Fix up duplicated duplicated words mostly in comments
[gcc.git] / gcc / fortran / resolve.c
1 /* Perform type resolution on the various structures.
2 Copyright (C) 2001-2020 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "options.h"
25 #include "bitmap.h"
26 #include "gfortran.h"
27 #include "arith.h" /* For gfc_compare_expr(). */
28 #include "dependency.h"
29 #include "data.h"
30 #include "target-memory.h" /* for gfc_simplify_transfer */
31 #include "constructor.h"
32
33 /* Types used in equivalence statements. */
34
35 enum seq_type
36 {
37 SEQ_NONDEFAULT, SEQ_NUMERIC, SEQ_CHARACTER, SEQ_MIXED
38 };
39
40 /* Stack to keep track of the nesting of blocks as we move through the
41 code. See resolve_branch() and gfc_resolve_code(). */
42
43 typedef struct code_stack
44 {
45 struct gfc_code *head, *current;
46 struct code_stack *prev;
47
48 /* This bitmap keeps track of the targets valid for a branch from
49 inside this block except for END {IF|SELECT}s of enclosing
50 blocks. */
51 bitmap reachable_labels;
52 }
53 code_stack;
54
55 static code_stack *cs_base = NULL;
56
57
58 /* Nonzero if we're inside a FORALL or DO CONCURRENT block. */
59
60 static int forall_flag;
61 int gfc_do_concurrent_flag;
62
63 /* True when we are resolving an expression that is an actual argument to
64 a procedure. */
65 static bool actual_arg = false;
66 /* True when we are resolving an expression that is the first actual argument
67 to a procedure. */
68 static bool first_actual_arg = false;
69
70
71 /* Nonzero if we're inside a OpenMP WORKSHARE or PARALLEL WORKSHARE block. */
72
73 static int omp_workshare_flag;
74
75 /* True if we are processing a formal arglist. The corresponding function
76 resets the flag each time that it is read. */
77 static bool formal_arg_flag = false;
78
79 /* True if we are resolving a specification expression. */
80 static bool specification_expr = false;
81
82 /* The id of the last entry seen. */
83 static int current_entry_id;
84
85 /* We use bitmaps to determine if a branch target is valid. */
86 static bitmap_obstack labels_obstack;
87
88 /* True when simplifying a EXPR_VARIABLE argument to an inquiry function. */
89 static bool inquiry_argument = false;
90
91
92 bool
93 gfc_is_formal_arg (void)
94 {
95 return formal_arg_flag;
96 }
97
98 /* Is the symbol host associated? */
99 static bool
100 is_sym_host_assoc (gfc_symbol *sym, gfc_namespace *ns)
101 {
102 for (ns = ns->parent; ns; ns = ns->parent)
103 {
104 if (sym->ns == ns)
105 return true;
106 }
107
108 return false;
109 }
110
111 /* Ensure a typespec used is valid; for instance, TYPE(t) is invalid if t is
112 an ABSTRACT derived-type. If where is not NULL, an error message with that
113 locus is printed, optionally using name. */
114
115 static bool
116 resolve_typespec_used (gfc_typespec* ts, locus* where, const char* name)
117 {
118 if (ts->type == BT_DERIVED && ts->u.derived->attr.abstract)
119 {
120 if (where)
121 {
122 if (name)
123 gfc_error ("%qs at %L is of the ABSTRACT type %qs",
124 name, where, ts->u.derived->name);
125 else
126 gfc_error ("ABSTRACT type %qs used at %L",
127 ts->u.derived->name, where);
128 }
129
130 return false;
131 }
132
133 return true;
134 }
135
136
137 static bool
138 check_proc_interface (gfc_symbol *ifc, locus *where)
139 {
140 /* Several checks for F08:C1216. */
141 if (ifc->attr.procedure)
142 {
143 gfc_error ("Interface %qs at %L is declared "
144 "in a later PROCEDURE statement", ifc->name, where);
145 return false;
146 }
147 if (ifc->generic)
148 {
149 /* For generic interfaces, check if there is
150 a specific procedure with the same name. */
151 gfc_interface *gen = ifc->generic;
152 while (gen && strcmp (gen->sym->name, ifc->name) != 0)
153 gen = gen->next;
154 if (!gen)
155 {
156 gfc_error ("Interface %qs at %L may not be generic",
157 ifc->name, where);
158 return false;
159 }
160 }
161 if (ifc->attr.proc == PROC_ST_FUNCTION)
162 {
163 gfc_error ("Interface %qs at %L may not be a statement function",
164 ifc->name, where);
165 return false;
166 }
167 if (gfc_is_intrinsic (ifc, 0, ifc->declared_at)
168 || gfc_is_intrinsic (ifc, 1, ifc->declared_at))
169 ifc->attr.intrinsic = 1;
170 if (ifc->attr.intrinsic && !gfc_intrinsic_actual_ok (ifc->name, 0))
171 {
172 gfc_error ("Intrinsic procedure %qs not allowed in "
173 "PROCEDURE statement at %L", ifc->name, where);
174 return false;
175 }
176 if (!ifc->attr.if_source && !ifc->attr.intrinsic && ifc->name[0] != '\0')
177 {
178 gfc_error ("Interface %qs at %L must be explicit", ifc->name, where);
179 return false;
180 }
181 return true;
182 }
183
184
185 static void resolve_symbol (gfc_symbol *sym);
186
187
188 /* Resolve the interface for a PROCEDURE declaration or procedure pointer. */
189
190 static bool
191 resolve_procedure_interface (gfc_symbol *sym)
192 {
193 gfc_symbol *ifc = sym->ts.interface;
194
195 if (!ifc)
196 return true;
197
198 if (ifc == sym)
199 {
200 gfc_error ("PROCEDURE %qs at %L may not be used as its own interface",
201 sym->name, &sym->declared_at);
202 return false;
203 }
204 if (!check_proc_interface (ifc, &sym->declared_at))
205 return false;
206
207 if (ifc->attr.if_source || ifc->attr.intrinsic)
208 {
209 /* Resolve interface and copy attributes. */
210 resolve_symbol (ifc);
211 if (ifc->attr.intrinsic)
212 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
213
214 if (ifc->result)
215 {
216 sym->ts = ifc->result->ts;
217 sym->attr.allocatable = ifc->result->attr.allocatable;
218 sym->attr.pointer = ifc->result->attr.pointer;
219 sym->attr.dimension = ifc->result->attr.dimension;
220 sym->attr.class_ok = ifc->result->attr.class_ok;
221 sym->as = gfc_copy_array_spec (ifc->result->as);
222 sym->result = sym;
223 }
224 else
225 {
226 sym->ts = ifc->ts;
227 sym->attr.allocatable = ifc->attr.allocatable;
228 sym->attr.pointer = ifc->attr.pointer;
229 sym->attr.dimension = ifc->attr.dimension;
230 sym->attr.class_ok = ifc->attr.class_ok;
231 sym->as = gfc_copy_array_spec (ifc->as);
232 }
233 sym->ts.interface = ifc;
234 sym->attr.function = ifc->attr.function;
235 sym->attr.subroutine = ifc->attr.subroutine;
236
237 sym->attr.pure = ifc->attr.pure;
238 sym->attr.elemental = ifc->attr.elemental;
239 sym->attr.contiguous = ifc->attr.contiguous;
240 sym->attr.recursive = ifc->attr.recursive;
241 sym->attr.always_explicit = ifc->attr.always_explicit;
242 sym->attr.ext_attr |= ifc->attr.ext_attr;
243 sym->attr.is_bind_c = ifc->attr.is_bind_c;
244 /* Copy char length. */
245 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
246 {
247 sym->ts.u.cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
248 if (sym->ts.u.cl->length && !sym->ts.u.cl->resolved
249 && !gfc_resolve_expr (sym->ts.u.cl->length))
250 return false;
251 }
252 }
253
254 return true;
255 }
256
257
258 /* Resolve types of formal argument lists. These have to be done early so that
259 the formal argument lists of module procedures can be copied to the
260 containing module before the individual procedures are resolved
261 individually. We also resolve argument lists of procedures in interface
262 blocks because they are self-contained scoping units.
263
264 Since a dummy argument cannot be a non-dummy procedure, the only
265 resort left for untyped names are the IMPLICIT types. */
266
267 static void
268 resolve_formal_arglist (gfc_symbol *proc)
269 {
270 gfc_formal_arglist *f;
271 gfc_symbol *sym;
272 bool saved_specification_expr;
273 int i;
274
275 if (proc->result != NULL)
276 sym = proc->result;
277 else
278 sym = proc;
279
280 if (gfc_elemental (proc)
281 || sym->attr.pointer || sym->attr.allocatable
282 || (sym->as && sym->as->rank != 0))
283 {
284 proc->attr.always_explicit = 1;
285 sym->attr.always_explicit = 1;
286 }
287
288 formal_arg_flag = true;
289
290 for (f = proc->formal; f; f = f->next)
291 {
292 gfc_array_spec *as;
293
294 sym = f->sym;
295
296 if (sym == NULL)
297 {
298 /* Alternate return placeholder. */
299 if (gfc_elemental (proc))
300 gfc_error ("Alternate return specifier in elemental subroutine "
301 "%qs at %L is not allowed", proc->name,
302 &proc->declared_at);
303 if (proc->attr.function)
304 gfc_error ("Alternate return specifier in function "
305 "%qs at %L is not allowed", proc->name,
306 &proc->declared_at);
307 continue;
308 }
309 else if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
310 && !resolve_procedure_interface (sym))
311 return;
312
313 if (strcmp (proc->name, sym->name) == 0)
314 {
315 gfc_error ("Self-referential argument "
316 "%qs at %L is not allowed", sym->name,
317 &proc->declared_at);
318 return;
319 }
320
321 if (sym->attr.if_source != IFSRC_UNKNOWN)
322 resolve_formal_arglist (sym);
323
324 if (sym->attr.subroutine || sym->attr.external)
325 {
326 if (sym->attr.flavor == FL_UNKNOWN)
327 gfc_add_flavor (&sym->attr, FL_PROCEDURE, sym->name, &sym->declared_at);
328 }
329 else
330 {
331 if (sym->ts.type == BT_UNKNOWN && !proc->attr.intrinsic
332 && (!sym->attr.function || sym->result == sym))
333 gfc_set_default_type (sym, 1, sym->ns);
334 }
335
336 as = sym->ts.type == BT_CLASS && sym->attr.class_ok
337 ? CLASS_DATA (sym)->as : sym->as;
338
339 saved_specification_expr = specification_expr;
340 specification_expr = true;
341 gfc_resolve_array_spec (as, 0);
342 specification_expr = saved_specification_expr;
343
344 /* We can't tell if an array with dimension (:) is assumed or deferred
345 shape until we know if it has the pointer or allocatable attributes.
346 */
347 if (as && as->rank > 0 && as->type == AS_DEFERRED
348 && ((sym->ts.type != BT_CLASS
349 && !(sym->attr.pointer || sym->attr.allocatable))
350 || (sym->ts.type == BT_CLASS
351 && !(CLASS_DATA (sym)->attr.class_pointer
352 || CLASS_DATA (sym)->attr.allocatable)))
353 && sym->attr.flavor != FL_PROCEDURE)
354 {
355 as->type = AS_ASSUMED_SHAPE;
356 for (i = 0; i < as->rank; i++)
357 as->lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
358 }
359
360 if ((as && as->rank > 0 && as->type == AS_ASSUMED_SHAPE)
361 || (as && as->type == AS_ASSUMED_RANK)
362 || sym->attr.pointer || sym->attr.allocatable || sym->attr.target
363 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
364 && (CLASS_DATA (sym)->attr.class_pointer
365 || CLASS_DATA (sym)->attr.allocatable
366 || CLASS_DATA (sym)->attr.target))
367 || sym->attr.optional)
368 {
369 proc->attr.always_explicit = 1;
370 if (proc->result)
371 proc->result->attr.always_explicit = 1;
372 }
373
374 /* If the flavor is unknown at this point, it has to be a variable.
375 A procedure specification would have already set the type. */
376
377 if (sym->attr.flavor == FL_UNKNOWN)
378 gfc_add_flavor (&sym->attr, FL_VARIABLE, sym->name, &sym->declared_at);
379
380 if (gfc_pure (proc))
381 {
382 if (sym->attr.flavor == FL_PROCEDURE)
383 {
384 /* F08:C1279. */
385 if (!gfc_pure (sym))
386 {
387 gfc_error ("Dummy procedure %qs of PURE procedure at %L must "
388 "also be PURE", sym->name, &sym->declared_at);
389 continue;
390 }
391 }
392 else if (!sym->attr.pointer)
393 {
394 if (proc->attr.function && sym->attr.intent != INTENT_IN)
395 {
396 if (sym->attr.value)
397 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
398 " of pure function %qs at %L with VALUE "
399 "attribute but without INTENT(IN)",
400 sym->name, proc->name, &sym->declared_at);
401 else
402 gfc_error ("Argument %qs of pure function %qs at %L must "
403 "be INTENT(IN) or VALUE", sym->name, proc->name,
404 &sym->declared_at);
405 }
406
407 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN)
408 {
409 if (sym->attr.value)
410 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
411 " of pure subroutine %qs at %L with VALUE "
412 "attribute but without INTENT", sym->name,
413 proc->name, &sym->declared_at);
414 else
415 gfc_error ("Argument %qs of pure subroutine %qs at %L "
416 "must have its INTENT specified or have the "
417 "VALUE attribute", sym->name, proc->name,
418 &sym->declared_at);
419 }
420 }
421
422 /* F08:C1278a. */
423 if (sym->ts.type == BT_CLASS && sym->attr.intent == INTENT_OUT)
424 {
425 gfc_error ("INTENT(OUT) argument %qs of pure procedure %qs at %L"
426 " may not be polymorphic", sym->name, proc->name,
427 &sym->declared_at);
428 continue;
429 }
430 }
431
432 if (proc->attr.implicit_pure)
433 {
434 if (sym->attr.flavor == FL_PROCEDURE)
435 {
436 if (!gfc_pure (sym))
437 proc->attr.implicit_pure = 0;
438 }
439 else if (!sym->attr.pointer)
440 {
441 if (proc->attr.function && sym->attr.intent != INTENT_IN
442 && !sym->value)
443 proc->attr.implicit_pure = 0;
444
445 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN
446 && !sym->value)
447 proc->attr.implicit_pure = 0;
448 }
449 }
450
451 if (gfc_elemental (proc))
452 {
453 /* F08:C1289. */
454 if (sym->attr.codimension
455 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
456 && CLASS_DATA (sym)->attr.codimension))
457 {
458 gfc_error ("Coarray dummy argument %qs at %L to elemental "
459 "procedure", sym->name, &sym->declared_at);
460 continue;
461 }
462
463 if (sym->as || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
464 && CLASS_DATA (sym)->as))
465 {
466 gfc_error ("Argument %qs of elemental procedure at %L must "
467 "be scalar", sym->name, &sym->declared_at);
468 continue;
469 }
470
471 if (sym->attr.allocatable
472 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
473 && CLASS_DATA (sym)->attr.allocatable))
474 {
475 gfc_error ("Argument %qs of elemental procedure at %L cannot "
476 "have the ALLOCATABLE attribute", sym->name,
477 &sym->declared_at);
478 continue;
479 }
480
481 if (sym->attr.pointer
482 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
483 && CLASS_DATA (sym)->attr.class_pointer))
484 {
485 gfc_error ("Argument %qs of elemental procedure at %L cannot "
486 "have the POINTER attribute", sym->name,
487 &sym->declared_at);
488 continue;
489 }
490
491 if (sym->attr.flavor == FL_PROCEDURE)
492 {
493 gfc_error ("Dummy procedure %qs not allowed in elemental "
494 "procedure %qs at %L", sym->name, proc->name,
495 &sym->declared_at);
496 continue;
497 }
498
499 /* Fortran 2008 Corrigendum 1, C1290a. */
500 if (sym->attr.intent == INTENT_UNKNOWN && !sym->attr.value)
501 {
502 gfc_error ("Argument %qs of elemental procedure %qs at %L must "
503 "have its INTENT specified or have the VALUE "
504 "attribute", sym->name, proc->name,
505 &sym->declared_at);
506 continue;
507 }
508 }
509
510 /* Each dummy shall be specified to be scalar. */
511 if (proc->attr.proc == PROC_ST_FUNCTION)
512 {
513 if (sym->as != NULL)
514 {
515 /* F03:C1263 (R1238) The function-name and each dummy-arg-name
516 shall be specified, explicitly or implicitly, to be scalar. */
517 gfc_error ("Argument '%s' of statement function '%s' at %L "
518 "must be scalar", sym->name, proc->name,
519 &proc->declared_at);
520 continue;
521 }
522
523 if (sym->ts.type == BT_CHARACTER)
524 {
525 gfc_charlen *cl = sym->ts.u.cl;
526 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
527 {
528 gfc_error ("Character-valued argument %qs of statement "
529 "function at %L must have constant length",
530 sym->name, &sym->declared_at);
531 continue;
532 }
533 }
534 }
535 }
536 formal_arg_flag = false;
537 }
538
539
540 /* Work function called when searching for symbols that have argument lists
541 associated with them. */
542
543 static void
544 find_arglists (gfc_symbol *sym)
545 {
546 if (sym->attr.if_source == IFSRC_UNKNOWN || sym->ns != gfc_current_ns
547 || gfc_fl_struct (sym->attr.flavor) || sym->attr.intrinsic)
548 return;
549
550 resolve_formal_arglist (sym);
551 }
552
553
554 /* Given a namespace, resolve all formal argument lists within the namespace.
555 */
556
557 static void
558 resolve_formal_arglists (gfc_namespace *ns)
559 {
560 if (ns == NULL)
561 return;
562
563 gfc_traverse_ns (ns, find_arglists);
564 }
565
566
567 static void
568 resolve_contained_fntype (gfc_symbol *sym, gfc_namespace *ns)
569 {
570 bool t;
571
572 if (sym && sym->attr.flavor == FL_PROCEDURE
573 && sym->ns->parent
574 && sym->ns->parent->proc_name
575 && sym->ns->parent->proc_name->attr.flavor == FL_PROCEDURE
576 && !strcmp (sym->name, sym->ns->parent->proc_name->name))
577 gfc_error ("Contained procedure %qs at %L has the same name as its "
578 "encompassing procedure", sym->name, &sym->declared_at);
579
580 /* If this namespace is not a function or an entry master function,
581 ignore it. */
582 if (! sym || !(sym->attr.function || sym->attr.flavor == FL_VARIABLE)
583 || sym->attr.entry_master)
584 return;
585
586 if (!sym->result)
587 return;
588
589 /* Try to find out of what the return type is. */
590 if (sym->result->ts.type == BT_UNKNOWN && sym->result->ts.interface == NULL)
591 {
592 t = gfc_set_default_type (sym->result, 0, ns);
593
594 if (!t && !sym->result->attr.untyped)
595 {
596 if (sym->result == sym)
597 gfc_error ("Contained function %qs at %L has no IMPLICIT type",
598 sym->name, &sym->declared_at);
599 else if (!sym->result->attr.proc_pointer)
600 gfc_error ("Result %qs of contained function %qs at %L has "
601 "no IMPLICIT type", sym->result->name, sym->name,
602 &sym->result->declared_at);
603 sym->result->attr.untyped = 1;
604 }
605 }
606
607 /* Fortran 2008 Draft Standard, page 535, C418, on type-param-value
608 type, lists the only ways a character length value of * can be used:
609 dummy arguments of procedures, named constants, function results and
610 in allocate statements if the allocate_object is an assumed length dummy
611 in external functions. Internal function results and results of module
612 procedures are not on this list, ergo, not permitted. */
613
614 if (sym->result->ts.type == BT_CHARACTER)
615 {
616 gfc_charlen *cl = sym->result->ts.u.cl;
617 if ((!cl || !cl->length) && !sym->result->ts.deferred)
618 {
619 /* See if this is a module-procedure and adapt error message
620 accordingly. */
621 bool module_proc;
622 gcc_assert (ns->parent && ns->parent->proc_name);
623 module_proc = (ns->parent->proc_name->attr.flavor == FL_MODULE);
624
625 gfc_error (module_proc
626 ? G_("Character-valued module procedure %qs at %L"
627 " must not be assumed length")
628 : G_("Character-valued internal function %qs at %L"
629 " must not be assumed length"),
630 sym->name, &sym->declared_at);
631 }
632 }
633 }
634
635
636 /* Add NEW_ARGS to the formal argument list of PROC, taking care not to
637 introduce duplicates. */
638
639 static void
640 merge_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
641 {
642 gfc_formal_arglist *f, *new_arglist;
643 gfc_symbol *new_sym;
644
645 for (; new_args != NULL; new_args = new_args->next)
646 {
647 new_sym = new_args->sym;
648 /* See if this arg is already in the formal argument list. */
649 for (f = proc->formal; f; f = f->next)
650 {
651 if (new_sym == f->sym)
652 break;
653 }
654
655 if (f)
656 continue;
657
658 /* Add a new argument. Argument order is not important. */
659 new_arglist = gfc_get_formal_arglist ();
660 new_arglist->sym = new_sym;
661 new_arglist->next = proc->formal;
662 proc->formal = new_arglist;
663 }
664 }
665
666
667 /* Flag the arguments that are not present in all entries. */
668
669 static void
670 check_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
671 {
672 gfc_formal_arglist *f, *head;
673 head = new_args;
674
675 for (f = proc->formal; f; f = f->next)
676 {
677 if (f->sym == NULL)
678 continue;
679
680 for (new_args = head; new_args; new_args = new_args->next)
681 {
682 if (new_args->sym == f->sym)
683 break;
684 }
685
686 if (new_args)
687 continue;
688
689 f->sym->attr.not_always_present = 1;
690 }
691 }
692
693
694 /* Resolve alternate entry points. If a symbol has multiple entry points we
695 create a new master symbol for the main routine, and turn the existing
696 symbol into an entry point. */
697
698 static void
699 resolve_entries (gfc_namespace *ns)
700 {
701 gfc_namespace *old_ns;
702 gfc_code *c;
703 gfc_symbol *proc;
704 gfc_entry_list *el;
705 char name[GFC_MAX_SYMBOL_LEN + 1];
706 static int master_count = 0;
707
708 if (ns->proc_name == NULL)
709 return;
710
711 /* No need to do anything if this procedure doesn't have alternate entry
712 points. */
713 if (!ns->entries)
714 return;
715
716 /* We may already have resolved alternate entry points. */
717 if (ns->proc_name->attr.entry_master)
718 return;
719
720 /* If this isn't a procedure something has gone horribly wrong. */
721 gcc_assert (ns->proc_name->attr.flavor == FL_PROCEDURE);
722
723 /* Remember the current namespace. */
724 old_ns = gfc_current_ns;
725
726 gfc_current_ns = ns;
727
728 /* Add the main entry point to the list of entry points. */
729 el = gfc_get_entry_list ();
730 el->sym = ns->proc_name;
731 el->id = 0;
732 el->next = ns->entries;
733 ns->entries = el;
734 ns->proc_name->attr.entry = 1;
735
736 /* If it is a module function, it needs to be in the right namespace
737 so that gfc_get_fake_result_decl can gather up the results. The
738 need for this arose in get_proc_name, where these beasts were
739 left in their own namespace, to keep prior references linked to
740 the entry declaration.*/
741 if (ns->proc_name->attr.function
742 && ns->parent && ns->parent->proc_name->attr.flavor == FL_MODULE)
743 el->sym->ns = ns;
744
745 /* Do the same for entries where the master is not a module
746 procedure. These are retained in the module namespace because
747 of the module procedure declaration. */
748 for (el = el->next; el; el = el->next)
749 if (el->sym->ns->proc_name->attr.flavor == FL_MODULE
750 && el->sym->attr.mod_proc)
751 el->sym->ns = ns;
752 el = ns->entries;
753
754 /* Add an entry statement for it. */
755 c = gfc_get_code (EXEC_ENTRY);
756 c->ext.entry = el;
757 c->next = ns->code;
758 ns->code = c;
759
760 /* Create a new symbol for the master function. */
761 /* Give the internal function a unique name (within this file).
762 Also include the function name so the user has some hope of figuring
763 out what is going on. */
764 snprintf (name, GFC_MAX_SYMBOL_LEN, "master.%d.%s",
765 master_count++, ns->proc_name->name);
766 gfc_get_ha_symbol (name, &proc);
767 gcc_assert (proc != NULL);
768
769 gfc_add_procedure (&proc->attr, PROC_INTERNAL, proc->name, NULL);
770 if (ns->proc_name->attr.subroutine)
771 gfc_add_subroutine (&proc->attr, proc->name, NULL);
772 else
773 {
774 gfc_symbol *sym;
775 gfc_typespec *ts, *fts;
776 gfc_array_spec *as, *fas;
777 gfc_add_function (&proc->attr, proc->name, NULL);
778 proc->result = proc;
779 fas = ns->entries->sym->as;
780 fas = fas ? fas : ns->entries->sym->result->as;
781 fts = &ns->entries->sym->result->ts;
782 if (fts->type == BT_UNKNOWN)
783 fts = gfc_get_default_type (ns->entries->sym->result->name, NULL);
784 for (el = ns->entries->next; el; el = el->next)
785 {
786 ts = &el->sym->result->ts;
787 as = el->sym->as;
788 as = as ? as : el->sym->result->as;
789 if (ts->type == BT_UNKNOWN)
790 ts = gfc_get_default_type (el->sym->result->name, NULL);
791
792 if (! gfc_compare_types (ts, fts)
793 || (el->sym->result->attr.dimension
794 != ns->entries->sym->result->attr.dimension)
795 || (el->sym->result->attr.pointer
796 != ns->entries->sym->result->attr.pointer))
797 break;
798 else if (as && fas && ns->entries->sym->result != el->sym->result
799 && gfc_compare_array_spec (as, fas) == 0)
800 gfc_error ("Function %s at %L has entries with mismatched "
801 "array specifications", ns->entries->sym->name,
802 &ns->entries->sym->declared_at);
803 /* The characteristics need to match and thus both need to have
804 the same string length, i.e. both len=*, or both len=4.
805 Having both len=<variable> is also possible, but difficult to
806 check at compile time. */
807 else if (ts->type == BT_CHARACTER && ts->u.cl && fts->u.cl
808 && (((ts->u.cl->length && !fts->u.cl->length)
809 ||(!ts->u.cl->length && fts->u.cl->length))
810 || (ts->u.cl->length
811 && ts->u.cl->length->expr_type
812 != fts->u.cl->length->expr_type)
813 || (ts->u.cl->length
814 && ts->u.cl->length->expr_type == EXPR_CONSTANT
815 && mpz_cmp (ts->u.cl->length->value.integer,
816 fts->u.cl->length->value.integer) != 0)))
817 gfc_notify_std (GFC_STD_GNU, "Function %s at %L with "
818 "entries returning variables of different "
819 "string lengths", ns->entries->sym->name,
820 &ns->entries->sym->declared_at);
821 }
822
823 if (el == NULL)
824 {
825 sym = ns->entries->sym->result;
826 /* All result types the same. */
827 proc->ts = *fts;
828 if (sym->attr.dimension)
829 gfc_set_array_spec (proc, gfc_copy_array_spec (sym->as), NULL);
830 if (sym->attr.pointer)
831 gfc_add_pointer (&proc->attr, NULL);
832 }
833 else
834 {
835 /* Otherwise the result will be passed through a union by
836 reference. */
837 proc->attr.mixed_entry_master = 1;
838 for (el = ns->entries; el; el = el->next)
839 {
840 sym = el->sym->result;
841 if (sym->attr.dimension)
842 {
843 if (el == ns->entries)
844 gfc_error ("FUNCTION result %s cannot be an array in "
845 "FUNCTION %s at %L", sym->name,
846 ns->entries->sym->name, &sym->declared_at);
847 else
848 gfc_error ("ENTRY result %s cannot be an array in "
849 "FUNCTION %s at %L", sym->name,
850 ns->entries->sym->name, &sym->declared_at);
851 }
852 else if (sym->attr.pointer)
853 {
854 if (el == ns->entries)
855 gfc_error ("FUNCTION result %s cannot be a POINTER in "
856 "FUNCTION %s at %L", sym->name,
857 ns->entries->sym->name, &sym->declared_at);
858 else
859 gfc_error ("ENTRY result %s cannot be a POINTER in "
860 "FUNCTION %s at %L", sym->name,
861 ns->entries->sym->name, &sym->declared_at);
862 }
863 else
864 {
865 ts = &sym->ts;
866 if (ts->type == BT_UNKNOWN)
867 ts = gfc_get_default_type (sym->name, NULL);
868 switch (ts->type)
869 {
870 case BT_INTEGER:
871 if (ts->kind == gfc_default_integer_kind)
872 sym = NULL;
873 break;
874 case BT_REAL:
875 if (ts->kind == gfc_default_real_kind
876 || ts->kind == gfc_default_double_kind)
877 sym = NULL;
878 break;
879 case BT_COMPLEX:
880 if (ts->kind == gfc_default_complex_kind)
881 sym = NULL;
882 break;
883 case BT_LOGICAL:
884 if (ts->kind == gfc_default_logical_kind)
885 sym = NULL;
886 break;
887 case BT_UNKNOWN:
888 /* We will issue error elsewhere. */
889 sym = NULL;
890 break;
891 default:
892 break;
893 }
894 if (sym)
895 {
896 if (el == ns->entries)
897 gfc_error ("FUNCTION result %s cannot be of type %s "
898 "in FUNCTION %s at %L", sym->name,
899 gfc_typename (ts), ns->entries->sym->name,
900 &sym->declared_at);
901 else
902 gfc_error ("ENTRY result %s cannot be of type %s "
903 "in FUNCTION %s at %L", sym->name,
904 gfc_typename (ts), ns->entries->sym->name,
905 &sym->declared_at);
906 }
907 }
908 }
909 }
910 }
911 proc->attr.access = ACCESS_PRIVATE;
912 proc->attr.entry_master = 1;
913
914 /* Merge all the entry point arguments. */
915 for (el = ns->entries; el; el = el->next)
916 merge_argument_lists (proc, el->sym->formal);
917
918 /* Check the master formal arguments for any that are not
919 present in all entry points. */
920 for (el = ns->entries; el; el = el->next)
921 check_argument_lists (proc, el->sym->formal);
922
923 /* Use the master function for the function body. */
924 ns->proc_name = proc;
925
926 /* Finalize the new symbols. */
927 gfc_commit_symbols ();
928
929 /* Restore the original namespace. */
930 gfc_current_ns = old_ns;
931 }
932
933
934 /* Resolve common variables. */
935 static void
936 resolve_common_vars (gfc_common_head *common_block, bool named_common)
937 {
938 gfc_symbol *csym = common_block->head;
939
940 for (; csym; csym = csym->common_next)
941 {
942 /* gfc_add_in_common may have been called before, but the reported errors
943 have been ignored to continue parsing.
944 We do the checks again here. */
945 if (!csym->attr.use_assoc)
946 {
947 gfc_add_in_common (&csym->attr, csym->name, &common_block->where);
948 gfc_notify_std (GFC_STD_F2018_OBS, "COMMON block at %L",
949 &common_block->where);
950 }
951
952 if (csym->value || csym->attr.data)
953 {
954 if (!csym->ns->is_block_data)
955 gfc_notify_std (GFC_STD_GNU, "Variable %qs at %L is in COMMON "
956 "but only in BLOCK DATA initialization is "
957 "allowed", csym->name, &csym->declared_at);
958 else if (!named_common)
959 gfc_notify_std (GFC_STD_GNU, "Initialized variable %qs at %L is "
960 "in a blank COMMON but initialization is only "
961 "allowed in named common blocks", csym->name,
962 &csym->declared_at);
963 }
964
965 if (UNLIMITED_POLY (csym))
966 gfc_error_now ("%qs in cannot appear in COMMON at %L "
967 "[F2008:C5100]", csym->name, &csym->declared_at);
968
969 if (csym->ts.type != BT_DERIVED)
970 continue;
971
972 if (!(csym->ts.u.derived->attr.sequence
973 || csym->ts.u.derived->attr.is_bind_c))
974 gfc_error_now ("Derived type variable %qs in COMMON at %L "
975 "has neither the SEQUENCE nor the BIND(C) "
976 "attribute", csym->name, &csym->declared_at);
977 if (csym->ts.u.derived->attr.alloc_comp)
978 gfc_error_now ("Derived type variable %qs in COMMON at %L "
979 "has an ultimate component that is "
980 "allocatable", csym->name, &csym->declared_at);
981 if (gfc_has_default_initializer (csym->ts.u.derived))
982 gfc_error_now ("Derived type variable %qs in COMMON at %L "
983 "may not have default initializer", csym->name,
984 &csym->declared_at);
985
986 if (csym->attr.flavor == FL_UNKNOWN && !csym->attr.proc_pointer)
987 gfc_add_flavor (&csym->attr, FL_VARIABLE, csym->name, &csym->declared_at);
988 }
989 }
990
991 /* Resolve common blocks. */
992 static void
993 resolve_common_blocks (gfc_symtree *common_root)
994 {
995 gfc_symbol *sym;
996 gfc_gsymbol * gsym;
997
998 if (common_root == NULL)
999 return;
1000
1001 if (common_root->left)
1002 resolve_common_blocks (common_root->left);
1003 if (common_root->right)
1004 resolve_common_blocks (common_root->right);
1005
1006 resolve_common_vars (common_root->n.common, true);
1007
1008 /* The common name is a global name - in Fortran 2003 also if it has a
1009 C binding name, since Fortran 2008 only the C binding name is a global
1010 identifier. */
1011 if (!common_root->n.common->binding_label
1012 || gfc_notification_std (GFC_STD_F2008))
1013 {
1014 gsym = gfc_find_gsymbol (gfc_gsym_root,
1015 common_root->n.common->name);
1016
1017 if (gsym && gfc_notification_std (GFC_STD_F2008)
1018 && gsym->type == GSYM_COMMON
1019 && ((common_root->n.common->binding_label
1020 && (!gsym->binding_label
1021 || strcmp (common_root->n.common->binding_label,
1022 gsym->binding_label) != 0))
1023 || (!common_root->n.common->binding_label
1024 && gsym->binding_label)))
1025 {
1026 gfc_error ("In Fortran 2003 COMMON %qs block at %L is a global "
1027 "identifier and must thus have the same binding name "
1028 "as the same-named COMMON block at %L: %s vs %s",
1029 common_root->n.common->name, &common_root->n.common->where,
1030 &gsym->where,
1031 common_root->n.common->binding_label
1032 ? common_root->n.common->binding_label : "(blank)",
1033 gsym->binding_label ? gsym->binding_label : "(blank)");
1034 return;
1035 }
1036
1037 if (gsym && gsym->type != GSYM_COMMON
1038 && !common_root->n.common->binding_label)
1039 {
1040 gfc_error ("COMMON block %qs at %L uses the same global identifier "
1041 "as entity at %L",
1042 common_root->n.common->name, &common_root->n.common->where,
1043 &gsym->where);
1044 return;
1045 }
1046 if (gsym && gsym->type != GSYM_COMMON)
1047 {
1048 gfc_error ("Fortran 2008: COMMON block %qs with binding label at "
1049 "%L sharing the identifier with global non-COMMON-block "
1050 "entity at %L", common_root->n.common->name,
1051 &common_root->n.common->where, &gsym->where);
1052 return;
1053 }
1054 if (!gsym)
1055 {
1056 gsym = gfc_get_gsymbol (common_root->n.common->name, false);
1057 gsym->type = GSYM_COMMON;
1058 gsym->where = common_root->n.common->where;
1059 gsym->defined = 1;
1060 }
1061 gsym->used = 1;
1062 }
1063
1064 if (common_root->n.common->binding_label)
1065 {
1066 gsym = gfc_find_gsymbol (gfc_gsym_root,
1067 common_root->n.common->binding_label);
1068 if (gsym && gsym->type != GSYM_COMMON)
1069 {
1070 gfc_error ("COMMON block at %L with binding label %qs uses the same "
1071 "global identifier as entity at %L",
1072 &common_root->n.common->where,
1073 common_root->n.common->binding_label, &gsym->where);
1074 return;
1075 }
1076 if (!gsym)
1077 {
1078 gsym = gfc_get_gsymbol (common_root->n.common->binding_label, true);
1079 gsym->type = GSYM_COMMON;
1080 gsym->where = common_root->n.common->where;
1081 gsym->defined = 1;
1082 }
1083 gsym->used = 1;
1084 }
1085
1086 gfc_find_symbol (common_root->name, gfc_current_ns, 0, &sym);
1087 if (sym == NULL)
1088 return;
1089
1090 if (sym->attr.flavor == FL_PARAMETER)
1091 gfc_error ("COMMON block %qs at %L is used as PARAMETER at %L",
1092 sym->name, &common_root->n.common->where, &sym->declared_at);
1093
1094 if (sym->attr.external)
1095 gfc_error ("COMMON block %qs at %L cannot have the EXTERNAL attribute",
1096 sym->name, &common_root->n.common->where);
1097
1098 if (sym->attr.intrinsic)
1099 gfc_error ("COMMON block %qs at %L is also an intrinsic procedure",
1100 sym->name, &common_root->n.common->where);
1101 else if (sym->attr.result
1102 || gfc_is_function_return_value (sym, gfc_current_ns))
1103 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1104 "that is also a function result", sym->name,
1105 &common_root->n.common->where);
1106 else if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_INTERNAL
1107 && sym->attr.proc != PROC_ST_FUNCTION)
1108 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1109 "that is also a global procedure", sym->name,
1110 &common_root->n.common->where);
1111 }
1112
1113
1114 /* Resolve contained function types. Because contained functions can call one
1115 another, they have to be worked out before any of the contained procedures
1116 can be resolved.
1117
1118 The good news is that if a function doesn't already have a type, the only
1119 way it can get one is through an IMPLICIT type or a RESULT variable, because
1120 by definition contained functions are contained namespace they're contained
1121 in, not in a sibling or parent namespace. */
1122
1123 static void
1124 resolve_contained_functions (gfc_namespace *ns)
1125 {
1126 gfc_namespace *child;
1127 gfc_entry_list *el;
1128
1129 resolve_formal_arglists (ns);
1130
1131 for (child = ns->contained; child; child = child->sibling)
1132 {
1133 /* Resolve alternate entry points first. */
1134 resolve_entries (child);
1135
1136 /* Then check function return types. */
1137 resolve_contained_fntype (child->proc_name, child);
1138 for (el = child->entries; el; el = el->next)
1139 resolve_contained_fntype (el->sym, child);
1140 }
1141 }
1142
1143
1144
1145 /* A Parameterized Derived Type constructor must contain values for
1146 the PDT KIND parameters or they must have a default initializer.
1147 Go through the constructor picking out the KIND expressions,
1148 storing them in 'param_list' and then call gfc_get_pdt_instance
1149 to obtain the PDT instance. */
1150
1151 static gfc_actual_arglist *param_list, *param_tail, *param;
1152
1153 static bool
1154 get_pdt_spec_expr (gfc_component *c, gfc_expr *expr)
1155 {
1156 param = gfc_get_actual_arglist ();
1157 if (!param_list)
1158 param_list = param_tail = param;
1159 else
1160 {
1161 param_tail->next = param;
1162 param_tail = param_tail->next;
1163 }
1164
1165 param_tail->name = c->name;
1166 if (expr)
1167 param_tail->expr = gfc_copy_expr (expr);
1168 else if (c->initializer)
1169 param_tail->expr = gfc_copy_expr (c->initializer);
1170 else
1171 {
1172 param_tail->spec_type = SPEC_ASSUMED;
1173 if (c->attr.pdt_kind)
1174 {
1175 gfc_error ("The KIND parameter %qs in the PDT constructor "
1176 "at %C has no value", param->name);
1177 return false;
1178 }
1179 }
1180
1181 return true;
1182 }
1183
1184 static bool
1185 get_pdt_constructor (gfc_expr *expr, gfc_constructor **constr,
1186 gfc_symbol *derived)
1187 {
1188 gfc_constructor *cons = NULL;
1189 gfc_component *comp;
1190 bool t = true;
1191
1192 if (expr && expr->expr_type == EXPR_STRUCTURE)
1193 cons = gfc_constructor_first (expr->value.constructor);
1194 else if (constr)
1195 cons = *constr;
1196 gcc_assert (cons);
1197
1198 comp = derived->components;
1199
1200 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1201 {
1202 if (cons->expr
1203 && cons->expr->expr_type == EXPR_STRUCTURE
1204 && comp->ts.type == BT_DERIVED)
1205 {
1206 t = get_pdt_constructor (cons->expr, NULL, comp->ts.u.derived);
1207 if (!t)
1208 return t;
1209 }
1210 else if (comp->ts.type == BT_DERIVED)
1211 {
1212 t = get_pdt_constructor (NULL, &cons, comp->ts.u.derived);
1213 if (!t)
1214 return t;
1215 }
1216 else if ((comp->attr.pdt_kind || comp->attr.pdt_len)
1217 && derived->attr.pdt_template)
1218 {
1219 t = get_pdt_spec_expr (comp, cons->expr);
1220 if (!t)
1221 return t;
1222 }
1223 }
1224 return t;
1225 }
1226
1227
1228 static bool resolve_fl_derived0 (gfc_symbol *sym);
1229 static bool resolve_fl_struct (gfc_symbol *sym);
1230
1231
1232 /* Resolve all of the elements of a structure constructor and make sure that
1233 the types are correct. The 'init' flag indicates that the given
1234 constructor is an initializer. */
1235
1236 static bool
1237 resolve_structure_cons (gfc_expr *expr, int init)
1238 {
1239 gfc_constructor *cons;
1240 gfc_component *comp;
1241 bool t;
1242 symbol_attribute a;
1243
1244 t = true;
1245
1246 if (expr->ts.type == BT_DERIVED || expr->ts.type == BT_UNION)
1247 {
1248 if (expr->ts.u.derived->attr.flavor == FL_DERIVED)
1249 resolve_fl_derived0 (expr->ts.u.derived);
1250 else
1251 resolve_fl_struct (expr->ts.u.derived);
1252
1253 /* If this is a Parameterized Derived Type template, find the
1254 instance corresponding to the PDT kind parameters. */
1255 if (expr->ts.u.derived->attr.pdt_template)
1256 {
1257 param_list = NULL;
1258 t = get_pdt_constructor (expr, NULL, expr->ts.u.derived);
1259 if (!t)
1260 return t;
1261 gfc_get_pdt_instance (param_list, &expr->ts.u.derived, NULL);
1262
1263 expr->param_list = gfc_copy_actual_arglist (param_list);
1264
1265 if (param_list)
1266 gfc_free_actual_arglist (param_list);
1267
1268 if (!expr->ts.u.derived->attr.pdt_type)
1269 return false;
1270 }
1271 }
1272
1273 cons = gfc_constructor_first (expr->value.constructor);
1274
1275 /* A constructor may have references if it is the result of substituting a
1276 parameter variable. In this case we just pull out the component we
1277 want. */
1278 if (expr->ref)
1279 comp = expr->ref->u.c.sym->components;
1280 else
1281 comp = expr->ts.u.derived->components;
1282
1283 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1284 {
1285 int rank;
1286
1287 if (!cons->expr)
1288 continue;
1289
1290 /* Unions use an EXPR_NULL contrived expression to tell the translation
1291 phase to generate an initializer of the appropriate length.
1292 Ignore it here. */
1293 if (cons->expr->ts.type == BT_UNION && cons->expr->expr_type == EXPR_NULL)
1294 continue;
1295
1296 if (!gfc_resolve_expr (cons->expr))
1297 {
1298 t = false;
1299 continue;
1300 }
1301
1302 rank = comp->as ? comp->as->rank : 0;
1303 if (comp->ts.type == BT_CLASS
1304 && !comp->ts.u.derived->attr.unlimited_polymorphic
1305 && CLASS_DATA (comp)->as)
1306 rank = CLASS_DATA (comp)->as->rank;
1307
1308 if (cons->expr->expr_type != EXPR_NULL && rank != cons->expr->rank
1309 && (comp->attr.allocatable || cons->expr->rank))
1310 {
1311 gfc_error ("The rank of the element in the structure "
1312 "constructor at %L does not match that of the "
1313 "component (%d/%d)", &cons->expr->where,
1314 cons->expr->rank, rank);
1315 t = false;
1316 }
1317
1318 /* If we don't have the right type, try to convert it. */
1319
1320 if (!comp->attr.proc_pointer &&
1321 !gfc_compare_types (&cons->expr->ts, &comp->ts))
1322 {
1323 if (strcmp (comp->name, "_extends") == 0)
1324 {
1325 /* Can afford to be brutal with the _extends initializer.
1326 The derived type can get lost because it is PRIVATE
1327 but it is not usage constrained by the standard. */
1328 cons->expr->ts = comp->ts;
1329 }
1330 else if (comp->attr.pointer && cons->expr->ts.type != BT_UNKNOWN)
1331 {
1332 gfc_error ("The element in the structure constructor at %L, "
1333 "for pointer component %qs, is %s but should be %s",
1334 &cons->expr->where, comp->name,
1335 gfc_basic_typename (cons->expr->ts.type),
1336 gfc_basic_typename (comp->ts.type));
1337 t = false;
1338 }
1339 else
1340 {
1341 bool t2 = gfc_convert_type (cons->expr, &comp->ts, 1);
1342 if (t)
1343 t = t2;
1344 }
1345 }
1346
1347 /* For strings, the length of the constructor should be the same as
1348 the one of the structure, ensure this if the lengths are known at
1349 compile time and when we are dealing with PARAMETER or structure
1350 constructors. */
1351 if (cons->expr->ts.type == BT_CHARACTER && comp->ts.u.cl
1352 && comp->ts.u.cl->length
1353 && comp->ts.u.cl->length->expr_type == EXPR_CONSTANT
1354 && cons->expr->ts.u.cl && cons->expr->ts.u.cl->length
1355 && cons->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
1356 && cons->expr->rank != 0
1357 && mpz_cmp (cons->expr->ts.u.cl->length->value.integer,
1358 comp->ts.u.cl->length->value.integer) != 0)
1359 {
1360 if (cons->expr->expr_type == EXPR_VARIABLE
1361 && cons->expr->symtree->n.sym->attr.flavor == FL_PARAMETER)
1362 {
1363 /* Wrap the parameter in an array constructor (EXPR_ARRAY)
1364 to make use of the gfc_resolve_character_array_constructor
1365 machinery. The expression is later simplified away to
1366 an array of string literals. */
1367 gfc_expr *para = cons->expr;
1368 cons->expr = gfc_get_expr ();
1369 cons->expr->ts = para->ts;
1370 cons->expr->where = para->where;
1371 cons->expr->expr_type = EXPR_ARRAY;
1372 cons->expr->rank = para->rank;
1373 cons->expr->shape = gfc_copy_shape (para->shape, para->rank);
1374 gfc_constructor_append_expr (&cons->expr->value.constructor,
1375 para, &cons->expr->where);
1376 }
1377
1378 if (cons->expr->expr_type == EXPR_ARRAY)
1379 {
1380 /* Rely on the cleanup of the namespace to deal correctly with
1381 the old charlen. (There was a block here that attempted to
1382 remove the charlen but broke the chain in so doing.) */
1383 cons->expr->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1384 cons->expr->ts.u.cl->length_from_typespec = true;
1385 cons->expr->ts.u.cl->length = gfc_copy_expr (comp->ts.u.cl->length);
1386 gfc_resolve_character_array_constructor (cons->expr);
1387 }
1388 }
1389
1390 if (cons->expr->expr_type == EXPR_NULL
1391 && !(comp->attr.pointer || comp->attr.allocatable
1392 || comp->attr.proc_pointer || comp->ts.f90_type == BT_VOID
1393 || (comp->ts.type == BT_CLASS
1394 && (CLASS_DATA (comp)->attr.class_pointer
1395 || CLASS_DATA (comp)->attr.allocatable))))
1396 {
1397 t = false;
1398 gfc_error ("The NULL in the structure constructor at %L is "
1399 "being applied to component %qs, which is neither "
1400 "a POINTER nor ALLOCATABLE", &cons->expr->where,
1401 comp->name);
1402 }
1403
1404 if (comp->attr.proc_pointer && comp->ts.interface)
1405 {
1406 /* Check procedure pointer interface. */
1407 gfc_symbol *s2 = NULL;
1408 gfc_component *c2;
1409 const char *name;
1410 char err[200];
1411
1412 c2 = gfc_get_proc_ptr_comp (cons->expr);
1413 if (c2)
1414 {
1415 s2 = c2->ts.interface;
1416 name = c2->name;
1417 }
1418 else if (cons->expr->expr_type == EXPR_FUNCTION)
1419 {
1420 s2 = cons->expr->symtree->n.sym->result;
1421 name = cons->expr->symtree->n.sym->result->name;
1422 }
1423 else if (cons->expr->expr_type != EXPR_NULL)
1424 {
1425 s2 = cons->expr->symtree->n.sym;
1426 name = cons->expr->symtree->n.sym->name;
1427 }
1428
1429 if (s2 && !gfc_compare_interfaces (comp->ts.interface, s2, name, 0, 1,
1430 err, sizeof (err), NULL, NULL))
1431 {
1432 gfc_error_opt (0, "Interface mismatch for procedure-pointer "
1433 "component %qs in structure constructor at %L:"
1434 " %s", comp->name, &cons->expr->where, err);
1435 return false;
1436 }
1437 }
1438
1439 if (!comp->attr.pointer || comp->attr.proc_pointer
1440 || cons->expr->expr_type == EXPR_NULL)
1441 continue;
1442
1443 a = gfc_expr_attr (cons->expr);
1444
1445 if (!a.pointer && !a.target)
1446 {
1447 t = false;
1448 gfc_error ("The element in the structure constructor at %L, "
1449 "for pointer component %qs should be a POINTER or "
1450 "a TARGET", &cons->expr->where, comp->name);
1451 }
1452
1453 if (init)
1454 {
1455 /* F08:C461. Additional checks for pointer initialization. */
1456 if (a.allocatable)
1457 {
1458 t = false;
1459 gfc_error ("Pointer initialization target at %L "
1460 "must not be ALLOCATABLE", &cons->expr->where);
1461 }
1462 if (!a.save)
1463 {
1464 t = false;
1465 gfc_error ("Pointer initialization target at %L "
1466 "must have the SAVE attribute", &cons->expr->where);
1467 }
1468 }
1469
1470 /* F2003, C1272 (3). */
1471 bool impure = cons->expr->expr_type == EXPR_VARIABLE
1472 && (gfc_impure_variable (cons->expr->symtree->n.sym)
1473 || gfc_is_coindexed (cons->expr));
1474 if (impure && gfc_pure (NULL))
1475 {
1476 t = false;
1477 gfc_error ("Invalid expression in the structure constructor for "
1478 "pointer component %qs at %L in PURE procedure",
1479 comp->name, &cons->expr->where);
1480 }
1481
1482 if (impure)
1483 gfc_unset_implicit_pure (NULL);
1484 }
1485
1486 return t;
1487 }
1488
1489
1490 /****************** Expression name resolution ******************/
1491
1492 /* Returns 0 if a symbol was not declared with a type or
1493 attribute declaration statement, nonzero otherwise. */
1494
1495 static int
1496 was_declared (gfc_symbol *sym)
1497 {
1498 symbol_attribute a;
1499
1500 a = sym->attr;
1501
1502 if (!a.implicit_type && sym->ts.type != BT_UNKNOWN)
1503 return 1;
1504
1505 if (a.allocatable || a.dimension || a.dummy || a.external || a.intrinsic
1506 || a.optional || a.pointer || a.save || a.target || a.volatile_
1507 || a.value || a.access != ACCESS_UNKNOWN || a.intent != INTENT_UNKNOWN
1508 || a.asynchronous || a.codimension)
1509 return 1;
1510
1511 return 0;
1512 }
1513
1514
1515 /* Determine if a symbol is generic or not. */
1516
1517 static int
1518 generic_sym (gfc_symbol *sym)
1519 {
1520 gfc_symbol *s;
1521
1522 if (sym->attr.generic ||
1523 (sym->attr.intrinsic && gfc_generic_intrinsic (sym->name)))
1524 return 1;
1525
1526 if (was_declared (sym) || sym->ns->parent == NULL)
1527 return 0;
1528
1529 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1530
1531 if (s != NULL)
1532 {
1533 if (s == sym)
1534 return 0;
1535 else
1536 return generic_sym (s);
1537 }
1538
1539 return 0;
1540 }
1541
1542
1543 /* Determine if a symbol is specific or not. */
1544
1545 static int
1546 specific_sym (gfc_symbol *sym)
1547 {
1548 gfc_symbol *s;
1549
1550 if (sym->attr.if_source == IFSRC_IFBODY
1551 || sym->attr.proc == PROC_MODULE
1552 || sym->attr.proc == PROC_INTERNAL
1553 || sym->attr.proc == PROC_ST_FUNCTION
1554 || (sym->attr.intrinsic && gfc_specific_intrinsic (sym->name))
1555 || sym->attr.external)
1556 return 1;
1557
1558 if (was_declared (sym) || sym->ns->parent == NULL)
1559 return 0;
1560
1561 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1562
1563 return (s == NULL) ? 0 : specific_sym (s);
1564 }
1565
1566
1567 /* Figure out if the procedure is specific, generic or unknown. */
1568
1569 enum proc_type
1570 { PTYPE_GENERIC = 1, PTYPE_SPECIFIC, PTYPE_UNKNOWN };
1571
1572 static proc_type
1573 procedure_kind (gfc_symbol *sym)
1574 {
1575 if (generic_sym (sym))
1576 return PTYPE_GENERIC;
1577
1578 if (specific_sym (sym))
1579 return PTYPE_SPECIFIC;
1580
1581 return PTYPE_UNKNOWN;
1582 }
1583
1584 /* Check references to assumed size arrays. The flag need_full_assumed_size
1585 is nonzero when matching actual arguments. */
1586
1587 static int need_full_assumed_size = 0;
1588
1589 static bool
1590 check_assumed_size_reference (gfc_symbol *sym, gfc_expr *e)
1591 {
1592 if (need_full_assumed_size || !(sym->as && sym->as->type == AS_ASSUMED_SIZE))
1593 return false;
1594
1595 /* FIXME: The comparison "e->ref->u.ar.type == AR_FULL" is wrong.
1596 What should it be? */
1597 if (e->ref && (e->ref->u.ar.end[e->ref->u.ar.as->rank - 1] == NULL)
1598 && (e->ref->u.ar.as->type == AS_ASSUMED_SIZE)
1599 && (e->ref->u.ar.type == AR_FULL))
1600 {
1601 gfc_error ("The upper bound in the last dimension must "
1602 "appear in the reference to the assumed size "
1603 "array %qs at %L", sym->name, &e->where);
1604 return true;
1605 }
1606 return false;
1607 }
1608
1609
1610 /* Look for bad assumed size array references in argument expressions
1611 of elemental and array valued intrinsic procedures. Since this is
1612 called from procedure resolution functions, it only recurses at
1613 operators. */
1614
1615 static bool
1616 resolve_assumed_size_actual (gfc_expr *e)
1617 {
1618 if (e == NULL)
1619 return false;
1620
1621 switch (e->expr_type)
1622 {
1623 case EXPR_VARIABLE:
1624 if (e->symtree && check_assumed_size_reference (e->symtree->n.sym, e))
1625 return true;
1626 break;
1627
1628 case EXPR_OP:
1629 if (resolve_assumed_size_actual (e->value.op.op1)
1630 || resolve_assumed_size_actual (e->value.op.op2))
1631 return true;
1632 break;
1633
1634 default:
1635 break;
1636 }
1637 return false;
1638 }
1639
1640
1641 /* Check a generic procedure, passed as an actual argument, to see if
1642 there is a matching specific name. If none, it is an error, and if
1643 more than one, the reference is ambiguous. */
1644 static int
1645 count_specific_procs (gfc_expr *e)
1646 {
1647 int n;
1648 gfc_interface *p;
1649 gfc_symbol *sym;
1650
1651 n = 0;
1652 sym = e->symtree->n.sym;
1653
1654 for (p = sym->generic; p; p = p->next)
1655 if (strcmp (sym->name, p->sym->name) == 0)
1656 {
1657 e->symtree = gfc_find_symtree (p->sym->ns->sym_root,
1658 sym->name);
1659 n++;
1660 }
1661
1662 if (n > 1)
1663 gfc_error ("%qs at %L is ambiguous", e->symtree->n.sym->name,
1664 &e->where);
1665
1666 if (n == 0)
1667 gfc_error ("GENERIC procedure %qs is not allowed as an actual "
1668 "argument at %L", sym->name, &e->where);
1669
1670 return n;
1671 }
1672
1673
1674 /* See if a call to sym could possibly be a not allowed RECURSION because of
1675 a missing RECURSIVE declaration. This means that either sym is the current
1676 context itself, or sym is the parent of a contained procedure calling its
1677 non-RECURSIVE containing procedure.
1678 This also works if sym is an ENTRY. */
1679
1680 static bool
1681 is_illegal_recursion (gfc_symbol* sym, gfc_namespace* context)
1682 {
1683 gfc_symbol* proc_sym;
1684 gfc_symbol* context_proc;
1685 gfc_namespace* real_context;
1686
1687 if (sym->attr.flavor == FL_PROGRAM
1688 || gfc_fl_struct (sym->attr.flavor))
1689 return false;
1690
1691 /* If we've got an ENTRY, find real procedure. */
1692 if (sym->attr.entry && sym->ns->entries)
1693 proc_sym = sym->ns->entries->sym;
1694 else
1695 proc_sym = sym;
1696
1697 /* If sym is RECURSIVE, all is well of course. */
1698 if (proc_sym->attr.recursive || flag_recursive)
1699 return false;
1700
1701 /* Find the context procedure's "real" symbol if it has entries.
1702 We look for a procedure symbol, so recurse on the parents if we don't
1703 find one (like in case of a BLOCK construct). */
1704 for (real_context = context; ; real_context = real_context->parent)
1705 {
1706 /* We should find something, eventually! */
1707 gcc_assert (real_context);
1708
1709 context_proc = (real_context->entries ? real_context->entries->sym
1710 : real_context->proc_name);
1711
1712 /* In some special cases, there may not be a proc_name, like for this
1713 invalid code:
1714 real(bad_kind()) function foo () ...
1715 when checking the call to bad_kind ().
1716 In these cases, we simply return here and assume that the
1717 call is ok. */
1718 if (!context_proc)
1719 return false;
1720
1721 if (context_proc->attr.flavor != FL_LABEL)
1722 break;
1723 }
1724
1725 /* A call from sym's body to itself is recursion, of course. */
1726 if (context_proc == proc_sym)
1727 return true;
1728
1729 /* The same is true if context is a contained procedure and sym the
1730 containing one. */
1731 if (context_proc->attr.contained)
1732 {
1733 gfc_symbol* parent_proc;
1734
1735 gcc_assert (context->parent);
1736 parent_proc = (context->parent->entries ? context->parent->entries->sym
1737 : context->parent->proc_name);
1738
1739 if (parent_proc == proc_sym)
1740 return true;
1741 }
1742
1743 return false;
1744 }
1745
1746
1747 /* Resolve an intrinsic procedure: Set its function/subroutine attribute,
1748 its typespec and formal argument list. */
1749
1750 bool
1751 gfc_resolve_intrinsic (gfc_symbol *sym, locus *loc)
1752 {
1753 gfc_intrinsic_sym* isym = NULL;
1754 const char* symstd;
1755
1756 if (sym->formal)
1757 return true;
1758
1759 /* Already resolved. */
1760 if (sym->from_intmod && sym->ts.type != BT_UNKNOWN)
1761 return true;
1762
1763 /* We already know this one is an intrinsic, so we don't call
1764 gfc_is_intrinsic for full checking but rather use gfc_find_function and
1765 gfc_find_subroutine directly to check whether it is a function or
1766 subroutine. */
1767
1768 if (sym->intmod_sym_id && sym->attr.subroutine)
1769 {
1770 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1771 isym = gfc_intrinsic_subroutine_by_id (id);
1772 }
1773 else if (sym->intmod_sym_id)
1774 {
1775 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1776 isym = gfc_intrinsic_function_by_id (id);
1777 }
1778 else if (!sym->attr.subroutine)
1779 isym = gfc_find_function (sym->name);
1780
1781 if (isym && !sym->attr.subroutine)
1782 {
1783 if (sym->ts.type != BT_UNKNOWN && warn_surprising
1784 && !sym->attr.implicit_type)
1785 gfc_warning (OPT_Wsurprising,
1786 "Type specified for intrinsic function %qs at %L is"
1787 " ignored", sym->name, &sym->declared_at);
1788
1789 if (!sym->attr.function &&
1790 !gfc_add_function(&sym->attr, sym->name, loc))
1791 return false;
1792
1793 sym->ts = isym->ts;
1794 }
1795 else if (isym || (isym = gfc_find_subroutine (sym->name)))
1796 {
1797 if (sym->ts.type != BT_UNKNOWN && !sym->attr.implicit_type)
1798 {
1799 gfc_error ("Intrinsic subroutine %qs at %L shall not have a type"
1800 " specifier", sym->name, &sym->declared_at);
1801 return false;
1802 }
1803
1804 if (!sym->attr.subroutine &&
1805 !gfc_add_subroutine(&sym->attr, sym->name, loc))
1806 return false;
1807 }
1808 else
1809 {
1810 gfc_error ("%qs declared INTRINSIC at %L does not exist", sym->name,
1811 &sym->declared_at);
1812 return false;
1813 }
1814
1815 gfc_copy_formal_args_intr (sym, isym, NULL);
1816
1817 sym->attr.pure = isym->pure;
1818 sym->attr.elemental = isym->elemental;
1819
1820 /* Check it is actually available in the standard settings. */
1821 if (!gfc_check_intrinsic_standard (isym, &symstd, false, sym->declared_at))
1822 {
1823 gfc_error ("The intrinsic %qs declared INTRINSIC at %L is not "
1824 "available in the current standard settings but %s. Use "
1825 "an appropriate %<-std=*%> option or enable "
1826 "%<-fall-intrinsics%> in order to use it.",
1827 sym->name, &sym->declared_at, symstd);
1828 return false;
1829 }
1830
1831 return true;
1832 }
1833
1834
1835 /* Resolve a procedure expression, like passing it to a called procedure or as
1836 RHS for a procedure pointer assignment. */
1837
1838 static bool
1839 resolve_procedure_expression (gfc_expr* expr)
1840 {
1841 gfc_symbol* sym;
1842
1843 if (expr->expr_type != EXPR_VARIABLE)
1844 return true;
1845 gcc_assert (expr->symtree);
1846
1847 sym = expr->symtree->n.sym;
1848
1849 if (sym->attr.intrinsic)
1850 gfc_resolve_intrinsic (sym, &expr->where);
1851
1852 if (sym->attr.flavor != FL_PROCEDURE
1853 || (sym->attr.function && sym->result == sym))
1854 return true;
1855
1856 /* A non-RECURSIVE procedure that is used as procedure expression within its
1857 own body is in danger of being called recursively. */
1858 if (is_illegal_recursion (sym, gfc_current_ns))
1859 gfc_warning (0, "Non-RECURSIVE procedure %qs at %L is possibly calling"
1860 " itself recursively. Declare it RECURSIVE or use"
1861 " %<-frecursive%>", sym->name, &expr->where);
1862
1863 return true;
1864 }
1865
1866
1867 /* Check that name is not a derived type. */
1868
1869 static bool
1870 is_dt_name (const char *name)
1871 {
1872 gfc_symbol *dt_list, *dt_first;
1873
1874 dt_list = dt_first = gfc_derived_types;
1875 for (; dt_list; dt_list = dt_list->dt_next)
1876 {
1877 if (strcmp(dt_list->name, name) == 0)
1878 return true;
1879 if (dt_first == dt_list->dt_next)
1880 break;
1881 }
1882 return false;
1883 }
1884
1885
1886 /* Resolve an actual argument list. Most of the time, this is just
1887 resolving the expressions in the list.
1888 The exception is that we sometimes have to decide whether arguments
1889 that look like procedure arguments are really simple variable
1890 references. */
1891
1892 static bool
1893 resolve_actual_arglist (gfc_actual_arglist *arg, procedure_type ptype,
1894 bool no_formal_args)
1895 {
1896 gfc_symbol *sym;
1897 gfc_symtree *parent_st;
1898 gfc_expr *e;
1899 gfc_component *comp;
1900 int save_need_full_assumed_size;
1901 bool return_value = false;
1902 bool actual_arg_sav = actual_arg, first_actual_arg_sav = first_actual_arg;
1903
1904 actual_arg = true;
1905 first_actual_arg = true;
1906
1907 for (; arg; arg = arg->next)
1908 {
1909 e = arg->expr;
1910 if (e == NULL)
1911 {
1912 /* Check the label is a valid branching target. */
1913 if (arg->label)
1914 {
1915 if (arg->label->defined == ST_LABEL_UNKNOWN)
1916 {
1917 gfc_error ("Label %d referenced at %L is never defined",
1918 arg->label->value, &arg->label->where);
1919 goto cleanup;
1920 }
1921 }
1922 first_actual_arg = false;
1923 continue;
1924 }
1925
1926 if (e->expr_type == EXPR_VARIABLE
1927 && e->symtree->n.sym->attr.generic
1928 && no_formal_args
1929 && count_specific_procs (e) != 1)
1930 goto cleanup;
1931
1932 if (e->ts.type != BT_PROCEDURE)
1933 {
1934 save_need_full_assumed_size = need_full_assumed_size;
1935 if (e->expr_type != EXPR_VARIABLE)
1936 need_full_assumed_size = 0;
1937 if (!gfc_resolve_expr (e))
1938 goto cleanup;
1939 need_full_assumed_size = save_need_full_assumed_size;
1940 goto argument_list;
1941 }
1942
1943 /* See if the expression node should really be a variable reference. */
1944
1945 sym = e->symtree->n.sym;
1946
1947 if (sym->attr.flavor == FL_PROCEDURE && is_dt_name (sym->name))
1948 {
1949 gfc_error ("Derived type %qs is used as an actual "
1950 "argument at %L", sym->name, &e->where);
1951 goto cleanup;
1952 }
1953
1954 if (sym->attr.flavor == FL_PROCEDURE
1955 || sym->attr.intrinsic
1956 || sym->attr.external)
1957 {
1958 int actual_ok;
1959
1960 /* If a procedure is not already determined to be something else
1961 check if it is intrinsic. */
1962 if (gfc_is_intrinsic (sym, sym->attr.subroutine, e->where))
1963 sym->attr.intrinsic = 1;
1964
1965 if (sym->attr.proc == PROC_ST_FUNCTION)
1966 {
1967 gfc_error ("Statement function %qs at %L is not allowed as an "
1968 "actual argument", sym->name, &e->where);
1969 }
1970
1971 actual_ok = gfc_intrinsic_actual_ok (sym->name,
1972 sym->attr.subroutine);
1973 if (sym->attr.intrinsic && actual_ok == 0)
1974 {
1975 gfc_error ("Intrinsic %qs at %L is not allowed as an "
1976 "actual argument", sym->name, &e->where);
1977 }
1978
1979 if (sym->attr.contained && !sym->attr.use_assoc
1980 && sym->ns->proc_name->attr.flavor != FL_MODULE)
1981 {
1982 if (!gfc_notify_std (GFC_STD_F2008, "Internal procedure %qs is"
1983 " used as actual argument at %L",
1984 sym->name, &e->where))
1985 goto cleanup;
1986 }
1987
1988 if (sym->attr.elemental && !sym->attr.intrinsic)
1989 {
1990 gfc_error ("ELEMENTAL non-INTRINSIC procedure %qs is not "
1991 "allowed as an actual argument at %L", sym->name,
1992 &e->where);
1993 }
1994
1995 /* Check if a generic interface has a specific procedure
1996 with the same name before emitting an error. */
1997 if (sym->attr.generic && count_specific_procs (e) != 1)
1998 goto cleanup;
1999
2000 /* Just in case a specific was found for the expression. */
2001 sym = e->symtree->n.sym;
2002
2003 /* If the symbol is the function that names the current (or
2004 parent) scope, then we really have a variable reference. */
2005
2006 if (gfc_is_function_return_value (sym, sym->ns))
2007 goto got_variable;
2008
2009 /* If all else fails, see if we have a specific intrinsic. */
2010 if (sym->ts.type == BT_UNKNOWN && sym->attr.intrinsic)
2011 {
2012 gfc_intrinsic_sym *isym;
2013
2014 isym = gfc_find_function (sym->name);
2015 if (isym == NULL || !isym->specific)
2016 {
2017 gfc_error ("Unable to find a specific INTRINSIC procedure "
2018 "for the reference %qs at %L", sym->name,
2019 &e->where);
2020 goto cleanup;
2021 }
2022 sym->ts = isym->ts;
2023 sym->attr.intrinsic = 1;
2024 sym->attr.function = 1;
2025 }
2026
2027 if (!gfc_resolve_expr (e))
2028 goto cleanup;
2029 goto argument_list;
2030 }
2031
2032 /* See if the name is a module procedure in a parent unit. */
2033
2034 if (was_declared (sym) || sym->ns->parent == NULL)
2035 goto got_variable;
2036
2037 if (gfc_find_sym_tree (sym->name, sym->ns->parent, 1, &parent_st))
2038 {
2039 gfc_error ("Symbol %qs at %L is ambiguous", sym->name, &e->where);
2040 goto cleanup;
2041 }
2042
2043 if (parent_st == NULL)
2044 goto got_variable;
2045
2046 sym = parent_st->n.sym;
2047 e->symtree = parent_st; /* Point to the right thing. */
2048
2049 if (sym->attr.flavor == FL_PROCEDURE
2050 || sym->attr.intrinsic
2051 || sym->attr.external)
2052 {
2053 if (!gfc_resolve_expr (e))
2054 goto cleanup;
2055 goto argument_list;
2056 }
2057
2058 got_variable:
2059 e->expr_type = EXPR_VARIABLE;
2060 e->ts = sym->ts;
2061 if ((sym->as != NULL && sym->ts.type != BT_CLASS)
2062 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
2063 && CLASS_DATA (sym)->as))
2064 {
2065 e->rank = sym->ts.type == BT_CLASS
2066 ? CLASS_DATA (sym)->as->rank : sym->as->rank;
2067 e->ref = gfc_get_ref ();
2068 e->ref->type = REF_ARRAY;
2069 e->ref->u.ar.type = AR_FULL;
2070 e->ref->u.ar.as = sym->ts.type == BT_CLASS
2071 ? CLASS_DATA (sym)->as : sym->as;
2072 }
2073
2074 /* Expressions are assigned a default ts.type of BT_PROCEDURE in
2075 primary.c (match_actual_arg). If above code determines that it
2076 is a variable instead, it needs to be resolved as it was not
2077 done at the beginning of this function. */
2078 save_need_full_assumed_size = need_full_assumed_size;
2079 if (e->expr_type != EXPR_VARIABLE)
2080 need_full_assumed_size = 0;
2081 if (!gfc_resolve_expr (e))
2082 goto cleanup;
2083 need_full_assumed_size = save_need_full_assumed_size;
2084
2085 argument_list:
2086 /* Check argument list functions %VAL, %LOC and %REF. There is
2087 nothing to do for %REF. */
2088 if (arg->name && arg->name[0] == '%')
2089 {
2090 if (strcmp ("%VAL", arg->name) == 0)
2091 {
2092 if (e->ts.type == BT_CHARACTER || e->ts.type == BT_DERIVED)
2093 {
2094 gfc_error ("By-value argument at %L is not of numeric "
2095 "type", &e->where);
2096 goto cleanup;
2097 }
2098
2099 if (e->rank)
2100 {
2101 gfc_error ("By-value argument at %L cannot be an array or "
2102 "an array section", &e->where);
2103 goto cleanup;
2104 }
2105
2106 /* Intrinsics are still PROC_UNKNOWN here. However,
2107 since same file external procedures are not resolvable
2108 in gfortran, it is a good deal easier to leave them to
2109 intrinsic.c. */
2110 if (ptype != PROC_UNKNOWN
2111 && ptype != PROC_DUMMY
2112 && ptype != PROC_EXTERNAL
2113 && ptype != PROC_MODULE)
2114 {
2115 gfc_error ("By-value argument at %L is not allowed "
2116 "in this context", &e->where);
2117 goto cleanup;
2118 }
2119 }
2120
2121 /* Statement functions have already been excluded above. */
2122 else if (strcmp ("%LOC", arg->name) == 0
2123 && e->ts.type == BT_PROCEDURE)
2124 {
2125 if (e->symtree->n.sym->attr.proc == PROC_INTERNAL)
2126 {
2127 gfc_error ("Passing internal procedure at %L by location "
2128 "not allowed", &e->where);
2129 goto cleanup;
2130 }
2131 }
2132 }
2133
2134 comp = gfc_get_proc_ptr_comp(e);
2135 if (e->expr_type == EXPR_VARIABLE
2136 && comp && comp->attr.elemental)
2137 {
2138 gfc_error ("ELEMENTAL procedure pointer component %qs is not "
2139 "allowed as an actual argument at %L", comp->name,
2140 &e->where);
2141 }
2142
2143 /* Fortran 2008, C1237. */
2144 if (e->expr_type == EXPR_VARIABLE && gfc_is_coindexed (e)
2145 && gfc_has_ultimate_pointer (e))
2146 {
2147 gfc_error ("Coindexed actual argument at %L with ultimate pointer "
2148 "component", &e->where);
2149 goto cleanup;
2150 }
2151
2152 first_actual_arg = false;
2153 }
2154
2155 return_value = true;
2156
2157 cleanup:
2158 actual_arg = actual_arg_sav;
2159 first_actual_arg = first_actual_arg_sav;
2160
2161 return return_value;
2162 }
2163
2164
2165 /* Do the checks of the actual argument list that are specific to elemental
2166 procedures. If called with c == NULL, we have a function, otherwise if
2167 expr == NULL, we have a subroutine. */
2168
2169 static bool
2170 resolve_elemental_actual (gfc_expr *expr, gfc_code *c)
2171 {
2172 gfc_actual_arglist *arg0;
2173 gfc_actual_arglist *arg;
2174 gfc_symbol *esym = NULL;
2175 gfc_intrinsic_sym *isym = NULL;
2176 gfc_expr *e = NULL;
2177 gfc_intrinsic_arg *iformal = NULL;
2178 gfc_formal_arglist *eformal = NULL;
2179 bool formal_optional = false;
2180 bool set_by_optional = false;
2181 int i;
2182 int rank = 0;
2183
2184 /* Is this an elemental procedure? */
2185 if (expr && expr->value.function.actual != NULL)
2186 {
2187 if (expr->value.function.esym != NULL
2188 && expr->value.function.esym->attr.elemental)
2189 {
2190 arg0 = expr->value.function.actual;
2191 esym = expr->value.function.esym;
2192 }
2193 else if (expr->value.function.isym != NULL
2194 && expr->value.function.isym->elemental)
2195 {
2196 arg0 = expr->value.function.actual;
2197 isym = expr->value.function.isym;
2198 }
2199 else
2200 return true;
2201 }
2202 else if (c && c->ext.actual != NULL)
2203 {
2204 arg0 = c->ext.actual;
2205
2206 if (c->resolved_sym)
2207 esym = c->resolved_sym;
2208 else
2209 esym = c->symtree->n.sym;
2210 gcc_assert (esym);
2211
2212 if (!esym->attr.elemental)
2213 return true;
2214 }
2215 else
2216 return true;
2217
2218 /* The rank of an elemental is the rank of its array argument(s). */
2219 for (arg = arg0; arg; arg = arg->next)
2220 {
2221 if (arg->expr != NULL && arg->expr->rank != 0)
2222 {
2223 rank = arg->expr->rank;
2224 if (arg->expr->expr_type == EXPR_VARIABLE
2225 && arg->expr->symtree->n.sym->attr.optional)
2226 set_by_optional = true;
2227
2228 /* Function specific; set the result rank and shape. */
2229 if (expr)
2230 {
2231 expr->rank = rank;
2232 if (!expr->shape && arg->expr->shape)
2233 {
2234 expr->shape = gfc_get_shape (rank);
2235 for (i = 0; i < rank; i++)
2236 mpz_init_set (expr->shape[i], arg->expr->shape[i]);
2237 }
2238 }
2239 break;
2240 }
2241 }
2242
2243 /* If it is an array, it shall not be supplied as an actual argument
2244 to an elemental procedure unless an array of the same rank is supplied
2245 as an actual argument corresponding to a nonoptional dummy argument of
2246 that elemental procedure(12.4.1.5). */
2247 formal_optional = false;
2248 if (isym)
2249 iformal = isym->formal;
2250 else
2251 eformal = esym->formal;
2252
2253 for (arg = arg0; arg; arg = arg->next)
2254 {
2255 if (eformal)
2256 {
2257 if (eformal->sym && eformal->sym->attr.optional)
2258 formal_optional = true;
2259 eformal = eformal->next;
2260 }
2261 else if (isym && iformal)
2262 {
2263 if (iformal->optional)
2264 formal_optional = true;
2265 iformal = iformal->next;
2266 }
2267 else if (isym)
2268 formal_optional = true;
2269
2270 if (pedantic && arg->expr != NULL
2271 && arg->expr->expr_type == EXPR_VARIABLE
2272 && arg->expr->symtree->n.sym->attr.optional
2273 && formal_optional
2274 && arg->expr->rank
2275 && (set_by_optional || arg->expr->rank != rank)
2276 && !(isym && isym->id == GFC_ISYM_CONVERSION))
2277 {
2278 gfc_warning (OPT_Wpedantic,
2279 "%qs at %L is an array and OPTIONAL; IF IT IS "
2280 "MISSING, it cannot be the actual argument of an "
2281 "ELEMENTAL procedure unless there is a non-optional "
2282 "argument with the same rank (12.4.1.5)",
2283 arg->expr->symtree->n.sym->name, &arg->expr->where);
2284 }
2285 }
2286
2287 for (arg = arg0; arg; arg = arg->next)
2288 {
2289 if (arg->expr == NULL || arg->expr->rank == 0)
2290 continue;
2291
2292 /* Being elemental, the last upper bound of an assumed size array
2293 argument must be present. */
2294 if (resolve_assumed_size_actual (arg->expr))
2295 return false;
2296
2297 /* Elemental procedure's array actual arguments must conform. */
2298 if (e != NULL)
2299 {
2300 if (!gfc_check_conformance (arg->expr, e, "elemental procedure"))
2301 return false;
2302 }
2303 else
2304 e = arg->expr;
2305 }
2306
2307 /* INTENT(OUT) is only allowed for subroutines; if any actual argument
2308 is an array, the intent inout/out variable needs to be also an array. */
2309 if (rank > 0 && esym && expr == NULL)
2310 for (eformal = esym->formal, arg = arg0; arg && eformal;
2311 arg = arg->next, eformal = eformal->next)
2312 if ((eformal->sym->attr.intent == INTENT_OUT
2313 || eformal->sym->attr.intent == INTENT_INOUT)
2314 && arg->expr && arg->expr->rank == 0)
2315 {
2316 gfc_error ("Actual argument at %L for INTENT(%s) dummy %qs of "
2317 "ELEMENTAL subroutine %qs is a scalar, but another "
2318 "actual argument is an array", &arg->expr->where,
2319 (eformal->sym->attr.intent == INTENT_OUT) ? "OUT"
2320 : "INOUT", eformal->sym->name, esym->name);
2321 return false;
2322 }
2323 return true;
2324 }
2325
2326
2327 /* This function does the checking of references to global procedures
2328 as defined in sections 18.1 and 14.1, respectively, of the Fortran
2329 77 and 95 standards. It checks for a gsymbol for the name, making
2330 one if it does not already exist. If it already exists, then the
2331 reference being resolved must correspond to the type of gsymbol.
2332 Otherwise, the new symbol is equipped with the attributes of the
2333 reference. The corresponding code that is called in creating
2334 global entities is parse.c.
2335
2336 In addition, for all but -std=legacy, the gsymbols are used to
2337 check the interfaces of external procedures from the same file.
2338 The namespace of the gsymbol is resolved and then, once this is
2339 done the interface is checked. */
2340
2341
2342 static bool
2343 not_in_recursive (gfc_symbol *sym, gfc_namespace *gsym_ns)
2344 {
2345 if (!gsym_ns->proc_name->attr.recursive)
2346 return true;
2347
2348 if (sym->ns == gsym_ns)
2349 return false;
2350
2351 if (sym->ns->parent && sym->ns->parent == gsym_ns)
2352 return false;
2353
2354 return true;
2355 }
2356
2357 static bool
2358 not_entry_self_reference (gfc_symbol *sym, gfc_namespace *gsym_ns)
2359 {
2360 if (gsym_ns->entries)
2361 {
2362 gfc_entry_list *entry = gsym_ns->entries;
2363
2364 for (; entry; entry = entry->next)
2365 {
2366 if (strcmp (sym->name, entry->sym->name) == 0)
2367 {
2368 if (strcmp (gsym_ns->proc_name->name,
2369 sym->ns->proc_name->name) == 0)
2370 return false;
2371
2372 if (sym->ns->parent
2373 && strcmp (gsym_ns->proc_name->name,
2374 sym->ns->parent->proc_name->name) == 0)
2375 return false;
2376 }
2377 }
2378 }
2379 return true;
2380 }
2381
2382
2383 /* Check for the requirement of an explicit interface. F08:12.4.2.2. */
2384
2385 bool
2386 gfc_explicit_interface_required (gfc_symbol *sym, char *errmsg, int err_len)
2387 {
2388 gfc_formal_arglist *arg = gfc_sym_get_dummy_args (sym);
2389
2390 for ( ; arg; arg = arg->next)
2391 {
2392 if (!arg->sym)
2393 continue;
2394
2395 if (arg->sym->attr.allocatable) /* (2a) */
2396 {
2397 strncpy (errmsg, _("allocatable argument"), err_len);
2398 return true;
2399 }
2400 else if (arg->sym->attr.asynchronous)
2401 {
2402 strncpy (errmsg, _("asynchronous argument"), err_len);
2403 return true;
2404 }
2405 else if (arg->sym->attr.optional)
2406 {
2407 strncpy (errmsg, _("optional argument"), err_len);
2408 return true;
2409 }
2410 else if (arg->sym->attr.pointer)
2411 {
2412 strncpy (errmsg, _("pointer argument"), err_len);
2413 return true;
2414 }
2415 else if (arg->sym->attr.target)
2416 {
2417 strncpy (errmsg, _("target argument"), err_len);
2418 return true;
2419 }
2420 else if (arg->sym->attr.value)
2421 {
2422 strncpy (errmsg, _("value argument"), err_len);
2423 return true;
2424 }
2425 else if (arg->sym->attr.volatile_)
2426 {
2427 strncpy (errmsg, _("volatile argument"), err_len);
2428 return true;
2429 }
2430 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_SHAPE) /* (2b) */
2431 {
2432 strncpy (errmsg, _("assumed-shape argument"), err_len);
2433 return true;
2434 }
2435 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_RANK) /* TS 29113, 6.2. */
2436 {
2437 strncpy (errmsg, _("assumed-rank argument"), err_len);
2438 return true;
2439 }
2440 else if (arg->sym->attr.codimension) /* (2c) */
2441 {
2442 strncpy (errmsg, _("coarray argument"), err_len);
2443 return true;
2444 }
2445 else if (false) /* (2d) TODO: parametrized derived type */
2446 {
2447 strncpy (errmsg, _("parametrized derived type argument"), err_len);
2448 return true;
2449 }
2450 else if (arg->sym->ts.type == BT_CLASS) /* (2e) */
2451 {
2452 strncpy (errmsg, _("polymorphic argument"), err_len);
2453 return true;
2454 }
2455 else if (arg->sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2456 {
2457 strncpy (errmsg, _("NO_ARG_CHECK attribute"), err_len);
2458 return true;
2459 }
2460 else if (arg->sym->ts.type == BT_ASSUMED)
2461 {
2462 /* As assumed-type is unlimited polymorphic (cf. above).
2463 See also TS 29113, Note 6.1. */
2464 strncpy (errmsg, _("assumed-type argument"), err_len);
2465 return true;
2466 }
2467 }
2468
2469 if (sym->attr.function)
2470 {
2471 gfc_symbol *res = sym->result ? sym->result : sym;
2472
2473 if (res->attr.dimension) /* (3a) */
2474 {
2475 strncpy (errmsg, _("array result"), err_len);
2476 return true;
2477 }
2478 else if (res->attr.pointer || res->attr.allocatable) /* (3b) */
2479 {
2480 strncpy (errmsg, _("pointer or allocatable result"), err_len);
2481 return true;
2482 }
2483 else if (res->ts.type == BT_CHARACTER && res->ts.u.cl
2484 && res->ts.u.cl->length
2485 && res->ts.u.cl->length->expr_type != EXPR_CONSTANT) /* (3c) */
2486 {
2487 strncpy (errmsg, _("result with non-constant character length"), err_len);
2488 return true;
2489 }
2490 }
2491
2492 if (sym->attr.elemental && !sym->attr.intrinsic) /* (4) */
2493 {
2494 strncpy (errmsg, _("elemental procedure"), err_len);
2495 return true;
2496 }
2497 else if (sym->attr.is_bind_c) /* (5) */
2498 {
2499 strncpy (errmsg, _("bind(c) procedure"), err_len);
2500 return true;
2501 }
2502
2503 return false;
2504 }
2505
2506
2507 static void
2508 resolve_global_procedure (gfc_symbol *sym, locus *where, int sub)
2509 {
2510 gfc_gsymbol * gsym;
2511 gfc_namespace *ns;
2512 enum gfc_symbol_type type;
2513 char reason[200];
2514
2515 type = sub ? GSYM_SUBROUTINE : GSYM_FUNCTION;
2516
2517 gsym = gfc_get_gsymbol (sym->binding_label ? sym->binding_label : sym->name,
2518 sym->binding_label != NULL);
2519
2520 if ((gsym->type != GSYM_UNKNOWN && gsym->type != type))
2521 gfc_global_used (gsym, where);
2522
2523 if ((sym->attr.if_source == IFSRC_UNKNOWN
2524 || sym->attr.if_source == IFSRC_IFBODY)
2525 && gsym->type != GSYM_UNKNOWN
2526 && !gsym->binding_label
2527 && gsym->ns
2528 && gsym->ns->proc_name
2529 && not_in_recursive (sym, gsym->ns)
2530 && not_entry_self_reference (sym, gsym->ns))
2531 {
2532 gfc_symbol *def_sym;
2533 def_sym = gsym->ns->proc_name;
2534
2535 if (gsym->ns->resolved != -1)
2536 {
2537
2538 /* Resolve the gsymbol namespace if needed. */
2539 if (!gsym->ns->resolved)
2540 {
2541 gfc_symbol *old_dt_list;
2542
2543 /* Stash away derived types so that the backend_decls
2544 do not get mixed up. */
2545 old_dt_list = gfc_derived_types;
2546 gfc_derived_types = NULL;
2547
2548 gfc_resolve (gsym->ns);
2549
2550 /* Store the new derived types with the global namespace. */
2551 if (gfc_derived_types)
2552 gsym->ns->derived_types = gfc_derived_types;
2553
2554 /* Restore the derived types of this namespace. */
2555 gfc_derived_types = old_dt_list;
2556 }
2557
2558 /* Make sure that translation for the gsymbol occurs before
2559 the procedure currently being resolved. */
2560 ns = gfc_global_ns_list;
2561 for (; ns && ns != gsym->ns; ns = ns->sibling)
2562 {
2563 if (ns->sibling == gsym->ns)
2564 {
2565 ns->sibling = gsym->ns->sibling;
2566 gsym->ns->sibling = gfc_global_ns_list;
2567 gfc_global_ns_list = gsym->ns;
2568 break;
2569 }
2570 }
2571
2572 /* This can happen if a binding name has been specified. */
2573 if (gsym->binding_label && gsym->sym_name != def_sym->name)
2574 gfc_find_symbol (gsym->sym_name, gsym->ns, 0, &def_sym);
2575
2576 if (def_sym->attr.entry_master || def_sym->attr.entry)
2577 {
2578 gfc_entry_list *entry;
2579 for (entry = gsym->ns->entries; entry; entry = entry->next)
2580 if (strcmp (entry->sym->name, sym->name) == 0)
2581 {
2582 def_sym = entry->sym;
2583 break;
2584 }
2585 }
2586 }
2587
2588 if (sym->attr.function && !gfc_compare_types (&sym->ts, &def_sym->ts))
2589 {
2590 gfc_error ("Return type mismatch of function %qs at %L (%s/%s)",
2591 sym->name, &sym->declared_at, gfc_typename (&sym->ts),
2592 gfc_typename (&def_sym->ts));
2593 goto done;
2594 }
2595
2596 if (sym->attr.if_source == IFSRC_UNKNOWN
2597 && gfc_explicit_interface_required (def_sym, reason, sizeof(reason)))
2598 {
2599 gfc_error ("Explicit interface required for %qs at %L: %s",
2600 sym->name, &sym->declared_at, reason);
2601 goto done;
2602 }
2603
2604 if (!pedantic && (gfc_option.allow_std & GFC_STD_GNU))
2605 /* Turn erros into warnings with -std=gnu and -std=legacy. */
2606 gfc_errors_to_warnings (true);
2607
2608 if (!gfc_compare_interfaces (sym, def_sym, sym->name, 0, 1,
2609 reason, sizeof(reason), NULL, NULL))
2610 {
2611 gfc_error_opt (0, "Interface mismatch in global procedure %qs at %L:"
2612 " %s", sym->name, &sym->declared_at, reason);
2613 goto done;
2614 }
2615 }
2616
2617 done:
2618 gfc_errors_to_warnings (false);
2619
2620 if (gsym->type == GSYM_UNKNOWN)
2621 {
2622 gsym->type = type;
2623 gsym->where = *where;
2624 }
2625
2626 gsym->used = 1;
2627 }
2628
2629
2630 /************* Function resolution *************/
2631
2632 /* Resolve a function call known to be generic.
2633 Section 14.1.2.4.1. */
2634
2635 static match
2636 resolve_generic_f0 (gfc_expr *expr, gfc_symbol *sym)
2637 {
2638 gfc_symbol *s;
2639
2640 if (sym->attr.generic)
2641 {
2642 s = gfc_search_interface (sym->generic, 0, &expr->value.function.actual);
2643 if (s != NULL)
2644 {
2645 expr->value.function.name = s->name;
2646 expr->value.function.esym = s;
2647
2648 if (s->ts.type != BT_UNKNOWN)
2649 expr->ts = s->ts;
2650 else if (s->result != NULL && s->result->ts.type != BT_UNKNOWN)
2651 expr->ts = s->result->ts;
2652
2653 if (s->as != NULL)
2654 expr->rank = s->as->rank;
2655 else if (s->result != NULL && s->result->as != NULL)
2656 expr->rank = s->result->as->rank;
2657
2658 gfc_set_sym_referenced (expr->value.function.esym);
2659
2660 return MATCH_YES;
2661 }
2662
2663 /* TODO: Need to search for elemental references in generic
2664 interface. */
2665 }
2666
2667 if (sym->attr.intrinsic)
2668 return gfc_intrinsic_func_interface (expr, 0);
2669
2670 return MATCH_NO;
2671 }
2672
2673
2674 static bool
2675 resolve_generic_f (gfc_expr *expr)
2676 {
2677 gfc_symbol *sym;
2678 match m;
2679 gfc_interface *intr = NULL;
2680
2681 sym = expr->symtree->n.sym;
2682
2683 for (;;)
2684 {
2685 m = resolve_generic_f0 (expr, sym);
2686 if (m == MATCH_YES)
2687 return true;
2688 else if (m == MATCH_ERROR)
2689 return false;
2690
2691 generic:
2692 if (!intr)
2693 for (intr = sym->generic; intr; intr = intr->next)
2694 if (gfc_fl_struct (intr->sym->attr.flavor))
2695 break;
2696
2697 if (sym->ns->parent == NULL)
2698 break;
2699 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2700
2701 if (sym == NULL)
2702 break;
2703 if (!generic_sym (sym))
2704 goto generic;
2705 }
2706
2707 /* Last ditch attempt. See if the reference is to an intrinsic
2708 that possesses a matching interface. 14.1.2.4 */
2709 if (sym && !intr && !gfc_is_intrinsic (sym, 0, expr->where))
2710 {
2711 if (gfc_init_expr_flag)
2712 gfc_error ("Function %qs in initialization expression at %L "
2713 "must be an intrinsic function",
2714 expr->symtree->n.sym->name, &expr->where);
2715 else
2716 gfc_error ("There is no specific function for the generic %qs "
2717 "at %L", expr->symtree->n.sym->name, &expr->where);
2718 return false;
2719 }
2720
2721 if (intr)
2722 {
2723 if (!gfc_convert_to_structure_constructor (expr, intr->sym, NULL,
2724 NULL, false))
2725 return false;
2726 if (!gfc_use_derived (expr->ts.u.derived))
2727 return false;
2728 return resolve_structure_cons (expr, 0);
2729 }
2730
2731 m = gfc_intrinsic_func_interface (expr, 0);
2732 if (m == MATCH_YES)
2733 return true;
2734
2735 if (m == MATCH_NO)
2736 gfc_error ("Generic function %qs at %L is not consistent with a "
2737 "specific intrinsic interface", expr->symtree->n.sym->name,
2738 &expr->where);
2739
2740 return false;
2741 }
2742
2743
2744 /* Resolve a function call known to be specific. */
2745
2746 static match
2747 resolve_specific_f0 (gfc_symbol *sym, gfc_expr *expr)
2748 {
2749 match m;
2750
2751 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
2752 {
2753 if (sym->attr.dummy)
2754 {
2755 sym->attr.proc = PROC_DUMMY;
2756 goto found;
2757 }
2758
2759 sym->attr.proc = PROC_EXTERNAL;
2760 goto found;
2761 }
2762
2763 if (sym->attr.proc == PROC_MODULE
2764 || sym->attr.proc == PROC_ST_FUNCTION
2765 || sym->attr.proc == PROC_INTERNAL)
2766 goto found;
2767
2768 if (sym->attr.intrinsic)
2769 {
2770 m = gfc_intrinsic_func_interface (expr, 1);
2771 if (m == MATCH_YES)
2772 return MATCH_YES;
2773 if (m == MATCH_NO)
2774 gfc_error ("Function %qs at %L is INTRINSIC but is not compatible "
2775 "with an intrinsic", sym->name, &expr->where);
2776
2777 return MATCH_ERROR;
2778 }
2779
2780 return MATCH_NO;
2781
2782 found:
2783 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2784
2785 if (sym->result)
2786 expr->ts = sym->result->ts;
2787 else
2788 expr->ts = sym->ts;
2789 expr->value.function.name = sym->name;
2790 expr->value.function.esym = sym;
2791 /* Prevent crash when sym->ts.u.derived->components is not set due to previous
2792 error(s). */
2793 if (sym->ts.type == BT_CLASS && !CLASS_DATA (sym))
2794 return MATCH_ERROR;
2795 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
2796 expr->rank = CLASS_DATA (sym)->as->rank;
2797 else if (sym->as != NULL)
2798 expr->rank = sym->as->rank;
2799
2800 return MATCH_YES;
2801 }
2802
2803
2804 static bool
2805 resolve_specific_f (gfc_expr *expr)
2806 {
2807 gfc_symbol *sym;
2808 match m;
2809
2810 sym = expr->symtree->n.sym;
2811
2812 for (;;)
2813 {
2814 m = resolve_specific_f0 (sym, expr);
2815 if (m == MATCH_YES)
2816 return true;
2817 if (m == MATCH_ERROR)
2818 return false;
2819
2820 if (sym->ns->parent == NULL)
2821 break;
2822
2823 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2824
2825 if (sym == NULL)
2826 break;
2827 }
2828
2829 gfc_error ("Unable to resolve the specific function %qs at %L",
2830 expr->symtree->n.sym->name, &expr->where);
2831
2832 return true;
2833 }
2834
2835 /* Recursively append candidate SYM to CANDIDATES. Store the number of
2836 candidates in CANDIDATES_LEN. */
2837
2838 static void
2839 lookup_function_fuzzy_find_candidates (gfc_symtree *sym,
2840 char **&candidates,
2841 size_t &candidates_len)
2842 {
2843 gfc_symtree *p;
2844
2845 if (sym == NULL)
2846 return;
2847 if ((sym->n.sym->ts.type != BT_UNKNOWN || sym->n.sym->attr.external)
2848 && sym->n.sym->attr.flavor == FL_PROCEDURE)
2849 vec_push (candidates, candidates_len, sym->name);
2850
2851 p = sym->left;
2852 if (p)
2853 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2854
2855 p = sym->right;
2856 if (p)
2857 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2858 }
2859
2860
2861 /* Lookup function FN fuzzily, taking names in SYMROOT into account. */
2862
2863 const char*
2864 gfc_lookup_function_fuzzy (const char *fn, gfc_symtree *symroot)
2865 {
2866 char **candidates = NULL;
2867 size_t candidates_len = 0;
2868 lookup_function_fuzzy_find_candidates (symroot, candidates, candidates_len);
2869 return gfc_closest_fuzzy_match (fn, candidates);
2870 }
2871
2872
2873 /* Resolve a procedure call not known to be generic nor specific. */
2874
2875 static bool
2876 resolve_unknown_f (gfc_expr *expr)
2877 {
2878 gfc_symbol *sym;
2879 gfc_typespec *ts;
2880
2881 sym = expr->symtree->n.sym;
2882
2883 if (sym->attr.dummy)
2884 {
2885 sym->attr.proc = PROC_DUMMY;
2886 expr->value.function.name = sym->name;
2887 goto set_type;
2888 }
2889
2890 /* See if we have an intrinsic function reference. */
2891
2892 if (gfc_is_intrinsic (sym, 0, expr->where))
2893 {
2894 if (gfc_intrinsic_func_interface (expr, 1) == MATCH_YES)
2895 return true;
2896 return false;
2897 }
2898
2899 /* The reference is to an external name. */
2900
2901 sym->attr.proc = PROC_EXTERNAL;
2902 expr->value.function.name = sym->name;
2903 expr->value.function.esym = expr->symtree->n.sym;
2904
2905 if (sym->as != NULL)
2906 expr->rank = sym->as->rank;
2907
2908 /* Type of the expression is either the type of the symbol or the
2909 default type of the symbol. */
2910
2911 set_type:
2912 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2913
2914 if (sym->ts.type != BT_UNKNOWN)
2915 expr->ts = sym->ts;
2916 else
2917 {
2918 ts = gfc_get_default_type (sym->name, sym->ns);
2919
2920 if (ts->type == BT_UNKNOWN)
2921 {
2922 const char *guessed
2923 = gfc_lookup_function_fuzzy (sym->name, sym->ns->sym_root);
2924 if (guessed)
2925 gfc_error ("Function %qs at %L has no IMPLICIT type"
2926 "; did you mean %qs?",
2927 sym->name, &expr->where, guessed);
2928 else
2929 gfc_error ("Function %qs at %L has no IMPLICIT type",
2930 sym->name, &expr->where);
2931 return false;
2932 }
2933 else
2934 expr->ts = *ts;
2935 }
2936
2937 return true;
2938 }
2939
2940
2941 /* Return true, if the symbol is an external procedure. */
2942 static bool
2943 is_external_proc (gfc_symbol *sym)
2944 {
2945 if (!sym->attr.dummy && !sym->attr.contained
2946 && !gfc_is_intrinsic (sym, sym->attr.subroutine, sym->declared_at)
2947 && sym->attr.proc != PROC_ST_FUNCTION
2948 && !sym->attr.proc_pointer
2949 && !sym->attr.use_assoc
2950 && sym->name)
2951 return true;
2952
2953 return false;
2954 }
2955
2956
2957 /* Figure out if a function reference is pure or not. Also set the name
2958 of the function for a potential error message. Return nonzero if the
2959 function is PURE, zero if not. */
2960 static int
2961 pure_stmt_function (gfc_expr *, gfc_symbol *);
2962
2963 int
2964 gfc_pure_function (gfc_expr *e, const char **name)
2965 {
2966 int pure;
2967 gfc_component *comp;
2968
2969 *name = NULL;
2970
2971 if (e->symtree != NULL
2972 && e->symtree->n.sym != NULL
2973 && e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
2974 return pure_stmt_function (e, e->symtree->n.sym);
2975
2976 comp = gfc_get_proc_ptr_comp (e);
2977 if (comp)
2978 {
2979 pure = gfc_pure (comp->ts.interface);
2980 *name = comp->name;
2981 }
2982 else if (e->value.function.esym)
2983 {
2984 pure = gfc_pure (e->value.function.esym);
2985 *name = e->value.function.esym->name;
2986 }
2987 else if (e->value.function.isym)
2988 {
2989 pure = e->value.function.isym->pure
2990 || e->value.function.isym->elemental;
2991 *name = e->value.function.isym->name;
2992 }
2993 else
2994 {
2995 /* Implicit functions are not pure. */
2996 pure = 0;
2997 *name = e->value.function.name;
2998 }
2999
3000 return pure;
3001 }
3002
3003
3004 /* Check if the expression is a reference to an implicitly pure function. */
3005
3006 int
3007 gfc_implicit_pure_function (gfc_expr *e)
3008 {
3009 gfc_component *comp = gfc_get_proc_ptr_comp (e);
3010 if (comp)
3011 return gfc_implicit_pure (comp->ts.interface);
3012 else if (e->value.function.esym)
3013 return gfc_implicit_pure (e->value.function.esym);
3014 else
3015 return 0;
3016 }
3017
3018
3019 static bool
3020 impure_stmt_fcn (gfc_expr *e, gfc_symbol *sym,
3021 int *f ATTRIBUTE_UNUSED)
3022 {
3023 const char *name;
3024
3025 /* Don't bother recursing into other statement functions
3026 since they will be checked individually for purity. */
3027 if (e->expr_type != EXPR_FUNCTION
3028 || !e->symtree
3029 || e->symtree->n.sym == sym
3030 || e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
3031 return false;
3032
3033 return gfc_pure_function (e, &name) ? false : true;
3034 }
3035
3036
3037 static int
3038 pure_stmt_function (gfc_expr *e, gfc_symbol *sym)
3039 {
3040 return gfc_traverse_expr (e, sym, impure_stmt_fcn, 0) ? 0 : 1;
3041 }
3042
3043
3044 /* Check if an impure function is allowed in the current context. */
3045
3046 static bool check_pure_function (gfc_expr *e)
3047 {
3048 const char *name = NULL;
3049 if (!gfc_pure_function (e, &name) && name)
3050 {
3051 if (forall_flag)
3052 {
3053 gfc_error ("Reference to impure function %qs at %L inside a "
3054 "FORALL %s", name, &e->where,
3055 forall_flag == 2 ? "mask" : "block");
3056 return false;
3057 }
3058 else if (gfc_do_concurrent_flag)
3059 {
3060 gfc_error ("Reference to impure function %qs at %L inside a "
3061 "DO CONCURRENT %s", name, &e->where,
3062 gfc_do_concurrent_flag == 2 ? "mask" : "block");
3063 return false;
3064 }
3065 else if (gfc_pure (NULL))
3066 {
3067 gfc_error ("Reference to impure function %qs at %L "
3068 "within a PURE procedure", name, &e->where);
3069 return false;
3070 }
3071 if (!gfc_implicit_pure_function (e))
3072 gfc_unset_implicit_pure (NULL);
3073 }
3074 return true;
3075 }
3076
3077
3078 /* Update current procedure's array_outer_dependency flag, considering
3079 a call to procedure SYM. */
3080
3081 static void
3082 update_current_proc_array_outer_dependency (gfc_symbol *sym)
3083 {
3084 /* Check to see if this is a sibling function that has not yet
3085 been resolved. */
3086 gfc_namespace *sibling = gfc_current_ns->sibling;
3087 for (; sibling; sibling = sibling->sibling)
3088 {
3089 if (sibling->proc_name == sym)
3090 {
3091 gfc_resolve (sibling);
3092 break;
3093 }
3094 }
3095
3096 /* If SYM has references to outer arrays, so has the procedure calling
3097 SYM. If SYM is a procedure pointer, we can assume the worst. */
3098 if ((sym->attr.array_outer_dependency || sym->attr.proc_pointer)
3099 && gfc_current_ns->proc_name)
3100 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3101 }
3102
3103
3104 /* Resolve a function call, which means resolving the arguments, then figuring
3105 out which entity the name refers to. */
3106
3107 static bool
3108 resolve_function (gfc_expr *expr)
3109 {
3110 gfc_actual_arglist *arg;
3111 gfc_symbol *sym;
3112 bool t;
3113 int temp;
3114 procedure_type p = PROC_INTRINSIC;
3115 bool no_formal_args;
3116
3117 sym = NULL;
3118 if (expr->symtree)
3119 sym = expr->symtree->n.sym;
3120
3121 /* If this is a procedure pointer component, it has already been resolved. */
3122 if (gfc_is_proc_ptr_comp (expr))
3123 return true;
3124
3125 /* Avoid re-resolving the arguments of caf_get, which can lead to inserting
3126 another caf_get. */
3127 if (sym && sym->attr.intrinsic
3128 && (sym->intmod_sym_id == GFC_ISYM_CAF_GET
3129 || sym->intmod_sym_id == GFC_ISYM_CAF_SEND))
3130 return true;
3131
3132 if (expr->ref)
3133 {
3134 gfc_error ("Unexpected junk after %qs at %L", expr->symtree->n.sym->name,
3135 &expr->where);
3136 return false;
3137 }
3138
3139 if (sym && sym->attr.intrinsic
3140 && !gfc_resolve_intrinsic (sym, &expr->where))
3141 return false;
3142
3143 if (sym && (sym->attr.flavor == FL_VARIABLE || sym->attr.subroutine))
3144 {
3145 gfc_error ("%qs at %L is not a function", sym->name, &expr->where);
3146 return false;
3147 }
3148
3149 /* If this is a deferred TBP with an abstract interface (which may
3150 of course be referenced), expr->value.function.esym will be set. */
3151 if (sym && sym->attr.abstract && !expr->value.function.esym)
3152 {
3153 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3154 sym->name, &expr->where);
3155 return false;
3156 }
3157
3158 /* If this is a deferred TBP with an abstract interface, its result
3159 cannot be an assumed length character (F2003: C418). */
3160 if (sym && sym->attr.abstract && sym->attr.function
3161 && sym->result->ts.u.cl
3162 && sym->result->ts.u.cl->length == NULL
3163 && !sym->result->ts.deferred)
3164 {
3165 gfc_error ("ABSTRACT INTERFACE %qs at %L must not have an assumed "
3166 "character length result (F2008: C418)", sym->name,
3167 &sym->declared_at);
3168 return false;
3169 }
3170
3171 /* Switch off assumed size checking and do this again for certain kinds
3172 of procedure, once the procedure itself is resolved. */
3173 need_full_assumed_size++;
3174
3175 if (expr->symtree && expr->symtree->n.sym)
3176 p = expr->symtree->n.sym->attr.proc;
3177
3178 if (expr->value.function.isym && expr->value.function.isym->inquiry)
3179 inquiry_argument = true;
3180 no_formal_args = sym && is_external_proc (sym)
3181 && gfc_sym_get_dummy_args (sym) == NULL;
3182
3183 if (!resolve_actual_arglist (expr->value.function.actual,
3184 p, no_formal_args))
3185 {
3186 inquiry_argument = false;
3187 return false;
3188 }
3189
3190 inquiry_argument = false;
3191
3192 /* Resume assumed_size checking. */
3193 need_full_assumed_size--;
3194
3195 /* If the procedure is external, check for usage. */
3196 if (sym && is_external_proc (sym))
3197 resolve_global_procedure (sym, &expr->where, 0);
3198
3199 if (sym && sym->ts.type == BT_CHARACTER
3200 && sym->ts.u.cl
3201 && sym->ts.u.cl->length == NULL
3202 && !sym->attr.dummy
3203 && !sym->ts.deferred
3204 && expr->value.function.esym == NULL
3205 && !sym->attr.contained)
3206 {
3207 /* Internal procedures are taken care of in resolve_contained_fntype. */
3208 gfc_error ("Function %qs is declared CHARACTER(*) and cannot "
3209 "be used at %L since it is not a dummy argument",
3210 sym->name, &expr->where);
3211 return false;
3212 }
3213
3214 /* See if function is already resolved. */
3215
3216 if (expr->value.function.name != NULL
3217 || expr->value.function.isym != NULL)
3218 {
3219 if (expr->ts.type == BT_UNKNOWN)
3220 expr->ts = sym->ts;
3221 t = true;
3222 }
3223 else
3224 {
3225 /* Apply the rules of section 14.1.2. */
3226
3227 switch (procedure_kind (sym))
3228 {
3229 case PTYPE_GENERIC:
3230 t = resolve_generic_f (expr);
3231 break;
3232
3233 case PTYPE_SPECIFIC:
3234 t = resolve_specific_f (expr);
3235 break;
3236
3237 case PTYPE_UNKNOWN:
3238 t = resolve_unknown_f (expr);
3239 break;
3240
3241 default:
3242 gfc_internal_error ("resolve_function(): bad function type");
3243 }
3244 }
3245
3246 /* If the expression is still a function (it might have simplified),
3247 then we check to see if we are calling an elemental function. */
3248
3249 if (expr->expr_type != EXPR_FUNCTION)
3250 return t;
3251
3252 /* Walk the argument list looking for invalid BOZ. */
3253 for (arg = expr->value.function.actual; arg; arg = arg->next)
3254 if (arg->expr && arg->expr->ts.type == BT_BOZ)
3255 {
3256 gfc_error ("A BOZ literal constant at %L cannot appear as an "
3257 "actual argument in a function reference",
3258 &arg->expr->where);
3259 return false;
3260 }
3261
3262 temp = need_full_assumed_size;
3263 need_full_assumed_size = 0;
3264
3265 if (!resolve_elemental_actual (expr, NULL))
3266 return false;
3267
3268 if (omp_workshare_flag
3269 && expr->value.function.esym
3270 && ! gfc_elemental (expr->value.function.esym))
3271 {
3272 gfc_error ("User defined non-ELEMENTAL function %qs at %L not allowed "
3273 "in WORKSHARE construct", expr->value.function.esym->name,
3274 &expr->where);
3275 t = false;
3276 }
3277
3278 #define GENERIC_ID expr->value.function.isym->id
3279 else if (expr->value.function.actual != NULL
3280 && expr->value.function.isym != NULL
3281 && GENERIC_ID != GFC_ISYM_LBOUND
3282 && GENERIC_ID != GFC_ISYM_LCOBOUND
3283 && GENERIC_ID != GFC_ISYM_UCOBOUND
3284 && GENERIC_ID != GFC_ISYM_LEN
3285 && GENERIC_ID != GFC_ISYM_LOC
3286 && GENERIC_ID != GFC_ISYM_C_LOC
3287 && GENERIC_ID != GFC_ISYM_PRESENT)
3288 {
3289 /* Array intrinsics must also have the last upper bound of an
3290 assumed size array argument. UBOUND and SIZE have to be
3291 excluded from the check if the second argument is anything
3292 than a constant. */
3293
3294 for (arg = expr->value.function.actual; arg; arg = arg->next)
3295 {
3296 if ((GENERIC_ID == GFC_ISYM_UBOUND || GENERIC_ID == GFC_ISYM_SIZE)
3297 && arg == expr->value.function.actual
3298 && arg->next != NULL && arg->next->expr)
3299 {
3300 if (arg->next->expr->expr_type != EXPR_CONSTANT)
3301 break;
3302
3303 if (arg->next->name && strcmp (arg->next->name, "kind") == 0)
3304 break;
3305
3306 if ((int)mpz_get_si (arg->next->expr->value.integer)
3307 < arg->expr->rank)
3308 break;
3309 }
3310
3311 if (arg->expr != NULL
3312 && arg->expr->rank > 0
3313 && resolve_assumed_size_actual (arg->expr))
3314 return false;
3315 }
3316 }
3317 #undef GENERIC_ID
3318
3319 need_full_assumed_size = temp;
3320
3321 if (!check_pure_function(expr))
3322 t = false;
3323
3324 /* Functions without the RECURSIVE attribution are not allowed to
3325 * call themselves. */
3326 if (expr->value.function.esym && !expr->value.function.esym->attr.recursive)
3327 {
3328 gfc_symbol *esym;
3329 esym = expr->value.function.esym;
3330
3331 if (is_illegal_recursion (esym, gfc_current_ns))
3332 {
3333 if (esym->attr.entry && esym->ns->entries)
3334 gfc_error ("ENTRY %qs at %L cannot be called recursively, as"
3335 " function %qs is not RECURSIVE",
3336 esym->name, &expr->where, esym->ns->entries->sym->name);
3337 else
3338 gfc_error ("Function %qs at %L cannot be called recursively, as it"
3339 " is not RECURSIVE", esym->name, &expr->where);
3340
3341 t = false;
3342 }
3343 }
3344
3345 /* Character lengths of use associated functions may contains references to
3346 symbols not referenced from the current program unit otherwise. Make sure
3347 those symbols are marked as referenced. */
3348
3349 if (expr->ts.type == BT_CHARACTER && expr->value.function.esym
3350 && expr->value.function.esym->attr.use_assoc)
3351 {
3352 gfc_expr_set_symbols_referenced (expr->ts.u.cl->length);
3353 }
3354
3355 /* Make sure that the expression has a typespec that works. */
3356 if (expr->ts.type == BT_UNKNOWN)
3357 {
3358 if (expr->symtree->n.sym->result
3359 && expr->symtree->n.sym->result->ts.type != BT_UNKNOWN
3360 && !expr->symtree->n.sym->result->attr.proc_pointer)
3361 expr->ts = expr->symtree->n.sym->result->ts;
3362 }
3363
3364 if (!expr->ref && !expr->value.function.isym)
3365 {
3366 if (expr->value.function.esym)
3367 update_current_proc_array_outer_dependency (expr->value.function.esym);
3368 else
3369 update_current_proc_array_outer_dependency (sym);
3370 }
3371 else if (expr->ref)
3372 /* typebound procedure: Assume the worst. */
3373 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3374
3375 return t;
3376 }
3377
3378
3379 /************* Subroutine resolution *************/
3380
3381 static bool
3382 pure_subroutine (gfc_symbol *sym, const char *name, locus *loc)
3383 {
3384 if (gfc_pure (sym))
3385 return true;
3386
3387 if (forall_flag)
3388 {
3389 gfc_error ("Subroutine call to %qs in FORALL block at %L is not PURE",
3390 name, loc);
3391 return false;
3392 }
3393 else if (gfc_do_concurrent_flag)
3394 {
3395 gfc_error ("Subroutine call to %qs in DO CONCURRENT block at %L is not "
3396 "PURE", name, loc);
3397 return false;
3398 }
3399 else if (gfc_pure (NULL))
3400 {
3401 gfc_error ("Subroutine call to %qs at %L is not PURE", name, loc);
3402 return false;
3403 }
3404
3405 gfc_unset_implicit_pure (NULL);
3406 return true;
3407 }
3408
3409
3410 static match
3411 resolve_generic_s0 (gfc_code *c, gfc_symbol *sym)
3412 {
3413 gfc_symbol *s;
3414
3415 if (sym->attr.generic)
3416 {
3417 s = gfc_search_interface (sym->generic, 1, &c->ext.actual);
3418 if (s != NULL)
3419 {
3420 c->resolved_sym = s;
3421 if (!pure_subroutine (s, s->name, &c->loc))
3422 return MATCH_ERROR;
3423 return MATCH_YES;
3424 }
3425
3426 /* TODO: Need to search for elemental references in generic interface. */
3427 }
3428
3429 if (sym->attr.intrinsic)
3430 return gfc_intrinsic_sub_interface (c, 0);
3431
3432 return MATCH_NO;
3433 }
3434
3435
3436 static bool
3437 resolve_generic_s (gfc_code *c)
3438 {
3439 gfc_symbol *sym;
3440 match m;
3441
3442 sym = c->symtree->n.sym;
3443
3444 for (;;)
3445 {
3446 m = resolve_generic_s0 (c, sym);
3447 if (m == MATCH_YES)
3448 return true;
3449 else if (m == MATCH_ERROR)
3450 return false;
3451
3452 generic:
3453 if (sym->ns->parent == NULL)
3454 break;
3455 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3456
3457 if (sym == NULL)
3458 break;
3459 if (!generic_sym (sym))
3460 goto generic;
3461 }
3462
3463 /* Last ditch attempt. See if the reference is to an intrinsic
3464 that possesses a matching interface. 14.1.2.4 */
3465 sym = c->symtree->n.sym;
3466
3467 if (!gfc_is_intrinsic (sym, 1, c->loc))
3468 {
3469 gfc_error ("There is no specific subroutine for the generic %qs at %L",
3470 sym->name, &c->loc);
3471 return false;
3472 }
3473
3474 m = gfc_intrinsic_sub_interface (c, 0);
3475 if (m == MATCH_YES)
3476 return true;
3477 if (m == MATCH_NO)
3478 gfc_error ("Generic subroutine %qs at %L is not consistent with an "
3479 "intrinsic subroutine interface", sym->name, &c->loc);
3480
3481 return false;
3482 }
3483
3484
3485 /* Resolve a subroutine call known to be specific. */
3486
3487 static match
3488 resolve_specific_s0 (gfc_code *c, gfc_symbol *sym)
3489 {
3490 match m;
3491
3492 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
3493 {
3494 if (sym->attr.dummy)
3495 {
3496 sym->attr.proc = PROC_DUMMY;
3497 goto found;
3498 }
3499
3500 sym->attr.proc = PROC_EXTERNAL;
3501 goto found;
3502 }
3503
3504 if (sym->attr.proc == PROC_MODULE || sym->attr.proc == PROC_INTERNAL)
3505 goto found;
3506
3507 if (sym->attr.intrinsic)
3508 {
3509 m = gfc_intrinsic_sub_interface (c, 1);
3510 if (m == MATCH_YES)
3511 return MATCH_YES;
3512 if (m == MATCH_NO)
3513 gfc_error ("Subroutine %qs at %L is INTRINSIC but is not compatible "
3514 "with an intrinsic", sym->name, &c->loc);
3515
3516 return MATCH_ERROR;
3517 }
3518
3519 return MATCH_NO;
3520
3521 found:
3522 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3523
3524 c->resolved_sym = sym;
3525 if (!pure_subroutine (sym, sym->name, &c->loc))
3526 return MATCH_ERROR;
3527
3528 return MATCH_YES;
3529 }
3530
3531
3532 static bool
3533 resolve_specific_s (gfc_code *c)
3534 {
3535 gfc_symbol *sym;
3536 match m;
3537
3538 sym = c->symtree->n.sym;
3539
3540 for (;;)
3541 {
3542 m = resolve_specific_s0 (c, sym);
3543 if (m == MATCH_YES)
3544 return true;
3545 if (m == MATCH_ERROR)
3546 return false;
3547
3548 if (sym->ns->parent == NULL)
3549 break;
3550
3551 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3552
3553 if (sym == NULL)
3554 break;
3555 }
3556
3557 sym = c->symtree->n.sym;
3558 gfc_error ("Unable to resolve the specific subroutine %qs at %L",
3559 sym->name, &c->loc);
3560
3561 return false;
3562 }
3563
3564
3565 /* Resolve a subroutine call not known to be generic nor specific. */
3566
3567 static bool
3568 resolve_unknown_s (gfc_code *c)
3569 {
3570 gfc_symbol *sym;
3571
3572 sym = c->symtree->n.sym;
3573
3574 if (sym->attr.dummy)
3575 {
3576 sym->attr.proc = PROC_DUMMY;
3577 goto found;
3578 }
3579
3580 /* See if we have an intrinsic function reference. */
3581
3582 if (gfc_is_intrinsic (sym, 1, c->loc))
3583 {
3584 if (gfc_intrinsic_sub_interface (c, 1) == MATCH_YES)
3585 return true;
3586 return false;
3587 }
3588
3589 /* The reference is to an external name. */
3590
3591 found:
3592 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3593
3594 c->resolved_sym = sym;
3595
3596 return pure_subroutine (sym, sym->name, &c->loc);
3597 }
3598
3599
3600 /* Resolve a subroutine call. Although it was tempting to use the same code
3601 for functions, subroutines and functions are stored differently and this
3602 makes things awkward. */
3603
3604 static bool
3605 resolve_call (gfc_code *c)
3606 {
3607 bool t;
3608 procedure_type ptype = PROC_INTRINSIC;
3609 gfc_symbol *csym, *sym;
3610 bool no_formal_args;
3611
3612 csym = c->symtree ? c->symtree->n.sym : NULL;
3613
3614 if (csym && csym->ts.type != BT_UNKNOWN)
3615 {
3616 gfc_error ("%qs at %L has a type, which is not consistent with "
3617 "the CALL at %L", csym->name, &csym->declared_at, &c->loc);
3618 return false;
3619 }
3620
3621 if (csym && gfc_current_ns->parent && csym->ns != gfc_current_ns)
3622 {
3623 gfc_symtree *st;
3624 gfc_find_sym_tree (c->symtree->name, gfc_current_ns, 1, &st);
3625 sym = st ? st->n.sym : NULL;
3626 if (sym && csym != sym
3627 && sym->ns == gfc_current_ns
3628 && sym->attr.flavor == FL_PROCEDURE
3629 && sym->attr.contained)
3630 {
3631 sym->refs++;
3632 if (csym->attr.generic)
3633 c->symtree->n.sym = sym;
3634 else
3635 c->symtree = st;
3636 csym = c->symtree->n.sym;
3637 }
3638 }
3639
3640 /* If this ia a deferred TBP, c->expr1 will be set. */
3641 if (!c->expr1 && csym)
3642 {
3643 if (csym->attr.abstract)
3644 {
3645 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3646 csym->name, &c->loc);
3647 return false;
3648 }
3649
3650 /* Subroutines without the RECURSIVE attribution are not allowed to
3651 call themselves. */
3652 if (is_illegal_recursion (csym, gfc_current_ns))
3653 {
3654 if (csym->attr.entry && csym->ns->entries)
3655 gfc_error ("ENTRY %qs at %L cannot be called recursively, "
3656 "as subroutine %qs is not RECURSIVE",
3657 csym->name, &c->loc, csym->ns->entries->sym->name);
3658 else
3659 gfc_error ("SUBROUTINE %qs at %L cannot be called recursively, "
3660 "as it is not RECURSIVE", csym->name, &c->loc);
3661
3662 t = false;
3663 }
3664 }
3665
3666 /* Switch off assumed size checking and do this again for certain kinds
3667 of procedure, once the procedure itself is resolved. */
3668 need_full_assumed_size++;
3669
3670 if (csym)
3671 ptype = csym->attr.proc;
3672
3673 no_formal_args = csym && is_external_proc (csym)
3674 && gfc_sym_get_dummy_args (csym) == NULL;
3675 if (!resolve_actual_arglist (c->ext.actual, ptype, no_formal_args))
3676 return false;
3677
3678 /* Resume assumed_size checking. */
3679 need_full_assumed_size--;
3680
3681 /* If external, check for usage. */
3682 if (csym && is_external_proc (csym))
3683 resolve_global_procedure (csym, &c->loc, 1);
3684
3685 t = true;
3686 if (c->resolved_sym == NULL)
3687 {
3688 c->resolved_isym = NULL;
3689 switch (procedure_kind (csym))
3690 {
3691 case PTYPE_GENERIC:
3692 t = resolve_generic_s (c);
3693 break;
3694
3695 case PTYPE_SPECIFIC:
3696 t = resolve_specific_s (c);
3697 break;
3698
3699 case PTYPE_UNKNOWN:
3700 t = resolve_unknown_s (c);
3701 break;
3702
3703 default:
3704 gfc_internal_error ("resolve_subroutine(): bad function type");
3705 }
3706 }
3707
3708 /* Some checks of elemental subroutine actual arguments. */
3709 if (!resolve_elemental_actual (NULL, c))
3710 return false;
3711
3712 if (!c->expr1)
3713 update_current_proc_array_outer_dependency (csym);
3714 else
3715 /* Typebound procedure: Assume the worst. */
3716 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3717
3718 return t;
3719 }
3720
3721
3722 /* Compare the shapes of two arrays that have non-NULL shapes. If both
3723 op1->shape and op2->shape are non-NULL return true if their shapes
3724 match. If both op1->shape and op2->shape are non-NULL return false
3725 if their shapes do not match. If either op1->shape or op2->shape is
3726 NULL, return true. */
3727
3728 static bool
3729 compare_shapes (gfc_expr *op1, gfc_expr *op2)
3730 {
3731 bool t;
3732 int i;
3733
3734 t = true;
3735
3736 if (op1->shape != NULL && op2->shape != NULL)
3737 {
3738 for (i = 0; i < op1->rank; i++)
3739 {
3740 if (mpz_cmp (op1->shape[i], op2->shape[i]) != 0)
3741 {
3742 gfc_error ("Shapes for operands at %L and %L are not conformable",
3743 &op1->where, &op2->where);
3744 t = false;
3745 break;
3746 }
3747 }
3748 }
3749
3750 return t;
3751 }
3752
3753 /* Convert a logical operator to the corresponding bitwise intrinsic call.
3754 For example A .AND. B becomes IAND(A, B). */
3755 static gfc_expr *
3756 logical_to_bitwise (gfc_expr *e)
3757 {
3758 gfc_expr *tmp, *op1, *op2;
3759 gfc_isym_id isym;
3760 gfc_actual_arglist *args = NULL;
3761
3762 gcc_assert (e->expr_type == EXPR_OP);
3763
3764 isym = GFC_ISYM_NONE;
3765 op1 = e->value.op.op1;
3766 op2 = e->value.op.op2;
3767
3768 switch (e->value.op.op)
3769 {
3770 case INTRINSIC_NOT:
3771 isym = GFC_ISYM_NOT;
3772 break;
3773 case INTRINSIC_AND:
3774 isym = GFC_ISYM_IAND;
3775 break;
3776 case INTRINSIC_OR:
3777 isym = GFC_ISYM_IOR;
3778 break;
3779 case INTRINSIC_NEQV:
3780 isym = GFC_ISYM_IEOR;
3781 break;
3782 case INTRINSIC_EQV:
3783 /* "Bitwise eqv" is just the complement of NEQV === IEOR.
3784 Change the old expression to NEQV, which will get replaced by IEOR,
3785 and wrap it in NOT. */
3786 tmp = gfc_copy_expr (e);
3787 tmp->value.op.op = INTRINSIC_NEQV;
3788 tmp = logical_to_bitwise (tmp);
3789 isym = GFC_ISYM_NOT;
3790 op1 = tmp;
3791 op2 = NULL;
3792 break;
3793 default:
3794 gfc_internal_error ("logical_to_bitwise(): Bad intrinsic");
3795 }
3796
3797 /* Inherit the original operation's operands as arguments. */
3798 args = gfc_get_actual_arglist ();
3799 args->expr = op1;
3800 if (op2)
3801 {
3802 args->next = gfc_get_actual_arglist ();
3803 args->next->expr = op2;
3804 }
3805
3806 /* Convert the expression to a function call. */
3807 e->expr_type = EXPR_FUNCTION;
3808 e->value.function.actual = args;
3809 e->value.function.isym = gfc_intrinsic_function_by_id (isym);
3810 e->value.function.name = e->value.function.isym->name;
3811 e->value.function.esym = NULL;
3812
3813 /* Make up a pre-resolved function call symtree if we need to. */
3814 if (!e->symtree || !e->symtree->n.sym)
3815 {
3816 gfc_symbol *sym;
3817 gfc_get_ha_sym_tree (e->value.function.isym->name, &e->symtree);
3818 sym = e->symtree->n.sym;
3819 sym->result = sym;
3820 sym->attr.flavor = FL_PROCEDURE;
3821 sym->attr.function = 1;
3822 sym->attr.elemental = 1;
3823 sym->attr.pure = 1;
3824 sym->attr.referenced = 1;
3825 gfc_intrinsic_symbol (sym);
3826 gfc_commit_symbol (sym);
3827 }
3828
3829 args->name = e->value.function.isym->formal->name;
3830 if (e->value.function.isym->formal->next)
3831 args->next->name = e->value.function.isym->formal->next->name;
3832
3833 return e;
3834 }
3835
3836 /* Recursively append candidate UOP to CANDIDATES. Store the number of
3837 candidates in CANDIDATES_LEN. */
3838 static void
3839 lookup_uop_fuzzy_find_candidates (gfc_symtree *uop,
3840 char **&candidates,
3841 size_t &candidates_len)
3842 {
3843 gfc_symtree *p;
3844
3845 if (uop == NULL)
3846 return;
3847
3848 /* Not sure how to properly filter here. Use all for a start.
3849 n.uop.op is NULL for empty interface operators (is that legal?) disregard
3850 these as i suppose they don't make terribly sense. */
3851
3852 if (uop->n.uop->op != NULL)
3853 vec_push (candidates, candidates_len, uop->name);
3854
3855 p = uop->left;
3856 if (p)
3857 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3858
3859 p = uop->right;
3860 if (p)
3861 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3862 }
3863
3864 /* Lookup user-operator OP fuzzily, taking names in UOP into account. */
3865
3866 static const char*
3867 lookup_uop_fuzzy (const char *op, gfc_symtree *uop)
3868 {
3869 char **candidates = NULL;
3870 size_t candidates_len = 0;
3871 lookup_uop_fuzzy_find_candidates (uop, candidates, candidates_len);
3872 return gfc_closest_fuzzy_match (op, candidates);
3873 }
3874
3875
3876 /* Callback finding an impure function as an operand to an .and. or
3877 .or. expression. Remember the last function warned about to
3878 avoid double warnings when recursing. */
3879
3880 static int
3881 impure_function_callback (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
3882 void *data)
3883 {
3884 gfc_expr *f = *e;
3885 const char *name;
3886 static gfc_expr *last = NULL;
3887 bool *found = (bool *) data;
3888
3889 if (f->expr_type == EXPR_FUNCTION)
3890 {
3891 *found = 1;
3892 if (f != last && !gfc_pure_function (f, &name)
3893 && !gfc_implicit_pure_function (f))
3894 {
3895 if (name)
3896 gfc_warning (OPT_Wfunction_elimination,
3897 "Impure function %qs at %L might not be evaluated",
3898 name, &f->where);
3899 else
3900 gfc_warning (OPT_Wfunction_elimination,
3901 "Impure function at %L might not be evaluated",
3902 &f->where);
3903 }
3904 last = f;
3905 }
3906
3907 return 0;
3908 }
3909
3910 /* Return true if TYPE is character based, false otherwise. */
3911
3912 static int
3913 is_character_based (bt type)
3914 {
3915 return type == BT_CHARACTER || type == BT_HOLLERITH;
3916 }
3917
3918
3919 /* If expression is a hollerith, convert it to character and issue a warning
3920 for the conversion. */
3921
3922 static void
3923 convert_hollerith_to_character (gfc_expr *e)
3924 {
3925 if (e->ts.type == BT_HOLLERITH)
3926 {
3927 gfc_typespec t;
3928 gfc_clear_ts (&t);
3929 t.type = BT_CHARACTER;
3930 t.kind = e->ts.kind;
3931 gfc_convert_type_warn (e, &t, 2, 1);
3932 }
3933 }
3934
3935 /* Convert to numeric and issue a warning for the conversion. */
3936
3937 static void
3938 convert_to_numeric (gfc_expr *a, gfc_expr *b)
3939 {
3940 gfc_typespec t;
3941 gfc_clear_ts (&t);
3942 t.type = b->ts.type;
3943 t.kind = b->ts.kind;
3944 gfc_convert_type_warn (a, &t, 2, 1);
3945 }
3946
3947 /* Resolve an operator expression node. This can involve replacing the
3948 operation with a user defined function call. */
3949
3950 static bool
3951 resolve_operator (gfc_expr *e)
3952 {
3953 gfc_expr *op1, *op2;
3954 char msg[200];
3955 bool dual_locus_error;
3956 bool t = true;
3957
3958 /* Resolve all subnodes-- give them types. */
3959
3960 switch (e->value.op.op)
3961 {
3962 default:
3963 if (!gfc_resolve_expr (e->value.op.op2))
3964 return false;
3965
3966 /* Fall through. */
3967
3968 case INTRINSIC_NOT:
3969 case INTRINSIC_UPLUS:
3970 case INTRINSIC_UMINUS:
3971 case INTRINSIC_PARENTHESES:
3972 if (!gfc_resolve_expr (e->value.op.op1))
3973 return false;
3974 if (e->value.op.op1
3975 && e->value.op.op1->ts.type == BT_BOZ && !e->value.op.op2)
3976 {
3977 gfc_error ("BOZ literal constant at %L cannot be an operand of "
3978 "unary operator %qs", &e->value.op.op1->where,
3979 gfc_op2string (e->value.op.op));
3980 return false;
3981 }
3982 break;
3983 }
3984
3985 /* Typecheck the new node. */
3986
3987 op1 = e->value.op.op1;
3988 op2 = e->value.op.op2;
3989 dual_locus_error = false;
3990
3991 /* op1 and op2 cannot both be BOZ. */
3992 if (op1 && op1->ts.type == BT_BOZ
3993 && op2 && op2->ts.type == BT_BOZ)
3994 {
3995 gfc_error ("Operands at %L and %L cannot appear as operands of "
3996 "binary operator %qs", &op1->where, &op2->where,
3997 gfc_op2string (e->value.op.op));
3998 return false;
3999 }
4000
4001 if ((op1 && op1->expr_type == EXPR_NULL)
4002 || (op2 && op2->expr_type == EXPR_NULL))
4003 {
4004 sprintf (msg, _("Invalid context for NULL() pointer at %%L"));
4005 goto bad_op;
4006 }
4007
4008 switch (e->value.op.op)
4009 {
4010 case INTRINSIC_UPLUS:
4011 case INTRINSIC_UMINUS:
4012 if (op1->ts.type == BT_INTEGER
4013 || op1->ts.type == BT_REAL
4014 || op1->ts.type == BT_COMPLEX)
4015 {
4016 e->ts = op1->ts;
4017 break;
4018 }
4019
4020 sprintf (msg, _("Operand of unary numeric operator %%<%s%%> at %%L is %s"),
4021 gfc_op2string (e->value.op.op), gfc_typename (e));
4022 goto bad_op;
4023
4024 case INTRINSIC_PLUS:
4025 case INTRINSIC_MINUS:
4026 case INTRINSIC_TIMES:
4027 case INTRINSIC_DIVIDE:
4028 case INTRINSIC_POWER:
4029 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
4030 {
4031 gfc_type_convert_binary (e, 1);
4032 break;
4033 }
4034
4035 if (op1->ts.type == BT_DERIVED || op2->ts.type == BT_DERIVED)
4036 sprintf (msg,
4037 _("Unexpected derived-type entities in binary intrinsic "
4038 "numeric operator %%<%s%%> at %%L"),
4039 gfc_op2string (e->value.op.op));
4040 else
4041 sprintf (msg,
4042 _("Operands of binary numeric operator %%<%s%%> at %%L are %s/%s"),
4043 gfc_op2string (e->value.op.op), gfc_typename (op1),
4044 gfc_typename (op2));
4045 goto bad_op;
4046
4047 case INTRINSIC_CONCAT:
4048 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
4049 && op1->ts.kind == op2->ts.kind)
4050 {
4051 e->ts.type = BT_CHARACTER;
4052 e->ts.kind = op1->ts.kind;
4053 break;
4054 }
4055
4056 sprintf (msg,
4057 _("Operands of string concatenation operator at %%L are %s/%s"),
4058 gfc_typename (op1), gfc_typename (op2));
4059 goto bad_op;
4060
4061 case INTRINSIC_AND:
4062 case INTRINSIC_OR:
4063 case INTRINSIC_EQV:
4064 case INTRINSIC_NEQV:
4065 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
4066 {
4067 e->ts.type = BT_LOGICAL;
4068 e->ts.kind = gfc_kind_max (op1, op2);
4069 if (op1->ts.kind < e->ts.kind)
4070 gfc_convert_type (op1, &e->ts, 2);
4071 else if (op2->ts.kind < e->ts.kind)
4072 gfc_convert_type (op2, &e->ts, 2);
4073
4074 if (flag_frontend_optimize &&
4075 (e->value.op.op == INTRINSIC_AND || e->value.op.op == INTRINSIC_OR))
4076 {
4077 /* Warn about short-circuiting
4078 with impure function as second operand. */
4079 bool op2_f = false;
4080 gfc_expr_walker (&op2, impure_function_callback, &op2_f);
4081 }
4082 break;
4083 }
4084
4085 /* Logical ops on integers become bitwise ops with -fdec. */
4086 else if (flag_dec
4087 && (op1->ts.type == BT_INTEGER || op2->ts.type == BT_INTEGER))
4088 {
4089 e->ts.type = BT_INTEGER;
4090 e->ts.kind = gfc_kind_max (op1, op2);
4091 if (op1->ts.type != e->ts.type || op1->ts.kind != e->ts.kind)
4092 gfc_convert_type (op1, &e->ts, 1);
4093 if (op2->ts.type != e->ts.type || op2->ts.kind != e->ts.kind)
4094 gfc_convert_type (op2, &e->ts, 1);
4095 e = logical_to_bitwise (e);
4096 goto simplify_op;
4097 }
4098
4099 sprintf (msg, _("Operands of logical operator %%<%s%%> at %%L are %s/%s"),
4100 gfc_op2string (e->value.op.op), gfc_typename (op1),
4101 gfc_typename (op2));
4102
4103 goto bad_op;
4104
4105 case INTRINSIC_NOT:
4106 /* Logical ops on integers become bitwise ops with -fdec. */
4107 if (flag_dec && op1->ts.type == BT_INTEGER)
4108 {
4109 e->ts.type = BT_INTEGER;
4110 e->ts.kind = op1->ts.kind;
4111 e = logical_to_bitwise (e);
4112 goto simplify_op;
4113 }
4114
4115 if (op1->ts.type == BT_LOGICAL)
4116 {
4117 e->ts.type = BT_LOGICAL;
4118 e->ts.kind = op1->ts.kind;
4119 break;
4120 }
4121
4122 sprintf (msg, _("Operand of .not. operator at %%L is %s"),
4123 gfc_typename (op1));
4124 goto bad_op;
4125
4126 case INTRINSIC_GT:
4127 case INTRINSIC_GT_OS:
4128 case INTRINSIC_GE:
4129 case INTRINSIC_GE_OS:
4130 case INTRINSIC_LT:
4131 case INTRINSIC_LT_OS:
4132 case INTRINSIC_LE:
4133 case INTRINSIC_LE_OS:
4134 if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
4135 {
4136 strcpy (msg, _("COMPLEX quantities cannot be compared at %L"));
4137 goto bad_op;
4138 }
4139
4140 /* Fall through. */
4141
4142 case INTRINSIC_EQ:
4143 case INTRINSIC_EQ_OS:
4144 case INTRINSIC_NE:
4145 case INTRINSIC_NE_OS:
4146
4147 if (flag_dec
4148 && is_character_based (op1->ts.type)
4149 && is_character_based (op2->ts.type))
4150 {
4151 convert_hollerith_to_character (op1);
4152 convert_hollerith_to_character (op2);
4153 }
4154
4155 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
4156 && op1->ts.kind == op2->ts.kind)
4157 {
4158 e->ts.type = BT_LOGICAL;
4159 e->ts.kind = gfc_default_logical_kind;
4160 break;
4161 }
4162
4163 /* If op1 is BOZ, then op2 is not!. Try to convert to type of op2. */
4164 if (op1->ts.type == BT_BOZ)
4165 {
4166 if (gfc_invalid_boz ("BOZ literal constant near %L cannot appear as "
4167 "an operand of a relational operator",
4168 &op1->where))
4169 return false;
4170
4171 if (op2->ts.type == BT_INTEGER && !gfc_boz2int (op1, op2->ts.kind))
4172 return false;
4173
4174 if (op2->ts.type == BT_REAL && !gfc_boz2real (op1, op2->ts.kind))
4175 return false;
4176 }
4177
4178 /* If op2 is BOZ, then op1 is not!. Try to convert to type of op2. */
4179 if (op2->ts.type == BT_BOZ)
4180 {
4181 if (gfc_invalid_boz ("BOZ literal constant near %L cannot appear as "
4182 "an operand of a relational operator",
4183 &op2->where))
4184 return false;
4185
4186 if (op1->ts.type == BT_INTEGER && !gfc_boz2int (op2, op1->ts.kind))
4187 return false;
4188
4189 if (op1->ts.type == BT_REAL && !gfc_boz2real (op2, op1->ts.kind))
4190 return false;
4191 }
4192 if (flag_dec
4193 && op1->ts.type == BT_HOLLERITH && gfc_numeric_ts (&op2->ts))
4194 convert_to_numeric (op1, op2);
4195
4196 if (flag_dec
4197 && gfc_numeric_ts (&op1->ts) && op2->ts.type == BT_HOLLERITH)
4198 convert_to_numeric (op2, op1);
4199
4200 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
4201 {
4202 gfc_type_convert_binary (e, 1);
4203
4204 e->ts.type = BT_LOGICAL;
4205 e->ts.kind = gfc_default_logical_kind;
4206
4207 if (warn_compare_reals)
4208 {
4209 gfc_intrinsic_op op = e->value.op.op;
4210
4211 /* Type conversion has made sure that the types of op1 and op2
4212 agree, so it is only necessary to check the first one. */
4213 if ((op1->ts.type == BT_REAL || op1->ts.type == BT_COMPLEX)
4214 && (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS
4215 || op == INTRINSIC_NE || op == INTRINSIC_NE_OS))
4216 {
4217 const char *msg;
4218
4219 if (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS)
4220 msg = "Equality comparison for %s at %L";
4221 else
4222 msg = "Inequality comparison for %s at %L";
4223
4224 gfc_warning (OPT_Wcompare_reals, msg,
4225 gfc_typename (op1), &op1->where);
4226 }
4227 }
4228
4229 break;
4230 }
4231
4232 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
4233 sprintf (msg,
4234 _("Logicals at %%L must be compared with %s instead of %s"),
4235 (e->value.op.op == INTRINSIC_EQ
4236 || e->value.op.op == INTRINSIC_EQ_OS)
4237 ? ".eqv." : ".neqv.", gfc_op2string (e->value.op.op));
4238 else
4239 sprintf (msg,
4240 _("Operands of comparison operator %%<%s%%> at %%L are %s/%s"),
4241 gfc_op2string (e->value.op.op), gfc_typename (op1),
4242 gfc_typename (op2));
4243
4244 goto bad_op;
4245
4246 case INTRINSIC_USER:
4247 if (e->value.op.uop->op == NULL)
4248 {
4249 const char *name = e->value.op.uop->name;
4250 const char *guessed;
4251 guessed = lookup_uop_fuzzy (name, e->value.op.uop->ns->uop_root);
4252 if (guessed)
4253 sprintf (msg, _("Unknown operator %%<%s%%> at %%L; did you mean '%s'?"),
4254 name, guessed);
4255 else
4256 sprintf (msg, _("Unknown operator %%<%s%%> at %%L"), name);
4257 }
4258 else if (op2 == NULL)
4259 sprintf (msg, _("Operand of user operator %%<%s%%> at %%L is %s"),
4260 e->value.op.uop->name, gfc_typename (op1));
4261 else
4262 {
4263 sprintf (msg, _("Operands of user operator %%<%s%%> at %%L are %s/%s"),
4264 e->value.op.uop->name, gfc_typename (op1),
4265 gfc_typename (op2));
4266 e->value.op.uop->op->sym->attr.referenced = 1;
4267 }
4268
4269 goto bad_op;
4270
4271 case INTRINSIC_PARENTHESES:
4272 e->ts = op1->ts;
4273 if (e->ts.type == BT_CHARACTER)
4274 e->ts.u.cl = op1->ts.u.cl;
4275 break;
4276
4277 default:
4278 gfc_internal_error ("resolve_operator(): Bad intrinsic");
4279 }
4280
4281 /* Deal with arrayness of an operand through an operator. */
4282
4283 switch (e->value.op.op)
4284 {
4285 case INTRINSIC_PLUS:
4286 case INTRINSIC_MINUS:
4287 case INTRINSIC_TIMES:
4288 case INTRINSIC_DIVIDE:
4289 case INTRINSIC_POWER:
4290 case INTRINSIC_CONCAT:
4291 case INTRINSIC_AND:
4292 case INTRINSIC_OR:
4293 case INTRINSIC_EQV:
4294 case INTRINSIC_NEQV:
4295 case INTRINSIC_EQ:
4296 case INTRINSIC_EQ_OS:
4297 case INTRINSIC_NE:
4298 case INTRINSIC_NE_OS:
4299 case INTRINSIC_GT:
4300 case INTRINSIC_GT_OS:
4301 case INTRINSIC_GE:
4302 case INTRINSIC_GE_OS:
4303 case INTRINSIC_LT:
4304 case INTRINSIC_LT_OS:
4305 case INTRINSIC_LE:
4306 case INTRINSIC_LE_OS:
4307
4308 if (op1->rank == 0 && op2->rank == 0)
4309 e->rank = 0;
4310
4311 if (op1->rank == 0 && op2->rank != 0)
4312 {
4313 e->rank = op2->rank;
4314
4315 if (e->shape == NULL)
4316 e->shape = gfc_copy_shape (op2->shape, op2->rank);
4317 }
4318
4319 if (op1->rank != 0 && op2->rank == 0)
4320 {
4321 e->rank = op1->rank;
4322
4323 if (e->shape == NULL)
4324 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4325 }
4326
4327 if (op1->rank != 0 && op2->rank != 0)
4328 {
4329 if (op1->rank == op2->rank)
4330 {
4331 e->rank = op1->rank;
4332 if (e->shape == NULL)
4333 {
4334 t = compare_shapes (op1, op2);
4335 if (!t)
4336 e->shape = NULL;
4337 else
4338 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4339 }
4340 }
4341 else
4342 {
4343 /* Allow higher level expressions to work. */
4344 e->rank = 0;
4345
4346 /* Try user-defined operators, and otherwise throw an error. */
4347 dual_locus_error = true;
4348 sprintf (msg,
4349 _("Inconsistent ranks for operator at %%L and %%L"));
4350 goto bad_op;
4351 }
4352 }
4353
4354 break;
4355
4356 case INTRINSIC_PARENTHESES:
4357 case INTRINSIC_NOT:
4358 case INTRINSIC_UPLUS:
4359 case INTRINSIC_UMINUS:
4360 /* Simply copy arrayness attribute */
4361 e->rank = op1->rank;
4362
4363 if (e->shape == NULL)
4364 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4365
4366 break;
4367
4368 default:
4369 break;
4370 }
4371
4372 simplify_op:
4373
4374 /* Attempt to simplify the expression. */
4375 if (t)
4376 {
4377 t = gfc_simplify_expr (e, 0);
4378 /* Some calls do not succeed in simplification and return false
4379 even though there is no error; e.g. variable references to
4380 PARAMETER arrays. */
4381 if (!gfc_is_constant_expr (e))
4382 t = true;
4383 }
4384 return t;
4385
4386 bad_op:
4387
4388 {
4389 match m = gfc_extend_expr (e);
4390 if (m == MATCH_YES)
4391 return true;
4392 if (m == MATCH_ERROR)
4393 return false;
4394 }
4395
4396 if (dual_locus_error)
4397 gfc_error (msg, &op1->where, &op2->where);
4398 else
4399 gfc_error (msg, &e->where);
4400
4401 return false;
4402 }
4403
4404
4405 /************** Array resolution subroutines **************/
4406
4407 enum compare_result
4408 { CMP_LT, CMP_EQ, CMP_GT, CMP_UNKNOWN };
4409
4410 /* Compare two integer expressions. */
4411
4412 static compare_result
4413 compare_bound (gfc_expr *a, gfc_expr *b)
4414 {
4415 int i;
4416
4417 if (a == NULL || a->expr_type != EXPR_CONSTANT
4418 || b == NULL || b->expr_type != EXPR_CONSTANT)
4419 return CMP_UNKNOWN;
4420
4421 /* If either of the types isn't INTEGER, we must have
4422 raised an error earlier. */
4423
4424 if (a->ts.type != BT_INTEGER || b->ts.type != BT_INTEGER)
4425 return CMP_UNKNOWN;
4426
4427 i = mpz_cmp (a->value.integer, b->value.integer);
4428
4429 if (i < 0)
4430 return CMP_LT;
4431 if (i > 0)
4432 return CMP_GT;
4433 return CMP_EQ;
4434 }
4435
4436
4437 /* Compare an integer expression with an integer. */
4438
4439 static compare_result
4440 compare_bound_int (gfc_expr *a, int b)
4441 {
4442 int i;
4443
4444 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4445 return CMP_UNKNOWN;
4446
4447 if (a->ts.type != BT_INTEGER)
4448 gfc_internal_error ("compare_bound_int(): Bad expression");
4449
4450 i = mpz_cmp_si (a->value.integer, b);
4451
4452 if (i < 0)
4453 return CMP_LT;
4454 if (i > 0)
4455 return CMP_GT;
4456 return CMP_EQ;
4457 }
4458
4459
4460 /* Compare an integer expression with a mpz_t. */
4461
4462 static compare_result
4463 compare_bound_mpz_t (gfc_expr *a, mpz_t b)
4464 {
4465 int i;
4466
4467 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4468 return CMP_UNKNOWN;
4469
4470 if (a->ts.type != BT_INTEGER)
4471 gfc_internal_error ("compare_bound_int(): Bad expression");
4472
4473 i = mpz_cmp (a->value.integer, b);
4474
4475 if (i < 0)
4476 return CMP_LT;
4477 if (i > 0)
4478 return CMP_GT;
4479 return CMP_EQ;
4480 }
4481
4482
4483 /* Compute the last value of a sequence given by a triplet.
4484 Return 0 if it wasn't able to compute the last value, or if the
4485 sequence if empty, and 1 otherwise. */
4486
4487 static int
4488 compute_last_value_for_triplet (gfc_expr *start, gfc_expr *end,
4489 gfc_expr *stride, mpz_t last)
4490 {
4491 mpz_t rem;
4492
4493 if (start == NULL || start->expr_type != EXPR_CONSTANT
4494 || end == NULL || end->expr_type != EXPR_CONSTANT
4495 || (stride != NULL && stride->expr_type != EXPR_CONSTANT))
4496 return 0;
4497
4498 if (start->ts.type != BT_INTEGER || end->ts.type != BT_INTEGER
4499 || (stride != NULL && stride->ts.type != BT_INTEGER))
4500 return 0;
4501
4502 if (stride == NULL || compare_bound_int (stride, 1) == CMP_EQ)
4503 {
4504 if (compare_bound (start, end) == CMP_GT)
4505 return 0;
4506 mpz_set (last, end->value.integer);
4507 return 1;
4508 }
4509
4510 if (compare_bound_int (stride, 0) == CMP_GT)
4511 {
4512 /* Stride is positive */
4513 if (mpz_cmp (start->value.integer, end->value.integer) > 0)
4514 return 0;
4515 }
4516 else
4517 {
4518 /* Stride is negative */
4519 if (mpz_cmp (start->value.integer, end->value.integer) < 0)
4520 return 0;
4521 }
4522
4523 mpz_init (rem);
4524 mpz_sub (rem, end->value.integer, start->value.integer);
4525 mpz_tdiv_r (rem, rem, stride->value.integer);
4526 mpz_sub (last, end->value.integer, rem);
4527 mpz_clear (rem);
4528
4529 return 1;
4530 }
4531
4532
4533 /* Compare a single dimension of an array reference to the array
4534 specification. */
4535
4536 static bool
4537 check_dimension (int i, gfc_array_ref *ar, gfc_array_spec *as)
4538 {
4539 mpz_t last_value;
4540
4541 if (ar->dimen_type[i] == DIMEN_STAR)
4542 {
4543 gcc_assert (ar->stride[i] == NULL);
4544 /* This implies [*] as [*:] and [*:3] are not possible. */
4545 if (ar->start[i] == NULL)
4546 {
4547 gcc_assert (ar->end[i] == NULL);
4548 return true;
4549 }
4550 }
4551
4552 /* Given start, end and stride values, calculate the minimum and
4553 maximum referenced indexes. */
4554
4555 switch (ar->dimen_type[i])
4556 {
4557 case DIMEN_VECTOR:
4558 case DIMEN_THIS_IMAGE:
4559 break;
4560
4561 case DIMEN_STAR:
4562 case DIMEN_ELEMENT:
4563 if (compare_bound (ar->start[i], as->lower[i]) == CMP_LT)
4564 {
4565 if (i < as->rank)
4566 gfc_warning (0, "Array reference at %L is out of bounds "
4567 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4568 mpz_get_si (ar->start[i]->value.integer),
4569 mpz_get_si (as->lower[i]->value.integer), i+1);
4570 else
4571 gfc_warning (0, "Array reference at %L is out of bounds "
4572 "(%ld < %ld) in codimension %d", &ar->c_where[i],
4573 mpz_get_si (ar->start[i]->value.integer),
4574 mpz_get_si (as->lower[i]->value.integer),
4575 i + 1 - as->rank);
4576 return true;
4577 }
4578 if (compare_bound (ar->start[i], as->upper[i]) == CMP_GT)
4579 {
4580 if (i < as->rank)
4581 gfc_warning (0, "Array reference at %L is out of bounds "
4582 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4583 mpz_get_si (ar->start[i]->value.integer),
4584 mpz_get_si (as->upper[i]->value.integer), i+1);
4585 else
4586 gfc_warning (0, "Array reference at %L is out of bounds "
4587 "(%ld > %ld) in codimension %d", &ar->c_where[i],
4588 mpz_get_si (ar->start[i]->value.integer),
4589 mpz_get_si (as->upper[i]->value.integer),
4590 i + 1 - as->rank);
4591 return true;
4592 }
4593
4594 break;
4595
4596 case DIMEN_RANGE:
4597 {
4598 #define AR_START (ar->start[i] ? ar->start[i] : as->lower[i])
4599 #define AR_END (ar->end[i] ? ar->end[i] : as->upper[i])
4600
4601 compare_result comp_start_end = compare_bound (AR_START, AR_END);
4602
4603 /* Check for zero stride, which is not allowed. */
4604 if (compare_bound_int (ar->stride[i], 0) == CMP_EQ)
4605 {
4606 gfc_error ("Illegal stride of zero at %L", &ar->c_where[i]);
4607 return false;
4608 }
4609
4610 /* if start == len || (stride > 0 && start < len)
4611 || (stride < 0 && start > len),
4612 then the array section contains at least one element. In this
4613 case, there is an out-of-bounds access if
4614 (start < lower || start > upper). */
4615 if (compare_bound (AR_START, AR_END) == CMP_EQ
4616 || ((compare_bound_int (ar->stride[i], 0) == CMP_GT
4617 || ar->stride[i] == NULL) && comp_start_end == CMP_LT)
4618 || (compare_bound_int (ar->stride[i], 0) == CMP_LT
4619 && comp_start_end == CMP_GT))
4620 {
4621 if (compare_bound (AR_START, as->lower[i]) == CMP_LT)
4622 {
4623 gfc_warning (0, "Lower array reference at %L is out of bounds "
4624 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4625 mpz_get_si (AR_START->value.integer),
4626 mpz_get_si (as->lower[i]->value.integer), i+1);
4627 return true;
4628 }
4629 if (compare_bound (AR_START, as->upper[i]) == CMP_GT)
4630 {
4631 gfc_warning (0, "Lower array reference at %L is out of bounds "
4632 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4633 mpz_get_si (AR_START->value.integer),
4634 mpz_get_si (as->upper[i]->value.integer), i+1);
4635 return true;
4636 }
4637 }
4638
4639 /* If we can compute the highest index of the array section,
4640 then it also has to be between lower and upper. */
4641 mpz_init (last_value);
4642 if (compute_last_value_for_triplet (AR_START, AR_END, ar->stride[i],
4643 last_value))
4644 {
4645 if (compare_bound_mpz_t (as->lower[i], last_value) == CMP_GT)
4646 {
4647 gfc_warning (0, "Upper array reference at %L is out of bounds "
4648 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4649 mpz_get_si (last_value),
4650 mpz_get_si (as->lower[i]->value.integer), i+1);
4651 mpz_clear (last_value);
4652 return true;
4653 }
4654 if (compare_bound_mpz_t (as->upper[i], last_value) == CMP_LT)
4655 {
4656 gfc_warning (0, "Upper array reference at %L is out of bounds "
4657 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4658 mpz_get_si (last_value),
4659 mpz_get_si (as->upper[i]->value.integer), i+1);
4660 mpz_clear (last_value);
4661 return true;
4662 }
4663 }
4664 mpz_clear (last_value);
4665
4666 #undef AR_START
4667 #undef AR_END
4668 }
4669 break;
4670
4671 default:
4672 gfc_internal_error ("check_dimension(): Bad array reference");
4673 }
4674
4675 return true;
4676 }
4677
4678
4679 /* Compare an array reference with an array specification. */
4680
4681 static bool
4682 compare_spec_to_ref (gfc_array_ref *ar)
4683 {
4684 gfc_array_spec *as;
4685 int i;
4686
4687 as = ar->as;
4688 i = as->rank - 1;
4689 /* TODO: Full array sections are only allowed as actual parameters. */
4690 if (as->type == AS_ASSUMED_SIZE
4691 && (/*ar->type == AR_FULL
4692 ||*/ (ar->type == AR_SECTION
4693 && ar->dimen_type[i] == DIMEN_RANGE && ar->end[i] == NULL)))
4694 {
4695 gfc_error ("Rightmost upper bound of assumed size array section "
4696 "not specified at %L", &ar->where);
4697 return false;
4698 }
4699
4700 if (ar->type == AR_FULL)
4701 return true;
4702
4703 if (as->rank != ar->dimen)
4704 {
4705 gfc_error ("Rank mismatch in array reference at %L (%d/%d)",
4706 &ar->where, ar->dimen, as->rank);
4707 return false;
4708 }
4709
4710 /* ar->codimen == 0 is a local array. */
4711 if (as->corank != ar->codimen && ar->codimen != 0)
4712 {
4713 gfc_error ("Coindex rank mismatch in array reference at %L (%d/%d)",
4714 &ar->where, ar->codimen, as->corank);
4715 return false;
4716 }
4717
4718 for (i = 0; i < as->rank; i++)
4719 if (!check_dimension (i, ar, as))
4720 return false;
4721
4722 /* Local access has no coarray spec. */
4723 if (ar->codimen != 0)
4724 for (i = as->rank; i < as->rank + as->corank; i++)
4725 {
4726 if (ar->dimen_type[i] != DIMEN_ELEMENT && !ar->in_allocate
4727 && ar->dimen_type[i] != DIMEN_THIS_IMAGE)
4728 {
4729 gfc_error ("Coindex of codimension %d must be a scalar at %L",
4730 i + 1 - as->rank, &ar->where);
4731 return false;
4732 }
4733 if (!check_dimension (i, ar, as))
4734 return false;
4735 }
4736
4737 return true;
4738 }
4739
4740
4741 /* Resolve one part of an array index. */
4742
4743 static bool
4744 gfc_resolve_index_1 (gfc_expr *index, int check_scalar,
4745 int force_index_integer_kind)
4746 {
4747 gfc_typespec ts;
4748
4749 if (index == NULL)
4750 return true;
4751
4752 if (!gfc_resolve_expr (index))
4753 return false;
4754
4755 if (check_scalar && index->rank != 0)
4756 {
4757 gfc_error ("Array index at %L must be scalar", &index->where);
4758 return false;
4759 }
4760
4761 if (index->ts.type != BT_INTEGER && index->ts.type != BT_REAL)
4762 {
4763 gfc_error ("Array index at %L must be of INTEGER type, found %s",
4764 &index->where, gfc_basic_typename (index->ts.type));
4765 return false;
4766 }
4767
4768 if (index->ts.type == BT_REAL)
4769 if (!gfc_notify_std (GFC_STD_LEGACY, "REAL array index at %L",
4770 &index->where))
4771 return false;
4772
4773 if ((index->ts.kind != gfc_index_integer_kind
4774 && force_index_integer_kind)
4775 || index->ts.type != BT_INTEGER)
4776 {
4777 gfc_clear_ts (&ts);
4778 ts.type = BT_INTEGER;
4779 ts.kind = gfc_index_integer_kind;
4780
4781 gfc_convert_type_warn (index, &ts, 2, 0);
4782 }
4783
4784 return true;
4785 }
4786
4787 /* Resolve one part of an array index. */
4788
4789 bool
4790 gfc_resolve_index (gfc_expr *index, int check_scalar)
4791 {
4792 return gfc_resolve_index_1 (index, check_scalar, 1);
4793 }
4794
4795 /* Resolve a dim argument to an intrinsic function. */
4796
4797 bool
4798 gfc_resolve_dim_arg (gfc_expr *dim)
4799 {
4800 if (dim == NULL)
4801 return true;
4802
4803 if (!gfc_resolve_expr (dim))
4804 return false;
4805
4806 if (dim->rank != 0)
4807 {
4808 gfc_error ("Argument dim at %L must be scalar", &dim->where);
4809 return false;
4810
4811 }
4812
4813 if (dim->ts.type != BT_INTEGER)
4814 {
4815 gfc_error ("Argument dim at %L must be of INTEGER type", &dim->where);
4816 return false;
4817 }
4818
4819 if (dim->ts.kind != gfc_index_integer_kind)
4820 {
4821 gfc_typespec ts;
4822
4823 gfc_clear_ts (&ts);
4824 ts.type = BT_INTEGER;
4825 ts.kind = gfc_index_integer_kind;
4826
4827 gfc_convert_type_warn (dim, &ts, 2, 0);
4828 }
4829
4830 return true;
4831 }
4832
4833 /* Given an expression that contains array references, update those array
4834 references to point to the right array specifications. While this is
4835 filled in during matching, this information is difficult to save and load
4836 in a module, so we take care of it here.
4837
4838 The idea here is that the original array reference comes from the
4839 base symbol. We traverse the list of reference structures, setting
4840 the stored reference to references. Component references can
4841 provide an additional array specification. */
4842
4843 static void
4844 find_array_spec (gfc_expr *e)
4845 {
4846 gfc_array_spec *as;
4847 gfc_component *c;
4848 gfc_ref *ref;
4849 bool class_as = false;
4850
4851 if (e->symtree->n.sym->ts.type == BT_CLASS)
4852 {
4853 as = CLASS_DATA (e->symtree->n.sym)->as;
4854 class_as = true;
4855 }
4856 else
4857 as = e->symtree->n.sym->as;
4858
4859 for (ref = e->ref; ref; ref = ref->next)
4860 switch (ref->type)
4861 {
4862 case REF_ARRAY:
4863 if (as == NULL)
4864 gfc_internal_error ("find_array_spec(): Missing spec");
4865
4866 ref->u.ar.as = as;
4867 as = NULL;
4868 break;
4869
4870 case REF_COMPONENT:
4871 c = ref->u.c.component;
4872 if (c->attr.dimension)
4873 {
4874 if (as != NULL && !(class_as && as == c->as))
4875 gfc_internal_error ("find_array_spec(): unused as(1)");
4876 as = c->as;
4877 }
4878
4879 break;
4880
4881 case REF_SUBSTRING:
4882 case REF_INQUIRY:
4883 break;
4884 }
4885
4886 if (as != NULL)
4887 gfc_internal_error ("find_array_spec(): unused as(2)");
4888 }
4889
4890
4891 /* Resolve an array reference. */
4892
4893 static bool
4894 resolve_array_ref (gfc_array_ref *ar)
4895 {
4896 int i, check_scalar;
4897 gfc_expr *e;
4898
4899 for (i = 0; i < ar->dimen + ar->codimen; i++)
4900 {
4901 check_scalar = ar->dimen_type[i] == DIMEN_RANGE;
4902
4903 /* Do not force gfc_index_integer_kind for the start. We can
4904 do fine with any integer kind. This avoids temporary arrays
4905 created for indexing with a vector. */
4906 if (!gfc_resolve_index_1 (ar->start[i], check_scalar, 0))
4907 return false;
4908 if (!gfc_resolve_index (ar->end[i], check_scalar))
4909 return false;
4910 if (!gfc_resolve_index (ar->stride[i], check_scalar))
4911 return false;
4912
4913 e = ar->start[i];
4914
4915 if (ar->dimen_type[i] == DIMEN_UNKNOWN)
4916 switch (e->rank)
4917 {
4918 case 0:
4919 ar->dimen_type[i] = DIMEN_ELEMENT;
4920 break;
4921
4922 case 1:
4923 ar->dimen_type[i] = DIMEN_VECTOR;
4924 if (e->expr_type == EXPR_VARIABLE
4925 && e->symtree->n.sym->ts.type == BT_DERIVED)
4926 ar->start[i] = gfc_get_parentheses (e);
4927 break;
4928
4929 default:
4930 gfc_error ("Array index at %L is an array of rank %d",
4931 &ar->c_where[i], e->rank);
4932 return false;
4933 }
4934
4935 /* Fill in the upper bound, which may be lower than the
4936 specified one for something like a(2:10:5), which is
4937 identical to a(2:7:5). Only relevant for strides not equal
4938 to one. Don't try a division by zero. */
4939 if (ar->dimen_type[i] == DIMEN_RANGE
4940 && ar->stride[i] != NULL && ar->stride[i]->expr_type == EXPR_CONSTANT
4941 && mpz_cmp_si (ar->stride[i]->value.integer, 1L) != 0
4942 && mpz_cmp_si (ar->stride[i]->value.integer, 0L) != 0)
4943 {
4944 mpz_t size, end;
4945
4946 if (gfc_ref_dimen_size (ar, i, &size, &end))
4947 {
4948 if (ar->end[i] == NULL)
4949 {
4950 ar->end[i] =
4951 gfc_get_constant_expr (BT_INTEGER, gfc_index_integer_kind,
4952 &ar->where);
4953 mpz_set (ar->end[i]->value.integer, end);
4954 }
4955 else if (ar->end[i]->ts.type == BT_INTEGER
4956 && ar->end[i]->expr_type == EXPR_CONSTANT)
4957 {
4958 mpz_set (ar->end[i]->value.integer, end);
4959 }
4960 else
4961 gcc_unreachable ();
4962
4963 mpz_clear (size);
4964 mpz_clear (end);
4965 }
4966 }
4967 }
4968
4969 if (ar->type == AR_FULL)
4970 {
4971 if (ar->as->rank == 0)
4972 ar->type = AR_ELEMENT;
4973
4974 /* Make sure array is the same as array(:,:), this way
4975 we don't need to special case all the time. */
4976 ar->dimen = ar->as->rank;
4977 for (i = 0; i < ar->dimen; i++)
4978 {
4979 ar->dimen_type[i] = DIMEN_RANGE;
4980
4981 gcc_assert (ar->start[i] == NULL);
4982 gcc_assert (ar->end[i] == NULL);
4983 gcc_assert (ar->stride[i] == NULL);
4984 }
4985 }
4986
4987 /* If the reference type is unknown, figure out what kind it is. */
4988
4989 if (ar->type == AR_UNKNOWN)
4990 {
4991 ar->type = AR_ELEMENT;
4992 for (i = 0; i < ar->dimen; i++)
4993 if (ar->dimen_type[i] == DIMEN_RANGE
4994 || ar->dimen_type[i] == DIMEN_VECTOR)
4995 {
4996 ar->type = AR_SECTION;
4997 break;
4998 }
4999 }
5000
5001 if (!ar->as->cray_pointee && !compare_spec_to_ref (ar))
5002 return false;
5003
5004 if (ar->as->corank && ar->codimen == 0)
5005 {
5006 int n;
5007 ar->codimen = ar->as->corank;
5008 for (n = ar->dimen; n < ar->dimen + ar->codimen; n++)
5009 ar->dimen_type[n] = DIMEN_THIS_IMAGE;
5010 }
5011
5012 return true;
5013 }
5014
5015
5016 static bool
5017 resolve_substring (gfc_ref *ref, bool *equal_length)
5018 {
5019 int k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
5020
5021 if (ref->u.ss.start != NULL)
5022 {
5023 if (!gfc_resolve_expr (ref->u.ss.start))
5024 return false;
5025
5026 if (ref->u.ss.start->ts.type != BT_INTEGER)
5027 {
5028 gfc_error ("Substring start index at %L must be of type INTEGER",
5029 &ref->u.ss.start->where);
5030 return false;
5031 }
5032
5033 if (ref->u.ss.start->rank != 0)
5034 {
5035 gfc_error ("Substring start index at %L must be scalar",
5036 &ref->u.ss.start->where);
5037 return false;
5038 }
5039
5040 if (compare_bound_int (ref->u.ss.start, 1) == CMP_LT
5041 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
5042 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
5043 {
5044 gfc_error ("Substring start index at %L is less than one",
5045 &ref->u.ss.start->where);
5046 return false;
5047 }
5048 }
5049
5050 if (ref->u.ss.end != NULL)
5051 {
5052 if (!gfc_resolve_expr (ref->u.ss.end))
5053 return false;
5054
5055 if (ref->u.ss.end->ts.type != BT_INTEGER)
5056 {
5057 gfc_error ("Substring end index at %L must be of type INTEGER",
5058 &ref->u.ss.end->where);
5059 return false;
5060 }
5061
5062 if (ref->u.ss.end->rank != 0)
5063 {
5064 gfc_error ("Substring end index at %L must be scalar",
5065 &ref->u.ss.end->where);
5066 return false;
5067 }
5068
5069 if (ref->u.ss.length != NULL
5070 && compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_GT
5071 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
5072 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
5073 {
5074 gfc_error ("Substring end index at %L exceeds the string length",
5075 &ref->u.ss.start->where);
5076 return false;
5077 }
5078
5079 if (compare_bound_mpz_t (ref->u.ss.end,
5080 gfc_integer_kinds[k].huge) == CMP_GT
5081 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
5082 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
5083 {
5084 gfc_error ("Substring end index at %L is too large",
5085 &ref->u.ss.end->where);
5086 return false;
5087 }
5088 /* If the substring has the same length as the original
5089 variable, the reference itself can be deleted. */
5090
5091 if (ref->u.ss.length != NULL
5092 && compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_EQ
5093 && compare_bound_int (ref->u.ss.start, 1) == CMP_EQ)
5094 *equal_length = true;
5095 }
5096
5097 return true;
5098 }
5099
5100
5101 /* This function supplies missing substring charlens. */
5102
5103 void
5104 gfc_resolve_substring_charlen (gfc_expr *e)
5105 {
5106 gfc_ref *char_ref;
5107 gfc_expr *start, *end;
5108 gfc_typespec *ts = NULL;
5109 mpz_t diff;
5110
5111 for (char_ref = e->ref; char_ref; char_ref = char_ref->next)
5112 {
5113 if (char_ref->type == REF_SUBSTRING || char_ref->type == REF_INQUIRY)
5114 break;
5115 if (char_ref->type == REF_COMPONENT)
5116 ts = &char_ref->u.c.component->ts;
5117 }
5118
5119 if (!char_ref || char_ref->type == REF_INQUIRY)
5120 return;
5121
5122 gcc_assert (char_ref->next == NULL);
5123
5124 if (e->ts.u.cl)
5125 {
5126 if (e->ts.u.cl->length)
5127 gfc_free_expr (e->ts.u.cl->length);
5128 else if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.dummy)
5129 return;
5130 }
5131
5132 e->ts.type = BT_CHARACTER;
5133 e->ts.kind = gfc_default_character_kind;
5134
5135 if (!e->ts.u.cl)
5136 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5137
5138 if (char_ref->u.ss.start)
5139 start = gfc_copy_expr (char_ref->u.ss.start);
5140 else
5141 start = gfc_get_int_expr (gfc_charlen_int_kind, NULL, 1);
5142
5143 if (char_ref->u.ss.end)
5144 end = gfc_copy_expr (char_ref->u.ss.end);
5145 else if (e->expr_type == EXPR_VARIABLE)
5146 {
5147 if (!ts)
5148 ts = &e->symtree->n.sym->ts;
5149 end = gfc_copy_expr (ts->u.cl->length);
5150 }
5151 else
5152 end = NULL;
5153
5154 if (!start || !end)
5155 {
5156 gfc_free_expr (start);
5157 gfc_free_expr (end);
5158 return;
5159 }
5160
5161 /* Length = (end - start + 1).
5162 Check first whether it has a constant length. */
5163 if (gfc_dep_difference (end, start, &diff))
5164 {
5165 gfc_expr *len = gfc_get_constant_expr (BT_INTEGER, gfc_charlen_int_kind,
5166 &e->where);
5167
5168 mpz_add_ui (len->value.integer, diff, 1);
5169 mpz_clear (diff);
5170 e->ts.u.cl->length = len;
5171 /* The check for length < 0 is handled below */
5172 }
5173 else
5174 {
5175 e->ts.u.cl->length = gfc_subtract (end, start);
5176 e->ts.u.cl->length = gfc_add (e->ts.u.cl->length,
5177 gfc_get_int_expr (gfc_charlen_int_kind,
5178 NULL, 1));
5179 }
5180
5181 /* F2008, 6.4.1: Both the starting point and the ending point shall
5182 be within the range 1, 2, ..., n unless the starting point exceeds
5183 the ending point, in which case the substring has length zero. */
5184
5185 if (mpz_cmp_si (e->ts.u.cl->length->value.integer, 0) < 0)
5186 mpz_set_si (e->ts.u.cl->length->value.integer, 0);
5187
5188 e->ts.u.cl->length->ts.type = BT_INTEGER;
5189 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
5190
5191 /* Make sure that the length is simplified. */
5192 gfc_simplify_expr (e->ts.u.cl->length, 1);
5193 gfc_resolve_expr (e->ts.u.cl->length);
5194 }
5195
5196
5197 /* Resolve subtype references. */
5198
5199 bool
5200 gfc_resolve_ref (gfc_expr *expr)
5201 {
5202 int current_part_dimension, n_components, seen_part_dimension, dim;
5203 gfc_ref *ref, **prev, *array_ref;
5204 bool equal_length;
5205
5206 for (ref = expr->ref; ref; ref = ref->next)
5207 if (ref->type == REF_ARRAY && ref->u.ar.as == NULL)
5208 {
5209 find_array_spec (expr);
5210 break;
5211 }
5212
5213 for (prev = &expr->ref; *prev != NULL;
5214 prev = *prev == NULL ? prev : &(*prev)->next)
5215 switch ((*prev)->type)
5216 {
5217 case REF_ARRAY:
5218 if (!resolve_array_ref (&(*prev)->u.ar))
5219 return false;
5220 break;
5221
5222 case REF_COMPONENT:
5223 case REF_INQUIRY:
5224 break;
5225
5226 case REF_SUBSTRING:
5227 equal_length = false;
5228 if (!resolve_substring (*prev, &equal_length))
5229 return false;
5230
5231 if (expr->expr_type != EXPR_SUBSTRING && equal_length)
5232 {
5233 /* Remove the reference and move the charlen, if any. */
5234 ref = *prev;
5235 *prev = ref->next;
5236 ref->next = NULL;
5237 expr->ts.u.cl = ref->u.ss.length;
5238 ref->u.ss.length = NULL;
5239 gfc_free_ref_list (ref);
5240 }
5241 break;
5242 }
5243
5244 /* Check constraints on part references. */
5245
5246 current_part_dimension = 0;
5247 seen_part_dimension = 0;
5248 n_components = 0;
5249 array_ref = NULL;
5250
5251 for (ref = expr->ref; ref; ref = ref->next)
5252 {
5253 switch (ref->type)
5254 {
5255 case REF_ARRAY:
5256 array_ref = ref;
5257 switch (ref->u.ar.type)
5258 {
5259 case AR_FULL:
5260 /* Coarray scalar. */
5261 if (ref->u.ar.as->rank == 0)
5262 {
5263 current_part_dimension = 0;
5264 break;
5265 }
5266 /* Fall through. */
5267 case AR_SECTION:
5268 current_part_dimension = 1;
5269 break;
5270
5271 case AR_ELEMENT:
5272 array_ref = NULL;
5273 current_part_dimension = 0;
5274 break;
5275
5276 case AR_UNKNOWN:
5277 gfc_internal_error ("resolve_ref(): Bad array reference");
5278 }
5279
5280 break;
5281
5282 case REF_COMPONENT:
5283 if (current_part_dimension || seen_part_dimension)
5284 {
5285 /* F03:C614. */
5286 if (ref->u.c.component->attr.pointer
5287 || ref->u.c.component->attr.proc_pointer
5288 || (ref->u.c.component->ts.type == BT_CLASS
5289 && CLASS_DATA (ref->u.c.component)->attr.pointer))
5290 {
5291 gfc_error ("Component to the right of a part reference "
5292 "with nonzero rank must not have the POINTER "
5293 "attribute at %L", &expr->where);
5294 return false;
5295 }
5296 else if (ref->u.c.component->attr.allocatable
5297 || (ref->u.c.component->ts.type == BT_CLASS
5298 && CLASS_DATA (ref->u.c.component)->attr.allocatable))
5299
5300 {
5301 gfc_error ("Component to the right of a part reference "
5302 "with nonzero rank must not have the ALLOCATABLE "
5303 "attribute at %L", &expr->where);
5304 return false;
5305 }
5306 }
5307
5308 n_components++;
5309 break;
5310
5311 case REF_SUBSTRING:
5312 break;
5313
5314 case REF_INQUIRY:
5315 /* Implement requirement in note 9.7 of F2018 that the result of the
5316 LEN inquiry be a scalar. */
5317 if (ref->u.i == INQUIRY_LEN && array_ref)
5318 {
5319 array_ref->u.ar.type = AR_ELEMENT;
5320 expr->rank = 0;
5321 /* INQUIRY_LEN is not evaluated from the rest of the expr
5322 but directly from the string length. This means that setting
5323 the array indices to one does not matter but might trigger
5324 a runtime bounds error. Suppress the check. */
5325 expr->no_bounds_check = 1;
5326 for (dim = 0; dim < array_ref->u.ar.dimen; dim++)
5327 {
5328 array_ref->u.ar.dimen_type[dim] = DIMEN_ELEMENT;
5329 if (array_ref->u.ar.start[dim])
5330 gfc_free_expr (array_ref->u.ar.start[dim]);
5331 array_ref->u.ar.start[dim]
5332 = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
5333 if (array_ref->u.ar.end[dim])
5334 gfc_free_expr (array_ref->u.ar.end[dim]);
5335 if (array_ref->u.ar.stride[dim])
5336 gfc_free_expr (array_ref->u.ar.stride[dim]);
5337 }
5338 }
5339 break;
5340 }
5341
5342 if (((ref->type == REF_COMPONENT && n_components > 1)
5343 || ref->next == NULL)
5344 && current_part_dimension
5345 && seen_part_dimension)
5346 {
5347 gfc_error ("Two or more part references with nonzero rank must "
5348 "not be specified at %L", &expr->where);
5349 return false;
5350 }
5351
5352 if (ref->type == REF_COMPONENT)
5353 {
5354 if (current_part_dimension)
5355 seen_part_dimension = 1;
5356
5357 /* reset to make sure */
5358 current_part_dimension = 0;
5359 }
5360 }
5361
5362 return true;
5363 }
5364
5365
5366 /* Given an expression, determine its shape. This is easier than it sounds.
5367 Leaves the shape array NULL if it is not possible to determine the shape. */
5368
5369 static void
5370 expression_shape (gfc_expr *e)
5371 {
5372 mpz_t array[GFC_MAX_DIMENSIONS];
5373 int i;
5374
5375 if (e->rank <= 0 || e->shape != NULL)
5376 return;
5377
5378 for (i = 0; i < e->rank; i++)
5379 if (!gfc_array_dimen_size (e, i, &array[i]))
5380 goto fail;
5381
5382 e->shape = gfc_get_shape (e->rank);
5383
5384 memcpy (e->shape, array, e->rank * sizeof (mpz_t));
5385
5386 return;
5387
5388 fail:
5389 for (i--; i >= 0; i--)
5390 mpz_clear (array[i]);
5391 }
5392
5393
5394 /* Given a variable expression node, compute the rank of the expression by
5395 examining the base symbol and any reference structures it may have. */
5396
5397 void
5398 gfc_expression_rank (gfc_expr *e)
5399 {
5400 gfc_ref *ref;
5401 int i, rank;
5402
5403 /* Just to make sure, because EXPR_COMPCALL's also have an e->ref and that
5404 could lead to serious confusion... */
5405 gcc_assert (e->expr_type != EXPR_COMPCALL);
5406
5407 if (e->ref == NULL)
5408 {
5409 if (e->expr_type == EXPR_ARRAY)
5410 goto done;
5411 /* Constructors can have a rank different from one via RESHAPE(). */
5412
5413 e->rank = ((e->symtree == NULL || e->symtree->n.sym->as == NULL)
5414 ? 0 : e->symtree->n.sym->as->rank);
5415 goto done;
5416 }
5417
5418 rank = 0;
5419
5420 for (ref = e->ref; ref; ref = ref->next)
5421 {
5422 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.proc_pointer
5423 && ref->u.c.component->attr.function && !ref->next)
5424 rank = ref->u.c.component->as ? ref->u.c.component->as->rank : 0;
5425
5426 if (ref->type != REF_ARRAY)
5427 continue;
5428
5429 if (ref->u.ar.type == AR_FULL)
5430 {
5431 rank = ref->u.ar.as->rank;
5432 break;
5433 }
5434
5435 if (ref->u.ar.type == AR_SECTION)
5436 {
5437 /* Figure out the rank of the section. */
5438 if (rank != 0)
5439 gfc_internal_error ("gfc_expression_rank(): Two array specs");
5440
5441 for (i = 0; i < ref->u.ar.dimen; i++)
5442 if (ref->u.ar.dimen_type[i] == DIMEN_RANGE
5443 || ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
5444 rank++;
5445
5446 break;
5447 }
5448 }
5449
5450 e->rank = rank;
5451
5452 done:
5453 expression_shape (e);
5454 }
5455
5456
5457 static void
5458 add_caf_get_intrinsic (gfc_expr *e)
5459 {
5460 gfc_expr *wrapper, *tmp_expr;
5461 gfc_ref *ref;
5462 int n;
5463
5464 for (ref = e->ref; ref; ref = ref->next)
5465 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5466 break;
5467 if (ref == NULL)
5468 return;
5469
5470 for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
5471 if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
5472 return;
5473
5474 tmp_expr = XCNEW (gfc_expr);
5475 *tmp_expr = *e;
5476 wrapper = gfc_build_intrinsic_call (gfc_current_ns, GFC_ISYM_CAF_GET,
5477 "caf_get", tmp_expr->where, 1, tmp_expr);
5478 wrapper->ts = e->ts;
5479 wrapper->rank = e->rank;
5480 if (e->rank)
5481 wrapper->shape = gfc_copy_shape (e->shape, e->rank);
5482 *e = *wrapper;
5483 free (wrapper);
5484 }
5485
5486
5487 static void
5488 remove_caf_get_intrinsic (gfc_expr *e)
5489 {
5490 gcc_assert (e->expr_type == EXPR_FUNCTION && e->value.function.isym
5491 && e->value.function.isym->id == GFC_ISYM_CAF_GET);
5492 gfc_expr *e2 = e->value.function.actual->expr;
5493 e->value.function.actual->expr = NULL;
5494 gfc_free_actual_arglist (e->value.function.actual);
5495 gfc_free_shape (&e->shape, e->rank);
5496 *e = *e2;
5497 free (e2);
5498 }
5499
5500
5501 /* Resolve a variable expression. */
5502
5503 static bool
5504 resolve_variable (gfc_expr *e)
5505 {
5506 gfc_symbol *sym;
5507 bool t;
5508
5509 t = true;
5510
5511 if (e->symtree == NULL)
5512 return false;
5513 sym = e->symtree->n.sym;
5514
5515 /* Use same check as for TYPE(*) below; this check has to be before TYPE(*)
5516 as ts.type is set to BT_ASSUMED in resolve_symbol. */
5517 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
5518 {
5519 if (!actual_arg || inquiry_argument)
5520 {
5521 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may only "
5522 "be used as actual argument", sym->name, &e->where);
5523 return false;
5524 }
5525 }
5526 /* TS 29113, 407b. */
5527 else if (e->ts.type == BT_ASSUMED)
5528 {
5529 if (!actual_arg)
5530 {
5531 gfc_error ("Assumed-type variable %s at %L may only be used "
5532 "as actual argument", sym->name, &e->where);
5533 return false;
5534 }
5535 else if (inquiry_argument && !first_actual_arg)
5536 {
5537 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5538 for all inquiry functions in resolve_function; the reason is
5539 that the function-name resolution happens too late in that
5540 function. */
5541 gfc_error ("Assumed-type variable %s at %L as actual argument to "
5542 "an inquiry function shall be the first argument",
5543 sym->name, &e->where);
5544 return false;
5545 }
5546 }
5547 /* TS 29113, C535b. */
5548 else if (((sym->ts.type == BT_CLASS && sym->attr.class_ok
5549 && CLASS_DATA (sym)->as
5550 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5551 || (sym->ts.type != BT_CLASS && sym->as
5552 && sym->as->type == AS_ASSUMED_RANK))
5553 && !sym->attr.select_rank_temporary)
5554 {
5555 if (!actual_arg
5556 && !(cs_base && cs_base->current
5557 && cs_base->current->op == EXEC_SELECT_RANK))
5558 {
5559 gfc_error ("Assumed-rank variable %s at %L may only be used as "
5560 "actual argument", sym->name, &e->where);
5561 return false;
5562 }
5563 else if (inquiry_argument && !first_actual_arg)
5564 {
5565 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5566 for all inquiry functions in resolve_function; the reason is
5567 that the function-name resolution happens too late in that
5568 function. */
5569 gfc_error ("Assumed-rank variable %s at %L as actual argument "
5570 "to an inquiry function shall be the first argument",
5571 sym->name, &e->where);
5572 return false;
5573 }
5574 }
5575
5576 if ((sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) && e->ref
5577 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5578 && e->ref->next == NULL))
5579 {
5580 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall not have "
5581 "a subobject reference", sym->name, &e->ref->u.ar.where);
5582 return false;
5583 }
5584 /* TS 29113, 407b. */
5585 else if (e->ts.type == BT_ASSUMED && e->ref
5586 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5587 && e->ref->next == NULL))
5588 {
5589 gfc_error ("Assumed-type variable %s at %L shall not have a subobject "
5590 "reference", sym->name, &e->ref->u.ar.where);
5591 return false;
5592 }
5593
5594 /* TS 29113, C535b. */
5595 if (((sym->ts.type == BT_CLASS && sym->attr.class_ok
5596 && CLASS_DATA (sym)->as
5597 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5598 || (sym->ts.type != BT_CLASS && sym->as
5599 && sym->as->type == AS_ASSUMED_RANK))
5600 && e->ref
5601 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5602 && e->ref->next == NULL))
5603 {
5604 gfc_error ("Assumed-rank variable %s at %L shall not have a subobject "
5605 "reference", sym->name, &e->ref->u.ar.where);
5606 return false;
5607 }
5608
5609 /* For variables that are used in an associate (target => object) where
5610 the object's basetype is array valued while the target is scalar,
5611 the ts' type of the component refs is still array valued, which
5612 can't be translated that way. */
5613 if (sym->assoc && e->rank == 0 && e->ref && sym->ts.type == BT_CLASS
5614 && sym->assoc->target && sym->assoc->target->ts.type == BT_CLASS
5615 && CLASS_DATA (sym->assoc->target)->as)
5616 {
5617 gfc_ref *ref = e->ref;
5618 while (ref)
5619 {
5620 switch (ref->type)
5621 {
5622 case REF_COMPONENT:
5623 ref->u.c.sym = sym->ts.u.derived;
5624 /* Stop the loop. */
5625 ref = NULL;
5626 break;
5627 default:
5628 ref = ref->next;
5629 break;
5630 }
5631 }
5632 }
5633
5634 /* If this is an associate-name, it may be parsed with an array reference
5635 in error even though the target is scalar. Fail directly in this case.
5636 TODO Understand why class scalar expressions must be excluded. */
5637 if (sym->assoc && !(sym->ts.type == BT_CLASS && e->rank == 0))
5638 {
5639 if (sym->ts.type == BT_CLASS)
5640 gfc_fix_class_refs (e);
5641 if (!sym->attr.dimension && e->ref && e->ref->type == REF_ARRAY)
5642 return false;
5643 else if (sym->attr.dimension && (!e->ref || e->ref->type != REF_ARRAY))
5644 {
5645 /* This can happen because the parser did not detect that the
5646 associate name is an array and the expression had no array
5647 part_ref. */
5648 gfc_ref *ref = gfc_get_ref ();
5649 ref->type = REF_ARRAY;
5650 ref->u.ar = *gfc_get_array_ref();
5651 ref->u.ar.type = AR_FULL;
5652 if (sym->as)
5653 {
5654 ref->u.ar.as = sym->as;
5655 ref->u.ar.dimen = sym->as->rank;
5656 }
5657 ref->next = e->ref;
5658 e->ref = ref;
5659
5660 }
5661 }
5662
5663 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.generic)
5664 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
5665
5666 /* On the other hand, the parser may not have known this is an array;
5667 in this case, we have to add a FULL reference. */
5668 if (sym->assoc && sym->attr.dimension && !e->ref)
5669 {
5670 e->ref = gfc_get_ref ();
5671 e->ref->type = REF_ARRAY;
5672 e->ref->u.ar.type = AR_FULL;
5673 e->ref->u.ar.dimen = 0;
5674 }
5675
5676 /* Like above, but for class types, where the checking whether an array
5677 ref is present is more complicated. Furthermore make sure not to add
5678 the full array ref to _vptr or _len refs. */
5679 if (sym->assoc && sym->ts.type == BT_CLASS
5680 && CLASS_DATA (sym)->attr.dimension
5681 && (e->ts.type != BT_DERIVED || !e->ts.u.derived->attr.vtype))
5682 {
5683 gfc_ref *ref, *newref;
5684
5685 newref = gfc_get_ref ();
5686 newref->type = REF_ARRAY;
5687 newref->u.ar.type = AR_FULL;
5688 newref->u.ar.dimen = 0;
5689 /* Because this is an associate var and the first ref either is a ref to
5690 the _data component or not, no traversal of the ref chain is
5691 needed. The array ref needs to be inserted after the _data ref,
5692 or when that is not present, which may happend for polymorphic
5693 types, then at the first position. */
5694 ref = e->ref;
5695 if (!ref)
5696 e->ref = newref;
5697 else if (ref->type == REF_COMPONENT
5698 && strcmp ("_data", ref->u.c.component->name) == 0)
5699 {
5700 if (!ref->next || ref->next->type != REF_ARRAY)
5701 {
5702 newref->next = ref->next;
5703 ref->next = newref;
5704 }
5705 else
5706 /* Array ref present already. */
5707 gfc_free_ref_list (newref);
5708 }
5709 else if (ref->type == REF_ARRAY)
5710 /* Array ref present already. */
5711 gfc_free_ref_list (newref);
5712 else
5713 {
5714 newref->next = ref;
5715 e->ref = newref;
5716 }
5717 }
5718
5719 if (e->ref && !gfc_resolve_ref (e))
5720 return false;
5721
5722 if (sym->attr.flavor == FL_PROCEDURE
5723 && (!sym->attr.function
5724 || (sym->attr.function && sym->result
5725 && sym->result->attr.proc_pointer
5726 && !sym->result->attr.function)))
5727 {
5728 e->ts.type = BT_PROCEDURE;
5729 goto resolve_procedure;
5730 }
5731
5732 if (sym->ts.type != BT_UNKNOWN)
5733 gfc_variable_attr (e, &e->ts);
5734 else if (sym->attr.flavor == FL_PROCEDURE
5735 && sym->attr.function && sym->result
5736 && sym->result->ts.type != BT_UNKNOWN
5737 && sym->result->attr.proc_pointer)
5738 e->ts = sym->result->ts;
5739 else
5740 {
5741 /* Must be a simple variable reference. */
5742 if (!gfc_set_default_type (sym, 1, sym->ns))
5743 return false;
5744 e->ts = sym->ts;
5745 }
5746
5747 if (check_assumed_size_reference (sym, e))
5748 return false;
5749
5750 /* Deal with forward references to entries during gfc_resolve_code, to
5751 satisfy, at least partially, 12.5.2.5. */
5752 if (gfc_current_ns->entries
5753 && current_entry_id == sym->entry_id
5754 && cs_base
5755 && cs_base->current
5756 && cs_base->current->op != EXEC_ENTRY)
5757 {
5758 gfc_entry_list *entry;
5759 gfc_formal_arglist *formal;
5760 int n;
5761 bool seen, saved_specification_expr;
5762
5763 /* If the symbol is a dummy... */
5764 if (sym->attr.dummy && sym->ns == gfc_current_ns)
5765 {
5766 entry = gfc_current_ns->entries;
5767 seen = false;
5768
5769 /* ...test if the symbol is a parameter of previous entries. */
5770 for (; entry && entry->id <= current_entry_id; entry = entry->next)
5771 for (formal = entry->sym->formal; formal; formal = formal->next)
5772 {
5773 if (formal->sym && sym->name == formal->sym->name)
5774 {
5775 seen = true;
5776 break;
5777 }
5778 }
5779
5780 /* If it has not been seen as a dummy, this is an error. */
5781 if (!seen)
5782 {
5783 if (specification_expr)
5784 gfc_error ("Variable %qs, used in a specification expression"
5785 ", is referenced at %L before the ENTRY statement "
5786 "in which it is a parameter",
5787 sym->name, &cs_base->current->loc);
5788 else
5789 gfc_error ("Variable %qs is used at %L before the ENTRY "
5790 "statement in which it is a parameter",
5791 sym->name, &cs_base->current->loc);
5792 t = false;
5793 }
5794 }
5795
5796 /* Now do the same check on the specification expressions. */
5797 saved_specification_expr = specification_expr;
5798 specification_expr = true;
5799 if (sym->ts.type == BT_CHARACTER
5800 && !gfc_resolve_expr (sym->ts.u.cl->length))
5801 t = false;
5802
5803 if (sym->as)
5804 for (n = 0; n < sym->as->rank; n++)
5805 {
5806 if (!gfc_resolve_expr (sym->as->lower[n]))
5807 t = false;
5808 if (!gfc_resolve_expr (sym->as->upper[n]))
5809 t = false;
5810 }
5811 specification_expr = saved_specification_expr;
5812
5813 if (t)
5814 /* Update the symbol's entry level. */
5815 sym->entry_id = current_entry_id + 1;
5816 }
5817
5818 /* If a symbol has been host_associated mark it. This is used latter,
5819 to identify if aliasing is possible via host association. */
5820 if (sym->attr.flavor == FL_VARIABLE
5821 && gfc_current_ns->parent
5822 && (gfc_current_ns->parent == sym->ns
5823 || (gfc_current_ns->parent->parent
5824 && gfc_current_ns->parent->parent == sym->ns)))
5825 sym->attr.host_assoc = 1;
5826
5827 if (gfc_current_ns->proc_name
5828 && sym->attr.dimension
5829 && (sym->ns != gfc_current_ns
5830 || sym->attr.use_assoc
5831 || sym->attr.in_common))
5832 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
5833
5834 resolve_procedure:
5835 if (t && !resolve_procedure_expression (e))
5836 t = false;
5837
5838 /* F2008, C617 and C1229. */
5839 if (!inquiry_argument && (e->ts.type == BT_CLASS || e->ts.type == BT_DERIVED)
5840 && gfc_is_coindexed (e))
5841 {
5842 gfc_ref *ref, *ref2 = NULL;
5843
5844 for (ref = e->ref; ref; ref = ref->next)
5845 {
5846 if (ref->type == REF_COMPONENT)
5847 ref2 = ref;
5848 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5849 break;
5850 }
5851
5852 for ( ; ref; ref = ref->next)
5853 if (ref->type == REF_COMPONENT)
5854 break;
5855
5856 /* Expression itself is not coindexed object. */
5857 if (ref && e->ts.type == BT_CLASS)
5858 {
5859 gfc_error ("Polymorphic subobject of coindexed object at %L",
5860 &e->where);
5861 t = false;
5862 }
5863
5864 /* Expression itself is coindexed object. */
5865 if (ref == NULL)
5866 {
5867 gfc_component *c;
5868 c = ref2 ? ref2->u.c.component : e->symtree->n.sym->components;
5869 for ( ; c; c = c->next)
5870 if (c->attr.allocatable && c->ts.type == BT_CLASS)
5871 {
5872 gfc_error ("Coindexed object with polymorphic allocatable "
5873 "subcomponent at %L", &e->where);
5874 t = false;
5875 break;
5876 }
5877 }
5878 }
5879
5880 if (t)
5881 gfc_expression_rank (e);
5882
5883 if (t && flag_coarray == GFC_FCOARRAY_LIB && gfc_is_coindexed (e))
5884 add_caf_get_intrinsic (e);
5885
5886 /* Simplify cases where access to a parameter array results in a
5887 single constant. Suppress errors since those will have been
5888 issued before, as warnings. */
5889 if (e->rank == 0 && sym->as && sym->attr.flavor == FL_PARAMETER)
5890 {
5891 gfc_push_suppress_errors ();
5892 gfc_simplify_expr (e, 1);
5893 gfc_pop_suppress_errors ();
5894 }
5895
5896 return t;
5897 }
5898
5899
5900 /* Checks to see that the correct symbol has been host associated.
5901 The only situation where this arises is that in which a twice
5902 contained function is parsed after the host association is made.
5903 Therefore, on detecting this, change the symbol in the expression
5904 and convert the array reference into an actual arglist if the old
5905 symbol is a variable. */
5906 static bool
5907 check_host_association (gfc_expr *e)
5908 {
5909 gfc_symbol *sym, *old_sym;
5910 gfc_symtree *st;
5911 int n;
5912 gfc_ref *ref;
5913 gfc_actual_arglist *arg, *tail = NULL;
5914 bool retval = e->expr_type == EXPR_FUNCTION;
5915
5916 /* If the expression is the result of substitution in
5917 interface.c(gfc_extend_expr) because there is no way in
5918 which the host association can be wrong. */
5919 if (e->symtree == NULL
5920 || e->symtree->n.sym == NULL
5921 || e->user_operator)
5922 return retval;
5923
5924 old_sym = e->symtree->n.sym;
5925
5926 if (gfc_current_ns->parent
5927 && old_sym->ns != gfc_current_ns)
5928 {
5929 /* Use the 'USE' name so that renamed module symbols are
5930 correctly handled. */
5931 gfc_find_symbol (e->symtree->name, gfc_current_ns, 1, &sym);
5932
5933 if (sym && old_sym != sym
5934 && sym->ts.type == old_sym->ts.type
5935 && sym->attr.flavor == FL_PROCEDURE
5936 && sym->attr.contained)
5937 {
5938 /* Clear the shape, since it might not be valid. */
5939 gfc_free_shape (&e->shape, e->rank);
5940
5941 /* Give the expression the right symtree! */
5942 gfc_find_sym_tree (e->symtree->name, NULL, 1, &st);
5943 gcc_assert (st != NULL);
5944
5945 if (old_sym->attr.flavor == FL_PROCEDURE
5946 || e->expr_type == EXPR_FUNCTION)
5947 {
5948 /* Original was function so point to the new symbol, since
5949 the actual argument list is already attached to the
5950 expression. */
5951 e->value.function.esym = NULL;
5952 e->symtree = st;
5953 }
5954 else
5955 {
5956 /* Original was variable so convert array references into
5957 an actual arglist. This does not need any checking now
5958 since resolve_function will take care of it. */
5959 e->value.function.actual = NULL;
5960 e->expr_type = EXPR_FUNCTION;
5961 e->symtree = st;
5962
5963 /* Ambiguity will not arise if the array reference is not
5964 the last reference. */
5965 for (ref = e->ref; ref; ref = ref->next)
5966 if (ref->type == REF_ARRAY && ref->next == NULL)
5967 break;
5968
5969 gcc_assert (ref->type == REF_ARRAY);
5970
5971 /* Grab the start expressions from the array ref and
5972 copy them into actual arguments. */
5973 for (n = 0; n < ref->u.ar.dimen; n++)
5974 {
5975 arg = gfc_get_actual_arglist ();
5976 arg->expr = gfc_copy_expr (ref->u.ar.start[n]);
5977 if (e->value.function.actual == NULL)
5978 tail = e->value.function.actual = arg;
5979 else
5980 {
5981 tail->next = arg;
5982 tail = arg;
5983 }
5984 }
5985
5986 /* Dump the reference list and set the rank. */
5987 gfc_free_ref_list (e->ref);
5988 e->ref = NULL;
5989 e->rank = sym->as ? sym->as->rank : 0;
5990 }
5991
5992 gfc_resolve_expr (e);
5993 sym->refs++;
5994 }
5995 }
5996 /* This might have changed! */
5997 return e->expr_type == EXPR_FUNCTION;
5998 }
5999
6000
6001 static void
6002 gfc_resolve_character_operator (gfc_expr *e)
6003 {
6004 gfc_expr *op1 = e->value.op.op1;
6005 gfc_expr *op2 = e->value.op.op2;
6006 gfc_expr *e1 = NULL;
6007 gfc_expr *e2 = NULL;
6008
6009 gcc_assert (e->value.op.op == INTRINSIC_CONCAT);
6010
6011 if (op1->ts.u.cl && op1->ts.u.cl->length)
6012 e1 = gfc_copy_expr (op1->ts.u.cl->length);
6013 else if (op1->expr_type == EXPR_CONSTANT)
6014 e1 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
6015 op1->value.character.length);
6016
6017 if (op2->ts.u.cl && op2->ts.u.cl->length)
6018 e2 = gfc_copy_expr (op2->ts.u.cl->length);
6019 else if (op2->expr_type == EXPR_CONSTANT)
6020 e2 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
6021 op2->value.character.length);
6022
6023 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
6024
6025 if (!e1 || !e2)
6026 {
6027 gfc_free_expr (e1);
6028 gfc_free_expr (e2);
6029
6030 return;
6031 }
6032
6033 e->ts.u.cl->length = gfc_add (e1, e2);
6034 e->ts.u.cl->length->ts.type = BT_INTEGER;
6035 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
6036 gfc_simplify_expr (e->ts.u.cl->length, 0);
6037 gfc_resolve_expr (e->ts.u.cl->length);
6038
6039 return;
6040 }
6041
6042
6043 /* Ensure that an character expression has a charlen and, if possible, a
6044 length expression. */
6045
6046 static void
6047 fixup_charlen (gfc_expr *e)
6048 {
6049 /* The cases fall through so that changes in expression type and the need
6050 for multiple fixes are picked up. In all circumstances, a charlen should
6051 be available for the middle end to hang a backend_decl on. */
6052 switch (e->expr_type)
6053 {
6054 case EXPR_OP:
6055 gfc_resolve_character_operator (e);
6056 /* FALLTHRU */
6057
6058 case EXPR_ARRAY:
6059 if (e->expr_type == EXPR_ARRAY)
6060 gfc_resolve_character_array_constructor (e);
6061 /* FALLTHRU */
6062
6063 case EXPR_SUBSTRING:
6064 if (!e->ts.u.cl && e->ref)
6065 gfc_resolve_substring_charlen (e);
6066 /* FALLTHRU */
6067
6068 default:
6069 if (!e->ts.u.cl)
6070 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
6071
6072 break;
6073 }
6074 }
6075
6076
6077 /* Update an actual argument to include the passed-object for type-bound
6078 procedures at the right position. */
6079
6080 static gfc_actual_arglist*
6081 update_arglist_pass (gfc_actual_arglist* lst, gfc_expr* po, unsigned argpos,
6082 const char *name)
6083 {
6084 gcc_assert (argpos > 0);
6085
6086 if (argpos == 1)
6087 {
6088 gfc_actual_arglist* result;
6089
6090 result = gfc_get_actual_arglist ();
6091 result->expr = po;
6092 result->next = lst;
6093 if (name)
6094 result->name = name;
6095
6096 return result;
6097 }
6098
6099 if (lst)
6100 lst->next = update_arglist_pass (lst->next, po, argpos - 1, name);
6101 else
6102 lst = update_arglist_pass (NULL, po, argpos - 1, name);
6103 return lst;
6104 }
6105
6106
6107 /* Extract the passed-object from an EXPR_COMPCALL (a copy of it). */
6108
6109 static gfc_expr*
6110 extract_compcall_passed_object (gfc_expr* e)
6111 {
6112 gfc_expr* po;
6113
6114 if (e->expr_type == EXPR_UNKNOWN)
6115 {
6116 gfc_error ("Error in typebound call at %L",
6117 &e->where);
6118 return NULL;
6119 }
6120
6121 gcc_assert (e->expr_type == EXPR_COMPCALL);
6122
6123 if (e->value.compcall.base_object)
6124 po = gfc_copy_expr (e->value.compcall.base_object);
6125 else
6126 {
6127 po = gfc_get_expr ();
6128 po->expr_type = EXPR_VARIABLE;
6129 po->symtree = e->symtree;
6130 po->ref = gfc_copy_ref (e->ref);
6131 po->where = e->where;
6132 }
6133
6134 if (!gfc_resolve_expr (po))
6135 return NULL;
6136
6137 return po;
6138 }
6139
6140
6141 /* Update the arglist of an EXPR_COMPCALL expression to include the
6142 passed-object. */
6143
6144 static bool
6145 update_compcall_arglist (gfc_expr* e)
6146 {
6147 gfc_expr* po;
6148 gfc_typebound_proc* tbp;
6149
6150 tbp = e->value.compcall.tbp;
6151
6152 if (tbp->error)
6153 return false;
6154
6155 po = extract_compcall_passed_object (e);
6156 if (!po)
6157 return false;
6158
6159 if (tbp->nopass || e->value.compcall.ignore_pass)
6160 {
6161 gfc_free_expr (po);
6162 return true;
6163 }
6164
6165 if (tbp->pass_arg_num <= 0)
6166 return false;
6167
6168 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
6169 tbp->pass_arg_num,
6170 tbp->pass_arg);
6171
6172 return true;
6173 }
6174
6175
6176 /* Extract the passed object from a PPC call (a copy of it). */
6177
6178 static gfc_expr*
6179 extract_ppc_passed_object (gfc_expr *e)
6180 {
6181 gfc_expr *po;
6182 gfc_ref **ref;
6183
6184 po = gfc_get_expr ();
6185 po->expr_type = EXPR_VARIABLE;
6186 po->symtree = e->symtree;
6187 po->ref = gfc_copy_ref (e->ref);
6188 po->where = e->where;
6189
6190 /* Remove PPC reference. */
6191 ref = &po->ref;
6192 while ((*ref)->next)
6193 ref = &(*ref)->next;
6194 gfc_free_ref_list (*ref);
6195 *ref = NULL;
6196
6197 if (!gfc_resolve_expr (po))
6198 return NULL;
6199
6200 return po;
6201 }
6202
6203
6204 /* Update the actual arglist of a procedure pointer component to include the
6205 passed-object. */
6206
6207 static bool
6208 update_ppc_arglist (gfc_expr* e)
6209 {
6210 gfc_expr* po;
6211 gfc_component *ppc;
6212 gfc_typebound_proc* tb;
6213
6214 ppc = gfc_get_proc_ptr_comp (e);
6215 if (!ppc)
6216 return false;
6217
6218 tb = ppc->tb;
6219
6220 if (tb->error)
6221 return false;
6222 else if (tb->nopass)
6223 return true;
6224
6225 po = extract_ppc_passed_object (e);
6226 if (!po)
6227 return false;
6228
6229 /* F08:R739. */
6230 if (po->rank != 0)
6231 {
6232 gfc_error ("Passed-object at %L must be scalar", &e->where);
6233 return false;
6234 }
6235
6236 /* F08:C611. */
6237 if (po->ts.type == BT_DERIVED && po->ts.u.derived->attr.abstract)
6238 {
6239 gfc_error ("Base object for procedure-pointer component call at %L is of"
6240 " ABSTRACT type %qs", &e->where, po->ts.u.derived->name);
6241 return false;
6242 }
6243
6244 gcc_assert (tb->pass_arg_num > 0);
6245 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
6246 tb->pass_arg_num,
6247 tb->pass_arg);
6248
6249 return true;
6250 }
6251
6252
6253 /* Check that the object a TBP is called on is valid, i.e. it must not be
6254 of ABSTRACT type (as in subobject%abstract_parent%tbp()). */
6255
6256 static bool
6257 check_typebound_baseobject (gfc_expr* e)
6258 {
6259 gfc_expr* base;
6260 bool return_value = false;
6261
6262 base = extract_compcall_passed_object (e);
6263 if (!base)
6264 return false;
6265
6266 if (base->ts.type != BT_DERIVED && base->ts.type != BT_CLASS)
6267 {
6268 gfc_error ("Error in typebound call at %L", &e->where);
6269 goto cleanup;
6270 }
6271
6272 if (base->ts.type == BT_CLASS && !gfc_expr_attr (base).class_ok)
6273 return false;
6274
6275 /* F08:C611. */
6276 if (base->ts.type == BT_DERIVED && base->ts.u.derived->attr.abstract)
6277 {
6278 gfc_error ("Base object for type-bound procedure call at %L is of"
6279 " ABSTRACT type %qs", &e->where, base->ts.u.derived->name);
6280 goto cleanup;
6281 }
6282
6283 /* F08:C1230. If the procedure called is NOPASS,
6284 the base object must be scalar. */
6285 if (e->value.compcall.tbp->nopass && base->rank != 0)
6286 {
6287 gfc_error ("Base object for NOPASS type-bound procedure call at %L must"
6288 " be scalar", &e->where);
6289 goto cleanup;
6290 }
6291
6292 return_value = true;
6293
6294 cleanup:
6295 gfc_free_expr (base);
6296 return return_value;
6297 }
6298
6299
6300 /* Resolve a call to a type-bound procedure, either function or subroutine,
6301 statically from the data in an EXPR_COMPCALL expression. The adapted
6302 arglist and the target-procedure symtree are returned. */
6303
6304 static bool
6305 resolve_typebound_static (gfc_expr* e, gfc_symtree** target,
6306 gfc_actual_arglist** actual)
6307 {
6308 gcc_assert (e->expr_type == EXPR_COMPCALL);
6309 gcc_assert (!e->value.compcall.tbp->is_generic);
6310
6311 /* Update the actual arglist for PASS. */
6312 if (!update_compcall_arglist (e))
6313 return false;
6314
6315 *actual = e->value.compcall.actual;
6316 *target = e->value.compcall.tbp->u.specific;
6317
6318 gfc_free_ref_list (e->ref);
6319 e->ref = NULL;
6320 e->value.compcall.actual = NULL;
6321
6322 /* If we find a deferred typebound procedure, check for derived types
6323 that an overriding typebound procedure has not been missed. */
6324 if (e->value.compcall.name
6325 && !e->value.compcall.tbp->non_overridable
6326 && e->value.compcall.base_object
6327 && e->value.compcall.base_object->ts.type == BT_DERIVED)
6328 {
6329 gfc_symtree *st;
6330 gfc_symbol *derived;
6331
6332 /* Use the derived type of the base_object. */
6333 derived = e->value.compcall.base_object->ts.u.derived;
6334 st = NULL;
6335
6336 /* If necessary, go through the inheritance chain. */
6337 while (!st && derived)
6338 {
6339 /* Look for the typebound procedure 'name'. */
6340 if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
6341 st = gfc_find_symtree (derived->f2k_derived->tb_sym_root,
6342 e->value.compcall.name);
6343 if (!st)
6344 derived = gfc_get_derived_super_type (derived);
6345 }
6346
6347 /* Now find the specific name in the derived type namespace. */
6348 if (st && st->n.tb && st->n.tb->u.specific)
6349 gfc_find_sym_tree (st->n.tb->u.specific->name,
6350 derived->ns, 1, &st);
6351 if (st)
6352 *target = st;
6353 }
6354 return true;
6355 }
6356
6357
6358 /* Get the ultimate declared type from an expression. In addition,
6359 return the last class/derived type reference and the copy of the
6360 reference list. If check_types is set true, derived types are
6361 identified as well as class references. */
6362 static gfc_symbol*
6363 get_declared_from_expr (gfc_ref **class_ref, gfc_ref **new_ref,
6364 gfc_expr *e, bool check_types)
6365 {
6366 gfc_symbol *declared;
6367 gfc_ref *ref;
6368
6369 declared = NULL;
6370 if (class_ref)
6371 *class_ref = NULL;
6372 if (new_ref)
6373 *new_ref = gfc_copy_ref (e->ref);
6374
6375 for (ref = e->ref; ref; ref = ref->next)
6376 {
6377 if (ref->type != REF_COMPONENT)
6378 continue;
6379
6380 if ((ref->u.c.component->ts.type == BT_CLASS
6381 || (check_types && gfc_bt_struct (ref->u.c.component->ts.type)))
6382 && ref->u.c.component->attr.flavor != FL_PROCEDURE)
6383 {
6384 declared = ref->u.c.component->ts.u.derived;
6385 if (class_ref)
6386 *class_ref = ref;
6387 }
6388 }
6389
6390 if (declared == NULL)
6391 declared = e->symtree->n.sym->ts.u.derived;
6392
6393 return declared;
6394 }
6395
6396
6397 /* Given an EXPR_COMPCALL calling a GENERIC typebound procedure, figure out
6398 which of the specific bindings (if any) matches the arglist and transform
6399 the expression into a call of that binding. */
6400
6401 static bool
6402 resolve_typebound_generic_call (gfc_expr* e, const char **name)
6403 {
6404 gfc_typebound_proc* genproc;
6405 const char* genname;
6406 gfc_symtree *st;
6407 gfc_symbol *derived;
6408
6409 gcc_assert (e->expr_type == EXPR_COMPCALL);
6410 genname = e->value.compcall.name;
6411 genproc = e->value.compcall.tbp;
6412
6413 if (!genproc->is_generic)
6414 return true;
6415
6416 /* Try the bindings on this type and in the inheritance hierarchy. */
6417 for (; genproc; genproc = genproc->overridden)
6418 {
6419 gfc_tbp_generic* g;
6420
6421 gcc_assert (genproc->is_generic);
6422 for (g = genproc->u.generic; g; g = g->next)
6423 {
6424 gfc_symbol* target;
6425 gfc_actual_arglist* args;
6426 bool matches;
6427
6428 gcc_assert (g->specific);
6429
6430 if (g->specific->error)
6431 continue;
6432
6433 target = g->specific->u.specific->n.sym;
6434
6435 /* Get the right arglist by handling PASS/NOPASS. */
6436 args = gfc_copy_actual_arglist (e->value.compcall.actual);
6437 if (!g->specific->nopass)
6438 {
6439 gfc_expr* po;
6440 po = extract_compcall_passed_object (e);
6441 if (!po)
6442 {
6443 gfc_free_actual_arglist (args);
6444 return false;
6445 }
6446
6447 gcc_assert (g->specific->pass_arg_num > 0);
6448 gcc_assert (!g->specific->error);
6449 args = update_arglist_pass (args, po, g->specific->pass_arg_num,
6450 g->specific->pass_arg);
6451 }
6452 resolve_actual_arglist (args, target->attr.proc,
6453 is_external_proc (target)
6454 && gfc_sym_get_dummy_args (target) == NULL);
6455
6456 /* Check if this arglist matches the formal. */
6457 matches = gfc_arglist_matches_symbol (&args, target);
6458
6459 /* Clean up and break out of the loop if we've found it. */
6460 gfc_free_actual_arglist (args);
6461 if (matches)
6462 {
6463 e->value.compcall.tbp = g->specific;
6464 genname = g->specific_st->name;
6465 /* Pass along the name for CLASS methods, where the vtab
6466 procedure pointer component has to be referenced. */
6467 if (name)
6468 *name = genname;
6469 goto success;
6470 }
6471 }
6472 }
6473
6474 /* Nothing matching found! */
6475 gfc_error ("Found no matching specific binding for the call to the GENERIC"
6476 " %qs at %L", genname, &e->where);
6477 return false;
6478
6479 success:
6480 /* Make sure that we have the right specific instance for the name. */
6481 derived = get_declared_from_expr (NULL, NULL, e, true);
6482
6483 st = gfc_find_typebound_proc (derived, NULL, genname, true, &e->where);
6484 if (st)
6485 e->value.compcall.tbp = st->n.tb;
6486
6487 return true;
6488 }
6489
6490
6491 /* Resolve a call to a type-bound subroutine. */
6492
6493 static bool
6494 resolve_typebound_call (gfc_code* c, const char **name, bool *overridable)
6495 {
6496 gfc_actual_arglist* newactual;
6497 gfc_symtree* target;
6498
6499 /* Check that's really a SUBROUTINE. */
6500 if (!c->expr1->value.compcall.tbp->subroutine)
6501 {
6502 if (!c->expr1->value.compcall.tbp->is_generic
6503 && c->expr1->value.compcall.tbp->u.specific
6504 && c->expr1->value.compcall.tbp->u.specific->n.sym
6505 && c->expr1->value.compcall.tbp->u.specific->n.sym->attr.subroutine)
6506 c->expr1->value.compcall.tbp->subroutine = 1;
6507 else
6508 {
6509 gfc_error ("%qs at %L should be a SUBROUTINE",
6510 c->expr1->value.compcall.name, &c->loc);
6511 return false;
6512 }
6513 }
6514
6515 if (!check_typebound_baseobject (c->expr1))
6516 return false;
6517
6518 /* Pass along the name for CLASS methods, where the vtab
6519 procedure pointer component has to be referenced. */
6520 if (name)
6521 *name = c->expr1->value.compcall.name;
6522
6523 if (!resolve_typebound_generic_call (c->expr1, name))
6524 return false;
6525
6526 /* Pass along the NON_OVERRIDABLE attribute of the specific TBP. */
6527 if (overridable)
6528 *overridable = !c->expr1->value.compcall.tbp->non_overridable;
6529
6530 /* Transform into an ordinary EXEC_CALL for now. */
6531
6532 if (!resolve_typebound_static (c->expr1, &target, &newactual))
6533 return false;
6534
6535 c->ext.actual = newactual;
6536 c->symtree = target;
6537 c->op = (c->expr1->value.compcall.assign ? EXEC_ASSIGN_CALL : EXEC_CALL);
6538
6539 gcc_assert (!c->expr1->ref && !c->expr1->value.compcall.actual);
6540
6541 gfc_free_expr (c->expr1);
6542 c->expr1 = gfc_get_expr ();
6543 c->expr1->expr_type = EXPR_FUNCTION;
6544 c->expr1->symtree = target;
6545 c->expr1->where = c->loc;
6546
6547 return resolve_call (c);
6548 }
6549
6550
6551 /* Resolve a component-call expression. */
6552 static bool
6553 resolve_compcall (gfc_expr* e, const char **name)
6554 {
6555 gfc_actual_arglist* newactual;
6556 gfc_symtree* target;
6557
6558 /* Check that's really a FUNCTION. */
6559 if (!e->value.compcall.tbp->function)
6560 {
6561 gfc_error ("%qs at %L should be a FUNCTION",
6562 e->value.compcall.name, &e->where);
6563 return false;
6564 }
6565
6566
6567 /* These must not be assign-calls! */
6568 gcc_assert (!e->value.compcall.assign);
6569
6570 if (!check_typebound_baseobject (e))
6571 return false;
6572
6573 /* Pass along the name for CLASS methods, where the vtab
6574 procedure pointer component has to be referenced. */
6575 if (name)
6576 *name = e->value.compcall.name;
6577
6578 if (!resolve_typebound_generic_call (e, name))
6579 return false;
6580 gcc_assert (!e->value.compcall.tbp->is_generic);
6581
6582 /* Take the rank from the function's symbol. */
6583 if (e->value.compcall.tbp->u.specific->n.sym->as)
6584 e->rank = e->value.compcall.tbp->u.specific->n.sym->as->rank;
6585
6586 /* For now, we simply transform it into an EXPR_FUNCTION call with the same
6587 arglist to the TBP's binding target. */
6588
6589 if (!resolve_typebound_static (e, &target, &newactual))
6590 return false;
6591
6592 e->value.function.actual = newactual;
6593 e->value.function.name = NULL;
6594 e->value.function.esym = target->n.sym;
6595 e->value.function.isym = NULL;
6596 e->symtree = target;
6597 e->ts = target->n.sym->ts;
6598 e->expr_type = EXPR_FUNCTION;
6599
6600 /* Resolution is not necessary if this is a class subroutine; this
6601 function only has to identify the specific proc. Resolution of
6602 the call will be done next in resolve_typebound_call. */
6603 return gfc_resolve_expr (e);
6604 }
6605
6606
6607 static bool resolve_fl_derived (gfc_symbol *sym);
6608
6609
6610 /* Resolve a typebound function, or 'method'. First separate all
6611 the non-CLASS references by calling resolve_compcall directly. */
6612
6613 static bool
6614 resolve_typebound_function (gfc_expr* e)
6615 {
6616 gfc_symbol *declared;
6617 gfc_component *c;
6618 gfc_ref *new_ref;
6619 gfc_ref *class_ref;
6620 gfc_symtree *st;
6621 const char *name;
6622 gfc_typespec ts;
6623 gfc_expr *expr;
6624 bool overridable;
6625
6626 st = e->symtree;
6627
6628 /* Deal with typebound operators for CLASS objects. */
6629 expr = e->value.compcall.base_object;
6630 overridable = !e->value.compcall.tbp->non_overridable;
6631 if (expr && expr->ts.type == BT_CLASS && e->value.compcall.name)
6632 {
6633 /* Since the typebound operators are generic, we have to ensure
6634 that any delays in resolution are corrected and that the vtab
6635 is present. */
6636 ts = expr->ts;
6637 declared = ts.u.derived;
6638 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6639 if (c->ts.u.derived == NULL)
6640 c->ts.u.derived = gfc_find_derived_vtab (declared);
6641
6642 if (!resolve_compcall (e, &name))
6643 return false;
6644
6645 /* Use the generic name if it is there. */
6646 name = name ? name : e->value.function.esym->name;
6647 e->symtree = expr->symtree;
6648 e->ref = gfc_copy_ref (expr->ref);
6649 get_declared_from_expr (&class_ref, NULL, e, false);
6650
6651 /* Trim away the extraneous references that emerge from nested
6652 use of interface.c (extend_expr). */
6653 if (class_ref && class_ref->next)
6654 {
6655 gfc_free_ref_list (class_ref->next);
6656 class_ref->next = NULL;
6657 }
6658 else if (e->ref && !class_ref && expr->ts.type != BT_CLASS)
6659 {
6660 gfc_free_ref_list (e->ref);
6661 e->ref = NULL;
6662 }
6663
6664 gfc_add_vptr_component (e);
6665 gfc_add_component_ref (e, name);
6666 e->value.function.esym = NULL;
6667 if (expr->expr_type != EXPR_VARIABLE)
6668 e->base_expr = expr;
6669 return true;
6670 }
6671
6672 if (st == NULL)
6673 return resolve_compcall (e, NULL);
6674
6675 if (!gfc_resolve_ref (e))
6676 return false;
6677
6678 /* Get the CLASS declared type. */
6679 declared = get_declared_from_expr (&class_ref, &new_ref, e, true);
6680
6681 if (!resolve_fl_derived (declared))
6682 return false;
6683
6684 /* Weed out cases of the ultimate component being a derived type. */
6685 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6686 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6687 {
6688 gfc_free_ref_list (new_ref);
6689 return resolve_compcall (e, NULL);
6690 }
6691
6692 c = gfc_find_component (declared, "_data", true, true, NULL);
6693
6694 /* Treat the call as if it is a typebound procedure, in order to roll
6695 out the correct name for the specific function. */
6696 if (!resolve_compcall (e, &name))
6697 {
6698 gfc_free_ref_list (new_ref);
6699 return false;
6700 }
6701 ts = e->ts;
6702
6703 if (overridable)
6704 {
6705 /* Convert the expression to a procedure pointer component call. */
6706 e->value.function.esym = NULL;
6707 e->symtree = st;
6708
6709 if (new_ref)
6710 e->ref = new_ref;
6711
6712 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6713 gfc_add_vptr_component (e);
6714 gfc_add_component_ref (e, name);
6715
6716 /* Recover the typespec for the expression. This is really only
6717 necessary for generic procedures, where the additional call
6718 to gfc_add_component_ref seems to throw the collection of the
6719 correct typespec. */
6720 e->ts = ts;
6721 }
6722 else if (new_ref)
6723 gfc_free_ref_list (new_ref);
6724
6725 return true;
6726 }
6727
6728 /* Resolve a typebound subroutine, or 'method'. First separate all
6729 the non-CLASS references by calling resolve_typebound_call
6730 directly. */
6731
6732 static bool
6733 resolve_typebound_subroutine (gfc_code *code)
6734 {
6735 gfc_symbol *declared;
6736 gfc_component *c;
6737 gfc_ref *new_ref;
6738 gfc_ref *class_ref;
6739 gfc_symtree *st;
6740 const char *name;
6741 gfc_typespec ts;
6742 gfc_expr *expr;
6743 bool overridable;
6744
6745 st = code->expr1->symtree;
6746
6747 /* Deal with typebound operators for CLASS objects. */
6748 expr = code->expr1->value.compcall.base_object;
6749 overridable = !code->expr1->value.compcall.tbp->non_overridable;
6750 if (expr && expr->ts.type == BT_CLASS && code->expr1->value.compcall.name)
6751 {
6752 /* If the base_object is not a variable, the corresponding actual
6753 argument expression must be stored in e->base_expression so
6754 that the corresponding tree temporary can be used as the base
6755 object in gfc_conv_procedure_call. */
6756 if (expr->expr_type != EXPR_VARIABLE)
6757 {
6758 gfc_actual_arglist *args;
6759
6760 args= code->expr1->value.function.actual;
6761 for (; args; args = args->next)
6762 if (expr == args->expr)
6763 expr = args->expr;
6764 }
6765
6766 /* Since the typebound operators are generic, we have to ensure
6767 that any delays in resolution are corrected and that the vtab
6768 is present. */
6769 declared = expr->ts.u.derived;
6770 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6771 if (c->ts.u.derived == NULL)
6772 c->ts.u.derived = gfc_find_derived_vtab (declared);
6773
6774 if (!resolve_typebound_call (code, &name, NULL))
6775 return false;
6776
6777 /* Use the generic name if it is there. */
6778 name = name ? name : code->expr1->value.function.esym->name;
6779 code->expr1->symtree = expr->symtree;
6780 code->expr1->ref = gfc_copy_ref (expr->ref);
6781
6782 /* Trim away the extraneous references that emerge from nested
6783 use of interface.c (extend_expr). */
6784 get_declared_from_expr (&class_ref, NULL, code->expr1, false);
6785 if (class_ref && class_ref->next)
6786 {
6787 gfc_free_ref_list (class_ref->next);
6788 class_ref->next = NULL;
6789 }
6790 else if (code->expr1->ref && !class_ref)
6791 {
6792 gfc_free_ref_list (code->expr1->ref);
6793 code->expr1->ref = NULL;
6794 }
6795
6796 /* Now use the procedure in the vtable. */
6797 gfc_add_vptr_component (code->expr1);
6798 gfc_add_component_ref (code->expr1, name);
6799 code->expr1->value.function.esym = NULL;
6800 if (expr->expr_type != EXPR_VARIABLE)
6801 code->expr1->base_expr = expr;
6802 return true;
6803 }
6804
6805 if (st == NULL)
6806 return resolve_typebound_call (code, NULL, NULL);
6807
6808 if (!gfc_resolve_ref (code->expr1))
6809 return false;
6810
6811 /* Get the CLASS declared type. */
6812 get_declared_from_expr (&class_ref, &new_ref, code->expr1, true);
6813
6814 /* Weed out cases of the ultimate component being a derived type. */
6815 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6816 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6817 {
6818 gfc_free_ref_list (new_ref);
6819 return resolve_typebound_call (code, NULL, NULL);
6820 }
6821
6822 if (!resolve_typebound_call (code, &name, &overridable))
6823 {
6824 gfc_free_ref_list (new_ref);
6825 return false;
6826 }
6827 ts = code->expr1->ts;
6828
6829 if (overridable)
6830 {
6831 /* Convert the expression to a procedure pointer component call. */
6832 code->expr1->value.function.esym = NULL;
6833 code->expr1->symtree = st;
6834
6835 if (new_ref)
6836 code->expr1->ref = new_ref;
6837
6838 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6839 gfc_add_vptr_component (code->expr1);
6840 gfc_add_component_ref (code->expr1, name);
6841
6842 /* Recover the typespec for the expression. This is really only
6843 necessary for generic procedures, where the additional call
6844 to gfc_add_component_ref seems to throw the collection of the
6845 correct typespec. */
6846 code->expr1->ts = ts;
6847 }
6848 else if (new_ref)
6849 gfc_free_ref_list (new_ref);
6850
6851 return true;
6852 }
6853
6854
6855 /* Resolve a CALL to a Procedure Pointer Component (Subroutine). */
6856
6857 static bool
6858 resolve_ppc_call (gfc_code* c)
6859 {
6860 gfc_component *comp;
6861
6862 comp = gfc_get_proc_ptr_comp (c->expr1);
6863 gcc_assert (comp != NULL);
6864
6865 c->resolved_sym = c->expr1->symtree->n.sym;
6866 c->expr1->expr_type = EXPR_VARIABLE;
6867
6868 if (!comp->attr.subroutine)
6869 gfc_add_subroutine (&comp->attr, comp->name, &c->expr1->where);
6870
6871 if (!gfc_resolve_ref (c->expr1))
6872 return false;
6873
6874 if (!update_ppc_arglist (c->expr1))
6875 return false;
6876
6877 c->ext.actual = c->expr1->value.compcall.actual;
6878
6879 if (!resolve_actual_arglist (c->ext.actual, comp->attr.proc,
6880 !(comp->ts.interface
6881 && comp->ts.interface->formal)))
6882 return false;
6883
6884 if (!pure_subroutine (comp->ts.interface, comp->name, &c->expr1->where))
6885 return false;
6886
6887 gfc_ppc_use (comp, &c->expr1->value.compcall.actual, &c->expr1->where);
6888
6889 return true;
6890 }
6891
6892
6893 /* Resolve a Function Call to a Procedure Pointer Component (Function). */
6894
6895 static bool
6896 resolve_expr_ppc (gfc_expr* e)
6897 {
6898 gfc_component *comp;
6899
6900 comp = gfc_get_proc_ptr_comp (e);
6901 gcc_assert (comp != NULL);
6902
6903 /* Convert to EXPR_FUNCTION. */
6904 e->expr_type = EXPR_FUNCTION;
6905 e->value.function.isym = NULL;
6906 e->value.function.actual = e->value.compcall.actual;
6907 e->ts = comp->ts;
6908 if (comp->as != NULL)
6909 e->rank = comp->as->rank;
6910
6911 if (!comp->attr.function)
6912 gfc_add_function (&comp->attr, comp->name, &e->where);
6913
6914 if (!gfc_resolve_ref (e))
6915 return false;
6916
6917 if (!resolve_actual_arglist (e->value.function.actual, comp->attr.proc,
6918 !(comp->ts.interface
6919 && comp->ts.interface->formal)))
6920 return false;
6921
6922 if (!update_ppc_arglist (e))
6923 return false;
6924
6925 if (!check_pure_function(e))
6926 return false;
6927
6928 gfc_ppc_use (comp, &e->value.compcall.actual, &e->where);
6929
6930 return true;
6931 }
6932
6933
6934 static bool
6935 gfc_is_expandable_expr (gfc_expr *e)
6936 {
6937 gfc_constructor *con;
6938
6939 if (e->expr_type == EXPR_ARRAY)
6940 {
6941 /* Traverse the constructor looking for variables that are flavor
6942 parameter. Parameters must be expanded since they are fully used at
6943 compile time. */
6944 con = gfc_constructor_first (e->value.constructor);
6945 for (; con; con = gfc_constructor_next (con))
6946 {
6947 if (con->expr->expr_type == EXPR_VARIABLE
6948 && con->expr->symtree
6949 && (con->expr->symtree->n.sym->attr.flavor == FL_PARAMETER
6950 || con->expr->symtree->n.sym->attr.flavor == FL_VARIABLE))
6951 return true;
6952 if (con->expr->expr_type == EXPR_ARRAY
6953 && gfc_is_expandable_expr (con->expr))
6954 return true;
6955 }
6956 }
6957
6958 return false;
6959 }
6960
6961
6962 /* Sometimes variables in specification expressions of the result
6963 of module procedures in submodules wind up not being the 'real'
6964 dummy. Find this, if possible, in the namespace of the first
6965 formal argument. */
6966
6967 static void
6968 fixup_unique_dummy (gfc_expr *e)
6969 {
6970 gfc_symtree *st = NULL;
6971 gfc_symbol *s = NULL;
6972
6973 if (e->symtree->n.sym->ns->proc_name
6974 && e->symtree->n.sym->ns->proc_name->formal)
6975 s = e->symtree->n.sym->ns->proc_name->formal->sym;
6976
6977 if (s != NULL)
6978 st = gfc_find_symtree (s->ns->sym_root, e->symtree->n.sym->name);
6979
6980 if (st != NULL
6981 && st->n.sym != NULL
6982 && st->n.sym->attr.dummy)
6983 e->symtree = st;
6984 }
6985
6986 /* Resolve an expression. That is, make sure that types of operands agree
6987 with their operators, intrinsic operators are converted to function calls
6988 for overloaded types and unresolved function references are resolved. */
6989
6990 bool
6991 gfc_resolve_expr (gfc_expr *e)
6992 {
6993 bool t;
6994 bool inquiry_save, actual_arg_save, first_actual_arg_save;
6995
6996 if (e == NULL || e->do_not_resolve_again)
6997 return true;
6998
6999 /* inquiry_argument only applies to variables. */
7000 inquiry_save = inquiry_argument;
7001 actual_arg_save = actual_arg;
7002 first_actual_arg_save = first_actual_arg;
7003
7004 if (e->expr_type != EXPR_VARIABLE)
7005 {
7006 inquiry_argument = false;
7007 actual_arg = false;
7008 first_actual_arg = false;
7009 }
7010 else if (e->symtree != NULL
7011 && *e->symtree->name == '@'
7012 && e->symtree->n.sym->attr.dummy)
7013 {
7014 /* Deal with submodule specification expressions that are not
7015 found to be referenced in module.c(read_cleanup). */
7016 fixup_unique_dummy (e);
7017 }
7018
7019 switch (e->expr_type)
7020 {
7021 case EXPR_OP:
7022 t = resolve_operator (e);
7023 break;
7024
7025 case EXPR_FUNCTION:
7026 case EXPR_VARIABLE:
7027
7028 if (check_host_association (e))
7029 t = resolve_function (e);
7030 else
7031 t = resolve_variable (e);
7032
7033 if (e->ts.type == BT_CHARACTER && e->ts.u.cl == NULL && e->ref
7034 && e->ref->type != REF_SUBSTRING)
7035 gfc_resolve_substring_charlen (e);
7036
7037 break;
7038
7039 case EXPR_COMPCALL:
7040 t = resolve_typebound_function (e);
7041 break;
7042
7043 case EXPR_SUBSTRING:
7044 t = gfc_resolve_ref (e);
7045 break;
7046
7047 case EXPR_CONSTANT:
7048 case EXPR_NULL:
7049 t = true;
7050 break;
7051
7052 case EXPR_PPC:
7053 t = resolve_expr_ppc (e);
7054 break;
7055
7056 case EXPR_ARRAY:
7057 t = false;
7058 if (!gfc_resolve_ref (e))
7059 break;
7060
7061 t = gfc_resolve_array_constructor (e);
7062 /* Also try to expand a constructor. */
7063 if (t)
7064 {
7065 gfc_expression_rank (e);
7066 if (gfc_is_constant_expr (e) || gfc_is_expandable_expr (e))
7067 gfc_expand_constructor (e, false);
7068 }
7069
7070 /* This provides the opportunity for the length of constructors with
7071 character valued function elements to propagate the string length
7072 to the expression. */
7073 if (t && e->ts.type == BT_CHARACTER)
7074 {
7075 /* For efficiency, we call gfc_expand_constructor for BT_CHARACTER
7076 here rather then add a duplicate test for it above. */
7077 gfc_expand_constructor (e, false);
7078 t = gfc_resolve_character_array_constructor (e);
7079 }
7080
7081 break;
7082
7083 case EXPR_STRUCTURE:
7084 t = gfc_resolve_ref (e);
7085 if (!t)
7086 break;
7087
7088 t = resolve_structure_cons (e, 0);
7089 if (!t)
7090 break;
7091
7092 t = gfc_simplify_expr (e, 0);
7093 break;
7094
7095 default:
7096 gfc_internal_error ("gfc_resolve_expr(): Bad expression type");
7097 }
7098
7099 if (e->ts.type == BT_CHARACTER && t && !e->ts.u.cl)
7100 fixup_charlen (e);
7101
7102 inquiry_argument = inquiry_save;
7103 actual_arg = actual_arg_save;
7104 first_actual_arg = first_actual_arg_save;
7105
7106 /* For some reason, resolving these expressions a second time mangles
7107 the typespec of the expression itself. */
7108 if (t && e->expr_type == EXPR_VARIABLE
7109 && e->symtree->n.sym->attr.select_rank_temporary
7110 && UNLIMITED_POLY (e->symtree->n.sym))
7111 e->do_not_resolve_again = 1;
7112
7113 return t;
7114 }
7115
7116
7117 /* Resolve an expression from an iterator. They must be scalar and have
7118 INTEGER or (optionally) REAL type. */
7119
7120 static bool
7121 gfc_resolve_iterator_expr (gfc_expr *expr, bool real_ok,
7122 const char *name_msgid)
7123 {
7124 if (!gfc_resolve_expr (expr))
7125 return false;
7126
7127 if (expr->rank != 0)
7128 {
7129 gfc_error ("%s at %L must be a scalar", _(name_msgid), &expr->where);
7130 return false;
7131 }
7132
7133 if (expr->ts.type != BT_INTEGER)
7134 {
7135 if (expr->ts.type == BT_REAL)
7136 {
7137 if (real_ok)
7138 return gfc_notify_std (GFC_STD_F95_DEL,
7139 "%s at %L must be integer",
7140 _(name_msgid), &expr->where);
7141 else
7142 {
7143 gfc_error ("%s at %L must be INTEGER", _(name_msgid),
7144 &expr->where);
7145 return false;
7146 }
7147 }
7148 else
7149 {
7150 gfc_error ("%s at %L must be INTEGER", _(name_msgid), &expr->where);
7151 return false;
7152 }
7153 }
7154 return true;
7155 }
7156
7157
7158 /* Resolve the expressions in an iterator structure. If REAL_OK is
7159 false allow only INTEGER type iterators, otherwise allow REAL types.
7160 Set own_scope to true for ac-implied-do and data-implied-do as those
7161 have a separate scope such that, e.g., a INTENT(IN) doesn't apply. */
7162
7163 bool
7164 gfc_resolve_iterator (gfc_iterator *iter, bool real_ok, bool own_scope)
7165 {
7166 if (!gfc_resolve_iterator_expr (iter->var, real_ok, "Loop variable"))
7167 return false;
7168
7169 if (!gfc_check_vardef_context (iter->var, false, false, own_scope,
7170 _("iterator variable")))
7171 return false;
7172
7173 if (!gfc_resolve_iterator_expr (iter->start, real_ok,
7174 "Start expression in DO loop"))
7175 return false;
7176
7177 if (!gfc_resolve_iterator_expr (iter->end, real_ok,
7178 "End expression in DO loop"))
7179 return false;
7180
7181 if (!gfc_resolve_iterator_expr (iter->step, real_ok,
7182 "Step expression in DO loop"))
7183 return false;
7184
7185 /* Convert start, end, and step to the same type as var. */
7186 if (iter->start->ts.kind != iter->var->ts.kind
7187 || iter->start->ts.type != iter->var->ts.type)
7188 gfc_convert_type (iter->start, &iter->var->ts, 1);
7189
7190 if (iter->end->ts.kind != iter->var->ts.kind
7191 || iter->end->ts.type != iter->var->ts.type)
7192 gfc_convert_type (iter->end, &iter->var->ts, 1);
7193
7194 if (iter->step->ts.kind != iter->var->ts.kind
7195 || iter->step->ts.type != iter->var->ts.type)
7196 gfc_convert_type (iter->step, &iter->var->ts, 1);
7197
7198 if (iter->step->expr_type == EXPR_CONSTANT)
7199 {
7200 if ((iter->step->ts.type == BT_INTEGER
7201 && mpz_cmp_ui (iter->step->value.integer, 0) == 0)
7202 || (iter->step->ts.type == BT_REAL
7203 && mpfr_sgn (iter->step->value.real) == 0))
7204 {
7205 gfc_error ("Step expression in DO loop at %L cannot be zero",
7206 &iter->step->where);
7207 return false;
7208 }
7209 }
7210
7211 if (iter->start->expr_type == EXPR_CONSTANT
7212 && iter->end->expr_type == EXPR_CONSTANT
7213 && iter->step->expr_type == EXPR_CONSTANT)
7214 {
7215 int sgn, cmp;
7216 if (iter->start->ts.type == BT_INTEGER)
7217 {
7218 sgn = mpz_cmp_ui (iter->step->value.integer, 0);
7219 cmp = mpz_cmp (iter->end->value.integer, iter->start->value.integer);
7220 }
7221 else
7222 {
7223 sgn = mpfr_sgn (iter->step->value.real);
7224 cmp = mpfr_cmp (iter->end->value.real, iter->start->value.real);
7225 }
7226 if (warn_zerotrip && ((sgn > 0 && cmp < 0) || (sgn < 0 && cmp > 0)))
7227 gfc_warning (OPT_Wzerotrip,
7228 "DO loop at %L will be executed zero times",
7229 &iter->step->where);
7230 }
7231
7232 if (iter->end->expr_type == EXPR_CONSTANT
7233 && iter->end->ts.type == BT_INTEGER
7234 && iter->step->expr_type == EXPR_CONSTANT
7235 && iter->step->ts.type == BT_INTEGER
7236 && (mpz_cmp_si (iter->step->value.integer, -1L) == 0
7237 || mpz_cmp_si (iter->step->value.integer, 1L) == 0))
7238 {
7239 bool is_step_positive = mpz_cmp_ui (iter->step->value.integer, 1) == 0;
7240 int k = gfc_validate_kind (BT_INTEGER, iter->end->ts.kind, false);
7241
7242 if (is_step_positive
7243 && mpz_cmp (iter->end->value.integer, gfc_integer_kinds[k].huge) == 0)
7244 gfc_warning (OPT_Wundefined_do_loop,
7245 "DO loop at %L is undefined as it overflows",
7246 &iter->step->where);
7247 else if (!is_step_positive
7248 && mpz_cmp (iter->end->value.integer,
7249 gfc_integer_kinds[k].min_int) == 0)
7250 gfc_warning (OPT_Wundefined_do_loop,
7251 "DO loop at %L is undefined as it underflows",
7252 &iter->step->where);
7253 }
7254
7255 return true;
7256 }
7257
7258
7259 /* Traversal function for find_forall_index. f == 2 signals that
7260 that variable itself is not to be checked - only the references. */
7261
7262 static bool
7263 forall_index (gfc_expr *expr, gfc_symbol *sym, int *f)
7264 {
7265 if (expr->expr_type != EXPR_VARIABLE)
7266 return false;
7267
7268 /* A scalar assignment */
7269 if (!expr->ref || *f == 1)
7270 {
7271 if (expr->symtree->n.sym == sym)
7272 return true;
7273 else
7274 return false;
7275 }
7276
7277 if (*f == 2)
7278 *f = 1;
7279 return false;
7280 }
7281
7282
7283 /* Check whether the FORALL index appears in the expression or not.
7284 Returns true if SYM is found in EXPR. */
7285
7286 bool
7287 find_forall_index (gfc_expr *expr, gfc_symbol *sym, int f)
7288 {
7289 if (gfc_traverse_expr (expr, sym, forall_index, f))
7290 return true;
7291 else
7292 return false;
7293 }
7294
7295
7296 /* Resolve a list of FORALL iterators. The FORALL index-name is constrained
7297 to be a scalar INTEGER variable. The subscripts and stride are scalar
7298 INTEGERs, and if stride is a constant it must be nonzero.
7299 Furthermore "A subscript or stride in a forall-triplet-spec shall
7300 not contain a reference to any index-name in the
7301 forall-triplet-spec-list in which it appears." (7.5.4.1) */
7302
7303 static void
7304 resolve_forall_iterators (gfc_forall_iterator *it)
7305 {
7306 gfc_forall_iterator *iter, *iter2;
7307
7308 for (iter = it; iter; iter = iter->next)
7309 {
7310 if (gfc_resolve_expr (iter->var)
7311 && (iter->var->ts.type != BT_INTEGER || iter->var->rank != 0))
7312 gfc_error ("FORALL index-name at %L must be a scalar INTEGER",
7313 &iter->var->where);
7314
7315 if (gfc_resolve_expr (iter->start)
7316 && (iter->start->ts.type != BT_INTEGER || iter->start->rank != 0))
7317 gfc_error ("FORALL start expression at %L must be a scalar INTEGER",
7318 &iter->start->where);
7319 if (iter->var->ts.kind != iter->start->ts.kind)
7320 gfc_convert_type (iter->start, &iter->var->ts, 1);
7321
7322 if (gfc_resolve_expr (iter->end)
7323 && (iter->end->ts.type != BT_INTEGER || iter->end->rank != 0))
7324 gfc_error ("FORALL end expression at %L must be a scalar INTEGER",
7325 &iter->end->where);
7326 if (iter->var->ts.kind != iter->end->ts.kind)
7327 gfc_convert_type (iter->end, &iter->var->ts, 1);
7328
7329 if (gfc_resolve_expr (iter->stride))
7330 {
7331 if (iter->stride->ts.type != BT_INTEGER || iter->stride->rank != 0)
7332 gfc_error ("FORALL stride expression at %L must be a scalar %s",
7333 &iter->stride->where, "INTEGER");
7334
7335 if (iter->stride->expr_type == EXPR_CONSTANT
7336 && mpz_cmp_ui (iter->stride->value.integer, 0) == 0)
7337 gfc_error ("FORALL stride expression at %L cannot be zero",
7338 &iter->stride->where);
7339 }
7340 if (iter->var->ts.kind != iter->stride->ts.kind)
7341 gfc_convert_type (iter->stride, &iter->var->ts, 1);
7342 }
7343
7344 for (iter = it; iter; iter = iter->next)
7345 for (iter2 = iter; iter2; iter2 = iter2->next)
7346 {
7347 if (find_forall_index (iter2->start, iter->var->symtree->n.sym, 0)
7348 || find_forall_index (iter2->end, iter->var->symtree->n.sym, 0)
7349 || find_forall_index (iter2->stride, iter->var->symtree->n.sym, 0))
7350 gfc_error ("FORALL index %qs may not appear in triplet "
7351 "specification at %L", iter->var->symtree->name,
7352 &iter2->start->where);
7353 }
7354 }
7355
7356
7357 /* Given a pointer to a symbol that is a derived type, see if it's
7358 inaccessible, i.e. if it's defined in another module and the components are
7359 PRIVATE. The search is recursive if necessary. Returns zero if no
7360 inaccessible components are found, nonzero otherwise. */
7361
7362 static int
7363 derived_inaccessible (gfc_symbol *sym)
7364 {
7365 gfc_component *c;
7366
7367 if (sym->attr.use_assoc && sym->attr.private_comp)
7368 return 1;
7369
7370 for (c = sym->components; c; c = c->next)
7371 {
7372 /* Prevent an infinite loop through this function. */
7373 if (c->ts.type == BT_DERIVED && c->attr.pointer
7374 && sym == c->ts.u.derived)
7375 continue;
7376
7377 if (c->ts.type == BT_DERIVED && derived_inaccessible (c->ts.u.derived))
7378 return 1;
7379 }
7380
7381 return 0;
7382 }
7383
7384
7385 /* Resolve the argument of a deallocate expression. The expression must be
7386 a pointer or a full array. */
7387
7388 static bool
7389 resolve_deallocate_expr (gfc_expr *e)
7390 {
7391 symbol_attribute attr;
7392 int allocatable, pointer;
7393 gfc_ref *ref;
7394 gfc_symbol *sym;
7395 gfc_component *c;
7396 bool unlimited;
7397
7398 if (!gfc_resolve_expr (e))
7399 return false;
7400
7401 if (e->expr_type != EXPR_VARIABLE)
7402 goto bad;
7403
7404 sym = e->symtree->n.sym;
7405 unlimited = UNLIMITED_POLY(sym);
7406
7407 if (sym->ts.type == BT_CLASS)
7408 {
7409 allocatable = CLASS_DATA (sym)->attr.allocatable;
7410 pointer = CLASS_DATA (sym)->attr.class_pointer;
7411 }
7412 else
7413 {
7414 allocatable = sym->attr.allocatable;
7415 pointer = sym->attr.pointer;
7416 }
7417 for (ref = e->ref; ref; ref = ref->next)
7418 {
7419 switch (ref->type)
7420 {
7421 case REF_ARRAY:
7422 if (ref->u.ar.type != AR_FULL
7423 && !(ref->u.ar.type == AR_ELEMENT && ref->u.ar.as->rank == 0
7424 && ref->u.ar.codimen && gfc_ref_this_image (ref)))
7425 allocatable = 0;
7426 break;
7427
7428 case REF_COMPONENT:
7429 c = ref->u.c.component;
7430 if (c->ts.type == BT_CLASS)
7431 {
7432 allocatable = CLASS_DATA (c)->attr.allocatable;
7433 pointer = CLASS_DATA (c)->attr.class_pointer;
7434 }
7435 else
7436 {
7437 allocatable = c->attr.allocatable;
7438 pointer = c->attr.pointer;
7439 }
7440 break;
7441
7442 case REF_SUBSTRING:
7443 case REF_INQUIRY:
7444 allocatable = 0;
7445 break;
7446 }
7447 }
7448
7449 attr = gfc_expr_attr (e);
7450
7451 if (allocatable == 0 && attr.pointer == 0 && !unlimited)
7452 {
7453 bad:
7454 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7455 &e->where);
7456 return false;
7457 }
7458
7459 /* F2008, C644. */
7460 if (gfc_is_coindexed (e))
7461 {
7462 gfc_error ("Coindexed allocatable object at %L", &e->where);
7463 return false;
7464 }
7465
7466 if (pointer
7467 && !gfc_check_vardef_context (e, true, true, false,
7468 _("DEALLOCATE object")))
7469 return false;
7470 if (!gfc_check_vardef_context (e, false, true, false,
7471 _("DEALLOCATE object")))
7472 return false;
7473
7474 return true;
7475 }
7476
7477
7478 /* Returns true if the expression e contains a reference to the symbol sym. */
7479 static bool
7480 sym_in_expr (gfc_expr *e, gfc_symbol *sym, int *f ATTRIBUTE_UNUSED)
7481 {
7482 if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym == sym)
7483 return true;
7484
7485 return false;
7486 }
7487
7488 bool
7489 gfc_find_sym_in_expr (gfc_symbol *sym, gfc_expr *e)
7490 {
7491 return gfc_traverse_expr (e, sym, sym_in_expr, 0);
7492 }
7493
7494
7495 /* Given the expression node e for an allocatable/pointer of derived type to be
7496 allocated, get the expression node to be initialized afterwards (needed for
7497 derived types with default initializers, and derived types with allocatable
7498 components that need nullification.) */
7499
7500 gfc_expr *
7501 gfc_expr_to_initialize (gfc_expr *e)
7502 {
7503 gfc_expr *result;
7504 gfc_ref *ref;
7505 int i;
7506
7507 result = gfc_copy_expr (e);
7508
7509 /* Change the last array reference from AR_ELEMENT to AR_FULL. */
7510 for (ref = result->ref; ref; ref = ref->next)
7511 if (ref->type == REF_ARRAY && ref->next == NULL)
7512 {
7513 if (ref->u.ar.dimen == 0
7514 && ref->u.ar.as && ref->u.ar.as->corank)
7515 return result;
7516
7517 ref->u.ar.type = AR_FULL;
7518
7519 for (i = 0; i < ref->u.ar.dimen; i++)
7520 ref->u.ar.start[i] = ref->u.ar.end[i] = ref->u.ar.stride[i] = NULL;
7521
7522 break;
7523 }
7524
7525 gfc_free_shape (&result->shape, result->rank);
7526
7527 /* Recalculate rank, shape, etc. */
7528 gfc_resolve_expr (result);
7529 return result;
7530 }
7531
7532
7533 /* If the last ref of an expression is an array ref, return a copy of the
7534 expression with that one removed. Otherwise, a copy of the original
7535 expression. This is used for allocate-expressions and pointer assignment
7536 LHS, where there may be an array specification that needs to be stripped
7537 off when using gfc_check_vardef_context. */
7538
7539 static gfc_expr*
7540 remove_last_array_ref (gfc_expr* e)
7541 {
7542 gfc_expr* e2;
7543 gfc_ref** r;
7544
7545 e2 = gfc_copy_expr (e);
7546 for (r = &e2->ref; *r; r = &(*r)->next)
7547 if ((*r)->type == REF_ARRAY && !(*r)->next)
7548 {
7549 gfc_free_ref_list (*r);
7550 *r = NULL;
7551 break;
7552 }
7553
7554 return e2;
7555 }
7556
7557
7558 /* Used in resolve_allocate_expr to check that a allocation-object and
7559 a source-expr are conformable. This does not catch all possible
7560 cases; in particular a runtime checking is needed. */
7561
7562 static bool
7563 conformable_arrays (gfc_expr *e1, gfc_expr *e2)
7564 {
7565 gfc_ref *tail;
7566 for (tail = e2->ref; tail && tail->next; tail = tail->next);
7567
7568 /* First compare rank. */
7569 if ((tail && (!tail->u.ar.as || e1->rank != tail->u.ar.as->rank))
7570 || (!tail && e1->rank != e2->rank))
7571 {
7572 gfc_error ("Source-expr at %L must be scalar or have the "
7573 "same rank as the allocate-object at %L",
7574 &e1->where, &e2->where);
7575 return false;
7576 }
7577
7578 if (e1->shape)
7579 {
7580 int i;
7581 mpz_t s;
7582
7583 mpz_init (s);
7584
7585 for (i = 0; i < e1->rank; i++)
7586 {
7587 if (tail->u.ar.start[i] == NULL)
7588 break;
7589
7590 if (tail->u.ar.end[i])
7591 {
7592 mpz_set (s, tail->u.ar.end[i]->value.integer);
7593 mpz_sub (s, s, tail->u.ar.start[i]->value.integer);
7594 mpz_add_ui (s, s, 1);
7595 }
7596 else
7597 {
7598 mpz_set (s, tail->u.ar.start[i]->value.integer);
7599 }
7600
7601 if (mpz_cmp (e1->shape[i], s) != 0)
7602 {
7603 gfc_error ("Source-expr at %L and allocate-object at %L must "
7604 "have the same shape", &e1->where, &e2->where);
7605 mpz_clear (s);
7606 return false;
7607 }
7608 }
7609
7610 mpz_clear (s);
7611 }
7612
7613 return true;
7614 }
7615
7616
7617 /* Resolve the expression in an ALLOCATE statement, doing the additional
7618 checks to see whether the expression is OK or not. The expression must
7619 have a trailing array reference that gives the size of the array. */
7620
7621 static bool
7622 resolve_allocate_expr (gfc_expr *e, gfc_code *code, bool *array_alloc_wo_spec)
7623 {
7624 int i, pointer, allocatable, dimension, is_abstract;
7625 int codimension;
7626 bool coindexed;
7627 bool unlimited;
7628 symbol_attribute attr;
7629 gfc_ref *ref, *ref2;
7630 gfc_expr *e2;
7631 gfc_array_ref *ar;
7632 gfc_symbol *sym = NULL;
7633 gfc_alloc *a;
7634 gfc_component *c;
7635 bool t;
7636
7637 /* Mark the utmost array component as being in allocate to allow DIMEN_STAR
7638 checking of coarrays. */
7639 for (ref = e->ref; ref; ref = ref->next)
7640 if (ref->next == NULL)
7641 break;
7642
7643 if (ref && ref->type == REF_ARRAY)
7644 ref->u.ar.in_allocate = true;
7645
7646 if (!gfc_resolve_expr (e))
7647 goto failure;
7648
7649 /* Make sure the expression is allocatable or a pointer. If it is
7650 pointer, the next-to-last reference must be a pointer. */
7651
7652 ref2 = NULL;
7653 if (e->symtree)
7654 sym = e->symtree->n.sym;
7655
7656 /* Check whether ultimate component is abstract and CLASS. */
7657 is_abstract = 0;
7658
7659 /* Is the allocate-object unlimited polymorphic? */
7660 unlimited = UNLIMITED_POLY(e);
7661
7662 if (e->expr_type != EXPR_VARIABLE)
7663 {
7664 allocatable = 0;
7665 attr = gfc_expr_attr (e);
7666 pointer = attr.pointer;
7667 dimension = attr.dimension;
7668 codimension = attr.codimension;
7669 }
7670 else
7671 {
7672 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
7673 {
7674 allocatable = CLASS_DATA (sym)->attr.allocatable;
7675 pointer = CLASS_DATA (sym)->attr.class_pointer;
7676 dimension = CLASS_DATA (sym)->attr.dimension;
7677 codimension = CLASS_DATA (sym)->attr.codimension;
7678 is_abstract = CLASS_DATA (sym)->attr.abstract;
7679 }
7680 else
7681 {
7682 allocatable = sym->attr.allocatable;
7683 pointer = sym->attr.pointer;
7684 dimension = sym->attr.dimension;
7685 codimension = sym->attr.codimension;
7686 }
7687
7688 coindexed = false;
7689
7690 for (ref = e->ref; ref; ref2 = ref, ref = ref->next)
7691 {
7692 switch (ref->type)
7693 {
7694 case REF_ARRAY:
7695 if (ref->u.ar.codimen > 0)
7696 {
7697 int n;
7698 for (n = ref->u.ar.dimen;
7699 n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
7700 if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
7701 {
7702 coindexed = true;
7703 break;
7704 }
7705 }
7706
7707 if (ref->next != NULL)
7708 pointer = 0;
7709 break;
7710
7711 case REF_COMPONENT:
7712 /* F2008, C644. */
7713 if (coindexed)
7714 {
7715 gfc_error ("Coindexed allocatable object at %L",
7716 &e->where);
7717 goto failure;
7718 }
7719
7720 c = ref->u.c.component;
7721 if (c->ts.type == BT_CLASS)
7722 {
7723 allocatable = CLASS_DATA (c)->attr.allocatable;
7724 pointer = CLASS_DATA (c)->attr.class_pointer;
7725 dimension = CLASS_DATA (c)->attr.dimension;
7726 codimension = CLASS_DATA (c)->attr.codimension;
7727 is_abstract = CLASS_DATA (c)->attr.abstract;
7728 }
7729 else
7730 {
7731 allocatable = c->attr.allocatable;
7732 pointer = c->attr.pointer;
7733 dimension = c->attr.dimension;
7734 codimension = c->attr.codimension;
7735 is_abstract = c->attr.abstract;
7736 }
7737 break;
7738
7739 case REF_SUBSTRING:
7740 case REF_INQUIRY:
7741 allocatable = 0;
7742 pointer = 0;
7743 break;
7744 }
7745 }
7746 }
7747
7748 /* Check for F08:C628. */
7749 if (allocatable == 0 && pointer == 0 && !unlimited)
7750 {
7751 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7752 &e->where);
7753 goto failure;
7754 }
7755
7756 /* Some checks for the SOURCE tag. */
7757 if (code->expr3)
7758 {
7759 /* Check F03:C631. */
7760 if (!gfc_type_compatible (&e->ts, &code->expr3->ts))
7761 {
7762 gfc_error ("Type of entity at %L is type incompatible with "
7763 "source-expr at %L", &e->where, &code->expr3->where);
7764 goto failure;
7765 }
7766
7767 /* Check F03:C632 and restriction following Note 6.18. */
7768 if (code->expr3->rank > 0 && !conformable_arrays (code->expr3, e))
7769 goto failure;
7770
7771 /* Check F03:C633. */
7772 if (code->expr3->ts.kind != e->ts.kind && !unlimited)
7773 {
7774 gfc_error ("The allocate-object at %L and the source-expr at %L "
7775 "shall have the same kind type parameter",
7776 &e->where, &code->expr3->where);
7777 goto failure;
7778 }
7779
7780 /* Check F2008, C642. */
7781 if (code->expr3->ts.type == BT_DERIVED
7782 && ((codimension && gfc_expr_attr (code->expr3).lock_comp)
7783 || (code->expr3->ts.u.derived->from_intmod
7784 == INTMOD_ISO_FORTRAN_ENV
7785 && code->expr3->ts.u.derived->intmod_sym_id
7786 == ISOFORTRAN_LOCK_TYPE)))
7787 {
7788 gfc_error ("The source-expr at %L shall neither be of type "
7789 "LOCK_TYPE nor have a LOCK_TYPE component if "
7790 "allocate-object at %L is a coarray",
7791 &code->expr3->where, &e->where);
7792 goto failure;
7793 }
7794
7795 /* Check TS18508, C702/C703. */
7796 if (code->expr3->ts.type == BT_DERIVED
7797 && ((codimension && gfc_expr_attr (code->expr3).event_comp)
7798 || (code->expr3->ts.u.derived->from_intmod
7799 == INTMOD_ISO_FORTRAN_ENV
7800 && code->expr3->ts.u.derived->intmod_sym_id
7801 == ISOFORTRAN_EVENT_TYPE)))
7802 {
7803 gfc_error ("The source-expr at %L shall neither be of type "
7804 "EVENT_TYPE nor have a EVENT_TYPE component if "
7805 "allocate-object at %L is a coarray",
7806 &code->expr3->where, &e->where);
7807 goto failure;
7808 }
7809 }
7810
7811 /* Check F08:C629. */
7812 if (is_abstract && code->ext.alloc.ts.type == BT_UNKNOWN
7813 && !code->expr3)
7814 {
7815 gcc_assert (e->ts.type == BT_CLASS);
7816 gfc_error ("Allocating %s of ABSTRACT base type at %L requires a "
7817 "type-spec or source-expr", sym->name, &e->where);
7818 goto failure;
7819 }
7820
7821 /* Check F08:C632. */
7822 if (code->ext.alloc.ts.type == BT_CHARACTER && !e->ts.deferred
7823 && !UNLIMITED_POLY (e))
7824 {
7825 int cmp;
7826
7827 if (!e->ts.u.cl->length)
7828 goto failure;
7829
7830 cmp = gfc_dep_compare_expr (e->ts.u.cl->length,
7831 code->ext.alloc.ts.u.cl->length);
7832 if (cmp == 1 || cmp == -1 || cmp == -3)
7833 {
7834 gfc_error ("Allocating %s at %L with type-spec requires the same "
7835 "character-length parameter as in the declaration",
7836 sym->name, &e->where);
7837 goto failure;
7838 }
7839 }
7840
7841 /* In the variable definition context checks, gfc_expr_attr is used
7842 on the expression. This is fooled by the array specification
7843 present in e, thus we have to eliminate that one temporarily. */
7844 e2 = remove_last_array_ref (e);
7845 t = true;
7846 if (t && pointer)
7847 t = gfc_check_vardef_context (e2, true, true, false,
7848 _("ALLOCATE object"));
7849 if (t)
7850 t = gfc_check_vardef_context (e2, false, true, false,
7851 _("ALLOCATE object"));
7852 gfc_free_expr (e2);
7853 if (!t)
7854 goto failure;
7855
7856 if (e->ts.type == BT_CLASS && CLASS_DATA (e)->attr.dimension
7857 && !code->expr3 && code->ext.alloc.ts.type == BT_DERIVED)
7858 {
7859 /* For class arrays, the initialization with SOURCE is done
7860 using _copy and trans_call. It is convenient to exploit that
7861 when the allocated type is different from the declared type but
7862 no SOURCE exists by setting expr3. */
7863 code->expr3 = gfc_default_initializer (&code->ext.alloc.ts);
7864 }
7865 else if (flag_coarray != GFC_FCOARRAY_LIB && e->ts.type == BT_DERIVED
7866 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
7867 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
7868 {
7869 /* We have to zero initialize the integer variable. */
7870 code->expr3 = gfc_get_int_expr (gfc_default_integer_kind, &e->where, 0);
7871 }
7872
7873 if (e->ts.type == BT_CLASS && !unlimited && !UNLIMITED_POLY (code->expr3))
7874 {
7875 /* Make sure the vtab symbol is present when
7876 the module variables are generated. */
7877 gfc_typespec ts = e->ts;
7878 if (code->expr3)
7879 ts = code->expr3->ts;
7880 else if (code->ext.alloc.ts.type == BT_DERIVED)
7881 ts = code->ext.alloc.ts;
7882
7883 /* Finding the vtab also publishes the type's symbol. Therefore this
7884 statement is necessary. */
7885 gfc_find_derived_vtab (ts.u.derived);
7886 }
7887 else if (unlimited && !UNLIMITED_POLY (code->expr3))
7888 {
7889 /* Again, make sure the vtab symbol is present when
7890 the module variables are generated. */
7891 gfc_typespec *ts = NULL;
7892 if (code->expr3)
7893 ts = &code->expr3->ts;
7894 else
7895 ts = &code->ext.alloc.ts;
7896
7897 gcc_assert (ts);
7898
7899 /* Finding the vtab also publishes the type's symbol. Therefore this
7900 statement is necessary. */
7901 gfc_find_vtab (ts);
7902 }
7903
7904 if (dimension == 0 && codimension == 0)
7905 goto success;
7906
7907 /* Make sure the last reference node is an array specification. */
7908
7909 if (!ref2 || ref2->type != REF_ARRAY || ref2->u.ar.type == AR_FULL
7910 || (dimension && ref2->u.ar.dimen == 0))
7911 {
7912 /* F08:C633. */
7913 if (code->expr3)
7914 {
7915 if (!gfc_notify_std (GFC_STD_F2008, "Array specification required "
7916 "in ALLOCATE statement at %L", &e->where))
7917 goto failure;
7918 if (code->expr3->rank != 0)
7919 *array_alloc_wo_spec = true;
7920 else
7921 {
7922 gfc_error ("Array specification or array-valued SOURCE= "
7923 "expression required in ALLOCATE statement at %L",
7924 &e->where);
7925 goto failure;
7926 }
7927 }
7928 else
7929 {
7930 gfc_error ("Array specification required in ALLOCATE statement "
7931 "at %L", &e->where);
7932 goto failure;
7933 }
7934 }
7935
7936 /* Make sure that the array section reference makes sense in the
7937 context of an ALLOCATE specification. */
7938
7939 ar = &ref2->u.ar;
7940
7941 if (codimension)
7942 for (i = ar->dimen; i < ar->dimen + ar->codimen; i++)
7943 {
7944 switch (ar->dimen_type[i])
7945 {
7946 case DIMEN_THIS_IMAGE:
7947 gfc_error ("Coarray specification required in ALLOCATE statement "
7948 "at %L", &e->where);
7949 goto failure;
7950
7951 case DIMEN_RANGE:
7952 if (ar->start[i] == 0 || ar->end[i] == 0)
7953 {
7954 /* If ar->stride[i] is NULL, we issued a previous error. */
7955 if (ar->stride[i] == NULL)
7956 gfc_error ("Bad array specification in ALLOCATE statement "
7957 "at %L", &e->where);
7958 goto failure;
7959 }
7960 else if (gfc_dep_compare_expr (ar->start[i], ar->end[i]) == 1)
7961 {
7962 gfc_error ("Upper cobound is less than lower cobound at %L",
7963 &ar->start[i]->where);
7964 goto failure;
7965 }
7966 break;
7967
7968 case DIMEN_ELEMENT:
7969 if (ar->start[i]->expr_type == EXPR_CONSTANT)
7970 {
7971 gcc_assert (ar->start[i]->ts.type == BT_INTEGER);
7972 if (mpz_cmp_si (ar->start[i]->value.integer, 1) < 0)
7973 {
7974 gfc_error ("Upper cobound is less than lower cobound "
7975 "of 1 at %L", &ar->start[i]->where);
7976 goto failure;
7977 }
7978 }
7979 break;
7980
7981 case DIMEN_STAR:
7982 break;
7983
7984 default:
7985 gfc_error ("Bad array specification in ALLOCATE statement at %L",
7986 &e->where);
7987 goto failure;
7988
7989 }
7990 }
7991 for (i = 0; i < ar->dimen; i++)
7992 {
7993 if (ar->type == AR_ELEMENT || ar->type == AR_FULL)
7994 goto check_symbols;
7995
7996 switch (ar->dimen_type[i])
7997 {
7998 case DIMEN_ELEMENT:
7999 break;
8000
8001 case DIMEN_RANGE:
8002 if (ar->start[i] != NULL
8003 && ar->end[i] != NULL
8004 && ar->stride[i] == NULL)
8005 break;
8006
8007 /* Fall through. */
8008
8009 case DIMEN_UNKNOWN:
8010 case DIMEN_VECTOR:
8011 case DIMEN_STAR:
8012 case DIMEN_THIS_IMAGE:
8013 gfc_error ("Bad array specification in ALLOCATE statement at %L",
8014 &e->where);
8015 goto failure;
8016 }
8017
8018 check_symbols:
8019 for (a = code->ext.alloc.list; a; a = a->next)
8020 {
8021 sym = a->expr->symtree->n.sym;
8022
8023 /* TODO - check derived type components. */
8024 if (gfc_bt_struct (sym->ts.type) || sym->ts.type == BT_CLASS)
8025 continue;
8026
8027 if ((ar->start[i] != NULL
8028 && gfc_find_sym_in_expr (sym, ar->start[i]))
8029 || (ar->end[i] != NULL
8030 && gfc_find_sym_in_expr (sym, ar->end[i])))
8031 {
8032 gfc_error ("%qs must not appear in the array specification at "
8033 "%L in the same ALLOCATE statement where it is "
8034 "itself allocated", sym->name, &ar->where);
8035 goto failure;
8036 }
8037 }
8038 }
8039
8040 for (i = ar->dimen; i < ar->codimen + ar->dimen; i++)
8041 {
8042 if (ar->dimen_type[i] == DIMEN_ELEMENT
8043 || ar->dimen_type[i] == DIMEN_RANGE)
8044 {
8045 if (i == (ar->dimen + ar->codimen - 1))
8046 {
8047 gfc_error ("Expected '*' in coindex specification in ALLOCATE "
8048 "statement at %L", &e->where);
8049 goto failure;
8050 }
8051 continue;
8052 }
8053
8054 if (ar->dimen_type[i] == DIMEN_STAR && i == (ar->dimen + ar->codimen - 1)
8055 && ar->stride[i] == NULL)
8056 break;
8057
8058 gfc_error ("Bad coarray specification in ALLOCATE statement at %L",
8059 &e->where);
8060 goto failure;
8061 }
8062
8063 success:
8064 return true;
8065
8066 failure:
8067 return false;
8068 }
8069
8070
8071 static void
8072 resolve_allocate_deallocate (gfc_code *code, const char *fcn)
8073 {
8074 gfc_expr *stat, *errmsg, *pe, *qe;
8075 gfc_alloc *a, *p, *q;
8076
8077 stat = code->expr1;
8078 errmsg = code->expr2;
8079
8080 /* Check the stat variable. */
8081 if (stat)
8082 {
8083 gfc_check_vardef_context (stat, false, false, false,
8084 _("STAT variable"));
8085
8086 if ((stat->ts.type != BT_INTEGER
8087 && !(stat->ref && (stat->ref->type == REF_ARRAY
8088 || stat->ref->type == REF_COMPONENT)))
8089 || stat->rank > 0)
8090 gfc_error ("Stat-variable at %L must be a scalar INTEGER "
8091 "variable", &stat->where);
8092
8093 for (p = code->ext.alloc.list; p; p = p->next)
8094 if (p->expr->symtree->n.sym->name == stat->symtree->n.sym->name)
8095 {
8096 gfc_ref *ref1, *ref2;
8097 bool found = true;
8098
8099 for (ref1 = p->expr->ref, ref2 = stat->ref; ref1 && ref2;
8100 ref1 = ref1->next, ref2 = ref2->next)
8101 {
8102 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
8103 continue;
8104 if (ref1->u.c.component->name != ref2->u.c.component->name)
8105 {
8106 found = false;
8107 break;
8108 }
8109 }
8110
8111 if (found)
8112 {
8113 gfc_error ("Stat-variable at %L shall not be %sd within "
8114 "the same %s statement", &stat->where, fcn, fcn);
8115 break;
8116 }
8117 }
8118 }
8119
8120 /* Check the errmsg variable. */
8121 if (errmsg)
8122 {
8123 if (!stat)
8124 gfc_warning (0, "ERRMSG at %L is useless without a STAT tag",
8125 &errmsg->where);
8126
8127 gfc_check_vardef_context (errmsg, false, false, false,
8128 _("ERRMSG variable"));
8129
8130 /* F18:R928 alloc-opt is ERRMSG = errmsg-variable
8131 F18:R930 errmsg-variable is scalar-default-char-variable
8132 F18:R906 default-char-variable is variable
8133 F18:C906 default-char-variable shall be default character. */
8134 if ((errmsg->ts.type != BT_CHARACTER
8135 && !(errmsg->ref
8136 && (errmsg->ref->type == REF_ARRAY
8137 || errmsg->ref->type == REF_COMPONENT)))
8138 || errmsg->rank > 0
8139 || errmsg->ts.kind != gfc_default_character_kind)
8140 gfc_error ("ERRMSG variable at %L shall be a scalar default CHARACTER "
8141 "variable", &errmsg->where);
8142
8143 for (p = code->ext.alloc.list; p; p = p->next)
8144 if (p->expr->symtree->n.sym->name == errmsg->symtree->n.sym->name)
8145 {
8146 gfc_ref *ref1, *ref2;
8147 bool found = true;
8148
8149 for (ref1 = p->expr->ref, ref2 = errmsg->ref; ref1 && ref2;
8150 ref1 = ref1->next, ref2 = ref2->next)
8151 {
8152 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
8153 continue;
8154 if (ref1->u.c.component->name != ref2->u.c.component->name)
8155 {
8156 found = false;
8157 break;
8158 }
8159 }
8160
8161 if (found)
8162 {
8163 gfc_error ("Errmsg-variable at %L shall not be %sd within "
8164 "the same %s statement", &errmsg->where, fcn, fcn);
8165 break;
8166 }
8167 }
8168 }
8169
8170 /* Check that an allocate-object appears only once in the statement. */
8171
8172 for (p = code->ext.alloc.list; p; p = p->next)
8173 {
8174 pe = p->expr;
8175 for (q = p->next; q; q = q->next)
8176 {
8177 qe = q->expr;
8178 if (pe->symtree->n.sym->name == qe->symtree->n.sym->name)
8179 {
8180 /* This is a potential collision. */
8181 gfc_ref *pr = pe->ref;
8182 gfc_ref *qr = qe->ref;
8183
8184 /* Follow the references until
8185 a) They start to differ, in which case there is no error;
8186 you can deallocate a%b and a%c in a single statement
8187 b) Both of them stop, which is an error
8188 c) One of them stops, which is also an error. */
8189 while (1)
8190 {
8191 if (pr == NULL && qr == NULL)
8192 {
8193 gfc_error ("Allocate-object at %L also appears at %L",
8194 &pe->where, &qe->where);
8195 break;
8196 }
8197 else if (pr != NULL && qr == NULL)
8198 {
8199 gfc_error ("Allocate-object at %L is subobject of"
8200 " object at %L", &pe->where, &qe->where);
8201 break;
8202 }
8203 else if (pr == NULL && qr != NULL)
8204 {
8205 gfc_error ("Allocate-object at %L is subobject of"
8206 " object at %L", &qe->where, &pe->where);
8207 break;
8208 }
8209 /* Here, pr != NULL && qr != NULL */
8210 gcc_assert(pr->type == qr->type);
8211 if (pr->type == REF_ARRAY)
8212 {
8213 /* Handle cases like allocate(v(3)%x(3), v(2)%x(3)),
8214 which are legal. */
8215 gcc_assert (qr->type == REF_ARRAY);
8216
8217 if (pr->next && qr->next)
8218 {
8219 int i;
8220 gfc_array_ref *par = &(pr->u.ar);
8221 gfc_array_ref *qar = &(qr->u.ar);
8222
8223 for (i=0; i<par->dimen; i++)
8224 {
8225 if ((par->start[i] != NULL
8226 || qar->start[i] != NULL)
8227 && gfc_dep_compare_expr (par->start[i],
8228 qar->start[i]) != 0)
8229 goto break_label;
8230 }
8231 }
8232 }
8233 else
8234 {
8235 if (pr->u.c.component->name != qr->u.c.component->name)
8236 break;
8237 }
8238
8239 pr = pr->next;
8240 qr = qr->next;
8241 }
8242 break_label:
8243 ;
8244 }
8245 }
8246 }
8247
8248 if (strcmp (fcn, "ALLOCATE") == 0)
8249 {
8250 bool arr_alloc_wo_spec = false;
8251
8252 /* Resolving the expr3 in the loop over all objects to allocate would
8253 execute loop invariant code for each loop item. Therefore do it just
8254 once here. */
8255 if (code->expr3 && code->expr3->mold
8256 && code->expr3->ts.type == BT_DERIVED)
8257 {
8258 /* Default initialization via MOLD (non-polymorphic). */
8259 gfc_expr *rhs = gfc_default_initializer (&code->expr3->ts);
8260 if (rhs != NULL)
8261 {
8262 gfc_resolve_expr (rhs);
8263 gfc_free_expr (code->expr3);
8264 code->expr3 = rhs;
8265 }
8266 }
8267 for (a = code->ext.alloc.list; a; a = a->next)
8268 resolve_allocate_expr (a->expr, code, &arr_alloc_wo_spec);
8269
8270 if (arr_alloc_wo_spec && code->expr3)
8271 {
8272 /* Mark the allocate to have to take the array specification
8273 from the expr3. */
8274 code->ext.alloc.arr_spec_from_expr3 = 1;
8275 }
8276 }
8277 else
8278 {
8279 for (a = code->ext.alloc.list; a; a = a->next)
8280 resolve_deallocate_expr (a->expr);
8281 }
8282 }
8283
8284
8285 /************ SELECT CASE resolution subroutines ************/
8286
8287 /* Callback function for our mergesort variant. Determines interval
8288 overlaps for CASEs. Return <0 if op1 < op2, 0 for overlap, >0 for
8289 op1 > op2. Assumes we're not dealing with the default case.
8290 We have op1 = (:L), (K:L) or (K:) and op2 = (:N), (M:N) or (M:).
8291 There are nine situations to check. */
8292
8293 static int
8294 compare_cases (const gfc_case *op1, const gfc_case *op2)
8295 {
8296 int retval;
8297
8298 if (op1->low == NULL) /* op1 = (:L) */
8299 {
8300 /* op2 = (:N), so overlap. */
8301 retval = 0;
8302 /* op2 = (M:) or (M:N), L < M */
8303 if (op2->low != NULL
8304 && gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8305 retval = -1;
8306 }
8307 else if (op1->high == NULL) /* op1 = (K:) */
8308 {
8309 /* op2 = (M:), so overlap. */
8310 retval = 0;
8311 /* op2 = (:N) or (M:N), K > N */
8312 if (op2->high != NULL
8313 && gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8314 retval = 1;
8315 }
8316 else /* op1 = (K:L) */
8317 {
8318 if (op2->low == NULL) /* op2 = (:N), K > N */
8319 retval = (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8320 ? 1 : 0;
8321 else if (op2->high == NULL) /* op2 = (M:), L < M */
8322 retval = (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8323 ? -1 : 0;
8324 else /* op2 = (M:N) */
8325 {
8326 retval = 0;
8327 /* L < M */
8328 if (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8329 retval = -1;
8330 /* K > N */
8331 else if (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8332 retval = 1;
8333 }
8334 }
8335
8336 return retval;
8337 }
8338
8339
8340 /* Merge-sort a double linked case list, detecting overlap in the
8341 process. LIST is the head of the double linked case list before it
8342 is sorted. Returns the head of the sorted list if we don't see any
8343 overlap, or NULL otherwise. */
8344
8345 static gfc_case *
8346 check_case_overlap (gfc_case *list)
8347 {
8348 gfc_case *p, *q, *e, *tail;
8349 int insize, nmerges, psize, qsize, cmp, overlap_seen;
8350
8351 /* If the passed list was empty, return immediately. */
8352 if (!list)
8353 return NULL;
8354
8355 overlap_seen = 0;
8356 insize = 1;
8357
8358 /* Loop unconditionally. The only exit from this loop is a return
8359 statement, when we've finished sorting the case list. */
8360 for (;;)
8361 {
8362 p = list;
8363 list = NULL;
8364 tail = NULL;
8365
8366 /* Count the number of merges we do in this pass. */
8367 nmerges = 0;
8368
8369 /* Loop while there exists a merge to be done. */
8370 while (p)
8371 {
8372 int i;
8373
8374 /* Count this merge. */
8375 nmerges++;
8376
8377 /* Cut the list in two pieces by stepping INSIZE places
8378 forward in the list, starting from P. */
8379 psize = 0;
8380 q = p;
8381 for (i = 0; i < insize; i++)
8382 {
8383 psize++;
8384 q = q->right;
8385 if (!q)
8386 break;
8387 }
8388 qsize = insize;
8389
8390 /* Now we have two lists. Merge them! */
8391 while (psize > 0 || (qsize > 0 && q != NULL))
8392 {
8393 /* See from which the next case to merge comes from. */
8394 if (psize == 0)
8395 {
8396 /* P is empty so the next case must come from Q. */
8397 e = q;
8398 q = q->right;
8399 qsize--;
8400 }
8401 else if (qsize == 0 || q == NULL)
8402 {
8403 /* Q is empty. */
8404 e = p;
8405 p = p->right;
8406 psize--;
8407 }
8408 else
8409 {
8410 cmp = compare_cases (p, q);
8411 if (cmp < 0)
8412 {
8413 /* The whole case range for P is less than the
8414 one for Q. */
8415 e = p;
8416 p = p->right;
8417 psize--;
8418 }
8419 else if (cmp > 0)
8420 {
8421 /* The whole case range for Q is greater than
8422 the case range for P. */
8423 e = q;
8424 q = q->right;
8425 qsize--;
8426 }
8427 else
8428 {
8429 /* The cases overlap, or they are the same
8430 element in the list. Either way, we must
8431 issue an error and get the next case from P. */
8432 /* FIXME: Sort P and Q by line number. */
8433 gfc_error ("CASE label at %L overlaps with CASE "
8434 "label at %L", &p->where, &q->where);
8435 overlap_seen = 1;
8436 e = p;
8437 p = p->right;
8438 psize--;
8439 }
8440 }
8441
8442 /* Add the next element to the merged list. */
8443 if (tail)
8444 tail->right = e;
8445 else
8446 list = e;
8447 e->left = tail;
8448 tail = e;
8449 }
8450
8451 /* P has now stepped INSIZE places along, and so has Q. So
8452 they're the same. */
8453 p = q;
8454 }
8455 tail->right = NULL;
8456
8457 /* If we have done only one merge or none at all, we've
8458 finished sorting the cases. */
8459 if (nmerges <= 1)
8460 {
8461 if (!overlap_seen)
8462 return list;
8463 else
8464 return NULL;
8465 }
8466
8467 /* Otherwise repeat, merging lists twice the size. */
8468 insize *= 2;
8469 }
8470 }
8471
8472
8473 /* Check to see if an expression is suitable for use in a CASE statement.
8474 Makes sure that all case expressions are scalar constants of the same
8475 type. Return false if anything is wrong. */
8476
8477 static bool
8478 validate_case_label_expr (gfc_expr *e, gfc_expr *case_expr)
8479 {
8480 if (e == NULL) return true;
8481
8482 if (e->ts.type != case_expr->ts.type)
8483 {
8484 gfc_error ("Expression in CASE statement at %L must be of type %s",
8485 &e->where, gfc_basic_typename (case_expr->ts.type));
8486 return false;
8487 }
8488
8489 /* C805 (R808) For a given case-construct, each case-value shall be of
8490 the same type as case-expr. For character type, length differences
8491 are allowed, but the kind type parameters shall be the same. */
8492
8493 if (case_expr->ts.type == BT_CHARACTER && e->ts.kind != case_expr->ts.kind)
8494 {
8495 gfc_error ("Expression in CASE statement at %L must be of kind %d",
8496 &e->where, case_expr->ts.kind);
8497 return false;
8498 }
8499
8500 /* Convert the case value kind to that of case expression kind,
8501 if needed */
8502
8503 if (e->ts.kind != case_expr->ts.kind)
8504 gfc_convert_type_warn (e, &case_expr->ts, 2, 0);
8505
8506 if (e->rank != 0)
8507 {
8508 gfc_error ("Expression in CASE statement at %L must be scalar",
8509 &e->where);
8510 return false;
8511 }
8512
8513 return true;
8514 }
8515
8516
8517 /* Given a completely parsed select statement, we:
8518
8519 - Validate all expressions and code within the SELECT.
8520 - Make sure that the selection expression is not of the wrong type.
8521 - Make sure that no case ranges overlap.
8522 - Eliminate unreachable cases and unreachable code resulting from
8523 removing case labels.
8524
8525 The standard does allow unreachable cases, e.g. CASE (5:3). But
8526 they are a hassle for code generation, and to prevent that, we just
8527 cut them out here. This is not necessary for overlapping cases
8528 because they are illegal and we never even try to generate code.
8529
8530 We have the additional caveat that a SELECT construct could have
8531 been a computed GOTO in the source code. Fortunately we can fairly
8532 easily work around that here: The case_expr for a "real" SELECT CASE
8533 is in code->expr1, but for a computed GOTO it is in code->expr2. All
8534 we have to do is make sure that the case_expr is a scalar integer
8535 expression. */
8536
8537 static void
8538 resolve_select (gfc_code *code, bool select_type)
8539 {
8540 gfc_code *body;
8541 gfc_expr *case_expr;
8542 gfc_case *cp, *default_case, *tail, *head;
8543 int seen_unreachable;
8544 int seen_logical;
8545 int ncases;
8546 bt type;
8547 bool t;
8548
8549 if (code->expr1 == NULL)
8550 {
8551 /* This was actually a computed GOTO statement. */
8552 case_expr = code->expr2;
8553 if (case_expr->ts.type != BT_INTEGER|| case_expr->rank != 0)
8554 gfc_error ("Selection expression in computed GOTO statement "
8555 "at %L must be a scalar integer expression",
8556 &case_expr->where);
8557
8558 /* Further checking is not necessary because this SELECT was built
8559 by the compiler, so it should always be OK. Just move the
8560 case_expr from expr2 to expr so that we can handle computed
8561 GOTOs as normal SELECTs from here on. */
8562 code->expr1 = code->expr2;
8563 code->expr2 = NULL;
8564 return;
8565 }
8566
8567 case_expr = code->expr1;
8568 type = case_expr->ts.type;
8569
8570 /* F08:C830. */
8571 if (type != BT_LOGICAL && type != BT_INTEGER && type != BT_CHARACTER)
8572 {
8573 gfc_error ("Argument of SELECT statement at %L cannot be %s",
8574 &case_expr->where, gfc_typename (case_expr));
8575
8576 /* Punt. Going on here just produce more garbage error messages. */
8577 return;
8578 }
8579
8580 /* F08:R842. */
8581 if (!select_type && case_expr->rank != 0)
8582 {
8583 gfc_error ("Argument of SELECT statement at %L must be a scalar "
8584 "expression", &case_expr->where);
8585
8586 /* Punt. */
8587 return;
8588 }
8589
8590 /* Raise a warning if an INTEGER case value exceeds the range of
8591 the case-expr. Later, all expressions will be promoted to the
8592 largest kind of all case-labels. */
8593
8594 if (type == BT_INTEGER)
8595 for (body = code->block; body; body = body->block)
8596 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8597 {
8598 if (cp->low
8599 && gfc_check_integer_range (cp->low->value.integer,
8600 case_expr->ts.kind) != ARITH_OK)
8601 gfc_warning (0, "Expression in CASE statement at %L is "
8602 "not in the range of %s", &cp->low->where,
8603 gfc_typename (case_expr));
8604
8605 if (cp->high
8606 && cp->low != cp->high
8607 && gfc_check_integer_range (cp->high->value.integer,
8608 case_expr->ts.kind) != ARITH_OK)
8609 gfc_warning (0, "Expression in CASE statement at %L is "
8610 "not in the range of %s", &cp->high->where,
8611 gfc_typename (case_expr));
8612 }
8613
8614 /* PR 19168 has a long discussion concerning a mismatch of the kinds
8615 of the SELECT CASE expression and its CASE values. Walk the lists
8616 of case values, and if we find a mismatch, promote case_expr to
8617 the appropriate kind. */
8618
8619 if (type == BT_LOGICAL || type == BT_INTEGER)
8620 {
8621 for (body = code->block; body; body = body->block)
8622 {
8623 /* Walk the case label list. */
8624 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8625 {
8626 /* Intercept the DEFAULT case. It does not have a kind. */
8627 if (cp->low == NULL && cp->high == NULL)
8628 continue;
8629
8630 /* Unreachable case ranges are discarded, so ignore. */
8631 if (cp->low != NULL && cp->high != NULL
8632 && cp->low != cp->high
8633 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8634 continue;
8635
8636 if (cp->low != NULL
8637 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->low))
8638 gfc_convert_type_warn (case_expr, &cp->low->ts, 2, 0);
8639
8640 if (cp->high != NULL
8641 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->high))
8642 gfc_convert_type_warn (case_expr, &cp->high->ts, 2, 0);
8643 }
8644 }
8645 }
8646
8647 /* Assume there is no DEFAULT case. */
8648 default_case = NULL;
8649 head = tail = NULL;
8650 ncases = 0;
8651 seen_logical = 0;
8652
8653 for (body = code->block; body; body = body->block)
8654 {
8655 /* Assume the CASE list is OK, and all CASE labels can be matched. */
8656 t = true;
8657 seen_unreachable = 0;
8658
8659 /* Walk the case label list, making sure that all case labels
8660 are legal. */
8661 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8662 {
8663 /* Count the number of cases in the whole construct. */
8664 ncases++;
8665
8666 /* Intercept the DEFAULT case. */
8667 if (cp->low == NULL && cp->high == NULL)
8668 {
8669 if (default_case != NULL)
8670 {
8671 gfc_error ("The DEFAULT CASE at %L cannot be followed "
8672 "by a second DEFAULT CASE at %L",
8673 &default_case->where, &cp->where);
8674 t = false;
8675 break;
8676 }
8677 else
8678 {
8679 default_case = cp;
8680 continue;
8681 }
8682 }
8683
8684 /* Deal with single value cases and case ranges. Errors are
8685 issued from the validation function. */
8686 if (!validate_case_label_expr (cp->low, case_expr)
8687 || !validate_case_label_expr (cp->high, case_expr))
8688 {
8689 t = false;
8690 break;
8691 }
8692
8693 if (type == BT_LOGICAL
8694 && ((cp->low == NULL || cp->high == NULL)
8695 || cp->low != cp->high))
8696 {
8697 gfc_error ("Logical range in CASE statement at %L is not "
8698 "allowed", &cp->low->where);
8699 t = false;
8700 break;
8701 }
8702
8703 if (type == BT_LOGICAL && cp->low->expr_type == EXPR_CONSTANT)
8704 {
8705 int value;
8706 value = cp->low->value.logical == 0 ? 2 : 1;
8707 if (value & seen_logical)
8708 {
8709 gfc_error ("Constant logical value in CASE statement "
8710 "is repeated at %L",
8711 &cp->low->where);
8712 t = false;
8713 break;
8714 }
8715 seen_logical |= value;
8716 }
8717
8718 if (cp->low != NULL && cp->high != NULL
8719 && cp->low != cp->high
8720 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8721 {
8722 if (warn_surprising)
8723 gfc_warning (OPT_Wsurprising,
8724 "Range specification at %L can never be matched",
8725 &cp->where);
8726
8727 cp->unreachable = 1;
8728 seen_unreachable = 1;
8729 }
8730 else
8731 {
8732 /* If the case range can be matched, it can also overlap with
8733 other cases. To make sure it does not, we put it in a
8734 double linked list here. We sort that with a merge sort
8735 later on to detect any overlapping cases. */
8736 if (!head)
8737 {
8738 head = tail = cp;
8739 head->right = head->left = NULL;
8740 }
8741 else
8742 {
8743 tail->right = cp;
8744 tail->right->left = tail;
8745 tail = tail->right;
8746 tail->right = NULL;
8747 }
8748 }
8749 }
8750
8751 /* It there was a failure in the previous case label, give up
8752 for this case label list. Continue with the next block. */
8753 if (!t)
8754 continue;
8755
8756 /* See if any case labels that are unreachable have been seen.
8757 If so, we eliminate them. This is a bit of a kludge because
8758 the case lists for a single case statement (label) is a
8759 single forward linked lists. */
8760 if (seen_unreachable)
8761 {
8762 /* Advance until the first case in the list is reachable. */
8763 while (body->ext.block.case_list != NULL
8764 && body->ext.block.case_list->unreachable)
8765 {
8766 gfc_case *n = body->ext.block.case_list;
8767 body->ext.block.case_list = body->ext.block.case_list->next;
8768 n->next = NULL;
8769 gfc_free_case_list (n);
8770 }
8771
8772 /* Strip all other unreachable cases. */
8773 if (body->ext.block.case_list)
8774 {
8775 for (cp = body->ext.block.case_list; cp && cp->next; cp = cp->next)
8776 {
8777 if (cp->next->unreachable)
8778 {
8779 gfc_case *n = cp->next;
8780 cp->next = cp->next->next;
8781 n->next = NULL;
8782 gfc_free_case_list (n);
8783 }
8784 }
8785 }
8786 }
8787 }
8788
8789 /* See if there were overlapping cases. If the check returns NULL,
8790 there was overlap. In that case we don't do anything. If head
8791 is non-NULL, we prepend the DEFAULT case. The sorted list can
8792 then used during code generation for SELECT CASE constructs with
8793 a case expression of a CHARACTER type. */
8794 if (head)
8795 {
8796 head = check_case_overlap (head);
8797
8798 /* Prepend the default_case if it is there. */
8799 if (head != NULL && default_case)
8800 {
8801 default_case->left = NULL;
8802 default_case->right = head;
8803 head->left = default_case;
8804 }
8805 }
8806
8807 /* Eliminate dead blocks that may be the result if we've seen
8808 unreachable case labels for a block. */
8809 for (body = code; body && body->block; body = body->block)
8810 {
8811 if (body->block->ext.block.case_list == NULL)
8812 {
8813 /* Cut the unreachable block from the code chain. */
8814 gfc_code *c = body->block;
8815 body->block = c->block;
8816
8817 /* Kill the dead block, but not the blocks below it. */
8818 c->block = NULL;
8819 gfc_free_statements (c);
8820 }
8821 }
8822
8823 /* More than two cases is legal but insane for logical selects.
8824 Issue a warning for it. */
8825 if (warn_surprising && type == BT_LOGICAL && ncases > 2)
8826 gfc_warning (OPT_Wsurprising,
8827 "Logical SELECT CASE block at %L has more that two cases",
8828 &code->loc);
8829 }
8830
8831
8832 /* Check if a derived type is extensible. */
8833
8834 bool
8835 gfc_type_is_extensible (gfc_symbol *sym)
8836 {
8837 return !(sym->attr.is_bind_c || sym->attr.sequence
8838 || (sym->attr.is_class
8839 && sym->components->ts.u.derived->attr.unlimited_polymorphic));
8840 }
8841
8842
8843 static void
8844 resolve_types (gfc_namespace *ns);
8845
8846 /* Resolve an associate-name: Resolve target and ensure the type-spec is
8847 correct as well as possibly the array-spec. */
8848
8849 static void
8850 resolve_assoc_var (gfc_symbol* sym, bool resolve_target)
8851 {
8852 gfc_expr* target;
8853
8854 gcc_assert (sym->assoc);
8855 gcc_assert (sym->attr.flavor == FL_VARIABLE);
8856
8857 /* If this is for SELECT TYPE, the target may not yet be set. In that
8858 case, return. Resolution will be called later manually again when
8859 this is done. */
8860 target = sym->assoc->target;
8861 if (!target)
8862 return;
8863 gcc_assert (!sym->assoc->dangling);
8864
8865 if (resolve_target && !gfc_resolve_expr (target))
8866 return;
8867
8868 /* For variable targets, we get some attributes from the target. */
8869 if (target->expr_type == EXPR_VARIABLE)
8870 {
8871 gfc_symbol* tsym;
8872
8873 gcc_assert (target->symtree);
8874 tsym = target->symtree->n.sym;
8875
8876 if (tsym->attr.subroutine
8877 || tsym->attr.external
8878 || (tsym->attr.function && tsym->result != tsym))
8879 {
8880 gfc_error ("Associating entity %qs at %L is a procedure name",
8881 tsym->name, &target->where);
8882 return;
8883 }
8884
8885 if (gfc_expr_attr (target).proc_pointer)
8886 {
8887 gfc_error ("Associating entity %qs at %L is a procedure pointer",
8888 tsym->name, &target->where);
8889 return;
8890 }
8891
8892 sym->attr.asynchronous = tsym->attr.asynchronous;
8893 sym->attr.volatile_ = tsym->attr.volatile_;
8894
8895 sym->attr.target = tsym->attr.target
8896 || gfc_expr_attr (target).pointer;
8897 if (is_subref_array (target))
8898 sym->attr.subref_array_pointer = 1;
8899 }
8900 else if (target->ts.type == BT_PROCEDURE)
8901 {
8902 gfc_error ("Associating selector-expression at %L yields a procedure",
8903 &target->where);
8904 return;
8905 }
8906
8907 if (target->expr_type == EXPR_NULL)
8908 {
8909 gfc_error ("Selector at %L cannot be NULL()", &target->where);
8910 return;
8911 }
8912 else if (target->ts.type == BT_UNKNOWN)
8913 {
8914 gfc_error ("Selector at %L has no type", &target->where);
8915 return;
8916 }
8917
8918 /* Get type if this was not already set. Note that it can be
8919 some other type than the target in case this is a SELECT TYPE
8920 selector! So we must not update when the type is already there. */
8921 if (sym->ts.type == BT_UNKNOWN)
8922 sym->ts = target->ts;
8923
8924 gcc_assert (sym->ts.type != BT_UNKNOWN);
8925
8926 /* See if this is a valid association-to-variable. */
8927 sym->assoc->variable = (target->expr_type == EXPR_VARIABLE
8928 && !gfc_has_vector_subscript (target));
8929
8930 /* Finally resolve if this is an array or not. */
8931 if (sym->attr.dimension && target->rank == 0)
8932 {
8933 /* primary.c makes the assumption that a reference to an associate
8934 name followed by a left parenthesis is an array reference. */
8935 if (sym->ts.type != BT_CHARACTER)
8936 gfc_error ("Associate-name %qs at %L is used as array",
8937 sym->name, &sym->declared_at);
8938 sym->attr.dimension = 0;
8939 return;
8940 }
8941
8942
8943 /* We cannot deal with class selectors that need temporaries. */
8944 if (target->ts.type == BT_CLASS
8945 && gfc_ref_needs_temporary_p (target->ref))
8946 {
8947 gfc_error ("CLASS selector at %L needs a temporary which is not "
8948 "yet implemented", &target->where);
8949 return;
8950 }
8951
8952 if (target->ts.type == BT_CLASS)
8953 gfc_fix_class_refs (target);
8954
8955 if (target->rank != 0 && !sym->attr.select_rank_temporary)
8956 {
8957 gfc_array_spec *as;
8958 /* The rank may be incorrectly guessed at parsing, therefore make sure
8959 it is corrected now. */
8960 if (sym->ts.type != BT_CLASS && (!sym->as || sym->assoc->rankguessed))
8961 {
8962 if (!sym->as)
8963 sym->as = gfc_get_array_spec ();
8964 as = sym->as;
8965 as->rank = target->rank;
8966 as->type = AS_DEFERRED;
8967 as->corank = gfc_get_corank (target);
8968 sym->attr.dimension = 1;
8969 if (as->corank != 0)
8970 sym->attr.codimension = 1;
8971 }
8972 else if (sym->ts.type == BT_CLASS && (!CLASS_DATA (sym)->as || sym->assoc->rankguessed))
8973 {
8974 if (!CLASS_DATA (sym)->as)
8975 CLASS_DATA (sym)->as = gfc_get_array_spec ();
8976 as = CLASS_DATA (sym)->as;
8977 as->rank = target->rank;
8978 as->type = AS_DEFERRED;
8979 as->corank = gfc_get_corank (target);
8980 CLASS_DATA (sym)->attr.dimension = 1;
8981 if (as->corank != 0)
8982 CLASS_DATA (sym)->attr.codimension = 1;
8983 }
8984 }
8985 else if (!sym->attr.select_rank_temporary)
8986 {
8987 /* target's rank is 0, but the type of the sym is still array valued,
8988 which has to be corrected. */
8989 if (sym->ts.type == BT_CLASS
8990 && CLASS_DATA (sym) && CLASS_DATA (sym)->as)
8991 {
8992 gfc_array_spec *as;
8993 symbol_attribute attr;
8994 /* The associated variable's type is still the array type
8995 correct this now. */
8996 gfc_typespec *ts = &target->ts;
8997 gfc_ref *ref;
8998 gfc_component *c;
8999 for (ref = target->ref; ref != NULL; ref = ref->next)
9000 {
9001 switch (ref->type)
9002 {
9003 case REF_COMPONENT:
9004 ts = &ref->u.c.component->ts;
9005 break;
9006 case REF_ARRAY:
9007 if (ts->type == BT_CLASS)
9008 ts = &ts->u.derived->components->ts;
9009 break;
9010 default:
9011 break;
9012 }
9013 }
9014 /* Create a scalar instance of the current class type. Because the
9015 rank of a class array goes into its name, the type has to be
9016 rebuild. The alternative of (re-)setting just the attributes
9017 and as in the current type, destroys the type also in other
9018 places. */
9019 as = NULL;
9020 sym->ts = *ts;
9021 sym->ts.type = BT_CLASS;
9022 attr = CLASS_DATA (sym)->attr;
9023 attr.class_ok = 0;
9024 attr.associate_var = 1;
9025 attr.dimension = attr.codimension = 0;
9026 attr.class_pointer = 1;
9027 if (!gfc_build_class_symbol (&sym->ts, &attr, &as))
9028 gcc_unreachable ();
9029 /* Make sure the _vptr is set. */
9030 c = gfc_find_component (sym->ts.u.derived, "_vptr", true, true, NULL);
9031 if (c->ts.u.derived == NULL)
9032 c->ts.u.derived = gfc_find_derived_vtab (sym->ts.u.derived);
9033 CLASS_DATA (sym)->attr.pointer = 1;
9034 CLASS_DATA (sym)->attr.class_pointer = 1;
9035 gfc_set_sym_referenced (sym->ts.u.derived);
9036 gfc_commit_symbol (sym->ts.u.derived);
9037 /* _vptr now has the _vtab in it, change it to the _vtype. */
9038 if (c->ts.u.derived->attr.vtab)
9039 c->ts.u.derived = c->ts.u.derived->ts.u.derived;
9040 c->ts.u.derived->ns->types_resolved = 0;
9041 resolve_types (c->ts.u.derived->ns);
9042 }
9043 }
9044
9045 /* Mark this as an associate variable. */
9046 sym->attr.associate_var = 1;
9047
9048 /* Fix up the type-spec for CHARACTER types. */
9049 if (sym->ts.type == BT_CHARACTER && !sym->attr.select_type_temporary)
9050 {
9051 if (!sym->ts.u.cl)
9052 sym->ts.u.cl = target->ts.u.cl;
9053
9054 if (sym->ts.deferred && target->expr_type == EXPR_VARIABLE
9055 && target->symtree->n.sym->attr.dummy
9056 && sym->ts.u.cl == target->ts.u.cl)
9057 {
9058 sym->ts.u.cl = gfc_new_charlen (sym->ns, NULL);
9059 sym->ts.deferred = 1;
9060 }
9061
9062 if (!sym->ts.u.cl->length
9063 && !sym->ts.deferred
9064 && target->expr_type == EXPR_CONSTANT)
9065 {
9066 sym->ts.u.cl->length =
9067 gfc_get_int_expr (gfc_charlen_int_kind, NULL,
9068 target->value.character.length);
9069 }
9070 else if ((!sym->ts.u.cl->length
9071 || sym->ts.u.cl->length->expr_type != EXPR_CONSTANT)
9072 && target->expr_type != EXPR_VARIABLE)
9073 {
9074 sym->ts.u.cl = gfc_new_charlen (sym->ns, NULL);
9075 sym->ts.deferred = 1;
9076
9077 /* This is reset in trans-stmt.c after the assignment
9078 of the target expression to the associate name. */
9079 sym->attr.allocatable = 1;
9080 }
9081 }
9082
9083 /* If the target is a good class object, so is the associate variable. */
9084 if (sym->ts.type == BT_CLASS && gfc_expr_attr (target).class_ok)
9085 sym->attr.class_ok = 1;
9086 }
9087
9088
9089 /* Ensure that SELECT TYPE expressions have the correct rank and a full
9090 array reference, where necessary. The symbols are artificial and so
9091 the dimension attribute and arrayspec can also be set. In addition,
9092 sometimes the expr1 arrives as BT_DERIVED, when the symbol is BT_CLASS.
9093 This is corrected here as well.*/
9094
9095 static void
9096 fixup_array_ref (gfc_expr **expr1, gfc_expr *expr2,
9097 int rank, gfc_ref *ref)
9098 {
9099 gfc_ref *nref = (*expr1)->ref;
9100 gfc_symbol *sym1 = (*expr1)->symtree->n.sym;
9101 gfc_symbol *sym2 = expr2 ? expr2->symtree->n.sym : NULL;
9102 (*expr1)->rank = rank;
9103 if (sym1->ts.type == BT_CLASS)
9104 {
9105 if ((*expr1)->ts.type != BT_CLASS)
9106 (*expr1)->ts = sym1->ts;
9107
9108 CLASS_DATA (sym1)->attr.dimension = 1;
9109 if (CLASS_DATA (sym1)->as == NULL && sym2)
9110 CLASS_DATA (sym1)->as
9111 = gfc_copy_array_spec (CLASS_DATA (sym2)->as);
9112 }
9113 else
9114 {
9115 sym1->attr.dimension = 1;
9116 if (sym1->as == NULL && sym2)
9117 sym1->as = gfc_copy_array_spec (sym2->as);
9118 }
9119
9120 for (; nref; nref = nref->next)
9121 if (nref->next == NULL)
9122 break;
9123
9124 if (ref && nref && nref->type != REF_ARRAY)
9125 nref->next = gfc_copy_ref (ref);
9126 else if (ref && !nref)
9127 (*expr1)->ref = gfc_copy_ref (ref);
9128 }
9129
9130
9131 static gfc_expr *
9132 build_loc_call (gfc_expr *sym_expr)
9133 {
9134 gfc_expr *loc_call;
9135 loc_call = gfc_get_expr ();
9136 loc_call->expr_type = EXPR_FUNCTION;
9137 gfc_get_sym_tree ("_loc", gfc_current_ns, &loc_call->symtree, false);
9138 loc_call->symtree->n.sym->attr.flavor = FL_PROCEDURE;
9139 loc_call->symtree->n.sym->attr.intrinsic = 1;
9140 loc_call->symtree->n.sym->result = loc_call->symtree->n.sym;
9141 gfc_commit_symbol (loc_call->symtree->n.sym);
9142 loc_call->ts.type = BT_INTEGER;
9143 loc_call->ts.kind = gfc_index_integer_kind;
9144 loc_call->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_LOC);
9145 loc_call->value.function.actual = gfc_get_actual_arglist ();
9146 loc_call->value.function.actual->expr = sym_expr;
9147 loc_call->where = sym_expr->where;
9148 return loc_call;
9149 }
9150
9151 /* Resolve a SELECT TYPE statement. */
9152
9153 static void
9154 resolve_select_type (gfc_code *code, gfc_namespace *old_ns)
9155 {
9156 gfc_symbol *selector_type;
9157 gfc_code *body, *new_st, *if_st, *tail;
9158 gfc_code *class_is = NULL, *default_case = NULL;
9159 gfc_case *c;
9160 gfc_symtree *st;
9161 char name[GFC_MAX_SYMBOL_LEN];
9162 gfc_namespace *ns;
9163 int error = 0;
9164 int rank = 0;
9165 gfc_ref* ref = NULL;
9166 gfc_expr *selector_expr = NULL;
9167
9168 ns = code->ext.block.ns;
9169 gfc_resolve (ns);
9170
9171 /* Check for F03:C813. */
9172 if (code->expr1->ts.type != BT_CLASS
9173 && !(code->expr2 && code->expr2->ts.type == BT_CLASS))
9174 {
9175 gfc_error ("Selector shall be polymorphic in SELECT TYPE statement "
9176 "at %L", &code->loc);
9177 return;
9178 }
9179
9180 if (!code->expr1->symtree->n.sym->attr.class_ok)
9181 return;
9182
9183 if (code->expr2)
9184 {
9185 gfc_ref *ref2 = NULL;
9186 for (ref = code->expr2->ref; ref != NULL; ref = ref->next)
9187 if (ref->type == REF_COMPONENT
9188 && ref->u.c.component->ts.type == BT_CLASS)
9189 ref2 = ref;
9190
9191 if (ref2)
9192 {
9193 if (code->expr1->symtree->n.sym->attr.untyped)
9194 code->expr1->symtree->n.sym->ts = ref2->u.c.component->ts;
9195 selector_type = CLASS_DATA (ref2->u.c.component)->ts.u.derived;
9196 }
9197 else
9198 {
9199 if (code->expr1->symtree->n.sym->attr.untyped)
9200 code->expr1->symtree->n.sym->ts = code->expr2->ts;
9201 selector_type = CLASS_DATA (code->expr2)->ts.u.derived;
9202 }
9203
9204 if (code->expr2->rank && CLASS_DATA (code->expr1)->as)
9205 CLASS_DATA (code->expr1)->as->rank = code->expr2->rank;
9206
9207 /* F2008: C803 The selector expression must not be coindexed. */
9208 if (gfc_is_coindexed (code->expr2))
9209 {
9210 gfc_error ("Selector at %L must not be coindexed",
9211 &code->expr2->where);
9212 return;
9213 }
9214
9215 }
9216 else
9217 {
9218 selector_type = CLASS_DATA (code->expr1)->ts.u.derived;
9219
9220 if (gfc_is_coindexed (code->expr1))
9221 {
9222 gfc_error ("Selector at %L must not be coindexed",
9223 &code->expr1->where);
9224 return;
9225 }
9226 }
9227
9228 /* Loop over TYPE IS / CLASS IS cases. */
9229 for (body = code->block; body; body = body->block)
9230 {
9231 c = body->ext.block.case_list;
9232
9233 if (!error)
9234 {
9235 /* Check for repeated cases. */
9236 for (tail = code->block; tail; tail = tail->block)
9237 {
9238 gfc_case *d = tail->ext.block.case_list;
9239 if (tail == body)
9240 break;
9241
9242 if (c->ts.type == d->ts.type
9243 && ((c->ts.type == BT_DERIVED
9244 && c->ts.u.derived && d->ts.u.derived
9245 && !strcmp (c->ts.u.derived->name,
9246 d->ts.u.derived->name))
9247 || c->ts.type == BT_UNKNOWN
9248 || (!(c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9249 && c->ts.kind == d->ts.kind)))
9250 {
9251 gfc_error ("TYPE IS at %L overlaps with TYPE IS at %L",
9252 &c->where, &d->where);
9253 return;
9254 }
9255 }
9256 }
9257
9258 /* Check F03:C815. */
9259 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9260 && !selector_type->attr.unlimited_polymorphic
9261 && !gfc_type_is_extensible (c->ts.u.derived))
9262 {
9263 gfc_error ("Derived type %qs at %L must be extensible",
9264 c->ts.u.derived->name, &c->where);
9265 error++;
9266 continue;
9267 }
9268
9269 /* Check F03:C816. */
9270 if (c->ts.type != BT_UNKNOWN && !selector_type->attr.unlimited_polymorphic
9271 && ((c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
9272 || !gfc_type_is_extension_of (selector_type, c->ts.u.derived)))
9273 {
9274 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9275 gfc_error ("Derived type %qs at %L must be an extension of %qs",
9276 c->ts.u.derived->name, &c->where, selector_type->name);
9277 else
9278 gfc_error ("Unexpected intrinsic type %qs at %L",
9279 gfc_basic_typename (c->ts.type), &c->where);
9280 error++;
9281 continue;
9282 }
9283
9284 /* Check F03:C814. */
9285 if (c->ts.type == BT_CHARACTER
9286 && (c->ts.u.cl->length != NULL || c->ts.deferred))
9287 {
9288 gfc_error ("The type-spec at %L shall specify that each length "
9289 "type parameter is assumed", &c->where);
9290 error++;
9291 continue;
9292 }
9293
9294 /* Intercept the DEFAULT case. */
9295 if (c->ts.type == BT_UNKNOWN)
9296 {
9297 /* Check F03:C818. */
9298 if (default_case)
9299 {
9300 gfc_error ("The DEFAULT CASE at %L cannot be followed "
9301 "by a second DEFAULT CASE at %L",
9302 &default_case->ext.block.case_list->where, &c->where);
9303 error++;
9304 continue;
9305 }
9306
9307 default_case = body;
9308 }
9309 }
9310
9311 if (error > 0)
9312 return;
9313
9314 /* Transform SELECT TYPE statement to BLOCK and associate selector to
9315 target if present. If there are any EXIT statements referring to the
9316 SELECT TYPE construct, this is no problem because the gfc_code
9317 reference stays the same and EXIT is equally possible from the BLOCK
9318 it is changed to. */
9319 code->op = EXEC_BLOCK;
9320 if (code->expr2)
9321 {
9322 gfc_association_list* assoc;
9323
9324 assoc = gfc_get_association_list ();
9325 assoc->st = code->expr1->symtree;
9326 assoc->target = gfc_copy_expr (code->expr2);
9327 assoc->target->where = code->expr2->where;
9328 /* assoc->variable will be set by resolve_assoc_var. */
9329
9330 code->ext.block.assoc = assoc;
9331 code->expr1->symtree->n.sym->assoc = assoc;
9332
9333 resolve_assoc_var (code->expr1->symtree->n.sym, false);
9334 }
9335 else
9336 code->ext.block.assoc = NULL;
9337
9338 /* Ensure that the selector rank and arrayspec are available to
9339 correct expressions in which they might be missing. */
9340 if (code->expr2 && code->expr2->rank)
9341 {
9342 rank = code->expr2->rank;
9343 for (ref = code->expr2->ref; ref; ref = ref->next)
9344 if (ref->next == NULL)
9345 break;
9346 if (ref && ref->type == REF_ARRAY)
9347 ref = gfc_copy_ref (ref);
9348
9349 /* Fixup expr1 if necessary. */
9350 if (rank)
9351 fixup_array_ref (&code->expr1, code->expr2, rank, ref);
9352 }
9353 else if (code->expr1->rank)
9354 {
9355 rank = code->expr1->rank;
9356 for (ref = code->expr1->ref; ref; ref = ref->next)
9357 if (ref->next == NULL)
9358 break;
9359 if (ref && ref->type == REF_ARRAY)
9360 ref = gfc_copy_ref (ref);
9361 }
9362
9363 /* Add EXEC_SELECT to switch on type. */
9364 new_st = gfc_get_code (code->op);
9365 new_st->expr1 = code->expr1;
9366 new_st->expr2 = code->expr2;
9367 new_st->block = code->block;
9368 code->expr1 = code->expr2 = NULL;
9369 code->block = NULL;
9370 if (!ns->code)
9371 ns->code = new_st;
9372 else
9373 ns->code->next = new_st;
9374 code = new_st;
9375 code->op = EXEC_SELECT_TYPE;
9376
9377 /* Use the intrinsic LOC function to generate an integer expression
9378 for the vtable of the selector. Note that the rank of the selector
9379 expression has to be set to zero. */
9380 gfc_add_vptr_component (code->expr1);
9381 code->expr1->rank = 0;
9382 code->expr1 = build_loc_call (code->expr1);
9383 selector_expr = code->expr1->value.function.actual->expr;
9384
9385 /* Loop over TYPE IS / CLASS IS cases. */
9386 for (body = code->block; body; body = body->block)
9387 {
9388 gfc_symbol *vtab;
9389 gfc_expr *e;
9390 c = body->ext.block.case_list;
9391
9392 /* Generate an index integer expression for address of the
9393 TYPE/CLASS vtable and store it in c->low. The hash expression
9394 is stored in c->high and is used to resolve intrinsic cases. */
9395 if (c->ts.type != BT_UNKNOWN)
9396 {
9397 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9398 {
9399 vtab = gfc_find_derived_vtab (c->ts.u.derived);
9400 gcc_assert (vtab);
9401 c->high = gfc_get_int_expr (gfc_integer_4_kind, NULL,
9402 c->ts.u.derived->hash_value);
9403 }
9404 else
9405 {
9406 vtab = gfc_find_vtab (&c->ts);
9407 gcc_assert (vtab && CLASS_DATA (vtab)->initializer);
9408 e = CLASS_DATA (vtab)->initializer;
9409 c->high = gfc_copy_expr (e);
9410 if (c->high->ts.kind != gfc_integer_4_kind)
9411 {
9412 gfc_typespec ts;
9413 ts.kind = gfc_integer_4_kind;
9414 ts.type = BT_INTEGER;
9415 gfc_convert_type_warn (c->high, &ts, 2, 0);
9416 }
9417 }
9418
9419 e = gfc_lval_expr_from_sym (vtab);
9420 c->low = build_loc_call (e);
9421 }
9422 else
9423 continue;
9424
9425 /* Associate temporary to selector. This should only be done
9426 when this case is actually true, so build a new ASSOCIATE
9427 that does precisely this here (instead of using the
9428 'global' one). */
9429
9430 if (c->ts.type == BT_CLASS)
9431 sprintf (name, "__tmp_class_%s", c->ts.u.derived->name);
9432 else if (c->ts.type == BT_DERIVED)
9433 sprintf (name, "__tmp_type_%s", c->ts.u.derived->name);
9434 else if (c->ts.type == BT_CHARACTER)
9435 {
9436 HOST_WIDE_INT charlen = 0;
9437 if (c->ts.u.cl && c->ts.u.cl->length
9438 && c->ts.u.cl->length->expr_type == EXPR_CONSTANT)
9439 charlen = gfc_mpz_get_hwi (c->ts.u.cl->length->value.integer);
9440 snprintf (name, sizeof (name),
9441 "__tmp_%s_" HOST_WIDE_INT_PRINT_DEC "_%d",
9442 gfc_basic_typename (c->ts.type), charlen, c->ts.kind);
9443 }
9444 else
9445 sprintf (name, "__tmp_%s_%d", gfc_basic_typename (c->ts.type),
9446 c->ts.kind);
9447
9448 st = gfc_find_symtree (ns->sym_root, name);
9449 gcc_assert (st->n.sym->assoc);
9450 st->n.sym->assoc->target = gfc_get_variable_expr (selector_expr->symtree);
9451 st->n.sym->assoc->target->where = selector_expr->where;
9452 if (c->ts.type != BT_CLASS && c->ts.type != BT_UNKNOWN)
9453 {
9454 gfc_add_data_component (st->n.sym->assoc->target);
9455 /* Fixup the target expression if necessary. */
9456 if (rank)
9457 fixup_array_ref (&st->n.sym->assoc->target, NULL, rank, ref);
9458 }
9459
9460 new_st = gfc_get_code (EXEC_BLOCK);
9461 new_st->ext.block.ns = gfc_build_block_ns (ns);
9462 new_st->ext.block.ns->code = body->next;
9463 body->next = new_st;
9464
9465 /* Chain in the new list only if it is marked as dangling. Otherwise
9466 there is a CASE label overlap and this is already used. Just ignore,
9467 the error is diagnosed elsewhere. */
9468 if (st->n.sym->assoc->dangling)
9469 {
9470 new_st->ext.block.assoc = st->n.sym->assoc;
9471 st->n.sym->assoc->dangling = 0;
9472 }
9473
9474 resolve_assoc_var (st->n.sym, false);
9475 }
9476
9477 /* Take out CLASS IS cases for separate treatment. */
9478 body = code;
9479 while (body && body->block)
9480 {
9481 if (body->block->ext.block.case_list->ts.type == BT_CLASS)
9482 {
9483 /* Add to class_is list. */
9484 if (class_is == NULL)
9485 {
9486 class_is = body->block;
9487 tail = class_is;
9488 }
9489 else
9490 {
9491 for (tail = class_is; tail->block; tail = tail->block) ;
9492 tail->block = body->block;
9493 tail = tail->block;
9494 }
9495 /* Remove from EXEC_SELECT list. */
9496 body->block = body->block->block;
9497 tail->block = NULL;
9498 }
9499 else
9500 body = body->block;
9501 }
9502
9503 if (class_is)
9504 {
9505 gfc_symbol *vtab;
9506
9507 if (!default_case)
9508 {
9509 /* Add a default case to hold the CLASS IS cases. */
9510 for (tail = code; tail->block; tail = tail->block) ;
9511 tail->block = gfc_get_code (EXEC_SELECT_TYPE);
9512 tail = tail->block;
9513 tail->ext.block.case_list = gfc_get_case ();
9514 tail->ext.block.case_list->ts.type = BT_UNKNOWN;
9515 tail->next = NULL;
9516 default_case = tail;
9517 }
9518
9519 /* More than one CLASS IS block? */
9520 if (class_is->block)
9521 {
9522 gfc_code **c1,*c2;
9523 bool swapped;
9524 /* Sort CLASS IS blocks by extension level. */
9525 do
9526 {
9527 swapped = false;
9528 for (c1 = &class_is; (*c1) && (*c1)->block; c1 = &((*c1)->block))
9529 {
9530 c2 = (*c1)->block;
9531 /* F03:C817 (check for doubles). */
9532 if ((*c1)->ext.block.case_list->ts.u.derived->hash_value
9533 == c2->ext.block.case_list->ts.u.derived->hash_value)
9534 {
9535 gfc_error ("Double CLASS IS block in SELECT TYPE "
9536 "statement at %L",
9537 &c2->ext.block.case_list->where);
9538 return;
9539 }
9540 if ((*c1)->ext.block.case_list->ts.u.derived->attr.extension
9541 < c2->ext.block.case_list->ts.u.derived->attr.extension)
9542 {
9543 /* Swap. */
9544 (*c1)->block = c2->block;
9545 c2->block = *c1;
9546 *c1 = c2;
9547 swapped = true;
9548 }
9549 }
9550 }
9551 while (swapped);
9552 }
9553
9554 /* Generate IF chain. */
9555 if_st = gfc_get_code (EXEC_IF);
9556 new_st = if_st;
9557 for (body = class_is; body; body = body->block)
9558 {
9559 new_st->block = gfc_get_code (EXEC_IF);
9560 new_st = new_st->block;
9561 /* Set up IF condition: Call _gfortran_is_extension_of. */
9562 new_st->expr1 = gfc_get_expr ();
9563 new_st->expr1->expr_type = EXPR_FUNCTION;
9564 new_st->expr1->ts.type = BT_LOGICAL;
9565 new_st->expr1->ts.kind = 4;
9566 new_st->expr1->value.function.name = gfc_get_string (PREFIX ("is_extension_of"));
9567 new_st->expr1->value.function.isym = XCNEW (gfc_intrinsic_sym);
9568 new_st->expr1->value.function.isym->id = GFC_ISYM_EXTENDS_TYPE_OF;
9569 /* Set up arguments. */
9570 new_st->expr1->value.function.actual = gfc_get_actual_arglist ();
9571 new_st->expr1->value.function.actual->expr = gfc_get_variable_expr (selector_expr->symtree);
9572 new_st->expr1->value.function.actual->expr->where = code->loc;
9573 new_st->expr1->where = code->loc;
9574 gfc_add_vptr_component (new_st->expr1->value.function.actual->expr);
9575 vtab = gfc_find_derived_vtab (body->ext.block.case_list->ts.u.derived);
9576 st = gfc_find_symtree (vtab->ns->sym_root, vtab->name);
9577 new_st->expr1->value.function.actual->next = gfc_get_actual_arglist ();
9578 new_st->expr1->value.function.actual->next->expr = gfc_get_variable_expr (st);
9579 new_st->expr1->value.function.actual->next->expr->where = code->loc;
9580 new_st->next = body->next;
9581 }
9582 if (default_case->next)
9583 {
9584 new_st->block = gfc_get_code (EXEC_IF);
9585 new_st = new_st->block;
9586 new_st->next = default_case->next;
9587 }
9588
9589 /* Replace CLASS DEFAULT code by the IF chain. */
9590 default_case->next = if_st;
9591 }
9592
9593 /* Resolve the internal code. This cannot be done earlier because
9594 it requires that the sym->assoc of selectors is set already. */
9595 gfc_current_ns = ns;
9596 gfc_resolve_blocks (code->block, gfc_current_ns);
9597 gfc_current_ns = old_ns;
9598
9599 if (ref)
9600 free (ref);
9601 }
9602
9603
9604 /* Resolve a SELECT RANK statement. */
9605
9606 static void
9607 resolve_select_rank (gfc_code *code, gfc_namespace *old_ns)
9608 {
9609 gfc_namespace *ns;
9610 gfc_code *body, *new_st, *tail;
9611 gfc_case *c;
9612 char tname[GFC_MAX_SYMBOL_LEN];
9613 char name[2 * GFC_MAX_SYMBOL_LEN];
9614 gfc_symtree *st;
9615 gfc_expr *selector_expr = NULL;
9616 int case_value;
9617 HOST_WIDE_INT charlen = 0;
9618
9619 ns = code->ext.block.ns;
9620 gfc_resolve (ns);
9621
9622 code->op = EXEC_BLOCK;
9623 if (code->expr2)
9624 {
9625 gfc_association_list* assoc;
9626
9627 assoc = gfc_get_association_list ();
9628 assoc->st = code->expr1->symtree;
9629 assoc->target = gfc_copy_expr (code->expr2);
9630 assoc->target->where = code->expr2->where;
9631 /* assoc->variable will be set by resolve_assoc_var. */
9632
9633 code->ext.block.assoc = assoc;
9634 code->expr1->symtree->n.sym->assoc = assoc;
9635
9636 resolve_assoc_var (code->expr1->symtree->n.sym, false);
9637 }
9638 else
9639 code->ext.block.assoc = NULL;
9640
9641 /* Loop over RANK cases. Note that returning on the errors causes a
9642 cascade of further errors because the case blocks do not compile
9643 correctly. */
9644 for (body = code->block; body; body = body->block)
9645 {
9646 c = body->ext.block.case_list;
9647 if (c->low)
9648 case_value = (int) mpz_get_si (c->low->value.integer);
9649 else
9650 case_value = -2;
9651
9652 /* Check for repeated cases. */
9653 for (tail = code->block; tail; tail = tail->block)
9654 {
9655 gfc_case *d = tail->ext.block.case_list;
9656 int case_value2;
9657
9658 if (tail == body)
9659 break;
9660
9661 /* Check F2018: C1153. */
9662 if (!c->low && !d->low)
9663 gfc_error ("RANK DEFAULT at %L is repeated at %L",
9664 &c->where, &d->where);
9665
9666 if (!c->low || !d->low)
9667 continue;
9668
9669 /* Check F2018: C1153. */
9670 case_value2 = (int) mpz_get_si (d->low->value.integer);
9671 if ((case_value == case_value2) && case_value == -1)
9672 gfc_error ("RANK (*) at %L is repeated at %L",
9673 &c->where, &d->where);
9674 else if (case_value == case_value2)
9675 gfc_error ("RANK (%i) at %L is repeated at %L",
9676 case_value, &c->where, &d->where);
9677 }
9678
9679 if (!c->low)
9680 continue;
9681
9682 /* Check F2018: C1155. */
9683 if (case_value == -1 && (gfc_expr_attr (code->expr1).allocatable
9684 || gfc_expr_attr (code->expr1).pointer))
9685 gfc_error ("RANK (*) at %L cannot be used with the pointer or "
9686 "allocatable selector at %L", &c->where, &code->expr1->where);
9687
9688 if (case_value == -1 && (gfc_expr_attr (code->expr1).allocatable
9689 || gfc_expr_attr (code->expr1).pointer))
9690 gfc_error ("RANK (*) at %L cannot be used with the pointer or "
9691 "allocatable selector at %L", &c->where, &code->expr1->where);
9692 }
9693
9694 /* Add EXEC_SELECT to switch on rank. */
9695 new_st = gfc_get_code (code->op);
9696 new_st->expr1 = code->expr1;
9697 new_st->expr2 = code->expr2;
9698 new_st->block = code->block;
9699 code->expr1 = code->expr2 = NULL;
9700 code->block = NULL;
9701 if (!ns->code)
9702 ns->code = new_st;
9703 else
9704 ns->code->next = new_st;
9705 code = new_st;
9706 code->op = EXEC_SELECT_RANK;
9707
9708 selector_expr = code->expr1;
9709
9710 /* Loop over SELECT RANK cases. */
9711 for (body = code->block; body; body = body->block)
9712 {
9713 c = body->ext.block.case_list;
9714 int case_value;
9715
9716 /* Pass on the default case. */
9717 if (c->low == NULL)
9718 continue;
9719
9720 /* Associate temporary to selector. This should only be done
9721 when this case is actually true, so build a new ASSOCIATE
9722 that does precisely this here (instead of using the
9723 'global' one). */
9724 if (c->ts.type == BT_CHARACTER && c->ts.u.cl && c->ts.u.cl->length
9725 && c->ts.u.cl->length->expr_type == EXPR_CONSTANT)
9726 charlen = gfc_mpz_get_hwi (c->ts.u.cl->length->value.integer);
9727
9728 if (c->ts.type == BT_CLASS)
9729 sprintf (tname, "class_%s", c->ts.u.derived->name);
9730 else if (c->ts.type == BT_DERIVED)
9731 sprintf (tname, "type_%s", c->ts.u.derived->name);
9732 else if (c->ts.type != BT_CHARACTER)
9733 sprintf (tname, "%s_%d", gfc_basic_typename (c->ts.type), c->ts.kind);
9734 else
9735 sprintf (tname, "%s_" HOST_WIDE_INT_PRINT_DEC "_%d",
9736 gfc_basic_typename (c->ts.type), charlen, c->ts.kind);
9737
9738 case_value = (int) mpz_get_si (c->low->value.integer);
9739 if (case_value >= 0)
9740 sprintf (name, "__tmp_%s_rank_%d", tname, case_value);
9741 else
9742 sprintf (name, "__tmp_%s_rank_m%d", tname, -case_value);
9743
9744 st = gfc_find_symtree (ns->sym_root, name);
9745 gcc_assert (st->n.sym->assoc);
9746
9747 st->n.sym->assoc->target = gfc_get_variable_expr (selector_expr->symtree);
9748 st->n.sym->assoc->target->where = selector_expr->where;
9749
9750 new_st = gfc_get_code (EXEC_BLOCK);
9751 new_st->ext.block.ns = gfc_build_block_ns (ns);
9752 new_st->ext.block.ns->code = body->next;
9753 body->next = new_st;
9754
9755 /* Chain in the new list only if it is marked as dangling. Otherwise
9756 there is a CASE label overlap and this is already used. Just ignore,
9757 the error is diagnosed elsewhere. */
9758 if (st->n.sym->assoc->dangling)
9759 {
9760 new_st->ext.block.assoc = st->n.sym->assoc;
9761 st->n.sym->assoc->dangling = 0;
9762 }
9763
9764 resolve_assoc_var (st->n.sym, false);
9765 }
9766
9767 gfc_current_ns = ns;
9768 gfc_resolve_blocks (code->block, gfc_current_ns);
9769 gfc_current_ns = old_ns;
9770 }
9771
9772
9773 /* Resolve a transfer statement. This is making sure that:
9774 -- a derived type being transferred has only non-pointer components
9775 -- a derived type being transferred doesn't have private components, unless
9776 it's being transferred from the module where the type was defined
9777 -- we're not trying to transfer a whole assumed size array. */
9778
9779 static void
9780 resolve_transfer (gfc_code *code)
9781 {
9782 gfc_symbol *sym, *derived;
9783 gfc_ref *ref;
9784 gfc_expr *exp;
9785 bool write = false;
9786 bool formatted = false;
9787 gfc_dt *dt = code->ext.dt;
9788 gfc_symbol *dtio_sub = NULL;
9789
9790 exp = code->expr1;
9791
9792 while (exp != NULL && exp->expr_type == EXPR_OP
9793 && exp->value.op.op == INTRINSIC_PARENTHESES)
9794 exp = exp->value.op.op1;
9795
9796 if (exp && exp->expr_type == EXPR_NULL
9797 && code->ext.dt)
9798 {
9799 gfc_error ("Invalid context for NULL () intrinsic at %L",
9800 &exp->where);
9801 return;
9802 }
9803
9804 if (exp == NULL || (exp->expr_type != EXPR_VARIABLE
9805 && exp->expr_type != EXPR_FUNCTION
9806 && exp->expr_type != EXPR_STRUCTURE))
9807 return;
9808
9809 /* If we are reading, the variable will be changed. Note that
9810 code->ext.dt may be NULL if the TRANSFER is related to
9811 an INQUIRE statement -- but in this case, we are not reading, either. */
9812 if (dt && dt->dt_io_kind->value.iokind == M_READ
9813 && !gfc_check_vardef_context (exp, false, false, false,
9814 _("item in READ")))
9815 return;
9816
9817 const gfc_typespec *ts = exp->expr_type == EXPR_STRUCTURE
9818 || exp->expr_type == EXPR_FUNCTION
9819 ? &exp->ts : &exp->symtree->n.sym->ts;
9820
9821 /* Go to actual component transferred. */
9822 for (ref = exp->ref; ref; ref = ref->next)
9823 if (ref->type == REF_COMPONENT)
9824 ts = &ref->u.c.component->ts;
9825
9826 if (dt && dt->dt_io_kind->value.iokind != M_INQUIRE
9827 && (ts->type == BT_DERIVED || ts->type == BT_CLASS))
9828 {
9829 derived = ts->u.derived;
9830
9831 /* Determine when to use the formatted DTIO procedure. */
9832 if (dt && (dt->format_expr || dt->format_label))
9833 formatted = true;
9834
9835 write = dt->dt_io_kind->value.iokind == M_WRITE
9836 || dt->dt_io_kind->value.iokind == M_PRINT;
9837 dtio_sub = gfc_find_specific_dtio_proc (derived, write, formatted);
9838
9839 if (dtio_sub != NULL && exp->expr_type == EXPR_VARIABLE)
9840 {
9841 dt->udtio = exp;
9842 sym = exp->symtree->n.sym->ns->proc_name;
9843 /* Check to see if this is a nested DTIO call, with the
9844 dummy as the io-list object. */
9845 if (sym && sym == dtio_sub && sym->formal
9846 && sym->formal->sym == exp->symtree->n.sym
9847 && exp->ref == NULL)
9848 {
9849 if (!sym->attr.recursive)
9850 {
9851 gfc_error ("DTIO %s procedure at %L must be recursive",
9852 sym->name, &sym->declared_at);
9853 return;
9854 }
9855 }
9856 }
9857 }
9858
9859 if (ts->type == BT_CLASS && dtio_sub == NULL)
9860 {
9861 gfc_error ("Data transfer element at %L cannot be polymorphic unless "
9862 "it is processed by a defined input/output procedure",
9863 &code->loc);
9864 return;
9865 }
9866
9867 if (ts->type == BT_DERIVED)
9868 {
9869 /* Check that transferred derived type doesn't contain POINTER
9870 components unless it is processed by a defined input/output
9871 procedure". */
9872 if (ts->u.derived->attr.pointer_comp && dtio_sub == NULL)
9873 {
9874 gfc_error ("Data transfer element at %L cannot have POINTER "
9875 "components unless it is processed by a defined "
9876 "input/output procedure", &code->loc);
9877 return;
9878 }
9879
9880 /* F08:C935. */
9881 if (ts->u.derived->attr.proc_pointer_comp)
9882 {
9883 gfc_error ("Data transfer element at %L cannot have "
9884 "procedure pointer components", &code->loc);
9885 return;
9886 }
9887
9888 if (ts->u.derived->attr.alloc_comp && dtio_sub == NULL)
9889 {
9890 gfc_error ("Data transfer element at %L cannot have ALLOCATABLE "
9891 "components unless it is processed by a defined "
9892 "input/output procedure", &code->loc);
9893 return;
9894 }
9895
9896 /* C_PTR and C_FUNPTR have private components which means they cannot
9897 be printed. However, if -std=gnu and not -pedantic, allow
9898 the component to be printed to help debugging. */
9899 if (ts->u.derived->ts.f90_type == BT_VOID)
9900 {
9901 if (!gfc_notify_std (GFC_STD_GNU, "Data transfer element at %L "
9902 "cannot have PRIVATE components", &code->loc))
9903 return;
9904 }
9905 else if (derived_inaccessible (ts->u.derived) && dtio_sub == NULL)
9906 {
9907 gfc_error ("Data transfer element at %L cannot have "
9908 "PRIVATE components unless it is processed by "
9909 "a defined input/output procedure", &code->loc);
9910 return;
9911 }
9912 }
9913
9914 if (exp->expr_type == EXPR_STRUCTURE)
9915 return;
9916
9917 sym = exp->symtree->n.sym;
9918
9919 if (sym->as != NULL && sym->as->type == AS_ASSUMED_SIZE && exp->ref
9920 && exp->ref->type == REF_ARRAY && exp->ref->u.ar.type == AR_FULL)
9921 {
9922 gfc_error ("Data transfer element at %L cannot be a full reference to "
9923 "an assumed-size array", &code->loc);
9924 return;
9925 }
9926
9927 if (async_io_dt && exp->expr_type == EXPR_VARIABLE)
9928 exp->symtree->n.sym->attr.asynchronous = 1;
9929 }
9930
9931
9932 /*********** Toplevel code resolution subroutines ***********/
9933
9934 /* Find the set of labels that are reachable from this block. We also
9935 record the last statement in each block. */
9936
9937 static void
9938 find_reachable_labels (gfc_code *block)
9939 {
9940 gfc_code *c;
9941
9942 if (!block)
9943 return;
9944
9945 cs_base->reachable_labels = bitmap_alloc (&labels_obstack);
9946
9947 /* Collect labels in this block. We don't keep those corresponding
9948 to END {IF|SELECT}, these are checked in resolve_branch by going
9949 up through the code_stack. */
9950 for (c = block; c; c = c->next)
9951 {
9952 if (c->here && c->op != EXEC_END_NESTED_BLOCK)
9953 bitmap_set_bit (cs_base->reachable_labels, c->here->value);
9954 }
9955
9956 /* Merge with labels from parent block. */
9957 if (cs_base->prev)
9958 {
9959 gcc_assert (cs_base->prev->reachable_labels);
9960 bitmap_ior_into (cs_base->reachable_labels,
9961 cs_base->prev->reachable_labels);
9962 }
9963 }
9964
9965
9966 static void
9967 resolve_lock_unlock_event (gfc_code *code)
9968 {
9969 if (code->expr1->expr_type == EXPR_FUNCTION
9970 && code->expr1->value.function.isym
9971 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
9972 remove_caf_get_intrinsic (code->expr1);
9973
9974 if ((code->op == EXEC_LOCK || code->op == EXEC_UNLOCK)
9975 && (code->expr1->ts.type != BT_DERIVED
9976 || code->expr1->expr_type != EXPR_VARIABLE
9977 || code->expr1->ts.u.derived->from_intmod != INTMOD_ISO_FORTRAN_ENV
9978 || code->expr1->ts.u.derived->intmod_sym_id != ISOFORTRAN_LOCK_TYPE
9979 || code->expr1->rank != 0
9980 || (!gfc_is_coarray (code->expr1) &&
9981 !gfc_is_coindexed (code->expr1))))
9982 gfc_error ("Lock variable at %L must be a scalar of type LOCK_TYPE",
9983 &code->expr1->where);
9984 else if ((code->op == EXEC_EVENT_POST || code->op == EXEC_EVENT_WAIT)
9985 && (code->expr1->ts.type != BT_DERIVED
9986 || code->expr1->expr_type != EXPR_VARIABLE
9987 || code->expr1->ts.u.derived->from_intmod
9988 != INTMOD_ISO_FORTRAN_ENV
9989 || code->expr1->ts.u.derived->intmod_sym_id
9990 != ISOFORTRAN_EVENT_TYPE
9991 || code->expr1->rank != 0))
9992 gfc_error ("Event variable at %L must be a scalar of type EVENT_TYPE",
9993 &code->expr1->where);
9994 else if (code->op == EXEC_EVENT_POST && !gfc_is_coarray (code->expr1)
9995 && !gfc_is_coindexed (code->expr1))
9996 gfc_error ("Event variable argument at %L must be a coarray or coindexed",
9997 &code->expr1->where);
9998 else if (code->op == EXEC_EVENT_WAIT && !gfc_is_coarray (code->expr1))
9999 gfc_error ("Event variable argument at %L must be a coarray but not "
10000 "coindexed", &code->expr1->where);
10001
10002 /* Check STAT. */
10003 if (code->expr2
10004 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
10005 || code->expr2->expr_type != EXPR_VARIABLE))
10006 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
10007 &code->expr2->where);
10008
10009 if (code->expr2
10010 && !gfc_check_vardef_context (code->expr2, false, false, false,
10011 _("STAT variable")))
10012 return;
10013
10014 /* Check ERRMSG. */
10015 if (code->expr3
10016 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
10017 || code->expr3->expr_type != EXPR_VARIABLE))
10018 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
10019 &code->expr3->where);
10020
10021 if (code->expr3
10022 && !gfc_check_vardef_context (code->expr3, false, false, false,
10023 _("ERRMSG variable")))
10024 return;
10025
10026 /* Check for LOCK the ACQUIRED_LOCK. */
10027 if (code->op != EXEC_EVENT_WAIT && code->expr4
10028 && (code->expr4->ts.type != BT_LOGICAL || code->expr4->rank != 0
10029 || code->expr4->expr_type != EXPR_VARIABLE))
10030 gfc_error ("ACQUIRED_LOCK= argument at %L must be a scalar LOGICAL "
10031 "variable", &code->expr4->where);
10032
10033 if (code->op != EXEC_EVENT_WAIT && code->expr4
10034 && !gfc_check_vardef_context (code->expr4, false, false, false,
10035 _("ACQUIRED_LOCK variable")))
10036 return;
10037
10038 /* Check for EVENT WAIT the UNTIL_COUNT. */
10039 if (code->op == EXEC_EVENT_WAIT && code->expr4)
10040 {
10041 if (!gfc_resolve_expr (code->expr4) || code->expr4->ts.type != BT_INTEGER
10042 || code->expr4->rank != 0)
10043 gfc_error ("UNTIL_COUNT= argument at %L must be a scalar INTEGER "
10044 "expression", &code->expr4->where);
10045 }
10046 }
10047
10048
10049 static void
10050 resolve_critical (gfc_code *code)
10051 {
10052 gfc_symtree *symtree;
10053 gfc_symbol *lock_type;
10054 char name[GFC_MAX_SYMBOL_LEN];
10055 static int serial = 0;
10056
10057 if (flag_coarray != GFC_FCOARRAY_LIB)
10058 return;
10059
10060 symtree = gfc_find_symtree (gfc_current_ns->sym_root,
10061 GFC_PREFIX ("lock_type"));
10062 if (symtree)
10063 lock_type = symtree->n.sym;
10064 else
10065 {
10066 if (gfc_get_sym_tree (GFC_PREFIX ("lock_type"), gfc_current_ns, &symtree,
10067 false) != 0)
10068 gcc_unreachable ();
10069 lock_type = symtree->n.sym;
10070 lock_type->attr.flavor = FL_DERIVED;
10071 lock_type->attr.zero_comp = 1;
10072 lock_type->from_intmod = INTMOD_ISO_FORTRAN_ENV;
10073 lock_type->intmod_sym_id = ISOFORTRAN_LOCK_TYPE;
10074 }
10075
10076 sprintf(name, GFC_PREFIX ("lock_var") "%d",serial++);
10077 if (gfc_get_sym_tree (name, gfc_current_ns, &symtree, false) != 0)
10078 gcc_unreachable ();
10079
10080 code->resolved_sym = symtree->n.sym;
10081 symtree->n.sym->attr.flavor = FL_VARIABLE;
10082 symtree->n.sym->attr.referenced = 1;
10083 symtree->n.sym->attr.artificial = 1;
10084 symtree->n.sym->attr.codimension = 1;
10085 symtree->n.sym->ts.type = BT_DERIVED;
10086 symtree->n.sym->ts.u.derived = lock_type;
10087 symtree->n.sym->as = gfc_get_array_spec ();
10088 symtree->n.sym->as->corank = 1;
10089 symtree->n.sym->as->type = AS_EXPLICIT;
10090 symtree->n.sym->as->cotype = AS_EXPLICIT;
10091 symtree->n.sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind,
10092 NULL, 1);
10093 gfc_commit_symbols();
10094 }
10095
10096
10097 static void
10098 resolve_sync (gfc_code *code)
10099 {
10100 /* Check imageset. The * case matches expr1 == NULL. */
10101 if (code->expr1)
10102 {
10103 if (code->expr1->ts.type != BT_INTEGER || code->expr1->rank > 1)
10104 gfc_error ("Imageset argument at %L must be a scalar or rank-1 "
10105 "INTEGER expression", &code->expr1->where);
10106 if (code->expr1->expr_type == EXPR_CONSTANT && code->expr1->rank == 0
10107 && mpz_cmp_si (code->expr1->value.integer, 1) < 0)
10108 gfc_error ("Imageset argument at %L must between 1 and num_images()",
10109 &code->expr1->where);
10110 else if (code->expr1->expr_type == EXPR_ARRAY
10111 && gfc_simplify_expr (code->expr1, 0))
10112 {
10113 gfc_constructor *cons;
10114 cons = gfc_constructor_first (code->expr1->value.constructor);
10115 for (; cons; cons = gfc_constructor_next (cons))
10116 if (cons->expr->expr_type == EXPR_CONSTANT
10117 && mpz_cmp_si (cons->expr->value.integer, 1) < 0)
10118 gfc_error ("Imageset argument at %L must between 1 and "
10119 "num_images()", &cons->expr->where);
10120 }
10121 }
10122
10123 /* Check STAT. */
10124 gfc_resolve_expr (code->expr2);
10125 if (code->expr2
10126 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
10127 || code->expr2->expr_type != EXPR_VARIABLE))
10128 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
10129 &code->expr2->where);
10130
10131 /* Check ERRMSG. */
10132 gfc_resolve_expr (code->expr3);
10133 if (code->expr3
10134 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
10135 || code->expr3->expr_type != EXPR_VARIABLE))
10136 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
10137 &code->expr3->where);
10138 }
10139
10140
10141 /* Given a branch to a label, see if the branch is conforming.
10142 The code node describes where the branch is located. */
10143
10144 static void
10145 resolve_branch (gfc_st_label *label, gfc_code *code)
10146 {
10147 code_stack *stack;
10148
10149 if (label == NULL)
10150 return;
10151
10152 /* Step one: is this a valid branching target? */
10153
10154 if (label->defined == ST_LABEL_UNKNOWN)
10155 {
10156 gfc_error ("Label %d referenced at %L is never defined", label->value,
10157 &code->loc);
10158 return;
10159 }
10160
10161 if (label->defined != ST_LABEL_TARGET && label->defined != ST_LABEL_DO_TARGET)
10162 {
10163 gfc_error ("Statement at %L is not a valid branch target statement "
10164 "for the branch statement at %L", &label->where, &code->loc);
10165 return;
10166 }
10167
10168 /* Step two: make sure this branch is not a branch to itself ;-) */
10169
10170 if (code->here == label)
10171 {
10172 gfc_warning (0,
10173 "Branch at %L may result in an infinite loop", &code->loc);
10174 return;
10175 }
10176
10177 /* Step three: See if the label is in the same block as the
10178 branching statement. The hard work has been done by setting up
10179 the bitmap reachable_labels. */
10180
10181 if (bitmap_bit_p (cs_base->reachable_labels, label->value))
10182 {
10183 /* Check now whether there is a CRITICAL construct; if so, check
10184 whether the label is still visible outside of the CRITICAL block,
10185 which is invalid. */
10186 for (stack = cs_base; stack; stack = stack->prev)
10187 {
10188 if (stack->current->op == EXEC_CRITICAL
10189 && bitmap_bit_p (stack->reachable_labels, label->value))
10190 gfc_error ("GOTO statement at %L leaves CRITICAL construct for "
10191 "label at %L", &code->loc, &label->where);
10192 else if (stack->current->op == EXEC_DO_CONCURRENT
10193 && bitmap_bit_p (stack->reachable_labels, label->value))
10194 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct "
10195 "for label at %L", &code->loc, &label->where);
10196 }
10197
10198 return;
10199 }
10200
10201 /* Step four: If we haven't found the label in the bitmap, it may
10202 still be the label of the END of the enclosing block, in which
10203 case we find it by going up the code_stack. */
10204
10205 for (stack = cs_base; stack; stack = stack->prev)
10206 {
10207 if (stack->current->next && stack->current->next->here == label)
10208 break;
10209 if (stack->current->op == EXEC_CRITICAL)
10210 {
10211 /* Note: A label at END CRITICAL does not leave the CRITICAL
10212 construct as END CRITICAL is still part of it. */
10213 gfc_error ("GOTO statement at %L leaves CRITICAL construct for label"
10214 " at %L", &code->loc, &label->where);
10215 return;
10216 }
10217 else if (stack->current->op == EXEC_DO_CONCURRENT)
10218 {
10219 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct for "
10220 "label at %L", &code->loc, &label->where);
10221 return;
10222 }
10223 }
10224
10225 if (stack)
10226 {
10227 gcc_assert (stack->current->next->op == EXEC_END_NESTED_BLOCK);
10228 return;
10229 }
10230
10231 /* The label is not in an enclosing block, so illegal. This was
10232 allowed in Fortran 66, so we allow it as extension. No
10233 further checks are necessary in this case. */
10234 gfc_notify_std (GFC_STD_LEGACY, "Label at %L is not in the same block "
10235 "as the GOTO statement at %L", &label->where,
10236 &code->loc);
10237 return;
10238 }
10239
10240
10241 /* Check whether EXPR1 has the same shape as EXPR2. */
10242
10243 static bool
10244 resolve_where_shape (gfc_expr *expr1, gfc_expr *expr2)
10245 {
10246 mpz_t shape[GFC_MAX_DIMENSIONS];
10247 mpz_t shape2[GFC_MAX_DIMENSIONS];
10248 bool result = false;
10249 int i;
10250
10251 /* Compare the rank. */
10252 if (expr1->rank != expr2->rank)
10253 return result;
10254
10255 /* Compare the size of each dimension. */
10256 for (i=0; i<expr1->rank; i++)
10257 {
10258 if (!gfc_array_dimen_size (expr1, i, &shape[i]))
10259 goto ignore;
10260
10261 if (!gfc_array_dimen_size (expr2, i, &shape2[i]))
10262 goto ignore;
10263
10264 if (mpz_cmp (shape[i], shape2[i]))
10265 goto over;
10266 }
10267
10268 /* When either of the two expression is an assumed size array, we
10269 ignore the comparison of dimension sizes. */
10270 ignore:
10271 result = true;
10272
10273 over:
10274 gfc_clear_shape (shape, i);
10275 gfc_clear_shape (shape2, i);
10276 return result;
10277 }
10278
10279
10280 /* Check whether a WHERE assignment target or a WHERE mask expression
10281 has the same shape as the outmost WHERE mask expression. */
10282
10283 static void
10284 resolve_where (gfc_code *code, gfc_expr *mask)
10285 {
10286 gfc_code *cblock;
10287 gfc_code *cnext;
10288 gfc_expr *e = NULL;
10289
10290 cblock = code->block;
10291
10292 /* Store the first WHERE mask-expr of the WHERE statement or construct.
10293 In case of nested WHERE, only the outmost one is stored. */
10294 if (mask == NULL) /* outmost WHERE */
10295 e = cblock->expr1;
10296 else /* inner WHERE */
10297 e = mask;
10298
10299 while (cblock)
10300 {
10301 if (cblock->expr1)
10302 {
10303 /* Check if the mask-expr has a consistent shape with the
10304 outmost WHERE mask-expr. */
10305 if (!resolve_where_shape (cblock->expr1, e))
10306 gfc_error ("WHERE mask at %L has inconsistent shape",
10307 &cblock->expr1->where);
10308 }
10309
10310 /* the assignment statement of a WHERE statement, or the first
10311 statement in where-body-construct of a WHERE construct */
10312 cnext = cblock->next;
10313 while (cnext)
10314 {
10315 switch (cnext->op)
10316 {
10317 /* WHERE assignment statement */
10318 case EXEC_ASSIGN:
10319
10320 /* Check shape consistent for WHERE assignment target. */
10321 if (e && !resolve_where_shape (cnext->expr1, e))
10322 gfc_error ("WHERE assignment target at %L has "
10323 "inconsistent shape", &cnext->expr1->where);
10324 break;
10325
10326
10327 case EXEC_ASSIGN_CALL:
10328 resolve_call (cnext);
10329 if (!cnext->resolved_sym->attr.elemental)
10330 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
10331 &cnext->ext.actual->expr->where);
10332 break;
10333
10334 /* WHERE or WHERE construct is part of a where-body-construct */
10335 case EXEC_WHERE:
10336 resolve_where (cnext, e);
10337 break;
10338
10339 default:
10340 gfc_error ("Unsupported statement inside WHERE at %L",
10341 &cnext->loc);
10342 }
10343 /* the next statement within the same where-body-construct */
10344 cnext = cnext->next;
10345 }
10346 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
10347 cblock = cblock->block;
10348 }
10349 }
10350
10351
10352 /* Resolve assignment in FORALL construct.
10353 NVAR is the number of FORALL index variables, and VAR_EXPR records the
10354 FORALL index variables. */
10355
10356 static void
10357 gfc_resolve_assign_in_forall (gfc_code *code, int nvar, gfc_expr **var_expr)
10358 {
10359 int n;
10360
10361 for (n = 0; n < nvar; n++)
10362 {
10363 gfc_symbol *forall_index;
10364
10365 forall_index = var_expr[n]->symtree->n.sym;
10366
10367 /* Check whether the assignment target is one of the FORALL index
10368 variable. */
10369 if ((code->expr1->expr_type == EXPR_VARIABLE)
10370 && (code->expr1->symtree->n.sym == forall_index))
10371 gfc_error ("Assignment to a FORALL index variable at %L",
10372 &code->expr1->where);
10373 else
10374 {
10375 /* If one of the FORALL index variables doesn't appear in the
10376 assignment variable, then there could be a many-to-one
10377 assignment. Emit a warning rather than an error because the
10378 mask could be resolving this problem. */
10379 if (!find_forall_index (code->expr1, forall_index, 0))
10380 gfc_warning (0, "The FORALL with index %qs is not used on the "
10381 "left side of the assignment at %L and so might "
10382 "cause multiple assignment to this object",
10383 var_expr[n]->symtree->name, &code->expr1->where);
10384 }
10385 }
10386 }
10387
10388
10389 /* Resolve WHERE statement in FORALL construct. */
10390
10391 static void
10392 gfc_resolve_where_code_in_forall (gfc_code *code, int nvar,
10393 gfc_expr **var_expr)
10394 {
10395 gfc_code *cblock;
10396 gfc_code *cnext;
10397
10398 cblock = code->block;
10399 while (cblock)
10400 {
10401 /* the assignment statement of a WHERE statement, or the first
10402 statement in where-body-construct of a WHERE construct */
10403 cnext = cblock->next;
10404 while (cnext)
10405 {
10406 switch (cnext->op)
10407 {
10408 /* WHERE assignment statement */
10409 case EXEC_ASSIGN:
10410 gfc_resolve_assign_in_forall (cnext, nvar, var_expr);
10411 break;
10412
10413 /* WHERE operator assignment statement */
10414 case EXEC_ASSIGN_CALL:
10415 resolve_call (cnext);
10416 if (!cnext->resolved_sym->attr.elemental)
10417 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
10418 &cnext->ext.actual->expr->where);
10419 break;
10420
10421 /* WHERE or WHERE construct is part of a where-body-construct */
10422 case EXEC_WHERE:
10423 gfc_resolve_where_code_in_forall (cnext, nvar, var_expr);
10424 break;
10425
10426 default:
10427 gfc_error ("Unsupported statement inside WHERE at %L",
10428 &cnext->loc);
10429 }
10430 /* the next statement within the same where-body-construct */
10431 cnext = cnext->next;
10432 }
10433 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
10434 cblock = cblock->block;
10435 }
10436 }
10437
10438
10439 /* Traverse the FORALL body to check whether the following errors exist:
10440 1. For assignment, check if a many-to-one assignment happens.
10441 2. For WHERE statement, check the WHERE body to see if there is any
10442 many-to-one assignment. */
10443
10444 static void
10445 gfc_resolve_forall_body (gfc_code *code, int nvar, gfc_expr **var_expr)
10446 {
10447 gfc_code *c;
10448
10449 c = code->block->next;
10450 while (c)
10451 {
10452 switch (c->op)
10453 {
10454 case EXEC_ASSIGN:
10455 case EXEC_POINTER_ASSIGN:
10456 gfc_resolve_assign_in_forall (c, nvar, var_expr);
10457 break;
10458
10459 case EXEC_ASSIGN_CALL:
10460 resolve_call (c);
10461 break;
10462
10463 /* Because the gfc_resolve_blocks() will handle the nested FORALL,
10464 there is no need to handle it here. */
10465 case EXEC_FORALL:
10466 break;
10467 case EXEC_WHERE:
10468 gfc_resolve_where_code_in_forall(c, nvar, var_expr);
10469 break;
10470 default:
10471 break;
10472 }
10473 /* The next statement in the FORALL body. */
10474 c = c->next;
10475 }
10476 }
10477
10478
10479 /* Counts the number of iterators needed inside a forall construct, including
10480 nested forall constructs. This is used to allocate the needed memory
10481 in gfc_resolve_forall. */
10482
10483 static int
10484 gfc_count_forall_iterators (gfc_code *code)
10485 {
10486 int max_iters, sub_iters, current_iters;
10487 gfc_forall_iterator *fa;
10488
10489 gcc_assert(code->op == EXEC_FORALL);
10490 max_iters = 0;
10491 current_iters = 0;
10492
10493 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
10494 current_iters ++;
10495
10496 code = code->block->next;
10497
10498 while (code)
10499 {
10500 if (code->op == EXEC_FORALL)
10501 {
10502 sub_iters = gfc_count_forall_iterators (code);
10503 if (sub_iters > max_iters)
10504 max_iters = sub_iters;
10505 }
10506 code = code->next;
10507 }
10508
10509 return current_iters + max_iters;
10510 }
10511
10512
10513 /* Given a FORALL construct, first resolve the FORALL iterator, then call
10514 gfc_resolve_forall_body to resolve the FORALL body. */
10515
10516 static void
10517 gfc_resolve_forall (gfc_code *code, gfc_namespace *ns, int forall_save)
10518 {
10519 static gfc_expr **var_expr;
10520 static int total_var = 0;
10521 static int nvar = 0;
10522 int i, old_nvar, tmp;
10523 gfc_forall_iterator *fa;
10524
10525 old_nvar = nvar;
10526
10527 if (!gfc_notify_std (GFC_STD_F2018_OBS, "FORALL construct at %L", &code->loc))
10528 return;
10529
10530 /* Start to resolve a FORALL construct */
10531 if (forall_save == 0)
10532 {
10533 /* Count the total number of FORALL indices in the nested FORALL
10534 construct in order to allocate the VAR_EXPR with proper size. */
10535 total_var = gfc_count_forall_iterators (code);
10536
10537 /* Allocate VAR_EXPR with NUMBER_OF_FORALL_INDEX elements. */
10538 var_expr = XCNEWVEC (gfc_expr *, total_var);
10539 }
10540
10541 /* The information about FORALL iterator, including FORALL indices start, end
10542 and stride. An outer FORALL indice cannot appear in start, end or stride. */
10543 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
10544 {
10545 /* Fortran 20008: C738 (R753). */
10546 if (fa->var->ref && fa->var->ref->type == REF_ARRAY)
10547 {
10548 gfc_error ("FORALL index-name at %L must be a scalar variable "
10549 "of type integer", &fa->var->where);
10550 continue;
10551 }
10552
10553 /* Check if any outer FORALL index name is the same as the current
10554 one. */
10555 for (i = 0; i < nvar; i++)
10556 {
10557 if (fa->var->symtree->n.sym == var_expr[i]->symtree->n.sym)
10558 gfc_error ("An outer FORALL construct already has an index "
10559 "with this name %L", &fa->var->where);
10560 }
10561
10562 /* Record the current FORALL index. */
10563 var_expr[nvar] = gfc_copy_expr (fa->var);
10564
10565 nvar++;
10566
10567 /* No memory leak. */
10568 gcc_assert (nvar <= total_var);
10569 }
10570
10571 /* Resolve the FORALL body. */
10572 gfc_resolve_forall_body (code, nvar, var_expr);
10573
10574 /* May call gfc_resolve_forall to resolve the inner FORALL loop. */
10575 gfc_resolve_blocks (code->block, ns);
10576
10577 tmp = nvar;
10578 nvar = old_nvar;
10579 /* Free only the VAR_EXPRs allocated in this frame. */
10580 for (i = nvar; i < tmp; i++)
10581 gfc_free_expr (var_expr[i]);
10582
10583 if (nvar == 0)
10584 {
10585 /* We are in the outermost FORALL construct. */
10586 gcc_assert (forall_save == 0);
10587
10588 /* VAR_EXPR is not needed any more. */
10589 free (var_expr);
10590 total_var = 0;
10591 }
10592 }
10593
10594
10595 /* Resolve a BLOCK construct statement. */
10596
10597 static void
10598 resolve_block_construct (gfc_code* code)
10599 {
10600 /* Resolve the BLOCK's namespace. */
10601 gfc_resolve (code->ext.block.ns);
10602
10603 /* For an ASSOCIATE block, the associations (and their targets) are already
10604 resolved during resolve_symbol. */
10605 }
10606
10607
10608 /* Resolve lists of blocks found in IF, SELECT CASE, WHERE, FORALL, GOTO and
10609 DO code nodes. */
10610
10611 void
10612 gfc_resolve_blocks (gfc_code *b, gfc_namespace *ns)
10613 {
10614 bool t;
10615
10616 for (; b; b = b->block)
10617 {
10618 t = gfc_resolve_expr (b->expr1);
10619 if (!gfc_resolve_expr (b->expr2))
10620 t = false;
10621
10622 switch (b->op)
10623 {
10624 case EXEC_IF:
10625 if (t && b->expr1 != NULL
10626 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank != 0))
10627 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
10628 &b->expr1->where);
10629 break;
10630
10631 case EXEC_WHERE:
10632 if (t
10633 && b->expr1 != NULL
10634 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank == 0))
10635 gfc_error ("WHERE/ELSEWHERE clause at %L requires a LOGICAL array",
10636 &b->expr1->where);
10637 break;
10638
10639 case EXEC_GOTO:
10640 resolve_branch (b->label1, b);
10641 break;
10642
10643 case EXEC_BLOCK:
10644 resolve_block_construct (b);
10645 break;
10646
10647 case EXEC_SELECT:
10648 case EXEC_SELECT_TYPE:
10649 case EXEC_SELECT_RANK:
10650 case EXEC_FORALL:
10651 case EXEC_DO:
10652 case EXEC_DO_WHILE:
10653 case EXEC_DO_CONCURRENT:
10654 case EXEC_CRITICAL:
10655 case EXEC_READ:
10656 case EXEC_WRITE:
10657 case EXEC_IOLENGTH:
10658 case EXEC_WAIT:
10659 break;
10660
10661 case EXEC_OMP_ATOMIC:
10662 case EXEC_OACC_ATOMIC:
10663 {
10664 gfc_omp_atomic_op aop
10665 = (gfc_omp_atomic_op) (b->ext.omp_atomic & GFC_OMP_ATOMIC_MASK);
10666
10667 /* Verify this before calling gfc_resolve_code, which might
10668 change it. */
10669 gcc_assert (b->next && b->next->op == EXEC_ASSIGN);
10670 gcc_assert (((aop != GFC_OMP_ATOMIC_CAPTURE)
10671 && b->next->next == NULL)
10672 || ((aop == GFC_OMP_ATOMIC_CAPTURE)
10673 && b->next->next != NULL
10674 && b->next->next->op == EXEC_ASSIGN
10675 && b->next->next->next == NULL));
10676 }
10677 break;
10678
10679 case EXEC_OACC_PARALLEL_LOOP:
10680 case EXEC_OACC_PARALLEL:
10681 case EXEC_OACC_KERNELS_LOOP:
10682 case EXEC_OACC_KERNELS:
10683 case EXEC_OACC_SERIAL_LOOP:
10684 case EXEC_OACC_SERIAL:
10685 case EXEC_OACC_DATA:
10686 case EXEC_OACC_HOST_DATA:
10687 case EXEC_OACC_LOOP:
10688 case EXEC_OACC_UPDATE:
10689 case EXEC_OACC_WAIT:
10690 case EXEC_OACC_CACHE:
10691 case EXEC_OACC_ENTER_DATA:
10692 case EXEC_OACC_EXIT_DATA:
10693 case EXEC_OACC_ROUTINE:
10694 case EXEC_OMP_CRITICAL:
10695 case EXEC_OMP_DISTRIBUTE:
10696 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
10697 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
10698 case EXEC_OMP_DISTRIBUTE_SIMD:
10699 case EXEC_OMP_DO:
10700 case EXEC_OMP_DO_SIMD:
10701 case EXEC_OMP_MASTER:
10702 case EXEC_OMP_ORDERED:
10703 case EXEC_OMP_PARALLEL:
10704 case EXEC_OMP_PARALLEL_DO:
10705 case EXEC_OMP_PARALLEL_DO_SIMD:
10706 case EXEC_OMP_PARALLEL_SECTIONS:
10707 case EXEC_OMP_PARALLEL_WORKSHARE:
10708 case EXEC_OMP_SECTIONS:
10709 case EXEC_OMP_SIMD:
10710 case EXEC_OMP_SINGLE:
10711 case EXEC_OMP_TARGET:
10712 case EXEC_OMP_TARGET_DATA:
10713 case EXEC_OMP_TARGET_ENTER_DATA:
10714 case EXEC_OMP_TARGET_EXIT_DATA:
10715 case EXEC_OMP_TARGET_PARALLEL:
10716 case EXEC_OMP_TARGET_PARALLEL_DO:
10717 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
10718 case EXEC_OMP_TARGET_SIMD:
10719 case EXEC_OMP_TARGET_TEAMS:
10720 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
10721 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
10722 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10723 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
10724 case EXEC_OMP_TARGET_UPDATE:
10725 case EXEC_OMP_TASK:
10726 case EXEC_OMP_TASKGROUP:
10727 case EXEC_OMP_TASKLOOP:
10728 case EXEC_OMP_TASKLOOP_SIMD:
10729 case EXEC_OMP_TASKWAIT:
10730 case EXEC_OMP_TASKYIELD:
10731 case EXEC_OMP_TEAMS:
10732 case EXEC_OMP_TEAMS_DISTRIBUTE:
10733 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
10734 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10735 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
10736 case EXEC_OMP_WORKSHARE:
10737 break;
10738
10739 default:
10740 gfc_internal_error ("gfc_resolve_blocks(): Bad block type");
10741 }
10742
10743 gfc_resolve_code (b->next, ns);
10744 }
10745 }
10746
10747
10748 /* Does everything to resolve an ordinary assignment. Returns true
10749 if this is an interface assignment. */
10750 static bool
10751 resolve_ordinary_assign (gfc_code *code, gfc_namespace *ns)
10752 {
10753 bool rval = false;
10754 gfc_expr *lhs;
10755 gfc_expr *rhs;
10756 int n;
10757 gfc_ref *ref;
10758 symbol_attribute attr;
10759
10760 if (gfc_extend_assign (code, ns))
10761 {
10762 gfc_expr** rhsptr;
10763
10764 if (code->op == EXEC_ASSIGN_CALL)
10765 {
10766 lhs = code->ext.actual->expr;
10767 rhsptr = &code->ext.actual->next->expr;
10768 }
10769 else
10770 {
10771 gfc_actual_arglist* args;
10772 gfc_typebound_proc* tbp;
10773
10774 gcc_assert (code->op == EXEC_COMPCALL);
10775
10776 args = code->expr1->value.compcall.actual;
10777 lhs = args->expr;
10778 rhsptr = &args->next->expr;
10779
10780 tbp = code->expr1->value.compcall.tbp;
10781 gcc_assert (!tbp->is_generic);
10782 }
10783
10784 /* Make a temporary rhs when there is a default initializer
10785 and rhs is the same symbol as the lhs. */
10786 if ((*rhsptr)->expr_type == EXPR_VARIABLE
10787 && (*rhsptr)->symtree->n.sym->ts.type == BT_DERIVED
10788 && gfc_has_default_initializer ((*rhsptr)->symtree->n.sym->ts.u.derived)
10789 && (lhs->symtree->n.sym == (*rhsptr)->symtree->n.sym))
10790 *rhsptr = gfc_get_parentheses (*rhsptr);
10791
10792 return true;
10793 }
10794
10795 lhs = code->expr1;
10796 rhs = code->expr2;
10797
10798 if ((gfc_numeric_ts (&lhs->ts) || lhs->ts.type == BT_LOGICAL)
10799 && rhs->ts.type == BT_CHARACTER
10800 && (rhs->expr_type != EXPR_CONSTANT || !flag_dec_char_conversions))
10801 {
10802 /* Use of -fdec-char-conversions allows assignment of character data
10803 to non-character variables. This not permited for nonconstant
10804 strings. */
10805 gfc_error ("Cannot convert %s to %s at %L", gfc_typename (rhs),
10806 gfc_typename (lhs), &rhs->where);
10807 return false;
10808 }
10809
10810 /* Handle the case of a BOZ literal on the RHS. */
10811 if (rhs->ts.type == BT_BOZ)
10812 {
10813 if (gfc_invalid_boz ("BOZ literal constant at %L is neither a DATA "
10814 "statement value nor an actual argument of "
10815 "INT/REAL/DBLE/CMPLX intrinsic subprogram",
10816 &rhs->where))
10817 return false;
10818
10819 switch (lhs->ts.type)
10820 {
10821 case BT_INTEGER:
10822 if (!gfc_boz2int (rhs, lhs->ts.kind))
10823 return false;
10824 break;
10825 case BT_REAL:
10826 if (!gfc_boz2real (rhs, lhs->ts.kind))
10827 return false;
10828 break;
10829 default:
10830 gfc_error ("Invalid use of BOZ literal constant at %L", &rhs->where);
10831 return false;
10832 }
10833 }
10834
10835 if (lhs->ts.type == BT_CHARACTER && warn_character_truncation)
10836 {
10837 HOST_WIDE_INT llen = 0, rlen = 0;
10838 if (lhs->ts.u.cl != NULL
10839 && lhs->ts.u.cl->length != NULL
10840 && lhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10841 llen = gfc_mpz_get_hwi (lhs->ts.u.cl->length->value.integer);
10842
10843 if (rhs->expr_type == EXPR_CONSTANT)
10844 rlen = rhs->value.character.length;
10845
10846 else if (rhs->ts.u.cl != NULL
10847 && rhs->ts.u.cl->length != NULL
10848 && rhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10849 rlen = gfc_mpz_get_hwi (rhs->ts.u.cl->length->value.integer);
10850
10851 if (rlen && llen && rlen > llen)
10852 gfc_warning_now (OPT_Wcharacter_truncation,
10853 "CHARACTER expression will be truncated "
10854 "in assignment (%ld/%ld) at %L",
10855 (long) llen, (long) rlen, &code->loc);
10856 }
10857
10858 /* Ensure that a vector index expression for the lvalue is evaluated
10859 to a temporary if the lvalue symbol is referenced in it. */
10860 if (lhs->rank)
10861 {
10862 for (ref = lhs->ref; ref; ref= ref->next)
10863 if (ref->type == REF_ARRAY)
10864 {
10865 for (n = 0; n < ref->u.ar.dimen; n++)
10866 if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR
10867 && gfc_find_sym_in_expr (lhs->symtree->n.sym,
10868 ref->u.ar.start[n]))
10869 ref->u.ar.start[n]
10870 = gfc_get_parentheses (ref->u.ar.start[n]);
10871 }
10872 }
10873
10874 if (gfc_pure (NULL))
10875 {
10876 if (lhs->ts.type == BT_DERIVED
10877 && lhs->expr_type == EXPR_VARIABLE
10878 && lhs->ts.u.derived->attr.pointer_comp
10879 && rhs->expr_type == EXPR_VARIABLE
10880 && (gfc_impure_variable (rhs->symtree->n.sym)
10881 || gfc_is_coindexed (rhs)))
10882 {
10883 /* F2008, C1283. */
10884 if (gfc_is_coindexed (rhs))
10885 gfc_error ("Coindexed expression at %L is assigned to "
10886 "a derived type variable with a POINTER "
10887 "component in a PURE procedure",
10888 &rhs->where);
10889 else
10890 /* F2008, C1283 (4). */
10891 gfc_error ("In a pure subprogram an INTENT(IN) dummy argument "
10892 "shall not be used as the expr at %L of an intrinsic "
10893 "assignment statement in which the variable is of a "
10894 "derived type if the derived type has a pointer "
10895 "component at any level of component selection.",
10896 &rhs->where);
10897 return rval;
10898 }
10899
10900 /* Fortran 2008, C1283. */
10901 if (gfc_is_coindexed (lhs))
10902 {
10903 gfc_error ("Assignment to coindexed variable at %L in a PURE "
10904 "procedure", &rhs->where);
10905 return rval;
10906 }
10907 }
10908
10909 if (gfc_implicit_pure (NULL))
10910 {
10911 if (lhs->expr_type == EXPR_VARIABLE
10912 && lhs->symtree->n.sym != gfc_current_ns->proc_name
10913 && lhs->symtree->n.sym->ns != gfc_current_ns)
10914 gfc_unset_implicit_pure (NULL);
10915
10916 if (lhs->ts.type == BT_DERIVED
10917 && lhs->expr_type == EXPR_VARIABLE
10918 && lhs->ts.u.derived->attr.pointer_comp
10919 && rhs->expr_type == EXPR_VARIABLE
10920 && (gfc_impure_variable (rhs->symtree->n.sym)
10921 || gfc_is_coindexed (rhs)))
10922 gfc_unset_implicit_pure (NULL);
10923
10924 /* Fortran 2008, C1283. */
10925 if (gfc_is_coindexed (lhs))
10926 gfc_unset_implicit_pure (NULL);
10927 }
10928
10929 /* F2008, 7.2.1.2. */
10930 attr = gfc_expr_attr (lhs);
10931 if (lhs->ts.type == BT_CLASS && attr.allocatable)
10932 {
10933 if (attr.codimension)
10934 {
10935 gfc_error ("Assignment to polymorphic coarray at %L is not "
10936 "permitted", &lhs->where);
10937 return false;
10938 }
10939 if (!gfc_notify_std (GFC_STD_F2008, "Assignment to an allocatable "
10940 "polymorphic variable at %L", &lhs->where))
10941 return false;
10942 if (!flag_realloc_lhs)
10943 {
10944 gfc_error ("Assignment to an allocatable polymorphic variable at %L "
10945 "requires %<-frealloc-lhs%>", &lhs->where);
10946 return false;
10947 }
10948 }
10949 else if (lhs->ts.type == BT_CLASS)
10950 {
10951 gfc_error ("Nonallocatable variable must not be polymorphic in intrinsic "
10952 "assignment at %L - check that there is a matching specific "
10953 "subroutine for '=' operator", &lhs->where);
10954 return false;
10955 }
10956
10957 bool lhs_coindexed = gfc_is_coindexed (lhs);
10958
10959 /* F2008, Section 7.2.1.2. */
10960 if (lhs_coindexed && gfc_has_ultimate_allocatable (lhs))
10961 {
10962 gfc_error ("Coindexed variable must not have an allocatable ultimate "
10963 "component in assignment at %L", &lhs->where);
10964 return false;
10965 }
10966
10967 /* Assign the 'data' of a class object to a derived type. */
10968 if (lhs->ts.type == BT_DERIVED
10969 && rhs->ts.type == BT_CLASS
10970 && rhs->expr_type != EXPR_ARRAY)
10971 gfc_add_data_component (rhs);
10972
10973 /* Make sure there is a vtable and, in particular, a _copy for the
10974 rhs type. */
10975 if (UNLIMITED_POLY (lhs) && lhs->rank && rhs->ts.type != BT_CLASS)
10976 gfc_find_vtab (&rhs->ts);
10977
10978 bool caf_convert_to_send = flag_coarray == GFC_FCOARRAY_LIB
10979 && (lhs_coindexed
10980 || (code->expr2->expr_type == EXPR_FUNCTION
10981 && code->expr2->value.function.isym
10982 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET
10983 && (code->expr1->rank == 0 || code->expr2->rank != 0)
10984 && !gfc_expr_attr (rhs).allocatable
10985 && !gfc_has_vector_subscript (rhs)));
10986
10987 gfc_check_assign (lhs, rhs, 1, !caf_convert_to_send);
10988
10989 /* Insert a GFC_ISYM_CAF_SEND intrinsic, when the LHS is a coindexed variable.
10990 Additionally, insert this code when the RHS is a CAF as we then use the
10991 GFC_ISYM_CAF_SEND intrinsic just to avoid a temporary; but do not do so if
10992 the LHS is (re)allocatable or has a vector subscript. If the LHS is a
10993 noncoindexed array and the RHS is a coindexed scalar, use the normal code
10994 path. */
10995 if (caf_convert_to_send)
10996 {
10997 if (code->expr2->expr_type == EXPR_FUNCTION
10998 && code->expr2->value.function.isym
10999 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET)
11000 remove_caf_get_intrinsic (code->expr2);
11001 code->op = EXEC_CALL;
11002 gfc_get_sym_tree (GFC_PREFIX ("caf_send"), ns, &code->symtree, true);
11003 code->resolved_sym = code->symtree->n.sym;
11004 code->resolved_sym->attr.flavor = FL_PROCEDURE;
11005 code->resolved_sym->attr.intrinsic = 1;
11006 code->resolved_sym->attr.subroutine = 1;
11007 code->resolved_isym = gfc_intrinsic_subroutine_by_id (GFC_ISYM_CAF_SEND);
11008 gfc_commit_symbol (code->resolved_sym);
11009 code->ext.actual = gfc_get_actual_arglist ();
11010 code->ext.actual->expr = lhs;
11011 code->ext.actual->next = gfc_get_actual_arglist ();
11012 code->ext.actual->next->expr = rhs;
11013 code->expr1 = NULL;
11014 code->expr2 = NULL;
11015 }
11016
11017 return false;
11018 }
11019
11020
11021 /* Add a component reference onto an expression. */
11022
11023 static void
11024 add_comp_ref (gfc_expr *e, gfc_component *c)
11025 {
11026 gfc_ref **ref;
11027 ref = &(e->ref);
11028 while (*ref)
11029 ref = &((*ref)->next);
11030 *ref = gfc_get_ref ();
11031 (*ref)->type = REF_COMPONENT;
11032 (*ref)->u.c.sym = e->ts.u.derived;
11033 (*ref)->u.c.component = c;
11034 e->ts = c->ts;
11035
11036 /* Add a full array ref, as necessary. */
11037 if (c->as)
11038 {
11039 gfc_add_full_array_ref (e, c->as);
11040 e->rank = c->as->rank;
11041 }
11042 }
11043
11044
11045 /* Build an assignment. Keep the argument 'op' for future use, so that
11046 pointer assignments can be made. */
11047
11048 static gfc_code *
11049 build_assignment (gfc_exec_op op, gfc_expr *expr1, gfc_expr *expr2,
11050 gfc_component *comp1, gfc_component *comp2, locus loc)
11051 {
11052 gfc_code *this_code;
11053
11054 this_code = gfc_get_code (op);
11055 this_code->next = NULL;
11056 this_code->expr1 = gfc_copy_expr (expr1);
11057 this_code->expr2 = gfc_copy_expr (expr2);
11058 this_code->loc = loc;
11059 if (comp1 && comp2)
11060 {
11061 add_comp_ref (this_code->expr1, comp1);
11062 add_comp_ref (this_code->expr2, comp2);
11063 }
11064
11065 return this_code;
11066 }
11067
11068
11069 /* Makes a temporary variable expression based on the characteristics of
11070 a given variable expression. */
11071
11072 static gfc_expr*
11073 get_temp_from_expr (gfc_expr *e, gfc_namespace *ns)
11074 {
11075 static int serial = 0;
11076 char name[GFC_MAX_SYMBOL_LEN];
11077 gfc_symtree *tmp;
11078 gfc_array_spec *as;
11079 gfc_array_ref *aref;
11080 gfc_ref *ref;
11081
11082 sprintf (name, GFC_PREFIX("DA%d"), serial++);
11083 gfc_get_sym_tree (name, ns, &tmp, false);
11084 gfc_add_type (tmp->n.sym, &e->ts, NULL);
11085
11086 if (e->expr_type == EXPR_CONSTANT && e->ts.type == BT_CHARACTER)
11087 tmp->n.sym->ts.u.cl->length = gfc_get_int_expr (gfc_charlen_int_kind,
11088 NULL,
11089 e->value.character.length);
11090
11091 as = NULL;
11092 ref = NULL;
11093 aref = NULL;
11094
11095 /* Obtain the arrayspec for the temporary. */
11096 if (e->rank && e->expr_type != EXPR_ARRAY
11097 && e->expr_type != EXPR_FUNCTION
11098 && e->expr_type != EXPR_OP)
11099 {
11100 aref = gfc_find_array_ref (e);
11101 if (e->expr_type == EXPR_VARIABLE
11102 && e->symtree->n.sym->as == aref->as)
11103 as = aref->as;
11104 else
11105 {
11106 for (ref = e->ref; ref; ref = ref->next)
11107 if (ref->type == REF_COMPONENT
11108 && ref->u.c.component->as == aref->as)
11109 {
11110 as = aref->as;
11111 break;
11112 }
11113 }
11114 }
11115
11116 /* Add the attributes and the arrayspec to the temporary. */
11117 tmp->n.sym->attr = gfc_expr_attr (e);
11118 tmp->n.sym->attr.function = 0;
11119 tmp->n.sym->attr.result = 0;
11120 tmp->n.sym->attr.flavor = FL_VARIABLE;
11121 tmp->n.sym->attr.dummy = 0;
11122 tmp->n.sym->attr.intent = INTENT_UNKNOWN;
11123
11124 if (as)
11125 {
11126 tmp->n.sym->as = gfc_copy_array_spec (as);
11127 if (!ref)
11128 ref = e->ref;
11129 if (as->type == AS_DEFERRED)
11130 tmp->n.sym->attr.allocatable = 1;
11131 }
11132 else if (e->rank && (e->expr_type == EXPR_ARRAY
11133 || e->expr_type == EXPR_FUNCTION
11134 || e->expr_type == EXPR_OP))
11135 {
11136 tmp->n.sym->as = gfc_get_array_spec ();
11137 tmp->n.sym->as->type = AS_DEFERRED;
11138 tmp->n.sym->as->rank = e->rank;
11139 tmp->n.sym->attr.allocatable = 1;
11140 tmp->n.sym->attr.dimension = 1;
11141 }
11142 else
11143 tmp->n.sym->attr.dimension = 0;
11144
11145 gfc_set_sym_referenced (tmp->n.sym);
11146 gfc_commit_symbol (tmp->n.sym);
11147 e = gfc_lval_expr_from_sym (tmp->n.sym);
11148
11149 /* Should the lhs be a section, use its array ref for the
11150 temporary expression. */
11151 if (aref && aref->type != AR_FULL)
11152 {
11153 gfc_free_ref_list (e->ref);
11154 e->ref = gfc_copy_ref (ref);
11155 }
11156 return e;
11157 }
11158
11159
11160 /* Add one line of code to the code chain, making sure that 'head' and
11161 'tail' are appropriately updated. */
11162
11163 static void
11164 add_code_to_chain (gfc_code **this_code, gfc_code **head, gfc_code **tail)
11165 {
11166 gcc_assert (this_code);
11167 if (*head == NULL)
11168 *head = *tail = *this_code;
11169 else
11170 *tail = gfc_append_code (*tail, *this_code);
11171 *this_code = NULL;
11172 }
11173
11174
11175 /* Counts the potential number of part array references that would
11176 result from resolution of typebound defined assignments. */
11177
11178 static int
11179 nonscalar_typebound_assign (gfc_symbol *derived, int depth)
11180 {
11181 gfc_component *c;
11182 int c_depth = 0, t_depth;
11183
11184 for (c= derived->components; c; c = c->next)
11185 {
11186 if ((!gfc_bt_struct (c->ts.type)
11187 || c->attr.pointer
11188 || c->attr.allocatable
11189 || c->attr.proc_pointer_comp
11190 || c->attr.class_pointer
11191 || c->attr.proc_pointer)
11192 && !c->attr.defined_assign_comp)
11193 continue;
11194
11195 if (c->as && c_depth == 0)
11196 c_depth = 1;
11197
11198 if (c->ts.u.derived->attr.defined_assign_comp)
11199 t_depth = nonscalar_typebound_assign (c->ts.u.derived,
11200 c->as ? 1 : 0);
11201 else
11202 t_depth = 0;
11203
11204 c_depth = t_depth > c_depth ? t_depth : c_depth;
11205 }
11206 return depth + c_depth;
11207 }
11208
11209
11210 /* Implement 7.2.1.3 of the F08 standard:
11211 "An intrinsic assignment where the variable is of derived type is
11212 performed as if each component of the variable were assigned from the
11213 corresponding component of expr using pointer assignment (7.2.2) for
11214 each pointer component, defined assignment for each nonpointer
11215 nonallocatable component of a type that has a type-bound defined
11216 assignment consistent with the component, intrinsic assignment for
11217 each other nonpointer nonallocatable component, ..."
11218
11219 The pointer assignments are taken care of by the intrinsic
11220 assignment of the structure itself. This function recursively adds
11221 defined assignments where required. The recursion is accomplished
11222 by calling gfc_resolve_code.
11223
11224 When the lhs in a defined assignment has intent INOUT, we need a
11225 temporary for the lhs. In pseudo-code:
11226
11227 ! Only call function lhs once.
11228 if (lhs is not a constant or an variable)
11229 temp_x = expr2
11230 expr2 => temp_x
11231 ! Do the intrinsic assignment
11232 expr1 = expr2
11233 ! Now do the defined assignments
11234 do over components with typebound defined assignment [%cmp]
11235 #if one component's assignment procedure is INOUT
11236 t1 = expr1
11237 #if expr2 non-variable
11238 temp_x = expr2
11239 expr2 => temp_x
11240 # endif
11241 expr1 = expr2
11242 # for each cmp
11243 t1%cmp {defined=} expr2%cmp
11244 expr1%cmp = t1%cmp
11245 #else
11246 expr1 = expr2
11247
11248 # for each cmp
11249 expr1%cmp {defined=} expr2%cmp
11250 #endif
11251 */
11252
11253 /* The temporary assignments have to be put on top of the additional
11254 code to avoid the result being changed by the intrinsic assignment.
11255 */
11256 static int component_assignment_level = 0;
11257 static gfc_code *tmp_head = NULL, *tmp_tail = NULL;
11258
11259 static void
11260 generate_component_assignments (gfc_code **code, gfc_namespace *ns)
11261 {
11262 gfc_component *comp1, *comp2;
11263 gfc_code *this_code = NULL, *head = NULL, *tail = NULL;
11264 gfc_expr *t1;
11265 int error_count, depth;
11266
11267 gfc_get_errors (NULL, &error_count);
11268
11269 /* Filter out continuing processing after an error. */
11270 if (error_count
11271 || (*code)->expr1->ts.type != BT_DERIVED
11272 || (*code)->expr2->ts.type != BT_DERIVED)
11273 return;
11274
11275 /* TODO: Handle more than one part array reference in assignments. */
11276 depth = nonscalar_typebound_assign ((*code)->expr1->ts.u.derived,
11277 (*code)->expr1->rank ? 1 : 0);
11278 if (depth > 1)
11279 {
11280 gfc_warning (0, "TODO: type-bound defined assignment(s) at %L not "
11281 "done because multiple part array references would "
11282 "occur in intermediate expressions.", &(*code)->loc);
11283 return;
11284 }
11285
11286 component_assignment_level++;
11287
11288 /* Create a temporary so that functions get called only once. */
11289 if ((*code)->expr2->expr_type != EXPR_VARIABLE
11290 && (*code)->expr2->expr_type != EXPR_CONSTANT)
11291 {
11292 gfc_expr *tmp_expr;
11293
11294 /* Assign the rhs to the temporary. */
11295 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
11296 this_code = build_assignment (EXEC_ASSIGN,
11297 tmp_expr, (*code)->expr2,
11298 NULL, NULL, (*code)->loc);
11299 /* Add the code and substitute the rhs expression. */
11300 add_code_to_chain (&this_code, &tmp_head, &tmp_tail);
11301 gfc_free_expr ((*code)->expr2);
11302 (*code)->expr2 = tmp_expr;
11303 }
11304
11305 /* Do the intrinsic assignment. This is not needed if the lhs is one
11306 of the temporaries generated here, since the intrinsic assignment
11307 to the final result already does this. */
11308 if ((*code)->expr1->symtree->n.sym->name[2] != '@')
11309 {
11310 this_code = build_assignment (EXEC_ASSIGN,
11311 (*code)->expr1, (*code)->expr2,
11312 NULL, NULL, (*code)->loc);
11313 add_code_to_chain (&this_code, &head, &tail);
11314 }
11315
11316 comp1 = (*code)->expr1->ts.u.derived->components;
11317 comp2 = (*code)->expr2->ts.u.derived->components;
11318
11319 t1 = NULL;
11320 for (; comp1; comp1 = comp1->next, comp2 = comp2->next)
11321 {
11322 bool inout = false;
11323
11324 /* The intrinsic assignment does the right thing for pointers
11325 of all kinds and allocatable components. */
11326 if (!gfc_bt_struct (comp1->ts.type)
11327 || comp1->attr.pointer
11328 || comp1->attr.allocatable
11329 || comp1->attr.proc_pointer_comp
11330 || comp1->attr.class_pointer
11331 || comp1->attr.proc_pointer)
11332 continue;
11333
11334 /* Make an assigment for this component. */
11335 this_code = build_assignment (EXEC_ASSIGN,
11336 (*code)->expr1, (*code)->expr2,
11337 comp1, comp2, (*code)->loc);
11338
11339 /* Convert the assignment if there is a defined assignment for
11340 this type. Otherwise, using the call from gfc_resolve_code,
11341 recurse into its components. */
11342 gfc_resolve_code (this_code, ns);
11343
11344 if (this_code->op == EXEC_ASSIGN_CALL)
11345 {
11346 gfc_formal_arglist *dummy_args;
11347 gfc_symbol *rsym;
11348 /* Check that there is a typebound defined assignment. If not,
11349 then this must be a module defined assignment. We cannot
11350 use the defined_assign_comp attribute here because it must
11351 be this derived type that has the defined assignment and not
11352 a parent type. */
11353 if (!(comp1->ts.u.derived->f2k_derived
11354 && comp1->ts.u.derived->f2k_derived
11355 ->tb_op[INTRINSIC_ASSIGN]))
11356 {
11357 gfc_free_statements (this_code);
11358 this_code = NULL;
11359 continue;
11360 }
11361
11362 /* If the first argument of the subroutine has intent INOUT
11363 a temporary must be generated and used instead. */
11364 rsym = this_code->resolved_sym;
11365 dummy_args = gfc_sym_get_dummy_args (rsym);
11366 if (dummy_args
11367 && dummy_args->sym->attr.intent == INTENT_INOUT)
11368 {
11369 gfc_code *temp_code;
11370 inout = true;
11371
11372 /* Build the temporary required for the assignment and put
11373 it at the head of the generated code. */
11374 if (!t1)
11375 {
11376 t1 = get_temp_from_expr ((*code)->expr1, ns);
11377 temp_code = build_assignment (EXEC_ASSIGN,
11378 t1, (*code)->expr1,
11379 NULL, NULL, (*code)->loc);
11380
11381 /* For allocatable LHS, check whether it is allocated. Note
11382 that allocatable components with defined assignment are
11383 not yet support. See PR 57696. */
11384 if ((*code)->expr1->symtree->n.sym->attr.allocatable)
11385 {
11386 gfc_code *block;
11387 gfc_expr *e =
11388 gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
11389 block = gfc_get_code (EXEC_IF);
11390 block->block = gfc_get_code (EXEC_IF);
11391 block->block->expr1
11392 = gfc_build_intrinsic_call (ns,
11393 GFC_ISYM_ALLOCATED, "allocated",
11394 (*code)->loc, 1, e);
11395 block->block->next = temp_code;
11396 temp_code = block;
11397 }
11398 add_code_to_chain (&temp_code, &tmp_head, &tmp_tail);
11399 }
11400
11401 /* Replace the first actual arg with the component of the
11402 temporary. */
11403 gfc_free_expr (this_code->ext.actual->expr);
11404 this_code->ext.actual->expr = gfc_copy_expr (t1);
11405 add_comp_ref (this_code->ext.actual->expr, comp1);
11406
11407 /* If the LHS variable is allocatable and wasn't allocated and
11408 the temporary is allocatable, pointer assign the address of
11409 the freshly allocated LHS to the temporary. */
11410 if ((*code)->expr1->symtree->n.sym->attr.allocatable
11411 && gfc_expr_attr ((*code)->expr1).allocatable)
11412 {
11413 gfc_code *block;
11414 gfc_expr *cond;
11415
11416 cond = gfc_get_expr ();
11417 cond->ts.type = BT_LOGICAL;
11418 cond->ts.kind = gfc_default_logical_kind;
11419 cond->expr_type = EXPR_OP;
11420 cond->where = (*code)->loc;
11421 cond->value.op.op = INTRINSIC_NOT;
11422 cond->value.op.op1 = gfc_build_intrinsic_call (ns,
11423 GFC_ISYM_ALLOCATED, "allocated",
11424 (*code)->loc, 1, gfc_copy_expr (t1));
11425 block = gfc_get_code (EXEC_IF);
11426 block->block = gfc_get_code (EXEC_IF);
11427 block->block->expr1 = cond;
11428 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
11429 t1, (*code)->expr1,
11430 NULL, NULL, (*code)->loc);
11431 add_code_to_chain (&block, &head, &tail);
11432 }
11433 }
11434 }
11435 else if (this_code->op == EXEC_ASSIGN && !this_code->next)
11436 {
11437 /* Don't add intrinsic assignments since they are already
11438 effected by the intrinsic assignment of the structure. */
11439 gfc_free_statements (this_code);
11440 this_code = NULL;
11441 continue;
11442 }
11443
11444 add_code_to_chain (&this_code, &head, &tail);
11445
11446 if (t1 && inout)
11447 {
11448 /* Transfer the value to the final result. */
11449 this_code = build_assignment (EXEC_ASSIGN,
11450 (*code)->expr1, t1,
11451 comp1, comp2, (*code)->loc);
11452 add_code_to_chain (&this_code, &head, &tail);
11453 }
11454 }
11455
11456 /* Put the temporary assignments at the top of the generated code. */
11457 if (tmp_head && component_assignment_level == 1)
11458 {
11459 gfc_append_code (tmp_head, head);
11460 head = tmp_head;
11461 tmp_head = tmp_tail = NULL;
11462 }
11463
11464 // If we did a pointer assignment - thus, we need to ensure that the LHS is
11465 // not accidentally deallocated. Hence, nullify t1.
11466 if (t1 && (*code)->expr1->symtree->n.sym->attr.allocatable
11467 && gfc_expr_attr ((*code)->expr1).allocatable)
11468 {
11469 gfc_code *block;
11470 gfc_expr *cond;
11471 gfc_expr *e;
11472
11473 e = gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
11474 cond = gfc_build_intrinsic_call (ns, GFC_ISYM_ASSOCIATED, "associated",
11475 (*code)->loc, 2, gfc_copy_expr (t1), e);
11476 block = gfc_get_code (EXEC_IF);
11477 block->block = gfc_get_code (EXEC_IF);
11478 block->block->expr1 = cond;
11479 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
11480 t1, gfc_get_null_expr (&(*code)->loc),
11481 NULL, NULL, (*code)->loc);
11482 gfc_append_code (tail, block);
11483 tail = block;
11484 }
11485
11486 /* Now attach the remaining code chain to the input code. Step on
11487 to the end of the new code since resolution is complete. */
11488 gcc_assert ((*code)->op == EXEC_ASSIGN);
11489 tail->next = (*code)->next;
11490 /* Overwrite 'code' because this would place the intrinsic assignment
11491 before the temporary for the lhs is created. */
11492 gfc_free_expr ((*code)->expr1);
11493 gfc_free_expr ((*code)->expr2);
11494 **code = *head;
11495 if (head != tail)
11496 free (head);
11497 *code = tail;
11498
11499 component_assignment_level--;
11500 }
11501
11502
11503 /* F2008: Pointer function assignments are of the form:
11504 ptr_fcn (args) = expr
11505 This function breaks these assignments into two statements:
11506 temporary_pointer => ptr_fcn(args)
11507 temporary_pointer = expr */
11508
11509 static bool
11510 resolve_ptr_fcn_assign (gfc_code **code, gfc_namespace *ns)
11511 {
11512 gfc_expr *tmp_ptr_expr;
11513 gfc_code *this_code;
11514 gfc_component *comp;
11515 gfc_symbol *s;
11516
11517 if ((*code)->expr1->expr_type != EXPR_FUNCTION)
11518 return false;
11519
11520 /* Even if standard does not support this feature, continue to build
11521 the two statements to avoid upsetting frontend_passes.c. */
11522 gfc_notify_std (GFC_STD_F2008, "Pointer procedure assignment at "
11523 "%L", &(*code)->loc);
11524
11525 comp = gfc_get_proc_ptr_comp ((*code)->expr1);
11526
11527 if (comp)
11528 s = comp->ts.interface;
11529 else
11530 s = (*code)->expr1->symtree->n.sym;
11531
11532 if (s == NULL || !s->result->attr.pointer)
11533 {
11534 gfc_error ("The function result on the lhs of the assignment at "
11535 "%L must have the pointer attribute.",
11536 &(*code)->expr1->where);
11537 (*code)->op = EXEC_NOP;
11538 return false;
11539 }
11540
11541 tmp_ptr_expr = get_temp_from_expr ((*code)->expr2, ns);
11542
11543 /* get_temp_from_expression is set up for ordinary assignments. To that
11544 end, where array bounds are not known, arrays are made allocatable.
11545 Change the temporary to a pointer here. */
11546 tmp_ptr_expr->symtree->n.sym->attr.pointer = 1;
11547 tmp_ptr_expr->symtree->n.sym->attr.allocatable = 0;
11548 tmp_ptr_expr->where = (*code)->loc;
11549
11550 this_code = build_assignment (EXEC_ASSIGN,
11551 tmp_ptr_expr, (*code)->expr2,
11552 NULL, NULL, (*code)->loc);
11553 this_code->next = (*code)->next;
11554 (*code)->next = this_code;
11555 (*code)->op = EXEC_POINTER_ASSIGN;
11556 (*code)->expr2 = (*code)->expr1;
11557 (*code)->expr1 = tmp_ptr_expr;
11558
11559 return true;
11560 }
11561
11562
11563 /* Deferred character length assignments from an operator expression
11564 require a temporary because the character length of the lhs can
11565 change in the course of the assignment. */
11566
11567 static bool
11568 deferred_op_assign (gfc_code **code, gfc_namespace *ns)
11569 {
11570 gfc_expr *tmp_expr;
11571 gfc_code *this_code;
11572
11573 if (!((*code)->expr1->ts.type == BT_CHARACTER
11574 && (*code)->expr1->ts.deferred && (*code)->expr1->rank
11575 && (*code)->expr2->expr_type == EXPR_OP))
11576 return false;
11577
11578 if (!gfc_check_dependency ((*code)->expr1, (*code)->expr2, 1))
11579 return false;
11580
11581 if (gfc_expr_attr ((*code)->expr1).pointer)
11582 return false;
11583
11584 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
11585 tmp_expr->where = (*code)->loc;
11586
11587 /* A new charlen is required to ensure that the variable string
11588 length is different to that of the original lhs. */
11589 tmp_expr->ts.u.cl = gfc_get_charlen();
11590 tmp_expr->symtree->n.sym->ts.u.cl = tmp_expr->ts.u.cl;
11591 tmp_expr->ts.u.cl->next = (*code)->expr2->ts.u.cl->next;
11592 (*code)->expr2->ts.u.cl->next = tmp_expr->ts.u.cl;
11593
11594 tmp_expr->symtree->n.sym->ts.deferred = 1;
11595
11596 this_code = build_assignment (EXEC_ASSIGN,
11597 (*code)->expr1,
11598 gfc_copy_expr (tmp_expr),
11599 NULL, NULL, (*code)->loc);
11600
11601 (*code)->expr1 = tmp_expr;
11602
11603 this_code->next = (*code)->next;
11604 (*code)->next = this_code;
11605
11606 return true;
11607 }
11608
11609
11610 /* Given a block of code, recursively resolve everything pointed to by this
11611 code block. */
11612
11613 void
11614 gfc_resolve_code (gfc_code *code, gfc_namespace *ns)
11615 {
11616 int omp_workshare_save;
11617 int forall_save, do_concurrent_save;
11618 code_stack frame;
11619 bool t;
11620
11621 frame.prev = cs_base;
11622 frame.head = code;
11623 cs_base = &frame;
11624
11625 find_reachable_labels (code);
11626
11627 for (; code; code = code->next)
11628 {
11629 frame.current = code;
11630 forall_save = forall_flag;
11631 do_concurrent_save = gfc_do_concurrent_flag;
11632
11633 if (code->op == EXEC_FORALL)
11634 {
11635 forall_flag = 1;
11636 gfc_resolve_forall (code, ns, forall_save);
11637 forall_flag = 2;
11638 }
11639 else if (code->block)
11640 {
11641 omp_workshare_save = -1;
11642 switch (code->op)
11643 {
11644 case EXEC_OACC_PARALLEL_LOOP:
11645 case EXEC_OACC_PARALLEL:
11646 case EXEC_OACC_KERNELS_LOOP:
11647 case EXEC_OACC_KERNELS:
11648 case EXEC_OACC_SERIAL_LOOP:
11649 case EXEC_OACC_SERIAL:
11650 case EXEC_OACC_DATA:
11651 case EXEC_OACC_HOST_DATA:
11652 case EXEC_OACC_LOOP:
11653 gfc_resolve_oacc_blocks (code, ns);
11654 break;
11655 case EXEC_OMP_PARALLEL_WORKSHARE:
11656 omp_workshare_save = omp_workshare_flag;
11657 omp_workshare_flag = 1;
11658 gfc_resolve_omp_parallel_blocks (code, ns);
11659 break;
11660 case EXEC_OMP_PARALLEL:
11661 case EXEC_OMP_PARALLEL_DO:
11662 case EXEC_OMP_PARALLEL_DO_SIMD:
11663 case EXEC_OMP_PARALLEL_SECTIONS:
11664 case EXEC_OMP_TARGET_PARALLEL:
11665 case EXEC_OMP_TARGET_PARALLEL_DO:
11666 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11667 case EXEC_OMP_TARGET_TEAMS:
11668 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11669 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11670 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11671 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11672 case EXEC_OMP_TASK:
11673 case EXEC_OMP_TASKLOOP:
11674 case EXEC_OMP_TASKLOOP_SIMD:
11675 case EXEC_OMP_TEAMS:
11676 case EXEC_OMP_TEAMS_DISTRIBUTE:
11677 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11678 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11679 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11680 omp_workshare_save = omp_workshare_flag;
11681 omp_workshare_flag = 0;
11682 gfc_resolve_omp_parallel_blocks (code, ns);
11683 break;
11684 case EXEC_OMP_DISTRIBUTE:
11685 case EXEC_OMP_DISTRIBUTE_SIMD:
11686 case EXEC_OMP_DO:
11687 case EXEC_OMP_DO_SIMD:
11688 case EXEC_OMP_SIMD:
11689 case EXEC_OMP_TARGET_SIMD:
11690 gfc_resolve_omp_do_blocks (code, ns);
11691 break;
11692 case EXEC_SELECT_TYPE:
11693 /* Blocks are handled in resolve_select_type because we have
11694 to transform the SELECT TYPE into ASSOCIATE first. */
11695 break;
11696 case EXEC_DO_CONCURRENT:
11697 gfc_do_concurrent_flag = 1;
11698 gfc_resolve_blocks (code->block, ns);
11699 gfc_do_concurrent_flag = 2;
11700 break;
11701 case EXEC_OMP_WORKSHARE:
11702 omp_workshare_save = omp_workshare_flag;
11703 omp_workshare_flag = 1;
11704 /* FALL THROUGH */
11705 default:
11706 gfc_resolve_blocks (code->block, ns);
11707 break;
11708 }
11709
11710 if (omp_workshare_save != -1)
11711 omp_workshare_flag = omp_workshare_save;
11712 }
11713 start:
11714 t = true;
11715 if (code->op != EXEC_COMPCALL && code->op != EXEC_CALL_PPC)
11716 t = gfc_resolve_expr (code->expr1);
11717 forall_flag = forall_save;
11718 gfc_do_concurrent_flag = do_concurrent_save;
11719
11720 if (!gfc_resolve_expr (code->expr2))
11721 t = false;
11722
11723 if (code->op == EXEC_ALLOCATE
11724 && !gfc_resolve_expr (code->expr3))
11725 t = false;
11726
11727 switch (code->op)
11728 {
11729 case EXEC_NOP:
11730 case EXEC_END_BLOCK:
11731 case EXEC_END_NESTED_BLOCK:
11732 case EXEC_CYCLE:
11733 case EXEC_PAUSE:
11734 case EXEC_STOP:
11735 case EXEC_ERROR_STOP:
11736 case EXEC_EXIT:
11737 case EXEC_CONTINUE:
11738 case EXEC_DT_END:
11739 case EXEC_ASSIGN_CALL:
11740 break;
11741
11742 case EXEC_CRITICAL:
11743 resolve_critical (code);
11744 break;
11745
11746 case EXEC_SYNC_ALL:
11747 case EXEC_SYNC_IMAGES:
11748 case EXEC_SYNC_MEMORY:
11749 resolve_sync (code);
11750 break;
11751
11752 case EXEC_LOCK:
11753 case EXEC_UNLOCK:
11754 case EXEC_EVENT_POST:
11755 case EXEC_EVENT_WAIT:
11756 resolve_lock_unlock_event (code);
11757 break;
11758
11759 case EXEC_FAIL_IMAGE:
11760 case EXEC_FORM_TEAM:
11761 case EXEC_CHANGE_TEAM:
11762 case EXEC_END_TEAM:
11763 case EXEC_SYNC_TEAM:
11764 break;
11765
11766 case EXEC_ENTRY:
11767 /* Keep track of which entry we are up to. */
11768 current_entry_id = code->ext.entry->id;
11769 break;
11770
11771 case EXEC_WHERE:
11772 resolve_where (code, NULL);
11773 break;
11774
11775 case EXEC_GOTO:
11776 if (code->expr1 != NULL)
11777 {
11778 if (code->expr1->ts.type != BT_INTEGER)
11779 gfc_error ("ASSIGNED GOTO statement at %L requires an "
11780 "INTEGER variable", &code->expr1->where);
11781 else if (code->expr1->symtree->n.sym->attr.assign != 1)
11782 gfc_error ("Variable %qs has not been assigned a target "
11783 "label at %L", code->expr1->symtree->n.sym->name,
11784 &code->expr1->where);
11785 }
11786 else
11787 resolve_branch (code->label1, code);
11788 break;
11789
11790 case EXEC_RETURN:
11791 if (code->expr1 != NULL
11792 && (code->expr1->ts.type != BT_INTEGER || code->expr1->rank))
11793 gfc_error ("Alternate RETURN statement at %L requires a SCALAR-"
11794 "INTEGER return specifier", &code->expr1->where);
11795 break;
11796
11797 case EXEC_INIT_ASSIGN:
11798 case EXEC_END_PROCEDURE:
11799 break;
11800
11801 case EXEC_ASSIGN:
11802 if (!t)
11803 break;
11804
11805 /* Remove a GFC_ISYM_CAF_GET inserted for a coindexed variable on
11806 the LHS. */
11807 if (code->expr1->expr_type == EXPR_FUNCTION
11808 && code->expr1->value.function.isym
11809 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
11810 remove_caf_get_intrinsic (code->expr1);
11811
11812 /* If this is a pointer function in an lvalue variable context,
11813 the new code will have to be resolved afresh. This is also the
11814 case with an error, where the code is transformed into NOP to
11815 prevent ICEs downstream. */
11816 if (resolve_ptr_fcn_assign (&code, ns)
11817 || code->op == EXEC_NOP)
11818 goto start;
11819
11820 if (!gfc_check_vardef_context (code->expr1, false, false, false,
11821 _("assignment")))
11822 break;
11823
11824 if (resolve_ordinary_assign (code, ns))
11825 {
11826 if (code->op == EXEC_COMPCALL)
11827 goto compcall;
11828 else
11829 goto call;
11830 }
11831
11832 /* Check for dependencies in deferred character length array
11833 assignments and generate a temporary, if necessary. */
11834 if (code->op == EXEC_ASSIGN && deferred_op_assign (&code, ns))
11835 break;
11836
11837 /* F03 7.4.1.3 for non-allocatable, non-pointer components. */
11838 if (code->op != EXEC_CALL && code->expr1->ts.type == BT_DERIVED
11839 && code->expr1->ts.u.derived
11840 && code->expr1->ts.u.derived->attr.defined_assign_comp)
11841 generate_component_assignments (&code, ns);
11842
11843 break;
11844
11845 case EXEC_LABEL_ASSIGN:
11846 if (code->label1->defined == ST_LABEL_UNKNOWN)
11847 gfc_error ("Label %d referenced at %L is never defined",
11848 code->label1->value, &code->label1->where);
11849 if (t
11850 && (code->expr1->expr_type != EXPR_VARIABLE
11851 || code->expr1->symtree->n.sym->ts.type != BT_INTEGER
11852 || code->expr1->symtree->n.sym->ts.kind
11853 != gfc_default_integer_kind
11854 || code->expr1->symtree->n.sym->as != NULL))
11855 gfc_error ("ASSIGN statement at %L requires a scalar "
11856 "default INTEGER variable", &code->expr1->where);
11857 break;
11858
11859 case EXEC_POINTER_ASSIGN:
11860 {
11861 gfc_expr* e;
11862
11863 if (!t)
11864 break;
11865
11866 /* This is both a variable definition and pointer assignment
11867 context, so check both of them. For rank remapping, a final
11868 array ref may be present on the LHS and fool gfc_expr_attr
11869 used in gfc_check_vardef_context. Remove it. */
11870 e = remove_last_array_ref (code->expr1);
11871 t = gfc_check_vardef_context (e, true, false, false,
11872 _("pointer assignment"));
11873 if (t)
11874 t = gfc_check_vardef_context (e, false, false, false,
11875 _("pointer assignment"));
11876 gfc_free_expr (e);
11877
11878 t = gfc_check_pointer_assign (code->expr1, code->expr2, !t) && t;
11879
11880 if (!t)
11881 break;
11882
11883 /* Assigning a class object always is a regular assign. */
11884 if (code->expr2->ts.type == BT_CLASS
11885 && code->expr1->ts.type == BT_CLASS
11886 && !CLASS_DATA (code->expr2)->attr.dimension
11887 && !(gfc_expr_attr (code->expr1).proc_pointer
11888 && code->expr2->expr_type == EXPR_VARIABLE
11889 && code->expr2->symtree->n.sym->attr.flavor
11890 == FL_PROCEDURE))
11891 code->op = EXEC_ASSIGN;
11892 break;
11893 }
11894
11895 case EXEC_ARITHMETIC_IF:
11896 {
11897 gfc_expr *e = code->expr1;
11898
11899 gfc_resolve_expr (e);
11900 if (e->expr_type == EXPR_NULL)
11901 gfc_error ("Invalid NULL at %L", &e->where);
11902
11903 if (t && (e->rank > 0
11904 || !(e->ts.type == BT_REAL || e->ts.type == BT_INTEGER)))
11905 gfc_error ("Arithmetic IF statement at %L requires a scalar "
11906 "REAL or INTEGER expression", &e->where);
11907
11908 resolve_branch (code->label1, code);
11909 resolve_branch (code->label2, code);
11910 resolve_branch (code->label3, code);
11911 }
11912 break;
11913
11914 case EXEC_IF:
11915 if (t && code->expr1 != NULL
11916 && (code->expr1->ts.type != BT_LOGICAL
11917 || code->expr1->rank != 0))
11918 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
11919 &code->expr1->where);
11920 break;
11921
11922 case EXEC_CALL:
11923 call:
11924 resolve_call (code);
11925 break;
11926
11927 case EXEC_COMPCALL:
11928 compcall:
11929 resolve_typebound_subroutine (code);
11930 break;
11931
11932 case EXEC_CALL_PPC:
11933 resolve_ppc_call (code);
11934 break;
11935
11936 case EXEC_SELECT:
11937 /* Select is complicated. Also, a SELECT construct could be
11938 a transformed computed GOTO. */
11939 resolve_select (code, false);
11940 break;
11941
11942 case EXEC_SELECT_TYPE:
11943 resolve_select_type (code, ns);
11944 break;
11945
11946 case EXEC_SELECT_RANK:
11947 resolve_select_rank (code, ns);
11948 break;
11949
11950 case EXEC_BLOCK:
11951 resolve_block_construct (code);
11952 break;
11953
11954 case EXEC_DO:
11955 if (code->ext.iterator != NULL)
11956 {
11957 gfc_iterator *iter = code->ext.iterator;
11958 if (gfc_resolve_iterator (iter, true, false))
11959 gfc_resolve_do_iterator (code, iter->var->symtree->n.sym,
11960 true);
11961 }
11962 break;
11963
11964 case EXEC_DO_WHILE:
11965 if (code->expr1 == NULL)
11966 gfc_internal_error ("gfc_resolve_code(): No expression on "
11967 "DO WHILE");
11968 if (t
11969 && (code->expr1->rank != 0
11970 || code->expr1->ts.type != BT_LOGICAL))
11971 gfc_error ("Exit condition of DO WHILE loop at %L must be "
11972 "a scalar LOGICAL expression", &code->expr1->where);
11973 break;
11974
11975 case EXEC_ALLOCATE:
11976 if (t)
11977 resolve_allocate_deallocate (code, "ALLOCATE");
11978
11979 break;
11980
11981 case EXEC_DEALLOCATE:
11982 if (t)
11983 resolve_allocate_deallocate (code, "DEALLOCATE");
11984
11985 break;
11986
11987 case EXEC_OPEN:
11988 if (!gfc_resolve_open (code->ext.open))
11989 break;
11990
11991 resolve_branch (code->ext.open->err, code);
11992 break;
11993
11994 case EXEC_CLOSE:
11995 if (!gfc_resolve_close (code->ext.close))
11996 break;
11997
11998 resolve_branch (code->ext.close->err, code);
11999 break;
12000
12001 case EXEC_BACKSPACE:
12002 case EXEC_ENDFILE:
12003 case EXEC_REWIND:
12004 case EXEC_FLUSH:
12005 if (!gfc_resolve_filepos (code->ext.filepos, &code->loc))
12006 break;
12007
12008 resolve_branch (code->ext.filepos->err, code);
12009 break;
12010
12011 case EXEC_INQUIRE:
12012 if (!gfc_resolve_inquire (code->ext.inquire))
12013 break;
12014
12015 resolve_branch (code->ext.inquire->err, code);
12016 break;
12017
12018 case EXEC_IOLENGTH:
12019 gcc_assert (code->ext.inquire != NULL);
12020 if (!gfc_resolve_inquire (code->ext.inquire))
12021 break;
12022
12023 resolve_branch (code->ext.inquire->err, code);
12024 break;
12025
12026 case EXEC_WAIT:
12027 if (!gfc_resolve_wait (code->ext.wait))
12028 break;
12029
12030 resolve_branch (code->ext.wait->err, code);
12031 resolve_branch (code->ext.wait->end, code);
12032 resolve_branch (code->ext.wait->eor, code);
12033 break;
12034
12035 case EXEC_READ:
12036 case EXEC_WRITE:
12037 if (!gfc_resolve_dt (code->ext.dt, &code->loc))
12038 break;
12039
12040 resolve_branch (code->ext.dt->err, code);
12041 resolve_branch (code->ext.dt->end, code);
12042 resolve_branch (code->ext.dt->eor, code);
12043 break;
12044
12045 case EXEC_TRANSFER:
12046 resolve_transfer (code);
12047 break;
12048
12049 case EXEC_DO_CONCURRENT:
12050 case EXEC_FORALL:
12051 resolve_forall_iterators (code->ext.forall_iterator);
12052
12053 if (code->expr1 != NULL
12054 && (code->expr1->ts.type != BT_LOGICAL || code->expr1->rank))
12055 gfc_error ("FORALL mask clause at %L requires a scalar LOGICAL "
12056 "expression", &code->expr1->where);
12057 break;
12058
12059 case EXEC_OACC_PARALLEL_LOOP:
12060 case EXEC_OACC_PARALLEL:
12061 case EXEC_OACC_KERNELS_LOOP:
12062 case EXEC_OACC_KERNELS:
12063 case EXEC_OACC_SERIAL_LOOP:
12064 case EXEC_OACC_SERIAL:
12065 case EXEC_OACC_DATA:
12066 case EXEC_OACC_HOST_DATA:
12067 case EXEC_OACC_LOOP:
12068 case EXEC_OACC_UPDATE:
12069 case EXEC_OACC_WAIT:
12070 case EXEC_OACC_CACHE:
12071 case EXEC_OACC_ENTER_DATA:
12072 case EXEC_OACC_EXIT_DATA:
12073 case EXEC_OACC_ATOMIC:
12074 case EXEC_OACC_DECLARE:
12075 gfc_resolve_oacc_directive (code, ns);
12076 break;
12077
12078 case EXEC_OMP_ATOMIC:
12079 case EXEC_OMP_BARRIER:
12080 case EXEC_OMP_CANCEL:
12081 case EXEC_OMP_CANCELLATION_POINT:
12082 case EXEC_OMP_CRITICAL:
12083 case EXEC_OMP_FLUSH:
12084 case EXEC_OMP_DISTRIBUTE:
12085 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
12086 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
12087 case EXEC_OMP_DISTRIBUTE_SIMD:
12088 case EXEC_OMP_DO:
12089 case EXEC_OMP_DO_SIMD:
12090 case EXEC_OMP_MASTER:
12091 case EXEC_OMP_ORDERED:
12092 case EXEC_OMP_SECTIONS:
12093 case EXEC_OMP_SIMD:
12094 case EXEC_OMP_SINGLE:
12095 case EXEC_OMP_TARGET:
12096 case EXEC_OMP_TARGET_DATA:
12097 case EXEC_OMP_TARGET_ENTER_DATA:
12098 case EXEC_OMP_TARGET_EXIT_DATA:
12099 case EXEC_OMP_TARGET_PARALLEL:
12100 case EXEC_OMP_TARGET_PARALLEL_DO:
12101 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
12102 case EXEC_OMP_TARGET_SIMD:
12103 case EXEC_OMP_TARGET_TEAMS:
12104 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
12105 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
12106 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
12107 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
12108 case EXEC_OMP_TARGET_UPDATE:
12109 case EXEC_OMP_TASK:
12110 case EXEC_OMP_TASKGROUP:
12111 case EXEC_OMP_TASKLOOP:
12112 case EXEC_OMP_TASKLOOP_SIMD:
12113 case EXEC_OMP_TASKWAIT:
12114 case EXEC_OMP_TASKYIELD:
12115 case EXEC_OMP_TEAMS:
12116 case EXEC_OMP_TEAMS_DISTRIBUTE:
12117 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
12118 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
12119 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
12120 case EXEC_OMP_WORKSHARE:
12121 gfc_resolve_omp_directive (code, ns);
12122 break;
12123
12124 case EXEC_OMP_PARALLEL:
12125 case EXEC_OMP_PARALLEL_DO:
12126 case EXEC_OMP_PARALLEL_DO_SIMD:
12127 case EXEC_OMP_PARALLEL_SECTIONS:
12128 case EXEC_OMP_PARALLEL_WORKSHARE:
12129 omp_workshare_save = omp_workshare_flag;
12130 omp_workshare_flag = 0;
12131 gfc_resolve_omp_directive (code, ns);
12132 omp_workshare_flag = omp_workshare_save;
12133 break;
12134
12135 default:
12136 gfc_internal_error ("gfc_resolve_code(): Bad statement code");
12137 }
12138 }
12139
12140 cs_base = frame.prev;
12141 }
12142
12143
12144 /* Resolve initial values and make sure they are compatible with
12145 the variable. */
12146
12147 static void
12148 resolve_values (gfc_symbol *sym)
12149 {
12150 bool t;
12151
12152 if (sym->value == NULL)
12153 return;
12154
12155 if (sym->value->expr_type == EXPR_STRUCTURE)
12156 t= resolve_structure_cons (sym->value, 1);
12157 else
12158 t = gfc_resolve_expr (sym->value);
12159
12160 if (!t)
12161 return;
12162
12163 gfc_check_assign_symbol (sym, NULL, sym->value);
12164 }
12165
12166
12167 /* Verify any BIND(C) derived types in the namespace so we can report errors
12168 for them once, rather than for each variable declared of that type. */
12169
12170 static void
12171 resolve_bind_c_derived_types (gfc_symbol *derived_sym)
12172 {
12173 if (derived_sym != NULL && derived_sym->attr.flavor == FL_DERIVED
12174 && derived_sym->attr.is_bind_c == 1)
12175 verify_bind_c_derived_type (derived_sym);
12176
12177 return;
12178 }
12179
12180
12181 /* Check the interfaces of DTIO procedures associated with derived
12182 type 'sym'. These procedures can either have typebound bindings or
12183 can appear in DTIO generic interfaces. */
12184
12185 static void
12186 gfc_verify_DTIO_procedures (gfc_symbol *sym)
12187 {
12188 if (!sym || sym->attr.flavor != FL_DERIVED)
12189 return;
12190
12191 gfc_check_dtio_interfaces (sym);
12192
12193 return;
12194 }
12195
12196 /* Verify that any binding labels used in a given namespace do not collide
12197 with the names or binding labels of any global symbols. Multiple INTERFACE
12198 for the same procedure are permitted. */
12199
12200 static void
12201 gfc_verify_binding_labels (gfc_symbol *sym)
12202 {
12203 gfc_gsymbol *gsym;
12204 const char *module;
12205
12206 if (!sym || !sym->attr.is_bind_c || sym->attr.is_iso_c
12207 || sym->attr.flavor == FL_DERIVED || !sym->binding_label)
12208 return;
12209
12210 gsym = gfc_find_case_gsymbol (gfc_gsym_root, sym->binding_label);
12211
12212 if (sym->module)
12213 module = sym->module;
12214 else if (sym->ns && sym->ns->proc_name
12215 && sym->ns->proc_name->attr.flavor == FL_MODULE)
12216 module = sym->ns->proc_name->name;
12217 else if (sym->ns && sym->ns->parent
12218 && sym->ns && sym->ns->parent->proc_name
12219 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
12220 module = sym->ns->parent->proc_name->name;
12221 else
12222 module = NULL;
12223
12224 if (!gsym
12225 || (!gsym->defined
12226 && (gsym->type == GSYM_FUNCTION || gsym->type == GSYM_SUBROUTINE)))
12227 {
12228 if (!gsym)
12229 gsym = gfc_get_gsymbol (sym->binding_label, true);
12230 gsym->where = sym->declared_at;
12231 gsym->sym_name = sym->name;
12232 gsym->binding_label = sym->binding_label;
12233 gsym->ns = sym->ns;
12234 gsym->mod_name = module;
12235 if (sym->attr.function)
12236 gsym->type = GSYM_FUNCTION;
12237 else if (sym->attr.subroutine)
12238 gsym->type = GSYM_SUBROUTINE;
12239 /* Mark as variable/procedure as defined, unless its an INTERFACE. */
12240 gsym->defined = sym->attr.if_source != IFSRC_IFBODY;
12241 return;
12242 }
12243
12244 if (sym->attr.flavor == FL_VARIABLE && gsym->type != GSYM_UNKNOWN)
12245 {
12246 gfc_error ("Variable %qs with binding label %qs at %L uses the same global "
12247 "identifier as entity at %L", sym->name,
12248 sym->binding_label, &sym->declared_at, &gsym->where);
12249 /* Clear the binding label to prevent checking multiple times. */
12250 sym->binding_label = NULL;
12251 return;
12252 }
12253
12254 if (sym->attr.flavor == FL_VARIABLE && module
12255 && (strcmp (module, gsym->mod_name) != 0
12256 || strcmp (sym->name, gsym->sym_name) != 0))
12257 {
12258 /* This can only happen if the variable is defined in a module - if it
12259 isn't the same module, reject it. */
12260 gfc_error ("Variable %qs from module %qs with binding label %qs at %L "
12261 "uses the same global identifier as entity at %L from module %qs",
12262 sym->name, module, sym->binding_label,
12263 &sym->declared_at, &gsym->where, gsym->mod_name);
12264 sym->binding_label = NULL;
12265 return;
12266 }
12267
12268 if ((sym->attr.function || sym->attr.subroutine)
12269 && ((gsym->type != GSYM_SUBROUTINE && gsym->type != GSYM_FUNCTION)
12270 || (gsym->defined && sym->attr.if_source != IFSRC_IFBODY))
12271 && (sym != gsym->ns->proc_name && sym->attr.entry == 0)
12272 && (module != gsym->mod_name
12273 || strcmp (gsym->sym_name, sym->name) != 0
12274 || (module && strcmp (module, gsym->mod_name) != 0)))
12275 {
12276 /* Print an error if the procedure is defined multiple times; we have to
12277 exclude references to the same procedure via module association or
12278 multiple checks for the same procedure. */
12279 gfc_error ("Procedure %qs with binding label %qs at %L uses the same "
12280 "global identifier as entity at %L", sym->name,
12281 sym->binding_label, &sym->declared_at, &gsym->where);
12282 sym->binding_label = NULL;
12283 }
12284 }
12285
12286
12287 /* Resolve an index expression. */
12288
12289 static bool
12290 resolve_index_expr (gfc_expr *e)
12291 {
12292 if (!gfc_resolve_expr (e))
12293 return false;
12294
12295 if (!gfc_simplify_expr (e, 0))
12296 return false;
12297
12298 if (!gfc_specification_expr (e))
12299 return false;
12300
12301 return true;
12302 }
12303
12304
12305 /* Resolve a charlen structure. */
12306
12307 static bool
12308 resolve_charlen (gfc_charlen *cl)
12309 {
12310 int k;
12311 bool saved_specification_expr;
12312
12313 if (cl->resolved)
12314 return true;
12315
12316 cl->resolved = 1;
12317 saved_specification_expr = specification_expr;
12318 specification_expr = true;
12319
12320 if (cl->length_from_typespec)
12321 {
12322 if (!gfc_resolve_expr (cl->length))
12323 {
12324 specification_expr = saved_specification_expr;
12325 return false;
12326 }
12327
12328 if (!gfc_simplify_expr (cl->length, 0))
12329 {
12330 specification_expr = saved_specification_expr;
12331 return false;
12332 }
12333
12334 /* cl->length has been resolved. It should have an integer type. */
12335 if (cl->length->ts.type != BT_INTEGER)
12336 {
12337 gfc_error ("Scalar INTEGER expression expected at %L",
12338 &cl->length->where);
12339 return false;
12340 }
12341 }
12342 else
12343 {
12344 if (!resolve_index_expr (cl->length))
12345 {
12346 specification_expr = saved_specification_expr;
12347 return false;
12348 }
12349 }
12350
12351 /* F2008, 4.4.3.2: If the character length parameter value evaluates to
12352 a negative value, the length of character entities declared is zero. */
12353 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
12354 && mpz_sgn (cl->length->value.integer) < 0)
12355 gfc_replace_expr (cl->length,
12356 gfc_get_int_expr (gfc_charlen_int_kind, NULL, 0));
12357
12358 /* Check that the character length is not too large. */
12359 k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
12360 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
12361 && cl->length->ts.type == BT_INTEGER
12362 && mpz_cmp (cl->length->value.integer, gfc_integer_kinds[k].huge) > 0)
12363 {
12364 gfc_error ("String length at %L is too large", &cl->length->where);
12365 specification_expr = saved_specification_expr;
12366 return false;
12367 }
12368
12369 specification_expr = saved_specification_expr;
12370 return true;
12371 }
12372
12373
12374 /* Test for non-constant shape arrays. */
12375
12376 static bool
12377 is_non_constant_shape_array (gfc_symbol *sym)
12378 {
12379 gfc_expr *e;
12380 int i;
12381 bool not_constant;
12382
12383 not_constant = false;
12384 if (sym->as != NULL)
12385 {
12386 /* Unfortunately, !gfc_is_compile_time_shape hits a legal case that
12387 has not been simplified; parameter array references. Do the
12388 simplification now. */
12389 for (i = 0; i < sym->as->rank + sym->as->corank; i++)
12390 {
12391 if (i == GFC_MAX_DIMENSIONS)
12392 break;
12393
12394 e = sym->as->lower[i];
12395 if (e && (!resolve_index_expr(e)
12396 || !gfc_is_constant_expr (e)))
12397 not_constant = true;
12398 e = sym->as->upper[i];
12399 if (e && (!resolve_index_expr(e)
12400 || !gfc_is_constant_expr (e)))
12401 not_constant = true;
12402 }
12403 }
12404 return not_constant;
12405 }
12406
12407 /* Given a symbol and an initialization expression, add code to initialize
12408 the symbol to the function entry. */
12409 static void
12410 build_init_assign (gfc_symbol *sym, gfc_expr *init)
12411 {
12412 gfc_expr *lval;
12413 gfc_code *init_st;
12414 gfc_namespace *ns = sym->ns;
12415
12416 /* Search for the function namespace if this is a contained
12417 function without an explicit result. */
12418 if (sym->attr.function && sym == sym->result
12419 && sym->name != sym->ns->proc_name->name)
12420 {
12421 ns = ns->contained;
12422 for (;ns; ns = ns->sibling)
12423 if (strcmp (ns->proc_name->name, sym->name) == 0)
12424 break;
12425 }
12426
12427 if (ns == NULL)
12428 {
12429 gfc_free_expr (init);
12430 return;
12431 }
12432
12433 /* Build an l-value expression for the result. */
12434 lval = gfc_lval_expr_from_sym (sym);
12435
12436 /* Add the code at scope entry. */
12437 init_st = gfc_get_code (EXEC_INIT_ASSIGN);
12438 init_st->next = ns->code;
12439 ns->code = init_st;
12440
12441 /* Assign the default initializer to the l-value. */
12442 init_st->loc = sym->declared_at;
12443 init_st->expr1 = lval;
12444 init_st->expr2 = init;
12445 }
12446
12447
12448 /* Whether or not we can generate a default initializer for a symbol. */
12449
12450 static bool
12451 can_generate_init (gfc_symbol *sym)
12452 {
12453 symbol_attribute *a;
12454 if (!sym)
12455 return false;
12456 a = &sym->attr;
12457
12458 /* These symbols should never have a default initialization. */
12459 return !(
12460 a->allocatable
12461 || a->external
12462 || a->pointer
12463 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
12464 && (CLASS_DATA (sym)->attr.class_pointer
12465 || CLASS_DATA (sym)->attr.proc_pointer))
12466 || a->in_equivalence
12467 || a->in_common
12468 || a->data
12469 || sym->module
12470 || a->cray_pointee
12471 || a->cray_pointer
12472 || sym->assoc
12473 || (!a->referenced && !a->result)
12474 || (a->dummy && a->intent != INTENT_OUT)
12475 || (a->function && sym != sym->result)
12476 );
12477 }
12478
12479
12480 /* Assign the default initializer to a derived type variable or result. */
12481
12482 static void
12483 apply_default_init (gfc_symbol *sym)
12484 {
12485 gfc_expr *init = NULL;
12486
12487 if (sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
12488 return;
12489
12490 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived)
12491 init = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
12492
12493 if (init == NULL && sym->ts.type != BT_CLASS)
12494 return;
12495
12496 build_init_assign (sym, init);
12497 sym->attr.referenced = 1;
12498 }
12499
12500
12501 /* Build an initializer for a local. Returns null if the symbol should not have
12502 a default initialization. */
12503
12504 static gfc_expr *
12505 build_default_init_expr (gfc_symbol *sym)
12506 {
12507 /* These symbols should never have a default initialization. */
12508 if (sym->attr.allocatable
12509 || sym->attr.external
12510 || sym->attr.dummy
12511 || sym->attr.pointer
12512 || sym->attr.in_equivalence
12513 || sym->attr.in_common
12514 || sym->attr.data
12515 || sym->module
12516 || sym->attr.cray_pointee
12517 || sym->attr.cray_pointer
12518 || sym->assoc)
12519 return NULL;
12520
12521 /* Get the appropriate init expression. */
12522 return gfc_build_default_init_expr (&sym->ts, &sym->declared_at);
12523 }
12524
12525 /* Add an initialization expression to a local variable. */
12526 static void
12527 apply_default_init_local (gfc_symbol *sym)
12528 {
12529 gfc_expr *init = NULL;
12530
12531 /* The symbol should be a variable or a function return value. */
12532 if ((sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
12533 || (sym->attr.function && sym->result != sym))
12534 return;
12535
12536 /* Try to build the initializer expression. If we can't initialize
12537 this symbol, then init will be NULL. */
12538 init = build_default_init_expr (sym);
12539 if (init == NULL)
12540 return;
12541
12542 /* For saved variables, we don't want to add an initializer at function
12543 entry, so we just add a static initializer. Note that automatic variables
12544 are stack allocated even with -fno-automatic; we have also to exclude
12545 result variable, which are also nonstatic. */
12546 if (!sym->attr.automatic
12547 && (sym->attr.save || sym->ns->save_all
12548 || (flag_max_stack_var_size == 0 && !sym->attr.result
12549 && (sym->ns->proc_name && !sym->ns->proc_name->attr.recursive)
12550 && (!sym->attr.dimension || !is_non_constant_shape_array (sym)))))
12551 {
12552 /* Don't clobber an existing initializer! */
12553 gcc_assert (sym->value == NULL);
12554 sym->value = init;
12555 return;
12556 }
12557
12558 build_init_assign (sym, init);
12559 }
12560
12561
12562 /* Resolution of common features of flavors variable and procedure. */
12563
12564 static bool
12565 resolve_fl_var_and_proc (gfc_symbol *sym, int mp_flag)
12566 {
12567 gfc_array_spec *as;
12568
12569 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
12570 as = CLASS_DATA (sym)->as;
12571 else
12572 as = sym->as;
12573
12574 /* Constraints on deferred shape variable. */
12575 if (as == NULL || as->type != AS_DEFERRED)
12576 {
12577 bool pointer, allocatable, dimension;
12578
12579 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
12580 {
12581 pointer = CLASS_DATA (sym)->attr.class_pointer;
12582 allocatable = CLASS_DATA (sym)->attr.allocatable;
12583 dimension = CLASS_DATA (sym)->attr.dimension;
12584 }
12585 else
12586 {
12587 pointer = sym->attr.pointer && !sym->attr.select_type_temporary;
12588 allocatable = sym->attr.allocatable;
12589 dimension = sym->attr.dimension;
12590 }
12591
12592 if (allocatable)
12593 {
12594 if (dimension && as->type != AS_ASSUMED_RANK)
12595 {
12596 gfc_error ("Allocatable array %qs at %L must have a deferred "
12597 "shape or assumed rank", sym->name, &sym->declared_at);
12598 return false;
12599 }
12600 else if (!gfc_notify_std (GFC_STD_F2003, "Scalar object "
12601 "%qs at %L may not be ALLOCATABLE",
12602 sym->name, &sym->declared_at))
12603 return false;
12604 }
12605
12606 if (pointer && dimension && as->type != AS_ASSUMED_RANK)
12607 {
12608 gfc_error ("Array pointer %qs at %L must have a deferred shape or "
12609 "assumed rank", sym->name, &sym->declared_at);
12610 return false;
12611 }
12612 }
12613 else
12614 {
12615 if (!mp_flag && !sym->attr.allocatable && !sym->attr.pointer
12616 && sym->ts.type != BT_CLASS && !sym->assoc)
12617 {
12618 gfc_error ("Array %qs at %L cannot have a deferred shape",
12619 sym->name, &sym->declared_at);
12620 return false;
12621 }
12622 }
12623
12624 /* Constraints on polymorphic variables. */
12625 if (sym->ts.type == BT_CLASS && !(sym->result && sym->result != sym))
12626 {
12627 /* F03:C502. */
12628 if (sym->attr.class_ok
12629 && !sym->attr.select_type_temporary
12630 && !UNLIMITED_POLY (sym)
12631 && !gfc_type_is_extensible (CLASS_DATA (sym)->ts.u.derived))
12632 {
12633 gfc_error ("Type %qs of CLASS variable %qs at %L is not extensible",
12634 CLASS_DATA (sym)->ts.u.derived->name, sym->name,
12635 &sym->declared_at);
12636 return false;
12637 }
12638
12639 /* F03:C509. */
12640 /* Assume that use associated symbols were checked in the module ns.
12641 Class-variables that are associate-names are also something special
12642 and excepted from the test. */
12643 if (!sym->attr.class_ok && !sym->attr.use_assoc && !sym->assoc)
12644 {
12645 gfc_error ("CLASS variable %qs at %L must be dummy, allocatable "
12646 "or pointer", sym->name, &sym->declared_at);
12647 return false;
12648 }
12649 }
12650
12651 return true;
12652 }
12653
12654
12655 /* Additional checks for symbols with flavor variable and derived
12656 type. To be called from resolve_fl_variable. */
12657
12658 static bool
12659 resolve_fl_variable_derived (gfc_symbol *sym, int no_init_flag)
12660 {
12661 gcc_assert (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS);
12662
12663 /* Check to see if a derived type is blocked from being host
12664 associated by the presence of another class I symbol in the same
12665 namespace. 14.6.1.3 of the standard and the discussion on
12666 comp.lang.fortran. */
12667 if (sym->ns != sym->ts.u.derived->ns
12668 && !sym->ts.u.derived->attr.use_assoc
12669 && sym->ns->proc_name->attr.if_source != IFSRC_IFBODY)
12670 {
12671 gfc_symbol *s;
12672 gfc_find_symbol (sym->ts.u.derived->name, sym->ns, 0, &s);
12673 if (s && s->attr.generic)
12674 s = gfc_find_dt_in_generic (s);
12675 if (s && !gfc_fl_struct (s->attr.flavor))
12676 {
12677 gfc_error ("The type %qs cannot be host associated at %L "
12678 "because it is blocked by an incompatible object "
12679 "of the same name declared at %L",
12680 sym->ts.u.derived->name, &sym->declared_at,
12681 &s->declared_at);
12682 return false;
12683 }
12684 }
12685
12686 /* 4th constraint in section 11.3: "If an object of a type for which
12687 component-initialization is specified (R429) appears in the
12688 specification-part of a module and does not have the ALLOCATABLE
12689 or POINTER attribute, the object shall have the SAVE attribute."
12690
12691 The check for initializers is performed with
12692 gfc_has_default_initializer because gfc_default_initializer generates
12693 a hidden default for allocatable components. */
12694 if (!(sym->value || no_init_flag) && sym->ns->proc_name
12695 && sym->ns->proc_name->attr.flavor == FL_MODULE
12696 && !(sym->ns->save_all && !sym->attr.automatic) && !sym->attr.save
12697 && !sym->attr.pointer && !sym->attr.allocatable
12698 && gfc_has_default_initializer (sym->ts.u.derived)
12699 && !gfc_notify_std (GFC_STD_F2008, "Implied SAVE for module variable "
12700 "%qs at %L, needed due to the default "
12701 "initialization", sym->name, &sym->declared_at))
12702 return false;
12703
12704 /* Assign default initializer. */
12705 if (!(sym->value || sym->attr.pointer || sym->attr.allocatable)
12706 && (!no_init_flag || sym->attr.intent == INTENT_OUT))
12707 sym->value = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
12708
12709 return true;
12710 }
12711
12712
12713 /* F2008, C402 (R401): A colon shall not be used as a type-param-value
12714 except in the declaration of an entity or component that has the POINTER
12715 or ALLOCATABLE attribute. */
12716
12717 static bool
12718 deferred_requirements (gfc_symbol *sym)
12719 {
12720 if (sym->ts.deferred
12721 && !(sym->attr.pointer
12722 || sym->attr.allocatable
12723 || sym->attr.associate_var
12724 || sym->attr.omp_udr_artificial_var))
12725 {
12726 /* If a function has a result variable, only check the variable. */
12727 if (sym->result && sym->name != sym->result->name)
12728 return true;
12729
12730 gfc_error ("Entity %qs at %L has a deferred type parameter and "
12731 "requires either the POINTER or ALLOCATABLE attribute",
12732 sym->name, &sym->declared_at);
12733 return false;
12734 }
12735 return true;
12736 }
12737
12738
12739 /* Resolve symbols with flavor variable. */
12740
12741 static bool
12742 resolve_fl_variable (gfc_symbol *sym, int mp_flag)
12743 {
12744 const char *auto_save_msg = "Automatic object %qs at %L cannot have the "
12745 "SAVE attribute";
12746
12747 if (!resolve_fl_var_and_proc (sym, mp_flag))
12748 return false;
12749
12750 /* Set this flag to check that variables are parameters of all entries.
12751 This check is effected by the call to gfc_resolve_expr through
12752 is_non_constant_shape_array. */
12753 bool saved_specification_expr = specification_expr;
12754 specification_expr = true;
12755
12756 if (sym->ns->proc_name
12757 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12758 || sym->ns->proc_name->attr.is_main_program)
12759 && !sym->attr.use_assoc
12760 && !sym->attr.allocatable
12761 && !sym->attr.pointer
12762 && is_non_constant_shape_array (sym))
12763 {
12764 /* F08:C541. The shape of an array defined in a main program or module
12765 * needs to be constant. */
12766 gfc_error ("The module or main program array %qs at %L must "
12767 "have constant shape", sym->name, &sym->declared_at);
12768 specification_expr = saved_specification_expr;
12769 return false;
12770 }
12771
12772 /* Constraints on deferred type parameter. */
12773 if (!deferred_requirements (sym))
12774 return false;
12775
12776 if (sym->ts.type == BT_CHARACTER && !sym->attr.associate_var)
12777 {
12778 /* Make sure that character string variables with assumed length are
12779 dummy arguments. */
12780 gfc_expr *e = NULL;
12781
12782 if (sym->ts.u.cl)
12783 e = sym->ts.u.cl->length;
12784 else
12785 return false;
12786
12787 if (e == NULL && !sym->attr.dummy && !sym->attr.result
12788 && !sym->ts.deferred && !sym->attr.select_type_temporary
12789 && !sym->attr.omp_udr_artificial_var)
12790 {
12791 gfc_error ("Entity with assumed character length at %L must be a "
12792 "dummy argument or a PARAMETER", &sym->declared_at);
12793 specification_expr = saved_specification_expr;
12794 return false;
12795 }
12796
12797 if (e && sym->attr.save == SAVE_EXPLICIT && !gfc_is_constant_expr (e))
12798 {
12799 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12800 specification_expr = saved_specification_expr;
12801 return false;
12802 }
12803
12804 if (!gfc_is_constant_expr (e)
12805 && !(e->expr_type == EXPR_VARIABLE
12806 && e->symtree->n.sym->attr.flavor == FL_PARAMETER))
12807 {
12808 if (!sym->attr.use_assoc && sym->ns->proc_name
12809 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12810 || sym->ns->proc_name->attr.is_main_program))
12811 {
12812 gfc_error ("%qs at %L must have constant character length "
12813 "in this context", sym->name, &sym->declared_at);
12814 specification_expr = saved_specification_expr;
12815 return false;
12816 }
12817 if (sym->attr.in_common)
12818 {
12819 gfc_error ("COMMON variable %qs at %L must have constant "
12820 "character length", sym->name, &sym->declared_at);
12821 specification_expr = saved_specification_expr;
12822 return false;
12823 }
12824 }
12825 }
12826
12827 if (sym->value == NULL && sym->attr.referenced)
12828 apply_default_init_local (sym); /* Try to apply a default initialization. */
12829
12830 /* Determine if the symbol may not have an initializer. */
12831 int no_init_flag = 0, automatic_flag = 0;
12832 if (sym->attr.allocatable || sym->attr.external || sym->attr.dummy
12833 || sym->attr.intrinsic || sym->attr.result)
12834 no_init_flag = 1;
12835 else if ((sym->attr.dimension || sym->attr.codimension) && !sym->attr.pointer
12836 && is_non_constant_shape_array (sym))
12837 {
12838 no_init_flag = automatic_flag = 1;
12839
12840 /* Also, they must not have the SAVE attribute.
12841 SAVE_IMPLICIT is checked below. */
12842 if (sym->as && sym->attr.codimension)
12843 {
12844 int corank = sym->as->corank;
12845 sym->as->corank = 0;
12846 no_init_flag = automatic_flag = is_non_constant_shape_array (sym);
12847 sym->as->corank = corank;
12848 }
12849 if (automatic_flag && sym->attr.save == SAVE_EXPLICIT)
12850 {
12851 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12852 specification_expr = saved_specification_expr;
12853 return false;
12854 }
12855 }
12856
12857 /* Ensure that any initializer is simplified. */
12858 if (sym->value)
12859 gfc_simplify_expr (sym->value, 1);
12860
12861 /* Reject illegal initializers. */
12862 if (!sym->mark && sym->value)
12863 {
12864 if (sym->attr.allocatable || (sym->ts.type == BT_CLASS
12865 && CLASS_DATA (sym)->attr.allocatable))
12866 gfc_error ("Allocatable %qs at %L cannot have an initializer",
12867 sym->name, &sym->declared_at);
12868 else if (sym->attr.external)
12869 gfc_error ("External %qs at %L cannot have an initializer",
12870 sym->name, &sym->declared_at);
12871 else if (sym->attr.dummy
12872 && !(sym->ts.type == BT_DERIVED && sym->attr.intent == INTENT_OUT))
12873 gfc_error ("Dummy %qs at %L cannot have an initializer",
12874 sym->name, &sym->declared_at);
12875 else if (sym->attr.intrinsic)
12876 gfc_error ("Intrinsic %qs at %L cannot have an initializer",
12877 sym->name, &sym->declared_at);
12878 else if (sym->attr.result)
12879 gfc_error ("Function result %qs at %L cannot have an initializer",
12880 sym->name, &sym->declared_at);
12881 else if (automatic_flag)
12882 gfc_error ("Automatic array %qs at %L cannot have an initializer",
12883 sym->name, &sym->declared_at);
12884 else
12885 goto no_init_error;
12886 specification_expr = saved_specification_expr;
12887 return false;
12888 }
12889
12890 no_init_error:
12891 if (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS)
12892 {
12893 bool res = resolve_fl_variable_derived (sym, no_init_flag);
12894 specification_expr = saved_specification_expr;
12895 return res;
12896 }
12897
12898 specification_expr = saved_specification_expr;
12899 return true;
12900 }
12901
12902
12903 /* Compare the dummy characteristics of a module procedure interface
12904 declaration with the corresponding declaration in a submodule. */
12905 static gfc_formal_arglist *new_formal;
12906 static char errmsg[200];
12907
12908 static void
12909 compare_fsyms (gfc_symbol *sym)
12910 {
12911 gfc_symbol *fsym;
12912
12913 if (sym == NULL || new_formal == NULL)
12914 return;
12915
12916 fsym = new_formal->sym;
12917
12918 if (sym == fsym)
12919 return;
12920
12921 if (strcmp (sym->name, fsym->name) == 0)
12922 {
12923 if (!gfc_check_dummy_characteristics (fsym, sym, true, errmsg, 200))
12924 gfc_error ("%s at %L", errmsg, &fsym->declared_at);
12925 }
12926 }
12927
12928
12929 /* Resolve a procedure. */
12930
12931 static bool
12932 resolve_fl_procedure (gfc_symbol *sym, int mp_flag)
12933 {
12934 gfc_formal_arglist *arg;
12935
12936 if (sym->attr.function
12937 && !resolve_fl_var_and_proc (sym, mp_flag))
12938 return false;
12939
12940 /* Constraints on deferred type parameter. */
12941 if (!deferred_requirements (sym))
12942 return false;
12943
12944 if (sym->ts.type == BT_CHARACTER)
12945 {
12946 gfc_charlen *cl = sym->ts.u.cl;
12947
12948 if (cl && cl->length && gfc_is_constant_expr (cl->length)
12949 && !resolve_charlen (cl))
12950 return false;
12951
12952 if ((!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
12953 && sym->attr.proc == PROC_ST_FUNCTION)
12954 {
12955 gfc_error ("Character-valued statement function %qs at %L must "
12956 "have constant length", sym->name, &sym->declared_at);
12957 return false;
12958 }
12959 }
12960
12961 /* Ensure that derived type for are not of a private type. Internal
12962 module procedures are excluded by 2.2.3.3 - i.e., they are not
12963 externally accessible and can access all the objects accessible in
12964 the host. */
12965 if (!(sym->ns->parent && sym->ns->parent->proc_name
12966 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
12967 && gfc_check_symbol_access (sym))
12968 {
12969 gfc_interface *iface;
12970
12971 for (arg = gfc_sym_get_dummy_args (sym); arg; arg = arg->next)
12972 {
12973 if (arg->sym
12974 && arg->sym->ts.type == BT_DERIVED
12975 && !arg->sym->ts.u.derived->attr.use_assoc
12976 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12977 && !gfc_notify_std (GFC_STD_F2003, "%qs is of a PRIVATE type "
12978 "and cannot be a dummy argument"
12979 " of %qs, which is PUBLIC at %L",
12980 arg->sym->name, sym->name,
12981 &sym->declared_at))
12982 {
12983 /* Stop this message from recurring. */
12984 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12985 return false;
12986 }
12987 }
12988
12989 /* PUBLIC interfaces may expose PRIVATE procedures that take types
12990 PRIVATE to the containing module. */
12991 for (iface = sym->generic; iface; iface = iface->next)
12992 {
12993 for (arg = gfc_sym_get_dummy_args (iface->sym); arg; arg = arg->next)
12994 {
12995 if (arg->sym
12996 && arg->sym->ts.type == BT_DERIVED
12997 && !arg->sym->ts.u.derived->attr.use_assoc
12998 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12999 && !gfc_notify_std (GFC_STD_F2003, "Procedure %qs in "
13000 "PUBLIC interface %qs at %L "
13001 "takes dummy arguments of %qs which "
13002 "is PRIVATE", iface->sym->name,
13003 sym->name, &iface->sym->declared_at,
13004 gfc_typename(&arg->sym->ts)))
13005 {
13006 /* Stop this message from recurring. */
13007 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
13008 return false;
13009 }
13010 }
13011 }
13012 }
13013
13014 if (sym->attr.function && sym->value && sym->attr.proc != PROC_ST_FUNCTION
13015 && !sym->attr.proc_pointer)
13016 {
13017 gfc_error ("Function %qs at %L cannot have an initializer",
13018 sym->name, &sym->declared_at);
13019
13020 /* Make sure no second error is issued for this. */
13021 sym->value->error = 1;
13022 return false;
13023 }
13024
13025 /* An external symbol may not have an initializer because it is taken to be
13026 a procedure. Exception: Procedure Pointers. */
13027 if (sym->attr.external && sym->value && !sym->attr.proc_pointer)
13028 {
13029 gfc_error ("External object %qs at %L may not have an initializer",
13030 sym->name, &sym->declared_at);
13031 return false;
13032 }
13033
13034 /* An elemental function is required to return a scalar 12.7.1 */
13035 if (sym->attr.elemental && sym->attr.function
13036 && (sym->as || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)))
13037 {
13038 gfc_error ("ELEMENTAL function %qs at %L must have a scalar "
13039 "result", sym->name, &sym->declared_at);
13040 /* Reset so that the error only occurs once. */
13041 sym->attr.elemental = 0;
13042 return false;
13043 }
13044
13045 if (sym->attr.proc == PROC_ST_FUNCTION
13046 && (sym->attr.allocatable || sym->attr.pointer))
13047 {
13048 gfc_error ("Statement function %qs at %L may not have pointer or "
13049 "allocatable attribute", sym->name, &sym->declared_at);
13050 return false;
13051 }
13052
13053 /* 5.1.1.5 of the Standard: A function name declared with an asterisk
13054 char-len-param shall not be array-valued, pointer-valued, recursive
13055 or pure. ....snip... A character value of * may only be used in the
13056 following ways: (i) Dummy arg of procedure - dummy associates with
13057 actual length; (ii) To declare a named constant; or (iii) External
13058 function - but length must be declared in calling scoping unit. */
13059 if (sym->attr.function
13060 && sym->ts.type == BT_CHARACTER && !sym->ts.deferred
13061 && sym->ts.u.cl && sym->ts.u.cl->length == NULL)
13062 {
13063 if ((sym->as && sym->as->rank) || (sym->attr.pointer)
13064 || (sym->attr.recursive) || (sym->attr.pure))
13065 {
13066 if (sym->as && sym->as->rank)
13067 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
13068 "array-valued", sym->name, &sym->declared_at);
13069
13070 if (sym->attr.pointer)
13071 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
13072 "pointer-valued", sym->name, &sym->declared_at);
13073
13074 if (sym->attr.pure)
13075 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
13076 "pure", sym->name, &sym->declared_at);
13077
13078 if (sym->attr.recursive)
13079 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
13080 "recursive", sym->name, &sym->declared_at);
13081
13082 return false;
13083 }
13084
13085 /* Appendix B.2 of the standard. Contained functions give an
13086 error anyway. Deferred character length is an F2003 feature.
13087 Don't warn on intrinsic conversion functions, which start
13088 with two underscores. */
13089 if (!sym->attr.contained && !sym->ts.deferred
13090 && (sym->name[0] != '_' || sym->name[1] != '_'))
13091 gfc_notify_std (GFC_STD_F95_OBS,
13092 "CHARACTER(*) function %qs at %L",
13093 sym->name, &sym->declared_at);
13094 }
13095
13096 /* F2008, C1218. */
13097 if (sym->attr.elemental)
13098 {
13099 if (sym->attr.proc_pointer)
13100 {
13101 gfc_error ("Procedure pointer %qs at %L shall not be elemental",
13102 sym->name, &sym->declared_at);
13103 return false;
13104 }
13105 if (sym->attr.dummy)
13106 {
13107 gfc_error ("Dummy procedure %qs at %L shall not be elemental",
13108 sym->name, &sym->declared_at);
13109 return false;
13110 }
13111 }
13112
13113 /* F2018, C15100: "The result of an elemental function shall be scalar,
13114 and shall not have the POINTER or ALLOCATABLE attribute." The scalar
13115 pointer is tested and caught elsewhere. */
13116 if (sym->attr.elemental && sym->result
13117 && (sym->result->attr.allocatable || sym->result->attr.pointer))
13118 {
13119 gfc_error ("Function result variable %qs at %L of elemental "
13120 "function %qs shall not have an ALLOCATABLE or POINTER "
13121 "attribute", sym->result->name,
13122 &sym->result->declared_at, sym->name);
13123 return false;
13124 }
13125
13126 if (sym->attr.is_bind_c && sym->attr.is_c_interop != 1)
13127 {
13128 gfc_formal_arglist *curr_arg;
13129 int has_non_interop_arg = 0;
13130
13131 if (!verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
13132 sym->common_block))
13133 {
13134 /* Clear these to prevent looking at them again if there was an
13135 error. */
13136 sym->attr.is_bind_c = 0;
13137 sym->attr.is_c_interop = 0;
13138 sym->ts.is_c_interop = 0;
13139 }
13140 else
13141 {
13142 /* So far, no errors have been found. */
13143 sym->attr.is_c_interop = 1;
13144 sym->ts.is_c_interop = 1;
13145 }
13146
13147 curr_arg = gfc_sym_get_dummy_args (sym);
13148 while (curr_arg != NULL)
13149 {
13150 /* Skip implicitly typed dummy args here. */
13151 if (curr_arg->sym && curr_arg->sym->attr.implicit_type == 0)
13152 if (!gfc_verify_c_interop_param (curr_arg->sym))
13153 /* If something is found to fail, record the fact so we
13154 can mark the symbol for the procedure as not being
13155 BIND(C) to try and prevent multiple errors being
13156 reported. */
13157 has_non_interop_arg = 1;
13158
13159 curr_arg = curr_arg->next;
13160 }
13161
13162 /* See if any of the arguments were not interoperable and if so, clear
13163 the procedure symbol to prevent duplicate error messages. */
13164 if (has_non_interop_arg != 0)
13165 {
13166 sym->attr.is_c_interop = 0;
13167 sym->ts.is_c_interop = 0;
13168 sym->attr.is_bind_c = 0;
13169 }
13170 }
13171
13172 if (!sym->attr.proc_pointer)
13173 {
13174 if (sym->attr.save == SAVE_EXPLICIT)
13175 {
13176 gfc_error ("PROCEDURE attribute conflicts with SAVE attribute "
13177 "in %qs at %L", sym->name, &sym->declared_at);
13178 return false;
13179 }
13180 if (sym->attr.intent)
13181 {
13182 gfc_error ("PROCEDURE attribute conflicts with INTENT attribute "
13183 "in %qs at %L", sym->name, &sym->declared_at);
13184 return false;
13185 }
13186 if (sym->attr.subroutine && sym->attr.result)
13187 {
13188 gfc_error ("PROCEDURE attribute conflicts with RESULT attribute "
13189 "in %qs at %L", sym->name, &sym->declared_at);
13190 return false;
13191 }
13192 if (sym->attr.external && sym->attr.function && !sym->attr.module_procedure
13193 && ((sym->attr.if_source == IFSRC_DECL && !sym->attr.procedure)
13194 || sym->attr.contained))
13195 {
13196 gfc_error ("EXTERNAL attribute conflicts with FUNCTION attribute "
13197 "in %qs at %L", sym->name, &sym->declared_at);
13198 return false;
13199 }
13200 if (strcmp ("ppr@", sym->name) == 0)
13201 {
13202 gfc_error ("Procedure pointer result %qs at %L "
13203 "is missing the pointer attribute",
13204 sym->ns->proc_name->name, &sym->declared_at);
13205 return false;
13206 }
13207 }
13208
13209 /* Assume that a procedure whose body is not known has references
13210 to external arrays. */
13211 if (sym->attr.if_source != IFSRC_DECL)
13212 sym->attr.array_outer_dependency = 1;
13213
13214 /* Compare the characteristics of a module procedure with the
13215 interface declaration. Ideally this would be done with
13216 gfc_compare_interfaces but, at present, the formal interface
13217 cannot be copied to the ts.interface. */
13218 if (sym->attr.module_procedure
13219 && sym->attr.if_source == IFSRC_DECL)
13220 {
13221 gfc_symbol *iface;
13222 char name[2*GFC_MAX_SYMBOL_LEN + 1];
13223 char *module_name;
13224 char *submodule_name;
13225 strcpy (name, sym->ns->proc_name->name);
13226 module_name = strtok (name, ".");
13227 submodule_name = strtok (NULL, ".");
13228
13229 iface = sym->tlink;
13230 sym->tlink = NULL;
13231
13232 /* Make sure that the result uses the correct charlen for deferred
13233 length results. */
13234 if (iface && sym->result
13235 && iface->ts.type == BT_CHARACTER
13236 && iface->ts.deferred)
13237 sym->result->ts.u.cl = iface->ts.u.cl;
13238
13239 if (iface == NULL)
13240 goto check_formal;
13241
13242 /* Check the procedure characteristics. */
13243 if (sym->attr.elemental != iface->attr.elemental)
13244 {
13245 gfc_error ("Mismatch in ELEMENTAL attribute between MODULE "
13246 "PROCEDURE at %L and its interface in %s",
13247 &sym->declared_at, module_name);
13248 return false;
13249 }
13250
13251 if (sym->attr.pure != iface->attr.pure)
13252 {
13253 gfc_error ("Mismatch in PURE attribute between MODULE "
13254 "PROCEDURE at %L and its interface in %s",
13255 &sym->declared_at, module_name);
13256 return false;
13257 }
13258
13259 if (sym->attr.recursive != iface->attr.recursive)
13260 {
13261 gfc_error ("Mismatch in RECURSIVE attribute between MODULE "
13262 "PROCEDURE at %L and its interface in %s",
13263 &sym->declared_at, module_name);
13264 return false;
13265 }
13266
13267 /* Check the result characteristics. */
13268 if (!gfc_check_result_characteristics (sym, iface, errmsg, 200))
13269 {
13270 gfc_error ("%s between the MODULE PROCEDURE declaration "
13271 "in MODULE %qs and the declaration at %L in "
13272 "(SUB)MODULE %qs",
13273 errmsg, module_name, &sym->declared_at,
13274 submodule_name ? submodule_name : module_name);
13275 return false;
13276 }
13277
13278 check_formal:
13279 /* Check the characteristics of the formal arguments. */
13280 if (sym->formal && sym->formal_ns)
13281 {
13282 for (arg = sym->formal; arg && arg->sym; arg = arg->next)
13283 {
13284 new_formal = arg;
13285 gfc_traverse_ns (sym->formal_ns, compare_fsyms);
13286 }
13287 }
13288 }
13289 return true;
13290 }
13291
13292
13293 /* Resolve a list of finalizer procedures. That is, after they have hopefully
13294 been defined and we now know their defined arguments, check that they fulfill
13295 the requirements of the standard for procedures used as finalizers. */
13296
13297 static bool
13298 gfc_resolve_finalizers (gfc_symbol* derived, bool *finalizable)
13299 {
13300 gfc_finalizer* list;
13301 gfc_finalizer** prev_link; /* For removing wrong entries from the list. */
13302 bool result = true;
13303 bool seen_scalar = false;
13304 gfc_symbol *vtab;
13305 gfc_component *c;
13306 gfc_symbol *parent = gfc_get_derived_super_type (derived);
13307
13308 if (parent)
13309 gfc_resolve_finalizers (parent, finalizable);
13310
13311 /* Ensure that derived-type components have a their finalizers resolved. */
13312 bool has_final = derived->f2k_derived && derived->f2k_derived->finalizers;
13313 for (c = derived->components; c; c = c->next)
13314 if (c->ts.type == BT_DERIVED
13315 && !c->attr.pointer && !c->attr.proc_pointer && !c->attr.allocatable)
13316 {
13317 bool has_final2 = false;
13318 if (!gfc_resolve_finalizers (c->ts.u.derived, &has_final2))
13319 return false; /* Error. */
13320 has_final = has_final || has_final2;
13321 }
13322 /* Return early if not finalizable. */
13323 if (!has_final)
13324 {
13325 if (finalizable)
13326 *finalizable = false;
13327 return true;
13328 }
13329
13330 /* Walk over the list of finalizer-procedures, check them, and if any one
13331 does not fit in with the standard's definition, print an error and remove
13332 it from the list. */
13333 prev_link = &derived->f2k_derived->finalizers;
13334 for (list = derived->f2k_derived->finalizers; list; list = *prev_link)
13335 {
13336 gfc_formal_arglist *dummy_args;
13337 gfc_symbol* arg;
13338 gfc_finalizer* i;
13339 int my_rank;
13340
13341 /* Skip this finalizer if we already resolved it. */
13342 if (list->proc_tree)
13343 {
13344 if (list->proc_tree->n.sym->formal->sym->as == NULL
13345 || list->proc_tree->n.sym->formal->sym->as->rank == 0)
13346 seen_scalar = true;
13347 prev_link = &(list->next);
13348 continue;
13349 }
13350
13351 /* Check this exists and is a SUBROUTINE. */
13352 if (!list->proc_sym->attr.subroutine)
13353 {
13354 gfc_error ("FINAL procedure %qs at %L is not a SUBROUTINE",
13355 list->proc_sym->name, &list->where);
13356 goto error;
13357 }
13358
13359 /* We should have exactly one argument. */
13360 dummy_args = gfc_sym_get_dummy_args (list->proc_sym);
13361 if (!dummy_args || dummy_args->next)
13362 {
13363 gfc_error ("FINAL procedure at %L must have exactly one argument",
13364 &list->where);
13365 goto error;
13366 }
13367 arg = dummy_args->sym;
13368
13369 /* This argument must be of our type. */
13370 if (arg->ts.type != BT_DERIVED || arg->ts.u.derived != derived)
13371 {
13372 gfc_error ("Argument of FINAL procedure at %L must be of type %qs",
13373 &arg->declared_at, derived->name);
13374 goto error;
13375 }
13376
13377 /* It must neither be a pointer nor allocatable nor optional. */
13378 if (arg->attr.pointer)
13379 {
13380 gfc_error ("Argument of FINAL procedure at %L must not be a POINTER",
13381 &arg->declared_at);
13382 goto error;
13383 }
13384 if (arg->attr.allocatable)
13385 {
13386 gfc_error ("Argument of FINAL procedure at %L must not be"
13387 " ALLOCATABLE", &arg->declared_at);
13388 goto error;
13389 }
13390 if (arg->attr.optional)
13391 {
13392 gfc_error ("Argument of FINAL procedure at %L must not be OPTIONAL",
13393 &arg->declared_at);
13394 goto error;
13395 }
13396
13397 /* It must not be INTENT(OUT). */
13398 if (arg->attr.intent == INTENT_OUT)
13399 {
13400 gfc_error ("Argument of FINAL procedure at %L must not be"
13401 " INTENT(OUT)", &arg->declared_at);
13402 goto error;
13403 }
13404
13405 /* Warn if the procedure is non-scalar and not assumed shape. */
13406 if (warn_surprising && arg->as && arg->as->rank != 0
13407 && arg->as->type != AS_ASSUMED_SHAPE)
13408 gfc_warning (OPT_Wsurprising,
13409 "Non-scalar FINAL procedure at %L should have assumed"
13410 " shape argument", &arg->declared_at);
13411
13412 /* Check that it does not match in kind and rank with a FINAL procedure
13413 defined earlier. To really loop over the *earlier* declarations,
13414 we need to walk the tail of the list as new ones were pushed at the
13415 front. */
13416 /* TODO: Handle kind parameters once they are implemented. */
13417 my_rank = (arg->as ? arg->as->rank : 0);
13418 for (i = list->next; i; i = i->next)
13419 {
13420 gfc_formal_arglist *dummy_args;
13421
13422 /* Argument list might be empty; that is an error signalled earlier,
13423 but we nevertheless continued resolving. */
13424 dummy_args = gfc_sym_get_dummy_args (i->proc_sym);
13425 if (dummy_args)
13426 {
13427 gfc_symbol* i_arg = dummy_args->sym;
13428 const int i_rank = (i_arg->as ? i_arg->as->rank : 0);
13429 if (i_rank == my_rank)
13430 {
13431 gfc_error ("FINAL procedure %qs declared at %L has the same"
13432 " rank (%d) as %qs",
13433 list->proc_sym->name, &list->where, my_rank,
13434 i->proc_sym->name);
13435 goto error;
13436 }
13437 }
13438 }
13439
13440 /* Is this the/a scalar finalizer procedure? */
13441 if (my_rank == 0)
13442 seen_scalar = true;
13443
13444 /* Find the symtree for this procedure. */
13445 gcc_assert (!list->proc_tree);
13446 list->proc_tree = gfc_find_sym_in_symtree (list->proc_sym);
13447
13448 prev_link = &list->next;
13449 continue;
13450
13451 /* Remove wrong nodes immediately from the list so we don't risk any
13452 troubles in the future when they might fail later expectations. */
13453 error:
13454 i = list;
13455 *prev_link = list->next;
13456 gfc_free_finalizer (i);
13457 result = false;
13458 }
13459
13460 if (result == false)
13461 return false;
13462
13463 /* Warn if we haven't seen a scalar finalizer procedure (but we know there
13464 were nodes in the list, must have been for arrays. It is surely a good
13465 idea to have a scalar version there if there's something to finalize. */
13466 if (warn_surprising && derived->f2k_derived->finalizers && !seen_scalar)
13467 gfc_warning (OPT_Wsurprising,
13468 "Only array FINAL procedures declared for derived type %qs"
13469 " defined at %L, suggest also scalar one",
13470 derived->name, &derived->declared_at);
13471
13472 vtab = gfc_find_derived_vtab (derived);
13473 c = vtab->ts.u.derived->components->next->next->next->next->next;
13474 gfc_set_sym_referenced (c->initializer->symtree->n.sym);
13475
13476 if (finalizable)
13477 *finalizable = true;
13478
13479 return true;
13480 }
13481
13482
13483 /* Check if two GENERIC targets are ambiguous and emit an error is they are. */
13484
13485 static bool
13486 check_generic_tbp_ambiguity (gfc_tbp_generic* t1, gfc_tbp_generic* t2,
13487 const char* generic_name, locus where)
13488 {
13489 gfc_symbol *sym1, *sym2;
13490 const char *pass1, *pass2;
13491 gfc_formal_arglist *dummy_args;
13492
13493 gcc_assert (t1->specific && t2->specific);
13494 gcc_assert (!t1->specific->is_generic);
13495 gcc_assert (!t2->specific->is_generic);
13496 gcc_assert (t1->is_operator == t2->is_operator);
13497
13498 sym1 = t1->specific->u.specific->n.sym;
13499 sym2 = t2->specific->u.specific->n.sym;
13500
13501 if (sym1 == sym2)
13502 return true;
13503
13504 /* Both must be SUBROUTINEs or both must be FUNCTIONs. */
13505 if (sym1->attr.subroutine != sym2->attr.subroutine
13506 || sym1->attr.function != sym2->attr.function)
13507 {
13508 gfc_error ("%qs and %qs cannot be mixed FUNCTION/SUBROUTINE for"
13509 " GENERIC %qs at %L",
13510 sym1->name, sym2->name, generic_name, &where);
13511 return false;
13512 }
13513
13514 /* Determine PASS arguments. */
13515 if (t1->specific->nopass)
13516 pass1 = NULL;
13517 else if (t1->specific->pass_arg)
13518 pass1 = t1->specific->pass_arg;
13519 else
13520 {
13521 dummy_args = gfc_sym_get_dummy_args (t1->specific->u.specific->n.sym);
13522 if (dummy_args)
13523 pass1 = dummy_args->sym->name;
13524 else
13525 pass1 = NULL;
13526 }
13527 if (t2->specific->nopass)
13528 pass2 = NULL;
13529 else if (t2->specific->pass_arg)
13530 pass2 = t2->specific->pass_arg;
13531 else
13532 {
13533 dummy_args = gfc_sym_get_dummy_args (t2->specific->u.specific->n.sym);
13534 if (dummy_args)
13535 pass2 = dummy_args->sym->name;
13536 else
13537 pass2 = NULL;
13538 }
13539
13540 /* Compare the interfaces. */
13541 if (gfc_compare_interfaces (sym1, sym2, sym2->name, !t1->is_operator, 0,
13542 NULL, 0, pass1, pass2))
13543 {
13544 gfc_error ("%qs and %qs for GENERIC %qs at %L are ambiguous",
13545 sym1->name, sym2->name, generic_name, &where);
13546 return false;
13547 }
13548
13549 return true;
13550 }
13551
13552
13553 /* Worker function for resolving a generic procedure binding; this is used to
13554 resolve GENERIC as well as user and intrinsic OPERATOR typebound procedures.
13555
13556 The difference between those cases is finding possible inherited bindings
13557 that are overridden, as one has to look for them in tb_sym_root,
13558 tb_uop_root or tb_op, respectively. Thus the caller must already find
13559 the super-type and set p->overridden correctly. */
13560
13561 static bool
13562 resolve_tb_generic_targets (gfc_symbol* super_type,
13563 gfc_typebound_proc* p, const char* name)
13564 {
13565 gfc_tbp_generic* target;
13566 gfc_symtree* first_target;
13567 gfc_symtree* inherited;
13568
13569 gcc_assert (p && p->is_generic);
13570
13571 /* Try to find the specific bindings for the symtrees in our target-list. */
13572 gcc_assert (p->u.generic);
13573 for (target = p->u.generic; target; target = target->next)
13574 if (!target->specific)
13575 {
13576 gfc_typebound_proc* overridden_tbp;
13577 gfc_tbp_generic* g;
13578 const char* target_name;
13579
13580 target_name = target->specific_st->name;
13581
13582 /* Defined for this type directly. */
13583 if (target->specific_st->n.tb && !target->specific_st->n.tb->error)
13584 {
13585 target->specific = target->specific_st->n.tb;
13586 goto specific_found;
13587 }
13588
13589 /* Look for an inherited specific binding. */
13590 if (super_type)
13591 {
13592 inherited = gfc_find_typebound_proc (super_type, NULL, target_name,
13593 true, NULL);
13594
13595 if (inherited)
13596 {
13597 gcc_assert (inherited->n.tb);
13598 target->specific = inherited->n.tb;
13599 goto specific_found;
13600 }
13601 }
13602
13603 gfc_error ("Undefined specific binding %qs as target of GENERIC %qs"
13604 " at %L", target_name, name, &p->where);
13605 return false;
13606
13607 /* Once we've found the specific binding, check it is not ambiguous with
13608 other specifics already found or inherited for the same GENERIC. */
13609 specific_found:
13610 gcc_assert (target->specific);
13611
13612 /* This must really be a specific binding! */
13613 if (target->specific->is_generic)
13614 {
13615 gfc_error ("GENERIC %qs at %L must target a specific binding,"
13616 " %qs is GENERIC, too", name, &p->where, target_name);
13617 return false;
13618 }
13619
13620 /* Check those already resolved on this type directly. */
13621 for (g = p->u.generic; g; g = g->next)
13622 if (g != target && g->specific
13623 && !check_generic_tbp_ambiguity (target, g, name, p->where))
13624 return false;
13625
13626 /* Check for ambiguity with inherited specific targets. */
13627 for (overridden_tbp = p->overridden; overridden_tbp;
13628 overridden_tbp = overridden_tbp->overridden)
13629 if (overridden_tbp->is_generic)
13630 {
13631 for (g = overridden_tbp->u.generic; g; g = g->next)
13632 {
13633 gcc_assert (g->specific);
13634 if (!check_generic_tbp_ambiguity (target, g, name, p->where))
13635 return false;
13636 }
13637 }
13638 }
13639
13640 /* If we attempt to "overwrite" a specific binding, this is an error. */
13641 if (p->overridden && !p->overridden->is_generic)
13642 {
13643 gfc_error ("GENERIC %qs at %L cannot overwrite specific binding with"
13644 " the same name", name, &p->where);
13645 return false;
13646 }
13647
13648 /* Take the SUBROUTINE/FUNCTION attributes of the first specific target, as
13649 all must have the same attributes here. */
13650 first_target = p->u.generic->specific->u.specific;
13651 gcc_assert (first_target);
13652 p->subroutine = first_target->n.sym->attr.subroutine;
13653 p->function = first_target->n.sym->attr.function;
13654
13655 return true;
13656 }
13657
13658
13659 /* Resolve a GENERIC procedure binding for a derived type. */
13660
13661 static bool
13662 resolve_typebound_generic (gfc_symbol* derived, gfc_symtree* st)
13663 {
13664 gfc_symbol* super_type;
13665
13666 /* Find the overridden binding if any. */
13667 st->n.tb->overridden = NULL;
13668 super_type = gfc_get_derived_super_type (derived);
13669 if (super_type)
13670 {
13671 gfc_symtree* overridden;
13672 overridden = gfc_find_typebound_proc (super_type, NULL, st->name,
13673 true, NULL);
13674
13675 if (overridden && overridden->n.tb)
13676 st->n.tb->overridden = overridden->n.tb;
13677 }
13678
13679 /* Resolve using worker function. */
13680 return resolve_tb_generic_targets (super_type, st->n.tb, st->name);
13681 }
13682
13683
13684 /* Retrieve the target-procedure of an operator binding and do some checks in
13685 common for intrinsic and user-defined type-bound operators. */
13686
13687 static gfc_symbol*
13688 get_checked_tb_operator_target (gfc_tbp_generic* target, locus where)
13689 {
13690 gfc_symbol* target_proc;
13691
13692 gcc_assert (target->specific && !target->specific->is_generic);
13693 target_proc = target->specific->u.specific->n.sym;
13694 gcc_assert (target_proc);
13695
13696 /* F08:C468. All operator bindings must have a passed-object dummy argument. */
13697 if (target->specific->nopass)
13698 {
13699 gfc_error ("Type-bound operator at %L cannot be NOPASS", &where);
13700 return NULL;
13701 }
13702
13703 return target_proc;
13704 }
13705
13706
13707 /* Resolve a type-bound intrinsic operator. */
13708
13709 static bool
13710 resolve_typebound_intrinsic_op (gfc_symbol* derived, gfc_intrinsic_op op,
13711 gfc_typebound_proc* p)
13712 {
13713 gfc_symbol* super_type;
13714 gfc_tbp_generic* target;
13715
13716 /* If there's already an error here, do nothing (but don't fail again). */
13717 if (p->error)
13718 return true;
13719
13720 /* Operators should always be GENERIC bindings. */
13721 gcc_assert (p->is_generic);
13722
13723 /* Look for an overridden binding. */
13724 super_type = gfc_get_derived_super_type (derived);
13725 if (super_type && super_type->f2k_derived)
13726 p->overridden = gfc_find_typebound_intrinsic_op (super_type, NULL,
13727 op, true, NULL);
13728 else
13729 p->overridden = NULL;
13730
13731 /* Resolve general GENERIC properties using worker function. */
13732 if (!resolve_tb_generic_targets (super_type, p, gfc_op2string(op)))
13733 goto error;
13734
13735 /* Check the targets to be procedures of correct interface. */
13736 for (target = p->u.generic; target; target = target->next)
13737 {
13738 gfc_symbol* target_proc;
13739
13740 target_proc = get_checked_tb_operator_target (target, p->where);
13741 if (!target_proc)
13742 goto error;
13743
13744 if (!gfc_check_operator_interface (target_proc, op, p->where))
13745 goto error;
13746
13747 /* Add target to non-typebound operator list. */
13748 if (!target->specific->deferred && !derived->attr.use_assoc
13749 && p->access != ACCESS_PRIVATE && derived->ns == gfc_current_ns)
13750 {
13751 gfc_interface *head, *intr;
13752
13753 /* Preempt 'gfc_check_new_interface' for submodules, where the
13754 mechanism for handling module procedures winds up resolving
13755 operator interfaces twice and would otherwise cause an error. */
13756 for (intr = derived->ns->op[op]; intr; intr = intr->next)
13757 if (intr->sym == target_proc
13758 && target_proc->attr.used_in_submodule)
13759 return true;
13760
13761 if (!gfc_check_new_interface (derived->ns->op[op],
13762 target_proc, p->where))
13763 return false;
13764 head = derived->ns->op[op];
13765 intr = gfc_get_interface ();
13766 intr->sym = target_proc;
13767 intr->where = p->where;
13768 intr->next = head;
13769 derived->ns->op[op] = intr;
13770 }
13771 }
13772
13773 return true;
13774
13775 error:
13776 p->error = 1;
13777 return false;
13778 }
13779
13780
13781 /* Resolve a type-bound user operator (tree-walker callback). */
13782
13783 static gfc_symbol* resolve_bindings_derived;
13784 static bool resolve_bindings_result;
13785
13786 static bool check_uop_procedure (gfc_symbol* sym, locus where);
13787
13788 static void
13789 resolve_typebound_user_op (gfc_symtree* stree)
13790 {
13791 gfc_symbol* super_type;
13792 gfc_tbp_generic* target;
13793
13794 gcc_assert (stree && stree->n.tb);
13795
13796 if (stree->n.tb->error)
13797 return;
13798
13799 /* Operators should always be GENERIC bindings. */
13800 gcc_assert (stree->n.tb->is_generic);
13801
13802 /* Find overridden procedure, if any. */
13803 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13804 if (super_type && super_type->f2k_derived)
13805 {
13806 gfc_symtree* overridden;
13807 overridden = gfc_find_typebound_user_op (super_type, NULL,
13808 stree->name, true, NULL);
13809
13810 if (overridden && overridden->n.tb)
13811 stree->n.tb->overridden = overridden->n.tb;
13812 }
13813 else
13814 stree->n.tb->overridden = NULL;
13815
13816 /* Resolve basically using worker function. */
13817 if (!resolve_tb_generic_targets (super_type, stree->n.tb, stree->name))
13818 goto error;
13819
13820 /* Check the targets to be functions of correct interface. */
13821 for (target = stree->n.tb->u.generic; target; target = target->next)
13822 {
13823 gfc_symbol* target_proc;
13824
13825 target_proc = get_checked_tb_operator_target (target, stree->n.tb->where);
13826 if (!target_proc)
13827 goto error;
13828
13829 if (!check_uop_procedure (target_proc, stree->n.tb->where))
13830 goto error;
13831 }
13832
13833 return;
13834
13835 error:
13836 resolve_bindings_result = false;
13837 stree->n.tb->error = 1;
13838 }
13839
13840
13841 /* Resolve the type-bound procedures for a derived type. */
13842
13843 static void
13844 resolve_typebound_procedure (gfc_symtree* stree)
13845 {
13846 gfc_symbol* proc;
13847 locus where;
13848 gfc_symbol* me_arg;
13849 gfc_symbol* super_type;
13850 gfc_component* comp;
13851
13852 gcc_assert (stree);
13853
13854 /* Undefined specific symbol from GENERIC target definition. */
13855 if (!stree->n.tb)
13856 return;
13857
13858 if (stree->n.tb->error)
13859 return;
13860
13861 /* If this is a GENERIC binding, use that routine. */
13862 if (stree->n.tb->is_generic)
13863 {
13864 if (!resolve_typebound_generic (resolve_bindings_derived, stree))
13865 goto error;
13866 return;
13867 }
13868
13869 /* Get the target-procedure to check it. */
13870 gcc_assert (!stree->n.tb->is_generic);
13871 gcc_assert (stree->n.tb->u.specific);
13872 proc = stree->n.tb->u.specific->n.sym;
13873 where = stree->n.tb->where;
13874
13875 /* Default access should already be resolved from the parser. */
13876 gcc_assert (stree->n.tb->access != ACCESS_UNKNOWN);
13877
13878 if (stree->n.tb->deferred)
13879 {
13880 if (!check_proc_interface (proc, &where))
13881 goto error;
13882 }
13883 else
13884 {
13885 /* If proc has not been resolved at this point, proc->name may
13886 actually be a USE associated entity. See PR fortran/89647. */
13887 if (!proc->resolved
13888 && proc->attr.function == 0 && proc->attr.subroutine == 0)
13889 {
13890 gfc_symbol *tmp;
13891 gfc_find_symbol (proc->name, gfc_current_ns->parent, 1, &tmp);
13892 if (tmp && tmp->attr.use_assoc)
13893 {
13894 proc->module = tmp->module;
13895 proc->attr.proc = tmp->attr.proc;
13896 proc->attr.function = tmp->attr.function;
13897 proc->attr.subroutine = tmp->attr.subroutine;
13898 proc->attr.use_assoc = tmp->attr.use_assoc;
13899 proc->ts = tmp->ts;
13900 proc->result = tmp->result;
13901 }
13902 }
13903
13904 /* Check for F08:C465. */
13905 if ((!proc->attr.subroutine && !proc->attr.function)
13906 || (proc->attr.proc != PROC_MODULE
13907 && proc->attr.if_source != IFSRC_IFBODY)
13908 || proc->attr.abstract)
13909 {
13910 gfc_error ("%qs must be a module procedure or an external "
13911 "procedure with an explicit interface at %L",
13912 proc->name, &where);
13913 goto error;
13914 }
13915 }
13916
13917 stree->n.tb->subroutine = proc->attr.subroutine;
13918 stree->n.tb->function = proc->attr.function;
13919
13920 /* Find the super-type of the current derived type. We could do this once and
13921 store in a global if speed is needed, but as long as not I believe this is
13922 more readable and clearer. */
13923 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13924
13925 /* If PASS, resolve and check arguments if not already resolved / loaded
13926 from a .mod file. */
13927 if (!stree->n.tb->nopass && stree->n.tb->pass_arg_num == 0)
13928 {
13929 gfc_formal_arglist *dummy_args;
13930
13931 dummy_args = gfc_sym_get_dummy_args (proc);
13932 if (stree->n.tb->pass_arg)
13933 {
13934 gfc_formal_arglist *i;
13935
13936 /* If an explicit passing argument name is given, walk the arg-list
13937 and look for it. */
13938
13939 me_arg = NULL;
13940 stree->n.tb->pass_arg_num = 1;
13941 for (i = dummy_args; i; i = i->next)
13942 {
13943 if (!strcmp (i->sym->name, stree->n.tb->pass_arg))
13944 {
13945 me_arg = i->sym;
13946 break;
13947 }
13948 ++stree->n.tb->pass_arg_num;
13949 }
13950
13951 if (!me_arg)
13952 {
13953 gfc_error ("Procedure %qs with PASS(%s) at %L has no"
13954 " argument %qs",
13955 proc->name, stree->n.tb->pass_arg, &where,
13956 stree->n.tb->pass_arg);
13957 goto error;
13958 }
13959 }
13960 else
13961 {
13962 /* Otherwise, take the first one; there should in fact be at least
13963 one. */
13964 stree->n.tb->pass_arg_num = 1;
13965 if (!dummy_args)
13966 {
13967 gfc_error ("Procedure %qs with PASS at %L must have at"
13968 " least one argument", proc->name, &where);
13969 goto error;
13970 }
13971 me_arg = dummy_args->sym;
13972 }
13973
13974 /* Now check that the argument-type matches and the passed-object
13975 dummy argument is generally fine. */
13976
13977 gcc_assert (me_arg);
13978
13979 if (me_arg->ts.type != BT_CLASS)
13980 {
13981 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13982 " at %L", proc->name, &where);
13983 goto error;
13984 }
13985
13986 if (CLASS_DATA (me_arg)->ts.u.derived
13987 != resolve_bindings_derived)
13988 {
13989 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13990 " the derived-type %qs", me_arg->name, proc->name,
13991 me_arg->name, &where, resolve_bindings_derived->name);
13992 goto error;
13993 }
13994
13995 gcc_assert (me_arg->ts.type == BT_CLASS);
13996 if (CLASS_DATA (me_arg)->as && CLASS_DATA (me_arg)->as->rank != 0)
13997 {
13998 gfc_error ("Passed-object dummy argument of %qs at %L must be"
13999 " scalar", proc->name, &where);
14000 goto error;
14001 }
14002 if (CLASS_DATA (me_arg)->attr.allocatable)
14003 {
14004 gfc_error ("Passed-object dummy argument of %qs at %L must not"
14005 " be ALLOCATABLE", proc->name, &where);
14006 goto error;
14007 }
14008 if (CLASS_DATA (me_arg)->attr.class_pointer)
14009 {
14010 gfc_error ("Passed-object dummy argument of %qs at %L must not"
14011 " be POINTER", proc->name, &where);
14012 goto error;
14013 }
14014 }
14015
14016 /* If we are extending some type, check that we don't override a procedure
14017 flagged NON_OVERRIDABLE. */
14018 stree->n.tb->overridden = NULL;
14019 if (super_type)
14020 {
14021 gfc_symtree* overridden;
14022 overridden = gfc_find_typebound_proc (super_type, NULL,
14023 stree->name, true, NULL);
14024
14025 if (overridden)
14026 {
14027 if (overridden->n.tb)
14028 stree->n.tb->overridden = overridden->n.tb;
14029
14030 if (!gfc_check_typebound_override (stree, overridden))
14031 goto error;
14032 }
14033 }
14034
14035 /* See if there's a name collision with a component directly in this type. */
14036 for (comp = resolve_bindings_derived->components; comp; comp = comp->next)
14037 if (!strcmp (comp->name, stree->name))
14038 {
14039 gfc_error ("Procedure %qs at %L has the same name as a component of"
14040 " %qs",
14041 stree->name, &where, resolve_bindings_derived->name);
14042 goto error;
14043 }
14044
14045 /* Try to find a name collision with an inherited component. */
14046 if (super_type && gfc_find_component (super_type, stree->name, true, true,
14047 NULL))
14048 {
14049 gfc_error ("Procedure %qs at %L has the same name as an inherited"
14050 " component of %qs",
14051 stree->name, &where, resolve_bindings_derived->name);
14052 goto error;
14053 }
14054
14055 stree->n.tb->error = 0;
14056 return;
14057
14058 error:
14059 resolve_bindings_result = false;
14060 stree->n.tb->error = 1;
14061 }
14062
14063
14064 static bool
14065 resolve_typebound_procedures (gfc_symbol* derived)
14066 {
14067 int op;
14068 gfc_symbol* super_type;
14069
14070 if (!derived->f2k_derived || !derived->f2k_derived->tb_sym_root)
14071 return true;
14072
14073 super_type = gfc_get_derived_super_type (derived);
14074 if (super_type)
14075 resolve_symbol (super_type);
14076
14077 resolve_bindings_derived = derived;
14078 resolve_bindings_result = true;
14079
14080 if (derived->f2k_derived->tb_sym_root)
14081 gfc_traverse_symtree (derived->f2k_derived->tb_sym_root,
14082 &resolve_typebound_procedure);
14083
14084 if (derived->f2k_derived->tb_uop_root)
14085 gfc_traverse_symtree (derived->f2k_derived->tb_uop_root,
14086 &resolve_typebound_user_op);
14087
14088 for (op = 0; op != GFC_INTRINSIC_OPS; ++op)
14089 {
14090 gfc_typebound_proc* p = derived->f2k_derived->tb_op[op];
14091 if (p && !resolve_typebound_intrinsic_op (derived,
14092 (gfc_intrinsic_op)op, p))
14093 resolve_bindings_result = false;
14094 }
14095
14096 return resolve_bindings_result;
14097 }
14098
14099
14100 /* Add a derived type to the dt_list. The dt_list is used in trans-types.c
14101 to give all identical derived types the same backend_decl. */
14102 static void
14103 add_dt_to_dt_list (gfc_symbol *derived)
14104 {
14105 if (!derived->dt_next)
14106 {
14107 if (gfc_derived_types)
14108 {
14109 derived->dt_next = gfc_derived_types->dt_next;
14110 gfc_derived_types->dt_next = derived;
14111 }
14112 else
14113 {
14114 derived->dt_next = derived;
14115 }
14116 gfc_derived_types = derived;
14117 }
14118 }
14119
14120
14121 /* Ensure that a derived-type is really not abstract, meaning that every
14122 inherited DEFERRED binding is overridden by a non-DEFERRED one. */
14123
14124 static bool
14125 ensure_not_abstract_walker (gfc_symbol* sub, gfc_symtree* st)
14126 {
14127 if (!st)
14128 return true;
14129
14130 if (!ensure_not_abstract_walker (sub, st->left))
14131 return false;
14132 if (!ensure_not_abstract_walker (sub, st->right))
14133 return false;
14134
14135 if (st->n.tb && st->n.tb->deferred)
14136 {
14137 gfc_symtree* overriding;
14138 overriding = gfc_find_typebound_proc (sub, NULL, st->name, true, NULL);
14139 if (!overriding)
14140 return false;
14141 gcc_assert (overriding->n.tb);
14142 if (overriding->n.tb->deferred)
14143 {
14144 gfc_error ("Derived-type %qs declared at %L must be ABSTRACT because"
14145 " %qs is DEFERRED and not overridden",
14146 sub->name, &sub->declared_at, st->name);
14147 return false;
14148 }
14149 }
14150
14151 return true;
14152 }
14153
14154 static bool
14155 ensure_not_abstract (gfc_symbol* sub, gfc_symbol* ancestor)
14156 {
14157 /* The algorithm used here is to recursively travel up the ancestry of sub
14158 and for each ancestor-type, check all bindings. If any of them is
14159 DEFERRED, look it up starting from sub and see if the found (overriding)
14160 binding is not DEFERRED.
14161 This is not the most efficient way to do this, but it should be ok and is
14162 clearer than something sophisticated. */
14163
14164 gcc_assert (ancestor && !sub->attr.abstract);
14165
14166 if (!ancestor->attr.abstract)
14167 return true;
14168
14169 /* Walk bindings of this ancestor. */
14170 if (ancestor->f2k_derived)
14171 {
14172 bool t;
14173 t = ensure_not_abstract_walker (sub, ancestor->f2k_derived->tb_sym_root);
14174 if (!t)
14175 return false;
14176 }
14177
14178 /* Find next ancestor type and recurse on it. */
14179 ancestor = gfc_get_derived_super_type (ancestor);
14180 if (ancestor)
14181 return ensure_not_abstract (sub, ancestor);
14182
14183 return true;
14184 }
14185
14186
14187 /* This check for typebound defined assignments is done recursively
14188 since the order in which derived types are resolved is not always in
14189 order of the declarations. */
14190
14191 static void
14192 check_defined_assignments (gfc_symbol *derived)
14193 {
14194 gfc_component *c;
14195
14196 for (c = derived->components; c; c = c->next)
14197 {
14198 if (!gfc_bt_struct (c->ts.type)
14199 || c->attr.pointer
14200 || c->attr.allocatable
14201 || c->attr.proc_pointer_comp
14202 || c->attr.class_pointer
14203 || c->attr.proc_pointer)
14204 continue;
14205
14206 if (c->ts.u.derived->attr.defined_assign_comp
14207 || (c->ts.u.derived->f2k_derived
14208 && c->ts.u.derived->f2k_derived->tb_op[INTRINSIC_ASSIGN]))
14209 {
14210 derived->attr.defined_assign_comp = 1;
14211 return;
14212 }
14213
14214 check_defined_assignments (c->ts.u.derived);
14215 if (c->ts.u.derived->attr.defined_assign_comp)
14216 {
14217 derived->attr.defined_assign_comp = 1;
14218 return;
14219 }
14220 }
14221 }
14222
14223
14224 /* Resolve a single component of a derived type or structure. */
14225
14226 static bool
14227 resolve_component (gfc_component *c, gfc_symbol *sym)
14228 {
14229 gfc_symbol *super_type;
14230 symbol_attribute *attr;
14231
14232 if (c->attr.artificial)
14233 return true;
14234
14235 /* Do not allow vtype components to be resolved in nameless namespaces
14236 such as block data because the procedure pointers will cause ICEs
14237 and vtables are not needed in these contexts. */
14238 if (sym->attr.vtype && sym->attr.use_assoc
14239 && sym->ns->proc_name == NULL)
14240 return true;
14241
14242 /* F2008, C442. */
14243 if ((!sym->attr.is_class || c != sym->components)
14244 && c->attr.codimension
14245 && (!c->attr.allocatable || (c->as && c->as->type != AS_DEFERRED)))
14246 {
14247 gfc_error ("Coarray component %qs at %L must be allocatable with "
14248 "deferred shape", c->name, &c->loc);
14249 return false;
14250 }
14251
14252 /* F2008, C443. */
14253 if (c->attr.codimension && c->ts.type == BT_DERIVED
14254 && c->ts.u.derived->ts.is_iso_c)
14255 {
14256 gfc_error ("Component %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
14257 "shall not be a coarray", c->name, &c->loc);
14258 return false;
14259 }
14260
14261 /* F2008, C444. */
14262 if (gfc_bt_struct (c->ts.type) && c->ts.u.derived->attr.coarray_comp
14263 && (c->attr.codimension || c->attr.pointer || c->attr.dimension
14264 || c->attr.allocatable))
14265 {
14266 gfc_error ("Component %qs at %L with coarray component "
14267 "shall be a nonpointer, nonallocatable scalar",
14268 c->name, &c->loc);
14269 return false;
14270 }
14271
14272 /* F2008, C448. */
14273 if (c->ts.type == BT_CLASS)
14274 {
14275 if (CLASS_DATA (c))
14276 {
14277 attr = &(CLASS_DATA (c)->attr);
14278
14279 /* Fix up contiguous attribute. */
14280 if (c->attr.contiguous)
14281 attr->contiguous = 1;
14282 }
14283 else
14284 attr = NULL;
14285 }
14286 else
14287 attr = &c->attr;
14288
14289 if (attr && attr->contiguous && (!attr->dimension || !attr->pointer))
14290 {
14291 gfc_error ("Component %qs at %L has the CONTIGUOUS attribute but "
14292 "is not an array pointer", c->name, &c->loc);
14293 return false;
14294 }
14295
14296 /* F2003, 15.2.1 - length has to be one. */
14297 if (sym->attr.is_bind_c && c->ts.type == BT_CHARACTER
14298 && (c->ts.u.cl == NULL || c->ts.u.cl->length == NULL
14299 || !gfc_is_constant_expr (c->ts.u.cl->length)
14300 || mpz_cmp_si (c->ts.u.cl->length->value.integer, 1) != 0))
14301 {
14302 gfc_error ("Component %qs of BIND(C) type at %L must have length one",
14303 c->name, &c->loc);
14304 return false;
14305 }
14306
14307 if (c->attr.proc_pointer && c->ts.interface)
14308 {
14309 gfc_symbol *ifc = c->ts.interface;
14310
14311 if (!sym->attr.vtype && !check_proc_interface (ifc, &c->loc))
14312 {
14313 c->tb->error = 1;
14314 return false;
14315 }
14316
14317 if (ifc->attr.if_source || ifc->attr.intrinsic)
14318 {
14319 /* Resolve interface and copy attributes. */
14320 if (ifc->formal && !ifc->formal_ns)
14321 resolve_symbol (ifc);
14322 if (ifc->attr.intrinsic)
14323 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
14324
14325 if (ifc->result)
14326 {
14327 c->ts = ifc->result->ts;
14328 c->attr.allocatable = ifc->result->attr.allocatable;
14329 c->attr.pointer = ifc->result->attr.pointer;
14330 c->attr.dimension = ifc->result->attr.dimension;
14331 c->as = gfc_copy_array_spec (ifc->result->as);
14332 c->attr.class_ok = ifc->result->attr.class_ok;
14333 }
14334 else
14335 {
14336 c->ts = ifc->ts;
14337 c->attr.allocatable = ifc->attr.allocatable;
14338 c->attr.pointer = ifc->attr.pointer;
14339 c->attr.dimension = ifc->attr.dimension;
14340 c->as = gfc_copy_array_spec (ifc->as);
14341 c->attr.class_ok = ifc->attr.class_ok;
14342 }
14343 c->ts.interface = ifc;
14344 c->attr.function = ifc->attr.function;
14345 c->attr.subroutine = ifc->attr.subroutine;
14346
14347 c->attr.pure = ifc->attr.pure;
14348 c->attr.elemental = ifc->attr.elemental;
14349 c->attr.recursive = ifc->attr.recursive;
14350 c->attr.always_explicit = ifc->attr.always_explicit;
14351 c->attr.ext_attr |= ifc->attr.ext_attr;
14352 /* Copy char length. */
14353 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
14354 {
14355 gfc_charlen *cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
14356 if (cl->length && !cl->resolved
14357 && !gfc_resolve_expr (cl->length))
14358 {
14359 c->tb->error = 1;
14360 return false;
14361 }
14362 c->ts.u.cl = cl;
14363 }
14364 }
14365 }
14366 else if (c->attr.proc_pointer && c->ts.type == BT_UNKNOWN)
14367 {
14368 /* Since PPCs are not implicitly typed, a PPC without an explicit
14369 interface must be a subroutine. */
14370 gfc_add_subroutine (&c->attr, c->name, &c->loc);
14371 }
14372
14373 /* Procedure pointer components: Check PASS arg. */
14374 if (c->attr.proc_pointer && !c->tb->nopass && c->tb->pass_arg_num == 0
14375 && !sym->attr.vtype)
14376 {
14377 gfc_symbol* me_arg;
14378
14379 if (c->tb->pass_arg)
14380 {
14381 gfc_formal_arglist* i;
14382
14383 /* If an explicit passing argument name is given, walk the arg-list
14384 and look for it. */
14385
14386 me_arg = NULL;
14387 c->tb->pass_arg_num = 1;
14388 for (i = c->ts.interface->formal; i; i = i->next)
14389 {
14390 if (!strcmp (i->sym->name, c->tb->pass_arg))
14391 {
14392 me_arg = i->sym;
14393 break;
14394 }
14395 c->tb->pass_arg_num++;
14396 }
14397
14398 if (!me_arg)
14399 {
14400 gfc_error ("Procedure pointer component %qs with PASS(%s) "
14401 "at %L has no argument %qs", c->name,
14402 c->tb->pass_arg, &c->loc, c->tb->pass_arg);
14403 c->tb->error = 1;
14404 return false;
14405 }
14406 }
14407 else
14408 {
14409 /* Otherwise, take the first one; there should in fact be at least
14410 one. */
14411 c->tb->pass_arg_num = 1;
14412 if (!c->ts.interface->formal)
14413 {
14414 gfc_error ("Procedure pointer component %qs with PASS at %L "
14415 "must have at least one argument",
14416 c->name, &c->loc);
14417 c->tb->error = 1;
14418 return false;
14419 }
14420 me_arg = c->ts.interface->formal->sym;
14421 }
14422
14423 /* Now check that the argument-type matches. */
14424 gcc_assert (me_arg);
14425 if ((me_arg->ts.type != BT_DERIVED && me_arg->ts.type != BT_CLASS)
14426 || (me_arg->ts.type == BT_DERIVED && me_arg->ts.u.derived != sym)
14427 || (me_arg->ts.type == BT_CLASS
14428 && CLASS_DATA (me_arg)->ts.u.derived != sym))
14429 {
14430 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
14431 " the derived type %qs", me_arg->name, c->name,
14432 me_arg->name, &c->loc, sym->name);
14433 c->tb->error = 1;
14434 return false;
14435 }
14436
14437 /* Check for F03:C453. */
14438 if (CLASS_DATA (me_arg)->attr.dimension)
14439 {
14440 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
14441 "must be scalar", me_arg->name, c->name, me_arg->name,
14442 &c->loc);
14443 c->tb->error = 1;
14444 return false;
14445 }
14446
14447 if (CLASS_DATA (me_arg)->attr.class_pointer)
14448 {
14449 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
14450 "may not have the POINTER attribute", me_arg->name,
14451 c->name, me_arg->name, &c->loc);
14452 c->tb->error = 1;
14453 return false;
14454 }
14455
14456 if (CLASS_DATA (me_arg)->attr.allocatable)
14457 {
14458 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
14459 "may not be ALLOCATABLE", me_arg->name, c->name,
14460 me_arg->name, &c->loc);
14461 c->tb->error = 1;
14462 return false;
14463 }
14464
14465 if (gfc_type_is_extensible (sym) && me_arg->ts.type != BT_CLASS)
14466 {
14467 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
14468 " at %L", c->name, &c->loc);
14469 return false;
14470 }
14471
14472 }
14473
14474 /* Check type-spec if this is not the parent-type component. */
14475 if (((sym->attr.is_class
14476 && (!sym->components->ts.u.derived->attr.extension
14477 || c != sym->components->ts.u.derived->components))
14478 || (!sym->attr.is_class
14479 && (!sym->attr.extension || c != sym->components)))
14480 && !sym->attr.vtype
14481 && !resolve_typespec_used (&c->ts, &c->loc, c->name))
14482 return false;
14483
14484 super_type = gfc_get_derived_super_type (sym);
14485
14486 /* If this type is an extension, set the accessibility of the parent
14487 component. */
14488 if (super_type
14489 && ((sym->attr.is_class
14490 && c == sym->components->ts.u.derived->components)
14491 || (!sym->attr.is_class && c == sym->components))
14492 && strcmp (super_type->name, c->name) == 0)
14493 c->attr.access = super_type->attr.access;
14494
14495 /* If this type is an extension, see if this component has the same name
14496 as an inherited type-bound procedure. */
14497 if (super_type && !sym->attr.is_class
14498 && gfc_find_typebound_proc (super_type, NULL, c->name, true, NULL))
14499 {
14500 gfc_error ("Component %qs of %qs at %L has the same name as an"
14501 " inherited type-bound procedure",
14502 c->name, sym->name, &c->loc);
14503 return false;
14504 }
14505
14506 if (c->ts.type == BT_CHARACTER && !c->attr.proc_pointer
14507 && !c->ts.deferred)
14508 {
14509 if (c->ts.u.cl->length == NULL
14510 || (!resolve_charlen(c->ts.u.cl))
14511 || !gfc_is_constant_expr (c->ts.u.cl->length))
14512 {
14513 gfc_error ("Character length of component %qs needs to "
14514 "be a constant specification expression at %L",
14515 c->name,
14516 c->ts.u.cl->length ? &c->ts.u.cl->length->where : &c->loc);
14517 return false;
14518 }
14519 }
14520
14521 if (c->ts.type == BT_CHARACTER && c->ts.deferred
14522 && !c->attr.pointer && !c->attr.allocatable)
14523 {
14524 gfc_error ("Character component %qs of %qs at %L with deferred "
14525 "length must be a POINTER or ALLOCATABLE",
14526 c->name, sym->name, &c->loc);
14527 return false;
14528 }
14529
14530 /* Add the hidden deferred length field. */
14531 if (c->ts.type == BT_CHARACTER
14532 && (c->ts.deferred || c->attr.pdt_string)
14533 && !c->attr.function
14534 && !sym->attr.is_class)
14535 {
14536 char name[GFC_MAX_SYMBOL_LEN+9];
14537 gfc_component *strlen;
14538 sprintf (name, "_%s_length", c->name);
14539 strlen = gfc_find_component (sym, name, true, true, NULL);
14540 if (strlen == NULL)
14541 {
14542 if (!gfc_add_component (sym, name, &strlen))
14543 return false;
14544 strlen->ts.type = BT_INTEGER;
14545 strlen->ts.kind = gfc_charlen_int_kind;
14546 strlen->attr.access = ACCESS_PRIVATE;
14547 strlen->attr.artificial = 1;
14548 }
14549 }
14550
14551 if (c->ts.type == BT_DERIVED
14552 && sym->component_access != ACCESS_PRIVATE
14553 && gfc_check_symbol_access (sym)
14554 && !is_sym_host_assoc (c->ts.u.derived, sym->ns)
14555 && !c->ts.u.derived->attr.use_assoc
14556 && !gfc_check_symbol_access (c->ts.u.derived)
14557 && !gfc_notify_std (GFC_STD_F2003, "the component %qs is a "
14558 "PRIVATE type and cannot be a component of "
14559 "%qs, which is PUBLIC at %L", c->name,
14560 sym->name, &sym->declared_at))
14561 return false;
14562
14563 if ((sym->attr.sequence || sym->attr.is_bind_c) && c->ts.type == BT_CLASS)
14564 {
14565 gfc_error ("Polymorphic component %s at %L in SEQUENCE or BIND(C) "
14566 "type %s", c->name, &c->loc, sym->name);
14567 return false;
14568 }
14569
14570 if (sym->attr.sequence)
14571 {
14572 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.sequence == 0)
14573 {
14574 gfc_error ("Component %s of SEQUENCE type declared at %L does "
14575 "not have the SEQUENCE attribute",
14576 c->ts.u.derived->name, &sym->declared_at);
14577 return false;
14578 }
14579 }
14580
14581 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.generic)
14582 c->ts.u.derived = gfc_find_dt_in_generic (c->ts.u.derived);
14583 else if (c->ts.type == BT_CLASS && c->attr.class_ok
14584 && CLASS_DATA (c)->ts.u.derived->attr.generic)
14585 CLASS_DATA (c)->ts.u.derived
14586 = gfc_find_dt_in_generic (CLASS_DATA (c)->ts.u.derived);
14587
14588 /* If an allocatable component derived type is of the same type as
14589 the enclosing derived type, we need a vtable generating so that
14590 the __deallocate procedure is created. */
14591 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
14592 && c->ts.u.derived == sym && c->attr.allocatable == 1)
14593 gfc_find_vtab (&c->ts);
14594
14595 /* Ensure that all the derived type components are put on the
14596 derived type list; even in formal namespaces, where derived type
14597 pointer components might not have been declared. */
14598 if (c->ts.type == BT_DERIVED
14599 && c->ts.u.derived
14600 && c->ts.u.derived->components
14601 && c->attr.pointer
14602 && sym != c->ts.u.derived)
14603 add_dt_to_dt_list (c->ts.u.derived);
14604
14605 if (!gfc_resolve_array_spec (c->as,
14606 !(c->attr.pointer || c->attr.proc_pointer
14607 || c->attr.allocatable)))
14608 return false;
14609
14610 if (c->initializer && !sym->attr.vtype
14611 && !c->attr.pdt_kind && !c->attr.pdt_len
14612 && !gfc_check_assign_symbol (sym, c, c->initializer))
14613 return false;
14614
14615 return true;
14616 }
14617
14618
14619 /* Be nice about the locus for a structure expression - show the locus of the
14620 first non-null sub-expression if we can. */
14621
14622 static locus *
14623 cons_where (gfc_expr *struct_expr)
14624 {
14625 gfc_constructor *cons;
14626
14627 gcc_assert (struct_expr && struct_expr->expr_type == EXPR_STRUCTURE);
14628
14629 cons = gfc_constructor_first (struct_expr->value.constructor);
14630 for (; cons; cons = gfc_constructor_next (cons))
14631 {
14632 if (cons->expr && cons->expr->expr_type != EXPR_NULL)
14633 return &cons->expr->where;
14634 }
14635
14636 return &struct_expr->where;
14637 }
14638
14639 /* Resolve the components of a structure type. Much less work than derived
14640 types. */
14641
14642 static bool
14643 resolve_fl_struct (gfc_symbol *sym)
14644 {
14645 gfc_component *c;
14646 gfc_expr *init = NULL;
14647 bool success;
14648
14649 /* Make sure UNIONs do not have overlapping initializers. */
14650 if (sym->attr.flavor == FL_UNION)
14651 {
14652 for (c = sym->components; c; c = c->next)
14653 {
14654 if (init && c->initializer)
14655 {
14656 gfc_error ("Conflicting initializers in union at %L and %L",
14657 cons_where (init), cons_where (c->initializer));
14658 gfc_free_expr (c->initializer);
14659 c->initializer = NULL;
14660 }
14661 if (init == NULL)
14662 init = c->initializer;
14663 }
14664 }
14665
14666 success = true;
14667 for (c = sym->components; c; c = c->next)
14668 if (!resolve_component (c, sym))
14669 success = false;
14670
14671 if (!success)
14672 return false;
14673
14674 if (sym->components)
14675 add_dt_to_dt_list (sym);
14676
14677 return true;
14678 }
14679
14680
14681 /* Resolve the components of a derived type. This does not have to wait until
14682 resolution stage, but can be done as soon as the dt declaration has been
14683 parsed. */
14684
14685 static bool
14686 resolve_fl_derived0 (gfc_symbol *sym)
14687 {
14688 gfc_symbol* super_type;
14689 gfc_component *c;
14690 gfc_formal_arglist *f;
14691 bool success;
14692
14693 if (sym->attr.unlimited_polymorphic)
14694 return true;
14695
14696 super_type = gfc_get_derived_super_type (sym);
14697
14698 /* F2008, C432. */
14699 if (super_type && sym->attr.coarray_comp && !super_type->attr.coarray_comp)
14700 {
14701 gfc_error ("As extending type %qs at %L has a coarray component, "
14702 "parent type %qs shall also have one", sym->name,
14703 &sym->declared_at, super_type->name);
14704 return false;
14705 }
14706
14707 /* Ensure the extended type gets resolved before we do. */
14708 if (super_type && !resolve_fl_derived0 (super_type))
14709 return false;
14710
14711 /* An ABSTRACT type must be extensible. */
14712 if (sym->attr.abstract && !gfc_type_is_extensible (sym))
14713 {
14714 gfc_error ("Non-extensible derived-type %qs at %L must not be ABSTRACT",
14715 sym->name, &sym->declared_at);
14716 return false;
14717 }
14718
14719 c = (sym->attr.is_class) ? sym->components->ts.u.derived->components
14720 : sym->components;
14721
14722 success = true;
14723 for ( ; c != NULL; c = c->next)
14724 if (!resolve_component (c, sym))
14725 success = false;
14726
14727 if (!success)
14728 return false;
14729
14730 /* Now add the caf token field, where needed. */
14731 if (flag_coarray != GFC_FCOARRAY_NONE
14732 && !sym->attr.is_class && !sym->attr.vtype)
14733 {
14734 for (c = sym->components; c; c = c->next)
14735 if (!c->attr.dimension && !c->attr.codimension
14736 && (c->attr.allocatable || c->attr.pointer))
14737 {
14738 char name[GFC_MAX_SYMBOL_LEN+9];
14739 gfc_component *token;
14740 sprintf (name, "_caf_%s", c->name);
14741 token = gfc_find_component (sym, name, true, true, NULL);
14742 if (token == NULL)
14743 {
14744 if (!gfc_add_component (sym, name, &token))
14745 return false;
14746 token->ts.type = BT_VOID;
14747 token->ts.kind = gfc_default_integer_kind;
14748 token->attr.access = ACCESS_PRIVATE;
14749 token->attr.artificial = 1;
14750 token->attr.caf_token = 1;
14751 }
14752 }
14753 }
14754
14755 check_defined_assignments (sym);
14756
14757 if (!sym->attr.defined_assign_comp && super_type)
14758 sym->attr.defined_assign_comp
14759 = super_type->attr.defined_assign_comp;
14760
14761 /* If this is a non-ABSTRACT type extending an ABSTRACT one, ensure that
14762 all DEFERRED bindings are overridden. */
14763 if (super_type && super_type->attr.abstract && !sym->attr.abstract
14764 && !sym->attr.is_class
14765 && !ensure_not_abstract (sym, super_type))
14766 return false;
14767
14768 /* Check that there is a component for every PDT parameter. */
14769 if (sym->attr.pdt_template)
14770 {
14771 for (f = sym->formal; f; f = f->next)
14772 {
14773 if (!f->sym)
14774 continue;
14775 c = gfc_find_component (sym, f->sym->name, true, true, NULL);
14776 if (c == NULL)
14777 {
14778 gfc_error ("Parameterized type %qs does not have a component "
14779 "corresponding to parameter %qs at %L", sym->name,
14780 f->sym->name, &sym->declared_at);
14781 break;
14782 }
14783 }
14784 }
14785
14786 /* Add derived type to the derived type list. */
14787 add_dt_to_dt_list (sym);
14788
14789 return true;
14790 }
14791
14792
14793 /* The following procedure does the full resolution of a derived type,
14794 including resolution of all type-bound procedures (if present). In contrast
14795 to 'resolve_fl_derived0' this can only be done after the module has been
14796 parsed completely. */
14797
14798 static bool
14799 resolve_fl_derived (gfc_symbol *sym)
14800 {
14801 gfc_symbol *gen_dt = NULL;
14802
14803 if (sym->attr.unlimited_polymorphic)
14804 return true;
14805
14806 if (!sym->attr.is_class)
14807 gfc_find_symbol (sym->name, sym->ns, 0, &gen_dt);
14808 if (gen_dt && gen_dt->generic && gen_dt->generic->next
14809 && (!gen_dt->generic->sym->attr.use_assoc
14810 || gen_dt->generic->sym->module != gen_dt->generic->next->sym->module)
14811 && !gfc_notify_std (GFC_STD_F2003, "Generic name %qs of function "
14812 "%qs at %L being the same name as derived "
14813 "type at %L", sym->name,
14814 gen_dt->generic->sym == sym
14815 ? gen_dt->generic->next->sym->name
14816 : gen_dt->generic->sym->name,
14817 gen_dt->generic->sym == sym
14818 ? &gen_dt->generic->next->sym->declared_at
14819 : &gen_dt->generic->sym->declared_at,
14820 &sym->declared_at))
14821 return false;
14822
14823 if (sym->components == NULL && !sym->attr.zero_comp && !sym->attr.use_assoc)
14824 {
14825 gfc_error ("Derived type %qs at %L has not been declared",
14826 sym->name, &sym->declared_at);
14827 return false;
14828 }
14829
14830 /* Resolve the finalizer procedures. */
14831 if (!gfc_resolve_finalizers (sym, NULL))
14832 return false;
14833
14834 if (sym->attr.is_class && sym->ts.u.derived == NULL)
14835 {
14836 /* Fix up incomplete CLASS symbols. */
14837 gfc_component *data = gfc_find_component (sym, "_data", true, true, NULL);
14838 gfc_component *vptr = gfc_find_component (sym, "_vptr", true, true, NULL);
14839
14840 /* Nothing more to do for unlimited polymorphic entities. */
14841 if (data->ts.u.derived->attr.unlimited_polymorphic)
14842 return true;
14843 else if (vptr->ts.u.derived == NULL)
14844 {
14845 gfc_symbol *vtab = gfc_find_derived_vtab (data->ts.u.derived);
14846 gcc_assert (vtab);
14847 vptr->ts.u.derived = vtab->ts.u.derived;
14848 if (!resolve_fl_derived0 (vptr->ts.u.derived))
14849 return false;
14850 }
14851 }
14852
14853 if (!resolve_fl_derived0 (sym))
14854 return false;
14855
14856 /* Resolve the type-bound procedures. */
14857 if (!resolve_typebound_procedures (sym))
14858 return false;
14859
14860 /* Generate module vtables subject to their accessibility and their not
14861 being vtables or pdt templates. If this is not done class declarations
14862 in external procedures wind up with their own version and so SELECT TYPE
14863 fails because the vptrs do not have the same address. */
14864 if (gfc_option.allow_std & GFC_STD_F2003
14865 && sym->ns->proc_name
14866 && sym->ns->proc_name->attr.flavor == FL_MODULE
14867 && sym->attr.access != ACCESS_PRIVATE
14868 && !(sym->attr.use_assoc || sym->attr.vtype || sym->attr.pdt_template))
14869 {
14870 gfc_symbol *vtab = gfc_find_derived_vtab (sym);
14871 gfc_set_sym_referenced (vtab);
14872 }
14873
14874 return true;
14875 }
14876
14877
14878 static bool
14879 resolve_fl_namelist (gfc_symbol *sym)
14880 {
14881 gfc_namelist *nl;
14882 gfc_symbol *nlsym;
14883
14884 for (nl = sym->namelist; nl; nl = nl->next)
14885 {
14886 /* Check again, the check in match only works if NAMELIST comes
14887 after the decl. */
14888 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SIZE)
14889 {
14890 gfc_error ("Assumed size array %qs in namelist %qs at %L is not "
14891 "allowed", nl->sym->name, sym->name, &sym->declared_at);
14892 return false;
14893 }
14894
14895 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SHAPE
14896 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14897 "with assumed shape in namelist %qs at %L",
14898 nl->sym->name, sym->name, &sym->declared_at))
14899 return false;
14900
14901 if (is_non_constant_shape_array (nl->sym)
14902 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14903 "with nonconstant shape in namelist %qs at %L",
14904 nl->sym->name, sym->name, &sym->declared_at))
14905 return false;
14906
14907 if (nl->sym->ts.type == BT_CHARACTER
14908 && (nl->sym->ts.u.cl->length == NULL
14909 || !gfc_is_constant_expr (nl->sym->ts.u.cl->length))
14910 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs with "
14911 "nonconstant character length in "
14912 "namelist %qs at %L", nl->sym->name,
14913 sym->name, &sym->declared_at))
14914 return false;
14915
14916 }
14917
14918 /* Reject PRIVATE objects in a PUBLIC namelist. */
14919 if (gfc_check_symbol_access (sym))
14920 {
14921 for (nl = sym->namelist; nl; nl = nl->next)
14922 {
14923 if (!nl->sym->attr.use_assoc
14924 && !is_sym_host_assoc (nl->sym, sym->ns)
14925 && !gfc_check_symbol_access (nl->sym))
14926 {
14927 gfc_error ("NAMELIST object %qs was declared PRIVATE and "
14928 "cannot be member of PUBLIC namelist %qs at %L",
14929 nl->sym->name, sym->name, &sym->declared_at);
14930 return false;
14931 }
14932
14933 if (nl->sym->ts.type == BT_DERIVED
14934 && (nl->sym->ts.u.derived->attr.alloc_comp
14935 || nl->sym->ts.u.derived->attr.pointer_comp))
14936 {
14937 if (!gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs in "
14938 "namelist %qs at %L with ALLOCATABLE "
14939 "or POINTER components", nl->sym->name,
14940 sym->name, &sym->declared_at))
14941 return false;
14942 return true;
14943 }
14944
14945 /* Types with private components that came here by USE-association. */
14946 if (nl->sym->ts.type == BT_DERIVED
14947 && derived_inaccessible (nl->sym->ts.u.derived))
14948 {
14949 gfc_error ("NAMELIST object %qs has use-associated PRIVATE "
14950 "components and cannot be member of namelist %qs at %L",
14951 nl->sym->name, sym->name, &sym->declared_at);
14952 return false;
14953 }
14954
14955 /* Types with private components that are defined in the same module. */
14956 if (nl->sym->ts.type == BT_DERIVED
14957 && !is_sym_host_assoc (nl->sym->ts.u.derived, sym->ns)
14958 && nl->sym->ts.u.derived->attr.private_comp)
14959 {
14960 gfc_error ("NAMELIST object %qs has PRIVATE components and "
14961 "cannot be a member of PUBLIC namelist %qs at %L",
14962 nl->sym->name, sym->name, &sym->declared_at);
14963 return false;
14964 }
14965 }
14966 }
14967
14968
14969 /* 14.1.2 A module or internal procedure represent local entities
14970 of the same type as a namelist member and so are not allowed. */
14971 for (nl = sym->namelist; nl; nl = nl->next)
14972 {
14973 if (nl->sym->ts.kind != 0 && nl->sym->attr.flavor == FL_VARIABLE)
14974 continue;
14975
14976 if (nl->sym->attr.function && nl->sym == nl->sym->result)
14977 if ((nl->sym == sym->ns->proc_name)
14978 ||
14979 (sym->ns->parent && nl->sym == sym->ns->parent->proc_name))
14980 continue;
14981
14982 nlsym = NULL;
14983 if (nl->sym->name)
14984 gfc_find_symbol (nl->sym->name, sym->ns, 1, &nlsym);
14985 if (nlsym && nlsym->attr.flavor == FL_PROCEDURE)
14986 {
14987 gfc_error ("PROCEDURE attribute conflicts with NAMELIST "
14988 "attribute in %qs at %L", nlsym->name,
14989 &sym->declared_at);
14990 return false;
14991 }
14992 }
14993
14994 if (async_io_dt)
14995 {
14996 for (nl = sym->namelist; nl; nl = nl->next)
14997 nl->sym->attr.asynchronous = 1;
14998 }
14999 return true;
15000 }
15001
15002
15003 static bool
15004 resolve_fl_parameter (gfc_symbol *sym)
15005 {
15006 /* A parameter array's shape needs to be constant. */
15007 if (sym->as != NULL
15008 && (sym->as->type == AS_DEFERRED
15009 || is_non_constant_shape_array (sym)))
15010 {
15011 gfc_error ("Parameter array %qs at %L cannot be automatic "
15012 "or of deferred shape", sym->name, &sym->declared_at);
15013 return false;
15014 }
15015
15016 /* Constraints on deferred type parameter. */
15017 if (!deferred_requirements (sym))
15018 return false;
15019
15020 /* Make sure a parameter that has been implicitly typed still
15021 matches the implicit type, since PARAMETER statements can precede
15022 IMPLICIT statements. */
15023 if (sym->attr.implicit_type
15024 && !gfc_compare_types (&sym->ts, gfc_get_default_type (sym->name,
15025 sym->ns)))
15026 {
15027 gfc_error ("Implicitly typed PARAMETER %qs at %L doesn't match a "
15028 "later IMPLICIT type", sym->name, &sym->declared_at);
15029 return false;
15030 }
15031
15032 /* Make sure the types of derived parameters are consistent. This
15033 type checking is deferred until resolution because the type may
15034 refer to a derived type from the host. */
15035 if (sym->ts.type == BT_DERIVED
15036 && !gfc_compare_types (&sym->ts, &sym->value->ts))
15037 {
15038 gfc_error ("Incompatible derived type in PARAMETER at %L",
15039 &sym->value->where);
15040 return false;
15041 }
15042
15043 /* F03:C509,C514. */
15044 if (sym->ts.type == BT_CLASS)
15045 {
15046 gfc_error ("CLASS variable %qs at %L cannot have the PARAMETER attribute",
15047 sym->name, &sym->declared_at);
15048 return false;
15049 }
15050
15051 return true;
15052 }
15053
15054
15055 /* Called by resolve_symbol to check PDTs. */
15056
15057 static void
15058 resolve_pdt (gfc_symbol* sym)
15059 {
15060 gfc_symbol *derived = NULL;
15061 gfc_actual_arglist *param;
15062 gfc_component *c;
15063 bool const_len_exprs = true;
15064 bool assumed_len_exprs = false;
15065 symbol_attribute *attr;
15066
15067 if (sym->ts.type == BT_DERIVED)
15068 {
15069 derived = sym->ts.u.derived;
15070 attr = &(sym->attr);
15071 }
15072 else if (sym->ts.type == BT_CLASS)
15073 {
15074 derived = CLASS_DATA (sym)->ts.u.derived;
15075 attr = &(CLASS_DATA (sym)->attr);
15076 }
15077 else
15078 gcc_unreachable ();
15079
15080 gcc_assert (derived->attr.pdt_type);
15081
15082 for (param = sym->param_list; param; param = param->next)
15083 {
15084 c = gfc_find_component (derived, param->name, false, true, NULL);
15085 gcc_assert (c);
15086 if (c->attr.pdt_kind)
15087 continue;
15088
15089 if (param->expr && !gfc_is_constant_expr (param->expr)
15090 && c->attr.pdt_len)
15091 const_len_exprs = false;
15092 else if (param->spec_type == SPEC_ASSUMED)
15093 assumed_len_exprs = true;
15094
15095 if (param->spec_type == SPEC_DEFERRED
15096 && !attr->allocatable && !attr->pointer)
15097 gfc_error ("The object %qs at %L has a deferred LEN "
15098 "parameter %qs and is neither allocatable "
15099 "nor a pointer", sym->name, &sym->declared_at,
15100 param->name);
15101
15102 }
15103
15104 if (!const_len_exprs
15105 && (sym->ns->proc_name->attr.is_main_program
15106 || sym->ns->proc_name->attr.flavor == FL_MODULE
15107 || sym->attr.save != SAVE_NONE))
15108 gfc_error ("The AUTOMATIC object %qs at %L must not have the "
15109 "SAVE attribute or be a variable declared in the "
15110 "main program, a module or a submodule(F08/C513)",
15111 sym->name, &sym->declared_at);
15112
15113 if (assumed_len_exprs && !(sym->attr.dummy
15114 || sym->attr.select_type_temporary || sym->attr.associate_var))
15115 gfc_error ("The object %qs at %L with ASSUMED type parameters "
15116 "must be a dummy or a SELECT TYPE selector(F08/4.2)",
15117 sym->name, &sym->declared_at);
15118 }
15119
15120
15121 /* Do anything necessary to resolve a symbol. Right now, we just
15122 assume that an otherwise unknown symbol is a variable. This sort
15123 of thing commonly happens for symbols in module. */
15124
15125 static void
15126 resolve_symbol (gfc_symbol *sym)
15127 {
15128 int check_constant, mp_flag;
15129 gfc_symtree *symtree;
15130 gfc_symtree *this_symtree;
15131 gfc_namespace *ns;
15132 gfc_component *c;
15133 symbol_attribute class_attr;
15134 gfc_array_spec *as;
15135 bool saved_specification_expr;
15136
15137 if (sym->resolved)
15138 return;
15139 sym->resolved = 1;
15140
15141 /* No symbol will ever have union type; only components can be unions.
15142 Union type declaration symbols have type BT_UNKNOWN but flavor FL_UNION
15143 (just like derived type declaration symbols have flavor FL_DERIVED). */
15144 gcc_assert (sym->ts.type != BT_UNION);
15145
15146 /* Coarrayed polymorphic objects with allocatable or pointer components are
15147 yet unsupported for -fcoarray=lib. */
15148 if (flag_coarray == GFC_FCOARRAY_LIB && sym->ts.type == BT_CLASS
15149 && sym->ts.u.derived && CLASS_DATA (sym)
15150 && CLASS_DATA (sym)->attr.codimension
15151 && (CLASS_DATA (sym)->ts.u.derived->attr.alloc_comp
15152 || CLASS_DATA (sym)->ts.u.derived->attr.pointer_comp))
15153 {
15154 gfc_error ("Sorry, allocatable/pointer components in polymorphic (CLASS) "
15155 "type coarrays at %L are unsupported", &sym->declared_at);
15156 return;
15157 }
15158
15159 if (sym->attr.artificial)
15160 return;
15161
15162 if (sym->attr.unlimited_polymorphic)
15163 return;
15164
15165 if (sym->attr.flavor == FL_UNKNOWN
15166 || (sym->attr.flavor == FL_PROCEDURE && !sym->attr.intrinsic
15167 && !sym->attr.generic && !sym->attr.external
15168 && sym->attr.if_source == IFSRC_UNKNOWN
15169 && sym->ts.type == BT_UNKNOWN))
15170 {
15171
15172 /* If we find that a flavorless symbol is an interface in one of the
15173 parent namespaces, find its symtree in this namespace, free the
15174 symbol and set the symtree to point to the interface symbol. */
15175 for (ns = gfc_current_ns->parent; ns; ns = ns->parent)
15176 {
15177 symtree = gfc_find_symtree (ns->sym_root, sym->name);
15178 if (symtree && (symtree->n.sym->generic ||
15179 (symtree->n.sym->attr.flavor == FL_PROCEDURE
15180 && sym->ns->construct_entities)))
15181 {
15182 this_symtree = gfc_find_symtree (gfc_current_ns->sym_root,
15183 sym->name);
15184 if (this_symtree->n.sym == sym)
15185 {
15186 symtree->n.sym->refs++;
15187 gfc_release_symbol (sym);
15188 this_symtree->n.sym = symtree->n.sym;
15189 return;
15190 }
15191 }
15192 }
15193
15194 /* Otherwise give it a flavor according to such attributes as
15195 it has. */
15196 if (sym->attr.flavor == FL_UNKNOWN && sym->attr.external == 0
15197 && sym->attr.intrinsic == 0)
15198 sym->attr.flavor = FL_VARIABLE;
15199 else if (sym->attr.flavor == FL_UNKNOWN)
15200 {
15201 sym->attr.flavor = FL_PROCEDURE;
15202 if (sym->attr.dimension)
15203 sym->attr.function = 1;
15204 }
15205 }
15206
15207 if (sym->attr.external && sym->ts.type != BT_UNKNOWN && !sym->attr.function)
15208 gfc_add_function (&sym->attr, sym->name, &sym->declared_at);
15209
15210 if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
15211 && !resolve_procedure_interface (sym))
15212 return;
15213
15214 if (sym->attr.is_protected && !sym->attr.proc_pointer
15215 && (sym->attr.procedure || sym->attr.external))
15216 {
15217 if (sym->attr.external)
15218 gfc_error ("PROTECTED attribute conflicts with EXTERNAL attribute "
15219 "at %L", &sym->declared_at);
15220 else
15221 gfc_error ("PROCEDURE attribute conflicts with PROTECTED attribute "
15222 "at %L", &sym->declared_at);
15223
15224 return;
15225 }
15226
15227 if (sym->attr.flavor == FL_DERIVED && !resolve_fl_derived (sym))
15228 return;
15229
15230 else if ((sym->attr.flavor == FL_STRUCT || sym->attr.flavor == FL_UNION)
15231 && !resolve_fl_struct (sym))
15232 return;
15233
15234 /* Symbols that are module procedures with results (functions) have
15235 the types and array specification copied for type checking in
15236 procedures that call them, as well as for saving to a module
15237 file. These symbols can't stand the scrutiny that their results
15238 can. */
15239 mp_flag = (sym->result != NULL && sym->result != sym);
15240
15241 /* Make sure that the intrinsic is consistent with its internal
15242 representation. This needs to be done before assigning a default
15243 type to avoid spurious warnings. */
15244 if (sym->attr.flavor != FL_MODULE && sym->attr.intrinsic
15245 && !gfc_resolve_intrinsic (sym, &sym->declared_at))
15246 return;
15247
15248 /* Resolve associate names. */
15249 if (sym->assoc)
15250 resolve_assoc_var (sym, true);
15251
15252 /* Assign default type to symbols that need one and don't have one. */
15253 if (sym->ts.type == BT_UNKNOWN)
15254 {
15255 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER)
15256 {
15257 gfc_set_default_type (sym, 1, NULL);
15258 }
15259
15260 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.external
15261 && !sym->attr.function && !sym->attr.subroutine
15262 && gfc_get_default_type (sym->name, sym->ns)->type == BT_UNKNOWN)
15263 gfc_add_subroutine (&sym->attr, sym->name, &sym->declared_at);
15264
15265 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
15266 {
15267 /* The specific case of an external procedure should emit an error
15268 in the case that there is no implicit type. */
15269 if (!mp_flag)
15270 {
15271 if (!sym->attr.mixed_entry_master)
15272 gfc_set_default_type (sym, sym->attr.external, NULL);
15273 }
15274 else
15275 {
15276 /* Result may be in another namespace. */
15277 resolve_symbol (sym->result);
15278
15279 if (!sym->result->attr.proc_pointer)
15280 {
15281 sym->ts = sym->result->ts;
15282 sym->as = gfc_copy_array_spec (sym->result->as);
15283 sym->attr.dimension = sym->result->attr.dimension;
15284 sym->attr.pointer = sym->result->attr.pointer;
15285 sym->attr.allocatable = sym->result->attr.allocatable;
15286 sym->attr.contiguous = sym->result->attr.contiguous;
15287 }
15288 }
15289 }
15290 }
15291 else if (mp_flag && sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
15292 {
15293 bool saved_specification_expr = specification_expr;
15294 specification_expr = true;
15295 gfc_resolve_array_spec (sym->result->as, false);
15296 specification_expr = saved_specification_expr;
15297 }
15298
15299 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
15300 {
15301 as = CLASS_DATA (sym)->as;
15302 class_attr = CLASS_DATA (sym)->attr;
15303 class_attr.pointer = class_attr.class_pointer;
15304 }
15305 else
15306 {
15307 class_attr = sym->attr;
15308 as = sym->as;
15309 }
15310
15311 /* F2008, C530. */
15312 if (sym->attr.contiguous
15313 && (!class_attr.dimension
15314 || (as->type != AS_ASSUMED_SHAPE && as->type != AS_ASSUMED_RANK
15315 && !class_attr.pointer)))
15316 {
15317 gfc_error ("%qs at %L has the CONTIGUOUS attribute but is not an "
15318 "array pointer or an assumed-shape or assumed-rank array",
15319 sym->name, &sym->declared_at);
15320 return;
15321 }
15322
15323 /* Assumed size arrays and assumed shape arrays must be dummy
15324 arguments. Array-spec's of implied-shape should have been resolved to
15325 AS_EXPLICIT already. */
15326
15327 if (as)
15328 {
15329 /* If AS_IMPLIED_SHAPE makes it to here, it must be a bad
15330 specification expression. */
15331 if (as->type == AS_IMPLIED_SHAPE)
15332 {
15333 int i;
15334 for (i=0; i<as->rank; i++)
15335 {
15336 if (as->lower[i] != NULL && as->upper[i] == NULL)
15337 {
15338 gfc_error ("Bad specification for assumed size array at %L",
15339 &as->lower[i]->where);
15340 return;
15341 }
15342 }
15343 gcc_unreachable();
15344 }
15345
15346 if (((as->type == AS_ASSUMED_SIZE && !as->cp_was_assumed)
15347 || as->type == AS_ASSUMED_SHAPE)
15348 && !sym->attr.dummy && !sym->attr.select_type_temporary)
15349 {
15350 if (as->type == AS_ASSUMED_SIZE)
15351 gfc_error ("Assumed size array at %L must be a dummy argument",
15352 &sym->declared_at);
15353 else
15354 gfc_error ("Assumed shape array at %L must be a dummy argument",
15355 &sym->declared_at);
15356 return;
15357 }
15358 /* TS 29113, C535a. */
15359 if (as->type == AS_ASSUMED_RANK && !sym->attr.dummy
15360 && !sym->attr.select_type_temporary
15361 && !(cs_base && cs_base->current
15362 && cs_base->current->op == EXEC_SELECT_RANK))
15363 {
15364 gfc_error ("Assumed-rank array at %L must be a dummy argument",
15365 &sym->declared_at);
15366 return;
15367 }
15368 if (as->type == AS_ASSUMED_RANK
15369 && (sym->attr.codimension || sym->attr.value))
15370 {
15371 gfc_error ("Assumed-rank array at %L may not have the VALUE or "
15372 "CODIMENSION attribute", &sym->declared_at);
15373 return;
15374 }
15375 }
15376
15377 /* Make sure symbols with known intent or optional are really dummy
15378 variable. Because of ENTRY statement, this has to be deferred
15379 until resolution time. */
15380
15381 if (!sym->attr.dummy
15382 && (sym->attr.optional || sym->attr.intent != INTENT_UNKNOWN))
15383 {
15384 gfc_error ("Symbol at %L is not a DUMMY variable", &sym->declared_at);
15385 return;
15386 }
15387
15388 if (sym->attr.value && !sym->attr.dummy)
15389 {
15390 gfc_error ("%qs at %L cannot have the VALUE attribute because "
15391 "it is not a dummy argument", sym->name, &sym->declared_at);
15392 return;
15393 }
15394
15395 if (sym->attr.value && sym->ts.type == BT_CHARACTER)
15396 {
15397 gfc_charlen *cl = sym->ts.u.cl;
15398 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
15399 {
15400 gfc_error ("Character dummy variable %qs at %L with VALUE "
15401 "attribute must have constant length",
15402 sym->name, &sym->declared_at);
15403 return;
15404 }
15405
15406 if (sym->ts.is_c_interop
15407 && mpz_cmp_si (cl->length->value.integer, 1) != 0)
15408 {
15409 gfc_error ("C interoperable character dummy variable %qs at %L "
15410 "with VALUE attribute must have length one",
15411 sym->name, &sym->declared_at);
15412 return;
15413 }
15414 }
15415
15416 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
15417 && sym->ts.u.derived->attr.generic)
15418 {
15419 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
15420 if (!sym->ts.u.derived)
15421 {
15422 gfc_error ("The derived type %qs at %L is of type %qs, "
15423 "which has not been defined", sym->name,
15424 &sym->declared_at, sym->ts.u.derived->name);
15425 sym->ts.type = BT_UNKNOWN;
15426 return;
15427 }
15428 }
15429
15430 /* Use the same constraints as TYPE(*), except for the type check
15431 and that only scalars and assumed-size arrays are permitted. */
15432 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
15433 {
15434 if (!sym->attr.dummy)
15435 {
15436 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
15437 "a dummy argument", sym->name, &sym->declared_at);
15438 return;
15439 }
15440
15441 if (sym->ts.type != BT_ASSUMED && sym->ts.type != BT_INTEGER
15442 && sym->ts.type != BT_REAL && sym->ts.type != BT_LOGICAL
15443 && sym->ts.type != BT_COMPLEX)
15444 {
15445 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
15446 "of type TYPE(*) or of an numeric intrinsic type",
15447 sym->name, &sym->declared_at);
15448 return;
15449 }
15450
15451 if (sym->attr.allocatable || sym->attr.codimension
15452 || sym->attr.pointer || sym->attr.value)
15453 {
15454 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
15455 "have the ALLOCATABLE, CODIMENSION, POINTER or VALUE "
15456 "attribute", sym->name, &sym->declared_at);
15457 return;
15458 }
15459
15460 if (sym->attr.intent == INTENT_OUT)
15461 {
15462 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
15463 "have the INTENT(OUT) attribute",
15464 sym->name, &sym->declared_at);
15465 return;
15466 }
15467 if (sym->attr.dimension && sym->as->type != AS_ASSUMED_SIZE)
15468 {
15469 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall "
15470 "either be a scalar or an assumed-size array",
15471 sym->name, &sym->declared_at);
15472 return;
15473 }
15474
15475 /* Set the type to TYPE(*) and add a dimension(*) to ensure
15476 NO_ARG_CHECK is correctly handled in trans*.c, e.g. with
15477 packing. */
15478 sym->ts.type = BT_ASSUMED;
15479 sym->as = gfc_get_array_spec ();
15480 sym->as->type = AS_ASSUMED_SIZE;
15481 sym->as->rank = 1;
15482 sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
15483 }
15484 else if (sym->ts.type == BT_ASSUMED)
15485 {
15486 /* TS 29113, C407a. */
15487 if (!sym->attr.dummy)
15488 {
15489 gfc_error ("Assumed type of variable %s at %L is only permitted "
15490 "for dummy variables", sym->name, &sym->declared_at);
15491 return;
15492 }
15493 if (sym->attr.allocatable || sym->attr.codimension
15494 || sym->attr.pointer || sym->attr.value)
15495 {
15496 gfc_error ("Assumed-type variable %s at %L may not have the "
15497 "ALLOCATABLE, CODIMENSION, POINTER or VALUE attribute",
15498 sym->name, &sym->declared_at);
15499 return;
15500 }
15501 if (sym->attr.intent == INTENT_OUT)
15502 {
15503 gfc_error ("Assumed-type variable %s at %L may not have the "
15504 "INTENT(OUT) attribute",
15505 sym->name, &sym->declared_at);
15506 return;
15507 }
15508 if (sym->attr.dimension && sym->as->type == AS_EXPLICIT)
15509 {
15510 gfc_error ("Assumed-type variable %s at %L shall not be an "
15511 "explicit-shape array", sym->name, &sym->declared_at);
15512 return;
15513 }
15514 }
15515
15516 /* If the symbol is marked as bind(c), that it is declared at module level
15517 scope and verify its type and kind. Do not do the latter for symbols
15518 that are implicitly typed because that is handled in
15519 gfc_set_default_type. Handle dummy arguments and procedure definitions
15520 separately. Also, anything that is use associated is not handled here
15521 but instead is handled in the module it is declared in. Finally, derived
15522 type definitions are allowed to be BIND(C) since that only implies that
15523 they're interoperable, and they are checked fully for interoperability
15524 when a variable is declared of that type. */
15525 if (sym->attr.is_bind_c && sym->attr.use_assoc == 0
15526 && sym->attr.dummy == 0 && sym->attr.flavor != FL_PROCEDURE
15527 && sym->attr.flavor != FL_DERIVED)
15528 {
15529 bool t = true;
15530
15531 /* First, make sure the variable is declared at the
15532 module-level scope (J3/04-007, Section 15.3). */
15533 if (sym->ns->proc_name->attr.flavor != FL_MODULE &&
15534 sym->attr.in_common == 0)
15535 {
15536 gfc_error ("Variable %qs at %L cannot be BIND(C) because it "
15537 "is neither a COMMON block nor declared at the "
15538 "module level scope", sym->name, &(sym->declared_at));
15539 t = false;
15540 }
15541 else if (sym->ts.type == BT_CHARACTER
15542 && (sym->ts.u.cl == NULL || sym->ts.u.cl->length == NULL
15543 || !gfc_is_constant_expr (sym->ts.u.cl->length)
15544 || mpz_cmp_si (sym->ts.u.cl->length->value.integer, 1) != 0))
15545 {
15546 gfc_error ("BIND(C) Variable %qs at %L must have length one",
15547 sym->name, &sym->declared_at);
15548 t = false;
15549 }
15550 else if (sym->common_head != NULL && sym->attr.implicit_type == 0)
15551 {
15552 t = verify_com_block_vars_c_interop (sym->common_head);
15553 }
15554 else if (sym->attr.implicit_type == 0)
15555 {
15556 /* If type() declaration, we need to verify that the components
15557 of the given type are all C interoperable, etc. */
15558 if (sym->ts.type == BT_DERIVED &&
15559 sym->ts.u.derived->attr.is_c_interop != 1)
15560 {
15561 /* Make sure the user marked the derived type as BIND(C). If
15562 not, call the verify routine. This could print an error
15563 for the derived type more than once if multiple variables
15564 of that type are declared. */
15565 if (sym->ts.u.derived->attr.is_bind_c != 1)
15566 verify_bind_c_derived_type (sym->ts.u.derived);
15567 t = false;
15568 }
15569
15570 /* Verify the variable itself as C interoperable if it
15571 is BIND(C). It is not possible for this to succeed if
15572 the verify_bind_c_derived_type failed, so don't have to handle
15573 any error returned by verify_bind_c_derived_type. */
15574 t = verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
15575 sym->common_block);
15576 }
15577
15578 if (!t)
15579 {
15580 /* clear the is_bind_c flag to prevent reporting errors more than
15581 once if something failed. */
15582 sym->attr.is_bind_c = 0;
15583 return;
15584 }
15585 }
15586
15587 /* If a derived type symbol has reached this point, without its
15588 type being declared, we have an error. Notice that most
15589 conditions that produce undefined derived types have already
15590 been dealt with. However, the likes of:
15591 implicit type(t) (t) ..... call foo (t) will get us here if
15592 the type is not declared in the scope of the implicit
15593 statement. Change the type to BT_UNKNOWN, both because it is so
15594 and to prevent an ICE. */
15595 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
15596 && sym->ts.u.derived->components == NULL
15597 && !sym->ts.u.derived->attr.zero_comp)
15598 {
15599 gfc_error ("The derived type %qs at %L is of type %qs, "
15600 "which has not been defined", sym->name,
15601 &sym->declared_at, sym->ts.u.derived->name);
15602 sym->ts.type = BT_UNKNOWN;
15603 return;
15604 }
15605
15606 /* Make sure that the derived type has been resolved and that the
15607 derived type is visible in the symbol's namespace, if it is a
15608 module function and is not PRIVATE. */
15609 if (sym->ts.type == BT_DERIVED
15610 && sym->ts.u.derived->attr.use_assoc
15611 && sym->ns->proc_name
15612 && sym->ns->proc_name->attr.flavor == FL_MODULE
15613 && !resolve_fl_derived (sym->ts.u.derived))
15614 return;
15615
15616 /* Unless the derived-type declaration is use associated, Fortran 95
15617 does not allow public entries of private derived types.
15618 See 4.4.1 (F95) and 4.5.1.1 (F2003); and related interpretation
15619 161 in 95-006r3. */
15620 if (sym->ts.type == BT_DERIVED
15621 && sym->ns->proc_name && sym->ns->proc_name->attr.flavor == FL_MODULE
15622 && !sym->ts.u.derived->attr.use_assoc
15623 && gfc_check_symbol_access (sym)
15624 && !gfc_check_symbol_access (sym->ts.u.derived)
15625 && !gfc_notify_std (GFC_STD_F2003, "PUBLIC %s %qs at %L of PRIVATE "
15626 "derived type %qs",
15627 (sym->attr.flavor == FL_PARAMETER)
15628 ? "parameter" : "variable",
15629 sym->name, &sym->declared_at,
15630 sym->ts.u.derived->name))
15631 return;
15632
15633 /* F2008, C1302. */
15634 if (sym->ts.type == BT_DERIVED
15635 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
15636 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
15637 || sym->ts.u.derived->attr.lock_comp)
15638 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
15639 {
15640 gfc_error ("Variable %s at %L of type LOCK_TYPE or with subcomponent of "
15641 "type LOCK_TYPE must be a coarray", sym->name,
15642 &sym->declared_at);
15643 return;
15644 }
15645
15646 /* TS18508, C702/C703. */
15647 if (sym->ts.type == BT_DERIVED
15648 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
15649 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
15650 || sym->ts.u.derived->attr.event_comp)
15651 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
15652 {
15653 gfc_error ("Variable %s at %L of type EVENT_TYPE or with subcomponent of "
15654 "type EVENT_TYPE must be a coarray", sym->name,
15655 &sym->declared_at);
15656 return;
15657 }
15658
15659 /* An assumed-size array with INTENT(OUT) shall not be of a type for which
15660 default initialization is defined (5.1.2.4.4). */
15661 if (sym->ts.type == BT_DERIVED
15662 && sym->attr.dummy
15663 && sym->attr.intent == INTENT_OUT
15664 && sym->as
15665 && sym->as->type == AS_ASSUMED_SIZE)
15666 {
15667 for (c = sym->ts.u.derived->components; c; c = c->next)
15668 {
15669 if (c->initializer)
15670 {
15671 gfc_error ("The INTENT(OUT) dummy argument %qs at %L is "
15672 "ASSUMED SIZE and so cannot have a default initializer",
15673 sym->name, &sym->declared_at);
15674 return;
15675 }
15676 }
15677 }
15678
15679 /* F2008, C542. */
15680 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
15681 && sym->attr.intent == INTENT_OUT && sym->attr.lock_comp)
15682 {
15683 gfc_error ("Dummy argument %qs at %L of LOCK_TYPE shall not be "
15684 "INTENT(OUT)", sym->name, &sym->declared_at);
15685 return;
15686 }
15687
15688 /* TS18508. */
15689 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
15690 && sym->attr.intent == INTENT_OUT && sym->attr.event_comp)
15691 {
15692 gfc_error ("Dummy argument %qs at %L of EVENT_TYPE shall not be "
15693 "INTENT(OUT)", sym->name, &sym->declared_at);
15694 return;
15695 }
15696
15697 /* F2008, C525. */
15698 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15699 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15700 && CLASS_DATA (sym)->attr.coarray_comp))
15701 || class_attr.codimension)
15702 && (sym->attr.result || sym->result == sym))
15703 {
15704 gfc_error ("Function result %qs at %L shall not be a coarray or have "
15705 "a coarray component", sym->name, &sym->declared_at);
15706 return;
15707 }
15708
15709 /* F2008, C524. */
15710 if (sym->attr.codimension && sym->ts.type == BT_DERIVED
15711 && sym->ts.u.derived->ts.is_iso_c)
15712 {
15713 gfc_error ("Variable %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
15714 "shall not be a coarray", sym->name, &sym->declared_at);
15715 return;
15716 }
15717
15718 /* F2008, C525. */
15719 if (((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15720 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15721 && CLASS_DATA (sym)->attr.coarray_comp))
15722 && (class_attr.codimension || class_attr.pointer || class_attr.dimension
15723 || class_attr.allocatable))
15724 {
15725 gfc_error ("Variable %qs at %L with coarray component shall be a "
15726 "nonpointer, nonallocatable scalar, which is not a coarray",
15727 sym->name, &sym->declared_at);
15728 return;
15729 }
15730
15731 /* F2008, C526. The function-result case was handled above. */
15732 if (class_attr.codimension
15733 && !(class_attr.allocatable || sym->attr.dummy || sym->attr.save
15734 || sym->attr.select_type_temporary
15735 || sym->attr.associate_var
15736 || (sym->ns->save_all && !sym->attr.automatic)
15737 || sym->ns->proc_name->attr.flavor == FL_MODULE
15738 || sym->ns->proc_name->attr.is_main_program
15739 || sym->attr.function || sym->attr.result || sym->attr.use_assoc))
15740 {
15741 gfc_error ("Variable %qs at %L is a coarray and is not ALLOCATABLE, SAVE "
15742 "nor a dummy argument", sym->name, &sym->declared_at);
15743 return;
15744 }
15745 /* F2008, C528. */
15746 else if (class_attr.codimension && !sym->attr.select_type_temporary
15747 && !class_attr.allocatable && as && as->cotype == AS_DEFERRED)
15748 {
15749 gfc_error ("Coarray variable %qs at %L shall not have codimensions with "
15750 "deferred shape", sym->name, &sym->declared_at);
15751 return;
15752 }
15753 else if (class_attr.codimension && class_attr.allocatable && as
15754 && (as->cotype != AS_DEFERRED || as->type != AS_DEFERRED))
15755 {
15756 gfc_error ("Allocatable coarray variable %qs at %L must have "
15757 "deferred shape", sym->name, &sym->declared_at);
15758 return;
15759 }
15760
15761 /* F2008, C541. */
15762 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15763 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15764 && CLASS_DATA (sym)->attr.coarray_comp))
15765 || (class_attr.codimension && class_attr.allocatable))
15766 && sym->attr.dummy && sym->attr.intent == INTENT_OUT)
15767 {
15768 gfc_error ("Variable %qs at %L is INTENT(OUT) and can thus not be an "
15769 "allocatable coarray or have coarray components",
15770 sym->name, &sym->declared_at);
15771 return;
15772 }
15773
15774 if (class_attr.codimension && sym->attr.dummy
15775 && sym->ns->proc_name && sym->ns->proc_name->attr.is_bind_c)
15776 {
15777 gfc_error ("Coarray dummy variable %qs at %L not allowed in BIND(C) "
15778 "procedure %qs", sym->name, &sym->declared_at,
15779 sym->ns->proc_name->name);
15780 return;
15781 }
15782
15783 if (sym->ts.type == BT_LOGICAL
15784 && ((sym->attr.function && sym->attr.is_bind_c && sym->result == sym)
15785 || ((sym->attr.dummy || sym->attr.result) && sym->ns->proc_name
15786 && sym->ns->proc_name->attr.is_bind_c)))
15787 {
15788 int i;
15789 for (i = 0; gfc_logical_kinds[i].kind; i++)
15790 if (gfc_logical_kinds[i].kind == sym->ts.kind)
15791 break;
15792 if (!gfc_logical_kinds[i].c_bool && sym->attr.dummy
15793 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL dummy argument %qs at "
15794 "%L with non-C_Bool kind in BIND(C) procedure "
15795 "%qs", sym->name, &sym->declared_at,
15796 sym->ns->proc_name->name))
15797 return;
15798 else if (!gfc_logical_kinds[i].c_bool
15799 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL result variable "
15800 "%qs at %L with non-C_Bool kind in "
15801 "BIND(C) procedure %qs", sym->name,
15802 &sym->declared_at,
15803 sym->attr.function ? sym->name
15804 : sym->ns->proc_name->name))
15805 return;
15806 }
15807
15808 switch (sym->attr.flavor)
15809 {
15810 case FL_VARIABLE:
15811 if (!resolve_fl_variable (sym, mp_flag))
15812 return;
15813 break;
15814
15815 case FL_PROCEDURE:
15816 if (sym->formal && !sym->formal_ns)
15817 {
15818 /* Check that none of the arguments are a namelist. */
15819 gfc_formal_arglist *formal = sym->formal;
15820
15821 for (; formal; formal = formal->next)
15822 if (formal->sym && formal->sym->attr.flavor == FL_NAMELIST)
15823 {
15824 gfc_error ("Namelist %qs cannot be an argument to "
15825 "subroutine or function at %L",
15826 formal->sym->name, &sym->declared_at);
15827 return;
15828 }
15829 }
15830
15831 if (!resolve_fl_procedure (sym, mp_flag))
15832 return;
15833 break;
15834
15835 case FL_NAMELIST:
15836 if (!resolve_fl_namelist (sym))
15837 return;
15838 break;
15839
15840 case FL_PARAMETER:
15841 if (!resolve_fl_parameter (sym))
15842 return;
15843 break;
15844
15845 default:
15846 break;
15847 }
15848
15849 /* Resolve array specifier. Check as well some constraints
15850 on COMMON blocks. */
15851
15852 check_constant = sym->attr.in_common && !sym->attr.pointer;
15853
15854 /* Set the formal_arg_flag so that check_conflict will not throw
15855 an error for host associated variables in the specification
15856 expression for an array_valued function. */
15857 if ((sym->attr.function || sym->attr.result) && sym->as)
15858 formal_arg_flag = true;
15859
15860 saved_specification_expr = specification_expr;
15861 specification_expr = true;
15862 gfc_resolve_array_spec (sym->as, check_constant);
15863 specification_expr = saved_specification_expr;
15864
15865 formal_arg_flag = false;
15866
15867 /* Resolve formal namespaces. */
15868 if (sym->formal_ns && sym->formal_ns != gfc_current_ns
15869 && !sym->attr.contained && !sym->attr.intrinsic)
15870 gfc_resolve (sym->formal_ns);
15871
15872 /* Make sure the formal namespace is present. */
15873 if (sym->formal && !sym->formal_ns)
15874 {
15875 gfc_formal_arglist *formal = sym->formal;
15876 while (formal && !formal->sym)
15877 formal = formal->next;
15878
15879 if (formal)
15880 {
15881 sym->formal_ns = formal->sym->ns;
15882 if (sym->ns != formal->sym->ns)
15883 sym->formal_ns->refs++;
15884 }
15885 }
15886
15887 /* Check threadprivate restrictions. */
15888 if (sym->attr.threadprivate && !sym->attr.save
15889 && !(sym->ns->save_all && !sym->attr.automatic)
15890 && (!sym->attr.in_common
15891 && sym->module == NULL
15892 && (sym->ns->proc_name == NULL
15893 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15894 gfc_error ("Threadprivate at %L isn't SAVEd", &sym->declared_at);
15895
15896 /* Check omp declare target restrictions. */
15897 if (sym->attr.omp_declare_target
15898 && sym->attr.flavor == FL_VARIABLE
15899 && !sym->attr.save
15900 && !(sym->ns->save_all && !sym->attr.automatic)
15901 && (!sym->attr.in_common
15902 && sym->module == NULL
15903 && (sym->ns->proc_name == NULL
15904 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15905 gfc_error ("!$OMP DECLARE TARGET variable %qs at %L isn't SAVEd",
15906 sym->name, &sym->declared_at);
15907
15908 /* If we have come this far we can apply default-initializers, as
15909 described in 14.7.5, to those variables that have not already
15910 been assigned one. */
15911 if (sym->ts.type == BT_DERIVED
15912 && !sym->value
15913 && !sym->attr.allocatable
15914 && !sym->attr.alloc_comp)
15915 {
15916 symbol_attribute *a = &sym->attr;
15917
15918 if ((!a->save && !a->dummy && !a->pointer
15919 && !a->in_common && !a->use_assoc
15920 && a->referenced
15921 && !((a->function || a->result)
15922 && (!a->dimension
15923 || sym->ts.u.derived->attr.alloc_comp
15924 || sym->ts.u.derived->attr.pointer_comp))
15925 && !(a->function && sym != sym->result))
15926 || (a->dummy && a->intent == INTENT_OUT && !a->pointer))
15927 apply_default_init (sym);
15928 else if (a->function && sym->result && a->access != ACCESS_PRIVATE
15929 && (sym->ts.u.derived->attr.alloc_comp
15930 || sym->ts.u.derived->attr.pointer_comp))
15931 /* Mark the result symbol to be referenced, when it has allocatable
15932 components. */
15933 sym->result->attr.referenced = 1;
15934 }
15935
15936 if (sym->ts.type == BT_CLASS && sym->ns == gfc_current_ns
15937 && sym->attr.dummy && sym->attr.intent == INTENT_OUT
15938 && !CLASS_DATA (sym)->attr.class_pointer
15939 && !CLASS_DATA (sym)->attr.allocatable)
15940 apply_default_init (sym);
15941
15942 /* If this symbol has a type-spec, check it. */
15943 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER
15944 || (sym->attr.flavor == FL_PROCEDURE && sym->attr.function))
15945 if (!resolve_typespec_used (&sym->ts, &sym->declared_at, sym->name))
15946 return;
15947
15948 if (sym->param_list)
15949 resolve_pdt (sym);
15950 }
15951
15952
15953 /************* Resolve DATA statements *************/
15954
15955 static struct
15956 {
15957 gfc_data_value *vnode;
15958 mpz_t left;
15959 }
15960 values;
15961
15962
15963 /* Advance the values structure to point to the next value in the data list. */
15964
15965 static bool
15966 next_data_value (void)
15967 {
15968 while (mpz_cmp_ui (values.left, 0) == 0)
15969 {
15970
15971 if (values.vnode->next == NULL)
15972 return false;
15973
15974 values.vnode = values.vnode->next;
15975 mpz_set (values.left, values.vnode->repeat);
15976 }
15977
15978 return true;
15979 }
15980
15981
15982 static bool
15983 check_data_variable (gfc_data_variable *var, locus *where)
15984 {
15985 gfc_expr *e;
15986 mpz_t size;
15987 mpz_t offset;
15988 bool t;
15989 ar_type mark = AR_UNKNOWN;
15990 int i;
15991 mpz_t section_index[GFC_MAX_DIMENSIONS];
15992 gfc_ref *ref;
15993 gfc_array_ref *ar;
15994 gfc_symbol *sym;
15995 int has_pointer;
15996
15997 if (!gfc_resolve_expr (var->expr))
15998 return false;
15999
16000 ar = NULL;
16001 mpz_init_set_si (offset, 0);
16002 e = var->expr;
16003
16004 if (e->expr_type == EXPR_FUNCTION && e->value.function.isym
16005 && e->value.function.isym->id == GFC_ISYM_CAF_GET)
16006 e = e->value.function.actual->expr;
16007
16008 if (e->expr_type != EXPR_VARIABLE)
16009 {
16010 gfc_error ("Expecting definable entity near %L", where);
16011 return false;
16012 }
16013
16014 sym = e->symtree->n.sym;
16015
16016 if (sym->ns->is_block_data && !sym->attr.in_common)
16017 {
16018 gfc_error ("BLOCK DATA element %qs at %L must be in COMMON",
16019 sym->name, &sym->declared_at);
16020 return false;
16021 }
16022
16023 if (e->ref == NULL && sym->as)
16024 {
16025 gfc_error ("DATA array %qs at %L must be specified in a previous"
16026 " declaration", sym->name, where);
16027 return false;
16028 }
16029
16030 if (gfc_is_coindexed (e))
16031 {
16032 gfc_error ("DATA element %qs at %L cannot have a coindex", sym->name,
16033 where);
16034 return false;
16035 }
16036
16037 has_pointer = sym->attr.pointer;
16038
16039 for (ref = e->ref; ref; ref = ref->next)
16040 {
16041 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
16042 has_pointer = 1;
16043
16044 if (has_pointer)
16045 {
16046 if (ref->type == REF_ARRAY && ref->u.ar.type != AR_FULL)
16047 {
16048 gfc_error ("DATA element %qs at %L is a pointer and so must "
16049 "be a full array", sym->name, where);
16050 return false;
16051 }
16052
16053 if (values.vnode->expr->expr_type == EXPR_CONSTANT)
16054 {
16055 gfc_error ("DATA object near %L has the pointer attribute "
16056 "and the corresponding DATA value is not a valid "
16057 "initial-data-target", where);
16058 return false;
16059 }
16060 }
16061 }
16062
16063 if (e->rank == 0 || has_pointer)
16064 {
16065 mpz_init_set_ui (size, 1);
16066 ref = NULL;
16067 }
16068 else
16069 {
16070 ref = e->ref;
16071
16072 /* Find the array section reference. */
16073 for (ref = e->ref; ref; ref = ref->next)
16074 {
16075 if (ref->type != REF_ARRAY)
16076 continue;
16077 if (ref->u.ar.type == AR_ELEMENT)
16078 continue;
16079 break;
16080 }
16081 gcc_assert (ref);
16082
16083 /* Set marks according to the reference pattern. */
16084 switch (ref->u.ar.type)
16085 {
16086 case AR_FULL:
16087 mark = AR_FULL;
16088 break;
16089
16090 case AR_SECTION:
16091 ar = &ref->u.ar;
16092 /* Get the start position of array section. */
16093 gfc_get_section_index (ar, section_index, &offset);
16094 mark = AR_SECTION;
16095 break;
16096
16097 default:
16098 gcc_unreachable ();
16099 }
16100
16101 if (!gfc_array_size (e, &size))
16102 {
16103 gfc_error ("Nonconstant array section at %L in DATA statement",
16104 where);
16105 mpz_clear (offset);
16106 return false;
16107 }
16108 }
16109
16110 t = true;
16111
16112 while (mpz_cmp_ui (size, 0) > 0)
16113 {
16114 if (!next_data_value ())
16115 {
16116 gfc_error ("DATA statement at %L has more variables than values",
16117 where);
16118 t = false;
16119 break;
16120 }
16121
16122 t = gfc_check_assign (var->expr, values.vnode->expr, 0);
16123 if (!t)
16124 break;
16125
16126 /* If we have more than one element left in the repeat count,
16127 and we have more than one element left in the target variable,
16128 then create a range assignment. */
16129 /* FIXME: Only done for full arrays for now, since array sections
16130 seem tricky. */
16131 if (mark == AR_FULL && ref && ref->next == NULL
16132 && mpz_cmp_ui (values.left, 1) > 0 && mpz_cmp_ui (size, 1) > 0)
16133 {
16134 mpz_t range;
16135
16136 if (mpz_cmp (size, values.left) >= 0)
16137 {
16138 mpz_init_set (range, values.left);
16139 mpz_sub (size, size, values.left);
16140 mpz_set_ui (values.left, 0);
16141 }
16142 else
16143 {
16144 mpz_init_set (range, size);
16145 mpz_sub (values.left, values.left, size);
16146 mpz_set_ui (size, 0);
16147 }
16148
16149 t = gfc_assign_data_value (var->expr, values.vnode->expr,
16150 offset, &range);
16151
16152 mpz_add (offset, offset, range);
16153 mpz_clear (range);
16154
16155 if (!t)
16156 break;
16157 }
16158
16159 /* Assign initial value to symbol. */
16160 else
16161 {
16162 mpz_sub_ui (values.left, values.left, 1);
16163 mpz_sub_ui (size, size, 1);
16164
16165 t = gfc_assign_data_value (var->expr, values.vnode->expr,
16166 offset, NULL);
16167 if (!t)
16168 break;
16169
16170 if (mark == AR_FULL)
16171 mpz_add_ui (offset, offset, 1);
16172
16173 /* Modify the array section indexes and recalculate the offset
16174 for next element. */
16175 else if (mark == AR_SECTION)
16176 gfc_advance_section (section_index, ar, &offset);
16177 }
16178 }
16179
16180 if (mark == AR_SECTION)
16181 {
16182 for (i = 0; i < ar->dimen; i++)
16183 mpz_clear (section_index[i]);
16184 }
16185
16186 mpz_clear (size);
16187 mpz_clear (offset);
16188
16189 return t;
16190 }
16191
16192
16193 static bool traverse_data_var (gfc_data_variable *, locus *);
16194
16195 /* Iterate over a list of elements in a DATA statement. */
16196
16197 static bool
16198 traverse_data_list (gfc_data_variable *var, locus *where)
16199 {
16200 mpz_t trip;
16201 iterator_stack frame;
16202 gfc_expr *e, *start, *end, *step;
16203 bool retval = true;
16204
16205 mpz_init (frame.value);
16206 mpz_init (trip);
16207
16208 start = gfc_copy_expr (var->iter.start);
16209 end = gfc_copy_expr (var->iter.end);
16210 step = gfc_copy_expr (var->iter.step);
16211
16212 if (!gfc_simplify_expr (start, 1)
16213 || start->expr_type != EXPR_CONSTANT)
16214 {
16215 gfc_error ("start of implied-do loop at %L could not be "
16216 "simplified to a constant value", &start->where);
16217 retval = false;
16218 goto cleanup;
16219 }
16220 if (!gfc_simplify_expr (end, 1)
16221 || end->expr_type != EXPR_CONSTANT)
16222 {
16223 gfc_error ("end of implied-do loop at %L could not be "
16224 "simplified to a constant value", &start->where);
16225 retval = false;
16226 goto cleanup;
16227 }
16228 if (!gfc_simplify_expr (step, 1)
16229 || step->expr_type != EXPR_CONSTANT)
16230 {
16231 gfc_error ("step of implied-do loop at %L could not be "
16232 "simplified to a constant value", &start->where);
16233 retval = false;
16234 goto cleanup;
16235 }
16236
16237 mpz_set (trip, end->value.integer);
16238 mpz_sub (trip, trip, start->value.integer);
16239 mpz_add (trip, trip, step->value.integer);
16240
16241 mpz_div (trip, trip, step->value.integer);
16242
16243 mpz_set (frame.value, start->value.integer);
16244
16245 frame.prev = iter_stack;
16246 frame.variable = var->iter.var->symtree;
16247 iter_stack = &frame;
16248
16249 while (mpz_cmp_ui (trip, 0) > 0)
16250 {
16251 if (!traverse_data_var (var->list, where))
16252 {
16253 retval = false;
16254 goto cleanup;
16255 }
16256
16257 e = gfc_copy_expr (var->expr);
16258 if (!gfc_simplify_expr (e, 1))
16259 {
16260 gfc_free_expr (e);
16261 retval = false;
16262 goto cleanup;
16263 }
16264
16265 mpz_add (frame.value, frame.value, step->value.integer);
16266
16267 mpz_sub_ui (trip, trip, 1);
16268 }
16269
16270 cleanup:
16271 mpz_clear (frame.value);
16272 mpz_clear (trip);
16273
16274 gfc_free_expr (start);
16275 gfc_free_expr (end);
16276 gfc_free_expr (step);
16277
16278 iter_stack = frame.prev;
16279 return retval;
16280 }
16281
16282
16283 /* Type resolve variables in the variable list of a DATA statement. */
16284
16285 static bool
16286 traverse_data_var (gfc_data_variable *var, locus *where)
16287 {
16288 bool t;
16289
16290 for (; var; var = var->next)
16291 {
16292 if (var->expr == NULL)
16293 t = traverse_data_list (var, where);
16294 else
16295 t = check_data_variable (var, where);
16296
16297 if (!t)
16298 return false;
16299 }
16300
16301 return true;
16302 }
16303
16304
16305 /* Resolve the expressions and iterators associated with a data statement.
16306 This is separate from the assignment checking because data lists should
16307 only be resolved once. */
16308
16309 static bool
16310 resolve_data_variables (gfc_data_variable *d)
16311 {
16312 for (; d; d = d->next)
16313 {
16314 if (d->list == NULL)
16315 {
16316 if (!gfc_resolve_expr (d->expr))
16317 return false;
16318 }
16319 else
16320 {
16321 if (!gfc_resolve_iterator (&d->iter, false, true))
16322 return false;
16323
16324 if (!resolve_data_variables (d->list))
16325 return false;
16326 }
16327 }
16328
16329 return true;
16330 }
16331
16332
16333 /* Resolve a single DATA statement. We implement this by storing a pointer to
16334 the value list into static variables, and then recursively traversing the
16335 variables list, expanding iterators and such. */
16336
16337 static void
16338 resolve_data (gfc_data *d)
16339 {
16340
16341 if (!resolve_data_variables (d->var))
16342 return;
16343
16344 values.vnode = d->value;
16345 if (d->value == NULL)
16346 mpz_set_ui (values.left, 0);
16347 else
16348 mpz_set (values.left, d->value->repeat);
16349
16350 if (!traverse_data_var (d->var, &d->where))
16351 return;
16352
16353 /* At this point, we better not have any values left. */
16354
16355 if (next_data_value ())
16356 gfc_error ("DATA statement at %L has more values than variables",
16357 &d->where);
16358 }
16359
16360
16361 /* 12.6 Constraint: In a pure subprogram any variable which is in common or
16362 accessed by host or use association, is a dummy argument to a pure function,
16363 is a dummy argument with INTENT (IN) to a pure subroutine, or an object that
16364 is storage associated with any such variable, shall not be used in the
16365 following contexts: (clients of this function). */
16366
16367 /* Determines if a variable is not 'pure', i.e., not assignable within a pure
16368 procedure. Returns zero if assignment is OK, nonzero if there is a
16369 problem. */
16370 int
16371 gfc_impure_variable (gfc_symbol *sym)
16372 {
16373 gfc_symbol *proc;
16374 gfc_namespace *ns;
16375
16376 if (sym->attr.use_assoc || sym->attr.in_common)
16377 return 1;
16378
16379 /* Check if the symbol's ns is inside the pure procedure. */
16380 for (ns = gfc_current_ns; ns; ns = ns->parent)
16381 {
16382 if (ns == sym->ns)
16383 break;
16384 if (ns->proc_name->attr.flavor == FL_PROCEDURE && !sym->attr.function)
16385 return 1;
16386 }
16387
16388 proc = sym->ns->proc_name;
16389 if (sym->attr.dummy
16390 && ((proc->attr.subroutine && sym->attr.intent == INTENT_IN)
16391 || proc->attr.function))
16392 return 1;
16393
16394 /* TODO: Sort out what can be storage associated, if anything, and include
16395 it here. In principle equivalences should be scanned but it does not
16396 seem to be possible to storage associate an impure variable this way. */
16397 return 0;
16398 }
16399
16400
16401 /* Test whether a symbol is pure or not. For a NULL pointer, checks if the
16402 current namespace is inside a pure procedure. */
16403
16404 int
16405 gfc_pure (gfc_symbol *sym)
16406 {
16407 symbol_attribute attr;
16408 gfc_namespace *ns;
16409
16410 if (sym == NULL)
16411 {
16412 /* Check if the current namespace or one of its parents
16413 belongs to a pure procedure. */
16414 for (ns = gfc_current_ns; ns; ns = ns->parent)
16415 {
16416 sym = ns->proc_name;
16417 if (sym == NULL)
16418 return 0;
16419 attr = sym->attr;
16420 if (attr.flavor == FL_PROCEDURE && attr.pure)
16421 return 1;
16422 }
16423 return 0;
16424 }
16425
16426 attr = sym->attr;
16427
16428 return attr.flavor == FL_PROCEDURE && attr.pure;
16429 }
16430
16431
16432 /* Test whether a symbol is implicitly pure or not. For a NULL pointer,
16433 checks if the current namespace is implicitly pure. Note that this
16434 function returns false for a PURE procedure. */
16435
16436 int
16437 gfc_implicit_pure (gfc_symbol *sym)
16438 {
16439 gfc_namespace *ns;
16440
16441 if (sym == NULL)
16442 {
16443 /* Check if the current procedure is implicit_pure. Walk up
16444 the procedure list until we find a procedure. */
16445 for (ns = gfc_current_ns; ns; ns = ns->parent)
16446 {
16447 sym = ns->proc_name;
16448 if (sym == NULL)
16449 return 0;
16450
16451 if (sym->attr.flavor == FL_PROCEDURE)
16452 break;
16453 }
16454 }
16455
16456 return sym->attr.flavor == FL_PROCEDURE && sym->attr.implicit_pure
16457 && !sym->attr.pure;
16458 }
16459
16460
16461 void
16462 gfc_unset_implicit_pure (gfc_symbol *sym)
16463 {
16464 gfc_namespace *ns;
16465
16466 if (sym == NULL)
16467 {
16468 /* Check if the current procedure is implicit_pure. Walk up
16469 the procedure list until we find a procedure. */
16470 for (ns = gfc_current_ns; ns; ns = ns->parent)
16471 {
16472 sym = ns->proc_name;
16473 if (sym == NULL)
16474 return;
16475
16476 if (sym->attr.flavor == FL_PROCEDURE)
16477 break;
16478 }
16479 }
16480
16481 if (sym->attr.flavor == FL_PROCEDURE)
16482 sym->attr.implicit_pure = 0;
16483 else
16484 sym->attr.pure = 0;
16485 }
16486
16487
16488 /* Test whether the current procedure is elemental or not. */
16489
16490 int
16491 gfc_elemental (gfc_symbol *sym)
16492 {
16493 symbol_attribute attr;
16494
16495 if (sym == NULL)
16496 sym = gfc_current_ns->proc_name;
16497 if (sym == NULL)
16498 return 0;
16499 attr = sym->attr;
16500
16501 return attr.flavor == FL_PROCEDURE && attr.elemental;
16502 }
16503
16504
16505 /* Warn about unused labels. */
16506
16507 static void
16508 warn_unused_fortran_label (gfc_st_label *label)
16509 {
16510 if (label == NULL)
16511 return;
16512
16513 warn_unused_fortran_label (label->left);
16514
16515 if (label->defined == ST_LABEL_UNKNOWN)
16516 return;
16517
16518 switch (label->referenced)
16519 {
16520 case ST_LABEL_UNKNOWN:
16521 gfc_warning (OPT_Wunused_label, "Label %d at %L defined but not used",
16522 label->value, &label->where);
16523 break;
16524
16525 case ST_LABEL_BAD_TARGET:
16526 gfc_warning (OPT_Wunused_label,
16527 "Label %d at %L defined but cannot be used",
16528 label->value, &label->where);
16529 break;
16530
16531 default:
16532 break;
16533 }
16534
16535 warn_unused_fortran_label (label->right);
16536 }
16537
16538
16539 /* Returns the sequence type of a symbol or sequence. */
16540
16541 static seq_type
16542 sequence_type (gfc_typespec ts)
16543 {
16544 seq_type result;
16545 gfc_component *c;
16546
16547 switch (ts.type)
16548 {
16549 case BT_DERIVED:
16550
16551 if (ts.u.derived->components == NULL)
16552 return SEQ_NONDEFAULT;
16553
16554 result = sequence_type (ts.u.derived->components->ts);
16555 for (c = ts.u.derived->components->next; c; c = c->next)
16556 if (sequence_type (c->ts) != result)
16557 return SEQ_MIXED;
16558
16559 return result;
16560
16561 case BT_CHARACTER:
16562 if (ts.kind != gfc_default_character_kind)
16563 return SEQ_NONDEFAULT;
16564
16565 return SEQ_CHARACTER;
16566
16567 case BT_INTEGER:
16568 if (ts.kind != gfc_default_integer_kind)
16569 return SEQ_NONDEFAULT;
16570
16571 return SEQ_NUMERIC;
16572
16573 case BT_REAL:
16574 if (!(ts.kind == gfc_default_real_kind
16575 || ts.kind == gfc_default_double_kind))
16576 return SEQ_NONDEFAULT;
16577
16578 return SEQ_NUMERIC;
16579
16580 case BT_COMPLEX:
16581 if (ts.kind != gfc_default_complex_kind)
16582 return SEQ_NONDEFAULT;
16583
16584 return SEQ_NUMERIC;
16585
16586 case BT_LOGICAL:
16587 if (ts.kind != gfc_default_logical_kind)
16588 return SEQ_NONDEFAULT;
16589
16590 return SEQ_NUMERIC;
16591
16592 default:
16593 return SEQ_NONDEFAULT;
16594 }
16595 }
16596
16597
16598 /* Resolve derived type EQUIVALENCE object. */
16599
16600 static bool
16601 resolve_equivalence_derived (gfc_symbol *derived, gfc_symbol *sym, gfc_expr *e)
16602 {
16603 gfc_component *c = derived->components;
16604
16605 if (!derived)
16606 return true;
16607
16608 /* Shall not be an object of nonsequence derived type. */
16609 if (!derived->attr.sequence)
16610 {
16611 gfc_error ("Derived type variable %qs at %L must have SEQUENCE "
16612 "attribute to be an EQUIVALENCE object", sym->name,
16613 &e->where);
16614 return false;
16615 }
16616
16617 /* Shall not have allocatable components. */
16618 if (derived->attr.alloc_comp)
16619 {
16620 gfc_error ("Derived type variable %qs at %L cannot have ALLOCATABLE "
16621 "components to be an EQUIVALENCE object",sym->name,
16622 &e->where);
16623 return false;
16624 }
16625
16626 if (sym->attr.in_common && gfc_has_default_initializer (sym->ts.u.derived))
16627 {
16628 gfc_error ("Derived type variable %qs at %L with default "
16629 "initialization cannot be in EQUIVALENCE with a variable "
16630 "in COMMON", sym->name, &e->where);
16631 return false;
16632 }
16633
16634 for (; c ; c = c->next)
16635 {
16636 if (gfc_bt_struct (c->ts.type)
16637 && (!resolve_equivalence_derived(c->ts.u.derived, sym, e)))
16638 return false;
16639
16640 /* Shall not be an object of sequence derived type containing a pointer
16641 in the structure. */
16642 if (c->attr.pointer)
16643 {
16644 gfc_error ("Derived type variable %qs at %L with pointer "
16645 "component(s) cannot be an EQUIVALENCE object",
16646 sym->name, &e->where);
16647 return false;
16648 }
16649 }
16650 return true;
16651 }
16652
16653
16654 /* Resolve equivalence object.
16655 An EQUIVALENCE object shall not be a dummy argument, a pointer, a target,
16656 an allocatable array, an object of nonsequence derived type, an object of
16657 sequence derived type containing a pointer at any level of component
16658 selection, an automatic object, a function name, an entry name, a result
16659 name, a named constant, a structure component, or a subobject of any of
16660 the preceding objects. A substring shall not have length zero. A
16661 derived type shall not have components with default initialization nor
16662 shall two objects of an equivalence group be initialized.
16663 Either all or none of the objects shall have an protected attribute.
16664 The simple constraints are done in symbol.c(check_conflict) and the rest
16665 are implemented here. */
16666
16667 static void
16668 resolve_equivalence (gfc_equiv *eq)
16669 {
16670 gfc_symbol *sym;
16671 gfc_symbol *first_sym;
16672 gfc_expr *e;
16673 gfc_ref *r;
16674 locus *last_where = NULL;
16675 seq_type eq_type, last_eq_type;
16676 gfc_typespec *last_ts;
16677 int object, cnt_protected;
16678 const char *msg;
16679
16680 last_ts = &eq->expr->symtree->n.sym->ts;
16681
16682 first_sym = eq->expr->symtree->n.sym;
16683
16684 cnt_protected = 0;
16685
16686 for (object = 1; eq; eq = eq->eq, object++)
16687 {
16688 e = eq->expr;
16689
16690 e->ts = e->symtree->n.sym->ts;
16691 /* match_varspec might not know yet if it is seeing
16692 array reference or substring reference, as it doesn't
16693 know the types. */
16694 if (e->ref && e->ref->type == REF_ARRAY)
16695 {
16696 gfc_ref *ref = e->ref;
16697 sym = e->symtree->n.sym;
16698
16699 if (sym->attr.dimension)
16700 {
16701 ref->u.ar.as = sym->as;
16702 ref = ref->next;
16703 }
16704
16705 /* For substrings, convert REF_ARRAY into REF_SUBSTRING. */
16706 if (e->ts.type == BT_CHARACTER
16707 && ref
16708 && ref->type == REF_ARRAY
16709 && ref->u.ar.dimen == 1
16710 && ref->u.ar.dimen_type[0] == DIMEN_RANGE
16711 && ref->u.ar.stride[0] == NULL)
16712 {
16713 gfc_expr *start = ref->u.ar.start[0];
16714 gfc_expr *end = ref->u.ar.end[0];
16715 void *mem = NULL;
16716
16717 /* Optimize away the (:) reference. */
16718 if (start == NULL && end == NULL)
16719 {
16720 if (e->ref == ref)
16721 e->ref = ref->next;
16722 else
16723 e->ref->next = ref->next;
16724 mem = ref;
16725 }
16726 else
16727 {
16728 ref->type = REF_SUBSTRING;
16729 if (start == NULL)
16730 start = gfc_get_int_expr (gfc_charlen_int_kind,
16731 NULL, 1);
16732 ref->u.ss.start = start;
16733 if (end == NULL && e->ts.u.cl)
16734 end = gfc_copy_expr (e->ts.u.cl->length);
16735 ref->u.ss.end = end;
16736 ref->u.ss.length = e->ts.u.cl;
16737 e->ts.u.cl = NULL;
16738 }
16739 ref = ref->next;
16740 free (mem);
16741 }
16742
16743 /* Any further ref is an error. */
16744 if (ref)
16745 {
16746 gcc_assert (ref->type == REF_ARRAY);
16747 gfc_error ("Syntax error in EQUIVALENCE statement at %L",
16748 &ref->u.ar.where);
16749 continue;
16750 }
16751 }
16752
16753 if (!gfc_resolve_expr (e))
16754 continue;
16755
16756 sym = e->symtree->n.sym;
16757
16758 if (sym->attr.is_protected)
16759 cnt_protected++;
16760 if (cnt_protected > 0 && cnt_protected != object)
16761 {
16762 gfc_error ("Either all or none of the objects in the "
16763 "EQUIVALENCE set at %L shall have the "
16764 "PROTECTED attribute",
16765 &e->where);
16766 break;
16767 }
16768
16769 /* Shall not equivalence common block variables in a PURE procedure. */
16770 if (sym->ns->proc_name
16771 && sym->ns->proc_name->attr.pure
16772 && sym->attr.in_common)
16773 {
16774 /* Need to check for symbols that may have entered the pure
16775 procedure via a USE statement. */
16776 bool saw_sym = false;
16777 if (sym->ns->use_stmts)
16778 {
16779 gfc_use_rename *r;
16780 for (r = sym->ns->use_stmts->rename; r; r = r->next)
16781 if (strcmp(r->use_name, sym->name) == 0) saw_sym = true;
16782 }
16783 else
16784 saw_sym = true;
16785
16786 if (saw_sym)
16787 gfc_error ("COMMON block member %qs at %L cannot be an "
16788 "EQUIVALENCE object in the pure procedure %qs",
16789 sym->name, &e->where, sym->ns->proc_name->name);
16790 break;
16791 }
16792
16793 /* Shall not be a named constant. */
16794 if (e->expr_type == EXPR_CONSTANT)
16795 {
16796 gfc_error ("Named constant %qs at %L cannot be an EQUIVALENCE "
16797 "object", sym->name, &e->where);
16798 continue;
16799 }
16800
16801 if (e->ts.type == BT_DERIVED
16802 && !resolve_equivalence_derived (e->ts.u.derived, sym, e))
16803 continue;
16804
16805 /* Check that the types correspond correctly:
16806 Note 5.28:
16807 A numeric sequence structure may be equivalenced to another sequence
16808 structure, an object of default integer type, default real type, double
16809 precision real type, default logical type such that components of the
16810 structure ultimately only become associated to objects of the same
16811 kind. A character sequence structure may be equivalenced to an object
16812 of default character kind or another character sequence structure.
16813 Other objects may be equivalenced only to objects of the same type and
16814 kind parameters. */
16815
16816 /* Identical types are unconditionally OK. */
16817 if (object == 1 || gfc_compare_types (last_ts, &sym->ts))
16818 goto identical_types;
16819
16820 last_eq_type = sequence_type (*last_ts);
16821 eq_type = sequence_type (sym->ts);
16822
16823 /* Since the pair of objects is not of the same type, mixed or
16824 non-default sequences can be rejected. */
16825
16826 msg = "Sequence %s with mixed components in EQUIVALENCE "
16827 "statement at %L with different type objects";
16828 if ((object ==2
16829 && last_eq_type == SEQ_MIXED
16830 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16831 || (eq_type == SEQ_MIXED
16832 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16833 continue;
16834
16835 msg = "Non-default type object or sequence %s in EQUIVALENCE "
16836 "statement at %L with objects of different type";
16837 if ((object ==2
16838 && last_eq_type == SEQ_NONDEFAULT
16839 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16840 || (eq_type == SEQ_NONDEFAULT
16841 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16842 continue;
16843
16844 msg ="Non-CHARACTER object %qs in default CHARACTER "
16845 "EQUIVALENCE statement at %L";
16846 if (last_eq_type == SEQ_CHARACTER
16847 && eq_type != SEQ_CHARACTER
16848 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16849 continue;
16850
16851 msg ="Non-NUMERIC object %qs in default NUMERIC "
16852 "EQUIVALENCE statement at %L";
16853 if (last_eq_type == SEQ_NUMERIC
16854 && eq_type != SEQ_NUMERIC
16855 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16856 continue;
16857
16858 identical_types:
16859 last_ts =&sym->ts;
16860 last_where = &e->where;
16861
16862 if (!e->ref)
16863 continue;
16864
16865 /* Shall not be an automatic array. */
16866 if (e->ref->type == REF_ARRAY
16867 && !gfc_resolve_array_spec (e->ref->u.ar.as, 1))
16868 {
16869 gfc_error ("Array %qs at %L with non-constant bounds cannot be "
16870 "an EQUIVALENCE object", sym->name, &e->where);
16871 continue;
16872 }
16873
16874 r = e->ref;
16875 while (r)
16876 {
16877 /* Shall not be a structure component. */
16878 if (r->type == REF_COMPONENT)
16879 {
16880 gfc_error ("Structure component %qs at %L cannot be an "
16881 "EQUIVALENCE object",
16882 r->u.c.component->name, &e->where);
16883 break;
16884 }
16885
16886 /* A substring shall not have length zero. */
16887 if (r->type == REF_SUBSTRING)
16888 {
16889 if (compare_bound (r->u.ss.start, r->u.ss.end) == CMP_GT)
16890 {
16891 gfc_error ("Substring at %L has length zero",
16892 &r->u.ss.start->where);
16893 break;
16894 }
16895 }
16896 r = r->next;
16897 }
16898 }
16899 }
16900
16901
16902 /* Function called by resolve_fntype to flag other symbols used in the
16903 length type parameter specification of function results. */
16904
16905 static bool
16906 flag_fn_result_spec (gfc_expr *expr,
16907 gfc_symbol *sym,
16908 int *f ATTRIBUTE_UNUSED)
16909 {
16910 gfc_namespace *ns;
16911 gfc_symbol *s;
16912
16913 if (expr->expr_type == EXPR_VARIABLE)
16914 {
16915 s = expr->symtree->n.sym;
16916 for (ns = s->ns; ns; ns = ns->parent)
16917 if (!ns->parent)
16918 break;
16919
16920 if (sym == s)
16921 {
16922 gfc_error ("Self reference in character length expression "
16923 "for %qs at %L", sym->name, &expr->where);
16924 return true;
16925 }
16926
16927 if (!s->fn_result_spec
16928 && s->attr.flavor == FL_PARAMETER)
16929 {
16930 /* Function contained in a module.... */
16931 if (ns->proc_name && ns->proc_name->attr.flavor == FL_MODULE)
16932 {
16933 gfc_symtree *st;
16934 s->fn_result_spec = 1;
16935 /* Make sure that this symbol is translated as a module
16936 variable. */
16937 st = gfc_get_unique_symtree (ns);
16938 st->n.sym = s;
16939 s->refs++;
16940 }
16941 /* ... which is use associated and called. */
16942 else if (s->attr.use_assoc || s->attr.used_in_submodule
16943 ||
16944 /* External function matched with an interface. */
16945 (s->ns->proc_name
16946 && ((s->ns == ns
16947 && s->ns->proc_name->attr.if_source == IFSRC_DECL)
16948 || s->ns->proc_name->attr.if_source == IFSRC_IFBODY)
16949 && s->ns->proc_name->attr.function))
16950 s->fn_result_spec = 1;
16951 }
16952 }
16953 return false;
16954 }
16955
16956
16957 /* Resolve function and ENTRY types, issue diagnostics if needed. */
16958
16959 static void
16960 resolve_fntype (gfc_namespace *ns)
16961 {
16962 gfc_entry_list *el;
16963 gfc_symbol *sym;
16964
16965 if (ns->proc_name == NULL || !ns->proc_name->attr.function)
16966 return;
16967
16968 /* If there are any entries, ns->proc_name is the entry master
16969 synthetic symbol and ns->entries->sym actual FUNCTION symbol. */
16970 if (ns->entries)
16971 sym = ns->entries->sym;
16972 else
16973 sym = ns->proc_name;
16974 if (sym->result == sym
16975 && sym->ts.type == BT_UNKNOWN
16976 && !gfc_set_default_type (sym, 0, NULL)
16977 && !sym->attr.untyped)
16978 {
16979 gfc_error ("Function %qs at %L has no IMPLICIT type",
16980 sym->name, &sym->declared_at);
16981 sym->attr.untyped = 1;
16982 }
16983
16984 if (sym->ts.type == BT_DERIVED && !sym->ts.u.derived->attr.use_assoc
16985 && !sym->attr.contained
16986 && !gfc_check_symbol_access (sym->ts.u.derived)
16987 && gfc_check_symbol_access (sym))
16988 {
16989 gfc_notify_std (GFC_STD_F2003, "PUBLIC function %qs at "
16990 "%L of PRIVATE type %qs", sym->name,
16991 &sym->declared_at, sym->ts.u.derived->name);
16992 }
16993
16994 if (ns->entries)
16995 for (el = ns->entries->next; el; el = el->next)
16996 {
16997 if (el->sym->result == el->sym
16998 && el->sym->ts.type == BT_UNKNOWN
16999 && !gfc_set_default_type (el->sym, 0, NULL)
17000 && !el->sym->attr.untyped)
17001 {
17002 gfc_error ("ENTRY %qs at %L has no IMPLICIT type",
17003 el->sym->name, &el->sym->declared_at);
17004 el->sym->attr.untyped = 1;
17005 }
17006 }
17007
17008 if (sym->ts.type == BT_CHARACTER)
17009 gfc_traverse_expr (sym->ts.u.cl->length, sym, flag_fn_result_spec, 0);
17010 }
17011
17012
17013 /* 12.3.2.1.1 Defined operators. */
17014
17015 static bool
17016 check_uop_procedure (gfc_symbol *sym, locus where)
17017 {
17018 gfc_formal_arglist *formal;
17019
17020 if (!sym->attr.function)
17021 {
17022 gfc_error ("User operator procedure %qs at %L must be a FUNCTION",
17023 sym->name, &where);
17024 return false;
17025 }
17026
17027 if (sym->ts.type == BT_CHARACTER
17028 && !((sym->ts.u.cl && sym->ts.u.cl->length) || sym->ts.deferred)
17029 && !(sym->result && ((sym->result->ts.u.cl
17030 && sym->result->ts.u.cl->length) || sym->result->ts.deferred)))
17031 {
17032 gfc_error ("User operator procedure %qs at %L cannot be assumed "
17033 "character length", sym->name, &where);
17034 return false;
17035 }
17036
17037 formal = gfc_sym_get_dummy_args (sym);
17038 if (!formal || !formal->sym)
17039 {
17040 gfc_error ("User operator procedure %qs at %L must have at least "
17041 "one argument", sym->name, &where);
17042 return false;
17043 }
17044
17045 if (formal->sym->attr.intent != INTENT_IN)
17046 {
17047 gfc_error ("First argument of operator interface at %L must be "
17048 "INTENT(IN)", &where);
17049 return false;
17050 }
17051
17052 if (formal->sym->attr.optional)
17053 {
17054 gfc_error ("First argument of operator interface at %L cannot be "
17055 "optional", &where);
17056 return false;
17057 }
17058
17059 formal = formal->next;
17060 if (!formal || !formal->sym)
17061 return true;
17062
17063 if (formal->sym->attr.intent != INTENT_IN)
17064 {
17065 gfc_error ("Second argument of operator interface at %L must be "
17066 "INTENT(IN)", &where);
17067 return false;
17068 }
17069
17070 if (formal->sym->attr.optional)
17071 {
17072 gfc_error ("Second argument of operator interface at %L cannot be "
17073 "optional", &where);
17074 return false;
17075 }
17076
17077 if (formal->next)
17078 {
17079 gfc_error ("Operator interface at %L must have, at most, two "
17080 "arguments", &where);
17081 return false;
17082 }
17083
17084 return true;
17085 }
17086
17087 static void
17088 gfc_resolve_uops (gfc_symtree *symtree)
17089 {
17090 gfc_interface *itr;
17091
17092 if (symtree == NULL)
17093 return;
17094
17095 gfc_resolve_uops (symtree->left);
17096 gfc_resolve_uops (symtree->right);
17097
17098 for (itr = symtree->n.uop->op; itr; itr = itr->next)
17099 check_uop_procedure (itr->sym, itr->sym->declared_at);
17100 }
17101
17102
17103 /* Examine all of the expressions associated with a program unit,
17104 assign types to all intermediate expressions, make sure that all
17105 assignments are to compatible types and figure out which names
17106 refer to which functions or subroutines. It doesn't check code
17107 block, which is handled by gfc_resolve_code. */
17108
17109 static void
17110 resolve_types (gfc_namespace *ns)
17111 {
17112 gfc_namespace *n;
17113 gfc_charlen *cl;
17114 gfc_data *d;
17115 gfc_equiv *eq;
17116 gfc_namespace* old_ns = gfc_current_ns;
17117 bool recursive = ns->proc_name && ns->proc_name->attr.recursive;
17118
17119 if (ns->types_resolved)
17120 return;
17121
17122 /* Check that all IMPLICIT types are ok. */
17123 if (!ns->seen_implicit_none)
17124 {
17125 unsigned letter;
17126 for (letter = 0; letter != GFC_LETTERS; ++letter)
17127 if (ns->set_flag[letter]
17128 && !resolve_typespec_used (&ns->default_type[letter],
17129 &ns->implicit_loc[letter], NULL))
17130 return;
17131 }
17132
17133 gfc_current_ns = ns;
17134
17135 resolve_entries (ns);
17136
17137 resolve_common_vars (&ns->blank_common, false);
17138 resolve_common_blocks (ns->common_root);
17139
17140 resolve_contained_functions (ns);
17141
17142 if (ns->proc_name && ns->proc_name->attr.flavor == FL_PROCEDURE
17143 && ns->proc_name->attr.if_source == IFSRC_IFBODY)
17144 resolve_formal_arglist (ns->proc_name);
17145
17146 gfc_traverse_ns (ns, resolve_bind_c_derived_types);
17147
17148 for (cl = ns->cl_list; cl; cl = cl->next)
17149 resolve_charlen (cl);
17150
17151 gfc_traverse_ns (ns, resolve_symbol);
17152
17153 resolve_fntype (ns);
17154
17155 for (n = ns->contained; n; n = n->sibling)
17156 {
17157 if (gfc_pure (ns->proc_name) && !gfc_pure (n->proc_name))
17158 gfc_error ("Contained procedure %qs at %L of a PURE procedure must "
17159 "also be PURE", n->proc_name->name,
17160 &n->proc_name->declared_at);
17161
17162 resolve_types (n);
17163 }
17164
17165 forall_flag = 0;
17166 gfc_do_concurrent_flag = 0;
17167 gfc_check_interfaces (ns);
17168
17169 gfc_traverse_ns (ns, resolve_values);
17170
17171 if (ns->save_all || (!flag_automatic && !recursive))
17172 gfc_save_all (ns);
17173
17174 iter_stack = NULL;
17175 for (d = ns->data; d; d = d->next)
17176 resolve_data (d);
17177
17178 iter_stack = NULL;
17179 gfc_traverse_ns (ns, gfc_formalize_init_value);
17180
17181 gfc_traverse_ns (ns, gfc_verify_binding_labels);
17182
17183 for (eq = ns->equiv; eq; eq = eq->next)
17184 resolve_equivalence (eq);
17185
17186 /* Warn about unused labels. */
17187 if (warn_unused_label)
17188 warn_unused_fortran_label (ns->st_labels);
17189
17190 gfc_resolve_uops (ns->uop_root);
17191
17192 gfc_traverse_ns (ns, gfc_verify_DTIO_procedures);
17193
17194 gfc_resolve_omp_declare_simd (ns);
17195
17196 gfc_resolve_omp_udrs (ns->omp_udr_root);
17197
17198 ns->types_resolved = 1;
17199
17200 gfc_current_ns = old_ns;
17201 }
17202
17203
17204 /* Call gfc_resolve_code recursively. */
17205
17206 static void
17207 resolve_codes (gfc_namespace *ns)
17208 {
17209 gfc_namespace *n;
17210 bitmap_obstack old_obstack;
17211
17212 if (ns->resolved == 1)
17213 return;
17214
17215 for (n = ns->contained; n; n = n->sibling)
17216 resolve_codes (n);
17217
17218 gfc_current_ns = ns;
17219
17220 /* Don't clear 'cs_base' if this is the namespace of a BLOCK construct. */
17221 if (!(ns->proc_name && ns->proc_name->attr.flavor == FL_LABEL))
17222 cs_base = NULL;
17223
17224 /* Set to an out of range value. */
17225 current_entry_id = -1;
17226
17227 old_obstack = labels_obstack;
17228 bitmap_obstack_initialize (&labels_obstack);
17229
17230 gfc_resolve_oacc_declare (ns);
17231 gfc_resolve_oacc_routines (ns);
17232 gfc_resolve_omp_local_vars (ns);
17233 gfc_resolve_code (ns->code, ns);
17234
17235 bitmap_obstack_release (&labels_obstack);
17236 labels_obstack = old_obstack;
17237 }
17238
17239
17240 /* This function is called after a complete program unit has been compiled.
17241 Its purpose is to examine all of the expressions associated with a program
17242 unit, assign types to all intermediate expressions, make sure that all
17243 assignments are to compatible types and figure out which names refer to
17244 which functions or subroutines. */
17245
17246 void
17247 gfc_resolve (gfc_namespace *ns)
17248 {
17249 gfc_namespace *old_ns;
17250 code_stack *old_cs_base;
17251 struct gfc_omp_saved_state old_omp_state;
17252
17253 if (ns->resolved)
17254 return;
17255
17256 ns->resolved = -1;
17257 old_ns = gfc_current_ns;
17258 old_cs_base = cs_base;
17259
17260 /* As gfc_resolve can be called during resolution of an OpenMP construct
17261 body, we should clear any state associated to it, so that say NS's
17262 DO loops are not interpreted as OpenMP loops. */
17263 if (!ns->construct_entities)
17264 gfc_omp_save_and_clear_state (&old_omp_state);
17265
17266 resolve_types (ns);
17267 component_assignment_level = 0;
17268 resolve_codes (ns);
17269
17270 gfc_current_ns = old_ns;
17271 cs_base = old_cs_base;
17272 ns->resolved = 1;
17273
17274 gfc_run_passes (ns);
17275
17276 if (!ns->construct_entities)
17277 gfc_omp_restore_state (&old_omp_state);
17278 }