042 The return value is of type @code{REAL} of the same kind as @var{X}.
8043
8044 @item @emph{Example}:
8045 @smallexample
8046 program test_log_gamma
8047 real :: x = 1.0
8048 x = lgamma(x) ! returns 0.0
8049 end program test_log_gamma
8050 @end smallexample
8051
8052 @item @emph{Specific names}:
8053 @multitable @columnfractions .20 .20 .20 .25
8054 @item Name @tab Argument @tab Return type @tab Standard
8055 @item @code{LGAMMA(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab GNU Extension
8056 @item @code{ALGAMA(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab GNU Extension
8057 @item @code{DLGAMA(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU Extension
8058 @end multitable
8059
8060 @item @emph{See also}:
8061 Gamma function: @ref{GAMMA}
8062
8063 @end table
8064
8065
8066
8067 @node LOGICAL
8068 @section @code{LOGICAL} --- Convert to logical type
8069 @fnindex LOGICAL
8070 @cindex conversion, to logical
8071
8072 @table @asis
8073 @item @emph{Description}:
8074 Converts one kind of @code{LOGICAL} variable to another.
8075
8076 @item @emph{Standard}:
8077 Fortran 95 and later
8078
8079 @item @emph{Class}:
8080 Elemental function
8081
8082 @item @emph{Syntax}:
8083 @code{RESULT = LOGICAL(L [, KIND])}
8084
8085 @item @emph{Arguments}:
8086 @multitable @columnfractions .15 .70
8087 @item @var{L} @tab The type shall be @code{LOGICAL}.
8088 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
8089 expression indicating the kind parameter of the result.
8090 @end multitable
8091
8092 @item @emph{Return value}:
8093 The return value is a @code{LOGICAL} value equal to @var{L}, with a
8094 kind corresponding to @var{KIND}, or of the default logical kind if
8095 @var{KIND} is not given.
8096
8097 @item @emph{See also}:
8098 @ref{INT}, @ref{REAL}, @ref{CMPLX}
8099 @end table
8100
8101
8102
8103 @node LONG
8104 @section @code{LONG} --- Convert to integer type
8105 @fnindex LONG
8106 @cindex conversion, to integer
8107
8108 @table @asis
8109 @item @emph{Description}:
8110 Convert to a @code{KIND=4} integer type, which is the same size as a C
8111 @code{long} integer. This is equivalent to the standard @code{INT}
8112 intrinsic with an optional argument of @code{KIND=4}, and is only
8113 included for backwards compatibility.
8114
8115 @item @emph{Standard}:
8116 GNU extension
8117
8118 @item @emph{Class}:
8119 Elemental function
8120
8121 @item @emph{Syntax}:
8122 @code{RESULT = LONG(A)}
8123
8124 @item @emph{Arguments}:
8125 @multitable @columnfractions .15 .70
8126 @item @var{A} @tab Shall be of type @code{INTEGER},
8127 @code{REAL}, or @code{COMPLEX}.
8128 @end multitable
8129
8130 @item @emph{Return value}:
8131 The return value is a @code{INTEGER(4)} variable.
8132
8133 @item @emph{See also}:
8134 @ref{INT}, @ref{INT2}, @ref{INT8}
8135 @end table
8136
8137
8138
8139 @node LSHIFT
8140 @section @code{LSHIFT} --- Left shift bits
8141 @fnindex LSHIFT
8142 @cindex bits, shift left
8143
8144 @table @asis
8145 @item @emph{Description}:
8146 @code{LSHIFT} returns a value corresponding to @var{I} with all of the
8147 bits shifted left by @var{SHIFT} places. If the absolute value of
8148 @var{SHIFT} is greater than @code{BIT_SIZE(I)}, the value is undefined.
8149 Bits shifted out from the left end are lost; zeros are shifted in from
8150 the opposite end.
8151
8152 This function has been superseded by the @code{ISHFT} intrinsic, which
8153 is standard in Fortran 95 and later, and the @code{SHIFTL} intrinsic,
8154 which is standard in Fortran 2008 and later.
8155
8156 @item @emph{Standard}:
8157 GNU extension
8158
8159 @item @emph{Class}:
8160 Elemental function
8161
8162 @item @emph{Syntax}:
8163 @code{RESULT = LSHIFT(I, SHIFT)}
8164
8165 @item @emph{Arguments}:
8166 @multitable @columnfractions .15 .70
8167 @item @var{I} @tab The type shall be @code{INTEGER}.
8168 @item @var{SHIFT} @tab The type shall be @code{INTEGER}.
8169 @end multitable
8170
8171 @item @emph{Return value}:
8172 The return value is of type @code{INTEGER} and of the same kind as
8173 @var{I}.
8174
8175 @item @emph{See also}:
8176 @ref{ISHFT}, @ref{ISHFTC}, @ref{RSHIFT}, @ref{SHIFTA}, @ref{SHIFTL},
8177 @ref{SHIFTR}
8178
8179 @end table
8180
8181
8182
8183 @node LSTAT
8184 @section @code{LSTAT} --- Get file status
8185 @fnindex LSTAT
8186 @cindex file system, file status
8187
8188 @table @asis
8189 @item @emph{Description}:
8190 @code{LSTAT} is identical to @ref{STAT}, except that if path is a
8191 symbolic link, then the link itself is statted, not the file that it
8192 refers to.
8193
8194 The elements in @code{VALUES} are the same as described by @ref{STAT}.
8195
8196 This intrinsic is provided in both subroutine and function forms;
8197 however, only one form can be used in any given program unit.
8198
8199 @item @emph{Standard}:
8200 GNU extension
8201
8202 @item @emph{Class}:
8203 Subroutine, function
8204
8205 @item @emph{Syntax}:
8206 @multitable @columnfractions .80
8207 @item @code{CALL LSTAT(NAME, VALUES [, STATUS])}
8208 @item @code{STATUS = LSTAT(NAME, VALUES)}
8209 @end multitable
8210
8211 @item @emph{Arguments}:
8212 @multitable @columnfractions .15 .70
8213 @item @var{NAME} @tab The type shall be @code{CHARACTER} of the default
8214 kind, a valid path within the file system.
8215 @item @var{VALUES} @tab The type shall be @code{INTEGER(4), DIMENSION(13)}.
8216 @item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)}.
8217 Returns 0 on success and a system specific error code otherwise.
8218 @end multitable
8219
8220 @item @emph{Example}:
8221 See @ref{STAT} for an example.
8222
8223 @item @emph{See also}:
8224 To stat an open file: @ref{FSTAT}, to stat a file: @ref{STAT}
8225 @end table
8226
8227
8228
8229 @node LTIME
8230 @section @code{LTIME} --- Convert time to local time info
8231 @fnindex LTIME
8232 @cindex time, conversion to local time info
8233
8234 @table @asis
8235 @item @emph{Description}:
8236 Given a system time value @var{TIME} (as provided by the @code{TIME8}
8237 intrinsic), fills @var{VALUES} with values extracted from it appropriate
8238 to the local time zone using @code{localtime(3)}.
8239
8240 @item @emph{Standard}:
8241 GNU extension
8242
8243 @item @emph{Class}:
8244 Subroutine
8245
8246 @item @emph{Syntax}:
8247 @code{CALL LTIME(TIME, VALUES)}
8248
8249 @item @emph{Arguments}:
8250 @multitable @columnfractions .15 .70
8251 @item @var{TIME} @tab An @code{INTEGER} scalar expression
8252 corresponding to a system time, with @code{INTENT(IN)}.
8253 @item @var{VALUES} @tab A default @code{INTEGER} array with 9 elements,
8254 with @code{INTENT(OUT)}.
8255 @end multitable
8256
8257 @item @emph{Return value}:
8258 The elements of @var{VALUES} are assigned as follows:
8259 @enumerate
8260 @item Seconds after the minute, range 0--59 or 0--61 to allow for leap
8261 seconds
8262 @item Minutes after the hour, range 0--59
8263 @item Hours past midnight, range 0--23
8264 @item Day of month, range 0--31
8265 @item Number of months since January, range 0--12
8266 @item Years since 1900
8267 @item Number of days since Sunday, range 0--6
8268 @item Days since January 1
8269 @item Daylight savings indicator: positive if daylight savings is in
8270 effect, zero if not, and negative if the information is not available.
8271 @end enumerate
8272
8273 @item @emph{See also}:
8274 @ref{CTIME}, @ref{GMTIME}, @ref{TIME}, @ref{TIME8}
8275
8276 @end table
8277
8278
8279
8280 @node MALLOC
8281 @section @code{MALLOC} --- Allocate dynamic memory
8282 @fnindex MALLOC
8283 @cindex pointer, cray
8284
8285 @table @asis
8286 @item @emph{Description}:
8287 @code{MALLOC(SIZE)} allocates @var{SIZE} bytes of dynamic memory and
8288 returns the address of the allocated memory. The @code{MALLOC} intrinsic
8289 is an extension intended to be used with Cray pointers, and is provided
8290 in GNU Fortran to allow the user to compile legacy code. For new code
8291 using Fortran 95 pointers, the memory allocation intrinsic is
8292 @code{ALLOCATE}.
8293
8294 @item @emph{Standard}:
8295 GNU extension
8296
8297 @item @emph{Class}:
8298 Function
8299
8300 @item @emph{Syntax}:
8301 @code{PTR = MALLOC(SIZE)}
8302
8303 @item @emph{Arguments}:
8304 @multitable @columnfractions .15 .70
8305 @item @var{SIZE} @tab The type shall be @code{INTEGER}.
8306 @end multitable
8307
8308 @item @emph{Return value}:
8309 The return value is of type @code{INTEGER(K)}, with @var{K} such that
8310 variables of type @code{INTEGER(K)} have the same size as
8311 C pointers (@code{sizeof(void *)}).
8312
8313 @item @emph{Example}:
8314 The following example demonstrates the use of @code{MALLOC} and
8315 @code{FREE} with Cray pointers.
8316
8317 @smallexample
8318 program test_malloc
8319 implicit none
8320 integer i
8321 real*8 x(*), z
8322 pointer(ptr_x,x)
8323
8324 ptr_x = malloc(20*8)
8325 do i = 1, 20
8326 x(i) = sqrt(1.0d0 / i)
8327 end do
8328 z = 0
8329 do i = 1, 20
8330 z = z + x(i)
8331 print *, z
8332 end do
8333 call free(ptr_x)
8334 end program test_malloc
8335 @end smallexample
8336
8337 @item @emph{See also}:
8338 @ref{FREE}
8339 @end table
8340
8341
8342
8343 @node MASKL
8344 @section @code{MASKL} --- Left justified mask
8345 @fnindex MASKL
8346 @cindex mask, left justified
8347
8348 @table @asis
8349 @item @emph{Description}:
8350 @code{MASKL(I[, KIND])} has its leftmost @var{I} bits set to 1, and the
8351 remaining bits set to 0.
8352
8353 @item @emph{Standard}:
8354 Fortran 2008 and later
8355
8356 @item @emph{Class}:
8357 Elemental function
8358
8359 @item @emph{Syntax}:
8360 @code{RESULT = MASKL(I[, KIND])}
8361
8362 @item @emph{Arguments}:
8363 @multitable @columnfractions .15 .70
8364 @item @var{I} @tab Shall be of type @code{INTEGER}.
8365 @item @var{KIND} @tab Shall be a scalar constant expression of type
8366 @code{INTEGER}.
8367 @end multitable
8368
8369 @item @emph{Return value}:
8370 The return value is of type @code{INTEGER}. If @var{KIND} is present, it
8371 specifies the kind value of the return type; otherwise, it is of the
8372 default integer kind.
8373
8374 @item @emph{See also}:
8375 @ref{MASKR}
8376 @end table
8377
8378
8379
8380 @node MASKR
8381 @section @code{MASKR} --- Right justified mask
8382 @fnindex MASKR
8383 @cindex mask, right justified
8384
8385 @table @asis
8386 @item @emph{Description}:
8387 @code{MASKL(I[, KIND])} has its rightmost @var{I} bits set to 1, and the
8388 remaining bits set to 0.
8389
8390 @item @emph{Standard}:
8391 Fortran 2008 and later
8392
8393 @item @emph{Class}:
8394 Elemental function
8395
8396 @item @emph{Syntax}:
8397 @code{RESULT = MASKR(I[, KIND])}
8398
8399 @item @emph{Arguments}:
8400 @multitable @columnfractions .15 .70
8401 @item @var{I} @tab Shall be of type @code{INTEGER}.
8402 @item @var{KIND} @tab Shall be a scalar constant expression of type
8403 @code{INTEGER}.
8404 @end multitable
8405
8406 @item @emph{Return value}:
8407 The return value is of type @code{INTEGER}. If @var{KIND} is present, it
8408 specifies the kind value of the return type; otherwise, it is of the
8409 default integer kind.
8410
8411 @item @emph{See also}:
8412 @ref{MASKL}
8413 @end table
8414
8415
8416
8417 @node MATMUL
8418 @section @code{MATMUL} --- matrix multiplication
8419 @fnindex MATMUL
8420 @cindex matrix multiplication
8421 @cindex product, matrix
8422
8423 @table @asis
8424 @item @emph{Description}:
8425 Performs a matrix multiplication on numeric or logical arguments.
8426
8427 @item @emph{Standard}:
8428 Fortran 95 and later
8429
8430 @item @emph{Class}:
8431 Transformational function
8432
8433 @item @emph{Syntax}:
8434 @code{RESULT = MATMUL(MATRIX_A, MATRIX_B)}
8435
8436 @item @emph{Arguments}:
8437 @multitable @columnfractions .15 .70
8438 @item @var{MATRIX_A} @tab An array of @code{INTEGER},
8439 @code{REAL}, @code{COMPLEX}, or @code{LOGICAL} type, with a rank of
8440 one or two.
8441 @item @var{MATRIX_B} @tab An array of @code{INTEGER},
8442 @code{REAL}, or @code{COMPLEX} type if @var{MATRIX_A} is of a numeric
8443 type; otherwise, an array of @code{LOGICAL} type. The rank shall be one
8444 or two, and the first (or only) dimension of @var{MATRIX_B} shall be
8445 equal to the last (or only) dimension of @var{MATRIX_A}.
8446 @end multitable
8447
8448 @item @emph{Return value}:
8449 The matrix product of @var{MATRIX_A} and @var{MATRIX_B}. The type and
8450 kind of the result follow the usual type and kind promotion rules, as
8451 for the @code{*} or @code{.AND.} operators.
8452
8453 @item @emph{See also}:
8454 @end table
8455
8456
8457
8458 @node MAX
8459 @section @code{MAX} --- Maximum value of an argument list
8460 @fnindex MAX
8461 @fnindex MAX0
8462 @fnindex AMAX0
8463 @fnindex MAX1
8464 @fnindex AMAX1
8465 @fnindex DMAX1
8466 @cindex maximum value
8467
8468 @table @asis
8469 @item @emph{Description}:
8470 Returns the argument with the largest (most positive) value.
8471
8472 @item @emph{Standard}:
8473 Fortran 77 and later
8474
8475 @item @emph{Class}:
8476 Elemental function
8477
8478 @item @emph{Syntax}:
8479 @code{RESULT = MAX(A1, A2 [, A3 [, ...]])}
8480
8481 @item @emph{Arguments}:
8482 @multitable @columnfractions .15 .70
8483 @item @var{A1} @tab The type shall be @code{INTEGER} or
8484 @code{REAL}.
8485 @item @var{A2}, @var{A3}, ... @tab An expression of the same type and kind
8486 as @var{A1}. (As a GNU extension, arguments of different kinds are
8487 permitted.)
8488 @end multitable
8489
8490 @item @emph{Return value}:
8491 The return value corresponds to the maximum value among the arguments,
8492 and has the same type and kind as the first argument.
8493
8494 @item @emph{Specific names}:
8495 @multitable @columnfractions .20 .20 .20 .25
8496 @item Name @tab Argument @tab Return type @tab Standard
8497 @item @code{MAX0(A1)} @tab @code{INTEGER(4) A1} @tab @code{INTEGER(4)} @tab Fortran 77 and later
8498 @item @code{AMAX0(A1)} @tab @code{INTEGER(4) A1} @tab @code{REAL(MAX(X))} @tab Fortran 77 and later
8499 @item @code{MAX1(A1)} @tab @code{REAL A1} @tab @code{INT(MAX(X))} @tab Fortran 77 and later
8500 @item @code{AMAX1(A1)} @tab @code{REAL(4) A1} @tab @code{REAL(4)} @tab Fortran 77 and later
8501 @item @code{DMAX1(A1)} @tab @code{REAL(8) A1} @tab @code{REAL(8)} @tab Fortran 77 and later
8502 @end multitable
8503
8504 @item @emph{See also}:
8505 @ref{MAXLOC} @ref{MAXVAL}, @ref{MIN}
8506
8507 @end table
8508
8509
8510
8511 @node MAXEXPONENT
8512 @section @code{MAXEXPONENT} --- Maximum exponent of a real kind
8513 @fnindex MAXEXPONENT
8514 @cindex model representation, maximum exponent
8515
8516 @table @asis
8517 @item @emph{Description}:
8518 @code{MAXEXPONENT(X)} returns the maximum exponent in the model of the
8519 type of @code{X}.
8520
8521 @item @emph{Standard}:
8522 Fortran 95 and later
8523
8524 @item @emph{Class}:
8525 Inquiry function
8526
8527 @item @emph{Syntax}:
8528 @code{RESULT = MAXEXPONENT(X)}
8529
8530 @item @emph{Arguments}:
8531 @multitable @columnfractions .15 .70
8532 @item @var{X} @tab Shall be of type @code{REAL}.
8533 @end multitable
8534
8535 @item @emph{Return value}:
8536 The return value is of type @code{INTEGER} and of the default integer
8537 kind.
8538
8539 @item @emph{Example}:
8540 @smallexample
8541 program exponents
8542 real(kind=4) :: x
8543 real(kind=8) :: y
8544
8545 print *, minexponent(x), maxexponent(x)
8546 print *, minexponent(y), maxexponent(y)
8547 end program exponents
8548 @end smallexample
8549 @end table
8550
8551
8552
8553 @node MAXLOC
8554 @section @code{MAXLOC} --- Location of the maximum value within an array
8555 @fnindex MAXLOC
8556 @cindex array, location of maximum element
8557
8558 @table @asis
8559 @item @emph{Description}:
8560 Determines the location of the element in the array with the maximum
8561 value, or, if the @var{DIM} argument is supplied, determines the
8562 locations of the maximum element along each row of the array in the
8563 @var{DIM} direction. If @var{MASK} is present, only the elements for
8564 which @var{MASK} is @code{.TRUE.} are considered. If more than one
8565 element in the array has the maximum value, the location returned is
8566 that of the first such element in array element order. If the array has
8567 zero size, or all of the elements of @var{MASK} are @code{.FALSE.}, then
8568 the result is an array of zeroes. Similarly, if @var{DIM} is supplied
8569 and all of the elements of @var{MASK} along a given row are zero, the
8570 result value for that row is zero.
8571
8572 @item @emph{Standard}:
8573 Fortran 95 and later
8574
8575 @item @emph{Class}:
8576 Transformational function
8577
8578 @item @emph{Syntax}:
8579 @multitable @columnfractions .80
8580 @item @code{RESULT = MAXLOC(ARRAY, DIM [, MASK])}
8581 @item @code{RESULT = MAXLOC(ARRAY [, MASK])}
8582 @end multitable
8583
8584 @item @emph{Arguments}:
8585 @multitable @columnfractions .15 .70
8586 @item @var{ARRAY} @tab Shall be an array of type @code{INTEGER} or
8587 @code{REAL}.
8588 @item @var{DIM} @tab (Optional) Shall be a scalar of type
8589 @code{INTEGER}, with a value between one and the rank of @var{ARRAY},
8590 inclusive. It may not be an optional dummy argument.
8591 @item @var{MASK} @tab Shall be an array of type @code{LOGICAL},
8592 and conformable with @var{ARRAY}.
8593 @end multitable
8594
8595 @item @emph{Return value}:
8596 If @var{DIM} is absent, the result is a rank-one array with a length
8597 equal to the rank of @var{ARRAY}. If @var{DIM} is present, the result
8598 is an array with a rank one less than the rank of @var{ARRAY}, and a
8599 size corresponding to the size of @var{ARRAY} with the @var{DIM}
8600 dimension removed. If @var{DIM} is present and @var{ARRAY} has a rank
8601 of one, the result is a scalar. In all cases, the result is of default
8602 @code{INTEGER} type.
8603
8604 @item @emph{See also}:
8605 @ref{MAX}, @ref{MAXVAL}
8606
8607 @end table
8608
8609
8610
8611 @node MAXVAL
8612 @section @code{MAXVAL} --- Maximum value of an array
8613 @fnindex MAXVAL
8614 @cindex array, maximum value
8615 @cindex maximum value
8616
8617 @table @asis
8618 @item @emph{Description}:
8619 Determines the maximum value of the elements in an array value, or, if
8620 the @var{DIM} argument is supplied, determines the maximum value along
8621 each row of the array in the @var{DIM} direction. If @var{MASK} is
8622 present, only the elements for which @var{MASK} is @code{.TRUE.} are
8623 considered. If the array has zero size, or all of the elements of
8624 @var{MASK} are @code{.FALSE.}, then the result is @code{-HUGE(ARRAY)}
8625 if @var{ARRAY} is numeric, or a string of nulls if @var{ARRAY} is of character
8626 type.
8627
8628 @item @emph{Standard}:
8629 Fortran 95 and later
8630
8631 @item @emph{Class}:
8632 Transformational function
8633
8634 @item @emph{Syntax}:
8635 @multitable @columnfractions .80
8636 @item @code{RESULT = MAXVAL(ARRAY, DIM [, MASK])}
8637 @item @code{RESULT = MAXVAL(ARRAY [, MASK])}
8638 @end multitable
8639
8640 @item @emph{Arguments}:
8641 @multitable @columnfractions .15 .70
8642 @item @var{ARRAY} @tab Shall be an array of type @code{INTEGER} or
8643 @code{REAL}.
8644 @item @var{DIM} @tab (Optional) Shall be a scalar of type
8645 @code{INTEGER}, with a value between one and the rank of @var{ARRAY},
8646 inclusive. It may not be an optional dummy argument.
8647 @item @var{MASK} @tab Shall be an array of type @code{LOGICAL},
8648 and conformable with @var{ARRAY}.
8649 @end multitable
8650
8651 @item @emph{Return value}:
8652 If @var{DIM} is absent, or if @var{ARRAY} has a rank of one, the result
8653 is a scalar. If @var{DIM} is present, the result is an array with a
8654 rank one less than the rank of @var{ARRAY}, and a size corresponding to
8655 the size of @var{ARRAY} with the @var{DIM} dimension removed. In all
8656 cases, the result is of the same type and kind as @var{ARRAY}.
8657
8658 @item @emph{See also}:
8659 @ref{MAX}, @ref{MAXLOC}
8660 @end table
8661
8662
8663
8664 @node MCLOCK
8665 @section @code{MCLOCK} --- Time function
8666 @fnindex MCLOCK
8667 @cindex time, clock ticks
8668 @cindex clock ticks
8669
8670 @table @asis
8671 @item @emph{Description}:
8672 Returns the number of clock ticks since the start of the process, based
8673 on the function @code{clock(3)} in the C standard library.
8674
8675 This intrinsic is not fully portable, such as to systems with 32-bit
8676 @code{INTEGER} types but supporting times wider than 32 bits. Therefore,
8677 the values returned by this intrinsic might be, or become, negative, or
8678 numerically less than previous values, during a single run of the
8679 compiled program.
8680
8681 @item @emph{Standard}:
8682 GNU extension
8683
8684 @item @emph{Class}:
8685 Function
8686
8687 @item @emph{Syntax}:
8688 @code{RESULT = MCLOCK()}
8689
8690 @item @emph{Return value}:
8691 The return value is a scalar of type @code{INTEGER(4)}, equal to the
8692 number of clock ticks since the start of the process, or @code{-1} if
8693 the system does not support @code{clock(3)}.
8694
8695 @item @emph{See also}:
8696 @ref{CTIME}, @ref{GMTIME}, @ref{LTIME}, @ref{MCLOCK}, @ref{TIME}
8697
8698 @end table
8699
8700
8701
8702 @node MCLOCK8
8703 @section @code{MCLOCK8} --- Time function (64-bit)
8704 @fnindex MCLOCK8
8705 @cindex time, clock ticks
8706 @cindex clock ticks
8707
8708 @table @asis
8709 @item @emph{Description}:
8710 Returns the number of clock ticks since the start of the process, based
8711 on the function @code{clock(3)} in the C standard library.
8712
8713 @emph{Warning:} this intrinsic does not increase the range of the timing
8714 values over that returned by @code{clock(3)}. On a system with a 32-bit
8715 @code{clock(3)}, @code{MCLOCK8} will return a 32-bit value, even though
8716 it is converted to a 64-bit @code{INTEGER(8)} value. That means
8717 overflows of the 32-bit value can still occur. Therefore, the values
8718 returned by this intrinsic might be or become negative or numerically
8719 less than previous values during a single run of the compiled program.
8720
8721 @item @emph{Standard}:
8722 GNU extension
8723
8724 @item @emph{Class}:
8725 Function
8726
8727 @item @emph{Syntax}:
8728 @code{RESULT = MCLOCK8()}
8729
8730 @item @emph{Return value}:
8731 The return value is a scalar of type @code{INTEGER(8)}, equal to the
8732 number of clock ticks since the start of the process, or @code{-1} if
8733 the system does not support @code{clock(3)}.
8734
8735 @item @emph{See also}:
8736 @ref{CTIME}, @ref{GMTIME}, @ref{LTIME}, @ref{MCLOCK}, @ref{TIME8}
8737
8738 @end table
8739
8740
8741
8742 @node MERGE
8743 @section @code{MERGE} --- Merge variables
8744 @fnindex MERGE
8745 @cindex array, merge arrays
8746 @cindex array, combine arrays
8747
8748 @table @asis
8749 @item @emph{Description}:
8750 Select values from two arrays according to a logical mask. The result
8751 is equal to @var{TSOURCE} if @var{MASK} is @code{.TRUE.}, or equal to
8752 @var{FSOURCE} if it is @code{.FALSE.}.
8753
8754 @item @emph{Standard}:
8755 Fortran 95 and later
8756
8757 @item @emph{Class}:
8758 Elemental function
8759
8760 @item @emph{Syntax}:
8761 @code{RESULT = MERGE(TSOURCE, FSOURCE, MASK)}
8762
8763 @item @emph{Arguments}:
8764 @multitable @columnfractions .15 .70
8765 @item @var{TSOURCE} @tab May be of any type.
8766 @item @var{FSOURCE} @tab Shall be of the same type and type parameters
8767 as @var{TSOURCE}.
8768 @item @var{MASK} @tab Shall be of type @code{LOGICAL}.
8769 @end multitable
8770
8771 @item @emph{Return value}:
8772 The result is of the same type and type parameters as @var{TSOURCE}.
8773
8774 @end table
8775
8776
8777
8778 @node MERGE_BITS
8779 @section @code{MERGE_BITS} --- Merge of bits under mask
8780 @fnindex MERGE_BITS
8781 @cindex bits, merge
8782
8783 @table @asis
8784 @item @emph{Description}:
8785 @code{MERGE_BITS(I, J, MASK)} merges the bits of @var{I} and @var{J}
8786 as determined by the mask. The i-th bit of the result is equal to the
8787 i-th bit of @var{I} if the i-th bit of @var{MASK} is 1; it is equal to
8788 the i-th bit of @var{J} otherwise.
8789
8790 @item @emph{Standard}:
8791 Fortran 2008 and later
8792
8793 @item @emph{Class}:
8794 Elemental function
8795
8796 @item @emph{Syntax}:
8797 @code{RESULT = MERGE_BITS(I, J, MASK)}
8798
8799 @item @emph{Arguments}:
8800 @multitable @columnfractions .15 .70
8801 @item @var{I} @tab Shall be of type @code{INTEGER}.
8802 @item @var{J} @tab Shall be of type @code{INTEGER} and of the same
8803 kind as @var{I}.
8804 @item @var{MASK} @tab Shall be of type @code{INTEGER} and of the same
8805 kind as @var{I}.
8806 @end multitable
8807
8808 @item @emph{Return value}:
8809 The result is of the same type and kind as @var{I}.
8810
8811 @end table
8812
8813
8814
8815 @node MIN
8816 @section @code{MIN} --- Minimum value of an argument list
8817 @fnindex MIN
8818 @fnindex MIN0
8819 @fnindex AMIN0
8820 @fnindex MIN1
8821 @fnindex AMIN1
8822 @fnindex DMIN1
8823 @cindex minimum value
8824
8825 @table @asis
8826 @item @emph{Description}:
8827 Returns the argument with the smallest (most negative) value.
8828
8829 @item @emph{Standard}:
8830 Fortran 77 and later
8831
8832 @item @emph{Class}:
8833 Elemental function
8834
8835 @item @emph{Syntax}:
8836 @code{RESULT = MIN(A1, A2 [, A3, ...])}
8837
8838 @item @emph{Arguments}:
8839 @multitable @columnfractions .15 .70
8840 @item @var{A1} @tab The type shall be @code{INTEGER} or
8841 @code{REAL}.
8842 @item @var{A2}, @var{A3}, ... @tab An expression of the same type and kind
8843 as @var{A1}. (As a GNU extension, arguments of different kinds are
8844 permitted.)
8845 @end multitable
8846
8847 @item @emph{Return value}:
8848 The return value corresponds to the maximum value among the arguments,
8849 and has the same type and kind as the first argument.
8850
8851 @item @emph{Specific names}:
8852 @multitable @columnfractions .20 .20 .20 .25
8853 @item Name @tab Argument @tab Return type @tab Standard
8854 @item @code{MIN0(A1)} @tab @code{INTEGER(4) A1} @tab @code{INTEGER(4)} @tab Fortran 77 and later
8855 @item @code{AMIN0(A1)} @tab @code{INTEGER(4) A1} @tab @code{REAL(4)} @tab Fortran 77 and later
8856 @item @code{MIN1(A1)} @tab @code{REAL A1} @tab @code{INTEGER(4)} @tab Fortran 77 and later
8857 @item @code{AMIN1(A1)} @tab @code{REAL(4) A1} @tab @code{REAL(4)} @tab Fortran 77 and later
8858 @item @code{DMIN1(A1)} @tab @code{REAL(8) A1} @tab @code{REAL(8)} @tab Fortran 77 and later
8859 @end multitable
8860
8861 @item @emph{See also}:
8862 @ref{MAX}, @ref{MINLOC}, @ref{MINVAL}
8863 @end table
8864
8865
8866
8867 @node MINEXPONENT
8868 @section @code{MINEXPONENT} --- Minimum exponent of a real kind
8869 @fnindex MINEXPONENT
8870 @cindex model representation, minimum exponent
8871
8872 @table @asis
8873 @item @emph{Description}:
8874 @code{MINEXPONENT(X)} returns the minimum exponent in the model of the
8875 type of @code{X}.
8876
8877 @item @emph{Standard}:
8878 Fortran 95 and later
8879
8880 @item @emph{Class}:
8881 Inquiry function
8882
8883 @item @emph{Syntax}:
8884 @code{RESULT = MINEXPONENT(X)}
8885
8886 @item @emph{Arguments}:
8887 @multitable @columnfractions .15 .70
8888 @item @var{X} @tab Shall be of type @code{REAL}.
8889 @end multitable
8890
8891 @item @emph{Return value}:
8892 The return value is of type @code{INTEGER} and of the default integer
8893 kind.
8894
8895 @item @emph{Example}:
8896 See @code{MAXEXPONENT} for an example.
8897 @end table
8898
8899
8900
8901 @node MINLOC
8902 @section @code{MINLOC} --- Location of the minimum value within an array
8903 @fnindex MINLOC
8904 @cindex array, location of minimum element
8905
8906 @table @asis
8907 @item @emph{Description}:
8908 Determines the location of the element in the array with the minimum
8909 value, or, if the @var{DIM} argument is supplied, determines the
8910 locations of the minimum element along each row of the array in the
8911 @var{DIM} direction. If @var{MASK} is present, only the elements for
8912 which @var{MASK} is @code{.TRUE.} are considered. If more than one
8913 element in the array has the minimum value, the location returned is
8914 that of the first such element in array element order. If the array has
8915 zero size, or all of the elements of @var{MASK} are @code{.FALSE.}, then
8916 the result is an array of zeroes. Similarly, if @var{DIM} is supplied
8917 and all of the elements of @var{MASK} along a given row are zero, the
8918 result value for that row is zero.
8919
8920 @item @emph{Standard}:
8921 Fortran 95 and later
8922
8923 @item @emph{Class}:
8924 Transformational function
8925
8926 @item @emph{Syntax}:
8927 @multitable @columnfractions .80
8928 @item @code{RESULT = MINLOC(ARRAY, DIM [, MASK])}
8929 @item @code{RESULT = MINLOC(ARRAY [, MASK])}
8930 @end multitable
8931
8932 @item @emph{Arguments}:
8933 @multitable @columnfractions .15 .70
8934 @item @var{ARRAY} @tab Shall be an array of type @code{INTEGER} or
8935 @code{REAL}.
8936 @item @var{DIM} @tab (Optional) Shall be a scalar of type
8937 @code{INTEGER}, with a value between one and the rank of @var{ARRAY},
8938 inclusive. It may not be an optional dummy argument.
8939 @item @var{MASK} @tab Shall be an array of type @code{LOGICAL},
8940 and conformable with @var{ARRAY}.
8941 @end multitable
8942
8943 @item @emph{Return value}:
8944 If @var{DIM} is absent, the result is a rank-one array with a length
8945 equal to the rank of @var{ARRAY}. If @var{DIM} is present, the result
8946 is an array with a rank one less than the rank of @var{ARRAY}, and a
8947 size corresponding to the size of @var{ARRAY} with the @var{DIM}
8948 dimension removed. If @var{DIM} is present and @var{ARRAY} has a rank
8949 of one, the result is a scalar. In all cases, the result is of default
8950 @code{INTEGER} type.
8951
8952 @item @emph{See also}:
8953 @ref{MIN}, @ref{MINVAL}
8954
8955 @end table
8956
8957
8958
8959 @node MINVAL
8960 @section @code{MINVAL} --- Minimum value of an array
8961 @fnindex MINVAL
8962 @cindex array, minimum value
8963 @cindex minimum value
8964
8965 @table @asis
8966 @item @emph{Description}:
8967 Determines the minimum value of the elements in an array value, or, if
8968 the @var{DIM} argument is supplied, determines the minimum value along
8969 each row of the array in the @var{DIM} direction. If @var{MASK} is
8970 present, only the elements for which @var{MASK} is @code{.TRUE.} are
8971 considered. If the array has zero size, or all of the elements of
8972 @var{MASK} are @code{.FALSE.}, then the result is @code{HUGE(ARRAY)} if
8973 @var{ARRAY} is numeric, or a string of @code{CHAR(255)} characters if
8974 @var{ARRAY} is of character type.
8975
8976 @item @emph{Standard}:
8977 Fortran 95 and later
8978
8979 @item @emph{Class}:
8980 Transformational function
8981
8982 @item @emph{Syntax}:
8983 @multitable @columnfractions .80
8984 @item @code{RESULT = MINVAL(ARRAY, DIM [, MASK])}
8985 @item @code{RESULT = MINVAL(ARRAY [, MASK])}
8986 @end multitable
8987
8988 @item @emph{Arguments}:
8989 @multitable @columnfractions .15 .70
8990 @item @var{ARRAY} @tab Shall be an array of type @code{INTEGER} or
8991 @code{REAL}.
8992 @item @var{DIM} @tab (Optional) Shall be a scalar of type
8993 @code{INTEGER}, with a value between one and the rank of @var{ARRAY},
8994 inclusive. It may not be an optional dummy argument.
8995 @item @var{MASK} @tab Shall be an array of type @code{LOGICAL},
8996 and conformable with @var{ARRAY}.
8997 @end multitable
8998
8999 @item @emph{Return value}:
9000 If @var{DIM} is absent, or if @var{ARRAY} has a rank of one, the result
9001 is a scalar. If @var{DIM} is present, the result is an array with a
9002 rank one less than the rank of @var{ARRAY}, and a size corresponding to
9003 the size of @var{ARRAY} with the @var{DIM} dimension removed. In all
9004 cases, the result is of the same type and kind as @var{ARRAY}.
9005
9006 @item @emph{See also}:
9007 @ref{MIN}, @ref{MINLOC}
9008
9009 @end table
9010
9011
9012
9013 @node MOD
9014 @section @code{MOD} --- Remainder function
9015 @fnindex MOD
9016 @fnindex AMOD
9017 @fnindex DMOD
9018 @cindex remainder
9019 @cindex division, remainder
9020
9021 @table @asis
9022 @item @emph{Description}:
9023 @code{MOD(A,P)} computes the remainder of the division of A by P@.
9024
9025 @item @emph{Standard}:
9026 Fortran 77 and later
9027
9028 @item @emph{Class}:
9029 Elemental function
9030
9031 @item @emph{Syntax}:
9032 @code{RESULT = MOD(A, P)}
9033
9034 @item @emph{Arguments}:
9035 @multitable @columnfractions .15 .70
9036 @item @var{A} @tab Shall be a scalar of type @code{INTEGER} or @code{REAL}.
9037 @item @var{P} @tab Shall be a scalar of the same type and kind as @var{A}
9038 and not equal to zero.
9039 @end multitable
9040
9041 @item @emph{Return value}:
9042 The return value is the result of @code{A - (INT(A/P) * P)}. The type
9043 and kind of the return value is the same as that of the arguments. The
9044 returned value has the same sign as A and a magnitude less than the
9045 magnitude of P.
9046
9047 @item @emph{Example}:
9048 @smallexample
9049 program test_mod
9050 print *, mod(17,3)
9051 print *, mod(17.5,5.5)
9052 print *, mod(17.5d0,5.5)
9053 print *, mod(17.5,5.5d0)
9054
9055 print *, mod(-17,3)
9056 print *, mod(-17.5,5.5)
9057 print *, mod(-17.5d0,5.5)
9058 print *, mod(-17.5,5.5d0)
9059
9060 print *, mod(17,-3)
9061 print *, mod(17.5,-5.5)
9062 print *, mod(17.5d0,-5.5)
9063 print *, mod(17.5,-5.5d0)
9064 end program test_mod
9065 @end smallexample
9066
9067 @item @emph{Specific names}:
9068 @multitable @columnfractions .20 .20 .20 .25
9069 @item Name @tab Arguments @tab Return type @tab Standard
9070 @item @code{MOD(A,P)} @tab @code{INTEGER A,P} @tab @code{INTEGER} @tab Fortran 95 and later
9071 @item @code{AMOD(A,P)} @tab @code{REAL(4) A,P} @tab @code{REAL(4)} @tab Fortran 95 and later
9072 @item @code{DMOD(A,P)} @tab @code{REAL(8) A,P} @tab @code{REAL(8)} @tab Fortran 95 and later
9073 @end multitable
9074
9075 @item @emph{See also}:
9076 @ref{MODULO}
9077
9078 @end table
9079
9080
9081
9082 @node MODULO
9083 @section @code{MODULO} --- Modulo function
9084 @fnindex MODULO
9085 @cindex modulo
9086 @cindex division, modulo
9087
9088 @table @asis
9089 @item @emph{Description}:
9090 @code{MODULO(A,P)} computes the @var{A} modulo @var{P}.
9091
9092 @item @emph{Standard}:
9093 Fortran 95 and later
9094
9095 @item @emph{Class}:
9096 Elemental function
9097
9098 @item @emph{Syntax}:
9099 @code{RESULT = MODULO(A, P)}
9100
9101 @item @emph{Arguments}:
9102 @multitable @columnfractions .15 .70
9103 @item @var{A} @tab Shall be a scalar of type @code{INTEGER} or @code{REAL}.
9104 @item @var{P} @tab Shall be a scalar of the same type and kind as @var{A}.
9105 It shall not be zero.
9106 @end multitable
9107
9108 @item @emph{Return value}:
9109 The type and kind of the result are those of the arguments.
9110 @table @asis
9111 @item If @var{A} and @var{P} are of type @code{INTEGER}:
9112 @code{MODULO(A,P)} has the value @var{R} such that @code{A=Q*P+R}, where
9113 @var{Q} is an integer and @var{R} is between 0 (inclusive) and @var{P}
9114 (exclusive).
9115 @item If @var{A} and @var{P} are of type @code{REAL}:
9116 @code{MODULO(A,P)} has the value of @code{A - FLOOR (A / P) * P}.
9117 @end table
9118 The returned value has the same sign as P and a magnitude less than
9119 the magnitude of P.
9120
9121 @item @emph{Example}:
9122 @smallexample
9123 program test_modulo
9124 print *, modulo(17,3)
9125 print *, modulo(17.5,5.5)
9126
9127 print *, modulo(-17,3)
9128 print *, modulo(-17.5,5.5)
9129
9130 print *, modulo(17,-3)
9131 print *, modulo(17.5,-5.5)
9132 end program
9133 @end smallexample
9134
9135 @item @emph{See also}:
9136 @ref{MOD}
9137
9138 @end table
9139
9140
9141
9142 @node MOVE_ALLOC
9143 @section @code{MOVE_ALLOC} --- Move allocation from one object to another
9144 @fnindex MOVE_ALLOC
9145 @cindex moving allocation
9146 @cindex allocation, moving
9147
9148 @table @asis
9149 @item @emph{Description}:
9150 @code{MOVE_ALLOC(FROM, TO)} moves the allocation from @var{FROM} to
9151 @var{TO}. @var{FROM} will become deallocated in the process.
9152
9153 @item @emph{Standard}:
9154 Fortran 2003 and later
9155
9156 @item @emph{Class}:
9157 Pure subroutine
9158
9159 @item @emph{Syntax}:
9160 @code{CALL MOVE_ALLOC(FROM, TO)}
9161
9162 @item @emph{Arguments}:
9163 @multitable @columnfractions .15 .70
9164 @item @var{FROM} @tab @code{ALLOCATABLE}, @code{INTENT(INOUT)}, may be
9165 of any type and kind.
9166 @item @var{TO} @tab @code{ALLOCATABLE}, @code{INTENT(OUT)}, shall be
9167 of the same type, kind and rank as @var{FROM}.
9168 @end multitable
9169
9170 @item @emph{Return value}:
9171 None
9172
9173 @item @emph{Example}:
9174 @smallexample
9175 program test_move_alloc
9176 integer, allocatable :: a(:), b(:)
9177
9178 allocate(a(3))
9179 a = [ 1, 2, 3 ]
9180 call move_alloc(a, b)
9181 print *, allocated(a), allocated(b)
9182 print *, b
9183 end program test_move_alloc
9184 @end smallexample
9185 @end table
9186
9187
9188
9189 @node MVBITS
9190 @section @code{MVBITS} --- Move bits from one integer to another
9191 @fnindex MVBITS
9192 @cindex bits, move
9193
9194 @table @asis
9195 @item @emph{Description}:
9196 Moves @var{LEN} bits from positions @var{FROMPOS} through
9197 @code{FROMPOS+LEN-1} of @var{FROM} to positions @var{TOPOS} through
9198 @code{TOPOS+LEN-1} of @var{TO}. The portion of argument @var{TO} not
9199 affected by the movement of bits is unchanged. The values of
9200 @code{FROMPOS+LEN-1} and @code{TOPOS+LEN-1} must be less than
9201 @code{BIT_SIZE(FROM)}.
9202
9203 @item @emph{Standard}:
9204 Fortran 95 and later
9205
9206 @item @emph{Class}:
9207 Elemental subroutine
9208
9209 @item @emph{Syntax}:
9210 @code{CALL MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)}
9211
9212 @item @emph{Arguments}:
9213 @multitable @columnfractions .15 .70
9214 @item @var{FROM} @tab The type shall be @code{INTEGER}.
9215 @item @var{FROMPOS} @tab The type shall be @code{INTEGER}.
9216 @item @var{LEN} @tab The type shall be @code{INTEGER}.
9217 @item @var{TO} @tab The type shall be @code{INTEGER}, of the
9218 same kind as @var{FROM}.
9219 @item @var{TOPOS} @tab The type shall be @code{INTEGER}.
9220 @end multitable
9221
9222 @item @emph{See also}:
9223 @ref{IBCLR}, @ref{IBSET}, @ref{IBITS}, @ref{IAND}, @ref{IOR}, @ref{IEOR}
9224 @end table
9225
9226
9227
9228 @node NEAREST
9229 @section @code{NEAREST} --- Nearest representable number
9230 @fnindex NEAREST
9231 @cindex real number, nearest different
9232 @cindex floating point, nearest different
9233
9234 @table @asis
9235 @item @emph{Description}:
9236 @code{NEAREST(X, S)} returns the processor-representable number nearest
9237 to @code{X} in the direction indicated by the sign of @code{S}.
9238
9239 @item @emph{Standard}:
9240 Fortran 95 and later
9241
9242 @item @emph{Class}:
9243 Elemental function
9244
9245 @item @emph{Syntax}:
9246 @code{RESULT = NEAREST(X, S)}
9247
9248 @item @emph{Arguments}:
9249 @multitable @columnfractions .15 .70
9250 @item @var{X} @tab Shall be of type @code{REAL}.
9251 @item @var{S} @tab Shall be of type @code{REAL} and
9252 not equal to zero.
9253 @end multitable
9254
9255 @item @emph{Return value}:
9256 The return value is of the same type as @code{X}. If @code{S} is
9257 positive, @code{NEAREST} returns the processor-representable number
9258 greater than @code{X} and nearest to it. If @code{S} is negative,
9259 @code{NEAREST} returns the processor-representable number smaller than
9260 @code{X} and nearest to it.
9261
9262 @item @emph{Example}:
9263 @smallexample
9264 program test_nearest
9265 real :: x, y
9266 x = nearest(42.0, 1.0)
9267 y = nearest(42.0, -1.0)
9268 write (*,"(3(G20.15))") x, y, x - y
9269 end program test_nearest
9270 @end smallexample
9271 @end table
9272
9273
9274
9275 @node NEW_LINE
9276 @section @code{NEW_LINE} --- New line character
9277 @fnindex NEW_LINE
9278 @cindex newline
9279 @cindex output, newline
9280
9281 @table @asis
9282 @item @emph{Description}:
9283 @code{NEW_LINE(C)} returns the new-line character.
9284
9285 @item @emph{Standard}:
9286 Fortran 2003 and later
9287
9288 @item @emph{Class}:
9289 Inquiry function
9290
9291 @item @emph{Syntax}:
9292 @code{RESULT = NEW_LINE(C)}
9293
9294 @item @emph{Arguments}:
9295 @multitable @columnfractions .15 .70
9296 @item @var{C} @tab The argument shall be a scalar or array of the
9297 type @code{CHARACTER}.
9298 @end multitable
9299
9300 @item @emph{Return value}:
9301 Returns a @var{CHARACTER} scalar of length one with the new-line character of
9302 the same kind as parameter @var{C}.
9303
9304 @item @emph{Example}:
9305 @smallexample
9306 program newline
9307 implicit none
9308 write(*,'(A)') 'This is record 1.'//NEW_LINE('A')//'This is record 2.'
9309 end program newline
9310 @end smallexample
9311 @end table
9312
9313
9314
9315 @node NINT
9316 @section @code{NINT} --- Nearest whole number
9317 @fnindex NINT
9318 @fnindex IDNINT
9319 @cindex rounding, nearest whole number
9320
9321 @table @asis
9322 @item @emph{Description}:
9323 @code{NINT(A)} rounds its argument to the nearest whole number.
9324
9325 @item @emph{Standard}:
9326 Fortran 77 and later, with @var{KIND} argument Fortran 90 and later
9327
9328 @item @emph{Class}:
9329 Elemental function
9330
9331 @item @emph{Syntax}:
9332 @code{RESULT = NINT(A [, KIND])}
9333
9334 @item @emph{Arguments}:
9335 @multitable @columnfractions .15 .70
9336 @item @var{A} @tab The type of the argument shall be @code{REAL}.
9337 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
9338 expression indicating the kind parameter of the result.
9339 @end multitable
9340
9341 @item @emph{Return value}:
9342 Returns @var{A} with the fractional portion of its magnitude eliminated by
9343 rounding to the nearest whole number and with its sign preserved,
9344 converted to an @code{INTEGER} of the default kind.
9345
9346 @item @emph{Example}:
9347 @smallexample
9348 program test_nint
9349 real(4) x4
9350 real(8) x8
9351 x4 = 1.234E0_4
9352 x8 = 4.321_8
9353 print *, nint(x4), idnint(x8)
9354 end program test_nint
9355 @end smallexample
9356
9357 @item @emph{Specific names}:
9358 @multitable @columnfractions .20 .20 .20 .25
9359 @item Name @tab Argument @tab Return Type @tab Standard
9360 @item @code{NINT(A)} @tab @code{REAL(4) A} @tab @code{INTEGER} @tab Fortran 95 and later
9361 @item @code{IDNINT(A)} @tab @code{REAL(8) A} @tab @code{INTEGER} @tab Fortran 95 and later
9362 @end multitable
9363
9364 @item @emph{See also}:
9365 @ref{CEILING}, @ref{FLOOR}
9366
9367 @end table
9368
9369
9370
9371 @node NORM2
9372 @section @code{NORM2} --- Euclidean vector norms
9373 @fnindex NORM2
9374 @cindex Euclidean vector norm
9375 @cindex L2 vector norm
9376 @cindex norm, Euclidean
9377
9378 @table @asis
9379 @item @emph{Description}:
9380 Calculates the Euclidean vector norm (@math{L_2} norm) of
9381 of @var{ARRAY} along dimension @var{DIM}.
9382
9383 @item @emph{Standard}:
9384 Fortran 2008 and later
9385
9386 @item @emph{Class}:
9387 Transformational function
9388
9389 @item @emph{Syntax}:
9390 @multitable @columnfractions .80
9391 @item @code{RESULT = NORM2(ARRAY[, DIM])}
9392 @end multitable
9393
9394 @item @emph{Arguments}:
9395 @multitable @columnfractions .15 .70
9396 @item @var{ARRAY} @tab Shall be an array of type @code{REAL}
9397 @item @var{DIM} @tab (Optional) shall be a scalar of type
9398 @code{INTEGER} with a value in the range from 1 to n, where n
9399 equals the rank of @var{ARRAY}.
9400 @end multitable
9401
9402 @item @emph{Return value}:
9403 The result is of the same type as @var{ARRAY}.
9404
9405 If @var{DIM} is absent, a scalar with the square root of the sum of all
9406 elements in @var{ARRAY} squared is returned. Otherwise, an array of
9407 rank @math{n-1}, where @math{n} equals the rank of @var{ARRAY}, and a
9408 shape similar to that of @var{ARRAY} with dimension @var{DIM} dropped
9409 is returned.
9410
9411 @item @emph{Example}:
9412 @smallexample
9413 PROGRAM test_sum
9414 REAL :: x(5) = [ real :: 1, 2, 3, 4, 5 ]
9415 print *, NORM2(x) ! = sqrt(55.) ~ 7.416
9416 END PROGRAM
9417 @end smallexample
9418 @end table
9419
9420
9421
9422 @node NOT
9423 @section @code{NOT} --- Logical negation
9424 @fnindex NOT
9425 @cindex bits, negate
9426 @cindex bitwise logical not
9427 @cindex logical not, bitwise
9428
9429 @table @asis
9430 @item @emph{Description}:
9431 @code{NOT} returns the bitwise Boolean inverse of @var{I}.
9432
9433 @item @emph{Standard}:
9434 Fortran 95 and later
9435
9436 @item @emph{Class}:
9437 Elemental function
9438
9439 @item @emph{Syntax}:
9440 @code{RESULT = NOT(I)}
9441
9442 @item @emph{Arguments}:
9443 @multitable @columnfractions .15 .70
9444 @item @var{I} @tab The type shall be @code{INTEGER}.
9445 @end multitable
9446
9447 @item @emph{Return value}:
9448 The return type is @code{INTEGER}, of the same kind as the
9449 argument.
9450
9451 @item @emph{See also}:
9452 @ref{IAND}, @ref{IEOR}, @ref{IOR}, @ref{IBITS}, @ref{IBSET}, @ref{IBCLR}
9453
9454 @end table
9455
9456
9457
9458 @node NULL
9459 @section @code{NULL} --- Function that returns an disassociated pointer
9460 @fnindex NULL
9461 @cindex pointer, status
9462 @cindex pointer, disassociated
9463
9464 @table @asis
9465 @item @emph{Description}:
9466 Returns a disassociated pointer.
9467
9468 If @var{MOLD} is present, a disassociated pointer of the same type is
9469 returned, otherwise the type is determined by context.
9470
9471 In Fortran 95, @var{MOLD} is optional. Please note that Fortran 2003
9472 includes cases where it is required.
9473
9474 @item @emph{Standard}:
9475 Fortran 95 and later
9476
9477 @item @emph{Class}:
9478 Transformational function
9479
9480 @item @emph{Syntax}:
9481 @code{PTR => NULL([MOLD])}
9482
9483 @item @emph{Arguments}:
9484 @multitable @columnfractions .15 .70
9485 @item @var{MOLD} @tab (Optional) shall be a pointer of any association
9486 status and of any type.
9487 @end multitable
9488
9489 @item @emph{Return value}:
9490 A disassociated pointer.
9491
9492 @item @emph{Example}:
9493 @smallexample
9494 REAL, POINTER, DIMENSION(:) :: VEC => NULL ()
9495 @end smallexample
9496
9497 @item @emph{See also}:
9498 @ref{ASSOCIATED}
9499 @end table
9500
9501
9502
9503 @node NUM_IMAGES
9504 @section @code{NUM_IMAGES} --- Function that returns the number of images
9505 @fnindex NUM_IMAGES
9506 @cindex coarray, @code{NUM_IMAGES}
9507 @cindex images, number of
9508
9509 @table @asis
9510 @item @emph{Description}:
9511 Returns the number of images.
9512
9513 @item @emph{Standard}:
9514 Fortran 2008 and later
9515
9516 @item @emph{Class}:
9517 Transformational function
9518
9519 @item @emph{Syntax}:
9520 @code{RESULT = NUM_IMAGES()}
9521
9522 @item @emph{Arguments}: None.
9523
9524 @item @emph{Return value}:
9525 Scalar default-kind integer.
9526
9527 @item @emph{Example}:
9528 @smallexample
9529 INTEGER :: value[*]
9530 INTEGER :: i
9531 value = THIS_IMAGE()
9532 SYNC ALL
9533 IF (THIS_IMAGE() == 1) THEN
9534 DO i = 1, NUM_IMAGES()
9535 WRITE(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
9536 END DO
9537 END IF
9538 @end smallexample
9539
9540 @item @emph{See also}:
9541 @ref{THIS_IMAGE}, @ref{IMAGE_INDEX}
9542 @end table
9543
9544
9545
9546 @node OR
9547 @section @code{OR} --- Bitwise logical OR
9548 @fnindex OR
9549 @cindex bitwise logical or
9550 @cindex logical or, bitwise
9551
9552 @table @asis
9553 @item @emph{Description}:
9554 Bitwise logical @code{OR}.
9555
9556 This intrinsic routine is provided for backwards compatibility with
9557 GNU Fortran 77. For integer arguments, programmers should consider
9558 the use of the @ref{IOR} intrinsic defined by the Fortran standard.
9559
9560 @item @emph{Standard}:
9561 GNU extension
9562
9563 @item @emph{Class}:
9564 Function
9565
9566 @item @emph{Syntax}:
9567 @code{RESULT = OR(I, J)}
9568
9569 @item @emph{Arguments}:
9570 @multitable @columnfractions .15 .70
9571 @item @var{I} @tab The type shall be either a scalar @code{INTEGER}
9572 type or a scalar @code{LOGICAL} type.
9573 @item @var{J} @tab The type shall be the same as the type of @var{J}.
9574 @end multitable
9575
9576 @item @emph{Return value}:
9577 The return type is either a scalar @code{INTEGER} or a scalar
9578 @code{LOGICAL}. If the kind type parameters differ, then the
9579 smaller kind type is implicitly converted to larger kind, and the
9580 return has the larger kind.
9581
9582 @item @emph{Example}:
9583 @smallexample
9584 PROGRAM test_or
9585 LOGICAL :: T = .TRUE., F = .FALSE.
9586 INTEGER :: a, b
9587 DATA a / Z'F' /, b / Z'3' /
9588
9589 WRITE (*,*) OR(T, T), OR(T, F), OR(F, T), OR(F, F)
9590 WRITE (*,*) OR(a, b)
9591 END PROGRAM
9592 @end smallexample
9593
9594 @item @emph{See also}:
9595 Fortran 95 elemental function: @ref{IOR}
9596 @end table
9597
9598
9599
9600 @node PACK
9601 @section @code{PACK} --- Pack an array into an array of rank one
9602 @fnindex PACK
9603 @cindex array, packing
9604 @cindex array, reduce dimension
9605 @cindex array, gather elements
9606
9607 @table @asis
9608 @item @emph{Description}:
9609 Stores the elements of @var{ARRAY} in an array of rank one.
9610
9611 The beginning of the resulting array is made up of elements whose @var{MASK}
9612 equals @code{TRUE}. Afterwards, positions are filled with elements taken from
9613 @var{VECTOR}.
9614
9615 @item @emph{Standard}:
9616 Fortran 95 and later
9617
9618 @item @emph{Class}:
9619 Transformational function
9620
9621 @item @emph{Syntax}:
9622 @code{RESULT = PACK(ARRAY, MASK[,VECTOR])}
9623
9624 @item @emph{Arguments}:
9625 @multitable @columnfractions .15 .70
9626 @item @var{ARRAY} @tab Shall be an array of any type.
9627 @item @var{MASK} @tab Shall be an array of type @code{LOGICAL} and
9628 of the same size as @var{ARRAY}. Alternatively, it may be a @code{LOGICAL}
9629 scalar.
9630 @item @var{VECTOR} @tab (Optional) shall be an array of the same type
9631 as @var{ARRAY} and of rank one. If present, the number of elements in
9632 @var{VECTOR} shall be equal to or greater than the number of true elements
9633 in @var{MASK}. If @var{MASK} is scalar, the number of elements in
9634 @var{VECTOR} shall be equal to or greater than the number of elements in
9635 @var{ARRAY}.
9636 @end multitable
9637
9638 @item @emph{Return value}:
9639 The result is an array of rank one and the same type as that of @var{ARRAY}.
9640 If @var{VECTOR} is present, the result size is that of @var{VECTOR}, the
9641 number of @code{TRUE} values in @var{MASK} otherwise.
9642
9643 @item @emph{Example}:
9644 Gathering nonzero elements from an array:
9645 @smallexample
9646 PROGRAM test_pack_1
9647 INTEGER :: m(6)
9648 m = (/ 1, 0, 0, 0, 5, 0 /)
9649 WRITE(*, FMT="(6(I0, ' '))") pack(m, m /= 0) ! "1 5"
9650 END PROGRAM
9651 @end smallexample
9652
9653 Gathering nonzero elements from an array and appending elements from @var{VECTOR}:
9654 @smallexample
9655 PROGRAM test_pack_2
9656 INTEGER :: m(4)
9657 m = (/ 1, 0, 0, 2 /)
9658 WRITE(*, FMT="(4(I0, ' '))") pack(m, m /= 0, (/ 0, 0, 3, 4 /)) ! "1 2 3 4"
9659 END PROGRAM
9660 @end smallexample
9661
9662 @item @emph{See also}:
9663 @ref{UNPACK}
9664 @end table
9665
9666
9667
9668 @node PARITY
9669 @section @code{PARITY} --- Reduction with exclusive OR
9670 @fnindex PARITY
9671 @cindex Parity
9672 @cindex Reduction, XOR
9673 @cindex XOR reduction
9674
9675 @table @asis
9676 @item @emph{Description}:
9677 Calculates the parity, i.e. the reduction using @code{.XOR.},
9678 of @var{MASK} along dimension @var{DIM}.
9679
9680 @item @emph{Standard}:
9681 Fortran 2008 and later
9682
9683 @item @emph{Class}:
9684 Transformational function
9685
9686 @item @emph{Syntax}:
9687 @multitable @columnfractions .80
9688 @item @code{RESULT = PARITY(MASK[, DIM])}
9689 @end multitable
9690
9691 @item @emph{Arguments}:
9692 @multitable @columnfractions .15 .70
9693 @item @var{LOGICAL} @tab Shall be an array of type @code{LOGICAL}
9694 @item @var{DIM} @tab (Optional) shall be a scalar of type
9695 @code{INTEGER} with a value in the range from 1 to n, where n
9696 equals the rank of @var{MASK}.
9697 @end multitable
9698
9699 @item @emph{Return value}:
9700 The result is of the same type as @var{MASK}.
9701
9702 If @var{DIM} is absent, a scalar with the parity of all elements in
9703 @var{MASK} is returned, i.e. true if an odd number of elements is
9704 @code{.true.} and false otherwise. If @var{DIM} is present, an array
9705 of rank @math{n-1}, where @math{n} equals the rank of @var{ARRAY},
9706 and a shape similar to that of @var{MASK} with dimension @var{DIM}
9707 dropped is returned.
9708
9709 @item @emph{Example}:
9710 @smallexample
9711 PROGRAM test_sum
9712 LOGICAL :: x(2) = [ .true., .false. ]
9713 print *, PARITY(x) ! prints "T" (true).
9714 END PROGRAM
9715 @end smallexample
9716 @end table
9717
9718
9719
9720 @node PERROR
9721 @section @code{PERROR} --- Print system error message
9722 @fnindex PERROR
9723 @cindex system, error handling
9724
9725 @table @asis
9726 @item @emph{Description}:
9727 Prints (on the C @code{stderr} stream) a newline-terminated error
9728 message corresponding to the last system error. This is prefixed by
9729 @var{STRING}, a colon and a space. See @code{perror(3)}.
9730
9731 @item @emph{Standard}:
9732 GNU extension
9733
9734 @item @emph{Class}:
9735 Subroutine
9736
9737 @item @emph{Syntax}:
9738 @code{CALL PERROR(STRING)}
9739
9740 @item @emph{Arguments}:
9741 @multitable @columnfractions .15 .70
9742 @item @var{STRING} @tab A scalar of type @code{CHARACTER} and of the
9743 default kind.
9744 @end multitable
9745
9746 @item @emph{See also}:
9747 @ref{IERRNO}
9748 @end table
9749
9750
9751
9752 @node POPCNT
9753 @section @code{POPCNT} --- Number of bits set
9754 @fnindex POPCNT
9755 @cindex binary representation
9756 @cindex bits set
9757
9758 @table @asis
9759 @item @emph{Description}:
9760 @code{POPCNT(I)} returns the number of bits set ('1' bits) in the binary
9761 representation of @code{I}.
9762
9763 @item @emph{Standard}:
9764 Fortran 2008 and later
9765
9766 @item @emph{Class}:
9767 Elemental function
9768
9769 @item @emph{Syntax}:
9770 @code{RESULT = POPCNT(I)}
9771
9772 @item @emph{Arguments}:
9773 @multitable @columnfractions .15 .70
9774 @item @var{I} @tab Shall be of type @code{INTEGER}.
9775 @end multitable
9776
9777 @item @emph{Return value}:
9778 The return value is of type @code{INTEGER} and of the default integer
9779 kind.
9780
9781 @item @emph{See also}:
9782 @ref{POPPAR}, @ref{LEADZ}, @ref{TRAILZ}
9783
9784 @item @emph{Example}:
9785 @smallexample
9786 program test_population
9787 print *, popcnt(127), poppar(127)
9788 print *, popcnt(huge(0_4)), poppar(huge(0_4))
9789 print *, popcnt(huge(0_8)), poppar(huge(0_8))
9790 end program test_population
9791 @end smallexample
9792 @end table
9793
9794
9795 @node POPPAR
9796 @section @code{POPPAR} --- Parity of the number of bits set
9797 @fnindex POPPAR
9798 @cindex binary representation
9799 @cindex parity
9800
9801 @table @asis
9802 @item @emph{Description}:
9803 @code{POPPAR(I)} returns parity of the integer @code{I}, i.e. the parity
9804 of the number of bits set ('1' bits) in the binary representation of
9805 @code{I}. It is equal to 0 if @code{I} has an even number of bits set,
9806 and 1 for an odd number of '1' bits.
9807
9808 @item @emph{Standard}:
9809 Fortran 2008 and later
9810
9811 @item @emph{Class}:
9812 Elemental function
9813
9814 @item @emph{Syntax}:
9815 @code{RESULT = POPPAR(I)}
9816
9817 @item @emph{Arguments}:
9818 @multitable @columnfractions .15 .70
9819 @item @var{I} @tab Shall be of type @code{INTEGER}.
9820 @end multitable
9821
9822 @item @emph{Return value}:
9823 The return value is of type @code{INTEGER} and of the default integer
9824 kind.
9825
9826 @item @emph{See also}:
9827 @ref{POPCNT}, @ref{LEADZ}, @ref{TRAILZ}
9828
9829 @item @emph{Example}:
9830 @smallexample
9831 program test_population
9832 print *, popcnt(127), poppar(127)
9833 print *, popcnt(huge(0_4)), poppar(huge(0_4))
9834 print *, popcnt(huge(0_8)), poppar(huge(0_8))
9835 end program test_population
9836 @end smallexample
9837 @end table
9838
9839
9840
9841 @node PRECISION
9842 @section @code{PRECISION} --- Decimal precision of a real kind
9843 @fnindex PRECISION
9844 @cindex model representation, precision
9845
9846 @table @asis
9847 @item @emph{Description}:
9848 @code{PRECISION(X)} returns the decimal precision in the model of the
9849 type of @code{X}.
9850
9851 @item @emph{Standard}:
9852 Fortran 95 and later
9853
9854 @item @emph{Class}:
9855 Inquiry function
9856
9857 @item @emph{Syntax}:
9858 @code{RESULT = PRECISION(X)}
9859
9860 @item @emph{Arguments}:
9861 @multitable @columnfractions .15 .70
9862 @item @var{X} @tab Shall be of type @code{REAL} or @code{COMPLEX}.
9863 @end multitable
9864
9865 @item @emph{Return value}:
9866 The return value is of type @code{INTEGER} and of the default integer
9867 kind.
9868
9869 @item @emph{See also}:
9870 @ref{SELECTED_REAL_KIND}, @ref{RANGE}
9871
9872 @item @emph{Example}:
9873 @smallexample
9874 program prec_and_range
9875 real(kind=4) :: x(2)
9876 complex(kind=8) :: y
9877
9878 print *, precision(x), range(x)
9879 print *, precision(y), range(y)
9880 end program prec_and_range
9881 @end smallexample
9882 @end table
9883
9884
9885
9886 @node PRESENT
9887 @section @code{PRESENT} --- Determine whether an optional dummy argument is specified
9888 @fnindex PRESENT
9889
9890 @table @asis
9891 @item @emph{Description}:
9892 Determines whether an optional dummy argument is present.
9893
9894 @item @emph{Standard}:
9895 Fortran 95 and later
9896
9897 @item @emph{Class}:
9898 Inquiry function
9899
9900 @item @emph{Syntax}:
9901 @code{RESULT = PRESENT(A)}
9902
9903 @item @emph{Arguments}:
9904 @multitable @columnfractions .15 .70
9905 @item @var{A} @tab May be of any type and may be a pointer, scalar or array
9906 value, or a dummy procedure. It shall be the name of an optional dummy argument
9907 accessible within the current subroutine or function.
9908 @end multitable
9909
9910 @item @emph{Return value}:
9911 Returns either @code{TRUE} if the optional argument @var{A} is present, or
9912 @code{FALSE} otherwise.
9913
9914 @item @emph{Example}:
9915 @smallexample
9916 PROGRAM test_present
9917 WRITE(*,*) f(), f(42) ! "F T"
9918 CONTAINS
9919 LOGICAL FUNCTION f(x)
9920 INTEGER, INTENT(IN), OPTIONAL :: x
9921 f = PRESENT(x)
9922 END FUNCTION
9923 END PROGRAM
9924 @end smallexample
9925 @end table
9926
9927
9928
9929 @node PRODUCT
9930 @section @code{PRODUCT} --- Product of array elements
9931 @fnindex PRODUCT
9932 @cindex array, product
9933 @cindex array, multiply elements
9934 @cindex array, conditionally multiply elements
9935 @cindex multiply array elements
9936
9937 @table @asis
9938 @item @emph{Description}:
9939 Multiplies the elements of @var{ARRAY} along dimension @var{DIM} if
9940 the corresponding element in @var{MASK} is @code{TRUE}.
9941
9942 @item @emph{Standard}:
9943 Fortran 95 and later
9944
9945 @item @emph{Class}:
9946 Transformational function
9947
9948 @item @emph{Syntax}:
9949 @multitable @columnfractions .80
9950 @item @code{RESULT = PRODUCT(ARRAY[, MASK])}
9951 @item @code{RESULT = PRODUCT(ARRAY, DIM[, MASK])}
9952 @end multitable
9953
9954 @item @emph{Arguments}:
9955 @multitable @columnfractions .15 .70
9956 @item @var{ARRAY} @tab Shall be an array of type @code{INTEGER},
9957 @code{REAL} or @code{COMPLEX}.
9958 @item @var{DIM} @tab (Optional) shall be a scalar of type
9959 @code{INTEGER} with a value in the range from 1 to n, where n
9960 equals the rank of @var{ARRAY}.
9961 @item @var{MASK} @tab (Optional) shall be of type @code{LOGICAL}
9962 and either be a scalar or an array of the same shape as @var{ARRAY}.
9963 @end multitable
9964
9965 @item @emph{Return value}:
9966 The result is of the same type as @var{ARRAY}.
9967
9968 If @var{DIM} is absent, a scalar with the product of all elements in
9969 @var{ARRAY} is returned. Otherwise, an array of rank n-1, where n equals
9970 the rank of @var{ARRAY}, and a shape similar to that of @var{ARRAY} with
9971 dimension @var{DIM} dropped is returned.
9972
9973
9974 @item @emph{Example}:
9975 @smallexample
9976 PROGRAM test_product
9977 INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
9978 print *, PRODUCT(x) ! all elements, product = 120
9979 print *, PRODUCT(x, MASK=MOD(x, 2)==1) ! odd elements, product = 15
9980 END PROGRAM
9981 @end smallexample
9982
9983 @item @emph{See also}:
9984 @ref{SUM}
9985 @end table
9986
9987
9988
9989 @node RADIX
9990 @section @code{RADIX} --- Base of a model number
9991 @fnindex RADIX
9992 @cindex model representation, base
9993 @cindex model representation, radix
9994
9995 @table @asis
9996 @item @emph{Description}:
9997 @code{RADIX(X)} returns the base of the model representing the entity @var{X}.
9998
9999 @item @emph{Standard}:
10000 Fortran 95 and later
10001
10002 @item @emph{Class}:
10003 Inquiry function
10004
10005 @item @emph{Syntax}:
10006 @code{RESULT = RADIX(X)}
10007
10008 @item @emph{Arguments}:
10009 @multitable @columnfractions .15 .70
10010 @item @var{X} @tab Shall be of type @code{INTEGER} or @code{REAL}
10011 @end multitable
10012
10013 @item @emph{Return value}:
10014 The return value is a scalar of type @code{INTEGER} and of the default
10015 integer kind.
10016
10017 @item @emph{See also}:
10018 @ref{SELECTED_REAL_KIND}
10019
10020 @item @emph{Example}:
10021 @smallexample
10022 program test_radix
10023 print *, "The radix for the default integer kind is", radix(0)
10024 print *, "The radix for the default real kind is", radix(0.0)
10025 end program test_radix
10026 @end smallexample
10027
10028 @end table
10029
10030
10031
10032 @node RAN
10033 @section @code{RAN} --- Real pseudo-random number
10034 @fnindex RAN
10035 @cindex random number generation
10036
10037 @table @asis
10038 @item @emph{Description}:
10039 For compatibility with HP FORTRAN 77/iX, the @code{RAN} intrinsic is
10040 provided as an alias for @code{RAND}. See @ref{RAND} for complete
10041 documentation.
10042
10043 @item @emph{Standard}:
10044 GNU extension
10045
10046 @item @emph{Class}:
10047 Function
10048
10049 @item @emph{See also}:
10050 @ref{RAND}, @ref{RANDOM_NUMBER}
10051 @end table
10052
10053
10054
10055 @node RAND
10056 @section @code{RAND} --- Real pseudo-random number
10057 @fnindex RAND
10058 @cindex random number generation
10059
10060 @table @asis
10061 @item @emph{Description}:
10062 @code{RAND(FLAG)} returns a pseudo-random number from a uniform
10063 distribution between 0 and 1. If @var{FLAG} is 0, the next number
10064 in the current sequence is returned; if @var{FLAG} is 1, the generator
10065 is restarted by @code{CALL SRAND(0)}; if @var{FLAG} has any other value,
10066 it is used as a new seed with @code{SRAND}.
10067
10068 This intrinsic routine is provided for backwards compatibility with
10069 GNU Fortran 77. It implements a simple modulo generator as provided
10070 by @command{g77}. For new code, one should consider the use of
10071 @ref{RANDOM_NUMBER} as it implements a superior algorithm.
10072
10073 @item @emph{Standard}:
10074 GNU extension
10075
10076 @item @emph{Class}:
10077 Function
10078
10079 @item @emph{Syntax}:
10080 @code{RESULT = RAND(I)}
10081
10082 @item @emph{Arguments}:
10083 @multitable @columnfractions .15 .70
10084 @item @var{I} @tab Shall be a scalar @code{INTEGER} of kind 4.
10085 @end multitable
10086
10087 @item @emph{Return value}:
10088 The return value is of @code{REAL} type and the default kind.
10089
10090 @item @emph{Example}:
10091 @smallexample
10092 program test_rand
10093 integer,parameter :: seed = 86456
10094
10095 call srand(seed)
10096 print *, rand(), rand(), rand(), rand()
10097 print *, rand(seed), rand(), rand(), rand()
10098 end program test_rand
10099 @end smallexample
10100
10101 @item @emph{See also}:
10102 @ref{SRAND}, @ref{RANDOM_NUMBER}
10103
10104 @end table
10105
10106
10107
10108 @node RANDOM_NUMBER
10109 @section @code{RANDOM_NUMBER} --- Pseudo-random number
10110 @fnindex RANDOM_NUMBER
10111 @cindex random number generation
10112
10113 @table @asis
10114 @item @emph{Description}:
10115 Returns a single pseudorandom number or an array of pseudorandom numbers
10116 from the uniform distribution over the range @math{ 0 \leq x < 1}.
10117
10118 The runtime-library implements George Marsaglia's KISS (Keep It Simple
10119 Stupid) random number generator (RNG). This RNG combines:
10120 @enumerate
10121 @item The congruential generator @math{x(n) = 69069 \cdot x(n-1) + 1327217885}
10122 with a period of @math{2^{32}},
10123 @item A 3-shift shift-register generator with a period of @math{2^{32} - 1},
10124 @item Two 16-bit multiply-with-carry generators with a period of
10125 @math{597273182964842497 > 2^{59}}.
10126 @end enumerate
10127 The overall period exceeds @math{2^{123}}.
10128
10129 Please note, this RNG is thread safe if used within OpenMP directives,
10130 i.e., its state will be consistent while called from multiple threads.
10131 However, the KISS generator does not create random numbers in parallel
10132 from multiple sources, but in sequence from a single source. If an
10133 OpenMP-enabled application heavily relies on random numbers, one should
10134 consider employing a dedicated parallel random number generator instead.
10135
10136 @item @emph{Standard}:
10137 Fortran 95 and later
10138
10139 @item @emph{Class}:
10140 Subroutine
10141
10142 @item @emph{Syntax}:
10143 @code{RANDOM_NUMBER(HARVEST)}
10144
10145 @item @emph{Arguments}:
10146 @multitable @columnfractions .15 .70
10147 @item @var{HARVEST} @tab Shall be a scalar or an array of type @code{REAL}.
10148 @end multitable
10149
10150 @item @emph{Example}:
10151 @smallexample
10152 program test_random_number
10153 REAL :: r(5,5)
10154 CALL init_random_seed() ! see example of RANDOM_SEED
10155 CALL RANDOM_NUMBER(r)
10156 end program
10157 @end smallexample
10158
10159 @item @emph{See also}:
10160 @ref{RANDOM_SEED}
10161 @end table
10162
10163
10164
10165 @node RANDOM_SEED
10166 @section @code{RANDOM_SEED} --- Initialize a pseudo-random number sequence
10167 @fnindex RANDOM_SEED
10168 @cindex random number generation, seeding
10169 @cindex seeding a random number generator
10170
10171 @table @asis
10172 @item @emph{Description}:
10173 Restarts or queries the state of the pseudorandom number generator used by
10174 @code{RANDOM_NUMBER}.
10175
10176 If @code{RANDOM_SEED} is called without arguments, it is initialized
10177 to a default state. The example below shows how to initialize the
10178 random seed with a varying seed in order to ensure a different random
10179 number sequence for each invocation of the program. Note that setting
10180 any of the seed values to zero should be avoided as it can result in
10181 poor quality random numbers being generated.
10182
10183 @item @emph{Standard}:
10184 Fortran 95 and later
10185
10186 @item @emph{Class}:
10187 Subroutine
10188
10189 @item @emph{Syntax}:
10190 @code{CALL RANDOM_SEED([SIZE, PUT, GET])}
10191
10192 @item @emph{Arguments}:
10193 @multitable @columnfractions .15 .70
10194 @item @var{SIZE} @tab (Optional) Shall be a scalar and of type default
10195 @code{INTEGER}, with @code{INTENT(OUT)}. It specifies the minimum size
10196 of the arrays used with the @var{PUT} and @var{GET} arguments.
10197 @item @var{PUT} @tab (Optional) Shall be an array of type default
10198 @code{INTEGER} and rank one. It is @code{INTENT(IN)} and the size of
10199 the array must be larger than or equal to the number returned by the
10200 @var{SIZE} argument.
10201 @item @var{GET} @tab (Optional) Shall be an array of type default
10202 @code{INTEGER} and rank one. It is @code{INTENT(OUT)} and the size
10203 of the array must be larger than or equal to the number returned by
10204 the @var{SIZE} argument.
10205 @end multitable
10206
10207 @item @emph{Example}:
10208 @smallexample
10209 subroutine init_random_seed()
10210 use iso_fortran_env, only: int64
10211 implicit none
10212 integer, allocatable :: seed(:)
10213 integer :: i, n, un, istat, dt(8), pid
10214 integer(int64) :: t
10215
10216 call random_seed(size = n)
10217 allocate(seed(n))
10218 ! First try if the OS provides a random number generator
10219 open(newunit=un, file="/dev/urandom", access="stream", &
10220 form="unformatted", action="read", status="old", iostat=istat)
10221 if (istat == 0) then
10222 read(un) seed
10223 close(un)
10224 else
10225 ! Fallback to XOR:ing the current time and pid. The PID is
10226 ! useful in case one launches multiple instances of the same
10227 ! program in parallel.
10228 call system_clock(t)
10229 if (t == 0) then
10230 call date_and_time(values=dt)
10231 t = (dt(1) - 1970) * 365_int64 * 24 * 60 * 60 * 1000 &
10232 + dt(2) * 31_int64 * 24 * 60 * 60 * 1000 &
10233 + dt(3) * 24_int64 * 60 * 60 * 1000 &
10234 + dt(5) * 60 * 60 * 1000 &
10235 + dt(6) * 60 * 1000 + dt(7) * 1000 &
10236 + dt(8)
10237 end if
10238 pid = getpid()
10239 t = ieor(t, int(pid, kind(t)))
10240 do i = 1, n
10241 seed(i) = lcg(t)
10242 end do
10243 end if
10244 call random_seed(put=seed)
10245 contains
10246 ! This simple PRNG might not be good enough for real work, but is
10247 ! sufficient for seeding a better PRNG.
10248 function lcg(s)
10249 integer :: lcg
10250 integer(int64) :: s
10251 if (s == 0) then
10252 s = 104729
10253 else
10254 s = mod(s, 4294967296_int64)
10255 end if
10256 s = mod(s * 279470273_int64, 4294967291_int64)
10257 lcg = int(mod(s, int(huge(0), int64)), kind(0))
10258 end function lcg
10259 end subroutine init_random_seed
10260 @end smallexample
10261
10262 @item @emph{See also}:
10263 @ref{RANDOM_NUMBER}
10264 @end table
10265
10266
10267
10268 @node RANGE
10269 @section @code{RANGE} --- Decimal exponent range
10270 @fnindex RANGE
10271 @cindex model representation, range
10272
10273 @table @asis
10274 @item @emph{Description}:
10275 @code{RANGE(X)} returns the decimal exponent range in the model of the
10276 type of @code{X}.
10277
10278 @item @emph{Standard}:
10279 Fortran 95 and later
10280
10281 @item @emph{Class}:
10282 Inquiry function
10283
10284 @item @emph{Syntax}:
10285 @code{RESULT = RANGE(X)}
10286
10287 @item @emph{Arguments}:
10288 @multitable @columnfractions .15 .70
10289 @item @var{X} @tab Shall be of type @code{INTEGER}, @code{REAL}
10290 or @code{COMPLEX}.
10291 @end multitable
10292
10293 @item @emph{Return value}:
10294 The return value is of type @code{INTEGER} and of the default integer
10295 kind.
10296
10297 @item @emph{See also}:
10298 @ref{SELECTED_REAL_KIND}, @ref{PRECISION}
10299
10300 @item @emph{Example}:
10301 See @code{PRECISION} for an example.
10302 @end table
10303
10304
10305
10306 @node RANK
10307 @section @code{RANK} --- Rank of a data object
10308 @fnindex RANK
10309 @cindex rank
10310
10311 @table @asis
10312 @item @emph{Description}:
10313 @code{RANK(A)} returns the rank of a scalar or array data object.
10314
10315 @item @emph{Standard}:
10316 Technical Specification (TS) 29113
10317
10318 @item @emph{Class}:
10319 Inquiry function
10320
10321 @item @emph{Syntax}:
10322 @code{RESULT = RANK(A)}
10323
10324 @item @emph{Arguments}:
10325 @multitable @columnfractions .15 .70
10326 @item @var{A} @tab can be of any type
10327 @end multitable
10328
10329 @item @emph{Return value}:
10330 The return value is of type @code{INTEGER} and of the default integer
10331 kind. For arrays, their rank is returned; for scalars zero is returned.
10332
10333 @item @emph{Example}:
10334 @smallexample
10335 program test_rank
10336 integer :: a
10337 real, allocatable :: b(:,:)
10338
10339 print *, rank(a), rank(b) ! Prints: 0 2
10340 end program test_rank
10341 @end smallexample
10342
10343 @end table
10344
10345
10346
10347 @node REAL
10348 @section @code{REAL} --- Convert to real type
10349 @fnindex REAL
10350 @fnindex REALPART
10351 @fnindex FLOAT
10352 @fnindex DFLOAT
10353 @fnindex SNGL
10354 @cindex conversion, to real
10355 @cindex complex numbers, real part
10356
10357 @table @asis
10358 @item @emph{Description}:
10359 @code{REAL(A [, KIND])} converts its argument @var{A} to a real type. The
10360 @code{REALPART} function is provided for compatibility with @command{g77},
10361 and its use is strongly discouraged.
10362
10363 @item @emph{Standard}:
10364 Fortran 77 and later
10365
10366 @item @emph{Class}:
10367 Elemental function
10368
10369 @item @emph{Syntax}:
10370 @multitable @columnfractions .80
10371 @item @code{RESULT = REAL(A [, KIND])}
10372 @item @code{RESULT = REALPART(Z)}
10373 @end multitable
10374
10375 @item @emph{Arguments}:
10376 @multitable @columnfractions .15 .70
10377 @item @var{A} @tab Shall be @code{INTEGER}, @code{REAL}, or
10378 @code{COMPLEX}.
10379 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
10380 expression indicating the kind parameter of the result.
10381 @end multitable
10382
10383 @item @emph{Return value}:
10384 These functions return a @code{REAL} variable or array under
10385 the following rules:
10386
10387 @table @asis
10388 @item (A)
10389 @code{REAL(A)} is converted to a default real type if @var{A} is an
10390 integer or real variable.
10391 @item (B)
10392 @code{REAL(A)} is converted to a real type with the kind type parameter
10393 of @var{A} if @var{A} is a complex variable.
10394 @item (C)
10395 @code{REAL(A, KIND)} is converted to a real type with kind type
10396 parameter @var{KIND} if @var{A} is a complex, integer, or real
10397 variable.
10398 @end table
10399
10400 @item @emph{Example}:
10401 @smallexample
10402 program test_real
10403 complex :: x = (1.0, 2.0)
10404 print *, real(x), real(x,8), realpart(x)
10405 end program test_real
10406 @end smallexample
10407
10408 @item @emph{Specific names}:
10409 @multitable @columnfractions .20 .20 .20 .25
10410 @item Name @tab Argument @tab Return type @tab Standard
10411 @item @code{FLOAT(A)} @tab @code{INTEGER(4)} @tab @code{REAL(4)} @tab Fortran 77 and later
10412 @item @code{DFLOAT(A)} @tab @code{INTEGER(4)} @tab @code{REAL(8)} @tab GNU extension
10413 @item @code{SNGL(A)} @tab @code{INTEGER(8)} @tab @code{REAL(4)} @tab Fortran 77 and later
10414 @end multitable
10415
10416
10417 @item @emph{See also}:
10418 @ref{DBLE}
10419
10420 @end table
10421
10422
10423
10424 @node RENAME
10425 @section @code{RENAME} --- Rename a file
10426 @fnindex RENAME
10427 @cindex file system, rename file
10428
10429 @table @asis
10430 @item @emph{Description}:
10431 Renames a file from file @var{PATH1} to @var{PATH2}. A null
10432 character (@code{CHAR(0)}) can be used to mark the end of the names in
10433 @var{PATH1} and @var{PATH2}; otherwise, trailing blanks in the file
10434 names are ignored. If the @var{STATUS} argument is supplied, it
10435 contains 0 on success or a nonzero error code upon return; see
10436 @code{rename(2)}.
10437
10438 This intrinsic is provided in both subroutine and function forms;
10439 however, only one form can be used in any given program unit.
10440
10441 @item @emph{Standard}:
10442 GNU extension
10443
10444 @item @emph{Class}:
10445 Subroutine, function
10446
10447 @item @emph{Syntax}:
10448 @multitable @columnfractions .80
10449 @item @code{CALL RENAME(PATH1, PATH2 [, STATUS])}
10450 @item @code{STATUS = RENAME(PATH1, PATH2)}
10451 @end multitable
10452
10453 @item @emph{Arguments}:
10454 @multitable @columnfractions .15 .70
10455 @item @var{PATH1} @tab Shall be of default @code{CHARACTER} type.
10456 @item @var{PATH2} @tab Shall be of default @code{CHARACTER} type.
10457 @item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
10458 @end multitable
10459
10460 @item @emph{See also}:
10461 @ref{LINK}
10462
10463 @end table
10464
10465
10466
10467 @node REPEAT
10468 @section @code{REPEAT} --- Repeated string concatenation
10469 @fnindex REPEAT
10470 @cindex string, repeat
10471 @cindex string, concatenate
10472
10473 @table @asis
10474 @item @emph{Description}:
10475 Concatenates @var{NCOPIES} copies of a string.
10476
10477 @item @emph{Standard}:
10478 Fortran 95 and later
10479
10480 @item @emph{Class}:
10481 Transformational function
10482
10483 @item @emph{Syntax}:
10484 @code{RESULT = REPEAT(STRING, NCOPIES)}
10485
10486 @item @emph{Arguments}:
10487 @multitable @columnfractions .15 .70
10488 @item @var{STRING} @tab Shall be scalar and of type @code{CHARACTER}.
10489 @item @var{NCOPIES} @tab Shall be scalar and of type @code{INTEGER}.
10490 @end multitable
10491
10492 @item @emph{Return value}:
10493 A new scalar of type @code{CHARACTER} built up from @var{NCOPIES} copies
10494 of @var{STRING}.
10495
10496 @item @emph{Example}:
10497 @smallexample
10498 program test_repeat
10499 write(*,*) repeat("x", 5) ! "xxxxx"
10500 end program
10501 @end smallexample
10502 @end table
10503
10504
10505
10506 @node RESHAPE
10507 @section @code{RESHAPE} --- Function to reshape an array
10508 @fnindex RESHAPE
10509 @cindex array, change dimensions
10510 @cindex array, transmogrify
10511
10512 @table @asis
10513 @item @emph{Description}:
10514 Reshapes @var{SOURCE} to correspond to @var{SHAPE}. If necessary,
10515 the new array may be padded with elements from @var{PAD} or permuted
10516 as defined by @var{ORDER}.
10517
10518 @item @emph{Standard}:
10519 Fortran 95 and later
10520
10521 @item @emph{Class}:
10522 Transformational function
10523
10524 @item @emph{Syntax}:
10525 @code{RESULT = RESHAPE(SOURCE, SHAPE[, PAD, ORDER])}
10526
10527 @item @emph{Arguments}:
10528 @multitable @columnfractions .15 .70
10529 @item @var{SOURCE} @tab Shall be an array of any type.
10530 @item @var{SHAPE} @tab Shall be of type @code{INTEGER} and an
10531 array of rank one. Its values must be positive or zero.
10532 @item @var{PAD} @tab (Optional) shall be an array of the same
10533 type as @var{SOURCE}.
10534 @item @var{ORDER} @tab (Optional) shall be of type @code{INTEGER}
10535 and an array of the same shape as @var{SHAPE}. Its values shall
10536 be a permutation of the numbers from 1 to n, where n is the size of
10537 @var{SHAPE}. If @var{ORDER} is absent, the natural ordering shall
10538 be assumed.
10539 @end multitable
10540
10541 @item @emph{Return value}:
10542 The result is an array of shape @var{SHAPE} with the same type as
10543 @var{SOURCE}.
10544
10545 @item @emph{Example}:
10546 @smallexample
10547 PROGRAM test_reshape
10548 INTEGER, DIMENSION(4) :: x
10549 WRITE(*,*) SHAPE(x) ! prints "4"
10550 WRITE(*,*) SHAPE(RESHAPE(x, (/2, 2/))) ! prints "2 2"
10551 END PROGRAM
10552 @end smallexample
10553
10554 @item @emph{See also}:
10555 @ref{SHAPE}
10556 @end table
10557
10558
10559
10560 @node RRSPACING
10561 @section @code{RRSPACING} --- Reciprocal of the relative spacing
10562 @fnindex RRSPACING
10563 @cindex real number, relative spacing
10564 @cindex floating point, relative spacing
10565
10566
10567 @table @asis
10568 @item @emph{Description}:
10569 @code{RRSPACING(X)} returns the reciprocal of the relative spacing of
10570 model numbers near @var{X}.
10571
10572 @item @emph{Standard}:
10573 Fortran 95 and later
10574
10575 @item @emph{Class}:
10576 Elemental function
10577
10578 @item @emph{Syntax}:
10579 @code{RESULT = RRSPACING(X)}
10580
10581 @item @emph{Arguments}:
10582 @multitable @columnfractions .15 .70
10583 @item @var{X} @tab Shall be of type @code{REAL}.
10584 @end multitable
10585
10586 @item @emph{Return value}:
10587 The return value is of the same type and kind as @var{X}.
10588 The value returned is equal to
10589 @code{ABS(FRACTION(X)) * FLOAT(RADIX(X))**DIGITS(X)}.
10590
10591 @item @emph{See also}:
10592 @ref{SPACING}
10593 @end table
10594
10595
10596
10597 @node RSHIFT
10598 @section @code{RSHIFT} --- Right shift bits
10599 @fnindex RSHIFT
10600 @cindex bits, shift right
10601
10602 @table @asis
10603 @item @emph{Description}:
10604 @code{RSHIFT} returns a value corresponding to @var{I} with all of the
10605 bits shifted right by @var{SHIFT} places. If the absolute value of
10606 @var{SHIFT} is greater than @code{BIT_SIZE(I)}, the value is undefined.
10607 Bits shifted out from the right end are lost. The fill is arithmetic: the
10608 bits shifted in from the left end are equal to the leftmost bit, which in
10609 two's complement representation is the sign bit.
10610
10611 This function has been superseded by the @code{SHIFTA} intrinsic, which
10612 is standard in Fortran 2008 and later.
10613
10614 @item @emph{Standard}:
10615 GNU extension
10616
10617 @item @emph{Class}:
10618 Elemental function
10619
10620 @item @emph{Syntax}:
10621 @code{RESULT = RSHIFT(I, SHIFT)}
10622
10623 @item @emph{Arguments}:
10624 @multitable @columnfractions .15 .70
10625 @item @var{I} @tab The type shall be @code{INTEGER}.
10626 @item @var{SHIFT} @tab The type shall be @code{INTEGER}.
10627 @end multitable
10628
10629 @item @emph{Return value}:
10630 The return value is of type @code{INTEGER} and of the same kind as
10631 @var{I}.
10632
10633 @item @emph{See also}:
10634 @ref{ISHFT}, @ref{ISHFTC}, @ref{LSHIFT}, @ref{SHIFTA}, @ref{SHIFTR},
10635 @ref{SHIFTL}
10636
10637 @end table
10638
10639
10640
10641 @node SAME_TYPE_AS
10642 @section @code{SAME_TYPE_AS} --- Query dynamic types for equality
10643 @fnindex SAME_TYPE_AS
10644
10645 @table @asis
10646 @item @emph{Description}:
10647 Query dynamic types for equality.
10648
10649 @item @emph{Standard}:
10650 Fortran 2003 and later
10651
10652 @item @emph{Class}:
10653 Inquiry function
10654
10655 @item @emph{Syntax}:
10656 @code{RESULT = SAME_TYPE_AS(A, B)}
10657
10658 @item @emph{Arguments}:
10659 @multitable @columnfractions .15 .70
10660 @item @var{A} @tab Shall be an object of extensible declared type or
10661 unlimited polymorphic.
10662 @item @var{B} @tab Shall be an object of extensible declared type or
10663 unlimited polymorphic.
10664 @end multitable
10665
10666 @item @emph{Return value}:
10667 The return value is a scalar of type default logical. It is true if and
10668 only if the dynamic type of A is the same as the dynamic type of B.
10669
10670 @item @emph{See also}:
10671 @ref{EXTENDS_TYPE_OF}
10672
10673 @end table
10674
10675
10676
10677 @node SCALE
10678 @section @code{SCALE} --- Scale a real value
10679 @fnindex SCALE
10680 @cindex real number, scale
10681 @cindex floating point, scale
10682
10683 @table @asis
10684 @item @emph{Description}:
10685 @code{SCALE(X,I)} returns @code{X * RADIX(X)**I}.
10686
10687 @item @emph{Standard}:
10688 Fortran 95 and later
10689
10690 @item @emph{Class}:
10691 Elemental function
10692
10693 @item @emph{Syntax}:
10694 @code{RESULT = SCALE(X, I)}
10695
10696 @item @emph{Arguments}:
10697 @multitable @columnfractions .15 .70
10698 @item @var{X} @tab The type of the argument shall be a @code{REAL}.
10699 @item @var{I} @tab The type of the argument shall be a @code{INTEGER}.
10700 @end multitable
10701
10702 @item @emph{Return value}:
10703 The return value is of the same type and kind as @var{X}.
10704 Its value is @code{X * RADIX(X)**I}.
10705
10706 @item @emph{Example}:
10707 @smallexample
10708 program test_scale
10709 real :: x = 178.1387e-4
10710 integer :: i = 5
10711 print *, scale(x,i), x*radix(x)**i
10712 end program test_scale
10713 @end smallexample
10714
10715 @end table
10716
10717
10718
10719 @node SCAN
10720 @section @code{SCAN} --- Scan a string for the presence of a set of characters
10721 @fnindex SCAN
10722 @cindex string, find subset
10723
10724 @table @asis
10725 @item @emph{Description}:
10726 Scans a @var{STRING} for any of the characters in a @var{SET}
10727 of characters.
10728
10729 If @var{BACK} is either absent or equals @code{FALSE}, this function
10730 returns the position of the leftmost character of @var{STRING} that is
10731 in @var{SET}. If @var{BACK} equals @code{TRUE}, the rightmost position
10732 is returned. If no character of @var{SET} is found in @var{STRING}, the
10733 result is zero.
10734
10735 @item @emph{Standard}:
10736 Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
10737
10738 @item @emph{Class}:
10739 Elemental function
10740
10741 @item @emph{Syntax}:
10742 @code{RESULT = SCAN(STRING, SET[, BACK [, KIND]])}
10743
10744 @item @emph{Arguments}:
10745 @multitable @columnfractions .15 .70
10746 @item @var{STRING} @tab Shall be of type @code{CHARACTER}.
10747 @item @var{SET} @tab Shall be of type @code{CHARACTER}.
10748 @item @var{BACK} @tab (Optional) shall be of type @code{LOGICAL}.
10749 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
10750 expression indicating the kind parameter of the result.
10751 @end multitable
10752
10753 @item @emph{Return value}:
10754 The return value is of type @code{INTEGER} and of kind @var{KIND}. If
10755 @var{KIND} is absent, the return value is of default integer kind.
10756
10757 @item @emph{Example}:
10758 @smallexample
10759 PROGRAM test_scan
10760 WRITE(*,*) SCAN("FORTRAN", "AO") ! 2, found 'O'
10761 WRITE(*,*) SCAN("FORTRAN", "AO", .TRUE.) ! 6, found 'A'
10762 WRITE(*,*) SCAN("FORTRAN", "C++") ! 0, found none
10763 END PROGRAM
10764 @end smallexample
10765
10766 @item @emph{See also}:
10767 @ref{INDEX intrinsic}, @ref{VERIFY}
10768 @end table
10769
10770
10771
10772 @node SECNDS
10773 @section @code{SECNDS} --- Time function
10774 @fnindex SECNDS
10775 @cindex time, elapsed
10776 @cindex elapsed time
10777
10778 @table @asis
10779 @item @emph{Description}:
10780 @code{SECNDS(X)} gets the time in seconds from the real-time system clock.
10781 @var{X} is a reference time, also in seconds. If this is zero, the time in
10782 seconds from midnight is returned. This function is non-standard and its
10783 use is discouraged.
10784
10785 @item @emph{Standard}:
10786 GNU extension
10787
10788 @item @emph{Class}:
10789 Function
10790
10791 @item @emph{Syntax}:
10792 @code{RESULT = SECNDS (X)}
10793
10794 @item @emph{Arguments}:
10795 @multitable @columnfractions .15 .70
10796 @item @var{T} @tab Shall be of type @code{REAL(4)}.
10797 @item @var{X} @tab Shall be of type @code{REAL(4)}.
10798 @end multitable
10799
10800 @item @emph{Return value}:
10801 None
10802
10803 @item @emph{Example}:
10804 @smallexample
10805 program test_secnds
10806 integer :: i
10807 real(4) :: t1, t2
10808 print *, secnds (0.0) ! seconds since midnight
10809 t1 = secnds (0.0) ! reference time
10810 do i = 1, 10000000 ! do something
10811 end do
10812 t2 = secnds (t1) ! elapsed time
10813 print *, "Something took ", t2, " seconds."
10814 end program test_secnds
10815 @end smallexample
10816 @end table
10817
10818
10819
10820 @node SECOND
10821 @section @code{SECOND} --- CPU time function
10822 @fnindex SECOND
10823 @cindex time, elapsed
10824 @cindex elapsed time
10825
10826 @table @asis
10827 @item @emph{Description}:
10828 Returns a @code{REAL(4)} value representing the elapsed CPU time in
10829 seconds. This provides the same functionality as the standard
10830 @code{CPU_TIME} intrinsic, and is only included for backwards
10831 compatibility.
10832
10833 This intrinsic is provided in both subroutine and function forms;
10834 however, only one form can be used in any given program unit.
10835
10836 @item @emph{Standard}:
10837 GNU extension
10838
10839 @item @emph{Class}:
10840 Subroutine, function
10841
10842 @item @emph{Syntax}:
10843 @multitable @columnfractions .80
10844 @item @code{CALL SECOND(TIME)}
10845 @item @code{TIME = SECOND()}
10846 @end multitable
10847
10848 @item @emph{Arguments}:
10849 @multitable @columnfractions .15 .70
10850 @item @var{TIME} @tab Shall be of type @code{REAL(4)}.
10851 @end multitable
10852
10853 @item @emph{Return value}:
10854 In either syntax, @var{TIME} is set to the process's current runtime in
10855 seconds.
10856
10857 @item @emph{See also}:
10858 @ref{CPU_TIME}
10859
10860 @end table
10861
10862
10863
10864 @node SELECTED_CHAR_KIND
10865 @section @code{SELECTED_CHAR_KIND} --- Choose character kind
10866 @fnindex SELECTED_CHAR_KIND
10867 @cindex character kind
10868 @cindex kind, character
10869
10870 @table @asis
10871 @item @emph{Description}:
10872
10873 @code{SELECTED_CHAR_KIND(NAME)} returns the kind value for the character
10874 set named @var{NAME}, if a character set with such a name is supported,
10875 or @math{-1} otherwise. Currently, supported character sets include
10876 ``ASCII'' and ``DEFAULT'', which are equivalent, and ``ISO_10646''
10877 (Universal Character Set, UCS-4) which is commonly known as Unicode.
10878
10879 @item @emph{Standard}:
10880 Fortran 2003 and later
10881
10882 @item @emph{Class}:
10883 Transformational function
10884
10885 @item @emph{Syntax}:
10886 @code{RESULT = SELECTED_CHAR_KIND(NAME)}
10887
10888 @item @emph{Arguments}:
10889 @multitable @columnfractions .15 .70
10890 @item @var{NAME} @tab Shall be a scalar and of the default character type.
10891 @end multitable
10892
10893 @item @emph{Example}:
10894 @smallexample
10895 program character_kind
10896 use iso_fortran_env
10897 implicit none
10898 integer, parameter :: ascii = selected_char_kind ("ascii")
10899 integer, parameter :: ucs4 = selected_char_kind ('ISO_10646')
10900
10901 character(kind=ascii, len=26) :: alphabet
10902 character(kind=ucs4, len=30) :: hello_world
10903
10904 alphabet = ascii_"abcdefghijklmnopqrstuvwxyz"
10905 hello_world = ucs4_'Hello World and Ni Hao -- ' &
10906 // char (int (z'4F60'), ucs4) &
10907 // char (int (z'597D'), ucs4)
10908
10909 write (*,*) alphabet
10910
10911 open (output_unit, encoding='UTF-8')
10912 write (*,*) trim (hello_world)
10913 end program character_kind
10914 @end smallexample
10915 @end table
10916
10917
10918
10919 @node SELECTED_INT_KIND
10920 @section @code{SELECTED_INT_KIND} --- Choose integer kind
10921 @fnindex SELECTED_INT_KIND
10922 @cindex integer kind
10923 @cindex kind, integer
10924
10925 @table @asis
10926 @item @emph{Description}:
10927 @code{SELECTED_INT_KIND(R)} return the kind value of the smallest integer
10928 type that can represent all values ranging from @math{-10^R} (exclusive)
10929 to @math{10^R} (exclusive). If there is no integer kind that accommodates
10930 this range, @code{SELECTED_INT_KIND} returns @math{-1}.
10931
10932 @item @emph{Standard}:
10933 Fortran 95 and later
10934
10935 @item @emph{Class}:
10936 Transformational function
10937
10938 @item @emph{Syntax}:
10939 @code{RESULT = SELECTED_INT_KIND(R)}
10940
10941 @item @emph{Arguments}:
10942 @multitable @columnfractions .15 .70
10943 @item @var{R} @tab Shall be a scalar and of type @code{INTEGER}.
10944 @end multitable
10945
10946 @item @emph{Example}:
10947 @smallexample
10948 program large_integers
10949 integer,parameter :: k5 = selected_int_kind(5)
10950 integer,parameter :: k15 = selected_int_kind(15)
10951 integer(kind=k5) :: i5
10952 integer(kind=k15) :: i15
10953
10954 print *, huge(i5), huge(i15)
10955
10956 ! The following inequalities are always true
10957 print *, huge(i5) >= 10_k5**5-1
10958 print *, huge(i15) >= 10_k15**15-1
10959 end program large_integers
10960 @end smallexample
10961 @end table
10962
10963
10964
10965 @node SELECTED_REAL_KIND
10966 @section @code{SELECTED_REAL_KIND} --- Choose real kind
10967 @fnindex SELECTED_REAL_KIND
10968 @cindex real kind
10969 @cindex kind, real
10970 @cindex radix, real
10971
10972 @table @asis
10973 @item @emph{Description}:
10974 @code{SELECTED_REAL_KIND(P,R)} returns the kind value of a real data type
10975 with decimal precision of at least @code{P} digits, exponent range of
10976 at least @code{R}, and with a radix of @code{RADIX}.
10977
10978 @item @emph{Standard}:
10979 Fortran 95 and later, with @code{RADIX} Fortran 2008 or later
10980
10981 @item @emph{Class}:
10982 Transformational function
10983
10984 @item @emph{Syntax}:
10985 @code{RESULT = SELECTED_REAL_KIND([P, R, RADIX])}
10986
10987 @item @emph{Arguments}:
10988 @multitable @columnfractions .15 .70
10989 @item @var{P} @tab (Optional) shall be a scalar and of type @code{INTEGER}.
10990 @item @var{R} @tab (Optional) shall be a scalar and of type @code{INTEGER}.
10991 @item @var{RADIX} @tab (Optional) shall be a scalar and of type @code{INTEGER}.
10992 @end multitable
10993 Before Fortran 2008, at least one of the arguments @var{R} or @var{P} shall
10994 be present; since Fortran 2008, they are assumed to be zero if absent.
10995
10996 @item @emph{Return value}:
10997
10998 @code{SELECTED_REAL_KIND} returns the value of the kind type parameter of
10999 a real data type with decimal precision of at least @code{P} digits, a
11000 decimal exponent range of at least @code{R}, and with the requested
11001 @code{RADIX}. If the @code{RADIX} parameter is absent, real kinds with
11002 any radix can be returned. If more than one real data type meet the
11003 criteria, the kind of the data type with the smallest decimal precision
11004 is returned. If no real data type matches the criteria, the result is
11005 @table @asis
11006 @item -1 if the processor does not support a real data type with a
11007 precision greater than or equal to @code{P}, but the @code{R} and
11008 @code{RADIX} requirements can be fulfilled
11009 @item -2 if the processor does not support a real type with an exponent
11010 range greater than or equal to @code{R}, but @code{P} and @code{RADIX}
11011 are fulfillable
11012 @item -3 if @code{RADIX} but not @code{P} and @code{R} requirements
11013 are fulfillable
11014 @item -4 if @code{RADIX} and either @code{P} or @code{R} requirements
11015 are fulfillable
11016 @item -5 if there is no real type with the given @code{RADIX}
11017 @end table
11018
11019 @item @emph{See also}:
11020 @ref{PRECISION}, @ref{RANGE}, @ref{RADIX}
11021
11022 @item @emph{Example}:
11023 @smallexample
11024 program real_kinds
11025 integer,parameter :: p6 = selected_real_kind(6)
11026 integer,parameter :: p10r100 = selected_real_kind(10,100)
11027 integer,parameter :: r400 = selected_real_kind(r=400)
11028 real(kind=p6) :: x
11029 real(kind=p10r100) :: y
11030 real(kind=r400) :: z
11031
11032 print *, precision(x), range(x)
11033 print *, precision(y), range(y)
11034 print *, precision(z), range(z)
11035 end program real_kinds
11036 @end smallexample
11037 @end table
11038
11039
11040
11041 @node SET_EXPONENT
11042 @section @code{SET_EXPONENT} --- Set the exponent of the model
11043 @fnindex SET_EXPONENT
11044 @cindex real number, set exponent
11045 @cindex floating point, set exponent
11046
11047 @table @asis
11048 @item @emph{Description}:
11049 @code{SET_EXPONENT(X, I)} returns the real number whose fractional part
11050 is that that of @var{X} and whose exponent part is @var{I}.
11051
11052 @item @emph{Standard}:
11053 Fortran 95 and later
11054
11055 @item @emph{Class}:
11056 Elemental function
11057
11058 @item @emph{Syntax}:
11059 @code{RESULT = SET_EXPONENT(X, I)}
11060
11061 @item @emph{Arguments}:
11062 @multitable @columnfractions .15 .70
11063 @item @var{X} @tab Shall be of type @code{REAL}.
11064 @item @var{I} @tab Shall be of type @code{INTEGER}.
11065 @end multitable
11066
11067 @item @emph{Return value}:
11068 The return value is of the same type and kind as @var{X}.
11069 The real number whose fractional part
11070 is that that of @var{X} and whose exponent part if @var{I} is returned;
11071 it is @code{FRACTION(X) * RADIX(X)**I}.
11072
11073 @item @emph{Example}:
11074 @smallexample
11075 PROGRAM test_setexp
11076 REAL :: x = 178.1387e-4
11077 INTEGER :: i = 17
11078 PRINT *, SET_EXPONENT(x, i), FRACTION(x) * RADIX(x)**i
11079 END PROGRAM
11080 @end smallexample
11081
11082 @end table
11083
11084
11085
11086 @node SHAPE
11087 @section @code{SHAPE} --- Determine the shape of an array
11088 @fnindex SHAPE
11089 @cindex array, shape
11090
11091 @table @asis
11092 @item @emph{Description}:
11093 Determines the shape of an array.
11094
11095 @item @emph{Standard}:
11096 Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
11097
11098 @item @emph{Class}:
11099 Inquiry function
11100
11101 @item @emph{Syntax}:
11102 @code{RESULT = SHAPE(SOURCE [, KIND])}
11103
11104 @item @emph{Arguments}:
11105 @multitable @columnfractions .15 .70
11106 @item @var{SOURCE} @tab Shall be an array or scalar of any type.
11107 If @var{SOURCE} is a pointer it must be associated and allocatable
11108 arrays must be allocated.
11109 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
11110 expression indicating the kind parameter of the result.
11111 @end multitable
11112
11113 @item @emph{Return value}:
11114 An @code{INTEGER} array of rank one with as many elements as @var{SOURCE}
11115 has dimensions. The elements of the resulting array correspond to the extend
11116 of @var{SOURCE} along the respective dimensions. If @var{SOURCE} is a scalar,
11117 the result is the rank one array of size zero. If @var{KIND} is absent, the
11118 return value has the default integer kind otherwise the specified kind.
11119
11120 @item @emph{Example}:
11121 @smallexample
11122 PROGRAM test_shape
11123 INTEGER, DIMENSION(-1:1, -1:2) :: A
11124 WRITE(*,*) SHAPE(A) ! (/ 3, 4 /)
11125 WRITE(*,*) SIZE(SHAPE(42)) ! (/ /)
11126 END PROGRAM
11127 @end smallexample
11128
11129 @item @emph{See also}:
11130 @ref{RESHAPE}, @ref{SIZE}
11131 @end table
11132
11133
11134
11135 @node SHIFTA
11136 @section @code{SHIFTA} --- Right shift with fill
11137 @fnindex SHIFTA
11138 @cindex bits, shift right
11139 @cindex shift, right with fill
11140
11141 @table @asis
11142 @item @emph{Description}:
11143 @code{SHIFTA} returns a value corresponding to @var{I} with all of the
11144 bits shifted right by @var{SHIFT} places. If the absolute value of
11145 @var{SHIFT} is greater than @code{BIT_SIZE(I)}, the value is undefined.
11146 Bits shifted out from the right end are lost. The fill is arithmetic: the
11147 bits shifted in from the left end are equal to the leftmost bit, which in
11148 two's complement representation is the sign bit.
11149
11150 @item @emph{Standard}:
11151 Fortran 2008 and later
11152
11153 @item @emph{Class}:
11154 Elemental function
11155
11156 @item @emph{Syntax}:
11157 @code{RESULT = SHIFTA(I, SHIFT)}
11158
11159 @item @emph{Arguments}:
11160 @multitable @columnfractions .15 .70
11161 @item @var{I} @tab The type shall be @code{INTEGER}.
11162 @item @var{SHIFT} @tab The type shall be @code{INTEGER}.
11163 @end multitable
11164
11165 @item @emph{Return value}:
11166 The return value is of type @code{INTEGER} and of the same kind as
11167 @var{I}.
11168
11169 @item @emph{See also}:
11170 @ref{SHIFTL}, @ref{SHIFTR}
11171 @end table
11172
11173
11174
11175 @node SHIFTL
11176 @section @code{SHIFTL} --- Left shift
11177 @fnindex SHIFTL
11178 @cindex bits, shift left
11179 @cindex shift, left
11180
11181 @table @asis
11182 @item @emph{Description}:
11183 @code{SHIFTL} returns a value corresponding to @var{I} with all of the
11184 bits shifted left by @var{SHIFT} places. If the absolute value of
11185 @var{SHIFT} is greater than @code{BIT_SIZE(I)}, the value is undefined.
11186 Bits shifted out from the left end are lost, and bits shifted in from
11187 the right end are set to 0.
11188
11189 @item @emph{Standard}:
11190 Fortran 2008 and later
11191
11192 @item @emph{Class}:
11193 Elemental function
11194
11195 @item @emph{Syntax}:
11196 @code{RESULT = SHIFTL(I, SHIFT)}
11197
11198 @item @emph{Arguments}:
11199 @multitable @columnfractions .15 .70
11200 @item @var{I} @tab The type shall be @code{INTEGER}.
11201 @item @var{SHIFT} @tab The type shall be @code{INTEGER}.
11202 @end multitable
11203
11204 @item @emph{Return value}:
11205 The return value is of type @code{INTEGER} and of the same kind as
11206 @var{I}.
11207
11208 @item @emph{See also}:
11209 @ref{SHIFTA}, @ref{SHIFTR}
11210 @end table
11211
11212
11213
11214 @node SHIFTR
11215 @section @code{SHIFTR} --- Right shift
11216 @fnindex SHIFTR
11217 @cindex bits, shift right
11218 @cindex shift, right
11219
11220 @table @asis
11221 @item @emph{Description}:
11222 @code{SHIFTR} returns a value corresponding to @var{I} with all of the
11223 bits shifted right by @var{SHIFT} places. If the absolute value of
11224 @var{SHIFT} is greater than @code{BIT_SIZE(I)}, the value is undefined.
11225 Bits shifted out from the right end are lost, and bits shifted in from
11226 the left end are set to 0.
11227
11228 @item @emph{Standard}:
11229 Fortran 2008 and later
11230
11231 @item @emph{Class}:
11232 Elemental function
11233
11234 @item @emph{Syntax}:
11235 @code{RESULT = SHIFTR(I, SHIFT)}
11236
11237 @item @emph{Arguments}:
11238 @multitable @columnfractions .15 .70
11239 @item @var{I} @tab The type shall be @code{INTEGER}.
11240 @item @var{SHIFT} @tab The type shall be @code{INTEGER}.
11241 @end multitable
11242
11243 @item @emph{Return value}:
11244 The return value is of type @code{INTEGER} and of the same kind as
11245 @var{I}.
11246
11247 @item @emph{See also}:
11248 @ref{SHIFTA}, @ref{SHIFTL}
11249 @end table
11250
11251
11252
11253 @node SIGN
11254 @section @code{SIGN} --- Sign copying function
11255 @fnindex SIGN
11256 @fnindex ISIGN
11257 @fnindex DSIGN
11258 @cindex sign copying
11259
11260 @table @asis
11261 @item @emph{Description}:
11262 @code{SIGN(A,B)} returns the value of @var{A} with the sign of @var{B}.
11263
11264 @item @emph{Standard}:
11265 Fortran 77 and later
11266
11267 @item @emph{Class}:
11268 Elemental function
11269
11270 @item @emph{Syntax}:
11271 @code{RESULT = SIGN(A, B)}
11272
11273 @item @emph{Arguments}:
11274 @multitable @columnfractions .15 .70
11275 @item @var{A} @tab Shall be of type @code{INTEGER} or @code{REAL}
11276 @item @var{B} @tab Shall be of the same type and kind as @var{A}
11277 @end multitable
11278
11279 @item @emph{Return value}:
11280 The kind of the return value is that of @var{A} and @var{B}.
11281 If @math{B\ge 0} then the result is @code{ABS(A)}, else
11282 it is @code{-ABS(A)}.
11283
11284 @item @emph{Example}:
11285 @smallexample
11286 program test_sign
11287 print *, sign(-12,1)
11288 print *, sign(-12,0)
11289 print *, sign(-12,-1)
11290
11291 print *, sign(-12.,1.)
11292 print *, sign(-12.,0.)
11293 print *, sign(-12.,-1.)
11294 end program test_sign
11295 @end smallexample
11296
11297 @item @emph{Specific names}:
11298 @multitable @columnfractions .20 .20 .20 .25
11299 @item Name @tab Arguments @tab Return type @tab Standard
11300 @item @code{SIGN(A,B)} @tab @code{REAL(4) A, B} @tab @code{REAL(4)} @tab f77, gnu
11301 @item @code{ISIGN(A,B)} @tab @code{INTEGER(4) A, B} @tab @code{INTEGER(4)} @tab f77, gnu
11302 @item @code{DSIGN(A,B)} @tab @code{REAL(8) A, B} @tab @code{REAL(8)} @tab f77, gnu
11303 @end multitable
11304 @end table
11305
11306
11307
11308 @node SIGNAL
11309 @section @code{SIGNAL} --- Signal handling subroutine (or function)
11310 @fnindex SIGNAL
11311 @cindex system, signal handling
11312
11313 @table @asis
11314 @item @emph{Description}:
11315 @code{SIGNAL(NUMBER, HANDLER [, STATUS])} causes external subroutine
11316 @var{HANDLER} to be executed with a single integer argument when signal
11317 @var{NUMBER} occurs. If @var{HANDLER} is an integer, it can be used to
11318 turn off handling of signal @var{NUMBER} or revert to its default
11319 action. See @code{signal(2)}.
11320
11321 If @code{SIGNAL} is called as a subroutine and the @var{STATUS} argument
11322 is supplied, it is set to the value returned by @code{signal(2)}.
11323
11324 @item @emph{Standard}:
11325 GNU extension
11326
11327 @item @emph{Class}:
11328 Subroutine, function
11329
11330 @item @emph{Syntax}:
11331 @multitable @columnfractions .80
11332 @item @code{CALL SIGNAL(NUMBER, HANDLER [, STATUS])}
11333 @item @code{STATUS = SIGNAL(NUMBER, HANDLER)}
11334 @end multitable
11335
11336 @item @emph{Arguments}:
11337 @multitable @columnfractions .15 .70
11338 @item @var{NUMBER} @tab Shall be a scalar integer, with @code{INTENT(IN)}
11339 @item @var{HANDLER}@tab Signal handler (@code{INTEGER FUNCTION} or
11340 @code{SUBROUTINE}) or dummy/global @code{INTEGER} scalar.
11341 @code{INTEGER}. It is @code{INTENT(IN)}.
11342 @item @var{STATUS} @tab (Optional) @var{STATUS} shall be a scalar
11343 integer. It has @code{INTENT(OUT)}.
11344 @end multitable
11345 @c TODO: What should the interface of the handler be? Does it take arguments?
11346
11347 @item @emph{Return value}:
11348 The @code{SIGNAL} function returns the value returned by @code{signal(2)}.
11349
11350 @item @emph{Example}:
11351 @smallexample
11352 program test_signal
11353 intrinsic signal
11354 external handler_print
11355
11356 call signal (12, handler_print)
11357 call signal (10, 1)
11358
11359 call sleep (30)
11360 end program test_signal
11361 @end smallexample
11362 @end table
11363
11364
11365
11366 @node SIN
11367 @section @code{SIN} --- Sine function
11368 @fnindex SIN
11369 @fnindex DSIN
11370 @fnindex CSIN
11371 @fnindex ZSIN
11372 @fnindex CDSIN
11373 @cindex trigonometric function, sine
11374 @cindex sine
11375
11376 @table @asis
11377 @item @emph{Description}:
11378 @code{SIN(X)} computes the sine of @var{X}.
11379
11380 @item @emph{Standard}:
11381 Fortran 77 and later
11382
11383 @item @emph{Class}:
11384 Elemental function
11385
11386 @item @emph{Syntax}:
11387 @code{RESULT = SIN(X)}
11388
11389 @item @emph{Arguments}:
11390 @multitable @columnfractions .15 .70
11391 @item @var{X} @tab The type shall be @code{REAL} or
11392 @code{COMPLEX}.
11393 @end multitable
11394
11395 @item @emph{Return value}:
11396 The return value has same type and kind as @var{X}.
11397
11398 @item @emph{Example}:
11399 @smallexample
11400 program test_sin
11401 real :: x = 0.0
11402 x = sin(x)
11403 end program test_sin
11404 @end smallexample
11405
11406 @item @emph{Specific names}:
11407 @multitable @columnfractions .20 .20 .20 .25
11408 @item Name @tab Argument @tab Return type @tab Standard
11409 @item @code{SIN(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab f77, gnu
11410 @item @code{DSIN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu
11411 @item @code{CSIN(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab f95, gnu
11412 @item @code{ZSIN(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu
11413 @item @code{CDSIN(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu
11414 @end multitable
11415
11416 @item @emph{See also}:
11417 @ref{ASIN}
11418 @end table
11419
11420
11421
11422 @node SINH
11423 @section @code{SINH} --- Hyperbolic sine function
11424 @fnindex SINH
11425 @fnindex DSINH
11426 @cindex hyperbolic sine
11427 @cindex hyperbolic function, sine
11428 @cindex sine, hyperbolic
11429
11430 @table @asis
11431 @item @emph{Description}:
11432 @code{SINH(X)} computes the hyperbolic sine of @var{X}.
11433
11434 @item @emph{Standard}:
11435 Fortran 95 and later, for a complex argument Fortran 2008 or later
11436
11437 @item @emph{Class}:
11438 Elemental function
11439
11440 @item @emph{Syntax}:
11441 @code{RESULT = SINH(X)}
11442
11443 @item @emph{Arguments}:
11444 @multitable @columnfractions .15 .70
11445 @item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
11446 @end multitable
11447
11448 @item @emph{Return value}:
11449 The return value has same type and kind as @var{X}.
11450
11451 @item @emph{Example}:
11452 @smallexample
11453 program test_sinh
11454 real(8) :: x = - 1.0_8
11455 x = sinh(x)
11456 end program test_sinh
11457 @end smallexample
11458
11459 @item @emph{Specific names}:
11460 @multitable @columnfractions .20 .20 .20 .25
11461 @item Name @tab Argument @tab Return type @tab Standard
11462 @item @code{SINH(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 95 and later
11463 @item @code{DSINH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later
11464 @end multitable
11465
11466 @item @emph{See also}:
11467 @ref{ASINH}
11468 @end table
11469
11470
11471
11472 @node SIZE
11473 @section @code{SIZE} --- Determine the size of an array
11474 @fnindex SIZE
11475 @cindex array, size
11476 @cindex array, number of elements
11477 @cindex array, count elements
11478
11479 @table @asis
11480 @item @emph{Description}:
11481 Determine the extent of @var{ARRAY} along a specified dimension @var{DIM},
11482 or the total number of elements in @var{ARRAY} if @var{DIM} is absent.
11483
11484 @item @emph{Standard}:
11485 Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
11486
11487 @item @emph{Class}:
11488 Inquiry function
11489
11490 @item @emph{Syntax}:
11491 @code{RESULT = SIZE(ARRAY[, DIM [, KIND]])}
11492
11493 @item @emph{Arguments}:
11494 @multitable @columnfractions .15 .70
11495 @item @var{ARRAY} @tab Shall be an array of any type. If @var{ARRAY} is
11496 a pointer it must be associated and allocatable arrays must be allocated.
11497 @item @var{DIM} @tab (Optional) shall be a scalar of type @code{INTEGER}
11498 and its value shall be in the range from 1 to n, where n equals the rank
11499 of @var{ARRAY}.
11500 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
11501 expression indicating the kind parameter of the result.
11502 @end multitable
11503
11504 @item @emph{Return value}:
11505 The return value is of type @code{INTEGER} and of kind @var{KIND}. If
11506 @var{KIND} is absent, the return value is of default integer kind.
11507
11508 @item @emph{Example}:
11509 @smallexample
11510 PROGRAM test_size
11511 WRITE(*,*) SIZE((/ 1, 2 /)) ! 2
11512 END PROGRAM
11513 @end smallexample
11514
11515 @item @emph{See also}:
11516 @ref{SHAPE}, @ref{RESHAPE}
11517 @end table
11518
11519
11520 @node SIZEOF
11521 @section @code{SIZEOF} --- Size in bytes of an expression
11522 @fnindex SIZEOF
11523 @cindex expression size
11524 @cindex size of an expression
11525
11526 @table @asis
11527 @item @emph{Description}:
11528 @code{SIZEOF(X)} calculates the number of bytes of storage the
11529 expression @code{X} occupies.
11530
11531 @item @emph{Standard}:
11532 GNU extension
11533
11534 @item @emph{Class}:
11535 Inquiry function
11536
11537 @item @emph{Syntax}:
11538 @code{N = SIZEOF(X)}
11539
11540 @item @emph{Arguments}:
11541 @multitable @columnfractions .15 .70
11542 @item @var{X} @tab The argument shall be of any type, rank or shape.
11543 @end multitable
11544
11545 @item @emph{Return value}:
11546 The return value is of type integer and of the system-dependent kind
11547 @var{C_SIZE_T} (from the @var{ISO_C_BINDING} module). Its value is the
11548 number of bytes occupied by the argument. If the argument has the
11549 @code{POINTER} attribute, the number of bytes of the storage area pointed
11550 to is returned. If the argument is of a derived type with @code{POINTER}
11551 or @code{ALLOCATABLE} components, the return value does not account for
11552 the sizes of the data pointed to by these components. If the argument is
11553 polymorphic, the size according to the declared type is returned. The argument
11554 may not be a procedure or procedure pointer.
11555
11556 @item @emph{Example}:
11557 @smallexample
11558 integer :: i
11559 real :: r, s(5)
11560 print *, (sizeof(s)/sizeof(r) == 5)
11561 end
11562 @end smallexample
11563 The example will print @code{.TRUE.} unless you are using a platform
11564 where default @code{REAL} variables are unusually padded.
11565
11566 @item @emph{See also}:
11567 @ref{C_SIZEOF}, @ref{STORAGE_SIZE}
11568 @end table
11569
11570
11571 @node SLEEP
11572 @section @code{SLEEP} --- Sleep for the specified number of seconds
11573 @fnindex SLEEP
11574 @cindex delayed execution
11575
11576 @table @asis
11577 @item @emph{Description}:
11578 Calling this subroutine causes the process to pause for @var{SECONDS} seconds.
11579
11580 @item @emph{Standard}:
11581 GNU extension
11582
11583 @item @emph{Class}:
11584 Subroutine
11585
11586 @item @emph{Syntax}:
11587 @code{CALL SLEEP(SECONDS)}
11588
11589 @item @emph{Arguments}:
11590 @multitable @columnfractions .15 .70
11591 @item @var{SECONDS} @tab The type shall be of default @code{INTEGER}.
11592 @end multitable
11593
11594 @item @emph{Example}:
11595 @smallexample
11596 program test_sleep
11597 call sleep(5)
11598 end
11599 @end smallexample
11600 @end table
11601
11602
11603
11604 @node SPACING
11605 @section @code{SPACING} --- Smallest distance between two numbers of a given type
11606 @fnindex SPACING
11607 @cindex real number, relative spacing
11608 @cindex floating point, relative spacing
11609
11610 @table @asis
11611 @item @emph{Description}:
11612 Determines the distance between the argument @var{X} and the nearest
11613 adjacent number of the same type.
11614
11615 @item @emph{Standard}:
11616 Fortran 95 and later
11617
11618 @item @emph{Class}:
11619 Elemental function
11620
11621 @item @emph{Syntax}:
11622 @code{RESULT = SPACING(X)}
11623
11624 @item @emph{Arguments}:
11625 @multitable @columnfractions .15 .70
11626 @item @var{X} @tab Shall be of type @code{REAL}.
11627 @end multitable
11628
11629 @item @emph{Return value}:
11630 The result is of the same type as the input argument @var{X}.
11631
11632 @item @emph{Example}:
11633 @smallexample
11634 PROGRAM test_spacing
11635 INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37)
11636 INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200)
11637
11638 WRITE(*,*) spacing(1.0_SGL) ! "1.1920929E-07" on i686
11639 WRITE(*,*) spacing(1.0_DBL) ! "2.220446049250313E-016" on i686
11640 END PROGRAM
11641 @end smallexample
11642
11643 @item @emph{See also}:
11644 @ref{RRSPACING}
11645 @end table
11646
11647
11648
11649 @node SPREAD
11650 @section @code{SPREAD} --- Add a dimension to an array
11651 @fnindex SPREAD
11652 @cindex array, increase dimension
11653 @cindex array, duplicate elements
11654 @cindex array, duplicate dimensions
11655
11656 @table @asis
11657 @item @emph{Description}:
11658 Replicates a @var{SOURCE} array @var{NCOPIES} times along a specified
11659 dimension @var{DIM}.
11660
11661 @item @emph{Standard}:
11662 Fortran 95 and later
11663
11664 @item @emph{Class}:
11665 Transformational function
11666
11667 @item @emph{Syntax}:
11668 @code{RESULT = SPREAD(SOURCE, DIM, NCOPIES)}
11669
11670 @item @emph{Arguments}:
11671 @multitable @columnfractions .15 .70
11672 @item @var{SOURCE} @tab Shall be a scalar or an array of any type and
11673 a rank less than seven.
11674 @item @var{DIM} @tab Shall be a scalar of type @code{INTEGER} with a
11675 value in the range from 1 to n+1, where n equals the rank of @var{SOURCE}.
11676 @item @var{NCOPIES} @tab Shall be a scalar of type @code{INTEGER}.
11677 @end multitable
11678
11679 @item @emph{Return value}:
11680 The result is an array of the same type as @var{SOURCE} and has rank n+1
11681 where n equals the rank of @var{SOURCE}.
11682
11683 @item @emph{Example}:
11684 @smallexample
11685 PROGRAM test_spread
11686 INTEGER :: a = 1, b(2) = (/ 1, 2 /)
11687 WRITE(*,*) SPREAD(A, 1, 2) ! "1 1"
11688 WRITE(*,*) SPREAD(B, 1, 2) ! "1 1 2 2"
11689 END PROGRAM
11690 @end smallexample
11691
11692 @item @emph{See also}:
11693 @ref{UNPACK}
11694 @end table
11695
11696
11697
11698 @node SQRT
11699 @section @code{SQRT} --- Square-root function
11700 @fnindex SQRT
11701 @fnindex DSQRT
11702 @fnindex CSQRT
11703 @fnindex ZSQRT
11704 @fnindex CDSQRT
11705 @cindex root
11706 @cindex square-root
11707
11708 @table @asis
11709 @item @emph{Description}:
11710 @code{SQRT(X)} computes the square root of @var{X}.
11711
11712 @item @emph{Standard}:
11713 Fortran 77 and later
11714
11715 @item @emph{Class}:
11716 Elemental function
11717
11718 @item @emph{Syntax}:
11719 @code{RESULT = SQRT(X)}
11720
11721 @item @emph{Arguments}:
11722 @multitable @columnfractions .15 .70
11723 @item @var{X} @tab The type shall be @code{REAL} or
11724 @code{COMPLEX}.
11725 @end multitable
11726
11727 @item @emph{Return value}:
11728 The return value is of type @code{REAL} or @code{COMPLEX}.
11729 The kind type parameter is the same as @var{X}.
11730
11731 @item @emph{Example}:
11732 @smallexample
11733 program test_sqrt
11734 real(8) :: x = 2.0_8
11735 complex :: z = (1.0, 2.0)
11736 x = sqrt(x)
11737 z = sqrt(z)
11738 end program test_sqrt
11739 @end smallexample
11740
11741 @item @emph{Specific names}:
11742 @multitable @columnfractions .20 .20 .20 .25
11743 @item Name @tab Argument @tab Return type @tab Standard
11744 @item @code{SQRT(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 95 and later
11745 @item @code{DSQRT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later
11746 @item @code{CSQRT(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab Fortran 95 and later
11747 @item @code{ZSQRT(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
11748 @item @code{CDSQRT(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
11749 @end multitable
11750 @end table
11751
11752
11753
11754 @node SRAND
11755 @section @code{SRAND} --- Reinitialize the random number generator
11756 @fnindex SRAND
11757 @cindex random number generation, seeding
11758 @cindex seeding a random number generator
11759
11760 @table @asis
11761 @item @emph{Description}:
11762 @code{SRAND} reinitializes the pseudo-random number generator
11763 called by @code{RAND} and @code{IRAND}. The new seed used by the
11764 generator is specified by the required argument @var{SEED}.
11765
11766 @item @emph{Standard}:
11767 GNU extension
11768
11769 @item @emph{Class}:
11770 Subroutine
11771
11772 @item @emph{Syntax}:
11773 @code{CALL SRAND(SEED)}
11774
11775 @item @emph{Arguments}:
11776 @multitable @columnfractions .15 .70
11777 @item @var{SEED} @tab Shall be a scalar @code{INTEGER(kind=4)}.
11778 @end multitable
11779
11780 @item @emph{Return value}:
11781 Does not return anything.
11782
11783 @item @emph{Example}:
11784 See @code{RAND} and @code{IRAND} for examples.
11785
11786 @item @emph{Notes}:
11787 The Fortran 2003 standard specifies the intrinsic @code{RANDOM_SEED} to
11788 initialize the pseudo-random numbers generator and @code{RANDOM_NUMBER}
11789 to generate pseudo-random numbers. Please note that in
11790 GNU Fortran, these two sets of intrinsics (@code{RAND},
11791 @code{IRAND} and @code{SRAND} on the one hand, @code{RANDOM_NUMBER} and
11792 @code{RANDOM_SEED} on the other hand) access two independent
11793 pseudo-random number generators.
11794
11795 @item @emph{See also}:
11796 @ref{RAND}, @ref{RANDOM_SEED}, @ref{RANDOM_NUMBER}
11797
11798 @end table
11799
11800
11801
11802 @node STAT
11803 @section @code{STAT} --- Get file status
11804 @fnindex STAT
11805 @cindex file system, file status
11806
11807 @table @asis
11808 @item @emph{Description}:
11809 This function returns information about a file. No permissions are required on
11810 the file itself, but execute (search) permission is required on all of the
11811 directories in path that lead to the file.
11812
11813 The elements that are obtained and stored in the array @code{VALUES}:
11814 @multitable @columnfractions .15 .70
11815 @item @code{VALUES(1)} @tab Device ID
11816 @item @code{VALUES(2)} @tab Inode number
11817 @item @code{VALUES(3)} @tab File mode
11818 @item @code{VALUES(4)} @tab Number of links
11819 @item @code{VALUES(5)} @tab Owner's uid
11820 @item @code{VALUES(6)} @tab Owner's gid
11821 @item @code{VALUES(7)} @tab ID of device containing directory entry for file (0 if not available)
11822 @item @code{VALUES(8)} @tab File size (bytes)
11823 @item @code{VALUES(9)} @tab Last access time
11824 @item @code{VALUES(10)} @tab Last modification time
11825 @item @code{VALUES(11)} @tab Last file status change time
11826 @item @code{VALUES(12)} @tab Preferred I/O block size (-1 if not available)
11827 @item @code{VALUES(13)} @tab Number of blocks allocated (-1 if not available)
11828 @end multitable
11829
11830 Not all these elements are relevant on all systems.
11831 If an element is not relevant, it is returned as 0.
11832
11833 This intrinsic is provided in both subroutine and function forms; however,
11834 only one form can be used in any given program unit.
11835
11836 @item @emph{Standard}:
11837 GNU extension
11838
11839 @item @emph{Class}:
11840 Subroutine, function
11841
11842 @item @emph{Syntax}:
11843 @multitable @columnfractions .80
11844 @item @code{CALL STAT(NAME, VALUES [, STATUS])}
11845 @item @code{STATUS = STAT(NAME, VALUES)}
11846 @end multitable
11847
11848 @item @emph{Arguments}:
11849 @multitable @columnfractions .15 .70
11850 @item @var{NAME} @tab The type shall be @code{CHARACTER}, of the
11851 default kind and a valid path within the file system.
11852 @item @var{VALUES} @tab The type shall be @code{INTEGER(4), DIMENSION(13)}.
11853 @item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)}. Returns 0
11854 on success and a system specific error code otherwise.
11855 @end multitable
11856
11857 @item @emph{Example}:
11858 @smallexample
11859 PROGRAM test_stat
11860 INTEGER, DIMENSION(13) :: buff
11861 INTEGER :: status
11862
11863 CALL STAT("/etc/passwd", buff, status)
11864
11865 IF (status == 0) THEN
11866 WRITE (*, FMT="('Device ID:', T30, I19)") buff(1)
11867 WRITE (*, FMT="('Inode number:', T30, I19)") buff(2)
11868 WRITE (*, FMT="('File mode (octal):', T30, O19)") buff(3)
11869 WRITE (*, FMT="('Number of links:', T30, I19)") buff(4)
11870 WRITE (*, FMT="('Owner''s uid:', T30, I19)") buff(5)
11871 WRITE (*, FMT="('Owner''s gid:', T30, I19)") buff(6)
11872 WRITE (*, FMT="('Device where located:', T30, I19)") buff(7)
11873 WRITE (*, FMT="('File size:', T30, I19)") buff(8)
11874 WRITE (*, FMT="('Last access time:', T30, A19)") CTIME(buff(9))
11875 WRITE (*, FMT="('Last modification time', T30, A19)") CTIME(buff(10))
11876 WRITE (*, FMT="('Last status change time:', T30, A19)") CTIME(buff(11))
11877 WRITE (*, FMT="('Preferred block size:', T30, I19)") buff(12)
11878 WRITE (*, FMT="('No. of blocks allocated:', T30, I19)") buff(13)
11879 END IF
11880 END PROGRAM
11881 @end smallexample
11882
11883 @item @emph{See also}:
11884 To stat an open file: @ref{FSTAT}, to stat a link: @ref{LSTAT}
11885 @end table
11886
11887
11888
11889 @node STORAGE_SIZE
11890 @section @code{STORAGE_SIZE} --- Storage size in bits
11891 @fnindex STORAGE_SIZE
11892 @cindex storage size
11893
11894 @table @asis
11895 @item @emph{Description}:
11896 Returns the storage size of argument @var{A} in bits.
11897 @item @emph{Standard}:
11898 Fortran 2008 and later
11899 @item @emph{Class}:
11900 Inquiry function
11901 @item @emph{Syntax}:
11902 @code{RESULT = STORAGE_SIZE(A [, KIND])}
11903
11904 @item @emph{Arguments}:
11905 @multitable @columnfractions .15 .70
11906 @item @var{A} @tab Shall be a scalar or array of any type.
11907 @item @var{KIND} @tab (Optional) shall be a scalar integer constant expression.
11908 @end multitable
11909
11910 @item @emph{Return Value}:
11911 The result is a scalar integer with the kind type parameter specified by KIND
11912 (or default integer type if KIND is missing). The result value is the size
11913 expressed in bits for an element of an array that has the dynamic type and type
11914 parameters of A.
11915
11916 @item @emph{See also}:
11917 @ref{C_SIZEOF}, @ref{SIZEOF}
11918 @end table
11919
11920
11921
11922 @node SUM
11923 @section @code{SUM} --- Sum of array elements
11924 @fnindex SUM
11925 @cindex array, sum
11926 @cindex array, add elements
11927 @cindex array, conditionally add elements
11928 @cindex sum array elements
11929
11930 @table @asis
11931 @item @emph{Description}:
11932 Adds the elements of @var{ARRAY} along dimension @var{DIM} if
11933 the corresponding element in @var{MASK} is @code{TRUE}.
11934
11935 @item @emph{Standard}:
11936 Fortran 95 and later
11937
11938 @item @emph{Class}:
11939 Transformational function
11940
11941 @item @emph{Syntax}:
11942 @multitable @columnfractions .80
11943 @item @code{RESULT = SUM(ARRAY[, MASK])}
11944 @item @code{RESULT = SUM(ARRAY, DIM[, MASK])}
11945 @end multitable
11946
11947 @item @emph{Arguments}:
11948 @multitable @columnfractions .15 .70
11949 @item @var{ARRAY} @tab Shall be an array of type @code{INTEGER},
11950 @code{REAL} or @code{COMPLEX}.
11951 @item @var{DIM} @tab (Optional) shall be a scalar of type
11952 @code{INTEGER} with a value in the range from 1 to n, where n
11953 equals the rank of @var{ARRAY}.
11954 @item @var{MASK} @tab (Optional) shall be of type @code{LOGICAL}
11955 and either be a scalar or an array of the same shape as @var{ARRAY}.
11956 @end multitable
11957
11958 @item @emph{Return value}:
11959 The result is of the same type as @var{ARRAY}.
11960
11961 If @var{DIM} is absent, a scalar with the sum of all elements in @var{ARRAY}
11962 is returned. Otherwise, an array of rank n-1, where n equals the rank of
11963 @var{ARRAY}, and a shape similar to that of @var{ARRAY} with dimension @var{DIM}
11964 dropped is returned.
11965
11966 @item @emph{Example}:
11967 @smallexample
11968 PROGRAM test_sum
11969 INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
11970 print *, SUM(x) ! all elements, sum = 15
11971 print *, SUM(x, MASK=MOD(x, 2)==1) ! odd elements, sum = 9
11972 END PROGRAM
11973 @end smallexample
11974
11975 @item @emph{See also}:
11976 @ref{PRODUCT}
11977 @end table
11978
11979
11980
11981 @node SYMLNK
11982 @section @code{SYMLNK} --- Create a symbolic link
11983 @fnindex SYMLNK
11984 @cindex file system, create link
11985 @cindex file system, soft link
11986
11987 @table @asis
11988 @item @emph{Description}:
11989 Makes a symbolic link from file @var{PATH1} to @var{PATH2}. A null
11990 character (@code{CHAR(0)}) can be used to mark the end of the names in
11991 @var{PATH1} and @var{PATH2}; otherwise, trailing blanks in the file
11992 names are ignored. If the @var{STATUS} argument is supplied, it
11993 contains 0 on success or a nonzero error code upon return; see
11994 @code{symlink(2)}. If the system does not supply @code{symlink(2)},
11995 @code{ENOSYS} is returned.
11996
11997 This intrinsic is provided in both subroutine and function forms;
11998 however, only one form can be used in any given program unit.
11999
12000 @item @emph{Standard}:
12001 GNU extension
12002
12003 @item @emph{Class}:
12004 Subroutine, function
12005
12006 @item @emph{Syntax}:
12007 @multitable @columnfractions .80
12008 @item @code{CALL SYMLNK(PATH1, PATH2 [, STATUS])}
12009 @item @code{STATUS = SYMLNK(PATH1, PATH2)}
12010 @end multitable
12011
12012 @item @emph{Arguments}:
12013 @multitable @columnfractions .15 .70
12014 @item @var{PATH1} @tab Shall be of default @code{CHARACTER} type.
12015 @item @var{PATH2} @tab Shall be of default @code{CHARACTER} type.
12016 @item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
12017 @end multitable
12018
12019 @item @emph{See also}:
12020 @ref{LINK}, @ref{UNLINK}
12021
12022 @end table
12023
12024
12025
12026 @node SYSTEM
12027 @section @code{SYSTEM} --- Execute a shell command
12028 @fnindex SYSTEM
12029 @cindex system, system call
12030
12031 @table @asis
12032 @item @emph{Description}:
12033 Passes the command @var{COMMAND} to a shell (see @code{system(3)}). If
12034 argument @var{STATUS} is present, it contains the value returned by
12035 @code{system(3)}, which is presumably 0 if the shell command succeeded.
12036 Note that which shell is used to invoke the command is system-dependent
12037 and environment-dependent.
12038
12039 This intrinsic is provided in both subroutine and function forms;
12040 however, only one form can be used in any given program unit.
12041
12042 Note that the @code{system} function need not be thread-safe. It is
12043 the responsibility of the user to ensure that @code{system} is not
12044 called concurrently.
12045
12046 @item @emph{Standard}:
12047 GNU extension
12048
12049 @item @emph{Class}:
12050 Subroutine, function
12051
12052 @item @emph{Syntax}:
12053 @multitable @columnfractions .80
12054 @item @code{CALL SYSTEM(COMMAND [, STATUS])}
12055 @item @code{STATUS = SYSTEM(COMMAND)}
12056 @end multitable
12057
12058 @item @emph{Arguments}:
12059 @multitable @columnfractions .15 .70
12060 @item @var{COMMAND} @tab Shall be of default @code{CHARACTER} type.
12061 @item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
12062 @end multitable
12063
12064 @item @emph{See also}:
12065 @ref{EXECUTE_COMMAND_LINE}, which is part of the Fortran 2008 standard
12066 and should considered in new code for future portability.
12067 @end table
12068
12069
12070
12071 @node SYSTEM_CLOCK
12072 @section @code{SYSTEM_CLOCK} --- Time function
12073 @fnindex SYSTEM_CLOCK
12074 @cindex time, clock ticks
12075 @cindex clock ticks
12076
12077 @table @asis
12078 @item @emph{Description}:
12079 Determines the @var{COUNT} of a processor clock since an unspecified
12080 time in the past modulo @var{COUNT_MAX}, @var{COUNT_RATE} determines
12081 the number of clock ticks per second. If the platform supports a
12082 monotonic clock, that clock is used and can, depending on the platform
12083 clock implementation, provide up to nanosecond resolution. If a
12084 monotonic clock is not available, the implementation falls back to a
12085 realtime clock.
12086
12087 @var{COUNT_RATE} is system dependent and can vary depending on the
12088 kind of the arguments. For @var{kind=4} arguments, @var{COUNT}
12089 represents milliseconds, while for @var{kind=8} arguments, @var{COUNT}
12090 typically represents micro- or nanoseconds depending on resolution of
12091 the underlying platform clock. @var{COUNT_MAX} usually equals
12092 @code{HUGE(COUNT_MAX)}. Note that the millisecond resolution of the
12093 @var{kind=4} version implies that the @var{COUNT} will wrap around in
12094 roughly 25 days. In order to avoid issues with the wrap around and for
12095 more precise timing, please use the @var{kind=8} version.
12096
12097 If there is no clock, or querying the clock fails, @var{COUNT} is set
12098 to @code{-HUGE(COUNT)}, and @var{COUNT_RATE} and @var{COUNT_MAX} are
12099 set to zero.
12100
12101 When running on a platform using the GNU C library (glibc) version
12102 2.16 or older, or a derivative thereof, the high resolution monotonic
12103 clock is available only when linking with the @var{rt} library. This
12104 can be done explicitly by adding the @code{-lrt} flag when linking the
12105 application, but is also done implicitly when using OpenMP.
12106
12107 On the Windows platform, the version with @var{kind=4} arguments uses
12108 the @code{GetTickCount} function, whereas the @var{kind=8} version
12109 uses @code{QueryPerformanceCounter} and
12110 @code{QueryPerformanceCounterFrequency}. For more information, and
12111 potential caveats, please see the platform documentation.
12112
12113 @item @emph{Standard}:
12114 Fortran 95 and later
12115
12116 @item @emph{Class}:
12117 Subroutine
12118
12119 @item @emph{Syntax}:
12120 @code{CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])}
12121
12122 @item @emph{Arguments}:
12123 @multitable @columnfractions .15 .70
12124 @item @var{COUNT} @tab (Optional) shall be a scalar of type
12125 @code{INTEGER} with @code{INTENT(OUT)}.
12126 @item @var{COUNT_RATE} @tab (Optional) shall be a scalar of type
12127 @code{INTEGER} with @code{INTENT(OUT)}.
12128 @item @var{COUNT_MAX} @tab (Optional) shall be a scalar of type
12129 @code{INTEGER} with @code{INTENT(OUT)}.
12130 @end multitable
12131
12132 @item @emph{Example}:
12133 @smallexample
12134 PROGRAM test_system_clock
12135 INTEGER :: count, count_rate, count_max
12136 CALL SYSTEM_CLOCK(count, count_rate, count_max)
12137 WRITE(*,*) count, count_rate, count_max
12138 END PROGRAM
12139 @end smallexample
12140
12141 @item @emph{See also}:
12142 @ref{DATE_AND_TIME}, @ref{CPU_TIME}
12143 @end table
12144
12145
12146
12147 @node TAN
12148 @section @code{TAN} --- Tangent function
12149 @fnindex TAN
12150 @fnindex DTAN
12151 @cindex trigonometric function, tangent
12152 @cindex tangent
12153
12154 @table @asis
12155 @item @emph{Description}:
12156 @code{TAN(X)} computes the tangent of @var{X}.
12157
12158 @item @emph{Standard}:
12159 Fortran 77 and later, for a complex argument Fortran 2008 or later
12160
12161 @item @emph{Class}:
12162 Elemental function
12163
12164 @item @emph{Syntax}:
12165 @code{RESULT = TAN(X)}
12166
12167 @item @emph{Arguments}:
12168 @multitable @columnfractions .15 .70
12169 @item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
12170 @end multitable
12171
12172 @item @emph{Return value}:
12173 The return value has same type and kind as @var{X}.
12174
12175 @item @emph{Example}:
12176 @smallexample
12177 program test_tan
12178 real(8) :: x = 0.165_8
12179 x = tan(x)
12180 end program test_tan
12181 @end smallexample
12182
12183 @item @emph{Specific names}:
12184 @multitable @columnfractions .20 .20 .20 .25
12185 @item Name @tab Argument @tab Return type @tab Standard
12186 @item @code{TAN(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 95 and later
12187 @item @code{DTAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later
12188 @end multitable
12189
12190 @item @emph{See also}:
12191 @ref{ATAN}
12192 @end table
12193
12194
12195
12196 @node TANH
12197 @section @code{TANH} --- Hyperbolic tangent function
12198 @fnindex TANH
12199 @fnindex DTANH
12200 @cindex hyperbolic tangent
12201 @cindex hyperbolic function, tangent
12202 @cindex tangent, hyperbolic
12203
12204 @table @asis
12205 @item @emph{Description}:
12206 @code{TANH(X)} computes the hyperbolic tangent of @var{X}.
12207
12208 @item @emph{Standard}:
12209 Fortran 77 and later, for a complex argument Fortran 2008 or later
12210
12211 @item @emph{Class}:
12212 Elemental function
12213
12214 @item @emph{Syntax}:
12215 @code{X = TANH(X)}
12216
12217 @item @emph{Arguments}:
12218 @multitable @columnfractions .15 .70
12219 @item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
12220 @end multitable
12221
12222 @item @emph{Return value}:
12223 The return value has same type and kind as @var{X}. If @var{X} is
12224 complex, the imaginary part of the result is in radians. If @var{X}
12225 is @code{REAL}, the return value lies in the range
12226 @math{ - 1 \leq tanh(x) \leq 1 }.
12227
12228 @item @emph{Example}:
12229 @smallexample
12230 program test_tanh
12231 real(8) :: x = 2.1_8
12232 x = tanh(x)
12233 end program test_tanh
12234 @end smallexample
12235
12236 @item @emph{Specific names}:
12237 @multitable @columnfractions .20 .20 .20 .25
12238 @item Name @tab Argument @tab Return type @tab Standard
12239 @item @code{TANH(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 95 and later
12240 @item @code{DTANH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later
12241 @end multitable
12242
12243 @item @emph{See also}:
12244 @ref{ATANH}
12245 @end table
12246
12247
12248
12249 @node THIS_IMAGE
12250 @section @code{THIS_IMAGE} --- Function that returns the cosubscript index of this image
12251 @fnindex THIS_IMAGE
12252 @cindex coarray, @code{THIS_IMAGE}
12253 @cindex images, index of this image
12254
12255 @table @asis
12256 @item @emph{Description}:
12257 Returns the cosubscript for this image.
12258
12259 @item @emph{Standard}:
12260 Fortran 2008 and later
12261
12262 @item @emph{Class}:
12263 Transformational function
12264
12265 @item @emph{Syntax}:
12266 @multitable @columnfractions .80
12267 @item @code{RESULT = THIS_IMAGE()}
12268 @item @code{RESULT = THIS_IMAGE(COARRAY [, DIM])}
12269 @end multitable
12270
12271 @item @emph{Arguments}:
12272 @multitable @columnfractions .15 .70
12273 @item @var{COARRAY} @tab Coarray of any type (optional; if @var{DIM}
12274 present, required).
12275 @item @var{DIM} @tab default integer scalar (optional). If present,
12276 @var{DIM} shall be between one and the corank of @var{COARRAY}.
12277 @end multitable
12278
12279
12280 @item @emph{Return value}:
12281 Default integer. If @var{COARRAY} is not present, it is scalar and its value
12282 is the index of the invoking image. Otherwise, if @var{DIM} is not present,
12283 a rank-1 array with corank elements is returned, containing the cosubscripts
12284 for @var{COARRAY} specifying the invoking image. If @var{DIM} is present,
12285 a scalar is returned, with the value of the @var{DIM} element of
12286 @code{THIS_IMAGE(COARRAY)}.
12287
12288 @item @emph{Example}:
12289 @smallexample
12290 INTEGER :: value[*]
12291 INTEGER :: i
12292 value = THIS_IMAGE()
12293 SYNC ALL
12294 IF (THIS_IMAGE() == 1) THEN
12295 DO i = 1, NUM_IMAGES()
12296 WRITE(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
12297 END DO
12298 END IF
12299 @end smallexample
12300
12301 @item @emph{See also}:
12302 @ref{NUM_IMAGES}, @ref{IMAGE_INDEX}
12303 @end table
12304
12305
12306
12307 @node TIME
12308 @section @code{TIME} --- Time function
12309 @fnindex TIME
12310 @cindex time, current
12311 @cindex current time
12312
12313 @table @asis
12314 @item @emph{Description}:
12315 Returns the current time encoded as an integer (in the manner of the
12316 function @code{time(3)} in the C standard library). This value is
12317 suitable for passing to @code{CTIME}, @code{GMTIME}, and @code{LTIME}.
12318
12319 This intrinsic is not fully portable, such as to systems with 32-bit
12320 @code{INTEGER} types but supporting times wider than 32 bits. Therefore,
12321 the values returned by this intrinsic might be, or become, negative, or
12322 numerically less than previous values, during a single run of the
12323 compiled program.
12324
12325 See @ref{TIME8}, for information on a similar intrinsic that might be
12326 portable to more GNU Fortran implementations, though to fewer Fortran
12327 compilers.
12328
12329 @item @emph{Standard}:
12330 GNU extension
12331
12332 @item @emph{Class}:
12333 Function
12334
12335 @item @emph{Syntax}:
12336 @code{RESULT = TIME()}
12337
12338 @item @emph{Return value}:
12339 The return value is a scalar of type @code{INTEGER(4)}.
12340
12341 @item @emph{See also}:
12342 @ref{CTIME}, @ref{GMTIME}, @ref{LTIME}, @ref{MCLOCK}, @ref{TIME8}
12343
12344 @end table
12345
12346
12347
12348 @node TIME8
12349 @section @code{TIME8} --- Time function (64-bit)
12350 @fnindex TIME8
12351 @cindex time, current
12352 @cindex current time
12353
12354 @table @asis
12355 @item @emph{Description}:
12356 Returns the current time encoded as an integer (in the manner of the
12357 function @code{time(3)} in the C standard library). This value is
12358 suitable for passing to @code{CTIME}, @code{GMTIME}, and @code{LTIME}.
12359
12360 @emph{Warning:} this intrinsic does not increase the range of the timing
12361 values over that returned by @code{time(3)}. On a system with a 32-bit
12362 @code{time(3)}, @code{TIME8} will return a 32-bit value, even though
12363 it is converted to a 64-bit @code{INTEGER(8)} value. That means
12364 overflows of the 32-bit value can still occur. Therefore, the values
12365 returned by this intrinsic might be or become negative or numerically
12366 less than previous values during a single run of the compiled program.
12367
12368 @item @emph{Standard}:
12369 GNU extension
12370
12371 @item @emph{Class}:
12372 Function
12373
12374 @item @emph{Syntax}:
12375 @code{RESULT = TIME8()}
12376
12377 @item @emph{Return value}:
12378 The return value is a scalar of type @code{INTEGER(8)}.
12379
12380 @item @emph{See also}:
12381 @ref{CTIME}, @ref{GMTIME}, @ref{LTIME}, @ref{MCLOCK8}, @ref{TIME}
12382
12383 @end table
12384
12385
12386
12387 @node TINY
12388 @section @code{TINY} --- Smallest positive number of a real kind
12389 @fnindex TINY
12390 @cindex limits, smallest number
12391 @cindex model representation, smallest number
12392
12393 @table @asis
12394 @item @emph{Description}:
12395 @code{TINY(X)} returns the smallest positive (non zero) number
12396 in the model of the type of @code{X}.
12397
12398 @item @emph{Standard}:
12399 Fortran 95 and later
12400
12401 @item @emph{Class}:
12402 Inquiry function
12403
12404 @item @emph{Syntax}:
12405 @code{RESULT = TINY(X)}
12406
12407 @item @emph{Arguments}:
12408 @multitable @columnfractions .15 .70
12409 @item @var{X} @tab Shall be of type @code{REAL}.
12410 @end multitable
12411
12412 @item @emph{Return value}:
12413 The return value is of the same type and kind as @var{X}
12414
12415 @item @emph{Example}:
12416 See @code{HUGE} for an example.
12417 @end table
12418
12419
12420
12421 @node TRAILZ
12422 @section @code{TRAILZ} --- Number of trailing zero bits of an integer
12423 @fnindex TRAILZ
12424 @cindex zero bits
12425
12426 @table @asis
12427 @item @emph{Description}:
12428 @code{TRAILZ} returns the number of trailing zero bits of an integer.
12429
12430 @item @emph{Standard}:
12431 Fortran 2008 and later
12432
12433 @item @emph{Class}:
12434 Elemental function
12435
12436 @item @emph{Syntax}:
12437 @code{RESULT = TRAILZ(I)}
12438
12439 @item @emph{Arguments}:
12440 @multitable @columnfractions .15 .70
12441 @item @var{I} @tab Shall be of type @code{INTEGER}.
12442 @end multitable
12443
12444 @item @emph{Return value}:
12445 The type of the return value is the default @code{INTEGER}.
12446 If all the bits of @code{I} are zero, the result value is @code{BIT_SIZE(I)}.
12447
12448 @item @emph{Example}:
12449 @smallexample
12450 PROGRAM test_trailz
12451 WRITE (*,*) TRAILZ(8) ! prints 3
12452 END PROGRAM
12453 @end smallexample
12454
12455 @item @emph{See also}:
12456 @ref{BIT_SIZE}, @ref{LEADZ}, @ref{POPPAR}, @ref{POPCNT}
12457 @end table
12458
12459
12460
12461 @node TRANSFER
12462 @section @code{TRANSFER} --- Transfer bit patterns
12463 @fnindex TRANSFER
12464 @cindex bits, move
12465 @cindex type cast
12466
12467 @table @asis
12468 @item @emph{Description}:
12469 Interprets the bitwise representation of @var{SOURCE} in memory as if it
12470 is the representation of a variable or array of the same type and type
12471 parameters as @var{MOLD}.
12472
12473 This is approximately equivalent to the C concept of @emph{casting} one
12474 type to another.
12475
12476 @item @emph{Standard}:
12477 Fortran 95 and later
12478
12479 @item @emph{Class}:
12480 Transformational function
12481
12482 @item @emph{Syntax}:
12483 @code{RESULT = TRANSFER(SOURCE, MOLD[, SIZE])}
12484
12485 @item @emph{Arguments}:
12486 @multitable @columnfractions .15 .70
12487 @item @var{SOURCE} @tab Shall be a scalar or an array of any type.
12488 @item @var{MOLD} @tab Shall be a scalar or an array of any type.
12489 @item @var{SIZE} @tab (Optional) shall be a scalar of type
12490 @code{INTEGER}.
12491 @end multitable
12492
12493 @item @emph{Return value}:
12494 The result has the same type as @var{MOLD}, with the bit level
12495 representation of @var{SOURCE}. If @var{SIZE} is present, the result is
12496 a one-dimensional array of length @var{SIZE}. If @var{SIZE} is absent
12497 but @var{MOLD} is an array (of any size or shape), the result is a one-
12498 dimensional array of the minimum length needed to contain the entirety
12499 of the bitwise representation of @var{SOURCE}. If @var{SIZE} is absent
12500 and @var{MOLD} is a scalar, the result is a scalar.
12501
12502 If the bitwise representation of the result is longer than that of
12503 @var{SOURCE}, then the leading bits of the result correspond to those of
12504 @var{SOURCE} and any trailing bits are filled arbitrarily.
12505
12506 When the resulting bit representation does not correspond to a valid
12507 representation of a variable of the same type as @var{MOLD}, the results
12508 are undefined, and subsequent operations on the result cannot be
12509 guaranteed to produce sensible behavior. For example, it is possible to
12510 create @code{LOGICAL} variables for which @code{@var{VAR}} and
12511 @code{.NOT.@var{VAR}} both appear to be true.
12512
12513 @item @emph{Example}:
12514 @smallexample
12515 PROGRAM test_transfer
12516 integer :: x = 2143289344
12517 print *, transfer(x, 1.0) ! prints "NaN" on i686
12518 END PROGRAM
12519 @end smallexample
12520 @end table
12521
12522
12523
12524 @node TRANSPOSE
12525 @section @code{TRANSPOSE} --- Transpose an array of rank two
12526 @fnindex TRANSPOSE
12527 @cindex array, transpose
12528 @cindex matrix, transpose
12529 @cindex transpose
12530
12531 @table @asis
12532 @item @emph{Description}:
12533 Transpose an array of rank two. Element (i, j) of the result has the value
12534 @code{MATRIX(j, i)}, for all i, j.
12535
12536 @item @emph{Standard}:
12537 Fortran 95 and later
12538
12539 @item @emph{Class}:
12540 Transformational function
12541
12542 @item @emph{Syntax}:
12543 @code{RESULT = TRANSPOSE(MATRIX)}
12544
12545 @item @emph{Arguments}:
12546 @multitable @columnfractions .15 .70
12547 @item @var{MATRIX} @tab Shall be an array of any type and have a rank of two.
12548 @end multitable
12549
12550 @item @emph{Return value}:
12551 The result has the same type as @var{MATRIX}, and has shape
12552 @code{(/ m, n /)} if @var{MATRIX} has shape @code{(/ n, m /)}.
12553 @end table
12554
12555
12556
12557 @node TRIM
12558 @section @code{TRIM} --- Remove trailing blank characters of a string
12559 @fnindex TRIM
12560 @cindex string, remove trailing whitespace
12561
12562 @table @asis
12563 @item @emph{Description}:
12564 Removes trailing blank characters of a string.
12565
12566 @item @emph{Standard}:
12567 Fortran 95 and later
12568
12569 @item @emph{Class}:
12570 Transformational function
12571
12572 @item @emph{Syntax}:
12573 @code{RESULT = TRIM(STRING)}
12574
12575 @item @emph{Arguments}:
12576 @multitable @columnfractions .15 .70
12577 @item @var{STRING} @tab Shall be a scalar of type @code{CHARACTER}.
12578 @end multitable
12579
12580 @item @emph{Return value}:
12581 A scalar of type @code{CHARACTER} which length is that of @var{STRING}
12582 less the number of trailing blanks.
12583
12584 @item @emph{Example}:
12585 @smallexample
12586 PROGRAM test_trim
12587 CHARACTER(len=10), PARAMETER :: s = "GFORTRAN "
12588 WRITE(*,*) LEN(s), LEN(TRIM(s)) ! "10 8", with/without trailing blanks
12589 END PROGRAM
12590 @end smallexample
12591
12592 @item @emph{See also}:
12593 @ref{ADJUSTL}, @ref{ADJUSTR}
12594 @end table
12595
12596
12597
12598 @node TTYNAM
12599 @section @code{TTYNAM} --- Get the name of a terminal device.
12600 @fnindex TTYNAM
12601 @cindex system, terminal
12602
12603 @table @asis
12604 @item @emph{Description}:
12605 Get the name of a terminal device. For more information,
12606 see @code{ttyname(3)}.
12607
12608 This intrinsic is provided in both subroutine and function forms;
12609 however, only one form can be used in any given program unit.
12610
12611 @item @emph{Standard}:
12612 GNU extension
12613
12614 @item @emph{Class}:
12615 Subroutine, function
12616
12617 @item @emph{Syntax}:
12618 @multitable @columnfractions .80
12619 @item @code{CALL TTYNAM(UNIT, NAME)}
12620 @item @code{NAME = TTYNAM(UNIT)}
12621 @end multitable
12622
12623 @item @emph{Arguments}:
12624 @multitable @columnfractions .15 .70
12625 @item @var{UNIT} @tab Shall be a scalar @code{INTEGER}.
12626 @item @var{NAME} @tab Shall be of type @code{CHARACTER}.
12627 @end multitable
12628
12629 @item @emph{Example}:
12630 @smallexample
12631 PROGRAM test_ttynam
12632 INTEGER :: unit
12633 DO unit = 1, 10
12634 IF (isatty(unit=unit)) write(*,*) ttynam(unit)
12635 END DO
12636 END PROGRAM
12637 @end smallexample
12638
12639 @item @emph{See also}:
12640 @ref{ISATTY}
12641 @end table
12642
12643
12644
12645 @node UBOUND
12646 @section @code{UBOUND} --- Upper dimension bounds of an array
12647 @fnindex UBOUND
12648 @cindex array, upper bound
12649
12650 @table @asis
12651 @item @emph{Description}:
12652 Returns the upper bounds of an array, or a single upper bound
12653 along the @var{DIM} dimension.
12654 @item @emph{Standard}:
12655 Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
12656
12657 @item @emph{Class}:
12658 Inquiry function
12659
12660 @item @emph{Syntax}:
12661 @code{RESULT = UBOUND(ARRAY [, DIM [, KIND]])}
12662
12663 @item @emph{Arguments}:
12664 @multitable @columnfractions .15 .70
12665 @item @var{ARRAY} @tab Shall be an array, of any type.
12666 @item @var{DIM} @tab (Optional) Shall be a scalar @code{INTEGER}.
12667 @item @var{KIND}@tab (Optional) An @code{INTEGER} initialization
12668 expression indicating the kind parameter of the result.
12669 @end multitable
12670
12671 @item @emph{Return value}:
12672 The return value is of type @code{INTEGER} and of kind @var{KIND}. If
12673 @var{KIND} is absent, the return value is of default integer kind.
12674 If @var{DIM} is absent, the result is an array of the upper bounds of
12675 @var{ARRAY}. If @var{DIM} is present, the result is a scalar
12676 corresponding to the upper bound of the array along that dimension. If
12677 @var{ARRAY} is an expression rather than a whole array or array
12678 structure component, or if it has a zero extent along the relevant
12679 dimension, the upper bound is taken to be the number of elements along
12680 the relevant dimension.
12681
12682 @item @emph{See also}:
12683 @ref{LBOUND}, @ref{LCOBOUND}
12684 @end table
12685
12686
12687
12688 @node UCOBOUND
12689 @section @code{UCOBOUND} --- Upper codimension bounds of an array
12690 @fnindex UCOBOUND
12691 @cindex coarray, upper bound
12692
12693 @table @asis
12694 @item @emph{Description}:
12695 Returns the upper cobounds of a coarray, or a single upper cobound
12696 along the @var{DIM} codimension.
12697 @item @emph{Standard}:
12698 Fortran 2008 and later
12699
12700 @item @emph{Class}:
12701 Inquiry function
12702
12703 @item @emph{Syntax}:
12704 @code{RESULT = UCOBOUND(COARRAY [, DIM [, KIND]])}
12705
12706 @item @emph{Arguments}:
12707 @multitable @columnfractions .15 .70
12708 @item @var{ARRAY} @tab Shall be an coarray, of any type.
12709 @item @var{DIM} @tab (Optional) Shall be a scalar @code{INTEGER}.
12710 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
12711 expression indicating the kind parameter of the result.
12712 @end multitable
12713
12714 @item @emph{Return value}:
12715 The return value is of type @code{INTEGER} and of kind @var{KIND}. If
12716 @var{KIND} is absent, the return value is of default integer kind.
12717 If @var{DIM} is absent, the result is an array of the lower cobounds of
12718 @var{COARRAY}. If @var{DIM} is present, the result is a scalar
12719 corresponding to the lower cobound of the array along that codimension.
12720
12721 @item @emph{See also}:
12722 @ref{LCOBOUND}, @ref{LBOUND}
12723 @end table
12724
12725
12726
12727 @node UMASK
12728 @section @code{UMASK} --- Set the file creation mask
12729 @fnindex UMASK
12730 @cindex file system, file creation mask
12731
12732 @table @asis
12733 @item @emph{Description}:
12734 Sets the file creation mask to @var{MASK}. If called as a function, it
12735 returns the old value. If called as a subroutine and argument @var{OLD}
12736 if it is supplied, it is set to the old value. See @code{umask(2)}.
12737
12738 @item @emph{Standard}:
12739 GNU extension
12740
12741 @item @emph{Class}:
12742 Subroutine, function
12743
12744 @item @emph{Syntax}:
12745 @multitable @columnfractions .80
12746 @item @code{CALL UMASK(MASK [, OLD])}
12747 @item @code{OLD = UMASK(MASK)}
12748 @end multitable
12749
12750 @item @emph{Arguments}:
12751 @multitable @columnfractions .15 .70
12752 @item @var{MASK} @tab Shall be a scalar of type @code{INTEGER}.
12753 @item @var{OLD} @tab (Optional) Shall be a scalar of type
12754 @code{INTEGER}.
12755 @end multitable
12756
12757 @end table
12758
12759
12760
12761 @node UNLINK
12762 @section @code{UNLINK} --- Remove a file from the file system
12763 @fnindex UNLINK
12764 @cindex file system, remove file
12765
12766 @table @asis
12767 @item @emph{Description}:
12768 Unlinks the file @var{PATH}. A null character (@code{CHAR(0)}) can be
12769 used to mark the end of the name in @var{PATH}; otherwise, trailing
12770 blanks in the file name are ignored. If the @var{STATUS} argument is
12771 supplied, it contains 0 on success or a nonzero error code upon return;
12772 see @code{unlink(2)}.
12773
12774 This intrinsic is provided in both subroutine and function forms;
12775 however, only one form can be used in any given program unit.
12776
12777 @item @emph{Standard}:
12778 GNU extension
12779
12780 @item @emph{Class}:
12781 Subroutine, function
12782
12783 @item @emph{Syntax}:
12784 @multitable @columnfractions .80
12785 @item @code{CALL UNLINK(PATH [, STATUS])}
12786 @item @code{STATUS = UNLINK(PATH)}
12787 @end multitable
12788
12789 @item @emph{Arguments}:
12790 @multitable @columnfractions .15 .70
12791 @item @var{PATH} @tab Shall be of default @code{CHARACTER} type.
12792 @item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
12793 @end multitable
12794
12795 @item @emph{See also}:
12796 @ref{LINK}, @ref{SYMLNK}
12797 @end table
12798
12799
12800
12801 @node UNPACK
12802 @section @code{UNPACK} --- Unpack an array of rank one into an array
12803 @fnindex UNPACK
12804 @cindex array, unpacking
12805 @cindex array, increase dimension
12806 @cindex array, scatter elements
12807
12808 @table @asis
12809 @item @emph{Description}:
12810 Store the elements of @var{VECTOR} in an array of higher rank.
12811
12812 @item @emph{Standard}:
12813 Fortran 95 and later
12814
12815 @item @emph{Class}:
12816 Transformational function
12817
12818 @item @emph{Syntax}:
12819 @code{RESULT = UNPACK(VECTOR, MASK, FIELD)}
12820
12821 @item @emph{Arguments}:
12822 @multitable @columnfractions .15 .70
12823 @item @var{VECTOR} @tab Shall be an array of any type and rank one. It
12824 shall have at least as many elements as @var{MASK} has @code{TRUE} values.
12825 @item @var{MASK} @tab Shall be an array of type @code{LOGICAL}.
12826 @item @var{FIELD} @tab Shall be of the same type as @var{VECTOR} and have
12827 the same shape as @var{MASK}.
12828 @end multitable
12829
12830 @item @emph{Return value}:
12831 The resulting array corresponds to @var{FIELD} with @code{TRUE} elements
12832 of @var{MASK} replaced by values from @var{VECTOR} in array element order.
12833
12834 @item @emph{Example}:
12835 @smallexample
12836 PROGRAM test_unpack
12837 integer :: vector(2) = (/1,1/)
12838 logical :: mask(4) = (/ .TRUE., .FALSE., .FALSE., .TRUE. /)
12839 integer :: field(2,2) = 0, unity(2,2)
12840
12841 ! result: unity matrix
12842 unity = unpack(vector, reshape(mask, (/2,2/)), field)
12843 END PROGRAM
12844 @end smallexample
12845
12846 @item @emph{See also}:
12847 @ref{PACK}, @ref{SPREAD}
12848 @end table
12849
12850
12851
12852 @node VERIFY
12853 @section @code{VERIFY} --- Scan a string for characters not a given set
12854 @fnindex VERIFY
12855 @cindex string, find missing set
12856
12857 @table @asis
12858 @item @emph{Description}:
12859 Verifies that all the characters in @var{STRING} belong to the set of
12860 characters in @var{SET}.
12861
12862 If @var{BACK} is either absent or equals @code{FALSE}, this function
12863 returns the position of the leftmost character of @var{STRING} that is
12864 not in @var{SET}. If @var{BACK} equals @code{TRUE}, the rightmost
12865 position is returned. If all characters of @var{STRING} are found in
12866 @var{SET}, the result is zero.
12867
12868 @item @emph{Standard}:
12869 Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
12870
12871 @item @emph{Class}:
12872 Elemental function
12873
12874 @item @emph{Syntax}:
12875 @code{RESULT = VERIFY(STRING, SET[, BACK [, KIND]])}
12876
12877 @item @emph{Arguments}:
12878 @multitable @columnfractions .15 .70
12879 @item @var{STRING} @tab Shall be of type @code{CHARACTER}.
12880 @item @var{SET} @tab Shall be of type @code{CHARACTER}.
12881 @item @var{BACK} @tab (Optional) shall be of type @code{LOGICAL}.
12882 @item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
12883 expression indicating the kind parameter of the result.
12884 @end multitable
12885
12886 @item @emph{Return value}:
12887 The return value is of type @code{INTEGER} and of kind @var{KIND}. If
12888 @var{KIND} is absent, the return value is of default integer kind.
12889
12890 @item @emph{Example}:
12891 @smallexample
12892 PROGRAM test_verify
12893 WRITE(*,*) VERIFY("FORTRAN", "AO") ! 1, found 'F'
12894 WRITE(*,*) VERIFY("FORTRAN", "FOO") ! 3, found 'R'
12895 WRITE(*,*) VERIFY("FORTRAN", "C++") ! 1, found 'F'
12896 WRITE(*,*) VERIFY("FORTRAN", "C++", .TRUE.) ! 7, found 'N'
12897 WRITE(*,*) VERIFY("FORTRAN", "FORTRAN") ! 0' found none
12898 END PROGRAM
12899 @end smallexample
12900
12901 @item @emph{See also}:
12902 @ref{SCAN}, @ref{INDEX intrinsic}
12903 @end table
12904
12905
12906
12907 @node XOR
12908 @section @code{XOR} --- Bitwise logical exclusive OR
12909 @fnindex XOR
12910 @cindex bitwise logical exclusive or
12911 @cindex logical exclusive or, bitwise
12912
12913 @table @asis
12914 @item @emph{Description}:
12915 Bitwise logical exclusive or.
12916
12917 This intrinsic routine is provided for backwards compatibility with
12918 GNU Fortran 77. For integer arguments, programmers should consider
12919 the use of the @ref{IEOR} intrinsic and for logical arguments the
12920 @code{.NEQV.} operator, which are both defined by the Fortran standard.
12921
12922 @item @emph{Standard}:
12923 GNU extension
12924
12925 @item @emph{Class}:
12926 Function
12927
12928 @item @emph{Syntax}:
12929 @code{RESULT = XOR(I, J)}
12930
12931 @item @emph{Arguments}:
12932 @multitable @columnfractions .15 .70
12933 @item @var{I} @tab The type shall be either a scalar @code{INTEGER}
12934 type or a scalar @code{LOGICAL} type.
12935 @item @var{J} @tab The type shall be the same as the type of @var{I}.
12936 @end multitable
12937
12938 @item @emph{Return value}:
12939 The return type is either a scalar @code{INTEGER} or a scalar
12940 @code{LOGICAL}. If the kind type parameters differ, then the
12941 smaller kind type is implicitly converted to larger kind, and the
12942 return has the larger kind.
12943
12944 @item @emph{Example}:
12945 @smallexample
12946 PROGRAM test_xor
12947 LOGICAL :: T = .TRUE., F = .FALSE.
12948 INTEGER :: a, b
12949 DATA a / Z'F' /, b / Z'3' /
12950
12951 WRITE (*,*) XOR(T, T), XOR(T, F), XOR(F, T), XOR(F, F)
12952 WRITE (*,*) XOR(a, b)
12953 END PROGRAM
12954 @end smallexample
12955
12956 @item @emph{See also}:
12957 Fortran 95 elemental function: @ref{IEOR}
12958 @end table
12959
12960
12961
12962 @node Intrinsic Modules
12963 @chapter Intrinsic Modules
12964 @cindex intrinsic Modules
12965
12966 @menu
12967 * ISO_FORTRAN_ENV::
12968 * ISO_C_BINDING::
12969 * OpenMP Modules OMP_LIB and OMP_LIB_KINDS::
12970 @end menu
12971
12972 @node ISO_FORTRAN_ENV
12973 @section @code{ISO_FORTRAN_ENV}
12974 @table @asis
12975 @item @emph{Standard}:
12976 Fortran 2003 and later, except when otherwise noted
12977 @end table
12978
12979 The @code{ISO_FORTRAN_ENV} module provides the following scalar default-integer
12980 named constants:
12981
12982 @table @asis
12983 @item @code{ATOMIC_INT_KIND}:
12984 Default-kind integer constant to be used as kind parameter when defining
12985 integer variables used in atomic operations. (Fortran 2008 or later.)
12986
12987 @item @code{ATOMIC_LOGICAL_KIND}:
12988 Default-kind integer constant to be used as kind parameter when defining
12989 logical variables used in atomic operations. (Fortran 2008 or later.)
12990
12991 @item @code{CHARACTER_KINDS}:
12992 Default-kind integer constant array of rank one containing the supported kind
12993 parameters of the @code{CHARACTER} type. (Fortran 2008 or later.)
12994
12995 @item @code{CHARACTER_STORAGE_SIZE}:
12996 Size in bits of the character storage unit.
12997
12998 @item @code{ERROR_UNIT}:
12999 Identifies the preconnected unit used for error reporting.
13000
13001 @item @code{FILE_STORAGE_SIZE}:
13002 Size in bits of the file-storage unit.
13003
13004 @item @code{INPUT_UNIT}:
13005 Identifies the preconnected unit identified by the asterisk
13006 (@code{*}) in @code{READ} statement.
13007
13008 @item @code{INT8}, @code{INT16}, @code{INT32}, @code{INT64}:
13009 Kind type parameters to specify an INTEGER type with a storage
13010 size of 16, 32, and 64 bits. It is negative if a target platform
13011 does not support the particular kind. (Fortran 2008 or later.)
13012
13013 @item @code{INTEGER_KINDS}:
13014 Default-kind integer constant array of rank one containing the supported kind
13015 parameters of the @code{INTEGER} type. (Fortran 2008 or later.)
13016
13017 @item @code{IOSTAT_END}:
13018 The value assigned to the variable passed to the @code{IOSTAT=} specifier of
13019 an input/output statement if an end-of-file condition occurred.
13020
13021 @item @code{IOSTAT_EOR}:
13022 The value assigned to the variable passed to the @code{IOSTAT=} specifier of
13023 an input/output statement if an end-of-record condition occurred.
13024
13025 @item @code{IOSTAT_INQUIRE_INTERNAL_UNIT}:
13026 Scalar default-integer constant, used by @code{INQUIRE} for the
13027 @code{IOSTAT=} specifier to denote an that a unit number identifies an
13028 internal unit. (Fortran 2008 or later.)
13029
13030 @item @code{NUMERIC_STORAGE_SIZE}:
13031 The size in bits of the numeric storage unit.
13032
13033 @item @code{LOGICAL_KINDS}:
13034 Default-kind integer constant array of rank one containing the supported kind
13035 parameters of the @code{LOGICAL} type. (Fortran 2008 or later.)
13036
13037 @item @code{OUTPUT_UNIT}:
13038 Identifies the preconnected unit identified by the asterisk
13039 (@code{*}) in @code{WRITE} statement.
13040
13041 @item @code{REAL32}, @code{REAL64}, @code{REAL128}:
13042 Kind type parameters to specify a REAL type with a storage
13043 size of 32, 64, and 128 bits. It is negative if a target platform
13044 does not support the particular kind. (Fortran 2008 or later.)
13045
13046 @item @code{REAL_KINDS}:
13047 Default-kind integer constant array of rank one containing the supported kind
13048 parameters of the @code{REAL} type. (Fortran 2008 or later.)
13049
13050 @item @code{STAT_LOCKED}:
13051 Scalar default-integer constant used as STAT= return value by @code{LOCK} to
13052 denote that the lock variable is locked by the executing image. (Fortran 2008
13053 or later.)
13054
13055 @item @code{STAT_LOCKED_OTHER_IMAGE}:
13056 Scalar default-integer constant used as STAT= return value by @code{UNLOCK} to
13057 denote that the lock variable is locked by another image. (Fortran 2008 or
13058 later.)
13059
13060 @item @code{STAT_STOPPED_IMAGE}:
13061 Positive, scalar default-integer constant used as STAT= return value if the
13062 argument in the statement requires synchronisation with an image, which has
13063 initiated the termination of the execution. (Fortran 2008 or later.)
13064
13065 @item @code{STAT_UNLOCKED}:
13066 Scalar default-integer constant used as STAT= return value by @code{UNLOCK} to
13067 denote that the lock variable is unlocked. (Fortran 2008 or later.)
13068 @end table
13069
13070 The module provides the following derived type:
13071
13072 @table @asis
13073 @item @code{LOCK_TYPE}:
13074 Derived type with private components to be use with the @code{LOCK} and
13075 @code{UNLOCK} statement. A variable of its type has to be always declared
13076 as coarray and may not appear in a variable-definition context.
13077 (Fortran 2008 or later.)
13078 @end table
13079
13080 The module also provides the following intrinsic procedures:
13081 @ref{COMPILER_OPTIONS} and @ref{COMPILER_VERSION}.
13082
13083
13084
13085 @node ISO_C_BINDING
13086 @section @code{ISO_C_BINDING}
13087 @table @asis
13088 @item @emph{Standard}:
13089 Fortran 2003 and later, GNU extensions
13090 @end table
13091
13092 The following intrinsic procedures are provided by the module; their
13093 definition can be found in the section Intrinsic Procedures of this
13094 manual.
13095
13096 @table @asis
13097 @item @code{C_ASSOCIATED}
13098 @item @code{C_F_POINTER}
13099 @item @code{C_F_PROCPOINTER}
13100 @item @code{C_FUNLOC}
13101 @item @code{C_LOC}
13102 @item @code{C_SIZEOF}
13103 @end table
13104 @c TODO: Vertical spacing between C_FUNLOC and C_LOC wrong in PDF,
13105 @c don't really know why.
13106
13107 The @code{ISO_C_BINDING} module provides the following named constants of
13108 type default integer, which can be used as KIND type parameters.
13109
13110 In addition to the integer named constants required by the Fortran 2003
13111 standard and @code{C_PTRDIFF_T} of TS 29113, GNU Fortran provides as an
13112 extension named constants for the 128-bit integer types supported by the
13113 C compiler: @code{C_INT128_T, C_INT_LEAST128_T, C_INT_FAST128_T}.
13114 Furthermore, if @code{__float128} is supported in C, the named constants
13115 @code{C_FLOAT128, C_FLOAT128_COMPLEX} are defined.
13116
13117 @multitable @columnfractions .15 .35 .35 .35
13118 @item Fortran Type @tab Named constant @tab C type @tab Extension
13119 @item @code{INTEGER}@tab @code{C_INT} @tab @code{int}
13120 @item @code{INTEGER}@tab @code{C_SHORT} @tab @code{short int}
13121 @item @code{INTEGER}@tab @code{C_LONG} @tab @code{long int}
13122 @item @code{INTEGER}@tab @code{C_LONG_LONG} @tab @code{long long int}
13123 @item @code{INTEGER}@tab @code{C_SIGNED_CHAR} @tab @code{signed char}/@code{unsigned char}
13124 @item @code{INTEGER}@tab @code{C_SIZE_T} @tab @code{size_t}
13125 @item @code{INTEGER}@tab @code{C_INT8_T} @tab @code{int8_t}
13126 @item @code{INTEGER}@tab @code{C_INT16_T} @tab @code{int16_t}
13127 @item @code{INTEGER}@tab @code{C_INT32_T} @tab @code{int32_t}
13128 @item @code{INTEGER}@tab @code{C_INT64_T} @tab @code{int64_t}
13129 @item @code{INTEGER}@tab @code{C_INT128_T} @tab @code{int128_t} @tab Ext.
13130 @item @code{INTEGER}@tab @code{C_INT_LEAST8_T} @tab @code{int_least8_t}
13131 @item @code{INTEGER}@tab @code{C_INT_LEAST16_T} @tab @code{int_least16_t}
13132 @item @code{INTEGER}@tab @code{C_INT_LEAST32_T} @tab @code{int_least32_t}
13133 @item @code{INTEGER}@tab @code{C_INT_LEAST64_T} @tab @code{int_least64_t}
13134 @item @code{INTEGER}@tab @code{C_INT_LEAST128_T}@tab @code{int_least128_t} @tab Ext.
13135 @item @code{INTEGER}@tab @code{C_INT_FAST8_T} @tab @code{int_fast8_t}
13136 @item @code{INTEGER}@tab @code{C_INT_FAST16_T} @tab @code{int_fast16_t}
13137 @item @code{INTEGER}@tab @code{C_INT_FAST32_T} @tab @code{int_fast32_t}
13138 @item @code{INTEGER}@tab @code{C_INT_FAST64_T} @tab @code{int_fast64_t}
13139 @item @code{INTEGER}@tab @code{C_INT_FAST128_T} @tab @code{int_fast128_t} @tab Ext.
13140 @item @code{INTEGER}@tab @code{C_INTMAX_T} @tab @code{intmax_t}
13141 @item @code{INTEGER}@tab @code{C_INTPTR_T} @tab @code{intptr_t}
13142 @item @code{INTEGER}@tab @code{C_PTRDIFF_T} @tab @code{intptr_t} @tab TS 29113
13143 @item @code{REAL} @tab @code{C_FLOAT} @tab @code{float}
13144 @item @code{REAL} @tab @code{C_DOUBLE} @tab @code{double}
13145 @item @code{REAL} @tab @code{C_LONG_DOUBLE} @tab @code{long double}
13146 @item @code{REAL} @tab @code{C_FLOAT128} @tab @code{__float128} @tab Ext.
13147 @item @code{COMPLEX}@tab @code{C_FLOAT_COMPLEX} @tab @code{float _Complex}
13148 @item @code{COMPLEX}@tab @code{C_DOUBLE_COMPLEX}@tab @code{double _Complex}
13149 @item @code{COMPLEX}@tab @code{C_LONG_DOUBLE_COMPLEX}@tab @code{long double _Complex}
13150 @item @code{REAL} @tab @code{C_FLOAT128_COMPLEX} @tab @code{__float128 _Complex} @tab Ext.
13151 @item @code{LOGICAL}@tab @code{C_BOOL} @tab @code{_Bool}
13152 @item @code{CHARACTER}@tab @code{C_CHAR} @tab @code{char}
13153 @end multitable
13154
13155 Additionally, the following parameters of type @code{CHARACTER(KIND=C_CHAR)}
13156 are defined.
13157
13158 @multitable @columnfractions .20 .45 .15
13159 @item Name @tab C definition @tab Value
13160 @item @code{C_NULL_CHAR} @tab null character @tab @code{'\0'}
13161 @item @code{C_ALERT} @tab alert @tab @code{'\a'}
13162 @item @code{C_BACKSPACE} @tab backspace @tab @code{'\b'}
13163 @item @code{C_FORM_FEED} @tab form feed @tab @code{'\f'}
13164 @item @code{C_NEW_LINE} @tab new line @tab @code{'\n'}
13165 @item @code{C_CARRIAGE_RETURN} @tab carriage return @tab @code{'\r'}
13166 @item @code{C_HORIZONTAL_TAB} @tab horizontal tab @tab @code{'\t'}
13167 @item @code{C_VERTICAL_TAB} @tab vertical tab @tab @code{'\v'}
13168 @end multitable
13169
13170 Moreover, the following two named constants are defined:
13171
13172 @multitable @columnfractions .20 .80
13173 @item Name @tab Type
13174 @item @code{C_NULL_PTR} @tab @code{C_PTR}
13175 @item @code{C_NULL_FUNPTR} @tab @code{C_FUNPTR}
13176 @end multitable
13177
13178 Both are equivalent to the value @code{NULL} in C.
13179
13180 @node OpenMP Modules OMP_LIB and OMP_LIB_KINDS
13181 @section OpenMP Modules @code{OMP_LIB} and @code{OMP_LIB_KINDS}
13182 @table @asis
13183 @item @emph{Standard}:
13184 OpenMP Application Program Interface v4.0
13185 @end table
13186
13187
13188 The OpenMP Fortran runtime library routines are provided both in
13189 a form of two Fortran 90 modules, named @code{OMP_LIB} and
13190 @code{OMP_LIB_KINDS}, and in a form of a Fortran @code{include} file named
13191 @file{omp_lib.h}. The procedures provided by @code{OMP_LIB} can be found
13192 in the @ref{Top,,Introduction,libgomp,GNU OpenMP runtime library} manual,
13193 the named constants defined in the modules are listed
13194 below.
13195
13196 For details refer to the actual
13197 @uref{http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf,
13198 OpenMP Application Program Interface v4.0}.
13199
13200 @code{OMP_LIB_KINDS} provides the following scalar default-integer
13201 named constants:
13202
13203 @table @asis
13204 @item @code{omp_lock_kind}
13205 @item @code{omp_nest_lock_kind}
13206 @item @code{omp_proc_bind_kind}
13207 @item @code{omp_sched_kind}
13208 @end table
13209
13210 @code{OMP_LIB} provides the scalar default-integer
13211 named constant @code{openmp_version} with a value of the form
13212 @var{yyyymm}, where @code{yyyy} is the year and @var{mm} the month
13213 of the OpenMP version; for OpenMP v3.1 the value is @code{201107}
13214 and for OpenMP v4.0 the value is @code{201307}.
13215
13216 The following scalar integer named constants of the
13217 kind @code{omp_sched_kind}:
13218
13219 @table @asis
13220 @item @code{omp_sched_static}
13221 @item @code{omp_sched_dynamic}
13222 @item @code{omp_sched_guided}
13223 @item @code{omp_sched_auto}
13224 @end table
13225
13226 And the following scalar integer named constants of the
13227 kind @code{omp_proc_bind_kind}:
13228
13229 @table @asis
13230 @item @code{omp_proc_bind_false}
13231 @item @code{omp_proc_bind_true}
13232 @item @code{omp_proc_bind_master}
13233 @item @code{omp_proc_bind_close}
13234 @item @code{omp_proc_bind_spread}
13235 @end table