51d0654c0ef8eb301237edfcdb8fb7bcc4a90ed6
[gcc.git] / gcc / fortran / resolve.c
1 /* Perform type resolution on the various structures.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Andy Vaught
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "flags.h"
25 #include "gfortran.h"
26 #include "obstack.h"
27 #include "bitmap.h"
28 #include "arith.h" /* For gfc_compare_expr(). */
29 #include "dependency.h"
30 #include "data.h"
31 #include "target-memory.h" /* for gfc_simplify_transfer */
32
33 /* Types used in equivalence statements. */
34
35 typedef enum seq_type
36 {
37 SEQ_NONDEFAULT, SEQ_NUMERIC, SEQ_CHARACTER, SEQ_MIXED
38 }
39 seq_type;
40
41 /* Stack to keep track of the nesting of blocks as we move through the
42 code. See resolve_branch() and resolve_code(). */
43
44 typedef struct code_stack
45 {
46 struct gfc_code *head, *current, *tail;
47 struct code_stack *prev;
48
49 /* This bitmap keeps track of the targets valid for a branch from
50 inside this block. */
51 bitmap reachable_labels;
52 }
53 code_stack;
54
55 static code_stack *cs_base = NULL;
56
57
58 /* Nonzero if we're inside a FORALL block. */
59
60 static int forall_flag;
61
62 /* Nonzero if we're inside a OpenMP WORKSHARE or PARALLEL WORKSHARE block. */
63
64 static int omp_workshare_flag;
65
66 /* Nonzero if we are processing a formal arglist. The corresponding function
67 resets the flag each time that it is read. */
68 static int formal_arg_flag = 0;
69
70 /* True if we are resolving a specification expression. */
71 static int specification_expr = 0;
72
73 /* The id of the last entry seen. */
74 static int current_entry_id;
75
76 /* We use bitmaps to determine if a branch target is valid. */
77 static bitmap_obstack labels_obstack;
78
79 int
80 gfc_is_formal_arg (void)
81 {
82 return formal_arg_flag;
83 }
84
85 /* Resolve types of formal argument lists. These have to be done early so that
86 the formal argument lists of module procedures can be copied to the
87 containing module before the individual procedures are resolved
88 individually. We also resolve argument lists of procedures in interface
89 blocks because they are self-contained scoping units.
90
91 Since a dummy argument cannot be a non-dummy procedure, the only
92 resort left for untyped names are the IMPLICIT types. */
93
94 static void
95 resolve_formal_arglist (gfc_symbol *proc)
96 {
97 gfc_formal_arglist *f;
98 gfc_symbol *sym;
99 int i;
100
101 if (proc->result != NULL)
102 sym = proc->result;
103 else
104 sym = proc;
105
106 if (gfc_elemental (proc)
107 || sym->attr.pointer || sym->attr.allocatable
108 || (sym->as && sym->as->rank > 0))
109 {
110 proc->attr.always_explicit = 1;
111 sym->attr.always_explicit = 1;
112 }
113
114 formal_arg_flag = 1;
115
116 for (f = proc->formal; f; f = f->next)
117 {
118 sym = f->sym;
119
120 if (sym == NULL)
121 {
122 /* Alternate return placeholder. */
123 if (gfc_elemental (proc))
124 gfc_error ("Alternate return specifier in elemental subroutine "
125 "'%s' at %L is not allowed", proc->name,
126 &proc->declared_at);
127 if (proc->attr.function)
128 gfc_error ("Alternate return specifier in function "
129 "'%s' at %L is not allowed", proc->name,
130 &proc->declared_at);
131 continue;
132 }
133
134 if (sym->attr.if_source != IFSRC_UNKNOWN)
135 resolve_formal_arglist (sym);
136
137 if (sym->attr.subroutine || sym->attr.external || sym->attr.intrinsic)
138 {
139 if (gfc_pure (proc) && !gfc_pure (sym))
140 {
141 gfc_error ("Dummy procedure '%s' of PURE procedure at %L must "
142 "also be PURE", sym->name, &sym->declared_at);
143 continue;
144 }
145
146 if (gfc_elemental (proc))
147 {
148 gfc_error ("Dummy procedure at %L not allowed in ELEMENTAL "
149 "procedure", &sym->declared_at);
150 continue;
151 }
152
153 if (sym->attr.function
154 && sym->ts.type == BT_UNKNOWN
155 && sym->attr.intrinsic)
156 {
157 gfc_intrinsic_sym *isym;
158 isym = gfc_find_function (sym->name);
159 if (isym == NULL || !isym->specific)
160 {
161 gfc_error ("Unable to find a specific INTRINSIC procedure "
162 "for the reference '%s' at %L", sym->name,
163 &sym->declared_at);
164 }
165 sym->ts = isym->ts;
166 }
167
168 continue;
169 }
170
171 if (sym->ts.type == BT_UNKNOWN)
172 {
173 if (!sym->attr.function || sym->result == sym)
174 gfc_set_default_type (sym, 1, sym->ns);
175 }
176
177 gfc_resolve_array_spec (sym->as, 0);
178
179 /* We can't tell if an array with dimension (:) is assumed or deferred
180 shape until we know if it has the pointer or allocatable attributes.
181 */
182 if (sym->as && sym->as->rank > 0 && sym->as->type == AS_DEFERRED
183 && !(sym->attr.pointer || sym->attr.allocatable))
184 {
185 sym->as->type = AS_ASSUMED_SHAPE;
186 for (i = 0; i < sym->as->rank; i++)
187 sym->as->lower[i] = gfc_int_expr (1);
188 }
189
190 if ((sym->as && sym->as->rank > 0 && sym->as->type == AS_ASSUMED_SHAPE)
191 || sym->attr.pointer || sym->attr.allocatable || sym->attr.target
192 || sym->attr.optional)
193 {
194 proc->attr.always_explicit = 1;
195 if (proc->result)
196 proc->result->attr.always_explicit = 1;
197 }
198
199 /* If the flavor is unknown at this point, it has to be a variable.
200 A procedure specification would have already set the type. */
201
202 if (sym->attr.flavor == FL_UNKNOWN)
203 gfc_add_flavor (&sym->attr, FL_VARIABLE, sym->name, &sym->declared_at);
204
205 if (gfc_pure (proc) && !sym->attr.pointer
206 && sym->attr.flavor != FL_PROCEDURE)
207 {
208 if (proc->attr.function && sym->attr.intent != INTENT_IN)
209 gfc_error ("Argument '%s' of pure function '%s' at %L must be "
210 "INTENT(IN)", sym->name, proc->name,
211 &sym->declared_at);
212
213 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN)
214 gfc_error ("Argument '%s' of pure subroutine '%s' at %L must "
215 "have its INTENT specified", sym->name, proc->name,
216 &sym->declared_at);
217 }
218
219 if (gfc_elemental (proc))
220 {
221 if (sym->as != NULL)
222 {
223 gfc_error ("Argument '%s' of elemental procedure at %L must "
224 "be scalar", sym->name, &sym->declared_at);
225 continue;
226 }
227
228 if (sym->attr.pointer)
229 {
230 gfc_error ("Argument '%s' of elemental procedure at %L cannot "
231 "have the POINTER attribute", sym->name,
232 &sym->declared_at);
233 continue;
234 }
235
236 if (sym->attr.flavor == FL_PROCEDURE)
237 {
238 gfc_error ("Dummy procedure '%s' not allowed in elemental "
239 "procedure '%s' at %L", sym->name, proc->name,
240 &sym->declared_at);
241 continue;
242 }
243 }
244
245 /* Each dummy shall be specified to be scalar. */
246 if (proc->attr.proc == PROC_ST_FUNCTION)
247 {
248 if (sym->as != NULL)
249 {
250 gfc_error ("Argument '%s' of statement function at %L must "
251 "be scalar", sym->name, &sym->declared_at);
252 continue;
253 }
254
255 if (sym->ts.type == BT_CHARACTER)
256 {
257 gfc_charlen *cl = sym->ts.cl;
258 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
259 {
260 gfc_error ("Character-valued argument '%s' of statement "
261 "function at %L must have constant length",
262 sym->name, &sym->declared_at);
263 continue;
264 }
265 }
266 }
267 }
268 formal_arg_flag = 0;
269 }
270
271
272 /* Work function called when searching for symbols that have argument lists
273 associated with them. */
274
275 static void
276 find_arglists (gfc_symbol *sym)
277 {
278 if (sym->attr.if_source == IFSRC_UNKNOWN || sym->ns != gfc_current_ns)
279 return;
280
281 resolve_formal_arglist (sym);
282 }
283
284
285 /* Given a namespace, resolve all formal argument lists within the namespace.
286 */
287
288 static void
289 resolve_formal_arglists (gfc_namespace *ns)
290 {
291 if (ns == NULL)
292 return;
293
294 gfc_traverse_ns (ns, find_arglists);
295 }
296
297
298 static void
299 resolve_contained_fntype (gfc_symbol *sym, gfc_namespace *ns)
300 {
301 gfc_try t;
302
303 /* If this namespace is not a function or an entry master function,
304 ignore it. */
305 if (! sym || !(sym->attr.function || sym->attr.flavor == FL_VARIABLE)
306 || sym->attr.entry_master)
307 return;
308
309 /* Try to find out of what the return type is. */
310 if (sym->result->ts.type == BT_UNKNOWN)
311 {
312 t = gfc_set_default_type (sym->result, 0, ns);
313
314 if (t == FAILURE && !sym->result->attr.untyped)
315 {
316 if (sym->result == sym)
317 gfc_error ("Contained function '%s' at %L has no IMPLICIT type",
318 sym->name, &sym->declared_at);
319 else
320 gfc_error ("Result '%s' of contained function '%s' at %L has "
321 "no IMPLICIT type", sym->result->name, sym->name,
322 &sym->result->declared_at);
323 sym->result->attr.untyped = 1;
324 }
325 }
326
327 /* Fortran 95 Draft Standard, page 51, Section 5.1.1.5, on the Character
328 type, lists the only ways a character length value of * can be used:
329 dummy arguments of procedures, named constants, and function results
330 in external functions. Internal function results are not on that list;
331 ergo, not permitted. */
332
333 if (sym->result->ts.type == BT_CHARACTER)
334 {
335 gfc_charlen *cl = sym->result->ts.cl;
336 if (!cl || !cl->length)
337 gfc_error ("Character-valued internal function '%s' at %L must "
338 "not be assumed length", sym->name, &sym->declared_at);
339 }
340 }
341
342
343 /* Add NEW_ARGS to the formal argument list of PROC, taking care not to
344 introduce duplicates. */
345
346 static void
347 merge_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
348 {
349 gfc_formal_arglist *f, *new_arglist;
350 gfc_symbol *new_sym;
351
352 for (; new_args != NULL; new_args = new_args->next)
353 {
354 new_sym = new_args->sym;
355 /* See if this arg is already in the formal argument list. */
356 for (f = proc->formal; f; f = f->next)
357 {
358 if (new_sym == f->sym)
359 break;
360 }
361
362 if (f)
363 continue;
364
365 /* Add a new argument. Argument order is not important. */
366 new_arglist = gfc_get_formal_arglist ();
367 new_arglist->sym = new_sym;
368 new_arglist->next = proc->formal;
369 proc->formal = new_arglist;
370 }
371 }
372
373
374 /* Flag the arguments that are not present in all entries. */
375
376 static void
377 check_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
378 {
379 gfc_formal_arglist *f, *head;
380 head = new_args;
381
382 for (f = proc->formal; f; f = f->next)
383 {
384 if (f->sym == NULL)
385 continue;
386
387 for (new_args = head; new_args; new_args = new_args->next)
388 {
389 if (new_args->sym == f->sym)
390 break;
391 }
392
393 if (new_args)
394 continue;
395
396 f->sym->attr.not_always_present = 1;
397 }
398 }
399
400
401 /* Resolve alternate entry points. If a symbol has multiple entry points we
402 create a new master symbol for the main routine, and turn the existing
403 symbol into an entry point. */
404
405 static void
406 resolve_entries (gfc_namespace *ns)
407 {
408 gfc_namespace *old_ns;
409 gfc_code *c;
410 gfc_symbol *proc;
411 gfc_entry_list *el;
412 char name[GFC_MAX_SYMBOL_LEN + 1];
413 static int master_count = 0;
414
415 if (ns->proc_name == NULL)
416 return;
417
418 /* No need to do anything if this procedure doesn't have alternate entry
419 points. */
420 if (!ns->entries)
421 return;
422
423 /* We may already have resolved alternate entry points. */
424 if (ns->proc_name->attr.entry_master)
425 return;
426
427 /* If this isn't a procedure something has gone horribly wrong. */
428 gcc_assert (ns->proc_name->attr.flavor == FL_PROCEDURE);
429
430 /* Remember the current namespace. */
431 old_ns = gfc_current_ns;
432
433 gfc_current_ns = ns;
434
435 /* Add the main entry point to the list of entry points. */
436 el = gfc_get_entry_list ();
437 el->sym = ns->proc_name;
438 el->id = 0;
439 el->next = ns->entries;
440 ns->entries = el;
441 ns->proc_name->attr.entry = 1;
442
443 /* If it is a module function, it needs to be in the right namespace
444 so that gfc_get_fake_result_decl can gather up the results. The
445 need for this arose in get_proc_name, where these beasts were
446 left in their own namespace, to keep prior references linked to
447 the entry declaration.*/
448 if (ns->proc_name->attr.function
449 && ns->parent && ns->parent->proc_name->attr.flavor == FL_MODULE)
450 el->sym->ns = ns;
451
452 /* Do the same for entries where the master is not a module
453 procedure. These are retained in the module namespace because
454 of the module procedure declaration. */
455 for (el = el->next; el; el = el->next)
456 if (el->sym->ns->proc_name->attr.flavor == FL_MODULE
457 && el->sym->attr.mod_proc)
458 el->sym->ns = ns;
459 el = ns->entries;
460
461 /* Add an entry statement for it. */
462 c = gfc_get_code ();
463 c->op = EXEC_ENTRY;
464 c->ext.entry = el;
465 c->next = ns->code;
466 ns->code = c;
467
468 /* Create a new symbol for the master function. */
469 /* Give the internal function a unique name (within this file).
470 Also include the function name so the user has some hope of figuring
471 out what is going on. */
472 snprintf (name, GFC_MAX_SYMBOL_LEN, "master.%d.%s",
473 master_count++, ns->proc_name->name);
474 gfc_get_ha_symbol (name, &proc);
475 gcc_assert (proc != NULL);
476
477 gfc_add_procedure (&proc->attr, PROC_INTERNAL, proc->name, NULL);
478 if (ns->proc_name->attr.subroutine)
479 gfc_add_subroutine (&proc->attr, proc->name, NULL);
480 else
481 {
482 gfc_symbol *sym;
483 gfc_typespec *ts, *fts;
484 gfc_array_spec *as, *fas;
485 gfc_add_function (&proc->attr, proc->name, NULL);
486 proc->result = proc;
487 fas = ns->entries->sym->as;
488 fas = fas ? fas : ns->entries->sym->result->as;
489 fts = &ns->entries->sym->result->ts;
490 if (fts->type == BT_UNKNOWN)
491 fts = gfc_get_default_type (ns->entries->sym->result, NULL);
492 for (el = ns->entries->next; el; el = el->next)
493 {
494 ts = &el->sym->result->ts;
495 as = el->sym->as;
496 as = as ? as : el->sym->result->as;
497 if (ts->type == BT_UNKNOWN)
498 ts = gfc_get_default_type (el->sym->result, NULL);
499
500 if (! gfc_compare_types (ts, fts)
501 || (el->sym->result->attr.dimension
502 != ns->entries->sym->result->attr.dimension)
503 || (el->sym->result->attr.pointer
504 != ns->entries->sym->result->attr.pointer))
505 break;
506 else if (as && fas && ns->entries->sym->result != el->sym->result
507 && gfc_compare_array_spec (as, fas) == 0)
508 gfc_error ("Function %s at %L has entries with mismatched "
509 "array specifications", ns->entries->sym->name,
510 &ns->entries->sym->declared_at);
511 /* The characteristics need to match and thus both need to have
512 the same string length, i.e. both len=*, or both len=4.
513 Having both len=<variable> is also possible, but difficult to
514 check at compile time. */
515 else if (ts->type == BT_CHARACTER && ts->cl && fts->cl
516 && (((ts->cl->length && !fts->cl->length)
517 ||(!ts->cl->length && fts->cl->length))
518 || (ts->cl->length
519 && ts->cl->length->expr_type
520 != fts->cl->length->expr_type)
521 || (ts->cl->length
522 && ts->cl->length->expr_type == EXPR_CONSTANT
523 && mpz_cmp (ts->cl->length->value.integer,
524 fts->cl->length->value.integer) != 0)))
525 gfc_notify_std (GFC_STD_GNU, "Extension: Function %s at %L with "
526 "entries returning variables of different "
527 "string lengths", ns->entries->sym->name,
528 &ns->entries->sym->declared_at);
529 }
530
531 if (el == NULL)
532 {
533 sym = ns->entries->sym->result;
534 /* All result types the same. */
535 proc->ts = *fts;
536 if (sym->attr.dimension)
537 gfc_set_array_spec (proc, gfc_copy_array_spec (sym->as), NULL);
538 if (sym->attr.pointer)
539 gfc_add_pointer (&proc->attr, NULL);
540 }
541 else
542 {
543 /* Otherwise the result will be passed through a union by
544 reference. */
545 proc->attr.mixed_entry_master = 1;
546 for (el = ns->entries; el; el = el->next)
547 {
548 sym = el->sym->result;
549 if (sym->attr.dimension)
550 {
551 if (el == ns->entries)
552 gfc_error ("FUNCTION result %s can't be an array in "
553 "FUNCTION %s at %L", sym->name,
554 ns->entries->sym->name, &sym->declared_at);
555 else
556 gfc_error ("ENTRY result %s can't be an array in "
557 "FUNCTION %s at %L", sym->name,
558 ns->entries->sym->name, &sym->declared_at);
559 }
560 else if (sym->attr.pointer)
561 {
562 if (el == ns->entries)
563 gfc_error ("FUNCTION result %s can't be a POINTER in "
564 "FUNCTION %s at %L", sym->name,
565 ns->entries->sym->name, &sym->declared_at);
566 else
567 gfc_error ("ENTRY result %s can't be a POINTER in "
568 "FUNCTION %s at %L", sym->name,
569 ns->entries->sym->name, &sym->declared_at);
570 }
571 else
572 {
573 ts = &sym->ts;
574 if (ts->type == BT_UNKNOWN)
575 ts = gfc_get_default_type (sym, NULL);
576 switch (ts->type)
577 {
578 case BT_INTEGER:
579 if (ts->kind == gfc_default_integer_kind)
580 sym = NULL;
581 break;
582 case BT_REAL:
583 if (ts->kind == gfc_default_real_kind
584 || ts->kind == gfc_default_double_kind)
585 sym = NULL;
586 break;
587 case BT_COMPLEX:
588 if (ts->kind == gfc_default_complex_kind)
589 sym = NULL;
590 break;
591 case BT_LOGICAL:
592 if (ts->kind == gfc_default_logical_kind)
593 sym = NULL;
594 break;
595 case BT_UNKNOWN:
596 /* We will issue error elsewhere. */
597 sym = NULL;
598 break;
599 default:
600 break;
601 }
602 if (sym)
603 {
604 if (el == ns->entries)
605 gfc_error ("FUNCTION result %s can't be of type %s "
606 "in FUNCTION %s at %L", sym->name,
607 gfc_typename (ts), ns->entries->sym->name,
608 &sym->declared_at);
609 else
610 gfc_error ("ENTRY result %s can't be of type %s "
611 "in FUNCTION %s at %L", sym->name,
612 gfc_typename (ts), ns->entries->sym->name,
613 &sym->declared_at);
614 }
615 }
616 }
617 }
618 }
619 proc->attr.access = ACCESS_PRIVATE;
620 proc->attr.entry_master = 1;
621
622 /* Merge all the entry point arguments. */
623 for (el = ns->entries; el; el = el->next)
624 merge_argument_lists (proc, el->sym->formal);
625
626 /* Check the master formal arguments for any that are not
627 present in all entry points. */
628 for (el = ns->entries; el; el = el->next)
629 check_argument_lists (proc, el->sym->formal);
630
631 /* Use the master function for the function body. */
632 ns->proc_name = proc;
633
634 /* Finalize the new symbols. */
635 gfc_commit_symbols ();
636
637 /* Restore the original namespace. */
638 gfc_current_ns = old_ns;
639 }
640
641
642 static bool
643 has_default_initializer (gfc_symbol *der)
644 {
645 gfc_component *c;
646
647 gcc_assert (der->attr.flavor == FL_DERIVED);
648 for (c = der->components; c; c = c->next)
649 if ((c->ts.type != BT_DERIVED && c->initializer)
650 || (c->ts.type == BT_DERIVED
651 && (!c->attr.pointer && has_default_initializer (c->ts.derived))))
652 break;
653
654 return c != NULL;
655 }
656
657 /* Resolve common variables. */
658 static void
659 resolve_common_vars (gfc_symbol *sym, bool named_common)
660 {
661 gfc_symbol *csym = sym;
662
663 for (; csym; csym = csym->common_next)
664 {
665 if (csym->value || csym->attr.data)
666 {
667 if (!csym->ns->is_block_data)
668 gfc_notify_std (GFC_STD_GNU, "Variable '%s' at %L is in COMMON "
669 "but only in BLOCK DATA initialization is "
670 "allowed", csym->name, &csym->declared_at);
671 else if (!named_common)
672 gfc_notify_std (GFC_STD_GNU, "Initialized variable '%s' at %L is "
673 "in a blank COMMON but initialization is only "
674 "allowed in named common blocks", csym->name,
675 &csym->declared_at);
676 }
677
678 if (csym->ts.type != BT_DERIVED)
679 continue;
680
681 if (!(csym->ts.derived->attr.sequence
682 || csym->ts.derived->attr.is_bind_c))
683 gfc_error_now ("Derived type variable '%s' in COMMON at %L "
684 "has neither the SEQUENCE nor the BIND(C) "
685 "attribute", csym->name, &csym->declared_at);
686 if (csym->ts.derived->attr.alloc_comp)
687 gfc_error_now ("Derived type variable '%s' in COMMON at %L "
688 "has an ultimate component that is "
689 "allocatable", csym->name, &csym->declared_at);
690 if (has_default_initializer (csym->ts.derived))
691 gfc_error_now ("Derived type variable '%s' in COMMON at %L "
692 "may not have default initializer", csym->name,
693 &csym->declared_at);
694 }
695 }
696
697 /* Resolve common blocks. */
698 static void
699 resolve_common_blocks (gfc_symtree *common_root)
700 {
701 gfc_symbol *sym;
702
703 if (common_root == NULL)
704 return;
705
706 if (common_root->left)
707 resolve_common_blocks (common_root->left);
708 if (common_root->right)
709 resolve_common_blocks (common_root->right);
710
711 resolve_common_vars (common_root->n.common->head, true);
712
713 gfc_find_symbol (common_root->name, gfc_current_ns, 0, &sym);
714 if (sym == NULL)
715 return;
716
717 if (sym->attr.flavor == FL_PARAMETER)
718 gfc_error ("COMMON block '%s' at %L is used as PARAMETER at %L",
719 sym->name, &common_root->n.common->where, &sym->declared_at);
720
721 if (sym->attr.intrinsic)
722 gfc_error ("COMMON block '%s' at %L is also an intrinsic procedure",
723 sym->name, &common_root->n.common->where);
724 else if (sym->attr.result
725 ||(sym->attr.function && gfc_current_ns->proc_name == sym))
726 gfc_notify_std (GFC_STD_F2003, "Fortran 2003: COMMON block '%s' at %L "
727 "that is also a function result", sym->name,
728 &common_root->n.common->where);
729 else if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_INTERNAL
730 && sym->attr.proc != PROC_ST_FUNCTION)
731 gfc_notify_std (GFC_STD_F2003, "Fortran 2003: COMMON block '%s' at %L "
732 "that is also a global procedure", sym->name,
733 &common_root->n.common->where);
734 }
735
736
737 /* Resolve contained function types. Because contained functions can call one
738 another, they have to be worked out before any of the contained procedures
739 can be resolved.
740
741 The good news is that if a function doesn't already have a type, the only
742 way it can get one is through an IMPLICIT type or a RESULT variable, because
743 by definition contained functions are contained namespace they're contained
744 in, not in a sibling or parent namespace. */
745
746 static void
747 resolve_contained_functions (gfc_namespace *ns)
748 {
749 gfc_namespace *child;
750 gfc_entry_list *el;
751
752 resolve_formal_arglists (ns);
753
754 for (child = ns->contained; child; child = child->sibling)
755 {
756 /* Resolve alternate entry points first. */
757 resolve_entries (child);
758
759 /* Then check function return types. */
760 resolve_contained_fntype (child->proc_name, child);
761 for (el = child->entries; el; el = el->next)
762 resolve_contained_fntype (el->sym, child);
763 }
764 }
765
766
767 /* Resolve all of the elements of a structure constructor and make sure that
768 the types are correct. */
769
770 static gfc_try
771 resolve_structure_cons (gfc_expr *expr)
772 {
773 gfc_constructor *cons;
774 gfc_component *comp;
775 gfc_try t;
776 symbol_attribute a;
777
778 t = SUCCESS;
779 cons = expr->value.constructor;
780 /* A constructor may have references if it is the result of substituting a
781 parameter variable. In this case we just pull out the component we
782 want. */
783 if (expr->ref)
784 comp = expr->ref->u.c.sym->components;
785 else
786 comp = expr->ts.derived->components;
787
788 /* See if the user is trying to invoke a structure constructor for one of
789 the iso_c_binding derived types. */
790 if (expr->ts.derived && expr->ts.derived->ts.is_iso_c && cons
791 && cons->expr != NULL)
792 {
793 gfc_error ("Components of structure constructor '%s' at %L are PRIVATE",
794 expr->ts.derived->name, &(expr->where));
795 return FAILURE;
796 }
797
798 for (; comp; comp = comp->next, cons = cons->next)
799 {
800 int rank;
801
802 if (!cons->expr)
803 continue;
804
805 if (gfc_resolve_expr (cons->expr) == FAILURE)
806 {
807 t = FAILURE;
808 continue;
809 }
810
811 rank = comp->as ? comp->as->rank : 0;
812 if (cons->expr->expr_type != EXPR_NULL && rank != cons->expr->rank
813 && (comp->attr.allocatable || cons->expr->rank))
814 {
815 gfc_error ("The rank of the element in the derived type "
816 "constructor at %L does not match that of the "
817 "component (%d/%d)", &cons->expr->where,
818 cons->expr->rank, rank);
819 t = FAILURE;
820 }
821
822 /* If we don't have the right type, try to convert it. */
823
824 if (!gfc_compare_types (&cons->expr->ts, &comp->ts))
825 {
826 t = FAILURE;
827 if (comp->attr.pointer && cons->expr->ts.type != BT_UNKNOWN)
828 gfc_error ("The element in the derived type constructor at %L, "
829 "for pointer component '%s', is %s but should be %s",
830 &cons->expr->where, comp->name,
831 gfc_basic_typename (cons->expr->ts.type),
832 gfc_basic_typename (comp->ts.type));
833 else
834 t = gfc_convert_type (cons->expr, &comp->ts, 1);
835 }
836
837 if (cons->expr->expr_type == EXPR_NULL
838 && !(comp->attr.pointer || comp->attr.allocatable))
839 {
840 t = FAILURE;
841 gfc_error ("The NULL in the derived type constructor at %L is "
842 "being applied to component '%s', which is neither "
843 "a POINTER nor ALLOCATABLE", &cons->expr->where,
844 comp->name);
845 }
846
847 if (!comp->attr.pointer || cons->expr->expr_type == EXPR_NULL)
848 continue;
849
850 a = gfc_expr_attr (cons->expr);
851
852 if (!a.pointer && !a.target)
853 {
854 t = FAILURE;
855 gfc_error ("The element in the derived type constructor at %L, "
856 "for pointer component '%s' should be a POINTER or "
857 "a TARGET", &cons->expr->where, comp->name);
858 }
859 }
860
861 return t;
862 }
863
864
865 /****************** Expression name resolution ******************/
866
867 /* Returns 0 if a symbol was not declared with a type or
868 attribute declaration statement, nonzero otherwise. */
869
870 static int
871 was_declared (gfc_symbol *sym)
872 {
873 symbol_attribute a;
874
875 a = sym->attr;
876
877 if (!a.implicit_type && sym->ts.type != BT_UNKNOWN)
878 return 1;
879
880 if (a.allocatable || a.dimension || a.dummy || a.external || a.intrinsic
881 || a.optional || a.pointer || a.save || a.target || a.volatile_
882 || a.value || a.access != ACCESS_UNKNOWN || a.intent != INTENT_UNKNOWN)
883 return 1;
884
885 return 0;
886 }
887
888
889 /* Determine if a symbol is generic or not. */
890
891 static int
892 generic_sym (gfc_symbol *sym)
893 {
894 gfc_symbol *s;
895
896 if (sym->attr.generic ||
897 (sym->attr.intrinsic && gfc_generic_intrinsic (sym->name)))
898 return 1;
899
900 if (was_declared (sym) || sym->ns->parent == NULL)
901 return 0;
902
903 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
904
905 if (s != NULL)
906 {
907 if (s == sym)
908 return 0;
909 else
910 return generic_sym (s);
911 }
912
913 return 0;
914 }
915
916
917 /* Determine if a symbol is specific or not. */
918
919 static int
920 specific_sym (gfc_symbol *sym)
921 {
922 gfc_symbol *s;
923
924 if (sym->attr.if_source == IFSRC_IFBODY
925 || sym->attr.proc == PROC_MODULE
926 || sym->attr.proc == PROC_INTERNAL
927 || sym->attr.proc == PROC_ST_FUNCTION
928 || (sym->attr.intrinsic && gfc_specific_intrinsic (sym->name))
929 || sym->attr.external)
930 return 1;
931
932 if (was_declared (sym) || sym->ns->parent == NULL)
933 return 0;
934
935 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
936
937 return (s == NULL) ? 0 : specific_sym (s);
938 }
939
940
941 /* Figure out if the procedure is specific, generic or unknown. */
942
943 typedef enum
944 { PTYPE_GENERIC = 1, PTYPE_SPECIFIC, PTYPE_UNKNOWN }
945 proc_type;
946
947 static proc_type
948 procedure_kind (gfc_symbol *sym)
949 {
950 if (generic_sym (sym))
951 return PTYPE_GENERIC;
952
953 if (specific_sym (sym))
954 return PTYPE_SPECIFIC;
955
956 return PTYPE_UNKNOWN;
957 }
958
959 /* Check references to assumed size arrays. The flag need_full_assumed_size
960 is nonzero when matching actual arguments. */
961
962 static int need_full_assumed_size = 0;
963
964 static bool
965 check_assumed_size_reference (gfc_symbol *sym, gfc_expr *e)
966 {
967 if (need_full_assumed_size || !(sym->as && sym->as->type == AS_ASSUMED_SIZE))
968 return false;
969
970 if ((e->ref->u.ar.end[e->ref->u.ar.as->rank - 1] == NULL)
971 && (e->ref->u.ar.as->type == AS_ASSUMED_SIZE)
972 && (e->ref->u.ar.type == DIMEN_ELEMENT))
973 {
974 gfc_error ("The upper bound in the last dimension must "
975 "appear in the reference to the assumed size "
976 "array '%s' at %L", sym->name, &e->where);
977 return true;
978 }
979 return false;
980 }
981
982
983 /* Look for bad assumed size array references in argument expressions
984 of elemental and array valued intrinsic procedures. Since this is
985 called from procedure resolution functions, it only recurses at
986 operators. */
987
988 static bool
989 resolve_assumed_size_actual (gfc_expr *e)
990 {
991 if (e == NULL)
992 return false;
993
994 switch (e->expr_type)
995 {
996 case EXPR_VARIABLE:
997 if (e->symtree && check_assumed_size_reference (e->symtree->n.sym, e))
998 return true;
999 break;
1000
1001 case EXPR_OP:
1002 if (resolve_assumed_size_actual (e->value.op.op1)
1003 || resolve_assumed_size_actual (e->value.op.op2))
1004 return true;
1005 break;
1006
1007 default:
1008 break;
1009 }
1010 return false;
1011 }
1012
1013
1014 /* Resolve an actual argument list. Most of the time, this is just
1015 resolving the expressions in the list.
1016 The exception is that we sometimes have to decide whether arguments
1017 that look like procedure arguments are really simple variable
1018 references. */
1019
1020 static gfc_try
1021 resolve_actual_arglist (gfc_actual_arglist *arg, procedure_type ptype)
1022 {
1023 gfc_symbol *sym;
1024 gfc_symtree *parent_st;
1025 gfc_expr *e;
1026 int save_need_full_assumed_size;
1027
1028 for (; arg; arg = arg->next)
1029 {
1030 e = arg->expr;
1031 if (e == NULL)
1032 {
1033 /* Check the label is a valid branching target. */
1034 if (arg->label)
1035 {
1036 if (arg->label->defined == ST_LABEL_UNKNOWN)
1037 {
1038 gfc_error ("Label %d referenced at %L is never defined",
1039 arg->label->value, &arg->label->where);
1040 return FAILURE;
1041 }
1042 }
1043 continue;
1044 }
1045
1046 if (e->expr_type == FL_VARIABLE && e->symtree->ambiguous)
1047 {
1048 gfc_error ("'%s' at %L is ambiguous", e->symtree->n.sym->name,
1049 &e->where);
1050 return FAILURE;
1051 }
1052
1053 if (e->ts.type != BT_PROCEDURE)
1054 {
1055 save_need_full_assumed_size = need_full_assumed_size;
1056 if (e->expr_type != FL_VARIABLE)
1057 need_full_assumed_size = 0;
1058 if (gfc_resolve_expr (e) != SUCCESS)
1059 return FAILURE;
1060 need_full_assumed_size = save_need_full_assumed_size;
1061 goto argument_list;
1062 }
1063
1064 /* See if the expression node should really be a variable reference. */
1065
1066 sym = e->symtree->n.sym;
1067
1068 if (sym->attr.flavor == FL_PROCEDURE
1069 || sym->attr.intrinsic
1070 || sym->attr.external)
1071 {
1072 int actual_ok;
1073
1074 /* If a procedure is not already determined to be something else
1075 check if it is intrinsic. */
1076 if (!sym->attr.intrinsic
1077 && !(sym->attr.external || sym->attr.use_assoc
1078 || sym->attr.if_source == IFSRC_IFBODY)
1079 && gfc_is_intrinsic (sym, sym->attr.subroutine, e->where))
1080 sym->attr.intrinsic = 1;
1081
1082 if (sym->attr.proc == PROC_ST_FUNCTION)
1083 {
1084 gfc_error ("Statement function '%s' at %L is not allowed as an "
1085 "actual argument", sym->name, &e->where);
1086 }
1087
1088 actual_ok = gfc_intrinsic_actual_ok (sym->name,
1089 sym->attr.subroutine);
1090 if (sym->attr.intrinsic && actual_ok == 0)
1091 {
1092 gfc_error ("Intrinsic '%s' at %L is not allowed as an "
1093 "actual argument", sym->name, &e->where);
1094 }
1095
1096 if (sym->attr.contained && !sym->attr.use_assoc
1097 && sym->ns->proc_name->attr.flavor != FL_MODULE)
1098 {
1099 gfc_error ("Internal procedure '%s' is not allowed as an "
1100 "actual argument at %L", sym->name, &e->where);
1101 }
1102
1103 if (sym->attr.elemental && !sym->attr.intrinsic)
1104 {
1105 gfc_error ("ELEMENTAL non-INTRINSIC procedure '%s' is not "
1106 "allowed as an actual argument at %L", sym->name,
1107 &e->where);
1108 }
1109
1110 /* Check if a generic interface has a specific procedure
1111 with the same name before emitting an error. */
1112 if (sym->attr.generic)
1113 {
1114 gfc_interface *p;
1115 for (p = sym->generic; p; p = p->next)
1116 if (strcmp (sym->name, p->sym->name) == 0)
1117 {
1118 e->symtree = gfc_find_symtree
1119 (p->sym->ns->sym_root, sym->name);
1120 sym = p->sym;
1121 break;
1122 }
1123
1124 if (p == NULL || e->symtree == NULL)
1125 gfc_error ("GENERIC procedure '%s' is not "
1126 "allowed as an actual argument at %L", sym->name,
1127 &e->where);
1128 }
1129
1130 /* If the symbol is the function that names the current (or
1131 parent) scope, then we really have a variable reference. */
1132
1133 if (sym->attr.function && sym->result == sym
1134 && (sym->ns->proc_name == sym
1135 || (sym->ns->parent != NULL
1136 && sym->ns->parent->proc_name == sym)))
1137 goto got_variable;
1138
1139 /* If all else fails, see if we have a specific intrinsic. */
1140 if (sym->ts.type == BT_UNKNOWN && sym->attr.intrinsic)
1141 {
1142 gfc_intrinsic_sym *isym;
1143
1144 isym = gfc_find_function (sym->name);
1145 if (isym == NULL || !isym->specific)
1146 {
1147 gfc_error ("Unable to find a specific INTRINSIC procedure "
1148 "for the reference '%s' at %L", sym->name,
1149 &e->where);
1150 return FAILURE;
1151 }
1152 sym->ts = isym->ts;
1153 sym->attr.intrinsic = 1;
1154 sym->attr.function = 1;
1155 }
1156 goto argument_list;
1157 }
1158
1159 /* See if the name is a module procedure in a parent unit. */
1160
1161 if (was_declared (sym) || sym->ns->parent == NULL)
1162 goto got_variable;
1163
1164 if (gfc_find_sym_tree (sym->name, sym->ns->parent, 1, &parent_st))
1165 {
1166 gfc_error ("Symbol '%s' at %L is ambiguous", sym->name, &e->where);
1167 return FAILURE;
1168 }
1169
1170 if (parent_st == NULL)
1171 goto got_variable;
1172
1173 sym = parent_st->n.sym;
1174 e->symtree = parent_st; /* Point to the right thing. */
1175
1176 if (sym->attr.flavor == FL_PROCEDURE
1177 || sym->attr.intrinsic
1178 || sym->attr.external)
1179 {
1180 goto argument_list;
1181 }
1182
1183 got_variable:
1184 e->expr_type = EXPR_VARIABLE;
1185 e->ts = sym->ts;
1186 if (sym->as != NULL)
1187 {
1188 e->rank = sym->as->rank;
1189 e->ref = gfc_get_ref ();
1190 e->ref->type = REF_ARRAY;
1191 e->ref->u.ar.type = AR_FULL;
1192 e->ref->u.ar.as = sym->as;
1193 }
1194
1195 /* Expressions are assigned a default ts.type of BT_PROCEDURE in
1196 primary.c (match_actual_arg). If above code determines that it
1197 is a variable instead, it needs to be resolved as it was not
1198 done at the beginning of this function. */
1199 save_need_full_assumed_size = need_full_assumed_size;
1200 if (e->expr_type != FL_VARIABLE)
1201 need_full_assumed_size = 0;
1202 if (gfc_resolve_expr (e) != SUCCESS)
1203 return FAILURE;
1204 need_full_assumed_size = save_need_full_assumed_size;
1205
1206 argument_list:
1207 /* Check argument list functions %VAL, %LOC and %REF. There is
1208 nothing to do for %REF. */
1209 if (arg->name && arg->name[0] == '%')
1210 {
1211 if (strncmp ("%VAL", arg->name, 4) == 0)
1212 {
1213 if (e->ts.type == BT_CHARACTER || e->ts.type == BT_DERIVED)
1214 {
1215 gfc_error ("By-value argument at %L is not of numeric "
1216 "type", &e->where);
1217 return FAILURE;
1218 }
1219
1220 if (e->rank)
1221 {
1222 gfc_error ("By-value argument at %L cannot be an array or "
1223 "an array section", &e->where);
1224 return FAILURE;
1225 }
1226
1227 /* Intrinsics are still PROC_UNKNOWN here. However,
1228 since same file external procedures are not resolvable
1229 in gfortran, it is a good deal easier to leave them to
1230 intrinsic.c. */
1231 if (ptype != PROC_UNKNOWN
1232 && ptype != PROC_DUMMY
1233 && ptype != PROC_EXTERNAL
1234 && ptype != PROC_MODULE)
1235 {
1236 gfc_error ("By-value argument at %L is not allowed "
1237 "in this context", &e->where);
1238 return FAILURE;
1239 }
1240 }
1241
1242 /* Statement functions have already been excluded above. */
1243 else if (strncmp ("%LOC", arg->name, 4) == 0
1244 && e->ts.type == BT_PROCEDURE)
1245 {
1246 if (e->symtree->n.sym->attr.proc == PROC_INTERNAL)
1247 {
1248 gfc_error ("Passing internal procedure at %L by location "
1249 "not allowed", &e->where);
1250 return FAILURE;
1251 }
1252 }
1253 }
1254 }
1255
1256 return SUCCESS;
1257 }
1258
1259
1260 /* Do the checks of the actual argument list that are specific to elemental
1261 procedures. If called with c == NULL, we have a function, otherwise if
1262 expr == NULL, we have a subroutine. */
1263
1264 static gfc_try
1265 resolve_elemental_actual (gfc_expr *expr, gfc_code *c)
1266 {
1267 gfc_actual_arglist *arg0;
1268 gfc_actual_arglist *arg;
1269 gfc_symbol *esym = NULL;
1270 gfc_intrinsic_sym *isym = NULL;
1271 gfc_expr *e = NULL;
1272 gfc_intrinsic_arg *iformal = NULL;
1273 gfc_formal_arglist *eformal = NULL;
1274 bool formal_optional = false;
1275 bool set_by_optional = false;
1276 int i;
1277 int rank = 0;
1278
1279 /* Is this an elemental procedure? */
1280 if (expr && expr->value.function.actual != NULL)
1281 {
1282 if (expr->value.function.esym != NULL
1283 && expr->value.function.esym->attr.elemental)
1284 {
1285 arg0 = expr->value.function.actual;
1286 esym = expr->value.function.esym;
1287 }
1288 else if (expr->value.function.isym != NULL
1289 && expr->value.function.isym->elemental)
1290 {
1291 arg0 = expr->value.function.actual;
1292 isym = expr->value.function.isym;
1293 }
1294 else
1295 return SUCCESS;
1296 }
1297 else if (c && c->ext.actual != NULL && c->symtree->n.sym->attr.elemental)
1298 {
1299 arg0 = c->ext.actual;
1300 esym = c->symtree->n.sym;
1301 }
1302 else
1303 return SUCCESS;
1304
1305 /* The rank of an elemental is the rank of its array argument(s). */
1306 for (arg = arg0; arg; arg = arg->next)
1307 {
1308 if (arg->expr != NULL && arg->expr->rank > 0)
1309 {
1310 rank = arg->expr->rank;
1311 if (arg->expr->expr_type == EXPR_VARIABLE
1312 && arg->expr->symtree->n.sym->attr.optional)
1313 set_by_optional = true;
1314
1315 /* Function specific; set the result rank and shape. */
1316 if (expr)
1317 {
1318 expr->rank = rank;
1319 if (!expr->shape && arg->expr->shape)
1320 {
1321 expr->shape = gfc_get_shape (rank);
1322 for (i = 0; i < rank; i++)
1323 mpz_init_set (expr->shape[i], arg->expr->shape[i]);
1324 }
1325 }
1326 break;
1327 }
1328 }
1329
1330 /* If it is an array, it shall not be supplied as an actual argument
1331 to an elemental procedure unless an array of the same rank is supplied
1332 as an actual argument corresponding to a nonoptional dummy argument of
1333 that elemental procedure(12.4.1.5). */
1334 formal_optional = false;
1335 if (isym)
1336 iformal = isym->formal;
1337 else
1338 eformal = esym->formal;
1339
1340 for (arg = arg0; arg; arg = arg->next)
1341 {
1342 if (eformal)
1343 {
1344 if (eformal->sym && eformal->sym->attr.optional)
1345 formal_optional = true;
1346 eformal = eformal->next;
1347 }
1348 else if (isym && iformal)
1349 {
1350 if (iformal->optional)
1351 formal_optional = true;
1352 iformal = iformal->next;
1353 }
1354 else if (isym)
1355 formal_optional = true;
1356
1357 if (pedantic && arg->expr != NULL
1358 && arg->expr->expr_type == EXPR_VARIABLE
1359 && arg->expr->symtree->n.sym->attr.optional
1360 && formal_optional
1361 && arg->expr->rank
1362 && (set_by_optional || arg->expr->rank != rank)
1363 && !(isym && isym->id == GFC_ISYM_CONVERSION))
1364 {
1365 gfc_warning ("'%s' at %L is an array and OPTIONAL; IF IT IS "
1366 "MISSING, it cannot be the actual argument of an "
1367 "ELEMENTAL procedure unless there is a non-optional "
1368 "argument with the same rank (12.4.1.5)",
1369 arg->expr->symtree->n.sym->name, &arg->expr->where);
1370 return FAILURE;
1371 }
1372 }
1373
1374 for (arg = arg0; arg; arg = arg->next)
1375 {
1376 if (arg->expr == NULL || arg->expr->rank == 0)
1377 continue;
1378
1379 /* Being elemental, the last upper bound of an assumed size array
1380 argument must be present. */
1381 if (resolve_assumed_size_actual (arg->expr))
1382 return FAILURE;
1383
1384 /* Elemental procedure's array actual arguments must conform. */
1385 if (e != NULL)
1386 {
1387 if (gfc_check_conformance ("elemental procedure", arg->expr, e)
1388 == FAILURE)
1389 return FAILURE;
1390 }
1391 else
1392 e = arg->expr;
1393 }
1394
1395 /* INTENT(OUT) is only allowed for subroutines; if any actual argument
1396 is an array, the intent inout/out variable needs to be also an array. */
1397 if (rank > 0 && esym && expr == NULL)
1398 for (eformal = esym->formal, arg = arg0; arg && eformal;
1399 arg = arg->next, eformal = eformal->next)
1400 if ((eformal->sym->attr.intent == INTENT_OUT
1401 || eformal->sym->attr.intent == INTENT_INOUT)
1402 && arg->expr && arg->expr->rank == 0)
1403 {
1404 gfc_error ("Actual argument at %L for INTENT(%s) dummy '%s' of "
1405 "ELEMENTAL subroutine '%s' is a scalar, but another "
1406 "actual argument is an array", &arg->expr->where,
1407 (eformal->sym->attr.intent == INTENT_OUT) ? "OUT"
1408 : "INOUT", eformal->sym->name, esym->name);
1409 return FAILURE;
1410 }
1411 return SUCCESS;
1412 }
1413
1414
1415 /* Go through each actual argument in ACTUAL and see if it can be
1416 implemented as an inlined, non-copying intrinsic. FNSYM is the
1417 function being called, or NULL if not known. */
1418
1419 static void
1420 find_noncopying_intrinsics (gfc_symbol *fnsym, gfc_actual_arglist *actual)
1421 {
1422 gfc_actual_arglist *ap;
1423 gfc_expr *expr;
1424
1425 for (ap = actual; ap; ap = ap->next)
1426 if (ap->expr
1427 && (expr = gfc_get_noncopying_intrinsic_argument (ap->expr))
1428 && !gfc_check_fncall_dependency (expr, INTENT_IN, fnsym, actual))
1429 ap->expr->inline_noncopying_intrinsic = 1;
1430 }
1431
1432
1433 /* This function does the checking of references to global procedures
1434 as defined in sections 18.1 and 14.1, respectively, of the Fortran
1435 77 and 95 standards. It checks for a gsymbol for the name, making
1436 one if it does not already exist. If it already exists, then the
1437 reference being resolved must correspond to the type of gsymbol.
1438 Otherwise, the new symbol is equipped with the attributes of the
1439 reference. The corresponding code that is called in creating
1440 global entities is parse.c. */
1441
1442 static void
1443 resolve_global_procedure (gfc_symbol *sym, locus *where, int sub)
1444 {
1445 gfc_gsymbol * gsym;
1446 unsigned int type;
1447
1448 type = sub ? GSYM_SUBROUTINE : GSYM_FUNCTION;
1449
1450 gsym = gfc_get_gsymbol (sym->name);
1451
1452 if ((gsym->type != GSYM_UNKNOWN && gsym->type != type))
1453 gfc_global_used (gsym, where);
1454
1455 if (gsym->type == GSYM_UNKNOWN)
1456 {
1457 gsym->type = type;
1458 gsym->where = *where;
1459 }
1460
1461 gsym->used = 1;
1462 }
1463
1464
1465 /************* Function resolution *************/
1466
1467 /* Resolve a function call known to be generic.
1468 Section 14.1.2.4.1. */
1469
1470 static match
1471 resolve_generic_f0 (gfc_expr *expr, gfc_symbol *sym)
1472 {
1473 gfc_symbol *s;
1474
1475 if (sym->attr.generic)
1476 {
1477 s = gfc_search_interface (sym->generic, 0, &expr->value.function.actual);
1478 if (s != NULL)
1479 {
1480 expr->value.function.name = s->name;
1481 expr->value.function.esym = s;
1482
1483 if (s->ts.type != BT_UNKNOWN)
1484 expr->ts = s->ts;
1485 else if (s->result != NULL && s->result->ts.type != BT_UNKNOWN)
1486 expr->ts = s->result->ts;
1487
1488 if (s->as != NULL)
1489 expr->rank = s->as->rank;
1490 else if (s->result != NULL && s->result->as != NULL)
1491 expr->rank = s->result->as->rank;
1492
1493 gfc_set_sym_referenced (expr->value.function.esym);
1494
1495 return MATCH_YES;
1496 }
1497
1498 /* TODO: Need to search for elemental references in generic
1499 interface. */
1500 }
1501
1502 if (sym->attr.intrinsic)
1503 return gfc_intrinsic_func_interface (expr, 0);
1504
1505 return MATCH_NO;
1506 }
1507
1508
1509 static gfc_try
1510 resolve_generic_f (gfc_expr *expr)
1511 {
1512 gfc_symbol *sym;
1513 match m;
1514
1515 sym = expr->symtree->n.sym;
1516
1517 for (;;)
1518 {
1519 m = resolve_generic_f0 (expr, sym);
1520 if (m == MATCH_YES)
1521 return SUCCESS;
1522 else if (m == MATCH_ERROR)
1523 return FAILURE;
1524
1525 generic:
1526 if (sym->ns->parent == NULL)
1527 break;
1528 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
1529
1530 if (sym == NULL)
1531 break;
1532 if (!generic_sym (sym))
1533 goto generic;
1534 }
1535
1536 /* Last ditch attempt. See if the reference is to an intrinsic
1537 that possesses a matching interface. 14.1.2.4 */
1538 if (sym && !gfc_is_intrinsic (sym, 0, expr->where))
1539 {
1540 gfc_error ("There is no specific function for the generic '%s' at %L",
1541 expr->symtree->n.sym->name, &expr->where);
1542 return FAILURE;
1543 }
1544
1545 m = gfc_intrinsic_func_interface (expr, 0);
1546 if (m == MATCH_YES)
1547 return SUCCESS;
1548 if (m == MATCH_NO)
1549 gfc_error ("Generic function '%s' at %L is not consistent with a "
1550 "specific intrinsic interface", expr->symtree->n.sym->name,
1551 &expr->where);
1552
1553 return FAILURE;
1554 }
1555
1556
1557 /* Resolve a function call known to be specific. */
1558
1559 static match
1560 resolve_specific_f0 (gfc_symbol *sym, gfc_expr *expr)
1561 {
1562 match m;
1563
1564 /* See if we have an intrinsic interface. */
1565
1566 if (sym->ts.interface != NULL && sym->ts.interface->attr.intrinsic)
1567 {
1568 gfc_intrinsic_sym *isym;
1569 isym = gfc_find_function (sym->ts.interface->name);
1570
1571 /* Existence of isym should be checked already. */
1572 gcc_assert (isym);
1573
1574 sym->ts.type = isym->ts.type;
1575 sym->ts.kind = isym->ts.kind;
1576 sym->attr.function = 1;
1577 sym->attr.proc = PROC_EXTERNAL;
1578 goto found;
1579 }
1580
1581 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
1582 {
1583 if (sym->attr.dummy)
1584 {
1585 sym->attr.proc = PROC_DUMMY;
1586 goto found;
1587 }
1588
1589 sym->attr.proc = PROC_EXTERNAL;
1590 goto found;
1591 }
1592
1593 if (sym->attr.proc == PROC_MODULE
1594 || sym->attr.proc == PROC_ST_FUNCTION
1595 || sym->attr.proc == PROC_INTERNAL)
1596 goto found;
1597
1598 if (sym->attr.intrinsic)
1599 {
1600 m = gfc_intrinsic_func_interface (expr, 1);
1601 if (m == MATCH_YES)
1602 return MATCH_YES;
1603 if (m == MATCH_NO)
1604 gfc_error ("Function '%s' at %L is INTRINSIC but is not compatible "
1605 "with an intrinsic", sym->name, &expr->where);
1606
1607 return MATCH_ERROR;
1608 }
1609
1610 return MATCH_NO;
1611
1612 found:
1613 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
1614
1615 expr->ts = sym->ts;
1616 expr->value.function.name = sym->name;
1617 expr->value.function.esym = sym;
1618 if (sym->as != NULL)
1619 expr->rank = sym->as->rank;
1620
1621 return MATCH_YES;
1622 }
1623
1624
1625 static gfc_try
1626 resolve_specific_f (gfc_expr *expr)
1627 {
1628 gfc_symbol *sym;
1629 match m;
1630
1631 sym = expr->symtree->n.sym;
1632
1633 for (;;)
1634 {
1635 m = resolve_specific_f0 (sym, expr);
1636 if (m == MATCH_YES)
1637 return SUCCESS;
1638 if (m == MATCH_ERROR)
1639 return FAILURE;
1640
1641 if (sym->ns->parent == NULL)
1642 break;
1643
1644 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
1645
1646 if (sym == NULL)
1647 break;
1648 }
1649
1650 gfc_error ("Unable to resolve the specific function '%s' at %L",
1651 expr->symtree->n.sym->name, &expr->where);
1652
1653 return SUCCESS;
1654 }
1655
1656
1657 /* Resolve a procedure call not known to be generic nor specific. */
1658
1659 static gfc_try
1660 resolve_unknown_f (gfc_expr *expr)
1661 {
1662 gfc_symbol *sym;
1663 gfc_typespec *ts;
1664
1665 sym = expr->symtree->n.sym;
1666
1667 if (sym->attr.dummy)
1668 {
1669 sym->attr.proc = PROC_DUMMY;
1670 expr->value.function.name = sym->name;
1671 goto set_type;
1672 }
1673
1674 /* See if we have an intrinsic function reference. */
1675
1676 if (gfc_is_intrinsic (sym, 0, expr->where))
1677 {
1678 if (gfc_intrinsic_func_interface (expr, 1) == MATCH_YES)
1679 return SUCCESS;
1680 return FAILURE;
1681 }
1682
1683 /* The reference is to an external name. */
1684
1685 sym->attr.proc = PROC_EXTERNAL;
1686 expr->value.function.name = sym->name;
1687 expr->value.function.esym = expr->symtree->n.sym;
1688
1689 if (sym->as != NULL)
1690 expr->rank = sym->as->rank;
1691
1692 /* Type of the expression is either the type of the symbol or the
1693 default type of the symbol. */
1694
1695 set_type:
1696 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
1697
1698 if (sym->ts.type != BT_UNKNOWN)
1699 expr->ts = sym->ts;
1700 else
1701 {
1702 ts = gfc_get_default_type (sym, sym->ns);
1703
1704 if (ts->type == BT_UNKNOWN)
1705 {
1706 gfc_error ("Function '%s' at %L has no IMPLICIT type",
1707 sym->name, &expr->where);
1708 return FAILURE;
1709 }
1710 else
1711 expr->ts = *ts;
1712 }
1713
1714 return SUCCESS;
1715 }
1716
1717
1718 /* Return true, if the symbol is an external procedure. */
1719 static bool
1720 is_external_proc (gfc_symbol *sym)
1721 {
1722 if (!sym->attr.dummy && !sym->attr.contained
1723 && !(sym->attr.intrinsic
1724 || gfc_is_intrinsic (sym, sym->attr.subroutine, sym->declared_at))
1725 && sym->attr.proc != PROC_ST_FUNCTION
1726 && !sym->attr.use_assoc
1727 && sym->name)
1728 return true;
1729
1730 return false;
1731 }
1732
1733
1734 /* Figure out if a function reference is pure or not. Also set the name
1735 of the function for a potential error message. Return nonzero if the
1736 function is PURE, zero if not. */
1737 static int
1738 pure_stmt_function (gfc_expr *, gfc_symbol *);
1739
1740 static int
1741 pure_function (gfc_expr *e, const char **name)
1742 {
1743 int pure;
1744
1745 *name = NULL;
1746
1747 if (e->symtree != NULL
1748 && e->symtree->n.sym != NULL
1749 && e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
1750 return pure_stmt_function (e, e->symtree->n.sym);
1751
1752 if (e->value.function.esym)
1753 {
1754 pure = gfc_pure (e->value.function.esym);
1755 *name = e->value.function.esym->name;
1756 }
1757 else if (e->value.function.isym)
1758 {
1759 pure = e->value.function.isym->pure
1760 || e->value.function.isym->elemental;
1761 *name = e->value.function.isym->name;
1762 }
1763 else
1764 {
1765 /* Implicit functions are not pure. */
1766 pure = 0;
1767 *name = e->value.function.name;
1768 }
1769
1770 return pure;
1771 }
1772
1773
1774 static bool
1775 impure_stmt_fcn (gfc_expr *e, gfc_symbol *sym,
1776 int *f ATTRIBUTE_UNUSED)
1777 {
1778 const char *name;
1779
1780 /* Don't bother recursing into other statement functions
1781 since they will be checked individually for purity. */
1782 if (e->expr_type != EXPR_FUNCTION
1783 || !e->symtree
1784 || e->symtree->n.sym == sym
1785 || e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
1786 return false;
1787
1788 return pure_function (e, &name) ? false : true;
1789 }
1790
1791
1792 static int
1793 pure_stmt_function (gfc_expr *e, gfc_symbol *sym)
1794 {
1795 return gfc_traverse_expr (e, sym, impure_stmt_fcn, 0) ? 0 : 1;
1796 }
1797
1798
1799 static gfc_try
1800 is_scalar_expr_ptr (gfc_expr *expr)
1801 {
1802 gfc_try retval = SUCCESS;
1803 gfc_ref *ref;
1804 int start;
1805 int end;
1806
1807 /* See if we have a gfc_ref, which means we have a substring, array
1808 reference, or a component. */
1809 if (expr->ref != NULL)
1810 {
1811 ref = expr->ref;
1812 while (ref->next != NULL)
1813 ref = ref->next;
1814
1815 switch (ref->type)
1816 {
1817 case REF_SUBSTRING:
1818 if (ref->u.ss.length != NULL
1819 && ref->u.ss.length->length != NULL
1820 && ref->u.ss.start
1821 && ref->u.ss.start->expr_type == EXPR_CONSTANT
1822 && ref->u.ss.end
1823 && ref->u.ss.end->expr_type == EXPR_CONSTANT)
1824 {
1825 start = (int) mpz_get_si (ref->u.ss.start->value.integer);
1826 end = (int) mpz_get_si (ref->u.ss.end->value.integer);
1827 if (end - start + 1 != 1)
1828 retval = FAILURE;
1829 }
1830 else
1831 retval = FAILURE;
1832 break;
1833 case REF_ARRAY:
1834 if (ref->u.ar.type == AR_ELEMENT)
1835 retval = SUCCESS;
1836 else if (ref->u.ar.type == AR_FULL)
1837 {
1838 /* The user can give a full array if the array is of size 1. */
1839 if (ref->u.ar.as != NULL
1840 && ref->u.ar.as->rank == 1
1841 && ref->u.ar.as->type == AS_EXPLICIT
1842 && ref->u.ar.as->lower[0] != NULL
1843 && ref->u.ar.as->lower[0]->expr_type == EXPR_CONSTANT
1844 && ref->u.ar.as->upper[0] != NULL
1845 && ref->u.ar.as->upper[0]->expr_type == EXPR_CONSTANT)
1846 {
1847 /* If we have a character string, we need to check if
1848 its length is one. */
1849 if (expr->ts.type == BT_CHARACTER)
1850 {
1851 if (expr->ts.cl == NULL
1852 || expr->ts.cl->length == NULL
1853 || mpz_cmp_si (expr->ts.cl->length->value.integer, 1)
1854 != 0)
1855 retval = FAILURE;
1856 }
1857 else
1858 {
1859 /* We have constant lower and upper bounds. If the
1860 difference between is 1, it can be considered a
1861 scalar. */
1862 start = (int) mpz_get_si
1863 (ref->u.ar.as->lower[0]->value.integer);
1864 end = (int) mpz_get_si
1865 (ref->u.ar.as->upper[0]->value.integer);
1866 if (end - start + 1 != 1)
1867 retval = FAILURE;
1868 }
1869 }
1870 else
1871 retval = FAILURE;
1872 }
1873 else
1874 retval = FAILURE;
1875 break;
1876 default:
1877 retval = SUCCESS;
1878 break;
1879 }
1880 }
1881 else if (expr->ts.type == BT_CHARACTER && expr->rank == 0)
1882 {
1883 /* Character string. Make sure it's of length 1. */
1884 if (expr->ts.cl == NULL
1885 || expr->ts.cl->length == NULL
1886 || mpz_cmp_si (expr->ts.cl->length->value.integer, 1) != 0)
1887 retval = FAILURE;
1888 }
1889 else if (expr->rank != 0)
1890 retval = FAILURE;
1891
1892 return retval;
1893 }
1894
1895
1896 /* Match one of the iso_c_binding functions (c_associated or c_loc)
1897 and, in the case of c_associated, set the binding label based on
1898 the arguments. */
1899
1900 static gfc_try
1901 gfc_iso_c_func_interface (gfc_symbol *sym, gfc_actual_arglist *args,
1902 gfc_symbol **new_sym)
1903 {
1904 char name[GFC_MAX_SYMBOL_LEN + 1];
1905 char binding_label[GFC_MAX_BINDING_LABEL_LEN + 1];
1906 int optional_arg = 0;
1907 gfc_try retval = SUCCESS;
1908 gfc_symbol *args_sym;
1909 gfc_typespec *arg_ts;
1910 gfc_ref *parent_ref;
1911 gfc_ref *curr_ref;
1912
1913 if (args->expr->expr_type == EXPR_CONSTANT
1914 || args->expr->expr_type == EXPR_OP
1915 || args->expr->expr_type == EXPR_NULL)
1916 {
1917 gfc_error ("Argument to '%s' at %L is not a variable",
1918 sym->name, &(args->expr->where));
1919 return FAILURE;
1920 }
1921
1922 args_sym = args->expr->symtree->n.sym;
1923
1924 /* The typespec for the actual arg should be that stored in the expr
1925 and not necessarily that of the expr symbol (args_sym), because
1926 the actual expression could be a part-ref of the expr symbol. */
1927 arg_ts = &(args->expr->ts);
1928
1929 /* Get the parent reference (if any) for the expression. This happens for
1930 cases such as a%b%c. */
1931 parent_ref = args->expr->ref;
1932 curr_ref = NULL;
1933 if (parent_ref != NULL)
1934 {
1935 curr_ref = parent_ref->next;
1936 while (curr_ref != NULL && curr_ref->next != NULL)
1937 {
1938 parent_ref = curr_ref;
1939 curr_ref = curr_ref->next;
1940 }
1941 }
1942
1943 /* If curr_ref is non-NULL, we had a part-ref expression. If the curr_ref
1944 is for a REF_COMPONENT, then we need to use it as the parent_ref for
1945 the name, etc. Otherwise, the current parent_ref should be correct. */
1946 if (curr_ref != NULL && curr_ref->type == REF_COMPONENT)
1947 parent_ref = curr_ref;
1948
1949 if (parent_ref == args->expr->ref)
1950 parent_ref = NULL;
1951 else if (parent_ref != NULL && parent_ref->type != REF_COMPONENT)
1952 gfc_internal_error ("Unexpected expression reference type in "
1953 "gfc_iso_c_func_interface");
1954
1955 if (sym->intmod_sym_id == ISOCBINDING_ASSOCIATED)
1956 {
1957 /* If the user gave two args then they are providing something for
1958 the optional arg (the second cptr). Therefore, set the name and
1959 binding label to the c_associated for two cptrs. Otherwise,
1960 set c_associated to expect one cptr. */
1961 if (args->next)
1962 {
1963 /* two args. */
1964 sprintf (name, "%s_2", sym->name);
1965 sprintf (binding_label, "%s_2", sym->binding_label);
1966 optional_arg = 1;
1967 }
1968 else
1969 {
1970 /* one arg. */
1971 sprintf (name, "%s_1", sym->name);
1972 sprintf (binding_label, "%s_1", sym->binding_label);
1973 optional_arg = 0;
1974 }
1975
1976 /* Get a new symbol for the version of c_associated that
1977 will get called. */
1978 *new_sym = get_iso_c_sym (sym, name, binding_label, optional_arg);
1979 }
1980 else if (sym->intmod_sym_id == ISOCBINDING_LOC
1981 || sym->intmod_sym_id == ISOCBINDING_FUNLOC)
1982 {
1983 sprintf (name, "%s", sym->name);
1984 sprintf (binding_label, "%s", sym->binding_label);
1985
1986 /* Error check the call. */
1987 if (args->next != NULL)
1988 {
1989 gfc_error_now ("More actual than formal arguments in '%s' "
1990 "call at %L", name, &(args->expr->where));
1991 retval = FAILURE;
1992 }
1993 else if (sym->intmod_sym_id == ISOCBINDING_LOC)
1994 {
1995 /* Make sure we have either the target or pointer attribute. */
1996 if (!(args_sym->attr.target)
1997 && !(args_sym->attr.pointer)
1998 && (parent_ref == NULL ||
1999 !parent_ref->u.c.component->attr.pointer))
2000 {
2001 gfc_error_now ("Parameter '%s' to '%s' at %L must be either "
2002 "a TARGET or an associated pointer",
2003 args_sym->name,
2004 sym->name, &(args->expr->where));
2005 retval = FAILURE;
2006 }
2007
2008 /* See if we have interoperable type and type param. */
2009 if (verify_c_interop (arg_ts,
2010 (parent_ref ? parent_ref->u.c.component->name
2011 : args_sym->name),
2012 &(args->expr->where)) == SUCCESS
2013 || gfc_check_any_c_kind (arg_ts) == SUCCESS)
2014 {
2015 if (args_sym->attr.target == 1)
2016 {
2017 /* Case 1a, section 15.1.2.5, J3/04-007: variable that
2018 has the target attribute and is interoperable. */
2019 /* Case 1b, section 15.1.2.5, J3/04-007: allocated
2020 allocatable variable that has the TARGET attribute and
2021 is not an array of zero size. */
2022 if (args_sym->attr.allocatable == 1)
2023 {
2024 if (args_sym->attr.dimension != 0
2025 && (args_sym->as && args_sym->as->rank == 0))
2026 {
2027 gfc_error_now ("Allocatable variable '%s' used as a "
2028 "parameter to '%s' at %L must not be "
2029 "an array of zero size",
2030 args_sym->name, sym->name,
2031 &(args->expr->where));
2032 retval = FAILURE;
2033 }
2034 }
2035 else
2036 {
2037 /* A non-allocatable target variable with C
2038 interoperable type and type parameters must be
2039 interoperable. */
2040 if (args_sym && args_sym->attr.dimension)
2041 {
2042 if (args_sym->as->type == AS_ASSUMED_SHAPE)
2043 {
2044 gfc_error ("Assumed-shape array '%s' at %L "
2045 "cannot be an argument to the "
2046 "procedure '%s' because "
2047 "it is not C interoperable",
2048 args_sym->name,
2049 &(args->expr->where), sym->name);
2050 retval = FAILURE;
2051 }
2052 else if (args_sym->as->type == AS_DEFERRED)
2053 {
2054 gfc_error ("Deferred-shape array '%s' at %L "
2055 "cannot be an argument to the "
2056 "procedure '%s' because "
2057 "it is not C interoperable",
2058 args_sym->name,
2059 &(args->expr->where), sym->name);
2060 retval = FAILURE;
2061 }
2062 }
2063
2064 /* Make sure it's not a character string. Arrays of
2065 any type should be ok if the variable is of a C
2066 interoperable type. */
2067 if (arg_ts->type == BT_CHARACTER)
2068 if (arg_ts->cl != NULL
2069 && (arg_ts->cl->length == NULL
2070 || arg_ts->cl->length->expr_type
2071 != EXPR_CONSTANT
2072 || mpz_cmp_si
2073 (arg_ts->cl->length->value.integer, 1)
2074 != 0)
2075 && is_scalar_expr_ptr (args->expr) != SUCCESS)
2076 {
2077 gfc_error_now ("CHARACTER argument '%s' to '%s' "
2078 "at %L must have a length of 1",
2079 args_sym->name, sym->name,
2080 &(args->expr->where));
2081 retval = FAILURE;
2082 }
2083 }
2084 }
2085 else if ((args_sym->attr.pointer == 1 ||
2086 (parent_ref != NULL
2087 && parent_ref->u.c.component->attr.pointer))
2088 && is_scalar_expr_ptr (args->expr) != SUCCESS)
2089 {
2090 /* Case 1c, section 15.1.2.5, J3/04-007: an associated
2091 scalar pointer. */
2092 gfc_error_now ("Argument '%s' to '%s' at %L must be an "
2093 "associated scalar POINTER", args_sym->name,
2094 sym->name, &(args->expr->where));
2095 retval = FAILURE;
2096 }
2097 }
2098 else
2099 {
2100 /* The parameter is not required to be C interoperable. If it
2101 is not C interoperable, it must be a nonpolymorphic scalar
2102 with no length type parameters. It still must have either
2103 the pointer or target attribute, and it can be
2104 allocatable (but must be allocated when c_loc is called). */
2105 if (args->expr->rank != 0
2106 && is_scalar_expr_ptr (args->expr) != SUCCESS)
2107 {
2108 gfc_error_now ("Parameter '%s' to '%s' at %L must be a "
2109 "scalar", args_sym->name, sym->name,
2110 &(args->expr->where));
2111 retval = FAILURE;
2112 }
2113 else if (arg_ts->type == BT_CHARACTER
2114 && is_scalar_expr_ptr (args->expr) != SUCCESS)
2115 {
2116 gfc_error_now ("CHARACTER argument '%s' to '%s' at "
2117 "%L must have a length of 1",
2118 args_sym->name, sym->name,
2119 &(args->expr->where));
2120 retval = FAILURE;
2121 }
2122 }
2123 }
2124 else if (sym->intmod_sym_id == ISOCBINDING_FUNLOC)
2125 {
2126 if (args_sym->attr.flavor != FL_PROCEDURE)
2127 {
2128 /* TODO: Update this error message to allow for procedure
2129 pointers once they are implemented. */
2130 gfc_error_now ("Parameter '%s' to '%s' at %L must be a "
2131 "procedure",
2132 args_sym->name, sym->name,
2133 &(args->expr->where));
2134 retval = FAILURE;
2135 }
2136 else if (args_sym->attr.is_bind_c != 1)
2137 {
2138 gfc_error_now ("Parameter '%s' to '%s' at %L must be "
2139 "BIND(C)",
2140 args_sym->name, sym->name,
2141 &(args->expr->where));
2142 retval = FAILURE;
2143 }
2144 }
2145
2146 /* for c_loc/c_funloc, the new symbol is the same as the old one */
2147 *new_sym = sym;
2148 }
2149 else
2150 {
2151 gfc_internal_error ("gfc_iso_c_func_interface(): Unhandled "
2152 "iso_c_binding function: '%s'!\n", sym->name);
2153 }
2154
2155 return retval;
2156 }
2157
2158
2159 /* Resolve a function call, which means resolving the arguments, then figuring
2160 out which entity the name refers to. */
2161 /* TODO: Check procedure arguments so that an INTENT(IN) isn't passed
2162 to INTENT(OUT) or INTENT(INOUT). */
2163
2164 static gfc_try
2165 resolve_function (gfc_expr *expr)
2166 {
2167 gfc_actual_arglist *arg;
2168 gfc_symbol *sym;
2169 const char *name;
2170 gfc_try t;
2171 int temp;
2172 procedure_type p = PROC_INTRINSIC;
2173
2174 sym = NULL;
2175 if (expr->symtree)
2176 sym = expr->symtree->n.sym;
2177
2178 if (sym && sym->attr.flavor == FL_VARIABLE)
2179 {
2180 gfc_error ("'%s' at %L is not a function", sym->name, &expr->where);
2181 return FAILURE;
2182 }
2183
2184 if (sym && sym->attr.abstract)
2185 {
2186 gfc_error ("ABSTRACT INTERFACE '%s' must not be referenced at %L",
2187 sym->name, &expr->where);
2188 return FAILURE;
2189 }
2190
2191 /* If the procedure is external, check for usage. */
2192 if (sym && is_external_proc (sym))
2193 resolve_global_procedure (sym, &expr->where, 0);
2194
2195 /* Switch off assumed size checking and do this again for certain kinds
2196 of procedure, once the procedure itself is resolved. */
2197 need_full_assumed_size++;
2198
2199 if (expr->symtree && expr->symtree->n.sym)
2200 p = expr->symtree->n.sym->attr.proc;
2201
2202 if (resolve_actual_arglist (expr->value.function.actual, p) == FAILURE)
2203 return FAILURE;
2204
2205 /* Need to setup the call to the correct c_associated, depending on
2206 the number of cptrs to user gives to compare. */
2207 if (sym && sym->attr.is_iso_c == 1)
2208 {
2209 if (gfc_iso_c_func_interface (sym, expr->value.function.actual, &sym)
2210 == FAILURE)
2211 return FAILURE;
2212
2213 /* Get the symtree for the new symbol (resolved func).
2214 the old one will be freed later, when it's no longer used. */
2215 gfc_find_sym_tree (sym->name, sym->ns, 1, &(expr->symtree));
2216 }
2217
2218 /* Resume assumed_size checking. */
2219 need_full_assumed_size--;
2220
2221 if (sym && sym->ts.type == BT_CHARACTER
2222 && sym->ts.cl
2223 && sym->ts.cl->length == NULL
2224 && !sym->attr.dummy
2225 && expr->value.function.esym == NULL
2226 && !sym->attr.contained)
2227 {
2228 /* Internal procedures are taken care of in resolve_contained_fntype. */
2229 gfc_error ("Function '%s' is declared CHARACTER(*) and cannot "
2230 "be used at %L since it is not a dummy argument",
2231 sym->name, &expr->where);
2232 return FAILURE;
2233 }
2234
2235 /* See if function is already resolved. */
2236
2237 if (expr->value.function.name != NULL)
2238 {
2239 if (expr->ts.type == BT_UNKNOWN)
2240 expr->ts = sym->ts;
2241 t = SUCCESS;
2242 }
2243 else
2244 {
2245 /* Apply the rules of section 14.1.2. */
2246
2247 switch (procedure_kind (sym))
2248 {
2249 case PTYPE_GENERIC:
2250 t = resolve_generic_f (expr);
2251 break;
2252
2253 case PTYPE_SPECIFIC:
2254 t = resolve_specific_f (expr);
2255 break;
2256
2257 case PTYPE_UNKNOWN:
2258 t = resolve_unknown_f (expr);
2259 break;
2260
2261 default:
2262 gfc_internal_error ("resolve_function(): bad function type");
2263 }
2264 }
2265
2266 /* If the expression is still a function (it might have simplified),
2267 then we check to see if we are calling an elemental function. */
2268
2269 if (expr->expr_type != EXPR_FUNCTION)
2270 return t;
2271
2272 temp = need_full_assumed_size;
2273 need_full_assumed_size = 0;
2274
2275 if (resolve_elemental_actual (expr, NULL) == FAILURE)
2276 return FAILURE;
2277
2278 if (omp_workshare_flag
2279 && expr->value.function.esym
2280 && ! gfc_elemental (expr->value.function.esym))
2281 {
2282 gfc_error ("User defined non-ELEMENTAL function '%s' at %L not allowed "
2283 "in WORKSHARE construct", expr->value.function.esym->name,
2284 &expr->where);
2285 t = FAILURE;
2286 }
2287
2288 #define GENERIC_ID expr->value.function.isym->id
2289 else if (expr->value.function.actual != NULL
2290 && expr->value.function.isym != NULL
2291 && GENERIC_ID != GFC_ISYM_LBOUND
2292 && GENERIC_ID != GFC_ISYM_LEN
2293 && GENERIC_ID != GFC_ISYM_LOC
2294 && GENERIC_ID != GFC_ISYM_PRESENT)
2295 {
2296 /* Array intrinsics must also have the last upper bound of an
2297 assumed size array argument. UBOUND and SIZE have to be
2298 excluded from the check if the second argument is anything
2299 than a constant. */
2300 int inquiry;
2301 inquiry = GENERIC_ID == GFC_ISYM_UBOUND
2302 || GENERIC_ID == GFC_ISYM_SIZE;
2303
2304 for (arg = expr->value.function.actual; arg; arg = arg->next)
2305 {
2306 if (inquiry && arg->next != NULL && arg->next->expr)
2307 {
2308 if (arg->next->expr->expr_type != EXPR_CONSTANT)
2309 break;
2310
2311 if ((int)mpz_get_si (arg->next->expr->value.integer)
2312 < arg->expr->rank)
2313 break;
2314 }
2315
2316 if (arg->expr != NULL
2317 && arg->expr->rank > 0
2318 && resolve_assumed_size_actual (arg->expr))
2319 return FAILURE;
2320 }
2321 }
2322 #undef GENERIC_ID
2323
2324 need_full_assumed_size = temp;
2325 name = NULL;
2326
2327 if (!pure_function (expr, &name) && name)
2328 {
2329 if (forall_flag)
2330 {
2331 gfc_error ("reference to non-PURE function '%s' at %L inside a "
2332 "FORALL %s", name, &expr->where,
2333 forall_flag == 2 ? "mask" : "block");
2334 t = FAILURE;
2335 }
2336 else if (gfc_pure (NULL))
2337 {
2338 gfc_error ("Function reference to '%s' at %L is to a non-PURE "
2339 "procedure within a PURE procedure", name, &expr->where);
2340 t = FAILURE;
2341 }
2342 }
2343
2344 /* Functions without the RECURSIVE attribution are not allowed to
2345 * call themselves. */
2346 if (expr->value.function.esym && !expr->value.function.esym->attr.recursive)
2347 {
2348 gfc_symbol *esym, *proc;
2349 esym = expr->value.function.esym;
2350 proc = gfc_current_ns->proc_name;
2351 if (esym == proc)
2352 {
2353 gfc_error ("Function '%s' at %L cannot call itself, as it is not "
2354 "RECURSIVE", name, &expr->where);
2355 t = FAILURE;
2356 }
2357
2358 if (esym->attr.entry && esym->ns->entries && proc->ns->entries
2359 && esym->ns->entries->sym == proc->ns->entries->sym)
2360 {
2361 gfc_error ("Call to ENTRY '%s' at %L is recursive, but function "
2362 "'%s' is not declared as RECURSIVE",
2363 esym->name, &expr->where, esym->ns->entries->sym->name);
2364 t = FAILURE;
2365 }
2366 }
2367
2368 /* Character lengths of use associated functions may contains references to
2369 symbols not referenced from the current program unit otherwise. Make sure
2370 those symbols are marked as referenced. */
2371
2372 if (expr->ts.type == BT_CHARACTER && expr->value.function.esym
2373 && expr->value.function.esym->attr.use_assoc)
2374 {
2375 gfc_expr_set_symbols_referenced (expr->ts.cl->length);
2376 }
2377
2378 if (t == SUCCESS
2379 && !((expr->value.function.esym
2380 && expr->value.function.esym->attr.elemental)
2381 ||
2382 (expr->value.function.isym
2383 && expr->value.function.isym->elemental)))
2384 find_noncopying_intrinsics (expr->value.function.esym,
2385 expr->value.function.actual);
2386
2387 /* Make sure that the expression has a typespec that works. */
2388 if (expr->ts.type == BT_UNKNOWN)
2389 {
2390 if (expr->symtree->n.sym->result
2391 && expr->symtree->n.sym->result->ts.type != BT_UNKNOWN)
2392 expr->ts = expr->symtree->n.sym->result->ts;
2393 }
2394
2395 return t;
2396 }
2397
2398
2399 /************* Subroutine resolution *************/
2400
2401 static void
2402 pure_subroutine (gfc_code *c, gfc_symbol *sym)
2403 {
2404 if (gfc_pure (sym))
2405 return;
2406
2407 if (forall_flag)
2408 gfc_error ("Subroutine call to '%s' in FORALL block at %L is not PURE",
2409 sym->name, &c->loc);
2410 else if (gfc_pure (NULL))
2411 gfc_error ("Subroutine call to '%s' at %L is not PURE", sym->name,
2412 &c->loc);
2413 }
2414
2415
2416 static match
2417 resolve_generic_s0 (gfc_code *c, gfc_symbol *sym)
2418 {
2419 gfc_symbol *s;
2420
2421 if (sym->attr.generic)
2422 {
2423 s = gfc_search_interface (sym->generic, 1, &c->ext.actual);
2424 if (s != NULL)
2425 {
2426 c->resolved_sym = s;
2427 pure_subroutine (c, s);
2428 return MATCH_YES;
2429 }
2430
2431 /* TODO: Need to search for elemental references in generic interface. */
2432 }
2433
2434 if (sym->attr.intrinsic)
2435 return gfc_intrinsic_sub_interface (c, 0);
2436
2437 return MATCH_NO;
2438 }
2439
2440
2441 static gfc_try
2442 resolve_generic_s (gfc_code *c)
2443 {
2444 gfc_symbol *sym;
2445 match m;
2446
2447 sym = c->symtree->n.sym;
2448
2449 for (;;)
2450 {
2451 m = resolve_generic_s0 (c, sym);
2452 if (m == MATCH_YES)
2453 return SUCCESS;
2454 else if (m == MATCH_ERROR)
2455 return FAILURE;
2456
2457 generic:
2458 if (sym->ns->parent == NULL)
2459 break;
2460 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2461
2462 if (sym == NULL)
2463 break;
2464 if (!generic_sym (sym))
2465 goto generic;
2466 }
2467
2468 /* Last ditch attempt. See if the reference is to an intrinsic
2469 that possesses a matching interface. 14.1.2.4 */
2470 sym = c->symtree->n.sym;
2471
2472 if (!gfc_is_intrinsic (sym, 1, c->loc))
2473 {
2474 gfc_error ("There is no specific subroutine for the generic '%s' at %L",
2475 sym->name, &c->loc);
2476 return FAILURE;
2477 }
2478
2479 m = gfc_intrinsic_sub_interface (c, 0);
2480 if (m == MATCH_YES)
2481 return SUCCESS;
2482 if (m == MATCH_NO)
2483 gfc_error ("Generic subroutine '%s' at %L is not consistent with an "
2484 "intrinsic subroutine interface", sym->name, &c->loc);
2485
2486 return FAILURE;
2487 }
2488
2489
2490 /* Set the name and binding label of the subroutine symbol in the call
2491 expression represented by 'c' to include the type and kind of the
2492 second parameter. This function is for resolving the appropriate
2493 version of c_f_pointer() and c_f_procpointer(). For example, a
2494 call to c_f_pointer() for a default integer pointer could have a
2495 name of c_f_pointer_i4. If no second arg exists, which is an error
2496 for these two functions, it defaults to the generic symbol's name
2497 and binding label. */
2498
2499 static void
2500 set_name_and_label (gfc_code *c, gfc_symbol *sym,
2501 char *name, char *binding_label)
2502 {
2503 gfc_expr *arg = NULL;
2504 char type;
2505 int kind;
2506
2507 /* The second arg of c_f_pointer and c_f_procpointer determines
2508 the type and kind for the procedure name. */
2509 arg = c->ext.actual->next->expr;
2510
2511 if (arg != NULL)
2512 {
2513 /* Set up the name to have the given symbol's name,
2514 plus the type and kind. */
2515 /* a derived type is marked with the type letter 'u' */
2516 if (arg->ts.type == BT_DERIVED)
2517 {
2518 type = 'd';
2519 kind = 0; /* set the kind as 0 for now */
2520 }
2521 else
2522 {
2523 type = gfc_type_letter (arg->ts.type);
2524 kind = arg->ts.kind;
2525 }
2526
2527 if (arg->ts.type == BT_CHARACTER)
2528 /* Kind info for character strings not needed. */
2529 kind = 0;
2530
2531 sprintf (name, "%s_%c%d", sym->name, type, kind);
2532 /* Set up the binding label as the given symbol's label plus
2533 the type and kind. */
2534 sprintf (binding_label, "%s_%c%d", sym->binding_label, type, kind);
2535 }
2536 else
2537 {
2538 /* If the second arg is missing, set the name and label as
2539 was, cause it should at least be found, and the missing
2540 arg error will be caught by compare_parameters(). */
2541 sprintf (name, "%s", sym->name);
2542 sprintf (binding_label, "%s", sym->binding_label);
2543 }
2544
2545 return;
2546 }
2547
2548
2549 /* Resolve a generic version of the iso_c_binding procedure given
2550 (sym) to the specific one based on the type and kind of the
2551 argument(s). Currently, this function resolves c_f_pointer() and
2552 c_f_procpointer based on the type and kind of the second argument
2553 (FPTR). Other iso_c_binding procedures aren't specially handled.
2554 Upon successfully exiting, c->resolved_sym will hold the resolved
2555 symbol. Returns MATCH_ERROR if an error occurred; MATCH_YES
2556 otherwise. */
2557
2558 match
2559 gfc_iso_c_sub_interface (gfc_code *c, gfc_symbol *sym)
2560 {
2561 gfc_symbol *new_sym;
2562 /* this is fine, since we know the names won't use the max */
2563 char name[GFC_MAX_SYMBOL_LEN + 1];
2564 char binding_label[GFC_MAX_BINDING_LABEL_LEN + 1];
2565 /* default to success; will override if find error */
2566 match m = MATCH_YES;
2567
2568 /* Make sure the actual arguments are in the necessary order (based on the
2569 formal args) before resolving. */
2570 gfc_procedure_use (sym, &c->ext.actual, &(c->loc));
2571
2572 if ((sym->intmod_sym_id == ISOCBINDING_F_POINTER) ||
2573 (sym->intmod_sym_id == ISOCBINDING_F_PROCPOINTER))
2574 {
2575 set_name_and_label (c, sym, name, binding_label);
2576
2577 if (sym->intmod_sym_id == ISOCBINDING_F_POINTER)
2578 {
2579 if (c->ext.actual != NULL && c->ext.actual->next != NULL)
2580 {
2581 /* Make sure we got a third arg if the second arg has non-zero
2582 rank. We must also check that the type and rank are
2583 correct since we short-circuit this check in
2584 gfc_procedure_use() (called above to sort actual args). */
2585 if (c->ext.actual->next->expr->rank != 0)
2586 {
2587 if(c->ext.actual->next->next == NULL
2588 || c->ext.actual->next->next->expr == NULL)
2589 {
2590 m = MATCH_ERROR;
2591 gfc_error ("Missing SHAPE parameter for call to %s "
2592 "at %L", sym->name, &(c->loc));
2593 }
2594 else if (c->ext.actual->next->next->expr->ts.type
2595 != BT_INTEGER
2596 || c->ext.actual->next->next->expr->rank != 1)
2597 {
2598 m = MATCH_ERROR;
2599 gfc_error ("SHAPE parameter for call to %s at %L must "
2600 "be a rank 1 INTEGER array", sym->name,
2601 &(c->loc));
2602 }
2603 }
2604 }
2605 }
2606
2607 if (m != MATCH_ERROR)
2608 {
2609 /* the 1 means to add the optional arg to formal list */
2610 new_sym = get_iso_c_sym (sym, name, binding_label, 1);
2611
2612 /* for error reporting, say it's declared where the original was */
2613 new_sym->declared_at = sym->declared_at;
2614 }
2615 }
2616 else
2617 {
2618 /* no differences for c_loc or c_funloc */
2619 new_sym = sym;
2620 }
2621
2622 /* set the resolved symbol */
2623 if (m != MATCH_ERROR)
2624 c->resolved_sym = new_sym;
2625 else
2626 c->resolved_sym = sym;
2627
2628 return m;
2629 }
2630
2631
2632 /* Resolve a subroutine call known to be specific. */
2633
2634 static match
2635 resolve_specific_s0 (gfc_code *c, gfc_symbol *sym)
2636 {
2637 match m;
2638
2639 /* See if we have an intrinsic interface. */
2640 if (sym->ts.interface != NULL && !sym->ts.interface->attr.abstract
2641 && !sym->ts.interface->attr.subroutine)
2642 {
2643 gfc_intrinsic_sym *isym;
2644
2645 isym = gfc_find_function (sym->ts.interface->name);
2646
2647 /* Existence of isym should be checked already. */
2648 gcc_assert (isym);
2649
2650 sym->ts.type = isym->ts.type;
2651 sym->ts.kind = isym->ts.kind;
2652 sym->attr.subroutine = 1;
2653 goto found;
2654 }
2655
2656 if(sym->attr.is_iso_c)
2657 {
2658 m = gfc_iso_c_sub_interface (c,sym);
2659 return m;
2660 }
2661
2662 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
2663 {
2664 if (sym->attr.dummy)
2665 {
2666 sym->attr.proc = PROC_DUMMY;
2667 goto found;
2668 }
2669
2670 sym->attr.proc = PROC_EXTERNAL;
2671 goto found;
2672 }
2673
2674 if (sym->attr.proc == PROC_MODULE || sym->attr.proc == PROC_INTERNAL)
2675 goto found;
2676
2677 if (sym->attr.intrinsic)
2678 {
2679 m = gfc_intrinsic_sub_interface (c, 1);
2680 if (m == MATCH_YES)
2681 return MATCH_YES;
2682 if (m == MATCH_NO)
2683 gfc_error ("Subroutine '%s' at %L is INTRINSIC but is not compatible "
2684 "with an intrinsic", sym->name, &c->loc);
2685
2686 return MATCH_ERROR;
2687 }
2688
2689 return MATCH_NO;
2690
2691 found:
2692 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
2693
2694 c->resolved_sym = sym;
2695 pure_subroutine (c, sym);
2696
2697 return MATCH_YES;
2698 }
2699
2700
2701 static gfc_try
2702 resolve_specific_s (gfc_code *c)
2703 {
2704 gfc_symbol *sym;
2705 match m;
2706
2707 sym = c->symtree->n.sym;
2708
2709 for (;;)
2710 {
2711 m = resolve_specific_s0 (c, sym);
2712 if (m == MATCH_YES)
2713 return SUCCESS;
2714 if (m == MATCH_ERROR)
2715 return FAILURE;
2716
2717 if (sym->ns->parent == NULL)
2718 break;
2719
2720 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2721
2722 if (sym == NULL)
2723 break;
2724 }
2725
2726 sym = c->symtree->n.sym;
2727 gfc_error ("Unable to resolve the specific subroutine '%s' at %L",
2728 sym->name, &c->loc);
2729
2730 return FAILURE;
2731 }
2732
2733
2734 /* Resolve a subroutine call not known to be generic nor specific. */
2735
2736 static gfc_try
2737 resolve_unknown_s (gfc_code *c)
2738 {
2739 gfc_symbol *sym;
2740
2741 sym = c->symtree->n.sym;
2742
2743 if (sym->attr.dummy)
2744 {
2745 sym->attr.proc = PROC_DUMMY;
2746 goto found;
2747 }
2748
2749 /* See if we have an intrinsic function reference. */
2750
2751 if (gfc_is_intrinsic (sym, 1, c->loc))
2752 {
2753 if (gfc_intrinsic_sub_interface (c, 1) == MATCH_YES)
2754 return SUCCESS;
2755 return FAILURE;
2756 }
2757
2758 /* The reference is to an external name. */
2759
2760 found:
2761 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
2762
2763 c->resolved_sym = sym;
2764
2765 pure_subroutine (c, sym);
2766
2767 return SUCCESS;
2768 }
2769
2770
2771 /* Resolve a subroutine call. Although it was tempting to use the same code
2772 for functions, subroutines and functions are stored differently and this
2773 makes things awkward. */
2774
2775 static gfc_try
2776 resolve_call (gfc_code *c)
2777 {
2778 gfc_try t;
2779 procedure_type ptype = PROC_INTRINSIC;
2780
2781 if (c->symtree && c->symtree->n.sym
2782 && c->symtree->n.sym->ts.type != BT_UNKNOWN)
2783 {
2784 gfc_error ("'%s' at %L has a type, which is not consistent with "
2785 "the CALL at %L", c->symtree->n.sym->name,
2786 &c->symtree->n.sym->declared_at, &c->loc);
2787 return FAILURE;
2788 }
2789
2790 /* If external, check for usage. */
2791 if (c->symtree && is_external_proc (c->symtree->n.sym))
2792 resolve_global_procedure (c->symtree->n.sym, &c->loc, 1);
2793
2794 /* Subroutines without the RECURSIVE attribution are not allowed to
2795 * call themselves. */
2796 if (c->symtree && c->symtree->n.sym && !c->symtree->n.sym->attr.recursive)
2797 {
2798 gfc_symbol *csym, *proc;
2799 csym = c->symtree->n.sym;
2800 proc = gfc_current_ns->proc_name;
2801 if (csym == proc)
2802 {
2803 gfc_error ("SUBROUTINE '%s' at %L cannot call itself, as it is not "
2804 "RECURSIVE", csym->name, &c->loc);
2805 t = FAILURE;
2806 }
2807
2808 if (csym->attr.entry && csym->ns->entries && proc->ns->entries
2809 && csym->ns->entries->sym == proc->ns->entries->sym)
2810 {
2811 gfc_error ("Call to ENTRY '%s' at %L is recursive, but subroutine "
2812 "'%s' is not declared as RECURSIVE",
2813 csym->name, &c->loc, csym->ns->entries->sym->name);
2814 t = FAILURE;
2815 }
2816 }
2817
2818 /* Switch off assumed size checking and do this again for certain kinds
2819 of procedure, once the procedure itself is resolved. */
2820 need_full_assumed_size++;
2821
2822 if (c->symtree && c->symtree->n.sym)
2823 ptype = c->symtree->n.sym->attr.proc;
2824
2825 if (resolve_actual_arglist (c->ext.actual, ptype) == FAILURE)
2826 return FAILURE;
2827
2828 /* Resume assumed_size checking. */
2829 need_full_assumed_size--;
2830
2831 t = SUCCESS;
2832 if (c->resolved_sym == NULL)
2833 switch (procedure_kind (c->symtree->n.sym))
2834 {
2835 case PTYPE_GENERIC:
2836 t = resolve_generic_s (c);
2837 break;
2838
2839 case PTYPE_SPECIFIC:
2840 t = resolve_specific_s (c);
2841 break;
2842
2843 case PTYPE_UNKNOWN:
2844 t = resolve_unknown_s (c);
2845 break;
2846
2847 default:
2848 gfc_internal_error ("resolve_subroutine(): bad function type");
2849 }
2850
2851 /* Some checks of elemental subroutine actual arguments. */
2852 if (resolve_elemental_actual (NULL, c) == FAILURE)
2853 return FAILURE;
2854
2855 if (t == SUCCESS && !(c->resolved_sym && c->resolved_sym->attr.elemental))
2856 find_noncopying_intrinsics (c->resolved_sym, c->ext.actual);
2857 return t;
2858 }
2859
2860
2861 /* Compare the shapes of two arrays that have non-NULL shapes. If both
2862 op1->shape and op2->shape are non-NULL return SUCCESS if their shapes
2863 match. If both op1->shape and op2->shape are non-NULL return FAILURE
2864 if their shapes do not match. If either op1->shape or op2->shape is
2865 NULL, return SUCCESS. */
2866
2867 static gfc_try
2868 compare_shapes (gfc_expr *op1, gfc_expr *op2)
2869 {
2870 gfc_try t;
2871 int i;
2872
2873 t = SUCCESS;
2874
2875 if (op1->shape != NULL && op2->shape != NULL)
2876 {
2877 for (i = 0; i < op1->rank; i++)
2878 {
2879 if (mpz_cmp (op1->shape[i], op2->shape[i]) != 0)
2880 {
2881 gfc_error ("Shapes for operands at %L and %L are not conformable",
2882 &op1->where, &op2->where);
2883 t = FAILURE;
2884 break;
2885 }
2886 }
2887 }
2888
2889 return t;
2890 }
2891
2892
2893 /* Resolve an operator expression node. This can involve replacing the
2894 operation with a user defined function call. */
2895
2896 static gfc_try
2897 resolve_operator (gfc_expr *e)
2898 {
2899 gfc_expr *op1, *op2;
2900 char msg[200];
2901 bool dual_locus_error;
2902 gfc_try t;
2903
2904 /* Resolve all subnodes-- give them types. */
2905
2906 switch (e->value.op.op)
2907 {
2908 default:
2909 if (gfc_resolve_expr (e->value.op.op2) == FAILURE)
2910 return FAILURE;
2911
2912 /* Fall through... */
2913
2914 case INTRINSIC_NOT:
2915 case INTRINSIC_UPLUS:
2916 case INTRINSIC_UMINUS:
2917 case INTRINSIC_PARENTHESES:
2918 if (gfc_resolve_expr (e->value.op.op1) == FAILURE)
2919 return FAILURE;
2920 break;
2921 }
2922
2923 /* Typecheck the new node. */
2924
2925 op1 = e->value.op.op1;
2926 op2 = e->value.op.op2;
2927 dual_locus_error = false;
2928
2929 if ((op1 && op1->expr_type == EXPR_NULL)
2930 || (op2 && op2->expr_type == EXPR_NULL))
2931 {
2932 sprintf (msg, _("Invalid context for NULL() pointer at %%L"));
2933 goto bad_op;
2934 }
2935
2936 switch (e->value.op.op)
2937 {
2938 case INTRINSIC_UPLUS:
2939 case INTRINSIC_UMINUS:
2940 if (op1->ts.type == BT_INTEGER
2941 || op1->ts.type == BT_REAL
2942 || op1->ts.type == BT_COMPLEX)
2943 {
2944 e->ts = op1->ts;
2945 break;
2946 }
2947
2948 sprintf (msg, _("Operand of unary numeric operator '%s' at %%L is %s"),
2949 gfc_op2string (e->value.op.op), gfc_typename (&e->ts));
2950 goto bad_op;
2951
2952 case INTRINSIC_PLUS:
2953 case INTRINSIC_MINUS:
2954 case INTRINSIC_TIMES:
2955 case INTRINSIC_DIVIDE:
2956 case INTRINSIC_POWER:
2957 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
2958 {
2959 gfc_type_convert_binary (e);
2960 break;
2961 }
2962
2963 sprintf (msg,
2964 _("Operands of binary numeric operator '%s' at %%L are %s/%s"),
2965 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
2966 gfc_typename (&op2->ts));
2967 goto bad_op;
2968
2969 case INTRINSIC_CONCAT:
2970 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
2971 && op1->ts.kind == op2->ts.kind)
2972 {
2973 e->ts.type = BT_CHARACTER;
2974 e->ts.kind = op1->ts.kind;
2975 break;
2976 }
2977
2978 sprintf (msg,
2979 _("Operands of string concatenation operator at %%L are %s/%s"),
2980 gfc_typename (&op1->ts), gfc_typename (&op2->ts));
2981 goto bad_op;
2982
2983 case INTRINSIC_AND:
2984 case INTRINSIC_OR:
2985 case INTRINSIC_EQV:
2986 case INTRINSIC_NEQV:
2987 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
2988 {
2989 e->ts.type = BT_LOGICAL;
2990 e->ts.kind = gfc_kind_max (op1, op2);
2991 if (op1->ts.kind < e->ts.kind)
2992 gfc_convert_type (op1, &e->ts, 2);
2993 else if (op2->ts.kind < e->ts.kind)
2994 gfc_convert_type (op2, &e->ts, 2);
2995 break;
2996 }
2997
2998 sprintf (msg, _("Operands of logical operator '%s' at %%L are %s/%s"),
2999 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
3000 gfc_typename (&op2->ts));
3001
3002 goto bad_op;
3003
3004 case INTRINSIC_NOT:
3005 if (op1->ts.type == BT_LOGICAL)
3006 {
3007 e->ts.type = BT_LOGICAL;
3008 e->ts.kind = op1->ts.kind;
3009 break;
3010 }
3011
3012 sprintf (msg, _("Operand of .not. operator at %%L is %s"),
3013 gfc_typename (&op1->ts));
3014 goto bad_op;
3015
3016 case INTRINSIC_GT:
3017 case INTRINSIC_GT_OS:
3018 case INTRINSIC_GE:
3019 case INTRINSIC_GE_OS:
3020 case INTRINSIC_LT:
3021 case INTRINSIC_LT_OS:
3022 case INTRINSIC_LE:
3023 case INTRINSIC_LE_OS:
3024 if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
3025 {
3026 strcpy (msg, _("COMPLEX quantities cannot be compared at %L"));
3027 goto bad_op;
3028 }
3029
3030 /* Fall through... */
3031
3032 case INTRINSIC_EQ:
3033 case INTRINSIC_EQ_OS:
3034 case INTRINSIC_NE:
3035 case INTRINSIC_NE_OS:
3036 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
3037 && op1->ts.kind == op2->ts.kind)
3038 {
3039 e->ts.type = BT_LOGICAL;
3040 e->ts.kind = gfc_default_logical_kind;
3041 break;
3042 }
3043
3044 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
3045 {
3046 gfc_type_convert_binary (e);
3047
3048 e->ts.type = BT_LOGICAL;
3049 e->ts.kind = gfc_default_logical_kind;
3050 break;
3051 }
3052
3053 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
3054 sprintf (msg,
3055 _("Logicals at %%L must be compared with %s instead of %s"),
3056 (e->value.op.op == INTRINSIC_EQ
3057 || e->value.op.op == INTRINSIC_EQ_OS)
3058 ? ".eqv." : ".neqv.", gfc_op2string (e->value.op.op));
3059 else
3060 sprintf (msg,
3061 _("Operands of comparison operator '%s' at %%L are %s/%s"),
3062 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
3063 gfc_typename (&op2->ts));
3064
3065 goto bad_op;
3066
3067 case INTRINSIC_USER:
3068 if (e->value.op.uop->op == NULL)
3069 sprintf (msg, _("Unknown operator '%s' at %%L"), e->value.op.uop->name);
3070 else if (op2 == NULL)
3071 sprintf (msg, _("Operand of user operator '%s' at %%L is %s"),
3072 e->value.op.uop->name, gfc_typename (&op1->ts));
3073 else
3074 sprintf (msg, _("Operands of user operator '%s' at %%L are %s/%s"),
3075 e->value.op.uop->name, gfc_typename (&op1->ts),
3076 gfc_typename (&op2->ts));
3077
3078 goto bad_op;
3079
3080 case INTRINSIC_PARENTHESES:
3081 e->ts = op1->ts;
3082 if (e->ts.type == BT_CHARACTER)
3083 e->ts.cl = op1->ts.cl;
3084 break;
3085
3086 default:
3087 gfc_internal_error ("resolve_operator(): Bad intrinsic");
3088 }
3089
3090 /* Deal with arrayness of an operand through an operator. */
3091
3092 t = SUCCESS;
3093
3094 switch (e->value.op.op)
3095 {
3096 case INTRINSIC_PLUS:
3097 case INTRINSIC_MINUS:
3098 case INTRINSIC_TIMES:
3099 case INTRINSIC_DIVIDE:
3100 case INTRINSIC_POWER:
3101 case INTRINSIC_CONCAT:
3102 case INTRINSIC_AND:
3103 case INTRINSIC_OR:
3104 case INTRINSIC_EQV:
3105 case INTRINSIC_NEQV:
3106 case INTRINSIC_EQ:
3107 case INTRINSIC_EQ_OS:
3108 case INTRINSIC_NE:
3109 case INTRINSIC_NE_OS:
3110 case INTRINSIC_GT:
3111 case INTRINSIC_GT_OS:
3112 case INTRINSIC_GE:
3113 case INTRINSIC_GE_OS:
3114 case INTRINSIC_LT:
3115 case INTRINSIC_LT_OS:
3116 case INTRINSIC_LE:
3117 case INTRINSIC_LE_OS:
3118
3119 if (op1->rank == 0 && op2->rank == 0)
3120 e->rank = 0;
3121
3122 if (op1->rank == 0 && op2->rank != 0)
3123 {
3124 e->rank = op2->rank;
3125
3126 if (e->shape == NULL)
3127 e->shape = gfc_copy_shape (op2->shape, op2->rank);
3128 }
3129
3130 if (op1->rank != 0 && op2->rank == 0)
3131 {
3132 e->rank = op1->rank;
3133
3134 if (e->shape == NULL)
3135 e->shape = gfc_copy_shape (op1->shape, op1->rank);
3136 }
3137
3138 if (op1->rank != 0 && op2->rank != 0)
3139 {
3140 if (op1->rank == op2->rank)
3141 {
3142 e->rank = op1->rank;
3143 if (e->shape == NULL)
3144 {
3145 t = compare_shapes(op1, op2);
3146 if (t == FAILURE)
3147 e->shape = NULL;
3148 else
3149 e->shape = gfc_copy_shape (op1->shape, op1->rank);
3150 }
3151 }
3152 else
3153 {
3154 /* Allow higher level expressions to work. */
3155 e->rank = 0;
3156
3157 /* Try user-defined operators, and otherwise throw an error. */
3158 dual_locus_error = true;
3159 sprintf (msg,
3160 _("Inconsistent ranks for operator at %%L and %%L"));
3161 goto bad_op;
3162 }
3163 }
3164
3165 break;
3166
3167 case INTRINSIC_PARENTHESES:
3168 case INTRINSIC_NOT:
3169 case INTRINSIC_UPLUS:
3170 case INTRINSIC_UMINUS:
3171 /* Simply copy arrayness attribute */
3172 e->rank = op1->rank;
3173
3174 if (e->shape == NULL)
3175 e->shape = gfc_copy_shape (op1->shape, op1->rank);
3176
3177 break;
3178
3179 default:
3180 break;
3181 }
3182
3183 /* Attempt to simplify the expression. */
3184 if (t == SUCCESS)
3185 {
3186 t = gfc_simplify_expr (e, 0);
3187 /* Some calls do not succeed in simplification and return FAILURE
3188 even though there is no error; e.g. variable references to
3189 PARAMETER arrays. */
3190 if (!gfc_is_constant_expr (e))
3191 t = SUCCESS;
3192 }
3193 return t;
3194
3195 bad_op:
3196
3197 if (gfc_extend_expr (e) == SUCCESS)
3198 return SUCCESS;
3199
3200 if (dual_locus_error)
3201 gfc_error (msg, &op1->where, &op2->where);
3202 else
3203 gfc_error (msg, &e->where);
3204
3205 return FAILURE;
3206 }
3207
3208
3209 /************** Array resolution subroutines **************/
3210
3211 typedef enum
3212 { CMP_LT, CMP_EQ, CMP_GT, CMP_UNKNOWN }
3213 comparison;
3214
3215 /* Compare two integer expressions. */
3216
3217 static comparison
3218 compare_bound (gfc_expr *a, gfc_expr *b)
3219 {
3220 int i;
3221
3222 if (a == NULL || a->expr_type != EXPR_CONSTANT
3223 || b == NULL || b->expr_type != EXPR_CONSTANT)
3224 return CMP_UNKNOWN;
3225
3226 /* If either of the types isn't INTEGER, we must have
3227 raised an error earlier. */
3228
3229 if (a->ts.type != BT_INTEGER || b->ts.type != BT_INTEGER)
3230 return CMP_UNKNOWN;
3231
3232 i = mpz_cmp (a->value.integer, b->value.integer);
3233
3234 if (i < 0)
3235 return CMP_LT;
3236 if (i > 0)
3237 return CMP_GT;
3238 return CMP_EQ;
3239 }
3240
3241
3242 /* Compare an integer expression with an integer. */
3243
3244 static comparison
3245 compare_bound_int (gfc_expr *a, int b)
3246 {
3247 int i;
3248
3249 if (a == NULL || a->expr_type != EXPR_CONSTANT)
3250 return CMP_UNKNOWN;
3251
3252 if (a->ts.type != BT_INTEGER)
3253 gfc_internal_error ("compare_bound_int(): Bad expression");
3254
3255 i = mpz_cmp_si (a->value.integer, b);
3256
3257 if (i < 0)
3258 return CMP_LT;
3259 if (i > 0)
3260 return CMP_GT;
3261 return CMP_EQ;
3262 }
3263
3264
3265 /* Compare an integer expression with a mpz_t. */
3266
3267 static comparison
3268 compare_bound_mpz_t (gfc_expr *a, mpz_t b)
3269 {
3270 int i;
3271
3272 if (a == NULL || a->expr_type != EXPR_CONSTANT)
3273 return CMP_UNKNOWN;
3274
3275 if (a->ts.type != BT_INTEGER)
3276 gfc_internal_error ("compare_bound_int(): Bad expression");
3277
3278 i = mpz_cmp (a->value.integer, b);
3279
3280 if (i < 0)
3281 return CMP_LT;
3282 if (i > 0)
3283 return CMP_GT;
3284 return CMP_EQ;
3285 }
3286
3287
3288 /* Compute the last value of a sequence given by a triplet.
3289 Return 0 if it wasn't able to compute the last value, or if the
3290 sequence if empty, and 1 otherwise. */
3291
3292 static int
3293 compute_last_value_for_triplet (gfc_expr *start, gfc_expr *end,
3294 gfc_expr *stride, mpz_t last)
3295 {
3296 mpz_t rem;
3297
3298 if (start == NULL || start->expr_type != EXPR_CONSTANT
3299 || end == NULL || end->expr_type != EXPR_CONSTANT
3300 || (stride != NULL && stride->expr_type != EXPR_CONSTANT))
3301 return 0;
3302
3303 if (start->ts.type != BT_INTEGER || end->ts.type != BT_INTEGER
3304 || (stride != NULL && stride->ts.type != BT_INTEGER))
3305 return 0;
3306
3307 if (stride == NULL || compare_bound_int(stride, 1) == CMP_EQ)
3308 {
3309 if (compare_bound (start, end) == CMP_GT)
3310 return 0;
3311 mpz_set (last, end->value.integer);
3312 return 1;
3313 }
3314
3315 if (compare_bound_int (stride, 0) == CMP_GT)
3316 {
3317 /* Stride is positive */
3318 if (mpz_cmp (start->value.integer, end->value.integer) > 0)
3319 return 0;
3320 }
3321 else
3322 {
3323 /* Stride is negative */
3324 if (mpz_cmp (start->value.integer, end->value.integer) < 0)
3325 return 0;
3326 }
3327
3328 mpz_init (rem);
3329 mpz_sub (rem, end->value.integer, start->value.integer);
3330 mpz_tdiv_r (rem, rem, stride->value.integer);
3331 mpz_sub (last, end->value.integer, rem);
3332 mpz_clear (rem);
3333
3334 return 1;
3335 }
3336
3337
3338 /* Compare a single dimension of an array reference to the array
3339 specification. */
3340
3341 static gfc_try
3342 check_dimension (int i, gfc_array_ref *ar, gfc_array_spec *as)
3343 {
3344 mpz_t last_value;
3345
3346 /* Given start, end and stride values, calculate the minimum and
3347 maximum referenced indexes. */
3348
3349 switch (ar->dimen_type[i])
3350 {
3351 case DIMEN_VECTOR:
3352 break;
3353
3354 case DIMEN_ELEMENT:
3355 if (compare_bound (ar->start[i], as->lower[i]) == CMP_LT)
3356 {
3357 gfc_warning ("Array reference at %L is out of bounds "
3358 "(%ld < %ld) in dimension %d", &ar->c_where[i],
3359 mpz_get_si (ar->start[i]->value.integer),
3360 mpz_get_si (as->lower[i]->value.integer), i+1);
3361 return SUCCESS;
3362 }
3363 if (compare_bound (ar->start[i], as->upper[i]) == CMP_GT)
3364 {
3365 gfc_warning ("Array reference at %L is out of bounds "
3366 "(%ld > %ld) in dimension %d", &ar->c_where[i],
3367 mpz_get_si (ar->start[i]->value.integer),
3368 mpz_get_si (as->upper[i]->value.integer), i+1);
3369 return SUCCESS;
3370 }
3371
3372 break;
3373
3374 case DIMEN_RANGE:
3375 {
3376 #define AR_START (ar->start[i] ? ar->start[i] : as->lower[i])
3377 #define AR_END (ar->end[i] ? ar->end[i] : as->upper[i])
3378
3379 comparison comp_start_end = compare_bound (AR_START, AR_END);
3380
3381 /* Check for zero stride, which is not allowed. */
3382 if (compare_bound_int (ar->stride[i], 0) == CMP_EQ)
3383 {
3384 gfc_error ("Illegal stride of zero at %L", &ar->c_where[i]);
3385 return FAILURE;
3386 }
3387
3388 /* if start == len || (stride > 0 && start < len)
3389 || (stride < 0 && start > len),
3390 then the array section contains at least one element. In this
3391 case, there is an out-of-bounds access if
3392 (start < lower || start > upper). */
3393 if (compare_bound (AR_START, AR_END) == CMP_EQ
3394 || ((compare_bound_int (ar->stride[i], 0) == CMP_GT
3395 || ar->stride[i] == NULL) && comp_start_end == CMP_LT)
3396 || (compare_bound_int (ar->stride[i], 0) == CMP_LT
3397 && comp_start_end == CMP_GT))
3398 {
3399 if (compare_bound (AR_START, as->lower[i]) == CMP_LT)
3400 {
3401 gfc_warning ("Lower array reference at %L is out of bounds "
3402 "(%ld < %ld) in dimension %d", &ar->c_where[i],
3403 mpz_get_si (AR_START->value.integer),
3404 mpz_get_si (as->lower[i]->value.integer), i+1);
3405 return SUCCESS;
3406 }
3407 if (compare_bound (AR_START, as->upper[i]) == CMP_GT)
3408 {
3409 gfc_warning ("Lower array reference at %L is out of bounds "
3410 "(%ld > %ld) in dimension %d", &ar->c_where[i],
3411 mpz_get_si (AR_START->value.integer),
3412 mpz_get_si (as->upper[i]->value.integer), i+1);
3413 return SUCCESS;
3414 }
3415 }
3416
3417 /* If we can compute the highest index of the array section,
3418 then it also has to be between lower and upper. */
3419 mpz_init (last_value);
3420 if (compute_last_value_for_triplet (AR_START, AR_END, ar->stride[i],
3421 last_value))
3422 {
3423 if (compare_bound_mpz_t (as->lower[i], last_value) == CMP_GT)
3424 {
3425 gfc_warning ("Upper array reference at %L is out of bounds "
3426 "(%ld < %ld) in dimension %d", &ar->c_where[i],
3427 mpz_get_si (last_value),
3428 mpz_get_si (as->lower[i]->value.integer), i+1);
3429 mpz_clear (last_value);
3430 return SUCCESS;
3431 }
3432 if (compare_bound_mpz_t (as->upper[i], last_value) == CMP_LT)
3433 {
3434 gfc_warning ("Upper array reference at %L is out of bounds "
3435 "(%ld > %ld) in dimension %d", &ar->c_where[i],
3436 mpz_get_si (last_value),
3437 mpz_get_si (as->upper[i]->value.integer), i+1);
3438 mpz_clear (last_value);
3439 return SUCCESS;
3440 }
3441 }
3442 mpz_clear (last_value);
3443
3444 #undef AR_START
3445 #undef AR_END
3446 }
3447 break;
3448
3449 default:
3450 gfc_internal_error ("check_dimension(): Bad array reference");
3451 }
3452
3453 return SUCCESS;
3454 }
3455
3456
3457 /* Compare an array reference with an array specification. */
3458
3459 static gfc_try
3460 compare_spec_to_ref (gfc_array_ref *ar)
3461 {
3462 gfc_array_spec *as;
3463 int i;
3464
3465 as = ar->as;
3466 i = as->rank - 1;
3467 /* TODO: Full array sections are only allowed as actual parameters. */
3468 if (as->type == AS_ASSUMED_SIZE
3469 && (/*ar->type == AR_FULL
3470 ||*/ (ar->type == AR_SECTION
3471 && ar->dimen_type[i] == DIMEN_RANGE && ar->end[i] == NULL)))
3472 {
3473 gfc_error ("Rightmost upper bound of assumed size array section "
3474 "not specified at %L", &ar->where);
3475 return FAILURE;
3476 }
3477
3478 if (ar->type == AR_FULL)
3479 return SUCCESS;
3480
3481 if (as->rank != ar->dimen)
3482 {
3483 gfc_error ("Rank mismatch in array reference at %L (%d/%d)",
3484 &ar->where, ar->dimen, as->rank);
3485 return FAILURE;
3486 }
3487
3488 for (i = 0; i < as->rank; i++)
3489 if (check_dimension (i, ar, as) == FAILURE)
3490 return FAILURE;
3491
3492 return SUCCESS;
3493 }
3494
3495
3496 /* Resolve one part of an array index. */
3497
3498 gfc_try
3499 gfc_resolve_index (gfc_expr *index, int check_scalar)
3500 {
3501 gfc_typespec ts;
3502
3503 if (index == NULL)
3504 return SUCCESS;
3505
3506 if (gfc_resolve_expr (index) == FAILURE)
3507 return FAILURE;
3508
3509 if (check_scalar && index->rank != 0)
3510 {
3511 gfc_error ("Array index at %L must be scalar", &index->where);
3512 return FAILURE;
3513 }
3514
3515 if (index->ts.type != BT_INTEGER && index->ts.type != BT_REAL)
3516 {
3517 gfc_error ("Array index at %L must be of INTEGER type, found %s",
3518 &index->where, gfc_basic_typename (index->ts.type));
3519 return FAILURE;
3520 }
3521
3522 if (index->ts.type == BT_REAL)
3523 if (gfc_notify_std (GFC_STD_LEGACY, "Extension: REAL array index at %L",
3524 &index->where) == FAILURE)
3525 return FAILURE;
3526
3527 if (index->ts.kind != gfc_index_integer_kind
3528 || index->ts.type != BT_INTEGER)
3529 {
3530 gfc_clear_ts (&ts);
3531 ts.type = BT_INTEGER;
3532 ts.kind = gfc_index_integer_kind;
3533
3534 gfc_convert_type_warn (index, &ts, 2, 0);
3535 }
3536
3537 return SUCCESS;
3538 }
3539
3540 /* Resolve a dim argument to an intrinsic function. */
3541
3542 gfc_try
3543 gfc_resolve_dim_arg (gfc_expr *dim)
3544 {
3545 if (dim == NULL)
3546 return SUCCESS;
3547
3548 if (gfc_resolve_expr (dim) == FAILURE)
3549 return FAILURE;
3550
3551 if (dim->rank != 0)
3552 {
3553 gfc_error ("Argument dim at %L must be scalar", &dim->where);
3554 return FAILURE;
3555
3556 }
3557
3558 if (dim->ts.type != BT_INTEGER)
3559 {
3560 gfc_error ("Argument dim at %L must be of INTEGER type", &dim->where);
3561 return FAILURE;
3562 }
3563
3564 if (dim->ts.kind != gfc_index_integer_kind)
3565 {
3566 gfc_typespec ts;
3567
3568 ts.type = BT_INTEGER;
3569 ts.kind = gfc_index_integer_kind;
3570
3571 gfc_convert_type_warn (dim, &ts, 2, 0);
3572 }
3573
3574 return SUCCESS;
3575 }
3576
3577 /* Given an expression that contains array references, update those array
3578 references to point to the right array specifications. While this is
3579 filled in during matching, this information is difficult to save and load
3580 in a module, so we take care of it here.
3581
3582 The idea here is that the original array reference comes from the
3583 base symbol. We traverse the list of reference structures, setting
3584 the stored reference to references. Component references can
3585 provide an additional array specification. */
3586
3587 static void
3588 find_array_spec (gfc_expr *e)
3589 {
3590 gfc_array_spec *as;
3591 gfc_component *c;
3592 gfc_symbol *derived;
3593 gfc_ref *ref;
3594
3595 as = e->symtree->n.sym->as;
3596 derived = NULL;
3597
3598 for (ref = e->ref; ref; ref = ref->next)
3599 switch (ref->type)
3600 {
3601 case REF_ARRAY:
3602 if (as == NULL)
3603 gfc_internal_error ("find_array_spec(): Missing spec");
3604
3605 ref->u.ar.as = as;
3606 as = NULL;
3607 break;
3608
3609 case REF_COMPONENT:
3610 if (derived == NULL)
3611 derived = e->symtree->n.sym->ts.derived;
3612
3613 c = derived->components;
3614
3615 for (; c; c = c->next)
3616 if (c == ref->u.c.component)
3617 {
3618 /* Track the sequence of component references. */
3619 if (c->ts.type == BT_DERIVED)
3620 derived = c->ts.derived;
3621 break;
3622 }
3623
3624 if (c == NULL)
3625 gfc_internal_error ("find_array_spec(): Component not found");
3626
3627 if (c->attr.dimension)
3628 {
3629 if (as != NULL)
3630 gfc_internal_error ("find_array_spec(): unused as(1)");
3631 as = c->as;
3632 }
3633
3634 break;
3635
3636 case REF_SUBSTRING:
3637 break;
3638 }
3639
3640 if (as != NULL)
3641 gfc_internal_error ("find_array_spec(): unused as(2)");
3642 }
3643
3644
3645 /* Resolve an array reference. */
3646
3647 static gfc_try
3648 resolve_array_ref (gfc_array_ref *ar)
3649 {
3650 int i, check_scalar;
3651 gfc_expr *e;
3652
3653 for (i = 0; i < ar->dimen; i++)
3654 {
3655 check_scalar = ar->dimen_type[i] == DIMEN_RANGE;
3656
3657 if (gfc_resolve_index (ar->start[i], check_scalar) == FAILURE)
3658 return FAILURE;
3659 if (gfc_resolve_index (ar->end[i], check_scalar) == FAILURE)
3660 return FAILURE;
3661 if (gfc_resolve_index (ar->stride[i], check_scalar) == FAILURE)
3662 return FAILURE;
3663
3664 e = ar->start[i];
3665
3666 if (ar->dimen_type[i] == DIMEN_UNKNOWN)
3667 switch (e->rank)
3668 {
3669 case 0:
3670 ar->dimen_type[i] = DIMEN_ELEMENT;
3671 break;
3672
3673 case 1:
3674 ar->dimen_type[i] = DIMEN_VECTOR;
3675 if (e->expr_type == EXPR_VARIABLE
3676 && e->symtree->n.sym->ts.type == BT_DERIVED)
3677 ar->start[i] = gfc_get_parentheses (e);
3678 break;
3679
3680 default:
3681 gfc_error ("Array index at %L is an array of rank %d",
3682 &ar->c_where[i], e->rank);
3683 return FAILURE;
3684 }
3685 }
3686
3687 /* If the reference type is unknown, figure out what kind it is. */
3688
3689 if (ar->type == AR_UNKNOWN)
3690 {
3691 ar->type = AR_ELEMENT;
3692 for (i = 0; i < ar->dimen; i++)
3693 if (ar->dimen_type[i] == DIMEN_RANGE
3694 || ar->dimen_type[i] == DIMEN_VECTOR)
3695 {
3696 ar->type = AR_SECTION;
3697 break;
3698 }
3699 }
3700
3701 if (!ar->as->cray_pointee && compare_spec_to_ref (ar) == FAILURE)
3702 return FAILURE;
3703
3704 return SUCCESS;
3705 }
3706
3707
3708 static gfc_try
3709 resolve_substring (gfc_ref *ref)
3710 {
3711 if (ref->u.ss.start != NULL)
3712 {
3713 if (gfc_resolve_expr (ref->u.ss.start) == FAILURE)
3714 return FAILURE;
3715
3716 if (ref->u.ss.start->ts.type != BT_INTEGER)
3717 {
3718 gfc_error ("Substring start index at %L must be of type INTEGER",
3719 &ref->u.ss.start->where);
3720 return FAILURE;
3721 }
3722
3723 if (ref->u.ss.start->rank != 0)
3724 {
3725 gfc_error ("Substring start index at %L must be scalar",
3726 &ref->u.ss.start->where);
3727 return FAILURE;
3728 }
3729
3730 if (compare_bound_int (ref->u.ss.start, 1) == CMP_LT
3731 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
3732 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
3733 {
3734 gfc_error ("Substring start index at %L is less than one",
3735 &ref->u.ss.start->where);
3736 return FAILURE;
3737 }
3738 }
3739
3740 if (ref->u.ss.end != NULL)
3741 {
3742 if (gfc_resolve_expr (ref->u.ss.end) == FAILURE)
3743 return FAILURE;
3744
3745 if (ref->u.ss.end->ts.type != BT_INTEGER)
3746 {
3747 gfc_error ("Substring end index at %L must be of type INTEGER",
3748 &ref->u.ss.end->where);
3749 return FAILURE;
3750 }
3751
3752 if (ref->u.ss.end->rank != 0)
3753 {
3754 gfc_error ("Substring end index at %L must be scalar",
3755 &ref->u.ss.end->where);
3756 return FAILURE;
3757 }
3758
3759 if (ref->u.ss.length != NULL
3760 && compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_GT
3761 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
3762 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
3763 {
3764 gfc_error ("Substring end index at %L exceeds the string length",
3765 &ref->u.ss.start->where);
3766 return FAILURE;
3767 }
3768 }
3769
3770 return SUCCESS;
3771 }
3772
3773
3774 /* This function supplies missing substring charlens. */
3775
3776 void
3777 gfc_resolve_substring_charlen (gfc_expr *e)
3778 {
3779 gfc_ref *char_ref;
3780 gfc_expr *start, *end;
3781
3782 for (char_ref = e->ref; char_ref; char_ref = char_ref->next)
3783 if (char_ref->type == REF_SUBSTRING)
3784 break;
3785
3786 if (!char_ref)
3787 return;
3788
3789 gcc_assert (char_ref->next == NULL);
3790
3791 if (e->ts.cl)
3792 {
3793 if (e->ts.cl->length)
3794 gfc_free_expr (e->ts.cl->length);
3795 else if (e->expr_type == EXPR_VARIABLE
3796 && e->symtree->n.sym->attr.dummy)
3797 return;
3798 }
3799
3800 e->ts.type = BT_CHARACTER;
3801 e->ts.kind = gfc_default_character_kind;
3802
3803 if (!e->ts.cl)
3804 {
3805 e->ts.cl = gfc_get_charlen ();
3806 e->ts.cl->next = gfc_current_ns->cl_list;
3807 gfc_current_ns->cl_list = e->ts.cl;
3808 }
3809
3810 if (char_ref->u.ss.start)
3811 start = gfc_copy_expr (char_ref->u.ss.start);
3812 else
3813 start = gfc_int_expr (1);
3814
3815 if (char_ref->u.ss.end)
3816 end = gfc_copy_expr (char_ref->u.ss.end);
3817 else if (e->expr_type == EXPR_VARIABLE)
3818 end = gfc_copy_expr (e->symtree->n.sym->ts.cl->length);
3819 else
3820 end = NULL;
3821
3822 if (!start || !end)
3823 return;
3824
3825 /* Length = (end - start +1). */
3826 e->ts.cl->length = gfc_subtract (end, start);
3827 e->ts.cl->length = gfc_add (e->ts.cl->length, gfc_int_expr (1));
3828
3829 e->ts.cl->length->ts.type = BT_INTEGER;
3830 e->ts.cl->length->ts.kind = gfc_charlen_int_kind;;
3831
3832 /* Make sure that the length is simplified. */
3833 gfc_simplify_expr (e->ts.cl->length, 1);
3834 gfc_resolve_expr (e->ts.cl->length);
3835 }
3836
3837
3838 /* Resolve subtype references. */
3839
3840 static gfc_try
3841 resolve_ref (gfc_expr *expr)
3842 {
3843 int current_part_dimension, n_components, seen_part_dimension;
3844 gfc_ref *ref;
3845
3846 for (ref = expr->ref; ref; ref = ref->next)
3847 if (ref->type == REF_ARRAY && ref->u.ar.as == NULL)
3848 {
3849 find_array_spec (expr);
3850 break;
3851 }
3852
3853 for (ref = expr->ref; ref; ref = ref->next)
3854 switch (ref->type)
3855 {
3856 case REF_ARRAY:
3857 if (resolve_array_ref (&ref->u.ar) == FAILURE)
3858 return FAILURE;
3859 break;
3860
3861 case REF_COMPONENT:
3862 break;
3863
3864 case REF_SUBSTRING:
3865 resolve_substring (ref);
3866 break;
3867 }
3868
3869 /* Check constraints on part references. */
3870
3871 current_part_dimension = 0;
3872 seen_part_dimension = 0;
3873 n_components = 0;
3874
3875 for (ref = expr->ref; ref; ref = ref->next)
3876 {
3877 switch (ref->type)
3878 {
3879 case REF_ARRAY:
3880 switch (ref->u.ar.type)
3881 {
3882 case AR_FULL:
3883 case AR_SECTION:
3884 current_part_dimension = 1;
3885 break;
3886
3887 case AR_ELEMENT:
3888 current_part_dimension = 0;
3889 break;
3890
3891 case AR_UNKNOWN:
3892 gfc_internal_error ("resolve_ref(): Bad array reference");
3893 }
3894
3895 break;
3896
3897 case REF_COMPONENT:
3898 if (current_part_dimension || seen_part_dimension)
3899 {
3900 if (ref->u.c.component->attr.pointer)
3901 {
3902 gfc_error ("Component to the right of a part reference "
3903 "with nonzero rank must not have the POINTER "
3904 "attribute at %L", &expr->where);
3905 return FAILURE;
3906 }
3907 else if (ref->u.c.component->attr.allocatable)
3908 {
3909 gfc_error ("Component to the right of a part reference "
3910 "with nonzero rank must not have the ALLOCATABLE "
3911 "attribute at %L", &expr->where);
3912 return FAILURE;
3913 }
3914 }
3915
3916 n_components++;
3917 break;
3918
3919 case REF_SUBSTRING:
3920 break;
3921 }
3922
3923 if (((ref->type == REF_COMPONENT && n_components > 1)
3924 || ref->next == NULL)
3925 && current_part_dimension
3926 && seen_part_dimension)
3927 {
3928 gfc_error ("Two or more part references with nonzero rank must "
3929 "not be specified at %L", &expr->where);
3930 return FAILURE;
3931 }
3932
3933 if (ref->type == REF_COMPONENT)
3934 {
3935 if (current_part_dimension)
3936 seen_part_dimension = 1;
3937
3938 /* reset to make sure */
3939 current_part_dimension = 0;
3940 }
3941 }
3942
3943 return SUCCESS;
3944 }
3945
3946
3947 /* Given an expression, determine its shape. This is easier than it sounds.
3948 Leaves the shape array NULL if it is not possible to determine the shape. */
3949
3950 static void
3951 expression_shape (gfc_expr *e)
3952 {
3953 mpz_t array[GFC_MAX_DIMENSIONS];
3954 int i;
3955
3956 if (e->rank == 0 || e->shape != NULL)
3957 return;
3958
3959 for (i = 0; i < e->rank; i++)
3960 if (gfc_array_dimen_size (e, i, &array[i]) == FAILURE)
3961 goto fail;
3962
3963 e->shape = gfc_get_shape (e->rank);
3964
3965 memcpy (e->shape, array, e->rank * sizeof (mpz_t));
3966
3967 return;
3968
3969 fail:
3970 for (i--; i >= 0; i--)
3971 mpz_clear (array[i]);
3972 }
3973
3974
3975 /* Given a variable expression node, compute the rank of the expression by
3976 examining the base symbol and any reference structures it may have. */
3977
3978 static void
3979 expression_rank (gfc_expr *e)
3980 {
3981 gfc_ref *ref;
3982 int i, rank;
3983
3984 if (e->ref == NULL)
3985 {
3986 if (e->expr_type == EXPR_ARRAY)
3987 goto done;
3988 /* Constructors can have a rank different from one via RESHAPE(). */
3989
3990 if (e->symtree == NULL)
3991 {
3992 e->rank = 0;
3993 goto done;
3994 }
3995
3996 e->rank = (e->symtree->n.sym->as == NULL)
3997 ? 0 : e->symtree->n.sym->as->rank;
3998 goto done;
3999 }
4000
4001 rank = 0;
4002
4003 for (ref = e->ref; ref; ref = ref->next)
4004 {
4005 if (ref->type != REF_ARRAY)
4006 continue;
4007
4008 if (ref->u.ar.type == AR_FULL)
4009 {
4010 rank = ref->u.ar.as->rank;
4011 break;
4012 }
4013
4014 if (ref->u.ar.type == AR_SECTION)
4015 {
4016 /* Figure out the rank of the section. */
4017 if (rank != 0)
4018 gfc_internal_error ("expression_rank(): Two array specs");
4019
4020 for (i = 0; i < ref->u.ar.dimen; i++)
4021 if (ref->u.ar.dimen_type[i] == DIMEN_RANGE
4022 || ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
4023 rank++;
4024
4025 break;
4026 }
4027 }
4028
4029 e->rank = rank;
4030
4031 done:
4032 expression_shape (e);
4033 }
4034
4035
4036 /* Resolve a variable expression. */
4037
4038 static gfc_try
4039 resolve_variable (gfc_expr *e)
4040 {
4041 gfc_symbol *sym;
4042 gfc_try t;
4043
4044 t = SUCCESS;
4045
4046 if (e->symtree == NULL)
4047 return FAILURE;
4048
4049 if (e->ref && resolve_ref (e) == FAILURE)
4050 return FAILURE;
4051
4052 sym = e->symtree->n.sym;
4053 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
4054 {
4055 e->ts.type = BT_PROCEDURE;
4056 return SUCCESS;
4057 }
4058
4059 if (sym->ts.type != BT_UNKNOWN)
4060 gfc_variable_attr (e, &e->ts);
4061 else
4062 {
4063 /* Must be a simple variable reference. */
4064 if (gfc_set_default_type (sym, 1, sym->ns) == FAILURE)
4065 return FAILURE;
4066 e->ts = sym->ts;
4067 }
4068
4069 if (check_assumed_size_reference (sym, e))
4070 return FAILURE;
4071
4072 /* Deal with forward references to entries during resolve_code, to
4073 satisfy, at least partially, 12.5.2.5. */
4074 if (gfc_current_ns->entries
4075 && current_entry_id == sym->entry_id
4076 && cs_base
4077 && cs_base->current
4078 && cs_base->current->op != EXEC_ENTRY)
4079 {
4080 gfc_entry_list *entry;
4081 gfc_formal_arglist *formal;
4082 int n;
4083 bool seen;
4084
4085 /* If the symbol is a dummy... */
4086 if (sym->attr.dummy && sym->ns == gfc_current_ns)
4087 {
4088 entry = gfc_current_ns->entries;
4089 seen = false;
4090
4091 /* ...test if the symbol is a parameter of previous entries. */
4092 for (; entry && entry->id <= current_entry_id; entry = entry->next)
4093 for (formal = entry->sym->formal; formal; formal = formal->next)
4094 {
4095 if (formal->sym && sym->name == formal->sym->name)
4096 seen = true;
4097 }
4098
4099 /* If it has not been seen as a dummy, this is an error. */
4100 if (!seen)
4101 {
4102 if (specification_expr)
4103 gfc_error ("Variable '%s', used in a specification expression"
4104 ", is referenced at %L before the ENTRY statement "
4105 "in which it is a parameter",
4106 sym->name, &cs_base->current->loc);
4107 else
4108 gfc_error ("Variable '%s' is used at %L before the ENTRY "
4109 "statement in which it is a parameter",
4110 sym->name, &cs_base->current->loc);
4111 t = FAILURE;
4112 }
4113 }
4114
4115 /* Now do the same check on the specification expressions. */
4116 specification_expr = 1;
4117 if (sym->ts.type == BT_CHARACTER
4118 && gfc_resolve_expr (sym->ts.cl->length) == FAILURE)
4119 t = FAILURE;
4120
4121 if (sym->as)
4122 for (n = 0; n < sym->as->rank; n++)
4123 {
4124 specification_expr = 1;
4125 if (gfc_resolve_expr (sym->as->lower[n]) == FAILURE)
4126 t = FAILURE;
4127 specification_expr = 1;
4128 if (gfc_resolve_expr (sym->as->upper[n]) == FAILURE)
4129 t = FAILURE;
4130 }
4131 specification_expr = 0;
4132
4133 if (t == SUCCESS)
4134 /* Update the symbol's entry level. */
4135 sym->entry_id = current_entry_id + 1;
4136 }
4137
4138 return t;
4139 }
4140
4141
4142 /* Checks to see that the correct symbol has been host associated.
4143 The only situation where this arises is that in which a twice
4144 contained function is parsed after the host association is made.
4145 Therefore, on detecting this, the line is rematched, having got
4146 rid of the existing references and actual_arg_list. */
4147 static bool
4148 check_host_association (gfc_expr *e)
4149 {
4150 gfc_symbol *sym, *old_sym;
4151 locus temp_locus;
4152 gfc_expr *expr;
4153 int n;
4154 bool retval = e->expr_type == EXPR_FUNCTION;
4155
4156 if (e->symtree == NULL || e->symtree->n.sym == NULL)
4157 return retval;
4158
4159 old_sym = e->symtree->n.sym;
4160
4161 if (old_sym->attr.use_assoc)
4162 return retval;
4163
4164 if (gfc_current_ns->parent
4165 && old_sym->ns != gfc_current_ns)
4166 {
4167 gfc_find_symbol (old_sym->name, gfc_current_ns, 1, &sym);
4168 if (sym && old_sym != sym
4169 && sym->attr.flavor == FL_PROCEDURE
4170 && sym->attr.contained)
4171 {
4172 temp_locus = gfc_current_locus;
4173 gfc_current_locus = e->where;
4174
4175 gfc_buffer_error (1);
4176
4177 gfc_free_ref_list (e->ref);
4178 e->ref = NULL;
4179
4180 if (retval)
4181 {
4182 gfc_free_actual_arglist (e->value.function.actual);
4183 e->value.function.actual = NULL;
4184 }
4185
4186 if (e->shape != NULL)
4187 {
4188 for (n = 0; n < e->rank; n++)
4189 mpz_clear (e->shape[n]);
4190
4191 gfc_free (e->shape);
4192 }
4193
4194 gfc_match_rvalue (&expr);
4195 gfc_clear_error ();
4196 gfc_buffer_error (0);
4197
4198 gcc_assert (expr && sym == expr->symtree->n.sym);
4199
4200 *e = *expr;
4201 gfc_free (expr);
4202 sym->refs++;
4203
4204 gfc_current_locus = temp_locus;
4205 }
4206 }
4207 /* This might have changed! */
4208 return e->expr_type == EXPR_FUNCTION;
4209 }
4210
4211
4212 static void
4213 gfc_resolve_character_operator (gfc_expr *e)
4214 {
4215 gfc_expr *op1 = e->value.op.op1;
4216 gfc_expr *op2 = e->value.op.op2;
4217 gfc_expr *e1 = NULL;
4218 gfc_expr *e2 = NULL;
4219
4220 gcc_assert (e->value.op.op == INTRINSIC_CONCAT);
4221
4222 if (op1->ts.cl && op1->ts.cl->length)
4223 e1 = gfc_copy_expr (op1->ts.cl->length);
4224 else if (op1->expr_type == EXPR_CONSTANT)
4225 e1 = gfc_int_expr (op1->value.character.length);
4226
4227 if (op2->ts.cl && op2->ts.cl->length)
4228 e2 = gfc_copy_expr (op2->ts.cl->length);
4229 else if (op2->expr_type == EXPR_CONSTANT)
4230 e2 = gfc_int_expr (op2->value.character.length);
4231
4232 e->ts.cl = gfc_get_charlen ();
4233 e->ts.cl->next = gfc_current_ns->cl_list;
4234 gfc_current_ns->cl_list = e->ts.cl;
4235
4236 if (!e1 || !e2)
4237 return;
4238
4239 e->ts.cl->length = gfc_add (e1, e2);
4240 e->ts.cl->length->ts.type = BT_INTEGER;
4241 e->ts.cl->length->ts.kind = gfc_charlen_int_kind;;
4242 gfc_simplify_expr (e->ts.cl->length, 0);
4243 gfc_resolve_expr (e->ts.cl->length);
4244
4245 return;
4246 }
4247
4248
4249 /* Ensure that an character expression has a charlen and, if possible, a
4250 length expression. */
4251
4252 static void
4253 fixup_charlen (gfc_expr *e)
4254 {
4255 /* The cases fall through so that changes in expression type and the need
4256 for multiple fixes are picked up. In all circumstances, a charlen should
4257 be available for the middle end to hang a backend_decl on. */
4258 switch (e->expr_type)
4259 {
4260 case EXPR_OP:
4261 gfc_resolve_character_operator (e);
4262
4263 case EXPR_ARRAY:
4264 if (e->expr_type == EXPR_ARRAY)
4265 gfc_resolve_character_array_constructor (e);
4266
4267 case EXPR_SUBSTRING:
4268 if (!e->ts.cl && e->ref)
4269 gfc_resolve_substring_charlen (e);
4270
4271 default:
4272 if (!e->ts.cl)
4273 {
4274 e->ts.cl = gfc_get_charlen ();
4275 e->ts.cl->next = gfc_current_ns->cl_list;
4276 gfc_current_ns->cl_list = e->ts.cl;
4277 }
4278
4279 break;
4280 }
4281 }
4282
4283
4284 /* Resolve an expression. That is, make sure that types of operands agree
4285 with their operators, intrinsic operators are converted to function calls
4286 for overloaded types and unresolved function references are resolved. */
4287
4288 gfc_try
4289 gfc_resolve_expr (gfc_expr *e)
4290 {
4291 gfc_try t;
4292
4293 if (e == NULL)
4294 return SUCCESS;
4295
4296 switch (e->expr_type)
4297 {
4298 case EXPR_OP:
4299 t = resolve_operator (e);
4300 break;
4301
4302 case EXPR_FUNCTION:
4303 case EXPR_VARIABLE:
4304
4305 if (check_host_association (e))
4306 t = resolve_function (e);
4307 else
4308 {
4309 t = resolve_variable (e);
4310 if (t == SUCCESS)
4311 expression_rank (e);
4312 }
4313
4314 if (e->ts.type == BT_CHARACTER && e->ts.cl == NULL && e->ref
4315 && e->ref->type != REF_SUBSTRING)
4316 gfc_resolve_substring_charlen (e);
4317
4318 break;
4319
4320 case EXPR_SUBSTRING:
4321 t = resolve_ref (e);
4322 break;
4323
4324 case EXPR_CONSTANT:
4325 case EXPR_NULL:
4326 t = SUCCESS;
4327 break;
4328
4329 case EXPR_ARRAY:
4330 t = FAILURE;
4331 if (resolve_ref (e) == FAILURE)
4332 break;
4333
4334 t = gfc_resolve_array_constructor (e);
4335 /* Also try to expand a constructor. */
4336 if (t == SUCCESS)
4337 {
4338 expression_rank (e);
4339 gfc_expand_constructor (e);
4340 }
4341
4342 /* This provides the opportunity for the length of constructors with
4343 character valued function elements to propagate the string length
4344 to the expression. */
4345 if (t == SUCCESS && e->ts.type == BT_CHARACTER)
4346 t = gfc_resolve_character_array_constructor (e);
4347
4348 break;
4349
4350 case EXPR_STRUCTURE:
4351 t = resolve_ref (e);
4352 if (t == FAILURE)
4353 break;
4354
4355 t = resolve_structure_cons (e);
4356 if (t == FAILURE)
4357 break;
4358
4359 t = gfc_simplify_expr (e, 0);
4360 break;
4361
4362 default:
4363 gfc_internal_error ("gfc_resolve_expr(): Bad expression type");
4364 }
4365
4366 if (e->ts.type == BT_CHARACTER && t == SUCCESS && !e->ts.cl)
4367 fixup_charlen (e);
4368
4369 return t;
4370 }
4371
4372
4373 /* Resolve an expression from an iterator. They must be scalar and have
4374 INTEGER or (optionally) REAL type. */
4375
4376 static gfc_try
4377 gfc_resolve_iterator_expr (gfc_expr *expr, bool real_ok,
4378 const char *name_msgid)
4379 {
4380 if (gfc_resolve_expr (expr) == FAILURE)
4381 return FAILURE;
4382
4383 if (expr->rank != 0)
4384 {
4385 gfc_error ("%s at %L must be a scalar", _(name_msgid), &expr->where);
4386 return FAILURE;
4387 }
4388
4389 if (expr->ts.type != BT_INTEGER)
4390 {
4391 if (expr->ts.type == BT_REAL)
4392 {
4393 if (real_ok)
4394 return gfc_notify_std (GFC_STD_F95_DEL,
4395 "Deleted feature: %s at %L must be integer",
4396 _(name_msgid), &expr->where);
4397 else
4398 {
4399 gfc_error ("%s at %L must be INTEGER", _(name_msgid),
4400 &expr->where);
4401 return FAILURE;
4402 }
4403 }
4404 else
4405 {
4406 gfc_error ("%s at %L must be INTEGER", _(name_msgid), &expr->where);
4407 return FAILURE;
4408 }
4409 }
4410 return SUCCESS;
4411 }
4412
4413
4414 /* Resolve the expressions in an iterator structure. If REAL_OK is
4415 false allow only INTEGER type iterators, otherwise allow REAL types. */
4416
4417 gfc_try
4418 gfc_resolve_iterator (gfc_iterator *iter, bool real_ok)
4419 {
4420 if (gfc_resolve_iterator_expr (iter->var, real_ok, "Loop variable")
4421 == FAILURE)
4422 return FAILURE;
4423
4424 if (gfc_pure (NULL) && gfc_impure_variable (iter->var->symtree->n.sym))
4425 {
4426 gfc_error ("Cannot assign to loop variable in PURE procedure at %L",
4427 &iter->var->where);
4428 return FAILURE;
4429 }
4430
4431 if (gfc_resolve_iterator_expr (iter->start, real_ok,
4432 "Start expression in DO loop") == FAILURE)
4433 return FAILURE;
4434
4435 if (gfc_resolve_iterator_expr (iter->end, real_ok,
4436 "End expression in DO loop") == FAILURE)
4437 return FAILURE;
4438
4439 if (gfc_resolve_iterator_expr (iter->step, real_ok,
4440 "Step expression in DO loop") == FAILURE)
4441 return FAILURE;
4442
4443 if (iter->step->expr_type == EXPR_CONSTANT)
4444 {
4445 if ((iter->step->ts.type == BT_INTEGER
4446 && mpz_cmp_ui (iter->step->value.integer, 0) == 0)
4447 || (iter->step->ts.type == BT_REAL
4448 && mpfr_sgn (iter->step->value.real) == 0))
4449 {
4450 gfc_error ("Step expression in DO loop at %L cannot be zero",
4451 &iter->step->where);
4452 return FAILURE;
4453 }
4454 }
4455
4456 /* Convert start, end, and step to the same type as var. */
4457 if (iter->start->ts.kind != iter->var->ts.kind
4458 || iter->start->ts.type != iter->var->ts.type)
4459 gfc_convert_type (iter->start, &iter->var->ts, 2);
4460
4461 if (iter->end->ts.kind != iter->var->ts.kind
4462 || iter->end->ts.type != iter->var->ts.type)
4463 gfc_convert_type (iter->end, &iter->var->ts, 2);
4464
4465 if (iter->step->ts.kind != iter->var->ts.kind
4466 || iter->step->ts.type != iter->var->ts.type)
4467 gfc_convert_type (iter->step, &iter->var->ts, 2);
4468
4469 return SUCCESS;
4470 }
4471
4472
4473 /* Traversal function for find_forall_index. f == 2 signals that
4474 that variable itself is not to be checked - only the references. */
4475
4476 static bool
4477 forall_index (gfc_expr *expr, gfc_symbol *sym, int *f)
4478 {
4479 if (expr->expr_type != EXPR_VARIABLE)
4480 return false;
4481
4482 /* A scalar assignment */
4483 if (!expr->ref || *f == 1)
4484 {
4485 if (expr->symtree->n.sym == sym)
4486 return true;
4487 else
4488 return false;
4489 }
4490
4491 if (*f == 2)
4492 *f = 1;
4493 return false;
4494 }
4495
4496
4497 /* Check whether the FORALL index appears in the expression or not.
4498 Returns SUCCESS if SYM is found in EXPR. */
4499
4500 gfc_try
4501 find_forall_index (gfc_expr *expr, gfc_symbol *sym, int f)
4502 {
4503 if (gfc_traverse_expr (expr, sym, forall_index, f))
4504 return SUCCESS;
4505 else
4506 return FAILURE;
4507 }
4508
4509
4510 /* Resolve a list of FORALL iterators. The FORALL index-name is constrained
4511 to be a scalar INTEGER variable. The subscripts and stride are scalar
4512 INTEGERs, and if stride is a constant it must be nonzero.
4513 Furthermore "A subscript or stride in a forall-triplet-spec shall
4514 not contain a reference to any index-name in the
4515 forall-triplet-spec-list in which it appears." (7.5.4.1) */
4516
4517 static void
4518 resolve_forall_iterators (gfc_forall_iterator *it)
4519 {
4520 gfc_forall_iterator *iter, *iter2;
4521
4522 for (iter = it; iter; iter = iter->next)
4523 {
4524 if (gfc_resolve_expr (iter->var) == SUCCESS
4525 && (iter->var->ts.type != BT_INTEGER || iter->var->rank != 0))
4526 gfc_error ("FORALL index-name at %L must be a scalar INTEGER",
4527 &iter->var->where);
4528
4529 if (gfc_resolve_expr (iter->start) == SUCCESS
4530 && (iter->start->ts.type != BT_INTEGER || iter->start->rank != 0))
4531 gfc_error ("FORALL start expression at %L must be a scalar INTEGER",
4532 &iter->start->where);
4533 if (iter->var->ts.kind != iter->start->ts.kind)
4534 gfc_convert_type (iter->start, &iter->var->ts, 2);
4535
4536 if (gfc_resolve_expr (iter->end) == SUCCESS
4537 && (iter->end->ts.type != BT_INTEGER || iter->end->rank != 0))
4538 gfc_error ("FORALL end expression at %L must be a scalar INTEGER",
4539 &iter->end->where);
4540 if (iter->var->ts.kind != iter->end->ts.kind)
4541 gfc_convert_type (iter->end, &iter->var->ts, 2);
4542
4543 if (gfc_resolve_expr (iter->stride) == SUCCESS)
4544 {
4545 if (iter->stride->ts.type != BT_INTEGER || iter->stride->rank != 0)
4546 gfc_error ("FORALL stride expression at %L must be a scalar %s",
4547 &iter->stride->where, "INTEGER");
4548
4549 if (iter->stride->expr_type == EXPR_CONSTANT
4550 && mpz_cmp_ui(iter->stride->value.integer, 0) == 0)
4551 gfc_error ("FORALL stride expression at %L cannot be zero",
4552 &iter->stride->where);
4553 }
4554 if (iter->var->ts.kind != iter->stride->ts.kind)
4555 gfc_convert_type (iter->stride, &iter->var->ts, 2);
4556 }
4557
4558 for (iter = it; iter; iter = iter->next)
4559 for (iter2 = iter; iter2; iter2 = iter2->next)
4560 {
4561 if (find_forall_index (iter2->start,
4562 iter->var->symtree->n.sym, 0) == SUCCESS
4563 || find_forall_index (iter2->end,
4564 iter->var->symtree->n.sym, 0) == SUCCESS
4565 || find_forall_index (iter2->stride,
4566 iter->var->symtree->n.sym, 0) == SUCCESS)
4567 gfc_error ("FORALL index '%s' may not appear in triplet "
4568 "specification at %L", iter->var->symtree->name,
4569 &iter2->start->where);
4570 }
4571 }
4572
4573
4574 /* Given a pointer to a symbol that is a derived type, see if it's
4575 inaccessible, i.e. if it's defined in another module and the components are
4576 PRIVATE. The search is recursive if necessary. Returns zero if no
4577 inaccessible components are found, nonzero otherwise. */
4578
4579 static int
4580 derived_inaccessible (gfc_symbol *sym)
4581 {
4582 gfc_component *c;
4583
4584 if (sym->attr.use_assoc && sym->attr.private_comp)
4585 return 1;
4586
4587 for (c = sym->components; c; c = c->next)
4588 {
4589 if (c->ts.type == BT_DERIVED && derived_inaccessible (c->ts.derived))
4590 return 1;
4591 }
4592
4593 return 0;
4594 }
4595
4596
4597 /* Resolve the argument of a deallocate expression. The expression must be
4598 a pointer or a full array. */
4599
4600 static gfc_try
4601 resolve_deallocate_expr (gfc_expr *e)
4602 {
4603 symbol_attribute attr;
4604 int allocatable, pointer, check_intent_in;
4605 gfc_ref *ref;
4606
4607 /* Check INTENT(IN), unless the object is a sub-component of a pointer. */
4608 check_intent_in = 1;
4609
4610 if (gfc_resolve_expr (e) == FAILURE)
4611 return FAILURE;
4612
4613 if (e->expr_type != EXPR_VARIABLE)
4614 goto bad;
4615
4616 allocatable = e->symtree->n.sym->attr.allocatable;
4617 pointer = e->symtree->n.sym->attr.pointer;
4618 for (ref = e->ref; ref; ref = ref->next)
4619 {
4620 if (pointer)
4621 check_intent_in = 0;
4622
4623 switch (ref->type)
4624 {
4625 case REF_ARRAY:
4626 if (ref->u.ar.type != AR_FULL)
4627 allocatable = 0;
4628 break;
4629
4630 case REF_COMPONENT:
4631 allocatable = (ref->u.c.component->as != NULL
4632 && ref->u.c.component->as->type == AS_DEFERRED);
4633 pointer = ref->u.c.component->attr.pointer;
4634 break;
4635
4636 case REF_SUBSTRING:
4637 allocatable = 0;
4638 break;
4639 }
4640 }
4641
4642 attr = gfc_expr_attr (e);
4643
4644 if (allocatable == 0 && attr.pointer == 0)
4645 {
4646 bad:
4647 gfc_error ("Expression in DEALLOCATE statement at %L must be "
4648 "ALLOCATABLE or a POINTER", &e->where);
4649 }
4650
4651 if (check_intent_in
4652 && e->symtree->n.sym->attr.intent == INTENT_IN)
4653 {
4654 gfc_error ("Cannot deallocate INTENT(IN) variable '%s' at %L",
4655 e->symtree->n.sym->name, &e->where);
4656 return FAILURE;
4657 }
4658
4659 return SUCCESS;
4660 }
4661
4662
4663 /* Returns true if the expression e contains a reference to the symbol sym. */
4664 static bool
4665 sym_in_expr (gfc_expr *e, gfc_symbol *sym, int *f ATTRIBUTE_UNUSED)
4666 {
4667 if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym == sym)
4668 return true;
4669
4670 return false;
4671 }
4672
4673 bool
4674 gfc_find_sym_in_expr (gfc_symbol *sym, gfc_expr *e)
4675 {
4676 return gfc_traverse_expr (e, sym, sym_in_expr, 0);
4677 }
4678
4679
4680 /* Given the expression node e for an allocatable/pointer of derived type to be
4681 allocated, get the expression node to be initialized afterwards (needed for
4682 derived types with default initializers, and derived types with allocatable
4683 components that need nullification.) */
4684
4685 static gfc_expr *
4686 expr_to_initialize (gfc_expr *e)
4687 {
4688 gfc_expr *result;
4689 gfc_ref *ref;
4690 int i;
4691
4692 result = gfc_copy_expr (e);
4693
4694 /* Change the last array reference from AR_ELEMENT to AR_FULL. */
4695 for (ref = result->ref; ref; ref = ref->next)
4696 if (ref->type == REF_ARRAY && ref->next == NULL)
4697 {
4698 ref->u.ar.type = AR_FULL;
4699
4700 for (i = 0; i < ref->u.ar.dimen; i++)
4701 ref->u.ar.start[i] = ref->u.ar.end[i] = ref->u.ar.stride[i] = NULL;
4702
4703 result->rank = ref->u.ar.dimen;
4704 break;
4705 }
4706
4707 return result;
4708 }
4709
4710
4711 /* Resolve the expression in an ALLOCATE statement, doing the additional
4712 checks to see whether the expression is OK or not. The expression must
4713 have a trailing array reference that gives the size of the array. */
4714
4715 static gfc_try
4716 resolve_allocate_expr (gfc_expr *e, gfc_code *code)
4717 {
4718 int i, pointer, allocatable, dimension, check_intent_in;
4719 symbol_attribute attr;
4720 gfc_ref *ref, *ref2;
4721 gfc_array_ref *ar;
4722 gfc_code *init_st;
4723 gfc_expr *init_e;
4724 gfc_symbol *sym;
4725 gfc_alloc *a;
4726
4727 /* Check INTENT(IN), unless the object is a sub-component of a pointer. */
4728 check_intent_in = 1;
4729
4730 if (gfc_resolve_expr (e) == FAILURE)
4731 return FAILURE;
4732
4733 if (code->expr && code->expr->expr_type == EXPR_VARIABLE)
4734 sym = code->expr->symtree->n.sym;
4735 else
4736 sym = NULL;
4737
4738 /* Make sure the expression is allocatable or a pointer. If it is
4739 pointer, the next-to-last reference must be a pointer. */
4740
4741 ref2 = NULL;
4742
4743 if (e->expr_type != EXPR_VARIABLE)
4744 {
4745 allocatable = 0;
4746 attr = gfc_expr_attr (e);
4747 pointer = attr.pointer;
4748 dimension = attr.dimension;
4749 }
4750 else
4751 {
4752 allocatable = e->symtree->n.sym->attr.allocatable;
4753 pointer = e->symtree->n.sym->attr.pointer;
4754 dimension = e->symtree->n.sym->attr.dimension;
4755
4756 if (sym == e->symtree->n.sym && sym->ts.type != BT_DERIVED)
4757 {
4758 gfc_error ("The STAT variable '%s' in an ALLOCATE statement must "
4759 "not be allocated in the same statement at %L",
4760 sym->name, &e->where);
4761 return FAILURE;
4762 }
4763
4764 for (ref = e->ref; ref; ref2 = ref, ref = ref->next)
4765 {
4766 if (pointer)
4767 check_intent_in = 0;
4768
4769 switch (ref->type)
4770 {
4771 case REF_ARRAY:
4772 if (ref->next != NULL)
4773 pointer = 0;
4774 break;
4775
4776 case REF_COMPONENT:
4777 allocatable = (ref->u.c.component->as != NULL
4778 && ref->u.c.component->as->type == AS_DEFERRED);
4779
4780 pointer = ref->u.c.component->attr.pointer;
4781 dimension = ref->u.c.component->attr.dimension;
4782 break;
4783
4784 case REF_SUBSTRING:
4785 allocatable = 0;
4786 pointer = 0;
4787 break;
4788 }
4789 }
4790 }
4791
4792 if (allocatable == 0 && pointer == 0)
4793 {
4794 gfc_error ("Expression in ALLOCATE statement at %L must be "
4795 "ALLOCATABLE or a POINTER", &e->where);
4796 return FAILURE;
4797 }
4798
4799 if (check_intent_in
4800 && e->symtree->n.sym->attr.intent == INTENT_IN)
4801 {
4802 gfc_error ("Cannot allocate INTENT(IN) variable '%s' at %L",
4803 e->symtree->n.sym->name, &e->where);
4804 return FAILURE;
4805 }
4806
4807 /* Add default initializer for those derived types that need them. */
4808 if (e->ts.type == BT_DERIVED && (init_e = gfc_default_initializer (&e->ts)))
4809 {
4810 init_st = gfc_get_code ();
4811 init_st->loc = code->loc;
4812 init_st->op = EXEC_INIT_ASSIGN;
4813 init_st->expr = expr_to_initialize (e);
4814 init_st->expr2 = init_e;
4815 init_st->next = code->next;
4816 code->next = init_st;
4817 }
4818
4819 if (pointer && dimension == 0)
4820 return SUCCESS;
4821
4822 /* Make sure the next-to-last reference node is an array specification. */
4823
4824 if (ref2 == NULL || ref2->type != REF_ARRAY || ref2->u.ar.type == AR_FULL)
4825 {
4826 gfc_error ("Array specification required in ALLOCATE statement "
4827 "at %L", &e->where);
4828 return FAILURE;
4829 }
4830
4831 /* Make sure that the array section reference makes sense in the
4832 context of an ALLOCATE specification. */
4833
4834 ar = &ref2->u.ar;
4835
4836 for (i = 0; i < ar->dimen; i++)
4837 {
4838 if (ref2->u.ar.type == AR_ELEMENT)
4839 goto check_symbols;
4840
4841 switch (ar->dimen_type[i])
4842 {
4843 case DIMEN_ELEMENT:
4844 break;
4845
4846 case DIMEN_RANGE:
4847 if (ar->start[i] != NULL
4848 && ar->end[i] != NULL
4849 && ar->stride[i] == NULL)
4850 break;
4851
4852 /* Fall Through... */
4853
4854 case DIMEN_UNKNOWN:
4855 case DIMEN_VECTOR:
4856 gfc_error ("Bad array specification in ALLOCATE statement at %L",
4857 &e->where);
4858 return FAILURE;
4859 }
4860
4861 check_symbols:
4862
4863 for (a = code->ext.alloc_list; a; a = a->next)
4864 {
4865 sym = a->expr->symtree->n.sym;
4866
4867 /* TODO - check derived type components. */
4868 if (sym->ts.type == BT_DERIVED)
4869 continue;
4870
4871 if ((ar->start[i] != NULL
4872 && gfc_find_sym_in_expr (sym, ar->start[i]))
4873 || (ar->end[i] != NULL
4874 && gfc_find_sym_in_expr (sym, ar->end[i])))
4875 {
4876 gfc_error ("'%s' must not appear in the array specification at "
4877 "%L in the same ALLOCATE statement where it is "
4878 "itself allocated", sym->name, &ar->where);
4879 return FAILURE;
4880 }
4881 }
4882 }
4883
4884 return SUCCESS;
4885 }
4886
4887 static void
4888 resolve_allocate_deallocate (gfc_code *code, const char *fcn)
4889 {
4890 gfc_symbol *s = NULL;
4891 gfc_alloc *a;
4892
4893 if (code->expr)
4894 s = code->expr->symtree->n.sym;
4895
4896 if (s)
4897 {
4898 if (s->attr.intent == INTENT_IN)
4899 gfc_error ("STAT variable '%s' of %s statement at %C cannot "
4900 "be INTENT(IN)", s->name, fcn);
4901
4902 if (gfc_pure (NULL) && gfc_impure_variable (s))
4903 gfc_error ("Illegal STAT variable in %s statement at %C "
4904 "for a PURE procedure", fcn);
4905 }
4906
4907 if (s && code->expr->ts.type != BT_INTEGER)
4908 gfc_error ("STAT tag in %s statement at %L must be "
4909 "of type INTEGER", fcn, &code->expr->where);
4910
4911 if (strcmp (fcn, "ALLOCATE") == 0)
4912 {
4913 for (a = code->ext.alloc_list; a; a = a->next)
4914 resolve_allocate_expr (a->expr, code);
4915 }
4916 else
4917 {
4918 for (a = code->ext.alloc_list; a; a = a->next)
4919 resolve_deallocate_expr (a->expr);
4920 }
4921 }
4922
4923 /************ SELECT CASE resolution subroutines ************/
4924
4925 /* Callback function for our mergesort variant. Determines interval
4926 overlaps for CASEs. Return <0 if op1 < op2, 0 for overlap, >0 for
4927 op1 > op2. Assumes we're not dealing with the default case.
4928 We have op1 = (:L), (K:L) or (K:) and op2 = (:N), (M:N) or (M:).
4929 There are nine situations to check. */
4930
4931 static int
4932 compare_cases (const gfc_case *op1, const gfc_case *op2)
4933 {
4934 int retval;
4935
4936 if (op1->low == NULL) /* op1 = (:L) */
4937 {
4938 /* op2 = (:N), so overlap. */
4939 retval = 0;
4940 /* op2 = (M:) or (M:N), L < M */
4941 if (op2->low != NULL
4942 && gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
4943 retval = -1;
4944 }
4945 else if (op1->high == NULL) /* op1 = (K:) */
4946 {
4947 /* op2 = (M:), so overlap. */
4948 retval = 0;
4949 /* op2 = (:N) or (M:N), K > N */
4950 if (op2->high != NULL
4951 && gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
4952 retval = 1;
4953 }
4954 else /* op1 = (K:L) */
4955 {
4956 if (op2->low == NULL) /* op2 = (:N), K > N */
4957 retval = (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
4958 ? 1 : 0;
4959 else if (op2->high == NULL) /* op2 = (M:), L < M */
4960 retval = (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
4961 ? -1 : 0;
4962 else /* op2 = (M:N) */
4963 {
4964 retval = 0;
4965 /* L < M */
4966 if (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
4967 retval = -1;
4968 /* K > N */
4969 else if (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
4970 retval = 1;
4971 }
4972 }
4973
4974 return retval;
4975 }
4976
4977
4978 /* Merge-sort a double linked case list, detecting overlap in the
4979 process. LIST is the head of the double linked case list before it
4980 is sorted. Returns the head of the sorted list if we don't see any
4981 overlap, or NULL otherwise. */
4982
4983 static gfc_case *
4984 check_case_overlap (gfc_case *list)
4985 {
4986 gfc_case *p, *q, *e, *tail;
4987 int insize, nmerges, psize, qsize, cmp, overlap_seen;
4988
4989 /* If the passed list was empty, return immediately. */
4990 if (!list)
4991 return NULL;
4992
4993 overlap_seen = 0;
4994 insize = 1;
4995
4996 /* Loop unconditionally. The only exit from this loop is a return
4997 statement, when we've finished sorting the case list. */
4998 for (;;)
4999 {
5000 p = list;
5001 list = NULL;
5002 tail = NULL;
5003
5004 /* Count the number of merges we do in this pass. */
5005 nmerges = 0;
5006
5007 /* Loop while there exists a merge to be done. */
5008 while (p)
5009 {
5010 int i;
5011
5012 /* Count this merge. */
5013 nmerges++;
5014
5015 /* Cut the list in two pieces by stepping INSIZE places
5016 forward in the list, starting from P. */
5017 psize = 0;
5018 q = p;
5019 for (i = 0; i < insize; i++)
5020 {
5021 psize++;
5022 q = q->right;
5023 if (!q)
5024 break;
5025 }
5026 qsize = insize;
5027
5028 /* Now we have two lists. Merge them! */
5029 while (psize > 0 || (qsize > 0 && q != NULL))
5030 {
5031 /* See from which the next case to merge comes from. */
5032 if (psize == 0)
5033 {
5034 /* P is empty so the next case must come from Q. */
5035 e = q;
5036 q = q->right;
5037 qsize--;
5038 }
5039 else if (qsize == 0 || q == NULL)
5040 {
5041 /* Q is empty. */
5042 e = p;
5043 p = p->right;
5044 psize--;
5045 }
5046 else
5047 {
5048 cmp = compare_cases (p, q);
5049 if (cmp < 0)
5050 {
5051 /* The whole case range for P is less than the
5052 one for Q. */
5053 e = p;
5054 p = p->right;
5055 psize--;
5056 }
5057 else if (cmp > 0)
5058 {
5059 /* The whole case range for Q is greater than
5060 the case range for P. */
5061 e = q;
5062 q = q->right;
5063 qsize--;
5064 }
5065 else
5066 {
5067 /* The cases overlap, or they are the same
5068 element in the list. Either way, we must
5069 issue an error and get the next case from P. */
5070 /* FIXME: Sort P and Q by line number. */
5071 gfc_error ("CASE label at %L overlaps with CASE "
5072 "label at %L", &p->where, &q->where);
5073 overlap_seen = 1;
5074 e = p;
5075 p = p->right;
5076 psize--;
5077 }
5078 }
5079
5080 /* Add the next element to the merged list. */
5081 if (tail)
5082 tail->right = e;
5083 else
5084 list = e;
5085 e->left = tail;
5086 tail = e;
5087 }
5088
5089 /* P has now stepped INSIZE places along, and so has Q. So
5090 they're the same. */
5091 p = q;
5092 }
5093 tail->right = NULL;
5094
5095 /* If we have done only one merge or none at all, we've
5096 finished sorting the cases. */
5097 if (nmerges <= 1)
5098 {
5099 if (!overlap_seen)
5100 return list;
5101 else
5102 return NULL;
5103 }
5104
5105 /* Otherwise repeat, merging lists twice the size. */
5106 insize *= 2;
5107 }
5108 }
5109
5110
5111 /* Check to see if an expression is suitable for use in a CASE statement.
5112 Makes sure that all case expressions are scalar constants of the same
5113 type. Return FAILURE if anything is wrong. */
5114
5115 static gfc_try
5116 validate_case_label_expr (gfc_expr *e, gfc_expr *case_expr)
5117 {
5118 if (e == NULL) return SUCCESS;
5119
5120 if (e->ts.type != case_expr->ts.type)
5121 {
5122 gfc_error ("Expression in CASE statement at %L must be of type %s",
5123 &e->where, gfc_basic_typename (case_expr->ts.type));
5124 return FAILURE;
5125 }
5126
5127 /* C805 (R808) For a given case-construct, each case-value shall be of
5128 the same type as case-expr. For character type, length differences
5129 are allowed, but the kind type parameters shall be the same. */
5130
5131 if (case_expr->ts.type == BT_CHARACTER && e->ts.kind != case_expr->ts.kind)
5132 {
5133 gfc_error ("Expression in CASE statement at %L must be of kind %d",
5134 &e->where, case_expr->ts.kind);
5135 return FAILURE;
5136 }
5137
5138 /* Convert the case value kind to that of case expression kind, if needed.
5139 FIXME: Should a warning be issued? */
5140 if (e->ts.kind != case_expr->ts.kind)
5141 gfc_convert_type_warn (e, &case_expr->ts, 2, 0);
5142
5143 if (e->rank != 0)
5144 {
5145 gfc_error ("Expression in CASE statement at %L must be scalar",
5146 &e->where);
5147 return FAILURE;
5148 }
5149
5150 return SUCCESS;
5151 }
5152
5153
5154 /* Given a completely parsed select statement, we:
5155
5156 - Validate all expressions and code within the SELECT.
5157 - Make sure that the selection expression is not of the wrong type.
5158 - Make sure that no case ranges overlap.
5159 - Eliminate unreachable cases and unreachable code resulting from
5160 removing case labels.
5161
5162 The standard does allow unreachable cases, e.g. CASE (5:3). But
5163 they are a hassle for code generation, and to prevent that, we just
5164 cut them out here. This is not necessary for overlapping cases
5165 because they are illegal and we never even try to generate code.
5166
5167 We have the additional caveat that a SELECT construct could have
5168 been a computed GOTO in the source code. Fortunately we can fairly
5169 easily work around that here: The case_expr for a "real" SELECT CASE
5170 is in code->expr1, but for a computed GOTO it is in code->expr2. All
5171 we have to do is make sure that the case_expr is a scalar integer
5172 expression. */
5173
5174 static void
5175 resolve_select (gfc_code *code)
5176 {
5177 gfc_code *body;
5178 gfc_expr *case_expr;
5179 gfc_case *cp, *default_case, *tail, *head;
5180 int seen_unreachable;
5181 int seen_logical;
5182 int ncases;
5183 bt type;
5184 gfc_try t;
5185
5186 if (code->expr == NULL)
5187 {
5188 /* This was actually a computed GOTO statement. */
5189 case_expr = code->expr2;
5190 if (case_expr->ts.type != BT_INTEGER|| case_expr->rank != 0)
5191 gfc_error ("Selection expression in computed GOTO statement "
5192 "at %L must be a scalar integer expression",
5193 &case_expr->where);
5194
5195 /* Further checking is not necessary because this SELECT was built
5196 by the compiler, so it should always be OK. Just move the
5197 case_expr from expr2 to expr so that we can handle computed
5198 GOTOs as normal SELECTs from here on. */
5199 code->expr = code->expr2;
5200 code->expr2 = NULL;
5201 return;
5202 }
5203
5204 case_expr = code->expr;
5205
5206 type = case_expr->ts.type;
5207 if (type != BT_LOGICAL && type != BT_INTEGER && type != BT_CHARACTER)
5208 {
5209 gfc_error ("Argument of SELECT statement at %L cannot be %s",
5210 &case_expr->where, gfc_typename (&case_expr->ts));
5211
5212 /* Punt. Going on here just produce more garbage error messages. */
5213 return;
5214 }
5215
5216 if (case_expr->rank != 0)
5217 {
5218 gfc_error ("Argument of SELECT statement at %L must be a scalar "
5219 "expression", &case_expr->where);
5220
5221 /* Punt. */
5222 return;
5223 }
5224
5225 /* PR 19168 has a long discussion concerning a mismatch of the kinds
5226 of the SELECT CASE expression and its CASE values. Walk the lists
5227 of case values, and if we find a mismatch, promote case_expr to
5228 the appropriate kind. */
5229
5230 if (type == BT_LOGICAL || type == BT_INTEGER)
5231 {
5232 for (body = code->block; body; body = body->block)
5233 {
5234 /* Walk the case label list. */
5235 for (cp = body->ext.case_list; cp; cp = cp->next)
5236 {
5237 /* Intercept the DEFAULT case. It does not have a kind. */
5238 if (cp->low == NULL && cp->high == NULL)
5239 continue;
5240
5241 /* Unreachable case ranges are discarded, so ignore. */
5242 if (cp->low != NULL && cp->high != NULL
5243 && cp->low != cp->high
5244 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
5245 continue;
5246
5247 /* FIXME: Should a warning be issued? */
5248 if (cp->low != NULL
5249 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->low))
5250 gfc_convert_type_warn (case_expr, &cp->low->ts, 2, 0);
5251
5252 if (cp->high != NULL
5253 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->high))
5254 gfc_convert_type_warn (case_expr, &cp->high->ts, 2, 0);
5255 }
5256 }
5257 }
5258
5259 /* Assume there is no DEFAULT case. */
5260 default_case = NULL;
5261 head = tail = NULL;
5262 ncases = 0;
5263 seen_logical = 0;
5264
5265 for (body = code->block; body; body = body->block)
5266 {
5267 /* Assume the CASE list is OK, and all CASE labels can be matched. */
5268 t = SUCCESS;
5269 seen_unreachable = 0;
5270
5271 /* Walk the case label list, making sure that all case labels
5272 are legal. */
5273 for (cp = body->ext.case_list; cp; cp = cp->next)
5274 {
5275 /* Count the number of cases in the whole construct. */
5276 ncases++;
5277
5278 /* Intercept the DEFAULT case. */
5279 if (cp->low == NULL && cp->high == NULL)
5280 {
5281 if (default_case != NULL)
5282 {
5283 gfc_error ("The DEFAULT CASE at %L cannot be followed "
5284 "by a second DEFAULT CASE at %L",
5285 &default_case->where, &cp->where);
5286 t = FAILURE;
5287 break;
5288 }
5289 else
5290 {
5291 default_case = cp;
5292 continue;
5293 }
5294 }
5295
5296 /* Deal with single value cases and case ranges. Errors are
5297 issued from the validation function. */
5298 if(validate_case_label_expr (cp->low, case_expr) != SUCCESS
5299 || validate_case_label_expr (cp->high, case_expr) != SUCCESS)
5300 {
5301 t = FAILURE;
5302 break;
5303 }
5304
5305 if (type == BT_LOGICAL
5306 && ((cp->low == NULL || cp->high == NULL)
5307 || cp->low != cp->high))
5308 {
5309 gfc_error ("Logical range in CASE statement at %L is not "
5310 "allowed", &cp->low->where);
5311 t = FAILURE;
5312 break;
5313 }
5314
5315 if (type == BT_LOGICAL && cp->low->expr_type == EXPR_CONSTANT)
5316 {
5317 int value;
5318 value = cp->low->value.logical == 0 ? 2 : 1;
5319 if (value & seen_logical)
5320 {
5321 gfc_error ("constant logical value in CASE statement "
5322 "is repeated at %L",
5323 &cp->low->where);
5324 t = FAILURE;
5325 break;
5326 }
5327 seen_logical |= value;
5328 }
5329
5330 if (cp->low != NULL && cp->high != NULL
5331 && cp->low != cp->high
5332 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
5333 {
5334 if (gfc_option.warn_surprising)
5335 gfc_warning ("Range specification at %L can never "
5336 "be matched", &cp->where);
5337
5338 cp->unreachable = 1;
5339 seen_unreachable = 1;
5340 }
5341 else
5342 {
5343 /* If the case range can be matched, it can also overlap with
5344 other cases. To make sure it does not, we put it in a
5345 double linked list here. We sort that with a merge sort
5346 later on to detect any overlapping cases. */
5347 if (!head)
5348 {
5349 head = tail = cp;
5350 head->right = head->left = NULL;
5351 }
5352 else
5353 {
5354 tail->right = cp;
5355 tail->right->left = tail;
5356 tail = tail->right;
5357 tail->right = NULL;
5358 }
5359 }
5360 }
5361
5362 /* It there was a failure in the previous case label, give up
5363 for this case label list. Continue with the next block. */
5364 if (t == FAILURE)
5365 continue;
5366
5367 /* See if any case labels that are unreachable have been seen.
5368 If so, we eliminate them. This is a bit of a kludge because
5369 the case lists for a single case statement (label) is a
5370 single forward linked lists. */
5371 if (seen_unreachable)
5372 {
5373 /* Advance until the first case in the list is reachable. */
5374 while (body->ext.case_list != NULL
5375 && body->ext.case_list->unreachable)
5376 {
5377 gfc_case *n = body->ext.case_list;
5378 body->ext.case_list = body->ext.case_list->next;
5379 n->next = NULL;
5380 gfc_free_case_list (n);
5381 }
5382
5383 /* Strip all other unreachable cases. */
5384 if (body->ext.case_list)
5385 {
5386 for (cp = body->ext.case_list; cp->next; cp = cp->next)
5387 {
5388 if (cp->next->unreachable)
5389 {
5390 gfc_case *n = cp->next;
5391 cp->next = cp->next->next;
5392 n->next = NULL;
5393 gfc_free_case_list (n);
5394 }
5395 }
5396 }
5397 }
5398 }
5399
5400 /* See if there were overlapping cases. If the check returns NULL,
5401 there was overlap. In that case we don't do anything. If head
5402 is non-NULL, we prepend the DEFAULT case. The sorted list can
5403 then used during code generation for SELECT CASE constructs with
5404 a case expression of a CHARACTER type. */
5405 if (head)
5406 {
5407 head = check_case_overlap (head);
5408
5409 /* Prepend the default_case if it is there. */
5410 if (head != NULL && default_case)
5411 {
5412 default_case->left = NULL;
5413 default_case->right = head;
5414 head->left = default_case;
5415 }
5416 }
5417
5418 /* Eliminate dead blocks that may be the result if we've seen
5419 unreachable case labels for a block. */
5420 for (body = code; body && body->block; body = body->block)
5421 {
5422 if (body->block->ext.case_list == NULL)
5423 {
5424 /* Cut the unreachable block from the code chain. */
5425 gfc_code *c = body->block;
5426 body->block = c->block;
5427
5428 /* Kill the dead block, but not the blocks below it. */
5429 c->block = NULL;
5430 gfc_free_statements (c);
5431 }
5432 }
5433
5434 /* More than two cases is legal but insane for logical selects.
5435 Issue a warning for it. */
5436 if (gfc_option.warn_surprising && type == BT_LOGICAL
5437 && ncases > 2)
5438 gfc_warning ("Logical SELECT CASE block at %L has more that two cases",
5439 &code->loc);
5440 }
5441
5442
5443 /* Resolve a transfer statement. This is making sure that:
5444 -- a derived type being transferred has only non-pointer components
5445 -- a derived type being transferred doesn't have private components, unless
5446 it's being transferred from the module where the type was defined
5447 -- we're not trying to transfer a whole assumed size array. */
5448
5449 static void
5450 resolve_transfer (gfc_code *code)
5451 {
5452 gfc_typespec *ts;
5453 gfc_symbol *sym;
5454 gfc_ref *ref;
5455 gfc_expr *exp;
5456
5457 exp = code->expr;
5458
5459 if (exp->expr_type != EXPR_VARIABLE && exp->expr_type != EXPR_FUNCTION)
5460 return;
5461
5462 sym = exp->symtree->n.sym;
5463 ts = &sym->ts;
5464
5465 /* Go to actual component transferred. */
5466 for (ref = code->expr->ref; ref; ref = ref->next)
5467 if (ref->type == REF_COMPONENT)
5468 ts = &ref->u.c.component->ts;
5469
5470 if (ts->type == BT_DERIVED)
5471 {
5472 /* Check that transferred derived type doesn't contain POINTER
5473 components. */
5474 if (ts->derived->attr.pointer_comp)
5475 {
5476 gfc_error ("Data transfer element at %L cannot have "
5477 "POINTER components", &code->loc);
5478 return;
5479 }
5480
5481 if (ts->derived->attr.alloc_comp)
5482 {
5483 gfc_error ("Data transfer element at %L cannot have "
5484 "ALLOCATABLE components", &code->loc);
5485 return;
5486 }
5487
5488 if (derived_inaccessible (ts->derived))
5489 {
5490 gfc_error ("Data transfer element at %L cannot have "
5491 "PRIVATE components",&code->loc);
5492 return;
5493 }
5494 }
5495
5496 if (sym->as != NULL && sym->as->type == AS_ASSUMED_SIZE
5497 && exp->ref->type == REF_ARRAY && exp->ref->u.ar.type == AR_FULL)
5498 {
5499 gfc_error ("Data transfer element at %L cannot be a full reference to "
5500 "an assumed-size array", &code->loc);
5501 return;
5502 }
5503 }
5504
5505
5506 /*********** Toplevel code resolution subroutines ***********/
5507
5508 /* Find the set of labels that are reachable from this block. We also
5509 record the last statement in each block so that we don't have to do
5510 a linear search to find the END DO statements of the blocks. */
5511
5512 static void
5513 reachable_labels (gfc_code *block)
5514 {
5515 gfc_code *c;
5516
5517 if (!block)
5518 return;
5519
5520 cs_base->reachable_labels = bitmap_obstack_alloc (&labels_obstack);
5521
5522 /* Collect labels in this block. */
5523 for (c = block; c; c = c->next)
5524 {
5525 if (c->here)
5526 bitmap_set_bit (cs_base->reachable_labels, c->here->value);
5527
5528 if (!c->next && cs_base->prev)
5529 cs_base->prev->tail = c;
5530 }
5531
5532 /* Merge with labels from parent block. */
5533 if (cs_base->prev)
5534 {
5535 gcc_assert (cs_base->prev->reachable_labels);
5536 bitmap_ior_into (cs_base->reachable_labels,
5537 cs_base->prev->reachable_labels);
5538 }
5539 }
5540
5541 /* Given a branch to a label and a namespace, if the branch is conforming.
5542 The code node describes where the branch is located. */
5543
5544 static void
5545 resolve_branch (gfc_st_label *label, gfc_code *code)
5546 {
5547 code_stack *stack;
5548
5549 if (label == NULL)
5550 return;
5551
5552 /* Step one: is this a valid branching target? */
5553
5554 if (label->defined == ST_LABEL_UNKNOWN)
5555 {
5556 gfc_error ("Label %d referenced at %L is never defined", label->value,
5557 &label->where);
5558 return;
5559 }
5560
5561 if (label->defined != ST_LABEL_TARGET)
5562 {
5563 gfc_error ("Statement at %L is not a valid branch target statement "
5564 "for the branch statement at %L", &label->where, &code->loc);
5565 return;
5566 }
5567
5568 /* Step two: make sure this branch is not a branch to itself ;-) */
5569
5570 if (code->here == label)
5571 {
5572 gfc_warning ("Branch at %L may result in an infinite loop", &code->loc);
5573 return;
5574 }
5575
5576 /* Step three: See if the label is in the same block as the
5577 branching statement. The hard work has been done by setting up
5578 the bitmap reachable_labels. */
5579
5580 if (!bitmap_bit_p (cs_base->reachable_labels, label->value))
5581 {
5582 /* The label is not in an enclosing block, so illegal. This was
5583 allowed in Fortran 66, so we allow it as extension. No
5584 further checks are necessary in this case. */
5585 gfc_notify_std (GFC_STD_LEGACY, "Label at %L is not in the same block "
5586 "as the GOTO statement at %L", &label->where,
5587 &code->loc);
5588 return;
5589 }
5590
5591 /* Step four: Make sure that the branching target is legal if
5592 the statement is an END {SELECT,IF}. */
5593
5594 for (stack = cs_base; stack; stack = stack->prev)
5595 if (stack->current->next && stack->current->next->here == label)
5596 break;
5597
5598 if (stack && stack->current->next->op == EXEC_NOP)
5599 {
5600 gfc_notify_std (GFC_STD_F95_DEL, "Deleted feature: GOTO at %L jumps to "
5601 "END of construct at %L", &code->loc,
5602 &stack->current->next->loc);
5603 return; /* We know this is not an END DO. */
5604 }
5605
5606 /* Step five: Make sure that we're not jumping to the end of a DO
5607 loop from within the loop. */
5608
5609 for (stack = cs_base; stack; stack = stack->prev)
5610 if ((stack->current->op == EXEC_DO
5611 || stack->current->op == EXEC_DO_WHILE)
5612 && stack->tail->here == label && stack->tail->op == EXEC_NOP)
5613 {
5614 gfc_notify_std (GFC_STD_F95_DEL, "Deleted feature: GOTO at %L jumps "
5615 "to END of construct at %L", &code->loc,
5616 &stack->tail->loc);
5617 return;
5618
5619 }
5620 }
5621
5622
5623 /* Check whether EXPR1 has the same shape as EXPR2. */
5624
5625 static gfc_try
5626 resolve_where_shape (gfc_expr *expr1, gfc_expr *expr2)
5627 {
5628 mpz_t shape[GFC_MAX_DIMENSIONS];
5629 mpz_t shape2[GFC_MAX_DIMENSIONS];
5630 gfc_try result = FAILURE;
5631 int i;
5632
5633 /* Compare the rank. */
5634 if (expr1->rank != expr2->rank)
5635 return result;
5636
5637 /* Compare the size of each dimension. */
5638 for (i=0; i<expr1->rank; i++)
5639 {
5640 if (gfc_array_dimen_size (expr1, i, &shape[i]) == FAILURE)
5641 goto ignore;
5642
5643 if (gfc_array_dimen_size (expr2, i, &shape2[i]) == FAILURE)
5644 goto ignore;
5645
5646 if (mpz_cmp (shape[i], shape2[i]))
5647 goto over;
5648 }
5649
5650 /* When either of the two expression is an assumed size array, we
5651 ignore the comparison of dimension sizes. */
5652 ignore:
5653 result = SUCCESS;
5654
5655 over:
5656 for (i--; i >= 0; i--)
5657 {
5658 mpz_clear (shape[i]);
5659 mpz_clear (shape2[i]);
5660 }
5661 return result;
5662 }
5663
5664
5665 /* Check whether a WHERE assignment target or a WHERE mask expression
5666 has the same shape as the outmost WHERE mask expression. */
5667
5668 static void
5669 resolve_where (gfc_code *code, gfc_expr *mask)
5670 {
5671 gfc_code *cblock;
5672 gfc_code *cnext;
5673 gfc_expr *e = NULL;
5674
5675 cblock = code->block;
5676
5677 /* Store the first WHERE mask-expr of the WHERE statement or construct.
5678 In case of nested WHERE, only the outmost one is stored. */
5679 if (mask == NULL) /* outmost WHERE */
5680 e = cblock->expr;
5681 else /* inner WHERE */
5682 e = mask;
5683
5684 while (cblock)
5685 {
5686 if (cblock->expr)
5687 {
5688 /* Check if the mask-expr has a consistent shape with the
5689 outmost WHERE mask-expr. */
5690 if (resolve_where_shape (cblock->expr, e) == FAILURE)
5691 gfc_error ("WHERE mask at %L has inconsistent shape",
5692 &cblock->expr->where);
5693 }
5694
5695 /* the assignment statement of a WHERE statement, or the first
5696 statement in where-body-construct of a WHERE construct */
5697 cnext = cblock->next;
5698 while (cnext)
5699 {
5700 switch (cnext->op)
5701 {
5702 /* WHERE assignment statement */
5703 case EXEC_ASSIGN:
5704
5705 /* Check shape consistent for WHERE assignment target. */
5706 if (e && resolve_where_shape (cnext->expr, e) == FAILURE)
5707 gfc_error ("WHERE assignment target at %L has "
5708 "inconsistent shape", &cnext->expr->where);
5709 break;
5710
5711
5712 case EXEC_ASSIGN_CALL:
5713 resolve_call (cnext);
5714 if (!cnext->resolved_sym->attr.elemental)
5715 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
5716 &cnext->ext.actual->expr->where);
5717 break;
5718
5719 /* WHERE or WHERE construct is part of a where-body-construct */
5720 case EXEC_WHERE:
5721 resolve_where (cnext, e);
5722 break;
5723
5724 default:
5725 gfc_error ("Unsupported statement inside WHERE at %L",
5726 &cnext->loc);
5727 }
5728 /* the next statement within the same where-body-construct */
5729 cnext = cnext->next;
5730 }
5731 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
5732 cblock = cblock->block;
5733 }
5734 }
5735
5736
5737 /* Resolve assignment in FORALL construct.
5738 NVAR is the number of FORALL index variables, and VAR_EXPR records the
5739 FORALL index variables. */
5740
5741 static void
5742 gfc_resolve_assign_in_forall (gfc_code *code, int nvar, gfc_expr **var_expr)
5743 {
5744 int n;
5745
5746 for (n = 0; n < nvar; n++)
5747 {
5748 gfc_symbol *forall_index;
5749
5750 forall_index = var_expr[n]->symtree->n.sym;
5751
5752 /* Check whether the assignment target is one of the FORALL index
5753 variable. */
5754 if ((code->expr->expr_type == EXPR_VARIABLE)
5755 && (code->expr->symtree->n.sym == forall_index))
5756 gfc_error ("Assignment to a FORALL index variable at %L",
5757 &code->expr->where);
5758 else
5759 {
5760 /* If one of the FORALL index variables doesn't appear in the
5761 assignment target, then there will be a many-to-one
5762 assignment. */
5763 if (find_forall_index (code->expr, forall_index, 0) == FAILURE)
5764 gfc_error ("The FORALL with index '%s' cause more than one "
5765 "assignment to this object at %L",
5766 var_expr[n]->symtree->name, &code->expr->where);
5767 }
5768 }
5769 }
5770
5771
5772 /* Resolve WHERE statement in FORALL construct. */
5773
5774 static void
5775 gfc_resolve_where_code_in_forall (gfc_code *code, int nvar,
5776 gfc_expr **var_expr)
5777 {
5778 gfc_code *cblock;
5779 gfc_code *cnext;
5780
5781 cblock = code->block;
5782 while (cblock)
5783 {
5784 /* the assignment statement of a WHERE statement, or the first
5785 statement in where-body-construct of a WHERE construct */
5786 cnext = cblock->next;
5787 while (cnext)
5788 {
5789 switch (cnext->op)
5790 {
5791 /* WHERE assignment statement */
5792 case EXEC_ASSIGN:
5793 gfc_resolve_assign_in_forall (cnext, nvar, var_expr);
5794 break;
5795
5796 /* WHERE operator assignment statement */
5797 case EXEC_ASSIGN_CALL:
5798 resolve_call (cnext);
5799 if (!cnext->resolved_sym->attr.elemental)
5800 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
5801 &cnext->ext.actual->expr->where);
5802 break;
5803
5804 /* WHERE or WHERE construct is part of a where-body-construct */
5805 case EXEC_WHERE:
5806 gfc_resolve_where_code_in_forall (cnext, nvar, var_expr);
5807 break;
5808
5809 default:
5810 gfc_error ("Unsupported statement inside WHERE at %L",
5811 &cnext->loc);
5812 }
5813 /* the next statement within the same where-body-construct */
5814 cnext = cnext->next;
5815 }
5816 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
5817 cblock = cblock->block;
5818 }
5819 }
5820
5821
5822 /* Traverse the FORALL body to check whether the following errors exist:
5823 1. For assignment, check if a many-to-one assignment happens.
5824 2. For WHERE statement, check the WHERE body to see if there is any
5825 many-to-one assignment. */
5826
5827 static void
5828 gfc_resolve_forall_body (gfc_code *code, int nvar, gfc_expr **var_expr)
5829 {
5830 gfc_code *c;
5831
5832 c = code->block->next;
5833 while (c)
5834 {
5835 switch (c->op)
5836 {
5837 case EXEC_ASSIGN:
5838 case EXEC_POINTER_ASSIGN:
5839 gfc_resolve_assign_in_forall (c, nvar, var_expr);
5840 break;
5841
5842 case EXEC_ASSIGN_CALL:
5843 resolve_call (c);
5844 break;
5845
5846 /* Because the gfc_resolve_blocks() will handle the nested FORALL,
5847 there is no need to handle it here. */
5848 case EXEC_FORALL:
5849 break;
5850 case EXEC_WHERE:
5851 gfc_resolve_where_code_in_forall(c, nvar, var_expr);
5852 break;
5853 default:
5854 break;
5855 }
5856 /* The next statement in the FORALL body. */
5857 c = c->next;
5858 }
5859 }
5860
5861
5862 /* Given a FORALL construct, first resolve the FORALL iterator, then call
5863 gfc_resolve_forall_body to resolve the FORALL body. */
5864
5865 static void
5866 gfc_resolve_forall (gfc_code *code, gfc_namespace *ns, int forall_save)
5867 {
5868 static gfc_expr **var_expr;
5869 static int total_var = 0;
5870 static int nvar = 0;
5871 gfc_forall_iterator *fa;
5872 gfc_code *next;
5873 int i;
5874
5875 /* Start to resolve a FORALL construct */
5876 if (forall_save == 0)
5877 {
5878 /* Count the total number of FORALL index in the nested FORALL
5879 construct in order to allocate the VAR_EXPR with proper size. */
5880 next = code;
5881 while ((next != NULL) && (next->op == EXEC_FORALL))
5882 {
5883 for (fa = next->ext.forall_iterator; fa; fa = fa->next)
5884 total_var ++;
5885 next = next->block->next;
5886 }
5887
5888 /* Allocate VAR_EXPR with NUMBER_OF_FORALL_INDEX elements. */
5889 var_expr = (gfc_expr **) gfc_getmem (total_var * sizeof (gfc_expr *));
5890 }
5891
5892 /* The information about FORALL iterator, including FORALL index start, end
5893 and stride. The FORALL index can not appear in start, end or stride. */
5894 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
5895 {
5896 /* Check if any outer FORALL index name is the same as the current
5897 one. */
5898 for (i = 0; i < nvar; i++)
5899 {
5900 if (fa->var->symtree->n.sym == var_expr[i]->symtree->n.sym)
5901 {
5902 gfc_error ("An outer FORALL construct already has an index "
5903 "with this name %L", &fa->var->where);
5904 }
5905 }
5906
5907 /* Record the current FORALL index. */
5908 var_expr[nvar] = gfc_copy_expr (fa->var);
5909
5910 nvar++;
5911 }
5912
5913 /* Resolve the FORALL body. */
5914 gfc_resolve_forall_body (code, nvar, var_expr);
5915
5916 /* May call gfc_resolve_forall to resolve the inner FORALL loop. */
5917 gfc_resolve_blocks (code->block, ns);
5918
5919 /* Free VAR_EXPR after the whole FORALL construct resolved. */
5920 for (i = 0; i < total_var; i++)
5921 gfc_free_expr (var_expr[i]);
5922
5923 /* Reset the counters. */
5924 total_var = 0;
5925 nvar = 0;
5926 }
5927
5928
5929 /* Resolve lists of blocks found in IF, SELECT CASE, WHERE, FORALL ,GOTO and
5930 DO code nodes. */
5931
5932 static void resolve_code (gfc_code *, gfc_namespace *);
5933
5934 void
5935 gfc_resolve_blocks (gfc_code *b, gfc_namespace *ns)
5936 {
5937 gfc_try t;
5938
5939 for (; b; b = b->block)
5940 {
5941 t = gfc_resolve_expr (b->expr);
5942 if (gfc_resolve_expr (b->expr2) == FAILURE)
5943 t = FAILURE;
5944
5945 switch (b->op)
5946 {
5947 case EXEC_IF:
5948 if (t == SUCCESS && b->expr != NULL
5949 && (b->expr->ts.type != BT_LOGICAL || b->expr->rank != 0))
5950 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
5951 &b->expr->where);
5952 break;
5953
5954 case EXEC_WHERE:
5955 if (t == SUCCESS
5956 && b->expr != NULL
5957 && (b->expr->ts.type != BT_LOGICAL || b->expr->rank == 0))
5958 gfc_error ("WHERE/ELSEWHERE clause at %L requires a LOGICAL array",
5959 &b->expr->where);
5960 break;
5961
5962 case EXEC_GOTO:
5963 resolve_branch (b->label, b);
5964 break;
5965
5966 case EXEC_SELECT:
5967 case EXEC_FORALL:
5968 case EXEC_DO:
5969 case EXEC_DO_WHILE:
5970 case EXEC_READ:
5971 case EXEC_WRITE:
5972 case EXEC_IOLENGTH:
5973 case EXEC_WAIT:
5974 break;
5975
5976 case EXEC_OMP_ATOMIC:
5977 case EXEC_OMP_CRITICAL:
5978 case EXEC_OMP_DO:
5979 case EXEC_OMP_MASTER:
5980 case EXEC_OMP_ORDERED:
5981 case EXEC_OMP_PARALLEL:
5982 case EXEC_OMP_PARALLEL_DO:
5983 case EXEC_OMP_PARALLEL_SECTIONS:
5984 case EXEC_OMP_PARALLEL_WORKSHARE:
5985 case EXEC_OMP_SECTIONS:
5986 case EXEC_OMP_SINGLE:
5987 case EXEC_OMP_TASK:
5988 case EXEC_OMP_TASKWAIT:
5989 case EXEC_OMP_WORKSHARE:
5990 break;
5991
5992 default:
5993 gfc_internal_error ("resolve_block(): Bad block type");
5994 }
5995
5996 resolve_code (b->next, ns);
5997 }
5998 }
5999
6000
6001 /* Does everything to resolve an ordinary assignment. Returns true
6002 if this is an interface assignment. */
6003 static bool
6004 resolve_ordinary_assign (gfc_code *code, gfc_namespace *ns)
6005 {
6006 bool rval = false;
6007 gfc_expr *lhs;
6008 gfc_expr *rhs;
6009 int llen = 0;
6010 int rlen = 0;
6011 int n;
6012 gfc_ref *ref;
6013
6014 if (gfc_extend_assign (code, ns) == SUCCESS)
6015 {
6016 lhs = code->ext.actual->expr;
6017 rhs = code->ext.actual->next->expr;
6018 if (gfc_pure (NULL) && !gfc_pure (code->symtree->n.sym))
6019 {
6020 gfc_error ("Subroutine '%s' called instead of assignment at "
6021 "%L must be PURE", code->symtree->n.sym->name,
6022 &code->loc);
6023 return rval;
6024 }
6025
6026 /* Make a temporary rhs when there is a default initializer
6027 and rhs is the same symbol as the lhs. */
6028 if (rhs->expr_type == EXPR_VARIABLE
6029 && rhs->symtree->n.sym->ts.type == BT_DERIVED
6030 && has_default_initializer (rhs->symtree->n.sym->ts.derived)
6031 && (lhs->symtree->n.sym == rhs->symtree->n.sym))
6032 code->ext.actual->next->expr = gfc_get_parentheses (rhs);
6033
6034 return true;
6035 }
6036
6037 lhs = code->expr;
6038 rhs = code->expr2;
6039
6040 if (rhs->is_boz
6041 && gfc_notify_std (GFC_STD_GNU, "Extension: BOZ literal at %L outside "
6042 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
6043 &code->loc) == FAILURE)
6044 return false;
6045
6046 /* Handle the case of a BOZ literal on the RHS. */
6047 if (rhs->is_boz && lhs->ts.type != BT_INTEGER)
6048 {
6049 int rc;
6050 if (gfc_option.warn_surprising)
6051 gfc_warning ("BOZ literal at %L is bitwise transferred "
6052 "non-integer symbol '%s'", &code->loc,
6053 lhs->symtree->n.sym->name);
6054
6055 if (!gfc_convert_boz (rhs, &lhs->ts))
6056 return false;
6057 if ((rc = gfc_range_check (rhs)) != ARITH_OK)
6058 {
6059 if (rc == ARITH_UNDERFLOW)
6060 gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
6061 ". This check can be disabled with the option "
6062 "-fno-range-check", &rhs->where);
6063 else if (rc == ARITH_OVERFLOW)
6064 gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
6065 ". This check can be disabled with the option "
6066 "-fno-range-check", &rhs->where);
6067 else if (rc == ARITH_NAN)
6068 gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
6069 ". This check can be disabled with the option "
6070 "-fno-range-check", &rhs->where);
6071 return false;
6072 }
6073 }
6074
6075
6076 if (lhs->ts.type == BT_CHARACTER
6077 && gfc_option.warn_character_truncation)
6078 {
6079 if (lhs->ts.cl != NULL
6080 && lhs->ts.cl->length != NULL
6081 && lhs->ts.cl->length->expr_type == EXPR_CONSTANT)
6082 llen = mpz_get_si (lhs->ts.cl->length->value.integer);
6083
6084 if (rhs->expr_type == EXPR_CONSTANT)
6085 rlen = rhs->value.character.length;
6086
6087 else if (rhs->ts.cl != NULL
6088 && rhs->ts.cl->length != NULL
6089 && rhs->ts.cl->length->expr_type == EXPR_CONSTANT)
6090 rlen = mpz_get_si (rhs->ts.cl->length->value.integer);
6091
6092 if (rlen && llen && rlen > llen)
6093 gfc_warning_now ("CHARACTER expression will be truncated "
6094 "in assignment (%d/%d) at %L",
6095 llen, rlen, &code->loc);
6096 }
6097
6098 /* Ensure that a vector index expression for the lvalue is evaluated
6099 to a temporary if the lvalue symbol is referenced in it. */
6100 if (lhs->rank)
6101 {
6102 for (ref = lhs->ref; ref; ref= ref->next)
6103 if (ref->type == REF_ARRAY)
6104 {
6105 for (n = 0; n < ref->u.ar.dimen; n++)
6106 if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR
6107 && gfc_find_sym_in_expr (lhs->symtree->n.sym,
6108 ref->u.ar.start[n]))
6109 ref->u.ar.start[n]
6110 = gfc_get_parentheses (ref->u.ar.start[n]);
6111 }
6112 }
6113
6114 if (gfc_pure (NULL))
6115 {
6116 if (gfc_impure_variable (lhs->symtree->n.sym))
6117 {
6118 gfc_error ("Cannot assign to variable '%s' in PURE "
6119 "procedure at %L",
6120 lhs->symtree->n.sym->name,
6121 &lhs->where);
6122 return rval;
6123 }
6124
6125 if (lhs->ts.type == BT_DERIVED
6126 && lhs->expr_type == EXPR_VARIABLE
6127 && lhs->ts.derived->attr.pointer_comp
6128 && gfc_impure_variable (rhs->symtree->n.sym))
6129 {
6130 gfc_error ("The impure variable at %L is assigned to "
6131 "a derived type variable with a POINTER "
6132 "component in a PURE procedure (12.6)",
6133 &rhs->where);
6134 return rval;
6135 }
6136 }
6137
6138 gfc_check_assign (lhs, rhs, 1);
6139 return false;
6140 }
6141
6142 /* Given a block of code, recursively resolve everything pointed to by this
6143 code block. */
6144
6145 static void
6146 resolve_code (gfc_code *code, gfc_namespace *ns)
6147 {
6148 int omp_workshare_save;
6149 int forall_save;
6150 code_stack frame;
6151 gfc_try t;
6152
6153 frame.prev = cs_base;
6154 frame.head = code;
6155 cs_base = &frame;
6156
6157 reachable_labels (code);
6158
6159 for (; code; code = code->next)
6160 {
6161 frame.current = code;
6162 forall_save = forall_flag;
6163
6164 if (code->op == EXEC_FORALL)
6165 {
6166 forall_flag = 1;
6167 gfc_resolve_forall (code, ns, forall_save);
6168 forall_flag = 2;
6169 }
6170 else if (code->block)
6171 {
6172 omp_workshare_save = -1;
6173 switch (code->op)
6174 {
6175 case EXEC_OMP_PARALLEL_WORKSHARE:
6176 omp_workshare_save = omp_workshare_flag;
6177 omp_workshare_flag = 1;
6178 gfc_resolve_omp_parallel_blocks (code, ns);
6179 break;
6180 case EXEC_OMP_PARALLEL:
6181 case EXEC_OMP_PARALLEL_DO:
6182 case EXEC_OMP_PARALLEL_SECTIONS:
6183 case EXEC_OMP_TASK:
6184 omp_workshare_save = omp_workshare_flag;
6185 omp_workshare_flag = 0;
6186 gfc_resolve_omp_parallel_blocks (code, ns);
6187 break;
6188 case EXEC_OMP_DO:
6189 gfc_resolve_omp_do_blocks (code, ns);
6190 break;
6191 case EXEC_OMP_WORKSHARE:
6192 omp_workshare_save = omp_workshare_flag;
6193 omp_workshare_flag = 1;
6194 /* FALLTHROUGH */
6195 default:
6196 gfc_resolve_blocks (code->block, ns);
6197 break;
6198 }
6199
6200 if (omp_workshare_save != -1)
6201 omp_workshare_flag = omp_workshare_save;
6202 }
6203
6204 t = gfc_resolve_expr (code->expr);
6205 forall_flag = forall_save;
6206
6207 if (gfc_resolve_expr (code->expr2) == FAILURE)
6208 t = FAILURE;
6209
6210 switch (code->op)
6211 {
6212 case EXEC_NOP:
6213 case EXEC_CYCLE:
6214 case EXEC_PAUSE:
6215 case EXEC_STOP:
6216 case EXEC_EXIT:
6217 case EXEC_CONTINUE:
6218 case EXEC_DT_END:
6219 break;
6220
6221 case EXEC_ENTRY:
6222 /* Keep track of which entry we are up to. */
6223 current_entry_id = code->ext.entry->id;
6224 break;
6225
6226 case EXEC_WHERE:
6227 resolve_where (code, NULL);
6228 break;
6229
6230 case EXEC_GOTO:
6231 if (code->expr != NULL)
6232 {
6233 if (code->expr->ts.type != BT_INTEGER)
6234 gfc_error ("ASSIGNED GOTO statement at %L requires an "
6235 "INTEGER variable", &code->expr->where);
6236 else if (code->expr->symtree->n.sym->attr.assign != 1)
6237 gfc_error ("Variable '%s' has not been assigned a target "
6238 "label at %L", code->expr->symtree->n.sym->name,
6239 &code->expr->where);
6240 }
6241 else
6242 resolve_branch (code->label, code);
6243 break;
6244
6245 case EXEC_RETURN:
6246 if (code->expr != NULL
6247 && (code->expr->ts.type != BT_INTEGER || code->expr->rank))
6248 gfc_error ("Alternate RETURN statement at %L requires a SCALAR-"
6249 "INTEGER return specifier", &code->expr->where);
6250 break;
6251
6252 case EXEC_INIT_ASSIGN:
6253 break;
6254
6255 case EXEC_ASSIGN:
6256 if (t == FAILURE)
6257 break;
6258
6259 if (resolve_ordinary_assign (code, ns))
6260 goto call;
6261
6262 break;
6263
6264 case EXEC_LABEL_ASSIGN:
6265 if (code->label->defined == ST_LABEL_UNKNOWN)
6266 gfc_error ("Label %d referenced at %L is never defined",
6267 code->label->value, &code->label->where);
6268 if (t == SUCCESS
6269 && (code->expr->expr_type != EXPR_VARIABLE
6270 || code->expr->symtree->n.sym->ts.type != BT_INTEGER
6271 || code->expr->symtree->n.sym->ts.kind
6272 != gfc_default_integer_kind
6273 || code->expr->symtree->n.sym->as != NULL))
6274 gfc_error ("ASSIGN statement at %L requires a scalar "
6275 "default INTEGER variable", &code->expr->where);
6276 break;
6277
6278 case EXEC_POINTER_ASSIGN:
6279 if (t == FAILURE)
6280 break;
6281
6282 gfc_check_pointer_assign (code->expr, code->expr2);
6283 break;
6284
6285 case EXEC_ARITHMETIC_IF:
6286 if (t == SUCCESS
6287 && code->expr->ts.type != BT_INTEGER
6288 && code->expr->ts.type != BT_REAL)
6289 gfc_error ("Arithmetic IF statement at %L requires a numeric "
6290 "expression", &code->expr->where);
6291
6292 resolve_branch (code->label, code);
6293 resolve_branch (code->label2, code);
6294 resolve_branch (code->label3, code);
6295 break;
6296
6297 case EXEC_IF:
6298 if (t == SUCCESS && code->expr != NULL
6299 && (code->expr->ts.type != BT_LOGICAL
6300 || code->expr->rank != 0))
6301 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
6302 &code->expr->where);
6303 break;
6304
6305 case EXEC_CALL:
6306 call:
6307 resolve_call (code);
6308 break;
6309
6310 case EXEC_SELECT:
6311 /* Select is complicated. Also, a SELECT construct could be
6312 a transformed computed GOTO. */
6313 resolve_select (code);
6314 break;
6315
6316 case EXEC_DO:
6317 if (code->ext.iterator != NULL)
6318 {
6319 gfc_iterator *iter = code->ext.iterator;
6320 if (gfc_resolve_iterator (iter, true) != FAILURE)
6321 gfc_resolve_do_iterator (code, iter->var->symtree->n.sym);
6322 }
6323 break;
6324
6325 case EXEC_DO_WHILE:
6326 if (code->expr == NULL)
6327 gfc_internal_error ("resolve_code(): No expression on DO WHILE");
6328 if (t == SUCCESS
6329 && (code->expr->rank != 0
6330 || code->expr->ts.type != BT_LOGICAL))
6331 gfc_error ("Exit condition of DO WHILE loop at %L must be "
6332 "a scalar LOGICAL expression", &code->expr->where);
6333 break;
6334
6335 case EXEC_ALLOCATE:
6336 if (t == SUCCESS)
6337 resolve_allocate_deallocate (code, "ALLOCATE");
6338
6339 break;
6340
6341 case EXEC_DEALLOCATE:
6342 if (t == SUCCESS)
6343 resolve_allocate_deallocate (code, "DEALLOCATE");
6344
6345 break;
6346
6347 case EXEC_OPEN:
6348 if (gfc_resolve_open (code->ext.open) == FAILURE)
6349 break;
6350
6351 resolve_branch (code->ext.open->err, code);
6352 break;
6353
6354 case EXEC_CLOSE:
6355 if (gfc_resolve_close (code->ext.close) == FAILURE)
6356 break;
6357
6358 resolve_branch (code->ext.close->err, code);
6359 break;
6360
6361 case EXEC_BACKSPACE:
6362 case EXEC_ENDFILE:
6363 case EXEC_REWIND:
6364 case EXEC_FLUSH:
6365 if (gfc_resolve_filepos (code->ext.filepos) == FAILURE)
6366 break;
6367
6368 resolve_branch (code->ext.filepos->err, code);
6369 break;
6370
6371 case EXEC_INQUIRE:
6372 if (gfc_resolve_inquire (code->ext.inquire) == FAILURE)
6373 break;
6374
6375 resolve_branch (code->ext.inquire->err, code);
6376 break;
6377
6378 case EXEC_IOLENGTH:
6379 gcc_assert (code->ext.inquire != NULL);
6380 if (gfc_resolve_inquire (code->ext.inquire) == FAILURE)
6381 break;
6382
6383 resolve_branch (code->ext.inquire->err, code);
6384 break;
6385
6386 case EXEC_WAIT:
6387 if (gfc_resolve_wait (code->ext.wait) == FAILURE)
6388 break;
6389
6390 resolve_branch (code->ext.wait->err, code);
6391 resolve_branch (code->ext.wait->end, code);
6392 resolve_branch (code->ext.wait->eor, code);
6393 break;
6394
6395 case EXEC_READ:
6396 case EXEC_WRITE:
6397 if (gfc_resolve_dt (code->ext.dt) == FAILURE)
6398 break;
6399
6400 resolve_branch (code->ext.dt->err, code);
6401 resolve_branch (code->ext.dt->end, code);
6402 resolve_branch (code->ext.dt->eor, code);
6403 break;
6404
6405 case EXEC_TRANSFER:
6406 resolve_transfer (code);
6407 break;
6408
6409 case EXEC_FORALL:
6410 resolve_forall_iterators (code->ext.forall_iterator);
6411
6412 if (code->expr != NULL && code->expr->ts.type != BT_LOGICAL)
6413 gfc_error ("FORALL mask clause at %L requires a LOGICAL "
6414 "expression", &code->expr->where);
6415 break;
6416
6417 case EXEC_OMP_ATOMIC:
6418 case EXEC_OMP_BARRIER:
6419 case EXEC_OMP_CRITICAL:
6420 case EXEC_OMP_FLUSH:
6421 case EXEC_OMP_DO:
6422 case EXEC_OMP_MASTER:
6423 case EXEC_OMP_ORDERED:
6424 case EXEC_OMP_SECTIONS:
6425 case EXEC_OMP_SINGLE:
6426 case EXEC_OMP_TASKWAIT:
6427 case EXEC_OMP_WORKSHARE:
6428 gfc_resolve_omp_directive (code, ns);
6429 break;
6430
6431 case EXEC_OMP_PARALLEL:
6432 case EXEC_OMP_PARALLEL_DO:
6433 case EXEC_OMP_PARALLEL_SECTIONS:
6434 case EXEC_OMP_PARALLEL_WORKSHARE:
6435 case EXEC_OMP_TASK:
6436 omp_workshare_save = omp_workshare_flag;
6437 omp_workshare_flag = 0;
6438 gfc_resolve_omp_directive (code, ns);
6439 omp_workshare_flag = omp_workshare_save;
6440 break;
6441
6442 default:
6443 gfc_internal_error ("resolve_code(): Bad statement code");
6444 }
6445 }
6446
6447 cs_base = frame.prev;
6448 }
6449
6450
6451 /* Resolve initial values and make sure they are compatible with
6452 the variable. */
6453
6454 static void
6455 resolve_values (gfc_symbol *sym)
6456 {
6457 if (sym->value == NULL)
6458 return;
6459
6460 if (gfc_resolve_expr (sym->value) == FAILURE)
6461 return;
6462
6463 gfc_check_assign_symbol (sym, sym->value);
6464 }
6465
6466
6467 /* Verify the binding labels for common blocks that are BIND(C). The label
6468 for a BIND(C) common block must be identical in all scoping units in which
6469 the common block is declared. Further, the binding label can not collide
6470 with any other global entity in the program. */
6471
6472 static void
6473 resolve_bind_c_comms (gfc_symtree *comm_block_tree)
6474 {
6475 if (comm_block_tree->n.common->is_bind_c == 1)
6476 {
6477 gfc_gsymbol *binding_label_gsym;
6478 gfc_gsymbol *comm_name_gsym;
6479
6480 /* See if a global symbol exists by the common block's name. It may
6481 be NULL if the common block is use-associated. */
6482 comm_name_gsym = gfc_find_gsymbol (gfc_gsym_root,
6483 comm_block_tree->n.common->name);
6484 if (comm_name_gsym != NULL && comm_name_gsym->type != GSYM_COMMON)
6485 gfc_error ("Binding label '%s' for common block '%s' at %L collides "
6486 "with the global entity '%s' at %L",
6487 comm_block_tree->n.common->binding_label,
6488 comm_block_tree->n.common->name,
6489 &(comm_block_tree->n.common->where),
6490 comm_name_gsym->name, &(comm_name_gsym->where));
6491 else if (comm_name_gsym != NULL
6492 && strcmp (comm_name_gsym->name,
6493 comm_block_tree->n.common->name) == 0)
6494 {
6495 /* TODO: Need to make sure the fields of gfc_gsymbol are initialized
6496 as expected. */
6497 if (comm_name_gsym->binding_label == NULL)
6498 /* No binding label for common block stored yet; save this one. */
6499 comm_name_gsym->binding_label =
6500 comm_block_tree->n.common->binding_label;
6501 else
6502 if (strcmp (comm_name_gsym->binding_label,
6503 comm_block_tree->n.common->binding_label) != 0)
6504 {
6505 /* Common block names match but binding labels do not. */
6506 gfc_error ("Binding label '%s' for common block '%s' at %L "
6507 "does not match the binding label '%s' for common "
6508 "block '%s' at %L",
6509 comm_block_tree->n.common->binding_label,
6510 comm_block_tree->n.common->name,
6511 &(comm_block_tree->n.common->where),
6512 comm_name_gsym->binding_label,
6513 comm_name_gsym->name,
6514 &(comm_name_gsym->where));
6515 return;
6516 }
6517 }
6518
6519 /* There is no binding label (NAME="") so we have nothing further to
6520 check and nothing to add as a global symbol for the label. */
6521 if (comm_block_tree->n.common->binding_label[0] == '\0' )
6522 return;
6523
6524 binding_label_gsym =
6525 gfc_find_gsymbol (gfc_gsym_root,
6526 comm_block_tree->n.common->binding_label);
6527 if (binding_label_gsym == NULL)
6528 {
6529 /* Need to make a global symbol for the binding label to prevent
6530 it from colliding with another. */
6531 binding_label_gsym =
6532 gfc_get_gsymbol (comm_block_tree->n.common->binding_label);
6533 binding_label_gsym->sym_name = comm_block_tree->n.common->name;
6534 binding_label_gsym->type = GSYM_COMMON;
6535 }
6536 else
6537 {
6538 /* If comm_name_gsym is NULL, the name common block is use
6539 associated and the name could be colliding. */
6540 if (binding_label_gsym->type != GSYM_COMMON)
6541 gfc_error ("Binding label '%s' for common block '%s' at %L "
6542 "collides with the global entity '%s' at %L",
6543 comm_block_tree->n.common->binding_label,
6544 comm_block_tree->n.common->name,
6545 &(comm_block_tree->n.common->where),
6546 binding_label_gsym->name,
6547 &(binding_label_gsym->where));
6548 else if (comm_name_gsym != NULL
6549 && (strcmp (binding_label_gsym->name,
6550 comm_name_gsym->binding_label) != 0)
6551 && (strcmp (binding_label_gsym->sym_name,
6552 comm_name_gsym->name) != 0))
6553 gfc_error ("Binding label '%s' for common block '%s' at %L "
6554 "collides with global entity '%s' at %L",
6555 binding_label_gsym->name, binding_label_gsym->sym_name,
6556 &(comm_block_tree->n.common->where),
6557 comm_name_gsym->name, &(comm_name_gsym->where));
6558 }
6559 }
6560
6561 return;
6562 }
6563
6564
6565 /* Verify any BIND(C) derived types in the namespace so we can report errors
6566 for them once, rather than for each variable declared of that type. */
6567
6568 static void
6569 resolve_bind_c_derived_types (gfc_symbol *derived_sym)
6570 {
6571 if (derived_sym != NULL && derived_sym->attr.flavor == FL_DERIVED
6572 && derived_sym->attr.is_bind_c == 1)
6573 verify_bind_c_derived_type (derived_sym);
6574
6575 return;
6576 }
6577
6578
6579 /* Verify that any binding labels used in a given namespace do not collide
6580 with the names or binding labels of any global symbols. */
6581
6582 static void
6583 gfc_verify_binding_labels (gfc_symbol *sym)
6584 {
6585 int has_error = 0;
6586
6587 if (sym != NULL && sym->attr.is_bind_c && sym->attr.is_iso_c == 0
6588 && sym->attr.flavor != FL_DERIVED && sym->binding_label[0] != '\0')
6589 {
6590 gfc_gsymbol *bind_c_sym;
6591
6592 bind_c_sym = gfc_find_gsymbol (gfc_gsym_root, sym->binding_label);
6593 if (bind_c_sym != NULL
6594 && strcmp (bind_c_sym->name, sym->binding_label) == 0)
6595 {
6596 if (sym->attr.if_source == IFSRC_DECL
6597 && (bind_c_sym->type != GSYM_SUBROUTINE
6598 && bind_c_sym->type != GSYM_FUNCTION)
6599 && ((sym->attr.contained == 1
6600 && strcmp (bind_c_sym->sym_name, sym->name) != 0)
6601 || (sym->attr.use_assoc == 1
6602 && (strcmp (bind_c_sym->mod_name, sym->module) != 0))))
6603 {
6604 /* Make sure global procedures don't collide with anything. */
6605 gfc_error ("Binding label '%s' at %L collides with the global "
6606 "entity '%s' at %L", sym->binding_label,
6607 &(sym->declared_at), bind_c_sym->name,
6608 &(bind_c_sym->where));
6609 has_error = 1;
6610 }
6611 else if (sym->attr.contained == 0
6612 && (sym->attr.if_source == IFSRC_IFBODY
6613 && sym->attr.flavor == FL_PROCEDURE)
6614 && (bind_c_sym->sym_name != NULL
6615 && strcmp (bind_c_sym->sym_name, sym->name) != 0))
6616 {
6617 /* Make sure procedures in interface bodies don't collide. */
6618 gfc_error ("Binding label '%s' in interface body at %L collides "
6619 "with the global entity '%s' at %L",
6620 sym->binding_label,
6621 &(sym->declared_at), bind_c_sym->name,
6622 &(bind_c_sym->where));
6623 has_error = 1;
6624 }
6625 else if (sym->attr.contained == 0
6626 && sym->attr.if_source == IFSRC_UNKNOWN)
6627 if ((sym->attr.use_assoc && bind_c_sym->mod_name
6628 && strcmp (bind_c_sym->mod_name, sym->module) != 0)
6629 || sym->attr.use_assoc == 0)
6630 {
6631 gfc_error ("Binding label '%s' at %L collides with global "
6632 "entity '%s' at %L", sym->binding_label,
6633 &(sym->declared_at), bind_c_sym->name,
6634 &(bind_c_sym->where));
6635 has_error = 1;
6636 }
6637
6638 if (has_error != 0)
6639 /* Clear the binding label to prevent checking multiple times. */
6640 sym->binding_label[0] = '\0';
6641 }
6642 else if (bind_c_sym == NULL)
6643 {
6644 bind_c_sym = gfc_get_gsymbol (sym->binding_label);
6645 bind_c_sym->where = sym->declared_at;
6646 bind_c_sym->sym_name = sym->name;
6647
6648 if (sym->attr.use_assoc == 1)
6649 bind_c_sym->mod_name = sym->module;
6650 else
6651 if (sym->ns->proc_name != NULL)
6652 bind_c_sym->mod_name = sym->ns->proc_name->name;
6653
6654 if (sym->attr.contained == 0)
6655 {
6656 if (sym->attr.subroutine)
6657 bind_c_sym->type = GSYM_SUBROUTINE;
6658 else if (sym->attr.function)
6659 bind_c_sym->type = GSYM_FUNCTION;
6660 }
6661 }
6662 }
6663 return;
6664 }
6665
6666
6667 /* Resolve an index expression. */
6668
6669 static gfc_try
6670 resolve_index_expr (gfc_expr *e)
6671 {
6672 if (gfc_resolve_expr (e) == FAILURE)
6673 return FAILURE;
6674
6675 if (gfc_simplify_expr (e, 0) == FAILURE)
6676 return FAILURE;
6677
6678 if (gfc_specification_expr (e) == FAILURE)
6679 return FAILURE;
6680
6681 return SUCCESS;
6682 }
6683
6684 /* Resolve a charlen structure. */
6685
6686 static gfc_try
6687 resolve_charlen (gfc_charlen *cl)
6688 {
6689 int i;
6690
6691 if (cl->resolved)
6692 return SUCCESS;
6693
6694 cl->resolved = 1;
6695
6696 specification_expr = 1;
6697
6698 if (resolve_index_expr (cl->length) == FAILURE)
6699 {
6700 specification_expr = 0;
6701 return FAILURE;
6702 }
6703
6704 /* "If the character length parameter value evaluates to a negative
6705 value, the length of character entities declared is zero." */
6706 if (cl->length && !gfc_extract_int (cl->length, &i) && i < 0)
6707 {
6708 gfc_warning_now ("CHARACTER variable has zero length at %L",
6709 &cl->length->where);
6710 gfc_replace_expr (cl->length, gfc_int_expr (0));
6711 }
6712
6713 return SUCCESS;
6714 }
6715
6716
6717 /* Test for non-constant shape arrays. */
6718
6719 static bool
6720 is_non_constant_shape_array (gfc_symbol *sym)
6721 {
6722 gfc_expr *e;
6723 int i;
6724 bool not_constant;
6725
6726 not_constant = false;
6727 if (sym->as != NULL)
6728 {
6729 /* Unfortunately, !gfc_is_compile_time_shape hits a legal case that
6730 has not been simplified; parameter array references. Do the
6731 simplification now. */
6732 for (i = 0; i < sym->as->rank; i++)
6733 {
6734 e = sym->as->lower[i];
6735 if (e && (resolve_index_expr (e) == FAILURE
6736 || !gfc_is_constant_expr (e)))
6737 not_constant = true;
6738
6739 e = sym->as->upper[i];
6740 if (e && (resolve_index_expr (e) == FAILURE
6741 || !gfc_is_constant_expr (e)))
6742 not_constant = true;
6743 }
6744 }
6745 return not_constant;
6746 }
6747
6748 /* Given a symbol and an initialization expression, add code to initialize
6749 the symbol to the function entry. */
6750 static void
6751 build_init_assign (gfc_symbol *sym, gfc_expr *init)
6752 {
6753 gfc_expr *lval;
6754 gfc_code *init_st;
6755 gfc_namespace *ns = sym->ns;
6756
6757 /* Search for the function namespace if this is a contained
6758 function without an explicit result. */
6759 if (sym->attr.function && sym == sym->result
6760 && sym->name != sym->ns->proc_name->name)
6761 {
6762 ns = ns->contained;
6763 for (;ns; ns = ns->sibling)
6764 if (strcmp (ns->proc_name->name, sym->name) == 0)
6765 break;
6766 }
6767
6768 if (ns == NULL)
6769 {
6770 gfc_free_expr (init);
6771 return;
6772 }
6773
6774 /* Build an l-value expression for the result. */
6775 lval = gfc_lval_expr_from_sym (sym);
6776
6777 /* Add the code at scope entry. */
6778 init_st = gfc_get_code ();
6779 init_st->next = ns->code;
6780 ns->code = init_st;
6781
6782 /* Assign the default initializer to the l-value. */
6783 init_st->loc = sym->declared_at;
6784 init_st->op = EXEC_INIT_ASSIGN;
6785 init_st->expr = lval;
6786 init_st->expr2 = init;
6787 }
6788
6789 /* Assign the default initializer to a derived type variable or result. */
6790
6791 static void
6792 apply_default_init (gfc_symbol *sym)
6793 {
6794 gfc_expr *init = NULL;
6795
6796 if (sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
6797 return;
6798
6799 if (sym->ts.type == BT_DERIVED && sym->ts.derived)
6800 init = gfc_default_initializer (&sym->ts);
6801
6802 if (init == NULL)
6803 return;
6804
6805 build_init_assign (sym, init);
6806 }
6807
6808 /* Build an initializer for a local integer, real, complex, logical, or
6809 character variable, based on the command line flags finit-local-zero,
6810 finit-integer=, finit-real=, finit-logical=, and finit-runtime. Returns
6811 null if the symbol should not have a default initialization. */
6812 static gfc_expr *
6813 build_default_init_expr (gfc_symbol *sym)
6814 {
6815 int char_len;
6816 gfc_expr *init_expr;
6817 int i;
6818
6819 /* These symbols should never have a default initialization. */
6820 if ((sym->attr.dimension && !gfc_is_compile_time_shape (sym->as))
6821 || sym->attr.external
6822 || sym->attr.dummy
6823 || sym->attr.pointer
6824 || sym->attr.in_equivalence
6825 || sym->attr.in_common
6826 || sym->attr.data
6827 || sym->module
6828 || sym->attr.cray_pointee
6829 || sym->attr.cray_pointer)
6830 return NULL;
6831
6832 /* Now we'll try to build an initializer expression. */
6833 init_expr = gfc_get_expr ();
6834 init_expr->expr_type = EXPR_CONSTANT;
6835 init_expr->ts.type = sym->ts.type;
6836 init_expr->ts.kind = sym->ts.kind;
6837 init_expr->where = sym->declared_at;
6838
6839 /* We will only initialize integers, reals, complex, logicals, and
6840 characters, and only if the corresponding command-line flags
6841 were set. Otherwise, we free init_expr and return null. */
6842 switch (sym->ts.type)
6843 {
6844 case BT_INTEGER:
6845 if (gfc_option.flag_init_integer != GFC_INIT_INTEGER_OFF)
6846 mpz_init_set_si (init_expr->value.integer,
6847 gfc_option.flag_init_integer_value);
6848 else
6849 {
6850 gfc_free_expr (init_expr);
6851 init_expr = NULL;
6852 }
6853 break;
6854
6855 case BT_REAL:
6856 mpfr_init (init_expr->value.real);
6857 switch (gfc_option.flag_init_real)
6858 {
6859 case GFC_INIT_REAL_NAN:
6860 mpfr_set_nan (init_expr->value.real);
6861 break;
6862
6863 case GFC_INIT_REAL_INF:
6864 mpfr_set_inf (init_expr->value.real, 1);
6865 break;
6866
6867 case GFC_INIT_REAL_NEG_INF:
6868 mpfr_set_inf (init_expr->value.real, -1);
6869 break;
6870
6871 case GFC_INIT_REAL_ZERO:
6872 mpfr_set_ui (init_expr->value.real, 0.0, GFC_RND_MODE);
6873 break;
6874
6875 default:
6876 gfc_free_expr (init_expr);
6877 init_expr = NULL;
6878 break;
6879 }
6880 break;
6881
6882 case BT_COMPLEX:
6883 mpfr_init (init_expr->value.complex.r);
6884 mpfr_init (init_expr->value.complex.i);
6885 switch (gfc_option.flag_init_real)
6886 {
6887 case GFC_INIT_REAL_NAN:
6888 mpfr_set_nan (init_expr->value.complex.r);
6889 mpfr_set_nan (init_expr->value.complex.i);
6890 break;
6891
6892 case GFC_INIT_REAL_INF:
6893 mpfr_set_inf (init_expr->value.complex.r, 1);
6894 mpfr_set_inf (init_expr->value.complex.i, 1);
6895 break;
6896
6897 case GFC_INIT_REAL_NEG_INF:
6898 mpfr_set_inf (init_expr->value.complex.r, -1);
6899 mpfr_set_inf (init_expr->value.complex.i, -1);
6900 break;
6901
6902 case GFC_INIT_REAL_ZERO:
6903 mpfr_set_ui (init_expr->value.complex.r, 0.0, GFC_RND_MODE);
6904 mpfr_set_ui (init_expr->value.complex.i, 0.0, GFC_RND_MODE);
6905 break;
6906
6907 default:
6908 gfc_free_expr (init_expr);
6909 init_expr = NULL;
6910 break;
6911 }
6912 break;
6913
6914 case BT_LOGICAL:
6915 if (gfc_option.flag_init_logical == GFC_INIT_LOGICAL_FALSE)
6916 init_expr->value.logical = 0;
6917 else if (gfc_option.flag_init_logical == GFC_INIT_LOGICAL_TRUE)
6918 init_expr->value.logical = 1;
6919 else
6920 {
6921 gfc_free_expr (init_expr);
6922 init_expr = NULL;
6923 }
6924 break;
6925
6926 case BT_CHARACTER:
6927 /* For characters, the length must be constant in order to
6928 create a default initializer. */
6929 if (gfc_option.flag_init_character == GFC_INIT_CHARACTER_ON
6930 && sym->ts.cl->length
6931 && sym->ts.cl->length->expr_type == EXPR_CONSTANT)
6932 {
6933 char_len = mpz_get_si (sym->ts.cl->length->value.integer);
6934 init_expr->value.character.length = char_len;
6935 init_expr->value.character.string = gfc_get_wide_string (char_len+1);
6936 for (i = 0; i < char_len; i++)
6937 init_expr->value.character.string[i]
6938 = (unsigned char) gfc_option.flag_init_character_value;
6939 }
6940 else
6941 {
6942 gfc_free_expr (init_expr);
6943 init_expr = NULL;
6944 }
6945 break;
6946
6947 default:
6948 gfc_free_expr (init_expr);
6949 init_expr = NULL;
6950 }
6951 return init_expr;
6952 }
6953
6954 /* Add an initialization expression to a local variable. */
6955 static void
6956 apply_default_init_local (gfc_symbol *sym)
6957 {
6958 gfc_expr *init = NULL;
6959
6960 /* The symbol should be a variable or a function return value. */
6961 if ((sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
6962 || (sym->attr.function && sym->result != sym))
6963 return;
6964
6965 /* Try to build the initializer expression. If we can't initialize
6966 this symbol, then init will be NULL. */
6967 init = build_default_init_expr (sym);
6968 if (init == NULL)
6969 return;
6970
6971 /* For saved variables, we don't want to add an initializer at
6972 function entry, so we just add a static initializer. */
6973 if (sym->attr.save || sym->ns->save_all)
6974 {
6975 /* Don't clobber an existing initializer! */
6976 gcc_assert (sym->value == NULL);
6977 sym->value = init;
6978 return;
6979 }
6980
6981 build_init_assign (sym, init);
6982 }
6983
6984 /* Resolution of common features of flavors variable and procedure. */
6985
6986 static gfc_try
6987 resolve_fl_var_and_proc (gfc_symbol *sym, int mp_flag)
6988 {
6989 /* Constraints on deferred shape variable. */
6990 if (sym->as == NULL || sym->as->type != AS_DEFERRED)
6991 {
6992 if (sym->attr.allocatable)
6993 {
6994 if (sym->attr.dimension)
6995 gfc_error ("Allocatable array '%s' at %L must have "
6996 "a deferred shape", sym->name, &sym->declared_at);
6997 else
6998 gfc_error ("Scalar object '%s' at %L may not be ALLOCATABLE",
6999 sym->name, &sym->declared_at);
7000 return FAILURE;
7001 }
7002
7003 if (sym->attr.pointer && sym->attr.dimension)
7004 {
7005 gfc_error ("Array pointer '%s' at %L must have a deferred shape",
7006 sym->name, &sym->declared_at);
7007 return FAILURE;
7008 }
7009
7010 }
7011 else
7012 {
7013 if (!mp_flag && !sym->attr.allocatable
7014 && !sym->attr.pointer && !sym->attr.dummy)
7015 {
7016 gfc_error ("Array '%s' at %L cannot have a deferred shape",
7017 sym->name, &sym->declared_at);
7018 return FAILURE;
7019 }
7020 }
7021 return SUCCESS;
7022 }
7023
7024
7025 /* Additional checks for symbols with flavor variable and derived
7026 type. To be called from resolve_fl_variable. */
7027
7028 static gfc_try
7029 resolve_fl_variable_derived (gfc_symbol *sym, int no_init_flag)
7030 {
7031 gcc_assert (sym->ts.type == BT_DERIVED);
7032
7033 /* Check to see if a derived type is blocked from being host
7034 associated by the presence of another class I symbol in the same
7035 namespace. 14.6.1.3 of the standard and the discussion on
7036 comp.lang.fortran. */
7037 if (sym->ns != sym->ts.derived->ns
7038 && sym->ns->proc_name->attr.if_source != IFSRC_IFBODY)
7039 {
7040 gfc_symbol *s;
7041 gfc_find_symbol (sym->ts.derived->name, sym->ns, 0, &s);
7042 if (s && (s->attr.flavor != FL_DERIVED
7043 || !gfc_compare_derived_types (s, sym->ts.derived)))
7044 {
7045 gfc_error ("The type '%s' cannot be host associated at %L "
7046 "because it is blocked by an incompatible object "
7047 "of the same name declared at %L",
7048 sym->ts.derived->name, &sym->declared_at,
7049 &s->declared_at);
7050 return FAILURE;
7051 }
7052 }
7053
7054 /* 4th constraint in section 11.3: "If an object of a type for which
7055 component-initialization is specified (R429) appears in the
7056 specification-part of a module and does not have the ALLOCATABLE
7057 or POINTER attribute, the object shall have the SAVE attribute."
7058
7059 The check for initializers is performed with
7060 has_default_initializer because gfc_default_initializer generates
7061 a hidden default for allocatable components. */
7062 if (!(sym->value || no_init_flag) && sym->ns->proc_name
7063 && sym->ns->proc_name->attr.flavor == FL_MODULE
7064 && !sym->ns->save_all && !sym->attr.save
7065 && !sym->attr.pointer && !sym->attr.allocatable
7066 && has_default_initializer (sym->ts.derived))
7067 {
7068 gfc_error("Object '%s' at %L must have the SAVE attribute for "
7069 "default initialization of a component",
7070 sym->name, &sym->declared_at);
7071 return FAILURE;
7072 }
7073
7074 /* Assign default initializer. */
7075 if (!(sym->value || sym->attr.pointer || sym->attr.allocatable)
7076 && (!no_init_flag || sym->attr.intent == INTENT_OUT))
7077 {
7078 sym->value = gfc_default_initializer (&sym->ts);
7079 }
7080
7081 return SUCCESS;
7082 }
7083
7084
7085 /* Resolve symbols with flavor variable. */
7086
7087 static gfc_try
7088 resolve_fl_variable (gfc_symbol *sym, int mp_flag)
7089 {
7090 int no_init_flag, automatic_flag;
7091 gfc_expr *e;
7092 const char *auto_save_msg;
7093
7094 auto_save_msg = "Automatic object '%s' at %L cannot have the "
7095 "SAVE attribute";
7096
7097 if (resolve_fl_var_and_proc (sym, mp_flag) == FAILURE)
7098 return FAILURE;
7099
7100 /* Set this flag to check that variables are parameters of all entries.
7101 This check is effected by the call to gfc_resolve_expr through
7102 is_non_constant_shape_array. */
7103 specification_expr = 1;
7104
7105 if (sym->ns->proc_name
7106 && (sym->ns->proc_name->attr.flavor == FL_MODULE
7107 || sym->ns->proc_name->attr.is_main_program)
7108 && !sym->attr.use_assoc
7109 && !sym->attr.allocatable
7110 && !sym->attr.pointer
7111 && is_non_constant_shape_array (sym))
7112 {
7113 /* The shape of a main program or module array needs to be
7114 constant. */
7115 gfc_error ("The module or main program array '%s' at %L must "
7116 "have constant shape", sym->name, &sym->declared_at);
7117 specification_expr = 0;
7118 return FAILURE;
7119 }
7120
7121 if (sym->ts.type == BT_CHARACTER)
7122 {
7123 /* Make sure that character string variables with assumed length are
7124 dummy arguments. */
7125 e = sym->ts.cl->length;
7126 if (e == NULL && !sym->attr.dummy && !sym->attr.result)
7127 {
7128 gfc_error ("Entity with assumed character length at %L must be a "
7129 "dummy argument or a PARAMETER", &sym->declared_at);
7130 return FAILURE;
7131 }
7132
7133 if (e && sym->attr.save && !gfc_is_constant_expr (e))
7134 {
7135 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
7136 return FAILURE;
7137 }
7138
7139 if (!gfc_is_constant_expr (e)
7140 && !(e->expr_type == EXPR_VARIABLE
7141 && e->symtree->n.sym->attr.flavor == FL_PARAMETER)
7142 && sym->ns->proc_name
7143 && (sym->ns->proc_name->attr.flavor == FL_MODULE
7144 || sym->ns->proc_name->attr.is_main_program)
7145 && !sym->attr.use_assoc)
7146 {
7147 gfc_error ("'%s' at %L must have constant character length "
7148 "in this context", sym->name, &sym->declared_at);
7149 return FAILURE;
7150 }
7151 }
7152
7153 if (sym->value == NULL && sym->attr.referenced)
7154 apply_default_init_local (sym); /* Try to apply a default initialization. */
7155
7156 /* Determine if the symbol may not have an initializer. */
7157 no_init_flag = automatic_flag = 0;
7158 if (sym->attr.allocatable || sym->attr.external || sym->attr.dummy
7159 || sym->attr.intrinsic || sym->attr.result)
7160 no_init_flag = 1;
7161 else if (sym->attr.dimension && !sym->attr.pointer
7162 && is_non_constant_shape_array (sym))
7163 {
7164 no_init_flag = automatic_flag = 1;
7165
7166 /* Also, they must not have the SAVE attribute.
7167 SAVE_IMPLICIT is checked below. */
7168 if (sym->attr.save == SAVE_EXPLICIT)
7169 {
7170 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
7171 return FAILURE;
7172 }
7173 }
7174
7175 /* Reject illegal initializers. */
7176 if (!sym->mark && sym->value)
7177 {
7178 if (sym->attr.allocatable)
7179 gfc_error ("Allocatable '%s' at %L cannot have an initializer",
7180 sym->name, &sym->declared_at);
7181 else if (sym->attr.external)
7182 gfc_error ("External '%s' at %L cannot have an initializer",
7183 sym->name, &sym->declared_at);
7184 else if (sym->attr.dummy
7185 && !(sym->ts.type == BT_DERIVED && sym->attr.intent == INTENT_OUT))
7186 gfc_error ("Dummy '%s' at %L cannot have an initializer",
7187 sym->name, &sym->declared_at);
7188 else if (sym->attr.intrinsic)
7189 gfc_error ("Intrinsic '%s' at %L cannot have an initializer",
7190 sym->name, &sym->declared_at);
7191 else if (sym->attr.result)
7192 gfc_error ("Function result '%s' at %L cannot have an initializer",
7193 sym->name, &sym->declared_at);
7194 else if (automatic_flag)
7195 gfc_error ("Automatic array '%s' at %L cannot have an initializer",
7196 sym->name, &sym->declared_at);
7197 else
7198 goto no_init_error;
7199 return FAILURE;
7200 }
7201
7202 no_init_error:
7203 if (sym->ts.type == BT_DERIVED)
7204 return resolve_fl_variable_derived (sym, no_init_flag);
7205
7206 return SUCCESS;
7207 }
7208
7209
7210 /* Resolve a procedure. */
7211
7212 static gfc_try
7213 resolve_fl_procedure (gfc_symbol *sym, int mp_flag)
7214 {
7215 gfc_formal_arglist *arg;
7216
7217 if (sym->attr.ambiguous_interfaces && !sym->attr.referenced)
7218 gfc_warning ("Although not referenced, '%s' at %L has ambiguous "
7219 "interfaces", sym->name, &sym->declared_at);
7220
7221 if (sym->attr.function
7222 && resolve_fl_var_and_proc (sym, mp_flag) == FAILURE)
7223 return FAILURE;
7224
7225 if (sym->ts.type == BT_CHARACTER)
7226 {
7227 gfc_charlen *cl = sym->ts.cl;
7228
7229 if (cl && cl->length && gfc_is_constant_expr (cl->length)
7230 && resolve_charlen (cl) == FAILURE)
7231 return FAILURE;
7232
7233 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
7234 {
7235 if (sym->attr.proc == PROC_ST_FUNCTION)
7236 {
7237 gfc_error ("Character-valued statement function '%s' at %L must "
7238 "have constant length", sym->name, &sym->declared_at);
7239 return FAILURE;
7240 }
7241
7242 if (sym->attr.external && sym->formal == NULL
7243 && cl && cl->length && cl->length->expr_type != EXPR_CONSTANT)
7244 {
7245 gfc_error ("Automatic character length function '%s' at %L must "
7246 "have an explicit interface", sym->name,
7247 &sym->declared_at);
7248 return FAILURE;
7249 }
7250 }
7251 }
7252
7253 /* Ensure that derived type for are not of a private type. Internal
7254 module procedures are excluded by 2.2.3.3 - i.e., they are not
7255 externally accessible and can access all the objects accessible in
7256 the host. */
7257 if (!(sym->ns->parent
7258 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
7259 && gfc_check_access(sym->attr.access, sym->ns->default_access))
7260 {
7261 gfc_interface *iface;
7262
7263 for (arg = sym->formal; arg; arg = arg->next)
7264 {
7265 if (arg->sym
7266 && arg->sym->ts.type == BT_DERIVED
7267 && !arg->sym->ts.derived->attr.use_assoc
7268 && !gfc_check_access (arg->sym->ts.derived->attr.access,
7269 arg->sym->ts.derived->ns->default_access)
7270 && gfc_notify_std (GFC_STD_F2003, "Fortran 2003: '%s' is of a "
7271 "PRIVATE type and cannot be a dummy argument"
7272 " of '%s', which is PUBLIC at %L",
7273 arg->sym->name, sym->name, &sym->declared_at)
7274 == FAILURE)
7275 {
7276 /* Stop this message from recurring. */
7277 arg->sym->ts.derived->attr.access = ACCESS_PUBLIC;
7278 return FAILURE;
7279 }
7280 }
7281
7282 /* PUBLIC interfaces may expose PRIVATE procedures that take types
7283 PRIVATE to the containing module. */
7284 for (iface = sym->generic; iface; iface = iface->next)
7285 {
7286 for (arg = iface->sym->formal; arg; arg = arg->next)
7287 {
7288 if (arg->sym
7289 && arg->sym->ts.type == BT_DERIVED
7290 && !arg->sym->ts.derived->attr.use_assoc
7291 && !gfc_check_access (arg->sym->ts.derived->attr.access,
7292 arg->sym->ts.derived->ns->default_access)
7293 && gfc_notify_std (GFC_STD_F2003, "Fortran 2003: Procedure "
7294 "'%s' in PUBLIC interface '%s' at %L "
7295 "takes dummy arguments of '%s' which is "
7296 "PRIVATE", iface->sym->name, sym->name,
7297 &iface->sym->declared_at,
7298 gfc_typename (&arg->sym->ts)) == FAILURE)
7299 {
7300 /* Stop this message from recurring. */
7301 arg->sym->ts.derived->attr.access = ACCESS_PUBLIC;
7302 return FAILURE;
7303 }
7304 }
7305 }
7306
7307 /* PUBLIC interfaces may expose PRIVATE procedures that take types
7308 PRIVATE to the containing module. */
7309 for (iface = sym->generic; iface; iface = iface->next)
7310 {
7311 for (arg = iface->sym->formal; arg; arg = arg->next)
7312 {
7313 if (arg->sym
7314 && arg->sym->ts.type == BT_DERIVED
7315 && !arg->sym->ts.derived->attr.use_assoc
7316 && !gfc_check_access (arg->sym->ts.derived->attr.access,
7317 arg->sym->ts.derived->ns->default_access)
7318 && gfc_notify_std (GFC_STD_F2003, "Fortran 2003: Procedure "
7319 "'%s' in PUBLIC interface '%s' at %L "
7320 "takes dummy arguments of '%s' which is "
7321 "PRIVATE", iface->sym->name, sym->name,
7322 &iface->sym->declared_at,
7323 gfc_typename (&arg->sym->ts)) == FAILURE)
7324 {
7325 /* Stop this message from recurring. */
7326 arg->sym->ts.derived->attr.access = ACCESS_PUBLIC;
7327 return FAILURE;
7328 }
7329 }
7330 }
7331 }
7332
7333 if (sym->attr.function && sym->value && sym->attr.proc != PROC_ST_FUNCTION
7334 && !sym->attr.proc_pointer)
7335 {
7336 gfc_error ("Function '%s' at %L cannot have an initializer",
7337 sym->name, &sym->declared_at);
7338 return FAILURE;
7339 }
7340
7341 /* An external symbol may not have an initializer because it is taken to be
7342 a procedure. Exception: Procedure Pointers. */
7343 if (sym->attr.external && sym->value && !sym->attr.proc_pointer)
7344 {
7345 gfc_error ("External object '%s' at %L may not have an initializer",
7346 sym->name, &sym->declared_at);
7347 return FAILURE;
7348 }
7349
7350 /* An elemental function is required to return a scalar 12.7.1 */
7351 if (sym->attr.elemental && sym->attr.function && sym->as)
7352 {
7353 gfc_error ("ELEMENTAL function '%s' at %L must have a scalar "
7354 "result", sym->name, &sym->declared_at);
7355 /* Reset so that the error only occurs once. */
7356 sym->attr.elemental = 0;
7357 return FAILURE;
7358 }
7359
7360 /* 5.1.1.5 of the Standard: A function name declared with an asterisk
7361 char-len-param shall not be array-valued, pointer-valued, recursive
7362 or pure. ....snip... A character value of * may only be used in the
7363 following ways: (i) Dummy arg of procedure - dummy associates with
7364 actual length; (ii) To declare a named constant; or (iii) External
7365 function - but length must be declared in calling scoping unit. */
7366 if (sym->attr.function
7367 && sym->ts.type == BT_CHARACTER
7368 && sym->ts.cl && sym->ts.cl->length == NULL)
7369 {
7370 if ((sym->as && sym->as->rank) || (sym->attr.pointer)
7371 || (sym->attr.recursive) || (sym->attr.pure))
7372 {
7373 if (sym->as && sym->as->rank)
7374 gfc_error ("CHARACTER(*) function '%s' at %L cannot be "
7375 "array-valued", sym->name, &sym->declared_at);
7376
7377 if (sym->attr.pointer)
7378 gfc_error ("CHARACTER(*) function '%s' at %L cannot be "
7379 "pointer-valued", sym->name, &sym->declared_at);
7380
7381 if (sym->attr.pure)
7382 gfc_error ("CHARACTER(*) function '%s' at %L cannot be "
7383 "pure", sym->name, &sym->declared_at);
7384
7385 if (sym->attr.recursive)
7386 gfc_error ("CHARACTER(*) function '%s' at %L cannot be "
7387 "recursive", sym->name, &sym->declared_at);
7388
7389 return FAILURE;
7390 }
7391
7392 /* Appendix B.2 of the standard. Contained functions give an
7393 error anyway. Fixed-form is likely to be F77/legacy. */
7394 if (!sym->attr.contained && gfc_current_form != FORM_FIXED)
7395 gfc_notify_std (GFC_STD_F95_OBS, "CHARACTER(*) function "
7396 "'%s' at %L is obsolescent in fortran 95",
7397 sym->name, &sym->declared_at);
7398 }
7399
7400 if (sym->attr.is_bind_c && sym->attr.is_c_interop != 1)
7401 {
7402 gfc_formal_arglist *curr_arg;
7403 int has_non_interop_arg = 0;
7404
7405 if (verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
7406 sym->common_block) == FAILURE)
7407 {
7408 /* Clear these to prevent looking at them again if there was an
7409 error. */
7410 sym->attr.is_bind_c = 0;
7411 sym->attr.is_c_interop = 0;
7412 sym->ts.is_c_interop = 0;
7413 }
7414 else
7415 {
7416 /* So far, no errors have been found. */
7417 sym->attr.is_c_interop = 1;
7418 sym->ts.is_c_interop = 1;
7419 }
7420
7421 curr_arg = sym->formal;
7422 while (curr_arg != NULL)
7423 {
7424 /* Skip implicitly typed dummy args here. */
7425 if (curr_arg->sym->attr.implicit_type == 0)
7426 if (verify_c_interop_param (curr_arg->sym) == FAILURE)
7427 /* If something is found to fail, record the fact so we
7428 can mark the symbol for the procedure as not being
7429 BIND(C) to try and prevent multiple errors being
7430 reported. */
7431 has_non_interop_arg = 1;
7432
7433 curr_arg = curr_arg->next;
7434 }
7435
7436 /* See if any of the arguments were not interoperable and if so, clear
7437 the procedure symbol to prevent duplicate error messages. */
7438 if (has_non_interop_arg != 0)
7439 {
7440 sym->attr.is_c_interop = 0;
7441 sym->ts.is_c_interop = 0;
7442 sym->attr.is_bind_c = 0;
7443 }
7444 }
7445
7446 if (sym->attr.save == SAVE_EXPLICIT && !sym->attr.proc_pointer)
7447 {
7448 gfc_error ("PROCEDURE attribute conflicts with SAVE attribute "
7449 "in '%s' at %L", sym->name, &sym->declared_at);
7450 return FAILURE;
7451 }
7452
7453 if (sym->attr.intent && !sym->attr.proc_pointer)
7454 {
7455 gfc_error ("PROCEDURE attribute conflicts with INTENT attribute "
7456 "in '%s' at %L", sym->name, &sym->declared_at);
7457 return FAILURE;
7458 }
7459
7460 return SUCCESS;
7461 }
7462
7463
7464 /* Resolve a list of finalizer procedures. That is, after they have hopefully
7465 been defined and we now know their defined arguments, check that they fulfill
7466 the requirements of the standard for procedures used as finalizers. */
7467
7468 static gfc_try
7469 gfc_resolve_finalizers (gfc_symbol* derived)
7470 {
7471 gfc_finalizer* list;
7472 gfc_finalizer** prev_link; /* For removing wrong entries from the list. */
7473 gfc_try result = SUCCESS;
7474 bool seen_scalar = false;
7475
7476 if (!derived->f2k_derived || !derived->f2k_derived->finalizers)
7477 return SUCCESS;
7478
7479 /* Walk over the list of finalizer-procedures, check them, and if any one
7480 does not fit in with the standard's definition, print an error and remove
7481 it from the list. */
7482 prev_link = &derived->f2k_derived->finalizers;
7483 for (list = derived->f2k_derived->finalizers; list; list = *prev_link)
7484 {
7485 gfc_symbol* arg;
7486 gfc_finalizer* i;
7487 int my_rank;
7488
7489 /* Skip this finalizer if we already resolved it. */
7490 if (list->proc_tree)
7491 {
7492 prev_link = &(list->next);
7493 continue;
7494 }
7495
7496 /* Check this exists and is a SUBROUTINE. */
7497 if (!list->proc_sym->attr.subroutine)
7498 {
7499 gfc_error ("FINAL procedure '%s' at %L is not a SUBROUTINE",
7500 list->proc_sym->name, &list->where);
7501 goto error;
7502 }
7503
7504 /* We should have exactly one argument. */
7505 if (!list->proc_sym->formal || list->proc_sym->formal->next)
7506 {
7507 gfc_error ("FINAL procedure at %L must have exactly one argument",
7508 &list->where);
7509 goto error;
7510 }
7511 arg = list->proc_sym->formal->sym;
7512
7513 /* This argument must be of our type. */
7514 if (arg->ts.type != BT_DERIVED || arg->ts.derived != derived)
7515 {
7516 gfc_error ("Argument of FINAL procedure at %L must be of type '%s'",
7517 &arg->declared_at, derived->name);
7518 goto error;
7519 }
7520
7521 /* It must neither be a pointer nor allocatable nor optional. */
7522 if (arg->attr.pointer)
7523 {
7524 gfc_error ("Argument of FINAL procedure at %L must not be a POINTER",
7525 &arg->declared_at);
7526 goto error;
7527 }
7528 if (arg->attr.allocatable)
7529 {
7530 gfc_error ("Argument of FINAL procedure at %L must not be"
7531 " ALLOCATABLE", &arg->declared_at);
7532 goto error;
7533 }
7534 if (arg->attr.optional)
7535 {
7536 gfc_error ("Argument of FINAL procedure at %L must not be OPTIONAL",
7537 &arg->declared_at);
7538 goto error;
7539 }
7540
7541 /* It must not be INTENT(OUT). */
7542 if (arg->attr.intent == INTENT_OUT)
7543 {
7544 gfc_error ("Argument of FINAL procedure at %L must not be"
7545 " INTENT(OUT)", &arg->declared_at);
7546 goto error;
7547 }
7548
7549 /* Warn if the procedure is non-scalar and not assumed shape. */
7550 if (gfc_option.warn_surprising && arg->as && arg->as->rank > 0
7551 && arg->as->type != AS_ASSUMED_SHAPE)
7552 gfc_warning ("Non-scalar FINAL procedure at %L should have assumed"
7553 " shape argument", &arg->declared_at);
7554
7555 /* Check that it does not match in kind and rank with a FINAL procedure
7556 defined earlier. To really loop over the *earlier* declarations,
7557 we need to walk the tail of the list as new ones were pushed at the
7558 front. */
7559 /* TODO: Handle kind parameters once they are implemented. */
7560 my_rank = (arg->as ? arg->as->rank : 0);
7561 for (i = list->next; i; i = i->next)
7562 {
7563 /* Argument list might be empty; that is an error signalled earlier,
7564 but we nevertheless continued resolving. */
7565 if (i->proc_sym->formal)
7566 {
7567 gfc_symbol* i_arg = i->proc_sym->formal->sym;
7568 const int i_rank = (i_arg->as ? i_arg->as->rank : 0);
7569 if (i_rank == my_rank)
7570 {
7571 gfc_error ("FINAL procedure '%s' declared at %L has the same"
7572 " rank (%d) as '%s'",
7573 list->proc_sym->name, &list->where, my_rank,
7574 i->proc_sym->name);
7575 goto error;
7576 }
7577 }
7578 }
7579
7580 /* Is this the/a scalar finalizer procedure? */
7581 if (!arg->as || arg->as->rank == 0)
7582 seen_scalar = true;
7583
7584 /* Find the symtree for this procedure. */
7585 gcc_assert (!list->proc_tree);
7586 list->proc_tree = gfc_find_sym_in_symtree (list->proc_sym);
7587
7588 prev_link = &list->next;
7589 continue;
7590
7591 /* Remove wrong nodes immediately from the list so we don't risk any
7592 troubles in the future when they might fail later expectations. */
7593 error:
7594 result = FAILURE;
7595 i = list;
7596 *prev_link = list->next;
7597 gfc_free_finalizer (i);
7598 }
7599
7600 /* Warn if we haven't seen a scalar finalizer procedure (but we know there
7601 were nodes in the list, must have been for arrays. It is surely a good
7602 idea to have a scalar version there if there's something to finalize. */
7603 if (gfc_option.warn_surprising && result == SUCCESS && !seen_scalar)
7604 gfc_warning ("Only array FINAL procedures declared for derived type '%s'"
7605 " defined at %L, suggest also scalar one",
7606 derived->name, &derived->declared_at);
7607
7608 /* TODO: Remove this error when finalization is finished. */
7609 gfc_error ("Finalization at %L is not yet implemented",
7610 &derived->declared_at);
7611
7612 return result;
7613 }
7614
7615
7616 /* Add a derived type to the dt_list. The dt_list is used in trans-types.c
7617 to give all identical derived types the same backend_decl. */
7618 static void
7619 add_dt_to_dt_list (gfc_symbol *derived)
7620 {
7621 gfc_dt_list *dt_list;
7622
7623 for (dt_list = gfc_derived_types; dt_list; dt_list = dt_list->next)
7624 if (derived == dt_list->derived)
7625 break;
7626
7627 if (dt_list == NULL)
7628 {
7629 dt_list = gfc_get_dt_list ();
7630 dt_list->next = gfc_derived_types;
7631 dt_list->derived = derived;
7632 gfc_derived_types = dt_list;
7633 }
7634 }
7635
7636
7637 /* Resolve the components of a derived type. */
7638
7639 static gfc_try
7640 resolve_fl_derived (gfc_symbol *sym)
7641 {
7642 gfc_component *c;
7643 int i;
7644
7645 for (c = sym->components; c != NULL; c = c->next)
7646 {
7647 if (c->ts.type == BT_CHARACTER)
7648 {
7649 if (c->ts.cl->length == NULL
7650 || (resolve_charlen (c->ts.cl) == FAILURE)
7651 || !gfc_is_constant_expr (c->ts.cl->length))
7652 {
7653 gfc_error ("Character length of component '%s' needs to "
7654 "be a constant specification expression at %L",
7655 c->name,
7656 c->ts.cl->length ? &c->ts.cl->length->where : &c->loc);
7657 return FAILURE;
7658 }
7659 }
7660
7661 if (c->ts.type == BT_DERIVED
7662 && sym->component_access != ACCESS_PRIVATE
7663 && gfc_check_access (sym->attr.access, sym->ns->default_access)
7664 && !c->ts.derived->attr.use_assoc
7665 && !gfc_check_access (c->ts.derived->attr.access,
7666 c->ts.derived->ns->default_access))
7667 {
7668 gfc_error ("The component '%s' is a PRIVATE type and cannot be "
7669 "a component of '%s', which is PUBLIC at %L",
7670 c->name, sym->name, &sym->declared_at);
7671 return FAILURE;
7672 }
7673
7674 if (sym->attr.sequence)
7675 {
7676 if (c->ts.type == BT_DERIVED && c->ts.derived->attr.sequence == 0)
7677 {
7678 gfc_error ("Component %s of SEQUENCE type declared at %L does "
7679 "not have the SEQUENCE attribute",
7680 c->ts.derived->name, &sym->declared_at);
7681 return FAILURE;
7682 }
7683 }
7684
7685 if (c->ts.type == BT_DERIVED && c->attr.pointer
7686 && c->ts.derived->components == NULL
7687 && !c->ts.derived->attr.zero_comp)
7688 {
7689 gfc_error ("The pointer component '%s' of '%s' at %L is a type "
7690 "that has not been declared", c->name, sym->name,
7691 &c->loc);
7692 return FAILURE;
7693 }
7694
7695 /* Ensure that all the derived type components are put on the
7696 derived type list; even in formal namespaces, where derived type
7697 pointer components might not have been declared. */
7698 if (c->ts.type == BT_DERIVED
7699 && c->ts.derived
7700 && c->ts.derived->components
7701 && c->attr.pointer
7702 && sym != c->ts.derived)
7703 add_dt_to_dt_list (c->ts.derived);
7704
7705 if (c->attr.pointer || c->attr.allocatable || c->as == NULL)
7706 continue;
7707
7708 for (i = 0; i < c->as->rank; i++)
7709 {
7710 if (c->as->lower[i] == NULL
7711 || (resolve_index_expr (c->as->lower[i]) == FAILURE)
7712 || !gfc_is_constant_expr (c->as->lower[i])
7713 || c->as->upper[i] == NULL
7714 || (resolve_index_expr (c->as->upper[i]) == FAILURE)
7715 || !gfc_is_constant_expr (c->as->upper[i]))
7716 {
7717 gfc_error ("Component '%s' of '%s' at %L must have "
7718 "constant array bounds",
7719 c->name, sym->name, &c->loc);
7720 return FAILURE;
7721 }
7722 }
7723 }
7724
7725 /* Resolve the finalizer procedures. */
7726 if (gfc_resolve_finalizers (sym) == FAILURE)
7727 return FAILURE;
7728
7729 /* Add derived type to the derived type list. */
7730 add_dt_to_dt_list (sym);
7731
7732 return SUCCESS;
7733 }
7734
7735
7736 static gfc_try
7737 resolve_fl_namelist (gfc_symbol *sym)
7738 {
7739 gfc_namelist *nl;
7740 gfc_symbol *nlsym;
7741
7742 /* Reject PRIVATE objects in a PUBLIC namelist. */
7743 if (gfc_check_access(sym->attr.access, sym->ns->default_access))
7744 {
7745 for (nl = sym->namelist; nl; nl = nl->next)
7746 {
7747 if (!nl->sym->attr.use_assoc
7748 && !(sym->ns->parent == nl->sym->ns)
7749 && !(sym->ns->parent
7750 && sym->ns->parent->parent == nl->sym->ns)
7751 && !gfc_check_access(nl->sym->attr.access,
7752 nl->sym->ns->default_access))
7753 {
7754 gfc_error ("NAMELIST object '%s' was declared PRIVATE and "
7755 "cannot be member of PUBLIC namelist '%s' at %L",
7756 nl->sym->name, sym->name, &sym->declared_at);
7757 return FAILURE;
7758 }
7759
7760 /* Types with private components that came here by USE-association. */
7761 if (nl->sym->ts.type == BT_DERIVED
7762 && derived_inaccessible (nl->sym->ts.derived))
7763 {
7764 gfc_error ("NAMELIST object '%s' has use-associated PRIVATE "
7765 "components and cannot be member of namelist '%s' at %L",
7766 nl->sym->name, sym->name, &sym->declared_at);
7767 return FAILURE;
7768 }
7769
7770 /* Types with private components that are defined in the same module. */
7771 if (nl->sym->ts.type == BT_DERIVED
7772 && !(sym->ns->parent == nl->sym->ts.derived->ns)
7773 && !gfc_check_access (nl->sym->ts.derived->attr.private_comp
7774 ? ACCESS_PRIVATE : ACCESS_UNKNOWN,
7775 nl->sym->ns->default_access))
7776 {
7777 gfc_error ("NAMELIST object '%s' has PRIVATE components and "
7778 "cannot be a member of PUBLIC namelist '%s' at %L",
7779 nl->sym->name, sym->name, &sym->declared_at);
7780 return FAILURE;
7781 }
7782 }
7783 }
7784
7785 for (nl = sym->namelist; nl; nl = nl->next)
7786 {
7787 /* Reject namelist arrays of assumed shape. */
7788 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SHAPE
7789 && gfc_notify_std (GFC_STD_F2003, "NAMELIST array object '%s' "
7790 "must not have assumed shape in namelist "
7791 "'%s' at %L", nl->sym->name, sym->name,
7792 &sym->declared_at) == FAILURE)
7793 return FAILURE;
7794
7795 /* Reject namelist arrays that are not constant shape. */
7796 if (is_non_constant_shape_array (nl->sym))
7797 {
7798 gfc_error ("NAMELIST array object '%s' must have constant "
7799 "shape in namelist '%s' at %L", nl->sym->name,
7800 sym->name, &sym->declared_at);
7801 return FAILURE;
7802 }
7803
7804 /* Namelist objects cannot have allocatable or pointer components. */
7805 if (nl->sym->ts.type != BT_DERIVED)
7806 continue;
7807
7808 if (nl->sym->ts.derived->attr.alloc_comp)
7809 {
7810 gfc_error ("NAMELIST object '%s' in namelist '%s' at %L cannot "
7811 "have ALLOCATABLE components",
7812 nl->sym->name, sym->name, &sym->declared_at);
7813 return FAILURE;
7814 }
7815
7816 if (nl->sym->ts.derived->attr.pointer_comp)
7817 {
7818 gfc_error ("NAMELIST object '%s' in namelist '%s' at %L cannot "
7819 "have POINTER components",
7820 nl->sym->name, sym->name, &sym->declared_at);
7821 return FAILURE;
7822 }
7823 }
7824
7825
7826 /* 14.1.2 A module or internal procedure represent local entities
7827 of the same type as a namelist member and so are not allowed. */
7828 for (nl = sym->namelist; nl; nl = nl->next)
7829 {
7830 if (nl->sym->ts.kind != 0 && nl->sym->attr.flavor == FL_VARIABLE)
7831 continue;
7832
7833 if (nl->sym->attr.function && nl->sym == nl->sym->result)
7834 if ((nl->sym == sym->ns->proc_name)
7835 ||
7836 (sym->ns->parent && nl->sym == sym->ns->parent->proc_name))
7837 continue;
7838
7839 nlsym = NULL;
7840 if (nl->sym && nl->sym->name)
7841 gfc_find_symbol (nl->sym->name, sym->ns, 1, &nlsym);
7842 if (nlsym && nlsym->attr.flavor == FL_PROCEDURE)
7843 {
7844 gfc_error ("PROCEDURE attribute conflicts with NAMELIST "
7845 "attribute in '%s' at %L", nlsym->name,
7846 &sym->declared_at);
7847 return FAILURE;
7848 }
7849 }
7850
7851 return SUCCESS;
7852 }
7853
7854
7855 static gfc_try
7856 resolve_fl_parameter (gfc_symbol *sym)
7857 {
7858 /* A parameter array's shape needs to be constant. */
7859 if (sym->as != NULL
7860 && (sym->as->type == AS_DEFERRED
7861 || is_non_constant_shape_array (sym)))
7862 {
7863 gfc_error ("Parameter array '%s' at %L cannot be automatic "
7864 "or of deferred shape", sym->name, &sym->declared_at);
7865 return FAILURE;
7866 }
7867
7868 /* Make sure a parameter that has been implicitly typed still
7869 matches the implicit type, since PARAMETER statements can precede
7870 IMPLICIT statements. */
7871 if (sym->attr.implicit_type
7872 && !gfc_compare_types (&sym->ts, gfc_get_default_type (sym, sym->ns)))
7873 {
7874 gfc_error ("Implicitly typed PARAMETER '%s' at %L doesn't match a "
7875 "later IMPLICIT type", sym->name, &sym->declared_at);
7876 return FAILURE;
7877 }
7878
7879 /* Make sure the types of derived parameters are consistent. This
7880 type checking is deferred until resolution because the type may
7881 refer to a derived type from the host. */
7882 if (sym->ts.type == BT_DERIVED
7883 && !gfc_compare_types (&sym->ts, &sym->value->ts))
7884 {
7885 gfc_error ("Incompatible derived type in PARAMETER at %L",
7886 &sym->value->where);
7887 return FAILURE;
7888 }
7889 return SUCCESS;
7890 }
7891
7892
7893 /* Do anything necessary to resolve a symbol. Right now, we just
7894 assume that an otherwise unknown symbol is a variable. This sort
7895 of thing commonly happens for symbols in module. */
7896
7897 static void
7898 resolve_symbol (gfc_symbol *sym)
7899 {
7900 int check_constant, mp_flag;
7901 gfc_symtree *symtree;
7902 gfc_symtree *this_symtree;
7903 gfc_namespace *ns;
7904 gfc_component *c;
7905
7906 if (sym->attr.flavor == FL_UNKNOWN)
7907 {
7908
7909 /* If we find that a flavorless symbol is an interface in one of the
7910 parent namespaces, find its symtree in this namespace, free the
7911 symbol and set the symtree to point to the interface symbol. */
7912 for (ns = gfc_current_ns->parent; ns; ns = ns->parent)
7913 {
7914 symtree = gfc_find_symtree (ns->sym_root, sym->name);
7915 if (symtree && symtree->n.sym->generic)
7916 {
7917 this_symtree = gfc_find_symtree (gfc_current_ns->sym_root,
7918 sym->name);
7919 sym->refs--;
7920 if (!sym->refs)
7921 gfc_free_symbol (sym);
7922 symtree->n.sym->refs++;
7923 this_symtree->n.sym = symtree->n.sym;
7924 return;
7925 }
7926 }
7927
7928 /* Otherwise give it a flavor according to such attributes as
7929 it has. */
7930 if (sym->attr.external == 0 && sym->attr.intrinsic == 0)
7931 sym->attr.flavor = FL_VARIABLE;
7932 else
7933 {
7934 sym->attr.flavor = FL_PROCEDURE;
7935 if (sym->attr.dimension)
7936 sym->attr.function = 1;
7937 }
7938 }
7939
7940 if (sym->attr.procedure && sym->ts.interface
7941 && sym->attr.if_source != IFSRC_DECL)
7942 {
7943 if (sym->ts.interface->attr.procedure)
7944 gfc_error ("Interface '%s', used by procedure '%s' at %L, is declared "
7945 "in a later PROCEDURE statement", sym->ts.interface->name,
7946 sym->name,&sym->declared_at);
7947
7948 /* Get the attributes from the interface (now resolved). */
7949 if (sym->ts.interface->attr.if_source || sym->ts.interface->attr.intrinsic)
7950 {
7951 gfc_symbol *ifc = sym->ts.interface;
7952 sym->ts = ifc->ts;
7953 sym->ts.interface = ifc;
7954 sym->attr.function = ifc->attr.function;
7955 sym->attr.subroutine = ifc->attr.subroutine;
7956 sym->attr.allocatable = ifc->attr.allocatable;
7957 sym->attr.pointer = ifc->attr.pointer;
7958 sym->attr.pure = ifc->attr.pure;
7959 sym->attr.elemental = ifc->attr.elemental;
7960 sym->attr.dimension = ifc->attr.dimension;
7961 sym->attr.recursive = ifc->attr.recursive;
7962 sym->attr.always_explicit = ifc->attr.always_explicit;
7963 sym->as = gfc_copy_array_spec (ifc->as);
7964 copy_formal_args (sym, ifc);
7965 }
7966 else if (sym->ts.interface->name[0] != '\0')
7967 {
7968 gfc_error ("Interface '%s' of procedure '%s' at %L must be explicit",
7969 sym->ts.interface->name, sym->name, &sym->declared_at);
7970 return;
7971 }
7972 }
7973
7974 if (sym->attr.flavor == FL_DERIVED && resolve_fl_derived (sym) == FAILURE)
7975 return;
7976
7977 /* Symbols that are module procedures with results (functions) have
7978 the types and array specification copied for type checking in
7979 procedures that call them, as well as for saving to a module
7980 file. These symbols can't stand the scrutiny that their results
7981 can. */
7982 mp_flag = (sym->result != NULL && sym->result != sym);
7983
7984
7985 /* Make sure that the intrinsic is consistent with its internal
7986 representation. This needs to be done before assigning a default
7987 type to avoid spurious warnings. */
7988 if (sym->attr.flavor != FL_MODULE && sym->attr.intrinsic)
7989 {
7990 gfc_intrinsic_sym* isym;
7991 const char* symstd;
7992
7993 /* We already know this one is an intrinsic, so we don't call
7994 gfc_is_intrinsic for full checking but rather use gfc_find_function and
7995 gfc_find_subroutine directly to check whether it is a function or
7996 subroutine. */
7997
7998 if ((isym = gfc_find_function (sym->name)))
7999 {
8000 if (sym->ts.type != BT_UNKNOWN && gfc_option.warn_surprising)
8001 gfc_warning ("Type specified for intrinsic function '%s' at %L is"
8002 " ignored", sym->name, &sym->declared_at);
8003 }
8004 else if ((isym = gfc_find_subroutine (sym->name)))
8005 {
8006 if (sym->ts.type != BT_UNKNOWN)
8007 {
8008 gfc_error ("Intrinsic subroutine '%s' at %L shall not have a type"
8009 " specifier", sym->name, &sym->declared_at);
8010 return;
8011 }
8012 }
8013 else
8014 {
8015 gfc_error ("'%s' declared INTRINSIC at %L does not exist",
8016 sym->name, &sym->declared_at);
8017 return;
8018 }
8019
8020 /* Check it is actually available in the standard settings. */
8021 if (gfc_check_intrinsic_standard (isym, &symstd, false, sym->declared_at)
8022 == FAILURE)
8023 {
8024 gfc_error ("The intrinsic '%s' declared INTRINSIC at %L is not"
8025 " available in the current standard settings but %s. Use"
8026 " an appropriate -std=* option or enable -fall-intrinsics"
8027 " in order to use it.",
8028 sym->name, &sym->declared_at, symstd);
8029 return;
8030 }
8031 }
8032
8033 /* Assign default type to symbols that need one and don't have one. */
8034 if (sym->ts.type == BT_UNKNOWN)
8035 {
8036 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER)
8037 gfc_set_default_type (sym, 1, NULL);
8038
8039 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
8040 {
8041 /* The specific case of an external procedure should emit an error
8042 in the case that there is no implicit type. */
8043 if (!mp_flag)
8044 gfc_set_default_type (sym, sym->attr.external, NULL);
8045 else
8046 {
8047 /* Result may be in another namespace. */
8048 resolve_symbol (sym->result);
8049
8050 sym->ts = sym->result->ts;
8051 sym->as = gfc_copy_array_spec (sym->result->as);
8052 sym->attr.dimension = sym->result->attr.dimension;
8053 sym->attr.pointer = sym->result->attr.pointer;
8054 sym->attr.allocatable = sym->result->attr.allocatable;
8055 }
8056 }
8057 }
8058
8059 /* Assumed size arrays and assumed shape arrays must be dummy
8060 arguments. */
8061
8062 if (sym->as != NULL
8063 && (sym->as->type == AS_ASSUMED_SIZE
8064 || sym->as->type == AS_ASSUMED_SHAPE)
8065 && sym->attr.dummy == 0)
8066 {
8067 if (sym->as->type == AS_ASSUMED_SIZE)
8068 gfc_error ("Assumed size array at %L must be a dummy argument",
8069 &sym->declared_at);
8070 else
8071 gfc_error ("Assumed shape array at %L must be a dummy argument",
8072 &sym->declared_at);
8073 return;
8074 }
8075
8076 /* Make sure symbols with known intent or optional are really dummy
8077 variable. Because of ENTRY statement, this has to be deferred
8078 until resolution time. */
8079
8080 if (!sym->attr.dummy
8081 && (sym->attr.optional || sym->attr.intent != INTENT_UNKNOWN))
8082 {
8083 gfc_error ("Symbol at %L is not a DUMMY variable", &sym->declared_at);
8084 return;
8085 }
8086
8087 if (sym->attr.value && !sym->attr.dummy)
8088 {
8089 gfc_error ("'%s' at %L cannot have the VALUE attribute because "
8090 "it is not a dummy argument", sym->name, &sym->declared_at);
8091 return;
8092 }
8093
8094 if (sym->attr.value && sym->ts.type == BT_CHARACTER)
8095 {
8096 gfc_charlen *cl = sym->ts.cl;
8097 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
8098 {
8099 gfc_error ("Character dummy variable '%s' at %L with VALUE "
8100 "attribute must have constant length",
8101 sym->name, &sym->declared_at);
8102 return;
8103 }
8104
8105 if (sym->ts.is_c_interop
8106 && mpz_cmp_si (cl->length->value.integer, 1) != 0)
8107 {
8108 gfc_error ("C interoperable character dummy variable '%s' at %L "
8109 "with VALUE attribute must have length one",
8110 sym->name, &sym->declared_at);
8111 return;
8112 }
8113 }
8114
8115 /* If the symbol is marked as bind(c), verify it's type and kind. Do not
8116 do this for something that was implicitly typed because that is handled
8117 in gfc_set_default_type. Handle dummy arguments and procedure
8118 definitions separately. Also, anything that is use associated is not
8119 handled here but instead is handled in the module it is declared in.
8120 Finally, derived type definitions are allowed to be BIND(C) since that
8121 only implies that they're interoperable, and they are checked fully for
8122 interoperability when a variable is declared of that type. */
8123 if (sym->attr.is_bind_c && sym->attr.implicit_type == 0 &&
8124 sym->attr.use_assoc == 0 && sym->attr.dummy == 0 &&
8125 sym->attr.flavor != FL_PROCEDURE && sym->attr.flavor != FL_DERIVED)
8126 {
8127 gfc_try t = SUCCESS;
8128
8129 /* First, make sure the variable is declared at the
8130 module-level scope (J3/04-007, Section 15.3). */
8131 if (sym->ns->proc_name->attr.flavor != FL_MODULE &&
8132 sym->attr.in_common == 0)
8133 {
8134 gfc_error ("Variable '%s' at %L cannot be BIND(C) because it "
8135 "is neither a COMMON block nor declared at the "
8136 "module level scope", sym->name, &(sym->declared_at));
8137 t = FAILURE;
8138 }
8139 else if (sym->common_head != NULL)
8140 {
8141 t = verify_com_block_vars_c_interop (sym->common_head);
8142 }
8143 else
8144 {
8145 /* If type() declaration, we need to verify that the components
8146 of the given type are all C interoperable, etc. */
8147 if (sym->ts.type == BT_DERIVED &&
8148 sym->ts.derived->attr.is_c_interop != 1)
8149 {
8150 /* Make sure the user marked the derived type as BIND(C). If
8151 not, call the verify routine. This could print an error
8152 for the derived type more than once if multiple variables
8153 of that type are declared. */
8154 if (sym->ts.derived->attr.is_bind_c != 1)
8155 verify_bind_c_derived_type (sym->ts.derived);
8156 t = FAILURE;
8157 }
8158
8159 /* Verify the variable itself as C interoperable if it
8160 is BIND(C). It is not possible for this to succeed if
8161 the verify_bind_c_derived_type failed, so don't have to handle
8162 any error returned by verify_bind_c_derived_type. */
8163 t = verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
8164 sym->common_block);
8165 }
8166
8167 if (t == FAILURE)
8168 {
8169 /* clear the is_bind_c flag to prevent reporting errors more than
8170 once if something failed. */
8171 sym->attr.is_bind_c = 0;
8172 return;
8173 }
8174 }
8175
8176 /* If a derived type symbol has reached this point, without its
8177 type being declared, we have an error. Notice that most
8178 conditions that produce undefined derived types have already
8179 been dealt with. However, the likes of:
8180 implicit type(t) (t) ..... call foo (t) will get us here if
8181 the type is not declared in the scope of the implicit
8182 statement. Change the type to BT_UNKNOWN, both because it is so
8183 and to prevent an ICE. */
8184 if (sym->ts.type == BT_DERIVED && sym->ts.derived->components == NULL
8185 && !sym->ts.derived->attr.zero_comp)
8186 {
8187 gfc_error ("The derived type '%s' at %L is of type '%s', "
8188 "which has not been defined", sym->name,
8189 &sym->declared_at, sym->ts.derived->name);
8190 sym->ts.type = BT_UNKNOWN;
8191 return;
8192 }
8193
8194 /* Make sure that the derived type has been resolved and that the
8195 derived type is visible in the symbol's namespace, if it is a
8196 module function and is not PRIVATE. */
8197 if (sym->ts.type == BT_DERIVED
8198 && sym->ts.derived->attr.use_assoc
8199 && sym->ns->proc_name->attr.flavor == FL_MODULE)
8200 {
8201 gfc_symbol *ds;
8202
8203 if (resolve_fl_derived (sym->ts.derived) == FAILURE)
8204 return;
8205
8206 gfc_find_symbol (sym->ts.derived->name, sym->ns, 1, &ds);
8207 if (!ds && sym->attr.function
8208 && gfc_check_access (sym->attr.access, sym->ns->default_access))
8209 {
8210 symtree = gfc_new_symtree (&sym->ns->sym_root,
8211 sym->ts.derived->name);
8212 symtree->n.sym = sym->ts.derived;
8213 sym->ts.derived->refs++;
8214 }
8215 }
8216
8217 /* Unless the derived-type declaration is use associated, Fortran 95
8218 does not allow public entries of private derived types.
8219 See 4.4.1 (F95) and 4.5.1.1 (F2003); and related interpretation
8220 161 in 95-006r3. */
8221 if (sym->ts.type == BT_DERIVED
8222 && sym->ns->proc_name && sym->ns->proc_name->attr.flavor == FL_MODULE
8223 && !sym->ts.derived->attr.use_assoc
8224 && gfc_check_access (sym->attr.access, sym->ns->default_access)
8225 && !gfc_check_access (sym->ts.derived->attr.access,
8226 sym->ts.derived->ns->default_access)
8227 && gfc_notify_std (GFC_STD_F2003, "Fortran 2003: PUBLIC %s '%s' at %L "
8228 "of PRIVATE derived type '%s'",
8229 (sym->attr.flavor == FL_PARAMETER) ? "parameter"
8230 : "variable", sym->name, &sym->declared_at,
8231 sym->ts.derived->name) == FAILURE)
8232 return;
8233
8234 /* An assumed-size array with INTENT(OUT) shall not be of a type for which
8235 default initialization is defined (5.1.2.4.4). */
8236 if (sym->ts.type == BT_DERIVED
8237 && sym->attr.dummy
8238 && sym->attr.intent == INTENT_OUT
8239 && sym->as
8240 && sym->as->type == AS_ASSUMED_SIZE)
8241 {
8242 for (c = sym->ts.derived->components; c; c = c->next)
8243 {
8244 if (c->initializer)
8245 {
8246 gfc_error ("The INTENT(OUT) dummy argument '%s' at %L is "
8247 "ASSUMED SIZE and so cannot have a default initializer",
8248 sym->name, &sym->declared_at);
8249 return;
8250 }
8251 }
8252 }
8253
8254 switch (sym->attr.flavor)
8255 {
8256 case FL_VARIABLE:
8257 if (resolve_fl_variable (sym, mp_flag) == FAILURE)
8258 return;
8259 break;
8260
8261 case FL_PROCEDURE:
8262 if (resolve_fl_procedure (sym, mp_flag) == FAILURE)
8263 return;
8264 break;
8265
8266 case FL_NAMELIST:
8267 if (resolve_fl_namelist (sym) == FAILURE)
8268 return;
8269 break;
8270
8271 case FL_PARAMETER:
8272 if (resolve_fl_parameter (sym) == FAILURE)
8273 return;
8274 break;
8275
8276 default:
8277 break;
8278 }
8279
8280 /* Resolve array specifier. Check as well some constraints
8281 on COMMON blocks. */
8282
8283 check_constant = sym->attr.in_common && !sym->attr.pointer;
8284
8285 /* Set the formal_arg_flag so that check_conflict will not throw
8286 an error for host associated variables in the specification
8287 expression for an array_valued function. */
8288 if (sym->attr.function && sym->as)
8289 formal_arg_flag = 1;
8290
8291 gfc_resolve_array_spec (sym->as, check_constant);
8292
8293 formal_arg_flag = 0;
8294
8295 /* Resolve formal namespaces. */
8296 if (sym->formal_ns && sym->formal_ns != gfc_current_ns)
8297 gfc_resolve (sym->formal_ns);
8298
8299 /* Check threadprivate restrictions. */
8300 if (sym->attr.threadprivate && !sym->attr.save && !sym->ns->save_all
8301 && (!sym->attr.in_common
8302 && sym->module == NULL
8303 && (sym->ns->proc_name == NULL
8304 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
8305 gfc_error ("Threadprivate at %L isn't SAVEd", &sym->declared_at);
8306
8307 /* If we have come this far we can apply default-initializers, as
8308 described in 14.7.5, to those variables that have not already
8309 been assigned one. */
8310 if (sym->ts.type == BT_DERIVED
8311 && sym->attr.referenced
8312 && sym->ns == gfc_current_ns
8313 && !sym->value
8314 && !sym->attr.allocatable
8315 && !sym->attr.alloc_comp)
8316 {
8317 symbol_attribute *a = &sym->attr;
8318
8319 if ((!a->save && !a->dummy && !a->pointer
8320 && !a->in_common && !a->use_assoc
8321 && !(a->function && sym != sym->result))
8322 || (a->dummy && a->intent == INTENT_OUT))
8323 apply_default_init (sym);
8324 }
8325 }
8326
8327
8328 /************* Resolve DATA statements *************/
8329
8330 static struct
8331 {
8332 gfc_data_value *vnode;
8333 mpz_t left;
8334 }
8335 values;
8336
8337
8338 /* Advance the values structure to point to the next value in the data list. */
8339
8340 static gfc_try
8341 next_data_value (void)
8342 {
8343
8344 while (mpz_cmp_ui (values.left, 0) == 0)
8345 {
8346 if (values.vnode->next == NULL)
8347 return FAILURE;
8348
8349 values.vnode = values.vnode->next;
8350 mpz_set (values.left, values.vnode->repeat);
8351 }
8352
8353 return SUCCESS;
8354 }
8355
8356
8357 static gfc_try
8358 check_data_variable (gfc_data_variable *var, locus *where)
8359 {
8360 gfc_expr *e;
8361 mpz_t size;
8362 mpz_t offset;
8363 gfc_try t;
8364 ar_type mark = AR_UNKNOWN;
8365 int i;
8366 mpz_t section_index[GFC_MAX_DIMENSIONS];
8367 gfc_ref *ref;
8368 gfc_array_ref *ar;
8369
8370 if (gfc_resolve_expr (var->expr) == FAILURE)
8371 return FAILURE;
8372
8373 ar = NULL;
8374 mpz_init_set_si (offset, 0);
8375 e = var->expr;
8376
8377 if (e->expr_type != EXPR_VARIABLE)
8378 gfc_internal_error ("check_data_variable(): Bad expression");
8379
8380 if (e->symtree->n.sym->ns->is_block_data
8381 && !e->symtree->n.sym->attr.in_common)
8382 {
8383 gfc_error ("BLOCK DATA element '%s' at %L must be in COMMON",
8384 e->symtree->n.sym->name, &e->symtree->n.sym->declared_at);
8385 }
8386
8387 if (e->ref == NULL && e->symtree->n.sym->as)
8388 {
8389 gfc_error ("DATA array '%s' at %L must be specified in a previous"
8390 " declaration", e->symtree->n.sym->name, where);
8391 return FAILURE;
8392 }
8393
8394 if (e->rank == 0)
8395 {
8396 mpz_init_set_ui (size, 1);
8397 ref = NULL;
8398 }
8399 else
8400 {
8401 ref = e->ref;
8402
8403 /* Find the array section reference. */
8404 for (ref = e->ref; ref; ref = ref->next)
8405 {
8406 if (ref->type != REF_ARRAY)
8407 continue;
8408 if (ref->u.ar.type == AR_ELEMENT)
8409 continue;
8410 break;
8411 }
8412 gcc_assert (ref);
8413
8414 /* Set marks according to the reference pattern. */
8415 switch (ref->u.ar.type)
8416 {
8417 case AR_FULL:
8418 mark = AR_FULL;
8419 break;
8420
8421 case AR_SECTION:
8422 ar = &ref->u.ar;
8423 /* Get the start position of array section. */
8424 gfc_get_section_index (ar, section_index, &offset);
8425 mark = AR_SECTION;
8426 break;
8427
8428 default:
8429 gcc_unreachable ();
8430 }
8431
8432 if (gfc_array_size (e, &size) == FAILURE)
8433 {
8434 gfc_error ("Nonconstant array section at %L in DATA statement",
8435 &e->where);
8436 mpz_clear (offset);
8437 return FAILURE;
8438 }
8439 }
8440
8441 t = SUCCESS;
8442
8443 while (mpz_cmp_ui (size, 0) > 0)
8444 {
8445 if (next_data_value () == FAILURE)
8446 {
8447 gfc_error ("DATA statement at %L has more variables than values",
8448 where);
8449 t = FAILURE;
8450 break;
8451 }
8452
8453 t = gfc_check_assign (var->expr, values.vnode->expr, 0);
8454 if (t == FAILURE)
8455 break;
8456
8457 /* If we have more than one element left in the repeat count,
8458 and we have more than one element left in the target variable,
8459 then create a range assignment. */
8460 /* FIXME: Only done for full arrays for now, since array sections
8461 seem tricky. */
8462 if (mark == AR_FULL && ref && ref->next == NULL
8463 && mpz_cmp_ui (values.left, 1) > 0 && mpz_cmp_ui (size, 1) > 0)
8464 {
8465 mpz_t range;
8466
8467 if (mpz_cmp (size, values.left) >= 0)
8468 {
8469 mpz_init_set (range, values.left);
8470 mpz_sub (size, size, values.left);
8471 mpz_set_ui (values.left, 0);
8472 }
8473 else
8474 {
8475 mpz_init_set (range, size);
8476 mpz_sub (values.left, values.left, size);
8477 mpz_set_ui (size, 0);
8478 }
8479
8480 gfc_assign_data_value_range (var->expr, values.vnode->expr,
8481 offset, range);
8482
8483 mpz_add (offset, offset, range);
8484 mpz_clear (range);
8485 }
8486
8487 /* Assign initial value to symbol. */
8488 else
8489 {
8490 mpz_sub_ui (values.left, values.left, 1);
8491 mpz_sub_ui (size, size, 1);
8492
8493 t = gfc_assign_data_value (var->expr, values.vnode->expr, offset);
8494 if (t == FAILURE)
8495 break;
8496
8497 if (mark == AR_FULL)
8498 mpz_add_ui (offset, offset, 1);
8499
8500 /* Modify the array section indexes and recalculate the offset
8501 for next element. */
8502 else if (mark == AR_SECTION)
8503 gfc_advance_section (section_index, ar, &offset);
8504 }
8505 }
8506
8507 if (mark == AR_SECTION)
8508 {
8509 for (i = 0; i < ar->dimen; i++)
8510 mpz_clear (section_index[i]);
8511 }
8512
8513 mpz_clear (size);
8514 mpz_clear (offset);
8515
8516 return t;
8517 }
8518
8519
8520 static gfc_try traverse_data_var (gfc_data_variable *, locus *);
8521
8522 /* Iterate over a list of elements in a DATA statement. */
8523
8524 static gfc_try
8525 traverse_data_list (gfc_data_variable *var, locus *where)
8526 {
8527 mpz_t trip;
8528 iterator_stack frame;
8529 gfc_expr *e, *start, *end, *step;
8530 gfc_try retval = SUCCESS;
8531
8532 mpz_init (frame.value);
8533
8534 start = gfc_copy_expr (var->iter.start);
8535 end = gfc_copy_expr (var->iter.end);
8536 step = gfc_copy_expr (var->iter.step);
8537
8538 if (gfc_simplify_expr (start, 1) == FAILURE
8539 || start->expr_type != EXPR_CONSTANT)
8540 {
8541 gfc_error ("iterator start at %L does not simplify", &start->where);
8542 retval = FAILURE;
8543 goto cleanup;
8544 }
8545 if (gfc_simplify_expr (end, 1) == FAILURE
8546 || end->expr_type != EXPR_CONSTANT)
8547 {
8548 gfc_error ("iterator end at %L does not simplify", &end->where);
8549 retval = FAILURE;
8550 goto cleanup;
8551 }
8552 if (gfc_simplify_expr (step, 1) == FAILURE
8553 || step->expr_type != EXPR_CONSTANT)
8554 {
8555 gfc_error ("iterator step at %L does not simplify", &step->where);
8556 retval = FAILURE;
8557 goto cleanup;
8558 }
8559
8560 mpz_init_set (trip, end->value.integer);
8561 mpz_sub (trip, trip, start->value.integer);
8562 mpz_add (trip, trip, step->value.integer);
8563
8564 mpz_div (trip, trip, step->value.integer);
8565
8566 mpz_set (frame.value, start->value.integer);
8567
8568 frame.prev = iter_stack;
8569 frame.variable = var->iter.var->symtree;
8570 iter_stack = &frame;
8571
8572 while (mpz_cmp_ui (trip, 0) > 0)
8573 {
8574 if (traverse_data_var (var->list, where) == FAILURE)
8575 {
8576 mpz_clear (trip);
8577 retval = FAILURE;
8578 goto cleanup;
8579 }
8580
8581 e = gfc_copy_expr (var->expr);
8582 if (gfc_simplify_expr (e, 1) == FAILURE)
8583 {
8584 gfc_free_expr (e);
8585 mpz_clear (trip);
8586 retval = FAILURE;
8587 goto cleanup;
8588 }
8589
8590 mpz_add (frame.value, frame.value, step->value.integer);
8591
8592 mpz_sub_ui (trip, trip, 1);
8593 }
8594
8595 mpz_clear (trip);
8596 cleanup:
8597 mpz_clear (frame.value);
8598
8599 gfc_free_expr (start);
8600 gfc_free_expr (end);
8601 gfc_free_expr (step);
8602
8603 iter_stack = frame.prev;
8604 return retval;
8605 }
8606
8607
8608 /* Type resolve variables in the variable list of a DATA statement. */
8609
8610 static gfc_try
8611 traverse_data_var (gfc_data_variable *var, locus *where)
8612 {
8613 gfc_try t;
8614
8615 for (; var; var = var->next)
8616 {
8617 if (var->expr == NULL)
8618 t = traverse_data_list (var, where);
8619 else
8620 t = check_data_variable (var, where);
8621
8622 if (t == FAILURE)
8623 return FAILURE;
8624 }
8625
8626 return SUCCESS;
8627 }
8628
8629
8630 /* Resolve the expressions and iterators associated with a data statement.
8631 This is separate from the assignment checking because data lists should
8632 only be resolved once. */
8633
8634 static gfc_try
8635 resolve_data_variables (gfc_data_variable *d)
8636 {
8637 for (; d; d = d->next)
8638 {
8639 if (d->list == NULL)
8640 {
8641 if (gfc_resolve_expr (d->expr) == FAILURE)
8642 return FAILURE;
8643 }
8644 else
8645 {
8646 if (gfc_resolve_iterator (&d->iter, false) == FAILURE)
8647 return FAILURE;
8648
8649 if (resolve_data_variables (d->list) == FAILURE)
8650 return FAILURE;
8651 }
8652 }
8653
8654 return SUCCESS;
8655 }
8656
8657
8658 /* Resolve a single DATA statement. We implement this by storing a pointer to
8659 the value list into static variables, and then recursively traversing the
8660 variables list, expanding iterators and such. */
8661
8662 static void
8663 resolve_data (gfc_data *d)
8664 {
8665
8666 if (resolve_data_variables (d->var) == FAILURE)
8667 return;
8668
8669 values.vnode = d->value;
8670 if (d->value == NULL)
8671 mpz_set_ui (values.left, 0);
8672 else
8673 mpz_set (values.left, d->value->repeat);
8674
8675 if (traverse_data_var (d->var, &d->where) == FAILURE)
8676 return;
8677
8678 /* At this point, we better not have any values left. */
8679
8680 if (next_data_value () == SUCCESS)
8681 gfc_error ("DATA statement at %L has more values than variables",
8682 &d->where);
8683 }
8684
8685
8686 /* 12.6 Constraint: In a pure subprogram any variable which is in common or
8687 accessed by host or use association, is a dummy argument to a pure function,
8688 is a dummy argument with INTENT (IN) to a pure subroutine, or an object that
8689 is storage associated with any such variable, shall not be used in the
8690 following contexts: (clients of this function). */
8691
8692 /* Determines if a variable is not 'pure', i.e., not assignable within a pure
8693 procedure. Returns zero if assignment is OK, nonzero if there is a
8694 problem. */
8695 int
8696 gfc_impure_variable (gfc_symbol *sym)
8697 {
8698 gfc_symbol *proc;
8699
8700 if (sym->attr.use_assoc || sym->attr.in_common)
8701 return 1;
8702
8703 if (sym->ns != gfc_current_ns)
8704 return !sym->attr.function;
8705
8706 proc = sym->ns->proc_name;
8707 if (sym->attr.dummy && gfc_pure (proc)
8708 && ((proc->attr.subroutine && sym->attr.intent == INTENT_IN)
8709 ||
8710 proc->attr.function))
8711 return 1;
8712
8713 /* TODO: Sort out what can be storage associated, if anything, and include
8714 it here. In principle equivalences should be scanned but it does not
8715 seem to be possible to storage associate an impure variable this way. */
8716 return 0;
8717 }
8718
8719
8720 /* Test whether a symbol is pure or not. For a NULL pointer, checks the
8721 symbol of the current procedure. */
8722
8723 int
8724 gfc_pure (gfc_symbol *sym)
8725 {
8726 symbol_attribute attr;
8727
8728 if (sym == NULL)
8729 sym = gfc_current_ns->proc_name;
8730 if (sym == NULL)
8731 return 0;
8732
8733 attr = sym->attr;
8734
8735 return attr.flavor == FL_PROCEDURE && (attr.pure || attr.elemental);
8736 }
8737
8738
8739 /* Test whether the current procedure is elemental or not. */
8740
8741 int
8742 gfc_elemental (gfc_symbol *sym)
8743 {
8744 symbol_attribute attr;
8745
8746 if (sym == NULL)
8747 sym = gfc_current_ns->proc_name;
8748 if (sym == NULL)
8749 return 0;
8750 attr = sym->attr;
8751
8752 return attr.flavor == FL_PROCEDURE && attr.elemental;
8753 }
8754
8755
8756 /* Warn about unused labels. */
8757
8758 static void
8759 warn_unused_fortran_label (gfc_st_label *label)
8760 {
8761 if (label == NULL)
8762 return;
8763
8764 warn_unused_fortran_label (label->left);
8765
8766 if (label->defined == ST_LABEL_UNKNOWN)
8767 return;
8768
8769 switch (label->referenced)
8770 {
8771 case ST_LABEL_UNKNOWN:
8772 gfc_warning ("Label %d at %L defined but not used", label->value,
8773 &label->where);
8774 break;
8775
8776 case ST_LABEL_BAD_TARGET:
8777 gfc_warning ("Label %d at %L defined but cannot be used",
8778 label->value, &label->where);
8779 break;
8780
8781 default:
8782 break;
8783 }
8784
8785 warn_unused_fortran_label (label->right);
8786 }
8787
8788
8789 /* Returns the sequence type of a symbol or sequence. */
8790
8791 static seq_type
8792 sequence_type (gfc_typespec ts)
8793 {
8794 seq_type result;
8795 gfc_component *c;
8796
8797 switch (ts.type)
8798 {
8799 case BT_DERIVED:
8800
8801 if (ts.derived->components == NULL)
8802 return SEQ_NONDEFAULT;
8803
8804 result = sequence_type (ts.derived->components->ts);
8805 for (c = ts.derived->components->next; c; c = c->next)
8806 if (sequence_type (c->ts) != result)
8807 return SEQ_MIXED;
8808
8809 return result;
8810
8811 case BT_CHARACTER:
8812 if (ts.kind != gfc_default_character_kind)
8813 return SEQ_NONDEFAULT;
8814
8815 return SEQ_CHARACTER;
8816
8817 case BT_INTEGER:
8818 if (ts.kind != gfc_default_integer_kind)
8819 return SEQ_NONDEFAULT;
8820
8821 return SEQ_NUMERIC;
8822
8823 case BT_REAL:
8824 if (!(ts.kind == gfc_default_real_kind
8825 || ts.kind == gfc_default_double_kind))
8826 return SEQ_NONDEFAULT;
8827
8828 return SEQ_NUMERIC;
8829
8830 case BT_COMPLEX:
8831 if (ts.kind != gfc_default_complex_kind)
8832 return SEQ_NONDEFAULT;
8833
8834 return SEQ_NUMERIC;
8835
8836 case BT_LOGICAL:
8837 if (ts.kind != gfc_default_logical_kind)
8838 return SEQ_NONDEFAULT;
8839
8840 return SEQ_NUMERIC;
8841
8842 default:
8843 return SEQ_NONDEFAULT;
8844 }
8845 }
8846
8847
8848 /* Resolve derived type EQUIVALENCE object. */
8849
8850 static gfc_try
8851 resolve_equivalence_derived (gfc_symbol *derived, gfc_symbol *sym, gfc_expr *e)
8852 {
8853 gfc_symbol *d;
8854 gfc_component *c = derived->components;
8855
8856 if (!derived)
8857 return SUCCESS;
8858
8859 /* Shall not be an object of nonsequence derived type. */
8860 if (!derived->attr.sequence)
8861 {
8862 gfc_error ("Derived type variable '%s' at %L must have SEQUENCE "
8863 "attribute to be an EQUIVALENCE object", sym->name,
8864 &e->where);
8865 return FAILURE;
8866 }
8867
8868 /* Shall not have allocatable components. */
8869 if (derived->attr.alloc_comp)
8870 {
8871 gfc_error ("Derived type variable '%s' at %L cannot have ALLOCATABLE "
8872 "components to be an EQUIVALENCE object",sym->name,
8873 &e->where);
8874 return FAILURE;
8875 }
8876
8877 if (sym->attr.in_common && has_default_initializer (sym->ts.derived))
8878 {
8879 gfc_error ("Derived type variable '%s' at %L with default "
8880 "initialization cannot be in EQUIVALENCE with a variable "
8881 "in COMMON", sym->name, &e->where);
8882 return FAILURE;
8883 }
8884
8885 for (; c ; c = c->next)
8886 {
8887 d = c->ts.derived;
8888 if (d
8889 && (resolve_equivalence_derived (c->ts.derived, sym, e) == FAILURE))
8890 return FAILURE;
8891
8892 /* Shall not be an object of sequence derived type containing a pointer
8893 in the structure. */
8894 if (c->attr.pointer)
8895 {
8896 gfc_error ("Derived type variable '%s' at %L with pointer "
8897 "component(s) cannot be an EQUIVALENCE object",
8898 sym->name, &e->where);
8899 return FAILURE;
8900 }
8901 }
8902 return SUCCESS;
8903 }
8904
8905
8906 /* Resolve equivalence object.
8907 An EQUIVALENCE object shall not be a dummy argument, a pointer, a target,
8908 an allocatable array, an object of nonsequence derived type, an object of
8909 sequence derived type containing a pointer at any level of component
8910 selection, an automatic object, a function name, an entry name, a result
8911 name, a named constant, a structure component, or a subobject of any of
8912 the preceding objects. A substring shall not have length zero. A
8913 derived type shall not have components with default initialization nor
8914 shall two objects of an equivalence group be initialized.
8915 Either all or none of the objects shall have an protected attribute.
8916 The simple constraints are done in symbol.c(check_conflict) and the rest
8917 are implemented here. */
8918
8919 static void
8920 resolve_equivalence (gfc_equiv *eq)
8921 {
8922 gfc_symbol *sym;
8923 gfc_symbol *derived;
8924 gfc_symbol *first_sym;
8925 gfc_expr *e;
8926 gfc_ref *r;
8927 locus *last_where = NULL;
8928 seq_type eq_type, last_eq_type;
8929 gfc_typespec *last_ts;
8930 int object, cnt_protected;
8931 const char *value_name;
8932 const char *msg;
8933
8934 value_name = NULL;
8935 last_ts = &eq->expr->symtree->n.sym->ts;
8936
8937 first_sym = eq->expr->symtree->n.sym;
8938
8939 cnt_protected = 0;
8940
8941 for (object = 1; eq; eq = eq->eq, object++)
8942 {
8943 e = eq->expr;
8944
8945 e->ts = e->symtree->n.sym->ts;
8946 /* match_varspec might not know yet if it is seeing
8947 array reference or substring reference, as it doesn't
8948 know the types. */
8949 if (e->ref && e->ref->type == REF_ARRAY)
8950 {
8951 gfc_ref *ref = e->ref;
8952 sym = e->symtree->n.sym;
8953
8954 if (sym->attr.dimension)
8955 {
8956 ref->u.ar.as = sym->as;
8957 ref = ref->next;
8958 }
8959
8960 /* For substrings, convert REF_ARRAY into REF_SUBSTRING. */
8961 if (e->ts.type == BT_CHARACTER
8962 && ref
8963 && ref->type == REF_ARRAY
8964 && ref->u.ar.dimen == 1
8965 && ref->u.ar.dimen_type[0] == DIMEN_RANGE
8966 && ref->u.ar.stride[0] == NULL)
8967 {
8968 gfc_expr *start = ref->u.ar.start[0];
8969 gfc_expr *end = ref->u.ar.end[0];
8970 void *mem = NULL;
8971
8972 /* Optimize away the (:) reference. */
8973 if (start == NULL && end == NULL)
8974 {
8975 if (e->ref == ref)
8976 e->ref = ref->next;
8977 else
8978 e->ref->next = ref->next;
8979 mem = ref;
8980 }
8981 else
8982 {
8983 ref->type = REF_SUBSTRING;
8984 if (start == NULL)
8985 start = gfc_int_expr (1);
8986 ref->u.ss.start = start;
8987 if (end == NULL && e->ts.cl)
8988 end = gfc_copy_expr (e->ts.cl->length);
8989 ref->u.ss.end = end;
8990 ref->u.ss.length = e->ts.cl;
8991 e->ts.cl = NULL;
8992 }
8993 ref = ref->next;
8994 gfc_free (mem);
8995 }
8996
8997 /* Any further ref is an error. */
8998 if (ref)
8999 {
9000 gcc_assert (ref->type == REF_ARRAY);
9001 gfc_error ("Syntax error in EQUIVALENCE statement at %L",
9002 &ref->u.ar.where);
9003 continue;
9004 }
9005 }
9006
9007 if (gfc_resolve_expr (e) == FAILURE)
9008 continue;
9009
9010 sym = e->symtree->n.sym;
9011
9012 if (sym->attr.is_protected)
9013 cnt_protected++;
9014 if (cnt_protected > 0 && cnt_protected != object)
9015 {
9016 gfc_error ("Either all or none of the objects in the "
9017 "EQUIVALENCE set at %L shall have the "
9018 "PROTECTED attribute",
9019 &e->where);
9020 break;
9021 }
9022
9023 /* Shall not equivalence common block variables in a PURE procedure. */
9024 if (sym->ns->proc_name
9025 && sym->ns->proc_name->attr.pure
9026 && sym->attr.in_common)
9027 {
9028 gfc_error ("Common block member '%s' at %L cannot be an EQUIVALENCE "
9029 "object in the pure procedure '%s'",
9030 sym->name, &e->where, sym->ns->proc_name->name);
9031 break;
9032 }
9033
9034 /* Shall not be a named constant. */
9035 if (e->expr_type == EXPR_CONSTANT)
9036 {
9037 gfc_error ("Named constant '%s' at %L cannot be an EQUIVALENCE "
9038 "object", sym->name, &e->where);
9039 continue;
9040 }
9041
9042 derived = e->ts.derived;
9043 if (derived && resolve_equivalence_derived (derived, sym, e) == FAILURE)
9044 continue;
9045
9046 /* Check that the types correspond correctly:
9047 Note 5.28:
9048 A numeric sequence structure may be equivalenced to another sequence
9049 structure, an object of default integer type, default real type, double
9050 precision real type, default logical type such that components of the
9051 structure ultimately only become associated to objects of the same
9052 kind. A character sequence structure may be equivalenced to an object
9053 of default character kind or another character sequence structure.
9054 Other objects may be equivalenced only to objects of the same type and
9055 kind parameters. */
9056
9057 /* Identical types are unconditionally OK. */
9058 if (object == 1 || gfc_compare_types (last_ts, &sym->ts))
9059 goto identical_types;
9060
9061 last_eq_type = sequence_type (*last_ts);
9062 eq_type = sequence_type (sym->ts);
9063
9064 /* Since the pair of objects is not of the same type, mixed or
9065 non-default sequences can be rejected. */
9066
9067 msg = "Sequence %s with mixed components in EQUIVALENCE "
9068 "statement at %L with different type objects";
9069 if ((object ==2
9070 && last_eq_type == SEQ_MIXED
9071 && gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where)
9072 == FAILURE)
9073 || (eq_type == SEQ_MIXED
9074 && gfc_notify_std (GFC_STD_GNU, msg, sym->name,
9075 &e->where) == FAILURE))
9076 continue;
9077
9078 msg = "Non-default type object or sequence %s in EQUIVALENCE "
9079 "statement at %L with objects of different type";
9080 if ((object ==2
9081 && last_eq_type == SEQ_NONDEFAULT
9082 && gfc_notify_std (GFC_STD_GNU, msg, first_sym->name,
9083 last_where) == FAILURE)
9084 || (eq_type == SEQ_NONDEFAULT
9085 && gfc_notify_std (GFC_STD_GNU, msg, sym->name,
9086 &e->where) == FAILURE))
9087 continue;
9088
9089 msg ="Non-CHARACTER object '%s' in default CHARACTER "
9090 "EQUIVALENCE statement at %L";
9091 if (last_eq_type == SEQ_CHARACTER
9092 && eq_type != SEQ_CHARACTER
9093 && gfc_notify_std (GFC_STD_GNU, msg, sym->name,
9094 &e->where) == FAILURE)
9095 continue;
9096
9097 msg ="Non-NUMERIC object '%s' in default NUMERIC "
9098 "EQUIVALENCE statement at %L";
9099 if (last_eq_type == SEQ_NUMERIC
9100 && eq_type != SEQ_NUMERIC
9101 && gfc_notify_std (GFC_STD_GNU, msg, sym->name,
9102 &e->where) == FAILURE)
9103 continue;
9104
9105 identical_types:
9106 last_ts =&sym->ts;
9107 last_where = &e->where;
9108
9109 if (!e->ref)
9110 continue;
9111
9112 /* Shall not be an automatic array. */
9113 if (e->ref->type == REF_ARRAY
9114 && gfc_resolve_array_spec (e->ref->u.ar.as, 1) == FAILURE)
9115 {
9116 gfc_error ("Array '%s' at %L with non-constant bounds cannot be "
9117 "an EQUIVALENCE object", sym->name, &e->where);
9118 continue;
9119 }
9120
9121 r = e->ref;
9122 while (r)
9123 {
9124 /* Shall not be a structure component. */
9125 if (r->type == REF_COMPONENT)
9126 {
9127 gfc_error ("Structure component '%s' at %L cannot be an "
9128 "EQUIVALENCE object",
9129 r->u.c.component->name, &e->where);
9130 break;
9131 }
9132
9133 /* A substring shall not have length zero. */
9134 if (r->type == REF_SUBSTRING)
9135 {
9136 if (compare_bound (r->u.ss.start, r->u.ss.end) == CMP_GT)
9137 {
9138 gfc_error ("Substring at %L has length zero",
9139 &r->u.ss.start->where);
9140 break;
9141 }
9142 }
9143 r = r->next;
9144 }
9145 }
9146 }
9147
9148
9149 /* Resolve function and ENTRY types, issue diagnostics if needed. */
9150
9151 static void
9152 resolve_fntype (gfc_namespace *ns)
9153 {
9154 gfc_entry_list *el;
9155 gfc_symbol *sym;
9156
9157 if (ns->proc_name == NULL || !ns->proc_name->attr.function)
9158 return;
9159
9160 /* If there are any entries, ns->proc_name is the entry master
9161 synthetic symbol and ns->entries->sym actual FUNCTION symbol. */
9162 if (ns->entries)
9163 sym = ns->entries->sym;
9164 else
9165 sym = ns->proc_name;
9166 if (sym->result == sym
9167 && sym->ts.type == BT_UNKNOWN
9168 && gfc_set_default_type (sym, 0, NULL) == FAILURE
9169 && !sym->attr.untyped)
9170 {
9171 gfc_error ("Function '%s' at %L has no IMPLICIT type",
9172 sym->name, &sym->declared_at);
9173 sym->attr.untyped = 1;
9174 }
9175
9176 if (sym->ts.type == BT_DERIVED && !sym->ts.derived->attr.use_assoc
9177 && !gfc_check_access (sym->ts.derived->attr.access,
9178 sym->ts.derived->ns->default_access)
9179 && gfc_check_access (sym->attr.access, sym->ns->default_access))
9180 {
9181 gfc_error ("PUBLIC function '%s' at %L cannot be of PRIVATE type '%s'",
9182 sym->name, &sym->declared_at, sym->ts.derived->name);
9183 }
9184
9185 if (ns->entries)
9186 for (el = ns->entries->next; el; el = el->next)
9187 {
9188 if (el->sym->result == el->sym
9189 && el->sym->ts.type == BT_UNKNOWN
9190 && gfc_set_default_type (el->sym, 0, NULL) == FAILURE
9191 && !el->sym->attr.untyped)
9192 {
9193 gfc_error ("ENTRY '%s' at %L has no IMPLICIT type",
9194 el->sym->name, &el->sym->declared_at);
9195 el->sym->attr.untyped = 1;
9196 }
9197 }
9198 }
9199
9200 /* 12.3.2.1.1 Defined operators. */
9201
9202 static void
9203 gfc_resolve_uops (gfc_symtree *symtree)
9204 {
9205 gfc_interface *itr;
9206 gfc_symbol *sym;
9207 gfc_formal_arglist *formal;
9208
9209 if (symtree == NULL)
9210 return;
9211
9212 gfc_resolve_uops (symtree->left);
9213 gfc_resolve_uops (symtree->right);
9214
9215 for (itr = symtree->n.uop->op; itr; itr = itr->next)
9216 {
9217 sym = itr->sym;
9218 if (!sym->attr.function)
9219 gfc_error ("User operator procedure '%s' at %L must be a FUNCTION",
9220 sym->name, &sym->declared_at);
9221
9222 if (sym->ts.type == BT_CHARACTER
9223 && !(sym->ts.cl && sym->ts.cl->length)
9224 && !(sym->result && sym->result->ts.cl
9225 && sym->result->ts.cl->length))
9226 gfc_error ("User operator procedure '%s' at %L cannot be assumed "
9227 "character length", sym->name, &sym->declared_at);
9228
9229 formal = sym->formal;
9230 if (!formal || !formal->sym)
9231 {
9232 gfc_error ("User operator procedure '%s' at %L must have at least "
9233 "one argument", sym->name, &sym->declared_at);
9234 continue;
9235 }
9236
9237 if (formal->sym->attr.intent != INTENT_IN)
9238 gfc_error ("First argument of operator interface at %L must be "
9239 "INTENT(IN)", &sym->declared_at);
9240
9241 if (formal->sym->attr.optional)
9242 gfc_error ("First argument of operator interface at %L cannot be "
9243 "optional", &sym->declared_at);
9244
9245 formal = formal->next;
9246 if (!formal || !formal->sym)
9247 continue;
9248
9249 if (formal->sym->attr.intent != INTENT_IN)
9250 gfc_error ("Second argument of operator interface at %L must be "
9251 "INTENT(IN)", &sym->declared_at);
9252
9253 if (formal->sym->attr.optional)
9254 gfc_error ("Second argument of operator interface at %L cannot be "
9255 "optional", &sym->declared_at);
9256
9257 if (formal->next)
9258 gfc_error ("Operator interface at %L must have, at most, two "
9259 "arguments", &sym->declared_at);
9260 }
9261 }
9262
9263
9264 /* Examine all of the expressions associated with a program unit,
9265 assign types to all intermediate expressions, make sure that all
9266 assignments are to compatible types and figure out which names
9267 refer to which functions or subroutines. It doesn't check code
9268 block, which is handled by resolve_code. */
9269
9270 static void
9271 resolve_types (gfc_namespace *ns)
9272 {
9273 gfc_namespace *n;
9274 gfc_charlen *cl;
9275 gfc_data *d;
9276 gfc_equiv *eq;
9277
9278 gfc_current_ns = ns;
9279
9280 resolve_entries (ns);
9281
9282 resolve_common_vars (ns->blank_common.head, false);
9283 resolve_common_blocks (ns->common_root);
9284
9285 resolve_contained_functions (ns);
9286
9287 gfc_traverse_ns (ns, resolve_bind_c_derived_types);
9288
9289 for (cl = ns->cl_list; cl; cl = cl->next)
9290 resolve_charlen (cl);
9291
9292 gfc_traverse_ns (ns, resolve_symbol);
9293
9294 resolve_fntype (ns);
9295
9296 for (n = ns->contained; n; n = n->sibling)
9297 {
9298 if (gfc_pure (ns->proc_name) && !gfc_pure (n->proc_name))
9299 gfc_error ("Contained procedure '%s' at %L of a PURE procedure must "
9300 "also be PURE", n->proc_name->name,
9301 &n->proc_name->declared_at);
9302
9303 resolve_types (n);
9304 }
9305
9306 forall_flag = 0;
9307 gfc_check_interfaces (ns);
9308
9309 gfc_traverse_ns (ns, resolve_values);
9310
9311 if (ns->save_all)
9312 gfc_save_all (ns);
9313
9314 iter_stack = NULL;
9315 for (d = ns->data; d; d = d->next)
9316 resolve_data (d);
9317
9318 iter_stack = NULL;
9319 gfc_traverse_ns (ns, gfc_formalize_init_value);
9320
9321 gfc_traverse_ns (ns, gfc_verify_binding_labels);
9322
9323 if (ns->common_root != NULL)
9324 gfc_traverse_symtree (ns->common_root, resolve_bind_c_comms);
9325
9326 for (eq = ns->equiv; eq; eq = eq->next)
9327 resolve_equivalence (eq);
9328
9329 /* Warn about unused labels. */
9330 if (warn_unused_label)
9331 warn_unused_fortran_label (ns->st_labels);
9332
9333 gfc_resolve_uops (ns->uop_root);
9334 }
9335
9336
9337 /* Call resolve_code recursively. */
9338
9339 static void
9340 resolve_codes (gfc_namespace *ns)
9341 {
9342 gfc_namespace *n;
9343
9344 for (n = ns->contained; n; n = n->sibling)
9345 resolve_codes (n);
9346
9347 gfc_current_ns = ns;
9348 cs_base = NULL;
9349 /* Set to an out of range value. */
9350 current_entry_id = -1;
9351
9352 bitmap_obstack_initialize (&labels_obstack);
9353 resolve_code (ns->code, ns);
9354 bitmap_obstack_release (&labels_obstack);
9355 }
9356
9357
9358 /* This function is called after a complete program unit has been compiled.
9359 Its purpose is to examine all of the expressions associated with a program
9360 unit, assign types to all intermediate expressions, make sure that all
9361 assignments are to compatible types and figure out which names refer to
9362 which functions or subroutines. */
9363
9364 void
9365 gfc_resolve (gfc_namespace *ns)
9366 {
9367 gfc_namespace *old_ns;
9368
9369 old_ns = gfc_current_ns;
9370
9371 resolve_types (ns);
9372 resolve_codes (ns);
9373
9374 gfc_current_ns = old_ns;
9375 }