re PR fortran/87172 (Spurious "Derived type 'c_funptr' at (1) has not been declared...
[gcc.git] / gcc / fortran / resolve.c
1 /* Perform type resolution on the various structures.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "options.h"
25 #include "bitmap.h"
26 #include "gfortran.h"
27 #include "arith.h" /* For gfc_compare_expr(). */
28 #include "dependency.h"
29 #include "data.h"
30 #include "target-memory.h" /* for gfc_simplify_transfer */
31 #include "constructor.h"
32
33 /* Types used in equivalence statements. */
34
35 enum seq_type
36 {
37 SEQ_NONDEFAULT, SEQ_NUMERIC, SEQ_CHARACTER, SEQ_MIXED
38 };
39
40 /* Stack to keep track of the nesting of blocks as we move through the
41 code. See resolve_branch() and gfc_resolve_code(). */
42
43 typedef struct code_stack
44 {
45 struct gfc_code *head, *current;
46 struct code_stack *prev;
47
48 /* This bitmap keeps track of the targets valid for a branch from
49 inside this block except for END {IF|SELECT}s of enclosing
50 blocks. */
51 bitmap reachable_labels;
52 }
53 code_stack;
54
55 static code_stack *cs_base = NULL;
56
57
58 /* Nonzero if we're inside a FORALL or DO CONCURRENT block. */
59
60 static int forall_flag;
61 int gfc_do_concurrent_flag;
62
63 /* True when we are resolving an expression that is an actual argument to
64 a procedure. */
65 static bool actual_arg = false;
66 /* True when we are resolving an expression that is the first actual argument
67 to a procedure. */
68 static bool first_actual_arg = false;
69
70
71 /* Nonzero if we're inside a OpenMP WORKSHARE or PARALLEL WORKSHARE block. */
72
73 static int omp_workshare_flag;
74
75 /* True if we are processing a formal arglist. The corresponding function
76 resets the flag each time that it is read. */
77 static bool formal_arg_flag = false;
78
79 /* True if we are resolving a specification expression. */
80 static bool specification_expr = false;
81
82 /* The id of the last entry seen. */
83 static int current_entry_id;
84
85 /* We use bitmaps to determine if a branch target is valid. */
86 static bitmap_obstack labels_obstack;
87
88 /* True when simplifying a EXPR_VARIABLE argument to an inquiry function. */
89 static bool inquiry_argument = false;
90
91
92 bool
93 gfc_is_formal_arg (void)
94 {
95 return formal_arg_flag;
96 }
97
98 /* Is the symbol host associated? */
99 static bool
100 is_sym_host_assoc (gfc_symbol *sym, gfc_namespace *ns)
101 {
102 for (ns = ns->parent; ns; ns = ns->parent)
103 {
104 if (sym->ns == ns)
105 return true;
106 }
107
108 return false;
109 }
110
111 /* Ensure a typespec used is valid; for instance, TYPE(t) is invalid if t is
112 an ABSTRACT derived-type. If where is not NULL, an error message with that
113 locus is printed, optionally using name. */
114
115 static bool
116 resolve_typespec_used (gfc_typespec* ts, locus* where, const char* name)
117 {
118 if (ts->type == BT_DERIVED && ts->u.derived->attr.abstract)
119 {
120 if (where)
121 {
122 if (name)
123 gfc_error ("%qs at %L is of the ABSTRACT type %qs",
124 name, where, ts->u.derived->name);
125 else
126 gfc_error ("ABSTRACT type %qs used at %L",
127 ts->u.derived->name, where);
128 }
129
130 return false;
131 }
132
133 return true;
134 }
135
136
137 static bool
138 check_proc_interface (gfc_symbol *ifc, locus *where)
139 {
140 /* Several checks for F08:C1216. */
141 if (ifc->attr.procedure)
142 {
143 gfc_error ("Interface %qs at %L is declared "
144 "in a later PROCEDURE statement", ifc->name, where);
145 return false;
146 }
147 if (ifc->generic)
148 {
149 /* For generic interfaces, check if there is
150 a specific procedure with the same name. */
151 gfc_interface *gen = ifc->generic;
152 while (gen && strcmp (gen->sym->name, ifc->name) != 0)
153 gen = gen->next;
154 if (!gen)
155 {
156 gfc_error ("Interface %qs at %L may not be generic",
157 ifc->name, where);
158 return false;
159 }
160 }
161 if (ifc->attr.proc == PROC_ST_FUNCTION)
162 {
163 gfc_error ("Interface %qs at %L may not be a statement function",
164 ifc->name, where);
165 return false;
166 }
167 if (gfc_is_intrinsic (ifc, 0, ifc->declared_at)
168 || gfc_is_intrinsic (ifc, 1, ifc->declared_at))
169 ifc->attr.intrinsic = 1;
170 if (ifc->attr.intrinsic && !gfc_intrinsic_actual_ok (ifc->name, 0))
171 {
172 gfc_error ("Intrinsic procedure %qs not allowed in "
173 "PROCEDURE statement at %L", ifc->name, where);
174 return false;
175 }
176 if (!ifc->attr.if_source && !ifc->attr.intrinsic && ifc->name[0] != '\0')
177 {
178 gfc_error ("Interface %qs at %L must be explicit", ifc->name, where);
179 return false;
180 }
181 return true;
182 }
183
184
185 static void resolve_symbol (gfc_symbol *sym);
186
187
188 /* Resolve the interface for a PROCEDURE declaration or procedure pointer. */
189
190 static bool
191 resolve_procedure_interface (gfc_symbol *sym)
192 {
193 gfc_symbol *ifc = sym->ts.interface;
194
195 if (!ifc)
196 return true;
197
198 if (ifc == sym)
199 {
200 gfc_error ("PROCEDURE %qs at %L may not be used as its own interface",
201 sym->name, &sym->declared_at);
202 return false;
203 }
204 if (!check_proc_interface (ifc, &sym->declared_at))
205 return false;
206
207 if (ifc->attr.if_source || ifc->attr.intrinsic)
208 {
209 /* Resolve interface and copy attributes. */
210 resolve_symbol (ifc);
211 if (ifc->attr.intrinsic)
212 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
213
214 if (ifc->result)
215 {
216 sym->ts = ifc->result->ts;
217 sym->attr.allocatable = ifc->result->attr.allocatable;
218 sym->attr.pointer = ifc->result->attr.pointer;
219 sym->attr.dimension = ifc->result->attr.dimension;
220 sym->attr.class_ok = ifc->result->attr.class_ok;
221 sym->as = gfc_copy_array_spec (ifc->result->as);
222 sym->result = sym;
223 }
224 else
225 {
226 sym->ts = ifc->ts;
227 sym->attr.allocatable = ifc->attr.allocatable;
228 sym->attr.pointer = ifc->attr.pointer;
229 sym->attr.dimension = ifc->attr.dimension;
230 sym->attr.class_ok = ifc->attr.class_ok;
231 sym->as = gfc_copy_array_spec (ifc->as);
232 }
233 sym->ts.interface = ifc;
234 sym->attr.function = ifc->attr.function;
235 sym->attr.subroutine = ifc->attr.subroutine;
236
237 sym->attr.pure = ifc->attr.pure;
238 sym->attr.elemental = ifc->attr.elemental;
239 sym->attr.contiguous = ifc->attr.contiguous;
240 sym->attr.recursive = ifc->attr.recursive;
241 sym->attr.always_explicit = ifc->attr.always_explicit;
242 sym->attr.ext_attr |= ifc->attr.ext_attr;
243 sym->attr.is_bind_c = ifc->attr.is_bind_c;
244 /* Copy char length. */
245 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
246 {
247 sym->ts.u.cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
248 if (sym->ts.u.cl->length && !sym->ts.u.cl->resolved
249 && !gfc_resolve_expr (sym->ts.u.cl->length))
250 return false;
251 }
252 }
253
254 return true;
255 }
256
257
258 /* Resolve types of formal argument lists. These have to be done early so that
259 the formal argument lists of module procedures can be copied to the
260 containing module before the individual procedures are resolved
261 individually. We also resolve argument lists of procedures in interface
262 blocks because they are self-contained scoping units.
263
264 Since a dummy argument cannot be a non-dummy procedure, the only
265 resort left for untyped names are the IMPLICIT types. */
266
267 static void
268 resolve_formal_arglist (gfc_symbol *proc)
269 {
270 gfc_formal_arglist *f;
271 gfc_symbol *sym;
272 bool saved_specification_expr;
273 int i;
274
275 if (proc->result != NULL)
276 sym = proc->result;
277 else
278 sym = proc;
279
280 if (gfc_elemental (proc)
281 || sym->attr.pointer || sym->attr.allocatable
282 || (sym->as && sym->as->rank != 0))
283 {
284 proc->attr.always_explicit = 1;
285 sym->attr.always_explicit = 1;
286 }
287
288 formal_arg_flag = true;
289
290 for (f = proc->formal; f; f = f->next)
291 {
292 gfc_array_spec *as;
293
294 sym = f->sym;
295
296 if (sym == NULL)
297 {
298 /* Alternate return placeholder. */
299 if (gfc_elemental (proc))
300 gfc_error ("Alternate return specifier in elemental subroutine "
301 "%qs at %L is not allowed", proc->name,
302 &proc->declared_at);
303 if (proc->attr.function)
304 gfc_error ("Alternate return specifier in function "
305 "%qs at %L is not allowed", proc->name,
306 &proc->declared_at);
307 continue;
308 }
309 else if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
310 && !resolve_procedure_interface (sym))
311 return;
312
313 if (strcmp (proc->name, sym->name) == 0)
314 {
315 gfc_error ("Self-referential argument "
316 "%qs at %L is not allowed", sym->name,
317 &proc->declared_at);
318 return;
319 }
320
321 if (sym->attr.if_source != IFSRC_UNKNOWN)
322 resolve_formal_arglist (sym);
323
324 if (sym->attr.subroutine || sym->attr.external)
325 {
326 if (sym->attr.flavor == FL_UNKNOWN)
327 gfc_add_flavor (&sym->attr, FL_PROCEDURE, sym->name, &sym->declared_at);
328 }
329 else
330 {
331 if (sym->ts.type == BT_UNKNOWN && !proc->attr.intrinsic
332 && (!sym->attr.function || sym->result == sym))
333 gfc_set_default_type (sym, 1, sym->ns);
334 }
335
336 as = sym->ts.type == BT_CLASS && sym->attr.class_ok
337 ? CLASS_DATA (sym)->as : sym->as;
338
339 saved_specification_expr = specification_expr;
340 specification_expr = true;
341 gfc_resolve_array_spec (as, 0);
342 specification_expr = saved_specification_expr;
343
344 /* We can't tell if an array with dimension (:) is assumed or deferred
345 shape until we know if it has the pointer or allocatable attributes.
346 */
347 if (as && as->rank > 0 && as->type == AS_DEFERRED
348 && ((sym->ts.type != BT_CLASS
349 && !(sym->attr.pointer || sym->attr.allocatable))
350 || (sym->ts.type == BT_CLASS
351 && !(CLASS_DATA (sym)->attr.class_pointer
352 || CLASS_DATA (sym)->attr.allocatable)))
353 && sym->attr.flavor != FL_PROCEDURE)
354 {
355 as->type = AS_ASSUMED_SHAPE;
356 for (i = 0; i < as->rank; i++)
357 as->lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
358 }
359
360 if ((as && as->rank > 0 && as->type == AS_ASSUMED_SHAPE)
361 || (as && as->type == AS_ASSUMED_RANK)
362 || sym->attr.pointer || sym->attr.allocatable || sym->attr.target
363 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
364 && (CLASS_DATA (sym)->attr.class_pointer
365 || CLASS_DATA (sym)->attr.allocatable
366 || CLASS_DATA (sym)->attr.target))
367 || sym->attr.optional)
368 {
369 proc->attr.always_explicit = 1;
370 if (proc->result)
371 proc->result->attr.always_explicit = 1;
372 }
373
374 /* If the flavor is unknown at this point, it has to be a variable.
375 A procedure specification would have already set the type. */
376
377 if (sym->attr.flavor == FL_UNKNOWN)
378 gfc_add_flavor (&sym->attr, FL_VARIABLE, sym->name, &sym->declared_at);
379
380 if (gfc_pure (proc))
381 {
382 if (sym->attr.flavor == FL_PROCEDURE)
383 {
384 /* F08:C1279. */
385 if (!gfc_pure (sym))
386 {
387 gfc_error ("Dummy procedure %qs of PURE procedure at %L must "
388 "also be PURE", sym->name, &sym->declared_at);
389 continue;
390 }
391 }
392 else if (!sym->attr.pointer)
393 {
394 if (proc->attr.function && sym->attr.intent != INTENT_IN)
395 {
396 if (sym->attr.value)
397 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
398 " of pure function %qs at %L with VALUE "
399 "attribute but without INTENT(IN)",
400 sym->name, proc->name, &sym->declared_at);
401 else
402 gfc_error ("Argument %qs of pure function %qs at %L must "
403 "be INTENT(IN) or VALUE", sym->name, proc->name,
404 &sym->declared_at);
405 }
406
407 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN)
408 {
409 if (sym->attr.value)
410 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
411 " of pure subroutine %qs at %L with VALUE "
412 "attribute but without INTENT", sym->name,
413 proc->name, &sym->declared_at);
414 else
415 gfc_error ("Argument %qs of pure subroutine %qs at %L "
416 "must have its INTENT specified or have the "
417 "VALUE attribute", sym->name, proc->name,
418 &sym->declared_at);
419 }
420 }
421
422 /* F08:C1278a. */
423 if (sym->ts.type == BT_CLASS && sym->attr.intent == INTENT_OUT)
424 {
425 gfc_error ("INTENT(OUT) argument %qs of pure procedure %qs at %L"
426 " may not be polymorphic", sym->name, proc->name,
427 &sym->declared_at);
428 continue;
429 }
430 }
431
432 if (proc->attr.implicit_pure)
433 {
434 if (sym->attr.flavor == FL_PROCEDURE)
435 {
436 if (!gfc_pure (sym))
437 proc->attr.implicit_pure = 0;
438 }
439 else if (!sym->attr.pointer)
440 {
441 if (proc->attr.function && sym->attr.intent != INTENT_IN
442 && !sym->value)
443 proc->attr.implicit_pure = 0;
444
445 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN
446 && !sym->value)
447 proc->attr.implicit_pure = 0;
448 }
449 }
450
451 if (gfc_elemental (proc))
452 {
453 /* F08:C1289. */
454 if (sym->attr.codimension
455 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
456 && CLASS_DATA (sym)->attr.codimension))
457 {
458 gfc_error ("Coarray dummy argument %qs at %L to elemental "
459 "procedure", sym->name, &sym->declared_at);
460 continue;
461 }
462
463 if (sym->as || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
464 && CLASS_DATA (sym)->as))
465 {
466 gfc_error ("Argument %qs of elemental procedure at %L must "
467 "be scalar", sym->name, &sym->declared_at);
468 continue;
469 }
470
471 if (sym->attr.allocatable
472 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
473 && CLASS_DATA (sym)->attr.allocatable))
474 {
475 gfc_error ("Argument %qs of elemental procedure at %L cannot "
476 "have the ALLOCATABLE attribute", sym->name,
477 &sym->declared_at);
478 continue;
479 }
480
481 if (sym->attr.pointer
482 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
483 && CLASS_DATA (sym)->attr.class_pointer))
484 {
485 gfc_error ("Argument %qs of elemental procedure at %L cannot "
486 "have the POINTER attribute", sym->name,
487 &sym->declared_at);
488 continue;
489 }
490
491 if (sym->attr.flavor == FL_PROCEDURE)
492 {
493 gfc_error ("Dummy procedure %qs not allowed in elemental "
494 "procedure %qs at %L", sym->name, proc->name,
495 &sym->declared_at);
496 continue;
497 }
498
499 /* Fortran 2008 Corrigendum 1, C1290a. */
500 if (sym->attr.intent == INTENT_UNKNOWN && !sym->attr.value)
501 {
502 gfc_error ("Argument %qs of elemental procedure %qs at %L must "
503 "have its INTENT specified or have the VALUE "
504 "attribute", sym->name, proc->name,
505 &sym->declared_at);
506 continue;
507 }
508 }
509
510 /* Each dummy shall be specified to be scalar. */
511 if (proc->attr.proc == PROC_ST_FUNCTION)
512 {
513 if (sym->as != NULL)
514 {
515 /* F03:C1263 (R1238) The function-name and each dummy-arg-name
516 shall be specified, explicitly or implicitly, to be scalar. */
517 gfc_error ("Argument '%s' of statement function '%s' at %L "
518 "must be scalar", sym->name, proc->name,
519 &proc->declared_at);
520 continue;
521 }
522
523 if (sym->ts.type == BT_CHARACTER)
524 {
525 gfc_charlen *cl = sym->ts.u.cl;
526 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
527 {
528 gfc_error ("Character-valued argument %qs of statement "
529 "function at %L must have constant length",
530 sym->name, &sym->declared_at);
531 continue;
532 }
533 }
534 }
535 }
536 formal_arg_flag = false;
537 }
538
539
540 /* Work function called when searching for symbols that have argument lists
541 associated with them. */
542
543 static void
544 find_arglists (gfc_symbol *sym)
545 {
546 if (sym->attr.if_source == IFSRC_UNKNOWN || sym->ns != gfc_current_ns
547 || gfc_fl_struct (sym->attr.flavor) || sym->attr.intrinsic)
548 return;
549
550 resolve_formal_arglist (sym);
551 }
552
553
554 /* Given a namespace, resolve all formal argument lists within the namespace.
555 */
556
557 static void
558 resolve_formal_arglists (gfc_namespace *ns)
559 {
560 if (ns == NULL)
561 return;
562
563 gfc_traverse_ns (ns, find_arglists);
564 }
565
566
567 static void
568 resolve_contained_fntype (gfc_symbol *sym, gfc_namespace *ns)
569 {
570 bool t;
571
572 if (sym && sym->attr.flavor == FL_PROCEDURE
573 && sym->ns->parent
574 && sym->ns->parent->proc_name
575 && sym->ns->parent->proc_name->attr.flavor == FL_PROCEDURE
576 && !strcmp (sym->name, sym->ns->parent->proc_name->name))
577 gfc_error ("Contained procedure %qs at %L has the same name as its "
578 "encompassing procedure", sym->name, &sym->declared_at);
579
580 /* If this namespace is not a function or an entry master function,
581 ignore it. */
582 if (! sym || !(sym->attr.function || sym->attr.flavor == FL_VARIABLE)
583 || sym->attr.entry_master)
584 return;
585
586 /* Try to find out of what the return type is. */
587 if (sym->result->ts.type == BT_UNKNOWN && sym->result->ts.interface == NULL)
588 {
589 t = gfc_set_default_type (sym->result, 0, ns);
590
591 if (!t && !sym->result->attr.untyped)
592 {
593 if (sym->result == sym)
594 gfc_error ("Contained function %qs at %L has no IMPLICIT type",
595 sym->name, &sym->declared_at);
596 else if (!sym->result->attr.proc_pointer)
597 gfc_error ("Result %qs of contained function %qs at %L has "
598 "no IMPLICIT type", sym->result->name, sym->name,
599 &sym->result->declared_at);
600 sym->result->attr.untyped = 1;
601 }
602 }
603
604 /* Fortran 2008 Draft Standard, page 535, C418, on type-param-value
605 type, lists the only ways a character length value of * can be used:
606 dummy arguments of procedures, named constants, function results and
607 in allocate statements if the allocate_object is an assumed length dummy
608 in external functions. Internal function results and results of module
609 procedures are not on this list, ergo, not permitted. */
610
611 if (sym->result->ts.type == BT_CHARACTER)
612 {
613 gfc_charlen *cl = sym->result->ts.u.cl;
614 if ((!cl || !cl->length) && !sym->result->ts.deferred)
615 {
616 /* See if this is a module-procedure and adapt error message
617 accordingly. */
618 bool module_proc;
619 gcc_assert (ns->parent && ns->parent->proc_name);
620 module_proc = (ns->parent->proc_name->attr.flavor == FL_MODULE);
621
622 gfc_error (module_proc
623 ? G_("Character-valued module procedure %qs at %L"
624 " must not be assumed length")
625 : G_("Character-valued internal function %qs at %L"
626 " must not be assumed length"),
627 sym->name, &sym->declared_at);
628 }
629 }
630 }
631
632
633 /* Add NEW_ARGS to the formal argument list of PROC, taking care not to
634 introduce duplicates. */
635
636 static void
637 merge_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
638 {
639 gfc_formal_arglist *f, *new_arglist;
640 gfc_symbol *new_sym;
641
642 for (; new_args != NULL; new_args = new_args->next)
643 {
644 new_sym = new_args->sym;
645 /* See if this arg is already in the formal argument list. */
646 for (f = proc->formal; f; f = f->next)
647 {
648 if (new_sym == f->sym)
649 break;
650 }
651
652 if (f)
653 continue;
654
655 /* Add a new argument. Argument order is not important. */
656 new_arglist = gfc_get_formal_arglist ();
657 new_arglist->sym = new_sym;
658 new_arglist->next = proc->formal;
659 proc->formal = new_arglist;
660 }
661 }
662
663
664 /* Flag the arguments that are not present in all entries. */
665
666 static void
667 check_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
668 {
669 gfc_formal_arglist *f, *head;
670 head = new_args;
671
672 for (f = proc->formal; f; f = f->next)
673 {
674 if (f->sym == NULL)
675 continue;
676
677 for (new_args = head; new_args; new_args = new_args->next)
678 {
679 if (new_args->sym == f->sym)
680 break;
681 }
682
683 if (new_args)
684 continue;
685
686 f->sym->attr.not_always_present = 1;
687 }
688 }
689
690
691 /* Resolve alternate entry points. If a symbol has multiple entry points we
692 create a new master symbol for the main routine, and turn the existing
693 symbol into an entry point. */
694
695 static void
696 resolve_entries (gfc_namespace *ns)
697 {
698 gfc_namespace *old_ns;
699 gfc_code *c;
700 gfc_symbol *proc;
701 gfc_entry_list *el;
702 char name[GFC_MAX_SYMBOL_LEN + 1];
703 static int master_count = 0;
704
705 if (ns->proc_name == NULL)
706 return;
707
708 /* No need to do anything if this procedure doesn't have alternate entry
709 points. */
710 if (!ns->entries)
711 return;
712
713 /* We may already have resolved alternate entry points. */
714 if (ns->proc_name->attr.entry_master)
715 return;
716
717 /* If this isn't a procedure something has gone horribly wrong. */
718 gcc_assert (ns->proc_name->attr.flavor == FL_PROCEDURE);
719
720 /* Remember the current namespace. */
721 old_ns = gfc_current_ns;
722
723 gfc_current_ns = ns;
724
725 /* Add the main entry point to the list of entry points. */
726 el = gfc_get_entry_list ();
727 el->sym = ns->proc_name;
728 el->id = 0;
729 el->next = ns->entries;
730 ns->entries = el;
731 ns->proc_name->attr.entry = 1;
732
733 /* If it is a module function, it needs to be in the right namespace
734 so that gfc_get_fake_result_decl can gather up the results. The
735 need for this arose in get_proc_name, where these beasts were
736 left in their own namespace, to keep prior references linked to
737 the entry declaration.*/
738 if (ns->proc_name->attr.function
739 && ns->parent && ns->parent->proc_name->attr.flavor == FL_MODULE)
740 el->sym->ns = ns;
741
742 /* Do the same for entries where the master is not a module
743 procedure. These are retained in the module namespace because
744 of the module procedure declaration. */
745 for (el = el->next; el; el = el->next)
746 if (el->sym->ns->proc_name->attr.flavor == FL_MODULE
747 && el->sym->attr.mod_proc)
748 el->sym->ns = ns;
749 el = ns->entries;
750
751 /* Add an entry statement for it. */
752 c = gfc_get_code (EXEC_ENTRY);
753 c->ext.entry = el;
754 c->next = ns->code;
755 ns->code = c;
756
757 /* Create a new symbol for the master function. */
758 /* Give the internal function a unique name (within this file).
759 Also include the function name so the user has some hope of figuring
760 out what is going on. */
761 snprintf (name, GFC_MAX_SYMBOL_LEN, "master.%d.%s",
762 master_count++, ns->proc_name->name);
763 gfc_get_ha_symbol (name, &proc);
764 gcc_assert (proc != NULL);
765
766 gfc_add_procedure (&proc->attr, PROC_INTERNAL, proc->name, NULL);
767 if (ns->proc_name->attr.subroutine)
768 gfc_add_subroutine (&proc->attr, proc->name, NULL);
769 else
770 {
771 gfc_symbol *sym;
772 gfc_typespec *ts, *fts;
773 gfc_array_spec *as, *fas;
774 gfc_add_function (&proc->attr, proc->name, NULL);
775 proc->result = proc;
776 fas = ns->entries->sym->as;
777 fas = fas ? fas : ns->entries->sym->result->as;
778 fts = &ns->entries->sym->result->ts;
779 if (fts->type == BT_UNKNOWN)
780 fts = gfc_get_default_type (ns->entries->sym->result->name, NULL);
781 for (el = ns->entries->next; el; el = el->next)
782 {
783 ts = &el->sym->result->ts;
784 as = el->sym->as;
785 as = as ? as : el->sym->result->as;
786 if (ts->type == BT_UNKNOWN)
787 ts = gfc_get_default_type (el->sym->result->name, NULL);
788
789 if (! gfc_compare_types (ts, fts)
790 || (el->sym->result->attr.dimension
791 != ns->entries->sym->result->attr.dimension)
792 || (el->sym->result->attr.pointer
793 != ns->entries->sym->result->attr.pointer))
794 break;
795 else if (as && fas && ns->entries->sym->result != el->sym->result
796 && gfc_compare_array_spec (as, fas) == 0)
797 gfc_error ("Function %s at %L has entries with mismatched "
798 "array specifications", ns->entries->sym->name,
799 &ns->entries->sym->declared_at);
800 /* The characteristics need to match and thus both need to have
801 the same string length, i.e. both len=*, or both len=4.
802 Having both len=<variable> is also possible, but difficult to
803 check at compile time. */
804 else if (ts->type == BT_CHARACTER && ts->u.cl && fts->u.cl
805 && (((ts->u.cl->length && !fts->u.cl->length)
806 ||(!ts->u.cl->length && fts->u.cl->length))
807 || (ts->u.cl->length
808 && ts->u.cl->length->expr_type
809 != fts->u.cl->length->expr_type)
810 || (ts->u.cl->length
811 && ts->u.cl->length->expr_type == EXPR_CONSTANT
812 && mpz_cmp (ts->u.cl->length->value.integer,
813 fts->u.cl->length->value.integer) != 0)))
814 gfc_notify_std (GFC_STD_GNU, "Function %s at %L with "
815 "entries returning variables of different "
816 "string lengths", ns->entries->sym->name,
817 &ns->entries->sym->declared_at);
818 }
819
820 if (el == NULL)
821 {
822 sym = ns->entries->sym->result;
823 /* All result types the same. */
824 proc->ts = *fts;
825 if (sym->attr.dimension)
826 gfc_set_array_spec (proc, gfc_copy_array_spec (sym->as), NULL);
827 if (sym->attr.pointer)
828 gfc_add_pointer (&proc->attr, NULL);
829 }
830 else
831 {
832 /* Otherwise the result will be passed through a union by
833 reference. */
834 proc->attr.mixed_entry_master = 1;
835 for (el = ns->entries; el; el = el->next)
836 {
837 sym = el->sym->result;
838 if (sym->attr.dimension)
839 {
840 if (el == ns->entries)
841 gfc_error ("FUNCTION result %s can't be an array in "
842 "FUNCTION %s at %L", sym->name,
843 ns->entries->sym->name, &sym->declared_at);
844 else
845 gfc_error ("ENTRY result %s can't be an array in "
846 "FUNCTION %s at %L", sym->name,
847 ns->entries->sym->name, &sym->declared_at);
848 }
849 else if (sym->attr.pointer)
850 {
851 if (el == ns->entries)
852 gfc_error ("FUNCTION result %s can't be a POINTER in "
853 "FUNCTION %s at %L", sym->name,
854 ns->entries->sym->name, &sym->declared_at);
855 else
856 gfc_error ("ENTRY result %s can't be a POINTER in "
857 "FUNCTION %s at %L", sym->name,
858 ns->entries->sym->name, &sym->declared_at);
859 }
860 else
861 {
862 ts = &sym->ts;
863 if (ts->type == BT_UNKNOWN)
864 ts = gfc_get_default_type (sym->name, NULL);
865 switch (ts->type)
866 {
867 case BT_INTEGER:
868 if (ts->kind == gfc_default_integer_kind)
869 sym = NULL;
870 break;
871 case BT_REAL:
872 if (ts->kind == gfc_default_real_kind
873 || ts->kind == gfc_default_double_kind)
874 sym = NULL;
875 break;
876 case BT_COMPLEX:
877 if (ts->kind == gfc_default_complex_kind)
878 sym = NULL;
879 break;
880 case BT_LOGICAL:
881 if (ts->kind == gfc_default_logical_kind)
882 sym = NULL;
883 break;
884 case BT_UNKNOWN:
885 /* We will issue error elsewhere. */
886 sym = NULL;
887 break;
888 default:
889 break;
890 }
891 if (sym)
892 {
893 if (el == ns->entries)
894 gfc_error ("FUNCTION result %s can't be of type %s "
895 "in FUNCTION %s at %L", sym->name,
896 gfc_typename (ts), ns->entries->sym->name,
897 &sym->declared_at);
898 else
899 gfc_error ("ENTRY result %s can't be of type %s "
900 "in FUNCTION %s at %L", sym->name,
901 gfc_typename (ts), ns->entries->sym->name,
902 &sym->declared_at);
903 }
904 }
905 }
906 }
907 }
908 proc->attr.access = ACCESS_PRIVATE;
909 proc->attr.entry_master = 1;
910
911 /* Merge all the entry point arguments. */
912 for (el = ns->entries; el; el = el->next)
913 merge_argument_lists (proc, el->sym->formal);
914
915 /* Check the master formal arguments for any that are not
916 present in all entry points. */
917 for (el = ns->entries; el; el = el->next)
918 check_argument_lists (proc, el->sym->formal);
919
920 /* Use the master function for the function body. */
921 ns->proc_name = proc;
922
923 /* Finalize the new symbols. */
924 gfc_commit_symbols ();
925
926 /* Restore the original namespace. */
927 gfc_current_ns = old_ns;
928 }
929
930
931 /* Resolve common variables. */
932 static void
933 resolve_common_vars (gfc_common_head *common_block, bool named_common)
934 {
935 gfc_symbol *csym = common_block->head;
936
937 for (; csym; csym = csym->common_next)
938 {
939 /* gfc_add_in_common may have been called before, but the reported errors
940 have been ignored to continue parsing.
941 We do the checks again here. */
942 if (!csym->attr.use_assoc)
943 gfc_add_in_common (&csym->attr, csym->name, &common_block->where);
944
945 if (csym->value || csym->attr.data)
946 {
947 if (!csym->ns->is_block_data)
948 gfc_notify_std (GFC_STD_GNU, "Variable %qs at %L is in COMMON "
949 "but only in BLOCK DATA initialization is "
950 "allowed", csym->name, &csym->declared_at);
951 else if (!named_common)
952 gfc_notify_std (GFC_STD_GNU, "Initialized variable %qs at %L is "
953 "in a blank COMMON but initialization is only "
954 "allowed in named common blocks", csym->name,
955 &csym->declared_at);
956 }
957
958 if (UNLIMITED_POLY (csym))
959 gfc_error_now ("%qs in cannot appear in COMMON at %L "
960 "[F2008:C5100]", csym->name, &csym->declared_at);
961
962 if (csym->ts.type != BT_DERIVED)
963 continue;
964
965 if (!(csym->ts.u.derived->attr.sequence
966 || csym->ts.u.derived->attr.is_bind_c))
967 gfc_error_now ("Derived type variable %qs in COMMON at %L "
968 "has neither the SEQUENCE nor the BIND(C) "
969 "attribute", csym->name, &csym->declared_at);
970 if (csym->ts.u.derived->attr.alloc_comp)
971 gfc_error_now ("Derived type variable %qs in COMMON at %L "
972 "has an ultimate component that is "
973 "allocatable", csym->name, &csym->declared_at);
974 if (gfc_has_default_initializer (csym->ts.u.derived))
975 gfc_error_now ("Derived type variable %qs in COMMON at %L "
976 "may not have default initializer", csym->name,
977 &csym->declared_at);
978
979 if (csym->attr.flavor == FL_UNKNOWN && !csym->attr.proc_pointer)
980 gfc_add_flavor (&csym->attr, FL_VARIABLE, csym->name, &csym->declared_at);
981 }
982 }
983
984 /* Resolve common blocks. */
985 static void
986 resolve_common_blocks (gfc_symtree *common_root)
987 {
988 gfc_symbol *sym;
989 gfc_gsymbol * gsym;
990
991 if (common_root == NULL)
992 return;
993
994 if (common_root->left)
995 resolve_common_blocks (common_root->left);
996 if (common_root->right)
997 resolve_common_blocks (common_root->right);
998
999 resolve_common_vars (common_root->n.common, true);
1000
1001 if (!gfc_notify_std (GFC_STD_F2018_OBS, "COMMON block at %L",
1002 &common_root->n.common->where))
1003 return;
1004
1005 /* The common name is a global name - in Fortran 2003 also if it has a
1006 C binding name, since Fortran 2008 only the C binding name is a global
1007 identifier. */
1008 if (!common_root->n.common->binding_label
1009 || gfc_notification_std (GFC_STD_F2008))
1010 {
1011 gsym = gfc_find_gsymbol (gfc_gsym_root,
1012 common_root->n.common->name);
1013
1014 if (gsym && gfc_notification_std (GFC_STD_F2008)
1015 && gsym->type == GSYM_COMMON
1016 && ((common_root->n.common->binding_label
1017 && (!gsym->binding_label
1018 || strcmp (common_root->n.common->binding_label,
1019 gsym->binding_label) != 0))
1020 || (!common_root->n.common->binding_label
1021 && gsym->binding_label)))
1022 {
1023 gfc_error ("In Fortran 2003 COMMON %qs block at %L is a global "
1024 "identifier and must thus have the same binding name "
1025 "as the same-named COMMON block at %L: %s vs %s",
1026 common_root->n.common->name, &common_root->n.common->where,
1027 &gsym->where,
1028 common_root->n.common->binding_label
1029 ? common_root->n.common->binding_label : "(blank)",
1030 gsym->binding_label ? gsym->binding_label : "(blank)");
1031 return;
1032 }
1033
1034 if (gsym && gsym->type != GSYM_COMMON
1035 && !common_root->n.common->binding_label)
1036 {
1037 gfc_error ("COMMON block %qs at %L uses the same global identifier "
1038 "as entity at %L",
1039 common_root->n.common->name, &common_root->n.common->where,
1040 &gsym->where);
1041 return;
1042 }
1043 if (gsym && gsym->type != GSYM_COMMON)
1044 {
1045 gfc_error ("Fortran 2008: COMMON block %qs with binding label at "
1046 "%L sharing the identifier with global non-COMMON-block "
1047 "entity at %L", common_root->n.common->name,
1048 &common_root->n.common->where, &gsym->where);
1049 return;
1050 }
1051 if (!gsym)
1052 {
1053 gsym = gfc_get_gsymbol (common_root->n.common->name);
1054 gsym->type = GSYM_COMMON;
1055 gsym->where = common_root->n.common->where;
1056 gsym->defined = 1;
1057 }
1058 gsym->used = 1;
1059 }
1060
1061 if (common_root->n.common->binding_label)
1062 {
1063 gsym = gfc_find_gsymbol (gfc_gsym_root,
1064 common_root->n.common->binding_label);
1065 if (gsym && gsym->type != GSYM_COMMON)
1066 {
1067 gfc_error ("COMMON block at %L with binding label %qs uses the same "
1068 "global identifier as entity at %L",
1069 &common_root->n.common->where,
1070 common_root->n.common->binding_label, &gsym->where);
1071 return;
1072 }
1073 if (!gsym)
1074 {
1075 gsym = gfc_get_gsymbol (common_root->n.common->binding_label);
1076 gsym->type = GSYM_COMMON;
1077 gsym->where = common_root->n.common->where;
1078 gsym->defined = 1;
1079 }
1080 gsym->used = 1;
1081 }
1082
1083 gfc_find_symbol (common_root->name, gfc_current_ns, 0, &sym);
1084 if (sym == NULL)
1085 return;
1086
1087 if (sym->attr.flavor == FL_PARAMETER)
1088 gfc_error ("COMMON block %qs at %L is used as PARAMETER at %L",
1089 sym->name, &common_root->n.common->where, &sym->declared_at);
1090
1091 if (sym->attr.external)
1092 gfc_error ("COMMON block %qs at %L can not have the EXTERNAL attribute",
1093 sym->name, &common_root->n.common->where);
1094
1095 if (sym->attr.intrinsic)
1096 gfc_error ("COMMON block %qs at %L is also an intrinsic procedure",
1097 sym->name, &common_root->n.common->where);
1098 else if (sym->attr.result
1099 || gfc_is_function_return_value (sym, gfc_current_ns))
1100 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1101 "that is also a function result", sym->name,
1102 &common_root->n.common->where);
1103 else if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_INTERNAL
1104 && sym->attr.proc != PROC_ST_FUNCTION)
1105 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1106 "that is also a global procedure", sym->name,
1107 &common_root->n.common->where);
1108 }
1109
1110
1111 /* Resolve contained function types. Because contained functions can call one
1112 another, they have to be worked out before any of the contained procedures
1113 can be resolved.
1114
1115 The good news is that if a function doesn't already have a type, the only
1116 way it can get one is through an IMPLICIT type or a RESULT variable, because
1117 by definition contained functions are contained namespace they're contained
1118 in, not in a sibling or parent namespace. */
1119
1120 static void
1121 resolve_contained_functions (gfc_namespace *ns)
1122 {
1123 gfc_namespace *child;
1124 gfc_entry_list *el;
1125
1126 resolve_formal_arglists (ns);
1127
1128 for (child = ns->contained; child; child = child->sibling)
1129 {
1130 /* Resolve alternate entry points first. */
1131 resolve_entries (child);
1132
1133 /* Then check function return types. */
1134 resolve_contained_fntype (child->proc_name, child);
1135 for (el = child->entries; el; el = el->next)
1136 resolve_contained_fntype (el->sym, child);
1137 }
1138 }
1139
1140
1141
1142 /* A Parameterized Derived Type constructor must contain values for
1143 the PDT KIND parameters or they must have a default initializer.
1144 Go through the constructor picking out the KIND expressions,
1145 storing them in 'param_list' and then call gfc_get_pdt_instance
1146 to obtain the PDT instance. */
1147
1148 static gfc_actual_arglist *param_list, *param_tail, *param;
1149
1150 static bool
1151 get_pdt_spec_expr (gfc_component *c, gfc_expr *expr)
1152 {
1153 param = gfc_get_actual_arglist ();
1154 if (!param_list)
1155 param_list = param_tail = param;
1156 else
1157 {
1158 param_tail->next = param;
1159 param_tail = param_tail->next;
1160 }
1161
1162 param_tail->name = c->name;
1163 if (expr)
1164 param_tail->expr = gfc_copy_expr (expr);
1165 else if (c->initializer)
1166 param_tail->expr = gfc_copy_expr (c->initializer);
1167 else
1168 {
1169 param_tail->spec_type = SPEC_ASSUMED;
1170 if (c->attr.pdt_kind)
1171 {
1172 gfc_error ("The KIND parameter %qs in the PDT constructor "
1173 "at %C has no value", param->name);
1174 return false;
1175 }
1176 }
1177
1178 return true;
1179 }
1180
1181 static bool
1182 get_pdt_constructor (gfc_expr *expr, gfc_constructor **constr,
1183 gfc_symbol *derived)
1184 {
1185 gfc_constructor *cons = NULL;
1186 gfc_component *comp;
1187 bool t = true;
1188
1189 if (expr && expr->expr_type == EXPR_STRUCTURE)
1190 cons = gfc_constructor_first (expr->value.constructor);
1191 else if (constr)
1192 cons = *constr;
1193 gcc_assert (cons);
1194
1195 comp = derived->components;
1196
1197 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1198 {
1199 if (cons->expr
1200 && cons->expr->expr_type == EXPR_STRUCTURE
1201 && comp->ts.type == BT_DERIVED)
1202 {
1203 t = get_pdt_constructor (cons->expr, NULL, comp->ts.u.derived);
1204 if (!t)
1205 return t;
1206 }
1207 else if (comp->ts.type == BT_DERIVED)
1208 {
1209 t = get_pdt_constructor (NULL, &cons, comp->ts.u.derived);
1210 if (!t)
1211 return t;
1212 }
1213 else if ((comp->attr.pdt_kind || comp->attr.pdt_len)
1214 && derived->attr.pdt_template)
1215 {
1216 t = get_pdt_spec_expr (comp, cons->expr);
1217 if (!t)
1218 return t;
1219 }
1220 }
1221 return t;
1222 }
1223
1224
1225 static bool resolve_fl_derived0 (gfc_symbol *sym);
1226 static bool resolve_fl_struct (gfc_symbol *sym);
1227
1228
1229 /* Resolve all of the elements of a structure constructor and make sure that
1230 the types are correct. The 'init' flag indicates that the given
1231 constructor is an initializer. */
1232
1233 static bool
1234 resolve_structure_cons (gfc_expr *expr, int init)
1235 {
1236 gfc_constructor *cons;
1237 gfc_component *comp;
1238 bool t;
1239 symbol_attribute a;
1240
1241 t = true;
1242
1243 if (expr->ts.type == BT_DERIVED || expr->ts.type == BT_UNION)
1244 {
1245 if (expr->ts.u.derived->attr.flavor == FL_DERIVED)
1246 resolve_fl_derived0 (expr->ts.u.derived);
1247 else
1248 resolve_fl_struct (expr->ts.u.derived);
1249
1250 /* If this is a Parameterized Derived Type template, find the
1251 instance corresponding to the PDT kind parameters. */
1252 if (expr->ts.u.derived->attr.pdt_template)
1253 {
1254 param_list = NULL;
1255 t = get_pdt_constructor (expr, NULL, expr->ts.u.derived);
1256 if (!t)
1257 return t;
1258 gfc_get_pdt_instance (param_list, &expr->ts.u.derived, NULL);
1259
1260 expr->param_list = gfc_copy_actual_arglist (param_list);
1261
1262 if (param_list)
1263 gfc_free_actual_arglist (param_list);
1264
1265 if (!expr->ts.u.derived->attr.pdt_type)
1266 return false;
1267 }
1268 }
1269
1270 cons = gfc_constructor_first (expr->value.constructor);
1271
1272 /* A constructor may have references if it is the result of substituting a
1273 parameter variable. In this case we just pull out the component we
1274 want. */
1275 if (expr->ref)
1276 comp = expr->ref->u.c.sym->components;
1277 else
1278 comp = expr->ts.u.derived->components;
1279
1280 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1281 {
1282 int rank;
1283
1284 if (!cons->expr)
1285 continue;
1286
1287 /* Unions use an EXPR_NULL contrived expression to tell the translation
1288 phase to generate an initializer of the appropriate length.
1289 Ignore it here. */
1290 if (cons->expr->ts.type == BT_UNION && cons->expr->expr_type == EXPR_NULL)
1291 continue;
1292
1293 if (!gfc_resolve_expr (cons->expr))
1294 {
1295 t = false;
1296 continue;
1297 }
1298
1299 rank = comp->as ? comp->as->rank : 0;
1300 if (comp->ts.type == BT_CLASS
1301 && !comp->ts.u.derived->attr.unlimited_polymorphic
1302 && CLASS_DATA (comp)->as)
1303 rank = CLASS_DATA (comp)->as->rank;
1304
1305 if (cons->expr->expr_type != EXPR_NULL && rank != cons->expr->rank
1306 && (comp->attr.allocatable || cons->expr->rank))
1307 {
1308 gfc_error ("The rank of the element in the structure "
1309 "constructor at %L does not match that of the "
1310 "component (%d/%d)", &cons->expr->where,
1311 cons->expr->rank, rank);
1312 t = false;
1313 }
1314
1315 /* If we don't have the right type, try to convert it. */
1316
1317 if (!comp->attr.proc_pointer &&
1318 !gfc_compare_types (&cons->expr->ts, &comp->ts))
1319 {
1320 if (strcmp (comp->name, "_extends") == 0)
1321 {
1322 /* Can afford to be brutal with the _extends initializer.
1323 The derived type can get lost because it is PRIVATE
1324 but it is not usage constrained by the standard. */
1325 cons->expr->ts = comp->ts;
1326 }
1327 else if (comp->attr.pointer && cons->expr->ts.type != BT_UNKNOWN)
1328 {
1329 gfc_error ("The element in the structure constructor at %L, "
1330 "for pointer component %qs, is %s but should be %s",
1331 &cons->expr->where, comp->name,
1332 gfc_basic_typename (cons->expr->ts.type),
1333 gfc_basic_typename (comp->ts.type));
1334 t = false;
1335 }
1336 else
1337 {
1338 bool t2 = gfc_convert_type (cons->expr, &comp->ts, 1);
1339 if (t)
1340 t = t2;
1341 }
1342 }
1343
1344 /* For strings, the length of the constructor should be the same as
1345 the one of the structure, ensure this if the lengths are known at
1346 compile time and when we are dealing with PARAMETER or structure
1347 constructors. */
1348 if (cons->expr->ts.type == BT_CHARACTER && comp->ts.u.cl
1349 && comp->ts.u.cl->length
1350 && comp->ts.u.cl->length->expr_type == EXPR_CONSTANT
1351 && cons->expr->ts.u.cl && cons->expr->ts.u.cl->length
1352 && cons->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
1353 && cons->expr->rank != 0
1354 && mpz_cmp (cons->expr->ts.u.cl->length->value.integer,
1355 comp->ts.u.cl->length->value.integer) != 0)
1356 {
1357 if (cons->expr->expr_type == EXPR_VARIABLE
1358 && cons->expr->symtree->n.sym->attr.flavor == FL_PARAMETER)
1359 {
1360 /* Wrap the parameter in an array constructor (EXPR_ARRAY)
1361 to make use of the gfc_resolve_character_array_constructor
1362 machinery. The expression is later simplified away to
1363 an array of string literals. */
1364 gfc_expr *para = cons->expr;
1365 cons->expr = gfc_get_expr ();
1366 cons->expr->ts = para->ts;
1367 cons->expr->where = para->where;
1368 cons->expr->expr_type = EXPR_ARRAY;
1369 cons->expr->rank = para->rank;
1370 cons->expr->shape = gfc_copy_shape (para->shape, para->rank);
1371 gfc_constructor_append_expr (&cons->expr->value.constructor,
1372 para, &cons->expr->where);
1373 }
1374
1375 if (cons->expr->expr_type == EXPR_ARRAY)
1376 {
1377 /* Rely on the cleanup of the namespace to deal correctly with
1378 the old charlen. (There was a block here that attempted to
1379 remove the charlen but broke the chain in so doing.) */
1380 cons->expr->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1381 cons->expr->ts.u.cl->length_from_typespec = true;
1382 cons->expr->ts.u.cl->length = gfc_copy_expr (comp->ts.u.cl->length);
1383 gfc_resolve_character_array_constructor (cons->expr);
1384 }
1385 }
1386
1387 if (cons->expr->expr_type == EXPR_NULL
1388 && !(comp->attr.pointer || comp->attr.allocatable
1389 || comp->attr.proc_pointer || comp->ts.f90_type == BT_VOID
1390 || (comp->ts.type == BT_CLASS
1391 && (CLASS_DATA (comp)->attr.class_pointer
1392 || CLASS_DATA (comp)->attr.allocatable))))
1393 {
1394 t = false;
1395 gfc_error ("The NULL in the structure constructor at %L is "
1396 "being applied to component %qs, which is neither "
1397 "a POINTER nor ALLOCATABLE", &cons->expr->where,
1398 comp->name);
1399 }
1400
1401 if (comp->attr.proc_pointer && comp->ts.interface)
1402 {
1403 /* Check procedure pointer interface. */
1404 gfc_symbol *s2 = NULL;
1405 gfc_component *c2;
1406 const char *name;
1407 char err[200];
1408
1409 c2 = gfc_get_proc_ptr_comp (cons->expr);
1410 if (c2)
1411 {
1412 s2 = c2->ts.interface;
1413 name = c2->name;
1414 }
1415 else if (cons->expr->expr_type == EXPR_FUNCTION)
1416 {
1417 s2 = cons->expr->symtree->n.sym->result;
1418 name = cons->expr->symtree->n.sym->result->name;
1419 }
1420 else if (cons->expr->expr_type != EXPR_NULL)
1421 {
1422 s2 = cons->expr->symtree->n.sym;
1423 name = cons->expr->symtree->n.sym->name;
1424 }
1425
1426 if (s2 && !gfc_compare_interfaces (comp->ts.interface, s2, name, 0, 1,
1427 err, sizeof (err), NULL, NULL))
1428 {
1429 gfc_error_opt (OPT_Wargument_mismatch,
1430 "Interface mismatch for procedure-pointer "
1431 "component %qs in structure constructor at %L:"
1432 " %s", comp->name, &cons->expr->where, err);
1433 return false;
1434 }
1435 }
1436
1437 if (!comp->attr.pointer || comp->attr.proc_pointer
1438 || cons->expr->expr_type == EXPR_NULL)
1439 continue;
1440
1441 a = gfc_expr_attr (cons->expr);
1442
1443 if (!a.pointer && !a.target)
1444 {
1445 t = false;
1446 gfc_error ("The element in the structure constructor at %L, "
1447 "for pointer component %qs should be a POINTER or "
1448 "a TARGET", &cons->expr->where, comp->name);
1449 }
1450
1451 if (init)
1452 {
1453 /* F08:C461. Additional checks for pointer initialization. */
1454 if (a.allocatable)
1455 {
1456 t = false;
1457 gfc_error ("Pointer initialization target at %L "
1458 "must not be ALLOCATABLE", &cons->expr->where);
1459 }
1460 if (!a.save)
1461 {
1462 t = false;
1463 gfc_error ("Pointer initialization target at %L "
1464 "must have the SAVE attribute", &cons->expr->where);
1465 }
1466 }
1467
1468 /* F2003, C1272 (3). */
1469 bool impure = cons->expr->expr_type == EXPR_VARIABLE
1470 && (gfc_impure_variable (cons->expr->symtree->n.sym)
1471 || gfc_is_coindexed (cons->expr));
1472 if (impure && gfc_pure (NULL))
1473 {
1474 t = false;
1475 gfc_error ("Invalid expression in the structure constructor for "
1476 "pointer component %qs at %L in PURE procedure",
1477 comp->name, &cons->expr->where);
1478 }
1479
1480 if (impure)
1481 gfc_unset_implicit_pure (NULL);
1482 }
1483
1484 return t;
1485 }
1486
1487
1488 /****************** Expression name resolution ******************/
1489
1490 /* Returns 0 if a symbol was not declared with a type or
1491 attribute declaration statement, nonzero otherwise. */
1492
1493 static int
1494 was_declared (gfc_symbol *sym)
1495 {
1496 symbol_attribute a;
1497
1498 a = sym->attr;
1499
1500 if (!a.implicit_type && sym->ts.type != BT_UNKNOWN)
1501 return 1;
1502
1503 if (a.allocatable || a.dimension || a.dummy || a.external || a.intrinsic
1504 || a.optional || a.pointer || a.save || a.target || a.volatile_
1505 || a.value || a.access != ACCESS_UNKNOWN || a.intent != INTENT_UNKNOWN
1506 || a.asynchronous || a.codimension)
1507 return 1;
1508
1509 return 0;
1510 }
1511
1512
1513 /* Determine if a symbol is generic or not. */
1514
1515 static int
1516 generic_sym (gfc_symbol *sym)
1517 {
1518 gfc_symbol *s;
1519
1520 if (sym->attr.generic ||
1521 (sym->attr.intrinsic && gfc_generic_intrinsic (sym->name)))
1522 return 1;
1523
1524 if (was_declared (sym) || sym->ns->parent == NULL)
1525 return 0;
1526
1527 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1528
1529 if (s != NULL)
1530 {
1531 if (s == sym)
1532 return 0;
1533 else
1534 return generic_sym (s);
1535 }
1536
1537 return 0;
1538 }
1539
1540
1541 /* Determine if a symbol is specific or not. */
1542
1543 static int
1544 specific_sym (gfc_symbol *sym)
1545 {
1546 gfc_symbol *s;
1547
1548 if (sym->attr.if_source == IFSRC_IFBODY
1549 || sym->attr.proc == PROC_MODULE
1550 || sym->attr.proc == PROC_INTERNAL
1551 || sym->attr.proc == PROC_ST_FUNCTION
1552 || (sym->attr.intrinsic && gfc_specific_intrinsic (sym->name))
1553 || sym->attr.external)
1554 return 1;
1555
1556 if (was_declared (sym) || sym->ns->parent == NULL)
1557 return 0;
1558
1559 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1560
1561 return (s == NULL) ? 0 : specific_sym (s);
1562 }
1563
1564
1565 /* Figure out if the procedure is specific, generic or unknown. */
1566
1567 enum proc_type
1568 { PTYPE_GENERIC = 1, PTYPE_SPECIFIC, PTYPE_UNKNOWN };
1569
1570 static proc_type
1571 procedure_kind (gfc_symbol *sym)
1572 {
1573 if (generic_sym (sym))
1574 return PTYPE_GENERIC;
1575
1576 if (specific_sym (sym))
1577 return PTYPE_SPECIFIC;
1578
1579 return PTYPE_UNKNOWN;
1580 }
1581
1582 /* Check references to assumed size arrays. The flag need_full_assumed_size
1583 is nonzero when matching actual arguments. */
1584
1585 static int need_full_assumed_size = 0;
1586
1587 static bool
1588 check_assumed_size_reference (gfc_symbol *sym, gfc_expr *e)
1589 {
1590 if (need_full_assumed_size || !(sym->as && sym->as->type == AS_ASSUMED_SIZE))
1591 return false;
1592
1593 /* FIXME: The comparison "e->ref->u.ar.type == AR_FULL" is wrong.
1594 What should it be? */
1595 if (e->ref && (e->ref->u.ar.end[e->ref->u.ar.as->rank - 1] == NULL)
1596 && (e->ref->u.ar.as->type == AS_ASSUMED_SIZE)
1597 && (e->ref->u.ar.type == AR_FULL))
1598 {
1599 gfc_error ("The upper bound in the last dimension must "
1600 "appear in the reference to the assumed size "
1601 "array %qs at %L", sym->name, &e->where);
1602 return true;
1603 }
1604 return false;
1605 }
1606
1607
1608 /* Look for bad assumed size array references in argument expressions
1609 of elemental and array valued intrinsic procedures. Since this is
1610 called from procedure resolution functions, it only recurses at
1611 operators. */
1612
1613 static bool
1614 resolve_assumed_size_actual (gfc_expr *e)
1615 {
1616 if (e == NULL)
1617 return false;
1618
1619 switch (e->expr_type)
1620 {
1621 case EXPR_VARIABLE:
1622 if (e->symtree && check_assumed_size_reference (e->symtree->n.sym, e))
1623 return true;
1624 break;
1625
1626 case EXPR_OP:
1627 if (resolve_assumed_size_actual (e->value.op.op1)
1628 || resolve_assumed_size_actual (e->value.op.op2))
1629 return true;
1630 break;
1631
1632 default:
1633 break;
1634 }
1635 return false;
1636 }
1637
1638
1639 /* Check a generic procedure, passed as an actual argument, to see if
1640 there is a matching specific name. If none, it is an error, and if
1641 more than one, the reference is ambiguous. */
1642 static int
1643 count_specific_procs (gfc_expr *e)
1644 {
1645 int n;
1646 gfc_interface *p;
1647 gfc_symbol *sym;
1648
1649 n = 0;
1650 sym = e->symtree->n.sym;
1651
1652 for (p = sym->generic; p; p = p->next)
1653 if (strcmp (sym->name, p->sym->name) == 0)
1654 {
1655 e->symtree = gfc_find_symtree (p->sym->ns->sym_root,
1656 sym->name);
1657 n++;
1658 }
1659
1660 if (n > 1)
1661 gfc_error ("%qs at %L is ambiguous", e->symtree->n.sym->name,
1662 &e->where);
1663
1664 if (n == 0)
1665 gfc_error ("GENERIC procedure %qs is not allowed as an actual "
1666 "argument at %L", sym->name, &e->where);
1667
1668 return n;
1669 }
1670
1671
1672 /* See if a call to sym could possibly be a not allowed RECURSION because of
1673 a missing RECURSIVE declaration. This means that either sym is the current
1674 context itself, or sym is the parent of a contained procedure calling its
1675 non-RECURSIVE containing procedure.
1676 This also works if sym is an ENTRY. */
1677
1678 static bool
1679 is_illegal_recursion (gfc_symbol* sym, gfc_namespace* context)
1680 {
1681 gfc_symbol* proc_sym;
1682 gfc_symbol* context_proc;
1683 gfc_namespace* real_context;
1684
1685 if (sym->attr.flavor == FL_PROGRAM
1686 || gfc_fl_struct (sym->attr.flavor))
1687 return false;
1688
1689 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
1690
1691 /* If we've got an ENTRY, find real procedure. */
1692 if (sym->attr.entry && sym->ns->entries)
1693 proc_sym = sym->ns->entries->sym;
1694 else
1695 proc_sym = sym;
1696
1697 /* If sym is RECURSIVE, all is well of course. */
1698 if (proc_sym->attr.recursive || flag_recursive)
1699 return false;
1700
1701 /* Find the context procedure's "real" symbol if it has entries.
1702 We look for a procedure symbol, so recurse on the parents if we don't
1703 find one (like in case of a BLOCK construct). */
1704 for (real_context = context; ; real_context = real_context->parent)
1705 {
1706 /* We should find something, eventually! */
1707 gcc_assert (real_context);
1708
1709 context_proc = (real_context->entries ? real_context->entries->sym
1710 : real_context->proc_name);
1711
1712 /* In some special cases, there may not be a proc_name, like for this
1713 invalid code:
1714 real(bad_kind()) function foo () ...
1715 when checking the call to bad_kind ().
1716 In these cases, we simply return here and assume that the
1717 call is ok. */
1718 if (!context_proc)
1719 return false;
1720
1721 if (context_proc->attr.flavor != FL_LABEL)
1722 break;
1723 }
1724
1725 /* A call from sym's body to itself is recursion, of course. */
1726 if (context_proc == proc_sym)
1727 return true;
1728
1729 /* The same is true if context is a contained procedure and sym the
1730 containing one. */
1731 if (context_proc->attr.contained)
1732 {
1733 gfc_symbol* parent_proc;
1734
1735 gcc_assert (context->parent);
1736 parent_proc = (context->parent->entries ? context->parent->entries->sym
1737 : context->parent->proc_name);
1738
1739 if (parent_proc == proc_sym)
1740 return true;
1741 }
1742
1743 return false;
1744 }
1745
1746
1747 /* Resolve an intrinsic procedure: Set its function/subroutine attribute,
1748 its typespec and formal argument list. */
1749
1750 bool
1751 gfc_resolve_intrinsic (gfc_symbol *sym, locus *loc)
1752 {
1753 gfc_intrinsic_sym* isym = NULL;
1754 const char* symstd;
1755
1756 if (sym->formal)
1757 return true;
1758
1759 /* Already resolved. */
1760 if (sym->from_intmod && sym->ts.type != BT_UNKNOWN)
1761 return true;
1762
1763 /* We already know this one is an intrinsic, so we don't call
1764 gfc_is_intrinsic for full checking but rather use gfc_find_function and
1765 gfc_find_subroutine directly to check whether it is a function or
1766 subroutine. */
1767
1768 if (sym->intmod_sym_id && sym->attr.subroutine)
1769 {
1770 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1771 isym = gfc_intrinsic_subroutine_by_id (id);
1772 }
1773 else if (sym->intmod_sym_id)
1774 {
1775 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1776 isym = gfc_intrinsic_function_by_id (id);
1777 }
1778 else if (!sym->attr.subroutine)
1779 isym = gfc_find_function (sym->name);
1780
1781 if (isym && !sym->attr.subroutine)
1782 {
1783 if (sym->ts.type != BT_UNKNOWN && warn_surprising
1784 && !sym->attr.implicit_type)
1785 gfc_warning (OPT_Wsurprising,
1786 "Type specified for intrinsic function %qs at %L is"
1787 " ignored", sym->name, &sym->declared_at);
1788
1789 if (!sym->attr.function &&
1790 !gfc_add_function(&sym->attr, sym->name, loc))
1791 return false;
1792
1793 sym->ts = isym->ts;
1794 }
1795 else if (isym || (isym = gfc_find_subroutine (sym->name)))
1796 {
1797 if (sym->ts.type != BT_UNKNOWN && !sym->attr.implicit_type)
1798 {
1799 gfc_error ("Intrinsic subroutine %qs at %L shall not have a type"
1800 " specifier", sym->name, &sym->declared_at);
1801 return false;
1802 }
1803
1804 if (!sym->attr.subroutine &&
1805 !gfc_add_subroutine(&sym->attr, sym->name, loc))
1806 return false;
1807 }
1808 else
1809 {
1810 gfc_error ("%qs declared INTRINSIC at %L does not exist", sym->name,
1811 &sym->declared_at);
1812 return false;
1813 }
1814
1815 gfc_copy_formal_args_intr (sym, isym, NULL);
1816
1817 sym->attr.pure = isym->pure;
1818 sym->attr.elemental = isym->elemental;
1819
1820 /* Check it is actually available in the standard settings. */
1821 if (!gfc_check_intrinsic_standard (isym, &symstd, false, sym->declared_at))
1822 {
1823 gfc_error ("The intrinsic %qs declared INTRINSIC at %L is not "
1824 "available in the current standard settings but %s. Use "
1825 "an appropriate %<-std=*%> option or enable "
1826 "%<-fall-intrinsics%> in order to use it.",
1827 sym->name, &sym->declared_at, symstd);
1828 return false;
1829 }
1830
1831 return true;
1832 }
1833
1834
1835 /* Resolve a procedure expression, like passing it to a called procedure or as
1836 RHS for a procedure pointer assignment. */
1837
1838 static bool
1839 resolve_procedure_expression (gfc_expr* expr)
1840 {
1841 gfc_symbol* sym;
1842
1843 if (expr->expr_type != EXPR_VARIABLE)
1844 return true;
1845 gcc_assert (expr->symtree);
1846
1847 sym = expr->symtree->n.sym;
1848
1849 if (sym->attr.intrinsic)
1850 gfc_resolve_intrinsic (sym, &expr->where);
1851
1852 if (sym->attr.flavor != FL_PROCEDURE
1853 || (sym->attr.function && sym->result == sym))
1854 return true;
1855
1856 /* A non-RECURSIVE procedure that is used as procedure expression within its
1857 own body is in danger of being called recursively. */
1858 if (is_illegal_recursion (sym, gfc_current_ns))
1859 gfc_warning (0, "Non-RECURSIVE procedure %qs at %L is possibly calling"
1860 " itself recursively. Declare it RECURSIVE or use"
1861 " %<-frecursive%>", sym->name, &expr->where);
1862
1863 return true;
1864 }
1865
1866
1867 /* Resolve an actual argument list. Most of the time, this is just
1868 resolving the expressions in the list.
1869 The exception is that we sometimes have to decide whether arguments
1870 that look like procedure arguments are really simple variable
1871 references. */
1872
1873 static bool
1874 resolve_actual_arglist (gfc_actual_arglist *arg, procedure_type ptype,
1875 bool no_formal_args)
1876 {
1877 gfc_symbol *sym;
1878 gfc_symtree *parent_st;
1879 gfc_expr *e;
1880 gfc_component *comp;
1881 int save_need_full_assumed_size;
1882 bool return_value = false;
1883 bool actual_arg_sav = actual_arg, first_actual_arg_sav = first_actual_arg;
1884
1885 actual_arg = true;
1886 first_actual_arg = true;
1887
1888 for (; arg; arg = arg->next)
1889 {
1890 e = arg->expr;
1891 if (e == NULL)
1892 {
1893 /* Check the label is a valid branching target. */
1894 if (arg->label)
1895 {
1896 if (arg->label->defined == ST_LABEL_UNKNOWN)
1897 {
1898 gfc_error ("Label %d referenced at %L is never defined",
1899 arg->label->value, &arg->label->where);
1900 goto cleanup;
1901 }
1902 }
1903 first_actual_arg = false;
1904 continue;
1905 }
1906
1907 if (e->expr_type == EXPR_VARIABLE
1908 && e->symtree->n.sym->attr.generic
1909 && no_formal_args
1910 && count_specific_procs (e) != 1)
1911 goto cleanup;
1912
1913 if (e->ts.type != BT_PROCEDURE)
1914 {
1915 save_need_full_assumed_size = need_full_assumed_size;
1916 if (e->expr_type != EXPR_VARIABLE)
1917 need_full_assumed_size = 0;
1918 if (!gfc_resolve_expr (e))
1919 goto cleanup;
1920 need_full_assumed_size = save_need_full_assumed_size;
1921 goto argument_list;
1922 }
1923
1924 /* See if the expression node should really be a variable reference. */
1925
1926 sym = e->symtree->n.sym;
1927
1928 if (sym->attr.flavor == FL_PROCEDURE
1929 || sym->attr.intrinsic
1930 || sym->attr.external)
1931 {
1932 int actual_ok;
1933
1934 /* If a procedure is not already determined to be something else
1935 check if it is intrinsic. */
1936 if (gfc_is_intrinsic (sym, sym->attr.subroutine, e->where))
1937 sym->attr.intrinsic = 1;
1938
1939 if (sym->attr.proc == PROC_ST_FUNCTION)
1940 {
1941 gfc_error ("Statement function %qs at %L is not allowed as an "
1942 "actual argument", sym->name, &e->where);
1943 }
1944
1945 actual_ok = gfc_intrinsic_actual_ok (sym->name,
1946 sym->attr.subroutine);
1947 if (sym->attr.intrinsic && actual_ok == 0)
1948 {
1949 gfc_error ("Intrinsic %qs at %L is not allowed as an "
1950 "actual argument", sym->name, &e->where);
1951 }
1952
1953 if (sym->attr.contained && !sym->attr.use_assoc
1954 && sym->ns->proc_name->attr.flavor != FL_MODULE)
1955 {
1956 if (!gfc_notify_std (GFC_STD_F2008, "Internal procedure %qs is"
1957 " used as actual argument at %L",
1958 sym->name, &e->where))
1959 goto cleanup;
1960 }
1961
1962 if (sym->attr.elemental && !sym->attr.intrinsic)
1963 {
1964 gfc_error ("ELEMENTAL non-INTRINSIC procedure %qs is not "
1965 "allowed as an actual argument at %L", sym->name,
1966 &e->where);
1967 }
1968
1969 /* Check if a generic interface has a specific procedure
1970 with the same name before emitting an error. */
1971 if (sym->attr.generic && count_specific_procs (e) != 1)
1972 goto cleanup;
1973
1974 /* Just in case a specific was found for the expression. */
1975 sym = e->symtree->n.sym;
1976
1977 /* If the symbol is the function that names the current (or
1978 parent) scope, then we really have a variable reference. */
1979
1980 if (gfc_is_function_return_value (sym, sym->ns))
1981 goto got_variable;
1982
1983 /* If all else fails, see if we have a specific intrinsic. */
1984 if (sym->ts.type == BT_UNKNOWN && sym->attr.intrinsic)
1985 {
1986 gfc_intrinsic_sym *isym;
1987
1988 isym = gfc_find_function (sym->name);
1989 if (isym == NULL || !isym->specific)
1990 {
1991 gfc_error ("Unable to find a specific INTRINSIC procedure "
1992 "for the reference %qs at %L", sym->name,
1993 &e->where);
1994 goto cleanup;
1995 }
1996 sym->ts = isym->ts;
1997 sym->attr.intrinsic = 1;
1998 sym->attr.function = 1;
1999 }
2000
2001 if (!gfc_resolve_expr (e))
2002 goto cleanup;
2003 goto argument_list;
2004 }
2005
2006 /* See if the name is a module procedure in a parent unit. */
2007
2008 if (was_declared (sym) || sym->ns->parent == NULL)
2009 goto got_variable;
2010
2011 if (gfc_find_sym_tree (sym->name, sym->ns->parent, 1, &parent_st))
2012 {
2013 gfc_error ("Symbol %qs at %L is ambiguous", sym->name, &e->where);
2014 goto cleanup;
2015 }
2016
2017 if (parent_st == NULL)
2018 goto got_variable;
2019
2020 sym = parent_st->n.sym;
2021 e->symtree = parent_st; /* Point to the right thing. */
2022
2023 if (sym->attr.flavor == FL_PROCEDURE
2024 || sym->attr.intrinsic
2025 || sym->attr.external)
2026 {
2027 if (!gfc_resolve_expr (e))
2028 goto cleanup;
2029 goto argument_list;
2030 }
2031
2032 got_variable:
2033 e->expr_type = EXPR_VARIABLE;
2034 e->ts = sym->ts;
2035 if ((sym->as != NULL && sym->ts.type != BT_CLASS)
2036 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
2037 && CLASS_DATA (sym)->as))
2038 {
2039 e->rank = sym->ts.type == BT_CLASS
2040 ? CLASS_DATA (sym)->as->rank : sym->as->rank;
2041 e->ref = gfc_get_ref ();
2042 e->ref->type = REF_ARRAY;
2043 e->ref->u.ar.type = AR_FULL;
2044 e->ref->u.ar.as = sym->ts.type == BT_CLASS
2045 ? CLASS_DATA (sym)->as : sym->as;
2046 }
2047
2048 /* Expressions are assigned a default ts.type of BT_PROCEDURE in
2049 primary.c (match_actual_arg). If above code determines that it
2050 is a variable instead, it needs to be resolved as it was not
2051 done at the beginning of this function. */
2052 save_need_full_assumed_size = need_full_assumed_size;
2053 if (e->expr_type != EXPR_VARIABLE)
2054 need_full_assumed_size = 0;
2055 if (!gfc_resolve_expr (e))
2056 goto cleanup;
2057 need_full_assumed_size = save_need_full_assumed_size;
2058
2059 argument_list:
2060 /* Check argument list functions %VAL, %LOC and %REF. There is
2061 nothing to do for %REF. */
2062 if (arg->name && arg->name[0] == '%')
2063 {
2064 if (strncmp ("%VAL", arg->name, 4) == 0)
2065 {
2066 if (e->ts.type == BT_CHARACTER || e->ts.type == BT_DERIVED)
2067 {
2068 gfc_error ("By-value argument at %L is not of numeric "
2069 "type", &e->where);
2070 goto cleanup;
2071 }
2072
2073 if (e->rank)
2074 {
2075 gfc_error ("By-value argument at %L cannot be an array or "
2076 "an array section", &e->where);
2077 goto cleanup;
2078 }
2079
2080 /* Intrinsics are still PROC_UNKNOWN here. However,
2081 since same file external procedures are not resolvable
2082 in gfortran, it is a good deal easier to leave them to
2083 intrinsic.c. */
2084 if (ptype != PROC_UNKNOWN
2085 && ptype != PROC_DUMMY
2086 && ptype != PROC_EXTERNAL
2087 && ptype != PROC_MODULE)
2088 {
2089 gfc_error ("By-value argument at %L is not allowed "
2090 "in this context", &e->where);
2091 goto cleanup;
2092 }
2093 }
2094
2095 /* Statement functions have already been excluded above. */
2096 else if (strncmp ("%LOC", arg->name, 4) == 0
2097 && e->ts.type == BT_PROCEDURE)
2098 {
2099 if (e->symtree->n.sym->attr.proc == PROC_INTERNAL)
2100 {
2101 gfc_error ("Passing internal procedure at %L by location "
2102 "not allowed", &e->where);
2103 goto cleanup;
2104 }
2105 }
2106 }
2107
2108 comp = gfc_get_proc_ptr_comp(e);
2109 if (e->expr_type == EXPR_VARIABLE
2110 && comp && comp->attr.elemental)
2111 {
2112 gfc_error ("ELEMENTAL procedure pointer component %qs is not "
2113 "allowed as an actual argument at %L", comp->name,
2114 &e->where);
2115 }
2116
2117 /* Fortran 2008, C1237. */
2118 if (e->expr_type == EXPR_VARIABLE && gfc_is_coindexed (e)
2119 && gfc_has_ultimate_pointer (e))
2120 {
2121 gfc_error ("Coindexed actual argument at %L with ultimate pointer "
2122 "component", &e->where);
2123 goto cleanup;
2124 }
2125
2126 first_actual_arg = false;
2127 }
2128
2129 return_value = true;
2130
2131 cleanup:
2132 actual_arg = actual_arg_sav;
2133 first_actual_arg = first_actual_arg_sav;
2134
2135 return return_value;
2136 }
2137
2138
2139 /* Do the checks of the actual argument list that are specific to elemental
2140 procedures. If called with c == NULL, we have a function, otherwise if
2141 expr == NULL, we have a subroutine. */
2142
2143 static bool
2144 resolve_elemental_actual (gfc_expr *expr, gfc_code *c)
2145 {
2146 gfc_actual_arglist *arg0;
2147 gfc_actual_arglist *arg;
2148 gfc_symbol *esym = NULL;
2149 gfc_intrinsic_sym *isym = NULL;
2150 gfc_expr *e = NULL;
2151 gfc_intrinsic_arg *iformal = NULL;
2152 gfc_formal_arglist *eformal = NULL;
2153 bool formal_optional = false;
2154 bool set_by_optional = false;
2155 int i;
2156 int rank = 0;
2157
2158 /* Is this an elemental procedure? */
2159 if (expr && expr->value.function.actual != NULL)
2160 {
2161 if (expr->value.function.esym != NULL
2162 && expr->value.function.esym->attr.elemental)
2163 {
2164 arg0 = expr->value.function.actual;
2165 esym = expr->value.function.esym;
2166 }
2167 else if (expr->value.function.isym != NULL
2168 && expr->value.function.isym->elemental)
2169 {
2170 arg0 = expr->value.function.actual;
2171 isym = expr->value.function.isym;
2172 }
2173 else
2174 return true;
2175 }
2176 else if (c && c->ext.actual != NULL)
2177 {
2178 arg0 = c->ext.actual;
2179
2180 if (c->resolved_sym)
2181 esym = c->resolved_sym;
2182 else
2183 esym = c->symtree->n.sym;
2184 gcc_assert (esym);
2185
2186 if (!esym->attr.elemental)
2187 return true;
2188 }
2189 else
2190 return true;
2191
2192 /* The rank of an elemental is the rank of its array argument(s). */
2193 for (arg = arg0; arg; arg = arg->next)
2194 {
2195 if (arg->expr != NULL && arg->expr->rank != 0)
2196 {
2197 rank = arg->expr->rank;
2198 if (arg->expr->expr_type == EXPR_VARIABLE
2199 && arg->expr->symtree->n.sym->attr.optional)
2200 set_by_optional = true;
2201
2202 /* Function specific; set the result rank and shape. */
2203 if (expr)
2204 {
2205 expr->rank = rank;
2206 if (!expr->shape && arg->expr->shape)
2207 {
2208 expr->shape = gfc_get_shape (rank);
2209 for (i = 0; i < rank; i++)
2210 mpz_init_set (expr->shape[i], arg->expr->shape[i]);
2211 }
2212 }
2213 break;
2214 }
2215 }
2216
2217 /* If it is an array, it shall not be supplied as an actual argument
2218 to an elemental procedure unless an array of the same rank is supplied
2219 as an actual argument corresponding to a nonoptional dummy argument of
2220 that elemental procedure(12.4.1.5). */
2221 formal_optional = false;
2222 if (isym)
2223 iformal = isym->formal;
2224 else
2225 eformal = esym->formal;
2226
2227 for (arg = arg0; arg; arg = arg->next)
2228 {
2229 if (eformal)
2230 {
2231 if (eformal->sym && eformal->sym->attr.optional)
2232 formal_optional = true;
2233 eformal = eformal->next;
2234 }
2235 else if (isym && iformal)
2236 {
2237 if (iformal->optional)
2238 formal_optional = true;
2239 iformal = iformal->next;
2240 }
2241 else if (isym)
2242 formal_optional = true;
2243
2244 if (pedantic && arg->expr != NULL
2245 && arg->expr->expr_type == EXPR_VARIABLE
2246 && arg->expr->symtree->n.sym->attr.optional
2247 && formal_optional
2248 && arg->expr->rank
2249 && (set_by_optional || arg->expr->rank != rank)
2250 && !(isym && isym->id == GFC_ISYM_CONVERSION))
2251 {
2252 gfc_warning (OPT_Wpedantic,
2253 "%qs at %L is an array and OPTIONAL; IF IT IS "
2254 "MISSING, it cannot be the actual argument of an "
2255 "ELEMENTAL procedure unless there is a non-optional "
2256 "argument with the same rank (12.4.1.5)",
2257 arg->expr->symtree->n.sym->name, &arg->expr->where);
2258 }
2259 }
2260
2261 for (arg = arg0; arg; arg = arg->next)
2262 {
2263 if (arg->expr == NULL || arg->expr->rank == 0)
2264 continue;
2265
2266 /* Being elemental, the last upper bound of an assumed size array
2267 argument must be present. */
2268 if (resolve_assumed_size_actual (arg->expr))
2269 return false;
2270
2271 /* Elemental procedure's array actual arguments must conform. */
2272 if (e != NULL)
2273 {
2274 if (!gfc_check_conformance (arg->expr, e, "elemental procedure"))
2275 return false;
2276 }
2277 else
2278 e = arg->expr;
2279 }
2280
2281 /* INTENT(OUT) is only allowed for subroutines; if any actual argument
2282 is an array, the intent inout/out variable needs to be also an array. */
2283 if (rank > 0 && esym && expr == NULL)
2284 for (eformal = esym->formal, arg = arg0; arg && eformal;
2285 arg = arg->next, eformal = eformal->next)
2286 if ((eformal->sym->attr.intent == INTENT_OUT
2287 || eformal->sym->attr.intent == INTENT_INOUT)
2288 && arg->expr && arg->expr->rank == 0)
2289 {
2290 gfc_error ("Actual argument at %L for INTENT(%s) dummy %qs of "
2291 "ELEMENTAL subroutine %qs is a scalar, but another "
2292 "actual argument is an array", &arg->expr->where,
2293 (eformal->sym->attr.intent == INTENT_OUT) ? "OUT"
2294 : "INOUT", eformal->sym->name, esym->name);
2295 return false;
2296 }
2297 return true;
2298 }
2299
2300
2301 /* This function does the checking of references to global procedures
2302 as defined in sections 18.1 and 14.1, respectively, of the Fortran
2303 77 and 95 standards. It checks for a gsymbol for the name, making
2304 one if it does not already exist. If it already exists, then the
2305 reference being resolved must correspond to the type of gsymbol.
2306 Otherwise, the new symbol is equipped with the attributes of the
2307 reference. The corresponding code that is called in creating
2308 global entities is parse.c.
2309
2310 In addition, for all but -std=legacy, the gsymbols are used to
2311 check the interfaces of external procedures from the same file.
2312 The namespace of the gsymbol is resolved and then, once this is
2313 done the interface is checked. */
2314
2315
2316 static bool
2317 not_in_recursive (gfc_symbol *sym, gfc_namespace *gsym_ns)
2318 {
2319 if (!gsym_ns->proc_name->attr.recursive)
2320 return true;
2321
2322 if (sym->ns == gsym_ns)
2323 return false;
2324
2325 if (sym->ns->parent && sym->ns->parent == gsym_ns)
2326 return false;
2327
2328 return true;
2329 }
2330
2331 static bool
2332 not_entry_self_reference (gfc_symbol *sym, gfc_namespace *gsym_ns)
2333 {
2334 if (gsym_ns->entries)
2335 {
2336 gfc_entry_list *entry = gsym_ns->entries;
2337
2338 for (; entry; entry = entry->next)
2339 {
2340 if (strcmp (sym->name, entry->sym->name) == 0)
2341 {
2342 if (strcmp (gsym_ns->proc_name->name,
2343 sym->ns->proc_name->name) == 0)
2344 return false;
2345
2346 if (sym->ns->parent
2347 && strcmp (gsym_ns->proc_name->name,
2348 sym->ns->parent->proc_name->name) == 0)
2349 return false;
2350 }
2351 }
2352 }
2353 return true;
2354 }
2355
2356
2357 /* Check for the requirement of an explicit interface. F08:12.4.2.2. */
2358
2359 bool
2360 gfc_explicit_interface_required (gfc_symbol *sym, char *errmsg, int err_len)
2361 {
2362 gfc_formal_arglist *arg = gfc_sym_get_dummy_args (sym);
2363
2364 for ( ; arg; arg = arg->next)
2365 {
2366 if (!arg->sym)
2367 continue;
2368
2369 if (arg->sym->attr.allocatable) /* (2a) */
2370 {
2371 strncpy (errmsg, _("allocatable argument"), err_len);
2372 return true;
2373 }
2374 else if (arg->sym->attr.asynchronous)
2375 {
2376 strncpy (errmsg, _("asynchronous argument"), err_len);
2377 return true;
2378 }
2379 else if (arg->sym->attr.optional)
2380 {
2381 strncpy (errmsg, _("optional argument"), err_len);
2382 return true;
2383 }
2384 else if (arg->sym->attr.pointer)
2385 {
2386 strncpy (errmsg, _("pointer argument"), err_len);
2387 return true;
2388 }
2389 else if (arg->sym->attr.target)
2390 {
2391 strncpy (errmsg, _("target argument"), err_len);
2392 return true;
2393 }
2394 else if (arg->sym->attr.value)
2395 {
2396 strncpy (errmsg, _("value argument"), err_len);
2397 return true;
2398 }
2399 else if (arg->sym->attr.volatile_)
2400 {
2401 strncpy (errmsg, _("volatile argument"), err_len);
2402 return true;
2403 }
2404 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_SHAPE) /* (2b) */
2405 {
2406 strncpy (errmsg, _("assumed-shape argument"), err_len);
2407 return true;
2408 }
2409 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_RANK) /* TS 29113, 6.2. */
2410 {
2411 strncpy (errmsg, _("assumed-rank argument"), err_len);
2412 return true;
2413 }
2414 else if (arg->sym->attr.codimension) /* (2c) */
2415 {
2416 strncpy (errmsg, _("coarray argument"), err_len);
2417 return true;
2418 }
2419 else if (false) /* (2d) TODO: parametrized derived type */
2420 {
2421 strncpy (errmsg, _("parametrized derived type argument"), err_len);
2422 return true;
2423 }
2424 else if (arg->sym->ts.type == BT_CLASS) /* (2e) */
2425 {
2426 strncpy (errmsg, _("polymorphic argument"), err_len);
2427 return true;
2428 }
2429 else if (arg->sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2430 {
2431 strncpy (errmsg, _("NO_ARG_CHECK attribute"), err_len);
2432 return true;
2433 }
2434 else if (arg->sym->ts.type == BT_ASSUMED)
2435 {
2436 /* As assumed-type is unlimited polymorphic (cf. above).
2437 See also TS 29113, Note 6.1. */
2438 strncpy (errmsg, _("assumed-type argument"), err_len);
2439 return true;
2440 }
2441 }
2442
2443 if (sym->attr.function)
2444 {
2445 gfc_symbol *res = sym->result ? sym->result : sym;
2446
2447 if (res->attr.dimension) /* (3a) */
2448 {
2449 strncpy (errmsg, _("array result"), err_len);
2450 return true;
2451 }
2452 else if (res->attr.pointer || res->attr.allocatable) /* (3b) */
2453 {
2454 strncpy (errmsg, _("pointer or allocatable result"), err_len);
2455 return true;
2456 }
2457 else if (res->ts.type == BT_CHARACTER && res->ts.u.cl
2458 && res->ts.u.cl->length
2459 && res->ts.u.cl->length->expr_type != EXPR_CONSTANT) /* (3c) */
2460 {
2461 strncpy (errmsg, _("result with non-constant character length"), err_len);
2462 return true;
2463 }
2464 }
2465
2466 if (sym->attr.elemental && !sym->attr.intrinsic) /* (4) */
2467 {
2468 strncpy (errmsg, _("elemental procedure"), err_len);
2469 return true;
2470 }
2471 else if (sym->attr.is_bind_c) /* (5) */
2472 {
2473 strncpy (errmsg, _("bind(c) procedure"), err_len);
2474 return true;
2475 }
2476
2477 return false;
2478 }
2479
2480
2481 static void
2482 resolve_global_procedure (gfc_symbol *sym, locus *where,
2483 gfc_actual_arglist **actual, int sub)
2484 {
2485 gfc_gsymbol * gsym;
2486 gfc_namespace *ns;
2487 enum gfc_symbol_type type;
2488 char reason[200];
2489
2490 type = sub ? GSYM_SUBROUTINE : GSYM_FUNCTION;
2491
2492 gsym = gfc_get_gsymbol (sym->binding_label ? sym->binding_label : sym->name);
2493
2494 if ((gsym->type != GSYM_UNKNOWN && gsym->type != type))
2495 gfc_global_used (gsym, where);
2496
2497 if ((sym->attr.if_source == IFSRC_UNKNOWN
2498 || sym->attr.if_source == IFSRC_IFBODY)
2499 && gsym->type != GSYM_UNKNOWN
2500 && !gsym->binding_label
2501 && gsym->ns
2502 && gsym->ns->resolved != -1
2503 && gsym->ns->proc_name
2504 && not_in_recursive (sym, gsym->ns)
2505 && not_entry_self_reference (sym, gsym->ns))
2506 {
2507 gfc_symbol *def_sym;
2508
2509 /* Resolve the gsymbol namespace if needed. */
2510 if (!gsym->ns->resolved)
2511 {
2512 gfc_symbol *old_dt_list;
2513
2514 /* Stash away derived types so that the backend_decls do not
2515 get mixed up. */
2516 old_dt_list = gfc_derived_types;
2517 gfc_derived_types = NULL;
2518
2519 gfc_resolve (gsym->ns);
2520
2521 /* Store the new derived types with the global namespace. */
2522 if (gfc_derived_types)
2523 gsym->ns->derived_types = gfc_derived_types;
2524
2525 /* Restore the derived types of this namespace. */
2526 gfc_derived_types = old_dt_list;
2527 }
2528
2529 /* Make sure that translation for the gsymbol occurs before
2530 the procedure currently being resolved. */
2531 ns = gfc_global_ns_list;
2532 for (; ns && ns != gsym->ns; ns = ns->sibling)
2533 {
2534 if (ns->sibling == gsym->ns)
2535 {
2536 ns->sibling = gsym->ns->sibling;
2537 gsym->ns->sibling = gfc_global_ns_list;
2538 gfc_global_ns_list = gsym->ns;
2539 break;
2540 }
2541 }
2542
2543 def_sym = gsym->ns->proc_name;
2544
2545 /* This can happen if a binding name has been specified. */
2546 if (gsym->binding_label && gsym->sym_name != def_sym->name)
2547 gfc_find_symbol (gsym->sym_name, gsym->ns, 0, &def_sym);
2548
2549 if (def_sym->attr.entry_master)
2550 {
2551 gfc_entry_list *entry;
2552 for (entry = gsym->ns->entries; entry; entry = entry->next)
2553 if (strcmp (entry->sym->name, sym->name) == 0)
2554 {
2555 def_sym = entry->sym;
2556 break;
2557 }
2558 }
2559
2560 if (sym->attr.function && !gfc_compare_types (&sym->ts, &def_sym->ts))
2561 {
2562 gfc_error ("Return type mismatch of function %qs at %L (%s/%s)",
2563 sym->name, &sym->declared_at, gfc_typename (&sym->ts),
2564 gfc_typename (&def_sym->ts));
2565 goto done;
2566 }
2567
2568 if (sym->attr.if_source == IFSRC_UNKNOWN
2569 && gfc_explicit_interface_required (def_sym, reason, sizeof(reason)))
2570 {
2571 gfc_error ("Explicit interface required for %qs at %L: %s",
2572 sym->name, &sym->declared_at, reason);
2573 goto done;
2574 }
2575
2576 if (!pedantic && (gfc_option.allow_std & GFC_STD_GNU))
2577 /* Turn erros into warnings with -std=gnu and -std=legacy. */
2578 gfc_errors_to_warnings (true);
2579
2580 if (!gfc_compare_interfaces (sym, def_sym, sym->name, 0, 1,
2581 reason, sizeof(reason), NULL, NULL))
2582 {
2583 gfc_error_opt (OPT_Wargument_mismatch,
2584 "Interface mismatch in global procedure %qs at %L:"
2585 " %s", sym->name, &sym->declared_at, reason);
2586 goto done;
2587 }
2588
2589 if (!pedantic
2590 || ((gfc_option.warn_std & GFC_STD_LEGACY)
2591 && !(gfc_option.warn_std & GFC_STD_GNU)))
2592 gfc_errors_to_warnings (true);
2593
2594 if (sym->attr.if_source != IFSRC_IFBODY)
2595 gfc_procedure_use (def_sym, actual, where);
2596 }
2597
2598 done:
2599 gfc_errors_to_warnings (false);
2600
2601 if (gsym->type == GSYM_UNKNOWN)
2602 {
2603 gsym->type = type;
2604 gsym->where = *where;
2605 }
2606
2607 gsym->used = 1;
2608 }
2609
2610
2611 /************* Function resolution *************/
2612
2613 /* Resolve a function call known to be generic.
2614 Section 14.1.2.4.1. */
2615
2616 static match
2617 resolve_generic_f0 (gfc_expr *expr, gfc_symbol *sym)
2618 {
2619 gfc_symbol *s;
2620
2621 if (sym->attr.generic)
2622 {
2623 s = gfc_search_interface (sym->generic, 0, &expr->value.function.actual);
2624 if (s != NULL)
2625 {
2626 expr->value.function.name = s->name;
2627 expr->value.function.esym = s;
2628
2629 if (s->ts.type != BT_UNKNOWN)
2630 expr->ts = s->ts;
2631 else if (s->result != NULL && s->result->ts.type != BT_UNKNOWN)
2632 expr->ts = s->result->ts;
2633
2634 if (s->as != NULL)
2635 expr->rank = s->as->rank;
2636 else if (s->result != NULL && s->result->as != NULL)
2637 expr->rank = s->result->as->rank;
2638
2639 gfc_set_sym_referenced (expr->value.function.esym);
2640
2641 return MATCH_YES;
2642 }
2643
2644 /* TODO: Need to search for elemental references in generic
2645 interface. */
2646 }
2647
2648 if (sym->attr.intrinsic)
2649 return gfc_intrinsic_func_interface (expr, 0);
2650
2651 return MATCH_NO;
2652 }
2653
2654
2655 static bool
2656 resolve_generic_f (gfc_expr *expr)
2657 {
2658 gfc_symbol *sym;
2659 match m;
2660 gfc_interface *intr = NULL;
2661
2662 sym = expr->symtree->n.sym;
2663
2664 for (;;)
2665 {
2666 m = resolve_generic_f0 (expr, sym);
2667 if (m == MATCH_YES)
2668 return true;
2669 else if (m == MATCH_ERROR)
2670 return false;
2671
2672 generic:
2673 if (!intr)
2674 for (intr = sym->generic; intr; intr = intr->next)
2675 if (gfc_fl_struct (intr->sym->attr.flavor))
2676 break;
2677
2678 if (sym->ns->parent == NULL)
2679 break;
2680 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2681
2682 if (sym == NULL)
2683 break;
2684 if (!generic_sym (sym))
2685 goto generic;
2686 }
2687
2688 /* Last ditch attempt. See if the reference is to an intrinsic
2689 that possesses a matching interface. 14.1.2.4 */
2690 if (sym && !intr && !gfc_is_intrinsic (sym, 0, expr->where))
2691 {
2692 if (gfc_init_expr_flag)
2693 gfc_error ("Function %qs in initialization expression at %L "
2694 "must be an intrinsic function",
2695 expr->symtree->n.sym->name, &expr->where);
2696 else
2697 gfc_error ("There is no specific function for the generic %qs "
2698 "at %L", expr->symtree->n.sym->name, &expr->where);
2699 return false;
2700 }
2701
2702 if (intr)
2703 {
2704 if (!gfc_convert_to_structure_constructor (expr, intr->sym, NULL,
2705 NULL, false))
2706 return false;
2707 if (!gfc_use_derived (expr->ts.u.derived))
2708 return false;
2709 return resolve_structure_cons (expr, 0);
2710 }
2711
2712 m = gfc_intrinsic_func_interface (expr, 0);
2713 if (m == MATCH_YES)
2714 return true;
2715
2716 if (m == MATCH_NO)
2717 gfc_error ("Generic function %qs at %L is not consistent with a "
2718 "specific intrinsic interface", expr->symtree->n.sym->name,
2719 &expr->where);
2720
2721 return false;
2722 }
2723
2724
2725 /* Resolve a function call known to be specific. */
2726
2727 static match
2728 resolve_specific_f0 (gfc_symbol *sym, gfc_expr *expr)
2729 {
2730 match m;
2731
2732 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
2733 {
2734 if (sym->attr.dummy)
2735 {
2736 sym->attr.proc = PROC_DUMMY;
2737 goto found;
2738 }
2739
2740 sym->attr.proc = PROC_EXTERNAL;
2741 goto found;
2742 }
2743
2744 if (sym->attr.proc == PROC_MODULE
2745 || sym->attr.proc == PROC_ST_FUNCTION
2746 || sym->attr.proc == PROC_INTERNAL)
2747 goto found;
2748
2749 if (sym->attr.intrinsic)
2750 {
2751 m = gfc_intrinsic_func_interface (expr, 1);
2752 if (m == MATCH_YES)
2753 return MATCH_YES;
2754 if (m == MATCH_NO)
2755 gfc_error ("Function %qs at %L is INTRINSIC but is not compatible "
2756 "with an intrinsic", sym->name, &expr->where);
2757
2758 return MATCH_ERROR;
2759 }
2760
2761 return MATCH_NO;
2762
2763 found:
2764 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2765
2766 if (sym->result)
2767 expr->ts = sym->result->ts;
2768 else
2769 expr->ts = sym->ts;
2770 expr->value.function.name = sym->name;
2771 expr->value.function.esym = sym;
2772 /* Prevent crash when sym->ts.u.derived->components is not set due to previous
2773 error(s). */
2774 if (sym->ts.type == BT_CLASS && !CLASS_DATA (sym))
2775 return MATCH_ERROR;
2776 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
2777 expr->rank = CLASS_DATA (sym)->as->rank;
2778 else if (sym->as != NULL)
2779 expr->rank = sym->as->rank;
2780
2781 return MATCH_YES;
2782 }
2783
2784
2785 static bool
2786 resolve_specific_f (gfc_expr *expr)
2787 {
2788 gfc_symbol *sym;
2789 match m;
2790
2791 sym = expr->symtree->n.sym;
2792
2793 for (;;)
2794 {
2795 m = resolve_specific_f0 (sym, expr);
2796 if (m == MATCH_YES)
2797 return true;
2798 if (m == MATCH_ERROR)
2799 return false;
2800
2801 if (sym->ns->parent == NULL)
2802 break;
2803
2804 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2805
2806 if (sym == NULL)
2807 break;
2808 }
2809
2810 gfc_error ("Unable to resolve the specific function %qs at %L",
2811 expr->symtree->n.sym->name, &expr->where);
2812
2813 return true;
2814 }
2815
2816 /* Recursively append candidate SYM to CANDIDATES. Store the number of
2817 candidates in CANDIDATES_LEN. */
2818
2819 static void
2820 lookup_function_fuzzy_find_candidates (gfc_symtree *sym,
2821 char **&candidates,
2822 size_t &candidates_len)
2823 {
2824 gfc_symtree *p;
2825
2826 if (sym == NULL)
2827 return;
2828 if ((sym->n.sym->ts.type != BT_UNKNOWN || sym->n.sym->attr.external)
2829 && sym->n.sym->attr.flavor == FL_PROCEDURE)
2830 vec_push (candidates, candidates_len, sym->name);
2831
2832 p = sym->left;
2833 if (p)
2834 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2835
2836 p = sym->right;
2837 if (p)
2838 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2839 }
2840
2841
2842 /* Lookup function FN fuzzily, taking names in SYMROOT into account. */
2843
2844 const char*
2845 gfc_lookup_function_fuzzy (const char *fn, gfc_symtree *symroot)
2846 {
2847 char **candidates = NULL;
2848 size_t candidates_len = 0;
2849 lookup_function_fuzzy_find_candidates (symroot, candidates, candidates_len);
2850 return gfc_closest_fuzzy_match (fn, candidates);
2851 }
2852
2853
2854 /* Resolve a procedure call not known to be generic nor specific. */
2855
2856 static bool
2857 resolve_unknown_f (gfc_expr *expr)
2858 {
2859 gfc_symbol *sym;
2860 gfc_typespec *ts;
2861
2862 sym = expr->symtree->n.sym;
2863
2864 if (sym->attr.dummy)
2865 {
2866 sym->attr.proc = PROC_DUMMY;
2867 expr->value.function.name = sym->name;
2868 goto set_type;
2869 }
2870
2871 /* See if we have an intrinsic function reference. */
2872
2873 if (gfc_is_intrinsic (sym, 0, expr->where))
2874 {
2875 if (gfc_intrinsic_func_interface (expr, 1) == MATCH_YES)
2876 return true;
2877 return false;
2878 }
2879
2880 /* The reference is to an external name. */
2881
2882 sym->attr.proc = PROC_EXTERNAL;
2883 expr->value.function.name = sym->name;
2884 expr->value.function.esym = expr->symtree->n.sym;
2885
2886 if (sym->as != NULL)
2887 expr->rank = sym->as->rank;
2888
2889 /* Type of the expression is either the type of the symbol or the
2890 default type of the symbol. */
2891
2892 set_type:
2893 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2894
2895 if (sym->ts.type != BT_UNKNOWN)
2896 expr->ts = sym->ts;
2897 else
2898 {
2899 ts = gfc_get_default_type (sym->name, sym->ns);
2900
2901 if (ts->type == BT_UNKNOWN)
2902 {
2903 const char *guessed
2904 = gfc_lookup_function_fuzzy (sym->name, sym->ns->sym_root);
2905 if (guessed)
2906 gfc_error ("Function %qs at %L has no IMPLICIT type"
2907 "; did you mean %qs?",
2908 sym->name, &expr->where, guessed);
2909 else
2910 gfc_error ("Function %qs at %L has no IMPLICIT type",
2911 sym->name, &expr->where);
2912 return false;
2913 }
2914 else
2915 expr->ts = *ts;
2916 }
2917
2918 return true;
2919 }
2920
2921
2922 /* Return true, if the symbol is an external procedure. */
2923 static bool
2924 is_external_proc (gfc_symbol *sym)
2925 {
2926 if (!sym->attr.dummy && !sym->attr.contained
2927 && !gfc_is_intrinsic (sym, sym->attr.subroutine, sym->declared_at)
2928 && sym->attr.proc != PROC_ST_FUNCTION
2929 && !sym->attr.proc_pointer
2930 && !sym->attr.use_assoc
2931 && sym->name)
2932 return true;
2933
2934 return false;
2935 }
2936
2937
2938 /* Figure out if a function reference is pure or not. Also set the name
2939 of the function for a potential error message. Return nonzero if the
2940 function is PURE, zero if not. */
2941 static int
2942 pure_stmt_function (gfc_expr *, gfc_symbol *);
2943
2944 int
2945 gfc_pure_function (gfc_expr *e, const char **name)
2946 {
2947 int pure;
2948 gfc_component *comp;
2949
2950 *name = NULL;
2951
2952 if (e->symtree != NULL
2953 && e->symtree->n.sym != NULL
2954 && e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
2955 return pure_stmt_function (e, e->symtree->n.sym);
2956
2957 comp = gfc_get_proc_ptr_comp (e);
2958 if (comp)
2959 {
2960 pure = gfc_pure (comp->ts.interface);
2961 *name = comp->name;
2962 }
2963 else if (e->value.function.esym)
2964 {
2965 pure = gfc_pure (e->value.function.esym);
2966 *name = e->value.function.esym->name;
2967 }
2968 else if (e->value.function.isym)
2969 {
2970 pure = e->value.function.isym->pure
2971 || e->value.function.isym->elemental;
2972 *name = e->value.function.isym->name;
2973 }
2974 else
2975 {
2976 /* Implicit functions are not pure. */
2977 pure = 0;
2978 *name = e->value.function.name;
2979 }
2980
2981 return pure;
2982 }
2983
2984
2985 /* Check if the expression is a reference to an implicitly pure function. */
2986
2987 int
2988 gfc_implicit_pure_function (gfc_expr *e)
2989 {
2990 gfc_component *comp = gfc_get_proc_ptr_comp (e);
2991 if (comp)
2992 return gfc_implicit_pure (comp->ts.interface);
2993 else if (e->value.function.esym)
2994 return gfc_implicit_pure (e->value.function.esym);
2995 else
2996 return 0;
2997 }
2998
2999
3000 static bool
3001 impure_stmt_fcn (gfc_expr *e, gfc_symbol *sym,
3002 int *f ATTRIBUTE_UNUSED)
3003 {
3004 const char *name;
3005
3006 /* Don't bother recursing into other statement functions
3007 since they will be checked individually for purity. */
3008 if (e->expr_type != EXPR_FUNCTION
3009 || !e->symtree
3010 || e->symtree->n.sym == sym
3011 || e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
3012 return false;
3013
3014 return gfc_pure_function (e, &name) ? false : true;
3015 }
3016
3017
3018 static int
3019 pure_stmt_function (gfc_expr *e, gfc_symbol *sym)
3020 {
3021 return gfc_traverse_expr (e, sym, impure_stmt_fcn, 0) ? 0 : 1;
3022 }
3023
3024
3025 /* Check if an impure function is allowed in the current context. */
3026
3027 static bool check_pure_function (gfc_expr *e)
3028 {
3029 const char *name = NULL;
3030 if (!gfc_pure_function (e, &name) && name)
3031 {
3032 if (forall_flag)
3033 {
3034 gfc_error ("Reference to impure function %qs at %L inside a "
3035 "FORALL %s", name, &e->where,
3036 forall_flag == 2 ? "mask" : "block");
3037 return false;
3038 }
3039 else if (gfc_do_concurrent_flag)
3040 {
3041 gfc_error ("Reference to impure function %qs at %L inside a "
3042 "DO CONCURRENT %s", name, &e->where,
3043 gfc_do_concurrent_flag == 2 ? "mask" : "block");
3044 return false;
3045 }
3046 else if (gfc_pure (NULL))
3047 {
3048 gfc_error ("Reference to impure function %qs at %L "
3049 "within a PURE procedure", name, &e->where);
3050 return false;
3051 }
3052 if (!gfc_implicit_pure_function (e))
3053 gfc_unset_implicit_pure (NULL);
3054 }
3055 return true;
3056 }
3057
3058
3059 /* Update current procedure's array_outer_dependency flag, considering
3060 a call to procedure SYM. */
3061
3062 static void
3063 update_current_proc_array_outer_dependency (gfc_symbol *sym)
3064 {
3065 /* Check to see if this is a sibling function that has not yet
3066 been resolved. */
3067 gfc_namespace *sibling = gfc_current_ns->sibling;
3068 for (; sibling; sibling = sibling->sibling)
3069 {
3070 if (sibling->proc_name == sym)
3071 {
3072 gfc_resolve (sibling);
3073 break;
3074 }
3075 }
3076
3077 /* If SYM has references to outer arrays, so has the procedure calling
3078 SYM. If SYM is a procedure pointer, we can assume the worst. */
3079 if ((sym->attr.array_outer_dependency || sym->attr.proc_pointer)
3080 && gfc_current_ns->proc_name)
3081 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3082 }
3083
3084
3085 /* Resolve a function call, which means resolving the arguments, then figuring
3086 out which entity the name refers to. */
3087
3088 static bool
3089 resolve_function (gfc_expr *expr)
3090 {
3091 gfc_actual_arglist *arg;
3092 gfc_symbol *sym;
3093 bool t;
3094 int temp;
3095 procedure_type p = PROC_INTRINSIC;
3096 bool no_formal_args;
3097
3098 sym = NULL;
3099 if (expr->symtree)
3100 sym = expr->symtree->n.sym;
3101
3102 /* If this is a procedure pointer component, it has already been resolved. */
3103 if (gfc_is_proc_ptr_comp (expr))
3104 return true;
3105
3106 /* Avoid re-resolving the arguments of caf_get, which can lead to inserting
3107 another caf_get. */
3108 if (sym && sym->attr.intrinsic
3109 && (sym->intmod_sym_id == GFC_ISYM_CAF_GET
3110 || sym->intmod_sym_id == GFC_ISYM_CAF_SEND))
3111 return true;
3112
3113 if (sym && sym->attr.intrinsic
3114 && !gfc_resolve_intrinsic (sym, &expr->where))
3115 return false;
3116
3117 if (sym && (sym->attr.flavor == FL_VARIABLE || sym->attr.subroutine))
3118 {
3119 gfc_error ("%qs at %L is not a function", sym->name, &expr->where);
3120 return false;
3121 }
3122
3123 /* If this is a deferred TBP with an abstract interface (which may
3124 of course be referenced), expr->value.function.esym will be set. */
3125 if (sym && sym->attr.abstract && !expr->value.function.esym)
3126 {
3127 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3128 sym->name, &expr->where);
3129 return false;
3130 }
3131
3132 /* If this is a deferred TBP with an abstract interface, its result
3133 cannot be an assumed length character (F2003: C418). */
3134 if (sym && sym->attr.abstract && sym->attr.function
3135 && sym->result->ts.u.cl
3136 && sym->result->ts.u.cl->length == NULL
3137 && !sym->result->ts.deferred)
3138 {
3139 gfc_error ("ABSTRACT INTERFACE %qs at %L must not have an assumed "
3140 "character length result (F2008: C418)", sym->name,
3141 &sym->declared_at);
3142 return false;
3143 }
3144
3145 /* Switch off assumed size checking and do this again for certain kinds
3146 of procedure, once the procedure itself is resolved. */
3147 need_full_assumed_size++;
3148
3149 if (expr->symtree && expr->symtree->n.sym)
3150 p = expr->symtree->n.sym->attr.proc;
3151
3152 if (expr->value.function.isym && expr->value.function.isym->inquiry)
3153 inquiry_argument = true;
3154 no_formal_args = sym && is_external_proc (sym)
3155 && gfc_sym_get_dummy_args (sym) == NULL;
3156
3157 if (!resolve_actual_arglist (expr->value.function.actual,
3158 p, no_formal_args))
3159 {
3160 inquiry_argument = false;
3161 return false;
3162 }
3163
3164 inquiry_argument = false;
3165
3166 /* Resume assumed_size checking. */
3167 need_full_assumed_size--;
3168
3169 /* If the procedure is external, check for usage. */
3170 if (sym && is_external_proc (sym))
3171 resolve_global_procedure (sym, &expr->where,
3172 &expr->value.function.actual, 0);
3173
3174 if (sym && sym->ts.type == BT_CHARACTER
3175 && sym->ts.u.cl
3176 && sym->ts.u.cl->length == NULL
3177 && !sym->attr.dummy
3178 && !sym->ts.deferred
3179 && expr->value.function.esym == NULL
3180 && !sym->attr.contained)
3181 {
3182 /* Internal procedures are taken care of in resolve_contained_fntype. */
3183 gfc_error ("Function %qs is declared CHARACTER(*) and cannot "
3184 "be used at %L since it is not a dummy argument",
3185 sym->name, &expr->where);
3186 return false;
3187 }
3188
3189 /* See if function is already resolved. */
3190
3191 if (expr->value.function.name != NULL
3192 || expr->value.function.isym != NULL)
3193 {
3194 if (expr->ts.type == BT_UNKNOWN)
3195 expr->ts = sym->ts;
3196 t = true;
3197 }
3198 else
3199 {
3200 /* Apply the rules of section 14.1.2. */
3201
3202 switch (procedure_kind (sym))
3203 {
3204 case PTYPE_GENERIC:
3205 t = resolve_generic_f (expr);
3206 break;
3207
3208 case PTYPE_SPECIFIC:
3209 t = resolve_specific_f (expr);
3210 break;
3211
3212 case PTYPE_UNKNOWN:
3213 t = resolve_unknown_f (expr);
3214 break;
3215
3216 default:
3217 gfc_internal_error ("resolve_function(): bad function type");
3218 }
3219 }
3220
3221 /* If the expression is still a function (it might have simplified),
3222 then we check to see if we are calling an elemental function. */
3223
3224 if (expr->expr_type != EXPR_FUNCTION)
3225 return t;
3226
3227 temp = need_full_assumed_size;
3228 need_full_assumed_size = 0;
3229
3230 if (!resolve_elemental_actual (expr, NULL))
3231 return false;
3232
3233 if (omp_workshare_flag
3234 && expr->value.function.esym
3235 && ! gfc_elemental (expr->value.function.esym))
3236 {
3237 gfc_error ("User defined non-ELEMENTAL function %qs at %L not allowed "
3238 "in WORKSHARE construct", expr->value.function.esym->name,
3239 &expr->where);
3240 t = false;
3241 }
3242
3243 #define GENERIC_ID expr->value.function.isym->id
3244 else if (expr->value.function.actual != NULL
3245 && expr->value.function.isym != NULL
3246 && GENERIC_ID != GFC_ISYM_LBOUND
3247 && GENERIC_ID != GFC_ISYM_LCOBOUND
3248 && GENERIC_ID != GFC_ISYM_UCOBOUND
3249 && GENERIC_ID != GFC_ISYM_LEN
3250 && GENERIC_ID != GFC_ISYM_LOC
3251 && GENERIC_ID != GFC_ISYM_C_LOC
3252 && GENERIC_ID != GFC_ISYM_PRESENT)
3253 {
3254 /* Array intrinsics must also have the last upper bound of an
3255 assumed size array argument. UBOUND and SIZE have to be
3256 excluded from the check if the second argument is anything
3257 than a constant. */
3258
3259 for (arg = expr->value.function.actual; arg; arg = arg->next)
3260 {
3261 if ((GENERIC_ID == GFC_ISYM_UBOUND || GENERIC_ID == GFC_ISYM_SIZE)
3262 && arg == expr->value.function.actual
3263 && arg->next != NULL && arg->next->expr)
3264 {
3265 if (arg->next->expr->expr_type != EXPR_CONSTANT)
3266 break;
3267
3268 if (arg->next->name && strncmp (arg->next->name, "kind", 4) == 0)
3269 break;
3270
3271 if ((int)mpz_get_si (arg->next->expr->value.integer)
3272 < arg->expr->rank)
3273 break;
3274 }
3275
3276 if (arg->expr != NULL
3277 && arg->expr->rank > 0
3278 && resolve_assumed_size_actual (arg->expr))
3279 return false;
3280 }
3281 }
3282 #undef GENERIC_ID
3283
3284 need_full_assumed_size = temp;
3285
3286 if (!check_pure_function(expr))
3287 t = false;
3288
3289 /* Functions without the RECURSIVE attribution are not allowed to
3290 * call themselves. */
3291 if (expr->value.function.esym && !expr->value.function.esym->attr.recursive)
3292 {
3293 gfc_symbol *esym;
3294 esym = expr->value.function.esym;
3295
3296 if (is_illegal_recursion (esym, gfc_current_ns))
3297 {
3298 if (esym->attr.entry && esym->ns->entries)
3299 gfc_error ("ENTRY %qs at %L cannot be called recursively, as"
3300 " function %qs is not RECURSIVE",
3301 esym->name, &expr->where, esym->ns->entries->sym->name);
3302 else
3303 gfc_error ("Function %qs at %L cannot be called recursively, as it"
3304 " is not RECURSIVE", esym->name, &expr->where);
3305
3306 t = false;
3307 }
3308 }
3309
3310 /* Character lengths of use associated functions may contains references to
3311 symbols not referenced from the current program unit otherwise. Make sure
3312 those symbols are marked as referenced. */
3313
3314 if (expr->ts.type == BT_CHARACTER && expr->value.function.esym
3315 && expr->value.function.esym->attr.use_assoc)
3316 {
3317 gfc_expr_set_symbols_referenced (expr->ts.u.cl->length);
3318 }
3319
3320 /* Make sure that the expression has a typespec that works. */
3321 if (expr->ts.type == BT_UNKNOWN)
3322 {
3323 if (expr->symtree->n.sym->result
3324 && expr->symtree->n.sym->result->ts.type != BT_UNKNOWN
3325 && !expr->symtree->n.sym->result->attr.proc_pointer)
3326 expr->ts = expr->symtree->n.sym->result->ts;
3327 }
3328
3329 if (!expr->ref && !expr->value.function.isym)
3330 {
3331 if (expr->value.function.esym)
3332 update_current_proc_array_outer_dependency (expr->value.function.esym);
3333 else
3334 update_current_proc_array_outer_dependency (sym);
3335 }
3336 else if (expr->ref)
3337 /* typebound procedure: Assume the worst. */
3338 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3339
3340 return t;
3341 }
3342
3343
3344 /************* Subroutine resolution *************/
3345
3346 static bool
3347 pure_subroutine (gfc_symbol *sym, const char *name, locus *loc)
3348 {
3349 if (gfc_pure (sym))
3350 return true;
3351
3352 if (forall_flag)
3353 {
3354 gfc_error ("Subroutine call to %qs in FORALL block at %L is not PURE",
3355 name, loc);
3356 return false;
3357 }
3358 else if (gfc_do_concurrent_flag)
3359 {
3360 gfc_error ("Subroutine call to %qs in DO CONCURRENT block at %L is not "
3361 "PURE", name, loc);
3362 return false;
3363 }
3364 else if (gfc_pure (NULL))
3365 {
3366 gfc_error ("Subroutine call to %qs at %L is not PURE", name, loc);
3367 return false;
3368 }
3369
3370 gfc_unset_implicit_pure (NULL);
3371 return true;
3372 }
3373
3374
3375 static match
3376 resolve_generic_s0 (gfc_code *c, gfc_symbol *sym)
3377 {
3378 gfc_symbol *s;
3379
3380 if (sym->attr.generic)
3381 {
3382 s = gfc_search_interface (sym->generic, 1, &c->ext.actual);
3383 if (s != NULL)
3384 {
3385 c->resolved_sym = s;
3386 if (!pure_subroutine (s, s->name, &c->loc))
3387 return MATCH_ERROR;
3388 return MATCH_YES;
3389 }
3390
3391 /* TODO: Need to search for elemental references in generic interface. */
3392 }
3393
3394 if (sym->attr.intrinsic)
3395 return gfc_intrinsic_sub_interface (c, 0);
3396
3397 return MATCH_NO;
3398 }
3399
3400
3401 static bool
3402 resolve_generic_s (gfc_code *c)
3403 {
3404 gfc_symbol *sym;
3405 match m;
3406
3407 sym = c->symtree->n.sym;
3408
3409 for (;;)
3410 {
3411 m = resolve_generic_s0 (c, sym);
3412 if (m == MATCH_YES)
3413 return true;
3414 else if (m == MATCH_ERROR)
3415 return false;
3416
3417 generic:
3418 if (sym->ns->parent == NULL)
3419 break;
3420 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3421
3422 if (sym == NULL)
3423 break;
3424 if (!generic_sym (sym))
3425 goto generic;
3426 }
3427
3428 /* Last ditch attempt. See if the reference is to an intrinsic
3429 that possesses a matching interface. 14.1.2.4 */
3430 sym = c->symtree->n.sym;
3431
3432 if (!gfc_is_intrinsic (sym, 1, c->loc))
3433 {
3434 gfc_error ("There is no specific subroutine for the generic %qs at %L",
3435 sym->name, &c->loc);
3436 return false;
3437 }
3438
3439 m = gfc_intrinsic_sub_interface (c, 0);
3440 if (m == MATCH_YES)
3441 return true;
3442 if (m == MATCH_NO)
3443 gfc_error ("Generic subroutine %qs at %L is not consistent with an "
3444 "intrinsic subroutine interface", sym->name, &c->loc);
3445
3446 return false;
3447 }
3448
3449
3450 /* Resolve a subroutine call known to be specific. */
3451
3452 static match
3453 resolve_specific_s0 (gfc_code *c, gfc_symbol *sym)
3454 {
3455 match m;
3456
3457 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
3458 {
3459 if (sym->attr.dummy)
3460 {
3461 sym->attr.proc = PROC_DUMMY;
3462 goto found;
3463 }
3464
3465 sym->attr.proc = PROC_EXTERNAL;
3466 goto found;
3467 }
3468
3469 if (sym->attr.proc == PROC_MODULE || sym->attr.proc == PROC_INTERNAL)
3470 goto found;
3471
3472 if (sym->attr.intrinsic)
3473 {
3474 m = gfc_intrinsic_sub_interface (c, 1);
3475 if (m == MATCH_YES)
3476 return MATCH_YES;
3477 if (m == MATCH_NO)
3478 gfc_error ("Subroutine %qs at %L is INTRINSIC but is not compatible "
3479 "with an intrinsic", sym->name, &c->loc);
3480
3481 return MATCH_ERROR;
3482 }
3483
3484 return MATCH_NO;
3485
3486 found:
3487 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3488
3489 c->resolved_sym = sym;
3490 if (!pure_subroutine (sym, sym->name, &c->loc))
3491 return MATCH_ERROR;
3492
3493 return MATCH_YES;
3494 }
3495
3496
3497 static bool
3498 resolve_specific_s (gfc_code *c)
3499 {
3500 gfc_symbol *sym;
3501 match m;
3502
3503 sym = c->symtree->n.sym;
3504
3505 for (;;)
3506 {
3507 m = resolve_specific_s0 (c, sym);
3508 if (m == MATCH_YES)
3509 return true;
3510 if (m == MATCH_ERROR)
3511 return false;
3512
3513 if (sym->ns->parent == NULL)
3514 break;
3515
3516 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3517
3518 if (sym == NULL)
3519 break;
3520 }
3521
3522 sym = c->symtree->n.sym;
3523 gfc_error ("Unable to resolve the specific subroutine %qs at %L",
3524 sym->name, &c->loc);
3525
3526 return false;
3527 }
3528
3529
3530 /* Resolve a subroutine call not known to be generic nor specific. */
3531
3532 static bool
3533 resolve_unknown_s (gfc_code *c)
3534 {
3535 gfc_symbol *sym;
3536
3537 sym = c->symtree->n.sym;
3538
3539 if (sym->attr.dummy)
3540 {
3541 sym->attr.proc = PROC_DUMMY;
3542 goto found;
3543 }
3544
3545 /* See if we have an intrinsic function reference. */
3546
3547 if (gfc_is_intrinsic (sym, 1, c->loc))
3548 {
3549 if (gfc_intrinsic_sub_interface (c, 1) == MATCH_YES)
3550 return true;
3551 return false;
3552 }
3553
3554 /* The reference is to an external name. */
3555
3556 found:
3557 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3558
3559 c->resolved_sym = sym;
3560
3561 return pure_subroutine (sym, sym->name, &c->loc);
3562 }
3563
3564
3565 /* Resolve a subroutine call. Although it was tempting to use the same code
3566 for functions, subroutines and functions are stored differently and this
3567 makes things awkward. */
3568
3569 static bool
3570 resolve_call (gfc_code *c)
3571 {
3572 bool t;
3573 procedure_type ptype = PROC_INTRINSIC;
3574 gfc_symbol *csym, *sym;
3575 bool no_formal_args;
3576
3577 csym = c->symtree ? c->symtree->n.sym : NULL;
3578
3579 if (csym && csym->ts.type != BT_UNKNOWN)
3580 {
3581 gfc_error ("%qs at %L has a type, which is not consistent with "
3582 "the CALL at %L", csym->name, &csym->declared_at, &c->loc);
3583 return false;
3584 }
3585
3586 if (csym && gfc_current_ns->parent && csym->ns != gfc_current_ns)
3587 {
3588 gfc_symtree *st;
3589 gfc_find_sym_tree (c->symtree->name, gfc_current_ns, 1, &st);
3590 sym = st ? st->n.sym : NULL;
3591 if (sym && csym != sym
3592 && sym->ns == gfc_current_ns
3593 && sym->attr.flavor == FL_PROCEDURE
3594 && sym->attr.contained)
3595 {
3596 sym->refs++;
3597 if (csym->attr.generic)
3598 c->symtree->n.sym = sym;
3599 else
3600 c->symtree = st;
3601 csym = c->symtree->n.sym;
3602 }
3603 }
3604
3605 /* If this ia a deferred TBP, c->expr1 will be set. */
3606 if (!c->expr1 && csym)
3607 {
3608 if (csym->attr.abstract)
3609 {
3610 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3611 csym->name, &c->loc);
3612 return false;
3613 }
3614
3615 /* Subroutines without the RECURSIVE attribution are not allowed to
3616 call themselves. */
3617 if (is_illegal_recursion (csym, gfc_current_ns))
3618 {
3619 if (csym->attr.entry && csym->ns->entries)
3620 gfc_error ("ENTRY %qs at %L cannot be called recursively, "
3621 "as subroutine %qs is not RECURSIVE",
3622 csym->name, &c->loc, csym->ns->entries->sym->name);
3623 else
3624 gfc_error ("SUBROUTINE %qs at %L cannot be called recursively, "
3625 "as it is not RECURSIVE", csym->name, &c->loc);
3626
3627 t = false;
3628 }
3629 }
3630
3631 /* Switch off assumed size checking and do this again for certain kinds
3632 of procedure, once the procedure itself is resolved. */
3633 need_full_assumed_size++;
3634
3635 if (csym)
3636 ptype = csym->attr.proc;
3637
3638 no_formal_args = csym && is_external_proc (csym)
3639 && gfc_sym_get_dummy_args (csym) == NULL;
3640 if (!resolve_actual_arglist (c->ext.actual, ptype, no_formal_args))
3641 return false;
3642
3643 /* Resume assumed_size checking. */
3644 need_full_assumed_size--;
3645
3646 /* If external, check for usage. */
3647 if (csym && is_external_proc (csym))
3648 resolve_global_procedure (csym, &c->loc, &c->ext.actual, 1);
3649
3650 t = true;
3651 if (c->resolved_sym == NULL)
3652 {
3653 c->resolved_isym = NULL;
3654 switch (procedure_kind (csym))
3655 {
3656 case PTYPE_GENERIC:
3657 t = resolve_generic_s (c);
3658 break;
3659
3660 case PTYPE_SPECIFIC:
3661 t = resolve_specific_s (c);
3662 break;
3663
3664 case PTYPE_UNKNOWN:
3665 t = resolve_unknown_s (c);
3666 break;
3667
3668 default:
3669 gfc_internal_error ("resolve_subroutine(): bad function type");
3670 }
3671 }
3672
3673 /* Some checks of elemental subroutine actual arguments. */
3674 if (!resolve_elemental_actual (NULL, c))
3675 return false;
3676
3677 if (!c->expr1)
3678 update_current_proc_array_outer_dependency (csym);
3679 else
3680 /* Typebound procedure: Assume the worst. */
3681 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3682
3683 return t;
3684 }
3685
3686
3687 /* Compare the shapes of two arrays that have non-NULL shapes. If both
3688 op1->shape and op2->shape are non-NULL return true if their shapes
3689 match. If both op1->shape and op2->shape are non-NULL return false
3690 if their shapes do not match. If either op1->shape or op2->shape is
3691 NULL, return true. */
3692
3693 static bool
3694 compare_shapes (gfc_expr *op1, gfc_expr *op2)
3695 {
3696 bool t;
3697 int i;
3698
3699 t = true;
3700
3701 if (op1->shape != NULL && op2->shape != NULL)
3702 {
3703 for (i = 0; i < op1->rank; i++)
3704 {
3705 if (mpz_cmp (op1->shape[i], op2->shape[i]) != 0)
3706 {
3707 gfc_error ("Shapes for operands at %L and %L are not conformable",
3708 &op1->where, &op2->where);
3709 t = false;
3710 break;
3711 }
3712 }
3713 }
3714
3715 return t;
3716 }
3717
3718 /* Convert a logical operator to the corresponding bitwise intrinsic call.
3719 For example A .AND. B becomes IAND(A, B). */
3720 static gfc_expr *
3721 logical_to_bitwise (gfc_expr *e)
3722 {
3723 gfc_expr *tmp, *op1, *op2;
3724 gfc_isym_id isym;
3725 gfc_actual_arglist *args = NULL;
3726
3727 gcc_assert (e->expr_type == EXPR_OP);
3728
3729 isym = GFC_ISYM_NONE;
3730 op1 = e->value.op.op1;
3731 op2 = e->value.op.op2;
3732
3733 switch (e->value.op.op)
3734 {
3735 case INTRINSIC_NOT:
3736 isym = GFC_ISYM_NOT;
3737 break;
3738 case INTRINSIC_AND:
3739 isym = GFC_ISYM_IAND;
3740 break;
3741 case INTRINSIC_OR:
3742 isym = GFC_ISYM_IOR;
3743 break;
3744 case INTRINSIC_NEQV:
3745 isym = GFC_ISYM_IEOR;
3746 break;
3747 case INTRINSIC_EQV:
3748 /* "Bitwise eqv" is just the complement of NEQV === IEOR.
3749 Change the old expression to NEQV, which will get replaced by IEOR,
3750 and wrap it in NOT. */
3751 tmp = gfc_copy_expr (e);
3752 tmp->value.op.op = INTRINSIC_NEQV;
3753 tmp = logical_to_bitwise (tmp);
3754 isym = GFC_ISYM_NOT;
3755 op1 = tmp;
3756 op2 = NULL;
3757 break;
3758 default:
3759 gfc_internal_error ("logical_to_bitwise(): Bad intrinsic");
3760 }
3761
3762 /* Inherit the original operation's operands as arguments. */
3763 args = gfc_get_actual_arglist ();
3764 args->expr = op1;
3765 if (op2)
3766 {
3767 args->next = gfc_get_actual_arglist ();
3768 args->next->expr = op2;
3769 }
3770
3771 /* Convert the expression to a function call. */
3772 e->expr_type = EXPR_FUNCTION;
3773 e->value.function.actual = args;
3774 e->value.function.isym = gfc_intrinsic_function_by_id (isym);
3775 e->value.function.name = e->value.function.isym->name;
3776 e->value.function.esym = NULL;
3777
3778 /* Make up a pre-resolved function call symtree if we need to. */
3779 if (!e->symtree || !e->symtree->n.sym)
3780 {
3781 gfc_symbol *sym;
3782 gfc_get_ha_sym_tree (e->value.function.isym->name, &e->symtree);
3783 sym = e->symtree->n.sym;
3784 sym->result = sym;
3785 sym->attr.flavor = FL_PROCEDURE;
3786 sym->attr.function = 1;
3787 sym->attr.elemental = 1;
3788 sym->attr.pure = 1;
3789 sym->attr.referenced = 1;
3790 gfc_intrinsic_symbol (sym);
3791 gfc_commit_symbol (sym);
3792 }
3793
3794 args->name = e->value.function.isym->formal->name;
3795 if (e->value.function.isym->formal->next)
3796 args->next->name = e->value.function.isym->formal->next->name;
3797
3798 return e;
3799 }
3800
3801 /* Recursively append candidate UOP to CANDIDATES. Store the number of
3802 candidates in CANDIDATES_LEN. */
3803 static void
3804 lookup_uop_fuzzy_find_candidates (gfc_symtree *uop,
3805 char **&candidates,
3806 size_t &candidates_len)
3807 {
3808 gfc_symtree *p;
3809
3810 if (uop == NULL)
3811 return;
3812
3813 /* Not sure how to properly filter here. Use all for a start.
3814 n.uop.op is NULL for empty interface operators (is that legal?) disregard
3815 these as i suppose they don't make terribly sense. */
3816
3817 if (uop->n.uop->op != NULL)
3818 vec_push (candidates, candidates_len, uop->name);
3819
3820 p = uop->left;
3821 if (p)
3822 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3823
3824 p = uop->right;
3825 if (p)
3826 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3827 }
3828
3829 /* Lookup user-operator OP fuzzily, taking names in UOP into account. */
3830
3831 static const char*
3832 lookup_uop_fuzzy (const char *op, gfc_symtree *uop)
3833 {
3834 char **candidates = NULL;
3835 size_t candidates_len = 0;
3836 lookup_uop_fuzzy_find_candidates (uop, candidates, candidates_len);
3837 return gfc_closest_fuzzy_match (op, candidates);
3838 }
3839
3840
3841 /* Callback finding an impure function as an operand to an .and. or
3842 .or. expression. Remember the last function warned about to
3843 avoid double warnings when recursing. */
3844
3845 static int
3846 impure_function_callback (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
3847 void *data)
3848 {
3849 gfc_expr *f = *e;
3850 const char *name;
3851 static gfc_expr *last = NULL;
3852 bool *found = (bool *) data;
3853
3854 if (f->expr_type == EXPR_FUNCTION)
3855 {
3856 *found = 1;
3857 if (f != last && !gfc_pure_function (f, &name)
3858 && !gfc_implicit_pure_function (f))
3859 {
3860 if (name)
3861 gfc_warning (OPT_Wfunction_elimination,
3862 "Impure function %qs at %L might not be evaluated",
3863 name, &f->where);
3864 else
3865 gfc_warning (OPT_Wfunction_elimination,
3866 "Impure function at %L might not be evaluated",
3867 &f->where);
3868 }
3869 last = f;
3870 }
3871
3872 return 0;
3873 }
3874
3875
3876 /* Resolve an operator expression node. This can involve replacing the
3877 operation with a user defined function call. */
3878
3879 static bool
3880 resolve_operator (gfc_expr *e)
3881 {
3882 gfc_expr *op1, *op2;
3883 char msg[200];
3884 bool dual_locus_error;
3885 bool t;
3886
3887 /* Resolve all subnodes-- give them types. */
3888
3889 switch (e->value.op.op)
3890 {
3891 default:
3892 if (!gfc_resolve_expr (e->value.op.op2))
3893 return false;
3894
3895 /* Fall through. */
3896
3897 case INTRINSIC_NOT:
3898 case INTRINSIC_UPLUS:
3899 case INTRINSIC_UMINUS:
3900 case INTRINSIC_PARENTHESES:
3901 if (!gfc_resolve_expr (e->value.op.op1))
3902 return false;
3903 break;
3904 }
3905
3906 /* Typecheck the new node. */
3907
3908 op1 = e->value.op.op1;
3909 op2 = e->value.op.op2;
3910 dual_locus_error = false;
3911
3912 if ((op1 && op1->expr_type == EXPR_NULL)
3913 || (op2 && op2->expr_type == EXPR_NULL))
3914 {
3915 sprintf (msg, _("Invalid context for NULL() pointer at %%L"));
3916 goto bad_op;
3917 }
3918
3919 switch (e->value.op.op)
3920 {
3921 case INTRINSIC_UPLUS:
3922 case INTRINSIC_UMINUS:
3923 if (op1->ts.type == BT_INTEGER
3924 || op1->ts.type == BT_REAL
3925 || op1->ts.type == BT_COMPLEX)
3926 {
3927 e->ts = op1->ts;
3928 break;
3929 }
3930
3931 sprintf (msg, _("Operand of unary numeric operator %%<%s%%> at %%L is %s"),
3932 gfc_op2string (e->value.op.op), gfc_typename (&e->ts));
3933 goto bad_op;
3934
3935 case INTRINSIC_PLUS:
3936 case INTRINSIC_MINUS:
3937 case INTRINSIC_TIMES:
3938 case INTRINSIC_DIVIDE:
3939 case INTRINSIC_POWER:
3940 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
3941 {
3942 gfc_type_convert_binary (e, 1);
3943 break;
3944 }
3945
3946 if (op1->ts.type == BT_DERIVED || op2->ts.type == BT_DERIVED)
3947 sprintf (msg,
3948 _("Unexpected derived-type entities in binary intrinsic "
3949 "numeric operator %%<%s%%> at %%L"),
3950 gfc_op2string (e->value.op.op));
3951 else
3952 sprintf (msg,
3953 _("Operands of binary numeric operator %%<%s%%> at %%L are %s/%s"),
3954 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
3955 gfc_typename (&op2->ts));
3956 goto bad_op;
3957
3958 case INTRINSIC_CONCAT:
3959 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
3960 && op1->ts.kind == op2->ts.kind)
3961 {
3962 e->ts.type = BT_CHARACTER;
3963 e->ts.kind = op1->ts.kind;
3964 break;
3965 }
3966
3967 sprintf (msg,
3968 _("Operands of string concatenation operator at %%L are %s/%s"),
3969 gfc_typename (&op1->ts), gfc_typename (&op2->ts));
3970 goto bad_op;
3971
3972 case INTRINSIC_AND:
3973 case INTRINSIC_OR:
3974 case INTRINSIC_EQV:
3975 case INTRINSIC_NEQV:
3976 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
3977 {
3978 e->ts.type = BT_LOGICAL;
3979 e->ts.kind = gfc_kind_max (op1, op2);
3980 if (op1->ts.kind < e->ts.kind)
3981 gfc_convert_type (op1, &e->ts, 2);
3982 else if (op2->ts.kind < e->ts.kind)
3983 gfc_convert_type (op2, &e->ts, 2);
3984
3985 if (flag_frontend_optimize &&
3986 (e->value.op.op == INTRINSIC_AND || e->value.op.op == INTRINSIC_OR))
3987 {
3988 /* Warn about short-circuiting
3989 with impure function as second operand. */
3990 bool op2_f = false;
3991 gfc_expr_walker (&op2, impure_function_callback, &op2_f);
3992 }
3993 break;
3994 }
3995
3996 /* Logical ops on integers become bitwise ops with -fdec. */
3997 else if (flag_dec
3998 && (op1->ts.type == BT_INTEGER || op2->ts.type == BT_INTEGER))
3999 {
4000 e->ts.type = BT_INTEGER;
4001 e->ts.kind = gfc_kind_max (op1, op2);
4002 if (op1->ts.type != e->ts.type || op1->ts.kind != e->ts.kind)
4003 gfc_convert_type (op1, &e->ts, 1);
4004 if (op2->ts.type != e->ts.type || op2->ts.kind != e->ts.kind)
4005 gfc_convert_type (op2, &e->ts, 1);
4006 e = logical_to_bitwise (e);
4007 return resolve_function (e);
4008 }
4009
4010 sprintf (msg, _("Operands of logical operator %%<%s%%> at %%L are %s/%s"),
4011 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
4012 gfc_typename (&op2->ts));
4013
4014 goto bad_op;
4015
4016 case INTRINSIC_NOT:
4017 /* Logical ops on integers become bitwise ops with -fdec. */
4018 if (flag_dec && op1->ts.type == BT_INTEGER)
4019 {
4020 e->ts.type = BT_INTEGER;
4021 e->ts.kind = op1->ts.kind;
4022 e = logical_to_bitwise (e);
4023 return resolve_function (e);
4024 }
4025
4026 if (op1->ts.type == BT_LOGICAL)
4027 {
4028 e->ts.type = BT_LOGICAL;
4029 e->ts.kind = op1->ts.kind;
4030 break;
4031 }
4032
4033 sprintf (msg, _("Operand of .not. operator at %%L is %s"),
4034 gfc_typename (&op1->ts));
4035 goto bad_op;
4036
4037 case INTRINSIC_GT:
4038 case INTRINSIC_GT_OS:
4039 case INTRINSIC_GE:
4040 case INTRINSIC_GE_OS:
4041 case INTRINSIC_LT:
4042 case INTRINSIC_LT_OS:
4043 case INTRINSIC_LE:
4044 case INTRINSIC_LE_OS:
4045 if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
4046 {
4047 strcpy (msg, _("COMPLEX quantities cannot be compared at %L"));
4048 goto bad_op;
4049 }
4050
4051 /* Fall through. */
4052
4053 case INTRINSIC_EQ:
4054 case INTRINSIC_EQ_OS:
4055 case INTRINSIC_NE:
4056 case INTRINSIC_NE_OS:
4057 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
4058 && op1->ts.kind == op2->ts.kind)
4059 {
4060 e->ts.type = BT_LOGICAL;
4061 e->ts.kind = gfc_default_logical_kind;
4062 break;
4063 }
4064
4065 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
4066 {
4067 gfc_type_convert_binary (e, 1);
4068
4069 e->ts.type = BT_LOGICAL;
4070 e->ts.kind = gfc_default_logical_kind;
4071
4072 if (warn_compare_reals)
4073 {
4074 gfc_intrinsic_op op = e->value.op.op;
4075
4076 /* Type conversion has made sure that the types of op1 and op2
4077 agree, so it is only necessary to check the first one. */
4078 if ((op1->ts.type == BT_REAL || op1->ts.type == BT_COMPLEX)
4079 && (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS
4080 || op == INTRINSIC_NE || op == INTRINSIC_NE_OS))
4081 {
4082 const char *msg;
4083
4084 if (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS)
4085 msg = "Equality comparison for %s at %L";
4086 else
4087 msg = "Inequality comparison for %s at %L";
4088
4089 gfc_warning (OPT_Wcompare_reals, msg,
4090 gfc_typename (&op1->ts), &op1->where);
4091 }
4092 }
4093
4094 break;
4095 }
4096
4097 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
4098 sprintf (msg,
4099 _("Logicals at %%L must be compared with %s instead of %s"),
4100 (e->value.op.op == INTRINSIC_EQ
4101 || e->value.op.op == INTRINSIC_EQ_OS)
4102 ? ".eqv." : ".neqv.", gfc_op2string (e->value.op.op));
4103 else
4104 sprintf (msg,
4105 _("Operands of comparison operator %%<%s%%> at %%L are %s/%s"),
4106 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
4107 gfc_typename (&op2->ts));
4108
4109 goto bad_op;
4110
4111 case INTRINSIC_USER:
4112 if (e->value.op.uop->op == NULL)
4113 {
4114 const char *name = e->value.op.uop->name;
4115 const char *guessed;
4116 guessed = lookup_uop_fuzzy (name, e->value.op.uop->ns->uop_root);
4117 if (guessed)
4118 sprintf (msg, _("Unknown operator %%<%s%%> at %%L; did you mean '%s'?"),
4119 name, guessed);
4120 else
4121 sprintf (msg, _("Unknown operator %%<%s%%> at %%L"), name);
4122 }
4123 else if (op2 == NULL)
4124 sprintf (msg, _("Operand of user operator %%<%s%%> at %%L is %s"),
4125 e->value.op.uop->name, gfc_typename (&op1->ts));
4126 else
4127 {
4128 sprintf (msg, _("Operands of user operator %%<%s%%> at %%L are %s/%s"),
4129 e->value.op.uop->name, gfc_typename (&op1->ts),
4130 gfc_typename (&op2->ts));
4131 e->value.op.uop->op->sym->attr.referenced = 1;
4132 }
4133
4134 goto bad_op;
4135
4136 case INTRINSIC_PARENTHESES:
4137 e->ts = op1->ts;
4138 if (e->ts.type == BT_CHARACTER)
4139 e->ts.u.cl = op1->ts.u.cl;
4140 break;
4141
4142 default:
4143 gfc_internal_error ("resolve_operator(): Bad intrinsic");
4144 }
4145
4146 /* Deal with arrayness of an operand through an operator. */
4147
4148 t = true;
4149
4150 switch (e->value.op.op)
4151 {
4152 case INTRINSIC_PLUS:
4153 case INTRINSIC_MINUS:
4154 case INTRINSIC_TIMES:
4155 case INTRINSIC_DIVIDE:
4156 case INTRINSIC_POWER:
4157 case INTRINSIC_CONCAT:
4158 case INTRINSIC_AND:
4159 case INTRINSIC_OR:
4160 case INTRINSIC_EQV:
4161 case INTRINSIC_NEQV:
4162 case INTRINSIC_EQ:
4163 case INTRINSIC_EQ_OS:
4164 case INTRINSIC_NE:
4165 case INTRINSIC_NE_OS:
4166 case INTRINSIC_GT:
4167 case INTRINSIC_GT_OS:
4168 case INTRINSIC_GE:
4169 case INTRINSIC_GE_OS:
4170 case INTRINSIC_LT:
4171 case INTRINSIC_LT_OS:
4172 case INTRINSIC_LE:
4173 case INTRINSIC_LE_OS:
4174
4175 if (op1->rank == 0 && op2->rank == 0)
4176 e->rank = 0;
4177
4178 if (op1->rank == 0 && op2->rank != 0)
4179 {
4180 e->rank = op2->rank;
4181
4182 if (e->shape == NULL)
4183 e->shape = gfc_copy_shape (op2->shape, op2->rank);
4184 }
4185
4186 if (op1->rank != 0 && op2->rank == 0)
4187 {
4188 e->rank = op1->rank;
4189
4190 if (e->shape == NULL)
4191 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4192 }
4193
4194 if (op1->rank != 0 && op2->rank != 0)
4195 {
4196 if (op1->rank == op2->rank)
4197 {
4198 e->rank = op1->rank;
4199 if (e->shape == NULL)
4200 {
4201 t = compare_shapes (op1, op2);
4202 if (!t)
4203 e->shape = NULL;
4204 else
4205 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4206 }
4207 }
4208 else
4209 {
4210 /* Allow higher level expressions to work. */
4211 e->rank = 0;
4212
4213 /* Try user-defined operators, and otherwise throw an error. */
4214 dual_locus_error = true;
4215 sprintf (msg,
4216 _("Inconsistent ranks for operator at %%L and %%L"));
4217 goto bad_op;
4218 }
4219 }
4220
4221 break;
4222
4223 case INTRINSIC_PARENTHESES:
4224 case INTRINSIC_NOT:
4225 case INTRINSIC_UPLUS:
4226 case INTRINSIC_UMINUS:
4227 /* Simply copy arrayness attribute */
4228 e->rank = op1->rank;
4229
4230 if (e->shape == NULL)
4231 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4232
4233 break;
4234
4235 default:
4236 break;
4237 }
4238
4239 /* Attempt to simplify the expression. */
4240 if (t)
4241 {
4242 t = gfc_simplify_expr (e, 0);
4243 /* Some calls do not succeed in simplification and return false
4244 even though there is no error; e.g. variable references to
4245 PARAMETER arrays. */
4246 if (!gfc_is_constant_expr (e))
4247 t = true;
4248 }
4249 return t;
4250
4251 bad_op:
4252
4253 {
4254 match m = gfc_extend_expr (e);
4255 if (m == MATCH_YES)
4256 return true;
4257 if (m == MATCH_ERROR)
4258 return false;
4259 }
4260
4261 if (dual_locus_error)
4262 gfc_error (msg, &op1->where, &op2->where);
4263 else
4264 gfc_error (msg, &e->where);
4265
4266 return false;
4267 }
4268
4269
4270 /************** Array resolution subroutines **************/
4271
4272 enum compare_result
4273 { CMP_LT, CMP_EQ, CMP_GT, CMP_UNKNOWN };
4274
4275 /* Compare two integer expressions. */
4276
4277 static compare_result
4278 compare_bound (gfc_expr *a, gfc_expr *b)
4279 {
4280 int i;
4281
4282 if (a == NULL || a->expr_type != EXPR_CONSTANT
4283 || b == NULL || b->expr_type != EXPR_CONSTANT)
4284 return CMP_UNKNOWN;
4285
4286 /* If either of the types isn't INTEGER, we must have
4287 raised an error earlier. */
4288
4289 if (a->ts.type != BT_INTEGER || b->ts.type != BT_INTEGER)
4290 return CMP_UNKNOWN;
4291
4292 i = mpz_cmp (a->value.integer, b->value.integer);
4293
4294 if (i < 0)
4295 return CMP_LT;
4296 if (i > 0)
4297 return CMP_GT;
4298 return CMP_EQ;
4299 }
4300
4301
4302 /* Compare an integer expression with an integer. */
4303
4304 static compare_result
4305 compare_bound_int (gfc_expr *a, int b)
4306 {
4307 int i;
4308
4309 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4310 return CMP_UNKNOWN;
4311
4312 if (a->ts.type != BT_INTEGER)
4313 gfc_internal_error ("compare_bound_int(): Bad expression");
4314
4315 i = mpz_cmp_si (a->value.integer, b);
4316
4317 if (i < 0)
4318 return CMP_LT;
4319 if (i > 0)
4320 return CMP_GT;
4321 return CMP_EQ;
4322 }
4323
4324
4325 /* Compare an integer expression with a mpz_t. */
4326
4327 static compare_result
4328 compare_bound_mpz_t (gfc_expr *a, mpz_t b)
4329 {
4330 int i;
4331
4332 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4333 return CMP_UNKNOWN;
4334
4335 if (a->ts.type != BT_INTEGER)
4336 gfc_internal_error ("compare_bound_int(): Bad expression");
4337
4338 i = mpz_cmp (a->value.integer, b);
4339
4340 if (i < 0)
4341 return CMP_LT;
4342 if (i > 0)
4343 return CMP_GT;
4344 return CMP_EQ;
4345 }
4346
4347
4348 /* Compute the last value of a sequence given by a triplet.
4349 Return 0 if it wasn't able to compute the last value, or if the
4350 sequence if empty, and 1 otherwise. */
4351
4352 static int
4353 compute_last_value_for_triplet (gfc_expr *start, gfc_expr *end,
4354 gfc_expr *stride, mpz_t last)
4355 {
4356 mpz_t rem;
4357
4358 if (start == NULL || start->expr_type != EXPR_CONSTANT
4359 || end == NULL || end->expr_type != EXPR_CONSTANT
4360 || (stride != NULL && stride->expr_type != EXPR_CONSTANT))
4361 return 0;
4362
4363 if (start->ts.type != BT_INTEGER || end->ts.type != BT_INTEGER
4364 || (stride != NULL && stride->ts.type != BT_INTEGER))
4365 return 0;
4366
4367 if (stride == NULL || compare_bound_int (stride, 1) == CMP_EQ)
4368 {
4369 if (compare_bound (start, end) == CMP_GT)
4370 return 0;
4371 mpz_set (last, end->value.integer);
4372 return 1;
4373 }
4374
4375 if (compare_bound_int (stride, 0) == CMP_GT)
4376 {
4377 /* Stride is positive */
4378 if (mpz_cmp (start->value.integer, end->value.integer) > 0)
4379 return 0;
4380 }
4381 else
4382 {
4383 /* Stride is negative */
4384 if (mpz_cmp (start->value.integer, end->value.integer) < 0)
4385 return 0;
4386 }
4387
4388 mpz_init (rem);
4389 mpz_sub (rem, end->value.integer, start->value.integer);
4390 mpz_tdiv_r (rem, rem, stride->value.integer);
4391 mpz_sub (last, end->value.integer, rem);
4392 mpz_clear (rem);
4393
4394 return 1;
4395 }
4396
4397
4398 /* Compare a single dimension of an array reference to the array
4399 specification. */
4400
4401 static bool
4402 check_dimension (int i, gfc_array_ref *ar, gfc_array_spec *as)
4403 {
4404 mpz_t last_value;
4405
4406 if (ar->dimen_type[i] == DIMEN_STAR)
4407 {
4408 gcc_assert (ar->stride[i] == NULL);
4409 /* This implies [*] as [*:] and [*:3] are not possible. */
4410 if (ar->start[i] == NULL)
4411 {
4412 gcc_assert (ar->end[i] == NULL);
4413 return true;
4414 }
4415 }
4416
4417 /* Given start, end and stride values, calculate the minimum and
4418 maximum referenced indexes. */
4419
4420 switch (ar->dimen_type[i])
4421 {
4422 case DIMEN_VECTOR:
4423 case DIMEN_THIS_IMAGE:
4424 break;
4425
4426 case DIMEN_STAR:
4427 case DIMEN_ELEMENT:
4428 if (compare_bound (ar->start[i], as->lower[i]) == CMP_LT)
4429 {
4430 if (i < as->rank)
4431 gfc_warning (0, "Array reference at %L is out of bounds "
4432 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4433 mpz_get_si (ar->start[i]->value.integer),
4434 mpz_get_si (as->lower[i]->value.integer), i+1);
4435 else
4436 gfc_warning (0, "Array reference at %L is out of bounds "
4437 "(%ld < %ld) in codimension %d", &ar->c_where[i],
4438 mpz_get_si (ar->start[i]->value.integer),
4439 mpz_get_si (as->lower[i]->value.integer),
4440 i + 1 - as->rank);
4441 return true;
4442 }
4443 if (compare_bound (ar->start[i], as->upper[i]) == CMP_GT)
4444 {
4445 if (i < as->rank)
4446 gfc_warning (0, "Array reference at %L is out of bounds "
4447 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4448 mpz_get_si (ar->start[i]->value.integer),
4449 mpz_get_si (as->upper[i]->value.integer), i+1);
4450 else
4451 gfc_warning (0, "Array reference at %L is out of bounds "
4452 "(%ld > %ld) in codimension %d", &ar->c_where[i],
4453 mpz_get_si (ar->start[i]->value.integer),
4454 mpz_get_si (as->upper[i]->value.integer),
4455 i + 1 - as->rank);
4456 return true;
4457 }
4458
4459 break;
4460
4461 case DIMEN_RANGE:
4462 {
4463 #define AR_START (ar->start[i] ? ar->start[i] : as->lower[i])
4464 #define AR_END (ar->end[i] ? ar->end[i] : as->upper[i])
4465
4466 compare_result comp_start_end = compare_bound (AR_START, AR_END);
4467
4468 /* Check for zero stride, which is not allowed. */
4469 if (compare_bound_int (ar->stride[i], 0) == CMP_EQ)
4470 {
4471 gfc_error ("Illegal stride of zero at %L", &ar->c_where[i]);
4472 return false;
4473 }
4474
4475 /* if start == len || (stride > 0 && start < len)
4476 || (stride < 0 && start > len),
4477 then the array section contains at least one element. In this
4478 case, there is an out-of-bounds access if
4479 (start < lower || start > upper). */
4480 if (compare_bound (AR_START, AR_END) == CMP_EQ
4481 || ((compare_bound_int (ar->stride[i], 0) == CMP_GT
4482 || ar->stride[i] == NULL) && comp_start_end == CMP_LT)
4483 || (compare_bound_int (ar->stride[i], 0) == CMP_LT
4484 && comp_start_end == CMP_GT))
4485 {
4486 if (compare_bound (AR_START, as->lower[i]) == CMP_LT)
4487 {
4488 gfc_warning (0, "Lower array reference at %L is out of bounds "
4489 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4490 mpz_get_si (AR_START->value.integer),
4491 mpz_get_si (as->lower[i]->value.integer), i+1);
4492 return true;
4493 }
4494 if (compare_bound (AR_START, as->upper[i]) == CMP_GT)
4495 {
4496 gfc_warning (0, "Lower array reference at %L is out of bounds "
4497 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4498 mpz_get_si (AR_START->value.integer),
4499 mpz_get_si (as->upper[i]->value.integer), i+1);
4500 return true;
4501 }
4502 }
4503
4504 /* If we can compute the highest index of the array section,
4505 then it also has to be between lower and upper. */
4506 mpz_init (last_value);
4507 if (compute_last_value_for_triplet (AR_START, AR_END, ar->stride[i],
4508 last_value))
4509 {
4510 if (compare_bound_mpz_t (as->lower[i], last_value) == CMP_GT)
4511 {
4512 gfc_warning (0, "Upper array reference at %L is out of bounds "
4513 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4514 mpz_get_si (last_value),
4515 mpz_get_si (as->lower[i]->value.integer), i+1);
4516 mpz_clear (last_value);
4517 return true;
4518 }
4519 if (compare_bound_mpz_t (as->upper[i], last_value) == CMP_LT)
4520 {
4521 gfc_warning (0, "Upper array reference at %L is out of bounds "
4522 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4523 mpz_get_si (last_value),
4524 mpz_get_si (as->upper[i]->value.integer), i+1);
4525 mpz_clear (last_value);
4526 return true;
4527 }
4528 }
4529 mpz_clear (last_value);
4530
4531 #undef AR_START
4532 #undef AR_END
4533 }
4534 break;
4535
4536 default:
4537 gfc_internal_error ("check_dimension(): Bad array reference");
4538 }
4539
4540 return true;
4541 }
4542
4543
4544 /* Compare an array reference with an array specification. */
4545
4546 static bool
4547 compare_spec_to_ref (gfc_array_ref *ar)
4548 {
4549 gfc_array_spec *as;
4550 int i;
4551
4552 as = ar->as;
4553 i = as->rank - 1;
4554 /* TODO: Full array sections are only allowed as actual parameters. */
4555 if (as->type == AS_ASSUMED_SIZE
4556 && (/*ar->type == AR_FULL
4557 ||*/ (ar->type == AR_SECTION
4558 && ar->dimen_type[i] == DIMEN_RANGE && ar->end[i] == NULL)))
4559 {
4560 gfc_error ("Rightmost upper bound of assumed size array section "
4561 "not specified at %L", &ar->where);
4562 return false;
4563 }
4564
4565 if (ar->type == AR_FULL)
4566 return true;
4567
4568 if (as->rank != ar->dimen)
4569 {
4570 gfc_error ("Rank mismatch in array reference at %L (%d/%d)",
4571 &ar->where, ar->dimen, as->rank);
4572 return false;
4573 }
4574
4575 /* ar->codimen == 0 is a local array. */
4576 if (as->corank != ar->codimen && ar->codimen != 0)
4577 {
4578 gfc_error ("Coindex rank mismatch in array reference at %L (%d/%d)",
4579 &ar->where, ar->codimen, as->corank);
4580 return false;
4581 }
4582
4583 for (i = 0; i < as->rank; i++)
4584 if (!check_dimension (i, ar, as))
4585 return false;
4586
4587 /* Local access has no coarray spec. */
4588 if (ar->codimen != 0)
4589 for (i = as->rank; i < as->rank + as->corank; i++)
4590 {
4591 if (ar->dimen_type[i] != DIMEN_ELEMENT && !ar->in_allocate
4592 && ar->dimen_type[i] != DIMEN_THIS_IMAGE)
4593 {
4594 gfc_error ("Coindex of codimension %d must be a scalar at %L",
4595 i + 1 - as->rank, &ar->where);
4596 return false;
4597 }
4598 if (!check_dimension (i, ar, as))
4599 return false;
4600 }
4601
4602 return true;
4603 }
4604
4605
4606 /* Resolve one part of an array index. */
4607
4608 static bool
4609 gfc_resolve_index_1 (gfc_expr *index, int check_scalar,
4610 int force_index_integer_kind)
4611 {
4612 gfc_typespec ts;
4613
4614 if (index == NULL)
4615 return true;
4616
4617 if (!gfc_resolve_expr (index))
4618 return false;
4619
4620 if (check_scalar && index->rank != 0)
4621 {
4622 gfc_error ("Array index at %L must be scalar", &index->where);
4623 return false;
4624 }
4625
4626 if (index->ts.type != BT_INTEGER && index->ts.type != BT_REAL)
4627 {
4628 gfc_error ("Array index at %L must be of INTEGER type, found %s",
4629 &index->where, gfc_basic_typename (index->ts.type));
4630 return false;
4631 }
4632
4633 if (index->ts.type == BT_REAL)
4634 if (!gfc_notify_std (GFC_STD_LEGACY, "REAL array index at %L",
4635 &index->where))
4636 return false;
4637
4638 if ((index->ts.kind != gfc_index_integer_kind
4639 && force_index_integer_kind)
4640 || index->ts.type != BT_INTEGER)
4641 {
4642 gfc_clear_ts (&ts);
4643 ts.type = BT_INTEGER;
4644 ts.kind = gfc_index_integer_kind;
4645
4646 gfc_convert_type_warn (index, &ts, 2, 0);
4647 }
4648
4649 return true;
4650 }
4651
4652 /* Resolve one part of an array index. */
4653
4654 bool
4655 gfc_resolve_index (gfc_expr *index, int check_scalar)
4656 {
4657 return gfc_resolve_index_1 (index, check_scalar, 1);
4658 }
4659
4660 /* Resolve a dim argument to an intrinsic function. */
4661
4662 bool
4663 gfc_resolve_dim_arg (gfc_expr *dim)
4664 {
4665 if (dim == NULL)
4666 return true;
4667
4668 if (!gfc_resolve_expr (dim))
4669 return false;
4670
4671 if (dim->rank != 0)
4672 {
4673 gfc_error ("Argument dim at %L must be scalar", &dim->where);
4674 return false;
4675
4676 }
4677
4678 if (dim->ts.type != BT_INTEGER)
4679 {
4680 gfc_error ("Argument dim at %L must be of INTEGER type", &dim->where);
4681 return false;
4682 }
4683
4684 if (dim->ts.kind != gfc_index_integer_kind)
4685 {
4686 gfc_typespec ts;
4687
4688 gfc_clear_ts (&ts);
4689 ts.type = BT_INTEGER;
4690 ts.kind = gfc_index_integer_kind;
4691
4692 gfc_convert_type_warn (dim, &ts, 2, 0);
4693 }
4694
4695 return true;
4696 }
4697
4698 /* Given an expression that contains array references, update those array
4699 references to point to the right array specifications. While this is
4700 filled in during matching, this information is difficult to save and load
4701 in a module, so we take care of it here.
4702
4703 The idea here is that the original array reference comes from the
4704 base symbol. We traverse the list of reference structures, setting
4705 the stored reference to references. Component references can
4706 provide an additional array specification. */
4707
4708 static void
4709 find_array_spec (gfc_expr *e)
4710 {
4711 gfc_array_spec *as;
4712 gfc_component *c;
4713 gfc_ref *ref;
4714
4715 if (e->symtree->n.sym->ts.type == BT_CLASS)
4716 as = CLASS_DATA (e->symtree->n.sym)->as;
4717 else
4718 as = e->symtree->n.sym->as;
4719
4720 for (ref = e->ref; ref; ref = ref->next)
4721 switch (ref->type)
4722 {
4723 case REF_ARRAY:
4724 if (as == NULL)
4725 gfc_internal_error ("find_array_spec(): Missing spec");
4726
4727 ref->u.ar.as = as;
4728 as = NULL;
4729 break;
4730
4731 case REF_COMPONENT:
4732 c = ref->u.c.component;
4733 if (c->attr.dimension)
4734 {
4735 if (as != NULL)
4736 gfc_internal_error ("find_array_spec(): unused as(1)");
4737 as = c->as;
4738 }
4739
4740 break;
4741
4742 case REF_SUBSTRING:
4743 break;
4744 }
4745
4746 if (as != NULL)
4747 gfc_internal_error ("find_array_spec(): unused as(2)");
4748 }
4749
4750
4751 /* Resolve an array reference. */
4752
4753 static bool
4754 resolve_array_ref (gfc_array_ref *ar)
4755 {
4756 int i, check_scalar;
4757 gfc_expr *e;
4758
4759 for (i = 0; i < ar->dimen + ar->codimen; i++)
4760 {
4761 check_scalar = ar->dimen_type[i] == DIMEN_RANGE;
4762
4763 /* Do not force gfc_index_integer_kind for the start. We can
4764 do fine with any integer kind. This avoids temporary arrays
4765 created for indexing with a vector. */
4766 if (!gfc_resolve_index_1 (ar->start[i], check_scalar, 0))
4767 return false;
4768 if (!gfc_resolve_index (ar->end[i], check_scalar))
4769 return false;
4770 if (!gfc_resolve_index (ar->stride[i], check_scalar))
4771 return false;
4772
4773 e = ar->start[i];
4774
4775 if (ar->dimen_type[i] == DIMEN_UNKNOWN)
4776 switch (e->rank)
4777 {
4778 case 0:
4779 ar->dimen_type[i] = DIMEN_ELEMENT;
4780 break;
4781
4782 case 1:
4783 ar->dimen_type[i] = DIMEN_VECTOR;
4784 if (e->expr_type == EXPR_VARIABLE
4785 && e->symtree->n.sym->ts.type == BT_DERIVED)
4786 ar->start[i] = gfc_get_parentheses (e);
4787 break;
4788
4789 default:
4790 gfc_error ("Array index at %L is an array of rank %d",
4791 &ar->c_where[i], e->rank);
4792 return false;
4793 }
4794
4795 /* Fill in the upper bound, which may be lower than the
4796 specified one for something like a(2:10:5), which is
4797 identical to a(2:7:5). Only relevant for strides not equal
4798 to one. Don't try a division by zero. */
4799 if (ar->dimen_type[i] == DIMEN_RANGE
4800 && ar->stride[i] != NULL && ar->stride[i]->expr_type == EXPR_CONSTANT
4801 && mpz_cmp_si (ar->stride[i]->value.integer, 1L) != 0
4802 && mpz_cmp_si (ar->stride[i]->value.integer, 0L) != 0)
4803 {
4804 mpz_t size, end;
4805
4806 if (gfc_ref_dimen_size (ar, i, &size, &end))
4807 {
4808 if (ar->end[i] == NULL)
4809 {
4810 ar->end[i] =
4811 gfc_get_constant_expr (BT_INTEGER, gfc_index_integer_kind,
4812 &ar->where);
4813 mpz_set (ar->end[i]->value.integer, end);
4814 }
4815 else if (ar->end[i]->ts.type == BT_INTEGER
4816 && ar->end[i]->expr_type == EXPR_CONSTANT)
4817 {
4818 mpz_set (ar->end[i]->value.integer, end);
4819 }
4820 else
4821 gcc_unreachable ();
4822
4823 mpz_clear (size);
4824 mpz_clear (end);
4825 }
4826 }
4827 }
4828
4829 if (ar->type == AR_FULL)
4830 {
4831 if (ar->as->rank == 0)
4832 ar->type = AR_ELEMENT;
4833
4834 /* Make sure array is the same as array(:,:), this way
4835 we don't need to special case all the time. */
4836 ar->dimen = ar->as->rank;
4837 for (i = 0; i < ar->dimen; i++)
4838 {
4839 ar->dimen_type[i] = DIMEN_RANGE;
4840
4841 gcc_assert (ar->start[i] == NULL);
4842 gcc_assert (ar->end[i] == NULL);
4843 gcc_assert (ar->stride[i] == NULL);
4844 }
4845 }
4846
4847 /* If the reference type is unknown, figure out what kind it is. */
4848
4849 if (ar->type == AR_UNKNOWN)
4850 {
4851 ar->type = AR_ELEMENT;
4852 for (i = 0; i < ar->dimen; i++)
4853 if (ar->dimen_type[i] == DIMEN_RANGE
4854 || ar->dimen_type[i] == DIMEN_VECTOR)
4855 {
4856 ar->type = AR_SECTION;
4857 break;
4858 }
4859 }
4860
4861 if (!ar->as->cray_pointee && !compare_spec_to_ref (ar))
4862 return false;
4863
4864 if (ar->as->corank && ar->codimen == 0)
4865 {
4866 int n;
4867 ar->codimen = ar->as->corank;
4868 for (n = ar->dimen; n < ar->dimen + ar->codimen; n++)
4869 ar->dimen_type[n] = DIMEN_THIS_IMAGE;
4870 }
4871
4872 return true;
4873 }
4874
4875
4876 static bool
4877 resolve_substring (gfc_ref *ref)
4878 {
4879 int k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
4880
4881 if (ref->u.ss.start != NULL)
4882 {
4883 if (!gfc_resolve_expr (ref->u.ss.start))
4884 return false;
4885
4886 if (ref->u.ss.start->ts.type != BT_INTEGER)
4887 {
4888 gfc_error ("Substring start index at %L must be of type INTEGER",
4889 &ref->u.ss.start->where);
4890 return false;
4891 }
4892
4893 if (ref->u.ss.start->rank != 0)
4894 {
4895 gfc_error ("Substring start index at %L must be scalar",
4896 &ref->u.ss.start->where);
4897 return false;
4898 }
4899
4900 if (compare_bound_int (ref->u.ss.start, 1) == CMP_LT
4901 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4902 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4903 {
4904 gfc_error ("Substring start index at %L is less than one",
4905 &ref->u.ss.start->where);
4906 return false;
4907 }
4908 }
4909
4910 if (ref->u.ss.end != NULL)
4911 {
4912 if (!gfc_resolve_expr (ref->u.ss.end))
4913 return false;
4914
4915 if (ref->u.ss.end->ts.type != BT_INTEGER)
4916 {
4917 gfc_error ("Substring end index at %L must be of type INTEGER",
4918 &ref->u.ss.end->where);
4919 return false;
4920 }
4921
4922 if (ref->u.ss.end->rank != 0)
4923 {
4924 gfc_error ("Substring end index at %L must be scalar",
4925 &ref->u.ss.end->where);
4926 return false;
4927 }
4928
4929 if (ref->u.ss.length != NULL
4930 && compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_GT
4931 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4932 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4933 {
4934 gfc_error ("Substring end index at %L exceeds the string length",
4935 &ref->u.ss.start->where);
4936 return false;
4937 }
4938
4939 if (compare_bound_mpz_t (ref->u.ss.end,
4940 gfc_integer_kinds[k].huge) == CMP_GT
4941 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4942 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4943 {
4944 gfc_error ("Substring end index at %L is too large",
4945 &ref->u.ss.end->where);
4946 return false;
4947 }
4948 }
4949
4950 return true;
4951 }
4952
4953
4954 /* This function supplies missing substring charlens. */
4955
4956 void
4957 gfc_resolve_substring_charlen (gfc_expr *e)
4958 {
4959 gfc_ref *char_ref;
4960 gfc_expr *start, *end;
4961 gfc_typespec *ts = NULL;
4962
4963 for (char_ref = e->ref; char_ref; char_ref = char_ref->next)
4964 {
4965 if (char_ref->type == REF_SUBSTRING)
4966 break;
4967 if (char_ref->type == REF_COMPONENT)
4968 ts = &char_ref->u.c.component->ts;
4969 }
4970
4971 if (!char_ref)
4972 return;
4973
4974 gcc_assert (char_ref->next == NULL);
4975
4976 if (e->ts.u.cl)
4977 {
4978 if (e->ts.u.cl->length)
4979 gfc_free_expr (e->ts.u.cl->length);
4980 else if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.dummy)
4981 return;
4982 }
4983
4984 e->ts.type = BT_CHARACTER;
4985 e->ts.kind = gfc_default_character_kind;
4986
4987 if (!e->ts.u.cl)
4988 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
4989
4990 if (char_ref->u.ss.start)
4991 start = gfc_copy_expr (char_ref->u.ss.start);
4992 else
4993 start = gfc_get_int_expr (gfc_charlen_int_kind, NULL, 1);
4994
4995 if (char_ref->u.ss.end)
4996 end = gfc_copy_expr (char_ref->u.ss.end);
4997 else if (e->expr_type == EXPR_VARIABLE)
4998 {
4999 if (!ts)
5000 ts = &e->symtree->n.sym->ts;
5001 end = gfc_copy_expr (ts->u.cl->length);
5002 }
5003 else
5004 end = NULL;
5005
5006 if (!start || !end)
5007 {
5008 gfc_free_expr (start);
5009 gfc_free_expr (end);
5010 return;
5011 }
5012
5013 /* Length = (end - start + 1). */
5014 e->ts.u.cl->length = gfc_subtract (end, start);
5015 e->ts.u.cl->length = gfc_add (e->ts.u.cl->length,
5016 gfc_get_int_expr (gfc_charlen_int_kind,
5017 NULL, 1));
5018
5019 /* F2008, 6.4.1: Both the starting point and the ending point shall
5020 be within the range 1, 2, ..., n unless the starting point exceeds
5021 the ending point, in which case the substring has length zero. */
5022
5023 if (mpz_cmp_si (e->ts.u.cl->length->value.integer, 0) < 0)
5024 mpz_set_si (e->ts.u.cl->length->value.integer, 0);
5025
5026 e->ts.u.cl->length->ts.type = BT_INTEGER;
5027 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
5028
5029 /* Make sure that the length is simplified. */
5030 gfc_simplify_expr (e->ts.u.cl->length, 1);
5031 gfc_resolve_expr (e->ts.u.cl->length);
5032 }
5033
5034
5035 /* Resolve subtype references. */
5036
5037 static bool
5038 resolve_ref (gfc_expr *expr)
5039 {
5040 int current_part_dimension, n_components, seen_part_dimension;
5041 gfc_ref *ref;
5042
5043 for (ref = expr->ref; ref; ref = ref->next)
5044 if (ref->type == REF_ARRAY && ref->u.ar.as == NULL)
5045 {
5046 find_array_spec (expr);
5047 break;
5048 }
5049
5050 for (ref = expr->ref; ref; ref = ref->next)
5051 switch (ref->type)
5052 {
5053 case REF_ARRAY:
5054 if (!resolve_array_ref (&ref->u.ar))
5055 return false;
5056 break;
5057
5058 case REF_COMPONENT:
5059 break;
5060
5061 case REF_SUBSTRING:
5062 if (!resolve_substring (ref))
5063 return false;
5064 break;
5065 }
5066
5067 /* Check constraints on part references. */
5068
5069 current_part_dimension = 0;
5070 seen_part_dimension = 0;
5071 n_components = 0;
5072
5073 for (ref = expr->ref; ref; ref = ref->next)
5074 {
5075 switch (ref->type)
5076 {
5077 case REF_ARRAY:
5078 switch (ref->u.ar.type)
5079 {
5080 case AR_FULL:
5081 /* Coarray scalar. */
5082 if (ref->u.ar.as->rank == 0)
5083 {
5084 current_part_dimension = 0;
5085 break;
5086 }
5087 /* Fall through. */
5088 case AR_SECTION:
5089 current_part_dimension = 1;
5090 break;
5091
5092 case AR_ELEMENT:
5093 current_part_dimension = 0;
5094 break;
5095
5096 case AR_UNKNOWN:
5097 gfc_internal_error ("resolve_ref(): Bad array reference");
5098 }
5099
5100 break;
5101
5102 case REF_COMPONENT:
5103 if (current_part_dimension || seen_part_dimension)
5104 {
5105 /* F03:C614. */
5106 if (ref->u.c.component->attr.pointer
5107 || ref->u.c.component->attr.proc_pointer
5108 || (ref->u.c.component->ts.type == BT_CLASS
5109 && CLASS_DATA (ref->u.c.component)->attr.pointer))
5110 {
5111 gfc_error ("Component to the right of a part reference "
5112 "with nonzero rank must not have the POINTER "
5113 "attribute at %L", &expr->where);
5114 return false;
5115 }
5116 else if (ref->u.c.component->attr.allocatable
5117 || (ref->u.c.component->ts.type == BT_CLASS
5118 && CLASS_DATA (ref->u.c.component)->attr.allocatable))
5119
5120 {
5121 gfc_error ("Component to the right of a part reference "
5122 "with nonzero rank must not have the ALLOCATABLE "
5123 "attribute at %L", &expr->where);
5124 return false;
5125 }
5126 }
5127
5128 n_components++;
5129 break;
5130
5131 case REF_SUBSTRING:
5132 break;
5133 }
5134
5135 if (((ref->type == REF_COMPONENT && n_components > 1)
5136 || ref->next == NULL)
5137 && current_part_dimension
5138 && seen_part_dimension)
5139 {
5140 gfc_error ("Two or more part references with nonzero rank must "
5141 "not be specified at %L", &expr->where);
5142 return false;
5143 }
5144
5145 if (ref->type == REF_COMPONENT)
5146 {
5147 if (current_part_dimension)
5148 seen_part_dimension = 1;
5149
5150 /* reset to make sure */
5151 current_part_dimension = 0;
5152 }
5153 }
5154
5155 return true;
5156 }
5157
5158
5159 /* Given an expression, determine its shape. This is easier than it sounds.
5160 Leaves the shape array NULL if it is not possible to determine the shape. */
5161
5162 static void
5163 expression_shape (gfc_expr *e)
5164 {
5165 mpz_t array[GFC_MAX_DIMENSIONS];
5166 int i;
5167
5168 if (e->rank <= 0 || e->shape != NULL)
5169 return;
5170
5171 for (i = 0; i < e->rank; i++)
5172 if (!gfc_array_dimen_size (e, i, &array[i]))
5173 goto fail;
5174
5175 e->shape = gfc_get_shape (e->rank);
5176
5177 memcpy (e->shape, array, e->rank * sizeof (mpz_t));
5178
5179 return;
5180
5181 fail:
5182 for (i--; i >= 0; i--)
5183 mpz_clear (array[i]);
5184 }
5185
5186
5187 /* Given a variable expression node, compute the rank of the expression by
5188 examining the base symbol and any reference structures it may have. */
5189
5190 void
5191 expression_rank (gfc_expr *e)
5192 {
5193 gfc_ref *ref;
5194 int i, rank;
5195
5196 /* Just to make sure, because EXPR_COMPCALL's also have an e->ref and that
5197 could lead to serious confusion... */
5198 gcc_assert (e->expr_type != EXPR_COMPCALL);
5199
5200 if (e->ref == NULL)
5201 {
5202 if (e->expr_type == EXPR_ARRAY)
5203 goto done;
5204 /* Constructors can have a rank different from one via RESHAPE(). */
5205
5206 if (e->symtree == NULL)
5207 {
5208 e->rank = 0;
5209 goto done;
5210 }
5211
5212 e->rank = (e->symtree->n.sym->as == NULL)
5213 ? 0 : e->symtree->n.sym->as->rank;
5214 goto done;
5215 }
5216
5217 rank = 0;
5218
5219 for (ref = e->ref; ref; ref = ref->next)
5220 {
5221 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.proc_pointer
5222 && ref->u.c.component->attr.function && !ref->next)
5223 rank = ref->u.c.component->as ? ref->u.c.component->as->rank : 0;
5224
5225 if (ref->type != REF_ARRAY)
5226 continue;
5227
5228 if (ref->u.ar.type == AR_FULL)
5229 {
5230 rank = ref->u.ar.as->rank;
5231 break;
5232 }
5233
5234 if (ref->u.ar.type == AR_SECTION)
5235 {
5236 /* Figure out the rank of the section. */
5237 if (rank != 0)
5238 gfc_internal_error ("expression_rank(): Two array specs");
5239
5240 for (i = 0; i < ref->u.ar.dimen; i++)
5241 if (ref->u.ar.dimen_type[i] == DIMEN_RANGE
5242 || ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
5243 rank++;
5244
5245 break;
5246 }
5247 }
5248
5249 e->rank = rank;
5250
5251 done:
5252 expression_shape (e);
5253 }
5254
5255
5256 static void
5257 add_caf_get_intrinsic (gfc_expr *e)
5258 {
5259 gfc_expr *wrapper, *tmp_expr;
5260 gfc_ref *ref;
5261 int n;
5262
5263 for (ref = e->ref; ref; ref = ref->next)
5264 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5265 break;
5266 if (ref == NULL)
5267 return;
5268
5269 for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
5270 if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
5271 return;
5272
5273 tmp_expr = XCNEW (gfc_expr);
5274 *tmp_expr = *e;
5275 wrapper = gfc_build_intrinsic_call (gfc_current_ns, GFC_ISYM_CAF_GET,
5276 "caf_get", tmp_expr->where, 1, tmp_expr);
5277 wrapper->ts = e->ts;
5278 wrapper->rank = e->rank;
5279 if (e->rank)
5280 wrapper->shape = gfc_copy_shape (e->shape, e->rank);
5281 *e = *wrapper;
5282 free (wrapper);
5283 }
5284
5285
5286 static void
5287 remove_caf_get_intrinsic (gfc_expr *e)
5288 {
5289 gcc_assert (e->expr_type == EXPR_FUNCTION && e->value.function.isym
5290 && e->value.function.isym->id == GFC_ISYM_CAF_GET);
5291 gfc_expr *e2 = e->value.function.actual->expr;
5292 e->value.function.actual->expr = NULL;
5293 gfc_free_actual_arglist (e->value.function.actual);
5294 gfc_free_shape (&e->shape, e->rank);
5295 *e = *e2;
5296 free (e2);
5297 }
5298
5299
5300 /* Resolve a variable expression. */
5301
5302 static bool
5303 resolve_variable (gfc_expr *e)
5304 {
5305 gfc_symbol *sym;
5306 bool t;
5307
5308 t = true;
5309
5310 if (e->symtree == NULL)
5311 return false;
5312 sym = e->symtree->n.sym;
5313
5314 /* Use same check as for TYPE(*) below; this check has to be before TYPE(*)
5315 as ts.type is set to BT_ASSUMED in resolve_symbol. */
5316 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
5317 {
5318 if (!actual_arg || inquiry_argument)
5319 {
5320 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may only "
5321 "be used as actual argument", sym->name, &e->where);
5322 return false;
5323 }
5324 }
5325 /* TS 29113, 407b. */
5326 else if (e->ts.type == BT_ASSUMED)
5327 {
5328 if (!actual_arg)
5329 {
5330 gfc_error ("Assumed-type variable %s at %L may only be used "
5331 "as actual argument", sym->name, &e->where);
5332 return false;
5333 }
5334 else if (inquiry_argument && !first_actual_arg)
5335 {
5336 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5337 for all inquiry functions in resolve_function; the reason is
5338 that the function-name resolution happens too late in that
5339 function. */
5340 gfc_error ("Assumed-type variable %s at %L as actual argument to "
5341 "an inquiry function shall be the first argument",
5342 sym->name, &e->where);
5343 return false;
5344 }
5345 }
5346 /* TS 29113, C535b. */
5347 else if ((sym->ts.type == BT_CLASS && sym->attr.class_ok
5348 && CLASS_DATA (sym)->as
5349 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5350 || (sym->ts.type != BT_CLASS && sym->as
5351 && sym->as->type == AS_ASSUMED_RANK))
5352 {
5353 if (!actual_arg)
5354 {
5355 gfc_error ("Assumed-rank variable %s at %L may only be used as "
5356 "actual argument", sym->name, &e->where);
5357 return false;
5358 }
5359 else if (inquiry_argument && !first_actual_arg)
5360 {
5361 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5362 for all inquiry functions in resolve_function; the reason is
5363 that the function-name resolution happens too late in that
5364 function. */
5365 gfc_error ("Assumed-rank variable %s at %L as actual argument "
5366 "to an inquiry function shall be the first argument",
5367 sym->name, &e->where);
5368 return false;
5369 }
5370 }
5371
5372 if ((sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) && e->ref
5373 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5374 && e->ref->next == NULL))
5375 {
5376 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall not have "
5377 "a subobject reference", sym->name, &e->ref->u.ar.where);
5378 return false;
5379 }
5380 /* TS 29113, 407b. */
5381 else if (e->ts.type == BT_ASSUMED && e->ref
5382 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5383 && e->ref->next == NULL))
5384 {
5385 gfc_error ("Assumed-type variable %s at %L shall not have a subobject "
5386 "reference", sym->name, &e->ref->u.ar.where);
5387 return false;
5388 }
5389
5390 /* TS 29113, C535b. */
5391 if (((sym->ts.type == BT_CLASS && sym->attr.class_ok
5392 && CLASS_DATA (sym)->as
5393 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5394 || (sym->ts.type != BT_CLASS && sym->as
5395 && sym->as->type == AS_ASSUMED_RANK))
5396 && e->ref
5397 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5398 && e->ref->next == NULL))
5399 {
5400 gfc_error ("Assumed-rank variable %s at %L shall not have a subobject "
5401 "reference", sym->name, &e->ref->u.ar.where);
5402 return false;
5403 }
5404
5405 /* For variables that are used in an associate (target => object) where
5406 the object's basetype is array valued while the target is scalar,
5407 the ts' type of the component refs is still array valued, which
5408 can't be translated that way. */
5409 if (sym->assoc && e->rank == 0 && e->ref && sym->ts.type == BT_CLASS
5410 && sym->assoc->target->ts.type == BT_CLASS
5411 && CLASS_DATA (sym->assoc->target)->as)
5412 {
5413 gfc_ref *ref = e->ref;
5414 while (ref)
5415 {
5416 switch (ref->type)
5417 {
5418 case REF_COMPONENT:
5419 ref->u.c.sym = sym->ts.u.derived;
5420 /* Stop the loop. */
5421 ref = NULL;
5422 break;
5423 default:
5424 ref = ref->next;
5425 break;
5426 }
5427 }
5428 }
5429
5430 /* If this is an associate-name, it may be parsed with an array reference
5431 in error even though the target is scalar. Fail directly in this case.
5432 TODO Understand why class scalar expressions must be excluded. */
5433 if (sym->assoc && !(sym->ts.type == BT_CLASS && e->rank == 0))
5434 {
5435 if (sym->ts.type == BT_CLASS)
5436 gfc_fix_class_refs (e);
5437 if (!sym->attr.dimension && e->ref && e->ref->type == REF_ARRAY)
5438 return false;
5439 }
5440
5441 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.generic)
5442 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
5443
5444 /* On the other hand, the parser may not have known this is an array;
5445 in this case, we have to add a FULL reference. */
5446 if (sym->assoc && sym->attr.dimension && !e->ref)
5447 {
5448 e->ref = gfc_get_ref ();
5449 e->ref->type = REF_ARRAY;
5450 e->ref->u.ar.type = AR_FULL;
5451 e->ref->u.ar.dimen = 0;
5452 }
5453
5454 /* Like above, but for class types, where the checking whether an array
5455 ref is present is more complicated. Furthermore make sure not to add
5456 the full array ref to _vptr or _len refs. */
5457 if (sym->assoc && sym->ts.type == BT_CLASS
5458 && CLASS_DATA (sym)->attr.dimension
5459 && (e->ts.type != BT_DERIVED || !e->ts.u.derived->attr.vtype))
5460 {
5461 gfc_ref *ref, *newref;
5462
5463 newref = gfc_get_ref ();
5464 newref->type = REF_ARRAY;
5465 newref->u.ar.type = AR_FULL;
5466 newref->u.ar.dimen = 0;
5467 /* Because this is an associate var and the first ref either is a ref to
5468 the _data component or not, no traversal of the ref chain is
5469 needed. The array ref needs to be inserted after the _data ref,
5470 or when that is not present, which may happend for polymorphic
5471 types, then at the first position. */
5472 ref = e->ref;
5473 if (!ref)
5474 e->ref = newref;
5475 else if (ref->type == REF_COMPONENT
5476 && strcmp ("_data", ref->u.c.component->name) == 0)
5477 {
5478 if (!ref->next || ref->next->type != REF_ARRAY)
5479 {
5480 newref->next = ref->next;
5481 ref->next = newref;
5482 }
5483 else
5484 /* Array ref present already. */
5485 gfc_free_ref_list (newref);
5486 }
5487 else if (ref->type == REF_ARRAY)
5488 /* Array ref present already. */
5489 gfc_free_ref_list (newref);
5490 else
5491 {
5492 newref->next = ref;
5493 e->ref = newref;
5494 }
5495 }
5496
5497 if (e->ref && !resolve_ref (e))
5498 return false;
5499
5500 if (sym->attr.flavor == FL_PROCEDURE
5501 && (!sym->attr.function
5502 || (sym->attr.function && sym->result
5503 && sym->result->attr.proc_pointer
5504 && !sym->result->attr.function)))
5505 {
5506 e->ts.type = BT_PROCEDURE;
5507 goto resolve_procedure;
5508 }
5509
5510 if (sym->ts.type != BT_UNKNOWN)
5511 gfc_variable_attr (e, &e->ts);
5512 else if (sym->attr.flavor == FL_PROCEDURE
5513 && sym->attr.function && sym->result
5514 && sym->result->ts.type != BT_UNKNOWN
5515 && sym->result->attr.proc_pointer)
5516 e->ts = sym->result->ts;
5517 else
5518 {
5519 /* Must be a simple variable reference. */
5520 if (!gfc_set_default_type (sym, 1, sym->ns))
5521 return false;
5522 e->ts = sym->ts;
5523 }
5524
5525 if (check_assumed_size_reference (sym, e))
5526 return false;
5527
5528 /* Deal with forward references to entries during gfc_resolve_code, to
5529 satisfy, at least partially, 12.5.2.5. */
5530 if (gfc_current_ns->entries
5531 && current_entry_id == sym->entry_id
5532 && cs_base
5533 && cs_base->current
5534 && cs_base->current->op != EXEC_ENTRY)
5535 {
5536 gfc_entry_list *entry;
5537 gfc_formal_arglist *formal;
5538 int n;
5539 bool seen, saved_specification_expr;
5540
5541 /* If the symbol is a dummy... */
5542 if (sym->attr.dummy && sym->ns == gfc_current_ns)
5543 {
5544 entry = gfc_current_ns->entries;
5545 seen = false;
5546
5547 /* ...test if the symbol is a parameter of previous entries. */
5548 for (; entry && entry->id <= current_entry_id; entry = entry->next)
5549 for (formal = entry->sym->formal; formal; formal = formal->next)
5550 {
5551 if (formal->sym && sym->name == formal->sym->name)
5552 {
5553 seen = true;
5554 break;
5555 }
5556 }
5557
5558 /* If it has not been seen as a dummy, this is an error. */
5559 if (!seen)
5560 {
5561 if (specification_expr)
5562 gfc_error ("Variable %qs, used in a specification expression"
5563 ", is referenced at %L before the ENTRY statement "
5564 "in which it is a parameter",
5565 sym->name, &cs_base->current->loc);
5566 else
5567 gfc_error ("Variable %qs is used at %L before the ENTRY "
5568 "statement in which it is a parameter",
5569 sym->name, &cs_base->current->loc);
5570 t = false;
5571 }
5572 }
5573
5574 /* Now do the same check on the specification expressions. */
5575 saved_specification_expr = specification_expr;
5576 specification_expr = true;
5577 if (sym->ts.type == BT_CHARACTER
5578 && !gfc_resolve_expr (sym->ts.u.cl->length))
5579 t = false;
5580
5581 if (sym->as)
5582 for (n = 0; n < sym->as->rank; n++)
5583 {
5584 if (!gfc_resolve_expr (sym->as->lower[n]))
5585 t = false;
5586 if (!gfc_resolve_expr (sym->as->upper[n]))
5587 t = false;
5588 }
5589 specification_expr = saved_specification_expr;
5590
5591 if (t)
5592 /* Update the symbol's entry level. */
5593 sym->entry_id = current_entry_id + 1;
5594 }
5595
5596 /* If a symbol has been host_associated mark it. This is used latter,
5597 to identify if aliasing is possible via host association. */
5598 if (sym->attr.flavor == FL_VARIABLE
5599 && gfc_current_ns->parent
5600 && (gfc_current_ns->parent == sym->ns
5601 || (gfc_current_ns->parent->parent
5602 && gfc_current_ns->parent->parent == sym->ns)))
5603 sym->attr.host_assoc = 1;
5604
5605 if (gfc_current_ns->proc_name
5606 && sym->attr.dimension
5607 && (sym->ns != gfc_current_ns
5608 || sym->attr.use_assoc
5609 || sym->attr.in_common))
5610 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
5611
5612 resolve_procedure:
5613 if (t && !resolve_procedure_expression (e))
5614 t = false;
5615
5616 /* F2008, C617 and C1229. */
5617 if (!inquiry_argument && (e->ts.type == BT_CLASS || e->ts.type == BT_DERIVED)
5618 && gfc_is_coindexed (e))
5619 {
5620 gfc_ref *ref, *ref2 = NULL;
5621
5622 for (ref = e->ref; ref; ref = ref->next)
5623 {
5624 if (ref->type == REF_COMPONENT)
5625 ref2 = ref;
5626 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5627 break;
5628 }
5629
5630 for ( ; ref; ref = ref->next)
5631 if (ref->type == REF_COMPONENT)
5632 break;
5633
5634 /* Expression itself is not coindexed object. */
5635 if (ref && e->ts.type == BT_CLASS)
5636 {
5637 gfc_error ("Polymorphic subobject of coindexed object at %L",
5638 &e->where);
5639 t = false;
5640 }
5641
5642 /* Expression itself is coindexed object. */
5643 if (ref == NULL)
5644 {
5645 gfc_component *c;
5646 c = ref2 ? ref2->u.c.component : e->symtree->n.sym->components;
5647 for ( ; c; c = c->next)
5648 if (c->attr.allocatable && c->ts.type == BT_CLASS)
5649 {
5650 gfc_error ("Coindexed object with polymorphic allocatable "
5651 "subcomponent at %L", &e->where);
5652 t = false;
5653 break;
5654 }
5655 }
5656 }
5657
5658 if (t)
5659 expression_rank (e);
5660
5661 if (t && flag_coarray == GFC_FCOARRAY_LIB && gfc_is_coindexed (e))
5662 add_caf_get_intrinsic (e);
5663
5664 /* Simplify cases where access to a parameter array results in a
5665 single constant. Suppress errors since those will have been
5666 issued before, as warnings. */
5667 if (e->rank == 0 && sym->as && sym->attr.flavor == FL_PARAMETER)
5668 {
5669 gfc_push_suppress_errors ();
5670 gfc_simplify_expr (e, 1);
5671 gfc_pop_suppress_errors ();
5672 }
5673
5674 return t;
5675 }
5676
5677
5678 /* Checks to see that the correct symbol has been host associated.
5679 The only situation where this arises is that in which a twice
5680 contained function is parsed after the host association is made.
5681 Therefore, on detecting this, change the symbol in the expression
5682 and convert the array reference into an actual arglist if the old
5683 symbol is a variable. */
5684 static bool
5685 check_host_association (gfc_expr *e)
5686 {
5687 gfc_symbol *sym, *old_sym;
5688 gfc_symtree *st;
5689 int n;
5690 gfc_ref *ref;
5691 gfc_actual_arglist *arg, *tail = NULL;
5692 bool retval = e->expr_type == EXPR_FUNCTION;
5693
5694 /* If the expression is the result of substitution in
5695 interface.c(gfc_extend_expr) because there is no way in
5696 which the host association can be wrong. */
5697 if (e->symtree == NULL
5698 || e->symtree->n.sym == NULL
5699 || e->user_operator)
5700 return retval;
5701
5702 old_sym = e->symtree->n.sym;
5703
5704 if (gfc_current_ns->parent
5705 && old_sym->ns != gfc_current_ns)
5706 {
5707 /* Use the 'USE' name so that renamed module symbols are
5708 correctly handled. */
5709 gfc_find_symbol (e->symtree->name, gfc_current_ns, 1, &sym);
5710
5711 if (sym && old_sym != sym
5712 && sym->ts.type == old_sym->ts.type
5713 && sym->attr.flavor == FL_PROCEDURE
5714 && sym->attr.contained)
5715 {
5716 /* Clear the shape, since it might not be valid. */
5717 gfc_free_shape (&e->shape, e->rank);
5718
5719 /* Give the expression the right symtree! */
5720 gfc_find_sym_tree (e->symtree->name, NULL, 1, &st);
5721 gcc_assert (st != NULL);
5722
5723 if (old_sym->attr.flavor == FL_PROCEDURE
5724 || e->expr_type == EXPR_FUNCTION)
5725 {
5726 /* Original was function so point to the new symbol, since
5727 the actual argument list is already attached to the
5728 expression. */
5729 e->value.function.esym = NULL;
5730 e->symtree = st;
5731 }
5732 else
5733 {
5734 /* Original was variable so convert array references into
5735 an actual arglist. This does not need any checking now
5736 since resolve_function will take care of it. */
5737 e->value.function.actual = NULL;
5738 e->expr_type = EXPR_FUNCTION;
5739 e->symtree = st;
5740
5741 /* Ambiguity will not arise if the array reference is not
5742 the last reference. */
5743 for (ref = e->ref; ref; ref = ref->next)
5744 if (ref->type == REF_ARRAY && ref->next == NULL)
5745 break;
5746
5747 gcc_assert (ref->type == REF_ARRAY);
5748
5749 /* Grab the start expressions from the array ref and
5750 copy them into actual arguments. */
5751 for (n = 0; n < ref->u.ar.dimen; n++)
5752 {
5753 arg = gfc_get_actual_arglist ();
5754 arg->expr = gfc_copy_expr (ref->u.ar.start[n]);
5755 if (e->value.function.actual == NULL)
5756 tail = e->value.function.actual = arg;
5757 else
5758 {
5759 tail->next = arg;
5760 tail = arg;
5761 }
5762 }
5763
5764 /* Dump the reference list and set the rank. */
5765 gfc_free_ref_list (e->ref);
5766 e->ref = NULL;
5767 e->rank = sym->as ? sym->as->rank : 0;
5768 }
5769
5770 gfc_resolve_expr (e);
5771 sym->refs++;
5772 }
5773 }
5774 /* This might have changed! */
5775 return e->expr_type == EXPR_FUNCTION;
5776 }
5777
5778
5779 static void
5780 gfc_resolve_character_operator (gfc_expr *e)
5781 {
5782 gfc_expr *op1 = e->value.op.op1;
5783 gfc_expr *op2 = e->value.op.op2;
5784 gfc_expr *e1 = NULL;
5785 gfc_expr *e2 = NULL;
5786
5787 gcc_assert (e->value.op.op == INTRINSIC_CONCAT);
5788
5789 if (op1->ts.u.cl && op1->ts.u.cl->length)
5790 e1 = gfc_copy_expr (op1->ts.u.cl->length);
5791 else if (op1->expr_type == EXPR_CONSTANT)
5792 e1 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
5793 op1->value.character.length);
5794
5795 if (op2->ts.u.cl && op2->ts.u.cl->length)
5796 e2 = gfc_copy_expr (op2->ts.u.cl->length);
5797 else if (op2->expr_type == EXPR_CONSTANT)
5798 e2 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
5799 op2->value.character.length);
5800
5801 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5802
5803 if (!e1 || !e2)
5804 {
5805 gfc_free_expr (e1);
5806 gfc_free_expr (e2);
5807
5808 return;
5809 }
5810
5811 e->ts.u.cl->length = gfc_add (e1, e2);
5812 e->ts.u.cl->length->ts.type = BT_INTEGER;
5813 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
5814 gfc_simplify_expr (e->ts.u.cl->length, 0);
5815 gfc_resolve_expr (e->ts.u.cl->length);
5816
5817 return;
5818 }
5819
5820
5821 /* Ensure that an character expression has a charlen and, if possible, a
5822 length expression. */
5823
5824 static void
5825 fixup_charlen (gfc_expr *e)
5826 {
5827 /* The cases fall through so that changes in expression type and the need
5828 for multiple fixes are picked up. In all circumstances, a charlen should
5829 be available for the middle end to hang a backend_decl on. */
5830 switch (e->expr_type)
5831 {
5832 case EXPR_OP:
5833 gfc_resolve_character_operator (e);
5834 /* FALLTHRU */
5835
5836 case EXPR_ARRAY:
5837 if (e->expr_type == EXPR_ARRAY)
5838 gfc_resolve_character_array_constructor (e);
5839 /* FALLTHRU */
5840
5841 case EXPR_SUBSTRING:
5842 if (!e->ts.u.cl && e->ref)
5843 gfc_resolve_substring_charlen (e);
5844 /* FALLTHRU */
5845
5846 default:
5847 if (!e->ts.u.cl)
5848 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5849
5850 break;
5851 }
5852 }
5853
5854
5855 /* Update an actual argument to include the passed-object for type-bound
5856 procedures at the right position. */
5857
5858 static gfc_actual_arglist*
5859 update_arglist_pass (gfc_actual_arglist* lst, gfc_expr* po, unsigned argpos,
5860 const char *name)
5861 {
5862 gcc_assert (argpos > 0);
5863
5864 if (argpos == 1)
5865 {
5866 gfc_actual_arglist* result;
5867
5868 result = gfc_get_actual_arglist ();
5869 result->expr = po;
5870 result->next = lst;
5871 if (name)
5872 result->name = name;
5873
5874 return result;
5875 }
5876
5877 if (lst)
5878 lst->next = update_arglist_pass (lst->next, po, argpos - 1, name);
5879 else
5880 lst = update_arglist_pass (NULL, po, argpos - 1, name);
5881 return lst;
5882 }
5883
5884
5885 /* Extract the passed-object from an EXPR_COMPCALL (a copy of it). */
5886
5887 static gfc_expr*
5888 extract_compcall_passed_object (gfc_expr* e)
5889 {
5890 gfc_expr* po;
5891
5892 gcc_assert (e->expr_type == EXPR_COMPCALL);
5893
5894 if (e->value.compcall.base_object)
5895 po = gfc_copy_expr (e->value.compcall.base_object);
5896 else
5897 {
5898 po = gfc_get_expr ();
5899 po->expr_type = EXPR_VARIABLE;
5900 po->symtree = e->symtree;
5901 po->ref = gfc_copy_ref (e->ref);
5902 po->where = e->where;
5903 }
5904
5905 if (!gfc_resolve_expr (po))
5906 return NULL;
5907
5908 return po;
5909 }
5910
5911
5912 /* Update the arglist of an EXPR_COMPCALL expression to include the
5913 passed-object. */
5914
5915 static bool
5916 update_compcall_arglist (gfc_expr* e)
5917 {
5918 gfc_expr* po;
5919 gfc_typebound_proc* tbp;
5920
5921 tbp = e->value.compcall.tbp;
5922
5923 if (tbp->error)
5924 return false;
5925
5926 po = extract_compcall_passed_object (e);
5927 if (!po)
5928 return false;
5929
5930 if (tbp->nopass || e->value.compcall.ignore_pass)
5931 {
5932 gfc_free_expr (po);
5933 return true;
5934 }
5935
5936 if (tbp->pass_arg_num <= 0)
5937 return false;
5938
5939 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
5940 tbp->pass_arg_num,
5941 tbp->pass_arg);
5942
5943 return true;
5944 }
5945
5946
5947 /* Extract the passed object from a PPC call (a copy of it). */
5948
5949 static gfc_expr*
5950 extract_ppc_passed_object (gfc_expr *e)
5951 {
5952 gfc_expr *po;
5953 gfc_ref **ref;
5954
5955 po = gfc_get_expr ();
5956 po->expr_type = EXPR_VARIABLE;
5957 po->symtree = e->symtree;
5958 po->ref = gfc_copy_ref (e->ref);
5959 po->where = e->where;
5960
5961 /* Remove PPC reference. */
5962 ref = &po->ref;
5963 while ((*ref)->next)
5964 ref = &(*ref)->next;
5965 gfc_free_ref_list (*ref);
5966 *ref = NULL;
5967
5968 if (!gfc_resolve_expr (po))
5969 return NULL;
5970
5971 return po;
5972 }
5973
5974
5975 /* Update the actual arglist of a procedure pointer component to include the
5976 passed-object. */
5977
5978 static bool
5979 update_ppc_arglist (gfc_expr* e)
5980 {
5981 gfc_expr* po;
5982 gfc_component *ppc;
5983 gfc_typebound_proc* tb;
5984
5985 ppc = gfc_get_proc_ptr_comp (e);
5986 if (!ppc)
5987 return false;
5988
5989 tb = ppc->tb;
5990
5991 if (tb->error)
5992 return false;
5993 else if (tb->nopass)
5994 return true;
5995
5996 po = extract_ppc_passed_object (e);
5997 if (!po)
5998 return false;
5999
6000 /* F08:R739. */
6001 if (po->rank != 0)
6002 {
6003 gfc_error ("Passed-object at %L must be scalar", &e->where);
6004 return false;
6005 }
6006
6007 /* F08:C611. */
6008 if (po->ts.type == BT_DERIVED && po->ts.u.derived->attr.abstract)
6009 {
6010 gfc_error ("Base object for procedure-pointer component call at %L is of"
6011 " ABSTRACT type %qs", &e->where, po->ts.u.derived->name);
6012 return false;
6013 }
6014
6015 gcc_assert (tb->pass_arg_num > 0);
6016 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
6017 tb->pass_arg_num,
6018 tb->pass_arg);
6019
6020 return true;
6021 }
6022
6023
6024 /* Check that the object a TBP is called on is valid, i.e. it must not be
6025 of ABSTRACT type (as in subobject%abstract_parent%tbp()). */
6026
6027 static bool
6028 check_typebound_baseobject (gfc_expr* e)
6029 {
6030 gfc_expr* base;
6031 bool return_value = false;
6032
6033 base = extract_compcall_passed_object (e);
6034 if (!base)
6035 return false;
6036
6037 gcc_assert (base->ts.type == BT_DERIVED || base->ts.type == BT_CLASS);
6038
6039 if (base->ts.type == BT_CLASS && !gfc_expr_attr (base).class_ok)
6040 return false;
6041
6042 /* F08:C611. */
6043 if (base->ts.type == BT_DERIVED && base->ts.u.derived->attr.abstract)
6044 {
6045 gfc_error ("Base object for type-bound procedure call at %L is of"
6046 " ABSTRACT type %qs", &e->where, base->ts.u.derived->name);
6047 goto cleanup;
6048 }
6049
6050 /* F08:C1230. If the procedure called is NOPASS,
6051 the base object must be scalar. */
6052 if (e->value.compcall.tbp->nopass && base->rank != 0)
6053 {
6054 gfc_error ("Base object for NOPASS type-bound procedure call at %L must"
6055 " be scalar", &e->where);
6056 goto cleanup;
6057 }
6058
6059 return_value = true;
6060
6061 cleanup:
6062 gfc_free_expr (base);
6063 return return_value;
6064 }
6065
6066
6067 /* Resolve a call to a type-bound procedure, either function or subroutine,
6068 statically from the data in an EXPR_COMPCALL expression. The adapted
6069 arglist and the target-procedure symtree are returned. */
6070
6071 static bool
6072 resolve_typebound_static (gfc_expr* e, gfc_symtree** target,
6073 gfc_actual_arglist** actual)
6074 {
6075 gcc_assert (e->expr_type == EXPR_COMPCALL);
6076 gcc_assert (!e->value.compcall.tbp->is_generic);
6077
6078 /* Update the actual arglist for PASS. */
6079 if (!update_compcall_arglist (e))
6080 return false;
6081
6082 *actual = e->value.compcall.actual;
6083 *target = e->value.compcall.tbp->u.specific;
6084
6085 gfc_free_ref_list (e->ref);
6086 e->ref = NULL;
6087 e->value.compcall.actual = NULL;
6088
6089 /* If we find a deferred typebound procedure, check for derived types
6090 that an overriding typebound procedure has not been missed. */
6091 if (e->value.compcall.name
6092 && !e->value.compcall.tbp->non_overridable
6093 && e->value.compcall.base_object
6094 && e->value.compcall.base_object->ts.type == BT_DERIVED)
6095 {
6096 gfc_symtree *st;
6097 gfc_symbol *derived;
6098
6099 /* Use the derived type of the base_object. */
6100 derived = e->value.compcall.base_object->ts.u.derived;
6101 st = NULL;
6102
6103 /* If necessary, go through the inheritance chain. */
6104 while (!st && derived)
6105 {
6106 /* Look for the typebound procedure 'name'. */
6107 if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
6108 st = gfc_find_symtree (derived->f2k_derived->tb_sym_root,
6109 e->value.compcall.name);
6110 if (!st)
6111 derived = gfc_get_derived_super_type (derived);
6112 }
6113
6114 /* Now find the specific name in the derived type namespace. */
6115 if (st && st->n.tb && st->n.tb->u.specific)
6116 gfc_find_sym_tree (st->n.tb->u.specific->name,
6117 derived->ns, 1, &st);
6118 if (st)
6119 *target = st;
6120 }
6121 return true;
6122 }
6123
6124
6125 /* Get the ultimate declared type from an expression. In addition,
6126 return the last class/derived type reference and the copy of the
6127 reference list. If check_types is set true, derived types are
6128 identified as well as class references. */
6129 static gfc_symbol*
6130 get_declared_from_expr (gfc_ref **class_ref, gfc_ref **new_ref,
6131 gfc_expr *e, bool check_types)
6132 {
6133 gfc_symbol *declared;
6134 gfc_ref *ref;
6135
6136 declared = NULL;
6137 if (class_ref)
6138 *class_ref = NULL;
6139 if (new_ref)
6140 *new_ref = gfc_copy_ref (e->ref);
6141
6142 for (ref = e->ref; ref; ref = ref->next)
6143 {
6144 if (ref->type != REF_COMPONENT)
6145 continue;
6146
6147 if ((ref->u.c.component->ts.type == BT_CLASS
6148 || (check_types && gfc_bt_struct (ref->u.c.component->ts.type)))
6149 && ref->u.c.component->attr.flavor != FL_PROCEDURE)
6150 {
6151 declared = ref->u.c.component->ts.u.derived;
6152 if (class_ref)
6153 *class_ref = ref;
6154 }
6155 }
6156
6157 if (declared == NULL)
6158 declared = e->symtree->n.sym->ts.u.derived;
6159
6160 return declared;
6161 }
6162
6163
6164 /* Given an EXPR_COMPCALL calling a GENERIC typebound procedure, figure out
6165 which of the specific bindings (if any) matches the arglist and transform
6166 the expression into a call of that binding. */
6167
6168 static bool
6169 resolve_typebound_generic_call (gfc_expr* e, const char **name)
6170 {
6171 gfc_typebound_proc* genproc;
6172 const char* genname;
6173 gfc_symtree *st;
6174 gfc_symbol *derived;
6175
6176 gcc_assert (e->expr_type == EXPR_COMPCALL);
6177 genname = e->value.compcall.name;
6178 genproc = e->value.compcall.tbp;
6179
6180 if (!genproc->is_generic)
6181 return true;
6182
6183 /* Try the bindings on this type and in the inheritance hierarchy. */
6184 for (; genproc; genproc = genproc->overridden)
6185 {
6186 gfc_tbp_generic* g;
6187
6188 gcc_assert (genproc->is_generic);
6189 for (g = genproc->u.generic; g; g = g->next)
6190 {
6191 gfc_symbol* target;
6192 gfc_actual_arglist* args;
6193 bool matches;
6194
6195 gcc_assert (g->specific);
6196
6197 if (g->specific->error)
6198 continue;
6199
6200 target = g->specific->u.specific->n.sym;
6201
6202 /* Get the right arglist by handling PASS/NOPASS. */
6203 args = gfc_copy_actual_arglist (e->value.compcall.actual);
6204 if (!g->specific->nopass)
6205 {
6206 gfc_expr* po;
6207 po = extract_compcall_passed_object (e);
6208 if (!po)
6209 {
6210 gfc_free_actual_arglist (args);
6211 return false;
6212 }
6213
6214 gcc_assert (g->specific->pass_arg_num > 0);
6215 gcc_assert (!g->specific->error);
6216 args = update_arglist_pass (args, po, g->specific->pass_arg_num,
6217 g->specific->pass_arg);
6218 }
6219 resolve_actual_arglist (args, target->attr.proc,
6220 is_external_proc (target)
6221 && gfc_sym_get_dummy_args (target) == NULL);
6222
6223 /* Check if this arglist matches the formal. */
6224 matches = gfc_arglist_matches_symbol (&args, target);
6225
6226 /* Clean up and break out of the loop if we've found it. */
6227 gfc_free_actual_arglist (args);
6228 if (matches)
6229 {
6230 e->value.compcall.tbp = g->specific;
6231 genname = g->specific_st->name;
6232 /* Pass along the name for CLASS methods, where the vtab
6233 procedure pointer component has to be referenced. */
6234 if (name)
6235 *name = genname;
6236 goto success;
6237 }
6238 }
6239 }
6240
6241 /* Nothing matching found! */
6242 gfc_error ("Found no matching specific binding for the call to the GENERIC"
6243 " %qs at %L", genname, &e->where);
6244 return false;
6245
6246 success:
6247 /* Make sure that we have the right specific instance for the name. */
6248 derived = get_declared_from_expr (NULL, NULL, e, true);
6249
6250 st = gfc_find_typebound_proc (derived, NULL, genname, true, &e->where);
6251 if (st)
6252 e->value.compcall.tbp = st->n.tb;
6253
6254 return true;
6255 }
6256
6257
6258 /* Resolve a call to a type-bound subroutine. */
6259
6260 static bool
6261 resolve_typebound_call (gfc_code* c, const char **name, bool *overridable)
6262 {
6263 gfc_actual_arglist* newactual;
6264 gfc_symtree* target;
6265
6266 /* Check that's really a SUBROUTINE. */
6267 if (!c->expr1->value.compcall.tbp->subroutine)
6268 {
6269 if (!c->expr1->value.compcall.tbp->is_generic
6270 && c->expr1->value.compcall.tbp->u.specific
6271 && c->expr1->value.compcall.tbp->u.specific->n.sym
6272 && c->expr1->value.compcall.tbp->u.specific->n.sym->attr.subroutine)
6273 c->expr1->value.compcall.tbp->subroutine = 1;
6274 else
6275 {
6276 gfc_error ("%qs at %L should be a SUBROUTINE",
6277 c->expr1->value.compcall.name, &c->loc);
6278 return false;
6279 }
6280 }
6281
6282 if (!check_typebound_baseobject (c->expr1))
6283 return false;
6284
6285 /* Pass along the name for CLASS methods, where the vtab
6286 procedure pointer component has to be referenced. */
6287 if (name)
6288 *name = c->expr1->value.compcall.name;
6289
6290 if (!resolve_typebound_generic_call (c->expr1, name))
6291 return false;
6292
6293 /* Pass along the NON_OVERRIDABLE attribute of the specific TBP. */
6294 if (overridable)
6295 *overridable = !c->expr1->value.compcall.tbp->non_overridable;
6296
6297 /* Transform into an ordinary EXEC_CALL for now. */
6298
6299 if (!resolve_typebound_static (c->expr1, &target, &newactual))
6300 return false;
6301
6302 c->ext.actual = newactual;
6303 c->symtree = target;
6304 c->op = (c->expr1->value.compcall.assign ? EXEC_ASSIGN_CALL : EXEC_CALL);
6305
6306 gcc_assert (!c->expr1->ref && !c->expr1->value.compcall.actual);
6307
6308 gfc_free_expr (c->expr1);
6309 c->expr1 = gfc_get_expr ();
6310 c->expr1->expr_type = EXPR_FUNCTION;
6311 c->expr1->symtree = target;
6312 c->expr1->where = c->loc;
6313
6314 return resolve_call (c);
6315 }
6316
6317
6318 /* Resolve a component-call expression. */
6319 static bool
6320 resolve_compcall (gfc_expr* e, const char **name)
6321 {
6322 gfc_actual_arglist* newactual;
6323 gfc_symtree* target;
6324
6325 /* Check that's really a FUNCTION. */
6326 if (!e->value.compcall.tbp->function)
6327 {
6328 gfc_error ("%qs at %L should be a FUNCTION",
6329 e->value.compcall.name, &e->where);
6330 return false;
6331 }
6332
6333 /* These must not be assign-calls! */
6334 gcc_assert (!e->value.compcall.assign);
6335
6336 if (!check_typebound_baseobject (e))
6337 return false;
6338
6339 /* Pass along the name for CLASS methods, where the vtab
6340 procedure pointer component has to be referenced. */
6341 if (name)
6342 *name = e->value.compcall.name;
6343
6344 if (!resolve_typebound_generic_call (e, name))
6345 return false;
6346 gcc_assert (!e->value.compcall.tbp->is_generic);
6347
6348 /* Take the rank from the function's symbol. */
6349 if (e->value.compcall.tbp->u.specific->n.sym->as)
6350 e->rank = e->value.compcall.tbp->u.specific->n.sym->as->rank;
6351
6352 /* For now, we simply transform it into an EXPR_FUNCTION call with the same
6353 arglist to the TBP's binding target. */
6354
6355 if (!resolve_typebound_static (e, &target, &newactual))
6356 return false;
6357
6358 e->value.function.actual = newactual;
6359 e->value.function.name = NULL;
6360 e->value.function.esym = target->n.sym;
6361 e->value.function.isym = NULL;
6362 e->symtree = target;
6363 e->ts = target->n.sym->ts;
6364 e->expr_type = EXPR_FUNCTION;
6365
6366 /* Resolution is not necessary if this is a class subroutine; this
6367 function only has to identify the specific proc. Resolution of
6368 the call will be done next in resolve_typebound_call. */
6369 return gfc_resolve_expr (e);
6370 }
6371
6372
6373 static bool resolve_fl_derived (gfc_symbol *sym);
6374
6375
6376 /* Resolve a typebound function, or 'method'. First separate all
6377 the non-CLASS references by calling resolve_compcall directly. */
6378
6379 static bool
6380 resolve_typebound_function (gfc_expr* e)
6381 {
6382 gfc_symbol *declared;
6383 gfc_component *c;
6384 gfc_ref *new_ref;
6385 gfc_ref *class_ref;
6386 gfc_symtree *st;
6387 const char *name;
6388 gfc_typespec ts;
6389 gfc_expr *expr;
6390 bool overridable;
6391
6392 st = e->symtree;
6393
6394 /* Deal with typebound operators for CLASS objects. */
6395 expr = e->value.compcall.base_object;
6396 overridable = !e->value.compcall.tbp->non_overridable;
6397 if (expr && expr->ts.type == BT_CLASS && e->value.compcall.name)
6398 {
6399 /* If the base_object is not a variable, the corresponding actual
6400 argument expression must be stored in e->base_expression so
6401 that the corresponding tree temporary can be used as the base
6402 object in gfc_conv_procedure_call. */
6403 if (expr->expr_type != EXPR_VARIABLE)
6404 {
6405 gfc_actual_arglist *args;
6406
6407 for (args= e->value.function.actual; args; args = args->next)
6408 {
6409 if (expr == args->expr)
6410 expr = args->expr;
6411 }
6412 }
6413
6414 /* Since the typebound operators are generic, we have to ensure
6415 that any delays in resolution are corrected and that the vtab
6416 is present. */
6417 ts = expr->ts;
6418 declared = ts.u.derived;
6419 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6420 if (c->ts.u.derived == NULL)
6421 c->ts.u.derived = gfc_find_derived_vtab (declared);
6422
6423 if (!resolve_compcall (e, &name))
6424 return false;
6425
6426 /* Use the generic name if it is there. */
6427 name = name ? name : e->value.function.esym->name;
6428 e->symtree = expr->symtree;
6429 e->ref = gfc_copy_ref (expr->ref);
6430 get_declared_from_expr (&class_ref, NULL, e, false);
6431
6432 /* Trim away the extraneous references that emerge from nested
6433 use of interface.c (extend_expr). */
6434 if (class_ref && class_ref->next)
6435 {
6436 gfc_free_ref_list (class_ref->next);
6437 class_ref->next = NULL;
6438 }
6439 else if (e->ref && !class_ref && expr->ts.type != BT_CLASS)
6440 {
6441 gfc_free_ref_list (e->ref);
6442 e->ref = NULL;
6443 }
6444
6445 gfc_add_vptr_component (e);
6446 gfc_add_component_ref (e, name);
6447 e->value.function.esym = NULL;
6448 if (expr->expr_type != EXPR_VARIABLE)
6449 e->base_expr = expr;
6450 return true;
6451 }
6452
6453 if (st == NULL)
6454 return resolve_compcall (e, NULL);
6455
6456 if (!resolve_ref (e))
6457 return false;
6458
6459 /* Get the CLASS declared type. */
6460 declared = get_declared_from_expr (&class_ref, &new_ref, e, true);
6461
6462 if (!resolve_fl_derived (declared))
6463 return false;
6464
6465 /* Weed out cases of the ultimate component being a derived type. */
6466 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6467 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6468 {
6469 gfc_free_ref_list (new_ref);
6470 return resolve_compcall (e, NULL);
6471 }
6472
6473 c = gfc_find_component (declared, "_data", true, true, NULL);
6474 declared = c->ts.u.derived;
6475
6476 /* Treat the call as if it is a typebound procedure, in order to roll
6477 out the correct name for the specific function. */
6478 if (!resolve_compcall (e, &name))
6479 {
6480 gfc_free_ref_list (new_ref);
6481 return false;
6482 }
6483 ts = e->ts;
6484
6485 if (overridable)
6486 {
6487 /* Convert the expression to a procedure pointer component call. */
6488 e->value.function.esym = NULL;
6489 e->symtree = st;
6490
6491 if (new_ref)
6492 e->ref = new_ref;
6493
6494 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6495 gfc_add_vptr_component (e);
6496 gfc_add_component_ref (e, name);
6497
6498 /* Recover the typespec for the expression. This is really only
6499 necessary for generic procedures, where the additional call
6500 to gfc_add_component_ref seems to throw the collection of the
6501 correct typespec. */
6502 e->ts = ts;
6503 }
6504 else if (new_ref)
6505 gfc_free_ref_list (new_ref);
6506
6507 return true;
6508 }
6509
6510 /* Resolve a typebound subroutine, or 'method'. First separate all
6511 the non-CLASS references by calling resolve_typebound_call
6512 directly. */
6513
6514 static bool
6515 resolve_typebound_subroutine (gfc_code *code)
6516 {
6517 gfc_symbol *declared;
6518 gfc_component *c;
6519 gfc_ref *new_ref;
6520 gfc_ref *class_ref;
6521 gfc_symtree *st;
6522 const char *name;
6523 gfc_typespec ts;
6524 gfc_expr *expr;
6525 bool overridable;
6526
6527 st = code->expr1->symtree;
6528
6529 /* Deal with typebound operators for CLASS objects. */
6530 expr = code->expr1->value.compcall.base_object;
6531 overridable = !code->expr1->value.compcall.tbp->non_overridable;
6532 if (expr && expr->ts.type == BT_CLASS && code->expr1->value.compcall.name)
6533 {
6534 /* If the base_object is not a variable, the corresponding actual
6535 argument expression must be stored in e->base_expression so
6536 that the corresponding tree temporary can be used as the base
6537 object in gfc_conv_procedure_call. */
6538 if (expr->expr_type != EXPR_VARIABLE)
6539 {
6540 gfc_actual_arglist *args;
6541
6542 args= code->expr1->value.function.actual;
6543 for (; args; args = args->next)
6544 if (expr == args->expr)
6545 expr = args->expr;
6546 }
6547
6548 /* Since the typebound operators are generic, we have to ensure
6549 that any delays in resolution are corrected and that the vtab
6550 is present. */
6551 declared = expr->ts.u.derived;
6552 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6553 if (c->ts.u.derived == NULL)
6554 c->ts.u.derived = gfc_find_derived_vtab (declared);
6555
6556 if (!resolve_typebound_call (code, &name, NULL))
6557 return false;
6558
6559 /* Use the generic name if it is there. */
6560 name = name ? name : code->expr1->value.function.esym->name;
6561 code->expr1->symtree = expr->symtree;
6562 code->expr1->ref = gfc_copy_ref (expr->ref);
6563
6564 /* Trim away the extraneous references that emerge from nested
6565 use of interface.c (extend_expr). */
6566 get_declared_from_expr (&class_ref, NULL, code->expr1, false);
6567 if (class_ref && class_ref->next)
6568 {
6569 gfc_free_ref_list (class_ref->next);
6570 class_ref->next = NULL;
6571 }
6572 else if (code->expr1->ref && !class_ref)
6573 {
6574 gfc_free_ref_list (code->expr1->ref);
6575 code->expr1->ref = NULL;
6576 }
6577
6578 /* Now use the procedure in the vtable. */
6579 gfc_add_vptr_component (code->expr1);
6580 gfc_add_component_ref (code->expr1, name);
6581 code->expr1->value.function.esym = NULL;
6582 if (expr->expr_type != EXPR_VARIABLE)
6583 code->expr1->base_expr = expr;
6584 return true;
6585 }
6586
6587 if (st == NULL)
6588 return resolve_typebound_call (code, NULL, NULL);
6589
6590 if (!resolve_ref (code->expr1))
6591 return false;
6592
6593 /* Get the CLASS declared type. */
6594 get_declared_from_expr (&class_ref, &new_ref, code->expr1, true);
6595
6596 /* Weed out cases of the ultimate component being a derived type. */
6597 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6598 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6599 {
6600 gfc_free_ref_list (new_ref);
6601 return resolve_typebound_call (code, NULL, NULL);
6602 }
6603
6604 if (!resolve_typebound_call (code, &name, &overridable))
6605 {
6606 gfc_free_ref_list (new_ref);
6607 return false;
6608 }
6609 ts = code->expr1->ts;
6610
6611 if (overridable)
6612 {
6613 /* Convert the expression to a procedure pointer component call. */
6614 code->expr1->value.function.esym = NULL;
6615 code->expr1->symtree = st;
6616
6617 if (new_ref)
6618 code->expr1->ref = new_ref;
6619
6620 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6621 gfc_add_vptr_component (code->expr1);
6622 gfc_add_component_ref (code->expr1, name);
6623
6624 /* Recover the typespec for the expression. This is really only
6625 necessary for generic procedures, where the additional call
6626 to gfc_add_component_ref seems to throw the collection of the
6627 correct typespec. */
6628 code->expr1->ts = ts;
6629 }
6630 else if (new_ref)
6631 gfc_free_ref_list (new_ref);
6632
6633 return true;
6634 }
6635
6636
6637 /* Resolve a CALL to a Procedure Pointer Component (Subroutine). */
6638
6639 static bool
6640 resolve_ppc_call (gfc_code* c)
6641 {
6642 gfc_component *comp;
6643
6644 comp = gfc_get_proc_ptr_comp (c->expr1);
6645 gcc_assert (comp != NULL);
6646
6647 c->resolved_sym = c->expr1->symtree->n.sym;
6648 c->expr1->expr_type = EXPR_VARIABLE;
6649
6650 if (!comp->attr.subroutine)
6651 gfc_add_subroutine (&comp->attr, comp->name, &c->expr1->where);
6652
6653 if (!resolve_ref (c->expr1))
6654 return false;
6655
6656 if (!update_ppc_arglist (c->expr1))
6657 return false;
6658
6659 c->ext.actual = c->expr1->value.compcall.actual;
6660
6661 if (!resolve_actual_arglist (c->ext.actual, comp->attr.proc,
6662 !(comp->ts.interface
6663 && comp->ts.interface->formal)))
6664 return false;
6665
6666 if (!pure_subroutine (comp->ts.interface, comp->name, &c->expr1->where))
6667 return false;
6668
6669 gfc_ppc_use (comp, &c->expr1->value.compcall.actual, &c->expr1->where);
6670
6671 return true;
6672 }
6673
6674
6675 /* Resolve a Function Call to a Procedure Pointer Component (Function). */
6676
6677 static bool
6678 resolve_expr_ppc (gfc_expr* e)
6679 {
6680 gfc_component *comp;
6681
6682 comp = gfc_get_proc_ptr_comp (e);
6683 gcc_assert (comp != NULL);
6684
6685 /* Convert to EXPR_FUNCTION. */
6686 e->expr_type = EXPR_FUNCTION;
6687 e->value.function.isym = NULL;
6688 e->value.function.actual = e->value.compcall.actual;
6689 e->ts = comp->ts;
6690 if (comp->as != NULL)
6691 e->rank = comp->as->rank;
6692
6693 if (!comp->attr.function)
6694 gfc_add_function (&comp->attr, comp->name, &e->where);
6695
6696 if (!resolve_ref (e))
6697 return false;
6698
6699 if (!resolve_actual_arglist (e->value.function.actual, comp->attr.proc,
6700 !(comp->ts.interface
6701 && comp->ts.interface->formal)))
6702 return false;
6703
6704 if (!update_ppc_arglist (e))
6705 return false;
6706
6707 if (!check_pure_function(e))
6708 return false;
6709
6710 gfc_ppc_use (comp, &e->value.compcall.actual, &e->where);
6711
6712 return true;
6713 }
6714
6715
6716 static bool
6717 gfc_is_expandable_expr (gfc_expr *e)
6718 {
6719 gfc_constructor *con;
6720
6721 if (e->expr_type == EXPR_ARRAY)
6722 {
6723 /* Traverse the constructor looking for variables that are flavor
6724 parameter. Parameters must be expanded since they are fully used at
6725 compile time. */
6726 con = gfc_constructor_first (e->value.constructor);
6727 for (; con; con = gfc_constructor_next (con))
6728 {
6729 if (con->expr->expr_type == EXPR_VARIABLE
6730 && con->expr->symtree
6731 && (con->expr->symtree->n.sym->attr.flavor == FL_PARAMETER
6732 || con->expr->symtree->n.sym->attr.flavor == FL_VARIABLE))
6733 return true;
6734 if (con->expr->expr_type == EXPR_ARRAY
6735 && gfc_is_expandable_expr (con->expr))
6736 return true;
6737 }
6738 }
6739
6740 return false;
6741 }
6742
6743
6744 /* Sometimes variables in specification expressions of the result
6745 of module procedures in submodules wind up not being the 'real'
6746 dummy. Find this, if possible, in the namespace of the first
6747 formal argument. */
6748
6749 static void
6750 fixup_unique_dummy (gfc_expr *e)
6751 {
6752 gfc_symtree *st = NULL;
6753 gfc_symbol *s = NULL;
6754
6755 if (e->symtree->n.sym->ns->proc_name
6756 && e->symtree->n.sym->ns->proc_name->formal)
6757 s = e->symtree->n.sym->ns->proc_name->formal->sym;
6758
6759 if (s != NULL)
6760 st = gfc_find_symtree (s->ns->sym_root, e->symtree->n.sym->name);
6761
6762 if (st != NULL
6763 && st->n.sym != NULL
6764 && st->n.sym->attr.dummy)
6765 e->symtree = st;
6766 }
6767
6768 /* Resolve an expression. That is, make sure that types of operands agree
6769 with their operators, intrinsic operators are converted to function calls
6770 for overloaded types and unresolved function references are resolved. */
6771
6772 bool
6773 gfc_resolve_expr (gfc_expr *e)
6774 {
6775 bool t;
6776 bool inquiry_save, actual_arg_save, first_actual_arg_save;
6777
6778 if (e == NULL)
6779 return true;
6780
6781 /* inquiry_argument only applies to variables. */
6782 inquiry_save = inquiry_argument;
6783 actual_arg_save = actual_arg;
6784 first_actual_arg_save = first_actual_arg;
6785
6786 if (e->expr_type != EXPR_VARIABLE)
6787 {
6788 inquiry_argument = false;
6789 actual_arg = false;
6790 first_actual_arg = false;
6791 }
6792 else if (e->symtree != NULL
6793 && *e->symtree->name == '@'
6794 && e->symtree->n.sym->attr.dummy)
6795 {
6796 /* Deal with submodule specification expressions that are not
6797 found to be referenced in module.c(read_cleanup). */
6798 fixup_unique_dummy (e);
6799 }
6800
6801 switch (e->expr_type)
6802 {
6803 case EXPR_OP:
6804 t = resolve_operator (e);
6805 break;
6806
6807 case EXPR_FUNCTION:
6808 case EXPR_VARIABLE:
6809
6810 if (check_host_association (e))
6811 t = resolve_function (e);
6812 else
6813 t = resolve_variable (e);
6814
6815 if (e->ts.type == BT_CHARACTER && e->ts.u.cl == NULL && e->ref
6816 && e->ref->type != REF_SUBSTRING)
6817 gfc_resolve_substring_charlen (e);
6818
6819 break;
6820
6821 case EXPR_COMPCALL:
6822 t = resolve_typebound_function (e);
6823 break;
6824
6825 case EXPR_SUBSTRING:
6826 t = resolve_ref (e);
6827 break;
6828
6829 case EXPR_CONSTANT:
6830 case EXPR_NULL:
6831 t = true;
6832 break;
6833
6834 case EXPR_PPC:
6835 t = resolve_expr_ppc (e);
6836 break;
6837
6838 case EXPR_ARRAY:
6839 t = false;
6840 if (!resolve_ref (e))
6841 break;
6842
6843 t = gfc_resolve_array_constructor (e);
6844 /* Also try to expand a constructor. */
6845 if (t)
6846 {
6847 expression_rank (e);
6848 if (gfc_is_constant_expr (e) || gfc_is_expandable_expr (e))
6849 gfc_expand_constructor (e, false);
6850 }
6851
6852 /* This provides the opportunity for the length of constructors with
6853 character valued function elements to propagate the string length
6854 to the expression. */
6855 if (t && e->ts.type == BT_CHARACTER)
6856 {
6857 /* For efficiency, we call gfc_expand_constructor for BT_CHARACTER
6858 here rather then add a duplicate test for it above. */
6859 gfc_expand_constructor (e, false);
6860 t = gfc_resolve_character_array_constructor (e);
6861 }
6862
6863 break;
6864
6865 case EXPR_STRUCTURE:
6866 t = resolve_ref (e);
6867 if (!t)
6868 break;
6869
6870 t = resolve_structure_cons (e, 0);
6871 if (!t)
6872 break;
6873
6874 t = gfc_simplify_expr (e, 0);
6875 break;
6876
6877 default:
6878 gfc_internal_error ("gfc_resolve_expr(): Bad expression type");
6879 }
6880
6881 if (e->ts.type == BT_CHARACTER && t && !e->ts.u.cl)
6882 fixup_charlen (e);
6883
6884 inquiry_argument = inquiry_save;
6885 actual_arg = actual_arg_save;
6886 first_actual_arg = first_actual_arg_save;
6887
6888 return t;
6889 }
6890
6891
6892 /* Resolve an expression from an iterator. They must be scalar and have
6893 INTEGER or (optionally) REAL type. */
6894
6895 static bool
6896 gfc_resolve_iterator_expr (gfc_expr *expr, bool real_ok,
6897 const char *name_msgid)
6898 {
6899 if (!gfc_resolve_expr (expr))
6900 return false;
6901
6902 if (expr->rank != 0)
6903 {
6904 gfc_error ("%s at %L must be a scalar", _(name_msgid), &expr->where);
6905 return false;
6906 }
6907
6908 if (expr->ts.type != BT_INTEGER)
6909 {
6910 if (expr->ts.type == BT_REAL)
6911 {
6912 if (real_ok)
6913 return gfc_notify_std (GFC_STD_F95_DEL,
6914 "%s at %L must be integer",
6915 _(name_msgid), &expr->where);
6916 else
6917 {
6918 gfc_error ("%s at %L must be INTEGER", _(name_msgid),
6919 &expr->where);
6920 return false;
6921 }
6922 }
6923 else
6924 {
6925 gfc_error ("%s at %L must be INTEGER", _(name_msgid), &expr->where);
6926 return false;
6927 }
6928 }
6929 return true;
6930 }
6931
6932
6933 /* Resolve the expressions in an iterator structure. If REAL_OK is
6934 false allow only INTEGER type iterators, otherwise allow REAL types.
6935 Set own_scope to true for ac-implied-do and data-implied-do as those
6936 have a separate scope such that, e.g., a INTENT(IN) doesn't apply. */
6937
6938 bool
6939 gfc_resolve_iterator (gfc_iterator *iter, bool real_ok, bool own_scope)
6940 {
6941 if (!gfc_resolve_iterator_expr (iter->var, real_ok, "Loop variable"))
6942 return false;
6943
6944 if (!gfc_check_vardef_context (iter->var, false, false, own_scope,
6945 _("iterator variable")))
6946 return false;
6947
6948 if (!gfc_resolve_iterator_expr (iter->start, real_ok,
6949 "Start expression in DO loop"))
6950 return false;
6951
6952 if (!gfc_resolve_iterator_expr (iter->end, real_ok,
6953 "End expression in DO loop"))
6954 return false;
6955
6956 if (!gfc_resolve_iterator_expr (iter->step, real_ok,
6957 "Step expression in DO loop"))
6958 return false;
6959
6960 if (iter->step->expr_type == EXPR_CONSTANT)
6961 {
6962 if ((iter->step->ts.type == BT_INTEGER
6963 && mpz_cmp_ui (iter->step->value.integer, 0) == 0)
6964 || (iter->step->ts.type == BT_REAL
6965 && mpfr_sgn (iter->step->value.real) == 0))
6966 {
6967 gfc_error ("Step expression in DO loop at %L cannot be zero",
6968 &iter->step->where);
6969 return false;
6970 }
6971 }
6972
6973 /* Convert start, end, and step to the same type as var. */
6974 if (iter->start->ts.kind != iter->var->ts.kind
6975 || iter->start->ts.type != iter->var->ts.type)
6976 gfc_convert_type (iter->start, &iter->var->ts, 1);
6977
6978 if (iter->end->ts.kind != iter->var->ts.kind
6979 || iter->end->ts.type != iter->var->ts.type)
6980 gfc_convert_type (iter->end, &iter->var->ts, 1);
6981
6982 if (iter->step->ts.kind != iter->var->ts.kind
6983 || iter->step->ts.type != iter->var->ts.type)
6984 gfc_convert_type (iter->step, &iter->var->ts, 1);
6985
6986 if (iter->start->expr_type == EXPR_CONSTANT
6987 && iter->end->expr_type == EXPR_CONSTANT
6988 && iter->step->expr_type == EXPR_CONSTANT)
6989 {
6990 int sgn, cmp;
6991 if (iter->start->ts.type == BT_INTEGER)
6992 {
6993 sgn = mpz_cmp_ui (iter->step->value.integer, 0);
6994 cmp = mpz_cmp (iter->end->value.integer, iter->start->value.integer);
6995 }
6996 else
6997 {
6998 sgn = mpfr_sgn (iter->step->value.real);
6999 cmp = mpfr_cmp (iter->end->value.real, iter->start->value.real);
7000 }
7001 if (warn_zerotrip && ((sgn > 0 && cmp < 0) || (sgn < 0 && cmp > 0)))
7002 gfc_warning (OPT_Wzerotrip,
7003 "DO loop at %L will be executed zero times",
7004 &iter->step->where);
7005 }
7006
7007 if (iter->end->expr_type == EXPR_CONSTANT
7008 && iter->end->ts.type == BT_INTEGER
7009 && iter->step->expr_type == EXPR_CONSTANT
7010 && iter->step->ts.type == BT_INTEGER
7011 && (mpz_cmp_si (iter->step->value.integer, -1L) == 0
7012 || mpz_cmp_si (iter->step->value.integer, 1L) == 0))
7013 {
7014 bool is_step_positive = mpz_cmp_ui (iter->step->value.integer, 1) == 0;
7015 int k = gfc_validate_kind (BT_INTEGER, iter->end->ts.kind, false);
7016
7017 if (is_step_positive
7018 && mpz_cmp (iter->end->value.integer, gfc_integer_kinds[k].huge) == 0)
7019 gfc_warning (OPT_Wundefined_do_loop,
7020 "DO loop at %L is undefined as it overflows",
7021 &iter->step->where);
7022 else if (!is_step_positive
7023 && mpz_cmp (iter->end->value.integer,
7024 gfc_integer_kinds[k].min_int) == 0)
7025 gfc_warning (OPT_Wundefined_do_loop,
7026 "DO loop at %L is undefined as it underflows",
7027 &iter->step->where);
7028 }
7029
7030 return true;
7031 }
7032
7033
7034 /* Traversal function for find_forall_index. f == 2 signals that
7035 that variable itself is not to be checked - only the references. */
7036
7037 static bool
7038 forall_index (gfc_expr *expr, gfc_symbol *sym, int *f)
7039 {
7040 if (expr->expr_type != EXPR_VARIABLE)
7041 return false;
7042
7043 /* A scalar assignment */
7044 if (!expr->ref || *f == 1)
7045 {
7046 if (expr->symtree->n.sym == sym)
7047 return true;
7048 else
7049 return false;
7050 }
7051
7052 if (*f == 2)
7053 *f = 1;
7054 return false;
7055 }
7056
7057
7058 /* Check whether the FORALL index appears in the expression or not.
7059 Returns true if SYM is found in EXPR. */
7060
7061 bool
7062 find_forall_index (gfc_expr *expr, gfc_symbol *sym, int f)
7063 {
7064 if (gfc_traverse_expr (expr, sym, forall_index, f))
7065 return true;
7066 else
7067 return false;
7068 }
7069
7070
7071 /* Resolve a list of FORALL iterators. The FORALL index-name is constrained
7072 to be a scalar INTEGER variable. The subscripts and stride are scalar
7073 INTEGERs, and if stride is a constant it must be nonzero.
7074 Furthermore "A subscript or stride in a forall-triplet-spec shall
7075 not contain a reference to any index-name in the
7076 forall-triplet-spec-list in which it appears." (7.5.4.1) */
7077
7078 static void
7079 resolve_forall_iterators (gfc_forall_iterator *it)
7080 {
7081 gfc_forall_iterator *iter, *iter2;
7082
7083 for (iter = it; iter; iter = iter->next)
7084 {
7085 if (gfc_resolve_expr (iter->var)
7086 && (iter->var->ts.type != BT_INTEGER || iter->var->rank != 0))
7087 gfc_error ("FORALL index-name at %L must be a scalar INTEGER",
7088 &iter->var->where);
7089
7090 if (gfc_resolve_expr (iter->start)
7091 && (iter->start->ts.type != BT_INTEGER || iter->start->rank != 0))
7092 gfc_error ("FORALL start expression at %L must be a scalar INTEGER",
7093 &iter->start->where);
7094 if (iter->var->ts.kind != iter->start->ts.kind)
7095 gfc_convert_type (iter->start, &iter->var->ts, 1);
7096
7097 if (gfc_resolve_expr (iter->end)
7098 && (iter->end->ts.type != BT_INTEGER || iter->end->rank != 0))
7099 gfc_error ("FORALL end expression at %L must be a scalar INTEGER",
7100 &iter->end->where);
7101 if (iter->var->ts.kind != iter->end->ts.kind)
7102 gfc_convert_type (iter->end, &iter->var->ts, 1);
7103
7104 if (gfc_resolve_expr (iter->stride))
7105 {
7106 if (iter->stride->ts.type != BT_INTEGER || iter->stride->rank != 0)
7107 gfc_error ("FORALL stride expression at %L must be a scalar %s",
7108 &iter->stride->where, "INTEGER");
7109
7110 if (iter->stride->expr_type == EXPR_CONSTANT
7111 && mpz_cmp_ui (iter->stride->value.integer, 0) == 0)
7112 gfc_error ("FORALL stride expression at %L cannot be zero",
7113 &iter->stride->where);
7114 }
7115 if (iter->var->ts.kind != iter->stride->ts.kind)
7116 gfc_convert_type (iter->stride, &iter->var->ts, 1);
7117 }
7118
7119 for (iter = it; iter; iter = iter->next)
7120 for (iter2 = iter; iter2; iter2 = iter2->next)
7121 {
7122 if (find_forall_index (iter2->start, iter->var->symtree->n.sym, 0)
7123 || find_forall_index (iter2->end, iter->var->symtree->n.sym, 0)
7124 || find_forall_index (iter2->stride, iter->var->symtree->n.sym, 0))
7125 gfc_error ("FORALL index %qs may not appear in triplet "
7126 "specification at %L", iter->var->symtree->name,
7127 &iter2->start->where);
7128 }
7129 }
7130
7131
7132 /* Given a pointer to a symbol that is a derived type, see if it's
7133 inaccessible, i.e. if it's defined in another module and the components are
7134 PRIVATE. The search is recursive if necessary. Returns zero if no
7135 inaccessible components are found, nonzero otherwise. */
7136
7137 static int
7138 derived_inaccessible (gfc_symbol *sym)
7139 {
7140 gfc_component *c;
7141
7142 if (sym->attr.use_assoc && sym->attr.private_comp)
7143 return 1;
7144
7145 for (c = sym->components; c; c = c->next)
7146 {
7147 /* Prevent an infinite loop through this function. */
7148 if (c->ts.type == BT_DERIVED && c->attr.pointer
7149 && sym == c->ts.u.derived)
7150 continue;
7151
7152 if (c->ts.type == BT_DERIVED && derived_inaccessible (c->ts.u.derived))
7153 return 1;
7154 }
7155
7156 return 0;
7157 }
7158
7159
7160 /* Resolve the argument of a deallocate expression. The expression must be
7161 a pointer or a full array. */
7162
7163 static bool
7164 resolve_deallocate_expr (gfc_expr *e)
7165 {
7166 symbol_attribute attr;
7167 int allocatable, pointer;
7168 gfc_ref *ref;
7169 gfc_symbol *sym;
7170 gfc_component *c;
7171 bool unlimited;
7172
7173 if (!gfc_resolve_expr (e))
7174 return false;
7175
7176 if (e->expr_type != EXPR_VARIABLE)
7177 goto bad;
7178
7179 sym = e->symtree->n.sym;
7180 unlimited = UNLIMITED_POLY(sym);
7181
7182 if (sym->ts.type == BT_CLASS)
7183 {
7184 allocatable = CLASS_DATA (sym)->attr.allocatable;
7185 pointer = CLASS_DATA (sym)->attr.class_pointer;
7186 }
7187 else
7188 {
7189 allocatable = sym->attr.allocatable;
7190 pointer = sym->attr.pointer;
7191 }
7192 for (ref = e->ref; ref; ref = ref->next)
7193 {
7194 switch (ref->type)
7195 {
7196 case REF_ARRAY:
7197 if (ref->u.ar.type != AR_FULL
7198 && !(ref->u.ar.type == AR_ELEMENT && ref->u.ar.as->rank == 0
7199 && ref->u.ar.codimen && gfc_ref_this_image (ref)))
7200 allocatable = 0;
7201 break;
7202
7203 case REF_COMPONENT:
7204 c = ref->u.c.component;
7205 if (c->ts.type == BT_CLASS)
7206 {
7207 allocatable = CLASS_DATA (c)->attr.allocatable;
7208 pointer = CLASS_DATA (c)->attr.class_pointer;
7209 }
7210 else
7211 {
7212 allocatable = c->attr.allocatable;
7213 pointer = c->attr.pointer;
7214 }
7215 break;
7216
7217 case REF_SUBSTRING:
7218 allocatable = 0;
7219 break;
7220 }
7221 }
7222
7223 attr = gfc_expr_attr (e);
7224
7225 if (allocatable == 0 && attr.pointer == 0 && !unlimited)
7226 {
7227 bad:
7228 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7229 &e->where);
7230 return false;
7231 }
7232
7233 /* F2008, C644. */
7234 if (gfc_is_coindexed (e))
7235 {
7236 gfc_error ("Coindexed allocatable object at %L", &e->where);
7237 return false;
7238 }
7239
7240 if (pointer
7241 && !gfc_check_vardef_context (e, true, true, false,
7242 _("DEALLOCATE object")))
7243 return false;
7244 if (!gfc_check_vardef_context (e, false, true, false,
7245 _("DEALLOCATE object")))
7246 return false;
7247
7248 return true;
7249 }
7250
7251
7252 /* Returns true if the expression e contains a reference to the symbol sym. */
7253 static bool
7254 sym_in_expr (gfc_expr *e, gfc_symbol *sym, int *f ATTRIBUTE_UNUSED)
7255 {
7256 if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym == sym)
7257 return true;
7258
7259 return false;
7260 }
7261
7262 bool
7263 gfc_find_sym_in_expr (gfc_symbol *sym, gfc_expr *e)
7264 {
7265 return gfc_traverse_expr (e, sym, sym_in_expr, 0);
7266 }
7267
7268
7269 /* Given the expression node e for an allocatable/pointer of derived type to be
7270 allocated, get the expression node to be initialized afterwards (needed for
7271 derived types with default initializers, and derived types with allocatable
7272 components that need nullification.) */
7273
7274 gfc_expr *
7275 gfc_expr_to_initialize (gfc_expr *e)
7276 {
7277 gfc_expr *result;
7278 gfc_ref *ref;
7279 int i;
7280
7281 result = gfc_copy_expr (e);
7282
7283 /* Change the last array reference from AR_ELEMENT to AR_FULL. */
7284 for (ref = result->ref; ref; ref = ref->next)
7285 if (ref->type == REF_ARRAY && ref->next == NULL)
7286 {
7287 ref->u.ar.type = AR_FULL;
7288
7289 for (i = 0; i < ref->u.ar.dimen; i++)
7290 ref->u.ar.start[i] = ref->u.ar.end[i] = ref->u.ar.stride[i] = NULL;
7291
7292 break;
7293 }
7294
7295 gfc_free_shape (&result->shape, result->rank);
7296
7297 /* Recalculate rank, shape, etc. */
7298 gfc_resolve_expr (result);
7299 return result;
7300 }
7301
7302
7303 /* If the last ref of an expression is an array ref, return a copy of the
7304 expression with that one removed. Otherwise, a copy of the original
7305 expression. This is used for allocate-expressions and pointer assignment
7306 LHS, where there may be an array specification that needs to be stripped
7307 off when using gfc_check_vardef_context. */
7308
7309 static gfc_expr*
7310 remove_last_array_ref (gfc_expr* e)
7311 {
7312 gfc_expr* e2;
7313 gfc_ref** r;
7314
7315 e2 = gfc_copy_expr (e);
7316 for (r = &e2->ref; *r; r = &(*r)->next)
7317 if ((*r)->type == REF_ARRAY && !(*r)->next)
7318 {
7319 gfc_free_ref_list (*r);
7320 *r = NULL;
7321 break;
7322 }
7323
7324 return e2;
7325 }
7326
7327
7328 /* Used in resolve_allocate_expr to check that a allocation-object and
7329 a source-expr are conformable. This does not catch all possible
7330 cases; in particular a runtime checking is needed. */
7331
7332 static bool
7333 conformable_arrays (gfc_expr *e1, gfc_expr *e2)
7334 {
7335 gfc_ref *tail;
7336 for (tail = e2->ref; tail && tail->next; tail = tail->next);
7337
7338 /* First compare rank. */
7339 if ((tail && e1->rank != tail->u.ar.as->rank)
7340 || (!tail && e1->rank != e2->rank))
7341 {
7342 gfc_error ("Source-expr at %L must be scalar or have the "
7343 "same rank as the allocate-object at %L",
7344 &e1->where, &e2->where);
7345 return false;
7346 }
7347
7348 if (e1->shape)
7349 {
7350 int i;
7351 mpz_t s;
7352
7353 mpz_init (s);
7354
7355 for (i = 0; i < e1->rank; i++)
7356 {
7357 if (tail->u.ar.start[i] == NULL)
7358 break;
7359
7360 if (tail->u.ar.end[i])
7361 {
7362 mpz_set (s, tail->u.ar.end[i]->value.integer);
7363 mpz_sub (s, s, tail->u.ar.start[i]->value.integer);
7364 mpz_add_ui (s, s, 1);
7365 }
7366 else
7367 {
7368 mpz_set (s, tail->u.ar.start[i]->value.integer);
7369 }
7370
7371 if (mpz_cmp (e1->shape[i], s) != 0)
7372 {
7373 gfc_error ("Source-expr at %L and allocate-object at %L must "
7374 "have the same shape", &e1->where, &e2->where);
7375 mpz_clear (s);
7376 return false;
7377 }
7378 }
7379
7380 mpz_clear (s);
7381 }
7382
7383 return true;
7384 }
7385
7386
7387 /* Resolve the expression in an ALLOCATE statement, doing the additional
7388 checks to see whether the expression is OK or not. The expression must
7389 have a trailing array reference that gives the size of the array. */
7390
7391 static bool
7392 resolve_allocate_expr (gfc_expr *e, gfc_code *code, bool *array_alloc_wo_spec)
7393 {
7394 int i, pointer, allocatable, dimension, is_abstract;
7395 int codimension;
7396 bool coindexed;
7397 bool unlimited;
7398 symbol_attribute attr;
7399 gfc_ref *ref, *ref2;
7400 gfc_expr *e2;
7401 gfc_array_ref *ar;
7402 gfc_symbol *sym = NULL;
7403 gfc_alloc *a;
7404 gfc_component *c;
7405 bool t;
7406
7407 /* Mark the utmost array component as being in allocate to allow DIMEN_STAR
7408 checking of coarrays. */
7409 for (ref = e->ref; ref; ref = ref->next)
7410 if (ref->next == NULL)
7411 break;
7412
7413 if (ref && ref->type == REF_ARRAY)
7414 ref->u.ar.in_allocate = true;
7415
7416 if (!gfc_resolve_expr (e))
7417 goto failure;
7418
7419 /* Make sure the expression is allocatable or a pointer. If it is
7420 pointer, the next-to-last reference must be a pointer. */
7421
7422 ref2 = NULL;
7423 if (e->symtree)
7424 sym = e->symtree->n.sym;
7425
7426 /* Check whether ultimate component is abstract and CLASS. */
7427 is_abstract = 0;
7428
7429 /* Is the allocate-object unlimited polymorphic? */
7430 unlimited = UNLIMITED_POLY(e);
7431
7432 if (e->expr_type != EXPR_VARIABLE)
7433 {
7434 allocatable = 0;
7435 attr = gfc_expr_attr (e);
7436 pointer = attr.pointer;
7437 dimension = attr.dimension;
7438 codimension = attr.codimension;
7439 }
7440 else
7441 {
7442 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
7443 {
7444 allocatable = CLASS_DATA (sym)->attr.allocatable;
7445 pointer = CLASS_DATA (sym)->attr.class_pointer;
7446 dimension = CLASS_DATA (sym)->attr.dimension;
7447 codimension = CLASS_DATA (sym)->attr.codimension;
7448 is_abstract = CLASS_DATA (sym)->attr.abstract;
7449 }
7450 else
7451 {
7452 allocatable = sym->attr.allocatable;
7453 pointer = sym->attr.pointer;
7454 dimension = sym->attr.dimension;
7455 codimension = sym->attr.codimension;
7456 }
7457
7458 coindexed = false;
7459
7460 for (ref = e->ref; ref; ref2 = ref, ref = ref->next)
7461 {
7462 switch (ref->type)
7463 {
7464 case REF_ARRAY:
7465 if (ref->u.ar.codimen > 0)
7466 {
7467 int n;
7468 for (n = ref->u.ar.dimen;
7469 n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
7470 if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
7471 {
7472 coindexed = true;
7473 break;
7474 }
7475 }
7476
7477 if (ref->next != NULL)
7478 pointer = 0;
7479 break;
7480
7481 case REF_COMPONENT:
7482 /* F2008, C644. */
7483 if (coindexed)
7484 {
7485 gfc_error ("Coindexed allocatable object at %L",
7486 &e->where);
7487 goto failure;
7488 }
7489
7490 c = ref->u.c.component;
7491 if (c->ts.type == BT_CLASS)
7492 {
7493 allocatable = CLASS_DATA (c)->attr.allocatable;
7494 pointer = CLASS_DATA (c)->attr.class_pointer;
7495 dimension = CLASS_DATA (c)->attr.dimension;
7496 codimension = CLASS_DATA (c)->attr.codimension;
7497 is_abstract = CLASS_DATA (c)->attr.abstract;
7498 }
7499 else
7500 {
7501 allocatable = c->attr.allocatable;
7502 pointer = c->attr.pointer;
7503 dimension = c->attr.dimension;
7504 codimension = c->attr.codimension;
7505 is_abstract = c->attr.abstract;
7506 }
7507 break;
7508
7509 case REF_SUBSTRING:
7510 allocatable = 0;
7511 pointer = 0;
7512 break;
7513 }
7514 }
7515 }
7516
7517 /* Check for F08:C628. */
7518 if (allocatable == 0 && pointer == 0 && !unlimited)
7519 {
7520 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7521 &e->where);
7522 goto failure;
7523 }
7524
7525 /* Some checks for the SOURCE tag. */
7526 if (code->expr3)
7527 {
7528 /* Check F03:C631. */
7529 if (!gfc_type_compatible (&e->ts, &code->expr3->ts))
7530 {
7531 gfc_error ("Type of entity at %L is type incompatible with "
7532 "source-expr at %L", &e->where, &code->expr3->where);
7533 goto failure;
7534 }
7535
7536 /* Check F03:C632 and restriction following Note 6.18. */
7537 if (code->expr3->rank > 0 && !conformable_arrays (code->expr3, e))
7538 goto failure;
7539
7540 /* Check F03:C633. */
7541 if (code->expr3->ts.kind != e->ts.kind && !unlimited)
7542 {
7543 gfc_error ("The allocate-object at %L and the source-expr at %L "
7544 "shall have the same kind type parameter",
7545 &e->where, &code->expr3->where);
7546 goto failure;
7547 }
7548
7549 /* Check F2008, C642. */
7550 if (code->expr3->ts.type == BT_DERIVED
7551 && ((codimension && gfc_expr_attr (code->expr3).lock_comp)
7552 || (code->expr3->ts.u.derived->from_intmod
7553 == INTMOD_ISO_FORTRAN_ENV
7554 && code->expr3->ts.u.derived->intmod_sym_id
7555 == ISOFORTRAN_LOCK_TYPE)))
7556 {
7557 gfc_error ("The source-expr at %L shall neither be of type "
7558 "LOCK_TYPE nor have a LOCK_TYPE component if "
7559 "allocate-object at %L is a coarray",
7560 &code->expr3->where, &e->where);
7561 goto failure;
7562 }
7563
7564 /* Check TS18508, C702/C703. */
7565 if (code->expr3->ts.type == BT_DERIVED
7566 && ((codimension && gfc_expr_attr (code->expr3).event_comp)
7567 || (code->expr3->ts.u.derived->from_intmod
7568 == INTMOD_ISO_FORTRAN_ENV
7569 && code->expr3->ts.u.derived->intmod_sym_id
7570 == ISOFORTRAN_EVENT_TYPE)))
7571 {
7572 gfc_error ("The source-expr at %L shall neither be of type "
7573 "EVENT_TYPE nor have a EVENT_TYPE component if "
7574 "allocate-object at %L is a coarray",
7575 &code->expr3->where, &e->where);
7576 goto failure;
7577 }
7578 }
7579
7580 /* Check F08:C629. */
7581 if (is_abstract && code->ext.alloc.ts.type == BT_UNKNOWN
7582 && !code->expr3)
7583 {
7584 gcc_assert (e->ts.type == BT_CLASS);
7585 gfc_error ("Allocating %s of ABSTRACT base type at %L requires a "
7586 "type-spec or source-expr", sym->name, &e->where);
7587 goto failure;
7588 }
7589
7590 /* Check F08:C632. */
7591 if (code->ext.alloc.ts.type == BT_CHARACTER && !e->ts.deferred
7592 && !UNLIMITED_POLY (e))
7593 {
7594 int cmp;
7595
7596 if (!e->ts.u.cl->length)
7597 goto failure;
7598
7599 cmp = gfc_dep_compare_expr (e->ts.u.cl->length,
7600 code->ext.alloc.ts.u.cl->length);
7601 if (cmp == 1 || cmp == -1 || cmp == -3)
7602 {
7603 gfc_error ("Allocating %s at %L with type-spec requires the same "
7604 "character-length parameter as in the declaration",
7605 sym->name, &e->where);
7606 goto failure;
7607 }
7608 }
7609
7610 /* In the variable definition context checks, gfc_expr_attr is used
7611 on the expression. This is fooled by the array specification
7612 present in e, thus we have to eliminate that one temporarily. */
7613 e2 = remove_last_array_ref (e);
7614 t = true;
7615 if (t && pointer)
7616 t = gfc_check_vardef_context (e2, true, true, false,
7617 _("ALLOCATE object"));
7618 if (t)
7619 t = gfc_check_vardef_context (e2, false, true, false,
7620 _("ALLOCATE object"));
7621 gfc_free_expr (e2);
7622 if (!t)
7623 goto failure;
7624
7625 if (e->ts.type == BT_CLASS && CLASS_DATA (e)->attr.dimension
7626 && !code->expr3 && code->ext.alloc.ts.type == BT_DERIVED)
7627 {
7628 /* For class arrays, the initialization with SOURCE is done
7629 using _copy and trans_call. It is convenient to exploit that
7630 when the allocated type is different from the declared type but
7631 no SOURCE exists by setting expr3. */
7632 code->expr3 = gfc_default_initializer (&code->ext.alloc.ts);
7633 }
7634 else if (flag_coarray != GFC_FCOARRAY_LIB && e->ts.type == BT_DERIVED
7635 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
7636 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
7637 {
7638 /* We have to zero initialize the integer variable. */
7639 code->expr3 = gfc_get_int_expr (gfc_default_integer_kind, &e->where, 0);
7640 }
7641
7642 if (e->ts.type == BT_CLASS && !unlimited && !UNLIMITED_POLY (code->expr3))
7643 {
7644 /* Make sure the vtab symbol is present when
7645 the module variables are generated. */
7646 gfc_typespec ts = e->ts;
7647 if (code->expr3)
7648 ts = code->expr3->ts;
7649 else if (code->ext.alloc.ts.type == BT_DERIVED)
7650 ts = code->ext.alloc.ts;
7651
7652 /* Finding the vtab also publishes the type's symbol. Therefore this
7653 statement is necessary. */
7654 gfc_find_derived_vtab (ts.u.derived);
7655 }
7656 else if (unlimited && !UNLIMITED_POLY (code->expr3))
7657 {
7658 /* Again, make sure the vtab symbol is present when
7659 the module variables are generated. */
7660 gfc_typespec *ts = NULL;
7661 if (code->expr3)
7662 ts = &code->expr3->ts;
7663 else
7664 ts = &code->ext.alloc.ts;
7665
7666 gcc_assert (ts);
7667
7668 /* Finding the vtab also publishes the type's symbol. Therefore this
7669 statement is necessary. */
7670 gfc_find_vtab (ts);
7671 }
7672
7673 if (dimension == 0 && codimension == 0)
7674 goto success;
7675
7676 /* Make sure the last reference node is an array specification. */
7677
7678 if (!ref2 || ref2->type != REF_ARRAY || ref2->u.ar.type == AR_FULL
7679 || (dimension && ref2->u.ar.dimen == 0))
7680 {
7681 /* F08:C633. */
7682 if (code->expr3)
7683 {
7684 if (!gfc_notify_std (GFC_STD_F2008, "Array specification required "
7685 "in ALLOCATE statement at %L", &e->where))
7686 goto failure;
7687 if (code->expr3->rank != 0)
7688 *array_alloc_wo_spec = true;
7689 else
7690 {
7691 gfc_error ("Array specification or array-valued SOURCE= "
7692 "expression required in ALLOCATE statement at %L",
7693 &e->where);
7694 goto failure;
7695 }
7696 }
7697 else
7698 {
7699 gfc_error ("Array specification required in ALLOCATE statement "
7700 "at %L", &e->where);
7701 goto failure;
7702 }
7703 }
7704
7705 /* Make sure that the array section reference makes sense in the
7706 context of an ALLOCATE specification. */
7707
7708 ar = &ref2->u.ar;
7709
7710 if (codimension)
7711 for (i = ar->dimen; i < ar->dimen + ar->codimen; i++)
7712 if (ar->dimen_type[i] == DIMEN_THIS_IMAGE)
7713 {
7714 gfc_error ("Coarray specification required in ALLOCATE statement "
7715 "at %L", &e->where);
7716 goto failure;
7717 }
7718
7719 for (i = 0; i < ar->dimen; i++)
7720 {
7721 if (ar->type == AR_ELEMENT || ar->type == AR_FULL)
7722 goto check_symbols;
7723
7724 switch (ar->dimen_type[i])
7725 {
7726 case DIMEN_ELEMENT:
7727 break;
7728
7729 case DIMEN_RANGE:
7730 if (ar->start[i] != NULL
7731 && ar->end[i] != NULL
7732 && ar->stride[i] == NULL)
7733 break;
7734
7735 /* Fall through. */
7736
7737 case DIMEN_UNKNOWN:
7738 case DIMEN_VECTOR:
7739 case DIMEN_STAR:
7740 case DIMEN_THIS_IMAGE:
7741 gfc_error ("Bad array specification in ALLOCATE statement at %L",
7742 &e->where);
7743 goto failure;
7744 }
7745
7746 check_symbols:
7747 for (a = code->ext.alloc.list; a; a = a->next)
7748 {
7749 sym = a->expr->symtree->n.sym;
7750
7751 /* TODO - check derived type components. */
7752 if (gfc_bt_struct (sym->ts.type) || sym->ts.type == BT_CLASS)
7753 continue;
7754
7755 if ((ar->start[i] != NULL
7756 && gfc_find_sym_in_expr (sym, ar->start[i]))
7757 || (ar->end[i] != NULL
7758 && gfc_find_sym_in_expr (sym, ar->end[i])))
7759 {
7760 gfc_error ("%qs must not appear in the array specification at "
7761 "%L in the same ALLOCATE statement where it is "
7762 "itself allocated", sym->name, &ar->where);
7763 goto failure;
7764 }
7765 }
7766 }
7767
7768 for (i = ar->dimen; i < ar->codimen + ar->dimen; i++)
7769 {
7770 if (ar->dimen_type[i] == DIMEN_ELEMENT
7771 || ar->dimen_type[i] == DIMEN_RANGE)
7772 {
7773 if (i == (ar->dimen + ar->codimen - 1))
7774 {
7775 gfc_error ("Expected '*' in coindex specification in ALLOCATE "
7776 "statement at %L", &e->where);
7777 goto failure;
7778 }
7779 continue;
7780 }
7781
7782 if (ar->dimen_type[i] == DIMEN_STAR && i == (ar->dimen + ar->codimen - 1)
7783 && ar->stride[i] == NULL)
7784 break;
7785
7786 gfc_error ("Bad coarray specification in ALLOCATE statement at %L",
7787 &e->where);
7788 goto failure;
7789 }
7790
7791 success:
7792 return true;
7793
7794 failure:
7795 return false;
7796 }
7797
7798
7799 static void
7800 resolve_allocate_deallocate (gfc_code *code, const char *fcn)
7801 {
7802 gfc_expr *stat, *errmsg, *pe, *qe;
7803 gfc_alloc *a, *p, *q;
7804
7805 stat = code->expr1;
7806 errmsg = code->expr2;
7807
7808 /* Check the stat variable. */
7809 if (stat)
7810 {
7811 gfc_check_vardef_context (stat, false, false, false,
7812 _("STAT variable"));
7813
7814 if ((stat->ts.type != BT_INTEGER
7815 && !(stat->ref && (stat->ref->type == REF_ARRAY
7816 || stat->ref->type == REF_COMPONENT)))
7817 || stat->rank > 0)
7818 gfc_error ("Stat-variable at %L must be a scalar INTEGER "
7819 "variable", &stat->where);
7820
7821 for (p = code->ext.alloc.list; p; p = p->next)
7822 if (p->expr->symtree->n.sym->name == stat->symtree->n.sym->name)
7823 {
7824 gfc_ref *ref1, *ref2;
7825 bool found = true;
7826
7827 for (ref1 = p->expr->ref, ref2 = stat->ref; ref1 && ref2;
7828 ref1 = ref1->next, ref2 = ref2->next)
7829 {
7830 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7831 continue;
7832 if (ref1->u.c.component->name != ref2->u.c.component->name)
7833 {
7834 found = false;
7835 break;
7836 }
7837 }
7838
7839 if (found)
7840 {
7841 gfc_error ("Stat-variable at %L shall not be %sd within "
7842 "the same %s statement", &stat->where, fcn, fcn);
7843 break;
7844 }
7845 }
7846 }
7847
7848 /* Check the errmsg variable. */
7849 if (errmsg)
7850 {
7851 if (!stat)
7852 gfc_warning (0, "ERRMSG at %L is useless without a STAT tag",
7853 &errmsg->where);
7854
7855 gfc_check_vardef_context (errmsg, false, false, false,
7856 _("ERRMSG variable"));
7857
7858 /* F18:R928 alloc-opt is ERRMSG = errmsg-variable
7859 F18:R930 errmsg-variable is scalar-default-char-variable
7860 F18:R906 default-char-variable is variable
7861 F18:C906 default-char-variable shall be default character. */
7862 if ((errmsg->ts.type != BT_CHARACTER
7863 && !(errmsg->ref
7864 && (errmsg->ref->type == REF_ARRAY
7865 || errmsg->ref->type == REF_COMPONENT)))
7866 || errmsg->rank > 0
7867 || errmsg->ts.kind != gfc_default_character_kind)
7868 gfc_error ("ERRMSG variable at %L shall be a scalar default CHARACTER "
7869 "variable", &errmsg->where);
7870
7871 for (p = code->ext.alloc.list; p; p = p->next)
7872 if (p->expr->symtree->n.sym->name == errmsg->symtree->n.sym->name)
7873 {
7874 gfc_ref *ref1, *ref2;
7875 bool found = true;
7876
7877 for (ref1 = p->expr->ref, ref2 = errmsg->ref; ref1 && ref2;
7878 ref1 = ref1->next, ref2 = ref2->next)
7879 {
7880 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7881 continue;
7882 if (ref1->u.c.component->name != ref2->u.c.component->name)
7883 {
7884 found = false;
7885 break;
7886 }
7887 }
7888
7889 if (found)
7890 {
7891 gfc_error ("Errmsg-variable at %L shall not be %sd within "
7892 "the same %s statement", &errmsg->where, fcn, fcn);
7893 break;
7894 }
7895 }
7896 }
7897
7898 /* Check that an allocate-object appears only once in the statement. */
7899
7900 for (p = code->ext.alloc.list; p; p = p->next)
7901 {
7902 pe = p->expr;
7903 for (q = p->next; q; q = q->next)
7904 {
7905 qe = q->expr;
7906 if (pe->symtree->n.sym->name == qe->symtree->n.sym->name)
7907 {
7908 /* This is a potential collision. */
7909 gfc_ref *pr = pe->ref;
7910 gfc_ref *qr = qe->ref;
7911
7912 /* Follow the references until
7913 a) They start to differ, in which case there is no error;
7914 you can deallocate a%b and a%c in a single statement
7915 b) Both of them stop, which is an error
7916 c) One of them stops, which is also an error. */
7917 while (1)
7918 {
7919 if (pr == NULL && qr == NULL)
7920 {
7921 gfc_error ("Allocate-object at %L also appears at %L",
7922 &pe->where, &qe->where);
7923 break;
7924 }
7925 else if (pr != NULL && qr == NULL)
7926 {
7927 gfc_error ("Allocate-object at %L is subobject of"
7928 " object at %L", &pe->where, &qe->where);
7929 break;
7930 }
7931 else if (pr == NULL && qr != NULL)
7932 {
7933 gfc_error ("Allocate-object at %L is subobject of"
7934 " object at %L", &qe->where, &pe->where);
7935 break;
7936 }
7937 /* Here, pr != NULL && qr != NULL */
7938 gcc_assert(pr->type == qr->type);
7939 if (pr->type == REF_ARRAY)
7940 {
7941 /* Handle cases like allocate(v(3)%x(3), v(2)%x(3)),
7942 which are legal. */
7943 gcc_assert (qr->type == REF_ARRAY);
7944
7945 if (pr->next && qr->next)
7946 {
7947 int i;
7948 gfc_array_ref *par = &(pr->u.ar);
7949 gfc_array_ref *qar = &(qr->u.ar);
7950
7951 for (i=0; i<par->dimen; i++)
7952 {
7953 if ((par->start[i] != NULL
7954 || qar->start[i] != NULL)
7955 && gfc_dep_compare_expr (par->start[i],
7956 qar->start[i]) != 0)
7957 goto break_label;
7958 }
7959 }
7960 }
7961 else
7962 {
7963 if (pr->u.c.component->name != qr->u.c.component->name)
7964 break;
7965 }
7966
7967 pr = pr->next;
7968 qr = qr->next;
7969 }
7970 break_label:
7971 ;
7972 }
7973 }
7974 }
7975
7976 if (strcmp (fcn, "ALLOCATE") == 0)
7977 {
7978 bool arr_alloc_wo_spec = false;
7979
7980 /* Resolving the expr3 in the loop over all objects to allocate would
7981 execute loop invariant code for each loop item. Therefore do it just
7982 once here. */
7983 if (code->expr3 && code->expr3->mold
7984 && code->expr3->ts.type == BT_DERIVED)
7985 {
7986 /* Default initialization via MOLD (non-polymorphic). */
7987 gfc_expr *rhs = gfc_default_initializer (&code->expr3->ts);
7988 if (rhs != NULL)
7989 {
7990 gfc_resolve_expr (rhs);
7991 gfc_free_expr (code->expr3);
7992 code->expr3 = rhs;
7993 }
7994 }
7995 for (a = code->ext.alloc.list; a; a = a->next)
7996 resolve_allocate_expr (a->expr, code, &arr_alloc_wo_spec);
7997
7998 if (arr_alloc_wo_spec && code->expr3)
7999 {
8000 /* Mark the allocate to have to take the array specification
8001 from the expr3. */
8002 code->ext.alloc.arr_spec_from_expr3 = 1;
8003 }
8004 }
8005 else
8006 {
8007 for (a = code->ext.alloc.list; a; a = a->next)
8008 resolve_deallocate_expr (a->expr);
8009 }
8010 }
8011
8012
8013 /************ SELECT CASE resolution subroutines ************/
8014
8015 /* Callback function for our mergesort variant. Determines interval
8016 overlaps for CASEs. Return <0 if op1 < op2, 0 for overlap, >0 for
8017 op1 > op2. Assumes we're not dealing with the default case.
8018 We have op1 = (:L), (K:L) or (K:) and op2 = (:N), (M:N) or (M:).
8019 There are nine situations to check. */
8020
8021 static int
8022 compare_cases (const gfc_case *op1, const gfc_case *op2)
8023 {
8024 int retval;
8025
8026 if (op1->low == NULL) /* op1 = (:L) */
8027 {
8028 /* op2 = (:N), so overlap. */
8029 retval = 0;
8030 /* op2 = (M:) or (M:N), L < M */
8031 if (op2->low != NULL
8032 && gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8033 retval = -1;
8034 }
8035 else if (op1->high == NULL) /* op1 = (K:) */
8036 {
8037 /* op2 = (M:), so overlap. */
8038 retval = 0;
8039 /* op2 = (:N) or (M:N), K > N */
8040 if (op2->high != NULL
8041 && gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8042 retval = 1;
8043 }
8044 else /* op1 = (K:L) */
8045 {
8046 if (op2->low == NULL) /* op2 = (:N), K > N */
8047 retval = (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8048 ? 1 : 0;
8049 else if (op2->high == NULL) /* op2 = (M:), L < M */
8050 retval = (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8051 ? -1 : 0;
8052 else /* op2 = (M:N) */
8053 {
8054 retval = 0;
8055 /* L < M */
8056 if (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8057 retval = -1;
8058 /* K > N */
8059 else if (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8060 retval = 1;
8061 }
8062 }
8063
8064 return retval;
8065 }
8066
8067
8068 /* Merge-sort a double linked case list, detecting overlap in the
8069 process. LIST is the head of the double linked case list before it
8070 is sorted. Returns the head of the sorted list if we don't see any
8071 overlap, or NULL otherwise. */
8072
8073 static gfc_case *
8074 check_case_overlap (gfc_case *list)
8075 {
8076 gfc_case *p, *q, *e, *tail;
8077 int insize, nmerges, psize, qsize, cmp, overlap_seen;
8078
8079 /* If the passed list was empty, return immediately. */
8080 if (!list)
8081 return NULL;
8082
8083 overlap_seen = 0;
8084 insize = 1;
8085
8086 /* Loop unconditionally. The only exit from this loop is a return
8087 statement, when we've finished sorting the case list. */
8088 for (;;)
8089 {
8090 p = list;
8091 list = NULL;
8092 tail = NULL;
8093
8094 /* Count the number of merges we do in this pass. */
8095 nmerges = 0;
8096
8097 /* Loop while there exists a merge to be done. */
8098 while (p)
8099 {
8100 int i;
8101
8102 /* Count this merge. */
8103 nmerges++;
8104
8105 /* Cut the list in two pieces by stepping INSIZE places
8106 forward in the list, starting from P. */
8107 psize = 0;
8108 q = p;
8109 for (i = 0; i < insize; i++)
8110 {
8111 psize++;
8112 q = q->right;
8113 if (!q)
8114 break;
8115 }
8116 qsize = insize;
8117
8118 /* Now we have two lists. Merge them! */
8119 while (psize > 0 || (qsize > 0 && q != NULL))
8120 {
8121 /* See from which the next case to merge comes from. */
8122 if (psize == 0)
8123 {
8124 /* P is empty so the next case must come from Q. */
8125 e = q;
8126 q = q->right;
8127 qsize--;
8128 }
8129 else if (qsize == 0 || q == NULL)
8130 {
8131 /* Q is empty. */
8132 e = p;
8133 p = p->right;
8134 psize--;
8135 }
8136 else
8137 {
8138 cmp = compare_cases (p, q);
8139 if (cmp < 0)
8140 {
8141 /* The whole case range for P is less than the
8142 one for Q. */
8143 e = p;
8144 p = p->right;
8145 psize--;
8146 }
8147 else if (cmp > 0)
8148 {
8149 /* The whole case range for Q is greater than
8150 the case range for P. */
8151 e = q;
8152 q = q->right;
8153 qsize--;
8154 }
8155 else
8156 {
8157 /* The cases overlap, or they are the same
8158 element in the list. Either way, we must
8159 issue an error and get the next case from P. */
8160 /* FIXME: Sort P and Q by line number. */
8161 gfc_error ("CASE label at %L overlaps with CASE "
8162 "label at %L", &p->where, &q->where);
8163 overlap_seen = 1;
8164 e = p;
8165 p = p->right;
8166 psize--;
8167 }
8168 }
8169
8170 /* Add the next element to the merged list. */
8171 if (tail)
8172 tail->right = e;
8173 else
8174 list = e;
8175 e->left = tail;
8176 tail = e;
8177 }
8178
8179 /* P has now stepped INSIZE places along, and so has Q. So
8180 they're the same. */
8181 p = q;
8182 }
8183 tail->right = NULL;
8184
8185 /* If we have done only one merge or none at all, we've
8186 finished sorting the cases. */
8187 if (nmerges <= 1)
8188 {
8189 if (!overlap_seen)
8190 return list;
8191 else
8192 return NULL;
8193 }
8194
8195 /* Otherwise repeat, merging lists twice the size. */
8196 insize *= 2;
8197 }
8198 }
8199
8200
8201 /* Check to see if an expression is suitable for use in a CASE statement.
8202 Makes sure that all case expressions are scalar constants of the same
8203 type. Return false if anything is wrong. */
8204
8205 static bool
8206 validate_case_label_expr (gfc_expr *e, gfc_expr *case_expr)
8207 {
8208 if (e == NULL) return true;
8209
8210 if (e->ts.type != case_expr->ts.type)
8211 {
8212 gfc_error ("Expression in CASE statement at %L must be of type %s",
8213 &e->where, gfc_basic_typename (case_expr->ts.type));
8214 return false;
8215 }
8216
8217 /* C805 (R808) For a given case-construct, each case-value shall be of
8218 the same type as case-expr. For character type, length differences
8219 are allowed, but the kind type parameters shall be the same. */
8220
8221 if (case_expr->ts.type == BT_CHARACTER && e->ts.kind != case_expr->ts.kind)
8222 {
8223 gfc_error ("Expression in CASE statement at %L must be of kind %d",
8224 &e->where, case_expr->ts.kind);
8225 return false;
8226 }
8227
8228 /* Convert the case value kind to that of case expression kind,
8229 if needed */
8230
8231 if (e->ts.kind != case_expr->ts.kind)
8232 gfc_convert_type_warn (e, &case_expr->ts, 2, 0);
8233
8234 if (e->rank != 0)
8235 {
8236 gfc_error ("Expression in CASE statement at %L must be scalar",
8237 &e->where);
8238 return false;
8239 }
8240
8241 return true;
8242 }
8243
8244
8245 /* Given a completely parsed select statement, we:
8246
8247 - Validate all expressions and code within the SELECT.
8248 - Make sure that the selection expression is not of the wrong type.
8249 - Make sure that no case ranges overlap.
8250 - Eliminate unreachable cases and unreachable code resulting from
8251 removing case labels.
8252
8253 The standard does allow unreachable cases, e.g. CASE (5:3). But
8254 they are a hassle for code generation, and to prevent that, we just
8255 cut them out here. This is not necessary for overlapping cases
8256 because they are illegal and we never even try to generate code.
8257
8258 We have the additional caveat that a SELECT construct could have
8259 been a computed GOTO in the source code. Fortunately we can fairly
8260 easily work around that here: The case_expr for a "real" SELECT CASE
8261 is in code->expr1, but for a computed GOTO it is in code->expr2. All
8262 we have to do is make sure that the case_expr is a scalar integer
8263 expression. */
8264
8265 static void
8266 resolve_select (gfc_code *code, bool select_type)
8267 {
8268 gfc_code *body;
8269 gfc_expr *case_expr;
8270 gfc_case *cp, *default_case, *tail, *head;
8271 int seen_unreachable;
8272 int seen_logical;
8273 int ncases;
8274 bt type;
8275 bool t;
8276
8277 if (code->expr1 == NULL)
8278 {
8279 /* This was actually a computed GOTO statement. */
8280 case_expr = code->expr2;
8281 if (case_expr->ts.type != BT_INTEGER|| case_expr->rank != 0)
8282 gfc_error ("Selection expression in computed GOTO statement "
8283 "at %L must be a scalar integer expression",
8284 &case_expr->where);
8285
8286 /* Further checking is not necessary because this SELECT was built
8287 by the compiler, so it should always be OK. Just move the
8288 case_expr from expr2 to expr so that we can handle computed
8289 GOTOs as normal SELECTs from here on. */
8290 code->expr1 = code->expr2;
8291 code->expr2 = NULL;
8292 return;
8293 }
8294
8295 case_expr = code->expr1;
8296 type = case_expr->ts.type;
8297
8298 /* F08:C830. */
8299 if (type != BT_LOGICAL && type != BT_INTEGER && type != BT_CHARACTER)
8300 {
8301 gfc_error ("Argument of SELECT statement at %L cannot be %s",
8302 &case_expr->where, gfc_typename (&case_expr->ts));
8303
8304 /* Punt. Going on here just produce more garbage error messages. */
8305 return;
8306 }
8307
8308 /* F08:R842. */
8309 if (!select_type && case_expr->rank != 0)
8310 {
8311 gfc_error ("Argument of SELECT statement at %L must be a scalar "
8312 "expression", &case_expr->where);
8313
8314 /* Punt. */
8315 return;
8316 }
8317
8318 /* Raise a warning if an INTEGER case value exceeds the range of
8319 the case-expr. Later, all expressions will be promoted to the
8320 largest kind of all case-labels. */
8321
8322 if (type == BT_INTEGER)
8323 for (body = code->block; body; body = body->block)
8324 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8325 {
8326 if (cp->low
8327 && gfc_check_integer_range (cp->low->value.integer,
8328 case_expr->ts.kind) != ARITH_OK)
8329 gfc_warning (0, "Expression in CASE statement at %L is "
8330 "not in the range of %s", &cp->low->where,
8331 gfc_typename (&case_expr->ts));
8332
8333 if (cp->high
8334 && cp->low != cp->high
8335 && gfc_check_integer_range (cp->high->value.integer,
8336 case_expr->ts.kind) != ARITH_OK)
8337 gfc_warning (0, "Expression in CASE statement at %L is "
8338 "not in the range of %s", &cp->high->where,
8339 gfc_typename (&case_expr->ts));
8340 }
8341
8342 /* PR 19168 has a long discussion concerning a mismatch of the kinds
8343 of the SELECT CASE expression and its CASE values. Walk the lists
8344 of case values, and if we find a mismatch, promote case_expr to
8345 the appropriate kind. */
8346
8347 if (type == BT_LOGICAL || type == BT_INTEGER)
8348 {
8349 for (body = code->block; body; body = body->block)
8350 {
8351 /* Walk the case label list. */
8352 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8353 {
8354 /* Intercept the DEFAULT case. It does not have a kind. */
8355 if (cp->low == NULL && cp->high == NULL)
8356 continue;
8357
8358 /* Unreachable case ranges are discarded, so ignore. */
8359 if (cp->low != NULL && cp->high != NULL
8360 && cp->low != cp->high
8361 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8362 continue;
8363
8364 if (cp->low != NULL
8365 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->low))
8366 gfc_convert_type_warn (case_expr, &cp->low->ts, 2, 0);
8367
8368 if (cp->high != NULL
8369 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->high))
8370 gfc_convert_type_warn (case_expr, &cp->high->ts, 2, 0);
8371 }
8372 }
8373 }
8374
8375 /* Assume there is no DEFAULT case. */
8376 default_case = NULL;
8377 head = tail = NULL;
8378 ncases = 0;
8379 seen_logical = 0;
8380
8381 for (body = code->block; body; body = body->block)
8382 {
8383 /* Assume the CASE list is OK, and all CASE labels can be matched. */
8384 t = true;
8385 seen_unreachable = 0;
8386
8387 /* Walk the case label list, making sure that all case labels
8388 are legal. */
8389 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8390 {
8391 /* Count the number of cases in the whole construct. */
8392 ncases++;
8393
8394 /* Intercept the DEFAULT case. */
8395 if (cp->low == NULL && cp->high == NULL)
8396 {
8397 if (default_case != NULL)
8398 {
8399 gfc_error ("The DEFAULT CASE at %L cannot be followed "
8400 "by a second DEFAULT CASE at %L",
8401 &default_case->where, &cp->where);
8402 t = false;
8403 break;
8404 }
8405 else
8406 {
8407 default_case = cp;
8408 continue;
8409 }
8410 }
8411
8412 /* Deal with single value cases and case ranges. Errors are
8413 issued from the validation function. */
8414 if (!validate_case_label_expr (cp->low, case_expr)
8415 || !validate_case_label_expr (cp->high, case_expr))
8416 {
8417 t = false;
8418 break;
8419 }
8420
8421 if (type == BT_LOGICAL
8422 && ((cp->low == NULL || cp->high == NULL)
8423 || cp->low != cp->high))
8424 {
8425 gfc_error ("Logical range in CASE statement at %L is not "
8426 "allowed", &cp->low->where);
8427 t = false;
8428 break;
8429 }
8430
8431 if (type == BT_LOGICAL && cp->low->expr_type == EXPR_CONSTANT)
8432 {
8433 int value;
8434 value = cp->low->value.logical == 0 ? 2 : 1;
8435 if (value & seen_logical)
8436 {
8437 gfc_error ("Constant logical value in CASE statement "
8438 "is repeated at %L",
8439 &cp->low->where);
8440 t = false;
8441 break;
8442 }
8443 seen_logical |= value;
8444 }
8445
8446 if (cp->low != NULL && cp->high != NULL
8447 && cp->low != cp->high
8448 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8449 {
8450 if (warn_surprising)
8451 gfc_warning (OPT_Wsurprising,
8452 "Range specification at %L can never be matched",
8453 &cp->where);
8454
8455 cp->unreachable = 1;
8456 seen_unreachable = 1;
8457 }
8458 else
8459 {
8460 /* If the case range can be matched, it can also overlap with
8461 other cases. To make sure it does not, we put it in a
8462 double linked list here. We sort that with a merge sort
8463 later on to detect any overlapping cases. */
8464 if (!head)
8465 {
8466 head = tail = cp;
8467 head->right = head->left = NULL;
8468 }
8469 else
8470 {
8471 tail->right = cp;
8472 tail->right->left = tail;
8473 tail = tail->right;
8474 tail->right = NULL;
8475 }
8476 }
8477 }
8478
8479 /* It there was a failure in the previous case label, give up
8480 for this case label list. Continue with the next block. */
8481 if (!t)
8482 continue;
8483
8484 /* See if any case labels that are unreachable have been seen.
8485 If so, we eliminate them. This is a bit of a kludge because
8486 the case lists for a single case statement (label) is a
8487 single forward linked lists. */
8488 if (seen_unreachable)
8489 {
8490 /* Advance until the first case in the list is reachable. */
8491 while (body->ext.block.case_list != NULL
8492 && body->ext.block.case_list->unreachable)
8493 {
8494 gfc_case *n = body->ext.block.case_list;
8495 body->ext.block.case_list = body->ext.block.case_list->next;
8496 n->next = NULL;
8497 gfc_free_case_list (n);
8498 }
8499
8500 /* Strip all other unreachable cases. */
8501 if (body->ext.block.case_list)
8502 {
8503 for (cp = body->ext.block.case_list; cp && cp->next; cp = cp->next)
8504 {
8505 if (cp->next->unreachable)
8506 {
8507 gfc_case *n = cp->next;
8508 cp->next = cp->next->next;
8509 n->next = NULL;
8510 gfc_free_case_list (n);
8511 }
8512 }
8513 }
8514 }
8515 }
8516
8517 /* See if there were overlapping cases. If the check returns NULL,
8518 there was overlap. In that case we don't do anything. If head
8519 is non-NULL, we prepend the DEFAULT case. The sorted list can
8520 then used during code generation for SELECT CASE constructs with
8521 a case expression of a CHARACTER type. */
8522 if (head)
8523 {
8524 head = check_case_overlap (head);
8525
8526 /* Prepend the default_case if it is there. */
8527 if (head != NULL && default_case)
8528 {
8529 default_case->left = NULL;
8530 default_case->right = head;
8531 head->left = default_case;
8532 }
8533 }
8534
8535 /* Eliminate dead blocks that may be the result if we've seen
8536 unreachable case labels for a block. */
8537 for (body = code; body && body->block; body = body->block)
8538 {
8539 if (body->block->ext.block.case_list == NULL)
8540 {
8541 /* Cut the unreachable block from the code chain. */
8542 gfc_code *c = body->block;
8543 body->block = c->block;
8544
8545 /* Kill the dead block, but not the blocks below it. */
8546 c->block = NULL;
8547 gfc_free_statements (c);
8548 }
8549 }
8550
8551 /* More than two cases is legal but insane for logical selects.
8552 Issue a warning for it. */
8553 if (warn_surprising && type == BT_LOGICAL && ncases > 2)
8554 gfc_warning (OPT_Wsurprising,
8555 "Logical SELECT CASE block at %L has more that two cases",
8556 &code->loc);
8557 }
8558
8559
8560 /* Check if a derived type is extensible. */
8561
8562 bool
8563 gfc_type_is_extensible (gfc_symbol *sym)
8564 {
8565 return !(sym->attr.is_bind_c || sym->attr.sequence
8566 || (sym->attr.is_class
8567 && sym->components->ts.u.derived->attr.unlimited_polymorphic));
8568 }
8569
8570
8571 static void
8572 resolve_types (gfc_namespace *ns);
8573
8574 /* Resolve an associate-name: Resolve target and ensure the type-spec is
8575 correct as well as possibly the array-spec. */
8576
8577 static void
8578 resolve_assoc_var (gfc_symbol* sym, bool resolve_target)
8579 {
8580 gfc_expr* target;
8581
8582 gcc_assert (sym->assoc);
8583 gcc_assert (sym->attr.flavor == FL_VARIABLE);
8584
8585 /* If this is for SELECT TYPE, the target may not yet be set. In that
8586 case, return. Resolution will be called later manually again when
8587 this is done. */
8588 target = sym->assoc->target;
8589 if (!target)
8590 return;
8591 gcc_assert (!sym->assoc->dangling);
8592
8593 if (resolve_target && !gfc_resolve_expr (target))
8594 return;
8595
8596 /* For variable targets, we get some attributes from the target. */
8597 if (target->expr_type == EXPR_VARIABLE)
8598 {
8599 gfc_symbol* tsym;
8600
8601 gcc_assert (target->symtree);
8602 tsym = target->symtree->n.sym;
8603
8604 sym->attr.asynchronous = tsym->attr.asynchronous;
8605 sym->attr.volatile_ = tsym->attr.volatile_;
8606
8607 sym->attr.target = tsym->attr.target
8608 || gfc_expr_attr (target).pointer;
8609 if (is_subref_array (target))
8610 sym->attr.subref_array_pointer = 1;
8611 }
8612
8613 if (target->expr_type == EXPR_NULL)
8614 {
8615 gfc_error ("Selector at %L cannot be NULL()", &target->where);
8616 return;
8617 }
8618 else if (target->ts.type == BT_UNKNOWN)
8619 {
8620 gfc_error ("Selector at %L has no type", &target->where);
8621 return;
8622 }
8623
8624 /* Get type if this was not already set. Note that it can be
8625 some other type than the target in case this is a SELECT TYPE
8626 selector! So we must not update when the type is already there. */
8627 if (sym->ts.type == BT_UNKNOWN)
8628 sym->ts = target->ts;
8629
8630 gcc_assert (sym->ts.type != BT_UNKNOWN);
8631
8632 /* See if this is a valid association-to-variable. */
8633 sym->assoc->variable = (target->expr_type == EXPR_VARIABLE
8634 && !gfc_has_vector_subscript (target));
8635
8636 /* Finally resolve if this is an array or not. */
8637 if (sym->attr.dimension && target->rank == 0)
8638 {
8639 /* primary.c makes the assumption that a reference to an associate
8640 name followed by a left parenthesis is an array reference. */
8641 if (sym->ts.type != BT_CHARACTER)
8642 gfc_error ("Associate-name %qs at %L is used as array",
8643 sym->name, &sym->declared_at);
8644 sym->attr.dimension = 0;
8645 return;
8646 }
8647
8648
8649 /* We cannot deal with class selectors that need temporaries. */
8650 if (target->ts.type == BT_CLASS
8651 && gfc_ref_needs_temporary_p (target->ref))
8652 {
8653 gfc_error ("CLASS selector at %L needs a temporary which is not "
8654 "yet implemented", &target->where);
8655 return;
8656 }
8657
8658 if (target->ts.type == BT_CLASS)
8659 gfc_fix_class_refs (target);
8660
8661 if (target->rank != 0)
8662 {
8663 gfc_array_spec *as;
8664 /* The rank may be incorrectly guessed at parsing, therefore make sure
8665 it is corrected now. */
8666 if (sym->ts.type != BT_CLASS && (!sym->as || sym->assoc->rankguessed))
8667 {
8668 if (!sym->as)
8669 sym->as = gfc_get_array_spec ();
8670 as = sym->as;
8671 as->rank = target->rank;
8672 as->type = AS_DEFERRED;
8673 as->corank = gfc_get_corank (target);
8674 sym->attr.dimension = 1;
8675 if (as->corank != 0)
8676 sym->attr.codimension = 1;
8677 }
8678 }
8679 else
8680 {
8681 /* target's rank is 0, but the type of the sym is still array valued,
8682 which has to be corrected. */
8683 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
8684 {
8685 gfc_array_spec *as;
8686 symbol_attribute attr;
8687 /* The associated variable's type is still the array type
8688 correct this now. */
8689 gfc_typespec *ts = &target->ts;
8690 gfc_ref *ref;
8691 gfc_component *c;
8692 for (ref = target->ref; ref != NULL; ref = ref->next)
8693 {
8694 switch (ref->type)
8695 {
8696 case REF_COMPONENT:
8697 ts = &ref->u.c.component->ts;
8698 break;
8699 case REF_ARRAY:
8700 if (ts->type == BT_CLASS)
8701 ts = &ts->u.derived->components->ts;
8702 break;
8703 default:
8704 break;
8705 }
8706 }
8707 /* Create a scalar instance of the current class type. Because the
8708 rank of a class array goes into its name, the type has to be
8709 rebuild. The alternative of (re-)setting just the attributes
8710 and as in the current type, destroys the type also in other
8711 places. */
8712 as = NULL;
8713 sym->ts = *ts;
8714 sym->ts.type = BT_CLASS;
8715 attr = CLASS_DATA (sym)->attr;
8716 attr.class_ok = 0;
8717 attr.associate_var = 1;
8718 attr.dimension = attr.codimension = 0;
8719 attr.class_pointer = 1;
8720 if (!gfc_build_class_symbol (&sym->ts, &attr, &as))
8721 gcc_unreachable ();
8722 /* Make sure the _vptr is set. */
8723 c = gfc_find_component (sym->ts.u.derived, "_vptr", true, true, NULL);
8724 if (c->ts.u.derived == NULL)
8725 c->ts.u.derived = gfc_find_derived_vtab (sym->ts.u.derived);
8726 CLASS_DATA (sym)->attr.pointer = 1;
8727 CLASS_DATA (sym)->attr.class_pointer = 1;
8728 gfc_set_sym_referenced (sym->ts.u.derived);
8729 gfc_commit_symbol (sym->ts.u.derived);
8730 /* _vptr now has the _vtab in it, change it to the _vtype. */
8731 if (c->ts.u.derived->attr.vtab)
8732 c->ts.u.derived = c->ts.u.derived->ts.u.derived;
8733 c->ts.u.derived->ns->types_resolved = 0;
8734 resolve_types (c->ts.u.derived->ns);
8735 }
8736 }
8737
8738 /* Mark this as an associate variable. */
8739 sym->attr.associate_var = 1;
8740
8741 /* Fix up the type-spec for CHARACTER types. */
8742 if (sym->ts.type == BT_CHARACTER && !sym->attr.select_type_temporary)
8743 {
8744 if (!sym->ts.u.cl)
8745 sym->ts.u.cl = target->ts.u.cl;
8746
8747 if (!sym->ts.u.cl->length
8748 && !sym->ts.deferred
8749 && target->expr_type == EXPR_CONSTANT)
8750 {
8751 sym->ts.u.cl->length =
8752 gfc_get_int_expr (gfc_charlen_int_kind, NULL,
8753 target->value.character.length);
8754 }
8755 else if ((!sym->ts.u.cl->length
8756 || sym->ts.u.cl->length->expr_type != EXPR_CONSTANT)
8757 && target->expr_type != EXPR_VARIABLE)
8758 {
8759 sym->ts.u.cl = gfc_get_charlen();
8760 sym->ts.deferred = 1;
8761
8762 /* This is reset in trans-stmt.c after the assignment
8763 of the target expression to the associate name. */
8764 sym->attr.allocatable = 1;
8765 }
8766 }
8767
8768 /* If the target is a good class object, so is the associate variable. */
8769 if (sym->ts.type == BT_CLASS && gfc_expr_attr (target).class_ok)
8770 sym->attr.class_ok = 1;
8771 }
8772
8773
8774 /* Ensure that SELECT TYPE expressions have the correct rank and a full
8775 array reference, where necessary. The symbols are artificial and so
8776 the dimension attribute and arrayspec can also be set. In addition,
8777 sometimes the expr1 arrives as BT_DERIVED, when the symbol is BT_CLASS.
8778 This is corrected here as well.*/
8779
8780 static void
8781 fixup_array_ref (gfc_expr **expr1, gfc_expr *expr2,
8782 int rank, gfc_ref *ref)
8783 {
8784 gfc_ref *nref = (*expr1)->ref;
8785 gfc_symbol *sym1 = (*expr1)->symtree->n.sym;
8786 gfc_symbol *sym2 = expr2 ? expr2->symtree->n.sym : NULL;
8787 (*expr1)->rank = rank;
8788 if (sym1->ts.type == BT_CLASS)
8789 {
8790 if ((*expr1)->ts.type != BT_CLASS)
8791 (*expr1)->ts = sym1->ts;
8792
8793 CLASS_DATA (sym1)->attr.dimension = 1;
8794 if (CLASS_DATA (sym1)->as == NULL && sym2)
8795 CLASS_DATA (sym1)->as
8796 = gfc_copy_array_spec (CLASS_DATA (sym2)->as);
8797 }
8798 else
8799 {
8800 sym1->attr.dimension = 1;
8801 if (sym1->as == NULL && sym2)
8802 sym1->as = gfc_copy_array_spec (sym2->as);
8803 }
8804
8805 for (; nref; nref = nref->next)
8806 if (nref->next == NULL)
8807 break;
8808
8809 if (ref && nref && nref->type != REF_ARRAY)
8810 nref->next = gfc_copy_ref (ref);
8811 else if (ref && !nref)
8812 (*expr1)->ref = gfc_copy_ref (ref);
8813 }
8814
8815
8816 static gfc_expr *
8817 build_loc_call (gfc_expr *sym_expr)
8818 {
8819 gfc_expr *loc_call;
8820 loc_call = gfc_get_expr ();
8821 loc_call->expr_type = EXPR_FUNCTION;
8822 gfc_get_sym_tree ("_loc", gfc_current_ns, &loc_call->symtree, false);
8823 loc_call->symtree->n.sym->attr.flavor = FL_PROCEDURE;
8824 loc_call->symtree->n.sym->attr.intrinsic = 1;
8825 loc_call->symtree->n.sym->result = loc_call->symtree->n.sym;
8826 gfc_commit_symbol (loc_call->symtree->n.sym);
8827 loc_call->ts.type = BT_INTEGER;
8828 loc_call->ts.kind = gfc_index_integer_kind;
8829 loc_call->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_LOC);
8830 loc_call->value.function.actual = gfc_get_actual_arglist ();
8831 loc_call->value.function.actual->expr = sym_expr;
8832 loc_call->where = sym_expr->where;
8833 return loc_call;
8834 }
8835
8836 /* Resolve a SELECT TYPE statement. */
8837
8838 static void
8839 resolve_select_type (gfc_code *code, gfc_namespace *old_ns)
8840 {
8841 gfc_symbol *selector_type;
8842 gfc_code *body, *new_st, *if_st, *tail;
8843 gfc_code *class_is = NULL, *default_case = NULL;
8844 gfc_case *c;
8845 gfc_symtree *st;
8846 char name[GFC_MAX_SYMBOL_LEN];
8847 gfc_namespace *ns;
8848 int error = 0;
8849 int rank = 0;
8850 gfc_ref* ref = NULL;
8851 gfc_expr *selector_expr = NULL;
8852
8853 ns = code->ext.block.ns;
8854 gfc_resolve (ns);
8855
8856 /* Check for F03:C813. */
8857 if (code->expr1->ts.type != BT_CLASS
8858 && !(code->expr2 && code->expr2->ts.type == BT_CLASS))
8859 {
8860 gfc_error ("Selector shall be polymorphic in SELECT TYPE statement "
8861 "at %L", &code->loc);
8862 return;
8863 }
8864
8865 if (!code->expr1->symtree->n.sym->attr.class_ok)
8866 return;
8867
8868 if (code->expr2)
8869 {
8870 if (code->expr1->symtree->n.sym->attr.untyped)
8871 code->expr1->symtree->n.sym->ts = code->expr2->ts;
8872 selector_type = CLASS_DATA (code->expr2)->ts.u.derived;
8873
8874 if (code->expr2->rank && CLASS_DATA (code->expr1)->as)
8875 CLASS_DATA (code->expr1)->as->rank = code->expr2->rank;
8876
8877 /* F2008: C803 The selector expression must not be coindexed. */
8878 if (gfc_is_coindexed (code->expr2))
8879 {
8880 gfc_error ("Selector at %L must not be coindexed",
8881 &code->expr2->where);
8882 return;
8883 }
8884
8885 }
8886 else
8887 {
8888 selector_type = CLASS_DATA (code->expr1)->ts.u.derived;
8889
8890 if (gfc_is_coindexed (code->expr1))
8891 {
8892 gfc_error ("Selector at %L must not be coindexed",
8893 &code->expr1->where);
8894 return;
8895 }
8896 }
8897
8898 /* Loop over TYPE IS / CLASS IS cases. */
8899 for (body = code->block; body; body = body->block)
8900 {
8901 c = body->ext.block.case_list;
8902
8903 if (!error)
8904 {
8905 /* Check for repeated cases. */
8906 for (tail = code->block; tail; tail = tail->block)
8907 {
8908 gfc_case *d = tail->ext.block.case_list;
8909 if (tail == body)
8910 break;
8911
8912 if (c->ts.type == d->ts.type
8913 && ((c->ts.type == BT_DERIVED
8914 && c->ts.u.derived && d->ts.u.derived
8915 && !strcmp (c->ts.u.derived->name,
8916 d->ts.u.derived->name))
8917 || c->ts.type == BT_UNKNOWN
8918 || (!(c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8919 && c->ts.kind == d->ts.kind)))
8920 {
8921 gfc_error ("TYPE IS at %L overlaps with TYPE IS at %L",
8922 &c->where, &d->where);
8923 return;
8924 }
8925 }
8926 }
8927
8928 /* Check F03:C815. */
8929 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8930 && !selector_type->attr.unlimited_polymorphic
8931 && !gfc_type_is_extensible (c->ts.u.derived))
8932 {
8933 gfc_error ("Derived type %qs at %L must be extensible",
8934 c->ts.u.derived->name, &c->where);
8935 error++;
8936 continue;
8937 }
8938
8939 /* Check F03:C816. */
8940 if (c->ts.type != BT_UNKNOWN && !selector_type->attr.unlimited_polymorphic
8941 && ((c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
8942 || !gfc_type_is_extension_of (selector_type, c->ts.u.derived)))
8943 {
8944 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8945 gfc_error ("Derived type %qs at %L must be an extension of %qs",
8946 c->ts.u.derived->name, &c->where, selector_type->name);
8947 else
8948 gfc_error ("Unexpected intrinsic type %qs at %L",
8949 gfc_basic_typename (c->ts.type), &c->where);
8950 error++;
8951 continue;
8952 }
8953
8954 /* Check F03:C814. */
8955 if (c->ts.type == BT_CHARACTER
8956 && (c->ts.u.cl->length != NULL || c->ts.deferred))
8957 {
8958 gfc_error ("The type-spec at %L shall specify that each length "
8959 "type parameter is assumed", &c->where);
8960 error++;
8961 continue;
8962 }
8963
8964 /* Intercept the DEFAULT case. */
8965 if (c->ts.type == BT_UNKNOWN)
8966 {
8967 /* Check F03:C818. */
8968 if (default_case)
8969 {
8970 gfc_error ("The DEFAULT CASE at %L cannot be followed "
8971 "by a second DEFAULT CASE at %L",
8972 &default_case->ext.block.case_list->where, &c->where);
8973 error++;
8974 continue;
8975 }
8976
8977 default_case = body;
8978 }
8979 }
8980
8981 if (error > 0)
8982 return;
8983
8984 /* Transform SELECT TYPE statement to BLOCK and associate selector to
8985 target if present. If there are any EXIT statements referring to the
8986 SELECT TYPE construct, this is no problem because the gfc_code
8987 reference stays the same and EXIT is equally possible from the BLOCK
8988 it is changed to. */
8989 code->op = EXEC_BLOCK;
8990 if (code->expr2)
8991 {
8992 gfc_association_list* assoc;
8993
8994 assoc = gfc_get_association_list ();
8995 assoc->st = code->expr1->symtree;
8996 assoc->target = gfc_copy_expr (code->expr2);
8997 assoc->target->where = code->expr2->where;
8998 /* assoc->variable will be set by resolve_assoc_var. */
8999
9000 code->ext.block.assoc = assoc;
9001 code->expr1->symtree->n.sym->assoc = assoc;
9002
9003 resolve_assoc_var (code->expr1->symtree->n.sym, false);
9004 }
9005 else
9006 code->ext.block.assoc = NULL;
9007
9008 /* Ensure that the selector rank and arrayspec are available to
9009 correct expressions in which they might be missing. */
9010 if (code->expr2 && code->expr2->rank)
9011 {
9012 rank = code->expr2->rank;
9013 for (ref = code->expr2->ref; ref; ref = ref->next)
9014 if (ref->next == NULL)
9015 break;
9016 if (ref && ref->type == REF_ARRAY)
9017 ref = gfc_copy_ref (ref);
9018
9019 /* Fixup expr1 if necessary. */
9020 if (rank)
9021 fixup_array_ref (&code->expr1, code->expr2, rank, ref);
9022 }
9023 else if (code->expr1->rank)
9024 {
9025 rank = code->expr1->rank;
9026 for (ref = code->expr1->ref; ref; ref = ref->next)
9027 if (ref->next == NULL)
9028 break;
9029 if (ref && ref->type == REF_ARRAY)
9030 ref = gfc_copy_ref (ref);
9031 }
9032
9033 /* Add EXEC_SELECT to switch on type. */
9034 new_st = gfc_get_code (code->op);
9035 new_st->expr1 = code->expr1;
9036 new_st->expr2 = code->expr2;
9037 new_st->block = code->block;
9038 code->expr1 = code->expr2 = NULL;
9039 code->block = NULL;
9040 if (!ns->code)
9041 ns->code = new_st;
9042 else
9043 ns->code->next = new_st;
9044 code = new_st;
9045 code->op = EXEC_SELECT_TYPE;
9046
9047 /* Use the intrinsic LOC function to generate an integer expression
9048 for the vtable of the selector. Note that the rank of the selector
9049 expression has to be set to zero. */
9050 gfc_add_vptr_component (code->expr1);
9051 code->expr1->rank = 0;
9052 code->expr1 = build_loc_call (code->expr1);
9053 selector_expr = code->expr1->value.function.actual->expr;
9054
9055 /* Loop over TYPE IS / CLASS IS cases. */
9056 for (body = code->block; body; body = body->block)
9057 {
9058 gfc_symbol *vtab;
9059 gfc_expr *e;
9060 c = body->ext.block.case_list;
9061
9062 /* Generate an index integer expression for address of the
9063 TYPE/CLASS vtable and store it in c->low. The hash expression
9064 is stored in c->high and is used to resolve intrinsic cases. */
9065 if (c->ts.type != BT_UNKNOWN)
9066 {
9067 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9068 {
9069 vtab = gfc_find_derived_vtab (c->ts.u.derived);
9070 gcc_assert (vtab);
9071 c->high = gfc_get_int_expr (gfc_integer_4_kind, NULL,
9072 c->ts.u.derived->hash_value);
9073 }
9074 else
9075 {
9076 vtab = gfc_find_vtab (&c->ts);
9077 gcc_assert (vtab && CLASS_DATA (vtab)->initializer);
9078 e = CLASS_DATA (vtab)->initializer;
9079 c->high = gfc_copy_expr (e);
9080 if (c->high->ts.kind != gfc_integer_4_kind)
9081 {
9082 gfc_typespec ts;
9083 ts.kind = gfc_integer_4_kind;
9084 ts.type = BT_INTEGER;
9085 gfc_convert_type_warn (c->high, &ts, 2, 0);
9086 }
9087 }
9088
9089 e = gfc_lval_expr_from_sym (vtab);
9090 c->low = build_loc_call (e);
9091 }
9092 else
9093 continue;
9094
9095 /* Associate temporary to selector. This should only be done
9096 when this case is actually true, so build a new ASSOCIATE
9097 that does precisely this here (instead of using the
9098 'global' one). */
9099
9100 if (c->ts.type == BT_CLASS)
9101 sprintf (name, "__tmp_class_%s", c->ts.u.derived->name);
9102 else if (c->ts.type == BT_DERIVED)
9103 sprintf (name, "__tmp_type_%s", c->ts.u.derived->name);
9104 else if (c->ts.type == BT_CHARACTER)
9105 {
9106 HOST_WIDE_INT charlen = 0;
9107 if (c->ts.u.cl && c->ts.u.cl->length
9108 && c->ts.u.cl->length->expr_type == EXPR_CONSTANT)
9109 charlen = gfc_mpz_get_hwi (c->ts.u.cl->length->value.integer);
9110 snprintf (name, sizeof (name),
9111 "__tmp_%s_" HOST_WIDE_INT_PRINT_DEC "_%d",
9112 gfc_basic_typename (c->ts.type), charlen, c->ts.kind);
9113 }
9114 else
9115 sprintf (name, "__tmp_%s_%d", gfc_basic_typename (c->ts.type),
9116 c->ts.kind);
9117
9118 st = gfc_find_symtree (ns->sym_root, name);
9119 gcc_assert (st->n.sym->assoc);
9120 st->n.sym->assoc->target = gfc_get_variable_expr (selector_expr->symtree);
9121 st->n.sym->assoc->target->where = selector_expr->where;
9122 if (c->ts.type != BT_CLASS && c->ts.type != BT_UNKNOWN)
9123 {
9124 gfc_add_data_component (st->n.sym->assoc->target);
9125 /* Fixup the target expression if necessary. */
9126 if (rank)
9127 fixup_array_ref (&st->n.sym->assoc->target, NULL, rank, ref);
9128 }
9129
9130 new_st = gfc_get_code (EXEC_BLOCK);
9131 new_st->ext.block.ns = gfc_build_block_ns (ns);
9132 new_st->ext.block.ns->code = body->next;
9133 body->next = new_st;
9134
9135 /* Chain in the new list only if it is marked as dangling. Otherwise
9136 there is a CASE label overlap and this is already used. Just ignore,
9137 the error is diagnosed elsewhere. */
9138 if (st->n.sym->assoc->dangling)
9139 {
9140 new_st->ext.block.assoc = st->n.sym->assoc;
9141 st->n.sym->assoc->dangling = 0;
9142 }
9143
9144 resolve_assoc_var (st->n.sym, false);
9145 }
9146
9147 /* Take out CLASS IS cases for separate treatment. */
9148 body = code;
9149 while (body && body->block)
9150 {
9151 if (body->block->ext.block.case_list->ts.type == BT_CLASS)
9152 {
9153 /* Add to class_is list. */
9154 if (class_is == NULL)
9155 {
9156 class_is = body->block;
9157 tail = class_is;
9158 }
9159 else
9160 {
9161 for (tail = class_is; tail->block; tail = tail->block) ;
9162 tail->block = body->block;
9163 tail = tail->block;
9164 }
9165 /* Remove from EXEC_SELECT list. */
9166 body->block = body->block->block;
9167 tail->block = NULL;
9168 }
9169 else
9170 body = body->block;
9171 }
9172
9173 if (class_is)
9174 {
9175 gfc_symbol *vtab;
9176
9177 if (!default_case)
9178 {
9179 /* Add a default case to hold the CLASS IS cases. */
9180 for (tail = code; tail->block; tail = tail->block) ;
9181 tail->block = gfc_get_code (EXEC_SELECT_TYPE);
9182 tail = tail->block;
9183 tail->ext.block.case_list = gfc_get_case ();
9184 tail->ext.block.case_list->ts.type = BT_UNKNOWN;
9185 tail->next = NULL;
9186 default_case = tail;
9187 }
9188
9189 /* More than one CLASS IS block? */
9190 if (class_is->block)
9191 {
9192 gfc_code **c1,*c2;
9193 bool swapped;
9194 /* Sort CLASS IS blocks by extension level. */
9195 do
9196 {
9197 swapped = false;
9198 for (c1 = &class_is; (*c1) && (*c1)->block; c1 = &((*c1)->block))
9199 {
9200 c2 = (*c1)->block;
9201 /* F03:C817 (check for doubles). */
9202 if ((*c1)->ext.block.case_list->ts.u.derived->hash_value
9203 == c2->ext.block.case_list->ts.u.derived->hash_value)
9204 {
9205 gfc_error ("Double CLASS IS block in SELECT TYPE "
9206 "statement at %L",
9207 &c2->ext.block.case_list->where);
9208 return;
9209 }
9210 if ((*c1)->ext.block.case_list->ts.u.derived->attr.extension
9211 < c2->ext.block.case_list->ts.u.derived->attr.extension)
9212 {
9213 /* Swap. */
9214 (*c1)->block = c2->block;
9215 c2->block = *c1;
9216 *c1 = c2;
9217 swapped = true;
9218 }
9219 }
9220 }
9221 while (swapped);
9222 }
9223
9224 /* Generate IF chain. */
9225 if_st = gfc_get_code (EXEC_IF);
9226 new_st = if_st;
9227 for (body = class_is; body; body = body->block)
9228 {
9229 new_st->block = gfc_get_code (EXEC_IF);
9230 new_st = new_st->block;
9231 /* Set up IF condition: Call _gfortran_is_extension_of. */
9232 new_st->expr1 = gfc_get_expr ();
9233 new_st->expr1->expr_type = EXPR_FUNCTION;
9234 new_st->expr1->ts.type = BT_LOGICAL;
9235 new_st->expr1->ts.kind = 4;
9236 new_st->expr1->value.function.name = gfc_get_string (PREFIX ("is_extension_of"));
9237 new_st->expr1->value.function.isym = XCNEW (gfc_intrinsic_sym);
9238 new_st->expr1->value.function.isym->id = GFC_ISYM_EXTENDS_TYPE_OF;
9239 /* Set up arguments. */
9240 new_st->expr1->value.function.actual = gfc_get_actual_arglist ();
9241 new_st->expr1->value.function.actual->expr = gfc_get_variable_expr (selector_expr->symtree);
9242 new_st->expr1->value.function.actual->expr->where = code->loc;
9243 new_st->expr1->where = code->loc;
9244 gfc_add_vptr_component (new_st->expr1->value.function.actual->expr);
9245 vtab = gfc_find_derived_vtab (body->ext.block.case_list->ts.u.derived);
9246 st = gfc_find_symtree (vtab->ns->sym_root, vtab->name);
9247 new_st->expr1->value.function.actual->next = gfc_get_actual_arglist ();
9248 new_st->expr1->value.function.actual->next->expr = gfc_get_variable_expr (st);
9249 new_st->expr1->value.function.actual->next->expr->where = code->loc;
9250 new_st->next = body->next;
9251 }
9252 if (default_case->next)
9253 {
9254 new_st->block = gfc_get_code (EXEC_IF);
9255 new_st = new_st->block;
9256 new_st->next = default_case->next;
9257 }
9258
9259 /* Replace CLASS DEFAULT code by the IF chain. */
9260 default_case->next = if_st;
9261 }
9262
9263 /* Resolve the internal code. This can not be done earlier because
9264 it requires that the sym->assoc of selectors is set already. */
9265 gfc_current_ns = ns;
9266 gfc_resolve_blocks (code->block, gfc_current_ns);
9267 gfc_current_ns = old_ns;
9268
9269 if (ref)
9270 free (ref);
9271 }
9272
9273
9274 /* Resolve a transfer statement. This is making sure that:
9275 -- a derived type being transferred has only non-pointer components
9276 -- a derived type being transferred doesn't have private components, unless
9277 it's being transferred from the module where the type was defined
9278 -- we're not trying to transfer a whole assumed size array. */
9279
9280 static void
9281 resolve_transfer (gfc_code *code)
9282 {
9283 gfc_symbol *sym, *derived;
9284 gfc_ref *ref;
9285 gfc_expr *exp;
9286 bool write = false;
9287 bool formatted = false;
9288 gfc_dt *dt = code->ext.dt;
9289 gfc_symbol *dtio_sub = NULL;
9290
9291 exp = code->expr1;
9292
9293 while (exp != NULL && exp->expr_type == EXPR_OP
9294 && exp->value.op.op == INTRINSIC_PARENTHESES)
9295 exp = exp->value.op.op1;
9296
9297 if (exp && exp->expr_type == EXPR_NULL
9298 && code->ext.dt)
9299 {
9300 gfc_error ("Invalid context for NULL () intrinsic at %L",
9301 &exp->where);
9302 return;
9303 }
9304
9305 if (exp == NULL || (exp->expr_type != EXPR_VARIABLE
9306 && exp->expr_type != EXPR_FUNCTION
9307 && exp->expr_type != EXPR_STRUCTURE))
9308 return;
9309
9310 /* If we are reading, the variable will be changed. Note that
9311 code->ext.dt may be NULL if the TRANSFER is related to
9312 an INQUIRE statement -- but in this case, we are not reading, either. */
9313 if (dt && dt->dt_io_kind->value.iokind == M_READ
9314 && !gfc_check_vardef_context (exp, false, false, false,
9315 _("item in READ")))
9316 return;
9317
9318 const gfc_typespec *ts = exp->expr_type == EXPR_STRUCTURE
9319 || exp->expr_type == EXPR_FUNCTION
9320 ? &exp->ts : &exp->symtree->n.sym->ts;
9321
9322 /* Go to actual component transferred. */
9323 for (ref = exp->ref; ref; ref = ref->next)
9324 if (ref->type == REF_COMPONENT)
9325 ts = &ref->u.c.component->ts;
9326
9327 if (dt && dt->dt_io_kind->value.iokind != M_INQUIRE
9328 && (ts->type == BT_DERIVED || ts->type == BT_CLASS))
9329 {
9330 if (ts->type == BT_DERIVED || ts->type == BT_CLASS)
9331 derived = ts->u.derived;
9332 else
9333 derived = ts->u.derived->components->ts.u.derived;
9334
9335 /* Determine when to use the formatted DTIO procedure. */
9336 if (dt && (dt->format_expr || dt->format_label))
9337 formatted = true;
9338
9339 write = dt->dt_io_kind->value.iokind == M_WRITE
9340 || dt->dt_io_kind->value.iokind == M_PRINT;
9341 dtio_sub = gfc_find_specific_dtio_proc (derived, write, formatted);
9342
9343 if (dtio_sub != NULL && exp->expr_type == EXPR_VARIABLE)
9344 {
9345 dt->udtio = exp;
9346 sym = exp->symtree->n.sym->ns->proc_name;
9347 /* Check to see if this is a nested DTIO call, with the
9348 dummy as the io-list object. */
9349 if (sym && sym == dtio_sub && sym->formal
9350 && sym->formal->sym == exp->symtree->n.sym
9351 && exp->ref == NULL)
9352 {
9353 if (!sym->attr.recursive)
9354 {
9355 gfc_error ("DTIO %s procedure at %L must be recursive",
9356 sym->name, &sym->declared_at);
9357 return;
9358 }
9359 }
9360 }
9361 }
9362
9363 if (ts->type == BT_CLASS && dtio_sub == NULL)
9364 {
9365 gfc_error ("Data transfer element at %L cannot be polymorphic unless "
9366 "it is processed by a defined input/output procedure",
9367 &code->loc);
9368 return;
9369 }
9370
9371 if (ts->type == BT_DERIVED)
9372 {
9373 /* Check that transferred derived type doesn't contain POINTER
9374 components unless it is processed by a defined input/output
9375 procedure". */
9376 if (ts->u.derived->attr.pointer_comp && dtio_sub == NULL)
9377 {
9378 gfc_error ("Data transfer element at %L cannot have POINTER "
9379 "components unless it is processed by a defined "
9380 "input/output procedure", &code->loc);
9381 return;
9382 }
9383
9384 /* F08:C935. */
9385 if (ts->u.derived->attr.proc_pointer_comp)
9386 {
9387 gfc_error ("Data transfer element at %L cannot have "
9388 "procedure pointer components", &code->loc);
9389 return;
9390 }
9391
9392 if (ts->u.derived->attr.alloc_comp && dtio_sub == NULL)
9393 {
9394 gfc_error ("Data transfer element at %L cannot have ALLOCATABLE "
9395 "components unless it is processed by a defined "
9396 "input/output procedure", &code->loc);
9397 return;
9398 }
9399
9400 /* C_PTR and C_FUNPTR have private components which means they can not
9401 be printed. However, if -std=gnu and not -pedantic, allow
9402 the component to be printed to help debugging. */
9403 if (ts->u.derived->ts.f90_type == BT_VOID)
9404 {
9405 if (!gfc_notify_std (GFC_STD_GNU, "Data transfer element at %L "
9406 "cannot have PRIVATE components", &code->loc))
9407 return;
9408 }
9409 else if (derived_inaccessible (ts->u.derived) && dtio_sub == NULL)
9410 {
9411 gfc_error ("Data transfer element at %L cannot have "
9412 "PRIVATE components unless it is processed by "
9413 "a defined input/output procedure", &code->loc);
9414 return;
9415 }
9416 }
9417
9418 if (exp->expr_type == EXPR_STRUCTURE)
9419 return;
9420
9421 sym = exp->symtree->n.sym;
9422
9423 if (sym->as != NULL && sym->as->type == AS_ASSUMED_SIZE && exp->ref
9424 && exp->ref->type == REF_ARRAY && exp->ref->u.ar.type == AR_FULL)
9425 {
9426 gfc_error ("Data transfer element at %L cannot be a full reference to "
9427 "an assumed-size array", &code->loc);
9428 return;
9429 }
9430
9431 if (async_io_dt && exp->expr_type == EXPR_VARIABLE)
9432 exp->symtree->n.sym->attr.asynchronous = 1;
9433 }
9434
9435
9436 /*********** Toplevel code resolution subroutines ***********/
9437
9438 /* Find the set of labels that are reachable from this block. We also
9439 record the last statement in each block. */
9440
9441 static void
9442 find_reachable_labels (gfc_code *block)
9443 {
9444 gfc_code *c;
9445
9446 if (!block)
9447 return;
9448
9449 cs_base->reachable_labels = bitmap_alloc (&labels_obstack);
9450
9451 /* Collect labels in this block. We don't keep those corresponding
9452 to END {IF|SELECT}, these are checked in resolve_branch by going
9453 up through the code_stack. */
9454 for (c = block; c; c = c->next)
9455 {
9456 if (c->here && c->op != EXEC_END_NESTED_BLOCK)
9457 bitmap_set_bit (cs_base->reachable_labels, c->here->value);
9458 }
9459
9460 /* Merge with labels from parent block. */
9461 if (cs_base->prev)
9462 {
9463 gcc_assert (cs_base->prev->reachable_labels);
9464 bitmap_ior_into (cs_base->reachable_labels,
9465 cs_base->prev->reachable_labels);
9466 }
9467 }
9468
9469
9470 static void
9471 resolve_lock_unlock_event (gfc_code *code)
9472 {
9473 if (code->expr1->expr_type == EXPR_FUNCTION
9474 && code->expr1->value.function.isym
9475 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
9476 remove_caf_get_intrinsic (code->expr1);
9477
9478 if ((code->op == EXEC_LOCK || code->op == EXEC_UNLOCK)
9479 && (code->expr1->ts.type != BT_DERIVED
9480 || code->expr1->expr_type != EXPR_VARIABLE
9481 || code->expr1->ts.u.derived->from_intmod != INTMOD_ISO_FORTRAN_ENV
9482 || code->expr1->ts.u.derived->intmod_sym_id != ISOFORTRAN_LOCK_TYPE
9483 || code->expr1->rank != 0
9484 || (!gfc_is_coarray (code->expr1) &&
9485 !gfc_is_coindexed (code->expr1))))
9486 gfc_error ("Lock variable at %L must be a scalar of type LOCK_TYPE",
9487 &code->expr1->where);
9488 else if ((code->op == EXEC_EVENT_POST || code->op == EXEC_EVENT_WAIT)
9489 && (code->expr1->ts.type != BT_DERIVED
9490 || code->expr1->expr_type != EXPR_VARIABLE
9491 || code->expr1->ts.u.derived->from_intmod
9492 != INTMOD_ISO_FORTRAN_ENV
9493 || code->expr1->ts.u.derived->intmod_sym_id
9494 != ISOFORTRAN_EVENT_TYPE
9495 || code->expr1->rank != 0))
9496 gfc_error ("Event variable at %L must be a scalar of type EVENT_TYPE",
9497 &code->expr1->where);
9498 else if (code->op == EXEC_EVENT_POST && !gfc_is_coarray (code->expr1)
9499 && !gfc_is_coindexed (code->expr1))
9500 gfc_error ("Event variable argument at %L must be a coarray or coindexed",
9501 &code->expr1->where);
9502 else if (code->op == EXEC_EVENT_WAIT && !gfc_is_coarray (code->expr1))
9503 gfc_error ("Event variable argument at %L must be a coarray but not "
9504 "coindexed", &code->expr1->where);
9505
9506 /* Check STAT. */
9507 if (code->expr2
9508 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9509 || code->expr2->expr_type != EXPR_VARIABLE))
9510 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9511 &code->expr2->where);
9512
9513 if (code->expr2
9514 && !gfc_check_vardef_context (code->expr2, false, false, false,
9515 _("STAT variable")))
9516 return;
9517
9518 /* Check ERRMSG. */
9519 if (code->expr3
9520 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9521 || code->expr3->expr_type != EXPR_VARIABLE))
9522 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9523 &code->expr3->where);
9524
9525 if (code->expr3
9526 && !gfc_check_vardef_context (code->expr3, false, false, false,
9527 _("ERRMSG variable")))
9528 return;
9529
9530 /* Check for LOCK the ACQUIRED_LOCK. */
9531 if (code->op != EXEC_EVENT_WAIT && code->expr4
9532 && (code->expr4->ts.type != BT_LOGICAL || code->expr4->rank != 0
9533 || code->expr4->expr_type != EXPR_VARIABLE))
9534 gfc_error ("ACQUIRED_LOCK= argument at %L must be a scalar LOGICAL "
9535 "variable", &code->expr4->where);
9536
9537 if (code->op != EXEC_EVENT_WAIT && code->expr4
9538 && !gfc_check_vardef_context (code->expr4, false, false, false,
9539 _("ACQUIRED_LOCK variable")))
9540 return;
9541
9542 /* Check for EVENT WAIT the UNTIL_COUNT. */
9543 if (code->op == EXEC_EVENT_WAIT && code->expr4)
9544 {
9545 if (!gfc_resolve_expr (code->expr4) || code->expr4->ts.type != BT_INTEGER
9546 || code->expr4->rank != 0)
9547 gfc_error ("UNTIL_COUNT= argument at %L must be a scalar INTEGER "
9548 "expression", &code->expr4->where);
9549 }
9550 }
9551
9552
9553 static void
9554 resolve_critical (gfc_code *code)
9555 {
9556 gfc_symtree *symtree;
9557 gfc_symbol *lock_type;
9558 char name[GFC_MAX_SYMBOL_LEN];
9559 static int serial = 0;
9560
9561 if (flag_coarray != GFC_FCOARRAY_LIB)
9562 return;
9563
9564 symtree = gfc_find_symtree (gfc_current_ns->sym_root,
9565 GFC_PREFIX ("lock_type"));
9566 if (symtree)
9567 lock_type = symtree->n.sym;
9568 else
9569 {
9570 if (gfc_get_sym_tree (GFC_PREFIX ("lock_type"), gfc_current_ns, &symtree,
9571 false) != 0)
9572 gcc_unreachable ();
9573 lock_type = symtree->n.sym;
9574 lock_type->attr.flavor = FL_DERIVED;
9575 lock_type->attr.zero_comp = 1;
9576 lock_type->from_intmod = INTMOD_ISO_FORTRAN_ENV;
9577 lock_type->intmod_sym_id = ISOFORTRAN_LOCK_TYPE;
9578 }
9579
9580 sprintf(name, GFC_PREFIX ("lock_var") "%d",serial++);
9581 if (gfc_get_sym_tree (name, gfc_current_ns, &symtree, false) != 0)
9582 gcc_unreachable ();
9583
9584 code->resolved_sym = symtree->n.sym;
9585 symtree->n.sym->attr.flavor = FL_VARIABLE;
9586 symtree->n.sym->attr.referenced = 1;
9587 symtree->n.sym->attr.artificial = 1;
9588 symtree->n.sym->attr.codimension = 1;
9589 symtree->n.sym->ts.type = BT_DERIVED;
9590 symtree->n.sym->ts.u.derived = lock_type;
9591 symtree->n.sym->as = gfc_get_array_spec ();
9592 symtree->n.sym->as->corank = 1;
9593 symtree->n.sym->as->type = AS_EXPLICIT;
9594 symtree->n.sym->as->cotype = AS_EXPLICIT;
9595 symtree->n.sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind,
9596 NULL, 1);
9597 gfc_commit_symbols();
9598 }
9599
9600
9601 static void
9602 resolve_sync (gfc_code *code)
9603 {
9604 /* Check imageset. The * case matches expr1 == NULL. */
9605 if (code->expr1)
9606 {
9607 if (code->expr1->ts.type != BT_INTEGER || code->expr1->rank > 1)
9608 gfc_error ("Imageset argument at %L must be a scalar or rank-1 "
9609 "INTEGER expression", &code->expr1->where);
9610 if (code->expr1->expr_type == EXPR_CONSTANT && code->expr1->rank == 0
9611 && mpz_cmp_si (code->expr1->value.integer, 1) < 0)
9612 gfc_error ("Imageset argument at %L must between 1 and num_images()",
9613 &code->expr1->where);
9614 else if (code->expr1->expr_type == EXPR_ARRAY
9615 && gfc_simplify_expr (code->expr1, 0))
9616 {
9617 gfc_constructor *cons;
9618 cons = gfc_constructor_first (code->expr1->value.constructor);
9619 for (; cons; cons = gfc_constructor_next (cons))
9620 if (cons->expr->expr_type == EXPR_CONSTANT
9621 && mpz_cmp_si (cons->expr->value.integer, 1) < 0)
9622 gfc_error ("Imageset argument at %L must between 1 and "
9623 "num_images()", &cons->expr->where);
9624 }
9625 }
9626
9627 /* Check STAT. */
9628 gfc_resolve_expr (code->expr2);
9629 if (code->expr2
9630 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9631 || code->expr2->expr_type != EXPR_VARIABLE))
9632 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9633 &code->expr2->where);
9634
9635 /* Check ERRMSG. */
9636 gfc_resolve_expr (code->expr3);
9637 if (code->expr3
9638 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9639 || code->expr3->expr_type != EXPR_VARIABLE))
9640 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9641 &code->expr3->where);
9642 }
9643
9644
9645 /* Given a branch to a label, see if the branch is conforming.
9646 The code node describes where the branch is located. */
9647
9648 static void
9649 resolve_branch (gfc_st_label *label, gfc_code *code)
9650 {
9651 code_stack *stack;
9652
9653 if (label == NULL)
9654 return;
9655
9656 /* Step one: is this a valid branching target? */
9657
9658 if (label->defined == ST_LABEL_UNKNOWN)
9659 {
9660 gfc_error ("Label %d referenced at %L is never defined", label->value,
9661 &code->loc);
9662 return;
9663 }
9664
9665 if (label->defined != ST_LABEL_TARGET && label->defined != ST_LABEL_DO_TARGET)
9666 {
9667 gfc_error ("Statement at %L is not a valid branch target statement "
9668 "for the branch statement at %L", &label->where, &code->loc);
9669 return;
9670 }
9671
9672 /* Step two: make sure this branch is not a branch to itself ;-) */
9673
9674 if (code->here == label)
9675 {
9676 gfc_warning (0,
9677 "Branch at %L may result in an infinite loop", &code->loc);
9678 return;
9679 }
9680
9681 /* Step three: See if the label is in the same block as the
9682 branching statement. The hard work has been done by setting up
9683 the bitmap reachable_labels. */
9684
9685 if (bitmap_bit_p (cs_base->reachable_labels, label->value))
9686 {
9687 /* Check now whether there is a CRITICAL construct; if so, check
9688 whether the label is still visible outside of the CRITICAL block,
9689 which is invalid. */
9690 for (stack = cs_base; stack; stack = stack->prev)
9691 {
9692 if (stack->current->op == EXEC_CRITICAL
9693 && bitmap_bit_p (stack->reachable_labels, label->value))
9694 gfc_error ("GOTO statement at %L leaves CRITICAL construct for "
9695 "label at %L", &code->loc, &label->where);
9696 else if (stack->current->op == EXEC_DO_CONCURRENT
9697 && bitmap_bit_p (stack->reachable_labels, label->value))
9698 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct "
9699 "for label at %L", &code->loc, &label->where);
9700 }
9701
9702 return;
9703 }
9704
9705 /* Step four: If we haven't found the label in the bitmap, it may
9706 still be the label of the END of the enclosing block, in which
9707 case we find it by going up the code_stack. */
9708
9709 for (stack = cs_base; stack; stack = stack->prev)
9710 {
9711 if (stack->current->next && stack->current->next->here == label)
9712 break;
9713 if (stack->current->op == EXEC_CRITICAL)
9714 {
9715 /* Note: A label at END CRITICAL does not leave the CRITICAL
9716 construct as END CRITICAL is still part of it. */
9717 gfc_error ("GOTO statement at %L leaves CRITICAL construct for label"
9718 " at %L", &code->loc, &label->where);
9719 return;
9720 }
9721 else if (stack->current->op == EXEC_DO_CONCURRENT)
9722 {
9723 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct for "
9724 "label at %L", &code->loc, &label->where);
9725 return;
9726 }
9727 }
9728
9729 if (stack)
9730 {
9731 gcc_assert (stack->current->next->op == EXEC_END_NESTED_BLOCK);
9732 return;
9733 }
9734
9735 /* The label is not in an enclosing block, so illegal. This was
9736 allowed in Fortran 66, so we allow it as extension. No
9737 further checks are necessary in this case. */
9738 gfc_notify_std (GFC_STD_LEGACY, "Label at %L is not in the same block "
9739 "as the GOTO statement at %L", &label->where,
9740 &code->loc);
9741 return;
9742 }
9743
9744
9745 /* Check whether EXPR1 has the same shape as EXPR2. */
9746
9747 static bool
9748 resolve_where_shape (gfc_expr *expr1, gfc_expr *expr2)
9749 {
9750 mpz_t shape[GFC_MAX_DIMENSIONS];
9751 mpz_t shape2[GFC_MAX_DIMENSIONS];
9752 bool result = false;
9753 int i;
9754
9755 /* Compare the rank. */
9756 if (expr1->rank != expr2->rank)
9757 return result;
9758
9759 /* Compare the size of each dimension. */
9760 for (i=0; i<expr1->rank; i++)
9761 {
9762 if (!gfc_array_dimen_size (expr1, i, &shape[i]))
9763 goto ignore;
9764
9765 if (!gfc_array_dimen_size (expr2, i, &shape2[i]))
9766 goto ignore;
9767
9768 if (mpz_cmp (shape[i], shape2[i]))
9769 goto over;
9770 }
9771
9772 /* When either of the two expression is an assumed size array, we
9773 ignore the comparison of dimension sizes. */
9774 ignore:
9775 result = true;
9776
9777 over:
9778 gfc_clear_shape (shape, i);
9779 gfc_clear_shape (shape2, i);
9780 return result;
9781 }
9782
9783
9784 /* Check whether a WHERE assignment target or a WHERE mask expression
9785 has the same shape as the outmost WHERE mask expression. */
9786
9787 static void
9788 resolve_where (gfc_code *code, gfc_expr *mask)
9789 {
9790 gfc_code *cblock;
9791 gfc_code *cnext;
9792 gfc_expr *e = NULL;
9793
9794 cblock = code->block;
9795
9796 /* Store the first WHERE mask-expr of the WHERE statement or construct.
9797 In case of nested WHERE, only the outmost one is stored. */
9798 if (mask == NULL) /* outmost WHERE */
9799 e = cblock->expr1;
9800 else /* inner WHERE */
9801 e = mask;
9802
9803 while (cblock)
9804 {
9805 if (cblock->expr1)
9806 {
9807 /* Check if the mask-expr has a consistent shape with the
9808 outmost WHERE mask-expr. */
9809 if (!resolve_where_shape (cblock->expr1, e))
9810 gfc_error ("WHERE mask at %L has inconsistent shape",
9811 &cblock->expr1->where);
9812 }
9813
9814 /* the assignment statement of a WHERE statement, or the first
9815 statement in where-body-construct of a WHERE construct */
9816 cnext = cblock->next;
9817 while (cnext)
9818 {
9819 switch (cnext->op)
9820 {
9821 /* WHERE assignment statement */
9822 case EXEC_ASSIGN:
9823
9824 /* Check shape consistent for WHERE assignment target. */
9825 if (e && !resolve_where_shape (cnext->expr1, e))
9826 gfc_error ("WHERE assignment target at %L has "
9827 "inconsistent shape", &cnext->expr1->where);
9828 break;
9829
9830
9831 case EXEC_ASSIGN_CALL:
9832 resolve_call (cnext);
9833 if (!cnext->resolved_sym->attr.elemental)
9834 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
9835 &cnext->ext.actual->expr->where);
9836 break;
9837
9838 /* WHERE or WHERE construct is part of a where-body-construct */
9839 case EXEC_WHERE:
9840 resolve_where (cnext, e);
9841 break;
9842
9843 default:
9844 gfc_error ("Unsupported statement inside WHERE at %L",
9845 &cnext->loc);
9846 }
9847 /* the next statement within the same where-body-construct */
9848 cnext = cnext->next;
9849 }
9850 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
9851 cblock = cblock->block;
9852 }
9853 }
9854
9855
9856 /* Resolve assignment in FORALL construct.
9857 NVAR is the number of FORALL index variables, and VAR_EXPR records the
9858 FORALL index variables. */
9859
9860 static void
9861 gfc_resolve_assign_in_forall (gfc_code *code, int nvar, gfc_expr **var_expr)
9862 {
9863 int n;
9864
9865 for (n = 0; n < nvar; n++)
9866 {
9867 gfc_symbol *forall_index;
9868
9869 forall_index = var_expr[n]->symtree->n.sym;
9870
9871 /* Check whether the assignment target is one of the FORALL index
9872 variable. */
9873 if ((code->expr1->expr_type == EXPR_VARIABLE)
9874 && (code->expr1->symtree->n.sym == forall_index))
9875 gfc_error ("Assignment to a FORALL index variable at %L",
9876 &code->expr1->where);
9877 else
9878 {
9879 /* If one of the FORALL index variables doesn't appear in the
9880 assignment variable, then there could be a many-to-one
9881 assignment. Emit a warning rather than an error because the
9882 mask could be resolving this problem. */
9883 if (!find_forall_index (code->expr1, forall_index, 0))
9884 gfc_warning (0, "The FORALL with index %qs is not used on the "
9885 "left side of the assignment at %L and so might "
9886 "cause multiple assignment to this object",
9887 var_expr[n]->symtree->name, &code->expr1->where);
9888 }
9889 }
9890 }
9891
9892
9893 /* Resolve WHERE statement in FORALL construct. */
9894
9895 static void
9896 gfc_resolve_where_code_in_forall (gfc_code *code, int nvar,
9897 gfc_expr **var_expr)
9898 {
9899 gfc_code *cblock;
9900 gfc_code *cnext;
9901
9902 cblock = code->block;
9903 while (cblock)
9904 {
9905 /* the assignment statement of a WHERE statement, or the first
9906 statement in where-body-construct of a WHERE construct */
9907 cnext = cblock->next;
9908 while (cnext)
9909 {
9910 switch (cnext->op)
9911 {
9912 /* WHERE assignment statement */
9913 case EXEC_ASSIGN:
9914 gfc_resolve_assign_in_forall (cnext, nvar, var_expr);
9915 break;
9916
9917 /* WHERE operator assignment statement */
9918 case EXEC_ASSIGN_CALL:
9919 resolve_call (cnext);
9920 if (!cnext->resolved_sym->attr.elemental)
9921 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
9922 &cnext->ext.actual->expr->where);
9923 break;
9924
9925 /* WHERE or WHERE construct is part of a where-body-construct */
9926 case EXEC_WHERE:
9927 gfc_resolve_where_code_in_forall (cnext, nvar, var_expr);
9928 break;
9929
9930 default:
9931 gfc_error ("Unsupported statement inside WHERE at %L",
9932 &cnext->loc);
9933 }
9934 /* the next statement within the same where-body-construct */
9935 cnext = cnext->next;
9936 }
9937 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
9938 cblock = cblock->block;
9939 }
9940 }
9941
9942
9943 /* Traverse the FORALL body to check whether the following errors exist:
9944 1. For assignment, check if a many-to-one assignment happens.
9945 2. For WHERE statement, check the WHERE body to see if there is any
9946 many-to-one assignment. */
9947
9948 static void
9949 gfc_resolve_forall_body (gfc_code *code, int nvar, gfc_expr **var_expr)
9950 {
9951 gfc_code *c;
9952
9953 c = code->block->next;
9954 while (c)
9955 {
9956 switch (c->op)
9957 {
9958 case EXEC_ASSIGN:
9959 case EXEC_POINTER_ASSIGN:
9960 gfc_resolve_assign_in_forall (c, nvar, var_expr);
9961 break;
9962
9963 case EXEC_ASSIGN_CALL:
9964 resolve_call (c);
9965 break;
9966
9967 /* Because the gfc_resolve_blocks() will handle the nested FORALL,
9968 there is no need to handle it here. */
9969 case EXEC_FORALL:
9970 break;
9971 case EXEC_WHERE:
9972 gfc_resolve_where_code_in_forall(c, nvar, var_expr);
9973 break;
9974 default:
9975 break;
9976 }
9977 /* The next statement in the FORALL body. */
9978 c = c->next;
9979 }
9980 }
9981
9982
9983 /* Counts the number of iterators needed inside a forall construct, including
9984 nested forall constructs. This is used to allocate the needed memory
9985 in gfc_resolve_forall. */
9986
9987 static int
9988 gfc_count_forall_iterators (gfc_code *code)
9989 {
9990 int max_iters, sub_iters, current_iters;
9991 gfc_forall_iterator *fa;
9992
9993 gcc_assert(code->op == EXEC_FORALL);
9994 max_iters = 0;
9995 current_iters = 0;
9996
9997 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
9998 current_iters ++;
9999
10000 code = code->block->next;
10001
10002 while (code)
10003 {
10004 if (code->op == EXEC_FORALL)
10005 {
10006 sub_iters = gfc_count_forall_iterators (code);
10007 if (sub_iters > max_iters)
10008 max_iters = sub_iters;
10009 }
10010 code = code->next;
10011 }
10012
10013 return current_iters + max_iters;
10014 }
10015
10016
10017 /* Given a FORALL construct, first resolve the FORALL iterator, then call
10018 gfc_resolve_forall_body to resolve the FORALL body. */
10019
10020 static void
10021 gfc_resolve_forall (gfc_code *code, gfc_namespace *ns, int forall_save)
10022 {
10023 static gfc_expr **var_expr;
10024 static int total_var = 0;
10025 static int nvar = 0;
10026 int i, old_nvar, tmp;
10027 gfc_forall_iterator *fa;
10028
10029 old_nvar = nvar;
10030
10031 if (!gfc_notify_std (GFC_STD_F2018_OBS, "FORALL construct at %L", &code->loc))
10032 return;
10033
10034 /* Start to resolve a FORALL construct */
10035 if (forall_save == 0)
10036 {
10037 /* Count the total number of FORALL indices in the nested FORALL
10038 construct in order to allocate the VAR_EXPR with proper size. */
10039 total_var = gfc_count_forall_iterators (code);
10040
10041 /* Allocate VAR_EXPR with NUMBER_OF_FORALL_INDEX elements. */
10042 var_expr = XCNEWVEC (gfc_expr *, total_var);
10043 }
10044
10045 /* The information about FORALL iterator, including FORALL indices start, end
10046 and stride. An outer FORALL indice cannot appear in start, end or stride. */
10047 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
10048 {
10049 /* Fortran 20008: C738 (R753). */
10050 if (fa->var->ref && fa->var->ref->type == REF_ARRAY)
10051 {
10052 gfc_error ("FORALL index-name at %L must be a scalar variable "
10053 "of type integer", &fa->var->where);
10054 continue;
10055 }
10056
10057 /* Check if any outer FORALL index name is the same as the current
10058 one. */
10059 for (i = 0; i < nvar; i++)
10060 {
10061 if (fa->var->symtree->n.sym == var_expr[i]->symtree->n.sym)
10062 gfc_error ("An outer FORALL construct already has an index "
10063 "with this name %L", &fa->var->where);
10064 }
10065
10066 /* Record the current FORALL index. */
10067 var_expr[nvar] = gfc_copy_expr (fa->var);
10068
10069 nvar++;
10070
10071 /* No memory leak. */
10072 gcc_assert (nvar <= total_var);
10073 }
10074
10075 /* Resolve the FORALL body. */
10076 gfc_resolve_forall_body (code, nvar, var_expr);
10077
10078 /* May call gfc_resolve_forall to resolve the inner FORALL loop. */
10079 gfc_resolve_blocks (code->block, ns);
10080
10081 tmp = nvar;
10082 nvar = old_nvar;
10083 /* Free only the VAR_EXPRs allocated in this frame. */
10084 for (i = nvar; i < tmp; i++)
10085 gfc_free_expr (var_expr[i]);
10086
10087 if (nvar == 0)
10088 {
10089 /* We are in the outermost FORALL construct. */
10090 gcc_assert (forall_save == 0);
10091
10092 /* VAR_EXPR is not needed any more. */
10093 free (var_expr);
10094 total_var = 0;
10095 }
10096 }
10097
10098
10099 /* Resolve a BLOCK construct statement. */
10100
10101 static void
10102 resolve_block_construct (gfc_code* code)
10103 {
10104 /* Resolve the BLOCK's namespace. */
10105 gfc_resolve (code->ext.block.ns);
10106
10107 /* For an ASSOCIATE block, the associations (and their targets) are already
10108 resolved during resolve_symbol. */
10109 }
10110
10111
10112 /* Resolve lists of blocks found in IF, SELECT CASE, WHERE, FORALL, GOTO and
10113 DO code nodes. */
10114
10115 void
10116 gfc_resolve_blocks (gfc_code *b, gfc_namespace *ns)
10117 {
10118 bool t;
10119
10120 for (; b; b = b->block)
10121 {
10122 t = gfc_resolve_expr (b->expr1);
10123 if (!gfc_resolve_expr (b->expr2))
10124 t = false;
10125
10126 switch (b->op)
10127 {
10128 case EXEC_IF:
10129 if (t && b->expr1 != NULL
10130 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank != 0))
10131 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
10132 &b->expr1->where);
10133 break;
10134
10135 case EXEC_WHERE:
10136 if (t
10137 && b->expr1 != NULL
10138 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank == 0))
10139 gfc_error ("WHERE/ELSEWHERE clause at %L requires a LOGICAL array",
10140 &b->expr1->where);
10141 break;
10142
10143 case EXEC_GOTO:
10144 resolve_branch (b->label1, b);
10145 break;
10146
10147 case EXEC_BLOCK:
10148 resolve_block_construct (b);
10149 break;
10150
10151 case EXEC_SELECT:
10152 case EXEC_SELECT_TYPE:
10153 case EXEC_FORALL:
10154 case EXEC_DO:
10155 case EXEC_DO_WHILE:
10156 case EXEC_DO_CONCURRENT:
10157 case EXEC_CRITICAL:
10158 case EXEC_READ:
10159 case EXEC_WRITE:
10160 case EXEC_IOLENGTH:
10161 case EXEC_WAIT:
10162 break;
10163
10164 case EXEC_OMP_ATOMIC:
10165 case EXEC_OACC_ATOMIC:
10166 {
10167 gfc_omp_atomic_op aop
10168 = (gfc_omp_atomic_op) (b->ext.omp_atomic & GFC_OMP_ATOMIC_MASK);
10169
10170 /* Verify this before calling gfc_resolve_code, which might
10171 change it. */
10172 gcc_assert (b->next && b->next->op == EXEC_ASSIGN);
10173 gcc_assert (((aop != GFC_OMP_ATOMIC_CAPTURE)
10174 && b->next->next == NULL)
10175 || ((aop == GFC_OMP_ATOMIC_CAPTURE)
10176 && b->next->next != NULL
10177 && b->next->next->op == EXEC_ASSIGN
10178 && b->next->next->next == NULL));
10179 }
10180 break;
10181
10182 case EXEC_OACC_PARALLEL_LOOP:
10183 case EXEC_OACC_PARALLEL:
10184 case EXEC_OACC_KERNELS_LOOP:
10185 case EXEC_OACC_KERNELS:
10186 case EXEC_OACC_DATA:
10187 case EXEC_OACC_HOST_DATA:
10188 case EXEC_OACC_LOOP:
10189 case EXEC_OACC_UPDATE:
10190 case EXEC_OACC_WAIT:
10191 case EXEC_OACC_CACHE:
10192 case EXEC_OACC_ENTER_DATA:
10193 case EXEC_OACC_EXIT_DATA:
10194 case EXEC_OACC_ROUTINE:
10195 case EXEC_OMP_CRITICAL:
10196 case EXEC_OMP_DISTRIBUTE:
10197 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
10198 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
10199 case EXEC_OMP_DISTRIBUTE_SIMD:
10200 case EXEC_OMP_DO:
10201 case EXEC_OMP_DO_SIMD:
10202 case EXEC_OMP_MASTER:
10203 case EXEC_OMP_ORDERED:
10204 case EXEC_OMP_PARALLEL:
10205 case EXEC_OMP_PARALLEL_DO:
10206 case EXEC_OMP_PARALLEL_DO_SIMD:
10207 case EXEC_OMP_PARALLEL_SECTIONS:
10208 case EXEC_OMP_PARALLEL_WORKSHARE:
10209 case EXEC_OMP_SECTIONS:
10210 case EXEC_OMP_SIMD:
10211 case EXEC_OMP_SINGLE:
10212 case EXEC_OMP_TARGET:
10213 case EXEC_OMP_TARGET_DATA:
10214 case EXEC_OMP_TARGET_ENTER_DATA:
10215 case EXEC_OMP_TARGET_EXIT_DATA:
10216 case EXEC_OMP_TARGET_PARALLEL:
10217 case EXEC_OMP_TARGET_PARALLEL_DO:
10218 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
10219 case EXEC_OMP_TARGET_SIMD:
10220 case EXEC_OMP_TARGET_TEAMS:
10221 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
10222 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
10223 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10224 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
10225 case EXEC_OMP_TARGET_UPDATE:
10226 case EXEC_OMP_TASK:
10227 case EXEC_OMP_TASKGROUP:
10228 case EXEC_OMP_TASKLOOP:
10229 case EXEC_OMP_TASKLOOP_SIMD:
10230 case EXEC_OMP_TASKWAIT:
10231 case EXEC_OMP_TASKYIELD:
10232 case EXEC_OMP_TEAMS:
10233 case EXEC_OMP_TEAMS_DISTRIBUTE:
10234 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
10235 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10236 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
10237 case EXEC_OMP_WORKSHARE:
10238 break;
10239
10240 default:
10241 gfc_internal_error ("gfc_resolve_blocks(): Bad block type");
10242 }
10243
10244 gfc_resolve_code (b->next, ns);
10245 }
10246 }
10247
10248
10249 /* Does everything to resolve an ordinary assignment. Returns true
10250 if this is an interface assignment. */
10251 static bool
10252 resolve_ordinary_assign (gfc_code *code, gfc_namespace *ns)
10253 {
10254 bool rval = false;
10255 gfc_expr *lhs;
10256 gfc_expr *rhs;
10257 int n;
10258 gfc_ref *ref;
10259 symbol_attribute attr;
10260
10261 if (gfc_extend_assign (code, ns))
10262 {
10263 gfc_expr** rhsptr;
10264
10265 if (code->op == EXEC_ASSIGN_CALL)
10266 {
10267 lhs = code->ext.actual->expr;
10268 rhsptr = &code->ext.actual->next->expr;
10269 }
10270 else
10271 {
10272 gfc_actual_arglist* args;
10273 gfc_typebound_proc* tbp;
10274
10275 gcc_assert (code->op == EXEC_COMPCALL);
10276
10277 args = code->expr1->value.compcall.actual;
10278 lhs = args->expr;
10279 rhsptr = &args->next->expr;
10280
10281 tbp = code->expr1->value.compcall.tbp;
10282 gcc_assert (!tbp->is_generic);
10283 }
10284
10285 /* Make a temporary rhs when there is a default initializer
10286 and rhs is the same symbol as the lhs. */
10287 if ((*rhsptr)->expr_type == EXPR_VARIABLE
10288 && (*rhsptr)->symtree->n.sym->ts.type == BT_DERIVED
10289 && gfc_has_default_initializer ((*rhsptr)->symtree->n.sym->ts.u.derived)
10290 && (lhs->symtree->n.sym == (*rhsptr)->symtree->n.sym))
10291 *rhsptr = gfc_get_parentheses (*rhsptr);
10292
10293 return true;
10294 }
10295
10296 lhs = code->expr1;
10297 rhs = code->expr2;
10298
10299 if (rhs->is_boz
10300 && !gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L outside "
10301 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
10302 &code->loc))
10303 return false;
10304
10305 /* Handle the case of a BOZ literal on the RHS. */
10306 if (rhs->is_boz && lhs->ts.type != BT_INTEGER)
10307 {
10308 int rc;
10309 if (warn_surprising)
10310 gfc_warning (OPT_Wsurprising,
10311 "BOZ literal at %L is bitwise transferred "
10312 "non-integer symbol %qs", &code->loc,
10313 lhs->symtree->n.sym->name);
10314
10315 if (!gfc_convert_boz (rhs, &lhs->ts))
10316 return false;
10317 if ((rc = gfc_range_check (rhs)) != ARITH_OK)
10318 {
10319 if (rc == ARITH_UNDERFLOW)
10320 gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
10321 ". This check can be disabled with the option "
10322 "%<-fno-range-check%>", &rhs->where);
10323 else if (rc == ARITH_OVERFLOW)
10324 gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
10325 ". This check can be disabled with the option "
10326 "%<-fno-range-check%>", &rhs->where);
10327 else if (rc == ARITH_NAN)
10328 gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
10329 ". This check can be disabled with the option "
10330 "%<-fno-range-check%>", &rhs->where);
10331 return false;
10332 }
10333 }
10334
10335 if (lhs->ts.type == BT_CHARACTER
10336 && warn_character_truncation)
10337 {
10338 HOST_WIDE_INT llen = 0, rlen = 0;
10339 if (lhs->ts.u.cl != NULL
10340 && lhs->ts.u.cl->length != NULL
10341 && lhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10342 llen = gfc_mpz_get_hwi (lhs->ts.u.cl->length->value.integer);
10343
10344 if (rhs->expr_type == EXPR_CONSTANT)
10345 rlen = rhs->value.character.length;
10346
10347 else if (rhs->ts.u.cl != NULL
10348 && rhs->ts.u.cl->length != NULL
10349 && rhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10350 rlen = gfc_mpz_get_hwi (rhs->ts.u.cl->length->value.integer);
10351
10352 if (rlen && llen && rlen > llen)
10353 gfc_warning_now (OPT_Wcharacter_truncation,
10354 "CHARACTER expression will be truncated "
10355 "in assignment (%ld/%ld) at %L",
10356 (long) llen, (long) rlen, &code->loc);
10357 }
10358
10359 /* Ensure that a vector index expression for the lvalue is evaluated
10360 to a temporary if the lvalue symbol is referenced in it. */
10361 if (lhs->rank)
10362 {
10363 for (ref = lhs->ref; ref; ref= ref->next)
10364 if (ref->type == REF_ARRAY)
10365 {
10366 for (n = 0; n < ref->u.ar.dimen; n++)
10367 if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR
10368 && gfc_find_sym_in_expr (lhs->symtree->n.sym,
10369 ref->u.ar.start[n]))
10370 ref->u.ar.start[n]
10371 = gfc_get_parentheses (ref->u.ar.start[n]);
10372 }
10373 }
10374
10375 if (gfc_pure (NULL))
10376 {
10377 if (lhs->ts.type == BT_DERIVED
10378 && lhs->expr_type == EXPR_VARIABLE
10379 && lhs->ts.u.derived->attr.pointer_comp
10380 && rhs->expr_type == EXPR_VARIABLE
10381 && (gfc_impure_variable (rhs->symtree->n.sym)
10382 || gfc_is_coindexed (rhs)))
10383 {
10384 /* F2008, C1283. */
10385 if (gfc_is_coindexed (rhs))
10386 gfc_error ("Coindexed expression at %L is assigned to "
10387 "a derived type variable with a POINTER "
10388 "component in a PURE procedure",
10389 &rhs->where);
10390 else
10391 gfc_error ("The impure variable at %L is assigned to "
10392 "a derived type variable with a POINTER "
10393 "component in a PURE procedure (12.6)",
10394 &rhs->where);
10395 return rval;
10396 }
10397
10398 /* Fortran 2008, C1283. */
10399 if (gfc_is_coindexed (lhs))
10400 {
10401 gfc_error ("Assignment to coindexed variable at %L in a PURE "
10402 "procedure", &rhs->where);
10403 return rval;
10404 }
10405 }
10406
10407 if (gfc_implicit_pure (NULL))
10408 {
10409 if (lhs->expr_type == EXPR_VARIABLE
10410 && lhs->symtree->n.sym != gfc_current_ns->proc_name
10411 && lhs->symtree->n.sym->ns != gfc_current_ns)
10412 gfc_unset_implicit_pure (NULL);
10413
10414 if (lhs->ts.type == BT_DERIVED
10415 && lhs->expr_type == EXPR_VARIABLE
10416 && lhs->ts.u.derived->attr.pointer_comp
10417 && rhs->expr_type == EXPR_VARIABLE
10418 && (gfc_impure_variable (rhs->symtree->n.sym)
10419 || gfc_is_coindexed (rhs)))
10420 gfc_unset_implicit_pure (NULL);
10421
10422 /* Fortran 2008, C1283. */
10423 if (gfc_is_coindexed (lhs))
10424 gfc_unset_implicit_pure (NULL);
10425 }
10426
10427 /* F2008, 7.2.1.2. */
10428 attr = gfc_expr_attr (lhs);
10429 if (lhs->ts.type == BT_CLASS && attr.allocatable)
10430 {
10431 if (attr.codimension)
10432 {
10433 gfc_error ("Assignment to polymorphic coarray at %L is not "
10434 "permitted", &lhs->where);
10435 return false;
10436 }
10437 if (!gfc_notify_std (GFC_STD_F2008, "Assignment to an allocatable "
10438 "polymorphic variable at %L", &lhs->where))
10439 return false;
10440 if (!flag_realloc_lhs)
10441 {
10442 gfc_error ("Assignment to an allocatable polymorphic variable at %L "
10443 "requires %<-frealloc-lhs%>", &lhs->where);
10444 return false;
10445 }
10446 }
10447 else if (lhs->ts.type == BT_CLASS)
10448 {
10449 gfc_error ("Nonallocatable variable must not be polymorphic in intrinsic "
10450 "assignment at %L - check that there is a matching specific "
10451 "subroutine for '=' operator", &lhs->where);
10452 return false;
10453 }
10454
10455 bool lhs_coindexed = gfc_is_coindexed (lhs);
10456
10457 /* F2008, Section 7.2.1.2. */
10458 if (lhs_coindexed && gfc_has_ultimate_allocatable (lhs))
10459 {
10460 gfc_error ("Coindexed variable must not have an allocatable ultimate "
10461 "component in assignment at %L", &lhs->where);
10462 return false;
10463 }
10464
10465 /* Assign the 'data' of a class object to a derived type. */
10466 if (lhs->ts.type == BT_DERIVED
10467 && rhs->ts.type == BT_CLASS
10468 && rhs->expr_type != EXPR_ARRAY)
10469 gfc_add_data_component (rhs);
10470
10471 /* Make sure there is a vtable and, in particular, a _copy for the
10472 rhs type. */
10473 if (UNLIMITED_POLY (lhs) && lhs->rank && rhs->ts.type != BT_CLASS)
10474 gfc_find_vtab (&rhs->ts);
10475
10476 bool caf_convert_to_send = flag_coarray == GFC_FCOARRAY_LIB
10477 && (lhs_coindexed
10478 || (code->expr2->expr_type == EXPR_FUNCTION
10479 && code->expr2->value.function.isym
10480 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET
10481 && (code->expr1->rank == 0 || code->expr2->rank != 0)
10482 && !gfc_expr_attr (rhs).allocatable
10483 && !gfc_has_vector_subscript (rhs)));
10484
10485 gfc_check_assign (lhs, rhs, 1, !caf_convert_to_send);
10486
10487 /* Insert a GFC_ISYM_CAF_SEND intrinsic, when the LHS is a coindexed variable.
10488 Additionally, insert this code when the RHS is a CAF as we then use the
10489 GFC_ISYM_CAF_SEND intrinsic just to avoid a temporary; but do not do so if
10490 the LHS is (re)allocatable or has a vector subscript. If the LHS is a
10491 noncoindexed array and the RHS is a coindexed scalar, use the normal code
10492 path. */
10493 if (caf_convert_to_send)
10494 {
10495 if (code->expr2->expr_type == EXPR_FUNCTION
10496 && code->expr2->value.function.isym
10497 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET)
10498 remove_caf_get_intrinsic (code->expr2);
10499 code->op = EXEC_CALL;
10500 gfc_get_sym_tree (GFC_PREFIX ("caf_send"), ns, &code->symtree, true);
10501 code->resolved_sym = code->symtree->n.sym;
10502 code->resolved_sym->attr.flavor = FL_PROCEDURE;
10503 code->resolved_sym->attr.intrinsic = 1;
10504 code->resolved_sym->attr.subroutine = 1;
10505 code->resolved_isym = gfc_intrinsic_subroutine_by_id (GFC_ISYM_CAF_SEND);
10506 gfc_commit_symbol (code->resolved_sym);
10507 code->ext.actual = gfc_get_actual_arglist ();
10508 code->ext.actual->expr = lhs;
10509 code->ext.actual->next = gfc_get_actual_arglist ();
10510 code->ext.actual->next->expr = rhs;
10511 code->expr1 = NULL;
10512 code->expr2 = NULL;
10513 }
10514
10515 return false;
10516 }
10517
10518
10519 /* Add a component reference onto an expression. */
10520
10521 static void
10522 add_comp_ref (gfc_expr *e, gfc_component *c)
10523 {
10524 gfc_ref **ref;
10525 ref = &(e->ref);
10526 while (*ref)
10527 ref = &((*ref)->next);
10528 *ref = gfc_get_ref ();
10529 (*ref)->type = REF_COMPONENT;
10530 (*ref)->u.c.sym = e->ts.u.derived;
10531 (*ref)->u.c.component = c;
10532 e->ts = c->ts;
10533
10534 /* Add a full array ref, as necessary. */
10535 if (c->as)
10536 {
10537 gfc_add_full_array_ref (e, c->as);
10538 e->rank = c->as->rank;
10539 }
10540 }
10541
10542
10543 /* Build an assignment. Keep the argument 'op' for future use, so that
10544 pointer assignments can be made. */
10545
10546 static gfc_code *
10547 build_assignment (gfc_exec_op op, gfc_expr *expr1, gfc_expr *expr2,
10548 gfc_component *comp1, gfc_component *comp2, locus loc)
10549 {
10550 gfc_code *this_code;
10551
10552 this_code = gfc_get_code (op);
10553 this_code->next = NULL;
10554 this_code->expr1 = gfc_copy_expr (expr1);
10555 this_code->expr2 = gfc_copy_expr (expr2);
10556 this_code->loc = loc;
10557 if (comp1 && comp2)
10558 {
10559 add_comp_ref (this_code->expr1, comp1);
10560 add_comp_ref (this_code->expr2, comp2);
10561 }
10562
10563 return this_code;
10564 }
10565
10566
10567 /* Makes a temporary variable expression based on the characteristics of
10568 a given variable expression. */
10569
10570 static gfc_expr*
10571 get_temp_from_expr (gfc_expr *e, gfc_namespace *ns)
10572 {
10573 static int serial = 0;
10574 char name[GFC_MAX_SYMBOL_LEN];
10575 gfc_symtree *tmp;
10576 gfc_array_spec *as;
10577 gfc_array_ref *aref;
10578 gfc_ref *ref;
10579
10580 sprintf (name, GFC_PREFIX("DA%d"), serial++);
10581 gfc_get_sym_tree (name, ns, &tmp, false);
10582 gfc_add_type (tmp->n.sym, &e->ts, NULL);
10583
10584 as = NULL;
10585 ref = NULL;
10586 aref = NULL;
10587
10588 /* Obtain the arrayspec for the temporary. */
10589 if (e->rank && e->expr_type != EXPR_ARRAY
10590 && e->expr_type != EXPR_FUNCTION
10591 && e->expr_type != EXPR_OP)
10592 {
10593 aref = gfc_find_array_ref (e);
10594 if (e->expr_type == EXPR_VARIABLE
10595 && e->symtree->n.sym->as == aref->as)
10596 as = aref->as;
10597 else
10598 {
10599 for (ref = e->ref; ref; ref = ref->next)
10600 if (ref->type == REF_COMPONENT
10601 && ref->u.c.component->as == aref->as)
10602 {
10603 as = aref->as;
10604 break;
10605 }
10606 }
10607 }
10608
10609 /* Add the attributes and the arrayspec to the temporary. */
10610 tmp->n.sym->attr = gfc_expr_attr (e);
10611 tmp->n.sym->attr.function = 0;
10612 tmp->n.sym->attr.result = 0;
10613 tmp->n.sym->attr.flavor = FL_VARIABLE;
10614 tmp->n.sym->attr.dummy = 0;
10615 tmp->n.sym->attr.intent = INTENT_UNKNOWN;
10616
10617 if (as)
10618 {
10619 tmp->n.sym->as = gfc_copy_array_spec (as);
10620 if (!ref)
10621 ref = e->ref;
10622 if (as->type == AS_DEFERRED)
10623 tmp->n.sym->attr.allocatable = 1;
10624 }
10625 else if (e->rank && (e->expr_type == EXPR_ARRAY
10626 || e->expr_type == EXPR_FUNCTION
10627 || e->expr_type == EXPR_OP))
10628 {
10629 tmp->n.sym->as = gfc_get_array_spec ();
10630 tmp->n.sym->as->type = AS_DEFERRED;
10631 tmp->n.sym->as->rank = e->rank;
10632 tmp->n.sym->attr.allocatable = 1;
10633 tmp->n.sym->attr.dimension = 1;
10634 }
10635 else
10636 tmp->n.sym->attr.dimension = 0;
10637
10638 gfc_set_sym_referenced (tmp->n.sym);
10639 gfc_commit_symbol (tmp->n.sym);
10640 e = gfc_lval_expr_from_sym (tmp->n.sym);
10641
10642 /* Should the lhs be a section, use its array ref for the
10643 temporary expression. */
10644 if (aref && aref->type != AR_FULL)
10645 {
10646 gfc_free_ref_list (e->ref);
10647 e->ref = gfc_copy_ref (ref);
10648 }
10649 return e;
10650 }
10651
10652
10653 /* Add one line of code to the code chain, making sure that 'head' and
10654 'tail' are appropriately updated. */
10655
10656 static void
10657 add_code_to_chain (gfc_code **this_code, gfc_code **head, gfc_code **tail)
10658 {
10659 gcc_assert (this_code);
10660 if (*head == NULL)
10661 *head = *tail = *this_code;
10662 else
10663 *tail = gfc_append_code (*tail, *this_code);
10664 *this_code = NULL;
10665 }
10666
10667
10668 /* Counts the potential number of part array references that would
10669 result from resolution of typebound defined assignments. */
10670
10671 static int
10672 nonscalar_typebound_assign (gfc_symbol *derived, int depth)
10673 {
10674 gfc_component *c;
10675 int c_depth = 0, t_depth;
10676
10677 for (c= derived->components; c; c = c->next)
10678 {
10679 if ((!gfc_bt_struct (c->ts.type)
10680 || c->attr.pointer
10681 || c->attr.allocatable
10682 || c->attr.proc_pointer_comp
10683 || c->attr.class_pointer
10684 || c->attr.proc_pointer)
10685 && !c->attr.defined_assign_comp)
10686 continue;
10687
10688 if (c->as && c_depth == 0)
10689 c_depth = 1;
10690
10691 if (c->ts.u.derived->attr.defined_assign_comp)
10692 t_depth = nonscalar_typebound_assign (c->ts.u.derived,
10693 c->as ? 1 : 0);
10694 else
10695 t_depth = 0;
10696
10697 c_depth = t_depth > c_depth ? t_depth : c_depth;
10698 }
10699 return depth + c_depth;
10700 }
10701
10702
10703 /* Implement 7.2.1.3 of the F08 standard:
10704 "An intrinsic assignment where the variable is of derived type is
10705 performed as if each component of the variable were assigned from the
10706 corresponding component of expr using pointer assignment (7.2.2) for
10707 each pointer component, defined assignment for each nonpointer
10708 nonallocatable component of a type that has a type-bound defined
10709 assignment consistent with the component, intrinsic assignment for
10710 each other nonpointer nonallocatable component, ..."
10711
10712 The pointer assignments are taken care of by the intrinsic
10713 assignment of the structure itself. This function recursively adds
10714 defined assignments where required. The recursion is accomplished
10715 by calling gfc_resolve_code.
10716
10717 When the lhs in a defined assignment has intent INOUT, we need a
10718 temporary for the lhs. In pseudo-code:
10719
10720 ! Only call function lhs once.
10721 if (lhs is not a constant or an variable)
10722 temp_x = expr2
10723 expr2 => temp_x
10724 ! Do the intrinsic assignment
10725 expr1 = expr2
10726 ! Now do the defined assignments
10727 do over components with typebound defined assignment [%cmp]
10728 #if one component's assignment procedure is INOUT
10729 t1 = expr1
10730 #if expr2 non-variable
10731 temp_x = expr2
10732 expr2 => temp_x
10733 # endif
10734 expr1 = expr2
10735 # for each cmp
10736 t1%cmp {defined=} expr2%cmp
10737 expr1%cmp = t1%cmp
10738 #else
10739 expr1 = expr2
10740
10741 # for each cmp
10742 expr1%cmp {defined=} expr2%cmp
10743 #endif
10744 */
10745
10746 /* The temporary assignments have to be put on top of the additional
10747 code to avoid the result being changed by the intrinsic assignment.
10748 */
10749 static int component_assignment_level = 0;
10750 static gfc_code *tmp_head = NULL, *tmp_tail = NULL;
10751
10752 static void
10753 generate_component_assignments (gfc_code **code, gfc_namespace *ns)
10754 {
10755 gfc_component *comp1, *comp2;
10756 gfc_code *this_code = NULL, *head = NULL, *tail = NULL;
10757 gfc_expr *t1;
10758 int error_count, depth;
10759
10760 gfc_get_errors (NULL, &error_count);
10761
10762 /* Filter out continuing processing after an error. */
10763 if (error_count
10764 || (*code)->expr1->ts.type != BT_DERIVED
10765 || (*code)->expr2->ts.type != BT_DERIVED)
10766 return;
10767
10768 /* TODO: Handle more than one part array reference in assignments. */
10769 depth = nonscalar_typebound_assign ((*code)->expr1->ts.u.derived,
10770 (*code)->expr1->rank ? 1 : 0);
10771 if (depth > 1)
10772 {
10773 gfc_warning (0, "TODO: type-bound defined assignment(s) at %L not "
10774 "done because multiple part array references would "
10775 "occur in intermediate expressions.", &(*code)->loc);
10776 return;
10777 }
10778
10779 component_assignment_level++;
10780
10781 /* Create a temporary so that functions get called only once. */
10782 if ((*code)->expr2->expr_type != EXPR_VARIABLE
10783 && (*code)->expr2->expr_type != EXPR_CONSTANT)
10784 {
10785 gfc_expr *tmp_expr;
10786
10787 /* Assign the rhs to the temporary. */
10788 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
10789 this_code = build_assignment (EXEC_ASSIGN,
10790 tmp_expr, (*code)->expr2,
10791 NULL, NULL, (*code)->loc);
10792 /* Add the code and substitute the rhs expression. */
10793 add_code_to_chain (&this_code, &tmp_head, &tmp_tail);
10794 gfc_free_expr ((*code)->expr2);
10795 (*code)->expr2 = tmp_expr;
10796 }
10797
10798 /* Do the intrinsic assignment. This is not needed if the lhs is one
10799 of the temporaries generated here, since the intrinsic assignment
10800 to the final result already does this. */
10801 if ((*code)->expr1->symtree->n.sym->name[2] != '@')
10802 {
10803 this_code = build_assignment (EXEC_ASSIGN,
10804 (*code)->expr1, (*code)->expr2,
10805 NULL, NULL, (*code)->loc);
10806 add_code_to_chain (&this_code, &head, &tail);
10807 }
10808
10809 comp1 = (*code)->expr1->ts.u.derived->components;
10810 comp2 = (*code)->expr2->ts.u.derived->components;
10811
10812 t1 = NULL;
10813 for (; comp1; comp1 = comp1->next, comp2 = comp2->next)
10814 {
10815 bool inout = false;
10816
10817 /* The intrinsic assignment does the right thing for pointers
10818 of all kinds and allocatable components. */
10819 if (!gfc_bt_struct (comp1->ts.type)
10820 || comp1->attr.pointer
10821 || comp1->attr.allocatable
10822 || comp1->attr.proc_pointer_comp
10823 || comp1->attr.class_pointer
10824 || comp1->attr.proc_pointer)
10825 continue;
10826
10827 /* Make an assigment for this component. */
10828 this_code = build_assignment (EXEC_ASSIGN,
10829 (*code)->expr1, (*code)->expr2,
10830 comp1, comp2, (*code)->loc);
10831
10832 /* Convert the assignment if there is a defined assignment for
10833 this type. Otherwise, using the call from gfc_resolve_code,
10834 recurse into its components. */
10835 gfc_resolve_code (this_code, ns);
10836
10837 if (this_code->op == EXEC_ASSIGN_CALL)
10838 {
10839 gfc_formal_arglist *dummy_args;
10840 gfc_symbol *rsym;
10841 /* Check that there is a typebound defined assignment. If not,
10842 then this must be a module defined assignment. We cannot
10843 use the defined_assign_comp attribute here because it must
10844 be this derived type that has the defined assignment and not
10845 a parent type. */
10846 if (!(comp1->ts.u.derived->f2k_derived
10847 && comp1->ts.u.derived->f2k_derived
10848 ->tb_op[INTRINSIC_ASSIGN]))
10849 {
10850 gfc_free_statements (this_code);
10851 this_code = NULL;
10852 continue;
10853 }
10854
10855 /* If the first argument of the subroutine has intent INOUT
10856 a temporary must be generated and used instead. */
10857 rsym = this_code->resolved_sym;
10858 dummy_args = gfc_sym_get_dummy_args (rsym);
10859 if (dummy_args
10860 && dummy_args->sym->attr.intent == INTENT_INOUT)
10861 {
10862 gfc_code *temp_code;
10863 inout = true;
10864
10865 /* Build the temporary required for the assignment and put
10866 it at the head of the generated code. */
10867 if (!t1)
10868 {
10869 t1 = get_temp_from_expr ((*code)->expr1, ns);
10870 temp_code = build_assignment (EXEC_ASSIGN,
10871 t1, (*code)->expr1,
10872 NULL, NULL, (*code)->loc);
10873
10874 /* For allocatable LHS, check whether it is allocated. Note
10875 that allocatable components with defined assignment are
10876 not yet support. See PR 57696. */
10877 if ((*code)->expr1->symtree->n.sym->attr.allocatable)
10878 {
10879 gfc_code *block;
10880 gfc_expr *e =
10881 gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
10882 block = gfc_get_code (EXEC_IF);
10883 block->block = gfc_get_code (EXEC_IF);
10884 block->block->expr1
10885 = gfc_build_intrinsic_call (ns,
10886 GFC_ISYM_ALLOCATED, "allocated",
10887 (*code)->loc, 1, e);
10888 block->block->next = temp_code;
10889 temp_code = block;
10890 }
10891 add_code_to_chain (&temp_code, &tmp_head, &tmp_tail);
10892 }
10893
10894 /* Replace the first actual arg with the component of the
10895 temporary. */
10896 gfc_free_expr (this_code->ext.actual->expr);
10897 this_code->ext.actual->expr = gfc_copy_expr (t1);
10898 add_comp_ref (this_code->ext.actual->expr, comp1);
10899
10900 /* If the LHS variable is allocatable and wasn't allocated and
10901 the temporary is allocatable, pointer assign the address of
10902 the freshly allocated LHS to the temporary. */
10903 if ((*code)->expr1->symtree->n.sym->attr.allocatable
10904 && gfc_expr_attr ((*code)->expr1).allocatable)
10905 {
10906 gfc_code *block;
10907 gfc_expr *cond;
10908
10909 cond = gfc_get_expr ();
10910 cond->ts.type = BT_LOGICAL;
10911 cond->ts.kind = gfc_default_logical_kind;
10912 cond->expr_type = EXPR_OP;
10913 cond->where = (*code)->loc;
10914 cond->value.op.op = INTRINSIC_NOT;
10915 cond->value.op.op1 = gfc_build_intrinsic_call (ns,
10916 GFC_ISYM_ALLOCATED, "allocated",
10917 (*code)->loc, 1, gfc_copy_expr (t1));
10918 block = gfc_get_code (EXEC_IF);
10919 block->block = gfc_get_code (EXEC_IF);
10920 block->block->expr1 = cond;
10921 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
10922 t1, (*code)->expr1,
10923 NULL, NULL, (*code)->loc);
10924 add_code_to_chain (&block, &head, &tail);
10925 }
10926 }
10927 }
10928 else if (this_code->op == EXEC_ASSIGN && !this_code->next)
10929 {
10930 /* Don't add intrinsic assignments since they are already
10931 effected by the intrinsic assignment of the structure. */
10932 gfc_free_statements (this_code);
10933 this_code = NULL;
10934 continue;
10935 }
10936
10937 add_code_to_chain (&this_code, &head, &tail);
10938
10939 if (t1 && inout)
10940 {
10941 /* Transfer the value to the final result. */
10942 this_code = build_assignment (EXEC_ASSIGN,
10943 (*code)->expr1, t1,
10944 comp1, comp2, (*code)->loc);
10945 add_code_to_chain (&this_code, &head, &tail);
10946 }
10947 }
10948
10949 /* Put the temporary assignments at the top of the generated code. */
10950 if (tmp_head && component_assignment_level == 1)
10951 {
10952 gfc_append_code (tmp_head, head);
10953 head = tmp_head;
10954 tmp_head = tmp_tail = NULL;
10955 }
10956
10957 // If we did a pointer assignment - thus, we need to ensure that the LHS is
10958 // not accidentally deallocated. Hence, nullify t1.
10959 if (t1 && (*code)->expr1->symtree->n.sym->attr.allocatable
10960 && gfc_expr_attr ((*code)->expr1).allocatable)
10961 {
10962 gfc_code *block;
10963 gfc_expr *cond;
10964 gfc_expr *e;
10965
10966 e = gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
10967 cond = gfc_build_intrinsic_call (ns, GFC_ISYM_ASSOCIATED, "associated",
10968 (*code)->loc, 2, gfc_copy_expr (t1), e);
10969 block = gfc_get_code (EXEC_IF);
10970 block->block = gfc_get_code (EXEC_IF);
10971 block->block->expr1 = cond;
10972 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
10973 t1, gfc_get_null_expr (&(*code)->loc),
10974 NULL, NULL, (*code)->loc);
10975 gfc_append_code (tail, block);
10976 tail = block;
10977 }
10978
10979 /* Now attach the remaining code chain to the input code. Step on
10980 to the end of the new code since resolution is complete. */
10981 gcc_assert ((*code)->op == EXEC_ASSIGN);
10982 tail->next = (*code)->next;
10983 /* Overwrite 'code' because this would place the intrinsic assignment
10984 before the temporary for the lhs is created. */
10985 gfc_free_expr ((*code)->expr1);
10986 gfc_free_expr ((*code)->expr2);
10987 **code = *head;
10988 if (head != tail)
10989 free (head);
10990 *code = tail;
10991
10992 component_assignment_level--;
10993 }
10994
10995
10996 /* F2008: Pointer function assignments are of the form:
10997 ptr_fcn (args) = expr
10998 This function breaks these assignments into two statements:
10999 temporary_pointer => ptr_fcn(args)
11000 temporary_pointer = expr */
11001
11002 static bool
11003 resolve_ptr_fcn_assign (gfc_code **code, gfc_namespace *ns)
11004 {
11005 gfc_expr *tmp_ptr_expr;
11006 gfc_code *this_code;
11007 gfc_component *comp;
11008 gfc_symbol *s;
11009
11010 if ((*code)->expr1->expr_type != EXPR_FUNCTION)
11011 return false;
11012
11013 /* Even if standard does not support this feature, continue to build
11014 the two statements to avoid upsetting frontend_passes.c. */
11015 gfc_notify_std (GFC_STD_F2008, "Pointer procedure assignment at "
11016 "%L", &(*code)->loc);
11017
11018 comp = gfc_get_proc_ptr_comp ((*code)->expr1);
11019
11020 if (comp)
11021 s = comp->ts.interface;
11022 else
11023 s = (*code)->expr1->symtree->n.sym;
11024
11025 if (s == NULL || !s->result->attr.pointer)
11026 {
11027 gfc_error ("The function result on the lhs of the assignment at "
11028 "%L must have the pointer attribute.",
11029 &(*code)->expr1->where);
11030 (*code)->op = EXEC_NOP;
11031 return false;
11032 }
11033
11034 tmp_ptr_expr = get_temp_from_expr ((*code)->expr2, ns);
11035
11036 /* get_temp_from_expression is set up for ordinary assignments. To that
11037 end, where array bounds are not known, arrays are made allocatable.
11038 Change the temporary to a pointer here. */
11039 tmp_ptr_expr->symtree->n.sym->attr.pointer = 1;
11040 tmp_ptr_expr->symtree->n.sym->attr.allocatable = 0;
11041 tmp_ptr_expr->where = (*code)->loc;
11042
11043 this_code = build_assignment (EXEC_ASSIGN,
11044 tmp_ptr_expr, (*code)->expr2,
11045 NULL, NULL, (*code)->loc);
11046 this_code->next = (*code)->next;
11047 (*code)->next = this_code;
11048 (*code)->op = EXEC_POINTER_ASSIGN;
11049 (*code)->expr2 = (*code)->expr1;
11050 (*code)->expr1 = tmp_ptr_expr;
11051
11052 return true;
11053 }
11054
11055
11056 /* Deferred character length assignments from an operator expression
11057 require a temporary because the character length of the lhs can
11058 change in the course of the assignment. */
11059
11060 static bool
11061 deferred_op_assign (gfc_code **code, gfc_namespace *ns)
11062 {
11063 gfc_expr *tmp_expr;
11064 gfc_code *this_code;
11065
11066 if (!((*code)->expr1->ts.type == BT_CHARACTER
11067 && (*code)->expr1->ts.deferred && (*code)->expr1->rank
11068 && (*code)->expr2->expr_type == EXPR_OP))
11069 return false;
11070
11071 if (!gfc_check_dependency ((*code)->expr1, (*code)->expr2, 1))
11072 return false;
11073
11074 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
11075 tmp_expr->where = (*code)->loc;
11076
11077 /* A new charlen is required to ensure that the variable string
11078 length is different to that of the original lhs. */
11079 tmp_expr->ts.u.cl = gfc_get_charlen();
11080 tmp_expr->symtree->n.sym->ts.u.cl = tmp_expr->ts.u.cl;
11081 tmp_expr->ts.u.cl->next = (*code)->expr2->ts.u.cl->next;
11082 (*code)->expr2->ts.u.cl->next = tmp_expr->ts.u.cl;
11083
11084 tmp_expr->symtree->n.sym->ts.deferred = 1;
11085
11086 this_code = build_assignment (EXEC_ASSIGN,
11087 (*code)->expr1,
11088 gfc_copy_expr (tmp_expr),
11089 NULL, NULL, (*code)->loc);
11090
11091 (*code)->expr1 = tmp_expr;
11092
11093 this_code->next = (*code)->next;
11094 (*code)->next = this_code;
11095
11096 return true;
11097 }
11098
11099
11100 /* Given a block of code, recursively resolve everything pointed to by this
11101 code block. */
11102
11103 void
11104 gfc_resolve_code (gfc_code *code, gfc_namespace *ns)
11105 {
11106 int omp_workshare_save;
11107 int forall_save, do_concurrent_save;
11108 code_stack frame;
11109 bool t;
11110
11111 frame.prev = cs_base;
11112 frame.head = code;
11113 cs_base = &frame;
11114
11115 find_reachable_labels (code);
11116
11117 for (; code; code = code->next)
11118 {
11119 frame.current = code;
11120 forall_save = forall_flag;
11121 do_concurrent_save = gfc_do_concurrent_flag;
11122
11123 if (code->op == EXEC_FORALL)
11124 {
11125 forall_flag = 1;
11126 gfc_resolve_forall (code, ns, forall_save);
11127 forall_flag = 2;
11128 }
11129 else if (code->block)
11130 {
11131 omp_workshare_save = -1;
11132 switch (code->op)
11133 {
11134 case EXEC_OACC_PARALLEL_LOOP:
11135 case EXEC_OACC_PARALLEL:
11136 case EXEC_OACC_KERNELS_LOOP:
11137 case EXEC_OACC_KERNELS:
11138 case EXEC_OACC_DATA:
11139 case EXEC_OACC_HOST_DATA:
11140 case EXEC_OACC_LOOP:
11141 gfc_resolve_oacc_blocks (code, ns);
11142 break;
11143 case EXEC_OMP_PARALLEL_WORKSHARE:
11144 omp_workshare_save = omp_workshare_flag;
11145 omp_workshare_flag = 1;
11146 gfc_resolve_omp_parallel_blocks (code, ns);
11147 break;
11148 case EXEC_OMP_PARALLEL:
11149 case EXEC_OMP_PARALLEL_DO:
11150 case EXEC_OMP_PARALLEL_DO_SIMD:
11151 case EXEC_OMP_PARALLEL_SECTIONS:
11152 case EXEC_OMP_TARGET_PARALLEL:
11153 case EXEC_OMP_TARGET_PARALLEL_DO:
11154 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11155 case EXEC_OMP_TARGET_TEAMS:
11156 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11157 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11158 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11159 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11160 case EXEC_OMP_TASK:
11161 case EXEC_OMP_TASKLOOP:
11162 case EXEC_OMP_TASKLOOP_SIMD:
11163 case EXEC_OMP_TEAMS:
11164 case EXEC_OMP_TEAMS_DISTRIBUTE:
11165 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11166 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11167 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11168 omp_workshare_save = omp_workshare_flag;
11169 omp_workshare_flag = 0;
11170 gfc_resolve_omp_parallel_blocks (code, ns);
11171 break;
11172 case EXEC_OMP_DISTRIBUTE:
11173 case EXEC_OMP_DISTRIBUTE_SIMD:
11174 case EXEC_OMP_DO:
11175 case EXEC_OMP_DO_SIMD:
11176 case EXEC_OMP_SIMD:
11177 case EXEC_OMP_TARGET_SIMD:
11178 gfc_resolve_omp_do_blocks (code, ns);
11179 break;
11180 case EXEC_SELECT_TYPE:
11181 /* Blocks are handled in resolve_select_type because we have
11182 to transform the SELECT TYPE into ASSOCIATE first. */
11183 break;
11184 case EXEC_DO_CONCURRENT:
11185 gfc_do_concurrent_flag = 1;
11186 gfc_resolve_blocks (code->block, ns);
11187 gfc_do_concurrent_flag = 2;
11188 break;
11189 case EXEC_OMP_WORKSHARE:
11190 omp_workshare_save = omp_workshare_flag;
11191 omp_workshare_flag = 1;
11192 /* FALL THROUGH */
11193 default:
11194 gfc_resolve_blocks (code->block, ns);
11195 break;
11196 }
11197
11198 if (omp_workshare_save != -1)
11199 omp_workshare_flag = omp_workshare_save;
11200 }
11201 start:
11202 t = true;
11203 if (code->op != EXEC_COMPCALL && code->op != EXEC_CALL_PPC)
11204 t = gfc_resolve_expr (code->expr1);
11205 forall_flag = forall_save;
11206 gfc_do_concurrent_flag = do_concurrent_save;
11207
11208 if (!gfc_resolve_expr (code->expr2))
11209 t = false;
11210
11211 if (code->op == EXEC_ALLOCATE
11212 && !gfc_resolve_expr (code->expr3))
11213 t = false;
11214
11215 switch (code->op)
11216 {
11217 case EXEC_NOP:
11218 case EXEC_END_BLOCK:
11219 case EXEC_END_NESTED_BLOCK:
11220 case EXEC_CYCLE:
11221 case EXEC_PAUSE:
11222 case EXEC_STOP:
11223 case EXEC_ERROR_STOP:
11224 case EXEC_EXIT:
11225 case EXEC_CONTINUE:
11226 case EXEC_DT_END:
11227 case EXEC_ASSIGN_CALL:
11228 break;
11229
11230 case EXEC_CRITICAL:
11231 resolve_critical (code);
11232 break;
11233
11234 case EXEC_SYNC_ALL:
11235 case EXEC_SYNC_IMAGES:
11236 case EXEC_SYNC_MEMORY:
11237 resolve_sync (code);
11238 break;
11239
11240 case EXEC_LOCK:
11241 case EXEC_UNLOCK:
11242 case EXEC_EVENT_POST:
11243 case EXEC_EVENT_WAIT:
11244 resolve_lock_unlock_event (code);
11245 break;
11246
11247 case EXEC_FAIL_IMAGE:
11248 case EXEC_FORM_TEAM:
11249 case EXEC_CHANGE_TEAM:
11250 case EXEC_END_TEAM:
11251 case EXEC_SYNC_TEAM:
11252 break;
11253
11254 case EXEC_ENTRY:
11255 /* Keep track of which entry we are up to. */
11256 current_entry_id = code->ext.entry->id;
11257 break;
11258
11259 case EXEC_WHERE:
11260 resolve_where (code, NULL);
11261 break;
11262
11263 case EXEC_GOTO:
11264 if (code->expr1 != NULL)
11265 {
11266 if (code->expr1->ts.type != BT_INTEGER)
11267 gfc_error ("ASSIGNED GOTO statement at %L requires an "
11268 "INTEGER variable", &code->expr1->where);
11269 else if (code->expr1->symtree->n.sym->attr.assign != 1)
11270 gfc_error ("Variable %qs has not been assigned a target "
11271 "label at %L", code->expr1->symtree->n.sym->name,
11272 &code->expr1->where);
11273 }
11274 else
11275 resolve_branch (code->label1, code);
11276 break;
11277
11278 case EXEC_RETURN:
11279 if (code->expr1 != NULL
11280 && (code->expr1->ts.type != BT_INTEGER || code->expr1->rank))
11281 gfc_error ("Alternate RETURN statement at %L requires a SCALAR-"
11282 "INTEGER return specifier", &code->expr1->where);
11283 break;
11284
11285 case EXEC_INIT_ASSIGN:
11286 case EXEC_END_PROCEDURE:
11287 break;
11288
11289 case EXEC_ASSIGN:
11290 if (!t)
11291 break;
11292
11293 /* Remove a GFC_ISYM_CAF_GET inserted for a coindexed variable on
11294 the LHS. */
11295 if (code->expr1->expr_type == EXPR_FUNCTION
11296 && code->expr1->value.function.isym
11297 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
11298 remove_caf_get_intrinsic (code->expr1);
11299
11300 /* If this is a pointer function in an lvalue variable context,
11301 the new code will have to be resolved afresh. This is also the
11302 case with an error, where the code is transformed into NOP to
11303 prevent ICEs downstream. */
11304 if (resolve_ptr_fcn_assign (&code, ns)
11305 || code->op == EXEC_NOP)
11306 goto start;
11307
11308 if (!gfc_check_vardef_context (code->expr1, false, false, false,
11309 _("assignment")))
11310 break;
11311
11312 if (resolve_ordinary_assign (code, ns))
11313 {
11314 if (code->op == EXEC_COMPCALL)
11315 goto compcall;
11316 else
11317 goto call;
11318 }
11319
11320 /* Check for dependencies in deferred character length array
11321 assignments and generate a temporary, if necessary. */
11322 if (code->op == EXEC_ASSIGN && deferred_op_assign (&code, ns))
11323 break;
11324
11325 /* F03 7.4.1.3 for non-allocatable, non-pointer components. */
11326 if (code->op != EXEC_CALL && code->expr1->ts.type == BT_DERIVED
11327 && code->expr1->ts.u.derived
11328 && code->expr1->ts.u.derived->attr.defined_assign_comp)
11329 generate_component_assignments (&code, ns);
11330
11331 break;
11332
11333 case EXEC_LABEL_ASSIGN:
11334 if (code->label1->defined == ST_LABEL_UNKNOWN)
11335 gfc_error ("Label %d referenced at %L is never defined",
11336 code->label1->value, &code->label1->where);
11337 if (t
11338 && (code->expr1->expr_type != EXPR_VARIABLE
11339 || code->expr1->symtree->n.sym->ts.type != BT_INTEGER
11340 || code->expr1->symtree->n.sym->ts.kind
11341 != gfc_default_integer_kind
11342 || code->expr1->symtree->n.sym->as != NULL))
11343 gfc_error ("ASSIGN statement at %L requires a scalar "
11344 "default INTEGER variable", &code->expr1->where);
11345 break;
11346
11347 case EXEC_POINTER_ASSIGN:
11348 {
11349 gfc_expr* e;
11350
11351 if (!t)
11352 break;
11353
11354 /* This is both a variable definition and pointer assignment
11355 context, so check both of them. For rank remapping, a final
11356 array ref may be present on the LHS and fool gfc_expr_attr
11357 used in gfc_check_vardef_context. Remove it. */
11358 e = remove_last_array_ref (code->expr1);
11359 t = gfc_check_vardef_context (e, true, false, false,
11360 _("pointer assignment"));
11361 if (t)
11362 t = gfc_check_vardef_context (e, false, false, false,
11363 _("pointer assignment"));
11364 gfc_free_expr (e);
11365 if (!t)
11366 break;
11367
11368 gfc_check_pointer_assign (code->expr1, code->expr2);
11369
11370 /* Assigning a class object always is a regular assign. */
11371 if (code->expr2->ts.type == BT_CLASS
11372 && code->expr1->ts.type == BT_CLASS
11373 && !CLASS_DATA (code->expr2)->attr.dimension
11374 && !(gfc_expr_attr (code->expr1).proc_pointer
11375 && code->expr2->expr_type == EXPR_VARIABLE
11376 && code->expr2->symtree->n.sym->attr.flavor
11377 == FL_PROCEDURE))
11378 code->op = EXEC_ASSIGN;
11379 break;
11380 }
11381
11382 case EXEC_ARITHMETIC_IF:
11383 {
11384 gfc_expr *e = code->expr1;
11385
11386 gfc_resolve_expr (e);
11387 if (e->expr_type == EXPR_NULL)
11388 gfc_error ("Invalid NULL at %L", &e->where);
11389
11390 if (t && (e->rank > 0
11391 || !(e->ts.type == BT_REAL || e->ts.type == BT_INTEGER)))
11392 gfc_error ("Arithmetic IF statement at %L requires a scalar "
11393 "REAL or INTEGER expression", &e->where);
11394
11395 resolve_branch (code->label1, code);
11396 resolve_branch (code->label2, code);
11397 resolve_branch (code->label3, code);
11398 }
11399 break;
11400
11401 case EXEC_IF:
11402 if (t && code->expr1 != NULL
11403 && (code->expr1->ts.type != BT_LOGICAL
11404 || code->expr1->rank != 0))
11405 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
11406 &code->expr1->where);
11407 break;
11408
11409 case EXEC_CALL:
11410 call:
11411 resolve_call (code);
11412 break;
11413
11414 case EXEC_COMPCALL:
11415 compcall:
11416 resolve_typebound_subroutine (code);
11417 break;
11418
11419 case EXEC_CALL_PPC:
11420 resolve_ppc_call (code);
11421 break;
11422
11423 case EXEC_SELECT:
11424 /* Select is complicated. Also, a SELECT construct could be
11425 a transformed computed GOTO. */
11426 resolve_select (code, false);
11427 break;
11428
11429 case EXEC_SELECT_TYPE:
11430 resolve_select_type (code, ns);
11431 break;
11432
11433 case EXEC_BLOCK:
11434 resolve_block_construct (code);
11435 break;
11436
11437 case EXEC_DO:
11438 if (code->ext.iterator != NULL)
11439 {
11440 gfc_iterator *iter = code->ext.iterator;
11441 if (gfc_resolve_iterator (iter, true, false))
11442 gfc_resolve_do_iterator (code, iter->var->symtree->n.sym,
11443 true);
11444 }
11445 break;
11446
11447 case EXEC_DO_WHILE:
11448 if (code->expr1 == NULL)
11449 gfc_internal_error ("gfc_resolve_code(): No expression on "
11450 "DO WHILE");
11451 if (t
11452 && (code->expr1->rank != 0
11453 || code->expr1->ts.type != BT_LOGICAL))
11454 gfc_error ("Exit condition of DO WHILE loop at %L must be "
11455 "a scalar LOGICAL expression", &code->expr1->where);
11456 break;
11457
11458 case EXEC_ALLOCATE:
11459 if (t)
11460 resolve_allocate_deallocate (code, "ALLOCATE");
11461
11462 break;
11463
11464 case EXEC_DEALLOCATE:
11465 if (t)
11466 resolve_allocate_deallocate (code, "DEALLOCATE");
11467
11468 break;
11469
11470 case EXEC_OPEN:
11471 if (!gfc_resolve_open (code->ext.open))
11472 break;
11473
11474 resolve_branch (code->ext.open->err, code);
11475 break;
11476
11477 case EXEC_CLOSE:
11478 if (!gfc_resolve_close (code->ext.close))
11479 break;
11480
11481 resolve_branch (code->ext.close->err, code);
11482 break;
11483
11484 case EXEC_BACKSPACE:
11485 case EXEC_ENDFILE:
11486 case EXEC_REWIND:
11487 case EXEC_FLUSH:
11488 if (!gfc_resolve_filepos (code->ext.filepos))
11489 break;
11490
11491 resolve_branch (code->ext.filepos->err, code);
11492 break;
11493
11494 case EXEC_INQUIRE:
11495 if (!gfc_resolve_inquire (code->ext.inquire))
11496 break;
11497
11498 resolve_branch (code->ext.inquire->err, code);
11499 break;
11500
11501 case EXEC_IOLENGTH:
11502 gcc_assert (code->ext.inquire != NULL);
11503 if (!gfc_resolve_inquire (code->ext.inquire))
11504 break;
11505
11506 resolve_branch (code->ext.inquire->err, code);
11507 break;
11508
11509 case EXEC_WAIT:
11510 if (!gfc_resolve_wait (code->ext.wait))
11511 break;
11512
11513 resolve_branch (code->ext.wait->err, code);
11514 resolve_branch (code->ext.wait->end, code);
11515 resolve_branch (code->ext.wait->eor, code);
11516 break;
11517
11518 case EXEC_READ:
11519 case EXEC_WRITE:
11520 if (!gfc_resolve_dt (code->ext.dt, &code->loc))
11521 break;
11522
11523 resolve_branch (code->ext.dt->err, code);
11524 resolve_branch (code->ext.dt->end, code);
11525 resolve_branch (code->ext.dt->eor, code);
11526 break;
11527
11528 case EXEC_TRANSFER:
11529 resolve_transfer (code);
11530 break;
11531
11532 case EXEC_DO_CONCURRENT:
11533 case EXEC_FORALL:
11534 resolve_forall_iterators (code->ext.forall_iterator);
11535
11536 if (code->expr1 != NULL
11537 && (code->expr1->ts.type != BT_LOGICAL || code->expr1->rank))
11538 gfc_error ("FORALL mask clause at %L requires a scalar LOGICAL "
11539 "expression", &code->expr1->where);
11540 break;
11541
11542 case EXEC_OACC_PARALLEL_LOOP:
11543 case EXEC_OACC_PARALLEL:
11544 case EXEC_OACC_KERNELS_LOOP:
11545 case EXEC_OACC_KERNELS:
11546 case EXEC_OACC_DATA:
11547 case EXEC_OACC_HOST_DATA:
11548 case EXEC_OACC_LOOP:
11549 case EXEC_OACC_UPDATE:
11550 case EXEC_OACC_WAIT:
11551 case EXEC_OACC_CACHE:
11552 case EXEC_OACC_ENTER_DATA:
11553 case EXEC_OACC_EXIT_DATA:
11554 case EXEC_OACC_ATOMIC:
11555 case EXEC_OACC_DECLARE:
11556 gfc_resolve_oacc_directive (code, ns);
11557 break;
11558
11559 case EXEC_OMP_ATOMIC:
11560 case EXEC_OMP_BARRIER:
11561 case EXEC_OMP_CANCEL:
11562 case EXEC_OMP_CANCELLATION_POINT:
11563 case EXEC_OMP_CRITICAL:
11564 case EXEC_OMP_FLUSH:
11565 case EXEC_OMP_DISTRIBUTE:
11566 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
11567 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
11568 case EXEC_OMP_DISTRIBUTE_SIMD:
11569 case EXEC_OMP_DO:
11570 case EXEC_OMP_DO_SIMD:
11571 case EXEC_OMP_MASTER:
11572 case EXEC_OMP_ORDERED:
11573 case EXEC_OMP_SECTIONS:
11574 case EXEC_OMP_SIMD:
11575 case EXEC_OMP_SINGLE:
11576 case EXEC_OMP_TARGET:
11577 case EXEC_OMP_TARGET_DATA:
11578 case EXEC_OMP_TARGET_ENTER_DATA:
11579 case EXEC_OMP_TARGET_EXIT_DATA:
11580 case EXEC_OMP_TARGET_PARALLEL:
11581 case EXEC_OMP_TARGET_PARALLEL_DO:
11582 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11583 case EXEC_OMP_TARGET_SIMD:
11584 case EXEC_OMP_TARGET_TEAMS:
11585 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11586 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11587 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11588 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11589 case EXEC_OMP_TARGET_UPDATE:
11590 case EXEC_OMP_TASK:
11591 case EXEC_OMP_TASKGROUP:
11592 case EXEC_OMP_TASKLOOP:
11593 case EXEC_OMP_TASKLOOP_SIMD:
11594 case EXEC_OMP_TASKWAIT:
11595 case EXEC_OMP_TASKYIELD:
11596 case EXEC_OMP_TEAMS:
11597 case EXEC_OMP_TEAMS_DISTRIBUTE:
11598 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11599 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11600 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11601 case EXEC_OMP_WORKSHARE:
11602 gfc_resolve_omp_directive (code, ns);
11603 break;
11604
11605 case EXEC_OMP_PARALLEL:
11606 case EXEC_OMP_PARALLEL_DO:
11607 case EXEC_OMP_PARALLEL_DO_SIMD:
11608 case EXEC_OMP_PARALLEL_SECTIONS:
11609 case EXEC_OMP_PARALLEL_WORKSHARE:
11610 omp_workshare_save = omp_workshare_flag;
11611 omp_workshare_flag = 0;
11612 gfc_resolve_omp_directive (code, ns);
11613 omp_workshare_flag = omp_workshare_save;
11614 break;
11615
11616 default:
11617 gfc_internal_error ("gfc_resolve_code(): Bad statement code");
11618 }
11619 }
11620
11621 cs_base = frame.prev;
11622 }
11623
11624
11625 /* Resolve initial values and make sure they are compatible with
11626 the variable. */
11627
11628 static void
11629 resolve_values (gfc_symbol *sym)
11630 {
11631 bool t;
11632
11633 if (sym->value == NULL)
11634 return;
11635
11636 if (sym->value->expr_type == EXPR_STRUCTURE)
11637 t= resolve_structure_cons (sym->value, 1);
11638 else
11639 t = gfc_resolve_expr (sym->value);
11640
11641 if (!t)
11642 return;
11643
11644 gfc_check_assign_symbol (sym, NULL, sym->value);
11645 }
11646
11647
11648 /* Verify any BIND(C) derived types in the namespace so we can report errors
11649 for them once, rather than for each variable declared of that type. */
11650
11651 static void
11652 resolve_bind_c_derived_types (gfc_symbol *derived_sym)
11653 {
11654 if (derived_sym != NULL && derived_sym->attr.flavor == FL_DERIVED
11655 && derived_sym->attr.is_bind_c == 1)
11656 verify_bind_c_derived_type (derived_sym);
11657
11658 return;
11659 }
11660
11661
11662 /* Check the interfaces of DTIO procedures associated with derived
11663 type 'sym'. These procedures can either have typebound bindings or
11664 can appear in DTIO generic interfaces. */
11665
11666 static void
11667 gfc_verify_DTIO_procedures (gfc_symbol *sym)
11668 {
11669 if (!sym || sym->attr.flavor != FL_DERIVED)
11670 return;
11671
11672 gfc_check_dtio_interfaces (sym);
11673
11674 return;
11675 }
11676
11677 /* Verify that any binding labels used in a given namespace do not collide
11678 with the names or binding labels of any global symbols. Multiple INTERFACE
11679 for the same procedure are permitted. */
11680
11681 static void
11682 gfc_verify_binding_labels (gfc_symbol *sym)
11683 {
11684 gfc_gsymbol *gsym;
11685 const char *module;
11686
11687 if (!sym || !sym->attr.is_bind_c || sym->attr.is_iso_c
11688 || sym->attr.flavor == FL_DERIVED || !sym->binding_label)
11689 return;
11690
11691 gsym = gfc_find_case_gsymbol (gfc_gsym_root, sym->binding_label);
11692
11693 if (sym->module)
11694 module = sym->module;
11695 else if (sym->ns && sym->ns->proc_name
11696 && sym->ns->proc_name->attr.flavor == FL_MODULE)
11697 module = sym->ns->proc_name->name;
11698 else if (sym->ns && sym->ns->parent
11699 && sym->ns && sym->ns->parent->proc_name
11700 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
11701 module = sym->ns->parent->proc_name->name;
11702 else
11703 module = NULL;
11704
11705 if (!gsym
11706 || (!gsym->defined
11707 && (gsym->type == GSYM_FUNCTION || gsym->type == GSYM_SUBROUTINE)))
11708 {
11709 if (!gsym)
11710 gsym = gfc_get_gsymbol (sym->binding_label);
11711 gsym->where = sym->declared_at;
11712 gsym->sym_name = sym->name;
11713 gsym->binding_label = sym->binding_label;
11714 gsym->ns = sym->ns;
11715 gsym->mod_name = module;
11716 if (sym->attr.function)
11717 gsym->type = GSYM_FUNCTION;
11718 else if (sym->attr.subroutine)
11719 gsym->type = GSYM_SUBROUTINE;
11720 /* Mark as variable/procedure as defined, unless its an INTERFACE. */
11721 gsym->defined = sym->attr.if_source != IFSRC_IFBODY;
11722 return;
11723 }
11724
11725 if (sym->attr.flavor == FL_VARIABLE && gsym->type != GSYM_UNKNOWN)
11726 {
11727 gfc_error ("Variable %qs with binding label %qs at %L uses the same global "
11728 "identifier as entity at %L", sym->name,
11729 sym->binding_label, &sym->declared_at, &gsym->where);
11730 /* Clear the binding label to prevent checking multiple times. */
11731 sym->binding_label = NULL;
11732
11733 }
11734 else if (sym->attr.flavor == FL_VARIABLE && module
11735 && (strcmp (module, gsym->mod_name) != 0
11736 || strcmp (sym->name, gsym->sym_name) != 0))
11737 {
11738 /* This can only happen if the variable is defined in a module - if it
11739 isn't the same module, reject it. */
11740 gfc_error ("Variable %qs from module %qs with binding label %qs at %L "
11741 "uses the same global identifier as entity at %L from module %qs",
11742 sym->name, module, sym->binding_label,
11743 &sym->declared_at, &gsym->where, gsym->mod_name);
11744 sym->binding_label = NULL;
11745 }
11746 else if ((sym->attr.function || sym->attr.subroutine)
11747 && ((gsym->type != GSYM_SUBROUTINE && gsym->type != GSYM_FUNCTION)
11748 || (gsym->defined && sym->attr.if_source != IFSRC_IFBODY))
11749 && sym != gsym->ns->proc_name
11750 && (module != gsym->mod_name
11751 || strcmp (gsym->sym_name, sym->name) != 0
11752 || (module && strcmp (module, gsym->mod_name) != 0)))
11753 {
11754 /* Print an error if the procedure is defined multiple times; we have to
11755 exclude references to the same procedure via module association or
11756 multiple checks for the same procedure. */
11757 gfc_error ("Procedure %qs with binding label %qs at %L uses the same "
11758 "global identifier as entity at %L", sym->name,
11759 sym->binding_label, &sym->declared_at, &gsym->where);
11760 sym->binding_label = NULL;
11761 }
11762 }
11763
11764
11765 /* Resolve an index expression. */
11766
11767 static bool
11768 resolve_index_expr (gfc_expr *e)
11769 {
11770 if (!gfc_resolve_expr (e))
11771 return false;
11772
11773 if (!gfc_simplify_expr (e, 0))
11774 return false;
11775
11776 if (!gfc_specification_expr (e))
11777 return false;
11778
11779 return true;
11780 }
11781
11782
11783 /* Resolve a charlen structure. */
11784
11785 static bool
11786 resolve_charlen (gfc_charlen *cl)
11787 {
11788 int k;
11789 bool saved_specification_expr;
11790
11791 if (cl->resolved)
11792 return true;
11793
11794 cl->resolved = 1;
11795 saved_specification_expr = specification_expr;
11796 specification_expr = true;
11797
11798 if (cl->length_from_typespec)
11799 {
11800 if (!gfc_resolve_expr (cl->length))
11801 {
11802 specification_expr = saved_specification_expr;
11803 return false;
11804 }
11805
11806 if (!gfc_simplify_expr (cl->length, 0))
11807 {
11808 specification_expr = saved_specification_expr;
11809 return false;
11810 }
11811
11812 /* cl->length has been resolved. It should have an integer type. */
11813 if (cl->length->ts.type != BT_INTEGER)
11814 {
11815 gfc_error ("Scalar INTEGER expression expected at %L",
11816 &cl->length->where);
11817 return false;
11818 }
11819 }
11820 else
11821 {
11822 if (!resolve_index_expr (cl->length))
11823 {
11824 specification_expr = saved_specification_expr;
11825 return false;
11826 }
11827 }
11828
11829 /* F2008, 4.4.3.2: If the character length parameter value evaluates to
11830 a negative value, the length of character entities declared is zero. */
11831 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
11832 && mpz_sgn (cl->length->value.integer) < 0)
11833 gfc_replace_expr (cl->length,
11834 gfc_get_int_expr (gfc_charlen_int_kind, NULL, 0));
11835
11836 /* Check that the character length is not too large. */
11837 k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
11838 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
11839 && cl->length->ts.type == BT_INTEGER
11840 && mpz_cmp (cl->length->value.integer, gfc_integer_kinds[k].huge) > 0)
11841 {
11842 gfc_error ("String length at %L is too large", &cl->length->where);
11843 specification_expr = saved_specification_expr;
11844 return false;
11845 }
11846
11847 specification_expr = saved_specification_expr;
11848 return true;
11849 }
11850
11851
11852 /* Test for non-constant shape arrays. */
11853
11854 static bool
11855 is_non_constant_shape_array (gfc_symbol *sym)
11856 {
11857 gfc_expr *e;
11858 int i;
11859 bool not_constant;
11860
11861 not_constant = false;
11862 if (sym->as != NULL)
11863 {
11864 /* Unfortunately, !gfc_is_compile_time_shape hits a legal case that
11865 has not been simplified; parameter array references. Do the
11866 simplification now. */
11867 for (i = 0; i < sym->as->rank + sym->as->corank; i++)
11868 {
11869 e = sym->as->lower[i];
11870 if (e && (!resolve_index_expr(e)
11871 || !gfc_is_constant_expr (e)))
11872 not_constant = true;
11873 e = sym->as->upper[i];
11874 if (e && (!resolve_index_expr(e)
11875 || !gfc_is_constant_expr (e)))
11876 not_constant = true;
11877 }
11878 }
11879 return not_constant;
11880 }
11881
11882 /* Given a symbol and an initialization expression, add code to initialize
11883 the symbol to the function entry. */
11884 static void
11885 build_init_assign (gfc_symbol *sym, gfc_expr *init)
11886 {
11887 gfc_expr *lval;
11888 gfc_code *init_st;
11889 gfc_namespace *ns = sym->ns;
11890
11891 /* Search for the function namespace if this is a contained
11892 function without an explicit result. */
11893 if (sym->attr.function && sym == sym->result
11894 && sym->name != sym->ns->proc_name->name)
11895 {
11896 ns = ns->contained;
11897 for (;ns; ns = ns->sibling)
11898 if (strcmp (ns->proc_name->name, sym->name) == 0)
11899 break;
11900 }
11901
11902 if (ns == NULL)
11903 {
11904 gfc_free_expr (init);
11905 return;
11906 }
11907
11908 /* Build an l-value expression for the result. */
11909 lval = gfc_lval_expr_from_sym (sym);
11910
11911 /* Add the code at scope entry. */
11912 init_st = gfc_get_code (EXEC_INIT_ASSIGN);
11913 init_st->next = ns->code;
11914 ns->code = init_st;
11915
11916 /* Assign the default initializer to the l-value. */
11917 init_st->loc = sym->declared_at;
11918 init_st->expr1 = lval;
11919 init_st->expr2 = init;
11920 }
11921
11922
11923 /* Whether or not we can generate a default initializer for a symbol. */
11924
11925 static bool
11926 can_generate_init (gfc_symbol *sym)
11927 {
11928 symbol_attribute *a;
11929 if (!sym)
11930 return false;
11931 a = &sym->attr;
11932
11933 /* These symbols should never have a default initialization. */
11934 return !(
11935 a->allocatable
11936 || a->external
11937 || a->pointer
11938 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
11939 && (CLASS_DATA (sym)->attr.class_pointer
11940 || CLASS_DATA (sym)->attr.proc_pointer))
11941 || a->in_equivalence
11942 || a->in_common
11943 || a->data
11944 || sym->module
11945 || a->cray_pointee
11946 || a->cray_pointer
11947 || sym->assoc
11948 || (!a->referenced && !a->result)
11949 || (a->dummy && a->intent != INTENT_OUT)
11950 || (a->function && sym != sym->result)
11951 );
11952 }
11953
11954
11955 /* Assign the default initializer to a derived type variable or result. */
11956
11957 static void
11958 apply_default_init (gfc_symbol *sym)
11959 {
11960 gfc_expr *init = NULL;
11961
11962 if (sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
11963 return;
11964
11965 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived)
11966 init = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
11967
11968 if (init == NULL && sym->ts.type != BT_CLASS)
11969 return;
11970
11971 build_init_assign (sym, init);
11972 sym->attr.referenced = 1;
11973 }
11974
11975
11976 /* Build an initializer for a local. Returns null if the symbol should not have
11977 a default initialization. */
11978
11979 static gfc_expr *
11980 build_default_init_expr (gfc_symbol *sym)
11981 {
11982 /* These symbols should never have a default initialization. */
11983 if (sym->attr.allocatable
11984 || sym->attr.external
11985 || sym->attr.dummy
11986 || sym->attr.pointer
11987 || sym->attr.in_equivalence
11988 || sym->attr.in_common
11989 || sym->attr.data
11990 || sym->module
11991 || sym->attr.cray_pointee
11992 || sym->attr.cray_pointer
11993 || sym->assoc)
11994 return NULL;
11995
11996 /* Get the appropriate init expression. */
11997 return gfc_build_default_init_expr (&sym->ts, &sym->declared_at);
11998 }
11999
12000 /* Add an initialization expression to a local variable. */
12001 static void
12002 apply_default_init_local (gfc_symbol *sym)
12003 {
12004 gfc_expr *init = NULL;
12005
12006 /* The symbol should be a variable or a function return value. */
12007 if ((sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
12008 || (sym->attr.function && sym->result != sym))
12009 return;
12010
12011 /* Try to build the initializer expression. If we can't initialize
12012 this symbol, then init will be NULL. */
12013 init = build_default_init_expr (sym);
12014 if (init == NULL)
12015 return;
12016
12017 /* For saved variables, we don't want to add an initializer at function
12018 entry, so we just add a static initializer. Note that automatic variables
12019 are stack allocated even with -fno-automatic; we have also to exclude
12020 result variable, which are also nonstatic. */
12021 if (!sym->attr.automatic
12022 && (sym->attr.save || sym->ns->save_all
12023 || (flag_max_stack_var_size == 0 && !sym->attr.result
12024 && (sym->ns->proc_name && !sym->ns->proc_name->attr.recursive)
12025 && (!sym->attr.dimension || !is_non_constant_shape_array (sym)))))
12026 {
12027 /* Don't clobber an existing initializer! */
12028 gcc_assert (sym->value == NULL);
12029 sym->value = init;
12030 return;
12031 }
12032
12033 build_init_assign (sym, init);
12034 }
12035
12036
12037 /* Resolution of common features of flavors variable and procedure. */
12038
12039 static bool
12040 resolve_fl_var_and_proc (gfc_symbol *sym, int mp_flag)
12041 {
12042 gfc_array_spec *as;
12043
12044 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
12045 as = CLASS_DATA (sym)->as;
12046 else
12047 as = sym->as;
12048
12049 /* Constraints on deferred shape variable. */
12050 if (as == NULL || as->type != AS_DEFERRED)
12051 {
12052 bool pointer, allocatable, dimension;
12053
12054 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
12055 {
12056 pointer = CLASS_DATA (sym)->attr.class_pointer;
12057 allocatable = CLASS_DATA (sym)->attr.allocatable;
12058 dimension = CLASS_DATA (sym)->attr.dimension;
12059 }
12060 else
12061 {
12062 pointer = sym->attr.pointer && !sym->attr.select_type_temporary;
12063 allocatable = sym->attr.allocatable;
12064 dimension = sym->attr.dimension;
12065 }
12066
12067 if (allocatable)
12068 {
12069 if (dimension && as->type != AS_ASSUMED_RANK)
12070 {
12071 gfc_error ("Allocatable array %qs at %L must have a deferred "
12072 "shape or assumed rank", sym->name, &sym->declared_at);
12073 return false;
12074 }
12075 else if (!gfc_notify_std (GFC_STD_F2003, "Scalar object "
12076 "%qs at %L may not be ALLOCATABLE",
12077 sym->name, &sym->declared_at))
12078 return false;
12079 }
12080
12081 if (pointer && dimension && as->type != AS_ASSUMED_RANK)
12082 {
12083 gfc_error ("Array pointer %qs at %L must have a deferred shape or "
12084 "assumed rank", sym->name, &sym->declared_at);
12085 return false;
12086 }
12087 }
12088 else
12089 {
12090 if (!mp_flag && !sym->attr.allocatable && !sym->attr.pointer
12091 && sym->ts.type != BT_CLASS && !sym->assoc)
12092 {
12093 gfc_error ("Array %qs at %L cannot have a deferred shape",
12094 sym->name, &sym->declared_at);
12095 return false;
12096 }
12097 }
12098
12099 /* Constraints on polymorphic variables. */
12100 if (sym->ts.type == BT_CLASS && !(sym->result && sym->result != sym))
12101 {
12102 /* F03:C502. */
12103 if (sym->attr.class_ok
12104 && !sym->attr.select_type_temporary
12105 && !UNLIMITED_POLY (sym)
12106 && !gfc_type_is_extensible (CLASS_DATA (sym)->ts.u.derived))
12107 {
12108 gfc_error ("Type %qs of CLASS variable %qs at %L is not extensible",
12109 CLASS_DATA (sym)->ts.u.derived->name, sym->name,
12110 &sym->declared_at);
12111 return false;
12112 }
12113
12114 /* F03:C509. */
12115 /* Assume that use associated symbols were checked in the module ns.
12116 Class-variables that are associate-names are also something special
12117 and excepted from the test. */
12118 if (!sym->attr.class_ok && !sym->attr.use_assoc && !sym->assoc)
12119 {
12120 gfc_error ("CLASS variable %qs at %L must be dummy, allocatable "
12121 "or pointer", sym->name, &sym->declared_at);
12122 return false;
12123 }
12124 }
12125
12126 return true;
12127 }
12128
12129
12130 /* Additional checks for symbols with flavor variable and derived
12131 type. To be called from resolve_fl_variable. */
12132
12133 static bool
12134 resolve_fl_variable_derived (gfc_symbol *sym, int no_init_flag)
12135 {
12136 gcc_assert (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS);
12137
12138 /* Check to see if a derived type is blocked from being host
12139 associated by the presence of another class I symbol in the same
12140 namespace. 14.6.1.3 of the standard and the discussion on
12141 comp.lang.fortran. */
12142 if (sym->ns != sym->ts.u.derived->ns
12143 && !sym->ts.u.derived->attr.use_assoc
12144 && sym->ns->proc_name->attr.if_source != IFSRC_IFBODY)
12145 {
12146 gfc_symbol *s;
12147 gfc_find_symbol (sym->ts.u.derived->name, sym->ns, 0, &s);
12148 if (s && s->attr.generic)
12149 s = gfc_find_dt_in_generic (s);
12150 if (s && !gfc_fl_struct (s->attr.flavor))
12151 {
12152 gfc_error ("The type %qs cannot be host associated at %L "
12153 "because it is blocked by an incompatible object "
12154 "of the same name declared at %L",
12155 sym->ts.u.derived->name, &sym->declared_at,
12156 &s->declared_at);
12157 return false;
12158 }
12159 }
12160
12161 /* 4th constraint in section 11.3: "If an object of a type for which
12162 component-initialization is specified (R429) appears in the
12163 specification-part of a module and does not have the ALLOCATABLE
12164 or POINTER attribute, the object shall have the SAVE attribute."
12165
12166 The check for initializers is performed with
12167 gfc_has_default_initializer because gfc_default_initializer generates
12168 a hidden default for allocatable components. */
12169 if (!(sym->value || no_init_flag) && sym->ns->proc_name
12170 && sym->ns->proc_name->attr.flavor == FL_MODULE
12171 && !(sym->ns->save_all && !sym->attr.automatic) && !sym->attr.save
12172 && !sym->attr.pointer && !sym->attr.allocatable
12173 && gfc_has_default_initializer (sym->ts.u.derived)
12174 && !gfc_notify_std (GFC_STD_F2008, "Implied SAVE for module variable "
12175 "%qs at %L, needed due to the default "
12176 "initialization", sym->name, &sym->declared_at))
12177 return false;
12178
12179 /* Assign default initializer. */
12180 if (!(sym->value || sym->attr.pointer || sym->attr.allocatable)
12181 && (!no_init_flag || sym->attr.intent == INTENT_OUT))
12182 sym->value = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
12183
12184 return true;
12185 }
12186
12187
12188 /* F2008, C402 (R401): A colon shall not be used as a type-param-value
12189 except in the declaration of an entity or component that has the POINTER
12190 or ALLOCATABLE attribute. */
12191
12192 static bool
12193 deferred_requirements (gfc_symbol *sym)
12194 {
12195 if (sym->ts.deferred
12196 && !(sym->attr.pointer
12197 || sym->attr.allocatable
12198 || sym->attr.associate_var
12199 || sym->attr.omp_udr_artificial_var))
12200 {
12201 gfc_error ("Entity %qs at %L has a deferred type parameter and "
12202 "requires either the POINTER or ALLOCATABLE attribute",
12203 sym->name, &sym->declared_at);
12204 return false;
12205 }
12206 return true;
12207 }
12208
12209
12210 /* Resolve symbols with flavor variable. */
12211
12212 static bool
12213 resolve_fl_variable (gfc_symbol *sym, int mp_flag)
12214 {
12215 int no_init_flag, automatic_flag;
12216 gfc_expr *e;
12217 const char *auto_save_msg;
12218 bool saved_specification_expr;
12219
12220 auto_save_msg = "Automatic object %qs at %L cannot have the "
12221 "SAVE attribute";
12222
12223 if (!resolve_fl_var_and_proc (sym, mp_flag))
12224 return false;
12225
12226 /* Set this flag to check that variables are parameters of all entries.
12227 This check is effected by the call to gfc_resolve_expr through
12228 is_non_constant_shape_array. */
12229 saved_specification_expr = specification_expr;
12230 specification_expr = true;
12231
12232 if (sym->ns->proc_name
12233 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12234 || sym->ns->proc_name->attr.is_main_program)
12235 && !sym->attr.use_assoc
12236 && !sym->attr.allocatable
12237 && !sym->attr.pointer
12238 && is_non_constant_shape_array (sym))
12239 {
12240 /* F08:C541. The shape of an array defined in a main program or module
12241 * needs to be constant. */
12242 gfc_error ("The module or main program array %qs at %L must "
12243 "have constant shape", sym->name, &sym->declared_at);
12244 specification_expr = saved_specification_expr;
12245 return false;
12246 }
12247
12248 /* Constraints on deferred type parameter. */
12249 if (!deferred_requirements (sym))
12250 return false;
12251
12252 if (sym->ts.type == BT_CHARACTER && !sym->attr.associate_var)
12253 {
12254 /* Make sure that character string variables with assumed length are
12255 dummy arguments. */
12256 e = sym->ts.u.cl->length;
12257 if (e == NULL && !sym->attr.dummy && !sym->attr.result
12258 && !sym->ts.deferred && !sym->attr.select_type_temporary
12259 && !sym->attr.omp_udr_artificial_var)
12260 {
12261 gfc_error ("Entity with assumed character length at %L must be a "
12262 "dummy argument or a PARAMETER", &sym->declared_at);
12263 specification_expr = saved_specification_expr;
12264 return false;
12265 }
12266
12267 if (e && sym->attr.save == SAVE_EXPLICIT && !gfc_is_constant_expr (e))
12268 {
12269 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12270 specification_expr = saved_specification_expr;
12271 return false;
12272 }
12273
12274 if (!gfc_is_constant_expr (e)
12275 && !(e->expr_type == EXPR_VARIABLE
12276 && e->symtree->n.sym->attr.flavor == FL_PARAMETER))
12277 {
12278 if (!sym->attr.use_assoc && sym->ns->proc_name
12279 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12280 || sym->ns->proc_name->attr.is_main_program))
12281 {
12282 gfc_error ("%qs at %L must have constant character length "
12283 "in this context", sym->name, &sym->declared_at);
12284 specification_expr = saved_specification_expr;
12285 return false;
12286 }
12287 if (sym->attr.in_common)
12288 {
12289 gfc_error ("COMMON variable %qs at %L must have constant "
12290 "character length", sym->name, &sym->declared_at);
12291 specification_expr = saved_specification_expr;
12292 return false;
12293 }
12294 }
12295 }
12296
12297 if (sym->value == NULL && sym->attr.referenced)
12298 apply_default_init_local (sym); /* Try to apply a default initialization. */
12299
12300 /* Determine if the symbol may not have an initializer. */
12301 no_init_flag = automatic_flag = 0;
12302 if (sym->attr.allocatable || sym->attr.external || sym->attr.dummy
12303 || sym->attr.intrinsic || sym->attr.result)
12304 no_init_flag = 1;
12305 else if ((sym->attr.dimension || sym->attr.codimension) && !sym->attr.pointer
12306 && is_non_constant_shape_array (sym))
12307 {
12308 no_init_flag = automatic_flag = 1;
12309
12310 /* Also, they must not have the SAVE attribute.
12311 SAVE_IMPLICIT is checked below. */
12312 if (sym->as && sym->attr.codimension)
12313 {
12314 int corank = sym->as->corank;
12315 sym->as->corank = 0;
12316 no_init_flag = automatic_flag = is_non_constant_shape_array (sym);
12317 sym->as->corank = corank;
12318 }
12319 if (automatic_flag && sym->attr.save == SAVE_EXPLICIT)
12320 {
12321 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12322 specification_expr = saved_specification_expr;
12323 return false;
12324 }
12325 }
12326
12327 /* Ensure that any initializer is simplified. */
12328 if (sym->value)
12329 gfc_simplify_expr (sym->value, 1);
12330
12331 /* Reject illegal initializers. */
12332 if (!sym->mark && sym->value)
12333 {
12334 if (sym->attr.allocatable || (sym->ts.type == BT_CLASS
12335 && CLASS_DATA (sym)->attr.allocatable))
12336 gfc_error ("Allocatable %qs at %L cannot have an initializer",
12337 sym->name, &sym->declared_at);
12338 else if (sym->attr.external)
12339 gfc_error ("External %qs at %L cannot have an initializer",
12340 sym->name, &sym->declared_at);
12341 else if (sym->attr.dummy
12342 && !(sym->ts.type == BT_DERIVED && sym->attr.intent == INTENT_OUT))
12343 gfc_error ("Dummy %qs at %L cannot have an initializer",
12344 sym->name, &sym->declared_at);
12345 else if (sym->attr.intrinsic)
12346 gfc_error ("Intrinsic %qs at %L cannot have an initializer",
12347 sym->name, &sym->declared_at);
12348 else if (sym->attr.result)
12349 gfc_error ("Function result %qs at %L cannot have an initializer",
12350 sym->name, &sym->declared_at);
12351 else if (automatic_flag)
12352 gfc_error ("Automatic array %qs at %L cannot have an initializer",
12353 sym->name, &sym->declared_at);
12354 else
12355 goto no_init_error;
12356 specification_expr = saved_specification_expr;
12357 return false;
12358 }
12359
12360 no_init_error:
12361 if (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS)
12362 {
12363 bool res = resolve_fl_variable_derived (sym, no_init_flag);
12364 specification_expr = saved_specification_expr;
12365 return res;
12366 }
12367
12368 specification_expr = saved_specification_expr;
12369 return true;
12370 }
12371
12372
12373 /* Compare the dummy characteristics of a module procedure interface
12374 declaration with the corresponding declaration in a submodule. */
12375 static gfc_formal_arglist *new_formal;
12376 static char errmsg[200];
12377
12378 static void
12379 compare_fsyms (gfc_symbol *sym)
12380 {
12381 gfc_symbol *fsym;
12382
12383 if (sym == NULL || new_formal == NULL)
12384 return;
12385
12386 fsym = new_formal->sym;
12387
12388 if (sym == fsym)
12389 return;
12390
12391 if (strcmp (sym->name, fsym->name) == 0)
12392 {
12393 if (!gfc_check_dummy_characteristics (fsym, sym, true, errmsg, 200))
12394 gfc_error ("%s at %L", errmsg, &fsym->declared_at);
12395 }
12396 }
12397
12398
12399 /* Resolve a procedure. */
12400
12401 static bool
12402 resolve_fl_procedure (gfc_symbol *sym, int mp_flag)
12403 {
12404 gfc_formal_arglist *arg;
12405
12406 if (sym->attr.function
12407 && !resolve_fl_var_and_proc (sym, mp_flag))
12408 return false;
12409
12410 if (sym->ts.type == BT_CHARACTER)
12411 {
12412 gfc_charlen *cl = sym->ts.u.cl;
12413
12414 if (cl && cl->length && gfc_is_constant_expr (cl->length)
12415 && !resolve_charlen (cl))
12416 return false;
12417
12418 if ((!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
12419 && sym->attr.proc == PROC_ST_FUNCTION)
12420 {
12421 gfc_error ("Character-valued statement function %qs at %L must "
12422 "have constant length", sym->name, &sym->declared_at);
12423 return false;
12424 }
12425 }
12426
12427 /* Ensure that derived type for are not of a private type. Internal
12428 module procedures are excluded by 2.2.3.3 - i.e., they are not
12429 externally accessible and can access all the objects accessible in
12430 the host. */
12431 if (!(sym->ns->parent
12432 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
12433 && gfc_check_symbol_access (sym))
12434 {
12435 gfc_interface *iface;
12436
12437 for (arg = gfc_sym_get_dummy_args (sym); arg; arg = arg->next)
12438 {
12439 if (arg->sym
12440 && arg->sym->ts.type == BT_DERIVED
12441 && !arg->sym->ts.u.derived->attr.use_assoc
12442 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12443 && !gfc_notify_std (GFC_STD_F2003, "%qs is of a PRIVATE type "
12444 "and cannot be a dummy argument"
12445 " of %qs, which is PUBLIC at %L",
12446 arg->sym->name, sym->name,
12447 &sym->declared_at))
12448 {
12449 /* Stop this message from recurring. */
12450 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12451 return false;
12452 }
12453 }
12454
12455 /* PUBLIC interfaces may expose PRIVATE procedures that take types
12456 PRIVATE to the containing module. */
12457 for (iface = sym->generic; iface; iface = iface->next)
12458 {
12459 for (arg = gfc_sym_get_dummy_args (iface->sym); arg; arg = arg->next)
12460 {
12461 if (arg->sym
12462 && arg->sym->ts.type == BT_DERIVED
12463 && !arg->sym->ts.u.derived->attr.use_assoc
12464 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12465 && !gfc_notify_std (GFC_STD_F2003, "Procedure %qs in "
12466 "PUBLIC interface %qs at %L "
12467 "takes dummy arguments of %qs which "
12468 "is PRIVATE", iface->sym->name,
12469 sym->name, &iface->sym->declared_at,
12470 gfc_typename(&arg->sym->ts)))
12471 {
12472 /* Stop this message from recurring. */
12473 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12474 return false;
12475 }
12476 }
12477 }
12478 }
12479
12480 if (sym->attr.function && sym->value && sym->attr.proc != PROC_ST_FUNCTION
12481 && !sym->attr.proc_pointer)
12482 {
12483 gfc_error ("Function %qs at %L cannot have an initializer",
12484 sym->name, &sym->declared_at);
12485 return false;
12486 }
12487
12488 /* An external symbol may not have an initializer because it is taken to be
12489 a procedure. Exception: Procedure Pointers. */
12490 if (sym->attr.external && sym->value && !sym->attr.proc_pointer)
12491 {
12492 gfc_error ("External object %qs at %L may not have an initializer",
12493 sym->name, &sym->declared_at);
12494 return false;
12495 }
12496
12497 /* An elemental function is required to return a scalar 12.7.1 */
12498 if (sym->attr.elemental && sym->attr.function && sym->as)
12499 {
12500 gfc_error ("ELEMENTAL function %qs at %L must have a scalar "
12501 "result", sym->name, &sym->declared_at);
12502 /* Reset so that the error only occurs once. */
12503 sym->attr.elemental = 0;
12504 return false;
12505 }
12506
12507 if (sym->attr.proc == PROC_ST_FUNCTION
12508 && (sym->attr.allocatable || sym->attr.pointer))
12509 {
12510 gfc_error ("Statement function %qs at %L may not have pointer or "
12511 "allocatable attribute", sym->name, &sym->declared_at);
12512 return false;
12513 }
12514
12515 /* 5.1.1.5 of the Standard: A function name declared with an asterisk
12516 char-len-param shall not be array-valued, pointer-valued, recursive
12517 or pure. ....snip... A character value of * may only be used in the
12518 following ways: (i) Dummy arg of procedure - dummy associates with
12519 actual length; (ii) To declare a named constant; or (iii) External
12520 function - but length must be declared in calling scoping unit. */
12521 if (sym->attr.function
12522 && sym->ts.type == BT_CHARACTER && !sym->ts.deferred
12523 && sym->ts.u.cl && sym->ts.u.cl->length == NULL)
12524 {
12525 if ((sym->as && sym->as->rank) || (sym->attr.pointer)
12526 || (sym->attr.recursive) || (sym->attr.pure))
12527 {
12528 if (sym->as && sym->as->rank)
12529 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12530 "array-valued", sym->name, &sym->declared_at);
12531
12532 if (sym->attr.pointer)
12533 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12534 "pointer-valued", sym->name, &sym->declared_at);
12535
12536 if (sym->attr.pure)
12537 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12538 "pure", sym->name, &sym->declared_at);
12539
12540 if (sym->attr.recursive)
12541 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12542 "recursive", sym->name, &sym->declared_at);
12543
12544 return false;
12545 }
12546
12547 /* Appendix B.2 of the standard. Contained functions give an
12548 error anyway. Deferred character length is an F2003 feature.
12549 Don't warn on intrinsic conversion functions, which start
12550 with two underscores. */
12551 if (!sym->attr.contained && !sym->ts.deferred
12552 && (sym->name[0] != '_' || sym->name[1] != '_'))
12553 gfc_notify_std (GFC_STD_F95_OBS,
12554 "CHARACTER(*) function %qs at %L",
12555 sym->name, &sym->declared_at);
12556 }
12557
12558 /* F2008, C1218. */
12559 if (sym->attr.elemental)
12560 {
12561 if (sym->attr.proc_pointer)
12562 {
12563 gfc_error ("Procedure pointer %qs at %L shall not be elemental",
12564 sym->name, &sym->declared_at);
12565 return false;
12566 }
12567 if (sym->attr.dummy)
12568 {
12569 gfc_error ("Dummy procedure %qs at %L shall not be elemental",
12570 sym->name, &sym->declared_at);
12571 return false;
12572 }
12573 }
12574
12575 /* F2018, C15100: "The result of an elemental function shall be scalar,
12576 and shall not have the POINTER or ALLOCATABLE attribute." The scalar
12577 pointer is tested and caught elsewhere. */
12578 if (sym->attr.elemental && sym->result
12579 && (sym->result->attr.allocatable || sym->result->attr.pointer))
12580 {
12581 gfc_error ("Function result variable %qs at %L of elemental "
12582 "function %qs shall not have an ALLOCATABLE or POINTER "
12583 "attribute", sym->result->name,
12584 &sym->result->declared_at, sym->name);
12585 return false;
12586 }
12587
12588 if (sym->attr.is_bind_c && sym->attr.is_c_interop != 1)
12589 {
12590 gfc_formal_arglist *curr_arg;
12591 int has_non_interop_arg = 0;
12592
12593 if (!verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
12594 sym->common_block))
12595 {
12596 /* Clear these to prevent looking at them again if there was an
12597 error. */
12598 sym->attr.is_bind_c = 0;
12599 sym->attr.is_c_interop = 0;
12600 sym->ts.is_c_interop = 0;
12601 }
12602 else
12603 {
12604 /* So far, no errors have been found. */
12605 sym->attr.is_c_interop = 1;
12606 sym->ts.is_c_interop = 1;
12607 }
12608
12609 curr_arg = gfc_sym_get_dummy_args (sym);
12610 while (curr_arg != NULL)
12611 {
12612 /* Skip implicitly typed dummy args here. */
12613 if (curr_arg->sym && curr_arg->sym->attr.implicit_type == 0)
12614 if (!gfc_verify_c_interop_param (curr_arg->sym))
12615 /* If something is found to fail, record the fact so we
12616 can mark the symbol for the procedure as not being
12617 BIND(C) to try and prevent multiple errors being
12618 reported. */
12619 has_non_interop_arg = 1;
12620
12621 curr_arg = curr_arg->next;
12622 }
12623
12624 /* See if any of the arguments were not interoperable and if so, clear
12625 the procedure symbol to prevent duplicate error messages. */
12626 if (has_non_interop_arg != 0)
12627 {
12628 sym->attr.is_c_interop = 0;
12629 sym->ts.is_c_interop = 0;
12630 sym->attr.is_bind_c = 0;
12631 }
12632 }
12633
12634 if (!sym->attr.proc_pointer)
12635 {
12636 if (sym->attr.save == SAVE_EXPLICIT)
12637 {
12638 gfc_error ("PROCEDURE attribute conflicts with SAVE attribute "
12639 "in %qs at %L", sym->name, &sym->declared_at);
12640 return false;
12641 }
12642 if (sym->attr.intent)
12643 {
12644 gfc_error ("PROCEDURE attribute conflicts with INTENT attribute "
12645 "in %qs at %L", sym->name, &sym->declared_at);
12646 return false;
12647 }
12648 if (sym->attr.subroutine && sym->attr.result)
12649 {
12650 gfc_error ("PROCEDURE attribute conflicts with RESULT attribute "
12651 "in %qs at %L", sym->name, &sym->declared_at);
12652 return false;
12653 }
12654 if (sym->attr.external && sym->attr.function && !sym->attr.module_procedure
12655 && ((sym->attr.if_source == IFSRC_DECL && !sym->attr.procedure)
12656 || sym->attr.contained))
12657 {
12658 gfc_error ("EXTERNAL attribute conflicts with FUNCTION attribute "
12659 "in %qs at %L", sym->name, &sym->declared_at);
12660 return false;
12661 }
12662 if (strcmp ("ppr@", sym->name) == 0)
12663 {
12664 gfc_error ("Procedure pointer result %qs at %L "
12665 "is missing the pointer attribute",
12666 sym->ns->proc_name->name, &sym->declared_at);
12667 return false;
12668 }
12669 }
12670
12671 /* Assume that a procedure whose body is not known has references
12672 to external arrays. */
12673 if (sym->attr.if_source != IFSRC_DECL)
12674 sym->attr.array_outer_dependency = 1;
12675
12676 /* Compare the characteristics of a module procedure with the
12677 interface declaration. Ideally this would be done with
12678 gfc_compare_interfaces but, at present, the formal interface
12679 cannot be copied to the ts.interface. */
12680 if (sym->attr.module_procedure
12681 && sym->attr.if_source == IFSRC_DECL)
12682 {
12683 gfc_symbol *iface;
12684 char name[2*GFC_MAX_SYMBOL_LEN + 1];
12685 char *module_name;
12686 char *submodule_name;
12687 strcpy (name, sym->ns->proc_name->name);
12688 module_name = strtok (name, ".");
12689 submodule_name = strtok (NULL, ".");
12690
12691 iface = sym->tlink;
12692 sym->tlink = NULL;
12693
12694 /* Make sure that the result uses the correct charlen for deferred
12695 length results. */
12696 if (iface && sym->result
12697 && iface->ts.type == BT_CHARACTER
12698 && iface->ts.deferred)
12699 sym->result->ts.u.cl = iface->ts.u.cl;
12700
12701 if (iface == NULL)
12702 goto check_formal;
12703
12704 /* Check the procedure characteristics. */
12705 if (sym->attr.elemental != iface->attr.elemental)
12706 {
12707 gfc_error ("Mismatch in ELEMENTAL attribute between MODULE "
12708 "PROCEDURE at %L and its interface in %s",
12709 &sym->declared_at, module_name);
12710 return false;
12711 }
12712
12713 if (sym->attr.pure != iface->attr.pure)
12714 {
12715 gfc_error ("Mismatch in PURE attribute between MODULE "
12716 "PROCEDURE at %L and its interface in %s",
12717 &sym->declared_at, module_name);
12718 return false;
12719 }
12720
12721 if (sym->attr.recursive != iface->attr.recursive)
12722 {
12723 gfc_error ("Mismatch in RECURSIVE attribute between MODULE "
12724 "PROCEDURE at %L and its interface in %s",
12725 &sym->declared_at, module_name);
12726 return false;
12727 }
12728
12729 /* Check the result characteristics. */
12730 if (!gfc_check_result_characteristics (sym, iface, errmsg, 200))
12731 {
12732 gfc_error ("%s between the MODULE PROCEDURE declaration "
12733 "in MODULE %qs and the declaration at %L in "
12734 "(SUB)MODULE %qs",
12735 errmsg, module_name, &sym->declared_at,
12736 submodule_name ? submodule_name : module_name);
12737 return false;
12738 }
12739
12740 check_formal:
12741 /* Check the characteristics of the formal arguments. */
12742 if (sym->formal && sym->formal_ns)
12743 {
12744 for (arg = sym->formal; arg && arg->sym; arg = arg->next)
12745 {
12746 new_formal = arg;
12747 gfc_traverse_ns (sym->formal_ns, compare_fsyms);
12748 }
12749 }
12750 }
12751 return true;
12752 }
12753
12754
12755 /* Resolve a list of finalizer procedures. That is, after they have hopefully
12756 been defined and we now know their defined arguments, check that they fulfill
12757 the requirements of the standard for procedures used as finalizers. */
12758
12759 static bool
12760 gfc_resolve_finalizers (gfc_symbol* derived, bool *finalizable)
12761 {
12762 gfc_finalizer* list;
12763 gfc_finalizer** prev_link; /* For removing wrong entries from the list. */
12764 bool result = true;
12765 bool seen_scalar = false;
12766 gfc_symbol *vtab;
12767 gfc_component *c;
12768 gfc_symbol *parent = gfc_get_derived_super_type (derived);
12769
12770 if (parent)
12771 gfc_resolve_finalizers (parent, finalizable);
12772
12773 /* Ensure that derived-type components have a their finalizers resolved. */
12774 bool has_final = derived->f2k_derived && derived->f2k_derived->finalizers;
12775 for (c = derived->components; c; c = c->next)
12776 if (c->ts.type == BT_DERIVED
12777 && !c->attr.pointer && !c->attr.proc_pointer && !c->attr.allocatable)
12778 {
12779 bool has_final2 = false;
12780 if (!gfc_resolve_finalizers (c->ts.u.derived, &has_final2))
12781 return false; /* Error. */
12782 has_final = has_final || has_final2;
12783 }
12784 /* Return early if not finalizable. */
12785 if (!has_final)
12786 {
12787 if (finalizable)
12788 *finalizable = false;
12789 return true;
12790 }
12791
12792 /* Walk over the list of finalizer-procedures, check them, and if any one
12793 does not fit in with the standard's definition, print an error and remove
12794 it from the list. */
12795 prev_link = &derived->f2k_derived->finalizers;
12796 for (list = derived->f2k_derived->finalizers; list; list = *prev_link)
12797 {
12798 gfc_formal_arglist *dummy_args;
12799 gfc_symbol* arg;
12800 gfc_finalizer* i;
12801 int my_rank;
12802
12803 /* Skip this finalizer if we already resolved it. */
12804 if (list->proc_tree)
12805 {
12806 if (list->proc_tree->n.sym->formal->sym->as == NULL
12807 || list->proc_tree->n.sym->formal->sym->as->rank == 0)
12808 seen_scalar = true;
12809 prev_link = &(list->next);
12810 continue;
12811 }
12812
12813 /* Check this exists and is a SUBROUTINE. */
12814 if (!list->proc_sym->attr.subroutine)
12815 {
12816 gfc_error ("FINAL procedure %qs at %L is not a SUBROUTINE",
12817 list->proc_sym->name, &list->where);
12818 goto error;
12819 }
12820
12821 /* We should have exactly one argument. */
12822 dummy_args = gfc_sym_get_dummy_args (list->proc_sym);
12823 if (!dummy_args || dummy_args->next)
12824 {
12825 gfc_error ("FINAL procedure at %L must have exactly one argument",
12826 &list->where);
12827 goto error;
12828 }
12829 arg = dummy_args->sym;
12830
12831 /* This argument must be of our type. */
12832 if (arg->ts.type != BT_DERIVED || arg->ts.u.derived != derived)
12833 {
12834 gfc_error ("Argument of FINAL procedure at %L must be of type %qs",
12835 &arg->declared_at, derived->name);
12836 goto error;
12837 }
12838
12839 /* It must neither be a pointer nor allocatable nor optional. */
12840 if (arg->attr.pointer)
12841 {
12842 gfc_error ("Argument of FINAL procedure at %L must not be a POINTER",
12843 &arg->declared_at);
12844 goto error;
12845 }
12846 if (arg->attr.allocatable)
12847 {
12848 gfc_error ("Argument of FINAL procedure at %L must not be"
12849 " ALLOCATABLE", &arg->declared_at);
12850 goto error;
12851 }
12852 if (arg->attr.optional)
12853 {
12854 gfc_error ("Argument of FINAL procedure at %L must not be OPTIONAL",
12855 &arg->declared_at);
12856 goto error;
12857 }
12858
12859 /* It must not be INTENT(OUT). */
12860 if (arg->attr.intent == INTENT_OUT)
12861 {
12862 gfc_error ("Argument of FINAL procedure at %L must not be"
12863 " INTENT(OUT)", &arg->declared_at);
12864 goto error;
12865 }
12866
12867 /* Warn if the procedure is non-scalar and not assumed shape. */
12868 if (warn_surprising && arg->as && arg->as->rank != 0
12869 && arg->as->type != AS_ASSUMED_SHAPE)
12870 gfc_warning (OPT_Wsurprising,
12871 "Non-scalar FINAL procedure at %L should have assumed"
12872 " shape argument", &arg->declared_at);
12873
12874 /* Check that it does not match in kind and rank with a FINAL procedure
12875 defined earlier. To really loop over the *earlier* declarations,
12876 we need to walk the tail of the list as new ones were pushed at the
12877 front. */
12878 /* TODO: Handle kind parameters once they are implemented. */
12879 my_rank = (arg->as ? arg->as->rank : 0);
12880 for (i = list->next; i; i = i->next)
12881 {
12882 gfc_formal_arglist *dummy_args;
12883
12884 /* Argument list might be empty; that is an error signalled earlier,
12885 but we nevertheless continued resolving. */
12886 dummy_args = gfc_sym_get_dummy_args (i->proc_sym);
12887 if (dummy_args)
12888 {
12889 gfc_symbol* i_arg = dummy_args->sym;
12890 const int i_rank = (i_arg->as ? i_arg->as->rank : 0);
12891 if (i_rank == my_rank)
12892 {
12893 gfc_error ("FINAL procedure %qs declared at %L has the same"
12894 " rank (%d) as %qs",
12895 list->proc_sym->name, &list->where, my_rank,
12896 i->proc_sym->name);
12897 goto error;
12898 }
12899 }
12900 }
12901
12902 /* Is this the/a scalar finalizer procedure? */
12903 if (my_rank == 0)
12904 seen_scalar = true;
12905
12906 /* Find the symtree for this procedure. */
12907 gcc_assert (!list->proc_tree);
12908 list->proc_tree = gfc_find_sym_in_symtree (list->proc_sym);
12909
12910 prev_link = &list->next;
12911 continue;
12912
12913 /* Remove wrong nodes immediately from the list so we don't risk any
12914 troubles in the future when they might fail later expectations. */
12915 error:
12916 i = list;
12917 *prev_link = list->next;
12918 gfc_free_finalizer (i);
12919 result = false;
12920 }
12921
12922 if (result == false)
12923 return false;
12924
12925 /* Warn if we haven't seen a scalar finalizer procedure (but we know there
12926 were nodes in the list, must have been for arrays. It is surely a good
12927 idea to have a scalar version there if there's something to finalize. */
12928 if (warn_surprising && derived->f2k_derived->finalizers && !seen_scalar)
12929 gfc_warning (OPT_Wsurprising,
12930 "Only array FINAL procedures declared for derived type %qs"
12931 " defined at %L, suggest also scalar one",
12932 derived->name, &derived->declared_at);
12933
12934 vtab = gfc_find_derived_vtab (derived);
12935 c = vtab->ts.u.derived->components->next->next->next->next->next;
12936 gfc_set_sym_referenced (c->initializer->symtree->n.sym);
12937
12938 if (finalizable)
12939 *finalizable = true;
12940
12941 return true;
12942 }
12943
12944
12945 /* Check if two GENERIC targets are ambiguous and emit an error is they are. */
12946
12947 static bool
12948 check_generic_tbp_ambiguity (gfc_tbp_generic* t1, gfc_tbp_generic* t2,
12949 const char* generic_name, locus where)
12950 {
12951 gfc_symbol *sym1, *sym2;
12952 const char *pass1, *pass2;
12953 gfc_formal_arglist *dummy_args;
12954
12955 gcc_assert (t1->specific && t2->specific);
12956 gcc_assert (!t1->specific->is_generic);
12957 gcc_assert (!t2->specific->is_generic);
12958 gcc_assert (t1->is_operator == t2->is_operator);
12959
12960 sym1 = t1->specific->u.specific->n.sym;
12961 sym2 = t2->specific->u.specific->n.sym;
12962
12963 if (sym1 == sym2)
12964 return true;
12965
12966 /* Both must be SUBROUTINEs or both must be FUNCTIONs. */
12967 if (sym1->attr.subroutine != sym2->attr.subroutine
12968 || sym1->attr.function != sym2->attr.function)
12969 {
12970 gfc_error ("%qs and %qs can't be mixed FUNCTION/SUBROUTINE for"
12971 " GENERIC %qs at %L",
12972 sym1->name, sym2->name, generic_name, &where);
12973 return false;
12974 }
12975
12976 /* Determine PASS arguments. */
12977 if (t1->specific->nopass)
12978 pass1 = NULL;
12979 else if (t1->specific->pass_arg)
12980 pass1 = t1->specific->pass_arg;
12981 else
12982 {
12983 dummy_args = gfc_sym_get_dummy_args (t1->specific->u.specific->n.sym);
12984 if (dummy_args)
12985 pass1 = dummy_args->sym->name;
12986 else
12987 pass1 = NULL;
12988 }
12989 if (t2->specific->nopass)
12990 pass2 = NULL;
12991 else if (t2->specific->pass_arg)
12992 pass2 = t2->specific->pass_arg;
12993 else
12994 {
12995 dummy_args = gfc_sym_get_dummy_args (t2->specific->u.specific->n.sym);
12996 if (dummy_args)
12997 pass2 = dummy_args->sym->name;
12998 else
12999 pass2 = NULL;
13000 }
13001
13002 /* Compare the interfaces. */
13003 if (gfc_compare_interfaces (sym1, sym2, sym2->name, !t1->is_operator, 0,
13004 NULL, 0, pass1, pass2))
13005 {
13006 gfc_error ("%qs and %qs for GENERIC %qs at %L are ambiguous",
13007 sym1->name, sym2->name, generic_name, &where);
13008 return false;
13009 }
13010
13011 return true;
13012 }
13013
13014
13015 /* Worker function for resolving a generic procedure binding; this is used to
13016 resolve GENERIC as well as user and intrinsic OPERATOR typebound procedures.
13017
13018 The difference between those cases is finding possible inherited bindings
13019 that are overridden, as one has to look for them in tb_sym_root,
13020 tb_uop_root or tb_op, respectively. Thus the caller must already find
13021 the super-type and set p->overridden correctly. */
13022
13023 static bool
13024 resolve_tb_generic_targets (gfc_symbol* super_type,
13025 gfc_typebound_proc* p, const char* name)
13026 {
13027 gfc_tbp_generic* target;
13028 gfc_symtree* first_target;
13029 gfc_symtree* inherited;
13030
13031 gcc_assert (p && p->is_generic);
13032
13033 /* Try to find the specific bindings for the symtrees in our target-list. */
13034 gcc_assert (p->u.generic);
13035 for (target = p->u.generic; target; target = target->next)
13036 if (!target->specific)
13037 {
13038 gfc_typebound_proc* overridden_tbp;
13039 gfc_tbp_generic* g;
13040 const char* target_name;
13041
13042 target_name = target->specific_st->name;
13043
13044 /* Defined for this type directly. */
13045 if (target->specific_st->n.tb && !target->specific_st->n.tb->error)
13046 {
13047 target->specific = target->specific_st->n.tb;
13048 goto specific_found;
13049 }
13050
13051 /* Look for an inherited specific binding. */
13052 if (super_type)
13053 {
13054 inherited = gfc_find_typebound_proc (super_type, NULL, target_name,
13055 true, NULL);
13056
13057 if (inherited)
13058 {
13059 gcc_assert (inherited->n.tb);
13060 target->specific = inherited->n.tb;
13061 goto specific_found;
13062 }
13063 }
13064
13065 gfc_error ("Undefined specific binding %qs as target of GENERIC %qs"
13066 " at %L", target_name, name, &p->where);
13067 return false;
13068
13069 /* Once we've found the specific binding, check it is not ambiguous with
13070 other specifics already found or inherited for the same GENERIC. */
13071 specific_found:
13072 gcc_assert (target->specific);
13073
13074 /* This must really be a specific binding! */
13075 if (target->specific->is_generic)
13076 {
13077 gfc_error ("GENERIC %qs at %L must target a specific binding,"
13078 " %qs is GENERIC, too", name, &p->where, target_name);
13079 return false;
13080 }
13081
13082 /* Check those already resolved on this type directly. */
13083 for (g = p->u.generic; g; g = g->next)
13084 if (g != target && g->specific
13085 && !check_generic_tbp_ambiguity (target, g, name, p->where))
13086 return false;
13087
13088 /* Check for ambiguity with inherited specific targets. */
13089 for (overridden_tbp = p->overridden; overridden_tbp;
13090 overridden_tbp = overridden_tbp->overridden)
13091 if (overridden_tbp->is_generic)
13092 {
13093 for (g = overridden_tbp->u.generic; g; g = g->next)
13094 {
13095 gcc_assert (g->specific);
13096 if (!check_generic_tbp_ambiguity (target, g, name, p->where))
13097 return false;
13098 }
13099 }
13100 }
13101
13102 /* If we attempt to "overwrite" a specific binding, this is an error. */
13103 if (p->overridden && !p->overridden->is_generic)
13104 {
13105 gfc_error ("GENERIC %qs at %L can't overwrite specific binding with"
13106 " the same name", name, &p->where);
13107 return false;
13108 }
13109
13110 /* Take the SUBROUTINE/FUNCTION attributes of the first specific target, as
13111 all must have the same attributes here. */
13112 first_target = p->u.generic->specific->u.specific;
13113 gcc_assert (first_target);
13114 p->subroutine = first_target->n.sym->attr.subroutine;
13115 p->function = first_target->n.sym->attr.function;
13116
13117 return true;
13118 }
13119
13120
13121 /* Resolve a GENERIC procedure binding for a derived type. */
13122
13123 static bool
13124 resolve_typebound_generic (gfc_symbol* derived, gfc_symtree* st)
13125 {
13126 gfc_symbol* super_type;
13127
13128 /* Find the overridden binding if any. */
13129 st->n.tb->overridden = NULL;
13130 super_type = gfc_get_derived_super_type (derived);
13131 if (super_type)
13132 {
13133 gfc_symtree* overridden;
13134 overridden = gfc_find_typebound_proc (super_type, NULL, st->name,
13135 true, NULL);
13136
13137 if (overridden && overridden->n.tb)
13138 st->n.tb->overridden = overridden->n.tb;
13139 }
13140
13141 /* Resolve using worker function. */
13142 return resolve_tb_generic_targets (super_type, st->n.tb, st->name);
13143 }
13144
13145
13146 /* Retrieve the target-procedure of an operator binding and do some checks in
13147 common for intrinsic and user-defined type-bound operators. */
13148
13149 static gfc_symbol*
13150 get_checked_tb_operator_target (gfc_tbp_generic* target, locus where)
13151 {
13152 gfc_symbol* target_proc;
13153
13154 gcc_assert (target->specific && !target->specific->is_generic);
13155 target_proc = target->specific->u.specific->n.sym;
13156 gcc_assert (target_proc);
13157
13158 /* F08:C468. All operator bindings must have a passed-object dummy argument. */
13159 if (target->specific->nopass)
13160 {
13161 gfc_error ("Type-bound operator at %L can't be NOPASS", &where);
13162 return NULL;
13163 }
13164
13165 return target_proc;
13166 }
13167
13168
13169 /* Resolve a type-bound intrinsic operator. */
13170
13171 static bool
13172 resolve_typebound_intrinsic_op (gfc_symbol* derived, gfc_intrinsic_op op,
13173 gfc_typebound_proc* p)
13174 {
13175 gfc_symbol* super_type;
13176 gfc_tbp_generic* target;
13177
13178 /* If there's already an error here, do nothing (but don't fail again). */
13179 if (p->error)
13180 return true;
13181
13182 /* Operators should always be GENERIC bindings. */
13183 gcc_assert (p->is_generic);
13184
13185 /* Look for an overridden binding. */
13186 super_type = gfc_get_derived_super_type (derived);
13187 if (super_type && super_type->f2k_derived)
13188 p->overridden = gfc_find_typebound_intrinsic_op (super_type, NULL,
13189 op, true, NULL);
13190 else
13191 p->overridden = NULL;
13192
13193 /* Resolve general GENERIC properties using worker function. */
13194 if (!resolve_tb_generic_targets (super_type, p, gfc_op2string(op)))
13195 goto error;
13196
13197 /* Check the targets to be procedures of correct interface. */
13198 for (target = p->u.generic; target; target = target->next)
13199 {
13200 gfc_symbol* target_proc;
13201
13202 target_proc = get_checked_tb_operator_target (target, p->where);
13203 if (!target_proc)
13204 goto error;
13205
13206 if (!gfc_check_operator_interface (target_proc, op, p->where))
13207 goto error;
13208
13209 /* Add target to non-typebound operator list. */
13210 if (!target->specific->deferred && !derived->attr.use_assoc
13211 && p->access != ACCESS_PRIVATE && derived->ns == gfc_current_ns)
13212 {
13213 gfc_interface *head, *intr;
13214
13215 /* Preempt 'gfc_check_new_interface' for submodules, where the
13216 mechanism for handling module procedures winds up resolving
13217 operator interfaces twice and would otherwise cause an error. */
13218 for (intr = derived->ns->op[op]; intr; intr = intr->next)
13219 if (intr->sym == target_proc
13220 && target_proc->attr.used_in_submodule)
13221 return true;
13222
13223 if (!gfc_check_new_interface (derived->ns->op[op],
13224 target_proc, p->where))
13225 return false;
13226 head = derived->ns->op[op];
13227 intr = gfc_get_interface ();
13228 intr->sym = target_proc;
13229 intr->where = p->where;
13230 intr->next = head;
13231 derived->ns->op[op] = intr;
13232 }
13233 }
13234
13235 return true;
13236
13237 error:
13238 p->error = 1;
13239 return false;
13240 }
13241
13242
13243 /* Resolve a type-bound user operator (tree-walker callback). */
13244
13245 static gfc_symbol* resolve_bindings_derived;
13246 static bool resolve_bindings_result;
13247
13248 static bool check_uop_procedure (gfc_symbol* sym, locus where);
13249
13250 static void
13251 resolve_typebound_user_op (gfc_symtree* stree)
13252 {
13253 gfc_symbol* super_type;
13254 gfc_tbp_generic* target;
13255
13256 gcc_assert (stree && stree->n.tb);
13257
13258 if (stree->n.tb->error)
13259 return;
13260
13261 /* Operators should always be GENERIC bindings. */
13262 gcc_assert (stree->n.tb->is_generic);
13263
13264 /* Find overridden procedure, if any. */
13265 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13266 if (super_type && super_type->f2k_derived)
13267 {
13268 gfc_symtree* overridden;
13269 overridden = gfc_find_typebound_user_op (super_type, NULL,
13270 stree->name, true, NULL);
13271
13272 if (overridden && overridden->n.tb)
13273 stree->n.tb->overridden = overridden->n.tb;
13274 }
13275 else
13276 stree->n.tb->overridden = NULL;
13277
13278 /* Resolve basically using worker function. */
13279 if (!resolve_tb_generic_targets (super_type, stree->n.tb, stree->name))
13280 goto error;
13281
13282 /* Check the targets to be functions of correct interface. */
13283 for (target = stree->n.tb->u.generic; target; target = target->next)
13284 {
13285 gfc_symbol* target_proc;
13286
13287 target_proc = get_checked_tb_operator_target (target, stree->n.tb->where);
13288 if (!target_proc)
13289 goto error;
13290
13291 if (!check_uop_procedure (target_proc, stree->n.tb->where))
13292 goto error;
13293 }
13294
13295 return;
13296
13297 error:
13298 resolve_bindings_result = false;
13299 stree->n.tb->error = 1;
13300 }
13301
13302
13303 /* Resolve the type-bound procedures for a derived type. */
13304
13305 static void
13306 resolve_typebound_procedure (gfc_symtree* stree)
13307 {
13308 gfc_symbol* proc;
13309 locus where;
13310 gfc_symbol* me_arg;
13311 gfc_symbol* super_type;
13312 gfc_component* comp;
13313
13314 gcc_assert (stree);
13315
13316 /* Undefined specific symbol from GENERIC target definition. */
13317 if (!stree->n.tb)
13318 return;
13319
13320 if (stree->n.tb->error)
13321 return;
13322
13323 /* If this is a GENERIC binding, use that routine. */
13324 if (stree->n.tb->is_generic)
13325 {
13326 if (!resolve_typebound_generic (resolve_bindings_derived, stree))
13327 goto error;
13328 return;
13329 }
13330
13331 /* Get the target-procedure to check it. */
13332 gcc_assert (!stree->n.tb->is_generic);
13333 gcc_assert (stree->n.tb->u.specific);
13334 proc = stree->n.tb->u.specific->n.sym;
13335 where = stree->n.tb->where;
13336
13337 /* Default access should already be resolved from the parser. */
13338 gcc_assert (stree->n.tb->access != ACCESS_UNKNOWN);
13339
13340 if (stree->n.tb->deferred)
13341 {
13342 if (!check_proc_interface (proc, &where))
13343 goto error;
13344 }
13345 else
13346 {
13347 /* Check for F08:C465. */
13348 if ((!proc->attr.subroutine && !proc->attr.function)
13349 || (proc->attr.proc != PROC_MODULE
13350 && proc->attr.if_source != IFSRC_IFBODY)
13351 || proc->attr.abstract)
13352 {
13353 gfc_error ("%qs must be a module procedure or an external procedure with"
13354 " an explicit interface at %L", proc->name, &where);
13355 goto error;
13356 }
13357 }
13358
13359 stree->n.tb->subroutine = proc->attr.subroutine;
13360 stree->n.tb->function = proc->attr.function;
13361
13362 /* Find the super-type of the current derived type. We could do this once and
13363 store in a global if speed is needed, but as long as not I believe this is
13364 more readable and clearer. */
13365 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13366
13367 /* If PASS, resolve and check arguments if not already resolved / loaded
13368 from a .mod file. */
13369 if (!stree->n.tb->nopass && stree->n.tb->pass_arg_num == 0)
13370 {
13371 gfc_formal_arglist *dummy_args;
13372
13373 dummy_args = gfc_sym_get_dummy_args (proc);
13374 if (stree->n.tb->pass_arg)
13375 {
13376 gfc_formal_arglist *i;
13377
13378 /* If an explicit passing argument name is given, walk the arg-list
13379 and look for it. */
13380
13381 me_arg = NULL;
13382 stree->n.tb->pass_arg_num = 1;
13383 for (i = dummy_args; i; i = i->next)
13384 {
13385 if (!strcmp (i->sym->name, stree->n.tb->pass_arg))
13386 {
13387 me_arg = i->sym;
13388 break;
13389 }
13390 ++stree->n.tb->pass_arg_num;
13391 }
13392
13393 if (!me_arg)
13394 {
13395 gfc_error ("Procedure %qs with PASS(%s) at %L has no"
13396 " argument %qs",
13397 proc->name, stree->n.tb->pass_arg, &where,
13398 stree->n.tb->pass_arg);
13399 goto error;
13400 }
13401 }
13402 else
13403 {
13404 /* Otherwise, take the first one; there should in fact be at least
13405 one. */
13406 stree->n.tb->pass_arg_num = 1;
13407 if (!dummy_args)
13408 {
13409 gfc_error ("Procedure %qs with PASS at %L must have at"
13410 " least one argument", proc->name, &where);
13411 goto error;
13412 }
13413 me_arg = dummy_args->sym;
13414 }
13415
13416 /* Now check that the argument-type matches and the passed-object
13417 dummy argument is generally fine. */
13418
13419 gcc_assert (me_arg);
13420
13421 if (me_arg->ts.type != BT_CLASS)
13422 {
13423 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13424 " at %L", proc->name, &where);
13425 goto error;
13426 }
13427
13428 if (CLASS_DATA (me_arg)->ts.u.derived
13429 != resolve_bindings_derived)
13430 {
13431 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13432 " the derived-type %qs", me_arg->name, proc->name,
13433 me_arg->name, &where, resolve_bindings_derived->name);
13434 goto error;
13435 }
13436
13437 gcc_assert (me_arg->ts.type == BT_CLASS);
13438 if (CLASS_DATA (me_arg)->as && CLASS_DATA (me_arg)->as->rank != 0)
13439 {
13440 gfc_error ("Passed-object dummy argument of %qs at %L must be"
13441 " scalar", proc->name, &where);
13442 goto error;
13443 }
13444 if (CLASS_DATA (me_arg)->attr.allocatable)
13445 {
13446 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13447 " be ALLOCATABLE", proc->name, &where);
13448 goto error;
13449 }
13450 if (CLASS_DATA (me_arg)->attr.class_pointer)
13451 {
13452 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13453 " be POINTER", proc->name, &where);
13454 goto error;
13455 }
13456 }
13457
13458 /* If we are extending some type, check that we don't override a procedure
13459 flagged NON_OVERRIDABLE. */
13460 stree->n.tb->overridden = NULL;
13461 if (super_type)
13462 {
13463 gfc_symtree* overridden;
13464 overridden = gfc_find_typebound_proc (super_type, NULL,
13465 stree->name, true, NULL);
13466
13467 if (overridden)
13468 {
13469 if (overridden->n.tb)
13470 stree->n.tb->overridden = overridden->n.tb;
13471
13472 if (!gfc_check_typebound_override (stree, overridden))
13473 goto error;
13474 }
13475 }
13476
13477 /* See if there's a name collision with a component directly in this type. */
13478 for (comp = resolve_bindings_derived->components; comp; comp = comp->next)
13479 if (!strcmp (comp->name, stree->name))
13480 {
13481 gfc_error ("Procedure %qs at %L has the same name as a component of"
13482 " %qs",
13483 stree->name, &where, resolve_bindings_derived->name);
13484 goto error;
13485 }
13486
13487 /* Try to find a name collision with an inherited component. */
13488 if (super_type && gfc_find_component (super_type, stree->name, true, true,
13489 NULL))
13490 {
13491 gfc_error ("Procedure %qs at %L has the same name as an inherited"
13492 " component of %qs",
13493 stree->name, &where, resolve_bindings_derived->name);
13494 goto error;
13495 }
13496
13497 stree->n.tb->error = 0;
13498 return;
13499
13500 error:
13501 resolve_bindings_result = false;
13502 stree->n.tb->error = 1;
13503 }
13504
13505
13506 static bool
13507 resolve_typebound_procedures (gfc_symbol* derived)
13508 {
13509 int op;
13510 gfc_symbol* super_type;
13511
13512 if (!derived->f2k_derived || !derived->f2k_derived->tb_sym_root)
13513 return true;
13514
13515 super_type = gfc_get_derived_super_type (derived);
13516 if (super_type)
13517 resolve_symbol (super_type);
13518
13519 resolve_bindings_derived = derived;
13520 resolve_bindings_result = true;
13521
13522 if (derived->f2k_derived->tb_sym_root)
13523 gfc_traverse_symtree (derived->f2k_derived->tb_sym_root,
13524 &resolve_typebound_procedure);
13525
13526 if (derived->f2k_derived->tb_uop_root)
13527 gfc_traverse_symtree (derived->f2k_derived->tb_uop_root,
13528 &resolve_typebound_user_op);
13529
13530 for (op = 0; op != GFC_INTRINSIC_OPS; ++op)
13531 {
13532 gfc_typebound_proc* p = derived->f2k_derived->tb_op[op];
13533 if (p && !resolve_typebound_intrinsic_op (derived,
13534 (gfc_intrinsic_op)op, p))
13535 resolve_bindings_result = false;
13536 }
13537
13538 return resolve_bindings_result;
13539 }
13540
13541
13542 /* Add a derived type to the dt_list. The dt_list is used in trans-types.c
13543 to give all identical derived types the same backend_decl. */
13544 static void
13545 add_dt_to_dt_list (gfc_symbol *derived)
13546 {
13547 if (!derived->dt_next)
13548 {
13549 if (gfc_derived_types)
13550 {
13551 derived->dt_next = gfc_derived_types->dt_next;
13552 gfc_derived_types->dt_next = derived;
13553 }
13554 else
13555 {
13556 derived->dt_next = derived;
13557 }
13558 gfc_derived_types = derived;
13559 }
13560 }
13561
13562
13563 /* Ensure that a derived-type is really not abstract, meaning that every
13564 inherited DEFERRED binding is overridden by a non-DEFERRED one. */
13565
13566 static bool
13567 ensure_not_abstract_walker (gfc_symbol* sub, gfc_symtree* st)
13568 {
13569 if (!st)
13570 return true;
13571
13572 if (!ensure_not_abstract_walker (sub, st->left))
13573 return false;
13574 if (!ensure_not_abstract_walker (sub, st->right))
13575 return false;
13576
13577 if (st->n.tb && st->n.tb->deferred)
13578 {
13579 gfc_symtree* overriding;
13580 overriding = gfc_find_typebound_proc (sub, NULL, st->name, true, NULL);
13581 if (!overriding)
13582 return false;
13583 gcc_assert (overriding->n.tb);
13584 if (overriding->n.tb->deferred)
13585 {
13586 gfc_error ("Derived-type %qs declared at %L must be ABSTRACT because"
13587 " %qs is DEFERRED and not overridden",
13588 sub->name, &sub->declared_at, st->name);
13589 return false;
13590 }
13591 }
13592
13593 return true;
13594 }
13595
13596 static bool
13597 ensure_not_abstract (gfc_symbol* sub, gfc_symbol* ancestor)
13598 {
13599 /* The algorithm used here is to recursively travel up the ancestry of sub
13600 and for each ancestor-type, check all bindings. If any of them is
13601 DEFERRED, look it up starting from sub and see if the found (overriding)
13602 binding is not DEFERRED.
13603 This is not the most efficient way to do this, but it should be ok and is
13604 clearer than something sophisticated. */
13605
13606 gcc_assert (ancestor && !sub->attr.abstract);
13607
13608 if (!ancestor->attr.abstract)
13609 return true;
13610
13611 /* Walk bindings of this ancestor. */
13612 if (ancestor->f2k_derived)
13613 {
13614 bool t;
13615 t = ensure_not_abstract_walker (sub, ancestor->f2k_derived->tb_sym_root);
13616 if (!t)
13617 return false;
13618 }
13619
13620 /* Find next ancestor type and recurse on it. */
13621 ancestor = gfc_get_derived_super_type (ancestor);
13622 if (ancestor)
13623 return ensure_not_abstract (sub, ancestor);
13624
13625 return true;
13626 }
13627
13628
13629 /* This check for typebound defined assignments is done recursively
13630 since the order in which derived types are resolved is not always in
13631 order of the declarations. */
13632
13633 static void
13634 check_defined_assignments (gfc_symbol *derived)
13635 {
13636 gfc_component *c;
13637
13638 for (c = derived->components; c; c = c->next)
13639 {
13640 if (!gfc_bt_struct (c->ts.type)
13641 || c->attr.pointer
13642 || c->attr.allocatable
13643 || c->attr.proc_pointer_comp
13644 || c->attr.class_pointer
13645 || c->attr.proc_pointer)
13646 continue;
13647
13648 if (c->ts.u.derived->attr.defined_assign_comp
13649 || (c->ts.u.derived->f2k_derived
13650 && c->ts.u.derived->f2k_derived->tb_op[INTRINSIC_ASSIGN]))
13651 {
13652 derived->attr.defined_assign_comp = 1;
13653 return;
13654 }
13655
13656 check_defined_assignments (c->ts.u.derived);
13657 if (c->ts.u.derived->attr.defined_assign_comp)
13658 {
13659 derived->attr.defined_assign_comp = 1;
13660 return;
13661 }
13662 }
13663 }
13664
13665
13666 /* Resolve a single component of a derived type or structure. */
13667
13668 static bool
13669 resolve_component (gfc_component *c, gfc_symbol *sym)
13670 {
13671 gfc_symbol *super_type;
13672
13673 if (c->attr.artificial)
13674 return true;
13675
13676 /* Do not allow vtype components to be resolved in nameless namespaces
13677 such as block data because the procedure pointers will cause ICEs
13678 and vtables are not needed in these contexts. */
13679 if (sym->attr.vtype && sym->attr.use_assoc
13680 && sym->ns->proc_name == NULL)
13681 return true;
13682
13683 /* F2008, C442. */
13684 if ((!sym->attr.is_class || c != sym->components)
13685 && c->attr.codimension
13686 && (!c->attr.allocatable || (c->as && c->as->type != AS_DEFERRED)))
13687 {
13688 gfc_error ("Coarray component %qs at %L must be allocatable with "
13689 "deferred shape", c->name, &c->loc);
13690 return false;
13691 }
13692
13693 /* F2008, C443. */
13694 if (c->attr.codimension && c->ts.type == BT_DERIVED
13695 && c->ts.u.derived->ts.is_iso_c)
13696 {
13697 gfc_error ("Component %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
13698 "shall not be a coarray", c->name, &c->loc);
13699 return false;
13700 }
13701
13702 /* F2008, C444. */
13703 if (gfc_bt_struct (c->ts.type) && c->ts.u.derived->attr.coarray_comp
13704 && (c->attr.codimension || c->attr.pointer || c->attr.dimension
13705 || c->attr.allocatable))
13706 {
13707 gfc_error ("Component %qs at %L with coarray component "
13708 "shall be a nonpointer, nonallocatable scalar",
13709 c->name, &c->loc);
13710 return false;
13711 }
13712
13713 /* F2008, C448. */
13714 if (c->attr.contiguous && (!c->attr.dimension || !c->attr.pointer))
13715 {
13716 gfc_error ("Component %qs at %L has the CONTIGUOUS attribute but "
13717 "is not an array pointer", c->name, &c->loc);
13718 return false;
13719 }
13720
13721 /* F2003, 15.2.1 - length has to be one. */
13722 if (sym->attr.is_bind_c && c->ts.type == BT_CHARACTER
13723 && (c->ts.u.cl == NULL || c->ts.u.cl->length == NULL
13724 || !gfc_is_constant_expr (c->ts.u.cl->length)
13725 || mpz_cmp_si (c->ts.u.cl->length->value.integer, 1) != 0))
13726 {
13727 gfc_error ("Component %qs of BIND(C) type at %L must have length one",
13728 c->name, &c->loc);
13729 return false;
13730 }
13731
13732 if (c->attr.proc_pointer && c->ts.interface)
13733 {
13734 gfc_symbol *ifc = c->ts.interface;
13735
13736 if (!sym->attr.vtype && !check_proc_interface (ifc, &c->loc))
13737 {
13738 c->tb->error = 1;
13739 return false;
13740 }
13741
13742 if (ifc->attr.if_source || ifc->attr.intrinsic)
13743 {
13744 /* Resolve interface and copy attributes. */
13745 if (ifc->formal && !ifc->formal_ns)
13746 resolve_symbol (ifc);
13747 if (ifc->attr.intrinsic)
13748 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
13749
13750 if (ifc->result)
13751 {
13752 c->ts = ifc->result->ts;
13753 c->attr.allocatable = ifc->result->attr.allocatable;
13754 c->attr.pointer = ifc->result->attr.pointer;
13755 c->attr.dimension = ifc->result->attr.dimension;
13756 c->as = gfc_copy_array_spec (ifc->result->as);
13757 c->attr.class_ok = ifc->result->attr.class_ok;
13758 }
13759 else
13760 {
13761 c->ts = ifc->ts;
13762 c->attr.allocatable = ifc->attr.allocatable;
13763 c->attr.pointer = ifc->attr.pointer;
13764 c->attr.dimension = ifc->attr.dimension;
13765 c->as = gfc_copy_array_spec (ifc->as);
13766 c->attr.class_ok = ifc->attr.class_ok;
13767 }
13768 c->ts.interface = ifc;
13769 c->attr.function = ifc->attr.function;
13770 c->attr.subroutine = ifc->attr.subroutine;
13771
13772 c->attr.pure = ifc->attr.pure;
13773 c->attr.elemental = ifc->attr.elemental;
13774 c->attr.recursive = ifc->attr.recursive;
13775 c->attr.always_explicit = ifc->attr.always_explicit;
13776 c->attr.ext_attr |= ifc->attr.ext_attr;
13777 /* Copy char length. */
13778 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
13779 {
13780 gfc_charlen *cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
13781 if (cl->length && !cl->resolved
13782 && !gfc_resolve_expr (cl->length))
13783 {
13784 c->tb->error = 1;
13785 return false;
13786 }
13787 c->ts.u.cl = cl;
13788 }
13789 }
13790 }
13791 else if (c->attr.proc_pointer && c->ts.type == BT_UNKNOWN)
13792 {
13793 /* Since PPCs are not implicitly typed, a PPC without an explicit
13794 interface must be a subroutine. */
13795 gfc_add_subroutine (&c->attr, c->name, &c->loc);
13796 }
13797
13798 /* Procedure pointer components: Check PASS arg. */
13799 if (c->attr.proc_pointer && !c->tb->nopass && c->tb->pass_arg_num == 0
13800 && !sym->attr.vtype)
13801 {
13802 gfc_symbol* me_arg;
13803
13804 if (c->tb->pass_arg)
13805 {
13806 gfc_formal_arglist* i;
13807
13808 /* If an explicit passing argument name is given, walk the arg-list
13809 and look for it. */
13810
13811 me_arg = NULL;
13812 c->tb->pass_arg_num = 1;
13813 for (i = c->ts.interface->formal; i; i = i->next)
13814 {
13815 if (!strcmp (i->sym->name, c->tb->pass_arg))
13816 {
13817 me_arg = i->sym;
13818 break;
13819 }
13820 c->tb->pass_arg_num++;
13821 }
13822
13823 if (!me_arg)
13824 {
13825 gfc_error ("Procedure pointer component %qs with PASS(%s) "
13826 "at %L has no argument %qs", c->name,
13827 c->tb->pass_arg, &c->loc, c->tb->pass_arg);
13828 c->tb->error = 1;
13829 return false;
13830 }
13831 }
13832 else
13833 {
13834 /* Otherwise, take the first one; there should in fact be at least
13835 one. */
13836 c->tb->pass_arg_num = 1;
13837 if (!c->ts.interface->formal)
13838 {
13839 gfc_error ("Procedure pointer component %qs with PASS at %L "
13840 "must have at least one argument",
13841 c->name, &c->loc);
13842 c->tb->error = 1;
13843 return false;
13844 }
13845 me_arg = c->ts.interface->formal->sym;
13846 }
13847
13848 /* Now check that the argument-type matches. */
13849 gcc_assert (me_arg);
13850 if ((me_arg->ts.type != BT_DERIVED && me_arg->ts.type != BT_CLASS)
13851 || (me_arg->ts.type == BT_DERIVED && me_arg->ts.u.derived != sym)
13852 || (me_arg->ts.type == BT_CLASS
13853 && CLASS_DATA (me_arg)->ts.u.derived != sym))
13854 {
13855 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13856 " the derived type %qs", me_arg->name, c->name,
13857 me_arg->name, &c->loc, sym->name);
13858 c->tb->error = 1;
13859 return false;
13860 }
13861
13862 /* Check for F03:C453. */
13863 if (CLASS_DATA (me_arg)->attr.dimension)
13864 {
13865 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13866 "must be scalar", me_arg->name, c->name, me_arg->name,
13867 &c->loc);
13868 c->tb->error = 1;
13869 return false;
13870 }
13871
13872 if (CLASS_DATA (me_arg)->attr.class_pointer)
13873 {
13874 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13875 "may not have the POINTER attribute", me_arg->name,
13876 c->name, me_arg->name, &c->loc);
13877 c->tb->error = 1;
13878 return false;
13879 }
13880
13881 if (CLASS_DATA (me_arg)->attr.allocatable)
13882 {
13883 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13884 "may not be ALLOCATABLE", me_arg->name, c->name,
13885 me_arg->name, &c->loc);
13886 c->tb->error = 1;
13887 return false;
13888 }
13889
13890 if (gfc_type_is_extensible (sym) && me_arg->ts.type != BT_CLASS)
13891 {
13892 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13893 " at %L", c->name, &c->loc);
13894 return false;
13895 }
13896
13897 }
13898
13899 /* Check type-spec if this is not the parent-type component. */
13900 if (((sym->attr.is_class
13901 && (!sym->components->ts.u.derived->attr.extension
13902 || c != sym->components->ts.u.derived->components))
13903 || (!sym->attr.is_class
13904 && (!sym->attr.extension || c != sym->components)))
13905 && !sym->attr.vtype
13906 && !resolve_typespec_used (&c->ts, &c->loc, c->name))
13907 return false;
13908
13909 super_type = gfc_get_derived_super_type (sym);
13910
13911 /* If this type is an extension, set the accessibility of the parent
13912 component. */
13913 if (super_type
13914 && ((sym->attr.is_class
13915 && c == sym->components->ts.u.derived->components)
13916 || (!sym->attr.is_class && c == sym->components))
13917 && strcmp (super_type->name, c->name) == 0)
13918 c->attr.access = super_type->attr.access;
13919
13920 /* If this type is an extension, see if this component has the same name
13921 as an inherited type-bound procedure. */
13922 if (super_type && !sym->attr.is_class
13923 && gfc_find_typebound_proc (super_type, NULL, c->name, true, NULL))
13924 {
13925 gfc_error ("Component %qs of %qs at %L has the same name as an"
13926 " inherited type-bound procedure",
13927 c->name, sym->name, &c->loc);
13928 return false;
13929 }
13930
13931 if (c->ts.type == BT_CHARACTER && !c->attr.proc_pointer
13932 && !c->ts.deferred)
13933 {
13934 if (c->ts.u.cl->length == NULL
13935 || (!resolve_charlen(c->ts.u.cl))
13936 || !gfc_is_constant_expr (c->ts.u.cl->length))
13937 {
13938 gfc_error ("Character length of component %qs needs to "
13939 "be a constant specification expression at %L",
13940 c->name,
13941 c->ts.u.cl->length ? &c->ts.u.cl->length->where : &c->loc);
13942 return false;
13943 }
13944 }
13945
13946 if (c->ts.type == BT_CHARACTER && c->ts.deferred
13947 && !c->attr.pointer && !c->attr.allocatable)
13948 {
13949 gfc_error ("Character component %qs of %qs at %L with deferred "
13950 "length must be a POINTER or ALLOCATABLE",
13951 c->name, sym->name, &c->loc);
13952 return false;
13953 }
13954
13955 /* Add the hidden deferred length field. */
13956 if (c->ts.type == BT_CHARACTER
13957 && (c->ts.deferred || c->attr.pdt_string)
13958 && !c->attr.function
13959 && !sym->attr.is_class)
13960 {
13961 char name[GFC_MAX_SYMBOL_LEN+9];
13962 gfc_component *strlen;
13963 sprintf (name, "_%s_length", c->name);
13964 strlen = gfc_find_component (sym, name, true, true, NULL);
13965 if (strlen == NULL)
13966 {
13967 if (!gfc_add_component (sym, name, &strlen))
13968 return false;
13969 strlen->ts.type = BT_INTEGER;
13970 strlen->ts.kind = gfc_charlen_int_kind;
13971 strlen->attr.access = ACCESS_PRIVATE;
13972 strlen->attr.artificial = 1;
13973 }
13974 }
13975
13976 if (c->ts.type == BT_DERIVED
13977 && sym->component_access != ACCESS_PRIVATE
13978 && gfc_check_symbol_access (sym)
13979 && !is_sym_host_assoc (c->ts.u.derived, sym->ns)
13980 && !c->ts.u.derived->attr.use_assoc
13981 && !gfc_check_symbol_access (c->ts.u.derived)
13982 && !gfc_notify_std (GFC_STD_F2003, "the component %qs is a "
13983 "PRIVATE type and cannot be a component of "
13984 "%qs, which is PUBLIC at %L", c->name,
13985 sym->name, &sym->declared_at))
13986 return false;
13987
13988 if ((sym->attr.sequence || sym->attr.is_bind_c) && c->ts.type == BT_CLASS)
13989 {
13990 gfc_error ("Polymorphic component %s at %L in SEQUENCE or BIND(C) "
13991 "type %s", c->name, &c->loc, sym->name);
13992 return false;
13993 }
13994
13995 if (sym->attr.sequence)
13996 {
13997 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.sequence == 0)
13998 {
13999 gfc_error ("Component %s of SEQUENCE type declared at %L does "
14000 "not have the SEQUENCE attribute",
14001 c->ts.u.derived->name, &sym->declared_at);
14002 return false;
14003 }
14004 }
14005
14006 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.generic)
14007 c->ts.u.derived = gfc_find_dt_in_generic (c->ts.u.derived);
14008 else if (c->ts.type == BT_CLASS && c->attr.class_ok
14009 && CLASS_DATA (c)->ts.u.derived->attr.generic)
14010 CLASS_DATA (c)->ts.u.derived
14011 = gfc_find_dt_in_generic (CLASS_DATA (c)->ts.u.derived);
14012
14013 /* If an allocatable component derived type is of the same type as
14014 the enclosing derived type, we need a vtable generating so that
14015 the __deallocate procedure is created. */
14016 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
14017 && c->ts.u.derived == sym && c->attr.allocatable == 1)
14018 gfc_find_vtab (&c->ts);
14019
14020 /* Ensure that all the derived type components are put on the
14021 derived type list; even in formal namespaces, where derived type
14022 pointer components might not have been declared. */
14023 if (c->ts.type == BT_DERIVED
14024 && c->ts.u.derived
14025 && c->ts.u.derived->components
14026 && c->attr.pointer
14027 && sym != c->ts.u.derived)
14028 add_dt_to_dt_list (c->ts.u.derived);
14029
14030 if (!gfc_resolve_array_spec (c->as,
14031 !(c->attr.pointer || c->attr.proc_pointer
14032 || c->attr.allocatable)))
14033 return false;
14034
14035 if (c->initializer && !sym->attr.vtype
14036 && !c->attr.pdt_kind && !c->attr.pdt_len
14037 && !gfc_check_assign_symbol (sym, c, c->initializer))
14038 return false;
14039
14040 return true;
14041 }
14042
14043
14044 /* Be nice about the locus for a structure expression - show the locus of the
14045 first non-null sub-expression if we can. */
14046
14047 static locus *
14048 cons_where (gfc_expr *struct_expr)
14049 {
14050 gfc_constructor *cons;
14051
14052 gcc_assert (struct_expr && struct_expr->expr_type == EXPR_STRUCTURE);
14053
14054 cons = gfc_constructor_first (struct_expr->value.constructor);
14055 for (; cons; cons = gfc_constructor_next (cons))
14056 {
14057 if (cons->expr && cons->expr->expr_type != EXPR_NULL)
14058 return &cons->expr->where;
14059 }
14060
14061 return &struct_expr->where;
14062 }
14063
14064 /* Resolve the components of a structure type. Much less work than derived
14065 types. */
14066
14067 static bool
14068 resolve_fl_struct (gfc_symbol *sym)
14069 {
14070 gfc_component *c;
14071 gfc_expr *init = NULL;
14072 bool success;
14073
14074 /* Make sure UNIONs do not have overlapping initializers. */
14075 if (sym->attr.flavor == FL_UNION)
14076 {
14077 for (c = sym->components; c; c = c->next)
14078 {
14079 if (init && c->initializer)
14080 {
14081 gfc_error ("Conflicting initializers in union at %L and %L",
14082 cons_where (init), cons_where (c->initializer));
14083 gfc_free_expr (c->initializer);
14084 c->initializer = NULL;
14085 }
14086 if (init == NULL)
14087 init = c->initializer;
14088 }
14089 }
14090
14091 success = true;
14092 for (c = sym->components; c; c = c->next)
14093 if (!resolve_component (c, sym))
14094 success = false;
14095
14096 if (!success)
14097 return false;
14098
14099 if (sym->components)
14100 add_dt_to_dt_list (sym);
14101
14102 return true;
14103 }
14104
14105
14106 /* Resolve the components of a derived type. This does not have to wait until
14107 resolution stage, but can be done as soon as the dt declaration has been
14108 parsed. */
14109
14110 static bool
14111 resolve_fl_derived0 (gfc_symbol *sym)
14112 {
14113 gfc_symbol* super_type;
14114 gfc_component *c;
14115 gfc_formal_arglist *f;
14116 bool success;
14117
14118 if (sym->attr.unlimited_polymorphic)
14119 return true;
14120
14121 super_type = gfc_get_derived_super_type (sym);
14122
14123 /* F2008, C432. */
14124 if (super_type && sym->attr.coarray_comp && !super_type->attr.coarray_comp)
14125 {
14126 gfc_error ("As extending type %qs at %L has a coarray component, "
14127 "parent type %qs shall also have one", sym->name,
14128 &sym->declared_at, super_type->name);
14129 return false;
14130 }
14131
14132 /* Ensure the extended type gets resolved before we do. */
14133 if (super_type && !resolve_fl_derived0 (super_type))
14134 return false;
14135
14136 /* An ABSTRACT type must be extensible. */
14137 if (sym->attr.abstract && !gfc_type_is_extensible (sym))
14138 {
14139 gfc_error ("Non-extensible derived-type %qs at %L must not be ABSTRACT",
14140 sym->name, &sym->declared_at);
14141 return false;
14142 }
14143
14144 c = (sym->attr.is_class) ? sym->components->ts.u.derived->components
14145 : sym->components;
14146
14147 success = true;
14148 for ( ; c != NULL; c = c->next)
14149 if (!resolve_component (c, sym))
14150 success = false;
14151
14152 if (!success)
14153 return false;
14154
14155 /* Now add the caf token field, where needed. */
14156 if (flag_coarray != GFC_FCOARRAY_NONE
14157 && !sym->attr.is_class && !sym->attr.vtype)
14158 {
14159 for (c = sym->components; c; c = c->next)
14160 if (!c->attr.dimension && !c->attr.codimension
14161 && (c->attr.allocatable || c->attr.pointer))
14162 {
14163 char name[GFC_MAX_SYMBOL_LEN+9];
14164 gfc_component *token;
14165 sprintf (name, "_caf_%s", c->name);
14166 token = gfc_find_component (sym, name, true, true, NULL);
14167 if (token == NULL)
14168 {
14169 if (!gfc_add_component (sym, name, &token))
14170 return false;
14171 token->ts.type = BT_VOID;
14172 token->ts.kind = gfc_default_integer_kind;
14173 token->attr.access = ACCESS_PRIVATE;
14174 token->attr.artificial = 1;
14175 token->attr.caf_token = 1;
14176 }
14177 }
14178 }
14179
14180 check_defined_assignments (sym);
14181
14182 if (!sym->attr.defined_assign_comp && super_type)
14183 sym->attr.defined_assign_comp
14184 = super_type->attr.defined_assign_comp;
14185
14186 /* If this is a non-ABSTRACT type extending an ABSTRACT one, ensure that
14187 all DEFERRED bindings are overridden. */
14188 if (super_type && super_type->attr.abstract && !sym->attr.abstract
14189 && !sym->attr.is_class
14190 && !ensure_not_abstract (sym, super_type))
14191 return false;
14192
14193 /* Check that there is a component for every PDT parameter. */
14194 if (sym->attr.pdt_template)
14195 {
14196 for (f = sym->formal; f; f = f->next)
14197 {
14198 if (!f->sym)
14199 continue;
14200 c = gfc_find_component (sym, f->sym->name, true, true, NULL);
14201 if (c == NULL)
14202 {
14203 gfc_error ("Parameterized type %qs does not have a component "
14204 "corresponding to parameter %qs at %L", sym->name,
14205 f->sym->name, &sym->declared_at);
14206 break;
14207 }
14208 }
14209 }
14210
14211 /* Add derived type to the derived type list. */
14212 add_dt_to_dt_list (sym);
14213
14214 return true;
14215 }
14216
14217
14218 /* The following procedure does the full resolution of a derived type,
14219 including resolution of all type-bound procedures (if present). In contrast
14220 to 'resolve_fl_derived0' this can only be done after the module has been
14221 parsed completely. */
14222
14223 static bool
14224 resolve_fl_derived (gfc_symbol *sym)
14225 {
14226 gfc_symbol *gen_dt = NULL;
14227
14228 if (sym->attr.unlimited_polymorphic)
14229 return true;
14230
14231 if (!sym->attr.is_class)
14232 gfc_find_symbol (sym->name, sym->ns, 0, &gen_dt);
14233 if (gen_dt && gen_dt->generic && gen_dt->generic->next
14234 && (!gen_dt->generic->sym->attr.use_assoc
14235 || gen_dt->generic->sym->module != gen_dt->generic->next->sym->module)
14236 && !gfc_notify_std (GFC_STD_F2003, "Generic name %qs of function "
14237 "%qs at %L being the same name as derived "
14238 "type at %L", sym->name,
14239 gen_dt->generic->sym == sym
14240 ? gen_dt->generic->next->sym->name
14241 : gen_dt->generic->sym->name,
14242 gen_dt->generic->sym == sym
14243 ? &gen_dt->generic->next->sym->declared_at
14244 : &gen_dt->generic->sym->declared_at,
14245 &sym->declared_at))
14246 return false;
14247
14248 if (sym->components == NULL && !sym->attr.zero_comp && !sym->attr.use_assoc)
14249 {
14250 gfc_error ("Derived type %qs at %L has not been declared",
14251 sym->name, &sym->declared_at);
14252 return false;
14253 }
14254
14255 /* Resolve the finalizer procedures. */
14256 if (!gfc_resolve_finalizers (sym, NULL))
14257 return false;
14258
14259 if (sym->attr.is_class && sym->ts.u.derived == NULL)
14260 {
14261 /* Fix up incomplete CLASS symbols. */
14262 gfc_component *data = gfc_find_component (sym, "_data", true, true, NULL);
14263 gfc_component *vptr = gfc_find_component (sym, "_vptr", true, true, NULL);
14264
14265 /* Nothing more to do for unlimited polymorphic entities. */
14266 if (data->ts.u.derived->attr.unlimited_polymorphic)
14267 return true;
14268 else if (vptr->ts.u.derived == NULL)
14269 {
14270 gfc_symbol *vtab = gfc_find_derived_vtab (data->ts.u.derived);
14271 gcc_assert (vtab);
14272 vptr->ts.u.derived = vtab->ts.u.derived;
14273 if (!resolve_fl_derived0 (vptr->ts.u.derived))
14274 return false;
14275 }
14276 }
14277
14278 if (!resolve_fl_derived0 (sym))
14279 return false;
14280
14281 /* Resolve the type-bound procedures. */
14282 if (!resolve_typebound_procedures (sym))
14283 return false;
14284
14285 /* Generate module vtables subject to their accessibility and their not
14286 being vtables or pdt templates. If this is not done class declarations
14287 in external procedures wind up with their own version and so SELECT TYPE
14288 fails because the vptrs do not have the same address. */
14289 if (gfc_option.allow_std & GFC_STD_F2003
14290 && sym->ns->proc_name
14291 && sym->ns->proc_name->attr.flavor == FL_MODULE
14292 && sym->attr.access != ACCESS_PRIVATE
14293 && !(sym->attr.use_assoc || sym->attr.vtype || sym->attr.pdt_template))
14294 {
14295 gfc_symbol *vtab = gfc_find_derived_vtab (sym);
14296 gfc_set_sym_referenced (vtab);
14297 }
14298
14299 return true;
14300 }
14301
14302
14303 static bool
14304 resolve_fl_namelist (gfc_symbol *sym)
14305 {
14306 gfc_namelist *nl;
14307 gfc_symbol *nlsym;
14308
14309 for (nl = sym->namelist; nl; nl = nl->next)
14310 {
14311 /* Check again, the check in match only works if NAMELIST comes
14312 after the decl. */
14313 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SIZE)
14314 {
14315 gfc_error ("Assumed size array %qs in namelist %qs at %L is not "
14316 "allowed", nl->sym->name, sym->name, &sym->declared_at);
14317 return false;
14318 }
14319
14320 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SHAPE
14321 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14322 "with assumed shape in namelist %qs at %L",
14323 nl->sym->name, sym->name, &sym->declared_at))
14324 return false;
14325
14326 if (is_non_constant_shape_array (nl->sym)
14327 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14328 "with nonconstant shape in namelist %qs at %L",
14329 nl->sym->name, sym->name, &sym->declared_at))
14330 return false;
14331
14332 if (nl->sym->ts.type == BT_CHARACTER
14333 && (nl->sym->ts.u.cl->length == NULL
14334 || !gfc_is_constant_expr (nl->sym->ts.u.cl->length))
14335 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs with "
14336 "nonconstant character length in "
14337 "namelist %qs at %L", nl->sym->name,
14338 sym->name, &sym->declared_at))
14339 return false;
14340
14341 }
14342
14343 /* Reject PRIVATE objects in a PUBLIC namelist. */
14344 if (gfc_check_symbol_access (sym))
14345 {
14346 for (nl = sym->namelist; nl; nl = nl->next)
14347 {
14348 if (!nl->sym->attr.use_assoc
14349 && !is_sym_host_assoc (nl->sym, sym->ns)
14350 && !gfc_check_symbol_access (nl->sym))
14351 {
14352 gfc_error ("NAMELIST object %qs was declared PRIVATE and "
14353 "cannot be member of PUBLIC namelist %qs at %L",
14354 nl->sym->name, sym->name, &sym->declared_at);
14355 return false;
14356 }
14357
14358 if (nl->sym->ts.type == BT_DERIVED
14359 && (nl->sym->ts.u.derived->attr.alloc_comp
14360 || nl->sym->ts.u.derived->attr.pointer_comp))
14361 {
14362 if (!gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs in "
14363 "namelist %qs at %L with ALLOCATABLE "
14364 "or POINTER components", nl->sym->name,
14365 sym->name, &sym->declared_at))
14366 return false;
14367 return true;
14368 }
14369
14370 /* Types with private components that came here by USE-association. */
14371 if (nl->sym->ts.type == BT_DERIVED
14372 && derived_inaccessible (nl->sym->ts.u.derived))
14373 {
14374 gfc_error ("NAMELIST object %qs has use-associated PRIVATE "
14375 "components and cannot be member of namelist %qs at %L",
14376 nl->sym->name, sym->name, &sym->declared_at);
14377 return false;
14378 }
14379
14380 /* Types with private components that are defined in the same module. */
14381 if (nl->sym->ts.type == BT_DERIVED
14382 && !is_sym_host_assoc (nl->sym->ts.u.derived, sym->ns)
14383 && nl->sym->ts.u.derived->attr.private_comp)
14384 {
14385 gfc_error ("NAMELIST object %qs has PRIVATE components and "
14386 "cannot be a member of PUBLIC namelist %qs at %L",
14387 nl->sym->name, sym->name, &sym->declared_at);
14388 return false;
14389 }
14390 }
14391 }
14392
14393
14394 /* 14.1.2 A module or internal procedure represent local entities
14395 of the same type as a namelist member and so are not allowed. */
14396 for (nl = sym->namelist; nl; nl = nl->next)
14397 {
14398 if (nl->sym->ts.kind != 0 && nl->sym->attr.flavor == FL_VARIABLE)
14399 continue;
14400
14401 if (nl->sym->attr.function && nl->sym == nl->sym->result)
14402 if ((nl->sym == sym->ns->proc_name)
14403 ||
14404 (sym->ns->parent && nl->sym == sym->ns->parent->proc_name))
14405 continue;
14406
14407 nlsym = NULL;
14408 if (nl->sym->name)
14409 gfc_find_symbol (nl->sym->name, sym->ns, 1, &nlsym);
14410 if (nlsym && nlsym->attr.flavor == FL_PROCEDURE)
14411 {
14412 gfc_error ("PROCEDURE attribute conflicts with NAMELIST "
14413 "attribute in %qs at %L", nlsym->name,
14414 &sym->declared_at);
14415 return false;
14416 }
14417 }
14418
14419 if (async_io_dt)
14420 {
14421 for (nl = sym->namelist; nl; nl = nl->next)
14422 nl->sym->attr.asynchronous = 1;
14423 }
14424 return true;
14425 }
14426
14427
14428 static bool
14429 resolve_fl_parameter (gfc_symbol *sym)
14430 {
14431 /* A parameter array's shape needs to be constant. */
14432 if (sym->as != NULL
14433 && (sym->as->type == AS_DEFERRED
14434 || is_non_constant_shape_array (sym)))
14435 {
14436 gfc_error ("Parameter array %qs at %L cannot be automatic "
14437 "or of deferred shape", sym->name, &sym->declared_at);
14438 return false;
14439 }
14440
14441 /* Constraints on deferred type parameter. */
14442 if (!deferred_requirements (sym))
14443 return false;
14444
14445 /* Make sure a parameter that has been implicitly typed still
14446 matches the implicit type, since PARAMETER statements can precede
14447 IMPLICIT statements. */
14448 if (sym->attr.implicit_type
14449 && !gfc_compare_types (&sym->ts, gfc_get_default_type (sym->name,
14450 sym->ns)))
14451 {
14452 gfc_error ("Implicitly typed PARAMETER %qs at %L doesn't match a "
14453 "later IMPLICIT type", sym->name, &sym->declared_at);
14454 return false;
14455 }
14456
14457 /* Make sure the types of derived parameters are consistent. This
14458 type checking is deferred until resolution because the type may
14459 refer to a derived type from the host. */
14460 if (sym->ts.type == BT_DERIVED
14461 && !gfc_compare_types (&sym->ts, &sym->value->ts))
14462 {
14463 gfc_error ("Incompatible derived type in PARAMETER at %L",
14464 &sym->value->where);
14465 return false;
14466 }
14467
14468 /* F03:C509,C514. */
14469 if (sym->ts.type == BT_CLASS)
14470 {
14471 gfc_error ("CLASS variable %qs at %L cannot have the PARAMETER attribute",
14472 sym->name, &sym->declared_at);
14473 return false;
14474 }
14475
14476 return true;
14477 }
14478
14479
14480 /* Called by resolve_symbol to check PDTs. */
14481
14482 static void
14483 resolve_pdt (gfc_symbol* sym)
14484 {
14485 gfc_symbol *derived = NULL;
14486 gfc_actual_arglist *param;
14487 gfc_component *c;
14488 bool const_len_exprs = true;
14489 bool assumed_len_exprs = false;
14490 symbol_attribute *attr;
14491
14492 if (sym->ts.type == BT_DERIVED)
14493 {
14494 derived = sym->ts.u.derived;
14495 attr = &(sym->attr);
14496 }
14497 else if (sym->ts.type == BT_CLASS)
14498 {
14499 derived = CLASS_DATA (sym)->ts.u.derived;
14500 attr = &(CLASS_DATA (sym)->attr);
14501 }
14502 else
14503 gcc_unreachable ();
14504
14505 gcc_assert (derived->attr.pdt_type);
14506
14507 for (param = sym->param_list; param; param = param->next)
14508 {
14509 c = gfc_find_component (derived, param->name, false, true, NULL);
14510 gcc_assert (c);
14511 if (c->attr.pdt_kind)
14512 continue;
14513
14514 if (param->expr && !gfc_is_constant_expr (param->expr)
14515 && c->attr.pdt_len)
14516 const_len_exprs = false;
14517 else if (param->spec_type == SPEC_ASSUMED)
14518 assumed_len_exprs = true;
14519
14520 if (param->spec_type == SPEC_DEFERRED
14521 && !attr->allocatable && !attr->pointer)
14522 gfc_error ("The object %qs at %L has a deferred LEN "
14523 "parameter %qs and is neither allocatable "
14524 "nor a pointer", sym->name, &sym->declared_at,
14525 param->name);
14526
14527 }
14528
14529 if (!const_len_exprs
14530 && (sym->ns->proc_name->attr.is_main_program
14531 || sym->ns->proc_name->attr.flavor == FL_MODULE
14532 || sym->attr.save != SAVE_NONE))
14533 gfc_error ("The AUTOMATIC object %qs at %L must not have the "
14534 "SAVE attribute or be a variable declared in the "
14535 "main program, a module or a submodule(F08/C513)",
14536 sym->name, &sym->declared_at);
14537
14538 if (assumed_len_exprs && !(sym->attr.dummy
14539 || sym->attr.select_type_temporary || sym->attr.associate_var))
14540 gfc_error ("The object %qs at %L with ASSUMED type parameters "
14541 "must be a dummy or a SELECT TYPE selector(F08/4.2)",
14542 sym->name, &sym->declared_at);
14543 }
14544
14545
14546 /* Do anything necessary to resolve a symbol. Right now, we just
14547 assume that an otherwise unknown symbol is a variable. This sort
14548 of thing commonly happens for symbols in module. */
14549
14550 static void
14551 resolve_symbol (gfc_symbol *sym)
14552 {
14553 int check_constant, mp_flag;
14554 gfc_symtree *symtree;
14555 gfc_symtree *this_symtree;
14556 gfc_namespace *ns;
14557 gfc_component *c;
14558 symbol_attribute class_attr;
14559 gfc_array_spec *as;
14560 bool saved_specification_expr;
14561
14562 if (sym->resolved)
14563 return;
14564 sym->resolved = 1;
14565
14566 /* No symbol will ever have union type; only components can be unions.
14567 Union type declaration symbols have type BT_UNKNOWN but flavor FL_UNION
14568 (just like derived type declaration symbols have flavor FL_DERIVED). */
14569 gcc_assert (sym->ts.type != BT_UNION);
14570
14571 /* Coarrayed polymorphic objects with allocatable or pointer components are
14572 yet unsupported for -fcoarray=lib. */
14573 if (flag_coarray == GFC_FCOARRAY_LIB && sym->ts.type == BT_CLASS
14574 && sym->ts.u.derived && CLASS_DATA (sym)
14575 && CLASS_DATA (sym)->attr.codimension
14576 && (CLASS_DATA (sym)->ts.u.derived->attr.alloc_comp
14577 || CLASS_DATA (sym)->ts.u.derived->attr.pointer_comp))
14578 {
14579 gfc_error ("Sorry, allocatable/pointer components in polymorphic (CLASS) "
14580 "type coarrays at %L are unsupported", &sym->declared_at);
14581 return;
14582 }
14583
14584 if (sym->attr.artificial)
14585 return;
14586
14587 if (sym->attr.unlimited_polymorphic)
14588 return;
14589
14590 if (sym->attr.flavor == FL_UNKNOWN
14591 || (sym->attr.flavor == FL_PROCEDURE && !sym->attr.intrinsic
14592 && !sym->attr.generic && !sym->attr.external
14593 && sym->attr.if_source == IFSRC_UNKNOWN
14594 && sym->ts.type == BT_UNKNOWN))
14595 {
14596
14597 /* If we find that a flavorless symbol is an interface in one of the
14598 parent namespaces, find its symtree in this namespace, free the
14599 symbol and set the symtree to point to the interface symbol. */
14600 for (ns = gfc_current_ns->parent; ns; ns = ns->parent)
14601 {
14602 symtree = gfc_find_symtree (ns->sym_root, sym->name);
14603 if (symtree && (symtree->n.sym->generic ||
14604 (symtree->n.sym->attr.flavor == FL_PROCEDURE
14605 && sym->ns->construct_entities)))
14606 {
14607 this_symtree = gfc_find_symtree (gfc_current_ns->sym_root,
14608 sym->name);
14609 if (this_symtree->n.sym == sym)
14610 {
14611 symtree->n.sym->refs++;
14612 gfc_release_symbol (sym);
14613 this_symtree->n.sym = symtree->n.sym;
14614 return;
14615 }
14616 }
14617 }
14618
14619 /* Otherwise give it a flavor according to such attributes as
14620 it has. */
14621 if (sym->attr.flavor == FL_UNKNOWN && sym->attr.external == 0
14622 && sym->attr.intrinsic == 0)
14623 sym->attr.flavor = FL_VARIABLE;
14624 else if (sym->attr.flavor == FL_UNKNOWN)
14625 {
14626 sym->attr.flavor = FL_PROCEDURE;
14627 if (sym->attr.dimension)
14628 sym->attr.function = 1;
14629 }
14630 }
14631
14632 if (sym->attr.external && sym->ts.type != BT_UNKNOWN && !sym->attr.function)
14633 gfc_add_function (&sym->attr, sym->name, &sym->declared_at);
14634
14635 if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
14636 && !resolve_procedure_interface (sym))
14637 return;
14638
14639 if (sym->attr.is_protected && !sym->attr.proc_pointer
14640 && (sym->attr.procedure || sym->attr.external))
14641 {
14642 if (sym->attr.external)
14643 gfc_error ("PROTECTED attribute conflicts with EXTERNAL attribute "
14644 "at %L", &sym->declared_at);
14645 else
14646 gfc_error ("PROCEDURE attribute conflicts with PROTECTED attribute "
14647 "at %L", &sym->declared_at);
14648
14649 return;
14650 }
14651
14652 if (sym->attr.flavor == FL_DERIVED && !resolve_fl_derived (sym))
14653 return;
14654
14655 else if ((sym->attr.flavor == FL_STRUCT || sym->attr.flavor == FL_UNION)
14656 && !resolve_fl_struct (sym))
14657 return;
14658
14659 /* Symbols that are module procedures with results (functions) have
14660 the types and array specification copied for type checking in
14661 procedures that call them, as well as for saving to a module
14662 file. These symbols can't stand the scrutiny that their results
14663 can. */
14664 mp_flag = (sym->result != NULL && sym->result != sym);
14665
14666 /* Make sure that the intrinsic is consistent with its internal
14667 representation. This needs to be done before assigning a default
14668 type to avoid spurious warnings. */
14669 if (sym->attr.flavor != FL_MODULE && sym->attr.intrinsic
14670 && !gfc_resolve_intrinsic (sym, &sym->declared_at))
14671 return;
14672
14673 /* Resolve associate names. */
14674 if (sym->assoc)
14675 resolve_assoc_var (sym, true);
14676
14677 /* Assign default type to symbols that need one and don't have one. */
14678 if (sym->ts.type == BT_UNKNOWN)
14679 {
14680 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER)
14681 {
14682 gfc_set_default_type (sym, 1, NULL);
14683 }
14684
14685 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.external
14686 && !sym->attr.function && !sym->attr.subroutine
14687 && gfc_get_default_type (sym->name, sym->ns)->type == BT_UNKNOWN)
14688 gfc_add_subroutine (&sym->attr, sym->name, &sym->declared_at);
14689
14690 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14691 {
14692 /* The specific case of an external procedure should emit an error
14693 in the case that there is no implicit type. */
14694 if (!mp_flag)
14695 {
14696 if (!sym->attr.mixed_entry_master)
14697 gfc_set_default_type (sym, sym->attr.external, NULL);
14698 }
14699 else
14700 {
14701 /* Result may be in another namespace. */
14702 resolve_symbol (sym->result);
14703
14704 if (!sym->result->attr.proc_pointer)
14705 {
14706 sym->ts = sym->result->ts;
14707 sym->as = gfc_copy_array_spec (sym->result->as);
14708 sym->attr.dimension = sym->result->attr.dimension;
14709 sym->attr.pointer = sym->result->attr.pointer;
14710 sym->attr.allocatable = sym->result->attr.allocatable;
14711 sym->attr.contiguous = sym->result->attr.contiguous;
14712 }
14713 }
14714 }
14715 }
14716 else if (mp_flag && sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14717 {
14718 bool saved_specification_expr = specification_expr;
14719 specification_expr = true;
14720 gfc_resolve_array_spec (sym->result->as, false);
14721 specification_expr = saved_specification_expr;
14722 }
14723
14724 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
14725 {
14726 as = CLASS_DATA (sym)->as;
14727 class_attr = CLASS_DATA (sym)->attr;
14728 class_attr.pointer = class_attr.class_pointer;
14729 }
14730 else
14731 {
14732 class_attr = sym->attr;
14733 as = sym->as;
14734 }
14735
14736 /* F2008, C530. */
14737 if (sym->attr.contiguous
14738 && (!class_attr.dimension
14739 || (as->type != AS_ASSUMED_SHAPE && as->type != AS_ASSUMED_RANK
14740 && !class_attr.pointer)))
14741 {
14742 gfc_error ("%qs at %L has the CONTIGUOUS attribute but is not an "
14743 "array pointer or an assumed-shape or assumed-rank array",
14744 sym->name, &sym->declared_at);
14745 return;
14746 }
14747
14748 /* Assumed size arrays and assumed shape arrays must be dummy
14749 arguments. Array-spec's of implied-shape should have been resolved to
14750 AS_EXPLICIT already. */
14751
14752 if (as)
14753 {
14754 /* If AS_IMPLIED_SHAPE makes it to here, it must be a bad
14755 specification expression. */
14756 if (as->type == AS_IMPLIED_SHAPE)
14757 {
14758 int i;
14759 for (i=0; i<as->rank; i++)
14760 {
14761 if (as->lower[i] != NULL && as->upper[i] == NULL)
14762 {
14763 gfc_error ("Bad specification for assumed size array at %L",
14764 &as->lower[i]->where);
14765 return;
14766 }
14767 }
14768 gcc_unreachable();
14769 }
14770
14771 if (((as->type == AS_ASSUMED_SIZE && !as->cp_was_assumed)
14772 || as->type == AS_ASSUMED_SHAPE)
14773 && !sym->attr.dummy && !sym->attr.select_type_temporary)
14774 {
14775 if (as->type == AS_ASSUMED_SIZE)
14776 gfc_error ("Assumed size array at %L must be a dummy argument",
14777 &sym->declared_at);
14778 else
14779 gfc_error ("Assumed shape array at %L must be a dummy argument",
14780 &sym->declared_at);
14781 return;
14782 }
14783 /* TS 29113, C535a. */
14784 if (as->type == AS_ASSUMED_RANK && !sym->attr.dummy
14785 && !sym->attr.select_type_temporary)
14786 {
14787 gfc_error ("Assumed-rank array at %L must be a dummy argument",
14788 &sym->declared_at);
14789 return;
14790 }
14791 if (as->type == AS_ASSUMED_RANK
14792 && (sym->attr.codimension || sym->attr.value))
14793 {
14794 gfc_error ("Assumed-rank array at %L may not have the VALUE or "
14795 "CODIMENSION attribute", &sym->declared_at);
14796 return;
14797 }
14798 }
14799
14800 /* Make sure symbols with known intent or optional are really dummy
14801 variable. Because of ENTRY statement, this has to be deferred
14802 until resolution time. */
14803
14804 if (!sym->attr.dummy
14805 && (sym->attr.optional || sym->attr.intent != INTENT_UNKNOWN))
14806 {
14807 gfc_error ("Symbol at %L is not a DUMMY variable", &sym->declared_at);
14808 return;
14809 }
14810
14811 if (sym->attr.value && !sym->attr.dummy)
14812 {
14813 gfc_error ("%qs at %L cannot have the VALUE attribute because "
14814 "it is not a dummy argument", sym->name, &sym->declared_at);
14815 return;
14816 }
14817
14818 if (sym->attr.value && sym->ts.type == BT_CHARACTER)
14819 {
14820 gfc_charlen *cl = sym->ts.u.cl;
14821 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
14822 {
14823 gfc_error ("Character dummy variable %qs at %L with VALUE "
14824 "attribute must have constant length",
14825 sym->name, &sym->declared_at);
14826 return;
14827 }
14828
14829 if (sym->ts.is_c_interop
14830 && mpz_cmp_si (cl->length->value.integer, 1) != 0)
14831 {
14832 gfc_error ("C interoperable character dummy variable %qs at %L "
14833 "with VALUE attribute must have length one",
14834 sym->name, &sym->declared_at);
14835 return;
14836 }
14837 }
14838
14839 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
14840 && sym->ts.u.derived->attr.generic)
14841 {
14842 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
14843 if (!sym->ts.u.derived)
14844 {
14845 gfc_error ("The derived type %qs at %L is of type %qs, "
14846 "which has not been defined", sym->name,
14847 &sym->declared_at, sym->ts.u.derived->name);
14848 sym->ts.type = BT_UNKNOWN;
14849 return;
14850 }
14851 }
14852
14853 /* Use the same constraints as TYPE(*), except for the type check
14854 and that only scalars and assumed-size arrays are permitted. */
14855 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
14856 {
14857 if (!sym->attr.dummy)
14858 {
14859 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14860 "a dummy argument", sym->name, &sym->declared_at);
14861 return;
14862 }
14863
14864 if (sym->ts.type != BT_ASSUMED && sym->ts.type != BT_INTEGER
14865 && sym->ts.type != BT_REAL && sym->ts.type != BT_LOGICAL
14866 && sym->ts.type != BT_COMPLEX)
14867 {
14868 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14869 "of type TYPE(*) or of an numeric intrinsic type",
14870 sym->name, &sym->declared_at);
14871 return;
14872 }
14873
14874 if (sym->attr.allocatable || sym->attr.codimension
14875 || sym->attr.pointer || sym->attr.value)
14876 {
14877 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
14878 "have the ALLOCATABLE, CODIMENSION, POINTER or VALUE "
14879 "attribute", sym->name, &sym->declared_at);
14880 return;
14881 }
14882
14883 if (sym->attr.intent == INTENT_OUT)
14884 {
14885 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
14886 "have the INTENT(OUT) attribute",
14887 sym->name, &sym->declared_at);
14888 return;
14889 }
14890 if (sym->attr.dimension && sym->as->type != AS_ASSUMED_SIZE)
14891 {
14892 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall "
14893 "either be a scalar or an assumed-size array",
14894 sym->name, &sym->declared_at);
14895 return;
14896 }
14897
14898 /* Set the type to TYPE(*) and add a dimension(*) to ensure
14899 NO_ARG_CHECK is correctly handled in trans*.c, e.g. with
14900 packing. */
14901 sym->ts.type = BT_ASSUMED;
14902 sym->as = gfc_get_array_spec ();
14903 sym->as->type = AS_ASSUMED_SIZE;
14904 sym->as->rank = 1;
14905 sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
14906 }
14907 else if (sym->ts.type == BT_ASSUMED)
14908 {
14909 /* TS 29113, C407a. */
14910 if (!sym->attr.dummy)
14911 {
14912 gfc_error ("Assumed type of variable %s at %L is only permitted "
14913 "for dummy variables", sym->name, &sym->declared_at);
14914 return;
14915 }
14916 if (sym->attr.allocatable || sym->attr.codimension
14917 || sym->attr.pointer || sym->attr.value)
14918 {
14919 gfc_error ("Assumed-type variable %s at %L may not have the "
14920 "ALLOCATABLE, CODIMENSION, POINTER or VALUE attribute",
14921 sym->name, &sym->declared_at);
14922 return;
14923 }
14924 if (sym->attr.intent == INTENT_OUT)
14925 {
14926 gfc_error ("Assumed-type variable %s at %L may not have the "
14927 "INTENT(OUT) attribute",
14928 sym->name, &sym->declared_at);
14929 return;
14930 }
14931 if (sym->attr.dimension && sym->as->type == AS_EXPLICIT)
14932 {
14933 gfc_error ("Assumed-type variable %s at %L shall not be an "
14934 "explicit-shape array", sym->name, &sym->declared_at);
14935 return;
14936 }
14937 }
14938
14939 /* If the symbol is marked as bind(c), that it is declared at module level
14940 scope and verify its type and kind. Do not do the latter for symbols
14941 that are implicitly typed because that is handled in
14942 gfc_set_default_type. Handle dummy arguments and procedure definitions
14943 separately. Also, anything that is use associated is not handled here
14944 but instead is handled in the module it is declared in. Finally, derived
14945 type definitions are allowed to be BIND(C) since that only implies that
14946 they're interoperable, and they are checked fully for interoperability
14947 when a variable is declared of that type. */
14948 if (sym->attr.is_bind_c && sym->attr.use_assoc == 0
14949 && sym->attr.dummy == 0 && sym->attr.flavor != FL_PROCEDURE
14950 && sym->attr.flavor != FL_DERIVED)
14951 {
14952 bool t = true;
14953
14954 /* First, make sure the variable is declared at the
14955 module-level scope (J3/04-007, Section 15.3). */
14956 if (sym->ns->proc_name->attr.flavor != FL_MODULE &&
14957 sym->attr.in_common == 0)
14958 {
14959 gfc_error ("Variable %qs at %L cannot be BIND(C) because it "
14960 "is neither a COMMON block nor declared at the "
14961 "module level scope", sym->name, &(sym->declared_at));
14962 t = false;
14963 }
14964 else if (sym->ts.type == BT_CHARACTER
14965 && (sym->ts.u.cl == NULL || sym->ts.u.cl->length == NULL
14966 || !gfc_is_constant_expr (sym->ts.u.cl->length)
14967 || mpz_cmp_si (sym->ts.u.cl->length->value.integer, 1) != 0))
14968 {
14969 gfc_error ("BIND(C) Variable %qs at %L must have length one",
14970 sym->name, &sym->declared_at);
14971 t = false;
14972 }
14973 else if (sym->common_head != NULL && sym->attr.implicit_type == 0)
14974 {
14975 t = verify_com_block_vars_c_interop (sym->common_head);
14976 }
14977 else if (sym->attr.implicit_type == 0)
14978 {
14979 /* If type() declaration, we need to verify that the components
14980 of the given type are all C interoperable, etc. */
14981 if (sym->ts.type == BT_DERIVED &&
14982 sym->ts.u.derived->attr.is_c_interop != 1)
14983 {
14984 /* Make sure the user marked the derived type as BIND(C). If
14985 not, call the verify routine. This could print an error
14986 for the derived type more than once if multiple variables
14987 of that type are declared. */
14988 if (sym->ts.u.derived->attr.is_bind_c != 1)
14989 verify_bind_c_derived_type (sym->ts.u.derived);
14990 t = false;
14991 }
14992
14993 /* Verify the variable itself as C interoperable if it
14994 is BIND(C). It is not possible for this to succeed if
14995 the verify_bind_c_derived_type failed, so don't have to handle
14996 any error returned by verify_bind_c_derived_type. */
14997 t = verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
14998 sym->common_block);
14999 }
15000
15001 if (!t)
15002 {
15003 /* clear the is_bind_c flag to prevent reporting errors more than
15004 once if something failed. */
15005 sym->attr.is_bind_c = 0;
15006 return;
15007 }
15008 }
15009
15010 /* If a derived type symbol has reached this point, without its
15011 type being declared, we have an error. Notice that most
15012 conditions that produce undefined derived types have already
15013 been dealt with. However, the likes of:
15014 implicit type(t) (t) ..... call foo (t) will get us here if
15015 the type is not declared in the scope of the implicit
15016 statement. Change the type to BT_UNKNOWN, both because it is so
15017 and to prevent an ICE. */
15018 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
15019 && sym->ts.u.derived->components == NULL
15020 && !sym->ts.u.derived->attr.zero_comp)
15021 {
15022 gfc_error ("The derived type %qs at %L is of type %qs, "
15023 "which has not been defined", sym->name,
15024 &sym->declared_at, sym->ts.u.derived->name);
15025 sym->ts.type = BT_UNKNOWN;
15026 return;
15027 }
15028
15029 /* Make sure that the derived type has been resolved and that the
15030 derived type is visible in the symbol's namespace, if it is a
15031 module function and is not PRIVATE. */
15032 if (sym->ts.type == BT_DERIVED
15033 && sym->ts.u.derived->attr.use_assoc
15034 && sym->ns->proc_name
15035 && sym->ns->proc_name->attr.flavor == FL_MODULE
15036 && !resolve_fl_derived (sym->ts.u.derived))
15037 return;
15038
15039 /* Unless the derived-type declaration is use associated, Fortran 95
15040 does not allow public entries of private derived types.
15041 See 4.4.1 (F95) and 4.5.1.1 (F2003); and related interpretation
15042 161 in 95-006r3. */
15043 if (sym->ts.type == BT_DERIVED
15044 && sym->ns->proc_name && sym->ns->proc_name->attr.flavor == FL_MODULE
15045 && !sym->ts.u.derived->attr.use_assoc
15046 && gfc_check_symbol_access (sym)
15047 && !gfc_check_symbol_access (sym->ts.u.derived)
15048 && !gfc_notify_std (GFC_STD_F2003, "PUBLIC %s %qs at %L of PRIVATE "
15049 "derived type %qs",
15050 (sym->attr.flavor == FL_PARAMETER)
15051 ? "parameter" : "variable",
15052 sym->name, &sym->declared_at,
15053 sym->ts.u.derived->name))
15054 return;
15055
15056 /* F2008, C1302. */
15057 if (sym->ts.type == BT_DERIVED
15058 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
15059 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
15060 || sym->ts.u.derived->attr.lock_comp)
15061 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
15062 {
15063 gfc_error ("Variable %s at %L of type LOCK_TYPE or with subcomponent of "
15064 "type LOCK_TYPE must be a coarray", sym->name,
15065 &sym->declared_at);
15066 return;
15067 }
15068
15069 /* TS18508, C702/C703. */
15070 if (sym->ts.type == BT_DERIVED
15071 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
15072 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
15073 || sym->ts.u.derived->attr.event_comp)
15074 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
15075 {
15076 gfc_error ("Variable %s at %L of type EVENT_TYPE or with subcomponent of "
15077 "type EVENT_TYPE must be a coarray", sym->name,
15078 &sym->declared_at);
15079 return;
15080 }
15081
15082 /* An assumed-size array with INTENT(OUT) shall not be of a type for which
15083 default initialization is defined (5.1.2.4.4). */
15084 if (sym->ts.type == BT_DERIVED
15085 && sym->attr.dummy
15086 && sym->attr.intent == INTENT_OUT
15087 && sym->as
15088 && sym->as->type == AS_ASSUMED_SIZE)
15089 {
15090 for (c = sym->ts.u.derived->components; c; c = c->next)
15091 {
15092 if (c->initializer)
15093 {
15094 gfc_error ("The INTENT(OUT) dummy argument %qs at %L is "
15095 "ASSUMED SIZE and so cannot have a default initializer",
15096 sym->name, &sym->declared_at);
15097 return;
15098 }
15099 }
15100 }
15101
15102 /* F2008, C542. */
15103 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
15104 && sym->attr.intent == INTENT_OUT && sym->attr.lock_comp)
15105 {
15106 gfc_error ("Dummy argument %qs at %L of LOCK_TYPE shall not be "
15107 "INTENT(OUT)", sym->name, &sym->declared_at);
15108 return;
15109 }
15110
15111 /* TS18508. */
15112 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
15113 && sym->attr.intent == INTENT_OUT && sym->attr.event_comp)
15114 {
15115 gfc_error ("Dummy argument %qs at %L of EVENT_TYPE shall not be "
15116 "INTENT(OUT)", sym->name, &sym->declared_at);
15117 return;
15118 }
15119
15120 /* F2008, C525. */
15121 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15122 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15123 && CLASS_DATA (sym)->attr.coarray_comp))
15124 || class_attr.codimension)
15125 && (sym->attr.result || sym->result == sym))
15126 {
15127 gfc_error ("Function result %qs at %L shall not be a coarray or have "
15128 "a coarray component", sym->name, &sym->declared_at);
15129 return;
15130 }
15131
15132 /* F2008, C524. */
15133 if (sym->attr.codimension && sym->ts.type == BT_DERIVED
15134 && sym->ts.u.derived->ts.is_iso_c)
15135 {
15136 gfc_error ("Variable %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
15137 "shall not be a coarray", sym->name, &sym->declared_at);
15138 return;
15139 }
15140
15141 /* F2008, C525. */
15142 if (((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15143 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15144 && CLASS_DATA (sym)->attr.coarray_comp))
15145 && (class_attr.codimension || class_attr.pointer || class_attr.dimension
15146 || class_attr.allocatable))
15147 {
15148 gfc_error ("Variable %qs at %L with coarray component shall be a "
15149 "nonpointer, nonallocatable scalar, which is not a coarray",
15150 sym->name, &sym->declared_at);
15151 return;
15152 }
15153
15154 /* F2008, C526. The function-result case was handled above. */
15155 if (class_attr.codimension
15156 && !(class_attr.allocatable || sym->attr.dummy || sym->attr.save
15157 || sym->attr.select_type_temporary
15158 || sym->attr.associate_var
15159 || (sym->ns->save_all && !sym->attr.automatic)
15160 || sym->ns->proc_name->attr.flavor == FL_MODULE
15161 || sym->ns->proc_name->attr.is_main_program
15162 || sym->attr.function || sym->attr.result || sym->attr.use_assoc))
15163 {
15164 gfc_error ("Variable %qs at %L is a coarray and is not ALLOCATABLE, SAVE "
15165 "nor a dummy argument", sym->name, &sym->declared_at);
15166 return;
15167 }
15168 /* F2008, C528. */
15169 else if (class_attr.codimension && !sym->attr.select_type_temporary
15170 && !class_attr.allocatable && as && as->cotype == AS_DEFERRED)
15171 {
15172 gfc_error ("Coarray variable %qs at %L shall not have codimensions with "
15173 "deferred shape", sym->name, &sym->declared_at);
15174 return;
15175 }
15176 else if (class_attr.codimension && class_attr.allocatable && as
15177 && (as->cotype != AS_DEFERRED || as->type != AS_DEFERRED))
15178 {
15179 gfc_error ("Allocatable coarray variable %qs at %L must have "
15180 "deferred shape", sym->name, &sym->declared_at);
15181 return;
15182 }
15183
15184 /* F2008, C541. */
15185 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15186 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15187 && CLASS_DATA (sym)->attr.coarray_comp))
15188 || (class_attr.codimension && class_attr.allocatable))
15189 && sym->attr.dummy && sym->attr.intent == INTENT_OUT)
15190 {
15191 gfc_error ("Variable %qs at %L is INTENT(OUT) and can thus not be an "
15192 "allocatable coarray or have coarray components",
15193 sym->name, &sym->declared_at);
15194 return;
15195 }
15196
15197 if (class_attr.codimension && sym->attr.dummy
15198 && sym->ns->proc_name && sym->ns->proc_name->attr.is_bind_c)
15199 {
15200 gfc_error ("Coarray dummy variable %qs at %L not allowed in BIND(C) "
15201 "procedure %qs", sym->name, &sym->declared_at,
15202 sym->ns->proc_name->name);
15203 return;
15204 }
15205
15206 if (sym->ts.type == BT_LOGICAL
15207 && ((sym->attr.function && sym->attr.is_bind_c && sym->result == sym)
15208 || ((sym->attr.dummy || sym->attr.result) && sym->ns->proc_name
15209 && sym->ns->proc_name->attr.is_bind_c)))
15210 {
15211 int i;
15212 for (i = 0; gfc_logical_kinds[i].kind; i++)
15213 if (gfc_logical_kinds[i].kind == sym->ts.kind)
15214 break;
15215 if (!gfc_logical_kinds[i].c_bool && sym->attr.dummy
15216 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL dummy argument %qs at "
15217 "%L with non-C_Bool kind in BIND(C) procedure "
15218 "%qs", sym->name, &sym->declared_at,
15219 sym->ns->proc_name->name))
15220 return;
15221 else if (!gfc_logical_kinds[i].c_bool
15222 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL result variable "
15223 "%qs at %L with non-C_Bool kind in "
15224 "BIND(C) procedure %qs", sym->name,
15225 &sym->declared_at,
15226 sym->attr.function ? sym->name
15227 : sym->ns->proc_name->name))
15228 return;
15229 }
15230
15231 switch (sym->attr.flavor)
15232 {
15233 case FL_VARIABLE:
15234 if (!resolve_fl_variable (sym, mp_flag))
15235 return;
15236 break;
15237
15238 case FL_PROCEDURE:
15239 if (sym->formal && !sym->formal_ns)
15240 {
15241 /* Check that none of the arguments are a namelist. */
15242 gfc_formal_arglist *formal = sym->formal;
15243
15244 for (; formal; formal = formal->next)
15245 if (formal->sym && formal->sym->attr.flavor == FL_NAMELIST)
15246 {
15247 gfc_error ("Namelist %qs can not be an argument to "
15248 "subroutine or function at %L",
15249 formal->sym->name, &sym->declared_at);
15250 return;
15251 }
15252 }
15253
15254 if (!resolve_fl_procedure (sym, mp_flag))
15255 return;
15256 break;
15257
15258 case FL_NAMELIST:
15259 if (!resolve_fl_namelist (sym))
15260 return;
15261 break;
15262
15263 case FL_PARAMETER:
15264 if (!resolve_fl_parameter (sym))
15265 return;
15266 break;
15267
15268 default:
15269 break;
15270 }
15271
15272 /* Resolve array specifier. Check as well some constraints
15273 on COMMON blocks. */
15274
15275 check_constant = sym->attr.in_common && !sym->attr.pointer;
15276
15277 /* Set the formal_arg_flag so that check_conflict will not throw
15278 an error for host associated variables in the specification
15279 expression for an array_valued function. */
15280 if (sym->attr.function && sym->as)
15281 formal_arg_flag = true;
15282
15283 saved_specification_expr = specification_expr;
15284 specification_expr = true;
15285 gfc_resolve_array_spec (sym->as, check_constant);
15286 specification_expr = saved_specification_expr;
15287
15288 formal_arg_flag = false;
15289
15290 /* Resolve formal namespaces. */
15291 if (sym->formal_ns && sym->formal_ns != gfc_current_ns
15292 && !sym->attr.contained && !sym->attr.intrinsic)
15293 gfc_resolve (sym->formal_ns);
15294
15295 /* Make sure the formal namespace is present. */
15296 if (sym->formal && !sym->formal_ns)
15297 {
15298 gfc_formal_arglist *formal = sym->formal;
15299 while (formal && !formal->sym)
15300 formal = formal->next;
15301
15302 if (formal)
15303 {
15304 sym->formal_ns = formal->sym->ns;
15305 if (sym->ns != formal->sym->ns)
15306 sym->formal_ns->refs++;
15307 }
15308 }
15309
15310 /* Check threadprivate restrictions. */
15311 if (sym->attr.threadprivate && !sym->attr.save
15312 && !(sym->ns->save_all && !sym->attr.automatic)
15313 && (!sym->attr.in_common
15314 && sym->module == NULL
15315 && (sym->ns->proc_name == NULL
15316 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15317 gfc_error ("Threadprivate at %L isn't SAVEd", &sym->declared_at);
15318
15319 /* Check omp declare target restrictions. */
15320 if (sym->attr.omp_declare_target
15321 && sym->attr.flavor == FL_VARIABLE
15322 && !sym->attr.save
15323 && !(sym->ns->save_all && !sym->attr.automatic)
15324 && (!sym->attr.in_common
15325 && sym->module == NULL
15326 && (sym->ns->proc_name == NULL
15327 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15328 gfc_error ("!$OMP DECLARE TARGET variable %qs at %L isn't SAVEd",
15329 sym->name, &sym->declared_at);
15330
15331 /* If we have come this far we can apply default-initializers, as
15332 described in 14.7.5, to those variables that have not already
15333 been assigned one. */
15334 if (sym->ts.type == BT_DERIVED
15335 && !sym->value
15336 && !sym->attr.allocatable
15337 && !sym->attr.alloc_comp)
15338 {
15339 symbol_attribute *a = &sym->attr;
15340
15341 if ((!a->save && !a->dummy && !a->pointer
15342 && !a->in_common && !a->use_assoc
15343 && a->referenced
15344 && !((a->function || a->result)
15345 && (!a->dimension
15346 || sym->ts.u.derived->attr.alloc_comp
15347 || sym->ts.u.derived->attr.pointer_comp))
15348 && !(a->function && sym != sym->result))
15349 || (a->dummy && a->intent == INTENT_OUT && !a->pointer))
15350 apply_default_init (sym);
15351 else if (a->function && sym->result && a->access != ACCESS_PRIVATE
15352 && (sym->ts.u.derived->attr.alloc_comp
15353 || sym->ts.u.derived->attr.pointer_comp))
15354 /* Mark the result symbol to be referenced, when it has allocatable
15355 components. */
15356 sym->result->attr.referenced = 1;
15357 }
15358
15359 if (sym->ts.type == BT_CLASS && sym->ns == gfc_current_ns
15360 && sym->attr.dummy && sym->attr.intent == INTENT_OUT
15361 && !CLASS_DATA (sym)->attr.class_pointer
15362 && !CLASS_DATA (sym)->attr.allocatable)
15363 apply_default_init (sym);
15364
15365 /* If this symbol has a type-spec, check it. */
15366 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER
15367 || (sym->attr.flavor == FL_PROCEDURE && sym->attr.function))
15368 if (!resolve_typespec_used (&sym->ts, &sym->declared_at, sym->name))
15369 return;
15370
15371 if (sym->param_list)
15372 resolve_pdt (sym);
15373 }
15374
15375
15376 /************* Resolve DATA statements *************/
15377
15378 static struct
15379 {
15380 gfc_data_value *vnode;
15381 mpz_t left;
15382 }
15383 values;
15384
15385
15386 /* Advance the values structure to point to the next value in the data list. */
15387
15388 static bool
15389 next_data_value (void)
15390 {
15391 while (mpz_cmp_ui (values.left, 0) == 0)
15392 {
15393
15394 if (values.vnode->next == NULL)
15395 return false;
15396
15397 values.vnode = values.vnode->next;
15398 mpz_set (values.left, values.vnode->repeat);
15399 }
15400
15401 return true;
15402 }
15403
15404
15405 static bool
15406 check_data_variable (gfc_data_variable *var, locus *where)
15407 {
15408 gfc_expr *e;
15409 mpz_t size;
15410 mpz_t offset;
15411 bool t;
15412 ar_type mark = AR_UNKNOWN;
15413 int i;
15414 mpz_t section_index[GFC_MAX_DIMENSIONS];
15415 gfc_ref *ref;
15416 gfc_array_ref *ar;
15417 gfc_symbol *sym;
15418 int has_pointer;
15419
15420 if (!gfc_resolve_expr (var->expr))
15421 return false;
15422
15423 ar = NULL;
15424 mpz_init_set_si (offset, 0);
15425 e = var->expr;
15426
15427 if (e->expr_type == EXPR_FUNCTION && e->value.function.isym
15428 && e->value.function.isym->id == GFC_ISYM_CAF_GET)
15429 e = e->value.function.actual->expr;
15430
15431 if (e->expr_type != EXPR_VARIABLE)
15432 gfc_internal_error ("check_data_variable(): Bad expression");
15433
15434 sym = e->symtree->n.sym;
15435
15436 if (sym->ns->is_block_data && !sym->attr.in_common)
15437 {
15438 gfc_error ("BLOCK DATA element %qs at %L must be in COMMON",
15439 sym->name, &sym->declared_at);
15440 }
15441
15442 if (e->ref == NULL && sym->as)
15443 {
15444 gfc_error ("DATA array %qs at %L must be specified in a previous"
15445 " declaration", sym->name, where);
15446 return false;
15447 }
15448
15449 has_pointer = sym->attr.pointer;
15450
15451 if (gfc_is_coindexed (e))
15452 {
15453 gfc_error ("DATA element %qs at %L cannot have a coindex", sym->name,
15454 where);
15455 return false;
15456 }
15457
15458 for (ref = e->ref; ref; ref = ref->next)
15459 {
15460 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
15461 has_pointer = 1;
15462
15463 if (has_pointer
15464 && ref->type == REF_ARRAY
15465 && ref->u.ar.type != AR_FULL)
15466 {
15467 gfc_error ("DATA element %qs at %L is a pointer and so must "
15468 "be a full array", sym->name, where);
15469 return false;
15470 }
15471 }
15472
15473 if (e->rank == 0 || has_pointer)
15474 {
15475 mpz_init_set_ui (size, 1);
15476 ref = NULL;
15477 }
15478 else
15479 {
15480 ref = e->ref;
15481
15482 /* Find the array section reference. */
15483 for (ref = e->ref; ref; ref = ref->next)
15484 {
15485 if (ref->type != REF_ARRAY)
15486 continue;
15487 if (ref->u.ar.type == AR_ELEMENT)
15488 continue;
15489 break;
15490 }
15491 gcc_assert (ref);
15492
15493 /* Set marks according to the reference pattern. */
15494 switch (ref->u.ar.type)
15495 {
15496 case AR_FULL:
15497 mark = AR_FULL;
15498 break;
15499
15500 case AR_SECTION:
15501 ar = &ref->u.ar;
15502 /* Get the start position of array section. */
15503 gfc_get_section_index (ar, section_index, &offset);
15504 mark = AR_SECTION;
15505 break;
15506
15507 default:
15508 gcc_unreachable ();
15509 }
15510
15511 if (!gfc_array_size (e, &size))
15512 {
15513 gfc_error ("Nonconstant array section at %L in DATA statement",
15514 where);
15515 mpz_clear (offset);
15516 return false;
15517 }
15518 }
15519
15520 t = true;
15521
15522 while (mpz_cmp_ui (size, 0) > 0)
15523 {
15524 if (!next_data_value ())
15525 {
15526 gfc_error ("DATA statement at %L has more variables than values",
15527 where);
15528 t = false;
15529 break;
15530 }
15531
15532 t = gfc_check_assign (var->expr, values.vnode->expr, 0);
15533 if (!t)
15534 break;
15535
15536 /* If we have more than one element left in the repeat count,
15537 and we have more than one element left in the target variable,
15538 then create a range assignment. */
15539 /* FIXME: Only done for full arrays for now, since array sections
15540 seem tricky. */
15541 if (mark == AR_FULL && ref && ref->next == NULL
15542 && mpz_cmp_ui (values.left, 1) > 0 && mpz_cmp_ui (size, 1) > 0)
15543 {
15544 mpz_t range;
15545
15546 if (mpz_cmp (size, values.left) >= 0)
15547 {
15548 mpz_init_set (range, values.left);
15549 mpz_sub (size, size, values.left);
15550 mpz_set_ui (values.left, 0);
15551 }
15552 else
15553 {
15554 mpz_init_set (range, size);
15555 mpz_sub (values.left, values.left, size);
15556 mpz_set_ui (size, 0);
15557 }
15558
15559 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15560 offset, &range);
15561
15562 mpz_add (offset, offset, range);
15563 mpz_clear (range);
15564
15565 if (!t)
15566 break;
15567 }
15568
15569 /* Assign initial value to symbol. */
15570 else
15571 {
15572 mpz_sub_ui (values.left, values.left, 1);
15573 mpz_sub_ui (size, size, 1);
15574
15575 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15576 offset, NULL);
15577 if (!t)
15578 break;
15579
15580 if (mark == AR_FULL)
15581 mpz_add_ui (offset, offset, 1);
15582
15583 /* Modify the array section indexes and recalculate the offset
15584 for next element. */
15585 else if (mark == AR_SECTION)
15586 gfc_advance_section (section_index, ar, &offset);
15587 }
15588 }
15589
15590 if (mark == AR_SECTION)
15591 {
15592 for (i = 0; i < ar->dimen; i++)
15593 mpz_clear (section_index[i]);
15594 }
15595
15596 mpz_clear (size);
15597 mpz_clear (offset);
15598
15599 return t;
15600 }
15601
15602
15603 static bool traverse_data_var (gfc_data_variable *, locus *);
15604
15605 /* Iterate over a list of elements in a DATA statement. */
15606
15607 static bool
15608 traverse_data_list (gfc_data_variable *var, locus *where)
15609 {
15610 mpz_t trip;
15611 iterator_stack frame;
15612 gfc_expr *e, *start, *end, *step;
15613 bool retval = true;
15614
15615 mpz_init (frame.value);
15616 mpz_init (trip);
15617
15618 start = gfc_copy_expr (var->iter.start);
15619 end = gfc_copy_expr (var->iter.end);
15620 step = gfc_copy_expr (var->iter.step);
15621
15622 if (!gfc_simplify_expr (start, 1)
15623 || start->expr_type != EXPR_CONSTANT)
15624 {
15625 gfc_error ("start of implied-do loop at %L could not be "
15626 "simplified to a constant value", &start->where);
15627 retval = false;
15628 goto cleanup;
15629 }
15630 if (!gfc_simplify_expr (end, 1)
15631 || end->expr_type != EXPR_CONSTANT)
15632 {
15633 gfc_error ("end of implied-do loop at %L could not be "
15634 "simplified to a constant value", &start->where);
15635 retval = false;
15636 goto cleanup;
15637 }
15638 if (!gfc_simplify_expr (step, 1)
15639 || step->expr_type != EXPR_CONSTANT)
15640 {
15641 gfc_error ("step of implied-do loop at %L could not be "
15642 "simplified to a constant value", &start->where);
15643 retval = false;
15644 goto cleanup;
15645 }
15646
15647 mpz_set (trip, end->value.integer);
15648 mpz_sub (trip, trip, start->value.integer);
15649 mpz_add (trip, trip, step->value.integer);
15650
15651 mpz_div (trip, trip, step->value.integer);
15652
15653 mpz_set (frame.value, start->value.integer);
15654
15655 frame.prev = iter_stack;
15656 frame.variable = var->iter.var->symtree;
15657 iter_stack = &frame;
15658
15659 while (mpz_cmp_ui (trip, 0) > 0)
15660 {
15661 if (!traverse_data_var (var->list, where))
15662 {
15663 retval = false;
15664 goto cleanup;
15665 }
15666
15667 e = gfc_copy_expr (var->expr);
15668 if (!gfc_simplify_expr (e, 1))
15669 {
15670 gfc_free_expr (e);
15671 retval = false;
15672 goto cleanup;
15673 }
15674
15675 mpz_add (frame.value, frame.value, step->value.integer);
15676
15677 mpz_sub_ui (trip, trip, 1);
15678 }
15679
15680 cleanup:
15681 mpz_clear (frame.value);
15682 mpz_clear (trip);
15683
15684 gfc_free_expr (start);
15685 gfc_free_expr (end);
15686 gfc_free_expr (step);
15687
15688 iter_stack = frame.prev;
15689 return retval;
15690 }
15691
15692
15693 /* Type resolve variables in the variable list of a DATA statement. */
15694
15695 static bool
15696 traverse_data_var (gfc_data_variable *var, locus *where)
15697 {
15698 bool t;
15699
15700 for (; var; var = var->next)
15701 {
15702 if (var->expr == NULL)
15703 t = traverse_data_list (var, where);
15704 else
15705 t = check_data_variable (var, where);
15706
15707 if (!t)
15708 return false;
15709 }
15710
15711 return true;
15712 }
15713
15714
15715 /* Resolve the expressions and iterators associated with a data statement.
15716 This is separate from the assignment checking because data lists should
15717 only be resolved once. */
15718
15719 static bool
15720 resolve_data_variables (gfc_data_variable *d)
15721 {
15722 for (; d; d = d->next)
15723 {
15724 if (d->list == NULL)
15725 {
15726 if (!gfc_resolve_expr (d->expr))
15727 return false;
15728 }
15729 else
15730 {
15731 if (!gfc_resolve_iterator (&d->iter, false, true))
15732 return false;
15733
15734 if (!resolve_data_variables (d->list))
15735 return false;
15736 }
15737 }
15738
15739 return true;
15740 }
15741
15742
15743 /* Resolve a single DATA statement. We implement this by storing a pointer to
15744 the value list into static variables, and then recursively traversing the
15745 variables list, expanding iterators and such. */
15746
15747 static void
15748 resolve_data (gfc_data *d)
15749 {
15750
15751 if (!resolve_data_variables (d->var))
15752 return;
15753
15754 values.vnode = d->value;
15755 if (d->value == NULL)
15756 mpz_set_ui (values.left, 0);
15757 else
15758 mpz_set (values.left, d->value->repeat);
15759
15760 if (!traverse_data_var (d->var, &d->where))
15761 return;
15762
15763 /* At this point, we better not have any values left. */
15764
15765 if (next_data_value ())
15766 gfc_error ("DATA statement at %L has more values than variables",
15767 &d->where);
15768 }
15769
15770
15771 /* 12.6 Constraint: In a pure subprogram any variable which is in common or
15772 accessed by host or use association, is a dummy argument to a pure function,
15773 is a dummy argument with INTENT (IN) to a pure subroutine, or an object that
15774 is storage associated with any such variable, shall not be used in the
15775 following contexts: (clients of this function). */
15776
15777 /* Determines if a variable is not 'pure', i.e., not assignable within a pure
15778 procedure. Returns zero if assignment is OK, nonzero if there is a
15779 problem. */
15780 int
15781 gfc_impure_variable (gfc_symbol *sym)
15782 {
15783 gfc_symbol *proc;
15784 gfc_namespace *ns;
15785
15786 if (sym->attr.use_assoc || sym->attr.in_common)
15787 return 1;
15788
15789 /* Check if the symbol's ns is inside the pure procedure. */
15790 for (ns = gfc_current_ns; ns; ns = ns->parent)
15791 {
15792 if (ns == sym->ns)
15793 break;
15794 if (ns->proc_name->attr.flavor == FL_PROCEDURE && !sym->attr.function)
15795 return 1;
15796 }
15797
15798 proc = sym->ns->proc_name;
15799 if (sym->attr.dummy
15800 && ((proc->attr.subroutine && sym->attr.intent == INTENT_IN)
15801 || proc->attr.function))
15802 return 1;
15803
15804 /* TODO: Sort out what can be storage associated, if anything, and include
15805 it here. In principle equivalences should be scanned but it does not
15806 seem to be possible to storage associate an impure variable this way. */
15807 return 0;
15808 }
15809
15810
15811 /* Test whether a symbol is pure or not. For a NULL pointer, checks if the
15812 current namespace is inside a pure procedure. */
15813
15814 int
15815 gfc_pure (gfc_symbol *sym)
15816 {
15817 symbol_attribute attr;
15818 gfc_namespace *ns;
15819
15820 if (sym == NULL)
15821 {
15822 /* Check if the current namespace or one of its parents
15823 belongs to a pure procedure. */
15824 for (ns = gfc_current_ns; ns; ns = ns->parent)
15825 {
15826 sym = ns->proc_name;
15827 if (sym == NULL)
15828 return 0;
15829 attr = sym->attr;
15830 if (attr.flavor == FL_PROCEDURE && attr.pure)
15831 return 1;
15832 }
15833 return 0;
15834 }
15835
15836 attr = sym->attr;
15837
15838 return attr.flavor == FL_PROCEDURE && attr.pure;
15839 }
15840
15841
15842 /* Test whether a symbol is implicitly pure or not. For a NULL pointer,
15843 checks if the current namespace is implicitly pure. Note that this
15844 function returns false for a PURE procedure. */
15845
15846 int
15847 gfc_implicit_pure (gfc_symbol *sym)
15848 {
15849 gfc_namespace *ns;
15850
15851 if (sym == NULL)
15852 {
15853 /* Check if the current procedure is implicit_pure. Walk up
15854 the procedure list until we find a procedure. */
15855 for (ns = gfc_current_ns; ns; ns = ns->parent)
15856 {
15857 sym = ns->proc_name;
15858 if (sym == NULL)
15859 return 0;
15860
15861 if (sym->attr.flavor == FL_PROCEDURE)
15862 break;
15863 }
15864 }
15865
15866 return sym->attr.flavor == FL_PROCEDURE && sym->attr.implicit_pure
15867 && !sym->attr.pure;
15868 }
15869
15870
15871 void
15872 gfc_unset_implicit_pure (gfc_symbol *sym)
15873 {
15874 gfc_namespace *ns;
15875
15876 if (sym == NULL)
15877 {
15878 /* Check if the current procedure is implicit_pure. Walk up
15879 the procedure list until we find a procedure. */
15880 for (ns = gfc_current_ns; ns; ns = ns->parent)
15881 {
15882 sym = ns->proc_name;
15883 if (sym == NULL)
15884 return;
15885
15886 if (sym->attr.flavor == FL_PROCEDURE)
15887 break;
15888 }
15889 }
15890
15891 if (sym->attr.flavor == FL_PROCEDURE)
15892 sym->attr.implicit_pure = 0;
15893 else
15894 sym->attr.pure = 0;
15895 }
15896
15897
15898 /* Test whether the current procedure is elemental or not. */
15899
15900 int
15901 gfc_elemental (gfc_symbol *sym)
15902 {
15903 symbol_attribute attr;
15904
15905 if (sym == NULL)
15906 sym = gfc_current_ns->proc_name;
15907 if (sym == NULL)
15908 return 0;
15909 attr = sym->attr;
15910
15911 return attr.flavor == FL_PROCEDURE && attr.elemental;
15912 }
15913
15914
15915 /* Warn about unused labels. */
15916
15917 static void
15918 warn_unused_fortran_label (gfc_st_label *label)
15919 {
15920 if (label == NULL)
15921 return;
15922
15923 warn_unused_fortran_label (label->left);
15924
15925 if (label->defined == ST_LABEL_UNKNOWN)
15926 return;
15927
15928 switch (label->referenced)
15929 {
15930 case ST_LABEL_UNKNOWN:
15931 gfc_warning (OPT_Wunused_label, "Label %d at %L defined but not used",
15932 label->value, &label->where);
15933 break;
15934
15935 case ST_LABEL_BAD_TARGET:
15936 gfc_warning (OPT_Wunused_label,
15937 "Label %d at %L defined but cannot be used",
15938 label->value, &label->where);
15939 break;
15940
15941 default:
15942 break;
15943 }
15944
15945 warn_unused_fortran_label (label->right);
15946 }
15947
15948
15949 /* Returns the sequence type of a symbol or sequence. */
15950
15951 static seq_type
15952 sequence_type (gfc_typespec ts)
15953 {
15954 seq_type result;
15955 gfc_component *c;
15956
15957 switch (ts.type)
15958 {
15959 case BT_DERIVED:
15960
15961 if (ts.u.derived->components == NULL)
15962 return SEQ_NONDEFAULT;
15963
15964 result = sequence_type (ts.u.derived->components->ts);
15965 for (c = ts.u.derived->components->next; c; c = c->next)
15966 if (sequence_type (c->ts) != result)
15967 return SEQ_MIXED;
15968
15969 return result;
15970
15971 case BT_CHARACTER:
15972 if (ts.kind != gfc_default_character_kind)
15973 return SEQ_NONDEFAULT;
15974
15975 return SEQ_CHARACTER;
15976
15977 case BT_INTEGER:
15978 if (ts.kind != gfc_default_integer_kind)
15979 return SEQ_NONDEFAULT;
15980
15981 return SEQ_NUMERIC;
15982
15983 case BT_REAL:
15984 if (!(ts.kind == gfc_default_real_kind
15985 || ts.kind == gfc_default_double_kind))
15986 return SEQ_NONDEFAULT;
15987
15988 return SEQ_NUMERIC;
15989
15990 case BT_COMPLEX:
15991 if (ts.kind != gfc_default_complex_kind)
15992 return SEQ_NONDEFAULT;
15993
15994 return SEQ_NUMERIC;
15995
15996 case BT_LOGICAL:
15997 if (ts.kind != gfc_default_logical_kind)
15998 return SEQ_NONDEFAULT;
15999
16000 return SEQ_NUMERIC;
16001
16002 default:
16003 return SEQ_NONDEFAULT;
16004 }
16005 }
16006
16007
16008 /* Resolve derived type EQUIVALENCE object. */
16009
16010 static bool
16011 resolve_equivalence_derived (gfc_symbol *derived, gfc_symbol *sym, gfc_expr *e)
16012 {
16013 gfc_component *c = derived->components;
16014
16015 if (!derived)
16016 return true;
16017
16018 /* Shall not be an object of nonsequence derived type. */
16019 if (!derived->attr.sequence)
16020 {
16021 gfc_error ("Derived type variable %qs at %L must have SEQUENCE "
16022 "attribute to be an EQUIVALENCE object", sym->name,
16023 &e->where);
16024 return false;
16025 }
16026
16027 /* Shall not have allocatable components. */
16028 if (derived->attr.alloc_comp)
16029 {
16030 gfc_error ("Derived type variable %qs at %L cannot have ALLOCATABLE "
16031 "components to be an EQUIVALENCE object",sym->name,
16032 &e->where);
16033 return false;
16034 }
16035
16036 if (sym->attr.in_common && gfc_has_default_initializer (sym->ts.u.derived))
16037 {
16038 gfc_error ("Derived type variable %qs at %L with default "
16039 "initialization cannot be in EQUIVALENCE with a variable "
16040 "in COMMON", sym->name, &e->where);
16041 return false;
16042 }
16043
16044 for (; c ; c = c->next)
16045 {
16046 if (gfc_bt_struct (c->ts.type)
16047 && (!resolve_equivalence_derived(c->ts.u.derived, sym, e)))
16048 return false;
16049
16050 /* Shall not be an object of sequence derived type containing a pointer
16051 in the structure. */
16052 if (c->attr.pointer)
16053 {
16054 gfc_error ("Derived type variable %qs at %L with pointer "
16055 "component(s) cannot be an EQUIVALENCE object",
16056 sym->name, &e->where);
16057 return false;
16058 }
16059 }
16060 return true;
16061 }
16062
16063
16064 /* Resolve equivalence object.
16065 An EQUIVALENCE object shall not be a dummy argument, a pointer, a target,
16066 an allocatable array, an object of nonsequence derived type, an object of
16067 sequence derived type containing a pointer at any level of component
16068 selection, an automatic object, a function name, an entry name, a result
16069 name, a named constant, a structure component, or a subobject of any of
16070 the preceding objects. A substring shall not have length zero. A
16071 derived type shall not have components with default initialization nor
16072 shall two objects of an equivalence group be initialized.
16073 Either all or none of the objects shall have an protected attribute.
16074 The simple constraints are done in symbol.c(check_conflict) and the rest
16075 are implemented here. */
16076
16077 static void
16078 resolve_equivalence (gfc_equiv *eq)
16079 {
16080 gfc_symbol *sym;
16081 gfc_symbol *first_sym;
16082 gfc_expr *e;
16083 gfc_ref *r;
16084 locus *last_where = NULL;
16085 seq_type eq_type, last_eq_type;
16086 gfc_typespec *last_ts;
16087 int object, cnt_protected;
16088 const char *msg;
16089
16090 last_ts = &eq->expr->symtree->n.sym->ts;
16091
16092 first_sym = eq->expr->symtree->n.sym;
16093
16094 cnt_protected = 0;
16095
16096 for (object = 1; eq; eq = eq->eq, object++)
16097 {
16098 e = eq->expr;
16099
16100 e->ts = e->symtree->n.sym->ts;
16101 /* match_varspec might not know yet if it is seeing
16102 array reference or substring reference, as it doesn't
16103 know the types. */
16104 if (e->ref && e->ref->type == REF_ARRAY)
16105 {
16106 gfc_ref *ref = e->ref;
16107 sym = e->symtree->n.sym;
16108
16109 if (sym->attr.dimension)
16110 {
16111 ref->u.ar.as = sym->as;
16112 ref = ref->next;
16113 }
16114
16115 /* For substrings, convert REF_ARRAY into REF_SUBSTRING. */
16116 if (e->ts.type == BT_CHARACTER
16117 && ref
16118 && ref->type == REF_ARRAY
16119 && ref->u.ar.dimen == 1
16120 && ref->u.ar.dimen_type[0] == DIMEN_RANGE
16121 && ref->u.ar.stride[0] == NULL)
16122 {
16123 gfc_expr *start = ref->u.ar.start[0];
16124 gfc_expr *end = ref->u.ar.end[0];
16125 void *mem = NULL;
16126
16127 /* Optimize away the (:) reference. */
16128 if (start == NULL && end == NULL)
16129 {
16130 if (e->ref == ref)
16131 e->ref = ref->next;
16132 else
16133 e->ref->next = ref->next;
16134 mem = ref;
16135 }
16136 else
16137 {
16138 ref->type = REF_SUBSTRING;
16139 if (start == NULL)
16140 start = gfc_get_int_expr (gfc_charlen_int_kind,
16141 NULL, 1);
16142 ref->u.ss.start = start;
16143 if (end == NULL && e->ts.u.cl)
16144 end = gfc_copy_expr (e->ts.u.cl->length);
16145 ref->u.ss.end = end;
16146 ref->u.ss.length = e->ts.u.cl;
16147 e->ts.u.cl = NULL;
16148 }
16149 ref = ref->next;
16150 free (mem);
16151 }
16152
16153 /* Any further ref is an error. */
16154 if (ref)
16155 {
16156 gcc_assert (ref->type == REF_ARRAY);
16157 gfc_error ("Syntax error in EQUIVALENCE statement at %L",
16158 &ref->u.ar.where);
16159 continue;
16160 }
16161 }
16162
16163 if (!gfc_resolve_expr (e))
16164 continue;
16165
16166 sym = e->symtree->n.sym;
16167
16168 if (sym->attr.is_protected)
16169 cnt_protected++;
16170 if (cnt_protected > 0 && cnt_protected != object)
16171 {
16172 gfc_error ("Either all or none of the objects in the "
16173 "EQUIVALENCE set at %L shall have the "
16174 "PROTECTED attribute",
16175 &e->where);
16176 break;
16177 }
16178
16179 /* Shall not equivalence common block variables in a PURE procedure. */
16180 if (sym->ns->proc_name
16181 && sym->ns->proc_name->attr.pure
16182 && sym->attr.in_common)
16183 {
16184 /* Need to check for symbols that may have entered the pure
16185 procedure via a USE statement. */
16186 bool saw_sym = false;
16187 if (sym->ns->use_stmts)
16188 {
16189 gfc_use_rename *r;
16190 for (r = sym->ns->use_stmts->rename; r; r = r->next)
16191 if (strcmp(r->use_name, sym->name) == 0) saw_sym = true;
16192 }
16193 else
16194 saw_sym = true;
16195
16196 if (saw_sym)
16197 gfc_error ("COMMON block member %qs at %L cannot be an "
16198 "EQUIVALENCE object in the pure procedure %qs",
16199 sym->name, &e->where, sym->ns->proc_name->name);
16200 break;
16201 }
16202
16203 /* Shall not be a named constant. */
16204 if (e->expr_type == EXPR_CONSTANT)
16205 {
16206 gfc_error ("Named constant %qs at %L cannot be an EQUIVALENCE "
16207 "object", sym->name, &e->where);
16208 continue;
16209 }
16210
16211 if (e->ts.type == BT_DERIVED
16212 && !resolve_equivalence_derived (e->ts.u.derived, sym, e))
16213 continue;
16214
16215 /* Check that the types correspond correctly:
16216 Note 5.28:
16217 A numeric sequence structure may be equivalenced to another sequence
16218 structure, an object of default integer type, default real type, double
16219 precision real type, default logical type such that components of the
16220 structure ultimately only become associated to objects of the same
16221 kind. A character sequence structure may be equivalenced to an object
16222 of default character kind or another character sequence structure.
16223 Other objects may be equivalenced only to objects of the same type and
16224 kind parameters. */
16225
16226 /* Identical types are unconditionally OK. */
16227 if (object == 1 || gfc_compare_types (last_ts, &sym->ts))
16228 goto identical_types;
16229
16230 last_eq_type = sequence_type (*last_ts);
16231 eq_type = sequence_type (sym->ts);
16232
16233 /* Since the pair of objects is not of the same type, mixed or
16234 non-default sequences can be rejected. */
16235
16236 msg = "Sequence %s with mixed components in EQUIVALENCE "
16237 "statement at %L with different type objects";
16238 if ((object ==2
16239 && last_eq_type == SEQ_MIXED
16240 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16241 || (eq_type == SEQ_MIXED
16242 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16243 continue;
16244
16245 msg = "Non-default type object or sequence %s in EQUIVALENCE "
16246 "statement at %L with objects of different type";
16247 if ((object ==2
16248 && last_eq_type == SEQ_NONDEFAULT
16249 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16250 || (eq_type == SEQ_NONDEFAULT
16251 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16252 continue;
16253
16254 msg ="Non-CHARACTER object %qs in default CHARACTER "
16255 "EQUIVALENCE statement at %L";
16256 if (last_eq_type == SEQ_CHARACTER
16257 && eq_type != SEQ_CHARACTER
16258 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16259 continue;
16260
16261 msg ="Non-NUMERIC object %qs in default NUMERIC "
16262 "EQUIVALENCE statement at %L";
16263 if (last_eq_type == SEQ_NUMERIC
16264 && eq_type != SEQ_NUMERIC
16265 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16266 continue;
16267
16268 identical_types:
16269 last_ts =&sym->ts;
16270 last_where = &e->where;
16271
16272 if (!e->ref)
16273 continue;
16274
16275 /* Shall not be an automatic array. */
16276 if (e->ref->type == REF_ARRAY
16277 && !gfc_resolve_array_spec (e->ref->u.ar.as, 1))
16278 {
16279 gfc_error ("Array %qs at %L with non-constant bounds cannot be "
16280 "an EQUIVALENCE object", sym->name, &e->where);
16281 continue;
16282 }
16283
16284 r = e->ref;
16285 while (r)
16286 {
16287 /* Shall not be a structure component. */
16288 if (r->type == REF_COMPONENT)
16289 {
16290 gfc_error ("Structure component %qs at %L cannot be an "
16291 "EQUIVALENCE object",
16292 r->u.c.component->name, &e->where);
16293 break;
16294 }
16295
16296 /* A substring shall not have length zero. */
16297 if (r->type == REF_SUBSTRING)
16298 {
16299 if (compare_bound (r->u.ss.start, r->u.ss.end) == CMP_GT)
16300 {
16301 gfc_error ("Substring at %L has length zero",
16302 &r->u.ss.start->where);
16303 break;
16304 }
16305 }
16306 r = r->next;
16307 }
16308 }
16309 }
16310
16311
16312 /* Function called by resolve_fntype to flag other symbol used in the
16313 length type parameter specification of function resuls. */
16314
16315 static bool
16316 flag_fn_result_spec (gfc_expr *expr,
16317 gfc_symbol *sym,
16318 int *f ATTRIBUTE_UNUSED)
16319 {
16320 gfc_namespace *ns;
16321 gfc_symbol *s;
16322
16323 if (expr->expr_type == EXPR_VARIABLE)
16324 {
16325 s = expr->symtree->n.sym;
16326 for (ns = s->ns; ns; ns = ns->parent)
16327 if (!ns->parent)
16328 break;
16329
16330 if (sym == s)
16331 {
16332 gfc_error ("Self reference in character length expression "
16333 "for %qs at %L", sym->name, &expr->where);
16334 return true;
16335 }
16336
16337 if (!s->fn_result_spec
16338 && s->attr.flavor == FL_PARAMETER)
16339 {
16340 /* Function contained in a module.... */
16341 if (ns->proc_name && ns->proc_name->attr.flavor == FL_MODULE)
16342 {
16343 gfc_symtree *st;
16344 s->fn_result_spec = 1;
16345 /* Make sure that this symbol is translated as a module
16346 variable. */
16347 st = gfc_get_unique_symtree (ns);
16348 st->n.sym = s;
16349 s->refs++;
16350 }
16351 /* ... which is use associated and called. */
16352 else if (s->attr.use_assoc || s->attr.used_in_submodule
16353 ||
16354 /* External function matched with an interface. */
16355 (s->ns->proc_name
16356 && ((s->ns == ns
16357 && s->ns->proc_name->attr.if_source == IFSRC_DECL)
16358 || s->ns->proc_name->attr.if_source == IFSRC_IFBODY)
16359 && s->ns->proc_name->attr.function))
16360 s->fn_result_spec = 1;
16361 }
16362 }
16363 return false;
16364 }
16365
16366
16367 /* Resolve function and ENTRY types, issue diagnostics if needed. */
16368
16369 static void
16370 resolve_fntype (gfc_namespace *ns)
16371 {
16372 gfc_entry_list *el;
16373 gfc_symbol *sym;
16374
16375 if (ns->proc_name == NULL || !ns->proc_name->attr.function)
16376 return;
16377
16378 /* If there are any entries, ns->proc_name is the entry master
16379 synthetic symbol and ns->entries->sym actual FUNCTION symbol. */
16380 if (ns->entries)
16381 sym = ns->entries->sym;
16382 else
16383 sym = ns->proc_name;
16384 if (sym->result == sym
16385 && sym->ts.type == BT_UNKNOWN
16386 && !gfc_set_default_type (sym, 0, NULL)
16387 && !sym->attr.untyped)
16388 {
16389 gfc_error ("Function %qs at %L has no IMPLICIT type",
16390 sym->name, &sym->declared_at);
16391 sym->attr.untyped = 1;
16392 }
16393
16394 if (sym->ts.type == BT_DERIVED && !sym->ts.u.derived->attr.use_assoc
16395 && !sym->attr.contained
16396 && !gfc_check_symbol_access (sym->ts.u.derived)
16397 && gfc_check_symbol_access (sym))
16398 {
16399 gfc_notify_std (GFC_STD_F2003, "PUBLIC function %qs at "
16400 "%L of PRIVATE type %qs", sym->name,
16401 &sym->declared_at, sym->ts.u.derived->name);
16402 }
16403
16404 if (ns->entries)
16405 for (el = ns->entries->next; el; el = el->next)
16406 {
16407 if (el->sym->result == el->sym
16408 && el->sym->ts.type == BT_UNKNOWN
16409 && !gfc_set_default_type (el->sym, 0, NULL)
16410 && !el->sym->attr.untyped)
16411 {
16412 gfc_error ("ENTRY %qs at %L has no IMPLICIT type",
16413 el->sym->name, &el->sym->declared_at);
16414 el->sym->attr.untyped = 1;
16415 }
16416 }
16417
16418 if (sym->ts.type == BT_CHARACTER)
16419 gfc_traverse_expr (sym->ts.u.cl->length, sym, flag_fn_result_spec, 0);
16420 }
16421
16422
16423 /* 12.3.2.1.1 Defined operators. */
16424
16425 static bool
16426 check_uop_procedure (gfc_symbol *sym, locus where)
16427 {
16428 gfc_formal_arglist *formal;
16429
16430 if (!sym->attr.function)
16431 {
16432 gfc_error ("User operator procedure %qs at %L must be a FUNCTION",
16433 sym->name, &where);
16434 return false;
16435 }
16436
16437 if (sym->ts.type == BT_CHARACTER
16438 && !((sym->ts.u.cl && sym->ts.u.cl->length) || sym->ts.deferred)
16439 && !(sym->result && ((sym->result->ts.u.cl
16440 && sym->result->ts.u.cl->length) || sym->result->ts.deferred)))
16441 {
16442 gfc_error ("User operator procedure %qs at %L cannot be assumed "
16443 "character length", sym->name, &where);
16444 return false;
16445 }
16446
16447 formal = gfc_sym_get_dummy_args (sym);
16448 if (!formal || !formal->sym)
16449 {
16450 gfc_error ("User operator procedure %qs at %L must have at least "
16451 "one argument", sym->name, &where);
16452 return false;
16453 }
16454
16455 if (formal->sym->attr.intent != INTENT_IN)
16456 {
16457 gfc_error ("First argument of operator interface at %L must be "
16458 "INTENT(IN)", &where);
16459 return false;
16460 }
16461
16462 if (formal->sym->attr.optional)
16463 {
16464 gfc_error ("First argument of operator interface at %L cannot be "
16465 "optional", &where);
16466 return false;
16467 }
16468
16469 formal = formal->next;
16470 if (!formal || !formal->sym)
16471 return true;
16472
16473 if (formal->sym->attr.intent != INTENT_IN)
16474 {
16475 gfc_error ("Second argument of operator interface at %L must be "
16476 "INTENT(IN)", &where);
16477 return false;
16478 }
16479
16480 if (formal->sym->attr.optional)
16481 {
16482 gfc_error ("Second argument of operator interface at %L cannot be "
16483 "optional", &where);
16484 return false;
16485 }
16486
16487 if (formal->next)
16488 {
16489 gfc_error ("Operator interface at %L must have, at most, two "
16490 "arguments", &where);
16491 return false;
16492 }
16493
16494 return true;
16495 }
16496
16497 static void
16498 gfc_resolve_uops (gfc_symtree *symtree)
16499 {
16500 gfc_interface *itr;
16501
16502 if (symtree == NULL)
16503 return;
16504
16505 gfc_resolve_uops (symtree->left);
16506 gfc_resolve_uops (symtree->right);
16507
16508 for (itr = symtree->n.uop->op; itr; itr = itr->next)
16509 check_uop_procedure (itr->sym, itr->sym->declared_at);
16510 }
16511
16512
16513 /* Examine all of the expressions associated with a program unit,
16514 assign types to all intermediate expressions, make sure that all
16515 assignments are to compatible types and figure out which names
16516 refer to which functions or subroutines. It doesn't check code
16517 block, which is handled by gfc_resolve_code. */
16518
16519 static void
16520 resolve_types (gfc_namespace *ns)
16521 {
16522 gfc_namespace *n;
16523 gfc_charlen *cl;
16524 gfc_data *d;
16525 gfc_equiv *eq;
16526 gfc_namespace* old_ns = gfc_current_ns;
16527
16528 if (ns->types_resolved)
16529 return;
16530
16531 /* Check that all IMPLICIT types are ok. */
16532 if (!ns->seen_implicit_none)
16533 {
16534 unsigned letter;
16535 for (letter = 0; letter != GFC_LETTERS; ++letter)
16536 if (ns->set_flag[letter]
16537 && !resolve_typespec_used (&ns->default_type[letter],
16538 &ns->implicit_loc[letter], NULL))
16539 return;
16540 }
16541
16542 gfc_current_ns = ns;
16543
16544 resolve_entries (ns);
16545
16546 resolve_common_vars (&ns->blank_common, false);
16547 resolve_common_blocks (ns->common_root);
16548
16549 resolve_contained_functions (ns);
16550
16551 if (ns->proc_name && ns->proc_name->attr.flavor == FL_PROCEDURE
16552 && ns->proc_name->attr.if_source == IFSRC_IFBODY)
16553 resolve_formal_arglist (ns->proc_name);
16554
16555 gfc_traverse_ns (ns, resolve_bind_c_derived_types);
16556
16557 for (cl = ns->cl_list; cl; cl = cl->next)
16558 resolve_charlen (cl);
16559
16560 gfc_traverse_ns (ns, resolve_symbol);
16561
16562 resolve_fntype (ns);
16563
16564 for (n = ns->contained; n; n = n->sibling)
16565 {
16566 if (gfc_pure (ns->proc_name) && !gfc_pure (n->proc_name))
16567 gfc_error ("Contained procedure %qs at %L of a PURE procedure must "
16568 "also be PURE", n->proc_name->name,
16569 &n->proc_name->declared_at);
16570
16571 resolve_types (n);
16572 }
16573
16574 forall_flag = 0;
16575 gfc_do_concurrent_flag = 0;
16576 gfc_check_interfaces (ns);
16577
16578 gfc_traverse_ns (ns, resolve_values);
16579
16580 if (ns->save_all)
16581 gfc_save_all (ns);
16582
16583 iter_stack = NULL;
16584 for (d = ns->data; d; d = d->next)
16585 resolve_data (d);
16586
16587 iter_stack = NULL;
16588 gfc_traverse_ns (ns, gfc_formalize_init_value);
16589
16590 gfc_traverse_ns (ns, gfc_verify_binding_labels);
16591
16592 for (eq = ns->equiv; eq; eq = eq->next)
16593 resolve_equivalence (eq);
16594
16595 /* Warn about unused labels. */
16596 if (warn_unused_label)
16597 warn_unused_fortran_label (ns->st_labels);
16598
16599 gfc_resolve_uops (ns->uop_root);
16600
16601 gfc_traverse_ns (ns, gfc_verify_DTIO_procedures);
16602
16603 gfc_resolve_omp_declare_simd (ns);
16604
16605 gfc_resolve_omp_udrs (ns->omp_udr_root);
16606
16607 ns->types_resolved = 1;
16608
16609 gfc_current_ns = old_ns;
16610 }
16611
16612
16613 /* Call gfc_resolve_code recursively. */
16614
16615 static void
16616 resolve_codes (gfc_namespace *ns)
16617 {
16618 gfc_namespace *n;
16619 bitmap_obstack old_obstack;
16620
16621 if (ns->resolved == 1)
16622 return;
16623
16624 for (n = ns->contained; n; n = n->sibling)
16625 resolve_codes (n);
16626
16627 gfc_current_ns = ns;
16628
16629 /* Don't clear 'cs_base' if this is the namespace of a BLOCK construct. */
16630 if (!(ns->proc_name && ns->proc_name->attr.flavor == FL_LABEL))
16631 cs_base = NULL;
16632
16633 /* Set to an out of range value. */
16634 current_entry_id = -1;
16635
16636 old_obstack = labels_obstack;
16637 bitmap_obstack_initialize (&labels_obstack);
16638
16639 gfc_resolve_oacc_declare (ns);
16640 gfc_resolve_omp_local_vars (ns);
16641 gfc_resolve_code (ns->code, ns);
16642
16643 bitmap_obstack_release (&labels_obstack);
16644 labels_obstack = old_obstack;
16645 }
16646
16647
16648 /* This function is called after a complete program unit has been compiled.
16649 Its purpose is to examine all of the expressions associated with a program
16650 unit, assign types to all intermediate expressions, make sure that all
16651 assignments are to compatible types and figure out which names refer to
16652 which functions or subroutines. */
16653
16654 void
16655 gfc_resolve (gfc_namespace *ns)
16656 {
16657 gfc_namespace *old_ns;
16658 code_stack *old_cs_base;
16659 struct gfc_omp_saved_state old_omp_state;
16660
16661 if (ns->resolved)
16662 return;
16663
16664 ns->resolved = -1;
16665 old_ns = gfc_current_ns;
16666 old_cs_base = cs_base;
16667
16668 /* As gfc_resolve can be called during resolution of an OpenMP construct
16669 body, we should clear any state associated to it, so that say NS's
16670 DO loops are not interpreted as OpenMP loops. */
16671 if (!ns->construct_entities)
16672 gfc_omp_save_and_clear_state (&old_omp_state);
16673
16674 resolve_types (ns);
16675 component_assignment_level = 0;
16676 resolve_codes (ns);
16677
16678 gfc_current_ns = old_ns;
16679 cs_base = old_cs_base;
16680 ns->resolved = 1;
16681
16682 gfc_run_passes (ns);
16683
16684 if (!ns->construct_entities)
16685 gfc_omp_restore_state (&old_omp_state);
16686 }