PR fortran/87923 -- fix ICE when resolving I/O tags and simplify io.c
[gcc.git] / gcc / fortran / resolve.c
1 /* Perform type resolution on the various structures.
2 Copyright (C) 2001-2020 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "options.h"
25 #include "bitmap.h"
26 #include "gfortran.h"
27 #include "arith.h" /* For gfc_compare_expr(). */
28 #include "dependency.h"
29 #include "data.h"
30 #include "target-memory.h" /* for gfc_simplify_transfer */
31 #include "constructor.h"
32
33 /* Types used in equivalence statements. */
34
35 enum seq_type
36 {
37 SEQ_NONDEFAULT, SEQ_NUMERIC, SEQ_CHARACTER, SEQ_MIXED
38 };
39
40 /* Stack to keep track of the nesting of blocks as we move through the
41 code. See resolve_branch() and gfc_resolve_code(). */
42
43 typedef struct code_stack
44 {
45 struct gfc_code *head, *current;
46 struct code_stack *prev;
47
48 /* This bitmap keeps track of the targets valid for a branch from
49 inside this block except for END {IF|SELECT}s of enclosing
50 blocks. */
51 bitmap reachable_labels;
52 }
53 code_stack;
54
55 static code_stack *cs_base = NULL;
56
57
58 /* Nonzero if we're inside a FORALL or DO CONCURRENT block. */
59
60 static int forall_flag;
61 int gfc_do_concurrent_flag;
62
63 /* True when we are resolving an expression that is an actual argument to
64 a procedure. */
65 static bool actual_arg = false;
66 /* True when we are resolving an expression that is the first actual argument
67 to a procedure. */
68 static bool first_actual_arg = false;
69
70
71 /* Nonzero if we're inside a OpenMP WORKSHARE or PARALLEL WORKSHARE block. */
72
73 static int omp_workshare_flag;
74
75 /* True if we are processing a formal arglist. The corresponding function
76 resets the flag each time that it is read. */
77 static bool formal_arg_flag = false;
78
79 /* True if we are resolving a specification expression. */
80 static bool specification_expr = false;
81
82 /* The id of the last entry seen. */
83 static int current_entry_id;
84
85 /* We use bitmaps to determine if a branch target is valid. */
86 static bitmap_obstack labels_obstack;
87
88 /* True when simplifying a EXPR_VARIABLE argument to an inquiry function. */
89 static bool inquiry_argument = false;
90
91
92 bool
93 gfc_is_formal_arg (void)
94 {
95 return formal_arg_flag;
96 }
97
98 /* Is the symbol host associated? */
99 static bool
100 is_sym_host_assoc (gfc_symbol *sym, gfc_namespace *ns)
101 {
102 for (ns = ns->parent; ns; ns = ns->parent)
103 {
104 if (sym->ns == ns)
105 return true;
106 }
107
108 return false;
109 }
110
111 /* Ensure a typespec used is valid; for instance, TYPE(t) is invalid if t is
112 an ABSTRACT derived-type. If where is not NULL, an error message with that
113 locus is printed, optionally using name. */
114
115 static bool
116 resolve_typespec_used (gfc_typespec* ts, locus* where, const char* name)
117 {
118 if (ts->type == BT_DERIVED && ts->u.derived->attr.abstract)
119 {
120 if (where)
121 {
122 if (name)
123 gfc_error ("%qs at %L is of the ABSTRACT type %qs",
124 name, where, ts->u.derived->name);
125 else
126 gfc_error ("ABSTRACT type %qs used at %L",
127 ts->u.derived->name, where);
128 }
129
130 return false;
131 }
132
133 return true;
134 }
135
136
137 static bool
138 check_proc_interface (gfc_symbol *ifc, locus *where)
139 {
140 /* Several checks for F08:C1216. */
141 if (ifc->attr.procedure)
142 {
143 gfc_error ("Interface %qs at %L is declared "
144 "in a later PROCEDURE statement", ifc->name, where);
145 return false;
146 }
147 if (ifc->generic)
148 {
149 /* For generic interfaces, check if there is
150 a specific procedure with the same name. */
151 gfc_interface *gen = ifc->generic;
152 while (gen && strcmp (gen->sym->name, ifc->name) != 0)
153 gen = gen->next;
154 if (!gen)
155 {
156 gfc_error ("Interface %qs at %L may not be generic",
157 ifc->name, where);
158 return false;
159 }
160 }
161 if (ifc->attr.proc == PROC_ST_FUNCTION)
162 {
163 gfc_error ("Interface %qs at %L may not be a statement function",
164 ifc->name, where);
165 return false;
166 }
167 if (gfc_is_intrinsic (ifc, 0, ifc->declared_at)
168 || gfc_is_intrinsic (ifc, 1, ifc->declared_at))
169 ifc->attr.intrinsic = 1;
170 if (ifc->attr.intrinsic && !gfc_intrinsic_actual_ok (ifc->name, 0))
171 {
172 gfc_error ("Intrinsic procedure %qs not allowed in "
173 "PROCEDURE statement at %L", ifc->name, where);
174 return false;
175 }
176 if (!ifc->attr.if_source && !ifc->attr.intrinsic && ifc->name[0] != '\0')
177 {
178 gfc_error ("Interface %qs at %L must be explicit", ifc->name, where);
179 return false;
180 }
181 return true;
182 }
183
184
185 static void resolve_symbol (gfc_symbol *sym);
186
187
188 /* Resolve the interface for a PROCEDURE declaration or procedure pointer. */
189
190 static bool
191 resolve_procedure_interface (gfc_symbol *sym)
192 {
193 gfc_symbol *ifc = sym->ts.interface;
194
195 if (!ifc)
196 return true;
197
198 if (ifc == sym)
199 {
200 gfc_error ("PROCEDURE %qs at %L may not be used as its own interface",
201 sym->name, &sym->declared_at);
202 return false;
203 }
204 if (!check_proc_interface (ifc, &sym->declared_at))
205 return false;
206
207 if (ifc->attr.if_source || ifc->attr.intrinsic)
208 {
209 /* Resolve interface and copy attributes. */
210 resolve_symbol (ifc);
211 if (ifc->attr.intrinsic)
212 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
213
214 if (ifc->result)
215 {
216 sym->ts = ifc->result->ts;
217 sym->attr.allocatable = ifc->result->attr.allocatable;
218 sym->attr.pointer = ifc->result->attr.pointer;
219 sym->attr.dimension = ifc->result->attr.dimension;
220 sym->attr.class_ok = ifc->result->attr.class_ok;
221 sym->as = gfc_copy_array_spec (ifc->result->as);
222 sym->result = sym;
223 }
224 else
225 {
226 sym->ts = ifc->ts;
227 sym->attr.allocatable = ifc->attr.allocatable;
228 sym->attr.pointer = ifc->attr.pointer;
229 sym->attr.dimension = ifc->attr.dimension;
230 sym->attr.class_ok = ifc->attr.class_ok;
231 sym->as = gfc_copy_array_spec (ifc->as);
232 }
233 sym->ts.interface = ifc;
234 sym->attr.function = ifc->attr.function;
235 sym->attr.subroutine = ifc->attr.subroutine;
236
237 sym->attr.pure = ifc->attr.pure;
238 sym->attr.elemental = ifc->attr.elemental;
239 sym->attr.contiguous = ifc->attr.contiguous;
240 sym->attr.recursive = ifc->attr.recursive;
241 sym->attr.always_explicit = ifc->attr.always_explicit;
242 sym->attr.ext_attr |= ifc->attr.ext_attr;
243 sym->attr.is_bind_c = ifc->attr.is_bind_c;
244 /* Copy char length. */
245 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
246 {
247 sym->ts.u.cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
248 if (sym->ts.u.cl->length && !sym->ts.u.cl->resolved
249 && !gfc_resolve_expr (sym->ts.u.cl->length))
250 return false;
251 }
252 }
253
254 return true;
255 }
256
257
258 /* Resolve types of formal argument lists. These have to be done early so that
259 the formal argument lists of module procedures can be copied to the
260 containing module before the individual procedures are resolved
261 individually. We also resolve argument lists of procedures in interface
262 blocks because they are self-contained scoping units.
263
264 Since a dummy argument cannot be a non-dummy procedure, the only
265 resort left for untyped names are the IMPLICIT types. */
266
267 void
268 gfc_resolve_formal_arglist (gfc_symbol *proc)
269 {
270 gfc_formal_arglist *f;
271 gfc_symbol *sym;
272 bool saved_specification_expr;
273 int i;
274
275 if (proc->result != NULL)
276 sym = proc->result;
277 else
278 sym = proc;
279
280 if (gfc_elemental (proc)
281 || sym->attr.pointer || sym->attr.allocatable
282 || (sym->as && sym->as->rank != 0))
283 {
284 proc->attr.always_explicit = 1;
285 sym->attr.always_explicit = 1;
286 }
287
288 formal_arg_flag = true;
289
290 for (f = proc->formal; f; f = f->next)
291 {
292 gfc_array_spec *as;
293
294 sym = f->sym;
295
296 if (sym == NULL)
297 {
298 /* Alternate return placeholder. */
299 if (gfc_elemental (proc))
300 gfc_error ("Alternate return specifier in elemental subroutine "
301 "%qs at %L is not allowed", proc->name,
302 &proc->declared_at);
303 if (proc->attr.function)
304 gfc_error ("Alternate return specifier in function "
305 "%qs at %L is not allowed", proc->name,
306 &proc->declared_at);
307 continue;
308 }
309 else if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
310 && !resolve_procedure_interface (sym))
311 return;
312
313 if (strcmp (proc->name, sym->name) == 0)
314 {
315 gfc_error ("Self-referential argument "
316 "%qs at %L is not allowed", sym->name,
317 &proc->declared_at);
318 return;
319 }
320
321 if (sym->attr.if_source != IFSRC_UNKNOWN)
322 gfc_resolve_formal_arglist (sym);
323
324 if (sym->attr.subroutine || sym->attr.external)
325 {
326 if (sym->attr.flavor == FL_UNKNOWN)
327 gfc_add_flavor (&sym->attr, FL_PROCEDURE, sym->name, &sym->declared_at);
328 }
329 else
330 {
331 if (sym->ts.type == BT_UNKNOWN && !proc->attr.intrinsic
332 && (!sym->attr.function || sym->result == sym))
333 gfc_set_default_type (sym, 1, sym->ns);
334 }
335
336 as = sym->ts.type == BT_CLASS && sym->attr.class_ok
337 ? CLASS_DATA (sym)->as : sym->as;
338
339 saved_specification_expr = specification_expr;
340 specification_expr = true;
341 gfc_resolve_array_spec (as, 0);
342 specification_expr = saved_specification_expr;
343
344 /* We can't tell if an array with dimension (:) is assumed or deferred
345 shape until we know if it has the pointer or allocatable attributes.
346 */
347 if (as && as->rank > 0 && as->type == AS_DEFERRED
348 && ((sym->ts.type != BT_CLASS
349 && !(sym->attr.pointer || sym->attr.allocatable))
350 || (sym->ts.type == BT_CLASS
351 && !(CLASS_DATA (sym)->attr.class_pointer
352 || CLASS_DATA (sym)->attr.allocatable)))
353 && sym->attr.flavor != FL_PROCEDURE)
354 {
355 as->type = AS_ASSUMED_SHAPE;
356 for (i = 0; i < as->rank; i++)
357 as->lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
358 }
359
360 if ((as && as->rank > 0 && as->type == AS_ASSUMED_SHAPE)
361 || (as && as->type == AS_ASSUMED_RANK)
362 || sym->attr.pointer || sym->attr.allocatable || sym->attr.target
363 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
364 && (CLASS_DATA (sym)->attr.class_pointer
365 || CLASS_DATA (sym)->attr.allocatable
366 || CLASS_DATA (sym)->attr.target))
367 || sym->attr.optional)
368 {
369 proc->attr.always_explicit = 1;
370 if (proc->result)
371 proc->result->attr.always_explicit = 1;
372 }
373
374 /* If the flavor is unknown at this point, it has to be a variable.
375 A procedure specification would have already set the type. */
376
377 if (sym->attr.flavor == FL_UNKNOWN)
378 gfc_add_flavor (&sym->attr, FL_VARIABLE, sym->name, &sym->declared_at);
379
380 if (gfc_pure (proc))
381 {
382 if (sym->attr.flavor == FL_PROCEDURE)
383 {
384 /* F08:C1279. */
385 if (!gfc_pure (sym))
386 {
387 gfc_error ("Dummy procedure %qs of PURE procedure at %L must "
388 "also be PURE", sym->name, &sym->declared_at);
389 continue;
390 }
391 }
392 else if (!sym->attr.pointer)
393 {
394 if (proc->attr.function && sym->attr.intent != INTENT_IN)
395 {
396 if (sym->attr.value)
397 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
398 " of pure function %qs at %L with VALUE "
399 "attribute but without INTENT(IN)",
400 sym->name, proc->name, &sym->declared_at);
401 else
402 gfc_error ("Argument %qs of pure function %qs at %L must "
403 "be INTENT(IN) or VALUE", sym->name, proc->name,
404 &sym->declared_at);
405 }
406
407 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN)
408 {
409 if (sym->attr.value)
410 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
411 " of pure subroutine %qs at %L with VALUE "
412 "attribute but without INTENT", sym->name,
413 proc->name, &sym->declared_at);
414 else
415 gfc_error ("Argument %qs of pure subroutine %qs at %L "
416 "must have its INTENT specified or have the "
417 "VALUE attribute", sym->name, proc->name,
418 &sym->declared_at);
419 }
420 }
421
422 /* F08:C1278a. */
423 if (sym->ts.type == BT_CLASS && sym->attr.intent == INTENT_OUT)
424 {
425 gfc_error ("INTENT(OUT) argument %qs of pure procedure %qs at %L"
426 " may not be polymorphic", sym->name, proc->name,
427 &sym->declared_at);
428 continue;
429 }
430 }
431
432 if (proc->attr.implicit_pure)
433 {
434 if (sym->attr.flavor == FL_PROCEDURE)
435 {
436 if (!gfc_pure (sym))
437 proc->attr.implicit_pure = 0;
438 }
439 else if (!sym->attr.pointer)
440 {
441 if (proc->attr.function && sym->attr.intent != INTENT_IN
442 && !sym->value)
443 proc->attr.implicit_pure = 0;
444
445 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN
446 && !sym->value)
447 proc->attr.implicit_pure = 0;
448 }
449 }
450
451 if (gfc_elemental (proc))
452 {
453 /* F08:C1289. */
454 if (sym->attr.codimension
455 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
456 && CLASS_DATA (sym)->attr.codimension))
457 {
458 gfc_error ("Coarray dummy argument %qs at %L to elemental "
459 "procedure", sym->name, &sym->declared_at);
460 continue;
461 }
462
463 if (sym->as || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
464 && CLASS_DATA (sym)->as))
465 {
466 gfc_error ("Argument %qs of elemental procedure at %L must "
467 "be scalar", sym->name, &sym->declared_at);
468 continue;
469 }
470
471 if (sym->attr.allocatable
472 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
473 && CLASS_DATA (sym)->attr.allocatable))
474 {
475 gfc_error ("Argument %qs of elemental procedure at %L cannot "
476 "have the ALLOCATABLE attribute", sym->name,
477 &sym->declared_at);
478 continue;
479 }
480
481 if (sym->attr.pointer
482 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
483 && CLASS_DATA (sym)->attr.class_pointer))
484 {
485 gfc_error ("Argument %qs of elemental procedure at %L cannot "
486 "have the POINTER attribute", sym->name,
487 &sym->declared_at);
488 continue;
489 }
490
491 if (sym->attr.flavor == FL_PROCEDURE)
492 {
493 gfc_error ("Dummy procedure %qs not allowed in elemental "
494 "procedure %qs at %L", sym->name, proc->name,
495 &sym->declared_at);
496 continue;
497 }
498
499 /* Fortran 2008 Corrigendum 1, C1290a. */
500 if (sym->attr.intent == INTENT_UNKNOWN && !sym->attr.value)
501 {
502 gfc_error ("Argument %qs of elemental procedure %qs at %L must "
503 "have its INTENT specified or have the VALUE "
504 "attribute", sym->name, proc->name,
505 &sym->declared_at);
506 continue;
507 }
508 }
509
510 /* Each dummy shall be specified to be scalar. */
511 if (proc->attr.proc == PROC_ST_FUNCTION)
512 {
513 if (sym->as != NULL)
514 {
515 /* F03:C1263 (R1238) The function-name and each dummy-arg-name
516 shall be specified, explicitly or implicitly, to be scalar. */
517 gfc_error ("Argument '%s' of statement function '%s' at %L "
518 "must be scalar", sym->name, proc->name,
519 &proc->declared_at);
520 continue;
521 }
522
523 if (sym->ts.type == BT_CHARACTER)
524 {
525 gfc_charlen *cl = sym->ts.u.cl;
526 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
527 {
528 gfc_error ("Character-valued argument %qs of statement "
529 "function at %L must have constant length",
530 sym->name, &sym->declared_at);
531 continue;
532 }
533 }
534 }
535 }
536 formal_arg_flag = false;
537 }
538
539
540 /* Work function called when searching for symbols that have argument lists
541 associated with them. */
542
543 static void
544 find_arglists (gfc_symbol *sym)
545 {
546 if (sym->attr.if_source == IFSRC_UNKNOWN || sym->ns != gfc_current_ns
547 || gfc_fl_struct (sym->attr.flavor) || sym->attr.intrinsic)
548 return;
549
550 gfc_resolve_formal_arglist (sym);
551 }
552
553
554 /* Given a namespace, resolve all formal argument lists within the namespace.
555 */
556
557 static void
558 resolve_formal_arglists (gfc_namespace *ns)
559 {
560 if (ns == NULL)
561 return;
562
563 gfc_traverse_ns (ns, find_arglists);
564 }
565
566
567 static void
568 resolve_contained_fntype (gfc_symbol *sym, gfc_namespace *ns)
569 {
570 bool t;
571
572 if (sym && sym->attr.flavor == FL_PROCEDURE
573 && sym->ns->parent
574 && sym->ns->parent->proc_name
575 && sym->ns->parent->proc_name->attr.flavor == FL_PROCEDURE
576 && !strcmp (sym->name, sym->ns->parent->proc_name->name))
577 gfc_error ("Contained procedure %qs at %L has the same name as its "
578 "encompassing procedure", sym->name, &sym->declared_at);
579
580 /* If this namespace is not a function or an entry master function,
581 ignore it. */
582 if (! sym || !(sym->attr.function || sym->attr.flavor == FL_VARIABLE)
583 || sym->attr.entry_master)
584 return;
585
586 if (!sym->result)
587 return;
588
589 /* Try to find out of what the return type is. */
590 if (sym->result->ts.type == BT_UNKNOWN && sym->result->ts.interface == NULL)
591 {
592 t = gfc_set_default_type (sym->result, 0, ns);
593
594 if (!t && !sym->result->attr.untyped)
595 {
596 if (sym->result == sym)
597 gfc_error ("Contained function %qs at %L has no IMPLICIT type",
598 sym->name, &sym->declared_at);
599 else if (!sym->result->attr.proc_pointer)
600 gfc_error ("Result %qs of contained function %qs at %L has "
601 "no IMPLICIT type", sym->result->name, sym->name,
602 &sym->result->declared_at);
603 sym->result->attr.untyped = 1;
604 }
605 }
606
607 /* Fortran 2008 Draft Standard, page 535, C418, on type-param-value
608 type, lists the only ways a character length value of * can be used:
609 dummy arguments of procedures, named constants, function results and
610 in allocate statements if the allocate_object is an assumed length dummy
611 in external functions. Internal function results and results of module
612 procedures are not on this list, ergo, not permitted. */
613
614 if (sym->result->ts.type == BT_CHARACTER)
615 {
616 gfc_charlen *cl = sym->result->ts.u.cl;
617 if ((!cl || !cl->length) && !sym->result->ts.deferred)
618 {
619 /* See if this is a module-procedure and adapt error message
620 accordingly. */
621 bool module_proc;
622 gcc_assert (ns->parent && ns->parent->proc_name);
623 module_proc = (ns->parent->proc_name->attr.flavor == FL_MODULE);
624
625 gfc_error (module_proc
626 ? G_("Character-valued module procedure %qs at %L"
627 " must not be assumed length")
628 : G_("Character-valued internal function %qs at %L"
629 " must not be assumed length"),
630 sym->name, &sym->declared_at);
631 }
632 }
633 }
634
635
636 /* Add NEW_ARGS to the formal argument list of PROC, taking care not to
637 introduce duplicates. */
638
639 static void
640 merge_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
641 {
642 gfc_formal_arglist *f, *new_arglist;
643 gfc_symbol *new_sym;
644
645 for (; new_args != NULL; new_args = new_args->next)
646 {
647 new_sym = new_args->sym;
648 /* See if this arg is already in the formal argument list. */
649 for (f = proc->formal; f; f = f->next)
650 {
651 if (new_sym == f->sym)
652 break;
653 }
654
655 if (f)
656 continue;
657
658 /* Add a new argument. Argument order is not important. */
659 new_arglist = gfc_get_formal_arglist ();
660 new_arglist->sym = new_sym;
661 new_arglist->next = proc->formal;
662 proc->formal = new_arglist;
663 }
664 }
665
666
667 /* Flag the arguments that are not present in all entries. */
668
669 static void
670 check_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
671 {
672 gfc_formal_arglist *f, *head;
673 head = new_args;
674
675 for (f = proc->formal; f; f = f->next)
676 {
677 if (f->sym == NULL)
678 continue;
679
680 for (new_args = head; new_args; new_args = new_args->next)
681 {
682 if (new_args->sym == f->sym)
683 break;
684 }
685
686 if (new_args)
687 continue;
688
689 f->sym->attr.not_always_present = 1;
690 }
691 }
692
693
694 /* Resolve alternate entry points. If a symbol has multiple entry points we
695 create a new master symbol for the main routine, and turn the existing
696 symbol into an entry point. */
697
698 static void
699 resolve_entries (gfc_namespace *ns)
700 {
701 gfc_namespace *old_ns;
702 gfc_code *c;
703 gfc_symbol *proc;
704 gfc_entry_list *el;
705 char name[GFC_MAX_SYMBOL_LEN + 1];
706 static int master_count = 0;
707
708 if (ns->proc_name == NULL)
709 return;
710
711 /* No need to do anything if this procedure doesn't have alternate entry
712 points. */
713 if (!ns->entries)
714 return;
715
716 /* We may already have resolved alternate entry points. */
717 if (ns->proc_name->attr.entry_master)
718 return;
719
720 /* If this isn't a procedure something has gone horribly wrong. */
721 gcc_assert (ns->proc_name->attr.flavor == FL_PROCEDURE);
722
723 /* Remember the current namespace. */
724 old_ns = gfc_current_ns;
725
726 gfc_current_ns = ns;
727
728 /* Add the main entry point to the list of entry points. */
729 el = gfc_get_entry_list ();
730 el->sym = ns->proc_name;
731 el->id = 0;
732 el->next = ns->entries;
733 ns->entries = el;
734 ns->proc_name->attr.entry = 1;
735
736 /* If it is a module function, it needs to be in the right namespace
737 so that gfc_get_fake_result_decl can gather up the results. The
738 need for this arose in get_proc_name, where these beasts were
739 left in their own namespace, to keep prior references linked to
740 the entry declaration.*/
741 if (ns->proc_name->attr.function
742 && ns->parent && ns->parent->proc_name->attr.flavor == FL_MODULE)
743 el->sym->ns = ns;
744
745 /* Do the same for entries where the master is not a module
746 procedure. These are retained in the module namespace because
747 of the module procedure declaration. */
748 for (el = el->next; el; el = el->next)
749 if (el->sym->ns->proc_name->attr.flavor == FL_MODULE
750 && el->sym->attr.mod_proc)
751 el->sym->ns = ns;
752 el = ns->entries;
753
754 /* Add an entry statement for it. */
755 c = gfc_get_code (EXEC_ENTRY);
756 c->ext.entry = el;
757 c->next = ns->code;
758 ns->code = c;
759
760 /* Create a new symbol for the master function. */
761 /* Give the internal function a unique name (within this file).
762 Also include the function name so the user has some hope of figuring
763 out what is going on. */
764 snprintf (name, GFC_MAX_SYMBOL_LEN, "master.%d.%s",
765 master_count++, ns->proc_name->name);
766 gfc_get_ha_symbol (name, &proc);
767 gcc_assert (proc != NULL);
768
769 gfc_add_procedure (&proc->attr, PROC_INTERNAL, proc->name, NULL);
770 if (ns->proc_name->attr.subroutine)
771 gfc_add_subroutine (&proc->attr, proc->name, NULL);
772 else
773 {
774 gfc_symbol *sym;
775 gfc_typespec *ts, *fts;
776 gfc_array_spec *as, *fas;
777 gfc_add_function (&proc->attr, proc->name, NULL);
778 proc->result = proc;
779 fas = ns->entries->sym->as;
780 fas = fas ? fas : ns->entries->sym->result->as;
781 fts = &ns->entries->sym->result->ts;
782 if (fts->type == BT_UNKNOWN)
783 fts = gfc_get_default_type (ns->entries->sym->result->name, NULL);
784 for (el = ns->entries->next; el; el = el->next)
785 {
786 ts = &el->sym->result->ts;
787 as = el->sym->as;
788 as = as ? as : el->sym->result->as;
789 if (ts->type == BT_UNKNOWN)
790 ts = gfc_get_default_type (el->sym->result->name, NULL);
791
792 if (! gfc_compare_types (ts, fts)
793 || (el->sym->result->attr.dimension
794 != ns->entries->sym->result->attr.dimension)
795 || (el->sym->result->attr.pointer
796 != ns->entries->sym->result->attr.pointer))
797 break;
798 else if (as && fas && ns->entries->sym->result != el->sym->result
799 && gfc_compare_array_spec (as, fas) == 0)
800 gfc_error ("Function %s at %L has entries with mismatched "
801 "array specifications", ns->entries->sym->name,
802 &ns->entries->sym->declared_at);
803 /* The characteristics need to match and thus both need to have
804 the same string length, i.e. both len=*, or both len=4.
805 Having both len=<variable> is also possible, but difficult to
806 check at compile time. */
807 else if (ts->type == BT_CHARACTER && ts->u.cl && fts->u.cl
808 && (((ts->u.cl->length && !fts->u.cl->length)
809 ||(!ts->u.cl->length && fts->u.cl->length))
810 || (ts->u.cl->length
811 && ts->u.cl->length->expr_type
812 != fts->u.cl->length->expr_type)
813 || (ts->u.cl->length
814 && ts->u.cl->length->expr_type == EXPR_CONSTANT
815 && mpz_cmp (ts->u.cl->length->value.integer,
816 fts->u.cl->length->value.integer) != 0)))
817 gfc_notify_std (GFC_STD_GNU, "Function %s at %L with "
818 "entries returning variables of different "
819 "string lengths", ns->entries->sym->name,
820 &ns->entries->sym->declared_at);
821 }
822
823 if (el == NULL)
824 {
825 sym = ns->entries->sym->result;
826 /* All result types the same. */
827 proc->ts = *fts;
828 if (sym->attr.dimension)
829 gfc_set_array_spec (proc, gfc_copy_array_spec (sym->as), NULL);
830 if (sym->attr.pointer)
831 gfc_add_pointer (&proc->attr, NULL);
832 }
833 else
834 {
835 /* Otherwise the result will be passed through a union by
836 reference. */
837 proc->attr.mixed_entry_master = 1;
838 for (el = ns->entries; el; el = el->next)
839 {
840 sym = el->sym->result;
841 if (sym->attr.dimension)
842 {
843 if (el == ns->entries)
844 gfc_error ("FUNCTION result %s cannot be an array in "
845 "FUNCTION %s at %L", sym->name,
846 ns->entries->sym->name, &sym->declared_at);
847 else
848 gfc_error ("ENTRY result %s cannot be an array in "
849 "FUNCTION %s at %L", sym->name,
850 ns->entries->sym->name, &sym->declared_at);
851 }
852 else if (sym->attr.pointer)
853 {
854 if (el == ns->entries)
855 gfc_error ("FUNCTION result %s cannot be a POINTER in "
856 "FUNCTION %s at %L", sym->name,
857 ns->entries->sym->name, &sym->declared_at);
858 else
859 gfc_error ("ENTRY result %s cannot be a POINTER in "
860 "FUNCTION %s at %L", sym->name,
861 ns->entries->sym->name, &sym->declared_at);
862 }
863 else
864 {
865 ts = &sym->ts;
866 if (ts->type == BT_UNKNOWN)
867 ts = gfc_get_default_type (sym->name, NULL);
868 switch (ts->type)
869 {
870 case BT_INTEGER:
871 if (ts->kind == gfc_default_integer_kind)
872 sym = NULL;
873 break;
874 case BT_REAL:
875 if (ts->kind == gfc_default_real_kind
876 || ts->kind == gfc_default_double_kind)
877 sym = NULL;
878 break;
879 case BT_COMPLEX:
880 if (ts->kind == gfc_default_complex_kind)
881 sym = NULL;
882 break;
883 case BT_LOGICAL:
884 if (ts->kind == gfc_default_logical_kind)
885 sym = NULL;
886 break;
887 case BT_UNKNOWN:
888 /* We will issue error elsewhere. */
889 sym = NULL;
890 break;
891 default:
892 break;
893 }
894 if (sym)
895 {
896 if (el == ns->entries)
897 gfc_error ("FUNCTION result %s cannot be of type %s "
898 "in FUNCTION %s at %L", sym->name,
899 gfc_typename (ts), ns->entries->sym->name,
900 &sym->declared_at);
901 else
902 gfc_error ("ENTRY result %s cannot be of type %s "
903 "in FUNCTION %s at %L", sym->name,
904 gfc_typename (ts), ns->entries->sym->name,
905 &sym->declared_at);
906 }
907 }
908 }
909 }
910 }
911 proc->attr.access = ACCESS_PRIVATE;
912 proc->attr.entry_master = 1;
913
914 /* Merge all the entry point arguments. */
915 for (el = ns->entries; el; el = el->next)
916 merge_argument_lists (proc, el->sym->formal);
917
918 /* Check the master formal arguments for any that are not
919 present in all entry points. */
920 for (el = ns->entries; el; el = el->next)
921 check_argument_lists (proc, el->sym->formal);
922
923 /* Use the master function for the function body. */
924 ns->proc_name = proc;
925
926 /* Finalize the new symbols. */
927 gfc_commit_symbols ();
928
929 /* Restore the original namespace. */
930 gfc_current_ns = old_ns;
931 }
932
933
934 /* Resolve common variables. */
935 static void
936 resolve_common_vars (gfc_common_head *common_block, bool named_common)
937 {
938 gfc_symbol *csym = common_block->head;
939
940 for (; csym; csym = csym->common_next)
941 {
942 /* gfc_add_in_common may have been called before, but the reported errors
943 have been ignored to continue parsing.
944 We do the checks again here. */
945 if (!csym->attr.use_assoc)
946 {
947 gfc_add_in_common (&csym->attr, csym->name, &common_block->where);
948 gfc_notify_std (GFC_STD_F2018_OBS, "COMMON block at %L",
949 &common_block->where);
950 }
951
952 if (csym->value || csym->attr.data)
953 {
954 if (!csym->ns->is_block_data)
955 gfc_notify_std (GFC_STD_GNU, "Variable %qs at %L is in COMMON "
956 "but only in BLOCK DATA initialization is "
957 "allowed", csym->name, &csym->declared_at);
958 else if (!named_common)
959 gfc_notify_std (GFC_STD_GNU, "Initialized variable %qs at %L is "
960 "in a blank COMMON but initialization is only "
961 "allowed in named common blocks", csym->name,
962 &csym->declared_at);
963 }
964
965 if (UNLIMITED_POLY (csym))
966 gfc_error_now ("%qs in cannot appear in COMMON at %L "
967 "[F2008:C5100]", csym->name, &csym->declared_at);
968
969 if (csym->ts.type != BT_DERIVED)
970 continue;
971
972 if (!(csym->ts.u.derived->attr.sequence
973 || csym->ts.u.derived->attr.is_bind_c))
974 gfc_error_now ("Derived type variable %qs in COMMON at %L "
975 "has neither the SEQUENCE nor the BIND(C) "
976 "attribute", csym->name, &csym->declared_at);
977 if (csym->ts.u.derived->attr.alloc_comp)
978 gfc_error_now ("Derived type variable %qs in COMMON at %L "
979 "has an ultimate component that is "
980 "allocatable", csym->name, &csym->declared_at);
981 if (gfc_has_default_initializer (csym->ts.u.derived))
982 gfc_error_now ("Derived type variable %qs in COMMON at %L "
983 "may not have default initializer", csym->name,
984 &csym->declared_at);
985
986 if (csym->attr.flavor == FL_UNKNOWN && !csym->attr.proc_pointer)
987 gfc_add_flavor (&csym->attr, FL_VARIABLE, csym->name, &csym->declared_at);
988 }
989 }
990
991 /* Resolve common blocks. */
992 static void
993 resolve_common_blocks (gfc_symtree *common_root)
994 {
995 gfc_symbol *sym;
996 gfc_gsymbol * gsym;
997
998 if (common_root == NULL)
999 return;
1000
1001 if (common_root->left)
1002 resolve_common_blocks (common_root->left);
1003 if (common_root->right)
1004 resolve_common_blocks (common_root->right);
1005
1006 resolve_common_vars (common_root->n.common, true);
1007
1008 /* The common name is a global name - in Fortran 2003 also if it has a
1009 C binding name, since Fortran 2008 only the C binding name is a global
1010 identifier. */
1011 if (!common_root->n.common->binding_label
1012 || gfc_notification_std (GFC_STD_F2008))
1013 {
1014 gsym = gfc_find_gsymbol (gfc_gsym_root,
1015 common_root->n.common->name);
1016
1017 if (gsym && gfc_notification_std (GFC_STD_F2008)
1018 && gsym->type == GSYM_COMMON
1019 && ((common_root->n.common->binding_label
1020 && (!gsym->binding_label
1021 || strcmp (common_root->n.common->binding_label,
1022 gsym->binding_label) != 0))
1023 || (!common_root->n.common->binding_label
1024 && gsym->binding_label)))
1025 {
1026 gfc_error ("In Fortran 2003 COMMON %qs block at %L is a global "
1027 "identifier and must thus have the same binding name "
1028 "as the same-named COMMON block at %L: %s vs %s",
1029 common_root->n.common->name, &common_root->n.common->where,
1030 &gsym->where,
1031 common_root->n.common->binding_label
1032 ? common_root->n.common->binding_label : "(blank)",
1033 gsym->binding_label ? gsym->binding_label : "(blank)");
1034 return;
1035 }
1036
1037 if (gsym && gsym->type != GSYM_COMMON
1038 && !common_root->n.common->binding_label)
1039 {
1040 gfc_error ("COMMON block %qs at %L uses the same global identifier "
1041 "as entity at %L",
1042 common_root->n.common->name, &common_root->n.common->where,
1043 &gsym->where);
1044 return;
1045 }
1046 if (gsym && gsym->type != GSYM_COMMON)
1047 {
1048 gfc_error ("Fortran 2008: COMMON block %qs with binding label at "
1049 "%L sharing the identifier with global non-COMMON-block "
1050 "entity at %L", common_root->n.common->name,
1051 &common_root->n.common->where, &gsym->where);
1052 return;
1053 }
1054 if (!gsym)
1055 {
1056 gsym = gfc_get_gsymbol (common_root->n.common->name, false);
1057 gsym->type = GSYM_COMMON;
1058 gsym->where = common_root->n.common->where;
1059 gsym->defined = 1;
1060 }
1061 gsym->used = 1;
1062 }
1063
1064 if (common_root->n.common->binding_label)
1065 {
1066 gsym = gfc_find_gsymbol (gfc_gsym_root,
1067 common_root->n.common->binding_label);
1068 if (gsym && gsym->type != GSYM_COMMON)
1069 {
1070 gfc_error ("COMMON block at %L with binding label %qs uses the same "
1071 "global identifier as entity at %L",
1072 &common_root->n.common->where,
1073 common_root->n.common->binding_label, &gsym->where);
1074 return;
1075 }
1076 if (!gsym)
1077 {
1078 gsym = gfc_get_gsymbol (common_root->n.common->binding_label, true);
1079 gsym->type = GSYM_COMMON;
1080 gsym->where = common_root->n.common->where;
1081 gsym->defined = 1;
1082 }
1083 gsym->used = 1;
1084 }
1085
1086 gfc_find_symbol (common_root->name, gfc_current_ns, 0, &sym);
1087 if (sym == NULL)
1088 return;
1089
1090 if (sym->attr.flavor == FL_PARAMETER)
1091 gfc_error ("COMMON block %qs at %L is used as PARAMETER at %L",
1092 sym->name, &common_root->n.common->where, &sym->declared_at);
1093
1094 if (sym->attr.external)
1095 gfc_error ("COMMON block %qs at %L cannot have the EXTERNAL attribute",
1096 sym->name, &common_root->n.common->where);
1097
1098 if (sym->attr.intrinsic)
1099 gfc_error ("COMMON block %qs at %L is also an intrinsic procedure",
1100 sym->name, &common_root->n.common->where);
1101 else if (sym->attr.result
1102 || gfc_is_function_return_value (sym, gfc_current_ns))
1103 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1104 "that is also a function result", sym->name,
1105 &common_root->n.common->where);
1106 else if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_INTERNAL
1107 && sym->attr.proc != PROC_ST_FUNCTION)
1108 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1109 "that is also a global procedure", sym->name,
1110 &common_root->n.common->where);
1111 }
1112
1113
1114 /* Resolve contained function types. Because contained functions can call one
1115 another, they have to be worked out before any of the contained procedures
1116 can be resolved.
1117
1118 The good news is that if a function doesn't already have a type, the only
1119 way it can get one is through an IMPLICIT type or a RESULT variable, because
1120 by definition contained functions are contained namespace they're contained
1121 in, not in a sibling or parent namespace. */
1122
1123 static void
1124 resolve_contained_functions (gfc_namespace *ns)
1125 {
1126 gfc_namespace *child;
1127 gfc_entry_list *el;
1128
1129 resolve_formal_arglists (ns);
1130
1131 for (child = ns->contained; child; child = child->sibling)
1132 {
1133 /* Resolve alternate entry points first. */
1134 resolve_entries (child);
1135
1136 /* Then check function return types. */
1137 resolve_contained_fntype (child->proc_name, child);
1138 for (el = child->entries; el; el = el->next)
1139 resolve_contained_fntype (el->sym, child);
1140 }
1141 }
1142
1143
1144
1145 /* A Parameterized Derived Type constructor must contain values for
1146 the PDT KIND parameters or they must have a default initializer.
1147 Go through the constructor picking out the KIND expressions,
1148 storing them in 'param_list' and then call gfc_get_pdt_instance
1149 to obtain the PDT instance. */
1150
1151 static gfc_actual_arglist *param_list, *param_tail, *param;
1152
1153 static bool
1154 get_pdt_spec_expr (gfc_component *c, gfc_expr *expr)
1155 {
1156 param = gfc_get_actual_arglist ();
1157 if (!param_list)
1158 param_list = param_tail = param;
1159 else
1160 {
1161 param_tail->next = param;
1162 param_tail = param_tail->next;
1163 }
1164
1165 param_tail->name = c->name;
1166 if (expr)
1167 param_tail->expr = gfc_copy_expr (expr);
1168 else if (c->initializer)
1169 param_tail->expr = gfc_copy_expr (c->initializer);
1170 else
1171 {
1172 param_tail->spec_type = SPEC_ASSUMED;
1173 if (c->attr.pdt_kind)
1174 {
1175 gfc_error ("The KIND parameter %qs in the PDT constructor "
1176 "at %C has no value", param->name);
1177 return false;
1178 }
1179 }
1180
1181 return true;
1182 }
1183
1184 static bool
1185 get_pdt_constructor (gfc_expr *expr, gfc_constructor **constr,
1186 gfc_symbol *derived)
1187 {
1188 gfc_constructor *cons = NULL;
1189 gfc_component *comp;
1190 bool t = true;
1191
1192 if (expr && expr->expr_type == EXPR_STRUCTURE)
1193 cons = gfc_constructor_first (expr->value.constructor);
1194 else if (constr)
1195 cons = *constr;
1196 gcc_assert (cons);
1197
1198 comp = derived->components;
1199
1200 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1201 {
1202 if (cons->expr
1203 && cons->expr->expr_type == EXPR_STRUCTURE
1204 && comp->ts.type == BT_DERIVED)
1205 {
1206 t = get_pdt_constructor (cons->expr, NULL, comp->ts.u.derived);
1207 if (!t)
1208 return t;
1209 }
1210 else if (comp->ts.type == BT_DERIVED)
1211 {
1212 t = get_pdt_constructor (NULL, &cons, comp->ts.u.derived);
1213 if (!t)
1214 return t;
1215 }
1216 else if ((comp->attr.pdt_kind || comp->attr.pdt_len)
1217 && derived->attr.pdt_template)
1218 {
1219 t = get_pdt_spec_expr (comp, cons->expr);
1220 if (!t)
1221 return t;
1222 }
1223 }
1224 return t;
1225 }
1226
1227
1228 static bool resolve_fl_derived0 (gfc_symbol *sym);
1229 static bool resolve_fl_struct (gfc_symbol *sym);
1230
1231
1232 /* Resolve all of the elements of a structure constructor and make sure that
1233 the types are correct. The 'init' flag indicates that the given
1234 constructor is an initializer. */
1235
1236 static bool
1237 resolve_structure_cons (gfc_expr *expr, int init)
1238 {
1239 gfc_constructor *cons;
1240 gfc_component *comp;
1241 bool t;
1242 symbol_attribute a;
1243
1244 t = true;
1245
1246 if (expr->ts.type == BT_DERIVED || expr->ts.type == BT_UNION)
1247 {
1248 if (expr->ts.u.derived->attr.flavor == FL_DERIVED)
1249 resolve_fl_derived0 (expr->ts.u.derived);
1250 else
1251 resolve_fl_struct (expr->ts.u.derived);
1252
1253 /* If this is a Parameterized Derived Type template, find the
1254 instance corresponding to the PDT kind parameters. */
1255 if (expr->ts.u.derived->attr.pdt_template)
1256 {
1257 param_list = NULL;
1258 t = get_pdt_constructor (expr, NULL, expr->ts.u.derived);
1259 if (!t)
1260 return t;
1261 gfc_get_pdt_instance (param_list, &expr->ts.u.derived, NULL);
1262
1263 expr->param_list = gfc_copy_actual_arglist (param_list);
1264
1265 if (param_list)
1266 gfc_free_actual_arglist (param_list);
1267
1268 if (!expr->ts.u.derived->attr.pdt_type)
1269 return false;
1270 }
1271 }
1272
1273 cons = gfc_constructor_first (expr->value.constructor);
1274
1275 /* A constructor may have references if it is the result of substituting a
1276 parameter variable. In this case we just pull out the component we
1277 want. */
1278 if (expr->ref)
1279 comp = expr->ref->u.c.sym->components;
1280 else
1281 comp = expr->ts.u.derived->components;
1282
1283 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1284 {
1285 int rank;
1286
1287 if (!cons->expr)
1288 continue;
1289
1290 /* Unions use an EXPR_NULL contrived expression to tell the translation
1291 phase to generate an initializer of the appropriate length.
1292 Ignore it here. */
1293 if (cons->expr->ts.type == BT_UNION && cons->expr->expr_type == EXPR_NULL)
1294 continue;
1295
1296 if (!gfc_resolve_expr (cons->expr))
1297 {
1298 t = false;
1299 continue;
1300 }
1301
1302 rank = comp->as ? comp->as->rank : 0;
1303 if (comp->ts.type == BT_CLASS
1304 && !comp->ts.u.derived->attr.unlimited_polymorphic
1305 && CLASS_DATA (comp)->as)
1306 rank = CLASS_DATA (comp)->as->rank;
1307
1308 if (cons->expr->expr_type != EXPR_NULL && rank != cons->expr->rank
1309 && (comp->attr.allocatable || cons->expr->rank))
1310 {
1311 gfc_error ("The rank of the element in the structure "
1312 "constructor at %L does not match that of the "
1313 "component (%d/%d)", &cons->expr->where,
1314 cons->expr->rank, rank);
1315 t = false;
1316 }
1317
1318 /* If we don't have the right type, try to convert it. */
1319
1320 if (!comp->attr.proc_pointer &&
1321 !gfc_compare_types (&cons->expr->ts, &comp->ts))
1322 {
1323 if (strcmp (comp->name, "_extends") == 0)
1324 {
1325 /* Can afford to be brutal with the _extends initializer.
1326 The derived type can get lost because it is PRIVATE
1327 but it is not usage constrained by the standard. */
1328 cons->expr->ts = comp->ts;
1329 }
1330 else if (comp->attr.pointer && cons->expr->ts.type != BT_UNKNOWN)
1331 {
1332 gfc_error ("The element in the structure constructor at %L, "
1333 "for pointer component %qs, is %s but should be %s",
1334 &cons->expr->where, comp->name,
1335 gfc_basic_typename (cons->expr->ts.type),
1336 gfc_basic_typename (comp->ts.type));
1337 t = false;
1338 }
1339 else
1340 {
1341 bool t2 = gfc_convert_type (cons->expr, &comp->ts, 1);
1342 if (t)
1343 t = t2;
1344 }
1345 }
1346
1347 /* For strings, the length of the constructor should be the same as
1348 the one of the structure, ensure this if the lengths are known at
1349 compile time and when we are dealing with PARAMETER or structure
1350 constructors. */
1351 if (cons->expr->ts.type == BT_CHARACTER && comp->ts.u.cl
1352 && comp->ts.u.cl->length
1353 && comp->ts.u.cl->length->expr_type == EXPR_CONSTANT
1354 && cons->expr->ts.u.cl && cons->expr->ts.u.cl->length
1355 && cons->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
1356 && cons->expr->rank != 0
1357 && mpz_cmp (cons->expr->ts.u.cl->length->value.integer,
1358 comp->ts.u.cl->length->value.integer) != 0)
1359 {
1360 if (cons->expr->expr_type == EXPR_VARIABLE
1361 && cons->expr->symtree->n.sym->attr.flavor == FL_PARAMETER)
1362 {
1363 /* Wrap the parameter in an array constructor (EXPR_ARRAY)
1364 to make use of the gfc_resolve_character_array_constructor
1365 machinery. The expression is later simplified away to
1366 an array of string literals. */
1367 gfc_expr *para = cons->expr;
1368 cons->expr = gfc_get_expr ();
1369 cons->expr->ts = para->ts;
1370 cons->expr->where = para->where;
1371 cons->expr->expr_type = EXPR_ARRAY;
1372 cons->expr->rank = para->rank;
1373 cons->expr->shape = gfc_copy_shape (para->shape, para->rank);
1374 gfc_constructor_append_expr (&cons->expr->value.constructor,
1375 para, &cons->expr->where);
1376 }
1377
1378 if (cons->expr->expr_type == EXPR_ARRAY)
1379 {
1380 /* Rely on the cleanup of the namespace to deal correctly with
1381 the old charlen. (There was a block here that attempted to
1382 remove the charlen but broke the chain in so doing.) */
1383 cons->expr->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1384 cons->expr->ts.u.cl->length_from_typespec = true;
1385 cons->expr->ts.u.cl->length = gfc_copy_expr (comp->ts.u.cl->length);
1386 gfc_resolve_character_array_constructor (cons->expr);
1387 }
1388 }
1389
1390 if (cons->expr->expr_type == EXPR_NULL
1391 && !(comp->attr.pointer || comp->attr.allocatable
1392 || comp->attr.proc_pointer || comp->ts.f90_type == BT_VOID
1393 || (comp->ts.type == BT_CLASS
1394 && (CLASS_DATA (comp)->attr.class_pointer
1395 || CLASS_DATA (comp)->attr.allocatable))))
1396 {
1397 t = false;
1398 gfc_error ("The NULL in the structure constructor at %L is "
1399 "being applied to component %qs, which is neither "
1400 "a POINTER nor ALLOCATABLE", &cons->expr->where,
1401 comp->name);
1402 }
1403
1404 if (comp->attr.proc_pointer && comp->ts.interface)
1405 {
1406 /* Check procedure pointer interface. */
1407 gfc_symbol *s2 = NULL;
1408 gfc_component *c2;
1409 const char *name;
1410 char err[200];
1411
1412 c2 = gfc_get_proc_ptr_comp (cons->expr);
1413 if (c2)
1414 {
1415 s2 = c2->ts.interface;
1416 name = c2->name;
1417 }
1418 else if (cons->expr->expr_type == EXPR_FUNCTION)
1419 {
1420 s2 = cons->expr->symtree->n.sym->result;
1421 name = cons->expr->symtree->n.sym->result->name;
1422 }
1423 else if (cons->expr->expr_type != EXPR_NULL)
1424 {
1425 s2 = cons->expr->symtree->n.sym;
1426 name = cons->expr->symtree->n.sym->name;
1427 }
1428
1429 if (s2 && !gfc_compare_interfaces (comp->ts.interface, s2, name, 0, 1,
1430 err, sizeof (err), NULL, NULL))
1431 {
1432 gfc_error_opt (0, "Interface mismatch for procedure-pointer "
1433 "component %qs in structure constructor at %L:"
1434 " %s", comp->name, &cons->expr->where, err);
1435 return false;
1436 }
1437 }
1438
1439 if (!comp->attr.pointer || comp->attr.proc_pointer
1440 || cons->expr->expr_type == EXPR_NULL)
1441 continue;
1442
1443 a = gfc_expr_attr (cons->expr);
1444
1445 if (!a.pointer && !a.target)
1446 {
1447 t = false;
1448 gfc_error ("The element in the structure constructor at %L, "
1449 "for pointer component %qs should be a POINTER or "
1450 "a TARGET", &cons->expr->where, comp->name);
1451 }
1452
1453 if (init)
1454 {
1455 /* F08:C461. Additional checks for pointer initialization. */
1456 if (a.allocatable)
1457 {
1458 t = false;
1459 gfc_error ("Pointer initialization target at %L "
1460 "must not be ALLOCATABLE", &cons->expr->where);
1461 }
1462 if (!a.save)
1463 {
1464 t = false;
1465 gfc_error ("Pointer initialization target at %L "
1466 "must have the SAVE attribute", &cons->expr->where);
1467 }
1468 }
1469
1470 /* F2003, C1272 (3). */
1471 bool impure = cons->expr->expr_type == EXPR_VARIABLE
1472 && (gfc_impure_variable (cons->expr->symtree->n.sym)
1473 || gfc_is_coindexed (cons->expr));
1474 if (impure && gfc_pure (NULL))
1475 {
1476 t = false;
1477 gfc_error ("Invalid expression in the structure constructor for "
1478 "pointer component %qs at %L in PURE procedure",
1479 comp->name, &cons->expr->where);
1480 }
1481
1482 if (impure)
1483 gfc_unset_implicit_pure (NULL);
1484 }
1485
1486 return t;
1487 }
1488
1489
1490 /****************** Expression name resolution ******************/
1491
1492 /* Returns 0 if a symbol was not declared with a type or
1493 attribute declaration statement, nonzero otherwise. */
1494
1495 static int
1496 was_declared (gfc_symbol *sym)
1497 {
1498 symbol_attribute a;
1499
1500 a = sym->attr;
1501
1502 if (!a.implicit_type && sym->ts.type != BT_UNKNOWN)
1503 return 1;
1504
1505 if (a.allocatable || a.dimension || a.dummy || a.external || a.intrinsic
1506 || a.optional || a.pointer || a.save || a.target || a.volatile_
1507 || a.value || a.access != ACCESS_UNKNOWN || a.intent != INTENT_UNKNOWN
1508 || a.asynchronous || a.codimension)
1509 return 1;
1510
1511 return 0;
1512 }
1513
1514
1515 /* Determine if a symbol is generic or not. */
1516
1517 static int
1518 generic_sym (gfc_symbol *sym)
1519 {
1520 gfc_symbol *s;
1521
1522 if (sym->attr.generic ||
1523 (sym->attr.intrinsic && gfc_generic_intrinsic (sym->name)))
1524 return 1;
1525
1526 if (was_declared (sym) || sym->ns->parent == NULL)
1527 return 0;
1528
1529 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1530
1531 if (s != NULL)
1532 {
1533 if (s == sym)
1534 return 0;
1535 else
1536 return generic_sym (s);
1537 }
1538
1539 return 0;
1540 }
1541
1542
1543 /* Determine if a symbol is specific or not. */
1544
1545 static int
1546 specific_sym (gfc_symbol *sym)
1547 {
1548 gfc_symbol *s;
1549
1550 if (sym->attr.if_source == IFSRC_IFBODY
1551 || sym->attr.proc == PROC_MODULE
1552 || sym->attr.proc == PROC_INTERNAL
1553 || sym->attr.proc == PROC_ST_FUNCTION
1554 || (sym->attr.intrinsic && gfc_specific_intrinsic (sym->name))
1555 || sym->attr.external)
1556 return 1;
1557
1558 if (was_declared (sym) || sym->ns->parent == NULL)
1559 return 0;
1560
1561 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1562
1563 return (s == NULL) ? 0 : specific_sym (s);
1564 }
1565
1566
1567 /* Figure out if the procedure is specific, generic or unknown. */
1568
1569 enum proc_type
1570 { PTYPE_GENERIC = 1, PTYPE_SPECIFIC, PTYPE_UNKNOWN };
1571
1572 static proc_type
1573 procedure_kind (gfc_symbol *sym)
1574 {
1575 if (generic_sym (sym))
1576 return PTYPE_GENERIC;
1577
1578 if (specific_sym (sym))
1579 return PTYPE_SPECIFIC;
1580
1581 return PTYPE_UNKNOWN;
1582 }
1583
1584 /* Check references to assumed size arrays. The flag need_full_assumed_size
1585 is nonzero when matching actual arguments. */
1586
1587 static int need_full_assumed_size = 0;
1588
1589 static bool
1590 check_assumed_size_reference (gfc_symbol *sym, gfc_expr *e)
1591 {
1592 if (need_full_assumed_size || !(sym->as && sym->as->type == AS_ASSUMED_SIZE))
1593 return false;
1594
1595 /* FIXME: The comparison "e->ref->u.ar.type == AR_FULL" is wrong.
1596 What should it be? */
1597 if (e->ref && (e->ref->u.ar.end[e->ref->u.ar.as->rank - 1] == NULL)
1598 && (e->ref->u.ar.as->type == AS_ASSUMED_SIZE)
1599 && (e->ref->u.ar.type == AR_FULL))
1600 {
1601 gfc_error ("The upper bound in the last dimension must "
1602 "appear in the reference to the assumed size "
1603 "array %qs at %L", sym->name, &e->where);
1604 return true;
1605 }
1606 return false;
1607 }
1608
1609
1610 /* Look for bad assumed size array references in argument expressions
1611 of elemental and array valued intrinsic procedures. Since this is
1612 called from procedure resolution functions, it only recurses at
1613 operators. */
1614
1615 static bool
1616 resolve_assumed_size_actual (gfc_expr *e)
1617 {
1618 if (e == NULL)
1619 return false;
1620
1621 switch (e->expr_type)
1622 {
1623 case EXPR_VARIABLE:
1624 if (e->symtree && check_assumed_size_reference (e->symtree->n.sym, e))
1625 return true;
1626 break;
1627
1628 case EXPR_OP:
1629 if (resolve_assumed_size_actual (e->value.op.op1)
1630 || resolve_assumed_size_actual (e->value.op.op2))
1631 return true;
1632 break;
1633
1634 default:
1635 break;
1636 }
1637 return false;
1638 }
1639
1640
1641 /* Check a generic procedure, passed as an actual argument, to see if
1642 there is a matching specific name. If none, it is an error, and if
1643 more than one, the reference is ambiguous. */
1644 static int
1645 count_specific_procs (gfc_expr *e)
1646 {
1647 int n;
1648 gfc_interface *p;
1649 gfc_symbol *sym;
1650
1651 n = 0;
1652 sym = e->symtree->n.sym;
1653
1654 for (p = sym->generic; p; p = p->next)
1655 if (strcmp (sym->name, p->sym->name) == 0)
1656 {
1657 e->symtree = gfc_find_symtree (p->sym->ns->sym_root,
1658 sym->name);
1659 n++;
1660 }
1661
1662 if (n > 1)
1663 gfc_error ("%qs at %L is ambiguous", e->symtree->n.sym->name,
1664 &e->where);
1665
1666 if (n == 0)
1667 gfc_error ("GENERIC procedure %qs is not allowed as an actual "
1668 "argument at %L", sym->name, &e->where);
1669
1670 return n;
1671 }
1672
1673
1674 /* See if a call to sym could possibly be a not allowed RECURSION because of
1675 a missing RECURSIVE declaration. This means that either sym is the current
1676 context itself, or sym is the parent of a contained procedure calling its
1677 non-RECURSIVE containing procedure.
1678 This also works if sym is an ENTRY. */
1679
1680 static bool
1681 is_illegal_recursion (gfc_symbol* sym, gfc_namespace* context)
1682 {
1683 gfc_symbol* proc_sym;
1684 gfc_symbol* context_proc;
1685 gfc_namespace* real_context;
1686
1687 if (sym->attr.flavor == FL_PROGRAM
1688 || gfc_fl_struct (sym->attr.flavor))
1689 return false;
1690
1691 /* If we've got an ENTRY, find real procedure. */
1692 if (sym->attr.entry && sym->ns->entries)
1693 proc_sym = sym->ns->entries->sym;
1694 else
1695 proc_sym = sym;
1696
1697 /* If sym is RECURSIVE, all is well of course. */
1698 if (proc_sym->attr.recursive || flag_recursive)
1699 return false;
1700
1701 /* Find the context procedure's "real" symbol if it has entries.
1702 We look for a procedure symbol, so recurse on the parents if we don't
1703 find one (like in case of a BLOCK construct). */
1704 for (real_context = context; ; real_context = real_context->parent)
1705 {
1706 /* We should find something, eventually! */
1707 gcc_assert (real_context);
1708
1709 context_proc = (real_context->entries ? real_context->entries->sym
1710 : real_context->proc_name);
1711
1712 /* In some special cases, there may not be a proc_name, like for this
1713 invalid code:
1714 real(bad_kind()) function foo () ...
1715 when checking the call to bad_kind ().
1716 In these cases, we simply return here and assume that the
1717 call is ok. */
1718 if (!context_proc)
1719 return false;
1720
1721 if (context_proc->attr.flavor != FL_LABEL)
1722 break;
1723 }
1724
1725 /* A call from sym's body to itself is recursion, of course. */
1726 if (context_proc == proc_sym)
1727 return true;
1728
1729 /* The same is true if context is a contained procedure and sym the
1730 containing one. */
1731 if (context_proc->attr.contained)
1732 {
1733 gfc_symbol* parent_proc;
1734
1735 gcc_assert (context->parent);
1736 parent_proc = (context->parent->entries ? context->parent->entries->sym
1737 : context->parent->proc_name);
1738
1739 if (parent_proc == proc_sym)
1740 return true;
1741 }
1742
1743 return false;
1744 }
1745
1746
1747 /* Resolve an intrinsic procedure: Set its function/subroutine attribute,
1748 its typespec and formal argument list. */
1749
1750 bool
1751 gfc_resolve_intrinsic (gfc_symbol *sym, locus *loc)
1752 {
1753 gfc_intrinsic_sym* isym = NULL;
1754 const char* symstd;
1755
1756 if (sym->formal)
1757 return true;
1758
1759 /* Already resolved. */
1760 if (sym->from_intmod && sym->ts.type != BT_UNKNOWN)
1761 return true;
1762
1763 /* We already know this one is an intrinsic, so we don't call
1764 gfc_is_intrinsic for full checking but rather use gfc_find_function and
1765 gfc_find_subroutine directly to check whether it is a function or
1766 subroutine. */
1767
1768 if (sym->intmod_sym_id && sym->attr.subroutine)
1769 {
1770 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1771 isym = gfc_intrinsic_subroutine_by_id (id);
1772 }
1773 else if (sym->intmod_sym_id)
1774 {
1775 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1776 isym = gfc_intrinsic_function_by_id (id);
1777 }
1778 else if (!sym->attr.subroutine)
1779 isym = gfc_find_function (sym->name);
1780
1781 if (isym && !sym->attr.subroutine)
1782 {
1783 if (sym->ts.type != BT_UNKNOWN && warn_surprising
1784 && !sym->attr.implicit_type)
1785 gfc_warning (OPT_Wsurprising,
1786 "Type specified for intrinsic function %qs at %L is"
1787 " ignored", sym->name, &sym->declared_at);
1788
1789 if (!sym->attr.function &&
1790 !gfc_add_function(&sym->attr, sym->name, loc))
1791 return false;
1792
1793 sym->ts = isym->ts;
1794 }
1795 else if (isym || (isym = gfc_find_subroutine (sym->name)))
1796 {
1797 if (sym->ts.type != BT_UNKNOWN && !sym->attr.implicit_type)
1798 {
1799 gfc_error ("Intrinsic subroutine %qs at %L shall not have a type"
1800 " specifier", sym->name, &sym->declared_at);
1801 return false;
1802 }
1803
1804 if (!sym->attr.subroutine &&
1805 !gfc_add_subroutine(&sym->attr, sym->name, loc))
1806 return false;
1807 }
1808 else
1809 {
1810 gfc_error ("%qs declared INTRINSIC at %L does not exist", sym->name,
1811 &sym->declared_at);
1812 return false;
1813 }
1814
1815 gfc_copy_formal_args_intr (sym, isym, NULL);
1816
1817 sym->attr.pure = isym->pure;
1818 sym->attr.elemental = isym->elemental;
1819
1820 /* Check it is actually available in the standard settings. */
1821 if (!gfc_check_intrinsic_standard (isym, &symstd, false, sym->declared_at))
1822 {
1823 gfc_error ("The intrinsic %qs declared INTRINSIC at %L is not "
1824 "available in the current standard settings but %s. Use "
1825 "an appropriate %<-std=*%> option or enable "
1826 "%<-fall-intrinsics%> in order to use it.",
1827 sym->name, &sym->declared_at, symstd);
1828 return false;
1829 }
1830
1831 return true;
1832 }
1833
1834
1835 /* Resolve a procedure expression, like passing it to a called procedure or as
1836 RHS for a procedure pointer assignment. */
1837
1838 static bool
1839 resolve_procedure_expression (gfc_expr* expr)
1840 {
1841 gfc_symbol* sym;
1842
1843 if (expr->expr_type != EXPR_VARIABLE)
1844 return true;
1845 gcc_assert (expr->symtree);
1846
1847 sym = expr->symtree->n.sym;
1848
1849 if (sym->attr.intrinsic)
1850 gfc_resolve_intrinsic (sym, &expr->where);
1851
1852 if (sym->attr.flavor != FL_PROCEDURE
1853 || (sym->attr.function && sym->result == sym))
1854 return true;
1855
1856 /* A non-RECURSIVE procedure that is used as procedure expression within its
1857 own body is in danger of being called recursively. */
1858 if (is_illegal_recursion (sym, gfc_current_ns))
1859 gfc_warning (0, "Non-RECURSIVE procedure %qs at %L is possibly calling"
1860 " itself recursively. Declare it RECURSIVE or use"
1861 " %<-frecursive%>", sym->name, &expr->where);
1862
1863 return true;
1864 }
1865
1866
1867 /* Check that name is not a derived type. */
1868
1869 static bool
1870 is_dt_name (const char *name)
1871 {
1872 gfc_symbol *dt_list, *dt_first;
1873
1874 dt_list = dt_first = gfc_derived_types;
1875 for (; dt_list; dt_list = dt_list->dt_next)
1876 {
1877 if (strcmp(dt_list->name, name) == 0)
1878 return true;
1879 if (dt_first == dt_list->dt_next)
1880 break;
1881 }
1882 return false;
1883 }
1884
1885
1886 /* Resolve an actual argument list. Most of the time, this is just
1887 resolving the expressions in the list.
1888 The exception is that we sometimes have to decide whether arguments
1889 that look like procedure arguments are really simple variable
1890 references. */
1891
1892 static bool
1893 resolve_actual_arglist (gfc_actual_arglist *arg, procedure_type ptype,
1894 bool no_formal_args)
1895 {
1896 gfc_symbol *sym;
1897 gfc_symtree *parent_st;
1898 gfc_expr *e;
1899 gfc_component *comp;
1900 int save_need_full_assumed_size;
1901 bool return_value = false;
1902 bool actual_arg_sav = actual_arg, first_actual_arg_sav = first_actual_arg;
1903
1904 actual_arg = true;
1905 first_actual_arg = true;
1906
1907 for (; arg; arg = arg->next)
1908 {
1909 e = arg->expr;
1910 if (e == NULL)
1911 {
1912 /* Check the label is a valid branching target. */
1913 if (arg->label)
1914 {
1915 if (arg->label->defined == ST_LABEL_UNKNOWN)
1916 {
1917 gfc_error ("Label %d referenced at %L is never defined",
1918 arg->label->value, &arg->label->where);
1919 goto cleanup;
1920 }
1921 }
1922 first_actual_arg = false;
1923 continue;
1924 }
1925
1926 if (e->expr_type == EXPR_VARIABLE
1927 && e->symtree->n.sym->attr.generic
1928 && no_formal_args
1929 && count_specific_procs (e) != 1)
1930 goto cleanup;
1931
1932 if (e->ts.type != BT_PROCEDURE)
1933 {
1934 save_need_full_assumed_size = need_full_assumed_size;
1935 if (e->expr_type != EXPR_VARIABLE)
1936 need_full_assumed_size = 0;
1937 if (!gfc_resolve_expr (e))
1938 goto cleanup;
1939 need_full_assumed_size = save_need_full_assumed_size;
1940 goto argument_list;
1941 }
1942
1943 /* See if the expression node should really be a variable reference. */
1944
1945 sym = e->symtree->n.sym;
1946
1947 if (sym->attr.flavor == FL_PROCEDURE && is_dt_name (sym->name))
1948 {
1949 gfc_error ("Derived type %qs is used as an actual "
1950 "argument at %L", sym->name, &e->where);
1951 goto cleanup;
1952 }
1953
1954 if (sym->attr.flavor == FL_PROCEDURE
1955 || sym->attr.intrinsic
1956 || sym->attr.external)
1957 {
1958 int actual_ok;
1959
1960 /* If a procedure is not already determined to be something else
1961 check if it is intrinsic. */
1962 if (gfc_is_intrinsic (sym, sym->attr.subroutine, e->where))
1963 sym->attr.intrinsic = 1;
1964
1965 if (sym->attr.proc == PROC_ST_FUNCTION)
1966 {
1967 gfc_error ("Statement function %qs at %L is not allowed as an "
1968 "actual argument", sym->name, &e->where);
1969 }
1970
1971 actual_ok = gfc_intrinsic_actual_ok (sym->name,
1972 sym->attr.subroutine);
1973 if (sym->attr.intrinsic && actual_ok == 0)
1974 {
1975 gfc_error ("Intrinsic %qs at %L is not allowed as an "
1976 "actual argument", sym->name, &e->where);
1977 }
1978
1979 if (sym->attr.contained && !sym->attr.use_assoc
1980 && sym->ns->proc_name->attr.flavor != FL_MODULE)
1981 {
1982 if (!gfc_notify_std (GFC_STD_F2008, "Internal procedure %qs is"
1983 " used as actual argument at %L",
1984 sym->name, &e->where))
1985 goto cleanup;
1986 }
1987
1988 if (sym->attr.elemental && !sym->attr.intrinsic)
1989 {
1990 gfc_error ("ELEMENTAL non-INTRINSIC procedure %qs is not "
1991 "allowed as an actual argument at %L", sym->name,
1992 &e->where);
1993 }
1994
1995 /* Check if a generic interface has a specific procedure
1996 with the same name before emitting an error. */
1997 if (sym->attr.generic && count_specific_procs (e) != 1)
1998 goto cleanup;
1999
2000 /* Just in case a specific was found for the expression. */
2001 sym = e->symtree->n.sym;
2002
2003 /* If the symbol is the function that names the current (or
2004 parent) scope, then we really have a variable reference. */
2005
2006 if (gfc_is_function_return_value (sym, sym->ns))
2007 goto got_variable;
2008
2009 /* If all else fails, see if we have a specific intrinsic. */
2010 if (sym->ts.type == BT_UNKNOWN && sym->attr.intrinsic)
2011 {
2012 gfc_intrinsic_sym *isym;
2013
2014 isym = gfc_find_function (sym->name);
2015 if (isym == NULL || !isym->specific)
2016 {
2017 gfc_error ("Unable to find a specific INTRINSIC procedure "
2018 "for the reference %qs at %L", sym->name,
2019 &e->where);
2020 goto cleanup;
2021 }
2022 sym->ts = isym->ts;
2023 sym->attr.intrinsic = 1;
2024 sym->attr.function = 1;
2025 }
2026
2027 if (!gfc_resolve_expr (e))
2028 goto cleanup;
2029 goto argument_list;
2030 }
2031
2032 /* See if the name is a module procedure in a parent unit. */
2033
2034 if (was_declared (sym) || sym->ns->parent == NULL)
2035 goto got_variable;
2036
2037 if (gfc_find_sym_tree (sym->name, sym->ns->parent, 1, &parent_st))
2038 {
2039 gfc_error ("Symbol %qs at %L is ambiguous", sym->name, &e->where);
2040 goto cleanup;
2041 }
2042
2043 if (parent_st == NULL)
2044 goto got_variable;
2045
2046 sym = parent_st->n.sym;
2047 e->symtree = parent_st; /* Point to the right thing. */
2048
2049 if (sym->attr.flavor == FL_PROCEDURE
2050 || sym->attr.intrinsic
2051 || sym->attr.external)
2052 {
2053 if (!gfc_resolve_expr (e))
2054 goto cleanup;
2055 goto argument_list;
2056 }
2057
2058 got_variable:
2059 e->expr_type = EXPR_VARIABLE;
2060 e->ts = sym->ts;
2061 if ((sym->as != NULL && sym->ts.type != BT_CLASS)
2062 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
2063 && CLASS_DATA (sym)->as))
2064 {
2065 e->rank = sym->ts.type == BT_CLASS
2066 ? CLASS_DATA (sym)->as->rank : sym->as->rank;
2067 e->ref = gfc_get_ref ();
2068 e->ref->type = REF_ARRAY;
2069 e->ref->u.ar.type = AR_FULL;
2070 e->ref->u.ar.as = sym->ts.type == BT_CLASS
2071 ? CLASS_DATA (sym)->as : sym->as;
2072 }
2073
2074 /* Expressions are assigned a default ts.type of BT_PROCEDURE in
2075 primary.c (match_actual_arg). If above code determines that it
2076 is a variable instead, it needs to be resolved as it was not
2077 done at the beginning of this function. */
2078 save_need_full_assumed_size = need_full_assumed_size;
2079 if (e->expr_type != EXPR_VARIABLE)
2080 need_full_assumed_size = 0;
2081 if (!gfc_resolve_expr (e))
2082 goto cleanup;
2083 need_full_assumed_size = save_need_full_assumed_size;
2084
2085 argument_list:
2086 /* Check argument list functions %VAL, %LOC and %REF. There is
2087 nothing to do for %REF. */
2088 if (arg->name && arg->name[0] == '%')
2089 {
2090 if (strcmp ("%VAL", arg->name) == 0)
2091 {
2092 if (e->ts.type == BT_CHARACTER || e->ts.type == BT_DERIVED)
2093 {
2094 gfc_error ("By-value argument at %L is not of numeric "
2095 "type", &e->where);
2096 goto cleanup;
2097 }
2098
2099 if (e->rank)
2100 {
2101 gfc_error ("By-value argument at %L cannot be an array or "
2102 "an array section", &e->where);
2103 goto cleanup;
2104 }
2105
2106 /* Intrinsics are still PROC_UNKNOWN here. However,
2107 since same file external procedures are not resolvable
2108 in gfortran, it is a good deal easier to leave them to
2109 intrinsic.c. */
2110 if (ptype != PROC_UNKNOWN
2111 && ptype != PROC_DUMMY
2112 && ptype != PROC_EXTERNAL
2113 && ptype != PROC_MODULE)
2114 {
2115 gfc_error ("By-value argument at %L is not allowed "
2116 "in this context", &e->where);
2117 goto cleanup;
2118 }
2119 }
2120
2121 /* Statement functions have already been excluded above. */
2122 else if (strcmp ("%LOC", arg->name) == 0
2123 && e->ts.type == BT_PROCEDURE)
2124 {
2125 if (e->symtree->n.sym->attr.proc == PROC_INTERNAL)
2126 {
2127 gfc_error ("Passing internal procedure at %L by location "
2128 "not allowed", &e->where);
2129 goto cleanup;
2130 }
2131 }
2132 }
2133
2134 comp = gfc_get_proc_ptr_comp(e);
2135 if (e->expr_type == EXPR_VARIABLE
2136 && comp && comp->attr.elemental)
2137 {
2138 gfc_error ("ELEMENTAL procedure pointer component %qs is not "
2139 "allowed as an actual argument at %L", comp->name,
2140 &e->where);
2141 }
2142
2143 /* Fortran 2008, C1237. */
2144 if (e->expr_type == EXPR_VARIABLE && gfc_is_coindexed (e)
2145 && gfc_has_ultimate_pointer (e))
2146 {
2147 gfc_error ("Coindexed actual argument at %L with ultimate pointer "
2148 "component", &e->where);
2149 goto cleanup;
2150 }
2151
2152 first_actual_arg = false;
2153 }
2154
2155 return_value = true;
2156
2157 cleanup:
2158 actual_arg = actual_arg_sav;
2159 first_actual_arg = first_actual_arg_sav;
2160
2161 return return_value;
2162 }
2163
2164
2165 /* Do the checks of the actual argument list that are specific to elemental
2166 procedures. If called with c == NULL, we have a function, otherwise if
2167 expr == NULL, we have a subroutine. */
2168
2169 static bool
2170 resolve_elemental_actual (gfc_expr *expr, gfc_code *c)
2171 {
2172 gfc_actual_arglist *arg0;
2173 gfc_actual_arglist *arg;
2174 gfc_symbol *esym = NULL;
2175 gfc_intrinsic_sym *isym = NULL;
2176 gfc_expr *e = NULL;
2177 gfc_intrinsic_arg *iformal = NULL;
2178 gfc_formal_arglist *eformal = NULL;
2179 bool formal_optional = false;
2180 bool set_by_optional = false;
2181 int i;
2182 int rank = 0;
2183
2184 /* Is this an elemental procedure? */
2185 if (expr && expr->value.function.actual != NULL)
2186 {
2187 if (expr->value.function.esym != NULL
2188 && expr->value.function.esym->attr.elemental)
2189 {
2190 arg0 = expr->value.function.actual;
2191 esym = expr->value.function.esym;
2192 }
2193 else if (expr->value.function.isym != NULL
2194 && expr->value.function.isym->elemental)
2195 {
2196 arg0 = expr->value.function.actual;
2197 isym = expr->value.function.isym;
2198 }
2199 else
2200 return true;
2201 }
2202 else if (c && c->ext.actual != NULL)
2203 {
2204 arg0 = c->ext.actual;
2205
2206 if (c->resolved_sym)
2207 esym = c->resolved_sym;
2208 else
2209 esym = c->symtree->n.sym;
2210 gcc_assert (esym);
2211
2212 if (!esym->attr.elemental)
2213 return true;
2214 }
2215 else
2216 return true;
2217
2218 /* The rank of an elemental is the rank of its array argument(s). */
2219 for (arg = arg0; arg; arg = arg->next)
2220 {
2221 if (arg->expr != NULL && arg->expr->rank != 0)
2222 {
2223 rank = arg->expr->rank;
2224 if (arg->expr->expr_type == EXPR_VARIABLE
2225 && arg->expr->symtree->n.sym->attr.optional)
2226 set_by_optional = true;
2227
2228 /* Function specific; set the result rank and shape. */
2229 if (expr)
2230 {
2231 expr->rank = rank;
2232 if (!expr->shape && arg->expr->shape)
2233 {
2234 expr->shape = gfc_get_shape (rank);
2235 for (i = 0; i < rank; i++)
2236 mpz_init_set (expr->shape[i], arg->expr->shape[i]);
2237 }
2238 }
2239 break;
2240 }
2241 }
2242
2243 /* If it is an array, it shall not be supplied as an actual argument
2244 to an elemental procedure unless an array of the same rank is supplied
2245 as an actual argument corresponding to a nonoptional dummy argument of
2246 that elemental procedure(12.4.1.5). */
2247 formal_optional = false;
2248 if (isym)
2249 iformal = isym->formal;
2250 else
2251 eformal = esym->formal;
2252
2253 for (arg = arg0; arg; arg = arg->next)
2254 {
2255 if (eformal)
2256 {
2257 if (eformal->sym && eformal->sym->attr.optional)
2258 formal_optional = true;
2259 eformal = eformal->next;
2260 }
2261 else if (isym && iformal)
2262 {
2263 if (iformal->optional)
2264 formal_optional = true;
2265 iformal = iformal->next;
2266 }
2267 else if (isym)
2268 formal_optional = true;
2269
2270 if (pedantic && arg->expr != NULL
2271 && arg->expr->expr_type == EXPR_VARIABLE
2272 && arg->expr->symtree->n.sym->attr.optional
2273 && formal_optional
2274 && arg->expr->rank
2275 && (set_by_optional || arg->expr->rank != rank)
2276 && !(isym && isym->id == GFC_ISYM_CONVERSION))
2277 {
2278 gfc_warning (OPT_Wpedantic,
2279 "%qs at %L is an array and OPTIONAL; IF IT IS "
2280 "MISSING, it cannot be the actual argument of an "
2281 "ELEMENTAL procedure unless there is a non-optional "
2282 "argument with the same rank (12.4.1.5)",
2283 arg->expr->symtree->n.sym->name, &arg->expr->where);
2284 }
2285 }
2286
2287 for (arg = arg0; arg; arg = arg->next)
2288 {
2289 if (arg->expr == NULL || arg->expr->rank == 0)
2290 continue;
2291
2292 /* Being elemental, the last upper bound of an assumed size array
2293 argument must be present. */
2294 if (resolve_assumed_size_actual (arg->expr))
2295 return false;
2296
2297 /* Elemental procedure's array actual arguments must conform. */
2298 if (e != NULL)
2299 {
2300 if (!gfc_check_conformance (arg->expr, e, "elemental procedure"))
2301 return false;
2302 }
2303 else
2304 e = arg->expr;
2305 }
2306
2307 /* INTENT(OUT) is only allowed for subroutines; if any actual argument
2308 is an array, the intent inout/out variable needs to be also an array. */
2309 if (rank > 0 && esym && expr == NULL)
2310 for (eformal = esym->formal, arg = arg0; arg && eformal;
2311 arg = arg->next, eformal = eformal->next)
2312 if ((eformal->sym->attr.intent == INTENT_OUT
2313 || eformal->sym->attr.intent == INTENT_INOUT)
2314 && arg->expr && arg->expr->rank == 0)
2315 {
2316 gfc_error ("Actual argument at %L for INTENT(%s) dummy %qs of "
2317 "ELEMENTAL subroutine %qs is a scalar, but another "
2318 "actual argument is an array", &arg->expr->where,
2319 (eformal->sym->attr.intent == INTENT_OUT) ? "OUT"
2320 : "INOUT", eformal->sym->name, esym->name);
2321 return false;
2322 }
2323 return true;
2324 }
2325
2326
2327 /* This function does the checking of references to global procedures
2328 as defined in sections 18.1 and 14.1, respectively, of the Fortran
2329 77 and 95 standards. It checks for a gsymbol for the name, making
2330 one if it does not already exist. If it already exists, then the
2331 reference being resolved must correspond to the type of gsymbol.
2332 Otherwise, the new symbol is equipped with the attributes of the
2333 reference. The corresponding code that is called in creating
2334 global entities is parse.c.
2335
2336 In addition, for all but -std=legacy, the gsymbols are used to
2337 check the interfaces of external procedures from the same file.
2338 The namespace of the gsymbol is resolved and then, once this is
2339 done the interface is checked. */
2340
2341
2342 static bool
2343 not_in_recursive (gfc_symbol *sym, gfc_namespace *gsym_ns)
2344 {
2345 if (!gsym_ns->proc_name->attr.recursive)
2346 return true;
2347
2348 if (sym->ns == gsym_ns)
2349 return false;
2350
2351 if (sym->ns->parent && sym->ns->parent == gsym_ns)
2352 return false;
2353
2354 return true;
2355 }
2356
2357 static bool
2358 not_entry_self_reference (gfc_symbol *sym, gfc_namespace *gsym_ns)
2359 {
2360 if (gsym_ns->entries)
2361 {
2362 gfc_entry_list *entry = gsym_ns->entries;
2363
2364 for (; entry; entry = entry->next)
2365 {
2366 if (strcmp (sym->name, entry->sym->name) == 0)
2367 {
2368 if (strcmp (gsym_ns->proc_name->name,
2369 sym->ns->proc_name->name) == 0)
2370 return false;
2371
2372 if (sym->ns->parent
2373 && strcmp (gsym_ns->proc_name->name,
2374 sym->ns->parent->proc_name->name) == 0)
2375 return false;
2376 }
2377 }
2378 }
2379 return true;
2380 }
2381
2382
2383 /* Check for the requirement of an explicit interface. F08:12.4.2.2. */
2384
2385 bool
2386 gfc_explicit_interface_required (gfc_symbol *sym, char *errmsg, int err_len)
2387 {
2388 gfc_formal_arglist *arg = gfc_sym_get_dummy_args (sym);
2389
2390 for ( ; arg; arg = arg->next)
2391 {
2392 if (!arg->sym)
2393 continue;
2394
2395 if (arg->sym->attr.allocatable) /* (2a) */
2396 {
2397 strncpy (errmsg, _("allocatable argument"), err_len);
2398 return true;
2399 }
2400 else if (arg->sym->attr.asynchronous)
2401 {
2402 strncpy (errmsg, _("asynchronous argument"), err_len);
2403 return true;
2404 }
2405 else if (arg->sym->attr.optional)
2406 {
2407 strncpy (errmsg, _("optional argument"), err_len);
2408 return true;
2409 }
2410 else if (arg->sym->attr.pointer)
2411 {
2412 strncpy (errmsg, _("pointer argument"), err_len);
2413 return true;
2414 }
2415 else if (arg->sym->attr.target)
2416 {
2417 strncpy (errmsg, _("target argument"), err_len);
2418 return true;
2419 }
2420 else if (arg->sym->attr.value)
2421 {
2422 strncpy (errmsg, _("value argument"), err_len);
2423 return true;
2424 }
2425 else if (arg->sym->attr.volatile_)
2426 {
2427 strncpy (errmsg, _("volatile argument"), err_len);
2428 return true;
2429 }
2430 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_SHAPE) /* (2b) */
2431 {
2432 strncpy (errmsg, _("assumed-shape argument"), err_len);
2433 return true;
2434 }
2435 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_RANK) /* TS 29113, 6.2. */
2436 {
2437 strncpy (errmsg, _("assumed-rank argument"), err_len);
2438 return true;
2439 }
2440 else if (arg->sym->attr.codimension) /* (2c) */
2441 {
2442 strncpy (errmsg, _("coarray argument"), err_len);
2443 return true;
2444 }
2445 else if (false) /* (2d) TODO: parametrized derived type */
2446 {
2447 strncpy (errmsg, _("parametrized derived type argument"), err_len);
2448 return true;
2449 }
2450 else if (arg->sym->ts.type == BT_CLASS) /* (2e) */
2451 {
2452 strncpy (errmsg, _("polymorphic argument"), err_len);
2453 return true;
2454 }
2455 else if (arg->sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2456 {
2457 strncpy (errmsg, _("NO_ARG_CHECK attribute"), err_len);
2458 return true;
2459 }
2460 else if (arg->sym->ts.type == BT_ASSUMED)
2461 {
2462 /* As assumed-type is unlimited polymorphic (cf. above).
2463 See also TS 29113, Note 6.1. */
2464 strncpy (errmsg, _("assumed-type argument"), err_len);
2465 return true;
2466 }
2467 }
2468
2469 if (sym->attr.function)
2470 {
2471 gfc_symbol *res = sym->result ? sym->result : sym;
2472
2473 if (res->attr.dimension) /* (3a) */
2474 {
2475 strncpy (errmsg, _("array result"), err_len);
2476 return true;
2477 }
2478 else if (res->attr.pointer || res->attr.allocatable) /* (3b) */
2479 {
2480 strncpy (errmsg, _("pointer or allocatable result"), err_len);
2481 return true;
2482 }
2483 else if (res->ts.type == BT_CHARACTER && res->ts.u.cl
2484 && res->ts.u.cl->length
2485 && res->ts.u.cl->length->expr_type != EXPR_CONSTANT) /* (3c) */
2486 {
2487 strncpy (errmsg, _("result with non-constant character length"), err_len);
2488 return true;
2489 }
2490 }
2491
2492 if (sym->attr.elemental && !sym->attr.intrinsic) /* (4) */
2493 {
2494 strncpy (errmsg, _("elemental procedure"), err_len);
2495 return true;
2496 }
2497 else if (sym->attr.is_bind_c) /* (5) */
2498 {
2499 strncpy (errmsg, _("bind(c) procedure"), err_len);
2500 return true;
2501 }
2502
2503 return false;
2504 }
2505
2506
2507 static void
2508 resolve_global_procedure (gfc_symbol *sym, locus *where, int sub)
2509 {
2510 gfc_gsymbol * gsym;
2511 gfc_namespace *ns;
2512 enum gfc_symbol_type type;
2513 char reason[200];
2514
2515 type = sub ? GSYM_SUBROUTINE : GSYM_FUNCTION;
2516
2517 gsym = gfc_get_gsymbol (sym->binding_label ? sym->binding_label : sym->name,
2518 sym->binding_label != NULL);
2519
2520 if ((gsym->type != GSYM_UNKNOWN && gsym->type != type))
2521 gfc_global_used (gsym, where);
2522
2523 if ((sym->attr.if_source == IFSRC_UNKNOWN
2524 || sym->attr.if_source == IFSRC_IFBODY)
2525 && gsym->type != GSYM_UNKNOWN
2526 && !gsym->binding_label
2527 && gsym->ns
2528 && gsym->ns->proc_name
2529 && not_in_recursive (sym, gsym->ns)
2530 && not_entry_self_reference (sym, gsym->ns))
2531 {
2532 gfc_symbol *def_sym;
2533 def_sym = gsym->ns->proc_name;
2534
2535 if (gsym->ns->resolved != -1)
2536 {
2537
2538 /* Resolve the gsymbol namespace if needed. */
2539 if (!gsym->ns->resolved)
2540 {
2541 gfc_symbol *old_dt_list;
2542
2543 /* Stash away derived types so that the backend_decls
2544 do not get mixed up. */
2545 old_dt_list = gfc_derived_types;
2546 gfc_derived_types = NULL;
2547
2548 gfc_resolve (gsym->ns);
2549
2550 /* Store the new derived types with the global namespace. */
2551 if (gfc_derived_types)
2552 gsym->ns->derived_types = gfc_derived_types;
2553
2554 /* Restore the derived types of this namespace. */
2555 gfc_derived_types = old_dt_list;
2556 }
2557
2558 /* Make sure that translation for the gsymbol occurs before
2559 the procedure currently being resolved. */
2560 ns = gfc_global_ns_list;
2561 for (; ns && ns != gsym->ns; ns = ns->sibling)
2562 {
2563 if (ns->sibling == gsym->ns)
2564 {
2565 ns->sibling = gsym->ns->sibling;
2566 gsym->ns->sibling = gfc_global_ns_list;
2567 gfc_global_ns_list = gsym->ns;
2568 break;
2569 }
2570 }
2571
2572 /* This can happen if a binding name has been specified. */
2573 if (gsym->binding_label && gsym->sym_name != def_sym->name)
2574 gfc_find_symbol (gsym->sym_name, gsym->ns, 0, &def_sym);
2575
2576 if (def_sym->attr.entry_master || def_sym->attr.entry)
2577 {
2578 gfc_entry_list *entry;
2579 for (entry = gsym->ns->entries; entry; entry = entry->next)
2580 if (strcmp (entry->sym->name, sym->name) == 0)
2581 {
2582 def_sym = entry->sym;
2583 break;
2584 }
2585 }
2586 }
2587
2588 if (sym->attr.function && !gfc_compare_types (&sym->ts, &def_sym->ts))
2589 {
2590 gfc_error ("Return type mismatch of function %qs at %L (%s/%s)",
2591 sym->name, &sym->declared_at, gfc_typename (&sym->ts),
2592 gfc_typename (&def_sym->ts));
2593 goto done;
2594 }
2595
2596 if (sym->attr.if_source == IFSRC_UNKNOWN
2597 && gfc_explicit_interface_required (def_sym, reason, sizeof(reason)))
2598 {
2599 gfc_error ("Explicit interface required for %qs at %L: %s",
2600 sym->name, &sym->declared_at, reason);
2601 goto done;
2602 }
2603
2604 if (!pedantic && (gfc_option.allow_std & GFC_STD_GNU))
2605 /* Turn erros into warnings with -std=gnu and -std=legacy. */
2606 gfc_errors_to_warnings (true);
2607
2608 if (!gfc_compare_interfaces (sym, def_sym, sym->name, 0, 1,
2609 reason, sizeof(reason), NULL, NULL))
2610 {
2611 gfc_error_opt (0, "Interface mismatch in global procedure %qs at %L:"
2612 " %s", sym->name, &sym->declared_at, reason);
2613 goto done;
2614 }
2615 }
2616
2617 done:
2618 gfc_errors_to_warnings (false);
2619
2620 if (gsym->type == GSYM_UNKNOWN)
2621 {
2622 gsym->type = type;
2623 gsym->where = *where;
2624 }
2625
2626 gsym->used = 1;
2627 }
2628
2629
2630 /************* Function resolution *************/
2631
2632 /* Resolve a function call known to be generic.
2633 Section 14.1.2.4.1. */
2634
2635 static match
2636 resolve_generic_f0 (gfc_expr *expr, gfc_symbol *sym)
2637 {
2638 gfc_symbol *s;
2639
2640 if (sym->attr.generic)
2641 {
2642 s = gfc_search_interface (sym->generic, 0, &expr->value.function.actual);
2643 if (s != NULL)
2644 {
2645 expr->value.function.name = s->name;
2646 expr->value.function.esym = s;
2647
2648 if (s->ts.type != BT_UNKNOWN)
2649 expr->ts = s->ts;
2650 else if (s->result != NULL && s->result->ts.type != BT_UNKNOWN)
2651 expr->ts = s->result->ts;
2652
2653 if (s->as != NULL)
2654 expr->rank = s->as->rank;
2655 else if (s->result != NULL && s->result->as != NULL)
2656 expr->rank = s->result->as->rank;
2657
2658 gfc_set_sym_referenced (expr->value.function.esym);
2659
2660 return MATCH_YES;
2661 }
2662
2663 /* TODO: Need to search for elemental references in generic
2664 interface. */
2665 }
2666
2667 if (sym->attr.intrinsic)
2668 return gfc_intrinsic_func_interface (expr, 0);
2669
2670 return MATCH_NO;
2671 }
2672
2673
2674 static bool
2675 resolve_generic_f (gfc_expr *expr)
2676 {
2677 gfc_symbol *sym;
2678 match m;
2679 gfc_interface *intr = NULL;
2680
2681 sym = expr->symtree->n.sym;
2682
2683 for (;;)
2684 {
2685 m = resolve_generic_f0 (expr, sym);
2686 if (m == MATCH_YES)
2687 return true;
2688 else if (m == MATCH_ERROR)
2689 return false;
2690
2691 generic:
2692 if (!intr)
2693 for (intr = sym->generic; intr; intr = intr->next)
2694 if (gfc_fl_struct (intr->sym->attr.flavor))
2695 break;
2696
2697 if (sym->ns->parent == NULL)
2698 break;
2699 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2700
2701 if (sym == NULL)
2702 break;
2703 if (!generic_sym (sym))
2704 goto generic;
2705 }
2706
2707 /* Last ditch attempt. See if the reference is to an intrinsic
2708 that possesses a matching interface. 14.1.2.4 */
2709 if (sym && !intr && !gfc_is_intrinsic (sym, 0, expr->where))
2710 {
2711 if (gfc_init_expr_flag)
2712 gfc_error ("Function %qs in initialization expression at %L "
2713 "must be an intrinsic function",
2714 expr->symtree->n.sym->name, &expr->where);
2715 else
2716 gfc_error ("There is no specific function for the generic %qs "
2717 "at %L", expr->symtree->n.sym->name, &expr->where);
2718 return false;
2719 }
2720
2721 if (intr)
2722 {
2723 if (!gfc_convert_to_structure_constructor (expr, intr->sym, NULL,
2724 NULL, false))
2725 return false;
2726 if (!gfc_use_derived (expr->ts.u.derived))
2727 return false;
2728 return resolve_structure_cons (expr, 0);
2729 }
2730
2731 m = gfc_intrinsic_func_interface (expr, 0);
2732 if (m == MATCH_YES)
2733 return true;
2734
2735 if (m == MATCH_NO)
2736 gfc_error ("Generic function %qs at %L is not consistent with a "
2737 "specific intrinsic interface", expr->symtree->n.sym->name,
2738 &expr->where);
2739
2740 return false;
2741 }
2742
2743
2744 /* Resolve a function call known to be specific. */
2745
2746 static match
2747 resolve_specific_f0 (gfc_symbol *sym, gfc_expr *expr)
2748 {
2749 match m;
2750
2751 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
2752 {
2753 if (sym->attr.dummy)
2754 {
2755 sym->attr.proc = PROC_DUMMY;
2756 goto found;
2757 }
2758
2759 sym->attr.proc = PROC_EXTERNAL;
2760 goto found;
2761 }
2762
2763 if (sym->attr.proc == PROC_MODULE
2764 || sym->attr.proc == PROC_ST_FUNCTION
2765 || sym->attr.proc == PROC_INTERNAL)
2766 goto found;
2767
2768 if (sym->attr.intrinsic)
2769 {
2770 m = gfc_intrinsic_func_interface (expr, 1);
2771 if (m == MATCH_YES)
2772 return MATCH_YES;
2773 if (m == MATCH_NO)
2774 gfc_error ("Function %qs at %L is INTRINSIC but is not compatible "
2775 "with an intrinsic", sym->name, &expr->where);
2776
2777 return MATCH_ERROR;
2778 }
2779
2780 return MATCH_NO;
2781
2782 found:
2783 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2784
2785 if (sym->result)
2786 expr->ts = sym->result->ts;
2787 else
2788 expr->ts = sym->ts;
2789 expr->value.function.name = sym->name;
2790 expr->value.function.esym = sym;
2791 /* Prevent crash when sym->ts.u.derived->components is not set due to previous
2792 error(s). */
2793 if (sym->ts.type == BT_CLASS && !CLASS_DATA (sym))
2794 return MATCH_ERROR;
2795 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
2796 expr->rank = CLASS_DATA (sym)->as->rank;
2797 else if (sym->as != NULL)
2798 expr->rank = sym->as->rank;
2799
2800 return MATCH_YES;
2801 }
2802
2803
2804 static bool
2805 resolve_specific_f (gfc_expr *expr)
2806 {
2807 gfc_symbol *sym;
2808 match m;
2809
2810 sym = expr->symtree->n.sym;
2811
2812 for (;;)
2813 {
2814 m = resolve_specific_f0 (sym, expr);
2815 if (m == MATCH_YES)
2816 return true;
2817 if (m == MATCH_ERROR)
2818 return false;
2819
2820 if (sym->ns->parent == NULL)
2821 break;
2822
2823 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2824
2825 if (sym == NULL)
2826 break;
2827 }
2828
2829 gfc_error ("Unable to resolve the specific function %qs at %L",
2830 expr->symtree->n.sym->name, &expr->where);
2831
2832 return true;
2833 }
2834
2835 /* Recursively append candidate SYM to CANDIDATES. Store the number of
2836 candidates in CANDIDATES_LEN. */
2837
2838 static void
2839 lookup_function_fuzzy_find_candidates (gfc_symtree *sym,
2840 char **&candidates,
2841 size_t &candidates_len)
2842 {
2843 gfc_symtree *p;
2844
2845 if (sym == NULL)
2846 return;
2847 if ((sym->n.sym->ts.type != BT_UNKNOWN || sym->n.sym->attr.external)
2848 && sym->n.sym->attr.flavor == FL_PROCEDURE)
2849 vec_push (candidates, candidates_len, sym->name);
2850
2851 p = sym->left;
2852 if (p)
2853 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2854
2855 p = sym->right;
2856 if (p)
2857 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2858 }
2859
2860
2861 /* Lookup function FN fuzzily, taking names in SYMROOT into account. */
2862
2863 const char*
2864 gfc_lookup_function_fuzzy (const char *fn, gfc_symtree *symroot)
2865 {
2866 char **candidates = NULL;
2867 size_t candidates_len = 0;
2868 lookup_function_fuzzy_find_candidates (symroot, candidates, candidates_len);
2869 return gfc_closest_fuzzy_match (fn, candidates);
2870 }
2871
2872
2873 /* Resolve a procedure call not known to be generic nor specific. */
2874
2875 static bool
2876 resolve_unknown_f (gfc_expr *expr)
2877 {
2878 gfc_symbol *sym;
2879 gfc_typespec *ts;
2880
2881 sym = expr->symtree->n.sym;
2882
2883 if (sym->attr.dummy)
2884 {
2885 sym->attr.proc = PROC_DUMMY;
2886 expr->value.function.name = sym->name;
2887 goto set_type;
2888 }
2889
2890 /* See if we have an intrinsic function reference. */
2891
2892 if (gfc_is_intrinsic (sym, 0, expr->where))
2893 {
2894 if (gfc_intrinsic_func_interface (expr, 1) == MATCH_YES)
2895 return true;
2896 return false;
2897 }
2898
2899 /* The reference is to an external name. */
2900
2901 sym->attr.proc = PROC_EXTERNAL;
2902 expr->value.function.name = sym->name;
2903 expr->value.function.esym = expr->symtree->n.sym;
2904
2905 if (sym->as != NULL)
2906 expr->rank = sym->as->rank;
2907
2908 /* Type of the expression is either the type of the symbol or the
2909 default type of the symbol. */
2910
2911 set_type:
2912 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2913
2914 if (sym->ts.type != BT_UNKNOWN)
2915 expr->ts = sym->ts;
2916 else
2917 {
2918 ts = gfc_get_default_type (sym->name, sym->ns);
2919
2920 if (ts->type == BT_UNKNOWN)
2921 {
2922 const char *guessed
2923 = gfc_lookup_function_fuzzy (sym->name, sym->ns->sym_root);
2924 if (guessed)
2925 gfc_error ("Function %qs at %L has no IMPLICIT type"
2926 "; did you mean %qs?",
2927 sym->name, &expr->where, guessed);
2928 else
2929 gfc_error ("Function %qs at %L has no IMPLICIT type",
2930 sym->name, &expr->where);
2931 return false;
2932 }
2933 else
2934 expr->ts = *ts;
2935 }
2936
2937 return true;
2938 }
2939
2940
2941 /* Return true, if the symbol is an external procedure. */
2942 static bool
2943 is_external_proc (gfc_symbol *sym)
2944 {
2945 if (!sym->attr.dummy && !sym->attr.contained
2946 && !gfc_is_intrinsic (sym, sym->attr.subroutine, sym->declared_at)
2947 && sym->attr.proc != PROC_ST_FUNCTION
2948 && !sym->attr.proc_pointer
2949 && !sym->attr.use_assoc
2950 && sym->name)
2951 return true;
2952
2953 return false;
2954 }
2955
2956
2957 /* Figure out if a function reference is pure or not. Also set the name
2958 of the function for a potential error message. Return nonzero if the
2959 function is PURE, zero if not. */
2960 static int
2961 pure_stmt_function (gfc_expr *, gfc_symbol *);
2962
2963 int
2964 gfc_pure_function (gfc_expr *e, const char **name)
2965 {
2966 int pure;
2967 gfc_component *comp;
2968
2969 *name = NULL;
2970
2971 if (e->symtree != NULL
2972 && e->symtree->n.sym != NULL
2973 && e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
2974 return pure_stmt_function (e, e->symtree->n.sym);
2975
2976 comp = gfc_get_proc_ptr_comp (e);
2977 if (comp)
2978 {
2979 pure = gfc_pure (comp->ts.interface);
2980 *name = comp->name;
2981 }
2982 else if (e->value.function.esym)
2983 {
2984 pure = gfc_pure (e->value.function.esym);
2985 *name = e->value.function.esym->name;
2986 }
2987 else if (e->value.function.isym)
2988 {
2989 pure = e->value.function.isym->pure
2990 || e->value.function.isym->elemental;
2991 *name = e->value.function.isym->name;
2992 }
2993 else
2994 {
2995 /* Implicit functions are not pure. */
2996 pure = 0;
2997 *name = e->value.function.name;
2998 }
2999
3000 return pure;
3001 }
3002
3003
3004 /* Check if the expression is a reference to an implicitly pure function. */
3005
3006 int
3007 gfc_implicit_pure_function (gfc_expr *e)
3008 {
3009 gfc_component *comp = gfc_get_proc_ptr_comp (e);
3010 if (comp)
3011 return gfc_implicit_pure (comp->ts.interface);
3012 else if (e->value.function.esym)
3013 return gfc_implicit_pure (e->value.function.esym);
3014 else
3015 return 0;
3016 }
3017
3018
3019 static bool
3020 impure_stmt_fcn (gfc_expr *e, gfc_symbol *sym,
3021 int *f ATTRIBUTE_UNUSED)
3022 {
3023 const char *name;
3024
3025 /* Don't bother recursing into other statement functions
3026 since they will be checked individually for purity. */
3027 if (e->expr_type != EXPR_FUNCTION
3028 || !e->symtree
3029 || e->symtree->n.sym == sym
3030 || e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
3031 return false;
3032
3033 return gfc_pure_function (e, &name) ? false : true;
3034 }
3035
3036
3037 static int
3038 pure_stmt_function (gfc_expr *e, gfc_symbol *sym)
3039 {
3040 return gfc_traverse_expr (e, sym, impure_stmt_fcn, 0) ? 0 : 1;
3041 }
3042
3043
3044 /* Check if an impure function is allowed in the current context. */
3045
3046 static bool check_pure_function (gfc_expr *e)
3047 {
3048 const char *name = NULL;
3049 if (!gfc_pure_function (e, &name) && name)
3050 {
3051 if (forall_flag)
3052 {
3053 gfc_error ("Reference to impure function %qs at %L inside a "
3054 "FORALL %s", name, &e->where,
3055 forall_flag == 2 ? "mask" : "block");
3056 return false;
3057 }
3058 else if (gfc_do_concurrent_flag)
3059 {
3060 gfc_error ("Reference to impure function %qs at %L inside a "
3061 "DO CONCURRENT %s", name, &e->where,
3062 gfc_do_concurrent_flag == 2 ? "mask" : "block");
3063 return false;
3064 }
3065 else if (gfc_pure (NULL))
3066 {
3067 gfc_error ("Reference to impure function %qs at %L "
3068 "within a PURE procedure", name, &e->where);
3069 return false;
3070 }
3071 if (!gfc_implicit_pure_function (e))
3072 gfc_unset_implicit_pure (NULL);
3073 }
3074 return true;
3075 }
3076
3077
3078 /* Update current procedure's array_outer_dependency flag, considering
3079 a call to procedure SYM. */
3080
3081 static void
3082 update_current_proc_array_outer_dependency (gfc_symbol *sym)
3083 {
3084 /* Check to see if this is a sibling function that has not yet
3085 been resolved. */
3086 gfc_namespace *sibling = gfc_current_ns->sibling;
3087 for (; sibling; sibling = sibling->sibling)
3088 {
3089 if (sibling->proc_name == sym)
3090 {
3091 gfc_resolve (sibling);
3092 break;
3093 }
3094 }
3095
3096 /* If SYM has references to outer arrays, so has the procedure calling
3097 SYM. If SYM is a procedure pointer, we can assume the worst. */
3098 if ((sym->attr.array_outer_dependency || sym->attr.proc_pointer)
3099 && gfc_current_ns->proc_name)
3100 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3101 }
3102
3103
3104 /* Resolve a function call, which means resolving the arguments, then figuring
3105 out which entity the name refers to. */
3106
3107 static bool
3108 resolve_function (gfc_expr *expr)
3109 {
3110 gfc_actual_arglist *arg;
3111 gfc_symbol *sym;
3112 bool t;
3113 int temp;
3114 procedure_type p = PROC_INTRINSIC;
3115 bool no_formal_args;
3116
3117 sym = NULL;
3118 if (expr->symtree)
3119 sym = expr->symtree->n.sym;
3120
3121 /* If this is a procedure pointer component, it has already been resolved. */
3122 if (gfc_is_proc_ptr_comp (expr))
3123 return true;
3124
3125 /* Avoid re-resolving the arguments of caf_get, which can lead to inserting
3126 another caf_get. */
3127 if (sym && sym->attr.intrinsic
3128 && (sym->intmod_sym_id == GFC_ISYM_CAF_GET
3129 || sym->intmod_sym_id == GFC_ISYM_CAF_SEND))
3130 return true;
3131
3132 if (expr->ref)
3133 {
3134 gfc_error ("Unexpected junk after %qs at %L", expr->symtree->n.sym->name,
3135 &expr->where);
3136 return false;
3137 }
3138
3139 if (sym && sym->attr.intrinsic
3140 && !gfc_resolve_intrinsic (sym, &expr->where))
3141 return false;
3142
3143 if (sym && (sym->attr.flavor == FL_VARIABLE || sym->attr.subroutine))
3144 {
3145 gfc_error ("%qs at %L is not a function", sym->name, &expr->where);
3146 return false;
3147 }
3148
3149 /* If this is a deferred TBP with an abstract interface (which may
3150 of course be referenced), expr->value.function.esym will be set. */
3151 if (sym && sym->attr.abstract && !expr->value.function.esym)
3152 {
3153 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3154 sym->name, &expr->where);
3155 return false;
3156 }
3157
3158 /* If this is a deferred TBP with an abstract interface, its result
3159 cannot be an assumed length character (F2003: C418). */
3160 if (sym && sym->attr.abstract && sym->attr.function
3161 && sym->result->ts.u.cl
3162 && sym->result->ts.u.cl->length == NULL
3163 && !sym->result->ts.deferred)
3164 {
3165 gfc_error ("ABSTRACT INTERFACE %qs at %L must not have an assumed "
3166 "character length result (F2008: C418)", sym->name,
3167 &sym->declared_at);
3168 return false;
3169 }
3170
3171 /* Switch off assumed size checking and do this again for certain kinds
3172 of procedure, once the procedure itself is resolved. */
3173 need_full_assumed_size++;
3174
3175 if (expr->symtree && expr->symtree->n.sym)
3176 p = expr->symtree->n.sym->attr.proc;
3177
3178 if (expr->value.function.isym && expr->value.function.isym->inquiry)
3179 inquiry_argument = true;
3180 no_formal_args = sym && is_external_proc (sym)
3181 && gfc_sym_get_dummy_args (sym) == NULL;
3182
3183 if (!resolve_actual_arglist (expr->value.function.actual,
3184 p, no_formal_args))
3185 {
3186 inquiry_argument = false;
3187 return false;
3188 }
3189
3190 inquiry_argument = false;
3191
3192 /* Resume assumed_size checking. */
3193 need_full_assumed_size--;
3194
3195 /* If the procedure is external, check for usage. */
3196 if (sym && is_external_proc (sym))
3197 resolve_global_procedure (sym, &expr->where, 0);
3198
3199 if (sym && sym->ts.type == BT_CHARACTER
3200 && sym->ts.u.cl
3201 && sym->ts.u.cl->length == NULL
3202 && !sym->attr.dummy
3203 && !sym->ts.deferred
3204 && expr->value.function.esym == NULL
3205 && !sym->attr.contained)
3206 {
3207 /* Internal procedures are taken care of in resolve_contained_fntype. */
3208 gfc_error ("Function %qs is declared CHARACTER(*) and cannot "
3209 "be used at %L since it is not a dummy argument",
3210 sym->name, &expr->where);
3211 return false;
3212 }
3213
3214 /* See if function is already resolved. */
3215
3216 if (expr->value.function.name != NULL
3217 || expr->value.function.isym != NULL)
3218 {
3219 if (expr->ts.type == BT_UNKNOWN)
3220 expr->ts = sym->ts;
3221 t = true;
3222 }
3223 else
3224 {
3225 /* Apply the rules of section 14.1.2. */
3226
3227 switch (procedure_kind (sym))
3228 {
3229 case PTYPE_GENERIC:
3230 t = resolve_generic_f (expr);
3231 break;
3232
3233 case PTYPE_SPECIFIC:
3234 t = resolve_specific_f (expr);
3235 break;
3236
3237 case PTYPE_UNKNOWN:
3238 t = resolve_unknown_f (expr);
3239 break;
3240
3241 default:
3242 gfc_internal_error ("resolve_function(): bad function type");
3243 }
3244 }
3245
3246 /* If the expression is still a function (it might have simplified),
3247 then we check to see if we are calling an elemental function. */
3248
3249 if (expr->expr_type != EXPR_FUNCTION)
3250 return t;
3251
3252 /* Walk the argument list looking for invalid BOZ. */
3253 for (arg = expr->value.function.actual; arg; arg = arg->next)
3254 if (arg->expr && arg->expr->ts.type == BT_BOZ)
3255 {
3256 gfc_error ("A BOZ literal constant at %L cannot appear as an "
3257 "actual argument in a function reference",
3258 &arg->expr->where);
3259 return false;
3260 }
3261
3262 temp = need_full_assumed_size;
3263 need_full_assumed_size = 0;
3264
3265 if (!resolve_elemental_actual (expr, NULL))
3266 return false;
3267
3268 if (omp_workshare_flag
3269 && expr->value.function.esym
3270 && ! gfc_elemental (expr->value.function.esym))
3271 {
3272 gfc_error ("User defined non-ELEMENTAL function %qs at %L not allowed "
3273 "in WORKSHARE construct", expr->value.function.esym->name,
3274 &expr->where);
3275 t = false;
3276 }
3277
3278 #define GENERIC_ID expr->value.function.isym->id
3279 else if (expr->value.function.actual != NULL
3280 && expr->value.function.isym != NULL
3281 && GENERIC_ID != GFC_ISYM_LBOUND
3282 && GENERIC_ID != GFC_ISYM_LCOBOUND
3283 && GENERIC_ID != GFC_ISYM_UCOBOUND
3284 && GENERIC_ID != GFC_ISYM_LEN
3285 && GENERIC_ID != GFC_ISYM_LOC
3286 && GENERIC_ID != GFC_ISYM_C_LOC
3287 && GENERIC_ID != GFC_ISYM_PRESENT)
3288 {
3289 /* Array intrinsics must also have the last upper bound of an
3290 assumed size array argument. UBOUND and SIZE have to be
3291 excluded from the check if the second argument is anything
3292 than a constant. */
3293
3294 for (arg = expr->value.function.actual; arg; arg = arg->next)
3295 {
3296 if ((GENERIC_ID == GFC_ISYM_UBOUND || GENERIC_ID == GFC_ISYM_SIZE)
3297 && arg == expr->value.function.actual
3298 && arg->next != NULL && arg->next->expr)
3299 {
3300 if (arg->next->expr->expr_type != EXPR_CONSTANT)
3301 break;
3302
3303 if (arg->next->name && strcmp (arg->next->name, "kind") == 0)
3304 break;
3305
3306 if ((int)mpz_get_si (arg->next->expr->value.integer)
3307 < arg->expr->rank)
3308 break;
3309 }
3310
3311 if (arg->expr != NULL
3312 && arg->expr->rank > 0
3313 && resolve_assumed_size_actual (arg->expr))
3314 return false;
3315 }
3316 }
3317 #undef GENERIC_ID
3318
3319 need_full_assumed_size = temp;
3320
3321 if (!check_pure_function(expr))
3322 t = false;
3323
3324 /* Functions without the RECURSIVE attribution are not allowed to
3325 * call themselves. */
3326 if (expr->value.function.esym && !expr->value.function.esym->attr.recursive)
3327 {
3328 gfc_symbol *esym;
3329 esym = expr->value.function.esym;
3330
3331 if (is_illegal_recursion (esym, gfc_current_ns))
3332 {
3333 if (esym->attr.entry && esym->ns->entries)
3334 gfc_error ("ENTRY %qs at %L cannot be called recursively, as"
3335 " function %qs is not RECURSIVE",
3336 esym->name, &expr->where, esym->ns->entries->sym->name);
3337 else
3338 gfc_error ("Function %qs at %L cannot be called recursively, as it"
3339 " is not RECURSIVE", esym->name, &expr->where);
3340
3341 t = false;
3342 }
3343 }
3344
3345 /* Character lengths of use associated functions may contains references to
3346 symbols not referenced from the current program unit otherwise. Make sure
3347 those symbols are marked as referenced. */
3348
3349 if (expr->ts.type == BT_CHARACTER && expr->value.function.esym
3350 && expr->value.function.esym->attr.use_assoc)
3351 {
3352 gfc_expr_set_symbols_referenced (expr->ts.u.cl->length);
3353 }
3354
3355 /* Make sure that the expression has a typespec that works. */
3356 if (expr->ts.type == BT_UNKNOWN)
3357 {
3358 if (expr->symtree->n.sym->result
3359 && expr->symtree->n.sym->result->ts.type != BT_UNKNOWN
3360 && !expr->symtree->n.sym->result->attr.proc_pointer)
3361 expr->ts = expr->symtree->n.sym->result->ts;
3362 }
3363
3364 if (!expr->ref && !expr->value.function.isym)
3365 {
3366 if (expr->value.function.esym)
3367 update_current_proc_array_outer_dependency (expr->value.function.esym);
3368 else
3369 update_current_proc_array_outer_dependency (sym);
3370 }
3371 else if (expr->ref)
3372 /* typebound procedure: Assume the worst. */
3373 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3374
3375 return t;
3376 }
3377
3378
3379 /************* Subroutine resolution *************/
3380
3381 static bool
3382 pure_subroutine (gfc_symbol *sym, const char *name, locus *loc)
3383 {
3384 if (gfc_pure (sym))
3385 return true;
3386
3387 if (forall_flag)
3388 {
3389 gfc_error ("Subroutine call to %qs in FORALL block at %L is not PURE",
3390 name, loc);
3391 return false;
3392 }
3393 else if (gfc_do_concurrent_flag)
3394 {
3395 gfc_error ("Subroutine call to %qs in DO CONCURRENT block at %L is not "
3396 "PURE", name, loc);
3397 return false;
3398 }
3399 else if (gfc_pure (NULL))
3400 {
3401 gfc_error ("Subroutine call to %qs at %L is not PURE", name, loc);
3402 return false;
3403 }
3404
3405 gfc_unset_implicit_pure (NULL);
3406 return true;
3407 }
3408
3409
3410 static match
3411 resolve_generic_s0 (gfc_code *c, gfc_symbol *sym)
3412 {
3413 gfc_symbol *s;
3414
3415 if (sym->attr.generic)
3416 {
3417 s = gfc_search_interface (sym->generic, 1, &c->ext.actual);
3418 if (s != NULL)
3419 {
3420 c->resolved_sym = s;
3421 if (!pure_subroutine (s, s->name, &c->loc))
3422 return MATCH_ERROR;
3423 return MATCH_YES;
3424 }
3425
3426 /* TODO: Need to search for elemental references in generic interface. */
3427 }
3428
3429 if (sym->attr.intrinsic)
3430 return gfc_intrinsic_sub_interface (c, 0);
3431
3432 return MATCH_NO;
3433 }
3434
3435
3436 static bool
3437 resolve_generic_s (gfc_code *c)
3438 {
3439 gfc_symbol *sym;
3440 match m;
3441
3442 sym = c->symtree->n.sym;
3443
3444 for (;;)
3445 {
3446 m = resolve_generic_s0 (c, sym);
3447 if (m == MATCH_YES)
3448 return true;
3449 else if (m == MATCH_ERROR)
3450 return false;
3451
3452 generic:
3453 if (sym->ns->parent == NULL)
3454 break;
3455 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3456
3457 if (sym == NULL)
3458 break;
3459 if (!generic_sym (sym))
3460 goto generic;
3461 }
3462
3463 /* Last ditch attempt. See if the reference is to an intrinsic
3464 that possesses a matching interface. 14.1.2.4 */
3465 sym = c->symtree->n.sym;
3466
3467 if (!gfc_is_intrinsic (sym, 1, c->loc))
3468 {
3469 gfc_error ("There is no specific subroutine for the generic %qs at %L",
3470 sym->name, &c->loc);
3471 return false;
3472 }
3473
3474 m = gfc_intrinsic_sub_interface (c, 0);
3475 if (m == MATCH_YES)
3476 return true;
3477 if (m == MATCH_NO)
3478 gfc_error ("Generic subroutine %qs at %L is not consistent with an "
3479 "intrinsic subroutine interface", sym->name, &c->loc);
3480
3481 return false;
3482 }
3483
3484
3485 /* Resolve a subroutine call known to be specific. */
3486
3487 static match
3488 resolve_specific_s0 (gfc_code *c, gfc_symbol *sym)
3489 {
3490 match m;
3491
3492 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
3493 {
3494 if (sym->attr.dummy)
3495 {
3496 sym->attr.proc = PROC_DUMMY;
3497 goto found;
3498 }
3499
3500 sym->attr.proc = PROC_EXTERNAL;
3501 goto found;
3502 }
3503
3504 if (sym->attr.proc == PROC_MODULE || sym->attr.proc == PROC_INTERNAL)
3505 goto found;
3506
3507 if (sym->attr.intrinsic)
3508 {
3509 m = gfc_intrinsic_sub_interface (c, 1);
3510 if (m == MATCH_YES)
3511 return MATCH_YES;
3512 if (m == MATCH_NO)
3513 gfc_error ("Subroutine %qs at %L is INTRINSIC but is not compatible "
3514 "with an intrinsic", sym->name, &c->loc);
3515
3516 return MATCH_ERROR;
3517 }
3518
3519 return MATCH_NO;
3520
3521 found:
3522 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3523
3524 c->resolved_sym = sym;
3525 if (!pure_subroutine (sym, sym->name, &c->loc))
3526 return MATCH_ERROR;
3527
3528 return MATCH_YES;
3529 }
3530
3531
3532 static bool
3533 resolve_specific_s (gfc_code *c)
3534 {
3535 gfc_symbol *sym;
3536 match m;
3537
3538 sym = c->symtree->n.sym;
3539
3540 for (;;)
3541 {
3542 m = resolve_specific_s0 (c, sym);
3543 if (m == MATCH_YES)
3544 return true;
3545 if (m == MATCH_ERROR)
3546 return false;
3547
3548 if (sym->ns->parent == NULL)
3549 break;
3550
3551 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3552
3553 if (sym == NULL)
3554 break;
3555 }
3556
3557 sym = c->symtree->n.sym;
3558 gfc_error ("Unable to resolve the specific subroutine %qs at %L",
3559 sym->name, &c->loc);
3560
3561 return false;
3562 }
3563
3564
3565 /* Resolve a subroutine call not known to be generic nor specific. */
3566
3567 static bool
3568 resolve_unknown_s (gfc_code *c)
3569 {
3570 gfc_symbol *sym;
3571
3572 sym = c->symtree->n.sym;
3573
3574 if (sym->attr.dummy)
3575 {
3576 sym->attr.proc = PROC_DUMMY;
3577 goto found;
3578 }
3579
3580 /* See if we have an intrinsic function reference. */
3581
3582 if (gfc_is_intrinsic (sym, 1, c->loc))
3583 {
3584 if (gfc_intrinsic_sub_interface (c, 1) == MATCH_YES)
3585 return true;
3586 return false;
3587 }
3588
3589 /* The reference is to an external name. */
3590
3591 found:
3592 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3593
3594 c->resolved_sym = sym;
3595
3596 return pure_subroutine (sym, sym->name, &c->loc);
3597 }
3598
3599
3600 /* Resolve a subroutine call. Although it was tempting to use the same code
3601 for functions, subroutines and functions are stored differently and this
3602 makes things awkward. */
3603
3604 static bool
3605 resolve_call (gfc_code *c)
3606 {
3607 bool t;
3608 procedure_type ptype = PROC_INTRINSIC;
3609 gfc_symbol *csym, *sym;
3610 bool no_formal_args;
3611
3612 csym = c->symtree ? c->symtree->n.sym : NULL;
3613
3614 if (csym && csym->ts.type != BT_UNKNOWN)
3615 {
3616 gfc_error ("%qs at %L has a type, which is not consistent with "
3617 "the CALL at %L", csym->name, &csym->declared_at, &c->loc);
3618 return false;
3619 }
3620
3621 if (csym && gfc_current_ns->parent && csym->ns != gfc_current_ns)
3622 {
3623 gfc_symtree *st;
3624 gfc_find_sym_tree (c->symtree->name, gfc_current_ns, 1, &st);
3625 sym = st ? st->n.sym : NULL;
3626 if (sym && csym != sym
3627 && sym->ns == gfc_current_ns
3628 && sym->attr.flavor == FL_PROCEDURE
3629 && sym->attr.contained)
3630 {
3631 sym->refs++;
3632 if (csym->attr.generic)
3633 c->symtree->n.sym = sym;
3634 else
3635 c->symtree = st;
3636 csym = c->symtree->n.sym;
3637 }
3638 }
3639
3640 /* If this ia a deferred TBP, c->expr1 will be set. */
3641 if (!c->expr1 && csym)
3642 {
3643 if (csym->attr.abstract)
3644 {
3645 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3646 csym->name, &c->loc);
3647 return false;
3648 }
3649
3650 /* Subroutines without the RECURSIVE attribution are not allowed to
3651 call themselves. */
3652 if (is_illegal_recursion (csym, gfc_current_ns))
3653 {
3654 if (csym->attr.entry && csym->ns->entries)
3655 gfc_error ("ENTRY %qs at %L cannot be called recursively, "
3656 "as subroutine %qs is not RECURSIVE",
3657 csym->name, &c->loc, csym->ns->entries->sym->name);
3658 else
3659 gfc_error ("SUBROUTINE %qs at %L cannot be called recursively, "
3660 "as it is not RECURSIVE", csym->name, &c->loc);
3661
3662 t = false;
3663 }
3664 }
3665
3666 /* Switch off assumed size checking and do this again for certain kinds
3667 of procedure, once the procedure itself is resolved. */
3668 need_full_assumed_size++;
3669
3670 if (csym)
3671 ptype = csym->attr.proc;
3672
3673 no_formal_args = csym && is_external_proc (csym)
3674 && gfc_sym_get_dummy_args (csym) == NULL;
3675 if (!resolve_actual_arglist (c->ext.actual, ptype, no_formal_args))
3676 return false;
3677
3678 /* Resume assumed_size checking. */
3679 need_full_assumed_size--;
3680
3681 /* If external, check for usage. */
3682 if (csym && is_external_proc (csym))
3683 resolve_global_procedure (csym, &c->loc, 1);
3684
3685 t = true;
3686 if (c->resolved_sym == NULL)
3687 {
3688 c->resolved_isym = NULL;
3689 switch (procedure_kind (csym))
3690 {
3691 case PTYPE_GENERIC:
3692 t = resolve_generic_s (c);
3693 break;
3694
3695 case PTYPE_SPECIFIC:
3696 t = resolve_specific_s (c);
3697 break;
3698
3699 case PTYPE_UNKNOWN:
3700 t = resolve_unknown_s (c);
3701 break;
3702
3703 default:
3704 gfc_internal_error ("resolve_subroutine(): bad function type");
3705 }
3706 }
3707
3708 /* Some checks of elemental subroutine actual arguments. */
3709 if (!resolve_elemental_actual (NULL, c))
3710 return false;
3711
3712 if (!c->expr1)
3713 update_current_proc_array_outer_dependency (csym);
3714 else
3715 /* Typebound procedure: Assume the worst. */
3716 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3717
3718 return t;
3719 }
3720
3721
3722 /* Compare the shapes of two arrays that have non-NULL shapes. If both
3723 op1->shape and op2->shape are non-NULL return true if their shapes
3724 match. If both op1->shape and op2->shape are non-NULL return false
3725 if their shapes do not match. If either op1->shape or op2->shape is
3726 NULL, return true. */
3727
3728 static bool
3729 compare_shapes (gfc_expr *op1, gfc_expr *op2)
3730 {
3731 bool t;
3732 int i;
3733
3734 t = true;
3735
3736 if (op1->shape != NULL && op2->shape != NULL)
3737 {
3738 for (i = 0; i < op1->rank; i++)
3739 {
3740 if (mpz_cmp (op1->shape[i], op2->shape[i]) != 0)
3741 {
3742 gfc_error ("Shapes for operands at %L and %L are not conformable",
3743 &op1->where, &op2->where);
3744 t = false;
3745 break;
3746 }
3747 }
3748 }
3749
3750 return t;
3751 }
3752
3753 /* Convert a logical operator to the corresponding bitwise intrinsic call.
3754 For example A .AND. B becomes IAND(A, B). */
3755 static gfc_expr *
3756 logical_to_bitwise (gfc_expr *e)
3757 {
3758 gfc_expr *tmp, *op1, *op2;
3759 gfc_isym_id isym;
3760 gfc_actual_arglist *args = NULL;
3761
3762 gcc_assert (e->expr_type == EXPR_OP);
3763
3764 isym = GFC_ISYM_NONE;
3765 op1 = e->value.op.op1;
3766 op2 = e->value.op.op2;
3767
3768 switch (e->value.op.op)
3769 {
3770 case INTRINSIC_NOT:
3771 isym = GFC_ISYM_NOT;
3772 break;
3773 case INTRINSIC_AND:
3774 isym = GFC_ISYM_IAND;
3775 break;
3776 case INTRINSIC_OR:
3777 isym = GFC_ISYM_IOR;
3778 break;
3779 case INTRINSIC_NEQV:
3780 isym = GFC_ISYM_IEOR;
3781 break;
3782 case INTRINSIC_EQV:
3783 /* "Bitwise eqv" is just the complement of NEQV === IEOR.
3784 Change the old expression to NEQV, which will get replaced by IEOR,
3785 and wrap it in NOT. */
3786 tmp = gfc_copy_expr (e);
3787 tmp->value.op.op = INTRINSIC_NEQV;
3788 tmp = logical_to_bitwise (tmp);
3789 isym = GFC_ISYM_NOT;
3790 op1 = tmp;
3791 op2 = NULL;
3792 break;
3793 default:
3794 gfc_internal_error ("logical_to_bitwise(): Bad intrinsic");
3795 }
3796
3797 /* Inherit the original operation's operands as arguments. */
3798 args = gfc_get_actual_arglist ();
3799 args->expr = op1;
3800 if (op2)
3801 {
3802 args->next = gfc_get_actual_arglist ();
3803 args->next->expr = op2;
3804 }
3805
3806 /* Convert the expression to a function call. */
3807 e->expr_type = EXPR_FUNCTION;
3808 e->value.function.actual = args;
3809 e->value.function.isym = gfc_intrinsic_function_by_id (isym);
3810 e->value.function.name = e->value.function.isym->name;
3811 e->value.function.esym = NULL;
3812
3813 /* Make up a pre-resolved function call symtree if we need to. */
3814 if (!e->symtree || !e->symtree->n.sym)
3815 {
3816 gfc_symbol *sym;
3817 gfc_get_ha_sym_tree (e->value.function.isym->name, &e->symtree);
3818 sym = e->symtree->n.sym;
3819 sym->result = sym;
3820 sym->attr.flavor = FL_PROCEDURE;
3821 sym->attr.function = 1;
3822 sym->attr.elemental = 1;
3823 sym->attr.pure = 1;
3824 sym->attr.referenced = 1;
3825 gfc_intrinsic_symbol (sym);
3826 gfc_commit_symbol (sym);
3827 }
3828
3829 args->name = e->value.function.isym->formal->name;
3830 if (e->value.function.isym->formal->next)
3831 args->next->name = e->value.function.isym->formal->next->name;
3832
3833 return e;
3834 }
3835
3836 /* Recursively append candidate UOP to CANDIDATES. Store the number of
3837 candidates in CANDIDATES_LEN. */
3838 static void
3839 lookup_uop_fuzzy_find_candidates (gfc_symtree *uop,
3840 char **&candidates,
3841 size_t &candidates_len)
3842 {
3843 gfc_symtree *p;
3844
3845 if (uop == NULL)
3846 return;
3847
3848 /* Not sure how to properly filter here. Use all for a start.
3849 n.uop.op is NULL for empty interface operators (is that legal?) disregard
3850 these as i suppose they don't make terribly sense. */
3851
3852 if (uop->n.uop->op != NULL)
3853 vec_push (candidates, candidates_len, uop->name);
3854
3855 p = uop->left;
3856 if (p)
3857 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3858
3859 p = uop->right;
3860 if (p)
3861 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3862 }
3863
3864 /* Lookup user-operator OP fuzzily, taking names in UOP into account. */
3865
3866 static const char*
3867 lookup_uop_fuzzy (const char *op, gfc_symtree *uop)
3868 {
3869 char **candidates = NULL;
3870 size_t candidates_len = 0;
3871 lookup_uop_fuzzy_find_candidates (uop, candidates, candidates_len);
3872 return gfc_closest_fuzzy_match (op, candidates);
3873 }
3874
3875
3876 /* Callback finding an impure function as an operand to an .and. or
3877 .or. expression. Remember the last function warned about to
3878 avoid double warnings when recursing. */
3879
3880 static int
3881 impure_function_callback (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
3882 void *data)
3883 {
3884 gfc_expr *f = *e;
3885 const char *name;
3886 static gfc_expr *last = NULL;
3887 bool *found = (bool *) data;
3888
3889 if (f->expr_type == EXPR_FUNCTION)
3890 {
3891 *found = 1;
3892 if (f != last && !gfc_pure_function (f, &name)
3893 && !gfc_implicit_pure_function (f))
3894 {
3895 if (name)
3896 gfc_warning (OPT_Wfunction_elimination,
3897 "Impure function %qs at %L might not be evaluated",
3898 name, &f->where);
3899 else
3900 gfc_warning (OPT_Wfunction_elimination,
3901 "Impure function at %L might not be evaluated",
3902 &f->where);
3903 }
3904 last = f;
3905 }
3906
3907 return 0;
3908 }
3909
3910 /* Return true if TYPE is character based, false otherwise. */
3911
3912 static int
3913 is_character_based (bt type)
3914 {
3915 return type == BT_CHARACTER || type == BT_HOLLERITH;
3916 }
3917
3918
3919 /* If expression is a hollerith, convert it to character and issue a warning
3920 for the conversion. */
3921
3922 static void
3923 convert_hollerith_to_character (gfc_expr *e)
3924 {
3925 if (e->ts.type == BT_HOLLERITH)
3926 {
3927 gfc_typespec t;
3928 gfc_clear_ts (&t);
3929 t.type = BT_CHARACTER;
3930 t.kind = e->ts.kind;
3931 gfc_convert_type_warn (e, &t, 2, 1);
3932 }
3933 }
3934
3935 /* Convert to numeric and issue a warning for the conversion. */
3936
3937 static void
3938 convert_to_numeric (gfc_expr *a, gfc_expr *b)
3939 {
3940 gfc_typespec t;
3941 gfc_clear_ts (&t);
3942 t.type = b->ts.type;
3943 t.kind = b->ts.kind;
3944 gfc_convert_type_warn (a, &t, 2, 1);
3945 }
3946
3947 /* Resolve an operator expression node. This can involve replacing the
3948 operation with a user defined function call. */
3949
3950 static bool
3951 resolve_operator (gfc_expr *e)
3952 {
3953 gfc_expr *op1, *op2;
3954 char msg[200];
3955 bool dual_locus_error;
3956 bool t = true;
3957
3958 /* Resolve all subnodes-- give them types. */
3959
3960 switch (e->value.op.op)
3961 {
3962 default:
3963 if (!gfc_resolve_expr (e->value.op.op2))
3964 return false;
3965
3966 /* Fall through. */
3967
3968 case INTRINSIC_NOT:
3969 case INTRINSIC_UPLUS:
3970 case INTRINSIC_UMINUS:
3971 case INTRINSIC_PARENTHESES:
3972 if (!gfc_resolve_expr (e->value.op.op1))
3973 return false;
3974 if (e->value.op.op1
3975 && e->value.op.op1->ts.type == BT_BOZ && !e->value.op.op2)
3976 {
3977 gfc_error ("BOZ literal constant at %L cannot be an operand of "
3978 "unary operator %qs", &e->value.op.op1->where,
3979 gfc_op2string (e->value.op.op));
3980 return false;
3981 }
3982 break;
3983 }
3984
3985 /* Typecheck the new node. */
3986
3987 op1 = e->value.op.op1;
3988 op2 = e->value.op.op2;
3989 dual_locus_error = false;
3990
3991 /* op1 and op2 cannot both be BOZ. */
3992 if (op1 && op1->ts.type == BT_BOZ
3993 && op2 && op2->ts.type == BT_BOZ)
3994 {
3995 gfc_error ("Operands at %L and %L cannot appear as operands of "
3996 "binary operator %qs", &op1->where, &op2->where,
3997 gfc_op2string (e->value.op.op));
3998 return false;
3999 }
4000
4001 if ((op1 && op1->expr_type == EXPR_NULL)
4002 || (op2 && op2->expr_type == EXPR_NULL))
4003 {
4004 sprintf (msg, _("Invalid context for NULL() pointer at %%L"));
4005 goto bad_op;
4006 }
4007
4008 switch (e->value.op.op)
4009 {
4010 case INTRINSIC_UPLUS:
4011 case INTRINSIC_UMINUS:
4012 if (op1->ts.type == BT_INTEGER
4013 || op1->ts.type == BT_REAL
4014 || op1->ts.type == BT_COMPLEX)
4015 {
4016 e->ts = op1->ts;
4017 break;
4018 }
4019
4020 sprintf (msg, _("Operand of unary numeric operator %%<%s%%> at %%L is %s"),
4021 gfc_op2string (e->value.op.op), gfc_typename (e));
4022 goto bad_op;
4023
4024 case INTRINSIC_PLUS:
4025 case INTRINSIC_MINUS:
4026 case INTRINSIC_TIMES:
4027 case INTRINSIC_DIVIDE:
4028 case INTRINSIC_POWER:
4029 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
4030 {
4031 gfc_type_convert_binary (e, 1);
4032 break;
4033 }
4034
4035 if (op1->ts.type == BT_DERIVED || op2->ts.type == BT_DERIVED)
4036 sprintf (msg,
4037 _("Unexpected derived-type entities in binary intrinsic "
4038 "numeric operator %%<%s%%> at %%L"),
4039 gfc_op2string (e->value.op.op));
4040 else
4041 sprintf (msg,
4042 _("Operands of binary numeric operator %%<%s%%> at %%L are %s/%s"),
4043 gfc_op2string (e->value.op.op), gfc_typename (op1),
4044 gfc_typename (op2));
4045 goto bad_op;
4046
4047 case INTRINSIC_CONCAT:
4048 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
4049 && op1->ts.kind == op2->ts.kind)
4050 {
4051 e->ts.type = BT_CHARACTER;
4052 e->ts.kind = op1->ts.kind;
4053 break;
4054 }
4055
4056 sprintf (msg,
4057 _("Operands of string concatenation operator at %%L are %s/%s"),
4058 gfc_typename (op1), gfc_typename (op2));
4059 goto bad_op;
4060
4061 case INTRINSIC_AND:
4062 case INTRINSIC_OR:
4063 case INTRINSIC_EQV:
4064 case INTRINSIC_NEQV:
4065 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
4066 {
4067 e->ts.type = BT_LOGICAL;
4068 e->ts.kind = gfc_kind_max (op1, op2);
4069 if (op1->ts.kind < e->ts.kind)
4070 gfc_convert_type (op1, &e->ts, 2);
4071 else if (op2->ts.kind < e->ts.kind)
4072 gfc_convert_type (op2, &e->ts, 2);
4073
4074 if (flag_frontend_optimize &&
4075 (e->value.op.op == INTRINSIC_AND || e->value.op.op == INTRINSIC_OR))
4076 {
4077 /* Warn about short-circuiting
4078 with impure function as second operand. */
4079 bool op2_f = false;
4080 gfc_expr_walker (&op2, impure_function_callback, &op2_f);
4081 }
4082 break;
4083 }
4084
4085 /* Logical ops on integers become bitwise ops with -fdec. */
4086 else if (flag_dec
4087 && (op1->ts.type == BT_INTEGER || op2->ts.type == BT_INTEGER))
4088 {
4089 e->ts.type = BT_INTEGER;
4090 e->ts.kind = gfc_kind_max (op1, op2);
4091 if (op1->ts.type != e->ts.type || op1->ts.kind != e->ts.kind)
4092 gfc_convert_type (op1, &e->ts, 1);
4093 if (op2->ts.type != e->ts.type || op2->ts.kind != e->ts.kind)
4094 gfc_convert_type (op2, &e->ts, 1);
4095 e = logical_to_bitwise (e);
4096 goto simplify_op;
4097 }
4098
4099 sprintf (msg, _("Operands of logical operator %%<%s%%> at %%L are %s/%s"),
4100 gfc_op2string (e->value.op.op), gfc_typename (op1),
4101 gfc_typename (op2));
4102
4103 goto bad_op;
4104
4105 case INTRINSIC_NOT:
4106 /* Logical ops on integers become bitwise ops with -fdec. */
4107 if (flag_dec && op1->ts.type == BT_INTEGER)
4108 {
4109 e->ts.type = BT_INTEGER;
4110 e->ts.kind = op1->ts.kind;
4111 e = logical_to_bitwise (e);
4112 goto simplify_op;
4113 }
4114
4115 if (op1->ts.type == BT_LOGICAL)
4116 {
4117 e->ts.type = BT_LOGICAL;
4118 e->ts.kind = op1->ts.kind;
4119 break;
4120 }
4121
4122 sprintf (msg, _("Operand of .not. operator at %%L is %s"),
4123 gfc_typename (op1));
4124 goto bad_op;
4125
4126 case INTRINSIC_GT:
4127 case INTRINSIC_GT_OS:
4128 case INTRINSIC_GE:
4129 case INTRINSIC_GE_OS:
4130 case INTRINSIC_LT:
4131 case INTRINSIC_LT_OS:
4132 case INTRINSIC_LE:
4133 case INTRINSIC_LE_OS:
4134 if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
4135 {
4136 strcpy (msg, _("COMPLEX quantities cannot be compared at %L"));
4137 goto bad_op;
4138 }
4139
4140 /* Fall through. */
4141
4142 case INTRINSIC_EQ:
4143 case INTRINSIC_EQ_OS:
4144 case INTRINSIC_NE:
4145 case INTRINSIC_NE_OS:
4146
4147 if (flag_dec
4148 && is_character_based (op1->ts.type)
4149 && is_character_based (op2->ts.type))
4150 {
4151 convert_hollerith_to_character (op1);
4152 convert_hollerith_to_character (op2);
4153 }
4154
4155 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
4156 && op1->ts.kind == op2->ts.kind)
4157 {
4158 e->ts.type = BT_LOGICAL;
4159 e->ts.kind = gfc_default_logical_kind;
4160 break;
4161 }
4162
4163 /* If op1 is BOZ, then op2 is not!. Try to convert to type of op2. */
4164 if (op1->ts.type == BT_BOZ)
4165 {
4166 if (gfc_invalid_boz ("BOZ literal constant near %L cannot appear as "
4167 "an operand of a relational operator",
4168 &op1->where))
4169 return false;
4170
4171 if (op2->ts.type == BT_INTEGER && !gfc_boz2int (op1, op2->ts.kind))
4172 return false;
4173
4174 if (op2->ts.type == BT_REAL && !gfc_boz2real (op1, op2->ts.kind))
4175 return false;
4176 }
4177
4178 /* If op2 is BOZ, then op1 is not!. Try to convert to type of op2. */
4179 if (op2->ts.type == BT_BOZ)
4180 {
4181 if (gfc_invalid_boz ("BOZ literal constant near %L cannot appear as "
4182 "an operand of a relational operator",
4183 &op2->where))
4184 return false;
4185
4186 if (op1->ts.type == BT_INTEGER && !gfc_boz2int (op2, op1->ts.kind))
4187 return false;
4188
4189 if (op1->ts.type == BT_REAL && !gfc_boz2real (op2, op1->ts.kind))
4190 return false;
4191 }
4192 if (flag_dec
4193 && op1->ts.type == BT_HOLLERITH && gfc_numeric_ts (&op2->ts))
4194 convert_to_numeric (op1, op2);
4195
4196 if (flag_dec
4197 && gfc_numeric_ts (&op1->ts) && op2->ts.type == BT_HOLLERITH)
4198 convert_to_numeric (op2, op1);
4199
4200 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
4201 {
4202 gfc_type_convert_binary (e, 1);
4203
4204 e->ts.type = BT_LOGICAL;
4205 e->ts.kind = gfc_default_logical_kind;
4206
4207 if (warn_compare_reals)
4208 {
4209 gfc_intrinsic_op op = e->value.op.op;
4210
4211 /* Type conversion has made sure that the types of op1 and op2
4212 agree, so it is only necessary to check the first one. */
4213 if ((op1->ts.type == BT_REAL || op1->ts.type == BT_COMPLEX)
4214 && (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS
4215 || op == INTRINSIC_NE || op == INTRINSIC_NE_OS))
4216 {
4217 const char *msg;
4218
4219 if (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS)
4220 msg = "Equality comparison for %s at %L";
4221 else
4222 msg = "Inequality comparison for %s at %L";
4223
4224 gfc_warning (OPT_Wcompare_reals, msg,
4225 gfc_typename (op1), &op1->where);
4226 }
4227 }
4228
4229 break;
4230 }
4231
4232 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
4233 sprintf (msg,
4234 _("Logicals at %%L must be compared with %s instead of %s"),
4235 (e->value.op.op == INTRINSIC_EQ
4236 || e->value.op.op == INTRINSIC_EQ_OS)
4237 ? ".eqv." : ".neqv.", gfc_op2string (e->value.op.op));
4238 else
4239 sprintf (msg,
4240 _("Operands of comparison operator %%<%s%%> at %%L are %s/%s"),
4241 gfc_op2string (e->value.op.op), gfc_typename (op1),
4242 gfc_typename (op2));
4243
4244 goto bad_op;
4245
4246 case INTRINSIC_USER:
4247 if (e->value.op.uop->op == NULL)
4248 {
4249 const char *name = e->value.op.uop->name;
4250 const char *guessed;
4251 guessed = lookup_uop_fuzzy (name, e->value.op.uop->ns->uop_root);
4252 if (guessed)
4253 sprintf (msg, _("Unknown operator %%<%s%%> at %%L; did you mean '%s'?"),
4254 name, guessed);
4255 else
4256 sprintf (msg, _("Unknown operator %%<%s%%> at %%L"), name);
4257 }
4258 else if (op2 == NULL)
4259 sprintf (msg, _("Operand of user operator %%<%s%%> at %%L is %s"),
4260 e->value.op.uop->name, gfc_typename (op1));
4261 else
4262 {
4263 sprintf (msg, _("Operands of user operator %%<%s%%> at %%L are %s/%s"),
4264 e->value.op.uop->name, gfc_typename (op1),
4265 gfc_typename (op2));
4266 e->value.op.uop->op->sym->attr.referenced = 1;
4267 }
4268
4269 goto bad_op;
4270
4271 case INTRINSIC_PARENTHESES:
4272 e->ts = op1->ts;
4273 if (e->ts.type == BT_CHARACTER)
4274 e->ts.u.cl = op1->ts.u.cl;
4275 break;
4276
4277 default:
4278 gfc_internal_error ("resolve_operator(): Bad intrinsic");
4279 }
4280
4281 /* Deal with arrayness of an operand through an operator. */
4282
4283 switch (e->value.op.op)
4284 {
4285 case INTRINSIC_PLUS:
4286 case INTRINSIC_MINUS:
4287 case INTRINSIC_TIMES:
4288 case INTRINSIC_DIVIDE:
4289 case INTRINSIC_POWER:
4290 case INTRINSIC_CONCAT:
4291 case INTRINSIC_AND:
4292 case INTRINSIC_OR:
4293 case INTRINSIC_EQV:
4294 case INTRINSIC_NEQV:
4295 case INTRINSIC_EQ:
4296 case INTRINSIC_EQ_OS:
4297 case INTRINSIC_NE:
4298 case INTRINSIC_NE_OS:
4299 case INTRINSIC_GT:
4300 case INTRINSIC_GT_OS:
4301 case INTRINSIC_GE:
4302 case INTRINSIC_GE_OS:
4303 case INTRINSIC_LT:
4304 case INTRINSIC_LT_OS:
4305 case INTRINSIC_LE:
4306 case INTRINSIC_LE_OS:
4307
4308 if (op1->rank == 0 && op2->rank == 0)
4309 e->rank = 0;
4310
4311 if (op1->rank == 0 && op2->rank != 0)
4312 {
4313 e->rank = op2->rank;
4314
4315 if (e->shape == NULL)
4316 e->shape = gfc_copy_shape (op2->shape, op2->rank);
4317 }
4318
4319 if (op1->rank != 0 && op2->rank == 0)
4320 {
4321 e->rank = op1->rank;
4322
4323 if (e->shape == NULL)
4324 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4325 }
4326
4327 if (op1->rank != 0 && op2->rank != 0)
4328 {
4329 if (op1->rank == op2->rank)
4330 {
4331 e->rank = op1->rank;
4332 if (e->shape == NULL)
4333 {
4334 t = compare_shapes (op1, op2);
4335 if (!t)
4336 e->shape = NULL;
4337 else
4338 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4339 }
4340 }
4341 else
4342 {
4343 /* Allow higher level expressions to work. */
4344 e->rank = 0;
4345
4346 /* Try user-defined operators, and otherwise throw an error. */
4347 dual_locus_error = true;
4348 sprintf (msg,
4349 _("Inconsistent ranks for operator at %%L and %%L"));
4350 goto bad_op;
4351 }
4352 }
4353
4354 break;
4355
4356 case INTRINSIC_PARENTHESES:
4357 case INTRINSIC_NOT:
4358 case INTRINSIC_UPLUS:
4359 case INTRINSIC_UMINUS:
4360 /* Simply copy arrayness attribute */
4361 e->rank = op1->rank;
4362
4363 if (e->shape == NULL)
4364 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4365
4366 break;
4367
4368 default:
4369 break;
4370 }
4371
4372 simplify_op:
4373
4374 /* Attempt to simplify the expression. */
4375 if (t)
4376 {
4377 t = gfc_simplify_expr (e, 0);
4378 /* Some calls do not succeed in simplification and return false
4379 even though there is no error; e.g. variable references to
4380 PARAMETER arrays. */
4381 if (!gfc_is_constant_expr (e))
4382 t = true;
4383 }
4384 return t;
4385
4386 bad_op:
4387
4388 {
4389 match m = gfc_extend_expr (e);
4390 if (m == MATCH_YES)
4391 return true;
4392 if (m == MATCH_ERROR)
4393 return false;
4394 }
4395
4396 if (dual_locus_error)
4397 gfc_error (msg, &op1->where, &op2->where);
4398 else
4399 gfc_error (msg, &e->where);
4400
4401 return false;
4402 }
4403
4404
4405 /************** Array resolution subroutines **************/
4406
4407 enum compare_result
4408 { CMP_LT, CMP_EQ, CMP_GT, CMP_UNKNOWN };
4409
4410 /* Compare two integer expressions. */
4411
4412 static compare_result
4413 compare_bound (gfc_expr *a, gfc_expr *b)
4414 {
4415 int i;
4416
4417 if (a == NULL || a->expr_type != EXPR_CONSTANT
4418 || b == NULL || b->expr_type != EXPR_CONSTANT)
4419 return CMP_UNKNOWN;
4420
4421 /* If either of the types isn't INTEGER, we must have
4422 raised an error earlier. */
4423
4424 if (a->ts.type != BT_INTEGER || b->ts.type != BT_INTEGER)
4425 return CMP_UNKNOWN;
4426
4427 i = mpz_cmp (a->value.integer, b->value.integer);
4428
4429 if (i < 0)
4430 return CMP_LT;
4431 if (i > 0)
4432 return CMP_GT;
4433 return CMP_EQ;
4434 }
4435
4436
4437 /* Compare an integer expression with an integer. */
4438
4439 static compare_result
4440 compare_bound_int (gfc_expr *a, int b)
4441 {
4442 int i;
4443
4444 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4445 return CMP_UNKNOWN;
4446
4447 if (a->ts.type != BT_INTEGER)
4448 gfc_internal_error ("compare_bound_int(): Bad expression");
4449
4450 i = mpz_cmp_si (a->value.integer, b);
4451
4452 if (i < 0)
4453 return CMP_LT;
4454 if (i > 0)
4455 return CMP_GT;
4456 return CMP_EQ;
4457 }
4458
4459
4460 /* Compare an integer expression with a mpz_t. */
4461
4462 static compare_result
4463 compare_bound_mpz_t (gfc_expr *a, mpz_t b)
4464 {
4465 int i;
4466
4467 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4468 return CMP_UNKNOWN;
4469
4470 if (a->ts.type != BT_INTEGER)
4471 gfc_internal_error ("compare_bound_int(): Bad expression");
4472
4473 i = mpz_cmp (a->value.integer, b);
4474
4475 if (i < 0)
4476 return CMP_LT;
4477 if (i > 0)
4478 return CMP_GT;
4479 return CMP_EQ;
4480 }
4481
4482
4483 /* Compute the last value of a sequence given by a triplet.
4484 Return 0 if it wasn't able to compute the last value, or if the
4485 sequence if empty, and 1 otherwise. */
4486
4487 static int
4488 compute_last_value_for_triplet (gfc_expr *start, gfc_expr *end,
4489 gfc_expr *stride, mpz_t last)
4490 {
4491 mpz_t rem;
4492
4493 if (start == NULL || start->expr_type != EXPR_CONSTANT
4494 || end == NULL || end->expr_type != EXPR_CONSTANT
4495 || (stride != NULL && stride->expr_type != EXPR_CONSTANT))
4496 return 0;
4497
4498 if (start->ts.type != BT_INTEGER || end->ts.type != BT_INTEGER
4499 || (stride != NULL && stride->ts.type != BT_INTEGER))
4500 return 0;
4501
4502 if (stride == NULL || compare_bound_int (stride, 1) == CMP_EQ)
4503 {
4504 if (compare_bound (start, end) == CMP_GT)
4505 return 0;
4506 mpz_set (last, end->value.integer);
4507 return 1;
4508 }
4509
4510 if (compare_bound_int (stride, 0) == CMP_GT)
4511 {
4512 /* Stride is positive */
4513 if (mpz_cmp (start->value.integer, end->value.integer) > 0)
4514 return 0;
4515 }
4516 else
4517 {
4518 /* Stride is negative */
4519 if (mpz_cmp (start->value.integer, end->value.integer) < 0)
4520 return 0;
4521 }
4522
4523 mpz_init (rem);
4524 mpz_sub (rem, end->value.integer, start->value.integer);
4525 mpz_tdiv_r (rem, rem, stride->value.integer);
4526 mpz_sub (last, end->value.integer, rem);
4527 mpz_clear (rem);
4528
4529 return 1;
4530 }
4531
4532
4533 /* Compare a single dimension of an array reference to the array
4534 specification. */
4535
4536 static bool
4537 check_dimension (int i, gfc_array_ref *ar, gfc_array_spec *as)
4538 {
4539 mpz_t last_value;
4540
4541 if (ar->dimen_type[i] == DIMEN_STAR)
4542 {
4543 gcc_assert (ar->stride[i] == NULL);
4544 /* This implies [*] as [*:] and [*:3] are not possible. */
4545 if (ar->start[i] == NULL)
4546 {
4547 gcc_assert (ar->end[i] == NULL);
4548 return true;
4549 }
4550 }
4551
4552 /* Given start, end and stride values, calculate the minimum and
4553 maximum referenced indexes. */
4554
4555 switch (ar->dimen_type[i])
4556 {
4557 case DIMEN_VECTOR:
4558 case DIMEN_THIS_IMAGE:
4559 break;
4560
4561 case DIMEN_STAR:
4562 case DIMEN_ELEMENT:
4563 if (compare_bound (ar->start[i], as->lower[i]) == CMP_LT)
4564 {
4565 if (i < as->rank)
4566 gfc_warning (0, "Array reference at %L is out of bounds "
4567 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4568 mpz_get_si (ar->start[i]->value.integer),
4569 mpz_get_si (as->lower[i]->value.integer), i+1);
4570 else
4571 gfc_warning (0, "Array reference at %L is out of bounds "
4572 "(%ld < %ld) in codimension %d", &ar->c_where[i],
4573 mpz_get_si (ar->start[i]->value.integer),
4574 mpz_get_si (as->lower[i]->value.integer),
4575 i + 1 - as->rank);
4576 return true;
4577 }
4578 if (compare_bound (ar->start[i], as->upper[i]) == CMP_GT)
4579 {
4580 if (i < as->rank)
4581 gfc_warning (0, "Array reference at %L is out of bounds "
4582 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4583 mpz_get_si (ar->start[i]->value.integer),
4584 mpz_get_si (as->upper[i]->value.integer), i+1);
4585 else
4586 gfc_warning (0, "Array reference at %L is out of bounds "
4587 "(%ld > %ld) in codimension %d", &ar->c_where[i],
4588 mpz_get_si (ar->start[i]->value.integer),
4589 mpz_get_si (as->upper[i]->value.integer),
4590 i + 1 - as->rank);
4591 return true;
4592 }
4593
4594 break;
4595
4596 case DIMEN_RANGE:
4597 {
4598 #define AR_START (ar->start[i] ? ar->start[i] : as->lower[i])
4599 #define AR_END (ar->end[i] ? ar->end[i] : as->upper[i])
4600
4601 compare_result comp_start_end = compare_bound (AR_START, AR_END);
4602
4603 /* Check for zero stride, which is not allowed. */
4604 if (compare_bound_int (ar->stride[i], 0) == CMP_EQ)
4605 {
4606 gfc_error ("Illegal stride of zero at %L", &ar->c_where[i]);
4607 return false;
4608 }
4609
4610 /* if start == len || (stride > 0 && start < len)
4611 || (stride < 0 && start > len),
4612 then the array section contains at least one element. In this
4613 case, there is an out-of-bounds access if
4614 (start < lower || start > upper). */
4615 if (compare_bound (AR_START, AR_END) == CMP_EQ
4616 || ((compare_bound_int (ar->stride[i], 0) == CMP_GT
4617 || ar->stride[i] == NULL) && comp_start_end == CMP_LT)
4618 || (compare_bound_int (ar->stride[i], 0) == CMP_LT
4619 && comp_start_end == CMP_GT))
4620 {
4621 if (compare_bound (AR_START, as->lower[i]) == CMP_LT)
4622 {
4623 gfc_warning (0, "Lower array reference at %L is out of bounds "
4624 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4625 mpz_get_si (AR_START->value.integer),
4626 mpz_get_si (as->lower[i]->value.integer), i+1);
4627 return true;
4628 }
4629 if (compare_bound (AR_START, as->upper[i]) == CMP_GT)
4630 {
4631 gfc_warning (0, "Lower array reference at %L is out of bounds "
4632 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4633 mpz_get_si (AR_START->value.integer),
4634 mpz_get_si (as->upper[i]->value.integer), i+1);
4635 return true;
4636 }
4637 }
4638
4639 /* If we can compute the highest index of the array section,
4640 then it also has to be between lower and upper. */
4641 mpz_init (last_value);
4642 if (compute_last_value_for_triplet (AR_START, AR_END, ar->stride[i],
4643 last_value))
4644 {
4645 if (compare_bound_mpz_t (as->lower[i], last_value) == CMP_GT)
4646 {
4647 gfc_warning (0, "Upper array reference at %L is out of bounds "
4648 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4649 mpz_get_si (last_value),
4650 mpz_get_si (as->lower[i]->value.integer), i+1);
4651 mpz_clear (last_value);
4652 return true;
4653 }
4654 if (compare_bound_mpz_t (as->upper[i], last_value) == CMP_LT)
4655 {
4656 gfc_warning (0, "Upper array reference at %L is out of bounds "
4657 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4658 mpz_get_si (last_value),
4659 mpz_get_si (as->upper[i]->value.integer), i+1);
4660 mpz_clear (last_value);
4661 return true;
4662 }
4663 }
4664 mpz_clear (last_value);
4665
4666 #undef AR_START
4667 #undef AR_END
4668 }
4669 break;
4670
4671 default:
4672 gfc_internal_error ("check_dimension(): Bad array reference");
4673 }
4674
4675 return true;
4676 }
4677
4678
4679 /* Compare an array reference with an array specification. */
4680
4681 static bool
4682 compare_spec_to_ref (gfc_array_ref *ar)
4683 {
4684 gfc_array_spec *as;
4685 int i;
4686
4687 as = ar->as;
4688 i = as->rank - 1;
4689 /* TODO: Full array sections are only allowed as actual parameters. */
4690 if (as->type == AS_ASSUMED_SIZE
4691 && (/*ar->type == AR_FULL
4692 ||*/ (ar->type == AR_SECTION
4693 && ar->dimen_type[i] == DIMEN_RANGE && ar->end[i] == NULL)))
4694 {
4695 gfc_error ("Rightmost upper bound of assumed size array section "
4696 "not specified at %L", &ar->where);
4697 return false;
4698 }
4699
4700 if (ar->type == AR_FULL)
4701 return true;
4702
4703 if (as->rank != ar->dimen)
4704 {
4705 gfc_error ("Rank mismatch in array reference at %L (%d/%d)",
4706 &ar->where, ar->dimen, as->rank);
4707 return false;
4708 }
4709
4710 /* ar->codimen == 0 is a local array. */
4711 if (as->corank != ar->codimen && ar->codimen != 0)
4712 {
4713 gfc_error ("Coindex rank mismatch in array reference at %L (%d/%d)",
4714 &ar->where, ar->codimen, as->corank);
4715 return false;
4716 }
4717
4718 for (i = 0; i < as->rank; i++)
4719 if (!check_dimension (i, ar, as))
4720 return false;
4721
4722 /* Local access has no coarray spec. */
4723 if (ar->codimen != 0)
4724 for (i = as->rank; i < as->rank + as->corank; i++)
4725 {
4726 if (ar->dimen_type[i] != DIMEN_ELEMENT && !ar->in_allocate
4727 && ar->dimen_type[i] != DIMEN_THIS_IMAGE)
4728 {
4729 gfc_error ("Coindex of codimension %d must be a scalar at %L",
4730 i + 1 - as->rank, &ar->where);
4731 return false;
4732 }
4733 if (!check_dimension (i, ar, as))
4734 return false;
4735 }
4736
4737 return true;
4738 }
4739
4740
4741 /* Resolve one part of an array index. */
4742
4743 static bool
4744 gfc_resolve_index_1 (gfc_expr *index, int check_scalar,
4745 int force_index_integer_kind)
4746 {
4747 gfc_typespec ts;
4748
4749 if (index == NULL)
4750 return true;
4751
4752 if (!gfc_resolve_expr (index))
4753 return false;
4754
4755 if (check_scalar && index->rank != 0)
4756 {
4757 gfc_error ("Array index at %L must be scalar", &index->where);
4758 return false;
4759 }
4760
4761 if (index->ts.type != BT_INTEGER && index->ts.type != BT_REAL)
4762 {
4763 gfc_error ("Array index at %L must be of INTEGER type, found %s",
4764 &index->where, gfc_basic_typename (index->ts.type));
4765 return false;
4766 }
4767
4768 if (index->ts.type == BT_REAL)
4769 if (!gfc_notify_std (GFC_STD_LEGACY, "REAL array index at %L",
4770 &index->where))
4771 return false;
4772
4773 if ((index->ts.kind != gfc_index_integer_kind
4774 && force_index_integer_kind)
4775 || index->ts.type != BT_INTEGER)
4776 {
4777 gfc_clear_ts (&ts);
4778 ts.type = BT_INTEGER;
4779 ts.kind = gfc_index_integer_kind;
4780
4781 gfc_convert_type_warn (index, &ts, 2, 0);
4782 }
4783
4784 return true;
4785 }
4786
4787 /* Resolve one part of an array index. */
4788
4789 bool
4790 gfc_resolve_index (gfc_expr *index, int check_scalar)
4791 {
4792 return gfc_resolve_index_1 (index, check_scalar, 1);
4793 }
4794
4795 /* Resolve a dim argument to an intrinsic function. */
4796
4797 bool
4798 gfc_resolve_dim_arg (gfc_expr *dim)
4799 {
4800 if (dim == NULL)
4801 return true;
4802
4803 if (!gfc_resolve_expr (dim))
4804 return false;
4805
4806 if (dim->rank != 0)
4807 {
4808 gfc_error ("Argument dim at %L must be scalar", &dim->where);
4809 return false;
4810
4811 }
4812
4813 if (dim->ts.type != BT_INTEGER)
4814 {
4815 gfc_error ("Argument dim at %L must be of INTEGER type", &dim->where);
4816 return false;
4817 }
4818
4819 if (dim->ts.kind != gfc_index_integer_kind)
4820 {
4821 gfc_typespec ts;
4822
4823 gfc_clear_ts (&ts);
4824 ts.type = BT_INTEGER;
4825 ts.kind = gfc_index_integer_kind;
4826
4827 gfc_convert_type_warn (dim, &ts, 2, 0);
4828 }
4829
4830 return true;
4831 }
4832
4833 /* Given an expression that contains array references, update those array
4834 references to point to the right array specifications. While this is
4835 filled in during matching, this information is difficult to save and load
4836 in a module, so we take care of it here.
4837
4838 The idea here is that the original array reference comes from the
4839 base symbol. We traverse the list of reference structures, setting
4840 the stored reference to references. Component references can
4841 provide an additional array specification. */
4842
4843 static void
4844 find_array_spec (gfc_expr *e)
4845 {
4846 gfc_array_spec *as;
4847 gfc_component *c;
4848 gfc_ref *ref;
4849 bool class_as = false;
4850
4851 if (e->symtree->n.sym->ts.type == BT_CLASS)
4852 {
4853 as = CLASS_DATA (e->symtree->n.sym)->as;
4854 class_as = true;
4855 }
4856 else
4857 as = e->symtree->n.sym->as;
4858
4859 for (ref = e->ref; ref; ref = ref->next)
4860 switch (ref->type)
4861 {
4862 case REF_ARRAY:
4863 if (as == NULL)
4864 gfc_internal_error ("find_array_spec(): Missing spec");
4865
4866 ref->u.ar.as = as;
4867 as = NULL;
4868 break;
4869
4870 case REF_COMPONENT:
4871 c = ref->u.c.component;
4872 if (c->attr.dimension)
4873 {
4874 if (as != NULL && !(class_as && as == c->as))
4875 gfc_internal_error ("find_array_spec(): unused as(1)");
4876 as = c->as;
4877 }
4878
4879 break;
4880
4881 case REF_SUBSTRING:
4882 case REF_INQUIRY:
4883 break;
4884 }
4885
4886 if (as != NULL)
4887 gfc_internal_error ("find_array_spec(): unused as(2)");
4888 }
4889
4890
4891 /* Resolve an array reference. */
4892
4893 static bool
4894 resolve_array_ref (gfc_array_ref *ar)
4895 {
4896 int i, check_scalar;
4897 gfc_expr *e;
4898
4899 for (i = 0; i < ar->dimen + ar->codimen; i++)
4900 {
4901 check_scalar = ar->dimen_type[i] == DIMEN_RANGE;
4902
4903 /* Do not force gfc_index_integer_kind for the start. We can
4904 do fine with any integer kind. This avoids temporary arrays
4905 created for indexing with a vector. */
4906 if (!gfc_resolve_index_1 (ar->start[i], check_scalar, 0))
4907 return false;
4908 if (!gfc_resolve_index (ar->end[i], check_scalar))
4909 return false;
4910 if (!gfc_resolve_index (ar->stride[i], check_scalar))
4911 return false;
4912
4913 e = ar->start[i];
4914
4915 if (ar->dimen_type[i] == DIMEN_UNKNOWN)
4916 switch (e->rank)
4917 {
4918 case 0:
4919 ar->dimen_type[i] = DIMEN_ELEMENT;
4920 break;
4921
4922 case 1:
4923 ar->dimen_type[i] = DIMEN_VECTOR;
4924 if (e->expr_type == EXPR_VARIABLE
4925 && e->symtree->n.sym->ts.type == BT_DERIVED)
4926 ar->start[i] = gfc_get_parentheses (e);
4927 break;
4928
4929 default:
4930 gfc_error ("Array index at %L is an array of rank %d",
4931 &ar->c_where[i], e->rank);
4932 return false;
4933 }
4934
4935 /* Fill in the upper bound, which may be lower than the
4936 specified one for something like a(2:10:5), which is
4937 identical to a(2:7:5). Only relevant for strides not equal
4938 to one. Don't try a division by zero. */
4939 if (ar->dimen_type[i] == DIMEN_RANGE
4940 && ar->stride[i] != NULL && ar->stride[i]->expr_type == EXPR_CONSTANT
4941 && mpz_cmp_si (ar->stride[i]->value.integer, 1L) != 0
4942 && mpz_cmp_si (ar->stride[i]->value.integer, 0L) != 0)
4943 {
4944 mpz_t size, end;
4945
4946 if (gfc_ref_dimen_size (ar, i, &size, &end))
4947 {
4948 if (ar->end[i] == NULL)
4949 {
4950 ar->end[i] =
4951 gfc_get_constant_expr (BT_INTEGER, gfc_index_integer_kind,
4952 &ar->where);
4953 mpz_set (ar->end[i]->value.integer, end);
4954 }
4955 else if (ar->end[i]->ts.type == BT_INTEGER
4956 && ar->end[i]->expr_type == EXPR_CONSTANT)
4957 {
4958 mpz_set (ar->end[i]->value.integer, end);
4959 }
4960 else
4961 gcc_unreachable ();
4962
4963 mpz_clear (size);
4964 mpz_clear (end);
4965 }
4966 }
4967 }
4968
4969 if (ar->type == AR_FULL)
4970 {
4971 if (ar->as->rank == 0)
4972 ar->type = AR_ELEMENT;
4973
4974 /* Make sure array is the same as array(:,:), this way
4975 we don't need to special case all the time. */
4976 ar->dimen = ar->as->rank;
4977 for (i = 0; i < ar->dimen; i++)
4978 {
4979 ar->dimen_type[i] = DIMEN_RANGE;
4980
4981 gcc_assert (ar->start[i] == NULL);
4982 gcc_assert (ar->end[i] == NULL);
4983 gcc_assert (ar->stride[i] == NULL);
4984 }
4985 }
4986
4987 /* If the reference type is unknown, figure out what kind it is. */
4988
4989 if (ar->type == AR_UNKNOWN)
4990 {
4991 ar->type = AR_ELEMENT;
4992 for (i = 0; i < ar->dimen; i++)
4993 if (ar->dimen_type[i] == DIMEN_RANGE
4994 || ar->dimen_type[i] == DIMEN_VECTOR)
4995 {
4996 ar->type = AR_SECTION;
4997 break;
4998 }
4999 }
5000
5001 if (!ar->as->cray_pointee && !compare_spec_to_ref (ar))
5002 return false;
5003
5004 if (ar->as->corank && ar->codimen == 0)
5005 {
5006 int n;
5007 ar->codimen = ar->as->corank;
5008 for (n = ar->dimen; n < ar->dimen + ar->codimen; n++)
5009 ar->dimen_type[n] = DIMEN_THIS_IMAGE;
5010 }
5011
5012 return true;
5013 }
5014
5015
5016 static bool
5017 resolve_substring (gfc_ref *ref, bool *equal_length)
5018 {
5019 int k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
5020
5021 if (ref->u.ss.start != NULL)
5022 {
5023 if (!gfc_resolve_expr (ref->u.ss.start))
5024 return false;
5025
5026 if (ref->u.ss.start->ts.type != BT_INTEGER)
5027 {
5028 gfc_error ("Substring start index at %L must be of type INTEGER",
5029 &ref->u.ss.start->where);
5030 return false;
5031 }
5032
5033 if (ref->u.ss.start->rank != 0)
5034 {
5035 gfc_error ("Substring start index at %L must be scalar",
5036 &ref->u.ss.start->where);
5037 return false;
5038 }
5039
5040 if (compare_bound_int (ref->u.ss.start, 1) == CMP_LT
5041 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
5042 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
5043 {
5044 gfc_error ("Substring start index at %L is less than one",
5045 &ref->u.ss.start->where);
5046 return false;
5047 }
5048 }
5049
5050 if (ref->u.ss.end != NULL)
5051 {
5052 if (!gfc_resolve_expr (ref->u.ss.end))
5053 return false;
5054
5055 if (ref->u.ss.end->ts.type != BT_INTEGER)
5056 {
5057 gfc_error ("Substring end index at %L must be of type INTEGER",
5058 &ref->u.ss.end->where);
5059 return false;
5060 }
5061
5062 if (ref->u.ss.end->rank != 0)
5063 {
5064 gfc_error ("Substring end index at %L must be scalar",
5065 &ref->u.ss.end->where);
5066 return false;
5067 }
5068
5069 if (ref->u.ss.length != NULL
5070 && compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_GT
5071 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
5072 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
5073 {
5074 gfc_error ("Substring end index at %L exceeds the string length",
5075 &ref->u.ss.start->where);
5076 return false;
5077 }
5078
5079 if (compare_bound_mpz_t (ref->u.ss.end,
5080 gfc_integer_kinds[k].huge) == CMP_GT
5081 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
5082 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
5083 {
5084 gfc_error ("Substring end index at %L is too large",
5085 &ref->u.ss.end->where);
5086 return false;
5087 }
5088 /* If the substring has the same length as the original
5089 variable, the reference itself can be deleted. */
5090
5091 if (ref->u.ss.length != NULL
5092 && compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_EQ
5093 && compare_bound_int (ref->u.ss.start, 1) == CMP_EQ)
5094 *equal_length = true;
5095 }
5096
5097 return true;
5098 }
5099
5100
5101 /* This function supplies missing substring charlens. */
5102
5103 void
5104 gfc_resolve_substring_charlen (gfc_expr *e)
5105 {
5106 gfc_ref *char_ref;
5107 gfc_expr *start, *end;
5108 gfc_typespec *ts = NULL;
5109 mpz_t diff;
5110
5111 for (char_ref = e->ref; char_ref; char_ref = char_ref->next)
5112 {
5113 if (char_ref->type == REF_SUBSTRING || char_ref->type == REF_INQUIRY)
5114 break;
5115 if (char_ref->type == REF_COMPONENT)
5116 ts = &char_ref->u.c.component->ts;
5117 }
5118
5119 if (!char_ref || char_ref->type == REF_INQUIRY)
5120 return;
5121
5122 gcc_assert (char_ref->next == NULL);
5123
5124 if (e->ts.u.cl)
5125 {
5126 if (e->ts.u.cl->length)
5127 gfc_free_expr (e->ts.u.cl->length);
5128 else if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.dummy)
5129 return;
5130 }
5131
5132 e->ts.type = BT_CHARACTER;
5133 e->ts.kind = gfc_default_character_kind;
5134
5135 if (!e->ts.u.cl)
5136 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5137
5138 if (char_ref->u.ss.start)
5139 start = gfc_copy_expr (char_ref->u.ss.start);
5140 else
5141 start = gfc_get_int_expr (gfc_charlen_int_kind, NULL, 1);
5142
5143 if (char_ref->u.ss.end)
5144 end = gfc_copy_expr (char_ref->u.ss.end);
5145 else if (e->expr_type == EXPR_VARIABLE)
5146 {
5147 if (!ts)
5148 ts = &e->symtree->n.sym->ts;
5149 end = gfc_copy_expr (ts->u.cl->length);
5150 }
5151 else
5152 end = NULL;
5153
5154 if (!start || !end)
5155 {
5156 gfc_free_expr (start);
5157 gfc_free_expr (end);
5158 return;
5159 }
5160
5161 /* Length = (end - start + 1).
5162 Check first whether it has a constant length. */
5163 if (gfc_dep_difference (end, start, &diff))
5164 {
5165 gfc_expr *len = gfc_get_constant_expr (BT_INTEGER, gfc_charlen_int_kind,
5166 &e->where);
5167
5168 mpz_add_ui (len->value.integer, diff, 1);
5169 mpz_clear (diff);
5170 e->ts.u.cl->length = len;
5171 /* The check for length < 0 is handled below */
5172 }
5173 else
5174 {
5175 e->ts.u.cl->length = gfc_subtract (end, start);
5176 e->ts.u.cl->length = gfc_add (e->ts.u.cl->length,
5177 gfc_get_int_expr (gfc_charlen_int_kind,
5178 NULL, 1));
5179 }
5180
5181 /* F2008, 6.4.1: Both the starting point and the ending point shall
5182 be within the range 1, 2, ..., n unless the starting point exceeds
5183 the ending point, in which case the substring has length zero. */
5184
5185 if (mpz_cmp_si (e->ts.u.cl->length->value.integer, 0) < 0)
5186 mpz_set_si (e->ts.u.cl->length->value.integer, 0);
5187
5188 e->ts.u.cl->length->ts.type = BT_INTEGER;
5189 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
5190
5191 /* Make sure that the length is simplified. */
5192 gfc_simplify_expr (e->ts.u.cl->length, 1);
5193 gfc_resolve_expr (e->ts.u.cl->length);
5194 }
5195
5196
5197 /* Resolve subtype references. */
5198
5199 bool
5200 gfc_resolve_ref (gfc_expr *expr)
5201 {
5202 int current_part_dimension, n_components, seen_part_dimension, dim;
5203 gfc_ref *ref, **prev, *array_ref;
5204 bool equal_length;
5205
5206 for (ref = expr->ref; ref; ref = ref->next)
5207 if (ref->type == REF_ARRAY && ref->u.ar.as == NULL)
5208 {
5209 find_array_spec (expr);
5210 break;
5211 }
5212
5213 for (prev = &expr->ref; *prev != NULL;
5214 prev = *prev == NULL ? prev : &(*prev)->next)
5215 switch ((*prev)->type)
5216 {
5217 case REF_ARRAY:
5218 if (!resolve_array_ref (&(*prev)->u.ar))
5219 return false;
5220 break;
5221
5222 case REF_COMPONENT:
5223 case REF_INQUIRY:
5224 break;
5225
5226 case REF_SUBSTRING:
5227 equal_length = false;
5228 if (!resolve_substring (*prev, &equal_length))
5229 return false;
5230
5231 if (expr->expr_type != EXPR_SUBSTRING && equal_length)
5232 {
5233 /* Remove the reference and move the charlen, if any. */
5234 ref = *prev;
5235 *prev = ref->next;
5236 ref->next = NULL;
5237 expr->ts.u.cl = ref->u.ss.length;
5238 ref->u.ss.length = NULL;
5239 gfc_free_ref_list (ref);
5240 }
5241 break;
5242 }
5243
5244 /* Check constraints on part references. */
5245
5246 current_part_dimension = 0;
5247 seen_part_dimension = 0;
5248 n_components = 0;
5249 array_ref = NULL;
5250
5251 for (ref = expr->ref; ref; ref = ref->next)
5252 {
5253 switch (ref->type)
5254 {
5255 case REF_ARRAY:
5256 array_ref = ref;
5257 switch (ref->u.ar.type)
5258 {
5259 case AR_FULL:
5260 /* Coarray scalar. */
5261 if (ref->u.ar.as->rank == 0)
5262 {
5263 current_part_dimension = 0;
5264 break;
5265 }
5266 /* Fall through. */
5267 case AR_SECTION:
5268 current_part_dimension = 1;
5269 break;
5270
5271 case AR_ELEMENT:
5272 array_ref = NULL;
5273 current_part_dimension = 0;
5274 break;
5275
5276 case AR_UNKNOWN:
5277 gfc_internal_error ("resolve_ref(): Bad array reference");
5278 }
5279
5280 break;
5281
5282 case REF_COMPONENT:
5283 if (current_part_dimension || seen_part_dimension)
5284 {
5285 /* F03:C614. */
5286 if (ref->u.c.component->attr.pointer
5287 || ref->u.c.component->attr.proc_pointer
5288 || (ref->u.c.component->ts.type == BT_CLASS
5289 && CLASS_DATA (ref->u.c.component)->attr.pointer))
5290 {
5291 gfc_error ("Component to the right of a part reference "
5292 "with nonzero rank must not have the POINTER "
5293 "attribute at %L", &expr->where);
5294 return false;
5295 }
5296 else if (ref->u.c.component->attr.allocatable
5297 || (ref->u.c.component->ts.type == BT_CLASS
5298 && CLASS_DATA (ref->u.c.component)->attr.allocatable))
5299
5300 {
5301 gfc_error ("Component to the right of a part reference "
5302 "with nonzero rank must not have the ALLOCATABLE "
5303 "attribute at %L", &expr->where);
5304 return false;
5305 }
5306 }
5307
5308 n_components++;
5309 break;
5310
5311 case REF_SUBSTRING:
5312 break;
5313
5314 case REF_INQUIRY:
5315 /* Implement requirement in note 9.7 of F2018 that the result of the
5316 LEN inquiry be a scalar. */
5317 if (ref->u.i == INQUIRY_LEN && array_ref && expr->ts.deferred)
5318 {
5319 array_ref->u.ar.type = AR_ELEMENT;
5320 expr->rank = 0;
5321 /* INQUIRY_LEN is not evaluated from the rest of the expr
5322 but directly from the string length. This means that setting
5323 the array indices to one does not matter but might trigger
5324 a runtime bounds error. Suppress the check. */
5325 expr->no_bounds_check = 1;
5326 for (dim = 0; dim < array_ref->u.ar.dimen; dim++)
5327 {
5328 array_ref->u.ar.dimen_type[dim] = DIMEN_ELEMENT;
5329 if (array_ref->u.ar.start[dim])
5330 gfc_free_expr (array_ref->u.ar.start[dim]);
5331 array_ref->u.ar.start[dim]
5332 = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
5333 if (array_ref->u.ar.end[dim])
5334 gfc_free_expr (array_ref->u.ar.end[dim]);
5335 if (array_ref->u.ar.stride[dim])
5336 gfc_free_expr (array_ref->u.ar.stride[dim]);
5337 }
5338 }
5339 break;
5340 }
5341
5342 if (((ref->type == REF_COMPONENT && n_components > 1)
5343 || ref->next == NULL)
5344 && current_part_dimension
5345 && seen_part_dimension)
5346 {
5347 gfc_error ("Two or more part references with nonzero rank must "
5348 "not be specified at %L", &expr->where);
5349 return false;
5350 }
5351
5352 if (ref->type == REF_COMPONENT)
5353 {
5354 if (current_part_dimension)
5355 seen_part_dimension = 1;
5356
5357 /* reset to make sure */
5358 current_part_dimension = 0;
5359 }
5360 }
5361
5362 return true;
5363 }
5364
5365
5366 /* Given an expression, determine its shape. This is easier than it sounds.
5367 Leaves the shape array NULL if it is not possible to determine the shape. */
5368
5369 static void
5370 expression_shape (gfc_expr *e)
5371 {
5372 mpz_t array[GFC_MAX_DIMENSIONS];
5373 int i;
5374
5375 if (e->rank <= 0 || e->shape != NULL)
5376 return;
5377
5378 for (i = 0; i < e->rank; i++)
5379 if (!gfc_array_dimen_size (e, i, &array[i]))
5380 goto fail;
5381
5382 e->shape = gfc_get_shape (e->rank);
5383
5384 memcpy (e->shape, array, e->rank * sizeof (mpz_t));
5385
5386 return;
5387
5388 fail:
5389 for (i--; i >= 0; i--)
5390 mpz_clear (array[i]);
5391 }
5392
5393
5394 /* Given a variable expression node, compute the rank of the expression by
5395 examining the base symbol and any reference structures it may have. */
5396
5397 void
5398 gfc_expression_rank (gfc_expr *e)
5399 {
5400 gfc_ref *ref;
5401 int i, rank;
5402
5403 /* Just to make sure, because EXPR_COMPCALL's also have an e->ref and that
5404 could lead to serious confusion... */
5405 gcc_assert (e->expr_type != EXPR_COMPCALL);
5406
5407 if (e->ref == NULL)
5408 {
5409 if (e->expr_type == EXPR_ARRAY)
5410 goto done;
5411 /* Constructors can have a rank different from one via RESHAPE(). */
5412
5413 e->rank = ((e->symtree == NULL || e->symtree->n.sym->as == NULL)
5414 ? 0 : e->symtree->n.sym->as->rank);
5415 goto done;
5416 }
5417
5418 rank = 0;
5419
5420 for (ref = e->ref; ref; ref = ref->next)
5421 {
5422 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.proc_pointer
5423 && ref->u.c.component->attr.function && !ref->next)
5424 rank = ref->u.c.component->as ? ref->u.c.component->as->rank : 0;
5425
5426 if (ref->type != REF_ARRAY)
5427 continue;
5428
5429 if (ref->u.ar.type == AR_FULL)
5430 {
5431 rank = ref->u.ar.as->rank;
5432 break;
5433 }
5434
5435 if (ref->u.ar.type == AR_SECTION)
5436 {
5437 /* Figure out the rank of the section. */
5438 if (rank != 0)
5439 gfc_internal_error ("gfc_expression_rank(): Two array specs");
5440
5441 for (i = 0; i < ref->u.ar.dimen; i++)
5442 if (ref->u.ar.dimen_type[i] == DIMEN_RANGE
5443 || ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
5444 rank++;
5445
5446 break;
5447 }
5448 }
5449
5450 e->rank = rank;
5451
5452 done:
5453 expression_shape (e);
5454 }
5455
5456
5457 static void
5458 add_caf_get_intrinsic (gfc_expr *e)
5459 {
5460 gfc_expr *wrapper, *tmp_expr;
5461 gfc_ref *ref;
5462 int n;
5463
5464 for (ref = e->ref; ref; ref = ref->next)
5465 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5466 break;
5467 if (ref == NULL)
5468 return;
5469
5470 for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
5471 if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
5472 return;
5473
5474 tmp_expr = XCNEW (gfc_expr);
5475 *tmp_expr = *e;
5476 wrapper = gfc_build_intrinsic_call (gfc_current_ns, GFC_ISYM_CAF_GET,
5477 "caf_get", tmp_expr->where, 1, tmp_expr);
5478 wrapper->ts = e->ts;
5479 wrapper->rank = e->rank;
5480 if (e->rank)
5481 wrapper->shape = gfc_copy_shape (e->shape, e->rank);
5482 *e = *wrapper;
5483 free (wrapper);
5484 }
5485
5486
5487 static void
5488 remove_caf_get_intrinsic (gfc_expr *e)
5489 {
5490 gcc_assert (e->expr_type == EXPR_FUNCTION && e->value.function.isym
5491 && e->value.function.isym->id == GFC_ISYM_CAF_GET);
5492 gfc_expr *e2 = e->value.function.actual->expr;
5493 e->value.function.actual->expr = NULL;
5494 gfc_free_actual_arglist (e->value.function.actual);
5495 gfc_free_shape (&e->shape, e->rank);
5496 *e = *e2;
5497 free (e2);
5498 }
5499
5500
5501 /* Resolve a variable expression. */
5502
5503 static bool
5504 resolve_variable (gfc_expr *e)
5505 {
5506 gfc_symbol *sym;
5507 bool t;
5508
5509 t = true;
5510
5511 if (e->symtree == NULL)
5512 return false;
5513 sym = e->symtree->n.sym;
5514
5515 /* Use same check as for TYPE(*) below; this check has to be before TYPE(*)
5516 as ts.type is set to BT_ASSUMED in resolve_symbol. */
5517 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
5518 {
5519 if (!actual_arg || inquiry_argument)
5520 {
5521 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may only "
5522 "be used as actual argument", sym->name, &e->where);
5523 return false;
5524 }
5525 }
5526 /* TS 29113, 407b. */
5527 else if (e->ts.type == BT_ASSUMED)
5528 {
5529 if (!actual_arg)
5530 {
5531 gfc_error ("Assumed-type variable %s at %L may only be used "
5532 "as actual argument", sym->name, &e->where);
5533 return false;
5534 }
5535 else if (inquiry_argument && !first_actual_arg)
5536 {
5537 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5538 for all inquiry functions in resolve_function; the reason is
5539 that the function-name resolution happens too late in that
5540 function. */
5541 gfc_error ("Assumed-type variable %s at %L as actual argument to "
5542 "an inquiry function shall be the first argument",
5543 sym->name, &e->where);
5544 return false;
5545 }
5546 }
5547 /* TS 29113, C535b. */
5548 else if (((sym->ts.type == BT_CLASS && sym->attr.class_ok
5549 && CLASS_DATA (sym)->as
5550 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5551 || (sym->ts.type != BT_CLASS && sym->as
5552 && sym->as->type == AS_ASSUMED_RANK))
5553 && !sym->attr.select_rank_temporary)
5554 {
5555 if (!actual_arg
5556 && !(cs_base && cs_base->current
5557 && cs_base->current->op == EXEC_SELECT_RANK))
5558 {
5559 gfc_error ("Assumed-rank variable %s at %L may only be used as "
5560 "actual argument", sym->name, &e->where);
5561 return false;
5562 }
5563 else if (inquiry_argument && !first_actual_arg)
5564 {
5565 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5566 for all inquiry functions in resolve_function; the reason is
5567 that the function-name resolution happens too late in that
5568 function. */
5569 gfc_error ("Assumed-rank variable %s at %L as actual argument "
5570 "to an inquiry function shall be the first argument",
5571 sym->name, &e->where);
5572 return false;
5573 }
5574 }
5575
5576 if ((sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) && e->ref
5577 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5578 && e->ref->next == NULL))
5579 {
5580 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall not have "
5581 "a subobject reference", sym->name, &e->ref->u.ar.where);
5582 return false;
5583 }
5584 /* TS 29113, 407b. */
5585 else if (e->ts.type == BT_ASSUMED && e->ref
5586 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5587 && e->ref->next == NULL))
5588 {
5589 gfc_error ("Assumed-type variable %s at %L shall not have a subobject "
5590 "reference", sym->name, &e->ref->u.ar.where);
5591 return false;
5592 }
5593
5594 /* TS 29113, C535b. */
5595 if (((sym->ts.type == BT_CLASS && sym->attr.class_ok
5596 && CLASS_DATA (sym)->as
5597 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5598 || (sym->ts.type != BT_CLASS && sym->as
5599 && sym->as->type == AS_ASSUMED_RANK))
5600 && e->ref
5601 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5602 && e->ref->next == NULL))
5603 {
5604 gfc_error ("Assumed-rank variable %s at %L shall not have a subobject "
5605 "reference", sym->name, &e->ref->u.ar.where);
5606 return false;
5607 }
5608
5609 /* For variables that are used in an associate (target => object) where
5610 the object's basetype is array valued while the target is scalar,
5611 the ts' type of the component refs is still array valued, which
5612 can't be translated that way. */
5613 if (sym->assoc && e->rank == 0 && e->ref && sym->ts.type == BT_CLASS
5614 && sym->assoc->target && sym->assoc->target->ts.type == BT_CLASS
5615 && CLASS_DATA (sym->assoc->target)->as)
5616 {
5617 gfc_ref *ref = e->ref;
5618 while (ref)
5619 {
5620 switch (ref->type)
5621 {
5622 case REF_COMPONENT:
5623 ref->u.c.sym = sym->ts.u.derived;
5624 /* Stop the loop. */
5625 ref = NULL;
5626 break;
5627 default:
5628 ref = ref->next;
5629 break;
5630 }
5631 }
5632 }
5633
5634 /* If this is an associate-name, it may be parsed with an array reference
5635 in error even though the target is scalar. Fail directly in this case.
5636 TODO Understand why class scalar expressions must be excluded. */
5637 if (sym->assoc && !(sym->ts.type == BT_CLASS && e->rank == 0))
5638 {
5639 if (sym->ts.type == BT_CLASS)
5640 gfc_fix_class_refs (e);
5641 if (!sym->attr.dimension && e->ref && e->ref->type == REF_ARRAY)
5642 return false;
5643 else if (sym->attr.dimension && (!e->ref || e->ref->type != REF_ARRAY))
5644 {
5645 /* This can happen because the parser did not detect that the
5646 associate name is an array and the expression had no array
5647 part_ref. */
5648 gfc_ref *ref = gfc_get_ref ();
5649 ref->type = REF_ARRAY;
5650 ref->u.ar = *gfc_get_array_ref();
5651 ref->u.ar.type = AR_FULL;
5652 if (sym->as)
5653 {
5654 ref->u.ar.as = sym->as;
5655 ref->u.ar.dimen = sym->as->rank;
5656 }
5657 ref->next = e->ref;
5658 e->ref = ref;
5659
5660 }
5661 }
5662
5663 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.generic)
5664 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
5665
5666 /* On the other hand, the parser may not have known this is an array;
5667 in this case, we have to add a FULL reference. */
5668 if (sym->assoc && sym->attr.dimension && !e->ref)
5669 {
5670 e->ref = gfc_get_ref ();
5671 e->ref->type = REF_ARRAY;
5672 e->ref->u.ar.type = AR_FULL;
5673 e->ref->u.ar.dimen = 0;
5674 }
5675
5676 /* Like above, but for class types, where the checking whether an array
5677 ref is present is more complicated. Furthermore make sure not to add
5678 the full array ref to _vptr or _len refs. */
5679 if (sym->assoc && sym->ts.type == BT_CLASS
5680 && CLASS_DATA (sym)->attr.dimension
5681 && (e->ts.type != BT_DERIVED || !e->ts.u.derived->attr.vtype))
5682 {
5683 gfc_ref *ref, *newref;
5684
5685 newref = gfc_get_ref ();
5686 newref->type = REF_ARRAY;
5687 newref->u.ar.type = AR_FULL;
5688 newref->u.ar.dimen = 0;
5689 /* Because this is an associate var and the first ref either is a ref to
5690 the _data component or not, no traversal of the ref chain is
5691 needed. The array ref needs to be inserted after the _data ref,
5692 or when that is not present, which may happend for polymorphic
5693 types, then at the first position. */
5694 ref = e->ref;
5695 if (!ref)
5696 e->ref = newref;
5697 else if (ref->type == REF_COMPONENT
5698 && strcmp ("_data", ref->u.c.component->name) == 0)
5699 {
5700 if (!ref->next || ref->next->type != REF_ARRAY)
5701 {
5702 newref->next = ref->next;
5703 ref->next = newref;
5704 }
5705 else
5706 /* Array ref present already. */
5707 gfc_free_ref_list (newref);
5708 }
5709 else if (ref->type == REF_ARRAY)
5710 /* Array ref present already. */
5711 gfc_free_ref_list (newref);
5712 else
5713 {
5714 newref->next = ref;
5715 e->ref = newref;
5716 }
5717 }
5718
5719 if (e->ref && !gfc_resolve_ref (e))
5720 return false;
5721
5722 if (sym->attr.flavor == FL_PROCEDURE
5723 && (!sym->attr.function
5724 || (sym->attr.function && sym->result
5725 && sym->result->attr.proc_pointer
5726 && !sym->result->attr.function)))
5727 {
5728 e->ts.type = BT_PROCEDURE;
5729 goto resolve_procedure;
5730 }
5731
5732 if (sym->ts.type != BT_UNKNOWN)
5733 gfc_variable_attr (e, &e->ts);
5734 else if (sym->attr.flavor == FL_PROCEDURE
5735 && sym->attr.function && sym->result
5736 && sym->result->ts.type != BT_UNKNOWN
5737 && sym->result->attr.proc_pointer)
5738 e->ts = sym->result->ts;
5739 else
5740 {
5741 /* Must be a simple variable reference. */
5742 if (!gfc_set_default_type (sym, 1, sym->ns))
5743 return false;
5744 e->ts = sym->ts;
5745 }
5746
5747 if (check_assumed_size_reference (sym, e))
5748 return false;
5749
5750 /* Deal with forward references to entries during gfc_resolve_code, to
5751 satisfy, at least partially, 12.5.2.5. */
5752 if (gfc_current_ns->entries
5753 && current_entry_id == sym->entry_id
5754 && cs_base
5755 && cs_base->current
5756 && cs_base->current->op != EXEC_ENTRY)
5757 {
5758 gfc_entry_list *entry;
5759 gfc_formal_arglist *formal;
5760 int n;
5761 bool seen, saved_specification_expr;
5762
5763 /* If the symbol is a dummy... */
5764 if (sym->attr.dummy && sym->ns == gfc_current_ns)
5765 {
5766 entry = gfc_current_ns->entries;
5767 seen = false;
5768
5769 /* ...test if the symbol is a parameter of previous entries. */
5770 for (; entry && entry->id <= current_entry_id; entry = entry->next)
5771 for (formal = entry->sym->formal; formal; formal = formal->next)
5772 {
5773 if (formal->sym && sym->name == formal->sym->name)
5774 {
5775 seen = true;
5776 break;
5777 }
5778 }
5779
5780 /* If it has not been seen as a dummy, this is an error. */
5781 if (!seen)
5782 {
5783 if (specification_expr)
5784 gfc_error ("Variable %qs, used in a specification expression"
5785 ", is referenced at %L before the ENTRY statement "
5786 "in which it is a parameter",
5787 sym->name, &cs_base->current->loc);
5788 else
5789 gfc_error ("Variable %qs is used at %L before the ENTRY "
5790 "statement in which it is a parameter",
5791 sym->name, &cs_base->current->loc);
5792 t = false;
5793 }
5794 }
5795
5796 /* Now do the same check on the specification expressions. */
5797 saved_specification_expr = specification_expr;
5798 specification_expr = true;
5799 if (sym->ts.type == BT_CHARACTER
5800 && !gfc_resolve_expr (sym->ts.u.cl->length))
5801 t = false;
5802
5803 if (sym->as)
5804 for (n = 0; n < sym->as->rank; n++)
5805 {
5806 if (!gfc_resolve_expr (sym->as->lower[n]))
5807 t = false;
5808 if (!gfc_resolve_expr (sym->as->upper[n]))
5809 t = false;
5810 }
5811 specification_expr = saved_specification_expr;
5812
5813 if (t)
5814 /* Update the symbol's entry level. */
5815 sym->entry_id = current_entry_id + 1;
5816 }
5817
5818 /* If a symbol has been host_associated mark it. This is used latter,
5819 to identify if aliasing is possible via host association. */
5820 if (sym->attr.flavor == FL_VARIABLE
5821 && gfc_current_ns->parent
5822 && (gfc_current_ns->parent == sym->ns
5823 || (gfc_current_ns->parent->parent
5824 && gfc_current_ns->parent->parent == sym->ns)))
5825 sym->attr.host_assoc = 1;
5826
5827 if (gfc_current_ns->proc_name
5828 && sym->attr.dimension
5829 && (sym->ns != gfc_current_ns
5830 || sym->attr.use_assoc
5831 || sym->attr.in_common))
5832 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
5833
5834 resolve_procedure:
5835 if (t && !resolve_procedure_expression (e))
5836 t = false;
5837
5838 /* F2008, C617 and C1229. */
5839 if (!inquiry_argument && (e->ts.type == BT_CLASS || e->ts.type == BT_DERIVED)
5840 && gfc_is_coindexed (e))
5841 {
5842 gfc_ref *ref, *ref2 = NULL;
5843
5844 for (ref = e->ref; ref; ref = ref->next)
5845 {
5846 if (ref->type == REF_COMPONENT)
5847 ref2 = ref;
5848 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5849 break;
5850 }
5851
5852 for ( ; ref; ref = ref->next)
5853 if (ref->type == REF_COMPONENT)
5854 break;
5855
5856 /* Expression itself is not coindexed object. */
5857 if (ref && e->ts.type == BT_CLASS)
5858 {
5859 gfc_error ("Polymorphic subobject of coindexed object at %L",
5860 &e->where);
5861 t = false;
5862 }
5863
5864 /* Expression itself is coindexed object. */
5865 if (ref == NULL)
5866 {
5867 gfc_component *c;
5868 c = ref2 ? ref2->u.c.component : e->symtree->n.sym->components;
5869 for ( ; c; c = c->next)
5870 if (c->attr.allocatable && c->ts.type == BT_CLASS)
5871 {
5872 gfc_error ("Coindexed object with polymorphic allocatable "
5873 "subcomponent at %L", &e->where);
5874 t = false;
5875 break;
5876 }
5877 }
5878 }
5879
5880 if (t)
5881 gfc_expression_rank (e);
5882
5883 if (t && flag_coarray == GFC_FCOARRAY_LIB && gfc_is_coindexed (e))
5884 add_caf_get_intrinsic (e);
5885
5886 /* Simplify cases where access to a parameter array results in a
5887 single constant. Suppress errors since those will have been
5888 issued before, as warnings. */
5889 if (e->rank == 0 && sym->as && sym->attr.flavor == FL_PARAMETER)
5890 {
5891 gfc_push_suppress_errors ();
5892 gfc_simplify_expr (e, 1);
5893 gfc_pop_suppress_errors ();
5894 }
5895
5896 return t;
5897 }
5898
5899
5900 /* Checks to see that the correct symbol has been host associated.
5901 The only situation where this arises is that in which a twice
5902 contained function is parsed after the host association is made.
5903 Therefore, on detecting this, change the symbol in the expression
5904 and convert the array reference into an actual arglist if the old
5905 symbol is a variable. */
5906 static bool
5907 check_host_association (gfc_expr *e)
5908 {
5909 gfc_symbol *sym, *old_sym;
5910 gfc_symtree *st;
5911 int n;
5912 gfc_ref *ref;
5913 gfc_actual_arglist *arg, *tail = NULL;
5914 bool retval = e->expr_type == EXPR_FUNCTION;
5915
5916 /* If the expression is the result of substitution in
5917 interface.c(gfc_extend_expr) because there is no way in
5918 which the host association can be wrong. */
5919 if (e->symtree == NULL
5920 || e->symtree->n.sym == NULL
5921 || e->user_operator)
5922 return retval;
5923
5924 old_sym = e->symtree->n.sym;
5925
5926 if (gfc_current_ns->parent
5927 && old_sym->ns != gfc_current_ns)
5928 {
5929 /* Use the 'USE' name so that renamed module symbols are
5930 correctly handled. */
5931 gfc_find_symbol (e->symtree->name, gfc_current_ns, 1, &sym);
5932
5933 if (sym && old_sym != sym
5934 && sym->ts.type == old_sym->ts.type
5935 && sym->attr.flavor == FL_PROCEDURE
5936 && sym->attr.contained)
5937 {
5938 /* Clear the shape, since it might not be valid. */
5939 gfc_free_shape (&e->shape, e->rank);
5940
5941 /* Give the expression the right symtree! */
5942 gfc_find_sym_tree (e->symtree->name, NULL, 1, &st);
5943 gcc_assert (st != NULL);
5944
5945 if (old_sym->attr.flavor == FL_PROCEDURE
5946 || e->expr_type == EXPR_FUNCTION)
5947 {
5948 /* Original was function so point to the new symbol, since
5949 the actual argument list is already attached to the
5950 expression. */
5951 e->value.function.esym = NULL;
5952 e->symtree = st;
5953 }
5954 else
5955 {
5956 /* Original was variable so convert array references into
5957 an actual arglist. This does not need any checking now
5958 since resolve_function will take care of it. */
5959 e->value.function.actual = NULL;
5960 e->expr_type = EXPR_FUNCTION;
5961 e->symtree = st;
5962
5963 /* Ambiguity will not arise if the array reference is not
5964 the last reference. */
5965 for (ref = e->ref; ref; ref = ref->next)
5966 if (ref->type == REF_ARRAY && ref->next == NULL)
5967 break;
5968
5969 gcc_assert (ref->type == REF_ARRAY);
5970
5971 /* Grab the start expressions from the array ref and
5972 copy them into actual arguments. */
5973 for (n = 0; n < ref->u.ar.dimen; n++)
5974 {
5975 arg = gfc_get_actual_arglist ();
5976 arg->expr = gfc_copy_expr (ref->u.ar.start[n]);
5977 if (e->value.function.actual == NULL)
5978 tail = e->value.function.actual = arg;
5979 else
5980 {
5981 tail->next = arg;
5982 tail = arg;
5983 }
5984 }
5985
5986 /* Dump the reference list and set the rank. */
5987 gfc_free_ref_list (e->ref);
5988 e->ref = NULL;
5989 e->rank = sym->as ? sym->as->rank : 0;
5990 }
5991
5992 gfc_resolve_expr (e);
5993 sym->refs++;
5994 }
5995 }
5996 /* This might have changed! */
5997 return e->expr_type == EXPR_FUNCTION;
5998 }
5999
6000
6001 static void
6002 gfc_resolve_character_operator (gfc_expr *e)
6003 {
6004 gfc_expr *op1 = e->value.op.op1;
6005 gfc_expr *op2 = e->value.op.op2;
6006 gfc_expr *e1 = NULL;
6007 gfc_expr *e2 = NULL;
6008
6009 gcc_assert (e->value.op.op == INTRINSIC_CONCAT);
6010
6011 if (op1->ts.u.cl && op1->ts.u.cl->length)
6012 e1 = gfc_copy_expr (op1->ts.u.cl->length);
6013 else if (op1->expr_type == EXPR_CONSTANT)
6014 e1 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
6015 op1->value.character.length);
6016
6017 if (op2->ts.u.cl && op2->ts.u.cl->length)
6018 e2 = gfc_copy_expr (op2->ts.u.cl->length);
6019 else if (op2->expr_type == EXPR_CONSTANT)
6020 e2 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
6021 op2->value.character.length);
6022
6023 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
6024
6025 if (!e1 || !e2)
6026 {
6027 gfc_free_expr (e1);
6028 gfc_free_expr (e2);
6029
6030 return;
6031 }
6032
6033 e->ts.u.cl->length = gfc_add (e1, e2);
6034 e->ts.u.cl->length->ts.type = BT_INTEGER;
6035 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
6036 gfc_simplify_expr (e->ts.u.cl->length, 0);
6037 gfc_resolve_expr (e->ts.u.cl->length);
6038
6039 return;
6040 }
6041
6042
6043 /* Ensure that an character expression has a charlen and, if possible, a
6044 length expression. */
6045
6046 static void
6047 fixup_charlen (gfc_expr *e)
6048 {
6049 /* The cases fall through so that changes in expression type and the need
6050 for multiple fixes are picked up. In all circumstances, a charlen should
6051 be available for the middle end to hang a backend_decl on. */
6052 switch (e->expr_type)
6053 {
6054 case EXPR_OP:
6055 gfc_resolve_character_operator (e);
6056 /* FALLTHRU */
6057
6058 case EXPR_ARRAY:
6059 if (e->expr_type == EXPR_ARRAY)
6060 gfc_resolve_character_array_constructor (e);
6061 /* FALLTHRU */
6062
6063 case EXPR_SUBSTRING:
6064 if (!e->ts.u.cl && e->ref)
6065 gfc_resolve_substring_charlen (e);
6066 /* FALLTHRU */
6067
6068 default:
6069 if (!e->ts.u.cl)
6070 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
6071
6072 break;
6073 }
6074 }
6075
6076
6077 /* Update an actual argument to include the passed-object for type-bound
6078 procedures at the right position. */
6079
6080 static gfc_actual_arglist*
6081 update_arglist_pass (gfc_actual_arglist* lst, gfc_expr* po, unsigned argpos,
6082 const char *name)
6083 {
6084 gcc_assert (argpos > 0);
6085
6086 if (argpos == 1)
6087 {
6088 gfc_actual_arglist* result;
6089
6090 result = gfc_get_actual_arglist ();
6091 result->expr = po;
6092 result->next = lst;
6093 if (name)
6094 result->name = name;
6095
6096 return result;
6097 }
6098
6099 if (lst)
6100 lst->next = update_arglist_pass (lst->next, po, argpos - 1, name);
6101 else
6102 lst = update_arglist_pass (NULL, po, argpos - 1, name);
6103 return lst;
6104 }
6105
6106
6107 /* Extract the passed-object from an EXPR_COMPCALL (a copy of it). */
6108
6109 static gfc_expr*
6110 extract_compcall_passed_object (gfc_expr* e)
6111 {
6112 gfc_expr* po;
6113
6114 if (e->expr_type == EXPR_UNKNOWN)
6115 {
6116 gfc_error ("Error in typebound call at %L",
6117 &e->where);
6118 return NULL;
6119 }
6120
6121 gcc_assert (e->expr_type == EXPR_COMPCALL);
6122
6123 if (e->value.compcall.base_object)
6124 po = gfc_copy_expr (e->value.compcall.base_object);
6125 else
6126 {
6127 po = gfc_get_expr ();
6128 po->expr_type = EXPR_VARIABLE;
6129 po->symtree = e->symtree;
6130 po->ref = gfc_copy_ref (e->ref);
6131 po->where = e->where;
6132 }
6133
6134 if (!gfc_resolve_expr (po))
6135 return NULL;
6136
6137 return po;
6138 }
6139
6140
6141 /* Update the arglist of an EXPR_COMPCALL expression to include the
6142 passed-object. */
6143
6144 static bool
6145 update_compcall_arglist (gfc_expr* e)
6146 {
6147 gfc_expr* po;
6148 gfc_typebound_proc* tbp;
6149
6150 tbp = e->value.compcall.tbp;
6151
6152 if (tbp->error)
6153 return false;
6154
6155 po = extract_compcall_passed_object (e);
6156 if (!po)
6157 return false;
6158
6159 if (tbp->nopass || e->value.compcall.ignore_pass)
6160 {
6161 gfc_free_expr (po);
6162 return true;
6163 }
6164
6165 if (tbp->pass_arg_num <= 0)
6166 return false;
6167
6168 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
6169 tbp->pass_arg_num,
6170 tbp->pass_arg);
6171
6172 return true;
6173 }
6174
6175
6176 /* Extract the passed object from a PPC call (a copy of it). */
6177
6178 static gfc_expr*
6179 extract_ppc_passed_object (gfc_expr *e)
6180 {
6181 gfc_expr *po;
6182 gfc_ref **ref;
6183
6184 po = gfc_get_expr ();
6185 po->expr_type = EXPR_VARIABLE;
6186 po->symtree = e->symtree;
6187 po->ref = gfc_copy_ref (e->ref);
6188 po->where = e->where;
6189
6190 /* Remove PPC reference. */
6191 ref = &po->ref;
6192 while ((*ref)->next)
6193 ref = &(*ref)->next;
6194 gfc_free_ref_list (*ref);
6195 *ref = NULL;
6196
6197 if (!gfc_resolve_expr (po))
6198 return NULL;
6199
6200 return po;
6201 }
6202
6203
6204 /* Update the actual arglist of a procedure pointer component to include the
6205 passed-object. */
6206
6207 static bool
6208 update_ppc_arglist (gfc_expr* e)
6209 {
6210 gfc_expr* po;
6211 gfc_component *ppc;
6212 gfc_typebound_proc* tb;
6213
6214 ppc = gfc_get_proc_ptr_comp (e);
6215 if (!ppc)
6216 return false;
6217
6218 tb = ppc->tb;
6219
6220 if (tb->error)
6221 return false;
6222 else if (tb->nopass)
6223 return true;
6224
6225 po = extract_ppc_passed_object (e);
6226 if (!po)
6227 return false;
6228
6229 /* F08:R739. */
6230 if (po->rank != 0)
6231 {
6232 gfc_error ("Passed-object at %L must be scalar", &e->where);
6233 return false;
6234 }
6235
6236 /* F08:C611. */
6237 if (po->ts.type == BT_DERIVED && po->ts.u.derived->attr.abstract)
6238 {
6239 gfc_error ("Base object for procedure-pointer component call at %L is of"
6240 " ABSTRACT type %qs", &e->where, po->ts.u.derived->name);
6241 return false;
6242 }
6243
6244 gcc_assert (tb->pass_arg_num > 0);
6245 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
6246 tb->pass_arg_num,
6247 tb->pass_arg);
6248
6249 return true;
6250 }
6251
6252
6253 /* Check that the object a TBP is called on is valid, i.e. it must not be
6254 of ABSTRACT type (as in subobject%abstract_parent%tbp()). */
6255
6256 static bool
6257 check_typebound_baseobject (gfc_expr* e)
6258 {
6259 gfc_expr* base;
6260 bool return_value = false;
6261
6262 base = extract_compcall_passed_object (e);
6263 if (!base)
6264 return false;
6265
6266 if (base->ts.type != BT_DERIVED && base->ts.type != BT_CLASS)
6267 {
6268 gfc_error ("Error in typebound call at %L", &e->where);
6269 goto cleanup;
6270 }
6271
6272 if (base->ts.type == BT_CLASS && !gfc_expr_attr (base).class_ok)
6273 return false;
6274
6275 /* F08:C611. */
6276 if (base->ts.type == BT_DERIVED && base->ts.u.derived->attr.abstract)
6277 {
6278 gfc_error ("Base object for type-bound procedure call at %L is of"
6279 " ABSTRACT type %qs", &e->where, base->ts.u.derived->name);
6280 goto cleanup;
6281 }
6282
6283 /* F08:C1230. If the procedure called is NOPASS,
6284 the base object must be scalar. */
6285 if (e->value.compcall.tbp->nopass && base->rank != 0)
6286 {
6287 gfc_error ("Base object for NOPASS type-bound procedure call at %L must"
6288 " be scalar", &e->where);
6289 goto cleanup;
6290 }
6291
6292 return_value = true;
6293
6294 cleanup:
6295 gfc_free_expr (base);
6296 return return_value;
6297 }
6298
6299
6300 /* Resolve a call to a type-bound procedure, either function or subroutine,
6301 statically from the data in an EXPR_COMPCALL expression. The adapted
6302 arglist and the target-procedure symtree are returned. */
6303
6304 static bool
6305 resolve_typebound_static (gfc_expr* e, gfc_symtree** target,
6306 gfc_actual_arglist** actual)
6307 {
6308 gcc_assert (e->expr_type == EXPR_COMPCALL);
6309 gcc_assert (!e->value.compcall.tbp->is_generic);
6310
6311 /* Update the actual arglist for PASS. */
6312 if (!update_compcall_arglist (e))
6313 return false;
6314
6315 *actual = e->value.compcall.actual;
6316 *target = e->value.compcall.tbp->u.specific;
6317
6318 gfc_free_ref_list (e->ref);
6319 e->ref = NULL;
6320 e->value.compcall.actual = NULL;
6321
6322 /* If we find a deferred typebound procedure, check for derived types
6323 that an overriding typebound procedure has not been missed. */
6324 if (e->value.compcall.name
6325 && !e->value.compcall.tbp->non_overridable
6326 && e->value.compcall.base_object
6327 && e->value.compcall.base_object->ts.type == BT_DERIVED)
6328 {
6329 gfc_symtree *st;
6330 gfc_symbol *derived;
6331
6332 /* Use the derived type of the base_object. */
6333 derived = e->value.compcall.base_object->ts.u.derived;
6334 st = NULL;
6335
6336 /* If necessary, go through the inheritance chain. */
6337 while (!st && derived)
6338 {
6339 /* Look for the typebound procedure 'name'. */
6340 if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
6341 st = gfc_find_symtree (derived->f2k_derived->tb_sym_root,
6342 e->value.compcall.name);
6343 if (!st)
6344 derived = gfc_get_derived_super_type (derived);
6345 }
6346
6347 /* Now find the specific name in the derived type namespace. */
6348 if (st && st->n.tb && st->n.tb->u.specific)
6349 gfc_find_sym_tree (st->n.tb->u.specific->name,
6350 derived->ns, 1, &st);
6351 if (st)
6352 *target = st;
6353 }
6354 return true;
6355 }
6356
6357
6358 /* Get the ultimate declared type from an expression. In addition,
6359 return the last class/derived type reference and the copy of the
6360 reference list. If check_types is set true, derived types are
6361 identified as well as class references. */
6362 static gfc_symbol*
6363 get_declared_from_expr (gfc_ref **class_ref, gfc_ref **new_ref,
6364 gfc_expr *e, bool check_types)
6365 {
6366 gfc_symbol *declared;
6367 gfc_ref *ref;
6368
6369 declared = NULL;
6370 if (class_ref)
6371 *class_ref = NULL;
6372 if (new_ref)
6373 *new_ref = gfc_copy_ref (e->ref);
6374
6375 for (ref = e->ref; ref; ref = ref->next)
6376 {
6377 if (ref->type != REF_COMPONENT)
6378 continue;
6379
6380 if ((ref->u.c.component->ts.type == BT_CLASS
6381 || (check_types && gfc_bt_struct (ref->u.c.component->ts.type)))
6382 && ref->u.c.component->attr.flavor != FL_PROCEDURE)
6383 {
6384 declared = ref->u.c.component->ts.u.derived;
6385 if (class_ref)
6386 *class_ref = ref;
6387 }
6388 }
6389
6390 if (declared == NULL)
6391 declared = e->symtree->n.sym->ts.u.derived;
6392
6393 return declared;
6394 }
6395
6396
6397 /* Given an EXPR_COMPCALL calling a GENERIC typebound procedure, figure out
6398 which of the specific bindings (if any) matches the arglist and transform
6399 the expression into a call of that binding. */
6400
6401 static bool
6402 resolve_typebound_generic_call (gfc_expr* e, const char **name)
6403 {
6404 gfc_typebound_proc* genproc;
6405 const char* genname;
6406 gfc_symtree *st;
6407 gfc_symbol *derived;
6408
6409 gcc_assert (e->expr_type == EXPR_COMPCALL);
6410 genname = e->value.compcall.name;
6411 genproc = e->value.compcall.tbp;
6412
6413 if (!genproc->is_generic)
6414 return true;
6415
6416 /* Try the bindings on this type and in the inheritance hierarchy. */
6417 for (; genproc; genproc = genproc->overridden)
6418 {
6419 gfc_tbp_generic* g;
6420
6421 gcc_assert (genproc->is_generic);
6422 for (g = genproc->u.generic; g; g = g->next)
6423 {
6424 gfc_symbol* target;
6425 gfc_actual_arglist* args;
6426 bool matches;
6427
6428 gcc_assert (g->specific);
6429
6430 if (g->specific->error)
6431 continue;
6432
6433 target = g->specific->u.specific->n.sym;
6434
6435 /* Get the right arglist by handling PASS/NOPASS. */
6436 args = gfc_copy_actual_arglist (e->value.compcall.actual);
6437 if (!g->specific->nopass)
6438 {
6439 gfc_expr* po;
6440 po = extract_compcall_passed_object (e);
6441 if (!po)
6442 {
6443 gfc_free_actual_arglist (args);
6444 return false;
6445 }
6446
6447 gcc_assert (g->specific->pass_arg_num > 0);
6448 gcc_assert (!g->specific->error);
6449 args = update_arglist_pass (args, po, g->specific->pass_arg_num,
6450 g->specific->pass_arg);
6451 }
6452 resolve_actual_arglist (args, target->attr.proc,
6453 is_external_proc (target)
6454 && gfc_sym_get_dummy_args (target) == NULL);
6455
6456 /* Check if this arglist matches the formal. */
6457 matches = gfc_arglist_matches_symbol (&args, target);
6458
6459 /* Clean up and break out of the loop if we've found it. */
6460 gfc_free_actual_arglist (args);
6461 if (matches)
6462 {
6463 e->value.compcall.tbp = g->specific;
6464 genname = g->specific_st->name;
6465 /* Pass along the name for CLASS methods, where the vtab
6466 procedure pointer component has to be referenced. */
6467 if (name)
6468 *name = genname;
6469 goto success;
6470 }
6471 }
6472 }
6473
6474 /* Nothing matching found! */
6475 gfc_error ("Found no matching specific binding for the call to the GENERIC"
6476 " %qs at %L", genname, &e->where);
6477 return false;
6478
6479 success:
6480 /* Make sure that we have the right specific instance for the name. */
6481 derived = get_declared_from_expr (NULL, NULL, e, true);
6482
6483 st = gfc_find_typebound_proc (derived, NULL, genname, true, &e->where);
6484 if (st)
6485 e->value.compcall.tbp = st->n.tb;
6486
6487 return true;
6488 }
6489
6490
6491 /* Resolve a call to a type-bound subroutine. */
6492
6493 static bool
6494 resolve_typebound_call (gfc_code* c, const char **name, bool *overridable)
6495 {
6496 gfc_actual_arglist* newactual;
6497 gfc_symtree* target;
6498
6499 /* Check that's really a SUBROUTINE. */
6500 if (!c->expr1->value.compcall.tbp->subroutine)
6501 {
6502 if (!c->expr1->value.compcall.tbp->is_generic
6503 && c->expr1->value.compcall.tbp->u.specific
6504 && c->expr1->value.compcall.tbp->u.specific->n.sym
6505 && c->expr1->value.compcall.tbp->u.specific->n.sym->attr.subroutine)
6506 c->expr1->value.compcall.tbp->subroutine = 1;
6507 else
6508 {
6509 gfc_error ("%qs at %L should be a SUBROUTINE",
6510 c->expr1->value.compcall.name, &c->loc);
6511 return false;
6512 }
6513 }
6514
6515 if (!check_typebound_baseobject (c->expr1))
6516 return false;
6517
6518 /* Pass along the name for CLASS methods, where the vtab
6519 procedure pointer component has to be referenced. */
6520 if (name)
6521 *name = c->expr1->value.compcall.name;
6522
6523 if (!resolve_typebound_generic_call (c->expr1, name))
6524 return false;
6525
6526 /* Pass along the NON_OVERRIDABLE attribute of the specific TBP. */
6527 if (overridable)
6528 *overridable = !c->expr1->value.compcall.tbp->non_overridable;
6529
6530 /* Transform into an ordinary EXEC_CALL for now. */
6531
6532 if (!resolve_typebound_static (c->expr1, &target, &newactual))
6533 return false;
6534
6535 c->ext.actual = newactual;
6536 c->symtree = target;
6537 c->op = (c->expr1->value.compcall.assign ? EXEC_ASSIGN_CALL : EXEC_CALL);
6538
6539 gcc_assert (!c->expr1->ref && !c->expr1->value.compcall.actual);
6540
6541 gfc_free_expr (c->expr1);
6542 c->expr1 = gfc_get_expr ();
6543 c->expr1->expr_type = EXPR_FUNCTION;
6544 c->expr1->symtree = target;
6545 c->expr1->where = c->loc;
6546
6547 return resolve_call (c);
6548 }
6549
6550
6551 /* Resolve a component-call expression. */
6552 static bool
6553 resolve_compcall (gfc_expr* e, const char **name)
6554 {
6555 gfc_actual_arglist* newactual;
6556 gfc_symtree* target;
6557
6558 /* Check that's really a FUNCTION. */
6559 if (!e->value.compcall.tbp->function)
6560 {
6561 gfc_error ("%qs at %L should be a FUNCTION",
6562 e->value.compcall.name, &e->where);
6563 return false;
6564 }
6565
6566
6567 /* These must not be assign-calls! */
6568 gcc_assert (!e->value.compcall.assign);
6569
6570 if (!check_typebound_baseobject (e))
6571 return false;
6572
6573 /* Pass along the name for CLASS methods, where the vtab
6574 procedure pointer component has to be referenced. */
6575 if (name)
6576 *name = e->value.compcall.name;
6577
6578 if (!resolve_typebound_generic_call (e, name))
6579 return false;
6580 gcc_assert (!e->value.compcall.tbp->is_generic);
6581
6582 /* Take the rank from the function's symbol. */
6583 if (e->value.compcall.tbp->u.specific->n.sym->as)
6584 e->rank = e->value.compcall.tbp->u.specific->n.sym->as->rank;
6585
6586 /* For now, we simply transform it into an EXPR_FUNCTION call with the same
6587 arglist to the TBP's binding target. */
6588
6589 if (!resolve_typebound_static (e, &target, &newactual))
6590 return false;
6591
6592 e->value.function.actual = newactual;
6593 e->value.function.name = NULL;
6594 e->value.function.esym = target->n.sym;
6595 e->value.function.isym = NULL;
6596 e->symtree = target;
6597 e->ts = target->n.sym->ts;
6598 e->expr_type = EXPR_FUNCTION;
6599
6600 /* Resolution is not necessary if this is a class subroutine; this
6601 function only has to identify the specific proc. Resolution of
6602 the call will be done next in resolve_typebound_call. */
6603 return gfc_resolve_expr (e);
6604 }
6605
6606
6607 static bool resolve_fl_derived (gfc_symbol *sym);
6608
6609
6610 /* Resolve a typebound function, or 'method'. First separate all
6611 the non-CLASS references by calling resolve_compcall directly. */
6612
6613 static bool
6614 resolve_typebound_function (gfc_expr* e)
6615 {
6616 gfc_symbol *declared;
6617 gfc_component *c;
6618 gfc_ref *new_ref;
6619 gfc_ref *class_ref;
6620 gfc_symtree *st;
6621 const char *name;
6622 gfc_typespec ts;
6623 gfc_expr *expr;
6624 bool overridable;
6625
6626 st = e->symtree;
6627
6628 /* Deal with typebound operators for CLASS objects. */
6629 expr = e->value.compcall.base_object;
6630 overridable = !e->value.compcall.tbp->non_overridable;
6631 if (expr && expr->ts.type == BT_CLASS && e->value.compcall.name)
6632 {
6633 /* Since the typebound operators are generic, we have to ensure
6634 that any delays in resolution are corrected and that the vtab
6635 is present. */
6636 ts = expr->ts;
6637 declared = ts.u.derived;
6638 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6639 if (c->ts.u.derived == NULL)
6640 c->ts.u.derived = gfc_find_derived_vtab (declared);
6641
6642 if (!resolve_compcall (e, &name))
6643 return false;
6644
6645 /* Use the generic name if it is there. */
6646 name = name ? name : e->value.function.esym->name;
6647 e->symtree = expr->symtree;
6648 e->ref = gfc_copy_ref (expr->ref);
6649 get_declared_from_expr (&class_ref, NULL, e, false);
6650
6651 /* Trim away the extraneous references that emerge from nested
6652 use of interface.c (extend_expr). */
6653 if (class_ref && class_ref->next)
6654 {
6655 gfc_free_ref_list (class_ref->next);
6656 class_ref->next = NULL;
6657 }
6658 else if (e->ref && !class_ref && expr->ts.type != BT_CLASS)
6659 {
6660 gfc_free_ref_list (e->ref);
6661 e->ref = NULL;
6662 }
6663
6664 gfc_add_vptr_component (e);
6665 gfc_add_component_ref (e, name);
6666 e->value.function.esym = NULL;
6667 if (expr->expr_type != EXPR_VARIABLE)
6668 e->base_expr = expr;
6669 return true;
6670 }
6671
6672 if (st == NULL)
6673 return resolve_compcall (e, NULL);
6674
6675 if (!gfc_resolve_ref (e))
6676 return false;
6677
6678 /* Get the CLASS declared type. */
6679 declared = get_declared_from_expr (&class_ref, &new_ref, e, true);
6680
6681 if (!resolve_fl_derived (declared))
6682 return false;
6683
6684 /* Weed out cases of the ultimate component being a derived type. */
6685 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6686 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6687 {
6688 gfc_free_ref_list (new_ref);
6689 return resolve_compcall (e, NULL);
6690 }
6691
6692 c = gfc_find_component (declared, "_data", true, true, NULL);
6693
6694 /* Treat the call as if it is a typebound procedure, in order to roll
6695 out the correct name for the specific function. */
6696 if (!resolve_compcall (e, &name))
6697 {
6698 gfc_free_ref_list (new_ref);
6699 return false;
6700 }
6701 ts = e->ts;
6702
6703 if (overridable)
6704 {
6705 /* Convert the expression to a procedure pointer component call. */
6706 e->value.function.esym = NULL;
6707 e->symtree = st;
6708
6709 if (new_ref)
6710 e->ref = new_ref;
6711
6712 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6713 gfc_add_vptr_component (e);
6714 gfc_add_component_ref (e, name);
6715
6716 /* Recover the typespec for the expression. This is really only
6717 necessary for generic procedures, where the additional call
6718 to gfc_add_component_ref seems to throw the collection of the
6719 correct typespec. */
6720 e->ts = ts;
6721 }
6722 else if (new_ref)
6723 gfc_free_ref_list (new_ref);
6724
6725 return true;
6726 }
6727
6728 /* Resolve a typebound subroutine, or 'method'. First separate all
6729 the non-CLASS references by calling resolve_typebound_call
6730 directly. */
6731
6732 static bool
6733 resolve_typebound_subroutine (gfc_code *code)
6734 {
6735 gfc_symbol *declared;
6736 gfc_component *c;
6737 gfc_ref *new_ref;
6738 gfc_ref *class_ref;
6739 gfc_symtree *st;
6740 const char *name;
6741 gfc_typespec ts;
6742 gfc_expr *expr;
6743 bool overridable;
6744
6745 st = code->expr1->symtree;
6746
6747 /* Deal with typebound operators for CLASS objects. */
6748 expr = code->expr1->value.compcall.base_object;
6749 overridable = !code->expr1->value.compcall.tbp->non_overridable;
6750 if (expr && expr->ts.type == BT_CLASS && code->expr1->value.compcall.name)
6751 {
6752 /* If the base_object is not a variable, the corresponding actual
6753 argument expression must be stored in e->base_expression so
6754 that the corresponding tree temporary can be used as the base
6755 object in gfc_conv_procedure_call. */
6756 if (expr->expr_type != EXPR_VARIABLE)
6757 {
6758 gfc_actual_arglist *args;
6759
6760 args= code->expr1->value.function.actual;
6761 for (; args; args = args->next)
6762 if (expr == args->expr)
6763 expr = args->expr;
6764 }
6765
6766 /* Since the typebound operators are generic, we have to ensure
6767 that any delays in resolution are corrected and that the vtab
6768 is present. */
6769 declared = expr->ts.u.derived;
6770 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6771 if (c->ts.u.derived == NULL)
6772 c->ts.u.derived = gfc_find_derived_vtab (declared);
6773
6774 if (!resolve_typebound_call (code, &name, NULL))
6775 return false;
6776
6777 /* Use the generic name if it is there. */
6778 name = name ? name : code->expr1->value.function.esym->name;
6779 code->expr1->symtree = expr->symtree;
6780 code->expr1->ref = gfc_copy_ref (expr->ref);
6781
6782 /* Trim away the extraneous references that emerge from nested
6783 use of interface.c (extend_expr). */
6784 get_declared_from_expr (&class_ref, NULL, code->expr1, false);
6785 if (class_ref && class_ref->next)
6786 {
6787 gfc_free_ref_list (class_ref->next);
6788 class_ref->next = NULL;
6789 }
6790 else if (code->expr1->ref && !class_ref)
6791 {
6792 gfc_free_ref_list (code->expr1->ref);
6793 code->expr1->ref = NULL;
6794 }
6795
6796 /* Now use the procedure in the vtable. */
6797 gfc_add_vptr_component (code->expr1);
6798 gfc_add_component_ref (code->expr1, name);
6799 code->expr1->value.function.esym = NULL;
6800 if (expr->expr_type != EXPR_VARIABLE)
6801 code->expr1->base_expr = expr;
6802 return true;
6803 }
6804
6805 if (st == NULL)
6806 return resolve_typebound_call (code, NULL, NULL);
6807
6808 if (!gfc_resolve_ref (code->expr1))
6809 return false;
6810
6811 /* Get the CLASS declared type. */
6812 get_declared_from_expr (&class_ref, &new_ref, code->expr1, true);
6813
6814 /* Weed out cases of the ultimate component being a derived type. */
6815 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6816 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6817 {
6818 gfc_free_ref_list (new_ref);
6819 return resolve_typebound_call (code, NULL, NULL);
6820 }
6821
6822 if (!resolve_typebound_call (code, &name, &overridable))
6823 {
6824 gfc_free_ref_list (new_ref);
6825 return false;
6826 }
6827 ts = code->expr1->ts;
6828
6829 if (overridable)
6830 {
6831 /* Convert the expression to a procedure pointer component call. */
6832 code->expr1->value.function.esym = NULL;
6833 code->expr1->symtree = st;
6834
6835 if (new_ref)
6836 code->expr1->ref = new_ref;
6837
6838 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6839 gfc_add_vptr_component (code->expr1);
6840 gfc_add_component_ref (code->expr1, name);
6841
6842 /* Recover the typespec for the expression. This is really only
6843 necessary for generic procedures, where the additional call
6844 to gfc_add_component_ref seems to throw the collection of the
6845 correct typespec. */
6846 code->expr1->ts = ts;
6847 }
6848 else if (new_ref)
6849 gfc_free_ref_list (new_ref);
6850
6851 return true;
6852 }
6853
6854
6855 /* Resolve a CALL to a Procedure Pointer Component (Subroutine). */
6856
6857 static bool
6858 resolve_ppc_call (gfc_code* c)
6859 {
6860 gfc_component *comp;
6861
6862 comp = gfc_get_proc_ptr_comp (c->expr1);
6863 gcc_assert (comp != NULL);
6864
6865 c->resolved_sym = c->expr1->symtree->n.sym;
6866 c->expr1->expr_type = EXPR_VARIABLE;
6867
6868 if (!comp->attr.subroutine)
6869 gfc_add_subroutine (&comp->attr, comp->name, &c->expr1->where);
6870
6871 if (!gfc_resolve_ref (c->expr1))
6872 return false;
6873
6874 if (!update_ppc_arglist (c->expr1))
6875 return false;
6876
6877 c->ext.actual = c->expr1->value.compcall.actual;
6878
6879 if (!resolve_actual_arglist (c->ext.actual, comp->attr.proc,
6880 !(comp->ts.interface
6881 && comp->ts.interface->formal)))
6882 return false;
6883
6884 if (!pure_subroutine (comp->ts.interface, comp->name, &c->expr1->where))
6885 return false;
6886
6887 gfc_ppc_use (comp, &c->expr1->value.compcall.actual, &c->expr1->where);
6888
6889 return true;
6890 }
6891
6892
6893 /* Resolve a Function Call to a Procedure Pointer Component (Function). */
6894
6895 static bool
6896 resolve_expr_ppc (gfc_expr* e)
6897 {
6898 gfc_component *comp;
6899
6900 comp = gfc_get_proc_ptr_comp (e);
6901 gcc_assert (comp != NULL);
6902
6903 /* Convert to EXPR_FUNCTION. */
6904 e->expr_type = EXPR_FUNCTION;
6905 e->value.function.isym = NULL;
6906 e->value.function.actual = e->value.compcall.actual;
6907 e->ts = comp->ts;
6908 if (comp->as != NULL)
6909 e->rank = comp->as->rank;
6910
6911 if (!comp->attr.function)
6912 gfc_add_function (&comp->attr, comp->name, &e->where);
6913
6914 if (!gfc_resolve_ref (e))
6915 return false;
6916
6917 if (!resolve_actual_arglist (e->value.function.actual, comp->attr.proc,
6918 !(comp->ts.interface
6919 && comp->ts.interface->formal)))
6920 return false;
6921
6922 if (!update_ppc_arglist (e))
6923 return false;
6924
6925 if (!check_pure_function(e))
6926 return false;
6927
6928 gfc_ppc_use (comp, &e->value.compcall.actual, &e->where);
6929
6930 return true;
6931 }
6932
6933
6934 static bool
6935 gfc_is_expandable_expr (gfc_expr *e)
6936 {
6937 gfc_constructor *con;
6938
6939 if (e->expr_type == EXPR_ARRAY)
6940 {
6941 /* Traverse the constructor looking for variables that are flavor
6942 parameter. Parameters must be expanded since they are fully used at
6943 compile time. */
6944 con = gfc_constructor_first (e->value.constructor);
6945 for (; con; con = gfc_constructor_next (con))
6946 {
6947 if (con->expr->expr_type == EXPR_VARIABLE
6948 && con->expr->symtree
6949 && (con->expr->symtree->n.sym->attr.flavor == FL_PARAMETER
6950 || con->expr->symtree->n.sym->attr.flavor == FL_VARIABLE))
6951 return true;
6952 if (con->expr->expr_type == EXPR_ARRAY
6953 && gfc_is_expandable_expr (con->expr))
6954 return true;
6955 }
6956 }
6957
6958 return false;
6959 }
6960
6961
6962 /* Sometimes variables in specification expressions of the result
6963 of module procedures in submodules wind up not being the 'real'
6964 dummy. Find this, if possible, in the namespace of the first
6965 formal argument. */
6966
6967 static void
6968 fixup_unique_dummy (gfc_expr *e)
6969 {
6970 gfc_symtree *st = NULL;
6971 gfc_symbol *s = NULL;
6972
6973 if (e->symtree->n.sym->ns->proc_name
6974 && e->symtree->n.sym->ns->proc_name->formal)
6975 s = e->symtree->n.sym->ns->proc_name->formal->sym;
6976
6977 if (s != NULL)
6978 st = gfc_find_symtree (s->ns->sym_root, e->symtree->n.sym->name);
6979
6980 if (st != NULL
6981 && st->n.sym != NULL
6982 && st->n.sym->attr.dummy)
6983 e->symtree = st;
6984 }
6985
6986 /* Resolve an expression. That is, make sure that types of operands agree
6987 with their operators, intrinsic operators are converted to function calls
6988 for overloaded types and unresolved function references are resolved. */
6989
6990 bool
6991 gfc_resolve_expr (gfc_expr *e)
6992 {
6993 bool t;
6994 bool inquiry_save, actual_arg_save, first_actual_arg_save;
6995
6996 if (e == NULL || e->do_not_resolve_again)
6997 return true;
6998
6999 /* inquiry_argument only applies to variables. */
7000 inquiry_save = inquiry_argument;
7001 actual_arg_save = actual_arg;
7002 first_actual_arg_save = first_actual_arg;
7003
7004 if (e->expr_type != EXPR_VARIABLE)
7005 {
7006 inquiry_argument = false;
7007 actual_arg = false;
7008 first_actual_arg = false;
7009 }
7010 else if (e->symtree != NULL
7011 && *e->symtree->name == '@'
7012 && e->symtree->n.sym->attr.dummy)
7013 {
7014 /* Deal with submodule specification expressions that are not
7015 found to be referenced in module.c(read_cleanup). */
7016 fixup_unique_dummy (e);
7017 }
7018
7019 switch (e->expr_type)
7020 {
7021 case EXPR_OP:
7022 t = resolve_operator (e);
7023 break;
7024
7025 case EXPR_FUNCTION:
7026 case EXPR_VARIABLE:
7027
7028 if (check_host_association (e))
7029 t = resolve_function (e);
7030 else
7031 t = resolve_variable (e);
7032
7033 if (e->ts.type == BT_CHARACTER && e->ts.u.cl == NULL && e->ref
7034 && e->ref->type != REF_SUBSTRING)
7035 gfc_resolve_substring_charlen (e);
7036
7037 break;
7038
7039 case EXPR_COMPCALL:
7040 t = resolve_typebound_function (e);
7041 break;
7042
7043 case EXPR_SUBSTRING:
7044 t = gfc_resolve_ref (e);
7045 break;
7046
7047 case EXPR_CONSTANT:
7048 case EXPR_NULL:
7049 t = true;
7050 break;
7051
7052 case EXPR_PPC:
7053 t = resolve_expr_ppc (e);
7054 break;
7055
7056 case EXPR_ARRAY:
7057 t = false;
7058 if (!gfc_resolve_ref (e))
7059 break;
7060
7061 t = gfc_resolve_array_constructor (e);
7062 /* Also try to expand a constructor. */
7063 if (t)
7064 {
7065 gfc_expression_rank (e);
7066 if (gfc_is_constant_expr (e) || gfc_is_expandable_expr (e))
7067 gfc_expand_constructor (e, false);
7068 }
7069
7070 /* This provides the opportunity for the length of constructors with
7071 character valued function elements to propagate the string length
7072 to the expression. */
7073 if (t && e->ts.type == BT_CHARACTER)
7074 {
7075 /* For efficiency, we call gfc_expand_constructor for BT_CHARACTER
7076 here rather then add a duplicate test for it above. */
7077 gfc_expand_constructor (e, false);
7078 t = gfc_resolve_character_array_constructor (e);
7079 }
7080
7081 break;
7082
7083 case EXPR_STRUCTURE:
7084 t = gfc_resolve_ref (e);
7085 if (!t)
7086 break;
7087
7088 t = resolve_structure_cons (e, 0);
7089 if (!t)
7090 break;
7091
7092 t = gfc_simplify_expr (e, 0);
7093 break;
7094
7095 default:
7096 gfc_internal_error ("gfc_resolve_expr(): Bad expression type");
7097 }
7098
7099 if (e->ts.type == BT_CHARACTER && t && !e->ts.u.cl)
7100 fixup_charlen (e);
7101
7102 inquiry_argument = inquiry_save;
7103 actual_arg = actual_arg_save;
7104 first_actual_arg = first_actual_arg_save;
7105
7106 /* For some reason, resolving these expressions a second time mangles
7107 the typespec of the expression itself. */
7108 if (t && e->expr_type == EXPR_VARIABLE
7109 && e->symtree->n.sym->attr.select_rank_temporary
7110 && UNLIMITED_POLY (e->symtree->n.sym))
7111 e->do_not_resolve_again = 1;
7112
7113 return t;
7114 }
7115
7116
7117 /* Resolve an expression from an iterator. They must be scalar and have
7118 INTEGER or (optionally) REAL type. */
7119
7120 static bool
7121 gfc_resolve_iterator_expr (gfc_expr *expr, bool real_ok,
7122 const char *name_msgid)
7123 {
7124 if (!gfc_resolve_expr (expr))
7125 return false;
7126
7127 if (expr->rank != 0)
7128 {
7129 gfc_error ("%s at %L must be a scalar", _(name_msgid), &expr->where);
7130 return false;
7131 }
7132
7133 if (expr->ts.type != BT_INTEGER)
7134 {
7135 if (expr->ts.type == BT_REAL)
7136 {
7137 if (real_ok)
7138 return gfc_notify_std (GFC_STD_F95_DEL,
7139 "%s at %L must be integer",
7140 _(name_msgid), &expr->where);
7141 else
7142 {
7143 gfc_error ("%s at %L must be INTEGER", _(name_msgid),
7144 &expr->where);
7145 return false;
7146 }
7147 }
7148 else
7149 {
7150 gfc_error ("%s at %L must be INTEGER", _(name_msgid), &expr->where);
7151 return false;
7152 }
7153 }
7154 return true;
7155 }
7156
7157
7158 /* Resolve the expressions in an iterator structure. If REAL_OK is
7159 false allow only INTEGER type iterators, otherwise allow REAL types.
7160 Set own_scope to true for ac-implied-do and data-implied-do as those
7161 have a separate scope such that, e.g., a INTENT(IN) doesn't apply. */
7162
7163 bool
7164 gfc_resolve_iterator (gfc_iterator *iter, bool real_ok, bool own_scope)
7165 {
7166 if (!gfc_resolve_iterator_expr (iter->var, real_ok, "Loop variable"))
7167 return false;
7168
7169 if (!gfc_check_vardef_context (iter->var, false, false, own_scope,
7170 _("iterator variable")))
7171 return false;
7172
7173 if (!gfc_resolve_iterator_expr (iter->start, real_ok,
7174 "Start expression in DO loop"))
7175 return false;
7176
7177 if (!gfc_resolve_iterator_expr (iter->end, real_ok,
7178 "End expression in DO loop"))
7179 return false;
7180
7181 if (!gfc_resolve_iterator_expr (iter->step, real_ok,
7182 "Step expression in DO loop"))
7183 return false;
7184
7185 /* Convert start, end, and step to the same type as var. */
7186 if (iter->start->ts.kind != iter->var->ts.kind
7187 || iter->start->ts.type != iter->var->ts.type)
7188 gfc_convert_type (iter->start, &iter->var->ts, 1);
7189
7190 if (iter->end->ts.kind != iter->var->ts.kind
7191 || iter->end->ts.type != iter->var->ts.type)
7192 gfc_convert_type (iter->end, &iter->var->ts, 1);
7193
7194 if (iter->step->ts.kind != iter->var->ts.kind
7195 || iter->step->ts.type != iter->var->ts.type)
7196 gfc_convert_type (iter->step, &iter->var->ts, 1);
7197
7198 if (iter->step->expr_type == EXPR_CONSTANT)
7199 {
7200 if ((iter->step->ts.type == BT_INTEGER
7201 && mpz_cmp_ui (iter->step->value.integer, 0) == 0)
7202 || (iter->step->ts.type == BT_REAL
7203 && mpfr_sgn (iter->step->value.real) == 0))
7204 {
7205 gfc_error ("Step expression in DO loop at %L cannot be zero",
7206 &iter->step->where);
7207 return false;
7208 }
7209 }
7210
7211 if (iter->start->expr_type == EXPR_CONSTANT
7212 && iter->end->expr_type == EXPR_CONSTANT
7213 && iter->step->expr_type == EXPR_CONSTANT)
7214 {
7215 int sgn, cmp;
7216 if (iter->start->ts.type == BT_INTEGER)
7217 {
7218 sgn = mpz_cmp_ui (iter->step->value.integer, 0);
7219 cmp = mpz_cmp (iter->end->value.integer, iter->start->value.integer);
7220 }
7221 else
7222 {
7223 sgn = mpfr_sgn (iter->step->value.real);
7224 cmp = mpfr_cmp (iter->end->value.real, iter->start->value.real);
7225 }
7226 if (warn_zerotrip && ((sgn > 0 && cmp < 0) || (sgn < 0 && cmp > 0)))
7227 gfc_warning (OPT_Wzerotrip,
7228 "DO loop at %L will be executed zero times",
7229 &iter->step->where);
7230 }
7231
7232 if (iter->end->expr_type == EXPR_CONSTANT
7233 && iter->end->ts.type == BT_INTEGER
7234 && iter->step->expr_type == EXPR_CONSTANT
7235 && iter->step->ts.type == BT_INTEGER
7236 && (mpz_cmp_si (iter->step->value.integer, -1L) == 0
7237 || mpz_cmp_si (iter->step->value.integer, 1L) == 0))
7238 {
7239 bool is_step_positive = mpz_cmp_ui (iter->step->value.integer, 1) == 0;
7240 int k = gfc_validate_kind (BT_INTEGER, iter->end->ts.kind, false);
7241
7242 if (is_step_positive
7243 && mpz_cmp (iter->end->value.integer, gfc_integer_kinds[k].huge) == 0)
7244 gfc_warning (OPT_Wundefined_do_loop,
7245 "DO loop at %L is undefined as it overflows",
7246 &iter->step->where);
7247 else if (!is_step_positive
7248 && mpz_cmp (iter->end->value.integer,
7249 gfc_integer_kinds[k].min_int) == 0)
7250 gfc_warning (OPT_Wundefined_do_loop,
7251 "DO loop at %L is undefined as it underflows",
7252 &iter->step->where);
7253 }
7254
7255 return true;
7256 }
7257
7258
7259 /* Traversal function for find_forall_index. f == 2 signals that
7260 that variable itself is not to be checked - only the references. */
7261
7262 static bool
7263 forall_index (gfc_expr *expr, gfc_symbol *sym, int *f)
7264 {
7265 if (expr->expr_type != EXPR_VARIABLE)
7266 return false;
7267
7268 /* A scalar assignment */
7269 if (!expr->ref || *f == 1)
7270 {
7271 if (expr->symtree->n.sym == sym)
7272 return true;
7273 else
7274 return false;
7275 }
7276
7277 if (*f == 2)
7278 *f = 1;
7279 return false;
7280 }
7281
7282
7283 /* Check whether the FORALL index appears in the expression or not.
7284 Returns true if SYM is found in EXPR. */
7285
7286 bool
7287 find_forall_index (gfc_expr *expr, gfc_symbol *sym, int f)
7288 {
7289 if (gfc_traverse_expr (expr, sym, forall_index, f))
7290 return true;
7291 else
7292 return false;
7293 }
7294
7295
7296 /* Resolve a list of FORALL iterators. The FORALL index-name is constrained
7297 to be a scalar INTEGER variable. The subscripts and stride are scalar
7298 INTEGERs, and if stride is a constant it must be nonzero.
7299 Furthermore "A subscript or stride in a forall-triplet-spec shall
7300 not contain a reference to any index-name in the
7301 forall-triplet-spec-list in which it appears." (7.5.4.1) */
7302
7303 static void
7304 resolve_forall_iterators (gfc_forall_iterator *it)
7305 {
7306 gfc_forall_iterator *iter, *iter2;
7307
7308 for (iter = it; iter; iter = iter->next)
7309 {
7310 if (gfc_resolve_expr (iter->var)
7311 && (iter->var->ts.type != BT_INTEGER || iter->var->rank != 0))
7312 gfc_error ("FORALL index-name at %L must be a scalar INTEGER",
7313 &iter->var->where);
7314
7315 if (gfc_resolve_expr (iter->start)
7316 && (iter->start->ts.type != BT_INTEGER || iter->start->rank != 0))
7317 gfc_error ("FORALL start expression at %L must be a scalar INTEGER",
7318 &iter->start->where);
7319 if (iter->var->ts.kind != iter->start->ts.kind)
7320 gfc_convert_type (iter->start, &iter->var->ts, 1);
7321
7322 if (gfc_resolve_expr (iter->end)
7323 && (iter->end->ts.type != BT_INTEGER || iter->end->rank != 0))
7324 gfc_error ("FORALL end expression at %L must be a scalar INTEGER",
7325 &iter->end->where);
7326 if (iter->var->ts.kind != iter->end->ts.kind)
7327 gfc_convert_type (iter->end, &iter->var->ts, 1);
7328
7329 if (gfc_resolve_expr (iter->stride))
7330 {
7331 if (iter->stride->ts.type != BT_INTEGER || iter->stride->rank != 0)
7332 gfc_error ("FORALL stride expression at %L must be a scalar %s",
7333 &iter->stride->where, "INTEGER");
7334
7335 if (iter->stride->expr_type == EXPR_CONSTANT
7336 && mpz_cmp_ui (iter->stride->value.integer, 0) == 0)
7337 gfc_error ("FORALL stride expression at %L cannot be zero",
7338 &iter->stride->where);
7339 }
7340 if (iter->var->ts.kind != iter->stride->ts.kind)
7341 gfc_convert_type (iter->stride, &iter->var->ts, 1);
7342 }
7343
7344 for (iter = it; iter; iter = iter->next)
7345 for (iter2 = iter; iter2; iter2 = iter2->next)
7346 {
7347 if (find_forall_index (iter2->start, iter->var->symtree->n.sym, 0)
7348 || find_forall_index (iter2->end, iter->var->symtree->n.sym, 0)
7349 || find_forall_index (iter2->stride, iter->var->symtree->n.sym, 0))
7350 gfc_error ("FORALL index %qs may not appear in triplet "
7351 "specification at %L", iter->var->symtree->name,
7352 &iter2->start->where);
7353 }
7354 }
7355
7356
7357 /* Given a pointer to a symbol that is a derived type, see if it's
7358 inaccessible, i.e. if it's defined in another module and the components are
7359 PRIVATE. The search is recursive if necessary. Returns zero if no
7360 inaccessible components are found, nonzero otherwise. */
7361
7362 static int
7363 derived_inaccessible (gfc_symbol *sym)
7364 {
7365 gfc_component *c;
7366
7367 if (sym->attr.use_assoc && sym->attr.private_comp)
7368 return 1;
7369
7370 for (c = sym->components; c; c = c->next)
7371 {
7372 /* Prevent an infinite loop through this function. */
7373 if (c->ts.type == BT_DERIVED && c->attr.pointer
7374 && sym == c->ts.u.derived)
7375 continue;
7376
7377 if (c->ts.type == BT_DERIVED && derived_inaccessible (c->ts.u.derived))
7378 return 1;
7379 }
7380
7381 return 0;
7382 }
7383
7384
7385 /* Resolve the argument of a deallocate expression. The expression must be
7386 a pointer or a full array. */
7387
7388 static bool
7389 resolve_deallocate_expr (gfc_expr *e)
7390 {
7391 symbol_attribute attr;
7392 int allocatable, pointer;
7393 gfc_ref *ref;
7394 gfc_symbol *sym;
7395 gfc_component *c;
7396 bool unlimited;
7397
7398 if (!gfc_resolve_expr (e))
7399 return false;
7400
7401 if (e->expr_type != EXPR_VARIABLE)
7402 goto bad;
7403
7404 sym = e->symtree->n.sym;
7405 unlimited = UNLIMITED_POLY(sym);
7406
7407 if (sym->ts.type == BT_CLASS)
7408 {
7409 allocatable = CLASS_DATA (sym)->attr.allocatable;
7410 pointer = CLASS_DATA (sym)->attr.class_pointer;
7411 }
7412 else
7413 {
7414 allocatable = sym->attr.allocatable;
7415 pointer = sym->attr.pointer;
7416 }
7417 for (ref = e->ref; ref; ref = ref->next)
7418 {
7419 switch (ref->type)
7420 {
7421 case REF_ARRAY:
7422 if (ref->u.ar.type != AR_FULL
7423 && !(ref->u.ar.type == AR_ELEMENT && ref->u.ar.as->rank == 0
7424 && ref->u.ar.codimen && gfc_ref_this_image (ref)))
7425 allocatable = 0;
7426 break;
7427
7428 case REF_COMPONENT:
7429 c = ref->u.c.component;
7430 if (c->ts.type == BT_CLASS)
7431 {
7432 allocatable = CLASS_DATA (c)->attr.allocatable;
7433 pointer = CLASS_DATA (c)->attr.class_pointer;
7434 }
7435 else
7436 {
7437 allocatable = c->attr.allocatable;
7438 pointer = c->attr.pointer;
7439 }
7440 break;
7441
7442 case REF_SUBSTRING:
7443 case REF_INQUIRY:
7444 allocatable = 0;
7445 break;
7446 }
7447 }
7448
7449 attr = gfc_expr_attr (e);
7450
7451 if (allocatable == 0 && attr.pointer == 0 && !unlimited)
7452 {
7453 bad:
7454 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7455 &e->where);
7456 return false;
7457 }
7458
7459 /* F2008, C644. */
7460 if (gfc_is_coindexed (e))
7461 {
7462 gfc_error ("Coindexed allocatable object at %L", &e->where);
7463 return false;
7464 }
7465
7466 if (pointer
7467 && !gfc_check_vardef_context (e, true, true, false,
7468 _("DEALLOCATE object")))
7469 return false;
7470 if (!gfc_check_vardef_context (e, false, true, false,
7471 _("DEALLOCATE object")))
7472 return false;
7473
7474 return true;
7475 }
7476
7477
7478 /* Returns true if the expression e contains a reference to the symbol sym. */
7479 static bool
7480 sym_in_expr (gfc_expr *e, gfc_symbol *sym, int *f ATTRIBUTE_UNUSED)
7481 {
7482 if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym == sym)
7483 return true;
7484
7485 return false;
7486 }
7487
7488 bool
7489 gfc_find_sym_in_expr (gfc_symbol *sym, gfc_expr *e)
7490 {
7491 return gfc_traverse_expr (e, sym, sym_in_expr, 0);
7492 }
7493
7494
7495 /* Given the expression node e for an allocatable/pointer of derived type to be
7496 allocated, get the expression node to be initialized afterwards (needed for
7497 derived types with default initializers, and derived types with allocatable
7498 components that need nullification.) */
7499
7500 gfc_expr *
7501 gfc_expr_to_initialize (gfc_expr *e)
7502 {
7503 gfc_expr *result;
7504 gfc_ref *ref;
7505 int i;
7506
7507 result = gfc_copy_expr (e);
7508
7509 /* Change the last array reference from AR_ELEMENT to AR_FULL. */
7510 for (ref = result->ref; ref; ref = ref->next)
7511 if (ref->type == REF_ARRAY && ref->next == NULL)
7512 {
7513 if (ref->u.ar.dimen == 0
7514 && ref->u.ar.as && ref->u.ar.as->corank)
7515 return result;
7516
7517 ref->u.ar.type = AR_FULL;
7518
7519 for (i = 0; i < ref->u.ar.dimen; i++)
7520 ref->u.ar.start[i] = ref->u.ar.end[i] = ref->u.ar.stride[i] = NULL;
7521
7522 break;
7523 }
7524
7525 gfc_free_shape (&result->shape, result->rank);
7526
7527 /* Recalculate rank, shape, etc. */
7528 gfc_resolve_expr (result);
7529 return result;
7530 }
7531
7532
7533 /* If the last ref of an expression is an array ref, return a copy of the
7534 expression with that one removed. Otherwise, a copy of the original
7535 expression. This is used for allocate-expressions and pointer assignment
7536 LHS, where there may be an array specification that needs to be stripped
7537 off when using gfc_check_vardef_context. */
7538
7539 static gfc_expr*
7540 remove_last_array_ref (gfc_expr* e)
7541 {
7542 gfc_expr* e2;
7543 gfc_ref** r;
7544
7545 e2 = gfc_copy_expr (e);
7546 for (r = &e2->ref; *r; r = &(*r)->next)
7547 if ((*r)->type == REF_ARRAY && !(*r)->next)
7548 {
7549 gfc_free_ref_list (*r);
7550 *r = NULL;
7551 break;
7552 }
7553
7554 return e2;
7555 }
7556
7557
7558 /* Used in resolve_allocate_expr to check that a allocation-object and
7559 a source-expr are conformable. This does not catch all possible
7560 cases; in particular a runtime checking is needed. */
7561
7562 static bool
7563 conformable_arrays (gfc_expr *e1, gfc_expr *e2)
7564 {
7565 gfc_ref *tail;
7566 for (tail = e2->ref; tail && tail->next; tail = tail->next);
7567
7568 /* First compare rank. */
7569 if ((tail && (!tail->u.ar.as || e1->rank != tail->u.ar.as->rank))
7570 || (!tail && e1->rank != e2->rank))
7571 {
7572 gfc_error ("Source-expr at %L must be scalar or have the "
7573 "same rank as the allocate-object at %L",
7574 &e1->where, &e2->where);
7575 return false;
7576 }
7577
7578 if (e1->shape)
7579 {
7580 int i;
7581 mpz_t s;
7582
7583 mpz_init (s);
7584
7585 for (i = 0; i < e1->rank; i++)
7586 {
7587 if (tail->u.ar.start[i] == NULL)
7588 break;
7589
7590 if (tail->u.ar.end[i])
7591 {
7592 mpz_set (s, tail->u.ar.end[i]->value.integer);
7593 mpz_sub (s, s, tail->u.ar.start[i]->value.integer);
7594 mpz_add_ui (s, s, 1);
7595 }
7596 else
7597 {
7598 mpz_set (s, tail->u.ar.start[i]->value.integer);
7599 }
7600
7601 if (mpz_cmp (e1->shape[i], s) != 0)
7602 {
7603 gfc_error ("Source-expr at %L and allocate-object at %L must "
7604 "have the same shape", &e1->where, &e2->where);
7605 mpz_clear (s);
7606 return false;
7607 }
7608 }
7609
7610 mpz_clear (s);
7611 }
7612
7613 return true;
7614 }
7615
7616
7617 /* Resolve the expression in an ALLOCATE statement, doing the additional
7618 checks to see whether the expression is OK or not. The expression must
7619 have a trailing array reference that gives the size of the array. */
7620
7621 static bool
7622 resolve_allocate_expr (gfc_expr *e, gfc_code *code, bool *array_alloc_wo_spec)
7623 {
7624 int i, pointer, allocatable, dimension, is_abstract;
7625 int codimension;
7626 bool coindexed;
7627 bool unlimited;
7628 symbol_attribute attr;
7629 gfc_ref *ref, *ref2;
7630 gfc_expr *e2;
7631 gfc_array_ref *ar;
7632 gfc_symbol *sym = NULL;
7633 gfc_alloc *a;
7634 gfc_component *c;
7635 bool t;
7636
7637 /* Mark the utmost array component as being in allocate to allow DIMEN_STAR
7638 checking of coarrays. */
7639 for (ref = e->ref; ref; ref = ref->next)
7640 if (ref->next == NULL)
7641 break;
7642
7643 if (ref && ref->type == REF_ARRAY)
7644 ref->u.ar.in_allocate = true;
7645
7646 if (!gfc_resolve_expr (e))
7647 goto failure;
7648
7649 /* Make sure the expression is allocatable or a pointer. If it is
7650 pointer, the next-to-last reference must be a pointer. */
7651
7652 ref2 = NULL;
7653 if (e->symtree)
7654 sym = e->symtree->n.sym;
7655
7656 /* Check whether ultimate component is abstract and CLASS. */
7657 is_abstract = 0;
7658
7659 /* Is the allocate-object unlimited polymorphic? */
7660 unlimited = UNLIMITED_POLY(e);
7661
7662 if (e->expr_type != EXPR_VARIABLE)
7663 {
7664 allocatable = 0;
7665 attr = gfc_expr_attr (e);
7666 pointer = attr.pointer;
7667 dimension = attr.dimension;
7668 codimension = attr.codimension;
7669 }
7670 else
7671 {
7672 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
7673 {
7674 allocatable = CLASS_DATA (sym)->attr.allocatable;
7675 pointer = CLASS_DATA (sym)->attr.class_pointer;
7676 dimension = CLASS_DATA (sym)->attr.dimension;
7677 codimension = CLASS_DATA (sym)->attr.codimension;
7678 is_abstract = CLASS_DATA (sym)->attr.abstract;
7679 }
7680 else
7681 {
7682 allocatable = sym->attr.allocatable;
7683 pointer = sym->attr.pointer;
7684 dimension = sym->attr.dimension;
7685 codimension = sym->attr.codimension;
7686 }
7687
7688 coindexed = false;
7689
7690 for (ref = e->ref; ref; ref2 = ref, ref = ref->next)
7691 {
7692 switch (ref->type)
7693 {
7694 case REF_ARRAY:
7695 if (ref->u.ar.codimen > 0)
7696 {
7697 int n;
7698 for (n = ref->u.ar.dimen;
7699 n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
7700 if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
7701 {
7702 coindexed = true;
7703 break;
7704 }
7705 }
7706
7707 if (ref->next != NULL)
7708 pointer = 0;
7709 break;
7710
7711 case REF_COMPONENT:
7712 /* F2008, C644. */
7713 if (coindexed)
7714 {
7715 gfc_error ("Coindexed allocatable object at %L",
7716 &e->where);
7717 goto failure;
7718 }
7719
7720 c = ref->u.c.component;
7721 if (c->ts.type == BT_CLASS)
7722 {
7723 allocatable = CLASS_DATA (c)->attr.allocatable;
7724 pointer = CLASS_DATA (c)->attr.class_pointer;
7725 dimension = CLASS_DATA (c)->attr.dimension;
7726 codimension = CLASS_DATA (c)->attr.codimension;
7727 is_abstract = CLASS_DATA (c)->attr.abstract;
7728 }
7729 else
7730 {
7731 allocatable = c->attr.allocatable;
7732 pointer = c->attr.pointer;
7733 dimension = c->attr.dimension;
7734 codimension = c->attr.codimension;
7735 is_abstract = c->attr.abstract;
7736 }
7737 break;
7738
7739 case REF_SUBSTRING:
7740 case REF_INQUIRY:
7741 allocatable = 0;
7742 pointer = 0;
7743 break;
7744 }
7745 }
7746 }
7747
7748 /* Check for F08:C628. */
7749 if (allocatable == 0 && pointer == 0 && !unlimited)
7750 {
7751 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7752 &e->where);
7753 goto failure;
7754 }
7755
7756 /* Some checks for the SOURCE tag. */
7757 if (code->expr3)
7758 {
7759 /* Check F03:C631. */
7760 if (!gfc_type_compatible (&e->ts, &code->expr3->ts))
7761 {
7762 gfc_error ("Type of entity at %L is type incompatible with "
7763 "source-expr at %L", &e->where, &code->expr3->where);
7764 goto failure;
7765 }
7766
7767 /* Check F03:C632 and restriction following Note 6.18. */
7768 if (code->expr3->rank > 0 && !conformable_arrays (code->expr3, e))
7769 goto failure;
7770
7771 /* Check F03:C633. */
7772 if (code->expr3->ts.kind != e->ts.kind && !unlimited)
7773 {
7774 gfc_error ("The allocate-object at %L and the source-expr at %L "
7775 "shall have the same kind type parameter",
7776 &e->where, &code->expr3->where);
7777 goto failure;
7778 }
7779
7780 /* Check F2008, C642. */
7781 if (code->expr3->ts.type == BT_DERIVED
7782 && ((codimension && gfc_expr_attr (code->expr3).lock_comp)
7783 || (code->expr3->ts.u.derived->from_intmod
7784 == INTMOD_ISO_FORTRAN_ENV
7785 && code->expr3->ts.u.derived->intmod_sym_id
7786 == ISOFORTRAN_LOCK_TYPE)))
7787 {
7788 gfc_error ("The source-expr at %L shall neither be of type "
7789 "LOCK_TYPE nor have a LOCK_TYPE component if "
7790 "allocate-object at %L is a coarray",
7791 &code->expr3->where, &e->where);
7792 goto failure;
7793 }
7794
7795 /* Check TS18508, C702/C703. */
7796 if (code->expr3->ts.type == BT_DERIVED
7797 && ((codimension && gfc_expr_attr (code->expr3).event_comp)
7798 || (code->expr3->ts.u.derived->from_intmod
7799 == INTMOD_ISO_FORTRAN_ENV
7800 && code->expr3->ts.u.derived->intmod_sym_id
7801 == ISOFORTRAN_EVENT_TYPE)))
7802 {
7803 gfc_error ("The source-expr at %L shall neither be of type "
7804 "EVENT_TYPE nor have a EVENT_TYPE component if "
7805 "allocate-object at %L is a coarray",
7806 &code->expr3->where, &e->where);
7807 goto failure;
7808 }
7809 }
7810
7811 /* Check F08:C629. */
7812 if (is_abstract && code->ext.alloc.ts.type == BT_UNKNOWN
7813 && !code->expr3)
7814 {
7815 gcc_assert (e->ts.type == BT_CLASS);
7816 gfc_error ("Allocating %s of ABSTRACT base type at %L requires a "
7817 "type-spec or source-expr", sym->name, &e->where);
7818 goto failure;
7819 }
7820
7821 /* Check F08:C632. */
7822 if (code->ext.alloc.ts.type == BT_CHARACTER && !e->ts.deferred
7823 && !UNLIMITED_POLY (e))
7824 {
7825 int cmp;
7826
7827 if (!e->ts.u.cl->length)
7828 goto failure;
7829
7830 cmp = gfc_dep_compare_expr (e->ts.u.cl->length,
7831 code->ext.alloc.ts.u.cl->length);
7832 if (cmp == 1 || cmp == -1 || cmp == -3)
7833 {
7834 gfc_error ("Allocating %s at %L with type-spec requires the same "
7835 "character-length parameter as in the declaration",
7836 sym->name, &e->where);
7837 goto failure;
7838 }
7839 }
7840
7841 /* In the variable definition context checks, gfc_expr_attr is used
7842 on the expression. This is fooled by the array specification
7843 present in e, thus we have to eliminate that one temporarily. */
7844 e2 = remove_last_array_ref (e);
7845 t = true;
7846 if (t && pointer)
7847 t = gfc_check_vardef_context (e2, true, true, false,
7848 _("ALLOCATE object"));
7849 if (t)
7850 t = gfc_check_vardef_context (e2, false, true, false,
7851 _("ALLOCATE object"));
7852 gfc_free_expr (e2);
7853 if (!t)
7854 goto failure;
7855
7856 if (e->ts.type == BT_CLASS && CLASS_DATA (e)->attr.dimension
7857 && !code->expr3 && code->ext.alloc.ts.type == BT_DERIVED)
7858 {
7859 /* For class arrays, the initialization with SOURCE is done
7860 using _copy and trans_call. It is convenient to exploit that
7861 when the allocated type is different from the declared type but
7862 no SOURCE exists by setting expr3. */
7863 code->expr3 = gfc_default_initializer (&code->ext.alloc.ts);
7864 }
7865 else if (flag_coarray != GFC_FCOARRAY_LIB && e->ts.type == BT_DERIVED
7866 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
7867 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
7868 {
7869 /* We have to zero initialize the integer variable. */
7870 code->expr3 = gfc_get_int_expr (gfc_default_integer_kind, &e->where, 0);
7871 }
7872
7873 if (e->ts.type == BT_CLASS && !unlimited && !UNLIMITED_POLY (code->expr3))
7874 {
7875 /* Make sure the vtab symbol is present when
7876 the module variables are generated. */
7877 gfc_typespec ts = e->ts;
7878 if (code->expr3)
7879 ts = code->expr3->ts;
7880 else if (code->ext.alloc.ts.type == BT_DERIVED)
7881 ts = code->ext.alloc.ts;
7882
7883 /* Finding the vtab also publishes the type's symbol. Therefore this
7884 statement is necessary. */
7885 gfc_find_derived_vtab (ts.u.derived);
7886 }
7887 else if (unlimited && !UNLIMITED_POLY (code->expr3))
7888 {
7889 /* Again, make sure the vtab symbol is present when
7890 the module variables are generated. */
7891 gfc_typespec *ts = NULL;
7892 if (code->expr3)
7893 ts = &code->expr3->ts;
7894 else
7895 ts = &code->ext.alloc.ts;
7896
7897 gcc_assert (ts);
7898
7899 /* Finding the vtab also publishes the type's symbol. Therefore this
7900 statement is necessary. */
7901 gfc_find_vtab (ts);
7902 }
7903
7904 if (dimension == 0 && codimension == 0)
7905 goto success;
7906
7907 /* Make sure the last reference node is an array specification. */
7908
7909 if (!ref2 || ref2->type != REF_ARRAY || ref2->u.ar.type == AR_FULL
7910 || (dimension && ref2->u.ar.dimen == 0))
7911 {
7912 /* F08:C633. */
7913 if (code->expr3)
7914 {
7915 if (!gfc_notify_std (GFC_STD_F2008, "Array specification required "
7916 "in ALLOCATE statement at %L", &e->where))
7917 goto failure;
7918 if (code->expr3->rank != 0)
7919 *array_alloc_wo_spec = true;
7920 else
7921 {
7922 gfc_error ("Array specification or array-valued SOURCE= "
7923 "expression required in ALLOCATE statement at %L",
7924 &e->where);
7925 goto failure;
7926 }
7927 }
7928 else
7929 {
7930 gfc_error ("Array specification required in ALLOCATE statement "
7931 "at %L", &e->where);
7932 goto failure;
7933 }
7934 }
7935
7936 /* Make sure that the array section reference makes sense in the
7937 context of an ALLOCATE specification. */
7938
7939 ar = &ref2->u.ar;
7940
7941 if (codimension)
7942 for (i = ar->dimen; i < ar->dimen + ar->codimen; i++)
7943 {
7944 switch (ar->dimen_type[i])
7945 {
7946 case DIMEN_THIS_IMAGE:
7947 gfc_error ("Coarray specification required in ALLOCATE statement "
7948 "at %L", &e->where);
7949 goto failure;
7950
7951 case DIMEN_RANGE:
7952 if (ar->start[i] == 0 || ar->end[i] == 0)
7953 {
7954 /* If ar->stride[i] is NULL, we issued a previous error. */
7955 if (ar->stride[i] == NULL)
7956 gfc_error ("Bad array specification in ALLOCATE statement "
7957 "at %L", &e->where);
7958 goto failure;
7959 }
7960 else if (gfc_dep_compare_expr (ar->start[i], ar->end[i]) == 1)
7961 {
7962 gfc_error ("Upper cobound is less than lower cobound at %L",
7963 &ar->start[i]->where);
7964 goto failure;
7965 }
7966 break;
7967
7968 case DIMEN_ELEMENT:
7969 if (ar->start[i]->expr_type == EXPR_CONSTANT)
7970 {
7971 gcc_assert (ar->start[i]->ts.type == BT_INTEGER);
7972 if (mpz_cmp_si (ar->start[i]->value.integer, 1) < 0)
7973 {
7974 gfc_error ("Upper cobound is less than lower cobound "
7975 "of 1 at %L", &ar->start[i]->where);
7976 goto failure;
7977 }
7978 }
7979 break;
7980
7981 case DIMEN_STAR:
7982 break;
7983
7984 default:
7985 gfc_error ("Bad array specification in ALLOCATE statement at %L",
7986 &e->where);
7987 goto failure;
7988
7989 }
7990 }
7991 for (i = 0; i < ar->dimen; i++)
7992 {
7993 if (ar->type == AR_ELEMENT || ar->type == AR_FULL)
7994 goto check_symbols;
7995
7996 switch (ar->dimen_type[i])
7997 {
7998 case DIMEN_ELEMENT:
7999 break;
8000
8001 case DIMEN_RANGE:
8002 if (ar->start[i] != NULL
8003 && ar->end[i] != NULL
8004 && ar->stride[i] == NULL)
8005 break;
8006
8007 /* Fall through. */
8008
8009 case DIMEN_UNKNOWN:
8010 case DIMEN_VECTOR:
8011 case DIMEN_STAR:
8012 case DIMEN_THIS_IMAGE:
8013 gfc_error ("Bad array specification in ALLOCATE statement at %L",
8014 &e->where);
8015 goto failure;
8016 }
8017
8018 check_symbols:
8019 for (a = code->ext.alloc.list; a; a = a->next)
8020 {
8021 sym = a->expr->symtree->n.sym;
8022
8023 /* TODO - check derived type components. */
8024 if (gfc_bt_struct (sym->ts.type) || sym->ts.type == BT_CLASS)
8025 continue;
8026
8027 if ((ar->start[i] != NULL
8028 && gfc_find_sym_in_expr (sym, ar->start[i]))
8029 || (ar->end[i] != NULL
8030 && gfc_find_sym_in_expr (sym, ar->end[i])))
8031 {
8032 gfc_error ("%qs must not appear in the array specification at "
8033 "%L in the same ALLOCATE statement where it is "
8034 "itself allocated", sym->name, &ar->where);
8035 goto failure;
8036 }
8037 }
8038 }
8039
8040 for (i = ar->dimen; i < ar->codimen + ar->dimen; i++)
8041 {
8042 if (ar->dimen_type[i] == DIMEN_ELEMENT
8043 || ar->dimen_type[i] == DIMEN_RANGE)
8044 {
8045 if (i == (ar->dimen + ar->codimen - 1))
8046 {
8047 gfc_error ("Expected '*' in coindex specification in ALLOCATE "
8048 "statement at %L", &e->where);
8049 goto failure;
8050 }
8051 continue;
8052 }
8053
8054 if (ar->dimen_type[i] == DIMEN_STAR && i == (ar->dimen + ar->codimen - 1)
8055 && ar->stride[i] == NULL)
8056 break;
8057
8058 gfc_error ("Bad coarray specification in ALLOCATE statement at %L",
8059 &e->where);
8060 goto failure;
8061 }
8062
8063 success:
8064 return true;
8065
8066 failure:
8067 return false;
8068 }
8069
8070
8071 static void
8072 resolve_allocate_deallocate (gfc_code *code, const char *fcn)
8073 {
8074 gfc_expr *stat, *errmsg, *pe, *qe;
8075 gfc_alloc *a, *p, *q;
8076
8077 stat = code->expr1;
8078 errmsg = code->expr2;
8079
8080 /* Check the stat variable. */
8081 if (stat)
8082 {
8083 gfc_check_vardef_context (stat, false, false, false,
8084 _("STAT variable"));
8085
8086 if ((stat->ts.type != BT_INTEGER
8087 && !(stat->ref && (stat->ref->type == REF_ARRAY
8088 || stat->ref->type == REF_COMPONENT)))
8089 || stat->rank > 0)
8090 gfc_error ("Stat-variable at %L must be a scalar INTEGER "
8091 "variable", &stat->where);
8092
8093 for (p = code->ext.alloc.list; p; p = p->next)
8094 if (p->expr->symtree->n.sym->name == stat->symtree->n.sym->name)
8095 {
8096 gfc_ref *ref1, *ref2;
8097 bool found = true;
8098
8099 for (ref1 = p->expr->ref, ref2 = stat->ref; ref1 && ref2;
8100 ref1 = ref1->next, ref2 = ref2->next)
8101 {
8102 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
8103 continue;
8104 if (ref1->u.c.component->name != ref2->u.c.component->name)
8105 {
8106 found = false;
8107 break;
8108 }
8109 }
8110
8111 if (found)
8112 {
8113 gfc_error ("Stat-variable at %L shall not be %sd within "
8114 "the same %s statement", &stat->where, fcn, fcn);
8115 break;
8116 }
8117 }
8118 }
8119
8120 /* Check the errmsg variable. */
8121 if (errmsg)
8122 {
8123 if (!stat)
8124 gfc_warning (0, "ERRMSG at %L is useless without a STAT tag",
8125 &errmsg->where);
8126
8127 gfc_check_vardef_context (errmsg, false, false, false,
8128 _("ERRMSG variable"));
8129
8130 /* F18:R928 alloc-opt is ERRMSG = errmsg-variable
8131 F18:R930 errmsg-variable is scalar-default-char-variable
8132 F18:R906 default-char-variable is variable
8133 F18:C906 default-char-variable shall be default character. */
8134 if ((errmsg->ts.type != BT_CHARACTER
8135 && !(errmsg->ref
8136 && (errmsg->ref->type == REF_ARRAY
8137 || errmsg->ref->type == REF_COMPONENT)))
8138 || errmsg->rank > 0
8139 || errmsg->ts.kind != gfc_default_character_kind)
8140 gfc_error ("ERRMSG variable at %L shall be a scalar default CHARACTER "
8141 "variable", &errmsg->where);
8142
8143 for (p = code->ext.alloc.list; p; p = p->next)
8144 if (p->expr->symtree->n.sym->name == errmsg->symtree->n.sym->name)
8145 {
8146 gfc_ref *ref1, *ref2;
8147 bool found = true;
8148
8149 for (ref1 = p->expr->ref, ref2 = errmsg->ref; ref1 && ref2;
8150 ref1 = ref1->next, ref2 = ref2->next)
8151 {
8152 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
8153 continue;
8154 if (ref1->u.c.component->name != ref2->u.c.component->name)
8155 {
8156 found = false;
8157 break;
8158 }
8159 }
8160
8161 if (found)
8162 {
8163 gfc_error ("Errmsg-variable at %L shall not be %sd within "
8164 "the same %s statement", &errmsg->where, fcn, fcn);
8165 break;
8166 }
8167 }
8168 }
8169
8170 /* Check that an allocate-object appears only once in the statement. */
8171
8172 for (p = code->ext.alloc.list; p; p = p->next)
8173 {
8174 pe = p->expr;
8175 for (q = p->next; q; q = q->next)
8176 {
8177 qe = q->expr;
8178 if (pe->symtree->n.sym->name == qe->symtree->n.sym->name)
8179 {
8180 /* This is a potential collision. */
8181 gfc_ref *pr = pe->ref;
8182 gfc_ref *qr = qe->ref;
8183
8184 /* Follow the references until
8185 a) They start to differ, in which case there is no error;
8186 you can deallocate a%b and a%c in a single statement
8187 b) Both of them stop, which is an error
8188 c) One of them stops, which is also an error. */
8189 while (1)
8190 {
8191 if (pr == NULL && qr == NULL)
8192 {
8193 gfc_error ("Allocate-object at %L also appears at %L",
8194 &pe->where, &qe->where);
8195 break;
8196 }
8197 else if (pr != NULL && qr == NULL)
8198 {
8199 gfc_error ("Allocate-object at %L is subobject of"
8200 " object at %L", &pe->where, &qe->where);
8201 break;
8202 }
8203 else if (pr == NULL && qr != NULL)
8204 {
8205 gfc_error ("Allocate-object at %L is subobject of"
8206 " object at %L", &qe->where, &pe->where);
8207 break;
8208 }
8209 /* Here, pr != NULL && qr != NULL */
8210 gcc_assert(pr->type == qr->type);
8211 if (pr->type == REF_ARRAY)
8212 {
8213 /* Handle cases like allocate(v(3)%x(3), v(2)%x(3)),
8214 which are legal. */
8215 gcc_assert (qr->type == REF_ARRAY);
8216
8217 if (pr->next && qr->next)
8218 {
8219 int i;
8220 gfc_array_ref *par = &(pr->u.ar);
8221 gfc_array_ref *qar = &(qr->u.ar);
8222
8223 for (i=0; i<par->dimen; i++)
8224 {
8225 if ((par->start[i] != NULL
8226 || qar->start[i] != NULL)
8227 && gfc_dep_compare_expr (par->start[i],
8228 qar->start[i]) != 0)
8229 goto break_label;
8230 }
8231 }
8232 }
8233 else
8234 {
8235 if (pr->u.c.component->name != qr->u.c.component->name)
8236 break;
8237 }
8238
8239 pr = pr->next;
8240 qr = qr->next;
8241 }
8242 break_label:
8243 ;
8244 }
8245 }
8246 }
8247
8248 if (strcmp (fcn, "ALLOCATE") == 0)
8249 {
8250 bool arr_alloc_wo_spec = false;
8251
8252 /* Resolving the expr3 in the loop over all objects to allocate would
8253 execute loop invariant code for each loop item. Therefore do it just
8254 once here. */
8255 if (code->expr3 && code->expr3->mold
8256 && code->expr3->ts.type == BT_DERIVED)
8257 {
8258 /* Default initialization via MOLD (non-polymorphic). */
8259 gfc_expr *rhs = gfc_default_initializer (&code->expr3->ts);
8260 if (rhs != NULL)
8261 {
8262 gfc_resolve_expr (rhs);
8263 gfc_free_expr (code->expr3);
8264 code->expr3 = rhs;
8265 }
8266 }
8267 for (a = code->ext.alloc.list; a; a = a->next)
8268 resolve_allocate_expr (a->expr, code, &arr_alloc_wo_spec);
8269
8270 if (arr_alloc_wo_spec && code->expr3)
8271 {
8272 /* Mark the allocate to have to take the array specification
8273 from the expr3. */
8274 code->ext.alloc.arr_spec_from_expr3 = 1;
8275 }
8276 }
8277 else
8278 {
8279 for (a = code->ext.alloc.list; a; a = a->next)
8280 resolve_deallocate_expr (a->expr);
8281 }
8282 }
8283
8284
8285 /************ SELECT CASE resolution subroutines ************/
8286
8287 /* Callback function for our mergesort variant. Determines interval
8288 overlaps for CASEs. Return <0 if op1 < op2, 0 for overlap, >0 for
8289 op1 > op2. Assumes we're not dealing with the default case.
8290 We have op1 = (:L), (K:L) or (K:) and op2 = (:N), (M:N) or (M:).
8291 There are nine situations to check. */
8292
8293 static int
8294 compare_cases (const gfc_case *op1, const gfc_case *op2)
8295 {
8296 int retval;
8297
8298 if (op1->low == NULL) /* op1 = (:L) */
8299 {
8300 /* op2 = (:N), so overlap. */
8301 retval = 0;
8302 /* op2 = (M:) or (M:N), L < M */
8303 if (op2->low != NULL
8304 && gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8305 retval = -1;
8306 }
8307 else if (op1->high == NULL) /* op1 = (K:) */
8308 {
8309 /* op2 = (M:), so overlap. */
8310 retval = 0;
8311 /* op2 = (:N) or (M:N), K > N */
8312 if (op2->high != NULL
8313 && gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8314 retval = 1;
8315 }
8316 else /* op1 = (K:L) */
8317 {
8318 if (op2->low == NULL) /* op2 = (:N), K > N */
8319 retval = (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8320 ? 1 : 0;
8321 else if (op2->high == NULL) /* op2 = (M:), L < M */
8322 retval = (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8323 ? -1 : 0;
8324 else /* op2 = (M:N) */
8325 {
8326 retval = 0;
8327 /* L < M */
8328 if (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8329 retval = -1;
8330 /* K > N */
8331 else if (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8332 retval = 1;
8333 }
8334 }
8335
8336 return retval;
8337 }
8338
8339
8340 /* Merge-sort a double linked case list, detecting overlap in the
8341 process. LIST is the head of the double linked case list before it
8342 is sorted. Returns the head of the sorted list if we don't see any
8343 overlap, or NULL otherwise. */
8344
8345 static gfc_case *
8346 check_case_overlap (gfc_case *list)
8347 {
8348 gfc_case *p, *q, *e, *tail;
8349 int insize, nmerges, psize, qsize, cmp, overlap_seen;
8350
8351 /* If the passed list was empty, return immediately. */
8352 if (!list)
8353 return NULL;
8354
8355 overlap_seen = 0;
8356 insize = 1;
8357
8358 /* Loop unconditionally. The only exit from this loop is a return
8359 statement, when we've finished sorting the case list. */
8360 for (;;)
8361 {
8362 p = list;
8363 list = NULL;
8364 tail = NULL;
8365
8366 /* Count the number of merges we do in this pass. */
8367 nmerges = 0;
8368
8369 /* Loop while there exists a merge to be done. */
8370 while (p)
8371 {
8372 int i;
8373
8374 /* Count this merge. */
8375 nmerges++;
8376
8377 /* Cut the list in two pieces by stepping INSIZE places
8378 forward in the list, starting from P. */
8379 psize = 0;
8380 q = p;
8381 for (i = 0; i < insize; i++)
8382 {
8383 psize++;
8384 q = q->right;
8385 if (!q)
8386 break;
8387 }
8388 qsize = insize;
8389
8390 /* Now we have two lists. Merge them! */
8391 while (psize > 0 || (qsize > 0 && q != NULL))
8392 {
8393 /* See from which the next case to merge comes from. */
8394 if (psize == 0)
8395 {
8396 /* P is empty so the next case must come from Q. */
8397 e = q;
8398 q = q->right;
8399 qsize--;
8400 }
8401 else if (qsize == 0 || q == NULL)
8402 {
8403 /* Q is empty. */
8404 e = p;
8405 p = p->right;
8406 psize--;
8407 }
8408 else
8409 {
8410 cmp = compare_cases (p, q);
8411 if (cmp < 0)
8412 {
8413 /* The whole case range for P is less than the
8414 one for Q. */
8415 e = p;
8416 p = p->right;
8417 psize--;
8418 }
8419 else if (cmp > 0)
8420 {
8421 /* The whole case range for Q is greater than
8422 the case range for P. */
8423 e = q;
8424 q = q->right;
8425 qsize--;
8426 }
8427 else
8428 {
8429 /* The cases overlap, or they are the same
8430 element in the list. Either way, we must
8431 issue an error and get the next case from P. */
8432 /* FIXME: Sort P and Q by line number. */
8433 gfc_error ("CASE label at %L overlaps with CASE "
8434 "label at %L", &p->where, &q->where);
8435 overlap_seen = 1;
8436 e = p;
8437 p = p->right;
8438 psize--;
8439 }
8440 }
8441
8442 /* Add the next element to the merged list. */
8443 if (tail)
8444 tail->right = e;
8445 else
8446 list = e;
8447 e->left = tail;
8448 tail = e;
8449 }
8450
8451 /* P has now stepped INSIZE places along, and so has Q. So
8452 they're the same. */
8453 p = q;
8454 }
8455 tail->right = NULL;
8456
8457 /* If we have done only one merge or none at all, we've
8458 finished sorting the cases. */
8459 if (nmerges <= 1)
8460 {
8461 if (!overlap_seen)
8462 return list;
8463 else
8464 return NULL;
8465 }
8466
8467 /* Otherwise repeat, merging lists twice the size. */
8468 insize *= 2;
8469 }
8470 }
8471
8472
8473 /* Check to see if an expression is suitable for use in a CASE statement.
8474 Makes sure that all case expressions are scalar constants of the same
8475 type. Return false if anything is wrong. */
8476
8477 static bool
8478 validate_case_label_expr (gfc_expr *e, gfc_expr *case_expr)
8479 {
8480 if (e == NULL) return true;
8481
8482 if (e->ts.type != case_expr->ts.type)
8483 {
8484 gfc_error ("Expression in CASE statement at %L must be of type %s",
8485 &e->where, gfc_basic_typename (case_expr->ts.type));
8486 return false;
8487 }
8488
8489 /* C805 (R808) For a given case-construct, each case-value shall be of
8490 the same type as case-expr. For character type, length differences
8491 are allowed, but the kind type parameters shall be the same. */
8492
8493 if (case_expr->ts.type == BT_CHARACTER && e->ts.kind != case_expr->ts.kind)
8494 {
8495 gfc_error ("Expression in CASE statement at %L must be of kind %d",
8496 &e->where, case_expr->ts.kind);
8497 return false;
8498 }
8499
8500 /* Convert the case value kind to that of case expression kind,
8501 if needed */
8502
8503 if (e->ts.kind != case_expr->ts.kind)
8504 gfc_convert_type_warn (e, &case_expr->ts, 2, 0);
8505
8506 if (e->rank != 0)
8507 {
8508 gfc_error ("Expression in CASE statement at %L must be scalar",
8509 &e->where);
8510 return false;
8511 }
8512
8513 return true;
8514 }
8515
8516
8517 /* Given a completely parsed select statement, we:
8518
8519 - Validate all expressions and code within the SELECT.
8520 - Make sure that the selection expression is not of the wrong type.
8521 - Make sure that no case ranges overlap.
8522 - Eliminate unreachable cases and unreachable code resulting from
8523 removing case labels.
8524
8525 The standard does allow unreachable cases, e.g. CASE (5:3). But
8526 they are a hassle for code generation, and to prevent that, we just
8527 cut them out here. This is not necessary for overlapping cases
8528 because they are illegal and we never even try to generate code.
8529
8530 We have the additional caveat that a SELECT construct could have
8531 been a computed GOTO in the source code. Fortunately we can fairly
8532 easily work around that here: The case_expr for a "real" SELECT CASE
8533 is in code->expr1, but for a computed GOTO it is in code->expr2. All
8534 we have to do is make sure that the case_expr is a scalar integer
8535 expression. */
8536
8537 static void
8538 resolve_select (gfc_code *code, bool select_type)
8539 {
8540 gfc_code *body;
8541 gfc_expr *case_expr;
8542 gfc_case *cp, *default_case, *tail, *head;
8543 int seen_unreachable;
8544 int seen_logical;
8545 int ncases;
8546 bt type;
8547 bool t;
8548
8549 if (code->expr1 == NULL)
8550 {
8551 /* This was actually a computed GOTO statement. */
8552 case_expr = code->expr2;
8553 if (case_expr->ts.type != BT_INTEGER|| case_expr->rank != 0)
8554 gfc_error ("Selection expression in computed GOTO statement "
8555 "at %L must be a scalar integer expression",
8556 &case_expr->where);
8557
8558 /* Further checking is not necessary because this SELECT was built
8559 by the compiler, so it should always be OK. Just move the
8560 case_expr from expr2 to expr so that we can handle computed
8561 GOTOs as normal SELECTs from here on. */
8562 code->expr1 = code->expr2;
8563 code->expr2 = NULL;
8564 return;
8565 }
8566
8567 case_expr = code->expr1;
8568 type = case_expr->ts.type;
8569
8570 /* F08:C830. */
8571 if (type != BT_LOGICAL && type != BT_INTEGER && type != BT_CHARACTER)
8572 {
8573 gfc_error ("Argument of SELECT statement at %L cannot be %s",
8574 &case_expr->where, gfc_typename (case_expr));
8575
8576 /* Punt. Going on here just produce more garbage error messages. */
8577 return;
8578 }
8579
8580 /* F08:R842. */
8581 if (!select_type && case_expr->rank != 0)
8582 {
8583 gfc_error ("Argument of SELECT statement at %L must be a scalar "
8584 "expression", &case_expr->where);
8585
8586 /* Punt. */
8587 return;
8588 }
8589
8590 /* Raise a warning if an INTEGER case value exceeds the range of
8591 the case-expr. Later, all expressions will be promoted to the
8592 largest kind of all case-labels. */
8593
8594 if (type == BT_INTEGER)
8595 for (body = code->block; body; body = body->block)
8596 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8597 {
8598 if (cp->low
8599 && gfc_check_integer_range (cp->low->value.integer,
8600 case_expr->ts.kind) != ARITH_OK)
8601 gfc_warning (0, "Expression in CASE statement at %L is "
8602 "not in the range of %s", &cp->low->where,
8603 gfc_typename (case_expr));
8604
8605 if (cp->high
8606 && cp->low != cp->high
8607 && gfc_check_integer_range (cp->high->value.integer,
8608 case_expr->ts.kind) != ARITH_OK)
8609 gfc_warning (0, "Expression in CASE statement at %L is "
8610 "not in the range of %s", &cp->high->where,
8611 gfc_typename (case_expr));
8612 }
8613
8614 /* PR 19168 has a long discussion concerning a mismatch of the kinds
8615 of the SELECT CASE expression and its CASE values. Walk the lists
8616 of case values, and if we find a mismatch, promote case_expr to
8617 the appropriate kind. */
8618
8619 if (type == BT_LOGICAL || type == BT_INTEGER)
8620 {
8621 for (body = code->block; body; body = body->block)
8622 {
8623 /* Walk the case label list. */
8624 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8625 {
8626 /* Intercept the DEFAULT case. It does not have a kind. */
8627 if (cp->low == NULL && cp->high == NULL)
8628 continue;
8629
8630 /* Unreachable case ranges are discarded, so ignore. */
8631 if (cp->low != NULL && cp->high != NULL
8632 && cp->low != cp->high
8633 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8634 continue;
8635
8636 if (cp->low != NULL
8637 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->low))
8638 gfc_convert_type_warn (case_expr, &cp->low->ts, 2, 0);
8639
8640 if (cp->high != NULL
8641 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->high))
8642 gfc_convert_type_warn (case_expr, &cp->high->ts, 2, 0);
8643 }
8644 }
8645 }
8646
8647 /* Assume there is no DEFAULT case. */
8648 default_case = NULL;
8649 head = tail = NULL;
8650 ncases = 0;
8651 seen_logical = 0;
8652
8653 for (body = code->block; body; body = body->block)
8654 {
8655 /* Assume the CASE list is OK, and all CASE labels can be matched. */
8656 t = true;
8657 seen_unreachable = 0;
8658
8659 /* Walk the case label list, making sure that all case labels
8660 are legal. */
8661 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8662 {
8663 /* Count the number of cases in the whole construct. */
8664 ncases++;
8665
8666 /* Intercept the DEFAULT case. */
8667 if (cp->low == NULL && cp->high == NULL)
8668 {
8669 if (default_case != NULL)
8670 {
8671 gfc_error ("The DEFAULT CASE at %L cannot be followed "
8672 "by a second DEFAULT CASE at %L",
8673 &default_case->where, &cp->where);
8674 t = false;
8675 break;
8676 }
8677 else
8678 {
8679 default_case = cp;
8680 continue;
8681 }
8682 }
8683
8684 /* Deal with single value cases and case ranges. Errors are
8685 issued from the validation function. */
8686 if (!validate_case_label_expr (cp->low, case_expr)
8687 || !validate_case_label_expr (cp->high, case_expr))
8688 {
8689 t = false;
8690 break;
8691 }
8692
8693 if (type == BT_LOGICAL
8694 && ((cp->low == NULL || cp->high == NULL)
8695 || cp->low != cp->high))
8696 {
8697 gfc_error ("Logical range in CASE statement at %L is not "
8698 "allowed", &cp->low->where);
8699 t = false;
8700 break;
8701 }
8702
8703 if (type == BT_LOGICAL && cp->low->expr_type == EXPR_CONSTANT)
8704 {
8705 int value;
8706 value = cp->low->value.logical == 0 ? 2 : 1;
8707 if (value & seen_logical)
8708 {
8709 gfc_error ("Constant logical value in CASE statement "
8710 "is repeated at %L",
8711 &cp->low->where);
8712 t = false;
8713 break;
8714 }
8715 seen_logical |= value;
8716 }
8717
8718 if (cp->low != NULL && cp->high != NULL
8719 && cp->low != cp->high
8720 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8721 {
8722 if (warn_surprising)
8723 gfc_warning (OPT_Wsurprising,
8724 "Range specification at %L can never be matched",
8725 &cp->where);
8726
8727 cp->unreachable = 1;
8728 seen_unreachable = 1;
8729 }
8730 else
8731 {
8732 /* If the case range can be matched, it can also overlap with
8733 other cases. To make sure it does not, we put it in a
8734 double linked list here. We sort that with a merge sort
8735 later on to detect any overlapping cases. */
8736 if (!head)
8737 {
8738 head = tail = cp;
8739 head->right = head->left = NULL;
8740 }
8741 else
8742 {
8743 tail->right = cp;
8744 tail->right->left = tail;
8745 tail = tail->right;
8746 tail->right = NULL;
8747 }
8748 }
8749 }
8750
8751 /* It there was a failure in the previous case label, give up
8752 for this case label list. Continue with the next block. */
8753 if (!t)
8754 continue;
8755
8756 /* See if any case labels that are unreachable have been seen.
8757 If so, we eliminate them. This is a bit of a kludge because
8758 the case lists for a single case statement (label) is a
8759 single forward linked lists. */
8760 if (seen_unreachable)
8761 {
8762 /* Advance until the first case in the list is reachable. */
8763 while (body->ext.block.case_list != NULL
8764 && body->ext.block.case_list->unreachable)
8765 {
8766 gfc_case *n = body->ext.block.case_list;
8767 body->ext.block.case_list = body->ext.block.case_list->next;
8768 n->next = NULL;
8769 gfc_free_case_list (n);
8770 }
8771
8772 /* Strip all other unreachable cases. */
8773 if (body->ext.block.case_list)
8774 {
8775 for (cp = body->ext.block.case_list; cp && cp->next; cp = cp->next)
8776 {
8777 if (cp->next->unreachable)
8778 {
8779 gfc_case *n = cp->next;
8780 cp->next = cp->next->next;
8781 n->next = NULL;
8782 gfc_free_case_list (n);
8783 }
8784 }
8785 }
8786 }
8787 }
8788
8789 /* See if there were overlapping cases. If the check returns NULL,
8790 there was overlap. In that case we don't do anything. If head
8791 is non-NULL, we prepend the DEFAULT case. The sorted list can
8792 then used during code generation for SELECT CASE constructs with
8793 a case expression of a CHARACTER type. */
8794 if (head)
8795 {
8796 head = check_case_overlap (head);
8797
8798 /* Prepend the default_case if it is there. */
8799 if (head != NULL && default_case)
8800 {
8801 default_case->left = NULL;
8802 default_case->right = head;
8803 head->left = default_case;
8804 }
8805 }
8806
8807 /* Eliminate dead blocks that may be the result if we've seen
8808 unreachable case labels for a block. */
8809 for (body = code; body && body->block; body = body->block)
8810 {
8811 if (body->block->ext.block.case_list == NULL)
8812 {
8813 /* Cut the unreachable block from the code chain. */
8814 gfc_code *c = body->block;
8815 body->block = c->block;
8816
8817 /* Kill the dead block, but not the blocks below it. */
8818 c->block = NULL;
8819 gfc_free_statements (c);
8820 }
8821 }
8822
8823 /* More than two cases is legal but insane for logical selects.
8824 Issue a warning for it. */
8825 if (warn_surprising && type == BT_LOGICAL && ncases > 2)
8826 gfc_warning (OPT_Wsurprising,
8827 "Logical SELECT CASE block at %L has more that two cases",
8828 &code->loc);
8829 }
8830
8831
8832 /* Check if a derived type is extensible. */
8833
8834 bool
8835 gfc_type_is_extensible (gfc_symbol *sym)
8836 {
8837 return !(sym->attr.is_bind_c || sym->attr.sequence
8838 || (sym->attr.is_class
8839 && sym->components->ts.u.derived->attr.unlimited_polymorphic));
8840 }
8841
8842
8843 static void
8844 resolve_types (gfc_namespace *ns);
8845
8846 /* Resolve an associate-name: Resolve target and ensure the type-spec is
8847 correct as well as possibly the array-spec. */
8848
8849 static void
8850 resolve_assoc_var (gfc_symbol* sym, bool resolve_target)
8851 {
8852 gfc_expr* target;
8853
8854 gcc_assert (sym->assoc);
8855 gcc_assert (sym->attr.flavor == FL_VARIABLE);
8856
8857 /* If this is for SELECT TYPE, the target may not yet be set. In that
8858 case, return. Resolution will be called later manually again when
8859 this is done. */
8860 target = sym->assoc->target;
8861 if (!target)
8862 return;
8863 gcc_assert (!sym->assoc->dangling);
8864
8865 if (resolve_target && !gfc_resolve_expr (target))
8866 return;
8867
8868 /* For variable targets, we get some attributes from the target. */
8869 if (target->expr_type == EXPR_VARIABLE)
8870 {
8871 gfc_symbol *tsym, *dsym;
8872
8873 gcc_assert (target->symtree);
8874 tsym = target->symtree->n.sym;
8875
8876 if (gfc_expr_attr (target).proc_pointer)
8877 {
8878 gfc_error ("Associating entity %qs at %L is a procedure pointer",
8879 tsym->name, &target->where);
8880 return;
8881 }
8882
8883 if (tsym->attr.flavor == FL_PROCEDURE && tsym->generic
8884 && (dsym = gfc_find_dt_in_generic (tsym)) != NULL
8885 && dsym->attr.flavor == FL_DERIVED)
8886 {
8887 gfc_error ("Derived type %qs cannot be used as a variable at %L",
8888 tsym->name, &target->where);
8889 return;
8890 }
8891
8892 if (tsym->attr.flavor == FL_PROCEDURE)
8893 {
8894 bool is_error = true;
8895 if (tsym->attr.function && tsym->result == tsym)
8896 for (gfc_namespace *ns = sym->ns; ns; ns = ns->parent)
8897 if (tsym == ns->proc_name)
8898 {
8899 is_error = false;
8900 break;
8901 }
8902 if (is_error)
8903 {
8904 gfc_error ("Associating entity %qs at %L is a procedure name",
8905 tsym->name, &target->where);
8906 return;
8907 }
8908 }
8909
8910 sym->attr.asynchronous = tsym->attr.asynchronous;
8911 sym->attr.volatile_ = tsym->attr.volatile_;
8912
8913 sym->attr.target = tsym->attr.target
8914 || gfc_expr_attr (target).pointer;
8915 if (is_subref_array (target))
8916 sym->attr.subref_array_pointer = 1;
8917 }
8918 else if (target->ts.type == BT_PROCEDURE)
8919 {
8920 gfc_error ("Associating selector-expression at %L yields a procedure",
8921 &target->where);
8922 return;
8923 }
8924
8925 if (target->expr_type == EXPR_NULL)
8926 {
8927 gfc_error ("Selector at %L cannot be NULL()", &target->where);
8928 return;
8929 }
8930 else if (target->ts.type == BT_UNKNOWN)
8931 {
8932 gfc_error ("Selector at %L has no type", &target->where);
8933 return;
8934 }
8935
8936 /* Get type if this was not already set. Note that it can be
8937 some other type than the target in case this is a SELECT TYPE
8938 selector! So we must not update when the type is already there. */
8939 if (sym->ts.type == BT_UNKNOWN)
8940 sym->ts = target->ts;
8941
8942 gcc_assert (sym->ts.type != BT_UNKNOWN);
8943
8944 /* See if this is a valid association-to-variable. */
8945 sym->assoc->variable = (target->expr_type == EXPR_VARIABLE
8946 && !gfc_has_vector_subscript (target));
8947
8948 /* Finally resolve if this is an array or not. */
8949 if (sym->attr.dimension && target->rank == 0)
8950 {
8951 /* primary.c makes the assumption that a reference to an associate
8952 name followed by a left parenthesis is an array reference. */
8953 if (sym->ts.type != BT_CHARACTER)
8954 gfc_error ("Associate-name %qs at %L is used as array",
8955 sym->name, &sym->declared_at);
8956 sym->attr.dimension = 0;
8957 return;
8958 }
8959
8960
8961 /* We cannot deal with class selectors that need temporaries. */
8962 if (target->ts.type == BT_CLASS
8963 && gfc_ref_needs_temporary_p (target->ref))
8964 {
8965 gfc_error ("CLASS selector at %L needs a temporary which is not "
8966 "yet implemented", &target->where);
8967 return;
8968 }
8969
8970 if (target->ts.type == BT_CLASS)
8971 gfc_fix_class_refs (target);
8972
8973 if (target->rank != 0 && !sym->attr.select_rank_temporary)
8974 {
8975 gfc_array_spec *as;
8976 /* The rank may be incorrectly guessed at parsing, therefore make sure
8977 it is corrected now. */
8978 if (sym->ts.type != BT_CLASS && (!sym->as || sym->assoc->rankguessed))
8979 {
8980 if (!sym->as)
8981 sym->as = gfc_get_array_spec ();
8982 as = sym->as;
8983 as->rank = target->rank;
8984 as->type = AS_DEFERRED;
8985 as->corank = gfc_get_corank (target);
8986 sym->attr.dimension = 1;
8987 if (as->corank != 0)
8988 sym->attr.codimension = 1;
8989 }
8990 else if (sym->ts.type == BT_CLASS && (!CLASS_DATA (sym)->as || sym->assoc->rankguessed))
8991 {
8992 if (!CLASS_DATA (sym)->as)
8993 CLASS_DATA (sym)->as = gfc_get_array_spec ();
8994 as = CLASS_DATA (sym)->as;
8995 as->rank = target->rank;
8996 as->type = AS_DEFERRED;
8997 as->corank = gfc_get_corank (target);
8998 CLASS_DATA (sym)->attr.dimension = 1;
8999 if (as->corank != 0)
9000 CLASS_DATA (sym)->attr.codimension = 1;
9001 }
9002 }
9003 else if (!sym->attr.select_rank_temporary)
9004 {
9005 /* target's rank is 0, but the type of the sym is still array valued,
9006 which has to be corrected. */
9007 if (sym->ts.type == BT_CLASS
9008 && CLASS_DATA (sym) && CLASS_DATA (sym)->as)
9009 {
9010 gfc_array_spec *as;
9011 symbol_attribute attr;
9012 /* The associated variable's type is still the array type
9013 correct this now. */
9014 gfc_typespec *ts = &target->ts;
9015 gfc_ref *ref;
9016 gfc_component *c;
9017 for (ref = target->ref; ref != NULL; ref = ref->next)
9018 {
9019 switch (ref->type)
9020 {
9021 case REF_COMPONENT:
9022 ts = &ref->u.c.component->ts;
9023 break;
9024 case REF_ARRAY:
9025 if (ts->type == BT_CLASS)
9026 ts = &ts->u.derived->components->ts;
9027 break;
9028 default:
9029 break;
9030 }
9031 }
9032 /* Create a scalar instance of the current class type. Because the
9033 rank of a class array goes into its name, the type has to be
9034 rebuild. The alternative of (re-)setting just the attributes
9035 and as in the current type, destroys the type also in other
9036 places. */
9037 as = NULL;
9038 sym->ts = *ts;
9039 sym->ts.type = BT_CLASS;
9040 attr = CLASS_DATA (sym)->attr;
9041 attr.class_ok = 0;
9042 attr.associate_var = 1;
9043 attr.dimension = attr.codimension = 0;
9044 attr.class_pointer = 1;
9045 if (!gfc_build_class_symbol (&sym->ts, &attr, &as))
9046 gcc_unreachable ();
9047 /* Make sure the _vptr is set. */
9048 c = gfc_find_component (sym->ts.u.derived, "_vptr", true, true, NULL);
9049 if (c->ts.u.derived == NULL)
9050 c->ts.u.derived = gfc_find_derived_vtab (sym->ts.u.derived);
9051 CLASS_DATA (sym)->attr.pointer = 1;
9052 CLASS_DATA (sym)->attr.class_pointer = 1;
9053 gfc_set_sym_referenced (sym->ts.u.derived);
9054 gfc_commit_symbol (sym->ts.u.derived);
9055 /* _vptr now has the _vtab in it, change it to the _vtype. */
9056 if (c->ts.u.derived->attr.vtab)
9057 c->ts.u.derived = c->ts.u.derived->ts.u.derived;
9058 c->ts.u.derived->ns->types_resolved = 0;
9059 resolve_types (c->ts.u.derived->ns);
9060 }
9061 }
9062
9063 /* Mark this as an associate variable. */
9064 sym->attr.associate_var = 1;
9065
9066 /* Fix up the type-spec for CHARACTER types. */
9067 if (sym->ts.type == BT_CHARACTER && !sym->attr.select_type_temporary)
9068 {
9069 if (!sym->ts.u.cl)
9070 sym->ts.u.cl = target->ts.u.cl;
9071
9072 if (sym->ts.deferred && target->expr_type == EXPR_VARIABLE
9073 && target->symtree->n.sym->attr.dummy
9074 && sym->ts.u.cl == target->ts.u.cl)
9075 {
9076 sym->ts.u.cl = gfc_new_charlen (sym->ns, NULL);
9077 sym->ts.deferred = 1;
9078 }
9079
9080 if (!sym->ts.u.cl->length
9081 && !sym->ts.deferred
9082 && target->expr_type == EXPR_CONSTANT)
9083 {
9084 sym->ts.u.cl->length =
9085 gfc_get_int_expr (gfc_charlen_int_kind, NULL,
9086 target->value.character.length);
9087 }
9088 else if ((!sym->ts.u.cl->length
9089 || sym->ts.u.cl->length->expr_type != EXPR_CONSTANT)
9090 && target->expr_type != EXPR_VARIABLE)
9091 {
9092 sym->ts.u.cl = gfc_new_charlen (sym->ns, NULL);
9093 sym->ts.deferred = 1;
9094
9095 /* This is reset in trans-stmt.c after the assignment
9096 of the target expression to the associate name. */
9097 sym->attr.allocatable = 1;
9098 }
9099 }
9100
9101 /* If the target is a good class object, so is the associate variable. */
9102 if (sym->ts.type == BT_CLASS && gfc_expr_attr (target).class_ok)
9103 sym->attr.class_ok = 1;
9104 }
9105
9106
9107 /* Ensure that SELECT TYPE expressions have the correct rank and a full
9108 array reference, where necessary. The symbols are artificial and so
9109 the dimension attribute and arrayspec can also be set. In addition,
9110 sometimes the expr1 arrives as BT_DERIVED, when the symbol is BT_CLASS.
9111 This is corrected here as well.*/
9112
9113 static void
9114 fixup_array_ref (gfc_expr **expr1, gfc_expr *expr2,
9115 int rank, gfc_ref *ref)
9116 {
9117 gfc_ref *nref = (*expr1)->ref;
9118 gfc_symbol *sym1 = (*expr1)->symtree->n.sym;
9119 gfc_symbol *sym2 = expr2 ? expr2->symtree->n.sym : NULL;
9120 (*expr1)->rank = rank;
9121 if (sym1->ts.type == BT_CLASS)
9122 {
9123 if ((*expr1)->ts.type != BT_CLASS)
9124 (*expr1)->ts = sym1->ts;
9125
9126 CLASS_DATA (sym1)->attr.dimension = 1;
9127 if (CLASS_DATA (sym1)->as == NULL && sym2)
9128 CLASS_DATA (sym1)->as
9129 = gfc_copy_array_spec (CLASS_DATA (sym2)->as);
9130 }
9131 else
9132 {
9133 sym1->attr.dimension = 1;
9134 if (sym1->as == NULL && sym2)
9135 sym1->as = gfc_copy_array_spec (sym2->as);
9136 }
9137
9138 for (; nref; nref = nref->next)
9139 if (nref->next == NULL)
9140 break;
9141
9142 if (ref && nref && nref->type != REF_ARRAY)
9143 nref->next = gfc_copy_ref (ref);
9144 else if (ref && !nref)
9145 (*expr1)->ref = gfc_copy_ref (ref);
9146 }
9147
9148
9149 static gfc_expr *
9150 build_loc_call (gfc_expr *sym_expr)
9151 {
9152 gfc_expr *loc_call;
9153 loc_call = gfc_get_expr ();
9154 loc_call->expr_type = EXPR_FUNCTION;
9155 gfc_get_sym_tree ("_loc", gfc_current_ns, &loc_call->symtree, false);
9156 loc_call->symtree->n.sym->attr.flavor = FL_PROCEDURE;
9157 loc_call->symtree->n.sym->attr.intrinsic = 1;
9158 loc_call->symtree->n.sym->result = loc_call->symtree->n.sym;
9159 gfc_commit_symbol (loc_call->symtree->n.sym);
9160 loc_call->ts.type = BT_INTEGER;
9161 loc_call->ts.kind = gfc_index_integer_kind;
9162 loc_call->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_LOC);
9163 loc_call->value.function.actual = gfc_get_actual_arglist ();
9164 loc_call->value.function.actual->expr = sym_expr;
9165 loc_call->where = sym_expr->where;
9166 return loc_call;
9167 }
9168
9169 /* Resolve a SELECT TYPE statement. */
9170
9171 static void
9172 resolve_select_type (gfc_code *code, gfc_namespace *old_ns)
9173 {
9174 gfc_symbol *selector_type;
9175 gfc_code *body, *new_st, *if_st, *tail;
9176 gfc_code *class_is = NULL, *default_case = NULL;
9177 gfc_case *c;
9178 gfc_symtree *st;
9179 char name[GFC_MAX_SYMBOL_LEN];
9180 gfc_namespace *ns;
9181 int error = 0;
9182 int rank = 0;
9183 gfc_ref* ref = NULL;
9184 gfc_expr *selector_expr = NULL;
9185
9186 ns = code->ext.block.ns;
9187 gfc_resolve (ns);
9188
9189 /* Check for F03:C813. */
9190 if (code->expr1->ts.type != BT_CLASS
9191 && !(code->expr2 && code->expr2->ts.type == BT_CLASS))
9192 {
9193 gfc_error ("Selector shall be polymorphic in SELECT TYPE statement "
9194 "at %L", &code->loc);
9195 return;
9196 }
9197
9198 if (!code->expr1->symtree->n.sym->attr.class_ok)
9199 return;
9200
9201 if (code->expr2)
9202 {
9203 gfc_ref *ref2 = NULL;
9204 for (ref = code->expr2->ref; ref != NULL; ref = ref->next)
9205 if (ref->type == REF_COMPONENT
9206 && ref->u.c.component->ts.type == BT_CLASS)
9207 ref2 = ref;
9208
9209 if (ref2)
9210 {
9211 if (code->expr1->symtree->n.sym->attr.untyped)
9212 code->expr1->symtree->n.sym->ts = ref2->u.c.component->ts;
9213 selector_type = CLASS_DATA (ref2->u.c.component)->ts.u.derived;
9214 }
9215 else
9216 {
9217 if (code->expr1->symtree->n.sym->attr.untyped)
9218 code->expr1->symtree->n.sym->ts = code->expr2->ts;
9219 selector_type = CLASS_DATA (code->expr2)->ts.u.derived;
9220 }
9221
9222 if (code->expr2->rank && CLASS_DATA (code->expr1)->as)
9223 CLASS_DATA (code->expr1)->as->rank = code->expr2->rank;
9224
9225 /* F2008: C803 The selector expression must not be coindexed. */
9226 if (gfc_is_coindexed (code->expr2))
9227 {
9228 gfc_error ("Selector at %L must not be coindexed",
9229 &code->expr2->where);
9230 return;
9231 }
9232
9233 }
9234 else
9235 {
9236 selector_type = CLASS_DATA (code->expr1)->ts.u.derived;
9237
9238 if (gfc_is_coindexed (code->expr1))
9239 {
9240 gfc_error ("Selector at %L must not be coindexed",
9241 &code->expr1->where);
9242 return;
9243 }
9244 }
9245
9246 /* Loop over TYPE IS / CLASS IS cases. */
9247 for (body = code->block; body; body = body->block)
9248 {
9249 c = body->ext.block.case_list;
9250
9251 if (!error)
9252 {
9253 /* Check for repeated cases. */
9254 for (tail = code->block; tail; tail = tail->block)
9255 {
9256 gfc_case *d = tail->ext.block.case_list;
9257 if (tail == body)
9258 break;
9259
9260 if (c->ts.type == d->ts.type
9261 && ((c->ts.type == BT_DERIVED
9262 && c->ts.u.derived && d->ts.u.derived
9263 && !strcmp (c->ts.u.derived->name,
9264 d->ts.u.derived->name))
9265 || c->ts.type == BT_UNKNOWN
9266 || (!(c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9267 && c->ts.kind == d->ts.kind)))
9268 {
9269 gfc_error ("TYPE IS at %L overlaps with TYPE IS at %L",
9270 &c->where, &d->where);
9271 return;
9272 }
9273 }
9274 }
9275
9276 /* Check F03:C815. */
9277 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9278 && !selector_type->attr.unlimited_polymorphic
9279 && !gfc_type_is_extensible (c->ts.u.derived))
9280 {
9281 gfc_error ("Derived type %qs at %L must be extensible",
9282 c->ts.u.derived->name, &c->where);
9283 error++;
9284 continue;
9285 }
9286
9287 /* Check F03:C816. */
9288 if (c->ts.type != BT_UNKNOWN && !selector_type->attr.unlimited_polymorphic
9289 && ((c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
9290 || !gfc_type_is_extension_of (selector_type, c->ts.u.derived)))
9291 {
9292 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9293 gfc_error ("Derived type %qs at %L must be an extension of %qs",
9294 c->ts.u.derived->name, &c->where, selector_type->name);
9295 else
9296 gfc_error ("Unexpected intrinsic type %qs at %L",
9297 gfc_basic_typename (c->ts.type), &c->where);
9298 error++;
9299 continue;
9300 }
9301
9302 /* Check F03:C814. */
9303 if (c->ts.type == BT_CHARACTER
9304 && (c->ts.u.cl->length != NULL || c->ts.deferred))
9305 {
9306 gfc_error ("The type-spec at %L shall specify that each length "
9307 "type parameter is assumed", &c->where);
9308 error++;
9309 continue;
9310 }
9311
9312 /* Intercept the DEFAULT case. */
9313 if (c->ts.type == BT_UNKNOWN)
9314 {
9315 /* Check F03:C818. */
9316 if (default_case)
9317 {
9318 gfc_error ("The DEFAULT CASE at %L cannot be followed "
9319 "by a second DEFAULT CASE at %L",
9320 &default_case->ext.block.case_list->where, &c->where);
9321 error++;
9322 continue;
9323 }
9324
9325 default_case = body;
9326 }
9327 }
9328
9329 if (error > 0)
9330 return;
9331
9332 /* Transform SELECT TYPE statement to BLOCK and associate selector to
9333 target if present. If there are any EXIT statements referring to the
9334 SELECT TYPE construct, this is no problem because the gfc_code
9335 reference stays the same and EXIT is equally possible from the BLOCK
9336 it is changed to. */
9337 code->op = EXEC_BLOCK;
9338 if (code->expr2)
9339 {
9340 gfc_association_list* assoc;
9341
9342 assoc = gfc_get_association_list ();
9343 assoc->st = code->expr1->symtree;
9344 assoc->target = gfc_copy_expr (code->expr2);
9345 assoc->target->where = code->expr2->where;
9346 /* assoc->variable will be set by resolve_assoc_var. */
9347
9348 code->ext.block.assoc = assoc;
9349 code->expr1->symtree->n.sym->assoc = assoc;
9350
9351 resolve_assoc_var (code->expr1->symtree->n.sym, false);
9352 }
9353 else
9354 code->ext.block.assoc = NULL;
9355
9356 /* Ensure that the selector rank and arrayspec are available to
9357 correct expressions in which they might be missing. */
9358 if (code->expr2 && code->expr2->rank)
9359 {
9360 rank = code->expr2->rank;
9361 for (ref = code->expr2->ref; ref; ref = ref->next)
9362 if (ref->next == NULL)
9363 break;
9364 if (ref && ref->type == REF_ARRAY)
9365 ref = gfc_copy_ref (ref);
9366
9367 /* Fixup expr1 if necessary. */
9368 if (rank)
9369 fixup_array_ref (&code->expr1, code->expr2, rank, ref);
9370 }
9371 else if (code->expr1->rank)
9372 {
9373 rank = code->expr1->rank;
9374 for (ref = code->expr1->ref; ref; ref = ref->next)
9375 if (ref->next == NULL)
9376 break;
9377 if (ref && ref->type == REF_ARRAY)
9378 ref = gfc_copy_ref (ref);
9379 }
9380
9381 /* Add EXEC_SELECT to switch on type. */
9382 new_st = gfc_get_code (code->op);
9383 new_st->expr1 = code->expr1;
9384 new_st->expr2 = code->expr2;
9385 new_st->block = code->block;
9386 code->expr1 = code->expr2 = NULL;
9387 code->block = NULL;
9388 if (!ns->code)
9389 ns->code = new_st;
9390 else
9391 ns->code->next = new_st;
9392 code = new_st;
9393 code->op = EXEC_SELECT_TYPE;
9394
9395 /* Use the intrinsic LOC function to generate an integer expression
9396 for the vtable of the selector. Note that the rank of the selector
9397 expression has to be set to zero. */
9398 gfc_add_vptr_component (code->expr1);
9399 code->expr1->rank = 0;
9400 code->expr1 = build_loc_call (code->expr1);
9401 selector_expr = code->expr1->value.function.actual->expr;
9402
9403 /* Loop over TYPE IS / CLASS IS cases. */
9404 for (body = code->block; body; body = body->block)
9405 {
9406 gfc_symbol *vtab;
9407 gfc_expr *e;
9408 c = body->ext.block.case_list;
9409
9410 /* Generate an index integer expression for address of the
9411 TYPE/CLASS vtable and store it in c->low. The hash expression
9412 is stored in c->high and is used to resolve intrinsic cases. */
9413 if (c->ts.type != BT_UNKNOWN)
9414 {
9415 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9416 {
9417 vtab = gfc_find_derived_vtab (c->ts.u.derived);
9418 gcc_assert (vtab);
9419 c->high = gfc_get_int_expr (gfc_integer_4_kind, NULL,
9420 c->ts.u.derived->hash_value);
9421 }
9422 else
9423 {
9424 vtab = gfc_find_vtab (&c->ts);
9425 gcc_assert (vtab && CLASS_DATA (vtab)->initializer);
9426 e = CLASS_DATA (vtab)->initializer;
9427 c->high = gfc_copy_expr (e);
9428 if (c->high->ts.kind != gfc_integer_4_kind)
9429 {
9430 gfc_typespec ts;
9431 ts.kind = gfc_integer_4_kind;
9432 ts.type = BT_INTEGER;
9433 gfc_convert_type_warn (c->high, &ts, 2, 0);
9434 }
9435 }
9436
9437 e = gfc_lval_expr_from_sym (vtab);
9438 c->low = build_loc_call (e);
9439 }
9440 else
9441 continue;
9442
9443 /* Associate temporary to selector. This should only be done
9444 when this case is actually true, so build a new ASSOCIATE
9445 that does precisely this here (instead of using the
9446 'global' one). */
9447
9448 if (c->ts.type == BT_CLASS)
9449 sprintf (name, "__tmp_class_%s", c->ts.u.derived->name);
9450 else if (c->ts.type == BT_DERIVED)
9451 sprintf (name, "__tmp_type_%s", c->ts.u.derived->name);
9452 else if (c->ts.type == BT_CHARACTER)
9453 {
9454 HOST_WIDE_INT charlen = 0;
9455 if (c->ts.u.cl && c->ts.u.cl->length
9456 && c->ts.u.cl->length->expr_type == EXPR_CONSTANT)
9457 charlen = gfc_mpz_get_hwi (c->ts.u.cl->length->value.integer);
9458 snprintf (name, sizeof (name),
9459 "__tmp_%s_" HOST_WIDE_INT_PRINT_DEC "_%d",
9460 gfc_basic_typename (c->ts.type), charlen, c->ts.kind);
9461 }
9462 else
9463 sprintf (name, "__tmp_%s_%d", gfc_basic_typename (c->ts.type),
9464 c->ts.kind);
9465
9466 st = gfc_find_symtree (ns->sym_root, name);
9467 gcc_assert (st->n.sym->assoc);
9468 st->n.sym->assoc->target = gfc_get_variable_expr (selector_expr->symtree);
9469 st->n.sym->assoc->target->where = selector_expr->where;
9470 if (c->ts.type != BT_CLASS && c->ts.type != BT_UNKNOWN)
9471 {
9472 gfc_add_data_component (st->n.sym->assoc->target);
9473 /* Fixup the target expression if necessary. */
9474 if (rank)
9475 fixup_array_ref (&st->n.sym->assoc->target, NULL, rank, ref);
9476 }
9477
9478 new_st = gfc_get_code (EXEC_BLOCK);
9479 new_st->ext.block.ns = gfc_build_block_ns (ns);
9480 new_st->ext.block.ns->code = body->next;
9481 body->next = new_st;
9482
9483 /* Chain in the new list only if it is marked as dangling. Otherwise
9484 there is a CASE label overlap and this is already used. Just ignore,
9485 the error is diagnosed elsewhere. */
9486 if (st->n.sym->assoc->dangling)
9487 {
9488 new_st->ext.block.assoc = st->n.sym->assoc;
9489 st->n.sym->assoc->dangling = 0;
9490 }
9491
9492 resolve_assoc_var (st->n.sym, false);
9493 }
9494
9495 /* Take out CLASS IS cases for separate treatment. */
9496 body = code;
9497 while (body && body->block)
9498 {
9499 if (body->block->ext.block.case_list->ts.type == BT_CLASS)
9500 {
9501 /* Add to class_is list. */
9502 if (class_is == NULL)
9503 {
9504 class_is = body->block;
9505 tail = class_is;
9506 }
9507 else
9508 {
9509 for (tail = class_is; tail->block; tail = tail->block) ;
9510 tail->block = body->block;
9511 tail = tail->block;
9512 }
9513 /* Remove from EXEC_SELECT list. */
9514 body->block = body->block->block;
9515 tail->block = NULL;
9516 }
9517 else
9518 body = body->block;
9519 }
9520
9521 if (class_is)
9522 {
9523 gfc_symbol *vtab;
9524
9525 if (!default_case)
9526 {
9527 /* Add a default case to hold the CLASS IS cases. */
9528 for (tail = code; tail->block; tail = tail->block) ;
9529 tail->block = gfc_get_code (EXEC_SELECT_TYPE);
9530 tail = tail->block;
9531 tail->ext.block.case_list = gfc_get_case ();
9532 tail->ext.block.case_list->ts.type = BT_UNKNOWN;
9533 tail->next = NULL;
9534 default_case = tail;
9535 }
9536
9537 /* More than one CLASS IS block? */
9538 if (class_is->block)
9539 {
9540 gfc_code **c1,*c2;
9541 bool swapped;
9542 /* Sort CLASS IS blocks by extension level. */
9543 do
9544 {
9545 swapped = false;
9546 for (c1 = &class_is; (*c1) && (*c1)->block; c1 = &((*c1)->block))
9547 {
9548 c2 = (*c1)->block;
9549 /* F03:C817 (check for doubles). */
9550 if ((*c1)->ext.block.case_list->ts.u.derived->hash_value
9551 == c2->ext.block.case_list->ts.u.derived->hash_value)
9552 {
9553 gfc_error ("Double CLASS IS block in SELECT TYPE "
9554 "statement at %L",
9555 &c2->ext.block.case_list->where);
9556 return;
9557 }
9558 if ((*c1)->ext.block.case_list->ts.u.derived->attr.extension
9559 < c2->ext.block.case_list->ts.u.derived->attr.extension)
9560 {
9561 /* Swap. */
9562 (*c1)->block = c2->block;
9563 c2->block = *c1;
9564 *c1 = c2;
9565 swapped = true;
9566 }
9567 }
9568 }
9569 while (swapped);
9570 }
9571
9572 /* Generate IF chain. */
9573 if_st = gfc_get_code (EXEC_IF);
9574 new_st = if_st;
9575 for (body = class_is; body; body = body->block)
9576 {
9577 new_st->block = gfc_get_code (EXEC_IF);
9578 new_st = new_st->block;
9579 /* Set up IF condition: Call _gfortran_is_extension_of. */
9580 new_st->expr1 = gfc_get_expr ();
9581 new_st->expr1->expr_type = EXPR_FUNCTION;
9582 new_st->expr1->ts.type = BT_LOGICAL;
9583 new_st->expr1->ts.kind = 4;
9584 new_st->expr1->value.function.name = gfc_get_string (PREFIX ("is_extension_of"));
9585 new_st->expr1->value.function.isym = XCNEW (gfc_intrinsic_sym);
9586 new_st->expr1->value.function.isym->id = GFC_ISYM_EXTENDS_TYPE_OF;
9587 /* Set up arguments. */
9588 new_st->expr1->value.function.actual = gfc_get_actual_arglist ();
9589 new_st->expr1->value.function.actual->expr = gfc_get_variable_expr (selector_expr->symtree);
9590 new_st->expr1->value.function.actual->expr->where = code->loc;
9591 new_st->expr1->where = code->loc;
9592 gfc_add_vptr_component (new_st->expr1->value.function.actual->expr);
9593 vtab = gfc_find_derived_vtab (body->ext.block.case_list->ts.u.derived);
9594 st = gfc_find_symtree (vtab->ns->sym_root, vtab->name);
9595 new_st->expr1->value.function.actual->next = gfc_get_actual_arglist ();
9596 new_st->expr1->value.function.actual->next->expr = gfc_get_variable_expr (st);
9597 new_st->expr1->value.function.actual->next->expr->where = code->loc;
9598 new_st->next = body->next;
9599 }
9600 if (default_case->next)
9601 {
9602 new_st->block = gfc_get_code (EXEC_IF);
9603 new_st = new_st->block;
9604 new_st->next = default_case->next;
9605 }
9606
9607 /* Replace CLASS DEFAULT code by the IF chain. */
9608 default_case->next = if_st;
9609 }
9610
9611 /* Resolve the internal code. This cannot be done earlier because
9612 it requires that the sym->assoc of selectors is set already. */
9613 gfc_current_ns = ns;
9614 gfc_resolve_blocks (code->block, gfc_current_ns);
9615 gfc_current_ns = old_ns;
9616
9617 if (ref)
9618 free (ref);
9619 }
9620
9621
9622 /* Resolve a SELECT RANK statement. */
9623
9624 static void
9625 resolve_select_rank (gfc_code *code, gfc_namespace *old_ns)
9626 {
9627 gfc_namespace *ns;
9628 gfc_code *body, *new_st, *tail;
9629 gfc_case *c;
9630 char tname[GFC_MAX_SYMBOL_LEN];
9631 char name[2 * GFC_MAX_SYMBOL_LEN];
9632 gfc_symtree *st;
9633 gfc_expr *selector_expr = NULL;
9634 int case_value;
9635 HOST_WIDE_INT charlen = 0;
9636
9637 ns = code->ext.block.ns;
9638 gfc_resolve (ns);
9639
9640 code->op = EXEC_BLOCK;
9641 if (code->expr2)
9642 {
9643 gfc_association_list* assoc;
9644
9645 assoc = gfc_get_association_list ();
9646 assoc->st = code->expr1->symtree;
9647 assoc->target = gfc_copy_expr (code->expr2);
9648 assoc->target->where = code->expr2->where;
9649 /* assoc->variable will be set by resolve_assoc_var. */
9650
9651 code->ext.block.assoc = assoc;
9652 code->expr1->symtree->n.sym->assoc = assoc;
9653
9654 resolve_assoc_var (code->expr1->symtree->n.sym, false);
9655 }
9656 else
9657 code->ext.block.assoc = NULL;
9658
9659 /* Loop over RANK cases. Note that returning on the errors causes a
9660 cascade of further errors because the case blocks do not compile
9661 correctly. */
9662 for (body = code->block; body; body = body->block)
9663 {
9664 c = body->ext.block.case_list;
9665 if (c->low)
9666 case_value = (int) mpz_get_si (c->low->value.integer);
9667 else
9668 case_value = -2;
9669
9670 /* Check for repeated cases. */
9671 for (tail = code->block; tail; tail = tail->block)
9672 {
9673 gfc_case *d = tail->ext.block.case_list;
9674 int case_value2;
9675
9676 if (tail == body)
9677 break;
9678
9679 /* Check F2018: C1153. */
9680 if (!c->low && !d->low)
9681 gfc_error ("RANK DEFAULT at %L is repeated at %L",
9682 &c->where, &d->where);
9683
9684 if (!c->low || !d->low)
9685 continue;
9686
9687 /* Check F2018: C1153. */
9688 case_value2 = (int) mpz_get_si (d->low->value.integer);
9689 if ((case_value == case_value2) && case_value == -1)
9690 gfc_error ("RANK (*) at %L is repeated at %L",
9691 &c->where, &d->where);
9692 else if (case_value == case_value2)
9693 gfc_error ("RANK (%i) at %L is repeated at %L",
9694 case_value, &c->where, &d->where);
9695 }
9696
9697 if (!c->low)
9698 continue;
9699
9700 /* Check F2018: C1155. */
9701 if (case_value == -1 && (gfc_expr_attr (code->expr1).allocatable
9702 || gfc_expr_attr (code->expr1).pointer))
9703 gfc_error ("RANK (*) at %L cannot be used with the pointer or "
9704 "allocatable selector at %L", &c->where, &code->expr1->where);
9705
9706 if (case_value == -1 && (gfc_expr_attr (code->expr1).allocatable
9707 || gfc_expr_attr (code->expr1).pointer))
9708 gfc_error ("RANK (*) at %L cannot be used with the pointer or "
9709 "allocatable selector at %L", &c->where, &code->expr1->where);
9710 }
9711
9712 /* Add EXEC_SELECT to switch on rank. */
9713 new_st = gfc_get_code (code->op);
9714 new_st->expr1 = code->expr1;
9715 new_st->expr2 = code->expr2;
9716 new_st->block = code->block;
9717 code->expr1 = code->expr2 = NULL;
9718 code->block = NULL;
9719 if (!ns->code)
9720 ns->code = new_st;
9721 else
9722 ns->code->next = new_st;
9723 code = new_st;
9724 code->op = EXEC_SELECT_RANK;
9725
9726 selector_expr = code->expr1;
9727
9728 /* Loop over SELECT RANK cases. */
9729 for (body = code->block; body; body = body->block)
9730 {
9731 c = body->ext.block.case_list;
9732 int case_value;
9733
9734 /* Pass on the default case. */
9735 if (c->low == NULL)
9736 continue;
9737
9738 /* Associate temporary to selector. This should only be done
9739 when this case is actually true, so build a new ASSOCIATE
9740 that does precisely this here (instead of using the
9741 'global' one). */
9742 if (c->ts.type == BT_CHARACTER && c->ts.u.cl && c->ts.u.cl->length
9743 && c->ts.u.cl->length->expr_type == EXPR_CONSTANT)
9744 charlen = gfc_mpz_get_hwi (c->ts.u.cl->length->value.integer);
9745
9746 if (c->ts.type == BT_CLASS)
9747 sprintf (tname, "class_%s", c->ts.u.derived->name);
9748 else if (c->ts.type == BT_DERIVED)
9749 sprintf (tname, "type_%s", c->ts.u.derived->name);
9750 else if (c->ts.type != BT_CHARACTER)
9751 sprintf (tname, "%s_%d", gfc_basic_typename (c->ts.type), c->ts.kind);
9752 else
9753 sprintf (tname, "%s_" HOST_WIDE_INT_PRINT_DEC "_%d",
9754 gfc_basic_typename (c->ts.type), charlen, c->ts.kind);
9755
9756 case_value = (int) mpz_get_si (c->low->value.integer);
9757 if (case_value >= 0)
9758 sprintf (name, "__tmp_%s_rank_%d", tname, case_value);
9759 else
9760 sprintf (name, "__tmp_%s_rank_m%d", tname, -case_value);
9761
9762 st = gfc_find_symtree (ns->sym_root, name);
9763 gcc_assert (st->n.sym->assoc);
9764
9765 st->n.sym->assoc->target = gfc_get_variable_expr (selector_expr->symtree);
9766 st->n.sym->assoc->target->where = selector_expr->where;
9767
9768 new_st = gfc_get_code (EXEC_BLOCK);
9769 new_st->ext.block.ns = gfc_build_block_ns (ns);
9770 new_st->ext.block.ns->code = body->next;
9771 body->next = new_st;
9772
9773 /* Chain in the new list only if it is marked as dangling. Otherwise
9774 there is a CASE label overlap and this is already used. Just ignore,
9775 the error is diagnosed elsewhere. */
9776 if (st->n.sym->assoc->dangling)
9777 {
9778 new_st->ext.block.assoc = st->n.sym->assoc;
9779 st->n.sym->assoc->dangling = 0;
9780 }
9781
9782 resolve_assoc_var (st->n.sym, false);
9783 }
9784
9785 gfc_current_ns = ns;
9786 gfc_resolve_blocks (code->block, gfc_current_ns);
9787 gfc_current_ns = old_ns;
9788 }
9789
9790
9791 /* Resolve a transfer statement. This is making sure that:
9792 -- a derived type being transferred has only non-pointer components
9793 -- a derived type being transferred doesn't have private components, unless
9794 it's being transferred from the module where the type was defined
9795 -- we're not trying to transfer a whole assumed size array. */
9796
9797 static void
9798 resolve_transfer (gfc_code *code)
9799 {
9800 gfc_symbol *sym, *derived;
9801 gfc_ref *ref;
9802 gfc_expr *exp;
9803 bool write = false;
9804 bool formatted = false;
9805 gfc_dt *dt = code->ext.dt;
9806 gfc_symbol *dtio_sub = NULL;
9807
9808 exp = code->expr1;
9809
9810 while (exp != NULL && exp->expr_type == EXPR_OP
9811 && exp->value.op.op == INTRINSIC_PARENTHESES)
9812 exp = exp->value.op.op1;
9813
9814 if (exp && exp->expr_type == EXPR_NULL
9815 && code->ext.dt)
9816 {
9817 gfc_error ("Invalid context for NULL () intrinsic at %L",
9818 &exp->where);
9819 return;
9820 }
9821
9822 if (exp == NULL || (exp->expr_type != EXPR_VARIABLE
9823 && exp->expr_type != EXPR_FUNCTION
9824 && exp->expr_type != EXPR_STRUCTURE))
9825 return;
9826
9827 /* If we are reading, the variable will be changed. Note that
9828 code->ext.dt may be NULL if the TRANSFER is related to
9829 an INQUIRE statement -- but in this case, we are not reading, either. */
9830 if (dt && dt->dt_io_kind->value.iokind == M_READ
9831 && !gfc_check_vardef_context (exp, false, false, false,
9832 _("item in READ")))
9833 return;
9834
9835 const gfc_typespec *ts = exp->expr_type == EXPR_STRUCTURE
9836 || exp->expr_type == EXPR_FUNCTION
9837 ? &exp->ts : &exp->symtree->n.sym->ts;
9838
9839 /* Go to actual component transferred. */
9840 for (ref = exp->ref; ref; ref = ref->next)
9841 if (ref->type == REF_COMPONENT)
9842 ts = &ref->u.c.component->ts;
9843
9844 if (dt && dt->dt_io_kind->value.iokind != M_INQUIRE
9845 && (ts->type == BT_DERIVED || ts->type == BT_CLASS))
9846 {
9847 derived = ts->u.derived;
9848
9849 /* Determine when to use the formatted DTIO procedure. */
9850 if (dt && (dt->format_expr || dt->format_label))
9851 formatted = true;
9852
9853 write = dt->dt_io_kind->value.iokind == M_WRITE
9854 || dt->dt_io_kind->value.iokind == M_PRINT;
9855 dtio_sub = gfc_find_specific_dtio_proc (derived, write, formatted);
9856
9857 if (dtio_sub != NULL && exp->expr_type == EXPR_VARIABLE)
9858 {
9859 dt->udtio = exp;
9860 sym = exp->symtree->n.sym->ns->proc_name;
9861 /* Check to see if this is a nested DTIO call, with the
9862 dummy as the io-list object. */
9863 if (sym && sym == dtio_sub && sym->formal
9864 && sym->formal->sym == exp->symtree->n.sym
9865 && exp->ref == NULL)
9866 {
9867 if (!sym->attr.recursive)
9868 {
9869 gfc_error ("DTIO %s procedure at %L must be recursive",
9870 sym->name, &sym->declared_at);
9871 return;
9872 }
9873 }
9874 }
9875 }
9876
9877 if (ts->type == BT_CLASS && dtio_sub == NULL)
9878 {
9879 gfc_error ("Data transfer element at %L cannot be polymorphic unless "
9880 "it is processed by a defined input/output procedure",
9881 &code->loc);
9882 return;
9883 }
9884
9885 if (ts->type == BT_DERIVED)
9886 {
9887 /* Check that transferred derived type doesn't contain POINTER
9888 components unless it is processed by a defined input/output
9889 procedure". */
9890 if (ts->u.derived->attr.pointer_comp && dtio_sub == NULL)
9891 {
9892 gfc_error ("Data transfer element at %L cannot have POINTER "
9893 "components unless it is processed by a defined "
9894 "input/output procedure", &code->loc);
9895 return;
9896 }
9897
9898 /* F08:C935. */
9899 if (ts->u.derived->attr.proc_pointer_comp)
9900 {
9901 gfc_error ("Data transfer element at %L cannot have "
9902 "procedure pointer components", &code->loc);
9903 return;
9904 }
9905
9906 if (ts->u.derived->attr.alloc_comp && dtio_sub == NULL)
9907 {
9908 gfc_error ("Data transfer element at %L cannot have ALLOCATABLE "
9909 "components unless it is processed by a defined "
9910 "input/output procedure", &code->loc);
9911 return;
9912 }
9913
9914 /* C_PTR and C_FUNPTR have private components which means they cannot
9915 be printed. However, if -std=gnu and not -pedantic, allow
9916 the component to be printed to help debugging. */
9917 if (ts->u.derived->ts.f90_type == BT_VOID)
9918 {
9919 if (!gfc_notify_std (GFC_STD_GNU, "Data transfer element at %L "
9920 "cannot have PRIVATE components", &code->loc))
9921 return;
9922 }
9923 else if (derived_inaccessible (ts->u.derived) && dtio_sub == NULL)
9924 {
9925 gfc_error ("Data transfer element at %L cannot have "
9926 "PRIVATE components unless it is processed by "
9927 "a defined input/output procedure", &code->loc);
9928 return;
9929 }
9930 }
9931
9932 if (exp->expr_type == EXPR_STRUCTURE)
9933 return;
9934
9935 sym = exp->symtree->n.sym;
9936
9937 if (sym->as != NULL && sym->as->type == AS_ASSUMED_SIZE && exp->ref
9938 && exp->ref->type == REF_ARRAY && exp->ref->u.ar.type == AR_FULL)
9939 {
9940 gfc_error ("Data transfer element at %L cannot be a full reference to "
9941 "an assumed-size array", &code->loc);
9942 return;
9943 }
9944 }
9945
9946
9947 /*********** Toplevel code resolution subroutines ***********/
9948
9949 /* Find the set of labels that are reachable from this block. We also
9950 record the last statement in each block. */
9951
9952 static void
9953 find_reachable_labels (gfc_code *block)
9954 {
9955 gfc_code *c;
9956
9957 if (!block)
9958 return;
9959
9960 cs_base->reachable_labels = bitmap_alloc (&labels_obstack);
9961
9962 /* Collect labels in this block. We don't keep those corresponding
9963 to END {IF|SELECT}, these are checked in resolve_branch by going
9964 up through the code_stack. */
9965 for (c = block; c; c = c->next)
9966 {
9967 if (c->here && c->op != EXEC_END_NESTED_BLOCK)
9968 bitmap_set_bit (cs_base->reachable_labels, c->here->value);
9969 }
9970
9971 /* Merge with labels from parent block. */
9972 if (cs_base->prev)
9973 {
9974 gcc_assert (cs_base->prev->reachable_labels);
9975 bitmap_ior_into (cs_base->reachable_labels,
9976 cs_base->prev->reachable_labels);
9977 }
9978 }
9979
9980
9981 static void
9982 resolve_lock_unlock_event (gfc_code *code)
9983 {
9984 if (code->expr1->expr_type == EXPR_FUNCTION
9985 && code->expr1->value.function.isym
9986 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
9987 remove_caf_get_intrinsic (code->expr1);
9988
9989 if ((code->op == EXEC_LOCK || code->op == EXEC_UNLOCK)
9990 && (code->expr1->ts.type != BT_DERIVED
9991 || code->expr1->expr_type != EXPR_VARIABLE
9992 || code->expr1->ts.u.derived->from_intmod != INTMOD_ISO_FORTRAN_ENV
9993 || code->expr1->ts.u.derived->intmod_sym_id != ISOFORTRAN_LOCK_TYPE
9994 || code->expr1->rank != 0
9995 || (!gfc_is_coarray (code->expr1) &&
9996 !gfc_is_coindexed (code->expr1))))
9997 gfc_error ("Lock variable at %L must be a scalar of type LOCK_TYPE",
9998 &code->expr1->where);
9999 else if ((code->op == EXEC_EVENT_POST || code->op == EXEC_EVENT_WAIT)
10000 && (code->expr1->ts.type != BT_DERIVED
10001 || code->expr1->expr_type != EXPR_VARIABLE
10002 || code->expr1->ts.u.derived->from_intmod
10003 != INTMOD_ISO_FORTRAN_ENV
10004 || code->expr1->ts.u.derived->intmod_sym_id
10005 != ISOFORTRAN_EVENT_TYPE
10006 || code->expr1->rank != 0))
10007 gfc_error ("Event variable at %L must be a scalar of type EVENT_TYPE",
10008 &code->expr1->where);
10009 else if (code->op == EXEC_EVENT_POST && !gfc_is_coarray (code->expr1)
10010 && !gfc_is_coindexed (code->expr1))
10011 gfc_error ("Event variable argument at %L must be a coarray or coindexed",
10012 &code->expr1->where);
10013 else if (code->op == EXEC_EVENT_WAIT && !gfc_is_coarray (code->expr1))
10014 gfc_error ("Event variable argument at %L must be a coarray but not "
10015 "coindexed", &code->expr1->where);
10016
10017 /* Check STAT. */
10018 if (code->expr2
10019 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
10020 || code->expr2->expr_type != EXPR_VARIABLE))
10021 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
10022 &code->expr2->where);
10023
10024 if (code->expr2
10025 && !gfc_check_vardef_context (code->expr2, false, false, false,
10026 _("STAT variable")))
10027 return;
10028
10029 /* Check ERRMSG. */
10030 if (code->expr3
10031 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
10032 || code->expr3->expr_type != EXPR_VARIABLE))
10033 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
10034 &code->expr3->where);
10035
10036 if (code->expr3
10037 && !gfc_check_vardef_context (code->expr3, false, false, false,
10038 _("ERRMSG variable")))
10039 return;
10040
10041 /* Check for LOCK the ACQUIRED_LOCK. */
10042 if (code->op != EXEC_EVENT_WAIT && code->expr4
10043 && (code->expr4->ts.type != BT_LOGICAL || code->expr4->rank != 0
10044 || code->expr4->expr_type != EXPR_VARIABLE))
10045 gfc_error ("ACQUIRED_LOCK= argument at %L must be a scalar LOGICAL "
10046 "variable", &code->expr4->where);
10047
10048 if (code->op != EXEC_EVENT_WAIT && code->expr4
10049 && !gfc_check_vardef_context (code->expr4, false, false, false,
10050 _("ACQUIRED_LOCK variable")))
10051 return;
10052
10053 /* Check for EVENT WAIT the UNTIL_COUNT. */
10054 if (code->op == EXEC_EVENT_WAIT && code->expr4)
10055 {
10056 if (!gfc_resolve_expr (code->expr4) || code->expr4->ts.type != BT_INTEGER
10057 || code->expr4->rank != 0)
10058 gfc_error ("UNTIL_COUNT= argument at %L must be a scalar INTEGER "
10059 "expression", &code->expr4->where);
10060 }
10061 }
10062
10063
10064 static void
10065 resolve_critical (gfc_code *code)
10066 {
10067 gfc_symtree *symtree;
10068 gfc_symbol *lock_type;
10069 char name[GFC_MAX_SYMBOL_LEN];
10070 static int serial = 0;
10071
10072 if (flag_coarray != GFC_FCOARRAY_LIB)
10073 return;
10074
10075 symtree = gfc_find_symtree (gfc_current_ns->sym_root,
10076 GFC_PREFIX ("lock_type"));
10077 if (symtree)
10078 lock_type = symtree->n.sym;
10079 else
10080 {
10081 if (gfc_get_sym_tree (GFC_PREFIX ("lock_type"), gfc_current_ns, &symtree,
10082 false) != 0)
10083 gcc_unreachable ();
10084 lock_type = symtree->n.sym;
10085 lock_type->attr.flavor = FL_DERIVED;
10086 lock_type->attr.zero_comp = 1;
10087 lock_type->from_intmod = INTMOD_ISO_FORTRAN_ENV;
10088 lock_type->intmod_sym_id = ISOFORTRAN_LOCK_TYPE;
10089 }
10090
10091 sprintf(name, GFC_PREFIX ("lock_var") "%d",serial++);
10092 if (gfc_get_sym_tree (name, gfc_current_ns, &symtree, false) != 0)
10093 gcc_unreachable ();
10094
10095 code->resolved_sym = symtree->n.sym;
10096 symtree->n.sym->attr.flavor = FL_VARIABLE;
10097 symtree->n.sym->attr.referenced = 1;
10098 symtree->n.sym->attr.artificial = 1;
10099 symtree->n.sym->attr.codimension = 1;
10100 symtree->n.sym->ts.type = BT_DERIVED;
10101 symtree->n.sym->ts.u.derived = lock_type;
10102 symtree->n.sym->as = gfc_get_array_spec ();
10103 symtree->n.sym->as->corank = 1;
10104 symtree->n.sym->as->type = AS_EXPLICIT;
10105 symtree->n.sym->as->cotype = AS_EXPLICIT;
10106 symtree->n.sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind,
10107 NULL, 1);
10108 gfc_commit_symbols();
10109 }
10110
10111
10112 static void
10113 resolve_sync (gfc_code *code)
10114 {
10115 /* Check imageset. The * case matches expr1 == NULL. */
10116 if (code->expr1)
10117 {
10118 if (code->expr1->ts.type != BT_INTEGER || code->expr1->rank > 1)
10119 gfc_error ("Imageset argument at %L must be a scalar or rank-1 "
10120 "INTEGER expression", &code->expr1->where);
10121 if (code->expr1->expr_type == EXPR_CONSTANT && code->expr1->rank == 0
10122 && mpz_cmp_si (code->expr1->value.integer, 1) < 0)
10123 gfc_error ("Imageset argument at %L must between 1 and num_images()",
10124 &code->expr1->where);
10125 else if (code->expr1->expr_type == EXPR_ARRAY
10126 && gfc_simplify_expr (code->expr1, 0))
10127 {
10128 gfc_constructor *cons;
10129 cons = gfc_constructor_first (code->expr1->value.constructor);
10130 for (; cons; cons = gfc_constructor_next (cons))
10131 if (cons->expr->expr_type == EXPR_CONSTANT
10132 && mpz_cmp_si (cons->expr->value.integer, 1) < 0)
10133 gfc_error ("Imageset argument at %L must between 1 and "
10134 "num_images()", &cons->expr->where);
10135 }
10136 }
10137
10138 /* Check STAT. */
10139 gfc_resolve_expr (code->expr2);
10140 if (code->expr2
10141 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
10142 || code->expr2->expr_type != EXPR_VARIABLE))
10143 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
10144 &code->expr2->where);
10145
10146 /* Check ERRMSG. */
10147 gfc_resolve_expr (code->expr3);
10148 if (code->expr3
10149 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
10150 || code->expr3->expr_type != EXPR_VARIABLE))
10151 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
10152 &code->expr3->where);
10153 }
10154
10155
10156 /* Given a branch to a label, see if the branch is conforming.
10157 The code node describes where the branch is located. */
10158
10159 static void
10160 resolve_branch (gfc_st_label *label, gfc_code *code)
10161 {
10162 code_stack *stack;
10163
10164 if (label == NULL)
10165 return;
10166
10167 /* Step one: is this a valid branching target? */
10168
10169 if (label->defined == ST_LABEL_UNKNOWN)
10170 {
10171 gfc_error ("Label %d referenced at %L is never defined", label->value,
10172 &code->loc);
10173 return;
10174 }
10175
10176 if (label->defined != ST_LABEL_TARGET && label->defined != ST_LABEL_DO_TARGET)
10177 {
10178 gfc_error ("Statement at %L is not a valid branch target statement "
10179 "for the branch statement at %L", &label->where, &code->loc);
10180 return;
10181 }
10182
10183 /* Step two: make sure this branch is not a branch to itself ;-) */
10184
10185 if (code->here == label)
10186 {
10187 gfc_warning (0,
10188 "Branch at %L may result in an infinite loop", &code->loc);
10189 return;
10190 }
10191
10192 /* Step three: See if the label is in the same block as the
10193 branching statement. The hard work has been done by setting up
10194 the bitmap reachable_labels. */
10195
10196 if (bitmap_bit_p (cs_base->reachable_labels, label->value))
10197 {
10198 /* Check now whether there is a CRITICAL construct; if so, check
10199 whether the label is still visible outside of the CRITICAL block,
10200 which is invalid. */
10201 for (stack = cs_base; stack; stack = stack->prev)
10202 {
10203 if (stack->current->op == EXEC_CRITICAL
10204 && bitmap_bit_p (stack->reachable_labels, label->value))
10205 gfc_error ("GOTO statement at %L leaves CRITICAL construct for "
10206 "label at %L", &code->loc, &label->where);
10207 else if (stack->current->op == EXEC_DO_CONCURRENT
10208 && bitmap_bit_p (stack->reachable_labels, label->value))
10209 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct "
10210 "for label at %L", &code->loc, &label->where);
10211 }
10212
10213 return;
10214 }
10215
10216 /* Step four: If we haven't found the label in the bitmap, it may
10217 still be the label of the END of the enclosing block, in which
10218 case we find it by going up the code_stack. */
10219
10220 for (stack = cs_base; stack; stack = stack->prev)
10221 {
10222 if (stack->current->next && stack->current->next->here == label)
10223 break;
10224 if (stack->current->op == EXEC_CRITICAL)
10225 {
10226 /* Note: A label at END CRITICAL does not leave the CRITICAL
10227 construct as END CRITICAL is still part of it. */
10228 gfc_error ("GOTO statement at %L leaves CRITICAL construct for label"
10229 " at %L", &code->loc, &label->where);
10230 return;
10231 }
10232 else if (stack->current->op == EXEC_DO_CONCURRENT)
10233 {
10234 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct for "
10235 "label at %L", &code->loc, &label->where);
10236 return;
10237 }
10238 }
10239
10240 if (stack)
10241 {
10242 gcc_assert (stack->current->next->op == EXEC_END_NESTED_BLOCK);
10243 return;
10244 }
10245
10246 /* The label is not in an enclosing block, so illegal. This was
10247 allowed in Fortran 66, so we allow it as extension. No
10248 further checks are necessary in this case. */
10249 gfc_notify_std (GFC_STD_LEGACY, "Label at %L is not in the same block "
10250 "as the GOTO statement at %L", &label->where,
10251 &code->loc);
10252 return;
10253 }
10254
10255
10256 /* Check whether EXPR1 has the same shape as EXPR2. */
10257
10258 static bool
10259 resolve_where_shape (gfc_expr *expr1, gfc_expr *expr2)
10260 {
10261 mpz_t shape[GFC_MAX_DIMENSIONS];
10262 mpz_t shape2[GFC_MAX_DIMENSIONS];
10263 bool result = false;
10264 int i;
10265
10266 /* Compare the rank. */
10267 if (expr1->rank != expr2->rank)
10268 return result;
10269
10270 /* Compare the size of each dimension. */
10271 for (i=0; i<expr1->rank; i++)
10272 {
10273 if (!gfc_array_dimen_size (expr1, i, &shape[i]))
10274 goto ignore;
10275
10276 if (!gfc_array_dimen_size (expr2, i, &shape2[i]))
10277 goto ignore;
10278
10279 if (mpz_cmp (shape[i], shape2[i]))
10280 goto over;
10281 }
10282
10283 /* When either of the two expression is an assumed size array, we
10284 ignore the comparison of dimension sizes. */
10285 ignore:
10286 result = true;
10287
10288 over:
10289 gfc_clear_shape (shape, i);
10290 gfc_clear_shape (shape2, i);
10291 return result;
10292 }
10293
10294
10295 /* Check whether a WHERE assignment target or a WHERE mask expression
10296 has the same shape as the outmost WHERE mask expression. */
10297
10298 static void
10299 resolve_where (gfc_code *code, gfc_expr *mask)
10300 {
10301 gfc_code *cblock;
10302 gfc_code *cnext;
10303 gfc_expr *e = NULL;
10304
10305 cblock = code->block;
10306
10307 /* Store the first WHERE mask-expr of the WHERE statement or construct.
10308 In case of nested WHERE, only the outmost one is stored. */
10309 if (mask == NULL) /* outmost WHERE */
10310 e = cblock->expr1;
10311 else /* inner WHERE */
10312 e = mask;
10313
10314 while (cblock)
10315 {
10316 if (cblock->expr1)
10317 {
10318 /* Check if the mask-expr has a consistent shape with the
10319 outmost WHERE mask-expr. */
10320 if (!resolve_where_shape (cblock->expr1, e))
10321 gfc_error ("WHERE mask at %L has inconsistent shape",
10322 &cblock->expr1->where);
10323 }
10324
10325 /* the assignment statement of a WHERE statement, or the first
10326 statement in where-body-construct of a WHERE construct */
10327 cnext = cblock->next;
10328 while (cnext)
10329 {
10330 switch (cnext->op)
10331 {
10332 /* WHERE assignment statement */
10333 case EXEC_ASSIGN:
10334
10335 /* Check shape consistent for WHERE assignment target. */
10336 if (e && !resolve_where_shape (cnext->expr1, e))
10337 gfc_error ("WHERE assignment target at %L has "
10338 "inconsistent shape", &cnext->expr1->where);
10339 break;
10340
10341
10342 case EXEC_ASSIGN_CALL:
10343 resolve_call (cnext);
10344 if (!cnext->resolved_sym->attr.elemental)
10345 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
10346 &cnext->ext.actual->expr->where);
10347 break;
10348
10349 /* WHERE or WHERE construct is part of a where-body-construct */
10350 case EXEC_WHERE:
10351 resolve_where (cnext, e);
10352 break;
10353
10354 default:
10355 gfc_error ("Unsupported statement inside WHERE at %L",
10356 &cnext->loc);
10357 }
10358 /* the next statement within the same where-body-construct */
10359 cnext = cnext->next;
10360 }
10361 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
10362 cblock = cblock->block;
10363 }
10364 }
10365
10366
10367 /* Resolve assignment in FORALL construct.
10368 NVAR is the number of FORALL index variables, and VAR_EXPR records the
10369 FORALL index variables. */
10370
10371 static void
10372 gfc_resolve_assign_in_forall (gfc_code *code, int nvar, gfc_expr **var_expr)
10373 {
10374 int n;
10375
10376 for (n = 0; n < nvar; n++)
10377 {
10378 gfc_symbol *forall_index;
10379
10380 forall_index = var_expr[n]->symtree->n.sym;
10381
10382 /* Check whether the assignment target is one of the FORALL index
10383 variable. */
10384 if ((code->expr1->expr_type == EXPR_VARIABLE)
10385 && (code->expr1->symtree->n.sym == forall_index))
10386 gfc_error ("Assignment to a FORALL index variable at %L",
10387 &code->expr1->where);
10388 else
10389 {
10390 /* If one of the FORALL index variables doesn't appear in the
10391 assignment variable, then there could be a many-to-one
10392 assignment. Emit a warning rather than an error because the
10393 mask could be resolving this problem. */
10394 if (!find_forall_index (code->expr1, forall_index, 0))
10395 gfc_warning (0, "The FORALL with index %qs is not used on the "
10396 "left side of the assignment at %L and so might "
10397 "cause multiple assignment to this object",
10398 var_expr[n]->symtree->name, &code->expr1->where);
10399 }
10400 }
10401 }
10402
10403
10404 /* Resolve WHERE statement in FORALL construct. */
10405
10406 static void
10407 gfc_resolve_where_code_in_forall (gfc_code *code, int nvar,
10408 gfc_expr **var_expr)
10409 {
10410 gfc_code *cblock;
10411 gfc_code *cnext;
10412
10413 cblock = code->block;
10414 while (cblock)
10415 {
10416 /* the assignment statement of a WHERE statement, or the first
10417 statement in where-body-construct of a WHERE construct */
10418 cnext = cblock->next;
10419 while (cnext)
10420 {
10421 switch (cnext->op)
10422 {
10423 /* WHERE assignment statement */
10424 case EXEC_ASSIGN:
10425 gfc_resolve_assign_in_forall (cnext, nvar, var_expr);
10426 break;
10427
10428 /* WHERE operator assignment statement */
10429 case EXEC_ASSIGN_CALL:
10430 resolve_call (cnext);
10431 if (!cnext->resolved_sym->attr.elemental)
10432 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
10433 &cnext->ext.actual->expr->where);
10434 break;
10435
10436 /* WHERE or WHERE construct is part of a where-body-construct */
10437 case EXEC_WHERE:
10438 gfc_resolve_where_code_in_forall (cnext, nvar, var_expr);
10439 break;
10440
10441 default:
10442 gfc_error ("Unsupported statement inside WHERE at %L",
10443 &cnext->loc);
10444 }
10445 /* the next statement within the same where-body-construct */
10446 cnext = cnext->next;
10447 }
10448 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
10449 cblock = cblock->block;
10450 }
10451 }
10452
10453
10454 /* Traverse the FORALL body to check whether the following errors exist:
10455 1. For assignment, check if a many-to-one assignment happens.
10456 2. For WHERE statement, check the WHERE body to see if there is any
10457 many-to-one assignment. */
10458
10459 static void
10460 gfc_resolve_forall_body (gfc_code *code, int nvar, gfc_expr **var_expr)
10461 {
10462 gfc_code *c;
10463
10464 c = code->block->next;
10465 while (c)
10466 {
10467 switch (c->op)
10468 {
10469 case EXEC_ASSIGN:
10470 case EXEC_POINTER_ASSIGN:
10471 gfc_resolve_assign_in_forall (c, nvar, var_expr);
10472 break;
10473
10474 case EXEC_ASSIGN_CALL:
10475 resolve_call (c);
10476 break;
10477
10478 /* Because the gfc_resolve_blocks() will handle the nested FORALL,
10479 there is no need to handle it here. */
10480 case EXEC_FORALL:
10481 break;
10482 case EXEC_WHERE:
10483 gfc_resolve_where_code_in_forall(c, nvar, var_expr);
10484 break;
10485 default:
10486 break;
10487 }
10488 /* The next statement in the FORALL body. */
10489 c = c->next;
10490 }
10491 }
10492
10493
10494 /* Counts the number of iterators needed inside a forall construct, including
10495 nested forall constructs. This is used to allocate the needed memory
10496 in gfc_resolve_forall. */
10497
10498 static int
10499 gfc_count_forall_iterators (gfc_code *code)
10500 {
10501 int max_iters, sub_iters, current_iters;
10502 gfc_forall_iterator *fa;
10503
10504 gcc_assert(code->op == EXEC_FORALL);
10505 max_iters = 0;
10506 current_iters = 0;
10507
10508 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
10509 current_iters ++;
10510
10511 code = code->block->next;
10512
10513 while (code)
10514 {
10515 if (code->op == EXEC_FORALL)
10516 {
10517 sub_iters = gfc_count_forall_iterators (code);
10518 if (sub_iters > max_iters)
10519 max_iters = sub_iters;
10520 }
10521 code = code->next;
10522 }
10523
10524 return current_iters + max_iters;
10525 }
10526
10527
10528 /* Given a FORALL construct, first resolve the FORALL iterator, then call
10529 gfc_resolve_forall_body to resolve the FORALL body. */
10530
10531 static void
10532 gfc_resolve_forall (gfc_code *code, gfc_namespace *ns, int forall_save)
10533 {
10534 static gfc_expr **var_expr;
10535 static int total_var = 0;
10536 static int nvar = 0;
10537 int i, old_nvar, tmp;
10538 gfc_forall_iterator *fa;
10539
10540 old_nvar = nvar;
10541
10542 if (!gfc_notify_std (GFC_STD_F2018_OBS, "FORALL construct at %L", &code->loc))
10543 return;
10544
10545 /* Start to resolve a FORALL construct */
10546 if (forall_save == 0)
10547 {
10548 /* Count the total number of FORALL indices in the nested FORALL
10549 construct in order to allocate the VAR_EXPR with proper size. */
10550 total_var = gfc_count_forall_iterators (code);
10551
10552 /* Allocate VAR_EXPR with NUMBER_OF_FORALL_INDEX elements. */
10553 var_expr = XCNEWVEC (gfc_expr *, total_var);
10554 }
10555
10556 /* The information about FORALL iterator, including FORALL indices start, end
10557 and stride. An outer FORALL indice cannot appear in start, end or stride. */
10558 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
10559 {
10560 /* Fortran 20008: C738 (R753). */
10561 if (fa->var->ref && fa->var->ref->type == REF_ARRAY)
10562 {
10563 gfc_error ("FORALL index-name at %L must be a scalar variable "
10564 "of type integer", &fa->var->where);
10565 continue;
10566 }
10567
10568 /* Check if any outer FORALL index name is the same as the current
10569 one. */
10570 for (i = 0; i < nvar; i++)
10571 {
10572 if (fa->var->symtree->n.sym == var_expr[i]->symtree->n.sym)
10573 gfc_error ("An outer FORALL construct already has an index "
10574 "with this name %L", &fa->var->where);
10575 }
10576
10577 /* Record the current FORALL index. */
10578 var_expr[nvar] = gfc_copy_expr (fa->var);
10579
10580 nvar++;
10581
10582 /* No memory leak. */
10583 gcc_assert (nvar <= total_var);
10584 }
10585
10586 /* Resolve the FORALL body. */
10587 gfc_resolve_forall_body (code, nvar, var_expr);
10588
10589 /* May call gfc_resolve_forall to resolve the inner FORALL loop. */
10590 gfc_resolve_blocks (code->block, ns);
10591
10592 tmp = nvar;
10593 nvar = old_nvar;
10594 /* Free only the VAR_EXPRs allocated in this frame. */
10595 for (i = nvar; i < tmp; i++)
10596 gfc_free_expr (var_expr[i]);
10597
10598 if (nvar == 0)
10599 {
10600 /* We are in the outermost FORALL construct. */
10601 gcc_assert (forall_save == 0);
10602
10603 /* VAR_EXPR is not needed any more. */
10604 free (var_expr);
10605 total_var = 0;
10606 }
10607 }
10608
10609
10610 /* Resolve a BLOCK construct statement. */
10611
10612 static void
10613 resolve_block_construct (gfc_code* code)
10614 {
10615 /* Resolve the BLOCK's namespace. */
10616 gfc_resolve (code->ext.block.ns);
10617
10618 /* For an ASSOCIATE block, the associations (and their targets) are already
10619 resolved during resolve_symbol. */
10620 }
10621
10622
10623 /* Resolve lists of blocks found in IF, SELECT CASE, WHERE, FORALL, GOTO and
10624 DO code nodes. */
10625
10626 void
10627 gfc_resolve_blocks (gfc_code *b, gfc_namespace *ns)
10628 {
10629 bool t;
10630
10631 for (; b; b = b->block)
10632 {
10633 t = gfc_resolve_expr (b->expr1);
10634 if (!gfc_resolve_expr (b->expr2))
10635 t = false;
10636
10637 switch (b->op)
10638 {
10639 case EXEC_IF:
10640 if (t && b->expr1 != NULL
10641 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank != 0))
10642 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
10643 &b->expr1->where);
10644 break;
10645
10646 case EXEC_WHERE:
10647 if (t
10648 && b->expr1 != NULL
10649 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank == 0))
10650 gfc_error ("WHERE/ELSEWHERE clause at %L requires a LOGICAL array",
10651 &b->expr1->where);
10652 break;
10653
10654 case EXEC_GOTO:
10655 resolve_branch (b->label1, b);
10656 break;
10657
10658 case EXEC_BLOCK:
10659 resolve_block_construct (b);
10660 break;
10661
10662 case EXEC_SELECT:
10663 case EXEC_SELECT_TYPE:
10664 case EXEC_SELECT_RANK:
10665 case EXEC_FORALL:
10666 case EXEC_DO:
10667 case EXEC_DO_WHILE:
10668 case EXEC_DO_CONCURRENT:
10669 case EXEC_CRITICAL:
10670 case EXEC_READ:
10671 case EXEC_WRITE:
10672 case EXEC_IOLENGTH:
10673 case EXEC_WAIT:
10674 break;
10675
10676 case EXEC_OMP_ATOMIC:
10677 case EXEC_OACC_ATOMIC:
10678 {
10679 gfc_omp_atomic_op aop
10680 = (gfc_omp_atomic_op) (b->ext.omp_atomic & GFC_OMP_ATOMIC_MASK);
10681
10682 /* Verify this before calling gfc_resolve_code, which might
10683 change it. */
10684 gcc_assert (b->next && b->next->op == EXEC_ASSIGN);
10685 gcc_assert (((aop != GFC_OMP_ATOMIC_CAPTURE)
10686 && b->next->next == NULL)
10687 || ((aop == GFC_OMP_ATOMIC_CAPTURE)
10688 && b->next->next != NULL
10689 && b->next->next->op == EXEC_ASSIGN
10690 && b->next->next->next == NULL));
10691 }
10692 break;
10693
10694 case EXEC_OACC_PARALLEL_LOOP:
10695 case EXEC_OACC_PARALLEL:
10696 case EXEC_OACC_KERNELS_LOOP:
10697 case EXEC_OACC_KERNELS:
10698 case EXEC_OACC_SERIAL_LOOP:
10699 case EXEC_OACC_SERIAL:
10700 case EXEC_OACC_DATA:
10701 case EXEC_OACC_HOST_DATA:
10702 case EXEC_OACC_LOOP:
10703 case EXEC_OACC_UPDATE:
10704 case EXEC_OACC_WAIT:
10705 case EXEC_OACC_CACHE:
10706 case EXEC_OACC_ENTER_DATA:
10707 case EXEC_OACC_EXIT_DATA:
10708 case EXEC_OACC_ROUTINE:
10709 case EXEC_OMP_CRITICAL:
10710 case EXEC_OMP_DISTRIBUTE:
10711 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
10712 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
10713 case EXEC_OMP_DISTRIBUTE_SIMD:
10714 case EXEC_OMP_DO:
10715 case EXEC_OMP_DO_SIMD:
10716 case EXEC_OMP_MASTER:
10717 case EXEC_OMP_ORDERED:
10718 case EXEC_OMP_PARALLEL:
10719 case EXEC_OMP_PARALLEL_DO:
10720 case EXEC_OMP_PARALLEL_DO_SIMD:
10721 case EXEC_OMP_PARALLEL_SECTIONS:
10722 case EXEC_OMP_PARALLEL_WORKSHARE:
10723 case EXEC_OMP_SECTIONS:
10724 case EXEC_OMP_SIMD:
10725 case EXEC_OMP_SINGLE:
10726 case EXEC_OMP_TARGET:
10727 case EXEC_OMP_TARGET_DATA:
10728 case EXEC_OMP_TARGET_ENTER_DATA:
10729 case EXEC_OMP_TARGET_EXIT_DATA:
10730 case EXEC_OMP_TARGET_PARALLEL:
10731 case EXEC_OMP_TARGET_PARALLEL_DO:
10732 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
10733 case EXEC_OMP_TARGET_SIMD:
10734 case EXEC_OMP_TARGET_TEAMS:
10735 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
10736 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
10737 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10738 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
10739 case EXEC_OMP_TARGET_UPDATE:
10740 case EXEC_OMP_TASK:
10741 case EXEC_OMP_TASKGROUP:
10742 case EXEC_OMP_TASKLOOP:
10743 case EXEC_OMP_TASKLOOP_SIMD:
10744 case EXEC_OMP_TASKWAIT:
10745 case EXEC_OMP_TASKYIELD:
10746 case EXEC_OMP_TEAMS:
10747 case EXEC_OMP_TEAMS_DISTRIBUTE:
10748 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
10749 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10750 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
10751 case EXEC_OMP_WORKSHARE:
10752 break;
10753
10754 default:
10755 gfc_internal_error ("gfc_resolve_blocks(): Bad block type");
10756 }
10757
10758 gfc_resolve_code (b->next, ns);
10759 }
10760 }
10761
10762
10763 /* Does everything to resolve an ordinary assignment. Returns true
10764 if this is an interface assignment. */
10765 static bool
10766 resolve_ordinary_assign (gfc_code *code, gfc_namespace *ns)
10767 {
10768 bool rval = false;
10769 gfc_expr *lhs;
10770 gfc_expr *rhs;
10771 int n;
10772 gfc_ref *ref;
10773 symbol_attribute attr;
10774
10775 if (gfc_extend_assign (code, ns))
10776 {
10777 gfc_expr** rhsptr;
10778
10779 if (code->op == EXEC_ASSIGN_CALL)
10780 {
10781 lhs = code->ext.actual->expr;
10782 rhsptr = &code->ext.actual->next->expr;
10783 }
10784 else
10785 {
10786 gfc_actual_arglist* args;
10787 gfc_typebound_proc* tbp;
10788
10789 gcc_assert (code->op == EXEC_COMPCALL);
10790
10791 args = code->expr1->value.compcall.actual;
10792 lhs = args->expr;
10793 rhsptr = &args->next->expr;
10794
10795 tbp = code->expr1->value.compcall.tbp;
10796 gcc_assert (!tbp->is_generic);
10797 }
10798
10799 /* Make a temporary rhs when there is a default initializer
10800 and rhs is the same symbol as the lhs. */
10801 if ((*rhsptr)->expr_type == EXPR_VARIABLE
10802 && (*rhsptr)->symtree->n.sym->ts.type == BT_DERIVED
10803 && gfc_has_default_initializer ((*rhsptr)->symtree->n.sym->ts.u.derived)
10804 && (lhs->symtree->n.sym == (*rhsptr)->symtree->n.sym))
10805 *rhsptr = gfc_get_parentheses (*rhsptr);
10806
10807 return true;
10808 }
10809
10810 lhs = code->expr1;
10811 rhs = code->expr2;
10812
10813 if ((gfc_numeric_ts (&lhs->ts) || lhs->ts.type == BT_LOGICAL)
10814 && rhs->ts.type == BT_CHARACTER
10815 && (rhs->expr_type != EXPR_CONSTANT || !flag_dec_char_conversions))
10816 {
10817 /* Use of -fdec-char-conversions allows assignment of character data
10818 to non-character variables. This not permited for nonconstant
10819 strings. */
10820 gfc_error ("Cannot convert %s to %s at %L", gfc_typename (rhs),
10821 gfc_typename (lhs), &rhs->where);
10822 return false;
10823 }
10824
10825 /* Handle the case of a BOZ literal on the RHS. */
10826 if (rhs->ts.type == BT_BOZ)
10827 {
10828 if (gfc_invalid_boz ("BOZ literal constant at %L is neither a DATA "
10829 "statement value nor an actual argument of "
10830 "INT/REAL/DBLE/CMPLX intrinsic subprogram",
10831 &rhs->where))
10832 return false;
10833
10834 switch (lhs->ts.type)
10835 {
10836 case BT_INTEGER:
10837 if (!gfc_boz2int (rhs, lhs->ts.kind))
10838 return false;
10839 break;
10840 case BT_REAL:
10841 if (!gfc_boz2real (rhs, lhs->ts.kind))
10842 return false;
10843 break;
10844 default:
10845 gfc_error ("Invalid use of BOZ literal constant at %L", &rhs->where);
10846 return false;
10847 }
10848 }
10849
10850 if (lhs->ts.type == BT_CHARACTER && warn_character_truncation)
10851 {
10852 HOST_WIDE_INT llen = 0, rlen = 0;
10853 if (lhs->ts.u.cl != NULL
10854 && lhs->ts.u.cl->length != NULL
10855 && lhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10856 llen = gfc_mpz_get_hwi (lhs->ts.u.cl->length->value.integer);
10857
10858 if (rhs->expr_type == EXPR_CONSTANT)
10859 rlen = rhs->value.character.length;
10860
10861 else if (rhs->ts.u.cl != NULL
10862 && rhs->ts.u.cl->length != NULL
10863 && rhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10864 rlen = gfc_mpz_get_hwi (rhs->ts.u.cl->length->value.integer);
10865
10866 if (rlen && llen && rlen > llen)
10867 gfc_warning_now (OPT_Wcharacter_truncation,
10868 "CHARACTER expression will be truncated "
10869 "in assignment (%ld/%ld) at %L",
10870 (long) llen, (long) rlen, &code->loc);
10871 }
10872
10873 /* Ensure that a vector index expression for the lvalue is evaluated
10874 to a temporary if the lvalue symbol is referenced in it. */
10875 if (lhs->rank)
10876 {
10877 for (ref = lhs->ref; ref; ref= ref->next)
10878 if (ref->type == REF_ARRAY)
10879 {
10880 for (n = 0; n < ref->u.ar.dimen; n++)
10881 if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR
10882 && gfc_find_sym_in_expr (lhs->symtree->n.sym,
10883 ref->u.ar.start[n]))
10884 ref->u.ar.start[n]
10885 = gfc_get_parentheses (ref->u.ar.start[n]);
10886 }
10887 }
10888
10889 if (gfc_pure (NULL))
10890 {
10891 if (lhs->ts.type == BT_DERIVED
10892 && lhs->expr_type == EXPR_VARIABLE
10893 && lhs->ts.u.derived->attr.pointer_comp
10894 && rhs->expr_type == EXPR_VARIABLE
10895 && (gfc_impure_variable (rhs->symtree->n.sym)
10896 || gfc_is_coindexed (rhs)))
10897 {
10898 /* F2008, C1283. */
10899 if (gfc_is_coindexed (rhs))
10900 gfc_error ("Coindexed expression at %L is assigned to "
10901 "a derived type variable with a POINTER "
10902 "component in a PURE procedure",
10903 &rhs->where);
10904 else
10905 /* F2008, C1283 (4). */
10906 gfc_error ("In a pure subprogram an INTENT(IN) dummy argument "
10907 "shall not be used as the expr at %L of an intrinsic "
10908 "assignment statement in which the variable is of a "
10909 "derived type if the derived type has a pointer "
10910 "component at any level of component selection.",
10911 &rhs->where);
10912 return rval;
10913 }
10914
10915 /* Fortran 2008, C1283. */
10916 if (gfc_is_coindexed (lhs))
10917 {
10918 gfc_error ("Assignment to coindexed variable at %L in a PURE "
10919 "procedure", &rhs->where);
10920 return rval;
10921 }
10922 }
10923
10924 if (gfc_implicit_pure (NULL))
10925 {
10926 if (lhs->expr_type == EXPR_VARIABLE
10927 && lhs->symtree->n.sym != gfc_current_ns->proc_name
10928 && lhs->symtree->n.sym->ns != gfc_current_ns)
10929 gfc_unset_implicit_pure (NULL);
10930
10931 if (lhs->ts.type == BT_DERIVED
10932 && lhs->expr_type == EXPR_VARIABLE
10933 && lhs->ts.u.derived->attr.pointer_comp
10934 && rhs->expr_type == EXPR_VARIABLE
10935 && (gfc_impure_variable (rhs->symtree->n.sym)
10936 || gfc_is_coindexed (rhs)))
10937 gfc_unset_implicit_pure (NULL);
10938
10939 /* Fortran 2008, C1283. */
10940 if (gfc_is_coindexed (lhs))
10941 gfc_unset_implicit_pure (NULL);
10942 }
10943
10944 /* F2008, 7.2.1.2. */
10945 attr = gfc_expr_attr (lhs);
10946 if (lhs->ts.type == BT_CLASS && attr.allocatable)
10947 {
10948 if (attr.codimension)
10949 {
10950 gfc_error ("Assignment to polymorphic coarray at %L is not "
10951 "permitted", &lhs->where);
10952 return false;
10953 }
10954 if (!gfc_notify_std (GFC_STD_F2008, "Assignment to an allocatable "
10955 "polymorphic variable at %L", &lhs->where))
10956 return false;
10957 if (!flag_realloc_lhs)
10958 {
10959 gfc_error ("Assignment to an allocatable polymorphic variable at %L "
10960 "requires %<-frealloc-lhs%>", &lhs->where);
10961 return false;
10962 }
10963 }
10964 else if (lhs->ts.type == BT_CLASS)
10965 {
10966 gfc_error ("Nonallocatable variable must not be polymorphic in intrinsic "
10967 "assignment at %L - check that there is a matching specific "
10968 "subroutine for '=' operator", &lhs->where);
10969 return false;
10970 }
10971
10972 bool lhs_coindexed = gfc_is_coindexed (lhs);
10973
10974 /* F2008, Section 7.2.1.2. */
10975 if (lhs_coindexed && gfc_has_ultimate_allocatable (lhs))
10976 {
10977 gfc_error ("Coindexed variable must not have an allocatable ultimate "
10978 "component in assignment at %L", &lhs->where);
10979 return false;
10980 }
10981
10982 /* Assign the 'data' of a class object to a derived type. */
10983 if (lhs->ts.type == BT_DERIVED
10984 && rhs->ts.type == BT_CLASS
10985 && rhs->expr_type != EXPR_ARRAY)
10986 gfc_add_data_component (rhs);
10987
10988 /* Make sure there is a vtable and, in particular, a _copy for the
10989 rhs type. */
10990 if (UNLIMITED_POLY (lhs) && lhs->rank && rhs->ts.type != BT_CLASS)
10991 gfc_find_vtab (&rhs->ts);
10992
10993 bool caf_convert_to_send = flag_coarray == GFC_FCOARRAY_LIB
10994 && (lhs_coindexed
10995 || (code->expr2->expr_type == EXPR_FUNCTION
10996 && code->expr2->value.function.isym
10997 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET
10998 && (code->expr1->rank == 0 || code->expr2->rank != 0)
10999 && !gfc_expr_attr (rhs).allocatable
11000 && !gfc_has_vector_subscript (rhs)));
11001
11002 gfc_check_assign (lhs, rhs, 1, !caf_convert_to_send);
11003
11004 /* Insert a GFC_ISYM_CAF_SEND intrinsic, when the LHS is a coindexed variable.
11005 Additionally, insert this code when the RHS is a CAF as we then use the
11006 GFC_ISYM_CAF_SEND intrinsic just to avoid a temporary; but do not do so if
11007 the LHS is (re)allocatable or has a vector subscript. If the LHS is a
11008 noncoindexed array and the RHS is a coindexed scalar, use the normal code
11009 path. */
11010 if (caf_convert_to_send)
11011 {
11012 if (code->expr2->expr_type == EXPR_FUNCTION
11013 && code->expr2->value.function.isym
11014 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET)
11015 remove_caf_get_intrinsic (code->expr2);
11016 code->op = EXEC_CALL;
11017 gfc_get_sym_tree (GFC_PREFIX ("caf_send"), ns, &code->symtree, true);
11018 code->resolved_sym = code->symtree->n.sym;
11019 code->resolved_sym->attr.flavor = FL_PROCEDURE;
11020 code->resolved_sym->attr.intrinsic = 1;
11021 code->resolved_sym->attr.subroutine = 1;
11022 code->resolved_isym = gfc_intrinsic_subroutine_by_id (GFC_ISYM_CAF_SEND);
11023 gfc_commit_symbol (code->resolved_sym);
11024 code->ext.actual = gfc_get_actual_arglist ();
11025 code->ext.actual->expr = lhs;
11026 code->ext.actual->next = gfc_get_actual_arglist ();
11027 code->ext.actual->next->expr = rhs;
11028 code->expr1 = NULL;
11029 code->expr2 = NULL;
11030 }
11031
11032 return false;
11033 }
11034
11035
11036 /* Add a component reference onto an expression. */
11037
11038 static void
11039 add_comp_ref (gfc_expr *e, gfc_component *c)
11040 {
11041 gfc_ref **ref;
11042 ref = &(e->ref);
11043 while (*ref)
11044 ref = &((*ref)->next);
11045 *ref = gfc_get_ref ();
11046 (*ref)->type = REF_COMPONENT;
11047 (*ref)->u.c.sym = e->ts.u.derived;
11048 (*ref)->u.c.component = c;
11049 e->ts = c->ts;
11050
11051 /* Add a full array ref, as necessary. */
11052 if (c->as)
11053 {
11054 gfc_add_full_array_ref (e, c->as);
11055 e->rank = c->as->rank;
11056 }
11057 }
11058
11059
11060 /* Build an assignment. Keep the argument 'op' for future use, so that
11061 pointer assignments can be made. */
11062
11063 static gfc_code *
11064 build_assignment (gfc_exec_op op, gfc_expr *expr1, gfc_expr *expr2,
11065 gfc_component *comp1, gfc_component *comp2, locus loc)
11066 {
11067 gfc_code *this_code;
11068
11069 this_code = gfc_get_code (op);
11070 this_code->next = NULL;
11071 this_code->expr1 = gfc_copy_expr (expr1);
11072 this_code->expr2 = gfc_copy_expr (expr2);
11073 this_code->loc = loc;
11074 if (comp1 && comp2)
11075 {
11076 add_comp_ref (this_code->expr1, comp1);
11077 add_comp_ref (this_code->expr2, comp2);
11078 }
11079
11080 return this_code;
11081 }
11082
11083
11084 /* Makes a temporary variable expression based on the characteristics of
11085 a given variable expression. */
11086
11087 static gfc_expr*
11088 get_temp_from_expr (gfc_expr *e, gfc_namespace *ns)
11089 {
11090 static int serial = 0;
11091 char name[GFC_MAX_SYMBOL_LEN];
11092 gfc_symtree *tmp;
11093 gfc_array_spec *as;
11094 gfc_array_ref *aref;
11095 gfc_ref *ref;
11096
11097 sprintf (name, GFC_PREFIX("DA%d"), serial++);
11098 gfc_get_sym_tree (name, ns, &tmp, false);
11099 gfc_add_type (tmp->n.sym, &e->ts, NULL);
11100
11101 if (e->expr_type == EXPR_CONSTANT && e->ts.type == BT_CHARACTER)
11102 tmp->n.sym->ts.u.cl->length = gfc_get_int_expr (gfc_charlen_int_kind,
11103 NULL,
11104 e->value.character.length);
11105
11106 as = NULL;
11107 ref = NULL;
11108 aref = NULL;
11109
11110 /* Obtain the arrayspec for the temporary. */
11111 if (e->rank && e->expr_type != EXPR_ARRAY
11112 && e->expr_type != EXPR_FUNCTION
11113 && e->expr_type != EXPR_OP)
11114 {
11115 aref = gfc_find_array_ref (e);
11116 if (e->expr_type == EXPR_VARIABLE
11117 && e->symtree->n.sym->as == aref->as)
11118 as = aref->as;
11119 else
11120 {
11121 for (ref = e->ref; ref; ref = ref->next)
11122 if (ref->type == REF_COMPONENT
11123 && ref->u.c.component->as == aref->as)
11124 {
11125 as = aref->as;
11126 break;
11127 }
11128 }
11129 }
11130
11131 /* Add the attributes and the arrayspec to the temporary. */
11132 tmp->n.sym->attr = gfc_expr_attr (e);
11133 tmp->n.sym->attr.function = 0;
11134 tmp->n.sym->attr.result = 0;
11135 tmp->n.sym->attr.flavor = FL_VARIABLE;
11136 tmp->n.sym->attr.dummy = 0;
11137 tmp->n.sym->attr.intent = INTENT_UNKNOWN;
11138
11139 if (as)
11140 {
11141 tmp->n.sym->as = gfc_copy_array_spec (as);
11142 if (!ref)
11143 ref = e->ref;
11144 if (as->type == AS_DEFERRED)
11145 tmp->n.sym->attr.allocatable = 1;
11146 }
11147 else if (e->rank && (e->expr_type == EXPR_ARRAY
11148 || e->expr_type == EXPR_FUNCTION
11149 || e->expr_type == EXPR_OP))
11150 {
11151 tmp->n.sym->as = gfc_get_array_spec ();
11152 tmp->n.sym->as->type = AS_DEFERRED;
11153 tmp->n.sym->as->rank = e->rank;
11154 tmp->n.sym->attr.allocatable = 1;
11155 tmp->n.sym->attr.dimension = 1;
11156 }
11157 else
11158 tmp->n.sym->attr.dimension = 0;
11159
11160 gfc_set_sym_referenced (tmp->n.sym);
11161 gfc_commit_symbol (tmp->n.sym);
11162 e = gfc_lval_expr_from_sym (tmp->n.sym);
11163
11164 /* Should the lhs be a section, use its array ref for the
11165 temporary expression. */
11166 if (aref && aref->type != AR_FULL)
11167 {
11168 gfc_free_ref_list (e->ref);
11169 e->ref = gfc_copy_ref (ref);
11170 }
11171 return e;
11172 }
11173
11174
11175 /* Add one line of code to the code chain, making sure that 'head' and
11176 'tail' are appropriately updated. */
11177
11178 static void
11179 add_code_to_chain (gfc_code **this_code, gfc_code **head, gfc_code **tail)
11180 {
11181 gcc_assert (this_code);
11182 if (*head == NULL)
11183 *head = *tail = *this_code;
11184 else
11185 *tail = gfc_append_code (*tail, *this_code);
11186 *this_code = NULL;
11187 }
11188
11189
11190 /* Counts the potential number of part array references that would
11191 result from resolution of typebound defined assignments. */
11192
11193 static int
11194 nonscalar_typebound_assign (gfc_symbol *derived, int depth)
11195 {
11196 gfc_component *c;
11197 int c_depth = 0, t_depth;
11198
11199 for (c= derived->components; c; c = c->next)
11200 {
11201 if ((!gfc_bt_struct (c->ts.type)
11202 || c->attr.pointer
11203 || c->attr.allocatable
11204 || c->attr.proc_pointer_comp
11205 || c->attr.class_pointer
11206 || c->attr.proc_pointer)
11207 && !c->attr.defined_assign_comp)
11208 continue;
11209
11210 if (c->as && c_depth == 0)
11211 c_depth = 1;
11212
11213 if (c->ts.u.derived->attr.defined_assign_comp)
11214 t_depth = nonscalar_typebound_assign (c->ts.u.derived,
11215 c->as ? 1 : 0);
11216 else
11217 t_depth = 0;
11218
11219 c_depth = t_depth > c_depth ? t_depth : c_depth;
11220 }
11221 return depth + c_depth;
11222 }
11223
11224
11225 /* Implement 7.2.1.3 of the F08 standard:
11226 "An intrinsic assignment where the variable is of derived type is
11227 performed as if each component of the variable were assigned from the
11228 corresponding component of expr using pointer assignment (7.2.2) for
11229 each pointer component, defined assignment for each nonpointer
11230 nonallocatable component of a type that has a type-bound defined
11231 assignment consistent with the component, intrinsic assignment for
11232 each other nonpointer nonallocatable component, ..."
11233
11234 The pointer assignments are taken care of by the intrinsic
11235 assignment of the structure itself. This function recursively adds
11236 defined assignments where required. The recursion is accomplished
11237 by calling gfc_resolve_code.
11238
11239 When the lhs in a defined assignment has intent INOUT, we need a
11240 temporary for the lhs. In pseudo-code:
11241
11242 ! Only call function lhs once.
11243 if (lhs is not a constant or an variable)
11244 temp_x = expr2
11245 expr2 => temp_x
11246 ! Do the intrinsic assignment
11247 expr1 = expr2
11248 ! Now do the defined assignments
11249 do over components with typebound defined assignment [%cmp]
11250 #if one component's assignment procedure is INOUT
11251 t1 = expr1
11252 #if expr2 non-variable
11253 temp_x = expr2
11254 expr2 => temp_x
11255 # endif
11256 expr1 = expr2
11257 # for each cmp
11258 t1%cmp {defined=} expr2%cmp
11259 expr1%cmp = t1%cmp
11260 #else
11261 expr1 = expr2
11262
11263 # for each cmp
11264 expr1%cmp {defined=} expr2%cmp
11265 #endif
11266 */
11267
11268 /* The temporary assignments have to be put on top of the additional
11269 code to avoid the result being changed by the intrinsic assignment.
11270 */
11271 static int component_assignment_level = 0;
11272 static gfc_code *tmp_head = NULL, *tmp_tail = NULL;
11273
11274 static void
11275 generate_component_assignments (gfc_code **code, gfc_namespace *ns)
11276 {
11277 gfc_component *comp1, *comp2;
11278 gfc_code *this_code = NULL, *head = NULL, *tail = NULL;
11279 gfc_expr *t1;
11280 int error_count, depth;
11281
11282 gfc_get_errors (NULL, &error_count);
11283
11284 /* Filter out continuing processing after an error. */
11285 if (error_count
11286 || (*code)->expr1->ts.type != BT_DERIVED
11287 || (*code)->expr2->ts.type != BT_DERIVED)
11288 return;
11289
11290 /* TODO: Handle more than one part array reference in assignments. */
11291 depth = nonscalar_typebound_assign ((*code)->expr1->ts.u.derived,
11292 (*code)->expr1->rank ? 1 : 0);
11293 if (depth > 1)
11294 {
11295 gfc_warning (0, "TODO: type-bound defined assignment(s) at %L not "
11296 "done because multiple part array references would "
11297 "occur in intermediate expressions.", &(*code)->loc);
11298 return;
11299 }
11300
11301 component_assignment_level++;
11302
11303 /* Create a temporary so that functions get called only once. */
11304 if ((*code)->expr2->expr_type != EXPR_VARIABLE
11305 && (*code)->expr2->expr_type != EXPR_CONSTANT)
11306 {
11307 gfc_expr *tmp_expr;
11308
11309 /* Assign the rhs to the temporary. */
11310 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
11311 this_code = build_assignment (EXEC_ASSIGN,
11312 tmp_expr, (*code)->expr2,
11313 NULL, NULL, (*code)->loc);
11314 /* Add the code and substitute the rhs expression. */
11315 add_code_to_chain (&this_code, &tmp_head, &tmp_tail);
11316 gfc_free_expr ((*code)->expr2);
11317 (*code)->expr2 = tmp_expr;
11318 }
11319
11320 /* Do the intrinsic assignment. This is not needed if the lhs is one
11321 of the temporaries generated here, since the intrinsic assignment
11322 to the final result already does this. */
11323 if ((*code)->expr1->symtree->n.sym->name[2] != '@')
11324 {
11325 this_code = build_assignment (EXEC_ASSIGN,
11326 (*code)->expr1, (*code)->expr2,
11327 NULL, NULL, (*code)->loc);
11328 add_code_to_chain (&this_code, &head, &tail);
11329 }
11330
11331 comp1 = (*code)->expr1->ts.u.derived->components;
11332 comp2 = (*code)->expr2->ts.u.derived->components;
11333
11334 t1 = NULL;
11335 for (; comp1; comp1 = comp1->next, comp2 = comp2->next)
11336 {
11337 bool inout = false;
11338
11339 /* The intrinsic assignment does the right thing for pointers
11340 of all kinds and allocatable components. */
11341 if (!gfc_bt_struct (comp1->ts.type)
11342 || comp1->attr.pointer
11343 || comp1->attr.allocatable
11344 || comp1->attr.proc_pointer_comp
11345 || comp1->attr.class_pointer
11346 || comp1->attr.proc_pointer)
11347 continue;
11348
11349 /* Make an assigment for this component. */
11350 this_code = build_assignment (EXEC_ASSIGN,
11351 (*code)->expr1, (*code)->expr2,
11352 comp1, comp2, (*code)->loc);
11353
11354 /* Convert the assignment if there is a defined assignment for
11355 this type. Otherwise, using the call from gfc_resolve_code,
11356 recurse into its components. */
11357 gfc_resolve_code (this_code, ns);
11358
11359 if (this_code->op == EXEC_ASSIGN_CALL)
11360 {
11361 gfc_formal_arglist *dummy_args;
11362 gfc_symbol *rsym;
11363 /* Check that there is a typebound defined assignment. If not,
11364 then this must be a module defined assignment. We cannot
11365 use the defined_assign_comp attribute here because it must
11366 be this derived type that has the defined assignment and not
11367 a parent type. */
11368 if (!(comp1->ts.u.derived->f2k_derived
11369 && comp1->ts.u.derived->f2k_derived
11370 ->tb_op[INTRINSIC_ASSIGN]))
11371 {
11372 gfc_free_statements (this_code);
11373 this_code = NULL;
11374 continue;
11375 }
11376
11377 /* If the first argument of the subroutine has intent INOUT
11378 a temporary must be generated and used instead. */
11379 rsym = this_code->resolved_sym;
11380 dummy_args = gfc_sym_get_dummy_args (rsym);
11381 if (dummy_args
11382 && dummy_args->sym->attr.intent == INTENT_INOUT)
11383 {
11384 gfc_code *temp_code;
11385 inout = true;
11386
11387 /* Build the temporary required for the assignment and put
11388 it at the head of the generated code. */
11389 if (!t1)
11390 {
11391 t1 = get_temp_from_expr ((*code)->expr1, ns);
11392 temp_code = build_assignment (EXEC_ASSIGN,
11393 t1, (*code)->expr1,
11394 NULL, NULL, (*code)->loc);
11395
11396 /* For allocatable LHS, check whether it is allocated. Note
11397 that allocatable components with defined assignment are
11398 not yet support. See PR 57696. */
11399 if ((*code)->expr1->symtree->n.sym->attr.allocatable)
11400 {
11401 gfc_code *block;
11402 gfc_expr *e =
11403 gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
11404 block = gfc_get_code (EXEC_IF);
11405 block->block = gfc_get_code (EXEC_IF);
11406 block->block->expr1
11407 = gfc_build_intrinsic_call (ns,
11408 GFC_ISYM_ALLOCATED, "allocated",
11409 (*code)->loc, 1, e);
11410 block->block->next = temp_code;
11411 temp_code = block;
11412 }
11413 add_code_to_chain (&temp_code, &tmp_head, &tmp_tail);
11414 }
11415
11416 /* Replace the first actual arg with the component of the
11417 temporary. */
11418 gfc_free_expr (this_code->ext.actual->expr);
11419 this_code->ext.actual->expr = gfc_copy_expr (t1);
11420 add_comp_ref (this_code->ext.actual->expr, comp1);
11421
11422 /* If the LHS variable is allocatable and wasn't allocated and
11423 the temporary is allocatable, pointer assign the address of
11424 the freshly allocated LHS to the temporary. */
11425 if ((*code)->expr1->symtree->n.sym->attr.allocatable
11426 && gfc_expr_attr ((*code)->expr1).allocatable)
11427 {
11428 gfc_code *block;
11429 gfc_expr *cond;
11430
11431 cond = gfc_get_expr ();
11432 cond->ts.type = BT_LOGICAL;
11433 cond->ts.kind = gfc_default_logical_kind;
11434 cond->expr_type = EXPR_OP;
11435 cond->where = (*code)->loc;
11436 cond->value.op.op = INTRINSIC_NOT;
11437 cond->value.op.op1 = gfc_build_intrinsic_call (ns,
11438 GFC_ISYM_ALLOCATED, "allocated",
11439 (*code)->loc, 1, gfc_copy_expr (t1));
11440 block = gfc_get_code (EXEC_IF);
11441 block->block = gfc_get_code (EXEC_IF);
11442 block->block->expr1 = cond;
11443 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
11444 t1, (*code)->expr1,
11445 NULL, NULL, (*code)->loc);
11446 add_code_to_chain (&block, &head, &tail);
11447 }
11448 }
11449 }
11450 else if (this_code->op == EXEC_ASSIGN && !this_code->next)
11451 {
11452 /* Don't add intrinsic assignments since they are already
11453 effected by the intrinsic assignment of the structure. */
11454 gfc_free_statements (this_code);
11455 this_code = NULL;
11456 continue;
11457 }
11458
11459 add_code_to_chain (&this_code, &head, &tail);
11460
11461 if (t1 && inout)
11462 {
11463 /* Transfer the value to the final result. */
11464 this_code = build_assignment (EXEC_ASSIGN,
11465 (*code)->expr1, t1,
11466 comp1, comp2, (*code)->loc);
11467 add_code_to_chain (&this_code, &head, &tail);
11468 }
11469 }
11470
11471 /* Put the temporary assignments at the top of the generated code. */
11472 if (tmp_head && component_assignment_level == 1)
11473 {
11474 gfc_append_code (tmp_head, head);
11475 head = tmp_head;
11476 tmp_head = tmp_tail = NULL;
11477 }
11478
11479 // If we did a pointer assignment - thus, we need to ensure that the LHS is
11480 // not accidentally deallocated. Hence, nullify t1.
11481 if (t1 && (*code)->expr1->symtree->n.sym->attr.allocatable
11482 && gfc_expr_attr ((*code)->expr1).allocatable)
11483 {
11484 gfc_code *block;
11485 gfc_expr *cond;
11486 gfc_expr *e;
11487
11488 e = gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
11489 cond = gfc_build_intrinsic_call (ns, GFC_ISYM_ASSOCIATED, "associated",
11490 (*code)->loc, 2, gfc_copy_expr (t1), e);
11491 block = gfc_get_code (EXEC_IF);
11492 block->block = gfc_get_code (EXEC_IF);
11493 block->block->expr1 = cond;
11494 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
11495 t1, gfc_get_null_expr (&(*code)->loc),
11496 NULL, NULL, (*code)->loc);
11497 gfc_append_code (tail, block);
11498 tail = block;
11499 }
11500
11501 /* Now attach the remaining code chain to the input code. Step on
11502 to the end of the new code since resolution is complete. */
11503 gcc_assert ((*code)->op == EXEC_ASSIGN);
11504 tail->next = (*code)->next;
11505 /* Overwrite 'code' because this would place the intrinsic assignment
11506 before the temporary for the lhs is created. */
11507 gfc_free_expr ((*code)->expr1);
11508 gfc_free_expr ((*code)->expr2);
11509 **code = *head;
11510 if (head != tail)
11511 free (head);
11512 *code = tail;
11513
11514 component_assignment_level--;
11515 }
11516
11517
11518 /* F2008: Pointer function assignments are of the form:
11519 ptr_fcn (args) = expr
11520 This function breaks these assignments into two statements:
11521 temporary_pointer => ptr_fcn(args)
11522 temporary_pointer = expr */
11523
11524 static bool
11525 resolve_ptr_fcn_assign (gfc_code **code, gfc_namespace *ns)
11526 {
11527 gfc_expr *tmp_ptr_expr;
11528 gfc_code *this_code;
11529 gfc_component *comp;
11530 gfc_symbol *s;
11531
11532 if ((*code)->expr1->expr_type != EXPR_FUNCTION)
11533 return false;
11534
11535 /* Even if standard does not support this feature, continue to build
11536 the two statements to avoid upsetting frontend_passes.c. */
11537 gfc_notify_std (GFC_STD_F2008, "Pointer procedure assignment at "
11538 "%L", &(*code)->loc);
11539
11540 comp = gfc_get_proc_ptr_comp ((*code)->expr1);
11541
11542 if (comp)
11543 s = comp->ts.interface;
11544 else
11545 s = (*code)->expr1->symtree->n.sym;
11546
11547 if (s == NULL || !s->result->attr.pointer)
11548 {
11549 gfc_error ("The function result on the lhs of the assignment at "
11550 "%L must have the pointer attribute.",
11551 &(*code)->expr1->where);
11552 (*code)->op = EXEC_NOP;
11553 return false;
11554 }
11555
11556 tmp_ptr_expr = get_temp_from_expr ((*code)->expr2, ns);
11557
11558 /* get_temp_from_expression is set up for ordinary assignments. To that
11559 end, where array bounds are not known, arrays are made allocatable.
11560 Change the temporary to a pointer here. */
11561 tmp_ptr_expr->symtree->n.sym->attr.pointer = 1;
11562 tmp_ptr_expr->symtree->n.sym->attr.allocatable = 0;
11563 tmp_ptr_expr->where = (*code)->loc;
11564
11565 this_code = build_assignment (EXEC_ASSIGN,
11566 tmp_ptr_expr, (*code)->expr2,
11567 NULL, NULL, (*code)->loc);
11568 this_code->next = (*code)->next;
11569 (*code)->next = this_code;
11570 (*code)->op = EXEC_POINTER_ASSIGN;
11571 (*code)->expr2 = (*code)->expr1;
11572 (*code)->expr1 = tmp_ptr_expr;
11573
11574 return true;
11575 }
11576
11577
11578 /* Deferred character length assignments from an operator expression
11579 require a temporary because the character length of the lhs can
11580 change in the course of the assignment. */
11581
11582 static bool
11583 deferred_op_assign (gfc_code **code, gfc_namespace *ns)
11584 {
11585 gfc_expr *tmp_expr;
11586 gfc_code *this_code;
11587
11588 if (!((*code)->expr1->ts.type == BT_CHARACTER
11589 && (*code)->expr1->ts.deferred && (*code)->expr1->rank
11590 && (*code)->expr2->expr_type == EXPR_OP))
11591 return false;
11592
11593 if (!gfc_check_dependency ((*code)->expr1, (*code)->expr2, 1))
11594 return false;
11595
11596 if (gfc_expr_attr ((*code)->expr1).pointer)
11597 return false;
11598
11599 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
11600 tmp_expr->where = (*code)->loc;
11601
11602 /* A new charlen is required to ensure that the variable string
11603 length is different to that of the original lhs. */
11604 tmp_expr->ts.u.cl = gfc_get_charlen();
11605 tmp_expr->symtree->n.sym->ts.u.cl = tmp_expr->ts.u.cl;
11606 tmp_expr->ts.u.cl->next = (*code)->expr2->ts.u.cl->next;
11607 (*code)->expr2->ts.u.cl->next = tmp_expr->ts.u.cl;
11608
11609 tmp_expr->symtree->n.sym->ts.deferred = 1;
11610
11611 this_code = build_assignment (EXEC_ASSIGN,
11612 (*code)->expr1,
11613 gfc_copy_expr (tmp_expr),
11614 NULL, NULL, (*code)->loc);
11615
11616 (*code)->expr1 = tmp_expr;
11617
11618 this_code->next = (*code)->next;
11619 (*code)->next = this_code;
11620
11621 return true;
11622 }
11623
11624
11625 /* Given a block of code, recursively resolve everything pointed to by this
11626 code block. */
11627
11628 void
11629 gfc_resolve_code (gfc_code *code, gfc_namespace *ns)
11630 {
11631 int omp_workshare_save;
11632 int forall_save, do_concurrent_save;
11633 code_stack frame;
11634 bool t;
11635
11636 frame.prev = cs_base;
11637 frame.head = code;
11638 cs_base = &frame;
11639
11640 find_reachable_labels (code);
11641
11642 for (; code; code = code->next)
11643 {
11644 frame.current = code;
11645 forall_save = forall_flag;
11646 do_concurrent_save = gfc_do_concurrent_flag;
11647
11648 if (code->op == EXEC_FORALL)
11649 {
11650 forall_flag = 1;
11651 gfc_resolve_forall (code, ns, forall_save);
11652 forall_flag = 2;
11653 }
11654 else if (code->block)
11655 {
11656 omp_workshare_save = -1;
11657 switch (code->op)
11658 {
11659 case EXEC_OACC_PARALLEL_LOOP:
11660 case EXEC_OACC_PARALLEL:
11661 case EXEC_OACC_KERNELS_LOOP:
11662 case EXEC_OACC_KERNELS:
11663 case EXEC_OACC_SERIAL_LOOP:
11664 case EXEC_OACC_SERIAL:
11665 case EXEC_OACC_DATA:
11666 case EXEC_OACC_HOST_DATA:
11667 case EXEC_OACC_LOOP:
11668 gfc_resolve_oacc_blocks (code, ns);
11669 break;
11670 case EXEC_OMP_PARALLEL_WORKSHARE:
11671 omp_workshare_save = omp_workshare_flag;
11672 omp_workshare_flag = 1;
11673 gfc_resolve_omp_parallel_blocks (code, ns);
11674 break;
11675 case EXEC_OMP_PARALLEL:
11676 case EXEC_OMP_PARALLEL_DO:
11677 case EXEC_OMP_PARALLEL_DO_SIMD:
11678 case EXEC_OMP_PARALLEL_SECTIONS:
11679 case EXEC_OMP_TARGET_PARALLEL:
11680 case EXEC_OMP_TARGET_PARALLEL_DO:
11681 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11682 case EXEC_OMP_TARGET_TEAMS:
11683 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11684 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11685 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11686 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11687 case EXEC_OMP_TASK:
11688 case EXEC_OMP_TASKLOOP:
11689 case EXEC_OMP_TASKLOOP_SIMD:
11690 case EXEC_OMP_TEAMS:
11691 case EXEC_OMP_TEAMS_DISTRIBUTE:
11692 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11693 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11694 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11695 omp_workshare_save = omp_workshare_flag;
11696 omp_workshare_flag = 0;
11697 gfc_resolve_omp_parallel_blocks (code, ns);
11698 break;
11699 case EXEC_OMP_DISTRIBUTE:
11700 case EXEC_OMP_DISTRIBUTE_SIMD:
11701 case EXEC_OMP_DO:
11702 case EXEC_OMP_DO_SIMD:
11703 case EXEC_OMP_SIMD:
11704 case EXEC_OMP_TARGET_SIMD:
11705 gfc_resolve_omp_do_blocks (code, ns);
11706 break;
11707 case EXEC_SELECT_TYPE:
11708 /* Blocks are handled in resolve_select_type because we have
11709 to transform the SELECT TYPE into ASSOCIATE first. */
11710 break;
11711 case EXEC_DO_CONCURRENT:
11712 gfc_do_concurrent_flag = 1;
11713 gfc_resolve_blocks (code->block, ns);
11714 gfc_do_concurrent_flag = 2;
11715 break;
11716 case EXEC_OMP_WORKSHARE:
11717 omp_workshare_save = omp_workshare_flag;
11718 omp_workshare_flag = 1;
11719 /* FALL THROUGH */
11720 default:
11721 gfc_resolve_blocks (code->block, ns);
11722 break;
11723 }
11724
11725 if (omp_workshare_save != -1)
11726 omp_workshare_flag = omp_workshare_save;
11727 }
11728 start:
11729 t = true;
11730 if (code->op != EXEC_COMPCALL && code->op != EXEC_CALL_PPC)
11731 t = gfc_resolve_expr (code->expr1);
11732 forall_flag = forall_save;
11733 gfc_do_concurrent_flag = do_concurrent_save;
11734
11735 if (!gfc_resolve_expr (code->expr2))
11736 t = false;
11737
11738 if (code->op == EXEC_ALLOCATE
11739 && !gfc_resolve_expr (code->expr3))
11740 t = false;
11741
11742 switch (code->op)
11743 {
11744 case EXEC_NOP:
11745 case EXEC_END_BLOCK:
11746 case EXEC_END_NESTED_BLOCK:
11747 case EXEC_CYCLE:
11748 case EXEC_PAUSE:
11749 case EXEC_STOP:
11750 case EXEC_ERROR_STOP:
11751 case EXEC_EXIT:
11752 case EXEC_CONTINUE:
11753 case EXEC_DT_END:
11754 case EXEC_ASSIGN_CALL:
11755 break;
11756
11757 case EXEC_CRITICAL:
11758 resolve_critical (code);
11759 break;
11760
11761 case EXEC_SYNC_ALL:
11762 case EXEC_SYNC_IMAGES:
11763 case EXEC_SYNC_MEMORY:
11764 resolve_sync (code);
11765 break;
11766
11767 case EXEC_LOCK:
11768 case EXEC_UNLOCK:
11769 case EXEC_EVENT_POST:
11770 case EXEC_EVENT_WAIT:
11771 resolve_lock_unlock_event (code);
11772 break;
11773
11774 case EXEC_FAIL_IMAGE:
11775 case EXEC_FORM_TEAM:
11776 case EXEC_CHANGE_TEAM:
11777 case EXEC_END_TEAM:
11778 case EXEC_SYNC_TEAM:
11779 break;
11780
11781 case EXEC_ENTRY:
11782 /* Keep track of which entry we are up to. */
11783 current_entry_id = code->ext.entry->id;
11784 break;
11785
11786 case EXEC_WHERE:
11787 resolve_where (code, NULL);
11788 break;
11789
11790 case EXEC_GOTO:
11791 if (code->expr1 != NULL)
11792 {
11793 if (code->expr1->ts.type != BT_INTEGER)
11794 gfc_error ("ASSIGNED GOTO statement at %L requires an "
11795 "INTEGER variable", &code->expr1->where);
11796 else if (code->expr1->symtree->n.sym->attr.assign != 1)
11797 gfc_error ("Variable %qs has not been assigned a target "
11798 "label at %L", code->expr1->symtree->n.sym->name,
11799 &code->expr1->where);
11800 }
11801 else
11802 resolve_branch (code->label1, code);
11803 break;
11804
11805 case EXEC_RETURN:
11806 if (code->expr1 != NULL
11807 && (code->expr1->ts.type != BT_INTEGER || code->expr1->rank))
11808 gfc_error ("Alternate RETURN statement at %L requires a SCALAR-"
11809 "INTEGER return specifier", &code->expr1->where);
11810 break;
11811
11812 case EXEC_INIT_ASSIGN:
11813 case EXEC_END_PROCEDURE:
11814 break;
11815
11816 case EXEC_ASSIGN:
11817 if (!t)
11818 break;
11819
11820 /* Remove a GFC_ISYM_CAF_GET inserted for a coindexed variable on
11821 the LHS. */
11822 if (code->expr1->expr_type == EXPR_FUNCTION
11823 && code->expr1->value.function.isym
11824 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
11825 remove_caf_get_intrinsic (code->expr1);
11826
11827 /* If this is a pointer function in an lvalue variable context,
11828 the new code will have to be resolved afresh. This is also the
11829 case with an error, where the code is transformed into NOP to
11830 prevent ICEs downstream. */
11831 if (resolve_ptr_fcn_assign (&code, ns)
11832 || code->op == EXEC_NOP)
11833 goto start;
11834
11835 if (!gfc_check_vardef_context (code->expr1, false, false, false,
11836 _("assignment")))
11837 break;
11838
11839 if (resolve_ordinary_assign (code, ns))
11840 {
11841 if (code->op == EXEC_COMPCALL)
11842 goto compcall;
11843 else
11844 goto call;
11845 }
11846
11847 /* Check for dependencies in deferred character length array
11848 assignments and generate a temporary, if necessary. */
11849 if (code->op == EXEC_ASSIGN && deferred_op_assign (&code, ns))
11850 break;
11851
11852 /* F03 7.4.1.3 for non-allocatable, non-pointer components. */
11853 if (code->op != EXEC_CALL && code->expr1->ts.type == BT_DERIVED
11854 && code->expr1->ts.u.derived
11855 && code->expr1->ts.u.derived->attr.defined_assign_comp)
11856 generate_component_assignments (&code, ns);
11857
11858 break;
11859
11860 case EXEC_LABEL_ASSIGN:
11861 if (code->label1->defined == ST_LABEL_UNKNOWN)
11862 gfc_error ("Label %d referenced at %L is never defined",
11863 code->label1->value, &code->label1->where);
11864 if (t
11865 && (code->expr1->expr_type != EXPR_VARIABLE
11866 || code->expr1->symtree->n.sym->ts.type != BT_INTEGER
11867 || code->expr1->symtree->n.sym->ts.kind
11868 != gfc_default_integer_kind
11869 || code->expr1->symtree->n.sym->as != NULL))
11870 gfc_error ("ASSIGN statement at %L requires a scalar "
11871 "default INTEGER variable", &code->expr1->where);
11872 break;
11873
11874 case EXEC_POINTER_ASSIGN:
11875 {
11876 gfc_expr* e;
11877
11878 if (!t)
11879 break;
11880
11881 /* This is both a variable definition and pointer assignment
11882 context, so check both of them. For rank remapping, a final
11883 array ref may be present on the LHS and fool gfc_expr_attr
11884 used in gfc_check_vardef_context. Remove it. */
11885 e = remove_last_array_ref (code->expr1);
11886 t = gfc_check_vardef_context (e, true, false, false,
11887 _("pointer assignment"));
11888 if (t)
11889 t = gfc_check_vardef_context (e, false, false, false,
11890 _("pointer assignment"));
11891 gfc_free_expr (e);
11892
11893 t = gfc_check_pointer_assign (code->expr1, code->expr2, !t) && t;
11894
11895 if (!t)
11896 break;
11897
11898 /* Assigning a class object always is a regular assign. */
11899 if (code->expr2->ts.type == BT_CLASS
11900 && code->expr1->ts.type == BT_CLASS
11901 && !CLASS_DATA (code->expr2)->attr.dimension
11902 && !(gfc_expr_attr (code->expr1).proc_pointer
11903 && code->expr2->expr_type == EXPR_VARIABLE
11904 && code->expr2->symtree->n.sym->attr.flavor
11905 == FL_PROCEDURE))
11906 code->op = EXEC_ASSIGN;
11907 break;
11908 }
11909
11910 case EXEC_ARITHMETIC_IF:
11911 {
11912 gfc_expr *e = code->expr1;
11913
11914 gfc_resolve_expr (e);
11915 if (e->expr_type == EXPR_NULL)
11916 gfc_error ("Invalid NULL at %L", &e->where);
11917
11918 if (t && (e->rank > 0
11919 || !(e->ts.type == BT_REAL || e->ts.type == BT_INTEGER)))
11920 gfc_error ("Arithmetic IF statement at %L requires a scalar "
11921 "REAL or INTEGER expression", &e->where);
11922
11923 resolve_branch (code->label1, code);
11924 resolve_branch (code->label2, code);
11925 resolve_branch (code->label3, code);
11926 }
11927 break;
11928
11929 case EXEC_IF:
11930 if (t && code->expr1 != NULL
11931 && (code->expr1->ts.type != BT_LOGICAL
11932 || code->expr1->rank != 0))
11933 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
11934 &code->expr1->where);
11935 break;
11936
11937 case EXEC_CALL:
11938 call:
11939 resolve_call (code);
11940 break;
11941
11942 case EXEC_COMPCALL:
11943 compcall:
11944 resolve_typebound_subroutine (code);
11945 break;
11946
11947 case EXEC_CALL_PPC:
11948 resolve_ppc_call (code);
11949 break;
11950
11951 case EXEC_SELECT:
11952 /* Select is complicated. Also, a SELECT construct could be
11953 a transformed computed GOTO. */
11954 resolve_select (code, false);
11955 break;
11956
11957 case EXEC_SELECT_TYPE:
11958 resolve_select_type (code, ns);
11959 break;
11960
11961 case EXEC_SELECT_RANK:
11962 resolve_select_rank (code, ns);
11963 break;
11964
11965 case EXEC_BLOCK:
11966 resolve_block_construct (code);
11967 break;
11968
11969 case EXEC_DO:
11970 if (code->ext.iterator != NULL)
11971 {
11972 gfc_iterator *iter = code->ext.iterator;
11973 if (gfc_resolve_iterator (iter, true, false))
11974 gfc_resolve_do_iterator (code, iter->var->symtree->n.sym,
11975 true);
11976 }
11977 break;
11978
11979 case EXEC_DO_WHILE:
11980 if (code->expr1 == NULL)
11981 gfc_internal_error ("gfc_resolve_code(): No expression on "
11982 "DO WHILE");
11983 if (t
11984 && (code->expr1->rank != 0
11985 || code->expr1->ts.type != BT_LOGICAL))
11986 gfc_error ("Exit condition of DO WHILE loop at %L must be "
11987 "a scalar LOGICAL expression", &code->expr1->where);
11988 break;
11989
11990 case EXEC_ALLOCATE:
11991 if (t)
11992 resolve_allocate_deallocate (code, "ALLOCATE");
11993
11994 break;
11995
11996 case EXEC_DEALLOCATE:
11997 if (t)
11998 resolve_allocate_deallocate (code, "DEALLOCATE");
11999
12000 break;
12001
12002 case EXEC_OPEN:
12003 if (!gfc_resolve_open (code->ext.open, &code->loc))
12004 break;
12005
12006 resolve_branch (code->ext.open->err, code);
12007 break;
12008
12009 case EXEC_CLOSE:
12010 if (!gfc_resolve_close (code->ext.close, &code->loc))
12011 break;
12012
12013 resolve_branch (code->ext.close->err, code);
12014 break;
12015
12016 case EXEC_BACKSPACE:
12017 case EXEC_ENDFILE:
12018 case EXEC_REWIND:
12019 case EXEC_FLUSH:
12020 if (!gfc_resolve_filepos (code->ext.filepos, &code->loc))
12021 break;
12022
12023 resolve_branch (code->ext.filepos->err, code);
12024 break;
12025
12026 case EXEC_INQUIRE:
12027 if (!gfc_resolve_inquire (code->ext.inquire))
12028 break;
12029
12030 resolve_branch (code->ext.inquire->err, code);
12031 break;
12032
12033 case EXEC_IOLENGTH:
12034 gcc_assert (code->ext.inquire != NULL);
12035 if (!gfc_resolve_inquire (code->ext.inquire))
12036 break;
12037
12038 resolve_branch (code->ext.inquire->err, code);
12039 break;
12040
12041 case EXEC_WAIT:
12042 if (!gfc_resolve_wait (code->ext.wait))
12043 break;
12044
12045 resolve_branch (code->ext.wait->err, code);
12046 resolve_branch (code->ext.wait->end, code);
12047 resolve_branch (code->ext.wait->eor, code);
12048 break;
12049
12050 case EXEC_READ:
12051 case EXEC_WRITE:
12052 if (!gfc_resolve_dt (code, code->ext.dt, &code->loc))
12053 break;
12054
12055 resolve_branch (code->ext.dt->err, code);
12056 resolve_branch (code->ext.dt->end, code);
12057 resolve_branch (code->ext.dt->eor, code);
12058 break;
12059
12060 case EXEC_TRANSFER:
12061 resolve_transfer (code);
12062 break;
12063
12064 case EXEC_DO_CONCURRENT:
12065 case EXEC_FORALL:
12066 resolve_forall_iterators (code->ext.forall_iterator);
12067
12068 if (code->expr1 != NULL
12069 && (code->expr1->ts.type != BT_LOGICAL || code->expr1->rank))
12070 gfc_error ("FORALL mask clause at %L requires a scalar LOGICAL "
12071 "expression", &code->expr1->where);
12072 break;
12073
12074 case EXEC_OACC_PARALLEL_LOOP:
12075 case EXEC_OACC_PARALLEL:
12076 case EXEC_OACC_KERNELS_LOOP:
12077 case EXEC_OACC_KERNELS:
12078 case EXEC_OACC_SERIAL_LOOP:
12079 case EXEC_OACC_SERIAL:
12080 case EXEC_OACC_DATA:
12081 case EXEC_OACC_HOST_DATA:
12082 case EXEC_OACC_LOOP:
12083 case EXEC_OACC_UPDATE:
12084 case EXEC_OACC_WAIT:
12085 case EXEC_OACC_CACHE:
12086 case EXEC_OACC_ENTER_DATA:
12087 case EXEC_OACC_EXIT_DATA:
12088 case EXEC_OACC_ATOMIC:
12089 case EXEC_OACC_DECLARE:
12090 gfc_resolve_oacc_directive (code, ns);
12091 break;
12092
12093 case EXEC_OMP_ATOMIC:
12094 case EXEC_OMP_BARRIER:
12095 case EXEC_OMP_CANCEL:
12096 case EXEC_OMP_CANCELLATION_POINT:
12097 case EXEC_OMP_CRITICAL:
12098 case EXEC_OMP_FLUSH:
12099 case EXEC_OMP_DISTRIBUTE:
12100 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
12101 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
12102 case EXEC_OMP_DISTRIBUTE_SIMD:
12103 case EXEC_OMP_DO:
12104 case EXEC_OMP_DO_SIMD:
12105 case EXEC_OMP_MASTER:
12106 case EXEC_OMP_ORDERED:
12107 case EXEC_OMP_SECTIONS:
12108 case EXEC_OMP_SIMD:
12109 case EXEC_OMP_SINGLE:
12110 case EXEC_OMP_TARGET:
12111 case EXEC_OMP_TARGET_DATA:
12112 case EXEC_OMP_TARGET_ENTER_DATA:
12113 case EXEC_OMP_TARGET_EXIT_DATA:
12114 case EXEC_OMP_TARGET_PARALLEL:
12115 case EXEC_OMP_TARGET_PARALLEL_DO:
12116 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
12117 case EXEC_OMP_TARGET_SIMD:
12118 case EXEC_OMP_TARGET_TEAMS:
12119 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
12120 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
12121 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
12122 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
12123 case EXEC_OMP_TARGET_UPDATE:
12124 case EXEC_OMP_TASK:
12125 case EXEC_OMP_TASKGROUP:
12126 case EXEC_OMP_TASKLOOP:
12127 case EXEC_OMP_TASKLOOP_SIMD:
12128 case EXEC_OMP_TASKWAIT:
12129 case EXEC_OMP_TASKYIELD:
12130 case EXEC_OMP_TEAMS:
12131 case EXEC_OMP_TEAMS_DISTRIBUTE:
12132 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
12133 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
12134 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
12135 case EXEC_OMP_WORKSHARE:
12136 gfc_resolve_omp_directive (code, ns);
12137 break;
12138
12139 case EXEC_OMP_PARALLEL:
12140 case EXEC_OMP_PARALLEL_DO:
12141 case EXEC_OMP_PARALLEL_DO_SIMD:
12142 case EXEC_OMP_PARALLEL_SECTIONS:
12143 case EXEC_OMP_PARALLEL_WORKSHARE:
12144 omp_workshare_save = omp_workshare_flag;
12145 omp_workshare_flag = 0;
12146 gfc_resolve_omp_directive (code, ns);
12147 omp_workshare_flag = omp_workshare_save;
12148 break;
12149
12150 default:
12151 gfc_internal_error ("gfc_resolve_code(): Bad statement code");
12152 }
12153 }
12154
12155 cs_base = frame.prev;
12156 }
12157
12158
12159 /* Resolve initial values and make sure they are compatible with
12160 the variable. */
12161
12162 static void
12163 resolve_values (gfc_symbol *sym)
12164 {
12165 bool t;
12166
12167 if (sym->value == NULL)
12168 return;
12169
12170 if (sym->value->expr_type == EXPR_STRUCTURE)
12171 t= resolve_structure_cons (sym->value, 1);
12172 else
12173 t = gfc_resolve_expr (sym->value);
12174
12175 if (!t)
12176 return;
12177
12178 gfc_check_assign_symbol (sym, NULL, sym->value);
12179 }
12180
12181
12182 /* Verify any BIND(C) derived types in the namespace so we can report errors
12183 for them once, rather than for each variable declared of that type. */
12184
12185 static void
12186 resolve_bind_c_derived_types (gfc_symbol *derived_sym)
12187 {
12188 if (derived_sym != NULL && derived_sym->attr.flavor == FL_DERIVED
12189 && derived_sym->attr.is_bind_c == 1)
12190 verify_bind_c_derived_type (derived_sym);
12191
12192 return;
12193 }
12194
12195
12196 /* Check the interfaces of DTIO procedures associated with derived
12197 type 'sym'. These procedures can either have typebound bindings or
12198 can appear in DTIO generic interfaces. */
12199
12200 static void
12201 gfc_verify_DTIO_procedures (gfc_symbol *sym)
12202 {
12203 if (!sym || sym->attr.flavor != FL_DERIVED)
12204 return;
12205
12206 gfc_check_dtio_interfaces (sym);
12207
12208 return;
12209 }
12210
12211 /* Verify that any binding labels used in a given namespace do not collide
12212 with the names or binding labels of any global symbols. Multiple INTERFACE
12213 for the same procedure are permitted. */
12214
12215 static void
12216 gfc_verify_binding_labels (gfc_symbol *sym)
12217 {
12218 gfc_gsymbol *gsym;
12219 const char *module;
12220
12221 if (!sym || !sym->attr.is_bind_c || sym->attr.is_iso_c
12222 || sym->attr.flavor == FL_DERIVED || !sym->binding_label)
12223 return;
12224
12225 gsym = gfc_find_case_gsymbol (gfc_gsym_root, sym->binding_label);
12226
12227 if (sym->module)
12228 module = sym->module;
12229 else if (sym->ns && sym->ns->proc_name
12230 && sym->ns->proc_name->attr.flavor == FL_MODULE)
12231 module = sym->ns->proc_name->name;
12232 else if (sym->ns && sym->ns->parent
12233 && sym->ns && sym->ns->parent->proc_name
12234 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
12235 module = sym->ns->parent->proc_name->name;
12236 else
12237 module = NULL;
12238
12239 if (!gsym
12240 || (!gsym->defined
12241 && (gsym->type == GSYM_FUNCTION || gsym->type == GSYM_SUBROUTINE)))
12242 {
12243 if (!gsym)
12244 gsym = gfc_get_gsymbol (sym->binding_label, true);
12245 gsym->where = sym->declared_at;
12246 gsym->sym_name = sym->name;
12247 gsym->binding_label = sym->binding_label;
12248 gsym->ns = sym->ns;
12249 gsym->mod_name = module;
12250 if (sym->attr.function)
12251 gsym->type = GSYM_FUNCTION;
12252 else if (sym->attr.subroutine)
12253 gsym->type = GSYM_SUBROUTINE;
12254 /* Mark as variable/procedure as defined, unless its an INTERFACE. */
12255 gsym->defined = sym->attr.if_source != IFSRC_IFBODY;
12256 return;
12257 }
12258
12259 if (sym->attr.flavor == FL_VARIABLE && gsym->type != GSYM_UNKNOWN)
12260 {
12261 gfc_error ("Variable %qs with binding label %qs at %L uses the same global "
12262 "identifier as entity at %L", sym->name,
12263 sym->binding_label, &sym->declared_at, &gsym->where);
12264 /* Clear the binding label to prevent checking multiple times. */
12265 sym->binding_label = NULL;
12266 return;
12267 }
12268
12269 if (sym->attr.flavor == FL_VARIABLE && module
12270 && (strcmp (module, gsym->mod_name) != 0
12271 || strcmp (sym->name, gsym->sym_name) != 0))
12272 {
12273 /* This can only happen if the variable is defined in a module - if it
12274 isn't the same module, reject it. */
12275 gfc_error ("Variable %qs from module %qs with binding label %qs at %L "
12276 "uses the same global identifier as entity at %L from module %qs",
12277 sym->name, module, sym->binding_label,
12278 &sym->declared_at, &gsym->where, gsym->mod_name);
12279 sym->binding_label = NULL;
12280 return;
12281 }
12282
12283 if ((sym->attr.function || sym->attr.subroutine)
12284 && ((gsym->type != GSYM_SUBROUTINE && gsym->type != GSYM_FUNCTION)
12285 || (gsym->defined && sym->attr.if_source != IFSRC_IFBODY))
12286 && (sym != gsym->ns->proc_name && sym->attr.entry == 0)
12287 && (module != gsym->mod_name
12288 || strcmp (gsym->sym_name, sym->name) != 0
12289 || (module && strcmp (module, gsym->mod_name) != 0)))
12290 {
12291 /* Print an error if the procedure is defined multiple times; we have to
12292 exclude references to the same procedure via module association or
12293 multiple checks for the same procedure. */
12294 gfc_error ("Procedure %qs with binding label %qs at %L uses the same "
12295 "global identifier as entity at %L", sym->name,
12296 sym->binding_label, &sym->declared_at, &gsym->where);
12297 sym->binding_label = NULL;
12298 }
12299 }
12300
12301
12302 /* Resolve an index expression. */
12303
12304 static bool
12305 resolve_index_expr (gfc_expr *e)
12306 {
12307 if (!gfc_resolve_expr (e))
12308 return false;
12309
12310 if (!gfc_simplify_expr (e, 0))
12311 return false;
12312
12313 if (!gfc_specification_expr (e))
12314 return false;
12315
12316 return true;
12317 }
12318
12319
12320 /* Resolve a charlen structure. */
12321
12322 static bool
12323 resolve_charlen (gfc_charlen *cl)
12324 {
12325 int k;
12326 bool saved_specification_expr;
12327
12328 if (cl->resolved)
12329 return true;
12330
12331 cl->resolved = 1;
12332 saved_specification_expr = specification_expr;
12333 specification_expr = true;
12334
12335 if (cl->length_from_typespec)
12336 {
12337 if (!gfc_resolve_expr (cl->length))
12338 {
12339 specification_expr = saved_specification_expr;
12340 return false;
12341 }
12342
12343 if (!gfc_simplify_expr (cl->length, 0))
12344 {
12345 specification_expr = saved_specification_expr;
12346 return false;
12347 }
12348
12349 /* cl->length has been resolved. It should have an integer type. */
12350 if (cl->length->ts.type != BT_INTEGER)
12351 {
12352 gfc_error ("Scalar INTEGER expression expected at %L",
12353 &cl->length->where);
12354 return false;
12355 }
12356 }
12357 else
12358 {
12359 if (!resolve_index_expr (cl->length))
12360 {
12361 specification_expr = saved_specification_expr;
12362 return false;
12363 }
12364 }
12365
12366 /* F2008, 4.4.3.2: If the character length parameter value evaluates to
12367 a negative value, the length of character entities declared is zero. */
12368 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
12369 && mpz_sgn (cl->length->value.integer) < 0)
12370 gfc_replace_expr (cl->length,
12371 gfc_get_int_expr (gfc_charlen_int_kind, NULL, 0));
12372
12373 /* Check that the character length is not too large. */
12374 k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
12375 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
12376 && cl->length->ts.type == BT_INTEGER
12377 && mpz_cmp (cl->length->value.integer, gfc_integer_kinds[k].huge) > 0)
12378 {
12379 gfc_error ("String length at %L is too large", &cl->length->where);
12380 specification_expr = saved_specification_expr;
12381 return false;
12382 }
12383
12384 specification_expr = saved_specification_expr;
12385 return true;
12386 }
12387
12388
12389 /* Test for non-constant shape arrays. */
12390
12391 static bool
12392 is_non_constant_shape_array (gfc_symbol *sym)
12393 {
12394 gfc_expr *e;
12395 int i;
12396 bool not_constant;
12397
12398 not_constant = false;
12399 if (sym->as != NULL)
12400 {
12401 /* Unfortunately, !gfc_is_compile_time_shape hits a legal case that
12402 has not been simplified; parameter array references. Do the
12403 simplification now. */
12404 for (i = 0; i < sym->as->rank + sym->as->corank; i++)
12405 {
12406 if (i == GFC_MAX_DIMENSIONS)
12407 break;
12408
12409 e = sym->as->lower[i];
12410 if (e && (!resolve_index_expr(e)
12411 || !gfc_is_constant_expr (e)))
12412 not_constant = true;
12413 e = sym->as->upper[i];
12414 if (e && (!resolve_index_expr(e)
12415 || !gfc_is_constant_expr (e)))
12416 not_constant = true;
12417 }
12418 }
12419 return not_constant;
12420 }
12421
12422 /* Given a symbol and an initialization expression, add code to initialize
12423 the symbol to the function entry. */
12424 static void
12425 build_init_assign (gfc_symbol *sym, gfc_expr *init)
12426 {
12427 gfc_expr *lval;
12428 gfc_code *init_st;
12429 gfc_namespace *ns = sym->ns;
12430
12431 /* Search for the function namespace if this is a contained
12432 function without an explicit result. */
12433 if (sym->attr.function && sym == sym->result
12434 && sym->name != sym->ns->proc_name->name)
12435 {
12436 ns = ns->contained;
12437 for (;ns; ns = ns->sibling)
12438 if (strcmp (ns->proc_name->name, sym->name) == 0)
12439 break;
12440 }
12441
12442 if (ns == NULL)
12443 {
12444 gfc_free_expr (init);
12445 return;
12446 }
12447
12448 /* Build an l-value expression for the result. */
12449 lval = gfc_lval_expr_from_sym (sym);
12450
12451 /* Add the code at scope entry. */
12452 init_st = gfc_get_code (EXEC_INIT_ASSIGN);
12453 init_st->next = ns->code;
12454 ns->code = init_st;
12455
12456 /* Assign the default initializer to the l-value. */
12457 init_st->loc = sym->declared_at;
12458 init_st->expr1 = lval;
12459 init_st->expr2 = init;
12460 }
12461
12462
12463 /* Whether or not we can generate a default initializer for a symbol. */
12464
12465 static bool
12466 can_generate_init (gfc_symbol *sym)
12467 {
12468 symbol_attribute *a;
12469 if (!sym)
12470 return false;
12471 a = &sym->attr;
12472
12473 /* These symbols should never have a default initialization. */
12474 return !(
12475 a->allocatable
12476 || a->external
12477 || a->pointer
12478 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
12479 && (CLASS_DATA (sym)->attr.class_pointer
12480 || CLASS_DATA (sym)->attr.proc_pointer))
12481 || a->in_equivalence
12482 || a->in_common
12483 || a->data
12484 || sym->module
12485 || a->cray_pointee
12486 || a->cray_pointer
12487 || sym->assoc
12488 || (!a->referenced && !a->result)
12489 || (a->dummy && a->intent != INTENT_OUT)
12490 || (a->function && sym != sym->result)
12491 );
12492 }
12493
12494
12495 /* Assign the default initializer to a derived type variable or result. */
12496
12497 static void
12498 apply_default_init (gfc_symbol *sym)
12499 {
12500 gfc_expr *init = NULL;
12501
12502 if (sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
12503 return;
12504
12505 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived)
12506 init = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
12507
12508 if (init == NULL && sym->ts.type != BT_CLASS)
12509 return;
12510
12511 build_init_assign (sym, init);
12512 sym->attr.referenced = 1;
12513 }
12514
12515
12516 /* Build an initializer for a local. Returns null if the symbol should not have
12517 a default initialization. */
12518
12519 static gfc_expr *
12520 build_default_init_expr (gfc_symbol *sym)
12521 {
12522 /* These symbols should never have a default initialization. */
12523 if (sym->attr.allocatable
12524 || sym->attr.external
12525 || sym->attr.dummy
12526 || sym->attr.pointer
12527 || sym->attr.in_equivalence
12528 || sym->attr.in_common
12529 || sym->attr.data
12530 || sym->module
12531 || sym->attr.cray_pointee
12532 || sym->attr.cray_pointer
12533 || sym->assoc)
12534 return NULL;
12535
12536 /* Get the appropriate init expression. */
12537 return gfc_build_default_init_expr (&sym->ts, &sym->declared_at);
12538 }
12539
12540 /* Add an initialization expression to a local variable. */
12541 static void
12542 apply_default_init_local (gfc_symbol *sym)
12543 {
12544 gfc_expr *init = NULL;
12545
12546 /* The symbol should be a variable or a function return value. */
12547 if ((sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
12548 || (sym->attr.function && sym->result != sym))
12549 return;
12550
12551 /* Try to build the initializer expression. If we can't initialize
12552 this symbol, then init will be NULL. */
12553 init = build_default_init_expr (sym);
12554 if (init == NULL)
12555 return;
12556
12557 /* For saved variables, we don't want to add an initializer at function
12558 entry, so we just add a static initializer. Note that automatic variables
12559 are stack allocated even with -fno-automatic; we have also to exclude
12560 result variable, which are also nonstatic. */
12561 if (!sym->attr.automatic
12562 && (sym->attr.save || sym->ns->save_all
12563 || (flag_max_stack_var_size == 0 && !sym->attr.result
12564 && (sym->ns->proc_name && !sym->ns->proc_name->attr.recursive)
12565 && (!sym->attr.dimension || !is_non_constant_shape_array (sym)))))
12566 {
12567 /* Don't clobber an existing initializer! */
12568 gcc_assert (sym->value == NULL);
12569 sym->value = init;
12570 return;
12571 }
12572
12573 build_init_assign (sym, init);
12574 }
12575
12576
12577 /* Resolution of common features of flavors variable and procedure. */
12578
12579 static bool
12580 resolve_fl_var_and_proc (gfc_symbol *sym, int mp_flag)
12581 {
12582 gfc_array_spec *as;
12583
12584 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
12585 as = CLASS_DATA (sym)->as;
12586 else
12587 as = sym->as;
12588
12589 /* Constraints on deferred shape variable. */
12590 if (as == NULL || as->type != AS_DEFERRED)
12591 {
12592 bool pointer, allocatable, dimension;
12593
12594 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
12595 {
12596 pointer = CLASS_DATA (sym)->attr.class_pointer;
12597 allocatable = CLASS_DATA (sym)->attr.allocatable;
12598 dimension = CLASS_DATA (sym)->attr.dimension;
12599 }
12600 else
12601 {
12602 pointer = sym->attr.pointer && !sym->attr.select_type_temporary;
12603 allocatable = sym->attr.allocatable;
12604 dimension = sym->attr.dimension;
12605 }
12606
12607 if (allocatable)
12608 {
12609 if (dimension && as->type != AS_ASSUMED_RANK)
12610 {
12611 gfc_error ("Allocatable array %qs at %L must have a deferred "
12612 "shape or assumed rank", sym->name, &sym->declared_at);
12613 return false;
12614 }
12615 else if (!gfc_notify_std (GFC_STD_F2003, "Scalar object "
12616 "%qs at %L may not be ALLOCATABLE",
12617 sym->name, &sym->declared_at))
12618 return false;
12619 }
12620
12621 if (pointer && dimension && as->type != AS_ASSUMED_RANK)
12622 {
12623 gfc_error ("Array pointer %qs at %L must have a deferred shape or "
12624 "assumed rank", sym->name, &sym->declared_at);
12625 return false;
12626 }
12627 }
12628 else
12629 {
12630 if (!mp_flag && !sym->attr.allocatable && !sym->attr.pointer
12631 && sym->ts.type != BT_CLASS && !sym->assoc)
12632 {
12633 gfc_error ("Array %qs at %L cannot have a deferred shape",
12634 sym->name, &sym->declared_at);
12635 return false;
12636 }
12637 }
12638
12639 /* Constraints on polymorphic variables. */
12640 if (sym->ts.type == BT_CLASS && !(sym->result && sym->result != sym))
12641 {
12642 /* F03:C502. */
12643 if (sym->attr.class_ok
12644 && !sym->attr.select_type_temporary
12645 && !UNLIMITED_POLY (sym)
12646 && !gfc_type_is_extensible (CLASS_DATA (sym)->ts.u.derived))
12647 {
12648 gfc_error ("Type %qs of CLASS variable %qs at %L is not extensible",
12649 CLASS_DATA (sym)->ts.u.derived->name, sym->name,
12650 &sym->declared_at);
12651 return false;
12652 }
12653
12654 /* F03:C509. */
12655 /* Assume that use associated symbols were checked in the module ns.
12656 Class-variables that are associate-names are also something special
12657 and excepted from the test. */
12658 if (!sym->attr.class_ok && !sym->attr.use_assoc && !sym->assoc)
12659 {
12660 gfc_error ("CLASS variable %qs at %L must be dummy, allocatable "
12661 "or pointer", sym->name, &sym->declared_at);
12662 return false;
12663 }
12664 }
12665
12666 return true;
12667 }
12668
12669
12670 /* Additional checks for symbols with flavor variable and derived
12671 type. To be called from resolve_fl_variable. */
12672
12673 static bool
12674 resolve_fl_variable_derived (gfc_symbol *sym, int no_init_flag)
12675 {
12676 gcc_assert (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS);
12677
12678 /* Check to see if a derived type is blocked from being host
12679 associated by the presence of another class I symbol in the same
12680 namespace. 14.6.1.3 of the standard and the discussion on
12681 comp.lang.fortran. */
12682 if (sym->ns != sym->ts.u.derived->ns
12683 && !sym->ts.u.derived->attr.use_assoc
12684 && sym->ns->proc_name->attr.if_source != IFSRC_IFBODY)
12685 {
12686 gfc_symbol *s;
12687 gfc_find_symbol (sym->ts.u.derived->name, sym->ns, 0, &s);
12688 if (s && s->attr.generic)
12689 s = gfc_find_dt_in_generic (s);
12690 if (s && !gfc_fl_struct (s->attr.flavor))
12691 {
12692 gfc_error ("The type %qs cannot be host associated at %L "
12693 "because it is blocked by an incompatible object "
12694 "of the same name declared at %L",
12695 sym->ts.u.derived->name, &sym->declared_at,
12696 &s->declared_at);
12697 return false;
12698 }
12699 }
12700
12701 /* 4th constraint in section 11.3: "If an object of a type for which
12702 component-initialization is specified (R429) appears in the
12703 specification-part of a module and does not have the ALLOCATABLE
12704 or POINTER attribute, the object shall have the SAVE attribute."
12705
12706 The check for initializers is performed with
12707 gfc_has_default_initializer because gfc_default_initializer generates
12708 a hidden default for allocatable components. */
12709 if (!(sym->value || no_init_flag) && sym->ns->proc_name
12710 && sym->ns->proc_name->attr.flavor == FL_MODULE
12711 && !(sym->ns->save_all && !sym->attr.automatic) && !sym->attr.save
12712 && !sym->attr.pointer && !sym->attr.allocatable
12713 && gfc_has_default_initializer (sym->ts.u.derived)
12714 && !gfc_notify_std (GFC_STD_F2008, "Implied SAVE for module variable "
12715 "%qs at %L, needed due to the default "
12716 "initialization", sym->name, &sym->declared_at))
12717 return false;
12718
12719 /* Assign default initializer. */
12720 if (!(sym->value || sym->attr.pointer || sym->attr.allocatable)
12721 && (!no_init_flag || sym->attr.intent == INTENT_OUT))
12722 sym->value = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
12723
12724 return true;
12725 }
12726
12727
12728 /* F2008, C402 (R401): A colon shall not be used as a type-param-value
12729 except in the declaration of an entity or component that has the POINTER
12730 or ALLOCATABLE attribute. */
12731
12732 static bool
12733 deferred_requirements (gfc_symbol *sym)
12734 {
12735 if (sym->ts.deferred
12736 && !(sym->attr.pointer
12737 || sym->attr.allocatable
12738 || sym->attr.associate_var
12739 || sym->attr.omp_udr_artificial_var))
12740 {
12741 /* If a function has a result variable, only check the variable. */
12742 if (sym->result && sym->name != sym->result->name)
12743 return true;
12744
12745 gfc_error ("Entity %qs at %L has a deferred type parameter and "
12746 "requires either the POINTER or ALLOCATABLE attribute",
12747 sym->name, &sym->declared_at);
12748 return false;
12749 }
12750 return true;
12751 }
12752
12753
12754 /* Resolve symbols with flavor variable. */
12755
12756 static bool
12757 resolve_fl_variable (gfc_symbol *sym, int mp_flag)
12758 {
12759 const char *auto_save_msg = "Automatic object %qs at %L cannot have the "
12760 "SAVE attribute";
12761
12762 if (!resolve_fl_var_and_proc (sym, mp_flag))
12763 return false;
12764
12765 /* Set this flag to check that variables are parameters of all entries.
12766 This check is effected by the call to gfc_resolve_expr through
12767 is_non_constant_shape_array. */
12768 bool saved_specification_expr = specification_expr;
12769 specification_expr = true;
12770
12771 if (sym->ns->proc_name
12772 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12773 || sym->ns->proc_name->attr.is_main_program)
12774 && !sym->attr.use_assoc
12775 && !sym->attr.allocatable
12776 && !sym->attr.pointer
12777 && is_non_constant_shape_array (sym))
12778 {
12779 /* F08:C541. The shape of an array defined in a main program or module
12780 * needs to be constant. */
12781 gfc_error ("The module or main program array %qs at %L must "
12782 "have constant shape", sym->name, &sym->declared_at);
12783 specification_expr = saved_specification_expr;
12784 return false;
12785 }
12786
12787 /* Constraints on deferred type parameter. */
12788 if (!deferred_requirements (sym))
12789 return false;
12790
12791 if (sym->ts.type == BT_CHARACTER && !sym->attr.associate_var)
12792 {
12793 /* Make sure that character string variables with assumed length are
12794 dummy arguments. */
12795 gfc_expr *e = NULL;
12796
12797 if (sym->ts.u.cl)
12798 e = sym->ts.u.cl->length;
12799 else
12800 return false;
12801
12802 if (e == NULL && !sym->attr.dummy && !sym->attr.result
12803 && !sym->ts.deferred && !sym->attr.select_type_temporary
12804 && !sym->attr.omp_udr_artificial_var)
12805 {
12806 gfc_error ("Entity with assumed character length at %L must be a "
12807 "dummy argument or a PARAMETER", &sym->declared_at);
12808 specification_expr = saved_specification_expr;
12809 return false;
12810 }
12811
12812 if (e && sym->attr.save == SAVE_EXPLICIT && !gfc_is_constant_expr (e))
12813 {
12814 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12815 specification_expr = saved_specification_expr;
12816 return false;
12817 }
12818
12819 if (!gfc_is_constant_expr (e)
12820 && !(e->expr_type == EXPR_VARIABLE
12821 && e->symtree->n.sym->attr.flavor == FL_PARAMETER))
12822 {
12823 if (!sym->attr.use_assoc && sym->ns->proc_name
12824 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12825 || sym->ns->proc_name->attr.is_main_program))
12826 {
12827 gfc_error ("%qs at %L must have constant character length "
12828 "in this context", sym->name, &sym->declared_at);
12829 specification_expr = saved_specification_expr;
12830 return false;
12831 }
12832 if (sym->attr.in_common)
12833 {
12834 gfc_error ("COMMON variable %qs at %L must have constant "
12835 "character length", sym->name, &sym->declared_at);
12836 specification_expr = saved_specification_expr;
12837 return false;
12838 }
12839 }
12840 }
12841
12842 if (sym->value == NULL && sym->attr.referenced)
12843 apply_default_init_local (sym); /* Try to apply a default initialization. */
12844
12845 /* Determine if the symbol may not have an initializer. */
12846 int no_init_flag = 0, automatic_flag = 0;
12847 if (sym->attr.allocatable || sym->attr.external || sym->attr.dummy
12848 || sym->attr.intrinsic || sym->attr.result)
12849 no_init_flag = 1;
12850 else if ((sym->attr.dimension || sym->attr.codimension) && !sym->attr.pointer
12851 && is_non_constant_shape_array (sym))
12852 {
12853 no_init_flag = automatic_flag = 1;
12854
12855 /* Also, they must not have the SAVE attribute.
12856 SAVE_IMPLICIT is checked below. */
12857 if (sym->as && sym->attr.codimension)
12858 {
12859 int corank = sym->as->corank;
12860 sym->as->corank = 0;
12861 no_init_flag = automatic_flag = is_non_constant_shape_array (sym);
12862 sym->as->corank = corank;
12863 }
12864 if (automatic_flag && sym->attr.save == SAVE_EXPLICIT)
12865 {
12866 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12867 specification_expr = saved_specification_expr;
12868 return false;
12869 }
12870 }
12871
12872 /* Ensure that any initializer is simplified. */
12873 if (sym->value)
12874 gfc_simplify_expr (sym->value, 1);
12875
12876 /* Reject illegal initializers. */
12877 if (!sym->mark && sym->value)
12878 {
12879 if (sym->attr.allocatable || (sym->ts.type == BT_CLASS
12880 && CLASS_DATA (sym)->attr.allocatable))
12881 gfc_error ("Allocatable %qs at %L cannot have an initializer",
12882 sym->name, &sym->declared_at);
12883 else if (sym->attr.external)
12884 gfc_error ("External %qs at %L cannot have an initializer",
12885 sym->name, &sym->declared_at);
12886 else if (sym->attr.dummy
12887 && !(sym->ts.type == BT_DERIVED && sym->attr.intent == INTENT_OUT))
12888 gfc_error ("Dummy %qs at %L cannot have an initializer",
12889 sym->name, &sym->declared_at);
12890 else if (sym->attr.intrinsic)
12891 gfc_error ("Intrinsic %qs at %L cannot have an initializer",
12892 sym->name, &sym->declared_at);
12893 else if (sym->attr.result)
12894 gfc_error ("Function result %qs at %L cannot have an initializer",
12895 sym->name, &sym->declared_at);
12896 else if (automatic_flag)
12897 gfc_error ("Automatic array %qs at %L cannot have an initializer",
12898 sym->name, &sym->declared_at);
12899 else
12900 goto no_init_error;
12901 specification_expr = saved_specification_expr;
12902 return false;
12903 }
12904
12905 no_init_error:
12906 if (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS)
12907 {
12908 bool res = resolve_fl_variable_derived (sym, no_init_flag);
12909 specification_expr = saved_specification_expr;
12910 return res;
12911 }
12912
12913 specification_expr = saved_specification_expr;
12914 return true;
12915 }
12916
12917
12918 /* Compare the dummy characteristics of a module procedure interface
12919 declaration with the corresponding declaration in a submodule. */
12920 static gfc_formal_arglist *new_formal;
12921 static char errmsg[200];
12922
12923 static void
12924 compare_fsyms (gfc_symbol *sym)
12925 {
12926 gfc_symbol *fsym;
12927
12928 if (sym == NULL || new_formal == NULL)
12929 return;
12930
12931 fsym = new_formal->sym;
12932
12933 if (sym == fsym)
12934 return;
12935
12936 if (strcmp (sym->name, fsym->name) == 0)
12937 {
12938 if (!gfc_check_dummy_characteristics (fsym, sym, true, errmsg, 200))
12939 gfc_error ("%s at %L", errmsg, &fsym->declared_at);
12940 }
12941 }
12942
12943
12944 /* Resolve a procedure. */
12945
12946 static bool
12947 resolve_fl_procedure (gfc_symbol *sym, int mp_flag)
12948 {
12949 gfc_formal_arglist *arg;
12950
12951 if (sym->attr.function
12952 && !resolve_fl_var_and_proc (sym, mp_flag))
12953 return false;
12954
12955 /* Constraints on deferred type parameter. */
12956 if (!deferred_requirements (sym))
12957 return false;
12958
12959 if (sym->ts.type == BT_CHARACTER)
12960 {
12961 gfc_charlen *cl = sym->ts.u.cl;
12962
12963 if (cl && cl->length && gfc_is_constant_expr (cl->length)
12964 && !resolve_charlen (cl))
12965 return false;
12966
12967 if ((!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
12968 && sym->attr.proc == PROC_ST_FUNCTION)
12969 {
12970 gfc_error ("Character-valued statement function %qs at %L must "
12971 "have constant length", sym->name, &sym->declared_at);
12972 return false;
12973 }
12974 }
12975
12976 /* Ensure that derived type for are not of a private type. Internal
12977 module procedures are excluded by 2.2.3.3 - i.e., they are not
12978 externally accessible and can access all the objects accessible in
12979 the host. */
12980 if (!(sym->ns->parent && sym->ns->parent->proc_name
12981 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
12982 && gfc_check_symbol_access (sym))
12983 {
12984 gfc_interface *iface;
12985
12986 for (arg = gfc_sym_get_dummy_args (sym); arg; arg = arg->next)
12987 {
12988 if (arg->sym
12989 && arg->sym->ts.type == BT_DERIVED
12990 && !arg->sym->ts.u.derived->attr.use_assoc
12991 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12992 && !gfc_notify_std (GFC_STD_F2003, "%qs is of a PRIVATE type "
12993 "and cannot be a dummy argument"
12994 " of %qs, which is PUBLIC at %L",
12995 arg->sym->name, sym->name,
12996 &sym->declared_at))
12997 {
12998 /* Stop this message from recurring. */
12999 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
13000 return false;
13001 }
13002 }
13003
13004 /* PUBLIC interfaces may expose PRIVATE procedures that take types
13005 PRIVATE to the containing module. */
13006 for (iface = sym->generic; iface; iface = iface->next)
13007 {
13008 for (arg = gfc_sym_get_dummy_args (iface->sym); arg; arg = arg->next)
13009 {
13010 if (arg->sym
13011 && arg->sym->ts.type == BT_DERIVED
13012 && !arg->sym->ts.u.derived->attr.use_assoc
13013 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
13014 && !gfc_notify_std (GFC_STD_F2003, "Procedure %qs in "
13015 "PUBLIC interface %qs at %L "
13016 "takes dummy arguments of %qs which "
13017 "is PRIVATE", iface->sym->name,
13018 sym->name, &iface->sym->declared_at,
13019 gfc_typename(&arg->sym->ts)))
13020 {
13021 /* Stop this message from recurring. */
13022 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
13023 return false;
13024 }
13025 }
13026 }
13027 }
13028
13029 if (sym->attr.function && sym->value && sym->attr.proc != PROC_ST_FUNCTION
13030 && !sym->attr.proc_pointer)
13031 {
13032 gfc_error ("Function %qs at %L cannot have an initializer",
13033 sym->name, &sym->declared_at);
13034
13035 /* Make sure no second error is issued for this. */
13036 sym->value->error = 1;
13037 return false;
13038 }
13039
13040 /* An external symbol may not have an initializer because it is taken to be
13041 a procedure. Exception: Procedure Pointers. */
13042 if (sym->attr.external && sym->value && !sym->attr.proc_pointer)
13043 {
13044 gfc_error ("External object %qs at %L may not have an initializer",
13045 sym->name, &sym->declared_at);
13046 return false;
13047 }
13048
13049 /* An elemental function is required to return a scalar 12.7.1 */
13050 if (sym->attr.elemental && sym->attr.function
13051 && (sym->as || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)))
13052 {
13053 gfc_error ("ELEMENTAL function %qs at %L must have a scalar "
13054 "result", sym->name, &sym->declared_at);
13055 /* Reset so that the error only occurs once. */
13056 sym->attr.elemental = 0;
13057 return false;
13058 }
13059
13060 if (sym->attr.proc == PROC_ST_FUNCTION
13061 && (sym->attr.allocatable || sym->attr.pointer))
13062 {
13063 gfc_error ("Statement function %qs at %L may not have pointer or "
13064 "allocatable attribute", sym->name, &sym->declared_at);
13065 return false;
13066 }
13067
13068 /* 5.1.1.5 of the Standard: A function name declared with an asterisk
13069 char-len-param shall not be array-valued, pointer-valued, recursive
13070 or pure. ....snip... A character value of * may only be used in the
13071 following ways: (i) Dummy arg of procedure - dummy associates with
13072 actual length; (ii) To declare a named constant; or (iii) External
13073 function - but length must be declared in calling scoping unit. */
13074 if (sym->attr.function
13075 && sym->ts.type == BT_CHARACTER && !sym->ts.deferred
13076 && sym->ts.u.cl && sym->ts.u.cl->length == NULL)
13077 {
13078 if ((sym->as && sym->as->rank) || (sym->attr.pointer)
13079 || (sym->attr.recursive) || (sym->attr.pure))
13080 {
13081 if (sym->as && sym->as->rank)
13082 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
13083 "array-valued", sym->name, &sym->declared_at);
13084
13085 if (sym->attr.pointer)
13086 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
13087 "pointer-valued", sym->name, &sym->declared_at);
13088
13089 if (sym->attr.pure)
13090 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
13091 "pure", sym->name, &sym->declared_at);
13092
13093 if (sym->attr.recursive)
13094 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
13095 "recursive", sym->name, &sym->declared_at);
13096
13097 return false;
13098 }
13099
13100 /* Appendix B.2 of the standard. Contained functions give an
13101 error anyway. Deferred character length is an F2003 feature.
13102 Don't warn on intrinsic conversion functions, which start
13103 with two underscores. */
13104 if (!sym->attr.contained && !sym->ts.deferred
13105 && (sym->name[0] != '_' || sym->name[1] != '_'))
13106 gfc_notify_std (GFC_STD_F95_OBS,
13107 "CHARACTER(*) function %qs at %L",
13108 sym->name, &sym->declared_at);
13109 }
13110
13111 /* F2008, C1218. */
13112 if (sym->attr.elemental)
13113 {
13114 if (sym->attr.proc_pointer)
13115 {
13116 gfc_error ("Procedure pointer %qs at %L shall not be elemental",
13117 sym->name, &sym->declared_at);
13118 return false;
13119 }
13120 if (sym->attr.dummy)
13121 {
13122 gfc_error ("Dummy procedure %qs at %L shall not be elemental",
13123 sym->name, &sym->declared_at);
13124 return false;
13125 }
13126 }
13127
13128 /* F2018, C15100: "The result of an elemental function shall be scalar,
13129 and shall not have the POINTER or ALLOCATABLE attribute." The scalar
13130 pointer is tested and caught elsewhere. */
13131 if (sym->attr.elemental && sym->result
13132 && (sym->result->attr.allocatable || sym->result->attr.pointer))
13133 {
13134 gfc_error ("Function result variable %qs at %L of elemental "
13135 "function %qs shall not have an ALLOCATABLE or POINTER "
13136 "attribute", sym->result->name,
13137 &sym->result->declared_at, sym->name);
13138 return false;
13139 }
13140
13141 if (sym->attr.is_bind_c && sym->attr.is_c_interop != 1)
13142 {
13143 gfc_formal_arglist *curr_arg;
13144 int has_non_interop_arg = 0;
13145
13146 if (!verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
13147 sym->common_block))
13148 {
13149 /* Clear these to prevent looking at them again if there was an
13150 error. */
13151 sym->attr.is_bind_c = 0;
13152 sym->attr.is_c_interop = 0;
13153 sym->ts.is_c_interop = 0;
13154 }
13155 else
13156 {
13157 /* So far, no errors have been found. */
13158 sym->attr.is_c_interop = 1;
13159 sym->ts.is_c_interop = 1;
13160 }
13161
13162 curr_arg = gfc_sym_get_dummy_args (sym);
13163 while (curr_arg != NULL)
13164 {
13165 /* Skip implicitly typed dummy args here. */
13166 if (curr_arg->sym && curr_arg->sym->attr.implicit_type == 0)
13167 if (!gfc_verify_c_interop_param (curr_arg->sym))
13168 /* If something is found to fail, record the fact so we
13169 can mark the symbol for the procedure as not being
13170 BIND(C) to try and prevent multiple errors being
13171 reported. */
13172 has_non_interop_arg = 1;
13173
13174 curr_arg = curr_arg->next;
13175 }
13176
13177 /* See if any of the arguments were not interoperable and if so, clear
13178 the procedure symbol to prevent duplicate error messages. */
13179 if (has_non_interop_arg != 0)
13180 {
13181 sym->attr.is_c_interop = 0;
13182 sym->ts.is_c_interop = 0;
13183 sym->attr.is_bind_c = 0;
13184 }
13185 }
13186
13187 if (!sym->attr.proc_pointer)
13188 {
13189 if (sym->attr.save == SAVE_EXPLICIT)
13190 {
13191 gfc_error ("PROCEDURE attribute conflicts with SAVE attribute "
13192 "in %qs at %L", sym->name, &sym->declared_at);
13193 return false;
13194 }
13195 if (sym->attr.intent)
13196 {
13197 gfc_error ("PROCEDURE attribute conflicts with INTENT attribute "
13198 "in %qs at %L", sym->name, &sym->declared_at);
13199 return false;
13200 }
13201 if (sym->attr.subroutine && sym->attr.result)
13202 {
13203 gfc_error ("PROCEDURE attribute conflicts with RESULT attribute "
13204 "in %qs at %L", sym->name, &sym->declared_at);
13205 return false;
13206 }
13207 if (sym->attr.external && sym->attr.function && !sym->attr.module_procedure
13208 && ((sym->attr.if_source == IFSRC_DECL && !sym->attr.procedure)
13209 || sym->attr.contained))
13210 {
13211 gfc_error ("EXTERNAL attribute conflicts with FUNCTION attribute "
13212 "in %qs at %L", sym->name, &sym->declared_at);
13213 return false;
13214 }
13215 if (strcmp ("ppr@", sym->name) == 0)
13216 {
13217 gfc_error ("Procedure pointer result %qs at %L "
13218 "is missing the pointer attribute",
13219 sym->ns->proc_name->name, &sym->declared_at);
13220 return false;
13221 }
13222 }
13223
13224 /* Assume that a procedure whose body is not known has references
13225 to external arrays. */
13226 if (sym->attr.if_source != IFSRC_DECL)
13227 sym->attr.array_outer_dependency = 1;
13228
13229 /* Compare the characteristics of a module procedure with the
13230 interface declaration. Ideally this would be done with
13231 gfc_compare_interfaces but, at present, the formal interface
13232 cannot be copied to the ts.interface. */
13233 if (sym->attr.module_procedure
13234 && sym->attr.if_source == IFSRC_DECL)
13235 {
13236 gfc_symbol *iface;
13237 char name[2*GFC_MAX_SYMBOL_LEN + 1];
13238 char *module_name;
13239 char *submodule_name;
13240 strcpy (name, sym->ns->proc_name->name);
13241 module_name = strtok (name, ".");
13242 submodule_name = strtok (NULL, ".");
13243
13244 iface = sym->tlink;
13245 sym->tlink = NULL;
13246
13247 /* Make sure that the result uses the correct charlen for deferred
13248 length results. */
13249 if (iface && sym->result
13250 && iface->ts.type == BT_CHARACTER
13251 && iface->ts.deferred)
13252 sym->result->ts.u.cl = iface->ts.u.cl;
13253
13254 if (iface == NULL)
13255 goto check_formal;
13256
13257 /* Check the procedure characteristics. */
13258 if (sym->attr.elemental != iface->attr.elemental)
13259 {
13260 gfc_error ("Mismatch in ELEMENTAL attribute between MODULE "
13261 "PROCEDURE at %L and its interface in %s",
13262 &sym->declared_at, module_name);
13263 return false;
13264 }
13265
13266 if (sym->attr.pure != iface->attr.pure)
13267 {
13268 gfc_error ("Mismatch in PURE attribute between MODULE "
13269 "PROCEDURE at %L and its interface in %s",
13270 &sym->declared_at, module_name);
13271 return false;
13272 }
13273
13274 if (sym->attr.recursive != iface->attr.recursive)
13275 {
13276 gfc_error ("Mismatch in RECURSIVE attribute between MODULE "
13277 "PROCEDURE at %L and its interface in %s",
13278 &sym->declared_at, module_name);
13279 return false;
13280 }
13281
13282 /* Check the result characteristics. */
13283 if (!gfc_check_result_characteristics (sym, iface, errmsg, 200))
13284 {
13285 gfc_error ("%s between the MODULE PROCEDURE declaration "
13286 "in MODULE %qs and the declaration at %L in "
13287 "(SUB)MODULE %qs",
13288 errmsg, module_name, &sym->declared_at,
13289 submodule_name ? submodule_name : module_name);
13290 return false;
13291 }
13292
13293 check_formal:
13294 /* Check the characteristics of the formal arguments. */
13295 if (sym->formal && sym->formal_ns)
13296 {
13297 for (arg = sym->formal; arg && arg->sym; arg = arg->next)
13298 {
13299 new_formal = arg;
13300 gfc_traverse_ns (sym->formal_ns, compare_fsyms);
13301 }
13302 }
13303 }
13304 return true;
13305 }
13306
13307
13308 /* Resolve a list of finalizer procedures. That is, after they have hopefully
13309 been defined and we now know their defined arguments, check that they fulfill
13310 the requirements of the standard for procedures used as finalizers. */
13311
13312 static bool
13313 gfc_resolve_finalizers (gfc_symbol* derived, bool *finalizable)
13314 {
13315 gfc_finalizer* list;
13316 gfc_finalizer** prev_link; /* For removing wrong entries from the list. */
13317 bool result = true;
13318 bool seen_scalar = false;
13319 gfc_symbol *vtab;
13320 gfc_component *c;
13321 gfc_symbol *parent = gfc_get_derived_super_type (derived);
13322
13323 if (parent)
13324 gfc_resolve_finalizers (parent, finalizable);
13325
13326 /* Ensure that derived-type components have a their finalizers resolved. */
13327 bool has_final = derived->f2k_derived && derived->f2k_derived->finalizers;
13328 for (c = derived->components; c; c = c->next)
13329 if (c->ts.type == BT_DERIVED
13330 && !c->attr.pointer && !c->attr.proc_pointer && !c->attr.allocatable)
13331 {
13332 bool has_final2 = false;
13333 if (!gfc_resolve_finalizers (c->ts.u.derived, &has_final2))
13334 return false; /* Error. */
13335 has_final = has_final || has_final2;
13336 }
13337 /* Return early if not finalizable. */
13338 if (!has_final)
13339 {
13340 if (finalizable)
13341 *finalizable = false;
13342 return true;
13343 }
13344
13345 /* Walk over the list of finalizer-procedures, check them, and if any one
13346 does not fit in with the standard's definition, print an error and remove
13347 it from the list. */
13348 prev_link = &derived->f2k_derived->finalizers;
13349 for (list = derived->f2k_derived->finalizers; list; list = *prev_link)
13350 {
13351 gfc_formal_arglist *dummy_args;
13352 gfc_symbol* arg;
13353 gfc_finalizer* i;
13354 int my_rank;
13355
13356 /* Skip this finalizer if we already resolved it. */
13357 if (list->proc_tree)
13358 {
13359 if (list->proc_tree->n.sym->formal->sym->as == NULL
13360 || list->proc_tree->n.sym->formal->sym->as->rank == 0)
13361 seen_scalar = true;
13362 prev_link = &(list->next);
13363 continue;
13364 }
13365
13366 /* Check this exists and is a SUBROUTINE. */
13367 if (!list->proc_sym->attr.subroutine)
13368 {
13369 gfc_error ("FINAL procedure %qs at %L is not a SUBROUTINE",
13370 list->proc_sym->name, &list->where);
13371 goto error;
13372 }
13373
13374 /* We should have exactly one argument. */
13375 dummy_args = gfc_sym_get_dummy_args (list->proc_sym);
13376 if (!dummy_args || dummy_args->next)
13377 {
13378 gfc_error ("FINAL procedure at %L must have exactly one argument",
13379 &list->where);
13380 goto error;
13381 }
13382 arg = dummy_args->sym;
13383
13384 /* This argument must be of our type. */
13385 if (arg->ts.type != BT_DERIVED || arg->ts.u.derived != derived)
13386 {
13387 gfc_error ("Argument of FINAL procedure at %L must be of type %qs",
13388 &arg->declared_at, derived->name);
13389 goto error;
13390 }
13391
13392 /* It must neither be a pointer nor allocatable nor optional. */
13393 if (arg->attr.pointer)
13394 {
13395 gfc_error ("Argument of FINAL procedure at %L must not be a POINTER",
13396 &arg->declared_at);
13397 goto error;
13398 }
13399 if (arg->attr.allocatable)
13400 {
13401 gfc_error ("Argument of FINAL procedure at %L must not be"
13402 " ALLOCATABLE", &arg->declared_at);
13403 goto error;
13404 }
13405 if (arg->attr.optional)
13406 {
13407 gfc_error ("Argument of FINAL procedure at %L must not be OPTIONAL",
13408 &arg->declared_at);
13409 goto error;
13410 }
13411
13412 /* It must not be INTENT(OUT). */
13413 if (arg->attr.intent == INTENT_OUT)
13414 {
13415 gfc_error ("Argument of FINAL procedure at %L must not be"
13416 " INTENT(OUT)", &arg->declared_at);
13417 goto error;
13418 }
13419
13420 /* Warn if the procedure is non-scalar and not assumed shape. */
13421 if (warn_surprising && arg->as && arg->as->rank != 0
13422 && arg->as->type != AS_ASSUMED_SHAPE)
13423 gfc_warning (OPT_Wsurprising,
13424 "Non-scalar FINAL procedure at %L should have assumed"
13425 " shape argument", &arg->declared_at);
13426
13427 /* Check that it does not match in kind and rank with a FINAL procedure
13428 defined earlier. To really loop over the *earlier* declarations,
13429 we need to walk the tail of the list as new ones were pushed at the
13430 front. */
13431 /* TODO: Handle kind parameters once they are implemented. */
13432 my_rank = (arg->as ? arg->as->rank : 0);
13433 for (i = list->next; i; i = i->next)
13434 {
13435 gfc_formal_arglist *dummy_args;
13436
13437 /* Argument list might be empty; that is an error signalled earlier,
13438 but we nevertheless continued resolving. */
13439 dummy_args = gfc_sym_get_dummy_args (i->proc_sym);
13440 if (dummy_args)
13441 {
13442 gfc_symbol* i_arg = dummy_args->sym;
13443 const int i_rank = (i_arg->as ? i_arg->as->rank : 0);
13444 if (i_rank == my_rank)
13445 {
13446 gfc_error ("FINAL procedure %qs declared at %L has the same"
13447 " rank (%d) as %qs",
13448 list->proc_sym->name, &list->where, my_rank,
13449 i->proc_sym->name);
13450 goto error;
13451 }
13452 }
13453 }
13454
13455 /* Is this the/a scalar finalizer procedure? */
13456 if (my_rank == 0)
13457 seen_scalar = true;
13458
13459 /* Find the symtree for this procedure. */
13460 gcc_assert (!list->proc_tree);
13461 list->proc_tree = gfc_find_sym_in_symtree (list->proc_sym);
13462
13463 prev_link = &list->next;
13464 continue;
13465
13466 /* Remove wrong nodes immediately from the list so we don't risk any
13467 troubles in the future when they might fail later expectations. */
13468 error:
13469 i = list;
13470 *prev_link = list->next;
13471 gfc_free_finalizer (i);
13472 result = false;
13473 }
13474
13475 if (result == false)
13476 return false;
13477
13478 /* Warn if we haven't seen a scalar finalizer procedure (but we know there
13479 were nodes in the list, must have been for arrays. It is surely a good
13480 idea to have a scalar version there if there's something to finalize. */
13481 if (warn_surprising && derived->f2k_derived->finalizers && !seen_scalar)
13482 gfc_warning (OPT_Wsurprising,
13483 "Only array FINAL procedures declared for derived type %qs"
13484 " defined at %L, suggest also scalar one",
13485 derived->name, &derived->declared_at);
13486
13487 vtab = gfc_find_derived_vtab (derived);
13488 c = vtab->ts.u.derived->components->next->next->next->next->next;
13489 gfc_set_sym_referenced (c->initializer->symtree->n.sym);
13490
13491 if (finalizable)
13492 *finalizable = true;
13493
13494 return true;
13495 }
13496
13497
13498 /* Check if two GENERIC targets are ambiguous and emit an error is they are. */
13499
13500 static bool
13501 check_generic_tbp_ambiguity (gfc_tbp_generic* t1, gfc_tbp_generic* t2,
13502 const char* generic_name, locus where)
13503 {
13504 gfc_symbol *sym1, *sym2;
13505 const char *pass1, *pass2;
13506 gfc_formal_arglist *dummy_args;
13507
13508 gcc_assert (t1->specific && t2->specific);
13509 gcc_assert (!t1->specific->is_generic);
13510 gcc_assert (!t2->specific->is_generic);
13511 gcc_assert (t1->is_operator == t2->is_operator);
13512
13513 sym1 = t1->specific->u.specific->n.sym;
13514 sym2 = t2->specific->u.specific->n.sym;
13515
13516 if (sym1 == sym2)
13517 return true;
13518
13519 /* Both must be SUBROUTINEs or both must be FUNCTIONs. */
13520 if (sym1->attr.subroutine != sym2->attr.subroutine
13521 || sym1->attr.function != sym2->attr.function)
13522 {
13523 gfc_error ("%qs and %qs cannot be mixed FUNCTION/SUBROUTINE for"
13524 " GENERIC %qs at %L",
13525 sym1->name, sym2->name, generic_name, &where);
13526 return false;
13527 }
13528
13529 /* Determine PASS arguments. */
13530 if (t1->specific->nopass)
13531 pass1 = NULL;
13532 else if (t1->specific->pass_arg)
13533 pass1 = t1->specific->pass_arg;
13534 else
13535 {
13536 dummy_args = gfc_sym_get_dummy_args (t1->specific->u.specific->n.sym);
13537 if (dummy_args)
13538 pass1 = dummy_args->sym->name;
13539 else
13540 pass1 = NULL;
13541 }
13542 if (t2->specific->nopass)
13543 pass2 = NULL;
13544 else if (t2->specific->pass_arg)
13545 pass2 = t2->specific->pass_arg;
13546 else
13547 {
13548 dummy_args = gfc_sym_get_dummy_args (t2->specific->u.specific->n.sym);
13549 if (dummy_args)
13550 pass2 = dummy_args->sym->name;
13551 else
13552 pass2 = NULL;
13553 }
13554
13555 /* Compare the interfaces. */
13556 if (gfc_compare_interfaces (sym1, sym2, sym2->name, !t1->is_operator, 0,
13557 NULL, 0, pass1, pass2))
13558 {
13559 gfc_error ("%qs and %qs for GENERIC %qs at %L are ambiguous",
13560 sym1->name, sym2->name, generic_name, &where);
13561 return false;
13562 }
13563
13564 return true;
13565 }
13566
13567
13568 /* Worker function for resolving a generic procedure binding; this is used to
13569 resolve GENERIC as well as user and intrinsic OPERATOR typebound procedures.
13570
13571 The difference between those cases is finding possible inherited bindings
13572 that are overridden, as one has to look for them in tb_sym_root,
13573 tb_uop_root or tb_op, respectively. Thus the caller must already find
13574 the super-type and set p->overridden correctly. */
13575
13576 static bool
13577 resolve_tb_generic_targets (gfc_symbol* super_type,
13578 gfc_typebound_proc* p, const char* name)
13579 {
13580 gfc_tbp_generic* target;
13581 gfc_symtree* first_target;
13582 gfc_symtree* inherited;
13583
13584 gcc_assert (p && p->is_generic);
13585
13586 /* Try to find the specific bindings for the symtrees in our target-list. */
13587 gcc_assert (p->u.generic);
13588 for (target = p->u.generic; target; target = target->next)
13589 if (!target->specific)
13590 {
13591 gfc_typebound_proc* overridden_tbp;
13592 gfc_tbp_generic* g;
13593 const char* target_name;
13594
13595 target_name = target->specific_st->name;
13596
13597 /* Defined for this type directly. */
13598 if (target->specific_st->n.tb && !target->specific_st->n.tb->error)
13599 {
13600 target->specific = target->specific_st->n.tb;
13601 goto specific_found;
13602 }
13603
13604 /* Look for an inherited specific binding. */
13605 if (super_type)
13606 {
13607 inherited = gfc_find_typebound_proc (super_type, NULL, target_name,
13608 true, NULL);
13609
13610 if (inherited)
13611 {
13612 gcc_assert (inherited->n.tb);
13613 target->specific = inherited->n.tb;
13614 goto specific_found;
13615 }
13616 }
13617
13618 gfc_error ("Undefined specific binding %qs as target of GENERIC %qs"
13619 " at %L", target_name, name, &p->where);
13620 return false;
13621
13622 /* Once we've found the specific binding, check it is not ambiguous with
13623 other specifics already found or inherited for the same GENERIC. */
13624 specific_found:
13625 gcc_assert (target->specific);
13626
13627 /* This must really be a specific binding! */
13628 if (target->specific->is_generic)
13629 {
13630 gfc_error ("GENERIC %qs at %L must target a specific binding,"
13631 " %qs is GENERIC, too", name, &p->where, target_name);
13632 return false;
13633 }
13634
13635 /* Check those already resolved on this type directly. */
13636 for (g = p->u.generic; g; g = g->next)
13637 if (g != target && g->specific
13638 && !check_generic_tbp_ambiguity (target, g, name, p->where))
13639 return false;
13640
13641 /* Check for ambiguity with inherited specific targets. */
13642 for (overridden_tbp = p->overridden; overridden_tbp;
13643 overridden_tbp = overridden_tbp->overridden)
13644 if (overridden_tbp->is_generic)
13645 {
13646 for (g = overridden_tbp->u.generic; g; g = g->next)
13647 {
13648 gcc_assert (g->specific);
13649 if (!check_generic_tbp_ambiguity (target, g, name, p->where))
13650 return false;
13651 }
13652 }
13653 }
13654
13655 /* If we attempt to "overwrite" a specific binding, this is an error. */
13656 if (p->overridden && !p->overridden->is_generic)
13657 {
13658 gfc_error ("GENERIC %qs at %L cannot overwrite specific binding with"
13659 " the same name", name, &p->where);
13660 return false;
13661 }
13662
13663 /* Take the SUBROUTINE/FUNCTION attributes of the first specific target, as
13664 all must have the same attributes here. */
13665 first_target = p->u.generic->specific->u.specific;
13666 gcc_assert (first_target);
13667 p->subroutine = first_target->n.sym->attr.subroutine;
13668 p->function = first_target->n.sym->attr.function;
13669
13670 return true;
13671 }
13672
13673
13674 /* Resolve a GENERIC procedure binding for a derived type. */
13675
13676 static bool
13677 resolve_typebound_generic (gfc_symbol* derived, gfc_symtree* st)
13678 {
13679 gfc_symbol* super_type;
13680
13681 /* Find the overridden binding if any. */
13682 st->n.tb->overridden = NULL;
13683 super_type = gfc_get_derived_super_type (derived);
13684 if (super_type)
13685 {
13686 gfc_symtree* overridden;
13687 overridden = gfc_find_typebound_proc (super_type, NULL, st->name,
13688 true, NULL);
13689
13690 if (overridden && overridden->n.tb)
13691 st->n.tb->overridden = overridden->n.tb;
13692 }
13693
13694 /* Resolve using worker function. */
13695 return resolve_tb_generic_targets (super_type, st->n.tb, st->name);
13696 }
13697
13698
13699 /* Retrieve the target-procedure of an operator binding and do some checks in
13700 common for intrinsic and user-defined type-bound operators. */
13701
13702 static gfc_symbol*
13703 get_checked_tb_operator_target (gfc_tbp_generic* target, locus where)
13704 {
13705 gfc_symbol* target_proc;
13706
13707 gcc_assert (target->specific && !target->specific->is_generic);
13708 target_proc = target->specific->u.specific->n.sym;
13709 gcc_assert (target_proc);
13710
13711 /* F08:C468. All operator bindings must have a passed-object dummy argument. */
13712 if (target->specific->nopass)
13713 {
13714 gfc_error ("Type-bound operator at %L cannot be NOPASS", &where);
13715 return NULL;
13716 }
13717
13718 return target_proc;
13719 }
13720
13721
13722 /* Resolve a type-bound intrinsic operator. */
13723
13724 static bool
13725 resolve_typebound_intrinsic_op (gfc_symbol* derived, gfc_intrinsic_op op,
13726 gfc_typebound_proc* p)
13727 {
13728 gfc_symbol* super_type;
13729 gfc_tbp_generic* target;
13730
13731 /* If there's already an error here, do nothing (but don't fail again). */
13732 if (p->error)
13733 return true;
13734
13735 /* Operators should always be GENERIC bindings. */
13736 gcc_assert (p->is_generic);
13737
13738 /* Look for an overridden binding. */
13739 super_type = gfc_get_derived_super_type (derived);
13740 if (super_type && super_type->f2k_derived)
13741 p->overridden = gfc_find_typebound_intrinsic_op (super_type, NULL,
13742 op, true, NULL);
13743 else
13744 p->overridden = NULL;
13745
13746 /* Resolve general GENERIC properties using worker function. */
13747 if (!resolve_tb_generic_targets (super_type, p, gfc_op2string(op)))
13748 goto error;
13749
13750 /* Check the targets to be procedures of correct interface. */
13751 for (target = p->u.generic; target; target = target->next)
13752 {
13753 gfc_symbol* target_proc;
13754
13755 target_proc = get_checked_tb_operator_target (target, p->where);
13756 if (!target_proc)
13757 goto error;
13758
13759 if (!gfc_check_operator_interface (target_proc, op, p->where))
13760 goto error;
13761
13762 /* Add target to non-typebound operator list. */
13763 if (!target->specific->deferred && !derived->attr.use_assoc
13764 && p->access != ACCESS_PRIVATE && derived->ns == gfc_current_ns)
13765 {
13766 gfc_interface *head, *intr;
13767
13768 /* Preempt 'gfc_check_new_interface' for submodules, where the
13769 mechanism for handling module procedures winds up resolving
13770 operator interfaces twice and would otherwise cause an error. */
13771 for (intr = derived->ns->op[op]; intr; intr = intr->next)
13772 if (intr->sym == target_proc
13773 && target_proc->attr.used_in_submodule)
13774 return true;
13775
13776 if (!gfc_check_new_interface (derived->ns->op[op],
13777 target_proc, p->where))
13778 return false;
13779 head = derived->ns->op[op];
13780 intr = gfc_get_interface ();
13781 intr->sym = target_proc;
13782 intr->where = p->where;
13783 intr->next = head;
13784 derived->ns->op[op] = intr;
13785 }
13786 }
13787
13788 return true;
13789
13790 error:
13791 p->error = 1;
13792 return false;
13793 }
13794
13795
13796 /* Resolve a type-bound user operator (tree-walker callback). */
13797
13798 static gfc_symbol* resolve_bindings_derived;
13799 static bool resolve_bindings_result;
13800
13801 static bool check_uop_procedure (gfc_symbol* sym, locus where);
13802
13803 static void
13804 resolve_typebound_user_op (gfc_symtree* stree)
13805 {
13806 gfc_symbol* super_type;
13807 gfc_tbp_generic* target;
13808
13809 gcc_assert (stree && stree->n.tb);
13810
13811 if (stree->n.tb->error)
13812 return;
13813
13814 /* Operators should always be GENERIC bindings. */
13815 gcc_assert (stree->n.tb->is_generic);
13816
13817 /* Find overridden procedure, if any. */
13818 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13819 if (super_type && super_type->f2k_derived)
13820 {
13821 gfc_symtree* overridden;
13822 overridden = gfc_find_typebound_user_op (super_type, NULL,
13823 stree->name, true, NULL);
13824
13825 if (overridden && overridden->n.tb)
13826 stree->n.tb->overridden = overridden->n.tb;
13827 }
13828 else
13829 stree->n.tb->overridden = NULL;
13830
13831 /* Resolve basically using worker function. */
13832 if (!resolve_tb_generic_targets (super_type, stree->n.tb, stree->name))
13833 goto error;
13834
13835 /* Check the targets to be functions of correct interface. */
13836 for (target = stree->n.tb->u.generic; target; target = target->next)
13837 {
13838 gfc_symbol* target_proc;
13839
13840 target_proc = get_checked_tb_operator_target (target, stree->n.tb->where);
13841 if (!target_proc)
13842 goto error;
13843
13844 if (!check_uop_procedure (target_proc, stree->n.tb->where))
13845 goto error;
13846 }
13847
13848 return;
13849
13850 error:
13851 resolve_bindings_result = false;
13852 stree->n.tb->error = 1;
13853 }
13854
13855
13856 /* Resolve the type-bound procedures for a derived type. */
13857
13858 static void
13859 resolve_typebound_procedure (gfc_symtree* stree)
13860 {
13861 gfc_symbol* proc;
13862 locus where;
13863 gfc_symbol* me_arg;
13864 gfc_symbol* super_type;
13865 gfc_component* comp;
13866
13867 gcc_assert (stree);
13868
13869 /* Undefined specific symbol from GENERIC target definition. */
13870 if (!stree->n.tb)
13871 return;
13872
13873 if (stree->n.tb->error)
13874 return;
13875
13876 /* If this is a GENERIC binding, use that routine. */
13877 if (stree->n.tb->is_generic)
13878 {
13879 if (!resolve_typebound_generic (resolve_bindings_derived, stree))
13880 goto error;
13881 return;
13882 }
13883
13884 /* Get the target-procedure to check it. */
13885 gcc_assert (!stree->n.tb->is_generic);
13886 gcc_assert (stree->n.tb->u.specific);
13887 proc = stree->n.tb->u.specific->n.sym;
13888 where = stree->n.tb->where;
13889
13890 /* Default access should already be resolved from the parser. */
13891 gcc_assert (stree->n.tb->access != ACCESS_UNKNOWN);
13892
13893 if (stree->n.tb->deferred)
13894 {
13895 if (!check_proc_interface (proc, &where))
13896 goto error;
13897 }
13898 else
13899 {
13900 /* If proc has not been resolved at this point, proc->name may
13901 actually be a USE associated entity. See PR fortran/89647. */
13902 if (!proc->resolved
13903 && proc->attr.function == 0 && proc->attr.subroutine == 0)
13904 {
13905 gfc_symbol *tmp;
13906 gfc_find_symbol (proc->name, gfc_current_ns->parent, 1, &tmp);
13907 if (tmp && tmp->attr.use_assoc)
13908 {
13909 proc->module = tmp->module;
13910 proc->attr.proc = tmp->attr.proc;
13911 proc->attr.function = tmp->attr.function;
13912 proc->attr.subroutine = tmp->attr.subroutine;
13913 proc->attr.use_assoc = tmp->attr.use_assoc;
13914 proc->ts = tmp->ts;
13915 proc->result = tmp->result;
13916 }
13917 }
13918
13919 /* Check for F08:C465. */
13920 if ((!proc->attr.subroutine && !proc->attr.function)
13921 || (proc->attr.proc != PROC_MODULE
13922 && proc->attr.if_source != IFSRC_IFBODY)
13923 || proc->attr.abstract)
13924 {
13925 gfc_error ("%qs must be a module procedure or an external "
13926 "procedure with an explicit interface at %L",
13927 proc->name, &where);
13928 goto error;
13929 }
13930 }
13931
13932 stree->n.tb->subroutine = proc->attr.subroutine;
13933 stree->n.tb->function = proc->attr.function;
13934
13935 /* Find the super-type of the current derived type. We could do this once and
13936 store in a global if speed is needed, but as long as not I believe this is
13937 more readable and clearer. */
13938 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13939
13940 /* If PASS, resolve and check arguments if not already resolved / loaded
13941 from a .mod file. */
13942 if (!stree->n.tb->nopass && stree->n.tb->pass_arg_num == 0)
13943 {
13944 gfc_formal_arglist *dummy_args;
13945
13946 dummy_args = gfc_sym_get_dummy_args (proc);
13947 if (stree->n.tb->pass_arg)
13948 {
13949 gfc_formal_arglist *i;
13950
13951 /* If an explicit passing argument name is given, walk the arg-list
13952 and look for it. */
13953
13954 me_arg = NULL;
13955 stree->n.tb->pass_arg_num = 1;
13956 for (i = dummy_args; i; i = i->next)
13957 {
13958 if (!strcmp (i->sym->name, stree->n.tb->pass_arg))
13959 {
13960 me_arg = i->sym;
13961 break;
13962 }
13963 ++stree->n.tb->pass_arg_num;
13964 }
13965
13966 if (!me_arg)
13967 {
13968 gfc_error ("Procedure %qs with PASS(%s) at %L has no"
13969 " argument %qs",
13970 proc->name, stree->n.tb->pass_arg, &where,
13971 stree->n.tb->pass_arg);
13972 goto error;
13973 }
13974 }
13975 else
13976 {
13977 /* Otherwise, take the first one; there should in fact be at least
13978 one. */
13979 stree->n.tb->pass_arg_num = 1;
13980 if (!dummy_args)
13981 {
13982 gfc_error ("Procedure %qs with PASS at %L must have at"
13983 " least one argument", proc->name, &where);
13984 goto error;
13985 }
13986 me_arg = dummy_args->sym;
13987 }
13988
13989 /* Now check that the argument-type matches and the passed-object
13990 dummy argument is generally fine. */
13991
13992 gcc_assert (me_arg);
13993
13994 if (me_arg->ts.type != BT_CLASS)
13995 {
13996 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13997 " at %L", proc->name, &where);
13998 goto error;
13999 }
14000
14001 if (CLASS_DATA (me_arg)->ts.u.derived
14002 != resolve_bindings_derived)
14003 {
14004 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
14005 " the derived-type %qs", me_arg->name, proc->name,
14006 me_arg->name, &where, resolve_bindings_derived->name);
14007 goto error;
14008 }
14009
14010 gcc_assert (me_arg->ts.type == BT_CLASS);
14011 if (CLASS_DATA (me_arg)->as && CLASS_DATA (me_arg)->as->rank != 0)
14012 {
14013 gfc_error ("Passed-object dummy argument of %qs at %L must be"
14014 " scalar", proc->name, &where);
14015 goto error;
14016 }
14017 if (CLASS_DATA (me_arg)->attr.allocatable)
14018 {
14019 gfc_error ("Passed-object dummy argument of %qs at %L must not"
14020 " be ALLOCATABLE", proc->name, &where);
14021 goto error;
14022 }
14023 if (CLASS_DATA (me_arg)->attr.class_pointer)
14024 {
14025 gfc_error ("Passed-object dummy argument of %qs at %L must not"
14026 " be POINTER", proc->name, &where);
14027 goto error;
14028 }
14029 }
14030
14031 /* If we are extending some type, check that we don't override a procedure
14032 flagged NON_OVERRIDABLE. */
14033 stree->n.tb->overridden = NULL;
14034 if (super_type)
14035 {
14036 gfc_symtree* overridden;
14037 overridden = gfc_find_typebound_proc (super_type, NULL,
14038 stree->name, true, NULL);
14039
14040 if (overridden)
14041 {
14042 if (overridden->n.tb)
14043 stree->n.tb->overridden = overridden->n.tb;
14044
14045 if (!gfc_check_typebound_override (stree, overridden))
14046 goto error;
14047 }
14048 }
14049
14050 /* See if there's a name collision with a component directly in this type. */
14051 for (comp = resolve_bindings_derived->components; comp; comp = comp->next)
14052 if (!strcmp (comp->name, stree->name))
14053 {
14054 gfc_error ("Procedure %qs at %L has the same name as a component of"
14055 " %qs",
14056 stree->name, &where, resolve_bindings_derived->name);
14057 goto error;
14058 }
14059
14060 /* Try to find a name collision with an inherited component. */
14061 if (super_type && gfc_find_component (super_type, stree->name, true, true,
14062 NULL))
14063 {
14064 gfc_error ("Procedure %qs at %L has the same name as an inherited"
14065 " component of %qs",
14066 stree->name, &where, resolve_bindings_derived->name);
14067 goto error;
14068 }
14069
14070 stree->n.tb->error = 0;
14071 return;
14072
14073 error:
14074 resolve_bindings_result = false;
14075 stree->n.tb->error = 1;
14076 }
14077
14078
14079 static bool
14080 resolve_typebound_procedures (gfc_symbol* derived)
14081 {
14082 int op;
14083 gfc_symbol* super_type;
14084
14085 if (!derived->f2k_derived || !derived->f2k_derived->tb_sym_root)
14086 return true;
14087
14088 super_type = gfc_get_derived_super_type (derived);
14089 if (super_type)
14090 resolve_symbol (super_type);
14091
14092 resolve_bindings_derived = derived;
14093 resolve_bindings_result = true;
14094
14095 if (derived->f2k_derived->tb_sym_root)
14096 gfc_traverse_symtree (derived->f2k_derived->tb_sym_root,
14097 &resolve_typebound_procedure);
14098
14099 if (derived->f2k_derived->tb_uop_root)
14100 gfc_traverse_symtree (derived->f2k_derived->tb_uop_root,
14101 &resolve_typebound_user_op);
14102
14103 for (op = 0; op != GFC_INTRINSIC_OPS; ++op)
14104 {
14105 gfc_typebound_proc* p = derived->f2k_derived->tb_op[op];
14106 if (p && !resolve_typebound_intrinsic_op (derived,
14107 (gfc_intrinsic_op)op, p))
14108 resolve_bindings_result = false;
14109 }
14110
14111 return resolve_bindings_result;
14112 }
14113
14114
14115 /* Add a derived type to the dt_list. The dt_list is used in trans-types.c
14116 to give all identical derived types the same backend_decl. */
14117 static void
14118 add_dt_to_dt_list (gfc_symbol *derived)
14119 {
14120 if (!derived->dt_next)
14121 {
14122 if (gfc_derived_types)
14123 {
14124 derived->dt_next = gfc_derived_types->dt_next;
14125 gfc_derived_types->dt_next = derived;
14126 }
14127 else
14128 {
14129 derived->dt_next = derived;
14130 }
14131 gfc_derived_types = derived;
14132 }
14133 }
14134
14135
14136 /* Ensure that a derived-type is really not abstract, meaning that every
14137 inherited DEFERRED binding is overridden by a non-DEFERRED one. */
14138
14139 static bool
14140 ensure_not_abstract_walker (gfc_symbol* sub, gfc_symtree* st)
14141 {
14142 if (!st)
14143 return true;
14144
14145 if (!ensure_not_abstract_walker (sub, st->left))
14146 return false;
14147 if (!ensure_not_abstract_walker (sub, st->right))
14148 return false;
14149
14150 if (st->n.tb && st->n.tb->deferred)
14151 {
14152 gfc_symtree* overriding;
14153 overriding = gfc_find_typebound_proc (sub, NULL, st->name, true, NULL);
14154 if (!overriding)
14155 return false;
14156 gcc_assert (overriding->n.tb);
14157 if (overriding->n.tb->deferred)
14158 {
14159 gfc_error ("Derived-type %qs declared at %L must be ABSTRACT because"
14160 " %qs is DEFERRED and not overridden",
14161 sub->name, &sub->declared_at, st->name);
14162 return false;
14163 }
14164 }
14165
14166 return true;
14167 }
14168
14169 static bool
14170 ensure_not_abstract (gfc_symbol* sub, gfc_symbol* ancestor)
14171 {
14172 /* The algorithm used here is to recursively travel up the ancestry of sub
14173 and for each ancestor-type, check all bindings. If any of them is
14174 DEFERRED, look it up starting from sub and see if the found (overriding)
14175 binding is not DEFERRED.
14176 This is not the most efficient way to do this, but it should be ok and is
14177 clearer than something sophisticated. */
14178
14179 gcc_assert (ancestor && !sub->attr.abstract);
14180
14181 if (!ancestor->attr.abstract)
14182 return true;
14183
14184 /* Walk bindings of this ancestor. */
14185 if (ancestor->f2k_derived)
14186 {
14187 bool t;
14188 t = ensure_not_abstract_walker (sub, ancestor->f2k_derived->tb_sym_root);
14189 if (!t)
14190 return false;
14191 }
14192
14193 /* Find next ancestor type and recurse on it. */
14194 ancestor = gfc_get_derived_super_type (ancestor);
14195 if (ancestor)
14196 return ensure_not_abstract (sub, ancestor);
14197
14198 return true;
14199 }
14200
14201
14202 /* This check for typebound defined assignments is done recursively
14203 since the order in which derived types are resolved is not always in
14204 order of the declarations. */
14205
14206 static void
14207 check_defined_assignments (gfc_symbol *derived)
14208 {
14209 gfc_component *c;
14210
14211 for (c = derived->components; c; c = c->next)
14212 {
14213 if (!gfc_bt_struct (c->ts.type)
14214 || c->attr.pointer
14215 || c->attr.allocatable
14216 || c->attr.proc_pointer_comp
14217 || c->attr.class_pointer
14218 || c->attr.proc_pointer)
14219 continue;
14220
14221 if (c->ts.u.derived->attr.defined_assign_comp
14222 || (c->ts.u.derived->f2k_derived
14223 && c->ts.u.derived->f2k_derived->tb_op[INTRINSIC_ASSIGN]))
14224 {
14225 derived->attr.defined_assign_comp = 1;
14226 return;
14227 }
14228
14229 check_defined_assignments (c->ts.u.derived);
14230 if (c->ts.u.derived->attr.defined_assign_comp)
14231 {
14232 derived->attr.defined_assign_comp = 1;
14233 return;
14234 }
14235 }
14236 }
14237
14238
14239 /* Resolve a single component of a derived type or structure. */
14240
14241 static bool
14242 resolve_component (gfc_component *c, gfc_symbol *sym)
14243 {
14244 gfc_symbol *super_type;
14245 symbol_attribute *attr;
14246
14247 if (c->attr.artificial)
14248 return true;
14249
14250 /* Do not allow vtype components to be resolved in nameless namespaces
14251 such as block data because the procedure pointers will cause ICEs
14252 and vtables are not needed in these contexts. */
14253 if (sym->attr.vtype && sym->attr.use_assoc
14254 && sym->ns->proc_name == NULL)
14255 return true;
14256
14257 /* F2008, C442. */
14258 if ((!sym->attr.is_class || c != sym->components)
14259 && c->attr.codimension
14260 && (!c->attr.allocatable || (c->as && c->as->type != AS_DEFERRED)))
14261 {
14262 gfc_error ("Coarray component %qs at %L must be allocatable with "
14263 "deferred shape", c->name, &c->loc);
14264 return false;
14265 }
14266
14267 /* F2008, C443. */
14268 if (c->attr.codimension && c->ts.type == BT_DERIVED
14269 && c->ts.u.derived->ts.is_iso_c)
14270 {
14271 gfc_error ("Component %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
14272 "shall not be a coarray", c->name, &c->loc);
14273 return false;
14274 }
14275
14276 /* F2008, C444. */
14277 if (gfc_bt_struct (c->ts.type) && c->ts.u.derived->attr.coarray_comp
14278 && (c->attr.codimension || c->attr.pointer || c->attr.dimension
14279 || c->attr.allocatable))
14280 {
14281 gfc_error ("Component %qs at %L with coarray component "
14282 "shall be a nonpointer, nonallocatable scalar",
14283 c->name, &c->loc);
14284 return false;
14285 }
14286
14287 /* F2008, C448. */
14288 if (c->ts.type == BT_CLASS)
14289 {
14290 if (CLASS_DATA (c))
14291 {
14292 attr = &(CLASS_DATA (c)->attr);
14293
14294 /* Fix up contiguous attribute. */
14295 if (c->attr.contiguous)
14296 attr->contiguous = 1;
14297 }
14298 else
14299 attr = NULL;
14300 }
14301 else
14302 attr = &c->attr;
14303
14304 if (attr && attr->contiguous && (!attr->dimension || !attr->pointer))
14305 {
14306 gfc_error ("Component %qs at %L has the CONTIGUOUS attribute but "
14307 "is not an array pointer", c->name, &c->loc);
14308 return false;
14309 }
14310
14311 /* F2003, 15.2.1 - length has to be one. */
14312 if (sym->attr.is_bind_c && c->ts.type == BT_CHARACTER
14313 && (c->ts.u.cl == NULL || c->ts.u.cl->length == NULL
14314 || !gfc_is_constant_expr (c->ts.u.cl->length)
14315 || mpz_cmp_si (c->ts.u.cl->length->value.integer, 1) != 0))
14316 {
14317 gfc_error ("Component %qs of BIND(C) type at %L must have length one",
14318 c->name, &c->loc);
14319 return false;
14320 }
14321
14322 if (c->attr.proc_pointer && c->ts.interface)
14323 {
14324 gfc_symbol *ifc = c->ts.interface;
14325
14326 if (!sym->attr.vtype && !check_proc_interface (ifc, &c->loc))
14327 {
14328 c->tb->error = 1;
14329 return false;
14330 }
14331
14332 if (ifc->attr.if_source || ifc->attr.intrinsic)
14333 {
14334 /* Resolve interface and copy attributes. */
14335 if (ifc->formal && !ifc->formal_ns)
14336 resolve_symbol (ifc);
14337 if (ifc->attr.intrinsic)
14338 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
14339
14340 if (ifc->result)
14341 {
14342 c->ts = ifc->result->ts;
14343 c->attr.allocatable = ifc->result->attr.allocatable;
14344 c->attr.pointer = ifc->result->attr.pointer;
14345 c->attr.dimension = ifc->result->attr.dimension;
14346 c->as = gfc_copy_array_spec (ifc->result->as);
14347 c->attr.class_ok = ifc->result->attr.class_ok;
14348 }
14349 else
14350 {
14351 c->ts = ifc->ts;
14352 c->attr.allocatable = ifc->attr.allocatable;
14353 c->attr.pointer = ifc->attr.pointer;
14354 c->attr.dimension = ifc->attr.dimension;
14355 c->as = gfc_copy_array_spec (ifc->as);
14356 c->attr.class_ok = ifc->attr.class_ok;
14357 }
14358 c->ts.interface = ifc;
14359 c->attr.function = ifc->attr.function;
14360 c->attr.subroutine = ifc->attr.subroutine;
14361
14362 c->attr.pure = ifc->attr.pure;
14363 c->attr.elemental = ifc->attr.elemental;
14364 c->attr.recursive = ifc->attr.recursive;
14365 c->attr.always_explicit = ifc->attr.always_explicit;
14366 c->attr.ext_attr |= ifc->attr.ext_attr;
14367 /* Copy char length. */
14368 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
14369 {
14370 gfc_charlen *cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
14371 if (cl->length && !cl->resolved
14372 && !gfc_resolve_expr (cl->length))
14373 {
14374 c->tb->error = 1;
14375 return false;
14376 }
14377 c->ts.u.cl = cl;
14378 }
14379 }
14380 }
14381 else if (c->attr.proc_pointer && c->ts.type == BT_UNKNOWN)
14382 {
14383 /* Since PPCs are not implicitly typed, a PPC without an explicit
14384 interface must be a subroutine. */
14385 gfc_add_subroutine (&c->attr, c->name, &c->loc);
14386 }
14387
14388 /* Procedure pointer components: Check PASS arg. */
14389 if (c->attr.proc_pointer && !c->tb->nopass && c->tb->pass_arg_num == 0
14390 && !sym->attr.vtype)
14391 {
14392 gfc_symbol* me_arg;
14393
14394 if (c->tb->pass_arg)
14395 {
14396 gfc_formal_arglist* i;
14397
14398 /* If an explicit passing argument name is given, walk the arg-list
14399 and look for it. */
14400
14401 me_arg = NULL;
14402 c->tb->pass_arg_num = 1;
14403 for (i = c->ts.interface->formal; i; i = i->next)
14404 {
14405 if (!strcmp (i->sym->name, c->tb->pass_arg))
14406 {
14407 me_arg = i->sym;
14408 break;
14409 }
14410 c->tb->pass_arg_num++;
14411 }
14412
14413 if (!me_arg)
14414 {
14415 gfc_error ("Procedure pointer component %qs with PASS(%s) "
14416 "at %L has no argument %qs", c->name,
14417 c->tb->pass_arg, &c->loc, c->tb->pass_arg);
14418 c->tb->error = 1;
14419 return false;
14420 }
14421 }
14422 else
14423 {
14424 /* Otherwise, take the first one; there should in fact be at least
14425 one. */
14426 c->tb->pass_arg_num = 1;
14427 if (!c->ts.interface->formal)
14428 {
14429 gfc_error ("Procedure pointer component %qs with PASS at %L "
14430 "must have at least one argument",
14431 c->name, &c->loc);
14432 c->tb->error = 1;
14433 return false;
14434 }
14435 me_arg = c->ts.interface->formal->sym;
14436 }
14437
14438 /* Now check that the argument-type matches. */
14439 gcc_assert (me_arg);
14440 if ((me_arg->ts.type != BT_DERIVED && me_arg->ts.type != BT_CLASS)
14441 || (me_arg->ts.type == BT_DERIVED && me_arg->ts.u.derived != sym)
14442 || (me_arg->ts.type == BT_CLASS
14443 && CLASS_DATA (me_arg)->ts.u.derived != sym))
14444 {
14445 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
14446 " the derived type %qs", me_arg->name, c->name,
14447 me_arg->name, &c->loc, sym->name);
14448 c->tb->error = 1;
14449 return false;
14450 }
14451
14452 /* Check for F03:C453. */
14453 if (CLASS_DATA (me_arg)->attr.dimension)
14454 {
14455 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
14456 "must be scalar", me_arg->name, c->name, me_arg->name,
14457 &c->loc);
14458 c->tb->error = 1;
14459 return false;
14460 }
14461
14462 if (CLASS_DATA (me_arg)->attr.class_pointer)
14463 {
14464 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
14465 "may not have the POINTER attribute", me_arg->name,
14466 c->name, me_arg->name, &c->loc);
14467 c->tb->error = 1;
14468 return false;
14469 }
14470
14471 if (CLASS_DATA (me_arg)->attr.allocatable)
14472 {
14473 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
14474 "may not be ALLOCATABLE", me_arg->name, c->name,
14475 me_arg->name, &c->loc);
14476 c->tb->error = 1;
14477 return false;
14478 }
14479
14480 if (gfc_type_is_extensible (sym) && me_arg->ts.type != BT_CLASS)
14481 {
14482 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
14483 " at %L", c->name, &c->loc);
14484 return false;
14485 }
14486
14487 }
14488
14489 /* Check type-spec if this is not the parent-type component. */
14490 if (((sym->attr.is_class
14491 && (!sym->components->ts.u.derived->attr.extension
14492 || c != sym->components->ts.u.derived->components))
14493 || (!sym->attr.is_class
14494 && (!sym->attr.extension || c != sym->components)))
14495 && !sym->attr.vtype
14496 && !resolve_typespec_used (&c->ts, &c->loc, c->name))
14497 return false;
14498
14499 super_type = gfc_get_derived_super_type (sym);
14500
14501 /* If this type is an extension, set the accessibility of the parent
14502 component. */
14503 if (super_type
14504 && ((sym->attr.is_class
14505 && c == sym->components->ts.u.derived->components)
14506 || (!sym->attr.is_class && c == sym->components))
14507 && strcmp (super_type->name, c->name) == 0)
14508 c->attr.access = super_type->attr.access;
14509
14510 /* If this type is an extension, see if this component has the same name
14511 as an inherited type-bound procedure. */
14512 if (super_type && !sym->attr.is_class
14513 && gfc_find_typebound_proc (super_type, NULL, c->name, true, NULL))
14514 {
14515 gfc_error ("Component %qs of %qs at %L has the same name as an"
14516 " inherited type-bound procedure",
14517 c->name, sym->name, &c->loc);
14518 return false;
14519 }
14520
14521 if (c->ts.type == BT_CHARACTER && !c->attr.proc_pointer
14522 && !c->ts.deferred)
14523 {
14524 if (c->ts.u.cl->length == NULL
14525 || (!resolve_charlen(c->ts.u.cl))
14526 || !gfc_is_constant_expr (c->ts.u.cl->length))
14527 {
14528 gfc_error ("Character length of component %qs needs to "
14529 "be a constant specification expression at %L",
14530 c->name,
14531 c->ts.u.cl->length ? &c->ts.u.cl->length->where : &c->loc);
14532 return false;
14533 }
14534 }
14535
14536 if (c->ts.type == BT_CHARACTER && c->ts.deferred
14537 && !c->attr.pointer && !c->attr.allocatable)
14538 {
14539 gfc_error ("Character component %qs of %qs at %L with deferred "
14540 "length must be a POINTER or ALLOCATABLE",
14541 c->name, sym->name, &c->loc);
14542 return false;
14543 }
14544
14545 /* Add the hidden deferred length field. */
14546 if (c->ts.type == BT_CHARACTER
14547 && (c->ts.deferred || c->attr.pdt_string)
14548 && !c->attr.function
14549 && !sym->attr.is_class)
14550 {
14551 char name[GFC_MAX_SYMBOL_LEN+9];
14552 gfc_component *strlen;
14553 sprintf (name, "_%s_length", c->name);
14554 strlen = gfc_find_component (sym, name, true, true, NULL);
14555 if (strlen == NULL)
14556 {
14557 if (!gfc_add_component (sym, name, &strlen))
14558 return false;
14559 strlen->ts.type = BT_INTEGER;
14560 strlen->ts.kind = gfc_charlen_int_kind;
14561 strlen->attr.access = ACCESS_PRIVATE;
14562 strlen->attr.artificial = 1;
14563 }
14564 }
14565
14566 if (c->ts.type == BT_DERIVED
14567 && sym->component_access != ACCESS_PRIVATE
14568 && gfc_check_symbol_access (sym)
14569 && !is_sym_host_assoc (c->ts.u.derived, sym->ns)
14570 && !c->ts.u.derived->attr.use_assoc
14571 && !gfc_check_symbol_access (c->ts.u.derived)
14572 && !gfc_notify_std (GFC_STD_F2003, "the component %qs is a "
14573 "PRIVATE type and cannot be a component of "
14574 "%qs, which is PUBLIC at %L", c->name,
14575 sym->name, &sym->declared_at))
14576 return false;
14577
14578 if ((sym->attr.sequence || sym->attr.is_bind_c) && c->ts.type == BT_CLASS)
14579 {
14580 gfc_error ("Polymorphic component %s at %L in SEQUENCE or BIND(C) "
14581 "type %s", c->name, &c->loc, sym->name);
14582 return false;
14583 }
14584
14585 if (sym->attr.sequence)
14586 {
14587 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.sequence == 0)
14588 {
14589 gfc_error ("Component %s of SEQUENCE type declared at %L does "
14590 "not have the SEQUENCE attribute",
14591 c->ts.u.derived->name, &sym->declared_at);
14592 return false;
14593 }
14594 }
14595
14596 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.generic)
14597 c->ts.u.derived = gfc_find_dt_in_generic (c->ts.u.derived);
14598 else if (c->ts.type == BT_CLASS && c->attr.class_ok
14599 && CLASS_DATA (c)->ts.u.derived->attr.generic)
14600 CLASS_DATA (c)->ts.u.derived
14601 = gfc_find_dt_in_generic (CLASS_DATA (c)->ts.u.derived);
14602
14603 /* If an allocatable component derived type is of the same type as
14604 the enclosing derived type, we need a vtable generating so that
14605 the __deallocate procedure is created. */
14606 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
14607 && c->ts.u.derived == sym && c->attr.allocatable == 1)
14608 gfc_find_vtab (&c->ts);
14609
14610 /* Ensure that all the derived type components are put on the
14611 derived type list; even in formal namespaces, where derived type
14612 pointer components might not have been declared. */
14613 if (c->ts.type == BT_DERIVED
14614 && c->ts.u.derived
14615 && c->ts.u.derived->components
14616 && c->attr.pointer
14617 && sym != c->ts.u.derived)
14618 add_dt_to_dt_list (c->ts.u.derived);
14619
14620 if (!gfc_resolve_array_spec (c->as,
14621 !(c->attr.pointer || c->attr.proc_pointer
14622 || c->attr.allocatable)))
14623 return false;
14624
14625 if (c->initializer && !sym->attr.vtype
14626 && !c->attr.pdt_kind && !c->attr.pdt_len
14627 && !gfc_check_assign_symbol (sym, c, c->initializer))
14628 return false;
14629
14630 return true;
14631 }
14632
14633
14634 /* Be nice about the locus for a structure expression - show the locus of the
14635 first non-null sub-expression if we can. */
14636
14637 static locus *
14638 cons_where (gfc_expr *struct_expr)
14639 {
14640 gfc_constructor *cons;
14641
14642 gcc_assert (struct_expr && struct_expr->expr_type == EXPR_STRUCTURE);
14643
14644 cons = gfc_constructor_first (struct_expr->value.constructor);
14645 for (; cons; cons = gfc_constructor_next (cons))
14646 {
14647 if (cons->expr && cons->expr->expr_type != EXPR_NULL)
14648 return &cons->expr->where;
14649 }
14650
14651 return &struct_expr->where;
14652 }
14653
14654 /* Resolve the components of a structure type. Much less work than derived
14655 types. */
14656
14657 static bool
14658 resolve_fl_struct (gfc_symbol *sym)
14659 {
14660 gfc_component *c;
14661 gfc_expr *init = NULL;
14662 bool success;
14663
14664 /* Make sure UNIONs do not have overlapping initializers. */
14665 if (sym->attr.flavor == FL_UNION)
14666 {
14667 for (c = sym->components; c; c = c->next)
14668 {
14669 if (init && c->initializer)
14670 {
14671 gfc_error ("Conflicting initializers in union at %L and %L",
14672 cons_where (init), cons_where (c->initializer));
14673 gfc_free_expr (c->initializer);
14674 c->initializer = NULL;
14675 }
14676 if (init == NULL)
14677 init = c->initializer;
14678 }
14679 }
14680
14681 success = true;
14682 for (c = sym->components; c; c = c->next)
14683 if (!resolve_component (c, sym))
14684 success = false;
14685
14686 if (!success)
14687 return false;
14688
14689 if (sym->components)
14690 add_dt_to_dt_list (sym);
14691
14692 return true;
14693 }
14694
14695
14696 /* Resolve the components of a derived type. This does not have to wait until
14697 resolution stage, but can be done as soon as the dt declaration has been
14698 parsed. */
14699
14700 static bool
14701 resolve_fl_derived0 (gfc_symbol *sym)
14702 {
14703 gfc_symbol* super_type;
14704 gfc_component *c;
14705 gfc_formal_arglist *f;
14706 bool success;
14707
14708 if (sym->attr.unlimited_polymorphic)
14709 return true;
14710
14711 super_type = gfc_get_derived_super_type (sym);
14712
14713 /* F2008, C432. */
14714 if (super_type && sym->attr.coarray_comp && !super_type->attr.coarray_comp)
14715 {
14716 gfc_error ("As extending type %qs at %L has a coarray component, "
14717 "parent type %qs shall also have one", sym->name,
14718 &sym->declared_at, super_type->name);
14719 return false;
14720 }
14721
14722 /* Ensure the extended type gets resolved before we do. */
14723 if (super_type && !resolve_fl_derived0 (super_type))
14724 return false;
14725
14726 /* An ABSTRACT type must be extensible. */
14727 if (sym->attr.abstract && !gfc_type_is_extensible (sym))
14728 {
14729 gfc_error ("Non-extensible derived-type %qs at %L must not be ABSTRACT",
14730 sym->name, &sym->declared_at);
14731 return false;
14732 }
14733
14734 c = (sym->attr.is_class) ? sym->components->ts.u.derived->components
14735 : sym->components;
14736
14737 success = true;
14738 for ( ; c != NULL; c = c->next)
14739 if (!resolve_component (c, sym))
14740 success = false;
14741
14742 if (!success)
14743 return false;
14744
14745 /* Now add the caf token field, where needed. */
14746 if (flag_coarray != GFC_FCOARRAY_NONE
14747 && !sym->attr.is_class && !sym->attr.vtype)
14748 {
14749 for (c = sym->components; c; c = c->next)
14750 if (!c->attr.dimension && !c->attr.codimension
14751 && (c->attr.allocatable || c->attr.pointer))
14752 {
14753 char name[GFC_MAX_SYMBOL_LEN+9];
14754 gfc_component *token;
14755 sprintf (name, "_caf_%s", c->name);
14756 token = gfc_find_component (sym, name, true, true, NULL);
14757 if (token == NULL)
14758 {
14759 if (!gfc_add_component (sym, name, &token))
14760 return false;
14761 token->ts.type = BT_VOID;
14762 token->ts.kind = gfc_default_integer_kind;
14763 token->attr.access = ACCESS_PRIVATE;
14764 token->attr.artificial = 1;
14765 token->attr.caf_token = 1;
14766 }
14767 }
14768 }
14769
14770 check_defined_assignments (sym);
14771
14772 if (!sym->attr.defined_assign_comp && super_type)
14773 sym->attr.defined_assign_comp
14774 = super_type->attr.defined_assign_comp;
14775
14776 /* If this is a non-ABSTRACT type extending an ABSTRACT one, ensure that
14777 all DEFERRED bindings are overridden. */
14778 if (super_type && super_type->attr.abstract && !sym->attr.abstract
14779 && !sym->attr.is_class
14780 && !ensure_not_abstract (sym, super_type))
14781 return false;
14782
14783 /* Check that there is a component for every PDT parameter. */
14784 if (sym->attr.pdt_template)
14785 {
14786 for (f = sym->formal; f; f = f->next)
14787 {
14788 if (!f->sym)
14789 continue;
14790 c = gfc_find_component (sym, f->sym->name, true, true, NULL);
14791 if (c == NULL)
14792 {
14793 gfc_error ("Parameterized type %qs does not have a component "
14794 "corresponding to parameter %qs at %L", sym->name,
14795 f->sym->name, &sym->declared_at);
14796 break;
14797 }
14798 }
14799 }
14800
14801 /* Add derived type to the derived type list. */
14802 add_dt_to_dt_list (sym);
14803
14804 return true;
14805 }
14806
14807
14808 /* The following procedure does the full resolution of a derived type,
14809 including resolution of all type-bound procedures (if present). In contrast
14810 to 'resolve_fl_derived0' this can only be done after the module has been
14811 parsed completely. */
14812
14813 static bool
14814 resolve_fl_derived (gfc_symbol *sym)
14815 {
14816 gfc_symbol *gen_dt = NULL;
14817
14818 if (sym->attr.unlimited_polymorphic)
14819 return true;
14820
14821 if (!sym->attr.is_class)
14822 gfc_find_symbol (sym->name, sym->ns, 0, &gen_dt);
14823 if (gen_dt && gen_dt->generic && gen_dt->generic->next
14824 && (!gen_dt->generic->sym->attr.use_assoc
14825 || gen_dt->generic->sym->module != gen_dt->generic->next->sym->module)
14826 && !gfc_notify_std (GFC_STD_F2003, "Generic name %qs of function "
14827 "%qs at %L being the same name as derived "
14828 "type at %L", sym->name,
14829 gen_dt->generic->sym == sym
14830 ? gen_dt->generic->next->sym->name
14831 : gen_dt->generic->sym->name,
14832 gen_dt->generic->sym == sym
14833 ? &gen_dt->generic->next->sym->declared_at
14834 : &gen_dt->generic->sym->declared_at,
14835 &sym->declared_at))
14836 return false;
14837
14838 if (sym->components == NULL && !sym->attr.zero_comp && !sym->attr.use_assoc)
14839 {
14840 gfc_error ("Derived type %qs at %L has not been declared",
14841 sym->name, &sym->declared_at);
14842 return false;
14843 }
14844
14845 /* Resolve the finalizer procedures. */
14846 if (!gfc_resolve_finalizers (sym, NULL))
14847 return false;
14848
14849 if (sym->attr.is_class && sym->ts.u.derived == NULL)
14850 {
14851 /* Fix up incomplete CLASS symbols. */
14852 gfc_component *data = gfc_find_component (sym, "_data", true, true, NULL);
14853 gfc_component *vptr = gfc_find_component (sym, "_vptr", true, true, NULL);
14854
14855 /* Nothing more to do for unlimited polymorphic entities. */
14856 if (data->ts.u.derived->attr.unlimited_polymorphic)
14857 return true;
14858 else if (vptr->ts.u.derived == NULL)
14859 {
14860 gfc_symbol *vtab = gfc_find_derived_vtab (data->ts.u.derived);
14861 gcc_assert (vtab);
14862 vptr->ts.u.derived = vtab->ts.u.derived;
14863 if (!resolve_fl_derived0 (vptr->ts.u.derived))
14864 return false;
14865 }
14866 }
14867
14868 if (!resolve_fl_derived0 (sym))
14869 return false;
14870
14871 /* Resolve the type-bound procedures. */
14872 if (!resolve_typebound_procedures (sym))
14873 return false;
14874
14875 /* Generate module vtables subject to their accessibility and their not
14876 being vtables or pdt templates. If this is not done class declarations
14877 in external procedures wind up with their own version and so SELECT TYPE
14878 fails because the vptrs do not have the same address. */
14879 if (gfc_option.allow_std & GFC_STD_F2003
14880 && sym->ns->proc_name
14881 && sym->ns->proc_name->attr.flavor == FL_MODULE
14882 && sym->attr.access != ACCESS_PRIVATE
14883 && !(sym->attr.use_assoc || sym->attr.vtype || sym->attr.pdt_template))
14884 {
14885 gfc_symbol *vtab = gfc_find_derived_vtab (sym);
14886 gfc_set_sym_referenced (vtab);
14887 }
14888
14889 return true;
14890 }
14891
14892
14893 static bool
14894 resolve_fl_namelist (gfc_symbol *sym)
14895 {
14896 gfc_namelist *nl;
14897 gfc_symbol *nlsym;
14898
14899 for (nl = sym->namelist; nl; nl = nl->next)
14900 {
14901 /* Check again, the check in match only works if NAMELIST comes
14902 after the decl. */
14903 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SIZE)
14904 {
14905 gfc_error ("Assumed size array %qs in namelist %qs at %L is not "
14906 "allowed", nl->sym->name, sym->name, &sym->declared_at);
14907 return false;
14908 }
14909
14910 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SHAPE
14911 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14912 "with assumed shape in namelist %qs at %L",
14913 nl->sym->name, sym->name, &sym->declared_at))
14914 return false;
14915
14916 if (is_non_constant_shape_array (nl->sym)
14917 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14918 "with nonconstant shape in namelist %qs at %L",
14919 nl->sym->name, sym->name, &sym->declared_at))
14920 return false;
14921
14922 if (nl->sym->ts.type == BT_CHARACTER
14923 && (nl->sym->ts.u.cl->length == NULL
14924 || !gfc_is_constant_expr (nl->sym->ts.u.cl->length))
14925 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs with "
14926 "nonconstant character length in "
14927 "namelist %qs at %L", nl->sym->name,
14928 sym->name, &sym->declared_at))
14929 return false;
14930
14931 }
14932
14933 /* Reject PRIVATE objects in a PUBLIC namelist. */
14934 if (gfc_check_symbol_access (sym))
14935 {
14936 for (nl = sym->namelist; nl; nl = nl->next)
14937 {
14938 if (!nl->sym->attr.use_assoc
14939 && !is_sym_host_assoc (nl->sym, sym->ns)
14940 && !gfc_check_symbol_access (nl->sym))
14941 {
14942 gfc_error ("NAMELIST object %qs was declared PRIVATE and "
14943 "cannot be member of PUBLIC namelist %qs at %L",
14944 nl->sym->name, sym->name, &sym->declared_at);
14945 return false;
14946 }
14947
14948 if (nl->sym->ts.type == BT_DERIVED
14949 && (nl->sym->ts.u.derived->attr.alloc_comp
14950 || nl->sym->ts.u.derived->attr.pointer_comp))
14951 {
14952 if (!gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs in "
14953 "namelist %qs at %L with ALLOCATABLE "
14954 "or POINTER components", nl->sym->name,
14955 sym->name, &sym->declared_at))
14956 return false;
14957 return true;
14958 }
14959
14960 /* Types with private components that came here by USE-association. */
14961 if (nl->sym->ts.type == BT_DERIVED
14962 && derived_inaccessible (nl->sym->ts.u.derived))
14963 {
14964 gfc_error ("NAMELIST object %qs has use-associated PRIVATE "
14965 "components and cannot be member of namelist %qs at %L",
14966 nl->sym->name, sym->name, &sym->declared_at);
14967 return false;
14968 }
14969
14970 /* Types with private components that are defined in the same module. */
14971 if (nl->sym->ts.type == BT_DERIVED
14972 && !is_sym_host_assoc (nl->sym->ts.u.derived, sym->ns)
14973 && nl->sym->ts.u.derived->attr.private_comp)
14974 {
14975 gfc_error ("NAMELIST object %qs has PRIVATE components and "
14976 "cannot be a member of PUBLIC namelist %qs at %L",
14977 nl->sym->name, sym->name, &sym->declared_at);
14978 return false;
14979 }
14980 }
14981 }
14982
14983
14984 /* 14.1.2 A module or internal procedure represent local entities
14985 of the same type as a namelist member and so are not allowed. */
14986 for (nl = sym->namelist; nl; nl = nl->next)
14987 {
14988 if (nl->sym->ts.kind != 0 && nl->sym->attr.flavor == FL_VARIABLE)
14989 continue;
14990
14991 if (nl->sym->attr.function && nl->sym == nl->sym->result)
14992 if ((nl->sym == sym->ns->proc_name)
14993 ||
14994 (sym->ns->parent && nl->sym == sym->ns->parent->proc_name))
14995 continue;
14996
14997 nlsym = NULL;
14998 if (nl->sym->name)
14999 gfc_find_symbol (nl->sym->name, sym->ns, 1, &nlsym);
15000 if (nlsym && nlsym->attr.flavor == FL_PROCEDURE)
15001 {
15002 gfc_error ("PROCEDURE attribute conflicts with NAMELIST "
15003 "attribute in %qs at %L", nlsym->name,
15004 &sym->declared_at);
15005 return false;
15006 }
15007 }
15008
15009 return true;
15010 }
15011
15012
15013 static bool
15014 resolve_fl_parameter (gfc_symbol *sym)
15015 {
15016 /* A parameter array's shape needs to be constant. */
15017 if (sym->as != NULL
15018 && (sym->as->type == AS_DEFERRED
15019 || is_non_constant_shape_array (sym)))
15020 {
15021 gfc_error ("Parameter array %qs at %L cannot be automatic "
15022 "or of deferred shape", sym->name, &sym->declared_at);
15023 return false;
15024 }
15025
15026 /* Constraints on deferred type parameter. */
15027 if (!deferred_requirements (sym))
15028 return false;
15029
15030 /* Make sure a parameter that has been implicitly typed still
15031 matches the implicit type, since PARAMETER statements can precede
15032 IMPLICIT statements. */
15033 if (sym->attr.implicit_type
15034 && !gfc_compare_types (&sym->ts, gfc_get_default_type (sym->name,
15035 sym->ns)))
15036 {
15037 gfc_error ("Implicitly typed PARAMETER %qs at %L doesn't match a "
15038 "later IMPLICIT type", sym->name, &sym->declared_at);
15039 return false;
15040 }
15041
15042 /* Make sure the types of derived parameters are consistent. This
15043 type checking is deferred until resolution because the type may
15044 refer to a derived type from the host. */
15045 if (sym->ts.type == BT_DERIVED
15046 && !gfc_compare_types (&sym->ts, &sym->value->ts))
15047 {
15048 gfc_error ("Incompatible derived type in PARAMETER at %L",
15049 &sym->value->where);
15050 return false;
15051 }
15052
15053 /* F03:C509,C514. */
15054 if (sym->ts.type == BT_CLASS)
15055 {
15056 gfc_error ("CLASS variable %qs at %L cannot have the PARAMETER attribute",
15057 sym->name, &sym->declared_at);
15058 return false;
15059 }
15060
15061 return true;
15062 }
15063
15064
15065 /* Called by resolve_symbol to check PDTs. */
15066
15067 static void
15068 resolve_pdt (gfc_symbol* sym)
15069 {
15070 gfc_symbol *derived = NULL;
15071 gfc_actual_arglist *param;
15072 gfc_component *c;
15073 bool const_len_exprs = true;
15074 bool assumed_len_exprs = false;
15075 symbol_attribute *attr;
15076
15077 if (sym->ts.type == BT_DERIVED)
15078 {
15079 derived = sym->ts.u.derived;
15080 attr = &(sym->attr);
15081 }
15082 else if (sym->ts.type == BT_CLASS)
15083 {
15084 derived = CLASS_DATA (sym)->ts.u.derived;
15085 attr = &(CLASS_DATA (sym)->attr);
15086 }
15087 else
15088 gcc_unreachable ();
15089
15090 gcc_assert (derived->attr.pdt_type);
15091
15092 for (param = sym->param_list; param; param = param->next)
15093 {
15094 c = gfc_find_component (derived, param->name, false, true, NULL);
15095 gcc_assert (c);
15096 if (c->attr.pdt_kind)
15097 continue;
15098
15099 if (param->expr && !gfc_is_constant_expr (param->expr)
15100 && c->attr.pdt_len)
15101 const_len_exprs = false;
15102 else if (param->spec_type == SPEC_ASSUMED)
15103 assumed_len_exprs = true;
15104
15105 if (param->spec_type == SPEC_DEFERRED
15106 && !attr->allocatable && !attr->pointer)
15107 gfc_error ("The object %qs at %L has a deferred LEN "
15108 "parameter %qs and is neither allocatable "
15109 "nor a pointer", sym->name, &sym->declared_at,
15110 param->name);
15111
15112 }
15113
15114 if (!const_len_exprs
15115 && (sym->ns->proc_name->attr.is_main_program
15116 || sym->ns->proc_name->attr.flavor == FL_MODULE
15117 || sym->attr.save != SAVE_NONE))
15118 gfc_error ("The AUTOMATIC object %qs at %L must not have the "
15119 "SAVE attribute or be a variable declared in the "
15120 "main program, a module or a submodule(F08/C513)",
15121 sym->name, &sym->declared_at);
15122
15123 if (assumed_len_exprs && !(sym->attr.dummy
15124 || sym->attr.select_type_temporary || sym->attr.associate_var))
15125 gfc_error ("The object %qs at %L with ASSUMED type parameters "
15126 "must be a dummy or a SELECT TYPE selector(F08/4.2)",
15127 sym->name, &sym->declared_at);
15128 }
15129
15130
15131 /* Do anything necessary to resolve a symbol. Right now, we just
15132 assume that an otherwise unknown symbol is a variable. This sort
15133 of thing commonly happens for symbols in module. */
15134
15135 static void
15136 resolve_symbol (gfc_symbol *sym)
15137 {
15138 int check_constant, mp_flag;
15139 gfc_symtree *symtree;
15140 gfc_symtree *this_symtree;
15141 gfc_namespace *ns;
15142 gfc_component *c;
15143 symbol_attribute class_attr;
15144 gfc_array_spec *as;
15145 bool saved_specification_expr;
15146
15147 if (sym->resolved)
15148 return;
15149 sym->resolved = 1;
15150
15151 /* No symbol will ever have union type; only components can be unions.
15152 Union type declaration symbols have type BT_UNKNOWN but flavor FL_UNION
15153 (just like derived type declaration symbols have flavor FL_DERIVED). */
15154 gcc_assert (sym->ts.type != BT_UNION);
15155
15156 /* Coarrayed polymorphic objects with allocatable or pointer components are
15157 yet unsupported for -fcoarray=lib. */
15158 if (flag_coarray == GFC_FCOARRAY_LIB && sym->ts.type == BT_CLASS
15159 && sym->ts.u.derived && CLASS_DATA (sym)
15160 && CLASS_DATA (sym)->attr.codimension
15161 && (CLASS_DATA (sym)->ts.u.derived->attr.alloc_comp
15162 || CLASS_DATA (sym)->ts.u.derived->attr.pointer_comp))
15163 {
15164 gfc_error ("Sorry, allocatable/pointer components in polymorphic (CLASS) "
15165 "type coarrays at %L are unsupported", &sym->declared_at);
15166 return;
15167 }
15168
15169 if (sym->attr.artificial)
15170 return;
15171
15172 if (sym->attr.unlimited_polymorphic)
15173 return;
15174
15175 if (sym->attr.flavor == FL_UNKNOWN
15176 || (sym->attr.flavor == FL_PROCEDURE && !sym->attr.intrinsic
15177 && !sym->attr.generic && !sym->attr.external
15178 && sym->attr.if_source == IFSRC_UNKNOWN
15179 && sym->ts.type == BT_UNKNOWN))
15180 {
15181
15182 /* If we find that a flavorless symbol is an interface in one of the
15183 parent namespaces, find its symtree in this namespace, free the
15184 symbol and set the symtree to point to the interface symbol. */
15185 for (ns = gfc_current_ns->parent; ns; ns = ns->parent)
15186 {
15187 symtree = gfc_find_symtree (ns->sym_root, sym->name);
15188 if (symtree && (symtree->n.sym->generic ||
15189 (symtree->n.sym->attr.flavor == FL_PROCEDURE
15190 && sym->ns->construct_entities)))
15191 {
15192 this_symtree = gfc_find_symtree (gfc_current_ns->sym_root,
15193 sym->name);
15194 if (this_symtree->n.sym == sym)
15195 {
15196 symtree->n.sym->refs++;
15197 gfc_release_symbol (sym);
15198 this_symtree->n.sym = symtree->n.sym;
15199 return;
15200 }
15201 }
15202 }
15203
15204 /* Otherwise give it a flavor according to such attributes as
15205 it has. */
15206 if (sym->attr.flavor == FL_UNKNOWN && sym->attr.external == 0
15207 && sym->attr.intrinsic == 0)
15208 sym->attr.flavor = FL_VARIABLE;
15209 else if (sym->attr.flavor == FL_UNKNOWN)
15210 {
15211 sym->attr.flavor = FL_PROCEDURE;
15212 if (sym->attr.dimension)
15213 sym->attr.function = 1;
15214 }
15215 }
15216
15217 if (sym->attr.external && sym->ts.type != BT_UNKNOWN && !sym->attr.function)
15218 gfc_add_function (&sym->attr, sym->name, &sym->declared_at);
15219
15220 if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
15221 && !resolve_procedure_interface (sym))
15222 return;
15223
15224 if (sym->attr.is_protected && !sym->attr.proc_pointer
15225 && (sym->attr.procedure || sym->attr.external))
15226 {
15227 if (sym->attr.external)
15228 gfc_error ("PROTECTED attribute conflicts with EXTERNAL attribute "
15229 "at %L", &sym->declared_at);
15230 else
15231 gfc_error ("PROCEDURE attribute conflicts with PROTECTED attribute "
15232 "at %L", &sym->declared_at);
15233
15234 return;
15235 }
15236
15237 if (sym->attr.flavor == FL_DERIVED && !resolve_fl_derived (sym))
15238 return;
15239
15240 else if ((sym->attr.flavor == FL_STRUCT || sym->attr.flavor == FL_UNION)
15241 && !resolve_fl_struct (sym))
15242 return;
15243
15244 /* Symbols that are module procedures with results (functions) have
15245 the types and array specification copied for type checking in
15246 procedures that call them, as well as for saving to a module
15247 file. These symbols can't stand the scrutiny that their results
15248 can. */
15249 mp_flag = (sym->result != NULL && sym->result != sym);
15250
15251 /* Make sure that the intrinsic is consistent with its internal
15252 representation. This needs to be done before assigning a default
15253 type to avoid spurious warnings. */
15254 if (sym->attr.flavor != FL_MODULE && sym->attr.intrinsic
15255 && !gfc_resolve_intrinsic (sym, &sym->declared_at))
15256 return;
15257
15258 /* Resolve associate names. */
15259 if (sym->assoc)
15260 resolve_assoc_var (sym, true);
15261
15262 /* Assign default type to symbols that need one and don't have one. */
15263 if (sym->ts.type == BT_UNKNOWN)
15264 {
15265 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER)
15266 {
15267 gfc_set_default_type (sym, 1, NULL);
15268 }
15269
15270 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.external
15271 && !sym->attr.function && !sym->attr.subroutine
15272 && gfc_get_default_type (sym->name, sym->ns)->type == BT_UNKNOWN)
15273 gfc_add_subroutine (&sym->attr, sym->name, &sym->declared_at);
15274
15275 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
15276 {
15277 /* The specific case of an external procedure should emit an error
15278 in the case that there is no implicit type. */
15279 if (!mp_flag)
15280 {
15281 if (!sym->attr.mixed_entry_master)
15282 gfc_set_default_type (sym, sym->attr.external, NULL);
15283 }
15284 else
15285 {
15286 /* Result may be in another namespace. */
15287 resolve_symbol (sym->result);
15288
15289 if (!sym->result->attr.proc_pointer)
15290 {
15291 sym->ts = sym->result->ts;
15292 sym->as = gfc_copy_array_spec (sym->result->as);
15293 sym->attr.dimension = sym->result->attr.dimension;
15294 sym->attr.pointer = sym->result->attr.pointer;
15295 sym->attr.allocatable = sym->result->attr.allocatable;
15296 sym->attr.contiguous = sym->result->attr.contiguous;
15297 }
15298 }
15299 }
15300 }
15301 else if (mp_flag && sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
15302 {
15303 bool saved_specification_expr = specification_expr;
15304 specification_expr = true;
15305 gfc_resolve_array_spec (sym->result->as, false);
15306 specification_expr = saved_specification_expr;
15307 }
15308
15309 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
15310 {
15311 as = CLASS_DATA (sym)->as;
15312 class_attr = CLASS_DATA (sym)->attr;
15313 class_attr.pointer = class_attr.class_pointer;
15314 }
15315 else
15316 {
15317 class_attr = sym->attr;
15318 as = sym->as;
15319 }
15320
15321 /* F2008, C530. */
15322 if (sym->attr.contiguous
15323 && (!class_attr.dimension
15324 || (as->type != AS_ASSUMED_SHAPE && as->type != AS_ASSUMED_RANK
15325 && !class_attr.pointer)))
15326 {
15327 gfc_error ("%qs at %L has the CONTIGUOUS attribute but is not an "
15328 "array pointer or an assumed-shape or assumed-rank array",
15329 sym->name, &sym->declared_at);
15330 return;
15331 }
15332
15333 /* Assumed size arrays and assumed shape arrays must be dummy
15334 arguments. Array-spec's of implied-shape should have been resolved to
15335 AS_EXPLICIT already. */
15336
15337 if (as)
15338 {
15339 /* If AS_IMPLIED_SHAPE makes it to here, it must be a bad
15340 specification expression. */
15341 if (as->type == AS_IMPLIED_SHAPE)
15342 {
15343 int i;
15344 for (i=0; i<as->rank; i++)
15345 {
15346 if (as->lower[i] != NULL && as->upper[i] == NULL)
15347 {
15348 gfc_error ("Bad specification for assumed size array at %L",
15349 &as->lower[i]->where);
15350 return;
15351 }
15352 }
15353 gcc_unreachable();
15354 }
15355
15356 if (((as->type == AS_ASSUMED_SIZE && !as->cp_was_assumed)
15357 || as->type == AS_ASSUMED_SHAPE)
15358 && !sym->attr.dummy && !sym->attr.select_type_temporary)
15359 {
15360 if (as->type == AS_ASSUMED_SIZE)
15361 gfc_error ("Assumed size array at %L must be a dummy argument",
15362 &sym->declared_at);
15363 else
15364 gfc_error ("Assumed shape array at %L must be a dummy argument",
15365 &sym->declared_at);
15366 return;
15367 }
15368 /* TS 29113, C535a. */
15369 if (as->type == AS_ASSUMED_RANK && !sym->attr.dummy
15370 && !sym->attr.select_type_temporary
15371 && !(cs_base && cs_base->current
15372 && cs_base->current->op == EXEC_SELECT_RANK))
15373 {
15374 gfc_error ("Assumed-rank array at %L must be a dummy argument",
15375 &sym->declared_at);
15376 return;
15377 }
15378 if (as->type == AS_ASSUMED_RANK
15379 && (sym->attr.codimension || sym->attr.value))
15380 {
15381 gfc_error ("Assumed-rank array at %L may not have the VALUE or "
15382 "CODIMENSION attribute", &sym->declared_at);
15383 return;
15384 }
15385 }
15386
15387 /* Make sure symbols with known intent or optional are really dummy
15388 variable. Because of ENTRY statement, this has to be deferred
15389 until resolution time. */
15390
15391 if (!sym->attr.dummy
15392 && (sym->attr.optional || sym->attr.intent != INTENT_UNKNOWN))
15393 {
15394 gfc_error ("Symbol at %L is not a DUMMY variable", &sym->declared_at);
15395 return;
15396 }
15397
15398 if (sym->attr.value && !sym->attr.dummy)
15399 {
15400 gfc_error ("%qs at %L cannot have the VALUE attribute because "
15401 "it is not a dummy argument", sym->name, &sym->declared_at);
15402 return;
15403 }
15404
15405 if (sym->attr.value && sym->ts.type == BT_CHARACTER)
15406 {
15407 gfc_charlen *cl = sym->ts.u.cl;
15408 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
15409 {
15410 gfc_error ("Character dummy variable %qs at %L with VALUE "
15411 "attribute must have constant length",
15412 sym->name, &sym->declared_at);
15413 return;
15414 }
15415
15416 if (sym->ts.is_c_interop
15417 && mpz_cmp_si (cl->length->value.integer, 1) != 0)
15418 {
15419 gfc_error ("C interoperable character dummy variable %qs at %L "
15420 "with VALUE attribute must have length one",
15421 sym->name, &sym->declared_at);
15422 return;
15423 }
15424 }
15425
15426 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
15427 && sym->ts.u.derived->attr.generic)
15428 {
15429 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
15430 if (!sym->ts.u.derived)
15431 {
15432 gfc_error ("The derived type %qs at %L is of type %qs, "
15433 "which has not been defined", sym->name,
15434 &sym->declared_at, sym->ts.u.derived->name);
15435 sym->ts.type = BT_UNKNOWN;
15436 return;
15437 }
15438 }
15439
15440 /* Use the same constraints as TYPE(*), except for the type check
15441 and that only scalars and assumed-size arrays are permitted. */
15442 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
15443 {
15444 if (!sym->attr.dummy)
15445 {
15446 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
15447 "a dummy argument", sym->name, &sym->declared_at);
15448 return;
15449 }
15450
15451 if (sym->ts.type != BT_ASSUMED && sym->ts.type != BT_INTEGER
15452 && sym->ts.type != BT_REAL && sym->ts.type != BT_LOGICAL
15453 && sym->ts.type != BT_COMPLEX)
15454 {
15455 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
15456 "of type TYPE(*) or of an numeric intrinsic type",
15457 sym->name, &sym->declared_at);
15458 return;
15459 }
15460
15461 if (sym->attr.allocatable || sym->attr.codimension
15462 || sym->attr.pointer || sym->attr.value)
15463 {
15464 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
15465 "have the ALLOCATABLE, CODIMENSION, POINTER or VALUE "
15466 "attribute", sym->name, &sym->declared_at);
15467 return;
15468 }
15469
15470 if (sym->attr.intent == INTENT_OUT)
15471 {
15472 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
15473 "have the INTENT(OUT) attribute",
15474 sym->name, &sym->declared_at);
15475 return;
15476 }
15477 if (sym->attr.dimension && sym->as->type != AS_ASSUMED_SIZE)
15478 {
15479 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall "
15480 "either be a scalar or an assumed-size array",
15481 sym->name, &sym->declared_at);
15482 return;
15483 }
15484
15485 /* Set the type to TYPE(*) and add a dimension(*) to ensure
15486 NO_ARG_CHECK is correctly handled in trans*.c, e.g. with
15487 packing. */
15488 sym->ts.type = BT_ASSUMED;
15489 sym->as = gfc_get_array_spec ();
15490 sym->as->type = AS_ASSUMED_SIZE;
15491 sym->as->rank = 1;
15492 sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
15493 }
15494 else if (sym->ts.type == BT_ASSUMED)
15495 {
15496 /* TS 29113, C407a. */
15497 if (!sym->attr.dummy)
15498 {
15499 gfc_error ("Assumed type of variable %s at %L is only permitted "
15500 "for dummy variables", sym->name, &sym->declared_at);
15501 return;
15502 }
15503 if (sym->attr.allocatable || sym->attr.codimension
15504 || sym->attr.pointer || sym->attr.value)
15505 {
15506 gfc_error ("Assumed-type variable %s at %L may not have the "
15507 "ALLOCATABLE, CODIMENSION, POINTER or VALUE attribute",
15508 sym->name, &sym->declared_at);
15509 return;
15510 }
15511 if (sym->attr.intent == INTENT_OUT)
15512 {
15513 gfc_error ("Assumed-type variable %s at %L may not have the "
15514 "INTENT(OUT) attribute",
15515 sym->name, &sym->declared_at);
15516 return;
15517 }
15518 if (sym->attr.dimension && sym->as->type == AS_EXPLICIT)
15519 {
15520 gfc_error ("Assumed-type variable %s at %L shall not be an "
15521 "explicit-shape array", sym->name, &sym->declared_at);
15522 return;
15523 }
15524 }
15525
15526 /* If the symbol is marked as bind(c), that it is declared at module level
15527 scope and verify its type and kind. Do not do the latter for symbols
15528 that are implicitly typed because that is handled in
15529 gfc_set_default_type. Handle dummy arguments and procedure definitions
15530 separately. Also, anything that is use associated is not handled here
15531 but instead is handled in the module it is declared in. Finally, derived
15532 type definitions are allowed to be BIND(C) since that only implies that
15533 they're interoperable, and they are checked fully for interoperability
15534 when a variable is declared of that type. */
15535 if (sym->attr.is_bind_c && sym->attr.use_assoc == 0
15536 && sym->attr.dummy == 0 && sym->attr.flavor != FL_PROCEDURE
15537 && sym->attr.flavor != FL_DERIVED)
15538 {
15539 bool t = true;
15540
15541 /* First, make sure the variable is declared at the
15542 module-level scope (J3/04-007, Section 15.3). */
15543 if (sym->ns->proc_name->attr.flavor != FL_MODULE &&
15544 sym->attr.in_common == 0)
15545 {
15546 gfc_error ("Variable %qs at %L cannot be BIND(C) because it "
15547 "is neither a COMMON block nor declared at the "
15548 "module level scope", sym->name, &(sym->declared_at));
15549 t = false;
15550 }
15551 else if (sym->ts.type == BT_CHARACTER
15552 && (sym->ts.u.cl == NULL || sym->ts.u.cl->length == NULL
15553 || !gfc_is_constant_expr (sym->ts.u.cl->length)
15554 || mpz_cmp_si (sym->ts.u.cl->length->value.integer, 1) != 0))
15555 {
15556 gfc_error ("BIND(C) Variable %qs at %L must have length one",
15557 sym->name, &sym->declared_at);
15558 t = false;
15559 }
15560 else if (sym->common_head != NULL && sym->attr.implicit_type == 0)
15561 {
15562 t = verify_com_block_vars_c_interop (sym->common_head);
15563 }
15564 else if (sym->attr.implicit_type == 0)
15565 {
15566 /* If type() declaration, we need to verify that the components
15567 of the given type are all C interoperable, etc. */
15568 if (sym->ts.type == BT_DERIVED &&
15569 sym->ts.u.derived->attr.is_c_interop != 1)
15570 {
15571 /* Make sure the user marked the derived type as BIND(C). If
15572 not, call the verify routine. This could print an error
15573 for the derived type more than once if multiple variables
15574 of that type are declared. */
15575 if (sym->ts.u.derived->attr.is_bind_c != 1)
15576 verify_bind_c_derived_type (sym->ts.u.derived);
15577 t = false;
15578 }
15579
15580 /* Verify the variable itself as C interoperable if it
15581 is BIND(C). It is not possible for this to succeed if
15582 the verify_bind_c_derived_type failed, so don't have to handle
15583 any error returned by verify_bind_c_derived_type. */
15584 t = verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
15585 sym->common_block);
15586 }
15587
15588 if (!t)
15589 {
15590 /* clear the is_bind_c flag to prevent reporting errors more than
15591 once if something failed. */
15592 sym->attr.is_bind_c = 0;
15593 return;
15594 }
15595 }
15596
15597 /* If a derived type symbol has reached this point, without its
15598 type being declared, we have an error. Notice that most
15599 conditions that produce undefined derived types have already
15600 been dealt with. However, the likes of:
15601 implicit type(t) (t) ..... call foo (t) will get us here if
15602 the type is not declared in the scope of the implicit
15603 statement. Change the type to BT_UNKNOWN, both because it is so
15604 and to prevent an ICE. */
15605 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
15606 && sym->ts.u.derived->components == NULL
15607 && !sym->ts.u.derived->attr.zero_comp)
15608 {
15609 gfc_error ("The derived type %qs at %L is of type %qs, "
15610 "which has not been defined", sym->name,
15611 &sym->declared_at, sym->ts.u.derived->name);
15612 sym->ts.type = BT_UNKNOWN;
15613 return;
15614 }
15615
15616 /* Make sure that the derived type has been resolved and that the
15617 derived type is visible in the symbol's namespace, if it is a
15618 module function and is not PRIVATE. */
15619 if (sym->ts.type == BT_DERIVED
15620 && sym->ts.u.derived->attr.use_assoc
15621 && sym->ns->proc_name
15622 && sym->ns->proc_name->attr.flavor == FL_MODULE
15623 && !resolve_fl_derived (sym->ts.u.derived))
15624 return;
15625
15626 /* Unless the derived-type declaration is use associated, Fortran 95
15627 does not allow public entries of private derived types.
15628 See 4.4.1 (F95) and 4.5.1.1 (F2003); and related interpretation
15629 161 in 95-006r3. */
15630 if (sym->ts.type == BT_DERIVED
15631 && sym->ns->proc_name && sym->ns->proc_name->attr.flavor == FL_MODULE
15632 && !sym->ts.u.derived->attr.use_assoc
15633 && gfc_check_symbol_access (sym)
15634 && !gfc_check_symbol_access (sym->ts.u.derived)
15635 && !gfc_notify_std (GFC_STD_F2003, "PUBLIC %s %qs at %L of PRIVATE "
15636 "derived type %qs",
15637 (sym->attr.flavor == FL_PARAMETER)
15638 ? "parameter" : "variable",
15639 sym->name, &sym->declared_at,
15640 sym->ts.u.derived->name))
15641 return;
15642
15643 /* F2008, C1302. */
15644 if (sym->ts.type == BT_DERIVED
15645 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
15646 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
15647 || sym->ts.u.derived->attr.lock_comp)
15648 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
15649 {
15650 gfc_error ("Variable %s at %L of type LOCK_TYPE or with subcomponent of "
15651 "type LOCK_TYPE must be a coarray", sym->name,
15652 &sym->declared_at);
15653 return;
15654 }
15655
15656 /* TS18508, C702/C703. */
15657 if (sym->ts.type == BT_DERIVED
15658 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
15659 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
15660 || sym->ts.u.derived->attr.event_comp)
15661 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
15662 {
15663 gfc_error ("Variable %s at %L of type EVENT_TYPE or with subcomponent of "
15664 "type EVENT_TYPE must be a coarray", sym->name,
15665 &sym->declared_at);
15666 return;
15667 }
15668
15669 /* An assumed-size array with INTENT(OUT) shall not be of a type for which
15670 default initialization is defined (5.1.2.4.4). */
15671 if (sym->ts.type == BT_DERIVED
15672 && sym->attr.dummy
15673 && sym->attr.intent == INTENT_OUT
15674 && sym->as
15675 && sym->as->type == AS_ASSUMED_SIZE)
15676 {
15677 for (c = sym->ts.u.derived->components; c; c = c->next)
15678 {
15679 if (c->initializer)
15680 {
15681 gfc_error ("The INTENT(OUT) dummy argument %qs at %L is "
15682 "ASSUMED SIZE and so cannot have a default initializer",
15683 sym->name, &sym->declared_at);
15684 return;
15685 }
15686 }
15687 }
15688
15689 /* F2008, C542. */
15690 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
15691 && sym->attr.intent == INTENT_OUT && sym->attr.lock_comp)
15692 {
15693 gfc_error ("Dummy argument %qs at %L of LOCK_TYPE shall not be "
15694 "INTENT(OUT)", sym->name, &sym->declared_at);
15695 return;
15696 }
15697
15698 /* TS18508. */
15699 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
15700 && sym->attr.intent == INTENT_OUT && sym->attr.event_comp)
15701 {
15702 gfc_error ("Dummy argument %qs at %L of EVENT_TYPE shall not be "
15703 "INTENT(OUT)", sym->name, &sym->declared_at);
15704 return;
15705 }
15706
15707 /* F2008, C525. */
15708 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15709 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15710 && CLASS_DATA (sym)->attr.coarray_comp))
15711 || class_attr.codimension)
15712 && (sym->attr.result || sym->result == sym))
15713 {
15714 gfc_error ("Function result %qs at %L shall not be a coarray or have "
15715 "a coarray component", sym->name, &sym->declared_at);
15716 return;
15717 }
15718
15719 /* F2008, C524. */
15720 if (sym->attr.codimension && sym->ts.type == BT_DERIVED
15721 && sym->ts.u.derived->ts.is_iso_c)
15722 {
15723 gfc_error ("Variable %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
15724 "shall not be a coarray", sym->name, &sym->declared_at);
15725 return;
15726 }
15727
15728 /* F2008, C525. */
15729 if (((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15730 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15731 && CLASS_DATA (sym)->attr.coarray_comp))
15732 && (class_attr.codimension || class_attr.pointer || class_attr.dimension
15733 || class_attr.allocatable))
15734 {
15735 gfc_error ("Variable %qs at %L with coarray component shall be a "
15736 "nonpointer, nonallocatable scalar, which is not a coarray",
15737 sym->name, &sym->declared_at);
15738 return;
15739 }
15740
15741 /* F2008, C526. The function-result case was handled above. */
15742 if (class_attr.codimension
15743 && !(class_attr.allocatable || sym->attr.dummy || sym->attr.save
15744 || sym->attr.select_type_temporary
15745 || sym->attr.associate_var
15746 || (sym->ns->save_all && !sym->attr.automatic)
15747 || sym->ns->proc_name->attr.flavor == FL_MODULE
15748 || sym->ns->proc_name->attr.is_main_program
15749 || sym->attr.function || sym->attr.result || sym->attr.use_assoc))
15750 {
15751 gfc_error ("Variable %qs at %L is a coarray and is not ALLOCATABLE, SAVE "
15752 "nor a dummy argument", sym->name, &sym->declared_at);
15753 return;
15754 }
15755 /* F2008, C528. */
15756 else if (class_attr.codimension && !sym->attr.select_type_temporary
15757 && !class_attr.allocatable && as && as->cotype == AS_DEFERRED)
15758 {
15759 gfc_error ("Coarray variable %qs at %L shall not have codimensions with "
15760 "deferred shape", sym->name, &sym->declared_at);
15761 return;
15762 }
15763 else if (class_attr.codimension && class_attr.allocatable && as
15764 && (as->cotype != AS_DEFERRED || as->type != AS_DEFERRED))
15765 {
15766 gfc_error ("Allocatable coarray variable %qs at %L must have "
15767 "deferred shape", sym->name, &sym->declared_at);
15768 return;
15769 }
15770
15771 /* F2008, C541. */
15772 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15773 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15774 && CLASS_DATA (sym)->attr.coarray_comp))
15775 || (class_attr.codimension && class_attr.allocatable))
15776 && sym->attr.dummy && sym->attr.intent == INTENT_OUT)
15777 {
15778 gfc_error ("Variable %qs at %L is INTENT(OUT) and can thus not be an "
15779 "allocatable coarray or have coarray components",
15780 sym->name, &sym->declared_at);
15781 return;
15782 }
15783
15784 if (class_attr.codimension && sym->attr.dummy
15785 && sym->ns->proc_name && sym->ns->proc_name->attr.is_bind_c)
15786 {
15787 gfc_error ("Coarray dummy variable %qs at %L not allowed in BIND(C) "
15788 "procedure %qs", sym->name, &sym->declared_at,
15789 sym->ns->proc_name->name);
15790 return;
15791 }
15792
15793 if (sym->ts.type == BT_LOGICAL
15794 && ((sym->attr.function && sym->attr.is_bind_c && sym->result == sym)
15795 || ((sym->attr.dummy || sym->attr.result) && sym->ns->proc_name
15796 && sym->ns->proc_name->attr.is_bind_c)))
15797 {
15798 int i;
15799 for (i = 0; gfc_logical_kinds[i].kind; i++)
15800 if (gfc_logical_kinds[i].kind == sym->ts.kind)
15801 break;
15802 if (!gfc_logical_kinds[i].c_bool && sym->attr.dummy
15803 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL dummy argument %qs at "
15804 "%L with non-C_Bool kind in BIND(C) procedure "
15805 "%qs", sym->name, &sym->declared_at,
15806 sym->ns->proc_name->name))
15807 return;
15808 else if (!gfc_logical_kinds[i].c_bool
15809 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL result variable "
15810 "%qs at %L with non-C_Bool kind in "
15811 "BIND(C) procedure %qs", sym->name,
15812 &sym->declared_at,
15813 sym->attr.function ? sym->name
15814 : sym->ns->proc_name->name))
15815 return;
15816 }
15817
15818 switch (sym->attr.flavor)
15819 {
15820 case FL_VARIABLE:
15821 if (!resolve_fl_variable (sym, mp_flag))
15822 return;
15823 break;
15824
15825 case FL_PROCEDURE:
15826 if (sym->formal && !sym->formal_ns)
15827 {
15828 /* Check that none of the arguments are a namelist. */
15829 gfc_formal_arglist *formal = sym->formal;
15830
15831 for (; formal; formal = formal->next)
15832 if (formal->sym && formal->sym->attr.flavor == FL_NAMELIST)
15833 {
15834 gfc_error ("Namelist %qs cannot be an argument to "
15835 "subroutine or function at %L",
15836 formal->sym->name, &sym->declared_at);
15837 return;
15838 }
15839 }
15840
15841 if (!resolve_fl_procedure (sym, mp_flag))
15842 return;
15843 break;
15844
15845 case FL_NAMELIST:
15846 if (!resolve_fl_namelist (sym))
15847 return;
15848 break;
15849
15850 case FL_PARAMETER:
15851 if (!resolve_fl_parameter (sym))
15852 return;
15853 break;
15854
15855 default:
15856 break;
15857 }
15858
15859 /* Resolve array specifier. Check as well some constraints
15860 on COMMON blocks. */
15861
15862 check_constant = sym->attr.in_common && !sym->attr.pointer;
15863
15864 /* Set the formal_arg_flag so that check_conflict will not throw
15865 an error for host associated variables in the specification
15866 expression for an array_valued function. */
15867 if ((sym->attr.function || sym->attr.result) && sym->as)
15868 formal_arg_flag = true;
15869
15870 saved_specification_expr = specification_expr;
15871 specification_expr = true;
15872 gfc_resolve_array_spec (sym->as, check_constant);
15873 specification_expr = saved_specification_expr;
15874
15875 formal_arg_flag = false;
15876
15877 /* Resolve formal namespaces. */
15878 if (sym->formal_ns && sym->formal_ns != gfc_current_ns
15879 && !sym->attr.contained && !sym->attr.intrinsic)
15880 gfc_resolve (sym->formal_ns);
15881
15882 /* Make sure the formal namespace is present. */
15883 if (sym->formal && !sym->formal_ns)
15884 {
15885 gfc_formal_arglist *formal = sym->formal;
15886 while (formal && !formal->sym)
15887 formal = formal->next;
15888
15889 if (formal)
15890 {
15891 sym->formal_ns = formal->sym->ns;
15892 if (sym->ns != formal->sym->ns)
15893 sym->formal_ns->refs++;
15894 }
15895 }
15896
15897 /* Check threadprivate restrictions. */
15898 if (sym->attr.threadprivate && !sym->attr.save
15899 && !(sym->ns->save_all && !sym->attr.automatic)
15900 && (!sym->attr.in_common
15901 && sym->module == NULL
15902 && (sym->ns->proc_name == NULL
15903 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15904 gfc_error ("Threadprivate at %L isn't SAVEd", &sym->declared_at);
15905
15906 /* Check omp declare target restrictions. */
15907 if (sym->attr.omp_declare_target
15908 && sym->attr.flavor == FL_VARIABLE
15909 && !sym->attr.save
15910 && !(sym->ns->save_all && !sym->attr.automatic)
15911 && (!sym->attr.in_common
15912 && sym->module == NULL
15913 && (sym->ns->proc_name == NULL
15914 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15915 gfc_error ("!$OMP DECLARE TARGET variable %qs at %L isn't SAVEd",
15916 sym->name, &sym->declared_at);
15917
15918 /* If we have come this far we can apply default-initializers, as
15919 described in 14.7.5, to those variables that have not already
15920 been assigned one. */
15921 if (sym->ts.type == BT_DERIVED
15922 && !sym->value
15923 && !sym->attr.allocatable
15924 && !sym->attr.alloc_comp)
15925 {
15926 symbol_attribute *a = &sym->attr;
15927
15928 if ((!a->save && !a->dummy && !a->pointer
15929 && !a->in_common && !a->use_assoc
15930 && a->referenced
15931 && !((a->function || a->result)
15932 && (!a->dimension
15933 || sym->ts.u.derived->attr.alloc_comp
15934 || sym->ts.u.derived->attr.pointer_comp))
15935 && !(a->function && sym != sym->result))
15936 || (a->dummy && a->intent == INTENT_OUT && !a->pointer))
15937 apply_default_init (sym);
15938 else if (a->function && sym->result && a->access != ACCESS_PRIVATE
15939 && (sym->ts.u.derived->attr.alloc_comp
15940 || sym->ts.u.derived->attr.pointer_comp))
15941 /* Mark the result symbol to be referenced, when it has allocatable
15942 components. */
15943 sym->result->attr.referenced = 1;
15944 }
15945
15946 if (sym->ts.type == BT_CLASS && sym->ns == gfc_current_ns
15947 && sym->attr.dummy && sym->attr.intent == INTENT_OUT
15948 && !CLASS_DATA (sym)->attr.class_pointer
15949 && !CLASS_DATA (sym)->attr.allocatable)
15950 apply_default_init (sym);
15951
15952 /* If this symbol has a type-spec, check it. */
15953 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER
15954 || (sym->attr.flavor == FL_PROCEDURE && sym->attr.function))
15955 if (!resolve_typespec_used (&sym->ts, &sym->declared_at, sym->name))
15956 return;
15957
15958 if (sym->param_list)
15959 resolve_pdt (sym);
15960 }
15961
15962
15963 /************* Resolve DATA statements *************/
15964
15965 static struct
15966 {
15967 gfc_data_value *vnode;
15968 mpz_t left;
15969 }
15970 values;
15971
15972
15973 /* Advance the values structure to point to the next value in the data list. */
15974
15975 static bool
15976 next_data_value (void)
15977 {
15978 while (mpz_cmp_ui (values.left, 0) == 0)
15979 {
15980
15981 if (values.vnode->next == NULL)
15982 return false;
15983
15984 values.vnode = values.vnode->next;
15985 mpz_set (values.left, values.vnode->repeat);
15986 }
15987
15988 return true;
15989 }
15990
15991
15992 static bool
15993 check_data_variable (gfc_data_variable *var, locus *where)
15994 {
15995 gfc_expr *e;
15996 mpz_t size;
15997 mpz_t offset;
15998 bool t;
15999 ar_type mark = AR_UNKNOWN;
16000 int i;
16001 mpz_t section_index[GFC_MAX_DIMENSIONS];
16002 gfc_ref *ref;
16003 gfc_array_ref *ar;
16004 gfc_symbol *sym;
16005 int has_pointer;
16006
16007 if (!gfc_resolve_expr (var->expr))
16008 return false;
16009
16010 ar = NULL;
16011 mpz_init_set_si (offset, 0);
16012 e = var->expr;
16013
16014 if (e->expr_type == EXPR_FUNCTION && e->value.function.isym
16015 && e->value.function.isym->id == GFC_ISYM_CAF_GET)
16016 e = e->value.function.actual->expr;
16017
16018 if (e->expr_type != EXPR_VARIABLE)
16019 {
16020 gfc_error ("Expecting definable entity near %L", where);
16021 return false;
16022 }
16023
16024 sym = e->symtree->n.sym;
16025
16026 if (sym->ns->is_block_data && !sym->attr.in_common)
16027 {
16028 gfc_error ("BLOCK DATA element %qs at %L must be in COMMON",
16029 sym->name, &sym->declared_at);
16030 return false;
16031 }
16032
16033 if (e->ref == NULL && sym->as)
16034 {
16035 gfc_error ("DATA array %qs at %L must be specified in a previous"
16036 " declaration", sym->name, where);
16037 return false;
16038 }
16039
16040 if (gfc_is_coindexed (e))
16041 {
16042 gfc_error ("DATA element %qs at %L cannot have a coindex", sym->name,
16043 where);
16044 return false;
16045 }
16046
16047 has_pointer = sym->attr.pointer;
16048
16049 for (ref = e->ref; ref; ref = ref->next)
16050 {
16051 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
16052 has_pointer = 1;
16053
16054 if (has_pointer)
16055 {
16056 if (ref->type == REF_ARRAY && ref->u.ar.type != AR_FULL)
16057 {
16058 gfc_error ("DATA element %qs at %L is a pointer and so must "
16059 "be a full array", sym->name, where);
16060 return false;
16061 }
16062
16063 if (values.vnode->expr->expr_type == EXPR_CONSTANT)
16064 {
16065 gfc_error ("DATA object near %L has the pointer attribute "
16066 "and the corresponding DATA value is not a valid "
16067 "initial-data-target", where);
16068 return false;
16069 }
16070 }
16071 }
16072
16073 if (e->rank == 0 || has_pointer)
16074 {
16075 mpz_init_set_ui (size, 1);
16076 ref = NULL;
16077 }
16078 else
16079 {
16080 ref = e->ref;
16081
16082 /* Find the array section reference. */
16083 for (ref = e->ref; ref; ref = ref->next)
16084 {
16085 if (ref->type != REF_ARRAY)
16086 continue;
16087 if (ref->u.ar.type == AR_ELEMENT)
16088 continue;
16089 break;
16090 }
16091 gcc_assert (ref);
16092
16093 /* Set marks according to the reference pattern. */
16094 switch (ref->u.ar.type)
16095 {
16096 case AR_FULL:
16097 mark = AR_FULL;
16098 break;
16099
16100 case AR_SECTION:
16101 ar = &ref->u.ar;
16102 /* Get the start position of array section. */
16103 gfc_get_section_index (ar, section_index, &offset);
16104 mark = AR_SECTION;
16105 break;
16106
16107 default:
16108 gcc_unreachable ();
16109 }
16110
16111 if (!gfc_array_size (e, &size))
16112 {
16113 gfc_error ("Nonconstant array section at %L in DATA statement",
16114 where);
16115 mpz_clear (offset);
16116 return false;
16117 }
16118 }
16119
16120 t = true;
16121
16122 while (mpz_cmp_ui (size, 0) > 0)
16123 {
16124 if (!next_data_value ())
16125 {
16126 gfc_error ("DATA statement at %L has more variables than values",
16127 where);
16128 t = false;
16129 break;
16130 }
16131
16132 t = gfc_check_assign (var->expr, values.vnode->expr, 0);
16133 if (!t)
16134 break;
16135
16136 /* If we have more than one element left in the repeat count,
16137 and we have more than one element left in the target variable,
16138 then create a range assignment. */
16139 /* FIXME: Only done for full arrays for now, since array sections
16140 seem tricky. */
16141 if (mark == AR_FULL && ref && ref->next == NULL
16142 && mpz_cmp_ui (values.left, 1) > 0 && mpz_cmp_ui (size, 1) > 0)
16143 {
16144 mpz_t range;
16145
16146 if (mpz_cmp (size, values.left) >= 0)
16147 {
16148 mpz_init_set (range, values.left);
16149 mpz_sub (size, size, values.left);
16150 mpz_set_ui (values.left, 0);
16151 }
16152 else
16153 {
16154 mpz_init_set (range, size);
16155 mpz_sub (values.left, values.left, size);
16156 mpz_set_ui (size, 0);
16157 }
16158
16159 t = gfc_assign_data_value (var->expr, values.vnode->expr,
16160 offset, &range);
16161
16162 mpz_add (offset, offset, range);
16163 mpz_clear (range);
16164
16165 if (!t)
16166 break;
16167 }
16168
16169 /* Assign initial value to symbol. */
16170 else
16171 {
16172 mpz_sub_ui (values.left, values.left, 1);
16173 mpz_sub_ui (size, size, 1);
16174
16175 t = gfc_assign_data_value (var->expr, values.vnode->expr,
16176 offset, NULL);
16177 if (!t)
16178 break;
16179
16180 if (mark == AR_FULL)
16181 mpz_add_ui (offset, offset, 1);
16182
16183 /* Modify the array section indexes and recalculate the offset
16184 for next element. */
16185 else if (mark == AR_SECTION)
16186 gfc_advance_section (section_index, ar, &offset);
16187 }
16188 }
16189
16190 if (mark == AR_SECTION)
16191 {
16192 for (i = 0; i < ar->dimen; i++)
16193 mpz_clear (section_index[i]);
16194 }
16195
16196 mpz_clear (size);
16197 mpz_clear (offset);
16198
16199 return t;
16200 }
16201
16202
16203 static bool traverse_data_var (gfc_data_variable *, locus *);
16204
16205 /* Iterate over a list of elements in a DATA statement. */
16206
16207 static bool
16208 traverse_data_list (gfc_data_variable *var, locus *where)
16209 {
16210 mpz_t trip;
16211 iterator_stack frame;
16212 gfc_expr *e, *start, *end, *step;
16213 bool retval = true;
16214
16215 mpz_init (frame.value);
16216 mpz_init (trip);
16217
16218 start = gfc_copy_expr (var->iter.start);
16219 end = gfc_copy_expr (var->iter.end);
16220 step = gfc_copy_expr (var->iter.step);
16221
16222 if (!gfc_simplify_expr (start, 1)
16223 || start->expr_type != EXPR_CONSTANT)
16224 {
16225 gfc_error ("start of implied-do loop at %L could not be "
16226 "simplified to a constant value", &start->where);
16227 retval = false;
16228 goto cleanup;
16229 }
16230 if (!gfc_simplify_expr (end, 1)
16231 || end->expr_type != EXPR_CONSTANT)
16232 {
16233 gfc_error ("end of implied-do loop at %L could not be "
16234 "simplified to a constant value", &start->where);
16235 retval = false;
16236 goto cleanup;
16237 }
16238 if (!gfc_simplify_expr (step, 1)
16239 || step->expr_type != EXPR_CONSTANT)
16240 {
16241 gfc_error ("step of implied-do loop at %L could not be "
16242 "simplified to a constant value", &start->where);
16243 retval = false;
16244 goto cleanup;
16245 }
16246
16247 mpz_set (trip, end->value.integer);
16248 mpz_sub (trip, trip, start->value.integer);
16249 mpz_add (trip, trip, step->value.integer);
16250
16251 mpz_div (trip, trip, step->value.integer);
16252
16253 mpz_set (frame.value, start->value.integer);
16254
16255 frame.prev = iter_stack;
16256 frame.variable = var->iter.var->symtree;
16257 iter_stack = &frame;
16258
16259 while (mpz_cmp_ui (trip, 0) > 0)
16260 {
16261 if (!traverse_data_var (var->list, where))
16262 {
16263 retval = false;
16264 goto cleanup;
16265 }
16266
16267 e = gfc_copy_expr (var->expr);
16268 if (!gfc_simplify_expr (e, 1))
16269 {
16270 gfc_free_expr (e);
16271 retval = false;
16272 goto cleanup;
16273 }
16274
16275 mpz_add (frame.value, frame.value, step->value.integer);
16276
16277 mpz_sub_ui (trip, trip, 1);
16278 }
16279
16280 cleanup:
16281 mpz_clear (frame.value);
16282 mpz_clear (trip);
16283
16284 gfc_free_expr (start);
16285 gfc_free_expr (end);
16286 gfc_free_expr (step);
16287
16288 iter_stack = frame.prev;
16289 return retval;
16290 }
16291
16292
16293 /* Type resolve variables in the variable list of a DATA statement. */
16294
16295 static bool
16296 traverse_data_var (gfc_data_variable *var, locus *where)
16297 {
16298 bool t;
16299
16300 for (; var; var = var->next)
16301 {
16302 if (var->expr == NULL)
16303 t = traverse_data_list (var, where);
16304 else
16305 t = check_data_variable (var, where);
16306
16307 if (!t)
16308 return false;
16309 }
16310
16311 return true;
16312 }
16313
16314
16315 /* Resolve the expressions and iterators associated with a data statement.
16316 This is separate from the assignment checking because data lists should
16317 only be resolved once. */
16318
16319 static bool
16320 resolve_data_variables (gfc_data_variable *d)
16321 {
16322 for (; d; d = d->next)
16323 {
16324 if (d->list == NULL)
16325 {
16326 if (!gfc_resolve_expr (d->expr))
16327 return false;
16328 }
16329 else
16330 {
16331 if (!gfc_resolve_iterator (&d->iter, false, true))
16332 return false;
16333
16334 if (!resolve_data_variables (d->list))
16335 return false;
16336 }
16337 }
16338
16339 return true;
16340 }
16341
16342
16343 /* Resolve a single DATA statement. We implement this by storing a pointer to
16344 the value list into static variables, and then recursively traversing the
16345 variables list, expanding iterators and such. */
16346
16347 static void
16348 resolve_data (gfc_data *d)
16349 {
16350
16351 if (!resolve_data_variables (d->var))
16352 return;
16353
16354 values.vnode = d->value;
16355 if (d->value == NULL)
16356 mpz_set_ui (values.left, 0);
16357 else
16358 mpz_set (values.left, d->value->repeat);
16359
16360 if (!traverse_data_var (d->var, &d->where))
16361 return;
16362
16363 /* At this point, we better not have any values left. */
16364
16365 if (next_data_value ())
16366 gfc_error ("DATA statement at %L has more values than variables",
16367 &d->where);
16368 }
16369
16370
16371 /* 12.6 Constraint: In a pure subprogram any variable which is in common or
16372 accessed by host or use association, is a dummy argument to a pure function,
16373 is a dummy argument with INTENT (IN) to a pure subroutine, or an object that
16374 is storage associated with any such variable, shall not be used in the
16375 following contexts: (clients of this function). */
16376
16377 /* Determines if a variable is not 'pure', i.e., not assignable within a pure
16378 procedure. Returns zero if assignment is OK, nonzero if there is a
16379 problem. */
16380 int
16381 gfc_impure_variable (gfc_symbol *sym)
16382 {
16383 gfc_symbol *proc;
16384 gfc_namespace *ns;
16385
16386 if (sym->attr.use_assoc || sym->attr.in_common)
16387 return 1;
16388
16389 /* Check if the symbol's ns is inside the pure procedure. */
16390 for (ns = gfc_current_ns; ns; ns = ns->parent)
16391 {
16392 if (ns == sym->ns)
16393 break;
16394 if (ns->proc_name->attr.flavor == FL_PROCEDURE && !sym->attr.function)
16395 return 1;
16396 }
16397
16398 proc = sym->ns->proc_name;
16399 if (sym->attr.dummy
16400 && ((proc->attr.subroutine && sym->attr.intent == INTENT_IN)
16401 || proc->attr.function))
16402 return 1;
16403
16404 /* TODO: Sort out what can be storage associated, if anything, and include
16405 it here. In principle equivalences should be scanned but it does not
16406 seem to be possible to storage associate an impure variable this way. */
16407 return 0;
16408 }
16409
16410
16411 /* Test whether a symbol is pure or not. For a NULL pointer, checks if the
16412 current namespace is inside a pure procedure. */
16413
16414 int
16415 gfc_pure (gfc_symbol *sym)
16416 {
16417 symbol_attribute attr;
16418 gfc_namespace *ns;
16419
16420 if (sym == NULL)
16421 {
16422 /* Check if the current namespace or one of its parents
16423 belongs to a pure procedure. */
16424 for (ns = gfc_current_ns; ns; ns = ns->parent)
16425 {
16426 sym = ns->proc_name;
16427 if (sym == NULL)
16428 return 0;
16429 attr = sym->attr;
16430 if (attr.flavor == FL_PROCEDURE && attr.pure)
16431 return 1;
16432 }
16433 return 0;
16434 }
16435
16436 attr = sym->attr;
16437
16438 return attr.flavor == FL_PROCEDURE && attr.pure;
16439 }
16440
16441
16442 /* Test whether a symbol is implicitly pure or not. For a NULL pointer,
16443 checks if the current namespace is implicitly pure. Note that this
16444 function returns false for a PURE procedure. */
16445
16446 int
16447 gfc_implicit_pure (gfc_symbol *sym)
16448 {
16449 gfc_namespace *ns;
16450
16451 if (sym == NULL)
16452 {
16453 /* Check if the current procedure is implicit_pure. Walk up
16454 the procedure list until we find a procedure. */
16455 for (ns = gfc_current_ns; ns; ns = ns->parent)
16456 {
16457 sym = ns->proc_name;
16458 if (sym == NULL)
16459 return 0;
16460
16461 if (sym->attr.flavor == FL_PROCEDURE)
16462 break;
16463 }
16464 }
16465
16466 return sym->attr.flavor == FL_PROCEDURE && sym->attr.implicit_pure
16467 && !sym->attr.pure;
16468 }
16469
16470
16471 void
16472 gfc_unset_implicit_pure (gfc_symbol *sym)
16473 {
16474 gfc_namespace *ns;
16475
16476 if (sym == NULL)
16477 {
16478 /* Check if the current procedure is implicit_pure. Walk up
16479 the procedure list until we find a procedure. */
16480 for (ns = gfc_current_ns; ns; ns = ns->parent)
16481 {
16482 sym = ns->proc_name;
16483 if (sym == NULL)
16484 return;
16485
16486 if (sym->attr.flavor == FL_PROCEDURE)
16487 break;
16488 }
16489 }
16490
16491 if (sym->attr.flavor == FL_PROCEDURE)
16492 sym->attr.implicit_pure = 0;
16493 else
16494 sym->attr.pure = 0;
16495 }
16496
16497
16498 /* Test whether the current procedure is elemental or not. */
16499
16500 int
16501 gfc_elemental (gfc_symbol *sym)
16502 {
16503 symbol_attribute attr;
16504
16505 if (sym == NULL)
16506 sym = gfc_current_ns->proc_name;
16507 if (sym == NULL)
16508 return 0;
16509 attr = sym->attr;
16510
16511 return attr.flavor == FL_PROCEDURE && attr.elemental;
16512 }
16513
16514
16515 /* Warn about unused labels. */
16516
16517 static void
16518 warn_unused_fortran_label (gfc_st_label *label)
16519 {
16520 if (label == NULL)
16521 return;
16522
16523 warn_unused_fortran_label (label->left);
16524
16525 if (label->defined == ST_LABEL_UNKNOWN)
16526 return;
16527
16528 switch (label->referenced)
16529 {
16530 case ST_LABEL_UNKNOWN:
16531 gfc_warning (OPT_Wunused_label, "Label %d at %L defined but not used",
16532 label->value, &label->where);
16533 break;
16534
16535 case ST_LABEL_BAD_TARGET:
16536 gfc_warning (OPT_Wunused_label,
16537 "Label %d at %L defined but cannot be used",
16538 label->value, &label->where);
16539 break;
16540
16541 default:
16542 break;
16543 }
16544
16545 warn_unused_fortran_label (label->right);
16546 }
16547
16548
16549 /* Returns the sequence type of a symbol or sequence. */
16550
16551 static seq_type
16552 sequence_type (gfc_typespec ts)
16553 {
16554 seq_type result;
16555 gfc_component *c;
16556
16557 switch (ts.type)
16558 {
16559 case BT_DERIVED:
16560
16561 if (ts.u.derived->components == NULL)
16562 return SEQ_NONDEFAULT;
16563
16564 result = sequence_type (ts.u.derived->components->ts);
16565 for (c = ts.u.derived->components->next; c; c = c->next)
16566 if (sequence_type (c->ts) != result)
16567 return SEQ_MIXED;
16568
16569 return result;
16570
16571 case BT_CHARACTER:
16572 if (ts.kind != gfc_default_character_kind)
16573 return SEQ_NONDEFAULT;
16574
16575 return SEQ_CHARACTER;
16576
16577 case BT_INTEGER:
16578 if (ts.kind != gfc_default_integer_kind)
16579 return SEQ_NONDEFAULT;
16580
16581 return SEQ_NUMERIC;
16582
16583 case BT_REAL:
16584 if (!(ts.kind == gfc_default_real_kind
16585 || ts.kind == gfc_default_double_kind))
16586 return SEQ_NONDEFAULT;
16587
16588 return SEQ_NUMERIC;
16589
16590 case BT_COMPLEX:
16591 if (ts.kind != gfc_default_complex_kind)
16592 return SEQ_NONDEFAULT;
16593
16594 return SEQ_NUMERIC;
16595
16596 case BT_LOGICAL:
16597 if (ts.kind != gfc_default_logical_kind)
16598 return SEQ_NONDEFAULT;
16599
16600 return SEQ_NUMERIC;
16601
16602 default:
16603 return SEQ_NONDEFAULT;
16604 }
16605 }
16606
16607
16608 /* Resolve derived type EQUIVALENCE object. */
16609
16610 static bool
16611 resolve_equivalence_derived (gfc_symbol *derived, gfc_symbol *sym, gfc_expr *e)
16612 {
16613 gfc_component *c = derived->components;
16614
16615 if (!derived)
16616 return true;
16617
16618 /* Shall not be an object of nonsequence derived type. */
16619 if (!derived->attr.sequence)
16620 {
16621 gfc_error ("Derived type variable %qs at %L must have SEQUENCE "
16622 "attribute to be an EQUIVALENCE object", sym->name,
16623 &e->where);
16624 return false;
16625 }
16626
16627 /* Shall not have allocatable components. */
16628 if (derived->attr.alloc_comp)
16629 {
16630 gfc_error ("Derived type variable %qs at %L cannot have ALLOCATABLE "
16631 "components to be an EQUIVALENCE object",sym->name,
16632 &e->where);
16633 return false;
16634 }
16635
16636 if (sym->attr.in_common && gfc_has_default_initializer (sym->ts.u.derived))
16637 {
16638 gfc_error ("Derived type variable %qs at %L with default "
16639 "initialization cannot be in EQUIVALENCE with a variable "
16640 "in COMMON", sym->name, &e->where);
16641 return false;
16642 }
16643
16644 for (; c ; c = c->next)
16645 {
16646 if (gfc_bt_struct (c->ts.type)
16647 && (!resolve_equivalence_derived(c->ts.u.derived, sym, e)))
16648 return false;
16649
16650 /* Shall not be an object of sequence derived type containing a pointer
16651 in the structure. */
16652 if (c->attr.pointer)
16653 {
16654 gfc_error ("Derived type variable %qs at %L with pointer "
16655 "component(s) cannot be an EQUIVALENCE object",
16656 sym->name, &e->where);
16657 return false;
16658 }
16659 }
16660 return true;
16661 }
16662
16663
16664 /* Resolve equivalence object.
16665 An EQUIVALENCE object shall not be a dummy argument, a pointer, a target,
16666 an allocatable array, an object of nonsequence derived type, an object of
16667 sequence derived type containing a pointer at any level of component
16668 selection, an automatic object, a function name, an entry name, a result
16669 name, a named constant, a structure component, or a subobject of any of
16670 the preceding objects. A substring shall not have length zero. A
16671 derived type shall not have components with default initialization nor
16672 shall two objects of an equivalence group be initialized.
16673 Either all or none of the objects shall have an protected attribute.
16674 The simple constraints are done in symbol.c(check_conflict) and the rest
16675 are implemented here. */
16676
16677 static void
16678 resolve_equivalence (gfc_equiv *eq)
16679 {
16680 gfc_symbol *sym;
16681 gfc_symbol *first_sym;
16682 gfc_expr *e;
16683 gfc_ref *r;
16684 locus *last_where = NULL;
16685 seq_type eq_type, last_eq_type;
16686 gfc_typespec *last_ts;
16687 int object, cnt_protected;
16688 const char *msg;
16689
16690 last_ts = &eq->expr->symtree->n.sym->ts;
16691
16692 first_sym = eq->expr->symtree->n.sym;
16693
16694 cnt_protected = 0;
16695
16696 for (object = 1; eq; eq = eq->eq, object++)
16697 {
16698 e = eq->expr;
16699
16700 e->ts = e->symtree->n.sym->ts;
16701 /* match_varspec might not know yet if it is seeing
16702 array reference or substring reference, as it doesn't
16703 know the types. */
16704 if (e->ref && e->ref->type == REF_ARRAY)
16705 {
16706 gfc_ref *ref = e->ref;
16707 sym = e->symtree->n.sym;
16708
16709 if (sym->attr.dimension)
16710 {
16711 ref->u.ar.as = sym->as;
16712 ref = ref->next;
16713 }
16714
16715 /* For substrings, convert REF_ARRAY into REF_SUBSTRING. */
16716 if (e->ts.type == BT_CHARACTER
16717 && ref
16718 && ref->type == REF_ARRAY
16719 && ref->u.ar.dimen == 1
16720 && ref->u.ar.dimen_type[0] == DIMEN_RANGE
16721 && ref->u.ar.stride[0] == NULL)
16722 {
16723 gfc_expr *start = ref->u.ar.start[0];
16724 gfc_expr *end = ref->u.ar.end[0];
16725 void *mem = NULL;
16726
16727 /* Optimize away the (:) reference. */
16728 if (start == NULL && end == NULL)
16729 {
16730 if (e->ref == ref)
16731 e->ref = ref->next;
16732 else
16733 e->ref->next = ref->next;
16734 mem = ref;
16735 }
16736 else
16737 {
16738 ref->type = REF_SUBSTRING;
16739 if (start == NULL)
16740 start = gfc_get_int_expr (gfc_charlen_int_kind,
16741 NULL, 1);
16742 ref->u.ss.start = start;
16743 if (end == NULL && e->ts.u.cl)
16744 end = gfc_copy_expr (e->ts.u.cl->length);
16745 ref->u.ss.end = end;
16746 ref->u.ss.length = e->ts.u.cl;
16747 e->ts.u.cl = NULL;
16748 }
16749 ref = ref->next;
16750 free (mem);
16751 }
16752
16753 /* Any further ref is an error. */
16754 if (ref)
16755 {
16756 gcc_assert (ref->type == REF_ARRAY);
16757 gfc_error ("Syntax error in EQUIVALENCE statement at %L",
16758 &ref->u.ar.where);
16759 continue;
16760 }
16761 }
16762
16763 if (!gfc_resolve_expr (e))
16764 continue;
16765
16766 sym = e->symtree->n.sym;
16767
16768 if (sym->attr.is_protected)
16769 cnt_protected++;
16770 if (cnt_protected > 0 && cnt_protected != object)
16771 {
16772 gfc_error ("Either all or none of the objects in the "
16773 "EQUIVALENCE set at %L shall have the "
16774 "PROTECTED attribute",
16775 &e->where);
16776 break;
16777 }
16778
16779 /* Shall not equivalence common block variables in a PURE procedure. */
16780 if (sym->ns->proc_name
16781 && sym->ns->proc_name->attr.pure
16782 && sym->attr.in_common)
16783 {
16784 /* Need to check for symbols that may have entered the pure
16785 procedure via a USE statement. */
16786 bool saw_sym = false;
16787 if (sym->ns->use_stmts)
16788 {
16789 gfc_use_rename *r;
16790 for (r = sym->ns->use_stmts->rename; r; r = r->next)
16791 if (strcmp(r->use_name, sym->name) == 0) saw_sym = true;
16792 }
16793 else
16794 saw_sym = true;
16795
16796 if (saw_sym)
16797 gfc_error ("COMMON block member %qs at %L cannot be an "
16798 "EQUIVALENCE object in the pure procedure %qs",
16799 sym->name, &e->where, sym->ns->proc_name->name);
16800 break;
16801 }
16802
16803 /* Shall not be a named constant. */
16804 if (e->expr_type == EXPR_CONSTANT)
16805 {
16806 gfc_error ("Named constant %qs at %L cannot be an EQUIVALENCE "
16807 "object", sym->name, &e->where);
16808 continue;
16809 }
16810
16811 if (e->ts.type == BT_DERIVED
16812 && !resolve_equivalence_derived (e->ts.u.derived, sym, e))
16813 continue;
16814
16815 /* Check that the types correspond correctly:
16816 Note 5.28:
16817 A numeric sequence structure may be equivalenced to another sequence
16818 structure, an object of default integer type, default real type, double
16819 precision real type, default logical type such that components of the
16820 structure ultimately only become associated to objects of the same
16821 kind. A character sequence structure may be equivalenced to an object
16822 of default character kind or another character sequence structure.
16823 Other objects may be equivalenced only to objects of the same type and
16824 kind parameters. */
16825
16826 /* Identical types are unconditionally OK. */
16827 if (object == 1 || gfc_compare_types (last_ts, &sym->ts))
16828 goto identical_types;
16829
16830 last_eq_type = sequence_type (*last_ts);
16831 eq_type = sequence_type (sym->ts);
16832
16833 /* Since the pair of objects is not of the same type, mixed or
16834 non-default sequences can be rejected. */
16835
16836 msg = "Sequence %s with mixed components in EQUIVALENCE "
16837 "statement at %L with different type objects";
16838 if ((object ==2
16839 && last_eq_type == SEQ_MIXED
16840 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16841 || (eq_type == SEQ_MIXED
16842 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16843 continue;
16844
16845 msg = "Non-default type object or sequence %s in EQUIVALENCE "
16846 "statement at %L with objects of different type";
16847 if ((object ==2
16848 && last_eq_type == SEQ_NONDEFAULT
16849 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16850 || (eq_type == SEQ_NONDEFAULT
16851 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16852 continue;
16853
16854 msg ="Non-CHARACTER object %qs in default CHARACTER "
16855 "EQUIVALENCE statement at %L";
16856 if (last_eq_type == SEQ_CHARACTER
16857 && eq_type != SEQ_CHARACTER
16858 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16859 continue;
16860
16861 msg ="Non-NUMERIC object %qs in default NUMERIC "
16862 "EQUIVALENCE statement at %L";
16863 if (last_eq_type == SEQ_NUMERIC
16864 && eq_type != SEQ_NUMERIC
16865 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16866 continue;
16867
16868 identical_types:
16869
16870 last_ts =&sym->ts;
16871 last_where = &e->where;
16872
16873 if (!e->ref)
16874 continue;
16875
16876 /* Shall not be an automatic array. */
16877 if (e->ref->type == REF_ARRAY && is_non_constant_shape_array (sym))
16878 {
16879 gfc_error ("Array %qs at %L with non-constant bounds cannot be "
16880 "an EQUIVALENCE object", sym->name, &e->where);
16881 continue;
16882 }
16883
16884 r = e->ref;
16885 while (r)
16886 {
16887 /* Shall not be a structure component. */
16888 if (r->type == REF_COMPONENT)
16889 {
16890 gfc_error ("Structure component %qs at %L cannot be an "
16891 "EQUIVALENCE object",
16892 r->u.c.component->name, &e->where);
16893 break;
16894 }
16895
16896 /* A substring shall not have length zero. */
16897 if (r->type == REF_SUBSTRING)
16898 {
16899 if (compare_bound (r->u.ss.start, r->u.ss.end) == CMP_GT)
16900 {
16901 gfc_error ("Substring at %L has length zero",
16902 &r->u.ss.start->where);
16903 break;
16904 }
16905 }
16906 r = r->next;
16907 }
16908 }
16909 }
16910
16911
16912 /* Function called by resolve_fntype to flag other symbols used in the
16913 length type parameter specification of function results. */
16914
16915 static bool
16916 flag_fn_result_spec (gfc_expr *expr,
16917 gfc_symbol *sym,
16918 int *f ATTRIBUTE_UNUSED)
16919 {
16920 gfc_namespace *ns;
16921 gfc_symbol *s;
16922
16923 if (expr->expr_type == EXPR_VARIABLE)
16924 {
16925 s = expr->symtree->n.sym;
16926 for (ns = s->ns; ns; ns = ns->parent)
16927 if (!ns->parent)
16928 break;
16929
16930 if (sym == s)
16931 {
16932 gfc_error ("Self reference in character length expression "
16933 "for %qs at %L", sym->name, &expr->where);
16934 return true;
16935 }
16936
16937 if (!s->fn_result_spec
16938 && s->attr.flavor == FL_PARAMETER)
16939 {
16940 /* Function contained in a module.... */
16941 if (ns->proc_name && ns->proc_name->attr.flavor == FL_MODULE)
16942 {
16943 gfc_symtree *st;
16944 s->fn_result_spec = 1;
16945 /* Make sure that this symbol is translated as a module
16946 variable. */
16947 st = gfc_get_unique_symtree (ns);
16948 st->n.sym = s;
16949 s->refs++;
16950 }
16951 /* ... which is use associated and called. */
16952 else if (s->attr.use_assoc || s->attr.used_in_submodule
16953 ||
16954 /* External function matched with an interface. */
16955 (s->ns->proc_name
16956 && ((s->ns == ns
16957 && s->ns->proc_name->attr.if_source == IFSRC_DECL)
16958 || s->ns->proc_name->attr.if_source == IFSRC_IFBODY)
16959 && s->ns->proc_name->attr.function))
16960 s->fn_result_spec = 1;
16961 }
16962 }
16963 return false;
16964 }
16965
16966
16967 /* Resolve function and ENTRY types, issue diagnostics if needed. */
16968
16969 static void
16970 resolve_fntype (gfc_namespace *ns)
16971 {
16972 gfc_entry_list *el;
16973 gfc_symbol *sym;
16974
16975 if (ns->proc_name == NULL || !ns->proc_name->attr.function)
16976 return;
16977
16978 /* If there are any entries, ns->proc_name is the entry master
16979 synthetic symbol and ns->entries->sym actual FUNCTION symbol. */
16980 if (ns->entries)
16981 sym = ns->entries->sym;
16982 else
16983 sym = ns->proc_name;
16984 if (sym->result == sym
16985 && sym->ts.type == BT_UNKNOWN
16986 && !gfc_set_default_type (sym, 0, NULL)
16987 && !sym->attr.untyped)
16988 {
16989 gfc_error ("Function %qs at %L has no IMPLICIT type",
16990 sym->name, &sym->declared_at);
16991 sym->attr.untyped = 1;
16992 }
16993
16994 if (sym->ts.type == BT_DERIVED && !sym->ts.u.derived->attr.use_assoc
16995 && !sym->attr.contained
16996 && !gfc_check_symbol_access (sym->ts.u.derived)
16997 && gfc_check_symbol_access (sym))
16998 {
16999 gfc_notify_std (GFC_STD_F2003, "PUBLIC function %qs at "
17000 "%L of PRIVATE type %qs", sym->name,
17001 &sym->declared_at, sym->ts.u.derived->name);
17002 }
17003
17004 if (ns->entries)
17005 for (el = ns->entries->next; el; el = el->next)
17006 {
17007 if (el->sym->result == el->sym
17008 && el->sym->ts.type == BT_UNKNOWN
17009 && !gfc_set_default_type (el->sym, 0, NULL)
17010 && !el->sym->attr.untyped)
17011 {
17012 gfc_error ("ENTRY %qs at %L has no IMPLICIT type",
17013 el->sym->name, &el->sym->declared_at);
17014 el->sym->attr.untyped = 1;
17015 }
17016 }
17017
17018 if (sym->ts.type == BT_CHARACTER)
17019 gfc_traverse_expr (sym->ts.u.cl->length, sym, flag_fn_result_spec, 0);
17020 }
17021
17022
17023 /* 12.3.2.1.1 Defined operators. */
17024
17025 static bool
17026 check_uop_procedure (gfc_symbol *sym, locus where)
17027 {
17028 gfc_formal_arglist *formal;
17029
17030 if (!sym->attr.function)
17031 {
17032 gfc_error ("User operator procedure %qs at %L must be a FUNCTION",
17033 sym->name, &where);
17034 return false;
17035 }
17036
17037 if (sym->ts.type == BT_CHARACTER
17038 && !((sym->ts.u.cl && sym->ts.u.cl->length) || sym->ts.deferred)
17039 && !(sym->result && ((sym->result->ts.u.cl
17040 && sym->result->ts.u.cl->length) || sym->result->ts.deferred)))
17041 {
17042 gfc_error ("User operator procedure %qs at %L cannot be assumed "
17043 "character length", sym->name, &where);
17044 return false;
17045 }
17046
17047 formal = gfc_sym_get_dummy_args (sym);
17048 if (!formal || !formal->sym)
17049 {
17050 gfc_error ("User operator procedure %qs at %L must have at least "
17051 "one argument", sym->name, &where);
17052 return false;
17053 }
17054
17055 if (formal->sym->attr.intent != INTENT_IN)
17056 {
17057 gfc_error ("First argument of operator interface at %L must be "
17058 "INTENT(IN)", &where);
17059 return false;
17060 }
17061
17062 if (formal->sym->attr.optional)
17063 {
17064 gfc_error ("First argument of operator interface at %L cannot be "
17065 "optional", &where);
17066 return false;
17067 }
17068
17069 formal = formal->next;
17070 if (!formal || !formal->sym)
17071 return true;
17072
17073 if (formal->sym->attr.intent != INTENT_IN)
17074 {
17075 gfc_error ("Second argument of operator interface at %L must be "
17076 "INTENT(IN)", &where);
17077 return false;
17078 }
17079
17080 if (formal->sym->attr.optional)
17081 {
17082 gfc_error ("Second argument of operator interface at %L cannot be "
17083 "optional", &where);
17084 return false;
17085 }
17086
17087 if (formal->next)
17088 {
17089 gfc_error ("Operator interface at %L must have, at most, two "
17090 "arguments", &where);
17091 return false;
17092 }
17093
17094 return true;
17095 }
17096
17097 static void
17098 gfc_resolve_uops (gfc_symtree *symtree)
17099 {
17100 gfc_interface *itr;
17101
17102 if (symtree == NULL)
17103 return;
17104
17105 gfc_resolve_uops (symtree->left);
17106 gfc_resolve_uops (symtree->right);
17107
17108 for (itr = symtree->n.uop->op; itr; itr = itr->next)
17109 check_uop_procedure (itr->sym, itr->sym->declared_at);
17110 }
17111
17112
17113 /* Examine all of the expressions associated with a program unit,
17114 assign types to all intermediate expressions, make sure that all
17115 assignments are to compatible types and figure out which names
17116 refer to which functions or subroutines. It doesn't check code
17117 block, which is handled by gfc_resolve_code. */
17118
17119 static void
17120 resolve_types (gfc_namespace *ns)
17121 {
17122 gfc_namespace *n;
17123 gfc_charlen *cl;
17124 gfc_data *d;
17125 gfc_equiv *eq;
17126 gfc_namespace* old_ns = gfc_current_ns;
17127 bool recursive = ns->proc_name && ns->proc_name->attr.recursive;
17128
17129 if (ns->types_resolved)
17130 return;
17131
17132 /* Check that all IMPLICIT types are ok. */
17133 if (!ns->seen_implicit_none)
17134 {
17135 unsigned letter;
17136 for (letter = 0; letter != GFC_LETTERS; ++letter)
17137 if (ns->set_flag[letter]
17138 && !resolve_typespec_used (&ns->default_type[letter],
17139 &ns->implicit_loc[letter], NULL))
17140 return;
17141 }
17142
17143 gfc_current_ns = ns;
17144
17145 resolve_entries (ns);
17146
17147 resolve_common_vars (&ns->blank_common, false);
17148 resolve_common_blocks (ns->common_root);
17149
17150 resolve_contained_functions (ns);
17151
17152 if (ns->proc_name && ns->proc_name->attr.flavor == FL_PROCEDURE
17153 && ns->proc_name->attr.if_source == IFSRC_IFBODY)
17154 gfc_resolve_formal_arglist (ns->proc_name);
17155
17156 gfc_traverse_ns (ns, resolve_bind_c_derived_types);
17157
17158 for (cl = ns->cl_list; cl; cl = cl->next)
17159 resolve_charlen (cl);
17160
17161 gfc_traverse_ns (ns, resolve_symbol);
17162
17163 resolve_fntype (ns);
17164
17165 for (n = ns->contained; n; n = n->sibling)
17166 {
17167 if (gfc_pure (ns->proc_name) && !gfc_pure (n->proc_name))
17168 gfc_error ("Contained procedure %qs at %L of a PURE procedure must "
17169 "also be PURE", n->proc_name->name,
17170 &n->proc_name->declared_at);
17171
17172 resolve_types (n);
17173 }
17174
17175 forall_flag = 0;
17176 gfc_do_concurrent_flag = 0;
17177 gfc_check_interfaces (ns);
17178
17179 gfc_traverse_ns (ns, resolve_values);
17180
17181 if (ns->save_all || (!flag_automatic && !recursive))
17182 gfc_save_all (ns);
17183
17184 iter_stack = NULL;
17185 for (d = ns->data; d; d = d->next)
17186 resolve_data (d);
17187
17188 iter_stack = NULL;
17189 gfc_traverse_ns (ns, gfc_formalize_init_value);
17190
17191 gfc_traverse_ns (ns, gfc_verify_binding_labels);
17192
17193 for (eq = ns->equiv; eq; eq = eq->next)
17194 resolve_equivalence (eq);
17195
17196 /* Warn about unused labels. */
17197 if (warn_unused_label)
17198 warn_unused_fortran_label (ns->st_labels);
17199
17200 gfc_resolve_uops (ns->uop_root);
17201
17202 gfc_traverse_ns (ns, gfc_verify_DTIO_procedures);
17203
17204 gfc_resolve_omp_declare_simd (ns);
17205
17206 gfc_resolve_omp_udrs (ns->omp_udr_root);
17207
17208 ns->types_resolved = 1;
17209
17210 gfc_current_ns = old_ns;
17211 }
17212
17213
17214 /* Call gfc_resolve_code recursively. */
17215
17216 static void
17217 resolve_codes (gfc_namespace *ns)
17218 {
17219 gfc_namespace *n;
17220 bitmap_obstack old_obstack;
17221
17222 if (ns->resolved == 1)
17223 return;
17224
17225 for (n = ns->contained; n; n = n->sibling)
17226 resolve_codes (n);
17227
17228 gfc_current_ns = ns;
17229
17230 /* Don't clear 'cs_base' if this is the namespace of a BLOCK construct. */
17231 if (!(ns->proc_name && ns->proc_name->attr.flavor == FL_LABEL))
17232 cs_base = NULL;
17233
17234 /* Set to an out of range value. */
17235 current_entry_id = -1;
17236
17237 old_obstack = labels_obstack;
17238 bitmap_obstack_initialize (&labels_obstack);
17239
17240 gfc_resolve_oacc_declare (ns);
17241 gfc_resolve_oacc_routines (ns);
17242 gfc_resolve_omp_local_vars (ns);
17243 gfc_resolve_code (ns->code, ns);
17244
17245 bitmap_obstack_release (&labels_obstack);
17246 labels_obstack = old_obstack;
17247 }
17248
17249
17250 /* This function is called after a complete program unit has been compiled.
17251 Its purpose is to examine all of the expressions associated with a program
17252 unit, assign types to all intermediate expressions, make sure that all
17253 assignments are to compatible types and figure out which names refer to
17254 which functions or subroutines. */
17255
17256 void
17257 gfc_resolve (gfc_namespace *ns)
17258 {
17259 gfc_namespace *old_ns;
17260 code_stack *old_cs_base;
17261 struct gfc_omp_saved_state old_omp_state;
17262
17263 if (ns->resolved)
17264 return;
17265
17266 ns->resolved = -1;
17267 old_ns = gfc_current_ns;
17268 old_cs_base = cs_base;
17269
17270 /* As gfc_resolve can be called during resolution of an OpenMP construct
17271 body, we should clear any state associated to it, so that say NS's
17272 DO loops are not interpreted as OpenMP loops. */
17273 if (!ns->construct_entities)
17274 gfc_omp_save_and_clear_state (&old_omp_state);
17275
17276 resolve_types (ns);
17277 component_assignment_level = 0;
17278 resolve_codes (ns);
17279
17280 gfc_current_ns = old_ns;
17281 cs_base = old_cs_base;
17282 ns->resolved = 1;
17283
17284 gfc_run_passes (ns);
17285
17286 if (!ns->construct_entities)
17287 gfc_omp_restore_state (&old_omp_state);
17288 }