PR other/16615 [1/5]
[gcc.git] / gcc / fortran / resolve.c
1 /* Perform type resolution on the various structures.
2 Copyright (C) 2001-2019 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "options.h"
25 #include "bitmap.h"
26 #include "gfortran.h"
27 #include "arith.h" /* For gfc_compare_expr(). */
28 #include "dependency.h"
29 #include "data.h"
30 #include "target-memory.h" /* for gfc_simplify_transfer */
31 #include "constructor.h"
32
33 /* Types used in equivalence statements. */
34
35 enum seq_type
36 {
37 SEQ_NONDEFAULT, SEQ_NUMERIC, SEQ_CHARACTER, SEQ_MIXED
38 };
39
40 /* Stack to keep track of the nesting of blocks as we move through the
41 code. See resolve_branch() and gfc_resolve_code(). */
42
43 typedef struct code_stack
44 {
45 struct gfc_code *head, *current;
46 struct code_stack *prev;
47
48 /* This bitmap keeps track of the targets valid for a branch from
49 inside this block except for END {IF|SELECT}s of enclosing
50 blocks. */
51 bitmap reachable_labels;
52 }
53 code_stack;
54
55 static code_stack *cs_base = NULL;
56
57
58 /* Nonzero if we're inside a FORALL or DO CONCURRENT block. */
59
60 static int forall_flag;
61 int gfc_do_concurrent_flag;
62
63 /* True when we are resolving an expression that is an actual argument to
64 a procedure. */
65 static bool actual_arg = false;
66 /* True when we are resolving an expression that is the first actual argument
67 to a procedure. */
68 static bool first_actual_arg = false;
69
70
71 /* Nonzero if we're inside a OpenMP WORKSHARE or PARALLEL WORKSHARE block. */
72
73 static int omp_workshare_flag;
74
75 /* True if we are processing a formal arglist. The corresponding function
76 resets the flag each time that it is read. */
77 static bool formal_arg_flag = false;
78
79 /* True if we are resolving a specification expression. */
80 static bool specification_expr = false;
81
82 /* The id of the last entry seen. */
83 static int current_entry_id;
84
85 /* We use bitmaps to determine if a branch target is valid. */
86 static bitmap_obstack labels_obstack;
87
88 /* True when simplifying a EXPR_VARIABLE argument to an inquiry function. */
89 static bool inquiry_argument = false;
90
91
92 bool
93 gfc_is_formal_arg (void)
94 {
95 return formal_arg_flag;
96 }
97
98 /* Is the symbol host associated? */
99 static bool
100 is_sym_host_assoc (gfc_symbol *sym, gfc_namespace *ns)
101 {
102 for (ns = ns->parent; ns; ns = ns->parent)
103 {
104 if (sym->ns == ns)
105 return true;
106 }
107
108 return false;
109 }
110
111 /* Ensure a typespec used is valid; for instance, TYPE(t) is invalid if t is
112 an ABSTRACT derived-type. If where is not NULL, an error message with that
113 locus is printed, optionally using name. */
114
115 static bool
116 resolve_typespec_used (gfc_typespec* ts, locus* where, const char* name)
117 {
118 if (ts->type == BT_DERIVED && ts->u.derived->attr.abstract)
119 {
120 if (where)
121 {
122 if (name)
123 gfc_error ("%qs at %L is of the ABSTRACT type %qs",
124 name, where, ts->u.derived->name);
125 else
126 gfc_error ("ABSTRACT type %qs used at %L",
127 ts->u.derived->name, where);
128 }
129
130 return false;
131 }
132
133 return true;
134 }
135
136
137 static bool
138 check_proc_interface (gfc_symbol *ifc, locus *where)
139 {
140 /* Several checks for F08:C1216. */
141 if (ifc->attr.procedure)
142 {
143 gfc_error ("Interface %qs at %L is declared "
144 "in a later PROCEDURE statement", ifc->name, where);
145 return false;
146 }
147 if (ifc->generic)
148 {
149 /* For generic interfaces, check if there is
150 a specific procedure with the same name. */
151 gfc_interface *gen = ifc->generic;
152 while (gen && strcmp (gen->sym->name, ifc->name) != 0)
153 gen = gen->next;
154 if (!gen)
155 {
156 gfc_error ("Interface %qs at %L may not be generic",
157 ifc->name, where);
158 return false;
159 }
160 }
161 if (ifc->attr.proc == PROC_ST_FUNCTION)
162 {
163 gfc_error ("Interface %qs at %L may not be a statement function",
164 ifc->name, where);
165 return false;
166 }
167 if (gfc_is_intrinsic (ifc, 0, ifc->declared_at)
168 || gfc_is_intrinsic (ifc, 1, ifc->declared_at))
169 ifc->attr.intrinsic = 1;
170 if (ifc->attr.intrinsic && !gfc_intrinsic_actual_ok (ifc->name, 0))
171 {
172 gfc_error ("Intrinsic procedure %qs not allowed in "
173 "PROCEDURE statement at %L", ifc->name, where);
174 return false;
175 }
176 if (!ifc->attr.if_source && !ifc->attr.intrinsic && ifc->name[0] != '\0')
177 {
178 gfc_error ("Interface %qs at %L must be explicit", ifc->name, where);
179 return false;
180 }
181 return true;
182 }
183
184
185 static void resolve_symbol (gfc_symbol *sym);
186
187
188 /* Resolve the interface for a PROCEDURE declaration or procedure pointer. */
189
190 static bool
191 resolve_procedure_interface (gfc_symbol *sym)
192 {
193 gfc_symbol *ifc = sym->ts.interface;
194
195 if (!ifc)
196 return true;
197
198 if (ifc == sym)
199 {
200 gfc_error ("PROCEDURE %qs at %L may not be used as its own interface",
201 sym->name, &sym->declared_at);
202 return false;
203 }
204 if (!check_proc_interface (ifc, &sym->declared_at))
205 return false;
206
207 if (ifc->attr.if_source || ifc->attr.intrinsic)
208 {
209 /* Resolve interface and copy attributes. */
210 resolve_symbol (ifc);
211 if (ifc->attr.intrinsic)
212 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
213
214 if (ifc->result)
215 {
216 sym->ts = ifc->result->ts;
217 sym->attr.allocatable = ifc->result->attr.allocatable;
218 sym->attr.pointer = ifc->result->attr.pointer;
219 sym->attr.dimension = ifc->result->attr.dimension;
220 sym->attr.class_ok = ifc->result->attr.class_ok;
221 sym->as = gfc_copy_array_spec (ifc->result->as);
222 sym->result = sym;
223 }
224 else
225 {
226 sym->ts = ifc->ts;
227 sym->attr.allocatable = ifc->attr.allocatable;
228 sym->attr.pointer = ifc->attr.pointer;
229 sym->attr.dimension = ifc->attr.dimension;
230 sym->attr.class_ok = ifc->attr.class_ok;
231 sym->as = gfc_copy_array_spec (ifc->as);
232 }
233 sym->ts.interface = ifc;
234 sym->attr.function = ifc->attr.function;
235 sym->attr.subroutine = ifc->attr.subroutine;
236
237 sym->attr.pure = ifc->attr.pure;
238 sym->attr.elemental = ifc->attr.elemental;
239 sym->attr.contiguous = ifc->attr.contiguous;
240 sym->attr.recursive = ifc->attr.recursive;
241 sym->attr.always_explicit = ifc->attr.always_explicit;
242 sym->attr.ext_attr |= ifc->attr.ext_attr;
243 sym->attr.is_bind_c = ifc->attr.is_bind_c;
244 /* Copy char length. */
245 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
246 {
247 sym->ts.u.cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
248 if (sym->ts.u.cl->length && !sym->ts.u.cl->resolved
249 && !gfc_resolve_expr (sym->ts.u.cl->length))
250 return false;
251 }
252 }
253
254 return true;
255 }
256
257
258 /* Resolve types of formal argument lists. These have to be done early so that
259 the formal argument lists of module procedures can be copied to the
260 containing module before the individual procedures are resolved
261 individually. We also resolve argument lists of procedures in interface
262 blocks because they are self-contained scoping units.
263
264 Since a dummy argument cannot be a non-dummy procedure, the only
265 resort left for untyped names are the IMPLICIT types. */
266
267 static void
268 resolve_formal_arglist (gfc_symbol *proc)
269 {
270 gfc_formal_arglist *f;
271 gfc_symbol *sym;
272 bool saved_specification_expr;
273 int i;
274
275 if (proc->result != NULL)
276 sym = proc->result;
277 else
278 sym = proc;
279
280 if (gfc_elemental (proc)
281 || sym->attr.pointer || sym->attr.allocatable
282 || (sym->as && sym->as->rank != 0))
283 {
284 proc->attr.always_explicit = 1;
285 sym->attr.always_explicit = 1;
286 }
287
288 formal_arg_flag = true;
289
290 for (f = proc->formal; f; f = f->next)
291 {
292 gfc_array_spec *as;
293
294 sym = f->sym;
295
296 if (sym == NULL)
297 {
298 /* Alternate return placeholder. */
299 if (gfc_elemental (proc))
300 gfc_error ("Alternate return specifier in elemental subroutine "
301 "%qs at %L is not allowed", proc->name,
302 &proc->declared_at);
303 if (proc->attr.function)
304 gfc_error ("Alternate return specifier in function "
305 "%qs at %L is not allowed", proc->name,
306 &proc->declared_at);
307 continue;
308 }
309 else if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
310 && !resolve_procedure_interface (sym))
311 return;
312
313 if (strcmp (proc->name, sym->name) == 0)
314 {
315 gfc_error ("Self-referential argument "
316 "%qs at %L is not allowed", sym->name,
317 &proc->declared_at);
318 return;
319 }
320
321 if (sym->attr.if_source != IFSRC_UNKNOWN)
322 resolve_formal_arglist (sym);
323
324 if (sym->attr.subroutine || sym->attr.external)
325 {
326 if (sym->attr.flavor == FL_UNKNOWN)
327 gfc_add_flavor (&sym->attr, FL_PROCEDURE, sym->name, &sym->declared_at);
328 }
329 else
330 {
331 if (sym->ts.type == BT_UNKNOWN && !proc->attr.intrinsic
332 && (!sym->attr.function || sym->result == sym))
333 gfc_set_default_type (sym, 1, sym->ns);
334 }
335
336 as = sym->ts.type == BT_CLASS && sym->attr.class_ok
337 ? CLASS_DATA (sym)->as : sym->as;
338
339 saved_specification_expr = specification_expr;
340 specification_expr = true;
341 gfc_resolve_array_spec (as, 0);
342 specification_expr = saved_specification_expr;
343
344 /* We can't tell if an array with dimension (:) is assumed or deferred
345 shape until we know if it has the pointer or allocatable attributes.
346 */
347 if (as && as->rank > 0 && as->type == AS_DEFERRED
348 && ((sym->ts.type != BT_CLASS
349 && !(sym->attr.pointer || sym->attr.allocatable))
350 || (sym->ts.type == BT_CLASS
351 && !(CLASS_DATA (sym)->attr.class_pointer
352 || CLASS_DATA (sym)->attr.allocatable)))
353 && sym->attr.flavor != FL_PROCEDURE)
354 {
355 as->type = AS_ASSUMED_SHAPE;
356 for (i = 0; i < as->rank; i++)
357 as->lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
358 }
359
360 if ((as && as->rank > 0 && as->type == AS_ASSUMED_SHAPE)
361 || (as && as->type == AS_ASSUMED_RANK)
362 || sym->attr.pointer || sym->attr.allocatable || sym->attr.target
363 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
364 && (CLASS_DATA (sym)->attr.class_pointer
365 || CLASS_DATA (sym)->attr.allocatable
366 || CLASS_DATA (sym)->attr.target))
367 || sym->attr.optional)
368 {
369 proc->attr.always_explicit = 1;
370 if (proc->result)
371 proc->result->attr.always_explicit = 1;
372 }
373
374 /* If the flavor is unknown at this point, it has to be a variable.
375 A procedure specification would have already set the type. */
376
377 if (sym->attr.flavor == FL_UNKNOWN)
378 gfc_add_flavor (&sym->attr, FL_VARIABLE, sym->name, &sym->declared_at);
379
380 if (gfc_pure (proc))
381 {
382 if (sym->attr.flavor == FL_PROCEDURE)
383 {
384 /* F08:C1279. */
385 if (!gfc_pure (sym))
386 {
387 gfc_error ("Dummy procedure %qs of PURE procedure at %L must "
388 "also be PURE", sym->name, &sym->declared_at);
389 continue;
390 }
391 }
392 else if (!sym->attr.pointer)
393 {
394 if (proc->attr.function && sym->attr.intent != INTENT_IN)
395 {
396 if (sym->attr.value)
397 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
398 " of pure function %qs at %L with VALUE "
399 "attribute but without INTENT(IN)",
400 sym->name, proc->name, &sym->declared_at);
401 else
402 gfc_error ("Argument %qs of pure function %qs at %L must "
403 "be INTENT(IN) or VALUE", sym->name, proc->name,
404 &sym->declared_at);
405 }
406
407 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN)
408 {
409 if (sym->attr.value)
410 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
411 " of pure subroutine %qs at %L with VALUE "
412 "attribute but without INTENT", sym->name,
413 proc->name, &sym->declared_at);
414 else
415 gfc_error ("Argument %qs of pure subroutine %qs at %L "
416 "must have its INTENT specified or have the "
417 "VALUE attribute", sym->name, proc->name,
418 &sym->declared_at);
419 }
420 }
421
422 /* F08:C1278a. */
423 if (sym->ts.type == BT_CLASS && sym->attr.intent == INTENT_OUT)
424 {
425 gfc_error ("INTENT(OUT) argument %qs of pure procedure %qs at %L"
426 " may not be polymorphic", sym->name, proc->name,
427 &sym->declared_at);
428 continue;
429 }
430 }
431
432 if (proc->attr.implicit_pure)
433 {
434 if (sym->attr.flavor == FL_PROCEDURE)
435 {
436 if (!gfc_pure (sym))
437 proc->attr.implicit_pure = 0;
438 }
439 else if (!sym->attr.pointer)
440 {
441 if (proc->attr.function && sym->attr.intent != INTENT_IN
442 && !sym->value)
443 proc->attr.implicit_pure = 0;
444
445 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN
446 && !sym->value)
447 proc->attr.implicit_pure = 0;
448 }
449 }
450
451 if (gfc_elemental (proc))
452 {
453 /* F08:C1289. */
454 if (sym->attr.codimension
455 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
456 && CLASS_DATA (sym)->attr.codimension))
457 {
458 gfc_error ("Coarray dummy argument %qs at %L to elemental "
459 "procedure", sym->name, &sym->declared_at);
460 continue;
461 }
462
463 if (sym->as || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
464 && CLASS_DATA (sym)->as))
465 {
466 gfc_error ("Argument %qs of elemental procedure at %L must "
467 "be scalar", sym->name, &sym->declared_at);
468 continue;
469 }
470
471 if (sym->attr.allocatable
472 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
473 && CLASS_DATA (sym)->attr.allocatable))
474 {
475 gfc_error ("Argument %qs of elemental procedure at %L cannot "
476 "have the ALLOCATABLE attribute", sym->name,
477 &sym->declared_at);
478 continue;
479 }
480
481 if (sym->attr.pointer
482 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
483 && CLASS_DATA (sym)->attr.class_pointer))
484 {
485 gfc_error ("Argument %qs of elemental procedure at %L cannot "
486 "have the POINTER attribute", sym->name,
487 &sym->declared_at);
488 continue;
489 }
490
491 if (sym->attr.flavor == FL_PROCEDURE)
492 {
493 gfc_error ("Dummy procedure %qs not allowed in elemental "
494 "procedure %qs at %L", sym->name, proc->name,
495 &sym->declared_at);
496 continue;
497 }
498
499 /* Fortran 2008 Corrigendum 1, C1290a. */
500 if (sym->attr.intent == INTENT_UNKNOWN && !sym->attr.value)
501 {
502 gfc_error ("Argument %qs of elemental procedure %qs at %L must "
503 "have its INTENT specified or have the VALUE "
504 "attribute", sym->name, proc->name,
505 &sym->declared_at);
506 continue;
507 }
508 }
509
510 /* Each dummy shall be specified to be scalar. */
511 if (proc->attr.proc == PROC_ST_FUNCTION)
512 {
513 if (sym->as != NULL)
514 {
515 /* F03:C1263 (R1238) The function-name and each dummy-arg-name
516 shall be specified, explicitly or implicitly, to be scalar. */
517 gfc_error ("Argument '%s' of statement function '%s' at %L "
518 "must be scalar", sym->name, proc->name,
519 &proc->declared_at);
520 continue;
521 }
522
523 if (sym->ts.type == BT_CHARACTER)
524 {
525 gfc_charlen *cl = sym->ts.u.cl;
526 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
527 {
528 gfc_error ("Character-valued argument %qs of statement "
529 "function at %L must have constant length",
530 sym->name, &sym->declared_at);
531 continue;
532 }
533 }
534 }
535 }
536 formal_arg_flag = false;
537 }
538
539
540 /* Work function called when searching for symbols that have argument lists
541 associated with them. */
542
543 static void
544 find_arglists (gfc_symbol *sym)
545 {
546 if (sym->attr.if_source == IFSRC_UNKNOWN || sym->ns != gfc_current_ns
547 || gfc_fl_struct (sym->attr.flavor) || sym->attr.intrinsic)
548 return;
549
550 resolve_formal_arglist (sym);
551 }
552
553
554 /* Given a namespace, resolve all formal argument lists within the namespace.
555 */
556
557 static void
558 resolve_formal_arglists (gfc_namespace *ns)
559 {
560 if (ns == NULL)
561 return;
562
563 gfc_traverse_ns (ns, find_arglists);
564 }
565
566
567 static void
568 resolve_contained_fntype (gfc_symbol *sym, gfc_namespace *ns)
569 {
570 bool t;
571
572 if (sym && sym->attr.flavor == FL_PROCEDURE
573 && sym->ns->parent
574 && sym->ns->parent->proc_name
575 && sym->ns->parent->proc_name->attr.flavor == FL_PROCEDURE
576 && !strcmp (sym->name, sym->ns->parent->proc_name->name))
577 gfc_error ("Contained procedure %qs at %L has the same name as its "
578 "encompassing procedure", sym->name, &sym->declared_at);
579
580 /* If this namespace is not a function or an entry master function,
581 ignore it. */
582 if (! sym || !(sym->attr.function || sym->attr.flavor == FL_VARIABLE)
583 || sym->attr.entry_master)
584 return;
585
586 /* Try to find out of what the return type is. */
587 if (sym->result->ts.type == BT_UNKNOWN && sym->result->ts.interface == NULL)
588 {
589 t = gfc_set_default_type (sym->result, 0, ns);
590
591 if (!t && !sym->result->attr.untyped)
592 {
593 if (sym->result == sym)
594 gfc_error ("Contained function %qs at %L has no IMPLICIT type",
595 sym->name, &sym->declared_at);
596 else if (!sym->result->attr.proc_pointer)
597 gfc_error ("Result %qs of contained function %qs at %L has "
598 "no IMPLICIT type", sym->result->name, sym->name,
599 &sym->result->declared_at);
600 sym->result->attr.untyped = 1;
601 }
602 }
603
604 /* Fortran 2008 Draft Standard, page 535, C418, on type-param-value
605 type, lists the only ways a character length value of * can be used:
606 dummy arguments of procedures, named constants, function results and
607 in allocate statements if the allocate_object is an assumed length dummy
608 in external functions. Internal function results and results of module
609 procedures are not on this list, ergo, not permitted. */
610
611 if (sym->result->ts.type == BT_CHARACTER)
612 {
613 gfc_charlen *cl = sym->result->ts.u.cl;
614 if ((!cl || !cl->length) && !sym->result->ts.deferred)
615 {
616 /* See if this is a module-procedure and adapt error message
617 accordingly. */
618 bool module_proc;
619 gcc_assert (ns->parent && ns->parent->proc_name);
620 module_proc = (ns->parent->proc_name->attr.flavor == FL_MODULE);
621
622 gfc_error (module_proc
623 ? G_("Character-valued module procedure %qs at %L"
624 " must not be assumed length")
625 : G_("Character-valued internal function %qs at %L"
626 " must not be assumed length"),
627 sym->name, &sym->declared_at);
628 }
629 }
630 }
631
632
633 /* Add NEW_ARGS to the formal argument list of PROC, taking care not to
634 introduce duplicates. */
635
636 static void
637 merge_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
638 {
639 gfc_formal_arglist *f, *new_arglist;
640 gfc_symbol *new_sym;
641
642 for (; new_args != NULL; new_args = new_args->next)
643 {
644 new_sym = new_args->sym;
645 /* See if this arg is already in the formal argument list. */
646 for (f = proc->formal; f; f = f->next)
647 {
648 if (new_sym == f->sym)
649 break;
650 }
651
652 if (f)
653 continue;
654
655 /* Add a new argument. Argument order is not important. */
656 new_arglist = gfc_get_formal_arglist ();
657 new_arglist->sym = new_sym;
658 new_arglist->next = proc->formal;
659 proc->formal = new_arglist;
660 }
661 }
662
663
664 /* Flag the arguments that are not present in all entries. */
665
666 static void
667 check_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
668 {
669 gfc_formal_arglist *f, *head;
670 head = new_args;
671
672 for (f = proc->formal; f; f = f->next)
673 {
674 if (f->sym == NULL)
675 continue;
676
677 for (new_args = head; new_args; new_args = new_args->next)
678 {
679 if (new_args->sym == f->sym)
680 break;
681 }
682
683 if (new_args)
684 continue;
685
686 f->sym->attr.not_always_present = 1;
687 }
688 }
689
690
691 /* Resolve alternate entry points. If a symbol has multiple entry points we
692 create a new master symbol for the main routine, and turn the existing
693 symbol into an entry point. */
694
695 static void
696 resolve_entries (gfc_namespace *ns)
697 {
698 gfc_namespace *old_ns;
699 gfc_code *c;
700 gfc_symbol *proc;
701 gfc_entry_list *el;
702 char name[GFC_MAX_SYMBOL_LEN + 1];
703 static int master_count = 0;
704
705 if (ns->proc_name == NULL)
706 return;
707
708 /* No need to do anything if this procedure doesn't have alternate entry
709 points. */
710 if (!ns->entries)
711 return;
712
713 /* We may already have resolved alternate entry points. */
714 if (ns->proc_name->attr.entry_master)
715 return;
716
717 /* If this isn't a procedure something has gone horribly wrong. */
718 gcc_assert (ns->proc_name->attr.flavor == FL_PROCEDURE);
719
720 /* Remember the current namespace. */
721 old_ns = gfc_current_ns;
722
723 gfc_current_ns = ns;
724
725 /* Add the main entry point to the list of entry points. */
726 el = gfc_get_entry_list ();
727 el->sym = ns->proc_name;
728 el->id = 0;
729 el->next = ns->entries;
730 ns->entries = el;
731 ns->proc_name->attr.entry = 1;
732
733 /* If it is a module function, it needs to be in the right namespace
734 so that gfc_get_fake_result_decl can gather up the results. The
735 need for this arose in get_proc_name, where these beasts were
736 left in their own namespace, to keep prior references linked to
737 the entry declaration.*/
738 if (ns->proc_name->attr.function
739 && ns->parent && ns->parent->proc_name->attr.flavor == FL_MODULE)
740 el->sym->ns = ns;
741
742 /* Do the same for entries where the master is not a module
743 procedure. These are retained in the module namespace because
744 of the module procedure declaration. */
745 for (el = el->next; el; el = el->next)
746 if (el->sym->ns->proc_name->attr.flavor == FL_MODULE
747 && el->sym->attr.mod_proc)
748 el->sym->ns = ns;
749 el = ns->entries;
750
751 /* Add an entry statement for it. */
752 c = gfc_get_code (EXEC_ENTRY);
753 c->ext.entry = el;
754 c->next = ns->code;
755 ns->code = c;
756
757 /* Create a new symbol for the master function. */
758 /* Give the internal function a unique name (within this file).
759 Also include the function name so the user has some hope of figuring
760 out what is going on. */
761 snprintf (name, GFC_MAX_SYMBOL_LEN, "master.%d.%s",
762 master_count++, ns->proc_name->name);
763 gfc_get_ha_symbol (name, &proc);
764 gcc_assert (proc != NULL);
765
766 gfc_add_procedure (&proc->attr, PROC_INTERNAL, proc->name, NULL);
767 if (ns->proc_name->attr.subroutine)
768 gfc_add_subroutine (&proc->attr, proc->name, NULL);
769 else
770 {
771 gfc_symbol *sym;
772 gfc_typespec *ts, *fts;
773 gfc_array_spec *as, *fas;
774 gfc_add_function (&proc->attr, proc->name, NULL);
775 proc->result = proc;
776 fas = ns->entries->sym->as;
777 fas = fas ? fas : ns->entries->sym->result->as;
778 fts = &ns->entries->sym->result->ts;
779 if (fts->type == BT_UNKNOWN)
780 fts = gfc_get_default_type (ns->entries->sym->result->name, NULL);
781 for (el = ns->entries->next; el; el = el->next)
782 {
783 ts = &el->sym->result->ts;
784 as = el->sym->as;
785 as = as ? as : el->sym->result->as;
786 if (ts->type == BT_UNKNOWN)
787 ts = gfc_get_default_type (el->sym->result->name, NULL);
788
789 if (! gfc_compare_types (ts, fts)
790 || (el->sym->result->attr.dimension
791 != ns->entries->sym->result->attr.dimension)
792 || (el->sym->result->attr.pointer
793 != ns->entries->sym->result->attr.pointer))
794 break;
795 else if (as && fas && ns->entries->sym->result != el->sym->result
796 && gfc_compare_array_spec (as, fas) == 0)
797 gfc_error ("Function %s at %L has entries with mismatched "
798 "array specifications", ns->entries->sym->name,
799 &ns->entries->sym->declared_at);
800 /* The characteristics need to match and thus both need to have
801 the same string length, i.e. both len=*, or both len=4.
802 Having both len=<variable> is also possible, but difficult to
803 check at compile time. */
804 else if (ts->type == BT_CHARACTER && ts->u.cl && fts->u.cl
805 && (((ts->u.cl->length && !fts->u.cl->length)
806 ||(!ts->u.cl->length && fts->u.cl->length))
807 || (ts->u.cl->length
808 && ts->u.cl->length->expr_type
809 != fts->u.cl->length->expr_type)
810 || (ts->u.cl->length
811 && ts->u.cl->length->expr_type == EXPR_CONSTANT
812 && mpz_cmp (ts->u.cl->length->value.integer,
813 fts->u.cl->length->value.integer) != 0)))
814 gfc_notify_std (GFC_STD_GNU, "Function %s at %L with "
815 "entries returning variables of different "
816 "string lengths", ns->entries->sym->name,
817 &ns->entries->sym->declared_at);
818 }
819
820 if (el == NULL)
821 {
822 sym = ns->entries->sym->result;
823 /* All result types the same. */
824 proc->ts = *fts;
825 if (sym->attr.dimension)
826 gfc_set_array_spec (proc, gfc_copy_array_spec (sym->as), NULL);
827 if (sym->attr.pointer)
828 gfc_add_pointer (&proc->attr, NULL);
829 }
830 else
831 {
832 /* Otherwise the result will be passed through a union by
833 reference. */
834 proc->attr.mixed_entry_master = 1;
835 for (el = ns->entries; el; el = el->next)
836 {
837 sym = el->sym->result;
838 if (sym->attr.dimension)
839 {
840 if (el == ns->entries)
841 gfc_error ("FUNCTION result %s can't be an array in "
842 "FUNCTION %s at %L", sym->name,
843 ns->entries->sym->name, &sym->declared_at);
844 else
845 gfc_error ("ENTRY result %s can't be an array in "
846 "FUNCTION %s at %L", sym->name,
847 ns->entries->sym->name, &sym->declared_at);
848 }
849 else if (sym->attr.pointer)
850 {
851 if (el == ns->entries)
852 gfc_error ("FUNCTION result %s can't be a POINTER in "
853 "FUNCTION %s at %L", sym->name,
854 ns->entries->sym->name, &sym->declared_at);
855 else
856 gfc_error ("ENTRY result %s can't be a POINTER in "
857 "FUNCTION %s at %L", sym->name,
858 ns->entries->sym->name, &sym->declared_at);
859 }
860 else
861 {
862 ts = &sym->ts;
863 if (ts->type == BT_UNKNOWN)
864 ts = gfc_get_default_type (sym->name, NULL);
865 switch (ts->type)
866 {
867 case BT_INTEGER:
868 if (ts->kind == gfc_default_integer_kind)
869 sym = NULL;
870 break;
871 case BT_REAL:
872 if (ts->kind == gfc_default_real_kind
873 || ts->kind == gfc_default_double_kind)
874 sym = NULL;
875 break;
876 case BT_COMPLEX:
877 if (ts->kind == gfc_default_complex_kind)
878 sym = NULL;
879 break;
880 case BT_LOGICAL:
881 if (ts->kind == gfc_default_logical_kind)
882 sym = NULL;
883 break;
884 case BT_UNKNOWN:
885 /* We will issue error elsewhere. */
886 sym = NULL;
887 break;
888 default:
889 break;
890 }
891 if (sym)
892 {
893 if (el == ns->entries)
894 gfc_error ("FUNCTION result %s can't be of type %s "
895 "in FUNCTION %s at %L", sym->name,
896 gfc_typename (ts), ns->entries->sym->name,
897 &sym->declared_at);
898 else
899 gfc_error ("ENTRY result %s can't be of type %s "
900 "in FUNCTION %s at %L", sym->name,
901 gfc_typename (ts), ns->entries->sym->name,
902 &sym->declared_at);
903 }
904 }
905 }
906 }
907 }
908 proc->attr.access = ACCESS_PRIVATE;
909 proc->attr.entry_master = 1;
910
911 /* Merge all the entry point arguments. */
912 for (el = ns->entries; el; el = el->next)
913 merge_argument_lists (proc, el->sym->formal);
914
915 /* Check the master formal arguments for any that are not
916 present in all entry points. */
917 for (el = ns->entries; el; el = el->next)
918 check_argument_lists (proc, el->sym->formal);
919
920 /* Use the master function for the function body. */
921 ns->proc_name = proc;
922
923 /* Finalize the new symbols. */
924 gfc_commit_symbols ();
925
926 /* Restore the original namespace. */
927 gfc_current_ns = old_ns;
928 }
929
930
931 /* Resolve common variables. */
932 static void
933 resolve_common_vars (gfc_common_head *common_block, bool named_common)
934 {
935 gfc_symbol *csym = common_block->head;
936
937 for (; csym; csym = csym->common_next)
938 {
939 /* gfc_add_in_common may have been called before, but the reported errors
940 have been ignored to continue parsing.
941 We do the checks again here. */
942 if (!csym->attr.use_assoc)
943 gfc_add_in_common (&csym->attr, csym->name, &common_block->where);
944
945 if (csym->value || csym->attr.data)
946 {
947 if (!csym->ns->is_block_data)
948 gfc_notify_std (GFC_STD_GNU, "Variable %qs at %L is in COMMON "
949 "but only in BLOCK DATA initialization is "
950 "allowed", csym->name, &csym->declared_at);
951 else if (!named_common)
952 gfc_notify_std (GFC_STD_GNU, "Initialized variable %qs at %L is "
953 "in a blank COMMON but initialization is only "
954 "allowed in named common blocks", csym->name,
955 &csym->declared_at);
956 }
957
958 if (UNLIMITED_POLY (csym))
959 gfc_error_now ("%qs in cannot appear in COMMON at %L "
960 "[F2008:C5100]", csym->name, &csym->declared_at);
961
962 if (csym->ts.type != BT_DERIVED)
963 continue;
964
965 if (!(csym->ts.u.derived->attr.sequence
966 || csym->ts.u.derived->attr.is_bind_c))
967 gfc_error_now ("Derived type variable %qs in COMMON at %L "
968 "has neither the SEQUENCE nor the BIND(C) "
969 "attribute", csym->name, &csym->declared_at);
970 if (csym->ts.u.derived->attr.alloc_comp)
971 gfc_error_now ("Derived type variable %qs in COMMON at %L "
972 "has an ultimate component that is "
973 "allocatable", csym->name, &csym->declared_at);
974 if (gfc_has_default_initializer (csym->ts.u.derived))
975 gfc_error_now ("Derived type variable %qs in COMMON at %L "
976 "may not have default initializer", csym->name,
977 &csym->declared_at);
978
979 if (csym->attr.flavor == FL_UNKNOWN && !csym->attr.proc_pointer)
980 gfc_add_flavor (&csym->attr, FL_VARIABLE, csym->name, &csym->declared_at);
981 }
982 }
983
984 /* Resolve common blocks. */
985 static void
986 resolve_common_blocks (gfc_symtree *common_root)
987 {
988 gfc_symbol *sym;
989 gfc_gsymbol * gsym;
990
991 if (common_root == NULL)
992 return;
993
994 if (common_root->left)
995 resolve_common_blocks (common_root->left);
996 if (common_root->right)
997 resolve_common_blocks (common_root->right);
998
999 resolve_common_vars (common_root->n.common, true);
1000
1001 if (!gfc_notify_std (GFC_STD_F2018_OBS, "COMMON block at %L",
1002 &common_root->n.common->where))
1003 return;
1004
1005 /* The common name is a global name - in Fortran 2003 also if it has a
1006 C binding name, since Fortran 2008 only the C binding name is a global
1007 identifier. */
1008 if (!common_root->n.common->binding_label
1009 || gfc_notification_std (GFC_STD_F2008))
1010 {
1011 gsym = gfc_find_gsymbol (gfc_gsym_root,
1012 common_root->n.common->name);
1013
1014 if (gsym && gfc_notification_std (GFC_STD_F2008)
1015 && gsym->type == GSYM_COMMON
1016 && ((common_root->n.common->binding_label
1017 && (!gsym->binding_label
1018 || strcmp (common_root->n.common->binding_label,
1019 gsym->binding_label) != 0))
1020 || (!common_root->n.common->binding_label
1021 && gsym->binding_label)))
1022 {
1023 gfc_error ("In Fortran 2003 COMMON %qs block at %L is a global "
1024 "identifier and must thus have the same binding name "
1025 "as the same-named COMMON block at %L: %s vs %s",
1026 common_root->n.common->name, &common_root->n.common->where,
1027 &gsym->where,
1028 common_root->n.common->binding_label
1029 ? common_root->n.common->binding_label : "(blank)",
1030 gsym->binding_label ? gsym->binding_label : "(blank)");
1031 return;
1032 }
1033
1034 if (gsym && gsym->type != GSYM_COMMON
1035 && !common_root->n.common->binding_label)
1036 {
1037 gfc_error ("COMMON block %qs at %L uses the same global identifier "
1038 "as entity at %L",
1039 common_root->n.common->name, &common_root->n.common->where,
1040 &gsym->where);
1041 return;
1042 }
1043 if (gsym && gsym->type != GSYM_COMMON)
1044 {
1045 gfc_error ("Fortran 2008: COMMON block %qs with binding label at "
1046 "%L sharing the identifier with global non-COMMON-block "
1047 "entity at %L", common_root->n.common->name,
1048 &common_root->n.common->where, &gsym->where);
1049 return;
1050 }
1051 if (!gsym)
1052 {
1053 gsym = gfc_get_gsymbol (common_root->n.common->name);
1054 gsym->type = GSYM_COMMON;
1055 gsym->where = common_root->n.common->where;
1056 gsym->defined = 1;
1057 }
1058 gsym->used = 1;
1059 }
1060
1061 if (common_root->n.common->binding_label)
1062 {
1063 gsym = gfc_find_gsymbol (gfc_gsym_root,
1064 common_root->n.common->binding_label);
1065 if (gsym && gsym->type != GSYM_COMMON)
1066 {
1067 gfc_error ("COMMON block at %L with binding label %qs uses the same "
1068 "global identifier as entity at %L",
1069 &common_root->n.common->where,
1070 common_root->n.common->binding_label, &gsym->where);
1071 return;
1072 }
1073 if (!gsym)
1074 {
1075 gsym = gfc_get_gsymbol (common_root->n.common->binding_label);
1076 gsym->type = GSYM_COMMON;
1077 gsym->where = common_root->n.common->where;
1078 gsym->defined = 1;
1079 }
1080 gsym->used = 1;
1081 }
1082
1083 gfc_find_symbol (common_root->name, gfc_current_ns, 0, &sym);
1084 if (sym == NULL)
1085 return;
1086
1087 if (sym->attr.flavor == FL_PARAMETER)
1088 gfc_error ("COMMON block %qs at %L is used as PARAMETER at %L",
1089 sym->name, &common_root->n.common->where, &sym->declared_at);
1090
1091 if (sym->attr.external)
1092 gfc_error ("COMMON block %qs at %L cannot have the EXTERNAL attribute",
1093 sym->name, &common_root->n.common->where);
1094
1095 if (sym->attr.intrinsic)
1096 gfc_error ("COMMON block %qs at %L is also an intrinsic procedure",
1097 sym->name, &common_root->n.common->where);
1098 else if (sym->attr.result
1099 || gfc_is_function_return_value (sym, gfc_current_ns))
1100 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1101 "that is also a function result", sym->name,
1102 &common_root->n.common->where);
1103 else if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_INTERNAL
1104 && sym->attr.proc != PROC_ST_FUNCTION)
1105 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1106 "that is also a global procedure", sym->name,
1107 &common_root->n.common->where);
1108 }
1109
1110
1111 /* Resolve contained function types. Because contained functions can call one
1112 another, they have to be worked out before any of the contained procedures
1113 can be resolved.
1114
1115 The good news is that if a function doesn't already have a type, the only
1116 way it can get one is through an IMPLICIT type or a RESULT variable, because
1117 by definition contained functions are contained namespace they're contained
1118 in, not in a sibling or parent namespace. */
1119
1120 static void
1121 resolve_contained_functions (gfc_namespace *ns)
1122 {
1123 gfc_namespace *child;
1124 gfc_entry_list *el;
1125
1126 resolve_formal_arglists (ns);
1127
1128 for (child = ns->contained; child; child = child->sibling)
1129 {
1130 /* Resolve alternate entry points first. */
1131 resolve_entries (child);
1132
1133 /* Then check function return types. */
1134 resolve_contained_fntype (child->proc_name, child);
1135 for (el = child->entries; el; el = el->next)
1136 resolve_contained_fntype (el->sym, child);
1137 }
1138 }
1139
1140
1141
1142 /* A Parameterized Derived Type constructor must contain values for
1143 the PDT KIND parameters or they must have a default initializer.
1144 Go through the constructor picking out the KIND expressions,
1145 storing them in 'param_list' and then call gfc_get_pdt_instance
1146 to obtain the PDT instance. */
1147
1148 static gfc_actual_arglist *param_list, *param_tail, *param;
1149
1150 static bool
1151 get_pdt_spec_expr (gfc_component *c, gfc_expr *expr)
1152 {
1153 param = gfc_get_actual_arglist ();
1154 if (!param_list)
1155 param_list = param_tail = param;
1156 else
1157 {
1158 param_tail->next = param;
1159 param_tail = param_tail->next;
1160 }
1161
1162 param_tail->name = c->name;
1163 if (expr)
1164 param_tail->expr = gfc_copy_expr (expr);
1165 else if (c->initializer)
1166 param_tail->expr = gfc_copy_expr (c->initializer);
1167 else
1168 {
1169 param_tail->spec_type = SPEC_ASSUMED;
1170 if (c->attr.pdt_kind)
1171 {
1172 gfc_error ("The KIND parameter %qs in the PDT constructor "
1173 "at %C has no value", param->name);
1174 return false;
1175 }
1176 }
1177
1178 return true;
1179 }
1180
1181 static bool
1182 get_pdt_constructor (gfc_expr *expr, gfc_constructor **constr,
1183 gfc_symbol *derived)
1184 {
1185 gfc_constructor *cons = NULL;
1186 gfc_component *comp;
1187 bool t = true;
1188
1189 if (expr && expr->expr_type == EXPR_STRUCTURE)
1190 cons = gfc_constructor_first (expr->value.constructor);
1191 else if (constr)
1192 cons = *constr;
1193 gcc_assert (cons);
1194
1195 comp = derived->components;
1196
1197 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1198 {
1199 if (cons->expr
1200 && cons->expr->expr_type == EXPR_STRUCTURE
1201 && comp->ts.type == BT_DERIVED)
1202 {
1203 t = get_pdt_constructor (cons->expr, NULL, comp->ts.u.derived);
1204 if (!t)
1205 return t;
1206 }
1207 else if (comp->ts.type == BT_DERIVED)
1208 {
1209 t = get_pdt_constructor (NULL, &cons, comp->ts.u.derived);
1210 if (!t)
1211 return t;
1212 }
1213 else if ((comp->attr.pdt_kind || comp->attr.pdt_len)
1214 && derived->attr.pdt_template)
1215 {
1216 t = get_pdt_spec_expr (comp, cons->expr);
1217 if (!t)
1218 return t;
1219 }
1220 }
1221 return t;
1222 }
1223
1224
1225 static bool resolve_fl_derived0 (gfc_symbol *sym);
1226 static bool resolve_fl_struct (gfc_symbol *sym);
1227
1228
1229 /* Resolve all of the elements of a structure constructor and make sure that
1230 the types are correct. The 'init' flag indicates that the given
1231 constructor is an initializer. */
1232
1233 static bool
1234 resolve_structure_cons (gfc_expr *expr, int init)
1235 {
1236 gfc_constructor *cons;
1237 gfc_component *comp;
1238 bool t;
1239 symbol_attribute a;
1240
1241 t = true;
1242
1243 if (expr->ts.type == BT_DERIVED || expr->ts.type == BT_UNION)
1244 {
1245 if (expr->ts.u.derived->attr.flavor == FL_DERIVED)
1246 resolve_fl_derived0 (expr->ts.u.derived);
1247 else
1248 resolve_fl_struct (expr->ts.u.derived);
1249
1250 /* If this is a Parameterized Derived Type template, find the
1251 instance corresponding to the PDT kind parameters. */
1252 if (expr->ts.u.derived->attr.pdt_template)
1253 {
1254 param_list = NULL;
1255 t = get_pdt_constructor (expr, NULL, expr->ts.u.derived);
1256 if (!t)
1257 return t;
1258 gfc_get_pdt_instance (param_list, &expr->ts.u.derived, NULL);
1259
1260 expr->param_list = gfc_copy_actual_arglist (param_list);
1261
1262 if (param_list)
1263 gfc_free_actual_arglist (param_list);
1264
1265 if (!expr->ts.u.derived->attr.pdt_type)
1266 return false;
1267 }
1268 }
1269
1270 cons = gfc_constructor_first (expr->value.constructor);
1271
1272 /* A constructor may have references if it is the result of substituting a
1273 parameter variable. In this case we just pull out the component we
1274 want. */
1275 if (expr->ref)
1276 comp = expr->ref->u.c.sym->components;
1277 else
1278 comp = expr->ts.u.derived->components;
1279
1280 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1281 {
1282 int rank;
1283
1284 if (!cons->expr)
1285 continue;
1286
1287 /* Unions use an EXPR_NULL contrived expression to tell the translation
1288 phase to generate an initializer of the appropriate length.
1289 Ignore it here. */
1290 if (cons->expr->ts.type == BT_UNION && cons->expr->expr_type == EXPR_NULL)
1291 continue;
1292
1293 if (!gfc_resolve_expr (cons->expr))
1294 {
1295 t = false;
1296 continue;
1297 }
1298
1299 rank = comp->as ? comp->as->rank : 0;
1300 if (comp->ts.type == BT_CLASS
1301 && !comp->ts.u.derived->attr.unlimited_polymorphic
1302 && CLASS_DATA (comp)->as)
1303 rank = CLASS_DATA (comp)->as->rank;
1304
1305 if (cons->expr->expr_type != EXPR_NULL && rank != cons->expr->rank
1306 && (comp->attr.allocatable || cons->expr->rank))
1307 {
1308 gfc_error ("The rank of the element in the structure "
1309 "constructor at %L does not match that of the "
1310 "component (%d/%d)", &cons->expr->where,
1311 cons->expr->rank, rank);
1312 t = false;
1313 }
1314
1315 /* If we don't have the right type, try to convert it. */
1316
1317 if (!comp->attr.proc_pointer &&
1318 !gfc_compare_types (&cons->expr->ts, &comp->ts))
1319 {
1320 if (strcmp (comp->name, "_extends") == 0)
1321 {
1322 /* Can afford to be brutal with the _extends initializer.
1323 The derived type can get lost because it is PRIVATE
1324 but it is not usage constrained by the standard. */
1325 cons->expr->ts = comp->ts;
1326 }
1327 else if (comp->attr.pointer && cons->expr->ts.type != BT_UNKNOWN)
1328 {
1329 gfc_error ("The element in the structure constructor at %L, "
1330 "for pointer component %qs, is %s but should be %s",
1331 &cons->expr->where, comp->name,
1332 gfc_basic_typename (cons->expr->ts.type),
1333 gfc_basic_typename (comp->ts.type));
1334 t = false;
1335 }
1336 else
1337 {
1338 bool t2 = gfc_convert_type (cons->expr, &comp->ts, 1);
1339 if (t)
1340 t = t2;
1341 }
1342 }
1343
1344 /* For strings, the length of the constructor should be the same as
1345 the one of the structure, ensure this if the lengths are known at
1346 compile time and when we are dealing with PARAMETER or structure
1347 constructors. */
1348 if (cons->expr->ts.type == BT_CHARACTER && comp->ts.u.cl
1349 && comp->ts.u.cl->length
1350 && comp->ts.u.cl->length->expr_type == EXPR_CONSTANT
1351 && cons->expr->ts.u.cl && cons->expr->ts.u.cl->length
1352 && cons->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
1353 && cons->expr->rank != 0
1354 && mpz_cmp (cons->expr->ts.u.cl->length->value.integer,
1355 comp->ts.u.cl->length->value.integer) != 0)
1356 {
1357 if (cons->expr->expr_type == EXPR_VARIABLE
1358 && cons->expr->symtree->n.sym->attr.flavor == FL_PARAMETER)
1359 {
1360 /* Wrap the parameter in an array constructor (EXPR_ARRAY)
1361 to make use of the gfc_resolve_character_array_constructor
1362 machinery. The expression is later simplified away to
1363 an array of string literals. */
1364 gfc_expr *para = cons->expr;
1365 cons->expr = gfc_get_expr ();
1366 cons->expr->ts = para->ts;
1367 cons->expr->where = para->where;
1368 cons->expr->expr_type = EXPR_ARRAY;
1369 cons->expr->rank = para->rank;
1370 cons->expr->shape = gfc_copy_shape (para->shape, para->rank);
1371 gfc_constructor_append_expr (&cons->expr->value.constructor,
1372 para, &cons->expr->where);
1373 }
1374
1375 if (cons->expr->expr_type == EXPR_ARRAY)
1376 {
1377 /* Rely on the cleanup of the namespace to deal correctly with
1378 the old charlen. (There was a block here that attempted to
1379 remove the charlen but broke the chain in so doing.) */
1380 cons->expr->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1381 cons->expr->ts.u.cl->length_from_typespec = true;
1382 cons->expr->ts.u.cl->length = gfc_copy_expr (comp->ts.u.cl->length);
1383 gfc_resolve_character_array_constructor (cons->expr);
1384 }
1385 }
1386
1387 if (cons->expr->expr_type == EXPR_NULL
1388 && !(comp->attr.pointer || comp->attr.allocatable
1389 || comp->attr.proc_pointer || comp->ts.f90_type == BT_VOID
1390 || (comp->ts.type == BT_CLASS
1391 && (CLASS_DATA (comp)->attr.class_pointer
1392 || CLASS_DATA (comp)->attr.allocatable))))
1393 {
1394 t = false;
1395 gfc_error ("The NULL in the structure constructor at %L is "
1396 "being applied to component %qs, which is neither "
1397 "a POINTER nor ALLOCATABLE", &cons->expr->where,
1398 comp->name);
1399 }
1400
1401 if (comp->attr.proc_pointer && comp->ts.interface)
1402 {
1403 /* Check procedure pointer interface. */
1404 gfc_symbol *s2 = NULL;
1405 gfc_component *c2;
1406 const char *name;
1407 char err[200];
1408
1409 c2 = gfc_get_proc_ptr_comp (cons->expr);
1410 if (c2)
1411 {
1412 s2 = c2->ts.interface;
1413 name = c2->name;
1414 }
1415 else if (cons->expr->expr_type == EXPR_FUNCTION)
1416 {
1417 s2 = cons->expr->symtree->n.sym->result;
1418 name = cons->expr->symtree->n.sym->result->name;
1419 }
1420 else if (cons->expr->expr_type != EXPR_NULL)
1421 {
1422 s2 = cons->expr->symtree->n.sym;
1423 name = cons->expr->symtree->n.sym->name;
1424 }
1425
1426 if (s2 && !gfc_compare_interfaces (comp->ts.interface, s2, name, 0, 1,
1427 err, sizeof (err), NULL, NULL))
1428 {
1429 gfc_error_opt (OPT_Wargument_mismatch,
1430 "Interface mismatch for procedure-pointer "
1431 "component %qs in structure constructor at %L:"
1432 " %s", comp->name, &cons->expr->where, err);
1433 return false;
1434 }
1435 }
1436
1437 if (!comp->attr.pointer || comp->attr.proc_pointer
1438 || cons->expr->expr_type == EXPR_NULL)
1439 continue;
1440
1441 a = gfc_expr_attr (cons->expr);
1442
1443 if (!a.pointer && !a.target)
1444 {
1445 t = false;
1446 gfc_error ("The element in the structure constructor at %L, "
1447 "for pointer component %qs should be a POINTER or "
1448 "a TARGET", &cons->expr->where, comp->name);
1449 }
1450
1451 if (init)
1452 {
1453 /* F08:C461. Additional checks for pointer initialization. */
1454 if (a.allocatable)
1455 {
1456 t = false;
1457 gfc_error ("Pointer initialization target at %L "
1458 "must not be ALLOCATABLE", &cons->expr->where);
1459 }
1460 if (!a.save)
1461 {
1462 t = false;
1463 gfc_error ("Pointer initialization target at %L "
1464 "must have the SAVE attribute", &cons->expr->where);
1465 }
1466 }
1467
1468 /* F2003, C1272 (3). */
1469 bool impure = cons->expr->expr_type == EXPR_VARIABLE
1470 && (gfc_impure_variable (cons->expr->symtree->n.sym)
1471 || gfc_is_coindexed (cons->expr));
1472 if (impure && gfc_pure (NULL))
1473 {
1474 t = false;
1475 gfc_error ("Invalid expression in the structure constructor for "
1476 "pointer component %qs at %L in PURE procedure",
1477 comp->name, &cons->expr->where);
1478 }
1479
1480 if (impure)
1481 gfc_unset_implicit_pure (NULL);
1482 }
1483
1484 return t;
1485 }
1486
1487
1488 /****************** Expression name resolution ******************/
1489
1490 /* Returns 0 if a symbol was not declared with a type or
1491 attribute declaration statement, nonzero otherwise. */
1492
1493 static int
1494 was_declared (gfc_symbol *sym)
1495 {
1496 symbol_attribute a;
1497
1498 a = sym->attr;
1499
1500 if (!a.implicit_type && sym->ts.type != BT_UNKNOWN)
1501 return 1;
1502
1503 if (a.allocatable || a.dimension || a.dummy || a.external || a.intrinsic
1504 || a.optional || a.pointer || a.save || a.target || a.volatile_
1505 || a.value || a.access != ACCESS_UNKNOWN || a.intent != INTENT_UNKNOWN
1506 || a.asynchronous || a.codimension)
1507 return 1;
1508
1509 return 0;
1510 }
1511
1512
1513 /* Determine if a symbol is generic or not. */
1514
1515 static int
1516 generic_sym (gfc_symbol *sym)
1517 {
1518 gfc_symbol *s;
1519
1520 if (sym->attr.generic ||
1521 (sym->attr.intrinsic && gfc_generic_intrinsic (sym->name)))
1522 return 1;
1523
1524 if (was_declared (sym) || sym->ns->parent == NULL)
1525 return 0;
1526
1527 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1528
1529 if (s != NULL)
1530 {
1531 if (s == sym)
1532 return 0;
1533 else
1534 return generic_sym (s);
1535 }
1536
1537 return 0;
1538 }
1539
1540
1541 /* Determine if a symbol is specific or not. */
1542
1543 static int
1544 specific_sym (gfc_symbol *sym)
1545 {
1546 gfc_symbol *s;
1547
1548 if (sym->attr.if_source == IFSRC_IFBODY
1549 || sym->attr.proc == PROC_MODULE
1550 || sym->attr.proc == PROC_INTERNAL
1551 || sym->attr.proc == PROC_ST_FUNCTION
1552 || (sym->attr.intrinsic && gfc_specific_intrinsic (sym->name))
1553 || sym->attr.external)
1554 return 1;
1555
1556 if (was_declared (sym) || sym->ns->parent == NULL)
1557 return 0;
1558
1559 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1560
1561 return (s == NULL) ? 0 : specific_sym (s);
1562 }
1563
1564
1565 /* Figure out if the procedure is specific, generic or unknown. */
1566
1567 enum proc_type
1568 { PTYPE_GENERIC = 1, PTYPE_SPECIFIC, PTYPE_UNKNOWN };
1569
1570 static proc_type
1571 procedure_kind (gfc_symbol *sym)
1572 {
1573 if (generic_sym (sym))
1574 return PTYPE_GENERIC;
1575
1576 if (specific_sym (sym))
1577 return PTYPE_SPECIFIC;
1578
1579 return PTYPE_UNKNOWN;
1580 }
1581
1582 /* Check references to assumed size arrays. The flag need_full_assumed_size
1583 is nonzero when matching actual arguments. */
1584
1585 static int need_full_assumed_size = 0;
1586
1587 static bool
1588 check_assumed_size_reference (gfc_symbol *sym, gfc_expr *e)
1589 {
1590 if (need_full_assumed_size || !(sym->as && sym->as->type == AS_ASSUMED_SIZE))
1591 return false;
1592
1593 /* FIXME: The comparison "e->ref->u.ar.type == AR_FULL" is wrong.
1594 What should it be? */
1595 if (e->ref && (e->ref->u.ar.end[e->ref->u.ar.as->rank - 1] == NULL)
1596 && (e->ref->u.ar.as->type == AS_ASSUMED_SIZE)
1597 && (e->ref->u.ar.type == AR_FULL))
1598 {
1599 gfc_error ("The upper bound in the last dimension must "
1600 "appear in the reference to the assumed size "
1601 "array %qs at %L", sym->name, &e->where);
1602 return true;
1603 }
1604 return false;
1605 }
1606
1607
1608 /* Look for bad assumed size array references in argument expressions
1609 of elemental and array valued intrinsic procedures. Since this is
1610 called from procedure resolution functions, it only recurses at
1611 operators. */
1612
1613 static bool
1614 resolve_assumed_size_actual (gfc_expr *e)
1615 {
1616 if (e == NULL)
1617 return false;
1618
1619 switch (e->expr_type)
1620 {
1621 case EXPR_VARIABLE:
1622 if (e->symtree && check_assumed_size_reference (e->symtree->n.sym, e))
1623 return true;
1624 break;
1625
1626 case EXPR_OP:
1627 if (resolve_assumed_size_actual (e->value.op.op1)
1628 || resolve_assumed_size_actual (e->value.op.op2))
1629 return true;
1630 break;
1631
1632 default:
1633 break;
1634 }
1635 return false;
1636 }
1637
1638
1639 /* Check a generic procedure, passed as an actual argument, to see if
1640 there is a matching specific name. If none, it is an error, and if
1641 more than one, the reference is ambiguous. */
1642 static int
1643 count_specific_procs (gfc_expr *e)
1644 {
1645 int n;
1646 gfc_interface *p;
1647 gfc_symbol *sym;
1648
1649 n = 0;
1650 sym = e->symtree->n.sym;
1651
1652 for (p = sym->generic; p; p = p->next)
1653 if (strcmp (sym->name, p->sym->name) == 0)
1654 {
1655 e->symtree = gfc_find_symtree (p->sym->ns->sym_root,
1656 sym->name);
1657 n++;
1658 }
1659
1660 if (n > 1)
1661 gfc_error ("%qs at %L is ambiguous", e->symtree->n.sym->name,
1662 &e->where);
1663
1664 if (n == 0)
1665 gfc_error ("GENERIC procedure %qs is not allowed as an actual "
1666 "argument at %L", sym->name, &e->where);
1667
1668 return n;
1669 }
1670
1671
1672 /* See if a call to sym could possibly be a not allowed RECURSION because of
1673 a missing RECURSIVE declaration. This means that either sym is the current
1674 context itself, or sym is the parent of a contained procedure calling its
1675 non-RECURSIVE containing procedure.
1676 This also works if sym is an ENTRY. */
1677
1678 static bool
1679 is_illegal_recursion (gfc_symbol* sym, gfc_namespace* context)
1680 {
1681 gfc_symbol* proc_sym;
1682 gfc_symbol* context_proc;
1683 gfc_namespace* real_context;
1684
1685 if (sym->attr.flavor == FL_PROGRAM
1686 || gfc_fl_struct (sym->attr.flavor))
1687 return false;
1688
1689 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
1690
1691 /* If we've got an ENTRY, find real procedure. */
1692 if (sym->attr.entry && sym->ns->entries)
1693 proc_sym = sym->ns->entries->sym;
1694 else
1695 proc_sym = sym;
1696
1697 /* If sym is RECURSIVE, all is well of course. */
1698 if (proc_sym->attr.recursive || flag_recursive)
1699 return false;
1700
1701 /* Find the context procedure's "real" symbol if it has entries.
1702 We look for a procedure symbol, so recurse on the parents if we don't
1703 find one (like in case of a BLOCK construct). */
1704 for (real_context = context; ; real_context = real_context->parent)
1705 {
1706 /* We should find something, eventually! */
1707 gcc_assert (real_context);
1708
1709 context_proc = (real_context->entries ? real_context->entries->sym
1710 : real_context->proc_name);
1711
1712 /* In some special cases, there may not be a proc_name, like for this
1713 invalid code:
1714 real(bad_kind()) function foo () ...
1715 when checking the call to bad_kind ().
1716 In these cases, we simply return here and assume that the
1717 call is ok. */
1718 if (!context_proc)
1719 return false;
1720
1721 if (context_proc->attr.flavor != FL_LABEL)
1722 break;
1723 }
1724
1725 /* A call from sym's body to itself is recursion, of course. */
1726 if (context_proc == proc_sym)
1727 return true;
1728
1729 /* The same is true if context is a contained procedure and sym the
1730 containing one. */
1731 if (context_proc->attr.contained)
1732 {
1733 gfc_symbol* parent_proc;
1734
1735 gcc_assert (context->parent);
1736 parent_proc = (context->parent->entries ? context->parent->entries->sym
1737 : context->parent->proc_name);
1738
1739 if (parent_proc == proc_sym)
1740 return true;
1741 }
1742
1743 return false;
1744 }
1745
1746
1747 /* Resolve an intrinsic procedure: Set its function/subroutine attribute,
1748 its typespec and formal argument list. */
1749
1750 bool
1751 gfc_resolve_intrinsic (gfc_symbol *sym, locus *loc)
1752 {
1753 gfc_intrinsic_sym* isym = NULL;
1754 const char* symstd;
1755
1756 if (sym->formal)
1757 return true;
1758
1759 /* Already resolved. */
1760 if (sym->from_intmod && sym->ts.type != BT_UNKNOWN)
1761 return true;
1762
1763 /* We already know this one is an intrinsic, so we don't call
1764 gfc_is_intrinsic for full checking but rather use gfc_find_function and
1765 gfc_find_subroutine directly to check whether it is a function or
1766 subroutine. */
1767
1768 if (sym->intmod_sym_id && sym->attr.subroutine)
1769 {
1770 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1771 isym = gfc_intrinsic_subroutine_by_id (id);
1772 }
1773 else if (sym->intmod_sym_id)
1774 {
1775 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1776 isym = gfc_intrinsic_function_by_id (id);
1777 }
1778 else if (!sym->attr.subroutine)
1779 isym = gfc_find_function (sym->name);
1780
1781 if (isym && !sym->attr.subroutine)
1782 {
1783 if (sym->ts.type != BT_UNKNOWN && warn_surprising
1784 && !sym->attr.implicit_type)
1785 gfc_warning (OPT_Wsurprising,
1786 "Type specified for intrinsic function %qs at %L is"
1787 " ignored", sym->name, &sym->declared_at);
1788
1789 if (!sym->attr.function &&
1790 !gfc_add_function(&sym->attr, sym->name, loc))
1791 return false;
1792
1793 sym->ts = isym->ts;
1794 }
1795 else if (isym || (isym = gfc_find_subroutine (sym->name)))
1796 {
1797 if (sym->ts.type != BT_UNKNOWN && !sym->attr.implicit_type)
1798 {
1799 gfc_error ("Intrinsic subroutine %qs at %L shall not have a type"
1800 " specifier", sym->name, &sym->declared_at);
1801 return false;
1802 }
1803
1804 if (!sym->attr.subroutine &&
1805 !gfc_add_subroutine(&sym->attr, sym->name, loc))
1806 return false;
1807 }
1808 else
1809 {
1810 gfc_error ("%qs declared INTRINSIC at %L does not exist", sym->name,
1811 &sym->declared_at);
1812 return false;
1813 }
1814
1815 gfc_copy_formal_args_intr (sym, isym, NULL);
1816
1817 sym->attr.pure = isym->pure;
1818 sym->attr.elemental = isym->elemental;
1819
1820 /* Check it is actually available in the standard settings. */
1821 if (!gfc_check_intrinsic_standard (isym, &symstd, false, sym->declared_at))
1822 {
1823 gfc_error ("The intrinsic %qs declared INTRINSIC at %L is not "
1824 "available in the current standard settings but %s. Use "
1825 "an appropriate %<-std=*%> option or enable "
1826 "%<-fall-intrinsics%> in order to use it.",
1827 sym->name, &sym->declared_at, symstd);
1828 return false;
1829 }
1830
1831 return true;
1832 }
1833
1834
1835 /* Resolve a procedure expression, like passing it to a called procedure or as
1836 RHS for a procedure pointer assignment. */
1837
1838 static bool
1839 resolve_procedure_expression (gfc_expr* expr)
1840 {
1841 gfc_symbol* sym;
1842
1843 if (expr->expr_type != EXPR_VARIABLE)
1844 return true;
1845 gcc_assert (expr->symtree);
1846
1847 sym = expr->symtree->n.sym;
1848
1849 if (sym->attr.intrinsic)
1850 gfc_resolve_intrinsic (sym, &expr->where);
1851
1852 if (sym->attr.flavor != FL_PROCEDURE
1853 || (sym->attr.function && sym->result == sym))
1854 return true;
1855
1856 /* A non-RECURSIVE procedure that is used as procedure expression within its
1857 own body is in danger of being called recursively. */
1858 if (is_illegal_recursion (sym, gfc_current_ns))
1859 gfc_warning (0, "Non-RECURSIVE procedure %qs at %L is possibly calling"
1860 " itself recursively. Declare it RECURSIVE or use"
1861 " %<-frecursive%>", sym->name, &expr->where);
1862
1863 return true;
1864 }
1865
1866
1867 /* Resolve an actual argument list. Most of the time, this is just
1868 resolving the expressions in the list.
1869 The exception is that we sometimes have to decide whether arguments
1870 that look like procedure arguments are really simple variable
1871 references. */
1872
1873 static bool
1874 resolve_actual_arglist (gfc_actual_arglist *arg, procedure_type ptype,
1875 bool no_formal_args)
1876 {
1877 gfc_symbol *sym;
1878 gfc_symtree *parent_st;
1879 gfc_expr *e;
1880 gfc_component *comp;
1881 int save_need_full_assumed_size;
1882 bool return_value = false;
1883 bool actual_arg_sav = actual_arg, first_actual_arg_sav = first_actual_arg;
1884
1885 actual_arg = true;
1886 first_actual_arg = true;
1887
1888 for (; arg; arg = arg->next)
1889 {
1890 e = arg->expr;
1891 if (e == NULL)
1892 {
1893 /* Check the label is a valid branching target. */
1894 if (arg->label)
1895 {
1896 if (arg->label->defined == ST_LABEL_UNKNOWN)
1897 {
1898 gfc_error ("Label %d referenced at %L is never defined",
1899 arg->label->value, &arg->label->where);
1900 goto cleanup;
1901 }
1902 }
1903 first_actual_arg = false;
1904 continue;
1905 }
1906
1907 if (e->expr_type == EXPR_VARIABLE
1908 && e->symtree->n.sym->attr.generic
1909 && no_formal_args
1910 && count_specific_procs (e) != 1)
1911 goto cleanup;
1912
1913 if (e->ts.type != BT_PROCEDURE)
1914 {
1915 save_need_full_assumed_size = need_full_assumed_size;
1916 if (e->expr_type != EXPR_VARIABLE)
1917 need_full_assumed_size = 0;
1918 if (!gfc_resolve_expr (e))
1919 goto cleanup;
1920 need_full_assumed_size = save_need_full_assumed_size;
1921 goto argument_list;
1922 }
1923
1924 /* See if the expression node should really be a variable reference. */
1925
1926 sym = e->symtree->n.sym;
1927
1928 if (sym->attr.flavor == FL_PROCEDURE
1929 || sym->attr.intrinsic
1930 || sym->attr.external)
1931 {
1932 int actual_ok;
1933
1934 /* If a procedure is not already determined to be something else
1935 check if it is intrinsic. */
1936 if (gfc_is_intrinsic (sym, sym->attr.subroutine, e->where))
1937 sym->attr.intrinsic = 1;
1938
1939 if (sym->attr.proc == PROC_ST_FUNCTION)
1940 {
1941 gfc_error ("Statement function %qs at %L is not allowed as an "
1942 "actual argument", sym->name, &e->where);
1943 }
1944
1945 actual_ok = gfc_intrinsic_actual_ok (sym->name,
1946 sym->attr.subroutine);
1947 if (sym->attr.intrinsic && actual_ok == 0)
1948 {
1949 gfc_error ("Intrinsic %qs at %L is not allowed as an "
1950 "actual argument", sym->name, &e->where);
1951 }
1952
1953 if (sym->attr.contained && !sym->attr.use_assoc
1954 && sym->ns->proc_name->attr.flavor != FL_MODULE)
1955 {
1956 if (!gfc_notify_std (GFC_STD_F2008, "Internal procedure %qs is"
1957 " used as actual argument at %L",
1958 sym->name, &e->where))
1959 goto cleanup;
1960 }
1961
1962 if (sym->attr.elemental && !sym->attr.intrinsic)
1963 {
1964 gfc_error ("ELEMENTAL non-INTRINSIC procedure %qs is not "
1965 "allowed as an actual argument at %L", sym->name,
1966 &e->where);
1967 }
1968
1969 /* Check if a generic interface has a specific procedure
1970 with the same name before emitting an error. */
1971 if (sym->attr.generic && count_specific_procs (e) != 1)
1972 goto cleanup;
1973
1974 /* Just in case a specific was found for the expression. */
1975 sym = e->symtree->n.sym;
1976
1977 /* If the symbol is the function that names the current (or
1978 parent) scope, then we really have a variable reference. */
1979
1980 if (gfc_is_function_return_value (sym, sym->ns))
1981 goto got_variable;
1982
1983 /* If all else fails, see if we have a specific intrinsic. */
1984 if (sym->ts.type == BT_UNKNOWN && sym->attr.intrinsic)
1985 {
1986 gfc_intrinsic_sym *isym;
1987
1988 isym = gfc_find_function (sym->name);
1989 if (isym == NULL || !isym->specific)
1990 {
1991 gfc_error ("Unable to find a specific INTRINSIC procedure "
1992 "for the reference %qs at %L", sym->name,
1993 &e->where);
1994 goto cleanup;
1995 }
1996 sym->ts = isym->ts;
1997 sym->attr.intrinsic = 1;
1998 sym->attr.function = 1;
1999 }
2000
2001 if (!gfc_resolve_expr (e))
2002 goto cleanup;
2003 goto argument_list;
2004 }
2005
2006 /* See if the name is a module procedure in a parent unit. */
2007
2008 if (was_declared (sym) || sym->ns->parent == NULL)
2009 goto got_variable;
2010
2011 if (gfc_find_sym_tree (sym->name, sym->ns->parent, 1, &parent_st))
2012 {
2013 gfc_error ("Symbol %qs at %L is ambiguous", sym->name, &e->where);
2014 goto cleanup;
2015 }
2016
2017 if (parent_st == NULL)
2018 goto got_variable;
2019
2020 sym = parent_st->n.sym;
2021 e->symtree = parent_st; /* Point to the right thing. */
2022
2023 if (sym->attr.flavor == FL_PROCEDURE
2024 || sym->attr.intrinsic
2025 || sym->attr.external)
2026 {
2027 if (!gfc_resolve_expr (e))
2028 goto cleanup;
2029 goto argument_list;
2030 }
2031
2032 got_variable:
2033 e->expr_type = EXPR_VARIABLE;
2034 e->ts = sym->ts;
2035 if ((sym->as != NULL && sym->ts.type != BT_CLASS)
2036 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
2037 && CLASS_DATA (sym)->as))
2038 {
2039 e->rank = sym->ts.type == BT_CLASS
2040 ? CLASS_DATA (sym)->as->rank : sym->as->rank;
2041 e->ref = gfc_get_ref ();
2042 e->ref->type = REF_ARRAY;
2043 e->ref->u.ar.type = AR_FULL;
2044 e->ref->u.ar.as = sym->ts.type == BT_CLASS
2045 ? CLASS_DATA (sym)->as : sym->as;
2046 }
2047
2048 /* Expressions are assigned a default ts.type of BT_PROCEDURE in
2049 primary.c (match_actual_arg). If above code determines that it
2050 is a variable instead, it needs to be resolved as it was not
2051 done at the beginning of this function. */
2052 save_need_full_assumed_size = need_full_assumed_size;
2053 if (e->expr_type != EXPR_VARIABLE)
2054 need_full_assumed_size = 0;
2055 if (!gfc_resolve_expr (e))
2056 goto cleanup;
2057 need_full_assumed_size = save_need_full_assumed_size;
2058
2059 argument_list:
2060 /* Check argument list functions %VAL, %LOC and %REF. There is
2061 nothing to do for %REF. */
2062 if (arg->name && arg->name[0] == '%')
2063 {
2064 if (strcmp ("%VAL", arg->name) == 0)
2065 {
2066 if (e->ts.type == BT_CHARACTER || e->ts.type == BT_DERIVED)
2067 {
2068 gfc_error ("By-value argument at %L is not of numeric "
2069 "type", &e->where);
2070 goto cleanup;
2071 }
2072
2073 if (e->rank)
2074 {
2075 gfc_error ("By-value argument at %L cannot be an array or "
2076 "an array section", &e->where);
2077 goto cleanup;
2078 }
2079
2080 /* Intrinsics are still PROC_UNKNOWN here. However,
2081 since same file external procedures are not resolvable
2082 in gfortran, it is a good deal easier to leave them to
2083 intrinsic.c. */
2084 if (ptype != PROC_UNKNOWN
2085 && ptype != PROC_DUMMY
2086 && ptype != PROC_EXTERNAL
2087 && ptype != PROC_MODULE)
2088 {
2089 gfc_error ("By-value argument at %L is not allowed "
2090 "in this context", &e->where);
2091 goto cleanup;
2092 }
2093 }
2094
2095 /* Statement functions have already been excluded above. */
2096 else if (strcmp ("%LOC", arg->name) == 0
2097 && e->ts.type == BT_PROCEDURE)
2098 {
2099 if (e->symtree->n.sym->attr.proc == PROC_INTERNAL)
2100 {
2101 gfc_error ("Passing internal procedure at %L by location "
2102 "not allowed", &e->where);
2103 goto cleanup;
2104 }
2105 }
2106 }
2107
2108 comp = gfc_get_proc_ptr_comp(e);
2109 if (e->expr_type == EXPR_VARIABLE
2110 && comp && comp->attr.elemental)
2111 {
2112 gfc_error ("ELEMENTAL procedure pointer component %qs is not "
2113 "allowed as an actual argument at %L", comp->name,
2114 &e->where);
2115 }
2116
2117 /* Fortran 2008, C1237. */
2118 if (e->expr_type == EXPR_VARIABLE && gfc_is_coindexed (e)
2119 && gfc_has_ultimate_pointer (e))
2120 {
2121 gfc_error ("Coindexed actual argument at %L with ultimate pointer "
2122 "component", &e->where);
2123 goto cleanup;
2124 }
2125
2126 first_actual_arg = false;
2127 }
2128
2129 return_value = true;
2130
2131 cleanup:
2132 actual_arg = actual_arg_sav;
2133 first_actual_arg = first_actual_arg_sav;
2134
2135 return return_value;
2136 }
2137
2138
2139 /* Do the checks of the actual argument list that are specific to elemental
2140 procedures. If called with c == NULL, we have a function, otherwise if
2141 expr == NULL, we have a subroutine. */
2142
2143 static bool
2144 resolve_elemental_actual (gfc_expr *expr, gfc_code *c)
2145 {
2146 gfc_actual_arglist *arg0;
2147 gfc_actual_arglist *arg;
2148 gfc_symbol *esym = NULL;
2149 gfc_intrinsic_sym *isym = NULL;
2150 gfc_expr *e = NULL;
2151 gfc_intrinsic_arg *iformal = NULL;
2152 gfc_formal_arglist *eformal = NULL;
2153 bool formal_optional = false;
2154 bool set_by_optional = false;
2155 int i;
2156 int rank = 0;
2157
2158 /* Is this an elemental procedure? */
2159 if (expr && expr->value.function.actual != NULL)
2160 {
2161 if (expr->value.function.esym != NULL
2162 && expr->value.function.esym->attr.elemental)
2163 {
2164 arg0 = expr->value.function.actual;
2165 esym = expr->value.function.esym;
2166 }
2167 else if (expr->value.function.isym != NULL
2168 && expr->value.function.isym->elemental)
2169 {
2170 arg0 = expr->value.function.actual;
2171 isym = expr->value.function.isym;
2172 }
2173 else
2174 return true;
2175 }
2176 else if (c && c->ext.actual != NULL)
2177 {
2178 arg0 = c->ext.actual;
2179
2180 if (c->resolved_sym)
2181 esym = c->resolved_sym;
2182 else
2183 esym = c->symtree->n.sym;
2184 gcc_assert (esym);
2185
2186 if (!esym->attr.elemental)
2187 return true;
2188 }
2189 else
2190 return true;
2191
2192 /* The rank of an elemental is the rank of its array argument(s). */
2193 for (arg = arg0; arg; arg = arg->next)
2194 {
2195 if (arg->expr != NULL && arg->expr->rank != 0)
2196 {
2197 rank = arg->expr->rank;
2198 if (arg->expr->expr_type == EXPR_VARIABLE
2199 && arg->expr->symtree->n.sym->attr.optional)
2200 set_by_optional = true;
2201
2202 /* Function specific; set the result rank and shape. */
2203 if (expr)
2204 {
2205 expr->rank = rank;
2206 if (!expr->shape && arg->expr->shape)
2207 {
2208 expr->shape = gfc_get_shape (rank);
2209 for (i = 0; i < rank; i++)
2210 mpz_init_set (expr->shape[i], arg->expr->shape[i]);
2211 }
2212 }
2213 break;
2214 }
2215 }
2216
2217 /* If it is an array, it shall not be supplied as an actual argument
2218 to an elemental procedure unless an array of the same rank is supplied
2219 as an actual argument corresponding to a nonoptional dummy argument of
2220 that elemental procedure(12.4.1.5). */
2221 formal_optional = false;
2222 if (isym)
2223 iformal = isym->formal;
2224 else
2225 eformal = esym->formal;
2226
2227 for (arg = arg0; arg; arg = arg->next)
2228 {
2229 if (eformal)
2230 {
2231 if (eformal->sym && eformal->sym->attr.optional)
2232 formal_optional = true;
2233 eformal = eformal->next;
2234 }
2235 else if (isym && iformal)
2236 {
2237 if (iformal->optional)
2238 formal_optional = true;
2239 iformal = iformal->next;
2240 }
2241 else if (isym)
2242 formal_optional = true;
2243
2244 if (pedantic && arg->expr != NULL
2245 && arg->expr->expr_type == EXPR_VARIABLE
2246 && arg->expr->symtree->n.sym->attr.optional
2247 && formal_optional
2248 && arg->expr->rank
2249 && (set_by_optional || arg->expr->rank != rank)
2250 && !(isym && isym->id == GFC_ISYM_CONVERSION))
2251 {
2252 gfc_warning (OPT_Wpedantic,
2253 "%qs at %L is an array and OPTIONAL; IF IT IS "
2254 "MISSING, it cannot be the actual argument of an "
2255 "ELEMENTAL procedure unless there is a non-optional "
2256 "argument with the same rank (12.4.1.5)",
2257 arg->expr->symtree->n.sym->name, &arg->expr->where);
2258 }
2259 }
2260
2261 for (arg = arg0; arg; arg = arg->next)
2262 {
2263 if (arg->expr == NULL || arg->expr->rank == 0)
2264 continue;
2265
2266 /* Being elemental, the last upper bound of an assumed size array
2267 argument must be present. */
2268 if (resolve_assumed_size_actual (arg->expr))
2269 return false;
2270
2271 /* Elemental procedure's array actual arguments must conform. */
2272 if (e != NULL)
2273 {
2274 if (!gfc_check_conformance (arg->expr, e, "elemental procedure"))
2275 return false;
2276 }
2277 else
2278 e = arg->expr;
2279 }
2280
2281 /* INTENT(OUT) is only allowed for subroutines; if any actual argument
2282 is an array, the intent inout/out variable needs to be also an array. */
2283 if (rank > 0 && esym && expr == NULL)
2284 for (eformal = esym->formal, arg = arg0; arg && eformal;
2285 arg = arg->next, eformal = eformal->next)
2286 if ((eformal->sym->attr.intent == INTENT_OUT
2287 || eformal->sym->attr.intent == INTENT_INOUT)
2288 && arg->expr && arg->expr->rank == 0)
2289 {
2290 gfc_error ("Actual argument at %L for INTENT(%s) dummy %qs of "
2291 "ELEMENTAL subroutine %qs is a scalar, but another "
2292 "actual argument is an array", &arg->expr->where,
2293 (eformal->sym->attr.intent == INTENT_OUT) ? "OUT"
2294 : "INOUT", eformal->sym->name, esym->name);
2295 return false;
2296 }
2297 return true;
2298 }
2299
2300
2301 /* This function does the checking of references to global procedures
2302 as defined in sections 18.1 and 14.1, respectively, of the Fortran
2303 77 and 95 standards. It checks for a gsymbol for the name, making
2304 one if it does not already exist. If it already exists, then the
2305 reference being resolved must correspond to the type of gsymbol.
2306 Otherwise, the new symbol is equipped with the attributes of the
2307 reference. The corresponding code that is called in creating
2308 global entities is parse.c.
2309
2310 In addition, for all but -std=legacy, the gsymbols are used to
2311 check the interfaces of external procedures from the same file.
2312 The namespace of the gsymbol is resolved and then, once this is
2313 done the interface is checked. */
2314
2315
2316 static bool
2317 not_in_recursive (gfc_symbol *sym, gfc_namespace *gsym_ns)
2318 {
2319 if (!gsym_ns->proc_name->attr.recursive)
2320 return true;
2321
2322 if (sym->ns == gsym_ns)
2323 return false;
2324
2325 if (sym->ns->parent && sym->ns->parent == gsym_ns)
2326 return false;
2327
2328 return true;
2329 }
2330
2331 static bool
2332 not_entry_self_reference (gfc_symbol *sym, gfc_namespace *gsym_ns)
2333 {
2334 if (gsym_ns->entries)
2335 {
2336 gfc_entry_list *entry = gsym_ns->entries;
2337
2338 for (; entry; entry = entry->next)
2339 {
2340 if (strcmp (sym->name, entry->sym->name) == 0)
2341 {
2342 if (strcmp (gsym_ns->proc_name->name,
2343 sym->ns->proc_name->name) == 0)
2344 return false;
2345
2346 if (sym->ns->parent
2347 && strcmp (gsym_ns->proc_name->name,
2348 sym->ns->parent->proc_name->name) == 0)
2349 return false;
2350 }
2351 }
2352 }
2353 return true;
2354 }
2355
2356
2357 /* Check for the requirement of an explicit interface. F08:12.4.2.2. */
2358
2359 bool
2360 gfc_explicit_interface_required (gfc_symbol *sym, char *errmsg, int err_len)
2361 {
2362 gfc_formal_arglist *arg = gfc_sym_get_dummy_args (sym);
2363
2364 for ( ; arg; arg = arg->next)
2365 {
2366 if (!arg->sym)
2367 continue;
2368
2369 if (arg->sym->attr.allocatable) /* (2a) */
2370 {
2371 strncpy (errmsg, _("allocatable argument"), err_len);
2372 return true;
2373 }
2374 else if (arg->sym->attr.asynchronous)
2375 {
2376 strncpy (errmsg, _("asynchronous argument"), err_len);
2377 return true;
2378 }
2379 else if (arg->sym->attr.optional)
2380 {
2381 strncpy (errmsg, _("optional argument"), err_len);
2382 return true;
2383 }
2384 else if (arg->sym->attr.pointer)
2385 {
2386 strncpy (errmsg, _("pointer argument"), err_len);
2387 return true;
2388 }
2389 else if (arg->sym->attr.target)
2390 {
2391 strncpy (errmsg, _("target argument"), err_len);
2392 return true;
2393 }
2394 else if (arg->sym->attr.value)
2395 {
2396 strncpy (errmsg, _("value argument"), err_len);
2397 return true;
2398 }
2399 else if (arg->sym->attr.volatile_)
2400 {
2401 strncpy (errmsg, _("volatile argument"), err_len);
2402 return true;
2403 }
2404 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_SHAPE) /* (2b) */
2405 {
2406 strncpy (errmsg, _("assumed-shape argument"), err_len);
2407 return true;
2408 }
2409 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_RANK) /* TS 29113, 6.2. */
2410 {
2411 strncpy (errmsg, _("assumed-rank argument"), err_len);
2412 return true;
2413 }
2414 else if (arg->sym->attr.codimension) /* (2c) */
2415 {
2416 strncpy (errmsg, _("coarray argument"), err_len);
2417 return true;
2418 }
2419 else if (false) /* (2d) TODO: parametrized derived type */
2420 {
2421 strncpy (errmsg, _("parametrized derived type argument"), err_len);
2422 return true;
2423 }
2424 else if (arg->sym->ts.type == BT_CLASS) /* (2e) */
2425 {
2426 strncpy (errmsg, _("polymorphic argument"), err_len);
2427 return true;
2428 }
2429 else if (arg->sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2430 {
2431 strncpy (errmsg, _("NO_ARG_CHECK attribute"), err_len);
2432 return true;
2433 }
2434 else if (arg->sym->ts.type == BT_ASSUMED)
2435 {
2436 /* As assumed-type is unlimited polymorphic (cf. above).
2437 See also TS 29113, Note 6.1. */
2438 strncpy (errmsg, _("assumed-type argument"), err_len);
2439 return true;
2440 }
2441 }
2442
2443 if (sym->attr.function)
2444 {
2445 gfc_symbol *res = sym->result ? sym->result : sym;
2446
2447 if (res->attr.dimension) /* (3a) */
2448 {
2449 strncpy (errmsg, _("array result"), err_len);
2450 return true;
2451 }
2452 else if (res->attr.pointer || res->attr.allocatable) /* (3b) */
2453 {
2454 strncpy (errmsg, _("pointer or allocatable result"), err_len);
2455 return true;
2456 }
2457 else if (res->ts.type == BT_CHARACTER && res->ts.u.cl
2458 && res->ts.u.cl->length
2459 && res->ts.u.cl->length->expr_type != EXPR_CONSTANT) /* (3c) */
2460 {
2461 strncpy (errmsg, _("result with non-constant character length"), err_len);
2462 return true;
2463 }
2464 }
2465
2466 if (sym->attr.elemental && !sym->attr.intrinsic) /* (4) */
2467 {
2468 strncpy (errmsg, _("elemental procedure"), err_len);
2469 return true;
2470 }
2471 else if (sym->attr.is_bind_c) /* (5) */
2472 {
2473 strncpy (errmsg, _("bind(c) procedure"), err_len);
2474 return true;
2475 }
2476
2477 return false;
2478 }
2479
2480
2481 static void
2482 resolve_global_procedure (gfc_symbol *sym, locus *where,
2483 gfc_actual_arglist **actual, int sub)
2484 {
2485 gfc_gsymbol * gsym;
2486 gfc_namespace *ns;
2487 enum gfc_symbol_type type;
2488 char reason[200];
2489
2490 type = sub ? GSYM_SUBROUTINE : GSYM_FUNCTION;
2491
2492 gsym = gfc_get_gsymbol (sym->binding_label ? sym->binding_label : sym->name);
2493
2494 if ((gsym->type != GSYM_UNKNOWN && gsym->type != type))
2495 gfc_global_used (gsym, where);
2496
2497 if ((sym->attr.if_source == IFSRC_UNKNOWN
2498 || sym->attr.if_source == IFSRC_IFBODY)
2499 && gsym->type != GSYM_UNKNOWN
2500 && !gsym->binding_label
2501 && gsym->ns
2502 && gsym->ns->resolved != -1
2503 && gsym->ns->proc_name
2504 && not_in_recursive (sym, gsym->ns)
2505 && not_entry_self_reference (sym, gsym->ns))
2506 {
2507 gfc_symbol *def_sym;
2508
2509 /* Resolve the gsymbol namespace if needed. */
2510 if (!gsym->ns->resolved)
2511 {
2512 gfc_symbol *old_dt_list;
2513
2514 /* Stash away derived types so that the backend_decls do not
2515 get mixed up. */
2516 old_dt_list = gfc_derived_types;
2517 gfc_derived_types = NULL;
2518
2519 gfc_resolve (gsym->ns);
2520
2521 /* Store the new derived types with the global namespace. */
2522 if (gfc_derived_types)
2523 gsym->ns->derived_types = gfc_derived_types;
2524
2525 /* Restore the derived types of this namespace. */
2526 gfc_derived_types = old_dt_list;
2527 }
2528
2529 /* Make sure that translation for the gsymbol occurs before
2530 the procedure currently being resolved. */
2531 ns = gfc_global_ns_list;
2532 for (; ns && ns != gsym->ns; ns = ns->sibling)
2533 {
2534 if (ns->sibling == gsym->ns)
2535 {
2536 ns->sibling = gsym->ns->sibling;
2537 gsym->ns->sibling = gfc_global_ns_list;
2538 gfc_global_ns_list = gsym->ns;
2539 break;
2540 }
2541 }
2542
2543 def_sym = gsym->ns->proc_name;
2544
2545 /* This can happen if a binding name has been specified. */
2546 if (gsym->binding_label && gsym->sym_name != def_sym->name)
2547 gfc_find_symbol (gsym->sym_name, gsym->ns, 0, &def_sym);
2548
2549 if (def_sym->attr.entry_master)
2550 {
2551 gfc_entry_list *entry;
2552 for (entry = gsym->ns->entries; entry; entry = entry->next)
2553 if (strcmp (entry->sym->name, sym->name) == 0)
2554 {
2555 def_sym = entry->sym;
2556 break;
2557 }
2558 }
2559
2560 if (sym->attr.function && !gfc_compare_types (&sym->ts, &def_sym->ts))
2561 {
2562 gfc_error ("Return type mismatch of function %qs at %L (%s/%s)",
2563 sym->name, &sym->declared_at, gfc_typename (&sym->ts),
2564 gfc_typename (&def_sym->ts));
2565 goto done;
2566 }
2567
2568 if (sym->attr.if_source == IFSRC_UNKNOWN
2569 && gfc_explicit_interface_required (def_sym, reason, sizeof(reason)))
2570 {
2571 gfc_error ("Explicit interface required for %qs at %L: %s",
2572 sym->name, &sym->declared_at, reason);
2573 goto done;
2574 }
2575
2576 if (!pedantic && (gfc_option.allow_std & GFC_STD_GNU))
2577 /* Turn erros into warnings with -std=gnu and -std=legacy. */
2578 gfc_errors_to_warnings (true);
2579
2580 if (!gfc_compare_interfaces (sym, def_sym, sym->name, 0, 1,
2581 reason, sizeof(reason), NULL, NULL))
2582 {
2583 gfc_error_opt (OPT_Wargument_mismatch,
2584 "Interface mismatch in global procedure %qs at %L:"
2585 " %s", sym->name, &sym->declared_at, reason);
2586 goto done;
2587 }
2588
2589 if (!pedantic
2590 || ((gfc_option.warn_std & GFC_STD_LEGACY)
2591 && !(gfc_option.warn_std & GFC_STD_GNU)))
2592 gfc_errors_to_warnings (true);
2593
2594 if (sym->attr.if_source != IFSRC_IFBODY)
2595 gfc_procedure_use (def_sym, actual, where);
2596 }
2597
2598 done:
2599 gfc_errors_to_warnings (false);
2600
2601 if (gsym->type == GSYM_UNKNOWN)
2602 {
2603 gsym->type = type;
2604 gsym->where = *where;
2605 }
2606
2607 gsym->used = 1;
2608 }
2609
2610
2611 /************* Function resolution *************/
2612
2613 /* Resolve a function call known to be generic.
2614 Section 14.1.2.4.1. */
2615
2616 static match
2617 resolve_generic_f0 (gfc_expr *expr, gfc_symbol *sym)
2618 {
2619 gfc_symbol *s;
2620
2621 if (sym->attr.generic)
2622 {
2623 s = gfc_search_interface (sym->generic, 0, &expr->value.function.actual);
2624 if (s != NULL)
2625 {
2626 expr->value.function.name = s->name;
2627 expr->value.function.esym = s;
2628
2629 if (s->ts.type != BT_UNKNOWN)
2630 expr->ts = s->ts;
2631 else if (s->result != NULL && s->result->ts.type != BT_UNKNOWN)
2632 expr->ts = s->result->ts;
2633
2634 if (s->as != NULL)
2635 expr->rank = s->as->rank;
2636 else if (s->result != NULL && s->result->as != NULL)
2637 expr->rank = s->result->as->rank;
2638
2639 gfc_set_sym_referenced (expr->value.function.esym);
2640
2641 return MATCH_YES;
2642 }
2643
2644 /* TODO: Need to search for elemental references in generic
2645 interface. */
2646 }
2647
2648 if (sym->attr.intrinsic)
2649 return gfc_intrinsic_func_interface (expr, 0);
2650
2651 return MATCH_NO;
2652 }
2653
2654
2655 static bool
2656 resolve_generic_f (gfc_expr *expr)
2657 {
2658 gfc_symbol *sym;
2659 match m;
2660 gfc_interface *intr = NULL;
2661
2662 sym = expr->symtree->n.sym;
2663
2664 for (;;)
2665 {
2666 m = resolve_generic_f0 (expr, sym);
2667 if (m == MATCH_YES)
2668 return true;
2669 else if (m == MATCH_ERROR)
2670 return false;
2671
2672 generic:
2673 if (!intr)
2674 for (intr = sym->generic; intr; intr = intr->next)
2675 if (gfc_fl_struct (intr->sym->attr.flavor))
2676 break;
2677
2678 if (sym->ns->parent == NULL)
2679 break;
2680 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2681
2682 if (sym == NULL)
2683 break;
2684 if (!generic_sym (sym))
2685 goto generic;
2686 }
2687
2688 /* Last ditch attempt. See if the reference is to an intrinsic
2689 that possesses a matching interface. 14.1.2.4 */
2690 if (sym && !intr && !gfc_is_intrinsic (sym, 0, expr->where))
2691 {
2692 if (gfc_init_expr_flag)
2693 gfc_error ("Function %qs in initialization expression at %L "
2694 "must be an intrinsic function",
2695 expr->symtree->n.sym->name, &expr->where);
2696 else
2697 gfc_error ("There is no specific function for the generic %qs "
2698 "at %L", expr->symtree->n.sym->name, &expr->where);
2699 return false;
2700 }
2701
2702 if (intr)
2703 {
2704 if (!gfc_convert_to_structure_constructor (expr, intr->sym, NULL,
2705 NULL, false))
2706 return false;
2707 if (!gfc_use_derived (expr->ts.u.derived))
2708 return false;
2709 return resolve_structure_cons (expr, 0);
2710 }
2711
2712 m = gfc_intrinsic_func_interface (expr, 0);
2713 if (m == MATCH_YES)
2714 return true;
2715
2716 if (m == MATCH_NO)
2717 gfc_error ("Generic function %qs at %L is not consistent with a "
2718 "specific intrinsic interface", expr->symtree->n.sym->name,
2719 &expr->where);
2720
2721 return false;
2722 }
2723
2724
2725 /* Resolve a function call known to be specific. */
2726
2727 static match
2728 resolve_specific_f0 (gfc_symbol *sym, gfc_expr *expr)
2729 {
2730 match m;
2731
2732 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
2733 {
2734 if (sym->attr.dummy)
2735 {
2736 sym->attr.proc = PROC_DUMMY;
2737 goto found;
2738 }
2739
2740 sym->attr.proc = PROC_EXTERNAL;
2741 goto found;
2742 }
2743
2744 if (sym->attr.proc == PROC_MODULE
2745 || sym->attr.proc == PROC_ST_FUNCTION
2746 || sym->attr.proc == PROC_INTERNAL)
2747 goto found;
2748
2749 if (sym->attr.intrinsic)
2750 {
2751 m = gfc_intrinsic_func_interface (expr, 1);
2752 if (m == MATCH_YES)
2753 return MATCH_YES;
2754 if (m == MATCH_NO)
2755 gfc_error ("Function %qs at %L is INTRINSIC but is not compatible "
2756 "with an intrinsic", sym->name, &expr->where);
2757
2758 return MATCH_ERROR;
2759 }
2760
2761 return MATCH_NO;
2762
2763 found:
2764 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2765
2766 if (sym->result)
2767 expr->ts = sym->result->ts;
2768 else
2769 expr->ts = sym->ts;
2770 expr->value.function.name = sym->name;
2771 expr->value.function.esym = sym;
2772 /* Prevent crash when sym->ts.u.derived->components is not set due to previous
2773 error(s). */
2774 if (sym->ts.type == BT_CLASS && !CLASS_DATA (sym))
2775 return MATCH_ERROR;
2776 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
2777 expr->rank = CLASS_DATA (sym)->as->rank;
2778 else if (sym->as != NULL)
2779 expr->rank = sym->as->rank;
2780
2781 return MATCH_YES;
2782 }
2783
2784
2785 static bool
2786 resolve_specific_f (gfc_expr *expr)
2787 {
2788 gfc_symbol *sym;
2789 match m;
2790
2791 sym = expr->symtree->n.sym;
2792
2793 for (;;)
2794 {
2795 m = resolve_specific_f0 (sym, expr);
2796 if (m == MATCH_YES)
2797 return true;
2798 if (m == MATCH_ERROR)
2799 return false;
2800
2801 if (sym->ns->parent == NULL)
2802 break;
2803
2804 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2805
2806 if (sym == NULL)
2807 break;
2808 }
2809
2810 gfc_error ("Unable to resolve the specific function %qs at %L",
2811 expr->symtree->n.sym->name, &expr->where);
2812
2813 return true;
2814 }
2815
2816 /* Recursively append candidate SYM to CANDIDATES. Store the number of
2817 candidates in CANDIDATES_LEN. */
2818
2819 static void
2820 lookup_function_fuzzy_find_candidates (gfc_symtree *sym,
2821 char **&candidates,
2822 size_t &candidates_len)
2823 {
2824 gfc_symtree *p;
2825
2826 if (sym == NULL)
2827 return;
2828 if ((sym->n.sym->ts.type != BT_UNKNOWN || sym->n.sym->attr.external)
2829 && sym->n.sym->attr.flavor == FL_PROCEDURE)
2830 vec_push (candidates, candidates_len, sym->name);
2831
2832 p = sym->left;
2833 if (p)
2834 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2835
2836 p = sym->right;
2837 if (p)
2838 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2839 }
2840
2841
2842 /* Lookup function FN fuzzily, taking names in SYMROOT into account. */
2843
2844 const char*
2845 gfc_lookup_function_fuzzy (const char *fn, gfc_symtree *symroot)
2846 {
2847 char **candidates = NULL;
2848 size_t candidates_len = 0;
2849 lookup_function_fuzzy_find_candidates (symroot, candidates, candidates_len);
2850 return gfc_closest_fuzzy_match (fn, candidates);
2851 }
2852
2853
2854 /* Resolve a procedure call not known to be generic nor specific. */
2855
2856 static bool
2857 resolve_unknown_f (gfc_expr *expr)
2858 {
2859 gfc_symbol *sym;
2860 gfc_typespec *ts;
2861
2862 sym = expr->symtree->n.sym;
2863
2864 if (sym->attr.dummy)
2865 {
2866 sym->attr.proc = PROC_DUMMY;
2867 expr->value.function.name = sym->name;
2868 goto set_type;
2869 }
2870
2871 /* See if we have an intrinsic function reference. */
2872
2873 if (gfc_is_intrinsic (sym, 0, expr->where))
2874 {
2875 if (gfc_intrinsic_func_interface (expr, 1) == MATCH_YES)
2876 return true;
2877 return false;
2878 }
2879
2880 /* The reference is to an external name. */
2881
2882 sym->attr.proc = PROC_EXTERNAL;
2883 expr->value.function.name = sym->name;
2884 expr->value.function.esym = expr->symtree->n.sym;
2885
2886 if (sym->as != NULL)
2887 expr->rank = sym->as->rank;
2888
2889 /* Type of the expression is either the type of the symbol or the
2890 default type of the symbol. */
2891
2892 set_type:
2893 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2894
2895 if (sym->ts.type != BT_UNKNOWN)
2896 expr->ts = sym->ts;
2897 else
2898 {
2899 ts = gfc_get_default_type (sym->name, sym->ns);
2900
2901 if (ts->type == BT_UNKNOWN)
2902 {
2903 const char *guessed
2904 = gfc_lookup_function_fuzzy (sym->name, sym->ns->sym_root);
2905 if (guessed)
2906 gfc_error ("Function %qs at %L has no IMPLICIT type"
2907 "; did you mean %qs?",
2908 sym->name, &expr->where, guessed);
2909 else
2910 gfc_error ("Function %qs at %L has no IMPLICIT type",
2911 sym->name, &expr->where);
2912 return false;
2913 }
2914 else
2915 expr->ts = *ts;
2916 }
2917
2918 return true;
2919 }
2920
2921
2922 /* Return true, if the symbol is an external procedure. */
2923 static bool
2924 is_external_proc (gfc_symbol *sym)
2925 {
2926 if (!sym->attr.dummy && !sym->attr.contained
2927 && !gfc_is_intrinsic (sym, sym->attr.subroutine, sym->declared_at)
2928 && sym->attr.proc != PROC_ST_FUNCTION
2929 && !sym->attr.proc_pointer
2930 && !sym->attr.use_assoc
2931 && sym->name)
2932 return true;
2933
2934 return false;
2935 }
2936
2937
2938 /* Figure out if a function reference is pure or not. Also set the name
2939 of the function for a potential error message. Return nonzero if the
2940 function is PURE, zero if not. */
2941 static int
2942 pure_stmt_function (gfc_expr *, gfc_symbol *);
2943
2944 int
2945 gfc_pure_function (gfc_expr *e, const char **name)
2946 {
2947 int pure;
2948 gfc_component *comp;
2949
2950 *name = NULL;
2951
2952 if (e->symtree != NULL
2953 && e->symtree->n.sym != NULL
2954 && e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
2955 return pure_stmt_function (e, e->symtree->n.sym);
2956
2957 comp = gfc_get_proc_ptr_comp (e);
2958 if (comp)
2959 {
2960 pure = gfc_pure (comp->ts.interface);
2961 *name = comp->name;
2962 }
2963 else if (e->value.function.esym)
2964 {
2965 pure = gfc_pure (e->value.function.esym);
2966 *name = e->value.function.esym->name;
2967 }
2968 else if (e->value.function.isym)
2969 {
2970 pure = e->value.function.isym->pure
2971 || e->value.function.isym->elemental;
2972 *name = e->value.function.isym->name;
2973 }
2974 else
2975 {
2976 /* Implicit functions are not pure. */
2977 pure = 0;
2978 *name = e->value.function.name;
2979 }
2980
2981 return pure;
2982 }
2983
2984
2985 /* Check if the expression is a reference to an implicitly pure function. */
2986
2987 int
2988 gfc_implicit_pure_function (gfc_expr *e)
2989 {
2990 gfc_component *comp = gfc_get_proc_ptr_comp (e);
2991 if (comp)
2992 return gfc_implicit_pure (comp->ts.interface);
2993 else if (e->value.function.esym)
2994 return gfc_implicit_pure (e->value.function.esym);
2995 else
2996 return 0;
2997 }
2998
2999
3000 static bool
3001 impure_stmt_fcn (gfc_expr *e, gfc_symbol *sym,
3002 int *f ATTRIBUTE_UNUSED)
3003 {
3004 const char *name;
3005
3006 /* Don't bother recursing into other statement functions
3007 since they will be checked individually for purity. */
3008 if (e->expr_type != EXPR_FUNCTION
3009 || !e->symtree
3010 || e->symtree->n.sym == sym
3011 || e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
3012 return false;
3013
3014 return gfc_pure_function (e, &name) ? false : true;
3015 }
3016
3017
3018 static int
3019 pure_stmt_function (gfc_expr *e, gfc_symbol *sym)
3020 {
3021 return gfc_traverse_expr (e, sym, impure_stmt_fcn, 0) ? 0 : 1;
3022 }
3023
3024
3025 /* Check if an impure function is allowed in the current context. */
3026
3027 static bool check_pure_function (gfc_expr *e)
3028 {
3029 const char *name = NULL;
3030 if (!gfc_pure_function (e, &name) && name)
3031 {
3032 if (forall_flag)
3033 {
3034 gfc_error ("Reference to impure function %qs at %L inside a "
3035 "FORALL %s", name, &e->where,
3036 forall_flag == 2 ? "mask" : "block");
3037 return false;
3038 }
3039 else if (gfc_do_concurrent_flag)
3040 {
3041 gfc_error ("Reference to impure function %qs at %L inside a "
3042 "DO CONCURRENT %s", name, &e->where,
3043 gfc_do_concurrent_flag == 2 ? "mask" : "block");
3044 return false;
3045 }
3046 else if (gfc_pure (NULL))
3047 {
3048 gfc_error ("Reference to impure function %qs at %L "
3049 "within a PURE procedure", name, &e->where);
3050 return false;
3051 }
3052 if (!gfc_implicit_pure_function (e))
3053 gfc_unset_implicit_pure (NULL);
3054 }
3055 return true;
3056 }
3057
3058
3059 /* Update current procedure's array_outer_dependency flag, considering
3060 a call to procedure SYM. */
3061
3062 static void
3063 update_current_proc_array_outer_dependency (gfc_symbol *sym)
3064 {
3065 /* Check to see if this is a sibling function that has not yet
3066 been resolved. */
3067 gfc_namespace *sibling = gfc_current_ns->sibling;
3068 for (; sibling; sibling = sibling->sibling)
3069 {
3070 if (sibling->proc_name == sym)
3071 {
3072 gfc_resolve (sibling);
3073 break;
3074 }
3075 }
3076
3077 /* If SYM has references to outer arrays, so has the procedure calling
3078 SYM. If SYM is a procedure pointer, we can assume the worst. */
3079 if ((sym->attr.array_outer_dependency || sym->attr.proc_pointer)
3080 && gfc_current_ns->proc_name)
3081 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3082 }
3083
3084
3085 /* Resolve a function call, which means resolving the arguments, then figuring
3086 out which entity the name refers to. */
3087
3088 static bool
3089 resolve_function (gfc_expr *expr)
3090 {
3091 gfc_actual_arglist *arg;
3092 gfc_symbol *sym;
3093 bool t;
3094 int temp;
3095 procedure_type p = PROC_INTRINSIC;
3096 bool no_formal_args;
3097
3098 sym = NULL;
3099 if (expr->symtree)
3100 sym = expr->symtree->n.sym;
3101
3102 /* If this is a procedure pointer component, it has already been resolved. */
3103 if (gfc_is_proc_ptr_comp (expr))
3104 return true;
3105
3106 /* Avoid re-resolving the arguments of caf_get, which can lead to inserting
3107 another caf_get. */
3108 if (sym && sym->attr.intrinsic
3109 && (sym->intmod_sym_id == GFC_ISYM_CAF_GET
3110 || sym->intmod_sym_id == GFC_ISYM_CAF_SEND))
3111 return true;
3112
3113 if (sym && sym->attr.intrinsic
3114 && !gfc_resolve_intrinsic (sym, &expr->where))
3115 return false;
3116
3117 if (sym && (sym->attr.flavor == FL_VARIABLE || sym->attr.subroutine))
3118 {
3119 gfc_error ("%qs at %L is not a function", sym->name, &expr->where);
3120 return false;
3121 }
3122
3123 /* If this is a deferred TBP with an abstract interface (which may
3124 of course be referenced), expr->value.function.esym will be set. */
3125 if (sym && sym->attr.abstract && !expr->value.function.esym)
3126 {
3127 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3128 sym->name, &expr->where);
3129 return false;
3130 }
3131
3132 /* If this is a deferred TBP with an abstract interface, its result
3133 cannot be an assumed length character (F2003: C418). */
3134 if (sym && sym->attr.abstract && sym->attr.function
3135 && sym->result->ts.u.cl
3136 && sym->result->ts.u.cl->length == NULL
3137 && !sym->result->ts.deferred)
3138 {
3139 gfc_error ("ABSTRACT INTERFACE %qs at %L must not have an assumed "
3140 "character length result (F2008: C418)", sym->name,
3141 &sym->declared_at);
3142 return false;
3143 }
3144
3145 /* Switch off assumed size checking and do this again for certain kinds
3146 of procedure, once the procedure itself is resolved. */
3147 need_full_assumed_size++;
3148
3149 if (expr->symtree && expr->symtree->n.sym)
3150 p = expr->symtree->n.sym->attr.proc;
3151
3152 if (expr->value.function.isym && expr->value.function.isym->inquiry)
3153 inquiry_argument = true;
3154 no_formal_args = sym && is_external_proc (sym)
3155 && gfc_sym_get_dummy_args (sym) == NULL;
3156
3157 if (!resolve_actual_arglist (expr->value.function.actual,
3158 p, no_formal_args))
3159 {
3160 inquiry_argument = false;
3161 return false;
3162 }
3163
3164 inquiry_argument = false;
3165
3166 /* Resume assumed_size checking. */
3167 need_full_assumed_size--;
3168
3169 /* If the procedure is external, check for usage. */
3170 if (sym && is_external_proc (sym))
3171 resolve_global_procedure (sym, &expr->where,
3172 &expr->value.function.actual, 0);
3173
3174 if (sym && sym->ts.type == BT_CHARACTER
3175 && sym->ts.u.cl
3176 && sym->ts.u.cl->length == NULL
3177 && !sym->attr.dummy
3178 && !sym->ts.deferred
3179 && expr->value.function.esym == NULL
3180 && !sym->attr.contained)
3181 {
3182 /* Internal procedures are taken care of in resolve_contained_fntype. */
3183 gfc_error ("Function %qs is declared CHARACTER(*) and cannot "
3184 "be used at %L since it is not a dummy argument",
3185 sym->name, &expr->where);
3186 return false;
3187 }
3188
3189 /* See if function is already resolved. */
3190
3191 if (expr->value.function.name != NULL
3192 || expr->value.function.isym != NULL)
3193 {
3194 if (expr->ts.type == BT_UNKNOWN)
3195 expr->ts = sym->ts;
3196 t = true;
3197 }
3198 else
3199 {
3200 /* Apply the rules of section 14.1.2. */
3201
3202 switch (procedure_kind (sym))
3203 {
3204 case PTYPE_GENERIC:
3205 t = resolve_generic_f (expr);
3206 break;
3207
3208 case PTYPE_SPECIFIC:
3209 t = resolve_specific_f (expr);
3210 break;
3211
3212 case PTYPE_UNKNOWN:
3213 t = resolve_unknown_f (expr);
3214 break;
3215
3216 default:
3217 gfc_internal_error ("resolve_function(): bad function type");
3218 }
3219 }
3220
3221 /* If the expression is still a function (it might have simplified),
3222 then we check to see if we are calling an elemental function. */
3223
3224 if (expr->expr_type != EXPR_FUNCTION)
3225 return t;
3226
3227 temp = need_full_assumed_size;
3228 need_full_assumed_size = 0;
3229
3230 if (!resolve_elemental_actual (expr, NULL))
3231 return false;
3232
3233 if (omp_workshare_flag
3234 && expr->value.function.esym
3235 && ! gfc_elemental (expr->value.function.esym))
3236 {
3237 gfc_error ("User defined non-ELEMENTAL function %qs at %L not allowed "
3238 "in WORKSHARE construct", expr->value.function.esym->name,
3239 &expr->where);
3240 t = false;
3241 }
3242
3243 #define GENERIC_ID expr->value.function.isym->id
3244 else if (expr->value.function.actual != NULL
3245 && expr->value.function.isym != NULL
3246 && GENERIC_ID != GFC_ISYM_LBOUND
3247 && GENERIC_ID != GFC_ISYM_LCOBOUND
3248 && GENERIC_ID != GFC_ISYM_UCOBOUND
3249 && GENERIC_ID != GFC_ISYM_LEN
3250 && GENERIC_ID != GFC_ISYM_LOC
3251 && GENERIC_ID != GFC_ISYM_C_LOC
3252 && GENERIC_ID != GFC_ISYM_PRESENT)
3253 {
3254 /* Array intrinsics must also have the last upper bound of an
3255 assumed size array argument. UBOUND and SIZE have to be
3256 excluded from the check if the second argument is anything
3257 than a constant. */
3258
3259 for (arg = expr->value.function.actual; arg; arg = arg->next)
3260 {
3261 if ((GENERIC_ID == GFC_ISYM_UBOUND || GENERIC_ID == GFC_ISYM_SIZE)
3262 && arg == expr->value.function.actual
3263 && arg->next != NULL && arg->next->expr)
3264 {
3265 if (arg->next->expr->expr_type != EXPR_CONSTANT)
3266 break;
3267
3268 if (arg->next->name && strcmp (arg->next->name, "kind") == 0)
3269 break;
3270
3271 if ((int)mpz_get_si (arg->next->expr->value.integer)
3272 < arg->expr->rank)
3273 break;
3274 }
3275
3276 if (arg->expr != NULL
3277 && arg->expr->rank > 0
3278 && resolve_assumed_size_actual (arg->expr))
3279 return false;
3280 }
3281 }
3282 #undef GENERIC_ID
3283
3284 need_full_assumed_size = temp;
3285
3286 if (!check_pure_function(expr))
3287 t = false;
3288
3289 /* Functions without the RECURSIVE attribution are not allowed to
3290 * call themselves. */
3291 if (expr->value.function.esym && !expr->value.function.esym->attr.recursive)
3292 {
3293 gfc_symbol *esym;
3294 esym = expr->value.function.esym;
3295
3296 if (is_illegal_recursion (esym, gfc_current_ns))
3297 {
3298 if (esym->attr.entry && esym->ns->entries)
3299 gfc_error ("ENTRY %qs at %L cannot be called recursively, as"
3300 " function %qs is not RECURSIVE",
3301 esym->name, &expr->where, esym->ns->entries->sym->name);
3302 else
3303 gfc_error ("Function %qs at %L cannot be called recursively, as it"
3304 " is not RECURSIVE", esym->name, &expr->where);
3305
3306 t = false;
3307 }
3308 }
3309
3310 /* Character lengths of use associated functions may contains references to
3311 symbols not referenced from the current program unit otherwise. Make sure
3312 those symbols are marked as referenced. */
3313
3314 if (expr->ts.type == BT_CHARACTER && expr->value.function.esym
3315 && expr->value.function.esym->attr.use_assoc)
3316 {
3317 gfc_expr_set_symbols_referenced (expr->ts.u.cl->length);
3318 }
3319
3320 /* Make sure that the expression has a typespec that works. */
3321 if (expr->ts.type == BT_UNKNOWN)
3322 {
3323 if (expr->symtree->n.sym->result
3324 && expr->symtree->n.sym->result->ts.type != BT_UNKNOWN
3325 && !expr->symtree->n.sym->result->attr.proc_pointer)
3326 expr->ts = expr->symtree->n.sym->result->ts;
3327 }
3328
3329 if (!expr->ref && !expr->value.function.isym)
3330 {
3331 if (expr->value.function.esym)
3332 update_current_proc_array_outer_dependency (expr->value.function.esym);
3333 else
3334 update_current_proc_array_outer_dependency (sym);
3335 }
3336 else if (expr->ref)
3337 /* typebound procedure: Assume the worst. */
3338 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3339
3340 return t;
3341 }
3342
3343
3344 /************* Subroutine resolution *************/
3345
3346 static bool
3347 pure_subroutine (gfc_symbol *sym, const char *name, locus *loc)
3348 {
3349 if (gfc_pure (sym))
3350 return true;
3351
3352 if (forall_flag)
3353 {
3354 gfc_error ("Subroutine call to %qs in FORALL block at %L is not PURE",
3355 name, loc);
3356 return false;
3357 }
3358 else if (gfc_do_concurrent_flag)
3359 {
3360 gfc_error ("Subroutine call to %qs in DO CONCURRENT block at %L is not "
3361 "PURE", name, loc);
3362 return false;
3363 }
3364 else if (gfc_pure (NULL))
3365 {
3366 gfc_error ("Subroutine call to %qs at %L is not PURE", name, loc);
3367 return false;
3368 }
3369
3370 gfc_unset_implicit_pure (NULL);
3371 return true;
3372 }
3373
3374
3375 static match
3376 resolve_generic_s0 (gfc_code *c, gfc_symbol *sym)
3377 {
3378 gfc_symbol *s;
3379
3380 if (sym->attr.generic)
3381 {
3382 s = gfc_search_interface (sym->generic, 1, &c->ext.actual);
3383 if (s != NULL)
3384 {
3385 c->resolved_sym = s;
3386 if (!pure_subroutine (s, s->name, &c->loc))
3387 return MATCH_ERROR;
3388 return MATCH_YES;
3389 }
3390
3391 /* TODO: Need to search for elemental references in generic interface. */
3392 }
3393
3394 if (sym->attr.intrinsic)
3395 return gfc_intrinsic_sub_interface (c, 0);
3396
3397 return MATCH_NO;
3398 }
3399
3400
3401 static bool
3402 resolve_generic_s (gfc_code *c)
3403 {
3404 gfc_symbol *sym;
3405 match m;
3406
3407 sym = c->symtree->n.sym;
3408
3409 for (;;)
3410 {
3411 m = resolve_generic_s0 (c, sym);
3412 if (m == MATCH_YES)
3413 return true;
3414 else if (m == MATCH_ERROR)
3415 return false;
3416
3417 generic:
3418 if (sym->ns->parent == NULL)
3419 break;
3420 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3421
3422 if (sym == NULL)
3423 break;
3424 if (!generic_sym (sym))
3425 goto generic;
3426 }
3427
3428 /* Last ditch attempt. See if the reference is to an intrinsic
3429 that possesses a matching interface. 14.1.2.4 */
3430 sym = c->symtree->n.sym;
3431
3432 if (!gfc_is_intrinsic (sym, 1, c->loc))
3433 {
3434 gfc_error ("There is no specific subroutine for the generic %qs at %L",
3435 sym->name, &c->loc);
3436 return false;
3437 }
3438
3439 m = gfc_intrinsic_sub_interface (c, 0);
3440 if (m == MATCH_YES)
3441 return true;
3442 if (m == MATCH_NO)
3443 gfc_error ("Generic subroutine %qs at %L is not consistent with an "
3444 "intrinsic subroutine interface", sym->name, &c->loc);
3445
3446 return false;
3447 }
3448
3449
3450 /* Resolve a subroutine call known to be specific. */
3451
3452 static match
3453 resolve_specific_s0 (gfc_code *c, gfc_symbol *sym)
3454 {
3455 match m;
3456
3457 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
3458 {
3459 if (sym->attr.dummy)
3460 {
3461 sym->attr.proc = PROC_DUMMY;
3462 goto found;
3463 }
3464
3465 sym->attr.proc = PROC_EXTERNAL;
3466 goto found;
3467 }
3468
3469 if (sym->attr.proc == PROC_MODULE || sym->attr.proc == PROC_INTERNAL)
3470 goto found;
3471
3472 if (sym->attr.intrinsic)
3473 {
3474 m = gfc_intrinsic_sub_interface (c, 1);
3475 if (m == MATCH_YES)
3476 return MATCH_YES;
3477 if (m == MATCH_NO)
3478 gfc_error ("Subroutine %qs at %L is INTRINSIC but is not compatible "
3479 "with an intrinsic", sym->name, &c->loc);
3480
3481 return MATCH_ERROR;
3482 }
3483
3484 return MATCH_NO;
3485
3486 found:
3487 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3488
3489 c->resolved_sym = sym;
3490 if (!pure_subroutine (sym, sym->name, &c->loc))
3491 return MATCH_ERROR;
3492
3493 return MATCH_YES;
3494 }
3495
3496
3497 static bool
3498 resolve_specific_s (gfc_code *c)
3499 {
3500 gfc_symbol *sym;
3501 match m;
3502
3503 sym = c->symtree->n.sym;
3504
3505 for (;;)
3506 {
3507 m = resolve_specific_s0 (c, sym);
3508 if (m == MATCH_YES)
3509 return true;
3510 if (m == MATCH_ERROR)
3511 return false;
3512
3513 if (sym->ns->parent == NULL)
3514 break;
3515
3516 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3517
3518 if (sym == NULL)
3519 break;
3520 }
3521
3522 sym = c->symtree->n.sym;
3523 gfc_error ("Unable to resolve the specific subroutine %qs at %L",
3524 sym->name, &c->loc);
3525
3526 return false;
3527 }
3528
3529
3530 /* Resolve a subroutine call not known to be generic nor specific. */
3531
3532 static bool
3533 resolve_unknown_s (gfc_code *c)
3534 {
3535 gfc_symbol *sym;
3536
3537 sym = c->symtree->n.sym;
3538
3539 if (sym->attr.dummy)
3540 {
3541 sym->attr.proc = PROC_DUMMY;
3542 goto found;
3543 }
3544
3545 /* See if we have an intrinsic function reference. */
3546
3547 if (gfc_is_intrinsic (sym, 1, c->loc))
3548 {
3549 if (gfc_intrinsic_sub_interface (c, 1) == MATCH_YES)
3550 return true;
3551 return false;
3552 }
3553
3554 /* The reference is to an external name. */
3555
3556 found:
3557 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3558
3559 c->resolved_sym = sym;
3560
3561 return pure_subroutine (sym, sym->name, &c->loc);
3562 }
3563
3564
3565 /* Resolve a subroutine call. Although it was tempting to use the same code
3566 for functions, subroutines and functions are stored differently and this
3567 makes things awkward. */
3568
3569 static bool
3570 resolve_call (gfc_code *c)
3571 {
3572 bool t;
3573 procedure_type ptype = PROC_INTRINSIC;
3574 gfc_symbol *csym, *sym;
3575 bool no_formal_args;
3576
3577 csym = c->symtree ? c->symtree->n.sym : NULL;
3578
3579 if (csym && csym->ts.type != BT_UNKNOWN)
3580 {
3581 gfc_error ("%qs at %L has a type, which is not consistent with "
3582 "the CALL at %L", csym->name, &csym->declared_at, &c->loc);
3583 return false;
3584 }
3585
3586 if (csym && gfc_current_ns->parent && csym->ns != gfc_current_ns)
3587 {
3588 gfc_symtree *st;
3589 gfc_find_sym_tree (c->symtree->name, gfc_current_ns, 1, &st);
3590 sym = st ? st->n.sym : NULL;
3591 if (sym && csym != sym
3592 && sym->ns == gfc_current_ns
3593 && sym->attr.flavor == FL_PROCEDURE
3594 && sym->attr.contained)
3595 {
3596 sym->refs++;
3597 if (csym->attr.generic)
3598 c->symtree->n.sym = sym;
3599 else
3600 c->symtree = st;
3601 csym = c->symtree->n.sym;
3602 }
3603 }
3604
3605 /* If this ia a deferred TBP, c->expr1 will be set. */
3606 if (!c->expr1 && csym)
3607 {
3608 if (csym->attr.abstract)
3609 {
3610 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3611 csym->name, &c->loc);
3612 return false;
3613 }
3614
3615 /* Subroutines without the RECURSIVE attribution are not allowed to
3616 call themselves. */
3617 if (is_illegal_recursion (csym, gfc_current_ns))
3618 {
3619 if (csym->attr.entry && csym->ns->entries)
3620 gfc_error ("ENTRY %qs at %L cannot be called recursively, "
3621 "as subroutine %qs is not RECURSIVE",
3622 csym->name, &c->loc, csym->ns->entries->sym->name);
3623 else
3624 gfc_error ("SUBROUTINE %qs at %L cannot be called recursively, "
3625 "as it is not RECURSIVE", csym->name, &c->loc);
3626
3627 t = false;
3628 }
3629 }
3630
3631 /* Switch off assumed size checking and do this again for certain kinds
3632 of procedure, once the procedure itself is resolved. */
3633 need_full_assumed_size++;
3634
3635 if (csym)
3636 ptype = csym->attr.proc;
3637
3638 no_formal_args = csym && is_external_proc (csym)
3639 && gfc_sym_get_dummy_args (csym) == NULL;
3640 if (!resolve_actual_arglist (c->ext.actual, ptype, no_formal_args))
3641 return false;
3642
3643 /* Resume assumed_size checking. */
3644 need_full_assumed_size--;
3645
3646 /* If external, check for usage. */
3647 if (csym && is_external_proc (csym))
3648 resolve_global_procedure (csym, &c->loc, &c->ext.actual, 1);
3649
3650 t = true;
3651 if (c->resolved_sym == NULL)
3652 {
3653 c->resolved_isym = NULL;
3654 switch (procedure_kind (csym))
3655 {
3656 case PTYPE_GENERIC:
3657 t = resolve_generic_s (c);
3658 break;
3659
3660 case PTYPE_SPECIFIC:
3661 t = resolve_specific_s (c);
3662 break;
3663
3664 case PTYPE_UNKNOWN:
3665 t = resolve_unknown_s (c);
3666 break;
3667
3668 default:
3669 gfc_internal_error ("resolve_subroutine(): bad function type");
3670 }
3671 }
3672
3673 /* Some checks of elemental subroutine actual arguments. */
3674 if (!resolve_elemental_actual (NULL, c))
3675 return false;
3676
3677 if (!c->expr1)
3678 update_current_proc_array_outer_dependency (csym);
3679 else
3680 /* Typebound procedure: Assume the worst. */
3681 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3682
3683 return t;
3684 }
3685
3686
3687 /* Compare the shapes of two arrays that have non-NULL shapes. If both
3688 op1->shape and op2->shape are non-NULL return true if their shapes
3689 match. If both op1->shape and op2->shape are non-NULL return false
3690 if their shapes do not match. If either op1->shape or op2->shape is
3691 NULL, return true. */
3692
3693 static bool
3694 compare_shapes (gfc_expr *op1, gfc_expr *op2)
3695 {
3696 bool t;
3697 int i;
3698
3699 t = true;
3700
3701 if (op1->shape != NULL && op2->shape != NULL)
3702 {
3703 for (i = 0; i < op1->rank; i++)
3704 {
3705 if (mpz_cmp (op1->shape[i], op2->shape[i]) != 0)
3706 {
3707 gfc_error ("Shapes for operands at %L and %L are not conformable",
3708 &op1->where, &op2->where);
3709 t = false;
3710 break;
3711 }
3712 }
3713 }
3714
3715 return t;
3716 }
3717
3718 /* Convert a logical operator to the corresponding bitwise intrinsic call.
3719 For example A .AND. B becomes IAND(A, B). */
3720 static gfc_expr *
3721 logical_to_bitwise (gfc_expr *e)
3722 {
3723 gfc_expr *tmp, *op1, *op2;
3724 gfc_isym_id isym;
3725 gfc_actual_arglist *args = NULL;
3726
3727 gcc_assert (e->expr_type == EXPR_OP);
3728
3729 isym = GFC_ISYM_NONE;
3730 op1 = e->value.op.op1;
3731 op2 = e->value.op.op2;
3732
3733 switch (e->value.op.op)
3734 {
3735 case INTRINSIC_NOT:
3736 isym = GFC_ISYM_NOT;
3737 break;
3738 case INTRINSIC_AND:
3739 isym = GFC_ISYM_IAND;
3740 break;
3741 case INTRINSIC_OR:
3742 isym = GFC_ISYM_IOR;
3743 break;
3744 case INTRINSIC_NEQV:
3745 isym = GFC_ISYM_IEOR;
3746 break;
3747 case INTRINSIC_EQV:
3748 /* "Bitwise eqv" is just the complement of NEQV === IEOR.
3749 Change the old expression to NEQV, which will get replaced by IEOR,
3750 and wrap it in NOT. */
3751 tmp = gfc_copy_expr (e);
3752 tmp->value.op.op = INTRINSIC_NEQV;
3753 tmp = logical_to_bitwise (tmp);
3754 isym = GFC_ISYM_NOT;
3755 op1 = tmp;
3756 op2 = NULL;
3757 break;
3758 default:
3759 gfc_internal_error ("logical_to_bitwise(): Bad intrinsic");
3760 }
3761
3762 /* Inherit the original operation's operands as arguments. */
3763 args = gfc_get_actual_arglist ();
3764 args->expr = op1;
3765 if (op2)
3766 {
3767 args->next = gfc_get_actual_arglist ();
3768 args->next->expr = op2;
3769 }
3770
3771 /* Convert the expression to a function call. */
3772 e->expr_type = EXPR_FUNCTION;
3773 e->value.function.actual = args;
3774 e->value.function.isym = gfc_intrinsic_function_by_id (isym);
3775 e->value.function.name = e->value.function.isym->name;
3776 e->value.function.esym = NULL;
3777
3778 /* Make up a pre-resolved function call symtree if we need to. */
3779 if (!e->symtree || !e->symtree->n.sym)
3780 {
3781 gfc_symbol *sym;
3782 gfc_get_ha_sym_tree (e->value.function.isym->name, &e->symtree);
3783 sym = e->symtree->n.sym;
3784 sym->result = sym;
3785 sym->attr.flavor = FL_PROCEDURE;
3786 sym->attr.function = 1;
3787 sym->attr.elemental = 1;
3788 sym->attr.pure = 1;
3789 sym->attr.referenced = 1;
3790 gfc_intrinsic_symbol (sym);
3791 gfc_commit_symbol (sym);
3792 }
3793
3794 args->name = e->value.function.isym->formal->name;
3795 if (e->value.function.isym->formal->next)
3796 args->next->name = e->value.function.isym->formal->next->name;
3797
3798 return e;
3799 }
3800
3801 /* Recursively append candidate UOP to CANDIDATES. Store the number of
3802 candidates in CANDIDATES_LEN. */
3803 static void
3804 lookup_uop_fuzzy_find_candidates (gfc_symtree *uop,
3805 char **&candidates,
3806 size_t &candidates_len)
3807 {
3808 gfc_symtree *p;
3809
3810 if (uop == NULL)
3811 return;
3812
3813 /* Not sure how to properly filter here. Use all for a start.
3814 n.uop.op is NULL for empty interface operators (is that legal?) disregard
3815 these as i suppose they don't make terribly sense. */
3816
3817 if (uop->n.uop->op != NULL)
3818 vec_push (candidates, candidates_len, uop->name);
3819
3820 p = uop->left;
3821 if (p)
3822 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3823
3824 p = uop->right;
3825 if (p)
3826 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3827 }
3828
3829 /* Lookup user-operator OP fuzzily, taking names in UOP into account. */
3830
3831 static const char*
3832 lookup_uop_fuzzy (const char *op, gfc_symtree *uop)
3833 {
3834 char **candidates = NULL;
3835 size_t candidates_len = 0;
3836 lookup_uop_fuzzy_find_candidates (uop, candidates, candidates_len);
3837 return gfc_closest_fuzzy_match (op, candidates);
3838 }
3839
3840
3841 /* Callback finding an impure function as an operand to an .and. or
3842 .or. expression. Remember the last function warned about to
3843 avoid double warnings when recursing. */
3844
3845 static int
3846 impure_function_callback (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
3847 void *data)
3848 {
3849 gfc_expr *f = *e;
3850 const char *name;
3851 static gfc_expr *last = NULL;
3852 bool *found = (bool *) data;
3853
3854 if (f->expr_type == EXPR_FUNCTION)
3855 {
3856 *found = 1;
3857 if (f != last && !gfc_pure_function (f, &name)
3858 && !gfc_implicit_pure_function (f))
3859 {
3860 if (name)
3861 gfc_warning (OPT_Wfunction_elimination,
3862 "Impure function %qs at %L might not be evaluated",
3863 name, &f->where);
3864 else
3865 gfc_warning (OPT_Wfunction_elimination,
3866 "Impure function at %L might not be evaluated",
3867 &f->where);
3868 }
3869 last = f;
3870 }
3871
3872 return 0;
3873 }
3874
3875
3876 /* Resolve an operator expression node. This can involve replacing the
3877 operation with a user defined function call. */
3878
3879 static bool
3880 resolve_operator (gfc_expr *e)
3881 {
3882 gfc_expr *op1, *op2;
3883 char msg[200];
3884 bool dual_locus_error;
3885 bool t;
3886
3887 /* Resolve all subnodes-- give them types. */
3888
3889 switch (e->value.op.op)
3890 {
3891 default:
3892 if (!gfc_resolve_expr (e->value.op.op2))
3893 return false;
3894
3895 /* Fall through. */
3896
3897 case INTRINSIC_NOT:
3898 case INTRINSIC_UPLUS:
3899 case INTRINSIC_UMINUS:
3900 case INTRINSIC_PARENTHESES:
3901 if (!gfc_resolve_expr (e->value.op.op1))
3902 return false;
3903 break;
3904 }
3905
3906 /* Typecheck the new node. */
3907
3908 op1 = e->value.op.op1;
3909 op2 = e->value.op.op2;
3910 dual_locus_error = false;
3911
3912 if ((op1 && op1->expr_type == EXPR_NULL)
3913 || (op2 && op2->expr_type == EXPR_NULL))
3914 {
3915 sprintf (msg, _("Invalid context for NULL() pointer at %%L"));
3916 goto bad_op;
3917 }
3918
3919 switch (e->value.op.op)
3920 {
3921 case INTRINSIC_UPLUS:
3922 case INTRINSIC_UMINUS:
3923 if (op1->ts.type == BT_INTEGER
3924 || op1->ts.type == BT_REAL
3925 || op1->ts.type == BT_COMPLEX)
3926 {
3927 e->ts = op1->ts;
3928 break;
3929 }
3930
3931 sprintf (msg, _("Operand of unary numeric operator %%<%s%%> at %%L is %s"),
3932 gfc_op2string (e->value.op.op), gfc_typename (&e->ts));
3933 goto bad_op;
3934
3935 case INTRINSIC_PLUS:
3936 case INTRINSIC_MINUS:
3937 case INTRINSIC_TIMES:
3938 case INTRINSIC_DIVIDE:
3939 case INTRINSIC_POWER:
3940 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
3941 {
3942 gfc_type_convert_binary (e, 1);
3943 break;
3944 }
3945
3946 if (op1->ts.type == BT_DERIVED || op2->ts.type == BT_DERIVED)
3947 sprintf (msg,
3948 _("Unexpected derived-type entities in binary intrinsic "
3949 "numeric operator %%<%s%%> at %%L"),
3950 gfc_op2string (e->value.op.op));
3951 else
3952 sprintf (msg,
3953 _("Operands of binary numeric operator %%<%s%%> at %%L are %s/%s"),
3954 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
3955 gfc_typename (&op2->ts));
3956 goto bad_op;
3957
3958 case INTRINSIC_CONCAT:
3959 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
3960 && op1->ts.kind == op2->ts.kind)
3961 {
3962 e->ts.type = BT_CHARACTER;
3963 e->ts.kind = op1->ts.kind;
3964 break;
3965 }
3966
3967 sprintf (msg,
3968 _("Operands of string concatenation operator at %%L are %s/%s"),
3969 gfc_typename (&op1->ts), gfc_typename (&op2->ts));
3970 goto bad_op;
3971
3972 case INTRINSIC_AND:
3973 case INTRINSIC_OR:
3974 case INTRINSIC_EQV:
3975 case INTRINSIC_NEQV:
3976 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
3977 {
3978 e->ts.type = BT_LOGICAL;
3979 e->ts.kind = gfc_kind_max (op1, op2);
3980 if (op1->ts.kind < e->ts.kind)
3981 gfc_convert_type (op1, &e->ts, 2);
3982 else if (op2->ts.kind < e->ts.kind)
3983 gfc_convert_type (op2, &e->ts, 2);
3984
3985 if (flag_frontend_optimize &&
3986 (e->value.op.op == INTRINSIC_AND || e->value.op.op == INTRINSIC_OR))
3987 {
3988 /* Warn about short-circuiting
3989 with impure function as second operand. */
3990 bool op2_f = false;
3991 gfc_expr_walker (&op2, impure_function_callback, &op2_f);
3992 }
3993 break;
3994 }
3995
3996 /* Logical ops on integers become bitwise ops with -fdec. */
3997 else if (flag_dec
3998 && (op1->ts.type == BT_INTEGER || op2->ts.type == BT_INTEGER))
3999 {
4000 e->ts.type = BT_INTEGER;
4001 e->ts.kind = gfc_kind_max (op1, op2);
4002 if (op1->ts.type != e->ts.type || op1->ts.kind != e->ts.kind)
4003 gfc_convert_type (op1, &e->ts, 1);
4004 if (op2->ts.type != e->ts.type || op2->ts.kind != e->ts.kind)
4005 gfc_convert_type (op2, &e->ts, 1);
4006 e = logical_to_bitwise (e);
4007 break;
4008 }
4009
4010 sprintf (msg, _("Operands of logical operator %%<%s%%> at %%L are %s/%s"),
4011 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
4012 gfc_typename (&op2->ts));
4013
4014 goto bad_op;
4015
4016 case INTRINSIC_NOT:
4017 /* Logical ops on integers become bitwise ops with -fdec. */
4018 if (flag_dec && op1->ts.type == BT_INTEGER)
4019 {
4020 e->ts.type = BT_INTEGER;
4021 e->ts.kind = op1->ts.kind;
4022 e = logical_to_bitwise (e);
4023 break;
4024 }
4025
4026 if (op1->ts.type == BT_LOGICAL)
4027 {
4028 e->ts.type = BT_LOGICAL;
4029 e->ts.kind = op1->ts.kind;
4030 break;
4031 }
4032
4033 sprintf (msg, _("Operand of .not. operator at %%L is %s"),
4034 gfc_typename (&op1->ts));
4035 goto bad_op;
4036
4037 case INTRINSIC_GT:
4038 case INTRINSIC_GT_OS:
4039 case INTRINSIC_GE:
4040 case INTRINSIC_GE_OS:
4041 case INTRINSIC_LT:
4042 case INTRINSIC_LT_OS:
4043 case INTRINSIC_LE:
4044 case INTRINSIC_LE_OS:
4045 if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
4046 {
4047 strcpy (msg, _("COMPLEX quantities cannot be compared at %L"));
4048 goto bad_op;
4049 }
4050
4051 /* Fall through. */
4052
4053 case INTRINSIC_EQ:
4054 case INTRINSIC_EQ_OS:
4055 case INTRINSIC_NE:
4056 case INTRINSIC_NE_OS:
4057 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
4058 && op1->ts.kind == op2->ts.kind)
4059 {
4060 e->ts.type = BT_LOGICAL;
4061 e->ts.kind = gfc_default_logical_kind;
4062 break;
4063 }
4064
4065 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
4066 {
4067 gfc_type_convert_binary (e, 1);
4068
4069 e->ts.type = BT_LOGICAL;
4070 e->ts.kind = gfc_default_logical_kind;
4071
4072 if (warn_compare_reals)
4073 {
4074 gfc_intrinsic_op op = e->value.op.op;
4075
4076 /* Type conversion has made sure that the types of op1 and op2
4077 agree, so it is only necessary to check the first one. */
4078 if ((op1->ts.type == BT_REAL || op1->ts.type == BT_COMPLEX)
4079 && (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS
4080 || op == INTRINSIC_NE || op == INTRINSIC_NE_OS))
4081 {
4082 const char *msg;
4083
4084 if (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS)
4085 msg = "Equality comparison for %s at %L";
4086 else
4087 msg = "Inequality comparison for %s at %L";
4088
4089 gfc_warning (OPT_Wcompare_reals, msg,
4090 gfc_typename (&op1->ts), &op1->where);
4091 }
4092 }
4093
4094 break;
4095 }
4096
4097 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
4098 sprintf (msg,
4099 _("Logicals at %%L must be compared with %s instead of %s"),
4100 (e->value.op.op == INTRINSIC_EQ
4101 || e->value.op.op == INTRINSIC_EQ_OS)
4102 ? ".eqv." : ".neqv.", gfc_op2string (e->value.op.op));
4103 else
4104 sprintf (msg,
4105 _("Operands of comparison operator %%<%s%%> at %%L are %s/%s"),
4106 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
4107 gfc_typename (&op2->ts));
4108
4109 goto bad_op;
4110
4111 case INTRINSIC_USER:
4112 if (e->value.op.uop->op == NULL)
4113 {
4114 const char *name = e->value.op.uop->name;
4115 const char *guessed;
4116 guessed = lookup_uop_fuzzy (name, e->value.op.uop->ns->uop_root);
4117 if (guessed)
4118 sprintf (msg, _("Unknown operator %%<%s%%> at %%L; did you mean '%s'?"),
4119 name, guessed);
4120 else
4121 sprintf (msg, _("Unknown operator %%<%s%%> at %%L"), name);
4122 }
4123 else if (op2 == NULL)
4124 sprintf (msg, _("Operand of user operator %%<%s%%> at %%L is %s"),
4125 e->value.op.uop->name, gfc_typename (&op1->ts));
4126 else
4127 {
4128 sprintf (msg, _("Operands of user operator %%<%s%%> at %%L are %s/%s"),
4129 e->value.op.uop->name, gfc_typename (&op1->ts),
4130 gfc_typename (&op2->ts));
4131 e->value.op.uop->op->sym->attr.referenced = 1;
4132 }
4133
4134 goto bad_op;
4135
4136 case INTRINSIC_PARENTHESES:
4137 e->ts = op1->ts;
4138 if (e->ts.type == BT_CHARACTER)
4139 e->ts.u.cl = op1->ts.u.cl;
4140 break;
4141
4142 default:
4143 gfc_internal_error ("resolve_operator(): Bad intrinsic");
4144 }
4145
4146 /* Deal with arrayness of an operand through an operator. */
4147
4148 t = true;
4149
4150 switch (e->value.op.op)
4151 {
4152 case INTRINSIC_PLUS:
4153 case INTRINSIC_MINUS:
4154 case INTRINSIC_TIMES:
4155 case INTRINSIC_DIVIDE:
4156 case INTRINSIC_POWER:
4157 case INTRINSIC_CONCAT:
4158 case INTRINSIC_AND:
4159 case INTRINSIC_OR:
4160 case INTRINSIC_EQV:
4161 case INTRINSIC_NEQV:
4162 case INTRINSIC_EQ:
4163 case INTRINSIC_EQ_OS:
4164 case INTRINSIC_NE:
4165 case INTRINSIC_NE_OS:
4166 case INTRINSIC_GT:
4167 case INTRINSIC_GT_OS:
4168 case INTRINSIC_GE:
4169 case INTRINSIC_GE_OS:
4170 case INTRINSIC_LT:
4171 case INTRINSIC_LT_OS:
4172 case INTRINSIC_LE:
4173 case INTRINSIC_LE_OS:
4174
4175 if (op1->rank == 0 && op2->rank == 0)
4176 e->rank = 0;
4177
4178 if (op1->rank == 0 && op2->rank != 0)
4179 {
4180 e->rank = op2->rank;
4181
4182 if (e->shape == NULL)
4183 e->shape = gfc_copy_shape (op2->shape, op2->rank);
4184 }
4185
4186 if (op1->rank != 0 && op2->rank == 0)
4187 {
4188 e->rank = op1->rank;
4189
4190 if (e->shape == NULL)
4191 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4192 }
4193
4194 if (op1->rank != 0 && op2->rank != 0)
4195 {
4196 if (op1->rank == op2->rank)
4197 {
4198 e->rank = op1->rank;
4199 if (e->shape == NULL)
4200 {
4201 t = compare_shapes (op1, op2);
4202 if (!t)
4203 e->shape = NULL;
4204 else
4205 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4206 }
4207 }
4208 else
4209 {
4210 /* Allow higher level expressions to work. */
4211 e->rank = 0;
4212
4213 /* Try user-defined operators, and otherwise throw an error. */
4214 dual_locus_error = true;
4215 sprintf (msg,
4216 _("Inconsistent ranks for operator at %%L and %%L"));
4217 goto bad_op;
4218 }
4219 }
4220
4221 break;
4222
4223 case INTRINSIC_PARENTHESES:
4224 case INTRINSIC_NOT:
4225 case INTRINSIC_UPLUS:
4226 case INTRINSIC_UMINUS:
4227 /* Simply copy arrayness attribute */
4228 e->rank = op1->rank;
4229
4230 if (e->shape == NULL)
4231 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4232
4233 break;
4234
4235 default:
4236 break;
4237 }
4238
4239 /* Attempt to simplify the expression. */
4240 if (t)
4241 {
4242 t = gfc_simplify_expr (e, 0);
4243 /* Some calls do not succeed in simplification and return false
4244 even though there is no error; e.g. variable references to
4245 PARAMETER arrays. */
4246 if (!gfc_is_constant_expr (e))
4247 t = true;
4248 }
4249 return t;
4250
4251 bad_op:
4252
4253 {
4254 match m = gfc_extend_expr (e);
4255 if (m == MATCH_YES)
4256 return true;
4257 if (m == MATCH_ERROR)
4258 return false;
4259 }
4260
4261 if (dual_locus_error)
4262 gfc_error (msg, &op1->where, &op2->where);
4263 else
4264 gfc_error (msg, &e->where);
4265
4266 return false;
4267 }
4268
4269
4270 /************** Array resolution subroutines **************/
4271
4272 enum compare_result
4273 { CMP_LT, CMP_EQ, CMP_GT, CMP_UNKNOWN };
4274
4275 /* Compare two integer expressions. */
4276
4277 static compare_result
4278 compare_bound (gfc_expr *a, gfc_expr *b)
4279 {
4280 int i;
4281
4282 if (a == NULL || a->expr_type != EXPR_CONSTANT
4283 || b == NULL || b->expr_type != EXPR_CONSTANT)
4284 return CMP_UNKNOWN;
4285
4286 /* If either of the types isn't INTEGER, we must have
4287 raised an error earlier. */
4288
4289 if (a->ts.type != BT_INTEGER || b->ts.type != BT_INTEGER)
4290 return CMP_UNKNOWN;
4291
4292 i = mpz_cmp (a->value.integer, b->value.integer);
4293
4294 if (i < 0)
4295 return CMP_LT;
4296 if (i > 0)
4297 return CMP_GT;
4298 return CMP_EQ;
4299 }
4300
4301
4302 /* Compare an integer expression with an integer. */
4303
4304 static compare_result
4305 compare_bound_int (gfc_expr *a, int b)
4306 {
4307 int i;
4308
4309 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4310 return CMP_UNKNOWN;
4311
4312 if (a->ts.type != BT_INTEGER)
4313 gfc_internal_error ("compare_bound_int(): Bad expression");
4314
4315 i = mpz_cmp_si (a->value.integer, b);
4316
4317 if (i < 0)
4318 return CMP_LT;
4319 if (i > 0)
4320 return CMP_GT;
4321 return CMP_EQ;
4322 }
4323
4324
4325 /* Compare an integer expression with a mpz_t. */
4326
4327 static compare_result
4328 compare_bound_mpz_t (gfc_expr *a, mpz_t b)
4329 {
4330 int i;
4331
4332 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4333 return CMP_UNKNOWN;
4334
4335 if (a->ts.type != BT_INTEGER)
4336 gfc_internal_error ("compare_bound_int(): Bad expression");
4337
4338 i = mpz_cmp (a->value.integer, b);
4339
4340 if (i < 0)
4341 return CMP_LT;
4342 if (i > 0)
4343 return CMP_GT;
4344 return CMP_EQ;
4345 }
4346
4347
4348 /* Compute the last value of a sequence given by a triplet.
4349 Return 0 if it wasn't able to compute the last value, or if the
4350 sequence if empty, and 1 otherwise. */
4351
4352 static int
4353 compute_last_value_for_triplet (gfc_expr *start, gfc_expr *end,
4354 gfc_expr *stride, mpz_t last)
4355 {
4356 mpz_t rem;
4357
4358 if (start == NULL || start->expr_type != EXPR_CONSTANT
4359 || end == NULL || end->expr_type != EXPR_CONSTANT
4360 || (stride != NULL && stride->expr_type != EXPR_CONSTANT))
4361 return 0;
4362
4363 if (start->ts.type != BT_INTEGER || end->ts.type != BT_INTEGER
4364 || (stride != NULL && stride->ts.type != BT_INTEGER))
4365 return 0;
4366
4367 if (stride == NULL || compare_bound_int (stride, 1) == CMP_EQ)
4368 {
4369 if (compare_bound (start, end) == CMP_GT)
4370 return 0;
4371 mpz_set (last, end->value.integer);
4372 return 1;
4373 }
4374
4375 if (compare_bound_int (stride, 0) == CMP_GT)
4376 {
4377 /* Stride is positive */
4378 if (mpz_cmp (start->value.integer, end->value.integer) > 0)
4379 return 0;
4380 }
4381 else
4382 {
4383 /* Stride is negative */
4384 if (mpz_cmp (start->value.integer, end->value.integer) < 0)
4385 return 0;
4386 }
4387
4388 mpz_init (rem);
4389 mpz_sub (rem, end->value.integer, start->value.integer);
4390 mpz_tdiv_r (rem, rem, stride->value.integer);
4391 mpz_sub (last, end->value.integer, rem);
4392 mpz_clear (rem);
4393
4394 return 1;
4395 }
4396
4397
4398 /* Compare a single dimension of an array reference to the array
4399 specification. */
4400
4401 static bool
4402 check_dimension (int i, gfc_array_ref *ar, gfc_array_spec *as)
4403 {
4404 mpz_t last_value;
4405
4406 if (ar->dimen_type[i] == DIMEN_STAR)
4407 {
4408 gcc_assert (ar->stride[i] == NULL);
4409 /* This implies [*] as [*:] and [*:3] are not possible. */
4410 if (ar->start[i] == NULL)
4411 {
4412 gcc_assert (ar->end[i] == NULL);
4413 return true;
4414 }
4415 }
4416
4417 /* Given start, end and stride values, calculate the minimum and
4418 maximum referenced indexes. */
4419
4420 switch (ar->dimen_type[i])
4421 {
4422 case DIMEN_VECTOR:
4423 case DIMEN_THIS_IMAGE:
4424 break;
4425
4426 case DIMEN_STAR:
4427 case DIMEN_ELEMENT:
4428 if (compare_bound (ar->start[i], as->lower[i]) == CMP_LT)
4429 {
4430 if (i < as->rank)
4431 gfc_warning (0, "Array reference at %L is out of bounds "
4432 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4433 mpz_get_si (ar->start[i]->value.integer),
4434 mpz_get_si (as->lower[i]->value.integer), i+1);
4435 else
4436 gfc_warning (0, "Array reference at %L is out of bounds "
4437 "(%ld < %ld) in codimension %d", &ar->c_where[i],
4438 mpz_get_si (ar->start[i]->value.integer),
4439 mpz_get_si (as->lower[i]->value.integer),
4440 i + 1 - as->rank);
4441 return true;
4442 }
4443 if (compare_bound (ar->start[i], as->upper[i]) == CMP_GT)
4444 {
4445 if (i < as->rank)
4446 gfc_warning (0, "Array reference at %L is out of bounds "
4447 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4448 mpz_get_si (ar->start[i]->value.integer),
4449 mpz_get_si (as->upper[i]->value.integer), i+1);
4450 else
4451 gfc_warning (0, "Array reference at %L is out of bounds "
4452 "(%ld > %ld) in codimension %d", &ar->c_where[i],
4453 mpz_get_si (ar->start[i]->value.integer),
4454 mpz_get_si (as->upper[i]->value.integer),
4455 i + 1 - as->rank);
4456 return true;
4457 }
4458
4459 break;
4460
4461 case DIMEN_RANGE:
4462 {
4463 #define AR_START (ar->start[i] ? ar->start[i] : as->lower[i])
4464 #define AR_END (ar->end[i] ? ar->end[i] : as->upper[i])
4465
4466 compare_result comp_start_end = compare_bound (AR_START, AR_END);
4467
4468 /* Check for zero stride, which is not allowed. */
4469 if (compare_bound_int (ar->stride[i], 0) == CMP_EQ)
4470 {
4471 gfc_error ("Illegal stride of zero at %L", &ar->c_where[i]);
4472 return false;
4473 }
4474
4475 /* if start == len || (stride > 0 && start < len)
4476 || (stride < 0 && start > len),
4477 then the array section contains at least one element. In this
4478 case, there is an out-of-bounds access if
4479 (start < lower || start > upper). */
4480 if (compare_bound (AR_START, AR_END) == CMP_EQ
4481 || ((compare_bound_int (ar->stride[i], 0) == CMP_GT
4482 || ar->stride[i] == NULL) && comp_start_end == CMP_LT)
4483 || (compare_bound_int (ar->stride[i], 0) == CMP_LT
4484 && comp_start_end == CMP_GT))
4485 {
4486 if (compare_bound (AR_START, as->lower[i]) == CMP_LT)
4487 {
4488 gfc_warning (0, "Lower array reference at %L is out of bounds "
4489 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4490 mpz_get_si (AR_START->value.integer),
4491 mpz_get_si (as->lower[i]->value.integer), i+1);
4492 return true;
4493 }
4494 if (compare_bound (AR_START, as->upper[i]) == CMP_GT)
4495 {
4496 gfc_warning (0, "Lower array reference at %L is out of bounds "
4497 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4498 mpz_get_si (AR_START->value.integer),
4499 mpz_get_si (as->upper[i]->value.integer), i+1);
4500 return true;
4501 }
4502 }
4503
4504 /* If we can compute the highest index of the array section,
4505 then it also has to be between lower and upper. */
4506 mpz_init (last_value);
4507 if (compute_last_value_for_triplet (AR_START, AR_END, ar->stride[i],
4508 last_value))
4509 {
4510 if (compare_bound_mpz_t (as->lower[i], last_value) == CMP_GT)
4511 {
4512 gfc_warning (0, "Upper array reference at %L is out of bounds "
4513 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4514 mpz_get_si (last_value),
4515 mpz_get_si (as->lower[i]->value.integer), i+1);
4516 mpz_clear (last_value);
4517 return true;
4518 }
4519 if (compare_bound_mpz_t (as->upper[i], last_value) == CMP_LT)
4520 {
4521 gfc_warning (0, "Upper array reference at %L is out of bounds "
4522 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4523 mpz_get_si (last_value),
4524 mpz_get_si (as->upper[i]->value.integer), i+1);
4525 mpz_clear (last_value);
4526 return true;
4527 }
4528 }
4529 mpz_clear (last_value);
4530
4531 #undef AR_START
4532 #undef AR_END
4533 }
4534 break;
4535
4536 default:
4537 gfc_internal_error ("check_dimension(): Bad array reference");
4538 }
4539
4540 return true;
4541 }
4542
4543
4544 /* Compare an array reference with an array specification. */
4545
4546 static bool
4547 compare_spec_to_ref (gfc_array_ref *ar)
4548 {
4549 gfc_array_spec *as;
4550 int i;
4551
4552 as = ar->as;
4553 i = as->rank - 1;
4554 /* TODO: Full array sections are only allowed as actual parameters. */
4555 if (as->type == AS_ASSUMED_SIZE
4556 && (/*ar->type == AR_FULL
4557 ||*/ (ar->type == AR_SECTION
4558 && ar->dimen_type[i] == DIMEN_RANGE && ar->end[i] == NULL)))
4559 {
4560 gfc_error ("Rightmost upper bound of assumed size array section "
4561 "not specified at %L", &ar->where);
4562 return false;
4563 }
4564
4565 if (ar->type == AR_FULL)
4566 return true;
4567
4568 if (as->rank != ar->dimen)
4569 {
4570 gfc_error ("Rank mismatch in array reference at %L (%d/%d)",
4571 &ar->where, ar->dimen, as->rank);
4572 return false;
4573 }
4574
4575 /* ar->codimen == 0 is a local array. */
4576 if (as->corank != ar->codimen && ar->codimen != 0)
4577 {
4578 gfc_error ("Coindex rank mismatch in array reference at %L (%d/%d)",
4579 &ar->where, ar->codimen, as->corank);
4580 return false;
4581 }
4582
4583 for (i = 0; i < as->rank; i++)
4584 if (!check_dimension (i, ar, as))
4585 return false;
4586
4587 /* Local access has no coarray spec. */
4588 if (ar->codimen != 0)
4589 for (i = as->rank; i < as->rank + as->corank; i++)
4590 {
4591 if (ar->dimen_type[i] != DIMEN_ELEMENT && !ar->in_allocate
4592 && ar->dimen_type[i] != DIMEN_THIS_IMAGE)
4593 {
4594 gfc_error ("Coindex of codimension %d must be a scalar at %L",
4595 i + 1 - as->rank, &ar->where);
4596 return false;
4597 }
4598 if (!check_dimension (i, ar, as))
4599 return false;
4600 }
4601
4602 return true;
4603 }
4604
4605
4606 /* Resolve one part of an array index. */
4607
4608 static bool
4609 gfc_resolve_index_1 (gfc_expr *index, int check_scalar,
4610 int force_index_integer_kind)
4611 {
4612 gfc_typespec ts;
4613
4614 if (index == NULL)
4615 return true;
4616
4617 if (!gfc_resolve_expr (index))
4618 return false;
4619
4620 if (check_scalar && index->rank != 0)
4621 {
4622 gfc_error ("Array index at %L must be scalar", &index->where);
4623 return false;
4624 }
4625
4626 if (index->ts.type != BT_INTEGER && index->ts.type != BT_REAL)
4627 {
4628 gfc_error ("Array index at %L must be of INTEGER type, found %s",
4629 &index->where, gfc_basic_typename (index->ts.type));
4630 return false;
4631 }
4632
4633 if (index->ts.type == BT_REAL)
4634 if (!gfc_notify_std (GFC_STD_LEGACY, "REAL array index at %L",
4635 &index->where))
4636 return false;
4637
4638 if ((index->ts.kind != gfc_index_integer_kind
4639 && force_index_integer_kind)
4640 || index->ts.type != BT_INTEGER)
4641 {
4642 gfc_clear_ts (&ts);
4643 ts.type = BT_INTEGER;
4644 ts.kind = gfc_index_integer_kind;
4645
4646 gfc_convert_type_warn (index, &ts, 2, 0);
4647 }
4648
4649 return true;
4650 }
4651
4652 /* Resolve one part of an array index. */
4653
4654 bool
4655 gfc_resolve_index (gfc_expr *index, int check_scalar)
4656 {
4657 return gfc_resolve_index_1 (index, check_scalar, 1);
4658 }
4659
4660 /* Resolve a dim argument to an intrinsic function. */
4661
4662 bool
4663 gfc_resolve_dim_arg (gfc_expr *dim)
4664 {
4665 if (dim == NULL)
4666 return true;
4667
4668 if (!gfc_resolve_expr (dim))
4669 return false;
4670
4671 if (dim->rank != 0)
4672 {
4673 gfc_error ("Argument dim at %L must be scalar", &dim->where);
4674 return false;
4675
4676 }
4677
4678 if (dim->ts.type != BT_INTEGER)
4679 {
4680 gfc_error ("Argument dim at %L must be of INTEGER type", &dim->where);
4681 return false;
4682 }
4683
4684 if (dim->ts.kind != gfc_index_integer_kind)
4685 {
4686 gfc_typespec ts;
4687
4688 gfc_clear_ts (&ts);
4689 ts.type = BT_INTEGER;
4690 ts.kind = gfc_index_integer_kind;
4691
4692 gfc_convert_type_warn (dim, &ts, 2, 0);
4693 }
4694
4695 return true;
4696 }
4697
4698 /* Given an expression that contains array references, update those array
4699 references to point to the right array specifications. While this is
4700 filled in during matching, this information is difficult to save and load
4701 in a module, so we take care of it here.
4702
4703 The idea here is that the original array reference comes from the
4704 base symbol. We traverse the list of reference structures, setting
4705 the stored reference to references. Component references can
4706 provide an additional array specification. */
4707
4708 static void
4709 find_array_spec (gfc_expr *e)
4710 {
4711 gfc_array_spec *as;
4712 gfc_component *c;
4713 gfc_ref *ref;
4714
4715 if (e->symtree->n.sym->ts.type == BT_CLASS)
4716 as = CLASS_DATA (e->symtree->n.sym)->as;
4717 else
4718 as = e->symtree->n.sym->as;
4719
4720 for (ref = e->ref; ref; ref = ref->next)
4721 switch (ref->type)
4722 {
4723 case REF_ARRAY:
4724 if (as == NULL)
4725 gfc_internal_error ("find_array_spec(): Missing spec");
4726
4727 ref->u.ar.as = as;
4728 as = NULL;
4729 break;
4730
4731 case REF_COMPONENT:
4732 c = ref->u.c.component;
4733 if (c->attr.dimension)
4734 {
4735 if (as != NULL)
4736 gfc_internal_error ("find_array_spec(): unused as(1)");
4737 as = c->as;
4738 }
4739
4740 break;
4741
4742 case REF_SUBSTRING:
4743 case REF_INQUIRY:
4744 break;
4745 }
4746
4747 if (as != NULL)
4748 gfc_internal_error ("find_array_spec(): unused as(2)");
4749 }
4750
4751
4752 /* Resolve an array reference. */
4753
4754 static bool
4755 resolve_array_ref (gfc_array_ref *ar)
4756 {
4757 int i, check_scalar;
4758 gfc_expr *e;
4759
4760 for (i = 0; i < ar->dimen + ar->codimen; i++)
4761 {
4762 check_scalar = ar->dimen_type[i] == DIMEN_RANGE;
4763
4764 /* Do not force gfc_index_integer_kind for the start. We can
4765 do fine with any integer kind. This avoids temporary arrays
4766 created for indexing with a vector. */
4767 if (!gfc_resolve_index_1 (ar->start[i], check_scalar, 0))
4768 return false;
4769 if (!gfc_resolve_index (ar->end[i], check_scalar))
4770 return false;
4771 if (!gfc_resolve_index (ar->stride[i], check_scalar))
4772 return false;
4773
4774 e = ar->start[i];
4775
4776 if (ar->dimen_type[i] == DIMEN_UNKNOWN)
4777 switch (e->rank)
4778 {
4779 case 0:
4780 ar->dimen_type[i] = DIMEN_ELEMENT;
4781 break;
4782
4783 case 1:
4784 ar->dimen_type[i] = DIMEN_VECTOR;
4785 if (e->expr_type == EXPR_VARIABLE
4786 && e->symtree->n.sym->ts.type == BT_DERIVED)
4787 ar->start[i] = gfc_get_parentheses (e);
4788 break;
4789
4790 default:
4791 gfc_error ("Array index at %L is an array of rank %d",
4792 &ar->c_where[i], e->rank);
4793 return false;
4794 }
4795
4796 /* Fill in the upper bound, which may be lower than the
4797 specified one for something like a(2:10:5), which is
4798 identical to a(2:7:5). Only relevant for strides not equal
4799 to one. Don't try a division by zero. */
4800 if (ar->dimen_type[i] == DIMEN_RANGE
4801 && ar->stride[i] != NULL && ar->stride[i]->expr_type == EXPR_CONSTANT
4802 && mpz_cmp_si (ar->stride[i]->value.integer, 1L) != 0
4803 && mpz_cmp_si (ar->stride[i]->value.integer, 0L) != 0)
4804 {
4805 mpz_t size, end;
4806
4807 if (gfc_ref_dimen_size (ar, i, &size, &end))
4808 {
4809 if (ar->end[i] == NULL)
4810 {
4811 ar->end[i] =
4812 gfc_get_constant_expr (BT_INTEGER, gfc_index_integer_kind,
4813 &ar->where);
4814 mpz_set (ar->end[i]->value.integer, end);
4815 }
4816 else if (ar->end[i]->ts.type == BT_INTEGER
4817 && ar->end[i]->expr_type == EXPR_CONSTANT)
4818 {
4819 mpz_set (ar->end[i]->value.integer, end);
4820 }
4821 else
4822 gcc_unreachable ();
4823
4824 mpz_clear (size);
4825 mpz_clear (end);
4826 }
4827 }
4828 }
4829
4830 if (ar->type == AR_FULL)
4831 {
4832 if (ar->as->rank == 0)
4833 ar->type = AR_ELEMENT;
4834
4835 /* Make sure array is the same as array(:,:), this way
4836 we don't need to special case all the time. */
4837 ar->dimen = ar->as->rank;
4838 for (i = 0; i < ar->dimen; i++)
4839 {
4840 ar->dimen_type[i] = DIMEN_RANGE;
4841
4842 gcc_assert (ar->start[i] == NULL);
4843 gcc_assert (ar->end[i] == NULL);
4844 gcc_assert (ar->stride[i] == NULL);
4845 }
4846 }
4847
4848 /* If the reference type is unknown, figure out what kind it is. */
4849
4850 if (ar->type == AR_UNKNOWN)
4851 {
4852 ar->type = AR_ELEMENT;
4853 for (i = 0; i < ar->dimen; i++)
4854 if (ar->dimen_type[i] == DIMEN_RANGE
4855 || ar->dimen_type[i] == DIMEN_VECTOR)
4856 {
4857 ar->type = AR_SECTION;
4858 break;
4859 }
4860 }
4861
4862 if (!ar->as->cray_pointee && !compare_spec_to_ref (ar))
4863 return false;
4864
4865 if (ar->as->corank && ar->codimen == 0)
4866 {
4867 int n;
4868 ar->codimen = ar->as->corank;
4869 for (n = ar->dimen; n < ar->dimen + ar->codimen; n++)
4870 ar->dimen_type[n] = DIMEN_THIS_IMAGE;
4871 }
4872
4873 return true;
4874 }
4875
4876
4877 static bool
4878 resolve_substring (gfc_ref *ref)
4879 {
4880 int k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
4881
4882 if (ref->u.ss.start != NULL)
4883 {
4884 if (!gfc_resolve_expr (ref->u.ss.start))
4885 return false;
4886
4887 if (ref->u.ss.start->ts.type != BT_INTEGER)
4888 {
4889 gfc_error ("Substring start index at %L must be of type INTEGER",
4890 &ref->u.ss.start->where);
4891 return false;
4892 }
4893
4894 if (ref->u.ss.start->rank != 0)
4895 {
4896 gfc_error ("Substring start index at %L must be scalar",
4897 &ref->u.ss.start->where);
4898 return false;
4899 }
4900
4901 if (compare_bound_int (ref->u.ss.start, 1) == CMP_LT
4902 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4903 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4904 {
4905 gfc_error ("Substring start index at %L is less than one",
4906 &ref->u.ss.start->where);
4907 return false;
4908 }
4909 }
4910
4911 if (ref->u.ss.end != NULL)
4912 {
4913 if (!gfc_resolve_expr (ref->u.ss.end))
4914 return false;
4915
4916 if (ref->u.ss.end->ts.type != BT_INTEGER)
4917 {
4918 gfc_error ("Substring end index at %L must be of type INTEGER",
4919 &ref->u.ss.end->where);
4920 return false;
4921 }
4922
4923 if (ref->u.ss.end->rank != 0)
4924 {
4925 gfc_error ("Substring end index at %L must be scalar",
4926 &ref->u.ss.end->where);
4927 return false;
4928 }
4929
4930 if (ref->u.ss.length != NULL
4931 && compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_GT
4932 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4933 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4934 {
4935 gfc_error ("Substring end index at %L exceeds the string length",
4936 &ref->u.ss.start->where);
4937 return false;
4938 }
4939
4940 if (compare_bound_mpz_t (ref->u.ss.end,
4941 gfc_integer_kinds[k].huge) == CMP_GT
4942 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4943 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4944 {
4945 gfc_error ("Substring end index at %L is too large",
4946 &ref->u.ss.end->where);
4947 return false;
4948 }
4949 }
4950
4951 return true;
4952 }
4953
4954
4955 /* This function supplies missing substring charlens. */
4956
4957 void
4958 gfc_resolve_substring_charlen (gfc_expr *e)
4959 {
4960 gfc_ref *char_ref;
4961 gfc_expr *start, *end;
4962 gfc_typespec *ts = NULL;
4963
4964 for (char_ref = e->ref; char_ref; char_ref = char_ref->next)
4965 {
4966 if (char_ref->type == REF_SUBSTRING || char_ref->type == REF_INQUIRY)
4967 break;
4968 if (char_ref->type == REF_COMPONENT)
4969 ts = &char_ref->u.c.component->ts;
4970 }
4971
4972 if (!char_ref || char_ref->type == REF_INQUIRY)
4973 return;
4974
4975 gcc_assert (char_ref->next == NULL);
4976
4977 if (e->ts.u.cl)
4978 {
4979 if (e->ts.u.cl->length)
4980 gfc_free_expr (e->ts.u.cl->length);
4981 else if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.dummy)
4982 return;
4983 }
4984
4985 e->ts.type = BT_CHARACTER;
4986 e->ts.kind = gfc_default_character_kind;
4987
4988 if (!e->ts.u.cl)
4989 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
4990
4991 if (char_ref->u.ss.start)
4992 start = gfc_copy_expr (char_ref->u.ss.start);
4993 else
4994 start = gfc_get_int_expr (gfc_charlen_int_kind, NULL, 1);
4995
4996 if (char_ref->u.ss.end)
4997 end = gfc_copy_expr (char_ref->u.ss.end);
4998 else if (e->expr_type == EXPR_VARIABLE)
4999 {
5000 if (!ts)
5001 ts = &e->symtree->n.sym->ts;
5002 end = gfc_copy_expr (ts->u.cl->length);
5003 }
5004 else
5005 end = NULL;
5006
5007 if (!start || !end)
5008 {
5009 gfc_free_expr (start);
5010 gfc_free_expr (end);
5011 return;
5012 }
5013
5014 /* Length = (end - start + 1). */
5015 e->ts.u.cl->length = gfc_subtract (end, start);
5016 e->ts.u.cl->length = gfc_add (e->ts.u.cl->length,
5017 gfc_get_int_expr (gfc_charlen_int_kind,
5018 NULL, 1));
5019
5020 /* F2008, 6.4.1: Both the starting point and the ending point shall
5021 be within the range 1, 2, ..., n unless the starting point exceeds
5022 the ending point, in which case the substring has length zero. */
5023
5024 if (mpz_cmp_si (e->ts.u.cl->length->value.integer, 0) < 0)
5025 mpz_set_si (e->ts.u.cl->length->value.integer, 0);
5026
5027 e->ts.u.cl->length->ts.type = BT_INTEGER;
5028 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
5029
5030 /* Make sure that the length is simplified. */
5031 gfc_simplify_expr (e->ts.u.cl->length, 1);
5032 gfc_resolve_expr (e->ts.u.cl->length);
5033 }
5034
5035
5036 /* Resolve subtype references. */
5037
5038 static bool
5039 resolve_ref (gfc_expr *expr)
5040 {
5041 int current_part_dimension, n_components, seen_part_dimension;
5042 gfc_ref *ref;
5043
5044 for (ref = expr->ref; ref; ref = ref->next)
5045 if (ref->type == REF_ARRAY && ref->u.ar.as == NULL)
5046 {
5047 find_array_spec (expr);
5048 break;
5049 }
5050
5051 for (ref = expr->ref; ref; ref = ref->next)
5052 switch (ref->type)
5053 {
5054 case REF_ARRAY:
5055 if (!resolve_array_ref (&ref->u.ar))
5056 return false;
5057 break;
5058
5059 case REF_COMPONENT:
5060 case REF_INQUIRY:
5061 break;
5062
5063 case REF_SUBSTRING:
5064 if (!resolve_substring (ref))
5065 return false;
5066 break;
5067 }
5068
5069 /* Check constraints on part references. */
5070
5071 current_part_dimension = 0;
5072 seen_part_dimension = 0;
5073 n_components = 0;
5074
5075 for (ref = expr->ref; ref; ref = ref->next)
5076 {
5077 switch (ref->type)
5078 {
5079 case REF_ARRAY:
5080 switch (ref->u.ar.type)
5081 {
5082 case AR_FULL:
5083 /* Coarray scalar. */
5084 if (ref->u.ar.as->rank == 0)
5085 {
5086 current_part_dimension = 0;
5087 break;
5088 }
5089 /* Fall through. */
5090 case AR_SECTION:
5091 current_part_dimension = 1;
5092 break;
5093
5094 case AR_ELEMENT:
5095 current_part_dimension = 0;
5096 break;
5097
5098 case AR_UNKNOWN:
5099 gfc_internal_error ("resolve_ref(): Bad array reference");
5100 }
5101
5102 break;
5103
5104 case REF_COMPONENT:
5105 if (current_part_dimension || seen_part_dimension)
5106 {
5107 /* F03:C614. */
5108 if (ref->u.c.component->attr.pointer
5109 || ref->u.c.component->attr.proc_pointer
5110 || (ref->u.c.component->ts.type == BT_CLASS
5111 && CLASS_DATA (ref->u.c.component)->attr.pointer))
5112 {
5113 gfc_error ("Component to the right of a part reference "
5114 "with nonzero rank must not have the POINTER "
5115 "attribute at %L", &expr->where);
5116 return false;
5117 }
5118 else if (ref->u.c.component->attr.allocatable
5119 || (ref->u.c.component->ts.type == BT_CLASS
5120 && CLASS_DATA (ref->u.c.component)->attr.allocatable))
5121
5122 {
5123 gfc_error ("Component to the right of a part reference "
5124 "with nonzero rank must not have the ALLOCATABLE "
5125 "attribute at %L", &expr->where);
5126 return false;
5127 }
5128 }
5129
5130 n_components++;
5131 break;
5132
5133 case REF_SUBSTRING:
5134 case REF_INQUIRY:
5135 break;
5136 }
5137
5138 if (((ref->type == REF_COMPONENT && n_components > 1)
5139 || ref->next == NULL)
5140 && current_part_dimension
5141 && seen_part_dimension)
5142 {
5143 gfc_error ("Two or more part references with nonzero rank must "
5144 "not be specified at %L", &expr->where);
5145 return false;
5146 }
5147
5148 if (ref->type == REF_COMPONENT)
5149 {
5150 if (current_part_dimension)
5151 seen_part_dimension = 1;
5152
5153 /* reset to make sure */
5154 current_part_dimension = 0;
5155 }
5156 }
5157
5158 return true;
5159 }
5160
5161
5162 /* Given an expression, determine its shape. This is easier than it sounds.
5163 Leaves the shape array NULL if it is not possible to determine the shape. */
5164
5165 static void
5166 expression_shape (gfc_expr *e)
5167 {
5168 mpz_t array[GFC_MAX_DIMENSIONS];
5169 int i;
5170
5171 if (e->rank <= 0 || e->shape != NULL)
5172 return;
5173
5174 for (i = 0; i < e->rank; i++)
5175 if (!gfc_array_dimen_size (e, i, &array[i]))
5176 goto fail;
5177
5178 e->shape = gfc_get_shape (e->rank);
5179
5180 memcpy (e->shape, array, e->rank * sizeof (mpz_t));
5181
5182 return;
5183
5184 fail:
5185 for (i--; i >= 0; i--)
5186 mpz_clear (array[i]);
5187 }
5188
5189
5190 /* Given a variable expression node, compute the rank of the expression by
5191 examining the base symbol and any reference structures it may have. */
5192
5193 void
5194 expression_rank (gfc_expr *e)
5195 {
5196 gfc_ref *ref;
5197 int i, rank;
5198
5199 /* Just to make sure, because EXPR_COMPCALL's also have an e->ref and that
5200 could lead to serious confusion... */
5201 gcc_assert (e->expr_type != EXPR_COMPCALL);
5202
5203 if (e->ref == NULL)
5204 {
5205 if (e->expr_type == EXPR_ARRAY)
5206 goto done;
5207 /* Constructors can have a rank different from one via RESHAPE(). */
5208
5209 if (e->symtree == NULL)
5210 {
5211 e->rank = 0;
5212 goto done;
5213 }
5214
5215 e->rank = (e->symtree->n.sym->as == NULL)
5216 ? 0 : e->symtree->n.sym->as->rank;
5217 goto done;
5218 }
5219
5220 rank = 0;
5221
5222 for (ref = e->ref; ref; ref = ref->next)
5223 {
5224 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.proc_pointer
5225 && ref->u.c.component->attr.function && !ref->next)
5226 rank = ref->u.c.component->as ? ref->u.c.component->as->rank : 0;
5227
5228 if (ref->type != REF_ARRAY)
5229 continue;
5230
5231 if (ref->u.ar.type == AR_FULL)
5232 {
5233 rank = ref->u.ar.as->rank;
5234 break;
5235 }
5236
5237 if (ref->u.ar.type == AR_SECTION)
5238 {
5239 /* Figure out the rank of the section. */
5240 if (rank != 0)
5241 gfc_internal_error ("expression_rank(): Two array specs");
5242
5243 for (i = 0; i < ref->u.ar.dimen; i++)
5244 if (ref->u.ar.dimen_type[i] == DIMEN_RANGE
5245 || ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
5246 rank++;
5247
5248 break;
5249 }
5250 }
5251
5252 e->rank = rank;
5253
5254 done:
5255 expression_shape (e);
5256 }
5257
5258
5259 static void
5260 add_caf_get_intrinsic (gfc_expr *e)
5261 {
5262 gfc_expr *wrapper, *tmp_expr;
5263 gfc_ref *ref;
5264 int n;
5265
5266 for (ref = e->ref; ref; ref = ref->next)
5267 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5268 break;
5269 if (ref == NULL)
5270 return;
5271
5272 for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
5273 if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
5274 return;
5275
5276 tmp_expr = XCNEW (gfc_expr);
5277 *tmp_expr = *e;
5278 wrapper = gfc_build_intrinsic_call (gfc_current_ns, GFC_ISYM_CAF_GET,
5279 "caf_get", tmp_expr->where, 1, tmp_expr);
5280 wrapper->ts = e->ts;
5281 wrapper->rank = e->rank;
5282 if (e->rank)
5283 wrapper->shape = gfc_copy_shape (e->shape, e->rank);
5284 *e = *wrapper;
5285 free (wrapper);
5286 }
5287
5288
5289 static void
5290 remove_caf_get_intrinsic (gfc_expr *e)
5291 {
5292 gcc_assert (e->expr_type == EXPR_FUNCTION && e->value.function.isym
5293 && e->value.function.isym->id == GFC_ISYM_CAF_GET);
5294 gfc_expr *e2 = e->value.function.actual->expr;
5295 e->value.function.actual->expr = NULL;
5296 gfc_free_actual_arglist (e->value.function.actual);
5297 gfc_free_shape (&e->shape, e->rank);
5298 *e = *e2;
5299 free (e2);
5300 }
5301
5302
5303 /* Resolve a variable expression. */
5304
5305 static bool
5306 resolve_variable (gfc_expr *e)
5307 {
5308 gfc_symbol *sym;
5309 bool t;
5310
5311 t = true;
5312
5313 if (e->symtree == NULL)
5314 return false;
5315 sym = e->symtree->n.sym;
5316
5317 /* Use same check as for TYPE(*) below; this check has to be before TYPE(*)
5318 as ts.type is set to BT_ASSUMED in resolve_symbol. */
5319 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
5320 {
5321 if (!actual_arg || inquiry_argument)
5322 {
5323 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may only "
5324 "be used as actual argument", sym->name, &e->where);
5325 return false;
5326 }
5327 }
5328 /* TS 29113, 407b. */
5329 else if (e->ts.type == BT_ASSUMED)
5330 {
5331 if (!actual_arg)
5332 {
5333 gfc_error ("Assumed-type variable %s at %L may only be used "
5334 "as actual argument", sym->name, &e->where);
5335 return false;
5336 }
5337 else if (inquiry_argument && !first_actual_arg)
5338 {
5339 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5340 for all inquiry functions in resolve_function; the reason is
5341 that the function-name resolution happens too late in that
5342 function. */
5343 gfc_error ("Assumed-type variable %s at %L as actual argument to "
5344 "an inquiry function shall be the first argument",
5345 sym->name, &e->where);
5346 return false;
5347 }
5348 }
5349 /* TS 29113, C535b. */
5350 else if ((sym->ts.type == BT_CLASS && sym->attr.class_ok
5351 && CLASS_DATA (sym)->as
5352 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5353 || (sym->ts.type != BT_CLASS && sym->as
5354 && sym->as->type == AS_ASSUMED_RANK))
5355 {
5356 if (!actual_arg)
5357 {
5358 gfc_error ("Assumed-rank variable %s at %L may only be used as "
5359 "actual argument", sym->name, &e->where);
5360 return false;
5361 }
5362 else if (inquiry_argument && !first_actual_arg)
5363 {
5364 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5365 for all inquiry functions in resolve_function; the reason is
5366 that the function-name resolution happens too late in that
5367 function. */
5368 gfc_error ("Assumed-rank variable %s at %L as actual argument "
5369 "to an inquiry function shall be the first argument",
5370 sym->name, &e->where);
5371 return false;
5372 }
5373 }
5374
5375 if ((sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) && e->ref
5376 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5377 && e->ref->next == NULL))
5378 {
5379 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall not have "
5380 "a subobject reference", sym->name, &e->ref->u.ar.where);
5381 return false;
5382 }
5383 /* TS 29113, 407b. */
5384 else if (e->ts.type == BT_ASSUMED && e->ref
5385 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5386 && e->ref->next == NULL))
5387 {
5388 gfc_error ("Assumed-type variable %s at %L shall not have a subobject "
5389 "reference", sym->name, &e->ref->u.ar.where);
5390 return false;
5391 }
5392
5393 /* TS 29113, C535b. */
5394 if (((sym->ts.type == BT_CLASS && sym->attr.class_ok
5395 && CLASS_DATA (sym)->as
5396 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5397 || (sym->ts.type != BT_CLASS && sym->as
5398 && sym->as->type == AS_ASSUMED_RANK))
5399 && e->ref
5400 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5401 && e->ref->next == NULL))
5402 {
5403 gfc_error ("Assumed-rank variable %s at %L shall not have a subobject "
5404 "reference", sym->name, &e->ref->u.ar.where);
5405 return false;
5406 }
5407
5408 /* For variables that are used in an associate (target => object) where
5409 the object's basetype is array valued while the target is scalar,
5410 the ts' type of the component refs is still array valued, which
5411 can't be translated that way. */
5412 if (sym->assoc && e->rank == 0 && e->ref && sym->ts.type == BT_CLASS
5413 && sym->assoc->target && sym->assoc->target->ts.type == BT_CLASS
5414 && CLASS_DATA (sym->assoc->target)->as)
5415 {
5416 gfc_ref *ref = e->ref;
5417 while (ref)
5418 {
5419 switch (ref->type)
5420 {
5421 case REF_COMPONENT:
5422 ref->u.c.sym = sym->ts.u.derived;
5423 /* Stop the loop. */
5424 ref = NULL;
5425 break;
5426 default:
5427 ref = ref->next;
5428 break;
5429 }
5430 }
5431 }
5432
5433 /* If this is an associate-name, it may be parsed with an array reference
5434 in error even though the target is scalar. Fail directly in this case.
5435 TODO Understand why class scalar expressions must be excluded. */
5436 if (sym->assoc && !(sym->ts.type == BT_CLASS && e->rank == 0))
5437 {
5438 if (sym->ts.type == BT_CLASS)
5439 gfc_fix_class_refs (e);
5440 if (!sym->attr.dimension && e->ref && e->ref->type == REF_ARRAY)
5441 return false;
5442 else if (sym->attr.dimension && (!e->ref || e->ref->type != REF_ARRAY))
5443 {
5444 /* This can happen because the parser did not detect that the
5445 associate name is an array and the expression had no array
5446 part_ref. */
5447 gfc_ref *ref = gfc_get_ref ();
5448 ref->type = REF_ARRAY;
5449 ref->u.ar = *gfc_get_array_ref();
5450 ref->u.ar.type = AR_FULL;
5451 if (sym->as)
5452 {
5453 ref->u.ar.as = sym->as;
5454 ref->u.ar.dimen = sym->as->rank;
5455 }
5456 ref->next = e->ref;
5457 e->ref = ref;
5458
5459 }
5460 }
5461
5462 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.generic)
5463 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
5464
5465 /* On the other hand, the parser may not have known this is an array;
5466 in this case, we have to add a FULL reference. */
5467 if (sym->assoc && sym->attr.dimension && !e->ref)
5468 {
5469 e->ref = gfc_get_ref ();
5470 e->ref->type = REF_ARRAY;
5471 e->ref->u.ar.type = AR_FULL;
5472 e->ref->u.ar.dimen = 0;
5473 }
5474
5475 /* Like above, but for class types, where the checking whether an array
5476 ref is present is more complicated. Furthermore make sure not to add
5477 the full array ref to _vptr or _len refs. */
5478 if (sym->assoc && sym->ts.type == BT_CLASS
5479 && CLASS_DATA (sym)->attr.dimension
5480 && (e->ts.type != BT_DERIVED || !e->ts.u.derived->attr.vtype))
5481 {
5482 gfc_ref *ref, *newref;
5483
5484 newref = gfc_get_ref ();
5485 newref->type = REF_ARRAY;
5486 newref->u.ar.type = AR_FULL;
5487 newref->u.ar.dimen = 0;
5488 /* Because this is an associate var and the first ref either is a ref to
5489 the _data component or not, no traversal of the ref chain is
5490 needed. The array ref needs to be inserted after the _data ref,
5491 or when that is not present, which may happend for polymorphic
5492 types, then at the first position. */
5493 ref = e->ref;
5494 if (!ref)
5495 e->ref = newref;
5496 else if (ref->type == REF_COMPONENT
5497 && strcmp ("_data", ref->u.c.component->name) == 0)
5498 {
5499 if (!ref->next || ref->next->type != REF_ARRAY)
5500 {
5501 newref->next = ref->next;
5502 ref->next = newref;
5503 }
5504 else
5505 /* Array ref present already. */
5506 gfc_free_ref_list (newref);
5507 }
5508 else if (ref->type == REF_ARRAY)
5509 /* Array ref present already. */
5510 gfc_free_ref_list (newref);
5511 else
5512 {
5513 newref->next = ref;
5514 e->ref = newref;
5515 }
5516 }
5517
5518 if (e->ref && !resolve_ref (e))
5519 return false;
5520
5521 if (sym->attr.flavor == FL_PROCEDURE
5522 && (!sym->attr.function
5523 || (sym->attr.function && sym->result
5524 && sym->result->attr.proc_pointer
5525 && !sym->result->attr.function)))
5526 {
5527 e->ts.type = BT_PROCEDURE;
5528 goto resolve_procedure;
5529 }
5530
5531 if (sym->ts.type != BT_UNKNOWN)
5532 gfc_variable_attr (e, &e->ts);
5533 else if (sym->attr.flavor == FL_PROCEDURE
5534 && sym->attr.function && sym->result
5535 && sym->result->ts.type != BT_UNKNOWN
5536 && sym->result->attr.proc_pointer)
5537 e->ts = sym->result->ts;
5538 else
5539 {
5540 /* Must be a simple variable reference. */
5541 if (!gfc_set_default_type (sym, 1, sym->ns))
5542 return false;
5543 e->ts = sym->ts;
5544 }
5545
5546 if (check_assumed_size_reference (sym, e))
5547 return false;
5548
5549 /* Deal with forward references to entries during gfc_resolve_code, to
5550 satisfy, at least partially, 12.5.2.5. */
5551 if (gfc_current_ns->entries
5552 && current_entry_id == sym->entry_id
5553 && cs_base
5554 && cs_base->current
5555 && cs_base->current->op != EXEC_ENTRY)
5556 {
5557 gfc_entry_list *entry;
5558 gfc_formal_arglist *formal;
5559 int n;
5560 bool seen, saved_specification_expr;
5561
5562 /* If the symbol is a dummy... */
5563 if (sym->attr.dummy && sym->ns == gfc_current_ns)
5564 {
5565 entry = gfc_current_ns->entries;
5566 seen = false;
5567
5568 /* ...test if the symbol is a parameter of previous entries. */
5569 for (; entry && entry->id <= current_entry_id; entry = entry->next)
5570 for (formal = entry->sym->formal; formal; formal = formal->next)
5571 {
5572 if (formal->sym && sym->name == formal->sym->name)
5573 {
5574 seen = true;
5575 break;
5576 }
5577 }
5578
5579 /* If it has not been seen as a dummy, this is an error. */
5580 if (!seen)
5581 {
5582 if (specification_expr)
5583 gfc_error ("Variable %qs, used in a specification expression"
5584 ", is referenced at %L before the ENTRY statement "
5585 "in which it is a parameter",
5586 sym->name, &cs_base->current->loc);
5587 else
5588 gfc_error ("Variable %qs is used at %L before the ENTRY "
5589 "statement in which it is a parameter",
5590 sym->name, &cs_base->current->loc);
5591 t = false;
5592 }
5593 }
5594
5595 /* Now do the same check on the specification expressions. */
5596 saved_specification_expr = specification_expr;
5597 specification_expr = true;
5598 if (sym->ts.type == BT_CHARACTER
5599 && !gfc_resolve_expr (sym->ts.u.cl->length))
5600 t = false;
5601
5602 if (sym->as)
5603 for (n = 0; n < sym->as->rank; n++)
5604 {
5605 if (!gfc_resolve_expr (sym->as->lower[n]))
5606 t = false;
5607 if (!gfc_resolve_expr (sym->as->upper[n]))
5608 t = false;
5609 }
5610 specification_expr = saved_specification_expr;
5611
5612 if (t)
5613 /* Update the symbol's entry level. */
5614 sym->entry_id = current_entry_id + 1;
5615 }
5616
5617 /* If a symbol has been host_associated mark it. This is used latter,
5618 to identify if aliasing is possible via host association. */
5619 if (sym->attr.flavor == FL_VARIABLE
5620 && gfc_current_ns->parent
5621 && (gfc_current_ns->parent == sym->ns
5622 || (gfc_current_ns->parent->parent
5623 && gfc_current_ns->parent->parent == sym->ns)))
5624 sym->attr.host_assoc = 1;
5625
5626 if (gfc_current_ns->proc_name
5627 && sym->attr.dimension
5628 && (sym->ns != gfc_current_ns
5629 || sym->attr.use_assoc
5630 || sym->attr.in_common))
5631 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
5632
5633 resolve_procedure:
5634 if (t && !resolve_procedure_expression (e))
5635 t = false;
5636
5637 /* F2008, C617 and C1229. */
5638 if (!inquiry_argument && (e->ts.type == BT_CLASS || e->ts.type == BT_DERIVED)
5639 && gfc_is_coindexed (e))
5640 {
5641 gfc_ref *ref, *ref2 = NULL;
5642
5643 for (ref = e->ref; ref; ref = ref->next)
5644 {
5645 if (ref->type == REF_COMPONENT)
5646 ref2 = ref;
5647 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5648 break;
5649 }
5650
5651 for ( ; ref; ref = ref->next)
5652 if (ref->type == REF_COMPONENT)
5653 break;
5654
5655 /* Expression itself is not coindexed object. */
5656 if (ref && e->ts.type == BT_CLASS)
5657 {
5658 gfc_error ("Polymorphic subobject of coindexed object at %L",
5659 &e->where);
5660 t = false;
5661 }
5662
5663 /* Expression itself is coindexed object. */
5664 if (ref == NULL)
5665 {
5666 gfc_component *c;
5667 c = ref2 ? ref2->u.c.component : e->symtree->n.sym->components;
5668 for ( ; c; c = c->next)
5669 if (c->attr.allocatable && c->ts.type == BT_CLASS)
5670 {
5671 gfc_error ("Coindexed object with polymorphic allocatable "
5672 "subcomponent at %L", &e->where);
5673 t = false;
5674 break;
5675 }
5676 }
5677 }
5678
5679 if (t)
5680 expression_rank (e);
5681
5682 if (t && flag_coarray == GFC_FCOARRAY_LIB && gfc_is_coindexed (e))
5683 add_caf_get_intrinsic (e);
5684
5685 /* Simplify cases where access to a parameter array results in a
5686 single constant. Suppress errors since those will have been
5687 issued before, as warnings. */
5688 if (e->rank == 0 && sym->as && sym->attr.flavor == FL_PARAMETER)
5689 {
5690 gfc_push_suppress_errors ();
5691 gfc_simplify_expr (e, 1);
5692 gfc_pop_suppress_errors ();
5693 }
5694
5695 return t;
5696 }
5697
5698
5699 /* Checks to see that the correct symbol has been host associated.
5700 The only situation where this arises is that in which a twice
5701 contained function is parsed after the host association is made.
5702 Therefore, on detecting this, change the symbol in the expression
5703 and convert the array reference into an actual arglist if the old
5704 symbol is a variable. */
5705 static bool
5706 check_host_association (gfc_expr *e)
5707 {
5708 gfc_symbol *sym, *old_sym;
5709 gfc_symtree *st;
5710 int n;
5711 gfc_ref *ref;
5712 gfc_actual_arglist *arg, *tail = NULL;
5713 bool retval = e->expr_type == EXPR_FUNCTION;
5714
5715 /* If the expression is the result of substitution in
5716 interface.c(gfc_extend_expr) because there is no way in
5717 which the host association can be wrong. */
5718 if (e->symtree == NULL
5719 || e->symtree->n.sym == NULL
5720 || e->user_operator)
5721 return retval;
5722
5723 old_sym = e->symtree->n.sym;
5724
5725 if (gfc_current_ns->parent
5726 && old_sym->ns != gfc_current_ns)
5727 {
5728 /* Use the 'USE' name so that renamed module symbols are
5729 correctly handled. */
5730 gfc_find_symbol (e->symtree->name, gfc_current_ns, 1, &sym);
5731
5732 if (sym && old_sym != sym
5733 && sym->ts.type == old_sym->ts.type
5734 && sym->attr.flavor == FL_PROCEDURE
5735 && sym->attr.contained)
5736 {
5737 /* Clear the shape, since it might not be valid. */
5738 gfc_free_shape (&e->shape, e->rank);
5739
5740 /* Give the expression the right symtree! */
5741 gfc_find_sym_tree (e->symtree->name, NULL, 1, &st);
5742 gcc_assert (st != NULL);
5743
5744 if (old_sym->attr.flavor == FL_PROCEDURE
5745 || e->expr_type == EXPR_FUNCTION)
5746 {
5747 /* Original was function so point to the new symbol, since
5748 the actual argument list is already attached to the
5749 expression. */
5750 e->value.function.esym = NULL;
5751 e->symtree = st;
5752 }
5753 else
5754 {
5755 /* Original was variable so convert array references into
5756 an actual arglist. This does not need any checking now
5757 since resolve_function will take care of it. */
5758 e->value.function.actual = NULL;
5759 e->expr_type = EXPR_FUNCTION;
5760 e->symtree = st;
5761
5762 /* Ambiguity will not arise if the array reference is not
5763 the last reference. */
5764 for (ref = e->ref; ref; ref = ref->next)
5765 if (ref->type == REF_ARRAY && ref->next == NULL)
5766 break;
5767
5768 gcc_assert (ref->type == REF_ARRAY);
5769
5770 /* Grab the start expressions from the array ref and
5771 copy them into actual arguments. */
5772 for (n = 0; n < ref->u.ar.dimen; n++)
5773 {
5774 arg = gfc_get_actual_arglist ();
5775 arg->expr = gfc_copy_expr (ref->u.ar.start[n]);
5776 if (e->value.function.actual == NULL)
5777 tail = e->value.function.actual = arg;
5778 else
5779 {
5780 tail->next = arg;
5781 tail = arg;
5782 }
5783 }
5784
5785 /* Dump the reference list and set the rank. */
5786 gfc_free_ref_list (e->ref);
5787 e->ref = NULL;
5788 e->rank = sym->as ? sym->as->rank : 0;
5789 }
5790
5791 gfc_resolve_expr (e);
5792 sym->refs++;
5793 }
5794 }
5795 /* This might have changed! */
5796 return e->expr_type == EXPR_FUNCTION;
5797 }
5798
5799
5800 static void
5801 gfc_resolve_character_operator (gfc_expr *e)
5802 {
5803 gfc_expr *op1 = e->value.op.op1;
5804 gfc_expr *op2 = e->value.op.op2;
5805 gfc_expr *e1 = NULL;
5806 gfc_expr *e2 = NULL;
5807
5808 gcc_assert (e->value.op.op == INTRINSIC_CONCAT);
5809
5810 if (op1->ts.u.cl && op1->ts.u.cl->length)
5811 e1 = gfc_copy_expr (op1->ts.u.cl->length);
5812 else if (op1->expr_type == EXPR_CONSTANT)
5813 e1 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
5814 op1->value.character.length);
5815
5816 if (op2->ts.u.cl && op2->ts.u.cl->length)
5817 e2 = gfc_copy_expr (op2->ts.u.cl->length);
5818 else if (op2->expr_type == EXPR_CONSTANT)
5819 e2 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
5820 op2->value.character.length);
5821
5822 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5823
5824 if (!e1 || !e2)
5825 {
5826 gfc_free_expr (e1);
5827 gfc_free_expr (e2);
5828
5829 return;
5830 }
5831
5832 e->ts.u.cl->length = gfc_add (e1, e2);
5833 e->ts.u.cl->length->ts.type = BT_INTEGER;
5834 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
5835 gfc_simplify_expr (e->ts.u.cl->length, 0);
5836 gfc_resolve_expr (e->ts.u.cl->length);
5837
5838 return;
5839 }
5840
5841
5842 /* Ensure that an character expression has a charlen and, if possible, a
5843 length expression. */
5844
5845 static void
5846 fixup_charlen (gfc_expr *e)
5847 {
5848 /* The cases fall through so that changes in expression type and the need
5849 for multiple fixes are picked up. In all circumstances, a charlen should
5850 be available for the middle end to hang a backend_decl on. */
5851 switch (e->expr_type)
5852 {
5853 case EXPR_OP:
5854 gfc_resolve_character_operator (e);
5855 /* FALLTHRU */
5856
5857 case EXPR_ARRAY:
5858 if (e->expr_type == EXPR_ARRAY)
5859 gfc_resolve_character_array_constructor (e);
5860 /* FALLTHRU */
5861
5862 case EXPR_SUBSTRING:
5863 if (!e->ts.u.cl && e->ref)
5864 gfc_resolve_substring_charlen (e);
5865 /* FALLTHRU */
5866
5867 default:
5868 if (!e->ts.u.cl)
5869 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5870
5871 break;
5872 }
5873 }
5874
5875
5876 /* Update an actual argument to include the passed-object for type-bound
5877 procedures at the right position. */
5878
5879 static gfc_actual_arglist*
5880 update_arglist_pass (gfc_actual_arglist* lst, gfc_expr* po, unsigned argpos,
5881 const char *name)
5882 {
5883 gcc_assert (argpos > 0);
5884
5885 if (argpos == 1)
5886 {
5887 gfc_actual_arglist* result;
5888
5889 result = gfc_get_actual_arglist ();
5890 result->expr = po;
5891 result->next = lst;
5892 if (name)
5893 result->name = name;
5894
5895 return result;
5896 }
5897
5898 if (lst)
5899 lst->next = update_arglist_pass (lst->next, po, argpos - 1, name);
5900 else
5901 lst = update_arglist_pass (NULL, po, argpos - 1, name);
5902 return lst;
5903 }
5904
5905
5906 /* Extract the passed-object from an EXPR_COMPCALL (a copy of it). */
5907
5908 static gfc_expr*
5909 extract_compcall_passed_object (gfc_expr* e)
5910 {
5911 gfc_expr* po;
5912
5913 gcc_assert (e->expr_type == EXPR_COMPCALL);
5914
5915 if (e->value.compcall.base_object)
5916 po = gfc_copy_expr (e->value.compcall.base_object);
5917 else
5918 {
5919 po = gfc_get_expr ();
5920 po->expr_type = EXPR_VARIABLE;
5921 po->symtree = e->symtree;
5922 po->ref = gfc_copy_ref (e->ref);
5923 po->where = e->where;
5924 }
5925
5926 if (!gfc_resolve_expr (po))
5927 return NULL;
5928
5929 return po;
5930 }
5931
5932
5933 /* Update the arglist of an EXPR_COMPCALL expression to include the
5934 passed-object. */
5935
5936 static bool
5937 update_compcall_arglist (gfc_expr* e)
5938 {
5939 gfc_expr* po;
5940 gfc_typebound_proc* tbp;
5941
5942 tbp = e->value.compcall.tbp;
5943
5944 if (tbp->error)
5945 return false;
5946
5947 po = extract_compcall_passed_object (e);
5948 if (!po)
5949 return false;
5950
5951 if (tbp->nopass || e->value.compcall.ignore_pass)
5952 {
5953 gfc_free_expr (po);
5954 return true;
5955 }
5956
5957 if (tbp->pass_arg_num <= 0)
5958 return false;
5959
5960 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
5961 tbp->pass_arg_num,
5962 tbp->pass_arg);
5963
5964 return true;
5965 }
5966
5967
5968 /* Extract the passed object from a PPC call (a copy of it). */
5969
5970 static gfc_expr*
5971 extract_ppc_passed_object (gfc_expr *e)
5972 {
5973 gfc_expr *po;
5974 gfc_ref **ref;
5975
5976 po = gfc_get_expr ();
5977 po->expr_type = EXPR_VARIABLE;
5978 po->symtree = e->symtree;
5979 po->ref = gfc_copy_ref (e->ref);
5980 po->where = e->where;
5981
5982 /* Remove PPC reference. */
5983 ref = &po->ref;
5984 while ((*ref)->next)
5985 ref = &(*ref)->next;
5986 gfc_free_ref_list (*ref);
5987 *ref = NULL;
5988
5989 if (!gfc_resolve_expr (po))
5990 return NULL;
5991
5992 return po;
5993 }
5994
5995
5996 /* Update the actual arglist of a procedure pointer component to include the
5997 passed-object. */
5998
5999 static bool
6000 update_ppc_arglist (gfc_expr* e)
6001 {
6002 gfc_expr* po;
6003 gfc_component *ppc;
6004 gfc_typebound_proc* tb;
6005
6006 ppc = gfc_get_proc_ptr_comp (e);
6007 if (!ppc)
6008 return false;
6009
6010 tb = ppc->tb;
6011
6012 if (tb->error)
6013 return false;
6014 else if (tb->nopass)
6015 return true;
6016
6017 po = extract_ppc_passed_object (e);
6018 if (!po)
6019 return false;
6020
6021 /* F08:R739. */
6022 if (po->rank != 0)
6023 {
6024 gfc_error ("Passed-object at %L must be scalar", &e->where);
6025 return false;
6026 }
6027
6028 /* F08:C611. */
6029 if (po->ts.type == BT_DERIVED && po->ts.u.derived->attr.abstract)
6030 {
6031 gfc_error ("Base object for procedure-pointer component call at %L is of"
6032 " ABSTRACT type %qs", &e->where, po->ts.u.derived->name);
6033 return false;
6034 }
6035
6036 gcc_assert (tb->pass_arg_num > 0);
6037 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
6038 tb->pass_arg_num,
6039 tb->pass_arg);
6040
6041 return true;
6042 }
6043
6044
6045 /* Check that the object a TBP is called on is valid, i.e. it must not be
6046 of ABSTRACT type (as in subobject%abstract_parent%tbp()). */
6047
6048 static bool
6049 check_typebound_baseobject (gfc_expr* e)
6050 {
6051 gfc_expr* base;
6052 bool return_value = false;
6053
6054 base = extract_compcall_passed_object (e);
6055 if (!base)
6056 return false;
6057
6058 gcc_assert (base->ts.type == BT_DERIVED || base->ts.type == BT_CLASS);
6059
6060 if (base->ts.type == BT_CLASS && !gfc_expr_attr (base).class_ok)
6061 return false;
6062
6063 /* F08:C611. */
6064 if (base->ts.type == BT_DERIVED && base->ts.u.derived->attr.abstract)
6065 {
6066 gfc_error ("Base object for type-bound procedure call at %L is of"
6067 " ABSTRACT type %qs", &e->where, base->ts.u.derived->name);
6068 goto cleanup;
6069 }
6070
6071 /* F08:C1230. If the procedure called is NOPASS,
6072 the base object must be scalar. */
6073 if (e->value.compcall.tbp->nopass && base->rank != 0)
6074 {
6075 gfc_error ("Base object for NOPASS type-bound procedure call at %L must"
6076 " be scalar", &e->where);
6077 goto cleanup;
6078 }
6079
6080 return_value = true;
6081
6082 cleanup:
6083 gfc_free_expr (base);
6084 return return_value;
6085 }
6086
6087
6088 /* Resolve a call to a type-bound procedure, either function or subroutine,
6089 statically from the data in an EXPR_COMPCALL expression. The adapted
6090 arglist and the target-procedure symtree are returned. */
6091
6092 static bool
6093 resolve_typebound_static (gfc_expr* e, gfc_symtree** target,
6094 gfc_actual_arglist** actual)
6095 {
6096 gcc_assert (e->expr_type == EXPR_COMPCALL);
6097 gcc_assert (!e->value.compcall.tbp->is_generic);
6098
6099 /* Update the actual arglist for PASS. */
6100 if (!update_compcall_arglist (e))
6101 return false;
6102
6103 *actual = e->value.compcall.actual;
6104 *target = e->value.compcall.tbp->u.specific;
6105
6106 gfc_free_ref_list (e->ref);
6107 e->ref = NULL;
6108 e->value.compcall.actual = NULL;
6109
6110 /* If we find a deferred typebound procedure, check for derived types
6111 that an overriding typebound procedure has not been missed. */
6112 if (e->value.compcall.name
6113 && !e->value.compcall.tbp->non_overridable
6114 && e->value.compcall.base_object
6115 && e->value.compcall.base_object->ts.type == BT_DERIVED)
6116 {
6117 gfc_symtree *st;
6118 gfc_symbol *derived;
6119
6120 /* Use the derived type of the base_object. */
6121 derived = e->value.compcall.base_object->ts.u.derived;
6122 st = NULL;
6123
6124 /* If necessary, go through the inheritance chain. */
6125 while (!st && derived)
6126 {
6127 /* Look for the typebound procedure 'name'. */
6128 if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
6129 st = gfc_find_symtree (derived->f2k_derived->tb_sym_root,
6130 e->value.compcall.name);
6131 if (!st)
6132 derived = gfc_get_derived_super_type (derived);
6133 }
6134
6135 /* Now find the specific name in the derived type namespace. */
6136 if (st && st->n.tb && st->n.tb->u.specific)
6137 gfc_find_sym_tree (st->n.tb->u.specific->name,
6138 derived->ns, 1, &st);
6139 if (st)
6140 *target = st;
6141 }
6142 return true;
6143 }
6144
6145
6146 /* Get the ultimate declared type from an expression. In addition,
6147 return the last class/derived type reference and the copy of the
6148 reference list. If check_types is set true, derived types are
6149 identified as well as class references. */
6150 static gfc_symbol*
6151 get_declared_from_expr (gfc_ref **class_ref, gfc_ref **new_ref,
6152 gfc_expr *e, bool check_types)
6153 {
6154 gfc_symbol *declared;
6155 gfc_ref *ref;
6156
6157 declared = NULL;
6158 if (class_ref)
6159 *class_ref = NULL;
6160 if (new_ref)
6161 *new_ref = gfc_copy_ref (e->ref);
6162
6163 for (ref = e->ref; ref; ref = ref->next)
6164 {
6165 if (ref->type != REF_COMPONENT)
6166 continue;
6167
6168 if ((ref->u.c.component->ts.type == BT_CLASS
6169 || (check_types && gfc_bt_struct (ref->u.c.component->ts.type)))
6170 && ref->u.c.component->attr.flavor != FL_PROCEDURE)
6171 {
6172 declared = ref->u.c.component->ts.u.derived;
6173 if (class_ref)
6174 *class_ref = ref;
6175 }
6176 }
6177
6178 if (declared == NULL)
6179 declared = e->symtree->n.sym->ts.u.derived;
6180
6181 return declared;
6182 }
6183
6184
6185 /* Given an EXPR_COMPCALL calling a GENERIC typebound procedure, figure out
6186 which of the specific bindings (if any) matches the arglist and transform
6187 the expression into a call of that binding. */
6188
6189 static bool
6190 resolve_typebound_generic_call (gfc_expr* e, const char **name)
6191 {
6192 gfc_typebound_proc* genproc;
6193 const char* genname;
6194 gfc_symtree *st;
6195 gfc_symbol *derived;
6196
6197 gcc_assert (e->expr_type == EXPR_COMPCALL);
6198 genname = e->value.compcall.name;
6199 genproc = e->value.compcall.tbp;
6200
6201 if (!genproc->is_generic)
6202 return true;
6203
6204 /* Try the bindings on this type and in the inheritance hierarchy. */
6205 for (; genproc; genproc = genproc->overridden)
6206 {
6207 gfc_tbp_generic* g;
6208
6209 gcc_assert (genproc->is_generic);
6210 for (g = genproc->u.generic; g; g = g->next)
6211 {
6212 gfc_symbol* target;
6213 gfc_actual_arglist* args;
6214 bool matches;
6215
6216 gcc_assert (g->specific);
6217
6218 if (g->specific->error)
6219 continue;
6220
6221 target = g->specific->u.specific->n.sym;
6222
6223 /* Get the right arglist by handling PASS/NOPASS. */
6224 args = gfc_copy_actual_arglist (e->value.compcall.actual);
6225 if (!g->specific->nopass)
6226 {
6227 gfc_expr* po;
6228 po = extract_compcall_passed_object (e);
6229 if (!po)
6230 {
6231 gfc_free_actual_arglist (args);
6232 return false;
6233 }
6234
6235 gcc_assert (g->specific->pass_arg_num > 0);
6236 gcc_assert (!g->specific->error);
6237 args = update_arglist_pass (args, po, g->specific->pass_arg_num,
6238 g->specific->pass_arg);
6239 }
6240 resolve_actual_arglist (args, target->attr.proc,
6241 is_external_proc (target)
6242 && gfc_sym_get_dummy_args (target) == NULL);
6243
6244 /* Check if this arglist matches the formal. */
6245 matches = gfc_arglist_matches_symbol (&args, target);
6246
6247 /* Clean up and break out of the loop if we've found it. */
6248 gfc_free_actual_arglist (args);
6249 if (matches)
6250 {
6251 e->value.compcall.tbp = g->specific;
6252 genname = g->specific_st->name;
6253 /* Pass along the name for CLASS methods, where the vtab
6254 procedure pointer component has to be referenced. */
6255 if (name)
6256 *name = genname;
6257 goto success;
6258 }
6259 }
6260 }
6261
6262 /* Nothing matching found! */
6263 gfc_error ("Found no matching specific binding for the call to the GENERIC"
6264 " %qs at %L", genname, &e->where);
6265 return false;
6266
6267 success:
6268 /* Make sure that we have the right specific instance for the name. */
6269 derived = get_declared_from_expr (NULL, NULL, e, true);
6270
6271 st = gfc_find_typebound_proc (derived, NULL, genname, true, &e->where);
6272 if (st)
6273 e->value.compcall.tbp = st->n.tb;
6274
6275 return true;
6276 }
6277
6278
6279 /* Resolve a call to a type-bound subroutine. */
6280
6281 static bool
6282 resolve_typebound_call (gfc_code* c, const char **name, bool *overridable)
6283 {
6284 gfc_actual_arglist* newactual;
6285 gfc_symtree* target;
6286
6287 /* Check that's really a SUBROUTINE. */
6288 if (!c->expr1->value.compcall.tbp->subroutine)
6289 {
6290 if (!c->expr1->value.compcall.tbp->is_generic
6291 && c->expr1->value.compcall.tbp->u.specific
6292 && c->expr1->value.compcall.tbp->u.specific->n.sym
6293 && c->expr1->value.compcall.tbp->u.specific->n.sym->attr.subroutine)
6294 c->expr1->value.compcall.tbp->subroutine = 1;
6295 else
6296 {
6297 gfc_error ("%qs at %L should be a SUBROUTINE",
6298 c->expr1->value.compcall.name, &c->loc);
6299 return false;
6300 }
6301 }
6302
6303 if (!check_typebound_baseobject (c->expr1))
6304 return false;
6305
6306 /* Pass along the name for CLASS methods, where the vtab
6307 procedure pointer component has to be referenced. */
6308 if (name)
6309 *name = c->expr1->value.compcall.name;
6310
6311 if (!resolve_typebound_generic_call (c->expr1, name))
6312 return false;
6313
6314 /* Pass along the NON_OVERRIDABLE attribute of the specific TBP. */
6315 if (overridable)
6316 *overridable = !c->expr1->value.compcall.tbp->non_overridable;
6317
6318 /* Transform into an ordinary EXEC_CALL for now. */
6319
6320 if (!resolve_typebound_static (c->expr1, &target, &newactual))
6321 return false;
6322
6323 c->ext.actual = newactual;
6324 c->symtree = target;
6325 c->op = (c->expr1->value.compcall.assign ? EXEC_ASSIGN_CALL : EXEC_CALL);
6326
6327 gcc_assert (!c->expr1->ref && !c->expr1->value.compcall.actual);
6328
6329 gfc_free_expr (c->expr1);
6330 c->expr1 = gfc_get_expr ();
6331 c->expr1->expr_type = EXPR_FUNCTION;
6332 c->expr1->symtree = target;
6333 c->expr1->where = c->loc;
6334
6335 return resolve_call (c);
6336 }
6337
6338
6339 /* Resolve a component-call expression. */
6340 static bool
6341 resolve_compcall (gfc_expr* e, const char **name)
6342 {
6343 gfc_actual_arglist* newactual;
6344 gfc_symtree* target;
6345
6346 /* Check that's really a FUNCTION. */
6347 if (!e->value.compcall.tbp->function)
6348 {
6349 gfc_error ("%qs at %L should be a FUNCTION",
6350 e->value.compcall.name, &e->where);
6351 return false;
6352 }
6353
6354 /* These must not be assign-calls! */
6355 gcc_assert (!e->value.compcall.assign);
6356
6357 if (!check_typebound_baseobject (e))
6358 return false;
6359
6360 /* Pass along the name for CLASS methods, where the vtab
6361 procedure pointer component has to be referenced. */
6362 if (name)
6363 *name = e->value.compcall.name;
6364
6365 if (!resolve_typebound_generic_call (e, name))
6366 return false;
6367 gcc_assert (!e->value.compcall.tbp->is_generic);
6368
6369 /* Take the rank from the function's symbol. */
6370 if (e->value.compcall.tbp->u.specific->n.sym->as)
6371 e->rank = e->value.compcall.tbp->u.specific->n.sym->as->rank;
6372
6373 /* For now, we simply transform it into an EXPR_FUNCTION call with the same
6374 arglist to the TBP's binding target. */
6375
6376 if (!resolve_typebound_static (e, &target, &newactual))
6377 return false;
6378
6379 e->value.function.actual = newactual;
6380 e->value.function.name = NULL;
6381 e->value.function.esym = target->n.sym;
6382 e->value.function.isym = NULL;
6383 e->symtree = target;
6384 e->ts = target->n.sym->ts;
6385 e->expr_type = EXPR_FUNCTION;
6386
6387 /* Resolution is not necessary if this is a class subroutine; this
6388 function only has to identify the specific proc. Resolution of
6389 the call will be done next in resolve_typebound_call. */
6390 return gfc_resolve_expr (e);
6391 }
6392
6393
6394 static bool resolve_fl_derived (gfc_symbol *sym);
6395
6396
6397 /* Resolve a typebound function, or 'method'. First separate all
6398 the non-CLASS references by calling resolve_compcall directly. */
6399
6400 static bool
6401 resolve_typebound_function (gfc_expr* e)
6402 {
6403 gfc_symbol *declared;
6404 gfc_component *c;
6405 gfc_ref *new_ref;
6406 gfc_ref *class_ref;
6407 gfc_symtree *st;
6408 const char *name;
6409 gfc_typespec ts;
6410 gfc_expr *expr;
6411 bool overridable;
6412
6413 st = e->symtree;
6414
6415 /* Deal with typebound operators for CLASS objects. */
6416 expr = e->value.compcall.base_object;
6417 overridable = !e->value.compcall.tbp->non_overridable;
6418 if (expr && expr->ts.type == BT_CLASS && e->value.compcall.name)
6419 {
6420 /* If the base_object is not a variable, the corresponding actual
6421 argument expression must be stored in e->base_expression so
6422 that the corresponding tree temporary can be used as the base
6423 object in gfc_conv_procedure_call. */
6424 if (expr->expr_type != EXPR_VARIABLE)
6425 {
6426 gfc_actual_arglist *args;
6427
6428 for (args= e->value.function.actual; args; args = args->next)
6429 {
6430 if (expr == args->expr)
6431 expr = args->expr;
6432 }
6433 }
6434
6435 /* Since the typebound operators are generic, we have to ensure
6436 that any delays in resolution are corrected and that the vtab
6437 is present. */
6438 ts = expr->ts;
6439 declared = ts.u.derived;
6440 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6441 if (c->ts.u.derived == NULL)
6442 c->ts.u.derived = gfc_find_derived_vtab (declared);
6443
6444 if (!resolve_compcall (e, &name))
6445 return false;
6446
6447 /* Use the generic name if it is there. */
6448 name = name ? name : e->value.function.esym->name;
6449 e->symtree = expr->symtree;
6450 e->ref = gfc_copy_ref (expr->ref);
6451 get_declared_from_expr (&class_ref, NULL, e, false);
6452
6453 /* Trim away the extraneous references that emerge from nested
6454 use of interface.c (extend_expr). */
6455 if (class_ref && class_ref->next)
6456 {
6457 gfc_free_ref_list (class_ref->next);
6458 class_ref->next = NULL;
6459 }
6460 else if (e->ref && !class_ref && expr->ts.type != BT_CLASS)
6461 {
6462 gfc_free_ref_list (e->ref);
6463 e->ref = NULL;
6464 }
6465
6466 gfc_add_vptr_component (e);
6467 gfc_add_component_ref (e, name);
6468 e->value.function.esym = NULL;
6469 if (expr->expr_type != EXPR_VARIABLE)
6470 e->base_expr = expr;
6471 return true;
6472 }
6473
6474 if (st == NULL)
6475 return resolve_compcall (e, NULL);
6476
6477 if (!resolve_ref (e))
6478 return false;
6479
6480 /* Get the CLASS declared type. */
6481 declared = get_declared_from_expr (&class_ref, &new_ref, e, true);
6482
6483 if (!resolve_fl_derived (declared))
6484 return false;
6485
6486 /* Weed out cases of the ultimate component being a derived type. */
6487 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6488 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6489 {
6490 gfc_free_ref_list (new_ref);
6491 return resolve_compcall (e, NULL);
6492 }
6493
6494 c = gfc_find_component (declared, "_data", true, true, NULL);
6495 declared = c->ts.u.derived;
6496
6497 /* Treat the call as if it is a typebound procedure, in order to roll
6498 out the correct name for the specific function. */
6499 if (!resolve_compcall (e, &name))
6500 {
6501 gfc_free_ref_list (new_ref);
6502 return false;
6503 }
6504 ts = e->ts;
6505
6506 if (overridable)
6507 {
6508 /* Convert the expression to a procedure pointer component call. */
6509 e->value.function.esym = NULL;
6510 e->symtree = st;
6511
6512 if (new_ref)
6513 e->ref = new_ref;
6514
6515 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6516 gfc_add_vptr_component (e);
6517 gfc_add_component_ref (e, name);
6518
6519 /* Recover the typespec for the expression. This is really only
6520 necessary for generic procedures, where the additional call
6521 to gfc_add_component_ref seems to throw the collection of the
6522 correct typespec. */
6523 e->ts = ts;
6524 }
6525 else if (new_ref)
6526 gfc_free_ref_list (new_ref);
6527
6528 return true;
6529 }
6530
6531 /* Resolve a typebound subroutine, or 'method'. First separate all
6532 the non-CLASS references by calling resolve_typebound_call
6533 directly. */
6534
6535 static bool
6536 resolve_typebound_subroutine (gfc_code *code)
6537 {
6538 gfc_symbol *declared;
6539 gfc_component *c;
6540 gfc_ref *new_ref;
6541 gfc_ref *class_ref;
6542 gfc_symtree *st;
6543 const char *name;
6544 gfc_typespec ts;
6545 gfc_expr *expr;
6546 bool overridable;
6547
6548 st = code->expr1->symtree;
6549
6550 /* Deal with typebound operators for CLASS objects. */
6551 expr = code->expr1->value.compcall.base_object;
6552 overridable = !code->expr1->value.compcall.tbp->non_overridable;
6553 if (expr && expr->ts.type == BT_CLASS && code->expr1->value.compcall.name)
6554 {
6555 /* If the base_object is not a variable, the corresponding actual
6556 argument expression must be stored in e->base_expression so
6557 that the corresponding tree temporary can be used as the base
6558 object in gfc_conv_procedure_call. */
6559 if (expr->expr_type != EXPR_VARIABLE)
6560 {
6561 gfc_actual_arglist *args;
6562
6563 args= code->expr1->value.function.actual;
6564 for (; args; args = args->next)
6565 if (expr == args->expr)
6566 expr = args->expr;
6567 }
6568
6569 /* Since the typebound operators are generic, we have to ensure
6570 that any delays in resolution are corrected and that the vtab
6571 is present. */
6572 declared = expr->ts.u.derived;
6573 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6574 if (c->ts.u.derived == NULL)
6575 c->ts.u.derived = gfc_find_derived_vtab (declared);
6576
6577 if (!resolve_typebound_call (code, &name, NULL))
6578 return false;
6579
6580 /* Use the generic name if it is there. */
6581 name = name ? name : code->expr1->value.function.esym->name;
6582 code->expr1->symtree = expr->symtree;
6583 code->expr1->ref = gfc_copy_ref (expr->ref);
6584
6585 /* Trim away the extraneous references that emerge from nested
6586 use of interface.c (extend_expr). */
6587 get_declared_from_expr (&class_ref, NULL, code->expr1, false);
6588 if (class_ref && class_ref->next)
6589 {
6590 gfc_free_ref_list (class_ref->next);
6591 class_ref->next = NULL;
6592 }
6593 else if (code->expr1->ref && !class_ref)
6594 {
6595 gfc_free_ref_list (code->expr1->ref);
6596 code->expr1->ref = NULL;
6597 }
6598
6599 /* Now use the procedure in the vtable. */
6600 gfc_add_vptr_component (code->expr1);
6601 gfc_add_component_ref (code->expr1, name);
6602 code->expr1->value.function.esym = NULL;
6603 if (expr->expr_type != EXPR_VARIABLE)
6604 code->expr1->base_expr = expr;
6605 return true;
6606 }
6607
6608 if (st == NULL)
6609 return resolve_typebound_call (code, NULL, NULL);
6610
6611 if (!resolve_ref (code->expr1))
6612 return false;
6613
6614 /* Get the CLASS declared type. */
6615 get_declared_from_expr (&class_ref, &new_ref, code->expr1, true);
6616
6617 /* Weed out cases of the ultimate component being a derived type. */
6618 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6619 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6620 {
6621 gfc_free_ref_list (new_ref);
6622 return resolve_typebound_call (code, NULL, NULL);
6623 }
6624
6625 if (!resolve_typebound_call (code, &name, &overridable))
6626 {
6627 gfc_free_ref_list (new_ref);
6628 return false;
6629 }
6630 ts = code->expr1->ts;
6631
6632 if (overridable)
6633 {
6634 /* Convert the expression to a procedure pointer component call. */
6635 code->expr1->value.function.esym = NULL;
6636 code->expr1->symtree = st;
6637
6638 if (new_ref)
6639 code->expr1->ref = new_ref;
6640
6641 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6642 gfc_add_vptr_component (code->expr1);
6643 gfc_add_component_ref (code->expr1, name);
6644
6645 /* Recover the typespec for the expression. This is really only
6646 necessary for generic procedures, where the additional call
6647 to gfc_add_component_ref seems to throw the collection of the
6648 correct typespec. */
6649 code->expr1->ts = ts;
6650 }
6651 else if (new_ref)
6652 gfc_free_ref_list (new_ref);
6653
6654 return true;
6655 }
6656
6657
6658 /* Resolve a CALL to a Procedure Pointer Component (Subroutine). */
6659
6660 static bool
6661 resolve_ppc_call (gfc_code* c)
6662 {
6663 gfc_component *comp;
6664
6665 comp = gfc_get_proc_ptr_comp (c->expr1);
6666 gcc_assert (comp != NULL);
6667
6668 c->resolved_sym = c->expr1->symtree->n.sym;
6669 c->expr1->expr_type = EXPR_VARIABLE;
6670
6671 if (!comp->attr.subroutine)
6672 gfc_add_subroutine (&comp->attr, comp->name, &c->expr1->where);
6673
6674 if (!resolve_ref (c->expr1))
6675 return false;
6676
6677 if (!update_ppc_arglist (c->expr1))
6678 return false;
6679
6680 c->ext.actual = c->expr1->value.compcall.actual;
6681
6682 if (!resolve_actual_arglist (c->ext.actual, comp->attr.proc,
6683 !(comp->ts.interface
6684 && comp->ts.interface->formal)))
6685 return false;
6686
6687 if (!pure_subroutine (comp->ts.interface, comp->name, &c->expr1->where))
6688 return false;
6689
6690 gfc_ppc_use (comp, &c->expr1->value.compcall.actual, &c->expr1->where);
6691
6692 return true;
6693 }
6694
6695
6696 /* Resolve a Function Call to a Procedure Pointer Component (Function). */
6697
6698 static bool
6699 resolve_expr_ppc (gfc_expr* e)
6700 {
6701 gfc_component *comp;
6702
6703 comp = gfc_get_proc_ptr_comp (e);
6704 gcc_assert (comp != NULL);
6705
6706 /* Convert to EXPR_FUNCTION. */
6707 e->expr_type = EXPR_FUNCTION;
6708 e->value.function.isym = NULL;
6709 e->value.function.actual = e->value.compcall.actual;
6710 e->ts = comp->ts;
6711 if (comp->as != NULL)
6712 e->rank = comp->as->rank;
6713
6714 if (!comp->attr.function)
6715 gfc_add_function (&comp->attr, comp->name, &e->where);
6716
6717 if (!resolve_ref (e))
6718 return false;
6719
6720 if (!resolve_actual_arglist (e->value.function.actual, comp->attr.proc,
6721 !(comp->ts.interface
6722 && comp->ts.interface->formal)))
6723 return false;
6724
6725 if (!update_ppc_arglist (e))
6726 return false;
6727
6728 if (!check_pure_function(e))
6729 return false;
6730
6731 gfc_ppc_use (comp, &e->value.compcall.actual, &e->where);
6732
6733 return true;
6734 }
6735
6736
6737 static bool
6738 gfc_is_expandable_expr (gfc_expr *e)
6739 {
6740 gfc_constructor *con;
6741
6742 if (e->expr_type == EXPR_ARRAY)
6743 {
6744 /* Traverse the constructor looking for variables that are flavor
6745 parameter. Parameters must be expanded since they are fully used at
6746 compile time. */
6747 con = gfc_constructor_first (e->value.constructor);
6748 for (; con; con = gfc_constructor_next (con))
6749 {
6750 if (con->expr->expr_type == EXPR_VARIABLE
6751 && con->expr->symtree
6752 && (con->expr->symtree->n.sym->attr.flavor == FL_PARAMETER
6753 || con->expr->symtree->n.sym->attr.flavor == FL_VARIABLE))
6754 return true;
6755 if (con->expr->expr_type == EXPR_ARRAY
6756 && gfc_is_expandable_expr (con->expr))
6757 return true;
6758 }
6759 }
6760
6761 return false;
6762 }
6763
6764
6765 /* Sometimes variables in specification expressions of the result
6766 of module procedures in submodules wind up not being the 'real'
6767 dummy. Find this, if possible, in the namespace of the first
6768 formal argument. */
6769
6770 static void
6771 fixup_unique_dummy (gfc_expr *e)
6772 {
6773 gfc_symtree *st = NULL;
6774 gfc_symbol *s = NULL;
6775
6776 if (e->symtree->n.sym->ns->proc_name
6777 && e->symtree->n.sym->ns->proc_name->formal)
6778 s = e->symtree->n.sym->ns->proc_name->formal->sym;
6779
6780 if (s != NULL)
6781 st = gfc_find_symtree (s->ns->sym_root, e->symtree->n.sym->name);
6782
6783 if (st != NULL
6784 && st->n.sym != NULL
6785 && st->n.sym->attr.dummy)
6786 e->symtree = st;
6787 }
6788
6789 /* Resolve an expression. That is, make sure that types of operands agree
6790 with their operators, intrinsic operators are converted to function calls
6791 for overloaded types and unresolved function references are resolved. */
6792
6793 bool
6794 gfc_resolve_expr (gfc_expr *e)
6795 {
6796 bool t;
6797 bool inquiry_save, actual_arg_save, first_actual_arg_save;
6798
6799 if (e == NULL)
6800 return true;
6801
6802 /* inquiry_argument only applies to variables. */
6803 inquiry_save = inquiry_argument;
6804 actual_arg_save = actual_arg;
6805 first_actual_arg_save = first_actual_arg;
6806
6807 if (e->expr_type != EXPR_VARIABLE)
6808 {
6809 inquiry_argument = false;
6810 actual_arg = false;
6811 first_actual_arg = false;
6812 }
6813 else if (e->symtree != NULL
6814 && *e->symtree->name == '@'
6815 && e->symtree->n.sym->attr.dummy)
6816 {
6817 /* Deal with submodule specification expressions that are not
6818 found to be referenced in module.c(read_cleanup). */
6819 fixup_unique_dummy (e);
6820 }
6821
6822 switch (e->expr_type)
6823 {
6824 case EXPR_OP:
6825 t = resolve_operator (e);
6826 break;
6827
6828 case EXPR_FUNCTION:
6829 case EXPR_VARIABLE:
6830
6831 if (check_host_association (e))
6832 t = resolve_function (e);
6833 else
6834 t = resolve_variable (e);
6835
6836 if (e->ts.type == BT_CHARACTER && e->ts.u.cl == NULL && e->ref
6837 && e->ref->type != REF_SUBSTRING)
6838 gfc_resolve_substring_charlen (e);
6839
6840 break;
6841
6842 case EXPR_COMPCALL:
6843 t = resolve_typebound_function (e);
6844 break;
6845
6846 case EXPR_SUBSTRING:
6847 t = resolve_ref (e);
6848 break;
6849
6850 case EXPR_CONSTANT:
6851 case EXPR_NULL:
6852 t = true;
6853 break;
6854
6855 case EXPR_PPC:
6856 t = resolve_expr_ppc (e);
6857 break;
6858
6859 case EXPR_ARRAY:
6860 t = false;
6861 if (!resolve_ref (e))
6862 break;
6863
6864 t = gfc_resolve_array_constructor (e);
6865 /* Also try to expand a constructor. */
6866 if (t)
6867 {
6868 expression_rank (e);
6869 if (gfc_is_constant_expr (e) || gfc_is_expandable_expr (e))
6870 gfc_expand_constructor (e, false);
6871 }
6872
6873 /* This provides the opportunity for the length of constructors with
6874 character valued function elements to propagate the string length
6875 to the expression. */
6876 if (t && e->ts.type == BT_CHARACTER)
6877 {
6878 /* For efficiency, we call gfc_expand_constructor for BT_CHARACTER
6879 here rather then add a duplicate test for it above. */
6880 gfc_expand_constructor (e, false);
6881 t = gfc_resolve_character_array_constructor (e);
6882 }
6883
6884 break;
6885
6886 case EXPR_STRUCTURE:
6887 t = resolve_ref (e);
6888 if (!t)
6889 break;
6890
6891 t = resolve_structure_cons (e, 0);
6892 if (!t)
6893 break;
6894
6895 t = gfc_simplify_expr (e, 0);
6896 break;
6897
6898 default:
6899 gfc_internal_error ("gfc_resolve_expr(): Bad expression type");
6900 }
6901
6902 if (e->ts.type == BT_CHARACTER && t && !e->ts.u.cl)
6903 fixup_charlen (e);
6904
6905 inquiry_argument = inquiry_save;
6906 actual_arg = actual_arg_save;
6907 first_actual_arg = first_actual_arg_save;
6908
6909 return t;
6910 }
6911
6912
6913 /* Resolve an expression from an iterator. They must be scalar and have
6914 INTEGER or (optionally) REAL type. */
6915
6916 static bool
6917 gfc_resolve_iterator_expr (gfc_expr *expr, bool real_ok,
6918 const char *name_msgid)
6919 {
6920 if (!gfc_resolve_expr (expr))
6921 return false;
6922
6923 if (expr->rank != 0)
6924 {
6925 gfc_error ("%s at %L must be a scalar", _(name_msgid), &expr->where);
6926 return false;
6927 }
6928
6929 if (expr->ts.type != BT_INTEGER)
6930 {
6931 if (expr->ts.type == BT_REAL)
6932 {
6933 if (real_ok)
6934 return gfc_notify_std (GFC_STD_F95_DEL,
6935 "%s at %L must be integer",
6936 _(name_msgid), &expr->where);
6937 else
6938 {
6939 gfc_error ("%s at %L must be INTEGER", _(name_msgid),
6940 &expr->where);
6941 return false;
6942 }
6943 }
6944 else
6945 {
6946 gfc_error ("%s at %L must be INTEGER", _(name_msgid), &expr->where);
6947 return false;
6948 }
6949 }
6950 return true;
6951 }
6952
6953
6954 /* Resolve the expressions in an iterator structure. If REAL_OK is
6955 false allow only INTEGER type iterators, otherwise allow REAL types.
6956 Set own_scope to true for ac-implied-do and data-implied-do as those
6957 have a separate scope such that, e.g., a INTENT(IN) doesn't apply. */
6958
6959 bool
6960 gfc_resolve_iterator (gfc_iterator *iter, bool real_ok, bool own_scope)
6961 {
6962 if (!gfc_resolve_iterator_expr (iter->var, real_ok, "Loop variable"))
6963 return false;
6964
6965 if (!gfc_check_vardef_context (iter->var, false, false, own_scope,
6966 _("iterator variable")))
6967 return false;
6968
6969 if (!gfc_resolve_iterator_expr (iter->start, real_ok,
6970 "Start expression in DO loop"))
6971 return false;
6972
6973 if (!gfc_resolve_iterator_expr (iter->end, real_ok,
6974 "End expression in DO loop"))
6975 return false;
6976
6977 if (!gfc_resolve_iterator_expr (iter->step, real_ok,
6978 "Step expression in DO loop"))
6979 return false;
6980
6981 if (iter->step->expr_type == EXPR_CONSTANT)
6982 {
6983 if ((iter->step->ts.type == BT_INTEGER
6984 && mpz_cmp_ui (iter->step->value.integer, 0) == 0)
6985 || (iter->step->ts.type == BT_REAL
6986 && mpfr_sgn (iter->step->value.real) == 0))
6987 {
6988 gfc_error ("Step expression in DO loop at %L cannot be zero",
6989 &iter->step->where);
6990 return false;
6991 }
6992 }
6993
6994 /* Convert start, end, and step to the same type as var. */
6995 if (iter->start->ts.kind != iter->var->ts.kind
6996 || iter->start->ts.type != iter->var->ts.type)
6997 gfc_convert_type (iter->start, &iter->var->ts, 1);
6998
6999 if (iter->end->ts.kind != iter->var->ts.kind
7000 || iter->end->ts.type != iter->var->ts.type)
7001 gfc_convert_type (iter->end, &iter->var->ts, 1);
7002
7003 if (iter->step->ts.kind != iter->var->ts.kind
7004 || iter->step->ts.type != iter->var->ts.type)
7005 gfc_convert_type (iter->step, &iter->var->ts, 1);
7006
7007 if (iter->start->expr_type == EXPR_CONSTANT
7008 && iter->end->expr_type == EXPR_CONSTANT
7009 && iter->step->expr_type == EXPR_CONSTANT)
7010 {
7011 int sgn, cmp;
7012 if (iter->start->ts.type == BT_INTEGER)
7013 {
7014 sgn = mpz_cmp_ui (iter->step->value.integer, 0);
7015 cmp = mpz_cmp (iter->end->value.integer, iter->start->value.integer);
7016 }
7017 else
7018 {
7019 sgn = mpfr_sgn (iter->step->value.real);
7020 cmp = mpfr_cmp (iter->end->value.real, iter->start->value.real);
7021 }
7022 if (warn_zerotrip && ((sgn > 0 && cmp < 0) || (sgn < 0 && cmp > 0)))
7023 gfc_warning (OPT_Wzerotrip,
7024 "DO loop at %L will be executed zero times",
7025 &iter->step->where);
7026 }
7027
7028 if (iter->end->expr_type == EXPR_CONSTANT
7029 && iter->end->ts.type == BT_INTEGER
7030 && iter->step->expr_type == EXPR_CONSTANT
7031 && iter->step->ts.type == BT_INTEGER
7032 && (mpz_cmp_si (iter->step->value.integer, -1L) == 0
7033 || mpz_cmp_si (iter->step->value.integer, 1L) == 0))
7034 {
7035 bool is_step_positive = mpz_cmp_ui (iter->step->value.integer, 1) == 0;
7036 int k = gfc_validate_kind (BT_INTEGER, iter->end->ts.kind, false);
7037
7038 if (is_step_positive
7039 && mpz_cmp (iter->end->value.integer, gfc_integer_kinds[k].huge) == 0)
7040 gfc_warning (OPT_Wundefined_do_loop,
7041 "DO loop at %L is undefined as it overflows",
7042 &iter->step->where);
7043 else if (!is_step_positive
7044 && mpz_cmp (iter->end->value.integer,
7045 gfc_integer_kinds[k].min_int) == 0)
7046 gfc_warning (OPT_Wundefined_do_loop,
7047 "DO loop at %L is undefined as it underflows",
7048 &iter->step->where);
7049 }
7050
7051 return true;
7052 }
7053
7054
7055 /* Traversal function for find_forall_index. f == 2 signals that
7056 that variable itself is not to be checked - only the references. */
7057
7058 static bool
7059 forall_index (gfc_expr *expr, gfc_symbol *sym, int *f)
7060 {
7061 if (expr->expr_type != EXPR_VARIABLE)
7062 return false;
7063
7064 /* A scalar assignment */
7065 if (!expr->ref || *f == 1)
7066 {
7067 if (expr->symtree->n.sym == sym)
7068 return true;
7069 else
7070 return false;
7071 }
7072
7073 if (*f == 2)
7074 *f = 1;
7075 return false;
7076 }
7077
7078
7079 /* Check whether the FORALL index appears in the expression or not.
7080 Returns true if SYM is found in EXPR. */
7081
7082 bool
7083 find_forall_index (gfc_expr *expr, gfc_symbol *sym, int f)
7084 {
7085 if (gfc_traverse_expr (expr, sym, forall_index, f))
7086 return true;
7087 else
7088 return false;
7089 }
7090
7091
7092 /* Resolve a list of FORALL iterators. The FORALL index-name is constrained
7093 to be a scalar INTEGER variable. The subscripts and stride are scalar
7094 INTEGERs, and if stride is a constant it must be nonzero.
7095 Furthermore "A subscript or stride in a forall-triplet-spec shall
7096 not contain a reference to any index-name in the
7097 forall-triplet-spec-list in which it appears." (7.5.4.1) */
7098
7099 static void
7100 resolve_forall_iterators (gfc_forall_iterator *it)
7101 {
7102 gfc_forall_iterator *iter, *iter2;
7103
7104 for (iter = it; iter; iter = iter->next)
7105 {
7106 if (gfc_resolve_expr (iter->var)
7107 && (iter->var->ts.type != BT_INTEGER || iter->var->rank != 0))
7108 gfc_error ("FORALL index-name at %L must be a scalar INTEGER",
7109 &iter->var->where);
7110
7111 if (gfc_resolve_expr (iter->start)
7112 && (iter->start->ts.type != BT_INTEGER || iter->start->rank != 0))
7113 gfc_error ("FORALL start expression at %L must be a scalar INTEGER",
7114 &iter->start->where);
7115 if (iter->var->ts.kind != iter->start->ts.kind)
7116 gfc_convert_type (iter->start, &iter->var->ts, 1);
7117
7118 if (gfc_resolve_expr (iter->end)
7119 && (iter->end->ts.type != BT_INTEGER || iter->end->rank != 0))
7120 gfc_error ("FORALL end expression at %L must be a scalar INTEGER",
7121 &iter->end->where);
7122 if (iter->var->ts.kind != iter->end->ts.kind)
7123 gfc_convert_type (iter->end, &iter->var->ts, 1);
7124
7125 if (gfc_resolve_expr (iter->stride))
7126 {
7127 if (iter->stride->ts.type != BT_INTEGER || iter->stride->rank != 0)
7128 gfc_error ("FORALL stride expression at %L must be a scalar %s",
7129 &iter->stride->where, "INTEGER");
7130
7131 if (iter->stride->expr_type == EXPR_CONSTANT
7132 && mpz_cmp_ui (iter->stride->value.integer, 0) == 0)
7133 gfc_error ("FORALL stride expression at %L cannot be zero",
7134 &iter->stride->where);
7135 }
7136 if (iter->var->ts.kind != iter->stride->ts.kind)
7137 gfc_convert_type (iter->stride, &iter->var->ts, 1);
7138 }
7139
7140 for (iter = it; iter; iter = iter->next)
7141 for (iter2 = iter; iter2; iter2 = iter2->next)
7142 {
7143 if (find_forall_index (iter2->start, iter->var->symtree->n.sym, 0)
7144 || find_forall_index (iter2->end, iter->var->symtree->n.sym, 0)
7145 || find_forall_index (iter2->stride, iter->var->symtree->n.sym, 0))
7146 gfc_error ("FORALL index %qs may not appear in triplet "
7147 "specification at %L", iter->var->symtree->name,
7148 &iter2->start->where);
7149 }
7150 }
7151
7152
7153 /* Given a pointer to a symbol that is a derived type, see if it's
7154 inaccessible, i.e. if it's defined in another module and the components are
7155 PRIVATE. The search is recursive if necessary. Returns zero if no
7156 inaccessible components are found, nonzero otherwise. */
7157
7158 static int
7159 derived_inaccessible (gfc_symbol *sym)
7160 {
7161 gfc_component *c;
7162
7163 if (sym->attr.use_assoc && sym->attr.private_comp)
7164 return 1;
7165
7166 for (c = sym->components; c; c = c->next)
7167 {
7168 /* Prevent an infinite loop through this function. */
7169 if (c->ts.type == BT_DERIVED && c->attr.pointer
7170 && sym == c->ts.u.derived)
7171 continue;
7172
7173 if (c->ts.type == BT_DERIVED && derived_inaccessible (c->ts.u.derived))
7174 return 1;
7175 }
7176
7177 return 0;
7178 }
7179
7180
7181 /* Resolve the argument of a deallocate expression. The expression must be
7182 a pointer or a full array. */
7183
7184 static bool
7185 resolve_deallocate_expr (gfc_expr *e)
7186 {
7187 symbol_attribute attr;
7188 int allocatable, pointer;
7189 gfc_ref *ref;
7190 gfc_symbol *sym;
7191 gfc_component *c;
7192 bool unlimited;
7193
7194 if (!gfc_resolve_expr (e))
7195 return false;
7196
7197 if (e->expr_type != EXPR_VARIABLE)
7198 goto bad;
7199
7200 sym = e->symtree->n.sym;
7201 unlimited = UNLIMITED_POLY(sym);
7202
7203 if (sym->ts.type == BT_CLASS)
7204 {
7205 allocatable = CLASS_DATA (sym)->attr.allocatable;
7206 pointer = CLASS_DATA (sym)->attr.class_pointer;
7207 }
7208 else
7209 {
7210 allocatable = sym->attr.allocatable;
7211 pointer = sym->attr.pointer;
7212 }
7213 for (ref = e->ref; ref; ref = ref->next)
7214 {
7215 switch (ref->type)
7216 {
7217 case REF_ARRAY:
7218 if (ref->u.ar.type != AR_FULL
7219 && !(ref->u.ar.type == AR_ELEMENT && ref->u.ar.as->rank == 0
7220 && ref->u.ar.codimen && gfc_ref_this_image (ref)))
7221 allocatable = 0;
7222 break;
7223
7224 case REF_COMPONENT:
7225 c = ref->u.c.component;
7226 if (c->ts.type == BT_CLASS)
7227 {
7228 allocatable = CLASS_DATA (c)->attr.allocatable;
7229 pointer = CLASS_DATA (c)->attr.class_pointer;
7230 }
7231 else
7232 {
7233 allocatable = c->attr.allocatable;
7234 pointer = c->attr.pointer;
7235 }
7236 break;
7237
7238 case REF_SUBSTRING:
7239 case REF_INQUIRY:
7240 allocatable = 0;
7241 break;
7242 }
7243 }
7244
7245 attr = gfc_expr_attr (e);
7246
7247 if (allocatable == 0 && attr.pointer == 0 && !unlimited)
7248 {
7249 bad:
7250 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7251 &e->where);
7252 return false;
7253 }
7254
7255 /* F2008, C644. */
7256 if (gfc_is_coindexed (e))
7257 {
7258 gfc_error ("Coindexed allocatable object at %L", &e->where);
7259 return false;
7260 }
7261
7262 if (pointer
7263 && !gfc_check_vardef_context (e, true, true, false,
7264 _("DEALLOCATE object")))
7265 return false;
7266 if (!gfc_check_vardef_context (e, false, true, false,
7267 _("DEALLOCATE object")))
7268 return false;
7269
7270 return true;
7271 }
7272
7273
7274 /* Returns true if the expression e contains a reference to the symbol sym. */
7275 static bool
7276 sym_in_expr (gfc_expr *e, gfc_symbol *sym, int *f ATTRIBUTE_UNUSED)
7277 {
7278 if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym == sym)
7279 return true;
7280
7281 return false;
7282 }
7283
7284 bool
7285 gfc_find_sym_in_expr (gfc_symbol *sym, gfc_expr *e)
7286 {
7287 return gfc_traverse_expr (e, sym, sym_in_expr, 0);
7288 }
7289
7290
7291 /* Given the expression node e for an allocatable/pointer of derived type to be
7292 allocated, get the expression node to be initialized afterwards (needed for
7293 derived types with default initializers, and derived types with allocatable
7294 components that need nullification.) */
7295
7296 gfc_expr *
7297 gfc_expr_to_initialize (gfc_expr *e)
7298 {
7299 gfc_expr *result;
7300 gfc_ref *ref;
7301 int i;
7302
7303 result = gfc_copy_expr (e);
7304
7305 /* Change the last array reference from AR_ELEMENT to AR_FULL. */
7306 for (ref = result->ref; ref; ref = ref->next)
7307 if (ref->type == REF_ARRAY && ref->next == NULL)
7308 {
7309 ref->u.ar.type = AR_FULL;
7310
7311 for (i = 0; i < ref->u.ar.dimen; i++)
7312 ref->u.ar.start[i] = ref->u.ar.end[i] = ref->u.ar.stride[i] = NULL;
7313
7314 break;
7315 }
7316
7317 gfc_free_shape (&result->shape, result->rank);
7318
7319 /* Recalculate rank, shape, etc. */
7320 gfc_resolve_expr (result);
7321 return result;
7322 }
7323
7324
7325 /* If the last ref of an expression is an array ref, return a copy of the
7326 expression with that one removed. Otherwise, a copy of the original
7327 expression. This is used for allocate-expressions and pointer assignment
7328 LHS, where there may be an array specification that needs to be stripped
7329 off when using gfc_check_vardef_context. */
7330
7331 static gfc_expr*
7332 remove_last_array_ref (gfc_expr* e)
7333 {
7334 gfc_expr* e2;
7335 gfc_ref** r;
7336
7337 e2 = gfc_copy_expr (e);
7338 for (r = &e2->ref; *r; r = &(*r)->next)
7339 if ((*r)->type == REF_ARRAY && !(*r)->next)
7340 {
7341 gfc_free_ref_list (*r);
7342 *r = NULL;
7343 break;
7344 }
7345
7346 return e2;
7347 }
7348
7349
7350 /* Used in resolve_allocate_expr to check that a allocation-object and
7351 a source-expr are conformable. This does not catch all possible
7352 cases; in particular a runtime checking is needed. */
7353
7354 static bool
7355 conformable_arrays (gfc_expr *e1, gfc_expr *e2)
7356 {
7357 gfc_ref *tail;
7358 for (tail = e2->ref; tail && tail->next; tail = tail->next);
7359
7360 /* First compare rank. */
7361 if ((tail && e1->rank != tail->u.ar.as->rank)
7362 || (!tail && e1->rank != e2->rank))
7363 {
7364 gfc_error ("Source-expr at %L must be scalar or have the "
7365 "same rank as the allocate-object at %L",
7366 &e1->where, &e2->where);
7367 return false;
7368 }
7369
7370 if (e1->shape)
7371 {
7372 int i;
7373 mpz_t s;
7374
7375 mpz_init (s);
7376
7377 for (i = 0; i < e1->rank; i++)
7378 {
7379 if (tail->u.ar.start[i] == NULL)
7380 break;
7381
7382 if (tail->u.ar.end[i])
7383 {
7384 mpz_set (s, tail->u.ar.end[i]->value.integer);
7385 mpz_sub (s, s, tail->u.ar.start[i]->value.integer);
7386 mpz_add_ui (s, s, 1);
7387 }
7388 else
7389 {
7390 mpz_set (s, tail->u.ar.start[i]->value.integer);
7391 }
7392
7393 if (mpz_cmp (e1->shape[i], s) != 0)
7394 {
7395 gfc_error ("Source-expr at %L and allocate-object at %L must "
7396 "have the same shape", &e1->where, &e2->where);
7397 mpz_clear (s);
7398 return false;
7399 }
7400 }
7401
7402 mpz_clear (s);
7403 }
7404
7405 return true;
7406 }
7407
7408
7409 /* Resolve the expression in an ALLOCATE statement, doing the additional
7410 checks to see whether the expression is OK or not. The expression must
7411 have a trailing array reference that gives the size of the array. */
7412
7413 static bool
7414 resolve_allocate_expr (gfc_expr *e, gfc_code *code, bool *array_alloc_wo_spec)
7415 {
7416 int i, pointer, allocatable, dimension, is_abstract;
7417 int codimension;
7418 bool coindexed;
7419 bool unlimited;
7420 symbol_attribute attr;
7421 gfc_ref *ref, *ref2;
7422 gfc_expr *e2;
7423 gfc_array_ref *ar;
7424 gfc_symbol *sym = NULL;
7425 gfc_alloc *a;
7426 gfc_component *c;
7427 bool t;
7428
7429 /* Mark the utmost array component as being in allocate to allow DIMEN_STAR
7430 checking of coarrays. */
7431 for (ref = e->ref; ref; ref = ref->next)
7432 if (ref->next == NULL)
7433 break;
7434
7435 if (ref && ref->type == REF_ARRAY)
7436 ref->u.ar.in_allocate = true;
7437
7438 if (!gfc_resolve_expr (e))
7439 goto failure;
7440
7441 /* Make sure the expression is allocatable or a pointer. If it is
7442 pointer, the next-to-last reference must be a pointer. */
7443
7444 ref2 = NULL;
7445 if (e->symtree)
7446 sym = e->symtree->n.sym;
7447
7448 /* Check whether ultimate component is abstract and CLASS. */
7449 is_abstract = 0;
7450
7451 /* Is the allocate-object unlimited polymorphic? */
7452 unlimited = UNLIMITED_POLY(e);
7453
7454 if (e->expr_type != EXPR_VARIABLE)
7455 {
7456 allocatable = 0;
7457 attr = gfc_expr_attr (e);
7458 pointer = attr.pointer;
7459 dimension = attr.dimension;
7460 codimension = attr.codimension;
7461 }
7462 else
7463 {
7464 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
7465 {
7466 allocatable = CLASS_DATA (sym)->attr.allocatable;
7467 pointer = CLASS_DATA (sym)->attr.class_pointer;
7468 dimension = CLASS_DATA (sym)->attr.dimension;
7469 codimension = CLASS_DATA (sym)->attr.codimension;
7470 is_abstract = CLASS_DATA (sym)->attr.abstract;
7471 }
7472 else
7473 {
7474 allocatable = sym->attr.allocatable;
7475 pointer = sym->attr.pointer;
7476 dimension = sym->attr.dimension;
7477 codimension = sym->attr.codimension;
7478 }
7479
7480 coindexed = false;
7481
7482 for (ref = e->ref; ref; ref2 = ref, ref = ref->next)
7483 {
7484 switch (ref->type)
7485 {
7486 case REF_ARRAY:
7487 if (ref->u.ar.codimen > 0)
7488 {
7489 int n;
7490 for (n = ref->u.ar.dimen;
7491 n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
7492 if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
7493 {
7494 coindexed = true;
7495 break;
7496 }
7497 }
7498
7499 if (ref->next != NULL)
7500 pointer = 0;
7501 break;
7502
7503 case REF_COMPONENT:
7504 /* F2008, C644. */
7505 if (coindexed)
7506 {
7507 gfc_error ("Coindexed allocatable object at %L",
7508 &e->where);
7509 goto failure;
7510 }
7511
7512 c = ref->u.c.component;
7513 if (c->ts.type == BT_CLASS)
7514 {
7515 allocatable = CLASS_DATA (c)->attr.allocatable;
7516 pointer = CLASS_DATA (c)->attr.class_pointer;
7517 dimension = CLASS_DATA (c)->attr.dimension;
7518 codimension = CLASS_DATA (c)->attr.codimension;
7519 is_abstract = CLASS_DATA (c)->attr.abstract;
7520 }
7521 else
7522 {
7523 allocatable = c->attr.allocatable;
7524 pointer = c->attr.pointer;
7525 dimension = c->attr.dimension;
7526 codimension = c->attr.codimension;
7527 is_abstract = c->attr.abstract;
7528 }
7529 break;
7530
7531 case REF_SUBSTRING:
7532 case REF_INQUIRY:
7533 allocatable = 0;
7534 pointer = 0;
7535 break;
7536 }
7537 }
7538 }
7539
7540 /* Check for F08:C628. */
7541 if (allocatable == 0 && pointer == 0 && !unlimited)
7542 {
7543 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7544 &e->where);
7545 goto failure;
7546 }
7547
7548 /* Some checks for the SOURCE tag. */
7549 if (code->expr3)
7550 {
7551 /* Check F03:C631. */
7552 if (!gfc_type_compatible (&e->ts, &code->expr3->ts))
7553 {
7554 gfc_error ("Type of entity at %L is type incompatible with "
7555 "source-expr at %L", &e->where, &code->expr3->where);
7556 goto failure;
7557 }
7558
7559 /* Check F03:C632 and restriction following Note 6.18. */
7560 if (code->expr3->rank > 0 && !conformable_arrays (code->expr3, e))
7561 goto failure;
7562
7563 /* Check F03:C633. */
7564 if (code->expr3->ts.kind != e->ts.kind && !unlimited)
7565 {
7566 gfc_error ("The allocate-object at %L and the source-expr at %L "
7567 "shall have the same kind type parameter",
7568 &e->where, &code->expr3->where);
7569 goto failure;
7570 }
7571
7572 /* Check F2008, C642. */
7573 if (code->expr3->ts.type == BT_DERIVED
7574 && ((codimension && gfc_expr_attr (code->expr3).lock_comp)
7575 || (code->expr3->ts.u.derived->from_intmod
7576 == INTMOD_ISO_FORTRAN_ENV
7577 && code->expr3->ts.u.derived->intmod_sym_id
7578 == ISOFORTRAN_LOCK_TYPE)))
7579 {
7580 gfc_error ("The source-expr at %L shall neither be of type "
7581 "LOCK_TYPE nor have a LOCK_TYPE component if "
7582 "allocate-object at %L is a coarray",
7583 &code->expr3->where, &e->where);
7584 goto failure;
7585 }
7586
7587 /* Check TS18508, C702/C703. */
7588 if (code->expr3->ts.type == BT_DERIVED
7589 && ((codimension && gfc_expr_attr (code->expr3).event_comp)
7590 || (code->expr3->ts.u.derived->from_intmod
7591 == INTMOD_ISO_FORTRAN_ENV
7592 && code->expr3->ts.u.derived->intmod_sym_id
7593 == ISOFORTRAN_EVENT_TYPE)))
7594 {
7595 gfc_error ("The source-expr at %L shall neither be of type "
7596 "EVENT_TYPE nor have a EVENT_TYPE component if "
7597 "allocate-object at %L is a coarray",
7598 &code->expr3->where, &e->where);
7599 goto failure;
7600 }
7601 }
7602
7603 /* Check F08:C629. */
7604 if (is_abstract && code->ext.alloc.ts.type == BT_UNKNOWN
7605 && !code->expr3)
7606 {
7607 gcc_assert (e->ts.type == BT_CLASS);
7608 gfc_error ("Allocating %s of ABSTRACT base type at %L requires a "
7609 "type-spec or source-expr", sym->name, &e->where);
7610 goto failure;
7611 }
7612
7613 /* Check F08:C632. */
7614 if (code->ext.alloc.ts.type == BT_CHARACTER && !e->ts.deferred
7615 && !UNLIMITED_POLY (e))
7616 {
7617 int cmp;
7618
7619 if (!e->ts.u.cl->length)
7620 goto failure;
7621
7622 cmp = gfc_dep_compare_expr (e->ts.u.cl->length,
7623 code->ext.alloc.ts.u.cl->length);
7624 if (cmp == 1 || cmp == -1 || cmp == -3)
7625 {
7626 gfc_error ("Allocating %s at %L with type-spec requires the same "
7627 "character-length parameter as in the declaration",
7628 sym->name, &e->where);
7629 goto failure;
7630 }
7631 }
7632
7633 /* In the variable definition context checks, gfc_expr_attr is used
7634 on the expression. This is fooled by the array specification
7635 present in e, thus we have to eliminate that one temporarily. */
7636 e2 = remove_last_array_ref (e);
7637 t = true;
7638 if (t && pointer)
7639 t = gfc_check_vardef_context (e2, true, true, false,
7640 _("ALLOCATE object"));
7641 if (t)
7642 t = gfc_check_vardef_context (e2, false, true, false,
7643 _("ALLOCATE object"));
7644 gfc_free_expr (e2);
7645 if (!t)
7646 goto failure;
7647
7648 if (e->ts.type == BT_CLASS && CLASS_DATA (e)->attr.dimension
7649 && !code->expr3 && code->ext.alloc.ts.type == BT_DERIVED)
7650 {
7651 /* For class arrays, the initialization with SOURCE is done
7652 using _copy and trans_call. It is convenient to exploit that
7653 when the allocated type is different from the declared type but
7654 no SOURCE exists by setting expr3. */
7655 code->expr3 = gfc_default_initializer (&code->ext.alloc.ts);
7656 }
7657 else if (flag_coarray != GFC_FCOARRAY_LIB && e->ts.type == BT_DERIVED
7658 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
7659 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
7660 {
7661 /* We have to zero initialize the integer variable. */
7662 code->expr3 = gfc_get_int_expr (gfc_default_integer_kind, &e->where, 0);
7663 }
7664
7665 if (e->ts.type == BT_CLASS && !unlimited && !UNLIMITED_POLY (code->expr3))
7666 {
7667 /* Make sure the vtab symbol is present when
7668 the module variables are generated. */
7669 gfc_typespec ts = e->ts;
7670 if (code->expr3)
7671 ts = code->expr3->ts;
7672 else if (code->ext.alloc.ts.type == BT_DERIVED)
7673 ts = code->ext.alloc.ts;
7674
7675 /* Finding the vtab also publishes the type's symbol. Therefore this
7676 statement is necessary. */
7677 gfc_find_derived_vtab (ts.u.derived);
7678 }
7679 else if (unlimited && !UNLIMITED_POLY (code->expr3))
7680 {
7681 /* Again, make sure the vtab symbol is present when
7682 the module variables are generated. */
7683 gfc_typespec *ts = NULL;
7684 if (code->expr3)
7685 ts = &code->expr3->ts;
7686 else
7687 ts = &code->ext.alloc.ts;
7688
7689 gcc_assert (ts);
7690
7691 /* Finding the vtab also publishes the type's symbol. Therefore this
7692 statement is necessary. */
7693 gfc_find_vtab (ts);
7694 }
7695
7696 if (dimension == 0 && codimension == 0)
7697 goto success;
7698
7699 /* Make sure the last reference node is an array specification. */
7700
7701 if (!ref2 || ref2->type != REF_ARRAY || ref2->u.ar.type == AR_FULL
7702 || (dimension && ref2->u.ar.dimen == 0))
7703 {
7704 /* F08:C633. */
7705 if (code->expr3)
7706 {
7707 if (!gfc_notify_std (GFC_STD_F2008, "Array specification required "
7708 "in ALLOCATE statement at %L", &e->where))
7709 goto failure;
7710 if (code->expr3->rank != 0)
7711 *array_alloc_wo_spec = true;
7712 else
7713 {
7714 gfc_error ("Array specification or array-valued SOURCE= "
7715 "expression required in ALLOCATE statement at %L",
7716 &e->where);
7717 goto failure;
7718 }
7719 }
7720 else
7721 {
7722 gfc_error ("Array specification required in ALLOCATE statement "
7723 "at %L", &e->where);
7724 goto failure;
7725 }
7726 }
7727
7728 /* Make sure that the array section reference makes sense in the
7729 context of an ALLOCATE specification. */
7730
7731 ar = &ref2->u.ar;
7732
7733 if (codimension)
7734 for (i = ar->dimen; i < ar->dimen + ar->codimen; i++)
7735 if (ar->dimen_type[i] == DIMEN_THIS_IMAGE)
7736 {
7737 gfc_error ("Coarray specification required in ALLOCATE statement "
7738 "at %L", &e->where);
7739 goto failure;
7740 }
7741
7742 for (i = 0; i < ar->dimen; i++)
7743 {
7744 if (ar->type == AR_ELEMENT || ar->type == AR_FULL)
7745 goto check_symbols;
7746
7747 switch (ar->dimen_type[i])
7748 {
7749 case DIMEN_ELEMENT:
7750 break;
7751
7752 case DIMEN_RANGE:
7753 if (ar->start[i] != NULL
7754 && ar->end[i] != NULL
7755 && ar->stride[i] == NULL)
7756 break;
7757
7758 /* Fall through. */
7759
7760 case DIMEN_UNKNOWN:
7761 case DIMEN_VECTOR:
7762 case DIMEN_STAR:
7763 case DIMEN_THIS_IMAGE:
7764 gfc_error ("Bad array specification in ALLOCATE statement at %L",
7765 &e->where);
7766 goto failure;
7767 }
7768
7769 check_symbols:
7770 for (a = code->ext.alloc.list; a; a = a->next)
7771 {
7772 sym = a->expr->symtree->n.sym;
7773
7774 /* TODO - check derived type components. */
7775 if (gfc_bt_struct (sym->ts.type) || sym->ts.type == BT_CLASS)
7776 continue;
7777
7778 if ((ar->start[i] != NULL
7779 && gfc_find_sym_in_expr (sym, ar->start[i]))
7780 || (ar->end[i] != NULL
7781 && gfc_find_sym_in_expr (sym, ar->end[i])))
7782 {
7783 gfc_error ("%qs must not appear in the array specification at "
7784 "%L in the same ALLOCATE statement where it is "
7785 "itself allocated", sym->name, &ar->where);
7786 goto failure;
7787 }
7788 }
7789 }
7790
7791 for (i = ar->dimen; i < ar->codimen + ar->dimen; i++)
7792 {
7793 if (ar->dimen_type[i] == DIMEN_ELEMENT
7794 || ar->dimen_type[i] == DIMEN_RANGE)
7795 {
7796 if (i == (ar->dimen + ar->codimen - 1))
7797 {
7798 gfc_error ("Expected '*' in coindex specification in ALLOCATE "
7799 "statement at %L", &e->where);
7800 goto failure;
7801 }
7802 continue;
7803 }
7804
7805 if (ar->dimen_type[i] == DIMEN_STAR && i == (ar->dimen + ar->codimen - 1)
7806 && ar->stride[i] == NULL)
7807 break;
7808
7809 gfc_error ("Bad coarray specification in ALLOCATE statement at %L",
7810 &e->where);
7811 goto failure;
7812 }
7813
7814 success:
7815 return true;
7816
7817 failure:
7818 return false;
7819 }
7820
7821
7822 static void
7823 resolve_allocate_deallocate (gfc_code *code, const char *fcn)
7824 {
7825 gfc_expr *stat, *errmsg, *pe, *qe;
7826 gfc_alloc *a, *p, *q;
7827
7828 stat = code->expr1;
7829 errmsg = code->expr2;
7830
7831 /* Check the stat variable. */
7832 if (stat)
7833 {
7834 gfc_check_vardef_context (stat, false, false, false,
7835 _("STAT variable"));
7836
7837 if ((stat->ts.type != BT_INTEGER
7838 && !(stat->ref && (stat->ref->type == REF_ARRAY
7839 || stat->ref->type == REF_COMPONENT)))
7840 || stat->rank > 0)
7841 gfc_error ("Stat-variable at %L must be a scalar INTEGER "
7842 "variable", &stat->where);
7843
7844 for (p = code->ext.alloc.list; p; p = p->next)
7845 if (p->expr->symtree->n.sym->name == stat->symtree->n.sym->name)
7846 {
7847 gfc_ref *ref1, *ref2;
7848 bool found = true;
7849
7850 for (ref1 = p->expr->ref, ref2 = stat->ref; ref1 && ref2;
7851 ref1 = ref1->next, ref2 = ref2->next)
7852 {
7853 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7854 continue;
7855 if (ref1->u.c.component->name != ref2->u.c.component->name)
7856 {
7857 found = false;
7858 break;
7859 }
7860 }
7861
7862 if (found)
7863 {
7864 gfc_error ("Stat-variable at %L shall not be %sd within "
7865 "the same %s statement", &stat->where, fcn, fcn);
7866 break;
7867 }
7868 }
7869 }
7870
7871 /* Check the errmsg variable. */
7872 if (errmsg)
7873 {
7874 if (!stat)
7875 gfc_warning (0, "ERRMSG at %L is useless without a STAT tag",
7876 &errmsg->where);
7877
7878 gfc_check_vardef_context (errmsg, false, false, false,
7879 _("ERRMSG variable"));
7880
7881 /* F18:R928 alloc-opt is ERRMSG = errmsg-variable
7882 F18:R930 errmsg-variable is scalar-default-char-variable
7883 F18:R906 default-char-variable is variable
7884 F18:C906 default-char-variable shall be default character. */
7885 if ((errmsg->ts.type != BT_CHARACTER
7886 && !(errmsg->ref
7887 && (errmsg->ref->type == REF_ARRAY
7888 || errmsg->ref->type == REF_COMPONENT)))
7889 || errmsg->rank > 0
7890 || errmsg->ts.kind != gfc_default_character_kind)
7891 gfc_error ("ERRMSG variable at %L shall be a scalar default CHARACTER "
7892 "variable", &errmsg->where);
7893
7894 for (p = code->ext.alloc.list; p; p = p->next)
7895 if (p->expr->symtree->n.sym->name == errmsg->symtree->n.sym->name)
7896 {
7897 gfc_ref *ref1, *ref2;
7898 bool found = true;
7899
7900 for (ref1 = p->expr->ref, ref2 = errmsg->ref; ref1 && ref2;
7901 ref1 = ref1->next, ref2 = ref2->next)
7902 {
7903 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7904 continue;
7905 if (ref1->u.c.component->name != ref2->u.c.component->name)
7906 {
7907 found = false;
7908 break;
7909 }
7910 }
7911
7912 if (found)
7913 {
7914 gfc_error ("Errmsg-variable at %L shall not be %sd within "
7915 "the same %s statement", &errmsg->where, fcn, fcn);
7916 break;
7917 }
7918 }
7919 }
7920
7921 /* Check that an allocate-object appears only once in the statement. */
7922
7923 for (p = code->ext.alloc.list; p; p = p->next)
7924 {
7925 pe = p->expr;
7926 for (q = p->next; q; q = q->next)
7927 {
7928 qe = q->expr;
7929 if (pe->symtree->n.sym->name == qe->symtree->n.sym->name)
7930 {
7931 /* This is a potential collision. */
7932 gfc_ref *pr = pe->ref;
7933 gfc_ref *qr = qe->ref;
7934
7935 /* Follow the references until
7936 a) They start to differ, in which case there is no error;
7937 you can deallocate a%b and a%c in a single statement
7938 b) Both of them stop, which is an error
7939 c) One of them stops, which is also an error. */
7940 while (1)
7941 {
7942 if (pr == NULL && qr == NULL)
7943 {
7944 gfc_error ("Allocate-object at %L also appears at %L",
7945 &pe->where, &qe->where);
7946 break;
7947 }
7948 else if (pr != NULL && qr == NULL)
7949 {
7950 gfc_error ("Allocate-object at %L is subobject of"
7951 " object at %L", &pe->where, &qe->where);
7952 break;
7953 }
7954 else if (pr == NULL && qr != NULL)
7955 {
7956 gfc_error ("Allocate-object at %L is subobject of"
7957 " object at %L", &qe->where, &pe->where);
7958 break;
7959 }
7960 /* Here, pr != NULL && qr != NULL */
7961 gcc_assert(pr->type == qr->type);
7962 if (pr->type == REF_ARRAY)
7963 {
7964 /* Handle cases like allocate(v(3)%x(3), v(2)%x(3)),
7965 which are legal. */
7966 gcc_assert (qr->type == REF_ARRAY);
7967
7968 if (pr->next && qr->next)
7969 {
7970 int i;
7971 gfc_array_ref *par = &(pr->u.ar);
7972 gfc_array_ref *qar = &(qr->u.ar);
7973
7974 for (i=0; i<par->dimen; i++)
7975 {
7976 if ((par->start[i] != NULL
7977 || qar->start[i] != NULL)
7978 && gfc_dep_compare_expr (par->start[i],
7979 qar->start[i]) != 0)
7980 goto break_label;
7981 }
7982 }
7983 }
7984 else
7985 {
7986 if (pr->u.c.component->name != qr->u.c.component->name)
7987 break;
7988 }
7989
7990 pr = pr->next;
7991 qr = qr->next;
7992 }
7993 break_label:
7994 ;
7995 }
7996 }
7997 }
7998
7999 if (strcmp (fcn, "ALLOCATE") == 0)
8000 {
8001 bool arr_alloc_wo_spec = false;
8002
8003 /* Resolving the expr3 in the loop over all objects to allocate would
8004 execute loop invariant code for each loop item. Therefore do it just
8005 once here. */
8006 if (code->expr3 && code->expr3->mold
8007 && code->expr3->ts.type == BT_DERIVED)
8008 {
8009 /* Default initialization via MOLD (non-polymorphic). */
8010 gfc_expr *rhs = gfc_default_initializer (&code->expr3->ts);
8011 if (rhs != NULL)
8012 {
8013 gfc_resolve_expr (rhs);
8014 gfc_free_expr (code->expr3);
8015 code->expr3 = rhs;
8016 }
8017 }
8018 for (a = code->ext.alloc.list; a; a = a->next)
8019 resolve_allocate_expr (a->expr, code, &arr_alloc_wo_spec);
8020
8021 if (arr_alloc_wo_spec && code->expr3)
8022 {
8023 /* Mark the allocate to have to take the array specification
8024 from the expr3. */
8025 code->ext.alloc.arr_spec_from_expr3 = 1;
8026 }
8027 }
8028 else
8029 {
8030 for (a = code->ext.alloc.list; a; a = a->next)
8031 resolve_deallocate_expr (a->expr);
8032 }
8033 }
8034
8035
8036 /************ SELECT CASE resolution subroutines ************/
8037
8038 /* Callback function for our mergesort variant. Determines interval
8039 overlaps for CASEs. Return <0 if op1 < op2, 0 for overlap, >0 for
8040 op1 > op2. Assumes we're not dealing with the default case.
8041 We have op1 = (:L), (K:L) or (K:) and op2 = (:N), (M:N) or (M:).
8042 There are nine situations to check. */
8043
8044 static int
8045 compare_cases (const gfc_case *op1, const gfc_case *op2)
8046 {
8047 int retval;
8048
8049 if (op1->low == NULL) /* op1 = (:L) */
8050 {
8051 /* op2 = (:N), so overlap. */
8052 retval = 0;
8053 /* op2 = (M:) or (M:N), L < M */
8054 if (op2->low != NULL
8055 && gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8056 retval = -1;
8057 }
8058 else if (op1->high == NULL) /* op1 = (K:) */
8059 {
8060 /* op2 = (M:), so overlap. */
8061 retval = 0;
8062 /* op2 = (:N) or (M:N), K > N */
8063 if (op2->high != NULL
8064 && gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8065 retval = 1;
8066 }
8067 else /* op1 = (K:L) */
8068 {
8069 if (op2->low == NULL) /* op2 = (:N), K > N */
8070 retval = (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8071 ? 1 : 0;
8072 else if (op2->high == NULL) /* op2 = (M:), L < M */
8073 retval = (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8074 ? -1 : 0;
8075 else /* op2 = (M:N) */
8076 {
8077 retval = 0;
8078 /* L < M */
8079 if (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8080 retval = -1;
8081 /* K > N */
8082 else if (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8083 retval = 1;
8084 }
8085 }
8086
8087 return retval;
8088 }
8089
8090
8091 /* Merge-sort a double linked case list, detecting overlap in the
8092 process. LIST is the head of the double linked case list before it
8093 is sorted. Returns the head of the sorted list if we don't see any
8094 overlap, or NULL otherwise. */
8095
8096 static gfc_case *
8097 check_case_overlap (gfc_case *list)
8098 {
8099 gfc_case *p, *q, *e, *tail;
8100 int insize, nmerges, psize, qsize, cmp, overlap_seen;
8101
8102 /* If the passed list was empty, return immediately. */
8103 if (!list)
8104 return NULL;
8105
8106 overlap_seen = 0;
8107 insize = 1;
8108
8109 /* Loop unconditionally. The only exit from this loop is a return
8110 statement, when we've finished sorting the case list. */
8111 for (;;)
8112 {
8113 p = list;
8114 list = NULL;
8115 tail = NULL;
8116
8117 /* Count the number of merges we do in this pass. */
8118 nmerges = 0;
8119
8120 /* Loop while there exists a merge to be done. */
8121 while (p)
8122 {
8123 int i;
8124
8125 /* Count this merge. */
8126 nmerges++;
8127
8128 /* Cut the list in two pieces by stepping INSIZE places
8129 forward in the list, starting from P. */
8130 psize = 0;
8131 q = p;
8132 for (i = 0; i < insize; i++)
8133 {
8134 psize++;
8135 q = q->right;
8136 if (!q)
8137 break;
8138 }
8139 qsize = insize;
8140
8141 /* Now we have two lists. Merge them! */
8142 while (psize > 0 || (qsize > 0 && q != NULL))
8143 {
8144 /* See from which the next case to merge comes from. */
8145 if (psize == 0)
8146 {
8147 /* P is empty so the next case must come from Q. */
8148 e = q;
8149 q = q->right;
8150 qsize--;
8151 }
8152 else if (qsize == 0 || q == NULL)
8153 {
8154 /* Q is empty. */
8155 e = p;
8156 p = p->right;
8157 psize--;
8158 }
8159 else
8160 {
8161 cmp = compare_cases (p, q);
8162 if (cmp < 0)
8163 {
8164 /* The whole case range for P is less than the
8165 one for Q. */
8166 e = p;
8167 p = p->right;
8168 psize--;
8169 }
8170 else if (cmp > 0)
8171 {
8172 /* The whole case range for Q is greater than
8173 the case range for P. */
8174 e = q;
8175 q = q->right;
8176 qsize--;
8177 }
8178 else
8179 {
8180 /* The cases overlap, or they are the same
8181 element in the list. Either way, we must
8182 issue an error and get the next case from P. */
8183 /* FIXME: Sort P and Q by line number. */
8184 gfc_error ("CASE label at %L overlaps with CASE "
8185 "label at %L", &p->where, &q->where);
8186 overlap_seen = 1;
8187 e = p;
8188 p = p->right;
8189 psize--;
8190 }
8191 }
8192
8193 /* Add the next element to the merged list. */
8194 if (tail)
8195 tail->right = e;
8196 else
8197 list = e;
8198 e->left = tail;
8199 tail = e;
8200 }
8201
8202 /* P has now stepped INSIZE places along, and so has Q. So
8203 they're the same. */
8204 p = q;
8205 }
8206 tail->right = NULL;
8207
8208 /* If we have done only one merge or none at all, we've
8209 finished sorting the cases. */
8210 if (nmerges <= 1)
8211 {
8212 if (!overlap_seen)
8213 return list;
8214 else
8215 return NULL;
8216 }
8217
8218 /* Otherwise repeat, merging lists twice the size. */
8219 insize *= 2;
8220 }
8221 }
8222
8223
8224 /* Check to see if an expression is suitable for use in a CASE statement.
8225 Makes sure that all case expressions are scalar constants of the same
8226 type. Return false if anything is wrong. */
8227
8228 static bool
8229 validate_case_label_expr (gfc_expr *e, gfc_expr *case_expr)
8230 {
8231 if (e == NULL) return true;
8232
8233 if (e->ts.type != case_expr->ts.type)
8234 {
8235 gfc_error ("Expression in CASE statement at %L must be of type %s",
8236 &e->where, gfc_basic_typename (case_expr->ts.type));
8237 return false;
8238 }
8239
8240 /* C805 (R808) For a given case-construct, each case-value shall be of
8241 the same type as case-expr. For character type, length differences
8242 are allowed, but the kind type parameters shall be the same. */
8243
8244 if (case_expr->ts.type == BT_CHARACTER && e->ts.kind != case_expr->ts.kind)
8245 {
8246 gfc_error ("Expression in CASE statement at %L must be of kind %d",
8247 &e->where, case_expr->ts.kind);
8248 return false;
8249 }
8250
8251 /* Convert the case value kind to that of case expression kind,
8252 if needed */
8253
8254 if (e->ts.kind != case_expr->ts.kind)
8255 gfc_convert_type_warn (e, &case_expr->ts, 2, 0);
8256
8257 if (e->rank != 0)
8258 {
8259 gfc_error ("Expression in CASE statement at %L must be scalar",
8260 &e->where);
8261 return false;
8262 }
8263
8264 return true;
8265 }
8266
8267
8268 /* Given a completely parsed select statement, we:
8269
8270 - Validate all expressions and code within the SELECT.
8271 - Make sure that the selection expression is not of the wrong type.
8272 - Make sure that no case ranges overlap.
8273 - Eliminate unreachable cases and unreachable code resulting from
8274 removing case labels.
8275
8276 The standard does allow unreachable cases, e.g. CASE (5:3). But
8277 they are a hassle for code generation, and to prevent that, we just
8278 cut them out here. This is not necessary for overlapping cases
8279 because they are illegal and we never even try to generate code.
8280
8281 We have the additional caveat that a SELECT construct could have
8282 been a computed GOTO in the source code. Fortunately we can fairly
8283 easily work around that here: The case_expr for a "real" SELECT CASE
8284 is in code->expr1, but for a computed GOTO it is in code->expr2. All
8285 we have to do is make sure that the case_expr is a scalar integer
8286 expression. */
8287
8288 static void
8289 resolve_select (gfc_code *code, bool select_type)
8290 {
8291 gfc_code *body;
8292 gfc_expr *case_expr;
8293 gfc_case *cp, *default_case, *tail, *head;
8294 int seen_unreachable;
8295 int seen_logical;
8296 int ncases;
8297 bt type;
8298 bool t;
8299
8300 if (code->expr1 == NULL)
8301 {
8302 /* This was actually a computed GOTO statement. */
8303 case_expr = code->expr2;
8304 if (case_expr->ts.type != BT_INTEGER|| case_expr->rank != 0)
8305 gfc_error ("Selection expression in computed GOTO statement "
8306 "at %L must be a scalar integer expression",
8307 &case_expr->where);
8308
8309 /* Further checking is not necessary because this SELECT was built
8310 by the compiler, so it should always be OK. Just move the
8311 case_expr from expr2 to expr so that we can handle computed
8312 GOTOs as normal SELECTs from here on. */
8313 code->expr1 = code->expr2;
8314 code->expr2 = NULL;
8315 return;
8316 }
8317
8318 case_expr = code->expr1;
8319 type = case_expr->ts.type;
8320
8321 /* F08:C830. */
8322 if (type != BT_LOGICAL && type != BT_INTEGER && type != BT_CHARACTER)
8323 {
8324 gfc_error ("Argument of SELECT statement at %L cannot be %s",
8325 &case_expr->where, gfc_typename (&case_expr->ts));
8326
8327 /* Punt. Going on here just produce more garbage error messages. */
8328 return;
8329 }
8330
8331 /* F08:R842. */
8332 if (!select_type && case_expr->rank != 0)
8333 {
8334 gfc_error ("Argument of SELECT statement at %L must be a scalar "
8335 "expression", &case_expr->where);
8336
8337 /* Punt. */
8338 return;
8339 }
8340
8341 /* Raise a warning if an INTEGER case value exceeds the range of
8342 the case-expr. Later, all expressions will be promoted to the
8343 largest kind of all case-labels. */
8344
8345 if (type == BT_INTEGER)
8346 for (body = code->block; body; body = body->block)
8347 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8348 {
8349 if (cp->low
8350 && gfc_check_integer_range (cp->low->value.integer,
8351 case_expr->ts.kind) != ARITH_OK)
8352 gfc_warning (0, "Expression in CASE statement at %L is "
8353 "not in the range of %s", &cp->low->where,
8354 gfc_typename (&case_expr->ts));
8355
8356 if (cp->high
8357 && cp->low != cp->high
8358 && gfc_check_integer_range (cp->high->value.integer,
8359 case_expr->ts.kind) != ARITH_OK)
8360 gfc_warning (0, "Expression in CASE statement at %L is "
8361 "not in the range of %s", &cp->high->where,
8362 gfc_typename (&case_expr->ts));
8363 }
8364
8365 /* PR 19168 has a long discussion concerning a mismatch of the kinds
8366 of the SELECT CASE expression and its CASE values. Walk the lists
8367 of case values, and if we find a mismatch, promote case_expr to
8368 the appropriate kind. */
8369
8370 if (type == BT_LOGICAL || type == BT_INTEGER)
8371 {
8372 for (body = code->block; body; body = body->block)
8373 {
8374 /* Walk the case label list. */
8375 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8376 {
8377 /* Intercept the DEFAULT case. It does not have a kind. */
8378 if (cp->low == NULL && cp->high == NULL)
8379 continue;
8380
8381 /* Unreachable case ranges are discarded, so ignore. */
8382 if (cp->low != NULL && cp->high != NULL
8383 && cp->low != cp->high
8384 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8385 continue;
8386
8387 if (cp->low != NULL
8388 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->low))
8389 gfc_convert_type_warn (case_expr, &cp->low->ts, 2, 0);
8390
8391 if (cp->high != NULL
8392 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->high))
8393 gfc_convert_type_warn (case_expr, &cp->high->ts, 2, 0);
8394 }
8395 }
8396 }
8397
8398 /* Assume there is no DEFAULT case. */
8399 default_case = NULL;
8400 head = tail = NULL;
8401 ncases = 0;
8402 seen_logical = 0;
8403
8404 for (body = code->block; body; body = body->block)
8405 {
8406 /* Assume the CASE list is OK, and all CASE labels can be matched. */
8407 t = true;
8408 seen_unreachable = 0;
8409
8410 /* Walk the case label list, making sure that all case labels
8411 are legal. */
8412 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8413 {
8414 /* Count the number of cases in the whole construct. */
8415 ncases++;
8416
8417 /* Intercept the DEFAULT case. */
8418 if (cp->low == NULL && cp->high == NULL)
8419 {
8420 if (default_case != NULL)
8421 {
8422 gfc_error ("The DEFAULT CASE at %L cannot be followed "
8423 "by a second DEFAULT CASE at %L",
8424 &default_case->where, &cp->where);
8425 t = false;
8426 break;
8427 }
8428 else
8429 {
8430 default_case = cp;
8431 continue;
8432 }
8433 }
8434
8435 /* Deal with single value cases and case ranges. Errors are
8436 issued from the validation function. */
8437 if (!validate_case_label_expr (cp->low, case_expr)
8438 || !validate_case_label_expr (cp->high, case_expr))
8439 {
8440 t = false;
8441 break;
8442 }
8443
8444 if (type == BT_LOGICAL
8445 && ((cp->low == NULL || cp->high == NULL)
8446 || cp->low != cp->high))
8447 {
8448 gfc_error ("Logical range in CASE statement at %L is not "
8449 "allowed", &cp->low->where);
8450 t = false;
8451 break;
8452 }
8453
8454 if (type == BT_LOGICAL && cp->low->expr_type == EXPR_CONSTANT)
8455 {
8456 int value;
8457 value = cp->low->value.logical == 0 ? 2 : 1;
8458 if (value & seen_logical)
8459 {
8460 gfc_error ("Constant logical value in CASE statement "
8461 "is repeated at %L",
8462 &cp->low->where);
8463 t = false;
8464 break;
8465 }
8466 seen_logical |= value;
8467 }
8468
8469 if (cp->low != NULL && cp->high != NULL
8470 && cp->low != cp->high
8471 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8472 {
8473 if (warn_surprising)
8474 gfc_warning (OPT_Wsurprising,
8475 "Range specification at %L can never be matched",
8476 &cp->where);
8477
8478 cp->unreachable = 1;
8479 seen_unreachable = 1;
8480 }
8481 else
8482 {
8483 /* If the case range can be matched, it can also overlap with
8484 other cases. To make sure it does not, we put it in a
8485 double linked list here. We sort that with a merge sort
8486 later on to detect any overlapping cases. */
8487 if (!head)
8488 {
8489 head = tail = cp;
8490 head->right = head->left = NULL;
8491 }
8492 else
8493 {
8494 tail->right = cp;
8495 tail->right->left = tail;
8496 tail = tail->right;
8497 tail->right = NULL;
8498 }
8499 }
8500 }
8501
8502 /* It there was a failure in the previous case label, give up
8503 for this case label list. Continue with the next block. */
8504 if (!t)
8505 continue;
8506
8507 /* See if any case labels that are unreachable have been seen.
8508 If so, we eliminate them. This is a bit of a kludge because
8509 the case lists for a single case statement (label) is a
8510 single forward linked lists. */
8511 if (seen_unreachable)
8512 {
8513 /* Advance until the first case in the list is reachable. */
8514 while (body->ext.block.case_list != NULL
8515 && body->ext.block.case_list->unreachable)
8516 {
8517 gfc_case *n = body->ext.block.case_list;
8518 body->ext.block.case_list = body->ext.block.case_list->next;
8519 n->next = NULL;
8520 gfc_free_case_list (n);
8521 }
8522
8523 /* Strip all other unreachable cases. */
8524 if (body->ext.block.case_list)
8525 {
8526 for (cp = body->ext.block.case_list; cp && cp->next; cp = cp->next)
8527 {
8528 if (cp->next->unreachable)
8529 {
8530 gfc_case *n = cp->next;
8531 cp->next = cp->next->next;
8532 n->next = NULL;
8533 gfc_free_case_list (n);
8534 }
8535 }
8536 }
8537 }
8538 }
8539
8540 /* See if there were overlapping cases. If the check returns NULL,
8541 there was overlap. In that case we don't do anything. If head
8542 is non-NULL, we prepend the DEFAULT case. The sorted list can
8543 then used during code generation for SELECT CASE constructs with
8544 a case expression of a CHARACTER type. */
8545 if (head)
8546 {
8547 head = check_case_overlap (head);
8548
8549 /* Prepend the default_case if it is there. */
8550 if (head != NULL && default_case)
8551 {
8552 default_case->left = NULL;
8553 default_case->right = head;
8554 head->left = default_case;
8555 }
8556 }
8557
8558 /* Eliminate dead blocks that may be the result if we've seen
8559 unreachable case labels for a block. */
8560 for (body = code; body && body->block; body = body->block)
8561 {
8562 if (body->block->ext.block.case_list == NULL)
8563 {
8564 /* Cut the unreachable block from the code chain. */
8565 gfc_code *c = body->block;
8566 body->block = c->block;
8567
8568 /* Kill the dead block, but not the blocks below it. */
8569 c->block = NULL;
8570 gfc_free_statements (c);
8571 }
8572 }
8573
8574 /* More than two cases is legal but insane for logical selects.
8575 Issue a warning for it. */
8576 if (warn_surprising && type == BT_LOGICAL && ncases > 2)
8577 gfc_warning (OPT_Wsurprising,
8578 "Logical SELECT CASE block at %L has more that two cases",
8579 &code->loc);
8580 }
8581
8582
8583 /* Check if a derived type is extensible. */
8584
8585 bool
8586 gfc_type_is_extensible (gfc_symbol *sym)
8587 {
8588 return !(sym->attr.is_bind_c || sym->attr.sequence
8589 || (sym->attr.is_class
8590 && sym->components->ts.u.derived->attr.unlimited_polymorphic));
8591 }
8592
8593
8594 static void
8595 resolve_types (gfc_namespace *ns);
8596
8597 /* Resolve an associate-name: Resolve target and ensure the type-spec is
8598 correct as well as possibly the array-spec. */
8599
8600 static void
8601 resolve_assoc_var (gfc_symbol* sym, bool resolve_target)
8602 {
8603 gfc_expr* target;
8604
8605 gcc_assert (sym->assoc);
8606 gcc_assert (sym->attr.flavor == FL_VARIABLE);
8607
8608 /* If this is for SELECT TYPE, the target may not yet be set. In that
8609 case, return. Resolution will be called later manually again when
8610 this is done. */
8611 target = sym->assoc->target;
8612 if (!target)
8613 return;
8614 gcc_assert (!sym->assoc->dangling);
8615
8616 if (resolve_target && !gfc_resolve_expr (target))
8617 return;
8618
8619 /* For variable targets, we get some attributes from the target. */
8620 if (target->expr_type == EXPR_VARIABLE)
8621 {
8622 gfc_symbol* tsym;
8623
8624 gcc_assert (target->symtree);
8625 tsym = target->symtree->n.sym;
8626
8627 sym->attr.asynchronous = tsym->attr.asynchronous;
8628 sym->attr.volatile_ = tsym->attr.volatile_;
8629
8630 sym->attr.target = tsym->attr.target
8631 || gfc_expr_attr (target).pointer;
8632 if (is_subref_array (target))
8633 sym->attr.subref_array_pointer = 1;
8634 }
8635
8636 if (target->expr_type == EXPR_NULL)
8637 {
8638 gfc_error ("Selector at %L cannot be NULL()", &target->where);
8639 return;
8640 }
8641 else if (target->ts.type == BT_UNKNOWN)
8642 {
8643 gfc_error ("Selector at %L has no type", &target->where);
8644 return;
8645 }
8646
8647 /* Get type if this was not already set. Note that it can be
8648 some other type than the target in case this is a SELECT TYPE
8649 selector! So we must not update when the type is already there. */
8650 if (sym->ts.type == BT_UNKNOWN)
8651 sym->ts = target->ts;
8652
8653 gcc_assert (sym->ts.type != BT_UNKNOWN);
8654
8655 /* See if this is a valid association-to-variable. */
8656 sym->assoc->variable = (target->expr_type == EXPR_VARIABLE
8657 && !gfc_has_vector_subscript (target));
8658
8659 /* Finally resolve if this is an array or not. */
8660 if (sym->attr.dimension && target->rank == 0)
8661 {
8662 /* primary.c makes the assumption that a reference to an associate
8663 name followed by a left parenthesis is an array reference. */
8664 if (sym->ts.type != BT_CHARACTER)
8665 gfc_error ("Associate-name %qs at %L is used as array",
8666 sym->name, &sym->declared_at);
8667 sym->attr.dimension = 0;
8668 return;
8669 }
8670
8671
8672 /* We cannot deal with class selectors that need temporaries. */
8673 if (target->ts.type == BT_CLASS
8674 && gfc_ref_needs_temporary_p (target->ref))
8675 {
8676 gfc_error ("CLASS selector at %L needs a temporary which is not "
8677 "yet implemented", &target->where);
8678 return;
8679 }
8680
8681 if (target->ts.type == BT_CLASS)
8682 gfc_fix_class_refs (target);
8683
8684 if (target->rank != 0)
8685 {
8686 gfc_array_spec *as;
8687 /* The rank may be incorrectly guessed at parsing, therefore make sure
8688 it is corrected now. */
8689 if (sym->ts.type != BT_CLASS && (!sym->as || sym->assoc->rankguessed))
8690 {
8691 if (!sym->as)
8692 sym->as = gfc_get_array_spec ();
8693 as = sym->as;
8694 as->rank = target->rank;
8695 as->type = AS_DEFERRED;
8696 as->corank = gfc_get_corank (target);
8697 sym->attr.dimension = 1;
8698 if (as->corank != 0)
8699 sym->attr.codimension = 1;
8700 }
8701 else if (sym->ts.type == BT_CLASS && (!CLASS_DATA (sym)->as || sym->assoc->rankguessed))
8702 {
8703 if (!CLASS_DATA (sym)->as)
8704 CLASS_DATA (sym)->as = gfc_get_array_spec ();
8705 as = CLASS_DATA (sym)->as;
8706 as->rank = target->rank;
8707 as->type = AS_DEFERRED;
8708 as->corank = gfc_get_corank (target);
8709 CLASS_DATA (sym)->attr.dimension = 1;
8710 if (as->corank != 0)
8711 CLASS_DATA (sym)->attr.codimension = 1;
8712 }
8713 }
8714 else
8715 {
8716 /* target's rank is 0, but the type of the sym is still array valued,
8717 which has to be corrected. */
8718 if (sym->ts.type == BT_CLASS
8719 && CLASS_DATA (sym) && CLASS_DATA (sym)->as)
8720 {
8721 gfc_array_spec *as;
8722 symbol_attribute attr;
8723 /* The associated variable's type is still the array type
8724 correct this now. */
8725 gfc_typespec *ts = &target->ts;
8726 gfc_ref *ref;
8727 gfc_component *c;
8728 for (ref = target->ref; ref != NULL; ref = ref->next)
8729 {
8730 switch (ref->type)
8731 {
8732 case REF_COMPONENT:
8733 ts = &ref->u.c.component->ts;
8734 break;
8735 case REF_ARRAY:
8736 if (ts->type == BT_CLASS)
8737 ts = &ts->u.derived->components->ts;
8738 break;
8739 default:
8740 break;
8741 }
8742 }
8743 /* Create a scalar instance of the current class type. Because the
8744 rank of a class array goes into its name, the type has to be
8745 rebuild. The alternative of (re-)setting just the attributes
8746 and as in the current type, destroys the type also in other
8747 places. */
8748 as = NULL;
8749 sym->ts = *ts;
8750 sym->ts.type = BT_CLASS;
8751 attr = CLASS_DATA (sym)->attr;
8752 attr.class_ok = 0;
8753 attr.associate_var = 1;
8754 attr.dimension = attr.codimension = 0;
8755 attr.class_pointer = 1;
8756 if (!gfc_build_class_symbol (&sym->ts, &attr, &as))
8757 gcc_unreachable ();
8758 /* Make sure the _vptr is set. */
8759 c = gfc_find_component (sym->ts.u.derived, "_vptr", true, true, NULL);
8760 if (c->ts.u.derived == NULL)
8761 c->ts.u.derived = gfc_find_derived_vtab (sym->ts.u.derived);
8762 CLASS_DATA (sym)->attr.pointer = 1;
8763 CLASS_DATA (sym)->attr.class_pointer = 1;
8764 gfc_set_sym_referenced (sym->ts.u.derived);
8765 gfc_commit_symbol (sym->ts.u.derived);
8766 /* _vptr now has the _vtab in it, change it to the _vtype. */
8767 if (c->ts.u.derived->attr.vtab)
8768 c->ts.u.derived = c->ts.u.derived->ts.u.derived;
8769 c->ts.u.derived->ns->types_resolved = 0;
8770 resolve_types (c->ts.u.derived->ns);
8771 }
8772 }
8773
8774 /* Mark this as an associate variable. */
8775 sym->attr.associate_var = 1;
8776
8777 /* Fix up the type-spec for CHARACTER types. */
8778 if (sym->ts.type == BT_CHARACTER && !sym->attr.select_type_temporary)
8779 {
8780 if (!sym->ts.u.cl)
8781 sym->ts.u.cl = target->ts.u.cl;
8782
8783 if (sym->ts.deferred && target->expr_type == EXPR_VARIABLE
8784 && target->symtree->n.sym->attr.dummy
8785 && sym->ts.u.cl == target->ts.u.cl)
8786 {
8787 sym->ts.u.cl = gfc_new_charlen (sym->ns, NULL);
8788 sym->ts.deferred = 1;
8789 }
8790
8791 if (!sym->ts.u.cl->length
8792 && !sym->ts.deferred
8793 && target->expr_type == EXPR_CONSTANT)
8794 {
8795 sym->ts.u.cl->length =
8796 gfc_get_int_expr (gfc_charlen_int_kind, NULL,
8797 target->value.character.length);
8798 }
8799 else if ((!sym->ts.u.cl->length
8800 || sym->ts.u.cl->length->expr_type != EXPR_CONSTANT)
8801 && target->expr_type != EXPR_VARIABLE)
8802 {
8803 sym->ts.u.cl = gfc_new_charlen (sym->ns, NULL);
8804 sym->ts.deferred = 1;
8805
8806 /* This is reset in trans-stmt.c after the assignment
8807 of the target expression to the associate name. */
8808 sym->attr.allocatable = 1;
8809 }
8810 }
8811
8812 /* If the target is a good class object, so is the associate variable. */
8813 if (sym->ts.type == BT_CLASS && gfc_expr_attr (target).class_ok)
8814 sym->attr.class_ok = 1;
8815 }
8816
8817
8818 /* Ensure that SELECT TYPE expressions have the correct rank and a full
8819 array reference, where necessary. The symbols are artificial and so
8820 the dimension attribute and arrayspec can also be set. In addition,
8821 sometimes the expr1 arrives as BT_DERIVED, when the symbol is BT_CLASS.
8822 This is corrected here as well.*/
8823
8824 static void
8825 fixup_array_ref (gfc_expr **expr1, gfc_expr *expr2,
8826 int rank, gfc_ref *ref)
8827 {
8828 gfc_ref *nref = (*expr1)->ref;
8829 gfc_symbol *sym1 = (*expr1)->symtree->n.sym;
8830 gfc_symbol *sym2 = expr2 ? expr2->symtree->n.sym : NULL;
8831 (*expr1)->rank = rank;
8832 if (sym1->ts.type == BT_CLASS)
8833 {
8834 if ((*expr1)->ts.type != BT_CLASS)
8835 (*expr1)->ts = sym1->ts;
8836
8837 CLASS_DATA (sym1)->attr.dimension = 1;
8838 if (CLASS_DATA (sym1)->as == NULL && sym2)
8839 CLASS_DATA (sym1)->as
8840 = gfc_copy_array_spec (CLASS_DATA (sym2)->as);
8841 }
8842 else
8843 {
8844 sym1->attr.dimension = 1;
8845 if (sym1->as == NULL && sym2)
8846 sym1->as = gfc_copy_array_spec (sym2->as);
8847 }
8848
8849 for (; nref; nref = nref->next)
8850 if (nref->next == NULL)
8851 break;
8852
8853 if (ref && nref && nref->type != REF_ARRAY)
8854 nref->next = gfc_copy_ref (ref);
8855 else if (ref && !nref)
8856 (*expr1)->ref = gfc_copy_ref (ref);
8857 }
8858
8859
8860 static gfc_expr *
8861 build_loc_call (gfc_expr *sym_expr)
8862 {
8863 gfc_expr *loc_call;
8864 loc_call = gfc_get_expr ();
8865 loc_call->expr_type = EXPR_FUNCTION;
8866 gfc_get_sym_tree ("_loc", gfc_current_ns, &loc_call->symtree, false);
8867 loc_call->symtree->n.sym->attr.flavor = FL_PROCEDURE;
8868 loc_call->symtree->n.sym->attr.intrinsic = 1;
8869 loc_call->symtree->n.sym->result = loc_call->symtree->n.sym;
8870 gfc_commit_symbol (loc_call->symtree->n.sym);
8871 loc_call->ts.type = BT_INTEGER;
8872 loc_call->ts.kind = gfc_index_integer_kind;
8873 loc_call->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_LOC);
8874 loc_call->value.function.actual = gfc_get_actual_arglist ();
8875 loc_call->value.function.actual->expr = sym_expr;
8876 loc_call->where = sym_expr->where;
8877 return loc_call;
8878 }
8879
8880 /* Resolve a SELECT TYPE statement. */
8881
8882 static void
8883 resolve_select_type (gfc_code *code, gfc_namespace *old_ns)
8884 {
8885 gfc_symbol *selector_type;
8886 gfc_code *body, *new_st, *if_st, *tail;
8887 gfc_code *class_is = NULL, *default_case = NULL;
8888 gfc_case *c;
8889 gfc_symtree *st;
8890 char name[GFC_MAX_SYMBOL_LEN];
8891 gfc_namespace *ns;
8892 int error = 0;
8893 int rank = 0;
8894 gfc_ref* ref = NULL;
8895 gfc_expr *selector_expr = NULL;
8896
8897 ns = code->ext.block.ns;
8898 gfc_resolve (ns);
8899
8900 /* Check for F03:C813. */
8901 if (code->expr1->ts.type != BT_CLASS
8902 && !(code->expr2 && code->expr2->ts.type == BT_CLASS))
8903 {
8904 gfc_error ("Selector shall be polymorphic in SELECT TYPE statement "
8905 "at %L", &code->loc);
8906 return;
8907 }
8908
8909 if (!code->expr1->symtree->n.sym->attr.class_ok)
8910 return;
8911
8912 if (code->expr2)
8913 {
8914 gfc_ref *ref2 = NULL;
8915 for (ref = code->expr2->ref; ref != NULL; ref = ref->next)
8916 if (ref->type == REF_COMPONENT
8917 && ref->u.c.component->ts.type == BT_CLASS)
8918 ref2 = ref;
8919
8920 if (ref2)
8921 {
8922 if (code->expr1->symtree->n.sym->attr.untyped)
8923 code->expr1->symtree->n.sym->ts = ref2->u.c.component->ts;
8924 selector_type = CLASS_DATA (ref2->u.c.component)->ts.u.derived;
8925 }
8926 else
8927 {
8928 if (code->expr1->symtree->n.sym->attr.untyped)
8929 code->expr1->symtree->n.sym->ts = code->expr2->ts;
8930 selector_type = CLASS_DATA (code->expr2)->ts.u.derived;
8931 }
8932
8933 if (code->expr2->rank && CLASS_DATA (code->expr1)->as)
8934 CLASS_DATA (code->expr1)->as->rank = code->expr2->rank;
8935
8936 /* F2008: C803 The selector expression must not be coindexed. */
8937 if (gfc_is_coindexed (code->expr2))
8938 {
8939 gfc_error ("Selector at %L must not be coindexed",
8940 &code->expr2->where);
8941 return;
8942 }
8943
8944 }
8945 else
8946 {
8947 selector_type = CLASS_DATA (code->expr1)->ts.u.derived;
8948
8949 if (gfc_is_coindexed (code->expr1))
8950 {
8951 gfc_error ("Selector at %L must not be coindexed",
8952 &code->expr1->where);
8953 return;
8954 }
8955 }
8956
8957 /* Loop over TYPE IS / CLASS IS cases. */
8958 for (body = code->block; body; body = body->block)
8959 {
8960 c = body->ext.block.case_list;
8961
8962 if (!error)
8963 {
8964 /* Check for repeated cases. */
8965 for (tail = code->block; tail; tail = tail->block)
8966 {
8967 gfc_case *d = tail->ext.block.case_list;
8968 if (tail == body)
8969 break;
8970
8971 if (c->ts.type == d->ts.type
8972 && ((c->ts.type == BT_DERIVED
8973 && c->ts.u.derived && d->ts.u.derived
8974 && !strcmp (c->ts.u.derived->name,
8975 d->ts.u.derived->name))
8976 || c->ts.type == BT_UNKNOWN
8977 || (!(c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8978 && c->ts.kind == d->ts.kind)))
8979 {
8980 gfc_error ("TYPE IS at %L overlaps with TYPE IS at %L",
8981 &c->where, &d->where);
8982 return;
8983 }
8984 }
8985 }
8986
8987 /* Check F03:C815. */
8988 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8989 && !selector_type->attr.unlimited_polymorphic
8990 && !gfc_type_is_extensible (c->ts.u.derived))
8991 {
8992 gfc_error ("Derived type %qs at %L must be extensible",
8993 c->ts.u.derived->name, &c->where);
8994 error++;
8995 continue;
8996 }
8997
8998 /* Check F03:C816. */
8999 if (c->ts.type != BT_UNKNOWN && !selector_type->attr.unlimited_polymorphic
9000 && ((c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
9001 || !gfc_type_is_extension_of (selector_type, c->ts.u.derived)))
9002 {
9003 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9004 gfc_error ("Derived type %qs at %L must be an extension of %qs",
9005 c->ts.u.derived->name, &c->where, selector_type->name);
9006 else
9007 gfc_error ("Unexpected intrinsic type %qs at %L",
9008 gfc_basic_typename (c->ts.type), &c->where);
9009 error++;
9010 continue;
9011 }
9012
9013 /* Check F03:C814. */
9014 if (c->ts.type == BT_CHARACTER
9015 && (c->ts.u.cl->length != NULL || c->ts.deferred))
9016 {
9017 gfc_error ("The type-spec at %L shall specify that each length "
9018 "type parameter is assumed", &c->where);
9019 error++;
9020 continue;
9021 }
9022
9023 /* Intercept the DEFAULT case. */
9024 if (c->ts.type == BT_UNKNOWN)
9025 {
9026 /* Check F03:C818. */
9027 if (default_case)
9028 {
9029 gfc_error ("The DEFAULT CASE at %L cannot be followed "
9030 "by a second DEFAULT CASE at %L",
9031 &default_case->ext.block.case_list->where, &c->where);
9032 error++;
9033 continue;
9034 }
9035
9036 default_case = body;
9037 }
9038 }
9039
9040 if (error > 0)
9041 return;
9042
9043 /* Transform SELECT TYPE statement to BLOCK and associate selector to
9044 target if present. If there are any EXIT statements referring to the
9045 SELECT TYPE construct, this is no problem because the gfc_code
9046 reference stays the same and EXIT is equally possible from the BLOCK
9047 it is changed to. */
9048 code->op = EXEC_BLOCK;
9049 if (code->expr2)
9050 {
9051 gfc_association_list* assoc;
9052
9053 assoc = gfc_get_association_list ();
9054 assoc->st = code->expr1->symtree;
9055 assoc->target = gfc_copy_expr (code->expr2);
9056 assoc->target->where = code->expr2->where;
9057 /* assoc->variable will be set by resolve_assoc_var. */
9058
9059 code->ext.block.assoc = assoc;
9060 code->expr1->symtree->n.sym->assoc = assoc;
9061
9062 resolve_assoc_var (code->expr1->symtree->n.sym, false);
9063 }
9064 else
9065 code->ext.block.assoc = NULL;
9066
9067 /* Ensure that the selector rank and arrayspec are available to
9068 correct expressions in which they might be missing. */
9069 if (code->expr2 && code->expr2->rank)
9070 {
9071 rank = code->expr2->rank;
9072 for (ref = code->expr2->ref; ref; ref = ref->next)
9073 if (ref->next == NULL)
9074 break;
9075 if (ref && ref->type == REF_ARRAY)
9076 ref = gfc_copy_ref (ref);
9077
9078 /* Fixup expr1 if necessary. */
9079 if (rank)
9080 fixup_array_ref (&code->expr1, code->expr2, rank, ref);
9081 }
9082 else if (code->expr1->rank)
9083 {
9084 rank = code->expr1->rank;
9085 for (ref = code->expr1->ref; ref; ref = ref->next)
9086 if (ref->next == NULL)
9087 break;
9088 if (ref && ref->type == REF_ARRAY)
9089 ref = gfc_copy_ref (ref);
9090 }
9091
9092 /* Add EXEC_SELECT to switch on type. */
9093 new_st = gfc_get_code (code->op);
9094 new_st->expr1 = code->expr1;
9095 new_st->expr2 = code->expr2;
9096 new_st->block = code->block;
9097 code->expr1 = code->expr2 = NULL;
9098 code->block = NULL;
9099 if (!ns->code)
9100 ns->code = new_st;
9101 else
9102 ns->code->next = new_st;
9103 code = new_st;
9104 code->op = EXEC_SELECT_TYPE;
9105
9106 /* Use the intrinsic LOC function to generate an integer expression
9107 for the vtable of the selector. Note that the rank of the selector
9108 expression has to be set to zero. */
9109 gfc_add_vptr_component (code->expr1);
9110 code->expr1->rank = 0;
9111 code->expr1 = build_loc_call (code->expr1);
9112 selector_expr = code->expr1->value.function.actual->expr;
9113
9114 /* Loop over TYPE IS / CLASS IS cases. */
9115 for (body = code->block; body; body = body->block)
9116 {
9117 gfc_symbol *vtab;
9118 gfc_expr *e;
9119 c = body->ext.block.case_list;
9120
9121 /* Generate an index integer expression for address of the
9122 TYPE/CLASS vtable and store it in c->low. The hash expression
9123 is stored in c->high and is used to resolve intrinsic cases. */
9124 if (c->ts.type != BT_UNKNOWN)
9125 {
9126 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9127 {
9128 vtab = gfc_find_derived_vtab (c->ts.u.derived);
9129 gcc_assert (vtab);
9130 c->high = gfc_get_int_expr (gfc_integer_4_kind, NULL,
9131 c->ts.u.derived->hash_value);
9132 }
9133 else
9134 {
9135 vtab = gfc_find_vtab (&c->ts);
9136 gcc_assert (vtab && CLASS_DATA (vtab)->initializer);
9137 e = CLASS_DATA (vtab)->initializer;
9138 c->high = gfc_copy_expr (e);
9139 if (c->high->ts.kind != gfc_integer_4_kind)
9140 {
9141 gfc_typespec ts;
9142 ts.kind = gfc_integer_4_kind;
9143 ts.type = BT_INTEGER;
9144 gfc_convert_type_warn (c->high, &ts, 2, 0);
9145 }
9146 }
9147
9148 e = gfc_lval_expr_from_sym (vtab);
9149 c->low = build_loc_call (e);
9150 }
9151 else
9152 continue;
9153
9154 /* Associate temporary to selector. This should only be done
9155 when this case is actually true, so build a new ASSOCIATE
9156 that does precisely this here (instead of using the
9157 'global' one). */
9158
9159 if (c->ts.type == BT_CLASS)
9160 sprintf (name, "__tmp_class_%s", c->ts.u.derived->name);
9161 else if (c->ts.type == BT_DERIVED)
9162 sprintf (name, "__tmp_type_%s", c->ts.u.derived->name);
9163 else if (c->ts.type == BT_CHARACTER)
9164 {
9165 HOST_WIDE_INT charlen = 0;
9166 if (c->ts.u.cl && c->ts.u.cl->length
9167 && c->ts.u.cl->length->expr_type == EXPR_CONSTANT)
9168 charlen = gfc_mpz_get_hwi (c->ts.u.cl->length->value.integer);
9169 snprintf (name, sizeof (name),
9170 "__tmp_%s_" HOST_WIDE_INT_PRINT_DEC "_%d",
9171 gfc_basic_typename (c->ts.type), charlen, c->ts.kind);
9172 }
9173 else
9174 sprintf (name, "__tmp_%s_%d", gfc_basic_typename (c->ts.type),
9175 c->ts.kind);
9176
9177 st = gfc_find_symtree (ns->sym_root, name);
9178 gcc_assert (st->n.sym->assoc);
9179 st->n.sym->assoc->target = gfc_get_variable_expr (selector_expr->symtree);
9180 st->n.sym->assoc->target->where = selector_expr->where;
9181 if (c->ts.type != BT_CLASS && c->ts.type != BT_UNKNOWN)
9182 {
9183 gfc_add_data_component (st->n.sym->assoc->target);
9184 /* Fixup the target expression if necessary. */
9185 if (rank)
9186 fixup_array_ref (&st->n.sym->assoc->target, NULL, rank, ref);
9187 }
9188
9189 new_st = gfc_get_code (EXEC_BLOCK);
9190 new_st->ext.block.ns = gfc_build_block_ns (ns);
9191 new_st->ext.block.ns->code = body->next;
9192 body->next = new_st;
9193
9194 /* Chain in the new list only if it is marked as dangling. Otherwise
9195 there is a CASE label overlap and this is already used. Just ignore,
9196 the error is diagnosed elsewhere. */
9197 if (st->n.sym->assoc->dangling)
9198 {
9199 new_st->ext.block.assoc = st->n.sym->assoc;
9200 st->n.sym->assoc->dangling = 0;
9201 }
9202
9203 resolve_assoc_var (st->n.sym, false);
9204 }
9205
9206 /* Take out CLASS IS cases for separate treatment. */
9207 body = code;
9208 while (body && body->block)
9209 {
9210 if (body->block->ext.block.case_list->ts.type == BT_CLASS)
9211 {
9212 /* Add to class_is list. */
9213 if (class_is == NULL)
9214 {
9215 class_is = body->block;
9216 tail = class_is;
9217 }
9218 else
9219 {
9220 for (tail = class_is; tail->block; tail = tail->block) ;
9221 tail->block = body->block;
9222 tail = tail->block;
9223 }
9224 /* Remove from EXEC_SELECT list. */
9225 body->block = body->block->block;
9226 tail->block = NULL;
9227 }
9228 else
9229 body = body->block;
9230 }
9231
9232 if (class_is)
9233 {
9234 gfc_symbol *vtab;
9235
9236 if (!default_case)
9237 {
9238 /* Add a default case to hold the CLASS IS cases. */
9239 for (tail = code; tail->block; tail = tail->block) ;
9240 tail->block = gfc_get_code (EXEC_SELECT_TYPE);
9241 tail = tail->block;
9242 tail->ext.block.case_list = gfc_get_case ();
9243 tail->ext.block.case_list->ts.type = BT_UNKNOWN;
9244 tail->next = NULL;
9245 default_case = tail;
9246 }
9247
9248 /* More than one CLASS IS block? */
9249 if (class_is->block)
9250 {
9251 gfc_code **c1,*c2;
9252 bool swapped;
9253 /* Sort CLASS IS blocks by extension level. */
9254 do
9255 {
9256 swapped = false;
9257 for (c1 = &class_is; (*c1) && (*c1)->block; c1 = &((*c1)->block))
9258 {
9259 c2 = (*c1)->block;
9260 /* F03:C817 (check for doubles). */
9261 if ((*c1)->ext.block.case_list->ts.u.derived->hash_value
9262 == c2->ext.block.case_list->ts.u.derived->hash_value)
9263 {
9264 gfc_error ("Double CLASS IS block in SELECT TYPE "
9265 "statement at %L",
9266 &c2->ext.block.case_list->where);
9267 return;
9268 }
9269 if ((*c1)->ext.block.case_list->ts.u.derived->attr.extension
9270 < c2->ext.block.case_list->ts.u.derived->attr.extension)
9271 {
9272 /* Swap. */
9273 (*c1)->block = c2->block;
9274 c2->block = *c1;
9275 *c1 = c2;
9276 swapped = true;
9277 }
9278 }
9279 }
9280 while (swapped);
9281 }
9282
9283 /* Generate IF chain. */
9284 if_st = gfc_get_code (EXEC_IF);
9285 new_st = if_st;
9286 for (body = class_is; body; body = body->block)
9287 {
9288 new_st->block = gfc_get_code (EXEC_IF);
9289 new_st = new_st->block;
9290 /* Set up IF condition: Call _gfortran_is_extension_of. */
9291 new_st->expr1 = gfc_get_expr ();
9292 new_st->expr1->expr_type = EXPR_FUNCTION;
9293 new_st->expr1->ts.type = BT_LOGICAL;
9294 new_st->expr1->ts.kind = 4;
9295 new_st->expr1->value.function.name = gfc_get_string (PREFIX ("is_extension_of"));
9296 new_st->expr1->value.function.isym = XCNEW (gfc_intrinsic_sym);
9297 new_st->expr1->value.function.isym->id = GFC_ISYM_EXTENDS_TYPE_OF;
9298 /* Set up arguments. */
9299 new_st->expr1->value.function.actual = gfc_get_actual_arglist ();
9300 new_st->expr1->value.function.actual->expr = gfc_get_variable_expr (selector_expr->symtree);
9301 new_st->expr1->value.function.actual->expr->where = code->loc;
9302 new_st->expr1->where = code->loc;
9303 gfc_add_vptr_component (new_st->expr1->value.function.actual->expr);
9304 vtab = gfc_find_derived_vtab (body->ext.block.case_list->ts.u.derived);
9305 st = gfc_find_symtree (vtab->ns->sym_root, vtab->name);
9306 new_st->expr1->value.function.actual->next = gfc_get_actual_arglist ();
9307 new_st->expr1->value.function.actual->next->expr = gfc_get_variable_expr (st);
9308 new_st->expr1->value.function.actual->next->expr->where = code->loc;
9309 new_st->next = body->next;
9310 }
9311 if (default_case->next)
9312 {
9313 new_st->block = gfc_get_code (EXEC_IF);
9314 new_st = new_st->block;
9315 new_st->next = default_case->next;
9316 }
9317
9318 /* Replace CLASS DEFAULT code by the IF chain. */
9319 default_case->next = if_st;
9320 }
9321
9322 /* Resolve the internal code. This cannot be done earlier because
9323 it requires that the sym->assoc of selectors is set already. */
9324 gfc_current_ns = ns;
9325 gfc_resolve_blocks (code->block, gfc_current_ns);
9326 gfc_current_ns = old_ns;
9327
9328 if (ref)
9329 free (ref);
9330 }
9331
9332
9333 /* Resolve a transfer statement. This is making sure that:
9334 -- a derived type being transferred has only non-pointer components
9335 -- a derived type being transferred doesn't have private components, unless
9336 it's being transferred from the module where the type was defined
9337 -- we're not trying to transfer a whole assumed size array. */
9338
9339 static void
9340 resolve_transfer (gfc_code *code)
9341 {
9342 gfc_symbol *sym, *derived;
9343 gfc_ref *ref;
9344 gfc_expr *exp;
9345 bool write = false;
9346 bool formatted = false;
9347 gfc_dt *dt = code->ext.dt;
9348 gfc_symbol *dtio_sub = NULL;
9349
9350 exp = code->expr1;
9351
9352 while (exp != NULL && exp->expr_type == EXPR_OP
9353 && exp->value.op.op == INTRINSIC_PARENTHESES)
9354 exp = exp->value.op.op1;
9355
9356 if (exp && exp->expr_type == EXPR_NULL
9357 && code->ext.dt)
9358 {
9359 gfc_error ("Invalid context for NULL () intrinsic at %L",
9360 &exp->where);
9361 return;
9362 }
9363
9364 if (exp == NULL || (exp->expr_type != EXPR_VARIABLE
9365 && exp->expr_type != EXPR_FUNCTION
9366 && exp->expr_type != EXPR_STRUCTURE))
9367 return;
9368
9369 /* If we are reading, the variable will be changed. Note that
9370 code->ext.dt may be NULL if the TRANSFER is related to
9371 an INQUIRE statement -- but in this case, we are not reading, either. */
9372 if (dt && dt->dt_io_kind->value.iokind == M_READ
9373 && !gfc_check_vardef_context (exp, false, false, false,
9374 _("item in READ")))
9375 return;
9376
9377 const gfc_typespec *ts = exp->expr_type == EXPR_STRUCTURE
9378 || exp->expr_type == EXPR_FUNCTION
9379 ? &exp->ts : &exp->symtree->n.sym->ts;
9380
9381 /* Go to actual component transferred. */
9382 for (ref = exp->ref; ref; ref = ref->next)
9383 if (ref->type == REF_COMPONENT)
9384 ts = &ref->u.c.component->ts;
9385
9386 if (dt && dt->dt_io_kind->value.iokind != M_INQUIRE
9387 && (ts->type == BT_DERIVED || ts->type == BT_CLASS))
9388 {
9389 derived = ts->u.derived;
9390
9391 /* Determine when to use the formatted DTIO procedure. */
9392 if (dt && (dt->format_expr || dt->format_label))
9393 formatted = true;
9394
9395 write = dt->dt_io_kind->value.iokind == M_WRITE
9396 || dt->dt_io_kind->value.iokind == M_PRINT;
9397 dtio_sub = gfc_find_specific_dtio_proc (derived, write, formatted);
9398
9399 if (dtio_sub != NULL && exp->expr_type == EXPR_VARIABLE)
9400 {
9401 dt->udtio = exp;
9402 sym = exp->symtree->n.sym->ns->proc_name;
9403 /* Check to see if this is a nested DTIO call, with the
9404 dummy as the io-list object. */
9405 if (sym && sym == dtio_sub && sym->formal
9406 && sym->formal->sym == exp->symtree->n.sym
9407 && exp->ref == NULL)
9408 {
9409 if (!sym->attr.recursive)
9410 {
9411 gfc_error ("DTIO %s procedure at %L must be recursive",
9412 sym->name, &sym->declared_at);
9413 return;
9414 }
9415 }
9416 }
9417 }
9418
9419 if (ts->type == BT_CLASS && dtio_sub == NULL)
9420 {
9421 gfc_error ("Data transfer element at %L cannot be polymorphic unless "
9422 "it is processed by a defined input/output procedure",
9423 &code->loc);
9424 return;
9425 }
9426
9427 if (ts->type == BT_DERIVED)
9428 {
9429 /* Check that transferred derived type doesn't contain POINTER
9430 components unless it is processed by a defined input/output
9431 procedure". */
9432 if (ts->u.derived->attr.pointer_comp && dtio_sub == NULL)
9433 {
9434 gfc_error ("Data transfer element at %L cannot have POINTER "
9435 "components unless it is processed by a defined "
9436 "input/output procedure", &code->loc);
9437 return;
9438 }
9439
9440 /* F08:C935. */
9441 if (ts->u.derived->attr.proc_pointer_comp)
9442 {
9443 gfc_error ("Data transfer element at %L cannot have "
9444 "procedure pointer components", &code->loc);
9445 return;
9446 }
9447
9448 if (ts->u.derived->attr.alloc_comp && dtio_sub == NULL)
9449 {
9450 gfc_error ("Data transfer element at %L cannot have ALLOCATABLE "
9451 "components unless it is processed by a defined "
9452 "input/output procedure", &code->loc);
9453 return;
9454 }
9455
9456 /* C_PTR and C_FUNPTR have private components which means they cannot
9457 be printed. However, if -std=gnu and not -pedantic, allow
9458 the component to be printed to help debugging. */
9459 if (ts->u.derived->ts.f90_type == BT_VOID)
9460 {
9461 if (!gfc_notify_std (GFC_STD_GNU, "Data transfer element at %L "
9462 "cannot have PRIVATE components", &code->loc))
9463 return;
9464 }
9465 else if (derived_inaccessible (ts->u.derived) && dtio_sub == NULL)
9466 {
9467 gfc_error ("Data transfer element at %L cannot have "
9468 "PRIVATE components unless it is processed by "
9469 "a defined input/output procedure", &code->loc);
9470 return;
9471 }
9472 }
9473
9474 if (exp->expr_type == EXPR_STRUCTURE)
9475 return;
9476
9477 sym = exp->symtree->n.sym;
9478
9479 if (sym->as != NULL && sym->as->type == AS_ASSUMED_SIZE && exp->ref
9480 && exp->ref->type == REF_ARRAY && exp->ref->u.ar.type == AR_FULL)
9481 {
9482 gfc_error ("Data transfer element at %L cannot be a full reference to "
9483 "an assumed-size array", &code->loc);
9484 return;
9485 }
9486
9487 if (async_io_dt && exp->expr_type == EXPR_VARIABLE)
9488 exp->symtree->n.sym->attr.asynchronous = 1;
9489 }
9490
9491
9492 /*********** Toplevel code resolution subroutines ***********/
9493
9494 /* Find the set of labels that are reachable from this block. We also
9495 record the last statement in each block. */
9496
9497 static void
9498 find_reachable_labels (gfc_code *block)
9499 {
9500 gfc_code *c;
9501
9502 if (!block)
9503 return;
9504
9505 cs_base->reachable_labels = bitmap_alloc (&labels_obstack);
9506
9507 /* Collect labels in this block. We don't keep those corresponding
9508 to END {IF|SELECT}, these are checked in resolve_branch by going
9509 up through the code_stack. */
9510 for (c = block; c; c = c->next)
9511 {
9512 if (c->here && c->op != EXEC_END_NESTED_BLOCK)
9513 bitmap_set_bit (cs_base->reachable_labels, c->here->value);
9514 }
9515
9516 /* Merge with labels from parent block. */
9517 if (cs_base->prev)
9518 {
9519 gcc_assert (cs_base->prev->reachable_labels);
9520 bitmap_ior_into (cs_base->reachable_labels,
9521 cs_base->prev->reachable_labels);
9522 }
9523 }
9524
9525
9526 static void
9527 resolve_lock_unlock_event (gfc_code *code)
9528 {
9529 if (code->expr1->expr_type == EXPR_FUNCTION
9530 && code->expr1->value.function.isym
9531 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
9532 remove_caf_get_intrinsic (code->expr1);
9533
9534 if ((code->op == EXEC_LOCK || code->op == EXEC_UNLOCK)
9535 && (code->expr1->ts.type != BT_DERIVED
9536 || code->expr1->expr_type != EXPR_VARIABLE
9537 || code->expr1->ts.u.derived->from_intmod != INTMOD_ISO_FORTRAN_ENV
9538 || code->expr1->ts.u.derived->intmod_sym_id != ISOFORTRAN_LOCK_TYPE
9539 || code->expr1->rank != 0
9540 || (!gfc_is_coarray (code->expr1) &&
9541 !gfc_is_coindexed (code->expr1))))
9542 gfc_error ("Lock variable at %L must be a scalar of type LOCK_TYPE",
9543 &code->expr1->where);
9544 else if ((code->op == EXEC_EVENT_POST || code->op == EXEC_EVENT_WAIT)
9545 && (code->expr1->ts.type != BT_DERIVED
9546 || code->expr1->expr_type != EXPR_VARIABLE
9547 || code->expr1->ts.u.derived->from_intmod
9548 != INTMOD_ISO_FORTRAN_ENV
9549 || code->expr1->ts.u.derived->intmod_sym_id
9550 != ISOFORTRAN_EVENT_TYPE
9551 || code->expr1->rank != 0))
9552 gfc_error ("Event variable at %L must be a scalar of type EVENT_TYPE",
9553 &code->expr1->where);
9554 else if (code->op == EXEC_EVENT_POST && !gfc_is_coarray (code->expr1)
9555 && !gfc_is_coindexed (code->expr1))
9556 gfc_error ("Event variable argument at %L must be a coarray or coindexed",
9557 &code->expr1->where);
9558 else if (code->op == EXEC_EVENT_WAIT && !gfc_is_coarray (code->expr1))
9559 gfc_error ("Event variable argument at %L must be a coarray but not "
9560 "coindexed", &code->expr1->where);
9561
9562 /* Check STAT. */
9563 if (code->expr2
9564 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9565 || code->expr2->expr_type != EXPR_VARIABLE))
9566 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9567 &code->expr2->where);
9568
9569 if (code->expr2
9570 && !gfc_check_vardef_context (code->expr2, false, false, false,
9571 _("STAT variable")))
9572 return;
9573
9574 /* Check ERRMSG. */
9575 if (code->expr3
9576 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9577 || code->expr3->expr_type != EXPR_VARIABLE))
9578 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9579 &code->expr3->where);
9580
9581 if (code->expr3
9582 && !gfc_check_vardef_context (code->expr3, false, false, false,
9583 _("ERRMSG variable")))
9584 return;
9585
9586 /* Check for LOCK the ACQUIRED_LOCK. */
9587 if (code->op != EXEC_EVENT_WAIT && code->expr4
9588 && (code->expr4->ts.type != BT_LOGICAL || code->expr4->rank != 0
9589 || code->expr4->expr_type != EXPR_VARIABLE))
9590 gfc_error ("ACQUIRED_LOCK= argument at %L must be a scalar LOGICAL "
9591 "variable", &code->expr4->where);
9592
9593 if (code->op != EXEC_EVENT_WAIT && code->expr4
9594 && !gfc_check_vardef_context (code->expr4, false, false, false,
9595 _("ACQUIRED_LOCK variable")))
9596 return;
9597
9598 /* Check for EVENT WAIT the UNTIL_COUNT. */
9599 if (code->op == EXEC_EVENT_WAIT && code->expr4)
9600 {
9601 if (!gfc_resolve_expr (code->expr4) || code->expr4->ts.type != BT_INTEGER
9602 || code->expr4->rank != 0)
9603 gfc_error ("UNTIL_COUNT= argument at %L must be a scalar INTEGER "
9604 "expression", &code->expr4->where);
9605 }
9606 }
9607
9608
9609 static void
9610 resolve_critical (gfc_code *code)
9611 {
9612 gfc_symtree *symtree;
9613 gfc_symbol *lock_type;
9614 char name[GFC_MAX_SYMBOL_LEN];
9615 static int serial = 0;
9616
9617 if (flag_coarray != GFC_FCOARRAY_LIB)
9618 return;
9619
9620 symtree = gfc_find_symtree (gfc_current_ns->sym_root,
9621 GFC_PREFIX ("lock_type"));
9622 if (symtree)
9623 lock_type = symtree->n.sym;
9624 else
9625 {
9626 if (gfc_get_sym_tree (GFC_PREFIX ("lock_type"), gfc_current_ns, &symtree,
9627 false) != 0)
9628 gcc_unreachable ();
9629 lock_type = symtree->n.sym;
9630 lock_type->attr.flavor = FL_DERIVED;
9631 lock_type->attr.zero_comp = 1;
9632 lock_type->from_intmod = INTMOD_ISO_FORTRAN_ENV;
9633 lock_type->intmod_sym_id = ISOFORTRAN_LOCK_TYPE;
9634 }
9635
9636 sprintf(name, GFC_PREFIX ("lock_var") "%d",serial++);
9637 if (gfc_get_sym_tree (name, gfc_current_ns, &symtree, false) != 0)
9638 gcc_unreachable ();
9639
9640 code->resolved_sym = symtree->n.sym;
9641 symtree->n.sym->attr.flavor = FL_VARIABLE;
9642 symtree->n.sym->attr.referenced = 1;
9643 symtree->n.sym->attr.artificial = 1;
9644 symtree->n.sym->attr.codimension = 1;
9645 symtree->n.sym->ts.type = BT_DERIVED;
9646 symtree->n.sym->ts.u.derived = lock_type;
9647 symtree->n.sym->as = gfc_get_array_spec ();
9648 symtree->n.sym->as->corank = 1;
9649 symtree->n.sym->as->type = AS_EXPLICIT;
9650 symtree->n.sym->as->cotype = AS_EXPLICIT;
9651 symtree->n.sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind,
9652 NULL, 1);
9653 gfc_commit_symbols();
9654 }
9655
9656
9657 static void
9658 resolve_sync (gfc_code *code)
9659 {
9660 /* Check imageset. The * case matches expr1 == NULL. */
9661 if (code->expr1)
9662 {
9663 if (code->expr1->ts.type != BT_INTEGER || code->expr1->rank > 1)
9664 gfc_error ("Imageset argument at %L must be a scalar or rank-1 "
9665 "INTEGER expression", &code->expr1->where);
9666 if (code->expr1->expr_type == EXPR_CONSTANT && code->expr1->rank == 0
9667 && mpz_cmp_si (code->expr1->value.integer, 1) < 0)
9668 gfc_error ("Imageset argument at %L must between 1 and num_images()",
9669 &code->expr1->where);
9670 else if (code->expr1->expr_type == EXPR_ARRAY
9671 && gfc_simplify_expr (code->expr1, 0))
9672 {
9673 gfc_constructor *cons;
9674 cons = gfc_constructor_first (code->expr1->value.constructor);
9675 for (; cons; cons = gfc_constructor_next (cons))
9676 if (cons->expr->expr_type == EXPR_CONSTANT
9677 && mpz_cmp_si (cons->expr->value.integer, 1) < 0)
9678 gfc_error ("Imageset argument at %L must between 1 and "
9679 "num_images()", &cons->expr->where);
9680 }
9681 }
9682
9683 /* Check STAT. */
9684 gfc_resolve_expr (code->expr2);
9685 if (code->expr2
9686 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9687 || code->expr2->expr_type != EXPR_VARIABLE))
9688 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9689 &code->expr2->where);
9690
9691 /* Check ERRMSG. */
9692 gfc_resolve_expr (code->expr3);
9693 if (code->expr3
9694 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9695 || code->expr3->expr_type != EXPR_VARIABLE))
9696 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9697 &code->expr3->where);
9698 }
9699
9700
9701 /* Given a branch to a label, see if the branch is conforming.
9702 The code node describes where the branch is located. */
9703
9704 static void
9705 resolve_branch (gfc_st_label *label, gfc_code *code)
9706 {
9707 code_stack *stack;
9708
9709 if (label == NULL)
9710 return;
9711
9712 /* Step one: is this a valid branching target? */
9713
9714 if (label->defined == ST_LABEL_UNKNOWN)
9715 {
9716 gfc_error ("Label %d referenced at %L is never defined", label->value,
9717 &code->loc);
9718 return;
9719 }
9720
9721 if (label->defined != ST_LABEL_TARGET && label->defined != ST_LABEL_DO_TARGET)
9722 {
9723 gfc_error ("Statement at %L is not a valid branch target statement "
9724 "for the branch statement at %L", &label->where, &code->loc);
9725 return;
9726 }
9727
9728 /* Step two: make sure this branch is not a branch to itself ;-) */
9729
9730 if (code->here == label)
9731 {
9732 gfc_warning (0,
9733 "Branch at %L may result in an infinite loop", &code->loc);
9734 return;
9735 }
9736
9737 /* Step three: See if the label is in the same block as the
9738 branching statement. The hard work has been done by setting up
9739 the bitmap reachable_labels. */
9740
9741 if (bitmap_bit_p (cs_base->reachable_labels, label->value))
9742 {
9743 /* Check now whether there is a CRITICAL construct; if so, check
9744 whether the label is still visible outside of the CRITICAL block,
9745 which is invalid. */
9746 for (stack = cs_base; stack; stack = stack->prev)
9747 {
9748 if (stack->current->op == EXEC_CRITICAL
9749 && bitmap_bit_p (stack->reachable_labels, label->value))
9750 gfc_error ("GOTO statement at %L leaves CRITICAL construct for "
9751 "label at %L", &code->loc, &label->where);
9752 else if (stack->current->op == EXEC_DO_CONCURRENT
9753 && bitmap_bit_p (stack->reachable_labels, label->value))
9754 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct "
9755 "for label at %L", &code->loc, &label->where);
9756 }
9757
9758 return;
9759 }
9760
9761 /* Step four: If we haven't found the label in the bitmap, it may
9762 still be the label of the END of the enclosing block, in which
9763 case we find it by going up the code_stack. */
9764
9765 for (stack = cs_base; stack; stack = stack->prev)
9766 {
9767 if (stack->current->next && stack->current->next->here == label)
9768 break;
9769 if (stack->current->op == EXEC_CRITICAL)
9770 {
9771 /* Note: A label at END CRITICAL does not leave the CRITICAL
9772 construct as END CRITICAL is still part of it. */
9773 gfc_error ("GOTO statement at %L leaves CRITICAL construct for label"
9774 " at %L", &code->loc, &label->where);
9775 return;
9776 }
9777 else if (stack->current->op == EXEC_DO_CONCURRENT)
9778 {
9779 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct for "
9780 "label at %L", &code->loc, &label->where);
9781 return;
9782 }
9783 }
9784
9785 if (stack)
9786 {
9787 gcc_assert (stack->current->next->op == EXEC_END_NESTED_BLOCK);
9788 return;
9789 }
9790
9791 /* The label is not in an enclosing block, so illegal. This was
9792 allowed in Fortran 66, so we allow it as extension. No
9793 further checks are necessary in this case. */
9794 gfc_notify_std (GFC_STD_LEGACY, "Label at %L is not in the same block "
9795 "as the GOTO statement at %L", &label->where,
9796 &code->loc);
9797 return;
9798 }
9799
9800
9801 /* Check whether EXPR1 has the same shape as EXPR2. */
9802
9803 static bool
9804 resolve_where_shape (gfc_expr *expr1, gfc_expr *expr2)
9805 {
9806 mpz_t shape[GFC_MAX_DIMENSIONS];
9807 mpz_t shape2[GFC_MAX_DIMENSIONS];
9808 bool result = false;
9809 int i;
9810
9811 /* Compare the rank. */
9812 if (expr1->rank != expr2->rank)
9813 return result;
9814
9815 /* Compare the size of each dimension. */
9816 for (i=0; i<expr1->rank; i++)
9817 {
9818 if (!gfc_array_dimen_size (expr1, i, &shape[i]))
9819 goto ignore;
9820
9821 if (!gfc_array_dimen_size (expr2, i, &shape2[i]))
9822 goto ignore;
9823
9824 if (mpz_cmp (shape[i], shape2[i]))
9825 goto over;
9826 }
9827
9828 /* When either of the two expression is an assumed size array, we
9829 ignore the comparison of dimension sizes. */
9830 ignore:
9831 result = true;
9832
9833 over:
9834 gfc_clear_shape (shape, i);
9835 gfc_clear_shape (shape2, i);
9836 return result;
9837 }
9838
9839
9840 /* Check whether a WHERE assignment target or a WHERE mask expression
9841 has the same shape as the outmost WHERE mask expression. */
9842
9843 static void
9844 resolve_where (gfc_code *code, gfc_expr *mask)
9845 {
9846 gfc_code *cblock;
9847 gfc_code *cnext;
9848 gfc_expr *e = NULL;
9849
9850 cblock = code->block;
9851
9852 /* Store the first WHERE mask-expr of the WHERE statement or construct.
9853 In case of nested WHERE, only the outmost one is stored. */
9854 if (mask == NULL) /* outmost WHERE */
9855 e = cblock->expr1;
9856 else /* inner WHERE */
9857 e = mask;
9858
9859 while (cblock)
9860 {
9861 if (cblock->expr1)
9862 {
9863 /* Check if the mask-expr has a consistent shape with the
9864 outmost WHERE mask-expr. */
9865 if (!resolve_where_shape (cblock->expr1, e))
9866 gfc_error ("WHERE mask at %L has inconsistent shape",
9867 &cblock->expr1->where);
9868 }
9869
9870 /* the assignment statement of a WHERE statement, or the first
9871 statement in where-body-construct of a WHERE construct */
9872 cnext = cblock->next;
9873 while (cnext)
9874 {
9875 switch (cnext->op)
9876 {
9877 /* WHERE assignment statement */
9878 case EXEC_ASSIGN:
9879
9880 /* Check shape consistent for WHERE assignment target. */
9881 if (e && !resolve_where_shape (cnext->expr1, e))
9882 gfc_error ("WHERE assignment target at %L has "
9883 "inconsistent shape", &cnext->expr1->where);
9884 break;
9885
9886
9887 case EXEC_ASSIGN_CALL:
9888 resolve_call (cnext);
9889 if (!cnext->resolved_sym->attr.elemental)
9890 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
9891 &cnext->ext.actual->expr->where);
9892 break;
9893
9894 /* WHERE or WHERE construct is part of a where-body-construct */
9895 case EXEC_WHERE:
9896 resolve_where (cnext, e);
9897 break;
9898
9899 default:
9900 gfc_error ("Unsupported statement inside WHERE at %L",
9901 &cnext->loc);
9902 }
9903 /* the next statement within the same where-body-construct */
9904 cnext = cnext->next;
9905 }
9906 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
9907 cblock = cblock->block;
9908 }
9909 }
9910
9911
9912 /* Resolve assignment in FORALL construct.
9913 NVAR is the number of FORALL index variables, and VAR_EXPR records the
9914 FORALL index variables. */
9915
9916 static void
9917 gfc_resolve_assign_in_forall (gfc_code *code, int nvar, gfc_expr **var_expr)
9918 {
9919 int n;
9920
9921 for (n = 0; n < nvar; n++)
9922 {
9923 gfc_symbol *forall_index;
9924
9925 forall_index = var_expr[n]->symtree->n.sym;
9926
9927 /* Check whether the assignment target is one of the FORALL index
9928 variable. */
9929 if ((code->expr1->expr_type == EXPR_VARIABLE)
9930 && (code->expr1->symtree->n.sym == forall_index))
9931 gfc_error ("Assignment to a FORALL index variable at %L",
9932 &code->expr1->where);
9933 else
9934 {
9935 /* If one of the FORALL index variables doesn't appear in the
9936 assignment variable, then there could be a many-to-one
9937 assignment. Emit a warning rather than an error because the
9938 mask could be resolving this problem. */
9939 if (!find_forall_index (code->expr1, forall_index, 0))
9940 gfc_warning (0, "The FORALL with index %qs is not used on the "
9941 "left side of the assignment at %L and so might "
9942 "cause multiple assignment to this object",
9943 var_expr[n]->symtree->name, &code->expr1->where);
9944 }
9945 }
9946 }
9947
9948
9949 /* Resolve WHERE statement in FORALL construct. */
9950
9951 static void
9952 gfc_resolve_where_code_in_forall (gfc_code *code, int nvar,
9953 gfc_expr **var_expr)
9954 {
9955 gfc_code *cblock;
9956 gfc_code *cnext;
9957
9958 cblock = code->block;
9959 while (cblock)
9960 {
9961 /* the assignment statement of a WHERE statement, or the first
9962 statement in where-body-construct of a WHERE construct */
9963 cnext = cblock->next;
9964 while (cnext)
9965 {
9966 switch (cnext->op)
9967 {
9968 /* WHERE assignment statement */
9969 case EXEC_ASSIGN:
9970 gfc_resolve_assign_in_forall (cnext, nvar, var_expr);
9971 break;
9972
9973 /* WHERE operator assignment statement */
9974 case EXEC_ASSIGN_CALL:
9975 resolve_call (cnext);
9976 if (!cnext->resolved_sym->attr.elemental)
9977 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
9978 &cnext->ext.actual->expr->where);
9979 break;
9980
9981 /* WHERE or WHERE construct is part of a where-body-construct */
9982 case EXEC_WHERE:
9983 gfc_resolve_where_code_in_forall (cnext, nvar, var_expr);
9984 break;
9985
9986 default:
9987 gfc_error ("Unsupported statement inside WHERE at %L",
9988 &cnext->loc);
9989 }
9990 /* the next statement within the same where-body-construct */
9991 cnext = cnext->next;
9992 }
9993 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
9994 cblock = cblock->block;
9995 }
9996 }
9997
9998
9999 /* Traverse the FORALL body to check whether the following errors exist:
10000 1. For assignment, check if a many-to-one assignment happens.
10001 2. For WHERE statement, check the WHERE body to see if there is any
10002 many-to-one assignment. */
10003
10004 static void
10005 gfc_resolve_forall_body (gfc_code *code, int nvar, gfc_expr **var_expr)
10006 {
10007 gfc_code *c;
10008
10009 c = code->block->next;
10010 while (c)
10011 {
10012 switch (c->op)
10013 {
10014 case EXEC_ASSIGN:
10015 case EXEC_POINTER_ASSIGN:
10016 gfc_resolve_assign_in_forall (c, nvar, var_expr);
10017 break;
10018
10019 case EXEC_ASSIGN_CALL:
10020 resolve_call (c);
10021 break;
10022
10023 /* Because the gfc_resolve_blocks() will handle the nested FORALL,
10024 there is no need to handle it here. */
10025 case EXEC_FORALL:
10026 break;
10027 case EXEC_WHERE:
10028 gfc_resolve_where_code_in_forall(c, nvar, var_expr);
10029 break;
10030 default:
10031 break;
10032 }
10033 /* The next statement in the FORALL body. */
10034 c = c->next;
10035 }
10036 }
10037
10038
10039 /* Counts the number of iterators needed inside a forall construct, including
10040 nested forall constructs. This is used to allocate the needed memory
10041 in gfc_resolve_forall. */
10042
10043 static int
10044 gfc_count_forall_iterators (gfc_code *code)
10045 {
10046 int max_iters, sub_iters, current_iters;
10047 gfc_forall_iterator *fa;
10048
10049 gcc_assert(code->op == EXEC_FORALL);
10050 max_iters = 0;
10051 current_iters = 0;
10052
10053 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
10054 current_iters ++;
10055
10056 code = code->block->next;
10057
10058 while (code)
10059 {
10060 if (code->op == EXEC_FORALL)
10061 {
10062 sub_iters = gfc_count_forall_iterators (code);
10063 if (sub_iters > max_iters)
10064 max_iters = sub_iters;
10065 }
10066 code = code->next;
10067 }
10068
10069 return current_iters + max_iters;
10070 }
10071
10072
10073 /* Given a FORALL construct, first resolve the FORALL iterator, then call
10074 gfc_resolve_forall_body to resolve the FORALL body. */
10075
10076 static void
10077 gfc_resolve_forall (gfc_code *code, gfc_namespace *ns, int forall_save)
10078 {
10079 static gfc_expr **var_expr;
10080 static int total_var = 0;
10081 static int nvar = 0;
10082 int i, old_nvar, tmp;
10083 gfc_forall_iterator *fa;
10084
10085 old_nvar = nvar;
10086
10087 if (!gfc_notify_std (GFC_STD_F2018_OBS, "FORALL construct at %L", &code->loc))
10088 return;
10089
10090 /* Start to resolve a FORALL construct */
10091 if (forall_save == 0)
10092 {
10093 /* Count the total number of FORALL indices in the nested FORALL
10094 construct in order to allocate the VAR_EXPR with proper size. */
10095 total_var = gfc_count_forall_iterators (code);
10096
10097 /* Allocate VAR_EXPR with NUMBER_OF_FORALL_INDEX elements. */
10098 var_expr = XCNEWVEC (gfc_expr *, total_var);
10099 }
10100
10101 /* The information about FORALL iterator, including FORALL indices start, end
10102 and stride. An outer FORALL indice cannot appear in start, end or stride. */
10103 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
10104 {
10105 /* Fortran 20008: C738 (R753). */
10106 if (fa->var->ref && fa->var->ref->type == REF_ARRAY)
10107 {
10108 gfc_error ("FORALL index-name at %L must be a scalar variable "
10109 "of type integer", &fa->var->where);
10110 continue;
10111 }
10112
10113 /* Check if any outer FORALL index name is the same as the current
10114 one. */
10115 for (i = 0; i < nvar; i++)
10116 {
10117 if (fa->var->symtree->n.sym == var_expr[i]->symtree->n.sym)
10118 gfc_error ("An outer FORALL construct already has an index "
10119 "with this name %L", &fa->var->where);
10120 }
10121
10122 /* Record the current FORALL index. */
10123 var_expr[nvar] = gfc_copy_expr (fa->var);
10124
10125 nvar++;
10126
10127 /* No memory leak. */
10128 gcc_assert (nvar <= total_var);
10129 }
10130
10131 /* Resolve the FORALL body. */
10132 gfc_resolve_forall_body (code, nvar, var_expr);
10133
10134 /* May call gfc_resolve_forall to resolve the inner FORALL loop. */
10135 gfc_resolve_blocks (code->block, ns);
10136
10137 tmp = nvar;
10138 nvar = old_nvar;
10139 /* Free only the VAR_EXPRs allocated in this frame. */
10140 for (i = nvar; i < tmp; i++)
10141 gfc_free_expr (var_expr[i]);
10142
10143 if (nvar == 0)
10144 {
10145 /* We are in the outermost FORALL construct. */
10146 gcc_assert (forall_save == 0);
10147
10148 /* VAR_EXPR is not needed any more. */
10149 free (var_expr);
10150 total_var = 0;
10151 }
10152 }
10153
10154
10155 /* Resolve a BLOCK construct statement. */
10156
10157 static void
10158 resolve_block_construct (gfc_code* code)
10159 {
10160 /* Resolve the BLOCK's namespace. */
10161 gfc_resolve (code->ext.block.ns);
10162
10163 /* For an ASSOCIATE block, the associations (and their targets) are already
10164 resolved during resolve_symbol. */
10165 }
10166
10167
10168 /* Resolve lists of blocks found in IF, SELECT CASE, WHERE, FORALL, GOTO and
10169 DO code nodes. */
10170
10171 void
10172 gfc_resolve_blocks (gfc_code *b, gfc_namespace *ns)
10173 {
10174 bool t;
10175
10176 for (; b; b = b->block)
10177 {
10178 t = gfc_resolve_expr (b->expr1);
10179 if (!gfc_resolve_expr (b->expr2))
10180 t = false;
10181
10182 switch (b->op)
10183 {
10184 case EXEC_IF:
10185 if (t && b->expr1 != NULL
10186 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank != 0))
10187 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
10188 &b->expr1->where);
10189 break;
10190
10191 case EXEC_WHERE:
10192 if (t
10193 && b->expr1 != NULL
10194 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank == 0))
10195 gfc_error ("WHERE/ELSEWHERE clause at %L requires a LOGICAL array",
10196 &b->expr1->where);
10197 break;
10198
10199 case EXEC_GOTO:
10200 resolve_branch (b->label1, b);
10201 break;
10202
10203 case EXEC_BLOCK:
10204 resolve_block_construct (b);
10205 break;
10206
10207 case EXEC_SELECT:
10208 case EXEC_SELECT_TYPE:
10209 case EXEC_FORALL:
10210 case EXEC_DO:
10211 case EXEC_DO_WHILE:
10212 case EXEC_DO_CONCURRENT:
10213 case EXEC_CRITICAL:
10214 case EXEC_READ:
10215 case EXEC_WRITE:
10216 case EXEC_IOLENGTH:
10217 case EXEC_WAIT:
10218 break;
10219
10220 case EXEC_OMP_ATOMIC:
10221 case EXEC_OACC_ATOMIC:
10222 {
10223 gfc_omp_atomic_op aop
10224 = (gfc_omp_atomic_op) (b->ext.omp_atomic & GFC_OMP_ATOMIC_MASK);
10225
10226 /* Verify this before calling gfc_resolve_code, which might
10227 change it. */
10228 gcc_assert (b->next && b->next->op == EXEC_ASSIGN);
10229 gcc_assert (((aop != GFC_OMP_ATOMIC_CAPTURE)
10230 && b->next->next == NULL)
10231 || ((aop == GFC_OMP_ATOMIC_CAPTURE)
10232 && b->next->next != NULL
10233 && b->next->next->op == EXEC_ASSIGN
10234 && b->next->next->next == NULL));
10235 }
10236 break;
10237
10238 case EXEC_OACC_PARALLEL_LOOP:
10239 case EXEC_OACC_PARALLEL:
10240 case EXEC_OACC_KERNELS_LOOP:
10241 case EXEC_OACC_KERNELS:
10242 case EXEC_OACC_DATA:
10243 case EXEC_OACC_HOST_DATA:
10244 case EXEC_OACC_LOOP:
10245 case EXEC_OACC_UPDATE:
10246 case EXEC_OACC_WAIT:
10247 case EXEC_OACC_CACHE:
10248 case EXEC_OACC_ENTER_DATA:
10249 case EXEC_OACC_EXIT_DATA:
10250 case EXEC_OACC_ROUTINE:
10251 case EXEC_OMP_CRITICAL:
10252 case EXEC_OMP_DISTRIBUTE:
10253 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
10254 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
10255 case EXEC_OMP_DISTRIBUTE_SIMD:
10256 case EXEC_OMP_DO:
10257 case EXEC_OMP_DO_SIMD:
10258 case EXEC_OMP_MASTER:
10259 case EXEC_OMP_ORDERED:
10260 case EXEC_OMP_PARALLEL:
10261 case EXEC_OMP_PARALLEL_DO:
10262 case EXEC_OMP_PARALLEL_DO_SIMD:
10263 case EXEC_OMP_PARALLEL_SECTIONS:
10264 case EXEC_OMP_PARALLEL_WORKSHARE:
10265 case EXEC_OMP_SECTIONS:
10266 case EXEC_OMP_SIMD:
10267 case EXEC_OMP_SINGLE:
10268 case EXEC_OMP_TARGET:
10269 case EXEC_OMP_TARGET_DATA:
10270 case EXEC_OMP_TARGET_ENTER_DATA:
10271 case EXEC_OMP_TARGET_EXIT_DATA:
10272 case EXEC_OMP_TARGET_PARALLEL:
10273 case EXEC_OMP_TARGET_PARALLEL_DO:
10274 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
10275 case EXEC_OMP_TARGET_SIMD:
10276 case EXEC_OMP_TARGET_TEAMS:
10277 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
10278 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
10279 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10280 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
10281 case EXEC_OMP_TARGET_UPDATE:
10282 case EXEC_OMP_TASK:
10283 case EXEC_OMP_TASKGROUP:
10284 case EXEC_OMP_TASKLOOP:
10285 case EXEC_OMP_TASKLOOP_SIMD:
10286 case EXEC_OMP_TASKWAIT:
10287 case EXEC_OMP_TASKYIELD:
10288 case EXEC_OMP_TEAMS:
10289 case EXEC_OMP_TEAMS_DISTRIBUTE:
10290 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
10291 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10292 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
10293 case EXEC_OMP_WORKSHARE:
10294 break;
10295
10296 default:
10297 gfc_internal_error ("gfc_resolve_blocks(): Bad block type");
10298 }
10299
10300 gfc_resolve_code (b->next, ns);
10301 }
10302 }
10303
10304
10305 /* Does everything to resolve an ordinary assignment. Returns true
10306 if this is an interface assignment. */
10307 static bool
10308 resolve_ordinary_assign (gfc_code *code, gfc_namespace *ns)
10309 {
10310 bool rval = false;
10311 gfc_expr *lhs;
10312 gfc_expr *rhs;
10313 int n;
10314 gfc_ref *ref;
10315 symbol_attribute attr;
10316
10317 if (gfc_extend_assign (code, ns))
10318 {
10319 gfc_expr** rhsptr;
10320
10321 if (code->op == EXEC_ASSIGN_CALL)
10322 {
10323 lhs = code->ext.actual->expr;
10324 rhsptr = &code->ext.actual->next->expr;
10325 }
10326 else
10327 {
10328 gfc_actual_arglist* args;
10329 gfc_typebound_proc* tbp;
10330
10331 gcc_assert (code->op == EXEC_COMPCALL);
10332
10333 args = code->expr1->value.compcall.actual;
10334 lhs = args->expr;
10335 rhsptr = &args->next->expr;
10336
10337 tbp = code->expr1->value.compcall.tbp;
10338 gcc_assert (!tbp->is_generic);
10339 }
10340
10341 /* Make a temporary rhs when there is a default initializer
10342 and rhs is the same symbol as the lhs. */
10343 if ((*rhsptr)->expr_type == EXPR_VARIABLE
10344 && (*rhsptr)->symtree->n.sym->ts.type == BT_DERIVED
10345 && gfc_has_default_initializer ((*rhsptr)->symtree->n.sym->ts.u.derived)
10346 && (lhs->symtree->n.sym == (*rhsptr)->symtree->n.sym))
10347 *rhsptr = gfc_get_parentheses (*rhsptr);
10348
10349 return true;
10350 }
10351
10352 lhs = code->expr1;
10353 rhs = code->expr2;
10354
10355 if (rhs->is_boz
10356 && !gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L outside "
10357 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
10358 &code->loc))
10359 return false;
10360
10361 /* Handle the case of a BOZ literal on the RHS. */
10362 if (rhs->is_boz && lhs->ts.type != BT_INTEGER)
10363 {
10364 int rc;
10365 if (warn_surprising)
10366 gfc_warning (OPT_Wsurprising,
10367 "BOZ literal at %L is bitwise transferred "
10368 "non-integer symbol %qs", &code->loc,
10369 lhs->symtree->n.sym->name);
10370
10371 if (!gfc_convert_boz (rhs, &lhs->ts))
10372 return false;
10373 if ((rc = gfc_range_check (rhs)) != ARITH_OK)
10374 {
10375 if (rc == ARITH_UNDERFLOW)
10376 gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
10377 ". This check can be disabled with the option "
10378 "%<-fno-range-check%>", &rhs->where);
10379 else if (rc == ARITH_OVERFLOW)
10380 gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
10381 ". This check can be disabled with the option "
10382 "%<-fno-range-check%>", &rhs->where);
10383 else if (rc == ARITH_NAN)
10384 gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
10385 ". This check can be disabled with the option "
10386 "%<-fno-range-check%>", &rhs->where);
10387 return false;
10388 }
10389 }
10390
10391 if (lhs->ts.type == BT_CHARACTER
10392 && warn_character_truncation)
10393 {
10394 HOST_WIDE_INT llen = 0, rlen = 0;
10395 if (lhs->ts.u.cl != NULL
10396 && lhs->ts.u.cl->length != NULL
10397 && lhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10398 llen = gfc_mpz_get_hwi (lhs->ts.u.cl->length->value.integer);
10399
10400 if (rhs->expr_type == EXPR_CONSTANT)
10401 rlen = rhs->value.character.length;
10402
10403 else if (rhs->ts.u.cl != NULL
10404 && rhs->ts.u.cl->length != NULL
10405 && rhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10406 rlen = gfc_mpz_get_hwi (rhs->ts.u.cl->length->value.integer);
10407
10408 if (rlen && llen && rlen > llen)
10409 gfc_warning_now (OPT_Wcharacter_truncation,
10410 "CHARACTER expression will be truncated "
10411 "in assignment (%ld/%ld) at %L",
10412 (long) llen, (long) rlen, &code->loc);
10413 }
10414
10415 /* Ensure that a vector index expression for the lvalue is evaluated
10416 to a temporary if the lvalue symbol is referenced in it. */
10417 if (lhs->rank)
10418 {
10419 for (ref = lhs->ref; ref; ref= ref->next)
10420 if (ref->type == REF_ARRAY)
10421 {
10422 for (n = 0; n < ref->u.ar.dimen; n++)
10423 if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR
10424 && gfc_find_sym_in_expr (lhs->symtree->n.sym,
10425 ref->u.ar.start[n]))
10426 ref->u.ar.start[n]
10427 = gfc_get_parentheses (ref->u.ar.start[n]);
10428 }
10429 }
10430
10431 if (gfc_pure (NULL))
10432 {
10433 if (lhs->ts.type == BT_DERIVED
10434 && lhs->expr_type == EXPR_VARIABLE
10435 && lhs->ts.u.derived->attr.pointer_comp
10436 && rhs->expr_type == EXPR_VARIABLE
10437 && (gfc_impure_variable (rhs->symtree->n.sym)
10438 || gfc_is_coindexed (rhs)))
10439 {
10440 /* F2008, C1283. */
10441 if (gfc_is_coindexed (rhs))
10442 gfc_error ("Coindexed expression at %L is assigned to "
10443 "a derived type variable with a POINTER "
10444 "component in a PURE procedure",
10445 &rhs->where);
10446 else
10447 gfc_error ("The impure variable at %L is assigned to "
10448 "a derived type variable with a POINTER "
10449 "component in a PURE procedure (12.6)",
10450 &rhs->where);
10451 return rval;
10452 }
10453
10454 /* Fortran 2008, C1283. */
10455 if (gfc_is_coindexed (lhs))
10456 {
10457 gfc_error ("Assignment to coindexed variable at %L in a PURE "
10458 "procedure", &rhs->where);
10459 return rval;
10460 }
10461 }
10462
10463 if (gfc_implicit_pure (NULL))
10464 {
10465 if (lhs->expr_type == EXPR_VARIABLE
10466 && lhs->symtree->n.sym != gfc_current_ns->proc_name
10467 && lhs->symtree->n.sym->ns != gfc_current_ns)
10468 gfc_unset_implicit_pure (NULL);
10469
10470 if (lhs->ts.type == BT_DERIVED
10471 && lhs->expr_type == EXPR_VARIABLE
10472 && lhs->ts.u.derived->attr.pointer_comp
10473 && rhs->expr_type == EXPR_VARIABLE
10474 && (gfc_impure_variable (rhs->symtree->n.sym)
10475 || gfc_is_coindexed (rhs)))
10476 gfc_unset_implicit_pure (NULL);
10477
10478 /* Fortran 2008, C1283. */
10479 if (gfc_is_coindexed (lhs))
10480 gfc_unset_implicit_pure (NULL);
10481 }
10482
10483 /* F2008, 7.2.1.2. */
10484 attr = gfc_expr_attr (lhs);
10485 if (lhs->ts.type == BT_CLASS && attr.allocatable)
10486 {
10487 if (attr.codimension)
10488 {
10489 gfc_error ("Assignment to polymorphic coarray at %L is not "
10490 "permitted", &lhs->where);
10491 return false;
10492 }
10493 if (!gfc_notify_std (GFC_STD_F2008, "Assignment to an allocatable "
10494 "polymorphic variable at %L", &lhs->where))
10495 return false;
10496 if (!flag_realloc_lhs)
10497 {
10498 gfc_error ("Assignment to an allocatable polymorphic variable at %L "
10499 "requires %<-frealloc-lhs%>", &lhs->where);
10500 return false;
10501 }
10502 }
10503 else if (lhs->ts.type == BT_CLASS)
10504 {
10505 gfc_error ("Nonallocatable variable must not be polymorphic in intrinsic "
10506 "assignment at %L - check that there is a matching specific "
10507 "subroutine for '=' operator", &lhs->where);
10508 return false;
10509 }
10510
10511 bool lhs_coindexed = gfc_is_coindexed (lhs);
10512
10513 /* F2008, Section 7.2.1.2. */
10514 if (lhs_coindexed && gfc_has_ultimate_allocatable (lhs))
10515 {
10516 gfc_error ("Coindexed variable must not have an allocatable ultimate "
10517 "component in assignment at %L", &lhs->where);
10518 return false;
10519 }
10520
10521 /* Assign the 'data' of a class object to a derived type. */
10522 if (lhs->ts.type == BT_DERIVED
10523 && rhs->ts.type == BT_CLASS
10524 && rhs->expr_type != EXPR_ARRAY)
10525 gfc_add_data_component (rhs);
10526
10527 /* Make sure there is a vtable and, in particular, a _copy for the
10528 rhs type. */
10529 if (UNLIMITED_POLY (lhs) && lhs->rank && rhs->ts.type != BT_CLASS)
10530 gfc_find_vtab (&rhs->ts);
10531
10532 bool caf_convert_to_send = flag_coarray == GFC_FCOARRAY_LIB
10533 && (lhs_coindexed
10534 || (code->expr2->expr_type == EXPR_FUNCTION
10535 && code->expr2->value.function.isym
10536 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET
10537 && (code->expr1->rank == 0 || code->expr2->rank != 0)
10538 && !gfc_expr_attr (rhs).allocatable
10539 && !gfc_has_vector_subscript (rhs)));
10540
10541 gfc_check_assign (lhs, rhs, 1, !caf_convert_to_send);
10542
10543 /* Insert a GFC_ISYM_CAF_SEND intrinsic, when the LHS is a coindexed variable.
10544 Additionally, insert this code when the RHS is a CAF as we then use the
10545 GFC_ISYM_CAF_SEND intrinsic just to avoid a temporary; but do not do so if
10546 the LHS is (re)allocatable or has a vector subscript. If the LHS is a
10547 noncoindexed array and the RHS is a coindexed scalar, use the normal code
10548 path. */
10549 if (caf_convert_to_send)
10550 {
10551 if (code->expr2->expr_type == EXPR_FUNCTION
10552 && code->expr2->value.function.isym
10553 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET)
10554 remove_caf_get_intrinsic (code->expr2);
10555 code->op = EXEC_CALL;
10556 gfc_get_sym_tree (GFC_PREFIX ("caf_send"), ns, &code->symtree, true);
10557 code->resolved_sym = code->symtree->n.sym;
10558 code->resolved_sym->attr.flavor = FL_PROCEDURE;
10559 code->resolved_sym->attr.intrinsic = 1;
10560 code->resolved_sym->attr.subroutine = 1;
10561 code->resolved_isym = gfc_intrinsic_subroutine_by_id (GFC_ISYM_CAF_SEND);
10562 gfc_commit_symbol (code->resolved_sym);
10563 code->ext.actual = gfc_get_actual_arglist ();
10564 code->ext.actual->expr = lhs;
10565 code->ext.actual->next = gfc_get_actual_arglist ();
10566 code->ext.actual->next->expr = rhs;
10567 code->expr1 = NULL;
10568 code->expr2 = NULL;
10569 }
10570
10571 return false;
10572 }
10573
10574
10575 /* Add a component reference onto an expression. */
10576
10577 static void
10578 add_comp_ref (gfc_expr *e, gfc_component *c)
10579 {
10580 gfc_ref **ref;
10581 ref = &(e->ref);
10582 while (*ref)
10583 ref = &((*ref)->next);
10584 *ref = gfc_get_ref ();
10585 (*ref)->type = REF_COMPONENT;
10586 (*ref)->u.c.sym = e->ts.u.derived;
10587 (*ref)->u.c.component = c;
10588 e->ts = c->ts;
10589
10590 /* Add a full array ref, as necessary. */
10591 if (c->as)
10592 {
10593 gfc_add_full_array_ref (e, c->as);
10594 e->rank = c->as->rank;
10595 }
10596 }
10597
10598
10599 /* Build an assignment. Keep the argument 'op' for future use, so that
10600 pointer assignments can be made. */
10601
10602 static gfc_code *
10603 build_assignment (gfc_exec_op op, gfc_expr *expr1, gfc_expr *expr2,
10604 gfc_component *comp1, gfc_component *comp2, locus loc)
10605 {
10606 gfc_code *this_code;
10607
10608 this_code = gfc_get_code (op);
10609 this_code->next = NULL;
10610 this_code->expr1 = gfc_copy_expr (expr1);
10611 this_code->expr2 = gfc_copy_expr (expr2);
10612 this_code->loc = loc;
10613 if (comp1 && comp2)
10614 {
10615 add_comp_ref (this_code->expr1, comp1);
10616 add_comp_ref (this_code->expr2, comp2);
10617 }
10618
10619 return this_code;
10620 }
10621
10622
10623 /* Makes a temporary variable expression based on the characteristics of
10624 a given variable expression. */
10625
10626 static gfc_expr*
10627 get_temp_from_expr (gfc_expr *e, gfc_namespace *ns)
10628 {
10629 static int serial = 0;
10630 char name[GFC_MAX_SYMBOL_LEN];
10631 gfc_symtree *tmp;
10632 gfc_array_spec *as;
10633 gfc_array_ref *aref;
10634 gfc_ref *ref;
10635
10636 sprintf (name, GFC_PREFIX("DA%d"), serial++);
10637 gfc_get_sym_tree (name, ns, &tmp, false);
10638 gfc_add_type (tmp->n.sym, &e->ts, NULL);
10639
10640 if (e->expr_type == EXPR_CONSTANT && e->ts.type == BT_CHARACTER)
10641 tmp->n.sym->ts.u.cl->length = gfc_get_int_expr (gfc_charlen_int_kind,
10642 NULL,
10643 e->value.character.length);
10644
10645 as = NULL;
10646 ref = NULL;
10647 aref = NULL;
10648
10649 /* Obtain the arrayspec for the temporary. */
10650 if (e->rank && e->expr_type != EXPR_ARRAY
10651 && e->expr_type != EXPR_FUNCTION
10652 && e->expr_type != EXPR_OP)
10653 {
10654 aref = gfc_find_array_ref (e);
10655 if (e->expr_type == EXPR_VARIABLE
10656 && e->symtree->n.sym->as == aref->as)
10657 as = aref->as;
10658 else
10659 {
10660 for (ref = e->ref; ref; ref = ref->next)
10661 if (ref->type == REF_COMPONENT
10662 && ref->u.c.component->as == aref->as)
10663 {
10664 as = aref->as;
10665 break;
10666 }
10667 }
10668 }
10669
10670 /* Add the attributes and the arrayspec to the temporary. */
10671 tmp->n.sym->attr = gfc_expr_attr (e);
10672 tmp->n.sym->attr.function = 0;
10673 tmp->n.sym->attr.result = 0;
10674 tmp->n.sym->attr.flavor = FL_VARIABLE;
10675 tmp->n.sym->attr.dummy = 0;
10676 tmp->n.sym->attr.intent = INTENT_UNKNOWN;
10677
10678 if (as)
10679 {
10680 tmp->n.sym->as = gfc_copy_array_spec (as);
10681 if (!ref)
10682 ref = e->ref;
10683 if (as->type == AS_DEFERRED)
10684 tmp->n.sym->attr.allocatable = 1;
10685 }
10686 else if (e->rank && (e->expr_type == EXPR_ARRAY
10687 || e->expr_type == EXPR_FUNCTION
10688 || e->expr_type == EXPR_OP))
10689 {
10690 tmp->n.sym->as = gfc_get_array_spec ();
10691 tmp->n.sym->as->type = AS_DEFERRED;
10692 tmp->n.sym->as->rank = e->rank;
10693 tmp->n.sym->attr.allocatable = 1;
10694 tmp->n.sym->attr.dimension = 1;
10695 }
10696 else
10697 tmp->n.sym->attr.dimension = 0;
10698
10699 gfc_set_sym_referenced (tmp->n.sym);
10700 gfc_commit_symbol (tmp->n.sym);
10701 e = gfc_lval_expr_from_sym (tmp->n.sym);
10702
10703 /* Should the lhs be a section, use its array ref for the
10704 temporary expression. */
10705 if (aref && aref->type != AR_FULL)
10706 {
10707 gfc_free_ref_list (e->ref);
10708 e->ref = gfc_copy_ref (ref);
10709 }
10710 return e;
10711 }
10712
10713
10714 /* Add one line of code to the code chain, making sure that 'head' and
10715 'tail' are appropriately updated. */
10716
10717 static void
10718 add_code_to_chain (gfc_code **this_code, gfc_code **head, gfc_code **tail)
10719 {
10720 gcc_assert (this_code);
10721 if (*head == NULL)
10722 *head = *tail = *this_code;
10723 else
10724 *tail = gfc_append_code (*tail, *this_code);
10725 *this_code = NULL;
10726 }
10727
10728
10729 /* Counts the potential number of part array references that would
10730 result from resolution of typebound defined assignments. */
10731
10732 static int
10733 nonscalar_typebound_assign (gfc_symbol *derived, int depth)
10734 {
10735 gfc_component *c;
10736 int c_depth = 0, t_depth;
10737
10738 for (c= derived->components; c; c = c->next)
10739 {
10740 if ((!gfc_bt_struct (c->ts.type)
10741 || c->attr.pointer
10742 || c->attr.allocatable
10743 || c->attr.proc_pointer_comp
10744 || c->attr.class_pointer
10745 || c->attr.proc_pointer)
10746 && !c->attr.defined_assign_comp)
10747 continue;
10748
10749 if (c->as && c_depth == 0)
10750 c_depth = 1;
10751
10752 if (c->ts.u.derived->attr.defined_assign_comp)
10753 t_depth = nonscalar_typebound_assign (c->ts.u.derived,
10754 c->as ? 1 : 0);
10755 else
10756 t_depth = 0;
10757
10758 c_depth = t_depth > c_depth ? t_depth : c_depth;
10759 }
10760 return depth + c_depth;
10761 }
10762
10763
10764 /* Implement 7.2.1.3 of the F08 standard:
10765 "An intrinsic assignment where the variable is of derived type is
10766 performed as if each component of the variable were assigned from the
10767 corresponding component of expr using pointer assignment (7.2.2) for
10768 each pointer component, defined assignment for each nonpointer
10769 nonallocatable component of a type that has a type-bound defined
10770 assignment consistent with the component, intrinsic assignment for
10771 each other nonpointer nonallocatable component, ..."
10772
10773 The pointer assignments are taken care of by the intrinsic
10774 assignment of the structure itself. This function recursively adds
10775 defined assignments where required. The recursion is accomplished
10776 by calling gfc_resolve_code.
10777
10778 When the lhs in a defined assignment has intent INOUT, we need a
10779 temporary for the lhs. In pseudo-code:
10780
10781 ! Only call function lhs once.
10782 if (lhs is not a constant or an variable)
10783 temp_x = expr2
10784 expr2 => temp_x
10785 ! Do the intrinsic assignment
10786 expr1 = expr2
10787 ! Now do the defined assignments
10788 do over components with typebound defined assignment [%cmp]
10789 #if one component's assignment procedure is INOUT
10790 t1 = expr1
10791 #if expr2 non-variable
10792 temp_x = expr2
10793 expr2 => temp_x
10794 # endif
10795 expr1 = expr2
10796 # for each cmp
10797 t1%cmp {defined=} expr2%cmp
10798 expr1%cmp = t1%cmp
10799 #else
10800 expr1 = expr2
10801
10802 # for each cmp
10803 expr1%cmp {defined=} expr2%cmp
10804 #endif
10805 */
10806
10807 /* The temporary assignments have to be put on top of the additional
10808 code to avoid the result being changed by the intrinsic assignment.
10809 */
10810 static int component_assignment_level = 0;
10811 static gfc_code *tmp_head = NULL, *tmp_tail = NULL;
10812
10813 static void
10814 generate_component_assignments (gfc_code **code, gfc_namespace *ns)
10815 {
10816 gfc_component *comp1, *comp2;
10817 gfc_code *this_code = NULL, *head = NULL, *tail = NULL;
10818 gfc_expr *t1;
10819 int error_count, depth;
10820
10821 gfc_get_errors (NULL, &error_count);
10822
10823 /* Filter out continuing processing after an error. */
10824 if (error_count
10825 || (*code)->expr1->ts.type != BT_DERIVED
10826 || (*code)->expr2->ts.type != BT_DERIVED)
10827 return;
10828
10829 /* TODO: Handle more than one part array reference in assignments. */
10830 depth = nonscalar_typebound_assign ((*code)->expr1->ts.u.derived,
10831 (*code)->expr1->rank ? 1 : 0);
10832 if (depth > 1)
10833 {
10834 gfc_warning (0, "TODO: type-bound defined assignment(s) at %L not "
10835 "done because multiple part array references would "
10836 "occur in intermediate expressions.", &(*code)->loc);
10837 return;
10838 }
10839
10840 component_assignment_level++;
10841
10842 /* Create a temporary so that functions get called only once. */
10843 if ((*code)->expr2->expr_type != EXPR_VARIABLE
10844 && (*code)->expr2->expr_type != EXPR_CONSTANT)
10845 {
10846 gfc_expr *tmp_expr;
10847
10848 /* Assign the rhs to the temporary. */
10849 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
10850 this_code = build_assignment (EXEC_ASSIGN,
10851 tmp_expr, (*code)->expr2,
10852 NULL, NULL, (*code)->loc);
10853 /* Add the code and substitute the rhs expression. */
10854 add_code_to_chain (&this_code, &tmp_head, &tmp_tail);
10855 gfc_free_expr ((*code)->expr2);
10856 (*code)->expr2 = tmp_expr;
10857 }
10858
10859 /* Do the intrinsic assignment. This is not needed if the lhs is one
10860 of the temporaries generated here, since the intrinsic assignment
10861 to the final result already does this. */
10862 if ((*code)->expr1->symtree->n.sym->name[2] != '@')
10863 {
10864 this_code = build_assignment (EXEC_ASSIGN,
10865 (*code)->expr1, (*code)->expr2,
10866 NULL, NULL, (*code)->loc);
10867 add_code_to_chain (&this_code, &head, &tail);
10868 }
10869
10870 comp1 = (*code)->expr1->ts.u.derived->components;
10871 comp2 = (*code)->expr2->ts.u.derived->components;
10872
10873 t1 = NULL;
10874 for (; comp1; comp1 = comp1->next, comp2 = comp2->next)
10875 {
10876 bool inout = false;
10877
10878 /* The intrinsic assignment does the right thing for pointers
10879 of all kinds and allocatable components. */
10880 if (!gfc_bt_struct (comp1->ts.type)
10881 || comp1->attr.pointer
10882 || comp1->attr.allocatable
10883 || comp1->attr.proc_pointer_comp
10884 || comp1->attr.class_pointer
10885 || comp1->attr.proc_pointer)
10886 continue;
10887
10888 /* Make an assigment for this component. */
10889 this_code = build_assignment (EXEC_ASSIGN,
10890 (*code)->expr1, (*code)->expr2,
10891 comp1, comp2, (*code)->loc);
10892
10893 /* Convert the assignment if there is a defined assignment for
10894 this type. Otherwise, using the call from gfc_resolve_code,
10895 recurse into its components. */
10896 gfc_resolve_code (this_code, ns);
10897
10898 if (this_code->op == EXEC_ASSIGN_CALL)
10899 {
10900 gfc_formal_arglist *dummy_args;
10901 gfc_symbol *rsym;
10902 /* Check that there is a typebound defined assignment. If not,
10903 then this must be a module defined assignment. We cannot
10904 use the defined_assign_comp attribute here because it must
10905 be this derived type that has the defined assignment and not
10906 a parent type. */
10907 if (!(comp1->ts.u.derived->f2k_derived
10908 && comp1->ts.u.derived->f2k_derived
10909 ->tb_op[INTRINSIC_ASSIGN]))
10910 {
10911 gfc_free_statements (this_code);
10912 this_code = NULL;
10913 continue;
10914 }
10915
10916 /* If the first argument of the subroutine has intent INOUT
10917 a temporary must be generated and used instead. */
10918 rsym = this_code->resolved_sym;
10919 dummy_args = gfc_sym_get_dummy_args (rsym);
10920 if (dummy_args
10921 && dummy_args->sym->attr.intent == INTENT_INOUT)
10922 {
10923 gfc_code *temp_code;
10924 inout = true;
10925
10926 /* Build the temporary required for the assignment and put
10927 it at the head of the generated code. */
10928 if (!t1)
10929 {
10930 t1 = get_temp_from_expr ((*code)->expr1, ns);
10931 temp_code = build_assignment (EXEC_ASSIGN,
10932 t1, (*code)->expr1,
10933 NULL, NULL, (*code)->loc);
10934
10935 /* For allocatable LHS, check whether it is allocated. Note
10936 that allocatable components with defined assignment are
10937 not yet support. See PR 57696. */
10938 if ((*code)->expr1->symtree->n.sym->attr.allocatable)
10939 {
10940 gfc_code *block;
10941 gfc_expr *e =
10942 gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
10943 block = gfc_get_code (EXEC_IF);
10944 block->block = gfc_get_code (EXEC_IF);
10945 block->block->expr1
10946 = gfc_build_intrinsic_call (ns,
10947 GFC_ISYM_ALLOCATED, "allocated",
10948 (*code)->loc, 1, e);
10949 block->block->next = temp_code;
10950 temp_code = block;
10951 }
10952 add_code_to_chain (&temp_code, &tmp_head, &tmp_tail);
10953 }
10954
10955 /* Replace the first actual arg with the component of the
10956 temporary. */
10957 gfc_free_expr (this_code->ext.actual->expr);
10958 this_code->ext.actual->expr = gfc_copy_expr (t1);
10959 add_comp_ref (this_code->ext.actual->expr, comp1);
10960
10961 /* If the LHS variable is allocatable and wasn't allocated and
10962 the temporary is allocatable, pointer assign the address of
10963 the freshly allocated LHS to the temporary. */
10964 if ((*code)->expr1->symtree->n.sym->attr.allocatable
10965 && gfc_expr_attr ((*code)->expr1).allocatable)
10966 {
10967 gfc_code *block;
10968 gfc_expr *cond;
10969
10970 cond = gfc_get_expr ();
10971 cond->ts.type = BT_LOGICAL;
10972 cond->ts.kind = gfc_default_logical_kind;
10973 cond->expr_type = EXPR_OP;
10974 cond->where = (*code)->loc;
10975 cond->value.op.op = INTRINSIC_NOT;
10976 cond->value.op.op1 = gfc_build_intrinsic_call (ns,
10977 GFC_ISYM_ALLOCATED, "allocated",
10978 (*code)->loc, 1, gfc_copy_expr (t1));
10979 block = gfc_get_code (EXEC_IF);
10980 block->block = gfc_get_code (EXEC_IF);
10981 block->block->expr1 = cond;
10982 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
10983 t1, (*code)->expr1,
10984 NULL, NULL, (*code)->loc);
10985 add_code_to_chain (&block, &head, &tail);
10986 }
10987 }
10988 }
10989 else if (this_code->op == EXEC_ASSIGN && !this_code->next)
10990 {
10991 /* Don't add intrinsic assignments since they are already
10992 effected by the intrinsic assignment of the structure. */
10993 gfc_free_statements (this_code);
10994 this_code = NULL;
10995 continue;
10996 }
10997
10998 add_code_to_chain (&this_code, &head, &tail);
10999
11000 if (t1 && inout)
11001 {
11002 /* Transfer the value to the final result. */
11003 this_code = build_assignment (EXEC_ASSIGN,
11004 (*code)->expr1, t1,
11005 comp1, comp2, (*code)->loc);
11006 add_code_to_chain (&this_code, &head, &tail);
11007 }
11008 }
11009
11010 /* Put the temporary assignments at the top of the generated code. */
11011 if (tmp_head && component_assignment_level == 1)
11012 {
11013 gfc_append_code (tmp_head, head);
11014 head = tmp_head;
11015 tmp_head = tmp_tail = NULL;
11016 }
11017
11018 // If we did a pointer assignment - thus, we need to ensure that the LHS is
11019 // not accidentally deallocated. Hence, nullify t1.
11020 if (t1 && (*code)->expr1->symtree->n.sym->attr.allocatable
11021 && gfc_expr_attr ((*code)->expr1).allocatable)
11022 {
11023 gfc_code *block;
11024 gfc_expr *cond;
11025 gfc_expr *e;
11026
11027 e = gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
11028 cond = gfc_build_intrinsic_call (ns, GFC_ISYM_ASSOCIATED, "associated",
11029 (*code)->loc, 2, gfc_copy_expr (t1), e);
11030 block = gfc_get_code (EXEC_IF);
11031 block->block = gfc_get_code (EXEC_IF);
11032 block->block->expr1 = cond;
11033 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
11034 t1, gfc_get_null_expr (&(*code)->loc),
11035 NULL, NULL, (*code)->loc);
11036 gfc_append_code (tail, block);
11037 tail = block;
11038 }
11039
11040 /* Now attach the remaining code chain to the input code. Step on
11041 to the end of the new code since resolution is complete. */
11042 gcc_assert ((*code)->op == EXEC_ASSIGN);
11043 tail->next = (*code)->next;
11044 /* Overwrite 'code' because this would place the intrinsic assignment
11045 before the temporary for the lhs is created. */
11046 gfc_free_expr ((*code)->expr1);
11047 gfc_free_expr ((*code)->expr2);
11048 **code = *head;
11049 if (head != tail)
11050 free (head);
11051 *code = tail;
11052
11053 component_assignment_level--;
11054 }
11055
11056
11057 /* F2008: Pointer function assignments are of the form:
11058 ptr_fcn (args) = expr
11059 This function breaks these assignments into two statements:
11060 temporary_pointer => ptr_fcn(args)
11061 temporary_pointer = expr */
11062
11063 static bool
11064 resolve_ptr_fcn_assign (gfc_code **code, gfc_namespace *ns)
11065 {
11066 gfc_expr *tmp_ptr_expr;
11067 gfc_code *this_code;
11068 gfc_component *comp;
11069 gfc_symbol *s;
11070
11071 if ((*code)->expr1->expr_type != EXPR_FUNCTION)
11072 return false;
11073
11074 /* Even if standard does not support this feature, continue to build
11075 the two statements to avoid upsetting frontend_passes.c. */
11076 gfc_notify_std (GFC_STD_F2008, "Pointer procedure assignment at "
11077 "%L", &(*code)->loc);
11078
11079 comp = gfc_get_proc_ptr_comp ((*code)->expr1);
11080
11081 if (comp)
11082 s = comp->ts.interface;
11083 else
11084 s = (*code)->expr1->symtree->n.sym;
11085
11086 if (s == NULL || !s->result->attr.pointer)
11087 {
11088 gfc_error ("The function result on the lhs of the assignment at "
11089 "%L must have the pointer attribute.",
11090 &(*code)->expr1->where);
11091 (*code)->op = EXEC_NOP;
11092 return false;
11093 }
11094
11095 tmp_ptr_expr = get_temp_from_expr ((*code)->expr2, ns);
11096
11097 /* get_temp_from_expression is set up for ordinary assignments. To that
11098 end, where array bounds are not known, arrays are made allocatable.
11099 Change the temporary to a pointer here. */
11100 tmp_ptr_expr->symtree->n.sym->attr.pointer = 1;
11101 tmp_ptr_expr->symtree->n.sym->attr.allocatable = 0;
11102 tmp_ptr_expr->where = (*code)->loc;
11103
11104 this_code = build_assignment (EXEC_ASSIGN,
11105 tmp_ptr_expr, (*code)->expr2,
11106 NULL, NULL, (*code)->loc);
11107 this_code->next = (*code)->next;
11108 (*code)->next = this_code;
11109 (*code)->op = EXEC_POINTER_ASSIGN;
11110 (*code)->expr2 = (*code)->expr1;
11111 (*code)->expr1 = tmp_ptr_expr;
11112
11113 return true;
11114 }
11115
11116
11117 /* Deferred character length assignments from an operator expression
11118 require a temporary because the character length of the lhs can
11119 change in the course of the assignment. */
11120
11121 static bool
11122 deferred_op_assign (gfc_code **code, gfc_namespace *ns)
11123 {
11124 gfc_expr *tmp_expr;
11125 gfc_code *this_code;
11126
11127 if (!((*code)->expr1->ts.type == BT_CHARACTER
11128 && (*code)->expr1->ts.deferred && (*code)->expr1->rank
11129 && (*code)->expr2->expr_type == EXPR_OP))
11130 return false;
11131
11132 if (!gfc_check_dependency ((*code)->expr1, (*code)->expr2, 1))
11133 return false;
11134
11135 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
11136 tmp_expr->where = (*code)->loc;
11137
11138 /* A new charlen is required to ensure that the variable string
11139 length is different to that of the original lhs. */
11140 tmp_expr->ts.u.cl = gfc_get_charlen();
11141 tmp_expr->symtree->n.sym->ts.u.cl = tmp_expr->ts.u.cl;
11142 tmp_expr->ts.u.cl->next = (*code)->expr2->ts.u.cl->next;
11143 (*code)->expr2->ts.u.cl->next = tmp_expr->ts.u.cl;
11144
11145 tmp_expr->symtree->n.sym->ts.deferred = 1;
11146
11147 this_code = build_assignment (EXEC_ASSIGN,
11148 (*code)->expr1,
11149 gfc_copy_expr (tmp_expr),
11150 NULL, NULL, (*code)->loc);
11151
11152 (*code)->expr1 = tmp_expr;
11153
11154 this_code->next = (*code)->next;
11155 (*code)->next = this_code;
11156
11157 return true;
11158 }
11159
11160
11161 /* Given a block of code, recursively resolve everything pointed to by this
11162 code block. */
11163
11164 void
11165 gfc_resolve_code (gfc_code *code, gfc_namespace *ns)
11166 {
11167 int omp_workshare_save;
11168 int forall_save, do_concurrent_save;
11169 code_stack frame;
11170 bool t;
11171
11172 frame.prev = cs_base;
11173 frame.head = code;
11174 cs_base = &frame;
11175
11176 find_reachable_labels (code);
11177
11178 for (; code; code = code->next)
11179 {
11180 frame.current = code;
11181 forall_save = forall_flag;
11182 do_concurrent_save = gfc_do_concurrent_flag;
11183
11184 if (code->op == EXEC_FORALL)
11185 {
11186 forall_flag = 1;
11187 gfc_resolve_forall (code, ns, forall_save);
11188 forall_flag = 2;
11189 }
11190 else if (code->block)
11191 {
11192 omp_workshare_save = -1;
11193 switch (code->op)
11194 {
11195 case EXEC_OACC_PARALLEL_LOOP:
11196 case EXEC_OACC_PARALLEL:
11197 case EXEC_OACC_KERNELS_LOOP:
11198 case EXEC_OACC_KERNELS:
11199 case EXEC_OACC_DATA:
11200 case EXEC_OACC_HOST_DATA:
11201 case EXEC_OACC_LOOP:
11202 gfc_resolve_oacc_blocks (code, ns);
11203 break;
11204 case EXEC_OMP_PARALLEL_WORKSHARE:
11205 omp_workshare_save = omp_workshare_flag;
11206 omp_workshare_flag = 1;
11207 gfc_resolve_omp_parallel_blocks (code, ns);
11208 break;
11209 case EXEC_OMP_PARALLEL:
11210 case EXEC_OMP_PARALLEL_DO:
11211 case EXEC_OMP_PARALLEL_DO_SIMD:
11212 case EXEC_OMP_PARALLEL_SECTIONS:
11213 case EXEC_OMP_TARGET_PARALLEL:
11214 case EXEC_OMP_TARGET_PARALLEL_DO:
11215 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11216 case EXEC_OMP_TARGET_TEAMS:
11217 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11218 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11219 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11220 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11221 case EXEC_OMP_TASK:
11222 case EXEC_OMP_TASKLOOP:
11223 case EXEC_OMP_TASKLOOP_SIMD:
11224 case EXEC_OMP_TEAMS:
11225 case EXEC_OMP_TEAMS_DISTRIBUTE:
11226 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11227 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11228 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11229 omp_workshare_save = omp_workshare_flag;
11230 omp_workshare_flag = 0;
11231 gfc_resolve_omp_parallel_blocks (code, ns);
11232 break;
11233 case EXEC_OMP_DISTRIBUTE:
11234 case EXEC_OMP_DISTRIBUTE_SIMD:
11235 case EXEC_OMP_DO:
11236 case EXEC_OMP_DO_SIMD:
11237 case EXEC_OMP_SIMD:
11238 case EXEC_OMP_TARGET_SIMD:
11239 gfc_resolve_omp_do_blocks (code, ns);
11240 break;
11241 case EXEC_SELECT_TYPE:
11242 /* Blocks are handled in resolve_select_type because we have
11243 to transform the SELECT TYPE into ASSOCIATE first. */
11244 break;
11245 case EXEC_DO_CONCURRENT:
11246 gfc_do_concurrent_flag = 1;
11247 gfc_resolve_blocks (code->block, ns);
11248 gfc_do_concurrent_flag = 2;
11249 break;
11250 case EXEC_OMP_WORKSHARE:
11251 omp_workshare_save = omp_workshare_flag;
11252 omp_workshare_flag = 1;
11253 /* FALL THROUGH */
11254 default:
11255 gfc_resolve_blocks (code->block, ns);
11256 break;
11257 }
11258
11259 if (omp_workshare_save != -1)
11260 omp_workshare_flag = omp_workshare_save;
11261 }
11262 start:
11263 t = true;
11264 if (code->op != EXEC_COMPCALL && code->op != EXEC_CALL_PPC)
11265 t = gfc_resolve_expr (code->expr1);
11266 forall_flag = forall_save;
11267 gfc_do_concurrent_flag = do_concurrent_save;
11268
11269 if (!gfc_resolve_expr (code->expr2))
11270 t = false;
11271
11272 if (code->op == EXEC_ALLOCATE
11273 && !gfc_resolve_expr (code->expr3))
11274 t = false;
11275
11276 switch (code->op)
11277 {
11278 case EXEC_NOP:
11279 case EXEC_END_BLOCK:
11280 case EXEC_END_NESTED_BLOCK:
11281 case EXEC_CYCLE:
11282 case EXEC_PAUSE:
11283 case EXEC_STOP:
11284 case EXEC_ERROR_STOP:
11285 case EXEC_EXIT:
11286 case EXEC_CONTINUE:
11287 case EXEC_DT_END:
11288 case EXEC_ASSIGN_CALL:
11289 break;
11290
11291 case EXEC_CRITICAL:
11292 resolve_critical (code);
11293 break;
11294
11295 case EXEC_SYNC_ALL:
11296 case EXEC_SYNC_IMAGES:
11297 case EXEC_SYNC_MEMORY:
11298 resolve_sync (code);
11299 break;
11300
11301 case EXEC_LOCK:
11302 case EXEC_UNLOCK:
11303 case EXEC_EVENT_POST:
11304 case EXEC_EVENT_WAIT:
11305 resolve_lock_unlock_event (code);
11306 break;
11307
11308 case EXEC_FAIL_IMAGE:
11309 case EXEC_FORM_TEAM:
11310 case EXEC_CHANGE_TEAM:
11311 case EXEC_END_TEAM:
11312 case EXEC_SYNC_TEAM:
11313 break;
11314
11315 case EXEC_ENTRY:
11316 /* Keep track of which entry we are up to. */
11317 current_entry_id = code->ext.entry->id;
11318 break;
11319
11320 case EXEC_WHERE:
11321 resolve_where (code, NULL);
11322 break;
11323
11324 case EXEC_GOTO:
11325 if (code->expr1 != NULL)
11326 {
11327 if (code->expr1->ts.type != BT_INTEGER)
11328 gfc_error ("ASSIGNED GOTO statement at %L requires an "
11329 "INTEGER variable", &code->expr1->where);
11330 else if (code->expr1->symtree->n.sym->attr.assign != 1)
11331 gfc_error ("Variable %qs has not been assigned a target "
11332 "label at %L", code->expr1->symtree->n.sym->name,
11333 &code->expr1->where);
11334 }
11335 else
11336 resolve_branch (code->label1, code);
11337 break;
11338
11339 case EXEC_RETURN:
11340 if (code->expr1 != NULL
11341 && (code->expr1->ts.type != BT_INTEGER || code->expr1->rank))
11342 gfc_error ("Alternate RETURN statement at %L requires a SCALAR-"
11343 "INTEGER return specifier", &code->expr1->where);
11344 break;
11345
11346 case EXEC_INIT_ASSIGN:
11347 case EXEC_END_PROCEDURE:
11348 break;
11349
11350 case EXEC_ASSIGN:
11351 if (!t)
11352 break;
11353
11354 /* Remove a GFC_ISYM_CAF_GET inserted for a coindexed variable on
11355 the LHS. */
11356 if (code->expr1->expr_type == EXPR_FUNCTION
11357 && code->expr1->value.function.isym
11358 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
11359 remove_caf_get_intrinsic (code->expr1);
11360
11361 /* If this is a pointer function in an lvalue variable context,
11362 the new code will have to be resolved afresh. This is also the
11363 case with an error, where the code is transformed into NOP to
11364 prevent ICEs downstream. */
11365 if (resolve_ptr_fcn_assign (&code, ns)
11366 || code->op == EXEC_NOP)
11367 goto start;
11368
11369 if (!gfc_check_vardef_context (code->expr1, false, false, false,
11370 _("assignment")))
11371 break;
11372
11373 if (resolve_ordinary_assign (code, ns))
11374 {
11375 if (code->op == EXEC_COMPCALL)
11376 goto compcall;
11377 else
11378 goto call;
11379 }
11380
11381 /* Check for dependencies in deferred character length array
11382 assignments and generate a temporary, if necessary. */
11383 if (code->op == EXEC_ASSIGN && deferred_op_assign (&code, ns))
11384 break;
11385
11386 /* F03 7.4.1.3 for non-allocatable, non-pointer components. */
11387 if (code->op != EXEC_CALL && code->expr1->ts.type == BT_DERIVED
11388 && code->expr1->ts.u.derived
11389 && code->expr1->ts.u.derived->attr.defined_assign_comp)
11390 generate_component_assignments (&code, ns);
11391
11392 break;
11393
11394 case EXEC_LABEL_ASSIGN:
11395 if (code->label1->defined == ST_LABEL_UNKNOWN)
11396 gfc_error ("Label %d referenced at %L is never defined",
11397 code->label1->value, &code->label1->where);
11398 if (t
11399 && (code->expr1->expr_type != EXPR_VARIABLE
11400 || code->expr1->symtree->n.sym->ts.type != BT_INTEGER
11401 || code->expr1->symtree->n.sym->ts.kind
11402 != gfc_default_integer_kind
11403 || code->expr1->symtree->n.sym->as != NULL))
11404 gfc_error ("ASSIGN statement at %L requires a scalar "
11405 "default INTEGER variable", &code->expr1->where);
11406 break;
11407
11408 case EXEC_POINTER_ASSIGN:
11409 {
11410 gfc_expr* e;
11411
11412 if (!t)
11413 break;
11414
11415 /* This is both a variable definition and pointer assignment
11416 context, so check both of them. For rank remapping, a final
11417 array ref may be present on the LHS and fool gfc_expr_attr
11418 used in gfc_check_vardef_context. Remove it. */
11419 e = remove_last_array_ref (code->expr1);
11420 t = gfc_check_vardef_context (e, true, false, false,
11421 _("pointer assignment"));
11422 if (t)
11423 t = gfc_check_vardef_context (e, false, false, false,
11424 _("pointer assignment"));
11425 gfc_free_expr (e);
11426
11427 t = gfc_check_pointer_assign (code->expr1, code->expr2, !t) && t;
11428
11429 if (!t)
11430 break;
11431
11432 /* Assigning a class object always is a regular assign. */
11433 if (code->expr2->ts.type == BT_CLASS
11434 && code->expr1->ts.type == BT_CLASS
11435 && !CLASS_DATA (code->expr2)->attr.dimension
11436 && !(gfc_expr_attr (code->expr1).proc_pointer
11437 && code->expr2->expr_type == EXPR_VARIABLE
11438 && code->expr2->symtree->n.sym->attr.flavor
11439 == FL_PROCEDURE))
11440 code->op = EXEC_ASSIGN;
11441 break;
11442 }
11443
11444 case EXEC_ARITHMETIC_IF:
11445 {
11446 gfc_expr *e = code->expr1;
11447
11448 gfc_resolve_expr (e);
11449 if (e->expr_type == EXPR_NULL)
11450 gfc_error ("Invalid NULL at %L", &e->where);
11451
11452 if (t && (e->rank > 0
11453 || !(e->ts.type == BT_REAL || e->ts.type == BT_INTEGER)))
11454 gfc_error ("Arithmetic IF statement at %L requires a scalar "
11455 "REAL or INTEGER expression", &e->where);
11456
11457 resolve_branch (code->label1, code);
11458 resolve_branch (code->label2, code);
11459 resolve_branch (code->label3, code);
11460 }
11461 break;
11462
11463 case EXEC_IF:
11464 if (t && code->expr1 != NULL
11465 && (code->expr1->ts.type != BT_LOGICAL
11466 || code->expr1->rank != 0))
11467 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
11468 &code->expr1->where);
11469 break;
11470
11471 case EXEC_CALL:
11472 call:
11473 resolve_call (code);
11474 break;
11475
11476 case EXEC_COMPCALL:
11477 compcall:
11478 resolve_typebound_subroutine (code);
11479 break;
11480
11481 case EXEC_CALL_PPC:
11482 resolve_ppc_call (code);
11483 break;
11484
11485 case EXEC_SELECT:
11486 /* Select is complicated. Also, a SELECT construct could be
11487 a transformed computed GOTO. */
11488 resolve_select (code, false);
11489 break;
11490
11491 case EXEC_SELECT_TYPE:
11492 resolve_select_type (code, ns);
11493 break;
11494
11495 case EXEC_BLOCK:
11496 resolve_block_construct (code);
11497 break;
11498
11499 case EXEC_DO:
11500 if (code->ext.iterator != NULL)
11501 {
11502 gfc_iterator *iter = code->ext.iterator;
11503 if (gfc_resolve_iterator (iter, true, false))
11504 gfc_resolve_do_iterator (code, iter->var->symtree->n.sym,
11505 true);
11506 }
11507 break;
11508
11509 case EXEC_DO_WHILE:
11510 if (code->expr1 == NULL)
11511 gfc_internal_error ("gfc_resolve_code(): No expression on "
11512 "DO WHILE");
11513 if (t
11514 && (code->expr1->rank != 0
11515 || code->expr1->ts.type != BT_LOGICAL))
11516 gfc_error ("Exit condition of DO WHILE loop at %L must be "
11517 "a scalar LOGICAL expression", &code->expr1->where);
11518 break;
11519
11520 case EXEC_ALLOCATE:
11521 if (t)
11522 resolve_allocate_deallocate (code, "ALLOCATE");
11523
11524 break;
11525
11526 case EXEC_DEALLOCATE:
11527 if (t)
11528 resolve_allocate_deallocate (code, "DEALLOCATE");
11529
11530 break;
11531
11532 case EXEC_OPEN:
11533 if (!gfc_resolve_open (code->ext.open))
11534 break;
11535
11536 resolve_branch (code->ext.open->err, code);
11537 break;
11538
11539 case EXEC_CLOSE:
11540 if (!gfc_resolve_close (code->ext.close))
11541 break;
11542
11543 resolve_branch (code->ext.close->err, code);
11544 break;
11545
11546 case EXEC_BACKSPACE:
11547 case EXEC_ENDFILE:
11548 case EXEC_REWIND:
11549 case EXEC_FLUSH:
11550 if (!gfc_resolve_filepos (code->ext.filepos, &code->loc))
11551 break;
11552
11553 resolve_branch (code->ext.filepos->err, code);
11554 break;
11555
11556 case EXEC_INQUIRE:
11557 if (!gfc_resolve_inquire (code->ext.inquire))
11558 break;
11559
11560 resolve_branch (code->ext.inquire->err, code);
11561 break;
11562
11563 case EXEC_IOLENGTH:
11564 gcc_assert (code->ext.inquire != NULL);
11565 if (!gfc_resolve_inquire (code->ext.inquire))
11566 break;
11567
11568 resolve_branch (code->ext.inquire->err, code);
11569 break;
11570
11571 case EXEC_WAIT:
11572 if (!gfc_resolve_wait (code->ext.wait))
11573 break;
11574
11575 resolve_branch (code->ext.wait->err, code);
11576 resolve_branch (code->ext.wait->end, code);
11577 resolve_branch (code->ext.wait->eor, code);
11578 break;
11579
11580 case EXEC_READ:
11581 case EXEC_WRITE:
11582 if (!gfc_resolve_dt (code->ext.dt, &code->loc))
11583 break;
11584
11585 resolve_branch (code->ext.dt->err, code);
11586 resolve_branch (code->ext.dt->end, code);
11587 resolve_branch (code->ext.dt->eor, code);
11588 break;
11589
11590 case EXEC_TRANSFER:
11591 resolve_transfer (code);
11592 break;
11593
11594 case EXEC_DO_CONCURRENT:
11595 case EXEC_FORALL:
11596 resolve_forall_iterators (code->ext.forall_iterator);
11597
11598 if (code->expr1 != NULL
11599 && (code->expr1->ts.type != BT_LOGICAL || code->expr1->rank))
11600 gfc_error ("FORALL mask clause at %L requires a scalar LOGICAL "
11601 "expression", &code->expr1->where);
11602 break;
11603
11604 case EXEC_OACC_PARALLEL_LOOP:
11605 case EXEC_OACC_PARALLEL:
11606 case EXEC_OACC_KERNELS_LOOP:
11607 case EXEC_OACC_KERNELS:
11608 case EXEC_OACC_DATA:
11609 case EXEC_OACC_HOST_DATA:
11610 case EXEC_OACC_LOOP:
11611 case EXEC_OACC_UPDATE:
11612 case EXEC_OACC_WAIT:
11613 case EXEC_OACC_CACHE:
11614 case EXEC_OACC_ENTER_DATA:
11615 case EXEC_OACC_EXIT_DATA:
11616 case EXEC_OACC_ATOMIC:
11617 case EXEC_OACC_DECLARE:
11618 gfc_resolve_oacc_directive (code, ns);
11619 break;
11620
11621 case EXEC_OMP_ATOMIC:
11622 case EXEC_OMP_BARRIER:
11623 case EXEC_OMP_CANCEL:
11624 case EXEC_OMP_CANCELLATION_POINT:
11625 case EXEC_OMP_CRITICAL:
11626 case EXEC_OMP_FLUSH:
11627 case EXEC_OMP_DISTRIBUTE:
11628 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
11629 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
11630 case EXEC_OMP_DISTRIBUTE_SIMD:
11631 case EXEC_OMP_DO:
11632 case EXEC_OMP_DO_SIMD:
11633 case EXEC_OMP_MASTER:
11634 case EXEC_OMP_ORDERED:
11635 case EXEC_OMP_SECTIONS:
11636 case EXEC_OMP_SIMD:
11637 case EXEC_OMP_SINGLE:
11638 case EXEC_OMP_TARGET:
11639 case EXEC_OMP_TARGET_DATA:
11640 case EXEC_OMP_TARGET_ENTER_DATA:
11641 case EXEC_OMP_TARGET_EXIT_DATA:
11642 case EXEC_OMP_TARGET_PARALLEL:
11643 case EXEC_OMP_TARGET_PARALLEL_DO:
11644 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11645 case EXEC_OMP_TARGET_SIMD:
11646 case EXEC_OMP_TARGET_TEAMS:
11647 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11648 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11649 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11650 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11651 case EXEC_OMP_TARGET_UPDATE:
11652 case EXEC_OMP_TASK:
11653 case EXEC_OMP_TASKGROUP:
11654 case EXEC_OMP_TASKLOOP:
11655 case EXEC_OMP_TASKLOOP_SIMD:
11656 case EXEC_OMP_TASKWAIT:
11657 case EXEC_OMP_TASKYIELD:
11658 case EXEC_OMP_TEAMS:
11659 case EXEC_OMP_TEAMS_DISTRIBUTE:
11660 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11661 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11662 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11663 case EXEC_OMP_WORKSHARE:
11664 gfc_resolve_omp_directive (code, ns);
11665 break;
11666
11667 case EXEC_OMP_PARALLEL:
11668 case EXEC_OMP_PARALLEL_DO:
11669 case EXEC_OMP_PARALLEL_DO_SIMD:
11670 case EXEC_OMP_PARALLEL_SECTIONS:
11671 case EXEC_OMP_PARALLEL_WORKSHARE:
11672 omp_workshare_save = omp_workshare_flag;
11673 omp_workshare_flag = 0;
11674 gfc_resolve_omp_directive (code, ns);
11675 omp_workshare_flag = omp_workshare_save;
11676 break;
11677
11678 default:
11679 gfc_internal_error ("gfc_resolve_code(): Bad statement code");
11680 }
11681 }
11682
11683 cs_base = frame.prev;
11684 }
11685
11686
11687 /* Resolve initial values and make sure they are compatible with
11688 the variable. */
11689
11690 static void
11691 resolve_values (gfc_symbol *sym)
11692 {
11693 bool t;
11694
11695 if (sym->value == NULL)
11696 return;
11697
11698 if (sym->value->expr_type == EXPR_STRUCTURE)
11699 t= resolve_structure_cons (sym->value, 1);
11700 else
11701 t = gfc_resolve_expr (sym->value);
11702
11703 if (!t)
11704 return;
11705
11706 gfc_check_assign_symbol (sym, NULL, sym->value);
11707 }
11708
11709
11710 /* Verify any BIND(C) derived types in the namespace so we can report errors
11711 for them once, rather than for each variable declared of that type. */
11712
11713 static void
11714 resolve_bind_c_derived_types (gfc_symbol *derived_sym)
11715 {
11716 if (derived_sym != NULL && derived_sym->attr.flavor == FL_DERIVED
11717 && derived_sym->attr.is_bind_c == 1)
11718 verify_bind_c_derived_type (derived_sym);
11719
11720 return;
11721 }
11722
11723
11724 /* Check the interfaces of DTIO procedures associated with derived
11725 type 'sym'. These procedures can either have typebound bindings or
11726 can appear in DTIO generic interfaces. */
11727
11728 static void
11729 gfc_verify_DTIO_procedures (gfc_symbol *sym)
11730 {
11731 if (!sym || sym->attr.flavor != FL_DERIVED)
11732 return;
11733
11734 gfc_check_dtio_interfaces (sym);
11735
11736 return;
11737 }
11738
11739 /* Verify that any binding labels used in a given namespace do not collide
11740 with the names or binding labels of any global symbols. Multiple INTERFACE
11741 for the same procedure are permitted. */
11742
11743 static void
11744 gfc_verify_binding_labels (gfc_symbol *sym)
11745 {
11746 gfc_gsymbol *gsym;
11747 const char *module;
11748
11749 if (!sym || !sym->attr.is_bind_c || sym->attr.is_iso_c
11750 || sym->attr.flavor == FL_DERIVED || !sym->binding_label)
11751 return;
11752
11753 gsym = gfc_find_case_gsymbol (gfc_gsym_root, sym->binding_label);
11754
11755 if (sym->module)
11756 module = sym->module;
11757 else if (sym->ns && sym->ns->proc_name
11758 && sym->ns->proc_name->attr.flavor == FL_MODULE)
11759 module = sym->ns->proc_name->name;
11760 else if (sym->ns && sym->ns->parent
11761 && sym->ns && sym->ns->parent->proc_name
11762 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
11763 module = sym->ns->parent->proc_name->name;
11764 else
11765 module = NULL;
11766
11767 if (!gsym
11768 || (!gsym->defined
11769 && (gsym->type == GSYM_FUNCTION || gsym->type == GSYM_SUBROUTINE)))
11770 {
11771 if (!gsym)
11772 gsym = gfc_get_gsymbol (sym->binding_label);
11773 gsym->where = sym->declared_at;
11774 gsym->sym_name = sym->name;
11775 gsym->binding_label = sym->binding_label;
11776 gsym->ns = sym->ns;
11777 gsym->mod_name = module;
11778 if (sym->attr.function)
11779 gsym->type = GSYM_FUNCTION;
11780 else if (sym->attr.subroutine)
11781 gsym->type = GSYM_SUBROUTINE;
11782 /* Mark as variable/procedure as defined, unless its an INTERFACE. */
11783 gsym->defined = sym->attr.if_source != IFSRC_IFBODY;
11784 return;
11785 }
11786
11787 if (sym->attr.flavor == FL_VARIABLE && gsym->type != GSYM_UNKNOWN)
11788 {
11789 gfc_error ("Variable %qs with binding label %qs at %L uses the same global "
11790 "identifier as entity at %L", sym->name,
11791 sym->binding_label, &sym->declared_at, &gsym->where);
11792 /* Clear the binding label to prevent checking multiple times. */
11793 sym->binding_label = NULL;
11794
11795 }
11796 else if (sym->attr.flavor == FL_VARIABLE && module
11797 && (strcmp (module, gsym->mod_name) != 0
11798 || strcmp (sym->name, gsym->sym_name) != 0))
11799 {
11800 /* This can only happen if the variable is defined in a module - if it
11801 isn't the same module, reject it. */
11802 gfc_error ("Variable %qs from module %qs with binding label %qs at %L "
11803 "uses the same global identifier as entity at %L from module %qs",
11804 sym->name, module, sym->binding_label,
11805 &sym->declared_at, &gsym->where, gsym->mod_name);
11806 sym->binding_label = NULL;
11807 }
11808 else if ((sym->attr.function || sym->attr.subroutine)
11809 && ((gsym->type != GSYM_SUBROUTINE && gsym->type != GSYM_FUNCTION)
11810 || (gsym->defined && sym->attr.if_source != IFSRC_IFBODY))
11811 && sym != gsym->ns->proc_name
11812 && (module != gsym->mod_name
11813 || strcmp (gsym->sym_name, sym->name) != 0
11814 || (module && strcmp (module, gsym->mod_name) != 0)))
11815 {
11816 /* Print an error if the procedure is defined multiple times; we have to
11817 exclude references to the same procedure via module association or
11818 multiple checks for the same procedure. */
11819 gfc_error ("Procedure %qs with binding label %qs at %L uses the same "
11820 "global identifier as entity at %L", sym->name,
11821 sym->binding_label, &sym->declared_at, &gsym->where);
11822 sym->binding_label = NULL;
11823 }
11824 }
11825
11826
11827 /* Resolve an index expression. */
11828
11829 static bool
11830 resolve_index_expr (gfc_expr *e)
11831 {
11832 if (!gfc_resolve_expr (e))
11833 return false;
11834
11835 if (!gfc_simplify_expr (e, 0))
11836 return false;
11837
11838 if (!gfc_specification_expr (e))
11839 return false;
11840
11841 return true;
11842 }
11843
11844
11845 /* Resolve a charlen structure. */
11846
11847 static bool
11848 resolve_charlen (gfc_charlen *cl)
11849 {
11850 int k;
11851 bool saved_specification_expr;
11852
11853 if (cl->resolved)
11854 return true;
11855
11856 cl->resolved = 1;
11857 saved_specification_expr = specification_expr;
11858 specification_expr = true;
11859
11860 if (cl->length_from_typespec)
11861 {
11862 if (!gfc_resolve_expr (cl->length))
11863 {
11864 specification_expr = saved_specification_expr;
11865 return false;
11866 }
11867
11868 if (!gfc_simplify_expr (cl->length, 0))
11869 {
11870 specification_expr = saved_specification_expr;
11871 return false;
11872 }
11873
11874 /* cl->length has been resolved. It should have an integer type. */
11875 if (cl->length->ts.type != BT_INTEGER)
11876 {
11877 gfc_error ("Scalar INTEGER expression expected at %L",
11878 &cl->length->where);
11879 return false;
11880 }
11881 }
11882 else
11883 {
11884 if (!resolve_index_expr (cl->length))
11885 {
11886 specification_expr = saved_specification_expr;
11887 return false;
11888 }
11889 }
11890
11891 /* F2008, 4.4.3.2: If the character length parameter value evaluates to
11892 a negative value, the length of character entities declared is zero. */
11893 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
11894 && mpz_sgn (cl->length->value.integer) < 0)
11895 gfc_replace_expr (cl->length,
11896 gfc_get_int_expr (gfc_charlen_int_kind, NULL, 0));
11897
11898 /* Check that the character length is not too large. */
11899 k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
11900 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
11901 && cl->length->ts.type == BT_INTEGER
11902 && mpz_cmp (cl->length->value.integer, gfc_integer_kinds[k].huge) > 0)
11903 {
11904 gfc_error ("String length at %L is too large", &cl->length->where);
11905 specification_expr = saved_specification_expr;
11906 return false;
11907 }
11908
11909 specification_expr = saved_specification_expr;
11910 return true;
11911 }
11912
11913
11914 /* Test for non-constant shape arrays. */
11915
11916 static bool
11917 is_non_constant_shape_array (gfc_symbol *sym)
11918 {
11919 gfc_expr *e;
11920 int i;
11921 bool not_constant;
11922
11923 not_constant = false;
11924 if (sym->as != NULL)
11925 {
11926 /* Unfortunately, !gfc_is_compile_time_shape hits a legal case that
11927 has not been simplified; parameter array references. Do the
11928 simplification now. */
11929 for (i = 0; i < sym->as->rank + sym->as->corank; i++)
11930 {
11931 e = sym->as->lower[i];
11932 if (e && (!resolve_index_expr(e)
11933 || !gfc_is_constant_expr (e)))
11934 not_constant = true;
11935 e = sym->as->upper[i];
11936 if (e && (!resolve_index_expr(e)
11937 || !gfc_is_constant_expr (e)))
11938 not_constant = true;
11939 }
11940 }
11941 return not_constant;
11942 }
11943
11944 /* Given a symbol and an initialization expression, add code to initialize
11945 the symbol to the function entry. */
11946 static void
11947 build_init_assign (gfc_symbol *sym, gfc_expr *init)
11948 {
11949 gfc_expr *lval;
11950 gfc_code *init_st;
11951 gfc_namespace *ns = sym->ns;
11952
11953 /* Search for the function namespace if this is a contained
11954 function without an explicit result. */
11955 if (sym->attr.function && sym == sym->result
11956 && sym->name != sym->ns->proc_name->name)
11957 {
11958 ns = ns->contained;
11959 for (;ns; ns = ns->sibling)
11960 if (strcmp (ns->proc_name->name, sym->name) == 0)
11961 break;
11962 }
11963
11964 if (ns == NULL)
11965 {
11966 gfc_free_expr (init);
11967 return;
11968 }
11969
11970 /* Build an l-value expression for the result. */
11971 lval = gfc_lval_expr_from_sym (sym);
11972
11973 /* Add the code at scope entry. */
11974 init_st = gfc_get_code (EXEC_INIT_ASSIGN);
11975 init_st->next = ns->code;
11976 ns->code = init_st;
11977
11978 /* Assign the default initializer to the l-value. */
11979 init_st->loc = sym->declared_at;
11980 init_st->expr1 = lval;
11981 init_st->expr2 = init;
11982 }
11983
11984
11985 /* Whether or not we can generate a default initializer for a symbol. */
11986
11987 static bool
11988 can_generate_init (gfc_symbol *sym)
11989 {
11990 symbol_attribute *a;
11991 if (!sym)
11992 return false;
11993 a = &sym->attr;
11994
11995 /* These symbols should never have a default initialization. */
11996 return !(
11997 a->allocatable
11998 || a->external
11999 || a->pointer
12000 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
12001 && (CLASS_DATA (sym)->attr.class_pointer
12002 || CLASS_DATA (sym)->attr.proc_pointer))
12003 || a->in_equivalence
12004 || a->in_common
12005 || a->data
12006 || sym->module
12007 || a->cray_pointee
12008 || a->cray_pointer
12009 || sym->assoc
12010 || (!a->referenced && !a->result)
12011 || (a->dummy && a->intent != INTENT_OUT)
12012 || (a->function && sym != sym->result)
12013 );
12014 }
12015
12016
12017 /* Assign the default initializer to a derived type variable or result. */
12018
12019 static void
12020 apply_default_init (gfc_symbol *sym)
12021 {
12022 gfc_expr *init = NULL;
12023
12024 if (sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
12025 return;
12026
12027 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived)
12028 init = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
12029
12030 if (init == NULL && sym->ts.type != BT_CLASS)
12031 return;
12032
12033 build_init_assign (sym, init);
12034 sym->attr.referenced = 1;
12035 }
12036
12037
12038 /* Build an initializer for a local. Returns null if the symbol should not have
12039 a default initialization. */
12040
12041 static gfc_expr *
12042 build_default_init_expr (gfc_symbol *sym)
12043 {
12044 /* These symbols should never have a default initialization. */
12045 if (sym->attr.allocatable
12046 || sym->attr.external
12047 || sym->attr.dummy
12048 || sym->attr.pointer
12049 || sym->attr.in_equivalence
12050 || sym->attr.in_common
12051 || sym->attr.data
12052 || sym->module
12053 || sym->attr.cray_pointee
12054 || sym->attr.cray_pointer
12055 || sym->assoc)
12056 return NULL;
12057
12058 /* Get the appropriate init expression. */
12059 return gfc_build_default_init_expr (&sym->ts, &sym->declared_at);
12060 }
12061
12062 /* Add an initialization expression to a local variable. */
12063 static void
12064 apply_default_init_local (gfc_symbol *sym)
12065 {
12066 gfc_expr *init = NULL;
12067
12068 /* The symbol should be a variable or a function return value. */
12069 if ((sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
12070 || (sym->attr.function && sym->result != sym))
12071 return;
12072
12073 /* Try to build the initializer expression. If we can't initialize
12074 this symbol, then init will be NULL. */
12075 init = build_default_init_expr (sym);
12076 if (init == NULL)
12077 return;
12078
12079 /* For saved variables, we don't want to add an initializer at function
12080 entry, so we just add a static initializer. Note that automatic variables
12081 are stack allocated even with -fno-automatic; we have also to exclude
12082 result variable, which are also nonstatic. */
12083 if (!sym->attr.automatic
12084 && (sym->attr.save || sym->ns->save_all
12085 || (flag_max_stack_var_size == 0 && !sym->attr.result
12086 && (sym->ns->proc_name && !sym->ns->proc_name->attr.recursive)
12087 && (!sym->attr.dimension || !is_non_constant_shape_array (sym)))))
12088 {
12089 /* Don't clobber an existing initializer! */
12090 gcc_assert (sym->value == NULL);
12091 sym->value = init;
12092 return;
12093 }
12094
12095 build_init_assign (sym, init);
12096 }
12097
12098
12099 /* Resolution of common features of flavors variable and procedure. */
12100
12101 static bool
12102 resolve_fl_var_and_proc (gfc_symbol *sym, int mp_flag)
12103 {
12104 gfc_array_spec *as;
12105
12106 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
12107 as = CLASS_DATA (sym)->as;
12108 else
12109 as = sym->as;
12110
12111 /* Constraints on deferred shape variable. */
12112 if (as == NULL || as->type != AS_DEFERRED)
12113 {
12114 bool pointer, allocatable, dimension;
12115
12116 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
12117 {
12118 pointer = CLASS_DATA (sym)->attr.class_pointer;
12119 allocatable = CLASS_DATA (sym)->attr.allocatable;
12120 dimension = CLASS_DATA (sym)->attr.dimension;
12121 }
12122 else
12123 {
12124 pointer = sym->attr.pointer && !sym->attr.select_type_temporary;
12125 allocatable = sym->attr.allocatable;
12126 dimension = sym->attr.dimension;
12127 }
12128
12129 if (allocatable)
12130 {
12131 if (dimension && as->type != AS_ASSUMED_RANK)
12132 {
12133 gfc_error ("Allocatable array %qs at %L must have a deferred "
12134 "shape or assumed rank", sym->name, &sym->declared_at);
12135 return false;
12136 }
12137 else if (!gfc_notify_std (GFC_STD_F2003, "Scalar object "
12138 "%qs at %L may not be ALLOCATABLE",
12139 sym->name, &sym->declared_at))
12140 return false;
12141 }
12142
12143 if (pointer && dimension && as->type != AS_ASSUMED_RANK)
12144 {
12145 gfc_error ("Array pointer %qs at %L must have a deferred shape or "
12146 "assumed rank", sym->name, &sym->declared_at);
12147 return false;
12148 }
12149 }
12150 else
12151 {
12152 if (!mp_flag && !sym->attr.allocatable && !sym->attr.pointer
12153 && sym->ts.type != BT_CLASS && !sym->assoc)
12154 {
12155 gfc_error ("Array %qs at %L cannot have a deferred shape",
12156 sym->name, &sym->declared_at);
12157 return false;
12158 }
12159 }
12160
12161 /* Constraints on polymorphic variables. */
12162 if (sym->ts.type == BT_CLASS && !(sym->result && sym->result != sym))
12163 {
12164 /* F03:C502. */
12165 if (sym->attr.class_ok
12166 && !sym->attr.select_type_temporary
12167 && !UNLIMITED_POLY (sym)
12168 && !gfc_type_is_extensible (CLASS_DATA (sym)->ts.u.derived))
12169 {
12170 gfc_error ("Type %qs of CLASS variable %qs at %L is not extensible",
12171 CLASS_DATA (sym)->ts.u.derived->name, sym->name,
12172 &sym->declared_at);
12173 return false;
12174 }
12175
12176 /* F03:C509. */
12177 /* Assume that use associated symbols were checked in the module ns.
12178 Class-variables that are associate-names are also something special
12179 and excepted from the test. */
12180 if (!sym->attr.class_ok && !sym->attr.use_assoc && !sym->assoc)
12181 {
12182 gfc_error ("CLASS variable %qs at %L must be dummy, allocatable "
12183 "or pointer", sym->name, &sym->declared_at);
12184 return false;
12185 }
12186 }
12187
12188 return true;
12189 }
12190
12191
12192 /* Additional checks for symbols with flavor variable and derived
12193 type. To be called from resolve_fl_variable. */
12194
12195 static bool
12196 resolve_fl_variable_derived (gfc_symbol *sym, int no_init_flag)
12197 {
12198 gcc_assert (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS);
12199
12200 /* Check to see if a derived type is blocked from being host
12201 associated by the presence of another class I symbol in the same
12202 namespace. 14.6.1.3 of the standard and the discussion on
12203 comp.lang.fortran. */
12204 if (sym->ns != sym->ts.u.derived->ns
12205 && !sym->ts.u.derived->attr.use_assoc
12206 && sym->ns->proc_name->attr.if_source != IFSRC_IFBODY)
12207 {
12208 gfc_symbol *s;
12209 gfc_find_symbol (sym->ts.u.derived->name, sym->ns, 0, &s);
12210 if (s && s->attr.generic)
12211 s = gfc_find_dt_in_generic (s);
12212 if (s && !gfc_fl_struct (s->attr.flavor))
12213 {
12214 gfc_error ("The type %qs cannot be host associated at %L "
12215 "because it is blocked by an incompatible object "
12216 "of the same name declared at %L",
12217 sym->ts.u.derived->name, &sym->declared_at,
12218 &s->declared_at);
12219 return false;
12220 }
12221 }
12222
12223 /* 4th constraint in section 11.3: "If an object of a type for which
12224 component-initialization is specified (R429) appears in the
12225 specification-part of a module and does not have the ALLOCATABLE
12226 or POINTER attribute, the object shall have the SAVE attribute."
12227
12228 The check for initializers is performed with
12229 gfc_has_default_initializer because gfc_default_initializer generates
12230 a hidden default for allocatable components. */
12231 if (!(sym->value || no_init_flag) && sym->ns->proc_name
12232 && sym->ns->proc_name->attr.flavor == FL_MODULE
12233 && !(sym->ns->save_all && !sym->attr.automatic) && !sym->attr.save
12234 && !sym->attr.pointer && !sym->attr.allocatable
12235 && gfc_has_default_initializer (sym->ts.u.derived)
12236 && !gfc_notify_std (GFC_STD_F2008, "Implied SAVE for module variable "
12237 "%qs at %L, needed due to the default "
12238 "initialization", sym->name, &sym->declared_at))
12239 return false;
12240
12241 /* Assign default initializer. */
12242 if (!(sym->value || sym->attr.pointer || sym->attr.allocatable)
12243 && (!no_init_flag || sym->attr.intent == INTENT_OUT))
12244 sym->value = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
12245
12246 return true;
12247 }
12248
12249
12250 /* F2008, C402 (R401): A colon shall not be used as a type-param-value
12251 except in the declaration of an entity or component that has the POINTER
12252 or ALLOCATABLE attribute. */
12253
12254 static bool
12255 deferred_requirements (gfc_symbol *sym)
12256 {
12257 if (sym->ts.deferred
12258 && !(sym->attr.pointer
12259 || sym->attr.allocatable
12260 || sym->attr.associate_var
12261 || sym->attr.omp_udr_artificial_var))
12262 {
12263 gfc_error ("Entity %qs at %L has a deferred type parameter and "
12264 "requires either the POINTER or ALLOCATABLE attribute",
12265 sym->name, &sym->declared_at);
12266 return false;
12267 }
12268 return true;
12269 }
12270
12271
12272 /* Resolve symbols with flavor variable. */
12273
12274 static bool
12275 resolve_fl_variable (gfc_symbol *sym, int mp_flag)
12276 {
12277 const char *auto_save_msg = "Automatic object %qs at %L cannot have the "
12278 "SAVE attribute";
12279
12280 if (!resolve_fl_var_and_proc (sym, mp_flag))
12281 return false;
12282
12283 /* Set this flag to check that variables are parameters of all entries.
12284 This check is effected by the call to gfc_resolve_expr through
12285 is_non_constant_shape_array. */
12286 bool saved_specification_expr = specification_expr;
12287 specification_expr = true;
12288
12289 if (sym->ns->proc_name
12290 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12291 || sym->ns->proc_name->attr.is_main_program)
12292 && !sym->attr.use_assoc
12293 && !sym->attr.allocatable
12294 && !sym->attr.pointer
12295 && is_non_constant_shape_array (sym))
12296 {
12297 /* F08:C541. The shape of an array defined in a main program or module
12298 * needs to be constant. */
12299 gfc_error ("The module or main program array %qs at %L must "
12300 "have constant shape", sym->name, &sym->declared_at);
12301 specification_expr = saved_specification_expr;
12302 return false;
12303 }
12304
12305 /* Constraints on deferred type parameter. */
12306 if (!deferred_requirements (sym))
12307 return false;
12308
12309 if (sym->ts.type == BT_CHARACTER && !sym->attr.associate_var)
12310 {
12311 /* Make sure that character string variables with assumed length are
12312 dummy arguments. */
12313 gfc_expr *e = NULL;
12314
12315 if (sym->ts.u.cl)
12316 e = sym->ts.u.cl->length;
12317 else
12318 return false;
12319
12320 if (e == NULL && !sym->attr.dummy && !sym->attr.result
12321 && !sym->ts.deferred && !sym->attr.select_type_temporary
12322 && !sym->attr.omp_udr_artificial_var)
12323 {
12324 gfc_error ("Entity with assumed character length at %L must be a "
12325 "dummy argument or a PARAMETER", &sym->declared_at);
12326 specification_expr = saved_specification_expr;
12327 return false;
12328 }
12329
12330 if (e && sym->attr.save == SAVE_EXPLICIT && !gfc_is_constant_expr (e))
12331 {
12332 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12333 specification_expr = saved_specification_expr;
12334 return false;
12335 }
12336
12337 if (!gfc_is_constant_expr (e)
12338 && !(e->expr_type == EXPR_VARIABLE
12339 && e->symtree->n.sym->attr.flavor == FL_PARAMETER))
12340 {
12341 if (!sym->attr.use_assoc && sym->ns->proc_name
12342 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12343 || sym->ns->proc_name->attr.is_main_program))
12344 {
12345 gfc_error ("%qs at %L must have constant character length "
12346 "in this context", sym->name, &sym->declared_at);
12347 specification_expr = saved_specification_expr;
12348 return false;
12349 }
12350 if (sym->attr.in_common)
12351 {
12352 gfc_error ("COMMON variable %qs at %L must have constant "
12353 "character length", sym->name, &sym->declared_at);
12354 specification_expr = saved_specification_expr;
12355 return false;
12356 }
12357 }
12358 }
12359
12360 if (sym->value == NULL && sym->attr.referenced)
12361 apply_default_init_local (sym); /* Try to apply a default initialization. */
12362
12363 /* Determine if the symbol may not have an initializer. */
12364 int no_init_flag = 0, automatic_flag = 0;
12365 if (sym->attr.allocatable || sym->attr.external || sym->attr.dummy
12366 || sym->attr.intrinsic || sym->attr.result)
12367 no_init_flag = 1;
12368 else if ((sym->attr.dimension || sym->attr.codimension) && !sym->attr.pointer
12369 && is_non_constant_shape_array (sym))
12370 {
12371 no_init_flag = automatic_flag = 1;
12372
12373 /* Also, they must not have the SAVE attribute.
12374 SAVE_IMPLICIT is checked below. */
12375 if (sym->as && sym->attr.codimension)
12376 {
12377 int corank = sym->as->corank;
12378 sym->as->corank = 0;
12379 no_init_flag = automatic_flag = is_non_constant_shape_array (sym);
12380 sym->as->corank = corank;
12381 }
12382 if (automatic_flag && sym->attr.save == SAVE_EXPLICIT)
12383 {
12384 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12385 specification_expr = saved_specification_expr;
12386 return false;
12387 }
12388 }
12389
12390 /* Ensure that any initializer is simplified. */
12391 if (sym->value)
12392 gfc_simplify_expr (sym->value, 1);
12393
12394 /* Reject illegal initializers. */
12395 if (!sym->mark && sym->value)
12396 {
12397 if (sym->attr.allocatable || (sym->ts.type == BT_CLASS
12398 && CLASS_DATA (sym)->attr.allocatable))
12399 gfc_error ("Allocatable %qs at %L cannot have an initializer",
12400 sym->name, &sym->declared_at);
12401 else if (sym->attr.external)
12402 gfc_error ("External %qs at %L cannot have an initializer",
12403 sym->name, &sym->declared_at);
12404 else if (sym->attr.dummy
12405 && !(sym->ts.type == BT_DERIVED && sym->attr.intent == INTENT_OUT))
12406 gfc_error ("Dummy %qs at %L cannot have an initializer",
12407 sym->name, &sym->declared_at);
12408 else if (sym->attr.intrinsic)
12409 gfc_error ("Intrinsic %qs at %L cannot have an initializer",
12410 sym->name, &sym->declared_at);
12411 else if (sym->attr.result)
12412 gfc_error ("Function result %qs at %L cannot have an initializer",
12413 sym->name, &sym->declared_at);
12414 else if (automatic_flag)
12415 gfc_error ("Automatic array %qs at %L cannot have an initializer",
12416 sym->name, &sym->declared_at);
12417 else
12418 goto no_init_error;
12419 specification_expr = saved_specification_expr;
12420 return false;
12421 }
12422
12423 no_init_error:
12424 if (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS)
12425 {
12426 bool res = resolve_fl_variable_derived (sym, no_init_flag);
12427 specification_expr = saved_specification_expr;
12428 return res;
12429 }
12430
12431 specification_expr = saved_specification_expr;
12432 return true;
12433 }
12434
12435
12436 /* Compare the dummy characteristics of a module procedure interface
12437 declaration with the corresponding declaration in a submodule. */
12438 static gfc_formal_arglist *new_formal;
12439 static char errmsg[200];
12440
12441 static void
12442 compare_fsyms (gfc_symbol *sym)
12443 {
12444 gfc_symbol *fsym;
12445
12446 if (sym == NULL || new_formal == NULL)
12447 return;
12448
12449 fsym = new_formal->sym;
12450
12451 if (sym == fsym)
12452 return;
12453
12454 if (strcmp (sym->name, fsym->name) == 0)
12455 {
12456 if (!gfc_check_dummy_characteristics (fsym, sym, true, errmsg, 200))
12457 gfc_error ("%s at %L", errmsg, &fsym->declared_at);
12458 }
12459 }
12460
12461
12462 /* Resolve a procedure. */
12463
12464 static bool
12465 resolve_fl_procedure (gfc_symbol *sym, int mp_flag)
12466 {
12467 gfc_formal_arglist *arg;
12468
12469 if (sym->attr.function
12470 && !resolve_fl_var_and_proc (sym, mp_flag))
12471 return false;
12472
12473 if (sym->ts.type == BT_CHARACTER)
12474 {
12475 gfc_charlen *cl = sym->ts.u.cl;
12476
12477 if (cl && cl->length && gfc_is_constant_expr (cl->length)
12478 && !resolve_charlen (cl))
12479 return false;
12480
12481 if ((!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
12482 && sym->attr.proc == PROC_ST_FUNCTION)
12483 {
12484 gfc_error ("Character-valued statement function %qs at %L must "
12485 "have constant length", sym->name, &sym->declared_at);
12486 return false;
12487 }
12488 }
12489
12490 /* Ensure that derived type for are not of a private type. Internal
12491 module procedures are excluded by 2.2.3.3 - i.e., they are not
12492 externally accessible and can access all the objects accessible in
12493 the host. */
12494 if (!(sym->ns->parent && sym->ns->parent->proc_name
12495 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
12496 && gfc_check_symbol_access (sym))
12497 {
12498 gfc_interface *iface;
12499
12500 for (arg = gfc_sym_get_dummy_args (sym); arg; arg = arg->next)
12501 {
12502 if (arg->sym
12503 && arg->sym->ts.type == BT_DERIVED
12504 && !arg->sym->ts.u.derived->attr.use_assoc
12505 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12506 && !gfc_notify_std (GFC_STD_F2003, "%qs is of a PRIVATE type "
12507 "and cannot be a dummy argument"
12508 " of %qs, which is PUBLIC at %L",
12509 arg->sym->name, sym->name,
12510 &sym->declared_at))
12511 {
12512 /* Stop this message from recurring. */
12513 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12514 return false;
12515 }
12516 }
12517
12518 /* PUBLIC interfaces may expose PRIVATE procedures that take types
12519 PRIVATE to the containing module. */
12520 for (iface = sym->generic; iface; iface = iface->next)
12521 {
12522 for (arg = gfc_sym_get_dummy_args (iface->sym); arg; arg = arg->next)
12523 {
12524 if (arg->sym
12525 && arg->sym->ts.type == BT_DERIVED
12526 && !arg->sym->ts.u.derived->attr.use_assoc
12527 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12528 && !gfc_notify_std (GFC_STD_F2003, "Procedure %qs in "
12529 "PUBLIC interface %qs at %L "
12530 "takes dummy arguments of %qs which "
12531 "is PRIVATE", iface->sym->name,
12532 sym->name, &iface->sym->declared_at,
12533 gfc_typename(&arg->sym->ts)))
12534 {
12535 /* Stop this message from recurring. */
12536 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12537 return false;
12538 }
12539 }
12540 }
12541 }
12542
12543 if (sym->attr.function && sym->value && sym->attr.proc != PROC_ST_FUNCTION
12544 && !sym->attr.proc_pointer)
12545 {
12546 gfc_error ("Function %qs at %L cannot have an initializer",
12547 sym->name, &sym->declared_at);
12548
12549 /* Make sure no second error is issued for this. */
12550 sym->value->error = 1;
12551 return false;
12552 }
12553
12554 /* An external symbol may not have an initializer because it is taken to be
12555 a procedure. Exception: Procedure Pointers. */
12556 if (sym->attr.external && sym->value && !sym->attr.proc_pointer)
12557 {
12558 gfc_error ("External object %qs at %L may not have an initializer",
12559 sym->name, &sym->declared_at);
12560 return false;
12561 }
12562
12563 /* An elemental function is required to return a scalar 12.7.1 */
12564 if (sym->attr.elemental && sym->attr.function
12565 && (sym->as || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)))
12566 {
12567 gfc_error ("ELEMENTAL function %qs at %L must have a scalar "
12568 "result", sym->name, &sym->declared_at);
12569 /* Reset so that the error only occurs once. */
12570 sym->attr.elemental = 0;
12571 return false;
12572 }
12573
12574 if (sym->attr.proc == PROC_ST_FUNCTION
12575 && (sym->attr.allocatable || sym->attr.pointer))
12576 {
12577 gfc_error ("Statement function %qs at %L may not have pointer or "
12578 "allocatable attribute", sym->name, &sym->declared_at);
12579 return false;
12580 }
12581
12582 /* 5.1.1.5 of the Standard: A function name declared with an asterisk
12583 char-len-param shall not be array-valued, pointer-valued, recursive
12584 or pure. ....snip... A character value of * may only be used in the
12585 following ways: (i) Dummy arg of procedure - dummy associates with
12586 actual length; (ii) To declare a named constant; or (iii) External
12587 function - but length must be declared in calling scoping unit. */
12588 if (sym->attr.function
12589 && sym->ts.type == BT_CHARACTER && !sym->ts.deferred
12590 && sym->ts.u.cl && sym->ts.u.cl->length == NULL)
12591 {
12592 if ((sym->as && sym->as->rank) || (sym->attr.pointer)
12593 || (sym->attr.recursive) || (sym->attr.pure))
12594 {
12595 if (sym->as && sym->as->rank)
12596 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12597 "array-valued", sym->name, &sym->declared_at);
12598
12599 if (sym->attr.pointer)
12600 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12601 "pointer-valued", sym->name, &sym->declared_at);
12602
12603 if (sym->attr.pure)
12604 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12605 "pure", sym->name, &sym->declared_at);
12606
12607 if (sym->attr.recursive)
12608 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12609 "recursive", sym->name, &sym->declared_at);
12610
12611 return false;
12612 }
12613
12614 /* Appendix B.2 of the standard. Contained functions give an
12615 error anyway. Deferred character length is an F2003 feature.
12616 Don't warn on intrinsic conversion functions, which start
12617 with two underscores. */
12618 if (!sym->attr.contained && !sym->ts.deferred
12619 && (sym->name[0] != '_' || sym->name[1] != '_'))
12620 gfc_notify_std (GFC_STD_F95_OBS,
12621 "CHARACTER(*) function %qs at %L",
12622 sym->name, &sym->declared_at);
12623 }
12624
12625 /* F2008, C1218. */
12626 if (sym->attr.elemental)
12627 {
12628 if (sym->attr.proc_pointer)
12629 {
12630 gfc_error ("Procedure pointer %qs at %L shall not be elemental",
12631 sym->name, &sym->declared_at);
12632 return false;
12633 }
12634 if (sym->attr.dummy)
12635 {
12636 gfc_error ("Dummy procedure %qs at %L shall not be elemental",
12637 sym->name, &sym->declared_at);
12638 return false;
12639 }
12640 }
12641
12642 /* F2018, C15100: "The result of an elemental function shall be scalar,
12643 and shall not have the POINTER or ALLOCATABLE attribute." The scalar
12644 pointer is tested and caught elsewhere. */
12645 if (sym->attr.elemental && sym->result
12646 && (sym->result->attr.allocatable || sym->result->attr.pointer))
12647 {
12648 gfc_error ("Function result variable %qs at %L of elemental "
12649 "function %qs shall not have an ALLOCATABLE or POINTER "
12650 "attribute", sym->result->name,
12651 &sym->result->declared_at, sym->name);
12652 return false;
12653 }
12654
12655 if (sym->attr.is_bind_c && sym->attr.is_c_interop != 1)
12656 {
12657 gfc_formal_arglist *curr_arg;
12658 int has_non_interop_arg = 0;
12659
12660 if (!verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
12661 sym->common_block))
12662 {
12663 /* Clear these to prevent looking at them again if there was an
12664 error. */
12665 sym->attr.is_bind_c = 0;
12666 sym->attr.is_c_interop = 0;
12667 sym->ts.is_c_interop = 0;
12668 }
12669 else
12670 {
12671 /* So far, no errors have been found. */
12672 sym->attr.is_c_interop = 1;
12673 sym->ts.is_c_interop = 1;
12674 }
12675
12676 curr_arg = gfc_sym_get_dummy_args (sym);
12677 while (curr_arg != NULL)
12678 {
12679 /* Skip implicitly typed dummy args here. */
12680 if (curr_arg->sym && curr_arg->sym->attr.implicit_type == 0)
12681 if (!gfc_verify_c_interop_param (curr_arg->sym))
12682 /* If something is found to fail, record the fact so we
12683 can mark the symbol for the procedure as not being
12684 BIND(C) to try and prevent multiple errors being
12685 reported. */
12686 has_non_interop_arg = 1;
12687
12688 curr_arg = curr_arg->next;
12689 }
12690
12691 /* See if any of the arguments were not interoperable and if so, clear
12692 the procedure symbol to prevent duplicate error messages. */
12693 if (has_non_interop_arg != 0)
12694 {
12695 sym->attr.is_c_interop = 0;
12696 sym->ts.is_c_interop = 0;
12697 sym->attr.is_bind_c = 0;
12698 }
12699 }
12700
12701 if (!sym->attr.proc_pointer)
12702 {
12703 if (sym->attr.save == SAVE_EXPLICIT)
12704 {
12705 gfc_error ("PROCEDURE attribute conflicts with SAVE attribute "
12706 "in %qs at %L", sym->name, &sym->declared_at);
12707 return false;
12708 }
12709 if (sym->attr.intent)
12710 {
12711 gfc_error ("PROCEDURE attribute conflicts with INTENT attribute "
12712 "in %qs at %L", sym->name, &sym->declared_at);
12713 return false;
12714 }
12715 if (sym->attr.subroutine && sym->attr.result)
12716 {
12717 gfc_error ("PROCEDURE attribute conflicts with RESULT attribute "
12718 "in %qs at %L", sym->name, &sym->declared_at);
12719 return false;
12720 }
12721 if (sym->attr.external && sym->attr.function && !sym->attr.module_procedure
12722 && ((sym->attr.if_source == IFSRC_DECL && !sym->attr.procedure)
12723 || sym->attr.contained))
12724 {
12725 gfc_error ("EXTERNAL attribute conflicts with FUNCTION attribute "
12726 "in %qs at %L", sym->name, &sym->declared_at);
12727 return false;
12728 }
12729 if (strcmp ("ppr@", sym->name) == 0)
12730 {
12731 gfc_error ("Procedure pointer result %qs at %L "
12732 "is missing the pointer attribute",
12733 sym->ns->proc_name->name, &sym->declared_at);
12734 return false;
12735 }
12736 }
12737
12738 /* Assume that a procedure whose body is not known has references
12739 to external arrays. */
12740 if (sym->attr.if_source != IFSRC_DECL)
12741 sym->attr.array_outer_dependency = 1;
12742
12743 /* Compare the characteristics of a module procedure with the
12744 interface declaration. Ideally this would be done with
12745 gfc_compare_interfaces but, at present, the formal interface
12746 cannot be copied to the ts.interface. */
12747 if (sym->attr.module_procedure
12748 && sym->attr.if_source == IFSRC_DECL)
12749 {
12750 gfc_symbol *iface;
12751 char name[2*GFC_MAX_SYMBOL_LEN + 1];
12752 char *module_name;
12753 char *submodule_name;
12754 strcpy (name, sym->ns->proc_name->name);
12755 module_name = strtok (name, ".");
12756 submodule_name = strtok (NULL, ".");
12757
12758 iface = sym->tlink;
12759 sym->tlink = NULL;
12760
12761 /* Make sure that the result uses the correct charlen for deferred
12762 length results. */
12763 if (iface && sym->result
12764 && iface->ts.type == BT_CHARACTER
12765 && iface->ts.deferred)
12766 sym->result->ts.u.cl = iface->ts.u.cl;
12767
12768 if (iface == NULL)
12769 goto check_formal;
12770
12771 /* Check the procedure characteristics. */
12772 if (sym->attr.elemental != iface->attr.elemental)
12773 {
12774 gfc_error ("Mismatch in ELEMENTAL attribute between MODULE "
12775 "PROCEDURE at %L and its interface in %s",
12776 &sym->declared_at, module_name);
12777 return false;
12778 }
12779
12780 if (sym->attr.pure != iface->attr.pure)
12781 {
12782 gfc_error ("Mismatch in PURE attribute between MODULE "
12783 "PROCEDURE at %L and its interface in %s",
12784 &sym->declared_at, module_name);
12785 return false;
12786 }
12787
12788 if (sym->attr.recursive != iface->attr.recursive)
12789 {
12790 gfc_error ("Mismatch in RECURSIVE attribute between MODULE "
12791 "PROCEDURE at %L and its interface in %s",
12792 &sym->declared_at, module_name);
12793 return false;
12794 }
12795
12796 /* Check the result characteristics. */
12797 if (!gfc_check_result_characteristics (sym, iface, errmsg, 200))
12798 {
12799 gfc_error ("%s between the MODULE PROCEDURE declaration "
12800 "in MODULE %qs and the declaration at %L in "
12801 "(SUB)MODULE %qs",
12802 errmsg, module_name, &sym->declared_at,
12803 submodule_name ? submodule_name : module_name);
12804 return false;
12805 }
12806
12807 check_formal:
12808 /* Check the characteristics of the formal arguments. */
12809 if (sym->formal && sym->formal_ns)
12810 {
12811 for (arg = sym->formal; arg && arg->sym; arg = arg->next)
12812 {
12813 new_formal = arg;
12814 gfc_traverse_ns (sym->formal_ns, compare_fsyms);
12815 }
12816 }
12817 }
12818 return true;
12819 }
12820
12821
12822 /* Resolve a list of finalizer procedures. That is, after they have hopefully
12823 been defined and we now know their defined arguments, check that they fulfill
12824 the requirements of the standard for procedures used as finalizers. */
12825
12826 static bool
12827 gfc_resolve_finalizers (gfc_symbol* derived, bool *finalizable)
12828 {
12829 gfc_finalizer* list;
12830 gfc_finalizer** prev_link; /* For removing wrong entries from the list. */
12831 bool result = true;
12832 bool seen_scalar = false;
12833 gfc_symbol *vtab;
12834 gfc_component *c;
12835 gfc_symbol *parent = gfc_get_derived_super_type (derived);
12836
12837 if (parent)
12838 gfc_resolve_finalizers (parent, finalizable);
12839
12840 /* Ensure that derived-type components have a their finalizers resolved. */
12841 bool has_final = derived->f2k_derived && derived->f2k_derived->finalizers;
12842 for (c = derived->components; c; c = c->next)
12843 if (c->ts.type == BT_DERIVED
12844 && !c->attr.pointer && !c->attr.proc_pointer && !c->attr.allocatable)
12845 {
12846 bool has_final2 = false;
12847 if (!gfc_resolve_finalizers (c->ts.u.derived, &has_final2))
12848 return false; /* Error. */
12849 has_final = has_final || has_final2;
12850 }
12851 /* Return early if not finalizable. */
12852 if (!has_final)
12853 {
12854 if (finalizable)
12855 *finalizable = false;
12856 return true;
12857 }
12858
12859 /* Walk over the list of finalizer-procedures, check them, and if any one
12860 does not fit in with the standard's definition, print an error and remove
12861 it from the list. */
12862 prev_link = &derived->f2k_derived->finalizers;
12863 for (list = derived->f2k_derived->finalizers; list; list = *prev_link)
12864 {
12865 gfc_formal_arglist *dummy_args;
12866 gfc_symbol* arg;
12867 gfc_finalizer* i;
12868 int my_rank;
12869
12870 /* Skip this finalizer if we already resolved it. */
12871 if (list->proc_tree)
12872 {
12873 if (list->proc_tree->n.sym->formal->sym->as == NULL
12874 || list->proc_tree->n.sym->formal->sym->as->rank == 0)
12875 seen_scalar = true;
12876 prev_link = &(list->next);
12877 continue;
12878 }
12879
12880 /* Check this exists and is a SUBROUTINE. */
12881 if (!list->proc_sym->attr.subroutine)
12882 {
12883 gfc_error ("FINAL procedure %qs at %L is not a SUBROUTINE",
12884 list->proc_sym->name, &list->where);
12885 goto error;
12886 }
12887
12888 /* We should have exactly one argument. */
12889 dummy_args = gfc_sym_get_dummy_args (list->proc_sym);
12890 if (!dummy_args || dummy_args->next)
12891 {
12892 gfc_error ("FINAL procedure at %L must have exactly one argument",
12893 &list->where);
12894 goto error;
12895 }
12896 arg = dummy_args->sym;
12897
12898 /* This argument must be of our type. */
12899 if (arg->ts.type != BT_DERIVED || arg->ts.u.derived != derived)
12900 {
12901 gfc_error ("Argument of FINAL procedure at %L must be of type %qs",
12902 &arg->declared_at, derived->name);
12903 goto error;
12904 }
12905
12906 /* It must neither be a pointer nor allocatable nor optional. */
12907 if (arg->attr.pointer)
12908 {
12909 gfc_error ("Argument of FINAL procedure at %L must not be a POINTER",
12910 &arg->declared_at);
12911 goto error;
12912 }
12913 if (arg->attr.allocatable)
12914 {
12915 gfc_error ("Argument of FINAL procedure at %L must not be"
12916 " ALLOCATABLE", &arg->declared_at);
12917 goto error;
12918 }
12919 if (arg->attr.optional)
12920 {
12921 gfc_error ("Argument of FINAL procedure at %L must not be OPTIONAL",
12922 &arg->declared_at);
12923 goto error;
12924 }
12925
12926 /* It must not be INTENT(OUT). */
12927 if (arg->attr.intent == INTENT_OUT)
12928 {
12929 gfc_error ("Argument of FINAL procedure at %L must not be"
12930 " INTENT(OUT)", &arg->declared_at);
12931 goto error;
12932 }
12933
12934 /* Warn if the procedure is non-scalar and not assumed shape. */
12935 if (warn_surprising && arg->as && arg->as->rank != 0
12936 && arg->as->type != AS_ASSUMED_SHAPE)
12937 gfc_warning (OPT_Wsurprising,
12938 "Non-scalar FINAL procedure at %L should have assumed"
12939 " shape argument", &arg->declared_at);
12940
12941 /* Check that it does not match in kind and rank with a FINAL procedure
12942 defined earlier. To really loop over the *earlier* declarations,
12943 we need to walk the tail of the list as new ones were pushed at the
12944 front. */
12945 /* TODO: Handle kind parameters once they are implemented. */
12946 my_rank = (arg->as ? arg->as->rank : 0);
12947 for (i = list->next; i; i = i->next)
12948 {
12949 gfc_formal_arglist *dummy_args;
12950
12951 /* Argument list might be empty; that is an error signalled earlier,
12952 but we nevertheless continued resolving. */
12953 dummy_args = gfc_sym_get_dummy_args (i->proc_sym);
12954 if (dummy_args)
12955 {
12956 gfc_symbol* i_arg = dummy_args->sym;
12957 const int i_rank = (i_arg->as ? i_arg->as->rank : 0);
12958 if (i_rank == my_rank)
12959 {
12960 gfc_error ("FINAL procedure %qs declared at %L has the same"
12961 " rank (%d) as %qs",
12962 list->proc_sym->name, &list->where, my_rank,
12963 i->proc_sym->name);
12964 goto error;
12965 }
12966 }
12967 }
12968
12969 /* Is this the/a scalar finalizer procedure? */
12970 if (my_rank == 0)
12971 seen_scalar = true;
12972
12973 /* Find the symtree for this procedure. */
12974 gcc_assert (!list->proc_tree);
12975 list->proc_tree = gfc_find_sym_in_symtree (list->proc_sym);
12976
12977 prev_link = &list->next;
12978 continue;
12979
12980 /* Remove wrong nodes immediately from the list so we don't risk any
12981 troubles in the future when they might fail later expectations. */
12982 error:
12983 i = list;
12984 *prev_link = list->next;
12985 gfc_free_finalizer (i);
12986 result = false;
12987 }
12988
12989 if (result == false)
12990 return false;
12991
12992 /* Warn if we haven't seen a scalar finalizer procedure (but we know there
12993 were nodes in the list, must have been for arrays. It is surely a good
12994 idea to have a scalar version there if there's something to finalize. */
12995 if (warn_surprising && derived->f2k_derived->finalizers && !seen_scalar)
12996 gfc_warning (OPT_Wsurprising,
12997 "Only array FINAL procedures declared for derived type %qs"
12998 " defined at %L, suggest also scalar one",
12999 derived->name, &derived->declared_at);
13000
13001 vtab = gfc_find_derived_vtab (derived);
13002 c = vtab->ts.u.derived->components->next->next->next->next->next;
13003 gfc_set_sym_referenced (c->initializer->symtree->n.sym);
13004
13005 if (finalizable)
13006 *finalizable = true;
13007
13008 return true;
13009 }
13010
13011
13012 /* Check if two GENERIC targets are ambiguous and emit an error is they are. */
13013
13014 static bool
13015 check_generic_tbp_ambiguity (gfc_tbp_generic* t1, gfc_tbp_generic* t2,
13016 const char* generic_name, locus where)
13017 {
13018 gfc_symbol *sym1, *sym2;
13019 const char *pass1, *pass2;
13020 gfc_formal_arglist *dummy_args;
13021
13022 gcc_assert (t1->specific && t2->specific);
13023 gcc_assert (!t1->specific->is_generic);
13024 gcc_assert (!t2->specific->is_generic);
13025 gcc_assert (t1->is_operator == t2->is_operator);
13026
13027 sym1 = t1->specific->u.specific->n.sym;
13028 sym2 = t2->specific->u.specific->n.sym;
13029
13030 if (sym1 == sym2)
13031 return true;
13032
13033 /* Both must be SUBROUTINEs or both must be FUNCTIONs. */
13034 if (sym1->attr.subroutine != sym2->attr.subroutine
13035 || sym1->attr.function != sym2->attr.function)
13036 {
13037 gfc_error ("%qs and %qs can't be mixed FUNCTION/SUBROUTINE for"
13038 " GENERIC %qs at %L",
13039 sym1->name, sym2->name, generic_name, &where);
13040 return false;
13041 }
13042
13043 /* Determine PASS arguments. */
13044 if (t1->specific->nopass)
13045 pass1 = NULL;
13046 else if (t1->specific->pass_arg)
13047 pass1 = t1->specific->pass_arg;
13048 else
13049 {
13050 dummy_args = gfc_sym_get_dummy_args (t1->specific->u.specific->n.sym);
13051 if (dummy_args)
13052 pass1 = dummy_args->sym->name;
13053 else
13054 pass1 = NULL;
13055 }
13056 if (t2->specific->nopass)
13057 pass2 = NULL;
13058 else if (t2->specific->pass_arg)
13059 pass2 = t2->specific->pass_arg;
13060 else
13061 {
13062 dummy_args = gfc_sym_get_dummy_args (t2->specific->u.specific->n.sym);
13063 if (dummy_args)
13064 pass2 = dummy_args->sym->name;
13065 else
13066 pass2 = NULL;
13067 }
13068
13069 /* Compare the interfaces. */
13070 if (gfc_compare_interfaces (sym1, sym2, sym2->name, !t1->is_operator, 0,
13071 NULL, 0, pass1, pass2))
13072 {
13073 gfc_error ("%qs and %qs for GENERIC %qs at %L are ambiguous",
13074 sym1->name, sym2->name, generic_name, &where);
13075 return false;
13076 }
13077
13078 return true;
13079 }
13080
13081
13082 /* Worker function for resolving a generic procedure binding; this is used to
13083 resolve GENERIC as well as user and intrinsic OPERATOR typebound procedures.
13084
13085 The difference between those cases is finding possible inherited bindings
13086 that are overridden, as one has to look for them in tb_sym_root,
13087 tb_uop_root or tb_op, respectively. Thus the caller must already find
13088 the super-type and set p->overridden correctly. */
13089
13090 static bool
13091 resolve_tb_generic_targets (gfc_symbol* super_type,
13092 gfc_typebound_proc* p, const char* name)
13093 {
13094 gfc_tbp_generic* target;
13095 gfc_symtree* first_target;
13096 gfc_symtree* inherited;
13097
13098 gcc_assert (p && p->is_generic);
13099
13100 /* Try to find the specific bindings for the symtrees in our target-list. */
13101 gcc_assert (p->u.generic);
13102 for (target = p->u.generic; target; target = target->next)
13103 if (!target->specific)
13104 {
13105 gfc_typebound_proc* overridden_tbp;
13106 gfc_tbp_generic* g;
13107 const char* target_name;
13108
13109 target_name = target->specific_st->name;
13110
13111 /* Defined for this type directly. */
13112 if (target->specific_st->n.tb && !target->specific_st->n.tb->error)
13113 {
13114 target->specific = target->specific_st->n.tb;
13115 goto specific_found;
13116 }
13117
13118 /* Look for an inherited specific binding. */
13119 if (super_type)
13120 {
13121 inherited = gfc_find_typebound_proc (super_type, NULL, target_name,
13122 true, NULL);
13123
13124 if (inherited)
13125 {
13126 gcc_assert (inherited->n.tb);
13127 target->specific = inherited->n.tb;
13128 goto specific_found;
13129 }
13130 }
13131
13132 gfc_error ("Undefined specific binding %qs as target of GENERIC %qs"
13133 " at %L", target_name, name, &p->where);
13134 return false;
13135
13136 /* Once we've found the specific binding, check it is not ambiguous with
13137 other specifics already found or inherited for the same GENERIC. */
13138 specific_found:
13139 gcc_assert (target->specific);
13140
13141 /* This must really be a specific binding! */
13142 if (target->specific->is_generic)
13143 {
13144 gfc_error ("GENERIC %qs at %L must target a specific binding,"
13145 " %qs is GENERIC, too", name, &p->where, target_name);
13146 return false;
13147 }
13148
13149 /* Check those already resolved on this type directly. */
13150 for (g = p->u.generic; g; g = g->next)
13151 if (g != target && g->specific
13152 && !check_generic_tbp_ambiguity (target, g, name, p->where))
13153 return false;
13154
13155 /* Check for ambiguity with inherited specific targets. */
13156 for (overridden_tbp = p->overridden; overridden_tbp;
13157 overridden_tbp = overridden_tbp->overridden)
13158 if (overridden_tbp->is_generic)
13159 {
13160 for (g = overridden_tbp->u.generic; g; g = g->next)
13161 {
13162 gcc_assert (g->specific);
13163 if (!check_generic_tbp_ambiguity (target, g, name, p->where))
13164 return false;
13165 }
13166 }
13167 }
13168
13169 /* If we attempt to "overwrite" a specific binding, this is an error. */
13170 if (p->overridden && !p->overridden->is_generic)
13171 {
13172 gfc_error ("GENERIC %qs at %L can't overwrite specific binding with"
13173 " the same name", name, &p->where);
13174 return false;
13175 }
13176
13177 /* Take the SUBROUTINE/FUNCTION attributes of the first specific target, as
13178 all must have the same attributes here. */
13179 first_target = p->u.generic->specific->u.specific;
13180 gcc_assert (first_target);
13181 p->subroutine = first_target->n.sym->attr.subroutine;
13182 p->function = first_target->n.sym->attr.function;
13183
13184 return true;
13185 }
13186
13187
13188 /* Resolve a GENERIC procedure binding for a derived type. */
13189
13190 static bool
13191 resolve_typebound_generic (gfc_symbol* derived, gfc_symtree* st)
13192 {
13193 gfc_symbol* super_type;
13194
13195 /* Find the overridden binding if any. */
13196 st->n.tb->overridden = NULL;
13197 super_type = gfc_get_derived_super_type (derived);
13198 if (super_type)
13199 {
13200 gfc_symtree* overridden;
13201 overridden = gfc_find_typebound_proc (super_type, NULL, st->name,
13202 true, NULL);
13203
13204 if (overridden && overridden->n.tb)
13205 st->n.tb->overridden = overridden->n.tb;
13206 }
13207
13208 /* Resolve using worker function. */
13209 return resolve_tb_generic_targets (super_type, st->n.tb, st->name);
13210 }
13211
13212
13213 /* Retrieve the target-procedure of an operator binding and do some checks in
13214 common for intrinsic and user-defined type-bound operators. */
13215
13216 static gfc_symbol*
13217 get_checked_tb_operator_target (gfc_tbp_generic* target, locus where)
13218 {
13219 gfc_symbol* target_proc;
13220
13221 gcc_assert (target->specific && !target->specific->is_generic);
13222 target_proc = target->specific->u.specific->n.sym;
13223 gcc_assert (target_proc);
13224
13225 /* F08:C468. All operator bindings must have a passed-object dummy argument. */
13226 if (target->specific->nopass)
13227 {
13228 gfc_error ("Type-bound operator at %L can't be NOPASS", &where);
13229 return NULL;
13230 }
13231
13232 return target_proc;
13233 }
13234
13235
13236 /* Resolve a type-bound intrinsic operator. */
13237
13238 static bool
13239 resolve_typebound_intrinsic_op (gfc_symbol* derived, gfc_intrinsic_op op,
13240 gfc_typebound_proc* p)
13241 {
13242 gfc_symbol* super_type;
13243 gfc_tbp_generic* target;
13244
13245 /* If there's already an error here, do nothing (but don't fail again). */
13246 if (p->error)
13247 return true;
13248
13249 /* Operators should always be GENERIC bindings. */
13250 gcc_assert (p->is_generic);
13251
13252 /* Look for an overridden binding. */
13253 super_type = gfc_get_derived_super_type (derived);
13254 if (super_type && super_type->f2k_derived)
13255 p->overridden = gfc_find_typebound_intrinsic_op (super_type, NULL,
13256 op, true, NULL);
13257 else
13258 p->overridden = NULL;
13259
13260 /* Resolve general GENERIC properties using worker function. */
13261 if (!resolve_tb_generic_targets (super_type, p, gfc_op2string(op)))
13262 goto error;
13263
13264 /* Check the targets to be procedures of correct interface. */
13265 for (target = p->u.generic; target; target = target->next)
13266 {
13267 gfc_symbol* target_proc;
13268
13269 target_proc = get_checked_tb_operator_target (target, p->where);
13270 if (!target_proc)
13271 goto error;
13272
13273 if (!gfc_check_operator_interface (target_proc, op, p->where))
13274 goto error;
13275
13276 /* Add target to non-typebound operator list. */
13277 if (!target->specific->deferred && !derived->attr.use_assoc
13278 && p->access != ACCESS_PRIVATE && derived->ns == gfc_current_ns)
13279 {
13280 gfc_interface *head, *intr;
13281
13282 /* Preempt 'gfc_check_new_interface' for submodules, where the
13283 mechanism for handling module procedures winds up resolving
13284 operator interfaces twice and would otherwise cause an error. */
13285 for (intr = derived->ns->op[op]; intr; intr = intr->next)
13286 if (intr->sym == target_proc
13287 && target_proc->attr.used_in_submodule)
13288 return true;
13289
13290 if (!gfc_check_new_interface (derived->ns->op[op],
13291 target_proc, p->where))
13292 return false;
13293 head = derived->ns->op[op];
13294 intr = gfc_get_interface ();
13295 intr->sym = target_proc;
13296 intr->where = p->where;
13297 intr->next = head;
13298 derived->ns->op[op] = intr;
13299 }
13300 }
13301
13302 return true;
13303
13304 error:
13305 p->error = 1;
13306 return false;
13307 }
13308
13309
13310 /* Resolve a type-bound user operator (tree-walker callback). */
13311
13312 static gfc_symbol* resolve_bindings_derived;
13313 static bool resolve_bindings_result;
13314
13315 static bool check_uop_procedure (gfc_symbol* sym, locus where);
13316
13317 static void
13318 resolve_typebound_user_op (gfc_symtree* stree)
13319 {
13320 gfc_symbol* super_type;
13321 gfc_tbp_generic* target;
13322
13323 gcc_assert (stree && stree->n.tb);
13324
13325 if (stree->n.tb->error)
13326 return;
13327
13328 /* Operators should always be GENERIC bindings. */
13329 gcc_assert (stree->n.tb->is_generic);
13330
13331 /* Find overridden procedure, if any. */
13332 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13333 if (super_type && super_type->f2k_derived)
13334 {
13335 gfc_symtree* overridden;
13336 overridden = gfc_find_typebound_user_op (super_type, NULL,
13337 stree->name, true, NULL);
13338
13339 if (overridden && overridden->n.tb)
13340 stree->n.tb->overridden = overridden->n.tb;
13341 }
13342 else
13343 stree->n.tb->overridden = NULL;
13344
13345 /* Resolve basically using worker function. */
13346 if (!resolve_tb_generic_targets (super_type, stree->n.tb, stree->name))
13347 goto error;
13348
13349 /* Check the targets to be functions of correct interface. */
13350 for (target = stree->n.tb->u.generic; target; target = target->next)
13351 {
13352 gfc_symbol* target_proc;
13353
13354 target_proc = get_checked_tb_operator_target (target, stree->n.tb->where);
13355 if (!target_proc)
13356 goto error;
13357
13358 if (!check_uop_procedure (target_proc, stree->n.tb->where))
13359 goto error;
13360 }
13361
13362 return;
13363
13364 error:
13365 resolve_bindings_result = false;
13366 stree->n.tb->error = 1;
13367 }
13368
13369
13370 /* Resolve the type-bound procedures for a derived type. */
13371
13372 static void
13373 resolve_typebound_procedure (gfc_symtree* stree)
13374 {
13375 gfc_symbol* proc;
13376 locus where;
13377 gfc_symbol* me_arg;
13378 gfc_symbol* super_type;
13379 gfc_component* comp;
13380
13381 gcc_assert (stree);
13382
13383 /* Undefined specific symbol from GENERIC target definition. */
13384 if (!stree->n.tb)
13385 return;
13386
13387 if (stree->n.tb->error)
13388 return;
13389
13390 /* If this is a GENERIC binding, use that routine. */
13391 if (stree->n.tb->is_generic)
13392 {
13393 if (!resolve_typebound_generic (resolve_bindings_derived, stree))
13394 goto error;
13395 return;
13396 }
13397
13398 /* Get the target-procedure to check it. */
13399 gcc_assert (!stree->n.tb->is_generic);
13400 gcc_assert (stree->n.tb->u.specific);
13401 proc = stree->n.tb->u.specific->n.sym;
13402 where = stree->n.tb->where;
13403
13404 /* Default access should already be resolved from the parser. */
13405 gcc_assert (stree->n.tb->access != ACCESS_UNKNOWN);
13406
13407 if (stree->n.tb->deferred)
13408 {
13409 if (!check_proc_interface (proc, &where))
13410 goto error;
13411 }
13412 else
13413 {
13414 /* Check for F08:C465. */
13415 if ((!proc->attr.subroutine && !proc->attr.function)
13416 || (proc->attr.proc != PROC_MODULE
13417 && proc->attr.if_source != IFSRC_IFBODY)
13418 || proc->attr.abstract)
13419 {
13420 gfc_error ("%qs must be a module procedure or an external procedure with"
13421 " an explicit interface at %L", proc->name, &where);
13422 goto error;
13423 }
13424 }
13425
13426 stree->n.tb->subroutine = proc->attr.subroutine;
13427 stree->n.tb->function = proc->attr.function;
13428
13429 /* Find the super-type of the current derived type. We could do this once and
13430 store in a global if speed is needed, but as long as not I believe this is
13431 more readable and clearer. */
13432 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13433
13434 /* If PASS, resolve and check arguments if not already resolved / loaded
13435 from a .mod file. */
13436 if (!stree->n.tb->nopass && stree->n.tb->pass_arg_num == 0)
13437 {
13438 gfc_formal_arglist *dummy_args;
13439
13440 dummy_args = gfc_sym_get_dummy_args (proc);
13441 if (stree->n.tb->pass_arg)
13442 {
13443 gfc_formal_arglist *i;
13444
13445 /* If an explicit passing argument name is given, walk the arg-list
13446 and look for it. */
13447
13448 me_arg = NULL;
13449 stree->n.tb->pass_arg_num = 1;
13450 for (i = dummy_args; i; i = i->next)
13451 {
13452 if (!strcmp (i->sym->name, stree->n.tb->pass_arg))
13453 {
13454 me_arg = i->sym;
13455 break;
13456 }
13457 ++stree->n.tb->pass_arg_num;
13458 }
13459
13460 if (!me_arg)
13461 {
13462 gfc_error ("Procedure %qs with PASS(%s) at %L has no"
13463 " argument %qs",
13464 proc->name, stree->n.tb->pass_arg, &where,
13465 stree->n.tb->pass_arg);
13466 goto error;
13467 }
13468 }
13469 else
13470 {
13471 /* Otherwise, take the first one; there should in fact be at least
13472 one. */
13473 stree->n.tb->pass_arg_num = 1;
13474 if (!dummy_args)
13475 {
13476 gfc_error ("Procedure %qs with PASS at %L must have at"
13477 " least one argument", proc->name, &where);
13478 goto error;
13479 }
13480 me_arg = dummy_args->sym;
13481 }
13482
13483 /* Now check that the argument-type matches and the passed-object
13484 dummy argument is generally fine. */
13485
13486 gcc_assert (me_arg);
13487
13488 if (me_arg->ts.type != BT_CLASS)
13489 {
13490 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13491 " at %L", proc->name, &where);
13492 goto error;
13493 }
13494
13495 if (CLASS_DATA (me_arg)->ts.u.derived
13496 != resolve_bindings_derived)
13497 {
13498 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13499 " the derived-type %qs", me_arg->name, proc->name,
13500 me_arg->name, &where, resolve_bindings_derived->name);
13501 goto error;
13502 }
13503
13504 gcc_assert (me_arg->ts.type == BT_CLASS);
13505 if (CLASS_DATA (me_arg)->as && CLASS_DATA (me_arg)->as->rank != 0)
13506 {
13507 gfc_error ("Passed-object dummy argument of %qs at %L must be"
13508 " scalar", proc->name, &where);
13509 goto error;
13510 }
13511 if (CLASS_DATA (me_arg)->attr.allocatable)
13512 {
13513 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13514 " be ALLOCATABLE", proc->name, &where);
13515 goto error;
13516 }
13517 if (CLASS_DATA (me_arg)->attr.class_pointer)
13518 {
13519 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13520 " be POINTER", proc->name, &where);
13521 goto error;
13522 }
13523 }
13524
13525 /* If we are extending some type, check that we don't override a procedure
13526 flagged NON_OVERRIDABLE. */
13527 stree->n.tb->overridden = NULL;
13528 if (super_type)
13529 {
13530 gfc_symtree* overridden;
13531 overridden = gfc_find_typebound_proc (super_type, NULL,
13532 stree->name, true, NULL);
13533
13534 if (overridden)
13535 {
13536 if (overridden->n.tb)
13537 stree->n.tb->overridden = overridden->n.tb;
13538
13539 if (!gfc_check_typebound_override (stree, overridden))
13540 goto error;
13541 }
13542 }
13543
13544 /* See if there's a name collision with a component directly in this type. */
13545 for (comp = resolve_bindings_derived->components; comp; comp = comp->next)
13546 if (!strcmp (comp->name, stree->name))
13547 {
13548 gfc_error ("Procedure %qs at %L has the same name as a component of"
13549 " %qs",
13550 stree->name, &where, resolve_bindings_derived->name);
13551 goto error;
13552 }
13553
13554 /* Try to find a name collision with an inherited component. */
13555 if (super_type && gfc_find_component (super_type, stree->name, true, true,
13556 NULL))
13557 {
13558 gfc_error ("Procedure %qs at %L has the same name as an inherited"
13559 " component of %qs",
13560 stree->name, &where, resolve_bindings_derived->name);
13561 goto error;
13562 }
13563
13564 stree->n.tb->error = 0;
13565 return;
13566
13567 error:
13568 resolve_bindings_result = false;
13569 stree->n.tb->error = 1;
13570 }
13571
13572
13573 static bool
13574 resolve_typebound_procedures (gfc_symbol* derived)
13575 {
13576 int op;
13577 gfc_symbol* super_type;
13578
13579 if (!derived->f2k_derived || !derived->f2k_derived->tb_sym_root)
13580 return true;
13581
13582 super_type = gfc_get_derived_super_type (derived);
13583 if (super_type)
13584 resolve_symbol (super_type);
13585
13586 resolve_bindings_derived = derived;
13587 resolve_bindings_result = true;
13588
13589 if (derived->f2k_derived->tb_sym_root)
13590 gfc_traverse_symtree (derived->f2k_derived->tb_sym_root,
13591 &resolve_typebound_procedure);
13592
13593 if (derived->f2k_derived->tb_uop_root)
13594 gfc_traverse_symtree (derived->f2k_derived->tb_uop_root,
13595 &resolve_typebound_user_op);
13596
13597 for (op = 0; op != GFC_INTRINSIC_OPS; ++op)
13598 {
13599 gfc_typebound_proc* p = derived->f2k_derived->tb_op[op];
13600 if (p && !resolve_typebound_intrinsic_op (derived,
13601 (gfc_intrinsic_op)op, p))
13602 resolve_bindings_result = false;
13603 }
13604
13605 return resolve_bindings_result;
13606 }
13607
13608
13609 /* Add a derived type to the dt_list. The dt_list is used in trans-types.c
13610 to give all identical derived types the same backend_decl. */
13611 static void
13612 add_dt_to_dt_list (gfc_symbol *derived)
13613 {
13614 if (!derived->dt_next)
13615 {
13616 if (gfc_derived_types)
13617 {
13618 derived->dt_next = gfc_derived_types->dt_next;
13619 gfc_derived_types->dt_next = derived;
13620 }
13621 else
13622 {
13623 derived->dt_next = derived;
13624 }
13625 gfc_derived_types = derived;
13626 }
13627 }
13628
13629
13630 /* Ensure that a derived-type is really not abstract, meaning that every
13631 inherited DEFERRED binding is overridden by a non-DEFERRED one. */
13632
13633 static bool
13634 ensure_not_abstract_walker (gfc_symbol* sub, gfc_symtree* st)
13635 {
13636 if (!st)
13637 return true;
13638
13639 if (!ensure_not_abstract_walker (sub, st->left))
13640 return false;
13641 if (!ensure_not_abstract_walker (sub, st->right))
13642 return false;
13643
13644 if (st->n.tb && st->n.tb->deferred)
13645 {
13646 gfc_symtree* overriding;
13647 overriding = gfc_find_typebound_proc (sub, NULL, st->name, true, NULL);
13648 if (!overriding)
13649 return false;
13650 gcc_assert (overriding->n.tb);
13651 if (overriding->n.tb->deferred)
13652 {
13653 gfc_error ("Derived-type %qs declared at %L must be ABSTRACT because"
13654 " %qs is DEFERRED and not overridden",
13655 sub->name, &sub->declared_at, st->name);
13656 return false;
13657 }
13658 }
13659
13660 return true;
13661 }
13662
13663 static bool
13664 ensure_not_abstract (gfc_symbol* sub, gfc_symbol* ancestor)
13665 {
13666 /* The algorithm used here is to recursively travel up the ancestry of sub
13667 and for each ancestor-type, check all bindings. If any of them is
13668 DEFERRED, look it up starting from sub and see if the found (overriding)
13669 binding is not DEFERRED.
13670 This is not the most efficient way to do this, but it should be ok and is
13671 clearer than something sophisticated. */
13672
13673 gcc_assert (ancestor && !sub->attr.abstract);
13674
13675 if (!ancestor->attr.abstract)
13676 return true;
13677
13678 /* Walk bindings of this ancestor. */
13679 if (ancestor->f2k_derived)
13680 {
13681 bool t;
13682 t = ensure_not_abstract_walker (sub, ancestor->f2k_derived->tb_sym_root);
13683 if (!t)
13684 return false;
13685 }
13686
13687 /* Find next ancestor type and recurse on it. */
13688 ancestor = gfc_get_derived_super_type (ancestor);
13689 if (ancestor)
13690 return ensure_not_abstract (sub, ancestor);
13691
13692 return true;
13693 }
13694
13695
13696 /* This check for typebound defined assignments is done recursively
13697 since the order in which derived types are resolved is not always in
13698 order of the declarations. */
13699
13700 static void
13701 check_defined_assignments (gfc_symbol *derived)
13702 {
13703 gfc_component *c;
13704
13705 for (c = derived->components; c; c = c->next)
13706 {
13707 if (!gfc_bt_struct (c->ts.type)
13708 || c->attr.pointer
13709 || c->attr.allocatable
13710 || c->attr.proc_pointer_comp
13711 || c->attr.class_pointer
13712 || c->attr.proc_pointer)
13713 continue;
13714
13715 if (c->ts.u.derived->attr.defined_assign_comp
13716 || (c->ts.u.derived->f2k_derived
13717 && c->ts.u.derived->f2k_derived->tb_op[INTRINSIC_ASSIGN]))
13718 {
13719 derived->attr.defined_assign_comp = 1;
13720 return;
13721 }
13722
13723 check_defined_assignments (c->ts.u.derived);
13724 if (c->ts.u.derived->attr.defined_assign_comp)
13725 {
13726 derived->attr.defined_assign_comp = 1;
13727 return;
13728 }
13729 }
13730 }
13731
13732
13733 /* Resolve a single component of a derived type or structure. */
13734
13735 static bool
13736 resolve_component (gfc_component *c, gfc_symbol *sym)
13737 {
13738 gfc_symbol *super_type;
13739
13740 if (c->attr.artificial)
13741 return true;
13742
13743 /* Do not allow vtype components to be resolved in nameless namespaces
13744 such as block data because the procedure pointers will cause ICEs
13745 and vtables are not needed in these contexts. */
13746 if (sym->attr.vtype && sym->attr.use_assoc
13747 && sym->ns->proc_name == NULL)
13748 return true;
13749
13750 /* F2008, C442. */
13751 if ((!sym->attr.is_class || c != sym->components)
13752 && c->attr.codimension
13753 && (!c->attr.allocatable || (c->as && c->as->type != AS_DEFERRED)))
13754 {
13755 gfc_error ("Coarray component %qs at %L must be allocatable with "
13756 "deferred shape", c->name, &c->loc);
13757 return false;
13758 }
13759
13760 /* F2008, C443. */
13761 if (c->attr.codimension && c->ts.type == BT_DERIVED
13762 && c->ts.u.derived->ts.is_iso_c)
13763 {
13764 gfc_error ("Component %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
13765 "shall not be a coarray", c->name, &c->loc);
13766 return false;
13767 }
13768
13769 /* F2008, C444. */
13770 if (gfc_bt_struct (c->ts.type) && c->ts.u.derived->attr.coarray_comp
13771 && (c->attr.codimension || c->attr.pointer || c->attr.dimension
13772 || c->attr.allocatable))
13773 {
13774 gfc_error ("Component %qs at %L with coarray component "
13775 "shall be a nonpointer, nonallocatable scalar",
13776 c->name, &c->loc);
13777 return false;
13778 }
13779
13780 /* F2008, C448. */
13781 if (c->attr.contiguous && (!c->attr.dimension || !c->attr.pointer))
13782 {
13783 gfc_error ("Component %qs at %L has the CONTIGUOUS attribute but "
13784 "is not an array pointer", c->name, &c->loc);
13785 return false;
13786 }
13787
13788 /* F2003, 15.2.1 - length has to be one. */
13789 if (sym->attr.is_bind_c && c->ts.type == BT_CHARACTER
13790 && (c->ts.u.cl == NULL || c->ts.u.cl->length == NULL
13791 || !gfc_is_constant_expr (c->ts.u.cl->length)
13792 || mpz_cmp_si (c->ts.u.cl->length->value.integer, 1) != 0))
13793 {
13794 gfc_error ("Component %qs of BIND(C) type at %L must have length one",
13795 c->name, &c->loc);
13796 return false;
13797 }
13798
13799 if (c->attr.proc_pointer && c->ts.interface)
13800 {
13801 gfc_symbol *ifc = c->ts.interface;
13802
13803 if (!sym->attr.vtype && !check_proc_interface (ifc, &c->loc))
13804 {
13805 c->tb->error = 1;
13806 return false;
13807 }
13808
13809 if (ifc->attr.if_source || ifc->attr.intrinsic)
13810 {
13811 /* Resolve interface and copy attributes. */
13812 if (ifc->formal && !ifc->formal_ns)
13813 resolve_symbol (ifc);
13814 if (ifc->attr.intrinsic)
13815 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
13816
13817 if (ifc->result)
13818 {
13819 c->ts = ifc->result->ts;
13820 c->attr.allocatable = ifc->result->attr.allocatable;
13821 c->attr.pointer = ifc->result->attr.pointer;
13822 c->attr.dimension = ifc->result->attr.dimension;
13823 c->as = gfc_copy_array_spec (ifc->result->as);
13824 c->attr.class_ok = ifc->result->attr.class_ok;
13825 }
13826 else
13827 {
13828 c->ts = ifc->ts;
13829 c->attr.allocatable = ifc->attr.allocatable;
13830 c->attr.pointer = ifc->attr.pointer;
13831 c->attr.dimension = ifc->attr.dimension;
13832 c->as = gfc_copy_array_spec (ifc->as);
13833 c->attr.class_ok = ifc->attr.class_ok;
13834 }
13835 c->ts.interface = ifc;
13836 c->attr.function = ifc->attr.function;
13837 c->attr.subroutine = ifc->attr.subroutine;
13838
13839 c->attr.pure = ifc->attr.pure;
13840 c->attr.elemental = ifc->attr.elemental;
13841 c->attr.recursive = ifc->attr.recursive;
13842 c->attr.always_explicit = ifc->attr.always_explicit;
13843 c->attr.ext_attr |= ifc->attr.ext_attr;
13844 /* Copy char length. */
13845 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
13846 {
13847 gfc_charlen *cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
13848 if (cl->length && !cl->resolved
13849 && !gfc_resolve_expr (cl->length))
13850 {
13851 c->tb->error = 1;
13852 return false;
13853 }
13854 c->ts.u.cl = cl;
13855 }
13856 }
13857 }
13858 else if (c->attr.proc_pointer && c->ts.type == BT_UNKNOWN)
13859 {
13860 /* Since PPCs are not implicitly typed, a PPC without an explicit
13861 interface must be a subroutine. */
13862 gfc_add_subroutine (&c->attr, c->name, &c->loc);
13863 }
13864
13865 /* Procedure pointer components: Check PASS arg. */
13866 if (c->attr.proc_pointer && !c->tb->nopass && c->tb->pass_arg_num == 0
13867 && !sym->attr.vtype)
13868 {
13869 gfc_symbol* me_arg;
13870
13871 if (c->tb->pass_arg)
13872 {
13873 gfc_formal_arglist* i;
13874
13875 /* If an explicit passing argument name is given, walk the arg-list
13876 and look for it. */
13877
13878 me_arg = NULL;
13879 c->tb->pass_arg_num = 1;
13880 for (i = c->ts.interface->formal; i; i = i->next)
13881 {
13882 if (!strcmp (i->sym->name, c->tb->pass_arg))
13883 {
13884 me_arg = i->sym;
13885 break;
13886 }
13887 c->tb->pass_arg_num++;
13888 }
13889
13890 if (!me_arg)
13891 {
13892 gfc_error ("Procedure pointer component %qs with PASS(%s) "
13893 "at %L has no argument %qs", c->name,
13894 c->tb->pass_arg, &c->loc, c->tb->pass_arg);
13895 c->tb->error = 1;
13896 return false;
13897 }
13898 }
13899 else
13900 {
13901 /* Otherwise, take the first one; there should in fact be at least
13902 one. */
13903 c->tb->pass_arg_num = 1;
13904 if (!c->ts.interface->formal)
13905 {
13906 gfc_error ("Procedure pointer component %qs with PASS at %L "
13907 "must have at least one argument",
13908 c->name, &c->loc);
13909 c->tb->error = 1;
13910 return false;
13911 }
13912 me_arg = c->ts.interface->formal->sym;
13913 }
13914
13915 /* Now check that the argument-type matches. */
13916 gcc_assert (me_arg);
13917 if ((me_arg->ts.type != BT_DERIVED && me_arg->ts.type != BT_CLASS)
13918 || (me_arg->ts.type == BT_DERIVED && me_arg->ts.u.derived != sym)
13919 || (me_arg->ts.type == BT_CLASS
13920 && CLASS_DATA (me_arg)->ts.u.derived != sym))
13921 {
13922 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13923 " the derived type %qs", me_arg->name, c->name,
13924 me_arg->name, &c->loc, sym->name);
13925 c->tb->error = 1;
13926 return false;
13927 }
13928
13929 /* Check for F03:C453. */
13930 if (CLASS_DATA (me_arg)->attr.dimension)
13931 {
13932 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13933 "must be scalar", me_arg->name, c->name, me_arg->name,
13934 &c->loc);
13935 c->tb->error = 1;
13936 return false;
13937 }
13938
13939 if (CLASS_DATA (me_arg)->attr.class_pointer)
13940 {
13941 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13942 "may not have the POINTER attribute", me_arg->name,
13943 c->name, me_arg->name, &c->loc);
13944 c->tb->error = 1;
13945 return false;
13946 }
13947
13948 if (CLASS_DATA (me_arg)->attr.allocatable)
13949 {
13950 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13951 "may not be ALLOCATABLE", me_arg->name, c->name,
13952 me_arg->name, &c->loc);
13953 c->tb->error = 1;
13954 return false;
13955 }
13956
13957 if (gfc_type_is_extensible (sym) && me_arg->ts.type != BT_CLASS)
13958 {
13959 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13960 " at %L", c->name, &c->loc);
13961 return false;
13962 }
13963
13964 }
13965
13966 /* Check type-spec if this is not the parent-type component. */
13967 if (((sym->attr.is_class
13968 && (!sym->components->ts.u.derived->attr.extension
13969 || c != sym->components->ts.u.derived->components))
13970 || (!sym->attr.is_class
13971 && (!sym->attr.extension || c != sym->components)))
13972 && !sym->attr.vtype
13973 && !resolve_typespec_used (&c->ts, &c->loc, c->name))
13974 return false;
13975
13976 super_type = gfc_get_derived_super_type (sym);
13977
13978 /* If this type is an extension, set the accessibility of the parent
13979 component. */
13980 if (super_type
13981 && ((sym->attr.is_class
13982 && c == sym->components->ts.u.derived->components)
13983 || (!sym->attr.is_class && c == sym->components))
13984 && strcmp (super_type->name, c->name) == 0)
13985 c->attr.access = super_type->attr.access;
13986
13987 /* If this type is an extension, see if this component has the same name
13988 as an inherited type-bound procedure. */
13989 if (super_type && !sym->attr.is_class
13990 && gfc_find_typebound_proc (super_type, NULL, c->name, true, NULL))
13991 {
13992 gfc_error ("Component %qs of %qs at %L has the same name as an"
13993 " inherited type-bound procedure",
13994 c->name, sym->name, &c->loc);
13995 return false;
13996 }
13997
13998 if (c->ts.type == BT_CHARACTER && !c->attr.proc_pointer
13999 && !c->ts.deferred)
14000 {
14001 if (c->ts.u.cl->length == NULL
14002 || (!resolve_charlen(c->ts.u.cl))
14003 || !gfc_is_constant_expr (c->ts.u.cl->length))
14004 {
14005 gfc_error ("Character length of component %qs needs to "
14006 "be a constant specification expression at %L",
14007 c->name,
14008 c->ts.u.cl->length ? &c->ts.u.cl->length->where : &c->loc);
14009 return false;
14010 }
14011 }
14012
14013 if (c->ts.type == BT_CHARACTER && c->ts.deferred
14014 && !c->attr.pointer && !c->attr.allocatable)
14015 {
14016 gfc_error ("Character component %qs of %qs at %L with deferred "
14017 "length must be a POINTER or ALLOCATABLE",
14018 c->name, sym->name, &c->loc);
14019 return false;
14020 }
14021
14022 /* Add the hidden deferred length field. */
14023 if (c->ts.type == BT_CHARACTER
14024 && (c->ts.deferred || c->attr.pdt_string)
14025 && !c->attr.function
14026 && !sym->attr.is_class)
14027 {
14028 char name[GFC_MAX_SYMBOL_LEN+9];
14029 gfc_component *strlen;
14030 sprintf (name, "_%s_length", c->name);
14031 strlen = gfc_find_component (sym, name, true, true, NULL);
14032 if (strlen == NULL)
14033 {
14034 if (!gfc_add_component (sym, name, &strlen))
14035 return false;
14036 strlen->ts.type = BT_INTEGER;
14037 strlen->ts.kind = gfc_charlen_int_kind;
14038 strlen->attr.access = ACCESS_PRIVATE;
14039 strlen->attr.artificial = 1;
14040 }
14041 }
14042
14043 if (c->ts.type == BT_DERIVED
14044 && sym->component_access != ACCESS_PRIVATE
14045 && gfc_check_symbol_access (sym)
14046 && !is_sym_host_assoc (c->ts.u.derived, sym->ns)
14047 && !c->ts.u.derived->attr.use_assoc
14048 && !gfc_check_symbol_access (c->ts.u.derived)
14049 && !gfc_notify_std (GFC_STD_F2003, "the component %qs is a "
14050 "PRIVATE type and cannot be a component of "
14051 "%qs, which is PUBLIC at %L", c->name,
14052 sym->name, &sym->declared_at))
14053 return false;
14054
14055 if ((sym->attr.sequence || sym->attr.is_bind_c) && c->ts.type == BT_CLASS)
14056 {
14057 gfc_error ("Polymorphic component %s at %L in SEQUENCE or BIND(C) "
14058 "type %s", c->name, &c->loc, sym->name);
14059 return false;
14060 }
14061
14062 if (sym->attr.sequence)
14063 {
14064 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.sequence == 0)
14065 {
14066 gfc_error ("Component %s of SEQUENCE type declared at %L does "
14067 "not have the SEQUENCE attribute",
14068 c->ts.u.derived->name, &sym->declared_at);
14069 return false;
14070 }
14071 }
14072
14073 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.generic)
14074 c->ts.u.derived = gfc_find_dt_in_generic (c->ts.u.derived);
14075 else if (c->ts.type == BT_CLASS && c->attr.class_ok
14076 && CLASS_DATA (c)->ts.u.derived->attr.generic)
14077 CLASS_DATA (c)->ts.u.derived
14078 = gfc_find_dt_in_generic (CLASS_DATA (c)->ts.u.derived);
14079
14080 /* If an allocatable component derived type is of the same type as
14081 the enclosing derived type, we need a vtable generating so that
14082 the __deallocate procedure is created. */
14083 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
14084 && c->ts.u.derived == sym && c->attr.allocatable == 1)
14085 gfc_find_vtab (&c->ts);
14086
14087 /* Ensure that all the derived type components are put on the
14088 derived type list; even in formal namespaces, where derived type
14089 pointer components might not have been declared. */
14090 if (c->ts.type == BT_DERIVED
14091 && c->ts.u.derived
14092 && c->ts.u.derived->components
14093 && c->attr.pointer
14094 && sym != c->ts.u.derived)
14095 add_dt_to_dt_list (c->ts.u.derived);
14096
14097 if (!gfc_resolve_array_spec (c->as,
14098 !(c->attr.pointer || c->attr.proc_pointer
14099 || c->attr.allocatable)))
14100 return false;
14101
14102 if (c->initializer && !sym->attr.vtype
14103 && !c->attr.pdt_kind && !c->attr.pdt_len
14104 && !gfc_check_assign_symbol (sym, c, c->initializer))
14105 return false;
14106
14107 return true;
14108 }
14109
14110
14111 /* Be nice about the locus for a structure expression - show the locus of the
14112 first non-null sub-expression if we can. */
14113
14114 static locus *
14115 cons_where (gfc_expr *struct_expr)
14116 {
14117 gfc_constructor *cons;
14118
14119 gcc_assert (struct_expr && struct_expr->expr_type == EXPR_STRUCTURE);
14120
14121 cons = gfc_constructor_first (struct_expr->value.constructor);
14122 for (; cons; cons = gfc_constructor_next (cons))
14123 {
14124 if (cons->expr && cons->expr->expr_type != EXPR_NULL)
14125 return &cons->expr->where;
14126 }
14127
14128 return &struct_expr->where;
14129 }
14130
14131 /* Resolve the components of a structure type. Much less work than derived
14132 types. */
14133
14134 static bool
14135 resolve_fl_struct (gfc_symbol *sym)
14136 {
14137 gfc_component *c;
14138 gfc_expr *init = NULL;
14139 bool success;
14140
14141 /* Make sure UNIONs do not have overlapping initializers. */
14142 if (sym->attr.flavor == FL_UNION)
14143 {
14144 for (c = sym->components; c; c = c->next)
14145 {
14146 if (init && c->initializer)
14147 {
14148 gfc_error ("Conflicting initializers in union at %L and %L",
14149 cons_where (init), cons_where (c->initializer));
14150 gfc_free_expr (c->initializer);
14151 c->initializer = NULL;
14152 }
14153 if (init == NULL)
14154 init = c->initializer;
14155 }
14156 }
14157
14158 success = true;
14159 for (c = sym->components; c; c = c->next)
14160 if (!resolve_component (c, sym))
14161 success = false;
14162
14163 if (!success)
14164 return false;
14165
14166 if (sym->components)
14167 add_dt_to_dt_list (sym);
14168
14169 return true;
14170 }
14171
14172
14173 /* Resolve the components of a derived type. This does not have to wait until
14174 resolution stage, but can be done as soon as the dt declaration has been
14175 parsed. */
14176
14177 static bool
14178 resolve_fl_derived0 (gfc_symbol *sym)
14179 {
14180 gfc_symbol* super_type;
14181 gfc_component *c;
14182 gfc_formal_arglist *f;
14183 bool success;
14184
14185 if (sym->attr.unlimited_polymorphic)
14186 return true;
14187
14188 super_type = gfc_get_derived_super_type (sym);
14189
14190 /* F2008, C432. */
14191 if (super_type && sym->attr.coarray_comp && !super_type->attr.coarray_comp)
14192 {
14193 gfc_error ("As extending type %qs at %L has a coarray component, "
14194 "parent type %qs shall also have one", sym->name,
14195 &sym->declared_at, super_type->name);
14196 return false;
14197 }
14198
14199 /* Ensure the extended type gets resolved before we do. */
14200 if (super_type && !resolve_fl_derived0 (super_type))
14201 return false;
14202
14203 /* An ABSTRACT type must be extensible. */
14204 if (sym->attr.abstract && !gfc_type_is_extensible (sym))
14205 {
14206 gfc_error ("Non-extensible derived-type %qs at %L must not be ABSTRACT",
14207 sym->name, &sym->declared_at);
14208 return false;
14209 }
14210
14211 c = (sym->attr.is_class) ? sym->components->ts.u.derived->components
14212 : sym->components;
14213
14214 success = true;
14215 for ( ; c != NULL; c = c->next)
14216 if (!resolve_component (c, sym))
14217 success = false;
14218
14219 if (!success)
14220 return false;
14221
14222 /* Now add the caf token field, where needed. */
14223 if (flag_coarray != GFC_FCOARRAY_NONE
14224 && !sym->attr.is_class && !sym->attr.vtype)
14225 {
14226 for (c = sym->components; c; c = c->next)
14227 if (!c->attr.dimension && !c->attr.codimension
14228 && (c->attr.allocatable || c->attr.pointer))
14229 {
14230 char name[GFC_MAX_SYMBOL_LEN+9];
14231 gfc_component *token;
14232 sprintf (name, "_caf_%s", c->name);
14233 token = gfc_find_component (sym, name, true, true, NULL);
14234 if (token == NULL)
14235 {
14236 if (!gfc_add_component (sym, name, &token))
14237 return false;
14238 token->ts.type = BT_VOID;
14239 token->ts.kind = gfc_default_integer_kind;
14240 token->attr.access = ACCESS_PRIVATE;
14241 token->attr.artificial = 1;
14242 token->attr.caf_token = 1;
14243 }
14244 }
14245 }
14246
14247 check_defined_assignments (sym);
14248
14249 if (!sym->attr.defined_assign_comp && super_type)
14250 sym->attr.defined_assign_comp
14251 = super_type->attr.defined_assign_comp;
14252
14253 /* If this is a non-ABSTRACT type extending an ABSTRACT one, ensure that
14254 all DEFERRED bindings are overridden. */
14255 if (super_type && super_type->attr.abstract && !sym->attr.abstract
14256 && !sym->attr.is_class
14257 && !ensure_not_abstract (sym, super_type))
14258 return false;
14259
14260 /* Check that there is a component for every PDT parameter. */
14261 if (sym->attr.pdt_template)
14262 {
14263 for (f = sym->formal; f; f = f->next)
14264 {
14265 if (!f->sym)
14266 continue;
14267 c = gfc_find_component (sym, f->sym->name, true, true, NULL);
14268 if (c == NULL)
14269 {
14270 gfc_error ("Parameterized type %qs does not have a component "
14271 "corresponding to parameter %qs at %L", sym->name,
14272 f->sym->name, &sym->declared_at);
14273 break;
14274 }
14275 }
14276 }
14277
14278 /* Add derived type to the derived type list. */
14279 add_dt_to_dt_list (sym);
14280
14281 return true;
14282 }
14283
14284
14285 /* The following procedure does the full resolution of a derived type,
14286 including resolution of all type-bound procedures (if present). In contrast
14287 to 'resolve_fl_derived0' this can only be done after the module has been
14288 parsed completely. */
14289
14290 static bool
14291 resolve_fl_derived (gfc_symbol *sym)
14292 {
14293 gfc_symbol *gen_dt = NULL;
14294
14295 if (sym->attr.unlimited_polymorphic)
14296 return true;
14297
14298 if (!sym->attr.is_class)
14299 gfc_find_symbol (sym->name, sym->ns, 0, &gen_dt);
14300 if (gen_dt && gen_dt->generic && gen_dt->generic->next
14301 && (!gen_dt->generic->sym->attr.use_assoc
14302 || gen_dt->generic->sym->module != gen_dt->generic->next->sym->module)
14303 && !gfc_notify_std (GFC_STD_F2003, "Generic name %qs of function "
14304 "%qs at %L being the same name as derived "
14305 "type at %L", sym->name,
14306 gen_dt->generic->sym == sym
14307 ? gen_dt->generic->next->sym->name
14308 : gen_dt->generic->sym->name,
14309 gen_dt->generic->sym == sym
14310 ? &gen_dt->generic->next->sym->declared_at
14311 : &gen_dt->generic->sym->declared_at,
14312 &sym->declared_at))
14313 return false;
14314
14315 if (sym->components == NULL && !sym->attr.zero_comp && !sym->attr.use_assoc)
14316 {
14317 gfc_error ("Derived type %qs at %L has not been declared",
14318 sym->name, &sym->declared_at);
14319 return false;
14320 }
14321
14322 /* Resolve the finalizer procedures. */
14323 if (!gfc_resolve_finalizers (sym, NULL))
14324 return false;
14325
14326 if (sym->attr.is_class && sym->ts.u.derived == NULL)
14327 {
14328 /* Fix up incomplete CLASS symbols. */
14329 gfc_component *data = gfc_find_component (sym, "_data", true, true, NULL);
14330 gfc_component *vptr = gfc_find_component (sym, "_vptr", true, true, NULL);
14331
14332 /* Nothing more to do for unlimited polymorphic entities. */
14333 if (data->ts.u.derived->attr.unlimited_polymorphic)
14334 return true;
14335 else if (vptr->ts.u.derived == NULL)
14336 {
14337 gfc_symbol *vtab = gfc_find_derived_vtab (data->ts.u.derived);
14338 gcc_assert (vtab);
14339 vptr->ts.u.derived = vtab->ts.u.derived;
14340 if (!resolve_fl_derived0 (vptr->ts.u.derived))
14341 return false;
14342 }
14343 }
14344
14345 if (!resolve_fl_derived0 (sym))
14346 return false;
14347
14348 /* Resolve the type-bound procedures. */
14349 if (!resolve_typebound_procedures (sym))
14350 return false;
14351
14352 /* Generate module vtables subject to their accessibility and their not
14353 being vtables or pdt templates. If this is not done class declarations
14354 in external procedures wind up with their own version and so SELECT TYPE
14355 fails because the vptrs do not have the same address. */
14356 if (gfc_option.allow_std & GFC_STD_F2003
14357 && sym->ns->proc_name
14358 && sym->ns->proc_name->attr.flavor == FL_MODULE
14359 && sym->attr.access != ACCESS_PRIVATE
14360 && !(sym->attr.use_assoc || sym->attr.vtype || sym->attr.pdt_template))
14361 {
14362 gfc_symbol *vtab = gfc_find_derived_vtab (sym);
14363 gfc_set_sym_referenced (vtab);
14364 }
14365
14366 return true;
14367 }
14368
14369
14370 static bool
14371 resolve_fl_namelist (gfc_symbol *sym)
14372 {
14373 gfc_namelist *nl;
14374 gfc_symbol *nlsym;
14375
14376 for (nl = sym->namelist; nl; nl = nl->next)
14377 {
14378 /* Check again, the check in match only works if NAMELIST comes
14379 after the decl. */
14380 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SIZE)
14381 {
14382 gfc_error ("Assumed size array %qs in namelist %qs at %L is not "
14383 "allowed", nl->sym->name, sym->name, &sym->declared_at);
14384 return false;
14385 }
14386
14387 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SHAPE
14388 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14389 "with assumed shape in namelist %qs at %L",
14390 nl->sym->name, sym->name, &sym->declared_at))
14391 return false;
14392
14393 if (is_non_constant_shape_array (nl->sym)
14394 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14395 "with nonconstant shape in namelist %qs at %L",
14396 nl->sym->name, sym->name, &sym->declared_at))
14397 return false;
14398
14399 if (nl->sym->ts.type == BT_CHARACTER
14400 && (nl->sym->ts.u.cl->length == NULL
14401 || !gfc_is_constant_expr (nl->sym->ts.u.cl->length))
14402 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs with "
14403 "nonconstant character length in "
14404 "namelist %qs at %L", nl->sym->name,
14405 sym->name, &sym->declared_at))
14406 return false;
14407
14408 }
14409
14410 /* Reject PRIVATE objects in a PUBLIC namelist. */
14411 if (gfc_check_symbol_access (sym))
14412 {
14413 for (nl = sym->namelist; nl; nl = nl->next)
14414 {
14415 if (!nl->sym->attr.use_assoc
14416 && !is_sym_host_assoc (nl->sym, sym->ns)
14417 && !gfc_check_symbol_access (nl->sym))
14418 {
14419 gfc_error ("NAMELIST object %qs was declared PRIVATE and "
14420 "cannot be member of PUBLIC namelist %qs at %L",
14421 nl->sym->name, sym->name, &sym->declared_at);
14422 return false;
14423 }
14424
14425 if (nl->sym->ts.type == BT_DERIVED
14426 && (nl->sym->ts.u.derived->attr.alloc_comp
14427 || nl->sym->ts.u.derived->attr.pointer_comp))
14428 {
14429 if (!gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs in "
14430 "namelist %qs at %L with ALLOCATABLE "
14431 "or POINTER components", nl->sym->name,
14432 sym->name, &sym->declared_at))
14433 return false;
14434 return true;
14435 }
14436
14437 /* Types with private components that came here by USE-association. */
14438 if (nl->sym->ts.type == BT_DERIVED
14439 && derived_inaccessible (nl->sym->ts.u.derived))
14440 {
14441 gfc_error ("NAMELIST object %qs has use-associated PRIVATE "
14442 "components and cannot be member of namelist %qs at %L",
14443 nl->sym->name, sym->name, &sym->declared_at);
14444 return false;
14445 }
14446
14447 /* Types with private components that are defined in the same module. */
14448 if (nl->sym->ts.type == BT_DERIVED
14449 && !is_sym_host_assoc (nl->sym->ts.u.derived, sym->ns)
14450 && nl->sym->ts.u.derived->attr.private_comp)
14451 {
14452 gfc_error ("NAMELIST object %qs has PRIVATE components and "
14453 "cannot be a member of PUBLIC namelist %qs at %L",
14454 nl->sym->name, sym->name, &sym->declared_at);
14455 return false;
14456 }
14457 }
14458 }
14459
14460
14461 /* 14.1.2 A module or internal procedure represent local entities
14462 of the same type as a namelist member and so are not allowed. */
14463 for (nl = sym->namelist; nl; nl = nl->next)
14464 {
14465 if (nl->sym->ts.kind != 0 && nl->sym->attr.flavor == FL_VARIABLE)
14466 continue;
14467
14468 if (nl->sym->attr.function && nl->sym == nl->sym->result)
14469 if ((nl->sym == sym->ns->proc_name)
14470 ||
14471 (sym->ns->parent && nl->sym == sym->ns->parent->proc_name))
14472 continue;
14473
14474 nlsym = NULL;
14475 if (nl->sym->name)
14476 gfc_find_symbol (nl->sym->name, sym->ns, 1, &nlsym);
14477 if (nlsym && nlsym->attr.flavor == FL_PROCEDURE)
14478 {
14479 gfc_error ("PROCEDURE attribute conflicts with NAMELIST "
14480 "attribute in %qs at %L", nlsym->name,
14481 &sym->declared_at);
14482 return false;
14483 }
14484 }
14485
14486 if (async_io_dt)
14487 {
14488 for (nl = sym->namelist; nl; nl = nl->next)
14489 nl->sym->attr.asynchronous = 1;
14490 }
14491 return true;
14492 }
14493
14494
14495 static bool
14496 resolve_fl_parameter (gfc_symbol *sym)
14497 {
14498 /* A parameter array's shape needs to be constant. */
14499 if (sym->as != NULL
14500 && (sym->as->type == AS_DEFERRED
14501 || is_non_constant_shape_array (sym)))
14502 {
14503 gfc_error ("Parameter array %qs at %L cannot be automatic "
14504 "or of deferred shape", sym->name, &sym->declared_at);
14505 return false;
14506 }
14507
14508 /* Constraints on deferred type parameter. */
14509 if (!deferred_requirements (sym))
14510 return false;
14511
14512 /* Make sure a parameter that has been implicitly typed still
14513 matches the implicit type, since PARAMETER statements can precede
14514 IMPLICIT statements. */
14515 if (sym->attr.implicit_type
14516 && !gfc_compare_types (&sym->ts, gfc_get_default_type (sym->name,
14517 sym->ns)))
14518 {
14519 gfc_error ("Implicitly typed PARAMETER %qs at %L doesn't match a "
14520 "later IMPLICIT type", sym->name, &sym->declared_at);
14521 return false;
14522 }
14523
14524 /* Make sure the types of derived parameters are consistent. This
14525 type checking is deferred until resolution because the type may
14526 refer to a derived type from the host. */
14527 if (sym->ts.type == BT_DERIVED
14528 && !gfc_compare_types (&sym->ts, &sym->value->ts))
14529 {
14530 gfc_error ("Incompatible derived type in PARAMETER at %L",
14531 &sym->value->where);
14532 return false;
14533 }
14534
14535 /* F03:C509,C514. */
14536 if (sym->ts.type == BT_CLASS)
14537 {
14538 gfc_error ("CLASS variable %qs at %L cannot have the PARAMETER attribute",
14539 sym->name, &sym->declared_at);
14540 return false;
14541 }
14542
14543 return true;
14544 }
14545
14546
14547 /* Called by resolve_symbol to check PDTs. */
14548
14549 static void
14550 resolve_pdt (gfc_symbol* sym)
14551 {
14552 gfc_symbol *derived = NULL;
14553 gfc_actual_arglist *param;
14554 gfc_component *c;
14555 bool const_len_exprs = true;
14556 bool assumed_len_exprs = false;
14557 symbol_attribute *attr;
14558
14559 if (sym->ts.type == BT_DERIVED)
14560 {
14561 derived = sym->ts.u.derived;
14562 attr = &(sym->attr);
14563 }
14564 else if (sym->ts.type == BT_CLASS)
14565 {
14566 derived = CLASS_DATA (sym)->ts.u.derived;
14567 attr = &(CLASS_DATA (sym)->attr);
14568 }
14569 else
14570 gcc_unreachable ();
14571
14572 gcc_assert (derived->attr.pdt_type);
14573
14574 for (param = sym->param_list; param; param = param->next)
14575 {
14576 c = gfc_find_component (derived, param->name, false, true, NULL);
14577 gcc_assert (c);
14578 if (c->attr.pdt_kind)
14579 continue;
14580
14581 if (param->expr && !gfc_is_constant_expr (param->expr)
14582 && c->attr.pdt_len)
14583 const_len_exprs = false;
14584 else if (param->spec_type == SPEC_ASSUMED)
14585 assumed_len_exprs = true;
14586
14587 if (param->spec_type == SPEC_DEFERRED
14588 && !attr->allocatable && !attr->pointer)
14589 gfc_error ("The object %qs at %L has a deferred LEN "
14590 "parameter %qs and is neither allocatable "
14591 "nor a pointer", sym->name, &sym->declared_at,
14592 param->name);
14593
14594 }
14595
14596 if (!const_len_exprs
14597 && (sym->ns->proc_name->attr.is_main_program
14598 || sym->ns->proc_name->attr.flavor == FL_MODULE
14599 || sym->attr.save != SAVE_NONE))
14600 gfc_error ("The AUTOMATIC object %qs at %L must not have the "
14601 "SAVE attribute or be a variable declared in the "
14602 "main program, a module or a submodule(F08/C513)",
14603 sym->name, &sym->declared_at);
14604
14605 if (assumed_len_exprs && !(sym->attr.dummy
14606 || sym->attr.select_type_temporary || sym->attr.associate_var))
14607 gfc_error ("The object %qs at %L with ASSUMED type parameters "
14608 "must be a dummy or a SELECT TYPE selector(F08/4.2)",
14609 sym->name, &sym->declared_at);
14610 }
14611
14612
14613 /* Do anything necessary to resolve a symbol. Right now, we just
14614 assume that an otherwise unknown symbol is a variable. This sort
14615 of thing commonly happens for symbols in module. */
14616
14617 static void
14618 resolve_symbol (gfc_symbol *sym)
14619 {
14620 int check_constant, mp_flag;
14621 gfc_symtree *symtree;
14622 gfc_symtree *this_symtree;
14623 gfc_namespace *ns;
14624 gfc_component *c;
14625 symbol_attribute class_attr;
14626 gfc_array_spec *as;
14627 bool saved_specification_expr;
14628
14629 if (sym->resolved)
14630 return;
14631 sym->resolved = 1;
14632
14633 /* No symbol will ever have union type; only components can be unions.
14634 Union type declaration symbols have type BT_UNKNOWN but flavor FL_UNION
14635 (just like derived type declaration symbols have flavor FL_DERIVED). */
14636 gcc_assert (sym->ts.type != BT_UNION);
14637
14638 /* Coarrayed polymorphic objects with allocatable or pointer components are
14639 yet unsupported for -fcoarray=lib. */
14640 if (flag_coarray == GFC_FCOARRAY_LIB && sym->ts.type == BT_CLASS
14641 && sym->ts.u.derived && CLASS_DATA (sym)
14642 && CLASS_DATA (sym)->attr.codimension
14643 && (CLASS_DATA (sym)->ts.u.derived->attr.alloc_comp
14644 || CLASS_DATA (sym)->ts.u.derived->attr.pointer_comp))
14645 {
14646 gfc_error ("Sorry, allocatable/pointer components in polymorphic (CLASS) "
14647 "type coarrays at %L are unsupported", &sym->declared_at);
14648 return;
14649 }
14650
14651 if (sym->attr.artificial)
14652 return;
14653
14654 if (sym->attr.unlimited_polymorphic)
14655 return;
14656
14657 if (sym->attr.flavor == FL_UNKNOWN
14658 || (sym->attr.flavor == FL_PROCEDURE && !sym->attr.intrinsic
14659 && !sym->attr.generic && !sym->attr.external
14660 && sym->attr.if_source == IFSRC_UNKNOWN
14661 && sym->ts.type == BT_UNKNOWN))
14662 {
14663
14664 /* If we find that a flavorless symbol is an interface in one of the
14665 parent namespaces, find its symtree in this namespace, free the
14666 symbol and set the symtree to point to the interface symbol. */
14667 for (ns = gfc_current_ns->parent; ns; ns = ns->parent)
14668 {
14669 symtree = gfc_find_symtree (ns->sym_root, sym->name);
14670 if (symtree && (symtree->n.sym->generic ||
14671 (symtree->n.sym->attr.flavor == FL_PROCEDURE
14672 && sym->ns->construct_entities)))
14673 {
14674 this_symtree = gfc_find_symtree (gfc_current_ns->sym_root,
14675 sym->name);
14676 if (this_symtree->n.sym == sym)
14677 {
14678 symtree->n.sym->refs++;
14679 gfc_release_symbol (sym);
14680 this_symtree->n.sym = symtree->n.sym;
14681 return;
14682 }
14683 }
14684 }
14685
14686 /* Otherwise give it a flavor according to such attributes as
14687 it has. */
14688 if (sym->attr.flavor == FL_UNKNOWN && sym->attr.external == 0
14689 && sym->attr.intrinsic == 0)
14690 sym->attr.flavor = FL_VARIABLE;
14691 else if (sym->attr.flavor == FL_UNKNOWN)
14692 {
14693 sym->attr.flavor = FL_PROCEDURE;
14694 if (sym->attr.dimension)
14695 sym->attr.function = 1;
14696 }
14697 }
14698
14699 if (sym->attr.external && sym->ts.type != BT_UNKNOWN && !sym->attr.function)
14700 gfc_add_function (&sym->attr, sym->name, &sym->declared_at);
14701
14702 if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
14703 && !resolve_procedure_interface (sym))
14704 return;
14705
14706 if (sym->attr.is_protected && !sym->attr.proc_pointer
14707 && (sym->attr.procedure || sym->attr.external))
14708 {
14709 if (sym->attr.external)
14710 gfc_error ("PROTECTED attribute conflicts with EXTERNAL attribute "
14711 "at %L", &sym->declared_at);
14712 else
14713 gfc_error ("PROCEDURE attribute conflicts with PROTECTED attribute "
14714 "at %L", &sym->declared_at);
14715
14716 return;
14717 }
14718
14719 if (sym->attr.flavor == FL_DERIVED && !resolve_fl_derived (sym))
14720 return;
14721
14722 else if ((sym->attr.flavor == FL_STRUCT || sym->attr.flavor == FL_UNION)
14723 && !resolve_fl_struct (sym))
14724 return;
14725
14726 /* Symbols that are module procedures with results (functions) have
14727 the types and array specification copied for type checking in
14728 procedures that call them, as well as for saving to a module
14729 file. These symbols can't stand the scrutiny that their results
14730 can. */
14731 mp_flag = (sym->result != NULL && sym->result != sym);
14732
14733 /* Make sure that the intrinsic is consistent with its internal
14734 representation. This needs to be done before assigning a default
14735 type to avoid spurious warnings. */
14736 if (sym->attr.flavor != FL_MODULE && sym->attr.intrinsic
14737 && !gfc_resolve_intrinsic (sym, &sym->declared_at))
14738 return;
14739
14740 /* Resolve associate names. */
14741 if (sym->assoc)
14742 resolve_assoc_var (sym, true);
14743
14744 /* Assign default type to symbols that need one and don't have one. */
14745 if (sym->ts.type == BT_UNKNOWN)
14746 {
14747 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER)
14748 {
14749 gfc_set_default_type (sym, 1, NULL);
14750 }
14751
14752 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.external
14753 && !sym->attr.function && !sym->attr.subroutine
14754 && gfc_get_default_type (sym->name, sym->ns)->type == BT_UNKNOWN)
14755 gfc_add_subroutine (&sym->attr, sym->name, &sym->declared_at);
14756
14757 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14758 {
14759 /* The specific case of an external procedure should emit an error
14760 in the case that there is no implicit type. */
14761 if (!mp_flag)
14762 {
14763 if (!sym->attr.mixed_entry_master)
14764 gfc_set_default_type (sym, sym->attr.external, NULL);
14765 }
14766 else
14767 {
14768 /* Result may be in another namespace. */
14769 resolve_symbol (sym->result);
14770
14771 if (!sym->result->attr.proc_pointer)
14772 {
14773 sym->ts = sym->result->ts;
14774 sym->as = gfc_copy_array_spec (sym->result->as);
14775 sym->attr.dimension = sym->result->attr.dimension;
14776 sym->attr.pointer = sym->result->attr.pointer;
14777 sym->attr.allocatable = sym->result->attr.allocatable;
14778 sym->attr.contiguous = sym->result->attr.contiguous;
14779 }
14780 }
14781 }
14782 }
14783 else if (mp_flag && sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14784 {
14785 bool saved_specification_expr = specification_expr;
14786 specification_expr = true;
14787 gfc_resolve_array_spec (sym->result->as, false);
14788 specification_expr = saved_specification_expr;
14789 }
14790
14791 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
14792 {
14793 as = CLASS_DATA (sym)->as;
14794 class_attr = CLASS_DATA (sym)->attr;
14795 class_attr.pointer = class_attr.class_pointer;
14796 }
14797 else
14798 {
14799 class_attr = sym->attr;
14800 as = sym->as;
14801 }
14802
14803 /* F2008, C530. */
14804 if (sym->attr.contiguous
14805 && (!class_attr.dimension
14806 || (as->type != AS_ASSUMED_SHAPE && as->type != AS_ASSUMED_RANK
14807 && !class_attr.pointer)))
14808 {
14809 gfc_error ("%qs at %L has the CONTIGUOUS attribute but is not an "
14810 "array pointer or an assumed-shape or assumed-rank array",
14811 sym->name, &sym->declared_at);
14812 return;
14813 }
14814
14815 /* Assumed size arrays and assumed shape arrays must be dummy
14816 arguments. Array-spec's of implied-shape should have been resolved to
14817 AS_EXPLICIT already. */
14818
14819 if (as)
14820 {
14821 /* If AS_IMPLIED_SHAPE makes it to here, it must be a bad
14822 specification expression. */
14823 if (as->type == AS_IMPLIED_SHAPE)
14824 {
14825 int i;
14826 for (i=0; i<as->rank; i++)
14827 {
14828 if (as->lower[i] != NULL && as->upper[i] == NULL)
14829 {
14830 gfc_error ("Bad specification for assumed size array at %L",
14831 &as->lower[i]->where);
14832 return;
14833 }
14834 }
14835 gcc_unreachable();
14836 }
14837
14838 if (((as->type == AS_ASSUMED_SIZE && !as->cp_was_assumed)
14839 || as->type == AS_ASSUMED_SHAPE)
14840 && !sym->attr.dummy && !sym->attr.select_type_temporary)
14841 {
14842 if (as->type == AS_ASSUMED_SIZE)
14843 gfc_error ("Assumed size array at %L must be a dummy argument",
14844 &sym->declared_at);
14845 else
14846 gfc_error ("Assumed shape array at %L must be a dummy argument",
14847 &sym->declared_at);
14848 return;
14849 }
14850 /* TS 29113, C535a. */
14851 if (as->type == AS_ASSUMED_RANK && !sym->attr.dummy
14852 && !sym->attr.select_type_temporary)
14853 {
14854 gfc_error ("Assumed-rank array at %L must be a dummy argument",
14855 &sym->declared_at);
14856 return;
14857 }
14858 if (as->type == AS_ASSUMED_RANK
14859 && (sym->attr.codimension || sym->attr.value))
14860 {
14861 gfc_error ("Assumed-rank array at %L may not have the VALUE or "
14862 "CODIMENSION attribute", &sym->declared_at);
14863 return;
14864 }
14865 }
14866
14867 /* Make sure symbols with known intent or optional are really dummy
14868 variable. Because of ENTRY statement, this has to be deferred
14869 until resolution time. */
14870
14871 if (!sym->attr.dummy
14872 && (sym->attr.optional || sym->attr.intent != INTENT_UNKNOWN))
14873 {
14874 gfc_error ("Symbol at %L is not a DUMMY variable", &sym->declared_at);
14875 return;
14876 }
14877
14878 if (sym->attr.value && !sym->attr.dummy)
14879 {
14880 gfc_error ("%qs at %L cannot have the VALUE attribute because "
14881 "it is not a dummy argument", sym->name, &sym->declared_at);
14882 return;
14883 }
14884
14885 if (sym->attr.value && sym->ts.type == BT_CHARACTER)
14886 {
14887 gfc_charlen *cl = sym->ts.u.cl;
14888 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
14889 {
14890 gfc_error ("Character dummy variable %qs at %L with VALUE "
14891 "attribute must have constant length",
14892 sym->name, &sym->declared_at);
14893 return;
14894 }
14895
14896 if (sym->ts.is_c_interop
14897 && mpz_cmp_si (cl->length->value.integer, 1) != 0)
14898 {
14899 gfc_error ("C interoperable character dummy variable %qs at %L "
14900 "with VALUE attribute must have length one",
14901 sym->name, &sym->declared_at);
14902 return;
14903 }
14904 }
14905
14906 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
14907 && sym->ts.u.derived->attr.generic)
14908 {
14909 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
14910 if (!sym->ts.u.derived)
14911 {
14912 gfc_error ("The derived type %qs at %L is of type %qs, "
14913 "which has not been defined", sym->name,
14914 &sym->declared_at, sym->ts.u.derived->name);
14915 sym->ts.type = BT_UNKNOWN;
14916 return;
14917 }
14918 }
14919
14920 /* Use the same constraints as TYPE(*), except for the type check
14921 and that only scalars and assumed-size arrays are permitted. */
14922 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
14923 {
14924 if (!sym->attr.dummy)
14925 {
14926 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14927 "a dummy argument", sym->name, &sym->declared_at);
14928 return;
14929 }
14930
14931 if (sym->ts.type != BT_ASSUMED && sym->ts.type != BT_INTEGER
14932 && sym->ts.type != BT_REAL && sym->ts.type != BT_LOGICAL
14933 && sym->ts.type != BT_COMPLEX)
14934 {
14935 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14936 "of type TYPE(*) or of an numeric intrinsic type",
14937 sym->name, &sym->declared_at);
14938 return;
14939 }
14940
14941 if (sym->attr.allocatable || sym->attr.codimension
14942 || sym->attr.pointer || sym->attr.value)
14943 {
14944 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
14945 "have the ALLOCATABLE, CODIMENSION, POINTER or VALUE "
14946 "attribute", sym->name, &sym->declared_at);
14947 return;
14948 }
14949
14950 if (sym->attr.intent == INTENT_OUT)
14951 {
14952 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
14953 "have the INTENT(OUT) attribute",
14954 sym->name, &sym->declared_at);
14955 return;
14956 }
14957 if (sym->attr.dimension && sym->as->type != AS_ASSUMED_SIZE)
14958 {
14959 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall "
14960 "either be a scalar or an assumed-size array",
14961 sym->name, &sym->declared_at);
14962 return;
14963 }
14964
14965 /* Set the type to TYPE(*) and add a dimension(*) to ensure
14966 NO_ARG_CHECK is correctly handled in trans*.c, e.g. with
14967 packing. */
14968 sym->ts.type = BT_ASSUMED;
14969 sym->as = gfc_get_array_spec ();
14970 sym->as->type = AS_ASSUMED_SIZE;
14971 sym->as->rank = 1;
14972 sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
14973 }
14974 else if (sym->ts.type == BT_ASSUMED)
14975 {
14976 /* TS 29113, C407a. */
14977 if (!sym->attr.dummy)
14978 {
14979 gfc_error ("Assumed type of variable %s at %L is only permitted "
14980 "for dummy variables", sym->name, &sym->declared_at);
14981 return;
14982 }
14983 if (sym->attr.allocatable || sym->attr.codimension
14984 || sym->attr.pointer || sym->attr.value)
14985 {
14986 gfc_error ("Assumed-type variable %s at %L may not have the "
14987 "ALLOCATABLE, CODIMENSION, POINTER or VALUE attribute",
14988 sym->name, &sym->declared_at);
14989 return;
14990 }
14991 if (sym->attr.intent == INTENT_OUT)
14992 {
14993 gfc_error ("Assumed-type variable %s at %L may not have the "
14994 "INTENT(OUT) attribute",
14995 sym->name, &sym->declared_at);
14996 return;
14997 }
14998 if (sym->attr.dimension && sym->as->type == AS_EXPLICIT)
14999 {
15000 gfc_error ("Assumed-type variable %s at %L shall not be an "
15001 "explicit-shape array", sym->name, &sym->declared_at);
15002 return;
15003 }
15004 }
15005
15006 /* If the symbol is marked as bind(c), that it is declared at module level
15007 scope and verify its type and kind. Do not do the latter for symbols
15008 that are implicitly typed because that is handled in
15009 gfc_set_default_type. Handle dummy arguments and procedure definitions
15010 separately. Also, anything that is use associated is not handled here
15011 but instead is handled in the module it is declared in. Finally, derived
15012 type definitions are allowed to be BIND(C) since that only implies that
15013 they're interoperable, and they are checked fully for interoperability
15014 when a variable is declared of that type. */
15015 if (sym->attr.is_bind_c && sym->attr.use_assoc == 0
15016 && sym->attr.dummy == 0 && sym->attr.flavor != FL_PROCEDURE
15017 && sym->attr.flavor != FL_DERIVED)
15018 {
15019 bool t = true;
15020
15021 /* First, make sure the variable is declared at the
15022 module-level scope (J3/04-007, Section 15.3). */
15023 if (sym->ns->proc_name->attr.flavor != FL_MODULE &&
15024 sym->attr.in_common == 0)
15025 {
15026 gfc_error ("Variable %qs at %L cannot be BIND(C) because it "
15027 "is neither a COMMON block nor declared at the "
15028 "module level scope", sym->name, &(sym->declared_at));
15029 t = false;
15030 }
15031 else if (sym->ts.type == BT_CHARACTER
15032 && (sym->ts.u.cl == NULL || sym->ts.u.cl->length == NULL
15033 || !gfc_is_constant_expr (sym->ts.u.cl->length)
15034 || mpz_cmp_si (sym->ts.u.cl->length->value.integer, 1) != 0))
15035 {
15036 gfc_error ("BIND(C) Variable %qs at %L must have length one",
15037 sym->name, &sym->declared_at);
15038 t = false;
15039 }
15040 else if (sym->common_head != NULL && sym->attr.implicit_type == 0)
15041 {
15042 t = verify_com_block_vars_c_interop (sym->common_head);
15043 }
15044 else if (sym->attr.implicit_type == 0)
15045 {
15046 /* If type() declaration, we need to verify that the components
15047 of the given type are all C interoperable, etc. */
15048 if (sym->ts.type == BT_DERIVED &&
15049 sym->ts.u.derived->attr.is_c_interop != 1)
15050 {
15051 /* Make sure the user marked the derived type as BIND(C). If
15052 not, call the verify routine. This could print an error
15053 for the derived type more than once if multiple variables
15054 of that type are declared. */
15055 if (sym->ts.u.derived->attr.is_bind_c != 1)
15056 verify_bind_c_derived_type (sym->ts.u.derived);
15057 t = false;
15058 }
15059
15060 /* Verify the variable itself as C interoperable if it
15061 is BIND(C). It is not possible for this to succeed if
15062 the verify_bind_c_derived_type failed, so don't have to handle
15063 any error returned by verify_bind_c_derived_type. */
15064 t = verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
15065 sym->common_block);
15066 }
15067
15068 if (!t)
15069 {
15070 /* clear the is_bind_c flag to prevent reporting errors more than
15071 once if something failed. */
15072 sym->attr.is_bind_c = 0;
15073 return;
15074 }
15075 }
15076
15077 /* If a derived type symbol has reached this point, without its
15078 type being declared, we have an error. Notice that most
15079 conditions that produce undefined derived types have already
15080 been dealt with. However, the likes of:
15081 implicit type(t) (t) ..... call foo (t) will get us here if
15082 the type is not declared in the scope of the implicit
15083 statement. Change the type to BT_UNKNOWN, both because it is so
15084 and to prevent an ICE. */
15085 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
15086 && sym->ts.u.derived->components == NULL
15087 && !sym->ts.u.derived->attr.zero_comp)
15088 {
15089 gfc_error ("The derived type %qs at %L is of type %qs, "
15090 "which has not been defined", sym->name,
15091 &sym->declared_at, sym->ts.u.derived->name);
15092 sym->ts.type = BT_UNKNOWN;
15093 return;
15094 }
15095
15096 /* Make sure that the derived type has been resolved and that the
15097 derived type is visible in the symbol's namespace, if it is a
15098 module function and is not PRIVATE. */
15099 if (sym->ts.type == BT_DERIVED
15100 && sym->ts.u.derived->attr.use_assoc
15101 && sym->ns->proc_name
15102 && sym->ns->proc_name->attr.flavor == FL_MODULE
15103 && !resolve_fl_derived (sym->ts.u.derived))
15104 return;
15105
15106 /* Unless the derived-type declaration is use associated, Fortran 95
15107 does not allow public entries of private derived types.
15108 See 4.4.1 (F95) and 4.5.1.1 (F2003); and related interpretation
15109 161 in 95-006r3. */
15110 if (sym->ts.type == BT_DERIVED
15111 && sym->ns->proc_name && sym->ns->proc_name->attr.flavor == FL_MODULE
15112 && !sym->ts.u.derived->attr.use_assoc
15113 && gfc_check_symbol_access (sym)
15114 && !gfc_check_symbol_access (sym->ts.u.derived)
15115 && !gfc_notify_std (GFC_STD_F2003, "PUBLIC %s %qs at %L of PRIVATE "
15116 "derived type %qs",
15117 (sym->attr.flavor == FL_PARAMETER)
15118 ? "parameter" : "variable",
15119 sym->name, &sym->declared_at,
15120 sym->ts.u.derived->name))
15121 return;
15122
15123 /* F2008, C1302. */
15124 if (sym->ts.type == BT_DERIVED
15125 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
15126 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
15127 || sym->ts.u.derived->attr.lock_comp)
15128 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
15129 {
15130 gfc_error ("Variable %s at %L of type LOCK_TYPE or with subcomponent of "
15131 "type LOCK_TYPE must be a coarray", sym->name,
15132 &sym->declared_at);
15133 return;
15134 }
15135
15136 /* TS18508, C702/C703. */
15137 if (sym->ts.type == BT_DERIVED
15138 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
15139 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
15140 || sym->ts.u.derived->attr.event_comp)
15141 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
15142 {
15143 gfc_error ("Variable %s at %L of type EVENT_TYPE or with subcomponent of "
15144 "type EVENT_TYPE must be a coarray", sym->name,
15145 &sym->declared_at);
15146 return;
15147 }
15148
15149 /* An assumed-size array with INTENT(OUT) shall not be of a type for which
15150 default initialization is defined (5.1.2.4.4). */
15151 if (sym->ts.type == BT_DERIVED
15152 && sym->attr.dummy
15153 && sym->attr.intent == INTENT_OUT
15154 && sym->as
15155 && sym->as->type == AS_ASSUMED_SIZE)
15156 {
15157 for (c = sym->ts.u.derived->components; c; c = c->next)
15158 {
15159 if (c->initializer)
15160 {
15161 gfc_error ("The INTENT(OUT) dummy argument %qs at %L is "
15162 "ASSUMED SIZE and so cannot have a default initializer",
15163 sym->name, &sym->declared_at);
15164 return;
15165 }
15166 }
15167 }
15168
15169 /* F2008, C542. */
15170 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
15171 && sym->attr.intent == INTENT_OUT && sym->attr.lock_comp)
15172 {
15173 gfc_error ("Dummy argument %qs at %L of LOCK_TYPE shall not be "
15174 "INTENT(OUT)", sym->name, &sym->declared_at);
15175 return;
15176 }
15177
15178 /* TS18508. */
15179 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
15180 && sym->attr.intent == INTENT_OUT && sym->attr.event_comp)
15181 {
15182 gfc_error ("Dummy argument %qs at %L of EVENT_TYPE shall not be "
15183 "INTENT(OUT)", sym->name, &sym->declared_at);
15184 return;
15185 }
15186
15187 /* F2008, C525. */
15188 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15189 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15190 && CLASS_DATA (sym)->attr.coarray_comp))
15191 || class_attr.codimension)
15192 && (sym->attr.result || sym->result == sym))
15193 {
15194 gfc_error ("Function result %qs at %L shall not be a coarray or have "
15195 "a coarray component", sym->name, &sym->declared_at);
15196 return;
15197 }
15198
15199 /* F2008, C524. */
15200 if (sym->attr.codimension && sym->ts.type == BT_DERIVED
15201 && sym->ts.u.derived->ts.is_iso_c)
15202 {
15203 gfc_error ("Variable %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
15204 "shall not be a coarray", sym->name, &sym->declared_at);
15205 return;
15206 }
15207
15208 /* F2008, C525. */
15209 if (((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15210 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15211 && CLASS_DATA (sym)->attr.coarray_comp))
15212 && (class_attr.codimension || class_attr.pointer || class_attr.dimension
15213 || class_attr.allocatable))
15214 {
15215 gfc_error ("Variable %qs at %L with coarray component shall be a "
15216 "nonpointer, nonallocatable scalar, which is not a coarray",
15217 sym->name, &sym->declared_at);
15218 return;
15219 }
15220
15221 /* F2008, C526. The function-result case was handled above. */
15222 if (class_attr.codimension
15223 && !(class_attr.allocatable || sym->attr.dummy || sym->attr.save
15224 || sym->attr.select_type_temporary
15225 || sym->attr.associate_var
15226 || (sym->ns->save_all && !sym->attr.automatic)
15227 || sym->ns->proc_name->attr.flavor == FL_MODULE
15228 || sym->ns->proc_name->attr.is_main_program
15229 || sym->attr.function || sym->attr.result || sym->attr.use_assoc))
15230 {
15231 gfc_error ("Variable %qs at %L is a coarray and is not ALLOCATABLE, SAVE "
15232 "nor a dummy argument", sym->name, &sym->declared_at);
15233 return;
15234 }
15235 /* F2008, C528. */
15236 else if (class_attr.codimension && !sym->attr.select_type_temporary
15237 && !class_attr.allocatable && as && as->cotype == AS_DEFERRED)
15238 {
15239 gfc_error ("Coarray variable %qs at %L shall not have codimensions with "
15240 "deferred shape", sym->name, &sym->declared_at);
15241 return;
15242 }
15243 else if (class_attr.codimension && class_attr.allocatable && as
15244 && (as->cotype != AS_DEFERRED || as->type != AS_DEFERRED))
15245 {
15246 gfc_error ("Allocatable coarray variable %qs at %L must have "
15247 "deferred shape", sym->name, &sym->declared_at);
15248 return;
15249 }
15250
15251 /* F2008, C541. */
15252 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15253 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15254 && CLASS_DATA (sym)->attr.coarray_comp))
15255 || (class_attr.codimension && class_attr.allocatable))
15256 && sym->attr.dummy && sym->attr.intent == INTENT_OUT)
15257 {
15258 gfc_error ("Variable %qs at %L is INTENT(OUT) and can thus not be an "
15259 "allocatable coarray or have coarray components",
15260 sym->name, &sym->declared_at);
15261 return;
15262 }
15263
15264 if (class_attr.codimension && sym->attr.dummy
15265 && sym->ns->proc_name && sym->ns->proc_name->attr.is_bind_c)
15266 {
15267 gfc_error ("Coarray dummy variable %qs at %L not allowed in BIND(C) "
15268 "procedure %qs", sym->name, &sym->declared_at,
15269 sym->ns->proc_name->name);
15270 return;
15271 }
15272
15273 if (sym->ts.type == BT_LOGICAL
15274 && ((sym->attr.function && sym->attr.is_bind_c && sym->result == sym)
15275 || ((sym->attr.dummy || sym->attr.result) && sym->ns->proc_name
15276 && sym->ns->proc_name->attr.is_bind_c)))
15277 {
15278 int i;
15279 for (i = 0; gfc_logical_kinds[i].kind; i++)
15280 if (gfc_logical_kinds[i].kind == sym->ts.kind)
15281 break;
15282 if (!gfc_logical_kinds[i].c_bool && sym->attr.dummy
15283 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL dummy argument %qs at "
15284 "%L with non-C_Bool kind in BIND(C) procedure "
15285 "%qs", sym->name, &sym->declared_at,
15286 sym->ns->proc_name->name))
15287 return;
15288 else if (!gfc_logical_kinds[i].c_bool
15289 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL result variable "
15290 "%qs at %L with non-C_Bool kind in "
15291 "BIND(C) procedure %qs", sym->name,
15292 &sym->declared_at,
15293 sym->attr.function ? sym->name
15294 : sym->ns->proc_name->name))
15295 return;
15296 }
15297
15298 switch (sym->attr.flavor)
15299 {
15300 case FL_VARIABLE:
15301 if (!resolve_fl_variable (sym, mp_flag))
15302 return;
15303 break;
15304
15305 case FL_PROCEDURE:
15306 if (sym->formal && !sym->formal_ns)
15307 {
15308 /* Check that none of the arguments are a namelist. */
15309 gfc_formal_arglist *formal = sym->formal;
15310
15311 for (; formal; formal = formal->next)
15312 if (formal->sym && formal->sym->attr.flavor == FL_NAMELIST)
15313 {
15314 gfc_error ("Namelist %qs cannot be an argument to "
15315 "subroutine or function at %L",
15316 formal->sym->name, &sym->declared_at);
15317 return;
15318 }
15319 }
15320
15321 if (!resolve_fl_procedure (sym, mp_flag))
15322 return;
15323 break;
15324
15325 case FL_NAMELIST:
15326 if (!resolve_fl_namelist (sym))
15327 return;
15328 break;
15329
15330 case FL_PARAMETER:
15331 if (!resolve_fl_parameter (sym))
15332 return;
15333 break;
15334
15335 default:
15336 break;
15337 }
15338
15339 /* Resolve array specifier. Check as well some constraints
15340 on COMMON blocks. */
15341
15342 check_constant = sym->attr.in_common && !sym->attr.pointer;
15343
15344 /* Set the formal_arg_flag so that check_conflict will not throw
15345 an error for host associated variables in the specification
15346 expression for an array_valued function. */
15347 if (sym->attr.function && sym->as)
15348 formal_arg_flag = true;
15349
15350 saved_specification_expr = specification_expr;
15351 specification_expr = true;
15352 gfc_resolve_array_spec (sym->as, check_constant);
15353 specification_expr = saved_specification_expr;
15354
15355 formal_arg_flag = false;
15356
15357 /* Resolve formal namespaces. */
15358 if (sym->formal_ns && sym->formal_ns != gfc_current_ns
15359 && !sym->attr.contained && !sym->attr.intrinsic)
15360 gfc_resolve (sym->formal_ns);
15361
15362 /* Make sure the formal namespace is present. */
15363 if (sym->formal && !sym->formal_ns)
15364 {
15365 gfc_formal_arglist *formal = sym->formal;
15366 while (formal && !formal->sym)
15367 formal = formal->next;
15368
15369 if (formal)
15370 {
15371 sym->formal_ns = formal->sym->ns;
15372 if (sym->ns != formal->sym->ns)
15373 sym->formal_ns->refs++;
15374 }
15375 }
15376
15377 /* Check threadprivate restrictions. */
15378 if (sym->attr.threadprivate && !sym->attr.save
15379 && !(sym->ns->save_all && !sym->attr.automatic)
15380 && (!sym->attr.in_common
15381 && sym->module == NULL
15382 && (sym->ns->proc_name == NULL
15383 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15384 gfc_error ("Threadprivate at %L isn't SAVEd", &sym->declared_at);
15385
15386 /* Check omp declare target restrictions. */
15387 if (sym->attr.omp_declare_target
15388 && sym->attr.flavor == FL_VARIABLE
15389 && !sym->attr.save
15390 && !(sym->ns->save_all && !sym->attr.automatic)
15391 && (!sym->attr.in_common
15392 && sym->module == NULL
15393 && (sym->ns->proc_name == NULL
15394 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15395 gfc_error ("!$OMP DECLARE TARGET variable %qs at %L isn't SAVEd",
15396 sym->name, &sym->declared_at);
15397
15398 /* If we have come this far we can apply default-initializers, as
15399 described in 14.7.5, to those variables that have not already
15400 been assigned one. */
15401 if (sym->ts.type == BT_DERIVED
15402 && !sym->value
15403 && !sym->attr.allocatable
15404 && !sym->attr.alloc_comp)
15405 {
15406 symbol_attribute *a = &sym->attr;
15407
15408 if ((!a->save && !a->dummy && !a->pointer
15409 && !a->in_common && !a->use_assoc
15410 && a->referenced
15411 && !((a->function || a->result)
15412 && (!a->dimension
15413 || sym->ts.u.derived->attr.alloc_comp
15414 || sym->ts.u.derived->attr.pointer_comp))
15415 && !(a->function && sym != sym->result))
15416 || (a->dummy && a->intent == INTENT_OUT && !a->pointer))
15417 apply_default_init (sym);
15418 else if (a->function && sym->result && a->access != ACCESS_PRIVATE
15419 && (sym->ts.u.derived->attr.alloc_comp
15420 || sym->ts.u.derived->attr.pointer_comp))
15421 /* Mark the result symbol to be referenced, when it has allocatable
15422 components. */
15423 sym->result->attr.referenced = 1;
15424 }
15425
15426 if (sym->ts.type == BT_CLASS && sym->ns == gfc_current_ns
15427 && sym->attr.dummy && sym->attr.intent == INTENT_OUT
15428 && !CLASS_DATA (sym)->attr.class_pointer
15429 && !CLASS_DATA (sym)->attr.allocatable)
15430 apply_default_init (sym);
15431
15432 /* If this symbol has a type-spec, check it. */
15433 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER
15434 || (sym->attr.flavor == FL_PROCEDURE && sym->attr.function))
15435 if (!resolve_typespec_used (&sym->ts, &sym->declared_at, sym->name))
15436 return;
15437
15438 if (sym->param_list)
15439 resolve_pdt (sym);
15440 }
15441
15442
15443 /************* Resolve DATA statements *************/
15444
15445 static struct
15446 {
15447 gfc_data_value *vnode;
15448 mpz_t left;
15449 }
15450 values;
15451
15452
15453 /* Advance the values structure to point to the next value in the data list. */
15454
15455 static bool
15456 next_data_value (void)
15457 {
15458 while (mpz_cmp_ui (values.left, 0) == 0)
15459 {
15460
15461 if (values.vnode->next == NULL)
15462 return false;
15463
15464 values.vnode = values.vnode->next;
15465 mpz_set (values.left, values.vnode->repeat);
15466 }
15467
15468 return true;
15469 }
15470
15471
15472 static bool
15473 check_data_variable (gfc_data_variable *var, locus *where)
15474 {
15475 gfc_expr *e;
15476 mpz_t size;
15477 mpz_t offset;
15478 bool t;
15479 ar_type mark = AR_UNKNOWN;
15480 int i;
15481 mpz_t section_index[GFC_MAX_DIMENSIONS];
15482 gfc_ref *ref;
15483 gfc_array_ref *ar;
15484 gfc_symbol *sym;
15485 int has_pointer;
15486
15487 if (!gfc_resolve_expr (var->expr))
15488 return false;
15489
15490 ar = NULL;
15491 mpz_init_set_si (offset, 0);
15492 e = var->expr;
15493
15494 if (e->expr_type == EXPR_FUNCTION && e->value.function.isym
15495 && e->value.function.isym->id == GFC_ISYM_CAF_GET)
15496 e = e->value.function.actual->expr;
15497
15498 if (e->expr_type != EXPR_VARIABLE)
15499 {
15500 gfc_error ("Expecting definable entity near %L", where);
15501 return false;
15502 }
15503
15504 sym = e->symtree->n.sym;
15505
15506 if (sym->ns->is_block_data && !sym->attr.in_common)
15507 {
15508 gfc_error ("BLOCK DATA element %qs at %L must be in COMMON",
15509 sym->name, &sym->declared_at);
15510 return false;
15511 }
15512
15513 if (e->ref == NULL && sym->as)
15514 {
15515 gfc_error ("DATA array %qs at %L must be specified in a previous"
15516 " declaration", sym->name, where);
15517 return false;
15518 }
15519
15520 has_pointer = sym->attr.pointer;
15521
15522 if (gfc_is_coindexed (e))
15523 {
15524 gfc_error ("DATA element %qs at %L cannot have a coindex", sym->name,
15525 where);
15526 return false;
15527 }
15528
15529 for (ref = e->ref; ref; ref = ref->next)
15530 {
15531 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
15532 has_pointer = 1;
15533
15534 if (has_pointer
15535 && ref->type == REF_ARRAY
15536 && ref->u.ar.type != AR_FULL)
15537 {
15538 gfc_error ("DATA element %qs at %L is a pointer and so must "
15539 "be a full array", sym->name, where);
15540 return false;
15541 }
15542 }
15543
15544 if (e->rank == 0 || has_pointer)
15545 {
15546 mpz_init_set_ui (size, 1);
15547 ref = NULL;
15548 }
15549 else
15550 {
15551 ref = e->ref;
15552
15553 /* Find the array section reference. */
15554 for (ref = e->ref; ref; ref = ref->next)
15555 {
15556 if (ref->type != REF_ARRAY)
15557 continue;
15558 if (ref->u.ar.type == AR_ELEMENT)
15559 continue;
15560 break;
15561 }
15562 gcc_assert (ref);
15563
15564 /* Set marks according to the reference pattern. */
15565 switch (ref->u.ar.type)
15566 {
15567 case AR_FULL:
15568 mark = AR_FULL;
15569 break;
15570
15571 case AR_SECTION:
15572 ar = &ref->u.ar;
15573 /* Get the start position of array section. */
15574 gfc_get_section_index (ar, section_index, &offset);
15575 mark = AR_SECTION;
15576 break;
15577
15578 default:
15579 gcc_unreachable ();
15580 }
15581
15582 if (!gfc_array_size (e, &size))
15583 {
15584 gfc_error ("Nonconstant array section at %L in DATA statement",
15585 where);
15586 mpz_clear (offset);
15587 return false;
15588 }
15589 }
15590
15591 t = true;
15592
15593 while (mpz_cmp_ui (size, 0) > 0)
15594 {
15595 if (!next_data_value ())
15596 {
15597 gfc_error ("DATA statement at %L has more variables than values",
15598 where);
15599 t = false;
15600 break;
15601 }
15602
15603 t = gfc_check_assign (var->expr, values.vnode->expr, 0);
15604 if (!t)
15605 break;
15606
15607 /* If we have more than one element left in the repeat count,
15608 and we have more than one element left in the target variable,
15609 then create a range assignment. */
15610 /* FIXME: Only done for full arrays for now, since array sections
15611 seem tricky. */
15612 if (mark == AR_FULL && ref && ref->next == NULL
15613 && mpz_cmp_ui (values.left, 1) > 0 && mpz_cmp_ui (size, 1) > 0)
15614 {
15615 mpz_t range;
15616
15617 if (mpz_cmp (size, values.left) >= 0)
15618 {
15619 mpz_init_set (range, values.left);
15620 mpz_sub (size, size, values.left);
15621 mpz_set_ui (values.left, 0);
15622 }
15623 else
15624 {
15625 mpz_init_set (range, size);
15626 mpz_sub (values.left, values.left, size);
15627 mpz_set_ui (size, 0);
15628 }
15629
15630 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15631 offset, &range);
15632
15633 mpz_add (offset, offset, range);
15634 mpz_clear (range);
15635
15636 if (!t)
15637 break;
15638 }
15639
15640 /* Assign initial value to symbol. */
15641 else
15642 {
15643 mpz_sub_ui (values.left, values.left, 1);
15644 mpz_sub_ui (size, size, 1);
15645
15646 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15647 offset, NULL);
15648 if (!t)
15649 break;
15650
15651 if (mark == AR_FULL)
15652 mpz_add_ui (offset, offset, 1);
15653
15654 /* Modify the array section indexes and recalculate the offset
15655 for next element. */
15656 else if (mark == AR_SECTION)
15657 gfc_advance_section (section_index, ar, &offset);
15658 }
15659 }
15660
15661 if (mark == AR_SECTION)
15662 {
15663 for (i = 0; i < ar->dimen; i++)
15664 mpz_clear (section_index[i]);
15665 }
15666
15667 mpz_clear (size);
15668 mpz_clear (offset);
15669
15670 return t;
15671 }
15672
15673
15674 static bool traverse_data_var (gfc_data_variable *, locus *);
15675
15676 /* Iterate over a list of elements in a DATA statement. */
15677
15678 static bool
15679 traverse_data_list (gfc_data_variable *var, locus *where)
15680 {
15681 mpz_t trip;
15682 iterator_stack frame;
15683 gfc_expr *e, *start, *end, *step;
15684 bool retval = true;
15685
15686 mpz_init (frame.value);
15687 mpz_init (trip);
15688
15689 start = gfc_copy_expr (var->iter.start);
15690 end = gfc_copy_expr (var->iter.end);
15691 step = gfc_copy_expr (var->iter.step);
15692
15693 if (!gfc_simplify_expr (start, 1)
15694 || start->expr_type != EXPR_CONSTANT)
15695 {
15696 gfc_error ("start of implied-do loop at %L could not be "
15697 "simplified to a constant value", &start->where);
15698 retval = false;
15699 goto cleanup;
15700 }
15701 if (!gfc_simplify_expr (end, 1)
15702 || end->expr_type != EXPR_CONSTANT)
15703 {
15704 gfc_error ("end of implied-do loop at %L could not be "
15705 "simplified to a constant value", &start->where);
15706 retval = false;
15707 goto cleanup;
15708 }
15709 if (!gfc_simplify_expr (step, 1)
15710 || step->expr_type != EXPR_CONSTANT)
15711 {
15712 gfc_error ("step of implied-do loop at %L could not be "
15713 "simplified to a constant value", &start->where);
15714 retval = false;
15715 goto cleanup;
15716 }
15717
15718 mpz_set (trip, end->value.integer);
15719 mpz_sub (trip, trip, start->value.integer);
15720 mpz_add (trip, trip, step->value.integer);
15721
15722 mpz_div (trip, trip, step->value.integer);
15723
15724 mpz_set (frame.value, start->value.integer);
15725
15726 frame.prev = iter_stack;
15727 frame.variable = var->iter.var->symtree;
15728 iter_stack = &frame;
15729
15730 while (mpz_cmp_ui (trip, 0) > 0)
15731 {
15732 if (!traverse_data_var (var->list, where))
15733 {
15734 retval = false;
15735 goto cleanup;
15736 }
15737
15738 e = gfc_copy_expr (var->expr);
15739 if (!gfc_simplify_expr (e, 1))
15740 {
15741 gfc_free_expr (e);
15742 retval = false;
15743 goto cleanup;
15744 }
15745
15746 mpz_add (frame.value, frame.value, step->value.integer);
15747
15748 mpz_sub_ui (trip, trip, 1);
15749 }
15750
15751 cleanup:
15752 mpz_clear (frame.value);
15753 mpz_clear (trip);
15754
15755 gfc_free_expr (start);
15756 gfc_free_expr (end);
15757 gfc_free_expr (step);
15758
15759 iter_stack = frame.prev;
15760 return retval;
15761 }
15762
15763
15764 /* Type resolve variables in the variable list of a DATA statement. */
15765
15766 static bool
15767 traverse_data_var (gfc_data_variable *var, locus *where)
15768 {
15769 bool t;
15770
15771 for (; var; var = var->next)
15772 {
15773 if (var->expr == NULL)
15774 t = traverse_data_list (var, where);
15775 else
15776 t = check_data_variable (var, where);
15777
15778 if (!t)
15779 return false;
15780 }
15781
15782 return true;
15783 }
15784
15785
15786 /* Resolve the expressions and iterators associated with a data statement.
15787 This is separate from the assignment checking because data lists should
15788 only be resolved once. */
15789
15790 static bool
15791 resolve_data_variables (gfc_data_variable *d)
15792 {
15793 for (; d; d = d->next)
15794 {
15795 if (d->list == NULL)
15796 {
15797 if (!gfc_resolve_expr (d->expr))
15798 return false;
15799 }
15800 else
15801 {
15802 if (!gfc_resolve_iterator (&d->iter, false, true))
15803 return false;
15804
15805 if (!resolve_data_variables (d->list))
15806 return false;
15807 }
15808 }
15809
15810 return true;
15811 }
15812
15813
15814 /* Resolve a single DATA statement. We implement this by storing a pointer to
15815 the value list into static variables, and then recursively traversing the
15816 variables list, expanding iterators and such. */
15817
15818 static void
15819 resolve_data (gfc_data *d)
15820 {
15821
15822 if (!resolve_data_variables (d->var))
15823 return;
15824
15825 values.vnode = d->value;
15826 if (d->value == NULL)
15827 mpz_set_ui (values.left, 0);
15828 else
15829 mpz_set (values.left, d->value->repeat);
15830
15831 if (!traverse_data_var (d->var, &d->where))
15832 return;
15833
15834 /* At this point, we better not have any values left. */
15835
15836 if (next_data_value ())
15837 gfc_error ("DATA statement at %L has more values than variables",
15838 &d->where);
15839 }
15840
15841
15842 /* 12.6 Constraint: In a pure subprogram any variable which is in common or
15843 accessed by host or use association, is a dummy argument to a pure function,
15844 is a dummy argument with INTENT (IN) to a pure subroutine, or an object that
15845 is storage associated with any such variable, shall not be used in the
15846 following contexts: (clients of this function). */
15847
15848 /* Determines if a variable is not 'pure', i.e., not assignable within a pure
15849 procedure. Returns zero if assignment is OK, nonzero if there is a
15850 problem. */
15851 int
15852 gfc_impure_variable (gfc_symbol *sym)
15853 {
15854 gfc_symbol *proc;
15855 gfc_namespace *ns;
15856
15857 if (sym->attr.use_assoc || sym->attr.in_common)
15858 return 1;
15859
15860 /* Check if the symbol's ns is inside the pure procedure. */
15861 for (ns = gfc_current_ns; ns; ns = ns->parent)
15862 {
15863 if (ns == sym->ns)
15864 break;
15865 if (ns->proc_name->attr.flavor == FL_PROCEDURE && !sym->attr.function)
15866 return 1;
15867 }
15868
15869 proc = sym->ns->proc_name;
15870 if (sym->attr.dummy
15871 && ((proc->attr.subroutine && sym->attr.intent == INTENT_IN)
15872 || proc->attr.function))
15873 return 1;
15874
15875 /* TODO: Sort out what can be storage associated, if anything, and include
15876 it here. In principle equivalences should be scanned but it does not
15877 seem to be possible to storage associate an impure variable this way. */
15878 return 0;
15879 }
15880
15881
15882 /* Test whether a symbol is pure or not. For a NULL pointer, checks if the
15883 current namespace is inside a pure procedure. */
15884
15885 int
15886 gfc_pure (gfc_symbol *sym)
15887 {
15888 symbol_attribute attr;
15889 gfc_namespace *ns;
15890
15891 if (sym == NULL)
15892 {
15893 /* Check if the current namespace or one of its parents
15894 belongs to a pure procedure. */
15895 for (ns = gfc_current_ns; ns; ns = ns->parent)
15896 {
15897 sym = ns->proc_name;
15898 if (sym == NULL)
15899 return 0;
15900 attr = sym->attr;
15901 if (attr.flavor == FL_PROCEDURE && attr.pure)
15902 return 1;
15903 }
15904 return 0;
15905 }
15906
15907 attr = sym->attr;
15908
15909 return attr.flavor == FL_PROCEDURE && attr.pure;
15910 }
15911
15912
15913 /* Test whether a symbol is implicitly pure or not. For a NULL pointer,
15914 checks if the current namespace is implicitly pure. Note that this
15915 function returns false for a PURE procedure. */
15916
15917 int
15918 gfc_implicit_pure (gfc_symbol *sym)
15919 {
15920 gfc_namespace *ns;
15921
15922 if (sym == NULL)
15923 {
15924 /* Check if the current procedure is implicit_pure. Walk up
15925 the procedure list until we find a procedure. */
15926 for (ns = gfc_current_ns; ns; ns = ns->parent)
15927 {
15928 sym = ns->proc_name;
15929 if (sym == NULL)
15930 return 0;
15931
15932 if (sym->attr.flavor == FL_PROCEDURE)
15933 break;
15934 }
15935 }
15936
15937 return sym->attr.flavor == FL_PROCEDURE && sym->attr.implicit_pure
15938 && !sym->attr.pure;
15939 }
15940
15941
15942 void
15943 gfc_unset_implicit_pure (gfc_symbol *sym)
15944 {
15945 gfc_namespace *ns;
15946
15947 if (sym == NULL)
15948 {
15949 /* Check if the current procedure is implicit_pure. Walk up
15950 the procedure list until we find a procedure. */
15951 for (ns = gfc_current_ns; ns; ns = ns->parent)
15952 {
15953 sym = ns->proc_name;
15954 if (sym == NULL)
15955 return;
15956
15957 if (sym->attr.flavor == FL_PROCEDURE)
15958 break;
15959 }
15960 }
15961
15962 if (sym->attr.flavor == FL_PROCEDURE)
15963 sym->attr.implicit_pure = 0;
15964 else
15965 sym->attr.pure = 0;
15966 }
15967
15968
15969 /* Test whether the current procedure is elemental or not. */
15970
15971 int
15972 gfc_elemental (gfc_symbol *sym)
15973 {
15974 symbol_attribute attr;
15975
15976 if (sym == NULL)
15977 sym = gfc_current_ns->proc_name;
15978 if (sym == NULL)
15979 return 0;
15980 attr = sym->attr;
15981
15982 return attr.flavor == FL_PROCEDURE && attr.elemental;
15983 }
15984
15985
15986 /* Warn about unused labels. */
15987
15988 static void
15989 warn_unused_fortran_label (gfc_st_label *label)
15990 {
15991 if (label == NULL)
15992 return;
15993
15994 warn_unused_fortran_label (label->left);
15995
15996 if (label->defined == ST_LABEL_UNKNOWN)
15997 return;
15998
15999 switch (label->referenced)
16000 {
16001 case ST_LABEL_UNKNOWN:
16002 gfc_warning (OPT_Wunused_label, "Label %d at %L defined but not used",
16003 label->value, &label->where);
16004 break;
16005
16006 case ST_LABEL_BAD_TARGET:
16007 gfc_warning (OPT_Wunused_label,
16008 "Label %d at %L defined but cannot be used",
16009 label->value, &label->where);
16010 break;
16011
16012 default:
16013 break;
16014 }
16015
16016 warn_unused_fortran_label (label->right);
16017 }
16018
16019
16020 /* Returns the sequence type of a symbol or sequence. */
16021
16022 static seq_type
16023 sequence_type (gfc_typespec ts)
16024 {
16025 seq_type result;
16026 gfc_component *c;
16027
16028 switch (ts.type)
16029 {
16030 case BT_DERIVED:
16031
16032 if (ts.u.derived->components == NULL)
16033 return SEQ_NONDEFAULT;
16034
16035 result = sequence_type (ts.u.derived->components->ts);
16036 for (c = ts.u.derived->components->next; c; c = c->next)
16037 if (sequence_type (c->ts) != result)
16038 return SEQ_MIXED;
16039
16040 return result;
16041
16042 case BT_CHARACTER:
16043 if (ts.kind != gfc_default_character_kind)
16044 return SEQ_NONDEFAULT;
16045
16046 return SEQ_CHARACTER;
16047
16048 case BT_INTEGER:
16049 if (ts.kind != gfc_default_integer_kind)
16050 return SEQ_NONDEFAULT;
16051
16052 return SEQ_NUMERIC;
16053
16054 case BT_REAL:
16055 if (!(ts.kind == gfc_default_real_kind
16056 || ts.kind == gfc_default_double_kind))
16057 return SEQ_NONDEFAULT;
16058
16059 return SEQ_NUMERIC;
16060
16061 case BT_COMPLEX:
16062 if (ts.kind != gfc_default_complex_kind)
16063 return SEQ_NONDEFAULT;
16064
16065 return SEQ_NUMERIC;
16066
16067 case BT_LOGICAL:
16068 if (ts.kind != gfc_default_logical_kind)
16069 return SEQ_NONDEFAULT;
16070
16071 return SEQ_NUMERIC;
16072
16073 default:
16074 return SEQ_NONDEFAULT;
16075 }
16076 }
16077
16078
16079 /* Resolve derived type EQUIVALENCE object. */
16080
16081 static bool
16082 resolve_equivalence_derived (gfc_symbol *derived, gfc_symbol *sym, gfc_expr *e)
16083 {
16084 gfc_component *c = derived->components;
16085
16086 if (!derived)
16087 return true;
16088
16089 /* Shall not be an object of nonsequence derived type. */
16090 if (!derived->attr.sequence)
16091 {
16092 gfc_error ("Derived type variable %qs at %L must have SEQUENCE "
16093 "attribute to be an EQUIVALENCE object", sym->name,
16094 &e->where);
16095 return false;
16096 }
16097
16098 /* Shall not have allocatable components. */
16099 if (derived->attr.alloc_comp)
16100 {
16101 gfc_error ("Derived type variable %qs at %L cannot have ALLOCATABLE "
16102 "components to be an EQUIVALENCE object",sym->name,
16103 &e->where);
16104 return false;
16105 }
16106
16107 if (sym->attr.in_common && gfc_has_default_initializer (sym->ts.u.derived))
16108 {
16109 gfc_error ("Derived type variable %qs at %L with default "
16110 "initialization cannot be in EQUIVALENCE with a variable "
16111 "in COMMON", sym->name, &e->where);
16112 return false;
16113 }
16114
16115 for (; c ; c = c->next)
16116 {
16117 if (gfc_bt_struct (c->ts.type)
16118 && (!resolve_equivalence_derived(c->ts.u.derived, sym, e)))
16119 return false;
16120
16121 /* Shall not be an object of sequence derived type containing a pointer
16122 in the structure. */
16123 if (c->attr.pointer)
16124 {
16125 gfc_error ("Derived type variable %qs at %L with pointer "
16126 "component(s) cannot be an EQUIVALENCE object",
16127 sym->name, &e->where);
16128 return false;
16129 }
16130 }
16131 return true;
16132 }
16133
16134
16135 /* Resolve equivalence object.
16136 An EQUIVALENCE object shall not be a dummy argument, a pointer, a target,
16137 an allocatable array, an object of nonsequence derived type, an object of
16138 sequence derived type containing a pointer at any level of component
16139 selection, an automatic object, a function name, an entry name, a result
16140 name, a named constant, a structure component, or a subobject of any of
16141 the preceding objects. A substring shall not have length zero. A
16142 derived type shall not have components with default initialization nor
16143 shall two objects of an equivalence group be initialized.
16144 Either all or none of the objects shall have an protected attribute.
16145 The simple constraints are done in symbol.c(check_conflict) and the rest
16146 are implemented here. */
16147
16148 static void
16149 resolve_equivalence (gfc_equiv *eq)
16150 {
16151 gfc_symbol *sym;
16152 gfc_symbol *first_sym;
16153 gfc_expr *e;
16154 gfc_ref *r;
16155 locus *last_where = NULL;
16156 seq_type eq_type, last_eq_type;
16157 gfc_typespec *last_ts;
16158 int object, cnt_protected;
16159 const char *msg;
16160
16161 last_ts = &eq->expr->symtree->n.sym->ts;
16162
16163 first_sym = eq->expr->symtree->n.sym;
16164
16165 cnt_protected = 0;
16166
16167 for (object = 1; eq; eq = eq->eq, object++)
16168 {
16169 e = eq->expr;
16170
16171 e->ts = e->symtree->n.sym->ts;
16172 /* match_varspec might not know yet if it is seeing
16173 array reference or substring reference, as it doesn't
16174 know the types. */
16175 if (e->ref && e->ref->type == REF_ARRAY)
16176 {
16177 gfc_ref *ref = e->ref;
16178 sym = e->symtree->n.sym;
16179
16180 if (sym->attr.dimension)
16181 {
16182 ref->u.ar.as = sym->as;
16183 ref = ref->next;
16184 }
16185
16186 /* For substrings, convert REF_ARRAY into REF_SUBSTRING. */
16187 if (e->ts.type == BT_CHARACTER
16188 && ref
16189 && ref->type == REF_ARRAY
16190 && ref->u.ar.dimen == 1
16191 && ref->u.ar.dimen_type[0] == DIMEN_RANGE
16192 && ref->u.ar.stride[0] == NULL)
16193 {
16194 gfc_expr *start = ref->u.ar.start[0];
16195 gfc_expr *end = ref->u.ar.end[0];
16196 void *mem = NULL;
16197
16198 /* Optimize away the (:) reference. */
16199 if (start == NULL && end == NULL)
16200 {
16201 if (e->ref == ref)
16202 e->ref = ref->next;
16203 else
16204 e->ref->next = ref->next;
16205 mem = ref;
16206 }
16207 else
16208 {
16209 ref->type = REF_SUBSTRING;
16210 if (start == NULL)
16211 start = gfc_get_int_expr (gfc_charlen_int_kind,
16212 NULL, 1);
16213 ref->u.ss.start = start;
16214 if (end == NULL && e->ts.u.cl)
16215 end = gfc_copy_expr (e->ts.u.cl->length);
16216 ref->u.ss.end = end;
16217 ref->u.ss.length = e->ts.u.cl;
16218 e->ts.u.cl = NULL;
16219 }
16220 ref = ref->next;
16221 free (mem);
16222 }
16223
16224 /* Any further ref is an error. */
16225 if (ref)
16226 {
16227 gcc_assert (ref->type == REF_ARRAY);
16228 gfc_error ("Syntax error in EQUIVALENCE statement at %L",
16229 &ref->u.ar.where);
16230 continue;
16231 }
16232 }
16233
16234 if (!gfc_resolve_expr (e))
16235 continue;
16236
16237 sym = e->symtree->n.sym;
16238
16239 if (sym->attr.is_protected)
16240 cnt_protected++;
16241 if (cnt_protected > 0 && cnt_protected != object)
16242 {
16243 gfc_error ("Either all or none of the objects in the "
16244 "EQUIVALENCE set at %L shall have the "
16245 "PROTECTED attribute",
16246 &e->where);
16247 break;
16248 }
16249
16250 /* Shall not equivalence common block variables in a PURE procedure. */
16251 if (sym->ns->proc_name
16252 && sym->ns->proc_name->attr.pure
16253 && sym->attr.in_common)
16254 {
16255 /* Need to check for symbols that may have entered the pure
16256 procedure via a USE statement. */
16257 bool saw_sym = false;
16258 if (sym->ns->use_stmts)
16259 {
16260 gfc_use_rename *r;
16261 for (r = sym->ns->use_stmts->rename; r; r = r->next)
16262 if (strcmp(r->use_name, sym->name) == 0) saw_sym = true;
16263 }
16264 else
16265 saw_sym = true;
16266
16267 if (saw_sym)
16268 gfc_error ("COMMON block member %qs at %L cannot be an "
16269 "EQUIVALENCE object in the pure procedure %qs",
16270 sym->name, &e->where, sym->ns->proc_name->name);
16271 break;
16272 }
16273
16274 /* Shall not be a named constant. */
16275 if (e->expr_type == EXPR_CONSTANT)
16276 {
16277 gfc_error ("Named constant %qs at %L cannot be an EQUIVALENCE "
16278 "object", sym->name, &e->where);
16279 continue;
16280 }
16281
16282 if (e->ts.type == BT_DERIVED
16283 && !resolve_equivalence_derived (e->ts.u.derived, sym, e))
16284 continue;
16285
16286 /* Check that the types correspond correctly:
16287 Note 5.28:
16288 A numeric sequence structure may be equivalenced to another sequence
16289 structure, an object of default integer type, default real type, double
16290 precision real type, default logical type such that components of the
16291 structure ultimately only become associated to objects of the same
16292 kind. A character sequence structure may be equivalenced to an object
16293 of default character kind or another character sequence structure.
16294 Other objects may be equivalenced only to objects of the same type and
16295 kind parameters. */
16296
16297 /* Identical types are unconditionally OK. */
16298 if (object == 1 || gfc_compare_types (last_ts, &sym->ts))
16299 goto identical_types;
16300
16301 last_eq_type = sequence_type (*last_ts);
16302 eq_type = sequence_type (sym->ts);
16303
16304 /* Since the pair of objects is not of the same type, mixed or
16305 non-default sequences can be rejected. */
16306
16307 msg = "Sequence %s with mixed components in EQUIVALENCE "
16308 "statement at %L with different type objects";
16309 if ((object ==2
16310 && last_eq_type == SEQ_MIXED
16311 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16312 || (eq_type == SEQ_MIXED
16313 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16314 continue;
16315
16316 msg = "Non-default type object or sequence %s in EQUIVALENCE "
16317 "statement at %L with objects of different type";
16318 if ((object ==2
16319 && last_eq_type == SEQ_NONDEFAULT
16320 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16321 || (eq_type == SEQ_NONDEFAULT
16322 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16323 continue;
16324
16325 msg ="Non-CHARACTER object %qs in default CHARACTER "
16326 "EQUIVALENCE statement at %L";
16327 if (last_eq_type == SEQ_CHARACTER
16328 && eq_type != SEQ_CHARACTER
16329 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16330 continue;
16331
16332 msg ="Non-NUMERIC object %qs in default NUMERIC "
16333 "EQUIVALENCE statement at %L";
16334 if (last_eq_type == SEQ_NUMERIC
16335 && eq_type != SEQ_NUMERIC
16336 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16337 continue;
16338
16339 identical_types:
16340 last_ts =&sym->ts;
16341 last_where = &e->where;
16342
16343 if (!e->ref)
16344 continue;
16345
16346 /* Shall not be an automatic array. */
16347 if (e->ref->type == REF_ARRAY
16348 && !gfc_resolve_array_spec (e->ref->u.ar.as, 1))
16349 {
16350 gfc_error ("Array %qs at %L with non-constant bounds cannot be "
16351 "an EQUIVALENCE object", sym->name, &e->where);
16352 continue;
16353 }
16354
16355 r = e->ref;
16356 while (r)
16357 {
16358 /* Shall not be a structure component. */
16359 if (r->type == REF_COMPONENT)
16360 {
16361 gfc_error ("Structure component %qs at %L cannot be an "
16362 "EQUIVALENCE object",
16363 r->u.c.component->name, &e->where);
16364 break;
16365 }
16366
16367 /* A substring shall not have length zero. */
16368 if (r->type == REF_SUBSTRING)
16369 {
16370 if (compare_bound (r->u.ss.start, r->u.ss.end) == CMP_GT)
16371 {
16372 gfc_error ("Substring at %L has length zero",
16373 &r->u.ss.start->where);
16374 break;
16375 }
16376 }
16377 r = r->next;
16378 }
16379 }
16380 }
16381
16382
16383 /* Function called by resolve_fntype to flag other symbol used in the
16384 length type parameter specification of function resuls. */
16385
16386 static bool
16387 flag_fn_result_spec (gfc_expr *expr,
16388 gfc_symbol *sym,
16389 int *f ATTRIBUTE_UNUSED)
16390 {
16391 gfc_namespace *ns;
16392 gfc_symbol *s;
16393
16394 if (expr->expr_type == EXPR_VARIABLE)
16395 {
16396 s = expr->symtree->n.sym;
16397 for (ns = s->ns; ns; ns = ns->parent)
16398 if (!ns->parent)
16399 break;
16400
16401 if (sym == s)
16402 {
16403 gfc_error ("Self reference in character length expression "
16404 "for %qs at %L", sym->name, &expr->where);
16405 return true;
16406 }
16407
16408 if (!s->fn_result_spec
16409 && s->attr.flavor == FL_PARAMETER)
16410 {
16411 /* Function contained in a module.... */
16412 if (ns->proc_name && ns->proc_name->attr.flavor == FL_MODULE)
16413 {
16414 gfc_symtree *st;
16415 s->fn_result_spec = 1;
16416 /* Make sure that this symbol is translated as a module
16417 variable. */
16418 st = gfc_get_unique_symtree (ns);
16419 st->n.sym = s;
16420 s->refs++;
16421 }
16422 /* ... which is use associated and called. */
16423 else if (s->attr.use_assoc || s->attr.used_in_submodule
16424 ||
16425 /* External function matched with an interface. */
16426 (s->ns->proc_name
16427 && ((s->ns == ns
16428 && s->ns->proc_name->attr.if_source == IFSRC_DECL)
16429 || s->ns->proc_name->attr.if_source == IFSRC_IFBODY)
16430 && s->ns->proc_name->attr.function))
16431 s->fn_result_spec = 1;
16432 }
16433 }
16434 return false;
16435 }
16436
16437
16438 /* Resolve function and ENTRY types, issue diagnostics if needed. */
16439
16440 static void
16441 resolve_fntype (gfc_namespace *ns)
16442 {
16443 gfc_entry_list *el;
16444 gfc_symbol *sym;
16445
16446 if (ns->proc_name == NULL || !ns->proc_name->attr.function)
16447 return;
16448
16449 /* If there are any entries, ns->proc_name is the entry master
16450 synthetic symbol and ns->entries->sym actual FUNCTION symbol. */
16451 if (ns->entries)
16452 sym = ns->entries->sym;
16453 else
16454 sym = ns->proc_name;
16455 if (sym->result == sym
16456 && sym->ts.type == BT_UNKNOWN
16457 && !gfc_set_default_type (sym, 0, NULL)
16458 && !sym->attr.untyped)
16459 {
16460 gfc_error ("Function %qs at %L has no IMPLICIT type",
16461 sym->name, &sym->declared_at);
16462 sym->attr.untyped = 1;
16463 }
16464
16465 if (sym->ts.type == BT_DERIVED && !sym->ts.u.derived->attr.use_assoc
16466 && !sym->attr.contained
16467 && !gfc_check_symbol_access (sym->ts.u.derived)
16468 && gfc_check_symbol_access (sym))
16469 {
16470 gfc_notify_std (GFC_STD_F2003, "PUBLIC function %qs at "
16471 "%L of PRIVATE type %qs", sym->name,
16472 &sym->declared_at, sym->ts.u.derived->name);
16473 }
16474
16475 if (ns->entries)
16476 for (el = ns->entries->next; el; el = el->next)
16477 {
16478 if (el->sym->result == el->sym
16479 && el->sym->ts.type == BT_UNKNOWN
16480 && !gfc_set_default_type (el->sym, 0, NULL)
16481 && !el->sym->attr.untyped)
16482 {
16483 gfc_error ("ENTRY %qs at %L has no IMPLICIT type",
16484 el->sym->name, &el->sym->declared_at);
16485 el->sym->attr.untyped = 1;
16486 }
16487 }
16488
16489 if (sym->ts.type == BT_CHARACTER)
16490 gfc_traverse_expr (sym->ts.u.cl->length, sym, flag_fn_result_spec, 0);
16491 }
16492
16493
16494 /* 12.3.2.1.1 Defined operators. */
16495
16496 static bool
16497 check_uop_procedure (gfc_symbol *sym, locus where)
16498 {
16499 gfc_formal_arglist *formal;
16500
16501 if (!sym->attr.function)
16502 {
16503 gfc_error ("User operator procedure %qs at %L must be a FUNCTION",
16504 sym->name, &where);
16505 return false;
16506 }
16507
16508 if (sym->ts.type == BT_CHARACTER
16509 && !((sym->ts.u.cl && sym->ts.u.cl->length) || sym->ts.deferred)
16510 && !(sym->result && ((sym->result->ts.u.cl
16511 && sym->result->ts.u.cl->length) || sym->result->ts.deferred)))
16512 {
16513 gfc_error ("User operator procedure %qs at %L cannot be assumed "
16514 "character length", sym->name, &where);
16515 return false;
16516 }
16517
16518 formal = gfc_sym_get_dummy_args (sym);
16519 if (!formal || !formal->sym)
16520 {
16521 gfc_error ("User operator procedure %qs at %L must have at least "
16522 "one argument", sym->name, &where);
16523 return false;
16524 }
16525
16526 if (formal->sym->attr.intent != INTENT_IN)
16527 {
16528 gfc_error ("First argument of operator interface at %L must be "
16529 "INTENT(IN)", &where);
16530 return false;
16531 }
16532
16533 if (formal->sym->attr.optional)
16534 {
16535 gfc_error ("First argument of operator interface at %L cannot be "
16536 "optional", &where);
16537 return false;
16538 }
16539
16540 formal = formal->next;
16541 if (!formal || !formal->sym)
16542 return true;
16543
16544 if (formal->sym->attr.intent != INTENT_IN)
16545 {
16546 gfc_error ("Second argument of operator interface at %L must be "
16547 "INTENT(IN)", &where);
16548 return false;
16549 }
16550
16551 if (formal->sym->attr.optional)
16552 {
16553 gfc_error ("Second argument of operator interface at %L cannot be "
16554 "optional", &where);
16555 return false;
16556 }
16557
16558 if (formal->next)
16559 {
16560 gfc_error ("Operator interface at %L must have, at most, two "
16561 "arguments", &where);
16562 return false;
16563 }
16564
16565 return true;
16566 }
16567
16568 static void
16569 gfc_resolve_uops (gfc_symtree *symtree)
16570 {
16571 gfc_interface *itr;
16572
16573 if (symtree == NULL)
16574 return;
16575
16576 gfc_resolve_uops (symtree->left);
16577 gfc_resolve_uops (symtree->right);
16578
16579 for (itr = symtree->n.uop->op; itr; itr = itr->next)
16580 check_uop_procedure (itr->sym, itr->sym->declared_at);
16581 }
16582
16583
16584 /* Examine all of the expressions associated with a program unit,
16585 assign types to all intermediate expressions, make sure that all
16586 assignments are to compatible types and figure out which names
16587 refer to which functions or subroutines. It doesn't check code
16588 block, which is handled by gfc_resolve_code. */
16589
16590 static void
16591 resolve_types (gfc_namespace *ns)
16592 {
16593 gfc_namespace *n;
16594 gfc_charlen *cl;
16595 gfc_data *d;
16596 gfc_equiv *eq;
16597 gfc_namespace* old_ns = gfc_current_ns;
16598
16599 if (ns->types_resolved)
16600 return;
16601
16602 /* Check that all IMPLICIT types are ok. */
16603 if (!ns->seen_implicit_none)
16604 {
16605 unsigned letter;
16606 for (letter = 0; letter != GFC_LETTERS; ++letter)
16607 if (ns->set_flag[letter]
16608 && !resolve_typespec_used (&ns->default_type[letter],
16609 &ns->implicit_loc[letter], NULL))
16610 return;
16611 }
16612
16613 gfc_current_ns = ns;
16614
16615 resolve_entries (ns);
16616
16617 resolve_common_vars (&ns->blank_common, false);
16618 resolve_common_blocks (ns->common_root);
16619
16620 resolve_contained_functions (ns);
16621
16622 if (ns->proc_name && ns->proc_name->attr.flavor == FL_PROCEDURE
16623 && ns->proc_name->attr.if_source == IFSRC_IFBODY)
16624 resolve_formal_arglist (ns->proc_name);
16625
16626 gfc_traverse_ns (ns, resolve_bind_c_derived_types);
16627
16628 for (cl = ns->cl_list; cl; cl = cl->next)
16629 resolve_charlen (cl);
16630
16631 gfc_traverse_ns (ns, resolve_symbol);
16632
16633 resolve_fntype (ns);
16634
16635 for (n = ns->contained; n; n = n->sibling)
16636 {
16637 if (gfc_pure (ns->proc_name) && !gfc_pure (n->proc_name))
16638 gfc_error ("Contained procedure %qs at %L of a PURE procedure must "
16639 "also be PURE", n->proc_name->name,
16640 &n->proc_name->declared_at);
16641
16642 resolve_types (n);
16643 }
16644
16645 forall_flag = 0;
16646 gfc_do_concurrent_flag = 0;
16647 gfc_check_interfaces (ns);
16648
16649 gfc_traverse_ns (ns, resolve_values);
16650
16651 if (ns->save_all)
16652 gfc_save_all (ns);
16653
16654 iter_stack = NULL;
16655 for (d = ns->data; d; d = d->next)
16656 resolve_data (d);
16657
16658 iter_stack = NULL;
16659 gfc_traverse_ns (ns, gfc_formalize_init_value);
16660
16661 gfc_traverse_ns (ns, gfc_verify_binding_labels);
16662
16663 for (eq = ns->equiv; eq; eq = eq->next)
16664 resolve_equivalence (eq);
16665
16666 /* Warn about unused labels. */
16667 if (warn_unused_label)
16668 warn_unused_fortran_label (ns->st_labels);
16669
16670 gfc_resolve_uops (ns->uop_root);
16671
16672 gfc_traverse_ns (ns, gfc_verify_DTIO_procedures);
16673
16674 gfc_resolve_omp_declare_simd (ns);
16675
16676 gfc_resolve_omp_udrs (ns->omp_udr_root);
16677
16678 ns->types_resolved = 1;
16679
16680 gfc_current_ns = old_ns;
16681 }
16682
16683
16684 /* Call gfc_resolve_code recursively. */
16685
16686 static void
16687 resolve_codes (gfc_namespace *ns)
16688 {
16689 gfc_namespace *n;
16690 bitmap_obstack old_obstack;
16691
16692 if (ns->resolved == 1)
16693 return;
16694
16695 for (n = ns->contained; n; n = n->sibling)
16696 resolve_codes (n);
16697
16698 gfc_current_ns = ns;
16699
16700 /* Don't clear 'cs_base' if this is the namespace of a BLOCK construct. */
16701 if (!(ns->proc_name && ns->proc_name->attr.flavor == FL_LABEL))
16702 cs_base = NULL;
16703
16704 /* Set to an out of range value. */
16705 current_entry_id = -1;
16706
16707 old_obstack = labels_obstack;
16708 bitmap_obstack_initialize (&labels_obstack);
16709
16710 gfc_resolve_oacc_declare (ns);
16711 gfc_resolve_omp_local_vars (ns);
16712 gfc_resolve_code (ns->code, ns);
16713
16714 bitmap_obstack_release (&labels_obstack);
16715 labels_obstack = old_obstack;
16716 }
16717
16718
16719 /* This function is called after a complete program unit has been compiled.
16720 Its purpose is to examine all of the expressions associated with a program
16721 unit, assign types to all intermediate expressions, make sure that all
16722 assignments are to compatible types and figure out which names refer to
16723 which functions or subroutines. */
16724
16725 void
16726 gfc_resolve (gfc_namespace *ns)
16727 {
16728 gfc_namespace *old_ns;
16729 code_stack *old_cs_base;
16730 struct gfc_omp_saved_state old_omp_state;
16731
16732 if (ns->resolved)
16733 return;
16734
16735 ns->resolved = -1;
16736 old_ns = gfc_current_ns;
16737 old_cs_base = cs_base;
16738
16739 /* As gfc_resolve can be called during resolution of an OpenMP construct
16740 body, we should clear any state associated to it, so that say NS's
16741 DO loops are not interpreted as OpenMP loops. */
16742 if (!ns->construct_entities)
16743 gfc_omp_save_and_clear_state (&old_omp_state);
16744
16745 resolve_types (ns);
16746 component_assignment_level = 0;
16747 resolve_codes (ns);
16748
16749 gfc_current_ns = old_ns;
16750 cs_base = old_cs_base;
16751 ns->resolved = 1;
16752
16753 gfc_run_passes (ns);
16754
16755 if (!ns->construct_entities)
16756 gfc_omp_restore_state (&old_omp_state);
16757 }