re PR fortran/88299 ([F18] COMMON in a legacy module produces bogus warnings in depen...
[gcc.git] / gcc / fortran / resolve.c
1 /* Perform type resolution on the various structures.
2 Copyright (C) 2001-2019 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "options.h"
25 #include "bitmap.h"
26 #include "gfortran.h"
27 #include "arith.h" /* For gfc_compare_expr(). */
28 #include "dependency.h"
29 #include "data.h"
30 #include "target-memory.h" /* for gfc_simplify_transfer */
31 #include "constructor.h"
32
33 /* Types used in equivalence statements. */
34
35 enum seq_type
36 {
37 SEQ_NONDEFAULT, SEQ_NUMERIC, SEQ_CHARACTER, SEQ_MIXED
38 };
39
40 /* Stack to keep track of the nesting of blocks as we move through the
41 code. See resolve_branch() and gfc_resolve_code(). */
42
43 typedef struct code_stack
44 {
45 struct gfc_code *head, *current;
46 struct code_stack *prev;
47
48 /* This bitmap keeps track of the targets valid for a branch from
49 inside this block except for END {IF|SELECT}s of enclosing
50 blocks. */
51 bitmap reachable_labels;
52 }
53 code_stack;
54
55 static code_stack *cs_base = NULL;
56
57
58 /* Nonzero if we're inside a FORALL or DO CONCURRENT block. */
59
60 static int forall_flag;
61 int gfc_do_concurrent_flag;
62
63 /* True when we are resolving an expression that is an actual argument to
64 a procedure. */
65 static bool actual_arg = false;
66 /* True when we are resolving an expression that is the first actual argument
67 to a procedure. */
68 static bool first_actual_arg = false;
69
70
71 /* Nonzero if we're inside a OpenMP WORKSHARE or PARALLEL WORKSHARE block. */
72
73 static int omp_workshare_flag;
74
75 /* True if we are processing a formal arglist. The corresponding function
76 resets the flag each time that it is read. */
77 static bool formal_arg_flag = false;
78
79 /* True if we are resolving a specification expression. */
80 static bool specification_expr = false;
81
82 /* The id of the last entry seen. */
83 static int current_entry_id;
84
85 /* We use bitmaps to determine if a branch target is valid. */
86 static bitmap_obstack labels_obstack;
87
88 /* True when simplifying a EXPR_VARIABLE argument to an inquiry function. */
89 static bool inquiry_argument = false;
90
91
92 bool
93 gfc_is_formal_arg (void)
94 {
95 return formal_arg_flag;
96 }
97
98 /* Is the symbol host associated? */
99 static bool
100 is_sym_host_assoc (gfc_symbol *sym, gfc_namespace *ns)
101 {
102 for (ns = ns->parent; ns; ns = ns->parent)
103 {
104 if (sym->ns == ns)
105 return true;
106 }
107
108 return false;
109 }
110
111 /* Ensure a typespec used is valid; for instance, TYPE(t) is invalid if t is
112 an ABSTRACT derived-type. If where is not NULL, an error message with that
113 locus is printed, optionally using name. */
114
115 static bool
116 resolve_typespec_used (gfc_typespec* ts, locus* where, const char* name)
117 {
118 if (ts->type == BT_DERIVED && ts->u.derived->attr.abstract)
119 {
120 if (where)
121 {
122 if (name)
123 gfc_error ("%qs at %L is of the ABSTRACT type %qs",
124 name, where, ts->u.derived->name);
125 else
126 gfc_error ("ABSTRACT type %qs used at %L",
127 ts->u.derived->name, where);
128 }
129
130 return false;
131 }
132
133 return true;
134 }
135
136
137 static bool
138 check_proc_interface (gfc_symbol *ifc, locus *where)
139 {
140 /* Several checks for F08:C1216. */
141 if (ifc->attr.procedure)
142 {
143 gfc_error ("Interface %qs at %L is declared "
144 "in a later PROCEDURE statement", ifc->name, where);
145 return false;
146 }
147 if (ifc->generic)
148 {
149 /* For generic interfaces, check if there is
150 a specific procedure with the same name. */
151 gfc_interface *gen = ifc->generic;
152 while (gen && strcmp (gen->sym->name, ifc->name) != 0)
153 gen = gen->next;
154 if (!gen)
155 {
156 gfc_error ("Interface %qs at %L may not be generic",
157 ifc->name, where);
158 return false;
159 }
160 }
161 if (ifc->attr.proc == PROC_ST_FUNCTION)
162 {
163 gfc_error ("Interface %qs at %L may not be a statement function",
164 ifc->name, where);
165 return false;
166 }
167 if (gfc_is_intrinsic (ifc, 0, ifc->declared_at)
168 || gfc_is_intrinsic (ifc, 1, ifc->declared_at))
169 ifc->attr.intrinsic = 1;
170 if (ifc->attr.intrinsic && !gfc_intrinsic_actual_ok (ifc->name, 0))
171 {
172 gfc_error ("Intrinsic procedure %qs not allowed in "
173 "PROCEDURE statement at %L", ifc->name, where);
174 return false;
175 }
176 if (!ifc->attr.if_source && !ifc->attr.intrinsic && ifc->name[0] != '\0')
177 {
178 gfc_error ("Interface %qs at %L must be explicit", ifc->name, where);
179 return false;
180 }
181 return true;
182 }
183
184
185 static void resolve_symbol (gfc_symbol *sym);
186
187
188 /* Resolve the interface for a PROCEDURE declaration or procedure pointer. */
189
190 static bool
191 resolve_procedure_interface (gfc_symbol *sym)
192 {
193 gfc_symbol *ifc = sym->ts.interface;
194
195 if (!ifc)
196 return true;
197
198 if (ifc == sym)
199 {
200 gfc_error ("PROCEDURE %qs at %L may not be used as its own interface",
201 sym->name, &sym->declared_at);
202 return false;
203 }
204 if (!check_proc_interface (ifc, &sym->declared_at))
205 return false;
206
207 if (ifc->attr.if_source || ifc->attr.intrinsic)
208 {
209 /* Resolve interface and copy attributes. */
210 resolve_symbol (ifc);
211 if (ifc->attr.intrinsic)
212 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
213
214 if (ifc->result)
215 {
216 sym->ts = ifc->result->ts;
217 sym->attr.allocatable = ifc->result->attr.allocatable;
218 sym->attr.pointer = ifc->result->attr.pointer;
219 sym->attr.dimension = ifc->result->attr.dimension;
220 sym->attr.class_ok = ifc->result->attr.class_ok;
221 sym->as = gfc_copy_array_spec (ifc->result->as);
222 sym->result = sym;
223 }
224 else
225 {
226 sym->ts = ifc->ts;
227 sym->attr.allocatable = ifc->attr.allocatable;
228 sym->attr.pointer = ifc->attr.pointer;
229 sym->attr.dimension = ifc->attr.dimension;
230 sym->attr.class_ok = ifc->attr.class_ok;
231 sym->as = gfc_copy_array_spec (ifc->as);
232 }
233 sym->ts.interface = ifc;
234 sym->attr.function = ifc->attr.function;
235 sym->attr.subroutine = ifc->attr.subroutine;
236
237 sym->attr.pure = ifc->attr.pure;
238 sym->attr.elemental = ifc->attr.elemental;
239 sym->attr.contiguous = ifc->attr.contiguous;
240 sym->attr.recursive = ifc->attr.recursive;
241 sym->attr.always_explicit = ifc->attr.always_explicit;
242 sym->attr.ext_attr |= ifc->attr.ext_attr;
243 sym->attr.is_bind_c = ifc->attr.is_bind_c;
244 /* Copy char length. */
245 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
246 {
247 sym->ts.u.cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
248 if (sym->ts.u.cl->length && !sym->ts.u.cl->resolved
249 && !gfc_resolve_expr (sym->ts.u.cl->length))
250 return false;
251 }
252 }
253
254 return true;
255 }
256
257
258 /* Resolve types of formal argument lists. These have to be done early so that
259 the formal argument lists of module procedures can be copied to the
260 containing module before the individual procedures are resolved
261 individually. We also resolve argument lists of procedures in interface
262 blocks because they are self-contained scoping units.
263
264 Since a dummy argument cannot be a non-dummy procedure, the only
265 resort left for untyped names are the IMPLICIT types. */
266
267 static void
268 resolve_formal_arglist (gfc_symbol *proc)
269 {
270 gfc_formal_arglist *f;
271 gfc_symbol *sym;
272 bool saved_specification_expr;
273 int i;
274
275 if (proc->result != NULL)
276 sym = proc->result;
277 else
278 sym = proc;
279
280 if (gfc_elemental (proc)
281 || sym->attr.pointer || sym->attr.allocatable
282 || (sym->as && sym->as->rank != 0))
283 {
284 proc->attr.always_explicit = 1;
285 sym->attr.always_explicit = 1;
286 }
287
288 formal_arg_flag = true;
289
290 for (f = proc->formal; f; f = f->next)
291 {
292 gfc_array_spec *as;
293
294 sym = f->sym;
295
296 if (sym == NULL)
297 {
298 /* Alternate return placeholder. */
299 if (gfc_elemental (proc))
300 gfc_error ("Alternate return specifier in elemental subroutine "
301 "%qs at %L is not allowed", proc->name,
302 &proc->declared_at);
303 if (proc->attr.function)
304 gfc_error ("Alternate return specifier in function "
305 "%qs at %L is not allowed", proc->name,
306 &proc->declared_at);
307 continue;
308 }
309 else if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
310 && !resolve_procedure_interface (sym))
311 return;
312
313 if (strcmp (proc->name, sym->name) == 0)
314 {
315 gfc_error ("Self-referential argument "
316 "%qs at %L is not allowed", sym->name,
317 &proc->declared_at);
318 return;
319 }
320
321 if (sym->attr.if_source != IFSRC_UNKNOWN)
322 resolve_formal_arglist (sym);
323
324 if (sym->attr.subroutine || sym->attr.external)
325 {
326 if (sym->attr.flavor == FL_UNKNOWN)
327 gfc_add_flavor (&sym->attr, FL_PROCEDURE, sym->name, &sym->declared_at);
328 }
329 else
330 {
331 if (sym->ts.type == BT_UNKNOWN && !proc->attr.intrinsic
332 && (!sym->attr.function || sym->result == sym))
333 gfc_set_default_type (sym, 1, sym->ns);
334 }
335
336 as = sym->ts.type == BT_CLASS && sym->attr.class_ok
337 ? CLASS_DATA (sym)->as : sym->as;
338
339 saved_specification_expr = specification_expr;
340 specification_expr = true;
341 gfc_resolve_array_spec (as, 0);
342 specification_expr = saved_specification_expr;
343
344 /* We can't tell if an array with dimension (:) is assumed or deferred
345 shape until we know if it has the pointer or allocatable attributes.
346 */
347 if (as && as->rank > 0 && as->type == AS_DEFERRED
348 && ((sym->ts.type != BT_CLASS
349 && !(sym->attr.pointer || sym->attr.allocatable))
350 || (sym->ts.type == BT_CLASS
351 && !(CLASS_DATA (sym)->attr.class_pointer
352 || CLASS_DATA (sym)->attr.allocatable)))
353 && sym->attr.flavor != FL_PROCEDURE)
354 {
355 as->type = AS_ASSUMED_SHAPE;
356 for (i = 0; i < as->rank; i++)
357 as->lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
358 }
359
360 if ((as && as->rank > 0 && as->type == AS_ASSUMED_SHAPE)
361 || (as && as->type == AS_ASSUMED_RANK)
362 || sym->attr.pointer || sym->attr.allocatable || sym->attr.target
363 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
364 && (CLASS_DATA (sym)->attr.class_pointer
365 || CLASS_DATA (sym)->attr.allocatable
366 || CLASS_DATA (sym)->attr.target))
367 || sym->attr.optional)
368 {
369 proc->attr.always_explicit = 1;
370 if (proc->result)
371 proc->result->attr.always_explicit = 1;
372 }
373
374 /* If the flavor is unknown at this point, it has to be a variable.
375 A procedure specification would have already set the type. */
376
377 if (sym->attr.flavor == FL_UNKNOWN)
378 gfc_add_flavor (&sym->attr, FL_VARIABLE, sym->name, &sym->declared_at);
379
380 if (gfc_pure (proc))
381 {
382 if (sym->attr.flavor == FL_PROCEDURE)
383 {
384 /* F08:C1279. */
385 if (!gfc_pure (sym))
386 {
387 gfc_error ("Dummy procedure %qs of PURE procedure at %L must "
388 "also be PURE", sym->name, &sym->declared_at);
389 continue;
390 }
391 }
392 else if (!sym->attr.pointer)
393 {
394 if (proc->attr.function && sym->attr.intent != INTENT_IN)
395 {
396 if (sym->attr.value)
397 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
398 " of pure function %qs at %L with VALUE "
399 "attribute but without INTENT(IN)",
400 sym->name, proc->name, &sym->declared_at);
401 else
402 gfc_error ("Argument %qs of pure function %qs at %L must "
403 "be INTENT(IN) or VALUE", sym->name, proc->name,
404 &sym->declared_at);
405 }
406
407 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN)
408 {
409 if (sym->attr.value)
410 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
411 " of pure subroutine %qs at %L with VALUE "
412 "attribute but without INTENT", sym->name,
413 proc->name, &sym->declared_at);
414 else
415 gfc_error ("Argument %qs of pure subroutine %qs at %L "
416 "must have its INTENT specified or have the "
417 "VALUE attribute", sym->name, proc->name,
418 &sym->declared_at);
419 }
420 }
421
422 /* F08:C1278a. */
423 if (sym->ts.type == BT_CLASS && sym->attr.intent == INTENT_OUT)
424 {
425 gfc_error ("INTENT(OUT) argument %qs of pure procedure %qs at %L"
426 " may not be polymorphic", sym->name, proc->name,
427 &sym->declared_at);
428 continue;
429 }
430 }
431
432 if (proc->attr.implicit_pure)
433 {
434 if (sym->attr.flavor == FL_PROCEDURE)
435 {
436 if (!gfc_pure (sym))
437 proc->attr.implicit_pure = 0;
438 }
439 else if (!sym->attr.pointer)
440 {
441 if (proc->attr.function && sym->attr.intent != INTENT_IN
442 && !sym->value)
443 proc->attr.implicit_pure = 0;
444
445 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN
446 && !sym->value)
447 proc->attr.implicit_pure = 0;
448 }
449 }
450
451 if (gfc_elemental (proc))
452 {
453 /* F08:C1289. */
454 if (sym->attr.codimension
455 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
456 && CLASS_DATA (sym)->attr.codimension))
457 {
458 gfc_error ("Coarray dummy argument %qs at %L to elemental "
459 "procedure", sym->name, &sym->declared_at);
460 continue;
461 }
462
463 if (sym->as || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
464 && CLASS_DATA (sym)->as))
465 {
466 gfc_error ("Argument %qs of elemental procedure at %L must "
467 "be scalar", sym->name, &sym->declared_at);
468 continue;
469 }
470
471 if (sym->attr.allocatable
472 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
473 && CLASS_DATA (sym)->attr.allocatable))
474 {
475 gfc_error ("Argument %qs of elemental procedure at %L cannot "
476 "have the ALLOCATABLE attribute", sym->name,
477 &sym->declared_at);
478 continue;
479 }
480
481 if (sym->attr.pointer
482 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
483 && CLASS_DATA (sym)->attr.class_pointer))
484 {
485 gfc_error ("Argument %qs of elemental procedure at %L cannot "
486 "have the POINTER attribute", sym->name,
487 &sym->declared_at);
488 continue;
489 }
490
491 if (sym->attr.flavor == FL_PROCEDURE)
492 {
493 gfc_error ("Dummy procedure %qs not allowed in elemental "
494 "procedure %qs at %L", sym->name, proc->name,
495 &sym->declared_at);
496 continue;
497 }
498
499 /* Fortran 2008 Corrigendum 1, C1290a. */
500 if (sym->attr.intent == INTENT_UNKNOWN && !sym->attr.value)
501 {
502 gfc_error ("Argument %qs of elemental procedure %qs at %L must "
503 "have its INTENT specified or have the VALUE "
504 "attribute", sym->name, proc->name,
505 &sym->declared_at);
506 continue;
507 }
508 }
509
510 /* Each dummy shall be specified to be scalar. */
511 if (proc->attr.proc == PROC_ST_FUNCTION)
512 {
513 if (sym->as != NULL)
514 {
515 /* F03:C1263 (R1238) The function-name and each dummy-arg-name
516 shall be specified, explicitly or implicitly, to be scalar. */
517 gfc_error ("Argument '%s' of statement function '%s' at %L "
518 "must be scalar", sym->name, proc->name,
519 &proc->declared_at);
520 continue;
521 }
522
523 if (sym->ts.type == BT_CHARACTER)
524 {
525 gfc_charlen *cl = sym->ts.u.cl;
526 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
527 {
528 gfc_error ("Character-valued argument %qs of statement "
529 "function at %L must have constant length",
530 sym->name, &sym->declared_at);
531 continue;
532 }
533 }
534 }
535 }
536 formal_arg_flag = false;
537 }
538
539
540 /* Work function called when searching for symbols that have argument lists
541 associated with them. */
542
543 static void
544 find_arglists (gfc_symbol *sym)
545 {
546 if (sym->attr.if_source == IFSRC_UNKNOWN || sym->ns != gfc_current_ns
547 || gfc_fl_struct (sym->attr.flavor) || sym->attr.intrinsic)
548 return;
549
550 resolve_formal_arglist (sym);
551 }
552
553
554 /* Given a namespace, resolve all formal argument lists within the namespace.
555 */
556
557 static void
558 resolve_formal_arglists (gfc_namespace *ns)
559 {
560 if (ns == NULL)
561 return;
562
563 gfc_traverse_ns (ns, find_arglists);
564 }
565
566
567 static void
568 resolve_contained_fntype (gfc_symbol *sym, gfc_namespace *ns)
569 {
570 bool t;
571
572 if (sym && sym->attr.flavor == FL_PROCEDURE
573 && sym->ns->parent
574 && sym->ns->parent->proc_name
575 && sym->ns->parent->proc_name->attr.flavor == FL_PROCEDURE
576 && !strcmp (sym->name, sym->ns->parent->proc_name->name))
577 gfc_error ("Contained procedure %qs at %L has the same name as its "
578 "encompassing procedure", sym->name, &sym->declared_at);
579
580 /* If this namespace is not a function or an entry master function,
581 ignore it. */
582 if (! sym || !(sym->attr.function || sym->attr.flavor == FL_VARIABLE)
583 || sym->attr.entry_master)
584 return;
585
586 /* Try to find out of what the return type is. */
587 if (sym->result->ts.type == BT_UNKNOWN && sym->result->ts.interface == NULL)
588 {
589 t = gfc_set_default_type (sym->result, 0, ns);
590
591 if (!t && !sym->result->attr.untyped)
592 {
593 if (sym->result == sym)
594 gfc_error ("Contained function %qs at %L has no IMPLICIT type",
595 sym->name, &sym->declared_at);
596 else if (!sym->result->attr.proc_pointer)
597 gfc_error ("Result %qs of contained function %qs at %L has "
598 "no IMPLICIT type", sym->result->name, sym->name,
599 &sym->result->declared_at);
600 sym->result->attr.untyped = 1;
601 }
602 }
603
604 /* Fortran 2008 Draft Standard, page 535, C418, on type-param-value
605 type, lists the only ways a character length value of * can be used:
606 dummy arguments of procedures, named constants, function results and
607 in allocate statements if the allocate_object is an assumed length dummy
608 in external functions. Internal function results and results of module
609 procedures are not on this list, ergo, not permitted. */
610
611 if (sym->result->ts.type == BT_CHARACTER)
612 {
613 gfc_charlen *cl = sym->result->ts.u.cl;
614 if ((!cl || !cl->length) && !sym->result->ts.deferred)
615 {
616 /* See if this is a module-procedure and adapt error message
617 accordingly. */
618 bool module_proc;
619 gcc_assert (ns->parent && ns->parent->proc_name);
620 module_proc = (ns->parent->proc_name->attr.flavor == FL_MODULE);
621
622 gfc_error (module_proc
623 ? G_("Character-valued module procedure %qs at %L"
624 " must not be assumed length")
625 : G_("Character-valued internal function %qs at %L"
626 " must not be assumed length"),
627 sym->name, &sym->declared_at);
628 }
629 }
630 }
631
632
633 /* Add NEW_ARGS to the formal argument list of PROC, taking care not to
634 introduce duplicates. */
635
636 static void
637 merge_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
638 {
639 gfc_formal_arglist *f, *new_arglist;
640 gfc_symbol *new_sym;
641
642 for (; new_args != NULL; new_args = new_args->next)
643 {
644 new_sym = new_args->sym;
645 /* See if this arg is already in the formal argument list. */
646 for (f = proc->formal; f; f = f->next)
647 {
648 if (new_sym == f->sym)
649 break;
650 }
651
652 if (f)
653 continue;
654
655 /* Add a new argument. Argument order is not important. */
656 new_arglist = gfc_get_formal_arglist ();
657 new_arglist->sym = new_sym;
658 new_arglist->next = proc->formal;
659 proc->formal = new_arglist;
660 }
661 }
662
663
664 /* Flag the arguments that are not present in all entries. */
665
666 static void
667 check_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
668 {
669 gfc_formal_arglist *f, *head;
670 head = new_args;
671
672 for (f = proc->formal; f; f = f->next)
673 {
674 if (f->sym == NULL)
675 continue;
676
677 for (new_args = head; new_args; new_args = new_args->next)
678 {
679 if (new_args->sym == f->sym)
680 break;
681 }
682
683 if (new_args)
684 continue;
685
686 f->sym->attr.not_always_present = 1;
687 }
688 }
689
690
691 /* Resolve alternate entry points. If a symbol has multiple entry points we
692 create a new master symbol for the main routine, and turn the existing
693 symbol into an entry point. */
694
695 static void
696 resolve_entries (gfc_namespace *ns)
697 {
698 gfc_namespace *old_ns;
699 gfc_code *c;
700 gfc_symbol *proc;
701 gfc_entry_list *el;
702 char name[GFC_MAX_SYMBOL_LEN + 1];
703 static int master_count = 0;
704
705 if (ns->proc_name == NULL)
706 return;
707
708 /* No need to do anything if this procedure doesn't have alternate entry
709 points. */
710 if (!ns->entries)
711 return;
712
713 /* We may already have resolved alternate entry points. */
714 if (ns->proc_name->attr.entry_master)
715 return;
716
717 /* If this isn't a procedure something has gone horribly wrong. */
718 gcc_assert (ns->proc_name->attr.flavor == FL_PROCEDURE);
719
720 /* Remember the current namespace. */
721 old_ns = gfc_current_ns;
722
723 gfc_current_ns = ns;
724
725 /* Add the main entry point to the list of entry points. */
726 el = gfc_get_entry_list ();
727 el->sym = ns->proc_name;
728 el->id = 0;
729 el->next = ns->entries;
730 ns->entries = el;
731 ns->proc_name->attr.entry = 1;
732
733 /* If it is a module function, it needs to be in the right namespace
734 so that gfc_get_fake_result_decl can gather up the results. The
735 need for this arose in get_proc_name, where these beasts were
736 left in their own namespace, to keep prior references linked to
737 the entry declaration.*/
738 if (ns->proc_name->attr.function
739 && ns->parent && ns->parent->proc_name->attr.flavor == FL_MODULE)
740 el->sym->ns = ns;
741
742 /* Do the same for entries where the master is not a module
743 procedure. These are retained in the module namespace because
744 of the module procedure declaration. */
745 for (el = el->next; el; el = el->next)
746 if (el->sym->ns->proc_name->attr.flavor == FL_MODULE
747 && el->sym->attr.mod_proc)
748 el->sym->ns = ns;
749 el = ns->entries;
750
751 /* Add an entry statement for it. */
752 c = gfc_get_code (EXEC_ENTRY);
753 c->ext.entry = el;
754 c->next = ns->code;
755 ns->code = c;
756
757 /* Create a new symbol for the master function. */
758 /* Give the internal function a unique name (within this file).
759 Also include the function name so the user has some hope of figuring
760 out what is going on. */
761 snprintf (name, GFC_MAX_SYMBOL_LEN, "master.%d.%s",
762 master_count++, ns->proc_name->name);
763 gfc_get_ha_symbol (name, &proc);
764 gcc_assert (proc != NULL);
765
766 gfc_add_procedure (&proc->attr, PROC_INTERNAL, proc->name, NULL);
767 if (ns->proc_name->attr.subroutine)
768 gfc_add_subroutine (&proc->attr, proc->name, NULL);
769 else
770 {
771 gfc_symbol *sym;
772 gfc_typespec *ts, *fts;
773 gfc_array_spec *as, *fas;
774 gfc_add_function (&proc->attr, proc->name, NULL);
775 proc->result = proc;
776 fas = ns->entries->sym->as;
777 fas = fas ? fas : ns->entries->sym->result->as;
778 fts = &ns->entries->sym->result->ts;
779 if (fts->type == BT_UNKNOWN)
780 fts = gfc_get_default_type (ns->entries->sym->result->name, NULL);
781 for (el = ns->entries->next; el; el = el->next)
782 {
783 ts = &el->sym->result->ts;
784 as = el->sym->as;
785 as = as ? as : el->sym->result->as;
786 if (ts->type == BT_UNKNOWN)
787 ts = gfc_get_default_type (el->sym->result->name, NULL);
788
789 if (! gfc_compare_types (ts, fts)
790 || (el->sym->result->attr.dimension
791 != ns->entries->sym->result->attr.dimension)
792 || (el->sym->result->attr.pointer
793 != ns->entries->sym->result->attr.pointer))
794 break;
795 else if (as && fas && ns->entries->sym->result != el->sym->result
796 && gfc_compare_array_spec (as, fas) == 0)
797 gfc_error ("Function %s at %L has entries with mismatched "
798 "array specifications", ns->entries->sym->name,
799 &ns->entries->sym->declared_at);
800 /* The characteristics need to match and thus both need to have
801 the same string length, i.e. both len=*, or both len=4.
802 Having both len=<variable> is also possible, but difficult to
803 check at compile time. */
804 else if (ts->type == BT_CHARACTER && ts->u.cl && fts->u.cl
805 && (((ts->u.cl->length && !fts->u.cl->length)
806 ||(!ts->u.cl->length && fts->u.cl->length))
807 || (ts->u.cl->length
808 && ts->u.cl->length->expr_type
809 != fts->u.cl->length->expr_type)
810 || (ts->u.cl->length
811 && ts->u.cl->length->expr_type == EXPR_CONSTANT
812 && mpz_cmp (ts->u.cl->length->value.integer,
813 fts->u.cl->length->value.integer) != 0)))
814 gfc_notify_std (GFC_STD_GNU, "Function %s at %L with "
815 "entries returning variables of different "
816 "string lengths", ns->entries->sym->name,
817 &ns->entries->sym->declared_at);
818 }
819
820 if (el == NULL)
821 {
822 sym = ns->entries->sym->result;
823 /* All result types the same. */
824 proc->ts = *fts;
825 if (sym->attr.dimension)
826 gfc_set_array_spec (proc, gfc_copy_array_spec (sym->as), NULL);
827 if (sym->attr.pointer)
828 gfc_add_pointer (&proc->attr, NULL);
829 }
830 else
831 {
832 /* Otherwise the result will be passed through a union by
833 reference. */
834 proc->attr.mixed_entry_master = 1;
835 for (el = ns->entries; el; el = el->next)
836 {
837 sym = el->sym->result;
838 if (sym->attr.dimension)
839 {
840 if (el == ns->entries)
841 gfc_error ("FUNCTION result %s can't be an array in "
842 "FUNCTION %s at %L", sym->name,
843 ns->entries->sym->name, &sym->declared_at);
844 else
845 gfc_error ("ENTRY result %s can't be an array in "
846 "FUNCTION %s at %L", sym->name,
847 ns->entries->sym->name, &sym->declared_at);
848 }
849 else if (sym->attr.pointer)
850 {
851 if (el == ns->entries)
852 gfc_error ("FUNCTION result %s can't be a POINTER in "
853 "FUNCTION %s at %L", sym->name,
854 ns->entries->sym->name, &sym->declared_at);
855 else
856 gfc_error ("ENTRY result %s can't be a POINTER in "
857 "FUNCTION %s at %L", sym->name,
858 ns->entries->sym->name, &sym->declared_at);
859 }
860 else
861 {
862 ts = &sym->ts;
863 if (ts->type == BT_UNKNOWN)
864 ts = gfc_get_default_type (sym->name, NULL);
865 switch (ts->type)
866 {
867 case BT_INTEGER:
868 if (ts->kind == gfc_default_integer_kind)
869 sym = NULL;
870 break;
871 case BT_REAL:
872 if (ts->kind == gfc_default_real_kind
873 || ts->kind == gfc_default_double_kind)
874 sym = NULL;
875 break;
876 case BT_COMPLEX:
877 if (ts->kind == gfc_default_complex_kind)
878 sym = NULL;
879 break;
880 case BT_LOGICAL:
881 if (ts->kind == gfc_default_logical_kind)
882 sym = NULL;
883 break;
884 case BT_UNKNOWN:
885 /* We will issue error elsewhere. */
886 sym = NULL;
887 break;
888 default:
889 break;
890 }
891 if (sym)
892 {
893 if (el == ns->entries)
894 gfc_error ("FUNCTION result %s can't be of type %s "
895 "in FUNCTION %s at %L", sym->name,
896 gfc_typename (ts), ns->entries->sym->name,
897 &sym->declared_at);
898 else
899 gfc_error ("ENTRY result %s can't be of type %s "
900 "in FUNCTION %s at %L", sym->name,
901 gfc_typename (ts), ns->entries->sym->name,
902 &sym->declared_at);
903 }
904 }
905 }
906 }
907 }
908 proc->attr.access = ACCESS_PRIVATE;
909 proc->attr.entry_master = 1;
910
911 /* Merge all the entry point arguments. */
912 for (el = ns->entries; el; el = el->next)
913 merge_argument_lists (proc, el->sym->formal);
914
915 /* Check the master formal arguments for any that are not
916 present in all entry points. */
917 for (el = ns->entries; el; el = el->next)
918 check_argument_lists (proc, el->sym->formal);
919
920 /* Use the master function for the function body. */
921 ns->proc_name = proc;
922
923 /* Finalize the new symbols. */
924 gfc_commit_symbols ();
925
926 /* Restore the original namespace. */
927 gfc_current_ns = old_ns;
928 }
929
930
931 /* Resolve common variables. */
932 static void
933 resolve_common_vars (gfc_common_head *common_block, bool named_common)
934 {
935 gfc_symbol *csym = common_block->head;
936
937 for (; csym; csym = csym->common_next)
938 {
939 /* gfc_add_in_common may have been called before, but the reported errors
940 have been ignored to continue parsing.
941 We do the checks again here. */
942 if (!csym->attr.use_assoc)
943 {
944 gfc_add_in_common (&csym->attr, csym->name, &common_block->where);
945 gfc_notify_std (GFC_STD_F2018_OBS, "COMMON block at %L",
946 &common_block->where);
947 }
948
949 if (csym->value || csym->attr.data)
950 {
951 if (!csym->ns->is_block_data)
952 gfc_notify_std (GFC_STD_GNU, "Variable %qs at %L is in COMMON "
953 "but only in BLOCK DATA initialization is "
954 "allowed", csym->name, &csym->declared_at);
955 else if (!named_common)
956 gfc_notify_std (GFC_STD_GNU, "Initialized variable %qs at %L is "
957 "in a blank COMMON but initialization is only "
958 "allowed in named common blocks", csym->name,
959 &csym->declared_at);
960 }
961
962 if (UNLIMITED_POLY (csym))
963 gfc_error_now ("%qs in cannot appear in COMMON at %L "
964 "[F2008:C5100]", csym->name, &csym->declared_at);
965
966 if (csym->ts.type != BT_DERIVED)
967 continue;
968
969 if (!(csym->ts.u.derived->attr.sequence
970 || csym->ts.u.derived->attr.is_bind_c))
971 gfc_error_now ("Derived type variable %qs in COMMON at %L "
972 "has neither the SEQUENCE nor the BIND(C) "
973 "attribute", csym->name, &csym->declared_at);
974 if (csym->ts.u.derived->attr.alloc_comp)
975 gfc_error_now ("Derived type variable %qs in COMMON at %L "
976 "has an ultimate component that is "
977 "allocatable", csym->name, &csym->declared_at);
978 if (gfc_has_default_initializer (csym->ts.u.derived))
979 gfc_error_now ("Derived type variable %qs in COMMON at %L "
980 "may not have default initializer", csym->name,
981 &csym->declared_at);
982
983 if (csym->attr.flavor == FL_UNKNOWN && !csym->attr.proc_pointer)
984 gfc_add_flavor (&csym->attr, FL_VARIABLE, csym->name, &csym->declared_at);
985 }
986 }
987
988 /* Resolve common blocks. */
989 static void
990 resolve_common_blocks (gfc_symtree *common_root)
991 {
992 gfc_symbol *sym;
993 gfc_gsymbol * gsym;
994
995 if (common_root == NULL)
996 return;
997
998 if (common_root->left)
999 resolve_common_blocks (common_root->left);
1000 if (common_root->right)
1001 resolve_common_blocks (common_root->right);
1002
1003 resolve_common_vars (common_root->n.common, true);
1004
1005 /* The common name is a global name - in Fortran 2003 also if it has a
1006 C binding name, since Fortran 2008 only the C binding name is a global
1007 identifier. */
1008 if (!common_root->n.common->binding_label
1009 || gfc_notification_std (GFC_STD_F2008))
1010 {
1011 gsym = gfc_find_gsymbol (gfc_gsym_root,
1012 common_root->n.common->name);
1013
1014 if (gsym && gfc_notification_std (GFC_STD_F2008)
1015 && gsym->type == GSYM_COMMON
1016 && ((common_root->n.common->binding_label
1017 && (!gsym->binding_label
1018 || strcmp (common_root->n.common->binding_label,
1019 gsym->binding_label) != 0))
1020 || (!common_root->n.common->binding_label
1021 && gsym->binding_label)))
1022 {
1023 gfc_error ("In Fortran 2003 COMMON %qs block at %L is a global "
1024 "identifier and must thus have the same binding name "
1025 "as the same-named COMMON block at %L: %s vs %s",
1026 common_root->n.common->name, &common_root->n.common->where,
1027 &gsym->where,
1028 common_root->n.common->binding_label
1029 ? common_root->n.common->binding_label : "(blank)",
1030 gsym->binding_label ? gsym->binding_label : "(blank)");
1031 return;
1032 }
1033
1034 if (gsym && gsym->type != GSYM_COMMON
1035 && !common_root->n.common->binding_label)
1036 {
1037 gfc_error ("COMMON block %qs at %L uses the same global identifier "
1038 "as entity at %L",
1039 common_root->n.common->name, &common_root->n.common->where,
1040 &gsym->where);
1041 return;
1042 }
1043 if (gsym && gsym->type != GSYM_COMMON)
1044 {
1045 gfc_error ("Fortran 2008: COMMON block %qs with binding label at "
1046 "%L sharing the identifier with global non-COMMON-block "
1047 "entity at %L", common_root->n.common->name,
1048 &common_root->n.common->where, &gsym->where);
1049 return;
1050 }
1051 if (!gsym)
1052 {
1053 gsym = gfc_get_gsymbol (common_root->n.common->name);
1054 gsym->type = GSYM_COMMON;
1055 gsym->where = common_root->n.common->where;
1056 gsym->defined = 1;
1057 }
1058 gsym->used = 1;
1059 }
1060
1061 if (common_root->n.common->binding_label)
1062 {
1063 gsym = gfc_find_gsymbol (gfc_gsym_root,
1064 common_root->n.common->binding_label);
1065 if (gsym && gsym->type != GSYM_COMMON)
1066 {
1067 gfc_error ("COMMON block at %L with binding label %qs uses the same "
1068 "global identifier as entity at %L",
1069 &common_root->n.common->where,
1070 common_root->n.common->binding_label, &gsym->where);
1071 return;
1072 }
1073 if (!gsym)
1074 {
1075 gsym = gfc_get_gsymbol (common_root->n.common->binding_label);
1076 gsym->type = GSYM_COMMON;
1077 gsym->where = common_root->n.common->where;
1078 gsym->defined = 1;
1079 }
1080 gsym->used = 1;
1081 }
1082
1083 gfc_find_symbol (common_root->name, gfc_current_ns, 0, &sym);
1084 if (sym == NULL)
1085 return;
1086
1087 if (sym->attr.flavor == FL_PARAMETER)
1088 gfc_error ("COMMON block %qs at %L is used as PARAMETER at %L",
1089 sym->name, &common_root->n.common->where, &sym->declared_at);
1090
1091 if (sym->attr.external)
1092 gfc_error ("COMMON block %qs at %L cannot have the EXTERNAL attribute",
1093 sym->name, &common_root->n.common->where);
1094
1095 if (sym->attr.intrinsic)
1096 gfc_error ("COMMON block %qs at %L is also an intrinsic procedure",
1097 sym->name, &common_root->n.common->where);
1098 else if (sym->attr.result
1099 || gfc_is_function_return_value (sym, gfc_current_ns))
1100 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1101 "that is also a function result", sym->name,
1102 &common_root->n.common->where);
1103 else if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_INTERNAL
1104 && sym->attr.proc != PROC_ST_FUNCTION)
1105 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1106 "that is also a global procedure", sym->name,
1107 &common_root->n.common->where);
1108 }
1109
1110
1111 /* Resolve contained function types. Because contained functions can call one
1112 another, they have to be worked out before any of the contained procedures
1113 can be resolved.
1114
1115 The good news is that if a function doesn't already have a type, the only
1116 way it can get one is through an IMPLICIT type or a RESULT variable, because
1117 by definition contained functions are contained namespace they're contained
1118 in, not in a sibling or parent namespace. */
1119
1120 static void
1121 resolve_contained_functions (gfc_namespace *ns)
1122 {
1123 gfc_namespace *child;
1124 gfc_entry_list *el;
1125
1126 resolve_formal_arglists (ns);
1127
1128 for (child = ns->contained; child; child = child->sibling)
1129 {
1130 /* Resolve alternate entry points first. */
1131 resolve_entries (child);
1132
1133 /* Then check function return types. */
1134 resolve_contained_fntype (child->proc_name, child);
1135 for (el = child->entries; el; el = el->next)
1136 resolve_contained_fntype (el->sym, child);
1137 }
1138 }
1139
1140
1141
1142 /* A Parameterized Derived Type constructor must contain values for
1143 the PDT KIND parameters or they must have a default initializer.
1144 Go through the constructor picking out the KIND expressions,
1145 storing them in 'param_list' and then call gfc_get_pdt_instance
1146 to obtain the PDT instance. */
1147
1148 static gfc_actual_arglist *param_list, *param_tail, *param;
1149
1150 static bool
1151 get_pdt_spec_expr (gfc_component *c, gfc_expr *expr)
1152 {
1153 param = gfc_get_actual_arglist ();
1154 if (!param_list)
1155 param_list = param_tail = param;
1156 else
1157 {
1158 param_tail->next = param;
1159 param_tail = param_tail->next;
1160 }
1161
1162 param_tail->name = c->name;
1163 if (expr)
1164 param_tail->expr = gfc_copy_expr (expr);
1165 else if (c->initializer)
1166 param_tail->expr = gfc_copy_expr (c->initializer);
1167 else
1168 {
1169 param_tail->spec_type = SPEC_ASSUMED;
1170 if (c->attr.pdt_kind)
1171 {
1172 gfc_error ("The KIND parameter %qs in the PDT constructor "
1173 "at %C has no value", param->name);
1174 return false;
1175 }
1176 }
1177
1178 return true;
1179 }
1180
1181 static bool
1182 get_pdt_constructor (gfc_expr *expr, gfc_constructor **constr,
1183 gfc_symbol *derived)
1184 {
1185 gfc_constructor *cons = NULL;
1186 gfc_component *comp;
1187 bool t = true;
1188
1189 if (expr && expr->expr_type == EXPR_STRUCTURE)
1190 cons = gfc_constructor_first (expr->value.constructor);
1191 else if (constr)
1192 cons = *constr;
1193 gcc_assert (cons);
1194
1195 comp = derived->components;
1196
1197 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1198 {
1199 if (cons->expr
1200 && cons->expr->expr_type == EXPR_STRUCTURE
1201 && comp->ts.type == BT_DERIVED)
1202 {
1203 t = get_pdt_constructor (cons->expr, NULL, comp->ts.u.derived);
1204 if (!t)
1205 return t;
1206 }
1207 else if (comp->ts.type == BT_DERIVED)
1208 {
1209 t = get_pdt_constructor (NULL, &cons, comp->ts.u.derived);
1210 if (!t)
1211 return t;
1212 }
1213 else if ((comp->attr.pdt_kind || comp->attr.pdt_len)
1214 && derived->attr.pdt_template)
1215 {
1216 t = get_pdt_spec_expr (comp, cons->expr);
1217 if (!t)
1218 return t;
1219 }
1220 }
1221 return t;
1222 }
1223
1224
1225 static bool resolve_fl_derived0 (gfc_symbol *sym);
1226 static bool resolve_fl_struct (gfc_symbol *sym);
1227
1228
1229 /* Resolve all of the elements of a structure constructor and make sure that
1230 the types are correct. The 'init' flag indicates that the given
1231 constructor is an initializer. */
1232
1233 static bool
1234 resolve_structure_cons (gfc_expr *expr, int init)
1235 {
1236 gfc_constructor *cons;
1237 gfc_component *comp;
1238 bool t;
1239 symbol_attribute a;
1240
1241 t = true;
1242
1243 if (expr->ts.type == BT_DERIVED || expr->ts.type == BT_UNION)
1244 {
1245 if (expr->ts.u.derived->attr.flavor == FL_DERIVED)
1246 resolve_fl_derived0 (expr->ts.u.derived);
1247 else
1248 resolve_fl_struct (expr->ts.u.derived);
1249
1250 /* If this is a Parameterized Derived Type template, find the
1251 instance corresponding to the PDT kind parameters. */
1252 if (expr->ts.u.derived->attr.pdt_template)
1253 {
1254 param_list = NULL;
1255 t = get_pdt_constructor (expr, NULL, expr->ts.u.derived);
1256 if (!t)
1257 return t;
1258 gfc_get_pdt_instance (param_list, &expr->ts.u.derived, NULL);
1259
1260 expr->param_list = gfc_copy_actual_arglist (param_list);
1261
1262 if (param_list)
1263 gfc_free_actual_arglist (param_list);
1264
1265 if (!expr->ts.u.derived->attr.pdt_type)
1266 return false;
1267 }
1268 }
1269
1270 cons = gfc_constructor_first (expr->value.constructor);
1271
1272 /* A constructor may have references if it is the result of substituting a
1273 parameter variable. In this case we just pull out the component we
1274 want. */
1275 if (expr->ref)
1276 comp = expr->ref->u.c.sym->components;
1277 else
1278 comp = expr->ts.u.derived->components;
1279
1280 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1281 {
1282 int rank;
1283
1284 if (!cons->expr)
1285 continue;
1286
1287 /* Unions use an EXPR_NULL contrived expression to tell the translation
1288 phase to generate an initializer of the appropriate length.
1289 Ignore it here. */
1290 if (cons->expr->ts.type == BT_UNION && cons->expr->expr_type == EXPR_NULL)
1291 continue;
1292
1293 if (!gfc_resolve_expr (cons->expr))
1294 {
1295 t = false;
1296 continue;
1297 }
1298
1299 rank = comp->as ? comp->as->rank : 0;
1300 if (comp->ts.type == BT_CLASS
1301 && !comp->ts.u.derived->attr.unlimited_polymorphic
1302 && CLASS_DATA (comp)->as)
1303 rank = CLASS_DATA (comp)->as->rank;
1304
1305 if (cons->expr->expr_type != EXPR_NULL && rank != cons->expr->rank
1306 && (comp->attr.allocatable || cons->expr->rank))
1307 {
1308 gfc_error ("The rank of the element in the structure "
1309 "constructor at %L does not match that of the "
1310 "component (%d/%d)", &cons->expr->where,
1311 cons->expr->rank, rank);
1312 t = false;
1313 }
1314
1315 /* If we don't have the right type, try to convert it. */
1316
1317 if (!comp->attr.proc_pointer &&
1318 !gfc_compare_types (&cons->expr->ts, &comp->ts))
1319 {
1320 if (strcmp (comp->name, "_extends") == 0)
1321 {
1322 /* Can afford to be brutal with the _extends initializer.
1323 The derived type can get lost because it is PRIVATE
1324 but it is not usage constrained by the standard. */
1325 cons->expr->ts = comp->ts;
1326 }
1327 else if (comp->attr.pointer && cons->expr->ts.type != BT_UNKNOWN)
1328 {
1329 gfc_error ("The element in the structure constructor at %L, "
1330 "for pointer component %qs, is %s but should be %s",
1331 &cons->expr->where, comp->name,
1332 gfc_basic_typename (cons->expr->ts.type),
1333 gfc_basic_typename (comp->ts.type));
1334 t = false;
1335 }
1336 else
1337 {
1338 bool t2 = gfc_convert_type (cons->expr, &comp->ts, 1);
1339 if (t)
1340 t = t2;
1341 }
1342 }
1343
1344 /* For strings, the length of the constructor should be the same as
1345 the one of the structure, ensure this if the lengths are known at
1346 compile time and when we are dealing with PARAMETER or structure
1347 constructors. */
1348 if (cons->expr->ts.type == BT_CHARACTER && comp->ts.u.cl
1349 && comp->ts.u.cl->length
1350 && comp->ts.u.cl->length->expr_type == EXPR_CONSTANT
1351 && cons->expr->ts.u.cl && cons->expr->ts.u.cl->length
1352 && cons->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
1353 && cons->expr->rank != 0
1354 && mpz_cmp (cons->expr->ts.u.cl->length->value.integer,
1355 comp->ts.u.cl->length->value.integer) != 0)
1356 {
1357 if (cons->expr->expr_type == EXPR_VARIABLE
1358 && cons->expr->symtree->n.sym->attr.flavor == FL_PARAMETER)
1359 {
1360 /* Wrap the parameter in an array constructor (EXPR_ARRAY)
1361 to make use of the gfc_resolve_character_array_constructor
1362 machinery. The expression is later simplified away to
1363 an array of string literals. */
1364 gfc_expr *para = cons->expr;
1365 cons->expr = gfc_get_expr ();
1366 cons->expr->ts = para->ts;
1367 cons->expr->where = para->where;
1368 cons->expr->expr_type = EXPR_ARRAY;
1369 cons->expr->rank = para->rank;
1370 cons->expr->shape = gfc_copy_shape (para->shape, para->rank);
1371 gfc_constructor_append_expr (&cons->expr->value.constructor,
1372 para, &cons->expr->where);
1373 }
1374
1375 if (cons->expr->expr_type == EXPR_ARRAY)
1376 {
1377 /* Rely on the cleanup of the namespace to deal correctly with
1378 the old charlen. (There was a block here that attempted to
1379 remove the charlen but broke the chain in so doing.) */
1380 cons->expr->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1381 cons->expr->ts.u.cl->length_from_typespec = true;
1382 cons->expr->ts.u.cl->length = gfc_copy_expr (comp->ts.u.cl->length);
1383 gfc_resolve_character_array_constructor (cons->expr);
1384 }
1385 }
1386
1387 if (cons->expr->expr_type == EXPR_NULL
1388 && !(comp->attr.pointer || comp->attr.allocatable
1389 || comp->attr.proc_pointer || comp->ts.f90_type == BT_VOID
1390 || (comp->ts.type == BT_CLASS
1391 && (CLASS_DATA (comp)->attr.class_pointer
1392 || CLASS_DATA (comp)->attr.allocatable))))
1393 {
1394 t = false;
1395 gfc_error ("The NULL in the structure constructor at %L is "
1396 "being applied to component %qs, which is neither "
1397 "a POINTER nor ALLOCATABLE", &cons->expr->where,
1398 comp->name);
1399 }
1400
1401 if (comp->attr.proc_pointer && comp->ts.interface)
1402 {
1403 /* Check procedure pointer interface. */
1404 gfc_symbol *s2 = NULL;
1405 gfc_component *c2;
1406 const char *name;
1407 char err[200];
1408
1409 c2 = gfc_get_proc_ptr_comp (cons->expr);
1410 if (c2)
1411 {
1412 s2 = c2->ts.interface;
1413 name = c2->name;
1414 }
1415 else if (cons->expr->expr_type == EXPR_FUNCTION)
1416 {
1417 s2 = cons->expr->symtree->n.sym->result;
1418 name = cons->expr->symtree->n.sym->result->name;
1419 }
1420 else if (cons->expr->expr_type != EXPR_NULL)
1421 {
1422 s2 = cons->expr->symtree->n.sym;
1423 name = cons->expr->symtree->n.sym->name;
1424 }
1425
1426 if (s2 && !gfc_compare_interfaces (comp->ts.interface, s2, name, 0, 1,
1427 err, sizeof (err), NULL, NULL))
1428 {
1429 gfc_error_opt (OPT_Wargument_mismatch,
1430 "Interface mismatch for procedure-pointer "
1431 "component %qs in structure constructor at %L:"
1432 " %s", comp->name, &cons->expr->where, err);
1433 return false;
1434 }
1435 }
1436
1437 if (!comp->attr.pointer || comp->attr.proc_pointer
1438 || cons->expr->expr_type == EXPR_NULL)
1439 continue;
1440
1441 a = gfc_expr_attr (cons->expr);
1442
1443 if (!a.pointer && !a.target)
1444 {
1445 t = false;
1446 gfc_error ("The element in the structure constructor at %L, "
1447 "for pointer component %qs should be a POINTER or "
1448 "a TARGET", &cons->expr->where, comp->name);
1449 }
1450
1451 if (init)
1452 {
1453 /* F08:C461. Additional checks for pointer initialization. */
1454 if (a.allocatable)
1455 {
1456 t = false;
1457 gfc_error ("Pointer initialization target at %L "
1458 "must not be ALLOCATABLE", &cons->expr->where);
1459 }
1460 if (!a.save)
1461 {
1462 t = false;
1463 gfc_error ("Pointer initialization target at %L "
1464 "must have the SAVE attribute", &cons->expr->where);
1465 }
1466 }
1467
1468 /* F2003, C1272 (3). */
1469 bool impure = cons->expr->expr_type == EXPR_VARIABLE
1470 && (gfc_impure_variable (cons->expr->symtree->n.sym)
1471 || gfc_is_coindexed (cons->expr));
1472 if (impure && gfc_pure (NULL))
1473 {
1474 t = false;
1475 gfc_error ("Invalid expression in the structure constructor for "
1476 "pointer component %qs at %L in PURE procedure",
1477 comp->name, &cons->expr->where);
1478 }
1479
1480 if (impure)
1481 gfc_unset_implicit_pure (NULL);
1482 }
1483
1484 return t;
1485 }
1486
1487
1488 /****************** Expression name resolution ******************/
1489
1490 /* Returns 0 if a symbol was not declared with a type or
1491 attribute declaration statement, nonzero otherwise. */
1492
1493 static int
1494 was_declared (gfc_symbol *sym)
1495 {
1496 symbol_attribute a;
1497
1498 a = sym->attr;
1499
1500 if (!a.implicit_type && sym->ts.type != BT_UNKNOWN)
1501 return 1;
1502
1503 if (a.allocatable || a.dimension || a.dummy || a.external || a.intrinsic
1504 || a.optional || a.pointer || a.save || a.target || a.volatile_
1505 || a.value || a.access != ACCESS_UNKNOWN || a.intent != INTENT_UNKNOWN
1506 || a.asynchronous || a.codimension)
1507 return 1;
1508
1509 return 0;
1510 }
1511
1512
1513 /* Determine if a symbol is generic or not. */
1514
1515 static int
1516 generic_sym (gfc_symbol *sym)
1517 {
1518 gfc_symbol *s;
1519
1520 if (sym->attr.generic ||
1521 (sym->attr.intrinsic && gfc_generic_intrinsic (sym->name)))
1522 return 1;
1523
1524 if (was_declared (sym) || sym->ns->parent == NULL)
1525 return 0;
1526
1527 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1528
1529 if (s != NULL)
1530 {
1531 if (s == sym)
1532 return 0;
1533 else
1534 return generic_sym (s);
1535 }
1536
1537 return 0;
1538 }
1539
1540
1541 /* Determine if a symbol is specific or not. */
1542
1543 static int
1544 specific_sym (gfc_symbol *sym)
1545 {
1546 gfc_symbol *s;
1547
1548 if (sym->attr.if_source == IFSRC_IFBODY
1549 || sym->attr.proc == PROC_MODULE
1550 || sym->attr.proc == PROC_INTERNAL
1551 || sym->attr.proc == PROC_ST_FUNCTION
1552 || (sym->attr.intrinsic && gfc_specific_intrinsic (sym->name))
1553 || sym->attr.external)
1554 return 1;
1555
1556 if (was_declared (sym) || sym->ns->parent == NULL)
1557 return 0;
1558
1559 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1560
1561 return (s == NULL) ? 0 : specific_sym (s);
1562 }
1563
1564
1565 /* Figure out if the procedure is specific, generic or unknown. */
1566
1567 enum proc_type
1568 { PTYPE_GENERIC = 1, PTYPE_SPECIFIC, PTYPE_UNKNOWN };
1569
1570 static proc_type
1571 procedure_kind (gfc_symbol *sym)
1572 {
1573 if (generic_sym (sym))
1574 return PTYPE_GENERIC;
1575
1576 if (specific_sym (sym))
1577 return PTYPE_SPECIFIC;
1578
1579 return PTYPE_UNKNOWN;
1580 }
1581
1582 /* Check references to assumed size arrays. The flag need_full_assumed_size
1583 is nonzero when matching actual arguments. */
1584
1585 static int need_full_assumed_size = 0;
1586
1587 static bool
1588 check_assumed_size_reference (gfc_symbol *sym, gfc_expr *e)
1589 {
1590 if (need_full_assumed_size || !(sym->as && sym->as->type == AS_ASSUMED_SIZE))
1591 return false;
1592
1593 /* FIXME: The comparison "e->ref->u.ar.type == AR_FULL" is wrong.
1594 What should it be? */
1595 if (e->ref && (e->ref->u.ar.end[e->ref->u.ar.as->rank - 1] == NULL)
1596 && (e->ref->u.ar.as->type == AS_ASSUMED_SIZE)
1597 && (e->ref->u.ar.type == AR_FULL))
1598 {
1599 gfc_error ("The upper bound in the last dimension must "
1600 "appear in the reference to the assumed size "
1601 "array %qs at %L", sym->name, &e->where);
1602 return true;
1603 }
1604 return false;
1605 }
1606
1607
1608 /* Look for bad assumed size array references in argument expressions
1609 of elemental and array valued intrinsic procedures. Since this is
1610 called from procedure resolution functions, it only recurses at
1611 operators. */
1612
1613 static bool
1614 resolve_assumed_size_actual (gfc_expr *e)
1615 {
1616 if (e == NULL)
1617 return false;
1618
1619 switch (e->expr_type)
1620 {
1621 case EXPR_VARIABLE:
1622 if (e->symtree && check_assumed_size_reference (e->symtree->n.sym, e))
1623 return true;
1624 break;
1625
1626 case EXPR_OP:
1627 if (resolve_assumed_size_actual (e->value.op.op1)
1628 || resolve_assumed_size_actual (e->value.op.op2))
1629 return true;
1630 break;
1631
1632 default:
1633 break;
1634 }
1635 return false;
1636 }
1637
1638
1639 /* Check a generic procedure, passed as an actual argument, to see if
1640 there is a matching specific name. If none, it is an error, and if
1641 more than one, the reference is ambiguous. */
1642 static int
1643 count_specific_procs (gfc_expr *e)
1644 {
1645 int n;
1646 gfc_interface *p;
1647 gfc_symbol *sym;
1648
1649 n = 0;
1650 sym = e->symtree->n.sym;
1651
1652 for (p = sym->generic; p; p = p->next)
1653 if (strcmp (sym->name, p->sym->name) == 0)
1654 {
1655 e->symtree = gfc_find_symtree (p->sym->ns->sym_root,
1656 sym->name);
1657 n++;
1658 }
1659
1660 if (n > 1)
1661 gfc_error ("%qs at %L is ambiguous", e->symtree->n.sym->name,
1662 &e->where);
1663
1664 if (n == 0)
1665 gfc_error ("GENERIC procedure %qs is not allowed as an actual "
1666 "argument at %L", sym->name, &e->where);
1667
1668 return n;
1669 }
1670
1671
1672 /* See if a call to sym could possibly be a not allowed RECURSION because of
1673 a missing RECURSIVE declaration. This means that either sym is the current
1674 context itself, or sym is the parent of a contained procedure calling its
1675 non-RECURSIVE containing procedure.
1676 This also works if sym is an ENTRY. */
1677
1678 static bool
1679 is_illegal_recursion (gfc_symbol* sym, gfc_namespace* context)
1680 {
1681 gfc_symbol* proc_sym;
1682 gfc_symbol* context_proc;
1683 gfc_namespace* real_context;
1684
1685 if (sym->attr.flavor == FL_PROGRAM
1686 || gfc_fl_struct (sym->attr.flavor))
1687 return false;
1688
1689 /* If we've got an ENTRY, find real procedure. */
1690 if (sym->attr.entry && sym->ns->entries)
1691 proc_sym = sym->ns->entries->sym;
1692 else
1693 proc_sym = sym;
1694
1695 /* If sym is RECURSIVE, all is well of course. */
1696 if (proc_sym->attr.recursive || flag_recursive)
1697 return false;
1698
1699 /* Find the context procedure's "real" symbol if it has entries.
1700 We look for a procedure symbol, so recurse on the parents if we don't
1701 find one (like in case of a BLOCK construct). */
1702 for (real_context = context; ; real_context = real_context->parent)
1703 {
1704 /* We should find something, eventually! */
1705 gcc_assert (real_context);
1706
1707 context_proc = (real_context->entries ? real_context->entries->sym
1708 : real_context->proc_name);
1709
1710 /* In some special cases, there may not be a proc_name, like for this
1711 invalid code:
1712 real(bad_kind()) function foo () ...
1713 when checking the call to bad_kind ().
1714 In these cases, we simply return here and assume that the
1715 call is ok. */
1716 if (!context_proc)
1717 return false;
1718
1719 if (context_proc->attr.flavor != FL_LABEL)
1720 break;
1721 }
1722
1723 /* A call from sym's body to itself is recursion, of course. */
1724 if (context_proc == proc_sym)
1725 return true;
1726
1727 /* The same is true if context is a contained procedure and sym the
1728 containing one. */
1729 if (context_proc->attr.contained)
1730 {
1731 gfc_symbol* parent_proc;
1732
1733 gcc_assert (context->parent);
1734 parent_proc = (context->parent->entries ? context->parent->entries->sym
1735 : context->parent->proc_name);
1736
1737 if (parent_proc == proc_sym)
1738 return true;
1739 }
1740
1741 return false;
1742 }
1743
1744
1745 /* Resolve an intrinsic procedure: Set its function/subroutine attribute,
1746 its typespec and formal argument list. */
1747
1748 bool
1749 gfc_resolve_intrinsic (gfc_symbol *sym, locus *loc)
1750 {
1751 gfc_intrinsic_sym* isym = NULL;
1752 const char* symstd;
1753
1754 if (sym->formal)
1755 return true;
1756
1757 /* Already resolved. */
1758 if (sym->from_intmod && sym->ts.type != BT_UNKNOWN)
1759 return true;
1760
1761 /* We already know this one is an intrinsic, so we don't call
1762 gfc_is_intrinsic for full checking but rather use gfc_find_function and
1763 gfc_find_subroutine directly to check whether it is a function or
1764 subroutine. */
1765
1766 if (sym->intmod_sym_id && sym->attr.subroutine)
1767 {
1768 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1769 isym = gfc_intrinsic_subroutine_by_id (id);
1770 }
1771 else if (sym->intmod_sym_id)
1772 {
1773 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1774 isym = gfc_intrinsic_function_by_id (id);
1775 }
1776 else if (!sym->attr.subroutine)
1777 isym = gfc_find_function (sym->name);
1778
1779 if (isym && !sym->attr.subroutine)
1780 {
1781 if (sym->ts.type != BT_UNKNOWN && warn_surprising
1782 && !sym->attr.implicit_type)
1783 gfc_warning (OPT_Wsurprising,
1784 "Type specified for intrinsic function %qs at %L is"
1785 " ignored", sym->name, &sym->declared_at);
1786
1787 if (!sym->attr.function &&
1788 !gfc_add_function(&sym->attr, sym->name, loc))
1789 return false;
1790
1791 sym->ts = isym->ts;
1792 }
1793 else if (isym || (isym = gfc_find_subroutine (sym->name)))
1794 {
1795 if (sym->ts.type != BT_UNKNOWN && !sym->attr.implicit_type)
1796 {
1797 gfc_error ("Intrinsic subroutine %qs at %L shall not have a type"
1798 " specifier", sym->name, &sym->declared_at);
1799 return false;
1800 }
1801
1802 if (!sym->attr.subroutine &&
1803 !gfc_add_subroutine(&sym->attr, sym->name, loc))
1804 return false;
1805 }
1806 else
1807 {
1808 gfc_error ("%qs declared INTRINSIC at %L does not exist", sym->name,
1809 &sym->declared_at);
1810 return false;
1811 }
1812
1813 gfc_copy_formal_args_intr (sym, isym, NULL);
1814
1815 sym->attr.pure = isym->pure;
1816 sym->attr.elemental = isym->elemental;
1817
1818 /* Check it is actually available in the standard settings. */
1819 if (!gfc_check_intrinsic_standard (isym, &symstd, false, sym->declared_at))
1820 {
1821 gfc_error ("The intrinsic %qs declared INTRINSIC at %L is not "
1822 "available in the current standard settings but %s. Use "
1823 "an appropriate %<-std=*%> option or enable "
1824 "%<-fall-intrinsics%> in order to use it.",
1825 sym->name, &sym->declared_at, symstd);
1826 return false;
1827 }
1828
1829 return true;
1830 }
1831
1832
1833 /* Resolve a procedure expression, like passing it to a called procedure or as
1834 RHS for a procedure pointer assignment. */
1835
1836 static bool
1837 resolve_procedure_expression (gfc_expr* expr)
1838 {
1839 gfc_symbol* sym;
1840
1841 if (expr->expr_type != EXPR_VARIABLE)
1842 return true;
1843 gcc_assert (expr->symtree);
1844
1845 sym = expr->symtree->n.sym;
1846
1847 if (sym->attr.intrinsic)
1848 gfc_resolve_intrinsic (sym, &expr->where);
1849
1850 if (sym->attr.flavor != FL_PROCEDURE
1851 || (sym->attr.function && sym->result == sym))
1852 return true;
1853
1854 /* A non-RECURSIVE procedure that is used as procedure expression within its
1855 own body is in danger of being called recursively. */
1856 if (is_illegal_recursion (sym, gfc_current_ns))
1857 gfc_warning (0, "Non-RECURSIVE procedure %qs at %L is possibly calling"
1858 " itself recursively. Declare it RECURSIVE or use"
1859 " %<-frecursive%>", sym->name, &expr->where);
1860
1861 return true;
1862 }
1863
1864
1865 /* Resolve an actual argument list. Most of the time, this is just
1866 resolving the expressions in the list.
1867 The exception is that we sometimes have to decide whether arguments
1868 that look like procedure arguments are really simple variable
1869 references. */
1870
1871 static bool
1872 resolve_actual_arglist (gfc_actual_arglist *arg, procedure_type ptype,
1873 bool no_formal_args)
1874 {
1875 gfc_symbol *sym;
1876 gfc_symtree *parent_st;
1877 gfc_expr *e;
1878 gfc_component *comp;
1879 int save_need_full_assumed_size;
1880 bool return_value = false;
1881 bool actual_arg_sav = actual_arg, first_actual_arg_sav = first_actual_arg;
1882
1883 actual_arg = true;
1884 first_actual_arg = true;
1885
1886 for (; arg; arg = arg->next)
1887 {
1888 e = arg->expr;
1889 if (e == NULL)
1890 {
1891 /* Check the label is a valid branching target. */
1892 if (arg->label)
1893 {
1894 if (arg->label->defined == ST_LABEL_UNKNOWN)
1895 {
1896 gfc_error ("Label %d referenced at %L is never defined",
1897 arg->label->value, &arg->label->where);
1898 goto cleanup;
1899 }
1900 }
1901 first_actual_arg = false;
1902 continue;
1903 }
1904
1905 if (e->expr_type == EXPR_VARIABLE
1906 && e->symtree->n.sym->attr.generic
1907 && no_formal_args
1908 && count_specific_procs (e) != 1)
1909 goto cleanup;
1910
1911 if (e->ts.type != BT_PROCEDURE)
1912 {
1913 save_need_full_assumed_size = need_full_assumed_size;
1914 if (e->expr_type != EXPR_VARIABLE)
1915 need_full_assumed_size = 0;
1916 if (!gfc_resolve_expr (e))
1917 goto cleanup;
1918 need_full_assumed_size = save_need_full_assumed_size;
1919 goto argument_list;
1920 }
1921
1922 /* See if the expression node should really be a variable reference. */
1923
1924 sym = e->symtree->n.sym;
1925
1926 if (sym->attr.flavor == FL_PROCEDURE
1927 || sym->attr.intrinsic
1928 || sym->attr.external)
1929 {
1930 int actual_ok;
1931
1932 /* If a procedure is not already determined to be something else
1933 check if it is intrinsic. */
1934 if (gfc_is_intrinsic (sym, sym->attr.subroutine, e->where))
1935 sym->attr.intrinsic = 1;
1936
1937 if (sym->attr.proc == PROC_ST_FUNCTION)
1938 {
1939 gfc_error ("Statement function %qs at %L is not allowed as an "
1940 "actual argument", sym->name, &e->where);
1941 }
1942
1943 actual_ok = gfc_intrinsic_actual_ok (sym->name,
1944 sym->attr.subroutine);
1945 if (sym->attr.intrinsic && actual_ok == 0)
1946 {
1947 gfc_error ("Intrinsic %qs at %L is not allowed as an "
1948 "actual argument", sym->name, &e->where);
1949 }
1950
1951 if (sym->attr.contained && !sym->attr.use_assoc
1952 && sym->ns->proc_name->attr.flavor != FL_MODULE)
1953 {
1954 if (!gfc_notify_std (GFC_STD_F2008, "Internal procedure %qs is"
1955 " used as actual argument at %L",
1956 sym->name, &e->where))
1957 goto cleanup;
1958 }
1959
1960 if (sym->attr.elemental && !sym->attr.intrinsic)
1961 {
1962 gfc_error ("ELEMENTAL non-INTRINSIC procedure %qs is not "
1963 "allowed as an actual argument at %L", sym->name,
1964 &e->where);
1965 }
1966
1967 /* Check if a generic interface has a specific procedure
1968 with the same name before emitting an error. */
1969 if (sym->attr.generic && count_specific_procs (e) != 1)
1970 goto cleanup;
1971
1972 /* Just in case a specific was found for the expression. */
1973 sym = e->symtree->n.sym;
1974
1975 /* If the symbol is the function that names the current (or
1976 parent) scope, then we really have a variable reference. */
1977
1978 if (gfc_is_function_return_value (sym, sym->ns))
1979 goto got_variable;
1980
1981 /* If all else fails, see if we have a specific intrinsic. */
1982 if (sym->ts.type == BT_UNKNOWN && sym->attr.intrinsic)
1983 {
1984 gfc_intrinsic_sym *isym;
1985
1986 isym = gfc_find_function (sym->name);
1987 if (isym == NULL || !isym->specific)
1988 {
1989 gfc_error ("Unable to find a specific INTRINSIC procedure "
1990 "for the reference %qs at %L", sym->name,
1991 &e->where);
1992 goto cleanup;
1993 }
1994 sym->ts = isym->ts;
1995 sym->attr.intrinsic = 1;
1996 sym->attr.function = 1;
1997 }
1998
1999 if (!gfc_resolve_expr (e))
2000 goto cleanup;
2001 goto argument_list;
2002 }
2003
2004 /* See if the name is a module procedure in a parent unit. */
2005
2006 if (was_declared (sym) || sym->ns->parent == NULL)
2007 goto got_variable;
2008
2009 if (gfc_find_sym_tree (sym->name, sym->ns->parent, 1, &parent_st))
2010 {
2011 gfc_error ("Symbol %qs at %L is ambiguous", sym->name, &e->where);
2012 goto cleanup;
2013 }
2014
2015 if (parent_st == NULL)
2016 goto got_variable;
2017
2018 sym = parent_st->n.sym;
2019 e->symtree = parent_st; /* Point to the right thing. */
2020
2021 if (sym->attr.flavor == FL_PROCEDURE
2022 || sym->attr.intrinsic
2023 || sym->attr.external)
2024 {
2025 if (!gfc_resolve_expr (e))
2026 goto cleanup;
2027 goto argument_list;
2028 }
2029
2030 got_variable:
2031 e->expr_type = EXPR_VARIABLE;
2032 e->ts = sym->ts;
2033 if ((sym->as != NULL && sym->ts.type != BT_CLASS)
2034 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
2035 && CLASS_DATA (sym)->as))
2036 {
2037 e->rank = sym->ts.type == BT_CLASS
2038 ? CLASS_DATA (sym)->as->rank : sym->as->rank;
2039 e->ref = gfc_get_ref ();
2040 e->ref->type = REF_ARRAY;
2041 e->ref->u.ar.type = AR_FULL;
2042 e->ref->u.ar.as = sym->ts.type == BT_CLASS
2043 ? CLASS_DATA (sym)->as : sym->as;
2044 }
2045
2046 /* Expressions are assigned a default ts.type of BT_PROCEDURE in
2047 primary.c (match_actual_arg). If above code determines that it
2048 is a variable instead, it needs to be resolved as it was not
2049 done at the beginning of this function. */
2050 save_need_full_assumed_size = need_full_assumed_size;
2051 if (e->expr_type != EXPR_VARIABLE)
2052 need_full_assumed_size = 0;
2053 if (!gfc_resolve_expr (e))
2054 goto cleanup;
2055 need_full_assumed_size = save_need_full_assumed_size;
2056
2057 argument_list:
2058 /* Check argument list functions %VAL, %LOC and %REF. There is
2059 nothing to do for %REF. */
2060 if (arg->name && arg->name[0] == '%')
2061 {
2062 if (strcmp ("%VAL", arg->name) == 0)
2063 {
2064 if (e->ts.type == BT_CHARACTER || e->ts.type == BT_DERIVED)
2065 {
2066 gfc_error ("By-value argument at %L is not of numeric "
2067 "type", &e->where);
2068 goto cleanup;
2069 }
2070
2071 if (e->rank)
2072 {
2073 gfc_error ("By-value argument at %L cannot be an array or "
2074 "an array section", &e->where);
2075 goto cleanup;
2076 }
2077
2078 /* Intrinsics are still PROC_UNKNOWN here. However,
2079 since same file external procedures are not resolvable
2080 in gfortran, it is a good deal easier to leave them to
2081 intrinsic.c. */
2082 if (ptype != PROC_UNKNOWN
2083 && ptype != PROC_DUMMY
2084 && ptype != PROC_EXTERNAL
2085 && ptype != PROC_MODULE)
2086 {
2087 gfc_error ("By-value argument at %L is not allowed "
2088 "in this context", &e->where);
2089 goto cleanup;
2090 }
2091 }
2092
2093 /* Statement functions have already been excluded above. */
2094 else if (strcmp ("%LOC", arg->name) == 0
2095 && e->ts.type == BT_PROCEDURE)
2096 {
2097 if (e->symtree->n.sym->attr.proc == PROC_INTERNAL)
2098 {
2099 gfc_error ("Passing internal procedure at %L by location "
2100 "not allowed", &e->where);
2101 goto cleanup;
2102 }
2103 }
2104 }
2105
2106 comp = gfc_get_proc_ptr_comp(e);
2107 if (e->expr_type == EXPR_VARIABLE
2108 && comp && comp->attr.elemental)
2109 {
2110 gfc_error ("ELEMENTAL procedure pointer component %qs is not "
2111 "allowed as an actual argument at %L", comp->name,
2112 &e->where);
2113 }
2114
2115 /* Fortran 2008, C1237. */
2116 if (e->expr_type == EXPR_VARIABLE && gfc_is_coindexed (e)
2117 && gfc_has_ultimate_pointer (e))
2118 {
2119 gfc_error ("Coindexed actual argument at %L with ultimate pointer "
2120 "component", &e->where);
2121 goto cleanup;
2122 }
2123
2124 first_actual_arg = false;
2125 }
2126
2127 return_value = true;
2128
2129 cleanup:
2130 actual_arg = actual_arg_sav;
2131 first_actual_arg = first_actual_arg_sav;
2132
2133 return return_value;
2134 }
2135
2136
2137 /* Do the checks of the actual argument list that are specific to elemental
2138 procedures. If called with c == NULL, we have a function, otherwise if
2139 expr == NULL, we have a subroutine. */
2140
2141 static bool
2142 resolve_elemental_actual (gfc_expr *expr, gfc_code *c)
2143 {
2144 gfc_actual_arglist *arg0;
2145 gfc_actual_arglist *arg;
2146 gfc_symbol *esym = NULL;
2147 gfc_intrinsic_sym *isym = NULL;
2148 gfc_expr *e = NULL;
2149 gfc_intrinsic_arg *iformal = NULL;
2150 gfc_formal_arglist *eformal = NULL;
2151 bool formal_optional = false;
2152 bool set_by_optional = false;
2153 int i;
2154 int rank = 0;
2155
2156 /* Is this an elemental procedure? */
2157 if (expr && expr->value.function.actual != NULL)
2158 {
2159 if (expr->value.function.esym != NULL
2160 && expr->value.function.esym->attr.elemental)
2161 {
2162 arg0 = expr->value.function.actual;
2163 esym = expr->value.function.esym;
2164 }
2165 else if (expr->value.function.isym != NULL
2166 && expr->value.function.isym->elemental)
2167 {
2168 arg0 = expr->value.function.actual;
2169 isym = expr->value.function.isym;
2170 }
2171 else
2172 return true;
2173 }
2174 else if (c && c->ext.actual != NULL)
2175 {
2176 arg0 = c->ext.actual;
2177
2178 if (c->resolved_sym)
2179 esym = c->resolved_sym;
2180 else
2181 esym = c->symtree->n.sym;
2182 gcc_assert (esym);
2183
2184 if (!esym->attr.elemental)
2185 return true;
2186 }
2187 else
2188 return true;
2189
2190 /* The rank of an elemental is the rank of its array argument(s). */
2191 for (arg = arg0; arg; arg = arg->next)
2192 {
2193 if (arg->expr != NULL && arg->expr->rank != 0)
2194 {
2195 rank = arg->expr->rank;
2196 if (arg->expr->expr_type == EXPR_VARIABLE
2197 && arg->expr->symtree->n.sym->attr.optional)
2198 set_by_optional = true;
2199
2200 /* Function specific; set the result rank and shape. */
2201 if (expr)
2202 {
2203 expr->rank = rank;
2204 if (!expr->shape && arg->expr->shape)
2205 {
2206 expr->shape = gfc_get_shape (rank);
2207 for (i = 0; i < rank; i++)
2208 mpz_init_set (expr->shape[i], arg->expr->shape[i]);
2209 }
2210 }
2211 break;
2212 }
2213 }
2214
2215 /* If it is an array, it shall not be supplied as an actual argument
2216 to an elemental procedure unless an array of the same rank is supplied
2217 as an actual argument corresponding to a nonoptional dummy argument of
2218 that elemental procedure(12.4.1.5). */
2219 formal_optional = false;
2220 if (isym)
2221 iformal = isym->formal;
2222 else
2223 eformal = esym->formal;
2224
2225 for (arg = arg0; arg; arg = arg->next)
2226 {
2227 if (eformal)
2228 {
2229 if (eformal->sym && eformal->sym->attr.optional)
2230 formal_optional = true;
2231 eformal = eformal->next;
2232 }
2233 else if (isym && iformal)
2234 {
2235 if (iformal->optional)
2236 formal_optional = true;
2237 iformal = iformal->next;
2238 }
2239 else if (isym)
2240 formal_optional = true;
2241
2242 if (pedantic && arg->expr != NULL
2243 && arg->expr->expr_type == EXPR_VARIABLE
2244 && arg->expr->symtree->n.sym->attr.optional
2245 && formal_optional
2246 && arg->expr->rank
2247 && (set_by_optional || arg->expr->rank != rank)
2248 && !(isym && isym->id == GFC_ISYM_CONVERSION))
2249 {
2250 gfc_warning (OPT_Wpedantic,
2251 "%qs at %L is an array and OPTIONAL; IF IT IS "
2252 "MISSING, it cannot be the actual argument of an "
2253 "ELEMENTAL procedure unless there is a non-optional "
2254 "argument with the same rank (12.4.1.5)",
2255 arg->expr->symtree->n.sym->name, &arg->expr->where);
2256 }
2257 }
2258
2259 for (arg = arg0; arg; arg = arg->next)
2260 {
2261 if (arg->expr == NULL || arg->expr->rank == 0)
2262 continue;
2263
2264 /* Being elemental, the last upper bound of an assumed size array
2265 argument must be present. */
2266 if (resolve_assumed_size_actual (arg->expr))
2267 return false;
2268
2269 /* Elemental procedure's array actual arguments must conform. */
2270 if (e != NULL)
2271 {
2272 if (!gfc_check_conformance (arg->expr, e, "elemental procedure"))
2273 return false;
2274 }
2275 else
2276 e = arg->expr;
2277 }
2278
2279 /* INTENT(OUT) is only allowed for subroutines; if any actual argument
2280 is an array, the intent inout/out variable needs to be also an array. */
2281 if (rank > 0 && esym && expr == NULL)
2282 for (eformal = esym->formal, arg = arg0; arg && eformal;
2283 arg = arg->next, eformal = eformal->next)
2284 if ((eformal->sym->attr.intent == INTENT_OUT
2285 || eformal->sym->attr.intent == INTENT_INOUT)
2286 && arg->expr && arg->expr->rank == 0)
2287 {
2288 gfc_error ("Actual argument at %L for INTENT(%s) dummy %qs of "
2289 "ELEMENTAL subroutine %qs is a scalar, but another "
2290 "actual argument is an array", &arg->expr->where,
2291 (eformal->sym->attr.intent == INTENT_OUT) ? "OUT"
2292 : "INOUT", eformal->sym->name, esym->name);
2293 return false;
2294 }
2295 return true;
2296 }
2297
2298
2299 /* This function does the checking of references to global procedures
2300 as defined in sections 18.1 and 14.1, respectively, of the Fortran
2301 77 and 95 standards. It checks for a gsymbol for the name, making
2302 one if it does not already exist. If it already exists, then the
2303 reference being resolved must correspond to the type of gsymbol.
2304 Otherwise, the new symbol is equipped with the attributes of the
2305 reference. The corresponding code that is called in creating
2306 global entities is parse.c.
2307
2308 In addition, for all but -std=legacy, the gsymbols are used to
2309 check the interfaces of external procedures from the same file.
2310 The namespace of the gsymbol is resolved and then, once this is
2311 done the interface is checked. */
2312
2313
2314 static bool
2315 not_in_recursive (gfc_symbol *sym, gfc_namespace *gsym_ns)
2316 {
2317 if (!gsym_ns->proc_name->attr.recursive)
2318 return true;
2319
2320 if (sym->ns == gsym_ns)
2321 return false;
2322
2323 if (sym->ns->parent && sym->ns->parent == gsym_ns)
2324 return false;
2325
2326 return true;
2327 }
2328
2329 static bool
2330 not_entry_self_reference (gfc_symbol *sym, gfc_namespace *gsym_ns)
2331 {
2332 if (gsym_ns->entries)
2333 {
2334 gfc_entry_list *entry = gsym_ns->entries;
2335
2336 for (; entry; entry = entry->next)
2337 {
2338 if (strcmp (sym->name, entry->sym->name) == 0)
2339 {
2340 if (strcmp (gsym_ns->proc_name->name,
2341 sym->ns->proc_name->name) == 0)
2342 return false;
2343
2344 if (sym->ns->parent
2345 && strcmp (gsym_ns->proc_name->name,
2346 sym->ns->parent->proc_name->name) == 0)
2347 return false;
2348 }
2349 }
2350 }
2351 return true;
2352 }
2353
2354
2355 /* Check for the requirement of an explicit interface. F08:12.4.2.2. */
2356
2357 bool
2358 gfc_explicit_interface_required (gfc_symbol *sym, char *errmsg, int err_len)
2359 {
2360 gfc_formal_arglist *arg = gfc_sym_get_dummy_args (sym);
2361
2362 for ( ; arg; arg = arg->next)
2363 {
2364 if (!arg->sym)
2365 continue;
2366
2367 if (arg->sym->attr.allocatable) /* (2a) */
2368 {
2369 strncpy (errmsg, _("allocatable argument"), err_len);
2370 return true;
2371 }
2372 else if (arg->sym->attr.asynchronous)
2373 {
2374 strncpy (errmsg, _("asynchronous argument"), err_len);
2375 return true;
2376 }
2377 else if (arg->sym->attr.optional)
2378 {
2379 strncpy (errmsg, _("optional argument"), err_len);
2380 return true;
2381 }
2382 else if (arg->sym->attr.pointer)
2383 {
2384 strncpy (errmsg, _("pointer argument"), err_len);
2385 return true;
2386 }
2387 else if (arg->sym->attr.target)
2388 {
2389 strncpy (errmsg, _("target argument"), err_len);
2390 return true;
2391 }
2392 else if (arg->sym->attr.value)
2393 {
2394 strncpy (errmsg, _("value argument"), err_len);
2395 return true;
2396 }
2397 else if (arg->sym->attr.volatile_)
2398 {
2399 strncpy (errmsg, _("volatile argument"), err_len);
2400 return true;
2401 }
2402 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_SHAPE) /* (2b) */
2403 {
2404 strncpy (errmsg, _("assumed-shape argument"), err_len);
2405 return true;
2406 }
2407 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_RANK) /* TS 29113, 6.2. */
2408 {
2409 strncpy (errmsg, _("assumed-rank argument"), err_len);
2410 return true;
2411 }
2412 else if (arg->sym->attr.codimension) /* (2c) */
2413 {
2414 strncpy (errmsg, _("coarray argument"), err_len);
2415 return true;
2416 }
2417 else if (false) /* (2d) TODO: parametrized derived type */
2418 {
2419 strncpy (errmsg, _("parametrized derived type argument"), err_len);
2420 return true;
2421 }
2422 else if (arg->sym->ts.type == BT_CLASS) /* (2e) */
2423 {
2424 strncpy (errmsg, _("polymorphic argument"), err_len);
2425 return true;
2426 }
2427 else if (arg->sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2428 {
2429 strncpy (errmsg, _("NO_ARG_CHECK attribute"), err_len);
2430 return true;
2431 }
2432 else if (arg->sym->ts.type == BT_ASSUMED)
2433 {
2434 /* As assumed-type is unlimited polymorphic (cf. above).
2435 See also TS 29113, Note 6.1. */
2436 strncpy (errmsg, _("assumed-type argument"), err_len);
2437 return true;
2438 }
2439 }
2440
2441 if (sym->attr.function)
2442 {
2443 gfc_symbol *res = sym->result ? sym->result : sym;
2444
2445 if (res->attr.dimension) /* (3a) */
2446 {
2447 strncpy (errmsg, _("array result"), err_len);
2448 return true;
2449 }
2450 else if (res->attr.pointer || res->attr.allocatable) /* (3b) */
2451 {
2452 strncpy (errmsg, _("pointer or allocatable result"), err_len);
2453 return true;
2454 }
2455 else if (res->ts.type == BT_CHARACTER && res->ts.u.cl
2456 && res->ts.u.cl->length
2457 && res->ts.u.cl->length->expr_type != EXPR_CONSTANT) /* (3c) */
2458 {
2459 strncpy (errmsg, _("result with non-constant character length"), err_len);
2460 return true;
2461 }
2462 }
2463
2464 if (sym->attr.elemental && !sym->attr.intrinsic) /* (4) */
2465 {
2466 strncpy (errmsg, _("elemental procedure"), err_len);
2467 return true;
2468 }
2469 else if (sym->attr.is_bind_c) /* (5) */
2470 {
2471 strncpy (errmsg, _("bind(c) procedure"), err_len);
2472 return true;
2473 }
2474
2475 return false;
2476 }
2477
2478
2479 static void
2480 resolve_global_procedure (gfc_symbol *sym, locus *where,
2481 gfc_actual_arglist **actual, int sub)
2482 {
2483 gfc_gsymbol * gsym;
2484 gfc_namespace *ns;
2485 enum gfc_symbol_type type;
2486 char reason[200];
2487
2488 type = sub ? GSYM_SUBROUTINE : GSYM_FUNCTION;
2489
2490 gsym = gfc_get_gsymbol (sym->binding_label ? sym->binding_label : sym->name);
2491
2492 if ((gsym->type != GSYM_UNKNOWN && gsym->type != type))
2493 gfc_global_used (gsym, where);
2494
2495 if ((sym->attr.if_source == IFSRC_UNKNOWN
2496 || sym->attr.if_source == IFSRC_IFBODY)
2497 && gsym->type != GSYM_UNKNOWN
2498 && !gsym->binding_label
2499 && gsym->ns
2500 && gsym->ns->resolved != -1
2501 && gsym->ns->proc_name
2502 && not_in_recursive (sym, gsym->ns)
2503 && not_entry_self_reference (sym, gsym->ns))
2504 {
2505 gfc_symbol *def_sym;
2506
2507 /* Resolve the gsymbol namespace if needed. */
2508 if (!gsym->ns->resolved)
2509 {
2510 gfc_symbol *old_dt_list;
2511
2512 /* Stash away derived types so that the backend_decls do not
2513 get mixed up. */
2514 old_dt_list = gfc_derived_types;
2515 gfc_derived_types = NULL;
2516
2517 gfc_resolve (gsym->ns);
2518
2519 /* Store the new derived types with the global namespace. */
2520 if (gfc_derived_types)
2521 gsym->ns->derived_types = gfc_derived_types;
2522
2523 /* Restore the derived types of this namespace. */
2524 gfc_derived_types = old_dt_list;
2525 }
2526
2527 /* Make sure that translation for the gsymbol occurs before
2528 the procedure currently being resolved. */
2529 ns = gfc_global_ns_list;
2530 for (; ns && ns != gsym->ns; ns = ns->sibling)
2531 {
2532 if (ns->sibling == gsym->ns)
2533 {
2534 ns->sibling = gsym->ns->sibling;
2535 gsym->ns->sibling = gfc_global_ns_list;
2536 gfc_global_ns_list = gsym->ns;
2537 break;
2538 }
2539 }
2540
2541 def_sym = gsym->ns->proc_name;
2542
2543 /* This can happen if a binding name has been specified. */
2544 if (gsym->binding_label && gsym->sym_name != def_sym->name)
2545 gfc_find_symbol (gsym->sym_name, gsym->ns, 0, &def_sym);
2546
2547 if (def_sym->attr.entry_master)
2548 {
2549 gfc_entry_list *entry;
2550 for (entry = gsym->ns->entries; entry; entry = entry->next)
2551 if (strcmp (entry->sym->name, sym->name) == 0)
2552 {
2553 def_sym = entry->sym;
2554 break;
2555 }
2556 }
2557
2558 if (sym->attr.function && !gfc_compare_types (&sym->ts, &def_sym->ts))
2559 {
2560 gfc_error ("Return type mismatch of function %qs at %L (%s/%s)",
2561 sym->name, &sym->declared_at, gfc_typename (&sym->ts),
2562 gfc_typename (&def_sym->ts));
2563 goto done;
2564 }
2565
2566 if (sym->attr.if_source == IFSRC_UNKNOWN
2567 && gfc_explicit_interface_required (def_sym, reason, sizeof(reason)))
2568 {
2569 gfc_error ("Explicit interface required for %qs at %L: %s",
2570 sym->name, &sym->declared_at, reason);
2571 goto done;
2572 }
2573
2574 if (!pedantic && (gfc_option.allow_std & GFC_STD_GNU))
2575 /* Turn erros into warnings with -std=gnu and -std=legacy. */
2576 gfc_errors_to_warnings (true);
2577
2578 if (!gfc_compare_interfaces (sym, def_sym, sym->name, 0, 1,
2579 reason, sizeof(reason), NULL, NULL))
2580 {
2581 gfc_error_opt (OPT_Wargument_mismatch,
2582 "Interface mismatch in global procedure %qs at %L:"
2583 " %s", sym->name, &sym->declared_at, reason);
2584 goto done;
2585 }
2586
2587 if (!pedantic
2588 || ((gfc_option.warn_std & GFC_STD_LEGACY)
2589 && !(gfc_option.warn_std & GFC_STD_GNU)))
2590 gfc_errors_to_warnings (true);
2591
2592 if (sym->attr.if_source != IFSRC_IFBODY)
2593 gfc_procedure_use (def_sym, actual, where);
2594 }
2595
2596 done:
2597 gfc_errors_to_warnings (false);
2598
2599 if (gsym->type == GSYM_UNKNOWN)
2600 {
2601 gsym->type = type;
2602 gsym->where = *where;
2603 }
2604
2605 gsym->used = 1;
2606 }
2607
2608
2609 /************* Function resolution *************/
2610
2611 /* Resolve a function call known to be generic.
2612 Section 14.1.2.4.1. */
2613
2614 static match
2615 resolve_generic_f0 (gfc_expr *expr, gfc_symbol *sym)
2616 {
2617 gfc_symbol *s;
2618
2619 if (sym->attr.generic)
2620 {
2621 s = gfc_search_interface (sym->generic, 0, &expr->value.function.actual);
2622 if (s != NULL)
2623 {
2624 expr->value.function.name = s->name;
2625 expr->value.function.esym = s;
2626
2627 if (s->ts.type != BT_UNKNOWN)
2628 expr->ts = s->ts;
2629 else if (s->result != NULL && s->result->ts.type != BT_UNKNOWN)
2630 expr->ts = s->result->ts;
2631
2632 if (s->as != NULL)
2633 expr->rank = s->as->rank;
2634 else if (s->result != NULL && s->result->as != NULL)
2635 expr->rank = s->result->as->rank;
2636
2637 gfc_set_sym_referenced (expr->value.function.esym);
2638
2639 return MATCH_YES;
2640 }
2641
2642 /* TODO: Need to search for elemental references in generic
2643 interface. */
2644 }
2645
2646 if (sym->attr.intrinsic)
2647 return gfc_intrinsic_func_interface (expr, 0);
2648
2649 return MATCH_NO;
2650 }
2651
2652
2653 static bool
2654 resolve_generic_f (gfc_expr *expr)
2655 {
2656 gfc_symbol *sym;
2657 match m;
2658 gfc_interface *intr = NULL;
2659
2660 sym = expr->symtree->n.sym;
2661
2662 for (;;)
2663 {
2664 m = resolve_generic_f0 (expr, sym);
2665 if (m == MATCH_YES)
2666 return true;
2667 else if (m == MATCH_ERROR)
2668 return false;
2669
2670 generic:
2671 if (!intr)
2672 for (intr = sym->generic; intr; intr = intr->next)
2673 if (gfc_fl_struct (intr->sym->attr.flavor))
2674 break;
2675
2676 if (sym->ns->parent == NULL)
2677 break;
2678 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2679
2680 if (sym == NULL)
2681 break;
2682 if (!generic_sym (sym))
2683 goto generic;
2684 }
2685
2686 /* Last ditch attempt. See if the reference is to an intrinsic
2687 that possesses a matching interface. 14.1.2.4 */
2688 if (sym && !intr && !gfc_is_intrinsic (sym, 0, expr->where))
2689 {
2690 if (gfc_init_expr_flag)
2691 gfc_error ("Function %qs in initialization expression at %L "
2692 "must be an intrinsic function",
2693 expr->symtree->n.sym->name, &expr->where);
2694 else
2695 gfc_error ("There is no specific function for the generic %qs "
2696 "at %L", expr->symtree->n.sym->name, &expr->where);
2697 return false;
2698 }
2699
2700 if (intr)
2701 {
2702 if (!gfc_convert_to_structure_constructor (expr, intr->sym, NULL,
2703 NULL, false))
2704 return false;
2705 if (!gfc_use_derived (expr->ts.u.derived))
2706 return false;
2707 return resolve_structure_cons (expr, 0);
2708 }
2709
2710 m = gfc_intrinsic_func_interface (expr, 0);
2711 if (m == MATCH_YES)
2712 return true;
2713
2714 if (m == MATCH_NO)
2715 gfc_error ("Generic function %qs at %L is not consistent with a "
2716 "specific intrinsic interface", expr->symtree->n.sym->name,
2717 &expr->where);
2718
2719 return false;
2720 }
2721
2722
2723 /* Resolve a function call known to be specific. */
2724
2725 static match
2726 resolve_specific_f0 (gfc_symbol *sym, gfc_expr *expr)
2727 {
2728 match m;
2729
2730 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
2731 {
2732 if (sym->attr.dummy)
2733 {
2734 sym->attr.proc = PROC_DUMMY;
2735 goto found;
2736 }
2737
2738 sym->attr.proc = PROC_EXTERNAL;
2739 goto found;
2740 }
2741
2742 if (sym->attr.proc == PROC_MODULE
2743 || sym->attr.proc == PROC_ST_FUNCTION
2744 || sym->attr.proc == PROC_INTERNAL)
2745 goto found;
2746
2747 if (sym->attr.intrinsic)
2748 {
2749 m = gfc_intrinsic_func_interface (expr, 1);
2750 if (m == MATCH_YES)
2751 return MATCH_YES;
2752 if (m == MATCH_NO)
2753 gfc_error ("Function %qs at %L is INTRINSIC but is not compatible "
2754 "with an intrinsic", sym->name, &expr->where);
2755
2756 return MATCH_ERROR;
2757 }
2758
2759 return MATCH_NO;
2760
2761 found:
2762 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2763
2764 if (sym->result)
2765 expr->ts = sym->result->ts;
2766 else
2767 expr->ts = sym->ts;
2768 expr->value.function.name = sym->name;
2769 expr->value.function.esym = sym;
2770 /* Prevent crash when sym->ts.u.derived->components is not set due to previous
2771 error(s). */
2772 if (sym->ts.type == BT_CLASS && !CLASS_DATA (sym))
2773 return MATCH_ERROR;
2774 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
2775 expr->rank = CLASS_DATA (sym)->as->rank;
2776 else if (sym->as != NULL)
2777 expr->rank = sym->as->rank;
2778
2779 return MATCH_YES;
2780 }
2781
2782
2783 static bool
2784 resolve_specific_f (gfc_expr *expr)
2785 {
2786 gfc_symbol *sym;
2787 match m;
2788
2789 sym = expr->symtree->n.sym;
2790
2791 for (;;)
2792 {
2793 m = resolve_specific_f0 (sym, expr);
2794 if (m == MATCH_YES)
2795 return true;
2796 if (m == MATCH_ERROR)
2797 return false;
2798
2799 if (sym->ns->parent == NULL)
2800 break;
2801
2802 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2803
2804 if (sym == NULL)
2805 break;
2806 }
2807
2808 gfc_error ("Unable to resolve the specific function %qs at %L",
2809 expr->symtree->n.sym->name, &expr->where);
2810
2811 return true;
2812 }
2813
2814 /* Recursively append candidate SYM to CANDIDATES. Store the number of
2815 candidates in CANDIDATES_LEN. */
2816
2817 static void
2818 lookup_function_fuzzy_find_candidates (gfc_symtree *sym,
2819 char **&candidates,
2820 size_t &candidates_len)
2821 {
2822 gfc_symtree *p;
2823
2824 if (sym == NULL)
2825 return;
2826 if ((sym->n.sym->ts.type != BT_UNKNOWN || sym->n.sym->attr.external)
2827 && sym->n.sym->attr.flavor == FL_PROCEDURE)
2828 vec_push (candidates, candidates_len, sym->name);
2829
2830 p = sym->left;
2831 if (p)
2832 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2833
2834 p = sym->right;
2835 if (p)
2836 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2837 }
2838
2839
2840 /* Lookup function FN fuzzily, taking names in SYMROOT into account. */
2841
2842 const char*
2843 gfc_lookup_function_fuzzy (const char *fn, gfc_symtree *symroot)
2844 {
2845 char **candidates = NULL;
2846 size_t candidates_len = 0;
2847 lookup_function_fuzzy_find_candidates (symroot, candidates, candidates_len);
2848 return gfc_closest_fuzzy_match (fn, candidates);
2849 }
2850
2851
2852 /* Resolve a procedure call not known to be generic nor specific. */
2853
2854 static bool
2855 resolve_unknown_f (gfc_expr *expr)
2856 {
2857 gfc_symbol *sym;
2858 gfc_typespec *ts;
2859
2860 sym = expr->symtree->n.sym;
2861
2862 if (sym->attr.dummy)
2863 {
2864 sym->attr.proc = PROC_DUMMY;
2865 expr->value.function.name = sym->name;
2866 goto set_type;
2867 }
2868
2869 /* See if we have an intrinsic function reference. */
2870
2871 if (gfc_is_intrinsic (sym, 0, expr->where))
2872 {
2873 if (gfc_intrinsic_func_interface (expr, 1) == MATCH_YES)
2874 return true;
2875 return false;
2876 }
2877
2878 /* The reference is to an external name. */
2879
2880 sym->attr.proc = PROC_EXTERNAL;
2881 expr->value.function.name = sym->name;
2882 expr->value.function.esym = expr->symtree->n.sym;
2883
2884 if (sym->as != NULL)
2885 expr->rank = sym->as->rank;
2886
2887 /* Type of the expression is either the type of the symbol or the
2888 default type of the symbol. */
2889
2890 set_type:
2891 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2892
2893 if (sym->ts.type != BT_UNKNOWN)
2894 expr->ts = sym->ts;
2895 else
2896 {
2897 ts = gfc_get_default_type (sym->name, sym->ns);
2898
2899 if (ts->type == BT_UNKNOWN)
2900 {
2901 const char *guessed
2902 = gfc_lookup_function_fuzzy (sym->name, sym->ns->sym_root);
2903 if (guessed)
2904 gfc_error ("Function %qs at %L has no IMPLICIT type"
2905 "; did you mean %qs?",
2906 sym->name, &expr->where, guessed);
2907 else
2908 gfc_error ("Function %qs at %L has no IMPLICIT type",
2909 sym->name, &expr->where);
2910 return false;
2911 }
2912 else
2913 expr->ts = *ts;
2914 }
2915
2916 return true;
2917 }
2918
2919
2920 /* Return true, if the symbol is an external procedure. */
2921 static bool
2922 is_external_proc (gfc_symbol *sym)
2923 {
2924 if (!sym->attr.dummy && !sym->attr.contained
2925 && !gfc_is_intrinsic (sym, sym->attr.subroutine, sym->declared_at)
2926 && sym->attr.proc != PROC_ST_FUNCTION
2927 && !sym->attr.proc_pointer
2928 && !sym->attr.use_assoc
2929 && sym->name)
2930 return true;
2931
2932 return false;
2933 }
2934
2935
2936 /* Figure out if a function reference is pure or not. Also set the name
2937 of the function for a potential error message. Return nonzero if the
2938 function is PURE, zero if not. */
2939 static int
2940 pure_stmt_function (gfc_expr *, gfc_symbol *);
2941
2942 int
2943 gfc_pure_function (gfc_expr *e, const char **name)
2944 {
2945 int pure;
2946 gfc_component *comp;
2947
2948 *name = NULL;
2949
2950 if (e->symtree != NULL
2951 && e->symtree->n.sym != NULL
2952 && e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
2953 return pure_stmt_function (e, e->symtree->n.sym);
2954
2955 comp = gfc_get_proc_ptr_comp (e);
2956 if (comp)
2957 {
2958 pure = gfc_pure (comp->ts.interface);
2959 *name = comp->name;
2960 }
2961 else if (e->value.function.esym)
2962 {
2963 pure = gfc_pure (e->value.function.esym);
2964 *name = e->value.function.esym->name;
2965 }
2966 else if (e->value.function.isym)
2967 {
2968 pure = e->value.function.isym->pure
2969 || e->value.function.isym->elemental;
2970 *name = e->value.function.isym->name;
2971 }
2972 else
2973 {
2974 /* Implicit functions are not pure. */
2975 pure = 0;
2976 *name = e->value.function.name;
2977 }
2978
2979 return pure;
2980 }
2981
2982
2983 /* Check if the expression is a reference to an implicitly pure function. */
2984
2985 int
2986 gfc_implicit_pure_function (gfc_expr *e)
2987 {
2988 gfc_component *comp = gfc_get_proc_ptr_comp (e);
2989 if (comp)
2990 return gfc_implicit_pure (comp->ts.interface);
2991 else if (e->value.function.esym)
2992 return gfc_implicit_pure (e->value.function.esym);
2993 else
2994 return 0;
2995 }
2996
2997
2998 static bool
2999 impure_stmt_fcn (gfc_expr *e, gfc_symbol *sym,
3000 int *f ATTRIBUTE_UNUSED)
3001 {
3002 const char *name;
3003
3004 /* Don't bother recursing into other statement functions
3005 since they will be checked individually for purity. */
3006 if (e->expr_type != EXPR_FUNCTION
3007 || !e->symtree
3008 || e->symtree->n.sym == sym
3009 || e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
3010 return false;
3011
3012 return gfc_pure_function (e, &name) ? false : true;
3013 }
3014
3015
3016 static int
3017 pure_stmt_function (gfc_expr *e, gfc_symbol *sym)
3018 {
3019 return gfc_traverse_expr (e, sym, impure_stmt_fcn, 0) ? 0 : 1;
3020 }
3021
3022
3023 /* Check if an impure function is allowed in the current context. */
3024
3025 static bool check_pure_function (gfc_expr *e)
3026 {
3027 const char *name = NULL;
3028 if (!gfc_pure_function (e, &name) && name)
3029 {
3030 if (forall_flag)
3031 {
3032 gfc_error ("Reference to impure function %qs at %L inside a "
3033 "FORALL %s", name, &e->where,
3034 forall_flag == 2 ? "mask" : "block");
3035 return false;
3036 }
3037 else if (gfc_do_concurrent_flag)
3038 {
3039 gfc_error ("Reference to impure function %qs at %L inside a "
3040 "DO CONCURRENT %s", name, &e->where,
3041 gfc_do_concurrent_flag == 2 ? "mask" : "block");
3042 return false;
3043 }
3044 else if (gfc_pure (NULL))
3045 {
3046 gfc_error ("Reference to impure function %qs at %L "
3047 "within a PURE procedure", name, &e->where);
3048 return false;
3049 }
3050 if (!gfc_implicit_pure_function (e))
3051 gfc_unset_implicit_pure (NULL);
3052 }
3053 return true;
3054 }
3055
3056
3057 /* Update current procedure's array_outer_dependency flag, considering
3058 a call to procedure SYM. */
3059
3060 static void
3061 update_current_proc_array_outer_dependency (gfc_symbol *sym)
3062 {
3063 /* Check to see if this is a sibling function that has not yet
3064 been resolved. */
3065 gfc_namespace *sibling = gfc_current_ns->sibling;
3066 for (; sibling; sibling = sibling->sibling)
3067 {
3068 if (sibling->proc_name == sym)
3069 {
3070 gfc_resolve (sibling);
3071 break;
3072 }
3073 }
3074
3075 /* If SYM has references to outer arrays, so has the procedure calling
3076 SYM. If SYM is a procedure pointer, we can assume the worst. */
3077 if ((sym->attr.array_outer_dependency || sym->attr.proc_pointer)
3078 && gfc_current_ns->proc_name)
3079 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3080 }
3081
3082
3083 /* Resolve a function call, which means resolving the arguments, then figuring
3084 out which entity the name refers to. */
3085
3086 static bool
3087 resolve_function (gfc_expr *expr)
3088 {
3089 gfc_actual_arglist *arg;
3090 gfc_symbol *sym;
3091 bool t;
3092 int temp;
3093 procedure_type p = PROC_INTRINSIC;
3094 bool no_formal_args;
3095
3096 sym = NULL;
3097 if (expr->symtree)
3098 sym = expr->symtree->n.sym;
3099
3100 /* If this is a procedure pointer component, it has already been resolved. */
3101 if (gfc_is_proc_ptr_comp (expr))
3102 return true;
3103
3104 /* Avoid re-resolving the arguments of caf_get, which can lead to inserting
3105 another caf_get. */
3106 if (sym && sym->attr.intrinsic
3107 && (sym->intmod_sym_id == GFC_ISYM_CAF_GET
3108 || sym->intmod_sym_id == GFC_ISYM_CAF_SEND))
3109 return true;
3110
3111 if (sym && sym->attr.intrinsic
3112 && !gfc_resolve_intrinsic (sym, &expr->where))
3113 return false;
3114
3115 if (sym && (sym->attr.flavor == FL_VARIABLE || sym->attr.subroutine))
3116 {
3117 gfc_error ("%qs at %L is not a function", sym->name, &expr->where);
3118 return false;
3119 }
3120
3121 /* If this is a deferred TBP with an abstract interface (which may
3122 of course be referenced), expr->value.function.esym will be set. */
3123 if (sym && sym->attr.abstract && !expr->value.function.esym)
3124 {
3125 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3126 sym->name, &expr->where);
3127 return false;
3128 }
3129
3130 /* If this is a deferred TBP with an abstract interface, its result
3131 cannot be an assumed length character (F2003: C418). */
3132 if (sym && sym->attr.abstract && sym->attr.function
3133 && sym->result->ts.u.cl
3134 && sym->result->ts.u.cl->length == NULL
3135 && !sym->result->ts.deferred)
3136 {
3137 gfc_error ("ABSTRACT INTERFACE %qs at %L must not have an assumed "
3138 "character length result (F2008: C418)", sym->name,
3139 &sym->declared_at);
3140 return false;
3141 }
3142
3143 /* Switch off assumed size checking and do this again for certain kinds
3144 of procedure, once the procedure itself is resolved. */
3145 need_full_assumed_size++;
3146
3147 if (expr->symtree && expr->symtree->n.sym)
3148 p = expr->symtree->n.sym->attr.proc;
3149
3150 if (expr->value.function.isym && expr->value.function.isym->inquiry)
3151 inquiry_argument = true;
3152 no_formal_args = sym && is_external_proc (sym)
3153 && gfc_sym_get_dummy_args (sym) == NULL;
3154
3155 if (!resolve_actual_arglist (expr->value.function.actual,
3156 p, no_formal_args))
3157 {
3158 inquiry_argument = false;
3159 return false;
3160 }
3161
3162 inquiry_argument = false;
3163
3164 /* Resume assumed_size checking. */
3165 need_full_assumed_size--;
3166
3167 /* If the procedure is external, check for usage. */
3168 if (sym && is_external_proc (sym))
3169 resolve_global_procedure (sym, &expr->where,
3170 &expr->value.function.actual, 0);
3171
3172 if (sym && sym->ts.type == BT_CHARACTER
3173 && sym->ts.u.cl
3174 && sym->ts.u.cl->length == NULL
3175 && !sym->attr.dummy
3176 && !sym->ts.deferred
3177 && expr->value.function.esym == NULL
3178 && !sym->attr.contained)
3179 {
3180 /* Internal procedures are taken care of in resolve_contained_fntype. */
3181 gfc_error ("Function %qs is declared CHARACTER(*) and cannot "
3182 "be used at %L since it is not a dummy argument",
3183 sym->name, &expr->where);
3184 return false;
3185 }
3186
3187 /* See if function is already resolved. */
3188
3189 if (expr->value.function.name != NULL
3190 || expr->value.function.isym != NULL)
3191 {
3192 if (expr->ts.type == BT_UNKNOWN)
3193 expr->ts = sym->ts;
3194 t = true;
3195 }
3196 else
3197 {
3198 /* Apply the rules of section 14.1.2. */
3199
3200 switch (procedure_kind (sym))
3201 {
3202 case PTYPE_GENERIC:
3203 t = resolve_generic_f (expr);
3204 break;
3205
3206 case PTYPE_SPECIFIC:
3207 t = resolve_specific_f (expr);
3208 break;
3209
3210 case PTYPE_UNKNOWN:
3211 t = resolve_unknown_f (expr);
3212 break;
3213
3214 default:
3215 gfc_internal_error ("resolve_function(): bad function type");
3216 }
3217 }
3218
3219 /* If the expression is still a function (it might have simplified),
3220 then we check to see if we are calling an elemental function. */
3221
3222 if (expr->expr_type != EXPR_FUNCTION)
3223 return t;
3224
3225 temp = need_full_assumed_size;
3226 need_full_assumed_size = 0;
3227
3228 if (!resolve_elemental_actual (expr, NULL))
3229 return false;
3230
3231 if (omp_workshare_flag
3232 && expr->value.function.esym
3233 && ! gfc_elemental (expr->value.function.esym))
3234 {
3235 gfc_error ("User defined non-ELEMENTAL function %qs at %L not allowed "
3236 "in WORKSHARE construct", expr->value.function.esym->name,
3237 &expr->where);
3238 t = false;
3239 }
3240
3241 #define GENERIC_ID expr->value.function.isym->id
3242 else if (expr->value.function.actual != NULL
3243 && expr->value.function.isym != NULL
3244 && GENERIC_ID != GFC_ISYM_LBOUND
3245 && GENERIC_ID != GFC_ISYM_LCOBOUND
3246 && GENERIC_ID != GFC_ISYM_UCOBOUND
3247 && GENERIC_ID != GFC_ISYM_LEN
3248 && GENERIC_ID != GFC_ISYM_LOC
3249 && GENERIC_ID != GFC_ISYM_C_LOC
3250 && GENERIC_ID != GFC_ISYM_PRESENT)
3251 {
3252 /* Array intrinsics must also have the last upper bound of an
3253 assumed size array argument. UBOUND and SIZE have to be
3254 excluded from the check if the second argument is anything
3255 than a constant. */
3256
3257 for (arg = expr->value.function.actual; arg; arg = arg->next)
3258 {
3259 if ((GENERIC_ID == GFC_ISYM_UBOUND || GENERIC_ID == GFC_ISYM_SIZE)
3260 && arg == expr->value.function.actual
3261 && arg->next != NULL && arg->next->expr)
3262 {
3263 if (arg->next->expr->expr_type != EXPR_CONSTANT)
3264 break;
3265
3266 if (arg->next->name && strcmp (arg->next->name, "kind") == 0)
3267 break;
3268
3269 if ((int)mpz_get_si (arg->next->expr->value.integer)
3270 < arg->expr->rank)
3271 break;
3272 }
3273
3274 if (arg->expr != NULL
3275 && arg->expr->rank > 0
3276 && resolve_assumed_size_actual (arg->expr))
3277 return false;
3278 }
3279 }
3280 #undef GENERIC_ID
3281
3282 need_full_assumed_size = temp;
3283
3284 if (!check_pure_function(expr))
3285 t = false;
3286
3287 /* Functions without the RECURSIVE attribution are not allowed to
3288 * call themselves. */
3289 if (expr->value.function.esym && !expr->value.function.esym->attr.recursive)
3290 {
3291 gfc_symbol *esym;
3292 esym = expr->value.function.esym;
3293
3294 if (is_illegal_recursion (esym, gfc_current_ns))
3295 {
3296 if (esym->attr.entry && esym->ns->entries)
3297 gfc_error ("ENTRY %qs at %L cannot be called recursively, as"
3298 " function %qs is not RECURSIVE",
3299 esym->name, &expr->where, esym->ns->entries->sym->name);
3300 else
3301 gfc_error ("Function %qs at %L cannot be called recursively, as it"
3302 " is not RECURSIVE", esym->name, &expr->where);
3303
3304 t = false;
3305 }
3306 }
3307
3308 /* Character lengths of use associated functions may contains references to
3309 symbols not referenced from the current program unit otherwise. Make sure
3310 those symbols are marked as referenced. */
3311
3312 if (expr->ts.type == BT_CHARACTER && expr->value.function.esym
3313 && expr->value.function.esym->attr.use_assoc)
3314 {
3315 gfc_expr_set_symbols_referenced (expr->ts.u.cl->length);
3316 }
3317
3318 /* Make sure that the expression has a typespec that works. */
3319 if (expr->ts.type == BT_UNKNOWN)
3320 {
3321 if (expr->symtree->n.sym->result
3322 && expr->symtree->n.sym->result->ts.type != BT_UNKNOWN
3323 && !expr->symtree->n.sym->result->attr.proc_pointer)
3324 expr->ts = expr->symtree->n.sym->result->ts;
3325 }
3326
3327 if (!expr->ref && !expr->value.function.isym)
3328 {
3329 if (expr->value.function.esym)
3330 update_current_proc_array_outer_dependency (expr->value.function.esym);
3331 else
3332 update_current_proc_array_outer_dependency (sym);
3333 }
3334 else if (expr->ref)
3335 /* typebound procedure: Assume the worst. */
3336 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3337
3338 return t;
3339 }
3340
3341
3342 /************* Subroutine resolution *************/
3343
3344 static bool
3345 pure_subroutine (gfc_symbol *sym, const char *name, locus *loc)
3346 {
3347 if (gfc_pure (sym))
3348 return true;
3349
3350 if (forall_flag)
3351 {
3352 gfc_error ("Subroutine call to %qs in FORALL block at %L is not PURE",
3353 name, loc);
3354 return false;
3355 }
3356 else if (gfc_do_concurrent_flag)
3357 {
3358 gfc_error ("Subroutine call to %qs in DO CONCURRENT block at %L is not "
3359 "PURE", name, loc);
3360 return false;
3361 }
3362 else if (gfc_pure (NULL))
3363 {
3364 gfc_error ("Subroutine call to %qs at %L is not PURE", name, loc);
3365 return false;
3366 }
3367
3368 gfc_unset_implicit_pure (NULL);
3369 return true;
3370 }
3371
3372
3373 static match
3374 resolve_generic_s0 (gfc_code *c, gfc_symbol *sym)
3375 {
3376 gfc_symbol *s;
3377
3378 if (sym->attr.generic)
3379 {
3380 s = gfc_search_interface (sym->generic, 1, &c->ext.actual);
3381 if (s != NULL)
3382 {
3383 c->resolved_sym = s;
3384 if (!pure_subroutine (s, s->name, &c->loc))
3385 return MATCH_ERROR;
3386 return MATCH_YES;
3387 }
3388
3389 /* TODO: Need to search for elemental references in generic interface. */
3390 }
3391
3392 if (sym->attr.intrinsic)
3393 return gfc_intrinsic_sub_interface (c, 0);
3394
3395 return MATCH_NO;
3396 }
3397
3398
3399 static bool
3400 resolve_generic_s (gfc_code *c)
3401 {
3402 gfc_symbol *sym;
3403 match m;
3404
3405 sym = c->symtree->n.sym;
3406
3407 for (;;)
3408 {
3409 m = resolve_generic_s0 (c, sym);
3410 if (m == MATCH_YES)
3411 return true;
3412 else if (m == MATCH_ERROR)
3413 return false;
3414
3415 generic:
3416 if (sym->ns->parent == NULL)
3417 break;
3418 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3419
3420 if (sym == NULL)
3421 break;
3422 if (!generic_sym (sym))
3423 goto generic;
3424 }
3425
3426 /* Last ditch attempt. See if the reference is to an intrinsic
3427 that possesses a matching interface. 14.1.2.4 */
3428 sym = c->symtree->n.sym;
3429
3430 if (!gfc_is_intrinsic (sym, 1, c->loc))
3431 {
3432 gfc_error ("There is no specific subroutine for the generic %qs at %L",
3433 sym->name, &c->loc);
3434 return false;
3435 }
3436
3437 m = gfc_intrinsic_sub_interface (c, 0);
3438 if (m == MATCH_YES)
3439 return true;
3440 if (m == MATCH_NO)
3441 gfc_error ("Generic subroutine %qs at %L is not consistent with an "
3442 "intrinsic subroutine interface", sym->name, &c->loc);
3443
3444 return false;
3445 }
3446
3447
3448 /* Resolve a subroutine call known to be specific. */
3449
3450 static match
3451 resolve_specific_s0 (gfc_code *c, gfc_symbol *sym)
3452 {
3453 match m;
3454
3455 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
3456 {
3457 if (sym->attr.dummy)
3458 {
3459 sym->attr.proc = PROC_DUMMY;
3460 goto found;
3461 }
3462
3463 sym->attr.proc = PROC_EXTERNAL;
3464 goto found;
3465 }
3466
3467 if (sym->attr.proc == PROC_MODULE || sym->attr.proc == PROC_INTERNAL)
3468 goto found;
3469
3470 if (sym->attr.intrinsic)
3471 {
3472 m = gfc_intrinsic_sub_interface (c, 1);
3473 if (m == MATCH_YES)
3474 return MATCH_YES;
3475 if (m == MATCH_NO)
3476 gfc_error ("Subroutine %qs at %L is INTRINSIC but is not compatible "
3477 "with an intrinsic", sym->name, &c->loc);
3478
3479 return MATCH_ERROR;
3480 }
3481
3482 return MATCH_NO;
3483
3484 found:
3485 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3486
3487 c->resolved_sym = sym;
3488 if (!pure_subroutine (sym, sym->name, &c->loc))
3489 return MATCH_ERROR;
3490
3491 return MATCH_YES;
3492 }
3493
3494
3495 static bool
3496 resolve_specific_s (gfc_code *c)
3497 {
3498 gfc_symbol *sym;
3499 match m;
3500
3501 sym = c->symtree->n.sym;
3502
3503 for (;;)
3504 {
3505 m = resolve_specific_s0 (c, sym);
3506 if (m == MATCH_YES)
3507 return true;
3508 if (m == MATCH_ERROR)
3509 return false;
3510
3511 if (sym->ns->parent == NULL)
3512 break;
3513
3514 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3515
3516 if (sym == NULL)
3517 break;
3518 }
3519
3520 sym = c->symtree->n.sym;
3521 gfc_error ("Unable to resolve the specific subroutine %qs at %L",
3522 sym->name, &c->loc);
3523
3524 return false;
3525 }
3526
3527
3528 /* Resolve a subroutine call not known to be generic nor specific. */
3529
3530 static bool
3531 resolve_unknown_s (gfc_code *c)
3532 {
3533 gfc_symbol *sym;
3534
3535 sym = c->symtree->n.sym;
3536
3537 if (sym->attr.dummy)
3538 {
3539 sym->attr.proc = PROC_DUMMY;
3540 goto found;
3541 }
3542
3543 /* See if we have an intrinsic function reference. */
3544
3545 if (gfc_is_intrinsic (sym, 1, c->loc))
3546 {
3547 if (gfc_intrinsic_sub_interface (c, 1) == MATCH_YES)
3548 return true;
3549 return false;
3550 }
3551
3552 /* The reference is to an external name. */
3553
3554 found:
3555 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3556
3557 c->resolved_sym = sym;
3558
3559 return pure_subroutine (sym, sym->name, &c->loc);
3560 }
3561
3562
3563 /* Resolve a subroutine call. Although it was tempting to use the same code
3564 for functions, subroutines and functions are stored differently and this
3565 makes things awkward. */
3566
3567 static bool
3568 resolve_call (gfc_code *c)
3569 {
3570 bool t;
3571 procedure_type ptype = PROC_INTRINSIC;
3572 gfc_symbol *csym, *sym;
3573 bool no_formal_args;
3574
3575 csym = c->symtree ? c->symtree->n.sym : NULL;
3576
3577 if (csym && csym->ts.type != BT_UNKNOWN)
3578 {
3579 gfc_error ("%qs at %L has a type, which is not consistent with "
3580 "the CALL at %L", csym->name, &csym->declared_at, &c->loc);
3581 return false;
3582 }
3583
3584 if (csym && gfc_current_ns->parent && csym->ns != gfc_current_ns)
3585 {
3586 gfc_symtree *st;
3587 gfc_find_sym_tree (c->symtree->name, gfc_current_ns, 1, &st);
3588 sym = st ? st->n.sym : NULL;
3589 if (sym && csym != sym
3590 && sym->ns == gfc_current_ns
3591 && sym->attr.flavor == FL_PROCEDURE
3592 && sym->attr.contained)
3593 {
3594 sym->refs++;
3595 if (csym->attr.generic)
3596 c->symtree->n.sym = sym;
3597 else
3598 c->symtree = st;
3599 csym = c->symtree->n.sym;
3600 }
3601 }
3602
3603 /* If this ia a deferred TBP, c->expr1 will be set. */
3604 if (!c->expr1 && csym)
3605 {
3606 if (csym->attr.abstract)
3607 {
3608 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3609 csym->name, &c->loc);
3610 return false;
3611 }
3612
3613 /* Subroutines without the RECURSIVE attribution are not allowed to
3614 call themselves. */
3615 if (is_illegal_recursion (csym, gfc_current_ns))
3616 {
3617 if (csym->attr.entry && csym->ns->entries)
3618 gfc_error ("ENTRY %qs at %L cannot be called recursively, "
3619 "as subroutine %qs is not RECURSIVE",
3620 csym->name, &c->loc, csym->ns->entries->sym->name);
3621 else
3622 gfc_error ("SUBROUTINE %qs at %L cannot be called recursively, "
3623 "as it is not RECURSIVE", csym->name, &c->loc);
3624
3625 t = false;
3626 }
3627 }
3628
3629 /* Switch off assumed size checking and do this again for certain kinds
3630 of procedure, once the procedure itself is resolved. */
3631 need_full_assumed_size++;
3632
3633 if (csym)
3634 ptype = csym->attr.proc;
3635
3636 no_formal_args = csym && is_external_proc (csym)
3637 && gfc_sym_get_dummy_args (csym) == NULL;
3638 if (!resolve_actual_arglist (c->ext.actual, ptype, no_formal_args))
3639 return false;
3640
3641 /* Resume assumed_size checking. */
3642 need_full_assumed_size--;
3643
3644 /* If external, check for usage. */
3645 if (csym && is_external_proc (csym))
3646 resolve_global_procedure (csym, &c->loc, &c->ext.actual, 1);
3647
3648 t = true;
3649 if (c->resolved_sym == NULL)
3650 {
3651 c->resolved_isym = NULL;
3652 switch (procedure_kind (csym))
3653 {
3654 case PTYPE_GENERIC:
3655 t = resolve_generic_s (c);
3656 break;
3657
3658 case PTYPE_SPECIFIC:
3659 t = resolve_specific_s (c);
3660 break;
3661
3662 case PTYPE_UNKNOWN:
3663 t = resolve_unknown_s (c);
3664 break;
3665
3666 default:
3667 gfc_internal_error ("resolve_subroutine(): bad function type");
3668 }
3669 }
3670
3671 /* Some checks of elemental subroutine actual arguments. */
3672 if (!resolve_elemental_actual (NULL, c))
3673 return false;
3674
3675 if (!c->expr1)
3676 update_current_proc_array_outer_dependency (csym);
3677 else
3678 /* Typebound procedure: Assume the worst. */
3679 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3680
3681 return t;
3682 }
3683
3684
3685 /* Compare the shapes of two arrays that have non-NULL shapes. If both
3686 op1->shape and op2->shape are non-NULL return true if their shapes
3687 match. If both op1->shape and op2->shape are non-NULL return false
3688 if their shapes do not match. If either op1->shape or op2->shape is
3689 NULL, return true. */
3690
3691 static bool
3692 compare_shapes (gfc_expr *op1, gfc_expr *op2)
3693 {
3694 bool t;
3695 int i;
3696
3697 t = true;
3698
3699 if (op1->shape != NULL && op2->shape != NULL)
3700 {
3701 for (i = 0; i < op1->rank; i++)
3702 {
3703 if (mpz_cmp (op1->shape[i], op2->shape[i]) != 0)
3704 {
3705 gfc_error ("Shapes for operands at %L and %L are not conformable",
3706 &op1->where, &op2->where);
3707 t = false;
3708 break;
3709 }
3710 }
3711 }
3712
3713 return t;
3714 }
3715
3716 /* Convert a logical operator to the corresponding bitwise intrinsic call.
3717 For example A .AND. B becomes IAND(A, B). */
3718 static gfc_expr *
3719 logical_to_bitwise (gfc_expr *e)
3720 {
3721 gfc_expr *tmp, *op1, *op2;
3722 gfc_isym_id isym;
3723 gfc_actual_arglist *args = NULL;
3724
3725 gcc_assert (e->expr_type == EXPR_OP);
3726
3727 isym = GFC_ISYM_NONE;
3728 op1 = e->value.op.op1;
3729 op2 = e->value.op.op2;
3730
3731 switch (e->value.op.op)
3732 {
3733 case INTRINSIC_NOT:
3734 isym = GFC_ISYM_NOT;
3735 break;
3736 case INTRINSIC_AND:
3737 isym = GFC_ISYM_IAND;
3738 break;
3739 case INTRINSIC_OR:
3740 isym = GFC_ISYM_IOR;
3741 break;
3742 case INTRINSIC_NEQV:
3743 isym = GFC_ISYM_IEOR;
3744 break;
3745 case INTRINSIC_EQV:
3746 /* "Bitwise eqv" is just the complement of NEQV === IEOR.
3747 Change the old expression to NEQV, which will get replaced by IEOR,
3748 and wrap it in NOT. */
3749 tmp = gfc_copy_expr (e);
3750 tmp->value.op.op = INTRINSIC_NEQV;
3751 tmp = logical_to_bitwise (tmp);
3752 isym = GFC_ISYM_NOT;
3753 op1 = tmp;
3754 op2 = NULL;
3755 break;
3756 default:
3757 gfc_internal_error ("logical_to_bitwise(): Bad intrinsic");
3758 }
3759
3760 /* Inherit the original operation's operands as arguments. */
3761 args = gfc_get_actual_arglist ();
3762 args->expr = op1;
3763 if (op2)
3764 {
3765 args->next = gfc_get_actual_arglist ();
3766 args->next->expr = op2;
3767 }
3768
3769 /* Convert the expression to a function call. */
3770 e->expr_type = EXPR_FUNCTION;
3771 e->value.function.actual = args;
3772 e->value.function.isym = gfc_intrinsic_function_by_id (isym);
3773 e->value.function.name = e->value.function.isym->name;
3774 e->value.function.esym = NULL;
3775
3776 /* Make up a pre-resolved function call symtree if we need to. */
3777 if (!e->symtree || !e->symtree->n.sym)
3778 {
3779 gfc_symbol *sym;
3780 gfc_get_ha_sym_tree (e->value.function.isym->name, &e->symtree);
3781 sym = e->symtree->n.sym;
3782 sym->result = sym;
3783 sym->attr.flavor = FL_PROCEDURE;
3784 sym->attr.function = 1;
3785 sym->attr.elemental = 1;
3786 sym->attr.pure = 1;
3787 sym->attr.referenced = 1;
3788 gfc_intrinsic_symbol (sym);
3789 gfc_commit_symbol (sym);
3790 }
3791
3792 args->name = e->value.function.isym->formal->name;
3793 if (e->value.function.isym->formal->next)
3794 args->next->name = e->value.function.isym->formal->next->name;
3795
3796 return e;
3797 }
3798
3799 /* Recursively append candidate UOP to CANDIDATES. Store the number of
3800 candidates in CANDIDATES_LEN. */
3801 static void
3802 lookup_uop_fuzzy_find_candidates (gfc_symtree *uop,
3803 char **&candidates,
3804 size_t &candidates_len)
3805 {
3806 gfc_symtree *p;
3807
3808 if (uop == NULL)
3809 return;
3810
3811 /* Not sure how to properly filter here. Use all for a start.
3812 n.uop.op is NULL for empty interface operators (is that legal?) disregard
3813 these as i suppose they don't make terribly sense. */
3814
3815 if (uop->n.uop->op != NULL)
3816 vec_push (candidates, candidates_len, uop->name);
3817
3818 p = uop->left;
3819 if (p)
3820 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3821
3822 p = uop->right;
3823 if (p)
3824 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3825 }
3826
3827 /* Lookup user-operator OP fuzzily, taking names in UOP into account. */
3828
3829 static const char*
3830 lookup_uop_fuzzy (const char *op, gfc_symtree *uop)
3831 {
3832 char **candidates = NULL;
3833 size_t candidates_len = 0;
3834 lookup_uop_fuzzy_find_candidates (uop, candidates, candidates_len);
3835 return gfc_closest_fuzzy_match (op, candidates);
3836 }
3837
3838
3839 /* Callback finding an impure function as an operand to an .and. or
3840 .or. expression. Remember the last function warned about to
3841 avoid double warnings when recursing. */
3842
3843 static int
3844 impure_function_callback (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
3845 void *data)
3846 {
3847 gfc_expr *f = *e;
3848 const char *name;
3849 static gfc_expr *last = NULL;
3850 bool *found = (bool *) data;
3851
3852 if (f->expr_type == EXPR_FUNCTION)
3853 {
3854 *found = 1;
3855 if (f != last && !gfc_pure_function (f, &name)
3856 && !gfc_implicit_pure_function (f))
3857 {
3858 if (name)
3859 gfc_warning (OPT_Wfunction_elimination,
3860 "Impure function %qs at %L might not be evaluated",
3861 name, &f->where);
3862 else
3863 gfc_warning (OPT_Wfunction_elimination,
3864 "Impure function at %L might not be evaluated",
3865 &f->where);
3866 }
3867 last = f;
3868 }
3869
3870 return 0;
3871 }
3872
3873
3874 /* Resolve an operator expression node. This can involve replacing the
3875 operation with a user defined function call. */
3876
3877 static bool
3878 resolve_operator (gfc_expr *e)
3879 {
3880 gfc_expr *op1, *op2;
3881 char msg[200];
3882 bool dual_locus_error;
3883 bool t = true;
3884
3885 /* Resolve all subnodes-- give them types. */
3886
3887 switch (e->value.op.op)
3888 {
3889 default:
3890 if (!gfc_resolve_expr (e->value.op.op2))
3891 return false;
3892
3893 /* Fall through. */
3894
3895 case INTRINSIC_NOT:
3896 case INTRINSIC_UPLUS:
3897 case INTRINSIC_UMINUS:
3898 case INTRINSIC_PARENTHESES:
3899 if (!gfc_resolve_expr (e->value.op.op1))
3900 return false;
3901 break;
3902 }
3903
3904 /* Typecheck the new node. */
3905
3906 op1 = e->value.op.op1;
3907 op2 = e->value.op.op2;
3908 dual_locus_error = false;
3909
3910 if ((op1 && op1->expr_type == EXPR_NULL)
3911 || (op2 && op2->expr_type == EXPR_NULL))
3912 {
3913 sprintf (msg, _("Invalid context for NULL() pointer at %%L"));
3914 goto bad_op;
3915 }
3916
3917 switch (e->value.op.op)
3918 {
3919 case INTRINSIC_UPLUS:
3920 case INTRINSIC_UMINUS:
3921 if (op1->ts.type == BT_INTEGER
3922 || op1->ts.type == BT_REAL
3923 || op1->ts.type == BT_COMPLEX)
3924 {
3925 e->ts = op1->ts;
3926 break;
3927 }
3928
3929 sprintf (msg, _("Operand of unary numeric operator %%<%s%%> at %%L is %s"),
3930 gfc_op2string (e->value.op.op), gfc_typename (&e->ts));
3931 goto bad_op;
3932
3933 case INTRINSIC_PLUS:
3934 case INTRINSIC_MINUS:
3935 case INTRINSIC_TIMES:
3936 case INTRINSIC_DIVIDE:
3937 case INTRINSIC_POWER:
3938 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
3939 {
3940 gfc_type_convert_binary (e, 1);
3941 break;
3942 }
3943
3944 if (op1->ts.type == BT_DERIVED || op2->ts.type == BT_DERIVED)
3945 sprintf (msg,
3946 _("Unexpected derived-type entities in binary intrinsic "
3947 "numeric operator %%<%s%%> at %%L"),
3948 gfc_op2string (e->value.op.op));
3949 else
3950 sprintf (msg,
3951 _("Operands of binary numeric operator %%<%s%%> at %%L are %s/%s"),
3952 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
3953 gfc_typename (&op2->ts));
3954 goto bad_op;
3955
3956 case INTRINSIC_CONCAT:
3957 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
3958 && op1->ts.kind == op2->ts.kind)
3959 {
3960 e->ts.type = BT_CHARACTER;
3961 e->ts.kind = op1->ts.kind;
3962 break;
3963 }
3964
3965 sprintf (msg,
3966 _("Operands of string concatenation operator at %%L are %s/%s"),
3967 gfc_typename (&op1->ts), gfc_typename (&op2->ts));
3968 goto bad_op;
3969
3970 case INTRINSIC_AND:
3971 case INTRINSIC_OR:
3972 case INTRINSIC_EQV:
3973 case INTRINSIC_NEQV:
3974 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
3975 {
3976 e->ts.type = BT_LOGICAL;
3977 e->ts.kind = gfc_kind_max (op1, op2);
3978 if (op1->ts.kind < e->ts.kind)
3979 gfc_convert_type (op1, &e->ts, 2);
3980 else if (op2->ts.kind < e->ts.kind)
3981 gfc_convert_type (op2, &e->ts, 2);
3982
3983 if (flag_frontend_optimize &&
3984 (e->value.op.op == INTRINSIC_AND || e->value.op.op == INTRINSIC_OR))
3985 {
3986 /* Warn about short-circuiting
3987 with impure function as second operand. */
3988 bool op2_f = false;
3989 gfc_expr_walker (&op2, impure_function_callback, &op2_f);
3990 }
3991 break;
3992 }
3993
3994 /* Logical ops on integers become bitwise ops with -fdec. */
3995 else if (flag_dec
3996 && (op1->ts.type == BT_INTEGER || op2->ts.type == BT_INTEGER))
3997 {
3998 e->ts.type = BT_INTEGER;
3999 e->ts.kind = gfc_kind_max (op1, op2);
4000 if (op1->ts.type != e->ts.type || op1->ts.kind != e->ts.kind)
4001 gfc_convert_type (op1, &e->ts, 1);
4002 if (op2->ts.type != e->ts.type || op2->ts.kind != e->ts.kind)
4003 gfc_convert_type (op2, &e->ts, 1);
4004 e = logical_to_bitwise (e);
4005 goto simplify_op;
4006 }
4007
4008 sprintf (msg, _("Operands of logical operator %%<%s%%> at %%L are %s/%s"),
4009 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
4010 gfc_typename (&op2->ts));
4011
4012 goto bad_op;
4013
4014 case INTRINSIC_NOT:
4015 /* Logical ops on integers become bitwise ops with -fdec. */
4016 if (flag_dec && op1->ts.type == BT_INTEGER)
4017 {
4018 e->ts.type = BT_INTEGER;
4019 e->ts.kind = op1->ts.kind;
4020 e = logical_to_bitwise (e);
4021 goto simplify_op;
4022 }
4023
4024 if (op1->ts.type == BT_LOGICAL)
4025 {
4026 e->ts.type = BT_LOGICAL;
4027 e->ts.kind = op1->ts.kind;
4028 break;
4029 }
4030
4031 sprintf (msg, _("Operand of .not. operator at %%L is %s"),
4032 gfc_typename (&op1->ts));
4033 goto bad_op;
4034
4035 case INTRINSIC_GT:
4036 case INTRINSIC_GT_OS:
4037 case INTRINSIC_GE:
4038 case INTRINSIC_GE_OS:
4039 case INTRINSIC_LT:
4040 case INTRINSIC_LT_OS:
4041 case INTRINSIC_LE:
4042 case INTRINSIC_LE_OS:
4043 if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
4044 {
4045 strcpy (msg, _("COMPLEX quantities cannot be compared at %L"));
4046 goto bad_op;
4047 }
4048
4049 /* Fall through. */
4050
4051 case INTRINSIC_EQ:
4052 case INTRINSIC_EQ_OS:
4053 case INTRINSIC_NE:
4054 case INTRINSIC_NE_OS:
4055 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
4056 && op1->ts.kind == op2->ts.kind)
4057 {
4058 e->ts.type = BT_LOGICAL;
4059 e->ts.kind = gfc_default_logical_kind;
4060 break;
4061 }
4062
4063 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
4064 {
4065 gfc_type_convert_binary (e, 1);
4066
4067 e->ts.type = BT_LOGICAL;
4068 e->ts.kind = gfc_default_logical_kind;
4069
4070 if (warn_compare_reals)
4071 {
4072 gfc_intrinsic_op op = e->value.op.op;
4073
4074 /* Type conversion has made sure that the types of op1 and op2
4075 agree, so it is only necessary to check the first one. */
4076 if ((op1->ts.type == BT_REAL || op1->ts.type == BT_COMPLEX)
4077 && (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS
4078 || op == INTRINSIC_NE || op == INTRINSIC_NE_OS))
4079 {
4080 const char *msg;
4081
4082 if (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS)
4083 msg = "Equality comparison for %s at %L";
4084 else
4085 msg = "Inequality comparison for %s at %L";
4086
4087 gfc_warning (OPT_Wcompare_reals, msg,
4088 gfc_typename (&op1->ts), &op1->where);
4089 }
4090 }
4091
4092 break;
4093 }
4094
4095 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
4096 sprintf (msg,
4097 _("Logicals at %%L must be compared with %s instead of %s"),
4098 (e->value.op.op == INTRINSIC_EQ
4099 || e->value.op.op == INTRINSIC_EQ_OS)
4100 ? ".eqv." : ".neqv.", gfc_op2string (e->value.op.op));
4101 else
4102 sprintf (msg,
4103 _("Operands of comparison operator %%<%s%%> at %%L are %s/%s"),
4104 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
4105 gfc_typename (&op2->ts));
4106
4107 goto bad_op;
4108
4109 case INTRINSIC_USER:
4110 if (e->value.op.uop->op == NULL)
4111 {
4112 const char *name = e->value.op.uop->name;
4113 const char *guessed;
4114 guessed = lookup_uop_fuzzy (name, e->value.op.uop->ns->uop_root);
4115 if (guessed)
4116 sprintf (msg, _("Unknown operator %%<%s%%> at %%L; did you mean '%s'?"),
4117 name, guessed);
4118 else
4119 sprintf (msg, _("Unknown operator %%<%s%%> at %%L"), name);
4120 }
4121 else if (op2 == NULL)
4122 sprintf (msg, _("Operand of user operator %%<%s%%> at %%L is %s"),
4123 e->value.op.uop->name, gfc_typename (&op1->ts));
4124 else
4125 {
4126 sprintf (msg, _("Operands of user operator %%<%s%%> at %%L are %s/%s"),
4127 e->value.op.uop->name, gfc_typename (&op1->ts),
4128 gfc_typename (&op2->ts));
4129 e->value.op.uop->op->sym->attr.referenced = 1;
4130 }
4131
4132 goto bad_op;
4133
4134 case INTRINSIC_PARENTHESES:
4135 e->ts = op1->ts;
4136 if (e->ts.type == BT_CHARACTER)
4137 e->ts.u.cl = op1->ts.u.cl;
4138 break;
4139
4140 default:
4141 gfc_internal_error ("resolve_operator(): Bad intrinsic");
4142 }
4143
4144 /* Deal with arrayness of an operand through an operator. */
4145
4146 switch (e->value.op.op)
4147 {
4148 case INTRINSIC_PLUS:
4149 case INTRINSIC_MINUS:
4150 case INTRINSIC_TIMES:
4151 case INTRINSIC_DIVIDE:
4152 case INTRINSIC_POWER:
4153 case INTRINSIC_CONCAT:
4154 case INTRINSIC_AND:
4155 case INTRINSIC_OR:
4156 case INTRINSIC_EQV:
4157 case INTRINSIC_NEQV:
4158 case INTRINSIC_EQ:
4159 case INTRINSIC_EQ_OS:
4160 case INTRINSIC_NE:
4161 case INTRINSIC_NE_OS:
4162 case INTRINSIC_GT:
4163 case INTRINSIC_GT_OS:
4164 case INTRINSIC_GE:
4165 case INTRINSIC_GE_OS:
4166 case INTRINSIC_LT:
4167 case INTRINSIC_LT_OS:
4168 case INTRINSIC_LE:
4169 case INTRINSIC_LE_OS:
4170
4171 if (op1->rank == 0 && op2->rank == 0)
4172 e->rank = 0;
4173
4174 if (op1->rank == 0 && op2->rank != 0)
4175 {
4176 e->rank = op2->rank;
4177
4178 if (e->shape == NULL)
4179 e->shape = gfc_copy_shape (op2->shape, op2->rank);
4180 }
4181
4182 if (op1->rank != 0 && op2->rank == 0)
4183 {
4184 e->rank = op1->rank;
4185
4186 if (e->shape == NULL)
4187 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4188 }
4189
4190 if (op1->rank != 0 && op2->rank != 0)
4191 {
4192 if (op1->rank == op2->rank)
4193 {
4194 e->rank = op1->rank;
4195 if (e->shape == NULL)
4196 {
4197 t = compare_shapes (op1, op2);
4198 if (!t)
4199 e->shape = NULL;
4200 else
4201 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4202 }
4203 }
4204 else
4205 {
4206 /* Allow higher level expressions to work. */
4207 e->rank = 0;
4208
4209 /* Try user-defined operators, and otherwise throw an error. */
4210 dual_locus_error = true;
4211 sprintf (msg,
4212 _("Inconsistent ranks for operator at %%L and %%L"));
4213 goto bad_op;
4214 }
4215 }
4216
4217 break;
4218
4219 case INTRINSIC_PARENTHESES:
4220 case INTRINSIC_NOT:
4221 case INTRINSIC_UPLUS:
4222 case INTRINSIC_UMINUS:
4223 /* Simply copy arrayness attribute */
4224 e->rank = op1->rank;
4225
4226 if (e->shape == NULL)
4227 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4228
4229 break;
4230
4231 default:
4232 break;
4233 }
4234
4235 simplify_op:
4236
4237 /* Attempt to simplify the expression. */
4238 if (t)
4239 {
4240 t = gfc_simplify_expr (e, 0);
4241 /* Some calls do not succeed in simplification and return false
4242 even though there is no error; e.g. variable references to
4243 PARAMETER arrays. */
4244 if (!gfc_is_constant_expr (e))
4245 t = true;
4246 }
4247 return t;
4248
4249 bad_op:
4250
4251 {
4252 match m = gfc_extend_expr (e);
4253 if (m == MATCH_YES)
4254 return true;
4255 if (m == MATCH_ERROR)
4256 return false;
4257 }
4258
4259 if (dual_locus_error)
4260 gfc_error (msg, &op1->where, &op2->where);
4261 else
4262 gfc_error (msg, &e->where);
4263
4264 return false;
4265 }
4266
4267
4268 /************** Array resolution subroutines **************/
4269
4270 enum compare_result
4271 { CMP_LT, CMP_EQ, CMP_GT, CMP_UNKNOWN };
4272
4273 /* Compare two integer expressions. */
4274
4275 static compare_result
4276 compare_bound (gfc_expr *a, gfc_expr *b)
4277 {
4278 int i;
4279
4280 if (a == NULL || a->expr_type != EXPR_CONSTANT
4281 || b == NULL || b->expr_type != EXPR_CONSTANT)
4282 return CMP_UNKNOWN;
4283
4284 /* If either of the types isn't INTEGER, we must have
4285 raised an error earlier. */
4286
4287 if (a->ts.type != BT_INTEGER || b->ts.type != BT_INTEGER)
4288 return CMP_UNKNOWN;
4289
4290 i = mpz_cmp (a->value.integer, b->value.integer);
4291
4292 if (i < 0)
4293 return CMP_LT;
4294 if (i > 0)
4295 return CMP_GT;
4296 return CMP_EQ;
4297 }
4298
4299
4300 /* Compare an integer expression with an integer. */
4301
4302 static compare_result
4303 compare_bound_int (gfc_expr *a, int b)
4304 {
4305 int i;
4306
4307 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4308 return CMP_UNKNOWN;
4309
4310 if (a->ts.type != BT_INTEGER)
4311 gfc_internal_error ("compare_bound_int(): Bad expression");
4312
4313 i = mpz_cmp_si (a->value.integer, b);
4314
4315 if (i < 0)
4316 return CMP_LT;
4317 if (i > 0)
4318 return CMP_GT;
4319 return CMP_EQ;
4320 }
4321
4322
4323 /* Compare an integer expression with a mpz_t. */
4324
4325 static compare_result
4326 compare_bound_mpz_t (gfc_expr *a, mpz_t b)
4327 {
4328 int i;
4329
4330 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4331 return CMP_UNKNOWN;
4332
4333 if (a->ts.type != BT_INTEGER)
4334 gfc_internal_error ("compare_bound_int(): Bad expression");
4335
4336 i = mpz_cmp (a->value.integer, b);
4337
4338 if (i < 0)
4339 return CMP_LT;
4340 if (i > 0)
4341 return CMP_GT;
4342 return CMP_EQ;
4343 }
4344
4345
4346 /* Compute the last value of a sequence given by a triplet.
4347 Return 0 if it wasn't able to compute the last value, or if the
4348 sequence if empty, and 1 otherwise. */
4349
4350 static int
4351 compute_last_value_for_triplet (gfc_expr *start, gfc_expr *end,
4352 gfc_expr *stride, mpz_t last)
4353 {
4354 mpz_t rem;
4355
4356 if (start == NULL || start->expr_type != EXPR_CONSTANT
4357 || end == NULL || end->expr_type != EXPR_CONSTANT
4358 || (stride != NULL && stride->expr_type != EXPR_CONSTANT))
4359 return 0;
4360
4361 if (start->ts.type != BT_INTEGER || end->ts.type != BT_INTEGER
4362 || (stride != NULL && stride->ts.type != BT_INTEGER))
4363 return 0;
4364
4365 if (stride == NULL || compare_bound_int (stride, 1) == CMP_EQ)
4366 {
4367 if (compare_bound (start, end) == CMP_GT)
4368 return 0;
4369 mpz_set (last, end->value.integer);
4370 return 1;
4371 }
4372
4373 if (compare_bound_int (stride, 0) == CMP_GT)
4374 {
4375 /* Stride is positive */
4376 if (mpz_cmp (start->value.integer, end->value.integer) > 0)
4377 return 0;
4378 }
4379 else
4380 {
4381 /* Stride is negative */
4382 if (mpz_cmp (start->value.integer, end->value.integer) < 0)
4383 return 0;
4384 }
4385
4386 mpz_init (rem);
4387 mpz_sub (rem, end->value.integer, start->value.integer);
4388 mpz_tdiv_r (rem, rem, stride->value.integer);
4389 mpz_sub (last, end->value.integer, rem);
4390 mpz_clear (rem);
4391
4392 return 1;
4393 }
4394
4395
4396 /* Compare a single dimension of an array reference to the array
4397 specification. */
4398
4399 static bool
4400 check_dimension (int i, gfc_array_ref *ar, gfc_array_spec *as)
4401 {
4402 mpz_t last_value;
4403
4404 if (ar->dimen_type[i] == DIMEN_STAR)
4405 {
4406 gcc_assert (ar->stride[i] == NULL);
4407 /* This implies [*] as [*:] and [*:3] are not possible. */
4408 if (ar->start[i] == NULL)
4409 {
4410 gcc_assert (ar->end[i] == NULL);
4411 return true;
4412 }
4413 }
4414
4415 /* Given start, end and stride values, calculate the minimum and
4416 maximum referenced indexes. */
4417
4418 switch (ar->dimen_type[i])
4419 {
4420 case DIMEN_VECTOR:
4421 case DIMEN_THIS_IMAGE:
4422 break;
4423
4424 case DIMEN_STAR:
4425 case DIMEN_ELEMENT:
4426 if (compare_bound (ar->start[i], as->lower[i]) == CMP_LT)
4427 {
4428 if (i < as->rank)
4429 gfc_warning (0, "Array reference at %L is out of bounds "
4430 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4431 mpz_get_si (ar->start[i]->value.integer),
4432 mpz_get_si (as->lower[i]->value.integer), i+1);
4433 else
4434 gfc_warning (0, "Array reference at %L is out of bounds "
4435 "(%ld < %ld) in codimension %d", &ar->c_where[i],
4436 mpz_get_si (ar->start[i]->value.integer),
4437 mpz_get_si (as->lower[i]->value.integer),
4438 i + 1 - as->rank);
4439 return true;
4440 }
4441 if (compare_bound (ar->start[i], as->upper[i]) == CMP_GT)
4442 {
4443 if (i < as->rank)
4444 gfc_warning (0, "Array reference at %L is out of bounds "
4445 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4446 mpz_get_si (ar->start[i]->value.integer),
4447 mpz_get_si (as->upper[i]->value.integer), i+1);
4448 else
4449 gfc_warning (0, "Array reference at %L is out of bounds "
4450 "(%ld > %ld) in codimension %d", &ar->c_where[i],
4451 mpz_get_si (ar->start[i]->value.integer),
4452 mpz_get_si (as->upper[i]->value.integer),
4453 i + 1 - as->rank);
4454 return true;
4455 }
4456
4457 break;
4458
4459 case DIMEN_RANGE:
4460 {
4461 #define AR_START (ar->start[i] ? ar->start[i] : as->lower[i])
4462 #define AR_END (ar->end[i] ? ar->end[i] : as->upper[i])
4463
4464 compare_result comp_start_end = compare_bound (AR_START, AR_END);
4465
4466 /* Check for zero stride, which is not allowed. */
4467 if (compare_bound_int (ar->stride[i], 0) == CMP_EQ)
4468 {
4469 gfc_error ("Illegal stride of zero at %L", &ar->c_where[i]);
4470 return false;
4471 }
4472
4473 /* if start == len || (stride > 0 && start < len)
4474 || (stride < 0 && start > len),
4475 then the array section contains at least one element. In this
4476 case, there is an out-of-bounds access if
4477 (start < lower || start > upper). */
4478 if (compare_bound (AR_START, AR_END) == CMP_EQ
4479 || ((compare_bound_int (ar->stride[i], 0) == CMP_GT
4480 || ar->stride[i] == NULL) && comp_start_end == CMP_LT)
4481 || (compare_bound_int (ar->stride[i], 0) == CMP_LT
4482 && comp_start_end == CMP_GT))
4483 {
4484 if (compare_bound (AR_START, as->lower[i]) == CMP_LT)
4485 {
4486 gfc_warning (0, "Lower array reference at %L is out of bounds "
4487 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4488 mpz_get_si (AR_START->value.integer),
4489 mpz_get_si (as->lower[i]->value.integer), i+1);
4490 return true;
4491 }
4492 if (compare_bound (AR_START, as->upper[i]) == CMP_GT)
4493 {
4494 gfc_warning (0, "Lower array reference at %L is out of bounds "
4495 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4496 mpz_get_si (AR_START->value.integer),
4497 mpz_get_si (as->upper[i]->value.integer), i+1);
4498 return true;
4499 }
4500 }
4501
4502 /* If we can compute the highest index of the array section,
4503 then it also has to be between lower and upper. */
4504 mpz_init (last_value);
4505 if (compute_last_value_for_triplet (AR_START, AR_END, ar->stride[i],
4506 last_value))
4507 {
4508 if (compare_bound_mpz_t (as->lower[i], last_value) == CMP_GT)
4509 {
4510 gfc_warning (0, "Upper array reference at %L is out of bounds "
4511 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4512 mpz_get_si (last_value),
4513 mpz_get_si (as->lower[i]->value.integer), i+1);
4514 mpz_clear (last_value);
4515 return true;
4516 }
4517 if (compare_bound_mpz_t (as->upper[i], last_value) == CMP_LT)
4518 {
4519 gfc_warning (0, "Upper array reference at %L is out of bounds "
4520 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4521 mpz_get_si (last_value),
4522 mpz_get_si (as->upper[i]->value.integer), i+1);
4523 mpz_clear (last_value);
4524 return true;
4525 }
4526 }
4527 mpz_clear (last_value);
4528
4529 #undef AR_START
4530 #undef AR_END
4531 }
4532 break;
4533
4534 default:
4535 gfc_internal_error ("check_dimension(): Bad array reference");
4536 }
4537
4538 return true;
4539 }
4540
4541
4542 /* Compare an array reference with an array specification. */
4543
4544 static bool
4545 compare_spec_to_ref (gfc_array_ref *ar)
4546 {
4547 gfc_array_spec *as;
4548 int i;
4549
4550 as = ar->as;
4551 i = as->rank - 1;
4552 /* TODO: Full array sections are only allowed as actual parameters. */
4553 if (as->type == AS_ASSUMED_SIZE
4554 && (/*ar->type == AR_FULL
4555 ||*/ (ar->type == AR_SECTION
4556 && ar->dimen_type[i] == DIMEN_RANGE && ar->end[i] == NULL)))
4557 {
4558 gfc_error ("Rightmost upper bound of assumed size array section "
4559 "not specified at %L", &ar->where);
4560 return false;
4561 }
4562
4563 if (ar->type == AR_FULL)
4564 return true;
4565
4566 if (as->rank != ar->dimen)
4567 {
4568 gfc_error ("Rank mismatch in array reference at %L (%d/%d)",
4569 &ar->where, ar->dimen, as->rank);
4570 return false;
4571 }
4572
4573 /* ar->codimen == 0 is a local array. */
4574 if (as->corank != ar->codimen && ar->codimen != 0)
4575 {
4576 gfc_error ("Coindex rank mismatch in array reference at %L (%d/%d)",
4577 &ar->where, ar->codimen, as->corank);
4578 return false;
4579 }
4580
4581 for (i = 0; i < as->rank; i++)
4582 if (!check_dimension (i, ar, as))
4583 return false;
4584
4585 /* Local access has no coarray spec. */
4586 if (ar->codimen != 0)
4587 for (i = as->rank; i < as->rank + as->corank; i++)
4588 {
4589 if (ar->dimen_type[i] != DIMEN_ELEMENT && !ar->in_allocate
4590 && ar->dimen_type[i] != DIMEN_THIS_IMAGE)
4591 {
4592 gfc_error ("Coindex of codimension %d must be a scalar at %L",
4593 i + 1 - as->rank, &ar->where);
4594 return false;
4595 }
4596 if (!check_dimension (i, ar, as))
4597 return false;
4598 }
4599
4600 return true;
4601 }
4602
4603
4604 /* Resolve one part of an array index. */
4605
4606 static bool
4607 gfc_resolve_index_1 (gfc_expr *index, int check_scalar,
4608 int force_index_integer_kind)
4609 {
4610 gfc_typespec ts;
4611
4612 if (index == NULL)
4613 return true;
4614
4615 if (!gfc_resolve_expr (index))
4616 return false;
4617
4618 if (check_scalar && index->rank != 0)
4619 {
4620 gfc_error ("Array index at %L must be scalar", &index->where);
4621 return false;
4622 }
4623
4624 if (index->ts.type != BT_INTEGER && index->ts.type != BT_REAL)
4625 {
4626 gfc_error ("Array index at %L must be of INTEGER type, found %s",
4627 &index->where, gfc_basic_typename (index->ts.type));
4628 return false;
4629 }
4630
4631 if (index->ts.type == BT_REAL)
4632 if (!gfc_notify_std (GFC_STD_LEGACY, "REAL array index at %L",
4633 &index->where))
4634 return false;
4635
4636 if ((index->ts.kind != gfc_index_integer_kind
4637 && force_index_integer_kind)
4638 || index->ts.type != BT_INTEGER)
4639 {
4640 gfc_clear_ts (&ts);
4641 ts.type = BT_INTEGER;
4642 ts.kind = gfc_index_integer_kind;
4643
4644 gfc_convert_type_warn (index, &ts, 2, 0);
4645 }
4646
4647 return true;
4648 }
4649
4650 /* Resolve one part of an array index. */
4651
4652 bool
4653 gfc_resolve_index (gfc_expr *index, int check_scalar)
4654 {
4655 return gfc_resolve_index_1 (index, check_scalar, 1);
4656 }
4657
4658 /* Resolve a dim argument to an intrinsic function. */
4659
4660 bool
4661 gfc_resolve_dim_arg (gfc_expr *dim)
4662 {
4663 if (dim == NULL)
4664 return true;
4665
4666 if (!gfc_resolve_expr (dim))
4667 return false;
4668
4669 if (dim->rank != 0)
4670 {
4671 gfc_error ("Argument dim at %L must be scalar", &dim->where);
4672 return false;
4673
4674 }
4675
4676 if (dim->ts.type != BT_INTEGER)
4677 {
4678 gfc_error ("Argument dim at %L must be of INTEGER type", &dim->where);
4679 return false;
4680 }
4681
4682 if (dim->ts.kind != gfc_index_integer_kind)
4683 {
4684 gfc_typespec ts;
4685
4686 gfc_clear_ts (&ts);
4687 ts.type = BT_INTEGER;
4688 ts.kind = gfc_index_integer_kind;
4689
4690 gfc_convert_type_warn (dim, &ts, 2, 0);
4691 }
4692
4693 return true;
4694 }
4695
4696 /* Given an expression that contains array references, update those array
4697 references to point to the right array specifications. While this is
4698 filled in during matching, this information is difficult to save and load
4699 in a module, so we take care of it here.
4700
4701 The idea here is that the original array reference comes from the
4702 base symbol. We traverse the list of reference structures, setting
4703 the stored reference to references. Component references can
4704 provide an additional array specification. */
4705
4706 static void
4707 find_array_spec (gfc_expr *e)
4708 {
4709 gfc_array_spec *as;
4710 gfc_component *c;
4711 gfc_ref *ref;
4712
4713 if (e->symtree->n.sym->ts.type == BT_CLASS)
4714 as = CLASS_DATA (e->symtree->n.sym)->as;
4715 else
4716 as = e->symtree->n.sym->as;
4717
4718 for (ref = e->ref; ref; ref = ref->next)
4719 switch (ref->type)
4720 {
4721 case REF_ARRAY:
4722 if (as == NULL)
4723 gfc_internal_error ("find_array_spec(): Missing spec");
4724
4725 ref->u.ar.as = as;
4726 as = NULL;
4727 break;
4728
4729 case REF_COMPONENT:
4730 c = ref->u.c.component;
4731 if (c->attr.dimension)
4732 {
4733 if (as != NULL)
4734 gfc_internal_error ("find_array_spec(): unused as(1)");
4735 as = c->as;
4736 }
4737
4738 break;
4739
4740 case REF_SUBSTRING:
4741 case REF_INQUIRY:
4742 break;
4743 }
4744
4745 if (as != NULL)
4746 gfc_internal_error ("find_array_spec(): unused as(2)");
4747 }
4748
4749
4750 /* Resolve an array reference. */
4751
4752 static bool
4753 resolve_array_ref (gfc_array_ref *ar)
4754 {
4755 int i, check_scalar;
4756 gfc_expr *e;
4757
4758 for (i = 0; i < ar->dimen + ar->codimen; i++)
4759 {
4760 check_scalar = ar->dimen_type[i] == DIMEN_RANGE;
4761
4762 /* Do not force gfc_index_integer_kind for the start. We can
4763 do fine with any integer kind. This avoids temporary arrays
4764 created for indexing with a vector. */
4765 if (!gfc_resolve_index_1 (ar->start[i], check_scalar, 0))
4766 return false;
4767 if (!gfc_resolve_index (ar->end[i], check_scalar))
4768 return false;
4769 if (!gfc_resolve_index (ar->stride[i], check_scalar))
4770 return false;
4771
4772 e = ar->start[i];
4773
4774 if (ar->dimen_type[i] == DIMEN_UNKNOWN)
4775 switch (e->rank)
4776 {
4777 case 0:
4778 ar->dimen_type[i] = DIMEN_ELEMENT;
4779 break;
4780
4781 case 1:
4782 ar->dimen_type[i] = DIMEN_VECTOR;
4783 if (e->expr_type == EXPR_VARIABLE
4784 && e->symtree->n.sym->ts.type == BT_DERIVED)
4785 ar->start[i] = gfc_get_parentheses (e);
4786 break;
4787
4788 default:
4789 gfc_error ("Array index at %L is an array of rank %d",
4790 &ar->c_where[i], e->rank);
4791 return false;
4792 }
4793
4794 /* Fill in the upper bound, which may be lower than the
4795 specified one for something like a(2:10:5), which is
4796 identical to a(2:7:5). Only relevant for strides not equal
4797 to one. Don't try a division by zero. */
4798 if (ar->dimen_type[i] == DIMEN_RANGE
4799 && ar->stride[i] != NULL && ar->stride[i]->expr_type == EXPR_CONSTANT
4800 && mpz_cmp_si (ar->stride[i]->value.integer, 1L) != 0
4801 && mpz_cmp_si (ar->stride[i]->value.integer, 0L) != 0)
4802 {
4803 mpz_t size, end;
4804
4805 if (gfc_ref_dimen_size (ar, i, &size, &end))
4806 {
4807 if (ar->end[i] == NULL)
4808 {
4809 ar->end[i] =
4810 gfc_get_constant_expr (BT_INTEGER, gfc_index_integer_kind,
4811 &ar->where);
4812 mpz_set (ar->end[i]->value.integer, end);
4813 }
4814 else if (ar->end[i]->ts.type == BT_INTEGER
4815 && ar->end[i]->expr_type == EXPR_CONSTANT)
4816 {
4817 mpz_set (ar->end[i]->value.integer, end);
4818 }
4819 else
4820 gcc_unreachable ();
4821
4822 mpz_clear (size);
4823 mpz_clear (end);
4824 }
4825 }
4826 }
4827
4828 if (ar->type == AR_FULL)
4829 {
4830 if (ar->as->rank == 0)
4831 ar->type = AR_ELEMENT;
4832
4833 /* Make sure array is the same as array(:,:), this way
4834 we don't need to special case all the time. */
4835 ar->dimen = ar->as->rank;
4836 for (i = 0; i < ar->dimen; i++)
4837 {
4838 ar->dimen_type[i] = DIMEN_RANGE;
4839
4840 gcc_assert (ar->start[i] == NULL);
4841 gcc_assert (ar->end[i] == NULL);
4842 gcc_assert (ar->stride[i] == NULL);
4843 }
4844 }
4845
4846 /* If the reference type is unknown, figure out what kind it is. */
4847
4848 if (ar->type == AR_UNKNOWN)
4849 {
4850 ar->type = AR_ELEMENT;
4851 for (i = 0; i < ar->dimen; i++)
4852 if (ar->dimen_type[i] == DIMEN_RANGE
4853 || ar->dimen_type[i] == DIMEN_VECTOR)
4854 {
4855 ar->type = AR_SECTION;
4856 break;
4857 }
4858 }
4859
4860 if (!ar->as->cray_pointee && !compare_spec_to_ref (ar))
4861 return false;
4862
4863 if (ar->as->corank && ar->codimen == 0)
4864 {
4865 int n;
4866 ar->codimen = ar->as->corank;
4867 for (n = ar->dimen; n < ar->dimen + ar->codimen; n++)
4868 ar->dimen_type[n] = DIMEN_THIS_IMAGE;
4869 }
4870
4871 return true;
4872 }
4873
4874
4875 static bool
4876 resolve_substring (gfc_ref *ref, bool *equal_length)
4877 {
4878 int k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
4879
4880 if (ref->u.ss.start != NULL)
4881 {
4882 if (!gfc_resolve_expr (ref->u.ss.start))
4883 return false;
4884
4885 if (ref->u.ss.start->ts.type != BT_INTEGER)
4886 {
4887 gfc_error ("Substring start index at %L must be of type INTEGER",
4888 &ref->u.ss.start->where);
4889 return false;
4890 }
4891
4892 if (ref->u.ss.start->rank != 0)
4893 {
4894 gfc_error ("Substring start index at %L must be scalar",
4895 &ref->u.ss.start->where);
4896 return false;
4897 }
4898
4899 if (compare_bound_int (ref->u.ss.start, 1) == CMP_LT
4900 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4901 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4902 {
4903 gfc_error ("Substring start index at %L is less than one",
4904 &ref->u.ss.start->where);
4905 return false;
4906 }
4907 }
4908
4909 if (ref->u.ss.end != NULL)
4910 {
4911 if (!gfc_resolve_expr (ref->u.ss.end))
4912 return false;
4913
4914 if (ref->u.ss.end->ts.type != BT_INTEGER)
4915 {
4916 gfc_error ("Substring end index at %L must be of type INTEGER",
4917 &ref->u.ss.end->where);
4918 return false;
4919 }
4920
4921 if (ref->u.ss.end->rank != 0)
4922 {
4923 gfc_error ("Substring end index at %L must be scalar",
4924 &ref->u.ss.end->where);
4925 return false;
4926 }
4927
4928 if (ref->u.ss.length != NULL
4929 && compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_GT
4930 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4931 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4932 {
4933 gfc_error ("Substring end index at %L exceeds the string length",
4934 &ref->u.ss.start->where);
4935 return false;
4936 }
4937
4938 if (compare_bound_mpz_t (ref->u.ss.end,
4939 gfc_integer_kinds[k].huge) == CMP_GT
4940 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4941 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4942 {
4943 gfc_error ("Substring end index at %L is too large",
4944 &ref->u.ss.end->where);
4945 return false;
4946 }
4947 /* If the substring has the same length as the original
4948 variable, the reference itself can be deleted. */
4949
4950 if (ref->u.ss.length != NULL
4951 && compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_EQ
4952 && compare_bound_int (ref->u.ss.start, 1) == CMP_EQ)
4953 *equal_length = true;
4954 }
4955
4956 return true;
4957 }
4958
4959
4960 /* This function supplies missing substring charlens. */
4961
4962 void
4963 gfc_resolve_substring_charlen (gfc_expr *e)
4964 {
4965 gfc_ref *char_ref;
4966 gfc_expr *start, *end;
4967 gfc_typespec *ts = NULL;
4968 mpz_t diff;
4969
4970 for (char_ref = e->ref; char_ref; char_ref = char_ref->next)
4971 {
4972 if (char_ref->type == REF_SUBSTRING || char_ref->type == REF_INQUIRY)
4973 break;
4974 if (char_ref->type == REF_COMPONENT)
4975 ts = &char_ref->u.c.component->ts;
4976 }
4977
4978 if (!char_ref || char_ref->type == REF_INQUIRY)
4979 return;
4980
4981 gcc_assert (char_ref->next == NULL);
4982
4983 if (e->ts.u.cl)
4984 {
4985 if (e->ts.u.cl->length)
4986 gfc_free_expr (e->ts.u.cl->length);
4987 else if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.dummy)
4988 return;
4989 }
4990
4991 e->ts.type = BT_CHARACTER;
4992 e->ts.kind = gfc_default_character_kind;
4993
4994 if (!e->ts.u.cl)
4995 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
4996
4997 if (char_ref->u.ss.start)
4998 start = gfc_copy_expr (char_ref->u.ss.start);
4999 else
5000 start = gfc_get_int_expr (gfc_charlen_int_kind, NULL, 1);
5001
5002 if (char_ref->u.ss.end)
5003 end = gfc_copy_expr (char_ref->u.ss.end);
5004 else if (e->expr_type == EXPR_VARIABLE)
5005 {
5006 if (!ts)
5007 ts = &e->symtree->n.sym->ts;
5008 end = gfc_copy_expr (ts->u.cl->length);
5009 }
5010 else
5011 end = NULL;
5012
5013 if (!start || !end)
5014 {
5015 gfc_free_expr (start);
5016 gfc_free_expr (end);
5017 return;
5018 }
5019
5020 /* Length = (end - start + 1).
5021 Check first whether it has a constant length. */
5022 if (gfc_dep_difference (end, start, &diff))
5023 {
5024 gfc_expr *len = gfc_get_constant_expr (BT_INTEGER, gfc_charlen_int_kind,
5025 &e->where);
5026
5027 mpz_add_ui (len->value.integer, diff, 1);
5028 mpz_clear (diff);
5029 e->ts.u.cl->length = len;
5030 /* The check for length < 0 is handled below */
5031 }
5032 else
5033 {
5034 e->ts.u.cl->length = gfc_subtract (end, start);
5035 e->ts.u.cl->length = gfc_add (e->ts.u.cl->length,
5036 gfc_get_int_expr (gfc_charlen_int_kind,
5037 NULL, 1));
5038 }
5039
5040 /* F2008, 6.4.1: Both the starting point and the ending point shall
5041 be within the range 1, 2, ..., n unless the starting point exceeds
5042 the ending point, in which case the substring has length zero. */
5043
5044 if (mpz_cmp_si (e->ts.u.cl->length->value.integer, 0) < 0)
5045 mpz_set_si (e->ts.u.cl->length->value.integer, 0);
5046
5047 e->ts.u.cl->length->ts.type = BT_INTEGER;
5048 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
5049
5050 /* Make sure that the length is simplified. */
5051 gfc_simplify_expr (e->ts.u.cl->length, 1);
5052 gfc_resolve_expr (e->ts.u.cl->length);
5053 }
5054
5055
5056 /* Resolve subtype references. */
5057
5058 static bool
5059 resolve_ref (gfc_expr *expr)
5060 {
5061 int current_part_dimension, n_components, seen_part_dimension;
5062 gfc_ref *ref, **prev;
5063 bool equal_length;
5064
5065 for (ref = expr->ref; ref; ref = ref->next)
5066 if (ref->type == REF_ARRAY && ref->u.ar.as == NULL)
5067 {
5068 find_array_spec (expr);
5069 break;
5070 }
5071
5072 for (prev = &expr->ref; *prev != NULL;
5073 prev = *prev == NULL ? prev : &(*prev)->next)
5074 switch ((*prev)->type)
5075 {
5076 case REF_ARRAY:
5077 if (!resolve_array_ref (&(*prev)->u.ar))
5078 return false;
5079 break;
5080
5081 case REF_COMPONENT:
5082 case REF_INQUIRY:
5083 break;
5084
5085 case REF_SUBSTRING:
5086 equal_length = false;
5087 if (!resolve_substring (*prev, &equal_length))
5088 return false;
5089
5090 if (expr->expr_type != EXPR_SUBSTRING && equal_length)
5091 {
5092 /* Remove the reference and move the charlen, if any. */
5093 ref = *prev;
5094 *prev = ref->next;
5095 ref->next = NULL;
5096 expr->ts.u.cl = ref->u.ss.length;
5097 ref->u.ss.length = NULL;
5098 gfc_free_ref_list (ref);
5099 }
5100 break;
5101 }
5102
5103 /* Check constraints on part references. */
5104
5105 current_part_dimension = 0;
5106 seen_part_dimension = 0;
5107 n_components = 0;
5108
5109 for (ref = expr->ref; ref; ref = ref->next)
5110 {
5111 switch (ref->type)
5112 {
5113 case REF_ARRAY:
5114 switch (ref->u.ar.type)
5115 {
5116 case AR_FULL:
5117 /* Coarray scalar. */
5118 if (ref->u.ar.as->rank == 0)
5119 {
5120 current_part_dimension = 0;
5121 break;
5122 }
5123 /* Fall through. */
5124 case AR_SECTION:
5125 current_part_dimension = 1;
5126 break;
5127
5128 case AR_ELEMENT:
5129 current_part_dimension = 0;
5130 break;
5131
5132 case AR_UNKNOWN:
5133 gfc_internal_error ("resolve_ref(): Bad array reference");
5134 }
5135
5136 break;
5137
5138 case REF_COMPONENT:
5139 if (current_part_dimension || seen_part_dimension)
5140 {
5141 /* F03:C614. */
5142 if (ref->u.c.component->attr.pointer
5143 || ref->u.c.component->attr.proc_pointer
5144 || (ref->u.c.component->ts.type == BT_CLASS
5145 && CLASS_DATA (ref->u.c.component)->attr.pointer))
5146 {
5147 gfc_error ("Component to the right of a part reference "
5148 "with nonzero rank must not have the POINTER "
5149 "attribute at %L", &expr->where);
5150 return false;
5151 }
5152 else if (ref->u.c.component->attr.allocatable
5153 || (ref->u.c.component->ts.type == BT_CLASS
5154 && CLASS_DATA (ref->u.c.component)->attr.allocatable))
5155
5156 {
5157 gfc_error ("Component to the right of a part reference "
5158 "with nonzero rank must not have the ALLOCATABLE "
5159 "attribute at %L", &expr->where);
5160 return false;
5161 }
5162 }
5163
5164 n_components++;
5165 break;
5166
5167 case REF_SUBSTRING:
5168 case REF_INQUIRY:
5169 break;
5170 }
5171
5172 if (((ref->type == REF_COMPONENT && n_components > 1)
5173 || ref->next == NULL)
5174 && current_part_dimension
5175 && seen_part_dimension)
5176 {
5177 gfc_error ("Two or more part references with nonzero rank must "
5178 "not be specified at %L", &expr->where);
5179 return false;
5180 }
5181
5182 if (ref->type == REF_COMPONENT)
5183 {
5184 if (current_part_dimension)
5185 seen_part_dimension = 1;
5186
5187 /* reset to make sure */
5188 current_part_dimension = 0;
5189 }
5190 }
5191
5192 return true;
5193 }
5194
5195
5196 /* Given an expression, determine its shape. This is easier than it sounds.
5197 Leaves the shape array NULL if it is not possible to determine the shape. */
5198
5199 static void
5200 expression_shape (gfc_expr *e)
5201 {
5202 mpz_t array[GFC_MAX_DIMENSIONS];
5203 int i;
5204
5205 if (e->rank <= 0 || e->shape != NULL)
5206 return;
5207
5208 for (i = 0; i < e->rank; i++)
5209 if (!gfc_array_dimen_size (e, i, &array[i]))
5210 goto fail;
5211
5212 e->shape = gfc_get_shape (e->rank);
5213
5214 memcpy (e->shape, array, e->rank * sizeof (mpz_t));
5215
5216 return;
5217
5218 fail:
5219 for (i--; i >= 0; i--)
5220 mpz_clear (array[i]);
5221 }
5222
5223
5224 /* Given a variable expression node, compute the rank of the expression by
5225 examining the base symbol and any reference structures it may have. */
5226
5227 void
5228 expression_rank (gfc_expr *e)
5229 {
5230 gfc_ref *ref;
5231 int i, rank;
5232
5233 /* Just to make sure, because EXPR_COMPCALL's also have an e->ref and that
5234 could lead to serious confusion... */
5235 gcc_assert (e->expr_type != EXPR_COMPCALL);
5236
5237 if (e->ref == NULL)
5238 {
5239 if (e->expr_type == EXPR_ARRAY)
5240 goto done;
5241 /* Constructors can have a rank different from one via RESHAPE(). */
5242
5243 if (e->symtree == NULL)
5244 {
5245 e->rank = 0;
5246 goto done;
5247 }
5248
5249 e->rank = (e->symtree->n.sym->as == NULL)
5250 ? 0 : e->symtree->n.sym->as->rank;
5251 goto done;
5252 }
5253
5254 rank = 0;
5255
5256 for (ref = e->ref; ref; ref = ref->next)
5257 {
5258 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.proc_pointer
5259 && ref->u.c.component->attr.function && !ref->next)
5260 rank = ref->u.c.component->as ? ref->u.c.component->as->rank : 0;
5261
5262 if (ref->type != REF_ARRAY)
5263 continue;
5264
5265 if (ref->u.ar.type == AR_FULL)
5266 {
5267 rank = ref->u.ar.as->rank;
5268 break;
5269 }
5270
5271 if (ref->u.ar.type == AR_SECTION)
5272 {
5273 /* Figure out the rank of the section. */
5274 if (rank != 0)
5275 gfc_internal_error ("expression_rank(): Two array specs");
5276
5277 for (i = 0; i < ref->u.ar.dimen; i++)
5278 if (ref->u.ar.dimen_type[i] == DIMEN_RANGE
5279 || ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
5280 rank++;
5281
5282 break;
5283 }
5284 }
5285
5286 e->rank = rank;
5287
5288 done:
5289 expression_shape (e);
5290 }
5291
5292
5293 static void
5294 add_caf_get_intrinsic (gfc_expr *e)
5295 {
5296 gfc_expr *wrapper, *tmp_expr;
5297 gfc_ref *ref;
5298 int n;
5299
5300 for (ref = e->ref; ref; ref = ref->next)
5301 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5302 break;
5303 if (ref == NULL)
5304 return;
5305
5306 for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
5307 if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
5308 return;
5309
5310 tmp_expr = XCNEW (gfc_expr);
5311 *tmp_expr = *e;
5312 wrapper = gfc_build_intrinsic_call (gfc_current_ns, GFC_ISYM_CAF_GET,
5313 "caf_get", tmp_expr->where, 1, tmp_expr);
5314 wrapper->ts = e->ts;
5315 wrapper->rank = e->rank;
5316 if (e->rank)
5317 wrapper->shape = gfc_copy_shape (e->shape, e->rank);
5318 *e = *wrapper;
5319 free (wrapper);
5320 }
5321
5322
5323 static void
5324 remove_caf_get_intrinsic (gfc_expr *e)
5325 {
5326 gcc_assert (e->expr_type == EXPR_FUNCTION && e->value.function.isym
5327 && e->value.function.isym->id == GFC_ISYM_CAF_GET);
5328 gfc_expr *e2 = e->value.function.actual->expr;
5329 e->value.function.actual->expr = NULL;
5330 gfc_free_actual_arglist (e->value.function.actual);
5331 gfc_free_shape (&e->shape, e->rank);
5332 *e = *e2;
5333 free (e2);
5334 }
5335
5336
5337 /* Resolve a variable expression. */
5338
5339 static bool
5340 resolve_variable (gfc_expr *e)
5341 {
5342 gfc_symbol *sym;
5343 bool t;
5344
5345 t = true;
5346
5347 if (e->symtree == NULL)
5348 return false;
5349 sym = e->symtree->n.sym;
5350
5351 /* Use same check as for TYPE(*) below; this check has to be before TYPE(*)
5352 as ts.type is set to BT_ASSUMED in resolve_symbol. */
5353 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
5354 {
5355 if (!actual_arg || inquiry_argument)
5356 {
5357 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may only "
5358 "be used as actual argument", sym->name, &e->where);
5359 return false;
5360 }
5361 }
5362 /* TS 29113, 407b. */
5363 else if (e->ts.type == BT_ASSUMED)
5364 {
5365 if (!actual_arg)
5366 {
5367 gfc_error ("Assumed-type variable %s at %L may only be used "
5368 "as actual argument", sym->name, &e->where);
5369 return false;
5370 }
5371 else if (inquiry_argument && !first_actual_arg)
5372 {
5373 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5374 for all inquiry functions in resolve_function; the reason is
5375 that the function-name resolution happens too late in that
5376 function. */
5377 gfc_error ("Assumed-type variable %s at %L as actual argument to "
5378 "an inquiry function shall be the first argument",
5379 sym->name, &e->where);
5380 return false;
5381 }
5382 }
5383 /* TS 29113, C535b. */
5384 else if ((sym->ts.type == BT_CLASS && sym->attr.class_ok
5385 && CLASS_DATA (sym)->as
5386 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5387 || (sym->ts.type != BT_CLASS && sym->as
5388 && sym->as->type == AS_ASSUMED_RANK))
5389 {
5390 if (!actual_arg)
5391 {
5392 gfc_error ("Assumed-rank variable %s at %L may only be used as "
5393 "actual argument", sym->name, &e->where);
5394 return false;
5395 }
5396 else if (inquiry_argument && !first_actual_arg)
5397 {
5398 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5399 for all inquiry functions in resolve_function; the reason is
5400 that the function-name resolution happens too late in that
5401 function. */
5402 gfc_error ("Assumed-rank variable %s at %L as actual argument "
5403 "to an inquiry function shall be the first argument",
5404 sym->name, &e->where);
5405 return false;
5406 }
5407 }
5408
5409 if ((sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) && e->ref
5410 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5411 && e->ref->next == NULL))
5412 {
5413 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall not have "
5414 "a subobject reference", sym->name, &e->ref->u.ar.where);
5415 return false;
5416 }
5417 /* TS 29113, 407b. */
5418 else if (e->ts.type == BT_ASSUMED && e->ref
5419 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5420 && e->ref->next == NULL))
5421 {
5422 gfc_error ("Assumed-type variable %s at %L shall not have a subobject "
5423 "reference", sym->name, &e->ref->u.ar.where);
5424 return false;
5425 }
5426
5427 /* TS 29113, C535b. */
5428 if (((sym->ts.type == BT_CLASS && sym->attr.class_ok
5429 && CLASS_DATA (sym)->as
5430 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5431 || (sym->ts.type != BT_CLASS && sym->as
5432 && sym->as->type == AS_ASSUMED_RANK))
5433 && e->ref
5434 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5435 && e->ref->next == NULL))
5436 {
5437 gfc_error ("Assumed-rank variable %s at %L shall not have a subobject "
5438 "reference", sym->name, &e->ref->u.ar.where);
5439 return false;
5440 }
5441
5442 /* For variables that are used in an associate (target => object) where
5443 the object's basetype is array valued while the target is scalar,
5444 the ts' type of the component refs is still array valued, which
5445 can't be translated that way. */
5446 if (sym->assoc && e->rank == 0 && e->ref && sym->ts.type == BT_CLASS
5447 && sym->assoc->target && sym->assoc->target->ts.type == BT_CLASS
5448 && CLASS_DATA (sym->assoc->target)->as)
5449 {
5450 gfc_ref *ref = e->ref;
5451 while (ref)
5452 {
5453 switch (ref->type)
5454 {
5455 case REF_COMPONENT:
5456 ref->u.c.sym = sym->ts.u.derived;
5457 /* Stop the loop. */
5458 ref = NULL;
5459 break;
5460 default:
5461 ref = ref->next;
5462 break;
5463 }
5464 }
5465 }
5466
5467 /* If this is an associate-name, it may be parsed with an array reference
5468 in error even though the target is scalar. Fail directly in this case.
5469 TODO Understand why class scalar expressions must be excluded. */
5470 if (sym->assoc && !(sym->ts.type == BT_CLASS && e->rank == 0))
5471 {
5472 if (sym->ts.type == BT_CLASS)
5473 gfc_fix_class_refs (e);
5474 if (!sym->attr.dimension && e->ref && e->ref->type == REF_ARRAY)
5475 return false;
5476 else if (sym->attr.dimension && (!e->ref || e->ref->type != REF_ARRAY))
5477 {
5478 /* This can happen because the parser did not detect that the
5479 associate name is an array and the expression had no array
5480 part_ref. */
5481 gfc_ref *ref = gfc_get_ref ();
5482 ref->type = REF_ARRAY;
5483 ref->u.ar = *gfc_get_array_ref();
5484 ref->u.ar.type = AR_FULL;
5485 if (sym->as)
5486 {
5487 ref->u.ar.as = sym->as;
5488 ref->u.ar.dimen = sym->as->rank;
5489 }
5490 ref->next = e->ref;
5491 e->ref = ref;
5492
5493 }
5494 }
5495
5496 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.generic)
5497 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
5498
5499 /* On the other hand, the parser may not have known this is an array;
5500 in this case, we have to add a FULL reference. */
5501 if (sym->assoc && sym->attr.dimension && !e->ref)
5502 {
5503 e->ref = gfc_get_ref ();
5504 e->ref->type = REF_ARRAY;
5505 e->ref->u.ar.type = AR_FULL;
5506 e->ref->u.ar.dimen = 0;
5507 }
5508
5509 /* Like above, but for class types, where the checking whether an array
5510 ref is present is more complicated. Furthermore make sure not to add
5511 the full array ref to _vptr or _len refs. */
5512 if (sym->assoc && sym->ts.type == BT_CLASS
5513 && CLASS_DATA (sym)->attr.dimension
5514 && (e->ts.type != BT_DERIVED || !e->ts.u.derived->attr.vtype))
5515 {
5516 gfc_ref *ref, *newref;
5517
5518 newref = gfc_get_ref ();
5519 newref->type = REF_ARRAY;
5520 newref->u.ar.type = AR_FULL;
5521 newref->u.ar.dimen = 0;
5522 /* Because this is an associate var and the first ref either is a ref to
5523 the _data component or not, no traversal of the ref chain is
5524 needed. The array ref needs to be inserted after the _data ref,
5525 or when that is not present, which may happend for polymorphic
5526 types, then at the first position. */
5527 ref = e->ref;
5528 if (!ref)
5529 e->ref = newref;
5530 else if (ref->type == REF_COMPONENT
5531 && strcmp ("_data", ref->u.c.component->name) == 0)
5532 {
5533 if (!ref->next || ref->next->type != REF_ARRAY)
5534 {
5535 newref->next = ref->next;
5536 ref->next = newref;
5537 }
5538 else
5539 /* Array ref present already. */
5540 gfc_free_ref_list (newref);
5541 }
5542 else if (ref->type == REF_ARRAY)
5543 /* Array ref present already. */
5544 gfc_free_ref_list (newref);
5545 else
5546 {
5547 newref->next = ref;
5548 e->ref = newref;
5549 }
5550 }
5551
5552 if (e->ref && !resolve_ref (e))
5553 return false;
5554
5555 if (sym->attr.flavor == FL_PROCEDURE
5556 && (!sym->attr.function
5557 || (sym->attr.function && sym->result
5558 && sym->result->attr.proc_pointer
5559 && !sym->result->attr.function)))
5560 {
5561 e->ts.type = BT_PROCEDURE;
5562 goto resolve_procedure;
5563 }
5564
5565 if (sym->ts.type != BT_UNKNOWN)
5566 gfc_variable_attr (e, &e->ts);
5567 else if (sym->attr.flavor == FL_PROCEDURE
5568 && sym->attr.function && sym->result
5569 && sym->result->ts.type != BT_UNKNOWN
5570 && sym->result->attr.proc_pointer)
5571 e->ts = sym->result->ts;
5572 else
5573 {
5574 /* Must be a simple variable reference. */
5575 if (!gfc_set_default_type (sym, 1, sym->ns))
5576 return false;
5577 e->ts = sym->ts;
5578 }
5579
5580 if (check_assumed_size_reference (sym, e))
5581 return false;
5582
5583 /* Deal with forward references to entries during gfc_resolve_code, to
5584 satisfy, at least partially, 12.5.2.5. */
5585 if (gfc_current_ns->entries
5586 && current_entry_id == sym->entry_id
5587 && cs_base
5588 && cs_base->current
5589 && cs_base->current->op != EXEC_ENTRY)
5590 {
5591 gfc_entry_list *entry;
5592 gfc_formal_arglist *formal;
5593 int n;
5594 bool seen, saved_specification_expr;
5595
5596 /* If the symbol is a dummy... */
5597 if (sym->attr.dummy && sym->ns == gfc_current_ns)
5598 {
5599 entry = gfc_current_ns->entries;
5600 seen = false;
5601
5602 /* ...test if the symbol is a parameter of previous entries. */
5603 for (; entry && entry->id <= current_entry_id; entry = entry->next)
5604 for (formal = entry->sym->formal; formal; formal = formal->next)
5605 {
5606 if (formal->sym && sym->name == formal->sym->name)
5607 {
5608 seen = true;
5609 break;
5610 }
5611 }
5612
5613 /* If it has not been seen as a dummy, this is an error. */
5614 if (!seen)
5615 {
5616 if (specification_expr)
5617 gfc_error ("Variable %qs, used in a specification expression"
5618 ", is referenced at %L before the ENTRY statement "
5619 "in which it is a parameter",
5620 sym->name, &cs_base->current->loc);
5621 else
5622 gfc_error ("Variable %qs is used at %L before the ENTRY "
5623 "statement in which it is a parameter",
5624 sym->name, &cs_base->current->loc);
5625 t = false;
5626 }
5627 }
5628
5629 /* Now do the same check on the specification expressions. */
5630 saved_specification_expr = specification_expr;
5631 specification_expr = true;
5632 if (sym->ts.type == BT_CHARACTER
5633 && !gfc_resolve_expr (sym->ts.u.cl->length))
5634 t = false;
5635
5636 if (sym->as)
5637 for (n = 0; n < sym->as->rank; n++)
5638 {
5639 if (!gfc_resolve_expr (sym->as->lower[n]))
5640 t = false;
5641 if (!gfc_resolve_expr (sym->as->upper[n]))
5642 t = false;
5643 }
5644 specification_expr = saved_specification_expr;
5645
5646 if (t)
5647 /* Update the symbol's entry level. */
5648 sym->entry_id = current_entry_id + 1;
5649 }
5650
5651 /* If a symbol has been host_associated mark it. This is used latter,
5652 to identify if aliasing is possible via host association. */
5653 if (sym->attr.flavor == FL_VARIABLE
5654 && gfc_current_ns->parent
5655 && (gfc_current_ns->parent == sym->ns
5656 || (gfc_current_ns->parent->parent
5657 && gfc_current_ns->parent->parent == sym->ns)))
5658 sym->attr.host_assoc = 1;
5659
5660 if (gfc_current_ns->proc_name
5661 && sym->attr.dimension
5662 && (sym->ns != gfc_current_ns
5663 || sym->attr.use_assoc
5664 || sym->attr.in_common))
5665 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
5666
5667 resolve_procedure:
5668 if (t && !resolve_procedure_expression (e))
5669 t = false;
5670
5671 /* F2008, C617 and C1229. */
5672 if (!inquiry_argument && (e->ts.type == BT_CLASS || e->ts.type == BT_DERIVED)
5673 && gfc_is_coindexed (e))
5674 {
5675 gfc_ref *ref, *ref2 = NULL;
5676
5677 for (ref = e->ref; ref; ref = ref->next)
5678 {
5679 if (ref->type == REF_COMPONENT)
5680 ref2 = ref;
5681 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5682 break;
5683 }
5684
5685 for ( ; ref; ref = ref->next)
5686 if (ref->type == REF_COMPONENT)
5687 break;
5688
5689 /* Expression itself is not coindexed object. */
5690 if (ref && e->ts.type == BT_CLASS)
5691 {
5692 gfc_error ("Polymorphic subobject of coindexed object at %L",
5693 &e->where);
5694 t = false;
5695 }
5696
5697 /* Expression itself is coindexed object. */
5698 if (ref == NULL)
5699 {
5700 gfc_component *c;
5701 c = ref2 ? ref2->u.c.component : e->symtree->n.sym->components;
5702 for ( ; c; c = c->next)
5703 if (c->attr.allocatable && c->ts.type == BT_CLASS)
5704 {
5705 gfc_error ("Coindexed object with polymorphic allocatable "
5706 "subcomponent at %L", &e->where);
5707 t = false;
5708 break;
5709 }
5710 }
5711 }
5712
5713 if (t)
5714 expression_rank (e);
5715
5716 if (t && flag_coarray == GFC_FCOARRAY_LIB && gfc_is_coindexed (e))
5717 add_caf_get_intrinsic (e);
5718
5719 /* Simplify cases where access to a parameter array results in a
5720 single constant. Suppress errors since those will have been
5721 issued before, as warnings. */
5722 if (e->rank == 0 && sym->as && sym->attr.flavor == FL_PARAMETER)
5723 {
5724 gfc_push_suppress_errors ();
5725 gfc_simplify_expr (e, 1);
5726 gfc_pop_suppress_errors ();
5727 }
5728
5729 return t;
5730 }
5731
5732
5733 /* Checks to see that the correct symbol has been host associated.
5734 The only situation where this arises is that in which a twice
5735 contained function is parsed after the host association is made.
5736 Therefore, on detecting this, change the symbol in the expression
5737 and convert the array reference into an actual arglist if the old
5738 symbol is a variable. */
5739 static bool
5740 check_host_association (gfc_expr *e)
5741 {
5742 gfc_symbol *sym, *old_sym;
5743 gfc_symtree *st;
5744 int n;
5745 gfc_ref *ref;
5746 gfc_actual_arglist *arg, *tail = NULL;
5747 bool retval = e->expr_type == EXPR_FUNCTION;
5748
5749 /* If the expression is the result of substitution in
5750 interface.c(gfc_extend_expr) because there is no way in
5751 which the host association can be wrong. */
5752 if (e->symtree == NULL
5753 || e->symtree->n.sym == NULL
5754 || e->user_operator)
5755 return retval;
5756
5757 old_sym = e->symtree->n.sym;
5758
5759 if (gfc_current_ns->parent
5760 && old_sym->ns != gfc_current_ns)
5761 {
5762 /* Use the 'USE' name so that renamed module symbols are
5763 correctly handled. */
5764 gfc_find_symbol (e->symtree->name, gfc_current_ns, 1, &sym);
5765
5766 if (sym && old_sym != sym
5767 && sym->ts.type == old_sym->ts.type
5768 && sym->attr.flavor == FL_PROCEDURE
5769 && sym->attr.contained)
5770 {
5771 /* Clear the shape, since it might not be valid. */
5772 gfc_free_shape (&e->shape, e->rank);
5773
5774 /* Give the expression the right symtree! */
5775 gfc_find_sym_tree (e->symtree->name, NULL, 1, &st);
5776 gcc_assert (st != NULL);
5777
5778 if (old_sym->attr.flavor == FL_PROCEDURE
5779 || e->expr_type == EXPR_FUNCTION)
5780 {
5781 /* Original was function so point to the new symbol, since
5782 the actual argument list is already attached to the
5783 expression. */
5784 e->value.function.esym = NULL;
5785 e->symtree = st;
5786 }
5787 else
5788 {
5789 /* Original was variable so convert array references into
5790 an actual arglist. This does not need any checking now
5791 since resolve_function will take care of it. */
5792 e->value.function.actual = NULL;
5793 e->expr_type = EXPR_FUNCTION;
5794 e->symtree = st;
5795
5796 /* Ambiguity will not arise if the array reference is not
5797 the last reference. */
5798 for (ref = e->ref; ref; ref = ref->next)
5799 if (ref->type == REF_ARRAY && ref->next == NULL)
5800 break;
5801
5802 gcc_assert (ref->type == REF_ARRAY);
5803
5804 /* Grab the start expressions from the array ref and
5805 copy them into actual arguments. */
5806 for (n = 0; n < ref->u.ar.dimen; n++)
5807 {
5808 arg = gfc_get_actual_arglist ();
5809 arg->expr = gfc_copy_expr (ref->u.ar.start[n]);
5810 if (e->value.function.actual == NULL)
5811 tail = e->value.function.actual = arg;
5812 else
5813 {
5814 tail->next = arg;
5815 tail = arg;
5816 }
5817 }
5818
5819 /* Dump the reference list and set the rank. */
5820 gfc_free_ref_list (e->ref);
5821 e->ref = NULL;
5822 e->rank = sym->as ? sym->as->rank : 0;
5823 }
5824
5825 gfc_resolve_expr (e);
5826 sym->refs++;
5827 }
5828 }
5829 /* This might have changed! */
5830 return e->expr_type == EXPR_FUNCTION;
5831 }
5832
5833
5834 static void
5835 gfc_resolve_character_operator (gfc_expr *e)
5836 {
5837 gfc_expr *op1 = e->value.op.op1;
5838 gfc_expr *op2 = e->value.op.op2;
5839 gfc_expr *e1 = NULL;
5840 gfc_expr *e2 = NULL;
5841
5842 gcc_assert (e->value.op.op == INTRINSIC_CONCAT);
5843
5844 if (op1->ts.u.cl && op1->ts.u.cl->length)
5845 e1 = gfc_copy_expr (op1->ts.u.cl->length);
5846 else if (op1->expr_type == EXPR_CONSTANT)
5847 e1 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
5848 op1->value.character.length);
5849
5850 if (op2->ts.u.cl && op2->ts.u.cl->length)
5851 e2 = gfc_copy_expr (op2->ts.u.cl->length);
5852 else if (op2->expr_type == EXPR_CONSTANT)
5853 e2 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
5854 op2->value.character.length);
5855
5856 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5857
5858 if (!e1 || !e2)
5859 {
5860 gfc_free_expr (e1);
5861 gfc_free_expr (e2);
5862
5863 return;
5864 }
5865
5866 e->ts.u.cl->length = gfc_add (e1, e2);
5867 e->ts.u.cl->length->ts.type = BT_INTEGER;
5868 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
5869 gfc_simplify_expr (e->ts.u.cl->length, 0);
5870 gfc_resolve_expr (e->ts.u.cl->length);
5871
5872 return;
5873 }
5874
5875
5876 /* Ensure that an character expression has a charlen and, if possible, a
5877 length expression. */
5878
5879 static void
5880 fixup_charlen (gfc_expr *e)
5881 {
5882 /* The cases fall through so that changes in expression type and the need
5883 for multiple fixes are picked up. In all circumstances, a charlen should
5884 be available for the middle end to hang a backend_decl on. */
5885 switch (e->expr_type)
5886 {
5887 case EXPR_OP:
5888 gfc_resolve_character_operator (e);
5889 /* FALLTHRU */
5890
5891 case EXPR_ARRAY:
5892 if (e->expr_type == EXPR_ARRAY)
5893 gfc_resolve_character_array_constructor (e);
5894 /* FALLTHRU */
5895
5896 case EXPR_SUBSTRING:
5897 if (!e->ts.u.cl && e->ref)
5898 gfc_resolve_substring_charlen (e);
5899 /* FALLTHRU */
5900
5901 default:
5902 if (!e->ts.u.cl)
5903 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5904
5905 break;
5906 }
5907 }
5908
5909
5910 /* Update an actual argument to include the passed-object for type-bound
5911 procedures at the right position. */
5912
5913 static gfc_actual_arglist*
5914 update_arglist_pass (gfc_actual_arglist* lst, gfc_expr* po, unsigned argpos,
5915 const char *name)
5916 {
5917 gcc_assert (argpos > 0);
5918
5919 if (argpos == 1)
5920 {
5921 gfc_actual_arglist* result;
5922
5923 result = gfc_get_actual_arglist ();
5924 result->expr = po;
5925 result->next = lst;
5926 if (name)
5927 result->name = name;
5928
5929 return result;
5930 }
5931
5932 if (lst)
5933 lst->next = update_arglist_pass (lst->next, po, argpos - 1, name);
5934 else
5935 lst = update_arglist_pass (NULL, po, argpos - 1, name);
5936 return lst;
5937 }
5938
5939
5940 /* Extract the passed-object from an EXPR_COMPCALL (a copy of it). */
5941
5942 static gfc_expr*
5943 extract_compcall_passed_object (gfc_expr* e)
5944 {
5945 gfc_expr* po;
5946
5947 gcc_assert (e->expr_type == EXPR_COMPCALL);
5948
5949 if (e->value.compcall.base_object)
5950 po = gfc_copy_expr (e->value.compcall.base_object);
5951 else
5952 {
5953 po = gfc_get_expr ();
5954 po->expr_type = EXPR_VARIABLE;
5955 po->symtree = e->symtree;
5956 po->ref = gfc_copy_ref (e->ref);
5957 po->where = e->where;
5958 }
5959
5960 if (!gfc_resolve_expr (po))
5961 return NULL;
5962
5963 return po;
5964 }
5965
5966
5967 /* Update the arglist of an EXPR_COMPCALL expression to include the
5968 passed-object. */
5969
5970 static bool
5971 update_compcall_arglist (gfc_expr* e)
5972 {
5973 gfc_expr* po;
5974 gfc_typebound_proc* tbp;
5975
5976 tbp = e->value.compcall.tbp;
5977
5978 if (tbp->error)
5979 return false;
5980
5981 po = extract_compcall_passed_object (e);
5982 if (!po)
5983 return false;
5984
5985 if (tbp->nopass || e->value.compcall.ignore_pass)
5986 {
5987 gfc_free_expr (po);
5988 return true;
5989 }
5990
5991 if (tbp->pass_arg_num <= 0)
5992 return false;
5993
5994 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
5995 tbp->pass_arg_num,
5996 tbp->pass_arg);
5997
5998 return true;
5999 }
6000
6001
6002 /* Extract the passed object from a PPC call (a copy of it). */
6003
6004 static gfc_expr*
6005 extract_ppc_passed_object (gfc_expr *e)
6006 {
6007 gfc_expr *po;
6008 gfc_ref **ref;
6009
6010 po = gfc_get_expr ();
6011 po->expr_type = EXPR_VARIABLE;
6012 po->symtree = e->symtree;
6013 po->ref = gfc_copy_ref (e->ref);
6014 po->where = e->where;
6015
6016 /* Remove PPC reference. */
6017 ref = &po->ref;
6018 while ((*ref)->next)
6019 ref = &(*ref)->next;
6020 gfc_free_ref_list (*ref);
6021 *ref = NULL;
6022
6023 if (!gfc_resolve_expr (po))
6024 return NULL;
6025
6026 return po;
6027 }
6028
6029
6030 /* Update the actual arglist of a procedure pointer component to include the
6031 passed-object. */
6032
6033 static bool
6034 update_ppc_arglist (gfc_expr* e)
6035 {
6036 gfc_expr* po;
6037 gfc_component *ppc;
6038 gfc_typebound_proc* tb;
6039
6040 ppc = gfc_get_proc_ptr_comp (e);
6041 if (!ppc)
6042 return false;
6043
6044 tb = ppc->tb;
6045
6046 if (tb->error)
6047 return false;
6048 else if (tb->nopass)
6049 return true;
6050
6051 po = extract_ppc_passed_object (e);
6052 if (!po)
6053 return false;
6054
6055 /* F08:R739. */
6056 if (po->rank != 0)
6057 {
6058 gfc_error ("Passed-object at %L must be scalar", &e->where);
6059 return false;
6060 }
6061
6062 /* F08:C611. */
6063 if (po->ts.type == BT_DERIVED && po->ts.u.derived->attr.abstract)
6064 {
6065 gfc_error ("Base object for procedure-pointer component call at %L is of"
6066 " ABSTRACT type %qs", &e->where, po->ts.u.derived->name);
6067 return false;
6068 }
6069
6070 gcc_assert (tb->pass_arg_num > 0);
6071 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
6072 tb->pass_arg_num,
6073 tb->pass_arg);
6074
6075 return true;
6076 }
6077
6078
6079 /* Check that the object a TBP is called on is valid, i.e. it must not be
6080 of ABSTRACT type (as in subobject%abstract_parent%tbp()). */
6081
6082 static bool
6083 check_typebound_baseobject (gfc_expr* e)
6084 {
6085 gfc_expr* base;
6086 bool return_value = false;
6087
6088 base = extract_compcall_passed_object (e);
6089 if (!base)
6090 return false;
6091
6092 gcc_assert (base->ts.type == BT_DERIVED || base->ts.type == BT_CLASS);
6093
6094 if (base->ts.type == BT_CLASS && !gfc_expr_attr (base).class_ok)
6095 return false;
6096
6097 /* F08:C611. */
6098 if (base->ts.type == BT_DERIVED && base->ts.u.derived->attr.abstract)
6099 {
6100 gfc_error ("Base object for type-bound procedure call at %L is of"
6101 " ABSTRACT type %qs", &e->where, base->ts.u.derived->name);
6102 goto cleanup;
6103 }
6104
6105 /* F08:C1230. If the procedure called is NOPASS,
6106 the base object must be scalar. */
6107 if (e->value.compcall.tbp->nopass && base->rank != 0)
6108 {
6109 gfc_error ("Base object for NOPASS type-bound procedure call at %L must"
6110 " be scalar", &e->where);
6111 goto cleanup;
6112 }
6113
6114 return_value = true;
6115
6116 cleanup:
6117 gfc_free_expr (base);
6118 return return_value;
6119 }
6120
6121
6122 /* Resolve a call to a type-bound procedure, either function or subroutine,
6123 statically from the data in an EXPR_COMPCALL expression. The adapted
6124 arglist and the target-procedure symtree are returned. */
6125
6126 static bool
6127 resolve_typebound_static (gfc_expr* e, gfc_symtree** target,
6128 gfc_actual_arglist** actual)
6129 {
6130 gcc_assert (e->expr_type == EXPR_COMPCALL);
6131 gcc_assert (!e->value.compcall.tbp->is_generic);
6132
6133 /* Update the actual arglist for PASS. */
6134 if (!update_compcall_arglist (e))
6135 return false;
6136
6137 *actual = e->value.compcall.actual;
6138 *target = e->value.compcall.tbp->u.specific;
6139
6140 gfc_free_ref_list (e->ref);
6141 e->ref = NULL;
6142 e->value.compcall.actual = NULL;
6143
6144 /* If we find a deferred typebound procedure, check for derived types
6145 that an overriding typebound procedure has not been missed. */
6146 if (e->value.compcall.name
6147 && !e->value.compcall.tbp->non_overridable
6148 && e->value.compcall.base_object
6149 && e->value.compcall.base_object->ts.type == BT_DERIVED)
6150 {
6151 gfc_symtree *st;
6152 gfc_symbol *derived;
6153
6154 /* Use the derived type of the base_object. */
6155 derived = e->value.compcall.base_object->ts.u.derived;
6156 st = NULL;
6157
6158 /* If necessary, go through the inheritance chain. */
6159 while (!st && derived)
6160 {
6161 /* Look for the typebound procedure 'name'. */
6162 if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
6163 st = gfc_find_symtree (derived->f2k_derived->tb_sym_root,
6164 e->value.compcall.name);
6165 if (!st)
6166 derived = gfc_get_derived_super_type (derived);
6167 }
6168
6169 /* Now find the specific name in the derived type namespace. */
6170 if (st && st->n.tb && st->n.tb->u.specific)
6171 gfc_find_sym_tree (st->n.tb->u.specific->name,
6172 derived->ns, 1, &st);
6173 if (st)
6174 *target = st;
6175 }
6176 return true;
6177 }
6178
6179
6180 /* Get the ultimate declared type from an expression. In addition,
6181 return the last class/derived type reference and the copy of the
6182 reference list. If check_types is set true, derived types are
6183 identified as well as class references. */
6184 static gfc_symbol*
6185 get_declared_from_expr (gfc_ref **class_ref, gfc_ref **new_ref,
6186 gfc_expr *e, bool check_types)
6187 {
6188 gfc_symbol *declared;
6189 gfc_ref *ref;
6190
6191 declared = NULL;
6192 if (class_ref)
6193 *class_ref = NULL;
6194 if (new_ref)
6195 *new_ref = gfc_copy_ref (e->ref);
6196
6197 for (ref = e->ref; ref; ref = ref->next)
6198 {
6199 if (ref->type != REF_COMPONENT)
6200 continue;
6201
6202 if ((ref->u.c.component->ts.type == BT_CLASS
6203 || (check_types && gfc_bt_struct (ref->u.c.component->ts.type)))
6204 && ref->u.c.component->attr.flavor != FL_PROCEDURE)
6205 {
6206 declared = ref->u.c.component->ts.u.derived;
6207 if (class_ref)
6208 *class_ref = ref;
6209 }
6210 }
6211
6212 if (declared == NULL)
6213 declared = e->symtree->n.sym->ts.u.derived;
6214
6215 return declared;
6216 }
6217
6218
6219 /* Given an EXPR_COMPCALL calling a GENERIC typebound procedure, figure out
6220 which of the specific bindings (if any) matches the arglist and transform
6221 the expression into a call of that binding. */
6222
6223 static bool
6224 resolve_typebound_generic_call (gfc_expr* e, const char **name)
6225 {
6226 gfc_typebound_proc* genproc;
6227 const char* genname;
6228 gfc_symtree *st;
6229 gfc_symbol *derived;
6230
6231 gcc_assert (e->expr_type == EXPR_COMPCALL);
6232 genname = e->value.compcall.name;
6233 genproc = e->value.compcall.tbp;
6234
6235 if (!genproc->is_generic)
6236 return true;
6237
6238 /* Try the bindings on this type and in the inheritance hierarchy. */
6239 for (; genproc; genproc = genproc->overridden)
6240 {
6241 gfc_tbp_generic* g;
6242
6243 gcc_assert (genproc->is_generic);
6244 for (g = genproc->u.generic; g; g = g->next)
6245 {
6246 gfc_symbol* target;
6247 gfc_actual_arglist* args;
6248 bool matches;
6249
6250 gcc_assert (g->specific);
6251
6252 if (g->specific->error)
6253 continue;
6254
6255 target = g->specific->u.specific->n.sym;
6256
6257 /* Get the right arglist by handling PASS/NOPASS. */
6258 args = gfc_copy_actual_arglist (e->value.compcall.actual);
6259 if (!g->specific->nopass)
6260 {
6261 gfc_expr* po;
6262 po = extract_compcall_passed_object (e);
6263 if (!po)
6264 {
6265 gfc_free_actual_arglist (args);
6266 return false;
6267 }
6268
6269 gcc_assert (g->specific->pass_arg_num > 0);
6270 gcc_assert (!g->specific->error);
6271 args = update_arglist_pass (args, po, g->specific->pass_arg_num,
6272 g->specific->pass_arg);
6273 }
6274 resolve_actual_arglist (args, target->attr.proc,
6275 is_external_proc (target)
6276 && gfc_sym_get_dummy_args (target) == NULL);
6277
6278 /* Check if this arglist matches the formal. */
6279 matches = gfc_arglist_matches_symbol (&args, target);
6280
6281 /* Clean up and break out of the loop if we've found it. */
6282 gfc_free_actual_arglist (args);
6283 if (matches)
6284 {
6285 e->value.compcall.tbp = g->specific;
6286 genname = g->specific_st->name;
6287 /* Pass along the name for CLASS methods, where the vtab
6288 procedure pointer component has to be referenced. */
6289 if (name)
6290 *name = genname;
6291 goto success;
6292 }
6293 }
6294 }
6295
6296 /* Nothing matching found! */
6297 gfc_error ("Found no matching specific binding for the call to the GENERIC"
6298 " %qs at %L", genname, &e->where);
6299 return false;
6300
6301 success:
6302 /* Make sure that we have the right specific instance for the name. */
6303 derived = get_declared_from_expr (NULL, NULL, e, true);
6304
6305 st = gfc_find_typebound_proc (derived, NULL, genname, true, &e->where);
6306 if (st)
6307 e->value.compcall.tbp = st->n.tb;
6308
6309 return true;
6310 }
6311
6312
6313 /* Resolve a call to a type-bound subroutine. */
6314
6315 static bool
6316 resolve_typebound_call (gfc_code* c, const char **name, bool *overridable)
6317 {
6318 gfc_actual_arglist* newactual;
6319 gfc_symtree* target;
6320
6321 /* Check that's really a SUBROUTINE. */
6322 if (!c->expr1->value.compcall.tbp->subroutine)
6323 {
6324 if (!c->expr1->value.compcall.tbp->is_generic
6325 && c->expr1->value.compcall.tbp->u.specific
6326 && c->expr1->value.compcall.tbp->u.specific->n.sym
6327 && c->expr1->value.compcall.tbp->u.specific->n.sym->attr.subroutine)
6328 c->expr1->value.compcall.tbp->subroutine = 1;
6329 else
6330 {
6331 gfc_error ("%qs at %L should be a SUBROUTINE",
6332 c->expr1->value.compcall.name, &c->loc);
6333 return false;
6334 }
6335 }
6336
6337 if (!check_typebound_baseobject (c->expr1))
6338 return false;
6339
6340 /* Pass along the name for CLASS methods, where the vtab
6341 procedure pointer component has to be referenced. */
6342 if (name)
6343 *name = c->expr1->value.compcall.name;
6344
6345 if (!resolve_typebound_generic_call (c->expr1, name))
6346 return false;
6347
6348 /* Pass along the NON_OVERRIDABLE attribute of the specific TBP. */
6349 if (overridable)
6350 *overridable = !c->expr1->value.compcall.tbp->non_overridable;
6351
6352 /* Transform into an ordinary EXEC_CALL for now. */
6353
6354 if (!resolve_typebound_static (c->expr1, &target, &newactual))
6355 return false;
6356
6357 c->ext.actual = newactual;
6358 c->symtree = target;
6359 c->op = (c->expr1->value.compcall.assign ? EXEC_ASSIGN_CALL : EXEC_CALL);
6360
6361 gcc_assert (!c->expr1->ref && !c->expr1->value.compcall.actual);
6362
6363 gfc_free_expr (c->expr1);
6364 c->expr1 = gfc_get_expr ();
6365 c->expr1->expr_type = EXPR_FUNCTION;
6366 c->expr1->symtree = target;
6367 c->expr1->where = c->loc;
6368
6369 return resolve_call (c);
6370 }
6371
6372
6373 /* Resolve a component-call expression. */
6374 static bool
6375 resolve_compcall (gfc_expr* e, const char **name)
6376 {
6377 gfc_actual_arglist* newactual;
6378 gfc_symtree* target;
6379
6380 /* Check that's really a FUNCTION. */
6381 if (!e->value.compcall.tbp->function)
6382 {
6383 gfc_error ("%qs at %L should be a FUNCTION",
6384 e->value.compcall.name, &e->where);
6385 return false;
6386 }
6387
6388 /* These must not be assign-calls! */
6389 gcc_assert (!e->value.compcall.assign);
6390
6391 if (!check_typebound_baseobject (e))
6392 return false;
6393
6394 /* Pass along the name for CLASS methods, where the vtab
6395 procedure pointer component has to be referenced. */
6396 if (name)
6397 *name = e->value.compcall.name;
6398
6399 if (!resolve_typebound_generic_call (e, name))
6400 return false;
6401 gcc_assert (!e->value.compcall.tbp->is_generic);
6402
6403 /* Take the rank from the function's symbol. */
6404 if (e->value.compcall.tbp->u.specific->n.sym->as)
6405 e->rank = e->value.compcall.tbp->u.specific->n.sym->as->rank;
6406
6407 /* For now, we simply transform it into an EXPR_FUNCTION call with the same
6408 arglist to the TBP's binding target. */
6409
6410 if (!resolve_typebound_static (e, &target, &newactual))
6411 return false;
6412
6413 e->value.function.actual = newactual;
6414 e->value.function.name = NULL;
6415 e->value.function.esym = target->n.sym;
6416 e->value.function.isym = NULL;
6417 e->symtree = target;
6418 e->ts = target->n.sym->ts;
6419 e->expr_type = EXPR_FUNCTION;
6420
6421 /* Resolution is not necessary if this is a class subroutine; this
6422 function only has to identify the specific proc. Resolution of
6423 the call will be done next in resolve_typebound_call. */
6424 return gfc_resolve_expr (e);
6425 }
6426
6427
6428 static bool resolve_fl_derived (gfc_symbol *sym);
6429
6430
6431 /* Resolve a typebound function, or 'method'. First separate all
6432 the non-CLASS references by calling resolve_compcall directly. */
6433
6434 static bool
6435 resolve_typebound_function (gfc_expr* e)
6436 {
6437 gfc_symbol *declared;
6438 gfc_component *c;
6439 gfc_ref *new_ref;
6440 gfc_ref *class_ref;
6441 gfc_symtree *st;
6442 const char *name;
6443 gfc_typespec ts;
6444 gfc_expr *expr;
6445 bool overridable;
6446
6447 st = e->symtree;
6448
6449 /* Deal with typebound operators for CLASS objects. */
6450 expr = e->value.compcall.base_object;
6451 overridable = !e->value.compcall.tbp->non_overridable;
6452 if (expr && expr->ts.type == BT_CLASS && e->value.compcall.name)
6453 {
6454 /* If the base_object is not a variable, the corresponding actual
6455 argument expression must be stored in e->base_expression so
6456 that the corresponding tree temporary can be used as the base
6457 object in gfc_conv_procedure_call. */
6458 if (expr->expr_type != EXPR_VARIABLE)
6459 {
6460 gfc_actual_arglist *args;
6461
6462 for (args= e->value.function.actual; args; args = args->next)
6463 {
6464 if (expr == args->expr)
6465 expr = args->expr;
6466 }
6467 }
6468
6469 /* Since the typebound operators are generic, we have to ensure
6470 that any delays in resolution are corrected and that the vtab
6471 is present. */
6472 ts = expr->ts;
6473 declared = ts.u.derived;
6474 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6475 if (c->ts.u.derived == NULL)
6476 c->ts.u.derived = gfc_find_derived_vtab (declared);
6477
6478 if (!resolve_compcall (e, &name))
6479 return false;
6480
6481 /* Use the generic name if it is there. */
6482 name = name ? name : e->value.function.esym->name;
6483 e->symtree = expr->symtree;
6484 e->ref = gfc_copy_ref (expr->ref);
6485 get_declared_from_expr (&class_ref, NULL, e, false);
6486
6487 /* Trim away the extraneous references that emerge from nested
6488 use of interface.c (extend_expr). */
6489 if (class_ref && class_ref->next)
6490 {
6491 gfc_free_ref_list (class_ref->next);
6492 class_ref->next = NULL;
6493 }
6494 else if (e->ref && !class_ref && expr->ts.type != BT_CLASS)
6495 {
6496 gfc_free_ref_list (e->ref);
6497 e->ref = NULL;
6498 }
6499
6500 gfc_add_vptr_component (e);
6501 gfc_add_component_ref (e, name);
6502 e->value.function.esym = NULL;
6503 if (expr->expr_type != EXPR_VARIABLE)
6504 e->base_expr = expr;
6505 return true;
6506 }
6507
6508 if (st == NULL)
6509 return resolve_compcall (e, NULL);
6510
6511 if (!resolve_ref (e))
6512 return false;
6513
6514 /* Get the CLASS declared type. */
6515 declared = get_declared_from_expr (&class_ref, &new_ref, e, true);
6516
6517 if (!resolve_fl_derived (declared))
6518 return false;
6519
6520 /* Weed out cases of the ultimate component being a derived type. */
6521 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6522 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6523 {
6524 gfc_free_ref_list (new_ref);
6525 return resolve_compcall (e, NULL);
6526 }
6527
6528 c = gfc_find_component (declared, "_data", true, true, NULL);
6529 declared = c->ts.u.derived;
6530
6531 /* Treat the call as if it is a typebound procedure, in order to roll
6532 out the correct name for the specific function. */
6533 if (!resolve_compcall (e, &name))
6534 {
6535 gfc_free_ref_list (new_ref);
6536 return false;
6537 }
6538 ts = e->ts;
6539
6540 if (overridable)
6541 {
6542 /* Convert the expression to a procedure pointer component call. */
6543 e->value.function.esym = NULL;
6544 e->symtree = st;
6545
6546 if (new_ref)
6547 e->ref = new_ref;
6548
6549 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6550 gfc_add_vptr_component (e);
6551 gfc_add_component_ref (e, name);
6552
6553 /* Recover the typespec for the expression. This is really only
6554 necessary for generic procedures, where the additional call
6555 to gfc_add_component_ref seems to throw the collection of the
6556 correct typespec. */
6557 e->ts = ts;
6558 }
6559 else if (new_ref)
6560 gfc_free_ref_list (new_ref);
6561
6562 return true;
6563 }
6564
6565 /* Resolve a typebound subroutine, or 'method'. First separate all
6566 the non-CLASS references by calling resolve_typebound_call
6567 directly. */
6568
6569 static bool
6570 resolve_typebound_subroutine (gfc_code *code)
6571 {
6572 gfc_symbol *declared;
6573 gfc_component *c;
6574 gfc_ref *new_ref;
6575 gfc_ref *class_ref;
6576 gfc_symtree *st;
6577 const char *name;
6578 gfc_typespec ts;
6579 gfc_expr *expr;
6580 bool overridable;
6581
6582 st = code->expr1->symtree;
6583
6584 /* Deal with typebound operators for CLASS objects. */
6585 expr = code->expr1->value.compcall.base_object;
6586 overridable = !code->expr1->value.compcall.tbp->non_overridable;
6587 if (expr && expr->ts.type == BT_CLASS && code->expr1->value.compcall.name)
6588 {
6589 /* If the base_object is not a variable, the corresponding actual
6590 argument expression must be stored in e->base_expression so
6591 that the corresponding tree temporary can be used as the base
6592 object in gfc_conv_procedure_call. */
6593 if (expr->expr_type != EXPR_VARIABLE)
6594 {
6595 gfc_actual_arglist *args;
6596
6597 args= code->expr1->value.function.actual;
6598 for (; args; args = args->next)
6599 if (expr == args->expr)
6600 expr = args->expr;
6601 }
6602
6603 /* Since the typebound operators are generic, we have to ensure
6604 that any delays in resolution are corrected and that the vtab
6605 is present. */
6606 declared = expr->ts.u.derived;
6607 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6608 if (c->ts.u.derived == NULL)
6609 c->ts.u.derived = gfc_find_derived_vtab (declared);
6610
6611 if (!resolve_typebound_call (code, &name, NULL))
6612 return false;
6613
6614 /* Use the generic name if it is there. */
6615 name = name ? name : code->expr1->value.function.esym->name;
6616 code->expr1->symtree = expr->symtree;
6617 code->expr1->ref = gfc_copy_ref (expr->ref);
6618
6619 /* Trim away the extraneous references that emerge from nested
6620 use of interface.c (extend_expr). */
6621 get_declared_from_expr (&class_ref, NULL, code->expr1, false);
6622 if (class_ref && class_ref->next)
6623 {
6624 gfc_free_ref_list (class_ref->next);
6625 class_ref->next = NULL;
6626 }
6627 else if (code->expr1->ref && !class_ref)
6628 {
6629 gfc_free_ref_list (code->expr1->ref);
6630 code->expr1->ref = NULL;
6631 }
6632
6633 /* Now use the procedure in the vtable. */
6634 gfc_add_vptr_component (code->expr1);
6635 gfc_add_component_ref (code->expr1, name);
6636 code->expr1->value.function.esym = NULL;
6637 if (expr->expr_type != EXPR_VARIABLE)
6638 code->expr1->base_expr = expr;
6639 return true;
6640 }
6641
6642 if (st == NULL)
6643 return resolve_typebound_call (code, NULL, NULL);
6644
6645 if (!resolve_ref (code->expr1))
6646 return false;
6647
6648 /* Get the CLASS declared type. */
6649 get_declared_from_expr (&class_ref, &new_ref, code->expr1, true);
6650
6651 /* Weed out cases of the ultimate component being a derived type. */
6652 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6653 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6654 {
6655 gfc_free_ref_list (new_ref);
6656 return resolve_typebound_call (code, NULL, NULL);
6657 }
6658
6659 if (!resolve_typebound_call (code, &name, &overridable))
6660 {
6661 gfc_free_ref_list (new_ref);
6662 return false;
6663 }
6664 ts = code->expr1->ts;
6665
6666 if (overridable)
6667 {
6668 /* Convert the expression to a procedure pointer component call. */
6669 code->expr1->value.function.esym = NULL;
6670 code->expr1->symtree = st;
6671
6672 if (new_ref)
6673 code->expr1->ref = new_ref;
6674
6675 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6676 gfc_add_vptr_component (code->expr1);
6677 gfc_add_component_ref (code->expr1, name);
6678
6679 /* Recover the typespec for the expression. This is really only
6680 necessary for generic procedures, where the additional call
6681 to gfc_add_component_ref seems to throw the collection of the
6682 correct typespec. */
6683 code->expr1->ts = ts;
6684 }
6685 else if (new_ref)
6686 gfc_free_ref_list (new_ref);
6687
6688 return true;
6689 }
6690
6691
6692 /* Resolve a CALL to a Procedure Pointer Component (Subroutine). */
6693
6694 static bool
6695 resolve_ppc_call (gfc_code* c)
6696 {
6697 gfc_component *comp;
6698
6699 comp = gfc_get_proc_ptr_comp (c->expr1);
6700 gcc_assert (comp != NULL);
6701
6702 c->resolved_sym = c->expr1->symtree->n.sym;
6703 c->expr1->expr_type = EXPR_VARIABLE;
6704
6705 if (!comp->attr.subroutine)
6706 gfc_add_subroutine (&comp->attr, comp->name, &c->expr1->where);
6707
6708 if (!resolve_ref (c->expr1))
6709 return false;
6710
6711 if (!update_ppc_arglist (c->expr1))
6712 return false;
6713
6714 c->ext.actual = c->expr1->value.compcall.actual;
6715
6716 if (!resolve_actual_arglist (c->ext.actual, comp->attr.proc,
6717 !(comp->ts.interface
6718 && comp->ts.interface->formal)))
6719 return false;
6720
6721 if (!pure_subroutine (comp->ts.interface, comp->name, &c->expr1->where))
6722 return false;
6723
6724 gfc_ppc_use (comp, &c->expr1->value.compcall.actual, &c->expr1->where);
6725
6726 return true;
6727 }
6728
6729
6730 /* Resolve a Function Call to a Procedure Pointer Component (Function). */
6731
6732 static bool
6733 resolve_expr_ppc (gfc_expr* e)
6734 {
6735 gfc_component *comp;
6736
6737 comp = gfc_get_proc_ptr_comp (e);
6738 gcc_assert (comp != NULL);
6739
6740 /* Convert to EXPR_FUNCTION. */
6741 e->expr_type = EXPR_FUNCTION;
6742 e->value.function.isym = NULL;
6743 e->value.function.actual = e->value.compcall.actual;
6744 e->ts = comp->ts;
6745 if (comp->as != NULL)
6746 e->rank = comp->as->rank;
6747
6748 if (!comp->attr.function)
6749 gfc_add_function (&comp->attr, comp->name, &e->where);
6750
6751 if (!resolve_ref (e))
6752 return false;
6753
6754 if (!resolve_actual_arglist (e->value.function.actual, comp->attr.proc,
6755 !(comp->ts.interface
6756 && comp->ts.interface->formal)))
6757 return false;
6758
6759 if (!update_ppc_arglist (e))
6760 return false;
6761
6762 if (!check_pure_function(e))
6763 return false;
6764
6765 gfc_ppc_use (comp, &e->value.compcall.actual, &e->where);
6766
6767 return true;
6768 }
6769
6770
6771 static bool
6772 gfc_is_expandable_expr (gfc_expr *e)
6773 {
6774 gfc_constructor *con;
6775
6776 if (e->expr_type == EXPR_ARRAY)
6777 {
6778 /* Traverse the constructor looking for variables that are flavor
6779 parameter. Parameters must be expanded since they are fully used at
6780 compile time. */
6781 con = gfc_constructor_first (e->value.constructor);
6782 for (; con; con = gfc_constructor_next (con))
6783 {
6784 if (con->expr->expr_type == EXPR_VARIABLE
6785 && con->expr->symtree
6786 && (con->expr->symtree->n.sym->attr.flavor == FL_PARAMETER
6787 || con->expr->symtree->n.sym->attr.flavor == FL_VARIABLE))
6788 return true;
6789 if (con->expr->expr_type == EXPR_ARRAY
6790 && gfc_is_expandable_expr (con->expr))
6791 return true;
6792 }
6793 }
6794
6795 return false;
6796 }
6797
6798
6799 /* Sometimes variables in specification expressions of the result
6800 of module procedures in submodules wind up not being the 'real'
6801 dummy. Find this, if possible, in the namespace of the first
6802 formal argument. */
6803
6804 static void
6805 fixup_unique_dummy (gfc_expr *e)
6806 {
6807 gfc_symtree *st = NULL;
6808 gfc_symbol *s = NULL;
6809
6810 if (e->symtree->n.sym->ns->proc_name
6811 && e->symtree->n.sym->ns->proc_name->formal)
6812 s = e->symtree->n.sym->ns->proc_name->formal->sym;
6813
6814 if (s != NULL)
6815 st = gfc_find_symtree (s->ns->sym_root, e->symtree->n.sym->name);
6816
6817 if (st != NULL
6818 && st->n.sym != NULL
6819 && st->n.sym->attr.dummy)
6820 e->symtree = st;
6821 }
6822
6823 /* Resolve an expression. That is, make sure that types of operands agree
6824 with their operators, intrinsic operators are converted to function calls
6825 for overloaded types and unresolved function references are resolved. */
6826
6827 bool
6828 gfc_resolve_expr (gfc_expr *e)
6829 {
6830 bool t;
6831 bool inquiry_save, actual_arg_save, first_actual_arg_save;
6832
6833 if (e == NULL)
6834 return true;
6835
6836 /* inquiry_argument only applies to variables. */
6837 inquiry_save = inquiry_argument;
6838 actual_arg_save = actual_arg;
6839 first_actual_arg_save = first_actual_arg;
6840
6841 if (e->expr_type != EXPR_VARIABLE)
6842 {
6843 inquiry_argument = false;
6844 actual_arg = false;
6845 first_actual_arg = false;
6846 }
6847 else if (e->symtree != NULL
6848 && *e->symtree->name == '@'
6849 && e->symtree->n.sym->attr.dummy)
6850 {
6851 /* Deal with submodule specification expressions that are not
6852 found to be referenced in module.c(read_cleanup). */
6853 fixup_unique_dummy (e);
6854 }
6855
6856 switch (e->expr_type)
6857 {
6858 case EXPR_OP:
6859 t = resolve_operator (e);
6860 break;
6861
6862 case EXPR_FUNCTION:
6863 case EXPR_VARIABLE:
6864
6865 if (check_host_association (e))
6866 t = resolve_function (e);
6867 else
6868 t = resolve_variable (e);
6869
6870 if (e->ts.type == BT_CHARACTER && e->ts.u.cl == NULL && e->ref
6871 && e->ref->type != REF_SUBSTRING)
6872 gfc_resolve_substring_charlen (e);
6873
6874 break;
6875
6876 case EXPR_COMPCALL:
6877 t = resolve_typebound_function (e);
6878 break;
6879
6880 case EXPR_SUBSTRING:
6881 t = resolve_ref (e);
6882 break;
6883
6884 case EXPR_CONSTANT:
6885 case EXPR_NULL:
6886 t = true;
6887 break;
6888
6889 case EXPR_PPC:
6890 t = resolve_expr_ppc (e);
6891 break;
6892
6893 case EXPR_ARRAY:
6894 t = false;
6895 if (!resolve_ref (e))
6896 break;
6897
6898 t = gfc_resolve_array_constructor (e);
6899 /* Also try to expand a constructor. */
6900 if (t)
6901 {
6902 expression_rank (e);
6903 if (gfc_is_constant_expr (e) || gfc_is_expandable_expr (e))
6904 gfc_expand_constructor (e, false);
6905 }
6906
6907 /* This provides the opportunity for the length of constructors with
6908 character valued function elements to propagate the string length
6909 to the expression. */
6910 if (t && e->ts.type == BT_CHARACTER)
6911 {
6912 /* For efficiency, we call gfc_expand_constructor for BT_CHARACTER
6913 here rather then add a duplicate test for it above. */
6914 gfc_expand_constructor (e, false);
6915 t = gfc_resolve_character_array_constructor (e);
6916 }
6917
6918 break;
6919
6920 case EXPR_STRUCTURE:
6921 t = resolve_ref (e);
6922 if (!t)
6923 break;
6924
6925 t = resolve_structure_cons (e, 0);
6926 if (!t)
6927 break;
6928
6929 t = gfc_simplify_expr (e, 0);
6930 break;
6931
6932 default:
6933 gfc_internal_error ("gfc_resolve_expr(): Bad expression type");
6934 }
6935
6936 if (e->ts.type == BT_CHARACTER && t && !e->ts.u.cl)
6937 fixup_charlen (e);
6938
6939 inquiry_argument = inquiry_save;
6940 actual_arg = actual_arg_save;
6941 first_actual_arg = first_actual_arg_save;
6942
6943 return t;
6944 }
6945
6946
6947 /* Resolve an expression from an iterator. They must be scalar and have
6948 INTEGER or (optionally) REAL type. */
6949
6950 static bool
6951 gfc_resolve_iterator_expr (gfc_expr *expr, bool real_ok,
6952 const char *name_msgid)
6953 {
6954 if (!gfc_resolve_expr (expr))
6955 return false;
6956
6957 if (expr->rank != 0)
6958 {
6959 gfc_error ("%s at %L must be a scalar", _(name_msgid), &expr->where);
6960 return false;
6961 }
6962
6963 if (expr->ts.type != BT_INTEGER)
6964 {
6965 if (expr->ts.type == BT_REAL)
6966 {
6967 if (real_ok)
6968 return gfc_notify_std (GFC_STD_F95_DEL,
6969 "%s at %L must be integer",
6970 _(name_msgid), &expr->where);
6971 else
6972 {
6973 gfc_error ("%s at %L must be INTEGER", _(name_msgid),
6974 &expr->where);
6975 return false;
6976 }
6977 }
6978 else
6979 {
6980 gfc_error ("%s at %L must be INTEGER", _(name_msgid), &expr->where);
6981 return false;
6982 }
6983 }
6984 return true;
6985 }
6986
6987
6988 /* Resolve the expressions in an iterator structure. If REAL_OK is
6989 false allow only INTEGER type iterators, otherwise allow REAL types.
6990 Set own_scope to true for ac-implied-do and data-implied-do as those
6991 have a separate scope such that, e.g., a INTENT(IN) doesn't apply. */
6992
6993 bool
6994 gfc_resolve_iterator (gfc_iterator *iter, bool real_ok, bool own_scope)
6995 {
6996 if (!gfc_resolve_iterator_expr (iter->var, real_ok, "Loop variable"))
6997 return false;
6998
6999 if (!gfc_check_vardef_context (iter->var, false, false, own_scope,
7000 _("iterator variable")))
7001 return false;
7002
7003 if (!gfc_resolve_iterator_expr (iter->start, real_ok,
7004 "Start expression in DO loop"))
7005 return false;
7006
7007 if (!gfc_resolve_iterator_expr (iter->end, real_ok,
7008 "End expression in DO loop"))
7009 return false;
7010
7011 if (!gfc_resolve_iterator_expr (iter->step, real_ok,
7012 "Step expression in DO loop"))
7013 return false;
7014
7015 if (iter->step->expr_type == EXPR_CONSTANT)
7016 {
7017 if ((iter->step->ts.type == BT_INTEGER
7018 && mpz_cmp_ui (iter->step->value.integer, 0) == 0)
7019 || (iter->step->ts.type == BT_REAL
7020 && mpfr_sgn (iter->step->value.real) == 0))
7021 {
7022 gfc_error ("Step expression in DO loop at %L cannot be zero",
7023 &iter->step->where);
7024 return false;
7025 }
7026 }
7027
7028 /* Convert start, end, and step to the same type as var. */
7029 if (iter->start->ts.kind != iter->var->ts.kind
7030 || iter->start->ts.type != iter->var->ts.type)
7031 gfc_convert_type (iter->start, &iter->var->ts, 1);
7032
7033 if (iter->end->ts.kind != iter->var->ts.kind
7034 || iter->end->ts.type != iter->var->ts.type)
7035 gfc_convert_type (iter->end, &iter->var->ts, 1);
7036
7037 if (iter->step->ts.kind != iter->var->ts.kind
7038 || iter->step->ts.type != iter->var->ts.type)
7039 gfc_convert_type (iter->step, &iter->var->ts, 1);
7040
7041 if (iter->start->expr_type == EXPR_CONSTANT
7042 && iter->end->expr_type == EXPR_CONSTANT
7043 && iter->step->expr_type == EXPR_CONSTANT)
7044 {
7045 int sgn, cmp;
7046 if (iter->start->ts.type == BT_INTEGER)
7047 {
7048 sgn = mpz_cmp_ui (iter->step->value.integer, 0);
7049 cmp = mpz_cmp (iter->end->value.integer, iter->start->value.integer);
7050 }
7051 else
7052 {
7053 sgn = mpfr_sgn (iter->step->value.real);
7054 cmp = mpfr_cmp (iter->end->value.real, iter->start->value.real);
7055 }
7056 if (warn_zerotrip && ((sgn > 0 && cmp < 0) || (sgn < 0 && cmp > 0)))
7057 gfc_warning (OPT_Wzerotrip,
7058 "DO loop at %L will be executed zero times",
7059 &iter->step->where);
7060 }
7061
7062 if (iter->end->expr_type == EXPR_CONSTANT
7063 && iter->end->ts.type == BT_INTEGER
7064 && iter->step->expr_type == EXPR_CONSTANT
7065 && iter->step->ts.type == BT_INTEGER
7066 && (mpz_cmp_si (iter->step->value.integer, -1L) == 0
7067 || mpz_cmp_si (iter->step->value.integer, 1L) == 0))
7068 {
7069 bool is_step_positive = mpz_cmp_ui (iter->step->value.integer, 1) == 0;
7070 int k = gfc_validate_kind (BT_INTEGER, iter->end->ts.kind, false);
7071
7072 if (is_step_positive
7073 && mpz_cmp (iter->end->value.integer, gfc_integer_kinds[k].huge) == 0)
7074 gfc_warning (OPT_Wundefined_do_loop,
7075 "DO loop at %L is undefined as it overflows",
7076 &iter->step->where);
7077 else if (!is_step_positive
7078 && mpz_cmp (iter->end->value.integer,
7079 gfc_integer_kinds[k].min_int) == 0)
7080 gfc_warning (OPT_Wundefined_do_loop,
7081 "DO loop at %L is undefined as it underflows",
7082 &iter->step->where);
7083 }
7084
7085 return true;
7086 }
7087
7088
7089 /* Traversal function for find_forall_index. f == 2 signals that
7090 that variable itself is not to be checked - only the references. */
7091
7092 static bool
7093 forall_index (gfc_expr *expr, gfc_symbol *sym, int *f)
7094 {
7095 if (expr->expr_type != EXPR_VARIABLE)
7096 return false;
7097
7098 /* A scalar assignment */
7099 if (!expr->ref || *f == 1)
7100 {
7101 if (expr->symtree->n.sym == sym)
7102 return true;
7103 else
7104 return false;
7105 }
7106
7107 if (*f == 2)
7108 *f = 1;
7109 return false;
7110 }
7111
7112
7113 /* Check whether the FORALL index appears in the expression or not.
7114 Returns true if SYM is found in EXPR. */
7115
7116 bool
7117 find_forall_index (gfc_expr *expr, gfc_symbol *sym, int f)
7118 {
7119 if (gfc_traverse_expr (expr, sym, forall_index, f))
7120 return true;
7121 else
7122 return false;
7123 }
7124
7125
7126 /* Resolve a list of FORALL iterators. The FORALL index-name is constrained
7127 to be a scalar INTEGER variable. The subscripts and stride are scalar
7128 INTEGERs, and if stride is a constant it must be nonzero.
7129 Furthermore "A subscript or stride in a forall-triplet-spec shall
7130 not contain a reference to any index-name in the
7131 forall-triplet-spec-list in which it appears." (7.5.4.1) */
7132
7133 static void
7134 resolve_forall_iterators (gfc_forall_iterator *it)
7135 {
7136 gfc_forall_iterator *iter, *iter2;
7137
7138 for (iter = it; iter; iter = iter->next)
7139 {
7140 if (gfc_resolve_expr (iter->var)
7141 && (iter->var->ts.type != BT_INTEGER || iter->var->rank != 0))
7142 gfc_error ("FORALL index-name at %L must be a scalar INTEGER",
7143 &iter->var->where);
7144
7145 if (gfc_resolve_expr (iter->start)
7146 && (iter->start->ts.type != BT_INTEGER || iter->start->rank != 0))
7147 gfc_error ("FORALL start expression at %L must be a scalar INTEGER",
7148 &iter->start->where);
7149 if (iter->var->ts.kind != iter->start->ts.kind)
7150 gfc_convert_type (iter->start, &iter->var->ts, 1);
7151
7152 if (gfc_resolve_expr (iter->end)
7153 && (iter->end->ts.type != BT_INTEGER || iter->end->rank != 0))
7154 gfc_error ("FORALL end expression at %L must be a scalar INTEGER",
7155 &iter->end->where);
7156 if (iter->var->ts.kind != iter->end->ts.kind)
7157 gfc_convert_type (iter->end, &iter->var->ts, 1);
7158
7159 if (gfc_resolve_expr (iter->stride))
7160 {
7161 if (iter->stride->ts.type != BT_INTEGER || iter->stride->rank != 0)
7162 gfc_error ("FORALL stride expression at %L must be a scalar %s",
7163 &iter->stride->where, "INTEGER");
7164
7165 if (iter->stride->expr_type == EXPR_CONSTANT
7166 && mpz_cmp_ui (iter->stride->value.integer, 0) == 0)
7167 gfc_error ("FORALL stride expression at %L cannot be zero",
7168 &iter->stride->where);
7169 }
7170 if (iter->var->ts.kind != iter->stride->ts.kind)
7171 gfc_convert_type (iter->stride, &iter->var->ts, 1);
7172 }
7173
7174 for (iter = it; iter; iter = iter->next)
7175 for (iter2 = iter; iter2; iter2 = iter2->next)
7176 {
7177 if (find_forall_index (iter2->start, iter->var->symtree->n.sym, 0)
7178 || find_forall_index (iter2->end, iter->var->symtree->n.sym, 0)
7179 || find_forall_index (iter2->stride, iter->var->symtree->n.sym, 0))
7180 gfc_error ("FORALL index %qs may not appear in triplet "
7181 "specification at %L", iter->var->symtree->name,
7182 &iter2->start->where);
7183 }
7184 }
7185
7186
7187 /* Given a pointer to a symbol that is a derived type, see if it's
7188 inaccessible, i.e. if it's defined in another module and the components are
7189 PRIVATE. The search is recursive if necessary. Returns zero if no
7190 inaccessible components are found, nonzero otherwise. */
7191
7192 static int
7193 derived_inaccessible (gfc_symbol *sym)
7194 {
7195 gfc_component *c;
7196
7197 if (sym->attr.use_assoc && sym->attr.private_comp)
7198 return 1;
7199
7200 for (c = sym->components; c; c = c->next)
7201 {
7202 /* Prevent an infinite loop through this function. */
7203 if (c->ts.type == BT_DERIVED && c->attr.pointer
7204 && sym == c->ts.u.derived)
7205 continue;
7206
7207 if (c->ts.type == BT_DERIVED && derived_inaccessible (c->ts.u.derived))
7208 return 1;
7209 }
7210
7211 return 0;
7212 }
7213
7214
7215 /* Resolve the argument of a deallocate expression. The expression must be
7216 a pointer or a full array. */
7217
7218 static bool
7219 resolve_deallocate_expr (gfc_expr *e)
7220 {
7221 symbol_attribute attr;
7222 int allocatable, pointer;
7223 gfc_ref *ref;
7224 gfc_symbol *sym;
7225 gfc_component *c;
7226 bool unlimited;
7227
7228 if (!gfc_resolve_expr (e))
7229 return false;
7230
7231 if (e->expr_type != EXPR_VARIABLE)
7232 goto bad;
7233
7234 sym = e->symtree->n.sym;
7235 unlimited = UNLIMITED_POLY(sym);
7236
7237 if (sym->ts.type == BT_CLASS)
7238 {
7239 allocatable = CLASS_DATA (sym)->attr.allocatable;
7240 pointer = CLASS_DATA (sym)->attr.class_pointer;
7241 }
7242 else
7243 {
7244 allocatable = sym->attr.allocatable;
7245 pointer = sym->attr.pointer;
7246 }
7247 for (ref = e->ref; ref; ref = ref->next)
7248 {
7249 switch (ref->type)
7250 {
7251 case REF_ARRAY:
7252 if (ref->u.ar.type != AR_FULL
7253 && !(ref->u.ar.type == AR_ELEMENT && ref->u.ar.as->rank == 0
7254 && ref->u.ar.codimen && gfc_ref_this_image (ref)))
7255 allocatable = 0;
7256 break;
7257
7258 case REF_COMPONENT:
7259 c = ref->u.c.component;
7260 if (c->ts.type == BT_CLASS)
7261 {
7262 allocatable = CLASS_DATA (c)->attr.allocatable;
7263 pointer = CLASS_DATA (c)->attr.class_pointer;
7264 }
7265 else
7266 {
7267 allocatable = c->attr.allocatable;
7268 pointer = c->attr.pointer;
7269 }
7270 break;
7271
7272 case REF_SUBSTRING:
7273 case REF_INQUIRY:
7274 allocatable = 0;
7275 break;
7276 }
7277 }
7278
7279 attr = gfc_expr_attr (e);
7280
7281 if (allocatable == 0 && attr.pointer == 0 && !unlimited)
7282 {
7283 bad:
7284 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7285 &e->where);
7286 return false;
7287 }
7288
7289 /* F2008, C644. */
7290 if (gfc_is_coindexed (e))
7291 {
7292 gfc_error ("Coindexed allocatable object at %L", &e->where);
7293 return false;
7294 }
7295
7296 if (pointer
7297 && !gfc_check_vardef_context (e, true, true, false,
7298 _("DEALLOCATE object")))
7299 return false;
7300 if (!gfc_check_vardef_context (e, false, true, false,
7301 _("DEALLOCATE object")))
7302 return false;
7303
7304 return true;
7305 }
7306
7307
7308 /* Returns true if the expression e contains a reference to the symbol sym. */
7309 static bool
7310 sym_in_expr (gfc_expr *e, gfc_symbol *sym, int *f ATTRIBUTE_UNUSED)
7311 {
7312 if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym == sym)
7313 return true;
7314
7315 return false;
7316 }
7317
7318 bool
7319 gfc_find_sym_in_expr (gfc_symbol *sym, gfc_expr *e)
7320 {
7321 return gfc_traverse_expr (e, sym, sym_in_expr, 0);
7322 }
7323
7324
7325 /* Given the expression node e for an allocatable/pointer of derived type to be
7326 allocated, get the expression node to be initialized afterwards (needed for
7327 derived types with default initializers, and derived types with allocatable
7328 components that need nullification.) */
7329
7330 gfc_expr *
7331 gfc_expr_to_initialize (gfc_expr *e)
7332 {
7333 gfc_expr *result;
7334 gfc_ref *ref;
7335 int i;
7336
7337 result = gfc_copy_expr (e);
7338
7339 /* Change the last array reference from AR_ELEMENT to AR_FULL. */
7340 for (ref = result->ref; ref; ref = ref->next)
7341 if (ref->type == REF_ARRAY && ref->next == NULL)
7342 {
7343 ref->u.ar.type = AR_FULL;
7344
7345 for (i = 0; i < ref->u.ar.dimen; i++)
7346 ref->u.ar.start[i] = ref->u.ar.end[i] = ref->u.ar.stride[i] = NULL;
7347
7348 break;
7349 }
7350
7351 gfc_free_shape (&result->shape, result->rank);
7352
7353 /* Recalculate rank, shape, etc. */
7354 gfc_resolve_expr (result);
7355 return result;
7356 }
7357
7358
7359 /* If the last ref of an expression is an array ref, return a copy of the
7360 expression with that one removed. Otherwise, a copy of the original
7361 expression. This is used for allocate-expressions and pointer assignment
7362 LHS, where there may be an array specification that needs to be stripped
7363 off when using gfc_check_vardef_context. */
7364
7365 static gfc_expr*
7366 remove_last_array_ref (gfc_expr* e)
7367 {
7368 gfc_expr* e2;
7369 gfc_ref** r;
7370
7371 e2 = gfc_copy_expr (e);
7372 for (r = &e2->ref; *r; r = &(*r)->next)
7373 if ((*r)->type == REF_ARRAY && !(*r)->next)
7374 {
7375 gfc_free_ref_list (*r);
7376 *r = NULL;
7377 break;
7378 }
7379
7380 return e2;
7381 }
7382
7383
7384 /* Used in resolve_allocate_expr to check that a allocation-object and
7385 a source-expr are conformable. This does not catch all possible
7386 cases; in particular a runtime checking is needed. */
7387
7388 static bool
7389 conformable_arrays (gfc_expr *e1, gfc_expr *e2)
7390 {
7391 gfc_ref *tail;
7392 for (tail = e2->ref; tail && tail->next; tail = tail->next);
7393
7394 /* First compare rank. */
7395 if ((tail && e1->rank != tail->u.ar.as->rank)
7396 || (!tail && e1->rank != e2->rank))
7397 {
7398 gfc_error ("Source-expr at %L must be scalar or have the "
7399 "same rank as the allocate-object at %L",
7400 &e1->where, &e2->where);
7401 return false;
7402 }
7403
7404 if (e1->shape)
7405 {
7406 int i;
7407 mpz_t s;
7408
7409 mpz_init (s);
7410
7411 for (i = 0; i < e1->rank; i++)
7412 {
7413 if (tail->u.ar.start[i] == NULL)
7414 break;
7415
7416 if (tail->u.ar.end[i])
7417 {
7418 mpz_set (s, tail->u.ar.end[i]->value.integer);
7419 mpz_sub (s, s, tail->u.ar.start[i]->value.integer);
7420 mpz_add_ui (s, s, 1);
7421 }
7422 else
7423 {
7424 mpz_set (s, tail->u.ar.start[i]->value.integer);
7425 }
7426
7427 if (mpz_cmp (e1->shape[i], s) != 0)
7428 {
7429 gfc_error ("Source-expr at %L and allocate-object at %L must "
7430 "have the same shape", &e1->where, &e2->where);
7431 mpz_clear (s);
7432 return false;
7433 }
7434 }
7435
7436 mpz_clear (s);
7437 }
7438
7439 return true;
7440 }
7441
7442
7443 /* Resolve the expression in an ALLOCATE statement, doing the additional
7444 checks to see whether the expression is OK or not. The expression must
7445 have a trailing array reference that gives the size of the array. */
7446
7447 static bool
7448 resolve_allocate_expr (gfc_expr *e, gfc_code *code, bool *array_alloc_wo_spec)
7449 {
7450 int i, pointer, allocatable, dimension, is_abstract;
7451 int codimension;
7452 bool coindexed;
7453 bool unlimited;
7454 symbol_attribute attr;
7455 gfc_ref *ref, *ref2;
7456 gfc_expr *e2;
7457 gfc_array_ref *ar;
7458 gfc_symbol *sym = NULL;
7459 gfc_alloc *a;
7460 gfc_component *c;
7461 bool t;
7462
7463 /* Mark the utmost array component as being in allocate to allow DIMEN_STAR
7464 checking of coarrays. */
7465 for (ref = e->ref; ref; ref = ref->next)
7466 if (ref->next == NULL)
7467 break;
7468
7469 if (ref && ref->type == REF_ARRAY)
7470 ref->u.ar.in_allocate = true;
7471
7472 if (!gfc_resolve_expr (e))
7473 goto failure;
7474
7475 /* Make sure the expression is allocatable or a pointer. If it is
7476 pointer, the next-to-last reference must be a pointer. */
7477
7478 ref2 = NULL;
7479 if (e->symtree)
7480 sym = e->symtree->n.sym;
7481
7482 /* Check whether ultimate component is abstract and CLASS. */
7483 is_abstract = 0;
7484
7485 /* Is the allocate-object unlimited polymorphic? */
7486 unlimited = UNLIMITED_POLY(e);
7487
7488 if (e->expr_type != EXPR_VARIABLE)
7489 {
7490 allocatable = 0;
7491 attr = gfc_expr_attr (e);
7492 pointer = attr.pointer;
7493 dimension = attr.dimension;
7494 codimension = attr.codimension;
7495 }
7496 else
7497 {
7498 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
7499 {
7500 allocatable = CLASS_DATA (sym)->attr.allocatable;
7501 pointer = CLASS_DATA (sym)->attr.class_pointer;
7502 dimension = CLASS_DATA (sym)->attr.dimension;
7503 codimension = CLASS_DATA (sym)->attr.codimension;
7504 is_abstract = CLASS_DATA (sym)->attr.abstract;
7505 }
7506 else
7507 {
7508 allocatable = sym->attr.allocatable;
7509 pointer = sym->attr.pointer;
7510 dimension = sym->attr.dimension;
7511 codimension = sym->attr.codimension;
7512 }
7513
7514 coindexed = false;
7515
7516 for (ref = e->ref; ref; ref2 = ref, ref = ref->next)
7517 {
7518 switch (ref->type)
7519 {
7520 case REF_ARRAY:
7521 if (ref->u.ar.codimen > 0)
7522 {
7523 int n;
7524 for (n = ref->u.ar.dimen;
7525 n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
7526 if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
7527 {
7528 coindexed = true;
7529 break;
7530 }
7531 }
7532
7533 if (ref->next != NULL)
7534 pointer = 0;
7535 break;
7536
7537 case REF_COMPONENT:
7538 /* F2008, C644. */
7539 if (coindexed)
7540 {
7541 gfc_error ("Coindexed allocatable object at %L",
7542 &e->where);
7543 goto failure;
7544 }
7545
7546 c = ref->u.c.component;
7547 if (c->ts.type == BT_CLASS)
7548 {
7549 allocatable = CLASS_DATA (c)->attr.allocatable;
7550 pointer = CLASS_DATA (c)->attr.class_pointer;
7551 dimension = CLASS_DATA (c)->attr.dimension;
7552 codimension = CLASS_DATA (c)->attr.codimension;
7553 is_abstract = CLASS_DATA (c)->attr.abstract;
7554 }
7555 else
7556 {
7557 allocatable = c->attr.allocatable;
7558 pointer = c->attr.pointer;
7559 dimension = c->attr.dimension;
7560 codimension = c->attr.codimension;
7561 is_abstract = c->attr.abstract;
7562 }
7563 break;
7564
7565 case REF_SUBSTRING:
7566 case REF_INQUIRY:
7567 allocatable = 0;
7568 pointer = 0;
7569 break;
7570 }
7571 }
7572 }
7573
7574 /* Check for F08:C628. */
7575 if (allocatable == 0 && pointer == 0 && !unlimited)
7576 {
7577 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7578 &e->where);
7579 goto failure;
7580 }
7581
7582 /* Some checks for the SOURCE tag. */
7583 if (code->expr3)
7584 {
7585 /* Check F03:C631. */
7586 if (!gfc_type_compatible (&e->ts, &code->expr3->ts))
7587 {
7588 gfc_error ("Type of entity at %L is type incompatible with "
7589 "source-expr at %L", &e->where, &code->expr3->where);
7590 goto failure;
7591 }
7592
7593 /* Check F03:C632 and restriction following Note 6.18. */
7594 if (code->expr3->rank > 0 && !conformable_arrays (code->expr3, e))
7595 goto failure;
7596
7597 /* Check F03:C633. */
7598 if (code->expr3->ts.kind != e->ts.kind && !unlimited)
7599 {
7600 gfc_error ("The allocate-object at %L and the source-expr at %L "
7601 "shall have the same kind type parameter",
7602 &e->where, &code->expr3->where);
7603 goto failure;
7604 }
7605
7606 /* Check F2008, C642. */
7607 if (code->expr3->ts.type == BT_DERIVED
7608 && ((codimension && gfc_expr_attr (code->expr3).lock_comp)
7609 || (code->expr3->ts.u.derived->from_intmod
7610 == INTMOD_ISO_FORTRAN_ENV
7611 && code->expr3->ts.u.derived->intmod_sym_id
7612 == ISOFORTRAN_LOCK_TYPE)))
7613 {
7614 gfc_error ("The source-expr at %L shall neither be of type "
7615 "LOCK_TYPE nor have a LOCK_TYPE component if "
7616 "allocate-object at %L is a coarray",
7617 &code->expr3->where, &e->where);
7618 goto failure;
7619 }
7620
7621 /* Check TS18508, C702/C703. */
7622 if (code->expr3->ts.type == BT_DERIVED
7623 && ((codimension && gfc_expr_attr (code->expr3).event_comp)
7624 || (code->expr3->ts.u.derived->from_intmod
7625 == INTMOD_ISO_FORTRAN_ENV
7626 && code->expr3->ts.u.derived->intmod_sym_id
7627 == ISOFORTRAN_EVENT_TYPE)))
7628 {
7629 gfc_error ("The source-expr at %L shall neither be of type "
7630 "EVENT_TYPE nor have a EVENT_TYPE component if "
7631 "allocate-object at %L is a coarray",
7632 &code->expr3->where, &e->where);
7633 goto failure;
7634 }
7635 }
7636
7637 /* Check F08:C629. */
7638 if (is_abstract && code->ext.alloc.ts.type == BT_UNKNOWN
7639 && !code->expr3)
7640 {
7641 gcc_assert (e->ts.type == BT_CLASS);
7642 gfc_error ("Allocating %s of ABSTRACT base type at %L requires a "
7643 "type-spec or source-expr", sym->name, &e->where);
7644 goto failure;
7645 }
7646
7647 /* Check F08:C632. */
7648 if (code->ext.alloc.ts.type == BT_CHARACTER && !e->ts.deferred
7649 && !UNLIMITED_POLY (e))
7650 {
7651 int cmp;
7652
7653 if (!e->ts.u.cl->length)
7654 goto failure;
7655
7656 cmp = gfc_dep_compare_expr (e->ts.u.cl->length,
7657 code->ext.alloc.ts.u.cl->length);
7658 if (cmp == 1 || cmp == -1 || cmp == -3)
7659 {
7660 gfc_error ("Allocating %s at %L with type-spec requires the same "
7661 "character-length parameter as in the declaration",
7662 sym->name, &e->where);
7663 goto failure;
7664 }
7665 }
7666
7667 /* In the variable definition context checks, gfc_expr_attr is used
7668 on the expression. This is fooled by the array specification
7669 present in e, thus we have to eliminate that one temporarily. */
7670 e2 = remove_last_array_ref (e);
7671 t = true;
7672 if (t && pointer)
7673 t = gfc_check_vardef_context (e2, true, true, false,
7674 _("ALLOCATE object"));
7675 if (t)
7676 t = gfc_check_vardef_context (e2, false, true, false,
7677 _("ALLOCATE object"));
7678 gfc_free_expr (e2);
7679 if (!t)
7680 goto failure;
7681
7682 if (e->ts.type == BT_CLASS && CLASS_DATA (e)->attr.dimension
7683 && !code->expr3 && code->ext.alloc.ts.type == BT_DERIVED)
7684 {
7685 /* For class arrays, the initialization with SOURCE is done
7686 using _copy and trans_call. It is convenient to exploit that
7687 when the allocated type is different from the declared type but
7688 no SOURCE exists by setting expr3. */
7689 code->expr3 = gfc_default_initializer (&code->ext.alloc.ts);
7690 }
7691 else if (flag_coarray != GFC_FCOARRAY_LIB && e->ts.type == BT_DERIVED
7692 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
7693 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
7694 {
7695 /* We have to zero initialize the integer variable. */
7696 code->expr3 = gfc_get_int_expr (gfc_default_integer_kind, &e->where, 0);
7697 }
7698
7699 if (e->ts.type == BT_CLASS && !unlimited && !UNLIMITED_POLY (code->expr3))
7700 {
7701 /* Make sure the vtab symbol is present when
7702 the module variables are generated. */
7703 gfc_typespec ts = e->ts;
7704 if (code->expr3)
7705 ts = code->expr3->ts;
7706 else if (code->ext.alloc.ts.type == BT_DERIVED)
7707 ts = code->ext.alloc.ts;
7708
7709 /* Finding the vtab also publishes the type's symbol. Therefore this
7710 statement is necessary. */
7711 gfc_find_derived_vtab (ts.u.derived);
7712 }
7713 else if (unlimited && !UNLIMITED_POLY (code->expr3))
7714 {
7715 /* Again, make sure the vtab symbol is present when
7716 the module variables are generated. */
7717 gfc_typespec *ts = NULL;
7718 if (code->expr3)
7719 ts = &code->expr3->ts;
7720 else
7721 ts = &code->ext.alloc.ts;
7722
7723 gcc_assert (ts);
7724
7725 /* Finding the vtab also publishes the type's symbol. Therefore this
7726 statement is necessary. */
7727 gfc_find_vtab (ts);
7728 }
7729
7730 if (dimension == 0 && codimension == 0)
7731 goto success;
7732
7733 /* Make sure the last reference node is an array specification. */
7734
7735 if (!ref2 || ref2->type != REF_ARRAY || ref2->u.ar.type == AR_FULL
7736 || (dimension && ref2->u.ar.dimen == 0))
7737 {
7738 /* F08:C633. */
7739 if (code->expr3)
7740 {
7741 if (!gfc_notify_std (GFC_STD_F2008, "Array specification required "
7742 "in ALLOCATE statement at %L", &e->where))
7743 goto failure;
7744 if (code->expr3->rank != 0)
7745 *array_alloc_wo_spec = true;
7746 else
7747 {
7748 gfc_error ("Array specification or array-valued SOURCE= "
7749 "expression required in ALLOCATE statement at %L",
7750 &e->where);
7751 goto failure;
7752 }
7753 }
7754 else
7755 {
7756 gfc_error ("Array specification required in ALLOCATE statement "
7757 "at %L", &e->where);
7758 goto failure;
7759 }
7760 }
7761
7762 /* Make sure that the array section reference makes sense in the
7763 context of an ALLOCATE specification. */
7764
7765 ar = &ref2->u.ar;
7766
7767 if (codimension)
7768 for (i = ar->dimen; i < ar->dimen + ar->codimen; i++)
7769 if (ar->dimen_type[i] == DIMEN_THIS_IMAGE)
7770 {
7771 gfc_error ("Coarray specification required in ALLOCATE statement "
7772 "at %L", &e->where);
7773 goto failure;
7774 }
7775
7776 for (i = 0; i < ar->dimen; i++)
7777 {
7778 if (ar->type == AR_ELEMENT || ar->type == AR_FULL)
7779 goto check_symbols;
7780
7781 switch (ar->dimen_type[i])
7782 {
7783 case DIMEN_ELEMENT:
7784 break;
7785
7786 case DIMEN_RANGE:
7787 if (ar->start[i] != NULL
7788 && ar->end[i] != NULL
7789 && ar->stride[i] == NULL)
7790 break;
7791
7792 /* Fall through. */
7793
7794 case DIMEN_UNKNOWN:
7795 case DIMEN_VECTOR:
7796 case DIMEN_STAR:
7797 case DIMEN_THIS_IMAGE:
7798 gfc_error ("Bad array specification in ALLOCATE statement at %L",
7799 &e->where);
7800 goto failure;
7801 }
7802
7803 check_symbols:
7804 for (a = code->ext.alloc.list; a; a = a->next)
7805 {
7806 sym = a->expr->symtree->n.sym;
7807
7808 /* TODO - check derived type components. */
7809 if (gfc_bt_struct (sym->ts.type) || sym->ts.type == BT_CLASS)
7810 continue;
7811
7812 if ((ar->start[i] != NULL
7813 && gfc_find_sym_in_expr (sym, ar->start[i]))
7814 || (ar->end[i] != NULL
7815 && gfc_find_sym_in_expr (sym, ar->end[i])))
7816 {
7817 gfc_error ("%qs must not appear in the array specification at "
7818 "%L in the same ALLOCATE statement where it is "
7819 "itself allocated", sym->name, &ar->where);
7820 goto failure;
7821 }
7822 }
7823 }
7824
7825 for (i = ar->dimen; i < ar->codimen + ar->dimen; i++)
7826 {
7827 if (ar->dimen_type[i] == DIMEN_ELEMENT
7828 || ar->dimen_type[i] == DIMEN_RANGE)
7829 {
7830 if (i == (ar->dimen + ar->codimen - 1))
7831 {
7832 gfc_error ("Expected '*' in coindex specification in ALLOCATE "
7833 "statement at %L", &e->where);
7834 goto failure;
7835 }
7836 continue;
7837 }
7838
7839 if (ar->dimen_type[i] == DIMEN_STAR && i == (ar->dimen + ar->codimen - 1)
7840 && ar->stride[i] == NULL)
7841 break;
7842
7843 gfc_error ("Bad coarray specification in ALLOCATE statement at %L",
7844 &e->where);
7845 goto failure;
7846 }
7847
7848 success:
7849 return true;
7850
7851 failure:
7852 return false;
7853 }
7854
7855
7856 static void
7857 resolve_allocate_deallocate (gfc_code *code, const char *fcn)
7858 {
7859 gfc_expr *stat, *errmsg, *pe, *qe;
7860 gfc_alloc *a, *p, *q;
7861
7862 stat = code->expr1;
7863 errmsg = code->expr2;
7864
7865 /* Check the stat variable. */
7866 if (stat)
7867 {
7868 gfc_check_vardef_context (stat, false, false, false,
7869 _("STAT variable"));
7870
7871 if ((stat->ts.type != BT_INTEGER
7872 && !(stat->ref && (stat->ref->type == REF_ARRAY
7873 || stat->ref->type == REF_COMPONENT)))
7874 || stat->rank > 0)
7875 gfc_error ("Stat-variable at %L must be a scalar INTEGER "
7876 "variable", &stat->where);
7877
7878 for (p = code->ext.alloc.list; p; p = p->next)
7879 if (p->expr->symtree->n.sym->name == stat->symtree->n.sym->name)
7880 {
7881 gfc_ref *ref1, *ref2;
7882 bool found = true;
7883
7884 for (ref1 = p->expr->ref, ref2 = stat->ref; ref1 && ref2;
7885 ref1 = ref1->next, ref2 = ref2->next)
7886 {
7887 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7888 continue;
7889 if (ref1->u.c.component->name != ref2->u.c.component->name)
7890 {
7891 found = false;
7892 break;
7893 }
7894 }
7895
7896 if (found)
7897 {
7898 gfc_error ("Stat-variable at %L shall not be %sd within "
7899 "the same %s statement", &stat->where, fcn, fcn);
7900 break;
7901 }
7902 }
7903 }
7904
7905 /* Check the errmsg variable. */
7906 if (errmsg)
7907 {
7908 if (!stat)
7909 gfc_warning (0, "ERRMSG at %L is useless without a STAT tag",
7910 &errmsg->where);
7911
7912 gfc_check_vardef_context (errmsg, false, false, false,
7913 _("ERRMSG variable"));
7914
7915 /* F18:R928 alloc-opt is ERRMSG = errmsg-variable
7916 F18:R930 errmsg-variable is scalar-default-char-variable
7917 F18:R906 default-char-variable is variable
7918 F18:C906 default-char-variable shall be default character. */
7919 if ((errmsg->ts.type != BT_CHARACTER
7920 && !(errmsg->ref
7921 && (errmsg->ref->type == REF_ARRAY
7922 || errmsg->ref->type == REF_COMPONENT)))
7923 || errmsg->rank > 0
7924 || errmsg->ts.kind != gfc_default_character_kind)
7925 gfc_error ("ERRMSG variable at %L shall be a scalar default CHARACTER "
7926 "variable", &errmsg->where);
7927
7928 for (p = code->ext.alloc.list; p; p = p->next)
7929 if (p->expr->symtree->n.sym->name == errmsg->symtree->n.sym->name)
7930 {
7931 gfc_ref *ref1, *ref2;
7932 bool found = true;
7933
7934 for (ref1 = p->expr->ref, ref2 = errmsg->ref; ref1 && ref2;
7935 ref1 = ref1->next, ref2 = ref2->next)
7936 {
7937 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7938 continue;
7939 if (ref1->u.c.component->name != ref2->u.c.component->name)
7940 {
7941 found = false;
7942 break;
7943 }
7944 }
7945
7946 if (found)
7947 {
7948 gfc_error ("Errmsg-variable at %L shall not be %sd within "
7949 "the same %s statement", &errmsg->where, fcn, fcn);
7950 break;
7951 }
7952 }
7953 }
7954
7955 /* Check that an allocate-object appears only once in the statement. */
7956
7957 for (p = code->ext.alloc.list; p; p = p->next)
7958 {
7959 pe = p->expr;
7960 for (q = p->next; q; q = q->next)
7961 {
7962 qe = q->expr;
7963 if (pe->symtree->n.sym->name == qe->symtree->n.sym->name)
7964 {
7965 /* This is a potential collision. */
7966 gfc_ref *pr = pe->ref;
7967 gfc_ref *qr = qe->ref;
7968
7969 /* Follow the references until
7970 a) They start to differ, in which case there is no error;
7971 you can deallocate a%b and a%c in a single statement
7972 b) Both of them stop, which is an error
7973 c) One of them stops, which is also an error. */
7974 while (1)
7975 {
7976 if (pr == NULL && qr == NULL)
7977 {
7978 gfc_error ("Allocate-object at %L also appears at %L",
7979 &pe->where, &qe->where);
7980 break;
7981 }
7982 else if (pr != NULL && qr == NULL)
7983 {
7984 gfc_error ("Allocate-object at %L is subobject of"
7985 " object at %L", &pe->where, &qe->where);
7986 break;
7987 }
7988 else if (pr == NULL && qr != NULL)
7989 {
7990 gfc_error ("Allocate-object at %L is subobject of"
7991 " object at %L", &qe->where, &pe->where);
7992 break;
7993 }
7994 /* Here, pr != NULL && qr != NULL */
7995 gcc_assert(pr->type == qr->type);
7996 if (pr->type == REF_ARRAY)
7997 {
7998 /* Handle cases like allocate(v(3)%x(3), v(2)%x(3)),
7999 which are legal. */
8000 gcc_assert (qr->type == REF_ARRAY);
8001
8002 if (pr->next && qr->next)
8003 {
8004 int i;
8005 gfc_array_ref *par = &(pr->u.ar);
8006 gfc_array_ref *qar = &(qr->u.ar);
8007
8008 for (i=0; i<par->dimen; i++)
8009 {
8010 if ((par->start[i] != NULL
8011 || qar->start[i] != NULL)
8012 && gfc_dep_compare_expr (par->start[i],
8013 qar->start[i]) != 0)
8014 goto break_label;
8015 }
8016 }
8017 }
8018 else
8019 {
8020 if (pr->u.c.component->name != qr->u.c.component->name)
8021 break;
8022 }
8023
8024 pr = pr->next;
8025 qr = qr->next;
8026 }
8027 break_label:
8028 ;
8029 }
8030 }
8031 }
8032
8033 if (strcmp (fcn, "ALLOCATE") == 0)
8034 {
8035 bool arr_alloc_wo_spec = false;
8036
8037 /* Resolving the expr3 in the loop over all objects to allocate would
8038 execute loop invariant code for each loop item. Therefore do it just
8039 once here. */
8040 if (code->expr3 && code->expr3->mold
8041 && code->expr3->ts.type == BT_DERIVED)
8042 {
8043 /* Default initialization via MOLD (non-polymorphic). */
8044 gfc_expr *rhs = gfc_default_initializer (&code->expr3->ts);
8045 if (rhs != NULL)
8046 {
8047 gfc_resolve_expr (rhs);
8048 gfc_free_expr (code->expr3);
8049 code->expr3 = rhs;
8050 }
8051 }
8052 for (a = code->ext.alloc.list; a; a = a->next)
8053 resolve_allocate_expr (a->expr, code, &arr_alloc_wo_spec);
8054
8055 if (arr_alloc_wo_spec && code->expr3)
8056 {
8057 /* Mark the allocate to have to take the array specification
8058 from the expr3. */
8059 code->ext.alloc.arr_spec_from_expr3 = 1;
8060 }
8061 }
8062 else
8063 {
8064 for (a = code->ext.alloc.list; a; a = a->next)
8065 resolve_deallocate_expr (a->expr);
8066 }
8067 }
8068
8069
8070 /************ SELECT CASE resolution subroutines ************/
8071
8072 /* Callback function for our mergesort variant. Determines interval
8073 overlaps for CASEs. Return <0 if op1 < op2, 0 for overlap, >0 for
8074 op1 > op2. Assumes we're not dealing with the default case.
8075 We have op1 = (:L), (K:L) or (K:) and op2 = (:N), (M:N) or (M:).
8076 There are nine situations to check. */
8077
8078 static int
8079 compare_cases (const gfc_case *op1, const gfc_case *op2)
8080 {
8081 int retval;
8082
8083 if (op1->low == NULL) /* op1 = (:L) */
8084 {
8085 /* op2 = (:N), so overlap. */
8086 retval = 0;
8087 /* op2 = (M:) or (M:N), L < M */
8088 if (op2->low != NULL
8089 && gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8090 retval = -1;
8091 }
8092 else if (op1->high == NULL) /* op1 = (K:) */
8093 {
8094 /* op2 = (M:), so overlap. */
8095 retval = 0;
8096 /* op2 = (:N) or (M:N), K > N */
8097 if (op2->high != NULL
8098 && gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8099 retval = 1;
8100 }
8101 else /* op1 = (K:L) */
8102 {
8103 if (op2->low == NULL) /* op2 = (:N), K > N */
8104 retval = (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8105 ? 1 : 0;
8106 else if (op2->high == NULL) /* op2 = (M:), L < M */
8107 retval = (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8108 ? -1 : 0;
8109 else /* op2 = (M:N) */
8110 {
8111 retval = 0;
8112 /* L < M */
8113 if (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8114 retval = -1;
8115 /* K > N */
8116 else if (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8117 retval = 1;
8118 }
8119 }
8120
8121 return retval;
8122 }
8123
8124
8125 /* Merge-sort a double linked case list, detecting overlap in the
8126 process. LIST is the head of the double linked case list before it
8127 is sorted. Returns the head of the sorted list if we don't see any
8128 overlap, or NULL otherwise. */
8129
8130 static gfc_case *
8131 check_case_overlap (gfc_case *list)
8132 {
8133 gfc_case *p, *q, *e, *tail;
8134 int insize, nmerges, psize, qsize, cmp, overlap_seen;
8135
8136 /* If the passed list was empty, return immediately. */
8137 if (!list)
8138 return NULL;
8139
8140 overlap_seen = 0;
8141 insize = 1;
8142
8143 /* Loop unconditionally. The only exit from this loop is a return
8144 statement, when we've finished sorting the case list. */
8145 for (;;)
8146 {
8147 p = list;
8148 list = NULL;
8149 tail = NULL;
8150
8151 /* Count the number of merges we do in this pass. */
8152 nmerges = 0;
8153
8154 /* Loop while there exists a merge to be done. */
8155 while (p)
8156 {
8157 int i;
8158
8159 /* Count this merge. */
8160 nmerges++;
8161
8162 /* Cut the list in two pieces by stepping INSIZE places
8163 forward in the list, starting from P. */
8164 psize = 0;
8165 q = p;
8166 for (i = 0; i < insize; i++)
8167 {
8168 psize++;
8169 q = q->right;
8170 if (!q)
8171 break;
8172 }
8173 qsize = insize;
8174
8175 /* Now we have two lists. Merge them! */
8176 while (psize > 0 || (qsize > 0 && q != NULL))
8177 {
8178 /* See from which the next case to merge comes from. */
8179 if (psize == 0)
8180 {
8181 /* P is empty so the next case must come from Q. */
8182 e = q;
8183 q = q->right;
8184 qsize--;
8185 }
8186 else if (qsize == 0 || q == NULL)
8187 {
8188 /* Q is empty. */
8189 e = p;
8190 p = p->right;
8191 psize--;
8192 }
8193 else
8194 {
8195 cmp = compare_cases (p, q);
8196 if (cmp < 0)
8197 {
8198 /* The whole case range for P is less than the
8199 one for Q. */
8200 e = p;
8201 p = p->right;
8202 psize--;
8203 }
8204 else if (cmp > 0)
8205 {
8206 /* The whole case range for Q is greater than
8207 the case range for P. */
8208 e = q;
8209 q = q->right;
8210 qsize--;
8211 }
8212 else
8213 {
8214 /* The cases overlap, or they are the same
8215 element in the list. Either way, we must
8216 issue an error and get the next case from P. */
8217 /* FIXME: Sort P and Q by line number. */
8218 gfc_error ("CASE label at %L overlaps with CASE "
8219 "label at %L", &p->where, &q->where);
8220 overlap_seen = 1;
8221 e = p;
8222 p = p->right;
8223 psize--;
8224 }
8225 }
8226
8227 /* Add the next element to the merged list. */
8228 if (tail)
8229 tail->right = e;
8230 else
8231 list = e;
8232 e->left = tail;
8233 tail = e;
8234 }
8235
8236 /* P has now stepped INSIZE places along, and so has Q. So
8237 they're the same. */
8238 p = q;
8239 }
8240 tail->right = NULL;
8241
8242 /* If we have done only one merge or none at all, we've
8243 finished sorting the cases. */
8244 if (nmerges <= 1)
8245 {
8246 if (!overlap_seen)
8247 return list;
8248 else
8249 return NULL;
8250 }
8251
8252 /* Otherwise repeat, merging lists twice the size. */
8253 insize *= 2;
8254 }
8255 }
8256
8257
8258 /* Check to see if an expression is suitable for use in a CASE statement.
8259 Makes sure that all case expressions are scalar constants of the same
8260 type. Return false if anything is wrong. */
8261
8262 static bool
8263 validate_case_label_expr (gfc_expr *e, gfc_expr *case_expr)
8264 {
8265 if (e == NULL) return true;
8266
8267 if (e->ts.type != case_expr->ts.type)
8268 {
8269 gfc_error ("Expression in CASE statement at %L must be of type %s",
8270 &e->where, gfc_basic_typename (case_expr->ts.type));
8271 return false;
8272 }
8273
8274 /* C805 (R808) For a given case-construct, each case-value shall be of
8275 the same type as case-expr. For character type, length differences
8276 are allowed, but the kind type parameters shall be the same. */
8277
8278 if (case_expr->ts.type == BT_CHARACTER && e->ts.kind != case_expr->ts.kind)
8279 {
8280 gfc_error ("Expression in CASE statement at %L must be of kind %d",
8281 &e->where, case_expr->ts.kind);
8282 return false;
8283 }
8284
8285 /* Convert the case value kind to that of case expression kind,
8286 if needed */
8287
8288 if (e->ts.kind != case_expr->ts.kind)
8289 gfc_convert_type_warn (e, &case_expr->ts, 2, 0);
8290
8291 if (e->rank != 0)
8292 {
8293 gfc_error ("Expression in CASE statement at %L must be scalar",
8294 &e->where);
8295 return false;
8296 }
8297
8298 return true;
8299 }
8300
8301
8302 /* Given a completely parsed select statement, we:
8303
8304 - Validate all expressions and code within the SELECT.
8305 - Make sure that the selection expression is not of the wrong type.
8306 - Make sure that no case ranges overlap.
8307 - Eliminate unreachable cases and unreachable code resulting from
8308 removing case labels.
8309
8310 The standard does allow unreachable cases, e.g. CASE (5:3). But
8311 they are a hassle for code generation, and to prevent that, we just
8312 cut them out here. This is not necessary for overlapping cases
8313 because they are illegal and we never even try to generate code.
8314
8315 We have the additional caveat that a SELECT construct could have
8316 been a computed GOTO in the source code. Fortunately we can fairly
8317 easily work around that here: The case_expr for a "real" SELECT CASE
8318 is in code->expr1, but for a computed GOTO it is in code->expr2. All
8319 we have to do is make sure that the case_expr is a scalar integer
8320 expression. */
8321
8322 static void
8323 resolve_select (gfc_code *code, bool select_type)
8324 {
8325 gfc_code *body;
8326 gfc_expr *case_expr;
8327 gfc_case *cp, *default_case, *tail, *head;
8328 int seen_unreachable;
8329 int seen_logical;
8330 int ncases;
8331 bt type;
8332 bool t;
8333
8334 if (code->expr1 == NULL)
8335 {
8336 /* This was actually a computed GOTO statement. */
8337 case_expr = code->expr2;
8338 if (case_expr->ts.type != BT_INTEGER|| case_expr->rank != 0)
8339 gfc_error ("Selection expression in computed GOTO statement "
8340 "at %L must be a scalar integer expression",
8341 &case_expr->where);
8342
8343 /* Further checking is not necessary because this SELECT was built
8344 by the compiler, so it should always be OK. Just move the
8345 case_expr from expr2 to expr so that we can handle computed
8346 GOTOs as normal SELECTs from here on. */
8347 code->expr1 = code->expr2;
8348 code->expr2 = NULL;
8349 return;
8350 }
8351
8352 case_expr = code->expr1;
8353 type = case_expr->ts.type;
8354
8355 /* F08:C830. */
8356 if (type != BT_LOGICAL && type != BT_INTEGER && type != BT_CHARACTER)
8357 {
8358 gfc_error ("Argument of SELECT statement at %L cannot be %s",
8359 &case_expr->where, gfc_typename (&case_expr->ts));
8360
8361 /* Punt. Going on here just produce more garbage error messages. */
8362 return;
8363 }
8364
8365 /* F08:R842. */
8366 if (!select_type && case_expr->rank != 0)
8367 {
8368 gfc_error ("Argument of SELECT statement at %L must be a scalar "
8369 "expression", &case_expr->where);
8370
8371 /* Punt. */
8372 return;
8373 }
8374
8375 /* Raise a warning if an INTEGER case value exceeds the range of
8376 the case-expr. Later, all expressions will be promoted to the
8377 largest kind of all case-labels. */
8378
8379 if (type == BT_INTEGER)
8380 for (body = code->block; body; body = body->block)
8381 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8382 {
8383 if (cp->low
8384 && gfc_check_integer_range (cp->low->value.integer,
8385 case_expr->ts.kind) != ARITH_OK)
8386 gfc_warning (0, "Expression in CASE statement at %L is "
8387 "not in the range of %s", &cp->low->where,
8388 gfc_typename (&case_expr->ts));
8389
8390 if (cp->high
8391 && cp->low != cp->high
8392 && gfc_check_integer_range (cp->high->value.integer,
8393 case_expr->ts.kind) != ARITH_OK)
8394 gfc_warning (0, "Expression in CASE statement at %L is "
8395 "not in the range of %s", &cp->high->where,
8396 gfc_typename (&case_expr->ts));
8397 }
8398
8399 /* PR 19168 has a long discussion concerning a mismatch of the kinds
8400 of the SELECT CASE expression and its CASE values. Walk the lists
8401 of case values, and if we find a mismatch, promote case_expr to
8402 the appropriate kind. */
8403
8404 if (type == BT_LOGICAL || type == BT_INTEGER)
8405 {
8406 for (body = code->block; body; body = body->block)
8407 {
8408 /* Walk the case label list. */
8409 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8410 {
8411 /* Intercept the DEFAULT case. It does not have a kind. */
8412 if (cp->low == NULL && cp->high == NULL)
8413 continue;
8414
8415 /* Unreachable case ranges are discarded, so ignore. */
8416 if (cp->low != NULL && cp->high != NULL
8417 && cp->low != cp->high
8418 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8419 continue;
8420
8421 if (cp->low != NULL
8422 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->low))
8423 gfc_convert_type_warn (case_expr, &cp->low->ts, 2, 0);
8424
8425 if (cp->high != NULL
8426 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->high))
8427 gfc_convert_type_warn (case_expr, &cp->high->ts, 2, 0);
8428 }
8429 }
8430 }
8431
8432 /* Assume there is no DEFAULT case. */
8433 default_case = NULL;
8434 head = tail = NULL;
8435 ncases = 0;
8436 seen_logical = 0;
8437
8438 for (body = code->block; body; body = body->block)
8439 {
8440 /* Assume the CASE list is OK, and all CASE labels can be matched. */
8441 t = true;
8442 seen_unreachable = 0;
8443
8444 /* Walk the case label list, making sure that all case labels
8445 are legal. */
8446 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8447 {
8448 /* Count the number of cases in the whole construct. */
8449 ncases++;
8450
8451 /* Intercept the DEFAULT case. */
8452 if (cp->low == NULL && cp->high == NULL)
8453 {
8454 if (default_case != NULL)
8455 {
8456 gfc_error ("The DEFAULT CASE at %L cannot be followed "
8457 "by a second DEFAULT CASE at %L",
8458 &default_case->where, &cp->where);
8459 t = false;
8460 break;
8461 }
8462 else
8463 {
8464 default_case = cp;
8465 continue;
8466 }
8467 }
8468
8469 /* Deal with single value cases and case ranges. Errors are
8470 issued from the validation function. */
8471 if (!validate_case_label_expr (cp->low, case_expr)
8472 || !validate_case_label_expr (cp->high, case_expr))
8473 {
8474 t = false;
8475 break;
8476 }
8477
8478 if (type == BT_LOGICAL
8479 && ((cp->low == NULL || cp->high == NULL)
8480 || cp->low != cp->high))
8481 {
8482 gfc_error ("Logical range in CASE statement at %L is not "
8483 "allowed", &cp->low->where);
8484 t = false;
8485 break;
8486 }
8487
8488 if (type == BT_LOGICAL && cp->low->expr_type == EXPR_CONSTANT)
8489 {
8490 int value;
8491 value = cp->low->value.logical == 0 ? 2 : 1;
8492 if (value & seen_logical)
8493 {
8494 gfc_error ("Constant logical value in CASE statement "
8495 "is repeated at %L",
8496 &cp->low->where);
8497 t = false;
8498 break;
8499 }
8500 seen_logical |= value;
8501 }
8502
8503 if (cp->low != NULL && cp->high != NULL
8504 && cp->low != cp->high
8505 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8506 {
8507 if (warn_surprising)
8508 gfc_warning (OPT_Wsurprising,
8509 "Range specification at %L can never be matched",
8510 &cp->where);
8511
8512 cp->unreachable = 1;
8513 seen_unreachable = 1;
8514 }
8515 else
8516 {
8517 /* If the case range can be matched, it can also overlap with
8518 other cases. To make sure it does not, we put it in a
8519 double linked list here. We sort that with a merge sort
8520 later on to detect any overlapping cases. */
8521 if (!head)
8522 {
8523 head = tail = cp;
8524 head->right = head->left = NULL;
8525 }
8526 else
8527 {
8528 tail->right = cp;
8529 tail->right->left = tail;
8530 tail = tail->right;
8531 tail->right = NULL;
8532 }
8533 }
8534 }
8535
8536 /* It there was a failure in the previous case label, give up
8537 for this case label list. Continue with the next block. */
8538 if (!t)
8539 continue;
8540
8541 /* See if any case labels that are unreachable have been seen.
8542 If so, we eliminate them. This is a bit of a kludge because
8543 the case lists for a single case statement (label) is a
8544 single forward linked lists. */
8545 if (seen_unreachable)
8546 {
8547 /* Advance until the first case in the list is reachable. */
8548 while (body->ext.block.case_list != NULL
8549 && body->ext.block.case_list->unreachable)
8550 {
8551 gfc_case *n = body->ext.block.case_list;
8552 body->ext.block.case_list = body->ext.block.case_list->next;
8553 n->next = NULL;
8554 gfc_free_case_list (n);
8555 }
8556
8557 /* Strip all other unreachable cases. */
8558 if (body->ext.block.case_list)
8559 {
8560 for (cp = body->ext.block.case_list; cp && cp->next; cp = cp->next)
8561 {
8562 if (cp->next->unreachable)
8563 {
8564 gfc_case *n = cp->next;
8565 cp->next = cp->next->next;
8566 n->next = NULL;
8567 gfc_free_case_list (n);
8568 }
8569 }
8570 }
8571 }
8572 }
8573
8574 /* See if there were overlapping cases. If the check returns NULL,
8575 there was overlap. In that case we don't do anything. If head
8576 is non-NULL, we prepend the DEFAULT case. The sorted list can
8577 then used during code generation for SELECT CASE constructs with
8578 a case expression of a CHARACTER type. */
8579 if (head)
8580 {
8581 head = check_case_overlap (head);
8582
8583 /* Prepend the default_case if it is there. */
8584 if (head != NULL && default_case)
8585 {
8586 default_case->left = NULL;
8587 default_case->right = head;
8588 head->left = default_case;
8589 }
8590 }
8591
8592 /* Eliminate dead blocks that may be the result if we've seen
8593 unreachable case labels for a block. */
8594 for (body = code; body && body->block; body = body->block)
8595 {
8596 if (body->block->ext.block.case_list == NULL)
8597 {
8598 /* Cut the unreachable block from the code chain. */
8599 gfc_code *c = body->block;
8600 body->block = c->block;
8601
8602 /* Kill the dead block, but not the blocks below it. */
8603 c->block = NULL;
8604 gfc_free_statements (c);
8605 }
8606 }
8607
8608 /* More than two cases is legal but insane for logical selects.
8609 Issue a warning for it. */
8610 if (warn_surprising && type == BT_LOGICAL && ncases > 2)
8611 gfc_warning (OPT_Wsurprising,
8612 "Logical SELECT CASE block at %L has more that two cases",
8613 &code->loc);
8614 }
8615
8616
8617 /* Check if a derived type is extensible. */
8618
8619 bool
8620 gfc_type_is_extensible (gfc_symbol *sym)
8621 {
8622 return !(sym->attr.is_bind_c || sym->attr.sequence
8623 || (sym->attr.is_class
8624 && sym->components->ts.u.derived->attr.unlimited_polymorphic));
8625 }
8626
8627
8628 static void
8629 resolve_types (gfc_namespace *ns);
8630
8631 /* Resolve an associate-name: Resolve target and ensure the type-spec is
8632 correct as well as possibly the array-spec. */
8633
8634 static void
8635 resolve_assoc_var (gfc_symbol* sym, bool resolve_target)
8636 {
8637 gfc_expr* target;
8638
8639 gcc_assert (sym->assoc);
8640 gcc_assert (sym->attr.flavor == FL_VARIABLE);
8641
8642 /* If this is for SELECT TYPE, the target may not yet be set. In that
8643 case, return. Resolution will be called later manually again when
8644 this is done. */
8645 target = sym->assoc->target;
8646 if (!target)
8647 return;
8648 gcc_assert (!sym->assoc->dangling);
8649
8650 if (resolve_target && !gfc_resolve_expr (target))
8651 return;
8652
8653 /* For variable targets, we get some attributes from the target. */
8654 if (target->expr_type == EXPR_VARIABLE)
8655 {
8656 gfc_symbol* tsym;
8657
8658 gcc_assert (target->symtree);
8659 tsym = target->symtree->n.sym;
8660
8661 sym->attr.asynchronous = tsym->attr.asynchronous;
8662 sym->attr.volatile_ = tsym->attr.volatile_;
8663
8664 sym->attr.target = tsym->attr.target
8665 || gfc_expr_attr (target).pointer;
8666 if (is_subref_array (target))
8667 sym->attr.subref_array_pointer = 1;
8668 }
8669
8670 if (target->expr_type == EXPR_NULL)
8671 {
8672 gfc_error ("Selector at %L cannot be NULL()", &target->where);
8673 return;
8674 }
8675 else if (target->ts.type == BT_UNKNOWN)
8676 {
8677 gfc_error ("Selector at %L has no type", &target->where);
8678 return;
8679 }
8680
8681 /* Get type if this was not already set. Note that it can be
8682 some other type than the target in case this is a SELECT TYPE
8683 selector! So we must not update when the type is already there. */
8684 if (sym->ts.type == BT_UNKNOWN)
8685 sym->ts = target->ts;
8686
8687 gcc_assert (sym->ts.type != BT_UNKNOWN);
8688
8689 /* See if this is a valid association-to-variable. */
8690 sym->assoc->variable = (target->expr_type == EXPR_VARIABLE
8691 && !gfc_has_vector_subscript (target));
8692
8693 /* Finally resolve if this is an array or not. */
8694 if (sym->attr.dimension && target->rank == 0)
8695 {
8696 /* primary.c makes the assumption that a reference to an associate
8697 name followed by a left parenthesis is an array reference. */
8698 if (sym->ts.type != BT_CHARACTER)
8699 gfc_error ("Associate-name %qs at %L is used as array",
8700 sym->name, &sym->declared_at);
8701 sym->attr.dimension = 0;
8702 return;
8703 }
8704
8705
8706 /* We cannot deal with class selectors that need temporaries. */
8707 if (target->ts.type == BT_CLASS
8708 && gfc_ref_needs_temporary_p (target->ref))
8709 {
8710 gfc_error ("CLASS selector at %L needs a temporary which is not "
8711 "yet implemented", &target->where);
8712 return;
8713 }
8714
8715 if (target->ts.type == BT_CLASS)
8716 gfc_fix_class_refs (target);
8717
8718 if (target->rank != 0)
8719 {
8720 gfc_array_spec *as;
8721 /* The rank may be incorrectly guessed at parsing, therefore make sure
8722 it is corrected now. */
8723 if (sym->ts.type != BT_CLASS && (!sym->as || sym->assoc->rankguessed))
8724 {
8725 if (!sym->as)
8726 sym->as = gfc_get_array_spec ();
8727 as = sym->as;
8728 as->rank = target->rank;
8729 as->type = AS_DEFERRED;
8730 as->corank = gfc_get_corank (target);
8731 sym->attr.dimension = 1;
8732 if (as->corank != 0)
8733 sym->attr.codimension = 1;
8734 }
8735 else if (sym->ts.type == BT_CLASS && (!CLASS_DATA (sym)->as || sym->assoc->rankguessed))
8736 {
8737 if (!CLASS_DATA (sym)->as)
8738 CLASS_DATA (sym)->as = gfc_get_array_spec ();
8739 as = CLASS_DATA (sym)->as;
8740 as->rank = target->rank;
8741 as->type = AS_DEFERRED;
8742 as->corank = gfc_get_corank (target);
8743 CLASS_DATA (sym)->attr.dimension = 1;
8744 if (as->corank != 0)
8745 CLASS_DATA (sym)->attr.codimension = 1;
8746 }
8747 }
8748 else
8749 {
8750 /* target's rank is 0, but the type of the sym is still array valued,
8751 which has to be corrected. */
8752 if (sym->ts.type == BT_CLASS
8753 && CLASS_DATA (sym) && CLASS_DATA (sym)->as)
8754 {
8755 gfc_array_spec *as;
8756 symbol_attribute attr;
8757 /* The associated variable's type is still the array type
8758 correct this now. */
8759 gfc_typespec *ts = &target->ts;
8760 gfc_ref *ref;
8761 gfc_component *c;
8762 for (ref = target->ref; ref != NULL; ref = ref->next)
8763 {
8764 switch (ref->type)
8765 {
8766 case REF_COMPONENT:
8767 ts = &ref->u.c.component->ts;
8768 break;
8769 case REF_ARRAY:
8770 if (ts->type == BT_CLASS)
8771 ts = &ts->u.derived->components->ts;
8772 break;
8773 default:
8774 break;
8775 }
8776 }
8777 /* Create a scalar instance of the current class type. Because the
8778 rank of a class array goes into its name, the type has to be
8779 rebuild. The alternative of (re-)setting just the attributes
8780 and as in the current type, destroys the type also in other
8781 places. */
8782 as = NULL;
8783 sym->ts = *ts;
8784 sym->ts.type = BT_CLASS;
8785 attr = CLASS_DATA (sym)->attr;
8786 attr.class_ok = 0;
8787 attr.associate_var = 1;
8788 attr.dimension = attr.codimension = 0;
8789 attr.class_pointer = 1;
8790 if (!gfc_build_class_symbol (&sym->ts, &attr, &as))
8791 gcc_unreachable ();
8792 /* Make sure the _vptr is set. */
8793 c = gfc_find_component (sym->ts.u.derived, "_vptr", true, true, NULL);
8794 if (c->ts.u.derived == NULL)
8795 c->ts.u.derived = gfc_find_derived_vtab (sym->ts.u.derived);
8796 CLASS_DATA (sym)->attr.pointer = 1;
8797 CLASS_DATA (sym)->attr.class_pointer = 1;
8798 gfc_set_sym_referenced (sym->ts.u.derived);
8799 gfc_commit_symbol (sym->ts.u.derived);
8800 /* _vptr now has the _vtab in it, change it to the _vtype. */
8801 if (c->ts.u.derived->attr.vtab)
8802 c->ts.u.derived = c->ts.u.derived->ts.u.derived;
8803 c->ts.u.derived->ns->types_resolved = 0;
8804 resolve_types (c->ts.u.derived->ns);
8805 }
8806 }
8807
8808 /* Mark this as an associate variable. */
8809 sym->attr.associate_var = 1;
8810
8811 /* Fix up the type-spec for CHARACTER types. */
8812 if (sym->ts.type == BT_CHARACTER && !sym->attr.select_type_temporary)
8813 {
8814 if (!sym->ts.u.cl)
8815 sym->ts.u.cl = target->ts.u.cl;
8816
8817 if (sym->ts.deferred && target->expr_type == EXPR_VARIABLE
8818 && target->symtree->n.sym->attr.dummy
8819 && sym->ts.u.cl == target->ts.u.cl)
8820 {
8821 sym->ts.u.cl = gfc_new_charlen (sym->ns, NULL);
8822 sym->ts.deferred = 1;
8823 }
8824
8825 if (!sym->ts.u.cl->length
8826 && !sym->ts.deferred
8827 && target->expr_type == EXPR_CONSTANT)
8828 {
8829 sym->ts.u.cl->length =
8830 gfc_get_int_expr (gfc_charlen_int_kind, NULL,
8831 target->value.character.length);
8832 }
8833 else if ((!sym->ts.u.cl->length
8834 || sym->ts.u.cl->length->expr_type != EXPR_CONSTANT)
8835 && target->expr_type != EXPR_VARIABLE)
8836 {
8837 sym->ts.u.cl = gfc_new_charlen (sym->ns, NULL);
8838 sym->ts.deferred = 1;
8839
8840 /* This is reset in trans-stmt.c after the assignment
8841 of the target expression to the associate name. */
8842 sym->attr.allocatable = 1;
8843 }
8844 }
8845
8846 /* If the target is a good class object, so is the associate variable. */
8847 if (sym->ts.type == BT_CLASS && gfc_expr_attr (target).class_ok)
8848 sym->attr.class_ok = 1;
8849 }
8850
8851
8852 /* Ensure that SELECT TYPE expressions have the correct rank and a full
8853 array reference, where necessary. The symbols are artificial and so
8854 the dimension attribute and arrayspec can also be set. In addition,
8855 sometimes the expr1 arrives as BT_DERIVED, when the symbol is BT_CLASS.
8856 This is corrected here as well.*/
8857
8858 static void
8859 fixup_array_ref (gfc_expr **expr1, gfc_expr *expr2,
8860 int rank, gfc_ref *ref)
8861 {
8862 gfc_ref *nref = (*expr1)->ref;
8863 gfc_symbol *sym1 = (*expr1)->symtree->n.sym;
8864 gfc_symbol *sym2 = expr2 ? expr2->symtree->n.sym : NULL;
8865 (*expr1)->rank = rank;
8866 if (sym1->ts.type == BT_CLASS)
8867 {
8868 if ((*expr1)->ts.type != BT_CLASS)
8869 (*expr1)->ts = sym1->ts;
8870
8871 CLASS_DATA (sym1)->attr.dimension = 1;
8872 if (CLASS_DATA (sym1)->as == NULL && sym2)
8873 CLASS_DATA (sym1)->as
8874 = gfc_copy_array_spec (CLASS_DATA (sym2)->as);
8875 }
8876 else
8877 {
8878 sym1->attr.dimension = 1;
8879 if (sym1->as == NULL && sym2)
8880 sym1->as = gfc_copy_array_spec (sym2->as);
8881 }
8882
8883 for (; nref; nref = nref->next)
8884 if (nref->next == NULL)
8885 break;
8886
8887 if (ref && nref && nref->type != REF_ARRAY)
8888 nref->next = gfc_copy_ref (ref);
8889 else if (ref && !nref)
8890 (*expr1)->ref = gfc_copy_ref (ref);
8891 }
8892
8893
8894 static gfc_expr *
8895 build_loc_call (gfc_expr *sym_expr)
8896 {
8897 gfc_expr *loc_call;
8898 loc_call = gfc_get_expr ();
8899 loc_call->expr_type = EXPR_FUNCTION;
8900 gfc_get_sym_tree ("_loc", gfc_current_ns, &loc_call->symtree, false);
8901 loc_call->symtree->n.sym->attr.flavor = FL_PROCEDURE;
8902 loc_call->symtree->n.sym->attr.intrinsic = 1;
8903 loc_call->symtree->n.sym->result = loc_call->symtree->n.sym;
8904 gfc_commit_symbol (loc_call->symtree->n.sym);
8905 loc_call->ts.type = BT_INTEGER;
8906 loc_call->ts.kind = gfc_index_integer_kind;
8907 loc_call->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_LOC);
8908 loc_call->value.function.actual = gfc_get_actual_arglist ();
8909 loc_call->value.function.actual->expr = sym_expr;
8910 loc_call->where = sym_expr->where;
8911 return loc_call;
8912 }
8913
8914 /* Resolve a SELECT TYPE statement. */
8915
8916 static void
8917 resolve_select_type (gfc_code *code, gfc_namespace *old_ns)
8918 {
8919 gfc_symbol *selector_type;
8920 gfc_code *body, *new_st, *if_st, *tail;
8921 gfc_code *class_is = NULL, *default_case = NULL;
8922 gfc_case *c;
8923 gfc_symtree *st;
8924 char name[GFC_MAX_SYMBOL_LEN];
8925 gfc_namespace *ns;
8926 int error = 0;
8927 int rank = 0;
8928 gfc_ref* ref = NULL;
8929 gfc_expr *selector_expr = NULL;
8930
8931 ns = code->ext.block.ns;
8932 gfc_resolve (ns);
8933
8934 /* Check for F03:C813. */
8935 if (code->expr1->ts.type != BT_CLASS
8936 && !(code->expr2 && code->expr2->ts.type == BT_CLASS))
8937 {
8938 gfc_error ("Selector shall be polymorphic in SELECT TYPE statement "
8939 "at %L", &code->loc);
8940 return;
8941 }
8942
8943 if (!code->expr1->symtree->n.sym->attr.class_ok)
8944 return;
8945
8946 if (code->expr2)
8947 {
8948 gfc_ref *ref2 = NULL;
8949 for (ref = code->expr2->ref; ref != NULL; ref = ref->next)
8950 if (ref->type == REF_COMPONENT
8951 && ref->u.c.component->ts.type == BT_CLASS)
8952 ref2 = ref;
8953
8954 if (ref2)
8955 {
8956 if (code->expr1->symtree->n.sym->attr.untyped)
8957 code->expr1->symtree->n.sym->ts = ref2->u.c.component->ts;
8958 selector_type = CLASS_DATA (ref2->u.c.component)->ts.u.derived;
8959 }
8960 else
8961 {
8962 if (code->expr1->symtree->n.sym->attr.untyped)
8963 code->expr1->symtree->n.sym->ts = code->expr2->ts;
8964 selector_type = CLASS_DATA (code->expr2)->ts.u.derived;
8965 }
8966
8967 if (code->expr2->rank && CLASS_DATA (code->expr1)->as)
8968 CLASS_DATA (code->expr1)->as->rank = code->expr2->rank;
8969
8970 /* F2008: C803 The selector expression must not be coindexed. */
8971 if (gfc_is_coindexed (code->expr2))
8972 {
8973 gfc_error ("Selector at %L must not be coindexed",
8974 &code->expr2->where);
8975 return;
8976 }
8977
8978 }
8979 else
8980 {
8981 selector_type = CLASS_DATA (code->expr1)->ts.u.derived;
8982
8983 if (gfc_is_coindexed (code->expr1))
8984 {
8985 gfc_error ("Selector at %L must not be coindexed",
8986 &code->expr1->where);
8987 return;
8988 }
8989 }
8990
8991 /* Loop over TYPE IS / CLASS IS cases. */
8992 for (body = code->block; body; body = body->block)
8993 {
8994 c = body->ext.block.case_list;
8995
8996 if (!error)
8997 {
8998 /* Check for repeated cases. */
8999 for (tail = code->block; tail; tail = tail->block)
9000 {
9001 gfc_case *d = tail->ext.block.case_list;
9002 if (tail == body)
9003 break;
9004
9005 if (c->ts.type == d->ts.type
9006 && ((c->ts.type == BT_DERIVED
9007 && c->ts.u.derived && d->ts.u.derived
9008 && !strcmp (c->ts.u.derived->name,
9009 d->ts.u.derived->name))
9010 || c->ts.type == BT_UNKNOWN
9011 || (!(c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9012 && c->ts.kind == d->ts.kind)))
9013 {
9014 gfc_error ("TYPE IS at %L overlaps with TYPE IS at %L",
9015 &c->where, &d->where);
9016 return;
9017 }
9018 }
9019 }
9020
9021 /* Check F03:C815. */
9022 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9023 && !selector_type->attr.unlimited_polymorphic
9024 && !gfc_type_is_extensible (c->ts.u.derived))
9025 {
9026 gfc_error ("Derived type %qs at %L must be extensible",
9027 c->ts.u.derived->name, &c->where);
9028 error++;
9029 continue;
9030 }
9031
9032 /* Check F03:C816. */
9033 if (c->ts.type != BT_UNKNOWN && !selector_type->attr.unlimited_polymorphic
9034 && ((c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
9035 || !gfc_type_is_extension_of (selector_type, c->ts.u.derived)))
9036 {
9037 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9038 gfc_error ("Derived type %qs at %L must be an extension of %qs",
9039 c->ts.u.derived->name, &c->where, selector_type->name);
9040 else
9041 gfc_error ("Unexpected intrinsic type %qs at %L",
9042 gfc_basic_typename (c->ts.type), &c->where);
9043 error++;
9044 continue;
9045 }
9046
9047 /* Check F03:C814. */
9048 if (c->ts.type == BT_CHARACTER
9049 && (c->ts.u.cl->length != NULL || c->ts.deferred))
9050 {
9051 gfc_error ("The type-spec at %L shall specify that each length "
9052 "type parameter is assumed", &c->where);
9053 error++;
9054 continue;
9055 }
9056
9057 /* Intercept the DEFAULT case. */
9058 if (c->ts.type == BT_UNKNOWN)
9059 {
9060 /* Check F03:C818. */
9061 if (default_case)
9062 {
9063 gfc_error ("The DEFAULT CASE at %L cannot be followed "
9064 "by a second DEFAULT CASE at %L",
9065 &default_case->ext.block.case_list->where, &c->where);
9066 error++;
9067 continue;
9068 }
9069
9070 default_case = body;
9071 }
9072 }
9073
9074 if (error > 0)
9075 return;
9076
9077 /* Transform SELECT TYPE statement to BLOCK and associate selector to
9078 target if present. If there are any EXIT statements referring to the
9079 SELECT TYPE construct, this is no problem because the gfc_code
9080 reference stays the same and EXIT is equally possible from the BLOCK
9081 it is changed to. */
9082 code->op = EXEC_BLOCK;
9083 if (code->expr2)
9084 {
9085 gfc_association_list* assoc;
9086
9087 assoc = gfc_get_association_list ();
9088 assoc->st = code->expr1->symtree;
9089 assoc->target = gfc_copy_expr (code->expr2);
9090 assoc->target->where = code->expr2->where;
9091 /* assoc->variable will be set by resolve_assoc_var. */
9092
9093 code->ext.block.assoc = assoc;
9094 code->expr1->symtree->n.sym->assoc = assoc;
9095
9096 resolve_assoc_var (code->expr1->symtree->n.sym, false);
9097 }
9098 else
9099 code->ext.block.assoc = NULL;
9100
9101 /* Ensure that the selector rank and arrayspec are available to
9102 correct expressions in which they might be missing. */
9103 if (code->expr2 && code->expr2->rank)
9104 {
9105 rank = code->expr2->rank;
9106 for (ref = code->expr2->ref; ref; ref = ref->next)
9107 if (ref->next == NULL)
9108 break;
9109 if (ref && ref->type == REF_ARRAY)
9110 ref = gfc_copy_ref (ref);
9111
9112 /* Fixup expr1 if necessary. */
9113 if (rank)
9114 fixup_array_ref (&code->expr1, code->expr2, rank, ref);
9115 }
9116 else if (code->expr1->rank)
9117 {
9118 rank = code->expr1->rank;
9119 for (ref = code->expr1->ref; ref; ref = ref->next)
9120 if (ref->next == NULL)
9121 break;
9122 if (ref && ref->type == REF_ARRAY)
9123 ref = gfc_copy_ref (ref);
9124 }
9125
9126 /* Add EXEC_SELECT to switch on type. */
9127 new_st = gfc_get_code (code->op);
9128 new_st->expr1 = code->expr1;
9129 new_st->expr2 = code->expr2;
9130 new_st->block = code->block;
9131 code->expr1 = code->expr2 = NULL;
9132 code->block = NULL;
9133 if (!ns->code)
9134 ns->code = new_st;
9135 else
9136 ns->code->next = new_st;
9137 code = new_st;
9138 code->op = EXEC_SELECT_TYPE;
9139
9140 /* Use the intrinsic LOC function to generate an integer expression
9141 for the vtable of the selector. Note that the rank of the selector
9142 expression has to be set to zero. */
9143 gfc_add_vptr_component (code->expr1);
9144 code->expr1->rank = 0;
9145 code->expr1 = build_loc_call (code->expr1);
9146 selector_expr = code->expr1->value.function.actual->expr;
9147
9148 /* Loop over TYPE IS / CLASS IS cases. */
9149 for (body = code->block; body; body = body->block)
9150 {
9151 gfc_symbol *vtab;
9152 gfc_expr *e;
9153 c = body->ext.block.case_list;
9154
9155 /* Generate an index integer expression for address of the
9156 TYPE/CLASS vtable and store it in c->low. The hash expression
9157 is stored in c->high and is used to resolve intrinsic cases. */
9158 if (c->ts.type != BT_UNKNOWN)
9159 {
9160 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9161 {
9162 vtab = gfc_find_derived_vtab (c->ts.u.derived);
9163 gcc_assert (vtab);
9164 c->high = gfc_get_int_expr (gfc_integer_4_kind, NULL,
9165 c->ts.u.derived->hash_value);
9166 }
9167 else
9168 {
9169 vtab = gfc_find_vtab (&c->ts);
9170 gcc_assert (vtab && CLASS_DATA (vtab)->initializer);
9171 e = CLASS_DATA (vtab)->initializer;
9172 c->high = gfc_copy_expr (e);
9173 if (c->high->ts.kind != gfc_integer_4_kind)
9174 {
9175 gfc_typespec ts;
9176 ts.kind = gfc_integer_4_kind;
9177 ts.type = BT_INTEGER;
9178 gfc_convert_type_warn (c->high, &ts, 2, 0);
9179 }
9180 }
9181
9182 e = gfc_lval_expr_from_sym (vtab);
9183 c->low = build_loc_call (e);
9184 }
9185 else
9186 continue;
9187
9188 /* Associate temporary to selector. This should only be done
9189 when this case is actually true, so build a new ASSOCIATE
9190 that does precisely this here (instead of using the
9191 'global' one). */
9192
9193 if (c->ts.type == BT_CLASS)
9194 sprintf (name, "__tmp_class_%s", c->ts.u.derived->name);
9195 else if (c->ts.type == BT_DERIVED)
9196 sprintf (name, "__tmp_type_%s", c->ts.u.derived->name);
9197 else if (c->ts.type == BT_CHARACTER)
9198 {
9199 HOST_WIDE_INT charlen = 0;
9200 if (c->ts.u.cl && c->ts.u.cl->length
9201 && c->ts.u.cl->length->expr_type == EXPR_CONSTANT)
9202 charlen = gfc_mpz_get_hwi (c->ts.u.cl->length->value.integer);
9203 snprintf (name, sizeof (name),
9204 "__tmp_%s_" HOST_WIDE_INT_PRINT_DEC "_%d",
9205 gfc_basic_typename (c->ts.type), charlen, c->ts.kind);
9206 }
9207 else
9208 sprintf (name, "__tmp_%s_%d", gfc_basic_typename (c->ts.type),
9209 c->ts.kind);
9210
9211 st = gfc_find_symtree (ns->sym_root, name);
9212 gcc_assert (st->n.sym->assoc);
9213 st->n.sym->assoc->target = gfc_get_variable_expr (selector_expr->symtree);
9214 st->n.sym->assoc->target->where = selector_expr->where;
9215 if (c->ts.type != BT_CLASS && c->ts.type != BT_UNKNOWN)
9216 {
9217 gfc_add_data_component (st->n.sym->assoc->target);
9218 /* Fixup the target expression if necessary. */
9219 if (rank)
9220 fixup_array_ref (&st->n.sym->assoc->target, NULL, rank, ref);
9221 }
9222
9223 new_st = gfc_get_code (EXEC_BLOCK);
9224 new_st->ext.block.ns = gfc_build_block_ns (ns);
9225 new_st->ext.block.ns->code = body->next;
9226 body->next = new_st;
9227
9228 /* Chain in the new list only if it is marked as dangling. Otherwise
9229 there is a CASE label overlap and this is already used. Just ignore,
9230 the error is diagnosed elsewhere. */
9231 if (st->n.sym->assoc->dangling)
9232 {
9233 new_st->ext.block.assoc = st->n.sym->assoc;
9234 st->n.sym->assoc->dangling = 0;
9235 }
9236
9237 resolve_assoc_var (st->n.sym, false);
9238 }
9239
9240 /* Take out CLASS IS cases for separate treatment. */
9241 body = code;
9242 while (body && body->block)
9243 {
9244 if (body->block->ext.block.case_list->ts.type == BT_CLASS)
9245 {
9246 /* Add to class_is list. */
9247 if (class_is == NULL)
9248 {
9249 class_is = body->block;
9250 tail = class_is;
9251 }
9252 else
9253 {
9254 for (tail = class_is; tail->block; tail = tail->block) ;
9255 tail->block = body->block;
9256 tail = tail->block;
9257 }
9258 /* Remove from EXEC_SELECT list. */
9259 body->block = body->block->block;
9260 tail->block = NULL;
9261 }
9262 else
9263 body = body->block;
9264 }
9265
9266 if (class_is)
9267 {
9268 gfc_symbol *vtab;
9269
9270 if (!default_case)
9271 {
9272 /* Add a default case to hold the CLASS IS cases. */
9273 for (tail = code; tail->block; tail = tail->block) ;
9274 tail->block = gfc_get_code (EXEC_SELECT_TYPE);
9275 tail = tail->block;
9276 tail->ext.block.case_list = gfc_get_case ();
9277 tail->ext.block.case_list->ts.type = BT_UNKNOWN;
9278 tail->next = NULL;
9279 default_case = tail;
9280 }
9281
9282 /* More than one CLASS IS block? */
9283 if (class_is->block)
9284 {
9285 gfc_code **c1,*c2;
9286 bool swapped;
9287 /* Sort CLASS IS blocks by extension level. */
9288 do
9289 {
9290 swapped = false;
9291 for (c1 = &class_is; (*c1) && (*c1)->block; c1 = &((*c1)->block))
9292 {
9293 c2 = (*c1)->block;
9294 /* F03:C817 (check for doubles). */
9295 if ((*c1)->ext.block.case_list->ts.u.derived->hash_value
9296 == c2->ext.block.case_list->ts.u.derived->hash_value)
9297 {
9298 gfc_error ("Double CLASS IS block in SELECT TYPE "
9299 "statement at %L",
9300 &c2->ext.block.case_list->where);
9301 return;
9302 }
9303 if ((*c1)->ext.block.case_list->ts.u.derived->attr.extension
9304 < c2->ext.block.case_list->ts.u.derived->attr.extension)
9305 {
9306 /* Swap. */
9307 (*c1)->block = c2->block;
9308 c2->block = *c1;
9309 *c1 = c2;
9310 swapped = true;
9311 }
9312 }
9313 }
9314 while (swapped);
9315 }
9316
9317 /* Generate IF chain. */
9318 if_st = gfc_get_code (EXEC_IF);
9319 new_st = if_st;
9320 for (body = class_is; body; body = body->block)
9321 {
9322 new_st->block = gfc_get_code (EXEC_IF);
9323 new_st = new_st->block;
9324 /* Set up IF condition: Call _gfortran_is_extension_of. */
9325 new_st->expr1 = gfc_get_expr ();
9326 new_st->expr1->expr_type = EXPR_FUNCTION;
9327 new_st->expr1->ts.type = BT_LOGICAL;
9328 new_st->expr1->ts.kind = 4;
9329 new_st->expr1->value.function.name = gfc_get_string (PREFIX ("is_extension_of"));
9330 new_st->expr1->value.function.isym = XCNEW (gfc_intrinsic_sym);
9331 new_st->expr1->value.function.isym->id = GFC_ISYM_EXTENDS_TYPE_OF;
9332 /* Set up arguments. */
9333 new_st->expr1->value.function.actual = gfc_get_actual_arglist ();
9334 new_st->expr1->value.function.actual->expr = gfc_get_variable_expr (selector_expr->symtree);
9335 new_st->expr1->value.function.actual->expr->where = code->loc;
9336 new_st->expr1->where = code->loc;
9337 gfc_add_vptr_component (new_st->expr1->value.function.actual->expr);
9338 vtab = gfc_find_derived_vtab (body->ext.block.case_list->ts.u.derived);
9339 st = gfc_find_symtree (vtab->ns->sym_root, vtab->name);
9340 new_st->expr1->value.function.actual->next = gfc_get_actual_arglist ();
9341 new_st->expr1->value.function.actual->next->expr = gfc_get_variable_expr (st);
9342 new_st->expr1->value.function.actual->next->expr->where = code->loc;
9343 new_st->next = body->next;
9344 }
9345 if (default_case->next)
9346 {
9347 new_st->block = gfc_get_code (EXEC_IF);
9348 new_st = new_st->block;
9349 new_st->next = default_case->next;
9350 }
9351
9352 /* Replace CLASS DEFAULT code by the IF chain. */
9353 default_case->next = if_st;
9354 }
9355
9356 /* Resolve the internal code. This cannot be done earlier because
9357 it requires that the sym->assoc of selectors is set already. */
9358 gfc_current_ns = ns;
9359 gfc_resolve_blocks (code->block, gfc_current_ns);
9360 gfc_current_ns = old_ns;
9361
9362 if (ref)
9363 free (ref);
9364 }
9365
9366
9367 /* Resolve a transfer statement. This is making sure that:
9368 -- a derived type being transferred has only non-pointer components
9369 -- a derived type being transferred doesn't have private components, unless
9370 it's being transferred from the module where the type was defined
9371 -- we're not trying to transfer a whole assumed size array. */
9372
9373 static void
9374 resolve_transfer (gfc_code *code)
9375 {
9376 gfc_symbol *sym, *derived;
9377 gfc_ref *ref;
9378 gfc_expr *exp;
9379 bool write = false;
9380 bool formatted = false;
9381 gfc_dt *dt = code->ext.dt;
9382 gfc_symbol *dtio_sub = NULL;
9383
9384 exp = code->expr1;
9385
9386 while (exp != NULL && exp->expr_type == EXPR_OP
9387 && exp->value.op.op == INTRINSIC_PARENTHESES)
9388 exp = exp->value.op.op1;
9389
9390 if (exp && exp->expr_type == EXPR_NULL
9391 && code->ext.dt)
9392 {
9393 gfc_error ("Invalid context for NULL () intrinsic at %L",
9394 &exp->where);
9395 return;
9396 }
9397
9398 if (exp == NULL || (exp->expr_type != EXPR_VARIABLE
9399 && exp->expr_type != EXPR_FUNCTION
9400 && exp->expr_type != EXPR_STRUCTURE))
9401 return;
9402
9403 /* If we are reading, the variable will be changed. Note that
9404 code->ext.dt may be NULL if the TRANSFER is related to
9405 an INQUIRE statement -- but in this case, we are not reading, either. */
9406 if (dt && dt->dt_io_kind->value.iokind == M_READ
9407 && !gfc_check_vardef_context (exp, false, false, false,
9408 _("item in READ")))
9409 return;
9410
9411 const gfc_typespec *ts = exp->expr_type == EXPR_STRUCTURE
9412 || exp->expr_type == EXPR_FUNCTION
9413 ? &exp->ts : &exp->symtree->n.sym->ts;
9414
9415 /* Go to actual component transferred. */
9416 for (ref = exp->ref; ref; ref = ref->next)
9417 if (ref->type == REF_COMPONENT)
9418 ts = &ref->u.c.component->ts;
9419
9420 if (dt && dt->dt_io_kind->value.iokind != M_INQUIRE
9421 && (ts->type == BT_DERIVED || ts->type == BT_CLASS))
9422 {
9423 derived = ts->u.derived;
9424
9425 /* Determine when to use the formatted DTIO procedure. */
9426 if (dt && (dt->format_expr || dt->format_label))
9427 formatted = true;
9428
9429 write = dt->dt_io_kind->value.iokind == M_WRITE
9430 || dt->dt_io_kind->value.iokind == M_PRINT;
9431 dtio_sub = gfc_find_specific_dtio_proc (derived, write, formatted);
9432
9433 if (dtio_sub != NULL && exp->expr_type == EXPR_VARIABLE)
9434 {
9435 dt->udtio = exp;
9436 sym = exp->symtree->n.sym->ns->proc_name;
9437 /* Check to see if this is a nested DTIO call, with the
9438 dummy as the io-list object. */
9439 if (sym && sym == dtio_sub && sym->formal
9440 && sym->formal->sym == exp->symtree->n.sym
9441 && exp->ref == NULL)
9442 {
9443 if (!sym->attr.recursive)
9444 {
9445 gfc_error ("DTIO %s procedure at %L must be recursive",
9446 sym->name, &sym->declared_at);
9447 return;
9448 }
9449 }
9450 }
9451 }
9452
9453 if (ts->type == BT_CLASS && dtio_sub == NULL)
9454 {
9455 gfc_error ("Data transfer element at %L cannot be polymorphic unless "
9456 "it is processed by a defined input/output procedure",
9457 &code->loc);
9458 return;
9459 }
9460
9461 if (ts->type == BT_DERIVED)
9462 {
9463 /* Check that transferred derived type doesn't contain POINTER
9464 components unless it is processed by a defined input/output
9465 procedure". */
9466 if (ts->u.derived->attr.pointer_comp && dtio_sub == NULL)
9467 {
9468 gfc_error ("Data transfer element at %L cannot have POINTER "
9469 "components unless it is processed by a defined "
9470 "input/output procedure", &code->loc);
9471 return;
9472 }
9473
9474 /* F08:C935. */
9475 if (ts->u.derived->attr.proc_pointer_comp)
9476 {
9477 gfc_error ("Data transfer element at %L cannot have "
9478 "procedure pointer components", &code->loc);
9479 return;
9480 }
9481
9482 if (ts->u.derived->attr.alloc_comp && dtio_sub == NULL)
9483 {
9484 gfc_error ("Data transfer element at %L cannot have ALLOCATABLE "
9485 "components unless it is processed by a defined "
9486 "input/output procedure", &code->loc);
9487 return;
9488 }
9489
9490 /* C_PTR and C_FUNPTR have private components which means they cannot
9491 be printed. However, if -std=gnu and not -pedantic, allow
9492 the component to be printed to help debugging. */
9493 if (ts->u.derived->ts.f90_type == BT_VOID)
9494 {
9495 if (!gfc_notify_std (GFC_STD_GNU, "Data transfer element at %L "
9496 "cannot have PRIVATE components", &code->loc))
9497 return;
9498 }
9499 else if (derived_inaccessible (ts->u.derived) && dtio_sub == NULL)
9500 {
9501 gfc_error ("Data transfer element at %L cannot have "
9502 "PRIVATE components unless it is processed by "
9503 "a defined input/output procedure", &code->loc);
9504 return;
9505 }
9506 }
9507
9508 if (exp->expr_type == EXPR_STRUCTURE)
9509 return;
9510
9511 sym = exp->symtree->n.sym;
9512
9513 if (sym->as != NULL && sym->as->type == AS_ASSUMED_SIZE && exp->ref
9514 && exp->ref->type == REF_ARRAY && exp->ref->u.ar.type == AR_FULL)
9515 {
9516 gfc_error ("Data transfer element at %L cannot be a full reference to "
9517 "an assumed-size array", &code->loc);
9518 return;
9519 }
9520
9521 if (async_io_dt && exp->expr_type == EXPR_VARIABLE)
9522 exp->symtree->n.sym->attr.asynchronous = 1;
9523 }
9524
9525
9526 /*********** Toplevel code resolution subroutines ***********/
9527
9528 /* Find the set of labels that are reachable from this block. We also
9529 record the last statement in each block. */
9530
9531 static void
9532 find_reachable_labels (gfc_code *block)
9533 {
9534 gfc_code *c;
9535
9536 if (!block)
9537 return;
9538
9539 cs_base->reachable_labels = bitmap_alloc (&labels_obstack);
9540
9541 /* Collect labels in this block. We don't keep those corresponding
9542 to END {IF|SELECT}, these are checked in resolve_branch by going
9543 up through the code_stack. */
9544 for (c = block; c; c = c->next)
9545 {
9546 if (c->here && c->op != EXEC_END_NESTED_BLOCK)
9547 bitmap_set_bit (cs_base->reachable_labels, c->here->value);
9548 }
9549
9550 /* Merge with labels from parent block. */
9551 if (cs_base->prev)
9552 {
9553 gcc_assert (cs_base->prev->reachable_labels);
9554 bitmap_ior_into (cs_base->reachable_labels,
9555 cs_base->prev->reachable_labels);
9556 }
9557 }
9558
9559
9560 static void
9561 resolve_lock_unlock_event (gfc_code *code)
9562 {
9563 if (code->expr1->expr_type == EXPR_FUNCTION
9564 && code->expr1->value.function.isym
9565 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
9566 remove_caf_get_intrinsic (code->expr1);
9567
9568 if ((code->op == EXEC_LOCK || code->op == EXEC_UNLOCK)
9569 && (code->expr1->ts.type != BT_DERIVED
9570 || code->expr1->expr_type != EXPR_VARIABLE
9571 || code->expr1->ts.u.derived->from_intmod != INTMOD_ISO_FORTRAN_ENV
9572 || code->expr1->ts.u.derived->intmod_sym_id != ISOFORTRAN_LOCK_TYPE
9573 || code->expr1->rank != 0
9574 || (!gfc_is_coarray (code->expr1) &&
9575 !gfc_is_coindexed (code->expr1))))
9576 gfc_error ("Lock variable at %L must be a scalar of type LOCK_TYPE",
9577 &code->expr1->where);
9578 else if ((code->op == EXEC_EVENT_POST || code->op == EXEC_EVENT_WAIT)
9579 && (code->expr1->ts.type != BT_DERIVED
9580 || code->expr1->expr_type != EXPR_VARIABLE
9581 || code->expr1->ts.u.derived->from_intmod
9582 != INTMOD_ISO_FORTRAN_ENV
9583 || code->expr1->ts.u.derived->intmod_sym_id
9584 != ISOFORTRAN_EVENT_TYPE
9585 || code->expr1->rank != 0))
9586 gfc_error ("Event variable at %L must be a scalar of type EVENT_TYPE",
9587 &code->expr1->where);
9588 else if (code->op == EXEC_EVENT_POST && !gfc_is_coarray (code->expr1)
9589 && !gfc_is_coindexed (code->expr1))
9590 gfc_error ("Event variable argument at %L must be a coarray or coindexed",
9591 &code->expr1->where);
9592 else if (code->op == EXEC_EVENT_WAIT && !gfc_is_coarray (code->expr1))
9593 gfc_error ("Event variable argument at %L must be a coarray but not "
9594 "coindexed", &code->expr1->where);
9595
9596 /* Check STAT. */
9597 if (code->expr2
9598 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9599 || code->expr2->expr_type != EXPR_VARIABLE))
9600 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9601 &code->expr2->where);
9602
9603 if (code->expr2
9604 && !gfc_check_vardef_context (code->expr2, false, false, false,
9605 _("STAT variable")))
9606 return;
9607
9608 /* Check ERRMSG. */
9609 if (code->expr3
9610 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9611 || code->expr3->expr_type != EXPR_VARIABLE))
9612 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9613 &code->expr3->where);
9614
9615 if (code->expr3
9616 && !gfc_check_vardef_context (code->expr3, false, false, false,
9617 _("ERRMSG variable")))
9618 return;
9619
9620 /* Check for LOCK the ACQUIRED_LOCK. */
9621 if (code->op != EXEC_EVENT_WAIT && code->expr4
9622 && (code->expr4->ts.type != BT_LOGICAL || code->expr4->rank != 0
9623 || code->expr4->expr_type != EXPR_VARIABLE))
9624 gfc_error ("ACQUIRED_LOCK= argument at %L must be a scalar LOGICAL "
9625 "variable", &code->expr4->where);
9626
9627 if (code->op != EXEC_EVENT_WAIT && code->expr4
9628 && !gfc_check_vardef_context (code->expr4, false, false, false,
9629 _("ACQUIRED_LOCK variable")))
9630 return;
9631
9632 /* Check for EVENT WAIT the UNTIL_COUNT. */
9633 if (code->op == EXEC_EVENT_WAIT && code->expr4)
9634 {
9635 if (!gfc_resolve_expr (code->expr4) || code->expr4->ts.type != BT_INTEGER
9636 || code->expr4->rank != 0)
9637 gfc_error ("UNTIL_COUNT= argument at %L must be a scalar INTEGER "
9638 "expression", &code->expr4->where);
9639 }
9640 }
9641
9642
9643 static void
9644 resolve_critical (gfc_code *code)
9645 {
9646 gfc_symtree *symtree;
9647 gfc_symbol *lock_type;
9648 char name[GFC_MAX_SYMBOL_LEN];
9649 static int serial = 0;
9650
9651 if (flag_coarray != GFC_FCOARRAY_LIB)
9652 return;
9653
9654 symtree = gfc_find_symtree (gfc_current_ns->sym_root,
9655 GFC_PREFIX ("lock_type"));
9656 if (symtree)
9657 lock_type = symtree->n.sym;
9658 else
9659 {
9660 if (gfc_get_sym_tree (GFC_PREFIX ("lock_type"), gfc_current_ns, &symtree,
9661 false) != 0)
9662 gcc_unreachable ();
9663 lock_type = symtree->n.sym;
9664 lock_type->attr.flavor = FL_DERIVED;
9665 lock_type->attr.zero_comp = 1;
9666 lock_type->from_intmod = INTMOD_ISO_FORTRAN_ENV;
9667 lock_type->intmod_sym_id = ISOFORTRAN_LOCK_TYPE;
9668 }
9669
9670 sprintf(name, GFC_PREFIX ("lock_var") "%d",serial++);
9671 if (gfc_get_sym_tree (name, gfc_current_ns, &symtree, false) != 0)
9672 gcc_unreachable ();
9673
9674 code->resolved_sym = symtree->n.sym;
9675 symtree->n.sym->attr.flavor = FL_VARIABLE;
9676 symtree->n.sym->attr.referenced = 1;
9677 symtree->n.sym->attr.artificial = 1;
9678 symtree->n.sym->attr.codimension = 1;
9679 symtree->n.sym->ts.type = BT_DERIVED;
9680 symtree->n.sym->ts.u.derived = lock_type;
9681 symtree->n.sym->as = gfc_get_array_spec ();
9682 symtree->n.sym->as->corank = 1;
9683 symtree->n.sym->as->type = AS_EXPLICIT;
9684 symtree->n.sym->as->cotype = AS_EXPLICIT;
9685 symtree->n.sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind,
9686 NULL, 1);
9687 gfc_commit_symbols();
9688 }
9689
9690
9691 static void
9692 resolve_sync (gfc_code *code)
9693 {
9694 /* Check imageset. The * case matches expr1 == NULL. */
9695 if (code->expr1)
9696 {
9697 if (code->expr1->ts.type != BT_INTEGER || code->expr1->rank > 1)
9698 gfc_error ("Imageset argument at %L must be a scalar or rank-1 "
9699 "INTEGER expression", &code->expr1->where);
9700 if (code->expr1->expr_type == EXPR_CONSTANT && code->expr1->rank == 0
9701 && mpz_cmp_si (code->expr1->value.integer, 1) < 0)
9702 gfc_error ("Imageset argument at %L must between 1 and num_images()",
9703 &code->expr1->where);
9704 else if (code->expr1->expr_type == EXPR_ARRAY
9705 && gfc_simplify_expr (code->expr1, 0))
9706 {
9707 gfc_constructor *cons;
9708 cons = gfc_constructor_first (code->expr1->value.constructor);
9709 for (; cons; cons = gfc_constructor_next (cons))
9710 if (cons->expr->expr_type == EXPR_CONSTANT
9711 && mpz_cmp_si (cons->expr->value.integer, 1) < 0)
9712 gfc_error ("Imageset argument at %L must between 1 and "
9713 "num_images()", &cons->expr->where);
9714 }
9715 }
9716
9717 /* Check STAT. */
9718 gfc_resolve_expr (code->expr2);
9719 if (code->expr2
9720 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9721 || code->expr2->expr_type != EXPR_VARIABLE))
9722 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9723 &code->expr2->where);
9724
9725 /* Check ERRMSG. */
9726 gfc_resolve_expr (code->expr3);
9727 if (code->expr3
9728 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9729 || code->expr3->expr_type != EXPR_VARIABLE))
9730 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9731 &code->expr3->where);
9732 }
9733
9734
9735 /* Given a branch to a label, see if the branch is conforming.
9736 The code node describes where the branch is located. */
9737
9738 static void
9739 resolve_branch (gfc_st_label *label, gfc_code *code)
9740 {
9741 code_stack *stack;
9742
9743 if (label == NULL)
9744 return;
9745
9746 /* Step one: is this a valid branching target? */
9747
9748 if (label->defined == ST_LABEL_UNKNOWN)
9749 {
9750 gfc_error ("Label %d referenced at %L is never defined", label->value,
9751 &code->loc);
9752 return;
9753 }
9754
9755 if (label->defined != ST_LABEL_TARGET && label->defined != ST_LABEL_DO_TARGET)
9756 {
9757 gfc_error ("Statement at %L is not a valid branch target statement "
9758 "for the branch statement at %L", &label->where, &code->loc);
9759 return;
9760 }
9761
9762 /* Step two: make sure this branch is not a branch to itself ;-) */
9763
9764 if (code->here == label)
9765 {
9766 gfc_warning (0,
9767 "Branch at %L may result in an infinite loop", &code->loc);
9768 return;
9769 }
9770
9771 /* Step three: See if the label is in the same block as the
9772 branching statement. The hard work has been done by setting up
9773 the bitmap reachable_labels. */
9774
9775 if (bitmap_bit_p (cs_base->reachable_labels, label->value))
9776 {
9777 /* Check now whether there is a CRITICAL construct; if so, check
9778 whether the label is still visible outside of the CRITICAL block,
9779 which is invalid. */
9780 for (stack = cs_base; stack; stack = stack->prev)
9781 {
9782 if (stack->current->op == EXEC_CRITICAL
9783 && bitmap_bit_p (stack->reachable_labels, label->value))
9784 gfc_error ("GOTO statement at %L leaves CRITICAL construct for "
9785 "label at %L", &code->loc, &label->where);
9786 else if (stack->current->op == EXEC_DO_CONCURRENT
9787 && bitmap_bit_p (stack->reachable_labels, label->value))
9788 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct "
9789 "for label at %L", &code->loc, &label->where);
9790 }
9791
9792 return;
9793 }
9794
9795 /* Step four: If we haven't found the label in the bitmap, it may
9796 still be the label of the END of the enclosing block, in which
9797 case we find it by going up the code_stack. */
9798
9799 for (stack = cs_base; stack; stack = stack->prev)
9800 {
9801 if (stack->current->next && stack->current->next->here == label)
9802 break;
9803 if (stack->current->op == EXEC_CRITICAL)
9804 {
9805 /* Note: A label at END CRITICAL does not leave the CRITICAL
9806 construct as END CRITICAL is still part of it. */
9807 gfc_error ("GOTO statement at %L leaves CRITICAL construct for label"
9808 " at %L", &code->loc, &label->where);
9809 return;
9810 }
9811 else if (stack->current->op == EXEC_DO_CONCURRENT)
9812 {
9813 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct for "
9814 "label at %L", &code->loc, &label->where);
9815 return;
9816 }
9817 }
9818
9819 if (stack)
9820 {
9821 gcc_assert (stack->current->next->op == EXEC_END_NESTED_BLOCK);
9822 return;
9823 }
9824
9825 /* The label is not in an enclosing block, so illegal. This was
9826 allowed in Fortran 66, so we allow it as extension. No
9827 further checks are necessary in this case. */
9828 gfc_notify_std (GFC_STD_LEGACY, "Label at %L is not in the same block "
9829 "as the GOTO statement at %L", &label->where,
9830 &code->loc);
9831 return;
9832 }
9833
9834
9835 /* Check whether EXPR1 has the same shape as EXPR2. */
9836
9837 static bool
9838 resolve_where_shape (gfc_expr *expr1, gfc_expr *expr2)
9839 {
9840 mpz_t shape[GFC_MAX_DIMENSIONS];
9841 mpz_t shape2[GFC_MAX_DIMENSIONS];
9842 bool result = false;
9843 int i;
9844
9845 /* Compare the rank. */
9846 if (expr1->rank != expr2->rank)
9847 return result;
9848
9849 /* Compare the size of each dimension. */
9850 for (i=0; i<expr1->rank; i++)
9851 {
9852 if (!gfc_array_dimen_size (expr1, i, &shape[i]))
9853 goto ignore;
9854
9855 if (!gfc_array_dimen_size (expr2, i, &shape2[i]))
9856 goto ignore;
9857
9858 if (mpz_cmp (shape[i], shape2[i]))
9859 goto over;
9860 }
9861
9862 /* When either of the two expression is an assumed size array, we
9863 ignore the comparison of dimension sizes. */
9864 ignore:
9865 result = true;
9866
9867 over:
9868 gfc_clear_shape (shape, i);
9869 gfc_clear_shape (shape2, i);
9870 return result;
9871 }
9872
9873
9874 /* Check whether a WHERE assignment target or a WHERE mask expression
9875 has the same shape as the outmost WHERE mask expression. */
9876
9877 static void
9878 resolve_where (gfc_code *code, gfc_expr *mask)
9879 {
9880 gfc_code *cblock;
9881 gfc_code *cnext;
9882 gfc_expr *e = NULL;
9883
9884 cblock = code->block;
9885
9886 /* Store the first WHERE mask-expr of the WHERE statement or construct.
9887 In case of nested WHERE, only the outmost one is stored. */
9888 if (mask == NULL) /* outmost WHERE */
9889 e = cblock->expr1;
9890 else /* inner WHERE */
9891 e = mask;
9892
9893 while (cblock)
9894 {
9895 if (cblock->expr1)
9896 {
9897 /* Check if the mask-expr has a consistent shape with the
9898 outmost WHERE mask-expr. */
9899 if (!resolve_where_shape (cblock->expr1, e))
9900 gfc_error ("WHERE mask at %L has inconsistent shape",
9901 &cblock->expr1->where);
9902 }
9903
9904 /* the assignment statement of a WHERE statement, or the first
9905 statement in where-body-construct of a WHERE construct */
9906 cnext = cblock->next;
9907 while (cnext)
9908 {
9909 switch (cnext->op)
9910 {
9911 /* WHERE assignment statement */
9912 case EXEC_ASSIGN:
9913
9914 /* Check shape consistent for WHERE assignment target. */
9915 if (e && !resolve_where_shape (cnext->expr1, e))
9916 gfc_error ("WHERE assignment target at %L has "
9917 "inconsistent shape", &cnext->expr1->where);
9918 break;
9919
9920
9921 case EXEC_ASSIGN_CALL:
9922 resolve_call (cnext);
9923 if (!cnext->resolved_sym->attr.elemental)
9924 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
9925 &cnext->ext.actual->expr->where);
9926 break;
9927
9928 /* WHERE or WHERE construct is part of a where-body-construct */
9929 case EXEC_WHERE:
9930 resolve_where (cnext, e);
9931 break;
9932
9933 default:
9934 gfc_error ("Unsupported statement inside WHERE at %L",
9935 &cnext->loc);
9936 }
9937 /* the next statement within the same where-body-construct */
9938 cnext = cnext->next;
9939 }
9940 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
9941 cblock = cblock->block;
9942 }
9943 }
9944
9945
9946 /* Resolve assignment in FORALL construct.
9947 NVAR is the number of FORALL index variables, and VAR_EXPR records the
9948 FORALL index variables. */
9949
9950 static void
9951 gfc_resolve_assign_in_forall (gfc_code *code, int nvar, gfc_expr **var_expr)
9952 {
9953 int n;
9954
9955 for (n = 0; n < nvar; n++)
9956 {
9957 gfc_symbol *forall_index;
9958
9959 forall_index = var_expr[n]->symtree->n.sym;
9960
9961 /* Check whether the assignment target is one of the FORALL index
9962 variable. */
9963 if ((code->expr1->expr_type == EXPR_VARIABLE)
9964 && (code->expr1->symtree->n.sym == forall_index))
9965 gfc_error ("Assignment to a FORALL index variable at %L",
9966 &code->expr1->where);
9967 else
9968 {
9969 /* If one of the FORALL index variables doesn't appear in the
9970 assignment variable, then there could be a many-to-one
9971 assignment. Emit a warning rather than an error because the
9972 mask could be resolving this problem. */
9973 if (!find_forall_index (code->expr1, forall_index, 0))
9974 gfc_warning (0, "The FORALL with index %qs is not used on the "
9975 "left side of the assignment at %L and so might "
9976 "cause multiple assignment to this object",
9977 var_expr[n]->symtree->name, &code->expr1->where);
9978 }
9979 }
9980 }
9981
9982
9983 /* Resolve WHERE statement in FORALL construct. */
9984
9985 static void
9986 gfc_resolve_where_code_in_forall (gfc_code *code, int nvar,
9987 gfc_expr **var_expr)
9988 {
9989 gfc_code *cblock;
9990 gfc_code *cnext;
9991
9992 cblock = code->block;
9993 while (cblock)
9994 {
9995 /* the assignment statement of a WHERE statement, or the first
9996 statement in where-body-construct of a WHERE construct */
9997 cnext = cblock->next;
9998 while (cnext)
9999 {
10000 switch (cnext->op)
10001 {
10002 /* WHERE assignment statement */
10003 case EXEC_ASSIGN:
10004 gfc_resolve_assign_in_forall (cnext, nvar, var_expr);
10005 break;
10006
10007 /* WHERE operator assignment statement */
10008 case EXEC_ASSIGN_CALL:
10009 resolve_call (cnext);
10010 if (!cnext->resolved_sym->attr.elemental)
10011 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
10012 &cnext->ext.actual->expr->where);
10013 break;
10014
10015 /* WHERE or WHERE construct is part of a where-body-construct */
10016 case EXEC_WHERE:
10017 gfc_resolve_where_code_in_forall (cnext, nvar, var_expr);
10018 break;
10019
10020 default:
10021 gfc_error ("Unsupported statement inside WHERE at %L",
10022 &cnext->loc);
10023 }
10024 /* the next statement within the same where-body-construct */
10025 cnext = cnext->next;
10026 }
10027 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
10028 cblock = cblock->block;
10029 }
10030 }
10031
10032
10033 /* Traverse the FORALL body to check whether the following errors exist:
10034 1. For assignment, check if a many-to-one assignment happens.
10035 2. For WHERE statement, check the WHERE body to see if there is any
10036 many-to-one assignment. */
10037
10038 static void
10039 gfc_resolve_forall_body (gfc_code *code, int nvar, gfc_expr **var_expr)
10040 {
10041 gfc_code *c;
10042
10043 c = code->block->next;
10044 while (c)
10045 {
10046 switch (c->op)
10047 {
10048 case EXEC_ASSIGN:
10049 case EXEC_POINTER_ASSIGN:
10050 gfc_resolve_assign_in_forall (c, nvar, var_expr);
10051 break;
10052
10053 case EXEC_ASSIGN_CALL:
10054 resolve_call (c);
10055 break;
10056
10057 /* Because the gfc_resolve_blocks() will handle the nested FORALL,
10058 there is no need to handle it here. */
10059 case EXEC_FORALL:
10060 break;
10061 case EXEC_WHERE:
10062 gfc_resolve_where_code_in_forall(c, nvar, var_expr);
10063 break;
10064 default:
10065 break;
10066 }
10067 /* The next statement in the FORALL body. */
10068 c = c->next;
10069 }
10070 }
10071
10072
10073 /* Counts the number of iterators needed inside a forall construct, including
10074 nested forall constructs. This is used to allocate the needed memory
10075 in gfc_resolve_forall. */
10076
10077 static int
10078 gfc_count_forall_iterators (gfc_code *code)
10079 {
10080 int max_iters, sub_iters, current_iters;
10081 gfc_forall_iterator *fa;
10082
10083 gcc_assert(code->op == EXEC_FORALL);
10084 max_iters = 0;
10085 current_iters = 0;
10086
10087 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
10088 current_iters ++;
10089
10090 code = code->block->next;
10091
10092 while (code)
10093 {
10094 if (code->op == EXEC_FORALL)
10095 {
10096 sub_iters = gfc_count_forall_iterators (code);
10097 if (sub_iters > max_iters)
10098 max_iters = sub_iters;
10099 }
10100 code = code->next;
10101 }
10102
10103 return current_iters + max_iters;
10104 }
10105
10106
10107 /* Given a FORALL construct, first resolve the FORALL iterator, then call
10108 gfc_resolve_forall_body to resolve the FORALL body. */
10109
10110 static void
10111 gfc_resolve_forall (gfc_code *code, gfc_namespace *ns, int forall_save)
10112 {
10113 static gfc_expr **var_expr;
10114 static int total_var = 0;
10115 static int nvar = 0;
10116 int i, old_nvar, tmp;
10117 gfc_forall_iterator *fa;
10118
10119 old_nvar = nvar;
10120
10121 if (!gfc_notify_std (GFC_STD_F2018_OBS, "FORALL construct at %L", &code->loc))
10122 return;
10123
10124 /* Start to resolve a FORALL construct */
10125 if (forall_save == 0)
10126 {
10127 /* Count the total number of FORALL indices in the nested FORALL
10128 construct in order to allocate the VAR_EXPR with proper size. */
10129 total_var = gfc_count_forall_iterators (code);
10130
10131 /* Allocate VAR_EXPR with NUMBER_OF_FORALL_INDEX elements. */
10132 var_expr = XCNEWVEC (gfc_expr *, total_var);
10133 }
10134
10135 /* The information about FORALL iterator, including FORALL indices start, end
10136 and stride. An outer FORALL indice cannot appear in start, end or stride. */
10137 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
10138 {
10139 /* Fortran 20008: C738 (R753). */
10140 if (fa->var->ref && fa->var->ref->type == REF_ARRAY)
10141 {
10142 gfc_error ("FORALL index-name at %L must be a scalar variable "
10143 "of type integer", &fa->var->where);
10144 continue;
10145 }
10146
10147 /* Check if any outer FORALL index name is the same as the current
10148 one. */
10149 for (i = 0; i < nvar; i++)
10150 {
10151 if (fa->var->symtree->n.sym == var_expr[i]->symtree->n.sym)
10152 gfc_error ("An outer FORALL construct already has an index "
10153 "with this name %L", &fa->var->where);
10154 }
10155
10156 /* Record the current FORALL index. */
10157 var_expr[nvar] = gfc_copy_expr (fa->var);
10158
10159 nvar++;
10160
10161 /* No memory leak. */
10162 gcc_assert (nvar <= total_var);
10163 }
10164
10165 /* Resolve the FORALL body. */
10166 gfc_resolve_forall_body (code, nvar, var_expr);
10167
10168 /* May call gfc_resolve_forall to resolve the inner FORALL loop. */
10169 gfc_resolve_blocks (code->block, ns);
10170
10171 tmp = nvar;
10172 nvar = old_nvar;
10173 /* Free only the VAR_EXPRs allocated in this frame. */
10174 for (i = nvar; i < tmp; i++)
10175 gfc_free_expr (var_expr[i]);
10176
10177 if (nvar == 0)
10178 {
10179 /* We are in the outermost FORALL construct. */
10180 gcc_assert (forall_save == 0);
10181
10182 /* VAR_EXPR is not needed any more. */
10183 free (var_expr);
10184 total_var = 0;
10185 }
10186 }
10187
10188
10189 /* Resolve a BLOCK construct statement. */
10190
10191 static void
10192 resolve_block_construct (gfc_code* code)
10193 {
10194 /* Resolve the BLOCK's namespace. */
10195 gfc_resolve (code->ext.block.ns);
10196
10197 /* For an ASSOCIATE block, the associations (and their targets) are already
10198 resolved during resolve_symbol. */
10199 }
10200
10201
10202 /* Resolve lists of blocks found in IF, SELECT CASE, WHERE, FORALL, GOTO and
10203 DO code nodes. */
10204
10205 void
10206 gfc_resolve_blocks (gfc_code *b, gfc_namespace *ns)
10207 {
10208 bool t;
10209
10210 for (; b; b = b->block)
10211 {
10212 t = gfc_resolve_expr (b->expr1);
10213 if (!gfc_resolve_expr (b->expr2))
10214 t = false;
10215
10216 switch (b->op)
10217 {
10218 case EXEC_IF:
10219 if (t && b->expr1 != NULL
10220 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank != 0))
10221 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
10222 &b->expr1->where);
10223 break;
10224
10225 case EXEC_WHERE:
10226 if (t
10227 && b->expr1 != NULL
10228 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank == 0))
10229 gfc_error ("WHERE/ELSEWHERE clause at %L requires a LOGICAL array",
10230 &b->expr1->where);
10231 break;
10232
10233 case EXEC_GOTO:
10234 resolve_branch (b->label1, b);
10235 break;
10236
10237 case EXEC_BLOCK:
10238 resolve_block_construct (b);
10239 break;
10240
10241 case EXEC_SELECT:
10242 case EXEC_SELECT_TYPE:
10243 case EXEC_FORALL:
10244 case EXEC_DO:
10245 case EXEC_DO_WHILE:
10246 case EXEC_DO_CONCURRENT:
10247 case EXEC_CRITICAL:
10248 case EXEC_READ:
10249 case EXEC_WRITE:
10250 case EXEC_IOLENGTH:
10251 case EXEC_WAIT:
10252 break;
10253
10254 case EXEC_OMP_ATOMIC:
10255 case EXEC_OACC_ATOMIC:
10256 {
10257 gfc_omp_atomic_op aop
10258 = (gfc_omp_atomic_op) (b->ext.omp_atomic & GFC_OMP_ATOMIC_MASK);
10259
10260 /* Verify this before calling gfc_resolve_code, which might
10261 change it. */
10262 gcc_assert (b->next && b->next->op == EXEC_ASSIGN);
10263 gcc_assert (((aop != GFC_OMP_ATOMIC_CAPTURE)
10264 && b->next->next == NULL)
10265 || ((aop == GFC_OMP_ATOMIC_CAPTURE)
10266 && b->next->next != NULL
10267 && b->next->next->op == EXEC_ASSIGN
10268 && b->next->next->next == NULL));
10269 }
10270 break;
10271
10272 case EXEC_OACC_PARALLEL_LOOP:
10273 case EXEC_OACC_PARALLEL:
10274 case EXEC_OACC_KERNELS_LOOP:
10275 case EXEC_OACC_KERNELS:
10276 case EXEC_OACC_DATA:
10277 case EXEC_OACC_HOST_DATA:
10278 case EXEC_OACC_LOOP:
10279 case EXEC_OACC_UPDATE:
10280 case EXEC_OACC_WAIT:
10281 case EXEC_OACC_CACHE:
10282 case EXEC_OACC_ENTER_DATA:
10283 case EXEC_OACC_EXIT_DATA:
10284 case EXEC_OACC_ROUTINE:
10285 case EXEC_OMP_CRITICAL:
10286 case EXEC_OMP_DISTRIBUTE:
10287 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
10288 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
10289 case EXEC_OMP_DISTRIBUTE_SIMD:
10290 case EXEC_OMP_DO:
10291 case EXEC_OMP_DO_SIMD:
10292 case EXEC_OMP_MASTER:
10293 case EXEC_OMP_ORDERED:
10294 case EXEC_OMP_PARALLEL:
10295 case EXEC_OMP_PARALLEL_DO:
10296 case EXEC_OMP_PARALLEL_DO_SIMD:
10297 case EXEC_OMP_PARALLEL_SECTIONS:
10298 case EXEC_OMP_PARALLEL_WORKSHARE:
10299 case EXEC_OMP_SECTIONS:
10300 case EXEC_OMP_SIMD:
10301 case EXEC_OMP_SINGLE:
10302 case EXEC_OMP_TARGET:
10303 case EXEC_OMP_TARGET_DATA:
10304 case EXEC_OMP_TARGET_ENTER_DATA:
10305 case EXEC_OMP_TARGET_EXIT_DATA:
10306 case EXEC_OMP_TARGET_PARALLEL:
10307 case EXEC_OMP_TARGET_PARALLEL_DO:
10308 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
10309 case EXEC_OMP_TARGET_SIMD:
10310 case EXEC_OMP_TARGET_TEAMS:
10311 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
10312 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
10313 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10314 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
10315 case EXEC_OMP_TARGET_UPDATE:
10316 case EXEC_OMP_TASK:
10317 case EXEC_OMP_TASKGROUP:
10318 case EXEC_OMP_TASKLOOP:
10319 case EXEC_OMP_TASKLOOP_SIMD:
10320 case EXEC_OMP_TASKWAIT:
10321 case EXEC_OMP_TASKYIELD:
10322 case EXEC_OMP_TEAMS:
10323 case EXEC_OMP_TEAMS_DISTRIBUTE:
10324 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
10325 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10326 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
10327 case EXEC_OMP_WORKSHARE:
10328 break;
10329
10330 default:
10331 gfc_internal_error ("gfc_resolve_blocks(): Bad block type");
10332 }
10333
10334 gfc_resolve_code (b->next, ns);
10335 }
10336 }
10337
10338
10339 /* Does everything to resolve an ordinary assignment. Returns true
10340 if this is an interface assignment. */
10341 static bool
10342 resolve_ordinary_assign (gfc_code *code, gfc_namespace *ns)
10343 {
10344 bool rval = false;
10345 gfc_expr *lhs;
10346 gfc_expr *rhs;
10347 int n;
10348 gfc_ref *ref;
10349 symbol_attribute attr;
10350
10351 if (gfc_extend_assign (code, ns))
10352 {
10353 gfc_expr** rhsptr;
10354
10355 if (code->op == EXEC_ASSIGN_CALL)
10356 {
10357 lhs = code->ext.actual->expr;
10358 rhsptr = &code->ext.actual->next->expr;
10359 }
10360 else
10361 {
10362 gfc_actual_arglist* args;
10363 gfc_typebound_proc* tbp;
10364
10365 gcc_assert (code->op == EXEC_COMPCALL);
10366
10367 args = code->expr1->value.compcall.actual;
10368 lhs = args->expr;
10369 rhsptr = &args->next->expr;
10370
10371 tbp = code->expr1->value.compcall.tbp;
10372 gcc_assert (!tbp->is_generic);
10373 }
10374
10375 /* Make a temporary rhs when there is a default initializer
10376 and rhs is the same symbol as the lhs. */
10377 if ((*rhsptr)->expr_type == EXPR_VARIABLE
10378 && (*rhsptr)->symtree->n.sym->ts.type == BT_DERIVED
10379 && gfc_has_default_initializer ((*rhsptr)->symtree->n.sym->ts.u.derived)
10380 && (lhs->symtree->n.sym == (*rhsptr)->symtree->n.sym))
10381 *rhsptr = gfc_get_parentheses (*rhsptr);
10382
10383 return true;
10384 }
10385
10386 lhs = code->expr1;
10387 rhs = code->expr2;
10388
10389 if (rhs->is_boz
10390 && !gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L outside "
10391 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
10392 &code->loc))
10393 return false;
10394
10395 /* Handle the case of a BOZ literal on the RHS. */
10396 if (rhs->is_boz && lhs->ts.type != BT_INTEGER)
10397 {
10398 int rc;
10399 if (warn_surprising)
10400 gfc_warning (OPT_Wsurprising,
10401 "BOZ literal at %L is bitwise transferred "
10402 "non-integer symbol %qs", &code->loc,
10403 lhs->symtree->n.sym->name);
10404
10405 if (!gfc_convert_boz (rhs, &lhs->ts))
10406 return false;
10407 if ((rc = gfc_range_check (rhs)) != ARITH_OK)
10408 {
10409 if (rc == ARITH_UNDERFLOW)
10410 gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
10411 ". This check can be disabled with the option "
10412 "%<-fno-range-check%>", &rhs->where);
10413 else if (rc == ARITH_OVERFLOW)
10414 gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
10415 ". This check can be disabled with the option "
10416 "%<-fno-range-check%>", &rhs->where);
10417 else if (rc == ARITH_NAN)
10418 gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
10419 ". This check can be disabled with the option "
10420 "%<-fno-range-check%>", &rhs->where);
10421 return false;
10422 }
10423 }
10424
10425 if (lhs->ts.type == BT_CHARACTER
10426 && warn_character_truncation)
10427 {
10428 HOST_WIDE_INT llen = 0, rlen = 0;
10429 if (lhs->ts.u.cl != NULL
10430 && lhs->ts.u.cl->length != NULL
10431 && lhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10432 llen = gfc_mpz_get_hwi (lhs->ts.u.cl->length->value.integer);
10433
10434 if (rhs->expr_type == EXPR_CONSTANT)
10435 rlen = rhs->value.character.length;
10436
10437 else if (rhs->ts.u.cl != NULL
10438 && rhs->ts.u.cl->length != NULL
10439 && rhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10440 rlen = gfc_mpz_get_hwi (rhs->ts.u.cl->length->value.integer);
10441
10442 if (rlen && llen && rlen > llen)
10443 gfc_warning_now (OPT_Wcharacter_truncation,
10444 "CHARACTER expression will be truncated "
10445 "in assignment (%ld/%ld) at %L",
10446 (long) llen, (long) rlen, &code->loc);
10447 }
10448
10449 /* Ensure that a vector index expression for the lvalue is evaluated
10450 to a temporary if the lvalue symbol is referenced in it. */
10451 if (lhs->rank)
10452 {
10453 for (ref = lhs->ref; ref; ref= ref->next)
10454 if (ref->type == REF_ARRAY)
10455 {
10456 for (n = 0; n < ref->u.ar.dimen; n++)
10457 if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR
10458 && gfc_find_sym_in_expr (lhs->symtree->n.sym,
10459 ref->u.ar.start[n]))
10460 ref->u.ar.start[n]
10461 = gfc_get_parentheses (ref->u.ar.start[n]);
10462 }
10463 }
10464
10465 if (gfc_pure (NULL))
10466 {
10467 if (lhs->ts.type == BT_DERIVED
10468 && lhs->expr_type == EXPR_VARIABLE
10469 && lhs->ts.u.derived->attr.pointer_comp
10470 && rhs->expr_type == EXPR_VARIABLE
10471 && (gfc_impure_variable (rhs->symtree->n.sym)
10472 || gfc_is_coindexed (rhs)))
10473 {
10474 /* F2008, C1283. */
10475 if (gfc_is_coindexed (rhs))
10476 gfc_error ("Coindexed expression at %L is assigned to "
10477 "a derived type variable with a POINTER "
10478 "component in a PURE procedure",
10479 &rhs->where);
10480 else
10481 gfc_error ("The impure variable at %L is assigned to "
10482 "a derived type variable with a POINTER "
10483 "component in a PURE procedure (12.6)",
10484 &rhs->where);
10485 return rval;
10486 }
10487
10488 /* Fortran 2008, C1283. */
10489 if (gfc_is_coindexed (lhs))
10490 {
10491 gfc_error ("Assignment to coindexed variable at %L in a PURE "
10492 "procedure", &rhs->where);
10493 return rval;
10494 }
10495 }
10496
10497 if (gfc_implicit_pure (NULL))
10498 {
10499 if (lhs->expr_type == EXPR_VARIABLE
10500 && lhs->symtree->n.sym != gfc_current_ns->proc_name
10501 && lhs->symtree->n.sym->ns != gfc_current_ns)
10502 gfc_unset_implicit_pure (NULL);
10503
10504 if (lhs->ts.type == BT_DERIVED
10505 && lhs->expr_type == EXPR_VARIABLE
10506 && lhs->ts.u.derived->attr.pointer_comp
10507 && rhs->expr_type == EXPR_VARIABLE
10508 && (gfc_impure_variable (rhs->symtree->n.sym)
10509 || gfc_is_coindexed (rhs)))
10510 gfc_unset_implicit_pure (NULL);
10511
10512 /* Fortran 2008, C1283. */
10513 if (gfc_is_coindexed (lhs))
10514 gfc_unset_implicit_pure (NULL);
10515 }
10516
10517 /* F2008, 7.2.1.2. */
10518 attr = gfc_expr_attr (lhs);
10519 if (lhs->ts.type == BT_CLASS && attr.allocatable)
10520 {
10521 if (attr.codimension)
10522 {
10523 gfc_error ("Assignment to polymorphic coarray at %L is not "
10524 "permitted", &lhs->where);
10525 return false;
10526 }
10527 if (!gfc_notify_std (GFC_STD_F2008, "Assignment to an allocatable "
10528 "polymorphic variable at %L", &lhs->where))
10529 return false;
10530 if (!flag_realloc_lhs)
10531 {
10532 gfc_error ("Assignment to an allocatable polymorphic variable at %L "
10533 "requires %<-frealloc-lhs%>", &lhs->where);
10534 return false;
10535 }
10536 }
10537 else if (lhs->ts.type == BT_CLASS)
10538 {
10539 gfc_error ("Nonallocatable variable must not be polymorphic in intrinsic "
10540 "assignment at %L - check that there is a matching specific "
10541 "subroutine for '=' operator", &lhs->where);
10542 return false;
10543 }
10544
10545 bool lhs_coindexed = gfc_is_coindexed (lhs);
10546
10547 /* F2008, Section 7.2.1.2. */
10548 if (lhs_coindexed && gfc_has_ultimate_allocatable (lhs))
10549 {
10550 gfc_error ("Coindexed variable must not have an allocatable ultimate "
10551 "component in assignment at %L", &lhs->where);
10552 return false;
10553 }
10554
10555 /* Assign the 'data' of a class object to a derived type. */
10556 if (lhs->ts.type == BT_DERIVED
10557 && rhs->ts.type == BT_CLASS
10558 && rhs->expr_type != EXPR_ARRAY)
10559 gfc_add_data_component (rhs);
10560
10561 /* Make sure there is a vtable and, in particular, a _copy for the
10562 rhs type. */
10563 if (UNLIMITED_POLY (lhs) && lhs->rank && rhs->ts.type != BT_CLASS)
10564 gfc_find_vtab (&rhs->ts);
10565
10566 bool caf_convert_to_send = flag_coarray == GFC_FCOARRAY_LIB
10567 && (lhs_coindexed
10568 || (code->expr2->expr_type == EXPR_FUNCTION
10569 && code->expr2->value.function.isym
10570 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET
10571 && (code->expr1->rank == 0 || code->expr2->rank != 0)
10572 && !gfc_expr_attr (rhs).allocatable
10573 && !gfc_has_vector_subscript (rhs)));
10574
10575 gfc_check_assign (lhs, rhs, 1, !caf_convert_to_send);
10576
10577 /* Insert a GFC_ISYM_CAF_SEND intrinsic, when the LHS is a coindexed variable.
10578 Additionally, insert this code when the RHS is a CAF as we then use the
10579 GFC_ISYM_CAF_SEND intrinsic just to avoid a temporary; but do not do so if
10580 the LHS is (re)allocatable or has a vector subscript. If the LHS is a
10581 noncoindexed array and the RHS is a coindexed scalar, use the normal code
10582 path. */
10583 if (caf_convert_to_send)
10584 {
10585 if (code->expr2->expr_type == EXPR_FUNCTION
10586 && code->expr2->value.function.isym
10587 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET)
10588 remove_caf_get_intrinsic (code->expr2);
10589 code->op = EXEC_CALL;
10590 gfc_get_sym_tree (GFC_PREFIX ("caf_send"), ns, &code->symtree, true);
10591 code->resolved_sym = code->symtree->n.sym;
10592 code->resolved_sym->attr.flavor = FL_PROCEDURE;
10593 code->resolved_sym->attr.intrinsic = 1;
10594 code->resolved_sym->attr.subroutine = 1;
10595 code->resolved_isym = gfc_intrinsic_subroutine_by_id (GFC_ISYM_CAF_SEND);
10596 gfc_commit_symbol (code->resolved_sym);
10597 code->ext.actual = gfc_get_actual_arglist ();
10598 code->ext.actual->expr = lhs;
10599 code->ext.actual->next = gfc_get_actual_arglist ();
10600 code->ext.actual->next->expr = rhs;
10601 code->expr1 = NULL;
10602 code->expr2 = NULL;
10603 }
10604
10605 return false;
10606 }
10607
10608
10609 /* Add a component reference onto an expression. */
10610
10611 static void
10612 add_comp_ref (gfc_expr *e, gfc_component *c)
10613 {
10614 gfc_ref **ref;
10615 ref = &(e->ref);
10616 while (*ref)
10617 ref = &((*ref)->next);
10618 *ref = gfc_get_ref ();
10619 (*ref)->type = REF_COMPONENT;
10620 (*ref)->u.c.sym = e->ts.u.derived;
10621 (*ref)->u.c.component = c;
10622 e->ts = c->ts;
10623
10624 /* Add a full array ref, as necessary. */
10625 if (c->as)
10626 {
10627 gfc_add_full_array_ref (e, c->as);
10628 e->rank = c->as->rank;
10629 }
10630 }
10631
10632
10633 /* Build an assignment. Keep the argument 'op' for future use, so that
10634 pointer assignments can be made. */
10635
10636 static gfc_code *
10637 build_assignment (gfc_exec_op op, gfc_expr *expr1, gfc_expr *expr2,
10638 gfc_component *comp1, gfc_component *comp2, locus loc)
10639 {
10640 gfc_code *this_code;
10641
10642 this_code = gfc_get_code (op);
10643 this_code->next = NULL;
10644 this_code->expr1 = gfc_copy_expr (expr1);
10645 this_code->expr2 = gfc_copy_expr (expr2);
10646 this_code->loc = loc;
10647 if (comp1 && comp2)
10648 {
10649 add_comp_ref (this_code->expr1, comp1);
10650 add_comp_ref (this_code->expr2, comp2);
10651 }
10652
10653 return this_code;
10654 }
10655
10656
10657 /* Makes a temporary variable expression based on the characteristics of
10658 a given variable expression. */
10659
10660 static gfc_expr*
10661 get_temp_from_expr (gfc_expr *e, gfc_namespace *ns)
10662 {
10663 static int serial = 0;
10664 char name[GFC_MAX_SYMBOL_LEN];
10665 gfc_symtree *tmp;
10666 gfc_array_spec *as;
10667 gfc_array_ref *aref;
10668 gfc_ref *ref;
10669
10670 sprintf (name, GFC_PREFIX("DA%d"), serial++);
10671 gfc_get_sym_tree (name, ns, &tmp, false);
10672 gfc_add_type (tmp->n.sym, &e->ts, NULL);
10673
10674 if (e->expr_type == EXPR_CONSTANT && e->ts.type == BT_CHARACTER)
10675 tmp->n.sym->ts.u.cl->length = gfc_get_int_expr (gfc_charlen_int_kind,
10676 NULL,
10677 e->value.character.length);
10678
10679 as = NULL;
10680 ref = NULL;
10681 aref = NULL;
10682
10683 /* Obtain the arrayspec for the temporary. */
10684 if (e->rank && e->expr_type != EXPR_ARRAY
10685 && e->expr_type != EXPR_FUNCTION
10686 && e->expr_type != EXPR_OP)
10687 {
10688 aref = gfc_find_array_ref (e);
10689 if (e->expr_type == EXPR_VARIABLE
10690 && e->symtree->n.sym->as == aref->as)
10691 as = aref->as;
10692 else
10693 {
10694 for (ref = e->ref; ref; ref = ref->next)
10695 if (ref->type == REF_COMPONENT
10696 && ref->u.c.component->as == aref->as)
10697 {
10698 as = aref->as;
10699 break;
10700 }
10701 }
10702 }
10703
10704 /* Add the attributes and the arrayspec to the temporary. */
10705 tmp->n.sym->attr = gfc_expr_attr (e);
10706 tmp->n.sym->attr.function = 0;
10707 tmp->n.sym->attr.result = 0;
10708 tmp->n.sym->attr.flavor = FL_VARIABLE;
10709 tmp->n.sym->attr.dummy = 0;
10710 tmp->n.sym->attr.intent = INTENT_UNKNOWN;
10711
10712 if (as)
10713 {
10714 tmp->n.sym->as = gfc_copy_array_spec (as);
10715 if (!ref)
10716 ref = e->ref;
10717 if (as->type == AS_DEFERRED)
10718 tmp->n.sym->attr.allocatable = 1;
10719 }
10720 else if (e->rank && (e->expr_type == EXPR_ARRAY
10721 || e->expr_type == EXPR_FUNCTION
10722 || e->expr_type == EXPR_OP))
10723 {
10724 tmp->n.sym->as = gfc_get_array_spec ();
10725 tmp->n.sym->as->type = AS_DEFERRED;
10726 tmp->n.sym->as->rank = e->rank;
10727 tmp->n.sym->attr.allocatable = 1;
10728 tmp->n.sym->attr.dimension = 1;
10729 }
10730 else
10731 tmp->n.sym->attr.dimension = 0;
10732
10733 gfc_set_sym_referenced (tmp->n.sym);
10734 gfc_commit_symbol (tmp->n.sym);
10735 e = gfc_lval_expr_from_sym (tmp->n.sym);
10736
10737 /* Should the lhs be a section, use its array ref for the
10738 temporary expression. */
10739 if (aref && aref->type != AR_FULL)
10740 {
10741 gfc_free_ref_list (e->ref);
10742 e->ref = gfc_copy_ref (ref);
10743 }
10744 return e;
10745 }
10746
10747
10748 /* Add one line of code to the code chain, making sure that 'head' and
10749 'tail' are appropriately updated. */
10750
10751 static void
10752 add_code_to_chain (gfc_code **this_code, gfc_code **head, gfc_code **tail)
10753 {
10754 gcc_assert (this_code);
10755 if (*head == NULL)
10756 *head = *tail = *this_code;
10757 else
10758 *tail = gfc_append_code (*tail, *this_code);
10759 *this_code = NULL;
10760 }
10761
10762
10763 /* Counts the potential number of part array references that would
10764 result from resolution of typebound defined assignments. */
10765
10766 static int
10767 nonscalar_typebound_assign (gfc_symbol *derived, int depth)
10768 {
10769 gfc_component *c;
10770 int c_depth = 0, t_depth;
10771
10772 for (c= derived->components; c; c = c->next)
10773 {
10774 if ((!gfc_bt_struct (c->ts.type)
10775 || c->attr.pointer
10776 || c->attr.allocatable
10777 || c->attr.proc_pointer_comp
10778 || c->attr.class_pointer
10779 || c->attr.proc_pointer)
10780 && !c->attr.defined_assign_comp)
10781 continue;
10782
10783 if (c->as && c_depth == 0)
10784 c_depth = 1;
10785
10786 if (c->ts.u.derived->attr.defined_assign_comp)
10787 t_depth = nonscalar_typebound_assign (c->ts.u.derived,
10788 c->as ? 1 : 0);
10789 else
10790 t_depth = 0;
10791
10792 c_depth = t_depth > c_depth ? t_depth : c_depth;
10793 }
10794 return depth + c_depth;
10795 }
10796
10797
10798 /* Implement 7.2.1.3 of the F08 standard:
10799 "An intrinsic assignment where the variable is of derived type is
10800 performed as if each component of the variable were assigned from the
10801 corresponding component of expr using pointer assignment (7.2.2) for
10802 each pointer component, defined assignment for each nonpointer
10803 nonallocatable component of a type that has a type-bound defined
10804 assignment consistent with the component, intrinsic assignment for
10805 each other nonpointer nonallocatable component, ..."
10806
10807 The pointer assignments are taken care of by the intrinsic
10808 assignment of the structure itself. This function recursively adds
10809 defined assignments where required. The recursion is accomplished
10810 by calling gfc_resolve_code.
10811
10812 When the lhs in a defined assignment has intent INOUT, we need a
10813 temporary for the lhs. In pseudo-code:
10814
10815 ! Only call function lhs once.
10816 if (lhs is not a constant or an variable)
10817 temp_x = expr2
10818 expr2 => temp_x
10819 ! Do the intrinsic assignment
10820 expr1 = expr2
10821 ! Now do the defined assignments
10822 do over components with typebound defined assignment [%cmp]
10823 #if one component's assignment procedure is INOUT
10824 t1 = expr1
10825 #if expr2 non-variable
10826 temp_x = expr2
10827 expr2 => temp_x
10828 # endif
10829 expr1 = expr2
10830 # for each cmp
10831 t1%cmp {defined=} expr2%cmp
10832 expr1%cmp = t1%cmp
10833 #else
10834 expr1 = expr2
10835
10836 # for each cmp
10837 expr1%cmp {defined=} expr2%cmp
10838 #endif
10839 */
10840
10841 /* The temporary assignments have to be put on top of the additional
10842 code to avoid the result being changed by the intrinsic assignment.
10843 */
10844 static int component_assignment_level = 0;
10845 static gfc_code *tmp_head = NULL, *tmp_tail = NULL;
10846
10847 static void
10848 generate_component_assignments (gfc_code **code, gfc_namespace *ns)
10849 {
10850 gfc_component *comp1, *comp2;
10851 gfc_code *this_code = NULL, *head = NULL, *tail = NULL;
10852 gfc_expr *t1;
10853 int error_count, depth;
10854
10855 gfc_get_errors (NULL, &error_count);
10856
10857 /* Filter out continuing processing after an error. */
10858 if (error_count
10859 || (*code)->expr1->ts.type != BT_DERIVED
10860 || (*code)->expr2->ts.type != BT_DERIVED)
10861 return;
10862
10863 /* TODO: Handle more than one part array reference in assignments. */
10864 depth = nonscalar_typebound_assign ((*code)->expr1->ts.u.derived,
10865 (*code)->expr1->rank ? 1 : 0);
10866 if (depth > 1)
10867 {
10868 gfc_warning (0, "TODO: type-bound defined assignment(s) at %L not "
10869 "done because multiple part array references would "
10870 "occur in intermediate expressions.", &(*code)->loc);
10871 return;
10872 }
10873
10874 component_assignment_level++;
10875
10876 /* Create a temporary so that functions get called only once. */
10877 if ((*code)->expr2->expr_type != EXPR_VARIABLE
10878 && (*code)->expr2->expr_type != EXPR_CONSTANT)
10879 {
10880 gfc_expr *tmp_expr;
10881
10882 /* Assign the rhs to the temporary. */
10883 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
10884 this_code = build_assignment (EXEC_ASSIGN,
10885 tmp_expr, (*code)->expr2,
10886 NULL, NULL, (*code)->loc);
10887 /* Add the code and substitute the rhs expression. */
10888 add_code_to_chain (&this_code, &tmp_head, &tmp_tail);
10889 gfc_free_expr ((*code)->expr2);
10890 (*code)->expr2 = tmp_expr;
10891 }
10892
10893 /* Do the intrinsic assignment. This is not needed if the lhs is one
10894 of the temporaries generated here, since the intrinsic assignment
10895 to the final result already does this. */
10896 if ((*code)->expr1->symtree->n.sym->name[2] != '@')
10897 {
10898 this_code = build_assignment (EXEC_ASSIGN,
10899 (*code)->expr1, (*code)->expr2,
10900 NULL, NULL, (*code)->loc);
10901 add_code_to_chain (&this_code, &head, &tail);
10902 }
10903
10904 comp1 = (*code)->expr1->ts.u.derived->components;
10905 comp2 = (*code)->expr2->ts.u.derived->components;
10906
10907 t1 = NULL;
10908 for (; comp1; comp1 = comp1->next, comp2 = comp2->next)
10909 {
10910 bool inout = false;
10911
10912 /* The intrinsic assignment does the right thing for pointers
10913 of all kinds and allocatable components. */
10914 if (!gfc_bt_struct (comp1->ts.type)
10915 || comp1->attr.pointer
10916 || comp1->attr.allocatable
10917 || comp1->attr.proc_pointer_comp
10918 || comp1->attr.class_pointer
10919 || comp1->attr.proc_pointer)
10920 continue;
10921
10922 /* Make an assigment for this component. */
10923 this_code = build_assignment (EXEC_ASSIGN,
10924 (*code)->expr1, (*code)->expr2,
10925 comp1, comp2, (*code)->loc);
10926
10927 /* Convert the assignment if there is a defined assignment for
10928 this type. Otherwise, using the call from gfc_resolve_code,
10929 recurse into its components. */
10930 gfc_resolve_code (this_code, ns);
10931
10932 if (this_code->op == EXEC_ASSIGN_CALL)
10933 {
10934 gfc_formal_arglist *dummy_args;
10935 gfc_symbol *rsym;
10936 /* Check that there is a typebound defined assignment. If not,
10937 then this must be a module defined assignment. We cannot
10938 use the defined_assign_comp attribute here because it must
10939 be this derived type that has the defined assignment and not
10940 a parent type. */
10941 if (!(comp1->ts.u.derived->f2k_derived
10942 && comp1->ts.u.derived->f2k_derived
10943 ->tb_op[INTRINSIC_ASSIGN]))
10944 {
10945 gfc_free_statements (this_code);
10946 this_code = NULL;
10947 continue;
10948 }
10949
10950 /* If the first argument of the subroutine has intent INOUT
10951 a temporary must be generated and used instead. */
10952 rsym = this_code->resolved_sym;
10953 dummy_args = gfc_sym_get_dummy_args (rsym);
10954 if (dummy_args
10955 && dummy_args->sym->attr.intent == INTENT_INOUT)
10956 {
10957 gfc_code *temp_code;
10958 inout = true;
10959
10960 /* Build the temporary required for the assignment and put
10961 it at the head of the generated code. */
10962 if (!t1)
10963 {
10964 t1 = get_temp_from_expr ((*code)->expr1, ns);
10965 temp_code = build_assignment (EXEC_ASSIGN,
10966 t1, (*code)->expr1,
10967 NULL, NULL, (*code)->loc);
10968
10969 /* For allocatable LHS, check whether it is allocated. Note
10970 that allocatable components with defined assignment are
10971 not yet support. See PR 57696. */
10972 if ((*code)->expr1->symtree->n.sym->attr.allocatable)
10973 {
10974 gfc_code *block;
10975 gfc_expr *e =
10976 gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
10977 block = gfc_get_code (EXEC_IF);
10978 block->block = gfc_get_code (EXEC_IF);
10979 block->block->expr1
10980 = gfc_build_intrinsic_call (ns,
10981 GFC_ISYM_ALLOCATED, "allocated",
10982 (*code)->loc, 1, e);
10983 block->block->next = temp_code;
10984 temp_code = block;
10985 }
10986 add_code_to_chain (&temp_code, &tmp_head, &tmp_tail);
10987 }
10988
10989 /* Replace the first actual arg with the component of the
10990 temporary. */
10991 gfc_free_expr (this_code->ext.actual->expr);
10992 this_code->ext.actual->expr = gfc_copy_expr (t1);
10993 add_comp_ref (this_code->ext.actual->expr, comp1);
10994
10995 /* If the LHS variable is allocatable and wasn't allocated and
10996 the temporary is allocatable, pointer assign the address of
10997 the freshly allocated LHS to the temporary. */
10998 if ((*code)->expr1->symtree->n.sym->attr.allocatable
10999 && gfc_expr_attr ((*code)->expr1).allocatable)
11000 {
11001 gfc_code *block;
11002 gfc_expr *cond;
11003
11004 cond = gfc_get_expr ();
11005 cond->ts.type = BT_LOGICAL;
11006 cond->ts.kind = gfc_default_logical_kind;
11007 cond->expr_type = EXPR_OP;
11008 cond->where = (*code)->loc;
11009 cond->value.op.op = INTRINSIC_NOT;
11010 cond->value.op.op1 = gfc_build_intrinsic_call (ns,
11011 GFC_ISYM_ALLOCATED, "allocated",
11012 (*code)->loc, 1, gfc_copy_expr (t1));
11013 block = gfc_get_code (EXEC_IF);
11014 block->block = gfc_get_code (EXEC_IF);
11015 block->block->expr1 = cond;
11016 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
11017 t1, (*code)->expr1,
11018 NULL, NULL, (*code)->loc);
11019 add_code_to_chain (&block, &head, &tail);
11020 }
11021 }
11022 }
11023 else if (this_code->op == EXEC_ASSIGN && !this_code->next)
11024 {
11025 /* Don't add intrinsic assignments since they are already
11026 effected by the intrinsic assignment of the structure. */
11027 gfc_free_statements (this_code);
11028 this_code = NULL;
11029 continue;
11030 }
11031
11032 add_code_to_chain (&this_code, &head, &tail);
11033
11034 if (t1 && inout)
11035 {
11036 /* Transfer the value to the final result. */
11037 this_code = build_assignment (EXEC_ASSIGN,
11038 (*code)->expr1, t1,
11039 comp1, comp2, (*code)->loc);
11040 add_code_to_chain (&this_code, &head, &tail);
11041 }
11042 }
11043
11044 /* Put the temporary assignments at the top of the generated code. */
11045 if (tmp_head && component_assignment_level == 1)
11046 {
11047 gfc_append_code (tmp_head, head);
11048 head = tmp_head;
11049 tmp_head = tmp_tail = NULL;
11050 }
11051
11052 // If we did a pointer assignment - thus, we need to ensure that the LHS is
11053 // not accidentally deallocated. Hence, nullify t1.
11054 if (t1 && (*code)->expr1->symtree->n.sym->attr.allocatable
11055 && gfc_expr_attr ((*code)->expr1).allocatable)
11056 {
11057 gfc_code *block;
11058 gfc_expr *cond;
11059 gfc_expr *e;
11060
11061 e = gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
11062 cond = gfc_build_intrinsic_call (ns, GFC_ISYM_ASSOCIATED, "associated",
11063 (*code)->loc, 2, gfc_copy_expr (t1), e);
11064 block = gfc_get_code (EXEC_IF);
11065 block->block = gfc_get_code (EXEC_IF);
11066 block->block->expr1 = cond;
11067 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
11068 t1, gfc_get_null_expr (&(*code)->loc),
11069 NULL, NULL, (*code)->loc);
11070 gfc_append_code (tail, block);
11071 tail = block;
11072 }
11073
11074 /* Now attach the remaining code chain to the input code. Step on
11075 to the end of the new code since resolution is complete. */
11076 gcc_assert ((*code)->op == EXEC_ASSIGN);
11077 tail->next = (*code)->next;
11078 /* Overwrite 'code' because this would place the intrinsic assignment
11079 before the temporary for the lhs is created. */
11080 gfc_free_expr ((*code)->expr1);
11081 gfc_free_expr ((*code)->expr2);
11082 **code = *head;
11083 if (head != tail)
11084 free (head);
11085 *code = tail;
11086
11087 component_assignment_level--;
11088 }
11089
11090
11091 /* F2008: Pointer function assignments are of the form:
11092 ptr_fcn (args) = expr
11093 This function breaks these assignments into two statements:
11094 temporary_pointer => ptr_fcn(args)
11095 temporary_pointer = expr */
11096
11097 static bool
11098 resolve_ptr_fcn_assign (gfc_code **code, gfc_namespace *ns)
11099 {
11100 gfc_expr *tmp_ptr_expr;
11101 gfc_code *this_code;
11102 gfc_component *comp;
11103 gfc_symbol *s;
11104
11105 if ((*code)->expr1->expr_type != EXPR_FUNCTION)
11106 return false;
11107
11108 /* Even if standard does not support this feature, continue to build
11109 the two statements to avoid upsetting frontend_passes.c. */
11110 gfc_notify_std (GFC_STD_F2008, "Pointer procedure assignment at "
11111 "%L", &(*code)->loc);
11112
11113 comp = gfc_get_proc_ptr_comp ((*code)->expr1);
11114
11115 if (comp)
11116 s = comp->ts.interface;
11117 else
11118 s = (*code)->expr1->symtree->n.sym;
11119
11120 if (s == NULL || !s->result->attr.pointer)
11121 {
11122 gfc_error ("The function result on the lhs of the assignment at "
11123 "%L must have the pointer attribute.",
11124 &(*code)->expr1->where);
11125 (*code)->op = EXEC_NOP;
11126 return false;
11127 }
11128
11129 tmp_ptr_expr = get_temp_from_expr ((*code)->expr2, ns);
11130
11131 /* get_temp_from_expression is set up for ordinary assignments. To that
11132 end, where array bounds are not known, arrays are made allocatable.
11133 Change the temporary to a pointer here. */
11134 tmp_ptr_expr->symtree->n.sym->attr.pointer = 1;
11135 tmp_ptr_expr->symtree->n.sym->attr.allocatable = 0;
11136 tmp_ptr_expr->where = (*code)->loc;
11137
11138 this_code = build_assignment (EXEC_ASSIGN,
11139 tmp_ptr_expr, (*code)->expr2,
11140 NULL, NULL, (*code)->loc);
11141 this_code->next = (*code)->next;
11142 (*code)->next = this_code;
11143 (*code)->op = EXEC_POINTER_ASSIGN;
11144 (*code)->expr2 = (*code)->expr1;
11145 (*code)->expr1 = tmp_ptr_expr;
11146
11147 return true;
11148 }
11149
11150
11151 /* Deferred character length assignments from an operator expression
11152 require a temporary because the character length of the lhs can
11153 change in the course of the assignment. */
11154
11155 static bool
11156 deferred_op_assign (gfc_code **code, gfc_namespace *ns)
11157 {
11158 gfc_expr *tmp_expr;
11159 gfc_code *this_code;
11160
11161 if (!((*code)->expr1->ts.type == BT_CHARACTER
11162 && (*code)->expr1->ts.deferred && (*code)->expr1->rank
11163 && (*code)->expr2->expr_type == EXPR_OP))
11164 return false;
11165
11166 if (!gfc_check_dependency ((*code)->expr1, (*code)->expr2, 1))
11167 return false;
11168
11169 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
11170 tmp_expr->where = (*code)->loc;
11171
11172 /* A new charlen is required to ensure that the variable string
11173 length is different to that of the original lhs. */
11174 tmp_expr->ts.u.cl = gfc_get_charlen();
11175 tmp_expr->symtree->n.sym->ts.u.cl = tmp_expr->ts.u.cl;
11176 tmp_expr->ts.u.cl->next = (*code)->expr2->ts.u.cl->next;
11177 (*code)->expr2->ts.u.cl->next = tmp_expr->ts.u.cl;
11178
11179 tmp_expr->symtree->n.sym->ts.deferred = 1;
11180
11181 this_code = build_assignment (EXEC_ASSIGN,
11182 (*code)->expr1,
11183 gfc_copy_expr (tmp_expr),
11184 NULL, NULL, (*code)->loc);
11185
11186 (*code)->expr1 = tmp_expr;
11187
11188 this_code->next = (*code)->next;
11189 (*code)->next = this_code;
11190
11191 return true;
11192 }
11193
11194
11195 /* Given a block of code, recursively resolve everything pointed to by this
11196 code block. */
11197
11198 void
11199 gfc_resolve_code (gfc_code *code, gfc_namespace *ns)
11200 {
11201 int omp_workshare_save;
11202 int forall_save, do_concurrent_save;
11203 code_stack frame;
11204 bool t;
11205
11206 frame.prev = cs_base;
11207 frame.head = code;
11208 cs_base = &frame;
11209
11210 find_reachable_labels (code);
11211
11212 for (; code; code = code->next)
11213 {
11214 frame.current = code;
11215 forall_save = forall_flag;
11216 do_concurrent_save = gfc_do_concurrent_flag;
11217
11218 if (code->op == EXEC_FORALL)
11219 {
11220 forall_flag = 1;
11221 gfc_resolve_forall (code, ns, forall_save);
11222 forall_flag = 2;
11223 }
11224 else if (code->block)
11225 {
11226 omp_workshare_save = -1;
11227 switch (code->op)
11228 {
11229 case EXEC_OACC_PARALLEL_LOOP:
11230 case EXEC_OACC_PARALLEL:
11231 case EXEC_OACC_KERNELS_LOOP:
11232 case EXEC_OACC_KERNELS:
11233 case EXEC_OACC_DATA:
11234 case EXEC_OACC_HOST_DATA:
11235 case EXEC_OACC_LOOP:
11236 gfc_resolve_oacc_blocks (code, ns);
11237 break;
11238 case EXEC_OMP_PARALLEL_WORKSHARE:
11239 omp_workshare_save = omp_workshare_flag;
11240 omp_workshare_flag = 1;
11241 gfc_resolve_omp_parallel_blocks (code, ns);
11242 break;
11243 case EXEC_OMP_PARALLEL:
11244 case EXEC_OMP_PARALLEL_DO:
11245 case EXEC_OMP_PARALLEL_DO_SIMD:
11246 case EXEC_OMP_PARALLEL_SECTIONS:
11247 case EXEC_OMP_TARGET_PARALLEL:
11248 case EXEC_OMP_TARGET_PARALLEL_DO:
11249 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11250 case EXEC_OMP_TARGET_TEAMS:
11251 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11252 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11253 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11254 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11255 case EXEC_OMP_TASK:
11256 case EXEC_OMP_TASKLOOP:
11257 case EXEC_OMP_TASKLOOP_SIMD:
11258 case EXEC_OMP_TEAMS:
11259 case EXEC_OMP_TEAMS_DISTRIBUTE:
11260 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11261 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11262 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11263 omp_workshare_save = omp_workshare_flag;
11264 omp_workshare_flag = 0;
11265 gfc_resolve_omp_parallel_blocks (code, ns);
11266 break;
11267 case EXEC_OMP_DISTRIBUTE:
11268 case EXEC_OMP_DISTRIBUTE_SIMD:
11269 case EXEC_OMP_DO:
11270 case EXEC_OMP_DO_SIMD:
11271 case EXEC_OMP_SIMD:
11272 case EXEC_OMP_TARGET_SIMD:
11273 gfc_resolve_omp_do_blocks (code, ns);
11274 break;
11275 case EXEC_SELECT_TYPE:
11276 /* Blocks are handled in resolve_select_type because we have
11277 to transform the SELECT TYPE into ASSOCIATE first. */
11278 break;
11279 case EXEC_DO_CONCURRENT:
11280 gfc_do_concurrent_flag = 1;
11281 gfc_resolve_blocks (code->block, ns);
11282 gfc_do_concurrent_flag = 2;
11283 break;
11284 case EXEC_OMP_WORKSHARE:
11285 omp_workshare_save = omp_workshare_flag;
11286 omp_workshare_flag = 1;
11287 /* FALL THROUGH */
11288 default:
11289 gfc_resolve_blocks (code->block, ns);
11290 break;
11291 }
11292
11293 if (omp_workshare_save != -1)
11294 omp_workshare_flag = omp_workshare_save;
11295 }
11296 start:
11297 t = true;
11298 if (code->op != EXEC_COMPCALL && code->op != EXEC_CALL_PPC)
11299 t = gfc_resolve_expr (code->expr1);
11300 forall_flag = forall_save;
11301 gfc_do_concurrent_flag = do_concurrent_save;
11302
11303 if (!gfc_resolve_expr (code->expr2))
11304 t = false;
11305
11306 if (code->op == EXEC_ALLOCATE
11307 && !gfc_resolve_expr (code->expr3))
11308 t = false;
11309
11310 switch (code->op)
11311 {
11312 case EXEC_NOP:
11313 case EXEC_END_BLOCK:
11314 case EXEC_END_NESTED_BLOCK:
11315 case EXEC_CYCLE:
11316 case EXEC_PAUSE:
11317 case EXEC_STOP:
11318 case EXEC_ERROR_STOP:
11319 case EXEC_EXIT:
11320 case EXEC_CONTINUE:
11321 case EXEC_DT_END:
11322 case EXEC_ASSIGN_CALL:
11323 break;
11324
11325 case EXEC_CRITICAL:
11326 resolve_critical (code);
11327 break;
11328
11329 case EXEC_SYNC_ALL:
11330 case EXEC_SYNC_IMAGES:
11331 case EXEC_SYNC_MEMORY:
11332 resolve_sync (code);
11333 break;
11334
11335 case EXEC_LOCK:
11336 case EXEC_UNLOCK:
11337 case EXEC_EVENT_POST:
11338 case EXEC_EVENT_WAIT:
11339 resolve_lock_unlock_event (code);
11340 break;
11341
11342 case EXEC_FAIL_IMAGE:
11343 case EXEC_FORM_TEAM:
11344 case EXEC_CHANGE_TEAM:
11345 case EXEC_END_TEAM:
11346 case EXEC_SYNC_TEAM:
11347 break;
11348
11349 case EXEC_ENTRY:
11350 /* Keep track of which entry we are up to. */
11351 current_entry_id = code->ext.entry->id;
11352 break;
11353
11354 case EXEC_WHERE:
11355 resolve_where (code, NULL);
11356 break;
11357
11358 case EXEC_GOTO:
11359 if (code->expr1 != NULL)
11360 {
11361 if (code->expr1->ts.type != BT_INTEGER)
11362 gfc_error ("ASSIGNED GOTO statement at %L requires an "
11363 "INTEGER variable", &code->expr1->where);
11364 else if (code->expr1->symtree->n.sym->attr.assign != 1)
11365 gfc_error ("Variable %qs has not been assigned a target "
11366 "label at %L", code->expr1->symtree->n.sym->name,
11367 &code->expr1->where);
11368 }
11369 else
11370 resolve_branch (code->label1, code);
11371 break;
11372
11373 case EXEC_RETURN:
11374 if (code->expr1 != NULL
11375 && (code->expr1->ts.type != BT_INTEGER || code->expr1->rank))
11376 gfc_error ("Alternate RETURN statement at %L requires a SCALAR-"
11377 "INTEGER return specifier", &code->expr1->where);
11378 break;
11379
11380 case EXEC_INIT_ASSIGN:
11381 case EXEC_END_PROCEDURE:
11382 break;
11383
11384 case EXEC_ASSIGN:
11385 if (!t)
11386 break;
11387
11388 /* Remove a GFC_ISYM_CAF_GET inserted for a coindexed variable on
11389 the LHS. */
11390 if (code->expr1->expr_type == EXPR_FUNCTION
11391 && code->expr1->value.function.isym
11392 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
11393 remove_caf_get_intrinsic (code->expr1);
11394
11395 /* If this is a pointer function in an lvalue variable context,
11396 the new code will have to be resolved afresh. This is also the
11397 case with an error, where the code is transformed into NOP to
11398 prevent ICEs downstream. */
11399 if (resolve_ptr_fcn_assign (&code, ns)
11400 || code->op == EXEC_NOP)
11401 goto start;
11402
11403 if (!gfc_check_vardef_context (code->expr1, false, false, false,
11404 _("assignment")))
11405 break;
11406
11407 if (resolve_ordinary_assign (code, ns))
11408 {
11409 if (code->op == EXEC_COMPCALL)
11410 goto compcall;
11411 else
11412 goto call;
11413 }
11414
11415 /* Check for dependencies in deferred character length array
11416 assignments and generate a temporary, if necessary. */
11417 if (code->op == EXEC_ASSIGN && deferred_op_assign (&code, ns))
11418 break;
11419
11420 /* F03 7.4.1.3 for non-allocatable, non-pointer components. */
11421 if (code->op != EXEC_CALL && code->expr1->ts.type == BT_DERIVED
11422 && code->expr1->ts.u.derived
11423 && code->expr1->ts.u.derived->attr.defined_assign_comp)
11424 generate_component_assignments (&code, ns);
11425
11426 break;
11427
11428 case EXEC_LABEL_ASSIGN:
11429 if (code->label1->defined == ST_LABEL_UNKNOWN)
11430 gfc_error ("Label %d referenced at %L is never defined",
11431 code->label1->value, &code->label1->where);
11432 if (t
11433 && (code->expr1->expr_type != EXPR_VARIABLE
11434 || code->expr1->symtree->n.sym->ts.type != BT_INTEGER
11435 || code->expr1->symtree->n.sym->ts.kind
11436 != gfc_default_integer_kind
11437 || code->expr1->symtree->n.sym->as != NULL))
11438 gfc_error ("ASSIGN statement at %L requires a scalar "
11439 "default INTEGER variable", &code->expr1->where);
11440 break;
11441
11442 case EXEC_POINTER_ASSIGN:
11443 {
11444 gfc_expr* e;
11445
11446 if (!t)
11447 break;
11448
11449 /* This is both a variable definition and pointer assignment
11450 context, so check both of them. For rank remapping, a final
11451 array ref may be present on the LHS and fool gfc_expr_attr
11452 used in gfc_check_vardef_context. Remove it. */
11453 e = remove_last_array_ref (code->expr1);
11454 t = gfc_check_vardef_context (e, true, false, false,
11455 _("pointer assignment"));
11456 if (t)
11457 t = gfc_check_vardef_context (e, false, false, false,
11458 _("pointer assignment"));
11459 gfc_free_expr (e);
11460
11461 t = gfc_check_pointer_assign (code->expr1, code->expr2, !t) && t;
11462
11463 if (!t)
11464 break;
11465
11466 /* Assigning a class object always is a regular assign. */
11467 if (code->expr2->ts.type == BT_CLASS
11468 && code->expr1->ts.type == BT_CLASS
11469 && !CLASS_DATA (code->expr2)->attr.dimension
11470 && !(gfc_expr_attr (code->expr1).proc_pointer
11471 && code->expr2->expr_type == EXPR_VARIABLE
11472 && code->expr2->symtree->n.sym->attr.flavor
11473 == FL_PROCEDURE))
11474 code->op = EXEC_ASSIGN;
11475 break;
11476 }
11477
11478 case EXEC_ARITHMETIC_IF:
11479 {
11480 gfc_expr *e = code->expr1;
11481
11482 gfc_resolve_expr (e);
11483 if (e->expr_type == EXPR_NULL)
11484 gfc_error ("Invalid NULL at %L", &e->where);
11485
11486 if (t && (e->rank > 0
11487 || !(e->ts.type == BT_REAL || e->ts.type == BT_INTEGER)))
11488 gfc_error ("Arithmetic IF statement at %L requires a scalar "
11489 "REAL or INTEGER expression", &e->where);
11490
11491 resolve_branch (code->label1, code);
11492 resolve_branch (code->label2, code);
11493 resolve_branch (code->label3, code);
11494 }
11495 break;
11496
11497 case EXEC_IF:
11498 if (t && code->expr1 != NULL
11499 && (code->expr1->ts.type != BT_LOGICAL
11500 || code->expr1->rank != 0))
11501 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
11502 &code->expr1->where);
11503 break;
11504
11505 case EXEC_CALL:
11506 call:
11507 resolve_call (code);
11508 break;
11509
11510 case EXEC_COMPCALL:
11511 compcall:
11512 resolve_typebound_subroutine (code);
11513 break;
11514
11515 case EXEC_CALL_PPC:
11516 resolve_ppc_call (code);
11517 break;
11518
11519 case EXEC_SELECT:
11520 /* Select is complicated. Also, a SELECT construct could be
11521 a transformed computed GOTO. */
11522 resolve_select (code, false);
11523 break;
11524
11525 case EXEC_SELECT_TYPE:
11526 resolve_select_type (code, ns);
11527 break;
11528
11529 case EXEC_BLOCK:
11530 resolve_block_construct (code);
11531 break;
11532
11533 case EXEC_DO:
11534 if (code->ext.iterator != NULL)
11535 {
11536 gfc_iterator *iter = code->ext.iterator;
11537 if (gfc_resolve_iterator (iter, true, false))
11538 gfc_resolve_do_iterator (code, iter->var->symtree->n.sym,
11539 true);
11540 }
11541 break;
11542
11543 case EXEC_DO_WHILE:
11544 if (code->expr1 == NULL)
11545 gfc_internal_error ("gfc_resolve_code(): No expression on "
11546 "DO WHILE");
11547 if (t
11548 && (code->expr1->rank != 0
11549 || code->expr1->ts.type != BT_LOGICAL))
11550 gfc_error ("Exit condition of DO WHILE loop at %L must be "
11551 "a scalar LOGICAL expression", &code->expr1->where);
11552 break;
11553
11554 case EXEC_ALLOCATE:
11555 if (t)
11556 resolve_allocate_deallocate (code, "ALLOCATE");
11557
11558 break;
11559
11560 case EXEC_DEALLOCATE:
11561 if (t)
11562 resolve_allocate_deallocate (code, "DEALLOCATE");
11563
11564 break;
11565
11566 case EXEC_OPEN:
11567 if (!gfc_resolve_open (code->ext.open))
11568 break;
11569
11570 resolve_branch (code->ext.open->err, code);
11571 break;
11572
11573 case EXEC_CLOSE:
11574 if (!gfc_resolve_close (code->ext.close))
11575 break;
11576
11577 resolve_branch (code->ext.close->err, code);
11578 break;
11579
11580 case EXEC_BACKSPACE:
11581 case EXEC_ENDFILE:
11582 case EXEC_REWIND:
11583 case EXEC_FLUSH:
11584 if (!gfc_resolve_filepos (code->ext.filepos, &code->loc))
11585 break;
11586
11587 resolve_branch (code->ext.filepos->err, code);
11588 break;
11589
11590 case EXEC_INQUIRE:
11591 if (!gfc_resolve_inquire (code->ext.inquire))
11592 break;
11593
11594 resolve_branch (code->ext.inquire->err, code);
11595 break;
11596
11597 case EXEC_IOLENGTH:
11598 gcc_assert (code->ext.inquire != NULL);
11599 if (!gfc_resolve_inquire (code->ext.inquire))
11600 break;
11601
11602 resolve_branch (code->ext.inquire->err, code);
11603 break;
11604
11605 case EXEC_WAIT:
11606 if (!gfc_resolve_wait (code->ext.wait))
11607 break;
11608
11609 resolve_branch (code->ext.wait->err, code);
11610 resolve_branch (code->ext.wait->end, code);
11611 resolve_branch (code->ext.wait->eor, code);
11612 break;
11613
11614 case EXEC_READ:
11615 case EXEC_WRITE:
11616 if (!gfc_resolve_dt (code->ext.dt, &code->loc))
11617 break;
11618
11619 resolve_branch (code->ext.dt->err, code);
11620 resolve_branch (code->ext.dt->end, code);
11621 resolve_branch (code->ext.dt->eor, code);
11622 break;
11623
11624 case EXEC_TRANSFER:
11625 resolve_transfer (code);
11626 break;
11627
11628 case EXEC_DO_CONCURRENT:
11629 case EXEC_FORALL:
11630 resolve_forall_iterators (code->ext.forall_iterator);
11631
11632 if (code->expr1 != NULL
11633 && (code->expr1->ts.type != BT_LOGICAL || code->expr1->rank))
11634 gfc_error ("FORALL mask clause at %L requires a scalar LOGICAL "
11635 "expression", &code->expr1->where);
11636 break;
11637
11638 case EXEC_OACC_PARALLEL_LOOP:
11639 case EXEC_OACC_PARALLEL:
11640 case EXEC_OACC_KERNELS_LOOP:
11641 case EXEC_OACC_KERNELS:
11642 case EXEC_OACC_DATA:
11643 case EXEC_OACC_HOST_DATA:
11644 case EXEC_OACC_LOOP:
11645 case EXEC_OACC_UPDATE:
11646 case EXEC_OACC_WAIT:
11647 case EXEC_OACC_CACHE:
11648 case EXEC_OACC_ENTER_DATA:
11649 case EXEC_OACC_EXIT_DATA:
11650 case EXEC_OACC_ATOMIC:
11651 case EXEC_OACC_DECLARE:
11652 gfc_resolve_oacc_directive (code, ns);
11653 break;
11654
11655 case EXEC_OMP_ATOMIC:
11656 case EXEC_OMP_BARRIER:
11657 case EXEC_OMP_CANCEL:
11658 case EXEC_OMP_CANCELLATION_POINT:
11659 case EXEC_OMP_CRITICAL:
11660 case EXEC_OMP_FLUSH:
11661 case EXEC_OMP_DISTRIBUTE:
11662 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
11663 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
11664 case EXEC_OMP_DISTRIBUTE_SIMD:
11665 case EXEC_OMP_DO:
11666 case EXEC_OMP_DO_SIMD:
11667 case EXEC_OMP_MASTER:
11668 case EXEC_OMP_ORDERED:
11669 case EXEC_OMP_SECTIONS:
11670 case EXEC_OMP_SIMD:
11671 case EXEC_OMP_SINGLE:
11672 case EXEC_OMP_TARGET:
11673 case EXEC_OMP_TARGET_DATA:
11674 case EXEC_OMP_TARGET_ENTER_DATA:
11675 case EXEC_OMP_TARGET_EXIT_DATA:
11676 case EXEC_OMP_TARGET_PARALLEL:
11677 case EXEC_OMP_TARGET_PARALLEL_DO:
11678 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11679 case EXEC_OMP_TARGET_SIMD:
11680 case EXEC_OMP_TARGET_TEAMS:
11681 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11682 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11683 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11684 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11685 case EXEC_OMP_TARGET_UPDATE:
11686 case EXEC_OMP_TASK:
11687 case EXEC_OMP_TASKGROUP:
11688 case EXEC_OMP_TASKLOOP:
11689 case EXEC_OMP_TASKLOOP_SIMD:
11690 case EXEC_OMP_TASKWAIT:
11691 case EXEC_OMP_TASKYIELD:
11692 case EXEC_OMP_TEAMS:
11693 case EXEC_OMP_TEAMS_DISTRIBUTE:
11694 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11695 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11696 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11697 case EXEC_OMP_WORKSHARE:
11698 gfc_resolve_omp_directive (code, ns);
11699 break;
11700
11701 case EXEC_OMP_PARALLEL:
11702 case EXEC_OMP_PARALLEL_DO:
11703 case EXEC_OMP_PARALLEL_DO_SIMD:
11704 case EXEC_OMP_PARALLEL_SECTIONS:
11705 case EXEC_OMP_PARALLEL_WORKSHARE:
11706 omp_workshare_save = omp_workshare_flag;
11707 omp_workshare_flag = 0;
11708 gfc_resolve_omp_directive (code, ns);
11709 omp_workshare_flag = omp_workshare_save;
11710 break;
11711
11712 default:
11713 gfc_internal_error ("gfc_resolve_code(): Bad statement code");
11714 }
11715 }
11716
11717 cs_base = frame.prev;
11718 }
11719
11720
11721 /* Resolve initial values and make sure they are compatible with
11722 the variable. */
11723
11724 static void
11725 resolve_values (gfc_symbol *sym)
11726 {
11727 bool t;
11728
11729 if (sym->value == NULL)
11730 return;
11731
11732 if (sym->value->expr_type == EXPR_STRUCTURE)
11733 t= resolve_structure_cons (sym->value, 1);
11734 else
11735 t = gfc_resolve_expr (sym->value);
11736
11737 if (!t)
11738 return;
11739
11740 gfc_check_assign_symbol (sym, NULL, sym->value);
11741 }
11742
11743
11744 /* Verify any BIND(C) derived types in the namespace so we can report errors
11745 for them once, rather than for each variable declared of that type. */
11746
11747 static void
11748 resolve_bind_c_derived_types (gfc_symbol *derived_sym)
11749 {
11750 if (derived_sym != NULL && derived_sym->attr.flavor == FL_DERIVED
11751 && derived_sym->attr.is_bind_c == 1)
11752 verify_bind_c_derived_type (derived_sym);
11753
11754 return;
11755 }
11756
11757
11758 /* Check the interfaces of DTIO procedures associated with derived
11759 type 'sym'. These procedures can either have typebound bindings or
11760 can appear in DTIO generic interfaces. */
11761
11762 static void
11763 gfc_verify_DTIO_procedures (gfc_symbol *sym)
11764 {
11765 if (!sym || sym->attr.flavor != FL_DERIVED)
11766 return;
11767
11768 gfc_check_dtio_interfaces (sym);
11769
11770 return;
11771 }
11772
11773 /* Verify that any binding labels used in a given namespace do not collide
11774 with the names or binding labels of any global symbols. Multiple INTERFACE
11775 for the same procedure are permitted. */
11776
11777 static void
11778 gfc_verify_binding_labels (gfc_symbol *sym)
11779 {
11780 gfc_gsymbol *gsym;
11781 const char *module;
11782
11783 if (!sym || !sym->attr.is_bind_c || sym->attr.is_iso_c
11784 || sym->attr.flavor == FL_DERIVED || !sym->binding_label)
11785 return;
11786
11787 gsym = gfc_find_case_gsymbol (gfc_gsym_root, sym->binding_label);
11788
11789 if (sym->module)
11790 module = sym->module;
11791 else if (sym->ns && sym->ns->proc_name
11792 && sym->ns->proc_name->attr.flavor == FL_MODULE)
11793 module = sym->ns->proc_name->name;
11794 else if (sym->ns && sym->ns->parent
11795 && sym->ns && sym->ns->parent->proc_name
11796 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
11797 module = sym->ns->parent->proc_name->name;
11798 else
11799 module = NULL;
11800
11801 if (!gsym
11802 || (!gsym->defined
11803 && (gsym->type == GSYM_FUNCTION || gsym->type == GSYM_SUBROUTINE)))
11804 {
11805 if (!gsym)
11806 gsym = gfc_get_gsymbol (sym->binding_label);
11807 gsym->where = sym->declared_at;
11808 gsym->sym_name = sym->name;
11809 gsym->binding_label = sym->binding_label;
11810 gsym->ns = sym->ns;
11811 gsym->mod_name = module;
11812 if (sym->attr.function)
11813 gsym->type = GSYM_FUNCTION;
11814 else if (sym->attr.subroutine)
11815 gsym->type = GSYM_SUBROUTINE;
11816 /* Mark as variable/procedure as defined, unless its an INTERFACE. */
11817 gsym->defined = sym->attr.if_source != IFSRC_IFBODY;
11818 return;
11819 }
11820
11821 if (sym->attr.flavor == FL_VARIABLE && gsym->type != GSYM_UNKNOWN)
11822 {
11823 gfc_error ("Variable %qs with binding label %qs at %L uses the same global "
11824 "identifier as entity at %L", sym->name,
11825 sym->binding_label, &sym->declared_at, &gsym->where);
11826 /* Clear the binding label to prevent checking multiple times. */
11827 sym->binding_label = NULL;
11828 return;
11829 }
11830
11831 if (sym->attr.flavor == FL_VARIABLE && module
11832 && (strcmp (module, gsym->mod_name) != 0
11833 || strcmp (sym->name, gsym->sym_name) != 0))
11834 {
11835 /* This can only happen if the variable is defined in a module - if it
11836 isn't the same module, reject it. */
11837 gfc_error ("Variable %qs from module %qs with binding label %qs at %L "
11838 "uses the same global identifier as entity at %L from module %qs",
11839 sym->name, module, sym->binding_label,
11840 &sym->declared_at, &gsym->where, gsym->mod_name);
11841 sym->binding_label = NULL;
11842 return;
11843 }
11844
11845 if ((sym->attr.function || sym->attr.subroutine)
11846 && ((gsym->type != GSYM_SUBROUTINE && gsym->type != GSYM_FUNCTION)
11847 || (gsym->defined && sym->attr.if_source != IFSRC_IFBODY))
11848 && (sym != gsym->ns->proc_name && sym->attr.entry == 0)
11849 && (module != gsym->mod_name
11850 || strcmp (gsym->sym_name, sym->name) != 0
11851 || (module && strcmp (module, gsym->mod_name) != 0)))
11852 {
11853 /* Print an error if the procedure is defined multiple times; we have to
11854 exclude references to the same procedure via module association or
11855 multiple checks for the same procedure. */
11856 gfc_error ("Procedure %qs with binding label %qs at %L uses the same "
11857 "global identifier as entity at %L", sym->name,
11858 sym->binding_label, &sym->declared_at, &gsym->where);
11859 sym->binding_label = NULL;
11860 }
11861 }
11862
11863
11864 /* Resolve an index expression. */
11865
11866 static bool
11867 resolve_index_expr (gfc_expr *e)
11868 {
11869 if (!gfc_resolve_expr (e))
11870 return false;
11871
11872 if (!gfc_simplify_expr (e, 0))
11873 return false;
11874
11875 if (!gfc_specification_expr (e))
11876 return false;
11877
11878 return true;
11879 }
11880
11881
11882 /* Resolve a charlen structure. */
11883
11884 static bool
11885 resolve_charlen (gfc_charlen *cl)
11886 {
11887 int k;
11888 bool saved_specification_expr;
11889
11890 if (cl->resolved)
11891 return true;
11892
11893 cl->resolved = 1;
11894 saved_specification_expr = specification_expr;
11895 specification_expr = true;
11896
11897 if (cl->length_from_typespec)
11898 {
11899 if (!gfc_resolve_expr (cl->length))
11900 {
11901 specification_expr = saved_specification_expr;
11902 return false;
11903 }
11904
11905 if (!gfc_simplify_expr (cl->length, 0))
11906 {
11907 specification_expr = saved_specification_expr;
11908 return false;
11909 }
11910
11911 /* cl->length has been resolved. It should have an integer type. */
11912 if (cl->length->ts.type != BT_INTEGER)
11913 {
11914 gfc_error ("Scalar INTEGER expression expected at %L",
11915 &cl->length->where);
11916 return false;
11917 }
11918 }
11919 else
11920 {
11921 if (!resolve_index_expr (cl->length))
11922 {
11923 specification_expr = saved_specification_expr;
11924 return false;
11925 }
11926 }
11927
11928 /* F2008, 4.4.3.2: If the character length parameter value evaluates to
11929 a negative value, the length of character entities declared is zero. */
11930 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
11931 && mpz_sgn (cl->length->value.integer) < 0)
11932 gfc_replace_expr (cl->length,
11933 gfc_get_int_expr (gfc_charlen_int_kind, NULL, 0));
11934
11935 /* Check that the character length is not too large. */
11936 k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
11937 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
11938 && cl->length->ts.type == BT_INTEGER
11939 && mpz_cmp (cl->length->value.integer, gfc_integer_kinds[k].huge) > 0)
11940 {
11941 gfc_error ("String length at %L is too large", &cl->length->where);
11942 specification_expr = saved_specification_expr;
11943 return false;
11944 }
11945
11946 specification_expr = saved_specification_expr;
11947 return true;
11948 }
11949
11950
11951 /* Test for non-constant shape arrays. */
11952
11953 static bool
11954 is_non_constant_shape_array (gfc_symbol *sym)
11955 {
11956 gfc_expr *e;
11957 int i;
11958 bool not_constant;
11959
11960 not_constant = false;
11961 if (sym->as != NULL)
11962 {
11963 /* Unfortunately, !gfc_is_compile_time_shape hits a legal case that
11964 has not been simplified; parameter array references. Do the
11965 simplification now. */
11966 for (i = 0; i < sym->as->rank + sym->as->corank; i++)
11967 {
11968 e = sym->as->lower[i];
11969 if (e && (!resolve_index_expr(e)
11970 || !gfc_is_constant_expr (e)))
11971 not_constant = true;
11972 e = sym->as->upper[i];
11973 if (e && (!resolve_index_expr(e)
11974 || !gfc_is_constant_expr (e)))
11975 not_constant = true;
11976 }
11977 }
11978 return not_constant;
11979 }
11980
11981 /* Given a symbol and an initialization expression, add code to initialize
11982 the symbol to the function entry. */
11983 static void
11984 build_init_assign (gfc_symbol *sym, gfc_expr *init)
11985 {
11986 gfc_expr *lval;
11987 gfc_code *init_st;
11988 gfc_namespace *ns = sym->ns;
11989
11990 /* Search for the function namespace if this is a contained
11991 function without an explicit result. */
11992 if (sym->attr.function && sym == sym->result
11993 && sym->name != sym->ns->proc_name->name)
11994 {
11995 ns = ns->contained;
11996 for (;ns; ns = ns->sibling)
11997 if (strcmp (ns->proc_name->name, sym->name) == 0)
11998 break;
11999 }
12000
12001 if (ns == NULL)
12002 {
12003 gfc_free_expr (init);
12004 return;
12005 }
12006
12007 /* Build an l-value expression for the result. */
12008 lval = gfc_lval_expr_from_sym (sym);
12009
12010 /* Add the code at scope entry. */
12011 init_st = gfc_get_code (EXEC_INIT_ASSIGN);
12012 init_st->next = ns->code;
12013 ns->code = init_st;
12014
12015 /* Assign the default initializer to the l-value. */
12016 init_st->loc = sym->declared_at;
12017 init_st->expr1 = lval;
12018 init_st->expr2 = init;
12019 }
12020
12021
12022 /* Whether or not we can generate a default initializer for a symbol. */
12023
12024 static bool
12025 can_generate_init (gfc_symbol *sym)
12026 {
12027 symbol_attribute *a;
12028 if (!sym)
12029 return false;
12030 a = &sym->attr;
12031
12032 /* These symbols should never have a default initialization. */
12033 return !(
12034 a->allocatable
12035 || a->external
12036 || a->pointer
12037 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
12038 && (CLASS_DATA (sym)->attr.class_pointer
12039 || CLASS_DATA (sym)->attr.proc_pointer))
12040 || a->in_equivalence
12041 || a->in_common
12042 || a->data
12043 || sym->module
12044 || a->cray_pointee
12045 || a->cray_pointer
12046 || sym->assoc
12047 || (!a->referenced && !a->result)
12048 || (a->dummy && a->intent != INTENT_OUT)
12049 || (a->function && sym != sym->result)
12050 );
12051 }
12052
12053
12054 /* Assign the default initializer to a derived type variable or result. */
12055
12056 static void
12057 apply_default_init (gfc_symbol *sym)
12058 {
12059 gfc_expr *init = NULL;
12060
12061 if (sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
12062 return;
12063
12064 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived)
12065 init = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
12066
12067 if (init == NULL && sym->ts.type != BT_CLASS)
12068 return;
12069
12070 build_init_assign (sym, init);
12071 sym->attr.referenced = 1;
12072 }
12073
12074
12075 /* Build an initializer for a local. Returns null if the symbol should not have
12076 a default initialization. */
12077
12078 static gfc_expr *
12079 build_default_init_expr (gfc_symbol *sym)
12080 {
12081 /* These symbols should never have a default initialization. */
12082 if (sym->attr.allocatable
12083 || sym->attr.external
12084 || sym->attr.dummy
12085 || sym->attr.pointer
12086 || sym->attr.in_equivalence
12087 || sym->attr.in_common
12088 || sym->attr.data
12089 || sym->module
12090 || sym->attr.cray_pointee
12091 || sym->attr.cray_pointer
12092 || sym->assoc)
12093 return NULL;
12094
12095 /* Get the appropriate init expression. */
12096 return gfc_build_default_init_expr (&sym->ts, &sym->declared_at);
12097 }
12098
12099 /* Add an initialization expression to a local variable. */
12100 static void
12101 apply_default_init_local (gfc_symbol *sym)
12102 {
12103 gfc_expr *init = NULL;
12104
12105 /* The symbol should be a variable or a function return value. */
12106 if ((sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
12107 || (sym->attr.function && sym->result != sym))
12108 return;
12109
12110 /* Try to build the initializer expression. If we can't initialize
12111 this symbol, then init will be NULL. */
12112 init = build_default_init_expr (sym);
12113 if (init == NULL)
12114 return;
12115
12116 /* For saved variables, we don't want to add an initializer at function
12117 entry, so we just add a static initializer. Note that automatic variables
12118 are stack allocated even with -fno-automatic; we have also to exclude
12119 result variable, which are also nonstatic. */
12120 if (!sym->attr.automatic
12121 && (sym->attr.save || sym->ns->save_all
12122 || (flag_max_stack_var_size == 0 && !sym->attr.result
12123 && (sym->ns->proc_name && !sym->ns->proc_name->attr.recursive)
12124 && (!sym->attr.dimension || !is_non_constant_shape_array (sym)))))
12125 {
12126 /* Don't clobber an existing initializer! */
12127 gcc_assert (sym->value == NULL);
12128 sym->value = init;
12129 return;
12130 }
12131
12132 build_init_assign (sym, init);
12133 }
12134
12135
12136 /* Resolution of common features of flavors variable and procedure. */
12137
12138 static bool
12139 resolve_fl_var_and_proc (gfc_symbol *sym, int mp_flag)
12140 {
12141 gfc_array_spec *as;
12142
12143 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
12144 as = CLASS_DATA (sym)->as;
12145 else
12146 as = sym->as;
12147
12148 /* Constraints on deferred shape variable. */
12149 if (as == NULL || as->type != AS_DEFERRED)
12150 {
12151 bool pointer, allocatable, dimension;
12152
12153 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
12154 {
12155 pointer = CLASS_DATA (sym)->attr.class_pointer;
12156 allocatable = CLASS_DATA (sym)->attr.allocatable;
12157 dimension = CLASS_DATA (sym)->attr.dimension;
12158 }
12159 else
12160 {
12161 pointer = sym->attr.pointer && !sym->attr.select_type_temporary;
12162 allocatable = sym->attr.allocatable;
12163 dimension = sym->attr.dimension;
12164 }
12165
12166 if (allocatable)
12167 {
12168 if (dimension && as->type != AS_ASSUMED_RANK)
12169 {
12170 gfc_error ("Allocatable array %qs at %L must have a deferred "
12171 "shape or assumed rank", sym->name, &sym->declared_at);
12172 return false;
12173 }
12174 else if (!gfc_notify_std (GFC_STD_F2003, "Scalar object "
12175 "%qs at %L may not be ALLOCATABLE",
12176 sym->name, &sym->declared_at))
12177 return false;
12178 }
12179
12180 if (pointer && dimension && as->type != AS_ASSUMED_RANK)
12181 {
12182 gfc_error ("Array pointer %qs at %L must have a deferred shape or "
12183 "assumed rank", sym->name, &sym->declared_at);
12184 return false;
12185 }
12186 }
12187 else
12188 {
12189 if (!mp_flag && !sym->attr.allocatable && !sym->attr.pointer
12190 && sym->ts.type != BT_CLASS && !sym->assoc)
12191 {
12192 gfc_error ("Array %qs at %L cannot have a deferred shape",
12193 sym->name, &sym->declared_at);
12194 return false;
12195 }
12196 }
12197
12198 /* Constraints on polymorphic variables. */
12199 if (sym->ts.type == BT_CLASS && !(sym->result && sym->result != sym))
12200 {
12201 /* F03:C502. */
12202 if (sym->attr.class_ok
12203 && !sym->attr.select_type_temporary
12204 && !UNLIMITED_POLY (sym)
12205 && !gfc_type_is_extensible (CLASS_DATA (sym)->ts.u.derived))
12206 {
12207 gfc_error ("Type %qs of CLASS variable %qs at %L is not extensible",
12208 CLASS_DATA (sym)->ts.u.derived->name, sym->name,
12209 &sym->declared_at);
12210 return false;
12211 }
12212
12213 /* F03:C509. */
12214 /* Assume that use associated symbols were checked in the module ns.
12215 Class-variables that are associate-names are also something special
12216 and excepted from the test. */
12217 if (!sym->attr.class_ok && !sym->attr.use_assoc && !sym->assoc)
12218 {
12219 gfc_error ("CLASS variable %qs at %L must be dummy, allocatable "
12220 "or pointer", sym->name, &sym->declared_at);
12221 return false;
12222 }
12223 }
12224
12225 return true;
12226 }
12227
12228
12229 /* Additional checks for symbols with flavor variable and derived
12230 type. To be called from resolve_fl_variable. */
12231
12232 static bool
12233 resolve_fl_variable_derived (gfc_symbol *sym, int no_init_flag)
12234 {
12235 gcc_assert (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS);
12236
12237 /* Check to see if a derived type is blocked from being host
12238 associated by the presence of another class I symbol in the same
12239 namespace. 14.6.1.3 of the standard and the discussion on
12240 comp.lang.fortran. */
12241 if (sym->ns != sym->ts.u.derived->ns
12242 && !sym->ts.u.derived->attr.use_assoc
12243 && sym->ns->proc_name->attr.if_source != IFSRC_IFBODY)
12244 {
12245 gfc_symbol *s;
12246 gfc_find_symbol (sym->ts.u.derived->name, sym->ns, 0, &s);
12247 if (s && s->attr.generic)
12248 s = gfc_find_dt_in_generic (s);
12249 if (s && !gfc_fl_struct (s->attr.flavor))
12250 {
12251 gfc_error ("The type %qs cannot be host associated at %L "
12252 "because it is blocked by an incompatible object "
12253 "of the same name declared at %L",
12254 sym->ts.u.derived->name, &sym->declared_at,
12255 &s->declared_at);
12256 return false;
12257 }
12258 }
12259
12260 /* 4th constraint in section 11.3: "If an object of a type for which
12261 component-initialization is specified (R429) appears in the
12262 specification-part of a module and does not have the ALLOCATABLE
12263 or POINTER attribute, the object shall have the SAVE attribute."
12264
12265 The check for initializers is performed with
12266 gfc_has_default_initializer because gfc_default_initializer generates
12267 a hidden default for allocatable components. */
12268 if (!(sym->value || no_init_flag) && sym->ns->proc_name
12269 && sym->ns->proc_name->attr.flavor == FL_MODULE
12270 && !(sym->ns->save_all && !sym->attr.automatic) && !sym->attr.save
12271 && !sym->attr.pointer && !sym->attr.allocatable
12272 && gfc_has_default_initializer (sym->ts.u.derived)
12273 && !gfc_notify_std (GFC_STD_F2008, "Implied SAVE for module variable "
12274 "%qs at %L, needed due to the default "
12275 "initialization", sym->name, &sym->declared_at))
12276 return false;
12277
12278 /* Assign default initializer. */
12279 if (!(sym->value || sym->attr.pointer || sym->attr.allocatable)
12280 && (!no_init_flag || sym->attr.intent == INTENT_OUT))
12281 sym->value = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
12282
12283 return true;
12284 }
12285
12286
12287 /* F2008, C402 (R401): A colon shall not be used as a type-param-value
12288 except in the declaration of an entity or component that has the POINTER
12289 or ALLOCATABLE attribute. */
12290
12291 static bool
12292 deferred_requirements (gfc_symbol *sym)
12293 {
12294 if (sym->ts.deferred
12295 && !(sym->attr.pointer
12296 || sym->attr.allocatable
12297 || sym->attr.associate_var
12298 || sym->attr.omp_udr_artificial_var))
12299 {
12300 gfc_error ("Entity %qs at %L has a deferred type parameter and "
12301 "requires either the POINTER or ALLOCATABLE attribute",
12302 sym->name, &sym->declared_at);
12303 return false;
12304 }
12305 return true;
12306 }
12307
12308
12309 /* Resolve symbols with flavor variable. */
12310
12311 static bool
12312 resolve_fl_variable (gfc_symbol *sym, int mp_flag)
12313 {
12314 const char *auto_save_msg = "Automatic object %qs at %L cannot have the "
12315 "SAVE attribute";
12316
12317 if (!resolve_fl_var_and_proc (sym, mp_flag))
12318 return false;
12319
12320 /* Set this flag to check that variables are parameters of all entries.
12321 This check is effected by the call to gfc_resolve_expr through
12322 is_non_constant_shape_array. */
12323 bool saved_specification_expr = specification_expr;
12324 specification_expr = true;
12325
12326 if (sym->ns->proc_name
12327 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12328 || sym->ns->proc_name->attr.is_main_program)
12329 && !sym->attr.use_assoc
12330 && !sym->attr.allocatable
12331 && !sym->attr.pointer
12332 && is_non_constant_shape_array (sym))
12333 {
12334 /* F08:C541. The shape of an array defined in a main program or module
12335 * needs to be constant. */
12336 gfc_error ("The module or main program array %qs at %L must "
12337 "have constant shape", sym->name, &sym->declared_at);
12338 specification_expr = saved_specification_expr;
12339 return false;
12340 }
12341
12342 /* Constraints on deferred type parameter. */
12343 if (!deferred_requirements (sym))
12344 return false;
12345
12346 if (sym->ts.type == BT_CHARACTER && !sym->attr.associate_var)
12347 {
12348 /* Make sure that character string variables with assumed length are
12349 dummy arguments. */
12350 gfc_expr *e = NULL;
12351
12352 if (sym->ts.u.cl)
12353 e = sym->ts.u.cl->length;
12354 else
12355 return false;
12356
12357 if (e == NULL && !sym->attr.dummy && !sym->attr.result
12358 && !sym->ts.deferred && !sym->attr.select_type_temporary
12359 && !sym->attr.omp_udr_artificial_var)
12360 {
12361 gfc_error ("Entity with assumed character length at %L must be a "
12362 "dummy argument or a PARAMETER", &sym->declared_at);
12363 specification_expr = saved_specification_expr;
12364 return false;
12365 }
12366
12367 if (e && sym->attr.save == SAVE_EXPLICIT && !gfc_is_constant_expr (e))
12368 {
12369 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12370 specification_expr = saved_specification_expr;
12371 return false;
12372 }
12373
12374 if (!gfc_is_constant_expr (e)
12375 && !(e->expr_type == EXPR_VARIABLE
12376 && e->symtree->n.sym->attr.flavor == FL_PARAMETER))
12377 {
12378 if (!sym->attr.use_assoc && sym->ns->proc_name
12379 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12380 || sym->ns->proc_name->attr.is_main_program))
12381 {
12382 gfc_error ("%qs at %L must have constant character length "
12383 "in this context", sym->name, &sym->declared_at);
12384 specification_expr = saved_specification_expr;
12385 return false;
12386 }
12387 if (sym->attr.in_common)
12388 {
12389 gfc_error ("COMMON variable %qs at %L must have constant "
12390 "character length", sym->name, &sym->declared_at);
12391 specification_expr = saved_specification_expr;
12392 return false;
12393 }
12394 }
12395 }
12396
12397 if (sym->value == NULL && sym->attr.referenced)
12398 apply_default_init_local (sym); /* Try to apply a default initialization. */
12399
12400 /* Determine if the symbol may not have an initializer. */
12401 int no_init_flag = 0, automatic_flag = 0;
12402 if (sym->attr.allocatable || sym->attr.external || sym->attr.dummy
12403 || sym->attr.intrinsic || sym->attr.result)
12404 no_init_flag = 1;
12405 else if ((sym->attr.dimension || sym->attr.codimension) && !sym->attr.pointer
12406 && is_non_constant_shape_array (sym))
12407 {
12408 no_init_flag = automatic_flag = 1;
12409
12410 /* Also, they must not have the SAVE attribute.
12411 SAVE_IMPLICIT is checked below. */
12412 if (sym->as && sym->attr.codimension)
12413 {
12414 int corank = sym->as->corank;
12415 sym->as->corank = 0;
12416 no_init_flag = automatic_flag = is_non_constant_shape_array (sym);
12417 sym->as->corank = corank;
12418 }
12419 if (automatic_flag && sym->attr.save == SAVE_EXPLICIT)
12420 {
12421 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12422 specification_expr = saved_specification_expr;
12423 return false;
12424 }
12425 }
12426
12427 /* Ensure that any initializer is simplified. */
12428 if (sym->value)
12429 gfc_simplify_expr (sym->value, 1);
12430
12431 /* Reject illegal initializers. */
12432 if (!sym->mark && sym->value)
12433 {
12434 if (sym->attr.allocatable || (sym->ts.type == BT_CLASS
12435 && CLASS_DATA (sym)->attr.allocatable))
12436 gfc_error ("Allocatable %qs at %L cannot have an initializer",
12437 sym->name, &sym->declared_at);
12438 else if (sym->attr.external)
12439 gfc_error ("External %qs at %L cannot have an initializer",
12440 sym->name, &sym->declared_at);
12441 else if (sym->attr.dummy
12442 && !(sym->ts.type == BT_DERIVED && sym->attr.intent == INTENT_OUT))
12443 gfc_error ("Dummy %qs at %L cannot have an initializer",
12444 sym->name, &sym->declared_at);
12445 else if (sym->attr.intrinsic)
12446 gfc_error ("Intrinsic %qs at %L cannot have an initializer",
12447 sym->name, &sym->declared_at);
12448 else if (sym->attr.result)
12449 gfc_error ("Function result %qs at %L cannot have an initializer",
12450 sym->name, &sym->declared_at);
12451 else if (automatic_flag)
12452 gfc_error ("Automatic array %qs at %L cannot have an initializer",
12453 sym->name, &sym->declared_at);
12454 else
12455 goto no_init_error;
12456 specification_expr = saved_specification_expr;
12457 return false;
12458 }
12459
12460 no_init_error:
12461 if (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS)
12462 {
12463 bool res = resolve_fl_variable_derived (sym, no_init_flag);
12464 specification_expr = saved_specification_expr;
12465 return res;
12466 }
12467
12468 specification_expr = saved_specification_expr;
12469 return true;
12470 }
12471
12472
12473 /* Compare the dummy characteristics of a module procedure interface
12474 declaration with the corresponding declaration in a submodule. */
12475 static gfc_formal_arglist *new_formal;
12476 static char errmsg[200];
12477
12478 static void
12479 compare_fsyms (gfc_symbol *sym)
12480 {
12481 gfc_symbol *fsym;
12482
12483 if (sym == NULL || new_formal == NULL)
12484 return;
12485
12486 fsym = new_formal->sym;
12487
12488 if (sym == fsym)
12489 return;
12490
12491 if (strcmp (sym->name, fsym->name) == 0)
12492 {
12493 if (!gfc_check_dummy_characteristics (fsym, sym, true, errmsg, 200))
12494 gfc_error ("%s at %L", errmsg, &fsym->declared_at);
12495 }
12496 }
12497
12498
12499 /* Resolve a procedure. */
12500
12501 static bool
12502 resolve_fl_procedure (gfc_symbol *sym, int mp_flag)
12503 {
12504 gfc_formal_arglist *arg;
12505
12506 if (sym->attr.function
12507 && !resolve_fl_var_and_proc (sym, mp_flag))
12508 return false;
12509
12510 if (sym->ts.type == BT_CHARACTER)
12511 {
12512 gfc_charlen *cl = sym->ts.u.cl;
12513
12514 if (cl && cl->length && gfc_is_constant_expr (cl->length)
12515 && !resolve_charlen (cl))
12516 return false;
12517
12518 if ((!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
12519 && sym->attr.proc == PROC_ST_FUNCTION)
12520 {
12521 gfc_error ("Character-valued statement function %qs at %L must "
12522 "have constant length", sym->name, &sym->declared_at);
12523 return false;
12524 }
12525 }
12526
12527 /* Ensure that derived type for are not of a private type. Internal
12528 module procedures are excluded by 2.2.3.3 - i.e., they are not
12529 externally accessible and can access all the objects accessible in
12530 the host. */
12531 if (!(sym->ns->parent && sym->ns->parent->proc_name
12532 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
12533 && gfc_check_symbol_access (sym))
12534 {
12535 gfc_interface *iface;
12536
12537 for (arg = gfc_sym_get_dummy_args (sym); arg; arg = arg->next)
12538 {
12539 if (arg->sym
12540 && arg->sym->ts.type == BT_DERIVED
12541 && !arg->sym->ts.u.derived->attr.use_assoc
12542 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12543 && !gfc_notify_std (GFC_STD_F2003, "%qs is of a PRIVATE type "
12544 "and cannot be a dummy argument"
12545 " of %qs, which is PUBLIC at %L",
12546 arg->sym->name, sym->name,
12547 &sym->declared_at))
12548 {
12549 /* Stop this message from recurring. */
12550 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12551 return false;
12552 }
12553 }
12554
12555 /* PUBLIC interfaces may expose PRIVATE procedures that take types
12556 PRIVATE to the containing module. */
12557 for (iface = sym->generic; iface; iface = iface->next)
12558 {
12559 for (arg = gfc_sym_get_dummy_args (iface->sym); arg; arg = arg->next)
12560 {
12561 if (arg->sym
12562 && arg->sym->ts.type == BT_DERIVED
12563 && !arg->sym->ts.u.derived->attr.use_assoc
12564 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12565 && !gfc_notify_std (GFC_STD_F2003, "Procedure %qs in "
12566 "PUBLIC interface %qs at %L "
12567 "takes dummy arguments of %qs which "
12568 "is PRIVATE", iface->sym->name,
12569 sym->name, &iface->sym->declared_at,
12570 gfc_typename(&arg->sym->ts)))
12571 {
12572 /* Stop this message from recurring. */
12573 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12574 return false;
12575 }
12576 }
12577 }
12578 }
12579
12580 if (sym->attr.function && sym->value && sym->attr.proc != PROC_ST_FUNCTION
12581 && !sym->attr.proc_pointer)
12582 {
12583 gfc_error ("Function %qs at %L cannot have an initializer",
12584 sym->name, &sym->declared_at);
12585
12586 /* Make sure no second error is issued for this. */
12587 sym->value->error = 1;
12588 return false;
12589 }
12590
12591 /* An external symbol may not have an initializer because it is taken to be
12592 a procedure. Exception: Procedure Pointers. */
12593 if (sym->attr.external && sym->value && !sym->attr.proc_pointer)
12594 {
12595 gfc_error ("External object %qs at %L may not have an initializer",
12596 sym->name, &sym->declared_at);
12597 return false;
12598 }
12599
12600 /* An elemental function is required to return a scalar 12.7.1 */
12601 if (sym->attr.elemental && sym->attr.function
12602 && (sym->as || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)))
12603 {
12604 gfc_error ("ELEMENTAL function %qs at %L must have a scalar "
12605 "result", sym->name, &sym->declared_at);
12606 /* Reset so that the error only occurs once. */
12607 sym->attr.elemental = 0;
12608 return false;
12609 }
12610
12611 if (sym->attr.proc == PROC_ST_FUNCTION
12612 && (sym->attr.allocatable || sym->attr.pointer))
12613 {
12614 gfc_error ("Statement function %qs at %L may not have pointer or "
12615 "allocatable attribute", sym->name, &sym->declared_at);
12616 return false;
12617 }
12618
12619 /* 5.1.1.5 of the Standard: A function name declared with an asterisk
12620 char-len-param shall not be array-valued, pointer-valued, recursive
12621 or pure. ....snip... A character value of * may only be used in the
12622 following ways: (i) Dummy arg of procedure - dummy associates with
12623 actual length; (ii) To declare a named constant; or (iii) External
12624 function - but length must be declared in calling scoping unit. */
12625 if (sym->attr.function
12626 && sym->ts.type == BT_CHARACTER && !sym->ts.deferred
12627 && sym->ts.u.cl && sym->ts.u.cl->length == NULL)
12628 {
12629 if ((sym->as && sym->as->rank) || (sym->attr.pointer)
12630 || (sym->attr.recursive) || (sym->attr.pure))
12631 {
12632 if (sym->as && sym->as->rank)
12633 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12634 "array-valued", sym->name, &sym->declared_at);
12635
12636 if (sym->attr.pointer)
12637 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12638 "pointer-valued", sym->name, &sym->declared_at);
12639
12640 if (sym->attr.pure)
12641 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12642 "pure", sym->name, &sym->declared_at);
12643
12644 if (sym->attr.recursive)
12645 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12646 "recursive", sym->name, &sym->declared_at);
12647
12648 return false;
12649 }
12650
12651 /* Appendix B.2 of the standard. Contained functions give an
12652 error anyway. Deferred character length is an F2003 feature.
12653 Don't warn on intrinsic conversion functions, which start
12654 with two underscores. */
12655 if (!sym->attr.contained && !sym->ts.deferred
12656 && (sym->name[0] != '_' || sym->name[1] != '_'))
12657 gfc_notify_std (GFC_STD_F95_OBS,
12658 "CHARACTER(*) function %qs at %L",
12659 sym->name, &sym->declared_at);
12660 }
12661
12662 /* F2008, C1218. */
12663 if (sym->attr.elemental)
12664 {
12665 if (sym->attr.proc_pointer)
12666 {
12667 gfc_error ("Procedure pointer %qs at %L shall not be elemental",
12668 sym->name, &sym->declared_at);
12669 return false;
12670 }
12671 if (sym->attr.dummy)
12672 {
12673 gfc_error ("Dummy procedure %qs at %L shall not be elemental",
12674 sym->name, &sym->declared_at);
12675 return false;
12676 }
12677 }
12678
12679 /* F2018, C15100: "The result of an elemental function shall be scalar,
12680 and shall not have the POINTER or ALLOCATABLE attribute." The scalar
12681 pointer is tested and caught elsewhere. */
12682 if (sym->attr.elemental && sym->result
12683 && (sym->result->attr.allocatable || sym->result->attr.pointer))
12684 {
12685 gfc_error ("Function result variable %qs at %L of elemental "
12686 "function %qs shall not have an ALLOCATABLE or POINTER "
12687 "attribute", sym->result->name,
12688 &sym->result->declared_at, sym->name);
12689 return false;
12690 }
12691
12692 if (sym->attr.is_bind_c && sym->attr.is_c_interop != 1)
12693 {
12694 gfc_formal_arglist *curr_arg;
12695 int has_non_interop_arg = 0;
12696
12697 if (!verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
12698 sym->common_block))
12699 {
12700 /* Clear these to prevent looking at them again if there was an
12701 error. */
12702 sym->attr.is_bind_c = 0;
12703 sym->attr.is_c_interop = 0;
12704 sym->ts.is_c_interop = 0;
12705 }
12706 else
12707 {
12708 /* So far, no errors have been found. */
12709 sym->attr.is_c_interop = 1;
12710 sym->ts.is_c_interop = 1;
12711 }
12712
12713 curr_arg = gfc_sym_get_dummy_args (sym);
12714 while (curr_arg != NULL)
12715 {
12716 /* Skip implicitly typed dummy args here. */
12717 if (curr_arg->sym && curr_arg->sym->attr.implicit_type == 0)
12718 if (!gfc_verify_c_interop_param (curr_arg->sym))
12719 /* If something is found to fail, record the fact so we
12720 can mark the symbol for the procedure as not being
12721 BIND(C) to try and prevent multiple errors being
12722 reported. */
12723 has_non_interop_arg = 1;
12724
12725 curr_arg = curr_arg->next;
12726 }
12727
12728 /* See if any of the arguments were not interoperable and if so, clear
12729 the procedure symbol to prevent duplicate error messages. */
12730 if (has_non_interop_arg != 0)
12731 {
12732 sym->attr.is_c_interop = 0;
12733 sym->ts.is_c_interop = 0;
12734 sym->attr.is_bind_c = 0;
12735 }
12736 }
12737
12738 if (!sym->attr.proc_pointer)
12739 {
12740 if (sym->attr.save == SAVE_EXPLICIT)
12741 {
12742 gfc_error ("PROCEDURE attribute conflicts with SAVE attribute "
12743 "in %qs at %L", sym->name, &sym->declared_at);
12744 return false;
12745 }
12746 if (sym->attr.intent)
12747 {
12748 gfc_error ("PROCEDURE attribute conflicts with INTENT attribute "
12749 "in %qs at %L", sym->name, &sym->declared_at);
12750 return false;
12751 }
12752 if (sym->attr.subroutine && sym->attr.result)
12753 {
12754 gfc_error ("PROCEDURE attribute conflicts with RESULT attribute "
12755 "in %qs at %L", sym->name, &sym->declared_at);
12756 return false;
12757 }
12758 if (sym->attr.external && sym->attr.function && !sym->attr.module_procedure
12759 && ((sym->attr.if_source == IFSRC_DECL && !sym->attr.procedure)
12760 || sym->attr.contained))
12761 {
12762 gfc_error ("EXTERNAL attribute conflicts with FUNCTION attribute "
12763 "in %qs at %L", sym->name, &sym->declared_at);
12764 return false;
12765 }
12766 if (strcmp ("ppr@", sym->name) == 0)
12767 {
12768 gfc_error ("Procedure pointer result %qs at %L "
12769 "is missing the pointer attribute",
12770 sym->ns->proc_name->name, &sym->declared_at);
12771 return false;
12772 }
12773 }
12774
12775 /* Assume that a procedure whose body is not known has references
12776 to external arrays. */
12777 if (sym->attr.if_source != IFSRC_DECL)
12778 sym->attr.array_outer_dependency = 1;
12779
12780 /* Compare the characteristics of a module procedure with the
12781 interface declaration. Ideally this would be done with
12782 gfc_compare_interfaces but, at present, the formal interface
12783 cannot be copied to the ts.interface. */
12784 if (sym->attr.module_procedure
12785 && sym->attr.if_source == IFSRC_DECL)
12786 {
12787 gfc_symbol *iface;
12788 char name[2*GFC_MAX_SYMBOL_LEN + 1];
12789 char *module_name;
12790 char *submodule_name;
12791 strcpy (name, sym->ns->proc_name->name);
12792 module_name = strtok (name, ".");
12793 submodule_name = strtok (NULL, ".");
12794
12795 iface = sym->tlink;
12796 sym->tlink = NULL;
12797
12798 /* Make sure that the result uses the correct charlen for deferred
12799 length results. */
12800 if (iface && sym->result
12801 && iface->ts.type == BT_CHARACTER
12802 && iface->ts.deferred)
12803 sym->result->ts.u.cl = iface->ts.u.cl;
12804
12805 if (iface == NULL)
12806 goto check_formal;
12807
12808 /* Check the procedure characteristics. */
12809 if (sym->attr.elemental != iface->attr.elemental)
12810 {
12811 gfc_error ("Mismatch in ELEMENTAL attribute between MODULE "
12812 "PROCEDURE at %L and its interface in %s",
12813 &sym->declared_at, module_name);
12814 return false;
12815 }
12816
12817 if (sym->attr.pure != iface->attr.pure)
12818 {
12819 gfc_error ("Mismatch in PURE attribute between MODULE "
12820 "PROCEDURE at %L and its interface in %s",
12821 &sym->declared_at, module_name);
12822 return false;
12823 }
12824
12825 if (sym->attr.recursive != iface->attr.recursive)
12826 {
12827 gfc_error ("Mismatch in RECURSIVE attribute between MODULE "
12828 "PROCEDURE at %L and its interface in %s",
12829 &sym->declared_at, module_name);
12830 return false;
12831 }
12832
12833 /* Check the result characteristics. */
12834 if (!gfc_check_result_characteristics (sym, iface, errmsg, 200))
12835 {
12836 gfc_error ("%s between the MODULE PROCEDURE declaration "
12837 "in MODULE %qs and the declaration at %L in "
12838 "(SUB)MODULE %qs",
12839 errmsg, module_name, &sym->declared_at,
12840 submodule_name ? submodule_name : module_name);
12841 return false;
12842 }
12843
12844 check_formal:
12845 /* Check the characteristics of the formal arguments. */
12846 if (sym->formal && sym->formal_ns)
12847 {
12848 for (arg = sym->formal; arg && arg->sym; arg = arg->next)
12849 {
12850 new_formal = arg;
12851 gfc_traverse_ns (sym->formal_ns, compare_fsyms);
12852 }
12853 }
12854 }
12855 return true;
12856 }
12857
12858
12859 /* Resolve a list of finalizer procedures. That is, after they have hopefully
12860 been defined and we now know their defined arguments, check that they fulfill
12861 the requirements of the standard for procedures used as finalizers. */
12862
12863 static bool
12864 gfc_resolve_finalizers (gfc_symbol* derived, bool *finalizable)
12865 {
12866 gfc_finalizer* list;
12867 gfc_finalizer** prev_link; /* For removing wrong entries from the list. */
12868 bool result = true;
12869 bool seen_scalar = false;
12870 gfc_symbol *vtab;
12871 gfc_component *c;
12872 gfc_symbol *parent = gfc_get_derived_super_type (derived);
12873
12874 if (parent)
12875 gfc_resolve_finalizers (parent, finalizable);
12876
12877 /* Ensure that derived-type components have a their finalizers resolved. */
12878 bool has_final = derived->f2k_derived && derived->f2k_derived->finalizers;
12879 for (c = derived->components; c; c = c->next)
12880 if (c->ts.type == BT_DERIVED
12881 && !c->attr.pointer && !c->attr.proc_pointer && !c->attr.allocatable)
12882 {
12883 bool has_final2 = false;
12884 if (!gfc_resolve_finalizers (c->ts.u.derived, &has_final2))
12885 return false; /* Error. */
12886 has_final = has_final || has_final2;
12887 }
12888 /* Return early if not finalizable. */
12889 if (!has_final)
12890 {
12891 if (finalizable)
12892 *finalizable = false;
12893 return true;
12894 }
12895
12896 /* Walk over the list of finalizer-procedures, check them, and if any one
12897 does not fit in with the standard's definition, print an error and remove
12898 it from the list. */
12899 prev_link = &derived->f2k_derived->finalizers;
12900 for (list = derived->f2k_derived->finalizers; list; list = *prev_link)
12901 {
12902 gfc_formal_arglist *dummy_args;
12903 gfc_symbol* arg;
12904 gfc_finalizer* i;
12905 int my_rank;
12906
12907 /* Skip this finalizer if we already resolved it. */
12908 if (list->proc_tree)
12909 {
12910 if (list->proc_tree->n.sym->formal->sym->as == NULL
12911 || list->proc_tree->n.sym->formal->sym->as->rank == 0)
12912 seen_scalar = true;
12913 prev_link = &(list->next);
12914 continue;
12915 }
12916
12917 /* Check this exists and is a SUBROUTINE. */
12918 if (!list->proc_sym->attr.subroutine)
12919 {
12920 gfc_error ("FINAL procedure %qs at %L is not a SUBROUTINE",
12921 list->proc_sym->name, &list->where);
12922 goto error;
12923 }
12924
12925 /* We should have exactly one argument. */
12926 dummy_args = gfc_sym_get_dummy_args (list->proc_sym);
12927 if (!dummy_args || dummy_args->next)
12928 {
12929 gfc_error ("FINAL procedure at %L must have exactly one argument",
12930 &list->where);
12931 goto error;
12932 }
12933 arg = dummy_args->sym;
12934
12935 /* This argument must be of our type. */
12936 if (arg->ts.type != BT_DERIVED || arg->ts.u.derived != derived)
12937 {
12938 gfc_error ("Argument of FINAL procedure at %L must be of type %qs",
12939 &arg->declared_at, derived->name);
12940 goto error;
12941 }
12942
12943 /* It must neither be a pointer nor allocatable nor optional. */
12944 if (arg->attr.pointer)
12945 {
12946 gfc_error ("Argument of FINAL procedure at %L must not be a POINTER",
12947 &arg->declared_at);
12948 goto error;
12949 }
12950 if (arg->attr.allocatable)
12951 {
12952 gfc_error ("Argument of FINAL procedure at %L must not be"
12953 " ALLOCATABLE", &arg->declared_at);
12954 goto error;
12955 }
12956 if (arg->attr.optional)
12957 {
12958 gfc_error ("Argument of FINAL procedure at %L must not be OPTIONAL",
12959 &arg->declared_at);
12960 goto error;
12961 }
12962
12963 /* It must not be INTENT(OUT). */
12964 if (arg->attr.intent == INTENT_OUT)
12965 {
12966 gfc_error ("Argument of FINAL procedure at %L must not be"
12967 " INTENT(OUT)", &arg->declared_at);
12968 goto error;
12969 }
12970
12971 /* Warn if the procedure is non-scalar and not assumed shape. */
12972 if (warn_surprising && arg->as && arg->as->rank != 0
12973 && arg->as->type != AS_ASSUMED_SHAPE)
12974 gfc_warning (OPT_Wsurprising,
12975 "Non-scalar FINAL procedure at %L should have assumed"
12976 " shape argument", &arg->declared_at);
12977
12978 /* Check that it does not match in kind and rank with a FINAL procedure
12979 defined earlier. To really loop over the *earlier* declarations,
12980 we need to walk the tail of the list as new ones were pushed at the
12981 front. */
12982 /* TODO: Handle kind parameters once they are implemented. */
12983 my_rank = (arg->as ? arg->as->rank : 0);
12984 for (i = list->next; i; i = i->next)
12985 {
12986 gfc_formal_arglist *dummy_args;
12987
12988 /* Argument list might be empty; that is an error signalled earlier,
12989 but we nevertheless continued resolving. */
12990 dummy_args = gfc_sym_get_dummy_args (i->proc_sym);
12991 if (dummy_args)
12992 {
12993 gfc_symbol* i_arg = dummy_args->sym;
12994 const int i_rank = (i_arg->as ? i_arg->as->rank : 0);
12995 if (i_rank == my_rank)
12996 {
12997 gfc_error ("FINAL procedure %qs declared at %L has the same"
12998 " rank (%d) as %qs",
12999 list->proc_sym->name, &list->where, my_rank,
13000 i->proc_sym->name);
13001 goto error;
13002 }
13003 }
13004 }
13005
13006 /* Is this the/a scalar finalizer procedure? */
13007 if (my_rank == 0)
13008 seen_scalar = true;
13009
13010 /* Find the symtree for this procedure. */
13011 gcc_assert (!list->proc_tree);
13012 list->proc_tree = gfc_find_sym_in_symtree (list->proc_sym);
13013
13014 prev_link = &list->next;
13015 continue;
13016
13017 /* Remove wrong nodes immediately from the list so we don't risk any
13018 troubles in the future when they might fail later expectations. */
13019 error:
13020 i = list;
13021 *prev_link = list->next;
13022 gfc_free_finalizer (i);
13023 result = false;
13024 }
13025
13026 if (result == false)
13027 return false;
13028
13029 /* Warn if we haven't seen a scalar finalizer procedure (but we know there
13030 were nodes in the list, must have been for arrays. It is surely a good
13031 idea to have a scalar version there if there's something to finalize. */
13032 if (warn_surprising && derived->f2k_derived->finalizers && !seen_scalar)
13033 gfc_warning (OPT_Wsurprising,
13034 "Only array FINAL procedures declared for derived type %qs"
13035 " defined at %L, suggest also scalar one",
13036 derived->name, &derived->declared_at);
13037
13038 vtab = gfc_find_derived_vtab (derived);
13039 c = vtab->ts.u.derived->components->next->next->next->next->next;
13040 gfc_set_sym_referenced (c->initializer->symtree->n.sym);
13041
13042 if (finalizable)
13043 *finalizable = true;
13044
13045 return true;
13046 }
13047
13048
13049 /* Check if two GENERIC targets are ambiguous and emit an error is they are. */
13050
13051 static bool
13052 check_generic_tbp_ambiguity (gfc_tbp_generic* t1, gfc_tbp_generic* t2,
13053 const char* generic_name, locus where)
13054 {
13055 gfc_symbol *sym1, *sym2;
13056 const char *pass1, *pass2;
13057 gfc_formal_arglist *dummy_args;
13058
13059 gcc_assert (t1->specific && t2->specific);
13060 gcc_assert (!t1->specific->is_generic);
13061 gcc_assert (!t2->specific->is_generic);
13062 gcc_assert (t1->is_operator == t2->is_operator);
13063
13064 sym1 = t1->specific->u.specific->n.sym;
13065 sym2 = t2->specific->u.specific->n.sym;
13066
13067 if (sym1 == sym2)
13068 return true;
13069
13070 /* Both must be SUBROUTINEs or both must be FUNCTIONs. */
13071 if (sym1->attr.subroutine != sym2->attr.subroutine
13072 || sym1->attr.function != sym2->attr.function)
13073 {
13074 gfc_error ("%qs and %qs can't be mixed FUNCTION/SUBROUTINE for"
13075 " GENERIC %qs at %L",
13076 sym1->name, sym2->name, generic_name, &where);
13077 return false;
13078 }
13079
13080 /* Determine PASS arguments. */
13081 if (t1->specific->nopass)
13082 pass1 = NULL;
13083 else if (t1->specific->pass_arg)
13084 pass1 = t1->specific->pass_arg;
13085 else
13086 {
13087 dummy_args = gfc_sym_get_dummy_args (t1->specific->u.specific->n.sym);
13088 if (dummy_args)
13089 pass1 = dummy_args->sym->name;
13090 else
13091 pass1 = NULL;
13092 }
13093 if (t2->specific->nopass)
13094 pass2 = NULL;
13095 else if (t2->specific->pass_arg)
13096 pass2 = t2->specific->pass_arg;
13097 else
13098 {
13099 dummy_args = gfc_sym_get_dummy_args (t2->specific->u.specific->n.sym);
13100 if (dummy_args)
13101 pass2 = dummy_args->sym->name;
13102 else
13103 pass2 = NULL;
13104 }
13105
13106 /* Compare the interfaces. */
13107 if (gfc_compare_interfaces (sym1, sym2, sym2->name, !t1->is_operator, 0,
13108 NULL, 0, pass1, pass2))
13109 {
13110 gfc_error ("%qs and %qs for GENERIC %qs at %L are ambiguous",
13111 sym1->name, sym2->name, generic_name, &where);
13112 return false;
13113 }
13114
13115 return true;
13116 }
13117
13118
13119 /* Worker function for resolving a generic procedure binding; this is used to
13120 resolve GENERIC as well as user and intrinsic OPERATOR typebound procedures.
13121
13122 The difference between those cases is finding possible inherited bindings
13123 that are overridden, as one has to look for them in tb_sym_root,
13124 tb_uop_root or tb_op, respectively. Thus the caller must already find
13125 the super-type and set p->overridden correctly. */
13126
13127 static bool
13128 resolve_tb_generic_targets (gfc_symbol* super_type,
13129 gfc_typebound_proc* p, const char* name)
13130 {
13131 gfc_tbp_generic* target;
13132 gfc_symtree* first_target;
13133 gfc_symtree* inherited;
13134
13135 gcc_assert (p && p->is_generic);
13136
13137 /* Try to find the specific bindings for the symtrees in our target-list. */
13138 gcc_assert (p->u.generic);
13139 for (target = p->u.generic; target; target = target->next)
13140 if (!target->specific)
13141 {
13142 gfc_typebound_proc* overridden_tbp;
13143 gfc_tbp_generic* g;
13144 const char* target_name;
13145
13146 target_name = target->specific_st->name;
13147
13148 /* Defined for this type directly. */
13149 if (target->specific_st->n.tb && !target->specific_st->n.tb->error)
13150 {
13151 target->specific = target->specific_st->n.tb;
13152 goto specific_found;
13153 }
13154
13155 /* Look for an inherited specific binding. */
13156 if (super_type)
13157 {
13158 inherited = gfc_find_typebound_proc (super_type, NULL, target_name,
13159 true, NULL);
13160
13161 if (inherited)
13162 {
13163 gcc_assert (inherited->n.tb);
13164 target->specific = inherited->n.tb;
13165 goto specific_found;
13166 }
13167 }
13168
13169 gfc_error ("Undefined specific binding %qs as target of GENERIC %qs"
13170 " at %L", target_name, name, &p->where);
13171 return false;
13172
13173 /* Once we've found the specific binding, check it is not ambiguous with
13174 other specifics already found or inherited for the same GENERIC. */
13175 specific_found:
13176 gcc_assert (target->specific);
13177
13178 /* This must really be a specific binding! */
13179 if (target->specific->is_generic)
13180 {
13181 gfc_error ("GENERIC %qs at %L must target a specific binding,"
13182 " %qs is GENERIC, too", name, &p->where, target_name);
13183 return false;
13184 }
13185
13186 /* Check those already resolved on this type directly. */
13187 for (g = p->u.generic; g; g = g->next)
13188 if (g != target && g->specific
13189 && !check_generic_tbp_ambiguity (target, g, name, p->where))
13190 return false;
13191
13192 /* Check for ambiguity with inherited specific targets. */
13193 for (overridden_tbp = p->overridden; overridden_tbp;
13194 overridden_tbp = overridden_tbp->overridden)
13195 if (overridden_tbp->is_generic)
13196 {
13197 for (g = overridden_tbp->u.generic; g; g = g->next)
13198 {
13199 gcc_assert (g->specific);
13200 if (!check_generic_tbp_ambiguity (target, g, name, p->where))
13201 return false;
13202 }
13203 }
13204 }
13205
13206 /* If we attempt to "overwrite" a specific binding, this is an error. */
13207 if (p->overridden && !p->overridden->is_generic)
13208 {
13209 gfc_error ("GENERIC %qs at %L can't overwrite specific binding with"
13210 " the same name", name, &p->where);
13211 return false;
13212 }
13213
13214 /* Take the SUBROUTINE/FUNCTION attributes of the first specific target, as
13215 all must have the same attributes here. */
13216 first_target = p->u.generic->specific->u.specific;
13217 gcc_assert (first_target);
13218 p->subroutine = first_target->n.sym->attr.subroutine;
13219 p->function = first_target->n.sym->attr.function;
13220
13221 return true;
13222 }
13223
13224
13225 /* Resolve a GENERIC procedure binding for a derived type. */
13226
13227 static bool
13228 resolve_typebound_generic (gfc_symbol* derived, gfc_symtree* st)
13229 {
13230 gfc_symbol* super_type;
13231
13232 /* Find the overridden binding if any. */
13233 st->n.tb->overridden = NULL;
13234 super_type = gfc_get_derived_super_type (derived);
13235 if (super_type)
13236 {
13237 gfc_symtree* overridden;
13238 overridden = gfc_find_typebound_proc (super_type, NULL, st->name,
13239 true, NULL);
13240
13241 if (overridden && overridden->n.tb)
13242 st->n.tb->overridden = overridden->n.tb;
13243 }
13244
13245 /* Resolve using worker function. */
13246 return resolve_tb_generic_targets (super_type, st->n.tb, st->name);
13247 }
13248
13249
13250 /* Retrieve the target-procedure of an operator binding and do some checks in
13251 common for intrinsic and user-defined type-bound operators. */
13252
13253 static gfc_symbol*
13254 get_checked_tb_operator_target (gfc_tbp_generic* target, locus where)
13255 {
13256 gfc_symbol* target_proc;
13257
13258 gcc_assert (target->specific && !target->specific->is_generic);
13259 target_proc = target->specific->u.specific->n.sym;
13260 gcc_assert (target_proc);
13261
13262 /* F08:C468. All operator bindings must have a passed-object dummy argument. */
13263 if (target->specific->nopass)
13264 {
13265 gfc_error ("Type-bound operator at %L can't be NOPASS", &where);
13266 return NULL;
13267 }
13268
13269 return target_proc;
13270 }
13271
13272
13273 /* Resolve a type-bound intrinsic operator. */
13274
13275 static bool
13276 resolve_typebound_intrinsic_op (gfc_symbol* derived, gfc_intrinsic_op op,
13277 gfc_typebound_proc* p)
13278 {
13279 gfc_symbol* super_type;
13280 gfc_tbp_generic* target;
13281
13282 /* If there's already an error here, do nothing (but don't fail again). */
13283 if (p->error)
13284 return true;
13285
13286 /* Operators should always be GENERIC bindings. */
13287 gcc_assert (p->is_generic);
13288
13289 /* Look for an overridden binding. */
13290 super_type = gfc_get_derived_super_type (derived);
13291 if (super_type && super_type->f2k_derived)
13292 p->overridden = gfc_find_typebound_intrinsic_op (super_type, NULL,
13293 op, true, NULL);
13294 else
13295 p->overridden = NULL;
13296
13297 /* Resolve general GENERIC properties using worker function. */
13298 if (!resolve_tb_generic_targets (super_type, p, gfc_op2string(op)))
13299 goto error;
13300
13301 /* Check the targets to be procedures of correct interface. */
13302 for (target = p->u.generic; target; target = target->next)
13303 {
13304 gfc_symbol* target_proc;
13305
13306 target_proc = get_checked_tb_operator_target (target, p->where);
13307 if (!target_proc)
13308 goto error;
13309
13310 if (!gfc_check_operator_interface (target_proc, op, p->where))
13311 goto error;
13312
13313 /* Add target to non-typebound operator list. */
13314 if (!target->specific->deferred && !derived->attr.use_assoc
13315 && p->access != ACCESS_PRIVATE && derived->ns == gfc_current_ns)
13316 {
13317 gfc_interface *head, *intr;
13318
13319 /* Preempt 'gfc_check_new_interface' for submodules, where the
13320 mechanism for handling module procedures winds up resolving
13321 operator interfaces twice and would otherwise cause an error. */
13322 for (intr = derived->ns->op[op]; intr; intr = intr->next)
13323 if (intr->sym == target_proc
13324 && target_proc->attr.used_in_submodule)
13325 return true;
13326
13327 if (!gfc_check_new_interface (derived->ns->op[op],
13328 target_proc, p->where))
13329 return false;
13330 head = derived->ns->op[op];
13331 intr = gfc_get_interface ();
13332 intr->sym = target_proc;
13333 intr->where = p->where;
13334 intr->next = head;
13335 derived->ns->op[op] = intr;
13336 }
13337 }
13338
13339 return true;
13340
13341 error:
13342 p->error = 1;
13343 return false;
13344 }
13345
13346
13347 /* Resolve a type-bound user operator (tree-walker callback). */
13348
13349 static gfc_symbol* resolve_bindings_derived;
13350 static bool resolve_bindings_result;
13351
13352 static bool check_uop_procedure (gfc_symbol* sym, locus where);
13353
13354 static void
13355 resolve_typebound_user_op (gfc_symtree* stree)
13356 {
13357 gfc_symbol* super_type;
13358 gfc_tbp_generic* target;
13359
13360 gcc_assert (stree && stree->n.tb);
13361
13362 if (stree->n.tb->error)
13363 return;
13364
13365 /* Operators should always be GENERIC bindings. */
13366 gcc_assert (stree->n.tb->is_generic);
13367
13368 /* Find overridden procedure, if any. */
13369 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13370 if (super_type && super_type->f2k_derived)
13371 {
13372 gfc_symtree* overridden;
13373 overridden = gfc_find_typebound_user_op (super_type, NULL,
13374 stree->name, true, NULL);
13375
13376 if (overridden && overridden->n.tb)
13377 stree->n.tb->overridden = overridden->n.tb;
13378 }
13379 else
13380 stree->n.tb->overridden = NULL;
13381
13382 /* Resolve basically using worker function. */
13383 if (!resolve_tb_generic_targets (super_type, stree->n.tb, stree->name))
13384 goto error;
13385
13386 /* Check the targets to be functions of correct interface. */
13387 for (target = stree->n.tb->u.generic; target; target = target->next)
13388 {
13389 gfc_symbol* target_proc;
13390
13391 target_proc = get_checked_tb_operator_target (target, stree->n.tb->where);
13392 if (!target_proc)
13393 goto error;
13394
13395 if (!check_uop_procedure (target_proc, stree->n.tb->where))
13396 goto error;
13397 }
13398
13399 return;
13400
13401 error:
13402 resolve_bindings_result = false;
13403 stree->n.tb->error = 1;
13404 }
13405
13406
13407 /* Resolve the type-bound procedures for a derived type. */
13408
13409 static void
13410 resolve_typebound_procedure (gfc_symtree* stree)
13411 {
13412 gfc_symbol* proc;
13413 locus where;
13414 gfc_symbol* me_arg;
13415 gfc_symbol* super_type;
13416 gfc_component* comp;
13417
13418 gcc_assert (stree);
13419
13420 /* Undefined specific symbol from GENERIC target definition. */
13421 if (!stree->n.tb)
13422 return;
13423
13424 if (stree->n.tb->error)
13425 return;
13426
13427 /* If this is a GENERIC binding, use that routine. */
13428 if (stree->n.tb->is_generic)
13429 {
13430 if (!resolve_typebound_generic (resolve_bindings_derived, stree))
13431 goto error;
13432 return;
13433 }
13434
13435 /* Get the target-procedure to check it. */
13436 gcc_assert (!stree->n.tb->is_generic);
13437 gcc_assert (stree->n.tb->u.specific);
13438 proc = stree->n.tb->u.specific->n.sym;
13439 where = stree->n.tb->where;
13440
13441 /* Default access should already be resolved from the parser. */
13442 gcc_assert (stree->n.tb->access != ACCESS_UNKNOWN);
13443
13444 if (stree->n.tb->deferred)
13445 {
13446 if (!check_proc_interface (proc, &where))
13447 goto error;
13448 }
13449 else
13450 {
13451 /* Check for F08:C465. */
13452 if ((!proc->attr.subroutine && !proc->attr.function)
13453 || (proc->attr.proc != PROC_MODULE
13454 && proc->attr.if_source != IFSRC_IFBODY)
13455 || proc->attr.abstract)
13456 {
13457 gfc_error ("%qs must be a module procedure or an external procedure with"
13458 " an explicit interface at %L", proc->name, &where);
13459 goto error;
13460 }
13461 }
13462
13463 stree->n.tb->subroutine = proc->attr.subroutine;
13464 stree->n.tb->function = proc->attr.function;
13465
13466 /* Find the super-type of the current derived type. We could do this once and
13467 store in a global if speed is needed, but as long as not I believe this is
13468 more readable and clearer. */
13469 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13470
13471 /* If PASS, resolve and check arguments if not already resolved / loaded
13472 from a .mod file. */
13473 if (!stree->n.tb->nopass && stree->n.tb->pass_arg_num == 0)
13474 {
13475 gfc_formal_arglist *dummy_args;
13476
13477 dummy_args = gfc_sym_get_dummy_args (proc);
13478 if (stree->n.tb->pass_arg)
13479 {
13480 gfc_formal_arglist *i;
13481
13482 /* If an explicit passing argument name is given, walk the arg-list
13483 and look for it. */
13484
13485 me_arg = NULL;
13486 stree->n.tb->pass_arg_num = 1;
13487 for (i = dummy_args; i; i = i->next)
13488 {
13489 if (!strcmp (i->sym->name, stree->n.tb->pass_arg))
13490 {
13491 me_arg = i->sym;
13492 break;
13493 }
13494 ++stree->n.tb->pass_arg_num;
13495 }
13496
13497 if (!me_arg)
13498 {
13499 gfc_error ("Procedure %qs with PASS(%s) at %L has no"
13500 " argument %qs",
13501 proc->name, stree->n.tb->pass_arg, &where,
13502 stree->n.tb->pass_arg);
13503 goto error;
13504 }
13505 }
13506 else
13507 {
13508 /* Otherwise, take the first one; there should in fact be at least
13509 one. */
13510 stree->n.tb->pass_arg_num = 1;
13511 if (!dummy_args)
13512 {
13513 gfc_error ("Procedure %qs with PASS at %L must have at"
13514 " least one argument", proc->name, &where);
13515 goto error;
13516 }
13517 me_arg = dummy_args->sym;
13518 }
13519
13520 /* Now check that the argument-type matches and the passed-object
13521 dummy argument is generally fine. */
13522
13523 gcc_assert (me_arg);
13524
13525 if (me_arg->ts.type != BT_CLASS)
13526 {
13527 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13528 " at %L", proc->name, &where);
13529 goto error;
13530 }
13531
13532 if (CLASS_DATA (me_arg)->ts.u.derived
13533 != resolve_bindings_derived)
13534 {
13535 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13536 " the derived-type %qs", me_arg->name, proc->name,
13537 me_arg->name, &where, resolve_bindings_derived->name);
13538 goto error;
13539 }
13540
13541 gcc_assert (me_arg->ts.type == BT_CLASS);
13542 if (CLASS_DATA (me_arg)->as && CLASS_DATA (me_arg)->as->rank != 0)
13543 {
13544 gfc_error ("Passed-object dummy argument of %qs at %L must be"
13545 " scalar", proc->name, &where);
13546 goto error;
13547 }
13548 if (CLASS_DATA (me_arg)->attr.allocatable)
13549 {
13550 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13551 " be ALLOCATABLE", proc->name, &where);
13552 goto error;
13553 }
13554 if (CLASS_DATA (me_arg)->attr.class_pointer)
13555 {
13556 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13557 " be POINTER", proc->name, &where);
13558 goto error;
13559 }
13560 }
13561
13562 /* If we are extending some type, check that we don't override a procedure
13563 flagged NON_OVERRIDABLE. */
13564 stree->n.tb->overridden = NULL;
13565 if (super_type)
13566 {
13567 gfc_symtree* overridden;
13568 overridden = gfc_find_typebound_proc (super_type, NULL,
13569 stree->name, true, NULL);
13570
13571 if (overridden)
13572 {
13573 if (overridden->n.tb)
13574 stree->n.tb->overridden = overridden->n.tb;
13575
13576 if (!gfc_check_typebound_override (stree, overridden))
13577 goto error;
13578 }
13579 }
13580
13581 /* See if there's a name collision with a component directly in this type. */
13582 for (comp = resolve_bindings_derived->components; comp; comp = comp->next)
13583 if (!strcmp (comp->name, stree->name))
13584 {
13585 gfc_error ("Procedure %qs at %L has the same name as a component of"
13586 " %qs",
13587 stree->name, &where, resolve_bindings_derived->name);
13588 goto error;
13589 }
13590
13591 /* Try to find a name collision with an inherited component. */
13592 if (super_type && gfc_find_component (super_type, stree->name, true, true,
13593 NULL))
13594 {
13595 gfc_error ("Procedure %qs at %L has the same name as an inherited"
13596 " component of %qs",
13597 stree->name, &where, resolve_bindings_derived->name);
13598 goto error;
13599 }
13600
13601 stree->n.tb->error = 0;
13602 return;
13603
13604 error:
13605 resolve_bindings_result = false;
13606 stree->n.tb->error = 1;
13607 }
13608
13609
13610 static bool
13611 resolve_typebound_procedures (gfc_symbol* derived)
13612 {
13613 int op;
13614 gfc_symbol* super_type;
13615
13616 if (!derived->f2k_derived || !derived->f2k_derived->tb_sym_root)
13617 return true;
13618
13619 super_type = gfc_get_derived_super_type (derived);
13620 if (super_type)
13621 resolve_symbol (super_type);
13622
13623 resolve_bindings_derived = derived;
13624 resolve_bindings_result = true;
13625
13626 if (derived->f2k_derived->tb_sym_root)
13627 gfc_traverse_symtree (derived->f2k_derived->tb_sym_root,
13628 &resolve_typebound_procedure);
13629
13630 if (derived->f2k_derived->tb_uop_root)
13631 gfc_traverse_symtree (derived->f2k_derived->tb_uop_root,
13632 &resolve_typebound_user_op);
13633
13634 for (op = 0; op != GFC_INTRINSIC_OPS; ++op)
13635 {
13636 gfc_typebound_proc* p = derived->f2k_derived->tb_op[op];
13637 if (p && !resolve_typebound_intrinsic_op (derived,
13638 (gfc_intrinsic_op)op, p))
13639 resolve_bindings_result = false;
13640 }
13641
13642 return resolve_bindings_result;
13643 }
13644
13645
13646 /* Add a derived type to the dt_list. The dt_list is used in trans-types.c
13647 to give all identical derived types the same backend_decl. */
13648 static void
13649 add_dt_to_dt_list (gfc_symbol *derived)
13650 {
13651 if (!derived->dt_next)
13652 {
13653 if (gfc_derived_types)
13654 {
13655 derived->dt_next = gfc_derived_types->dt_next;
13656 gfc_derived_types->dt_next = derived;
13657 }
13658 else
13659 {
13660 derived->dt_next = derived;
13661 }
13662 gfc_derived_types = derived;
13663 }
13664 }
13665
13666
13667 /* Ensure that a derived-type is really not abstract, meaning that every
13668 inherited DEFERRED binding is overridden by a non-DEFERRED one. */
13669
13670 static bool
13671 ensure_not_abstract_walker (gfc_symbol* sub, gfc_symtree* st)
13672 {
13673 if (!st)
13674 return true;
13675
13676 if (!ensure_not_abstract_walker (sub, st->left))
13677 return false;
13678 if (!ensure_not_abstract_walker (sub, st->right))
13679 return false;
13680
13681 if (st->n.tb && st->n.tb->deferred)
13682 {
13683 gfc_symtree* overriding;
13684 overriding = gfc_find_typebound_proc (sub, NULL, st->name, true, NULL);
13685 if (!overriding)
13686 return false;
13687 gcc_assert (overriding->n.tb);
13688 if (overriding->n.tb->deferred)
13689 {
13690 gfc_error ("Derived-type %qs declared at %L must be ABSTRACT because"
13691 " %qs is DEFERRED and not overridden",
13692 sub->name, &sub->declared_at, st->name);
13693 return false;
13694 }
13695 }
13696
13697 return true;
13698 }
13699
13700 static bool
13701 ensure_not_abstract (gfc_symbol* sub, gfc_symbol* ancestor)
13702 {
13703 /* The algorithm used here is to recursively travel up the ancestry of sub
13704 and for each ancestor-type, check all bindings. If any of them is
13705 DEFERRED, look it up starting from sub and see if the found (overriding)
13706 binding is not DEFERRED.
13707 This is not the most efficient way to do this, but it should be ok and is
13708 clearer than something sophisticated. */
13709
13710 gcc_assert (ancestor && !sub->attr.abstract);
13711
13712 if (!ancestor->attr.abstract)
13713 return true;
13714
13715 /* Walk bindings of this ancestor. */
13716 if (ancestor->f2k_derived)
13717 {
13718 bool t;
13719 t = ensure_not_abstract_walker (sub, ancestor->f2k_derived->tb_sym_root);
13720 if (!t)
13721 return false;
13722 }
13723
13724 /* Find next ancestor type and recurse on it. */
13725 ancestor = gfc_get_derived_super_type (ancestor);
13726 if (ancestor)
13727 return ensure_not_abstract (sub, ancestor);
13728
13729 return true;
13730 }
13731
13732
13733 /* This check for typebound defined assignments is done recursively
13734 since the order in which derived types are resolved is not always in
13735 order of the declarations. */
13736
13737 static void
13738 check_defined_assignments (gfc_symbol *derived)
13739 {
13740 gfc_component *c;
13741
13742 for (c = derived->components; c; c = c->next)
13743 {
13744 if (!gfc_bt_struct (c->ts.type)
13745 || c->attr.pointer
13746 || c->attr.allocatable
13747 || c->attr.proc_pointer_comp
13748 || c->attr.class_pointer
13749 || c->attr.proc_pointer)
13750 continue;
13751
13752 if (c->ts.u.derived->attr.defined_assign_comp
13753 || (c->ts.u.derived->f2k_derived
13754 && c->ts.u.derived->f2k_derived->tb_op[INTRINSIC_ASSIGN]))
13755 {
13756 derived->attr.defined_assign_comp = 1;
13757 return;
13758 }
13759
13760 check_defined_assignments (c->ts.u.derived);
13761 if (c->ts.u.derived->attr.defined_assign_comp)
13762 {
13763 derived->attr.defined_assign_comp = 1;
13764 return;
13765 }
13766 }
13767 }
13768
13769
13770 /* Resolve a single component of a derived type or structure. */
13771
13772 static bool
13773 resolve_component (gfc_component *c, gfc_symbol *sym)
13774 {
13775 gfc_symbol *super_type;
13776 symbol_attribute *attr;
13777
13778 if (c->attr.artificial)
13779 return true;
13780
13781 /* Do not allow vtype components to be resolved in nameless namespaces
13782 such as block data because the procedure pointers will cause ICEs
13783 and vtables are not needed in these contexts. */
13784 if (sym->attr.vtype && sym->attr.use_assoc
13785 && sym->ns->proc_name == NULL)
13786 return true;
13787
13788 /* F2008, C442. */
13789 if ((!sym->attr.is_class || c != sym->components)
13790 && c->attr.codimension
13791 && (!c->attr.allocatable || (c->as && c->as->type != AS_DEFERRED)))
13792 {
13793 gfc_error ("Coarray component %qs at %L must be allocatable with "
13794 "deferred shape", c->name, &c->loc);
13795 return false;
13796 }
13797
13798 /* F2008, C443. */
13799 if (c->attr.codimension && c->ts.type == BT_DERIVED
13800 && c->ts.u.derived->ts.is_iso_c)
13801 {
13802 gfc_error ("Component %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
13803 "shall not be a coarray", c->name, &c->loc);
13804 return false;
13805 }
13806
13807 /* F2008, C444. */
13808 if (gfc_bt_struct (c->ts.type) && c->ts.u.derived->attr.coarray_comp
13809 && (c->attr.codimension || c->attr.pointer || c->attr.dimension
13810 || c->attr.allocatable))
13811 {
13812 gfc_error ("Component %qs at %L with coarray component "
13813 "shall be a nonpointer, nonallocatable scalar",
13814 c->name, &c->loc);
13815 return false;
13816 }
13817
13818 /* F2008, C448. */
13819 if (c->ts.type == BT_CLASS)
13820 {
13821 if (CLASS_DATA (c))
13822 {
13823 attr = &(CLASS_DATA (c)->attr);
13824
13825 /* Fix up contiguous attribute. */
13826 if (c->attr.contiguous)
13827 attr->contiguous = 1;
13828 }
13829 else
13830 attr = NULL;
13831 }
13832 else
13833 attr = &c->attr;
13834
13835 if (attr && attr->contiguous && (!attr->dimension || !attr->pointer))
13836 {
13837 gfc_error ("Component %qs at %L has the CONTIGUOUS attribute but "
13838 "is not an array pointer", c->name, &c->loc);
13839 return false;
13840 }
13841
13842 /* F2003, 15.2.1 - length has to be one. */
13843 if (sym->attr.is_bind_c && c->ts.type == BT_CHARACTER
13844 && (c->ts.u.cl == NULL || c->ts.u.cl->length == NULL
13845 || !gfc_is_constant_expr (c->ts.u.cl->length)
13846 || mpz_cmp_si (c->ts.u.cl->length->value.integer, 1) != 0))
13847 {
13848 gfc_error ("Component %qs of BIND(C) type at %L must have length one",
13849 c->name, &c->loc);
13850 return false;
13851 }
13852
13853 if (c->attr.proc_pointer && c->ts.interface)
13854 {
13855 gfc_symbol *ifc = c->ts.interface;
13856
13857 if (!sym->attr.vtype && !check_proc_interface (ifc, &c->loc))
13858 {
13859 c->tb->error = 1;
13860 return false;
13861 }
13862
13863 if (ifc->attr.if_source || ifc->attr.intrinsic)
13864 {
13865 /* Resolve interface and copy attributes. */
13866 if (ifc->formal && !ifc->formal_ns)
13867 resolve_symbol (ifc);
13868 if (ifc->attr.intrinsic)
13869 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
13870
13871 if (ifc->result)
13872 {
13873 c->ts = ifc->result->ts;
13874 c->attr.allocatable = ifc->result->attr.allocatable;
13875 c->attr.pointer = ifc->result->attr.pointer;
13876 c->attr.dimension = ifc->result->attr.dimension;
13877 c->as = gfc_copy_array_spec (ifc->result->as);
13878 c->attr.class_ok = ifc->result->attr.class_ok;
13879 }
13880 else
13881 {
13882 c->ts = ifc->ts;
13883 c->attr.allocatable = ifc->attr.allocatable;
13884 c->attr.pointer = ifc->attr.pointer;
13885 c->attr.dimension = ifc->attr.dimension;
13886 c->as = gfc_copy_array_spec (ifc->as);
13887 c->attr.class_ok = ifc->attr.class_ok;
13888 }
13889 c->ts.interface = ifc;
13890 c->attr.function = ifc->attr.function;
13891 c->attr.subroutine = ifc->attr.subroutine;
13892
13893 c->attr.pure = ifc->attr.pure;
13894 c->attr.elemental = ifc->attr.elemental;
13895 c->attr.recursive = ifc->attr.recursive;
13896 c->attr.always_explicit = ifc->attr.always_explicit;
13897 c->attr.ext_attr |= ifc->attr.ext_attr;
13898 /* Copy char length. */
13899 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
13900 {
13901 gfc_charlen *cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
13902 if (cl->length && !cl->resolved
13903 && !gfc_resolve_expr (cl->length))
13904 {
13905 c->tb->error = 1;
13906 return false;
13907 }
13908 c->ts.u.cl = cl;
13909 }
13910 }
13911 }
13912 else if (c->attr.proc_pointer && c->ts.type == BT_UNKNOWN)
13913 {
13914 /* Since PPCs are not implicitly typed, a PPC without an explicit
13915 interface must be a subroutine. */
13916 gfc_add_subroutine (&c->attr, c->name, &c->loc);
13917 }
13918
13919 /* Procedure pointer components: Check PASS arg. */
13920 if (c->attr.proc_pointer && !c->tb->nopass && c->tb->pass_arg_num == 0
13921 && !sym->attr.vtype)
13922 {
13923 gfc_symbol* me_arg;
13924
13925 if (c->tb->pass_arg)
13926 {
13927 gfc_formal_arglist* i;
13928
13929 /* If an explicit passing argument name is given, walk the arg-list
13930 and look for it. */
13931
13932 me_arg = NULL;
13933 c->tb->pass_arg_num = 1;
13934 for (i = c->ts.interface->formal; i; i = i->next)
13935 {
13936 if (!strcmp (i->sym->name, c->tb->pass_arg))
13937 {
13938 me_arg = i->sym;
13939 break;
13940 }
13941 c->tb->pass_arg_num++;
13942 }
13943
13944 if (!me_arg)
13945 {
13946 gfc_error ("Procedure pointer component %qs with PASS(%s) "
13947 "at %L has no argument %qs", c->name,
13948 c->tb->pass_arg, &c->loc, c->tb->pass_arg);
13949 c->tb->error = 1;
13950 return false;
13951 }
13952 }
13953 else
13954 {
13955 /* Otherwise, take the first one; there should in fact be at least
13956 one. */
13957 c->tb->pass_arg_num = 1;
13958 if (!c->ts.interface->formal)
13959 {
13960 gfc_error ("Procedure pointer component %qs with PASS at %L "
13961 "must have at least one argument",
13962 c->name, &c->loc);
13963 c->tb->error = 1;
13964 return false;
13965 }
13966 me_arg = c->ts.interface->formal->sym;
13967 }
13968
13969 /* Now check that the argument-type matches. */
13970 gcc_assert (me_arg);
13971 if ((me_arg->ts.type != BT_DERIVED && me_arg->ts.type != BT_CLASS)
13972 || (me_arg->ts.type == BT_DERIVED && me_arg->ts.u.derived != sym)
13973 || (me_arg->ts.type == BT_CLASS
13974 && CLASS_DATA (me_arg)->ts.u.derived != sym))
13975 {
13976 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13977 " the derived type %qs", me_arg->name, c->name,
13978 me_arg->name, &c->loc, sym->name);
13979 c->tb->error = 1;
13980 return false;
13981 }
13982
13983 /* Check for F03:C453. */
13984 if (CLASS_DATA (me_arg)->attr.dimension)
13985 {
13986 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13987 "must be scalar", me_arg->name, c->name, me_arg->name,
13988 &c->loc);
13989 c->tb->error = 1;
13990 return false;
13991 }
13992
13993 if (CLASS_DATA (me_arg)->attr.class_pointer)
13994 {
13995 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13996 "may not have the POINTER attribute", me_arg->name,
13997 c->name, me_arg->name, &c->loc);
13998 c->tb->error = 1;
13999 return false;
14000 }
14001
14002 if (CLASS_DATA (me_arg)->attr.allocatable)
14003 {
14004 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
14005 "may not be ALLOCATABLE", me_arg->name, c->name,
14006 me_arg->name, &c->loc);
14007 c->tb->error = 1;
14008 return false;
14009 }
14010
14011 if (gfc_type_is_extensible (sym) && me_arg->ts.type != BT_CLASS)
14012 {
14013 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
14014 " at %L", c->name, &c->loc);
14015 return false;
14016 }
14017
14018 }
14019
14020 /* Check type-spec if this is not the parent-type component. */
14021 if (((sym->attr.is_class
14022 && (!sym->components->ts.u.derived->attr.extension
14023 || c != sym->components->ts.u.derived->components))
14024 || (!sym->attr.is_class
14025 && (!sym->attr.extension || c != sym->components)))
14026 && !sym->attr.vtype
14027 && !resolve_typespec_used (&c->ts, &c->loc, c->name))
14028 return false;
14029
14030 super_type = gfc_get_derived_super_type (sym);
14031
14032 /* If this type is an extension, set the accessibility of the parent
14033 component. */
14034 if (super_type
14035 && ((sym->attr.is_class
14036 && c == sym->components->ts.u.derived->components)
14037 || (!sym->attr.is_class && c == sym->components))
14038 && strcmp (super_type->name, c->name) == 0)
14039 c->attr.access = super_type->attr.access;
14040
14041 /* If this type is an extension, see if this component has the same name
14042 as an inherited type-bound procedure. */
14043 if (super_type && !sym->attr.is_class
14044 && gfc_find_typebound_proc (super_type, NULL, c->name, true, NULL))
14045 {
14046 gfc_error ("Component %qs of %qs at %L has the same name as an"
14047 " inherited type-bound procedure",
14048 c->name, sym->name, &c->loc);
14049 return false;
14050 }
14051
14052 if (c->ts.type == BT_CHARACTER && !c->attr.proc_pointer
14053 && !c->ts.deferred)
14054 {
14055 if (c->ts.u.cl->length == NULL
14056 || (!resolve_charlen(c->ts.u.cl))
14057 || !gfc_is_constant_expr (c->ts.u.cl->length))
14058 {
14059 gfc_error ("Character length of component %qs needs to "
14060 "be a constant specification expression at %L",
14061 c->name,
14062 c->ts.u.cl->length ? &c->ts.u.cl->length->where : &c->loc);
14063 return false;
14064 }
14065 }
14066
14067 if (c->ts.type == BT_CHARACTER && c->ts.deferred
14068 && !c->attr.pointer && !c->attr.allocatable)
14069 {
14070 gfc_error ("Character component %qs of %qs at %L with deferred "
14071 "length must be a POINTER or ALLOCATABLE",
14072 c->name, sym->name, &c->loc);
14073 return false;
14074 }
14075
14076 /* Add the hidden deferred length field. */
14077 if (c->ts.type == BT_CHARACTER
14078 && (c->ts.deferred || c->attr.pdt_string)
14079 && !c->attr.function
14080 && !sym->attr.is_class)
14081 {
14082 char name[GFC_MAX_SYMBOL_LEN+9];
14083 gfc_component *strlen;
14084 sprintf (name, "_%s_length", c->name);
14085 strlen = gfc_find_component (sym, name, true, true, NULL);
14086 if (strlen == NULL)
14087 {
14088 if (!gfc_add_component (sym, name, &strlen))
14089 return false;
14090 strlen->ts.type = BT_INTEGER;
14091 strlen->ts.kind = gfc_charlen_int_kind;
14092 strlen->attr.access = ACCESS_PRIVATE;
14093 strlen->attr.artificial = 1;
14094 }
14095 }
14096
14097 if (c->ts.type == BT_DERIVED
14098 && sym->component_access != ACCESS_PRIVATE
14099 && gfc_check_symbol_access (sym)
14100 && !is_sym_host_assoc (c->ts.u.derived, sym->ns)
14101 && !c->ts.u.derived->attr.use_assoc
14102 && !gfc_check_symbol_access (c->ts.u.derived)
14103 && !gfc_notify_std (GFC_STD_F2003, "the component %qs is a "
14104 "PRIVATE type and cannot be a component of "
14105 "%qs, which is PUBLIC at %L", c->name,
14106 sym->name, &sym->declared_at))
14107 return false;
14108
14109 if ((sym->attr.sequence || sym->attr.is_bind_c) && c->ts.type == BT_CLASS)
14110 {
14111 gfc_error ("Polymorphic component %s at %L in SEQUENCE or BIND(C) "
14112 "type %s", c->name, &c->loc, sym->name);
14113 return false;
14114 }
14115
14116 if (sym->attr.sequence)
14117 {
14118 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.sequence == 0)
14119 {
14120 gfc_error ("Component %s of SEQUENCE type declared at %L does "
14121 "not have the SEQUENCE attribute",
14122 c->ts.u.derived->name, &sym->declared_at);
14123 return false;
14124 }
14125 }
14126
14127 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.generic)
14128 c->ts.u.derived = gfc_find_dt_in_generic (c->ts.u.derived);
14129 else if (c->ts.type == BT_CLASS && c->attr.class_ok
14130 && CLASS_DATA (c)->ts.u.derived->attr.generic)
14131 CLASS_DATA (c)->ts.u.derived
14132 = gfc_find_dt_in_generic (CLASS_DATA (c)->ts.u.derived);
14133
14134 /* If an allocatable component derived type is of the same type as
14135 the enclosing derived type, we need a vtable generating so that
14136 the __deallocate procedure is created. */
14137 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
14138 && c->ts.u.derived == sym && c->attr.allocatable == 1)
14139 gfc_find_vtab (&c->ts);
14140
14141 /* Ensure that all the derived type components are put on the
14142 derived type list; even in formal namespaces, where derived type
14143 pointer components might not have been declared. */
14144 if (c->ts.type == BT_DERIVED
14145 && c->ts.u.derived
14146 && c->ts.u.derived->components
14147 && c->attr.pointer
14148 && sym != c->ts.u.derived)
14149 add_dt_to_dt_list (c->ts.u.derived);
14150
14151 if (!gfc_resolve_array_spec (c->as,
14152 !(c->attr.pointer || c->attr.proc_pointer
14153 || c->attr.allocatable)))
14154 return false;
14155
14156 if (c->initializer && !sym->attr.vtype
14157 && !c->attr.pdt_kind && !c->attr.pdt_len
14158 && !gfc_check_assign_symbol (sym, c, c->initializer))
14159 return false;
14160
14161 return true;
14162 }
14163
14164
14165 /* Be nice about the locus for a structure expression - show the locus of the
14166 first non-null sub-expression if we can. */
14167
14168 static locus *
14169 cons_where (gfc_expr *struct_expr)
14170 {
14171 gfc_constructor *cons;
14172
14173 gcc_assert (struct_expr && struct_expr->expr_type == EXPR_STRUCTURE);
14174
14175 cons = gfc_constructor_first (struct_expr->value.constructor);
14176 for (; cons; cons = gfc_constructor_next (cons))
14177 {
14178 if (cons->expr && cons->expr->expr_type != EXPR_NULL)
14179 return &cons->expr->where;
14180 }
14181
14182 return &struct_expr->where;
14183 }
14184
14185 /* Resolve the components of a structure type. Much less work than derived
14186 types. */
14187
14188 static bool
14189 resolve_fl_struct (gfc_symbol *sym)
14190 {
14191 gfc_component *c;
14192 gfc_expr *init = NULL;
14193 bool success;
14194
14195 /* Make sure UNIONs do not have overlapping initializers. */
14196 if (sym->attr.flavor == FL_UNION)
14197 {
14198 for (c = sym->components; c; c = c->next)
14199 {
14200 if (init && c->initializer)
14201 {
14202 gfc_error ("Conflicting initializers in union at %L and %L",
14203 cons_where (init), cons_where (c->initializer));
14204 gfc_free_expr (c->initializer);
14205 c->initializer = NULL;
14206 }
14207 if (init == NULL)
14208 init = c->initializer;
14209 }
14210 }
14211
14212 success = true;
14213 for (c = sym->components; c; c = c->next)
14214 if (!resolve_component (c, sym))
14215 success = false;
14216
14217 if (!success)
14218 return false;
14219
14220 if (sym->components)
14221 add_dt_to_dt_list (sym);
14222
14223 return true;
14224 }
14225
14226
14227 /* Resolve the components of a derived type. This does not have to wait until
14228 resolution stage, but can be done as soon as the dt declaration has been
14229 parsed. */
14230
14231 static bool
14232 resolve_fl_derived0 (gfc_symbol *sym)
14233 {
14234 gfc_symbol* super_type;
14235 gfc_component *c;
14236 gfc_formal_arglist *f;
14237 bool success;
14238
14239 if (sym->attr.unlimited_polymorphic)
14240 return true;
14241
14242 super_type = gfc_get_derived_super_type (sym);
14243
14244 /* F2008, C432. */
14245 if (super_type && sym->attr.coarray_comp && !super_type->attr.coarray_comp)
14246 {
14247 gfc_error ("As extending type %qs at %L has a coarray component, "
14248 "parent type %qs shall also have one", sym->name,
14249 &sym->declared_at, super_type->name);
14250 return false;
14251 }
14252
14253 /* Ensure the extended type gets resolved before we do. */
14254 if (super_type && !resolve_fl_derived0 (super_type))
14255 return false;
14256
14257 /* An ABSTRACT type must be extensible. */
14258 if (sym->attr.abstract && !gfc_type_is_extensible (sym))
14259 {
14260 gfc_error ("Non-extensible derived-type %qs at %L must not be ABSTRACT",
14261 sym->name, &sym->declared_at);
14262 return false;
14263 }
14264
14265 c = (sym->attr.is_class) ? sym->components->ts.u.derived->components
14266 : sym->components;
14267
14268 success = true;
14269 for ( ; c != NULL; c = c->next)
14270 if (!resolve_component (c, sym))
14271 success = false;
14272
14273 if (!success)
14274 return false;
14275
14276 /* Now add the caf token field, where needed. */
14277 if (flag_coarray != GFC_FCOARRAY_NONE
14278 && !sym->attr.is_class && !sym->attr.vtype)
14279 {
14280 for (c = sym->components; c; c = c->next)
14281 if (!c->attr.dimension && !c->attr.codimension
14282 && (c->attr.allocatable || c->attr.pointer))
14283 {
14284 char name[GFC_MAX_SYMBOL_LEN+9];
14285 gfc_component *token;
14286 sprintf (name, "_caf_%s", c->name);
14287 token = gfc_find_component (sym, name, true, true, NULL);
14288 if (token == NULL)
14289 {
14290 if (!gfc_add_component (sym, name, &token))
14291 return false;
14292 token->ts.type = BT_VOID;
14293 token->ts.kind = gfc_default_integer_kind;
14294 token->attr.access = ACCESS_PRIVATE;
14295 token->attr.artificial = 1;
14296 token->attr.caf_token = 1;
14297 }
14298 }
14299 }
14300
14301 check_defined_assignments (sym);
14302
14303 if (!sym->attr.defined_assign_comp && super_type)
14304 sym->attr.defined_assign_comp
14305 = super_type->attr.defined_assign_comp;
14306
14307 /* If this is a non-ABSTRACT type extending an ABSTRACT one, ensure that
14308 all DEFERRED bindings are overridden. */
14309 if (super_type && super_type->attr.abstract && !sym->attr.abstract
14310 && !sym->attr.is_class
14311 && !ensure_not_abstract (sym, super_type))
14312 return false;
14313
14314 /* Check that there is a component for every PDT parameter. */
14315 if (sym->attr.pdt_template)
14316 {
14317 for (f = sym->formal; f; f = f->next)
14318 {
14319 if (!f->sym)
14320 continue;
14321 c = gfc_find_component (sym, f->sym->name, true, true, NULL);
14322 if (c == NULL)
14323 {
14324 gfc_error ("Parameterized type %qs does not have a component "
14325 "corresponding to parameter %qs at %L", sym->name,
14326 f->sym->name, &sym->declared_at);
14327 break;
14328 }
14329 }
14330 }
14331
14332 /* Add derived type to the derived type list. */
14333 add_dt_to_dt_list (sym);
14334
14335 return true;
14336 }
14337
14338
14339 /* The following procedure does the full resolution of a derived type,
14340 including resolution of all type-bound procedures (if present). In contrast
14341 to 'resolve_fl_derived0' this can only be done after the module has been
14342 parsed completely. */
14343
14344 static bool
14345 resolve_fl_derived (gfc_symbol *sym)
14346 {
14347 gfc_symbol *gen_dt = NULL;
14348
14349 if (sym->attr.unlimited_polymorphic)
14350 return true;
14351
14352 if (!sym->attr.is_class)
14353 gfc_find_symbol (sym->name, sym->ns, 0, &gen_dt);
14354 if (gen_dt && gen_dt->generic && gen_dt->generic->next
14355 && (!gen_dt->generic->sym->attr.use_assoc
14356 || gen_dt->generic->sym->module != gen_dt->generic->next->sym->module)
14357 && !gfc_notify_std (GFC_STD_F2003, "Generic name %qs of function "
14358 "%qs at %L being the same name as derived "
14359 "type at %L", sym->name,
14360 gen_dt->generic->sym == sym
14361 ? gen_dt->generic->next->sym->name
14362 : gen_dt->generic->sym->name,
14363 gen_dt->generic->sym == sym
14364 ? &gen_dt->generic->next->sym->declared_at
14365 : &gen_dt->generic->sym->declared_at,
14366 &sym->declared_at))
14367 return false;
14368
14369 if (sym->components == NULL && !sym->attr.zero_comp && !sym->attr.use_assoc)
14370 {
14371 gfc_error ("Derived type %qs at %L has not been declared",
14372 sym->name, &sym->declared_at);
14373 return false;
14374 }
14375
14376 /* Resolve the finalizer procedures. */
14377 if (!gfc_resolve_finalizers (sym, NULL))
14378 return false;
14379
14380 if (sym->attr.is_class && sym->ts.u.derived == NULL)
14381 {
14382 /* Fix up incomplete CLASS symbols. */
14383 gfc_component *data = gfc_find_component (sym, "_data", true, true, NULL);
14384 gfc_component *vptr = gfc_find_component (sym, "_vptr", true, true, NULL);
14385
14386 /* Nothing more to do for unlimited polymorphic entities. */
14387 if (data->ts.u.derived->attr.unlimited_polymorphic)
14388 return true;
14389 else if (vptr->ts.u.derived == NULL)
14390 {
14391 gfc_symbol *vtab = gfc_find_derived_vtab (data->ts.u.derived);
14392 gcc_assert (vtab);
14393 vptr->ts.u.derived = vtab->ts.u.derived;
14394 if (!resolve_fl_derived0 (vptr->ts.u.derived))
14395 return false;
14396 }
14397 }
14398
14399 if (!resolve_fl_derived0 (sym))
14400 return false;
14401
14402 /* Resolve the type-bound procedures. */
14403 if (!resolve_typebound_procedures (sym))
14404 return false;
14405
14406 /* Generate module vtables subject to their accessibility and their not
14407 being vtables or pdt templates. If this is not done class declarations
14408 in external procedures wind up with their own version and so SELECT TYPE
14409 fails because the vptrs do not have the same address. */
14410 if (gfc_option.allow_std & GFC_STD_F2003
14411 && sym->ns->proc_name
14412 && sym->ns->proc_name->attr.flavor == FL_MODULE
14413 && sym->attr.access != ACCESS_PRIVATE
14414 && !(sym->attr.use_assoc || sym->attr.vtype || sym->attr.pdt_template))
14415 {
14416 gfc_symbol *vtab = gfc_find_derived_vtab (sym);
14417 gfc_set_sym_referenced (vtab);
14418 }
14419
14420 return true;
14421 }
14422
14423
14424 static bool
14425 resolve_fl_namelist (gfc_symbol *sym)
14426 {
14427 gfc_namelist *nl;
14428 gfc_symbol *nlsym;
14429
14430 for (nl = sym->namelist; nl; nl = nl->next)
14431 {
14432 /* Check again, the check in match only works if NAMELIST comes
14433 after the decl. */
14434 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SIZE)
14435 {
14436 gfc_error ("Assumed size array %qs in namelist %qs at %L is not "
14437 "allowed", nl->sym->name, sym->name, &sym->declared_at);
14438 return false;
14439 }
14440
14441 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SHAPE
14442 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14443 "with assumed shape in namelist %qs at %L",
14444 nl->sym->name, sym->name, &sym->declared_at))
14445 return false;
14446
14447 if (is_non_constant_shape_array (nl->sym)
14448 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14449 "with nonconstant shape in namelist %qs at %L",
14450 nl->sym->name, sym->name, &sym->declared_at))
14451 return false;
14452
14453 if (nl->sym->ts.type == BT_CHARACTER
14454 && (nl->sym->ts.u.cl->length == NULL
14455 || !gfc_is_constant_expr (nl->sym->ts.u.cl->length))
14456 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs with "
14457 "nonconstant character length in "
14458 "namelist %qs at %L", nl->sym->name,
14459 sym->name, &sym->declared_at))
14460 return false;
14461
14462 }
14463
14464 /* Reject PRIVATE objects in a PUBLIC namelist. */
14465 if (gfc_check_symbol_access (sym))
14466 {
14467 for (nl = sym->namelist; nl; nl = nl->next)
14468 {
14469 if (!nl->sym->attr.use_assoc
14470 && !is_sym_host_assoc (nl->sym, sym->ns)
14471 && !gfc_check_symbol_access (nl->sym))
14472 {
14473 gfc_error ("NAMELIST object %qs was declared PRIVATE and "
14474 "cannot be member of PUBLIC namelist %qs at %L",
14475 nl->sym->name, sym->name, &sym->declared_at);
14476 return false;
14477 }
14478
14479 if (nl->sym->ts.type == BT_DERIVED
14480 && (nl->sym->ts.u.derived->attr.alloc_comp
14481 || nl->sym->ts.u.derived->attr.pointer_comp))
14482 {
14483 if (!gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs in "
14484 "namelist %qs at %L with ALLOCATABLE "
14485 "or POINTER components", nl->sym->name,
14486 sym->name, &sym->declared_at))
14487 return false;
14488 return true;
14489 }
14490
14491 /* Types with private components that came here by USE-association. */
14492 if (nl->sym->ts.type == BT_DERIVED
14493 && derived_inaccessible (nl->sym->ts.u.derived))
14494 {
14495 gfc_error ("NAMELIST object %qs has use-associated PRIVATE "
14496 "components and cannot be member of namelist %qs at %L",
14497 nl->sym->name, sym->name, &sym->declared_at);
14498 return false;
14499 }
14500
14501 /* Types with private components that are defined in the same module. */
14502 if (nl->sym->ts.type == BT_DERIVED
14503 && !is_sym_host_assoc (nl->sym->ts.u.derived, sym->ns)
14504 && nl->sym->ts.u.derived->attr.private_comp)
14505 {
14506 gfc_error ("NAMELIST object %qs has PRIVATE components and "
14507 "cannot be a member of PUBLIC namelist %qs at %L",
14508 nl->sym->name, sym->name, &sym->declared_at);
14509 return false;
14510 }
14511 }
14512 }
14513
14514
14515 /* 14.1.2 A module or internal procedure represent local entities
14516 of the same type as a namelist member and so are not allowed. */
14517 for (nl = sym->namelist; nl; nl = nl->next)
14518 {
14519 if (nl->sym->ts.kind != 0 && nl->sym->attr.flavor == FL_VARIABLE)
14520 continue;
14521
14522 if (nl->sym->attr.function && nl->sym == nl->sym->result)
14523 if ((nl->sym == sym->ns->proc_name)
14524 ||
14525 (sym->ns->parent && nl->sym == sym->ns->parent->proc_name))
14526 continue;
14527
14528 nlsym = NULL;
14529 if (nl->sym->name)
14530 gfc_find_symbol (nl->sym->name, sym->ns, 1, &nlsym);
14531 if (nlsym && nlsym->attr.flavor == FL_PROCEDURE)
14532 {
14533 gfc_error ("PROCEDURE attribute conflicts with NAMELIST "
14534 "attribute in %qs at %L", nlsym->name,
14535 &sym->declared_at);
14536 return false;
14537 }
14538 }
14539
14540 if (async_io_dt)
14541 {
14542 for (nl = sym->namelist; nl; nl = nl->next)
14543 nl->sym->attr.asynchronous = 1;
14544 }
14545 return true;
14546 }
14547
14548
14549 static bool
14550 resolve_fl_parameter (gfc_symbol *sym)
14551 {
14552 /* A parameter array's shape needs to be constant. */
14553 if (sym->as != NULL
14554 && (sym->as->type == AS_DEFERRED
14555 || is_non_constant_shape_array (sym)))
14556 {
14557 gfc_error ("Parameter array %qs at %L cannot be automatic "
14558 "or of deferred shape", sym->name, &sym->declared_at);
14559 return false;
14560 }
14561
14562 /* Constraints on deferred type parameter. */
14563 if (!deferred_requirements (sym))
14564 return false;
14565
14566 /* Make sure a parameter that has been implicitly typed still
14567 matches the implicit type, since PARAMETER statements can precede
14568 IMPLICIT statements. */
14569 if (sym->attr.implicit_type
14570 && !gfc_compare_types (&sym->ts, gfc_get_default_type (sym->name,
14571 sym->ns)))
14572 {
14573 gfc_error ("Implicitly typed PARAMETER %qs at %L doesn't match a "
14574 "later IMPLICIT type", sym->name, &sym->declared_at);
14575 return false;
14576 }
14577
14578 /* Make sure the types of derived parameters are consistent. This
14579 type checking is deferred until resolution because the type may
14580 refer to a derived type from the host. */
14581 if (sym->ts.type == BT_DERIVED
14582 && !gfc_compare_types (&sym->ts, &sym->value->ts))
14583 {
14584 gfc_error ("Incompatible derived type in PARAMETER at %L",
14585 &sym->value->where);
14586 return false;
14587 }
14588
14589 /* F03:C509,C514. */
14590 if (sym->ts.type == BT_CLASS)
14591 {
14592 gfc_error ("CLASS variable %qs at %L cannot have the PARAMETER attribute",
14593 sym->name, &sym->declared_at);
14594 return false;
14595 }
14596
14597 return true;
14598 }
14599
14600
14601 /* Called by resolve_symbol to check PDTs. */
14602
14603 static void
14604 resolve_pdt (gfc_symbol* sym)
14605 {
14606 gfc_symbol *derived = NULL;
14607 gfc_actual_arglist *param;
14608 gfc_component *c;
14609 bool const_len_exprs = true;
14610 bool assumed_len_exprs = false;
14611 symbol_attribute *attr;
14612
14613 if (sym->ts.type == BT_DERIVED)
14614 {
14615 derived = sym->ts.u.derived;
14616 attr = &(sym->attr);
14617 }
14618 else if (sym->ts.type == BT_CLASS)
14619 {
14620 derived = CLASS_DATA (sym)->ts.u.derived;
14621 attr = &(CLASS_DATA (sym)->attr);
14622 }
14623 else
14624 gcc_unreachable ();
14625
14626 gcc_assert (derived->attr.pdt_type);
14627
14628 for (param = sym->param_list; param; param = param->next)
14629 {
14630 c = gfc_find_component (derived, param->name, false, true, NULL);
14631 gcc_assert (c);
14632 if (c->attr.pdt_kind)
14633 continue;
14634
14635 if (param->expr && !gfc_is_constant_expr (param->expr)
14636 && c->attr.pdt_len)
14637 const_len_exprs = false;
14638 else if (param->spec_type == SPEC_ASSUMED)
14639 assumed_len_exprs = true;
14640
14641 if (param->spec_type == SPEC_DEFERRED
14642 && !attr->allocatable && !attr->pointer)
14643 gfc_error ("The object %qs at %L has a deferred LEN "
14644 "parameter %qs and is neither allocatable "
14645 "nor a pointer", sym->name, &sym->declared_at,
14646 param->name);
14647
14648 }
14649
14650 if (!const_len_exprs
14651 && (sym->ns->proc_name->attr.is_main_program
14652 || sym->ns->proc_name->attr.flavor == FL_MODULE
14653 || sym->attr.save != SAVE_NONE))
14654 gfc_error ("The AUTOMATIC object %qs at %L must not have the "
14655 "SAVE attribute or be a variable declared in the "
14656 "main program, a module or a submodule(F08/C513)",
14657 sym->name, &sym->declared_at);
14658
14659 if (assumed_len_exprs && !(sym->attr.dummy
14660 || sym->attr.select_type_temporary || sym->attr.associate_var))
14661 gfc_error ("The object %qs at %L with ASSUMED type parameters "
14662 "must be a dummy or a SELECT TYPE selector(F08/4.2)",
14663 sym->name, &sym->declared_at);
14664 }
14665
14666
14667 /* Do anything necessary to resolve a symbol. Right now, we just
14668 assume that an otherwise unknown symbol is a variable. This sort
14669 of thing commonly happens for symbols in module. */
14670
14671 static void
14672 resolve_symbol (gfc_symbol *sym)
14673 {
14674 int check_constant, mp_flag;
14675 gfc_symtree *symtree;
14676 gfc_symtree *this_symtree;
14677 gfc_namespace *ns;
14678 gfc_component *c;
14679 symbol_attribute class_attr;
14680 gfc_array_spec *as;
14681 bool saved_specification_expr;
14682
14683 if (sym->resolved)
14684 return;
14685 sym->resolved = 1;
14686
14687 /* No symbol will ever have union type; only components can be unions.
14688 Union type declaration symbols have type BT_UNKNOWN but flavor FL_UNION
14689 (just like derived type declaration symbols have flavor FL_DERIVED). */
14690 gcc_assert (sym->ts.type != BT_UNION);
14691
14692 /* Coarrayed polymorphic objects with allocatable or pointer components are
14693 yet unsupported for -fcoarray=lib. */
14694 if (flag_coarray == GFC_FCOARRAY_LIB && sym->ts.type == BT_CLASS
14695 && sym->ts.u.derived && CLASS_DATA (sym)
14696 && CLASS_DATA (sym)->attr.codimension
14697 && (CLASS_DATA (sym)->ts.u.derived->attr.alloc_comp
14698 || CLASS_DATA (sym)->ts.u.derived->attr.pointer_comp))
14699 {
14700 gfc_error ("Sorry, allocatable/pointer components in polymorphic (CLASS) "
14701 "type coarrays at %L are unsupported", &sym->declared_at);
14702 return;
14703 }
14704
14705 if (sym->attr.artificial)
14706 return;
14707
14708 if (sym->attr.unlimited_polymorphic)
14709 return;
14710
14711 if (sym->attr.flavor == FL_UNKNOWN
14712 || (sym->attr.flavor == FL_PROCEDURE && !sym->attr.intrinsic
14713 && !sym->attr.generic && !sym->attr.external
14714 && sym->attr.if_source == IFSRC_UNKNOWN
14715 && sym->ts.type == BT_UNKNOWN))
14716 {
14717
14718 /* If we find that a flavorless symbol is an interface in one of the
14719 parent namespaces, find its symtree in this namespace, free the
14720 symbol and set the symtree to point to the interface symbol. */
14721 for (ns = gfc_current_ns->parent; ns; ns = ns->parent)
14722 {
14723 symtree = gfc_find_symtree (ns->sym_root, sym->name);
14724 if (symtree && (symtree->n.sym->generic ||
14725 (symtree->n.sym->attr.flavor == FL_PROCEDURE
14726 && sym->ns->construct_entities)))
14727 {
14728 this_symtree = gfc_find_symtree (gfc_current_ns->sym_root,
14729 sym->name);
14730 if (this_symtree->n.sym == sym)
14731 {
14732 symtree->n.sym->refs++;
14733 gfc_release_symbol (sym);
14734 this_symtree->n.sym = symtree->n.sym;
14735 return;
14736 }
14737 }
14738 }
14739
14740 /* Otherwise give it a flavor according to such attributes as
14741 it has. */
14742 if (sym->attr.flavor == FL_UNKNOWN && sym->attr.external == 0
14743 && sym->attr.intrinsic == 0)
14744 sym->attr.flavor = FL_VARIABLE;
14745 else if (sym->attr.flavor == FL_UNKNOWN)
14746 {
14747 sym->attr.flavor = FL_PROCEDURE;
14748 if (sym->attr.dimension)
14749 sym->attr.function = 1;
14750 }
14751 }
14752
14753 if (sym->attr.external && sym->ts.type != BT_UNKNOWN && !sym->attr.function)
14754 gfc_add_function (&sym->attr, sym->name, &sym->declared_at);
14755
14756 if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
14757 && !resolve_procedure_interface (sym))
14758 return;
14759
14760 if (sym->attr.is_protected && !sym->attr.proc_pointer
14761 && (sym->attr.procedure || sym->attr.external))
14762 {
14763 if (sym->attr.external)
14764 gfc_error ("PROTECTED attribute conflicts with EXTERNAL attribute "
14765 "at %L", &sym->declared_at);
14766 else
14767 gfc_error ("PROCEDURE attribute conflicts with PROTECTED attribute "
14768 "at %L", &sym->declared_at);
14769
14770 return;
14771 }
14772
14773 if (sym->attr.flavor == FL_DERIVED && !resolve_fl_derived (sym))
14774 return;
14775
14776 else if ((sym->attr.flavor == FL_STRUCT || sym->attr.flavor == FL_UNION)
14777 && !resolve_fl_struct (sym))
14778 return;
14779
14780 /* Symbols that are module procedures with results (functions) have
14781 the types and array specification copied for type checking in
14782 procedures that call them, as well as for saving to a module
14783 file. These symbols can't stand the scrutiny that their results
14784 can. */
14785 mp_flag = (sym->result != NULL && sym->result != sym);
14786
14787 /* Make sure that the intrinsic is consistent with its internal
14788 representation. This needs to be done before assigning a default
14789 type to avoid spurious warnings. */
14790 if (sym->attr.flavor != FL_MODULE && sym->attr.intrinsic
14791 && !gfc_resolve_intrinsic (sym, &sym->declared_at))
14792 return;
14793
14794 /* Resolve associate names. */
14795 if (sym->assoc)
14796 resolve_assoc_var (sym, true);
14797
14798 /* Assign default type to symbols that need one and don't have one. */
14799 if (sym->ts.type == BT_UNKNOWN)
14800 {
14801 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER)
14802 {
14803 gfc_set_default_type (sym, 1, NULL);
14804 }
14805
14806 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.external
14807 && !sym->attr.function && !sym->attr.subroutine
14808 && gfc_get_default_type (sym->name, sym->ns)->type == BT_UNKNOWN)
14809 gfc_add_subroutine (&sym->attr, sym->name, &sym->declared_at);
14810
14811 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14812 {
14813 /* The specific case of an external procedure should emit an error
14814 in the case that there is no implicit type. */
14815 if (!mp_flag)
14816 {
14817 if (!sym->attr.mixed_entry_master)
14818 gfc_set_default_type (sym, sym->attr.external, NULL);
14819 }
14820 else
14821 {
14822 /* Result may be in another namespace. */
14823 resolve_symbol (sym->result);
14824
14825 if (!sym->result->attr.proc_pointer)
14826 {
14827 sym->ts = sym->result->ts;
14828 sym->as = gfc_copy_array_spec (sym->result->as);
14829 sym->attr.dimension = sym->result->attr.dimension;
14830 sym->attr.pointer = sym->result->attr.pointer;
14831 sym->attr.allocatable = sym->result->attr.allocatable;
14832 sym->attr.contiguous = sym->result->attr.contiguous;
14833 }
14834 }
14835 }
14836 }
14837 else if (mp_flag && sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14838 {
14839 bool saved_specification_expr = specification_expr;
14840 specification_expr = true;
14841 gfc_resolve_array_spec (sym->result->as, false);
14842 specification_expr = saved_specification_expr;
14843 }
14844
14845 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
14846 {
14847 as = CLASS_DATA (sym)->as;
14848 class_attr = CLASS_DATA (sym)->attr;
14849 class_attr.pointer = class_attr.class_pointer;
14850 }
14851 else
14852 {
14853 class_attr = sym->attr;
14854 as = sym->as;
14855 }
14856
14857 /* F2008, C530. */
14858 if (sym->attr.contiguous
14859 && (!class_attr.dimension
14860 || (as->type != AS_ASSUMED_SHAPE && as->type != AS_ASSUMED_RANK
14861 && !class_attr.pointer)))
14862 {
14863 gfc_error ("%qs at %L has the CONTIGUOUS attribute but is not an "
14864 "array pointer or an assumed-shape or assumed-rank array",
14865 sym->name, &sym->declared_at);
14866 return;
14867 }
14868
14869 /* Assumed size arrays and assumed shape arrays must be dummy
14870 arguments. Array-spec's of implied-shape should have been resolved to
14871 AS_EXPLICIT already. */
14872
14873 if (as)
14874 {
14875 /* If AS_IMPLIED_SHAPE makes it to here, it must be a bad
14876 specification expression. */
14877 if (as->type == AS_IMPLIED_SHAPE)
14878 {
14879 int i;
14880 for (i=0; i<as->rank; i++)
14881 {
14882 if (as->lower[i] != NULL && as->upper[i] == NULL)
14883 {
14884 gfc_error ("Bad specification for assumed size array at %L",
14885 &as->lower[i]->where);
14886 return;
14887 }
14888 }
14889 gcc_unreachable();
14890 }
14891
14892 if (((as->type == AS_ASSUMED_SIZE && !as->cp_was_assumed)
14893 || as->type == AS_ASSUMED_SHAPE)
14894 && !sym->attr.dummy && !sym->attr.select_type_temporary)
14895 {
14896 if (as->type == AS_ASSUMED_SIZE)
14897 gfc_error ("Assumed size array at %L must be a dummy argument",
14898 &sym->declared_at);
14899 else
14900 gfc_error ("Assumed shape array at %L must be a dummy argument",
14901 &sym->declared_at);
14902 return;
14903 }
14904 /* TS 29113, C535a. */
14905 if (as->type == AS_ASSUMED_RANK && !sym->attr.dummy
14906 && !sym->attr.select_type_temporary)
14907 {
14908 gfc_error ("Assumed-rank array at %L must be a dummy argument",
14909 &sym->declared_at);
14910 return;
14911 }
14912 if (as->type == AS_ASSUMED_RANK
14913 && (sym->attr.codimension || sym->attr.value))
14914 {
14915 gfc_error ("Assumed-rank array at %L may not have the VALUE or "
14916 "CODIMENSION attribute", &sym->declared_at);
14917 return;
14918 }
14919 }
14920
14921 /* Make sure symbols with known intent or optional are really dummy
14922 variable. Because of ENTRY statement, this has to be deferred
14923 until resolution time. */
14924
14925 if (!sym->attr.dummy
14926 && (sym->attr.optional || sym->attr.intent != INTENT_UNKNOWN))
14927 {
14928 gfc_error ("Symbol at %L is not a DUMMY variable", &sym->declared_at);
14929 return;
14930 }
14931
14932 if (sym->attr.value && !sym->attr.dummy)
14933 {
14934 gfc_error ("%qs at %L cannot have the VALUE attribute because "
14935 "it is not a dummy argument", sym->name, &sym->declared_at);
14936 return;
14937 }
14938
14939 if (sym->attr.value && sym->ts.type == BT_CHARACTER)
14940 {
14941 gfc_charlen *cl = sym->ts.u.cl;
14942 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
14943 {
14944 gfc_error ("Character dummy variable %qs at %L with VALUE "
14945 "attribute must have constant length",
14946 sym->name, &sym->declared_at);
14947 return;
14948 }
14949
14950 if (sym->ts.is_c_interop
14951 && mpz_cmp_si (cl->length->value.integer, 1) != 0)
14952 {
14953 gfc_error ("C interoperable character dummy variable %qs at %L "
14954 "with VALUE attribute must have length one",
14955 sym->name, &sym->declared_at);
14956 return;
14957 }
14958 }
14959
14960 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
14961 && sym->ts.u.derived->attr.generic)
14962 {
14963 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
14964 if (!sym->ts.u.derived)
14965 {
14966 gfc_error ("The derived type %qs at %L is of type %qs, "
14967 "which has not been defined", sym->name,
14968 &sym->declared_at, sym->ts.u.derived->name);
14969 sym->ts.type = BT_UNKNOWN;
14970 return;
14971 }
14972 }
14973
14974 /* Use the same constraints as TYPE(*), except for the type check
14975 and that only scalars and assumed-size arrays are permitted. */
14976 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
14977 {
14978 if (!sym->attr.dummy)
14979 {
14980 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14981 "a dummy argument", sym->name, &sym->declared_at);
14982 return;
14983 }
14984
14985 if (sym->ts.type != BT_ASSUMED && sym->ts.type != BT_INTEGER
14986 && sym->ts.type != BT_REAL && sym->ts.type != BT_LOGICAL
14987 && sym->ts.type != BT_COMPLEX)
14988 {
14989 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14990 "of type TYPE(*) or of an numeric intrinsic type",
14991 sym->name, &sym->declared_at);
14992 return;
14993 }
14994
14995 if (sym->attr.allocatable || sym->attr.codimension
14996 || sym->attr.pointer || sym->attr.value)
14997 {
14998 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
14999 "have the ALLOCATABLE, CODIMENSION, POINTER or VALUE "
15000 "attribute", sym->name, &sym->declared_at);
15001 return;
15002 }
15003
15004 if (sym->attr.intent == INTENT_OUT)
15005 {
15006 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
15007 "have the INTENT(OUT) attribute",
15008 sym->name, &sym->declared_at);
15009 return;
15010 }
15011 if (sym->attr.dimension && sym->as->type != AS_ASSUMED_SIZE)
15012 {
15013 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall "
15014 "either be a scalar or an assumed-size array",
15015 sym->name, &sym->declared_at);
15016 return;
15017 }
15018
15019 /* Set the type to TYPE(*) and add a dimension(*) to ensure
15020 NO_ARG_CHECK is correctly handled in trans*.c, e.g. with
15021 packing. */
15022 sym->ts.type = BT_ASSUMED;
15023 sym->as = gfc_get_array_spec ();
15024 sym->as->type = AS_ASSUMED_SIZE;
15025 sym->as->rank = 1;
15026 sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
15027 }
15028 else if (sym->ts.type == BT_ASSUMED)
15029 {
15030 /* TS 29113, C407a. */
15031 if (!sym->attr.dummy)
15032 {
15033 gfc_error ("Assumed type of variable %s at %L is only permitted "
15034 "for dummy variables", sym->name, &sym->declared_at);
15035 return;
15036 }
15037 if (sym->attr.allocatable || sym->attr.codimension
15038 || sym->attr.pointer || sym->attr.value)
15039 {
15040 gfc_error ("Assumed-type variable %s at %L may not have the "
15041 "ALLOCATABLE, CODIMENSION, POINTER or VALUE attribute",
15042 sym->name, &sym->declared_at);
15043 return;
15044 }
15045 if (sym->attr.intent == INTENT_OUT)
15046 {
15047 gfc_error ("Assumed-type variable %s at %L may not have the "
15048 "INTENT(OUT) attribute",
15049 sym->name, &sym->declared_at);
15050 return;
15051 }
15052 if (sym->attr.dimension && sym->as->type == AS_EXPLICIT)
15053 {
15054 gfc_error ("Assumed-type variable %s at %L shall not be an "
15055 "explicit-shape array", sym->name, &sym->declared_at);
15056 return;
15057 }
15058 }
15059
15060 /* If the symbol is marked as bind(c), that it is declared at module level
15061 scope and verify its type and kind. Do not do the latter for symbols
15062 that are implicitly typed because that is handled in
15063 gfc_set_default_type. Handle dummy arguments and procedure definitions
15064 separately. Also, anything that is use associated is not handled here
15065 but instead is handled in the module it is declared in. Finally, derived
15066 type definitions are allowed to be BIND(C) since that only implies that
15067 they're interoperable, and they are checked fully for interoperability
15068 when a variable is declared of that type. */
15069 if (sym->attr.is_bind_c && sym->attr.use_assoc == 0
15070 && sym->attr.dummy == 0 && sym->attr.flavor != FL_PROCEDURE
15071 && sym->attr.flavor != FL_DERIVED)
15072 {
15073 bool t = true;
15074
15075 /* First, make sure the variable is declared at the
15076 module-level scope (J3/04-007, Section 15.3). */
15077 if (sym->ns->proc_name->attr.flavor != FL_MODULE &&
15078 sym->attr.in_common == 0)
15079 {
15080 gfc_error ("Variable %qs at %L cannot be BIND(C) because it "
15081 "is neither a COMMON block nor declared at the "
15082 "module level scope", sym->name, &(sym->declared_at));
15083 t = false;
15084 }
15085 else if (sym->ts.type == BT_CHARACTER
15086 && (sym->ts.u.cl == NULL || sym->ts.u.cl->length == NULL
15087 || !gfc_is_constant_expr (sym->ts.u.cl->length)
15088 || mpz_cmp_si (sym->ts.u.cl->length->value.integer, 1) != 0))
15089 {
15090 gfc_error ("BIND(C) Variable %qs at %L must have length one",
15091 sym->name, &sym->declared_at);
15092 t = false;
15093 }
15094 else if (sym->common_head != NULL && sym->attr.implicit_type == 0)
15095 {
15096 t = verify_com_block_vars_c_interop (sym->common_head);
15097 }
15098 else if (sym->attr.implicit_type == 0)
15099 {
15100 /* If type() declaration, we need to verify that the components
15101 of the given type are all C interoperable, etc. */
15102 if (sym->ts.type == BT_DERIVED &&
15103 sym->ts.u.derived->attr.is_c_interop != 1)
15104 {
15105 /* Make sure the user marked the derived type as BIND(C). If
15106 not, call the verify routine. This could print an error
15107 for the derived type more than once if multiple variables
15108 of that type are declared. */
15109 if (sym->ts.u.derived->attr.is_bind_c != 1)
15110 verify_bind_c_derived_type (sym->ts.u.derived);
15111 t = false;
15112 }
15113
15114 /* Verify the variable itself as C interoperable if it
15115 is BIND(C). It is not possible for this to succeed if
15116 the verify_bind_c_derived_type failed, so don't have to handle
15117 any error returned by verify_bind_c_derived_type. */
15118 t = verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
15119 sym->common_block);
15120 }
15121
15122 if (!t)
15123 {
15124 /* clear the is_bind_c flag to prevent reporting errors more than
15125 once if something failed. */
15126 sym->attr.is_bind_c = 0;
15127 return;
15128 }
15129 }
15130
15131 /* If a derived type symbol has reached this point, without its
15132 type being declared, we have an error. Notice that most
15133 conditions that produce undefined derived types have already
15134 been dealt with. However, the likes of:
15135 implicit type(t) (t) ..... call foo (t) will get us here if
15136 the type is not declared in the scope of the implicit
15137 statement. Change the type to BT_UNKNOWN, both because it is so
15138 and to prevent an ICE. */
15139 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
15140 && sym->ts.u.derived->components == NULL
15141 && !sym->ts.u.derived->attr.zero_comp)
15142 {
15143 gfc_error ("The derived type %qs at %L is of type %qs, "
15144 "which has not been defined", sym->name,
15145 &sym->declared_at, sym->ts.u.derived->name);
15146 sym->ts.type = BT_UNKNOWN;
15147 return;
15148 }
15149
15150 /* Make sure that the derived type has been resolved and that the
15151 derived type is visible in the symbol's namespace, if it is a
15152 module function and is not PRIVATE. */
15153 if (sym->ts.type == BT_DERIVED
15154 && sym->ts.u.derived->attr.use_assoc
15155 && sym->ns->proc_name
15156 && sym->ns->proc_name->attr.flavor == FL_MODULE
15157 && !resolve_fl_derived (sym->ts.u.derived))
15158 return;
15159
15160 /* Unless the derived-type declaration is use associated, Fortran 95
15161 does not allow public entries of private derived types.
15162 See 4.4.1 (F95) and 4.5.1.1 (F2003); and related interpretation
15163 161 in 95-006r3. */
15164 if (sym->ts.type == BT_DERIVED
15165 && sym->ns->proc_name && sym->ns->proc_name->attr.flavor == FL_MODULE
15166 && !sym->ts.u.derived->attr.use_assoc
15167 && gfc_check_symbol_access (sym)
15168 && !gfc_check_symbol_access (sym->ts.u.derived)
15169 && !gfc_notify_std (GFC_STD_F2003, "PUBLIC %s %qs at %L of PRIVATE "
15170 "derived type %qs",
15171 (sym->attr.flavor == FL_PARAMETER)
15172 ? "parameter" : "variable",
15173 sym->name, &sym->declared_at,
15174 sym->ts.u.derived->name))
15175 return;
15176
15177 /* F2008, C1302. */
15178 if (sym->ts.type == BT_DERIVED
15179 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
15180 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
15181 || sym->ts.u.derived->attr.lock_comp)
15182 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
15183 {
15184 gfc_error ("Variable %s at %L of type LOCK_TYPE or with subcomponent of "
15185 "type LOCK_TYPE must be a coarray", sym->name,
15186 &sym->declared_at);
15187 return;
15188 }
15189
15190 /* TS18508, C702/C703. */
15191 if (sym->ts.type == BT_DERIVED
15192 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
15193 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
15194 || sym->ts.u.derived->attr.event_comp)
15195 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
15196 {
15197 gfc_error ("Variable %s at %L of type EVENT_TYPE or with subcomponent of "
15198 "type EVENT_TYPE must be a coarray", sym->name,
15199 &sym->declared_at);
15200 return;
15201 }
15202
15203 /* An assumed-size array with INTENT(OUT) shall not be of a type for which
15204 default initialization is defined (5.1.2.4.4). */
15205 if (sym->ts.type == BT_DERIVED
15206 && sym->attr.dummy
15207 && sym->attr.intent == INTENT_OUT
15208 && sym->as
15209 && sym->as->type == AS_ASSUMED_SIZE)
15210 {
15211 for (c = sym->ts.u.derived->components; c; c = c->next)
15212 {
15213 if (c->initializer)
15214 {
15215 gfc_error ("The INTENT(OUT) dummy argument %qs at %L is "
15216 "ASSUMED SIZE and so cannot have a default initializer",
15217 sym->name, &sym->declared_at);
15218 return;
15219 }
15220 }
15221 }
15222
15223 /* F2008, C542. */
15224 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
15225 && sym->attr.intent == INTENT_OUT && sym->attr.lock_comp)
15226 {
15227 gfc_error ("Dummy argument %qs at %L of LOCK_TYPE shall not be "
15228 "INTENT(OUT)", sym->name, &sym->declared_at);
15229 return;
15230 }
15231
15232 /* TS18508. */
15233 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
15234 && sym->attr.intent == INTENT_OUT && sym->attr.event_comp)
15235 {
15236 gfc_error ("Dummy argument %qs at %L of EVENT_TYPE shall not be "
15237 "INTENT(OUT)", sym->name, &sym->declared_at);
15238 return;
15239 }
15240
15241 /* F2008, C525. */
15242 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15243 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15244 && CLASS_DATA (sym)->attr.coarray_comp))
15245 || class_attr.codimension)
15246 && (sym->attr.result || sym->result == sym))
15247 {
15248 gfc_error ("Function result %qs at %L shall not be a coarray or have "
15249 "a coarray component", sym->name, &sym->declared_at);
15250 return;
15251 }
15252
15253 /* F2008, C524. */
15254 if (sym->attr.codimension && sym->ts.type == BT_DERIVED
15255 && sym->ts.u.derived->ts.is_iso_c)
15256 {
15257 gfc_error ("Variable %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
15258 "shall not be a coarray", sym->name, &sym->declared_at);
15259 return;
15260 }
15261
15262 /* F2008, C525. */
15263 if (((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15264 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15265 && CLASS_DATA (sym)->attr.coarray_comp))
15266 && (class_attr.codimension || class_attr.pointer || class_attr.dimension
15267 || class_attr.allocatable))
15268 {
15269 gfc_error ("Variable %qs at %L with coarray component shall be a "
15270 "nonpointer, nonallocatable scalar, which is not a coarray",
15271 sym->name, &sym->declared_at);
15272 return;
15273 }
15274
15275 /* F2008, C526. The function-result case was handled above. */
15276 if (class_attr.codimension
15277 && !(class_attr.allocatable || sym->attr.dummy || sym->attr.save
15278 || sym->attr.select_type_temporary
15279 || sym->attr.associate_var
15280 || (sym->ns->save_all && !sym->attr.automatic)
15281 || sym->ns->proc_name->attr.flavor == FL_MODULE
15282 || sym->ns->proc_name->attr.is_main_program
15283 || sym->attr.function || sym->attr.result || sym->attr.use_assoc))
15284 {
15285 gfc_error ("Variable %qs at %L is a coarray and is not ALLOCATABLE, SAVE "
15286 "nor a dummy argument", sym->name, &sym->declared_at);
15287 return;
15288 }
15289 /* F2008, C528. */
15290 else if (class_attr.codimension && !sym->attr.select_type_temporary
15291 && !class_attr.allocatable && as && as->cotype == AS_DEFERRED)
15292 {
15293 gfc_error ("Coarray variable %qs at %L shall not have codimensions with "
15294 "deferred shape", sym->name, &sym->declared_at);
15295 return;
15296 }
15297 else if (class_attr.codimension && class_attr.allocatable && as
15298 && (as->cotype != AS_DEFERRED || as->type != AS_DEFERRED))
15299 {
15300 gfc_error ("Allocatable coarray variable %qs at %L must have "
15301 "deferred shape", sym->name, &sym->declared_at);
15302 return;
15303 }
15304
15305 /* F2008, C541. */
15306 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15307 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15308 && CLASS_DATA (sym)->attr.coarray_comp))
15309 || (class_attr.codimension && class_attr.allocatable))
15310 && sym->attr.dummy && sym->attr.intent == INTENT_OUT)
15311 {
15312 gfc_error ("Variable %qs at %L is INTENT(OUT) and can thus not be an "
15313 "allocatable coarray or have coarray components",
15314 sym->name, &sym->declared_at);
15315 return;
15316 }
15317
15318 if (class_attr.codimension && sym->attr.dummy
15319 && sym->ns->proc_name && sym->ns->proc_name->attr.is_bind_c)
15320 {
15321 gfc_error ("Coarray dummy variable %qs at %L not allowed in BIND(C) "
15322 "procedure %qs", sym->name, &sym->declared_at,
15323 sym->ns->proc_name->name);
15324 return;
15325 }
15326
15327 if (sym->ts.type == BT_LOGICAL
15328 && ((sym->attr.function && sym->attr.is_bind_c && sym->result == sym)
15329 || ((sym->attr.dummy || sym->attr.result) && sym->ns->proc_name
15330 && sym->ns->proc_name->attr.is_bind_c)))
15331 {
15332 int i;
15333 for (i = 0; gfc_logical_kinds[i].kind; i++)
15334 if (gfc_logical_kinds[i].kind == sym->ts.kind)
15335 break;
15336 if (!gfc_logical_kinds[i].c_bool && sym->attr.dummy
15337 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL dummy argument %qs at "
15338 "%L with non-C_Bool kind in BIND(C) procedure "
15339 "%qs", sym->name, &sym->declared_at,
15340 sym->ns->proc_name->name))
15341 return;
15342 else if (!gfc_logical_kinds[i].c_bool
15343 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL result variable "
15344 "%qs at %L with non-C_Bool kind in "
15345 "BIND(C) procedure %qs", sym->name,
15346 &sym->declared_at,
15347 sym->attr.function ? sym->name
15348 : sym->ns->proc_name->name))
15349 return;
15350 }
15351
15352 switch (sym->attr.flavor)
15353 {
15354 case FL_VARIABLE:
15355 if (!resolve_fl_variable (sym, mp_flag))
15356 return;
15357 break;
15358
15359 case FL_PROCEDURE:
15360 if (sym->formal && !sym->formal_ns)
15361 {
15362 /* Check that none of the arguments are a namelist. */
15363 gfc_formal_arglist *formal = sym->formal;
15364
15365 for (; formal; formal = formal->next)
15366 if (formal->sym && formal->sym->attr.flavor == FL_NAMELIST)
15367 {
15368 gfc_error ("Namelist %qs cannot be an argument to "
15369 "subroutine or function at %L",
15370 formal->sym->name, &sym->declared_at);
15371 return;
15372 }
15373 }
15374
15375 if (!resolve_fl_procedure (sym, mp_flag))
15376 return;
15377 break;
15378
15379 case FL_NAMELIST:
15380 if (!resolve_fl_namelist (sym))
15381 return;
15382 break;
15383
15384 case FL_PARAMETER:
15385 if (!resolve_fl_parameter (sym))
15386 return;
15387 break;
15388
15389 default:
15390 break;
15391 }
15392
15393 /* Resolve array specifier. Check as well some constraints
15394 on COMMON blocks. */
15395
15396 check_constant = sym->attr.in_common && !sym->attr.pointer;
15397
15398 /* Set the formal_arg_flag so that check_conflict will not throw
15399 an error for host associated variables in the specification
15400 expression for an array_valued function. */
15401 if ((sym->attr.function || sym->attr.result) && sym->as)
15402 formal_arg_flag = true;
15403
15404 saved_specification_expr = specification_expr;
15405 specification_expr = true;
15406 gfc_resolve_array_spec (sym->as, check_constant);
15407 specification_expr = saved_specification_expr;
15408
15409 formal_arg_flag = false;
15410
15411 /* Resolve formal namespaces. */
15412 if (sym->formal_ns && sym->formal_ns != gfc_current_ns
15413 && !sym->attr.contained && !sym->attr.intrinsic)
15414 gfc_resolve (sym->formal_ns);
15415
15416 /* Make sure the formal namespace is present. */
15417 if (sym->formal && !sym->formal_ns)
15418 {
15419 gfc_formal_arglist *formal = sym->formal;
15420 while (formal && !formal->sym)
15421 formal = formal->next;
15422
15423 if (formal)
15424 {
15425 sym->formal_ns = formal->sym->ns;
15426 if (sym->ns != formal->sym->ns)
15427 sym->formal_ns->refs++;
15428 }
15429 }
15430
15431 /* Check threadprivate restrictions. */
15432 if (sym->attr.threadprivate && !sym->attr.save
15433 && !(sym->ns->save_all && !sym->attr.automatic)
15434 && (!sym->attr.in_common
15435 && sym->module == NULL
15436 && (sym->ns->proc_name == NULL
15437 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15438 gfc_error ("Threadprivate at %L isn't SAVEd", &sym->declared_at);
15439
15440 /* Check omp declare target restrictions. */
15441 if (sym->attr.omp_declare_target
15442 && sym->attr.flavor == FL_VARIABLE
15443 && !sym->attr.save
15444 && !(sym->ns->save_all && !sym->attr.automatic)
15445 && (!sym->attr.in_common
15446 && sym->module == NULL
15447 && (sym->ns->proc_name == NULL
15448 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15449 gfc_error ("!$OMP DECLARE TARGET variable %qs at %L isn't SAVEd",
15450 sym->name, &sym->declared_at);
15451
15452 /* If we have come this far we can apply default-initializers, as
15453 described in 14.7.5, to those variables that have not already
15454 been assigned one. */
15455 if (sym->ts.type == BT_DERIVED
15456 && !sym->value
15457 && !sym->attr.allocatable
15458 && !sym->attr.alloc_comp)
15459 {
15460 symbol_attribute *a = &sym->attr;
15461
15462 if ((!a->save && !a->dummy && !a->pointer
15463 && !a->in_common && !a->use_assoc
15464 && a->referenced
15465 && !((a->function || a->result)
15466 && (!a->dimension
15467 || sym->ts.u.derived->attr.alloc_comp
15468 || sym->ts.u.derived->attr.pointer_comp))
15469 && !(a->function && sym != sym->result))
15470 || (a->dummy && a->intent == INTENT_OUT && !a->pointer))
15471 apply_default_init (sym);
15472 else if (a->function && sym->result && a->access != ACCESS_PRIVATE
15473 && (sym->ts.u.derived->attr.alloc_comp
15474 || sym->ts.u.derived->attr.pointer_comp))
15475 /* Mark the result symbol to be referenced, when it has allocatable
15476 components. */
15477 sym->result->attr.referenced = 1;
15478 }
15479
15480 if (sym->ts.type == BT_CLASS && sym->ns == gfc_current_ns
15481 && sym->attr.dummy && sym->attr.intent == INTENT_OUT
15482 && !CLASS_DATA (sym)->attr.class_pointer
15483 && !CLASS_DATA (sym)->attr.allocatable)
15484 apply_default_init (sym);
15485
15486 /* If this symbol has a type-spec, check it. */
15487 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER
15488 || (sym->attr.flavor == FL_PROCEDURE && sym->attr.function))
15489 if (!resolve_typespec_used (&sym->ts, &sym->declared_at, sym->name))
15490 return;
15491
15492 if (sym->param_list)
15493 resolve_pdt (sym);
15494 }
15495
15496
15497 /************* Resolve DATA statements *************/
15498
15499 static struct
15500 {
15501 gfc_data_value *vnode;
15502 mpz_t left;
15503 }
15504 values;
15505
15506
15507 /* Advance the values structure to point to the next value in the data list. */
15508
15509 static bool
15510 next_data_value (void)
15511 {
15512 while (mpz_cmp_ui (values.left, 0) == 0)
15513 {
15514
15515 if (values.vnode->next == NULL)
15516 return false;
15517
15518 values.vnode = values.vnode->next;
15519 mpz_set (values.left, values.vnode->repeat);
15520 }
15521
15522 return true;
15523 }
15524
15525
15526 static bool
15527 check_data_variable (gfc_data_variable *var, locus *where)
15528 {
15529 gfc_expr *e;
15530 mpz_t size;
15531 mpz_t offset;
15532 bool t;
15533 ar_type mark = AR_UNKNOWN;
15534 int i;
15535 mpz_t section_index[GFC_MAX_DIMENSIONS];
15536 gfc_ref *ref;
15537 gfc_array_ref *ar;
15538 gfc_symbol *sym;
15539 int has_pointer;
15540
15541 if (!gfc_resolve_expr (var->expr))
15542 return false;
15543
15544 ar = NULL;
15545 mpz_init_set_si (offset, 0);
15546 e = var->expr;
15547
15548 if (e->expr_type == EXPR_FUNCTION && e->value.function.isym
15549 && e->value.function.isym->id == GFC_ISYM_CAF_GET)
15550 e = e->value.function.actual->expr;
15551
15552 if (e->expr_type != EXPR_VARIABLE)
15553 {
15554 gfc_error ("Expecting definable entity near %L", where);
15555 return false;
15556 }
15557
15558 sym = e->symtree->n.sym;
15559
15560 if (sym->ns->is_block_data && !sym->attr.in_common)
15561 {
15562 gfc_error ("BLOCK DATA element %qs at %L must be in COMMON",
15563 sym->name, &sym->declared_at);
15564 return false;
15565 }
15566
15567 if (e->ref == NULL && sym->as)
15568 {
15569 gfc_error ("DATA array %qs at %L must be specified in a previous"
15570 " declaration", sym->name, where);
15571 return false;
15572 }
15573
15574 has_pointer = sym->attr.pointer;
15575
15576 if (gfc_is_coindexed (e))
15577 {
15578 gfc_error ("DATA element %qs at %L cannot have a coindex", sym->name,
15579 where);
15580 return false;
15581 }
15582
15583 for (ref = e->ref; ref; ref = ref->next)
15584 {
15585 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
15586 has_pointer = 1;
15587
15588 if (has_pointer
15589 && ref->type == REF_ARRAY
15590 && ref->u.ar.type != AR_FULL)
15591 {
15592 gfc_error ("DATA element %qs at %L is a pointer and so must "
15593 "be a full array", sym->name, where);
15594 return false;
15595 }
15596 }
15597
15598 if (e->rank == 0 || has_pointer)
15599 {
15600 mpz_init_set_ui (size, 1);
15601 ref = NULL;
15602 }
15603 else
15604 {
15605 ref = e->ref;
15606
15607 /* Find the array section reference. */
15608 for (ref = e->ref; ref; ref = ref->next)
15609 {
15610 if (ref->type != REF_ARRAY)
15611 continue;
15612 if (ref->u.ar.type == AR_ELEMENT)
15613 continue;
15614 break;
15615 }
15616 gcc_assert (ref);
15617
15618 /* Set marks according to the reference pattern. */
15619 switch (ref->u.ar.type)
15620 {
15621 case AR_FULL:
15622 mark = AR_FULL;
15623 break;
15624
15625 case AR_SECTION:
15626 ar = &ref->u.ar;
15627 /* Get the start position of array section. */
15628 gfc_get_section_index (ar, section_index, &offset);
15629 mark = AR_SECTION;
15630 break;
15631
15632 default:
15633 gcc_unreachable ();
15634 }
15635
15636 if (!gfc_array_size (e, &size))
15637 {
15638 gfc_error ("Nonconstant array section at %L in DATA statement",
15639 where);
15640 mpz_clear (offset);
15641 return false;
15642 }
15643 }
15644
15645 t = true;
15646
15647 while (mpz_cmp_ui (size, 0) > 0)
15648 {
15649 if (!next_data_value ())
15650 {
15651 gfc_error ("DATA statement at %L has more variables than values",
15652 where);
15653 t = false;
15654 break;
15655 }
15656
15657 t = gfc_check_assign (var->expr, values.vnode->expr, 0);
15658 if (!t)
15659 break;
15660
15661 /* If we have more than one element left in the repeat count,
15662 and we have more than one element left in the target variable,
15663 then create a range assignment. */
15664 /* FIXME: Only done for full arrays for now, since array sections
15665 seem tricky. */
15666 if (mark == AR_FULL && ref && ref->next == NULL
15667 && mpz_cmp_ui (values.left, 1) > 0 && mpz_cmp_ui (size, 1) > 0)
15668 {
15669 mpz_t range;
15670
15671 if (mpz_cmp (size, values.left) >= 0)
15672 {
15673 mpz_init_set (range, values.left);
15674 mpz_sub (size, size, values.left);
15675 mpz_set_ui (values.left, 0);
15676 }
15677 else
15678 {
15679 mpz_init_set (range, size);
15680 mpz_sub (values.left, values.left, size);
15681 mpz_set_ui (size, 0);
15682 }
15683
15684 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15685 offset, &range);
15686
15687 mpz_add (offset, offset, range);
15688 mpz_clear (range);
15689
15690 if (!t)
15691 break;
15692 }
15693
15694 /* Assign initial value to symbol. */
15695 else
15696 {
15697 mpz_sub_ui (values.left, values.left, 1);
15698 mpz_sub_ui (size, size, 1);
15699
15700 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15701 offset, NULL);
15702 if (!t)
15703 break;
15704
15705 if (mark == AR_FULL)
15706 mpz_add_ui (offset, offset, 1);
15707
15708 /* Modify the array section indexes and recalculate the offset
15709 for next element. */
15710 else if (mark == AR_SECTION)
15711 gfc_advance_section (section_index, ar, &offset);
15712 }
15713 }
15714
15715 if (mark == AR_SECTION)
15716 {
15717 for (i = 0; i < ar->dimen; i++)
15718 mpz_clear (section_index[i]);
15719 }
15720
15721 mpz_clear (size);
15722 mpz_clear (offset);
15723
15724 return t;
15725 }
15726
15727
15728 static bool traverse_data_var (gfc_data_variable *, locus *);
15729
15730 /* Iterate over a list of elements in a DATA statement. */
15731
15732 static bool
15733 traverse_data_list (gfc_data_variable *var, locus *where)
15734 {
15735 mpz_t trip;
15736 iterator_stack frame;
15737 gfc_expr *e, *start, *end, *step;
15738 bool retval = true;
15739
15740 mpz_init (frame.value);
15741 mpz_init (trip);
15742
15743 start = gfc_copy_expr (var->iter.start);
15744 end = gfc_copy_expr (var->iter.end);
15745 step = gfc_copy_expr (var->iter.step);
15746
15747 if (!gfc_simplify_expr (start, 1)
15748 || start->expr_type != EXPR_CONSTANT)
15749 {
15750 gfc_error ("start of implied-do loop at %L could not be "
15751 "simplified to a constant value", &start->where);
15752 retval = false;
15753 goto cleanup;
15754 }
15755 if (!gfc_simplify_expr (end, 1)
15756 || end->expr_type != EXPR_CONSTANT)
15757 {
15758 gfc_error ("end of implied-do loop at %L could not be "
15759 "simplified to a constant value", &start->where);
15760 retval = false;
15761 goto cleanup;
15762 }
15763 if (!gfc_simplify_expr (step, 1)
15764 || step->expr_type != EXPR_CONSTANT)
15765 {
15766 gfc_error ("step of implied-do loop at %L could not be "
15767 "simplified to a constant value", &start->where);
15768 retval = false;
15769 goto cleanup;
15770 }
15771
15772 mpz_set (trip, end->value.integer);
15773 mpz_sub (trip, trip, start->value.integer);
15774 mpz_add (trip, trip, step->value.integer);
15775
15776 mpz_div (trip, trip, step->value.integer);
15777
15778 mpz_set (frame.value, start->value.integer);
15779
15780 frame.prev = iter_stack;
15781 frame.variable = var->iter.var->symtree;
15782 iter_stack = &frame;
15783
15784 while (mpz_cmp_ui (trip, 0) > 0)
15785 {
15786 if (!traverse_data_var (var->list, where))
15787 {
15788 retval = false;
15789 goto cleanup;
15790 }
15791
15792 e = gfc_copy_expr (var->expr);
15793 if (!gfc_simplify_expr (e, 1))
15794 {
15795 gfc_free_expr (e);
15796 retval = false;
15797 goto cleanup;
15798 }
15799
15800 mpz_add (frame.value, frame.value, step->value.integer);
15801
15802 mpz_sub_ui (trip, trip, 1);
15803 }
15804
15805 cleanup:
15806 mpz_clear (frame.value);
15807 mpz_clear (trip);
15808
15809 gfc_free_expr (start);
15810 gfc_free_expr (end);
15811 gfc_free_expr (step);
15812
15813 iter_stack = frame.prev;
15814 return retval;
15815 }
15816
15817
15818 /* Type resolve variables in the variable list of a DATA statement. */
15819
15820 static bool
15821 traverse_data_var (gfc_data_variable *var, locus *where)
15822 {
15823 bool t;
15824
15825 for (; var; var = var->next)
15826 {
15827 if (var->expr == NULL)
15828 t = traverse_data_list (var, where);
15829 else
15830 t = check_data_variable (var, where);
15831
15832 if (!t)
15833 return false;
15834 }
15835
15836 return true;
15837 }
15838
15839
15840 /* Resolve the expressions and iterators associated with a data statement.
15841 This is separate from the assignment checking because data lists should
15842 only be resolved once. */
15843
15844 static bool
15845 resolve_data_variables (gfc_data_variable *d)
15846 {
15847 for (; d; d = d->next)
15848 {
15849 if (d->list == NULL)
15850 {
15851 if (!gfc_resolve_expr (d->expr))
15852 return false;
15853 }
15854 else
15855 {
15856 if (!gfc_resolve_iterator (&d->iter, false, true))
15857 return false;
15858
15859 if (!resolve_data_variables (d->list))
15860 return false;
15861 }
15862 }
15863
15864 return true;
15865 }
15866
15867
15868 /* Resolve a single DATA statement. We implement this by storing a pointer to
15869 the value list into static variables, and then recursively traversing the
15870 variables list, expanding iterators and such. */
15871
15872 static void
15873 resolve_data (gfc_data *d)
15874 {
15875
15876 if (!resolve_data_variables (d->var))
15877 return;
15878
15879 values.vnode = d->value;
15880 if (d->value == NULL)
15881 mpz_set_ui (values.left, 0);
15882 else
15883 mpz_set (values.left, d->value->repeat);
15884
15885 if (!traverse_data_var (d->var, &d->where))
15886 return;
15887
15888 /* At this point, we better not have any values left. */
15889
15890 if (next_data_value ())
15891 gfc_error ("DATA statement at %L has more values than variables",
15892 &d->where);
15893 }
15894
15895
15896 /* 12.6 Constraint: In a pure subprogram any variable which is in common or
15897 accessed by host or use association, is a dummy argument to a pure function,
15898 is a dummy argument with INTENT (IN) to a pure subroutine, or an object that
15899 is storage associated with any such variable, shall not be used in the
15900 following contexts: (clients of this function). */
15901
15902 /* Determines if a variable is not 'pure', i.e., not assignable within a pure
15903 procedure. Returns zero if assignment is OK, nonzero if there is a
15904 problem. */
15905 int
15906 gfc_impure_variable (gfc_symbol *sym)
15907 {
15908 gfc_symbol *proc;
15909 gfc_namespace *ns;
15910
15911 if (sym->attr.use_assoc || sym->attr.in_common)
15912 return 1;
15913
15914 /* Check if the symbol's ns is inside the pure procedure. */
15915 for (ns = gfc_current_ns; ns; ns = ns->parent)
15916 {
15917 if (ns == sym->ns)
15918 break;
15919 if (ns->proc_name->attr.flavor == FL_PROCEDURE && !sym->attr.function)
15920 return 1;
15921 }
15922
15923 proc = sym->ns->proc_name;
15924 if (sym->attr.dummy
15925 && ((proc->attr.subroutine && sym->attr.intent == INTENT_IN)
15926 || proc->attr.function))
15927 return 1;
15928
15929 /* TODO: Sort out what can be storage associated, if anything, and include
15930 it here. In principle equivalences should be scanned but it does not
15931 seem to be possible to storage associate an impure variable this way. */
15932 return 0;
15933 }
15934
15935
15936 /* Test whether a symbol is pure or not. For a NULL pointer, checks if the
15937 current namespace is inside a pure procedure. */
15938
15939 int
15940 gfc_pure (gfc_symbol *sym)
15941 {
15942 symbol_attribute attr;
15943 gfc_namespace *ns;
15944
15945 if (sym == NULL)
15946 {
15947 /* Check if the current namespace or one of its parents
15948 belongs to a pure procedure. */
15949 for (ns = gfc_current_ns; ns; ns = ns->parent)
15950 {
15951 sym = ns->proc_name;
15952 if (sym == NULL)
15953 return 0;
15954 attr = sym->attr;
15955 if (attr.flavor == FL_PROCEDURE && attr.pure)
15956 return 1;
15957 }
15958 return 0;
15959 }
15960
15961 attr = sym->attr;
15962
15963 return attr.flavor == FL_PROCEDURE && attr.pure;
15964 }
15965
15966
15967 /* Test whether a symbol is implicitly pure or not. For a NULL pointer,
15968 checks if the current namespace is implicitly pure. Note that this
15969 function returns false for a PURE procedure. */
15970
15971 int
15972 gfc_implicit_pure (gfc_symbol *sym)
15973 {
15974 gfc_namespace *ns;
15975
15976 if (sym == NULL)
15977 {
15978 /* Check if the current procedure is implicit_pure. Walk up
15979 the procedure list until we find a procedure. */
15980 for (ns = gfc_current_ns; ns; ns = ns->parent)
15981 {
15982 sym = ns->proc_name;
15983 if (sym == NULL)
15984 return 0;
15985
15986 if (sym->attr.flavor == FL_PROCEDURE)
15987 break;
15988 }
15989 }
15990
15991 return sym->attr.flavor == FL_PROCEDURE && sym->attr.implicit_pure
15992 && !sym->attr.pure;
15993 }
15994
15995
15996 void
15997 gfc_unset_implicit_pure (gfc_symbol *sym)
15998 {
15999 gfc_namespace *ns;
16000
16001 if (sym == NULL)
16002 {
16003 /* Check if the current procedure is implicit_pure. Walk up
16004 the procedure list until we find a procedure. */
16005 for (ns = gfc_current_ns; ns; ns = ns->parent)
16006 {
16007 sym = ns->proc_name;
16008 if (sym == NULL)
16009 return;
16010
16011 if (sym->attr.flavor == FL_PROCEDURE)
16012 break;
16013 }
16014 }
16015
16016 if (sym->attr.flavor == FL_PROCEDURE)
16017 sym->attr.implicit_pure = 0;
16018 else
16019 sym->attr.pure = 0;
16020 }
16021
16022
16023 /* Test whether the current procedure is elemental or not. */
16024
16025 int
16026 gfc_elemental (gfc_symbol *sym)
16027 {
16028 symbol_attribute attr;
16029
16030 if (sym == NULL)
16031 sym = gfc_current_ns->proc_name;
16032 if (sym == NULL)
16033 return 0;
16034 attr = sym->attr;
16035
16036 return attr.flavor == FL_PROCEDURE && attr.elemental;
16037 }
16038
16039
16040 /* Warn about unused labels. */
16041
16042 static void
16043 warn_unused_fortran_label (gfc_st_label *label)
16044 {
16045 if (label == NULL)
16046 return;
16047
16048 warn_unused_fortran_label (label->left);
16049
16050 if (label->defined == ST_LABEL_UNKNOWN)
16051 return;
16052
16053 switch (label->referenced)
16054 {
16055 case ST_LABEL_UNKNOWN:
16056 gfc_warning (OPT_Wunused_label, "Label %d at %L defined but not used",
16057 label->value, &label->where);
16058 break;
16059
16060 case ST_LABEL_BAD_TARGET:
16061 gfc_warning (OPT_Wunused_label,
16062 "Label %d at %L defined but cannot be used",
16063 label->value, &label->where);
16064 break;
16065
16066 default:
16067 break;
16068 }
16069
16070 warn_unused_fortran_label (label->right);
16071 }
16072
16073
16074 /* Returns the sequence type of a symbol or sequence. */
16075
16076 static seq_type
16077 sequence_type (gfc_typespec ts)
16078 {
16079 seq_type result;
16080 gfc_component *c;
16081
16082 switch (ts.type)
16083 {
16084 case BT_DERIVED:
16085
16086 if (ts.u.derived->components == NULL)
16087 return SEQ_NONDEFAULT;
16088
16089 result = sequence_type (ts.u.derived->components->ts);
16090 for (c = ts.u.derived->components->next; c; c = c->next)
16091 if (sequence_type (c->ts) != result)
16092 return SEQ_MIXED;
16093
16094 return result;
16095
16096 case BT_CHARACTER:
16097 if (ts.kind != gfc_default_character_kind)
16098 return SEQ_NONDEFAULT;
16099
16100 return SEQ_CHARACTER;
16101
16102 case BT_INTEGER:
16103 if (ts.kind != gfc_default_integer_kind)
16104 return SEQ_NONDEFAULT;
16105
16106 return SEQ_NUMERIC;
16107
16108 case BT_REAL:
16109 if (!(ts.kind == gfc_default_real_kind
16110 || ts.kind == gfc_default_double_kind))
16111 return SEQ_NONDEFAULT;
16112
16113 return SEQ_NUMERIC;
16114
16115 case BT_COMPLEX:
16116 if (ts.kind != gfc_default_complex_kind)
16117 return SEQ_NONDEFAULT;
16118
16119 return SEQ_NUMERIC;
16120
16121 case BT_LOGICAL:
16122 if (ts.kind != gfc_default_logical_kind)
16123 return SEQ_NONDEFAULT;
16124
16125 return SEQ_NUMERIC;
16126
16127 default:
16128 return SEQ_NONDEFAULT;
16129 }
16130 }
16131
16132
16133 /* Resolve derived type EQUIVALENCE object. */
16134
16135 static bool
16136 resolve_equivalence_derived (gfc_symbol *derived, gfc_symbol *sym, gfc_expr *e)
16137 {
16138 gfc_component *c = derived->components;
16139
16140 if (!derived)
16141 return true;
16142
16143 /* Shall not be an object of nonsequence derived type. */
16144 if (!derived->attr.sequence)
16145 {
16146 gfc_error ("Derived type variable %qs at %L must have SEQUENCE "
16147 "attribute to be an EQUIVALENCE object", sym->name,
16148 &e->where);
16149 return false;
16150 }
16151
16152 /* Shall not have allocatable components. */
16153 if (derived->attr.alloc_comp)
16154 {
16155 gfc_error ("Derived type variable %qs at %L cannot have ALLOCATABLE "
16156 "components to be an EQUIVALENCE object",sym->name,
16157 &e->where);
16158 return false;
16159 }
16160
16161 if (sym->attr.in_common && gfc_has_default_initializer (sym->ts.u.derived))
16162 {
16163 gfc_error ("Derived type variable %qs at %L with default "
16164 "initialization cannot be in EQUIVALENCE with a variable "
16165 "in COMMON", sym->name, &e->where);
16166 return false;
16167 }
16168
16169 for (; c ; c = c->next)
16170 {
16171 if (gfc_bt_struct (c->ts.type)
16172 && (!resolve_equivalence_derived(c->ts.u.derived, sym, e)))
16173 return false;
16174
16175 /* Shall not be an object of sequence derived type containing a pointer
16176 in the structure. */
16177 if (c->attr.pointer)
16178 {
16179 gfc_error ("Derived type variable %qs at %L with pointer "
16180 "component(s) cannot be an EQUIVALENCE object",
16181 sym->name, &e->where);
16182 return false;
16183 }
16184 }
16185 return true;
16186 }
16187
16188
16189 /* Resolve equivalence object.
16190 An EQUIVALENCE object shall not be a dummy argument, a pointer, a target,
16191 an allocatable array, an object of nonsequence derived type, an object of
16192 sequence derived type containing a pointer at any level of component
16193 selection, an automatic object, a function name, an entry name, a result
16194 name, a named constant, a structure component, or a subobject of any of
16195 the preceding objects. A substring shall not have length zero. A
16196 derived type shall not have components with default initialization nor
16197 shall two objects of an equivalence group be initialized.
16198 Either all or none of the objects shall have an protected attribute.
16199 The simple constraints are done in symbol.c(check_conflict) and the rest
16200 are implemented here. */
16201
16202 static void
16203 resolve_equivalence (gfc_equiv *eq)
16204 {
16205 gfc_symbol *sym;
16206 gfc_symbol *first_sym;
16207 gfc_expr *e;
16208 gfc_ref *r;
16209 locus *last_where = NULL;
16210 seq_type eq_type, last_eq_type;
16211 gfc_typespec *last_ts;
16212 int object, cnt_protected;
16213 const char *msg;
16214
16215 last_ts = &eq->expr->symtree->n.sym->ts;
16216
16217 first_sym = eq->expr->symtree->n.sym;
16218
16219 cnt_protected = 0;
16220
16221 for (object = 1; eq; eq = eq->eq, object++)
16222 {
16223 e = eq->expr;
16224
16225 e->ts = e->symtree->n.sym->ts;
16226 /* match_varspec might not know yet if it is seeing
16227 array reference or substring reference, as it doesn't
16228 know the types. */
16229 if (e->ref && e->ref->type == REF_ARRAY)
16230 {
16231 gfc_ref *ref = e->ref;
16232 sym = e->symtree->n.sym;
16233
16234 if (sym->attr.dimension)
16235 {
16236 ref->u.ar.as = sym->as;
16237 ref = ref->next;
16238 }
16239
16240 /* For substrings, convert REF_ARRAY into REF_SUBSTRING. */
16241 if (e->ts.type == BT_CHARACTER
16242 && ref
16243 && ref->type == REF_ARRAY
16244 && ref->u.ar.dimen == 1
16245 && ref->u.ar.dimen_type[0] == DIMEN_RANGE
16246 && ref->u.ar.stride[0] == NULL)
16247 {
16248 gfc_expr *start = ref->u.ar.start[0];
16249 gfc_expr *end = ref->u.ar.end[0];
16250 void *mem = NULL;
16251
16252 /* Optimize away the (:) reference. */
16253 if (start == NULL && end == NULL)
16254 {
16255 if (e->ref == ref)
16256 e->ref = ref->next;
16257 else
16258 e->ref->next = ref->next;
16259 mem = ref;
16260 }
16261 else
16262 {
16263 ref->type = REF_SUBSTRING;
16264 if (start == NULL)
16265 start = gfc_get_int_expr (gfc_charlen_int_kind,
16266 NULL, 1);
16267 ref->u.ss.start = start;
16268 if (end == NULL && e->ts.u.cl)
16269 end = gfc_copy_expr (e->ts.u.cl->length);
16270 ref->u.ss.end = end;
16271 ref->u.ss.length = e->ts.u.cl;
16272 e->ts.u.cl = NULL;
16273 }
16274 ref = ref->next;
16275 free (mem);
16276 }
16277
16278 /* Any further ref is an error. */
16279 if (ref)
16280 {
16281 gcc_assert (ref->type == REF_ARRAY);
16282 gfc_error ("Syntax error in EQUIVALENCE statement at %L",
16283 &ref->u.ar.where);
16284 continue;
16285 }
16286 }
16287
16288 if (!gfc_resolve_expr (e))
16289 continue;
16290
16291 sym = e->symtree->n.sym;
16292
16293 if (sym->attr.is_protected)
16294 cnt_protected++;
16295 if (cnt_protected > 0 && cnt_protected != object)
16296 {
16297 gfc_error ("Either all or none of the objects in the "
16298 "EQUIVALENCE set at %L shall have the "
16299 "PROTECTED attribute",
16300 &e->where);
16301 break;
16302 }
16303
16304 /* Shall not equivalence common block variables in a PURE procedure. */
16305 if (sym->ns->proc_name
16306 && sym->ns->proc_name->attr.pure
16307 && sym->attr.in_common)
16308 {
16309 /* Need to check for symbols that may have entered the pure
16310 procedure via a USE statement. */
16311 bool saw_sym = false;
16312 if (sym->ns->use_stmts)
16313 {
16314 gfc_use_rename *r;
16315 for (r = sym->ns->use_stmts->rename; r; r = r->next)
16316 if (strcmp(r->use_name, sym->name) == 0) saw_sym = true;
16317 }
16318 else
16319 saw_sym = true;
16320
16321 if (saw_sym)
16322 gfc_error ("COMMON block member %qs at %L cannot be an "
16323 "EQUIVALENCE object in the pure procedure %qs",
16324 sym->name, &e->where, sym->ns->proc_name->name);
16325 break;
16326 }
16327
16328 /* Shall not be a named constant. */
16329 if (e->expr_type == EXPR_CONSTANT)
16330 {
16331 gfc_error ("Named constant %qs at %L cannot be an EQUIVALENCE "
16332 "object", sym->name, &e->where);
16333 continue;
16334 }
16335
16336 if (e->ts.type == BT_DERIVED
16337 && !resolve_equivalence_derived (e->ts.u.derived, sym, e))
16338 continue;
16339
16340 /* Check that the types correspond correctly:
16341 Note 5.28:
16342 A numeric sequence structure may be equivalenced to another sequence
16343 structure, an object of default integer type, default real type, double
16344 precision real type, default logical type such that components of the
16345 structure ultimately only become associated to objects of the same
16346 kind. A character sequence structure may be equivalenced to an object
16347 of default character kind or another character sequence structure.
16348 Other objects may be equivalenced only to objects of the same type and
16349 kind parameters. */
16350
16351 /* Identical types are unconditionally OK. */
16352 if (object == 1 || gfc_compare_types (last_ts, &sym->ts))
16353 goto identical_types;
16354
16355 last_eq_type = sequence_type (*last_ts);
16356 eq_type = sequence_type (sym->ts);
16357
16358 /* Since the pair of objects is not of the same type, mixed or
16359 non-default sequences can be rejected. */
16360
16361 msg = "Sequence %s with mixed components in EQUIVALENCE "
16362 "statement at %L with different type objects";
16363 if ((object ==2
16364 && last_eq_type == SEQ_MIXED
16365 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16366 || (eq_type == SEQ_MIXED
16367 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16368 continue;
16369
16370 msg = "Non-default type object or sequence %s in EQUIVALENCE "
16371 "statement at %L with objects of different type";
16372 if ((object ==2
16373 && last_eq_type == SEQ_NONDEFAULT
16374 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16375 || (eq_type == SEQ_NONDEFAULT
16376 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16377 continue;
16378
16379 msg ="Non-CHARACTER object %qs in default CHARACTER "
16380 "EQUIVALENCE statement at %L";
16381 if (last_eq_type == SEQ_CHARACTER
16382 && eq_type != SEQ_CHARACTER
16383 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16384 continue;
16385
16386 msg ="Non-NUMERIC object %qs in default NUMERIC "
16387 "EQUIVALENCE statement at %L";
16388 if (last_eq_type == SEQ_NUMERIC
16389 && eq_type != SEQ_NUMERIC
16390 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16391 continue;
16392
16393 identical_types:
16394 last_ts =&sym->ts;
16395 last_where = &e->where;
16396
16397 if (!e->ref)
16398 continue;
16399
16400 /* Shall not be an automatic array. */
16401 if (e->ref->type == REF_ARRAY
16402 && !gfc_resolve_array_spec (e->ref->u.ar.as, 1))
16403 {
16404 gfc_error ("Array %qs at %L with non-constant bounds cannot be "
16405 "an EQUIVALENCE object", sym->name, &e->where);
16406 continue;
16407 }
16408
16409 r = e->ref;
16410 while (r)
16411 {
16412 /* Shall not be a structure component. */
16413 if (r->type == REF_COMPONENT)
16414 {
16415 gfc_error ("Structure component %qs at %L cannot be an "
16416 "EQUIVALENCE object",
16417 r->u.c.component->name, &e->where);
16418 break;
16419 }
16420
16421 /* A substring shall not have length zero. */
16422 if (r->type == REF_SUBSTRING)
16423 {
16424 if (compare_bound (r->u.ss.start, r->u.ss.end) == CMP_GT)
16425 {
16426 gfc_error ("Substring at %L has length zero",
16427 &r->u.ss.start->where);
16428 break;
16429 }
16430 }
16431 r = r->next;
16432 }
16433 }
16434 }
16435
16436
16437 /* Function called by resolve_fntype to flag other symbol used in the
16438 length type parameter specification of function resuls. */
16439
16440 static bool
16441 flag_fn_result_spec (gfc_expr *expr,
16442 gfc_symbol *sym,
16443 int *f ATTRIBUTE_UNUSED)
16444 {
16445 gfc_namespace *ns;
16446 gfc_symbol *s;
16447
16448 if (expr->expr_type == EXPR_VARIABLE)
16449 {
16450 s = expr->symtree->n.sym;
16451 for (ns = s->ns; ns; ns = ns->parent)
16452 if (!ns->parent)
16453 break;
16454
16455 if (sym == s)
16456 {
16457 gfc_error ("Self reference in character length expression "
16458 "for %qs at %L", sym->name, &expr->where);
16459 return true;
16460 }
16461
16462 if (!s->fn_result_spec
16463 && s->attr.flavor == FL_PARAMETER)
16464 {
16465 /* Function contained in a module.... */
16466 if (ns->proc_name && ns->proc_name->attr.flavor == FL_MODULE)
16467 {
16468 gfc_symtree *st;
16469 s->fn_result_spec = 1;
16470 /* Make sure that this symbol is translated as a module
16471 variable. */
16472 st = gfc_get_unique_symtree (ns);
16473 st->n.sym = s;
16474 s->refs++;
16475 }
16476 /* ... which is use associated and called. */
16477 else if (s->attr.use_assoc || s->attr.used_in_submodule
16478 ||
16479 /* External function matched with an interface. */
16480 (s->ns->proc_name
16481 && ((s->ns == ns
16482 && s->ns->proc_name->attr.if_source == IFSRC_DECL)
16483 || s->ns->proc_name->attr.if_source == IFSRC_IFBODY)
16484 && s->ns->proc_name->attr.function))
16485 s->fn_result_spec = 1;
16486 }
16487 }
16488 return false;
16489 }
16490
16491
16492 /* Resolve function and ENTRY types, issue diagnostics if needed. */
16493
16494 static void
16495 resolve_fntype (gfc_namespace *ns)
16496 {
16497 gfc_entry_list *el;
16498 gfc_symbol *sym;
16499
16500 if (ns->proc_name == NULL || !ns->proc_name->attr.function)
16501 return;
16502
16503 /* If there are any entries, ns->proc_name is the entry master
16504 synthetic symbol and ns->entries->sym actual FUNCTION symbol. */
16505 if (ns->entries)
16506 sym = ns->entries->sym;
16507 else
16508 sym = ns->proc_name;
16509 if (sym->result == sym
16510 && sym->ts.type == BT_UNKNOWN
16511 && !gfc_set_default_type (sym, 0, NULL)
16512 && !sym->attr.untyped)
16513 {
16514 gfc_error ("Function %qs at %L has no IMPLICIT type",
16515 sym->name, &sym->declared_at);
16516 sym->attr.untyped = 1;
16517 }
16518
16519 if (sym->ts.type == BT_DERIVED && !sym->ts.u.derived->attr.use_assoc
16520 && !sym->attr.contained
16521 && !gfc_check_symbol_access (sym->ts.u.derived)
16522 && gfc_check_symbol_access (sym))
16523 {
16524 gfc_notify_std (GFC_STD_F2003, "PUBLIC function %qs at "
16525 "%L of PRIVATE type %qs", sym->name,
16526 &sym->declared_at, sym->ts.u.derived->name);
16527 }
16528
16529 if (ns->entries)
16530 for (el = ns->entries->next; el; el = el->next)
16531 {
16532 if (el->sym->result == el->sym
16533 && el->sym->ts.type == BT_UNKNOWN
16534 && !gfc_set_default_type (el->sym, 0, NULL)
16535 && !el->sym->attr.untyped)
16536 {
16537 gfc_error ("ENTRY %qs at %L has no IMPLICIT type",
16538 el->sym->name, &el->sym->declared_at);
16539 el->sym->attr.untyped = 1;
16540 }
16541 }
16542
16543 if (sym->ts.type == BT_CHARACTER)
16544 gfc_traverse_expr (sym->ts.u.cl->length, sym, flag_fn_result_spec, 0);
16545 }
16546
16547
16548 /* 12.3.2.1.1 Defined operators. */
16549
16550 static bool
16551 check_uop_procedure (gfc_symbol *sym, locus where)
16552 {
16553 gfc_formal_arglist *formal;
16554
16555 if (!sym->attr.function)
16556 {
16557 gfc_error ("User operator procedure %qs at %L must be a FUNCTION",
16558 sym->name, &where);
16559 return false;
16560 }
16561
16562 if (sym->ts.type == BT_CHARACTER
16563 && !((sym->ts.u.cl && sym->ts.u.cl->length) || sym->ts.deferred)
16564 && !(sym->result && ((sym->result->ts.u.cl
16565 && sym->result->ts.u.cl->length) || sym->result->ts.deferred)))
16566 {
16567 gfc_error ("User operator procedure %qs at %L cannot be assumed "
16568 "character length", sym->name, &where);
16569 return false;
16570 }
16571
16572 formal = gfc_sym_get_dummy_args (sym);
16573 if (!formal || !formal->sym)
16574 {
16575 gfc_error ("User operator procedure %qs at %L must have at least "
16576 "one argument", sym->name, &where);
16577 return false;
16578 }
16579
16580 if (formal->sym->attr.intent != INTENT_IN)
16581 {
16582 gfc_error ("First argument of operator interface at %L must be "
16583 "INTENT(IN)", &where);
16584 return false;
16585 }
16586
16587 if (formal->sym->attr.optional)
16588 {
16589 gfc_error ("First argument of operator interface at %L cannot be "
16590 "optional", &where);
16591 return false;
16592 }
16593
16594 formal = formal->next;
16595 if (!formal || !formal->sym)
16596 return true;
16597
16598 if (formal->sym->attr.intent != INTENT_IN)
16599 {
16600 gfc_error ("Second argument of operator interface at %L must be "
16601 "INTENT(IN)", &where);
16602 return false;
16603 }
16604
16605 if (formal->sym->attr.optional)
16606 {
16607 gfc_error ("Second argument of operator interface at %L cannot be "
16608 "optional", &where);
16609 return false;
16610 }
16611
16612 if (formal->next)
16613 {
16614 gfc_error ("Operator interface at %L must have, at most, two "
16615 "arguments", &where);
16616 return false;
16617 }
16618
16619 return true;
16620 }
16621
16622 static void
16623 gfc_resolve_uops (gfc_symtree *symtree)
16624 {
16625 gfc_interface *itr;
16626
16627 if (symtree == NULL)
16628 return;
16629
16630 gfc_resolve_uops (symtree->left);
16631 gfc_resolve_uops (symtree->right);
16632
16633 for (itr = symtree->n.uop->op; itr; itr = itr->next)
16634 check_uop_procedure (itr->sym, itr->sym->declared_at);
16635 }
16636
16637
16638 /* Examine all of the expressions associated with a program unit,
16639 assign types to all intermediate expressions, make sure that all
16640 assignments are to compatible types and figure out which names
16641 refer to which functions or subroutines. It doesn't check code
16642 block, which is handled by gfc_resolve_code. */
16643
16644 static void
16645 resolve_types (gfc_namespace *ns)
16646 {
16647 gfc_namespace *n;
16648 gfc_charlen *cl;
16649 gfc_data *d;
16650 gfc_equiv *eq;
16651 gfc_namespace* old_ns = gfc_current_ns;
16652
16653 if (ns->types_resolved)
16654 return;
16655
16656 /* Check that all IMPLICIT types are ok. */
16657 if (!ns->seen_implicit_none)
16658 {
16659 unsigned letter;
16660 for (letter = 0; letter != GFC_LETTERS; ++letter)
16661 if (ns->set_flag[letter]
16662 && !resolve_typespec_used (&ns->default_type[letter],
16663 &ns->implicit_loc[letter], NULL))
16664 return;
16665 }
16666
16667 gfc_current_ns = ns;
16668
16669 resolve_entries (ns);
16670
16671 resolve_common_vars (&ns->blank_common, false);
16672 resolve_common_blocks (ns->common_root);
16673
16674 resolve_contained_functions (ns);
16675
16676 if (ns->proc_name && ns->proc_name->attr.flavor == FL_PROCEDURE
16677 && ns->proc_name->attr.if_source == IFSRC_IFBODY)
16678 resolve_formal_arglist (ns->proc_name);
16679
16680 gfc_traverse_ns (ns, resolve_bind_c_derived_types);
16681
16682 for (cl = ns->cl_list; cl; cl = cl->next)
16683 resolve_charlen (cl);
16684
16685 gfc_traverse_ns (ns, resolve_symbol);
16686
16687 resolve_fntype (ns);
16688
16689 for (n = ns->contained; n; n = n->sibling)
16690 {
16691 if (gfc_pure (ns->proc_name) && !gfc_pure (n->proc_name))
16692 gfc_error ("Contained procedure %qs at %L of a PURE procedure must "
16693 "also be PURE", n->proc_name->name,
16694 &n->proc_name->declared_at);
16695
16696 resolve_types (n);
16697 }
16698
16699 forall_flag = 0;
16700 gfc_do_concurrent_flag = 0;
16701 gfc_check_interfaces (ns);
16702
16703 gfc_traverse_ns (ns, resolve_values);
16704
16705 if (ns->save_all || !flag_automatic)
16706 gfc_save_all (ns);
16707
16708 iter_stack = NULL;
16709 for (d = ns->data; d; d = d->next)
16710 resolve_data (d);
16711
16712 iter_stack = NULL;
16713 gfc_traverse_ns (ns, gfc_formalize_init_value);
16714
16715 gfc_traverse_ns (ns, gfc_verify_binding_labels);
16716
16717 for (eq = ns->equiv; eq; eq = eq->next)
16718 resolve_equivalence (eq);
16719
16720 /* Warn about unused labels. */
16721 if (warn_unused_label)
16722 warn_unused_fortran_label (ns->st_labels);
16723
16724 gfc_resolve_uops (ns->uop_root);
16725
16726 gfc_traverse_ns (ns, gfc_verify_DTIO_procedures);
16727
16728 gfc_resolve_omp_declare_simd (ns);
16729
16730 gfc_resolve_omp_udrs (ns->omp_udr_root);
16731
16732 ns->types_resolved = 1;
16733
16734 gfc_current_ns = old_ns;
16735 }
16736
16737
16738 /* Call gfc_resolve_code recursively. */
16739
16740 static void
16741 resolve_codes (gfc_namespace *ns)
16742 {
16743 gfc_namespace *n;
16744 bitmap_obstack old_obstack;
16745
16746 if (ns->resolved == 1)
16747 return;
16748
16749 for (n = ns->contained; n; n = n->sibling)
16750 resolve_codes (n);
16751
16752 gfc_current_ns = ns;
16753
16754 /* Don't clear 'cs_base' if this is the namespace of a BLOCK construct. */
16755 if (!(ns->proc_name && ns->proc_name->attr.flavor == FL_LABEL))
16756 cs_base = NULL;
16757
16758 /* Set to an out of range value. */
16759 current_entry_id = -1;
16760
16761 old_obstack = labels_obstack;
16762 bitmap_obstack_initialize (&labels_obstack);
16763
16764 gfc_resolve_oacc_declare (ns);
16765 gfc_resolve_omp_local_vars (ns);
16766 gfc_resolve_code (ns->code, ns);
16767
16768 bitmap_obstack_release (&labels_obstack);
16769 labels_obstack = old_obstack;
16770 }
16771
16772
16773 /* This function is called after a complete program unit has been compiled.
16774 Its purpose is to examine all of the expressions associated with a program
16775 unit, assign types to all intermediate expressions, make sure that all
16776 assignments are to compatible types and figure out which names refer to
16777 which functions or subroutines. */
16778
16779 void
16780 gfc_resolve (gfc_namespace *ns)
16781 {
16782 gfc_namespace *old_ns;
16783 code_stack *old_cs_base;
16784 struct gfc_omp_saved_state old_omp_state;
16785
16786 if (ns->resolved)
16787 return;
16788
16789 ns->resolved = -1;
16790 old_ns = gfc_current_ns;
16791 old_cs_base = cs_base;
16792
16793 /* As gfc_resolve can be called during resolution of an OpenMP construct
16794 body, we should clear any state associated to it, so that say NS's
16795 DO loops are not interpreted as OpenMP loops. */
16796 if (!ns->construct_entities)
16797 gfc_omp_save_and_clear_state (&old_omp_state);
16798
16799 resolve_types (ns);
16800 component_assignment_level = 0;
16801 resolve_codes (ns);
16802
16803 gfc_current_ns = old_ns;
16804 cs_base = old_cs_base;
16805 ns->resolved = 1;
16806
16807 gfc_run_passes (ns);
16808
16809 if (!ns->construct_entities)
16810 gfc_omp_restore_state (&old_omp_state);
16811 }