trans-expr.c (conv_parent_component_references): New function to build missing parent...
[gcc.git] / gcc / fortran / module.c
1 /* Handle modules, which amounts to loading and saving symbols and
2 their attendant structures.
3 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5 Contributed by Andy Vaught
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* The syntax of gfortran modules resembles that of lisp lists, i.e. a
24 sequence of atoms, which can be left or right parenthesis, names,
25 integers or strings. Parenthesis are always matched which allows
26 us to skip over sections at high speed without having to know
27 anything about the internal structure of the lists. A "name" is
28 usually a fortran 95 identifier, but can also start with '@' in
29 order to reference a hidden symbol.
30
31 The first line of a module is an informational message about what
32 created the module, the file it came from and when it was created.
33 The second line is a warning for people not to edit the module.
34 The rest of the module looks like:
35
36 ( ( <Interface info for UPLUS> )
37 ( <Interface info for UMINUS> )
38 ...
39 )
40 ( ( <name of operator interface> <module of op interface> <i/f1> ... )
41 ...
42 )
43 ( ( <name of generic interface> <module of generic interface> <i/f1> ... )
44 ...
45 )
46 ( ( <common name> <symbol> <saved flag>)
47 ...
48 )
49
50 ( equivalence list )
51
52 ( <Symbol Number (in no particular order)>
53 <True name of symbol>
54 <Module name of symbol>
55 ( <symbol information> )
56 ...
57 )
58 ( <Symtree name>
59 <Ambiguous flag>
60 <Symbol number>
61 ...
62 )
63
64 In general, symbols refer to other symbols by their symbol number,
65 which are zero based. Symbols are written to the module in no
66 particular order. */
67
68 #include "config.h"
69 #include "system.h"
70 #include "gfortran.h"
71 #include "arith.h"
72 #include "match.h"
73 #include "parse.h" /* FIXME */
74 #include "md5.h"
75
76 #define MODULE_EXTENSION ".mod"
77
78
79 /* Structure that describes a position within a module file. */
80
81 typedef struct
82 {
83 int column, line;
84 fpos_t pos;
85 }
86 module_locus;
87
88 /* Structure for list of symbols of intrinsic modules. */
89 typedef struct
90 {
91 int id;
92 const char *name;
93 int value;
94 int standard;
95 }
96 intmod_sym;
97
98
99 typedef enum
100 {
101 P_UNKNOWN = 0, P_OTHER, P_NAMESPACE, P_COMPONENT, P_SYMBOL
102 }
103 pointer_t;
104
105 /* The fixup structure lists pointers to pointers that have to
106 be updated when a pointer value becomes known. */
107
108 typedef struct fixup_t
109 {
110 void **pointer;
111 struct fixup_t *next;
112 }
113 fixup_t;
114
115
116 /* Structure for holding extra info needed for pointers being read. */
117
118 typedef struct pointer_info
119 {
120 BBT_HEADER (pointer_info);
121 int integer;
122 pointer_t type;
123
124 /* The first component of each member of the union is the pointer
125 being stored. */
126
127 fixup_t *fixup;
128
129 union
130 {
131 void *pointer; /* Member for doing pointer searches. */
132
133 struct
134 {
135 gfc_symbol *sym;
136 char true_name[GFC_MAX_SYMBOL_LEN + 1], module[GFC_MAX_SYMBOL_LEN + 1];
137 enum
138 { UNUSED, NEEDED, USED }
139 state;
140 int ns, referenced, renamed;
141 module_locus where;
142 fixup_t *stfixup;
143 gfc_symtree *symtree;
144 char binding_label[GFC_MAX_SYMBOL_LEN + 1];
145 }
146 rsym;
147
148 struct
149 {
150 gfc_symbol *sym;
151 enum
152 { UNREFERENCED = 0, NEEDS_WRITE, WRITTEN }
153 state;
154 }
155 wsym;
156 }
157 u;
158
159 }
160 pointer_info;
161
162 #define gfc_get_pointer_info() XCNEW (pointer_info)
163
164
165 /* Lists of rename info for the USE statement. */
166
167 typedef struct gfc_use_rename
168 {
169 char local_name[GFC_MAX_SYMBOL_LEN + 1], use_name[GFC_MAX_SYMBOL_LEN + 1];
170 struct gfc_use_rename *next;
171 int found;
172 gfc_intrinsic_op op;
173 locus where;
174 }
175 gfc_use_rename;
176
177 #define gfc_get_use_rename() XCNEW (gfc_use_rename);
178
179 /* Local variables */
180
181 /* The FILE for the module we're reading or writing. */
182 static FILE *module_fp;
183
184 /* MD5 context structure. */
185 static struct md5_ctx ctx;
186
187 /* The name of the module we're reading (USE'ing) or writing. */
188 static char module_name[GFC_MAX_SYMBOL_LEN + 1];
189
190 /* The way the module we're reading was specified. */
191 static bool specified_nonint, specified_int;
192
193 static int module_line, module_column, only_flag;
194 static enum
195 { IO_INPUT, IO_OUTPUT }
196 iomode;
197
198 static gfc_use_rename *gfc_rename_list;
199 static pointer_info *pi_root;
200 static int symbol_number; /* Counter for assigning symbol numbers */
201
202 /* Tells mio_expr_ref to make symbols for unused equivalence members. */
203 static bool in_load_equiv;
204
205
206
207 /*****************************************************************/
208
209 /* Pointer/integer conversion. Pointers between structures are stored
210 as integers in the module file. The next couple of subroutines
211 handle this translation for reading and writing. */
212
213 /* Recursively free the tree of pointer structures. */
214
215 static void
216 free_pi_tree (pointer_info *p)
217 {
218 if (p == NULL)
219 return;
220
221 if (p->fixup != NULL)
222 gfc_internal_error ("free_pi_tree(): Unresolved fixup");
223
224 free_pi_tree (p->left);
225 free_pi_tree (p->right);
226
227 gfc_free (p);
228 }
229
230
231 /* Compare pointers when searching by pointer. Used when writing a
232 module. */
233
234 static int
235 compare_pointers (void *_sn1, void *_sn2)
236 {
237 pointer_info *sn1, *sn2;
238
239 sn1 = (pointer_info *) _sn1;
240 sn2 = (pointer_info *) _sn2;
241
242 if (sn1->u.pointer < sn2->u.pointer)
243 return -1;
244 if (sn1->u.pointer > sn2->u.pointer)
245 return 1;
246
247 return 0;
248 }
249
250
251 /* Compare integers when searching by integer. Used when reading a
252 module. */
253
254 static int
255 compare_integers (void *_sn1, void *_sn2)
256 {
257 pointer_info *sn1, *sn2;
258
259 sn1 = (pointer_info *) _sn1;
260 sn2 = (pointer_info *) _sn2;
261
262 if (sn1->integer < sn2->integer)
263 return -1;
264 if (sn1->integer > sn2->integer)
265 return 1;
266
267 return 0;
268 }
269
270
271 /* Initialize the pointer_info tree. */
272
273 static void
274 init_pi_tree (void)
275 {
276 compare_fn compare;
277 pointer_info *p;
278
279 pi_root = NULL;
280 compare = (iomode == IO_INPUT) ? compare_integers : compare_pointers;
281
282 /* Pointer 0 is the NULL pointer. */
283 p = gfc_get_pointer_info ();
284 p->u.pointer = NULL;
285 p->integer = 0;
286 p->type = P_OTHER;
287
288 gfc_insert_bbt (&pi_root, p, compare);
289
290 /* Pointer 1 is the current namespace. */
291 p = gfc_get_pointer_info ();
292 p->u.pointer = gfc_current_ns;
293 p->integer = 1;
294 p->type = P_NAMESPACE;
295
296 gfc_insert_bbt (&pi_root, p, compare);
297
298 symbol_number = 2;
299 }
300
301
302 /* During module writing, call here with a pointer to something,
303 returning the pointer_info node. */
304
305 static pointer_info *
306 find_pointer (void *gp)
307 {
308 pointer_info *p;
309
310 p = pi_root;
311 while (p != NULL)
312 {
313 if (p->u.pointer == gp)
314 break;
315 p = (gp < p->u.pointer) ? p->left : p->right;
316 }
317
318 return p;
319 }
320
321
322 /* Given a pointer while writing, returns the pointer_info tree node,
323 creating it if it doesn't exist. */
324
325 static pointer_info *
326 get_pointer (void *gp)
327 {
328 pointer_info *p;
329
330 p = find_pointer (gp);
331 if (p != NULL)
332 return p;
333
334 /* Pointer doesn't have an integer. Give it one. */
335 p = gfc_get_pointer_info ();
336
337 p->u.pointer = gp;
338 p->integer = symbol_number++;
339
340 gfc_insert_bbt (&pi_root, p, compare_pointers);
341
342 return p;
343 }
344
345
346 /* Given an integer during reading, find it in the pointer_info tree,
347 creating the node if not found. */
348
349 static pointer_info *
350 get_integer (int integer)
351 {
352 pointer_info *p, t;
353 int c;
354
355 t.integer = integer;
356
357 p = pi_root;
358 while (p != NULL)
359 {
360 c = compare_integers (&t, p);
361 if (c == 0)
362 break;
363
364 p = (c < 0) ? p->left : p->right;
365 }
366
367 if (p != NULL)
368 return p;
369
370 p = gfc_get_pointer_info ();
371 p->integer = integer;
372 p->u.pointer = NULL;
373
374 gfc_insert_bbt (&pi_root, p, compare_integers);
375
376 return p;
377 }
378
379
380 /* Recursive function to find a pointer within a tree by brute force. */
381
382 static pointer_info *
383 fp2 (pointer_info *p, const void *target)
384 {
385 pointer_info *q;
386
387 if (p == NULL)
388 return NULL;
389
390 if (p->u.pointer == target)
391 return p;
392
393 q = fp2 (p->left, target);
394 if (q != NULL)
395 return q;
396
397 return fp2 (p->right, target);
398 }
399
400
401 /* During reading, find a pointer_info node from the pointer value.
402 This amounts to a brute-force search. */
403
404 static pointer_info *
405 find_pointer2 (void *p)
406 {
407 return fp2 (pi_root, p);
408 }
409
410
411 /* Resolve any fixups using a known pointer. */
412
413 static void
414 resolve_fixups (fixup_t *f, void *gp)
415 {
416 fixup_t *next;
417
418 for (; f; f = next)
419 {
420 next = f->next;
421 *(f->pointer) = gp;
422 gfc_free (f);
423 }
424 }
425
426
427 /* Call here during module reading when we know what pointer to
428 associate with an integer. Any fixups that exist are resolved at
429 this time. */
430
431 static void
432 associate_integer_pointer (pointer_info *p, void *gp)
433 {
434 if (p->u.pointer != NULL)
435 gfc_internal_error ("associate_integer_pointer(): Already associated");
436
437 p->u.pointer = gp;
438
439 resolve_fixups (p->fixup, gp);
440
441 p->fixup = NULL;
442 }
443
444
445 /* During module reading, given an integer and a pointer to a pointer,
446 either store the pointer from an already-known value or create a
447 fixup structure in order to store things later. Returns zero if
448 the reference has been actually stored, or nonzero if the reference
449 must be fixed later (i.e., associate_integer_pointer must be called
450 sometime later. Returns the pointer_info structure. */
451
452 static pointer_info *
453 add_fixup (int integer, void *gp)
454 {
455 pointer_info *p;
456 fixup_t *f;
457 char **cp;
458
459 p = get_integer (integer);
460
461 if (p->integer == 0 || p->u.pointer != NULL)
462 {
463 cp = (char **) gp;
464 *cp = (char *) p->u.pointer;
465 }
466 else
467 {
468 f = XCNEW (fixup_t);
469
470 f->next = p->fixup;
471 p->fixup = f;
472
473 f->pointer = (void **) gp;
474 }
475
476 return p;
477 }
478
479
480 /*****************************************************************/
481
482 /* Parser related subroutines */
483
484 /* Free the rename list left behind by a USE statement. */
485
486 static void
487 free_rename (void)
488 {
489 gfc_use_rename *next;
490
491 for (; gfc_rename_list; gfc_rename_list = next)
492 {
493 next = gfc_rename_list->next;
494 gfc_free (gfc_rename_list);
495 }
496 }
497
498
499 /* Match a USE statement. */
500
501 match
502 gfc_match_use (void)
503 {
504 char name[GFC_MAX_SYMBOL_LEN + 1], module_nature[GFC_MAX_SYMBOL_LEN + 1];
505 gfc_use_rename *tail = NULL, *new_use;
506 interface_type type, type2;
507 gfc_intrinsic_op op;
508 match m;
509
510 specified_int = false;
511 specified_nonint = false;
512
513 if (gfc_match (" , ") == MATCH_YES)
514 {
515 if ((m = gfc_match (" %n ::", module_nature)) == MATCH_YES)
516 {
517 if (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: module "
518 "nature in USE statement at %C") == FAILURE)
519 return MATCH_ERROR;
520
521 if (strcmp (module_nature, "intrinsic") == 0)
522 specified_int = true;
523 else
524 {
525 if (strcmp (module_nature, "non_intrinsic") == 0)
526 specified_nonint = true;
527 else
528 {
529 gfc_error ("Module nature in USE statement at %C shall "
530 "be either INTRINSIC or NON_INTRINSIC");
531 return MATCH_ERROR;
532 }
533 }
534 }
535 else
536 {
537 /* Help output a better error message than "Unclassifiable
538 statement". */
539 gfc_match (" %n", module_nature);
540 if (strcmp (module_nature, "intrinsic") == 0
541 || strcmp (module_nature, "non_intrinsic") == 0)
542 gfc_error ("\"::\" was expected after module nature at %C "
543 "but was not found");
544 return m;
545 }
546 }
547 else
548 {
549 m = gfc_match (" ::");
550 if (m == MATCH_YES &&
551 gfc_notify_std (GFC_STD_F2003, "Fortran 2003: "
552 "\"USE :: module\" at %C") == FAILURE)
553 return MATCH_ERROR;
554
555 if (m != MATCH_YES)
556 {
557 m = gfc_match ("% ");
558 if (m != MATCH_YES)
559 return m;
560 }
561 }
562
563 m = gfc_match_name (module_name);
564 if (m != MATCH_YES)
565 return m;
566
567 free_rename ();
568 only_flag = 0;
569
570 if (gfc_match_eos () == MATCH_YES)
571 return MATCH_YES;
572 if (gfc_match_char (',') != MATCH_YES)
573 goto syntax;
574
575 if (gfc_match (" only :") == MATCH_YES)
576 only_flag = 1;
577
578 if (gfc_match_eos () == MATCH_YES)
579 return MATCH_YES;
580
581 for (;;)
582 {
583 /* Get a new rename struct and add it to the rename list. */
584 new_use = gfc_get_use_rename ();
585 new_use->where = gfc_current_locus;
586 new_use->found = 0;
587
588 if (gfc_rename_list == NULL)
589 gfc_rename_list = new_use;
590 else
591 tail->next = new_use;
592 tail = new_use;
593
594 /* See what kind of interface we're dealing with. Assume it is
595 not an operator. */
596 new_use->op = INTRINSIC_NONE;
597 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
598 goto cleanup;
599
600 switch (type)
601 {
602 case INTERFACE_NAMELESS:
603 gfc_error ("Missing generic specification in USE statement at %C");
604 goto cleanup;
605
606 case INTERFACE_USER_OP:
607 case INTERFACE_GENERIC:
608 m = gfc_match (" =>");
609
610 if (type == INTERFACE_USER_OP && m == MATCH_YES
611 && (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: Renaming "
612 "operators in USE statements at %C")
613 == FAILURE))
614 goto cleanup;
615
616 if (type == INTERFACE_USER_OP)
617 new_use->op = INTRINSIC_USER;
618
619 if (only_flag)
620 {
621 if (m != MATCH_YES)
622 strcpy (new_use->use_name, name);
623 else
624 {
625 strcpy (new_use->local_name, name);
626 m = gfc_match_generic_spec (&type2, new_use->use_name, &op);
627 if (type != type2)
628 goto syntax;
629 if (m == MATCH_NO)
630 goto syntax;
631 if (m == MATCH_ERROR)
632 goto cleanup;
633 }
634 }
635 else
636 {
637 if (m != MATCH_YES)
638 goto syntax;
639 strcpy (new_use->local_name, name);
640
641 m = gfc_match_generic_spec (&type2, new_use->use_name, &op);
642 if (type != type2)
643 goto syntax;
644 if (m == MATCH_NO)
645 goto syntax;
646 if (m == MATCH_ERROR)
647 goto cleanup;
648 }
649
650 if (strcmp (new_use->use_name, module_name) == 0
651 || strcmp (new_use->local_name, module_name) == 0)
652 {
653 gfc_error ("The name '%s' at %C has already been used as "
654 "an external module name.", module_name);
655 goto cleanup;
656 }
657 break;
658
659 case INTERFACE_INTRINSIC_OP:
660 new_use->op = op;
661 break;
662
663 default:
664 gcc_unreachable ();
665 }
666
667 if (gfc_match_eos () == MATCH_YES)
668 break;
669 if (gfc_match_char (',') != MATCH_YES)
670 goto syntax;
671 }
672
673 return MATCH_YES;
674
675 syntax:
676 gfc_syntax_error (ST_USE);
677
678 cleanup:
679 free_rename ();
680 return MATCH_ERROR;
681 }
682
683
684 /* Given a name and a number, inst, return the inst name
685 under which to load this symbol. Returns NULL if this
686 symbol shouldn't be loaded. If inst is zero, returns
687 the number of instances of this name. If interface is
688 true, a user-defined operator is sought, otherwise only
689 non-operators are sought. */
690
691 static const char *
692 find_use_name_n (const char *name, int *inst, bool interface)
693 {
694 gfc_use_rename *u;
695 int i;
696
697 i = 0;
698 for (u = gfc_rename_list; u; u = u->next)
699 {
700 if (strcmp (u->use_name, name) != 0
701 || (u->op == INTRINSIC_USER && !interface)
702 || (u->op != INTRINSIC_USER && interface))
703 continue;
704 if (++i == *inst)
705 break;
706 }
707
708 if (!*inst)
709 {
710 *inst = i;
711 return NULL;
712 }
713
714 if (u == NULL)
715 return only_flag ? NULL : name;
716
717 u->found = 1;
718
719 return (u->local_name[0] != '\0') ? u->local_name : name;
720 }
721
722
723 /* Given a name, return the name under which to load this symbol.
724 Returns NULL if this symbol shouldn't be loaded. */
725
726 static const char *
727 find_use_name (const char *name, bool interface)
728 {
729 int i = 1;
730 return find_use_name_n (name, &i, interface);
731 }
732
733
734 /* Given a real name, return the number of use names associated with it. */
735
736 static int
737 number_use_names (const char *name, bool interface)
738 {
739 int i = 0;
740 const char *c;
741 c = find_use_name_n (name, &i, interface);
742 return i;
743 }
744
745
746 /* Try to find the operator in the current list. */
747
748 static gfc_use_rename *
749 find_use_operator (gfc_intrinsic_op op)
750 {
751 gfc_use_rename *u;
752
753 for (u = gfc_rename_list; u; u = u->next)
754 if (u->op == op)
755 return u;
756
757 return NULL;
758 }
759
760
761 /*****************************************************************/
762
763 /* The next couple of subroutines maintain a tree used to avoid a
764 brute-force search for a combination of true name and module name.
765 While symtree names, the name that a particular symbol is known by
766 can changed with USE statements, we still have to keep track of the
767 true names to generate the correct reference, and also avoid
768 loading the same real symbol twice in a program unit.
769
770 When we start reading, the true name tree is built and maintained
771 as symbols are read. The tree is searched as we load new symbols
772 to see if it already exists someplace in the namespace. */
773
774 typedef struct true_name
775 {
776 BBT_HEADER (true_name);
777 gfc_symbol *sym;
778 }
779 true_name;
780
781 static true_name *true_name_root;
782
783
784 /* Compare two true_name structures. */
785
786 static int
787 compare_true_names (void *_t1, void *_t2)
788 {
789 true_name *t1, *t2;
790 int c;
791
792 t1 = (true_name *) _t1;
793 t2 = (true_name *) _t2;
794
795 c = ((t1->sym->module > t2->sym->module)
796 - (t1->sym->module < t2->sym->module));
797 if (c != 0)
798 return c;
799
800 return strcmp (t1->sym->name, t2->sym->name);
801 }
802
803
804 /* Given a true name, search the true name tree to see if it exists
805 within the main namespace. */
806
807 static gfc_symbol *
808 find_true_name (const char *name, const char *module)
809 {
810 true_name t, *p;
811 gfc_symbol sym;
812 int c;
813
814 sym.name = gfc_get_string (name);
815 if (module != NULL)
816 sym.module = gfc_get_string (module);
817 else
818 sym.module = NULL;
819 t.sym = &sym;
820
821 p = true_name_root;
822 while (p != NULL)
823 {
824 c = compare_true_names ((void *) (&t), (void *) p);
825 if (c == 0)
826 return p->sym;
827
828 p = (c < 0) ? p->left : p->right;
829 }
830
831 return NULL;
832 }
833
834
835 /* Given a gfc_symbol pointer that is not in the true name tree, add it. */
836
837 static void
838 add_true_name (gfc_symbol *sym)
839 {
840 true_name *t;
841
842 t = XCNEW (true_name);
843 t->sym = sym;
844
845 gfc_insert_bbt (&true_name_root, t, compare_true_names);
846 }
847
848
849 /* Recursive function to build the initial true name tree by
850 recursively traversing the current namespace. */
851
852 static void
853 build_tnt (gfc_symtree *st)
854 {
855 if (st == NULL)
856 return;
857
858 build_tnt (st->left);
859 build_tnt (st->right);
860
861 if (find_true_name (st->n.sym->name, st->n.sym->module) != NULL)
862 return;
863
864 add_true_name (st->n.sym);
865 }
866
867
868 /* Initialize the true name tree with the current namespace. */
869
870 static void
871 init_true_name_tree (void)
872 {
873 true_name_root = NULL;
874 build_tnt (gfc_current_ns->sym_root);
875 }
876
877
878 /* Recursively free a true name tree node. */
879
880 static void
881 free_true_name (true_name *t)
882 {
883 if (t == NULL)
884 return;
885 free_true_name (t->left);
886 free_true_name (t->right);
887
888 gfc_free (t);
889 }
890
891
892 /*****************************************************************/
893
894 /* Module reading and writing. */
895
896 typedef enum
897 {
898 ATOM_NAME, ATOM_LPAREN, ATOM_RPAREN, ATOM_INTEGER, ATOM_STRING
899 }
900 atom_type;
901
902 static atom_type last_atom;
903
904
905 /* The name buffer must be at least as long as a symbol name. Right
906 now it's not clear how we're going to store numeric constants--
907 probably as a hexadecimal string, since this will allow the exact
908 number to be preserved (this can't be done by a decimal
909 representation). Worry about that later. TODO! */
910
911 #define MAX_ATOM_SIZE 100
912
913 static int atom_int;
914 static char *atom_string, atom_name[MAX_ATOM_SIZE];
915
916
917 /* Report problems with a module. Error reporting is not very
918 elaborate, since this sorts of errors shouldn't really happen.
919 This subroutine never returns. */
920
921 static void bad_module (const char *) ATTRIBUTE_NORETURN;
922
923 static void
924 bad_module (const char *msgid)
925 {
926 fclose (module_fp);
927
928 switch (iomode)
929 {
930 case IO_INPUT:
931 gfc_fatal_error ("Reading module %s at line %d column %d: %s",
932 module_name, module_line, module_column, msgid);
933 break;
934 case IO_OUTPUT:
935 gfc_fatal_error ("Writing module %s at line %d column %d: %s",
936 module_name, module_line, module_column, msgid);
937 break;
938 default:
939 gfc_fatal_error ("Module %s at line %d column %d: %s",
940 module_name, module_line, module_column, msgid);
941 break;
942 }
943 }
944
945
946 /* Set the module's input pointer. */
947
948 static void
949 set_module_locus (module_locus *m)
950 {
951 module_column = m->column;
952 module_line = m->line;
953 fsetpos (module_fp, &m->pos);
954 }
955
956
957 /* Get the module's input pointer so that we can restore it later. */
958
959 static void
960 get_module_locus (module_locus *m)
961 {
962 m->column = module_column;
963 m->line = module_line;
964 fgetpos (module_fp, &m->pos);
965 }
966
967
968 /* Get the next character in the module, updating our reckoning of
969 where we are. */
970
971 static int
972 module_char (void)
973 {
974 int c;
975
976 c = getc (module_fp);
977
978 if (c == EOF)
979 bad_module ("Unexpected EOF");
980
981 if (c == '\n')
982 {
983 module_line++;
984 module_column = 0;
985 }
986
987 module_column++;
988 return c;
989 }
990
991
992 /* Parse a string constant. The delimiter is guaranteed to be a
993 single quote. */
994
995 static void
996 parse_string (void)
997 {
998 module_locus start;
999 int len, c;
1000 char *p;
1001
1002 get_module_locus (&start);
1003
1004 len = 0;
1005
1006 /* See how long the string is. */
1007 for ( ; ; )
1008 {
1009 c = module_char ();
1010 if (c == EOF)
1011 bad_module ("Unexpected end of module in string constant");
1012
1013 if (c != '\'')
1014 {
1015 len++;
1016 continue;
1017 }
1018
1019 c = module_char ();
1020 if (c == '\'')
1021 {
1022 len++;
1023 continue;
1024 }
1025
1026 break;
1027 }
1028
1029 set_module_locus (&start);
1030
1031 atom_string = p = XCNEWVEC (char, len + 1);
1032
1033 for (; len > 0; len--)
1034 {
1035 c = module_char ();
1036 if (c == '\'')
1037 module_char (); /* Guaranteed to be another \'. */
1038 *p++ = c;
1039 }
1040
1041 module_char (); /* Terminating \'. */
1042 *p = '\0'; /* C-style string for debug purposes. */
1043 }
1044
1045
1046 /* Parse a small integer. */
1047
1048 static void
1049 parse_integer (int c)
1050 {
1051 module_locus m;
1052
1053 atom_int = c - '0';
1054
1055 for (;;)
1056 {
1057 get_module_locus (&m);
1058
1059 c = module_char ();
1060 if (!ISDIGIT (c))
1061 break;
1062
1063 atom_int = 10 * atom_int + c - '0';
1064 if (atom_int > 99999999)
1065 bad_module ("Integer overflow");
1066 }
1067
1068 set_module_locus (&m);
1069 }
1070
1071
1072 /* Parse a name. */
1073
1074 static void
1075 parse_name (int c)
1076 {
1077 module_locus m;
1078 char *p;
1079 int len;
1080
1081 p = atom_name;
1082
1083 *p++ = c;
1084 len = 1;
1085
1086 get_module_locus (&m);
1087
1088 for (;;)
1089 {
1090 c = module_char ();
1091 if (!ISALNUM (c) && c != '_' && c != '-')
1092 break;
1093
1094 *p++ = c;
1095 if (++len > GFC_MAX_SYMBOL_LEN)
1096 bad_module ("Name too long");
1097 }
1098
1099 *p = '\0';
1100
1101 fseek (module_fp, -1, SEEK_CUR);
1102 module_column = m.column + len - 1;
1103
1104 if (c == '\n')
1105 module_line--;
1106 }
1107
1108
1109 /* Read the next atom in the module's input stream. */
1110
1111 static atom_type
1112 parse_atom (void)
1113 {
1114 int c;
1115
1116 do
1117 {
1118 c = module_char ();
1119 }
1120 while (c == ' ' || c == '\r' || c == '\n');
1121
1122 switch (c)
1123 {
1124 case '(':
1125 return ATOM_LPAREN;
1126
1127 case ')':
1128 return ATOM_RPAREN;
1129
1130 case '\'':
1131 parse_string ();
1132 return ATOM_STRING;
1133
1134 case '0':
1135 case '1':
1136 case '2':
1137 case '3':
1138 case '4':
1139 case '5':
1140 case '6':
1141 case '7':
1142 case '8':
1143 case '9':
1144 parse_integer (c);
1145 return ATOM_INTEGER;
1146
1147 case 'a':
1148 case 'b':
1149 case 'c':
1150 case 'd':
1151 case 'e':
1152 case 'f':
1153 case 'g':
1154 case 'h':
1155 case 'i':
1156 case 'j':
1157 case 'k':
1158 case 'l':
1159 case 'm':
1160 case 'n':
1161 case 'o':
1162 case 'p':
1163 case 'q':
1164 case 'r':
1165 case 's':
1166 case 't':
1167 case 'u':
1168 case 'v':
1169 case 'w':
1170 case 'x':
1171 case 'y':
1172 case 'z':
1173 case 'A':
1174 case 'B':
1175 case 'C':
1176 case 'D':
1177 case 'E':
1178 case 'F':
1179 case 'G':
1180 case 'H':
1181 case 'I':
1182 case 'J':
1183 case 'K':
1184 case 'L':
1185 case 'M':
1186 case 'N':
1187 case 'O':
1188 case 'P':
1189 case 'Q':
1190 case 'R':
1191 case 'S':
1192 case 'T':
1193 case 'U':
1194 case 'V':
1195 case 'W':
1196 case 'X':
1197 case 'Y':
1198 case 'Z':
1199 parse_name (c);
1200 return ATOM_NAME;
1201
1202 default:
1203 bad_module ("Bad name");
1204 }
1205
1206 /* Not reached. */
1207 }
1208
1209
1210 /* Peek at the next atom on the input. */
1211
1212 static atom_type
1213 peek_atom (void)
1214 {
1215 module_locus m;
1216 atom_type a;
1217
1218 get_module_locus (&m);
1219
1220 a = parse_atom ();
1221 if (a == ATOM_STRING)
1222 gfc_free (atom_string);
1223
1224 set_module_locus (&m);
1225 return a;
1226 }
1227
1228
1229 /* Read the next atom from the input, requiring that it be a
1230 particular kind. */
1231
1232 static void
1233 require_atom (atom_type type)
1234 {
1235 module_locus m;
1236 atom_type t;
1237 const char *p;
1238
1239 get_module_locus (&m);
1240
1241 t = parse_atom ();
1242 if (t != type)
1243 {
1244 switch (type)
1245 {
1246 case ATOM_NAME:
1247 p = _("Expected name");
1248 break;
1249 case ATOM_LPAREN:
1250 p = _("Expected left parenthesis");
1251 break;
1252 case ATOM_RPAREN:
1253 p = _("Expected right parenthesis");
1254 break;
1255 case ATOM_INTEGER:
1256 p = _("Expected integer");
1257 break;
1258 case ATOM_STRING:
1259 p = _("Expected string");
1260 break;
1261 default:
1262 gfc_internal_error ("require_atom(): bad atom type required");
1263 }
1264
1265 set_module_locus (&m);
1266 bad_module (p);
1267 }
1268 }
1269
1270
1271 /* Given a pointer to an mstring array, require that the current input
1272 be one of the strings in the array. We return the enum value. */
1273
1274 static int
1275 find_enum (const mstring *m)
1276 {
1277 int i;
1278
1279 i = gfc_string2code (m, atom_name);
1280 if (i >= 0)
1281 return i;
1282
1283 bad_module ("find_enum(): Enum not found");
1284
1285 /* Not reached. */
1286 }
1287
1288
1289 /**************** Module output subroutines ***************************/
1290
1291 /* Output a character to a module file. */
1292
1293 static void
1294 write_char (char out)
1295 {
1296 if (putc (out, module_fp) == EOF)
1297 gfc_fatal_error ("Error writing modules file: %s", strerror (errno));
1298
1299 /* Add this to our MD5. */
1300 md5_process_bytes (&out, sizeof (out), &ctx);
1301
1302 if (out != '\n')
1303 module_column++;
1304 else
1305 {
1306 module_column = 1;
1307 module_line++;
1308 }
1309 }
1310
1311
1312 /* Write an atom to a module. The line wrapping isn't perfect, but it
1313 should work most of the time. This isn't that big of a deal, since
1314 the file really isn't meant to be read by people anyway. */
1315
1316 static void
1317 write_atom (atom_type atom, const void *v)
1318 {
1319 char buffer[20];
1320 int i, len;
1321 const char *p;
1322
1323 switch (atom)
1324 {
1325 case ATOM_STRING:
1326 case ATOM_NAME:
1327 p = (const char *) v;
1328 break;
1329
1330 case ATOM_LPAREN:
1331 p = "(";
1332 break;
1333
1334 case ATOM_RPAREN:
1335 p = ")";
1336 break;
1337
1338 case ATOM_INTEGER:
1339 i = *((const int *) v);
1340 if (i < 0)
1341 gfc_internal_error ("write_atom(): Writing negative integer");
1342
1343 sprintf (buffer, "%d", i);
1344 p = buffer;
1345 break;
1346
1347 default:
1348 gfc_internal_error ("write_atom(): Trying to write dab atom");
1349
1350 }
1351
1352 if(p == NULL || *p == '\0')
1353 len = 0;
1354 else
1355 len = strlen (p);
1356
1357 if (atom != ATOM_RPAREN)
1358 {
1359 if (module_column + len > 72)
1360 write_char ('\n');
1361 else
1362 {
1363
1364 if (last_atom != ATOM_LPAREN && module_column != 1)
1365 write_char (' ');
1366 }
1367 }
1368
1369 if (atom == ATOM_STRING)
1370 write_char ('\'');
1371
1372 while (p != NULL && *p)
1373 {
1374 if (atom == ATOM_STRING && *p == '\'')
1375 write_char ('\'');
1376 write_char (*p++);
1377 }
1378
1379 if (atom == ATOM_STRING)
1380 write_char ('\'');
1381
1382 last_atom = atom;
1383 }
1384
1385
1386
1387 /***************** Mid-level I/O subroutines *****************/
1388
1389 /* These subroutines let their caller read or write atoms without
1390 caring about which of the two is actually happening. This lets a
1391 subroutine concentrate on the actual format of the data being
1392 written. */
1393
1394 static void mio_expr (gfc_expr **);
1395 pointer_info *mio_symbol_ref (gfc_symbol **);
1396 pointer_info *mio_interface_rest (gfc_interface **);
1397 static void mio_symtree_ref (gfc_symtree **);
1398
1399 /* Read or write an enumerated value. On writing, we return the input
1400 value for the convenience of callers. We avoid using an integer
1401 pointer because enums are sometimes inside bitfields. */
1402
1403 static int
1404 mio_name (int t, const mstring *m)
1405 {
1406 if (iomode == IO_OUTPUT)
1407 write_atom (ATOM_NAME, gfc_code2string (m, t));
1408 else
1409 {
1410 require_atom (ATOM_NAME);
1411 t = find_enum (m);
1412 }
1413
1414 return t;
1415 }
1416
1417 /* Specialization of mio_name. */
1418
1419 #define DECL_MIO_NAME(TYPE) \
1420 static inline TYPE \
1421 MIO_NAME(TYPE) (TYPE t, const mstring *m) \
1422 { \
1423 return (TYPE) mio_name ((int) t, m); \
1424 }
1425 #define MIO_NAME(TYPE) mio_name_##TYPE
1426
1427 static void
1428 mio_lparen (void)
1429 {
1430 if (iomode == IO_OUTPUT)
1431 write_atom (ATOM_LPAREN, NULL);
1432 else
1433 require_atom (ATOM_LPAREN);
1434 }
1435
1436
1437 static void
1438 mio_rparen (void)
1439 {
1440 if (iomode == IO_OUTPUT)
1441 write_atom (ATOM_RPAREN, NULL);
1442 else
1443 require_atom (ATOM_RPAREN);
1444 }
1445
1446
1447 static void
1448 mio_integer (int *ip)
1449 {
1450 if (iomode == IO_OUTPUT)
1451 write_atom (ATOM_INTEGER, ip);
1452 else
1453 {
1454 require_atom (ATOM_INTEGER);
1455 *ip = atom_int;
1456 }
1457 }
1458
1459
1460 /* Read or write a character pointer that points to a string on the heap. */
1461
1462 static const char *
1463 mio_allocated_string (const char *s)
1464 {
1465 if (iomode == IO_OUTPUT)
1466 {
1467 write_atom (ATOM_STRING, s);
1468 return s;
1469 }
1470 else
1471 {
1472 require_atom (ATOM_STRING);
1473 return atom_string;
1474 }
1475 }
1476
1477
1478 /* Functions for quoting and unquoting strings. */
1479
1480 static char *
1481 quote_string (const gfc_char_t *s, const size_t slength)
1482 {
1483 const gfc_char_t *p;
1484 char *res, *q;
1485 size_t len = 0, i;
1486
1487 /* Calculate the length we'll need: a backslash takes two ("\\"),
1488 non-printable characters take 10 ("\Uxxxxxxxx") and others take 1. */
1489 for (p = s, i = 0; i < slength; p++, i++)
1490 {
1491 if (*p == '\\')
1492 len += 2;
1493 else if (!gfc_wide_is_printable (*p))
1494 len += 10;
1495 else
1496 len++;
1497 }
1498
1499 q = res = XCNEWVEC (char, len + 1);
1500 for (p = s, i = 0; i < slength; p++, i++)
1501 {
1502 if (*p == '\\')
1503 *q++ = '\\', *q++ = '\\';
1504 else if (!gfc_wide_is_printable (*p))
1505 {
1506 sprintf (q, "\\U%08" HOST_WIDE_INT_PRINT "x",
1507 (unsigned HOST_WIDE_INT) *p);
1508 q += 10;
1509 }
1510 else
1511 *q++ = (unsigned char) *p;
1512 }
1513
1514 res[len] = '\0';
1515 return res;
1516 }
1517
1518 static gfc_char_t *
1519 unquote_string (const char *s)
1520 {
1521 size_t len, i;
1522 const char *p;
1523 gfc_char_t *res;
1524
1525 for (p = s, len = 0; *p; p++, len++)
1526 {
1527 if (*p != '\\')
1528 continue;
1529
1530 if (p[1] == '\\')
1531 p++;
1532 else if (p[1] == 'U')
1533 p += 9; /* That is a "\U????????". */
1534 else
1535 gfc_internal_error ("unquote_string(): got bad string");
1536 }
1537
1538 res = gfc_get_wide_string (len + 1);
1539 for (i = 0, p = s; i < len; i++, p++)
1540 {
1541 gcc_assert (*p);
1542
1543 if (*p != '\\')
1544 res[i] = (unsigned char) *p;
1545 else if (p[1] == '\\')
1546 {
1547 res[i] = (unsigned char) '\\';
1548 p++;
1549 }
1550 else
1551 {
1552 /* We read the 8-digits hexadecimal constant that follows. */
1553 int j;
1554 unsigned n;
1555 gfc_char_t c = 0;
1556
1557 gcc_assert (p[1] == 'U');
1558 for (j = 0; j < 8; j++)
1559 {
1560 c = c << 4;
1561 gcc_assert (sscanf (&p[j+2], "%01x", &n) == 1);
1562 c += n;
1563 }
1564
1565 res[i] = c;
1566 p += 9;
1567 }
1568 }
1569
1570 res[len] = '\0';
1571 return res;
1572 }
1573
1574
1575 /* Read or write a character pointer that points to a wide string on the
1576 heap, performing quoting/unquoting of nonprintable characters using the
1577 form \U???????? (where each ? is a hexadecimal digit).
1578 Length is the length of the string, only known and used in output mode. */
1579
1580 static const gfc_char_t *
1581 mio_allocated_wide_string (const gfc_char_t *s, const size_t length)
1582 {
1583 if (iomode == IO_OUTPUT)
1584 {
1585 char *quoted = quote_string (s, length);
1586 write_atom (ATOM_STRING, quoted);
1587 gfc_free (quoted);
1588 return s;
1589 }
1590 else
1591 {
1592 gfc_char_t *unquoted;
1593
1594 require_atom (ATOM_STRING);
1595 unquoted = unquote_string (atom_string);
1596 gfc_free (atom_string);
1597 return unquoted;
1598 }
1599 }
1600
1601
1602 /* Read or write a string that is in static memory. */
1603
1604 static void
1605 mio_pool_string (const char **stringp)
1606 {
1607 /* TODO: one could write the string only once, and refer to it via a
1608 fixup pointer. */
1609
1610 /* As a special case we have to deal with a NULL string. This
1611 happens for the 'module' member of 'gfc_symbol's that are not in a
1612 module. We read / write these as the empty string. */
1613 if (iomode == IO_OUTPUT)
1614 {
1615 const char *p = *stringp == NULL ? "" : *stringp;
1616 write_atom (ATOM_STRING, p);
1617 }
1618 else
1619 {
1620 require_atom (ATOM_STRING);
1621 *stringp = atom_string[0] == '\0' ? NULL : gfc_get_string (atom_string);
1622 gfc_free (atom_string);
1623 }
1624 }
1625
1626
1627 /* Read or write a string that is inside of some already-allocated
1628 structure. */
1629
1630 static void
1631 mio_internal_string (char *string)
1632 {
1633 if (iomode == IO_OUTPUT)
1634 write_atom (ATOM_STRING, string);
1635 else
1636 {
1637 require_atom (ATOM_STRING);
1638 strcpy (string, atom_string);
1639 gfc_free (atom_string);
1640 }
1641 }
1642
1643
1644 typedef enum
1645 { AB_ALLOCATABLE, AB_DIMENSION, AB_EXTERNAL, AB_INTRINSIC, AB_OPTIONAL,
1646 AB_POINTER, AB_TARGET, AB_DUMMY, AB_RESULT, AB_DATA,
1647 AB_IN_NAMELIST, AB_IN_COMMON, AB_FUNCTION, AB_SUBROUTINE, AB_SEQUENCE,
1648 AB_ELEMENTAL, AB_PURE, AB_RECURSIVE, AB_GENERIC, AB_ALWAYS_EXPLICIT,
1649 AB_CRAY_POINTER, AB_CRAY_POINTEE, AB_THREADPRIVATE, AB_ALLOC_COMP,
1650 AB_POINTER_COMP, AB_PRIVATE_COMP, AB_VALUE, AB_VOLATILE, AB_PROTECTED,
1651 AB_IS_BIND_C, AB_IS_C_INTEROP, AB_IS_ISO_C, AB_ABSTRACT, AB_ZERO_COMP,
1652 AB_EXTENSION
1653 }
1654 ab_attribute;
1655
1656 static const mstring attr_bits[] =
1657 {
1658 minit ("ALLOCATABLE", AB_ALLOCATABLE),
1659 minit ("DIMENSION", AB_DIMENSION),
1660 minit ("EXTERNAL", AB_EXTERNAL),
1661 minit ("INTRINSIC", AB_INTRINSIC),
1662 minit ("OPTIONAL", AB_OPTIONAL),
1663 minit ("POINTER", AB_POINTER),
1664 minit ("VOLATILE", AB_VOLATILE),
1665 minit ("TARGET", AB_TARGET),
1666 minit ("THREADPRIVATE", AB_THREADPRIVATE),
1667 minit ("DUMMY", AB_DUMMY),
1668 minit ("RESULT", AB_RESULT),
1669 minit ("DATA", AB_DATA),
1670 minit ("IN_NAMELIST", AB_IN_NAMELIST),
1671 minit ("IN_COMMON", AB_IN_COMMON),
1672 minit ("FUNCTION", AB_FUNCTION),
1673 minit ("SUBROUTINE", AB_SUBROUTINE),
1674 minit ("SEQUENCE", AB_SEQUENCE),
1675 minit ("ELEMENTAL", AB_ELEMENTAL),
1676 minit ("PURE", AB_PURE),
1677 minit ("RECURSIVE", AB_RECURSIVE),
1678 minit ("GENERIC", AB_GENERIC),
1679 minit ("ALWAYS_EXPLICIT", AB_ALWAYS_EXPLICIT),
1680 minit ("CRAY_POINTER", AB_CRAY_POINTER),
1681 minit ("CRAY_POINTEE", AB_CRAY_POINTEE),
1682 minit ("IS_BIND_C", AB_IS_BIND_C),
1683 minit ("IS_C_INTEROP", AB_IS_C_INTEROP),
1684 minit ("IS_ISO_C", AB_IS_ISO_C),
1685 minit ("VALUE", AB_VALUE),
1686 minit ("ALLOC_COMP", AB_ALLOC_COMP),
1687 minit ("POINTER_COMP", AB_POINTER_COMP),
1688 minit ("PRIVATE_COMP", AB_PRIVATE_COMP),
1689 minit ("ZERO_COMP", AB_ZERO_COMP),
1690 minit ("PROTECTED", AB_PROTECTED),
1691 minit ("ABSTRACT", AB_ABSTRACT),
1692 minit ("EXTENSION", AB_EXTENSION),
1693 minit (NULL, -1)
1694 };
1695
1696
1697 /* Specialization of mio_name. */
1698 DECL_MIO_NAME (ab_attribute)
1699 DECL_MIO_NAME (ar_type)
1700 DECL_MIO_NAME (array_type)
1701 DECL_MIO_NAME (bt)
1702 DECL_MIO_NAME (expr_t)
1703 DECL_MIO_NAME (gfc_access)
1704 DECL_MIO_NAME (gfc_intrinsic_op)
1705 DECL_MIO_NAME (ifsrc)
1706 DECL_MIO_NAME (save_state)
1707 DECL_MIO_NAME (procedure_type)
1708 DECL_MIO_NAME (ref_type)
1709 DECL_MIO_NAME (sym_flavor)
1710 DECL_MIO_NAME (sym_intent)
1711 #undef DECL_MIO_NAME
1712
1713 /* Symbol attributes are stored in list with the first three elements
1714 being the enumerated fields, while the remaining elements (if any)
1715 indicate the individual attribute bits. The access field is not
1716 saved-- it controls what symbols are exported when a module is
1717 written. */
1718
1719 static void
1720 mio_symbol_attribute (symbol_attribute *attr)
1721 {
1722 atom_type t;
1723
1724 mio_lparen ();
1725
1726 attr->flavor = MIO_NAME (sym_flavor) (attr->flavor, flavors);
1727 attr->intent = MIO_NAME (sym_intent) (attr->intent, intents);
1728 attr->proc = MIO_NAME (procedure_type) (attr->proc, procedures);
1729 attr->if_source = MIO_NAME (ifsrc) (attr->if_source, ifsrc_types);
1730 attr->save = MIO_NAME (save_state) (attr->save, save_status);
1731
1732 if (iomode == IO_OUTPUT)
1733 {
1734 if (attr->allocatable)
1735 MIO_NAME (ab_attribute) (AB_ALLOCATABLE, attr_bits);
1736 if (attr->dimension)
1737 MIO_NAME (ab_attribute) (AB_DIMENSION, attr_bits);
1738 if (attr->external)
1739 MIO_NAME (ab_attribute) (AB_EXTERNAL, attr_bits);
1740 if (attr->intrinsic)
1741 MIO_NAME (ab_attribute) (AB_INTRINSIC, attr_bits);
1742 if (attr->optional)
1743 MIO_NAME (ab_attribute) (AB_OPTIONAL, attr_bits);
1744 if (attr->pointer)
1745 MIO_NAME (ab_attribute) (AB_POINTER, attr_bits);
1746 if (attr->is_protected)
1747 MIO_NAME (ab_attribute) (AB_PROTECTED, attr_bits);
1748 if (attr->value)
1749 MIO_NAME (ab_attribute) (AB_VALUE, attr_bits);
1750 if (attr->volatile_)
1751 MIO_NAME (ab_attribute) (AB_VOLATILE, attr_bits);
1752 if (attr->target)
1753 MIO_NAME (ab_attribute) (AB_TARGET, attr_bits);
1754 if (attr->threadprivate)
1755 MIO_NAME (ab_attribute) (AB_THREADPRIVATE, attr_bits);
1756 if (attr->dummy)
1757 MIO_NAME (ab_attribute) (AB_DUMMY, attr_bits);
1758 if (attr->result)
1759 MIO_NAME (ab_attribute) (AB_RESULT, attr_bits);
1760 /* We deliberately don't preserve the "entry" flag. */
1761
1762 if (attr->data)
1763 MIO_NAME (ab_attribute) (AB_DATA, attr_bits);
1764 if (attr->in_namelist)
1765 MIO_NAME (ab_attribute) (AB_IN_NAMELIST, attr_bits);
1766 if (attr->in_common)
1767 MIO_NAME (ab_attribute) (AB_IN_COMMON, attr_bits);
1768
1769 if (attr->function)
1770 MIO_NAME (ab_attribute) (AB_FUNCTION, attr_bits);
1771 if (attr->subroutine)
1772 MIO_NAME (ab_attribute) (AB_SUBROUTINE, attr_bits);
1773 if (attr->generic)
1774 MIO_NAME (ab_attribute) (AB_GENERIC, attr_bits);
1775 if (attr->abstract)
1776 MIO_NAME (ab_attribute) (AB_ABSTRACT, attr_bits);
1777
1778 if (attr->sequence)
1779 MIO_NAME (ab_attribute) (AB_SEQUENCE, attr_bits);
1780 if (attr->elemental)
1781 MIO_NAME (ab_attribute) (AB_ELEMENTAL, attr_bits);
1782 if (attr->pure)
1783 MIO_NAME (ab_attribute) (AB_PURE, attr_bits);
1784 if (attr->recursive)
1785 MIO_NAME (ab_attribute) (AB_RECURSIVE, attr_bits);
1786 if (attr->always_explicit)
1787 MIO_NAME (ab_attribute) (AB_ALWAYS_EXPLICIT, attr_bits);
1788 if (attr->cray_pointer)
1789 MIO_NAME (ab_attribute) (AB_CRAY_POINTER, attr_bits);
1790 if (attr->cray_pointee)
1791 MIO_NAME (ab_attribute) (AB_CRAY_POINTEE, attr_bits);
1792 if (attr->is_bind_c)
1793 MIO_NAME(ab_attribute) (AB_IS_BIND_C, attr_bits);
1794 if (attr->is_c_interop)
1795 MIO_NAME(ab_attribute) (AB_IS_C_INTEROP, attr_bits);
1796 if (attr->is_iso_c)
1797 MIO_NAME(ab_attribute) (AB_IS_ISO_C, attr_bits);
1798 if (attr->alloc_comp)
1799 MIO_NAME (ab_attribute) (AB_ALLOC_COMP, attr_bits);
1800 if (attr->pointer_comp)
1801 MIO_NAME (ab_attribute) (AB_POINTER_COMP, attr_bits);
1802 if (attr->private_comp)
1803 MIO_NAME (ab_attribute) (AB_PRIVATE_COMP, attr_bits);
1804 if (attr->zero_comp)
1805 MIO_NAME (ab_attribute) (AB_ZERO_COMP, attr_bits);
1806 if (attr->extension)
1807 MIO_NAME (ab_attribute) (AB_EXTENSION, attr_bits);
1808
1809 mio_rparen ();
1810
1811 }
1812 else
1813 {
1814 for (;;)
1815 {
1816 t = parse_atom ();
1817 if (t == ATOM_RPAREN)
1818 break;
1819 if (t != ATOM_NAME)
1820 bad_module ("Expected attribute bit name");
1821
1822 switch ((ab_attribute) find_enum (attr_bits))
1823 {
1824 case AB_ALLOCATABLE:
1825 attr->allocatable = 1;
1826 break;
1827 case AB_DIMENSION:
1828 attr->dimension = 1;
1829 break;
1830 case AB_EXTERNAL:
1831 attr->external = 1;
1832 break;
1833 case AB_INTRINSIC:
1834 attr->intrinsic = 1;
1835 break;
1836 case AB_OPTIONAL:
1837 attr->optional = 1;
1838 break;
1839 case AB_POINTER:
1840 attr->pointer = 1;
1841 break;
1842 case AB_PROTECTED:
1843 attr->is_protected = 1;
1844 break;
1845 case AB_VALUE:
1846 attr->value = 1;
1847 break;
1848 case AB_VOLATILE:
1849 attr->volatile_ = 1;
1850 break;
1851 case AB_TARGET:
1852 attr->target = 1;
1853 break;
1854 case AB_THREADPRIVATE:
1855 attr->threadprivate = 1;
1856 break;
1857 case AB_DUMMY:
1858 attr->dummy = 1;
1859 break;
1860 case AB_RESULT:
1861 attr->result = 1;
1862 break;
1863 case AB_DATA:
1864 attr->data = 1;
1865 break;
1866 case AB_IN_NAMELIST:
1867 attr->in_namelist = 1;
1868 break;
1869 case AB_IN_COMMON:
1870 attr->in_common = 1;
1871 break;
1872 case AB_FUNCTION:
1873 attr->function = 1;
1874 break;
1875 case AB_SUBROUTINE:
1876 attr->subroutine = 1;
1877 break;
1878 case AB_GENERIC:
1879 attr->generic = 1;
1880 break;
1881 case AB_ABSTRACT:
1882 attr->abstract = 1;
1883 break;
1884 case AB_SEQUENCE:
1885 attr->sequence = 1;
1886 break;
1887 case AB_ELEMENTAL:
1888 attr->elemental = 1;
1889 break;
1890 case AB_PURE:
1891 attr->pure = 1;
1892 break;
1893 case AB_RECURSIVE:
1894 attr->recursive = 1;
1895 break;
1896 case AB_ALWAYS_EXPLICIT:
1897 attr->always_explicit = 1;
1898 break;
1899 case AB_CRAY_POINTER:
1900 attr->cray_pointer = 1;
1901 break;
1902 case AB_CRAY_POINTEE:
1903 attr->cray_pointee = 1;
1904 break;
1905 case AB_IS_BIND_C:
1906 attr->is_bind_c = 1;
1907 break;
1908 case AB_IS_C_INTEROP:
1909 attr->is_c_interop = 1;
1910 break;
1911 case AB_IS_ISO_C:
1912 attr->is_iso_c = 1;
1913 break;
1914 case AB_ALLOC_COMP:
1915 attr->alloc_comp = 1;
1916 break;
1917 case AB_POINTER_COMP:
1918 attr->pointer_comp = 1;
1919 break;
1920 case AB_PRIVATE_COMP:
1921 attr->private_comp = 1;
1922 break;
1923 case AB_ZERO_COMP:
1924 attr->zero_comp = 1;
1925 break;
1926 case AB_EXTENSION:
1927 attr->extension = 1;
1928 break;
1929 }
1930 }
1931 }
1932 }
1933
1934
1935 static const mstring bt_types[] = {
1936 minit ("INTEGER", BT_INTEGER),
1937 minit ("REAL", BT_REAL),
1938 minit ("COMPLEX", BT_COMPLEX),
1939 minit ("LOGICAL", BT_LOGICAL),
1940 minit ("CHARACTER", BT_CHARACTER),
1941 minit ("DERIVED", BT_DERIVED),
1942 minit ("PROCEDURE", BT_PROCEDURE),
1943 minit ("UNKNOWN", BT_UNKNOWN),
1944 minit ("VOID", BT_VOID),
1945 minit (NULL, -1)
1946 };
1947
1948
1949 static void
1950 mio_charlen (gfc_charlen **clp)
1951 {
1952 gfc_charlen *cl;
1953
1954 mio_lparen ();
1955
1956 if (iomode == IO_OUTPUT)
1957 {
1958 cl = *clp;
1959 if (cl != NULL)
1960 mio_expr (&cl->length);
1961 }
1962 else
1963 {
1964 if (peek_atom () != ATOM_RPAREN)
1965 {
1966 cl = gfc_get_charlen ();
1967 mio_expr (&cl->length);
1968
1969 *clp = cl;
1970
1971 cl->next = gfc_current_ns->cl_list;
1972 gfc_current_ns->cl_list = cl;
1973 }
1974 }
1975
1976 mio_rparen ();
1977 }
1978
1979
1980 /* See if a name is a generated name. */
1981
1982 static int
1983 check_unique_name (const char *name)
1984 {
1985 return *name == '@';
1986 }
1987
1988
1989 static void
1990 mio_typespec (gfc_typespec *ts)
1991 {
1992 mio_lparen ();
1993
1994 ts->type = MIO_NAME (bt) (ts->type, bt_types);
1995
1996 if (ts->type != BT_DERIVED)
1997 mio_integer (&ts->kind);
1998 else
1999 mio_symbol_ref (&ts->derived);
2000
2001 /* Add info for C interop and is_iso_c. */
2002 mio_integer (&ts->is_c_interop);
2003 mio_integer (&ts->is_iso_c);
2004
2005 /* If the typespec is for an identifier either from iso_c_binding, or
2006 a constant that was initialized to an identifier from it, use the
2007 f90_type. Otherwise, use the ts->type, since it shouldn't matter. */
2008 if (ts->is_iso_c)
2009 ts->f90_type = MIO_NAME (bt) (ts->f90_type, bt_types);
2010 else
2011 ts->f90_type = MIO_NAME (bt) (ts->type, bt_types);
2012
2013 if (ts->type != BT_CHARACTER)
2014 {
2015 /* ts->cl is only valid for BT_CHARACTER. */
2016 mio_lparen ();
2017 mio_rparen ();
2018 }
2019 else
2020 mio_charlen (&ts->cl);
2021
2022 mio_rparen ();
2023 }
2024
2025
2026 static const mstring array_spec_types[] = {
2027 minit ("EXPLICIT", AS_EXPLICIT),
2028 minit ("ASSUMED_SHAPE", AS_ASSUMED_SHAPE),
2029 minit ("DEFERRED", AS_DEFERRED),
2030 minit ("ASSUMED_SIZE", AS_ASSUMED_SIZE),
2031 minit (NULL, -1)
2032 };
2033
2034
2035 static void
2036 mio_array_spec (gfc_array_spec **asp)
2037 {
2038 gfc_array_spec *as;
2039 int i;
2040
2041 mio_lparen ();
2042
2043 if (iomode == IO_OUTPUT)
2044 {
2045 if (*asp == NULL)
2046 goto done;
2047 as = *asp;
2048 }
2049 else
2050 {
2051 if (peek_atom () == ATOM_RPAREN)
2052 {
2053 *asp = NULL;
2054 goto done;
2055 }
2056
2057 *asp = as = gfc_get_array_spec ();
2058 }
2059
2060 mio_integer (&as->rank);
2061 as->type = MIO_NAME (array_type) (as->type, array_spec_types);
2062
2063 for (i = 0; i < as->rank; i++)
2064 {
2065 mio_expr (&as->lower[i]);
2066 mio_expr (&as->upper[i]);
2067 }
2068
2069 done:
2070 mio_rparen ();
2071 }
2072
2073
2074 /* Given a pointer to an array reference structure (which lives in a
2075 gfc_ref structure), find the corresponding array specification
2076 structure. Storing the pointer in the ref structure doesn't quite
2077 work when loading from a module. Generating code for an array
2078 reference also needs more information than just the array spec. */
2079
2080 static const mstring array_ref_types[] = {
2081 minit ("FULL", AR_FULL),
2082 minit ("ELEMENT", AR_ELEMENT),
2083 minit ("SECTION", AR_SECTION),
2084 minit (NULL, -1)
2085 };
2086
2087
2088 static void
2089 mio_array_ref (gfc_array_ref *ar)
2090 {
2091 int i;
2092
2093 mio_lparen ();
2094 ar->type = MIO_NAME (ar_type) (ar->type, array_ref_types);
2095 mio_integer (&ar->dimen);
2096
2097 switch (ar->type)
2098 {
2099 case AR_FULL:
2100 break;
2101
2102 case AR_ELEMENT:
2103 for (i = 0; i < ar->dimen; i++)
2104 mio_expr (&ar->start[i]);
2105
2106 break;
2107
2108 case AR_SECTION:
2109 for (i = 0; i < ar->dimen; i++)
2110 {
2111 mio_expr (&ar->start[i]);
2112 mio_expr (&ar->end[i]);
2113 mio_expr (&ar->stride[i]);
2114 }
2115
2116 break;
2117
2118 case AR_UNKNOWN:
2119 gfc_internal_error ("mio_array_ref(): Unknown array ref");
2120 }
2121
2122 /* Unfortunately, ar->dimen_type is an anonymous enumerated type so
2123 we can't call mio_integer directly. Instead loop over each element
2124 and cast it to/from an integer. */
2125 if (iomode == IO_OUTPUT)
2126 {
2127 for (i = 0; i < ar->dimen; i++)
2128 {
2129 int tmp = (int)ar->dimen_type[i];
2130 write_atom (ATOM_INTEGER, &tmp);
2131 }
2132 }
2133 else
2134 {
2135 for (i = 0; i < ar->dimen; i++)
2136 {
2137 require_atom (ATOM_INTEGER);
2138 ar->dimen_type[i] = atom_int;
2139 }
2140 }
2141
2142 if (iomode == IO_INPUT)
2143 {
2144 ar->where = gfc_current_locus;
2145
2146 for (i = 0; i < ar->dimen; i++)
2147 ar->c_where[i] = gfc_current_locus;
2148 }
2149
2150 mio_rparen ();
2151 }
2152
2153
2154 /* Saves or restores a pointer. The pointer is converted back and
2155 forth from an integer. We return the pointer_info pointer so that
2156 the caller can take additional action based on the pointer type. */
2157
2158 static pointer_info *
2159 mio_pointer_ref (void *gp)
2160 {
2161 pointer_info *p;
2162
2163 if (iomode == IO_OUTPUT)
2164 {
2165 p = get_pointer (*((char **) gp));
2166 write_atom (ATOM_INTEGER, &p->integer);
2167 }
2168 else
2169 {
2170 require_atom (ATOM_INTEGER);
2171 p = add_fixup (atom_int, gp);
2172 }
2173
2174 return p;
2175 }
2176
2177
2178 /* Save and load references to components that occur within
2179 expressions. We have to describe these references by a number and
2180 by name. The number is necessary for forward references during
2181 reading, and the name is necessary if the symbol already exists in
2182 the namespace and is not loaded again. */
2183
2184 static void
2185 mio_component_ref (gfc_component **cp, gfc_symbol *sym)
2186 {
2187 char name[GFC_MAX_SYMBOL_LEN + 1];
2188 gfc_component *q;
2189 pointer_info *p;
2190
2191 p = mio_pointer_ref (cp);
2192 if (p->type == P_UNKNOWN)
2193 p->type = P_COMPONENT;
2194
2195 if (iomode == IO_OUTPUT)
2196 mio_pool_string (&(*cp)->name);
2197 else
2198 {
2199 mio_internal_string (name);
2200
2201 /* It can happen that a component reference can be read before the
2202 associated derived type symbol has been loaded. Return now and
2203 wait for a later iteration of load_needed. */
2204 if (sym == NULL)
2205 return;
2206
2207 if (sym->components != NULL && p->u.pointer == NULL)
2208 {
2209 /* Symbol already loaded, so search by name. */
2210 for (q = sym->components; q; q = q->next)
2211 if (strcmp (q->name, name) == 0)
2212 break;
2213
2214 if (q == NULL)
2215 gfc_internal_error ("mio_component_ref(): Component not found");
2216
2217 associate_integer_pointer (p, q);
2218 }
2219
2220 /* Make sure this symbol will eventually be loaded. */
2221 p = find_pointer2 (sym);
2222 if (p->u.rsym.state == UNUSED)
2223 p->u.rsym.state = NEEDED;
2224 }
2225 }
2226
2227
2228 static void
2229 mio_component (gfc_component *c)
2230 {
2231 pointer_info *p;
2232 int n;
2233
2234 mio_lparen ();
2235
2236 if (iomode == IO_OUTPUT)
2237 {
2238 p = get_pointer (c);
2239 mio_integer (&p->integer);
2240 }
2241 else
2242 {
2243 mio_integer (&n);
2244 p = get_integer (n);
2245 associate_integer_pointer (p, c);
2246 }
2247
2248 if (p->type == P_UNKNOWN)
2249 p->type = P_COMPONENT;
2250
2251 mio_pool_string (&c->name);
2252 mio_typespec (&c->ts);
2253 mio_array_spec (&c->as);
2254
2255 mio_integer (&c->dimension);
2256 mio_integer (&c->pointer);
2257 mio_integer (&c->allocatable);
2258 c->access = MIO_NAME (gfc_access) (c->access, access_types);
2259
2260 mio_expr (&c->initializer);
2261 mio_rparen ();
2262 }
2263
2264
2265 static void
2266 mio_component_list (gfc_component **cp)
2267 {
2268 gfc_component *c, *tail;
2269
2270 mio_lparen ();
2271
2272 if (iomode == IO_OUTPUT)
2273 {
2274 for (c = *cp; c; c = c->next)
2275 mio_component (c);
2276 }
2277 else
2278 {
2279 *cp = NULL;
2280 tail = NULL;
2281
2282 for (;;)
2283 {
2284 if (peek_atom () == ATOM_RPAREN)
2285 break;
2286
2287 c = gfc_get_component ();
2288 mio_component (c);
2289
2290 if (tail == NULL)
2291 *cp = c;
2292 else
2293 tail->next = c;
2294
2295 tail = c;
2296 }
2297 }
2298
2299 mio_rparen ();
2300 }
2301
2302
2303 static void
2304 mio_actual_arg (gfc_actual_arglist *a)
2305 {
2306 mio_lparen ();
2307 mio_pool_string (&a->name);
2308 mio_expr (&a->expr);
2309 mio_rparen ();
2310 }
2311
2312
2313 static void
2314 mio_actual_arglist (gfc_actual_arglist **ap)
2315 {
2316 gfc_actual_arglist *a, *tail;
2317
2318 mio_lparen ();
2319
2320 if (iomode == IO_OUTPUT)
2321 {
2322 for (a = *ap; a; a = a->next)
2323 mio_actual_arg (a);
2324
2325 }
2326 else
2327 {
2328 tail = NULL;
2329
2330 for (;;)
2331 {
2332 if (peek_atom () != ATOM_LPAREN)
2333 break;
2334
2335 a = gfc_get_actual_arglist ();
2336
2337 if (tail == NULL)
2338 *ap = a;
2339 else
2340 tail->next = a;
2341
2342 tail = a;
2343 mio_actual_arg (a);
2344 }
2345 }
2346
2347 mio_rparen ();
2348 }
2349
2350
2351 /* Read and write formal argument lists. */
2352
2353 static void
2354 mio_formal_arglist (gfc_symbol *sym)
2355 {
2356 gfc_formal_arglist *f, *tail;
2357
2358 mio_lparen ();
2359
2360 if (iomode == IO_OUTPUT)
2361 {
2362 for (f = sym->formal; f; f = f->next)
2363 mio_symbol_ref (&f->sym);
2364 }
2365 else
2366 {
2367 sym->formal = tail = NULL;
2368
2369 while (peek_atom () != ATOM_RPAREN)
2370 {
2371 f = gfc_get_formal_arglist ();
2372 mio_symbol_ref (&f->sym);
2373
2374 if (sym->formal == NULL)
2375 sym->formal = f;
2376 else
2377 tail->next = f;
2378
2379 tail = f;
2380 }
2381 }
2382
2383 mio_rparen ();
2384 }
2385
2386
2387 /* Save or restore a reference to a symbol node. */
2388
2389 pointer_info *
2390 mio_symbol_ref (gfc_symbol **symp)
2391 {
2392 pointer_info *p;
2393
2394 p = mio_pointer_ref (symp);
2395 if (p->type == P_UNKNOWN)
2396 p->type = P_SYMBOL;
2397
2398 if (iomode == IO_OUTPUT)
2399 {
2400 if (p->u.wsym.state == UNREFERENCED)
2401 p->u.wsym.state = NEEDS_WRITE;
2402 }
2403 else
2404 {
2405 if (p->u.rsym.state == UNUSED)
2406 p->u.rsym.state = NEEDED;
2407 }
2408 return p;
2409 }
2410
2411
2412 /* Save or restore a reference to a symtree node. */
2413
2414 static void
2415 mio_symtree_ref (gfc_symtree **stp)
2416 {
2417 pointer_info *p;
2418 fixup_t *f;
2419
2420 if (iomode == IO_OUTPUT)
2421 mio_symbol_ref (&(*stp)->n.sym);
2422 else
2423 {
2424 require_atom (ATOM_INTEGER);
2425 p = get_integer (atom_int);
2426
2427 /* An unused equivalence member; make a symbol and a symtree
2428 for it. */
2429 if (in_load_equiv && p->u.rsym.symtree == NULL)
2430 {
2431 /* Since this is not used, it must have a unique name. */
2432 p->u.rsym.symtree = gfc_get_unique_symtree (gfc_current_ns);
2433
2434 /* Make the symbol. */
2435 if (p->u.rsym.sym == NULL)
2436 {
2437 p->u.rsym.sym = gfc_new_symbol (p->u.rsym.true_name,
2438 gfc_current_ns);
2439 p->u.rsym.sym->module = gfc_get_string (p->u.rsym.module);
2440 }
2441
2442 p->u.rsym.symtree->n.sym = p->u.rsym.sym;
2443 p->u.rsym.symtree->n.sym->refs++;
2444 p->u.rsym.referenced = 1;
2445
2446 /* If the symbol is PRIVATE and in COMMON, load_commons will
2447 generate a fixup symbol, which must be associated. */
2448 if (p->fixup)
2449 resolve_fixups (p->fixup, p->u.rsym.sym);
2450 p->fixup = NULL;
2451 }
2452
2453 if (p->type == P_UNKNOWN)
2454 p->type = P_SYMBOL;
2455
2456 if (p->u.rsym.state == UNUSED)
2457 p->u.rsym.state = NEEDED;
2458
2459 if (p->u.rsym.symtree != NULL)
2460 {
2461 *stp = p->u.rsym.symtree;
2462 }
2463 else
2464 {
2465 f = XCNEW (fixup_t);
2466
2467 f->next = p->u.rsym.stfixup;
2468 p->u.rsym.stfixup = f;
2469
2470 f->pointer = (void **) stp;
2471 }
2472 }
2473 }
2474
2475
2476 static void
2477 mio_iterator (gfc_iterator **ip)
2478 {
2479 gfc_iterator *iter;
2480
2481 mio_lparen ();
2482
2483 if (iomode == IO_OUTPUT)
2484 {
2485 if (*ip == NULL)
2486 goto done;
2487 }
2488 else
2489 {
2490 if (peek_atom () == ATOM_RPAREN)
2491 {
2492 *ip = NULL;
2493 goto done;
2494 }
2495
2496 *ip = gfc_get_iterator ();
2497 }
2498
2499 iter = *ip;
2500
2501 mio_expr (&iter->var);
2502 mio_expr (&iter->start);
2503 mio_expr (&iter->end);
2504 mio_expr (&iter->step);
2505
2506 done:
2507 mio_rparen ();
2508 }
2509
2510
2511 static void
2512 mio_constructor (gfc_constructor **cp)
2513 {
2514 gfc_constructor *c, *tail;
2515
2516 mio_lparen ();
2517
2518 if (iomode == IO_OUTPUT)
2519 {
2520 for (c = *cp; c; c = c->next)
2521 {
2522 mio_lparen ();
2523 mio_expr (&c->expr);
2524 mio_iterator (&c->iterator);
2525 mio_rparen ();
2526 }
2527 }
2528 else
2529 {
2530 *cp = NULL;
2531 tail = NULL;
2532
2533 while (peek_atom () != ATOM_RPAREN)
2534 {
2535 c = gfc_get_constructor ();
2536
2537 if (tail == NULL)
2538 *cp = c;
2539 else
2540 tail->next = c;
2541
2542 tail = c;
2543
2544 mio_lparen ();
2545 mio_expr (&c->expr);
2546 mio_iterator (&c->iterator);
2547 mio_rparen ();
2548 }
2549 }
2550
2551 mio_rparen ();
2552 }
2553
2554
2555 static const mstring ref_types[] = {
2556 minit ("ARRAY", REF_ARRAY),
2557 minit ("COMPONENT", REF_COMPONENT),
2558 minit ("SUBSTRING", REF_SUBSTRING),
2559 minit (NULL, -1)
2560 };
2561
2562
2563 static void
2564 mio_ref (gfc_ref **rp)
2565 {
2566 gfc_ref *r;
2567
2568 mio_lparen ();
2569
2570 r = *rp;
2571 r->type = MIO_NAME (ref_type) (r->type, ref_types);
2572
2573 switch (r->type)
2574 {
2575 case REF_ARRAY:
2576 mio_array_ref (&r->u.ar);
2577 break;
2578
2579 case REF_COMPONENT:
2580 mio_symbol_ref (&r->u.c.sym);
2581 mio_component_ref (&r->u.c.component, r->u.c.sym);
2582 break;
2583
2584 case REF_SUBSTRING:
2585 mio_expr (&r->u.ss.start);
2586 mio_expr (&r->u.ss.end);
2587 mio_charlen (&r->u.ss.length);
2588 break;
2589 }
2590
2591 mio_rparen ();
2592 }
2593
2594
2595 static void
2596 mio_ref_list (gfc_ref **rp)
2597 {
2598 gfc_ref *ref, *head, *tail;
2599
2600 mio_lparen ();
2601
2602 if (iomode == IO_OUTPUT)
2603 {
2604 for (ref = *rp; ref; ref = ref->next)
2605 mio_ref (&ref);
2606 }
2607 else
2608 {
2609 head = tail = NULL;
2610
2611 while (peek_atom () != ATOM_RPAREN)
2612 {
2613 if (head == NULL)
2614 head = tail = gfc_get_ref ();
2615 else
2616 {
2617 tail->next = gfc_get_ref ();
2618 tail = tail->next;
2619 }
2620
2621 mio_ref (&tail);
2622 }
2623
2624 *rp = head;
2625 }
2626
2627 mio_rparen ();
2628 }
2629
2630
2631 /* Read and write an integer value. */
2632
2633 static void
2634 mio_gmp_integer (mpz_t *integer)
2635 {
2636 char *p;
2637
2638 if (iomode == IO_INPUT)
2639 {
2640 if (parse_atom () != ATOM_STRING)
2641 bad_module ("Expected integer string");
2642
2643 mpz_init (*integer);
2644 if (mpz_set_str (*integer, atom_string, 10))
2645 bad_module ("Error converting integer");
2646
2647 gfc_free (atom_string);
2648 }
2649 else
2650 {
2651 p = mpz_get_str (NULL, 10, *integer);
2652 write_atom (ATOM_STRING, p);
2653 gfc_free (p);
2654 }
2655 }
2656
2657
2658 static void
2659 mio_gmp_real (mpfr_t *real)
2660 {
2661 mp_exp_t exponent;
2662 char *p;
2663
2664 if (iomode == IO_INPUT)
2665 {
2666 if (parse_atom () != ATOM_STRING)
2667 bad_module ("Expected real string");
2668
2669 mpfr_init (*real);
2670 mpfr_set_str (*real, atom_string, 16, GFC_RND_MODE);
2671 gfc_free (atom_string);
2672 }
2673 else
2674 {
2675 p = mpfr_get_str (NULL, &exponent, 16, 0, *real, GFC_RND_MODE);
2676
2677 if (mpfr_nan_p (*real) || mpfr_inf_p (*real))
2678 {
2679 write_atom (ATOM_STRING, p);
2680 gfc_free (p);
2681 return;
2682 }
2683
2684 atom_string = XCNEWVEC (char, strlen (p) + 20);
2685
2686 sprintf (atom_string, "0.%s@%ld", p, exponent);
2687
2688 /* Fix negative numbers. */
2689 if (atom_string[2] == '-')
2690 {
2691 atom_string[0] = '-';
2692 atom_string[1] = '0';
2693 atom_string[2] = '.';
2694 }
2695
2696 write_atom (ATOM_STRING, atom_string);
2697
2698 gfc_free (atom_string);
2699 gfc_free (p);
2700 }
2701 }
2702
2703
2704 /* Save and restore the shape of an array constructor. */
2705
2706 static void
2707 mio_shape (mpz_t **pshape, int rank)
2708 {
2709 mpz_t *shape;
2710 atom_type t;
2711 int n;
2712
2713 /* A NULL shape is represented by (). */
2714 mio_lparen ();
2715
2716 if (iomode == IO_OUTPUT)
2717 {
2718 shape = *pshape;
2719 if (!shape)
2720 {
2721 mio_rparen ();
2722 return;
2723 }
2724 }
2725 else
2726 {
2727 t = peek_atom ();
2728 if (t == ATOM_RPAREN)
2729 {
2730 *pshape = NULL;
2731 mio_rparen ();
2732 return;
2733 }
2734
2735 shape = gfc_get_shape (rank);
2736 *pshape = shape;
2737 }
2738
2739 for (n = 0; n < rank; n++)
2740 mio_gmp_integer (&shape[n]);
2741
2742 mio_rparen ();
2743 }
2744
2745
2746 static const mstring expr_types[] = {
2747 minit ("OP", EXPR_OP),
2748 minit ("FUNCTION", EXPR_FUNCTION),
2749 minit ("CONSTANT", EXPR_CONSTANT),
2750 minit ("VARIABLE", EXPR_VARIABLE),
2751 minit ("SUBSTRING", EXPR_SUBSTRING),
2752 minit ("STRUCTURE", EXPR_STRUCTURE),
2753 minit ("ARRAY", EXPR_ARRAY),
2754 minit ("NULL", EXPR_NULL),
2755 minit (NULL, -1)
2756 };
2757
2758 /* INTRINSIC_ASSIGN is missing because it is used as an index for
2759 generic operators, not in expressions. INTRINSIC_USER is also
2760 replaced by the correct function name by the time we see it. */
2761
2762 static const mstring intrinsics[] =
2763 {
2764 minit ("UPLUS", INTRINSIC_UPLUS),
2765 minit ("UMINUS", INTRINSIC_UMINUS),
2766 minit ("PLUS", INTRINSIC_PLUS),
2767 minit ("MINUS", INTRINSIC_MINUS),
2768 minit ("TIMES", INTRINSIC_TIMES),
2769 minit ("DIVIDE", INTRINSIC_DIVIDE),
2770 minit ("POWER", INTRINSIC_POWER),
2771 minit ("CONCAT", INTRINSIC_CONCAT),
2772 minit ("AND", INTRINSIC_AND),
2773 minit ("OR", INTRINSIC_OR),
2774 minit ("EQV", INTRINSIC_EQV),
2775 minit ("NEQV", INTRINSIC_NEQV),
2776 minit ("EQ_SIGN", INTRINSIC_EQ),
2777 minit ("EQ", INTRINSIC_EQ_OS),
2778 minit ("NE_SIGN", INTRINSIC_NE),
2779 minit ("NE", INTRINSIC_NE_OS),
2780 minit ("GT_SIGN", INTRINSIC_GT),
2781 minit ("GT", INTRINSIC_GT_OS),
2782 minit ("GE_SIGN", INTRINSIC_GE),
2783 minit ("GE", INTRINSIC_GE_OS),
2784 minit ("LT_SIGN", INTRINSIC_LT),
2785 minit ("LT", INTRINSIC_LT_OS),
2786 minit ("LE_SIGN", INTRINSIC_LE),
2787 minit ("LE", INTRINSIC_LE_OS),
2788 minit ("NOT", INTRINSIC_NOT),
2789 minit ("PARENTHESES", INTRINSIC_PARENTHESES),
2790 minit (NULL, -1)
2791 };
2792
2793
2794 /* Remedy a couple of situations where the gfc_expr's can be defective. */
2795
2796 static void
2797 fix_mio_expr (gfc_expr *e)
2798 {
2799 gfc_symtree *ns_st = NULL;
2800 const char *fname;
2801
2802 if (iomode != IO_OUTPUT)
2803 return;
2804
2805 if (e->symtree)
2806 {
2807 /* If this is a symtree for a symbol that came from a contained module
2808 namespace, it has a unique name and we should look in the current
2809 namespace to see if the required, non-contained symbol is available
2810 yet. If so, the latter should be written. */
2811 if (e->symtree->n.sym && check_unique_name (e->symtree->name))
2812 ns_st = gfc_find_symtree (gfc_current_ns->sym_root,
2813 e->symtree->n.sym->name);
2814
2815 /* On the other hand, if the existing symbol is the module name or the
2816 new symbol is a dummy argument, do not do the promotion. */
2817 if (ns_st && ns_st->n.sym
2818 && ns_st->n.sym->attr.flavor != FL_MODULE
2819 && !e->symtree->n.sym->attr.dummy)
2820 e->symtree = ns_st;
2821 }
2822 else if (e->expr_type == EXPR_FUNCTION && e->value.function.name)
2823 {
2824 /* In some circumstances, a function used in an initialization
2825 expression, in one use associated module, can fail to be
2826 coupled to its symtree when used in a specification
2827 expression in another module. */
2828 fname = e->value.function.esym ? e->value.function.esym->name
2829 : e->value.function.isym->name;
2830 e->symtree = gfc_find_symtree (gfc_current_ns->sym_root, fname);
2831 }
2832 }
2833
2834
2835 /* Read and write expressions. The form "()" is allowed to indicate a
2836 NULL expression. */
2837
2838 static void
2839 mio_expr (gfc_expr **ep)
2840 {
2841 gfc_expr *e;
2842 atom_type t;
2843 int flag;
2844
2845 mio_lparen ();
2846
2847 if (iomode == IO_OUTPUT)
2848 {
2849 if (*ep == NULL)
2850 {
2851 mio_rparen ();
2852 return;
2853 }
2854
2855 e = *ep;
2856 MIO_NAME (expr_t) (e->expr_type, expr_types);
2857 }
2858 else
2859 {
2860 t = parse_atom ();
2861 if (t == ATOM_RPAREN)
2862 {
2863 *ep = NULL;
2864 return;
2865 }
2866
2867 if (t != ATOM_NAME)
2868 bad_module ("Expected expression type");
2869
2870 e = *ep = gfc_get_expr ();
2871 e->where = gfc_current_locus;
2872 e->expr_type = (expr_t) find_enum (expr_types);
2873 }
2874
2875 mio_typespec (&e->ts);
2876 mio_integer (&e->rank);
2877
2878 fix_mio_expr (e);
2879
2880 switch (e->expr_type)
2881 {
2882 case EXPR_OP:
2883 e->value.op.op
2884 = MIO_NAME (gfc_intrinsic_op) (e->value.op.op, intrinsics);
2885
2886 switch (e->value.op.op)
2887 {
2888 case INTRINSIC_UPLUS:
2889 case INTRINSIC_UMINUS:
2890 case INTRINSIC_NOT:
2891 case INTRINSIC_PARENTHESES:
2892 mio_expr (&e->value.op.op1);
2893 break;
2894
2895 case INTRINSIC_PLUS:
2896 case INTRINSIC_MINUS:
2897 case INTRINSIC_TIMES:
2898 case INTRINSIC_DIVIDE:
2899 case INTRINSIC_POWER:
2900 case INTRINSIC_CONCAT:
2901 case INTRINSIC_AND:
2902 case INTRINSIC_OR:
2903 case INTRINSIC_EQV:
2904 case INTRINSIC_NEQV:
2905 case INTRINSIC_EQ:
2906 case INTRINSIC_EQ_OS:
2907 case INTRINSIC_NE:
2908 case INTRINSIC_NE_OS:
2909 case INTRINSIC_GT:
2910 case INTRINSIC_GT_OS:
2911 case INTRINSIC_GE:
2912 case INTRINSIC_GE_OS:
2913 case INTRINSIC_LT:
2914 case INTRINSIC_LT_OS:
2915 case INTRINSIC_LE:
2916 case INTRINSIC_LE_OS:
2917 mio_expr (&e->value.op.op1);
2918 mio_expr (&e->value.op.op2);
2919 break;
2920
2921 default:
2922 bad_module ("Bad operator");
2923 }
2924
2925 break;
2926
2927 case EXPR_FUNCTION:
2928 mio_symtree_ref (&e->symtree);
2929 mio_actual_arglist (&e->value.function.actual);
2930
2931 if (iomode == IO_OUTPUT)
2932 {
2933 e->value.function.name
2934 = mio_allocated_string (e->value.function.name);
2935 flag = e->value.function.esym != NULL;
2936 mio_integer (&flag);
2937 if (flag)
2938 mio_symbol_ref (&e->value.function.esym);
2939 else
2940 write_atom (ATOM_STRING, e->value.function.isym->name);
2941 }
2942 else
2943 {
2944 require_atom (ATOM_STRING);
2945 e->value.function.name = gfc_get_string (atom_string);
2946 gfc_free (atom_string);
2947
2948 mio_integer (&flag);
2949 if (flag)
2950 mio_symbol_ref (&e->value.function.esym);
2951 else
2952 {
2953 require_atom (ATOM_STRING);
2954 e->value.function.isym = gfc_find_function (atom_string);
2955 gfc_free (atom_string);
2956 }
2957 }
2958
2959 break;
2960
2961 case EXPR_VARIABLE:
2962 mio_symtree_ref (&e->symtree);
2963 mio_ref_list (&e->ref);
2964 break;
2965
2966 case EXPR_SUBSTRING:
2967 e->value.character.string
2968 = CONST_CAST (gfc_char_t *,
2969 mio_allocated_wide_string (e->value.character.string,
2970 e->value.character.length));
2971 mio_ref_list (&e->ref);
2972 break;
2973
2974 case EXPR_STRUCTURE:
2975 case EXPR_ARRAY:
2976 mio_constructor (&e->value.constructor);
2977 mio_shape (&e->shape, e->rank);
2978 break;
2979
2980 case EXPR_CONSTANT:
2981 switch (e->ts.type)
2982 {
2983 case BT_INTEGER:
2984 mio_gmp_integer (&e->value.integer);
2985 break;
2986
2987 case BT_REAL:
2988 gfc_set_model_kind (e->ts.kind);
2989 mio_gmp_real (&e->value.real);
2990 break;
2991
2992 case BT_COMPLEX:
2993 gfc_set_model_kind (e->ts.kind);
2994 mio_gmp_real (&e->value.complex.r);
2995 mio_gmp_real (&e->value.complex.i);
2996 break;
2997
2998 case BT_LOGICAL:
2999 mio_integer (&e->value.logical);
3000 break;
3001
3002 case BT_CHARACTER:
3003 mio_integer (&e->value.character.length);
3004 e->value.character.string
3005 = CONST_CAST (gfc_char_t *,
3006 mio_allocated_wide_string (e->value.character.string,
3007 e->value.character.length));
3008 break;
3009
3010 default:
3011 bad_module ("Bad type in constant expression");
3012 }
3013
3014 break;
3015
3016 case EXPR_NULL:
3017 break;
3018 }
3019
3020 mio_rparen ();
3021 }
3022
3023
3024 /* Read and write namelists. */
3025
3026 static void
3027 mio_namelist (gfc_symbol *sym)
3028 {
3029 gfc_namelist *n, *m;
3030 const char *check_name;
3031
3032 mio_lparen ();
3033
3034 if (iomode == IO_OUTPUT)
3035 {
3036 for (n = sym->namelist; n; n = n->next)
3037 mio_symbol_ref (&n->sym);
3038 }
3039 else
3040 {
3041 /* This departure from the standard is flagged as an error.
3042 It does, in fact, work correctly. TODO: Allow it
3043 conditionally? */
3044 if (sym->attr.flavor == FL_NAMELIST)
3045 {
3046 check_name = find_use_name (sym->name, false);
3047 if (check_name && strcmp (check_name, sym->name) != 0)
3048 gfc_error ("Namelist %s cannot be renamed by USE "
3049 "association to %s", sym->name, check_name);
3050 }
3051
3052 m = NULL;
3053 while (peek_atom () != ATOM_RPAREN)
3054 {
3055 n = gfc_get_namelist ();
3056 mio_symbol_ref (&n->sym);
3057
3058 if (sym->namelist == NULL)
3059 sym->namelist = n;
3060 else
3061 m->next = n;
3062
3063 m = n;
3064 }
3065 sym->namelist_tail = m;
3066 }
3067
3068 mio_rparen ();
3069 }
3070
3071
3072 /* Save/restore lists of gfc_interface structures. When loading an
3073 interface, we are really appending to the existing list of
3074 interfaces. Checking for duplicate and ambiguous interfaces has to
3075 be done later when all symbols have been loaded. */
3076
3077 pointer_info *
3078 mio_interface_rest (gfc_interface **ip)
3079 {
3080 gfc_interface *tail, *p;
3081 pointer_info *pi = NULL;
3082
3083 if (iomode == IO_OUTPUT)
3084 {
3085 if (ip != NULL)
3086 for (p = *ip; p; p = p->next)
3087 mio_symbol_ref (&p->sym);
3088 }
3089 else
3090 {
3091 if (*ip == NULL)
3092 tail = NULL;
3093 else
3094 {
3095 tail = *ip;
3096 while (tail->next)
3097 tail = tail->next;
3098 }
3099
3100 for (;;)
3101 {
3102 if (peek_atom () == ATOM_RPAREN)
3103 break;
3104
3105 p = gfc_get_interface ();
3106 p->where = gfc_current_locus;
3107 pi = mio_symbol_ref (&p->sym);
3108
3109 if (tail == NULL)
3110 *ip = p;
3111 else
3112 tail->next = p;
3113
3114 tail = p;
3115 }
3116 }
3117
3118 mio_rparen ();
3119 return pi;
3120 }
3121
3122
3123 /* Save/restore a nameless operator interface. */
3124
3125 static void
3126 mio_interface (gfc_interface **ip)
3127 {
3128 mio_lparen ();
3129 mio_interface_rest (ip);
3130 }
3131
3132
3133 /* Save/restore a named operator interface. */
3134
3135 static void
3136 mio_symbol_interface (const char **name, const char **module,
3137 gfc_interface **ip)
3138 {
3139 mio_lparen ();
3140 mio_pool_string (name);
3141 mio_pool_string (module);
3142 mio_interface_rest (ip);
3143 }
3144
3145
3146 static void
3147 mio_namespace_ref (gfc_namespace **nsp)
3148 {
3149 gfc_namespace *ns;
3150 pointer_info *p;
3151
3152 p = mio_pointer_ref (nsp);
3153
3154 if (p->type == P_UNKNOWN)
3155 p->type = P_NAMESPACE;
3156
3157 if (iomode == IO_INPUT && p->integer != 0)
3158 {
3159 ns = (gfc_namespace *) p->u.pointer;
3160 if (ns == NULL)
3161 {
3162 ns = gfc_get_namespace (NULL, 0);
3163 associate_integer_pointer (p, ns);
3164 }
3165 else
3166 ns->refs++;
3167 }
3168 }
3169
3170
3171 /* Unlike most other routines, the address of the symbol node is already
3172 fixed on input and the name/module has already been filled in. */
3173
3174 static void
3175 mio_symbol (gfc_symbol *sym)
3176 {
3177 int intmod = INTMOD_NONE;
3178
3179 gfc_formal_arglist *formal;
3180
3181 mio_lparen ();
3182
3183 mio_symbol_attribute (&sym->attr);
3184 mio_typespec (&sym->ts);
3185
3186 /* Contained procedures don't have formal namespaces. Instead we output the
3187 procedure namespace. The will contain the formal arguments. */
3188 if (iomode == IO_OUTPUT)
3189 {
3190 formal = sym->formal;
3191 while (formal && !formal->sym)
3192 formal = formal->next;
3193
3194 if (formal)
3195 mio_namespace_ref (&formal->sym->ns);
3196 else
3197 mio_namespace_ref (&sym->formal_ns);
3198 }
3199 else
3200 {
3201 mio_namespace_ref (&sym->formal_ns);
3202 if (sym->formal_ns)
3203 {
3204 sym->formal_ns->proc_name = sym;
3205 sym->refs++;
3206 }
3207 }
3208
3209 /* Save/restore common block links. */
3210 mio_symbol_ref (&sym->common_next);
3211
3212 mio_formal_arglist (sym);
3213
3214 if (sym->attr.flavor == FL_PARAMETER)
3215 mio_expr (&sym->value);
3216
3217 mio_array_spec (&sym->as);
3218
3219 mio_symbol_ref (&sym->result);
3220
3221 if (sym->attr.cray_pointee)
3222 mio_symbol_ref (&sym->cp_pointer);
3223
3224 /* Note that components are always saved, even if they are supposed
3225 to be private. Component access is checked during searching. */
3226
3227 mio_component_list (&sym->components);
3228
3229 if (sym->components != NULL)
3230 sym->component_access
3231 = MIO_NAME (gfc_access) (sym->component_access, access_types);
3232
3233 mio_namelist (sym);
3234
3235 /* Add the fields that say whether this is from an intrinsic module,
3236 and if so, what symbol it is within the module. */
3237 /* mio_integer (&(sym->from_intmod)); */
3238 if (iomode == IO_OUTPUT)
3239 {
3240 intmod = sym->from_intmod;
3241 mio_integer (&intmod);
3242 }
3243 else
3244 {
3245 mio_integer (&intmod);
3246 sym->from_intmod = intmod;
3247 }
3248
3249 mio_integer (&(sym->intmod_sym_id));
3250
3251 mio_rparen ();
3252 }
3253
3254
3255 /************************* Top level subroutines *************************/
3256
3257 /* Given a root symtree node and a symbol, try to find a symtree that
3258 references the symbol that is not a unique name. */
3259
3260 static gfc_symtree *
3261 find_symtree_for_symbol (gfc_symtree *st, gfc_symbol *sym)
3262 {
3263 gfc_symtree *s = NULL;
3264
3265 if (st == NULL)
3266 return s;
3267
3268 s = find_symtree_for_symbol (st->right, sym);
3269 if (s != NULL)
3270 return s;
3271 s = find_symtree_for_symbol (st->left, sym);
3272 if (s != NULL)
3273 return s;
3274
3275 if (st->n.sym == sym && !check_unique_name (st->name))
3276 return st;
3277
3278 return s;
3279 }
3280
3281
3282 /* A recursive function to look for a specific symbol by name and by
3283 module. Whilst several symtrees might point to one symbol, its
3284 is sufficient for the purposes here than one exist. Note that
3285 generic interfaces are distinguished as are symbols that have been
3286 renamed in another module. */
3287 static gfc_symtree *
3288 find_symbol (gfc_symtree *st, const char *name,
3289 const char *module, int generic)
3290 {
3291 int c;
3292 gfc_symtree *retval, *s;
3293
3294 if (st == NULL || st->n.sym == NULL)
3295 return NULL;
3296
3297 c = strcmp (name, st->n.sym->name);
3298 if (c == 0 && st->n.sym->module
3299 && strcmp (module, st->n.sym->module) == 0
3300 && !check_unique_name (st->name))
3301 {
3302 s = gfc_find_symtree (gfc_current_ns->sym_root, name);
3303
3304 /* Detect symbols that are renamed by use association in another
3305 module by the absence of a symtree and null attr.use_rename,
3306 since the latter is not transmitted in the module file. */
3307 if (((!generic && !st->n.sym->attr.generic)
3308 || (generic && st->n.sym->attr.generic))
3309 && !(s == NULL && !st->n.sym->attr.use_rename))
3310 return st;
3311 }
3312
3313 retval = find_symbol (st->left, name, module, generic);
3314
3315 if (retval == NULL)
3316 retval = find_symbol (st->right, name, module, generic);
3317
3318 return retval;
3319 }
3320
3321
3322 /* Skip a list between balanced left and right parens. */
3323
3324 static void
3325 skip_list (void)
3326 {
3327 int level;
3328
3329 level = 0;
3330 do
3331 {
3332 switch (parse_atom ())
3333 {
3334 case ATOM_LPAREN:
3335 level++;
3336 break;
3337
3338 case ATOM_RPAREN:
3339 level--;
3340 break;
3341
3342 case ATOM_STRING:
3343 gfc_free (atom_string);
3344 break;
3345
3346 case ATOM_NAME:
3347 case ATOM_INTEGER:
3348 break;
3349 }
3350 }
3351 while (level > 0);
3352 }
3353
3354
3355 /* Load operator interfaces from the module. Interfaces are unusual
3356 in that they attach themselves to existing symbols. */
3357
3358 static void
3359 load_operator_interfaces (void)
3360 {
3361 const char *p;
3362 char name[GFC_MAX_SYMBOL_LEN + 1], module[GFC_MAX_SYMBOL_LEN + 1];
3363 gfc_user_op *uop;
3364 pointer_info *pi = NULL;
3365 int n, i;
3366
3367 mio_lparen ();
3368
3369 while (peek_atom () != ATOM_RPAREN)
3370 {
3371 mio_lparen ();
3372
3373 mio_internal_string (name);
3374 mio_internal_string (module);
3375
3376 n = number_use_names (name, true);
3377 n = n ? n : 1;
3378
3379 for (i = 1; i <= n; i++)
3380 {
3381 /* Decide if we need to load this one or not. */
3382 p = find_use_name_n (name, &i, true);
3383
3384 if (p == NULL)
3385 {
3386 while (parse_atom () != ATOM_RPAREN);
3387 continue;
3388 }
3389
3390 if (i == 1)
3391 {
3392 uop = gfc_get_uop (p);
3393 pi = mio_interface_rest (&uop->op);
3394 }
3395 else
3396 {
3397 if (gfc_find_uop (p, NULL))
3398 continue;
3399 uop = gfc_get_uop (p);
3400 uop->op = gfc_get_interface ();
3401 uop->op->where = gfc_current_locus;
3402 add_fixup (pi->integer, &uop->op->sym);
3403 }
3404 }
3405 }
3406
3407 mio_rparen ();
3408 }
3409
3410
3411 /* Load interfaces from the module. Interfaces are unusual in that
3412 they attach themselves to existing symbols. */
3413
3414 static void
3415 load_generic_interfaces (void)
3416 {
3417 const char *p;
3418 char name[GFC_MAX_SYMBOL_LEN + 1], module[GFC_MAX_SYMBOL_LEN + 1];
3419 gfc_symbol *sym;
3420 gfc_interface *generic = NULL;
3421 int n, i, renamed;
3422
3423 mio_lparen ();
3424
3425 while (peek_atom () != ATOM_RPAREN)
3426 {
3427 mio_lparen ();
3428
3429 mio_internal_string (name);
3430 mio_internal_string (module);
3431
3432 n = number_use_names (name, false);
3433 renamed = n ? 1 : 0;
3434 n = n ? n : 1;
3435
3436 for (i = 1; i <= n; i++)
3437 {
3438 gfc_symtree *st;
3439 /* Decide if we need to load this one or not. */
3440 p = find_use_name_n (name, &i, false);
3441
3442 st = find_symbol (gfc_current_ns->sym_root,
3443 name, module_name, 1);
3444
3445 if (!p || gfc_find_symbol (p, NULL, 0, &sym))
3446 {
3447 /* Skip the specific names for these cases. */
3448 while (i == 1 && parse_atom () != ATOM_RPAREN);
3449
3450 continue;
3451 }
3452
3453 /* If the symbol exists already and is being USEd without being
3454 in an ONLY clause, do not load a new symtree(11.3.2). */
3455 if (!only_flag && st)
3456 sym = st->n.sym;
3457
3458 if (!sym)
3459 {
3460 /* Make the symbol inaccessible if it has been added by a USE
3461 statement without an ONLY(11.3.2). */
3462 if (st && only_flag
3463 && !st->n.sym->attr.use_only
3464 && !st->n.sym->attr.use_rename
3465 && strcmp (st->n.sym->module, module_name) == 0)
3466 {
3467 sym = st->n.sym;
3468 gfc_delete_symtree (&gfc_current_ns->sym_root, name);
3469 st = gfc_get_unique_symtree (gfc_current_ns);
3470 st->n.sym = sym;
3471 sym = NULL;
3472 }
3473 else if (st)
3474 {
3475 sym = st->n.sym;
3476 if (strcmp (st->name, p) != 0)
3477 {
3478 st = gfc_new_symtree (&gfc_current_ns->sym_root, p);
3479 st->n.sym = sym;
3480 sym->refs++;
3481 }
3482 }
3483
3484 /* Since we haven't found a valid generic interface, we had
3485 better make one. */
3486 if (!sym)
3487 {
3488 gfc_get_symbol (p, NULL, &sym);
3489 sym->name = gfc_get_string (name);
3490 sym->module = gfc_get_string (module_name);
3491 sym->attr.flavor = FL_PROCEDURE;
3492 sym->attr.generic = 1;
3493 sym->attr.use_assoc = 1;
3494 }
3495 }
3496 else
3497 {
3498 /* Unless sym is a generic interface, this reference
3499 is ambiguous. */
3500 if (st == NULL)
3501 st = gfc_find_symtree (gfc_current_ns->sym_root, p);
3502
3503 sym = st->n.sym;
3504
3505 if (st && !sym->attr.generic
3506 && sym->module
3507 && strcmp(module, sym->module))
3508 st->ambiguous = 1;
3509 }
3510
3511 sym->attr.use_only = only_flag;
3512 sym->attr.use_rename = renamed;
3513
3514 if (i == 1)
3515 {
3516 mio_interface_rest (&sym->generic);
3517 generic = sym->generic;
3518 }
3519 else if (!sym->generic)
3520 {
3521 sym->generic = generic;
3522 sym->attr.generic_copy = 1;
3523 }
3524 }
3525 }
3526
3527 mio_rparen ();
3528 }
3529
3530
3531 /* Load common blocks. */
3532
3533 static void
3534 load_commons (void)
3535 {
3536 char name[GFC_MAX_SYMBOL_LEN + 1];
3537 gfc_common_head *p;
3538
3539 mio_lparen ();
3540
3541 while (peek_atom () != ATOM_RPAREN)
3542 {
3543 int flags;
3544 mio_lparen ();
3545 mio_internal_string (name);
3546
3547 p = gfc_get_common (name, 1);
3548
3549 mio_symbol_ref (&p->head);
3550 mio_integer (&flags);
3551 if (flags & 1)
3552 p->saved = 1;
3553 if (flags & 2)
3554 p->threadprivate = 1;
3555 p->use_assoc = 1;
3556
3557 /* Get whether this was a bind(c) common or not. */
3558 mio_integer (&p->is_bind_c);
3559 /* Get the binding label. */
3560 mio_internal_string (p->binding_label);
3561
3562 mio_rparen ();
3563 }
3564
3565 mio_rparen ();
3566 }
3567
3568
3569 /* Load equivalences. The flag in_load_equiv informs mio_expr_ref of this
3570 so that unused variables are not loaded and so that the expression can
3571 be safely freed. */
3572
3573 static void
3574 load_equiv (void)
3575 {
3576 gfc_equiv *head, *tail, *end, *eq;
3577 bool unused;
3578
3579 mio_lparen ();
3580 in_load_equiv = true;
3581
3582 end = gfc_current_ns->equiv;
3583 while (end != NULL && end->next != NULL)
3584 end = end->next;
3585
3586 while (peek_atom () != ATOM_RPAREN) {
3587 mio_lparen ();
3588 head = tail = NULL;
3589
3590 while(peek_atom () != ATOM_RPAREN)
3591 {
3592 if (head == NULL)
3593 head = tail = gfc_get_equiv ();
3594 else
3595 {
3596 tail->eq = gfc_get_equiv ();
3597 tail = tail->eq;
3598 }
3599
3600 mio_pool_string (&tail->module);
3601 mio_expr (&tail->expr);
3602 }
3603
3604 /* Unused equivalence members have a unique name. */
3605 unused = true;
3606 for (eq = head; eq; eq = eq->eq)
3607 {
3608 if (!check_unique_name (eq->expr->symtree->name))
3609 {
3610 unused = false;
3611 break;
3612 }
3613 }
3614
3615 if (unused)
3616 {
3617 for (eq = head; eq; eq = head)
3618 {
3619 head = eq->eq;
3620 gfc_free_expr (eq->expr);
3621 gfc_free (eq);
3622 }
3623 }
3624
3625 if (end == NULL)
3626 gfc_current_ns->equiv = head;
3627 else
3628 end->next = head;
3629
3630 if (head != NULL)
3631 end = head;
3632
3633 mio_rparen ();
3634 }
3635
3636 mio_rparen ();
3637 in_load_equiv = false;
3638 }
3639
3640
3641 /* Recursive function to traverse the pointer_info tree and load a
3642 needed symbol. We return nonzero if we load a symbol and stop the
3643 traversal, because the act of loading can alter the tree. */
3644
3645 static int
3646 load_needed (pointer_info *p)
3647 {
3648 gfc_namespace *ns;
3649 pointer_info *q;
3650 gfc_symbol *sym;
3651 int rv;
3652
3653 rv = 0;
3654 if (p == NULL)
3655 return rv;
3656
3657 rv |= load_needed (p->left);
3658 rv |= load_needed (p->right);
3659
3660 if (p->type != P_SYMBOL || p->u.rsym.state != NEEDED)
3661 return rv;
3662
3663 p->u.rsym.state = USED;
3664
3665 set_module_locus (&p->u.rsym.where);
3666
3667 sym = p->u.rsym.sym;
3668 if (sym == NULL)
3669 {
3670 q = get_integer (p->u.rsym.ns);
3671
3672 ns = (gfc_namespace *) q->u.pointer;
3673 if (ns == NULL)
3674 {
3675 /* Create an interface namespace if necessary. These are
3676 the namespaces that hold the formal parameters of module
3677 procedures. */
3678
3679 ns = gfc_get_namespace (NULL, 0);
3680 associate_integer_pointer (q, ns);
3681 }
3682
3683 /* Use the module sym as 'proc_name' so that gfc_get_symbol_decl
3684 doesn't go pear-shaped if the symbol is used. */
3685 if (!ns->proc_name)
3686 gfc_find_symbol (p->u.rsym.module, gfc_current_ns,
3687 1, &ns->proc_name);
3688
3689 sym = gfc_new_symbol (p->u.rsym.true_name, ns);
3690 sym->module = gfc_get_string (p->u.rsym.module);
3691 strcpy (sym->binding_label, p->u.rsym.binding_label);
3692
3693 associate_integer_pointer (p, sym);
3694 }
3695
3696 mio_symbol (sym);
3697 sym->attr.use_assoc = 1;
3698 if (only_flag)
3699 sym->attr.use_only = 1;
3700 if (p->u.rsym.renamed)
3701 sym->attr.use_rename = 1;
3702
3703 return 1;
3704 }
3705
3706
3707 /* Recursive function for cleaning up things after a module has been read. */
3708
3709 static void
3710 read_cleanup (pointer_info *p)
3711 {
3712 gfc_symtree *st;
3713 pointer_info *q;
3714
3715 if (p == NULL)
3716 return;
3717
3718 read_cleanup (p->left);
3719 read_cleanup (p->right);
3720
3721 if (p->type == P_SYMBOL && p->u.rsym.state == USED && !p->u.rsym.referenced)
3722 {
3723 /* Add hidden symbols to the symtree. */
3724 q = get_integer (p->u.rsym.ns);
3725 st = gfc_get_unique_symtree ((gfc_namespace *) q->u.pointer);
3726
3727 st->n.sym = p->u.rsym.sym;
3728 st->n.sym->refs++;
3729
3730 /* Fixup any symtree references. */
3731 p->u.rsym.symtree = st;
3732 resolve_fixups (p->u.rsym.stfixup, st);
3733 p->u.rsym.stfixup = NULL;
3734 }
3735
3736 /* Free unused symbols. */
3737 if (p->type == P_SYMBOL && p->u.rsym.state == UNUSED)
3738 gfc_free_symbol (p->u.rsym.sym);
3739 }
3740
3741
3742 /* Read a module file. */
3743
3744 static void
3745 read_module (void)
3746 {
3747 module_locus operator_interfaces, user_operators;
3748 const char *p;
3749 char name[GFC_MAX_SYMBOL_LEN + 1];
3750 gfc_intrinsic_op i;
3751 int ambiguous, j, nuse, symbol;
3752 pointer_info *info, *q;
3753 gfc_use_rename *u;
3754 gfc_symtree *st;
3755 gfc_symbol *sym;
3756
3757 get_module_locus (&operator_interfaces); /* Skip these for now. */
3758 skip_list ();
3759
3760 get_module_locus (&user_operators);
3761 skip_list ();
3762 skip_list ();
3763
3764 /* Skip commons and equivalences for now. */
3765 skip_list ();
3766 skip_list ();
3767
3768 mio_lparen ();
3769
3770 /* Create the fixup nodes for all the symbols. */
3771
3772 while (peek_atom () != ATOM_RPAREN)
3773 {
3774 require_atom (ATOM_INTEGER);
3775 info = get_integer (atom_int);
3776
3777 info->type = P_SYMBOL;
3778 info->u.rsym.state = UNUSED;
3779
3780 mio_internal_string (info->u.rsym.true_name);
3781 mio_internal_string (info->u.rsym.module);
3782 mio_internal_string (info->u.rsym.binding_label);
3783
3784
3785 require_atom (ATOM_INTEGER);
3786 info->u.rsym.ns = atom_int;
3787
3788 get_module_locus (&info->u.rsym.where);
3789 skip_list ();
3790
3791 /* See if the symbol has already been loaded by a previous module.
3792 If so, we reference the existing symbol and prevent it from
3793 being loaded again. This should not happen if the symbol being
3794 read is an index for an assumed shape dummy array (ns != 1). */
3795
3796 sym = find_true_name (info->u.rsym.true_name, info->u.rsym.module);
3797
3798 if (sym == NULL
3799 || (sym->attr.flavor == FL_VARIABLE && info->u.rsym.ns !=1))
3800 continue;
3801
3802 info->u.rsym.state = USED;
3803 info->u.rsym.sym = sym;
3804
3805 /* Some symbols do not have a namespace (eg. formal arguments),
3806 so the automatic "unique symtree" mechanism must be suppressed
3807 by marking them as referenced. */
3808 q = get_integer (info->u.rsym.ns);
3809 if (q->u.pointer == NULL)
3810 {
3811 info->u.rsym.referenced = 1;
3812 continue;
3813 }
3814
3815 /* If possible recycle the symtree that references the symbol.
3816 If a symtree is not found and the module does not import one,
3817 a unique-name symtree is found by read_cleanup. */
3818 st = find_symtree_for_symbol (gfc_current_ns->sym_root, sym);
3819 if (st != NULL)
3820 {
3821 info->u.rsym.symtree = st;
3822 info->u.rsym.referenced = 1;
3823 }
3824 }
3825
3826 mio_rparen ();
3827
3828 /* Parse the symtree lists. This lets us mark which symbols need to
3829 be loaded. Renaming is also done at this point by replacing the
3830 symtree name. */
3831
3832 mio_lparen ();
3833
3834 while (peek_atom () != ATOM_RPAREN)
3835 {
3836 mio_internal_string (name);
3837 mio_integer (&ambiguous);
3838 mio_integer (&symbol);
3839
3840 info = get_integer (symbol);
3841
3842 /* See how many use names there are. If none, go through the start
3843 of the loop at least once. */
3844 nuse = number_use_names (name, false);
3845 info->u.rsym.renamed = nuse ? 1 : 0;
3846
3847 if (nuse == 0)
3848 nuse = 1;
3849
3850 for (j = 1; j <= nuse; j++)
3851 {
3852 /* Get the jth local name for this symbol. */
3853 p = find_use_name_n (name, &j, false);
3854
3855 if (p == NULL && strcmp (name, module_name) == 0)
3856 p = name;
3857
3858 /* Skip symtree nodes not in an ONLY clause, unless there
3859 is an existing symtree loaded from another USE statement. */
3860 if (p == NULL)
3861 {
3862 st = gfc_find_symtree (gfc_current_ns->sym_root, name);
3863 if (st != NULL)
3864 info->u.rsym.symtree = st;
3865 continue;
3866 }
3867
3868 /* If a symbol of the same name and module exists already,
3869 this symbol, which is not in an ONLY clause, must not be
3870 added to the namespace(11.3.2). Note that find_symbol
3871 only returns the first occurrence that it finds. */
3872 if (!only_flag && !info->u.rsym.renamed
3873 && strcmp (name, module_name) != 0
3874 && find_symbol (gfc_current_ns->sym_root, name,
3875 module_name, 0))
3876 continue;
3877
3878 st = gfc_find_symtree (gfc_current_ns->sym_root, p);
3879
3880 if (st != NULL)
3881 {
3882 /* Check for ambiguous symbols. */
3883 if (st->n.sym != info->u.rsym.sym)
3884 st->ambiguous = 1;
3885 info->u.rsym.symtree = st;
3886 }
3887 else
3888 {
3889 st = gfc_find_symtree (gfc_current_ns->sym_root, name);
3890
3891 /* Delete the symtree if the symbol has been added by a USE
3892 statement without an ONLY(11.3.2). Remember that the rsym
3893 will be the same as the symbol found in the symtree, for
3894 this case.*/
3895 if (st && (only_flag || info->u.rsym.renamed)
3896 && !st->n.sym->attr.use_only
3897 && !st->n.sym->attr.use_rename
3898 && info->u.rsym.sym == st->n.sym)
3899 gfc_delete_symtree (&gfc_current_ns->sym_root, name);
3900
3901 /* Create a symtree node in the current namespace for this
3902 symbol. */
3903 st = check_unique_name (p)
3904 ? gfc_get_unique_symtree (gfc_current_ns)
3905 : gfc_new_symtree (&gfc_current_ns->sym_root, p);
3906 st->ambiguous = ambiguous;
3907
3908 sym = info->u.rsym.sym;
3909
3910 /* Create a symbol node if it doesn't already exist. */
3911 if (sym == NULL)
3912 {
3913 info->u.rsym.sym = gfc_new_symbol (info->u.rsym.true_name,
3914 gfc_current_ns);
3915 sym = info->u.rsym.sym;
3916 sym->module = gfc_get_string (info->u.rsym.module);
3917
3918 /* TODO: hmm, can we test this? Do we know it will be
3919 initialized to zeros? */
3920 if (info->u.rsym.binding_label[0] != '\0')
3921 strcpy (sym->binding_label, info->u.rsym.binding_label);
3922 }
3923
3924 st->n.sym = sym;
3925 st->n.sym->refs++;
3926
3927 if (strcmp (name, p) != 0)
3928 sym->attr.use_rename = 1;
3929
3930 /* Store the symtree pointing to this symbol. */
3931 info->u.rsym.symtree = st;
3932
3933 if (info->u.rsym.state == UNUSED)
3934 info->u.rsym.state = NEEDED;
3935 info->u.rsym.referenced = 1;
3936 }
3937 }
3938 }
3939
3940 mio_rparen ();
3941
3942 /* Load intrinsic operator interfaces. */
3943 set_module_locus (&operator_interfaces);
3944 mio_lparen ();
3945
3946 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
3947 {
3948 if (i == INTRINSIC_USER)
3949 continue;
3950
3951 if (only_flag)
3952 {
3953 u = find_use_operator (i);
3954
3955 if (u == NULL)
3956 {
3957 skip_list ();
3958 continue;
3959 }
3960
3961 u->found = 1;
3962 }
3963
3964 mio_interface (&gfc_current_ns->op[i]);
3965 }
3966
3967 mio_rparen ();
3968
3969 /* Load generic and user operator interfaces. These must follow the
3970 loading of symtree because otherwise symbols can be marked as
3971 ambiguous. */
3972
3973 set_module_locus (&user_operators);
3974
3975 load_operator_interfaces ();
3976 load_generic_interfaces ();
3977
3978 load_commons ();
3979 load_equiv ();
3980
3981 /* At this point, we read those symbols that are needed but haven't
3982 been loaded yet. If one symbol requires another, the other gets
3983 marked as NEEDED if its previous state was UNUSED. */
3984
3985 while (load_needed (pi_root));
3986
3987 /* Make sure all elements of the rename-list were found in the module. */
3988
3989 for (u = gfc_rename_list; u; u = u->next)
3990 {
3991 if (u->found)
3992 continue;
3993
3994 if (u->op == INTRINSIC_NONE)
3995 {
3996 gfc_error ("Symbol '%s' referenced at %L not found in module '%s'",
3997 u->use_name, &u->where, module_name);
3998 continue;
3999 }
4000
4001 if (u->op == INTRINSIC_USER)
4002 {
4003 gfc_error ("User operator '%s' referenced at %L not found "
4004 "in module '%s'", u->use_name, &u->where, module_name);
4005 continue;
4006 }
4007
4008 gfc_error ("Intrinsic operator '%s' referenced at %L not found "
4009 "in module '%s'", gfc_op2string (u->op), &u->where,
4010 module_name);
4011 }
4012
4013 gfc_check_interfaces (gfc_current_ns);
4014
4015 /* Clean up symbol nodes that were never loaded, create references
4016 to hidden symbols. */
4017
4018 read_cleanup (pi_root);
4019 }
4020
4021
4022 /* Given an access type that is specific to an entity and the default
4023 access, return nonzero if the entity is publicly accessible. If the
4024 element is declared as PUBLIC, then it is public; if declared
4025 PRIVATE, then private, and otherwise it is public unless the default
4026 access in this context has been declared PRIVATE. */
4027
4028 bool
4029 gfc_check_access (gfc_access specific_access, gfc_access default_access)
4030 {
4031 if (specific_access == ACCESS_PUBLIC)
4032 return TRUE;
4033 if (specific_access == ACCESS_PRIVATE)
4034 return FALSE;
4035
4036 if (gfc_option.flag_module_private)
4037 return default_access == ACCESS_PUBLIC;
4038 else
4039 return default_access != ACCESS_PRIVATE;
4040 }
4041
4042
4043 /* A structure to remember which commons we've already written. */
4044
4045 struct written_common
4046 {
4047 BBT_HEADER(written_common);
4048 const char *name, *label;
4049 };
4050
4051 static struct written_common *written_commons = NULL;
4052
4053 /* Comparison function used for balancing the binary tree. */
4054
4055 static int
4056 compare_written_commons (void *a1, void *b1)
4057 {
4058 const char *aname = ((struct written_common *) a1)->name;
4059 const char *alabel = ((struct written_common *) a1)->label;
4060 const char *bname = ((struct written_common *) b1)->name;
4061 const char *blabel = ((struct written_common *) b1)->label;
4062 int c = strcmp (aname, bname);
4063
4064 return (c != 0 ? c : strcmp (alabel, blabel));
4065 }
4066
4067 /* Free a list of written commons. */
4068
4069 static void
4070 free_written_common (struct written_common *w)
4071 {
4072 if (!w)
4073 return;
4074
4075 if (w->left)
4076 free_written_common (w->left);
4077 if (w->right)
4078 free_written_common (w->right);
4079
4080 gfc_free (w);
4081 }
4082
4083 /* Write a common block to the module -- recursive helper function. */
4084
4085 static void
4086 write_common_0 (gfc_symtree *st)
4087 {
4088 gfc_common_head *p;
4089 const char * name;
4090 int flags;
4091 const char *label;
4092 struct written_common *w;
4093 bool write_me = true;
4094
4095 if (st == NULL)
4096 return;
4097
4098 write_common_0 (st->left);
4099
4100 /* We will write out the binding label, or the name if no label given. */
4101 name = st->n.common->name;
4102 p = st->n.common;
4103 label = p->is_bind_c ? p->binding_label : p->name;
4104
4105 /* Check if we've already output this common. */
4106 w = written_commons;
4107 while (w)
4108 {
4109 int c = strcmp (name, w->name);
4110 c = (c != 0 ? c : strcmp (label, w->label));
4111 if (c == 0)
4112 write_me = false;
4113
4114 w = (c < 0) ? w->left : w->right;
4115 }
4116
4117 if (write_me)
4118 {
4119 /* Write the common to the module. */
4120 mio_lparen ();
4121 mio_pool_string (&name);
4122
4123 mio_symbol_ref (&p->head);
4124 flags = p->saved ? 1 : 0;
4125 if (p->threadprivate)
4126 flags |= 2;
4127 mio_integer (&flags);
4128
4129 /* Write out whether the common block is bind(c) or not. */
4130 mio_integer (&(p->is_bind_c));
4131
4132 mio_pool_string (&label);
4133 mio_rparen ();
4134
4135 /* Record that we have written this common. */
4136 w = XCNEW (struct written_common);
4137 w->name = p->name;
4138 w->label = label;
4139 gfc_insert_bbt (&written_commons, w, compare_written_commons);
4140 }
4141
4142 write_common_0 (st->right);
4143 }
4144
4145
4146 /* Write a common, by initializing the list of written commons, calling
4147 the recursive function write_common_0() and cleaning up afterwards. */
4148
4149 static void
4150 write_common (gfc_symtree *st)
4151 {
4152 written_commons = NULL;
4153 write_common_0 (st);
4154 free_written_common (written_commons);
4155 written_commons = NULL;
4156 }
4157
4158
4159 /* Write the blank common block to the module. */
4160
4161 static void
4162 write_blank_common (void)
4163 {
4164 const char * name = BLANK_COMMON_NAME;
4165 int saved;
4166 /* TODO: Blank commons are not bind(c). The F2003 standard probably says
4167 this, but it hasn't been checked. Just making it so for now. */
4168 int is_bind_c = 0;
4169
4170 if (gfc_current_ns->blank_common.head == NULL)
4171 return;
4172
4173 mio_lparen ();
4174
4175 mio_pool_string (&name);
4176
4177 mio_symbol_ref (&gfc_current_ns->blank_common.head);
4178 saved = gfc_current_ns->blank_common.saved;
4179 mio_integer (&saved);
4180
4181 /* Write out whether the common block is bind(c) or not. */
4182 mio_integer (&is_bind_c);
4183
4184 /* Write out the binding label, which is BLANK_COMMON_NAME, though
4185 it doesn't matter because the label isn't used. */
4186 mio_pool_string (&name);
4187
4188 mio_rparen ();
4189 }
4190
4191
4192 /* Write equivalences to the module. */
4193
4194 static void
4195 write_equiv (void)
4196 {
4197 gfc_equiv *eq, *e;
4198 int num;
4199
4200 num = 0;
4201 for (eq = gfc_current_ns->equiv; eq; eq = eq->next)
4202 {
4203 mio_lparen ();
4204
4205 for (e = eq; e; e = e->eq)
4206 {
4207 if (e->module == NULL)
4208 e->module = gfc_get_string ("%s.eq.%d", module_name, num);
4209 mio_allocated_string (e->module);
4210 mio_expr (&e->expr);
4211 }
4212
4213 num++;
4214 mio_rparen ();
4215 }
4216 }
4217
4218
4219 /* Write a symbol to the module. */
4220
4221 static void
4222 write_symbol (int n, gfc_symbol *sym)
4223 {
4224 const char *label;
4225
4226 if (sym->attr.flavor == FL_UNKNOWN || sym->attr.flavor == FL_LABEL)
4227 gfc_internal_error ("write_symbol(): bad module symbol '%s'", sym->name);
4228
4229 mio_integer (&n);
4230 mio_pool_string (&sym->name);
4231
4232 mio_pool_string (&sym->module);
4233 if (sym->attr.is_bind_c || sym->attr.is_iso_c)
4234 {
4235 label = sym->binding_label;
4236 mio_pool_string (&label);
4237 }
4238 else
4239 mio_pool_string (&sym->name);
4240
4241 mio_pointer_ref (&sym->ns);
4242
4243 mio_symbol (sym);
4244 write_char ('\n');
4245 }
4246
4247
4248 /* Recursive traversal function to write the initial set of symbols to
4249 the module. We check to see if the symbol should be written
4250 according to the access specification. */
4251
4252 static void
4253 write_symbol0 (gfc_symtree *st)
4254 {
4255 gfc_symbol *sym;
4256 pointer_info *p;
4257 bool dont_write = false;
4258
4259 if (st == NULL)
4260 return;
4261
4262 write_symbol0 (st->left);
4263
4264 sym = st->n.sym;
4265 if (sym->module == NULL)
4266 sym->module = gfc_get_string (module_name);
4267
4268 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.generic
4269 && !sym->attr.subroutine && !sym->attr.function)
4270 dont_write = true;
4271
4272 if (!gfc_check_access (sym->attr.access, sym->ns->default_access))
4273 dont_write = true;
4274
4275 if (!dont_write)
4276 {
4277 p = get_pointer (sym);
4278 if (p->type == P_UNKNOWN)
4279 p->type = P_SYMBOL;
4280
4281 if (p->u.wsym.state != WRITTEN)
4282 {
4283 write_symbol (p->integer, sym);
4284 p->u.wsym.state = WRITTEN;
4285 }
4286 }
4287
4288 write_symbol0 (st->right);
4289 }
4290
4291
4292 /* Recursive traversal function to write the secondary set of symbols
4293 to the module file. These are symbols that were not public yet are
4294 needed by the public symbols or another dependent symbol. The act
4295 of writing a symbol can modify the pointer_info tree, so we cease
4296 traversal if we find a symbol to write. We return nonzero if a
4297 symbol was written and pass that information upwards. */
4298
4299 static int
4300 write_symbol1 (pointer_info *p)
4301 {
4302 int result;
4303
4304 if (!p)
4305 return 0;
4306
4307 result = write_symbol1 (p->left);
4308
4309 if (!(p->type != P_SYMBOL || p->u.wsym.state != NEEDS_WRITE))
4310 {
4311 p->u.wsym.state = WRITTEN;
4312 write_symbol (p->integer, p->u.wsym.sym);
4313 result = 1;
4314 }
4315
4316 result |= write_symbol1 (p->right);
4317 return result;
4318 }
4319
4320
4321 /* Write operator interfaces associated with a symbol. */
4322
4323 static void
4324 write_operator (gfc_user_op *uop)
4325 {
4326 static char nullstring[] = "";
4327 const char *p = nullstring;
4328
4329 if (uop->op == NULL
4330 || !gfc_check_access (uop->access, uop->ns->default_access))
4331 return;
4332
4333 mio_symbol_interface (&uop->name, &p, &uop->op);
4334 }
4335
4336
4337 /* Write generic interfaces from the namespace sym_root. */
4338
4339 static void
4340 write_generic (gfc_symtree *st)
4341 {
4342 gfc_symbol *sym;
4343
4344 if (st == NULL)
4345 return;
4346
4347 write_generic (st->left);
4348 write_generic (st->right);
4349
4350 sym = st->n.sym;
4351 if (!sym || check_unique_name (st->name))
4352 return;
4353
4354 if (sym->generic == NULL
4355 || !gfc_check_access (sym->attr.access, sym->ns->default_access))
4356 return;
4357
4358 if (sym->module == NULL)
4359 sym->module = gfc_get_string (module_name);
4360
4361 mio_symbol_interface (&st->name, &sym->module, &sym->generic);
4362 }
4363
4364
4365 static void
4366 write_symtree (gfc_symtree *st)
4367 {
4368 gfc_symbol *sym;
4369 pointer_info *p;
4370
4371 sym = st->n.sym;
4372 if (!gfc_check_access (sym->attr.access, sym->ns->default_access)
4373 || (sym->attr.flavor == FL_PROCEDURE && sym->attr.generic
4374 && !sym->attr.subroutine && !sym->attr.function))
4375 return;
4376
4377 if (check_unique_name (st->name))
4378 return;
4379
4380 p = find_pointer (sym);
4381 if (p == NULL)
4382 gfc_internal_error ("write_symtree(): Symbol not written");
4383
4384 mio_pool_string (&st->name);
4385 mio_integer (&st->ambiguous);
4386 mio_integer (&p->integer);
4387 }
4388
4389
4390 static void
4391 write_module (void)
4392 {
4393 gfc_intrinsic_op i;
4394
4395 /* Write the operator interfaces. */
4396 mio_lparen ();
4397
4398 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
4399 {
4400 if (i == INTRINSIC_USER)
4401 continue;
4402
4403 mio_interface (gfc_check_access (gfc_current_ns->operator_access[i],
4404 gfc_current_ns->default_access)
4405 ? &gfc_current_ns->op[i] : NULL);
4406 }
4407
4408 mio_rparen ();
4409 write_char ('\n');
4410 write_char ('\n');
4411
4412 mio_lparen ();
4413 gfc_traverse_user_op (gfc_current_ns, write_operator);
4414 mio_rparen ();
4415 write_char ('\n');
4416 write_char ('\n');
4417
4418 mio_lparen ();
4419 write_generic (gfc_current_ns->sym_root);
4420 mio_rparen ();
4421 write_char ('\n');
4422 write_char ('\n');
4423
4424 mio_lparen ();
4425 write_blank_common ();
4426 write_common (gfc_current_ns->common_root);
4427 mio_rparen ();
4428 write_char ('\n');
4429 write_char ('\n');
4430
4431 mio_lparen ();
4432 write_equiv ();
4433 mio_rparen ();
4434 write_char ('\n');
4435 write_char ('\n');
4436
4437 /* Write symbol information. First we traverse all symbols in the
4438 primary namespace, writing those that need to be written.
4439 Sometimes writing one symbol will cause another to need to be
4440 written. A list of these symbols ends up on the write stack, and
4441 we end by popping the bottom of the stack and writing the symbol
4442 until the stack is empty. */
4443
4444 mio_lparen ();
4445
4446 write_symbol0 (gfc_current_ns->sym_root);
4447 while (write_symbol1 (pi_root))
4448 /* Nothing. */;
4449
4450 mio_rparen ();
4451
4452 write_char ('\n');
4453 write_char ('\n');
4454
4455 mio_lparen ();
4456 gfc_traverse_symtree (gfc_current_ns->sym_root, write_symtree);
4457 mio_rparen ();
4458 }
4459
4460
4461 /* Read a MD5 sum from the header of a module file. If the file cannot
4462 be opened, or we have any other error, we return -1. */
4463
4464 static int
4465 read_md5_from_module_file (const char * filename, unsigned char md5[16])
4466 {
4467 FILE *file;
4468 char buf[1024];
4469 int n;
4470
4471 /* Open the file. */
4472 if ((file = fopen (filename, "r")) == NULL)
4473 return -1;
4474
4475 /* Read two lines. */
4476 if (fgets (buf, sizeof (buf) - 1, file) == NULL
4477 || fgets (buf, sizeof (buf) - 1, file) == NULL)
4478 {
4479 fclose (file);
4480 return -1;
4481 }
4482
4483 /* Close the file. */
4484 fclose (file);
4485
4486 /* If the header is not what we expect, or is too short, bail out. */
4487 if (strncmp (buf, "MD5:", 4) != 0 || strlen (buf) < 4 + 16)
4488 return -1;
4489
4490 /* Now, we have a real MD5, read it into the array. */
4491 for (n = 0; n < 16; n++)
4492 {
4493 unsigned int x;
4494
4495 if (sscanf (&(buf[4+2*n]), "%02x", &x) != 1)
4496 return -1;
4497
4498 md5[n] = x;
4499 }
4500
4501 return 0;
4502 }
4503
4504
4505 /* Given module, dump it to disk. If there was an error while
4506 processing the module, dump_flag will be set to zero and we delete
4507 the module file, even if it was already there. */
4508
4509 void
4510 gfc_dump_module (const char *name, int dump_flag)
4511 {
4512 int n;
4513 char *filename, *filename_tmp, *p;
4514 time_t now;
4515 fpos_t md5_pos;
4516 unsigned char md5_new[16], md5_old[16];
4517
4518 n = strlen (name) + strlen (MODULE_EXTENSION) + 1;
4519 if (gfc_option.module_dir != NULL)
4520 {
4521 n += strlen (gfc_option.module_dir);
4522 filename = (char *) alloca (n);
4523 strcpy (filename, gfc_option.module_dir);
4524 strcat (filename, name);
4525 }
4526 else
4527 {
4528 filename = (char *) alloca (n);
4529 strcpy (filename, name);
4530 }
4531 strcat (filename, MODULE_EXTENSION);
4532
4533 /* Name of the temporary file used to write the module. */
4534 filename_tmp = (char *) alloca (n + 1);
4535 strcpy (filename_tmp, filename);
4536 strcat (filename_tmp, "0");
4537
4538 /* There was an error while processing the module. We delete the
4539 module file, even if it was already there. */
4540 if (!dump_flag)
4541 {
4542 unlink (filename);
4543 return;
4544 }
4545
4546 /* Write the module to the temporary file. */
4547 module_fp = fopen (filename_tmp, "w");
4548 if (module_fp == NULL)
4549 gfc_fatal_error ("Can't open module file '%s' for writing at %C: %s",
4550 filename_tmp, strerror (errno));
4551
4552 /* Write the header, including space reserved for the MD5 sum. */
4553 now = time (NULL);
4554 p = ctime (&now);
4555
4556 *strchr (p, '\n') = '\0';
4557
4558 fprintf (module_fp, "GFORTRAN module created from %s on %s\nMD5:",
4559 gfc_source_file, p);
4560 fgetpos (module_fp, &md5_pos);
4561 fputs ("00000000000000000000000000000000 -- "
4562 "If you edit this, you'll get what you deserve.\n\n", module_fp);
4563
4564 /* Initialize the MD5 context that will be used for output. */
4565 md5_init_ctx (&ctx);
4566
4567 /* Write the module itself. */
4568 iomode = IO_OUTPUT;
4569 strcpy (module_name, name);
4570
4571 init_pi_tree ();
4572
4573 write_module ();
4574
4575 free_pi_tree (pi_root);
4576 pi_root = NULL;
4577
4578 write_char ('\n');
4579
4580 /* Write the MD5 sum to the header of the module file. */
4581 md5_finish_ctx (&ctx, md5_new);
4582 fsetpos (module_fp, &md5_pos);
4583 for (n = 0; n < 16; n++)
4584 fprintf (module_fp, "%02x", md5_new[n]);
4585
4586 if (fclose (module_fp))
4587 gfc_fatal_error ("Error writing module file '%s' for writing: %s",
4588 filename_tmp, strerror (errno));
4589
4590 /* Read the MD5 from the header of the old module file and compare. */
4591 if (read_md5_from_module_file (filename, md5_old) != 0
4592 || memcmp (md5_old, md5_new, sizeof (md5_old)) != 0)
4593 {
4594 /* Module file have changed, replace the old one. */
4595 unlink (filename);
4596 rename (filename_tmp, filename);
4597 }
4598 else
4599 unlink (filename_tmp);
4600 }
4601
4602
4603 static void
4604 sort_iso_c_rename_list (void)
4605 {
4606 gfc_use_rename *tmp_list = NULL;
4607 gfc_use_rename *curr;
4608 gfc_use_rename *kinds_used[ISOCBINDING_NUMBER] = {NULL};
4609 int c_kind;
4610 int i;
4611
4612 for (curr = gfc_rename_list; curr; curr = curr->next)
4613 {
4614 c_kind = get_c_kind (curr->use_name, c_interop_kinds_table);
4615 if (c_kind == ISOCBINDING_INVALID || c_kind == ISOCBINDING_LAST)
4616 {
4617 gfc_error ("Symbol '%s' referenced at %L does not exist in "
4618 "intrinsic module ISO_C_BINDING.", curr->use_name,
4619 &curr->where);
4620 }
4621 else
4622 /* Put it in the list. */
4623 kinds_used[c_kind] = curr;
4624 }
4625
4626 /* Make a new (sorted) rename list. */
4627 i = 0;
4628 while (i < ISOCBINDING_NUMBER && kinds_used[i] == NULL)
4629 i++;
4630
4631 if (i < ISOCBINDING_NUMBER)
4632 {
4633 tmp_list = kinds_used[i];
4634
4635 i++;
4636 curr = tmp_list;
4637 for (; i < ISOCBINDING_NUMBER; i++)
4638 if (kinds_used[i] != NULL)
4639 {
4640 curr->next = kinds_used[i];
4641 curr = curr->next;
4642 curr->next = NULL;
4643 }
4644 }
4645
4646 gfc_rename_list = tmp_list;
4647 }
4648
4649
4650 /* Import the intrinsic ISO_C_BINDING module, generating symbols in
4651 the current namespace for all named constants, pointer types, and
4652 procedures in the module unless the only clause was used or a rename
4653 list was provided. */
4654
4655 static void
4656 import_iso_c_binding_module (void)
4657 {
4658 gfc_symbol *mod_sym = NULL;
4659 gfc_symtree *mod_symtree = NULL;
4660 const char *iso_c_module_name = "__iso_c_binding";
4661 gfc_use_rename *u;
4662 int i;
4663 char *local_name;
4664
4665 /* Look only in the current namespace. */
4666 mod_symtree = gfc_find_symtree (gfc_current_ns->sym_root, iso_c_module_name);
4667
4668 if (mod_symtree == NULL)
4669 {
4670 /* symtree doesn't already exist in current namespace. */
4671 gfc_get_sym_tree (iso_c_module_name, gfc_current_ns, &mod_symtree);
4672
4673 if (mod_symtree != NULL)
4674 mod_sym = mod_symtree->n.sym;
4675 else
4676 gfc_internal_error ("import_iso_c_binding_module(): Unable to "
4677 "create symbol for %s", iso_c_module_name);
4678
4679 mod_sym->attr.flavor = FL_MODULE;
4680 mod_sym->attr.intrinsic = 1;
4681 mod_sym->module = gfc_get_string (iso_c_module_name);
4682 mod_sym->from_intmod = INTMOD_ISO_C_BINDING;
4683 }
4684
4685 /* Generate the symbols for the named constants representing
4686 the kinds for intrinsic data types. */
4687 if (only_flag)
4688 {
4689 /* Sort the rename list because there are dependencies between types
4690 and procedures (e.g., c_loc needs c_ptr). */
4691 sort_iso_c_rename_list ();
4692
4693 for (u = gfc_rename_list; u; u = u->next)
4694 {
4695 i = get_c_kind (u->use_name, c_interop_kinds_table);
4696
4697 if (i == ISOCBINDING_INVALID || i == ISOCBINDING_LAST)
4698 {
4699 gfc_error ("Symbol '%s' referenced at %L does not exist in "
4700 "intrinsic module ISO_C_BINDING.", u->use_name,
4701 &u->where);
4702 continue;
4703 }
4704
4705 generate_isocbinding_symbol (iso_c_module_name, i, u->local_name);
4706 }
4707 }
4708 else
4709 {
4710 for (i = 0; i < ISOCBINDING_NUMBER; i++)
4711 {
4712 local_name = NULL;
4713 for (u = gfc_rename_list; u; u = u->next)
4714 {
4715 if (strcmp (c_interop_kinds_table[i].name, u->use_name) == 0)
4716 {
4717 local_name = u->local_name;
4718 u->found = 1;
4719 break;
4720 }
4721 }
4722 generate_isocbinding_symbol (iso_c_module_name, i, local_name);
4723 }
4724
4725 for (u = gfc_rename_list; u; u = u->next)
4726 {
4727 if (u->found)
4728 continue;
4729
4730 gfc_error ("Symbol '%s' referenced at %L not found in intrinsic "
4731 "module ISO_C_BINDING", u->use_name, &u->where);
4732 }
4733 }
4734 }
4735
4736
4737 /* Add an integer named constant from a given module. */
4738
4739 static void
4740 create_int_parameter (const char *name, int value, const char *modname,
4741 intmod_id module, int id)
4742 {
4743 gfc_symtree *tmp_symtree;
4744 gfc_symbol *sym;
4745
4746 tmp_symtree = gfc_find_symtree (gfc_current_ns->sym_root, name);
4747 if (tmp_symtree != NULL)
4748 {
4749 if (strcmp (modname, tmp_symtree->n.sym->module) == 0)
4750 return;
4751 else
4752 gfc_error ("Symbol '%s' already declared", name);
4753 }
4754
4755 gfc_get_sym_tree (name, gfc_current_ns, &tmp_symtree);
4756 sym = tmp_symtree->n.sym;
4757
4758 sym->module = gfc_get_string (modname);
4759 sym->attr.flavor = FL_PARAMETER;
4760 sym->ts.type = BT_INTEGER;
4761 sym->ts.kind = gfc_default_integer_kind;
4762 sym->value = gfc_int_expr (value);
4763 sym->attr.use_assoc = 1;
4764 sym->from_intmod = module;
4765 sym->intmod_sym_id = id;
4766 }
4767
4768
4769 /* USE the ISO_FORTRAN_ENV intrinsic module. */
4770
4771 static void
4772 use_iso_fortran_env_module (void)
4773 {
4774 static char mod[] = "iso_fortran_env";
4775 const char *local_name;
4776 gfc_use_rename *u;
4777 gfc_symbol *mod_sym;
4778 gfc_symtree *mod_symtree;
4779 int i;
4780
4781 intmod_sym symbol[] = {
4782 #define NAMED_INTCST(a,b,c,d) { a, b, 0, d },
4783 #include "iso-fortran-env.def"
4784 #undef NAMED_INTCST
4785 { ISOFORTRANENV_INVALID, NULL, -1234, 0 } };
4786
4787 i = 0;
4788 #define NAMED_INTCST(a,b,c,d) symbol[i++].value = c;
4789 #include "iso-fortran-env.def"
4790 #undef NAMED_INTCST
4791
4792 /* Generate the symbol for the module itself. */
4793 mod_symtree = gfc_find_symtree (gfc_current_ns->sym_root, mod);
4794 if (mod_symtree == NULL)
4795 {
4796 gfc_get_sym_tree (mod, gfc_current_ns, &mod_symtree);
4797 gcc_assert (mod_symtree);
4798 mod_sym = mod_symtree->n.sym;
4799
4800 mod_sym->attr.flavor = FL_MODULE;
4801 mod_sym->attr.intrinsic = 1;
4802 mod_sym->module = gfc_get_string (mod);
4803 mod_sym->from_intmod = INTMOD_ISO_FORTRAN_ENV;
4804 }
4805 else
4806 if (!mod_symtree->n.sym->attr.intrinsic)
4807 gfc_error ("Use of intrinsic module '%s' at %C conflicts with "
4808 "non-intrinsic module name used previously", mod);
4809
4810 /* Generate the symbols for the module integer named constants. */
4811 if (only_flag)
4812 for (u = gfc_rename_list; u; u = u->next)
4813 {
4814 for (i = 0; symbol[i].name; i++)
4815 if (strcmp (symbol[i].name, u->use_name) == 0)
4816 break;
4817
4818 if (symbol[i].name == NULL)
4819 {
4820 gfc_error ("Symbol '%s' referenced at %L does not exist in "
4821 "intrinsic module ISO_FORTRAN_ENV", u->use_name,
4822 &u->where);
4823 continue;
4824 }
4825
4826 if ((gfc_option.flag_default_integer || gfc_option.flag_default_real)
4827 && symbol[i].id == ISOFORTRANENV_NUMERIC_STORAGE_SIZE)
4828 gfc_warning_now ("Use of the NUMERIC_STORAGE_SIZE named constant "
4829 "from intrinsic module ISO_FORTRAN_ENV at %L is "
4830 "incompatible with option %s", &u->where,
4831 gfc_option.flag_default_integer
4832 ? "-fdefault-integer-8" : "-fdefault-real-8");
4833
4834 create_int_parameter (u->local_name[0] ? u->local_name
4835 : symbol[i].name,
4836 symbol[i].value, mod, INTMOD_ISO_FORTRAN_ENV,
4837 symbol[i].id);
4838 }
4839 else
4840 {
4841 for (i = 0; symbol[i].name; i++)
4842 {
4843 local_name = NULL;
4844 for (u = gfc_rename_list; u; u = u->next)
4845 {
4846 if (strcmp (symbol[i].name, u->use_name) == 0)
4847 {
4848 local_name = u->local_name;
4849 u->found = 1;
4850 break;
4851 }
4852 }
4853
4854 if ((gfc_option.flag_default_integer || gfc_option.flag_default_real)
4855 && symbol[i].id == ISOFORTRANENV_NUMERIC_STORAGE_SIZE)
4856 gfc_warning_now ("Use of the NUMERIC_STORAGE_SIZE named constant "
4857 "from intrinsic module ISO_FORTRAN_ENV at %C is "
4858 "incompatible with option %s",
4859 gfc_option.flag_default_integer
4860 ? "-fdefault-integer-8" : "-fdefault-real-8");
4861
4862 create_int_parameter (local_name ? local_name : symbol[i].name,
4863 symbol[i].value, mod, INTMOD_ISO_FORTRAN_ENV,
4864 symbol[i].id);
4865 }
4866
4867 for (u = gfc_rename_list; u; u = u->next)
4868 {
4869 if (u->found)
4870 continue;
4871
4872 gfc_error ("Symbol '%s' referenced at %L not found in intrinsic "
4873 "module ISO_FORTRAN_ENV", u->use_name, &u->where);
4874 }
4875 }
4876 }
4877
4878
4879 /* Process a USE directive. */
4880
4881 void
4882 gfc_use_module (void)
4883 {
4884 char *filename;
4885 gfc_state_data *p;
4886 int c, line, start;
4887 gfc_symtree *mod_symtree;
4888
4889 filename = (char *) alloca (strlen (module_name) + strlen (MODULE_EXTENSION)
4890 + 1);
4891 strcpy (filename, module_name);
4892 strcat (filename, MODULE_EXTENSION);
4893
4894 /* First, try to find an non-intrinsic module, unless the USE statement
4895 specified that the module is intrinsic. */
4896 module_fp = NULL;
4897 if (!specified_int)
4898 module_fp = gfc_open_included_file (filename, true, true);
4899
4900 /* Then, see if it's an intrinsic one, unless the USE statement
4901 specified that the module is non-intrinsic. */
4902 if (module_fp == NULL && !specified_nonint)
4903 {
4904 if (strcmp (module_name, "iso_fortran_env") == 0
4905 && gfc_notify_std (GFC_STD_F2003, "Fortran 2003: ISO_FORTRAN_ENV "
4906 "intrinsic module at %C") != FAILURE)
4907 {
4908 use_iso_fortran_env_module ();
4909 return;
4910 }
4911
4912 if (strcmp (module_name, "iso_c_binding") == 0
4913 && gfc_notify_std (GFC_STD_F2003, "Fortran 2003: "
4914 "ISO_C_BINDING module at %C") != FAILURE)
4915 {
4916 import_iso_c_binding_module();
4917 return;
4918 }
4919
4920 module_fp = gfc_open_intrinsic_module (filename);
4921
4922 if (module_fp == NULL && specified_int)
4923 gfc_fatal_error ("Can't find an intrinsic module named '%s' at %C",
4924 module_name);
4925 }
4926
4927 if (module_fp == NULL)
4928 gfc_fatal_error ("Can't open module file '%s' for reading at %C: %s",
4929 filename, strerror (errno));
4930
4931 /* Check that we haven't already USEd an intrinsic module with the
4932 same name. */
4933
4934 mod_symtree = gfc_find_symtree (gfc_current_ns->sym_root, module_name);
4935 if (mod_symtree && mod_symtree->n.sym->attr.intrinsic)
4936 gfc_error ("Use of non-intrinsic module '%s' at %C conflicts with "
4937 "intrinsic module name used previously", module_name);
4938
4939 iomode = IO_INPUT;
4940 module_line = 1;
4941 module_column = 1;
4942 start = 0;
4943
4944 /* Skip the first two lines of the module, after checking that this is
4945 a gfortran module file. */
4946 line = 0;
4947 while (line < 2)
4948 {
4949 c = module_char ();
4950 if (c == EOF)
4951 bad_module ("Unexpected end of module");
4952 if (start++ < 2)
4953 parse_name (c);
4954 if ((start == 1 && strcmp (atom_name, "GFORTRAN") != 0)
4955 || (start == 2 && strcmp (atom_name, " module") != 0))
4956 gfc_fatal_error ("File '%s' opened at %C is not a GFORTRAN module "
4957 "file", filename);
4958
4959 if (c == '\n')
4960 line++;
4961 }
4962
4963 /* Make sure we're not reading the same module that we may be building. */
4964 for (p = gfc_state_stack; p; p = p->previous)
4965 if (p->state == COMP_MODULE && strcmp (p->sym->name, module_name) == 0)
4966 gfc_fatal_error ("Can't USE the same module we're building!");
4967
4968 init_pi_tree ();
4969 init_true_name_tree ();
4970
4971 read_module ();
4972
4973 free_true_name (true_name_root);
4974 true_name_root = NULL;
4975
4976 free_pi_tree (pi_root);
4977 pi_root = NULL;
4978
4979 fclose (module_fp);
4980 }
4981
4982
4983 void
4984 gfc_module_init_2 (void)
4985 {
4986 last_atom = ATOM_LPAREN;
4987 }
4988
4989
4990 void
4991 gfc_module_done_2 (void)
4992 {
4993 free_rename ();
4994 }