re PR fortran/88117 (ICE in gimplify_var_or_parm_decl, at gimplify.c:2697)
[gcc.git] / gcc / fortran / resolve.c
1 /* Perform type resolution on the various structures.
2 Copyright (C) 2001-2019 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "options.h"
25 #include "bitmap.h"
26 #include "gfortran.h"
27 #include "arith.h" /* For gfc_compare_expr(). */
28 #include "dependency.h"
29 #include "data.h"
30 #include "target-memory.h" /* for gfc_simplify_transfer */
31 #include "constructor.h"
32
33 /* Types used in equivalence statements. */
34
35 enum seq_type
36 {
37 SEQ_NONDEFAULT, SEQ_NUMERIC, SEQ_CHARACTER, SEQ_MIXED
38 };
39
40 /* Stack to keep track of the nesting of blocks as we move through the
41 code. See resolve_branch() and gfc_resolve_code(). */
42
43 typedef struct code_stack
44 {
45 struct gfc_code *head, *current;
46 struct code_stack *prev;
47
48 /* This bitmap keeps track of the targets valid for a branch from
49 inside this block except for END {IF|SELECT}s of enclosing
50 blocks. */
51 bitmap reachable_labels;
52 }
53 code_stack;
54
55 static code_stack *cs_base = NULL;
56
57
58 /* Nonzero if we're inside a FORALL or DO CONCURRENT block. */
59
60 static int forall_flag;
61 int gfc_do_concurrent_flag;
62
63 /* True when we are resolving an expression that is an actual argument to
64 a procedure. */
65 static bool actual_arg = false;
66 /* True when we are resolving an expression that is the first actual argument
67 to a procedure. */
68 static bool first_actual_arg = false;
69
70
71 /* Nonzero if we're inside a OpenMP WORKSHARE or PARALLEL WORKSHARE block. */
72
73 static int omp_workshare_flag;
74
75 /* True if we are processing a formal arglist. The corresponding function
76 resets the flag each time that it is read. */
77 static bool formal_arg_flag = false;
78
79 /* True if we are resolving a specification expression. */
80 static bool specification_expr = false;
81
82 /* The id of the last entry seen. */
83 static int current_entry_id;
84
85 /* We use bitmaps to determine if a branch target is valid. */
86 static bitmap_obstack labels_obstack;
87
88 /* True when simplifying a EXPR_VARIABLE argument to an inquiry function. */
89 static bool inquiry_argument = false;
90
91
92 bool
93 gfc_is_formal_arg (void)
94 {
95 return formal_arg_flag;
96 }
97
98 /* Is the symbol host associated? */
99 static bool
100 is_sym_host_assoc (gfc_symbol *sym, gfc_namespace *ns)
101 {
102 for (ns = ns->parent; ns; ns = ns->parent)
103 {
104 if (sym->ns == ns)
105 return true;
106 }
107
108 return false;
109 }
110
111 /* Ensure a typespec used is valid; for instance, TYPE(t) is invalid if t is
112 an ABSTRACT derived-type. If where is not NULL, an error message with that
113 locus is printed, optionally using name. */
114
115 static bool
116 resolve_typespec_used (gfc_typespec* ts, locus* where, const char* name)
117 {
118 if (ts->type == BT_DERIVED && ts->u.derived->attr.abstract)
119 {
120 if (where)
121 {
122 if (name)
123 gfc_error ("%qs at %L is of the ABSTRACT type %qs",
124 name, where, ts->u.derived->name);
125 else
126 gfc_error ("ABSTRACT type %qs used at %L",
127 ts->u.derived->name, where);
128 }
129
130 return false;
131 }
132
133 return true;
134 }
135
136
137 static bool
138 check_proc_interface (gfc_symbol *ifc, locus *where)
139 {
140 /* Several checks for F08:C1216. */
141 if (ifc->attr.procedure)
142 {
143 gfc_error ("Interface %qs at %L is declared "
144 "in a later PROCEDURE statement", ifc->name, where);
145 return false;
146 }
147 if (ifc->generic)
148 {
149 /* For generic interfaces, check if there is
150 a specific procedure with the same name. */
151 gfc_interface *gen = ifc->generic;
152 while (gen && strcmp (gen->sym->name, ifc->name) != 0)
153 gen = gen->next;
154 if (!gen)
155 {
156 gfc_error ("Interface %qs at %L may not be generic",
157 ifc->name, where);
158 return false;
159 }
160 }
161 if (ifc->attr.proc == PROC_ST_FUNCTION)
162 {
163 gfc_error ("Interface %qs at %L may not be a statement function",
164 ifc->name, where);
165 return false;
166 }
167 if (gfc_is_intrinsic (ifc, 0, ifc->declared_at)
168 || gfc_is_intrinsic (ifc, 1, ifc->declared_at))
169 ifc->attr.intrinsic = 1;
170 if (ifc->attr.intrinsic && !gfc_intrinsic_actual_ok (ifc->name, 0))
171 {
172 gfc_error ("Intrinsic procedure %qs not allowed in "
173 "PROCEDURE statement at %L", ifc->name, where);
174 return false;
175 }
176 if (!ifc->attr.if_source && !ifc->attr.intrinsic && ifc->name[0] != '\0')
177 {
178 gfc_error ("Interface %qs at %L must be explicit", ifc->name, where);
179 return false;
180 }
181 return true;
182 }
183
184
185 static void resolve_symbol (gfc_symbol *sym);
186
187
188 /* Resolve the interface for a PROCEDURE declaration or procedure pointer. */
189
190 static bool
191 resolve_procedure_interface (gfc_symbol *sym)
192 {
193 gfc_symbol *ifc = sym->ts.interface;
194
195 if (!ifc)
196 return true;
197
198 if (ifc == sym)
199 {
200 gfc_error ("PROCEDURE %qs at %L may not be used as its own interface",
201 sym->name, &sym->declared_at);
202 return false;
203 }
204 if (!check_proc_interface (ifc, &sym->declared_at))
205 return false;
206
207 if (ifc->attr.if_source || ifc->attr.intrinsic)
208 {
209 /* Resolve interface and copy attributes. */
210 resolve_symbol (ifc);
211 if (ifc->attr.intrinsic)
212 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
213
214 if (ifc->result)
215 {
216 sym->ts = ifc->result->ts;
217 sym->attr.allocatable = ifc->result->attr.allocatable;
218 sym->attr.pointer = ifc->result->attr.pointer;
219 sym->attr.dimension = ifc->result->attr.dimension;
220 sym->attr.class_ok = ifc->result->attr.class_ok;
221 sym->as = gfc_copy_array_spec (ifc->result->as);
222 sym->result = sym;
223 }
224 else
225 {
226 sym->ts = ifc->ts;
227 sym->attr.allocatable = ifc->attr.allocatable;
228 sym->attr.pointer = ifc->attr.pointer;
229 sym->attr.dimension = ifc->attr.dimension;
230 sym->attr.class_ok = ifc->attr.class_ok;
231 sym->as = gfc_copy_array_spec (ifc->as);
232 }
233 sym->ts.interface = ifc;
234 sym->attr.function = ifc->attr.function;
235 sym->attr.subroutine = ifc->attr.subroutine;
236
237 sym->attr.pure = ifc->attr.pure;
238 sym->attr.elemental = ifc->attr.elemental;
239 sym->attr.contiguous = ifc->attr.contiguous;
240 sym->attr.recursive = ifc->attr.recursive;
241 sym->attr.always_explicit = ifc->attr.always_explicit;
242 sym->attr.ext_attr |= ifc->attr.ext_attr;
243 sym->attr.is_bind_c = ifc->attr.is_bind_c;
244 /* Copy char length. */
245 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
246 {
247 sym->ts.u.cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
248 if (sym->ts.u.cl->length && !sym->ts.u.cl->resolved
249 && !gfc_resolve_expr (sym->ts.u.cl->length))
250 return false;
251 }
252 }
253
254 return true;
255 }
256
257
258 /* Resolve types of formal argument lists. These have to be done early so that
259 the formal argument lists of module procedures can be copied to the
260 containing module before the individual procedures are resolved
261 individually. We also resolve argument lists of procedures in interface
262 blocks because they are self-contained scoping units.
263
264 Since a dummy argument cannot be a non-dummy procedure, the only
265 resort left for untyped names are the IMPLICIT types. */
266
267 static void
268 resolve_formal_arglist (gfc_symbol *proc)
269 {
270 gfc_formal_arglist *f;
271 gfc_symbol *sym;
272 bool saved_specification_expr;
273 int i;
274
275 if (proc->result != NULL)
276 sym = proc->result;
277 else
278 sym = proc;
279
280 if (gfc_elemental (proc)
281 || sym->attr.pointer || sym->attr.allocatable
282 || (sym->as && sym->as->rank != 0))
283 {
284 proc->attr.always_explicit = 1;
285 sym->attr.always_explicit = 1;
286 }
287
288 formal_arg_flag = true;
289
290 for (f = proc->formal; f; f = f->next)
291 {
292 gfc_array_spec *as;
293
294 sym = f->sym;
295
296 if (sym == NULL)
297 {
298 /* Alternate return placeholder. */
299 if (gfc_elemental (proc))
300 gfc_error ("Alternate return specifier in elemental subroutine "
301 "%qs at %L is not allowed", proc->name,
302 &proc->declared_at);
303 if (proc->attr.function)
304 gfc_error ("Alternate return specifier in function "
305 "%qs at %L is not allowed", proc->name,
306 &proc->declared_at);
307 continue;
308 }
309 else if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
310 && !resolve_procedure_interface (sym))
311 return;
312
313 if (strcmp (proc->name, sym->name) == 0)
314 {
315 gfc_error ("Self-referential argument "
316 "%qs at %L is not allowed", sym->name,
317 &proc->declared_at);
318 return;
319 }
320
321 if (sym->attr.if_source != IFSRC_UNKNOWN)
322 resolve_formal_arglist (sym);
323
324 if (sym->attr.subroutine || sym->attr.external)
325 {
326 if (sym->attr.flavor == FL_UNKNOWN)
327 gfc_add_flavor (&sym->attr, FL_PROCEDURE, sym->name, &sym->declared_at);
328 }
329 else
330 {
331 if (sym->ts.type == BT_UNKNOWN && !proc->attr.intrinsic
332 && (!sym->attr.function || sym->result == sym))
333 gfc_set_default_type (sym, 1, sym->ns);
334 }
335
336 as = sym->ts.type == BT_CLASS && sym->attr.class_ok
337 ? CLASS_DATA (sym)->as : sym->as;
338
339 saved_specification_expr = specification_expr;
340 specification_expr = true;
341 gfc_resolve_array_spec (as, 0);
342 specification_expr = saved_specification_expr;
343
344 /* We can't tell if an array with dimension (:) is assumed or deferred
345 shape until we know if it has the pointer or allocatable attributes.
346 */
347 if (as && as->rank > 0 && as->type == AS_DEFERRED
348 && ((sym->ts.type != BT_CLASS
349 && !(sym->attr.pointer || sym->attr.allocatable))
350 || (sym->ts.type == BT_CLASS
351 && !(CLASS_DATA (sym)->attr.class_pointer
352 || CLASS_DATA (sym)->attr.allocatable)))
353 && sym->attr.flavor != FL_PROCEDURE)
354 {
355 as->type = AS_ASSUMED_SHAPE;
356 for (i = 0; i < as->rank; i++)
357 as->lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
358 }
359
360 if ((as && as->rank > 0 && as->type == AS_ASSUMED_SHAPE)
361 || (as && as->type == AS_ASSUMED_RANK)
362 || sym->attr.pointer || sym->attr.allocatable || sym->attr.target
363 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
364 && (CLASS_DATA (sym)->attr.class_pointer
365 || CLASS_DATA (sym)->attr.allocatable
366 || CLASS_DATA (sym)->attr.target))
367 || sym->attr.optional)
368 {
369 proc->attr.always_explicit = 1;
370 if (proc->result)
371 proc->result->attr.always_explicit = 1;
372 }
373
374 /* If the flavor is unknown at this point, it has to be a variable.
375 A procedure specification would have already set the type. */
376
377 if (sym->attr.flavor == FL_UNKNOWN)
378 gfc_add_flavor (&sym->attr, FL_VARIABLE, sym->name, &sym->declared_at);
379
380 if (gfc_pure (proc))
381 {
382 if (sym->attr.flavor == FL_PROCEDURE)
383 {
384 /* F08:C1279. */
385 if (!gfc_pure (sym))
386 {
387 gfc_error ("Dummy procedure %qs of PURE procedure at %L must "
388 "also be PURE", sym->name, &sym->declared_at);
389 continue;
390 }
391 }
392 else if (!sym->attr.pointer)
393 {
394 if (proc->attr.function && sym->attr.intent != INTENT_IN)
395 {
396 if (sym->attr.value)
397 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
398 " of pure function %qs at %L with VALUE "
399 "attribute but without INTENT(IN)",
400 sym->name, proc->name, &sym->declared_at);
401 else
402 gfc_error ("Argument %qs of pure function %qs at %L must "
403 "be INTENT(IN) or VALUE", sym->name, proc->name,
404 &sym->declared_at);
405 }
406
407 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN)
408 {
409 if (sym->attr.value)
410 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
411 " of pure subroutine %qs at %L with VALUE "
412 "attribute but without INTENT", sym->name,
413 proc->name, &sym->declared_at);
414 else
415 gfc_error ("Argument %qs of pure subroutine %qs at %L "
416 "must have its INTENT specified or have the "
417 "VALUE attribute", sym->name, proc->name,
418 &sym->declared_at);
419 }
420 }
421
422 /* F08:C1278a. */
423 if (sym->ts.type == BT_CLASS && sym->attr.intent == INTENT_OUT)
424 {
425 gfc_error ("INTENT(OUT) argument %qs of pure procedure %qs at %L"
426 " may not be polymorphic", sym->name, proc->name,
427 &sym->declared_at);
428 continue;
429 }
430 }
431
432 if (proc->attr.implicit_pure)
433 {
434 if (sym->attr.flavor == FL_PROCEDURE)
435 {
436 if (!gfc_pure (sym))
437 proc->attr.implicit_pure = 0;
438 }
439 else if (!sym->attr.pointer)
440 {
441 if (proc->attr.function && sym->attr.intent != INTENT_IN
442 && !sym->value)
443 proc->attr.implicit_pure = 0;
444
445 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN
446 && !sym->value)
447 proc->attr.implicit_pure = 0;
448 }
449 }
450
451 if (gfc_elemental (proc))
452 {
453 /* F08:C1289. */
454 if (sym->attr.codimension
455 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
456 && CLASS_DATA (sym)->attr.codimension))
457 {
458 gfc_error ("Coarray dummy argument %qs at %L to elemental "
459 "procedure", sym->name, &sym->declared_at);
460 continue;
461 }
462
463 if (sym->as || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
464 && CLASS_DATA (sym)->as))
465 {
466 gfc_error ("Argument %qs of elemental procedure at %L must "
467 "be scalar", sym->name, &sym->declared_at);
468 continue;
469 }
470
471 if (sym->attr.allocatable
472 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
473 && CLASS_DATA (sym)->attr.allocatable))
474 {
475 gfc_error ("Argument %qs of elemental procedure at %L cannot "
476 "have the ALLOCATABLE attribute", sym->name,
477 &sym->declared_at);
478 continue;
479 }
480
481 if (sym->attr.pointer
482 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
483 && CLASS_DATA (sym)->attr.class_pointer))
484 {
485 gfc_error ("Argument %qs of elemental procedure at %L cannot "
486 "have the POINTER attribute", sym->name,
487 &sym->declared_at);
488 continue;
489 }
490
491 if (sym->attr.flavor == FL_PROCEDURE)
492 {
493 gfc_error ("Dummy procedure %qs not allowed in elemental "
494 "procedure %qs at %L", sym->name, proc->name,
495 &sym->declared_at);
496 continue;
497 }
498
499 /* Fortran 2008 Corrigendum 1, C1290a. */
500 if (sym->attr.intent == INTENT_UNKNOWN && !sym->attr.value)
501 {
502 gfc_error ("Argument %qs of elemental procedure %qs at %L must "
503 "have its INTENT specified or have the VALUE "
504 "attribute", sym->name, proc->name,
505 &sym->declared_at);
506 continue;
507 }
508 }
509
510 /* Each dummy shall be specified to be scalar. */
511 if (proc->attr.proc == PROC_ST_FUNCTION)
512 {
513 if (sym->as != NULL)
514 {
515 /* F03:C1263 (R1238) The function-name and each dummy-arg-name
516 shall be specified, explicitly or implicitly, to be scalar. */
517 gfc_error ("Argument '%s' of statement function '%s' at %L "
518 "must be scalar", sym->name, proc->name,
519 &proc->declared_at);
520 continue;
521 }
522
523 if (sym->ts.type == BT_CHARACTER)
524 {
525 gfc_charlen *cl = sym->ts.u.cl;
526 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
527 {
528 gfc_error ("Character-valued argument %qs of statement "
529 "function at %L must have constant length",
530 sym->name, &sym->declared_at);
531 continue;
532 }
533 }
534 }
535 }
536 formal_arg_flag = false;
537 }
538
539
540 /* Work function called when searching for symbols that have argument lists
541 associated with them. */
542
543 static void
544 find_arglists (gfc_symbol *sym)
545 {
546 if (sym->attr.if_source == IFSRC_UNKNOWN || sym->ns != gfc_current_ns
547 || gfc_fl_struct (sym->attr.flavor) || sym->attr.intrinsic)
548 return;
549
550 resolve_formal_arglist (sym);
551 }
552
553
554 /* Given a namespace, resolve all formal argument lists within the namespace.
555 */
556
557 static void
558 resolve_formal_arglists (gfc_namespace *ns)
559 {
560 if (ns == NULL)
561 return;
562
563 gfc_traverse_ns (ns, find_arglists);
564 }
565
566
567 static void
568 resolve_contained_fntype (gfc_symbol *sym, gfc_namespace *ns)
569 {
570 bool t;
571
572 if (sym && sym->attr.flavor == FL_PROCEDURE
573 && sym->ns->parent
574 && sym->ns->parent->proc_name
575 && sym->ns->parent->proc_name->attr.flavor == FL_PROCEDURE
576 && !strcmp (sym->name, sym->ns->parent->proc_name->name))
577 gfc_error ("Contained procedure %qs at %L has the same name as its "
578 "encompassing procedure", sym->name, &sym->declared_at);
579
580 /* If this namespace is not a function or an entry master function,
581 ignore it. */
582 if (! sym || !(sym->attr.function || sym->attr.flavor == FL_VARIABLE)
583 || sym->attr.entry_master)
584 return;
585
586 /* Try to find out of what the return type is. */
587 if (sym->result->ts.type == BT_UNKNOWN && sym->result->ts.interface == NULL)
588 {
589 t = gfc_set_default_type (sym->result, 0, ns);
590
591 if (!t && !sym->result->attr.untyped)
592 {
593 if (sym->result == sym)
594 gfc_error ("Contained function %qs at %L has no IMPLICIT type",
595 sym->name, &sym->declared_at);
596 else if (!sym->result->attr.proc_pointer)
597 gfc_error ("Result %qs of contained function %qs at %L has "
598 "no IMPLICIT type", sym->result->name, sym->name,
599 &sym->result->declared_at);
600 sym->result->attr.untyped = 1;
601 }
602 }
603
604 /* Fortran 2008 Draft Standard, page 535, C418, on type-param-value
605 type, lists the only ways a character length value of * can be used:
606 dummy arguments of procedures, named constants, function results and
607 in allocate statements if the allocate_object is an assumed length dummy
608 in external functions. Internal function results and results of module
609 procedures are not on this list, ergo, not permitted. */
610
611 if (sym->result->ts.type == BT_CHARACTER)
612 {
613 gfc_charlen *cl = sym->result->ts.u.cl;
614 if ((!cl || !cl->length) && !sym->result->ts.deferred)
615 {
616 /* See if this is a module-procedure and adapt error message
617 accordingly. */
618 bool module_proc;
619 gcc_assert (ns->parent && ns->parent->proc_name);
620 module_proc = (ns->parent->proc_name->attr.flavor == FL_MODULE);
621
622 gfc_error (module_proc
623 ? G_("Character-valued module procedure %qs at %L"
624 " must not be assumed length")
625 : G_("Character-valued internal function %qs at %L"
626 " must not be assumed length"),
627 sym->name, &sym->declared_at);
628 }
629 }
630 }
631
632
633 /* Add NEW_ARGS to the formal argument list of PROC, taking care not to
634 introduce duplicates. */
635
636 static void
637 merge_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
638 {
639 gfc_formal_arglist *f, *new_arglist;
640 gfc_symbol *new_sym;
641
642 for (; new_args != NULL; new_args = new_args->next)
643 {
644 new_sym = new_args->sym;
645 /* See if this arg is already in the formal argument list. */
646 for (f = proc->formal; f; f = f->next)
647 {
648 if (new_sym == f->sym)
649 break;
650 }
651
652 if (f)
653 continue;
654
655 /* Add a new argument. Argument order is not important. */
656 new_arglist = gfc_get_formal_arglist ();
657 new_arglist->sym = new_sym;
658 new_arglist->next = proc->formal;
659 proc->formal = new_arglist;
660 }
661 }
662
663
664 /* Flag the arguments that are not present in all entries. */
665
666 static void
667 check_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
668 {
669 gfc_formal_arglist *f, *head;
670 head = new_args;
671
672 for (f = proc->formal; f; f = f->next)
673 {
674 if (f->sym == NULL)
675 continue;
676
677 for (new_args = head; new_args; new_args = new_args->next)
678 {
679 if (new_args->sym == f->sym)
680 break;
681 }
682
683 if (new_args)
684 continue;
685
686 f->sym->attr.not_always_present = 1;
687 }
688 }
689
690
691 /* Resolve alternate entry points. If a symbol has multiple entry points we
692 create a new master symbol for the main routine, and turn the existing
693 symbol into an entry point. */
694
695 static void
696 resolve_entries (gfc_namespace *ns)
697 {
698 gfc_namespace *old_ns;
699 gfc_code *c;
700 gfc_symbol *proc;
701 gfc_entry_list *el;
702 char name[GFC_MAX_SYMBOL_LEN + 1];
703 static int master_count = 0;
704
705 if (ns->proc_name == NULL)
706 return;
707
708 /* No need to do anything if this procedure doesn't have alternate entry
709 points. */
710 if (!ns->entries)
711 return;
712
713 /* We may already have resolved alternate entry points. */
714 if (ns->proc_name->attr.entry_master)
715 return;
716
717 /* If this isn't a procedure something has gone horribly wrong. */
718 gcc_assert (ns->proc_name->attr.flavor == FL_PROCEDURE);
719
720 /* Remember the current namespace. */
721 old_ns = gfc_current_ns;
722
723 gfc_current_ns = ns;
724
725 /* Add the main entry point to the list of entry points. */
726 el = gfc_get_entry_list ();
727 el->sym = ns->proc_name;
728 el->id = 0;
729 el->next = ns->entries;
730 ns->entries = el;
731 ns->proc_name->attr.entry = 1;
732
733 /* If it is a module function, it needs to be in the right namespace
734 so that gfc_get_fake_result_decl can gather up the results. The
735 need for this arose in get_proc_name, where these beasts were
736 left in their own namespace, to keep prior references linked to
737 the entry declaration.*/
738 if (ns->proc_name->attr.function
739 && ns->parent && ns->parent->proc_name->attr.flavor == FL_MODULE)
740 el->sym->ns = ns;
741
742 /* Do the same for entries where the master is not a module
743 procedure. These are retained in the module namespace because
744 of the module procedure declaration. */
745 for (el = el->next; el; el = el->next)
746 if (el->sym->ns->proc_name->attr.flavor == FL_MODULE
747 && el->sym->attr.mod_proc)
748 el->sym->ns = ns;
749 el = ns->entries;
750
751 /* Add an entry statement for it. */
752 c = gfc_get_code (EXEC_ENTRY);
753 c->ext.entry = el;
754 c->next = ns->code;
755 ns->code = c;
756
757 /* Create a new symbol for the master function. */
758 /* Give the internal function a unique name (within this file).
759 Also include the function name so the user has some hope of figuring
760 out what is going on. */
761 snprintf (name, GFC_MAX_SYMBOL_LEN, "master.%d.%s",
762 master_count++, ns->proc_name->name);
763 gfc_get_ha_symbol (name, &proc);
764 gcc_assert (proc != NULL);
765
766 gfc_add_procedure (&proc->attr, PROC_INTERNAL, proc->name, NULL);
767 if (ns->proc_name->attr.subroutine)
768 gfc_add_subroutine (&proc->attr, proc->name, NULL);
769 else
770 {
771 gfc_symbol *sym;
772 gfc_typespec *ts, *fts;
773 gfc_array_spec *as, *fas;
774 gfc_add_function (&proc->attr, proc->name, NULL);
775 proc->result = proc;
776 fas = ns->entries->sym->as;
777 fas = fas ? fas : ns->entries->sym->result->as;
778 fts = &ns->entries->sym->result->ts;
779 if (fts->type == BT_UNKNOWN)
780 fts = gfc_get_default_type (ns->entries->sym->result->name, NULL);
781 for (el = ns->entries->next; el; el = el->next)
782 {
783 ts = &el->sym->result->ts;
784 as = el->sym->as;
785 as = as ? as : el->sym->result->as;
786 if (ts->type == BT_UNKNOWN)
787 ts = gfc_get_default_type (el->sym->result->name, NULL);
788
789 if (! gfc_compare_types (ts, fts)
790 || (el->sym->result->attr.dimension
791 != ns->entries->sym->result->attr.dimension)
792 || (el->sym->result->attr.pointer
793 != ns->entries->sym->result->attr.pointer))
794 break;
795 else if (as && fas && ns->entries->sym->result != el->sym->result
796 && gfc_compare_array_spec (as, fas) == 0)
797 gfc_error ("Function %s at %L has entries with mismatched "
798 "array specifications", ns->entries->sym->name,
799 &ns->entries->sym->declared_at);
800 /* The characteristics need to match and thus both need to have
801 the same string length, i.e. both len=*, or both len=4.
802 Having both len=<variable> is also possible, but difficult to
803 check at compile time. */
804 else if (ts->type == BT_CHARACTER && ts->u.cl && fts->u.cl
805 && (((ts->u.cl->length && !fts->u.cl->length)
806 ||(!ts->u.cl->length && fts->u.cl->length))
807 || (ts->u.cl->length
808 && ts->u.cl->length->expr_type
809 != fts->u.cl->length->expr_type)
810 || (ts->u.cl->length
811 && ts->u.cl->length->expr_type == EXPR_CONSTANT
812 && mpz_cmp (ts->u.cl->length->value.integer,
813 fts->u.cl->length->value.integer) != 0)))
814 gfc_notify_std (GFC_STD_GNU, "Function %s at %L with "
815 "entries returning variables of different "
816 "string lengths", ns->entries->sym->name,
817 &ns->entries->sym->declared_at);
818 }
819
820 if (el == NULL)
821 {
822 sym = ns->entries->sym->result;
823 /* All result types the same. */
824 proc->ts = *fts;
825 if (sym->attr.dimension)
826 gfc_set_array_spec (proc, gfc_copy_array_spec (sym->as), NULL);
827 if (sym->attr.pointer)
828 gfc_add_pointer (&proc->attr, NULL);
829 }
830 else
831 {
832 /* Otherwise the result will be passed through a union by
833 reference. */
834 proc->attr.mixed_entry_master = 1;
835 for (el = ns->entries; el; el = el->next)
836 {
837 sym = el->sym->result;
838 if (sym->attr.dimension)
839 {
840 if (el == ns->entries)
841 gfc_error ("FUNCTION result %s can't be an array in "
842 "FUNCTION %s at %L", sym->name,
843 ns->entries->sym->name, &sym->declared_at);
844 else
845 gfc_error ("ENTRY result %s can't be an array in "
846 "FUNCTION %s at %L", sym->name,
847 ns->entries->sym->name, &sym->declared_at);
848 }
849 else if (sym->attr.pointer)
850 {
851 if (el == ns->entries)
852 gfc_error ("FUNCTION result %s can't be a POINTER in "
853 "FUNCTION %s at %L", sym->name,
854 ns->entries->sym->name, &sym->declared_at);
855 else
856 gfc_error ("ENTRY result %s can't be a POINTER in "
857 "FUNCTION %s at %L", sym->name,
858 ns->entries->sym->name, &sym->declared_at);
859 }
860 else
861 {
862 ts = &sym->ts;
863 if (ts->type == BT_UNKNOWN)
864 ts = gfc_get_default_type (sym->name, NULL);
865 switch (ts->type)
866 {
867 case BT_INTEGER:
868 if (ts->kind == gfc_default_integer_kind)
869 sym = NULL;
870 break;
871 case BT_REAL:
872 if (ts->kind == gfc_default_real_kind
873 || ts->kind == gfc_default_double_kind)
874 sym = NULL;
875 break;
876 case BT_COMPLEX:
877 if (ts->kind == gfc_default_complex_kind)
878 sym = NULL;
879 break;
880 case BT_LOGICAL:
881 if (ts->kind == gfc_default_logical_kind)
882 sym = NULL;
883 break;
884 case BT_UNKNOWN:
885 /* We will issue error elsewhere. */
886 sym = NULL;
887 break;
888 default:
889 break;
890 }
891 if (sym)
892 {
893 if (el == ns->entries)
894 gfc_error ("FUNCTION result %s can't be of type %s "
895 "in FUNCTION %s at %L", sym->name,
896 gfc_typename (ts), ns->entries->sym->name,
897 &sym->declared_at);
898 else
899 gfc_error ("ENTRY result %s can't be of type %s "
900 "in FUNCTION %s at %L", sym->name,
901 gfc_typename (ts), ns->entries->sym->name,
902 &sym->declared_at);
903 }
904 }
905 }
906 }
907 }
908 proc->attr.access = ACCESS_PRIVATE;
909 proc->attr.entry_master = 1;
910
911 /* Merge all the entry point arguments. */
912 for (el = ns->entries; el; el = el->next)
913 merge_argument_lists (proc, el->sym->formal);
914
915 /* Check the master formal arguments for any that are not
916 present in all entry points. */
917 for (el = ns->entries; el; el = el->next)
918 check_argument_lists (proc, el->sym->formal);
919
920 /* Use the master function for the function body. */
921 ns->proc_name = proc;
922
923 /* Finalize the new symbols. */
924 gfc_commit_symbols ();
925
926 /* Restore the original namespace. */
927 gfc_current_ns = old_ns;
928 }
929
930
931 /* Resolve common variables. */
932 static void
933 resolve_common_vars (gfc_common_head *common_block, bool named_common)
934 {
935 gfc_symbol *csym = common_block->head;
936
937 for (; csym; csym = csym->common_next)
938 {
939 /* gfc_add_in_common may have been called before, but the reported errors
940 have been ignored to continue parsing.
941 We do the checks again here. */
942 if (!csym->attr.use_assoc)
943 {
944 gfc_add_in_common (&csym->attr, csym->name, &common_block->where);
945 gfc_notify_std (GFC_STD_F2018_OBS, "COMMON block at %L",
946 &common_block->where);
947 }
948
949 if (csym->value || csym->attr.data)
950 {
951 if (!csym->ns->is_block_data)
952 gfc_notify_std (GFC_STD_GNU, "Variable %qs at %L is in COMMON "
953 "but only in BLOCK DATA initialization is "
954 "allowed", csym->name, &csym->declared_at);
955 else if (!named_common)
956 gfc_notify_std (GFC_STD_GNU, "Initialized variable %qs at %L is "
957 "in a blank COMMON but initialization is only "
958 "allowed in named common blocks", csym->name,
959 &csym->declared_at);
960 }
961
962 if (UNLIMITED_POLY (csym))
963 gfc_error_now ("%qs in cannot appear in COMMON at %L "
964 "[F2008:C5100]", csym->name, &csym->declared_at);
965
966 if (csym->ts.type != BT_DERIVED)
967 continue;
968
969 if (!(csym->ts.u.derived->attr.sequence
970 || csym->ts.u.derived->attr.is_bind_c))
971 gfc_error_now ("Derived type variable %qs in COMMON at %L "
972 "has neither the SEQUENCE nor the BIND(C) "
973 "attribute", csym->name, &csym->declared_at);
974 if (csym->ts.u.derived->attr.alloc_comp)
975 gfc_error_now ("Derived type variable %qs in COMMON at %L "
976 "has an ultimate component that is "
977 "allocatable", csym->name, &csym->declared_at);
978 if (gfc_has_default_initializer (csym->ts.u.derived))
979 gfc_error_now ("Derived type variable %qs in COMMON at %L "
980 "may not have default initializer", csym->name,
981 &csym->declared_at);
982
983 if (csym->attr.flavor == FL_UNKNOWN && !csym->attr.proc_pointer)
984 gfc_add_flavor (&csym->attr, FL_VARIABLE, csym->name, &csym->declared_at);
985 }
986 }
987
988 /* Resolve common blocks. */
989 static void
990 resolve_common_blocks (gfc_symtree *common_root)
991 {
992 gfc_symbol *sym;
993 gfc_gsymbol * gsym;
994
995 if (common_root == NULL)
996 return;
997
998 if (common_root->left)
999 resolve_common_blocks (common_root->left);
1000 if (common_root->right)
1001 resolve_common_blocks (common_root->right);
1002
1003 resolve_common_vars (common_root->n.common, true);
1004
1005 /* The common name is a global name - in Fortran 2003 also if it has a
1006 C binding name, since Fortran 2008 only the C binding name is a global
1007 identifier. */
1008 if (!common_root->n.common->binding_label
1009 || gfc_notification_std (GFC_STD_F2008))
1010 {
1011 gsym = gfc_find_gsymbol (gfc_gsym_root,
1012 common_root->n.common->name);
1013
1014 if (gsym && gfc_notification_std (GFC_STD_F2008)
1015 && gsym->type == GSYM_COMMON
1016 && ((common_root->n.common->binding_label
1017 && (!gsym->binding_label
1018 || strcmp (common_root->n.common->binding_label,
1019 gsym->binding_label) != 0))
1020 || (!common_root->n.common->binding_label
1021 && gsym->binding_label)))
1022 {
1023 gfc_error ("In Fortran 2003 COMMON %qs block at %L is a global "
1024 "identifier and must thus have the same binding name "
1025 "as the same-named COMMON block at %L: %s vs %s",
1026 common_root->n.common->name, &common_root->n.common->where,
1027 &gsym->where,
1028 common_root->n.common->binding_label
1029 ? common_root->n.common->binding_label : "(blank)",
1030 gsym->binding_label ? gsym->binding_label : "(blank)");
1031 return;
1032 }
1033
1034 if (gsym && gsym->type != GSYM_COMMON
1035 && !common_root->n.common->binding_label)
1036 {
1037 gfc_error ("COMMON block %qs at %L uses the same global identifier "
1038 "as entity at %L",
1039 common_root->n.common->name, &common_root->n.common->where,
1040 &gsym->where);
1041 return;
1042 }
1043 if (gsym && gsym->type != GSYM_COMMON)
1044 {
1045 gfc_error ("Fortran 2008: COMMON block %qs with binding label at "
1046 "%L sharing the identifier with global non-COMMON-block "
1047 "entity at %L", common_root->n.common->name,
1048 &common_root->n.common->where, &gsym->where);
1049 return;
1050 }
1051 if (!gsym)
1052 {
1053 gsym = gfc_get_gsymbol (common_root->n.common->name);
1054 gsym->type = GSYM_COMMON;
1055 gsym->where = common_root->n.common->where;
1056 gsym->defined = 1;
1057 }
1058 gsym->used = 1;
1059 }
1060
1061 if (common_root->n.common->binding_label)
1062 {
1063 gsym = gfc_find_gsymbol (gfc_gsym_root,
1064 common_root->n.common->binding_label);
1065 if (gsym && gsym->type != GSYM_COMMON)
1066 {
1067 gfc_error ("COMMON block at %L with binding label %qs uses the same "
1068 "global identifier as entity at %L",
1069 &common_root->n.common->where,
1070 common_root->n.common->binding_label, &gsym->where);
1071 return;
1072 }
1073 if (!gsym)
1074 {
1075 gsym = gfc_get_gsymbol (common_root->n.common->binding_label);
1076 gsym->type = GSYM_COMMON;
1077 gsym->where = common_root->n.common->where;
1078 gsym->defined = 1;
1079 }
1080 gsym->used = 1;
1081 }
1082
1083 gfc_find_symbol (common_root->name, gfc_current_ns, 0, &sym);
1084 if (sym == NULL)
1085 return;
1086
1087 if (sym->attr.flavor == FL_PARAMETER)
1088 gfc_error ("COMMON block %qs at %L is used as PARAMETER at %L",
1089 sym->name, &common_root->n.common->where, &sym->declared_at);
1090
1091 if (sym->attr.external)
1092 gfc_error ("COMMON block %qs at %L cannot have the EXTERNAL attribute",
1093 sym->name, &common_root->n.common->where);
1094
1095 if (sym->attr.intrinsic)
1096 gfc_error ("COMMON block %qs at %L is also an intrinsic procedure",
1097 sym->name, &common_root->n.common->where);
1098 else if (sym->attr.result
1099 || gfc_is_function_return_value (sym, gfc_current_ns))
1100 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1101 "that is also a function result", sym->name,
1102 &common_root->n.common->where);
1103 else if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_INTERNAL
1104 && sym->attr.proc != PROC_ST_FUNCTION)
1105 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1106 "that is also a global procedure", sym->name,
1107 &common_root->n.common->where);
1108 }
1109
1110
1111 /* Resolve contained function types. Because contained functions can call one
1112 another, they have to be worked out before any of the contained procedures
1113 can be resolved.
1114
1115 The good news is that if a function doesn't already have a type, the only
1116 way it can get one is through an IMPLICIT type or a RESULT variable, because
1117 by definition contained functions are contained namespace they're contained
1118 in, not in a sibling or parent namespace. */
1119
1120 static void
1121 resolve_contained_functions (gfc_namespace *ns)
1122 {
1123 gfc_namespace *child;
1124 gfc_entry_list *el;
1125
1126 resolve_formal_arglists (ns);
1127
1128 for (child = ns->contained; child; child = child->sibling)
1129 {
1130 /* Resolve alternate entry points first. */
1131 resolve_entries (child);
1132
1133 /* Then check function return types. */
1134 resolve_contained_fntype (child->proc_name, child);
1135 for (el = child->entries; el; el = el->next)
1136 resolve_contained_fntype (el->sym, child);
1137 }
1138 }
1139
1140
1141
1142 /* A Parameterized Derived Type constructor must contain values for
1143 the PDT KIND parameters or they must have a default initializer.
1144 Go through the constructor picking out the KIND expressions,
1145 storing them in 'param_list' and then call gfc_get_pdt_instance
1146 to obtain the PDT instance. */
1147
1148 static gfc_actual_arglist *param_list, *param_tail, *param;
1149
1150 static bool
1151 get_pdt_spec_expr (gfc_component *c, gfc_expr *expr)
1152 {
1153 param = gfc_get_actual_arglist ();
1154 if (!param_list)
1155 param_list = param_tail = param;
1156 else
1157 {
1158 param_tail->next = param;
1159 param_tail = param_tail->next;
1160 }
1161
1162 param_tail->name = c->name;
1163 if (expr)
1164 param_tail->expr = gfc_copy_expr (expr);
1165 else if (c->initializer)
1166 param_tail->expr = gfc_copy_expr (c->initializer);
1167 else
1168 {
1169 param_tail->spec_type = SPEC_ASSUMED;
1170 if (c->attr.pdt_kind)
1171 {
1172 gfc_error ("The KIND parameter %qs in the PDT constructor "
1173 "at %C has no value", param->name);
1174 return false;
1175 }
1176 }
1177
1178 return true;
1179 }
1180
1181 static bool
1182 get_pdt_constructor (gfc_expr *expr, gfc_constructor **constr,
1183 gfc_symbol *derived)
1184 {
1185 gfc_constructor *cons = NULL;
1186 gfc_component *comp;
1187 bool t = true;
1188
1189 if (expr && expr->expr_type == EXPR_STRUCTURE)
1190 cons = gfc_constructor_first (expr->value.constructor);
1191 else if (constr)
1192 cons = *constr;
1193 gcc_assert (cons);
1194
1195 comp = derived->components;
1196
1197 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1198 {
1199 if (cons->expr
1200 && cons->expr->expr_type == EXPR_STRUCTURE
1201 && comp->ts.type == BT_DERIVED)
1202 {
1203 t = get_pdt_constructor (cons->expr, NULL, comp->ts.u.derived);
1204 if (!t)
1205 return t;
1206 }
1207 else if (comp->ts.type == BT_DERIVED)
1208 {
1209 t = get_pdt_constructor (NULL, &cons, comp->ts.u.derived);
1210 if (!t)
1211 return t;
1212 }
1213 else if ((comp->attr.pdt_kind || comp->attr.pdt_len)
1214 && derived->attr.pdt_template)
1215 {
1216 t = get_pdt_spec_expr (comp, cons->expr);
1217 if (!t)
1218 return t;
1219 }
1220 }
1221 return t;
1222 }
1223
1224
1225 static bool resolve_fl_derived0 (gfc_symbol *sym);
1226 static bool resolve_fl_struct (gfc_symbol *sym);
1227
1228
1229 /* Resolve all of the elements of a structure constructor and make sure that
1230 the types are correct. The 'init' flag indicates that the given
1231 constructor is an initializer. */
1232
1233 static bool
1234 resolve_structure_cons (gfc_expr *expr, int init)
1235 {
1236 gfc_constructor *cons;
1237 gfc_component *comp;
1238 bool t;
1239 symbol_attribute a;
1240
1241 t = true;
1242
1243 if (expr->ts.type == BT_DERIVED || expr->ts.type == BT_UNION)
1244 {
1245 if (expr->ts.u.derived->attr.flavor == FL_DERIVED)
1246 resolve_fl_derived0 (expr->ts.u.derived);
1247 else
1248 resolve_fl_struct (expr->ts.u.derived);
1249
1250 /* If this is a Parameterized Derived Type template, find the
1251 instance corresponding to the PDT kind parameters. */
1252 if (expr->ts.u.derived->attr.pdt_template)
1253 {
1254 param_list = NULL;
1255 t = get_pdt_constructor (expr, NULL, expr->ts.u.derived);
1256 if (!t)
1257 return t;
1258 gfc_get_pdt_instance (param_list, &expr->ts.u.derived, NULL);
1259
1260 expr->param_list = gfc_copy_actual_arglist (param_list);
1261
1262 if (param_list)
1263 gfc_free_actual_arglist (param_list);
1264
1265 if (!expr->ts.u.derived->attr.pdt_type)
1266 return false;
1267 }
1268 }
1269
1270 cons = gfc_constructor_first (expr->value.constructor);
1271
1272 /* A constructor may have references if it is the result of substituting a
1273 parameter variable. In this case we just pull out the component we
1274 want. */
1275 if (expr->ref)
1276 comp = expr->ref->u.c.sym->components;
1277 else
1278 comp = expr->ts.u.derived->components;
1279
1280 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1281 {
1282 int rank;
1283
1284 if (!cons->expr)
1285 continue;
1286
1287 /* Unions use an EXPR_NULL contrived expression to tell the translation
1288 phase to generate an initializer of the appropriate length.
1289 Ignore it here. */
1290 if (cons->expr->ts.type == BT_UNION && cons->expr->expr_type == EXPR_NULL)
1291 continue;
1292
1293 if (!gfc_resolve_expr (cons->expr))
1294 {
1295 t = false;
1296 continue;
1297 }
1298
1299 rank = comp->as ? comp->as->rank : 0;
1300 if (comp->ts.type == BT_CLASS
1301 && !comp->ts.u.derived->attr.unlimited_polymorphic
1302 && CLASS_DATA (comp)->as)
1303 rank = CLASS_DATA (comp)->as->rank;
1304
1305 if (cons->expr->expr_type != EXPR_NULL && rank != cons->expr->rank
1306 && (comp->attr.allocatable || cons->expr->rank))
1307 {
1308 gfc_error ("The rank of the element in the structure "
1309 "constructor at %L does not match that of the "
1310 "component (%d/%d)", &cons->expr->where,
1311 cons->expr->rank, rank);
1312 t = false;
1313 }
1314
1315 /* If we don't have the right type, try to convert it. */
1316
1317 if (!comp->attr.proc_pointer &&
1318 !gfc_compare_types (&cons->expr->ts, &comp->ts))
1319 {
1320 if (strcmp (comp->name, "_extends") == 0)
1321 {
1322 /* Can afford to be brutal with the _extends initializer.
1323 The derived type can get lost because it is PRIVATE
1324 but it is not usage constrained by the standard. */
1325 cons->expr->ts = comp->ts;
1326 }
1327 else if (comp->attr.pointer && cons->expr->ts.type != BT_UNKNOWN)
1328 {
1329 gfc_error ("The element in the structure constructor at %L, "
1330 "for pointer component %qs, is %s but should be %s",
1331 &cons->expr->where, comp->name,
1332 gfc_basic_typename (cons->expr->ts.type),
1333 gfc_basic_typename (comp->ts.type));
1334 t = false;
1335 }
1336 else
1337 {
1338 bool t2 = gfc_convert_type (cons->expr, &comp->ts, 1);
1339 if (t)
1340 t = t2;
1341 }
1342 }
1343
1344 /* For strings, the length of the constructor should be the same as
1345 the one of the structure, ensure this if the lengths are known at
1346 compile time and when we are dealing with PARAMETER or structure
1347 constructors. */
1348 if (cons->expr->ts.type == BT_CHARACTER && comp->ts.u.cl
1349 && comp->ts.u.cl->length
1350 && comp->ts.u.cl->length->expr_type == EXPR_CONSTANT
1351 && cons->expr->ts.u.cl && cons->expr->ts.u.cl->length
1352 && cons->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
1353 && cons->expr->rank != 0
1354 && mpz_cmp (cons->expr->ts.u.cl->length->value.integer,
1355 comp->ts.u.cl->length->value.integer) != 0)
1356 {
1357 if (cons->expr->expr_type == EXPR_VARIABLE
1358 && cons->expr->symtree->n.sym->attr.flavor == FL_PARAMETER)
1359 {
1360 /* Wrap the parameter in an array constructor (EXPR_ARRAY)
1361 to make use of the gfc_resolve_character_array_constructor
1362 machinery. The expression is later simplified away to
1363 an array of string literals. */
1364 gfc_expr *para = cons->expr;
1365 cons->expr = gfc_get_expr ();
1366 cons->expr->ts = para->ts;
1367 cons->expr->where = para->where;
1368 cons->expr->expr_type = EXPR_ARRAY;
1369 cons->expr->rank = para->rank;
1370 cons->expr->shape = gfc_copy_shape (para->shape, para->rank);
1371 gfc_constructor_append_expr (&cons->expr->value.constructor,
1372 para, &cons->expr->where);
1373 }
1374
1375 if (cons->expr->expr_type == EXPR_ARRAY)
1376 {
1377 /* Rely on the cleanup of the namespace to deal correctly with
1378 the old charlen. (There was a block here that attempted to
1379 remove the charlen but broke the chain in so doing.) */
1380 cons->expr->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1381 cons->expr->ts.u.cl->length_from_typespec = true;
1382 cons->expr->ts.u.cl->length = gfc_copy_expr (comp->ts.u.cl->length);
1383 gfc_resolve_character_array_constructor (cons->expr);
1384 }
1385 }
1386
1387 if (cons->expr->expr_type == EXPR_NULL
1388 && !(comp->attr.pointer || comp->attr.allocatable
1389 || comp->attr.proc_pointer || comp->ts.f90_type == BT_VOID
1390 || (comp->ts.type == BT_CLASS
1391 && (CLASS_DATA (comp)->attr.class_pointer
1392 || CLASS_DATA (comp)->attr.allocatable))))
1393 {
1394 t = false;
1395 gfc_error ("The NULL in the structure constructor at %L is "
1396 "being applied to component %qs, which is neither "
1397 "a POINTER nor ALLOCATABLE", &cons->expr->where,
1398 comp->name);
1399 }
1400
1401 if (comp->attr.proc_pointer && comp->ts.interface)
1402 {
1403 /* Check procedure pointer interface. */
1404 gfc_symbol *s2 = NULL;
1405 gfc_component *c2;
1406 const char *name;
1407 char err[200];
1408
1409 c2 = gfc_get_proc_ptr_comp (cons->expr);
1410 if (c2)
1411 {
1412 s2 = c2->ts.interface;
1413 name = c2->name;
1414 }
1415 else if (cons->expr->expr_type == EXPR_FUNCTION)
1416 {
1417 s2 = cons->expr->symtree->n.sym->result;
1418 name = cons->expr->symtree->n.sym->result->name;
1419 }
1420 else if (cons->expr->expr_type != EXPR_NULL)
1421 {
1422 s2 = cons->expr->symtree->n.sym;
1423 name = cons->expr->symtree->n.sym->name;
1424 }
1425
1426 if (s2 && !gfc_compare_interfaces (comp->ts.interface, s2, name, 0, 1,
1427 err, sizeof (err), NULL, NULL))
1428 {
1429 gfc_error_opt (OPT_Wargument_mismatch,
1430 "Interface mismatch for procedure-pointer "
1431 "component %qs in structure constructor at %L:"
1432 " %s", comp->name, &cons->expr->where, err);
1433 return false;
1434 }
1435 }
1436
1437 if (!comp->attr.pointer || comp->attr.proc_pointer
1438 || cons->expr->expr_type == EXPR_NULL)
1439 continue;
1440
1441 a = gfc_expr_attr (cons->expr);
1442
1443 if (!a.pointer && !a.target)
1444 {
1445 t = false;
1446 gfc_error ("The element in the structure constructor at %L, "
1447 "for pointer component %qs should be a POINTER or "
1448 "a TARGET", &cons->expr->where, comp->name);
1449 }
1450
1451 if (init)
1452 {
1453 /* F08:C461. Additional checks for pointer initialization. */
1454 if (a.allocatable)
1455 {
1456 t = false;
1457 gfc_error ("Pointer initialization target at %L "
1458 "must not be ALLOCATABLE", &cons->expr->where);
1459 }
1460 if (!a.save)
1461 {
1462 t = false;
1463 gfc_error ("Pointer initialization target at %L "
1464 "must have the SAVE attribute", &cons->expr->where);
1465 }
1466 }
1467
1468 /* F2003, C1272 (3). */
1469 bool impure = cons->expr->expr_type == EXPR_VARIABLE
1470 && (gfc_impure_variable (cons->expr->symtree->n.sym)
1471 || gfc_is_coindexed (cons->expr));
1472 if (impure && gfc_pure (NULL))
1473 {
1474 t = false;
1475 gfc_error ("Invalid expression in the structure constructor for "
1476 "pointer component %qs at %L in PURE procedure",
1477 comp->name, &cons->expr->where);
1478 }
1479
1480 if (impure)
1481 gfc_unset_implicit_pure (NULL);
1482 }
1483
1484 return t;
1485 }
1486
1487
1488 /****************** Expression name resolution ******************/
1489
1490 /* Returns 0 if a symbol was not declared with a type or
1491 attribute declaration statement, nonzero otherwise. */
1492
1493 static int
1494 was_declared (gfc_symbol *sym)
1495 {
1496 symbol_attribute a;
1497
1498 a = sym->attr;
1499
1500 if (!a.implicit_type && sym->ts.type != BT_UNKNOWN)
1501 return 1;
1502
1503 if (a.allocatable || a.dimension || a.dummy || a.external || a.intrinsic
1504 || a.optional || a.pointer || a.save || a.target || a.volatile_
1505 || a.value || a.access != ACCESS_UNKNOWN || a.intent != INTENT_UNKNOWN
1506 || a.asynchronous || a.codimension)
1507 return 1;
1508
1509 return 0;
1510 }
1511
1512
1513 /* Determine if a symbol is generic or not. */
1514
1515 static int
1516 generic_sym (gfc_symbol *sym)
1517 {
1518 gfc_symbol *s;
1519
1520 if (sym->attr.generic ||
1521 (sym->attr.intrinsic && gfc_generic_intrinsic (sym->name)))
1522 return 1;
1523
1524 if (was_declared (sym) || sym->ns->parent == NULL)
1525 return 0;
1526
1527 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1528
1529 if (s != NULL)
1530 {
1531 if (s == sym)
1532 return 0;
1533 else
1534 return generic_sym (s);
1535 }
1536
1537 return 0;
1538 }
1539
1540
1541 /* Determine if a symbol is specific or not. */
1542
1543 static int
1544 specific_sym (gfc_symbol *sym)
1545 {
1546 gfc_symbol *s;
1547
1548 if (sym->attr.if_source == IFSRC_IFBODY
1549 || sym->attr.proc == PROC_MODULE
1550 || sym->attr.proc == PROC_INTERNAL
1551 || sym->attr.proc == PROC_ST_FUNCTION
1552 || (sym->attr.intrinsic && gfc_specific_intrinsic (sym->name))
1553 || sym->attr.external)
1554 return 1;
1555
1556 if (was_declared (sym) || sym->ns->parent == NULL)
1557 return 0;
1558
1559 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1560
1561 return (s == NULL) ? 0 : specific_sym (s);
1562 }
1563
1564
1565 /* Figure out if the procedure is specific, generic or unknown. */
1566
1567 enum proc_type
1568 { PTYPE_GENERIC = 1, PTYPE_SPECIFIC, PTYPE_UNKNOWN };
1569
1570 static proc_type
1571 procedure_kind (gfc_symbol *sym)
1572 {
1573 if (generic_sym (sym))
1574 return PTYPE_GENERIC;
1575
1576 if (specific_sym (sym))
1577 return PTYPE_SPECIFIC;
1578
1579 return PTYPE_UNKNOWN;
1580 }
1581
1582 /* Check references to assumed size arrays. The flag need_full_assumed_size
1583 is nonzero when matching actual arguments. */
1584
1585 static int need_full_assumed_size = 0;
1586
1587 static bool
1588 check_assumed_size_reference (gfc_symbol *sym, gfc_expr *e)
1589 {
1590 if (need_full_assumed_size || !(sym->as && sym->as->type == AS_ASSUMED_SIZE))
1591 return false;
1592
1593 /* FIXME: The comparison "e->ref->u.ar.type == AR_FULL" is wrong.
1594 What should it be? */
1595 if (e->ref && (e->ref->u.ar.end[e->ref->u.ar.as->rank - 1] == NULL)
1596 && (e->ref->u.ar.as->type == AS_ASSUMED_SIZE)
1597 && (e->ref->u.ar.type == AR_FULL))
1598 {
1599 gfc_error ("The upper bound in the last dimension must "
1600 "appear in the reference to the assumed size "
1601 "array %qs at %L", sym->name, &e->where);
1602 return true;
1603 }
1604 return false;
1605 }
1606
1607
1608 /* Look for bad assumed size array references in argument expressions
1609 of elemental and array valued intrinsic procedures. Since this is
1610 called from procedure resolution functions, it only recurses at
1611 operators. */
1612
1613 static bool
1614 resolve_assumed_size_actual (gfc_expr *e)
1615 {
1616 if (e == NULL)
1617 return false;
1618
1619 switch (e->expr_type)
1620 {
1621 case EXPR_VARIABLE:
1622 if (e->symtree && check_assumed_size_reference (e->symtree->n.sym, e))
1623 return true;
1624 break;
1625
1626 case EXPR_OP:
1627 if (resolve_assumed_size_actual (e->value.op.op1)
1628 || resolve_assumed_size_actual (e->value.op.op2))
1629 return true;
1630 break;
1631
1632 default:
1633 break;
1634 }
1635 return false;
1636 }
1637
1638
1639 /* Check a generic procedure, passed as an actual argument, to see if
1640 there is a matching specific name. If none, it is an error, and if
1641 more than one, the reference is ambiguous. */
1642 static int
1643 count_specific_procs (gfc_expr *e)
1644 {
1645 int n;
1646 gfc_interface *p;
1647 gfc_symbol *sym;
1648
1649 n = 0;
1650 sym = e->symtree->n.sym;
1651
1652 for (p = sym->generic; p; p = p->next)
1653 if (strcmp (sym->name, p->sym->name) == 0)
1654 {
1655 e->symtree = gfc_find_symtree (p->sym->ns->sym_root,
1656 sym->name);
1657 n++;
1658 }
1659
1660 if (n > 1)
1661 gfc_error ("%qs at %L is ambiguous", e->symtree->n.sym->name,
1662 &e->where);
1663
1664 if (n == 0)
1665 gfc_error ("GENERIC procedure %qs is not allowed as an actual "
1666 "argument at %L", sym->name, &e->where);
1667
1668 return n;
1669 }
1670
1671
1672 /* See if a call to sym could possibly be a not allowed RECURSION because of
1673 a missing RECURSIVE declaration. This means that either sym is the current
1674 context itself, or sym is the parent of a contained procedure calling its
1675 non-RECURSIVE containing procedure.
1676 This also works if sym is an ENTRY. */
1677
1678 static bool
1679 is_illegal_recursion (gfc_symbol* sym, gfc_namespace* context)
1680 {
1681 gfc_symbol* proc_sym;
1682 gfc_symbol* context_proc;
1683 gfc_namespace* real_context;
1684
1685 if (sym->attr.flavor == FL_PROGRAM
1686 || gfc_fl_struct (sym->attr.flavor))
1687 return false;
1688
1689 /* If we've got an ENTRY, find real procedure. */
1690 if (sym->attr.entry && sym->ns->entries)
1691 proc_sym = sym->ns->entries->sym;
1692 else
1693 proc_sym = sym;
1694
1695 /* If sym is RECURSIVE, all is well of course. */
1696 if (proc_sym->attr.recursive || flag_recursive)
1697 return false;
1698
1699 /* Find the context procedure's "real" symbol if it has entries.
1700 We look for a procedure symbol, so recurse on the parents if we don't
1701 find one (like in case of a BLOCK construct). */
1702 for (real_context = context; ; real_context = real_context->parent)
1703 {
1704 /* We should find something, eventually! */
1705 gcc_assert (real_context);
1706
1707 context_proc = (real_context->entries ? real_context->entries->sym
1708 : real_context->proc_name);
1709
1710 /* In some special cases, there may not be a proc_name, like for this
1711 invalid code:
1712 real(bad_kind()) function foo () ...
1713 when checking the call to bad_kind ().
1714 In these cases, we simply return here and assume that the
1715 call is ok. */
1716 if (!context_proc)
1717 return false;
1718
1719 if (context_proc->attr.flavor != FL_LABEL)
1720 break;
1721 }
1722
1723 /* A call from sym's body to itself is recursion, of course. */
1724 if (context_proc == proc_sym)
1725 return true;
1726
1727 /* The same is true if context is a contained procedure and sym the
1728 containing one. */
1729 if (context_proc->attr.contained)
1730 {
1731 gfc_symbol* parent_proc;
1732
1733 gcc_assert (context->parent);
1734 parent_proc = (context->parent->entries ? context->parent->entries->sym
1735 : context->parent->proc_name);
1736
1737 if (parent_proc == proc_sym)
1738 return true;
1739 }
1740
1741 return false;
1742 }
1743
1744
1745 /* Resolve an intrinsic procedure: Set its function/subroutine attribute,
1746 its typespec and formal argument list. */
1747
1748 bool
1749 gfc_resolve_intrinsic (gfc_symbol *sym, locus *loc)
1750 {
1751 gfc_intrinsic_sym* isym = NULL;
1752 const char* symstd;
1753
1754 if (sym->formal)
1755 return true;
1756
1757 /* Already resolved. */
1758 if (sym->from_intmod && sym->ts.type != BT_UNKNOWN)
1759 return true;
1760
1761 /* We already know this one is an intrinsic, so we don't call
1762 gfc_is_intrinsic for full checking but rather use gfc_find_function and
1763 gfc_find_subroutine directly to check whether it is a function or
1764 subroutine. */
1765
1766 if (sym->intmod_sym_id && sym->attr.subroutine)
1767 {
1768 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1769 isym = gfc_intrinsic_subroutine_by_id (id);
1770 }
1771 else if (sym->intmod_sym_id)
1772 {
1773 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1774 isym = gfc_intrinsic_function_by_id (id);
1775 }
1776 else if (!sym->attr.subroutine)
1777 isym = gfc_find_function (sym->name);
1778
1779 if (isym && !sym->attr.subroutine)
1780 {
1781 if (sym->ts.type != BT_UNKNOWN && warn_surprising
1782 && !sym->attr.implicit_type)
1783 gfc_warning (OPT_Wsurprising,
1784 "Type specified for intrinsic function %qs at %L is"
1785 " ignored", sym->name, &sym->declared_at);
1786
1787 if (!sym->attr.function &&
1788 !gfc_add_function(&sym->attr, sym->name, loc))
1789 return false;
1790
1791 sym->ts = isym->ts;
1792 }
1793 else if (isym || (isym = gfc_find_subroutine (sym->name)))
1794 {
1795 if (sym->ts.type != BT_UNKNOWN && !sym->attr.implicit_type)
1796 {
1797 gfc_error ("Intrinsic subroutine %qs at %L shall not have a type"
1798 " specifier", sym->name, &sym->declared_at);
1799 return false;
1800 }
1801
1802 if (!sym->attr.subroutine &&
1803 !gfc_add_subroutine(&sym->attr, sym->name, loc))
1804 return false;
1805 }
1806 else
1807 {
1808 gfc_error ("%qs declared INTRINSIC at %L does not exist", sym->name,
1809 &sym->declared_at);
1810 return false;
1811 }
1812
1813 gfc_copy_formal_args_intr (sym, isym, NULL);
1814
1815 sym->attr.pure = isym->pure;
1816 sym->attr.elemental = isym->elemental;
1817
1818 /* Check it is actually available in the standard settings. */
1819 if (!gfc_check_intrinsic_standard (isym, &symstd, false, sym->declared_at))
1820 {
1821 gfc_error ("The intrinsic %qs declared INTRINSIC at %L is not "
1822 "available in the current standard settings but %s. Use "
1823 "an appropriate %<-std=*%> option or enable "
1824 "%<-fall-intrinsics%> in order to use it.",
1825 sym->name, &sym->declared_at, symstd);
1826 return false;
1827 }
1828
1829 return true;
1830 }
1831
1832
1833 /* Resolve a procedure expression, like passing it to a called procedure or as
1834 RHS for a procedure pointer assignment. */
1835
1836 static bool
1837 resolve_procedure_expression (gfc_expr* expr)
1838 {
1839 gfc_symbol* sym;
1840
1841 if (expr->expr_type != EXPR_VARIABLE)
1842 return true;
1843 gcc_assert (expr->symtree);
1844
1845 sym = expr->symtree->n.sym;
1846
1847 if (sym->attr.intrinsic)
1848 gfc_resolve_intrinsic (sym, &expr->where);
1849
1850 if (sym->attr.flavor != FL_PROCEDURE
1851 || (sym->attr.function && sym->result == sym))
1852 return true;
1853
1854 /* A non-RECURSIVE procedure that is used as procedure expression within its
1855 own body is in danger of being called recursively. */
1856 if (is_illegal_recursion (sym, gfc_current_ns))
1857 gfc_warning (0, "Non-RECURSIVE procedure %qs at %L is possibly calling"
1858 " itself recursively. Declare it RECURSIVE or use"
1859 " %<-frecursive%>", sym->name, &expr->where);
1860
1861 return true;
1862 }
1863
1864
1865 /* Resolve an actual argument list. Most of the time, this is just
1866 resolving the expressions in the list.
1867 The exception is that we sometimes have to decide whether arguments
1868 that look like procedure arguments are really simple variable
1869 references. */
1870
1871 static bool
1872 resolve_actual_arglist (gfc_actual_arglist *arg, procedure_type ptype,
1873 bool no_formal_args)
1874 {
1875 gfc_symbol *sym;
1876 gfc_symtree *parent_st;
1877 gfc_expr *e;
1878 gfc_component *comp;
1879 int save_need_full_assumed_size;
1880 bool return_value = false;
1881 bool actual_arg_sav = actual_arg, first_actual_arg_sav = first_actual_arg;
1882
1883 actual_arg = true;
1884 first_actual_arg = true;
1885
1886 for (; arg; arg = arg->next)
1887 {
1888 e = arg->expr;
1889 if (e == NULL)
1890 {
1891 /* Check the label is a valid branching target. */
1892 if (arg->label)
1893 {
1894 if (arg->label->defined == ST_LABEL_UNKNOWN)
1895 {
1896 gfc_error ("Label %d referenced at %L is never defined",
1897 arg->label->value, &arg->label->where);
1898 goto cleanup;
1899 }
1900 }
1901 first_actual_arg = false;
1902 continue;
1903 }
1904
1905 if (e->expr_type == EXPR_VARIABLE
1906 && e->symtree->n.sym->attr.generic
1907 && no_formal_args
1908 && count_specific_procs (e) != 1)
1909 goto cleanup;
1910
1911 if (e->ts.type != BT_PROCEDURE)
1912 {
1913 save_need_full_assumed_size = need_full_assumed_size;
1914 if (e->expr_type != EXPR_VARIABLE)
1915 need_full_assumed_size = 0;
1916 if (!gfc_resolve_expr (e))
1917 goto cleanup;
1918 need_full_assumed_size = save_need_full_assumed_size;
1919 goto argument_list;
1920 }
1921
1922 /* See if the expression node should really be a variable reference. */
1923
1924 sym = e->symtree->n.sym;
1925
1926 if (sym->attr.flavor == FL_PROCEDURE
1927 || sym->attr.intrinsic
1928 || sym->attr.external)
1929 {
1930 int actual_ok;
1931
1932 /* If a procedure is not already determined to be something else
1933 check if it is intrinsic. */
1934 if (gfc_is_intrinsic (sym, sym->attr.subroutine, e->where))
1935 sym->attr.intrinsic = 1;
1936
1937 if (sym->attr.proc == PROC_ST_FUNCTION)
1938 {
1939 gfc_error ("Statement function %qs at %L is not allowed as an "
1940 "actual argument", sym->name, &e->where);
1941 }
1942
1943 actual_ok = gfc_intrinsic_actual_ok (sym->name,
1944 sym->attr.subroutine);
1945 if (sym->attr.intrinsic && actual_ok == 0)
1946 {
1947 gfc_error ("Intrinsic %qs at %L is not allowed as an "
1948 "actual argument", sym->name, &e->where);
1949 }
1950
1951 if (sym->attr.contained && !sym->attr.use_assoc
1952 && sym->ns->proc_name->attr.flavor != FL_MODULE)
1953 {
1954 if (!gfc_notify_std (GFC_STD_F2008, "Internal procedure %qs is"
1955 " used as actual argument at %L",
1956 sym->name, &e->where))
1957 goto cleanup;
1958 }
1959
1960 if (sym->attr.elemental && !sym->attr.intrinsic)
1961 {
1962 gfc_error ("ELEMENTAL non-INTRINSIC procedure %qs is not "
1963 "allowed as an actual argument at %L", sym->name,
1964 &e->where);
1965 }
1966
1967 /* Check if a generic interface has a specific procedure
1968 with the same name before emitting an error. */
1969 if (sym->attr.generic && count_specific_procs (e) != 1)
1970 goto cleanup;
1971
1972 /* Just in case a specific was found for the expression. */
1973 sym = e->symtree->n.sym;
1974
1975 /* If the symbol is the function that names the current (or
1976 parent) scope, then we really have a variable reference. */
1977
1978 if (gfc_is_function_return_value (sym, sym->ns))
1979 goto got_variable;
1980
1981 /* If all else fails, see if we have a specific intrinsic. */
1982 if (sym->ts.type == BT_UNKNOWN && sym->attr.intrinsic)
1983 {
1984 gfc_intrinsic_sym *isym;
1985
1986 isym = gfc_find_function (sym->name);
1987 if (isym == NULL || !isym->specific)
1988 {
1989 gfc_error ("Unable to find a specific INTRINSIC procedure "
1990 "for the reference %qs at %L", sym->name,
1991 &e->where);
1992 goto cleanup;
1993 }
1994 sym->ts = isym->ts;
1995 sym->attr.intrinsic = 1;
1996 sym->attr.function = 1;
1997 }
1998
1999 if (!gfc_resolve_expr (e))
2000 goto cleanup;
2001 goto argument_list;
2002 }
2003
2004 /* See if the name is a module procedure in a parent unit. */
2005
2006 if (was_declared (sym) || sym->ns->parent == NULL)
2007 goto got_variable;
2008
2009 if (gfc_find_sym_tree (sym->name, sym->ns->parent, 1, &parent_st))
2010 {
2011 gfc_error ("Symbol %qs at %L is ambiguous", sym->name, &e->where);
2012 goto cleanup;
2013 }
2014
2015 if (parent_st == NULL)
2016 goto got_variable;
2017
2018 sym = parent_st->n.sym;
2019 e->symtree = parent_st; /* Point to the right thing. */
2020
2021 if (sym->attr.flavor == FL_PROCEDURE
2022 || sym->attr.intrinsic
2023 || sym->attr.external)
2024 {
2025 if (!gfc_resolve_expr (e))
2026 goto cleanup;
2027 goto argument_list;
2028 }
2029
2030 got_variable:
2031 e->expr_type = EXPR_VARIABLE;
2032 e->ts = sym->ts;
2033 if ((sym->as != NULL && sym->ts.type != BT_CLASS)
2034 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
2035 && CLASS_DATA (sym)->as))
2036 {
2037 e->rank = sym->ts.type == BT_CLASS
2038 ? CLASS_DATA (sym)->as->rank : sym->as->rank;
2039 e->ref = gfc_get_ref ();
2040 e->ref->type = REF_ARRAY;
2041 e->ref->u.ar.type = AR_FULL;
2042 e->ref->u.ar.as = sym->ts.type == BT_CLASS
2043 ? CLASS_DATA (sym)->as : sym->as;
2044 }
2045
2046 /* Expressions are assigned a default ts.type of BT_PROCEDURE in
2047 primary.c (match_actual_arg). If above code determines that it
2048 is a variable instead, it needs to be resolved as it was not
2049 done at the beginning of this function. */
2050 save_need_full_assumed_size = need_full_assumed_size;
2051 if (e->expr_type != EXPR_VARIABLE)
2052 need_full_assumed_size = 0;
2053 if (!gfc_resolve_expr (e))
2054 goto cleanup;
2055 need_full_assumed_size = save_need_full_assumed_size;
2056
2057 argument_list:
2058 /* Check argument list functions %VAL, %LOC and %REF. There is
2059 nothing to do for %REF. */
2060 if (arg->name && arg->name[0] == '%')
2061 {
2062 if (strcmp ("%VAL", arg->name) == 0)
2063 {
2064 if (e->ts.type == BT_CHARACTER || e->ts.type == BT_DERIVED)
2065 {
2066 gfc_error ("By-value argument at %L is not of numeric "
2067 "type", &e->where);
2068 goto cleanup;
2069 }
2070
2071 if (e->rank)
2072 {
2073 gfc_error ("By-value argument at %L cannot be an array or "
2074 "an array section", &e->where);
2075 goto cleanup;
2076 }
2077
2078 /* Intrinsics are still PROC_UNKNOWN here. However,
2079 since same file external procedures are not resolvable
2080 in gfortran, it is a good deal easier to leave them to
2081 intrinsic.c. */
2082 if (ptype != PROC_UNKNOWN
2083 && ptype != PROC_DUMMY
2084 && ptype != PROC_EXTERNAL
2085 && ptype != PROC_MODULE)
2086 {
2087 gfc_error ("By-value argument at %L is not allowed "
2088 "in this context", &e->where);
2089 goto cleanup;
2090 }
2091 }
2092
2093 /* Statement functions have already been excluded above. */
2094 else if (strcmp ("%LOC", arg->name) == 0
2095 && e->ts.type == BT_PROCEDURE)
2096 {
2097 if (e->symtree->n.sym->attr.proc == PROC_INTERNAL)
2098 {
2099 gfc_error ("Passing internal procedure at %L by location "
2100 "not allowed", &e->where);
2101 goto cleanup;
2102 }
2103 }
2104 }
2105
2106 comp = gfc_get_proc_ptr_comp(e);
2107 if (e->expr_type == EXPR_VARIABLE
2108 && comp && comp->attr.elemental)
2109 {
2110 gfc_error ("ELEMENTAL procedure pointer component %qs is not "
2111 "allowed as an actual argument at %L", comp->name,
2112 &e->where);
2113 }
2114
2115 /* Fortran 2008, C1237. */
2116 if (e->expr_type == EXPR_VARIABLE && gfc_is_coindexed (e)
2117 && gfc_has_ultimate_pointer (e))
2118 {
2119 gfc_error ("Coindexed actual argument at %L with ultimate pointer "
2120 "component", &e->where);
2121 goto cleanup;
2122 }
2123
2124 first_actual_arg = false;
2125 }
2126
2127 return_value = true;
2128
2129 cleanup:
2130 actual_arg = actual_arg_sav;
2131 first_actual_arg = first_actual_arg_sav;
2132
2133 return return_value;
2134 }
2135
2136
2137 /* Do the checks of the actual argument list that are specific to elemental
2138 procedures. If called with c == NULL, we have a function, otherwise if
2139 expr == NULL, we have a subroutine. */
2140
2141 static bool
2142 resolve_elemental_actual (gfc_expr *expr, gfc_code *c)
2143 {
2144 gfc_actual_arglist *arg0;
2145 gfc_actual_arglist *arg;
2146 gfc_symbol *esym = NULL;
2147 gfc_intrinsic_sym *isym = NULL;
2148 gfc_expr *e = NULL;
2149 gfc_intrinsic_arg *iformal = NULL;
2150 gfc_formal_arglist *eformal = NULL;
2151 bool formal_optional = false;
2152 bool set_by_optional = false;
2153 int i;
2154 int rank = 0;
2155
2156 /* Is this an elemental procedure? */
2157 if (expr && expr->value.function.actual != NULL)
2158 {
2159 if (expr->value.function.esym != NULL
2160 && expr->value.function.esym->attr.elemental)
2161 {
2162 arg0 = expr->value.function.actual;
2163 esym = expr->value.function.esym;
2164 }
2165 else if (expr->value.function.isym != NULL
2166 && expr->value.function.isym->elemental)
2167 {
2168 arg0 = expr->value.function.actual;
2169 isym = expr->value.function.isym;
2170 }
2171 else
2172 return true;
2173 }
2174 else if (c && c->ext.actual != NULL)
2175 {
2176 arg0 = c->ext.actual;
2177
2178 if (c->resolved_sym)
2179 esym = c->resolved_sym;
2180 else
2181 esym = c->symtree->n.sym;
2182 gcc_assert (esym);
2183
2184 if (!esym->attr.elemental)
2185 return true;
2186 }
2187 else
2188 return true;
2189
2190 /* The rank of an elemental is the rank of its array argument(s). */
2191 for (arg = arg0; arg; arg = arg->next)
2192 {
2193 if (arg->expr != NULL && arg->expr->rank != 0)
2194 {
2195 rank = arg->expr->rank;
2196 if (arg->expr->expr_type == EXPR_VARIABLE
2197 && arg->expr->symtree->n.sym->attr.optional)
2198 set_by_optional = true;
2199
2200 /* Function specific; set the result rank and shape. */
2201 if (expr)
2202 {
2203 expr->rank = rank;
2204 if (!expr->shape && arg->expr->shape)
2205 {
2206 expr->shape = gfc_get_shape (rank);
2207 for (i = 0; i < rank; i++)
2208 mpz_init_set (expr->shape[i], arg->expr->shape[i]);
2209 }
2210 }
2211 break;
2212 }
2213 }
2214
2215 /* If it is an array, it shall not be supplied as an actual argument
2216 to an elemental procedure unless an array of the same rank is supplied
2217 as an actual argument corresponding to a nonoptional dummy argument of
2218 that elemental procedure(12.4.1.5). */
2219 formal_optional = false;
2220 if (isym)
2221 iformal = isym->formal;
2222 else
2223 eformal = esym->formal;
2224
2225 for (arg = arg0; arg; arg = arg->next)
2226 {
2227 if (eformal)
2228 {
2229 if (eformal->sym && eformal->sym->attr.optional)
2230 formal_optional = true;
2231 eformal = eformal->next;
2232 }
2233 else if (isym && iformal)
2234 {
2235 if (iformal->optional)
2236 formal_optional = true;
2237 iformal = iformal->next;
2238 }
2239 else if (isym)
2240 formal_optional = true;
2241
2242 if (pedantic && arg->expr != NULL
2243 && arg->expr->expr_type == EXPR_VARIABLE
2244 && arg->expr->symtree->n.sym->attr.optional
2245 && formal_optional
2246 && arg->expr->rank
2247 && (set_by_optional || arg->expr->rank != rank)
2248 && !(isym && isym->id == GFC_ISYM_CONVERSION))
2249 {
2250 gfc_warning (OPT_Wpedantic,
2251 "%qs at %L is an array and OPTIONAL; IF IT IS "
2252 "MISSING, it cannot be the actual argument of an "
2253 "ELEMENTAL procedure unless there is a non-optional "
2254 "argument with the same rank (12.4.1.5)",
2255 arg->expr->symtree->n.sym->name, &arg->expr->where);
2256 }
2257 }
2258
2259 for (arg = arg0; arg; arg = arg->next)
2260 {
2261 if (arg->expr == NULL || arg->expr->rank == 0)
2262 continue;
2263
2264 /* Being elemental, the last upper bound of an assumed size array
2265 argument must be present. */
2266 if (resolve_assumed_size_actual (arg->expr))
2267 return false;
2268
2269 /* Elemental procedure's array actual arguments must conform. */
2270 if (e != NULL)
2271 {
2272 if (!gfc_check_conformance (arg->expr, e, "elemental procedure"))
2273 return false;
2274 }
2275 else
2276 e = arg->expr;
2277 }
2278
2279 /* INTENT(OUT) is only allowed for subroutines; if any actual argument
2280 is an array, the intent inout/out variable needs to be also an array. */
2281 if (rank > 0 && esym && expr == NULL)
2282 for (eformal = esym->formal, arg = arg0; arg && eformal;
2283 arg = arg->next, eformal = eformal->next)
2284 if ((eformal->sym->attr.intent == INTENT_OUT
2285 || eformal->sym->attr.intent == INTENT_INOUT)
2286 && arg->expr && arg->expr->rank == 0)
2287 {
2288 gfc_error ("Actual argument at %L for INTENT(%s) dummy %qs of "
2289 "ELEMENTAL subroutine %qs is a scalar, but another "
2290 "actual argument is an array", &arg->expr->where,
2291 (eformal->sym->attr.intent == INTENT_OUT) ? "OUT"
2292 : "INOUT", eformal->sym->name, esym->name);
2293 return false;
2294 }
2295 return true;
2296 }
2297
2298
2299 /* This function does the checking of references to global procedures
2300 as defined in sections 18.1 and 14.1, respectively, of the Fortran
2301 77 and 95 standards. It checks for a gsymbol for the name, making
2302 one if it does not already exist. If it already exists, then the
2303 reference being resolved must correspond to the type of gsymbol.
2304 Otherwise, the new symbol is equipped with the attributes of the
2305 reference. The corresponding code that is called in creating
2306 global entities is parse.c.
2307
2308 In addition, for all but -std=legacy, the gsymbols are used to
2309 check the interfaces of external procedures from the same file.
2310 The namespace of the gsymbol is resolved and then, once this is
2311 done the interface is checked. */
2312
2313
2314 static bool
2315 not_in_recursive (gfc_symbol *sym, gfc_namespace *gsym_ns)
2316 {
2317 if (!gsym_ns->proc_name->attr.recursive)
2318 return true;
2319
2320 if (sym->ns == gsym_ns)
2321 return false;
2322
2323 if (sym->ns->parent && sym->ns->parent == gsym_ns)
2324 return false;
2325
2326 return true;
2327 }
2328
2329 static bool
2330 not_entry_self_reference (gfc_symbol *sym, gfc_namespace *gsym_ns)
2331 {
2332 if (gsym_ns->entries)
2333 {
2334 gfc_entry_list *entry = gsym_ns->entries;
2335
2336 for (; entry; entry = entry->next)
2337 {
2338 if (strcmp (sym->name, entry->sym->name) == 0)
2339 {
2340 if (strcmp (gsym_ns->proc_name->name,
2341 sym->ns->proc_name->name) == 0)
2342 return false;
2343
2344 if (sym->ns->parent
2345 && strcmp (gsym_ns->proc_name->name,
2346 sym->ns->parent->proc_name->name) == 0)
2347 return false;
2348 }
2349 }
2350 }
2351 return true;
2352 }
2353
2354
2355 /* Check for the requirement of an explicit interface. F08:12.4.2.2. */
2356
2357 bool
2358 gfc_explicit_interface_required (gfc_symbol *sym, char *errmsg, int err_len)
2359 {
2360 gfc_formal_arglist *arg = gfc_sym_get_dummy_args (sym);
2361
2362 for ( ; arg; arg = arg->next)
2363 {
2364 if (!arg->sym)
2365 continue;
2366
2367 if (arg->sym->attr.allocatable) /* (2a) */
2368 {
2369 strncpy (errmsg, _("allocatable argument"), err_len);
2370 return true;
2371 }
2372 else if (arg->sym->attr.asynchronous)
2373 {
2374 strncpy (errmsg, _("asynchronous argument"), err_len);
2375 return true;
2376 }
2377 else if (arg->sym->attr.optional)
2378 {
2379 strncpy (errmsg, _("optional argument"), err_len);
2380 return true;
2381 }
2382 else if (arg->sym->attr.pointer)
2383 {
2384 strncpy (errmsg, _("pointer argument"), err_len);
2385 return true;
2386 }
2387 else if (arg->sym->attr.target)
2388 {
2389 strncpy (errmsg, _("target argument"), err_len);
2390 return true;
2391 }
2392 else if (arg->sym->attr.value)
2393 {
2394 strncpy (errmsg, _("value argument"), err_len);
2395 return true;
2396 }
2397 else if (arg->sym->attr.volatile_)
2398 {
2399 strncpy (errmsg, _("volatile argument"), err_len);
2400 return true;
2401 }
2402 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_SHAPE) /* (2b) */
2403 {
2404 strncpy (errmsg, _("assumed-shape argument"), err_len);
2405 return true;
2406 }
2407 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_RANK) /* TS 29113, 6.2. */
2408 {
2409 strncpy (errmsg, _("assumed-rank argument"), err_len);
2410 return true;
2411 }
2412 else if (arg->sym->attr.codimension) /* (2c) */
2413 {
2414 strncpy (errmsg, _("coarray argument"), err_len);
2415 return true;
2416 }
2417 else if (false) /* (2d) TODO: parametrized derived type */
2418 {
2419 strncpy (errmsg, _("parametrized derived type argument"), err_len);
2420 return true;
2421 }
2422 else if (arg->sym->ts.type == BT_CLASS) /* (2e) */
2423 {
2424 strncpy (errmsg, _("polymorphic argument"), err_len);
2425 return true;
2426 }
2427 else if (arg->sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2428 {
2429 strncpy (errmsg, _("NO_ARG_CHECK attribute"), err_len);
2430 return true;
2431 }
2432 else if (arg->sym->ts.type == BT_ASSUMED)
2433 {
2434 /* As assumed-type is unlimited polymorphic (cf. above).
2435 See also TS 29113, Note 6.1. */
2436 strncpy (errmsg, _("assumed-type argument"), err_len);
2437 return true;
2438 }
2439 }
2440
2441 if (sym->attr.function)
2442 {
2443 gfc_symbol *res = sym->result ? sym->result : sym;
2444
2445 if (res->attr.dimension) /* (3a) */
2446 {
2447 strncpy (errmsg, _("array result"), err_len);
2448 return true;
2449 }
2450 else if (res->attr.pointer || res->attr.allocatable) /* (3b) */
2451 {
2452 strncpy (errmsg, _("pointer or allocatable result"), err_len);
2453 return true;
2454 }
2455 else if (res->ts.type == BT_CHARACTER && res->ts.u.cl
2456 && res->ts.u.cl->length
2457 && res->ts.u.cl->length->expr_type != EXPR_CONSTANT) /* (3c) */
2458 {
2459 strncpy (errmsg, _("result with non-constant character length"), err_len);
2460 return true;
2461 }
2462 }
2463
2464 if (sym->attr.elemental && !sym->attr.intrinsic) /* (4) */
2465 {
2466 strncpy (errmsg, _("elemental procedure"), err_len);
2467 return true;
2468 }
2469 else if (sym->attr.is_bind_c) /* (5) */
2470 {
2471 strncpy (errmsg, _("bind(c) procedure"), err_len);
2472 return true;
2473 }
2474
2475 return false;
2476 }
2477
2478
2479 static void
2480 resolve_global_procedure (gfc_symbol *sym, locus *where,
2481 gfc_actual_arglist **actual, int sub)
2482 {
2483 gfc_gsymbol * gsym;
2484 gfc_namespace *ns;
2485 enum gfc_symbol_type type;
2486 char reason[200];
2487
2488 type = sub ? GSYM_SUBROUTINE : GSYM_FUNCTION;
2489
2490 gsym = gfc_get_gsymbol (sym->binding_label ? sym->binding_label : sym->name);
2491
2492 if ((gsym->type != GSYM_UNKNOWN && gsym->type != type))
2493 gfc_global_used (gsym, where);
2494
2495 if ((sym->attr.if_source == IFSRC_UNKNOWN
2496 || sym->attr.if_source == IFSRC_IFBODY)
2497 && gsym->type != GSYM_UNKNOWN
2498 && !gsym->binding_label
2499 && gsym->ns
2500 && gsym->ns->resolved != -1
2501 && gsym->ns->proc_name
2502 && not_in_recursive (sym, gsym->ns)
2503 && not_entry_self_reference (sym, gsym->ns))
2504 {
2505 gfc_symbol *def_sym;
2506
2507 /* Resolve the gsymbol namespace if needed. */
2508 if (!gsym->ns->resolved)
2509 {
2510 gfc_symbol *old_dt_list;
2511
2512 /* Stash away derived types so that the backend_decls do not
2513 get mixed up. */
2514 old_dt_list = gfc_derived_types;
2515 gfc_derived_types = NULL;
2516
2517 gfc_resolve (gsym->ns);
2518
2519 /* Store the new derived types with the global namespace. */
2520 if (gfc_derived_types)
2521 gsym->ns->derived_types = gfc_derived_types;
2522
2523 /* Restore the derived types of this namespace. */
2524 gfc_derived_types = old_dt_list;
2525 }
2526
2527 /* Make sure that translation for the gsymbol occurs before
2528 the procedure currently being resolved. */
2529 ns = gfc_global_ns_list;
2530 for (; ns && ns != gsym->ns; ns = ns->sibling)
2531 {
2532 if (ns->sibling == gsym->ns)
2533 {
2534 ns->sibling = gsym->ns->sibling;
2535 gsym->ns->sibling = gfc_global_ns_list;
2536 gfc_global_ns_list = gsym->ns;
2537 break;
2538 }
2539 }
2540
2541 def_sym = gsym->ns->proc_name;
2542
2543 /* This can happen if a binding name has been specified. */
2544 if (gsym->binding_label && gsym->sym_name != def_sym->name)
2545 gfc_find_symbol (gsym->sym_name, gsym->ns, 0, &def_sym);
2546
2547 if (def_sym->attr.entry_master)
2548 {
2549 gfc_entry_list *entry;
2550 for (entry = gsym->ns->entries; entry; entry = entry->next)
2551 if (strcmp (entry->sym->name, sym->name) == 0)
2552 {
2553 def_sym = entry->sym;
2554 break;
2555 }
2556 }
2557
2558 if (sym->attr.function && !gfc_compare_types (&sym->ts, &def_sym->ts))
2559 {
2560 gfc_error ("Return type mismatch of function %qs at %L (%s/%s)",
2561 sym->name, &sym->declared_at, gfc_typename (&sym->ts),
2562 gfc_typename (&def_sym->ts));
2563 goto done;
2564 }
2565
2566 if (sym->attr.if_source == IFSRC_UNKNOWN
2567 && gfc_explicit_interface_required (def_sym, reason, sizeof(reason)))
2568 {
2569 gfc_error ("Explicit interface required for %qs at %L: %s",
2570 sym->name, &sym->declared_at, reason);
2571 goto done;
2572 }
2573
2574 if (!pedantic && (gfc_option.allow_std & GFC_STD_GNU))
2575 /* Turn erros into warnings with -std=gnu and -std=legacy. */
2576 gfc_errors_to_warnings (true);
2577
2578 if (!gfc_compare_interfaces (sym, def_sym, sym->name, 0, 1,
2579 reason, sizeof(reason), NULL, NULL))
2580 {
2581 gfc_error_opt (OPT_Wargument_mismatch,
2582 "Interface mismatch in global procedure %qs at %L:"
2583 " %s", sym->name, &sym->declared_at, reason);
2584 goto done;
2585 }
2586
2587 if (!pedantic
2588 || ((gfc_option.warn_std & GFC_STD_LEGACY)
2589 && !(gfc_option.warn_std & GFC_STD_GNU)))
2590 gfc_errors_to_warnings (true);
2591
2592 if (sym->attr.if_source != IFSRC_IFBODY)
2593 gfc_procedure_use (def_sym, actual, where);
2594 }
2595
2596 done:
2597 gfc_errors_to_warnings (false);
2598
2599 if (gsym->type == GSYM_UNKNOWN)
2600 {
2601 gsym->type = type;
2602 gsym->where = *where;
2603 }
2604
2605 gsym->used = 1;
2606 }
2607
2608
2609 /************* Function resolution *************/
2610
2611 /* Resolve a function call known to be generic.
2612 Section 14.1.2.4.1. */
2613
2614 static match
2615 resolve_generic_f0 (gfc_expr *expr, gfc_symbol *sym)
2616 {
2617 gfc_symbol *s;
2618
2619 if (sym->attr.generic)
2620 {
2621 s = gfc_search_interface (sym->generic, 0, &expr->value.function.actual);
2622 if (s != NULL)
2623 {
2624 expr->value.function.name = s->name;
2625 expr->value.function.esym = s;
2626
2627 if (s->ts.type != BT_UNKNOWN)
2628 expr->ts = s->ts;
2629 else if (s->result != NULL && s->result->ts.type != BT_UNKNOWN)
2630 expr->ts = s->result->ts;
2631
2632 if (s->as != NULL)
2633 expr->rank = s->as->rank;
2634 else if (s->result != NULL && s->result->as != NULL)
2635 expr->rank = s->result->as->rank;
2636
2637 gfc_set_sym_referenced (expr->value.function.esym);
2638
2639 return MATCH_YES;
2640 }
2641
2642 /* TODO: Need to search for elemental references in generic
2643 interface. */
2644 }
2645
2646 if (sym->attr.intrinsic)
2647 return gfc_intrinsic_func_interface (expr, 0);
2648
2649 return MATCH_NO;
2650 }
2651
2652
2653 static bool
2654 resolve_generic_f (gfc_expr *expr)
2655 {
2656 gfc_symbol *sym;
2657 match m;
2658 gfc_interface *intr = NULL;
2659
2660 sym = expr->symtree->n.sym;
2661
2662 for (;;)
2663 {
2664 m = resolve_generic_f0 (expr, sym);
2665 if (m == MATCH_YES)
2666 return true;
2667 else if (m == MATCH_ERROR)
2668 return false;
2669
2670 generic:
2671 if (!intr)
2672 for (intr = sym->generic; intr; intr = intr->next)
2673 if (gfc_fl_struct (intr->sym->attr.flavor))
2674 break;
2675
2676 if (sym->ns->parent == NULL)
2677 break;
2678 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2679
2680 if (sym == NULL)
2681 break;
2682 if (!generic_sym (sym))
2683 goto generic;
2684 }
2685
2686 /* Last ditch attempt. See if the reference is to an intrinsic
2687 that possesses a matching interface. 14.1.2.4 */
2688 if (sym && !intr && !gfc_is_intrinsic (sym, 0, expr->where))
2689 {
2690 if (gfc_init_expr_flag)
2691 gfc_error ("Function %qs in initialization expression at %L "
2692 "must be an intrinsic function",
2693 expr->symtree->n.sym->name, &expr->where);
2694 else
2695 gfc_error ("There is no specific function for the generic %qs "
2696 "at %L", expr->symtree->n.sym->name, &expr->where);
2697 return false;
2698 }
2699
2700 if (intr)
2701 {
2702 if (!gfc_convert_to_structure_constructor (expr, intr->sym, NULL,
2703 NULL, false))
2704 return false;
2705 if (!gfc_use_derived (expr->ts.u.derived))
2706 return false;
2707 return resolve_structure_cons (expr, 0);
2708 }
2709
2710 m = gfc_intrinsic_func_interface (expr, 0);
2711 if (m == MATCH_YES)
2712 return true;
2713
2714 if (m == MATCH_NO)
2715 gfc_error ("Generic function %qs at %L is not consistent with a "
2716 "specific intrinsic interface", expr->symtree->n.sym->name,
2717 &expr->where);
2718
2719 return false;
2720 }
2721
2722
2723 /* Resolve a function call known to be specific. */
2724
2725 static match
2726 resolve_specific_f0 (gfc_symbol *sym, gfc_expr *expr)
2727 {
2728 match m;
2729
2730 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
2731 {
2732 if (sym->attr.dummy)
2733 {
2734 sym->attr.proc = PROC_DUMMY;
2735 goto found;
2736 }
2737
2738 sym->attr.proc = PROC_EXTERNAL;
2739 goto found;
2740 }
2741
2742 if (sym->attr.proc == PROC_MODULE
2743 || sym->attr.proc == PROC_ST_FUNCTION
2744 || sym->attr.proc == PROC_INTERNAL)
2745 goto found;
2746
2747 if (sym->attr.intrinsic)
2748 {
2749 m = gfc_intrinsic_func_interface (expr, 1);
2750 if (m == MATCH_YES)
2751 return MATCH_YES;
2752 if (m == MATCH_NO)
2753 gfc_error ("Function %qs at %L is INTRINSIC but is not compatible "
2754 "with an intrinsic", sym->name, &expr->where);
2755
2756 return MATCH_ERROR;
2757 }
2758
2759 return MATCH_NO;
2760
2761 found:
2762 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2763
2764 if (sym->result)
2765 expr->ts = sym->result->ts;
2766 else
2767 expr->ts = sym->ts;
2768 expr->value.function.name = sym->name;
2769 expr->value.function.esym = sym;
2770 /* Prevent crash when sym->ts.u.derived->components is not set due to previous
2771 error(s). */
2772 if (sym->ts.type == BT_CLASS && !CLASS_DATA (sym))
2773 return MATCH_ERROR;
2774 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
2775 expr->rank = CLASS_DATA (sym)->as->rank;
2776 else if (sym->as != NULL)
2777 expr->rank = sym->as->rank;
2778
2779 return MATCH_YES;
2780 }
2781
2782
2783 static bool
2784 resolve_specific_f (gfc_expr *expr)
2785 {
2786 gfc_symbol *sym;
2787 match m;
2788
2789 sym = expr->symtree->n.sym;
2790
2791 for (;;)
2792 {
2793 m = resolve_specific_f0 (sym, expr);
2794 if (m == MATCH_YES)
2795 return true;
2796 if (m == MATCH_ERROR)
2797 return false;
2798
2799 if (sym->ns->parent == NULL)
2800 break;
2801
2802 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2803
2804 if (sym == NULL)
2805 break;
2806 }
2807
2808 gfc_error ("Unable to resolve the specific function %qs at %L",
2809 expr->symtree->n.sym->name, &expr->where);
2810
2811 return true;
2812 }
2813
2814 /* Recursively append candidate SYM to CANDIDATES. Store the number of
2815 candidates in CANDIDATES_LEN. */
2816
2817 static void
2818 lookup_function_fuzzy_find_candidates (gfc_symtree *sym,
2819 char **&candidates,
2820 size_t &candidates_len)
2821 {
2822 gfc_symtree *p;
2823
2824 if (sym == NULL)
2825 return;
2826 if ((sym->n.sym->ts.type != BT_UNKNOWN || sym->n.sym->attr.external)
2827 && sym->n.sym->attr.flavor == FL_PROCEDURE)
2828 vec_push (candidates, candidates_len, sym->name);
2829
2830 p = sym->left;
2831 if (p)
2832 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2833
2834 p = sym->right;
2835 if (p)
2836 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2837 }
2838
2839
2840 /* Lookup function FN fuzzily, taking names in SYMROOT into account. */
2841
2842 const char*
2843 gfc_lookup_function_fuzzy (const char *fn, gfc_symtree *symroot)
2844 {
2845 char **candidates = NULL;
2846 size_t candidates_len = 0;
2847 lookup_function_fuzzy_find_candidates (symroot, candidates, candidates_len);
2848 return gfc_closest_fuzzy_match (fn, candidates);
2849 }
2850
2851
2852 /* Resolve a procedure call not known to be generic nor specific. */
2853
2854 static bool
2855 resolve_unknown_f (gfc_expr *expr)
2856 {
2857 gfc_symbol *sym;
2858 gfc_typespec *ts;
2859
2860 sym = expr->symtree->n.sym;
2861
2862 if (sym->attr.dummy)
2863 {
2864 sym->attr.proc = PROC_DUMMY;
2865 expr->value.function.name = sym->name;
2866 goto set_type;
2867 }
2868
2869 /* See if we have an intrinsic function reference. */
2870
2871 if (gfc_is_intrinsic (sym, 0, expr->where))
2872 {
2873 if (gfc_intrinsic_func_interface (expr, 1) == MATCH_YES)
2874 return true;
2875 return false;
2876 }
2877
2878 /* The reference is to an external name. */
2879
2880 sym->attr.proc = PROC_EXTERNAL;
2881 expr->value.function.name = sym->name;
2882 expr->value.function.esym = expr->symtree->n.sym;
2883
2884 if (sym->as != NULL)
2885 expr->rank = sym->as->rank;
2886
2887 /* Type of the expression is either the type of the symbol or the
2888 default type of the symbol. */
2889
2890 set_type:
2891 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2892
2893 if (sym->ts.type != BT_UNKNOWN)
2894 expr->ts = sym->ts;
2895 else
2896 {
2897 ts = gfc_get_default_type (sym->name, sym->ns);
2898
2899 if (ts->type == BT_UNKNOWN)
2900 {
2901 const char *guessed
2902 = gfc_lookup_function_fuzzy (sym->name, sym->ns->sym_root);
2903 if (guessed)
2904 gfc_error ("Function %qs at %L has no IMPLICIT type"
2905 "; did you mean %qs?",
2906 sym->name, &expr->where, guessed);
2907 else
2908 gfc_error ("Function %qs at %L has no IMPLICIT type",
2909 sym->name, &expr->where);
2910 return false;
2911 }
2912 else
2913 expr->ts = *ts;
2914 }
2915
2916 return true;
2917 }
2918
2919
2920 /* Return true, if the symbol is an external procedure. */
2921 static bool
2922 is_external_proc (gfc_symbol *sym)
2923 {
2924 if (!sym->attr.dummy && !sym->attr.contained
2925 && !gfc_is_intrinsic (sym, sym->attr.subroutine, sym->declared_at)
2926 && sym->attr.proc != PROC_ST_FUNCTION
2927 && !sym->attr.proc_pointer
2928 && !sym->attr.use_assoc
2929 && sym->name)
2930 return true;
2931
2932 return false;
2933 }
2934
2935
2936 /* Figure out if a function reference is pure or not. Also set the name
2937 of the function for a potential error message. Return nonzero if the
2938 function is PURE, zero if not. */
2939 static int
2940 pure_stmt_function (gfc_expr *, gfc_symbol *);
2941
2942 int
2943 gfc_pure_function (gfc_expr *e, const char **name)
2944 {
2945 int pure;
2946 gfc_component *comp;
2947
2948 *name = NULL;
2949
2950 if (e->symtree != NULL
2951 && e->symtree->n.sym != NULL
2952 && e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
2953 return pure_stmt_function (e, e->symtree->n.sym);
2954
2955 comp = gfc_get_proc_ptr_comp (e);
2956 if (comp)
2957 {
2958 pure = gfc_pure (comp->ts.interface);
2959 *name = comp->name;
2960 }
2961 else if (e->value.function.esym)
2962 {
2963 pure = gfc_pure (e->value.function.esym);
2964 *name = e->value.function.esym->name;
2965 }
2966 else if (e->value.function.isym)
2967 {
2968 pure = e->value.function.isym->pure
2969 || e->value.function.isym->elemental;
2970 *name = e->value.function.isym->name;
2971 }
2972 else
2973 {
2974 /* Implicit functions are not pure. */
2975 pure = 0;
2976 *name = e->value.function.name;
2977 }
2978
2979 return pure;
2980 }
2981
2982
2983 /* Check if the expression is a reference to an implicitly pure function. */
2984
2985 int
2986 gfc_implicit_pure_function (gfc_expr *e)
2987 {
2988 gfc_component *comp = gfc_get_proc_ptr_comp (e);
2989 if (comp)
2990 return gfc_implicit_pure (comp->ts.interface);
2991 else if (e->value.function.esym)
2992 return gfc_implicit_pure (e->value.function.esym);
2993 else
2994 return 0;
2995 }
2996
2997
2998 static bool
2999 impure_stmt_fcn (gfc_expr *e, gfc_symbol *sym,
3000 int *f ATTRIBUTE_UNUSED)
3001 {
3002 const char *name;
3003
3004 /* Don't bother recursing into other statement functions
3005 since they will be checked individually for purity. */
3006 if (e->expr_type != EXPR_FUNCTION
3007 || !e->symtree
3008 || e->symtree->n.sym == sym
3009 || e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
3010 return false;
3011
3012 return gfc_pure_function (e, &name) ? false : true;
3013 }
3014
3015
3016 static int
3017 pure_stmt_function (gfc_expr *e, gfc_symbol *sym)
3018 {
3019 return gfc_traverse_expr (e, sym, impure_stmt_fcn, 0) ? 0 : 1;
3020 }
3021
3022
3023 /* Check if an impure function is allowed in the current context. */
3024
3025 static bool check_pure_function (gfc_expr *e)
3026 {
3027 const char *name = NULL;
3028 if (!gfc_pure_function (e, &name) && name)
3029 {
3030 if (forall_flag)
3031 {
3032 gfc_error ("Reference to impure function %qs at %L inside a "
3033 "FORALL %s", name, &e->where,
3034 forall_flag == 2 ? "mask" : "block");
3035 return false;
3036 }
3037 else if (gfc_do_concurrent_flag)
3038 {
3039 gfc_error ("Reference to impure function %qs at %L inside a "
3040 "DO CONCURRENT %s", name, &e->where,
3041 gfc_do_concurrent_flag == 2 ? "mask" : "block");
3042 return false;
3043 }
3044 else if (gfc_pure (NULL))
3045 {
3046 gfc_error ("Reference to impure function %qs at %L "
3047 "within a PURE procedure", name, &e->where);
3048 return false;
3049 }
3050 if (!gfc_implicit_pure_function (e))
3051 gfc_unset_implicit_pure (NULL);
3052 }
3053 return true;
3054 }
3055
3056
3057 /* Update current procedure's array_outer_dependency flag, considering
3058 a call to procedure SYM. */
3059
3060 static void
3061 update_current_proc_array_outer_dependency (gfc_symbol *sym)
3062 {
3063 /* Check to see if this is a sibling function that has not yet
3064 been resolved. */
3065 gfc_namespace *sibling = gfc_current_ns->sibling;
3066 for (; sibling; sibling = sibling->sibling)
3067 {
3068 if (sibling->proc_name == sym)
3069 {
3070 gfc_resolve (sibling);
3071 break;
3072 }
3073 }
3074
3075 /* If SYM has references to outer arrays, so has the procedure calling
3076 SYM. If SYM is a procedure pointer, we can assume the worst. */
3077 if ((sym->attr.array_outer_dependency || sym->attr.proc_pointer)
3078 && gfc_current_ns->proc_name)
3079 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3080 }
3081
3082
3083 /* Resolve a function call, which means resolving the arguments, then figuring
3084 out which entity the name refers to. */
3085
3086 static bool
3087 resolve_function (gfc_expr *expr)
3088 {
3089 gfc_actual_arglist *arg;
3090 gfc_symbol *sym;
3091 bool t;
3092 int temp;
3093 procedure_type p = PROC_INTRINSIC;
3094 bool no_formal_args;
3095
3096 sym = NULL;
3097 if (expr->symtree)
3098 sym = expr->symtree->n.sym;
3099
3100 /* If this is a procedure pointer component, it has already been resolved. */
3101 if (gfc_is_proc_ptr_comp (expr))
3102 return true;
3103
3104 /* Avoid re-resolving the arguments of caf_get, which can lead to inserting
3105 another caf_get. */
3106 if (sym && sym->attr.intrinsic
3107 && (sym->intmod_sym_id == GFC_ISYM_CAF_GET
3108 || sym->intmod_sym_id == GFC_ISYM_CAF_SEND))
3109 return true;
3110
3111 if (sym && sym->attr.intrinsic
3112 && !gfc_resolve_intrinsic (sym, &expr->where))
3113 return false;
3114
3115 if (sym && (sym->attr.flavor == FL_VARIABLE || sym->attr.subroutine))
3116 {
3117 gfc_error ("%qs at %L is not a function", sym->name, &expr->where);
3118 return false;
3119 }
3120
3121 /* If this is a deferred TBP with an abstract interface (which may
3122 of course be referenced), expr->value.function.esym will be set. */
3123 if (sym && sym->attr.abstract && !expr->value.function.esym)
3124 {
3125 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3126 sym->name, &expr->where);
3127 return false;
3128 }
3129
3130 /* If this is a deferred TBP with an abstract interface, its result
3131 cannot be an assumed length character (F2003: C418). */
3132 if (sym && sym->attr.abstract && sym->attr.function
3133 && sym->result->ts.u.cl
3134 && sym->result->ts.u.cl->length == NULL
3135 && !sym->result->ts.deferred)
3136 {
3137 gfc_error ("ABSTRACT INTERFACE %qs at %L must not have an assumed "
3138 "character length result (F2008: C418)", sym->name,
3139 &sym->declared_at);
3140 return false;
3141 }
3142
3143 /* Switch off assumed size checking and do this again for certain kinds
3144 of procedure, once the procedure itself is resolved. */
3145 need_full_assumed_size++;
3146
3147 if (expr->symtree && expr->symtree->n.sym)
3148 p = expr->symtree->n.sym->attr.proc;
3149
3150 if (expr->value.function.isym && expr->value.function.isym->inquiry)
3151 inquiry_argument = true;
3152 no_formal_args = sym && is_external_proc (sym)
3153 && gfc_sym_get_dummy_args (sym) == NULL;
3154
3155 if (!resolve_actual_arglist (expr->value.function.actual,
3156 p, no_formal_args))
3157 {
3158 inquiry_argument = false;
3159 return false;
3160 }
3161
3162 inquiry_argument = false;
3163
3164 /* Resume assumed_size checking. */
3165 need_full_assumed_size--;
3166
3167 /* If the procedure is external, check for usage. */
3168 if (sym && is_external_proc (sym))
3169 resolve_global_procedure (sym, &expr->where,
3170 &expr->value.function.actual, 0);
3171
3172 if (sym && sym->ts.type == BT_CHARACTER
3173 && sym->ts.u.cl
3174 && sym->ts.u.cl->length == NULL
3175 && !sym->attr.dummy
3176 && !sym->ts.deferred
3177 && expr->value.function.esym == NULL
3178 && !sym->attr.contained)
3179 {
3180 /* Internal procedures are taken care of in resolve_contained_fntype. */
3181 gfc_error ("Function %qs is declared CHARACTER(*) and cannot "
3182 "be used at %L since it is not a dummy argument",
3183 sym->name, &expr->where);
3184 return false;
3185 }
3186
3187 /* See if function is already resolved. */
3188
3189 if (expr->value.function.name != NULL
3190 || expr->value.function.isym != NULL)
3191 {
3192 if (expr->ts.type == BT_UNKNOWN)
3193 expr->ts = sym->ts;
3194 t = true;
3195 }
3196 else
3197 {
3198 /* Apply the rules of section 14.1.2. */
3199
3200 switch (procedure_kind (sym))
3201 {
3202 case PTYPE_GENERIC:
3203 t = resolve_generic_f (expr);
3204 break;
3205
3206 case PTYPE_SPECIFIC:
3207 t = resolve_specific_f (expr);
3208 break;
3209
3210 case PTYPE_UNKNOWN:
3211 t = resolve_unknown_f (expr);
3212 break;
3213
3214 default:
3215 gfc_internal_error ("resolve_function(): bad function type");
3216 }
3217 }
3218
3219 /* If the expression is still a function (it might have simplified),
3220 then we check to see if we are calling an elemental function. */
3221
3222 if (expr->expr_type != EXPR_FUNCTION)
3223 return t;
3224
3225 temp = need_full_assumed_size;
3226 need_full_assumed_size = 0;
3227
3228 if (!resolve_elemental_actual (expr, NULL))
3229 return false;
3230
3231 if (omp_workshare_flag
3232 && expr->value.function.esym
3233 && ! gfc_elemental (expr->value.function.esym))
3234 {
3235 gfc_error ("User defined non-ELEMENTAL function %qs at %L not allowed "
3236 "in WORKSHARE construct", expr->value.function.esym->name,
3237 &expr->where);
3238 t = false;
3239 }
3240
3241 #define GENERIC_ID expr->value.function.isym->id
3242 else if (expr->value.function.actual != NULL
3243 && expr->value.function.isym != NULL
3244 && GENERIC_ID != GFC_ISYM_LBOUND
3245 && GENERIC_ID != GFC_ISYM_LCOBOUND
3246 && GENERIC_ID != GFC_ISYM_UCOBOUND
3247 && GENERIC_ID != GFC_ISYM_LEN
3248 && GENERIC_ID != GFC_ISYM_LOC
3249 && GENERIC_ID != GFC_ISYM_C_LOC
3250 && GENERIC_ID != GFC_ISYM_PRESENT)
3251 {
3252 /* Array intrinsics must also have the last upper bound of an
3253 assumed size array argument. UBOUND and SIZE have to be
3254 excluded from the check if the second argument is anything
3255 than a constant. */
3256
3257 for (arg = expr->value.function.actual; arg; arg = arg->next)
3258 {
3259 if ((GENERIC_ID == GFC_ISYM_UBOUND || GENERIC_ID == GFC_ISYM_SIZE)
3260 && arg == expr->value.function.actual
3261 && arg->next != NULL && arg->next->expr)
3262 {
3263 if (arg->next->expr->expr_type != EXPR_CONSTANT)
3264 break;
3265
3266 if (arg->next->name && strcmp (arg->next->name, "kind") == 0)
3267 break;
3268
3269 if ((int)mpz_get_si (arg->next->expr->value.integer)
3270 < arg->expr->rank)
3271 break;
3272 }
3273
3274 if (arg->expr != NULL
3275 && arg->expr->rank > 0
3276 && resolve_assumed_size_actual (arg->expr))
3277 return false;
3278 }
3279 }
3280 #undef GENERIC_ID
3281
3282 need_full_assumed_size = temp;
3283
3284 if (!check_pure_function(expr))
3285 t = false;
3286
3287 /* Functions without the RECURSIVE attribution are not allowed to
3288 * call themselves. */
3289 if (expr->value.function.esym && !expr->value.function.esym->attr.recursive)
3290 {
3291 gfc_symbol *esym;
3292 esym = expr->value.function.esym;
3293
3294 if (is_illegal_recursion (esym, gfc_current_ns))
3295 {
3296 if (esym->attr.entry && esym->ns->entries)
3297 gfc_error ("ENTRY %qs at %L cannot be called recursively, as"
3298 " function %qs is not RECURSIVE",
3299 esym->name, &expr->where, esym->ns->entries->sym->name);
3300 else
3301 gfc_error ("Function %qs at %L cannot be called recursively, as it"
3302 " is not RECURSIVE", esym->name, &expr->where);
3303
3304 t = false;
3305 }
3306 }
3307
3308 /* Character lengths of use associated functions may contains references to
3309 symbols not referenced from the current program unit otherwise. Make sure
3310 those symbols are marked as referenced. */
3311
3312 if (expr->ts.type == BT_CHARACTER && expr->value.function.esym
3313 && expr->value.function.esym->attr.use_assoc)
3314 {
3315 gfc_expr_set_symbols_referenced (expr->ts.u.cl->length);
3316 }
3317
3318 /* Make sure that the expression has a typespec that works. */
3319 if (expr->ts.type == BT_UNKNOWN)
3320 {
3321 if (expr->symtree->n.sym->result
3322 && expr->symtree->n.sym->result->ts.type != BT_UNKNOWN
3323 && !expr->symtree->n.sym->result->attr.proc_pointer)
3324 expr->ts = expr->symtree->n.sym->result->ts;
3325 }
3326
3327 if (!expr->ref && !expr->value.function.isym)
3328 {
3329 if (expr->value.function.esym)
3330 update_current_proc_array_outer_dependency (expr->value.function.esym);
3331 else
3332 update_current_proc_array_outer_dependency (sym);
3333 }
3334 else if (expr->ref)
3335 /* typebound procedure: Assume the worst. */
3336 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3337
3338 return t;
3339 }
3340
3341
3342 /************* Subroutine resolution *************/
3343
3344 static bool
3345 pure_subroutine (gfc_symbol *sym, const char *name, locus *loc)
3346 {
3347 if (gfc_pure (sym))
3348 return true;
3349
3350 if (forall_flag)
3351 {
3352 gfc_error ("Subroutine call to %qs in FORALL block at %L is not PURE",
3353 name, loc);
3354 return false;
3355 }
3356 else if (gfc_do_concurrent_flag)
3357 {
3358 gfc_error ("Subroutine call to %qs in DO CONCURRENT block at %L is not "
3359 "PURE", name, loc);
3360 return false;
3361 }
3362 else if (gfc_pure (NULL))
3363 {
3364 gfc_error ("Subroutine call to %qs at %L is not PURE", name, loc);
3365 return false;
3366 }
3367
3368 gfc_unset_implicit_pure (NULL);
3369 return true;
3370 }
3371
3372
3373 static match
3374 resolve_generic_s0 (gfc_code *c, gfc_symbol *sym)
3375 {
3376 gfc_symbol *s;
3377
3378 if (sym->attr.generic)
3379 {
3380 s = gfc_search_interface (sym->generic, 1, &c->ext.actual);
3381 if (s != NULL)
3382 {
3383 c->resolved_sym = s;
3384 if (!pure_subroutine (s, s->name, &c->loc))
3385 return MATCH_ERROR;
3386 return MATCH_YES;
3387 }
3388
3389 /* TODO: Need to search for elemental references in generic interface. */
3390 }
3391
3392 if (sym->attr.intrinsic)
3393 return gfc_intrinsic_sub_interface (c, 0);
3394
3395 return MATCH_NO;
3396 }
3397
3398
3399 static bool
3400 resolve_generic_s (gfc_code *c)
3401 {
3402 gfc_symbol *sym;
3403 match m;
3404
3405 sym = c->symtree->n.sym;
3406
3407 for (;;)
3408 {
3409 m = resolve_generic_s0 (c, sym);
3410 if (m == MATCH_YES)
3411 return true;
3412 else if (m == MATCH_ERROR)
3413 return false;
3414
3415 generic:
3416 if (sym->ns->parent == NULL)
3417 break;
3418 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3419
3420 if (sym == NULL)
3421 break;
3422 if (!generic_sym (sym))
3423 goto generic;
3424 }
3425
3426 /* Last ditch attempt. See if the reference is to an intrinsic
3427 that possesses a matching interface. 14.1.2.4 */
3428 sym = c->symtree->n.sym;
3429
3430 if (!gfc_is_intrinsic (sym, 1, c->loc))
3431 {
3432 gfc_error ("There is no specific subroutine for the generic %qs at %L",
3433 sym->name, &c->loc);
3434 return false;
3435 }
3436
3437 m = gfc_intrinsic_sub_interface (c, 0);
3438 if (m == MATCH_YES)
3439 return true;
3440 if (m == MATCH_NO)
3441 gfc_error ("Generic subroutine %qs at %L is not consistent with an "
3442 "intrinsic subroutine interface", sym->name, &c->loc);
3443
3444 return false;
3445 }
3446
3447
3448 /* Resolve a subroutine call known to be specific. */
3449
3450 static match
3451 resolve_specific_s0 (gfc_code *c, gfc_symbol *sym)
3452 {
3453 match m;
3454
3455 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
3456 {
3457 if (sym->attr.dummy)
3458 {
3459 sym->attr.proc = PROC_DUMMY;
3460 goto found;
3461 }
3462
3463 sym->attr.proc = PROC_EXTERNAL;
3464 goto found;
3465 }
3466
3467 if (sym->attr.proc == PROC_MODULE || sym->attr.proc == PROC_INTERNAL)
3468 goto found;
3469
3470 if (sym->attr.intrinsic)
3471 {
3472 m = gfc_intrinsic_sub_interface (c, 1);
3473 if (m == MATCH_YES)
3474 return MATCH_YES;
3475 if (m == MATCH_NO)
3476 gfc_error ("Subroutine %qs at %L is INTRINSIC but is not compatible "
3477 "with an intrinsic", sym->name, &c->loc);
3478
3479 return MATCH_ERROR;
3480 }
3481
3482 return MATCH_NO;
3483
3484 found:
3485 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3486
3487 c->resolved_sym = sym;
3488 if (!pure_subroutine (sym, sym->name, &c->loc))
3489 return MATCH_ERROR;
3490
3491 return MATCH_YES;
3492 }
3493
3494
3495 static bool
3496 resolve_specific_s (gfc_code *c)
3497 {
3498 gfc_symbol *sym;
3499 match m;
3500
3501 sym = c->symtree->n.sym;
3502
3503 for (;;)
3504 {
3505 m = resolve_specific_s0 (c, sym);
3506 if (m == MATCH_YES)
3507 return true;
3508 if (m == MATCH_ERROR)
3509 return false;
3510
3511 if (sym->ns->parent == NULL)
3512 break;
3513
3514 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3515
3516 if (sym == NULL)
3517 break;
3518 }
3519
3520 sym = c->symtree->n.sym;
3521 gfc_error ("Unable to resolve the specific subroutine %qs at %L",
3522 sym->name, &c->loc);
3523
3524 return false;
3525 }
3526
3527
3528 /* Resolve a subroutine call not known to be generic nor specific. */
3529
3530 static bool
3531 resolve_unknown_s (gfc_code *c)
3532 {
3533 gfc_symbol *sym;
3534
3535 sym = c->symtree->n.sym;
3536
3537 if (sym->attr.dummy)
3538 {
3539 sym->attr.proc = PROC_DUMMY;
3540 goto found;
3541 }
3542
3543 /* See if we have an intrinsic function reference. */
3544
3545 if (gfc_is_intrinsic (sym, 1, c->loc))
3546 {
3547 if (gfc_intrinsic_sub_interface (c, 1) == MATCH_YES)
3548 return true;
3549 return false;
3550 }
3551
3552 /* The reference is to an external name. */
3553
3554 found:
3555 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3556
3557 c->resolved_sym = sym;
3558
3559 return pure_subroutine (sym, sym->name, &c->loc);
3560 }
3561
3562
3563 /* Resolve a subroutine call. Although it was tempting to use the same code
3564 for functions, subroutines and functions are stored differently and this
3565 makes things awkward. */
3566
3567 static bool
3568 resolve_call (gfc_code *c)
3569 {
3570 bool t;
3571 procedure_type ptype = PROC_INTRINSIC;
3572 gfc_symbol *csym, *sym;
3573 bool no_formal_args;
3574
3575 csym = c->symtree ? c->symtree->n.sym : NULL;
3576
3577 if (csym && csym->ts.type != BT_UNKNOWN)
3578 {
3579 gfc_error ("%qs at %L has a type, which is not consistent with "
3580 "the CALL at %L", csym->name, &csym->declared_at, &c->loc);
3581 return false;
3582 }
3583
3584 if (csym && gfc_current_ns->parent && csym->ns != gfc_current_ns)
3585 {
3586 gfc_symtree *st;
3587 gfc_find_sym_tree (c->symtree->name, gfc_current_ns, 1, &st);
3588 sym = st ? st->n.sym : NULL;
3589 if (sym && csym != sym
3590 && sym->ns == gfc_current_ns
3591 && sym->attr.flavor == FL_PROCEDURE
3592 && sym->attr.contained)
3593 {
3594 sym->refs++;
3595 if (csym->attr.generic)
3596 c->symtree->n.sym = sym;
3597 else
3598 c->symtree = st;
3599 csym = c->symtree->n.sym;
3600 }
3601 }
3602
3603 /* If this ia a deferred TBP, c->expr1 will be set. */
3604 if (!c->expr1 && csym)
3605 {
3606 if (csym->attr.abstract)
3607 {
3608 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3609 csym->name, &c->loc);
3610 return false;
3611 }
3612
3613 /* Subroutines without the RECURSIVE attribution are not allowed to
3614 call themselves. */
3615 if (is_illegal_recursion (csym, gfc_current_ns))
3616 {
3617 if (csym->attr.entry && csym->ns->entries)
3618 gfc_error ("ENTRY %qs at %L cannot be called recursively, "
3619 "as subroutine %qs is not RECURSIVE",
3620 csym->name, &c->loc, csym->ns->entries->sym->name);
3621 else
3622 gfc_error ("SUBROUTINE %qs at %L cannot be called recursively, "
3623 "as it is not RECURSIVE", csym->name, &c->loc);
3624
3625 t = false;
3626 }
3627 }
3628
3629 /* Switch off assumed size checking and do this again for certain kinds
3630 of procedure, once the procedure itself is resolved. */
3631 need_full_assumed_size++;
3632
3633 if (csym)
3634 ptype = csym->attr.proc;
3635
3636 no_formal_args = csym && is_external_proc (csym)
3637 && gfc_sym_get_dummy_args (csym) == NULL;
3638 if (!resolve_actual_arglist (c->ext.actual, ptype, no_formal_args))
3639 return false;
3640
3641 /* Resume assumed_size checking. */
3642 need_full_assumed_size--;
3643
3644 /* If external, check for usage. */
3645 if (csym && is_external_proc (csym))
3646 resolve_global_procedure (csym, &c->loc, &c->ext.actual, 1);
3647
3648 t = true;
3649 if (c->resolved_sym == NULL)
3650 {
3651 c->resolved_isym = NULL;
3652 switch (procedure_kind (csym))
3653 {
3654 case PTYPE_GENERIC:
3655 t = resolve_generic_s (c);
3656 break;
3657
3658 case PTYPE_SPECIFIC:
3659 t = resolve_specific_s (c);
3660 break;
3661
3662 case PTYPE_UNKNOWN:
3663 t = resolve_unknown_s (c);
3664 break;
3665
3666 default:
3667 gfc_internal_error ("resolve_subroutine(): bad function type");
3668 }
3669 }
3670
3671 /* Some checks of elemental subroutine actual arguments. */
3672 if (!resolve_elemental_actual (NULL, c))
3673 return false;
3674
3675 if (!c->expr1)
3676 update_current_proc_array_outer_dependency (csym);
3677 else
3678 /* Typebound procedure: Assume the worst. */
3679 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3680
3681 return t;
3682 }
3683
3684
3685 /* Compare the shapes of two arrays that have non-NULL shapes. If both
3686 op1->shape and op2->shape are non-NULL return true if their shapes
3687 match. If both op1->shape and op2->shape are non-NULL return false
3688 if their shapes do not match. If either op1->shape or op2->shape is
3689 NULL, return true. */
3690
3691 static bool
3692 compare_shapes (gfc_expr *op1, gfc_expr *op2)
3693 {
3694 bool t;
3695 int i;
3696
3697 t = true;
3698
3699 if (op1->shape != NULL && op2->shape != NULL)
3700 {
3701 for (i = 0; i < op1->rank; i++)
3702 {
3703 if (mpz_cmp (op1->shape[i], op2->shape[i]) != 0)
3704 {
3705 gfc_error ("Shapes for operands at %L and %L are not conformable",
3706 &op1->where, &op2->where);
3707 t = false;
3708 break;
3709 }
3710 }
3711 }
3712
3713 return t;
3714 }
3715
3716 /* Convert a logical operator to the corresponding bitwise intrinsic call.
3717 For example A .AND. B becomes IAND(A, B). */
3718 static gfc_expr *
3719 logical_to_bitwise (gfc_expr *e)
3720 {
3721 gfc_expr *tmp, *op1, *op2;
3722 gfc_isym_id isym;
3723 gfc_actual_arglist *args = NULL;
3724
3725 gcc_assert (e->expr_type == EXPR_OP);
3726
3727 isym = GFC_ISYM_NONE;
3728 op1 = e->value.op.op1;
3729 op2 = e->value.op.op2;
3730
3731 switch (e->value.op.op)
3732 {
3733 case INTRINSIC_NOT:
3734 isym = GFC_ISYM_NOT;
3735 break;
3736 case INTRINSIC_AND:
3737 isym = GFC_ISYM_IAND;
3738 break;
3739 case INTRINSIC_OR:
3740 isym = GFC_ISYM_IOR;
3741 break;
3742 case INTRINSIC_NEQV:
3743 isym = GFC_ISYM_IEOR;
3744 break;
3745 case INTRINSIC_EQV:
3746 /* "Bitwise eqv" is just the complement of NEQV === IEOR.
3747 Change the old expression to NEQV, which will get replaced by IEOR,
3748 and wrap it in NOT. */
3749 tmp = gfc_copy_expr (e);
3750 tmp->value.op.op = INTRINSIC_NEQV;
3751 tmp = logical_to_bitwise (tmp);
3752 isym = GFC_ISYM_NOT;
3753 op1 = tmp;
3754 op2 = NULL;
3755 break;
3756 default:
3757 gfc_internal_error ("logical_to_bitwise(): Bad intrinsic");
3758 }
3759
3760 /* Inherit the original operation's operands as arguments. */
3761 args = gfc_get_actual_arglist ();
3762 args->expr = op1;
3763 if (op2)
3764 {
3765 args->next = gfc_get_actual_arglist ();
3766 args->next->expr = op2;
3767 }
3768
3769 /* Convert the expression to a function call. */
3770 e->expr_type = EXPR_FUNCTION;
3771 e->value.function.actual = args;
3772 e->value.function.isym = gfc_intrinsic_function_by_id (isym);
3773 e->value.function.name = e->value.function.isym->name;
3774 e->value.function.esym = NULL;
3775
3776 /* Make up a pre-resolved function call symtree if we need to. */
3777 if (!e->symtree || !e->symtree->n.sym)
3778 {
3779 gfc_symbol *sym;
3780 gfc_get_ha_sym_tree (e->value.function.isym->name, &e->symtree);
3781 sym = e->symtree->n.sym;
3782 sym->result = sym;
3783 sym->attr.flavor = FL_PROCEDURE;
3784 sym->attr.function = 1;
3785 sym->attr.elemental = 1;
3786 sym->attr.pure = 1;
3787 sym->attr.referenced = 1;
3788 gfc_intrinsic_symbol (sym);
3789 gfc_commit_symbol (sym);
3790 }
3791
3792 args->name = e->value.function.isym->formal->name;
3793 if (e->value.function.isym->formal->next)
3794 args->next->name = e->value.function.isym->formal->next->name;
3795
3796 return e;
3797 }
3798
3799 /* Recursively append candidate UOP to CANDIDATES. Store the number of
3800 candidates in CANDIDATES_LEN. */
3801 static void
3802 lookup_uop_fuzzy_find_candidates (gfc_symtree *uop,
3803 char **&candidates,
3804 size_t &candidates_len)
3805 {
3806 gfc_symtree *p;
3807
3808 if (uop == NULL)
3809 return;
3810
3811 /* Not sure how to properly filter here. Use all for a start.
3812 n.uop.op is NULL for empty interface operators (is that legal?) disregard
3813 these as i suppose they don't make terribly sense. */
3814
3815 if (uop->n.uop->op != NULL)
3816 vec_push (candidates, candidates_len, uop->name);
3817
3818 p = uop->left;
3819 if (p)
3820 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3821
3822 p = uop->right;
3823 if (p)
3824 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3825 }
3826
3827 /* Lookup user-operator OP fuzzily, taking names in UOP into account. */
3828
3829 static const char*
3830 lookup_uop_fuzzy (const char *op, gfc_symtree *uop)
3831 {
3832 char **candidates = NULL;
3833 size_t candidates_len = 0;
3834 lookup_uop_fuzzy_find_candidates (uop, candidates, candidates_len);
3835 return gfc_closest_fuzzy_match (op, candidates);
3836 }
3837
3838
3839 /* Callback finding an impure function as an operand to an .and. or
3840 .or. expression. Remember the last function warned about to
3841 avoid double warnings when recursing. */
3842
3843 static int
3844 impure_function_callback (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
3845 void *data)
3846 {
3847 gfc_expr *f = *e;
3848 const char *name;
3849 static gfc_expr *last = NULL;
3850 bool *found = (bool *) data;
3851
3852 if (f->expr_type == EXPR_FUNCTION)
3853 {
3854 *found = 1;
3855 if (f != last && !gfc_pure_function (f, &name)
3856 && !gfc_implicit_pure_function (f))
3857 {
3858 if (name)
3859 gfc_warning (OPT_Wfunction_elimination,
3860 "Impure function %qs at %L might not be evaluated",
3861 name, &f->where);
3862 else
3863 gfc_warning (OPT_Wfunction_elimination,
3864 "Impure function at %L might not be evaluated",
3865 &f->where);
3866 }
3867 last = f;
3868 }
3869
3870 return 0;
3871 }
3872
3873
3874 /* Resolve an operator expression node. This can involve replacing the
3875 operation with a user defined function call. */
3876
3877 static bool
3878 resolve_operator (gfc_expr *e)
3879 {
3880 gfc_expr *op1, *op2;
3881 char msg[200];
3882 bool dual_locus_error;
3883 bool t = true;
3884
3885 /* Resolve all subnodes-- give them types. */
3886
3887 switch (e->value.op.op)
3888 {
3889 default:
3890 if (!gfc_resolve_expr (e->value.op.op2))
3891 return false;
3892
3893 /* Fall through. */
3894
3895 case INTRINSIC_NOT:
3896 case INTRINSIC_UPLUS:
3897 case INTRINSIC_UMINUS:
3898 case INTRINSIC_PARENTHESES:
3899 if (!gfc_resolve_expr (e->value.op.op1))
3900 return false;
3901 break;
3902 }
3903
3904 /* Typecheck the new node. */
3905
3906 op1 = e->value.op.op1;
3907 op2 = e->value.op.op2;
3908 dual_locus_error = false;
3909
3910 if ((op1 && op1->expr_type == EXPR_NULL)
3911 || (op2 && op2->expr_type == EXPR_NULL))
3912 {
3913 sprintf (msg, _("Invalid context for NULL() pointer at %%L"));
3914 goto bad_op;
3915 }
3916
3917 switch (e->value.op.op)
3918 {
3919 case INTRINSIC_UPLUS:
3920 case INTRINSIC_UMINUS:
3921 if (op1->ts.type == BT_INTEGER
3922 || op1->ts.type == BT_REAL
3923 || op1->ts.type == BT_COMPLEX)
3924 {
3925 e->ts = op1->ts;
3926 break;
3927 }
3928
3929 sprintf (msg, _("Operand of unary numeric operator %%<%s%%> at %%L is %s"),
3930 gfc_op2string (e->value.op.op), gfc_typename (&e->ts));
3931 goto bad_op;
3932
3933 case INTRINSIC_PLUS:
3934 case INTRINSIC_MINUS:
3935 case INTRINSIC_TIMES:
3936 case INTRINSIC_DIVIDE:
3937 case INTRINSIC_POWER:
3938 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
3939 {
3940 gfc_type_convert_binary (e, 1);
3941 break;
3942 }
3943
3944 if (op1->ts.type == BT_DERIVED || op2->ts.type == BT_DERIVED)
3945 sprintf (msg,
3946 _("Unexpected derived-type entities in binary intrinsic "
3947 "numeric operator %%<%s%%> at %%L"),
3948 gfc_op2string (e->value.op.op));
3949 else
3950 sprintf (msg,
3951 _("Operands of binary numeric operator %%<%s%%> at %%L are %s/%s"),
3952 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
3953 gfc_typename (&op2->ts));
3954 goto bad_op;
3955
3956 case INTRINSIC_CONCAT:
3957 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
3958 && op1->ts.kind == op2->ts.kind)
3959 {
3960 e->ts.type = BT_CHARACTER;
3961 e->ts.kind = op1->ts.kind;
3962 break;
3963 }
3964
3965 sprintf (msg,
3966 _("Operands of string concatenation operator at %%L are %s/%s"),
3967 gfc_typename (&op1->ts), gfc_typename (&op2->ts));
3968 goto bad_op;
3969
3970 case INTRINSIC_AND:
3971 case INTRINSIC_OR:
3972 case INTRINSIC_EQV:
3973 case INTRINSIC_NEQV:
3974 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
3975 {
3976 e->ts.type = BT_LOGICAL;
3977 e->ts.kind = gfc_kind_max (op1, op2);
3978 if (op1->ts.kind < e->ts.kind)
3979 gfc_convert_type (op1, &e->ts, 2);
3980 else if (op2->ts.kind < e->ts.kind)
3981 gfc_convert_type (op2, &e->ts, 2);
3982
3983 if (flag_frontend_optimize &&
3984 (e->value.op.op == INTRINSIC_AND || e->value.op.op == INTRINSIC_OR))
3985 {
3986 /* Warn about short-circuiting
3987 with impure function as second operand. */
3988 bool op2_f = false;
3989 gfc_expr_walker (&op2, impure_function_callback, &op2_f);
3990 }
3991 break;
3992 }
3993
3994 /* Logical ops on integers become bitwise ops with -fdec. */
3995 else if (flag_dec
3996 && (op1->ts.type == BT_INTEGER || op2->ts.type == BT_INTEGER))
3997 {
3998 e->ts.type = BT_INTEGER;
3999 e->ts.kind = gfc_kind_max (op1, op2);
4000 if (op1->ts.type != e->ts.type || op1->ts.kind != e->ts.kind)
4001 gfc_convert_type (op1, &e->ts, 1);
4002 if (op2->ts.type != e->ts.type || op2->ts.kind != e->ts.kind)
4003 gfc_convert_type (op2, &e->ts, 1);
4004 e = logical_to_bitwise (e);
4005 goto simplify_op;
4006 }
4007
4008 sprintf (msg, _("Operands of logical operator %%<%s%%> at %%L are %s/%s"),
4009 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
4010 gfc_typename (&op2->ts));
4011
4012 goto bad_op;
4013
4014 case INTRINSIC_NOT:
4015 /* Logical ops on integers become bitwise ops with -fdec. */
4016 if (flag_dec && op1->ts.type == BT_INTEGER)
4017 {
4018 e->ts.type = BT_INTEGER;
4019 e->ts.kind = op1->ts.kind;
4020 e = logical_to_bitwise (e);
4021 goto simplify_op;
4022 }
4023
4024 if (op1->ts.type == BT_LOGICAL)
4025 {
4026 e->ts.type = BT_LOGICAL;
4027 e->ts.kind = op1->ts.kind;
4028 break;
4029 }
4030
4031 sprintf (msg, _("Operand of .not. operator at %%L is %s"),
4032 gfc_typename (&op1->ts));
4033 goto bad_op;
4034
4035 case INTRINSIC_GT:
4036 case INTRINSIC_GT_OS:
4037 case INTRINSIC_GE:
4038 case INTRINSIC_GE_OS:
4039 case INTRINSIC_LT:
4040 case INTRINSIC_LT_OS:
4041 case INTRINSIC_LE:
4042 case INTRINSIC_LE_OS:
4043 if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
4044 {
4045 strcpy (msg, _("COMPLEX quantities cannot be compared at %L"));
4046 goto bad_op;
4047 }
4048
4049 /* Fall through. */
4050
4051 case INTRINSIC_EQ:
4052 case INTRINSIC_EQ_OS:
4053 case INTRINSIC_NE:
4054 case INTRINSIC_NE_OS:
4055 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
4056 && op1->ts.kind == op2->ts.kind)
4057 {
4058 e->ts.type = BT_LOGICAL;
4059 e->ts.kind = gfc_default_logical_kind;
4060 break;
4061 }
4062
4063 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
4064 {
4065 gfc_type_convert_binary (e, 1);
4066
4067 e->ts.type = BT_LOGICAL;
4068 e->ts.kind = gfc_default_logical_kind;
4069
4070 if (warn_compare_reals)
4071 {
4072 gfc_intrinsic_op op = e->value.op.op;
4073
4074 /* Type conversion has made sure that the types of op1 and op2
4075 agree, so it is only necessary to check the first one. */
4076 if ((op1->ts.type == BT_REAL || op1->ts.type == BT_COMPLEX)
4077 && (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS
4078 || op == INTRINSIC_NE || op == INTRINSIC_NE_OS))
4079 {
4080 const char *msg;
4081
4082 if (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS)
4083 msg = "Equality comparison for %s at %L";
4084 else
4085 msg = "Inequality comparison for %s at %L";
4086
4087 gfc_warning (OPT_Wcompare_reals, msg,
4088 gfc_typename (&op1->ts), &op1->where);
4089 }
4090 }
4091
4092 break;
4093 }
4094
4095 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
4096 sprintf (msg,
4097 _("Logicals at %%L must be compared with %s instead of %s"),
4098 (e->value.op.op == INTRINSIC_EQ
4099 || e->value.op.op == INTRINSIC_EQ_OS)
4100 ? ".eqv." : ".neqv.", gfc_op2string (e->value.op.op));
4101 else
4102 sprintf (msg,
4103 _("Operands of comparison operator %%<%s%%> at %%L are %s/%s"),
4104 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
4105 gfc_typename (&op2->ts));
4106
4107 goto bad_op;
4108
4109 case INTRINSIC_USER:
4110 if (e->value.op.uop->op == NULL)
4111 {
4112 const char *name = e->value.op.uop->name;
4113 const char *guessed;
4114 guessed = lookup_uop_fuzzy (name, e->value.op.uop->ns->uop_root);
4115 if (guessed)
4116 sprintf (msg, _("Unknown operator %%<%s%%> at %%L; did you mean '%s'?"),
4117 name, guessed);
4118 else
4119 sprintf (msg, _("Unknown operator %%<%s%%> at %%L"), name);
4120 }
4121 else if (op2 == NULL)
4122 sprintf (msg, _("Operand of user operator %%<%s%%> at %%L is %s"),
4123 e->value.op.uop->name, gfc_typename (&op1->ts));
4124 else
4125 {
4126 sprintf (msg, _("Operands of user operator %%<%s%%> at %%L are %s/%s"),
4127 e->value.op.uop->name, gfc_typename (&op1->ts),
4128 gfc_typename (&op2->ts));
4129 e->value.op.uop->op->sym->attr.referenced = 1;
4130 }
4131
4132 goto bad_op;
4133
4134 case INTRINSIC_PARENTHESES:
4135 e->ts = op1->ts;
4136 if (e->ts.type == BT_CHARACTER)
4137 e->ts.u.cl = op1->ts.u.cl;
4138 break;
4139
4140 default:
4141 gfc_internal_error ("resolve_operator(): Bad intrinsic");
4142 }
4143
4144 /* Deal with arrayness of an operand through an operator. */
4145
4146 switch (e->value.op.op)
4147 {
4148 case INTRINSIC_PLUS:
4149 case INTRINSIC_MINUS:
4150 case INTRINSIC_TIMES:
4151 case INTRINSIC_DIVIDE:
4152 case INTRINSIC_POWER:
4153 case INTRINSIC_CONCAT:
4154 case INTRINSIC_AND:
4155 case INTRINSIC_OR:
4156 case INTRINSIC_EQV:
4157 case INTRINSIC_NEQV:
4158 case INTRINSIC_EQ:
4159 case INTRINSIC_EQ_OS:
4160 case INTRINSIC_NE:
4161 case INTRINSIC_NE_OS:
4162 case INTRINSIC_GT:
4163 case INTRINSIC_GT_OS:
4164 case INTRINSIC_GE:
4165 case INTRINSIC_GE_OS:
4166 case INTRINSIC_LT:
4167 case INTRINSIC_LT_OS:
4168 case INTRINSIC_LE:
4169 case INTRINSIC_LE_OS:
4170
4171 if (op1->rank == 0 && op2->rank == 0)
4172 e->rank = 0;
4173
4174 if (op1->rank == 0 && op2->rank != 0)
4175 {
4176 e->rank = op2->rank;
4177
4178 if (e->shape == NULL)
4179 e->shape = gfc_copy_shape (op2->shape, op2->rank);
4180 }
4181
4182 if (op1->rank != 0 && op2->rank == 0)
4183 {
4184 e->rank = op1->rank;
4185
4186 if (e->shape == NULL)
4187 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4188 }
4189
4190 if (op1->rank != 0 && op2->rank != 0)
4191 {
4192 if (op1->rank == op2->rank)
4193 {
4194 e->rank = op1->rank;
4195 if (e->shape == NULL)
4196 {
4197 t = compare_shapes (op1, op2);
4198 if (!t)
4199 e->shape = NULL;
4200 else
4201 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4202 }
4203 }
4204 else
4205 {
4206 /* Allow higher level expressions to work. */
4207 e->rank = 0;
4208
4209 /* Try user-defined operators, and otherwise throw an error. */
4210 dual_locus_error = true;
4211 sprintf (msg,
4212 _("Inconsistent ranks for operator at %%L and %%L"));
4213 goto bad_op;
4214 }
4215 }
4216
4217 break;
4218
4219 case INTRINSIC_PARENTHESES:
4220 case INTRINSIC_NOT:
4221 case INTRINSIC_UPLUS:
4222 case INTRINSIC_UMINUS:
4223 /* Simply copy arrayness attribute */
4224 e->rank = op1->rank;
4225
4226 if (e->shape == NULL)
4227 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4228
4229 break;
4230
4231 default:
4232 break;
4233 }
4234
4235 simplify_op:
4236
4237 /* Attempt to simplify the expression. */
4238 if (t)
4239 {
4240 t = gfc_simplify_expr (e, 0);
4241 /* Some calls do not succeed in simplification and return false
4242 even though there is no error; e.g. variable references to
4243 PARAMETER arrays. */
4244 if (!gfc_is_constant_expr (e))
4245 t = true;
4246 }
4247 return t;
4248
4249 bad_op:
4250
4251 {
4252 match m = gfc_extend_expr (e);
4253 if (m == MATCH_YES)
4254 return true;
4255 if (m == MATCH_ERROR)
4256 return false;
4257 }
4258
4259 if (dual_locus_error)
4260 gfc_error (msg, &op1->where, &op2->where);
4261 else
4262 gfc_error (msg, &e->where);
4263
4264 return false;
4265 }
4266
4267
4268 /************** Array resolution subroutines **************/
4269
4270 enum compare_result
4271 { CMP_LT, CMP_EQ, CMP_GT, CMP_UNKNOWN };
4272
4273 /* Compare two integer expressions. */
4274
4275 static compare_result
4276 compare_bound (gfc_expr *a, gfc_expr *b)
4277 {
4278 int i;
4279
4280 if (a == NULL || a->expr_type != EXPR_CONSTANT
4281 || b == NULL || b->expr_type != EXPR_CONSTANT)
4282 return CMP_UNKNOWN;
4283
4284 /* If either of the types isn't INTEGER, we must have
4285 raised an error earlier. */
4286
4287 if (a->ts.type != BT_INTEGER || b->ts.type != BT_INTEGER)
4288 return CMP_UNKNOWN;
4289
4290 i = mpz_cmp (a->value.integer, b->value.integer);
4291
4292 if (i < 0)
4293 return CMP_LT;
4294 if (i > 0)
4295 return CMP_GT;
4296 return CMP_EQ;
4297 }
4298
4299
4300 /* Compare an integer expression with an integer. */
4301
4302 static compare_result
4303 compare_bound_int (gfc_expr *a, int b)
4304 {
4305 int i;
4306
4307 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4308 return CMP_UNKNOWN;
4309
4310 if (a->ts.type != BT_INTEGER)
4311 gfc_internal_error ("compare_bound_int(): Bad expression");
4312
4313 i = mpz_cmp_si (a->value.integer, b);
4314
4315 if (i < 0)
4316 return CMP_LT;
4317 if (i > 0)
4318 return CMP_GT;
4319 return CMP_EQ;
4320 }
4321
4322
4323 /* Compare an integer expression with a mpz_t. */
4324
4325 static compare_result
4326 compare_bound_mpz_t (gfc_expr *a, mpz_t b)
4327 {
4328 int i;
4329
4330 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4331 return CMP_UNKNOWN;
4332
4333 if (a->ts.type != BT_INTEGER)
4334 gfc_internal_error ("compare_bound_int(): Bad expression");
4335
4336 i = mpz_cmp (a->value.integer, b);
4337
4338 if (i < 0)
4339 return CMP_LT;
4340 if (i > 0)
4341 return CMP_GT;
4342 return CMP_EQ;
4343 }
4344
4345
4346 /* Compute the last value of a sequence given by a triplet.
4347 Return 0 if it wasn't able to compute the last value, or if the
4348 sequence if empty, and 1 otherwise. */
4349
4350 static int
4351 compute_last_value_for_triplet (gfc_expr *start, gfc_expr *end,
4352 gfc_expr *stride, mpz_t last)
4353 {
4354 mpz_t rem;
4355
4356 if (start == NULL || start->expr_type != EXPR_CONSTANT
4357 || end == NULL || end->expr_type != EXPR_CONSTANT
4358 || (stride != NULL && stride->expr_type != EXPR_CONSTANT))
4359 return 0;
4360
4361 if (start->ts.type != BT_INTEGER || end->ts.type != BT_INTEGER
4362 || (stride != NULL && stride->ts.type != BT_INTEGER))
4363 return 0;
4364
4365 if (stride == NULL || compare_bound_int (stride, 1) == CMP_EQ)
4366 {
4367 if (compare_bound (start, end) == CMP_GT)
4368 return 0;
4369 mpz_set (last, end->value.integer);
4370 return 1;
4371 }
4372
4373 if (compare_bound_int (stride, 0) == CMP_GT)
4374 {
4375 /* Stride is positive */
4376 if (mpz_cmp (start->value.integer, end->value.integer) > 0)
4377 return 0;
4378 }
4379 else
4380 {
4381 /* Stride is negative */
4382 if (mpz_cmp (start->value.integer, end->value.integer) < 0)
4383 return 0;
4384 }
4385
4386 mpz_init (rem);
4387 mpz_sub (rem, end->value.integer, start->value.integer);
4388 mpz_tdiv_r (rem, rem, stride->value.integer);
4389 mpz_sub (last, end->value.integer, rem);
4390 mpz_clear (rem);
4391
4392 return 1;
4393 }
4394
4395
4396 /* Compare a single dimension of an array reference to the array
4397 specification. */
4398
4399 static bool
4400 check_dimension (int i, gfc_array_ref *ar, gfc_array_spec *as)
4401 {
4402 mpz_t last_value;
4403
4404 if (ar->dimen_type[i] == DIMEN_STAR)
4405 {
4406 gcc_assert (ar->stride[i] == NULL);
4407 /* This implies [*] as [*:] and [*:3] are not possible. */
4408 if (ar->start[i] == NULL)
4409 {
4410 gcc_assert (ar->end[i] == NULL);
4411 return true;
4412 }
4413 }
4414
4415 /* Given start, end and stride values, calculate the minimum and
4416 maximum referenced indexes. */
4417
4418 switch (ar->dimen_type[i])
4419 {
4420 case DIMEN_VECTOR:
4421 case DIMEN_THIS_IMAGE:
4422 break;
4423
4424 case DIMEN_STAR:
4425 case DIMEN_ELEMENT:
4426 if (compare_bound (ar->start[i], as->lower[i]) == CMP_LT)
4427 {
4428 if (i < as->rank)
4429 gfc_warning (0, "Array reference at %L is out of bounds "
4430 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4431 mpz_get_si (ar->start[i]->value.integer),
4432 mpz_get_si (as->lower[i]->value.integer), i+1);
4433 else
4434 gfc_warning (0, "Array reference at %L is out of bounds "
4435 "(%ld < %ld) in codimension %d", &ar->c_where[i],
4436 mpz_get_si (ar->start[i]->value.integer),
4437 mpz_get_si (as->lower[i]->value.integer),
4438 i + 1 - as->rank);
4439 return true;
4440 }
4441 if (compare_bound (ar->start[i], as->upper[i]) == CMP_GT)
4442 {
4443 if (i < as->rank)
4444 gfc_warning (0, "Array reference at %L is out of bounds "
4445 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4446 mpz_get_si (ar->start[i]->value.integer),
4447 mpz_get_si (as->upper[i]->value.integer), i+1);
4448 else
4449 gfc_warning (0, "Array reference at %L is out of bounds "
4450 "(%ld > %ld) in codimension %d", &ar->c_where[i],
4451 mpz_get_si (ar->start[i]->value.integer),
4452 mpz_get_si (as->upper[i]->value.integer),
4453 i + 1 - as->rank);
4454 return true;
4455 }
4456
4457 break;
4458
4459 case DIMEN_RANGE:
4460 {
4461 #define AR_START (ar->start[i] ? ar->start[i] : as->lower[i])
4462 #define AR_END (ar->end[i] ? ar->end[i] : as->upper[i])
4463
4464 compare_result comp_start_end = compare_bound (AR_START, AR_END);
4465
4466 /* Check for zero stride, which is not allowed. */
4467 if (compare_bound_int (ar->stride[i], 0) == CMP_EQ)
4468 {
4469 gfc_error ("Illegal stride of zero at %L", &ar->c_where[i]);
4470 return false;
4471 }
4472
4473 /* if start == len || (stride > 0 && start < len)
4474 || (stride < 0 && start > len),
4475 then the array section contains at least one element. In this
4476 case, there is an out-of-bounds access if
4477 (start < lower || start > upper). */
4478 if (compare_bound (AR_START, AR_END) == CMP_EQ
4479 || ((compare_bound_int (ar->stride[i], 0) == CMP_GT
4480 || ar->stride[i] == NULL) && comp_start_end == CMP_LT)
4481 || (compare_bound_int (ar->stride[i], 0) == CMP_LT
4482 && comp_start_end == CMP_GT))
4483 {
4484 if (compare_bound (AR_START, as->lower[i]) == CMP_LT)
4485 {
4486 gfc_warning (0, "Lower array reference at %L is out of bounds "
4487 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4488 mpz_get_si (AR_START->value.integer),
4489 mpz_get_si (as->lower[i]->value.integer), i+1);
4490 return true;
4491 }
4492 if (compare_bound (AR_START, as->upper[i]) == CMP_GT)
4493 {
4494 gfc_warning (0, "Lower array reference at %L is out of bounds "
4495 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4496 mpz_get_si (AR_START->value.integer),
4497 mpz_get_si (as->upper[i]->value.integer), i+1);
4498 return true;
4499 }
4500 }
4501
4502 /* If we can compute the highest index of the array section,
4503 then it also has to be between lower and upper. */
4504 mpz_init (last_value);
4505 if (compute_last_value_for_triplet (AR_START, AR_END, ar->stride[i],
4506 last_value))
4507 {
4508 if (compare_bound_mpz_t (as->lower[i], last_value) == CMP_GT)
4509 {
4510 gfc_warning (0, "Upper array reference at %L is out of bounds "
4511 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4512 mpz_get_si (last_value),
4513 mpz_get_si (as->lower[i]->value.integer), i+1);
4514 mpz_clear (last_value);
4515 return true;
4516 }
4517 if (compare_bound_mpz_t (as->upper[i], last_value) == CMP_LT)
4518 {
4519 gfc_warning (0, "Upper array reference at %L is out of bounds "
4520 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4521 mpz_get_si (last_value),
4522 mpz_get_si (as->upper[i]->value.integer), i+1);
4523 mpz_clear (last_value);
4524 return true;
4525 }
4526 }
4527 mpz_clear (last_value);
4528
4529 #undef AR_START
4530 #undef AR_END
4531 }
4532 break;
4533
4534 default:
4535 gfc_internal_error ("check_dimension(): Bad array reference");
4536 }
4537
4538 return true;
4539 }
4540
4541
4542 /* Compare an array reference with an array specification. */
4543
4544 static bool
4545 compare_spec_to_ref (gfc_array_ref *ar)
4546 {
4547 gfc_array_spec *as;
4548 int i;
4549
4550 as = ar->as;
4551 i = as->rank - 1;
4552 /* TODO: Full array sections are only allowed as actual parameters. */
4553 if (as->type == AS_ASSUMED_SIZE
4554 && (/*ar->type == AR_FULL
4555 ||*/ (ar->type == AR_SECTION
4556 && ar->dimen_type[i] == DIMEN_RANGE && ar->end[i] == NULL)))
4557 {
4558 gfc_error ("Rightmost upper bound of assumed size array section "
4559 "not specified at %L", &ar->where);
4560 return false;
4561 }
4562
4563 if (ar->type == AR_FULL)
4564 return true;
4565
4566 if (as->rank != ar->dimen)
4567 {
4568 gfc_error ("Rank mismatch in array reference at %L (%d/%d)",
4569 &ar->where, ar->dimen, as->rank);
4570 return false;
4571 }
4572
4573 /* ar->codimen == 0 is a local array. */
4574 if (as->corank != ar->codimen && ar->codimen != 0)
4575 {
4576 gfc_error ("Coindex rank mismatch in array reference at %L (%d/%d)",
4577 &ar->where, ar->codimen, as->corank);
4578 return false;
4579 }
4580
4581 for (i = 0; i < as->rank; i++)
4582 if (!check_dimension (i, ar, as))
4583 return false;
4584
4585 /* Local access has no coarray spec. */
4586 if (ar->codimen != 0)
4587 for (i = as->rank; i < as->rank + as->corank; i++)
4588 {
4589 if (ar->dimen_type[i] != DIMEN_ELEMENT && !ar->in_allocate
4590 && ar->dimen_type[i] != DIMEN_THIS_IMAGE)
4591 {
4592 gfc_error ("Coindex of codimension %d must be a scalar at %L",
4593 i + 1 - as->rank, &ar->where);
4594 return false;
4595 }
4596 if (!check_dimension (i, ar, as))
4597 return false;
4598 }
4599
4600 return true;
4601 }
4602
4603
4604 /* Resolve one part of an array index. */
4605
4606 static bool
4607 gfc_resolve_index_1 (gfc_expr *index, int check_scalar,
4608 int force_index_integer_kind)
4609 {
4610 gfc_typespec ts;
4611
4612 if (index == NULL)
4613 return true;
4614
4615 if (!gfc_resolve_expr (index))
4616 return false;
4617
4618 if (check_scalar && index->rank != 0)
4619 {
4620 gfc_error ("Array index at %L must be scalar", &index->where);
4621 return false;
4622 }
4623
4624 if (index->ts.type != BT_INTEGER && index->ts.type != BT_REAL)
4625 {
4626 gfc_error ("Array index at %L must be of INTEGER type, found %s",
4627 &index->where, gfc_basic_typename (index->ts.type));
4628 return false;
4629 }
4630
4631 if (index->ts.type == BT_REAL)
4632 if (!gfc_notify_std (GFC_STD_LEGACY, "REAL array index at %L",
4633 &index->where))
4634 return false;
4635
4636 if ((index->ts.kind != gfc_index_integer_kind
4637 && force_index_integer_kind)
4638 || index->ts.type != BT_INTEGER)
4639 {
4640 gfc_clear_ts (&ts);
4641 ts.type = BT_INTEGER;
4642 ts.kind = gfc_index_integer_kind;
4643
4644 gfc_convert_type_warn (index, &ts, 2, 0);
4645 }
4646
4647 return true;
4648 }
4649
4650 /* Resolve one part of an array index. */
4651
4652 bool
4653 gfc_resolve_index (gfc_expr *index, int check_scalar)
4654 {
4655 return gfc_resolve_index_1 (index, check_scalar, 1);
4656 }
4657
4658 /* Resolve a dim argument to an intrinsic function. */
4659
4660 bool
4661 gfc_resolve_dim_arg (gfc_expr *dim)
4662 {
4663 if (dim == NULL)
4664 return true;
4665
4666 if (!gfc_resolve_expr (dim))
4667 return false;
4668
4669 if (dim->rank != 0)
4670 {
4671 gfc_error ("Argument dim at %L must be scalar", &dim->where);
4672 return false;
4673
4674 }
4675
4676 if (dim->ts.type != BT_INTEGER)
4677 {
4678 gfc_error ("Argument dim at %L must be of INTEGER type", &dim->where);
4679 return false;
4680 }
4681
4682 if (dim->ts.kind != gfc_index_integer_kind)
4683 {
4684 gfc_typespec ts;
4685
4686 gfc_clear_ts (&ts);
4687 ts.type = BT_INTEGER;
4688 ts.kind = gfc_index_integer_kind;
4689
4690 gfc_convert_type_warn (dim, &ts, 2, 0);
4691 }
4692
4693 return true;
4694 }
4695
4696 /* Given an expression that contains array references, update those array
4697 references to point to the right array specifications. While this is
4698 filled in during matching, this information is difficult to save and load
4699 in a module, so we take care of it here.
4700
4701 The idea here is that the original array reference comes from the
4702 base symbol. We traverse the list of reference structures, setting
4703 the stored reference to references. Component references can
4704 provide an additional array specification. */
4705
4706 static void
4707 find_array_spec (gfc_expr *e)
4708 {
4709 gfc_array_spec *as;
4710 gfc_component *c;
4711 gfc_ref *ref;
4712
4713 if (e->symtree->n.sym->ts.type == BT_CLASS)
4714 as = CLASS_DATA (e->symtree->n.sym)->as;
4715 else
4716 as = e->symtree->n.sym->as;
4717
4718 for (ref = e->ref; ref; ref = ref->next)
4719 switch (ref->type)
4720 {
4721 case REF_ARRAY:
4722 if (as == NULL)
4723 gfc_internal_error ("find_array_spec(): Missing spec");
4724
4725 ref->u.ar.as = as;
4726 as = NULL;
4727 break;
4728
4729 case REF_COMPONENT:
4730 c = ref->u.c.component;
4731 if (c->attr.dimension)
4732 {
4733 if (as != NULL)
4734 gfc_internal_error ("find_array_spec(): unused as(1)");
4735 as = c->as;
4736 }
4737
4738 break;
4739
4740 case REF_SUBSTRING:
4741 case REF_INQUIRY:
4742 break;
4743 }
4744
4745 if (as != NULL)
4746 gfc_internal_error ("find_array_spec(): unused as(2)");
4747 }
4748
4749
4750 /* Resolve an array reference. */
4751
4752 static bool
4753 resolve_array_ref (gfc_array_ref *ar)
4754 {
4755 int i, check_scalar;
4756 gfc_expr *e;
4757
4758 for (i = 0; i < ar->dimen + ar->codimen; i++)
4759 {
4760 check_scalar = ar->dimen_type[i] == DIMEN_RANGE;
4761
4762 /* Do not force gfc_index_integer_kind for the start. We can
4763 do fine with any integer kind. This avoids temporary arrays
4764 created for indexing with a vector. */
4765 if (!gfc_resolve_index_1 (ar->start[i], check_scalar, 0))
4766 return false;
4767 if (!gfc_resolve_index (ar->end[i], check_scalar))
4768 return false;
4769 if (!gfc_resolve_index (ar->stride[i], check_scalar))
4770 return false;
4771
4772 e = ar->start[i];
4773
4774 if (ar->dimen_type[i] == DIMEN_UNKNOWN)
4775 switch (e->rank)
4776 {
4777 case 0:
4778 ar->dimen_type[i] = DIMEN_ELEMENT;
4779 break;
4780
4781 case 1:
4782 ar->dimen_type[i] = DIMEN_VECTOR;
4783 if (e->expr_type == EXPR_VARIABLE
4784 && e->symtree->n.sym->ts.type == BT_DERIVED)
4785 ar->start[i] = gfc_get_parentheses (e);
4786 break;
4787
4788 default:
4789 gfc_error ("Array index at %L is an array of rank %d",
4790 &ar->c_where[i], e->rank);
4791 return false;
4792 }
4793
4794 /* Fill in the upper bound, which may be lower than the
4795 specified one for something like a(2:10:5), which is
4796 identical to a(2:7:5). Only relevant for strides not equal
4797 to one. Don't try a division by zero. */
4798 if (ar->dimen_type[i] == DIMEN_RANGE
4799 && ar->stride[i] != NULL && ar->stride[i]->expr_type == EXPR_CONSTANT
4800 && mpz_cmp_si (ar->stride[i]->value.integer, 1L) != 0
4801 && mpz_cmp_si (ar->stride[i]->value.integer, 0L) != 0)
4802 {
4803 mpz_t size, end;
4804
4805 if (gfc_ref_dimen_size (ar, i, &size, &end))
4806 {
4807 if (ar->end[i] == NULL)
4808 {
4809 ar->end[i] =
4810 gfc_get_constant_expr (BT_INTEGER, gfc_index_integer_kind,
4811 &ar->where);
4812 mpz_set (ar->end[i]->value.integer, end);
4813 }
4814 else if (ar->end[i]->ts.type == BT_INTEGER
4815 && ar->end[i]->expr_type == EXPR_CONSTANT)
4816 {
4817 mpz_set (ar->end[i]->value.integer, end);
4818 }
4819 else
4820 gcc_unreachable ();
4821
4822 mpz_clear (size);
4823 mpz_clear (end);
4824 }
4825 }
4826 }
4827
4828 if (ar->type == AR_FULL)
4829 {
4830 if (ar->as->rank == 0)
4831 ar->type = AR_ELEMENT;
4832
4833 /* Make sure array is the same as array(:,:), this way
4834 we don't need to special case all the time. */
4835 ar->dimen = ar->as->rank;
4836 for (i = 0; i < ar->dimen; i++)
4837 {
4838 ar->dimen_type[i] = DIMEN_RANGE;
4839
4840 gcc_assert (ar->start[i] == NULL);
4841 gcc_assert (ar->end[i] == NULL);
4842 gcc_assert (ar->stride[i] == NULL);
4843 }
4844 }
4845
4846 /* If the reference type is unknown, figure out what kind it is. */
4847
4848 if (ar->type == AR_UNKNOWN)
4849 {
4850 ar->type = AR_ELEMENT;
4851 for (i = 0; i < ar->dimen; i++)
4852 if (ar->dimen_type[i] == DIMEN_RANGE
4853 || ar->dimen_type[i] == DIMEN_VECTOR)
4854 {
4855 ar->type = AR_SECTION;
4856 break;
4857 }
4858 }
4859
4860 if (!ar->as->cray_pointee && !compare_spec_to_ref (ar))
4861 return false;
4862
4863 if (ar->as->corank && ar->codimen == 0)
4864 {
4865 int n;
4866 ar->codimen = ar->as->corank;
4867 for (n = ar->dimen; n < ar->dimen + ar->codimen; n++)
4868 ar->dimen_type[n] = DIMEN_THIS_IMAGE;
4869 }
4870
4871 return true;
4872 }
4873
4874
4875 static bool
4876 resolve_substring (gfc_ref *ref, bool *equal_length)
4877 {
4878 int k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
4879
4880 if (ref->u.ss.start != NULL)
4881 {
4882 if (!gfc_resolve_expr (ref->u.ss.start))
4883 return false;
4884
4885 if (ref->u.ss.start->ts.type != BT_INTEGER)
4886 {
4887 gfc_error ("Substring start index at %L must be of type INTEGER",
4888 &ref->u.ss.start->where);
4889 return false;
4890 }
4891
4892 if (ref->u.ss.start->rank != 0)
4893 {
4894 gfc_error ("Substring start index at %L must be scalar",
4895 &ref->u.ss.start->where);
4896 return false;
4897 }
4898
4899 if (compare_bound_int (ref->u.ss.start, 1) == CMP_LT
4900 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4901 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4902 {
4903 gfc_error ("Substring start index at %L is less than one",
4904 &ref->u.ss.start->where);
4905 return false;
4906 }
4907 }
4908
4909 if (ref->u.ss.end != NULL)
4910 {
4911 if (!gfc_resolve_expr (ref->u.ss.end))
4912 return false;
4913
4914 if (ref->u.ss.end->ts.type != BT_INTEGER)
4915 {
4916 gfc_error ("Substring end index at %L must be of type INTEGER",
4917 &ref->u.ss.end->where);
4918 return false;
4919 }
4920
4921 if (ref->u.ss.end->rank != 0)
4922 {
4923 gfc_error ("Substring end index at %L must be scalar",
4924 &ref->u.ss.end->where);
4925 return false;
4926 }
4927
4928 if (ref->u.ss.length != NULL
4929 && compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_GT
4930 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4931 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4932 {
4933 gfc_error ("Substring end index at %L exceeds the string length",
4934 &ref->u.ss.start->where);
4935 return false;
4936 }
4937
4938 if (compare_bound_mpz_t (ref->u.ss.end,
4939 gfc_integer_kinds[k].huge) == CMP_GT
4940 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4941 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4942 {
4943 gfc_error ("Substring end index at %L is too large",
4944 &ref->u.ss.end->where);
4945 return false;
4946 }
4947 /* If the substring has the same length as the original
4948 variable, the reference itself can be deleted. */
4949
4950 if (ref->u.ss.length != NULL
4951 && compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_EQ
4952 && compare_bound_int (ref->u.ss.start, 1) == CMP_EQ)
4953 *equal_length = true;
4954 }
4955
4956 return true;
4957 }
4958
4959
4960 /* This function supplies missing substring charlens. */
4961
4962 void
4963 gfc_resolve_substring_charlen (gfc_expr *e)
4964 {
4965 gfc_ref *char_ref;
4966 gfc_expr *start, *end;
4967 gfc_typespec *ts = NULL;
4968 mpz_t diff;
4969
4970 for (char_ref = e->ref; char_ref; char_ref = char_ref->next)
4971 {
4972 if (char_ref->type == REF_SUBSTRING || char_ref->type == REF_INQUIRY)
4973 break;
4974 if (char_ref->type == REF_COMPONENT)
4975 ts = &char_ref->u.c.component->ts;
4976 }
4977
4978 if (!char_ref || char_ref->type == REF_INQUIRY)
4979 return;
4980
4981 gcc_assert (char_ref->next == NULL);
4982
4983 if (e->ts.u.cl)
4984 {
4985 if (e->ts.u.cl->length)
4986 gfc_free_expr (e->ts.u.cl->length);
4987 else if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.dummy)
4988 return;
4989 }
4990
4991 e->ts.type = BT_CHARACTER;
4992 e->ts.kind = gfc_default_character_kind;
4993
4994 if (!e->ts.u.cl)
4995 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
4996
4997 if (char_ref->u.ss.start)
4998 start = gfc_copy_expr (char_ref->u.ss.start);
4999 else
5000 start = gfc_get_int_expr (gfc_charlen_int_kind, NULL, 1);
5001
5002 if (char_ref->u.ss.end)
5003 end = gfc_copy_expr (char_ref->u.ss.end);
5004 else if (e->expr_type == EXPR_VARIABLE)
5005 {
5006 if (!ts)
5007 ts = &e->symtree->n.sym->ts;
5008 end = gfc_copy_expr (ts->u.cl->length);
5009 }
5010 else
5011 end = NULL;
5012
5013 if (!start || !end)
5014 {
5015 gfc_free_expr (start);
5016 gfc_free_expr (end);
5017 return;
5018 }
5019
5020 /* Length = (end - start + 1).
5021 Check first whether it has a constant length. */
5022 if (gfc_dep_difference (end, start, &diff))
5023 {
5024 gfc_expr *len = gfc_get_constant_expr (BT_INTEGER, gfc_charlen_int_kind,
5025 &e->where);
5026
5027 mpz_add_ui (len->value.integer, diff, 1);
5028 mpz_clear (diff);
5029 e->ts.u.cl->length = len;
5030 /* The check for length < 0 is handled below */
5031 }
5032 else
5033 {
5034 e->ts.u.cl->length = gfc_subtract (end, start);
5035 e->ts.u.cl->length = gfc_add (e->ts.u.cl->length,
5036 gfc_get_int_expr (gfc_charlen_int_kind,
5037 NULL, 1));
5038 }
5039
5040 /* F2008, 6.4.1: Both the starting point and the ending point shall
5041 be within the range 1, 2, ..., n unless the starting point exceeds
5042 the ending point, in which case the substring has length zero. */
5043
5044 if (mpz_cmp_si (e->ts.u.cl->length->value.integer, 0) < 0)
5045 mpz_set_si (e->ts.u.cl->length->value.integer, 0);
5046
5047 e->ts.u.cl->length->ts.type = BT_INTEGER;
5048 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
5049
5050 /* Make sure that the length is simplified. */
5051 gfc_simplify_expr (e->ts.u.cl->length, 1);
5052 gfc_resolve_expr (e->ts.u.cl->length);
5053 }
5054
5055
5056 /* Resolve subtype references. */
5057
5058 static bool
5059 resolve_ref (gfc_expr *expr)
5060 {
5061 int current_part_dimension, n_components, seen_part_dimension;
5062 gfc_ref *ref, **prev;
5063 bool equal_length;
5064
5065 for (ref = expr->ref; ref; ref = ref->next)
5066 if (ref->type == REF_ARRAY && ref->u.ar.as == NULL)
5067 {
5068 find_array_spec (expr);
5069 break;
5070 }
5071
5072 for (prev = &expr->ref; *prev != NULL;
5073 prev = *prev == NULL ? prev : &(*prev)->next)
5074 switch ((*prev)->type)
5075 {
5076 case REF_ARRAY:
5077 if (!resolve_array_ref (&(*prev)->u.ar))
5078 return false;
5079 break;
5080
5081 case REF_COMPONENT:
5082 case REF_INQUIRY:
5083 break;
5084
5085 case REF_SUBSTRING:
5086 equal_length = false;
5087 if (!resolve_substring (*prev, &equal_length))
5088 return false;
5089
5090 if (expr->expr_type != EXPR_SUBSTRING && equal_length)
5091 {
5092 /* Remove the reference and move the charlen, if any. */
5093 ref = *prev;
5094 *prev = ref->next;
5095 ref->next = NULL;
5096 expr->ts.u.cl = ref->u.ss.length;
5097 ref->u.ss.length = NULL;
5098 gfc_free_ref_list (ref);
5099 }
5100 break;
5101 }
5102
5103 /* Check constraints on part references. */
5104
5105 current_part_dimension = 0;
5106 seen_part_dimension = 0;
5107 n_components = 0;
5108
5109 for (ref = expr->ref; ref; ref = ref->next)
5110 {
5111 switch (ref->type)
5112 {
5113 case REF_ARRAY:
5114 switch (ref->u.ar.type)
5115 {
5116 case AR_FULL:
5117 /* Coarray scalar. */
5118 if (ref->u.ar.as->rank == 0)
5119 {
5120 current_part_dimension = 0;
5121 break;
5122 }
5123 /* Fall through. */
5124 case AR_SECTION:
5125 current_part_dimension = 1;
5126 break;
5127
5128 case AR_ELEMENT:
5129 current_part_dimension = 0;
5130 break;
5131
5132 case AR_UNKNOWN:
5133 gfc_internal_error ("resolve_ref(): Bad array reference");
5134 }
5135
5136 break;
5137
5138 case REF_COMPONENT:
5139 if (current_part_dimension || seen_part_dimension)
5140 {
5141 /* F03:C614. */
5142 if (ref->u.c.component->attr.pointer
5143 || ref->u.c.component->attr.proc_pointer
5144 || (ref->u.c.component->ts.type == BT_CLASS
5145 && CLASS_DATA (ref->u.c.component)->attr.pointer))
5146 {
5147 gfc_error ("Component to the right of a part reference "
5148 "with nonzero rank must not have the POINTER "
5149 "attribute at %L", &expr->where);
5150 return false;
5151 }
5152 else if (ref->u.c.component->attr.allocatable
5153 || (ref->u.c.component->ts.type == BT_CLASS
5154 && CLASS_DATA (ref->u.c.component)->attr.allocatable))
5155
5156 {
5157 gfc_error ("Component to the right of a part reference "
5158 "with nonzero rank must not have the ALLOCATABLE "
5159 "attribute at %L", &expr->where);
5160 return false;
5161 }
5162 }
5163
5164 n_components++;
5165 break;
5166
5167 case REF_SUBSTRING:
5168 case REF_INQUIRY:
5169 break;
5170 }
5171
5172 if (((ref->type == REF_COMPONENT && n_components > 1)
5173 || ref->next == NULL)
5174 && current_part_dimension
5175 && seen_part_dimension)
5176 {
5177 gfc_error ("Two or more part references with nonzero rank must "
5178 "not be specified at %L", &expr->where);
5179 return false;
5180 }
5181
5182 if (ref->type == REF_COMPONENT)
5183 {
5184 if (current_part_dimension)
5185 seen_part_dimension = 1;
5186
5187 /* reset to make sure */
5188 current_part_dimension = 0;
5189 }
5190 }
5191
5192 return true;
5193 }
5194
5195
5196 /* Given an expression, determine its shape. This is easier than it sounds.
5197 Leaves the shape array NULL if it is not possible to determine the shape. */
5198
5199 static void
5200 expression_shape (gfc_expr *e)
5201 {
5202 mpz_t array[GFC_MAX_DIMENSIONS];
5203 int i;
5204
5205 if (e->rank <= 0 || e->shape != NULL)
5206 return;
5207
5208 for (i = 0; i < e->rank; i++)
5209 if (!gfc_array_dimen_size (e, i, &array[i]))
5210 goto fail;
5211
5212 e->shape = gfc_get_shape (e->rank);
5213
5214 memcpy (e->shape, array, e->rank * sizeof (mpz_t));
5215
5216 return;
5217
5218 fail:
5219 for (i--; i >= 0; i--)
5220 mpz_clear (array[i]);
5221 }
5222
5223
5224 /* Given a variable expression node, compute the rank of the expression by
5225 examining the base symbol and any reference structures it may have. */
5226
5227 void
5228 expression_rank (gfc_expr *e)
5229 {
5230 gfc_ref *ref;
5231 int i, rank;
5232
5233 /* Just to make sure, because EXPR_COMPCALL's also have an e->ref and that
5234 could lead to serious confusion... */
5235 gcc_assert (e->expr_type != EXPR_COMPCALL);
5236
5237 if (e->ref == NULL)
5238 {
5239 if (e->expr_type == EXPR_ARRAY)
5240 goto done;
5241 /* Constructors can have a rank different from one via RESHAPE(). */
5242
5243 if (e->symtree == NULL)
5244 {
5245 e->rank = 0;
5246 goto done;
5247 }
5248
5249 e->rank = (e->symtree->n.sym->as == NULL)
5250 ? 0 : e->symtree->n.sym->as->rank;
5251 goto done;
5252 }
5253
5254 rank = 0;
5255
5256 for (ref = e->ref; ref; ref = ref->next)
5257 {
5258 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.proc_pointer
5259 && ref->u.c.component->attr.function && !ref->next)
5260 rank = ref->u.c.component->as ? ref->u.c.component->as->rank : 0;
5261
5262 if (ref->type != REF_ARRAY)
5263 continue;
5264
5265 if (ref->u.ar.type == AR_FULL)
5266 {
5267 rank = ref->u.ar.as->rank;
5268 break;
5269 }
5270
5271 if (ref->u.ar.type == AR_SECTION)
5272 {
5273 /* Figure out the rank of the section. */
5274 if (rank != 0)
5275 gfc_internal_error ("expression_rank(): Two array specs");
5276
5277 for (i = 0; i < ref->u.ar.dimen; i++)
5278 if (ref->u.ar.dimen_type[i] == DIMEN_RANGE
5279 || ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
5280 rank++;
5281
5282 break;
5283 }
5284 }
5285
5286 e->rank = rank;
5287
5288 done:
5289 expression_shape (e);
5290 }
5291
5292
5293 static void
5294 add_caf_get_intrinsic (gfc_expr *e)
5295 {
5296 gfc_expr *wrapper, *tmp_expr;
5297 gfc_ref *ref;
5298 int n;
5299
5300 for (ref = e->ref; ref; ref = ref->next)
5301 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5302 break;
5303 if (ref == NULL)
5304 return;
5305
5306 for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
5307 if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
5308 return;
5309
5310 tmp_expr = XCNEW (gfc_expr);
5311 *tmp_expr = *e;
5312 wrapper = gfc_build_intrinsic_call (gfc_current_ns, GFC_ISYM_CAF_GET,
5313 "caf_get", tmp_expr->where, 1, tmp_expr);
5314 wrapper->ts = e->ts;
5315 wrapper->rank = e->rank;
5316 if (e->rank)
5317 wrapper->shape = gfc_copy_shape (e->shape, e->rank);
5318 *e = *wrapper;
5319 free (wrapper);
5320 }
5321
5322
5323 static void
5324 remove_caf_get_intrinsic (gfc_expr *e)
5325 {
5326 gcc_assert (e->expr_type == EXPR_FUNCTION && e->value.function.isym
5327 && e->value.function.isym->id == GFC_ISYM_CAF_GET);
5328 gfc_expr *e2 = e->value.function.actual->expr;
5329 e->value.function.actual->expr = NULL;
5330 gfc_free_actual_arglist (e->value.function.actual);
5331 gfc_free_shape (&e->shape, e->rank);
5332 *e = *e2;
5333 free (e2);
5334 }
5335
5336
5337 /* Resolve a variable expression. */
5338
5339 static bool
5340 resolve_variable (gfc_expr *e)
5341 {
5342 gfc_symbol *sym;
5343 bool t;
5344
5345 t = true;
5346
5347 if (e->symtree == NULL)
5348 return false;
5349 sym = e->symtree->n.sym;
5350
5351 /* Use same check as for TYPE(*) below; this check has to be before TYPE(*)
5352 as ts.type is set to BT_ASSUMED in resolve_symbol. */
5353 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
5354 {
5355 if (!actual_arg || inquiry_argument)
5356 {
5357 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may only "
5358 "be used as actual argument", sym->name, &e->where);
5359 return false;
5360 }
5361 }
5362 /* TS 29113, 407b. */
5363 else if (e->ts.type == BT_ASSUMED)
5364 {
5365 if (!actual_arg)
5366 {
5367 gfc_error ("Assumed-type variable %s at %L may only be used "
5368 "as actual argument", sym->name, &e->where);
5369 return false;
5370 }
5371 else if (inquiry_argument && !first_actual_arg)
5372 {
5373 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5374 for all inquiry functions in resolve_function; the reason is
5375 that the function-name resolution happens too late in that
5376 function. */
5377 gfc_error ("Assumed-type variable %s at %L as actual argument to "
5378 "an inquiry function shall be the first argument",
5379 sym->name, &e->where);
5380 return false;
5381 }
5382 }
5383 /* TS 29113, C535b. */
5384 else if ((sym->ts.type == BT_CLASS && sym->attr.class_ok
5385 && CLASS_DATA (sym)->as
5386 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5387 || (sym->ts.type != BT_CLASS && sym->as
5388 && sym->as->type == AS_ASSUMED_RANK))
5389 {
5390 if (!actual_arg)
5391 {
5392 gfc_error ("Assumed-rank variable %s at %L may only be used as "
5393 "actual argument", sym->name, &e->where);
5394 return false;
5395 }
5396 else if (inquiry_argument && !first_actual_arg)
5397 {
5398 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5399 for all inquiry functions in resolve_function; the reason is
5400 that the function-name resolution happens too late in that
5401 function. */
5402 gfc_error ("Assumed-rank variable %s at %L as actual argument "
5403 "to an inquiry function shall be the first argument",
5404 sym->name, &e->where);
5405 return false;
5406 }
5407 }
5408
5409 if ((sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) && e->ref
5410 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5411 && e->ref->next == NULL))
5412 {
5413 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall not have "
5414 "a subobject reference", sym->name, &e->ref->u.ar.where);
5415 return false;
5416 }
5417 /* TS 29113, 407b. */
5418 else if (e->ts.type == BT_ASSUMED && e->ref
5419 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5420 && e->ref->next == NULL))
5421 {
5422 gfc_error ("Assumed-type variable %s at %L shall not have a subobject "
5423 "reference", sym->name, &e->ref->u.ar.where);
5424 return false;
5425 }
5426
5427 /* TS 29113, C535b. */
5428 if (((sym->ts.type == BT_CLASS && sym->attr.class_ok
5429 && CLASS_DATA (sym)->as
5430 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5431 || (sym->ts.type != BT_CLASS && sym->as
5432 && sym->as->type == AS_ASSUMED_RANK))
5433 && e->ref
5434 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5435 && e->ref->next == NULL))
5436 {
5437 gfc_error ("Assumed-rank variable %s at %L shall not have a subobject "
5438 "reference", sym->name, &e->ref->u.ar.where);
5439 return false;
5440 }
5441
5442 /* For variables that are used in an associate (target => object) where
5443 the object's basetype is array valued while the target is scalar,
5444 the ts' type of the component refs is still array valued, which
5445 can't be translated that way. */
5446 if (sym->assoc && e->rank == 0 && e->ref && sym->ts.type == BT_CLASS
5447 && sym->assoc->target && sym->assoc->target->ts.type == BT_CLASS
5448 && CLASS_DATA (sym->assoc->target)->as)
5449 {
5450 gfc_ref *ref = e->ref;
5451 while (ref)
5452 {
5453 switch (ref->type)
5454 {
5455 case REF_COMPONENT:
5456 ref->u.c.sym = sym->ts.u.derived;
5457 /* Stop the loop. */
5458 ref = NULL;
5459 break;
5460 default:
5461 ref = ref->next;
5462 break;
5463 }
5464 }
5465 }
5466
5467 /* If this is an associate-name, it may be parsed with an array reference
5468 in error even though the target is scalar. Fail directly in this case.
5469 TODO Understand why class scalar expressions must be excluded. */
5470 if (sym->assoc && !(sym->ts.type == BT_CLASS && e->rank == 0))
5471 {
5472 if (sym->ts.type == BT_CLASS)
5473 gfc_fix_class_refs (e);
5474 if (!sym->attr.dimension && e->ref && e->ref->type == REF_ARRAY)
5475 return false;
5476 else if (sym->attr.dimension && (!e->ref || e->ref->type != REF_ARRAY))
5477 {
5478 /* This can happen because the parser did not detect that the
5479 associate name is an array and the expression had no array
5480 part_ref. */
5481 gfc_ref *ref = gfc_get_ref ();
5482 ref->type = REF_ARRAY;
5483 ref->u.ar = *gfc_get_array_ref();
5484 ref->u.ar.type = AR_FULL;
5485 if (sym->as)
5486 {
5487 ref->u.ar.as = sym->as;
5488 ref->u.ar.dimen = sym->as->rank;
5489 }
5490 ref->next = e->ref;
5491 e->ref = ref;
5492
5493 }
5494 }
5495
5496 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.generic)
5497 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
5498
5499 /* On the other hand, the parser may not have known this is an array;
5500 in this case, we have to add a FULL reference. */
5501 if (sym->assoc && sym->attr.dimension && !e->ref)
5502 {
5503 e->ref = gfc_get_ref ();
5504 e->ref->type = REF_ARRAY;
5505 e->ref->u.ar.type = AR_FULL;
5506 e->ref->u.ar.dimen = 0;
5507 }
5508
5509 /* Like above, but for class types, where the checking whether an array
5510 ref is present is more complicated. Furthermore make sure not to add
5511 the full array ref to _vptr or _len refs. */
5512 if (sym->assoc && sym->ts.type == BT_CLASS
5513 && CLASS_DATA (sym)->attr.dimension
5514 && (e->ts.type != BT_DERIVED || !e->ts.u.derived->attr.vtype))
5515 {
5516 gfc_ref *ref, *newref;
5517
5518 newref = gfc_get_ref ();
5519 newref->type = REF_ARRAY;
5520 newref->u.ar.type = AR_FULL;
5521 newref->u.ar.dimen = 0;
5522 /* Because this is an associate var and the first ref either is a ref to
5523 the _data component or not, no traversal of the ref chain is
5524 needed. The array ref needs to be inserted after the _data ref,
5525 or when that is not present, which may happend for polymorphic
5526 types, then at the first position. */
5527 ref = e->ref;
5528 if (!ref)
5529 e->ref = newref;
5530 else if (ref->type == REF_COMPONENT
5531 && strcmp ("_data", ref->u.c.component->name) == 0)
5532 {
5533 if (!ref->next || ref->next->type != REF_ARRAY)
5534 {
5535 newref->next = ref->next;
5536 ref->next = newref;
5537 }
5538 else
5539 /* Array ref present already. */
5540 gfc_free_ref_list (newref);
5541 }
5542 else if (ref->type == REF_ARRAY)
5543 /* Array ref present already. */
5544 gfc_free_ref_list (newref);
5545 else
5546 {
5547 newref->next = ref;
5548 e->ref = newref;
5549 }
5550 }
5551
5552 if (e->ref && !resolve_ref (e))
5553 return false;
5554
5555 if (sym->attr.flavor == FL_PROCEDURE
5556 && (!sym->attr.function
5557 || (sym->attr.function && sym->result
5558 && sym->result->attr.proc_pointer
5559 && !sym->result->attr.function)))
5560 {
5561 e->ts.type = BT_PROCEDURE;
5562 goto resolve_procedure;
5563 }
5564
5565 if (sym->ts.type != BT_UNKNOWN)
5566 gfc_variable_attr (e, &e->ts);
5567 else if (sym->attr.flavor == FL_PROCEDURE
5568 && sym->attr.function && sym->result
5569 && sym->result->ts.type != BT_UNKNOWN
5570 && sym->result->attr.proc_pointer)
5571 e->ts = sym->result->ts;
5572 else
5573 {
5574 /* Must be a simple variable reference. */
5575 if (!gfc_set_default_type (sym, 1, sym->ns))
5576 return false;
5577 e->ts = sym->ts;
5578 }
5579
5580 if (check_assumed_size_reference (sym, e))
5581 return false;
5582
5583 /* Deal with forward references to entries during gfc_resolve_code, to
5584 satisfy, at least partially, 12.5.2.5. */
5585 if (gfc_current_ns->entries
5586 && current_entry_id == sym->entry_id
5587 && cs_base
5588 && cs_base->current
5589 && cs_base->current->op != EXEC_ENTRY)
5590 {
5591 gfc_entry_list *entry;
5592 gfc_formal_arglist *formal;
5593 int n;
5594 bool seen, saved_specification_expr;
5595
5596 /* If the symbol is a dummy... */
5597 if (sym->attr.dummy && sym->ns == gfc_current_ns)
5598 {
5599 entry = gfc_current_ns->entries;
5600 seen = false;
5601
5602 /* ...test if the symbol is a parameter of previous entries. */
5603 for (; entry && entry->id <= current_entry_id; entry = entry->next)
5604 for (formal = entry->sym->formal; formal; formal = formal->next)
5605 {
5606 if (formal->sym && sym->name == formal->sym->name)
5607 {
5608 seen = true;
5609 break;
5610 }
5611 }
5612
5613 /* If it has not been seen as a dummy, this is an error. */
5614 if (!seen)
5615 {
5616 if (specification_expr)
5617 gfc_error ("Variable %qs, used in a specification expression"
5618 ", is referenced at %L before the ENTRY statement "
5619 "in which it is a parameter",
5620 sym->name, &cs_base->current->loc);
5621 else
5622 gfc_error ("Variable %qs is used at %L before the ENTRY "
5623 "statement in which it is a parameter",
5624 sym->name, &cs_base->current->loc);
5625 t = false;
5626 }
5627 }
5628
5629 /* Now do the same check on the specification expressions. */
5630 saved_specification_expr = specification_expr;
5631 specification_expr = true;
5632 if (sym->ts.type == BT_CHARACTER
5633 && !gfc_resolve_expr (sym->ts.u.cl->length))
5634 t = false;
5635
5636 if (sym->as)
5637 for (n = 0; n < sym->as->rank; n++)
5638 {
5639 if (!gfc_resolve_expr (sym->as->lower[n]))
5640 t = false;
5641 if (!gfc_resolve_expr (sym->as->upper[n]))
5642 t = false;
5643 }
5644 specification_expr = saved_specification_expr;
5645
5646 if (t)
5647 /* Update the symbol's entry level. */
5648 sym->entry_id = current_entry_id + 1;
5649 }
5650
5651 /* If a symbol has been host_associated mark it. This is used latter,
5652 to identify if aliasing is possible via host association. */
5653 if (sym->attr.flavor == FL_VARIABLE
5654 && gfc_current_ns->parent
5655 && (gfc_current_ns->parent == sym->ns
5656 || (gfc_current_ns->parent->parent
5657 && gfc_current_ns->parent->parent == sym->ns)))
5658 sym->attr.host_assoc = 1;
5659
5660 if (gfc_current_ns->proc_name
5661 && sym->attr.dimension
5662 && (sym->ns != gfc_current_ns
5663 || sym->attr.use_assoc
5664 || sym->attr.in_common))
5665 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
5666
5667 resolve_procedure:
5668 if (t && !resolve_procedure_expression (e))
5669 t = false;
5670
5671 /* F2008, C617 and C1229. */
5672 if (!inquiry_argument && (e->ts.type == BT_CLASS || e->ts.type == BT_DERIVED)
5673 && gfc_is_coindexed (e))
5674 {
5675 gfc_ref *ref, *ref2 = NULL;
5676
5677 for (ref = e->ref; ref; ref = ref->next)
5678 {
5679 if (ref->type == REF_COMPONENT)
5680 ref2 = ref;
5681 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5682 break;
5683 }
5684
5685 for ( ; ref; ref = ref->next)
5686 if (ref->type == REF_COMPONENT)
5687 break;
5688
5689 /* Expression itself is not coindexed object. */
5690 if (ref && e->ts.type == BT_CLASS)
5691 {
5692 gfc_error ("Polymorphic subobject of coindexed object at %L",
5693 &e->where);
5694 t = false;
5695 }
5696
5697 /* Expression itself is coindexed object. */
5698 if (ref == NULL)
5699 {
5700 gfc_component *c;
5701 c = ref2 ? ref2->u.c.component : e->symtree->n.sym->components;
5702 for ( ; c; c = c->next)
5703 if (c->attr.allocatable && c->ts.type == BT_CLASS)
5704 {
5705 gfc_error ("Coindexed object with polymorphic allocatable "
5706 "subcomponent at %L", &e->where);
5707 t = false;
5708 break;
5709 }
5710 }
5711 }
5712
5713 if (t)
5714 expression_rank (e);
5715
5716 if (t && flag_coarray == GFC_FCOARRAY_LIB && gfc_is_coindexed (e))
5717 add_caf_get_intrinsic (e);
5718
5719 /* Simplify cases where access to a parameter array results in a
5720 single constant. Suppress errors since those will have been
5721 issued before, as warnings. */
5722 if (e->rank == 0 && sym->as && sym->attr.flavor == FL_PARAMETER)
5723 {
5724 gfc_push_suppress_errors ();
5725 gfc_simplify_expr (e, 1);
5726 gfc_pop_suppress_errors ();
5727 }
5728
5729 return t;
5730 }
5731
5732
5733 /* Checks to see that the correct symbol has been host associated.
5734 The only situation where this arises is that in which a twice
5735 contained function is parsed after the host association is made.
5736 Therefore, on detecting this, change the symbol in the expression
5737 and convert the array reference into an actual arglist if the old
5738 symbol is a variable. */
5739 static bool
5740 check_host_association (gfc_expr *e)
5741 {
5742 gfc_symbol *sym, *old_sym;
5743 gfc_symtree *st;
5744 int n;
5745 gfc_ref *ref;
5746 gfc_actual_arglist *arg, *tail = NULL;
5747 bool retval = e->expr_type == EXPR_FUNCTION;
5748
5749 /* If the expression is the result of substitution in
5750 interface.c(gfc_extend_expr) because there is no way in
5751 which the host association can be wrong. */
5752 if (e->symtree == NULL
5753 || e->symtree->n.sym == NULL
5754 || e->user_operator)
5755 return retval;
5756
5757 old_sym = e->symtree->n.sym;
5758
5759 if (gfc_current_ns->parent
5760 && old_sym->ns != gfc_current_ns)
5761 {
5762 /* Use the 'USE' name so that renamed module symbols are
5763 correctly handled. */
5764 gfc_find_symbol (e->symtree->name, gfc_current_ns, 1, &sym);
5765
5766 if (sym && old_sym != sym
5767 && sym->ts.type == old_sym->ts.type
5768 && sym->attr.flavor == FL_PROCEDURE
5769 && sym->attr.contained)
5770 {
5771 /* Clear the shape, since it might not be valid. */
5772 gfc_free_shape (&e->shape, e->rank);
5773
5774 /* Give the expression the right symtree! */
5775 gfc_find_sym_tree (e->symtree->name, NULL, 1, &st);
5776 gcc_assert (st != NULL);
5777
5778 if (old_sym->attr.flavor == FL_PROCEDURE
5779 || e->expr_type == EXPR_FUNCTION)
5780 {
5781 /* Original was function so point to the new symbol, since
5782 the actual argument list is already attached to the
5783 expression. */
5784 e->value.function.esym = NULL;
5785 e->symtree = st;
5786 }
5787 else
5788 {
5789 /* Original was variable so convert array references into
5790 an actual arglist. This does not need any checking now
5791 since resolve_function will take care of it. */
5792 e->value.function.actual = NULL;
5793 e->expr_type = EXPR_FUNCTION;
5794 e->symtree = st;
5795
5796 /* Ambiguity will not arise if the array reference is not
5797 the last reference. */
5798 for (ref = e->ref; ref; ref = ref->next)
5799 if (ref->type == REF_ARRAY && ref->next == NULL)
5800 break;
5801
5802 gcc_assert (ref->type == REF_ARRAY);
5803
5804 /* Grab the start expressions from the array ref and
5805 copy them into actual arguments. */
5806 for (n = 0; n < ref->u.ar.dimen; n++)
5807 {
5808 arg = gfc_get_actual_arglist ();
5809 arg->expr = gfc_copy_expr (ref->u.ar.start[n]);
5810 if (e->value.function.actual == NULL)
5811 tail = e->value.function.actual = arg;
5812 else
5813 {
5814 tail->next = arg;
5815 tail = arg;
5816 }
5817 }
5818
5819 /* Dump the reference list and set the rank. */
5820 gfc_free_ref_list (e->ref);
5821 e->ref = NULL;
5822 e->rank = sym->as ? sym->as->rank : 0;
5823 }
5824
5825 gfc_resolve_expr (e);
5826 sym->refs++;
5827 }
5828 }
5829 /* This might have changed! */
5830 return e->expr_type == EXPR_FUNCTION;
5831 }
5832
5833
5834 static void
5835 gfc_resolve_character_operator (gfc_expr *e)
5836 {
5837 gfc_expr *op1 = e->value.op.op1;
5838 gfc_expr *op2 = e->value.op.op2;
5839 gfc_expr *e1 = NULL;
5840 gfc_expr *e2 = NULL;
5841
5842 gcc_assert (e->value.op.op == INTRINSIC_CONCAT);
5843
5844 if (op1->ts.u.cl && op1->ts.u.cl->length)
5845 e1 = gfc_copy_expr (op1->ts.u.cl->length);
5846 else if (op1->expr_type == EXPR_CONSTANT)
5847 e1 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
5848 op1->value.character.length);
5849
5850 if (op2->ts.u.cl && op2->ts.u.cl->length)
5851 e2 = gfc_copy_expr (op2->ts.u.cl->length);
5852 else if (op2->expr_type == EXPR_CONSTANT)
5853 e2 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
5854 op2->value.character.length);
5855
5856 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5857
5858 if (!e1 || !e2)
5859 {
5860 gfc_free_expr (e1);
5861 gfc_free_expr (e2);
5862
5863 return;
5864 }
5865
5866 e->ts.u.cl->length = gfc_add (e1, e2);
5867 e->ts.u.cl->length->ts.type = BT_INTEGER;
5868 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
5869 gfc_simplify_expr (e->ts.u.cl->length, 0);
5870 gfc_resolve_expr (e->ts.u.cl->length);
5871
5872 return;
5873 }
5874
5875
5876 /* Ensure that an character expression has a charlen and, if possible, a
5877 length expression. */
5878
5879 static void
5880 fixup_charlen (gfc_expr *e)
5881 {
5882 /* The cases fall through so that changes in expression type and the need
5883 for multiple fixes are picked up. In all circumstances, a charlen should
5884 be available for the middle end to hang a backend_decl on. */
5885 switch (e->expr_type)
5886 {
5887 case EXPR_OP:
5888 gfc_resolve_character_operator (e);
5889 /* FALLTHRU */
5890
5891 case EXPR_ARRAY:
5892 if (e->expr_type == EXPR_ARRAY)
5893 gfc_resolve_character_array_constructor (e);
5894 /* FALLTHRU */
5895
5896 case EXPR_SUBSTRING:
5897 if (!e->ts.u.cl && e->ref)
5898 gfc_resolve_substring_charlen (e);
5899 /* FALLTHRU */
5900
5901 default:
5902 if (!e->ts.u.cl)
5903 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5904
5905 break;
5906 }
5907 }
5908
5909
5910 /* Update an actual argument to include the passed-object for type-bound
5911 procedures at the right position. */
5912
5913 static gfc_actual_arglist*
5914 update_arglist_pass (gfc_actual_arglist* lst, gfc_expr* po, unsigned argpos,
5915 const char *name)
5916 {
5917 gcc_assert (argpos > 0);
5918
5919 if (argpos == 1)
5920 {
5921 gfc_actual_arglist* result;
5922
5923 result = gfc_get_actual_arglist ();
5924 result->expr = po;
5925 result->next = lst;
5926 if (name)
5927 result->name = name;
5928
5929 return result;
5930 }
5931
5932 if (lst)
5933 lst->next = update_arglist_pass (lst->next, po, argpos - 1, name);
5934 else
5935 lst = update_arglist_pass (NULL, po, argpos - 1, name);
5936 return lst;
5937 }
5938
5939
5940 /* Extract the passed-object from an EXPR_COMPCALL (a copy of it). */
5941
5942 static gfc_expr*
5943 extract_compcall_passed_object (gfc_expr* e)
5944 {
5945 gfc_expr* po;
5946
5947 gcc_assert (e->expr_type == EXPR_COMPCALL);
5948
5949 if (e->value.compcall.base_object)
5950 po = gfc_copy_expr (e->value.compcall.base_object);
5951 else
5952 {
5953 po = gfc_get_expr ();
5954 po->expr_type = EXPR_VARIABLE;
5955 po->symtree = e->symtree;
5956 po->ref = gfc_copy_ref (e->ref);
5957 po->where = e->where;
5958 }
5959
5960 if (!gfc_resolve_expr (po))
5961 return NULL;
5962
5963 return po;
5964 }
5965
5966
5967 /* Update the arglist of an EXPR_COMPCALL expression to include the
5968 passed-object. */
5969
5970 static bool
5971 update_compcall_arglist (gfc_expr* e)
5972 {
5973 gfc_expr* po;
5974 gfc_typebound_proc* tbp;
5975
5976 tbp = e->value.compcall.tbp;
5977
5978 if (tbp->error)
5979 return false;
5980
5981 po = extract_compcall_passed_object (e);
5982 if (!po)
5983 return false;
5984
5985 if (tbp->nopass || e->value.compcall.ignore_pass)
5986 {
5987 gfc_free_expr (po);
5988 return true;
5989 }
5990
5991 if (tbp->pass_arg_num <= 0)
5992 return false;
5993
5994 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
5995 tbp->pass_arg_num,
5996 tbp->pass_arg);
5997
5998 return true;
5999 }
6000
6001
6002 /* Extract the passed object from a PPC call (a copy of it). */
6003
6004 static gfc_expr*
6005 extract_ppc_passed_object (gfc_expr *e)
6006 {
6007 gfc_expr *po;
6008 gfc_ref **ref;
6009
6010 po = gfc_get_expr ();
6011 po->expr_type = EXPR_VARIABLE;
6012 po->symtree = e->symtree;
6013 po->ref = gfc_copy_ref (e->ref);
6014 po->where = e->where;
6015
6016 /* Remove PPC reference. */
6017 ref = &po->ref;
6018 while ((*ref)->next)
6019 ref = &(*ref)->next;
6020 gfc_free_ref_list (*ref);
6021 *ref = NULL;
6022
6023 if (!gfc_resolve_expr (po))
6024 return NULL;
6025
6026 return po;
6027 }
6028
6029
6030 /* Update the actual arglist of a procedure pointer component to include the
6031 passed-object. */
6032
6033 static bool
6034 update_ppc_arglist (gfc_expr* e)
6035 {
6036 gfc_expr* po;
6037 gfc_component *ppc;
6038 gfc_typebound_proc* tb;
6039
6040 ppc = gfc_get_proc_ptr_comp (e);
6041 if (!ppc)
6042 return false;
6043
6044 tb = ppc->tb;
6045
6046 if (tb->error)
6047 return false;
6048 else if (tb->nopass)
6049 return true;
6050
6051 po = extract_ppc_passed_object (e);
6052 if (!po)
6053 return false;
6054
6055 /* F08:R739. */
6056 if (po->rank != 0)
6057 {
6058 gfc_error ("Passed-object at %L must be scalar", &e->where);
6059 return false;
6060 }
6061
6062 /* F08:C611. */
6063 if (po->ts.type == BT_DERIVED && po->ts.u.derived->attr.abstract)
6064 {
6065 gfc_error ("Base object for procedure-pointer component call at %L is of"
6066 " ABSTRACT type %qs", &e->where, po->ts.u.derived->name);
6067 return false;
6068 }
6069
6070 gcc_assert (tb->pass_arg_num > 0);
6071 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
6072 tb->pass_arg_num,
6073 tb->pass_arg);
6074
6075 return true;
6076 }
6077
6078
6079 /* Check that the object a TBP is called on is valid, i.e. it must not be
6080 of ABSTRACT type (as in subobject%abstract_parent%tbp()). */
6081
6082 static bool
6083 check_typebound_baseobject (gfc_expr* e)
6084 {
6085 gfc_expr* base;
6086 bool return_value = false;
6087
6088 base = extract_compcall_passed_object (e);
6089 if (!base)
6090 return false;
6091
6092 gcc_assert (base->ts.type == BT_DERIVED || base->ts.type == BT_CLASS);
6093
6094 if (base->ts.type == BT_CLASS && !gfc_expr_attr (base).class_ok)
6095 return false;
6096
6097 /* F08:C611. */
6098 if (base->ts.type == BT_DERIVED && base->ts.u.derived->attr.abstract)
6099 {
6100 gfc_error ("Base object for type-bound procedure call at %L is of"
6101 " ABSTRACT type %qs", &e->where, base->ts.u.derived->name);
6102 goto cleanup;
6103 }
6104
6105 /* F08:C1230. If the procedure called is NOPASS,
6106 the base object must be scalar. */
6107 if (e->value.compcall.tbp->nopass && base->rank != 0)
6108 {
6109 gfc_error ("Base object for NOPASS type-bound procedure call at %L must"
6110 " be scalar", &e->where);
6111 goto cleanup;
6112 }
6113
6114 return_value = true;
6115
6116 cleanup:
6117 gfc_free_expr (base);
6118 return return_value;
6119 }
6120
6121
6122 /* Resolve a call to a type-bound procedure, either function or subroutine,
6123 statically from the data in an EXPR_COMPCALL expression. The adapted
6124 arglist and the target-procedure symtree are returned. */
6125
6126 static bool
6127 resolve_typebound_static (gfc_expr* e, gfc_symtree** target,
6128 gfc_actual_arglist** actual)
6129 {
6130 gcc_assert (e->expr_type == EXPR_COMPCALL);
6131 gcc_assert (!e->value.compcall.tbp->is_generic);
6132
6133 /* Update the actual arglist for PASS. */
6134 if (!update_compcall_arglist (e))
6135 return false;
6136
6137 *actual = e->value.compcall.actual;
6138 *target = e->value.compcall.tbp->u.specific;
6139
6140 gfc_free_ref_list (e->ref);
6141 e->ref = NULL;
6142 e->value.compcall.actual = NULL;
6143
6144 /* If we find a deferred typebound procedure, check for derived types
6145 that an overriding typebound procedure has not been missed. */
6146 if (e->value.compcall.name
6147 && !e->value.compcall.tbp->non_overridable
6148 && e->value.compcall.base_object
6149 && e->value.compcall.base_object->ts.type == BT_DERIVED)
6150 {
6151 gfc_symtree *st;
6152 gfc_symbol *derived;
6153
6154 /* Use the derived type of the base_object. */
6155 derived = e->value.compcall.base_object->ts.u.derived;
6156 st = NULL;
6157
6158 /* If necessary, go through the inheritance chain. */
6159 while (!st && derived)
6160 {
6161 /* Look for the typebound procedure 'name'. */
6162 if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
6163 st = gfc_find_symtree (derived->f2k_derived->tb_sym_root,
6164 e->value.compcall.name);
6165 if (!st)
6166 derived = gfc_get_derived_super_type (derived);
6167 }
6168
6169 /* Now find the specific name in the derived type namespace. */
6170 if (st && st->n.tb && st->n.tb->u.specific)
6171 gfc_find_sym_tree (st->n.tb->u.specific->name,
6172 derived->ns, 1, &st);
6173 if (st)
6174 *target = st;
6175 }
6176 return true;
6177 }
6178
6179
6180 /* Get the ultimate declared type from an expression. In addition,
6181 return the last class/derived type reference and the copy of the
6182 reference list. If check_types is set true, derived types are
6183 identified as well as class references. */
6184 static gfc_symbol*
6185 get_declared_from_expr (gfc_ref **class_ref, gfc_ref **new_ref,
6186 gfc_expr *e, bool check_types)
6187 {
6188 gfc_symbol *declared;
6189 gfc_ref *ref;
6190
6191 declared = NULL;
6192 if (class_ref)
6193 *class_ref = NULL;
6194 if (new_ref)
6195 *new_ref = gfc_copy_ref (e->ref);
6196
6197 for (ref = e->ref; ref; ref = ref->next)
6198 {
6199 if (ref->type != REF_COMPONENT)
6200 continue;
6201
6202 if ((ref->u.c.component->ts.type == BT_CLASS
6203 || (check_types && gfc_bt_struct (ref->u.c.component->ts.type)))
6204 && ref->u.c.component->attr.flavor != FL_PROCEDURE)
6205 {
6206 declared = ref->u.c.component->ts.u.derived;
6207 if (class_ref)
6208 *class_ref = ref;
6209 }
6210 }
6211
6212 if (declared == NULL)
6213 declared = e->symtree->n.sym->ts.u.derived;
6214
6215 return declared;
6216 }
6217
6218
6219 /* Given an EXPR_COMPCALL calling a GENERIC typebound procedure, figure out
6220 which of the specific bindings (if any) matches the arglist and transform
6221 the expression into a call of that binding. */
6222
6223 static bool
6224 resolve_typebound_generic_call (gfc_expr* e, const char **name)
6225 {
6226 gfc_typebound_proc* genproc;
6227 const char* genname;
6228 gfc_symtree *st;
6229 gfc_symbol *derived;
6230
6231 gcc_assert (e->expr_type == EXPR_COMPCALL);
6232 genname = e->value.compcall.name;
6233 genproc = e->value.compcall.tbp;
6234
6235 if (!genproc->is_generic)
6236 return true;
6237
6238 /* Try the bindings on this type and in the inheritance hierarchy. */
6239 for (; genproc; genproc = genproc->overridden)
6240 {
6241 gfc_tbp_generic* g;
6242
6243 gcc_assert (genproc->is_generic);
6244 for (g = genproc->u.generic; g; g = g->next)
6245 {
6246 gfc_symbol* target;
6247 gfc_actual_arglist* args;
6248 bool matches;
6249
6250 gcc_assert (g->specific);
6251
6252 if (g->specific->error)
6253 continue;
6254
6255 target = g->specific->u.specific->n.sym;
6256
6257 /* Get the right arglist by handling PASS/NOPASS. */
6258 args = gfc_copy_actual_arglist (e->value.compcall.actual);
6259 if (!g->specific->nopass)
6260 {
6261 gfc_expr* po;
6262 po = extract_compcall_passed_object (e);
6263 if (!po)
6264 {
6265 gfc_free_actual_arglist (args);
6266 return false;
6267 }
6268
6269 gcc_assert (g->specific->pass_arg_num > 0);
6270 gcc_assert (!g->specific->error);
6271 args = update_arglist_pass (args, po, g->specific->pass_arg_num,
6272 g->specific->pass_arg);
6273 }
6274 resolve_actual_arglist (args, target->attr.proc,
6275 is_external_proc (target)
6276 && gfc_sym_get_dummy_args (target) == NULL);
6277
6278 /* Check if this arglist matches the formal. */
6279 matches = gfc_arglist_matches_symbol (&args, target);
6280
6281 /* Clean up and break out of the loop if we've found it. */
6282 gfc_free_actual_arglist (args);
6283 if (matches)
6284 {
6285 e->value.compcall.tbp = g->specific;
6286 genname = g->specific_st->name;
6287 /* Pass along the name for CLASS methods, where the vtab
6288 procedure pointer component has to be referenced. */
6289 if (name)
6290 *name = genname;
6291 goto success;
6292 }
6293 }
6294 }
6295
6296 /* Nothing matching found! */
6297 gfc_error ("Found no matching specific binding for the call to the GENERIC"
6298 " %qs at %L", genname, &e->where);
6299 return false;
6300
6301 success:
6302 /* Make sure that we have the right specific instance for the name. */
6303 derived = get_declared_from_expr (NULL, NULL, e, true);
6304
6305 st = gfc_find_typebound_proc (derived, NULL, genname, true, &e->where);
6306 if (st)
6307 e->value.compcall.tbp = st->n.tb;
6308
6309 return true;
6310 }
6311
6312
6313 /* Resolve a call to a type-bound subroutine. */
6314
6315 static bool
6316 resolve_typebound_call (gfc_code* c, const char **name, bool *overridable)
6317 {
6318 gfc_actual_arglist* newactual;
6319 gfc_symtree* target;
6320
6321 /* Check that's really a SUBROUTINE. */
6322 if (!c->expr1->value.compcall.tbp->subroutine)
6323 {
6324 if (!c->expr1->value.compcall.tbp->is_generic
6325 && c->expr1->value.compcall.tbp->u.specific
6326 && c->expr1->value.compcall.tbp->u.specific->n.sym
6327 && c->expr1->value.compcall.tbp->u.specific->n.sym->attr.subroutine)
6328 c->expr1->value.compcall.tbp->subroutine = 1;
6329 else
6330 {
6331 gfc_error ("%qs at %L should be a SUBROUTINE",
6332 c->expr1->value.compcall.name, &c->loc);
6333 return false;
6334 }
6335 }
6336
6337 if (!check_typebound_baseobject (c->expr1))
6338 return false;
6339
6340 /* Pass along the name for CLASS methods, where the vtab
6341 procedure pointer component has to be referenced. */
6342 if (name)
6343 *name = c->expr1->value.compcall.name;
6344
6345 if (!resolve_typebound_generic_call (c->expr1, name))
6346 return false;
6347
6348 /* Pass along the NON_OVERRIDABLE attribute of the specific TBP. */
6349 if (overridable)
6350 *overridable = !c->expr1->value.compcall.tbp->non_overridable;
6351
6352 /* Transform into an ordinary EXEC_CALL for now. */
6353
6354 if (!resolve_typebound_static (c->expr1, &target, &newactual))
6355 return false;
6356
6357 c->ext.actual = newactual;
6358 c->symtree = target;
6359 c->op = (c->expr1->value.compcall.assign ? EXEC_ASSIGN_CALL : EXEC_CALL);
6360
6361 gcc_assert (!c->expr1->ref && !c->expr1->value.compcall.actual);
6362
6363 gfc_free_expr (c->expr1);
6364 c->expr1 = gfc_get_expr ();
6365 c->expr1->expr_type = EXPR_FUNCTION;
6366 c->expr1->symtree = target;
6367 c->expr1->where = c->loc;
6368
6369 return resolve_call (c);
6370 }
6371
6372
6373 /* Resolve a component-call expression. */
6374 static bool
6375 resolve_compcall (gfc_expr* e, const char **name)
6376 {
6377 gfc_actual_arglist* newactual;
6378 gfc_symtree* target;
6379
6380 /* Check that's really a FUNCTION. */
6381 if (!e->value.compcall.tbp->function)
6382 {
6383 gfc_error ("%qs at %L should be a FUNCTION",
6384 e->value.compcall.name, &e->where);
6385 return false;
6386 }
6387
6388 /* These must not be assign-calls! */
6389 gcc_assert (!e->value.compcall.assign);
6390
6391 if (!check_typebound_baseobject (e))
6392 return false;
6393
6394 /* Pass along the name for CLASS methods, where the vtab
6395 procedure pointer component has to be referenced. */
6396 if (name)
6397 *name = e->value.compcall.name;
6398
6399 if (!resolve_typebound_generic_call (e, name))
6400 return false;
6401 gcc_assert (!e->value.compcall.tbp->is_generic);
6402
6403 /* Take the rank from the function's symbol. */
6404 if (e->value.compcall.tbp->u.specific->n.sym->as)
6405 e->rank = e->value.compcall.tbp->u.specific->n.sym->as->rank;
6406
6407 /* For now, we simply transform it into an EXPR_FUNCTION call with the same
6408 arglist to the TBP's binding target. */
6409
6410 if (!resolve_typebound_static (e, &target, &newactual))
6411 return false;
6412
6413 e->value.function.actual = newactual;
6414 e->value.function.name = NULL;
6415 e->value.function.esym = target->n.sym;
6416 e->value.function.isym = NULL;
6417 e->symtree = target;
6418 e->ts = target->n.sym->ts;
6419 e->expr_type = EXPR_FUNCTION;
6420
6421 /* Resolution is not necessary if this is a class subroutine; this
6422 function only has to identify the specific proc. Resolution of
6423 the call will be done next in resolve_typebound_call. */
6424 return gfc_resolve_expr (e);
6425 }
6426
6427
6428 static bool resolve_fl_derived (gfc_symbol *sym);
6429
6430
6431 /* Resolve a typebound function, or 'method'. First separate all
6432 the non-CLASS references by calling resolve_compcall directly. */
6433
6434 static bool
6435 resolve_typebound_function (gfc_expr* e)
6436 {
6437 gfc_symbol *declared;
6438 gfc_component *c;
6439 gfc_ref *new_ref;
6440 gfc_ref *class_ref;
6441 gfc_symtree *st;
6442 const char *name;
6443 gfc_typespec ts;
6444 gfc_expr *expr;
6445 bool overridable;
6446
6447 st = e->symtree;
6448
6449 /* Deal with typebound operators for CLASS objects. */
6450 expr = e->value.compcall.base_object;
6451 overridable = !e->value.compcall.tbp->non_overridable;
6452 if (expr && expr->ts.type == BT_CLASS && e->value.compcall.name)
6453 {
6454 /* If the base_object is not a variable, the corresponding actual
6455 argument expression must be stored in e->base_expression so
6456 that the corresponding tree temporary can be used as the base
6457 object in gfc_conv_procedure_call. */
6458 if (expr->expr_type != EXPR_VARIABLE)
6459 {
6460 gfc_actual_arglist *args;
6461
6462 for (args= e->value.function.actual; args; args = args->next)
6463 {
6464 if (expr == args->expr)
6465 expr = args->expr;
6466 }
6467 }
6468
6469 /* Since the typebound operators are generic, we have to ensure
6470 that any delays in resolution are corrected and that the vtab
6471 is present. */
6472 ts = expr->ts;
6473 declared = ts.u.derived;
6474 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6475 if (c->ts.u.derived == NULL)
6476 c->ts.u.derived = gfc_find_derived_vtab (declared);
6477
6478 if (!resolve_compcall (e, &name))
6479 return false;
6480
6481 /* Use the generic name if it is there. */
6482 name = name ? name : e->value.function.esym->name;
6483 e->symtree = expr->symtree;
6484 e->ref = gfc_copy_ref (expr->ref);
6485 get_declared_from_expr (&class_ref, NULL, e, false);
6486
6487 /* Trim away the extraneous references that emerge from nested
6488 use of interface.c (extend_expr). */
6489 if (class_ref && class_ref->next)
6490 {
6491 gfc_free_ref_list (class_ref->next);
6492 class_ref->next = NULL;
6493 }
6494 else if (e->ref && !class_ref && expr->ts.type != BT_CLASS)
6495 {
6496 gfc_free_ref_list (e->ref);
6497 e->ref = NULL;
6498 }
6499
6500 gfc_add_vptr_component (e);
6501 gfc_add_component_ref (e, name);
6502 e->value.function.esym = NULL;
6503 if (expr->expr_type != EXPR_VARIABLE)
6504 e->base_expr = expr;
6505 return true;
6506 }
6507
6508 if (st == NULL)
6509 return resolve_compcall (e, NULL);
6510
6511 if (!resolve_ref (e))
6512 return false;
6513
6514 /* Get the CLASS declared type. */
6515 declared = get_declared_from_expr (&class_ref, &new_ref, e, true);
6516
6517 if (!resolve_fl_derived (declared))
6518 return false;
6519
6520 /* Weed out cases of the ultimate component being a derived type. */
6521 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6522 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6523 {
6524 gfc_free_ref_list (new_ref);
6525 return resolve_compcall (e, NULL);
6526 }
6527
6528 c = gfc_find_component (declared, "_data", true, true, NULL);
6529 declared = c->ts.u.derived;
6530
6531 /* Treat the call as if it is a typebound procedure, in order to roll
6532 out the correct name for the specific function. */
6533 if (!resolve_compcall (e, &name))
6534 {
6535 gfc_free_ref_list (new_ref);
6536 return false;
6537 }
6538 ts = e->ts;
6539
6540 if (overridable)
6541 {
6542 /* Convert the expression to a procedure pointer component call. */
6543 e->value.function.esym = NULL;
6544 e->symtree = st;
6545
6546 if (new_ref)
6547 e->ref = new_ref;
6548
6549 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6550 gfc_add_vptr_component (e);
6551 gfc_add_component_ref (e, name);
6552
6553 /* Recover the typespec for the expression. This is really only
6554 necessary for generic procedures, where the additional call
6555 to gfc_add_component_ref seems to throw the collection of the
6556 correct typespec. */
6557 e->ts = ts;
6558 }
6559 else if (new_ref)
6560 gfc_free_ref_list (new_ref);
6561
6562 return true;
6563 }
6564
6565 /* Resolve a typebound subroutine, or 'method'. First separate all
6566 the non-CLASS references by calling resolve_typebound_call
6567 directly. */
6568
6569 static bool
6570 resolve_typebound_subroutine (gfc_code *code)
6571 {
6572 gfc_symbol *declared;
6573 gfc_component *c;
6574 gfc_ref *new_ref;
6575 gfc_ref *class_ref;
6576 gfc_symtree *st;
6577 const char *name;
6578 gfc_typespec ts;
6579 gfc_expr *expr;
6580 bool overridable;
6581
6582 st = code->expr1->symtree;
6583
6584 /* Deal with typebound operators for CLASS objects. */
6585 expr = code->expr1->value.compcall.base_object;
6586 overridable = !code->expr1->value.compcall.tbp->non_overridable;
6587 if (expr && expr->ts.type == BT_CLASS && code->expr1->value.compcall.name)
6588 {
6589 /* If the base_object is not a variable, the corresponding actual
6590 argument expression must be stored in e->base_expression so
6591 that the corresponding tree temporary can be used as the base
6592 object in gfc_conv_procedure_call. */
6593 if (expr->expr_type != EXPR_VARIABLE)
6594 {
6595 gfc_actual_arglist *args;
6596
6597 args= code->expr1->value.function.actual;
6598 for (; args; args = args->next)
6599 if (expr == args->expr)
6600 expr = args->expr;
6601 }
6602
6603 /* Since the typebound operators are generic, we have to ensure
6604 that any delays in resolution are corrected and that the vtab
6605 is present. */
6606 declared = expr->ts.u.derived;
6607 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6608 if (c->ts.u.derived == NULL)
6609 c->ts.u.derived = gfc_find_derived_vtab (declared);
6610
6611 if (!resolve_typebound_call (code, &name, NULL))
6612 return false;
6613
6614 /* Use the generic name if it is there. */
6615 name = name ? name : code->expr1->value.function.esym->name;
6616 code->expr1->symtree = expr->symtree;
6617 code->expr1->ref = gfc_copy_ref (expr->ref);
6618
6619 /* Trim away the extraneous references that emerge from nested
6620 use of interface.c (extend_expr). */
6621 get_declared_from_expr (&class_ref, NULL, code->expr1, false);
6622 if (class_ref && class_ref->next)
6623 {
6624 gfc_free_ref_list (class_ref->next);
6625 class_ref->next = NULL;
6626 }
6627 else if (code->expr1->ref && !class_ref)
6628 {
6629 gfc_free_ref_list (code->expr1->ref);
6630 code->expr1->ref = NULL;
6631 }
6632
6633 /* Now use the procedure in the vtable. */
6634 gfc_add_vptr_component (code->expr1);
6635 gfc_add_component_ref (code->expr1, name);
6636 code->expr1->value.function.esym = NULL;
6637 if (expr->expr_type != EXPR_VARIABLE)
6638 code->expr1->base_expr = expr;
6639 return true;
6640 }
6641
6642 if (st == NULL)
6643 return resolve_typebound_call (code, NULL, NULL);
6644
6645 if (!resolve_ref (code->expr1))
6646 return false;
6647
6648 /* Get the CLASS declared type. */
6649 get_declared_from_expr (&class_ref, &new_ref, code->expr1, true);
6650
6651 /* Weed out cases of the ultimate component being a derived type. */
6652 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6653 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6654 {
6655 gfc_free_ref_list (new_ref);
6656 return resolve_typebound_call (code, NULL, NULL);
6657 }
6658
6659 if (!resolve_typebound_call (code, &name, &overridable))
6660 {
6661 gfc_free_ref_list (new_ref);
6662 return false;
6663 }
6664 ts = code->expr1->ts;
6665
6666 if (overridable)
6667 {
6668 /* Convert the expression to a procedure pointer component call. */
6669 code->expr1->value.function.esym = NULL;
6670 code->expr1->symtree = st;
6671
6672 if (new_ref)
6673 code->expr1->ref = new_ref;
6674
6675 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6676 gfc_add_vptr_component (code->expr1);
6677 gfc_add_component_ref (code->expr1, name);
6678
6679 /* Recover the typespec for the expression. This is really only
6680 necessary for generic procedures, where the additional call
6681 to gfc_add_component_ref seems to throw the collection of the
6682 correct typespec. */
6683 code->expr1->ts = ts;
6684 }
6685 else if (new_ref)
6686 gfc_free_ref_list (new_ref);
6687
6688 return true;
6689 }
6690
6691
6692 /* Resolve a CALL to a Procedure Pointer Component (Subroutine). */
6693
6694 static bool
6695 resolve_ppc_call (gfc_code* c)
6696 {
6697 gfc_component *comp;
6698
6699 comp = gfc_get_proc_ptr_comp (c->expr1);
6700 gcc_assert (comp != NULL);
6701
6702 c->resolved_sym = c->expr1->symtree->n.sym;
6703 c->expr1->expr_type = EXPR_VARIABLE;
6704
6705 if (!comp->attr.subroutine)
6706 gfc_add_subroutine (&comp->attr, comp->name, &c->expr1->where);
6707
6708 if (!resolve_ref (c->expr1))
6709 return false;
6710
6711 if (!update_ppc_arglist (c->expr1))
6712 return false;
6713
6714 c->ext.actual = c->expr1->value.compcall.actual;
6715
6716 if (!resolve_actual_arglist (c->ext.actual, comp->attr.proc,
6717 !(comp->ts.interface
6718 && comp->ts.interface->formal)))
6719 return false;
6720
6721 if (!pure_subroutine (comp->ts.interface, comp->name, &c->expr1->where))
6722 return false;
6723
6724 gfc_ppc_use (comp, &c->expr1->value.compcall.actual, &c->expr1->where);
6725
6726 return true;
6727 }
6728
6729
6730 /* Resolve a Function Call to a Procedure Pointer Component (Function). */
6731
6732 static bool
6733 resolve_expr_ppc (gfc_expr* e)
6734 {
6735 gfc_component *comp;
6736
6737 comp = gfc_get_proc_ptr_comp (e);
6738 gcc_assert (comp != NULL);
6739
6740 /* Convert to EXPR_FUNCTION. */
6741 e->expr_type = EXPR_FUNCTION;
6742 e->value.function.isym = NULL;
6743 e->value.function.actual = e->value.compcall.actual;
6744 e->ts = comp->ts;
6745 if (comp->as != NULL)
6746 e->rank = comp->as->rank;
6747
6748 if (!comp->attr.function)
6749 gfc_add_function (&comp->attr, comp->name, &e->where);
6750
6751 if (!resolve_ref (e))
6752 return false;
6753
6754 if (!resolve_actual_arglist (e->value.function.actual, comp->attr.proc,
6755 !(comp->ts.interface
6756 && comp->ts.interface->formal)))
6757 return false;
6758
6759 if (!update_ppc_arglist (e))
6760 return false;
6761
6762 if (!check_pure_function(e))
6763 return false;
6764
6765 gfc_ppc_use (comp, &e->value.compcall.actual, &e->where);
6766
6767 return true;
6768 }
6769
6770
6771 static bool
6772 gfc_is_expandable_expr (gfc_expr *e)
6773 {
6774 gfc_constructor *con;
6775
6776 if (e->expr_type == EXPR_ARRAY)
6777 {
6778 /* Traverse the constructor looking for variables that are flavor
6779 parameter. Parameters must be expanded since they are fully used at
6780 compile time. */
6781 con = gfc_constructor_first (e->value.constructor);
6782 for (; con; con = gfc_constructor_next (con))
6783 {
6784 if (con->expr->expr_type == EXPR_VARIABLE
6785 && con->expr->symtree
6786 && (con->expr->symtree->n.sym->attr.flavor == FL_PARAMETER
6787 || con->expr->symtree->n.sym->attr.flavor == FL_VARIABLE))
6788 return true;
6789 if (con->expr->expr_type == EXPR_ARRAY
6790 && gfc_is_expandable_expr (con->expr))
6791 return true;
6792 }
6793 }
6794
6795 return false;
6796 }
6797
6798
6799 /* Sometimes variables in specification expressions of the result
6800 of module procedures in submodules wind up not being the 'real'
6801 dummy. Find this, if possible, in the namespace of the first
6802 formal argument. */
6803
6804 static void
6805 fixup_unique_dummy (gfc_expr *e)
6806 {
6807 gfc_symtree *st = NULL;
6808 gfc_symbol *s = NULL;
6809
6810 if (e->symtree->n.sym->ns->proc_name
6811 && e->symtree->n.sym->ns->proc_name->formal)
6812 s = e->symtree->n.sym->ns->proc_name->formal->sym;
6813
6814 if (s != NULL)
6815 st = gfc_find_symtree (s->ns->sym_root, e->symtree->n.sym->name);
6816
6817 if (st != NULL
6818 && st->n.sym != NULL
6819 && st->n.sym->attr.dummy)
6820 e->symtree = st;
6821 }
6822
6823 /* Resolve an expression. That is, make sure that types of operands agree
6824 with their operators, intrinsic operators are converted to function calls
6825 for overloaded types and unresolved function references are resolved. */
6826
6827 bool
6828 gfc_resolve_expr (gfc_expr *e)
6829 {
6830 bool t;
6831 bool inquiry_save, actual_arg_save, first_actual_arg_save;
6832
6833 if (e == NULL)
6834 return true;
6835
6836 /* inquiry_argument only applies to variables. */
6837 inquiry_save = inquiry_argument;
6838 actual_arg_save = actual_arg;
6839 first_actual_arg_save = first_actual_arg;
6840
6841 if (e->expr_type != EXPR_VARIABLE)
6842 {
6843 inquiry_argument = false;
6844 actual_arg = false;
6845 first_actual_arg = false;
6846 }
6847 else if (e->symtree != NULL
6848 && *e->symtree->name == '@'
6849 && e->symtree->n.sym->attr.dummy)
6850 {
6851 /* Deal with submodule specification expressions that are not
6852 found to be referenced in module.c(read_cleanup). */
6853 fixup_unique_dummy (e);
6854 }
6855
6856 switch (e->expr_type)
6857 {
6858 case EXPR_OP:
6859 t = resolve_operator (e);
6860 break;
6861
6862 case EXPR_FUNCTION:
6863 case EXPR_VARIABLE:
6864
6865 if (check_host_association (e))
6866 t = resolve_function (e);
6867 else
6868 t = resolve_variable (e);
6869
6870 if (e->ts.type == BT_CHARACTER && e->ts.u.cl == NULL && e->ref
6871 && e->ref->type != REF_SUBSTRING)
6872 gfc_resolve_substring_charlen (e);
6873
6874 break;
6875
6876 case EXPR_COMPCALL:
6877 t = resolve_typebound_function (e);
6878 break;
6879
6880 case EXPR_SUBSTRING:
6881 t = resolve_ref (e);
6882 break;
6883
6884 case EXPR_CONSTANT:
6885 case EXPR_NULL:
6886 t = true;
6887 break;
6888
6889 case EXPR_PPC:
6890 t = resolve_expr_ppc (e);
6891 break;
6892
6893 case EXPR_ARRAY:
6894 t = false;
6895 if (!resolve_ref (e))
6896 break;
6897
6898 t = gfc_resolve_array_constructor (e);
6899 /* Also try to expand a constructor. */
6900 if (t)
6901 {
6902 expression_rank (e);
6903 if (gfc_is_constant_expr (e) || gfc_is_expandable_expr (e))
6904 gfc_expand_constructor (e, false);
6905 }
6906
6907 /* This provides the opportunity for the length of constructors with
6908 character valued function elements to propagate the string length
6909 to the expression. */
6910 if (t && e->ts.type == BT_CHARACTER)
6911 {
6912 /* For efficiency, we call gfc_expand_constructor for BT_CHARACTER
6913 here rather then add a duplicate test for it above. */
6914 gfc_expand_constructor (e, false);
6915 t = gfc_resolve_character_array_constructor (e);
6916 }
6917
6918 break;
6919
6920 case EXPR_STRUCTURE:
6921 t = resolve_ref (e);
6922 if (!t)
6923 break;
6924
6925 t = resolve_structure_cons (e, 0);
6926 if (!t)
6927 break;
6928
6929 t = gfc_simplify_expr (e, 0);
6930 break;
6931
6932 default:
6933 gfc_internal_error ("gfc_resolve_expr(): Bad expression type");
6934 }
6935
6936 if (e->ts.type == BT_CHARACTER && t && !e->ts.u.cl)
6937 fixup_charlen (e);
6938
6939 inquiry_argument = inquiry_save;
6940 actual_arg = actual_arg_save;
6941 first_actual_arg = first_actual_arg_save;
6942
6943 return t;
6944 }
6945
6946
6947 /* Resolve an expression from an iterator. They must be scalar and have
6948 INTEGER or (optionally) REAL type. */
6949
6950 static bool
6951 gfc_resolve_iterator_expr (gfc_expr *expr, bool real_ok,
6952 const char *name_msgid)
6953 {
6954 if (!gfc_resolve_expr (expr))
6955 return false;
6956
6957 if (expr->rank != 0)
6958 {
6959 gfc_error ("%s at %L must be a scalar", _(name_msgid), &expr->where);
6960 return false;
6961 }
6962
6963 if (expr->ts.type != BT_INTEGER)
6964 {
6965 if (expr->ts.type == BT_REAL)
6966 {
6967 if (real_ok)
6968 return gfc_notify_std (GFC_STD_F95_DEL,
6969 "%s at %L must be integer",
6970 _(name_msgid), &expr->where);
6971 else
6972 {
6973 gfc_error ("%s at %L must be INTEGER", _(name_msgid),
6974 &expr->where);
6975 return false;
6976 }
6977 }
6978 else
6979 {
6980 gfc_error ("%s at %L must be INTEGER", _(name_msgid), &expr->where);
6981 return false;
6982 }
6983 }
6984 return true;
6985 }
6986
6987
6988 /* Resolve the expressions in an iterator structure. If REAL_OK is
6989 false allow only INTEGER type iterators, otherwise allow REAL types.
6990 Set own_scope to true for ac-implied-do and data-implied-do as those
6991 have a separate scope such that, e.g., a INTENT(IN) doesn't apply. */
6992
6993 bool
6994 gfc_resolve_iterator (gfc_iterator *iter, bool real_ok, bool own_scope)
6995 {
6996 if (!gfc_resolve_iterator_expr (iter->var, real_ok, "Loop variable"))
6997 return false;
6998
6999 if (!gfc_check_vardef_context (iter->var, false, false, own_scope,
7000 _("iterator variable")))
7001 return false;
7002
7003 if (!gfc_resolve_iterator_expr (iter->start, real_ok,
7004 "Start expression in DO loop"))
7005 return false;
7006
7007 if (!gfc_resolve_iterator_expr (iter->end, real_ok,
7008 "End expression in DO loop"))
7009 return false;
7010
7011 if (!gfc_resolve_iterator_expr (iter->step, real_ok,
7012 "Step expression in DO loop"))
7013 return false;
7014
7015 if (iter->step->expr_type == EXPR_CONSTANT)
7016 {
7017 if ((iter->step->ts.type == BT_INTEGER
7018 && mpz_cmp_ui (iter->step->value.integer, 0) == 0)
7019 || (iter->step->ts.type == BT_REAL
7020 && mpfr_sgn (iter->step->value.real) == 0))
7021 {
7022 gfc_error ("Step expression in DO loop at %L cannot be zero",
7023 &iter->step->where);
7024 return false;
7025 }
7026 }
7027
7028 /* Convert start, end, and step to the same type as var. */
7029 if (iter->start->ts.kind != iter->var->ts.kind
7030 || iter->start->ts.type != iter->var->ts.type)
7031 gfc_convert_type (iter->start, &iter->var->ts, 1);
7032
7033 if (iter->end->ts.kind != iter->var->ts.kind
7034 || iter->end->ts.type != iter->var->ts.type)
7035 gfc_convert_type (iter->end, &iter->var->ts, 1);
7036
7037 if (iter->step->ts.kind != iter->var->ts.kind
7038 || iter->step->ts.type != iter->var->ts.type)
7039 gfc_convert_type (iter->step, &iter->var->ts, 1);
7040
7041 if (iter->start->expr_type == EXPR_CONSTANT
7042 && iter->end->expr_type == EXPR_CONSTANT
7043 && iter->step->expr_type == EXPR_CONSTANT)
7044 {
7045 int sgn, cmp;
7046 if (iter->start->ts.type == BT_INTEGER)
7047 {
7048 sgn = mpz_cmp_ui (iter->step->value.integer, 0);
7049 cmp = mpz_cmp (iter->end->value.integer, iter->start->value.integer);
7050 }
7051 else
7052 {
7053 sgn = mpfr_sgn (iter->step->value.real);
7054 cmp = mpfr_cmp (iter->end->value.real, iter->start->value.real);
7055 }
7056 if (warn_zerotrip && ((sgn > 0 && cmp < 0) || (sgn < 0 && cmp > 0)))
7057 gfc_warning (OPT_Wzerotrip,
7058 "DO loop at %L will be executed zero times",
7059 &iter->step->where);
7060 }
7061
7062 if (iter->end->expr_type == EXPR_CONSTANT
7063 && iter->end->ts.type == BT_INTEGER
7064 && iter->step->expr_type == EXPR_CONSTANT
7065 && iter->step->ts.type == BT_INTEGER
7066 && (mpz_cmp_si (iter->step->value.integer, -1L) == 0
7067 || mpz_cmp_si (iter->step->value.integer, 1L) == 0))
7068 {
7069 bool is_step_positive = mpz_cmp_ui (iter->step->value.integer, 1) == 0;
7070 int k = gfc_validate_kind (BT_INTEGER, iter->end->ts.kind, false);
7071
7072 if (is_step_positive
7073 && mpz_cmp (iter->end->value.integer, gfc_integer_kinds[k].huge) == 0)
7074 gfc_warning (OPT_Wundefined_do_loop,
7075 "DO loop at %L is undefined as it overflows",
7076 &iter->step->where);
7077 else if (!is_step_positive
7078 && mpz_cmp (iter->end->value.integer,
7079 gfc_integer_kinds[k].min_int) == 0)
7080 gfc_warning (OPT_Wundefined_do_loop,
7081 "DO loop at %L is undefined as it underflows",
7082 &iter->step->where);
7083 }
7084
7085 return true;
7086 }
7087
7088
7089 /* Traversal function for find_forall_index. f == 2 signals that
7090 that variable itself is not to be checked - only the references. */
7091
7092 static bool
7093 forall_index (gfc_expr *expr, gfc_symbol *sym, int *f)
7094 {
7095 if (expr->expr_type != EXPR_VARIABLE)
7096 return false;
7097
7098 /* A scalar assignment */
7099 if (!expr->ref || *f == 1)
7100 {
7101 if (expr->symtree->n.sym == sym)
7102 return true;
7103 else
7104 return false;
7105 }
7106
7107 if (*f == 2)
7108 *f = 1;
7109 return false;
7110 }
7111
7112
7113 /* Check whether the FORALL index appears in the expression or not.
7114 Returns true if SYM is found in EXPR. */
7115
7116 bool
7117 find_forall_index (gfc_expr *expr, gfc_symbol *sym, int f)
7118 {
7119 if (gfc_traverse_expr (expr, sym, forall_index, f))
7120 return true;
7121 else
7122 return false;
7123 }
7124
7125
7126 /* Resolve a list of FORALL iterators. The FORALL index-name is constrained
7127 to be a scalar INTEGER variable. The subscripts and stride are scalar
7128 INTEGERs, and if stride is a constant it must be nonzero.
7129 Furthermore "A subscript or stride in a forall-triplet-spec shall
7130 not contain a reference to any index-name in the
7131 forall-triplet-spec-list in which it appears." (7.5.4.1) */
7132
7133 static void
7134 resolve_forall_iterators (gfc_forall_iterator *it)
7135 {
7136 gfc_forall_iterator *iter, *iter2;
7137
7138 for (iter = it; iter; iter = iter->next)
7139 {
7140 if (gfc_resolve_expr (iter->var)
7141 && (iter->var->ts.type != BT_INTEGER || iter->var->rank != 0))
7142 gfc_error ("FORALL index-name at %L must be a scalar INTEGER",
7143 &iter->var->where);
7144
7145 if (gfc_resolve_expr (iter->start)
7146 && (iter->start->ts.type != BT_INTEGER || iter->start->rank != 0))
7147 gfc_error ("FORALL start expression at %L must be a scalar INTEGER",
7148 &iter->start->where);
7149 if (iter->var->ts.kind != iter->start->ts.kind)
7150 gfc_convert_type (iter->start, &iter->var->ts, 1);
7151
7152 if (gfc_resolve_expr (iter->end)
7153 && (iter->end->ts.type != BT_INTEGER || iter->end->rank != 0))
7154 gfc_error ("FORALL end expression at %L must be a scalar INTEGER",
7155 &iter->end->where);
7156 if (iter->var->ts.kind != iter->end->ts.kind)
7157 gfc_convert_type (iter->end, &iter->var->ts, 1);
7158
7159 if (gfc_resolve_expr (iter->stride))
7160 {
7161 if (iter->stride->ts.type != BT_INTEGER || iter->stride->rank != 0)
7162 gfc_error ("FORALL stride expression at %L must be a scalar %s",
7163 &iter->stride->where, "INTEGER");
7164
7165 if (iter->stride->expr_type == EXPR_CONSTANT
7166 && mpz_cmp_ui (iter->stride->value.integer, 0) == 0)
7167 gfc_error ("FORALL stride expression at %L cannot be zero",
7168 &iter->stride->where);
7169 }
7170 if (iter->var->ts.kind != iter->stride->ts.kind)
7171 gfc_convert_type (iter->stride, &iter->var->ts, 1);
7172 }
7173
7174 for (iter = it; iter; iter = iter->next)
7175 for (iter2 = iter; iter2; iter2 = iter2->next)
7176 {
7177 if (find_forall_index (iter2->start, iter->var->symtree->n.sym, 0)
7178 || find_forall_index (iter2->end, iter->var->symtree->n.sym, 0)
7179 || find_forall_index (iter2->stride, iter->var->symtree->n.sym, 0))
7180 gfc_error ("FORALL index %qs may not appear in triplet "
7181 "specification at %L", iter->var->symtree->name,
7182 &iter2->start->where);
7183 }
7184 }
7185
7186
7187 /* Given a pointer to a symbol that is a derived type, see if it's
7188 inaccessible, i.e. if it's defined in another module and the components are
7189 PRIVATE. The search is recursive if necessary. Returns zero if no
7190 inaccessible components are found, nonzero otherwise. */
7191
7192 static int
7193 derived_inaccessible (gfc_symbol *sym)
7194 {
7195 gfc_component *c;
7196
7197 if (sym->attr.use_assoc && sym->attr.private_comp)
7198 return 1;
7199
7200 for (c = sym->components; c; c = c->next)
7201 {
7202 /* Prevent an infinite loop through this function. */
7203 if (c->ts.type == BT_DERIVED && c->attr.pointer
7204 && sym == c->ts.u.derived)
7205 continue;
7206
7207 if (c->ts.type == BT_DERIVED && derived_inaccessible (c->ts.u.derived))
7208 return 1;
7209 }
7210
7211 return 0;
7212 }
7213
7214
7215 /* Resolve the argument of a deallocate expression. The expression must be
7216 a pointer or a full array. */
7217
7218 static bool
7219 resolve_deallocate_expr (gfc_expr *e)
7220 {
7221 symbol_attribute attr;
7222 int allocatable, pointer;
7223 gfc_ref *ref;
7224 gfc_symbol *sym;
7225 gfc_component *c;
7226 bool unlimited;
7227
7228 if (!gfc_resolve_expr (e))
7229 return false;
7230
7231 if (e->expr_type != EXPR_VARIABLE)
7232 goto bad;
7233
7234 sym = e->symtree->n.sym;
7235 unlimited = UNLIMITED_POLY(sym);
7236
7237 if (sym->ts.type == BT_CLASS)
7238 {
7239 allocatable = CLASS_DATA (sym)->attr.allocatable;
7240 pointer = CLASS_DATA (sym)->attr.class_pointer;
7241 }
7242 else
7243 {
7244 allocatable = sym->attr.allocatable;
7245 pointer = sym->attr.pointer;
7246 }
7247 for (ref = e->ref; ref; ref = ref->next)
7248 {
7249 switch (ref->type)
7250 {
7251 case REF_ARRAY:
7252 if (ref->u.ar.type != AR_FULL
7253 && !(ref->u.ar.type == AR_ELEMENT && ref->u.ar.as->rank == 0
7254 && ref->u.ar.codimen && gfc_ref_this_image (ref)))
7255 allocatable = 0;
7256 break;
7257
7258 case REF_COMPONENT:
7259 c = ref->u.c.component;
7260 if (c->ts.type == BT_CLASS)
7261 {
7262 allocatable = CLASS_DATA (c)->attr.allocatable;
7263 pointer = CLASS_DATA (c)->attr.class_pointer;
7264 }
7265 else
7266 {
7267 allocatable = c->attr.allocatable;
7268 pointer = c->attr.pointer;
7269 }
7270 break;
7271
7272 case REF_SUBSTRING:
7273 case REF_INQUIRY:
7274 allocatable = 0;
7275 break;
7276 }
7277 }
7278
7279 attr = gfc_expr_attr (e);
7280
7281 if (allocatable == 0 && attr.pointer == 0 && !unlimited)
7282 {
7283 bad:
7284 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7285 &e->where);
7286 return false;
7287 }
7288
7289 /* F2008, C644. */
7290 if (gfc_is_coindexed (e))
7291 {
7292 gfc_error ("Coindexed allocatable object at %L", &e->where);
7293 return false;
7294 }
7295
7296 if (pointer
7297 && !gfc_check_vardef_context (e, true, true, false,
7298 _("DEALLOCATE object")))
7299 return false;
7300 if (!gfc_check_vardef_context (e, false, true, false,
7301 _("DEALLOCATE object")))
7302 return false;
7303
7304 return true;
7305 }
7306
7307
7308 /* Returns true if the expression e contains a reference to the symbol sym. */
7309 static bool
7310 sym_in_expr (gfc_expr *e, gfc_symbol *sym, int *f ATTRIBUTE_UNUSED)
7311 {
7312 if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym == sym)
7313 return true;
7314
7315 return false;
7316 }
7317
7318 bool
7319 gfc_find_sym_in_expr (gfc_symbol *sym, gfc_expr *e)
7320 {
7321 return gfc_traverse_expr (e, sym, sym_in_expr, 0);
7322 }
7323
7324
7325 /* Given the expression node e for an allocatable/pointer of derived type to be
7326 allocated, get the expression node to be initialized afterwards (needed for
7327 derived types with default initializers, and derived types with allocatable
7328 components that need nullification.) */
7329
7330 gfc_expr *
7331 gfc_expr_to_initialize (gfc_expr *e)
7332 {
7333 gfc_expr *result;
7334 gfc_ref *ref;
7335 int i;
7336
7337 result = gfc_copy_expr (e);
7338
7339 /* Change the last array reference from AR_ELEMENT to AR_FULL. */
7340 for (ref = result->ref; ref; ref = ref->next)
7341 if (ref->type == REF_ARRAY && ref->next == NULL)
7342 {
7343 ref->u.ar.type = AR_FULL;
7344
7345 for (i = 0; i < ref->u.ar.dimen; i++)
7346 ref->u.ar.start[i] = ref->u.ar.end[i] = ref->u.ar.stride[i] = NULL;
7347
7348 break;
7349 }
7350
7351 gfc_free_shape (&result->shape, result->rank);
7352
7353 /* Recalculate rank, shape, etc. */
7354 gfc_resolve_expr (result);
7355 return result;
7356 }
7357
7358
7359 /* If the last ref of an expression is an array ref, return a copy of the
7360 expression with that one removed. Otherwise, a copy of the original
7361 expression. This is used for allocate-expressions and pointer assignment
7362 LHS, where there may be an array specification that needs to be stripped
7363 off when using gfc_check_vardef_context. */
7364
7365 static gfc_expr*
7366 remove_last_array_ref (gfc_expr* e)
7367 {
7368 gfc_expr* e2;
7369 gfc_ref** r;
7370
7371 e2 = gfc_copy_expr (e);
7372 for (r = &e2->ref; *r; r = &(*r)->next)
7373 if ((*r)->type == REF_ARRAY && !(*r)->next)
7374 {
7375 gfc_free_ref_list (*r);
7376 *r = NULL;
7377 break;
7378 }
7379
7380 return e2;
7381 }
7382
7383
7384 /* Used in resolve_allocate_expr to check that a allocation-object and
7385 a source-expr are conformable. This does not catch all possible
7386 cases; in particular a runtime checking is needed. */
7387
7388 static bool
7389 conformable_arrays (gfc_expr *e1, gfc_expr *e2)
7390 {
7391 gfc_ref *tail;
7392 for (tail = e2->ref; tail && tail->next; tail = tail->next);
7393
7394 /* First compare rank. */
7395 if ((tail && e1->rank != tail->u.ar.as->rank)
7396 || (!tail && e1->rank != e2->rank))
7397 {
7398 gfc_error ("Source-expr at %L must be scalar or have the "
7399 "same rank as the allocate-object at %L",
7400 &e1->where, &e2->where);
7401 return false;
7402 }
7403
7404 if (e1->shape)
7405 {
7406 int i;
7407 mpz_t s;
7408
7409 mpz_init (s);
7410
7411 for (i = 0; i < e1->rank; i++)
7412 {
7413 if (tail->u.ar.start[i] == NULL)
7414 break;
7415
7416 if (tail->u.ar.end[i])
7417 {
7418 mpz_set (s, tail->u.ar.end[i]->value.integer);
7419 mpz_sub (s, s, tail->u.ar.start[i]->value.integer);
7420 mpz_add_ui (s, s, 1);
7421 }
7422 else
7423 {
7424 mpz_set (s, tail->u.ar.start[i]->value.integer);
7425 }
7426
7427 if (mpz_cmp (e1->shape[i], s) != 0)
7428 {
7429 gfc_error ("Source-expr at %L and allocate-object at %L must "
7430 "have the same shape", &e1->where, &e2->where);
7431 mpz_clear (s);
7432 return false;
7433 }
7434 }
7435
7436 mpz_clear (s);
7437 }
7438
7439 return true;
7440 }
7441
7442
7443 /* Resolve the expression in an ALLOCATE statement, doing the additional
7444 checks to see whether the expression is OK or not. The expression must
7445 have a trailing array reference that gives the size of the array. */
7446
7447 static bool
7448 resolve_allocate_expr (gfc_expr *e, gfc_code *code, bool *array_alloc_wo_spec)
7449 {
7450 int i, pointer, allocatable, dimension, is_abstract;
7451 int codimension;
7452 bool coindexed;
7453 bool unlimited;
7454 symbol_attribute attr;
7455 gfc_ref *ref, *ref2;
7456 gfc_expr *e2;
7457 gfc_array_ref *ar;
7458 gfc_symbol *sym = NULL;
7459 gfc_alloc *a;
7460 gfc_component *c;
7461 bool t;
7462
7463 /* Mark the utmost array component as being in allocate to allow DIMEN_STAR
7464 checking of coarrays. */
7465 for (ref = e->ref; ref; ref = ref->next)
7466 if (ref->next == NULL)
7467 break;
7468
7469 if (ref && ref->type == REF_ARRAY)
7470 ref->u.ar.in_allocate = true;
7471
7472 if (!gfc_resolve_expr (e))
7473 goto failure;
7474
7475 /* Make sure the expression is allocatable or a pointer. If it is
7476 pointer, the next-to-last reference must be a pointer. */
7477
7478 ref2 = NULL;
7479 if (e->symtree)
7480 sym = e->symtree->n.sym;
7481
7482 /* Check whether ultimate component is abstract and CLASS. */
7483 is_abstract = 0;
7484
7485 /* Is the allocate-object unlimited polymorphic? */
7486 unlimited = UNLIMITED_POLY(e);
7487
7488 if (e->expr_type != EXPR_VARIABLE)
7489 {
7490 allocatable = 0;
7491 attr = gfc_expr_attr (e);
7492 pointer = attr.pointer;
7493 dimension = attr.dimension;
7494 codimension = attr.codimension;
7495 }
7496 else
7497 {
7498 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
7499 {
7500 allocatable = CLASS_DATA (sym)->attr.allocatable;
7501 pointer = CLASS_DATA (sym)->attr.class_pointer;
7502 dimension = CLASS_DATA (sym)->attr.dimension;
7503 codimension = CLASS_DATA (sym)->attr.codimension;
7504 is_abstract = CLASS_DATA (sym)->attr.abstract;
7505 }
7506 else
7507 {
7508 allocatable = sym->attr.allocatable;
7509 pointer = sym->attr.pointer;
7510 dimension = sym->attr.dimension;
7511 codimension = sym->attr.codimension;
7512 }
7513
7514 coindexed = false;
7515
7516 for (ref = e->ref; ref; ref2 = ref, ref = ref->next)
7517 {
7518 switch (ref->type)
7519 {
7520 case REF_ARRAY:
7521 if (ref->u.ar.codimen > 0)
7522 {
7523 int n;
7524 for (n = ref->u.ar.dimen;
7525 n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
7526 if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
7527 {
7528 coindexed = true;
7529 break;
7530 }
7531 }
7532
7533 if (ref->next != NULL)
7534 pointer = 0;
7535 break;
7536
7537 case REF_COMPONENT:
7538 /* F2008, C644. */
7539 if (coindexed)
7540 {
7541 gfc_error ("Coindexed allocatable object at %L",
7542 &e->where);
7543 goto failure;
7544 }
7545
7546 c = ref->u.c.component;
7547 if (c->ts.type == BT_CLASS)
7548 {
7549 allocatable = CLASS_DATA (c)->attr.allocatable;
7550 pointer = CLASS_DATA (c)->attr.class_pointer;
7551 dimension = CLASS_DATA (c)->attr.dimension;
7552 codimension = CLASS_DATA (c)->attr.codimension;
7553 is_abstract = CLASS_DATA (c)->attr.abstract;
7554 }
7555 else
7556 {
7557 allocatable = c->attr.allocatable;
7558 pointer = c->attr.pointer;
7559 dimension = c->attr.dimension;
7560 codimension = c->attr.codimension;
7561 is_abstract = c->attr.abstract;
7562 }
7563 break;
7564
7565 case REF_SUBSTRING:
7566 case REF_INQUIRY:
7567 allocatable = 0;
7568 pointer = 0;
7569 break;
7570 }
7571 }
7572 }
7573
7574 /* Check for F08:C628. */
7575 if (allocatable == 0 && pointer == 0 && !unlimited)
7576 {
7577 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7578 &e->where);
7579 goto failure;
7580 }
7581
7582 /* Some checks for the SOURCE tag. */
7583 if (code->expr3)
7584 {
7585 /* Check F03:C631. */
7586 if (!gfc_type_compatible (&e->ts, &code->expr3->ts))
7587 {
7588 gfc_error ("Type of entity at %L is type incompatible with "
7589 "source-expr at %L", &e->where, &code->expr3->where);
7590 goto failure;
7591 }
7592
7593 /* Check F03:C632 and restriction following Note 6.18. */
7594 if (code->expr3->rank > 0 && !conformable_arrays (code->expr3, e))
7595 goto failure;
7596
7597 /* Check F03:C633. */
7598 if (code->expr3->ts.kind != e->ts.kind && !unlimited)
7599 {
7600 gfc_error ("The allocate-object at %L and the source-expr at %L "
7601 "shall have the same kind type parameter",
7602 &e->where, &code->expr3->where);
7603 goto failure;
7604 }
7605
7606 /* Check F2008, C642. */
7607 if (code->expr3->ts.type == BT_DERIVED
7608 && ((codimension && gfc_expr_attr (code->expr3).lock_comp)
7609 || (code->expr3->ts.u.derived->from_intmod
7610 == INTMOD_ISO_FORTRAN_ENV
7611 && code->expr3->ts.u.derived->intmod_sym_id
7612 == ISOFORTRAN_LOCK_TYPE)))
7613 {
7614 gfc_error ("The source-expr at %L shall neither be of type "
7615 "LOCK_TYPE nor have a LOCK_TYPE component if "
7616 "allocate-object at %L is a coarray",
7617 &code->expr3->where, &e->where);
7618 goto failure;
7619 }
7620
7621 /* Check TS18508, C702/C703. */
7622 if (code->expr3->ts.type == BT_DERIVED
7623 && ((codimension && gfc_expr_attr (code->expr3).event_comp)
7624 || (code->expr3->ts.u.derived->from_intmod
7625 == INTMOD_ISO_FORTRAN_ENV
7626 && code->expr3->ts.u.derived->intmod_sym_id
7627 == ISOFORTRAN_EVENT_TYPE)))
7628 {
7629 gfc_error ("The source-expr at %L shall neither be of type "
7630 "EVENT_TYPE nor have a EVENT_TYPE component if "
7631 "allocate-object at %L is a coarray",
7632 &code->expr3->where, &e->where);
7633 goto failure;
7634 }
7635 }
7636
7637 /* Check F08:C629. */
7638 if (is_abstract && code->ext.alloc.ts.type == BT_UNKNOWN
7639 && !code->expr3)
7640 {
7641 gcc_assert (e->ts.type == BT_CLASS);
7642 gfc_error ("Allocating %s of ABSTRACT base type at %L requires a "
7643 "type-spec or source-expr", sym->name, &e->where);
7644 goto failure;
7645 }
7646
7647 /* Check F08:C632. */
7648 if (code->ext.alloc.ts.type == BT_CHARACTER && !e->ts.deferred
7649 && !UNLIMITED_POLY (e))
7650 {
7651 int cmp;
7652
7653 if (!e->ts.u.cl->length)
7654 goto failure;
7655
7656 cmp = gfc_dep_compare_expr (e->ts.u.cl->length,
7657 code->ext.alloc.ts.u.cl->length);
7658 if (cmp == 1 || cmp == -1 || cmp == -3)
7659 {
7660 gfc_error ("Allocating %s at %L with type-spec requires the same "
7661 "character-length parameter as in the declaration",
7662 sym->name, &e->where);
7663 goto failure;
7664 }
7665 }
7666
7667 /* In the variable definition context checks, gfc_expr_attr is used
7668 on the expression. This is fooled by the array specification
7669 present in e, thus we have to eliminate that one temporarily. */
7670 e2 = remove_last_array_ref (e);
7671 t = true;
7672 if (t && pointer)
7673 t = gfc_check_vardef_context (e2, true, true, false,
7674 _("ALLOCATE object"));
7675 if (t)
7676 t = gfc_check_vardef_context (e2, false, true, false,
7677 _("ALLOCATE object"));
7678 gfc_free_expr (e2);
7679 if (!t)
7680 goto failure;
7681
7682 if (e->ts.type == BT_CLASS && CLASS_DATA (e)->attr.dimension
7683 && !code->expr3 && code->ext.alloc.ts.type == BT_DERIVED)
7684 {
7685 /* For class arrays, the initialization with SOURCE is done
7686 using _copy and trans_call. It is convenient to exploit that
7687 when the allocated type is different from the declared type but
7688 no SOURCE exists by setting expr3. */
7689 code->expr3 = gfc_default_initializer (&code->ext.alloc.ts);
7690 }
7691 else if (flag_coarray != GFC_FCOARRAY_LIB && e->ts.type == BT_DERIVED
7692 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
7693 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
7694 {
7695 /* We have to zero initialize the integer variable. */
7696 code->expr3 = gfc_get_int_expr (gfc_default_integer_kind, &e->where, 0);
7697 }
7698
7699 if (e->ts.type == BT_CLASS && !unlimited && !UNLIMITED_POLY (code->expr3))
7700 {
7701 /* Make sure the vtab symbol is present when
7702 the module variables are generated. */
7703 gfc_typespec ts = e->ts;
7704 if (code->expr3)
7705 ts = code->expr3->ts;
7706 else if (code->ext.alloc.ts.type == BT_DERIVED)
7707 ts = code->ext.alloc.ts;
7708
7709 /* Finding the vtab also publishes the type's symbol. Therefore this
7710 statement is necessary. */
7711 gfc_find_derived_vtab (ts.u.derived);
7712 }
7713 else if (unlimited && !UNLIMITED_POLY (code->expr3))
7714 {
7715 /* Again, make sure the vtab symbol is present when
7716 the module variables are generated. */
7717 gfc_typespec *ts = NULL;
7718 if (code->expr3)
7719 ts = &code->expr3->ts;
7720 else
7721 ts = &code->ext.alloc.ts;
7722
7723 gcc_assert (ts);
7724
7725 /* Finding the vtab also publishes the type's symbol. Therefore this
7726 statement is necessary. */
7727 gfc_find_vtab (ts);
7728 }
7729
7730 if (dimension == 0 && codimension == 0)
7731 goto success;
7732
7733 /* Make sure the last reference node is an array specification. */
7734
7735 if (!ref2 || ref2->type != REF_ARRAY || ref2->u.ar.type == AR_FULL
7736 || (dimension && ref2->u.ar.dimen == 0))
7737 {
7738 /* F08:C633. */
7739 if (code->expr3)
7740 {
7741 if (!gfc_notify_std (GFC_STD_F2008, "Array specification required "
7742 "in ALLOCATE statement at %L", &e->where))
7743 goto failure;
7744 if (code->expr3->rank != 0)
7745 *array_alloc_wo_spec = true;
7746 else
7747 {
7748 gfc_error ("Array specification or array-valued SOURCE= "
7749 "expression required in ALLOCATE statement at %L",
7750 &e->where);
7751 goto failure;
7752 }
7753 }
7754 else
7755 {
7756 gfc_error ("Array specification required in ALLOCATE statement "
7757 "at %L", &e->where);
7758 goto failure;
7759 }
7760 }
7761
7762 /* Make sure that the array section reference makes sense in the
7763 context of an ALLOCATE specification. */
7764
7765 ar = &ref2->u.ar;
7766
7767 if (codimension)
7768 for (i = ar->dimen; i < ar->dimen + ar->codimen; i++)
7769 if (ar->dimen_type[i] == DIMEN_THIS_IMAGE)
7770 {
7771 gfc_error ("Coarray specification required in ALLOCATE statement "
7772 "at %L", &e->where);
7773 goto failure;
7774 }
7775
7776 for (i = 0; i < ar->dimen; i++)
7777 {
7778 if (ar->type == AR_ELEMENT || ar->type == AR_FULL)
7779 goto check_symbols;
7780
7781 switch (ar->dimen_type[i])
7782 {
7783 case DIMEN_ELEMENT:
7784 break;
7785
7786 case DIMEN_RANGE:
7787 if (ar->start[i] != NULL
7788 && ar->end[i] != NULL
7789 && ar->stride[i] == NULL)
7790 break;
7791
7792 /* Fall through. */
7793
7794 case DIMEN_UNKNOWN:
7795 case DIMEN_VECTOR:
7796 case DIMEN_STAR:
7797 case DIMEN_THIS_IMAGE:
7798 gfc_error ("Bad array specification in ALLOCATE statement at %L",
7799 &e->where);
7800 goto failure;
7801 }
7802
7803 check_symbols:
7804 for (a = code->ext.alloc.list; a; a = a->next)
7805 {
7806 sym = a->expr->symtree->n.sym;
7807
7808 /* TODO - check derived type components. */
7809 if (gfc_bt_struct (sym->ts.type) || sym->ts.type == BT_CLASS)
7810 continue;
7811
7812 if ((ar->start[i] != NULL
7813 && gfc_find_sym_in_expr (sym, ar->start[i]))
7814 || (ar->end[i] != NULL
7815 && gfc_find_sym_in_expr (sym, ar->end[i])))
7816 {
7817 gfc_error ("%qs must not appear in the array specification at "
7818 "%L in the same ALLOCATE statement where it is "
7819 "itself allocated", sym->name, &ar->where);
7820 goto failure;
7821 }
7822 }
7823 }
7824
7825 for (i = ar->dimen; i < ar->codimen + ar->dimen; i++)
7826 {
7827 if (ar->dimen_type[i] == DIMEN_ELEMENT
7828 || ar->dimen_type[i] == DIMEN_RANGE)
7829 {
7830 if (i == (ar->dimen + ar->codimen - 1))
7831 {
7832 gfc_error ("Expected '*' in coindex specification in ALLOCATE "
7833 "statement at %L", &e->where);
7834 goto failure;
7835 }
7836 continue;
7837 }
7838
7839 if (ar->dimen_type[i] == DIMEN_STAR && i == (ar->dimen + ar->codimen - 1)
7840 && ar->stride[i] == NULL)
7841 break;
7842
7843 gfc_error ("Bad coarray specification in ALLOCATE statement at %L",
7844 &e->where);
7845 goto failure;
7846 }
7847
7848 success:
7849 return true;
7850
7851 failure:
7852 return false;
7853 }
7854
7855
7856 static void
7857 resolve_allocate_deallocate (gfc_code *code, const char *fcn)
7858 {
7859 gfc_expr *stat, *errmsg, *pe, *qe;
7860 gfc_alloc *a, *p, *q;
7861
7862 stat = code->expr1;
7863 errmsg = code->expr2;
7864
7865 /* Check the stat variable. */
7866 if (stat)
7867 {
7868 gfc_check_vardef_context (stat, false, false, false,
7869 _("STAT variable"));
7870
7871 if ((stat->ts.type != BT_INTEGER
7872 && !(stat->ref && (stat->ref->type == REF_ARRAY
7873 || stat->ref->type == REF_COMPONENT)))
7874 || stat->rank > 0)
7875 gfc_error ("Stat-variable at %L must be a scalar INTEGER "
7876 "variable", &stat->where);
7877
7878 for (p = code->ext.alloc.list; p; p = p->next)
7879 if (p->expr->symtree->n.sym->name == stat->symtree->n.sym->name)
7880 {
7881 gfc_ref *ref1, *ref2;
7882 bool found = true;
7883
7884 for (ref1 = p->expr->ref, ref2 = stat->ref; ref1 && ref2;
7885 ref1 = ref1->next, ref2 = ref2->next)
7886 {
7887 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7888 continue;
7889 if (ref1->u.c.component->name != ref2->u.c.component->name)
7890 {
7891 found = false;
7892 break;
7893 }
7894 }
7895
7896 if (found)
7897 {
7898 gfc_error ("Stat-variable at %L shall not be %sd within "
7899 "the same %s statement", &stat->where, fcn, fcn);
7900 break;
7901 }
7902 }
7903 }
7904
7905 /* Check the errmsg variable. */
7906 if (errmsg)
7907 {
7908 if (!stat)
7909 gfc_warning (0, "ERRMSG at %L is useless without a STAT tag",
7910 &errmsg->where);
7911
7912 gfc_check_vardef_context (errmsg, false, false, false,
7913 _("ERRMSG variable"));
7914
7915 /* F18:R928 alloc-opt is ERRMSG = errmsg-variable
7916 F18:R930 errmsg-variable is scalar-default-char-variable
7917 F18:R906 default-char-variable is variable
7918 F18:C906 default-char-variable shall be default character. */
7919 if ((errmsg->ts.type != BT_CHARACTER
7920 && !(errmsg->ref
7921 && (errmsg->ref->type == REF_ARRAY
7922 || errmsg->ref->type == REF_COMPONENT)))
7923 || errmsg->rank > 0
7924 || errmsg->ts.kind != gfc_default_character_kind)
7925 gfc_error ("ERRMSG variable at %L shall be a scalar default CHARACTER "
7926 "variable", &errmsg->where);
7927
7928 for (p = code->ext.alloc.list; p; p = p->next)
7929 if (p->expr->symtree->n.sym->name == errmsg->symtree->n.sym->name)
7930 {
7931 gfc_ref *ref1, *ref2;
7932 bool found = true;
7933
7934 for (ref1 = p->expr->ref, ref2 = errmsg->ref; ref1 && ref2;
7935 ref1 = ref1->next, ref2 = ref2->next)
7936 {
7937 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7938 continue;
7939 if (ref1->u.c.component->name != ref2->u.c.component->name)
7940 {
7941 found = false;
7942 break;
7943 }
7944 }
7945
7946 if (found)
7947 {
7948 gfc_error ("Errmsg-variable at %L shall not be %sd within "
7949 "the same %s statement", &errmsg->where, fcn, fcn);
7950 break;
7951 }
7952 }
7953 }
7954
7955 /* Check that an allocate-object appears only once in the statement. */
7956
7957 for (p = code->ext.alloc.list; p; p = p->next)
7958 {
7959 pe = p->expr;
7960 for (q = p->next; q; q = q->next)
7961 {
7962 qe = q->expr;
7963 if (pe->symtree->n.sym->name == qe->symtree->n.sym->name)
7964 {
7965 /* This is a potential collision. */
7966 gfc_ref *pr = pe->ref;
7967 gfc_ref *qr = qe->ref;
7968
7969 /* Follow the references until
7970 a) They start to differ, in which case there is no error;
7971 you can deallocate a%b and a%c in a single statement
7972 b) Both of them stop, which is an error
7973 c) One of them stops, which is also an error. */
7974 while (1)
7975 {
7976 if (pr == NULL && qr == NULL)
7977 {
7978 gfc_error ("Allocate-object at %L also appears at %L",
7979 &pe->where, &qe->where);
7980 break;
7981 }
7982 else if (pr != NULL && qr == NULL)
7983 {
7984 gfc_error ("Allocate-object at %L is subobject of"
7985 " object at %L", &pe->where, &qe->where);
7986 break;
7987 }
7988 else if (pr == NULL && qr != NULL)
7989 {
7990 gfc_error ("Allocate-object at %L is subobject of"
7991 " object at %L", &qe->where, &pe->where);
7992 break;
7993 }
7994 /* Here, pr != NULL && qr != NULL */
7995 gcc_assert(pr->type == qr->type);
7996 if (pr->type == REF_ARRAY)
7997 {
7998 /* Handle cases like allocate(v(3)%x(3), v(2)%x(3)),
7999 which are legal. */
8000 gcc_assert (qr->type == REF_ARRAY);
8001
8002 if (pr->next && qr->next)
8003 {
8004 int i;
8005 gfc_array_ref *par = &(pr->u.ar);
8006 gfc_array_ref *qar = &(qr->u.ar);
8007
8008 for (i=0; i<par->dimen; i++)
8009 {
8010 if ((par->start[i] != NULL
8011 || qar->start[i] != NULL)
8012 && gfc_dep_compare_expr (par->start[i],
8013 qar->start[i]) != 0)
8014 goto break_label;
8015 }
8016 }
8017 }
8018 else
8019 {
8020 if (pr->u.c.component->name != qr->u.c.component->name)
8021 break;
8022 }
8023
8024 pr = pr->next;
8025 qr = qr->next;
8026 }
8027 break_label:
8028 ;
8029 }
8030 }
8031 }
8032
8033 if (strcmp (fcn, "ALLOCATE") == 0)
8034 {
8035 bool arr_alloc_wo_spec = false;
8036
8037 /* Resolving the expr3 in the loop over all objects to allocate would
8038 execute loop invariant code for each loop item. Therefore do it just
8039 once here. */
8040 if (code->expr3 && code->expr3->mold
8041 && code->expr3->ts.type == BT_DERIVED)
8042 {
8043 /* Default initialization via MOLD (non-polymorphic). */
8044 gfc_expr *rhs = gfc_default_initializer (&code->expr3->ts);
8045 if (rhs != NULL)
8046 {
8047 gfc_resolve_expr (rhs);
8048 gfc_free_expr (code->expr3);
8049 code->expr3 = rhs;
8050 }
8051 }
8052 for (a = code->ext.alloc.list; a; a = a->next)
8053 resolve_allocate_expr (a->expr, code, &arr_alloc_wo_spec);
8054
8055 if (arr_alloc_wo_spec && code->expr3)
8056 {
8057 /* Mark the allocate to have to take the array specification
8058 from the expr3. */
8059 code->ext.alloc.arr_spec_from_expr3 = 1;
8060 }
8061 }
8062 else
8063 {
8064 for (a = code->ext.alloc.list; a; a = a->next)
8065 resolve_deallocate_expr (a->expr);
8066 }
8067 }
8068
8069
8070 /************ SELECT CASE resolution subroutines ************/
8071
8072 /* Callback function for our mergesort variant. Determines interval
8073 overlaps for CASEs. Return <0 if op1 < op2, 0 for overlap, >0 for
8074 op1 > op2. Assumes we're not dealing with the default case.
8075 We have op1 = (:L), (K:L) or (K:) and op2 = (:N), (M:N) or (M:).
8076 There are nine situations to check. */
8077
8078 static int
8079 compare_cases (const gfc_case *op1, const gfc_case *op2)
8080 {
8081 int retval;
8082
8083 if (op1->low == NULL) /* op1 = (:L) */
8084 {
8085 /* op2 = (:N), so overlap. */
8086 retval = 0;
8087 /* op2 = (M:) or (M:N), L < M */
8088 if (op2->low != NULL
8089 && gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8090 retval = -1;
8091 }
8092 else if (op1->high == NULL) /* op1 = (K:) */
8093 {
8094 /* op2 = (M:), so overlap. */
8095 retval = 0;
8096 /* op2 = (:N) or (M:N), K > N */
8097 if (op2->high != NULL
8098 && gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8099 retval = 1;
8100 }
8101 else /* op1 = (K:L) */
8102 {
8103 if (op2->low == NULL) /* op2 = (:N), K > N */
8104 retval = (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8105 ? 1 : 0;
8106 else if (op2->high == NULL) /* op2 = (M:), L < M */
8107 retval = (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8108 ? -1 : 0;
8109 else /* op2 = (M:N) */
8110 {
8111 retval = 0;
8112 /* L < M */
8113 if (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8114 retval = -1;
8115 /* K > N */
8116 else if (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8117 retval = 1;
8118 }
8119 }
8120
8121 return retval;
8122 }
8123
8124
8125 /* Merge-sort a double linked case list, detecting overlap in the
8126 process. LIST is the head of the double linked case list before it
8127 is sorted. Returns the head of the sorted list if we don't see any
8128 overlap, or NULL otherwise. */
8129
8130 static gfc_case *
8131 check_case_overlap (gfc_case *list)
8132 {
8133 gfc_case *p, *q, *e, *tail;
8134 int insize, nmerges, psize, qsize, cmp, overlap_seen;
8135
8136 /* If the passed list was empty, return immediately. */
8137 if (!list)
8138 return NULL;
8139
8140 overlap_seen = 0;
8141 insize = 1;
8142
8143 /* Loop unconditionally. The only exit from this loop is a return
8144 statement, when we've finished sorting the case list. */
8145 for (;;)
8146 {
8147 p = list;
8148 list = NULL;
8149 tail = NULL;
8150
8151 /* Count the number of merges we do in this pass. */
8152 nmerges = 0;
8153
8154 /* Loop while there exists a merge to be done. */
8155 while (p)
8156 {
8157 int i;
8158
8159 /* Count this merge. */
8160 nmerges++;
8161
8162 /* Cut the list in two pieces by stepping INSIZE places
8163 forward in the list, starting from P. */
8164 psize = 0;
8165 q = p;
8166 for (i = 0; i < insize; i++)
8167 {
8168 psize++;
8169 q = q->right;
8170 if (!q)
8171 break;
8172 }
8173 qsize = insize;
8174
8175 /* Now we have two lists. Merge them! */
8176 while (psize > 0 || (qsize > 0 && q != NULL))
8177 {
8178 /* See from which the next case to merge comes from. */
8179 if (psize == 0)
8180 {
8181 /* P is empty so the next case must come from Q. */
8182 e = q;
8183 q = q->right;
8184 qsize--;
8185 }
8186 else if (qsize == 0 || q == NULL)
8187 {
8188 /* Q is empty. */
8189 e = p;
8190 p = p->right;
8191 psize--;
8192 }
8193 else
8194 {
8195 cmp = compare_cases (p, q);
8196 if (cmp < 0)
8197 {
8198 /* The whole case range for P is less than the
8199 one for Q. */
8200 e = p;
8201 p = p->right;
8202 psize--;
8203 }
8204 else if (cmp > 0)
8205 {
8206 /* The whole case range for Q is greater than
8207 the case range for P. */
8208 e = q;
8209 q = q->right;
8210 qsize--;
8211 }
8212 else
8213 {
8214 /* The cases overlap, or they are the same
8215 element in the list. Either way, we must
8216 issue an error and get the next case from P. */
8217 /* FIXME: Sort P and Q by line number. */
8218 gfc_error ("CASE label at %L overlaps with CASE "
8219 "label at %L", &p->where, &q->where);
8220 overlap_seen = 1;
8221 e = p;
8222 p = p->right;
8223 psize--;
8224 }
8225 }
8226
8227 /* Add the next element to the merged list. */
8228 if (tail)
8229 tail->right = e;
8230 else
8231 list = e;
8232 e->left = tail;
8233 tail = e;
8234 }
8235
8236 /* P has now stepped INSIZE places along, and so has Q. So
8237 they're the same. */
8238 p = q;
8239 }
8240 tail->right = NULL;
8241
8242 /* If we have done only one merge or none at all, we've
8243 finished sorting the cases. */
8244 if (nmerges <= 1)
8245 {
8246 if (!overlap_seen)
8247 return list;
8248 else
8249 return NULL;
8250 }
8251
8252 /* Otherwise repeat, merging lists twice the size. */
8253 insize *= 2;
8254 }
8255 }
8256
8257
8258 /* Check to see if an expression is suitable for use in a CASE statement.
8259 Makes sure that all case expressions are scalar constants of the same
8260 type. Return false if anything is wrong. */
8261
8262 static bool
8263 validate_case_label_expr (gfc_expr *e, gfc_expr *case_expr)
8264 {
8265 if (e == NULL) return true;
8266
8267 if (e->ts.type != case_expr->ts.type)
8268 {
8269 gfc_error ("Expression in CASE statement at %L must be of type %s",
8270 &e->where, gfc_basic_typename (case_expr->ts.type));
8271 return false;
8272 }
8273
8274 /* C805 (R808) For a given case-construct, each case-value shall be of
8275 the same type as case-expr. For character type, length differences
8276 are allowed, but the kind type parameters shall be the same. */
8277
8278 if (case_expr->ts.type == BT_CHARACTER && e->ts.kind != case_expr->ts.kind)
8279 {
8280 gfc_error ("Expression in CASE statement at %L must be of kind %d",
8281 &e->where, case_expr->ts.kind);
8282 return false;
8283 }
8284
8285 /* Convert the case value kind to that of case expression kind,
8286 if needed */
8287
8288 if (e->ts.kind != case_expr->ts.kind)
8289 gfc_convert_type_warn (e, &case_expr->ts, 2, 0);
8290
8291 if (e->rank != 0)
8292 {
8293 gfc_error ("Expression in CASE statement at %L must be scalar",
8294 &e->where);
8295 return false;
8296 }
8297
8298 return true;
8299 }
8300
8301
8302 /* Given a completely parsed select statement, we:
8303
8304 - Validate all expressions and code within the SELECT.
8305 - Make sure that the selection expression is not of the wrong type.
8306 - Make sure that no case ranges overlap.
8307 - Eliminate unreachable cases and unreachable code resulting from
8308 removing case labels.
8309
8310 The standard does allow unreachable cases, e.g. CASE (5:3). But
8311 they are a hassle for code generation, and to prevent that, we just
8312 cut them out here. This is not necessary for overlapping cases
8313 because they are illegal and we never even try to generate code.
8314
8315 We have the additional caveat that a SELECT construct could have
8316 been a computed GOTO in the source code. Fortunately we can fairly
8317 easily work around that here: The case_expr for a "real" SELECT CASE
8318 is in code->expr1, but for a computed GOTO it is in code->expr2. All
8319 we have to do is make sure that the case_expr is a scalar integer
8320 expression. */
8321
8322 static void
8323 resolve_select (gfc_code *code, bool select_type)
8324 {
8325 gfc_code *body;
8326 gfc_expr *case_expr;
8327 gfc_case *cp, *default_case, *tail, *head;
8328 int seen_unreachable;
8329 int seen_logical;
8330 int ncases;
8331 bt type;
8332 bool t;
8333
8334 if (code->expr1 == NULL)
8335 {
8336 /* This was actually a computed GOTO statement. */
8337 case_expr = code->expr2;
8338 if (case_expr->ts.type != BT_INTEGER|| case_expr->rank != 0)
8339 gfc_error ("Selection expression in computed GOTO statement "
8340 "at %L must be a scalar integer expression",
8341 &case_expr->where);
8342
8343 /* Further checking is not necessary because this SELECT was built
8344 by the compiler, so it should always be OK. Just move the
8345 case_expr from expr2 to expr so that we can handle computed
8346 GOTOs as normal SELECTs from here on. */
8347 code->expr1 = code->expr2;
8348 code->expr2 = NULL;
8349 return;
8350 }
8351
8352 case_expr = code->expr1;
8353 type = case_expr->ts.type;
8354
8355 /* F08:C830. */
8356 if (type != BT_LOGICAL && type != BT_INTEGER && type != BT_CHARACTER)
8357 {
8358 gfc_error ("Argument of SELECT statement at %L cannot be %s",
8359 &case_expr->where, gfc_typename (&case_expr->ts));
8360
8361 /* Punt. Going on here just produce more garbage error messages. */
8362 return;
8363 }
8364
8365 /* F08:R842. */
8366 if (!select_type && case_expr->rank != 0)
8367 {
8368 gfc_error ("Argument of SELECT statement at %L must be a scalar "
8369 "expression", &case_expr->where);
8370
8371 /* Punt. */
8372 return;
8373 }
8374
8375 /* Raise a warning if an INTEGER case value exceeds the range of
8376 the case-expr. Later, all expressions will be promoted to the
8377 largest kind of all case-labels. */
8378
8379 if (type == BT_INTEGER)
8380 for (body = code->block; body; body = body->block)
8381 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8382 {
8383 if (cp->low
8384 && gfc_check_integer_range (cp->low->value.integer,
8385 case_expr->ts.kind) != ARITH_OK)
8386 gfc_warning (0, "Expression in CASE statement at %L is "
8387 "not in the range of %s", &cp->low->where,
8388 gfc_typename (&case_expr->ts));
8389
8390 if (cp->high
8391 && cp->low != cp->high
8392 && gfc_check_integer_range (cp->high->value.integer,
8393 case_expr->ts.kind) != ARITH_OK)
8394 gfc_warning (0, "Expression in CASE statement at %L is "
8395 "not in the range of %s", &cp->high->where,
8396 gfc_typename (&case_expr->ts));
8397 }
8398
8399 /* PR 19168 has a long discussion concerning a mismatch of the kinds
8400 of the SELECT CASE expression and its CASE values. Walk the lists
8401 of case values, and if we find a mismatch, promote case_expr to
8402 the appropriate kind. */
8403
8404 if (type == BT_LOGICAL || type == BT_INTEGER)
8405 {
8406 for (body = code->block; body; body = body->block)
8407 {
8408 /* Walk the case label list. */
8409 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8410 {
8411 /* Intercept the DEFAULT case. It does not have a kind. */
8412 if (cp->low == NULL && cp->high == NULL)
8413 continue;
8414
8415 /* Unreachable case ranges are discarded, so ignore. */
8416 if (cp->low != NULL && cp->high != NULL
8417 && cp->low != cp->high
8418 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8419 continue;
8420
8421 if (cp->low != NULL
8422 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->low))
8423 gfc_convert_type_warn (case_expr, &cp->low->ts, 2, 0);
8424
8425 if (cp->high != NULL
8426 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->high))
8427 gfc_convert_type_warn (case_expr, &cp->high->ts, 2, 0);
8428 }
8429 }
8430 }
8431
8432 /* Assume there is no DEFAULT case. */
8433 default_case = NULL;
8434 head = tail = NULL;
8435 ncases = 0;
8436 seen_logical = 0;
8437
8438 for (body = code->block; body; body = body->block)
8439 {
8440 /* Assume the CASE list is OK, and all CASE labels can be matched. */
8441 t = true;
8442 seen_unreachable = 0;
8443
8444 /* Walk the case label list, making sure that all case labels
8445 are legal. */
8446 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8447 {
8448 /* Count the number of cases in the whole construct. */
8449 ncases++;
8450
8451 /* Intercept the DEFAULT case. */
8452 if (cp->low == NULL && cp->high == NULL)
8453 {
8454 if (default_case != NULL)
8455 {
8456 gfc_error ("The DEFAULT CASE at %L cannot be followed "
8457 "by a second DEFAULT CASE at %L",
8458 &default_case->where, &cp->where);
8459 t = false;
8460 break;
8461 }
8462 else
8463 {
8464 default_case = cp;
8465 continue;
8466 }
8467 }
8468
8469 /* Deal with single value cases and case ranges. Errors are
8470 issued from the validation function. */
8471 if (!validate_case_label_expr (cp->low, case_expr)
8472 || !validate_case_label_expr (cp->high, case_expr))
8473 {
8474 t = false;
8475 break;
8476 }
8477
8478 if (type == BT_LOGICAL
8479 && ((cp->low == NULL || cp->high == NULL)
8480 || cp->low != cp->high))
8481 {
8482 gfc_error ("Logical range in CASE statement at %L is not "
8483 "allowed", &cp->low->where);
8484 t = false;
8485 break;
8486 }
8487
8488 if (type == BT_LOGICAL && cp->low->expr_type == EXPR_CONSTANT)
8489 {
8490 int value;
8491 value = cp->low->value.logical == 0 ? 2 : 1;
8492 if (value & seen_logical)
8493 {
8494 gfc_error ("Constant logical value in CASE statement "
8495 "is repeated at %L",
8496 &cp->low->where);
8497 t = false;
8498 break;
8499 }
8500 seen_logical |= value;
8501 }
8502
8503 if (cp->low != NULL && cp->high != NULL
8504 && cp->low != cp->high
8505 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8506 {
8507 if (warn_surprising)
8508 gfc_warning (OPT_Wsurprising,
8509 "Range specification at %L can never be matched",
8510 &cp->where);
8511
8512 cp->unreachable = 1;
8513 seen_unreachable = 1;
8514 }
8515 else
8516 {
8517 /* If the case range can be matched, it can also overlap with
8518 other cases. To make sure it does not, we put it in a
8519 double linked list here. We sort that with a merge sort
8520 later on to detect any overlapping cases. */
8521 if (!head)
8522 {
8523 head = tail = cp;
8524 head->right = head->left = NULL;
8525 }
8526 else
8527 {
8528 tail->right = cp;
8529 tail->right->left = tail;
8530 tail = tail->right;
8531 tail->right = NULL;
8532 }
8533 }
8534 }
8535
8536 /* It there was a failure in the previous case label, give up
8537 for this case label list. Continue with the next block. */
8538 if (!t)
8539 continue;
8540
8541 /* See if any case labels that are unreachable have been seen.
8542 If so, we eliminate them. This is a bit of a kludge because
8543 the case lists for a single case statement (label) is a
8544 single forward linked lists. */
8545 if (seen_unreachable)
8546 {
8547 /* Advance until the first case in the list is reachable. */
8548 while (body->ext.block.case_list != NULL
8549 && body->ext.block.case_list->unreachable)
8550 {
8551 gfc_case *n = body->ext.block.case_list;
8552 body->ext.block.case_list = body->ext.block.case_list->next;
8553 n->next = NULL;
8554 gfc_free_case_list (n);
8555 }
8556
8557 /* Strip all other unreachable cases. */
8558 if (body->ext.block.case_list)
8559 {
8560 for (cp = body->ext.block.case_list; cp && cp->next; cp = cp->next)
8561 {
8562 if (cp->next->unreachable)
8563 {
8564 gfc_case *n = cp->next;
8565 cp->next = cp->next->next;
8566 n->next = NULL;
8567 gfc_free_case_list (n);
8568 }
8569 }
8570 }
8571 }
8572 }
8573
8574 /* See if there were overlapping cases. If the check returns NULL,
8575 there was overlap. In that case we don't do anything. If head
8576 is non-NULL, we prepend the DEFAULT case. The sorted list can
8577 then used during code generation for SELECT CASE constructs with
8578 a case expression of a CHARACTER type. */
8579 if (head)
8580 {
8581 head = check_case_overlap (head);
8582
8583 /* Prepend the default_case if it is there. */
8584 if (head != NULL && default_case)
8585 {
8586 default_case->left = NULL;
8587 default_case->right = head;
8588 head->left = default_case;
8589 }
8590 }
8591
8592 /* Eliminate dead blocks that may be the result if we've seen
8593 unreachable case labels for a block. */
8594 for (body = code; body && body->block; body = body->block)
8595 {
8596 if (body->block->ext.block.case_list == NULL)
8597 {
8598 /* Cut the unreachable block from the code chain. */
8599 gfc_code *c = body->block;
8600 body->block = c->block;
8601
8602 /* Kill the dead block, but not the blocks below it. */
8603 c->block = NULL;
8604 gfc_free_statements (c);
8605 }
8606 }
8607
8608 /* More than two cases is legal but insane for logical selects.
8609 Issue a warning for it. */
8610 if (warn_surprising && type == BT_LOGICAL && ncases > 2)
8611 gfc_warning (OPT_Wsurprising,
8612 "Logical SELECT CASE block at %L has more that two cases",
8613 &code->loc);
8614 }
8615
8616
8617 /* Check if a derived type is extensible. */
8618
8619 bool
8620 gfc_type_is_extensible (gfc_symbol *sym)
8621 {
8622 return !(sym->attr.is_bind_c || sym->attr.sequence
8623 || (sym->attr.is_class
8624 && sym->components->ts.u.derived->attr.unlimited_polymorphic));
8625 }
8626
8627
8628 static void
8629 resolve_types (gfc_namespace *ns);
8630
8631 /* Resolve an associate-name: Resolve target and ensure the type-spec is
8632 correct as well as possibly the array-spec. */
8633
8634 static void
8635 resolve_assoc_var (gfc_symbol* sym, bool resolve_target)
8636 {
8637 gfc_expr* target;
8638
8639 gcc_assert (sym->assoc);
8640 gcc_assert (sym->attr.flavor == FL_VARIABLE);
8641
8642 /* If this is for SELECT TYPE, the target may not yet be set. In that
8643 case, return. Resolution will be called later manually again when
8644 this is done. */
8645 target = sym->assoc->target;
8646 if (!target)
8647 return;
8648 gcc_assert (!sym->assoc->dangling);
8649
8650 if (resolve_target && !gfc_resolve_expr (target))
8651 return;
8652
8653 /* For variable targets, we get some attributes from the target. */
8654 if (target->expr_type == EXPR_VARIABLE)
8655 {
8656 gfc_symbol* tsym;
8657
8658 gcc_assert (target->symtree);
8659 tsym = target->symtree->n.sym;
8660
8661 sym->attr.asynchronous = tsym->attr.asynchronous;
8662 sym->attr.volatile_ = tsym->attr.volatile_;
8663
8664 sym->attr.target = tsym->attr.target
8665 || gfc_expr_attr (target).pointer;
8666 if (is_subref_array (target))
8667 sym->attr.subref_array_pointer = 1;
8668 }
8669
8670 if (target->expr_type == EXPR_NULL)
8671 {
8672 gfc_error ("Selector at %L cannot be NULL()", &target->where);
8673 return;
8674 }
8675 else if (target->ts.type == BT_UNKNOWN)
8676 {
8677 gfc_error ("Selector at %L has no type", &target->where);
8678 return;
8679 }
8680
8681 /* Get type if this was not already set. Note that it can be
8682 some other type than the target in case this is a SELECT TYPE
8683 selector! So we must not update when the type is already there. */
8684 if (sym->ts.type == BT_UNKNOWN)
8685 sym->ts = target->ts;
8686
8687 gcc_assert (sym->ts.type != BT_UNKNOWN);
8688
8689 /* See if this is a valid association-to-variable. */
8690 sym->assoc->variable = (target->expr_type == EXPR_VARIABLE
8691 && !gfc_has_vector_subscript (target));
8692
8693 /* Finally resolve if this is an array or not. */
8694 if (sym->attr.dimension && target->rank == 0)
8695 {
8696 /* primary.c makes the assumption that a reference to an associate
8697 name followed by a left parenthesis is an array reference. */
8698 if (sym->ts.type != BT_CHARACTER)
8699 gfc_error ("Associate-name %qs at %L is used as array",
8700 sym->name, &sym->declared_at);
8701 sym->attr.dimension = 0;
8702 return;
8703 }
8704
8705
8706 /* We cannot deal with class selectors that need temporaries. */
8707 if (target->ts.type == BT_CLASS
8708 && gfc_ref_needs_temporary_p (target->ref))
8709 {
8710 gfc_error ("CLASS selector at %L needs a temporary which is not "
8711 "yet implemented", &target->where);
8712 return;
8713 }
8714
8715 if (target->ts.type == BT_CLASS)
8716 gfc_fix_class_refs (target);
8717
8718 if (target->rank != 0)
8719 {
8720 gfc_array_spec *as;
8721 /* The rank may be incorrectly guessed at parsing, therefore make sure
8722 it is corrected now. */
8723 if (sym->ts.type != BT_CLASS && (!sym->as || sym->assoc->rankguessed))
8724 {
8725 if (!sym->as)
8726 sym->as = gfc_get_array_spec ();
8727 as = sym->as;
8728 as->rank = target->rank;
8729 as->type = AS_DEFERRED;
8730 as->corank = gfc_get_corank (target);
8731 sym->attr.dimension = 1;
8732 if (as->corank != 0)
8733 sym->attr.codimension = 1;
8734 }
8735 else if (sym->ts.type == BT_CLASS && (!CLASS_DATA (sym)->as || sym->assoc->rankguessed))
8736 {
8737 if (!CLASS_DATA (sym)->as)
8738 CLASS_DATA (sym)->as = gfc_get_array_spec ();
8739 as = CLASS_DATA (sym)->as;
8740 as->rank = target->rank;
8741 as->type = AS_DEFERRED;
8742 as->corank = gfc_get_corank (target);
8743 CLASS_DATA (sym)->attr.dimension = 1;
8744 if (as->corank != 0)
8745 CLASS_DATA (sym)->attr.codimension = 1;
8746 }
8747 }
8748 else
8749 {
8750 /* target's rank is 0, but the type of the sym is still array valued,
8751 which has to be corrected. */
8752 if (sym->ts.type == BT_CLASS
8753 && CLASS_DATA (sym) && CLASS_DATA (sym)->as)
8754 {
8755 gfc_array_spec *as;
8756 symbol_attribute attr;
8757 /* The associated variable's type is still the array type
8758 correct this now. */
8759 gfc_typespec *ts = &target->ts;
8760 gfc_ref *ref;
8761 gfc_component *c;
8762 for (ref = target->ref; ref != NULL; ref = ref->next)
8763 {
8764 switch (ref->type)
8765 {
8766 case REF_COMPONENT:
8767 ts = &ref->u.c.component->ts;
8768 break;
8769 case REF_ARRAY:
8770 if (ts->type == BT_CLASS)
8771 ts = &ts->u.derived->components->ts;
8772 break;
8773 default:
8774 break;
8775 }
8776 }
8777 /* Create a scalar instance of the current class type. Because the
8778 rank of a class array goes into its name, the type has to be
8779 rebuild. The alternative of (re-)setting just the attributes
8780 and as in the current type, destroys the type also in other
8781 places. */
8782 as = NULL;
8783 sym->ts = *ts;
8784 sym->ts.type = BT_CLASS;
8785 attr = CLASS_DATA (sym)->attr;
8786 attr.class_ok = 0;
8787 attr.associate_var = 1;
8788 attr.dimension = attr.codimension = 0;
8789 attr.class_pointer = 1;
8790 if (!gfc_build_class_symbol (&sym->ts, &attr, &as))
8791 gcc_unreachable ();
8792 /* Make sure the _vptr is set. */
8793 c = gfc_find_component (sym->ts.u.derived, "_vptr", true, true, NULL);
8794 if (c->ts.u.derived == NULL)
8795 c->ts.u.derived = gfc_find_derived_vtab (sym->ts.u.derived);
8796 CLASS_DATA (sym)->attr.pointer = 1;
8797 CLASS_DATA (sym)->attr.class_pointer = 1;
8798 gfc_set_sym_referenced (sym->ts.u.derived);
8799 gfc_commit_symbol (sym->ts.u.derived);
8800 /* _vptr now has the _vtab in it, change it to the _vtype. */
8801 if (c->ts.u.derived->attr.vtab)
8802 c->ts.u.derived = c->ts.u.derived->ts.u.derived;
8803 c->ts.u.derived->ns->types_resolved = 0;
8804 resolve_types (c->ts.u.derived->ns);
8805 }
8806 }
8807
8808 /* Mark this as an associate variable. */
8809 sym->attr.associate_var = 1;
8810
8811 /* Fix up the type-spec for CHARACTER types. */
8812 if (sym->ts.type == BT_CHARACTER && !sym->attr.select_type_temporary)
8813 {
8814 if (!sym->ts.u.cl)
8815 sym->ts.u.cl = target->ts.u.cl;
8816
8817 if (sym->ts.deferred && target->expr_type == EXPR_VARIABLE
8818 && target->symtree->n.sym->attr.dummy
8819 && sym->ts.u.cl == target->ts.u.cl)
8820 {
8821 sym->ts.u.cl = gfc_new_charlen (sym->ns, NULL);
8822 sym->ts.deferred = 1;
8823 }
8824
8825 if (!sym->ts.u.cl->length
8826 && !sym->ts.deferred
8827 && target->expr_type == EXPR_CONSTANT)
8828 {
8829 sym->ts.u.cl->length =
8830 gfc_get_int_expr (gfc_charlen_int_kind, NULL,
8831 target->value.character.length);
8832 }
8833 else if ((!sym->ts.u.cl->length
8834 || sym->ts.u.cl->length->expr_type != EXPR_CONSTANT)
8835 && target->expr_type != EXPR_VARIABLE)
8836 {
8837 sym->ts.u.cl = gfc_new_charlen (sym->ns, NULL);
8838 sym->ts.deferred = 1;
8839
8840 /* This is reset in trans-stmt.c after the assignment
8841 of the target expression to the associate name. */
8842 sym->attr.allocatable = 1;
8843 }
8844 }
8845
8846 /* If the target is a good class object, so is the associate variable. */
8847 if (sym->ts.type == BT_CLASS && gfc_expr_attr (target).class_ok)
8848 sym->attr.class_ok = 1;
8849 }
8850
8851
8852 /* Ensure that SELECT TYPE expressions have the correct rank and a full
8853 array reference, where necessary. The symbols are artificial and so
8854 the dimension attribute and arrayspec can also be set. In addition,
8855 sometimes the expr1 arrives as BT_DERIVED, when the symbol is BT_CLASS.
8856 This is corrected here as well.*/
8857
8858 static void
8859 fixup_array_ref (gfc_expr **expr1, gfc_expr *expr2,
8860 int rank, gfc_ref *ref)
8861 {
8862 gfc_ref *nref = (*expr1)->ref;
8863 gfc_symbol *sym1 = (*expr1)->symtree->n.sym;
8864 gfc_symbol *sym2 = expr2 ? expr2->symtree->n.sym : NULL;
8865 (*expr1)->rank = rank;
8866 if (sym1->ts.type == BT_CLASS)
8867 {
8868 if ((*expr1)->ts.type != BT_CLASS)
8869 (*expr1)->ts = sym1->ts;
8870
8871 CLASS_DATA (sym1)->attr.dimension = 1;
8872 if (CLASS_DATA (sym1)->as == NULL && sym2)
8873 CLASS_DATA (sym1)->as
8874 = gfc_copy_array_spec (CLASS_DATA (sym2)->as);
8875 }
8876 else
8877 {
8878 sym1->attr.dimension = 1;
8879 if (sym1->as == NULL && sym2)
8880 sym1->as = gfc_copy_array_spec (sym2->as);
8881 }
8882
8883 for (; nref; nref = nref->next)
8884 if (nref->next == NULL)
8885 break;
8886
8887 if (ref && nref && nref->type != REF_ARRAY)
8888 nref->next = gfc_copy_ref (ref);
8889 else if (ref && !nref)
8890 (*expr1)->ref = gfc_copy_ref (ref);
8891 }
8892
8893
8894 static gfc_expr *
8895 build_loc_call (gfc_expr *sym_expr)
8896 {
8897 gfc_expr *loc_call;
8898 loc_call = gfc_get_expr ();
8899 loc_call->expr_type = EXPR_FUNCTION;
8900 gfc_get_sym_tree ("_loc", gfc_current_ns, &loc_call->symtree, false);
8901 loc_call->symtree->n.sym->attr.flavor = FL_PROCEDURE;
8902 loc_call->symtree->n.sym->attr.intrinsic = 1;
8903 loc_call->symtree->n.sym->result = loc_call->symtree->n.sym;
8904 gfc_commit_symbol (loc_call->symtree->n.sym);
8905 loc_call->ts.type = BT_INTEGER;
8906 loc_call->ts.kind = gfc_index_integer_kind;
8907 loc_call->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_LOC);
8908 loc_call->value.function.actual = gfc_get_actual_arglist ();
8909 loc_call->value.function.actual->expr = sym_expr;
8910 loc_call->where = sym_expr->where;
8911 return loc_call;
8912 }
8913
8914 /* Resolve a SELECT TYPE statement. */
8915
8916 static void
8917 resolve_select_type (gfc_code *code, gfc_namespace *old_ns)
8918 {
8919 gfc_symbol *selector_type;
8920 gfc_code *body, *new_st, *if_st, *tail;
8921 gfc_code *class_is = NULL, *default_case = NULL;
8922 gfc_case *c;
8923 gfc_symtree *st;
8924 char name[GFC_MAX_SYMBOL_LEN];
8925 gfc_namespace *ns;
8926 int error = 0;
8927 int rank = 0;
8928 gfc_ref* ref = NULL;
8929 gfc_expr *selector_expr = NULL;
8930
8931 ns = code->ext.block.ns;
8932 gfc_resolve (ns);
8933
8934 /* Check for F03:C813. */
8935 if (code->expr1->ts.type != BT_CLASS
8936 && !(code->expr2 && code->expr2->ts.type == BT_CLASS))
8937 {
8938 gfc_error ("Selector shall be polymorphic in SELECT TYPE statement "
8939 "at %L", &code->loc);
8940 return;
8941 }
8942
8943 if (!code->expr1->symtree->n.sym->attr.class_ok)
8944 return;
8945
8946 if (code->expr2)
8947 {
8948 gfc_ref *ref2 = NULL;
8949 for (ref = code->expr2->ref; ref != NULL; ref = ref->next)
8950 if (ref->type == REF_COMPONENT
8951 && ref->u.c.component->ts.type == BT_CLASS)
8952 ref2 = ref;
8953
8954 if (ref2)
8955 {
8956 if (code->expr1->symtree->n.sym->attr.untyped)
8957 code->expr1->symtree->n.sym->ts = ref2->u.c.component->ts;
8958 selector_type = CLASS_DATA (ref2->u.c.component)->ts.u.derived;
8959 }
8960 else
8961 {
8962 if (code->expr1->symtree->n.sym->attr.untyped)
8963 code->expr1->symtree->n.sym->ts = code->expr2->ts;
8964 selector_type = CLASS_DATA (code->expr2)->ts.u.derived;
8965 }
8966
8967 if (code->expr2->rank && CLASS_DATA (code->expr1)->as)
8968 CLASS_DATA (code->expr1)->as->rank = code->expr2->rank;
8969
8970 /* F2008: C803 The selector expression must not be coindexed. */
8971 if (gfc_is_coindexed (code->expr2))
8972 {
8973 gfc_error ("Selector at %L must not be coindexed",
8974 &code->expr2->where);
8975 return;
8976 }
8977
8978 }
8979 else
8980 {
8981 selector_type = CLASS_DATA (code->expr1)->ts.u.derived;
8982
8983 if (gfc_is_coindexed (code->expr1))
8984 {
8985 gfc_error ("Selector at %L must not be coindexed",
8986 &code->expr1->where);
8987 return;
8988 }
8989 }
8990
8991 /* Loop over TYPE IS / CLASS IS cases. */
8992 for (body = code->block; body; body = body->block)
8993 {
8994 c = body->ext.block.case_list;
8995
8996 if (!error)
8997 {
8998 /* Check for repeated cases. */
8999 for (tail = code->block; tail; tail = tail->block)
9000 {
9001 gfc_case *d = tail->ext.block.case_list;
9002 if (tail == body)
9003 break;
9004
9005 if (c->ts.type == d->ts.type
9006 && ((c->ts.type == BT_DERIVED
9007 && c->ts.u.derived && d->ts.u.derived
9008 && !strcmp (c->ts.u.derived->name,
9009 d->ts.u.derived->name))
9010 || c->ts.type == BT_UNKNOWN
9011 || (!(c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9012 && c->ts.kind == d->ts.kind)))
9013 {
9014 gfc_error ("TYPE IS at %L overlaps with TYPE IS at %L",
9015 &c->where, &d->where);
9016 return;
9017 }
9018 }
9019 }
9020
9021 /* Check F03:C815. */
9022 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9023 && !selector_type->attr.unlimited_polymorphic
9024 && !gfc_type_is_extensible (c->ts.u.derived))
9025 {
9026 gfc_error ("Derived type %qs at %L must be extensible",
9027 c->ts.u.derived->name, &c->where);
9028 error++;
9029 continue;
9030 }
9031
9032 /* Check F03:C816. */
9033 if (c->ts.type != BT_UNKNOWN && !selector_type->attr.unlimited_polymorphic
9034 && ((c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
9035 || !gfc_type_is_extension_of (selector_type, c->ts.u.derived)))
9036 {
9037 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9038 gfc_error ("Derived type %qs at %L must be an extension of %qs",
9039 c->ts.u.derived->name, &c->where, selector_type->name);
9040 else
9041 gfc_error ("Unexpected intrinsic type %qs at %L",
9042 gfc_basic_typename (c->ts.type), &c->where);
9043 error++;
9044 continue;
9045 }
9046
9047 /* Check F03:C814. */
9048 if (c->ts.type == BT_CHARACTER
9049 && (c->ts.u.cl->length != NULL || c->ts.deferred))
9050 {
9051 gfc_error ("The type-spec at %L shall specify that each length "
9052 "type parameter is assumed", &c->where);
9053 error++;
9054 continue;
9055 }
9056
9057 /* Intercept the DEFAULT case. */
9058 if (c->ts.type == BT_UNKNOWN)
9059 {
9060 /* Check F03:C818. */
9061 if (default_case)
9062 {
9063 gfc_error ("The DEFAULT CASE at %L cannot be followed "
9064 "by a second DEFAULT CASE at %L",
9065 &default_case->ext.block.case_list->where, &c->where);
9066 error++;
9067 continue;
9068 }
9069
9070 default_case = body;
9071 }
9072 }
9073
9074 if (error > 0)
9075 return;
9076
9077 /* Transform SELECT TYPE statement to BLOCK and associate selector to
9078 target if present. If there are any EXIT statements referring to the
9079 SELECT TYPE construct, this is no problem because the gfc_code
9080 reference stays the same and EXIT is equally possible from the BLOCK
9081 it is changed to. */
9082 code->op = EXEC_BLOCK;
9083 if (code->expr2)
9084 {
9085 gfc_association_list* assoc;
9086
9087 assoc = gfc_get_association_list ();
9088 assoc->st = code->expr1->symtree;
9089 assoc->target = gfc_copy_expr (code->expr2);
9090 assoc->target->where = code->expr2->where;
9091 /* assoc->variable will be set by resolve_assoc_var. */
9092
9093 code->ext.block.assoc = assoc;
9094 code->expr1->symtree->n.sym->assoc = assoc;
9095
9096 resolve_assoc_var (code->expr1->symtree->n.sym, false);
9097 }
9098 else
9099 code->ext.block.assoc = NULL;
9100
9101 /* Ensure that the selector rank and arrayspec are available to
9102 correct expressions in which they might be missing. */
9103 if (code->expr2 && code->expr2->rank)
9104 {
9105 rank = code->expr2->rank;
9106 for (ref = code->expr2->ref; ref; ref = ref->next)
9107 if (ref->next == NULL)
9108 break;
9109 if (ref && ref->type == REF_ARRAY)
9110 ref = gfc_copy_ref (ref);
9111
9112 /* Fixup expr1 if necessary. */
9113 if (rank)
9114 fixup_array_ref (&code->expr1, code->expr2, rank, ref);
9115 }
9116 else if (code->expr1->rank)
9117 {
9118 rank = code->expr1->rank;
9119 for (ref = code->expr1->ref; ref; ref = ref->next)
9120 if (ref->next == NULL)
9121 break;
9122 if (ref && ref->type == REF_ARRAY)
9123 ref = gfc_copy_ref (ref);
9124 }
9125
9126 /* Add EXEC_SELECT to switch on type. */
9127 new_st = gfc_get_code (code->op);
9128 new_st->expr1 = code->expr1;
9129 new_st->expr2 = code->expr2;
9130 new_st->block = code->block;
9131 code->expr1 = code->expr2 = NULL;
9132 code->block = NULL;
9133 if (!ns->code)
9134 ns->code = new_st;
9135 else
9136 ns->code->next = new_st;
9137 code = new_st;
9138 code->op = EXEC_SELECT_TYPE;
9139
9140 /* Use the intrinsic LOC function to generate an integer expression
9141 for the vtable of the selector. Note that the rank of the selector
9142 expression has to be set to zero. */
9143 gfc_add_vptr_component (code->expr1);
9144 code->expr1->rank = 0;
9145 code->expr1 = build_loc_call (code->expr1);
9146 selector_expr = code->expr1->value.function.actual->expr;
9147
9148 /* Loop over TYPE IS / CLASS IS cases. */
9149 for (body = code->block; body; body = body->block)
9150 {
9151 gfc_symbol *vtab;
9152 gfc_expr *e;
9153 c = body->ext.block.case_list;
9154
9155 /* Generate an index integer expression for address of the
9156 TYPE/CLASS vtable and store it in c->low. The hash expression
9157 is stored in c->high and is used to resolve intrinsic cases. */
9158 if (c->ts.type != BT_UNKNOWN)
9159 {
9160 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9161 {
9162 vtab = gfc_find_derived_vtab (c->ts.u.derived);
9163 gcc_assert (vtab);
9164 c->high = gfc_get_int_expr (gfc_integer_4_kind, NULL,
9165 c->ts.u.derived->hash_value);
9166 }
9167 else
9168 {
9169 vtab = gfc_find_vtab (&c->ts);
9170 gcc_assert (vtab && CLASS_DATA (vtab)->initializer);
9171 e = CLASS_DATA (vtab)->initializer;
9172 c->high = gfc_copy_expr (e);
9173 if (c->high->ts.kind != gfc_integer_4_kind)
9174 {
9175 gfc_typespec ts;
9176 ts.kind = gfc_integer_4_kind;
9177 ts.type = BT_INTEGER;
9178 gfc_convert_type_warn (c->high, &ts, 2, 0);
9179 }
9180 }
9181
9182 e = gfc_lval_expr_from_sym (vtab);
9183 c->low = build_loc_call (e);
9184 }
9185 else
9186 continue;
9187
9188 /* Associate temporary to selector. This should only be done
9189 when this case is actually true, so build a new ASSOCIATE
9190 that does precisely this here (instead of using the
9191 'global' one). */
9192
9193 if (c->ts.type == BT_CLASS)
9194 sprintf (name, "__tmp_class_%s", c->ts.u.derived->name);
9195 else if (c->ts.type == BT_DERIVED)
9196 sprintf (name, "__tmp_type_%s", c->ts.u.derived->name);
9197 else if (c->ts.type == BT_CHARACTER)
9198 {
9199 HOST_WIDE_INT charlen = 0;
9200 if (c->ts.u.cl && c->ts.u.cl->length
9201 && c->ts.u.cl->length->expr_type == EXPR_CONSTANT)
9202 charlen = gfc_mpz_get_hwi (c->ts.u.cl->length->value.integer);
9203 snprintf (name, sizeof (name),
9204 "__tmp_%s_" HOST_WIDE_INT_PRINT_DEC "_%d",
9205 gfc_basic_typename (c->ts.type), charlen, c->ts.kind);
9206 }
9207 else
9208 sprintf (name, "__tmp_%s_%d", gfc_basic_typename (c->ts.type),
9209 c->ts.kind);
9210
9211 st = gfc_find_symtree (ns->sym_root, name);
9212 gcc_assert (st->n.sym->assoc);
9213 st->n.sym->assoc->target = gfc_get_variable_expr (selector_expr->symtree);
9214 st->n.sym->assoc->target->where = selector_expr->where;
9215 if (c->ts.type != BT_CLASS && c->ts.type != BT_UNKNOWN)
9216 {
9217 gfc_add_data_component (st->n.sym->assoc->target);
9218 /* Fixup the target expression if necessary. */
9219 if (rank)
9220 fixup_array_ref (&st->n.sym->assoc->target, NULL, rank, ref);
9221 }
9222
9223 new_st = gfc_get_code (EXEC_BLOCK);
9224 new_st->ext.block.ns = gfc_build_block_ns (ns);
9225 new_st->ext.block.ns->code = body->next;
9226 body->next = new_st;
9227
9228 /* Chain in the new list only if it is marked as dangling. Otherwise
9229 there is a CASE label overlap and this is already used. Just ignore,
9230 the error is diagnosed elsewhere. */
9231 if (st->n.sym->assoc->dangling)
9232 {
9233 new_st->ext.block.assoc = st->n.sym->assoc;
9234 st->n.sym->assoc->dangling = 0;
9235 }
9236
9237 resolve_assoc_var (st->n.sym, false);
9238 }
9239
9240 /* Take out CLASS IS cases for separate treatment. */
9241 body = code;
9242 while (body && body->block)
9243 {
9244 if (body->block->ext.block.case_list->ts.type == BT_CLASS)
9245 {
9246 /* Add to class_is list. */
9247 if (class_is == NULL)
9248 {
9249 class_is = body->block;
9250 tail = class_is;
9251 }
9252 else
9253 {
9254 for (tail = class_is; tail->block; tail = tail->block) ;
9255 tail->block = body->block;
9256 tail = tail->block;
9257 }
9258 /* Remove from EXEC_SELECT list. */
9259 body->block = body->block->block;
9260 tail->block = NULL;
9261 }
9262 else
9263 body = body->block;
9264 }
9265
9266 if (class_is)
9267 {
9268 gfc_symbol *vtab;
9269
9270 if (!default_case)
9271 {
9272 /* Add a default case to hold the CLASS IS cases. */
9273 for (tail = code; tail->block; tail = tail->block) ;
9274 tail->block = gfc_get_code (EXEC_SELECT_TYPE);
9275 tail = tail->block;
9276 tail->ext.block.case_list = gfc_get_case ();
9277 tail->ext.block.case_list->ts.type = BT_UNKNOWN;
9278 tail->next = NULL;
9279 default_case = tail;
9280 }
9281
9282 /* More than one CLASS IS block? */
9283 if (class_is->block)
9284 {
9285 gfc_code **c1,*c2;
9286 bool swapped;
9287 /* Sort CLASS IS blocks by extension level. */
9288 do
9289 {
9290 swapped = false;
9291 for (c1 = &class_is; (*c1) && (*c1)->block; c1 = &((*c1)->block))
9292 {
9293 c2 = (*c1)->block;
9294 /* F03:C817 (check for doubles). */
9295 if ((*c1)->ext.block.case_list->ts.u.derived->hash_value
9296 == c2->ext.block.case_list->ts.u.derived->hash_value)
9297 {
9298 gfc_error ("Double CLASS IS block in SELECT TYPE "
9299 "statement at %L",
9300 &c2->ext.block.case_list->where);
9301 return;
9302 }
9303 if ((*c1)->ext.block.case_list->ts.u.derived->attr.extension
9304 < c2->ext.block.case_list->ts.u.derived->attr.extension)
9305 {
9306 /* Swap. */
9307 (*c1)->block = c2->block;
9308 c2->block = *c1;
9309 *c1 = c2;
9310 swapped = true;
9311 }
9312 }
9313 }
9314 while (swapped);
9315 }
9316
9317 /* Generate IF chain. */
9318 if_st = gfc_get_code (EXEC_IF);
9319 new_st = if_st;
9320 for (body = class_is; body; body = body->block)
9321 {
9322 new_st->block = gfc_get_code (EXEC_IF);
9323 new_st = new_st->block;
9324 /* Set up IF condition: Call _gfortran_is_extension_of. */
9325 new_st->expr1 = gfc_get_expr ();
9326 new_st->expr1->expr_type = EXPR_FUNCTION;
9327 new_st->expr1->ts.type = BT_LOGICAL;
9328 new_st->expr1->ts.kind = 4;
9329 new_st->expr1->value.function.name = gfc_get_string (PREFIX ("is_extension_of"));
9330 new_st->expr1->value.function.isym = XCNEW (gfc_intrinsic_sym);
9331 new_st->expr1->value.function.isym->id = GFC_ISYM_EXTENDS_TYPE_OF;
9332 /* Set up arguments. */
9333 new_st->expr1->value.function.actual = gfc_get_actual_arglist ();
9334 new_st->expr1->value.function.actual->expr = gfc_get_variable_expr (selector_expr->symtree);
9335 new_st->expr1->value.function.actual->expr->where = code->loc;
9336 new_st->expr1->where = code->loc;
9337 gfc_add_vptr_component (new_st->expr1->value.function.actual->expr);
9338 vtab = gfc_find_derived_vtab (body->ext.block.case_list->ts.u.derived);
9339 st = gfc_find_symtree (vtab->ns->sym_root, vtab->name);
9340 new_st->expr1->value.function.actual->next = gfc_get_actual_arglist ();
9341 new_st->expr1->value.function.actual->next->expr = gfc_get_variable_expr (st);
9342 new_st->expr1->value.function.actual->next->expr->where = code->loc;
9343 new_st->next = body->next;
9344 }
9345 if (default_case->next)
9346 {
9347 new_st->block = gfc_get_code (EXEC_IF);
9348 new_st = new_st->block;
9349 new_st->next = default_case->next;
9350 }
9351
9352 /* Replace CLASS DEFAULT code by the IF chain. */
9353 default_case->next = if_st;
9354 }
9355
9356 /* Resolve the internal code. This cannot be done earlier because
9357 it requires that the sym->assoc of selectors is set already. */
9358 gfc_current_ns = ns;
9359 gfc_resolve_blocks (code->block, gfc_current_ns);
9360 gfc_current_ns = old_ns;
9361
9362 if (ref)
9363 free (ref);
9364 }
9365
9366
9367 /* Resolve a transfer statement. This is making sure that:
9368 -- a derived type being transferred has only non-pointer components
9369 -- a derived type being transferred doesn't have private components, unless
9370 it's being transferred from the module where the type was defined
9371 -- we're not trying to transfer a whole assumed size array. */
9372
9373 static void
9374 resolve_transfer (gfc_code *code)
9375 {
9376 gfc_symbol *sym, *derived;
9377 gfc_ref *ref;
9378 gfc_expr *exp;
9379 bool write = false;
9380 bool formatted = false;
9381 gfc_dt *dt = code->ext.dt;
9382 gfc_symbol *dtio_sub = NULL;
9383
9384 exp = code->expr1;
9385
9386 while (exp != NULL && exp->expr_type == EXPR_OP
9387 && exp->value.op.op == INTRINSIC_PARENTHESES)
9388 exp = exp->value.op.op1;
9389
9390 if (exp && exp->expr_type == EXPR_NULL
9391 && code->ext.dt)
9392 {
9393 gfc_error ("Invalid context for NULL () intrinsic at %L",
9394 &exp->where);
9395 return;
9396 }
9397
9398 if (exp == NULL || (exp->expr_type != EXPR_VARIABLE
9399 && exp->expr_type != EXPR_FUNCTION
9400 && exp->expr_type != EXPR_STRUCTURE))
9401 return;
9402
9403 /* If we are reading, the variable will be changed. Note that
9404 code->ext.dt may be NULL if the TRANSFER is related to
9405 an INQUIRE statement -- but in this case, we are not reading, either. */
9406 if (dt && dt->dt_io_kind->value.iokind == M_READ
9407 && !gfc_check_vardef_context (exp, false, false, false,
9408 _("item in READ")))
9409 return;
9410
9411 const gfc_typespec *ts = exp->expr_type == EXPR_STRUCTURE
9412 || exp->expr_type == EXPR_FUNCTION
9413 ? &exp->ts : &exp->symtree->n.sym->ts;
9414
9415 /* Go to actual component transferred. */
9416 for (ref = exp->ref; ref; ref = ref->next)
9417 if (ref->type == REF_COMPONENT)
9418 ts = &ref->u.c.component->ts;
9419
9420 if (dt && dt->dt_io_kind->value.iokind != M_INQUIRE
9421 && (ts->type == BT_DERIVED || ts->type == BT_CLASS))
9422 {
9423 derived = ts->u.derived;
9424
9425 /* Determine when to use the formatted DTIO procedure. */
9426 if (dt && (dt->format_expr || dt->format_label))
9427 formatted = true;
9428
9429 write = dt->dt_io_kind->value.iokind == M_WRITE
9430 || dt->dt_io_kind->value.iokind == M_PRINT;
9431 dtio_sub = gfc_find_specific_dtio_proc (derived, write, formatted);
9432
9433 if (dtio_sub != NULL && exp->expr_type == EXPR_VARIABLE)
9434 {
9435 dt->udtio = exp;
9436 sym = exp->symtree->n.sym->ns->proc_name;
9437 /* Check to see if this is a nested DTIO call, with the
9438 dummy as the io-list object. */
9439 if (sym && sym == dtio_sub && sym->formal
9440 && sym->formal->sym == exp->symtree->n.sym
9441 && exp->ref == NULL)
9442 {
9443 if (!sym->attr.recursive)
9444 {
9445 gfc_error ("DTIO %s procedure at %L must be recursive",
9446 sym->name, &sym->declared_at);
9447 return;
9448 }
9449 }
9450 }
9451 }
9452
9453 if (ts->type == BT_CLASS && dtio_sub == NULL)
9454 {
9455 gfc_error ("Data transfer element at %L cannot be polymorphic unless "
9456 "it is processed by a defined input/output procedure",
9457 &code->loc);
9458 return;
9459 }
9460
9461 if (ts->type == BT_DERIVED)
9462 {
9463 /* Check that transferred derived type doesn't contain POINTER
9464 components unless it is processed by a defined input/output
9465 procedure". */
9466 if (ts->u.derived->attr.pointer_comp && dtio_sub == NULL)
9467 {
9468 gfc_error ("Data transfer element at %L cannot have POINTER "
9469 "components unless it is processed by a defined "
9470 "input/output procedure", &code->loc);
9471 return;
9472 }
9473
9474 /* F08:C935. */
9475 if (ts->u.derived->attr.proc_pointer_comp)
9476 {
9477 gfc_error ("Data transfer element at %L cannot have "
9478 "procedure pointer components", &code->loc);
9479 return;
9480 }
9481
9482 if (ts->u.derived->attr.alloc_comp && dtio_sub == NULL)
9483 {
9484 gfc_error ("Data transfer element at %L cannot have ALLOCATABLE "
9485 "components unless it is processed by a defined "
9486 "input/output procedure", &code->loc);
9487 return;
9488 }
9489
9490 /* C_PTR and C_FUNPTR have private components which means they cannot
9491 be printed. However, if -std=gnu and not -pedantic, allow
9492 the component to be printed to help debugging. */
9493 if (ts->u.derived->ts.f90_type == BT_VOID)
9494 {
9495 if (!gfc_notify_std (GFC_STD_GNU, "Data transfer element at %L "
9496 "cannot have PRIVATE components", &code->loc))
9497 return;
9498 }
9499 else if (derived_inaccessible (ts->u.derived) && dtio_sub == NULL)
9500 {
9501 gfc_error ("Data transfer element at %L cannot have "
9502 "PRIVATE components unless it is processed by "
9503 "a defined input/output procedure", &code->loc);
9504 return;
9505 }
9506 }
9507
9508 if (exp->expr_type == EXPR_STRUCTURE)
9509 return;
9510
9511 sym = exp->symtree->n.sym;
9512
9513 if (sym->as != NULL && sym->as->type == AS_ASSUMED_SIZE && exp->ref
9514 && exp->ref->type == REF_ARRAY && exp->ref->u.ar.type == AR_FULL)
9515 {
9516 gfc_error ("Data transfer element at %L cannot be a full reference to "
9517 "an assumed-size array", &code->loc);
9518 return;
9519 }
9520
9521 if (async_io_dt && exp->expr_type == EXPR_VARIABLE)
9522 exp->symtree->n.sym->attr.asynchronous = 1;
9523 }
9524
9525
9526 /*********** Toplevel code resolution subroutines ***********/
9527
9528 /* Find the set of labels that are reachable from this block. We also
9529 record the last statement in each block. */
9530
9531 static void
9532 find_reachable_labels (gfc_code *block)
9533 {
9534 gfc_code *c;
9535
9536 if (!block)
9537 return;
9538
9539 cs_base->reachable_labels = bitmap_alloc (&labels_obstack);
9540
9541 /* Collect labels in this block. We don't keep those corresponding
9542 to END {IF|SELECT}, these are checked in resolve_branch by going
9543 up through the code_stack. */
9544 for (c = block; c; c = c->next)
9545 {
9546 if (c->here && c->op != EXEC_END_NESTED_BLOCK)
9547 bitmap_set_bit (cs_base->reachable_labels, c->here->value);
9548 }
9549
9550 /* Merge with labels from parent block. */
9551 if (cs_base->prev)
9552 {
9553 gcc_assert (cs_base->prev->reachable_labels);
9554 bitmap_ior_into (cs_base->reachable_labels,
9555 cs_base->prev->reachable_labels);
9556 }
9557 }
9558
9559
9560 static void
9561 resolve_lock_unlock_event (gfc_code *code)
9562 {
9563 if (code->expr1->expr_type == EXPR_FUNCTION
9564 && code->expr1->value.function.isym
9565 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
9566 remove_caf_get_intrinsic (code->expr1);
9567
9568 if ((code->op == EXEC_LOCK || code->op == EXEC_UNLOCK)
9569 && (code->expr1->ts.type != BT_DERIVED
9570 || code->expr1->expr_type != EXPR_VARIABLE
9571 || code->expr1->ts.u.derived->from_intmod != INTMOD_ISO_FORTRAN_ENV
9572 || code->expr1->ts.u.derived->intmod_sym_id != ISOFORTRAN_LOCK_TYPE
9573 || code->expr1->rank != 0
9574 || (!gfc_is_coarray (code->expr1) &&
9575 !gfc_is_coindexed (code->expr1))))
9576 gfc_error ("Lock variable at %L must be a scalar of type LOCK_TYPE",
9577 &code->expr1->where);
9578 else if ((code->op == EXEC_EVENT_POST || code->op == EXEC_EVENT_WAIT)
9579 && (code->expr1->ts.type != BT_DERIVED
9580 || code->expr1->expr_type != EXPR_VARIABLE
9581 || code->expr1->ts.u.derived->from_intmod
9582 != INTMOD_ISO_FORTRAN_ENV
9583 || code->expr1->ts.u.derived->intmod_sym_id
9584 != ISOFORTRAN_EVENT_TYPE
9585 || code->expr1->rank != 0))
9586 gfc_error ("Event variable at %L must be a scalar of type EVENT_TYPE",
9587 &code->expr1->where);
9588 else if (code->op == EXEC_EVENT_POST && !gfc_is_coarray (code->expr1)
9589 && !gfc_is_coindexed (code->expr1))
9590 gfc_error ("Event variable argument at %L must be a coarray or coindexed",
9591 &code->expr1->where);
9592 else if (code->op == EXEC_EVENT_WAIT && !gfc_is_coarray (code->expr1))
9593 gfc_error ("Event variable argument at %L must be a coarray but not "
9594 "coindexed", &code->expr1->where);
9595
9596 /* Check STAT. */
9597 if (code->expr2
9598 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9599 || code->expr2->expr_type != EXPR_VARIABLE))
9600 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9601 &code->expr2->where);
9602
9603 if (code->expr2
9604 && !gfc_check_vardef_context (code->expr2, false, false, false,
9605 _("STAT variable")))
9606 return;
9607
9608 /* Check ERRMSG. */
9609 if (code->expr3
9610 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9611 || code->expr3->expr_type != EXPR_VARIABLE))
9612 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9613 &code->expr3->where);
9614
9615 if (code->expr3
9616 && !gfc_check_vardef_context (code->expr3, false, false, false,
9617 _("ERRMSG variable")))
9618 return;
9619
9620 /* Check for LOCK the ACQUIRED_LOCK. */
9621 if (code->op != EXEC_EVENT_WAIT && code->expr4
9622 && (code->expr4->ts.type != BT_LOGICAL || code->expr4->rank != 0
9623 || code->expr4->expr_type != EXPR_VARIABLE))
9624 gfc_error ("ACQUIRED_LOCK= argument at %L must be a scalar LOGICAL "
9625 "variable", &code->expr4->where);
9626
9627 if (code->op != EXEC_EVENT_WAIT && code->expr4
9628 && !gfc_check_vardef_context (code->expr4, false, false, false,
9629 _("ACQUIRED_LOCK variable")))
9630 return;
9631
9632 /* Check for EVENT WAIT the UNTIL_COUNT. */
9633 if (code->op == EXEC_EVENT_WAIT && code->expr4)
9634 {
9635 if (!gfc_resolve_expr (code->expr4) || code->expr4->ts.type != BT_INTEGER
9636 || code->expr4->rank != 0)
9637 gfc_error ("UNTIL_COUNT= argument at %L must be a scalar INTEGER "
9638 "expression", &code->expr4->where);
9639 }
9640 }
9641
9642
9643 static void
9644 resolve_critical (gfc_code *code)
9645 {
9646 gfc_symtree *symtree;
9647 gfc_symbol *lock_type;
9648 char name[GFC_MAX_SYMBOL_LEN];
9649 static int serial = 0;
9650
9651 if (flag_coarray != GFC_FCOARRAY_LIB)
9652 return;
9653
9654 symtree = gfc_find_symtree (gfc_current_ns->sym_root,
9655 GFC_PREFIX ("lock_type"));
9656 if (symtree)
9657 lock_type = symtree->n.sym;
9658 else
9659 {
9660 if (gfc_get_sym_tree (GFC_PREFIX ("lock_type"), gfc_current_ns, &symtree,
9661 false) != 0)
9662 gcc_unreachable ();
9663 lock_type = symtree->n.sym;
9664 lock_type->attr.flavor = FL_DERIVED;
9665 lock_type->attr.zero_comp = 1;
9666 lock_type->from_intmod = INTMOD_ISO_FORTRAN_ENV;
9667 lock_type->intmod_sym_id = ISOFORTRAN_LOCK_TYPE;
9668 }
9669
9670 sprintf(name, GFC_PREFIX ("lock_var") "%d",serial++);
9671 if (gfc_get_sym_tree (name, gfc_current_ns, &symtree, false) != 0)
9672 gcc_unreachable ();
9673
9674 code->resolved_sym = symtree->n.sym;
9675 symtree->n.sym->attr.flavor = FL_VARIABLE;
9676 symtree->n.sym->attr.referenced = 1;
9677 symtree->n.sym->attr.artificial = 1;
9678 symtree->n.sym->attr.codimension = 1;
9679 symtree->n.sym->ts.type = BT_DERIVED;
9680 symtree->n.sym->ts.u.derived = lock_type;
9681 symtree->n.sym->as = gfc_get_array_spec ();
9682 symtree->n.sym->as->corank = 1;
9683 symtree->n.sym->as->type = AS_EXPLICIT;
9684 symtree->n.sym->as->cotype = AS_EXPLICIT;
9685 symtree->n.sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind,
9686 NULL, 1);
9687 gfc_commit_symbols();
9688 }
9689
9690
9691 static void
9692 resolve_sync (gfc_code *code)
9693 {
9694 /* Check imageset. The * case matches expr1 == NULL. */
9695 if (code->expr1)
9696 {
9697 if (code->expr1->ts.type != BT_INTEGER || code->expr1->rank > 1)
9698 gfc_error ("Imageset argument at %L must be a scalar or rank-1 "
9699 "INTEGER expression", &code->expr1->where);
9700 if (code->expr1->expr_type == EXPR_CONSTANT && code->expr1->rank == 0
9701 && mpz_cmp_si (code->expr1->value.integer, 1) < 0)
9702 gfc_error ("Imageset argument at %L must between 1 and num_images()",
9703 &code->expr1->where);
9704 else if (code->expr1->expr_type == EXPR_ARRAY
9705 && gfc_simplify_expr (code->expr1, 0))
9706 {
9707 gfc_constructor *cons;
9708 cons = gfc_constructor_first (code->expr1->value.constructor);
9709 for (; cons; cons = gfc_constructor_next (cons))
9710 if (cons->expr->expr_type == EXPR_CONSTANT
9711 && mpz_cmp_si (cons->expr->value.integer, 1) < 0)
9712 gfc_error ("Imageset argument at %L must between 1 and "
9713 "num_images()", &cons->expr->where);
9714 }
9715 }
9716
9717 /* Check STAT. */
9718 gfc_resolve_expr (code->expr2);
9719 if (code->expr2
9720 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9721 || code->expr2->expr_type != EXPR_VARIABLE))
9722 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9723 &code->expr2->where);
9724
9725 /* Check ERRMSG. */
9726 gfc_resolve_expr (code->expr3);
9727 if (code->expr3
9728 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9729 || code->expr3->expr_type != EXPR_VARIABLE))
9730 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9731 &code->expr3->where);
9732 }
9733
9734
9735 /* Given a branch to a label, see if the branch is conforming.
9736 The code node describes where the branch is located. */
9737
9738 static void
9739 resolve_branch (gfc_st_label *label, gfc_code *code)
9740 {
9741 code_stack *stack;
9742
9743 if (label == NULL)
9744 return;
9745
9746 /* Step one: is this a valid branching target? */
9747
9748 if (label->defined == ST_LABEL_UNKNOWN)
9749 {
9750 gfc_error ("Label %d referenced at %L is never defined", label->value,
9751 &code->loc);
9752 return;
9753 }
9754
9755 if (label->defined != ST_LABEL_TARGET && label->defined != ST_LABEL_DO_TARGET)
9756 {
9757 gfc_error ("Statement at %L is not a valid branch target statement "
9758 "for the branch statement at %L", &label->where, &code->loc);
9759 return;
9760 }
9761
9762 /* Step two: make sure this branch is not a branch to itself ;-) */
9763
9764 if (code->here == label)
9765 {
9766 gfc_warning (0,
9767 "Branch at %L may result in an infinite loop", &code->loc);
9768 return;
9769 }
9770
9771 /* Step three: See if the label is in the same block as the
9772 branching statement. The hard work has been done by setting up
9773 the bitmap reachable_labels. */
9774
9775 if (bitmap_bit_p (cs_base->reachable_labels, label->value))
9776 {
9777 /* Check now whether there is a CRITICAL construct; if so, check
9778 whether the label is still visible outside of the CRITICAL block,
9779 which is invalid. */
9780 for (stack = cs_base; stack; stack = stack->prev)
9781 {
9782 if (stack->current->op == EXEC_CRITICAL
9783 && bitmap_bit_p (stack->reachable_labels, label->value))
9784 gfc_error ("GOTO statement at %L leaves CRITICAL construct for "
9785 "label at %L", &code->loc, &label->where);
9786 else if (stack->current->op == EXEC_DO_CONCURRENT
9787 && bitmap_bit_p (stack->reachable_labels, label->value))
9788 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct "
9789 "for label at %L", &code->loc, &label->where);
9790 }
9791
9792 return;
9793 }
9794
9795 /* Step four: If we haven't found the label in the bitmap, it may
9796 still be the label of the END of the enclosing block, in which
9797 case we find it by going up the code_stack. */
9798
9799 for (stack = cs_base; stack; stack = stack->prev)
9800 {
9801 if (stack->current->next && stack->current->next->here == label)
9802 break;
9803 if (stack->current->op == EXEC_CRITICAL)
9804 {
9805 /* Note: A label at END CRITICAL does not leave the CRITICAL
9806 construct as END CRITICAL is still part of it. */
9807 gfc_error ("GOTO statement at %L leaves CRITICAL construct for label"
9808 " at %L", &code->loc, &label->where);
9809 return;
9810 }
9811 else if (stack->current->op == EXEC_DO_CONCURRENT)
9812 {
9813 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct for "
9814 "label at %L", &code->loc, &label->where);
9815 return;
9816 }
9817 }
9818
9819 if (stack)
9820 {
9821 gcc_assert (stack->current->next->op == EXEC_END_NESTED_BLOCK);
9822 return;
9823 }
9824
9825 /* The label is not in an enclosing block, so illegal. This was
9826 allowed in Fortran 66, so we allow it as extension. No
9827 further checks are necessary in this case. */
9828 gfc_notify_std (GFC_STD_LEGACY, "Label at %L is not in the same block "
9829 "as the GOTO statement at %L", &label->where,
9830 &code->loc);
9831 return;
9832 }
9833
9834
9835 /* Check whether EXPR1 has the same shape as EXPR2. */
9836
9837 static bool
9838 resolve_where_shape (gfc_expr *expr1, gfc_expr *expr2)
9839 {
9840 mpz_t shape[GFC_MAX_DIMENSIONS];
9841 mpz_t shape2[GFC_MAX_DIMENSIONS];
9842 bool result = false;
9843 int i;
9844
9845 /* Compare the rank. */
9846 if (expr1->rank != expr2->rank)
9847 return result;
9848
9849 /* Compare the size of each dimension. */
9850 for (i=0; i<expr1->rank; i++)
9851 {
9852 if (!gfc_array_dimen_size (expr1, i, &shape[i]))
9853 goto ignore;
9854
9855 if (!gfc_array_dimen_size (expr2, i, &shape2[i]))
9856 goto ignore;
9857
9858 if (mpz_cmp (shape[i], shape2[i]))
9859 goto over;
9860 }
9861
9862 /* When either of the two expression is an assumed size array, we
9863 ignore the comparison of dimension sizes. */
9864 ignore:
9865 result = true;
9866
9867 over:
9868 gfc_clear_shape (shape, i);
9869 gfc_clear_shape (shape2, i);
9870 return result;
9871 }
9872
9873
9874 /* Check whether a WHERE assignment target or a WHERE mask expression
9875 has the same shape as the outmost WHERE mask expression. */
9876
9877 static void
9878 resolve_where (gfc_code *code, gfc_expr *mask)
9879 {
9880 gfc_code *cblock;
9881 gfc_code *cnext;
9882 gfc_expr *e = NULL;
9883
9884 cblock = code->block;
9885
9886 /* Store the first WHERE mask-expr of the WHERE statement or construct.
9887 In case of nested WHERE, only the outmost one is stored. */
9888 if (mask == NULL) /* outmost WHERE */
9889 e = cblock->expr1;
9890 else /* inner WHERE */
9891 e = mask;
9892
9893 while (cblock)
9894 {
9895 if (cblock->expr1)
9896 {
9897 /* Check if the mask-expr has a consistent shape with the
9898 outmost WHERE mask-expr. */
9899 if (!resolve_where_shape (cblock->expr1, e))
9900 gfc_error ("WHERE mask at %L has inconsistent shape",
9901 &cblock->expr1->where);
9902 }
9903
9904 /* the assignment statement of a WHERE statement, or the first
9905 statement in where-body-construct of a WHERE construct */
9906 cnext = cblock->next;
9907 while (cnext)
9908 {
9909 switch (cnext->op)
9910 {
9911 /* WHERE assignment statement */
9912 case EXEC_ASSIGN:
9913
9914 /* Check shape consistent for WHERE assignment target. */
9915 if (e && !resolve_where_shape (cnext->expr1, e))
9916 gfc_error ("WHERE assignment target at %L has "
9917 "inconsistent shape", &cnext->expr1->where);
9918 break;
9919
9920
9921 case EXEC_ASSIGN_CALL:
9922 resolve_call (cnext);
9923 if (!cnext->resolved_sym->attr.elemental)
9924 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
9925 &cnext->ext.actual->expr->where);
9926 break;
9927
9928 /* WHERE or WHERE construct is part of a where-body-construct */
9929 case EXEC_WHERE:
9930 resolve_where (cnext, e);
9931 break;
9932
9933 default:
9934 gfc_error ("Unsupported statement inside WHERE at %L",
9935 &cnext->loc);
9936 }
9937 /* the next statement within the same where-body-construct */
9938 cnext = cnext->next;
9939 }
9940 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
9941 cblock = cblock->block;
9942 }
9943 }
9944
9945
9946 /* Resolve assignment in FORALL construct.
9947 NVAR is the number of FORALL index variables, and VAR_EXPR records the
9948 FORALL index variables. */
9949
9950 static void
9951 gfc_resolve_assign_in_forall (gfc_code *code, int nvar, gfc_expr **var_expr)
9952 {
9953 int n;
9954
9955 for (n = 0; n < nvar; n++)
9956 {
9957 gfc_symbol *forall_index;
9958
9959 forall_index = var_expr[n]->symtree->n.sym;
9960
9961 /* Check whether the assignment target is one of the FORALL index
9962 variable. */
9963 if ((code->expr1->expr_type == EXPR_VARIABLE)
9964 && (code->expr1->symtree->n.sym == forall_index))
9965 gfc_error ("Assignment to a FORALL index variable at %L",
9966 &code->expr1->where);
9967 else
9968 {
9969 /* If one of the FORALL index variables doesn't appear in the
9970 assignment variable, then there could be a many-to-one
9971 assignment. Emit a warning rather than an error because the
9972 mask could be resolving this problem. */
9973 if (!find_forall_index (code->expr1, forall_index, 0))
9974 gfc_warning (0, "The FORALL with index %qs is not used on the "
9975 "left side of the assignment at %L and so might "
9976 "cause multiple assignment to this object",
9977 var_expr[n]->symtree->name, &code->expr1->where);
9978 }
9979 }
9980 }
9981
9982
9983 /* Resolve WHERE statement in FORALL construct. */
9984
9985 static void
9986 gfc_resolve_where_code_in_forall (gfc_code *code, int nvar,
9987 gfc_expr **var_expr)
9988 {
9989 gfc_code *cblock;
9990 gfc_code *cnext;
9991
9992 cblock = code->block;
9993 while (cblock)
9994 {
9995 /* the assignment statement of a WHERE statement, or the first
9996 statement in where-body-construct of a WHERE construct */
9997 cnext = cblock->next;
9998 while (cnext)
9999 {
10000 switch (cnext->op)
10001 {
10002 /* WHERE assignment statement */
10003 case EXEC_ASSIGN:
10004 gfc_resolve_assign_in_forall (cnext, nvar, var_expr);
10005 break;
10006
10007 /* WHERE operator assignment statement */
10008 case EXEC_ASSIGN_CALL:
10009 resolve_call (cnext);
10010 if (!cnext->resolved_sym->attr.elemental)
10011 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
10012 &cnext->ext.actual->expr->where);
10013 break;
10014
10015 /* WHERE or WHERE construct is part of a where-body-construct */
10016 case EXEC_WHERE:
10017 gfc_resolve_where_code_in_forall (cnext, nvar, var_expr);
10018 break;
10019
10020 default:
10021 gfc_error ("Unsupported statement inside WHERE at %L",
10022 &cnext->loc);
10023 }
10024 /* the next statement within the same where-body-construct */
10025 cnext = cnext->next;
10026 }
10027 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
10028 cblock = cblock->block;
10029 }
10030 }
10031
10032
10033 /* Traverse the FORALL body to check whether the following errors exist:
10034 1. For assignment, check if a many-to-one assignment happens.
10035 2. For WHERE statement, check the WHERE body to see if there is any
10036 many-to-one assignment. */
10037
10038 static void
10039 gfc_resolve_forall_body (gfc_code *code, int nvar, gfc_expr **var_expr)
10040 {
10041 gfc_code *c;
10042
10043 c = code->block->next;
10044 while (c)
10045 {
10046 switch (c->op)
10047 {
10048 case EXEC_ASSIGN:
10049 case EXEC_POINTER_ASSIGN:
10050 gfc_resolve_assign_in_forall (c, nvar, var_expr);
10051 break;
10052
10053 case EXEC_ASSIGN_CALL:
10054 resolve_call (c);
10055 break;
10056
10057 /* Because the gfc_resolve_blocks() will handle the nested FORALL,
10058 there is no need to handle it here. */
10059 case EXEC_FORALL:
10060 break;
10061 case EXEC_WHERE:
10062 gfc_resolve_where_code_in_forall(c, nvar, var_expr);
10063 break;
10064 default:
10065 break;
10066 }
10067 /* The next statement in the FORALL body. */
10068 c = c->next;
10069 }
10070 }
10071
10072
10073 /* Counts the number of iterators needed inside a forall construct, including
10074 nested forall constructs. This is used to allocate the needed memory
10075 in gfc_resolve_forall. */
10076
10077 static int
10078 gfc_count_forall_iterators (gfc_code *code)
10079 {
10080 int max_iters, sub_iters, current_iters;
10081 gfc_forall_iterator *fa;
10082
10083 gcc_assert(code->op == EXEC_FORALL);
10084 max_iters = 0;
10085 current_iters = 0;
10086
10087 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
10088 current_iters ++;
10089
10090 code = code->block->next;
10091
10092 while (code)
10093 {
10094 if (code->op == EXEC_FORALL)
10095 {
10096 sub_iters = gfc_count_forall_iterators (code);
10097 if (sub_iters > max_iters)
10098 max_iters = sub_iters;
10099 }
10100 code = code->next;
10101 }
10102
10103 return current_iters + max_iters;
10104 }
10105
10106
10107 /* Given a FORALL construct, first resolve the FORALL iterator, then call
10108 gfc_resolve_forall_body to resolve the FORALL body. */
10109
10110 static void
10111 gfc_resolve_forall (gfc_code *code, gfc_namespace *ns, int forall_save)
10112 {
10113 static gfc_expr **var_expr;
10114 static int total_var = 0;
10115 static int nvar = 0;
10116 int i, old_nvar, tmp;
10117 gfc_forall_iterator *fa;
10118
10119 old_nvar = nvar;
10120
10121 if (!gfc_notify_std (GFC_STD_F2018_OBS, "FORALL construct at %L", &code->loc))
10122 return;
10123
10124 /* Start to resolve a FORALL construct */
10125 if (forall_save == 0)
10126 {
10127 /* Count the total number of FORALL indices in the nested FORALL
10128 construct in order to allocate the VAR_EXPR with proper size. */
10129 total_var = gfc_count_forall_iterators (code);
10130
10131 /* Allocate VAR_EXPR with NUMBER_OF_FORALL_INDEX elements. */
10132 var_expr = XCNEWVEC (gfc_expr *, total_var);
10133 }
10134
10135 /* The information about FORALL iterator, including FORALL indices start, end
10136 and stride. An outer FORALL indice cannot appear in start, end or stride. */
10137 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
10138 {
10139 /* Fortran 20008: C738 (R753). */
10140 if (fa->var->ref && fa->var->ref->type == REF_ARRAY)
10141 {
10142 gfc_error ("FORALL index-name at %L must be a scalar variable "
10143 "of type integer", &fa->var->where);
10144 continue;
10145 }
10146
10147 /* Check if any outer FORALL index name is the same as the current
10148 one. */
10149 for (i = 0; i < nvar; i++)
10150 {
10151 if (fa->var->symtree->n.sym == var_expr[i]->symtree->n.sym)
10152 gfc_error ("An outer FORALL construct already has an index "
10153 "with this name %L", &fa->var->where);
10154 }
10155
10156 /* Record the current FORALL index. */
10157 var_expr[nvar] = gfc_copy_expr (fa->var);
10158
10159 nvar++;
10160
10161 /* No memory leak. */
10162 gcc_assert (nvar <= total_var);
10163 }
10164
10165 /* Resolve the FORALL body. */
10166 gfc_resolve_forall_body (code, nvar, var_expr);
10167
10168 /* May call gfc_resolve_forall to resolve the inner FORALL loop. */
10169 gfc_resolve_blocks (code->block, ns);
10170
10171 tmp = nvar;
10172 nvar = old_nvar;
10173 /* Free only the VAR_EXPRs allocated in this frame. */
10174 for (i = nvar; i < tmp; i++)
10175 gfc_free_expr (var_expr[i]);
10176
10177 if (nvar == 0)
10178 {
10179 /* We are in the outermost FORALL construct. */
10180 gcc_assert (forall_save == 0);
10181
10182 /* VAR_EXPR is not needed any more. */
10183 free (var_expr);
10184 total_var = 0;
10185 }
10186 }
10187
10188
10189 /* Resolve a BLOCK construct statement. */
10190
10191 static void
10192 resolve_block_construct (gfc_code* code)
10193 {
10194 /* Resolve the BLOCK's namespace. */
10195 gfc_resolve (code->ext.block.ns);
10196
10197 /* For an ASSOCIATE block, the associations (and their targets) are already
10198 resolved during resolve_symbol. */
10199 }
10200
10201
10202 /* Resolve lists of blocks found in IF, SELECT CASE, WHERE, FORALL, GOTO and
10203 DO code nodes. */
10204
10205 void
10206 gfc_resolve_blocks (gfc_code *b, gfc_namespace *ns)
10207 {
10208 bool t;
10209
10210 for (; b; b = b->block)
10211 {
10212 t = gfc_resolve_expr (b->expr1);
10213 if (!gfc_resolve_expr (b->expr2))
10214 t = false;
10215
10216 switch (b->op)
10217 {
10218 case EXEC_IF:
10219 if (t && b->expr1 != NULL
10220 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank != 0))
10221 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
10222 &b->expr1->where);
10223 break;
10224
10225 case EXEC_WHERE:
10226 if (t
10227 && b->expr1 != NULL
10228 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank == 0))
10229 gfc_error ("WHERE/ELSEWHERE clause at %L requires a LOGICAL array",
10230 &b->expr1->where);
10231 break;
10232
10233 case EXEC_GOTO:
10234 resolve_branch (b->label1, b);
10235 break;
10236
10237 case EXEC_BLOCK:
10238 resolve_block_construct (b);
10239 break;
10240
10241 case EXEC_SELECT:
10242 case EXEC_SELECT_TYPE:
10243 case EXEC_FORALL:
10244 case EXEC_DO:
10245 case EXEC_DO_WHILE:
10246 case EXEC_DO_CONCURRENT:
10247 case EXEC_CRITICAL:
10248 case EXEC_READ:
10249 case EXEC_WRITE:
10250 case EXEC_IOLENGTH:
10251 case EXEC_WAIT:
10252 break;
10253
10254 case EXEC_OMP_ATOMIC:
10255 case EXEC_OACC_ATOMIC:
10256 {
10257 gfc_omp_atomic_op aop
10258 = (gfc_omp_atomic_op) (b->ext.omp_atomic & GFC_OMP_ATOMIC_MASK);
10259
10260 /* Verify this before calling gfc_resolve_code, which might
10261 change it. */
10262 gcc_assert (b->next && b->next->op == EXEC_ASSIGN);
10263 gcc_assert (((aop != GFC_OMP_ATOMIC_CAPTURE)
10264 && b->next->next == NULL)
10265 || ((aop == GFC_OMP_ATOMIC_CAPTURE)
10266 && b->next->next != NULL
10267 && b->next->next->op == EXEC_ASSIGN
10268 && b->next->next->next == NULL));
10269 }
10270 break;
10271
10272 case EXEC_OACC_PARALLEL_LOOP:
10273 case EXEC_OACC_PARALLEL:
10274 case EXEC_OACC_KERNELS_LOOP:
10275 case EXEC_OACC_KERNELS:
10276 case EXEC_OACC_DATA:
10277 case EXEC_OACC_HOST_DATA:
10278 case EXEC_OACC_LOOP:
10279 case EXEC_OACC_UPDATE:
10280 case EXEC_OACC_WAIT:
10281 case EXEC_OACC_CACHE:
10282 case EXEC_OACC_ENTER_DATA:
10283 case EXEC_OACC_EXIT_DATA:
10284 case EXEC_OACC_ROUTINE:
10285 case EXEC_OMP_CRITICAL:
10286 case EXEC_OMP_DISTRIBUTE:
10287 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
10288 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
10289 case EXEC_OMP_DISTRIBUTE_SIMD:
10290 case EXEC_OMP_DO:
10291 case EXEC_OMP_DO_SIMD:
10292 case EXEC_OMP_MASTER:
10293 case EXEC_OMP_ORDERED:
10294 case EXEC_OMP_PARALLEL:
10295 case EXEC_OMP_PARALLEL_DO:
10296 case EXEC_OMP_PARALLEL_DO_SIMD:
10297 case EXEC_OMP_PARALLEL_SECTIONS:
10298 case EXEC_OMP_PARALLEL_WORKSHARE:
10299 case EXEC_OMP_SECTIONS:
10300 case EXEC_OMP_SIMD:
10301 case EXEC_OMP_SINGLE:
10302 case EXEC_OMP_TARGET:
10303 case EXEC_OMP_TARGET_DATA:
10304 case EXEC_OMP_TARGET_ENTER_DATA:
10305 case EXEC_OMP_TARGET_EXIT_DATA:
10306 case EXEC_OMP_TARGET_PARALLEL:
10307 case EXEC_OMP_TARGET_PARALLEL_DO:
10308 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
10309 case EXEC_OMP_TARGET_SIMD:
10310 case EXEC_OMP_TARGET_TEAMS:
10311 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
10312 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
10313 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10314 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
10315 case EXEC_OMP_TARGET_UPDATE:
10316 case EXEC_OMP_TASK:
10317 case EXEC_OMP_TASKGROUP:
10318 case EXEC_OMP_TASKLOOP:
10319 case EXEC_OMP_TASKLOOP_SIMD:
10320 case EXEC_OMP_TASKWAIT:
10321 case EXEC_OMP_TASKYIELD:
10322 case EXEC_OMP_TEAMS:
10323 case EXEC_OMP_TEAMS_DISTRIBUTE:
10324 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
10325 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10326 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
10327 case EXEC_OMP_WORKSHARE:
10328 break;
10329
10330 default:
10331 gfc_internal_error ("gfc_resolve_blocks(): Bad block type");
10332 }
10333
10334 gfc_resolve_code (b->next, ns);
10335 }
10336 }
10337
10338
10339 /* Does everything to resolve an ordinary assignment. Returns true
10340 if this is an interface assignment. */
10341 static bool
10342 resolve_ordinary_assign (gfc_code *code, gfc_namespace *ns)
10343 {
10344 bool rval = false;
10345 gfc_expr *lhs;
10346 gfc_expr *rhs;
10347 int n;
10348 gfc_ref *ref;
10349 symbol_attribute attr;
10350
10351 if (gfc_extend_assign (code, ns))
10352 {
10353 gfc_expr** rhsptr;
10354
10355 if (code->op == EXEC_ASSIGN_CALL)
10356 {
10357 lhs = code->ext.actual->expr;
10358 rhsptr = &code->ext.actual->next->expr;
10359 }
10360 else
10361 {
10362 gfc_actual_arglist* args;
10363 gfc_typebound_proc* tbp;
10364
10365 gcc_assert (code->op == EXEC_COMPCALL);
10366
10367 args = code->expr1->value.compcall.actual;
10368 lhs = args->expr;
10369 rhsptr = &args->next->expr;
10370
10371 tbp = code->expr1->value.compcall.tbp;
10372 gcc_assert (!tbp->is_generic);
10373 }
10374
10375 /* Make a temporary rhs when there is a default initializer
10376 and rhs is the same symbol as the lhs. */
10377 if ((*rhsptr)->expr_type == EXPR_VARIABLE
10378 && (*rhsptr)->symtree->n.sym->ts.type == BT_DERIVED
10379 && gfc_has_default_initializer ((*rhsptr)->symtree->n.sym->ts.u.derived)
10380 && (lhs->symtree->n.sym == (*rhsptr)->symtree->n.sym))
10381 *rhsptr = gfc_get_parentheses (*rhsptr);
10382
10383 return true;
10384 }
10385
10386 lhs = code->expr1;
10387 rhs = code->expr2;
10388
10389 if (rhs->is_boz
10390 && !gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L outside "
10391 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
10392 &code->loc))
10393 return false;
10394
10395 /* Handle the case of a BOZ literal on the RHS. */
10396 if (rhs->is_boz && lhs->ts.type != BT_INTEGER)
10397 {
10398 int rc;
10399 if (warn_surprising)
10400 gfc_warning (OPT_Wsurprising,
10401 "BOZ literal at %L is bitwise transferred "
10402 "non-integer symbol %qs", &code->loc,
10403 lhs->symtree->n.sym->name);
10404
10405 if (!gfc_convert_boz (rhs, &lhs->ts))
10406 return false;
10407 if ((rc = gfc_range_check (rhs)) != ARITH_OK)
10408 {
10409 if (rc == ARITH_UNDERFLOW)
10410 gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
10411 ". This check can be disabled with the option "
10412 "%<-fno-range-check%>", &rhs->where);
10413 else if (rc == ARITH_OVERFLOW)
10414 gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
10415 ". This check can be disabled with the option "
10416 "%<-fno-range-check%>", &rhs->where);
10417 else if (rc == ARITH_NAN)
10418 gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
10419 ". This check can be disabled with the option "
10420 "%<-fno-range-check%>", &rhs->where);
10421 return false;
10422 }
10423 }
10424
10425 if (lhs->ts.type == BT_CHARACTER
10426 && warn_character_truncation)
10427 {
10428 HOST_WIDE_INT llen = 0, rlen = 0;
10429 if (lhs->ts.u.cl != NULL
10430 && lhs->ts.u.cl->length != NULL
10431 && lhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10432 llen = gfc_mpz_get_hwi (lhs->ts.u.cl->length->value.integer);
10433
10434 if (rhs->expr_type == EXPR_CONSTANT)
10435 rlen = rhs->value.character.length;
10436
10437 else if (rhs->ts.u.cl != NULL
10438 && rhs->ts.u.cl->length != NULL
10439 && rhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10440 rlen = gfc_mpz_get_hwi (rhs->ts.u.cl->length->value.integer);
10441
10442 if (rlen && llen && rlen > llen)
10443 gfc_warning_now (OPT_Wcharacter_truncation,
10444 "CHARACTER expression will be truncated "
10445 "in assignment (%ld/%ld) at %L",
10446 (long) llen, (long) rlen, &code->loc);
10447 }
10448
10449 /* Ensure that a vector index expression for the lvalue is evaluated
10450 to a temporary if the lvalue symbol is referenced in it. */
10451 if (lhs->rank)
10452 {
10453 for (ref = lhs->ref; ref; ref= ref->next)
10454 if (ref->type == REF_ARRAY)
10455 {
10456 for (n = 0; n < ref->u.ar.dimen; n++)
10457 if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR
10458 && gfc_find_sym_in_expr (lhs->symtree->n.sym,
10459 ref->u.ar.start[n]))
10460 ref->u.ar.start[n]
10461 = gfc_get_parentheses (ref->u.ar.start[n]);
10462 }
10463 }
10464
10465 if (gfc_pure (NULL))
10466 {
10467 if (lhs->ts.type == BT_DERIVED
10468 && lhs->expr_type == EXPR_VARIABLE
10469 && lhs->ts.u.derived->attr.pointer_comp
10470 && rhs->expr_type == EXPR_VARIABLE
10471 && (gfc_impure_variable (rhs->symtree->n.sym)
10472 || gfc_is_coindexed (rhs)))
10473 {
10474 /* F2008, C1283. */
10475 if (gfc_is_coindexed (rhs))
10476 gfc_error ("Coindexed expression at %L is assigned to "
10477 "a derived type variable with a POINTER "
10478 "component in a PURE procedure",
10479 &rhs->where);
10480 else
10481 gfc_error ("The impure variable at %L is assigned to "
10482 "a derived type variable with a POINTER "
10483 "component in a PURE procedure (12.6)",
10484 &rhs->where);
10485 return rval;
10486 }
10487
10488 /* Fortran 2008, C1283. */
10489 if (gfc_is_coindexed (lhs))
10490 {
10491 gfc_error ("Assignment to coindexed variable at %L in a PURE "
10492 "procedure", &rhs->where);
10493 return rval;
10494 }
10495 }
10496
10497 if (gfc_implicit_pure (NULL))
10498 {
10499 if (lhs->expr_type == EXPR_VARIABLE
10500 && lhs->symtree->n.sym != gfc_current_ns->proc_name
10501 && lhs->symtree->n.sym->ns != gfc_current_ns)
10502 gfc_unset_implicit_pure (NULL);
10503
10504 if (lhs->ts.type == BT_DERIVED
10505 && lhs->expr_type == EXPR_VARIABLE
10506 && lhs->ts.u.derived->attr.pointer_comp
10507 && rhs->expr_type == EXPR_VARIABLE
10508 && (gfc_impure_variable (rhs->symtree->n.sym)
10509 || gfc_is_coindexed (rhs)))
10510 gfc_unset_implicit_pure (NULL);
10511
10512 /* Fortran 2008, C1283. */
10513 if (gfc_is_coindexed (lhs))
10514 gfc_unset_implicit_pure (NULL);
10515 }
10516
10517 /* F2008, 7.2.1.2. */
10518 attr = gfc_expr_attr (lhs);
10519 if (lhs->ts.type == BT_CLASS && attr.allocatable)
10520 {
10521 if (attr.codimension)
10522 {
10523 gfc_error ("Assignment to polymorphic coarray at %L is not "
10524 "permitted", &lhs->where);
10525 return false;
10526 }
10527 if (!gfc_notify_std (GFC_STD_F2008, "Assignment to an allocatable "
10528 "polymorphic variable at %L", &lhs->where))
10529 return false;
10530 if (!flag_realloc_lhs)
10531 {
10532 gfc_error ("Assignment to an allocatable polymorphic variable at %L "
10533 "requires %<-frealloc-lhs%>", &lhs->where);
10534 return false;
10535 }
10536 }
10537 else if (lhs->ts.type == BT_CLASS)
10538 {
10539 gfc_error ("Nonallocatable variable must not be polymorphic in intrinsic "
10540 "assignment at %L - check that there is a matching specific "
10541 "subroutine for '=' operator", &lhs->where);
10542 return false;
10543 }
10544
10545 bool lhs_coindexed = gfc_is_coindexed (lhs);
10546
10547 /* F2008, Section 7.2.1.2. */
10548 if (lhs_coindexed && gfc_has_ultimate_allocatable (lhs))
10549 {
10550 gfc_error ("Coindexed variable must not have an allocatable ultimate "
10551 "component in assignment at %L", &lhs->where);
10552 return false;
10553 }
10554
10555 /* Assign the 'data' of a class object to a derived type. */
10556 if (lhs->ts.type == BT_DERIVED
10557 && rhs->ts.type == BT_CLASS
10558 && rhs->expr_type != EXPR_ARRAY)
10559 gfc_add_data_component (rhs);
10560
10561 /* Make sure there is a vtable and, in particular, a _copy for the
10562 rhs type. */
10563 if (UNLIMITED_POLY (lhs) && lhs->rank && rhs->ts.type != BT_CLASS)
10564 gfc_find_vtab (&rhs->ts);
10565
10566 bool caf_convert_to_send = flag_coarray == GFC_FCOARRAY_LIB
10567 && (lhs_coindexed
10568 || (code->expr2->expr_type == EXPR_FUNCTION
10569 && code->expr2->value.function.isym
10570 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET
10571 && (code->expr1->rank == 0 || code->expr2->rank != 0)
10572 && !gfc_expr_attr (rhs).allocatable
10573 && !gfc_has_vector_subscript (rhs)));
10574
10575 gfc_check_assign (lhs, rhs, 1, !caf_convert_to_send);
10576
10577 /* Insert a GFC_ISYM_CAF_SEND intrinsic, when the LHS is a coindexed variable.
10578 Additionally, insert this code when the RHS is a CAF as we then use the
10579 GFC_ISYM_CAF_SEND intrinsic just to avoid a temporary; but do not do so if
10580 the LHS is (re)allocatable or has a vector subscript. If the LHS is a
10581 noncoindexed array and the RHS is a coindexed scalar, use the normal code
10582 path. */
10583 if (caf_convert_to_send)
10584 {
10585 if (code->expr2->expr_type == EXPR_FUNCTION
10586 && code->expr2->value.function.isym
10587 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET)
10588 remove_caf_get_intrinsic (code->expr2);
10589 code->op = EXEC_CALL;
10590 gfc_get_sym_tree (GFC_PREFIX ("caf_send"), ns, &code->symtree, true);
10591 code->resolved_sym = code->symtree->n.sym;
10592 code->resolved_sym->attr.flavor = FL_PROCEDURE;
10593 code->resolved_sym->attr.intrinsic = 1;
10594 code->resolved_sym->attr.subroutine = 1;
10595 code->resolved_isym = gfc_intrinsic_subroutine_by_id (GFC_ISYM_CAF_SEND);
10596 gfc_commit_symbol (code->resolved_sym);
10597 code->ext.actual = gfc_get_actual_arglist ();
10598 code->ext.actual->expr = lhs;
10599 code->ext.actual->next = gfc_get_actual_arglist ();
10600 code->ext.actual->next->expr = rhs;
10601 code->expr1 = NULL;
10602 code->expr2 = NULL;
10603 }
10604
10605 return false;
10606 }
10607
10608
10609 /* Add a component reference onto an expression. */
10610
10611 static void
10612 add_comp_ref (gfc_expr *e, gfc_component *c)
10613 {
10614 gfc_ref **ref;
10615 ref = &(e->ref);
10616 while (*ref)
10617 ref = &((*ref)->next);
10618 *ref = gfc_get_ref ();
10619 (*ref)->type = REF_COMPONENT;
10620 (*ref)->u.c.sym = e->ts.u.derived;
10621 (*ref)->u.c.component = c;
10622 e->ts = c->ts;
10623
10624 /* Add a full array ref, as necessary. */
10625 if (c->as)
10626 {
10627 gfc_add_full_array_ref (e, c->as);
10628 e->rank = c->as->rank;
10629 }
10630 }
10631
10632
10633 /* Build an assignment. Keep the argument 'op' for future use, so that
10634 pointer assignments can be made. */
10635
10636 static gfc_code *
10637 build_assignment (gfc_exec_op op, gfc_expr *expr1, gfc_expr *expr2,
10638 gfc_component *comp1, gfc_component *comp2, locus loc)
10639 {
10640 gfc_code *this_code;
10641
10642 this_code = gfc_get_code (op);
10643 this_code->next = NULL;
10644 this_code->expr1 = gfc_copy_expr (expr1);
10645 this_code->expr2 = gfc_copy_expr (expr2);
10646 this_code->loc = loc;
10647 if (comp1 && comp2)
10648 {
10649 add_comp_ref (this_code->expr1, comp1);
10650 add_comp_ref (this_code->expr2, comp2);
10651 }
10652
10653 return this_code;
10654 }
10655
10656
10657 /* Makes a temporary variable expression based on the characteristics of
10658 a given variable expression. */
10659
10660 static gfc_expr*
10661 get_temp_from_expr (gfc_expr *e, gfc_namespace *ns)
10662 {
10663 static int serial = 0;
10664 char name[GFC_MAX_SYMBOL_LEN];
10665 gfc_symtree *tmp;
10666 gfc_array_spec *as;
10667 gfc_array_ref *aref;
10668 gfc_ref *ref;
10669
10670 sprintf (name, GFC_PREFIX("DA%d"), serial++);
10671 gfc_get_sym_tree (name, ns, &tmp, false);
10672 gfc_add_type (tmp->n.sym, &e->ts, NULL);
10673
10674 if (e->expr_type == EXPR_CONSTANT && e->ts.type == BT_CHARACTER)
10675 tmp->n.sym->ts.u.cl->length = gfc_get_int_expr (gfc_charlen_int_kind,
10676 NULL,
10677 e->value.character.length);
10678
10679 as = NULL;
10680 ref = NULL;
10681 aref = NULL;
10682
10683 /* Obtain the arrayspec for the temporary. */
10684 if (e->rank && e->expr_type != EXPR_ARRAY
10685 && e->expr_type != EXPR_FUNCTION
10686 && e->expr_type != EXPR_OP)
10687 {
10688 aref = gfc_find_array_ref (e);
10689 if (e->expr_type == EXPR_VARIABLE
10690 && e->symtree->n.sym->as == aref->as)
10691 as = aref->as;
10692 else
10693 {
10694 for (ref = e->ref; ref; ref = ref->next)
10695 if (ref->type == REF_COMPONENT
10696 && ref->u.c.component->as == aref->as)
10697 {
10698 as = aref->as;
10699 break;
10700 }
10701 }
10702 }
10703
10704 /* Add the attributes and the arrayspec to the temporary. */
10705 tmp->n.sym->attr = gfc_expr_attr (e);
10706 tmp->n.sym->attr.function = 0;
10707 tmp->n.sym->attr.result = 0;
10708 tmp->n.sym->attr.flavor = FL_VARIABLE;
10709 tmp->n.sym->attr.dummy = 0;
10710 tmp->n.sym->attr.intent = INTENT_UNKNOWN;
10711
10712 if (as)
10713 {
10714 tmp->n.sym->as = gfc_copy_array_spec (as);
10715 if (!ref)
10716 ref = e->ref;
10717 if (as->type == AS_DEFERRED)
10718 tmp->n.sym->attr.allocatable = 1;
10719 }
10720 else if (e->rank && (e->expr_type == EXPR_ARRAY
10721 || e->expr_type == EXPR_FUNCTION
10722 || e->expr_type == EXPR_OP))
10723 {
10724 tmp->n.sym->as = gfc_get_array_spec ();
10725 tmp->n.sym->as->type = AS_DEFERRED;
10726 tmp->n.sym->as->rank = e->rank;
10727 tmp->n.sym->attr.allocatable = 1;
10728 tmp->n.sym->attr.dimension = 1;
10729 }
10730 else
10731 tmp->n.sym->attr.dimension = 0;
10732
10733 gfc_set_sym_referenced (tmp->n.sym);
10734 gfc_commit_symbol (tmp->n.sym);
10735 e = gfc_lval_expr_from_sym (tmp->n.sym);
10736
10737 /* Should the lhs be a section, use its array ref for the
10738 temporary expression. */
10739 if (aref && aref->type != AR_FULL)
10740 {
10741 gfc_free_ref_list (e->ref);
10742 e->ref = gfc_copy_ref (ref);
10743 }
10744 return e;
10745 }
10746
10747
10748 /* Add one line of code to the code chain, making sure that 'head' and
10749 'tail' are appropriately updated. */
10750
10751 static void
10752 add_code_to_chain (gfc_code **this_code, gfc_code **head, gfc_code **tail)
10753 {
10754 gcc_assert (this_code);
10755 if (*head == NULL)
10756 *head = *tail = *this_code;
10757 else
10758 *tail = gfc_append_code (*tail, *this_code);
10759 *this_code = NULL;
10760 }
10761
10762
10763 /* Counts the potential number of part array references that would
10764 result from resolution of typebound defined assignments. */
10765
10766 static int
10767 nonscalar_typebound_assign (gfc_symbol *derived, int depth)
10768 {
10769 gfc_component *c;
10770 int c_depth = 0, t_depth;
10771
10772 for (c= derived->components; c; c = c->next)
10773 {
10774 if ((!gfc_bt_struct (c->ts.type)
10775 || c->attr.pointer
10776 || c->attr.allocatable
10777 || c->attr.proc_pointer_comp
10778 || c->attr.class_pointer
10779 || c->attr.proc_pointer)
10780 && !c->attr.defined_assign_comp)
10781 continue;
10782
10783 if (c->as && c_depth == 0)
10784 c_depth = 1;
10785
10786 if (c->ts.u.derived->attr.defined_assign_comp)
10787 t_depth = nonscalar_typebound_assign (c->ts.u.derived,
10788 c->as ? 1 : 0);
10789 else
10790 t_depth = 0;
10791
10792 c_depth = t_depth > c_depth ? t_depth : c_depth;
10793 }
10794 return depth + c_depth;
10795 }
10796
10797
10798 /* Implement 7.2.1.3 of the F08 standard:
10799 "An intrinsic assignment where the variable is of derived type is
10800 performed as if each component of the variable were assigned from the
10801 corresponding component of expr using pointer assignment (7.2.2) for
10802 each pointer component, defined assignment for each nonpointer
10803 nonallocatable component of a type that has a type-bound defined
10804 assignment consistent with the component, intrinsic assignment for
10805 each other nonpointer nonallocatable component, ..."
10806
10807 The pointer assignments are taken care of by the intrinsic
10808 assignment of the structure itself. This function recursively adds
10809 defined assignments where required. The recursion is accomplished
10810 by calling gfc_resolve_code.
10811
10812 When the lhs in a defined assignment has intent INOUT, we need a
10813 temporary for the lhs. In pseudo-code:
10814
10815 ! Only call function lhs once.
10816 if (lhs is not a constant or an variable)
10817 temp_x = expr2
10818 expr2 => temp_x
10819 ! Do the intrinsic assignment
10820 expr1 = expr2
10821 ! Now do the defined assignments
10822 do over components with typebound defined assignment [%cmp]
10823 #if one component's assignment procedure is INOUT
10824 t1 = expr1
10825 #if expr2 non-variable
10826 temp_x = expr2
10827 expr2 => temp_x
10828 # endif
10829 expr1 = expr2
10830 # for each cmp
10831 t1%cmp {defined=} expr2%cmp
10832 expr1%cmp = t1%cmp
10833 #else
10834 expr1 = expr2
10835
10836 # for each cmp
10837 expr1%cmp {defined=} expr2%cmp
10838 #endif
10839 */
10840
10841 /* The temporary assignments have to be put on top of the additional
10842 code to avoid the result being changed by the intrinsic assignment.
10843 */
10844 static int component_assignment_level = 0;
10845 static gfc_code *tmp_head = NULL, *tmp_tail = NULL;
10846
10847 static void
10848 generate_component_assignments (gfc_code **code, gfc_namespace *ns)
10849 {
10850 gfc_component *comp1, *comp2;
10851 gfc_code *this_code = NULL, *head = NULL, *tail = NULL;
10852 gfc_expr *t1;
10853 int error_count, depth;
10854
10855 gfc_get_errors (NULL, &error_count);
10856
10857 /* Filter out continuing processing after an error. */
10858 if (error_count
10859 || (*code)->expr1->ts.type != BT_DERIVED
10860 || (*code)->expr2->ts.type != BT_DERIVED)
10861 return;
10862
10863 /* TODO: Handle more than one part array reference in assignments. */
10864 depth = nonscalar_typebound_assign ((*code)->expr1->ts.u.derived,
10865 (*code)->expr1->rank ? 1 : 0);
10866 if (depth > 1)
10867 {
10868 gfc_warning (0, "TODO: type-bound defined assignment(s) at %L not "
10869 "done because multiple part array references would "
10870 "occur in intermediate expressions.", &(*code)->loc);
10871 return;
10872 }
10873
10874 component_assignment_level++;
10875
10876 /* Create a temporary so that functions get called only once. */
10877 if ((*code)->expr2->expr_type != EXPR_VARIABLE
10878 && (*code)->expr2->expr_type != EXPR_CONSTANT)
10879 {
10880 gfc_expr *tmp_expr;
10881
10882 /* Assign the rhs to the temporary. */
10883 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
10884 this_code = build_assignment (EXEC_ASSIGN,
10885 tmp_expr, (*code)->expr2,
10886 NULL, NULL, (*code)->loc);
10887 /* Add the code and substitute the rhs expression. */
10888 add_code_to_chain (&this_code, &tmp_head, &tmp_tail);
10889 gfc_free_expr ((*code)->expr2);
10890 (*code)->expr2 = tmp_expr;
10891 }
10892
10893 /* Do the intrinsic assignment. This is not needed if the lhs is one
10894 of the temporaries generated here, since the intrinsic assignment
10895 to the final result already does this. */
10896 if ((*code)->expr1->symtree->n.sym->name[2] != '@')
10897 {
10898 this_code = build_assignment (EXEC_ASSIGN,
10899 (*code)->expr1, (*code)->expr2,
10900 NULL, NULL, (*code)->loc);
10901 add_code_to_chain (&this_code, &head, &tail);
10902 }
10903
10904 comp1 = (*code)->expr1->ts.u.derived->components;
10905 comp2 = (*code)->expr2->ts.u.derived->components;
10906
10907 t1 = NULL;
10908 for (; comp1; comp1 = comp1->next, comp2 = comp2->next)
10909 {
10910 bool inout = false;
10911
10912 /* The intrinsic assignment does the right thing for pointers
10913 of all kinds and allocatable components. */
10914 if (!gfc_bt_struct (comp1->ts.type)
10915 || comp1->attr.pointer
10916 || comp1->attr.allocatable
10917 || comp1->attr.proc_pointer_comp
10918 || comp1->attr.class_pointer
10919 || comp1->attr.proc_pointer)
10920 continue;
10921
10922 /* Make an assigment for this component. */
10923 this_code = build_assignment (EXEC_ASSIGN,
10924 (*code)->expr1, (*code)->expr2,
10925 comp1, comp2, (*code)->loc);
10926
10927 /* Convert the assignment if there is a defined assignment for
10928 this type. Otherwise, using the call from gfc_resolve_code,
10929 recurse into its components. */
10930 gfc_resolve_code (this_code, ns);
10931
10932 if (this_code->op == EXEC_ASSIGN_CALL)
10933 {
10934 gfc_formal_arglist *dummy_args;
10935 gfc_symbol *rsym;
10936 /* Check that there is a typebound defined assignment. If not,
10937 then this must be a module defined assignment. We cannot
10938 use the defined_assign_comp attribute here because it must
10939 be this derived type that has the defined assignment and not
10940 a parent type. */
10941 if (!(comp1->ts.u.derived->f2k_derived
10942 && comp1->ts.u.derived->f2k_derived
10943 ->tb_op[INTRINSIC_ASSIGN]))
10944 {
10945 gfc_free_statements (this_code);
10946 this_code = NULL;
10947 continue;
10948 }
10949
10950 /* If the first argument of the subroutine has intent INOUT
10951 a temporary must be generated and used instead. */
10952 rsym = this_code->resolved_sym;
10953 dummy_args = gfc_sym_get_dummy_args (rsym);
10954 if (dummy_args
10955 && dummy_args->sym->attr.intent == INTENT_INOUT)
10956 {
10957 gfc_code *temp_code;
10958 inout = true;
10959
10960 /* Build the temporary required for the assignment and put
10961 it at the head of the generated code. */
10962 if (!t1)
10963 {
10964 t1 = get_temp_from_expr ((*code)->expr1, ns);
10965 temp_code = build_assignment (EXEC_ASSIGN,
10966 t1, (*code)->expr1,
10967 NULL, NULL, (*code)->loc);
10968
10969 /* For allocatable LHS, check whether it is allocated. Note
10970 that allocatable components with defined assignment are
10971 not yet support. See PR 57696. */
10972 if ((*code)->expr1->symtree->n.sym->attr.allocatable)
10973 {
10974 gfc_code *block;
10975 gfc_expr *e =
10976 gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
10977 block = gfc_get_code (EXEC_IF);
10978 block->block = gfc_get_code (EXEC_IF);
10979 block->block->expr1
10980 = gfc_build_intrinsic_call (ns,
10981 GFC_ISYM_ALLOCATED, "allocated",
10982 (*code)->loc, 1, e);
10983 block->block->next = temp_code;
10984 temp_code = block;
10985 }
10986 add_code_to_chain (&temp_code, &tmp_head, &tmp_tail);
10987 }
10988
10989 /* Replace the first actual arg with the component of the
10990 temporary. */
10991 gfc_free_expr (this_code->ext.actual->expr);
10992 this_code->ext.actual->expr = gfc_copy_expr (t1);
10993 add_comp_ref (this_code->ext.actual->expr, comp1);
10994
10995 /* If the LHS variable is allocatable and wasn't allocated and
10996 the temporary is allocatable, pointer assign the address of
10997 the freshly allocated LHS to the temporary. */
10998 if ((*code)->expr1->symtree->n.sym->attr.allocatable
10999 && gfc_expr_attr ((*code)->expr1).allocatable)
11000 {
11001 gfc_code *block;
11002 gfc_expr *cond;
11003
11004 cond = gfc_get_expr ();
11005 cond->ts.type = BT_LOGICAL;
11006 cond->ts.kind = gfc_default_logical_kind;
11007 cond->expr_type = EXPR_OP;
11008 cond->where = (*code)->loc;
11009 cond->value.op.op = INTRINSIC_NOT;
11010 cond->value.op.op1 = gfc_build_intrinsic_call (ns,
11011 GFC_ISYM_ALLOCATED, "allocated",
11012 (*code)->loc, 1, gfc_copy_expr (t1));
11013 block = gfc_get_code (EXEC_IF);
11014 block->block = gfc_get_code (EXEC_IF);
11015 block->block->expr1 = cond;
11016 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
11017 t1, (*code)->expr1,
11018 NULL, NULL, (*code)->loc);
11019 add_code_to_chain (&block, &head, &tail);
11020 }
11021 }
11022 }
11023 else if (this_code->op == EXEC_ASSIGN && !this_code->next)
11024 {
11025 /* Don't add intrinsic assignments since they are already
11026 effected by the intrinsic assignment of the structure. */
11027 gfc_free_statements (this_code);
11028 this_code = NULL;
11029 continue;
11030 }
11031
11032 add_code_to_chain (&this_code, &head, &tail);
11033
11034 if (t1 && inout)
11035 {
11036 /* Transfer the value to the final result. */
11037 this_code = build_assignment (EXEC_ASSIGN,
11038 (*code)->expr1, t1,
11039 comp1, comp2, (*code)->loc);
11040 add_code_to_chain (&this_code, &head, &tail);
11041 }
11042 }
11043
11044 /* Put the temporary assignments at the top of the generated code. */
11045 if (tmp_head && component_assignment_level == 1)
11046 {
11047 gfc_append_code (tmp_head, head);
11048 head = tmp_head;
11049 tmp_head = tmp_tail = NULL;
11050 }
11051
11052 // If we did a pointer assignment - thus, we need to ensure that the LHS is
11053 // not accidentally deallocated. Hence, nullify t1.
11054 if (t1 && (*code)->expr1->symtree->n.sym->attr.allocatable
11055 && gfc_expr_attr ((*code)->expr1).allocatable)
11056 {
11057 gfc_code *block;
11058 gfc_expr *cond;
11059 gfc_expr *e;
11060
11061 e = gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
11062 cond = gfc_build_intrinsic_call (ns, GFC_ISYM_ASSOCIATED, "associated",
11063 (*code)->loc, 2, gfc_copy_expr (t1), e);
11064 block = gfc_get_code (EXEC_IF);
11065 block->block = gfc_get_code (EXEC_IF);
11066 block->block->expr1 = cond;
11067 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
11068 t1, gfc_get_null_expr (&(*code)->loc),
11069 NULL, NULL, (*code)->loc);
11070 gfc_append_code (tail, block);
11071 tail = block;
11072 }
11073
11074 /* Now attach the remaining code chain to the input code. Step on
11075 to the end of the new code since resolution is complete. */
11076 gcc_assert ((*code)->op == EXEC_ASSIGN);
11077 tail->next = (*code)->next;
11078 /* Overwrite 'code' because this would place the intrinsic assignment
11079 before the temporary for the lhs is created. */
11080 gfc_free_expr ((*code)->expr1);
11081 gfc_free_expr ((*code)->expr2);
11082 **code = *head;
11083 if (head != tail)
11084 free (head);
11085 *code = tail;
11086
11087 component_assignment_level--;
11088 }
11089
11090
11091 /* F2008: Pointer function assignments are of the form:
11092 ptr_fcn (args) = expr
11093 This function breaks these assignments into two statements:
11094 temporary_pointer => ptr_fcn(args)
11095 temporary_pointer = expr */
11096
11097 static bool
11098 resolve_ptr_fcn_assign (gfc_code **code, gfc_namespace *ns)
11099 {
11100 gfc_expr *tmp_ptr_expr;
11101 gfc_code *this_code;
11102 gfc_component *comp;
11103 gfc_symbol *s;
11104
11105 if ((*code)->expr1->expr_type != EXPR_FUNCTION)
11106 return false;
11107
11108 /* Even if standard does not support this feature, continue to build
11109 the two statements to avoid upsetting frontend_passes.c. */
11110 gfc_notify_std (GFC_STD_F2008, "Pointer procedure assignment at "
11111 "%L", &(*code)->loc);
11112
11113 comp = gfc_get_proc_ptr_comp ((*code)->expr1);
11114
11115 if (comp)
11116 s = comp->ts.interface;
11117 else
11118 s = (*code)->expr1->symtree->n.sym;
11119
11120 if (s == NULL || !s->result->attr.pointer)
11121 {
11122 gfc_error ("The function result on the lhs of the assignment at "
11123 "%L must have the pointer attribute.",
11124 &(*code)->expr1->where);
11125 (*code)->op = EXEC_NOP;
11126 return false;
11127 }
11128
11129 tmp_ptr_expr = get_temp_from_expr ((*code)->expr2, ns);
11130
11131 /* get_temp_from_expression is set up for ordinary assignments. To that
11132 end, where array bounds are not known, arrays are made allocatable.
11133 Change the temporary to a pointer here. */
11134 tmp_ptr_expr->symtree->n.sym->attr.pointer = 1;
11135 tmp_ptr_expr->symtree->n.sym->attr.allocatable = 0;
11136 tmp_ptr_expr->where = (*code)->loc;
11137
11138 this_code = build_assignment (EXEC_ASSIGN,
11139 tmp_ptr_expr, (*code)->expr2,
11140 NULL, NULL, (*code)->loc);
11141 this_code->next = (*code)->next;
11142 (*code)->next = this_code;
11143 (*code)->op = EXEC_POINTER_ASSIGN;
11144 (*code)->expr2 = (*code)->expr1;
11145 (*code)->expr1 = tmp_ptr_expr;
11146
11147 return true;
11148 }
11149
11150
11151 /* Deferred character length assignments from an operator expression
11152 require a temporary because the character length of the lhs can
11153 change in the course of the assignment. */
11154
11155 static bool
11156 deferred_op_assign (gfc_code **code, gfc_namespace *ns)
11157 {
11158 gfc_expr *tmp_expr;
11159 gfc_code *this_code;
11160
11161 if (!((*code)->expr1->ts.type == BT_CHARACTER
11162 && (*code)->expr1->ts.deferred && (*code)->expr1->rank
11163 && (*code)->expr2->expr_type == EXPR_OP))
11164 return false;
11165
11166 if (!gfc_check_dependency ((*code)->expr1, (*code)->expr2, 1))
11167 return false;
11168
11169 if (gfc_expr_attr ((*code)->expr1).pointer)
11170 return false;
11171
11172 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
11173 tmp_expr->where = (*code)->loc;
11174
11175 /* A new charlen is required to ensure that the variable string
11176 length is different to that of the original lhs. */
11177 tmp_expr->ts.u.cl = gfc_get_charlen();
11178 tmp_expr->symtree->n.sym->ts.u.cl = tmp_expr->ts.u.cl;
11179 tmp_expr->ts.u.cl->next = (*code)->expr2->ts.u.cl->next;
11180 (*code)->expr2->ts.u.cl->next = tmp_expr->ts.u.cl;
11181
11182 tmp_expr->symtree->n.sym->ts.deferred = 1;
11183
11184 this_code = build_assignment (EXEC_ASSIGN,
11185 (*code)->expr1,
11186 gfc_copy_expr (tmp_expr),
11187 NULL, NULL, (*code)->loc);
11188
11189 (*code)->expr1 = tmp_expr;
11190
11191 this_code->next = (*code)->next;
11192 (*code)->next = this_code;
11193
11194 return true;
11195 }
11196
11197
11198 /* Given a block of code, recursively resolve everything pointed to by this
11199 code block. */
11200
11201 void
11202 gfc_resolve_code (gfc_code *code, gfc_namespace *ns)
11203 {
11204 int omp_workshare_save;
11205 int forall_save, do_concurrent_save;
11206 code_stack frame;
11207 bool t;
11208
11209 frame.prev = cs_base;
11210 frame.head = code;
11211 cs_base = &frame;
11212
11213 find_reachable_labels (code);
11214
11215 for (; code; code = code->next)
11216 {
11217 frame.current = code;
11218 forall_save = forall_flag;
11219 do_concurrent_save = gfc_do_concurrent_flag;
11220
11221 if (code->op == EXEC_FORALL)
11222 {
11223 forall_flag = 1;
11224 gfc_resolve_forall (code, ns, forall_save);
11225 forall_flag = 2;
11226 }
11227 else if (code->block)
11228 {
11229 omp_workshare_save = -1;
11230 switch (code->op)
11231 {
11232 case EXEC_OACC_PARALLEL_LOOP:
11233 case EXEC_OACC_PARALLEL:
11234 case EXEC_OACC_KERNELS_LOOP:
11235 case EXEC_OACC_KERNELS:
11236 case EXEC_OACC_DATA:
11237 case EXEC_OACC_HOST_DATA:
11238 case EXEC_OACC_LOOP:
11239 gfc_resolve_oacc_blocks (code, ns);
11240 break;
11241 case EXEC_OMP_PARALLEL_WORKSHARE:
11242 omp_workshare_save = omp_workshare_flag;
11243 omp_workshare_flag = 1;
11244 gfc_resolve_omp_parallel_blocks (code, ns);
11245 break;
11246 case EXEC_OMP_PARALLEL:
11247 case EXEC_OMP_PARALLEL_DO:
11248 case EXEC_OMP_PARALLEL_DO_SIMD:
11249 case EXEC_OMP_PARALLEL_SECTIONS:
11250 case EXEC_OMP_TARGET_PARALLEL:
11251 case EXEC_OMP_TARGET_PARALLEL_DO:
11252 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11253 case EXEC_OMP_TARGET_TEAMS:
11254 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11255 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11256 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11257 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11258 case EXEC_OMP_TASK:
11259 case EXEC_OMP_TASKLOOP:
11260 case EXEC_OMP_TASKLOOP_SIMD:
11261 case EXEC_OMP_TEAMS:
11262 case EXEC_OMP_TEAMS_DISTRIBUTE:
11263 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11264 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11265 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11266 omp_workshare_save = omp_workshare_flag;
11267 omp_workshare_flag = 0;
11268 gfc_resolve_omp_parallel_blocks (code, ns);
11269 break;
11270 case EXEC_OMP_DISTRIBUTE:
11271 case EXEC_OMP_DISTRIBUTE_SIMD:
11272 case EXEC_OMP_DO:
11273 case EXEC_OMP_DO_SIMD:
11274 case EXEC_OMP_SIMD:
11275 case EXEC_OMP_TARGET_SIMD:
11276 gfc_resolve_omp_do_blocks (code, ns);
11277 break;
11278 case EXEC_SELECT_TYPE:
11279 /* Blocks are handled in resolve_select_type because we have
11280 to transform the SELECT TYPE into ASSOCIATE first. */
11281 break;
11282 case EXEC_DO_CONCURRENT:
11283 gfc_do_concurrent_flag = 1;
11284 gfc_resolve_blocks (code->block, ns);
11285 gfc_do_concurrent_flag = 2;
11286 break;
11287 case EXEC_OMP_WORKSHARE:
11288 omp_workshare_save = omp_workshare_flag;
11289 omp_workshare_flag = 1;
11290 /* FALL THROUGH */
11291 default:
11292 gfc_resolve_blocks (code->block, ns);
11293 break;
11294 }
11295
11296 if (omp_workshare_save != -1)
11297 omp_workshare_flag = omp_workshare_save;
11298 }
11299 start:
11300 t = true;
11301 if (code->op != EXEC_COMPCALL && code->op != EXEC_CALL_PPC)
11302 t = gfc_resolve_expr (code->expr1);
11303 forall_flag = forall_save;
11304 gfc_do_concurrent_flag = do_concurrent_save;
11305
11306 if (!gfc_resolve_expr (code->expr2))
11307 t = false;
11308
11309 if (code->op == EXEC_ALLOCATE
11310 && !gfc_resolve_expr (code->expr3))
11311 t = false;
11312
11313 switch (code->op)
11314 {
11315 case EXEC_NOP:
11316 case EXEC_END_BLOCK:
11317 case EXEC_END_NESTED_BLOCK:
11318 case EXEC_CYCLE:
11319 case EXEC_PAUSE:
11320 case EXEC_STOP:
11321 case EXEC_ERROR_STOP:
11322 case EXEC_EXIT:
11323 case EXEC_CONTINUE:
11324 case EXEC_DT_END:
11325 case EXEC_ASSIGN_CALL:
11326 break;
11327
11328 case EXEC_CRITICAL:
11329 resolve_critical (code);
11330 break;
11331
11332 case EXEC_SYNC_ALL:
11333 case EXEC_SYNC_IMAGES:
11334 case EXEC_SYNC_MEMORY:
11335 resolve_sync (code);
11336 break;
11337
11338 case EXEC_LOCK:
11339 case EXEC_UNLOCK:
11340 case EXEC_EVENT_POST:
11341 case EXEC_EVENT_WAIT:
11342 resolve_lock_unlock_event (code);
11343 break;
11344
11345 case EXEC_FAIL_IMAGE:
11346 case EXEC_FORM_TEAM:
11347 case EXEC_CHANGE_TEAM:
11348 case EXEC_END_TEAM:
11349 case EXEC_SYNC_TEAM:
11350 break;
11351
11352 case EXEC_ENTRY:
11353 /* Keep track of which entry we are up to. */
11354 current_entry_id = code->ext.entry->id;
11355 break;
11356
11357 case EXEC_WHERE:
11358 resolve_where (code, NULL);
11359 break;
11360
11361 case EXEC_GOTO:
11362 if (code->expr1 != NULL)
11363 {
11364 if (code->expr1->ts.type != BT_INTEGER)
11365 gfc_error ("ASSIGNED GOTO statement at %L requires an "
11366 "INTEGER variable", &code->expr1->where);
11367 else if (code->expr1->symtree->n.sym->attr.assign != 1)
11368 gfc_error ("Variable %qs has not been assigned a target "
11369 "label at %L", code->expr1->symtree->n.sym->name,
11370 &code->expr1->where);
11371 }
11372 else
11373 resolve_branch (code->label1, code);
11374 break;
11375
11376 case EXEC_RETURN:
11377 if (code->expr1 != NULL
11378 && (code->expr1->ts.type != BT_INTEGER || code->expr1->rank))
11379 gfc_error ("Alternate RETURN statement at %L requires a SCALAR-"
11380 "INTEGER return specifier", &code->expr1->where);
11381 break;
11382
11383 case EXEC_INIT_ASSIGN:
11384 case EXEC_END_PROCEDURE:
11385 break;
11386
11387 case EXEC_ASSIGN:
11388 if (!t)
11389 break;
11390
11391 /* Remove a GFC_ISYM_CAF_GET inserted for a coindexed variable on
11392 the LHS. */
11393 if (code->expr1->expr_type == EXPR_FUNCTION
11394 && code->expr1->value.function.isym
11395 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
11396 remove_caf_get_intrinsic (code->expr1);
11397
11398 /* If this is a pointer function in an lvalue variable context,
11399 the new code will have to be resolved afresh. This is also the
11400 case with an error, where the code is transformed into NOP to
11401 prevent ICEs downstream. */
11402 if (resolve_ptr_fcn_assign (&code, ns)
11403 || code->op == EXEC_NOP)
11404 goto start;
11405
11406 if (!gfc_check_vardef_context (code->expr1, false, false, false,
11407 _("assignment")))
11408 break;
11409
11410 if (resolve_ordinary_assign (code, ns))
11411 {
11412 if (code->op == EXEC_COMPCALL)
11413 goto compcall;
11414 else
11415 goto call;
11416 }
11417
11418 /* Check for dependencies in deferred character length array
11419 assignments and generate a temporary, if necessary. */
11420 if (code->op == EXEC_ASSIGN && deferred_op_assign (&code, ns))
11421 break;
11422
11423 /* F03 7.4.1.3 for non-allocatable, non-pointer components. */
11424 if (code->op != EXEC_CALL && code->expr1->ts.type == BT_DERIVED
11425 && code->expr1->ts.u.derived
11426 && code->expr1->ts.u.derived->attr.defined_assign_comp)
11427 generate_component_assignments (&code, ns);
11428
11429 break;
11430
11431 case EXEC_LABEL_ASSIGN:
11432 if (code->label1->defined == ST_LABEL_UNKNOWN)
11433 gfc_error ("Label %d referenced at %L is never defined",
11434 code->label1->value, &code->label1->where);
11435 if (t
11436 && (code->expr1->expr_type != EXPR_VARIABLE
11437 || code->expr1->symtree->n.sym->ts.type != BT_INTEGER
11438 || code->expr1->symtree->n.sym->ts.kind
11439 != gfc_default_integer_kind
11440 || code->expr1->symtree->n.sym->as != NULL))
11441 gfc_error ("ASSIGN statement at %L requires a scalar "
11442 "default INTEGER variable", &code->expr1->where);
11443 break;
11444
11445 case EXEC_POINTER_ASSIGN:
11446 {
11447 gfc_expr* e;
11448
11449 if (!t)
11450 break;
11451
11452 /* This is both a variable definition and pointer assignment
11453 context, so check both of them. For rank remapping, a final
11454 array ref may be present on the LHS and fool gfc_expr_attr
11455 used in gfc_check_vardef_context. Remove it. */
11456 e = remove_last_array_ref (code->expr1);
11457 t = gfc_check_vardef_context (e, true, false, false,
11458 _("pointer assignment"));
11459 if (t)
11460 t = gfc_check_vardef_context (e, false, false, false,
11461 _("pointer assignment"));
11462 gfc_free_expr (e);
11463
11464 t = gfc_check_pointer_assign (code->expr1, code->expr2, !t) && t;
11465
11466 if (!t)
11467 break;
11468
11469 /* Assigning a class object always is a regular assign. */
11470 if (code->expr2->ts.type == BT_CLASS
11471 && code->expr1->ts.type == BT_CLASS
11472 && !CLASS_DATA (code->expr2)->attr.dimension
11473 && !(gfc_expr_attr (code->expr1).proc_pointer
11474 && code->expr2->expr_type == EXPR_VARIABLE
11475 && code->expr2->symtree->n.sym->attr.flavor
11476 == FL_PROCEDURE))
11477 code->op = EXEC_ASSIGN;
11478 break;
11479 }
11480
11481 case EXEC_ARITHMETIC_IF:
11482 {
11483 gfc_expr *e = code->expr1;
11484
11485 gfc_resolve_expr (e);
11486 if (e->expr_type == EXPR_NULL)
11487 gfc_error ("Invalid NULL at %L", &e->where);
11488
11489 if (t && (e->rank > 0
11490 || !(e->ts.type == BT_REAL || e->ts.type == BT_INTEGER)))
11491 gfc_error ("Arithmetic IF statement at %L requires a scalar "
11492 "REAL or INTEGER expression", &e->where);
11493
11494 resolve_branch (code->label1, code);
11495 resolve_branch (code->label2, code);
11496 resolve_branch (code->label3, code);
11497 }
11498 break;
11499
11500 case EXEC_IF:
11501 if (t && code->expr1 != NULL
11502 && (code->expr1->ts.type != BT_LOGICAL
11503 || code->expr1->rank != 0))
11504 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
11505 &code->expr1->where);
11506 break;
11507
11508 case EXEC_CALL:
11509 call:
11510 resolve_call (code);
11511 break;
11512
11513 case EXEC_COMPCALL:
11514 compcall:
11515 resolve_typebound_subroutine (code);
11516 break;
11517
11518 case EXEC_CALL_PPC:
11519 resolve_ppc_call (code);
11520 break;
11521
11522 case EXEC_SELECT:
11523 /* Select is complicated. Also, a SELECT construct could be
11524 a transformed computed GOTO. */
11525 resolve_select (code, false);
11526 break;
11527
11528 case EXEC_SELECT_TYPE:
11529 resolve_select_type (code, ns);
11530 break;
11531
11532 case EXEC_BLOCK:
11533 resolve_block_construct (code);
11534 break;
11535
11536 case EXEC_DO:
11537 if (code->ext.iterator != NULL)
11538 {
11539 gfc_iterator *iter = code->ext.iterator;
11540 if (gfc_resolve_iterator (iter, true, false))
11541 gfc_resolve_do_iterator (code, iter->var->symtree->n.sym,
11542 true);
11543 }
11544 break;
11545
11546 case EXEC_DO_WHILE:
11547 if (code->expr1 == NULL)
11548 gfc_internal_error ("gfc_resolve_code(): No expression on "
11549 "DO WHILE");
11550 if (t
11551 && (code->expr1->rank != 0
11552 || code->expr1->ts.type != BT_LOGICAL))
11553 gfc_error ("Exit condition of DO WHILE loop at %L must be "
11554 "a scalar LOGICAL expression", &code->expr1->where);
11555 break;
11556
11557 case EXEC_ALLOCATE:
11558 if (t)
11559 resolve_allocate_deallocate (code, "ALLOCATE");
11560
11561 break;
11562
11563 case EXEC_DEALLOCATE:
11564 if (t)
11565 resolve_allocate_deallocate (code, "DEALLOCATE");
11566
11567 break;
11568
11569 case EXEC_OPEN:
11570 if (!gfc_resolve_open (code->ext.open))
11571 break;
11572
11573 resolve_branch (code->ext.open->err, code);
11574 break;
11575
11576 case EXEC_CLOSE:
11577 if (!gfc_resolve_close (code->ext.close))
11578 break;
11579
11580 resolve_branch (code->ext.close->err, code);
11581 break;
11582
11583 case EXEC_BACKSPACE:
11584 case EXEC_ENDFILE:
11585 case EXEC_REWIND:
11586 case EXEC_FLUSH:
11587 if (!gfc_resolve_filepos (code->ext.filepos, &code->loc))
11588 break;
11589
11590 resolve_branch (code->ext.filepos->err, code);
11591 break;
11592
11593 case EXEC_INQUIRE:
11594 if (!gfc_resolve_inquire (code->ext.inquire))
11595 break;
11596
11597 resolve_branch (code->ext.inquire->err, code);
11598 break;
11599
11600 case EXEC_IOLENGTH:
11601 gcc_assert (code->ext.inquire != NULL);
11602 if (!gfc_resolve_inquire (code->ext.inquire))
11603 break;
11604
11605 resolve_branch (code->ext.inquire->err, code);
11606 break;
11607
11608 case EXEC_WAIT:
11609 if (!gfc_resolve_wait (code->ext.wait))
11610 break;
11611
11612 resolve_branch (code->ext.wait->err, code);
11613 resolve_branch (code->ext.wait->end, code);
11614 resolve_branch (code->ext.wait->eor, code);
11615 break;
11616
11617 case EXEC_READ:
11618 case EXEC_WRITE:
11619 if (!gfc_resolve_dt (code->ext.dt, &code->loc))
11620 break;
11621
11622 resolve_branch (code->ext.dt->err, code);
11623 resolve_branch (code->ext.dt->end, code);
11624 resolve_branch (code->ext.dt->eor, code);
11625 break;
11626
11627 case EXEC_TRANSFER:
11628 resolve_transfer (code);
11629 break;
11630
11631 case EXEC_DO_CONCURRENT:
11632 case EXEC_FORALL:
11633 resolve_forall_iterators (code->ext.forall_iterator);
11634
11635 if (code->expr1 != NULL
11636 && (code->expr1->ts.type != BT_LOGICAL || code->expr1->rank))
11637 gfc_error ("FORALL mask clause at %L requires a scalar LOGICAL "
11638 "expression", &code->expr1->where);
11639 break;
11640
11641 case EXEC_OACC_PARALLEL_LOOP:
11642 case EXEC_OACC_PARALLEL:
11643 case EXEC_OACC_KERNELS_LOOP:
11644 case EXEC_OACC_KERNELS:
11645 case EXEC_OACC_DATA:
11646 case EXEC_OACC_HOST_DATA:
11647 case EXEC_OACC_LOOP:
11648 case EXEC_OACC_UPDATE:
11649 case EXEC_OACC_WAIT:
11650 case EXEC_OACC_CACHE:
11651 case EXEC_OACC_ENTER_DATA:
11652 case EXEC_OACC_EXIT_DATA:
11653 case EXEC_OACC_ATOMIC:
11654 case EXEC_OACC_DECLARE:
11655 gfc_resolve_oacc_directive (code, ns);
11656 break;
11657
11658 case EXEC_OMP_ATOMIC:
11659 case EXEC_OMP_BARRIER:
11660 case EXEC_OMP_CANCEL:
11661 case EXEC_OMP_CANCELLATION_POINT:
11662 case EXEC_OMP_CRITICAL:
11663 case EXEC_OMP_FLUSH:
11664 case EXEC_OMP_DISTRIBUTE:
11665 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
11666 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
11667 case EXEC_OMP_DISTRIBUTE_SIMD:
11668 case EXEC_OMP_DO:
11669 case EXEC_OMP_DO_SIMD:
11670 case EXEC_OMP_MASTER:
11671 case EXEC_OMP_ORDERED:
11672 case EXEC_OMP_SECTIONS:
11673 case EXEC_OMP_SIMD:
11674 case EXEC_OMP_SINGLE:
11675 case EXEC_OMP_TARGET:
11676 case EXEC_OMP_TARGET_DATA:
11677 case EXEC_OMP_TARGET_ENTER_DATA:
11678 case EXEC_OMP_TARGET_EXIT_DATA:
11679 case EXEC_OMP_TARGET_PARALLEL:
11680 case EXEC_OMP_TARGET_PARALLEL_DO:
11681 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11682 case EXEC_OMP_TARGET_SIMD:
11683 case EXEC_OMP_TARGET_TEAMS:
11684 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11685 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11686 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11687 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11688 case EXEC_OMP_TARGET_UPDATE:
11689 case EXEC_OMP_TASK:
11690 case EXEC_OMP_TASKGROUP:
11691 case EXEC_OMP_TASKLOOP:
11692 case EXEC_OMP_TASKLOOP_SIMD:
11693 case EXEC_OMP_TASKWAIT:
11694 case EXEC_OMP_TASKYIELD:
11695 case EXEC_OMP_TEAMS:
11696 case EXEC_OMP_TEAMS_DISTRIBUTE:
11697 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11698 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11699 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11700 case EXEC_OMP_WORKSHARE:
11701 gfc_resolve_omp_directive (code, ns);
11702 break;
11703
11704 case EXEC_OMP_PARALLEL:
11705 case EXEC_OMP_PARALLEL_DO:
11706 case EXEC_OMP_PARALLEL_DO_SIMD:
11707 case EXEC_OMP_PARALLEL_SECTIONS:
11708 case EXEC_OMP_PARALLEL_WORKSHARE:
11709 omp_workshare_save = omp_workshare_flag;
11710 omp_workshare_flag = 0;
11711 gfc_resolve_omp_directive (code, ns);
11712 omp_workshare_flag = omp_workshare_save;
11713 break;
11714
11715 default:
11716 gfc_internal_error ("gfc_resolve_code(): Bad statement code");
11717 }
11718 }
11719
11720 cs_base = frame.prev;
11721 }
11722
11723
11724 /* Resolve initial values and make sure they are compatible with
11725 the variable. */
11726
11727 static void
11728 resolve_values (gfc_symbol *sym)
11729 {
11730 bool t;
11731
11732 if (sym->value == NULL)
11733 return;
11734
11735 if (sym->value->expr_type == EXPR_STRUCTURE)
11736 t= resolve_structure_cons (sym->value, 1);
11737 else
11738 t = gfc_resolve_expr (sym->value);
11739
11740 if (!t)
11741 return;
11742
11743 gfc_check_assign_symbol (sym, NULL, sym->value);
11744 }
11745
11746
11747 /* Verify any BIND(C) derived types in the namespace so we can report errors
11748 for them once, rather than for each variable declared of that type. */
11749
11750 static void
11751 resolve_bind_c_derived_types (gfc_symbol *derived_sym)
11752 {
11753 if (derived_sym != NULL && derived_sym->attr.flavor == FL_DERIVED
11754 && derived_sym->attr.is_bind_c == 1)
11755 verify_bind_c_derived_type (derived_sym);
11756
11757 return;
11758 }
11759
11760
11761 /* Check the interfaces of DTIO procedures associated with derived
11762 type 'sym'. These procedures can either have typebound bindings or
11763 can appear in DTIO generic interfaces. */
11764
11765 static void
11766 gfc_verify_DTIO_procedures (gfc_symbol *sym)
11767 {
11768 if (!sym || sym->attr.flavor != FL_DERIVED)
11769 return;
11770
11771 gfc_check_dtio_interfaces (sym);
11772
11773 return;
11774 }
11775
11776 /* Verify that any binding labels used in a given namespace do not collide
11777 with the names or binding labels of any global symbols. Multiple INTERFACE
11778 for the same procedure are permitted. */
11779
11780 static void
11781 gfc_verify_binding_labels (gfc_symbol *sym)
11782 {
11783 gfc_gsymbol *gsym;
11784 const char *module;
11785
11786 if (!sym || !sym->attr.is_bind_c || sym->attr.is_iso_c
11787 || sym->attr.flavor == FL_DERIVED || !sym->binding_label)
11788 return;
11789
11790 gsym = gfc_find_case_gsymbol (gfc_gsym_root, sym->binding_label);
11791
11792 if (sym->module)
11793 module = sym->module;
11794 else if (sym->ns && sym->ns->proc_name
11795 && sym->ns->proc_name->attr.flavor == FL_MODULE)
11796 module = sym->ns->proc_name->name;
11797 else if (sym->ns && sym->ns->parent
11798 && sym->ns && sym->ns->parent->proc_name
11799 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
11800 module = sym->ns->parent->proc_name->name;
11801 else
11802 module = NULL;
11803
11804 if (!gsym
11805 || (!gsym->defined
11806 && (gsym->type == GSYM_FUNCTION || gsym->type == GSYM_SUBROUTINE)))
11807 {
11808 if (!gsym)
11809 gsym = gfc_get_gsymbol (sym->binding_label);
11810 gsym->where = sym->declared_at;
11811 gsym->sym_name = sym->name;
11812 gsym->binding_label = sym->binding_label;
11813 gsym->ns = sym->ns;
11814 gsym->mod_name = module;
11815 if (sym->attr.function)
11816 gsym->type = GSYM_FUNCTION;
11817 else if (sym->attr.subroutine)
11818 gsym->type = GSYM_SUBROUTINE;
11819 /* Mark as variable/procedure as defined, unless its an INTERFACE. */
11820 gsym->defined = sym->attr.if_source != IFSRC_IFBODY;
11821 return;
11822 }
11823
11824 if (sym->attr.flavor == FL_VARIABLE && gsym->type != GSYM_UNKNOWN)
11825 {
11826 gfc_error ("Variable %qs with binding label %qs at %L uses the same global "
11827 "identifier as entity at %L", sym->name,
11828 sym->binding_label, &sym->declared_at, &gsym->where);
11829 /* Clear the binding label to prevent checking multiple times. */
11830 sym->binding_label = NULL;
11831 return;
11832 }
11833
11834 if (sym->attr.flavor == FL_VARIABLE && module
11835 && (strcmp (module, gsym->mod_name) != 0
11836 || strcmp (sym->name, gsym->sym_name) != 0))
11837 {
11838 /* This can only happen if the variable is defined in a module - if it
11839 isn't the same module, reject it. */
11840 gfc_error ("Variable %qs from module %qs with binding label %qs at %L "
11841 "uses the same global identifier as entity at %L from module %qs",
11842 sym->name, module, sym->binding_label,
11843 &sym->declared_at, &gsym->where, gsym->mod_name);
11844 sym->binding_label = NULL;
11845 return;
11846 }
11847
11848 if ((sym->attr.function || sym->attr.subroutine)
11849 && ((gsym->type != GSYM_SUBROUTINE && gsym->type != GSYM_FUNCTION)
11850 || (gsym->defined && sym->attr.if_source != IFSRC_IFBODY))
11851 && (sym != gsym->ns->proc_name && sym->attr.entry == 0)
11852 && (module != gsym->mod_name
11853 || strcmp (gsym->sym_name, sym->name) != 0
11854 || (module && strcmp (module, gsym->mod_name) != 0)))
11855 {
11856 /* Print an error if the procedure is defined multiple times; we have to
11857 exclude references to the same procedure via module association or
11858 multiple checks for the same procedure. */
11859 gfc_error ("Procedure %qs with binding label %qs at %L uses the same "
11860 "global identifier as entity at %L", sym->name,
11861 sym->binding_label, &sym->declared_at, &gsym->where);
11862 sym->binding_label = NULL;
11863 }
11864 }
11865
11866
11867 /* Resolve an index expression. */
11868
11869 static bool
11870 resolve_index_expr (gfc_expr *e)
11871 {
11872 if (!gfc_resolve_expr (e))
11873 return false;
11874
11875 if (!gfc_simplify_expr (e, 0))
11876 return false;
11877
11878 if (!gfc_specification_expr (e))
11879 return false;
11880
11881 return true;
11882 }
11883
11884
11885 /* Resolve a charlen structure. */
11886
11887 static bool
11888 resolve_charlen (gfc_charlen *cl)
11889 {
11890 int k;
11891 bool saved_specification_expr;
11892
11893 if (cl->resolved)
11894 return true;
11895
11896 cl->resolved = 1;
11897 saved_specification_expr = specification_expr;
11898 specification_expr = true;
11899
11900 if (cl->length_from_typespec)
11901 {
11902 if (!gfc_resolve_expr (cl->length))
11903 {
11904 specification_expr = saved_specification_expr;
11905 return false;
11906 }
11907
11908 if (!gfc_simplify_expr (cl->length, 0))
11909 {
11910 specification_expr = saved_specification_expr;
11911 return false;
11912 }
11913
11914 /* cl->length has been resolved. It should have an integer type. */
11915 if (cl->length->ts.type != BT_INTEGER)
11916 {
11917 gfc_error ("Scalar INTEGER expression expected at %L",
11918 &cl->length->where);
11919 return false;
11920 }
11921 }
11922 else
11923 {
11924 if (!resolve_index_expr (cl->length))
11925 {
11926 specification_expr = saved_specification_expr;
11927 return false;
11928 }
11929 }
11930
11931 /* F2008, 4.4.3.2: If the character length parameter value evaluates to
11932 a negative value, the length of character entities declared is zero. */
11933 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
11934 && mpz_sgn (cl->length->value.integer) < 0)
11935 gfc_replace_expr (cl->length,
11936 gfc_get_int_expr (gfc_charlen_int_kind, NULL, 0));
11937
11938 /* Check that the character length is not too large. */
11939 k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
11940 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
11941 && cl->length->ts.type == BT_INTEGER
11942 && mpz_cmp (cl->length->value.integer, gfc_integer_kinds[k].huge) > 0)
11943 {
11944 gfc_error ("String length at %L is too large", &cl->length->where);
11945 specification_expr = saved_specification_expr;
11946 return false;
11947 }
11948
11949 specification_expr = saved_specification_expr;
11950 return true;
11951 }
11952
11953
11954 /* Test for non-constant shape arrays. */
11955
11956 static bool
11957 is_non_constant_shape_array (gfc_symbol *sym)
11958 {
11959 gfc_expr *e;
11960 int i;
11961 bool not_constant;
11962
11963 not_constant = false;
11964 if (sym->as != NULL)
11965 {
11966 /* Unfortunately, !gfc_is_compile_time_shape hits a legal case that
11967 has not been simplified; parameter array references. Do the
11968 simplification now. */
11969 for (i = 0; i < sym->as->rank + sym->as->corank; i++)
11970 {
11971 e = sym->as->lower[i];
11972 if (e && (!resolve_index_expr(e)
11973 || !gfc_is_constant_expr (e)))
11974 not_constant = true;
11975 e = sym->as->upper[i];
11976 if (e && (!resolve_index_expr(e)
11977 || !gfc_is_constant_expr (e)))
11978 not_constant = true;
11979 }
11980 }
11981 return not_constant;
11982 }
11983
11984 /* Given a symbol and an initialization expression, add code to initialize
11985 the symbol to the function entry. */
11986 static void
11987 build_init_assign (gfc_symbol *sym, gfc_expr *init)
11988 {
11989 gfc_expr *lval;
11990 gfc_code *init_st;
11991 gfc_namespace *ns = sym->ns;
11992
11993 /* Search for the function namespace if this is a contained
11994 function without an explicit result. */
11995 if (sym->attr.function && sym == sym->result
11996 && sym->name != sym->ns->proc_name->name)
11997 {
11998 ns = ns->contained;
11999 for (;ns; ns = ns->sibling)
12000 if (strcmp (ns->proc_name->name, sym->name) == 0)
12001 break;
12002 }
12003
12004 if (ns == NULL)
12005 {
12006 gfc_free_expr (init);
12007 return;
12008 }
12009
12010 /* Build an l-value expression for the result. */
12011 lval = gfc_lval_expr_from_sym (sym);
12012
12013 /* Add the code at scope entry. */
12014 init_st = gfc_get_code (EXEC_INIT_ASSIGN);
12015 init_st->next = ns->code;
12016 ns->code = init_st;
12017
12018 /* Assign the default initializer to the l-value. */
12019 init_st->loc = sym->declared_at;
12020 init_st->expr1 = lval;
12021 init_st->expr2 = init;
12022 }
12023
12024
12025 /* Whether or not we can generate a default initializer for a symbol. */
12026
12027 static bool
12028 can_generate_init (gfc_symbol *sym)
12029 {
12030 symbol_attribute *a;
12031 if (!sym)
12032 return false;
12033 a = &sym->attr;
12034
12035 /* These symbols should never have a default initialization. */
12036 return !(
12037 a->allocatable
12038 || a->external
12039 || a->pointer
12040 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
12041 && (CLASS_DATA (sym)->attr.class_pointer
12042 || CLASS_DATA (sym)->attr.proc_pointer))
12043 || a->in_equivalence
12044 || a->in_common
12045 || a->data
12046 || sym->module
12047 || a->cray_pointee
12048 || a->cray_pointer
12049 || sym->assoc
12050 || (!a->referenced && !a->result)
12051 || (a->dummy && a->intent != INTENT_OUT)
12052 || (a->function && sym != sym->result)
12053 );
12054 }
12055
12056
12057 /* Assign the default initializer to a derived type variable or result. */
12058
12059 static void
12060 apply_default_init (gfc_symbol *sym)
12061 {
12062 gfc_expr *init = NULL;
12063
12064 if (sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
12065 return;
12066
12067 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived)
12068 init = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
12069
12070 if (init == NULL && sym->ts.type != BT_CLASS)
12071 return;
12072
12073 build_init_assign (sym, init);
12074 sym->attr.referenced = 1;
12075 }
12076
12077
12078 /* Build an initializer for a local. Returns null if the symbol should not have
12079 a default initialization. */
12080
12081 static gfc_expr *
12082 build_default_init_expr (gfc_symbol *sym)
12083 {
12084 /* These symbols should never have a default initialization. */
12085 if (sym->attr.allocatable
12086 || sym->attr.external
12087 || sym->attr.dummy
12088 || sym->attr.pointer
12089 || sym->attr.in_equivalence
12090 || sym->attr.in_common
12091 || sym->attr.data
12092 || sym->module
12093 || sym->attr.cray_pointee
12094 || sym->attr.cray_pointer
12095 || sym->assoc)
12096 return NULL;
12097
12098 /* Get the appropriate init expression. */
12099 return gfc_build_default_init_expr (&sym->ts, &sym->declared_at);
12100 }
12101
12102 /* Add an initialization expression to a local variable. */
12103 static void
12104 apply_default_init_local (gfc_symbol *sym)
12105 {
12106 gfc_expr *init = NULL;
12107
12108 /* The symbol should be a variable or a function return value. */
12109 if ((sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
12110 || (sym->attr.function && sym->result != sym))
12111 return;
12112
12113 /* Try to build the initializer expression. If we can't initialize
12114 this symbol, then init will be NULL. */
12115 init = build_default_init_expr (sym);
12116 if (init == NULL)
12117 return;
12118
12119 /* For saved variables, we don't want to add an initializer at function
12120 entry, so we just add a static initializer. Note that automatic variables
12121 are stack allocated even with -fno-automatic; we have also to exclude
12122 result variable, which are also nonstatic. */
12123 if (!sym->attr.automatic
12124 && (sym->attr.save || sym->ns->save_all
12125 || (flag_max_stack_var_size == 0 && !sym->attr.result
12126 && (sym->ns->proc_name && !sym->ns->proc_name->attr.recursive)
12127 && (!sym->attr.dimension || !is_non_constant_shape_array (sym)))))
12128 {
12129 /* Don't clobber an existing initializer! */
12130 gcc_assert (sym->value == NULL);
12131 sym->value = init;
12132 return;
12133 }
12134
12135 build_init_assign (sym, init);
12136 }
12137
12138
12139 /* Resolution of common features of flavors variable and procedure. */
12140
12141 static bool
12142 resolve_fl_var_and_proc (gfc_symbol *sym, int mp_flag)
12143 {
12144 gfc_array_spec *as;
12145
12146 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
12147 as = CLASS_DATA (sym)->as;
12148 else
12149 as = sym->as;
12150
12151 /* Constraints on deferred shape variable. */
12152 if (as == NULL || as->type != AS_DEFERRED)
12153 {
12154 bool pointer, allocatable, dimension;
12155
12156 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
12157 {
12158 pointer = CLASS_DATA (sym)->attr.class_pointer;
12159 allocatable = CLASS_DATA (sym)->attr.allocatable;
12160 dimension = CLASS_DATA (sym)->attr.dimension;
12161 }
12162 else
12163 {
12164 pointer = sym->attr.pointer && !sym->attr.select_type_temporary;
12165 allocatable = sym->attr.allocatable;
12166 dimension = sym->attr.dimension;
12167 }
12168
12169 if (allocatable)
12170 {
12171 if (dimension && as->type != AS_ASSUMED_RANK)
12172 {
12173 gfc_error ("Allocatable array %qs at %L must have a deferred "
12174 "shape or assumed rank", sym->name, &sym->declared_at);
12175 return false;
12176 }
12177 else if (!gfc_notify_std (GFC_STD_F2003, "Scalar object "
12178 "%qs at %L may not be ALLOCATABLE",
12179 sym->name, &sym->declared_at))
12180 return false;
12181 }
12182
12183 if (pointer && dimension && as->type != AS_ASSUMED_RANK)
12184 {
12185 gfc_error ("Array pointer %qs at %L must have a deferred shape or "
12186 "assumed rank", sym->name, &sym->declared_at);
12187 return false;
12188 }
12189 }
12190 else
12191 {
12192 if (!mp_flag && !sym->attr.allocatable && !sym->attr.pointer
12193 && sym->ts.type != BT_CLASS && !sym->assoc)
12194 {
12195 gfc_error ("Array %qs at %L cannot have a deferred shape",
12196 sym->name, &sym->declared_at);
12197 return false;
12198 }
12199 }
12200
12201 /* Constraints on polymorphic variables. */
12202 if (sym->ts.type == BT_CLASS && !(sym->result && sym->result != sym))
12203 {
12204 /* F03:C502. */
12205 if (sym->attr.class_ok
12206 && !sym->attr.select_type_temporary
12207 && !UNLIMITED_POLY (sym)
12208 && !gfc_type_is_extensible (CLASS_DATA (sym)->ts.u.derived))
12209 {
12210 gfc_error ("Type %qs of CLASS variable %qs at %L is not extensible",
12211 CLASS_DATA (sym)->ts.u.derived->name, sym->name,
12212 &sym->declared_at);
12213 return false;
12214 }
12215
12216 /* F03:C509. */
12217 /* Assume that use associated symbols were checked in the module ns.
12218 Class-variables that are associate-names are also something special
12219 and excepted from the test. */
12220 if (!sym->attr.class_ok && !sym->attr.use_assoc && !sym->assoc)
12221 {
12222 gfc_error ("CLASS variable %qs at %L must be dummy, allocatable "
12223 "or pointer", sym->name, &sym->declared_at);
12224 return false;
12225 }
12226 }
12227
12228 return true;
12229 }
12230
12231
12232 /* Additional checks for symbols with flavor variable and derived
12233 type. To be called from resolve_fl_variable. */
12234
12235 static bool
12236 resolve_fl_variable_derived (gfc_symbol *sym, int no_init_flag)
12237 {
12238 gcc_assert (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS);
12239
12240 /* Check to see if a derived type is blocked from being host
12241 associated by the presence of another class I symbol in the same
12242 namespace. 14.6.1.3 of the standard and the discussion on
12243 comp.lang.fortran. */
12244 if (sym->ns != sym->ts.u.derived->ns
12245 && !sym->ts.u.derived->attr.use_assoc
12246 && sym->ns->proc_name->attr.if_source != IFSRC_IFBODY)
12247 {
12248 gfc_symbol *s;
12249 gfc_find_symbol (sym->ts.u.derived->name, sym->ns, 0, &s);
12250 if (s && s->attr.generic)
12251 s = gfc_find_dt_in_generic (s);
12252 if (s && !gfc_fl_struct (s->attr.flavor))
12253 {
12254 gfc_error ("The type %qs cannot be host associated at %L "
12255 "because it is blocked by an incompatible object "
12256 "of the same name declared at %L",
12257 sym->ts.u.derived->name, &sym->declared_at,
12258 &s->declared_at);
12259 return false;
12260 }
12261 }
12262
12263 /* 4th constraint in section 11.3: "If an object of a type for which
12264 component-initialization is specified (R429) appears in the
12265 specification-part of a module and does not have the ALLOCATABLE
12266 or POINTER attribute, the object shall have the SAVE attribute."
12267
12268 The check for initializers is performed with
12269 gfc_has_default_initializer because gfc_default_initializer generates
12270 a hidden default for allocatable components. */
12271 if (!(sym->value || no_init_flag) && sym->ns->proc_name
12272 && sym->ns->proc_name->attr.flavor == FL_MODULE
12273 && !(sym->ns->save_all && !sym->attr.automatic) && !sym->attr.save
12274 && !sym->attr.pointer && !sym->attr.allocatable
12275 && gfc_has_default_initializer (sym->ts.u.derived)
12276 && !gfc_notify_std (GFC_STD_F2008, "Implied SAVE for module variable "
12277 "%qs at %L, needed due to the default "
12278 "initialization", sym->name, &sym->declared_at))
12279 return false;
12280
12281 /* Assign default initializer. */
12282 if (!(sym->value || sym->attr.pointer || sym->attr.allocatable)
12283 && (!no_init_flag || sym->attr.intent == INTENT_OUT))
12284 sym->value = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
12285
12286 return true;
12287 }
12288
12289
12290 /* F2008, C402 (R401): A colon shall not be used as a type-param-value
12291 except in the declaration of an entity or component that has the POINTER
12292 or ALLOCATABLE attribute. */
12293
12294 static bool
12295 deferred_requirements (gfc_symbol *sym)
12296 {
12297 if (sym->ts.deferred
12298 && !(sym->attr.pointer
12299 || sym->attr.allocatable
12300 || sym->attr.associate_var
12301 || sym->attr.omp_udr_artificial_var))
12302 {
12303 gfc_error ("Entity %qs at %L has a deferred type parameter and "
12304 "requires either the POINTER or ALLOCATABLE attribute",
12305 sym->name, &sym->declared_at);
12306 return false;
12307 }
12308 return true;
12309 }
12310
12311
12312 /* Resolve symbols with flavor variable. */
12313
12314 static bool
12315 resolve_fl_variable (gfc_symbol *sym, int mp_flag)
12316 {
12317 const char *auto_save_msg = "Automatic object %qs at %L cannot have the "
12318 "SAVE attribute";
12319
12320 if (!resolve_fl_var_and_proc (sym, mp_flag))
12321 return false;
12322
12323 /* Set this flag to check that variables are parameters of all entries.
12324 This check is effected by the call to gfc_resolve_expr through
12325 is_non_constant_shape_array. */
12326 bool saved_specification_expr = specification_expr;
12327 specification_expr = true;
12328
12329 if (sym->ns->proc_name
12330 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12331 || sym->ns->proc_name->attr.is_main_program)
12332 && !sym->attr.use_assoc
12333 && !sym->attr.allocatable
12334 && !sym->attr.pointer
12335 && is_non_constant_shape_array (sym))
12336 {
12337 /* F08:C541. The shape of an array defined in a main program or module
12338 * needs to be constant. */
12339 gfc_error ("The module or main program array %qs at %L must "
12340 "have constant shape", sym->name, &sym->declared_at);
12341 specification_expr = saved_specification_expr;
12342 return false;
12343 }
12344
12345 /* Constraints on deferred type parameter. */
12346 if (!deferred_requirements (sym))
12347 return false;
12348
12349 if (sym->ts.type == BT_CHARACTER && !sym->attr.associate_var)
12350 {
12351 /* Make sure that character string variables with assumed length are
12352 dummy arguments. */
12353 gfc_expr *e = NULL;
12354
12355 if (sym->ts.u.cl)
12356 e = sym->ts.u.cl->length;
12357 else
12358 return false;
12359
12360 if (e == NULL && !sym->attr.dummy && !sym->attr.result
12361 && !sym->ts.deferred && !sym->attr.select_type_temporary
12362 && !sym->attr.omp_udr_artificial_var)
12363 {
12364 gfc_error ("Entity with assumed character length at %L must be a "
12365 "dummy argument or a PARAMETER", &sym->declared_at);
12366 specification_expr = saved_specification_expr;
12367 return false;
12368 }
12369
12370 if (e && sym->attr.save == SAVE_EXPLICIT && !gfc_is_constant_expr (e))
12371 {
12372 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12373 specification_expr = saved_specification_expr;
12374 return false;
12375 }
12376
12377 if (!gfc_is_constant_expr (e)
12378 && !(e->expr_type == EXPR_VARIABLE
12379 && e->symtree->n.sym->attr.flavor == FL_PARAMETER))
12380 {
12381 if (!sym->attr.use_assoc && sym->ns->proc_name
12382 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12383 || sym->ns->proc_name->attr.is_main_program))
12384 {
12385 gfc_error ("%qs at %L must have constant character length "
12386 "in this context", sym->name, &sym->declared_at);
12387 specification_expr = saved_specification_expr;
12388 return false;
12389 }
12390 if (sym->attr.in_common)
12391 {
12392 gfc_error ("COMMON variable %qs at %L must have constant "
12393 "character length", sym->name, &sym->declared_at);
12394 specification_expr = saved_specification_expr;
12395 return false;
12396 }
12397 }
12398 }
12399
12400 if (sym->value == NULL && sym->attr.referenced)
12401 apply_default_init_local (sym); /* Try to apply a default initialization. */
12402
12403 /* Determine if the symbol may not have an initializer. */
12404 int no_init_flag = 0, automatic_flag = 0;
12405 if (sym->attr.allocatable || sym->attr.external || sym->attr.dummy
12406 || sym->attr.intrinsic || sym->attr.result)
12407 no_init_flag = 1;
12408 else if ((sym->attr.dimension || sym->attr.codimension) && !sym->attr.pointer
12409 && is_non_constant_shape_array (sym))
12410 {
12411 no_init_flag = automatic_flag = 1;
12412
12413 /* Also, they must not have the SAVE attribute.
12414 SAVE_IMPLICIT is checked below. */
12415 if (sym->as && sym->attr.codimension)
12416 {
12417 int corank = sym->as->corank;
12418 sym->as->corank = 0;
12419 no_init_flag = automatic_flag = is_non_constant_shape_array (sym);
12420 sym->as->corank = corank;
12421 }
12422 if (automatic_flag && sym->attr.save == SAVE_EXPLICIT)
12423 {
12424 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12425 specification_expr = saved_specification_expr;
12426 return false;
12427 }
12428 }
12429
12430 /* Ensure that any initializer is simplified. */
12431 if (sym->value)
12432 gfc_simplify_expr (sym->value, 1);
12433
12434 /* Reject illegal initializers. */
12435 if (!sym->mark && sym->value)
12436 {
12437 if (sym->attr.allocatable || (sym->ts.type == BT_CLASS
12438 && CLASS_DATA (sym)->attr.allocatable))
12439 gfc_error ("Allocatable %qs at %L cannot have an initializer",
12440 sym->name, &sym->declared_at);
12441 else if (sym->attr.external)
12442 gfc_error ("External %qs at %L cannot have an initializer",
12443 sym->name, &sym->declared_at);
12444 else if (sym->attr.dummy
12445 && !(sym->ts.type == BT_DERIVED && sym->attr.intent == INTENT_OUT))
12446 gfc_error ("Dummy %qs at %L cannot have an initializer",
12447 sym->name, &sym->declared_at);
12448 else if (sym->attr.intrinsic)
12449 gfc_error ("Intrinsic %qs at %L cannot have an initializer",
12450 sym->name, &sym->declared_at);
12451 else if (sym->attr.result)
12452 gfc_error ("Function result %qs at %L cannot have an initializer",
12453 sym->name, &sym->declared_at);
12454 else if (automatic_flag)
12455 gfc_error ("Automatic array %qs at %L cannot have an initializer",
12456 sym->name, &sym->declared_at);
12457 else
12458 goto no_init_error;
12459 specification_expr = saved_specification_expr;
12460 return false;
12461 }
12462
12463 no_init_error:
12464 if (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS)
12465 {
12466 bool res = resolve_fl_variable_derived (sym, no_init_flag);
12467 specification_expr = saved_specification_expr;
12468 return res;
12469 }
12470
12471 specification_expr = saved_specification_expr;
12472 return true;
12473 }
12474
12475
12476 /* Compare the dummy characteristics of a module procedure interface
12477 declaration with the corresponding declaration in a submodule. */
12478 static gfc_formal_arglist *new_formal;
12479 static char errmsg[200];
12480
12481 static void
12482 compare_fsyms (gfc_symbol *sym)
12483 {
12484 gfc_symbol *fsym;
12485
12486 if (sym == NULL || new_formal == NULL)
12487 return;
12488
12489 fsym = new_formal->sym;
12490
12491 if (sym == fsym)
12492 return;
12493
12494 if (strcmp (sym->name, fsym->name) == 0)
12495 {
12496 if (!gfc_check_dummy_characteristics (fsym, sym, true, errmsg, 200))
12497 gfc_error ("%s at %L", errmsg, &fsym->declared_at);
12498 }
12499 }
12500
12501
12502 /* Resolve a procedure. */
12503
12504 static bool
12505 resolve_fl_procedure (gfc_symbol *sym, int mp_flag)
12506 {
12507 gfc_formal_arglist *arg;
12508
12509 if (sym->attr.function
12510 && !resolve_fl_var_and_proc (sym, mp_flag))
12511 return false;
12512
12513 if (sym->ts.type == BT_CHARACTER)
12514 {
12515 gfc_charlen *cl = sym->ts.u.cl;
12516
12517 if (cl && cl->length && gfc_is_constant_expr (cl->length)
12518 && !resolve_charlen (cl))
12519 return false;
12520
12521 if ((!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
12522 && sym->attr.proc == PROC_ST_FUNCTION)
12523 {
12524 gfc_error ("Character-valued statement function %qs at %L must "
12525 "have constant length", sym->name, &sym->declared_at);
12526 return false;
12527 }
12528 }
12529
12530 /* Ensure that derived type for are not of a private type. Internal
12531 module procedures are excluded by 2.2.3.3 - i.e., they are not
12532 externally accessible and can access all the objects accessible in
12533 the host. */
12534 if (!(sym->ns->parent && sym->ns->parent->proc_name
12535 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
12536 && gfc_check_symbol_access (sym))
12537 {
12538 gfc_interface *iface;
12539
12540 for (arg = gfc_sym_get_dummy_args (sym); arg; arg = arg->next)
12541 {
12542 if (arg->sym
12543 && arg->sym->ts.type == BT_DERIVED
12544 && !arg->sym->ts.u.derived->attr.use_assoc
12545 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12546 && !gfc_notify_std (GFC_STD_F2003, "%qs is of a PRIVATE type "
12547 "and cannot be a dummy argument"
12548 " of %qs, which is PUBLIC at %L",
12549 arg->sym->name, sym->name,
12550 &sym->declared_at))
12551 {
12552 /* Stop this message from recurring. */
12553 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12554 return false;
12555 }
12556 }
12557
12558 /* PUBLIC interfaces may expose PRIVATE procedures that take types
12559 PRIVATE to the containing module. */
12560 for (iface = sym->generic; iface; iface = iface->next)
12561 {
12562 for (arg = gfc_sym_get_dummy_args (iface->sym); arg; arg = arg->next)
12563 {
12564 if (arg->sym
12565 && arg->sym->ts.type == BT_DERIVED
12566 && !arg->sym->ts.u.derived->attr.use_assoc
12567 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12568 && !gfc_notify_std (GFC_STD_F2003, "Procedure %qs in "
12569 "PUBLIC interface %qs at %L "
12570 "takes dummy arguments of %qs which "
12571 "is PRIVATE", iface->sym->name,
12572 sym->name, &iface->sym->declared_at,
12573 gfc_typename(&arg->sym->ts)))
12574 {
12575 /* Stop this message from recurring. */
12576 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12577 return false;
12578 }
12579 }
12580 }
12581 }
12582
12583 if (sym->attr.function && sym->value && sym->attr.proc != PROC_ST_FUNCTION
12584 && !sym->attr.proc_pointer)
12585 {
12586 gfc_error ("Function %qs at %L cannot have an initializer",
12587 sym->name, &sym->declared_at);
12588
12589 /* Make sure no second error is issued for this. */
12590 sym->value->error = 1;
12591 return false;
12592 }
12593
12594 /* An external symbol may not have an initializer because it is taken to be
12595 a procedure. Exception: Procedure Pointers. */
12596 if (sym->attr.external && sym->value && !sym->attr.proc_pointer)
12597 {
12598 gfc_error ("External object %qs at %L may not have an initializer",
12599 sym->name, &sym->declared_at);
12600 return false;
12601 }
12602
12603 /* An elemental function is required to return a scalar 12.7.1 */
12604 if (sym->attr.elemental && sym->attr.function
12605 && (sym->as || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)))
12606 {
12607 gfc_error ("ELEMENTAL function %qs at %L must have a scalar "
12608 "result", sym->name, &sym->declared_at);
12609 /* Reset so that the error only occurs once. */
12610 sym->attr.elemental = 0;
12611 return false;
12612 }
12613
12614 if (sym->attr.proc == PROC_ST_FUNCTION
12615 && (sym->attr.allocatable || sym->attr.pointer))
12616 {
12617 gfc_error ("Statement function %qs at %L may not have pointer or "
12618 "allocatable attribute", sym->name, &sym->declared_at);
12619 return false;
12620 }
12621
12622 /* 5.1.1.5 of the Standard: A function name declared with an asterisk
12623 char-len-param shall not be array-valued, pointer-valued, recursive
12624 or pure. ....snip... A character value of * may only be used in the
12625 following ways: (i) Dummy arg of procedure - dummy associates with
12626 actual length; (ii) To declare a named constant; or (iii) External
12627 function - but length must be declared in calling scoping unit. */
12628 if (sym->attr.function
12629 && sym->ts.type == BT_CHARACTER && !sym->ts.deferred
12630 && sym->ts.u.cl && sym->ts.u.cl->length == NULL)
12631 {
12632 if ((sym->as && sym->as->rank) || (sym->attr.pointer)
12633 || (sym->attr.recursive) || (sym->attr.pure))
12634 {
12635 if (sym->as && sym->as->rank)
12636 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12637 "array-valued", sym->name, &sym->declared_at);
12638
12639 if (sym->attr.pointer)
12640 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12641 "pointer-valued", sym->name, &sym->declared_at);
12642
12643 if (sym->attr.pure)
12644 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12645 "pure", sym->name, &sym->declared_at);
12646
12647 if (sym->attr.recursive)
12648 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12649 "recursive", sym->name, &sym->declared_at);
12650
12651 return false;
12652 }
12653
12654 /* Appendix B.2 of the standard. Contained functions give an
12655 error anyway. Deferred character length is an F2003 feature.
12656 Don't warn on intrinsic conversion functions, which start
12657 with two underscores. */
12658 if (!sym->attr.contained && !sym->ts.deferred
12659 && (sym->name[0] != '_' || sym->name[1] != '_'))
12660 gfc_notify_std (GFC_STD_F95_OBS,
12661 "CHARACTER(*) function %qs at %L",
12662 sym->name, &sym->declared_at);
12663 }
12664
12665 /* F2008, C1218. */
12666 if (sym->attr.elemental)
12667 {
12668 if (sym->attr.proc_pointer)
12669 {
12670 gfc_error ("Procedure pointer %qs at %L shall not be elemental",
12671 sym->name, &sym->declared_at);
12672 return false;
12673 }
12674 if (sym->attr.dummy)
12675 {
12676 gfc_error ("Dummy procedure %qs at %L shall not be elemental",
12677 sym->name, &sym->declared_at);
12678 return false;
12679 }
12680 }
12681
12682 /* F2018, C15100: "The result of an elemental function shall be scalar,
12683 and shall not have the POINTER or ALLOCATABLE attribute." The scalar
12684 pointer is tested and caught elsewhere. */
12685 if (sym->attr.elemental && sym->result
12686 && (sym->result->attr.allocatable || sym->result->attr.pointer))
12687 {
12688 gfc_error ("Function result variable %qs at %L of elemental "
12689 "function %qs shall not have an ALLOCATABLE or POINTER "
12690 "attribute", sym->result->name,
12691 &sym->result->declared_at, sym->name);
12692 return false;
12693 }
12694
12695 if (sym->attr.is_bind_c && sym->attr.is_c_interop != 1)
12696 {
12697 gfc_formal_arglist *curr_arg;
12698 int has_non_interop_arg = 0;
12699
12700 if (!verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
12701 sym->common_block))
12702 {
12703 /* Clear these to prevent looking at them again if there was an
12704 error. */
12705 sym->attr.is_bind_c = 0;
12706 sym->attr.is_c_interop = 0;
12707 sym->ts.is_c_interop = 0;
12708 }
12709 else
12710 {
12711 /* So far, no errors have been found. */
12712 sym->attr.is_c_interop = 1;
12713 sym->ts.is_c_interop = 1;
12714 }
12715
12716 curr_arg = gfc_sym_get_dummy_args (sym);
12717 while (curr_arg != NULL)
12718 {
12719 /* Skip implicitly typed dummy args here. */
12720 if (curr_arg->sym && curr_arg->sym->attr.implicit_type == 0)
12721 if (!gfc_verify_c_interop_param (curr_arg->sym))
12722 /* If something is found to fail, record the fact so we
12723 can mark the symbol for the procedure as not being
12724 BIND(C) to try and prevent multiple errors being
12725 reported. */
12726 has_non_interop_arg = 1;
12727
12728 curr_arg = curr_arg->next;
12729 }
12730
12731 /* See if any of the arguments were not interoperable and if so, clear
12732 the procedure symbol to prevent duplicate error messages. */
12733 if (has_non_interop_arg != 0)
12734 {
12735 sym->attr.is_c_interop = 0;
12736 sym->ts.is_c_interop = 0;
12737 sym->attr.is_bind_c = 0;
12738 }
12739 }
12740
12741 if (!sym->attr.proc_pointer)
12742 {
12743 if (sym->attr.save == SAVE_EXPLICIT)
12744 {
12745 gfc_error ("PROCEDURE attribute conflicts with SAVE attribute "
12746 "in %qs at %L", sym->name, &sym->declared_at);
12747 return false;
12748 }
12749 if (sym->attr.intent)
12750 {
12751 gfc_error ("PROCEDURE attribute conflicts with INTENT attribute "
12752 "in %qs at %L", sym->name, &sym->declared_at);
12753 return false;
12754 }
12755 if (sym->attr.subroutine && sym->attr.result)
12756 {
12757 gfc_error ("PROCEDURE attribute conflicts with RESULT attribute "
12758 "in %qs at %L", sym->name, &sym->declared_at);
12759 return false;
12760 }
12761 if (sym->attr.external && sym->attr.function && !sym->attr.module_procedure
12762 && ((sym->attr.if_source == IFSRC_DECL && !sym->attr.procedure)
12763 || sym->attr.contained))
12764 {
12765 gfc_error ("EXTERNAL attribute conflicts with FUNCTION attribute "
12766 "in %qs at %L", sym->name, &sym->declared_at);
12767 return false;
12768 }
12769 if (strcmp ("ppr@", sym->name) == 0)
12770 {
12771 gfc_error ("Procedure pointer result %qs at %L "
12772 "is missing the pointer attribute",
12773 sym->ns->proc_name->name, &sym->declared_at);
12774 return false;
12775 }
12776 }
12777
12778 /* Assume that a procedure whose body is not known has references
12779 to external arrays. */
12780 if (sym->attr.if_source != IFSRC_DECL)
12781 sym->attr.array_outer_dependency = 1;
12782
12783 /* Compare the characteristics of a module procedure with the
12784 interface declaration. Ideally this would be done with
12785 gfc_compare_interfaces but, at present, the formal interface
12786 cannot be copied to the ts.interface. */
12787 if (sym->attr.module_procedure
12788 && sym->attr.if_source == IFSRC_DECL)
12789 {
12790 gfc_symbol *iface;
12791 char name[2*GFC_MAX_SYMBOL_LEN + 1];
12792 char *module_name;
12793 char *submodule_name;
12794 strcpy (name, sym->ns->proc_name->name);
12795 module_name = strtok (name, ".");
12796 submodule_name = strtok (NULL, ".");
12797
12798 iface = sym->tlink;
12799 sym->tlink = NULL;
12800
12801 /* Make sure that the result uses the correct charlen for deferred
12802 length results. */
12803 if (iface && sym->result
12804 && iface->ts.type == BT_CHARACTER
12805 && iface->ts.deferred)
12806 sym->result->ts.u.cl = iface->ts.u.cl;
12807
12808 if (iface == NULL)
12809 goto check_formal;
12810
12811 /* Check the procedure characteristics. */
12812 if (sym->attr.elemental != iface->attr.elemental)
12813 {
12814 gfc_error ("Mismatch in ELEMENTAL attribute between MODULE "
12815 "PROCEDURE at %L and its interface in %s",
12816 &sym->declared_at, module_name);
12817 return false;
12818 }
12819
12820 if (sym->attr.pure != iface->attr.pure)
12821 {
12822 gfc_error ("Mismatch in PURE attribute between MODULE "
12823 "PROCEDURE at %L and its interface in %s",
12824 &sym->declared_at, module_name);
12825 return false;
12826 }
12827
12828 if (sym->attr.recursive != iface->attr.recursive)
12829 {
12830 gfc_error ("Mismatch in RECURSIVE attribute between MODULE "
12831 "PROCEDURE at %L and its interface in %s",
12832 &sym->declared_at, module_name);
12833 return false;
12834 }
12835
12836 /* Check the result characteristics. */
12837 if (!gfc_check_result_characteristics (sym, iface, errmsg, 200))
12838 {
12839 gfc_error ("%s between the MODULE PROCEDURE declaration "
12840 "in MODULE %qs and the declaration at %L in "
12841 "(SUB)MODULE %qs",
12842 errmsg, module_name, &sym->declared_at,
12843 submodule_name ? submodule_name : module_name);
12844 return false;
12845 }
12846
12847 check_formal:
12848 /* Check the characteristics of the formal arguments. */
12849 if (sym->formal && sym->formal_ns)
12850 {
12851 for (arg = sym->formal; arg && arg->sym; arg = arg->next)
12852 {
12853 new_formal = arg;
12854 gfc_traverse_ns (sym->formal_ns, compare_fsyms);
12855 }
12856 }
12857 }
12858 return true;
12859 }
12860
12861
12862 /* Resolve a list of finalizer procedures. That is, after they have hopefully
12863 been defined and we now know their defined arguments, check that they fulfill
12864 the requirements of the standard for procedures used as finalizers. */
12865
12866 static bool
12867 gfc_resolve_finalizers (gfc_symbol* derived, bool *finalizable)
12868 {
12869 gfc_finalizer* list;
12870 gfc_finalizer** prev_link; /* For removing wrong entries from the list. */
12871 bool result = true;
12872 bool seen_scalar = false;
12873 gfc_symbol *vtab;
12874 gfc_component *c;
12875 gfc_symbol *parent = gfc_get_derived_super_type (derived);
12876
12877 if (parent)
12878 gfc_resolve_finalizers (parent, finalizable);
12879
12880 /* Ensure that derived-type components have a their finalizers resolved. */
12881 bool has_final = derived->f2k_derived && derived->f2k_derived->finalizers;
12882 for (c = derived->components; c; c = c->next)
12883 if (c->ts.type == BT_DERIVED
12884 && !c->attr.pointer && !c->attr.proc_pointer && !c->attr.allocatable)
12885 {
12886 bool has_final2 = false;
12887 if (!gfc_resolve_finalizers (c->ts.u.derived, &has_final2))
12888 return false; /* Error. */
12889 has_final = has_final || has_final2;
12890 }
12891 /* Return early if not finalizable. */
12892 if (!has_final)
12893 {
12894 if (finalizable)
12895 *finalizable = false;
12896 return true;
12897 }
12898
12899 /* Walk over the list of finalizer-procedures, check them, and if any one
12900 does not fit in with the standard's definition, print an error and remove
12901 it from the list. */
12902 prev_link = &derived->f2k_derived->finalizers;
12903 for (list = derived->f2k_derived->finalizers; list; list = *prev_link)
12904 {
12905 gfc_formal_arglist *dummy_args;
12906 gfc_symbol* arg;
12907 gfc_finalizer* i;
12908 int my_rank;
12909
12910 /* Skip this finalizer if we already resolved it. */
12911 if (list->proc_tree)
12912 {
12913 if (list->proc_tree->n.sym->formal->sym->as == NULL
12914 || list->proc_tree->n.sym->formal->sym->as->rank == 0)
12915 seen_scalar = true;
12916 prev_link = &(list->next);
12917 continue;
12918 }
12919
12920 /* Check this exists and is a SUBROUTINE. */
12921 if (!list->proc_sym->attr.subroutine)
12922 {
12923 gfc_error ("FINAL procedure %qs at %L is not a SUBROUTINE",
12924 list->proc_sym->name, &list->where);
12925 goto error;
12926 }
12927
12928 /* We should have exactly one argument. */
12929 dummy_args = gfc_sym_get_dummy_args (list->proc_sym);
12930 if (!dummy_args || dummy_args->next)
12931 {
12932 gfc_error ("FINAL procedure at %L must have exactly one argument",
12933 &list->where);
12934 goto error;
12935 }
12936 arg = dummy_args->sym;
12937
12938 /* This argument must be of our type. */
12939 if (arg->ts.type != BT_DERIVED || arg->ts.u.derived != derived)
12940 {
12941 gfc_error ("Argument of FINAL procedure at %L must be of type %qs",
12942 &arg->declared_at, derived->name);
12943 goto error;
12944 }
12945
12946 /* It must neither be a pointer nor allocatable nor optional. */
12947 if (arg->attr.pointer)
12948 {
12949 gfc_error ("Argument of FINAL procedure at %L must not be a POINTER",
12950 &arg->declared_at);
12951 goto error;
12952 }
12953 if (arg->attr.allocatable)
12954 {
12955 gfc_error ("Argument of FINAL procedure at %L must not be"
12956 " ALLOCATABLE", &arg->declared_at);
12957 goto error;
12958 }
12959 if (arg->attr.optional)
12960 {
12961 gfc_error ("Argument of FINAL procedure at %L must not be OPTIONAL",
12962 &arg->declared_at);
12963 goto error;
12964 }
12965
12966 /* It must not be INTENT(OUT). */
12967 if (arg->attr.intent == INTENT_OUT)
12968 {
12969 gfc_error ("Argument of FINAL procedure at %L must not be"
12970 " INTENT(OUT)", &arg->declared_at);
12971 goto error;
12972 }
12973
12974 /* Warn if the procedure is non-scalar and not assumed shape. */
12975 if (warn_surprising && arg->as && arg->as->rank != 0
12976 && arg->as->type != AS_ASSUMED_SHAPE)
12977 gfc_warning (OPT_Wsurprising,
12978 "Non-scalar FINAL procedure at %L should have assumed"
12979 " shape argument", &arg->declared_at);
12980
12981 /* Check that it does not match in kind and rank with a FINAL procedure
12982 defined earlier. To really loop over the *earlier* declarations,
12983 we need to walk the tail of the list as new ones were pushed at the
12984 front. */
12985 /* TODO: Handle kind parameters once they are implemented. */
12986 my_rank = (arg->as ? arg->as->rank : 0);
12987 for (i = list->next; i; i = i->next)
12988 {
12989 gfc_formal_arglist *dummy_args;
12990
12991 /* Argument list might be empty; that is an error signalled earlier,
12992 but we nevertheless continued resolving. */
12993 dummy_args = gfc_sym_get_dummy_args (i->proc_sym);
12994 if (dummy_args)
12995 {
12996 gfc_symbol* i_arg = dummy_args->sym;
12997 const int i_rank = (i_arg->as ? i_arg->as->rank : 0);
12998 if (i_rank == my_rank)
12999 {
13000 gfc_error ("FINAL procedure %qs declared at %L has the same"
13001 " rank (%d) as %qs",
13002 list->proc_sym->name, &list->where, my_rank,
13003 i->proc_sym->name);
13004 goto error;
13005 }
13006 }
13007 }
13008
13009 /* Is this the/a scalar finalizer procedure? */
13010 if (my_rank == 0)
13011 seen_scalar = true;
13012
13013 /* Find the symtree for this procedure. */
13014 gcc_assert (!list->proc_tree);
13015 list->proc_tree = gfc_find_sym_in_symtree (list->proc_sym);
13016
13017 prev_link = &list->next;
13018 continue;
13019
13020 /* Remove wrong nodes immediately from the list so we don't risk any
13021 troubles in the future when they might fail later expectations. */
13022 error:
13023 i = list;
13024 *prev_link = list->next;
13025 gfc_free_finalizer (i);
13026 result = false;
13027 }
13028
13029 if (result == false)
13030 return false;
13031
13032 /* Warn if we haven't seen a scalar finalizer procedure (but we know there
13033 were nodes in the list, must have been for arrays. It is surely a good
13034 idea to have a scalar version there if there's something to finalize. */
13035 if (warn_surprising && derived->f2k_derived->finalizers && !seen_scalar)
13036 gfc_warning (OPT_Wsurprising,
13037 "Only array FINAL procedures declared for derived type %qs"
13038 " defined at %L, suggest also scalar one",
13039 derived->name, &derived->declared_at);
13040
13041 vtab = gfc_find_derived_vtab (derived);
13042 c = vtab->ts.u.derived->components->next->next->next->next->next;
13043 gfc_set_sym_referenced (c->initializer->symtree->n.sym);
13044
13045 if (finalizable)
13046 *finalizable = true;
13047
13048 return true;
13049 }
13050
13051
13052 /* Check if two GENERIC targets are ambiguous and emit an error is they are. */
13053
13054 static bool
13055 check_generic_tbp_ambiguity (gfc_tbp_generic* t1, gfc_tbp_generic* t2,
13056 const char* generic_name, locus where)
13057 {
13058 gfc_symbol *sym1, *sym2;
13059 const char *pass1, *pass2;
13060 gfc_formal_arglist *dummy_args;
13061
13062 gcc_assert (t1->specific && t2->specific);
13063 gcc_assert (!t1->specific->is_generic);
13064 gcc_assert (!t2->specific->is_generic);
13065 gcc_assert (t1->is_operator == t2->is_operator);
13066
13067 sym1 = t1->specific->u.specific->n.sym;
13068 sym2 = t2->specific->u.specific->n.sym;
13069
13070 if (sym1 == sym2)
13071 return true;
13072
13073 /* Both must be SUBROUTINEs or both must be FUNCTIONs. */
13074 if (sym1->attr.subroutine != sym2->attr.subroutine
13075 || sym1->attr.function != sym2->attr.function)
13076 {
13077 gfc_error ("%qs and %qs can't be mixed FUNCTION/SUBROUTINE for"
13078 " GENERIC %qs at %L",
13079 sym1->name, sym2->name, generic_name, &where);
13080 return false;
13081 }
13082
13083 /* Determine PASS arguments. */
13084 if (t1->specific->nopass)
13085 pass1 = NULL;
13086 else if (t1->specific->pass_arg)
13087 pass1 = t1->specific->pass_arg;
13088 else
13089 {
13090 dummy_args = gfc_sym_get_dummy_args (t1->specific->u.specific->n.sym);
13091 if (dummy_args)
13092 pass1 = dummy_args->sym->name;
13093 else
13094 pass1 = NULL;
13095 }
13096 if (t2->specific->nopass)
13097 pass2 = NULL;
13098 else if (t2->specific->pass_arg)
13099 pass2 = t2->specific->pass_arg;
13100 else
13101 {
13102 dummy_args = gfc_sym_get_dummy_args (t2->specific->u.specific->n.sym);
13103 if (dummy_args)
13104 pass2 = dummy_args->sym->name;
13105 else
13106 pass2 = NULL;
13107 }
13108
13109 /* Compare the interfaces. */
13110 if (gfc_compare_interfaces (sym1, sym2, sym2->name, !t1->is_operator, 0,
13111 NULL, 0, pass1, pass2))
13112 {
13113 gfc_error ("%qs and %qs for GENERIC %qs at %L are ambiguous",
13114 sym1->name, sym2->name, generic_name, &where);
13115 return false;
13116 }
13117
13118 return true;
13119 }
13120
13121
13122 /* Worker function for resolving a generic procedure binding; this is used to
13123 resolve GENERIC as well as user and intrinsic OPERATOR typebound procedures.
13124
13125 The difference between those cases is finding possible inherited bindings
13126 that are overridden, as one has to look for them in tb_sym_root,
13127 tb_uop_root or tb_op, respectively. Thus the caller must already find
13128 the super-type and set p->overridden correctly. */
13129
13130 static bool
13131 resolve_tb_generic_targets (gfc_symbol* super_type,
13132 gfc_typebound_proc* p, const char* name)
13133 {
13134 gfc_tbp_generic* target;
13135 gfc_symtree* first_target;
13136 gfc_symtree* inherited;
13137
13138 gcc_assert (p && p->is_generic);
13139
13140 /* Try to find the specific bindings for the symtrees in our target-list. */
13141 gcc_assert (p->u.generic);
13142 for (target = p->u.generic; target; target = target->next)
13143 if (!target->specific)
13144 {
13145 gfc_typebound_proc* overridden_tbp;
13146 gfc_tbp_generic* g;
13147 const char* target_name;
13148
13149 target_name = target->specific_st->name;
13150
13151 /* Defined for this type directly. */
13152 if (target->specific_st->n.tb && !target->specific_st->n.tb->error)
13153 {
13154 target->specific = target->specific_st->n.tb;
13155 goto specific_found;
13156 }
13157
13158 /* Look for an inherited specific binding. */
13159 if (super_type)
13160 {
13161 inherited = gfc_find_typebound_proc (super_type, NULL, target_name,
13162 true, NULL);
13163
13164 if (inherited)
13165 {
13166 gcc_assert (inherited->n.tb);
13167 target->specific = inherited->n.tb;
13168 goto specific_found;
13169 }
13170 }
13171
13172 gfc_error ("Undefined specific binding %qs as target of GENERIC %qs"
13173 " at %L", target_name, name, &p->where);
13174 return false;
13175
13176 /* Once we've found the specific binding, check it is not ambiguous with
13177 other specifics already found or inherited for the same GENERIC. */
13178 specific_found:
13179 gcc_assert (target->specific);
13180
13181 /* This must really be a specific binding! */
13182 if (target->specific->is_generic)
13183 {
13184 gfc_error ("GENERIC %qs at %L must target a specific binding,"
13185 " %qs is GENERIC, too", name, &p->where, target_name);
13186 return false;
13187 }
13188
13189 /* Check those already resolved on this type directly. */
13190 for (g = p->u.generic; g; g = g->next)
13191 if (g != target && g->specific
13192 && !check_generic_tbp_ambiguity (target, g, name, p->where))
13193 return false;
13194
13195 /* Check for ambiguity with inherited specific targets. */
13196 for (overridden_tbp = p->overridden; overridden_tbp;
13197 overridden_tbp = overridden_tbp->overridden)
13198 if (overridden_tbp->is_generic)
13199 {
13200 for (g = overridden_tbp->u.generic; g; g = g->next)
13201 {
13202 gcc_assert (g->specific);
13203 if (!check_generic_tbp_ambiguity (target, g, name, p->where))
13204 return false;
13205 }
13206 }
13207 }
13208
13209 /* If we attempt to "overwrite" a specific binding, this is an error. */
13210 if (p->overridden && !p->overridden->is_generic)
13211 {
13212 gfc_error ("GENERIC %qs at %L can't overwrite specific binding with"
13213 " the same name", name, &p->where);
13214 return false;
13215 }
13216
13217 /* Take the SUBROUTINE/FUNCTION attributes of the first specific target, as
13218 all must have the same attributes here. */
13219 first_target = p->u.generic->specific->u.specific;
13220 gcc_assert (first_target);
13221 p->subroutine = first_target->n.sym->attr.subroutine;
13222 p->function = first_target->n.sym->attr.function;
13223
13224 return true;
13225 }
13226
13227
13228 /* Resolve a GENERIC procedure binding for a derived type. */
13229
13230 static bool
13231 resolve_typebound_generic (gfc_symbol* derived, gfc_symtree* st)
13232 {
13233 gfc_symbol* super_type;
13234
13235 /* Find the overridden binding if any. */
13236 st->n.tb->overridden = NULL;
13237 super_type = gfc_get_derived_super_type (derived);
13238 if (super_type)
13239 {
13240 gfc_symtree* overridden;
13241 overridden = gfc_find_typebound_proc (super_type, NULL, st->name,
13242 true, NULL);
13243
13244 if (overridden && overridden->n.tb)
13245 st->n.tb->overridden = overridden->n.tb;
13246 }
13247
13248 /* Resolve using worker function. */
13249 return resolve_tb_generic_targets (super_type, st->n.tb, st->name);
13250 }
13251
13252
13253 /* Retrieve the target-procedure of an operator binding and do some checks in
13254 common for intrinsic and user-defined type-bound operators. */
13255
13256 static gfc_symbol*
13257 get_checked_tb_operator_target (gfc_tbp_generic* target, locus where)
13258 {
13259 gfc_symbol* target_proc;
13260
13261 gcc_assert (target->specific && !target->specific->is_generic);
13262 target_proc = target->specific->u.specific->n.sym;
13263 gcc_assert (target_proc);
13264
13265 /* F08:C468. All operator bindings must have a passed-object dummy argument. */
13266 if (target->specific->nopass)
13267 {
13268 gfc_error ("Type-bound operator at %L can't be NOPASS", &where);
13269 return NULL;
13270 }
13271
13272 return target_proc;
13273 }
13274
13275
13276 /* Resolve a type-bound intrinsic operator. */
13277
13278 static bool
13279 resolve_typebound_intrinsic_op (gfc_symbol* derived, gfc_intrinsic_op op,
13280 gfc_typebound_proc* p)
13281 {
13282 gfc_symbol* super_type;
13283 gfc_tbp_generic* target;
13284
13285 /* If there's already an error here, do nothing (but don't fail again). */
13286 if (p->error)
13287 return true;
13288
13289 /* Operators should always be GENERIC bindings. */
13290 gcc_assert (p->is_generic);
13291
13292 /* Look for an overridden binding. */
13293 super_type = gfc_get_derived_super_type (derived);
13294 if (super_type && super_type->f2k_derived)
13295 p->overridden = gfc_find_typebound_intrinsic_op (super_type, NULL,
13296 op, true, NULL);
13297 else
13298 p->overridden = NULL;
13299
13300 /* Resolve general GENERIC properties using worker function. */
13301 if (!resolve_tb_generic_targets (super_type, p, gfc_op2string(op)))
13302 goto error;
13303
13304 /* Check the targets to be procedures of correct interface. */
13305 for (target = p->u.generic; target; target = target->next)
13306 {
13307 gfc_symbol* target_proc;
13308
13309 target_proc = get_checked_tb_operator_target (target, p->where);
13310 if (!target_proc)
13311 goto error;
13312
13313 if (!gfc_check_operator_interface (target_proc, op, p->where))
13314 goto error;
13315
13316 /* Add target to non-typebound operator list. */
13317 if (!target->specific->deferred && !derived->attr.use_assoc
13318 && p->access != ACCESS_PRIVATE && derived->ns == gfc_current_ns)
13319 {
13320 gfc_interface *head, *intr;
13321
13322 /* Preempt 'gfc_check_new_interface' for submodules, where the
13323 mechanism for handling module procedures winds up resolving
13324 operator interfaces twice and would otherwise cause an error. */
13325 for (intr = derived->ns->op[op]; intr; intr = intr->next)
13326 if (intr->sym == target_proc
13327 && target_proc->attr.used_in_submodule)
13328 return true;
13329
13330 if (!gfc_check_new_interface (derived->ns->op[op],
13331 target_proc, p->where))
13332 return false;
13333 head = derived->ns->op[op];
13334 intr = gfc_get_interface ();
13335 intr->sym = target_proc;
13336 intr->where = p->where;
13337 intr->next = head;
13338 derived->ns->op[op] = intr;
13339 }
13340 }
13341
13342 return true;
13343
13344 error:
13345 p->error = 1;
13346 return false;
13347 }
13348
13349
13350 /* Resolve a type-bound user operator (tree-walker callback). */
13351
13352 static gfc_symbol* resolve_bindings_derived;
13353 static bool resolve_bindings_result;
13354
13355 static bool check_uop_procedure (gfc_symbol* sym, locus where);
13356
13357 static void
13358 resolve_typebound_user_op (gfc_symtree* stree)
13359 {
13360 gfc_symbol* super_type;
13361 gfc_tbp_generic* target;
13362
13363 gcc_assert (stree && stree->n.tb);
13364
13365 if (stree->n.tb->error)
13366 return;
13367
13368 /* Operators should always be GENERIC bindings. */
13369 gcc_assert (stree->n.tb->is_generic);
13370
13371 /* Find overridden procedure, if any. */
13372 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13373 if (super_type && super_type->f2k_derived)
13374 {
13375 gfc_symtree* overridden;
13376 overridden = gfc_find_typebound_user_op (super_type, NULL,
13377 stree->name, true, NULL);
13378
13379 if (overridden && overridden->n.tb)
13380 stree->n.tb->overridden = overridden->n.tb;
13381 }
13382 else
13383 stree->n.tb->overridden = NULL;
13384
13385 /* Resolve basically using worker function. */
13386 if (!resolve_tb_generic_targets (super_type, stree->n.tb, stree->name))
13387 goto error;
13388
13389 /* Check the targets to be functions of correct interface. */
13390 for (target = stree->n.tb->u.generic; target; target = target->next)
13391 {
13392 gfc_symbol* target_proc;
13393
13394 target_proc = get_checked_tb_operator_target (target, stree->n.tb->where);
13395 if (!target_proc)
13396 goto error;
13397
13398 if (!check_uop_procedure (target_proc, stree->n.tb->where))
13399 goto error;
13400 }
13401
13402 return;
13403
13404 error:
13405 resolve_bindings_result = false;
13406 stree->n.tb->error = 1;
13407 }
13408
13409
13410 /* Resolve the type-bound procedures for a derived type. */
13411
13412 static void
13413 resolve_typebound_procedure (gfc_symtree* stree)
13414 {
13415 gfc_symbol* proc;
13416 locus where;
13417 gfc_symbol* me_arg;
13418 gfc_symbol* super_type;
13419 gfc_component* comp;
13420
13421 gcc_assert (stree);
13422
13423 /* Undefined specific symbol from GENERIC target definition. */
13424 if (!stree->n.tb)
13425 return;
13426
13427 if (stree->n.tb->error)
13428 return;
13429
13430 /* If this is a GENERIC binding, use that routine. */
13431 if (stree->n.tb->is_generic)
13432 {
13433 if (!resolve_typebound_generic (resolve_bindings_derived, stree))
13434 goto error;
13435 return;
13436 }
13437
13438 /* Get the target-procedure to check it. */
13439 gcc_assert (!stree->n.tb->is_generic);
13440 gcc_assert (stree->n.tb->u.specific);
13441 proc = stree->n.tb->u.specific->n.sym;
13442 where = stree->n.tb->where;
13443
13444 /* Default access should already be resolved from the parser. */
13445 gcc_assert (stree->n.tb->access != ACCESS_UNKNOWN);
13446
13447 if (stree->n.tb->deferred)
13448 {
13449 if (!check_proc_interface (proc, &where))
13450 goto error;
13451 }
13452 else
13453 {
13454 /* Check for F08:C465. */
13455 if ((!proc->attr.subroutine && !proc->attr.function)
13456 || (proc->attr.proc != PROC_MODULE
13457 && proc->attr.if_source != IFSRC_IFBODY)
13458 || proc->attr.abstract)
13459 {
13460 gfc_error ("%qs must be a module procedure or an external procedure with"
13461 " an explicit interface at %L", proc->name, &where);
13462 goto error;
13463 }
13464 }
13465
13466 stree->n.tb->subroutine = proc->attr.subroutine;
13467 stree->n.tb->function = proc->attr.function;
13468
13469 /* Find the super-type of the current derived type. We could do this once and
13470 store in a global if speed is needed, but as long as not I believe this is
13471 more readable and clearer. */
13472 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13473
13474 /* If PASS, resolve and check arguments if not already resolved / loaded
13475 from a .mod file. */
13476 if (!stree->n.tb->nopass && stree->n.tb->pass_arg_num == 0)
13477 {
13478 gfc_formal_arglist *dummy_args;
13479
13480 dummy_args = gfc_sym_get_dummy_args (proc);
13481 if (stree->n.tb->pass_arg)
13482 {
13483 gfc_formal_arglist *i;
13484
13485 /* If an explicit passing argument name is given, walk the arg-list
13486 and look for it. */
13487
13488 me_arg = NULL;
13489 stree->n.tb->pass_arg_num = 1;
13490 for (i = dummy_args; i; i = i->next)
13491 {
13492 if (!strcmp (i->sym->name, stree->n.tb->pass_arg))
13493 {
13494 me_arg = i->sym;
13495 break;
13496 }
13497 ++stree->n.tb->pass_arg_num;
13498 }
13499
13500 if (!me_arg)
13501 {
13502 gfc_error ("Procedure %qs with PASS(%s) at %L has no"
13503 " argument %qs",
13504 proc->name, stree->n.tb->pass_arg, &where,
13505 stree->n.tb->pass_arg);
13506 goto error;
13507 }
13508 }
13509 else
13510 {
13511 /* Otherwise, take the first one; there should in fact be at least
13512 one. */
13513 stree->n.tb->pass_arg_num = 1;
13514 if (!dummy_args)
13515 {
13516 gfc_error ("Procedure %qs with PASS at %L must have at"
13517 " least one argument", proc->name, &where);
13518 goto error;
13519 }
13520 me_arg = dummy_args->sym;
13521 }
13522
13523 /* Now check that the argument-type matches and the passed-object
13524 dummy argument is generally fine. */
13525
13526 gcc_assert (me_arg);
13527
13528 if (me_arg->ts.type != BT_CLASS)
13529 {
13530 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13531 " at %L", proc->name, &where);
13532 goto error;
13533 }
13534
13535 if (CLASS_DATA (me_arg)->ts.u.derived
13536 != resolve_bindings_derived)
13537 {
13538 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13539 " the derived-type %qs", me_arg->name, proc->name,
13540 me_arg->name, &where, resolve_bindings_derived->name);
13541 goto error;
13542 }
13543
13544 gcc_assert (me_arg->ts.type == BT_CLASS);
13545 if (CLASS_DATA (me_arg)->as && CLASS_DATA (me_arg)->as->rank != 0)
13546 {
13547 gfc_error ("Passed-object dummy argument of %qs at %L must be"
13548 " scalar", proc->name, &where);
13549 goto error;
13550 }
13551 if (CLASS_DATA (me_arg)->attr.allocatable)
13552 {
13553 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13554 " be ALLOCATABLE", proc->name, &where);
13555 goto error;
13556 }
13557 if (CLASS_DATA (me_arg)->attr.class_pointer)
13558 {
13559 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13560 " be POINTER", proc->name, &where);
13561 goto error;
13562 }
13563 }
13564
13565 /* If we are extending some type, check that we don't override a procedure
13566 flagged NON_OVERRIDABLE. */
13567 stree->n.tb->overridden = NULL;
13568 if (super_type)
13569 {
13570 gfc_symtree* overridden;
13571 overridden = gfc_find_typebound_proc (super_type, NULL,
13572 stree->name, true, NULL);
13573
13574 if (overridden)
13575 {
13576 if (overridden->n.tb)
13577 stree->n.tb->overridden = overridden->n.tb;
13578
13579 if (!gfc_check_typebound_override (stree, overridden))
13580 goto error;
13581 }
13582 }
13583
13584 /* See if there's a name collision with a component directly in this type. */
13585 for (comp = resolve_bindings_derived->components; comp; comp = comp->next)
13586 if (!strcmp (comp->name, stree->name))
13587 {
13588 gfc_error ("Procedure %qs at %L has the same name as a component of"
13589 " %qs",
13590 stree->name, &where, resolve_bindings_derived->name);
13591 goto error;
13592 }
13593
13594 /* Try to find a name collision with an inherited component. */
13595 if (super_type && gfc_find_component (super_type, stree->name, true, true,
13596 NULL))
13597 {
13598 gfc_error ("Procedure %qs at %L has the same name as an inherited"
13599 " component of %qs",
13600 stree->name, &where, resolve_bindings_derived->name);
13601 goto error;
13602 }
13603
13604 stree->n.tb->error = 0;
13605 return;
13606
13607 error:
13608 resolve_bindings_result = false;
13609 stree->n.tb->error = 1;
13610 }
13611
13612
13613 static bool
13614 resolve_typebound_procedures (gfc_symbol* derived)
13615 {
13616 int op;
13617 gfc_symbol* super_type;
13618
13619 if (!derived->f2k_derived || !derived->f2k_derived->tb_sym_root)
13620 return true;
13621
13622 super_type = gfc_get_derived_super_type (derived);
13623 if (super_type)
13624 resolve_symbol (super_type);
13625
13626 resolve_bindings_derived = derived;
13627 resolve_bindings_result = true;
13628
13629 if (derived->f2k_derived->tb_sym_root)
13630 gfc_traverse_symtree (derived->f2k_derived->tb_sym_root,
13631 &resolve_typebound_procedure);
13632
13633 if (derived->f2k_derived->tb_uop_root)
13634 gfc_traverse_symtree (derived->f2k_derived->tb_uop_root,
13635 &resolve_typebound_user_op);
13636
13637 for (op = 0; op != GFC_INTRINSIC_OPS; ++op)
13638 {
13639 gfc_typebound_proc* p = derived->f2k_derived->tb_op[op];
13640 if (p && !resolve_typebound_intrinsic_op (derived,
13641 (gfc_intrinsic_op)op, p))
13642 resolve_bindings_result = false;
13643 }
13644
13645 return resolve_bindings_result;
13646 }
13647
13648
13649 /* Add a derived type to the dt_list. The dt_list is used in trans-types.c
13650 to give all identical derived types the same backend_decl. */
13651 static void
13652 add_dt_to_dt_list (gfc_symbol *derived)
13653 {
13654 if (!derived->dt_next)
13655 {
13656 if (gfc_derived_types)
13657 {
13658 derived->dt_next = gfc_derived_types->dt_next;
13659 gfc_derived_types->dt_next = derived;
13660 }
13661 else
13662 {
13663 derived->dt_next = derived;
13664 }
13665 gfc_derived_types = derived;
13666 }
13667 }
13668
13669
13670 /* Ensure that a derived-type is really not abstract, meaning that every
13671 inherited DEFERRED binding is overridden by a non-DEFERRED one. */
13672
13673 static bool
13674 ensure_not_abstract_walker (gfc_symbol* sub, gfc_symtree* st)
13675 {
13676 if (!st)
13677 return true;
13678
13679 if (!ensure_not_abstract_walker (sub, st->left))
13680 return false;
13681 if (!ensure_not_abstract_walker (sub, st->right))
13682 return false;
13683
13684 if (st->n.tb && st->n.tb->deferred)
13685 {
13686 gfc_symtree* overriding;
13687 overriding = gfc_find_typebound_proc (sub, NULL, st->name, true, NULL);
13688 if (!overriding)
13689 return false;
13690 gcc_assert (overriding->n.tb);
13691 if (overriding->n.tb->deferred)
13692 {
13693 gfc_error ("Derived-type %qs declared at %L must be ABSTRACT because"
13694 " %qs is DEFERRED and not overridden",
13695 sub->name, &sub->declared_at, st->name);
13696 return false;
13697 }
13698 }
13699
13700 return true;
13701 }
13702
13703 static bool
13704 ensure_not_abstract (gfc_symbol* sub, gfc_symbol* ancestor)
13705 {
13706 /* The algorithm used here is to recursively travel up the ancestry of sub
13707 and for each ancestor-type, check all bindings. If any of them is
13708 DEFERRED, look it up starting from sub and see if the found (overriding)
13709 binding is not DEFERRED.
13710 This is not the most efficient way to do this, but it should be ok and is
13711 clearer than something sophisticated. */
13712
13713 gcc_assert (ancestor && !sub->attr.abstract);
13714
13715 if (!ancestor->attr.abstract)
13716 return true;
13717
13718 /* Walk bindings of this ancestor. */
13719 if (ancestor->f2k_derived)
13720 {
13721 bool t;
13722 t = ensure_not_abstract_walker (sub, ancestor->f2k_derived->tb_sym_root);
13723 if (!t)
13724 return false;
13725 }
13726
13727 /* Find next ancestor type and recurse on it. */
13728 ancestor = gfc_get_derived_super_type (ancestor);
13729 if (ancestor)
13730 return ensure_not_abstract (sub, ancestor);
13731
13732 return true;
13733 }
13734
13735
13736 /* This check for typebound defined assignments is done recursively
13737 since the order in which derived types are resolved is not always in
13738 order of the declarations. */
13739
13740 static void
13741 check_defined_assignments (gfc_symbol *derived)
13742 {
13743 gfc_component *c;
13744
13745 for (c = derived->components; c; c = c->next)
13746 {
13747 if (!gfc_bt_struct (c->ts.type)
13748 || c->attr.pointer
13749 || c->attr.allocatable
13750 || c->attr.proc_pointer_comp
13751 || c->attr.class_pointer
13752 || c->attr.proc_pointer)
13753 continue;
13754
13755 if (c->ts.u.derived->attr.defined_assign_comp
13756 || (c->ts.u.derived->f2k_derived
13757 && c->ts.u.derived->f2k_derived->tb_op[INTRINSIC_ASSIGN]))
13758 {
13759 derived->attr.defined_assign_comp = 1;
13760 return;
13761 }
13762
13763 check_defined_assignments (c->ts.u.derived);
13764 if (c->ts.u.derived->attr.defined_assign_comp)
13765 {
13766 derived->attr.defined_assign_comp = 1;
13767 return;
13768 }
13769 }
13770 }
13771
13772
13773 /* Resolve a single component of a derived type or structure. */
13774
13775 static bool
13776 resolve_component (gfc_component *c, gfc_symbol *sym)
13777 {
13778 gfc_symbol *super_type;
13779 symbol_attribute *attr;
13780
13781 if (c->attr.artificial)
13782 return true;
13783
13784 /* Do not allow vtype components to be resolved in nameless namespaces
13785 such as block data because the procedure pointers will cause ICEs
13786 and vtables are not needed in these contexts. */
13787 if (sym->attr.vtype && sym->attr.use_assoc
13788 && sym->ns->proc_name == NULL)
13789 return true;
13790
13791 /* F2008, C442. */
13792 if ((!sym->attr.is_class || c != sym->components)
13793 && c->attr.codimension
13794 && (!c->attr.allocatable || (c->as && c->as->type != AS_DEFERRED)))
13795 {
13796 gfc_error ("Coarray component %qs at %L must be allocatable with "
13797 "deferred shape", c->name, &c->loc);
13798 return false;
13799 }
13800
13801 /* F2008, C443. */
13802 if (c->attr.codimension && c->ts.type == BT_DERIVED
13803 && c->ts.u.derived->ts.is_iso_c)
13804 {
13805 gfc_error ("Component %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
13806 "shall not be a coarray", c->name, &c->loc);
13807 return false;
13808 }
13809
13810 /* F2008, C444. */
13811 if (gfc_bt_struct (c->ts.type) && c->ts.u.derived->attr.coarray_comp
13812 && (c->attr.codimension || c->attr.pointer || c->attr.dimension
13813 || c->attr.allocatable))
13814 {
13815 gfc_error ("Component %qs at %L with coarray component "
13816 "shall be a nonpointer, nonallocatable scalar",
13817 c->name, &c->loc);
13818 return false;
13819 }
13820
13821 /* F2008, C448. */
13822 if (c->ts.type == BT_CLASS)
13823 {
13824 if (CLASS_DATA (c))
13825 {
13826 attr = &(CLASS_DATA (c)->attr);
13827
13828 /* Fix up contiguous attribute. */
13829 if (c->attr.contiguous)
13830 attr->contiguous = 1;
13831 }
13832 else
13833 attr = NULL;
13834 }
13835 else
13836 attr = &c->attr;
13837
13838 if (attr && attr->contiguous && (!attr->dimension || !attr->pointer))
13839 {
13840 gfc_error ("Component %qs at %L has the CONTIGUOUS attribute but "
13841 "is not an array pointer", c->name, &c->loc);
13842 return false;
13843 }
13844
13845 /* F2003, 15.2.1 - length has to be one. */
13846 if (sym->attr.is_bind_c && c->ts.type == BT_CHARACTER
13847 && (c->ts.u.cl == NULL || c->ts.u.cl->length == NULL
13848 || !gfc_is_constant_expr (c->ts.u.cl->length)
13849 || mpz_cmp_si (c->ts.u.cl->length->value.integer, 1) != 0))
13850 {
13851 gfc_error ("Component %qs of BIND(C) type at %L must have length one",
13852 c->name, &c->loc);
13853 return false;
13854 }
13855
13856 if (c->attr.proc_pointer && c->ts.interface)
13857 {
13858 gfc_symbol *ifc = c->ts.interface;
13859
13860 if (!sym->attr.vtype && !check_proc_interface (ifc, &c->loc))
13861 {
13862 c->tb->error = 1;
13863 return false;
13864 }
13865
13866 if (ifc->attr.if_source || ifc->attr.intrinsic)
13867 {
13868 /* Resolve interface and copy attributes. */
13869 if (ifc->formal && !ifc->formal_ns)
13870 resolve_symbol (ifc);
13871 if (ifc->attr.intrinsic)
13872 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
13873
13874 if (ifc->result)
13875 {
13876 c->ts = ifc->result->ts;
13877 c->attr.allocatable = ifc->result->attr.allocatable;
13878 c->attr.pointer = ifc->result->attr.pointer;
13879 c->attr.dimension = ifc->result->attr.dimension;
13880 c->as = gfc_copy_array_spec (ifc->result->as);
13881 c->attr.class_ok = ifc->result->attr.class_ok;
13882 }
13883 else
13884 {
13885 c->ts = ifc->ts;
13886 c->attr.allocatable = ifc->attr.allocatable;
13887 c->attr.pointer = ifc->attr.pointer;
13888 c->attr.dimension = ifc->attr.dimension;
13889 c->as = gfc_copy_array_spec (ifc->as);
13890 c->attr.class_ok = ifc->attr.class_ok;
13891 }
13892 c->ts.interface = ifc;
13893 c->attr.function = ifc->attr.function;
13894 c->attr.subroutine = ifc->attr.subroutine;
13895
13896 c->attr.pure = ifc->attr.pure;
13897 c->attr.elemental = ifc->attr.elemental;
13898 c->attr.recursive = ifc->attr.recursive;
13899 c->attr.always_explicit = ifc->attr.always_explicit;
13900 c->attr.ext_attr |= ifc->attr.ext_attr;
13901 /* Copy char length. */
13902 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
13903 {
13904 gfc_charlen *cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
13905 if (cl->length && !cl->resolved
13906 && !gfc_resolve_expr (cl->length))
13907 {
13908 c->tb->error = 1;
13909 return false;
13910 }
13911 c->ts.u.cl = cl;
13912 }
13913 }
13914 }
13915 else if (c->attr.proc_pointer && c->ts.type == BT_UNKNOWN)
13916 {
13917 /* Since PPCs are not implicitly typed, a PPC without an explicit
13918 interface must be a subroutine. */
13919 gfc_add_subroutine (&c->attr, c->name, &c->loc);
13920 }
13921
13922 /* Procedure pointer components: Check PASS arg. */
13923 if (c->attr.proc_pointer && !c->tb->nopass && c->tb->pass_arg_num == 0
13924 && !sym->attr.vtype)
13925 {
13926 gfc_symbol* me_arg;
13927
13928 if (c->tb->pass_arg)
13929 {
13930 gfc_formal_arglist* i;
13931
13932 /* If an explicit passing argument name is given, walk the arg-list
13933 and look for it. */
13934
13935 me_arg = NULL;
13936 c->tb->pass_arg_num = 1;
13937 for (i = c->ts.interface->formal; i; i = i->next)
13938 {
13939 if (!strcmp (i->sym->name, c->tb->pass_arg))
13940 {
13941 me_arg = i->sym;
13942 break;
13943 }
13944 c->tb->pass_arg_num++;
13945 }
13946
13947 if (!me_arg)
13948 {
13949 gfc_error ("Procedure pointer component %qs with PASS(%s) "
13950 "at %L has no argument %qs", c->name,
13951 c->tb->pass_arg, &c->loc, c->tb->pass_arg);
13952 c->tb->error = 1;
13953 return false;
13954 }
13955 }
13956 else
13957 {
13958 /* Otherwise, take the first one; there should in fact be at least
13959 one. */
13960 c->tb->pass_arg_num = 1;
13961 if (!c->ts.interface->formal)
13962 {
13963 gfc_error ("Procedure pointer component %qs with PASS at %L "
13964 "must have at least one argument",
13965 c->name, &c->loc);
13966 c->tb->error = 1;
13967 return false;
13968 }
13969 me_arg = c->ts.interface->formal->sym;
13970 }
13971
13972 /* Now check that the argument-type matches. */
13973 gcc_assert (me_arg);
13974 if ((me_arg->ts.type != BT_DERIVED && me_arg->ts.type != BT_CLASS)
13975 || (me_arg->ts.type == BT_DERIVED && me_arg->ts.u.derived != sym)
13976 || (me_arg->ts.type == BT_CLASS
13977 && CLASS_DATA (me_arg)->ts.u.derived != sym))
13978 {
13979 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13980 " the derived type %qs", me_arg->name, c->name,
13981 me_arg->name, &c->loc, sym->name);
13982 c->tb->error = 1;
13983 return false;
13984 }
13985
13986 /* Check for F03:C453. */
13987 if (CLASS_DATA (me_arg)->attr.dimension)
13988 {
13989 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13990 "must be scalar", me_arg->name, c->name, me_arg->name,
13991 &c->loc);
13992 c->tb->error = 1;
13993 return false;
13994 }
13995
13996 if (CLASS_DATA (me_arg)->attr.class_pointer)
13997 {
13998 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13999 "may not have the POINTER attribute", me_arg->name,
14000 c->name, me_arg->name, &c->loc);
14001 c->tb->error = 1;
14002 return false;
14003 }
14004
14005 if (CLASS_DATA (me_arg)->attr.allocatable)
14006 {
14007 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
14008 "may not be ALLOCATABLE", me_arg->name, c->name,
14009 me_arg->name, &c->loc);
14010 c->tb->error = 1;
14011 return false;
14012 }
14013
14014 if (gfc_type_is_extensible (sym) && me_arg->ts.type != BT_CLASS)
14015 {
14016 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
14017 " at %L", c->name, &c->loc);
14018 return false;
14019 }
14020
14021 }
14022
14023 /* Check type-spec if this is not the parent-type component. */
14024 if (((sym->attr.is_class
14025 && (!sym->components->ts.u.derived->attr.extension
14026 || c != sym->components->ts.u.derived->components))
14027 || (!sym->attr.is_class
14028 && (!sym->attr.extension || c != sym->components)))
14029 && !sym->attr.vtype
14030 && !resolve_typespec_used (&c->ts, &c->loc, c->name))
14031 return false;
14032
14033 super_type = gfc_get_derived_super_type (sym);
14034
14035 /* If this type is an extension, set the accessibility of the parent
14036 component. */
14037 if (super_type
14038 && ((sym->attr.is_class
14039 && c == sym->components->ts.u.derived->components)
14040 || (!sym->attr.is_class && c == sym->components))
14041 && strcmp (super_type->name, c->name) == 0)
14042 c->attr.access = super_type->attr.access;
14043
14044 /* If this type is an extension, see if this component has the same name
14045 as an inherited type-bound procedure. */
14046 if (super_type && !sym->attr.is_class
14047 && gfc_find_typebound_proc (super_type, NULL, c->name, true, NULL))
14048 {
14049 gfc_error ("Component %qs of %qs at %L has the same name as an"
14050 " inherited type-bound procedure",
14051 c->name, sym->name, &c->loc);
14052 return false;
14053 }
14054
14055 if (c->ts.type == BT_CHARACTER && !c->attr.proc_pointer
14056 && !c->ts.deferred)
14057 {
14058 if (c->ts.u.cl->length == NULL
14059 || (!resolve_charlen(c->ts.u.cl))
14060 || !gfc_is_constant_expr (c->ts.u.cl->length))
14061 {
14062 gfc_error ("Character length of component %qs needs to "
14063 "be a constant specification expression at %L",
14064 c->name,
14065 c->ts.u.cl->length ? &c->ts.u.cl->length->where : &c->loc);
14066 return false;
14067 }
14068 }
14069
14070 if (c->ts.type == BT_CHARACTER && c->ts.deferred
14071 && !c->attr.pointer && !c->attr.allocatable)
14072 {
14073 gfc_error ("Character component %qs of %qs at %L with deferred "
14074 "length must be a POINTER or ALLOCATABLE",
14075 c->name, sym->name, &c->loc);
14076 return false;
14077 }
14078
14079 /* Add the hidden deferred length field. */
14080 if (c->ts.type == BT_CHARACTER
14081 && (c->ts.deferred || c->attr.pdt_string)
14082 && !c->attr.function
14083 && !sym->attr.is_class)
14084 {
14085 char name[GFC_MAX_SYMBOL_LEN+9];
14086 gfc_component *strlen;
14087 sprintf (name, "_%s_length", c->name);
14088 strlen = gfc_find_component (sym, name, true, true, NULL);
14089 if (strlen == NULL)
14090 {
14091 if (!gfc_add_component (sym, name, &strlen))
14092 return false;
14093 strlen->ts.type = BT_INTEGER;
14094 strlen->ts.kind = gfc_charlen_int_kind;
14095 strlen->attr.access = ACCESS_PRIVATE;
14096 strlen->attr.artificial = 1;
14097 }
14098 }
14099
14100 if (c->ts.type == BT_DERIVED
14101 && sym->component_access != ACCESS_PRIVATE
14102 && gfc_check_symbol_access (sym)
14103 && !is_sym_host_assoc (c->ts.u.derived, sym->ns)
14104 && !c->ts.u.derived->attr.use_assoc
14105 && !gfc_check_symbol_access (c->ts.u.derived)
14106 && !gfc_notify_std (GFC_STD_F2003, "the component %qs is a "
14107 "PRIVATE type and cannot be a component of "
14108 "%qs, which is PUBLIC at %L", c->name,
14109 sym->name, &sym->declared_at))
14110 return false;
14111
14112 if ((sym->attr.sequence || sym->attr.is_bind_c) && c->ts.type == BT_CLASS)
14113 {
14114 gfc_error ("Polymorphic component %s at %L in SEQUENCE or BIND(C) "
14115 "type %s", c->name, &c->loc, sym->name);
14116 return false;
14117 }
14118
14119 if (sym->attr.sequence)
14120 {
14121 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.sequence == 0)
14122 {
14123 gfc_error ("Component %s of SEQUENCE type declared at %L does "
14124 "not have the SEQUENCE attribute",
14125 c->ts.u.derived->name, &sym->declared_at);
14126 return false;
14127 }
14128 }
14129
14130 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.generic)
14131 c->ts.u.derived = gfc_find_dt_in_generic (c->ts.u.derived);
14132 else if (c->ts.type == BT_CLASS && c->attr.class_ok
14133 && CLASS_DATA (c)->ts.u.derived->attr.generic)
14134 CLASS_DATA (c)->ts.u.derived
14135 = gfc_find_dt_in_generic (CLASS_DATA (c)->ts.u.derived);
14136
14137 /* If an allocatable component derived type is of the same type as
14138 the enclosing derived type, we need a vtable generating so that
14139 the __deallocate procedure is created. */
14140 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
14141 && c->ts.u.derived == sym && c->attr.allocatable == 1)
14142 gfc_find_vtab (&c->ts);
14143
14144 /* Ensure that all the derived type components are put on the
14145 derived type list; even in formal namespaces, where derived type
14146 pointer components might not have been declared. */
14147 if (c->ts.type == BT_DERIVED
14148 && c->ts.u.derived
14149 && c->ts.u.derived->components
14150 && c->attr.pointer
14151 && sym != c->ts.u.derived)
14152 add_dt_to_dt_list (c->ts.u.derived);
14153
14154 if (!gfc_resolve_array_spec (c->as,
14155 !(c->attr.pointer || c->attr.proc_pointer
14156 || c->attr.allocatable)))
14157 return false;
14158
14159 if (c->initializer && !sym->attr.vtype
14160 && !c->attr.pdt_kind && !c->attr.pdt_len
14161 && !gfc_check_assign_symbol (sym, c, c->initializer))
14162 return false;
14163
14164 return true;
14165 }
14166
14167
14168 /* Be nice about the locus for a structure expression - show the locus of the
14169 first non-null sub-expression if we can. */
14170
14171 static locus *
14172 cons_where (gfc_expr *struct_expr)
14173 {
14174 gfc_constructor *cons;
14175
14176 gcc_assert (struct_expr && struct_expr->expr_type == EXPR_STRUCTURE);
14177
14178 cons = gfc_constructor_first (struct_expr->value.constructor);
14179 for (; cons; cons = gfc_constructor_next (cons))
14180 {
14181 if (cons->expr && cons->expr->expr_type != EXPR_NULL)
14182 return &cons->expr->where;
14183 }
14184
14185 return &struct_expr->where;
14186 }
14187
14188 /* Resolve the components of a structure type. Much less work than derived
14189 types. */
14190
14191 static bool
14192 resolve_fl_struct (gfc_symbol *sym)
14193 {
14194 gfc_component *c;
14195 gfc_expr *init = NULL;
14196 bool success;
14197
14198 /* Make sure UNIONs do not have overlapping initializers. */
14199 if (sym->attr.flavor == FL_UNION)
14200 {
14201 for (c = sym->components; c; c = c->next)
14202 {
14203 if (init && c->initializer)
14204 {
14205 gfc_error ("Conflicting initializers in union at %L and %L",
14206 cons_where (init), cons_where (c->initializer));
14207 gfc_free_expr (c->initializer);
14208 c->initializer = NULL;
14209 }
14210 if (init == NULL)
14211 init = c->initializer;
14212 }
14213 }
14214
14215 success = true;
14216 for (c = sym->components; c; c = c->next)
14217 if (!resolve_component (c, sym))
14218 success = false;
14219
14220 if (!success)
14221 return false;
14222
14223 if (sym->components)
14224 add_dt_to_dt_list (sym);
14225
14226 return true;
14227 }
14228
14229
14230 /* Resolve the components of a derived type. This does not have to wait until
14231 resolution stage, but can be done as soon as the dt declaration has been
14232 parsed. */
14233
14234 static bool
14235 resolve_fl_derived0 (gfc_symbol *sym)
14236 {
14237 gfc_symbol* super_type;
14238 gfc_component *c;
14239 gfc_formal_arglist *f;
14240 bool success;
14241
14242 if (sym->attr.unlimited_polymorphic)
14243 return true;
14244
14245 super_type = gfc_get_derived_super_type (sym);
14246
14247 /* F2008, C432. */
14248 if (super_type && sym->attr.coarray_comp && !super_type->attr.coarray_comp)
14249 {
14250 gfc_error ("As extending type %qs at %L has a coarray component, "
14251 "parent type %qs shall also have one", sym->name,
14252 &sym->declared_at, super_type->name);
14253 return false;
14254 }
14255
14256 /* Ensure the extended type gets resolved before we do. */
14257 if (super_type && !resolve_fl_derived0 (super_type))
14258 return false;
14259
14260 /* An ABSTRACT type must be extensible. */
14261 if (sym->attr.abstract && !gfc_type_is_extensible (sym))
14262 {
14263 gfc_error ("Non-extensible derived-type %qs at %L must not be ABSTRACT",
14264 sym->name, &sym->declared_at);
14265 return false;
14266 }
14267
14268 c = (sym->attr.is_class) ? sym->components->ts.u.derived->components
14269 : sym->components;
14270
14271 success = true;
14272 for ( ; c != NULL; c = c->next)
14273 if (!resolve_component (c, sym))
14274 success = false;
14275
14276 if (!success)
14277 return false;
14278
14279 /* Now add the caf token field, where needed. */
14280 if (flag_coarray != GFC_FCOARRAY_NONE
14281 && !sym->attr.is_class && !sym->attr.vtype)
14282 {
14283 for (c = sym->components; c; c = c->next)
14284 if (!c->attr.dimension && !c->attr.codimension
14285 && (c->attr.allocatable || c->attr.pointer))
14286 {
14287 char name[GFC_MAX_SYMBOL_LEN+9];
14288 gfc_component *token;
14289 sprintf (name, "_caf_%s", c->name);
14290 token = gfc_find_component (sym, name, true, true, NULL);
14291 if (token == NULL)
14292 {
14293 if (!gfc_add_component (sym, name, &token))
14294 return false;
14295 token->ts.type = BT_VOID;
14296 token->ts.kind = gfc_default_integer_kind;
14297 token->attr.access = ACCESS_PRIVATE;
14298 token->attr.artificial = 1;
14299 token->attr.caf_token = 1;
14300 }
14301 }
14302 }
14303
14304 check_defined_assignments (sym);
14305
14306 if (!sym->attr.defined_assign_comp && super_type)
14307 sym->attr.defined_assign_comp
14308 = super_type->attr.defined_assign_comp;
14309
14310 /* If this is a non-ABSTRACT type extending an ABSTRACT one, ensure that
14311 all DEFERRED bindings are overridden. */
14312 if (super_type && super_type->attr.abstract && !sym->attr.abstract
14313 && !sym->attr.is_class
14314 && !ensure_not_abstract (sym, super_type))
14315 return false;
14316
14317 /* Check that there is a component for every PDT parameter. */
14318 if (sym->attr.pdt_template)
14319 {
14320 for (f = sym->formal; f; f = f->next)
14321 {
14322 if (!f->sym)
14323 continue;
14324 c = gfc_find_component (sym, f->sym->name, true, true, NULL);
14325 if (c == NULL)
14326 {
14327 gfc_error ("Parameterized type %qs does not have a component "
14328 "corresponding to parameter %qs at %L", sym->name,
14329 f->sym->name, &sym->declared_at);
14330 break;
14331 }
14332 }
14333 }
14334
14335 /* Add derived type to the derived type list. */
14336 add_dt_to_dt_list (sym);
14337
14338 return true;
14339 }
14340
14341
14342 /* The following procedure does the full resolution of a derived type,
14343 including resolution of all type-bound procedures (if present). In contrast
14344 to 'resolve_fl_derived0' this can only be done after the module has been
14345 parsed completely. */
14346
14347 static bool
14348 resolve_fl_derived (gfc_symbol *sym)
14349 {
14350 gfc_symbol *gen_dt = NULL;
14351
14352 if (sym->attr.unlimited_polymorphic)
14353 return true;
14354
14355 if (!sym->attr.is_class)
14356 gfc_find_symbol (sym->name, sym->ns, 0, &gen_dt);
14357 if (gen_dt && gen_dt->generic && gen_dt->generic->next
14358 && (!gen_dt->generic->sym->attr.use_assoc
14359 || gen_dt->generic->sym->module != gen_dt->generic->next->sym->module)
14360 && !gfc_notify_std (GFC_STD_F2003, "Generic name %qs of function "
14361 "%qs at %L being the same name as derived "
14362 "type at %L", sym->name,
14363 gen_dt->generic->sym == sym
14364 ? gen_dt->generic->next->sym->name
14365 : gen_dt->generic->sym->name,
14366 gen_dt->generic->sym == sym
14367 ? &gen_dt->generic->next->sym->declared_at
14368 : &gen_dt->generic->sym->declared_at,
14369 &sym->declared_at))
14370 return false;
14371
14372 if (sym->components == NULL && !sym->attr.zero_comp && !sym->attr.use_assoc)
14373 {
14374 gfc_error ("Derived type %qs at %L has not been declared",
14375 sym->name, &sym->declared_at);
14376 return false;
14377 }
14378
14379 /* Resolve the finalizer procedures. */
14380 if (!gfc_resolve_finalizers (sym, NULL))
14381 return false;
14382
14383 if (sym->attr.is_class && sym->ts.u.derived == NULL)
14384 {
14385 /* Fix up incomplete CLASS symbols. */
14386 gfc_component *data = gfc_find_component (sym, "_data", true, true, NULL);
14387 gfc_component *vptr = gfc_find_component (sym, "_vptr", true, true, NULL);
14388
14389 /* Nothing more to do for unlimited polymorphic entities. */
14390 if (data->ts.u.derived->attr.unlimited_polymorphic)
14391 return true;
14392 else if (vptr->ts.u.derived == NULL)
14393 {
14394 gfc_symbol *vtab = gfc_find_derived_vtab (data->ts.u.derived);
14395 gcc_assert (vtab);
14396 vptr->ts.u.derived = vtab->ts.u.derived;
14397 if (!resolve_fl_derived0 (vptr->ts.u.derived))
14398 return false;
14399 }
14400 }
14401
14402 if (!resolve_fl_derived0 (sym))
14403 return false;
14404
14405 /* Resolve the type-bound procedures. */
14406 if (!resolve_typebound_procedures (sym))
14407 return false;
14408
14409 /* Generate module vtables subject to their accessibility and their not
14410 being vtables or pdt templates. If this is not done class declarations
14411 in external procedures wind up with their own version and so SELECT TYPE
14412 fails because the vptrs do not have the same address. */
14413 if (gfc_option.allow_std & GFC_STD_F2003
14414 && sym->ns->proc_name
14415 && sym->ns->proc_name->attr.flavor == FL_MODULE
14416 && sym->attr.access != ACCESS_PRIVATE
14417 && !(sym->attr.use_assoc || sym->attr.vtype || sym->attr.pdt_template))
14418 {
14419 gfc_symbol *vtab = gfc_find_derived_vtab (sym);
14420 gfc_set_sym_referenced (vtab);
14421 }
14422
14423 return true;
14424 }
14425
14426
14427 static bool
14428 resolve_fl_namelist (gfc_symbol *sym)
14429 {
14430 gfc_namelist *nl;
14431 gfc_symbol *nlsym;
14432
14433 for (nl = sym->namelist; nl; nl = nl->next)
14434 {
14435 /* Check again, the check in match only works if NAMELIST comes
14436 after the decl. */
14437 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SIZE)
14438 {
14439 gfc_error ("Assumed size array %qs in namelist %qs at %L is not "
14440 "allowed", nl->sym->name, sym->name, &sym->declared_at);
14441 return false;
14442 }
14443
14444 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SHAPE
14445 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14446 "with assumed shape in namelist %qs at %L",
14447 nl->sym->name, sym->name, &sym->declared_at))
14448 return false;
14449
14450 if (is_non_constant_shape_array (nl->sym)
14451 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14452 "with nonconstant shape in namelist %qs at %L",
14453 nl->sym->name, sym->name, &sym->declared_at))
14454 return false;
14455
14456 if (nl->sym->ts.type == BT_CHARACTER
14457 && (nl->sym->ts.u.cl->length == NULL
14458 || !gfc_is_constant_expr (nl->sym->ts.u.cl->length))
14459 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs with "
14460 "nonconstant character length in "
14461 "namelist %qs at %L", nl->sym->name,
14462 sym->name, &sym->declared_at))
14463 return false;
14464
14465 }
14466
14467 /* Reject PRIVATE objects in a PUBLIC namelist. */
14468 if (gfc_check_symbol_access (sym))
14469 {
14470 for (nl = sym->namelist; nl; nl = nl->next)
14471 {
14472 if (!nl->sym->attr.use_assoc
14473 && !is_sym_host_assoc (nl->sym, sym->ns)
14474 && !gfc_check_symbol_access (nl->sym))
14475 {
14476 gfc_error ("NAMELIST object %qs was declared PRIVATE and "
14477 "cannot be member of PUBLIC namelist %qs at %L",
14478 nl->sym->name, sym->name, &sym->declared_at);
14479 return false;
14480 }
14481
14482 if (nl->sym->ts.type == BT_DERIVED
14483 && (nl->sym->ts.u.derived->attr.alloc_comp
14484 || nl->sym->ts.u.derived->attr.pointer_comp))
14485 {
14486 if (!gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs in "
14487 "namelist %qs at %L with ALLOCATABLE "
14488 "or POINTER components", nl->sym->name,
14489 sym->name, &sym->declared_at))
14490 return false;
14491 return true;
14492 }
14493
14494 /* Types with private components that came here by USE-association. */
14495 if (nl->sym->ts.type == BT_DERIVED
14496 && derived_inaccessible (nl->sym->ts.u.derived))
14497 {
14498 gfc_error ("NAMELIST object %qs has use-associated PRIVATE "
14499 "components and cannot be member of namelist %qs at %L",
14500 nl->sym->name, sym->name, &sym->declared_at);
14501 return false;
14502 }
14503
14504 /* Types with private components that are defined in the same module. */
14505 if (nl->sym->ts.type == BT_DERIVED
14506 && !is_sym_host_assoc (nl->sym->ts.u.derived, sym->ns)
14507 && nl->sym->ts.u.derived->attr.private_comp)
14508 {
14509 gfc_error ("NAMELIST object %qs has PRIVATE components and "
14510 "cannot be a member of PUBLIC namelist %qs at %L",
14511 nl->sym->name, sym->name, &sym->declared_at);
14512 return false;
14513 }
14514 }
14515 }
14516
14517
14518 /* 14.1.2 A module or internal procedure represent local entities
14519 of the same type as a namelist member and so are not allowed. */
14520 for (nl = sym->namelist; nl; nl = nl->next)
14521 {
14522 if (nl->sym->ts.kind != 0 && nl->sym->attr.flavor == FL_VARIABLE)
14523 continue;
14524
14525 if (nl->sym->attr.function && nl->sym == nl->sym->result)
14526 if ((nl->sym == sym->ns->proc_name)
14527 ||
14528 (sym->ns->parent && nl->sym == sym->ns->parent->proc_name))
14529 continue;
14530
14531 nlsym = NULL;
14532 if (nl->sym->name)
14533 gfc_find_symbol (nl->sym->name, sym->ns, 1, &nlsym);
14534 if (nlsym && nlsym->attr.flavor == FL_PROCEDURE)
14535 {
14536 gfc_error ("PROCEDURE attribute conflicts with NAMELIST "
14537 "attribute in %qs at %L", nlsym->name,
14538 &sym->declared_at);
14539 return false;
14540 }
14541 }
14542
14543 if (async_io_dt)
14544 {
14545 for (nl = sym->namelist; nl; nl = nl->next)
14546 nl->sym->attr.asynchronous = 1;
14547 }
14548 return true;
14549 }
14550
14551
14552 static bool
14553 resolve_fl_parameter (gfc_symbol *sym)
14554 {
14555 /* A parameter array's shape needs to be constant. */
14556 if (sym->as != NULL
14557 && (sym->as->type == AS_DEFERRED
14558 || is_non_constant_shape_array (sym)))
14559 {
14560 gfc_error ("Parameter array %qs at %L cannot be automatic "
14561 "or of deferred shape", sym->name, &sym->declared_at);
14562 return false;
14563 }
14564
14565 /* Constraints on deferred type parameter. */
14566 if (!deferred_requirements (sym))
14567 return false;
14568
14569 /* Make sure a parameter that has been implicitly typed still
14570 matches the implicit type, since PARAMETER statements can precede
14571 IMPLICIT statements. */
14572 if (sym->attr.implicit_type
14573 && !gfc_compare_types (&sym->ts, gfc_get_default_type (sym->name,
14574 sym->ns)))
14575 {
14576 gfc_error ("Implicitly typed PARAMETER %qs at %L doesn't match a "
14577 "later IMPLICIT type", sym->name, &sym->declared_at);
14578 return false;
14579 }
14580
14581 /* Make sure the types of derived parameters are consistent. This
14582 type checking is deferred until resolution because the type may
14583 refer to a derived type from the host. */
14584 if (sym->ts.type == BT_DERIVED
14585 && !gfc_compare_types (&sym->ts, &sym->value->ts))
14586 {
14587 gfc_error ("Incompatible derived type in PARAMETER at %L",
14588 &sym->value->where);
14589 return false;
14590 }
14591
14592 /* F03:C509,C514. */
14593 if (sym->ts.type == BT_CLASS)
14594 {
14595 gfc_error ("CLASS variable %qs at %L cannot have the PARAMETER attribute",
14596 sym->name, &sym->declared_at);
14597 return false;
14598 }
14599
14600 return true;
14601 }
14602
14603
14604 /* Called by resolve_symbol to check PDTs. */
14605
14606 static void
14607 resolve_pdt (gfc_symbol* sym)
14608 {
14609 gfc_symbol *derived = NULL;
14610 gfc_actual_arglist *param;
14611 gfc_component *c;
14612 bool const_len_exprs = true;
14613 bool assumed_len_exprs = false;
14614 symbol_attribute *attr;
14615
14616 if (sym->ts.type == BT_DERIVED)
14617 {
14618 derived = sym->ts.u.derived;
14619 attr = &(sym->attr);
14620 }
14621 else if (sym->ts.type == BT_CLASS)
14622 {
14623 derived = CLASS_DATA (sym)->ts.u.derived;
14624 attr = &(CLASS_DATA (sym)->attr);
14625 }
14626 else
14627 gcc_unreachable ();
14628
14629 gcc_assert (derived->attr.pdt_type);
14630
14631 for (param = sym->param_list; param; param = param->next)
14632 {
14633 c = gfc_find_component (derived, param->name, false, true, NULL);
14634 gcc_assert (c);
14635 if (c->attr.pdt_kind)
14636 continue;
14637
14638 if (param->expr && !gfc_is_constant_expr (param->expr)
14639 && c->attr.pdt_len)
14640 const_len_exprs = false;
14641 else if (param->spec_type == SPEC_ASSUMED)
14642 assumed_len_exprs = true;
14643
14644 if (param->spec_type == SPEC_DEFERRED
14645 && !attr->allocatable && !attr->pointer)
14646 gfc_error ("The object %qs at %L has a deferred LEN "
14647 "parameter %qs and is neither allocatable "
14648 "nor a pointer", sym->name, &sym->declared_at,
14649 param->name);
14650
14651 }
14652
14653 if (!const_len_exprs
14654 && (sym->ns->proc_name->attr.is_main_program
14655 || sym->ns->proc_name->attr.flavor == FL_MODULE
14656 || sym->attr.save != SAVE_NONE))
14657 gfc_error ("The AUTOMATIC object %qs at %L must not have the "
14658 "SAVE attribute or be a variable declared in the "
14659 "main program, a module or a submodule(F08/C513)",
14660 sym->name, &sym->declared_at);
14661
14662 if (assumed_len_exprs && !(sym->attr.dummy
14663 || sym->attr.select_type_temporary || sym->attr.associate_var))
14664 gfc_error ("The object %qs at %L with ASSUMED type parameters "
14665 "must be a dummy or a SELECT TYPE selector(F08/4.2)",
14666 sym->name, &sym->declared_at);
14667 }
14668
14669
14670 /* Do anything necessary to resolve a symbol. Right now, we just
14671 assume that an otherwise unknown symbol is a variable. This sort
14672 of thing commonly happens for symbols in module. */
14673
14674 static void
14675 resolve_symbol (gfc_symbol *sym)
14676 {
14677 int check_constant, mp_flag;
14678 gfc_symtree *symtree;
14679 gfc_symtree *this_symtree;
14680 gfc_namespace *ns;
14681 gfc_component *c;
14682 symbol_attribute class_attr;
14683 gfc_array_spec *as;
14684 bool saved_specification_expr;
14685
14686 if (sym->resolved)
14687 return;
14688 sym->resolved = 1;
14689
14690 /* No symbol will ever have union type; only components can be unions.
14691 Union type declaration symbols have type BT_UNKNOWN but flavor FL_UNION
14692 (just like derived type declaration symbols have flavor FL_DERIVED). */
14693 gcc_assert (sym->ts.type != BT_UNION);
14694
14695 /* Coarrayed polymorphic objects with allocatable or pointer components are
14696 yet unsupported for -fcoarray=lib. */
14697 if (flag_coarray == GFC_FCOARRAY_LIB && sym->ts.type == BT_CLASS
14698 && sym->ts.u.derived && CLASS_DATA (sym)
14699 && CLASS_DATA (sym)->attr.codimension
14700 && (CLASS_DATA (sym)->ts.u.derived->attr.alloc_comp
14701 || CLASS_DATA (sym)->ts.u.derived->attr.pointer_comp))
14702 {
14703 gfc_error ("Sorry, allocatable/pointer components in polymorphic (CLASS) "
14704 "type coarrays at %L are unsupported", &sym->declared_at);
14705 return;
14706 }
14707
14708 if (sym->attr.artificial)
14709 return;
14710
14711 if (sym->attr.unlimited_polymorphic)
14712 return;
14713
14714 if (sym->attr.flavor == FL_UNKNOWN
14715 || (sym->attr.flavor == FL_PROCEDURE && !sym->attr.intrinsic
14716 && !sym->attr.generic && !sym->attr.external
14717 && sym->attr.if_source == IFSRC_UNKNOWN
14718 && sym->ts.type == BT_UNKNOWN))
14719 {
14720
14721 /* If we find that a flavorless symbol is an interface in one of the
14722 parent namespaces, find its symtree in this namespace, free the
14723 symbol and set the symtree to point to the interface symbol. */
14724 for (ns = gfc_current_ns->parent; ns; ns = ns->parent)
14725 {
14726 symtree = gfc_find_symtree (ns->sym_root, sym->name);
14727 if (symtree && (symtree->n.sym->generic ||
14728 (symtree->n.sym->attr.flavor == FL_PROCEDURE
14729 && sym->ns->construct_entities)))
14730 {
14731 this_symtree = gfc_find_symtree (gfc_current_ns->sym_root,
14732 sym->name);
14733 if (this_symtree->n.sym == sym)
14734 {
14735 symtree->n.sym->refs++;
14736 gfc_release_symbol (sym);
14737 this_symtree->n.sym = symtree->n.sym;
14738 return;
14739 }
14740 }
14741 }
14742
14743 /* Otherwise give it a flavor according to such attributes as
14744 it has. */
14745 if (sym->attr.flavor == FL_UNKNOWN && sym->attr.external == 0
14746 && sym->attr.intrinsic == 0)
14747 sym->attr.flavor = FL_VARIABLE;
14748 else if (sym->attr.flavor == FL_UNKNOWN)
14749 {
14750 sym->attr.flavor = FL_PROCEDURE;
14751 if (sym->attr.dimension)
14752 sym->attr.function = 1;
14753 }
14754 }
14755
14756 if (sym->attr.external && sym->ts.type != BT_UNKNOWN && !sym->attr.function)
14757 gfc_add_function (&sym->attr, sym->name, &sym->declared_at);
14758
14759 if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
14760 && !resolve_procedure_interface (sym))
14761 return;
14762
14763 if (sym->attr.is_protected && !sym->attr.proc_pointer
14764 && (sym->attr.procedure || sym->attr.external))
14765 {
14766 if (sym->attr.external)
14767 gfc_error ("PROTECTED attribute conflicts with EXTERNAL attribute "
14768 "at %L", &sym->declared_at);
14769 else
14770 gfc_error ("PROCEDURE attribute conflicts with PROTECTED attribute "
14771 "at %L", &sym->declared_at);
14772
14773 return;
14774 }
14775
14776 if (sym->attr.flavor == FL_DERIVED && !resolve_fl_derived (sym))
14777 return;
14778
14779 else if ((sym->attr.flavor == FL_STRUCT || sym->attr.flavor == FL_UNION)
14780 && !resolve_fl_struct (sym))
14781 return;
14782
14783 /* Symbols that are module procedures with results (functions) have
14784 the types and array specification copied for type checking in
14785 procedures that call them, as well as for saving to a module
14786 file. These symbols can't stand the scrutiny that their results
14787 can. */
14788 mp_flag = (sym->result != NULL && sym->result != sym);
14789
14790 /* Make sure that the intrinsic is consistent with its internal
14791 representation. This needs to be done before assigning a default
14792 type to avoid spurious warnings. */
14793 if (sym->attr.flavor != FL_MODULE && sym->attr.intrinsic
14794 && !gfc_resolve_intrinsic (sym, &sym->declared_at))
14795 return;
14796
14797 /* Resolve associate names. */
14798 if (sym->assoc)
14799 resolve_assoc_var (sym, true);
14800
14801 /* Assign default type to symbols that need one and don't have one. */
14802 if (sym->ts.type == BT_UNKNOWN)
14803 {
14804 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER)
14805 {
14806 gfc_set_default_type (sym, 1, NULL);
14807 }
14808
14809 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.external
14810 && !sym->attr.function && !sym->attr.subroutine
14811 && gfc_get_default_type (sym->name, sym->ns)->type == BT_UNKNOWN)
14812 gfc_add_subroutine (&sym->attr, sym->name, &sym->declared_at);
14813
14814 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14815 {
14816 /* The specific case of an external procedure should emit an error
14817 in the case that there is no implicit type. */
14818 if (!mp_flag)
14819 {
14820 if (!sym->attr.mixed_entry_master)
14821 gfc_set_default_type (sym, sym->attr.external, NULL);
14822 }
14823 else
14824 {
14825 /* Result may be in another namespace. */
14826 resolve_symbol (sym->result);
14827
14828 if (!sym->result->attr.proc_pointer)
14829 {
14830 sym->ts = sym->result->ts;
14831 sym->as = gfc_copy_array_spec (sym->result->as);
14832 sym->attr.dimension = sym->result->attr.dimension;
14833 sym->attr.pointer = sym->result->attr.pointer;
14834 sym->attr.allocatable = sym->result->attr.allocatable;
14835 sym->attr.contiguous = sym->result->attr.contiguous;
14836 }
14837 }
14838 }
14839 }
14840 else if (mp_flag && sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14841 {
14842 bool saved_specification_expr = specification_expr;
14843 specification_expr = true;
14844 gfc_resolve_array_spec (sym->result->as, false);
14845 specification_expr = saved_specification_expr;
14846 }
14847
14848 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
14849 {
14850 as = CLASS_DATA (sym)->as;
14851 class_attr = CLASS_DATA (sym)->attr;
14852 class_attr.pointer = class_attr.class_pointer;
14853 }
14854 else
14855 {
14856 class_attr = sym->attr;
14857 as = sym->as;
14858 }
14859
14860 /* F2008, C530. */
14861 if (sym->attr.contiguous
14862 && (!class_attr.dimension
14863 || (as->type != AS_ASSUMED_SHAPE && as->type != AS_ASSUMED_RANK
14864 && !class_attr.pointer)))
14865 {
14866 gfc_error ("%qs at %L has the CONTIGUOUS attribute but is not an "
14867 "array pointer or an assumed-shape or assumed-rank array",
14868 sym->name, &sym->declared_at);
14869 return;
14870 }
14871
14872 /* Assumed size arrays and assumed shape arrays must be dummy
14873 arguments. Array-spec's of implied-shape should have been resolved to
14874 AS_EXPLICIT already. */
14875
14876 if (as)
14877 {
14878 /* If AS_IMPLIED_SHAPE makes it to here, it must be a bad
14879 specification expression. */
14880 if (as->type == AS_IMPLIED_SHAPE)
14881 {
14882 int i;
14883 for (i=0; i<as->rank; i++)
14884 {
14885 if (as->lower[i] != NULL && as->upper[i] == NULL)
14886 {
14887 gfc_error ("Bad specification for assumed size array at %L",
14888 &as->lower[i]->where);
14889 return;
14890 }
14891 }
14892 gcc_unreachable();
14893 }
14894
14895 if (((as->type == AS_ASSUMED_SIZE && !as->cp_was_assumed)
14896 || as->type == AS_ASSUMED_SHAPE)
14897 && !sym->attr.dummy && !sym->attr.select_type_temporary)
14898 {
14899 if (as->type == AS_ASSUMED_SIZE)
14900 gfc_error ("Assumed size array at %L must be a dummy argument",
14901 &sym->declared_at);
14902 else
14903 gfc_error ("Assumed shape array at %L must be a dummy argument",
14904 &sym->declared_at);
14905 return;
14906 }
14907 /* TS 29113, C535a. */
14908 if (as->type == AS_ASSUMED_RANK && !sym->attr.dummy
14909 && !sym->attr.select_type_temporary)
14910 {
14911 gfc_error ("Assumed-rank array at %L must be a dummy argument",
14912 &sym->declared_at);
14913 return;
14914 }
14915 if (as->type == AS_ASSUMED_RANK
14916 && (sym->attr.codimension || sym->attr.value))
14917 {
14918 gfc_error ("Assumed-rank array at %L may not have the VALUE or "
14919 "CODIMENSION attribute", &sym->declared_at);
14920 return;
14921 }
14922 }
14923
14924 /* Make sure symbols with known intent or optional are really dummy
14925 variable. Because of ENTRY statement, this has to be deferred
14926 until resolution time. */
14927
14928 if (!sym->attr.dummy
14929 && (sym->attr.optional || sym->attr.intent != INTENT_UNKNOWN))
14930 {
14931 gfc_error ("Symbol at %L is not a DUMMY variable", &sym->declared_at);
14932 return;
14933 }
14934
14935 if (sym->attr.value && !sym->attr.dummy)
14936 {
14937 gfc_error ("%qs at %L cannot have the VALUE attribute because "
14938 "it is not a dummy argument", sym->name, &sym->declared_at);
14939 return;
14940 }
14941
14942 if (sym->attr.value && sym->ts.type == BT_CHARACTER)
14943 {
14944 gfc_charlen *cl = sym->ts.u.cl;
14945 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
14946 {
14947 gfc_error ("Character dummy variable %qs at %L with VALUE "
14948 "attribute must have constant length",
14949 sym->name, &sym->declared_at);
14950 return;
14951 }
14952
14953 if (sym->ts.is_c_interop
14954 && mpz_cmp_si (cl->length->value.integer, 1) != 0)
14955 {
14956 gfc_error ("C interoperable character dummy variable %qs at %L "
14957 "with VALUE attribute must have length one",
14958 sym->name, &sym->declared_at);
14959 return;
14960 }
14961 }
14962
14963 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
14964 && sym->ts.u.derived->attr.generic)
14965 {
14966 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
14967 if (!sym->ts.u.derived)
14968 {
14969 gfc_error ("The derived type %qs at %L is of type %qs, "
14970 "which has not been defined", sym->name,
14971 &sym->declared_at, sym->ts.u.derived->name);
14972 sym->ts.type = BT_UNKNOWN;
14973 return;
14974 }
14975 }
14976
14977 /* Use the same constraints as TYPE(*), except for the type check
14978 and that only scalars and assumed-size arrays are permitted. */
14979 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
14980 {
14981 if (!sym->attr.dummy)
14982 {
14983 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14984 "a dummy argument", sym->name, &sym->declared_at);
14985 return;
14986 }
14987
14988 if (sym->ts.type != BT_ASSUMED && sym->ts.type != BT_INTEGER
14989 && sym->ts.type != BT_REAL && sym->ts.type != BT_LOGICAL
14990 && sym->ts.type != BT_COMPLEX)
14991 {
14992 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14993 "of type TYPE(*) or of an numeric intrinsic type",
14994 sym->name, &sym->declared_at);
14995 return;
14996 }
14997
14998 if (sym->attr.allocatable || sym->attr.codimension
14999 || sym->attr.pointer || sym->attr.value)
15000 {
15001 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
15002 "have the ALLOCATABLE, CODIMENSION, POINTER or VALUE "
15003 "attribute", sym->name, &sym->declared_at);
15004 return;
15005 }
15006
15007 if (sym->attr.intent == INTENT_OUT)
15008 {
15009 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
15010 "have the INTENT(OUT) attribute",
15011 sym->name, &sym->declared_at);
15012 return;
15013 }
15014 if (sym->attr.dimension && sym->as->type != AS_ASSUMED_SIZE)
15015 {
15016 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall "
15017 "either be a scalar or an assumed-size array",
15018 sym->name, &sym->declared_at);
15019 return;
15020 }
15021
15022 /* Set the type to TYPE(*) and add a dimension(*) to ensure
15023 NO_ARG_CHECK is correctly handled in trans*.c, e.g. with
15024 packing. */
15025 sym->ts.type = BT_ASSUMED;
15026 sym->as = gfc_get_array_spec ();
15027 sym->as->type = AS_ASSUMED_SIZE;
15028 sym->as->rank = 1;
15029 sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
15030 }
15031 else if (sym->ts.type == BT_ASSUMED)
15032 {
15033 /* TS 29113, C407a. */
15034 if (!sym->attr.dummy)
15035 {
15036 gfc_error ("Assumed type of variable %s at %L is only permitted "
15037 "for dummy variables", sym->name, &sym->declared_at);
15038 return;
15039 }
15040 if (sym->attr.allocatable || sym->attr.codimension
15041 || sym->attr.pointer || sym->attr.value)
15042 {
15043 gfc_error ("Assumed-type variable %s at %L may not have the "
15044 "ALLOCATABLE, CODIMENSION, POINTER or VALUE attribute",
15045 sym->name, &sym->declared_at);
15046 return;
15047 }
15048 if (sym->attr.intent == INTENT_OUT)
15049 {
15050 gfc_error ("Assumed-type variable %s at %L may not have the "
15051 "INTENT(OUT) attribute",
15052 sym->name, &sym->declared_at);
15053 return;
15054 }
15055 if (sym->attr.dimension && sym->as->type == AS_EXPLICIT)
15056 {
15057 gfc_error ("Assumed-type variable %s at %L shall not be an "
15058 "explicit-shape array", sym->name, &sym->declared_at);
15059 return;
15060 }
15061 }
15062
15063 /* If the symbol is marked as bind(c), that it is declared at module level
15064 scope and verify its type and kind. Do not do the latter for symbols
15065 that are implicitly typed because that is handled in
15066 gfc_set_default_type. Handle dummy arguments and procedure definitions
15067 separately. Also, anything that is use associated is not handled here
15068 but instead is handled in the module it is declared in. Finally, derived
15069 type definitions are allowed to be BIND(C) since that only implies that
15070 they're interoperable, and they are checked fully for interoperability
15071 when a variable is declared of that type. */
15072 if (sym->attr.is_bind_c && sym->attr.use_assoc == 0
15073 && sym->attr.dummy == 0 && sym->attr.flavor != FL_PROCEDURE
15074 && sym->attr.flavor != FL_DERIVED)
15075 {
15076 bool t = true;
15077
15078 /* First, make sure the variable is declared at the
15079 module-level scope (J3/04-007, Section 15.3). */
15080 if (sym->ns->proc_name->attr.flavor != FL_MODULE &&
15081 sym->attr.in_common == 0)
15082 {
15083 gfc_error ("Variable %qs at %L cannot be BIND(C) because it "
15084 "is neither a COMMON block nor declared at the "
15085 "module level scope", sym->name, &(sym->declared_at));
15086 t = false;
15087 }
15088 else if (sym->ts.type == BT_CHARACTER
15089 && (sym->ts.u.cl == NULL || sym->ts.u.cl->length == NULL
15090 || !gfc_is_constant_expr (sym->ts.u.cl->length)
15091 || mpz_cmp_si (sym->ts.u.cl->length->value.integer, 1) != 0))
15092 {
15093 gfc_error ("BIND(C) Variable %qs at %L must have length one",
15094 sym->name, &sym->declared_at);
15095 t = false;
15096 }
15097 else if (sym->common_head != NULL && sym->attr.implicit_type == 0)
15098 {
15099 t = verify_com_block_vars_c_interop (sym->common_head);
15100 }
15101 else if (sym->attr.implicit_type == 0)
15102 {
15103 /* If type() declaration, we need to verify that the components
15104 of the given type are all C interoperable, etc. */
15105 if (sym->ts.type == BT_DERIVED &&
15106 sym->ts.u.derived->attr.is_c_interop != 1)
15107 {
15108 /* Make sure the user marked the derived type as BIND(C). If
15109 not, call the verify routine. This could print an error
15110 for the derived type more than once if multiple variables
15111 of that type are declared. */
15112 if (sym->ts.u.derived->attr.is_bind_c != 1)
15113 verify_bind_c_derived_type (sym->ts.u.derived);
15114 t = false;
15115 }
15116
15117 /* Verify the variable itself as C interoperable if it
15118 is BIND(C). It is not possible for this to succeed if
15119 the verify_bind_c_derived_type failed, so don't have to handle
15120 any error returned by verify_bind_c_derived_type. */
15121 t = verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
15122 sym->common_block);
15123 }
15124
15125 if (!t)
15126 {
15127 /* clear the is_bind_c flag to prevent reporting errors more than
15128 once if something failed. */
15129 sym->attr.is_bind_c = 0;
15130 return;
15131 }
15132 }
15133
15134 /* If a derived type symbol has reached this point, without its
15135 type being declared, we have an error. Notice that most
15136 conditions that produce undefined derived types have already
15137 been dealt with. However, the likes of:
15138 implicit type(t) (t) ..... call foo (t) will get us here if
15139 the type is not declared in the scope of the implicit
15140 statement. Change the type to BT_UNKNOWN, both because it is so
15141 and to prevent an ICE. */
15142 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
15143 && sym->ts.u.derived->components == NULL
15144 && !sym->ts.u.derived->attr.zero_comp)
15145 {
15146 gfc_error ("The derived type %qs at %L is of type %qs, "
15147 "which has not been defined", sym->name,
15148 &sym->declared_at, sym->ts.u.derived->name);
15149 sym->ts.type = BT_UNKNOWN;
15150 return;
15151 }
15152
15153 /* Make sure that the derived type has been resolved and that the
15154 derived type is visible in the symbol's namespace, if it is a
15155 module function and is not PRIVATE. */
15156 if (sym->ts.type == BT_DERIVED
15157 && sym->ts.u.derived->attr.use_assoc
15158 && sym->ns->proc_name
15159 && sym->ns->proc_name->attr.flavor == FL_MODULE
15160 && !resolve_fl_derived (sym->ts.u.derived))
15161 return;
15162
15163 /* Unless the derived-type declaration is use associated, Fortran 95
15164 does not allow public entries of private derived types.
15165 See 4.4.1 (F95) and 4.5.1.1 (F2003); and related interpretation
15166 161 in 95-006r3. */
15167 if (sym->ts.type == BT_DERIVED
15168 && sym->ns->proc_name && sym->ns->proc_name->attr.flavor == FL_MODULE
15169 && !sym->ts.u.derived->attr.use_assoc
15170 && gfc_check_symbol_access (sym)
15171 && !gfc_check_symbol_access (sym->ts.u.derived)
15172 && !gfc_notify_std (GFC_STD_F2003, "PUBLIC %s %qs at %L of PRIVATE "
15173 "derived type %qs",
15174 (sym->attr.flavor == FL_PARAMETER)
15175 ? "parameter" : "variable",
15176 sym->name, &sym->declared_at,
15177 sym->ts.u.derived->name))
15178 return;
15179
15180 /* F2008, C1302. */
15181 if (sym->ts.type == BT_DERIVED
15182 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
15183 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
15184 || sym->ts.u.derived->attr.lock_comp)
15185 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
15186 {
15187 gfc_error ("Variable %s at %L of type LOCK_TYPE or with subcomponent of "
15188 "type LOCK_TYPE must be a coarray", sym->name,
15189 &sym->declared_at);
15190 return;
15191 }
15192
15193 /* TS18508, C702/C703. */
15194 if (sym->ts.type == BT_DERIVED
15195 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
15196 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
15197 || sym->ts.u.derived->attr.event_comp)
15198 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
15199 {
15200 gfc_error ("Variable %s at %L of type EVENT_TYPE or with subcomponent of "
15201 "type EVENT_TYPE must be a coarray", sym->name,
15202 &sym->declared_at);
15203 return;
15204 }
15205
15206 /* An assumed-size array with INTENT(OUT) shall not be of a type for which
15207 default initialization is defined (5.1.2.4.4). */
15208 if (sym->ts.type == BT_DERIVED
15209 && sym->attr.dummy
15210 && sym->attr.intent == INTENT_OUT
15211 && sym->as
15212 && sym->as->type == AS_ASSUMED_SIZE)
15213 {
15214 for (c = sym->ts.u.derived->components; c; c = c->next)
15215 {
15216 if (c->initializer)
15217 {
15218 gfc_error ("The INTENT(OUT) dummy argument %qs at %L is "
15219 "ASSUMED SIZE and so cannot have a default initializer",
15220 sym->name, &sym->declared_at);
15221 return;
15222 }
15223 }
15224 }
15225
15226 /* F2008, C542. */
15227 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
15228 && sym->attr.intent == INTENT_OUT && sym->attr.lock_comp)
15229 {
15230 gfc_error ("Dummy argument %qs at %L of LOCK_TYPE shall not be "
15231 "INTENT(OUT)", sym->name, &sym->declared_at);
15232 return;
15233 }
15234
15235 /* TS18508. */
15236 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
15237 && sym->attr.intent == INTENT_OUT && sym->attr.event_comp)
15238 {
15239 gfc_error ("Dummy argument %qs at %L of EVENT_TYPE shall not be "
15240 "INTENT(OUT)", sym->name, &sym->declared_at);
15241 return;
15242 }
15243
15244 /* F2008, C525. */
15245 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15246 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15247 && CLASS_DATA (sym)->attr.coarray_comp))
15248 || class_attr.codimension)
15249 && (sym->attr.result || sym->result == sym))
15250 {
15251 gfc_error ("Function result %qs at %L shall not be a coarray or have "
15252 "a coarray component", sym->name, &sym->declared_at);
15253 return;
15254 }
15255
15256 /* F2008, C524. */
15257 if (sym->attr.codimension && sym->ts.type == BT_DERIVED
15258 && sym->ts.u.derived->ts.is_iso_c)
15259 {
15260 gfc_error ("Variable %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
15261 "shall not be a coarray", sym->name, &sym->declared_at);
15262 return;
15263 }
15264
15265 /* F2008, C525. */
15266 if (((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15267 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15268 && CLASS_DATA (sym)->attr.coarray_comp))
15269 && (class_attr.codimension || class_attr.pointer || class_attr.dimension
15270 || class_attr.allocatable))
15271 {
15272 gfc_error ("Variable %qs at %L with coarray component shall be a "
15273 "nonpointer, nonallocatable scalar, which is not a coarray",
15274 sym->name, &sym->declared_at);
15275 return;
15276 }
15277
15278 /* F2008, C526. The function-result case was handled above. */
15279 if (class_attr.codimension
15280 && !(class_attr.allocatable || sym->attr.dummy || sym->attr.save
15281 || sym->attr.select_type_temporary
15282 || sym->attr.associate_var
15283 || (sym->ns->save_all && !sym->attr.automatic)
15284 || sym->ns->proc_name->attr.flavor == FL_MODULE
15285 || sym->ns->proc_name->attr.is_main_program
15286 || sym->attr.function || sym->attr.result || sym->attr.use_assoc))
15287 {
15288 gfc_error ("Variable %qs at %L is a coarray and is not ALLOCATABLE, SAVE "
15289 "nor a dummy argument", sym->name, &sym->declared_at);
15290 return;
15291 }
15292 /* F2008, C528. */
15293 else if (class_attr.codimension && !sym->attr.select_type_temporary
15294 && !class_attr.allocatable && as && as->cotype == AS_DEFERRED)
15295 {
15296 gfc_error ("Coarray variable %qs at %L shall not have codimensions with "
15297 "deferred shape", sym->name, &sym->declared_at);
15298 return;
15299 }
15300 else if (class_attr.codimension && class_attr.allocatable && as
15301 && (as->cotype != AS_DEFERRED || as->type != AS_DEFERRED))
15302 {
15303 gfc_error ("Allocatable coarray variable %qs at %L must have "
15304 "deferred shape", sym->name, &sym->declared_at);
15305 return;
15306 }
15307
15308 /* F2008, C541. */
15309 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15310 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15311 && CLASS_DATA (sym)->attr.coarray_comp))
15312 || (class_attr.codimension && class_attr.allocatable))
15313 && sym->attr.dummy && sym->attr.intent == INTENT_OUT)
15314 {
15315 gfc_error ("Variable %qs at %L is INTENT(OUT) and can thus not be an "
15316 "allocatable coarray or have coarray components",
15317 sym->name, &sym->declared_at);
15318 return;
15319 }
15320
15321 if (class_attr.codimension && sym->attr.dummy
15322 && sym->ns->proc_name && sym->ns->proc_name->attr.is_bind_c)
15323 {
15324 gfc_error ("Coarray dummy variable %qs at %L not allowed in BIND(C) "
15325 "procedure %qs", sym->name, &sym->declared_at,
15326 sym->ns->proc_name->name);
15327 return;
15328 }
15329
15330 if (sym->ts.type == BT_LOGICAL
15331 && ((sym->attr.function && sym->attr.is_bind_c && sym->result == sym)
15332 || ((sym->attr.dummy || sym->attr.result) && sym->ns->proc_name
15333 && sym->ns->proc_name->attr.is_bind_c)))
15334 {
15335 int i;
15336 for (i = 0; gfc_logical_kinds[i].kind; i++)
15337 if (gfc_logical_kinds[i].kind == sym->ts.kind)
15338 break;
15339 if (!gfc_logical_kinds[i].c_bool && sym->attr.dummy
15340 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL dummy argument %qs at "
15341 "%L with non-C_Bool kind in BIND(C) procedure "
15342 "%qs", sym->name, &sym->declared_at,
15343 sym->ns->proc_name->name))
15344 return;
15345 else if (!gfc_logical_kinds[i].c_bool
15346 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL result variable "
15347 "%qs at %L with non-C_Bool kind in "
15348 "BIND(C) procedure %qs", sym->name,
15349 &sym->declared_at,
15350 sym->attr.function ? sym->name
15351 : sym->ns->proc_name->name))
15352 return;
15353 }
15354
15355 switch (sym->attr.flavor)
15356 {
15357 case FL_VARIABLE:
15358 if (!resolve_fl_variable (sym, mp_flag))
15359 return;
15360 break;
15361
15362 case FL_PROCEDURE:
15363 if (sym->formal && !sym->formal_ns)
15364 {
15365 /* Check that none of the arguments are a namelist. */
15366 gfc_formal_arglist *formal = sym->formal;
15367
15368 for (; formal; formal = formal->next)
15369 if (formal->sym && formal->sym->attr.flavor == FL_NAMELIST)
15370 {
15371 gfc_error ("Namelist %qs cannot be an argument to "
15372 "subroutine or function at %L",
15373 formal->sym->name, &sym->declared_at);
15374 return;
15375 }
15376 }
15377
15378 if (!resolve_fl_procedure (sym, mp_flag))
15379 return;
15380 break;
15381
15382 case FL_NAMELIST:
15383 if (!resolve_fl_namelist (sym))
15384 return;
15385 break;
15386
15387 case FL_PARAMETER:
15388 if (!resolve_fl_parameter (sym))
15389 return;
15390 break;
15391
15392 default:
15393 break;
15394 }
15395
15396 /* Resolve array specifier. Check as well some constraints
15397 on COMMON blocks. */
15398
15399 check_constant = sym->attr.in_common && !sym->attr.pointer;
15400
15401 /* Set the formal_arg_flag so that check_conflict will not throw
15402 an error for host associated variables in the specification
15403 expression for an array_valued function. */
15404 if ((sym->attr.function || sym->attr.result) && sym->as)
15405 formal_arg_flag = true;
15406
15407 saved_specification_expr = specification_expr;
15408 specification_expr = true;
15409 gfc_resolve_array_spec (sym->as, check_constant);
15410 specification_expr = saved_specification_expr;
15411
15412 formal_arg_flag = false;
15413
15414 /* Resolve formal namespaces. */
15415 if (sym->formal_ns && sym->formal_ns != gfc_current_ns
15416 && !sym->attr.contained && !sym->attr.intrinsic)
15417 gfc_resolve (sym->formal_ns);
15418
15419 /* Make sure the formal namespace is present. */
15420 if (sym->formal && !sym->formal_ns)
15421 {
15422 gfc_formal_arglist *formal = sym->formal;
15423 while (formal && !formal->sym)
15424 formal = formal->next;
15425
15426 if (formal)
15427 {
15428 sym->formal_ns = formal->sym->ns;
15429 if (sym->ns != formal->sym->ns)
15430 sym->formal_ns->refs++;
15431 }
15432 }
15433
15434 /* Check threadprivate restrictions. */
15435 if (sym->attr.threadprivate && !sym->attr.save
15436 && !(sym->ns->save_all && !sym->attr.automatic)
15437 && (!sym->attr.in_common
15438 && sym->module == NULL
15439 && (sym->ns->proc_name == NULL
15440 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15441 gfc_error ("Threadprivate at %L isn't SAVEd", &sym->declared_at);
15442
15443 /* Check omp declare target restrictions. */
15444 if (sym->attr.omp_declare_target
15445 && sym->attr.flavor == FL_VARIABLE
15446 && !sym->attr.save
15447 && !(sym->ns->save_all && !sym->attr.automatic)
15448 && (!sym->attr.in_common
15449 && sym->module == NULL
15450 && (sym->ns->proc_name == NULL
15451 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15452 gfc_error ("!$OMP DECLARE TARGET variable %qs at %L isn't SAVEd",
15453 sym->name, &sym->declared_at);
15454
15455 /* If we have come this far we can apply default-initializers, as
15456 described in 14.7.5, to those variables that have not already
15457 been assigned one. */
15458 if (sym->ts.type == BT_DERIVED
15459 && !sym->value
15460 && !sym->attr.allocatable
15461 && !sym->attr.alloc_comp)
15462 {
15463 symbol_attribute *a = &sym->attr;
15464
15465 if ((!a->save && !a->dummy && !a->pointer
15466 && !a->in_common && !a->use_assoc
15467 && a->referenced
15468 && !((a->function || a->result)
15469 && (!a->dimension
15470 || sym->ts.u.derived->attr.alloc_comp
15471 || sym->ts.u.derived->attr.pointer_comp))
15472 && !(a->function && sym != sym->result))
15473 || (a->dummy && a->intent == INTENT_OUT && !a->pointer))
15474 apply_default_init (sym);
15475 else if (a->function && sym->result && a->access != ACCESS_PRIVATE
15476 && (sym->ts.u.derived->attr.alloc_comp
15477 || sym->ts.u.derived->attr.pointer_comp))
15478 /* Mark the result symbol to be referenced, when it has allocatable
15479 components. */
15480 sym->result->attr.referenced = 1;
15481 }
15482
15483 if (sym->ts.type == BT_CLASS && sym->ns == gfc_current_ns
15484 && sym->attr.dummy && sym->attr.intent == INTENT_OUT
15485 && !CLASS_DATA (sym)->attr.class_pointer
15486 && !CLASS_DATA (sym)->attr.allocatable)
15487 apply_default_init (sym);
15488
15489 /* If this symbol has a type-spec, check it. */
15490 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER
15491 || (sym->attr.flavor == FL_PROCEDURE && sym->attr.function))
15492 if (!resolve_typespec_used (&sym->ts, &sym->declared_at, sym->name))
15493 return;
15494
15495 if (sym->param_list)
15496 resolve_pdt (sym);
15497 }
15498
15499
15500 /************* Resolve DATA statements *************/
15501
15502 static struct
15503 {
15504 gfc_data_value *vnode;
15505 mpz_t left;
15506 }
15507 values;
15508
15509
15510 /* Advance the values structure to point to the next value in the data list. */
15511
15512 static bool
15513 next_data_value (void)
15514 {
15515 while (mpz_cmp_ui (values.left, 0) == 0)
15516 {
15517
15518 if (values.vnode->next == NULL)
15519 return false;
15520
15521 values.vnode = values.vnode->next;
15522 mpz_set (values.left, values.vnode->repeat);
15523 }
15524
15525 return true;
15526 }
15527
15528
15529 static bool
15530 check_data_variable (gfc_data_variable *var, locus *where)
15531 {
15532 gfc_expr *e;
15533 mpz_t size;
15534 mpz_t offset;
15535 bool t;
15536 ar_type mark = AR_UNKNOWN;
15537 int i;
15538 mpz_t section_index[GFC_MAX_DIMENSIONS];
15539 gfc_ref *ref;
15540 gfc_array_ref *ar;
15541 gfc_symbol *sym;
15542 int has_pointer;
15543
15544 if (!gfc_resolve_expr (var->expr))
15545 return false;
15546
15547 ar = NULL;
15548 mpz_init_set_si (offset, 0);
15549 e = var->expr;
15550
15551 if (e->expr_type == EXPR_FUNCTION && e->value.function.isym
15552 && e->value.function.isym->id == GFC_ISYM_CAF_GET)
15553 e = e->value.function.actual->expr;
15554
15555 if (e->expr_type != EXPR_VARIABLE)
15556 {
15557 gfc_error ("Expecting definable entity near %L", where);
15558 return false;
15559 }
15560
15561 sym = e->symtree->n.sym;
15562
15563 if (sym->ns->is_block_data && !sym->attr.in_common)
15564 {
15565 gfc_error ("BLOCK DATA element %qs at %L must be in COMMON",
15566 sym->name, &sym->declared_at);
15567 return false;
15568 }
15569
15570 if (e->ref == NULL && sym->as)
15571 {
15572 gfc_error ("DATA array %qs at %L must be specified in a previous"
15573 " declaration", sym->name, where);
15574 return false;
15575 }
15576
15577 has_pointer = sym->attr.pointer;
15578
15579 if (gfc_is_coindexed (e))
15580 {
15581 gfc_error ("DATA element %qs at %L cannot have a coindex", sym->name,
15582 where);
15583 return false;
15584 }
15585
15586 for (ref = e->ref; ref; ref = ref->next)
15587 {
15588 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
15589 has_pointer = 1;
15590
15591 if (has_pointer
15592 && ref->type == REF_ARRAY
15593 && ref->u.ar.type != AR_FULL)
15594 {
15595 gfc_error ("DATA element %qs at %L is a pointer and so must "
15596 "be a full array", sym->name, where);
15597 return false;
15598 }
15599 }
15600
15601 if (e->rank == 0 || has_pointer)
15602 {
15603 mpz_init_set_ui (size, 1);
15604 ref = NULL;
15605 }
15606 else
15607 {
15608 ref = e->ref;
15609
15610 /* Find the array section reference. */
15611 for (ref = e->ref; ref; ref = ref->next)
15612 {
15613 if (ref->type != REF_ARRAY)
15614 continue;
15615 if (ref->u.ar.type == AR_ELEMENT)
15616 continue;
15617 break;
15618 }
15619 gcc_assert (ref);
15620
15621 /* Set marks according to the reference pattern. */
15622 switch (ref->u.ar.type)
15623 {
15624 case AR_FULL:
15625 mark = AR_FULL;
15626 break;
15627
15628 case AR_SECTION:
15629 ar = &ref->u.ar;
15630 /* Get the start position of array section. */
15631 gfc_get_section_index (ar, section_index, &offset);
15632 mark = AR_SECTION;
15633 break;
15634
15635 default:
15636 gcc_unreachable ();
15637 }
15638
15639 if (!gfc_array_size (e, &size))
15640 {
15641 gfc_error ("Nonconstant array section at %L in DATA statement",
15642 where);
15643 mpz_clear (offset);
15644 return false;
15645 }
15646 }
15647
15648 t = true;
15649
15650 while (mpz_cmp_ui (size, 0) > 0)
15651 {
15652 if (!next_data_value ())
15653 {
15654 gfc_error ("DATA statement at %L has more variables than values",
15655 where);
15656 t = false;
15657 break;
15658 }
15659
15660 t = gfc_check_assign (var->expr, values.vnode->expr, 0);
15661 if (!t)
15662 break;
15663
15664 /* If we have more than one element left in the repeat count,
15665 and we have more than one element left in the target variable,
15666 then create a range assignment. */
15667 /* FIXME: Only done for full arrays for now, since array sections
15668 seem tricky. */
15669 if (mark == AR_FULL && ref && ref->next == NULL
15670 && mpz_cmp_ui (values.left, 1) > 0 && mpz_cmp_ui (size, 1) > 0)
15671 {
15672 mpz_t range;
15673
15674 if (mpz_cmp (size, values.left) >= 0)
15675 {
15676 mpz_init_set (range, values.left);
15677 mpz_sub (size, size, values.left);
15678 mpz_set_ui (values.left, 0);
15679 }
15680 else
15681 {
15682 mpz_init_set (range, size);
15683 mpz_sub (values.left, values.left, size);
15684 mpz_set_ui (size, 0);
15685 }
15686
15687 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15688 offset, &range);
15689
15690 mpz_add (offset, offset, range);
15691 mpz_clear (range);
15692
15693 if (!t)
15694 break;
15695 }
15696
15697 /* Assign initial value to symbol. */
15698 else
15699 {
15700 mpz_sub_ui (values.left, values.left, 1);
15701 mpz_sub_ui (size, size, 1);
15702
15703 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15704 offset, NULL);
15705 if (!t)
15706 break;
15707
15708 if (mark == AR_FULL)
15709 mpz_add_ui (offset, offset, 1);
15710
15711 /* Modify the array section indexes and recalculate the offset
15712 for next element. */
15713 else if (mark == AR_SECTION)
15714 gfc_advance_section (section_index, ar, &offset);
15715 }
15716 }
15717
15718 if (mark == AR_SECTION)
15719 {
15720 for (i = 0; i < ar->dimen; i++)
15721 mpz_clear (section_index[i]);
15722 }
15723
15724 mpz_clear (size);
15725 mpz_clear (offset);
15726
15727 return t;
15728 }
15729
15730
15731 static bool traverse_data_var (gfc_data_variable *, locus *);
15732
15733 /* Iterate over a list of elements in a DATA statement. */
15734
15735 static bool
15736 traverse_data_list (gfc_data_variable *var, locus *where)
15737 {
15738 mpz_t trip;
15739 iterator_stack frame;
15740 gfc_expr *e, *start, *end, *step;
15741 bool retval = true;
15742
15743 mpz_init (frame.value);
15744 mpz_init (trip);
15745
15746 start = gfc_copy_expr (var->iter.start);
15747 end = gfc_copy_expr (var->iter.end);
15748 step = gfc_copy_expr (var->iter.step);
15749
15750 if (!gfc_simplify_expr (start, 1)
15751 || start->expr_type != EXPR_CONSTANT)
15752 {
15753 gfc_error ("start of implied-do loop at %L could not be "
15754 "simplified to a constant value", &start->where);
15755 retval = false;
15756 goto cleanup;
15757 }
15758 if (!gfc_simplify_expr (end, 1)
15759 || end->expr_type != EXPR_CONSTANT)
15760 {
15761 gfc_error ("end of implied-do loop at %L could not be "
15762 "simplified to a constant value", &start->where);
15763 retval = false;
15764 goto cleanup;
15765 }
15766 if (!gfc_simplify_expr (step, 1)
15767 || step->expr_type != EXPR_CONSTANT)
15768 {
15769 gfc_error ("step of implied-do loop at %L could not be "
15770 "simplified to a constant value", &start->where);
15771 retval = false;
15772 goto cleanup;
15773 }
15774
15775 mpz_set (trip, end->value.integer);
15776 mpz_sub (trip, trip, start->value.integer);
15777 mpz_add (trip, trip, step->value.integer);
15778
15779 mpz_div (trip, trip, step->value.integer);
15780
15781 mpz_set (frame.value, start->value.integer);
15782
15783 frame.prev = iter_stack;
15784 frame.variable = var->iter.var->symtree;
15785 iter_stack = &frame;
15786
15787 while (mpz_cmp_ui (trip, 0) > 0)
15788 {
15789 if (!traverse_data_var (var->list, where))
15790 {
15791 retval = false;
15792 goto cleanup;
15793 }
15794
15795 e = gfc_copy_expr (var->expr);
15796 if (!gfc_simplify_expr (e, 1))
15797 {
15798 gfc_free_expr (e);
15799 retval = false;
15800 goto cleanup;
15801 }
15802
15803 mpz_add (frame.value, frame.value, step->value.integer);
15804
15805 mpz_sub_ui (trip, trip, 1);
15806 }
15807
15808 cleanup:
15809 mpz_clear (frame.value);
15810 mpz_clear (trip);
15811
15812 gfc_free_expr (start);
15813 gfc_free_expr (end);
15814 gfc_free_expr (step);
15815
15816 iter_stack = frame.prev;
15817 return retval;
15818 }
15819
15820
15821 /* Type resolve variables in the variable list of a DATA statement. */
15822
15823 static bool
15824 traverse_data_var (gfc_data_variable *var, locus *where)
15825 {
15826 bool t;
15827
15828 for (; var; var = var->next)
15829 {
15830 if (var->expr == NULL)
15831 t = traverse_data_list (var, where);
15832 else
15833 t = check_data_variable (var, where);
15834
15835 if (!t)
15836 return false;
15837 }
15838
15839 return true;
15840 }
15841
15842
15843 /* Resolve the expressions and iterators associated with a data statement.
15844 This is separate from the assignment checking because data lists should
15845 only be resolved once. */
15846
15847 static bool
15848 resolve_data_variables (gfc_data_variable *d)
15849 {
15850 for (; d; d = d->next)
15851 {
15852 if (d->list == NULL)
15853 {
15854 if (!gfc_resolve_expr (d->expr))
15855 return false;
15856 }
15857 else
15858 {
15859 if (!gfc_resolve_iterator (&d->iter, false, true))
15860 return false;
15861
15862 if (!resolve_data_variables (d->list))
15863 return false;
15864 }
15865 }
15866
15867 return true;
15868 }
15869
15870
15871 /* Resolve a single DATA statement. We implement this by storing a pointer to
15872 the value list into static variables, and then recursively traversing the
15873 variables list, expanding iterators and such. */
15874
15875 static void
15876 resolve_data (gfc_data *d)
15877 {
15878
15879 if (!resolve_data_variables (d->var))
15880 return;
15881
15882 values.vnode = d->value;
15883 if (d->value == NULL)
15884 mpz_set_ui (values.left, 0);
15885 else
15886 mpz_set (values.left, d->value->repeat);
15887
15888 if (!traverse_data_var (d->var, &d->where))
15889 return;
15890
15891 /* At this point, we better not have any values left. */
15892
15893 if (next_data_value ())
15894 gfc_error ("DATA statement at %L has more values than variables",
15895 &d->where);
15896 }
15897
15898
15899 /* 12.6 Constraint: In a pure subprogram any variable which is in common or
15900 accessed by host or use association, is a dummy argument to a pure function,
15901 is a dummy argument with INTENT (IN) to a pure subroutine, or an object that
15902 is storage associated with any such variable, shall not be used in the
15903 following contexts: (clients of this function). */
15904
15905 /* Determines if a variable is not 'pure', i.e., not assignable within a pure
15906 procedure. Returns zero if assignment is OK, nonzero if there is a
15907 problem. */
15908 int
15909 gfc_impure_variable (gfc_symbol *sym)
15910 {
15911 gfc_symbol *proc;
15912 gfc_namespace *ns;
15913
15914 if (sym->attr.use_assoc || sym->attr.in_common)
15915 return 1;
15916
15917 /* Check if the symbol's ns is inside the pure procedure. */
15918 for (ns = gfc_current_ns; ns; ns = ns->parent)
15919 {
15920 if (ns == sym->ns)
15921 break;
15922 if (ns->proc_name->attr.flavor == FL_PROCEDURE && !sym->attr.function)
15923 return 1;
15924 }
15925
15926 proc = sym->ns->proc_name;
15927 if (sym->attr.dummy
15928 && ((proc->attr.subroutine && sym->attr.intent == INTENT_IN)
15929 || proc->attr.function))
15930 return 1;
15931
15932 /* TODO: Sort out what can be storage associated, if anything, and include
15933 it here. In principle equivalences should be scanned but it does not
15934 seem to be possible to storage associate an impure variable this way. */
15935 return 0;
15936 }
15937
15938
15939 /* Test whether a symbol is pure or not. For a NULL pointer, checks if the
15940 current namespace is inside a pure procedure. */
15941
15942 int
15943 gfc_pure (gfc_symbol *sym)
15944 {
15945 symbol_attribute attr;
15946 gfc_namespace *ns;
15947
15948 if (sym == NULL)
15949 {
15950 /* Check if the current namespace or one of its parents
15951 belongs to a pure procedure. */
15952 for (ns = gfc_current_ns; ns; ns = ns->parent)
15953 {
15954 sym = ns->proc_name;
15955 if (sym == NULL)
15956 return 0;
15957 attr = sym->attr;
15958 if (attr.flavor == FL_PROCEDURE && attr.pure)
15959 return 1;
15960 }
15961 return 0;
15962 }
15963
15964 attr = sym->attr;
15965
15966 return attr.flavor == FL_PROCEDURE && attr.pure;
15967 }
15968
15969
15970 /* Test whether a symbol is implicitly pure or not. For a NULL pointer,
15971 checks if the current namespace is implicitly pure. Note that this
15972 function returns false for a PURE procedure. */
15973
15974 int
15975 gfc_implicit_pure (gfc_symbol *sym)
15976 {
15977 gfc_namespace *ns;
15978
15979 if (sym == NULL)
15980 {
15981 /* Check if the current procedure is implicit_pure. Walk up
15982 the procedure list until we find a procedure. */
15983 for (ns = gfc_current_ns; ns; ns = ns->parent)
15984 {
15985 sym = ns->proc_name;
15986 if (sym == NULL)
15987 return 0;
15988
15989 if (sym->attr.flavor == FL_PROCEDURE)
15990 break;
15991 }
15992 }
15993
15994 return sym->attr.flavor == FL_PROCEDURE && sym->attr.implicit_pure
15995 && !sym->attr.pure;
15996 }
15997
15998
15999 void
16000 gfc_unset_implicit_pure (gfc_symbol *sym)
16001 {
16002 gfc_namespace *ns;
16003
16004 if (sym == NULL)
16005 {
16006 /* Check if the current procedure is implicit_pure. Walk up
16007 the procedure list until we find a procedure. */
16008 for (ns = gfc_current_ns; ns; ns = ns->parent)
16009 {
16010 sym = ns->proc_name;
16011 if (sym == NULL)
16012 return;
16013
16014 if (sym->attr.flavor == FL_PROCEDURE)
16015 break;
16016 }
16017 }
16018
16019 if (sym->attr.flavor == FL_PROCEDURE)
16020 sym->attr.implicit_pure = 0;
16021 else
16022 sym->attr.pure = 0;
16023 }
16024
16025
16026 /* Test whether the current procedure is elemental or not. */
16027
16028 int
16029 gfc_elemental (gfc_symbol *sym)
16030 {
16031 symbol_attribute attr;
16032
16033 if (sym == NULL)
16034 sym = gfc_current_ns->proc_name;
16035 if (sym == NULL)
16036 return 0;
16037 attr = sym->attr;
16038
16039 return attr.flavor == FL_PROCEDURE && attr.elemental;
16040 }
16041
16042
16043 /* Warn about unused labels. */
16044
16045 static void
16046 warn_unused_fortran_label (gfc_st_label *label)
16047 {
16048 if (label == NULL)
16049 return;
16050
16051 warn_unused_fortran_label (label->left);
16052
16053 if (label->defined == ST_LABEL_UNKNOWN)
16054 return;
16055
16056 switch (label->referenced)
16057 {
16058 case ST_LABEL_UNKNOWN:
16059 gfc_warning (OPT_Wunused_label, "Label %d at %L defined but not used",
16060 label->value, &label->where);
16061 break;
16062
16063 case ST_LABEL_BAD_TARGET:
16064 gfc_warning (OPT_Wunused_label,
16065 "Label %d at %L defined but cannot be used",
16066 label->value, &label->where);
16067 break;
16068
16069 default:
16070 break;
16071 }
16072
16073 warn_unused_fortran_label (label->right);
16074 }
16075
16076
16077 /* Returns the sequence type of a symbol or sequence. */
16078
16079 static seq_type
16080 sequence_type (gfc_typespec ts)
16081 {
16082 seq_type result;
16083 gfc_component *c;
16084
16085 switch (ts.type)
16086 {
16087 case BT_DERIVED:
16088
16089 if (ts.u.derived->components == NULL)
16090 return SEQ_NONDEFAULT;
16091
16092 result = sequence_type (ts.u.derived->components->ts);
16093 for (c = ts.u.derived->components->next; c; c = c->next)
16094 if (sequence_type (c->ts) != result)
16095 return SEQ_MIXED;
16096
16097 return result;
16098
16099 case BT_CHARACTER:
16100 if (ts.kind != gfc_default_character_kind)
16101 return SEQ_NONDEFAULT;
16102
16103 return SEQ_CHARACTER;
16104
16105 case BT_INTEGER:
16106 if (ts.kind != gfc_default_integer_kind)
16107 return SEQ_NONDEFAULT;
16108
16109 return SEQ_NUMERIC;
16110
16111 case BT_REAL:
16112 if (!(ts.kind == gfc_default_real_kind
16113 || ts.kind == gfc_default_double_kind))
16114 return SEQ_NONDEFAULT;
16115
16116 return SEQ_NUMERIC;
16117
16118 case BT_COMPLEX:
16119 if (ts.kind != gfc_default_complex_kind)
16120 return SEQ_NONDEFAULT;
16121
16122 return SEQ_NUMERIC;
16123
16124 case BT_LOGICAL:
16125 if (ts.kind != gfc_default_logical_kind)
16126 return SEQ_NONDEFAULT;
16127
16128 return SEQ_NUMERIC;
16129
16130 default:
16131 return SEQ_NONDEFAULT;
16132 }
16133 }
16134
16135
16136 /* Resolve derived type EQUIVALENCE object. */
16137
16138 static bool
16139 resolve_equivalence_derived (gfc_symbol *derived, gfc_symbol *sym, gfc_expr *e)
16140 {
16141 gfc_component *c = derived->components;
16142
16143 if (!derived)
16144 return true;
16145
16146 /* Shall not be an object of nonsequence derived type. */
16147 if (!derived->attr.sequence)
16148 {
16149 gfc_error ("Derived type variable %qs at %L must have SEQUENCE "
16150 "attribute to be an EQUIVALENCE object", sym->name,
16151 &e->where);
16152 return false;
16153 }
16154
16155 /* Shall not have allocatable components. */
16156 if (derived->attr.alloc_comp)
16157 {
16158 gfc_error ("Derived type variable %qs at %L cannot have ALLOCATABLE "
16159 "components to be an EQUIVALENCE object",sym->name,
16160 &e->where);
16161 return false;
16162 }
16163
16164 if (sym->attr.in_common && gfc_has_default_initializer (sym->ts.u.derived))
16165 {
16166 gfc_error ("Derived type variable %qs at %L with default "
16167 "initialization cannot be in EQUIVALENCE with a variable "
16168 "in COMMON", sym->name, &e->where);
16169 return false;
16170 }
16171
16172 for (; c ; c = c->next)
16173 {
16174 if (gfc_bt_struct (c->ts.type)
16175 && (!resolve_equivalence_derived(c->ts.u.derived, sym, e)))
16176 return false;
16177
16178 /* Shall not be an object of sequence derived type containing a pointer
16179 in the structure. */
16180 if (c->attr.pointer)
16181 {
16182 gfc_error ("Derived type variable %qs at %L with pointer "
16183 "component(s) cannot be an EQUIVALENCE object",
16184 sym->name, &e->where);
16185 return false;
16186 }
16187 }
16188 return true;
16189 }
16190
16191
16192 /* Resolve equivalence object.
16193 An EQUIVALENCE object shall not be a dummy argument, a pointer, a target,
16194 an allocatable array, an object of nonsequence derived type, an object of
16195 sequence derived type containing a pointer at any level of component
16196 selection, an automatic object, a function name, an entry name, a result
16197 name, a named constant, a structure component, or a subobject of any of
16198 the preceding objects. A substring shall not have length zero. A
16199 derived type shall not have components with default initialization nor
16200 shall two objects of an equivalence group be initialized.
16201 Either all or none of the objects shall have an protected attribute.
16202 The simple constraints are done in symbol.c(check_conflict) and the rest
16203 are implemented here. */
16204
16205 static void
16206 resolve_equivalence (gfc_equiv *eq)
16207 {
16208 gfc_symbol *sym;
16209 gfc_symbol *first_sym;
16210 gfc_expr *e;
16211 gfc_ref *r;
16212 locus *last_where = NULL;
16213 seq_type eq_type, last_eq_type;
16214 gfc_typespec *last_ts;
16215 int object, cnt_protected;
16216 const char *msg;
16217
16218 last_ts = &eq->expr->symtree->n.sym->ts;
16219
16220 first_sym = eq->expr->symtree->n.sym;
16221
16222 cnt_protected = 0;
16223
16224 for (object = 1; eq; eq = eq->eq, object++)
16225 {
16226 e = eq->expr;
16227
16228 e->ts = e->symtree->n.sym->ts;
16229 /* match_varspec might not know yet if it is seeing
16230 array reference or substring reference, as it doesn't
16231 know the types. */
16232 if (e->ref && e->ref->type == REF_ARRAY)
16233 {
16234 gfc_ref *ref = e->ref;
16235 sym = e->symtree->n.sym;
16236
16237 if (sym->attr.dimension)
16238 {
16239 ref->u.ar.as = sym->as;
16240 ref = ref->next;
16241 }
16242
16243 /* For substrings, convert REF_ARRAY into REF_SUBSTRING. */
16244 if (e->ts.type == BT_CHARACTER
16245 && ref
16246 && ref->type == REF_ARRAY
16247 && ref->u.ar.dimen == 1
16248 && ref->u.ar.dimen_type[0] == DIMEN_RANGE
16249 && ref->u.ar.stride[0] == NULL)
16250 {
16251 gfc_expr *start = ref->u.ar.start[0];
16252 gfc_expr *end = ref->u.ar.end[0];
16253 void *mem = NULL;
16254
16255 /* Optimize away the (:) reference. */
16256 if (start == NULL && end == NULL)
16257 {
16258 if (e->ref == ref)
16259 e->ref = ref->next;
16260 else
16261 e->ref->next = ref->next;
16262 mem = ref;
16263 }
16264 else
16265 {
16266 ref->type = REF_SUBSTRING;
16267 if (start == NULL)
16268 start = gfc_get_int_expr (gfc_charlen_int_kind,
16269 NULL, 1);
16270 ref->u.ss.start = start;
16271 if (end == NULL && e->ts.u.cl)
16272 end = gfc_copy_expr (e->ts.u.cl->length);
16273 ref->u.ss.end = end;
16274 ref->u.ss.length = e->ts.u.cl;
16275 e->ts.u.cl = NULL;
16276 }
16277 ref = ref->next;
16278 free (mem);
16279 }
16280
16281 /* Any further ref is an error. */
16282 if (ref)
16283 {
16284 gcc_assert (ref->type == REF_ARRAY);
16285 gfc_error ("Syntax error in EQUIVALENCE statement at %L",
16286 &ref->u.ar.where);
16287 continue;
16288 }
16289 }
16290
16291 if (!gfc_resolve_expr (e))
16292 continue;
16293
16294 sym = e->symtree->n.sym;
16295
16296 if (sym->attr.is_protected)
16297 cnt_protected++;
16298 if (cnt_protected > 0 && cnt_protected != object)
16299 {
16300 gfc_error ("Either all or none of the objects in the "
16301 "EQUIVALENCE set at %L shall have the "
16302 "PROTECTED attribute",
16303 &e->where);
16304 break;
16305 }
16306
16307 /* Shall not equivalence common block variables in a PURE procedure. */
16308 if (sym->ns->proc_name
16309 && sym->ns->proc_name->attr.pure
16310 && sym->attr.in_common)
16311 {
16312 /* Need to check for symbols that may have entered the pure
16313 procedure via a USE statement. */
16314 bool saw_sym = false;
16315 if (sym->ns->use_stmts)
16316 {
16317 gfc_use_rename *r;
16318 for (r = sym->ns->use_stmts->rename; r; r = r->next)
16319 if (strcmp(r->use_name, sym->name) == 0) saw_sym = true;
16320 }
16321 else
16322 saw_sym = true;
16323
16324 if (saw_sym)
16325 gfc_error ("COMMON block member %qs at %L cannot be an "
16326 "EQUIVALENCE object in the pure procedure %qs",
16327 sym->name, &e->where, sym->ns->proc_name->name);
16328 break;
16329 }
16330
16331 /* Shall not be a named constant. */
16332 if (e->expr_type == EXPR_CONSTANT)
16333 {
16334 gfc_error ("Named constant %qs at %L cannot be an EQUIVALENCE "
16335 "object", sym->name, &e->where);
16336 continue;
16337 }
16338
16339 if (e->ts.type == BT_DERIVED
16340 && !resolve_equivalence_derived (e->ts.u.derived, sym, e))
16341 continue;
16342
16343 /* Check that the types correspond correctly:
16344 Note 5.28:
16345 A numeric sequence structure may be equivalenced to another sequence
16346 structure, an object of default integer type, default real type, double
16347 precision real type, default logical type such that components of the
16348 structure ultimately only become associated to objects of the same
16349 kind. A character sequence structure may be equivalenced to an object
16350 of default character kind or another character sequence structure.
16351 Other objects may be equivalenced only to objects of the same type and
16352 kind parameters. */
16353
16354 /* Identical types are unconditionally OK. */
16355 if (object == 1 || gfc_compare_types (last_ts, &sym->ts))
16356 goto identical_types;
16357
16358 last_eq_type = sequence_type (*last_ts);
16359 eq_type = sequence_type (sym->ts);
16360
16361 /* Since the pair of objects is not of the same type, mixed or
16362 non-default sequences can be rejected. */
16363
16364 msg = "Sequence %s with mixed components in EQUIVALENCE "
16365 "statement at %L with different type objects";
16366 if ((object ==2
16367 && last_eq_type == SEQ_MIXED
16368 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16369 || (eq_type == SEQ_MIXED
16370 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16371 continue;
16372
16373 msg = "Non-default type object or sequence %s in EQUIVALENCE "
16374 "statement at %L with objects of different type";
16375 if ((object ==2
16376 && last_eq_type == SEQ_NONDEFAULT
16377 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16378 || (eq_type == SEQ_NONDEFAULT
16379 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16380 continue;
16381
16382 msg ="Non-CHARACTER object %qs in default CHARACTER "
16383 "EQUIVALENCE statement at %L";
16384 if (last_eq_type == SEQ_CHARACTER
16385 && eq_type != SEQ_CHARACTER
16386 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16387 continue;
16388
16389 msg ="Non-NUMERIC object %qs in default NUMERIC "
16390 "EQUIVALENCE statement at %L";
16391 if (last_eq_type == SEQ_NUMERIC
16392 && eq_type != SEQ_NUMERIC
16393 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16394 continue;
16395
16396 identical_types:
16397 last_ts =&sym->ts;
16398 last_where = &e->where;
16399
16400 if (!e->ref)
16401 continue;
16402
16403 /* Shall not be an automatic array. */
16404 if (e->ref->type == REF_ARRAY
16405 && !gfc_resolve_array_spec (e->ref->u.ar.as, 1))
16406 {
16407 gfc_error ("Array %qs at %L with non-constant bounds cannot be "
16408 "an EQUIVALENCE object", sym->name, &e->where);
16409 continue;
16410 }
16411
16412 r = e->ref;
16413 while (r)
16414 {
16415 /* Shall not be a structure component. */
16416 if (r->type == REF_COMPONENT)
16417 {
16418 gfc_error ("Structure component %qs at %L cannot be an "
16419 "EQUIVALENCE object",
16420 r->u.c.component->name, &e->where);
16421 break;
16422 }
16423
16424 /* A substring shall not have length zero. */
16425 if (r->type == REF_SUBSTRING)
16426 {
16427 if (compare_bound (r->u.ss.start, r->u.ss.end) == CMP_GT)
16428 {
16429 gfc_error ("Substring at %L has length zero",
16430 &r->u.ss.start->where);
16431 break;
16432 }
16433 }
16434 r = r->next;
16435 }
16436 }
16437 }
16438
16439
16440 /* Function called by resolve_fntype to flag other symbol used in the
16441 length type parameter specification of function resuls. */
16442
16443 static bool
16444 flag_fn_result_spec (gfc_expr *expr,
16445 gfc_symbol *sym,
16446 int *f ATTRIBUTE_UNUSED)
16447 {
16448 gfc_namespace *ns;
16449 gfc_symbol *s;
16450
16451 if (expr->expr_type == EXPR_VARIABLE)
16452 {
16453 s = expr->symtree->n.sym;
16454 for (ns = s->ns; ns; ns = ns->parent)
16455 if (!ns->parent)
16456 break;
16457
16458 if (sym == s)
16459 {
16460 gfc_error ("Self reference in character length expression "
16461 "for %qs at %L", sym->name, &expr->where);
16462 return true;
16463 }
16464
16465 if (!s->fn_result_spec
16466 && s->attr.flavor == FL_PARAMETER)
16467 {
16468 /* Function contained in a module.... */
16469 if (ns->proc_name && ns->proc_name->attr.flavor == FL_MODULE)
16470 {
16471 gfc_symtree *st;
16472 s->fn_result_spec = 1;
16473 /* Make sure that this symbol is translated as a module
16474 variable. */
16475 st = gfc_get_unique_symtree (ns);
16476 st->n.sym = s;
16477 s->refs++;
16478 }
16479 /* ... which is use associated and called. */
16480 else if (s->attr.use_assoc || s->attr.used_in_submodule
16481 ||
16482 /* External function matched with an interface. */
16483 (s->ns->proc_name
16484 && ((s->ns == ns
16485 && s->ns->proc_name->attr.if_source == IFSRC_DECL)
16486 || s->ns->proc_name->attr.if_source == IFSRC_IFBODY)
16487 && s->ns->proc_name->attr.function))
16488 s->fn_result_spec = 1;
16489 }
16490 }
16491 return false;
16492 }
16493
16494
16495 /* Resolve function and ENTRY types, issue diagnostics if needed. */
16496
16497 static void
16498 resolve_fntype (gfc_namespace *ns)
16499 {
16500 gfc_entry_list *el;
16501 gfc_symbol *sym;
16502
16503 if (ns->proc_name == NULL || !ns->proc_name->attr.function)
16504 return;
16505
16506 /* If there are any entries, ns->proc_name is the entry master
16507 synthetic symbol and ns->entries->sym actual FUNCTION symbol. */
16508 if (ns->entries)
16509 sym = ns->entries->sym;
16510 else
16511 sym = ns->proc_name;
16512 if (sym->result == sym
16513 && sym->ts.type == BT_UNKNOWN
16514 && !gfc_set_default_type (sym, 0, NULL)
16515 && !sym->attr.untyped)
16516 {
16517 gfc_error ("Function %qs at %L has no IMPLICIT type",
16518 sym->name, &sym->declared_at);
16519 sym->attr.untyped = 1;
16520 }
16521
16522 if (sym->ts.type == BT_DERIVED && !sym->ts.u.derived->attr.use_assoc
16523 && !sym->attr.contained
16524 && !gfc_check_symbol_access (sym->ts.u.derived)
16525 && gfc_check_symbol_access (sym))
16526 {
16527 gfc_notify_std (GFC_STD_F2003, "PUBLIC function %qs at "
16528 "%L of PRIVATE type %qs", sym->name,
16529 &sym->declared_at, sym->ts.u.derived->name);
16530 }
16531
16532 if (ns->entries)
16533 for (el = ns->entries->next; el; el = el->next)
16534 {
16535 if (el->sym->result == el->sym
16536 && el->sym->ts.type == BT_UNKNOWN
16537 && !gfc_set_default_type (el->sym, 0, NULL)
16538 && !el->sym->attr.untyped)
16539 {
16540 gfc_error ("ENTRY %qs at %L has no IMPLICIT type",
16541 el->sym->name, &el->sym->declared_at);
16542 el->sym->attr.untyped = 1;
16543 }
16544 }
16545
16546 if (sym->ts.type == BT_CHARACTER)
16547 gfc_traverse_expr (sym->ts.u.cl->length, sym, flag_fn_result_spec, 0);
16548 }
16549
16550
16551 /* 12.3.2.1.1 Defined operators. */
16552
16553 static bool
16554 check_uop_procedure (gfc_symbol *sym, locus where)
16555 {
16556 gfc_formal_arglist *formal;
16557
16558 if (!sym->attr.function)
16559 {
16560 gfc_error ("User operator procedure %qs at %L must be a FUNCTION",
16561 sym->name, &where);
16562 return false;
16563 }
16564
16565 if (sym->ts.type == BT_CHARACTER
16566 && !((sym->ts.u.cl && sym->ts.u.cl->length) || sym->ts.deferred)
16567 && !(sym->result && ((sym->result->ts.u.cl
16568 && sym->result->ts.u.cl->length) || sym->result->ts.deferred)))
16569 {
16570 gfc_error ("User operator procedure %qs at %L cannot be assumed "
16571 "character length", sym->name, &where);
16572 return false;
16573 }
16574
16575 formal = gfc_sym_get_dummy_args (sym);
16576 if (!formal || !formal->sym)
16577 {
16578 gfc_error ("User operator procedure %qs at %L must have at least "
16579 "one argument", sym->name, &where);
16580 return false;
16581 }
16582
16583 if (formal->sym->attr.intent != INTENT_IN)
16584 {
16585 gfc_error ("First argument of operator interface at %L must be "
16586 "INTENT(IN)", &where);
16587 return false;
16588 }
16589
16590 if (formal->sym->attr.optional)
16591 {
16592 gfc_error ("First argument of operator interface at %L cannot be "
16593 "optional", &where);
16594 return false;
16595 }
16596
16597 formal = formal->next;
16598 if (!formal || !formal->sym)
16599 return true;
16600
16601 if (formal->sym->attr.intent != INTENT_IN)
16602 {
16603 gfc_error ("Second argument of operator interface at %L must be "
16604 "INTENT(IN)", &where);
16605 return false;
16606 }
16607
16608 if (formal->sym->attr.optional)
16609 {
16610 gfc_error ("Second argument of operator interface at %L cannot be "
16611 "optional", &where);
16612 return false;
16613 }
16614
16615 if (formal->next)
16616 {
16617 gfc_error ("Operator interface at %L must have, at most, two "
16618 "arguments", &where);
16619 return false;
16620 }
16621
16622 return true;
16623 }
16624
16625 static void
16626 gfc_resolve_uops (gfc_symtree *symtree)
16627 {
16628 gfc_interface *itr;
16629
16630 if (symtree == NULL)
16631 return;
16632
16633 gfc_resolve_uops (symtree->left);
16634 gfc_resolve_uops (symtree->right);
16635
16636 for (itr = symtree->n.uop->op; itr; itr = itr->next)
16637 check_uop_procedure (itr->sym, itr->sym->declared_at);
16638 }
16639
16640
16641 /* Examine all of the expressions associated with a program unit,
16642 assign types to all intermediate expressions, make sure that all
16643 assignments are to compatible types and figure out which names
16644 refer to which functions or subroutines. It doesn't check code
16645 block, which is handled by gfc_resolve_code. */
16646
16647 static void
16648 resolve_types (gfc_namespace *ns)
16649 {
16650 gfc_namespace *n;
16651 gfc_charlen *cl;
16652 gfc_data *d;
16653 gfc_equiv *eq;
16654 gfc_namespace* old_ns = gfc_current_ns;
16655
16656 if (ns->types_resolved)
16657 return;
16658
16659 /* Check that all IMPLICIT types are ok. */
16660 if (!ns->seen_implicit_none)
16661 {
16662 unsigned letter;
16663 for (letter = 0; letter != GFC_LETTERS; ++letter)
16664 if (ns->set_flag[letter]
16665 && !resolve_typespec_used (&ns->default_type[letter],
16666 &ns->implicit_loc[letter], NULL))
16667 return;
16668 }
16669
16670 gfc_current_ns = ns;
16671
16672 resolve_entries (ns);
16673
16674 resolve_common_vars (&ns->blank_common, false);
16675 resolve_common_blocks (ns->common_root);
16676
16677 resolve_contained_functions (ns);
16678
16679 if (ns->proc_name && ns->proc_name->attr.flavor == FL_PROCEDURE
16680 && ns->proc_name->attr.if_source == IFSRC_IFBODY)
16681 resolve_formal_arglist (ns->proc_name);
16682
16683 gfc_traverse_ns (ns, resolve_bind_c_derived_types);
16684
16685 for (cl = ns->cl_list; cl; cl = cl->next)
16686 resolve_charlen (cl);
16687
16688 gfc_traverse_ns (ns, resolve_symbol);
16689
16690 resolve_fntype (ns);
16691
16692 for (n = ns->contained; n; n = n->sibling)
16693 {
16694 if (gfc_pure (ns->proc_name) && !gfc_pure (n->proc_name))
16695 gfc_error ("Contained procedure %qs at %L of a PURE procedure must "
16696 "also be PURE", n->proc_name->name,
16697 &n->proc_name->declared_at);
16698
16699 resolve_types (n);
16700 }
16701
16702 forall_flag = 0;
16703 gfc_do_concurrent_flag = 0;
16704 gfc_check_interfaces (ns);
16705
16706 gfc_traverse_ns (ns, resolve_values);
16707
16708 if (ns->save_all || !flag_automatic)
16709 gfc_save_all (ns);
16710
16711 iter_stack = NULL;
16712 for (d = ns->data; d; d = d->next)
16713 resolve_data (d);
16714
16715 iter_stack = NULL;
16716 gfc_traverse_ns (ns, gfc_formalize_init_value);
16717
16718 gfc_traverse_ns (ns, gfc_verify_binding_labels);
16719
16720 for (eq = ns->equiv; eq; eq = eq->next)
16721 resolve_equivalence (eq);
16722
16723 /* Warn about unused labels. */
16724 if (warn_unused_label)
16725 warn_unused_fortran_label (ns->st_labels);
16726
16727 gfc_resolve_uops (ns->uop_root);
16728
16729 gfc_traverse_ns (ns, gfc_verify_DTIO_procedures);
16730
16731 gfc_resolve_omp_declare_simd (ns);
16732
16733 gfc_resolve_omp_udrs (ns->omp_udr_root);
16734
16735 ns->types_resolved = 1;
16736
16737 gfc_current_ns = old_ns;
16738 }
16739
16740
16741 /* Call gfc_resolve_code recursively. */
16742
16743 static void
16744 resolve_codes (gfc_namespace *ns)
16745 {
16746 gfc_namespace *n;
16747 bitmap_obstack old_obstack;
16748
16749 if (ns->resolved == 1)
16750 return;
16751
16752 for (n = ns->contained; n; n = n->sibling)
16753 resolve_codes (n);
16754
16755 gfc_current_ns = ns;
16756
16757 /* Don't clear 'cs_base' if this is the namespace of a BLOCK construct. */
16758 if (!(ns->proc_name && ns->proc_name->attr.flavor == FL_LABEL))
16759 cs_base = NULL;
16760
16761 /* Set to an out of range value. */
16762 current_entry_id = -1;
16763
16764 old_obstack = labels_obstack;
16765 bitmap_obstack_initialize (&labels_obstack);
16766
16767 gfc_resolve_oacc_declare (ns);
16768 gfc_resolve_omp_local_vars (ns);
16769 gfc_resolve_code (ns->code, ns);
16770
16771 bitmap_obstack_release (&labels_obstack);
16772 labels_obstack = old_obstack;
16773 }
16774
16775
16776 /* This function is called after a complete program unit has been compiled.
16777 Its purpose is to examine all of the expressions associated with a program
16778 unit, assign types to all intermediate expressions, make sure that all
16779 assignments are to compatible types and figure out which names refer to
16780 which functions or subroutines. */
16781
16782 void
16783 gfc_resolve (gfc_namespace *ns)
16784 {
16785 gfc_namespace *old_ns;
16786 code_stack *old_cs_base;
16787 struct gfc_omp_saved_state old_omp_state;
16788
16789 if (ns->resolved)
16790 return;
16791
16792 ns->resolved = -1;
16793 old_ns = gfc_current_ns;
16794 old_cs_base = cs_base;
16795
16796 /* As gfc_resolve can be called during resolution of an OpenMP construct
16797 body, we should clear any state associated to it, so that say NS's
16798 DO loops are not interpreted as OpenMP loops. */
16799 if (!ns->construct_entities)
16800 gfc_omp_save_and_clear_state (&old_omp_state);
16801
16802 resolve_types (ns);
16803 component_assignment_level = 0;
16804 resolve_codes (ns);
16805
16806 gfc_current_ns = old_ns;
16807 cs_base = old_cs_base;
16808 ns->resolved = 1;
16809
16810 gfc_run_passes (ns);
16811
16812 if (!ns->construct_entities)
16813 gfc_omp_restore_state (&old_omp_state);
16814 }